
Alibaba Cloud

ApsaraDB for Redis
Best Practices

Document Version: 20220620

Alibaba Cloud

ApsaraDB for Redis
Best Practices

Document Version: 20220620

Legal disclaimer
Alibaba Cloud reminds you t o carefully read and fully underst and t he t erms and condit ions of t his legal
disclaimer before you read or use t his document . If you have read or used t his document , it shall be deemed
as your t ot al accept ance of t his legal disclaimer.

1. You shall download and obt ain t his document from t he Alibaba Cloud websit e or ot her Alibaba Cloud-
aut horized channels, and use t his document for your own legal business act ivit ies only. The cont ent of
t his document is considered confident ial informat ion of Alibaba Cloud. You shall st rict ly abide by t he
confident ialit y obligat ions. No part of t his document shall be disclosed or provided t o any t hird part y for
use wit hout t he prior writ t en consent of Alibaba Cloud.

2. No part of t his document shall be excerpt ed, t ranslat ed, reproduced, t ransmit t ed, or disseminat ed by
any organizat ion, company or individual in any form or by any means wit hout t he prior writ t en consent of
Alibaba Cloud.

3. The cont ent of t his document may be changed because of product version upgrade, adjust ment , or
ot her reasons. Alibaba Cloud reserves t he right t o modify t he cont ent of t his document wit hout not ice
and an updat ed version of t his document will be released t hrough Alibaba Cloud-aut horized channels
from t ime t o t ime. You should pay at t ent ion t o t he version changes of t his document as t hey occur and
download and obt ain t he most up-t o-dat e version of t his document from Alibaba Cloud-aut horized
channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud product s and services.
Alibaba Cloud provides t his document based on t he "st at us quo", "being defect ive", and "exist ing
funct ions" of it s product s and services. Alibaba Cloud makes every effort t o provide relevant operat ional
guidance based on exist ing t echnologies. However, Alibaba Cloud hereby makes a clear st at ement t hat
it in no way guarant ees t he accuracy, int egrit y, applicabilit y, and reliabilit y of t he cont ent of t his
document , eit her explicit ly or implicit ly. Alibaba Cloud shall not t ake legal responsibilit y for any errors or
lost profit s incurred by any organizat ion, company, or individual arising from download, use, or t rust in
t his document . Alibaba Cloud shall not , under any circumst ances, t ake responsibilit y for any indirect ,
consequent ial, punit ive, cont ingent , special, or punit ive damages, including lost profit s arising from t he
use or t rust in t his document (even if Alibaba Cloud has been not ified of t he possibilit y of such a loss).

5. By law, all t he cont ent s in Alibaba Cloud document s, including but not limit ed t o pict ures, archit ect ure
design, page layout , and t ext descript ion, are int ellect ual propert y of Alibaba Cloud and/or it s
affiliat es. This int ellect ual propert y includes, but is not limit ed t o, t rademark right s, pat ent right s,
copyright s, and t rade secret s. No part of t his document shall be used, modified, reproduced, publicly
t ransmit t ed, changed, disseminat ed, dist ribut ed, or published wit hout t he prior writ t en consent of
Alibaba Cloud and/or it s affiliat es. The names owned by Alibaba Cloud shall not be used, published, or
reproduced for market ing, advert ising, promot ion, or ot her purposes wit hout t he prior writ t en consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limit ed t o, "Alibaba Cloud",
"Aliyun", "HiChina", and ot her brands of Alibaba Cloud and/or it s affiliat es, which appear separat ely or in
combinat ion, as well as t he auxiliary signs and pat t erns of t he preceding brands, or anyt hing similar t o
t he company names, t rade names, t rademarks, product or service names, domain names, pat t erns,
logos, marks, signs, or special descript ions t hat t hird part ies ident ify as Alibaba Cloud and/or it s
affiliat es.

6. Please direct ly cont act Alibaba Cloud for any errors of t his document .

ApsaraDB for Redis Best Pract ices·Legal disclaimer

> Document Version: 20220620 I

Document conventions
St yle Descript ion Example

 Danger
A danger notice indicates a situation that
will cause major system changes, faults,
physical injuries, and other adverse
results.

 Danger:

Resetting will result in the loss of user
configuration data.

 Warning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other adverse
results.

 Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Not ice
A caution notice indicates warning
information, supplementary instructions,
and other content that the user must
understand.

 Not ice:

If the weight is set to 0, the server no
longer receives new requests.

 Not e
A note indicates supplemental
instructions, best practices, t ips, and
other content.

 Not e:

You can use Ctrl + A to select all files.

>
Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Set t ings > Net work > Set net work
t ype .

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands
Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for parameters
and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional value,
where only one item can be selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required value,
where only one item can be selected.

switch {active|stand}

ApsaraDB for Redis Best Pract ices·Document convent io
ns

> Document Version: 20220620 I

Table of Contents
1.Development and O&M standards for ApsaraDB for Redis

2.Retry mechanisms for Redis clients

3.Usage of Lua scripts

4.Best Practices for Redis Enhanced Edition

4.1. Monitor user trajectories by using TairGIS

4.2. Implement high-performance distributed locks by using TairString …

4.3. Implement high-performance optimistic locking by using TairString …

4.4. Implement bounded counters by using TairString

4.5. Implement multidimensional leaderboards by using TairZset …

4.6. Implement fine-grained monitoring by using TairTS

4.7. Implement distributed leaderboards by using TairZset

4.8. Select users by using TairRoaring

5.Best Practices for All Editions

5.1. Migrate MySQL data to ApsaraDB for Redis

5.2. Rankings of online game players sorted by score

5.3. Correlation analysis on E-commerce store items

5.4. Publish and subscribe to messages

5.5. Pipeline

5.6. Process transactions

5.7. Discover and resolve the hotkey issue

5.8. ApsaraDB for Redis supports Double 11 Shopping Festival

5.9. Use ApsaraDB for Redis to build a business system that can handle flash sales …

5.10. Read/write splitting in Redis

5.11. JedisPool optimization

5.12. Analyze hotkeys in a specific sub-node of a cluster instance …

5.13. Use ApsaraDB for Redis to build a live-streaming channel information system …

06

16

20

28

28

30

35

38

39

44

47

52

54

54

59

63

65

70

75

78

81

85

88

92

97

104

ApsaraDB for Redis Best Pract ices·Table of Cont ent s

> Document Version: 20220620 I

5.14. Parse AOFs

5.15. Query hotkeys in Redis 4.0

5.16. Automatically add or remove ECS instances to or from a whitelist of an ApsaraDB for Redis instance …

106

107

109

Best Pract ices·Table of Cont ent s ApsaraDB for Redis

II > Document Version: 20220620

ApsaraDB for Redis is a high-performance database service. This topic describes the development and
O&M standards that you can follow to design a more efficient business system and better use
ApsaraDB for Redis. The standards are developed by Alibaba Cloud based on years of Q&M experience
and are applicable to the following scenarios: business deployment, key design, SDK usage, command
usage, and O&M management.

Understand the performance limits of ApsaraDB for Redis
Performance limits of ApsaraDB for Redis

Resource type Description

Computing
resources

Wildcard characters, concurrent Lua scripts, one-to-many PubSub commands, and
hotkeys consume a large amount of computing resources. For cluster instances, these
items can also cause skewed requests and underutilization of data shards. For more
information about cluster instances, see Cluster master-replica instances.

Storage
resources

Streaming jobs and large keys consume a large amount of storage resources. For cluster
instances, these items can also cause data skew and underutilization of data shards.

1.Development and O&M
standards for ApsaraDB for
Redis

ApsaraDB for Redis
Best Pract ices·Development and O
&M st andards for ApsaraDB for Redi

s

> Document Version: 20220620 6

https://www.alibabacloud.com/help/doc-detail/52228.htm#concept-tds-4mm-tdb
https://www.alibabacloud.com/help/doc-detail/52228.htm#concept-tds-4mm-tdb

Network
resources

Database-wide scans (by running the KEYS command) and range queries of big values
and large keys (by running the HGET ALL command) consume a large amount of network
resources and often cause thread congestion.

Not ice The high-concurrency capability of ApsaraDB for Redis does not
significantly improve access performance as expected but does affect the overall
performance of ApsaraDB for Redis. For example, the storage of big values in
ApsaraDB for Redis does not improve access performance to a large degree.

Resource type Description

For cluster instances, hotkeys, large keys, or big values can also cause In a production environment, you
must prevent reaching the performance limits of ApsaraDB for Redis. The following tables describe the
business deployment, key design, SDK usage, command usage, and O&M management standards for
ApsaraDB for Redis. These standards help you design a more efficient business system and better use
the capabilit ies of ApsaraDB for Redis. skewed storage or skewed requests

Business deployment standards

Key design standards

SDK usage standards

Command usage standards

O&M management standards

Business deployment standards

Importan
ce

Standard Description

Best Pract ices·Development and O
&M st andards for ApsaraDB for Redi
s

ApsaraDB for Redis

7 > Document Version: 20220620

https://www.alibabacloud.com/help/doc-detail/52228.htm#concept-tds-4mm-tdb

★★★★
★

Determine whether the scenario is
or high-speed cachein-memory
databases

High-speed cache: We recommend that you disable
append-only file (AOF) in cache-only scenarios to
reduce overheads and prevent strong dependence
on the data in a cache because the data may be
evicted. For more information about AOF, see Disable
AOF persistence. For example, after an ApsaraDB for
Redis database is full, the data eviction policy is
triggered to reclaim space for writ ing new data. For
more information about the data eviction policy, see
How does ApsaraDB for Redis evict data by default?
The latency increases with the amount of data that
is written.

Not ice To use the data flashback
feature, you must enable AOF. For more
information, see Use data flashback to restore
data by point in t ime.

In-memory databases: We recommend that you
choose Persistent memory-optimized instances of
ApsaraDB for Redis Enhanced Edition (Tair). Persistent
memory-optimized instances offer command-level
persistence. In addition, you can monitor memory
usage by configuring alerts in the databases. For
more information, see Alert settings.

★★★★
★

Deploy your business close to
ApsaraDB for Redis instances. For
example, you can deploy your
business in an Elastic Compute
Service (ECS) instance that resides in
the same virtual private cloud (VPC)
as your ApsaraDB for Redis
instances.

ApsaraDB for Redis is a high-performance database
service. However, if you deploy your business server far
from ApsaraDB for Redis instances and the business
server and instances are connected over the Internet,
the performance of ApsaraDB for Redis is greatly
reduced due to network latency.

Not e For cross-region deployment, you can
use the geo-replication capability of Global
Distributed Cache for Redis to implement geo-
disaster recovery or active geo-redundancy, reduce
network latency, and simplify business design. For
more information, see Overview.

★★★★
☆

Create an ApsaraDB for Redis
instance for each service.

Do not use an ApsaraDB for Redis instance for different
services. For example, do not use an ApsaraDB for Redis
instance for both high-speed cache and in-memory
database services. Otherwise, the eviction policies, slow
queries, and FLUSHDB command of one service affect
other services.

Importan
ce

Standard Description

ApsaraDB for Redis
Best Pract ices·Development and O
&M st andards for ApsaraDB for Redi

s

> Document Version: 20220620 8

https://www.alibabacloud.com/help/doc-detail/147408.htm#task-2368275
file:///home/admin/dita-files/output/02602202/task18769898/~~38679~~
https://www.alibabacloud.com/help/doc-detail/148479.htm#task-2337807
https://www.alibabacloud.com/help/doc-detail/183956.htm#concept-1952913
https://www.alibabacloud.com/help/doc-detail/43884.htm#concept-sj5-m2z-5db
https://www.alibabacloud.com/help/doc-detail/71881.htm#concept-qf1-mdk-zdb

★★★★
☆

Configure appropriate eviction
policies to evict expired keys.

The default expired key eviction policy is . For more
information about eviction policies, see Supported
parameters. volatile-lru

★★★☆
☆

Manage stress testing data and
duration.

ApsaraDB for Redis does not delete stress testing data.
To prevent impacts on your business, you must manage
stress testing data and duration by yourself.

Importan
ce

Standard Description

Key design standards

Importan
ce

Standard Description

★★★★
★

Configure key values to an
appropriate size. We recommend
that you configure key values to a
size smaller than 10 KB.

Excessively large values can cause data skew, hotkeys,
high bandwidth, or high CPU utilization. You can prevent
these issues from the beginning by making sure that
key values are of proper size.

★★★★
★

Configure proper key names that
have proper length.

Key names:

Use readable strings as key names. If you want to
combine a database name, table name, and field
name into a key name, we recommend that you
use colons (:) to separate them. Example: proje
ct:user:001 .

Shorten key names without compromising their
ability to describe your business. For example, u
sername can be shortened to u .

In ApsaraDB for Redis, braces {} are recognized as
hash tags. In this case, if you use cluster instances,
you must correctly use braces in key names to
prevent For more information, see Keys hash tags.

Not e For a cluster instance, if you want
to manage multiple keys by running a
command such as the RENAME command and
do not use hash tags to ensure that the keys
reside in the same data shard, the command
cannot be run.

data skew

Length: We recommend that you configure key
names to be no more than 128 bytes in length. The
shorter, the better.

Best Pract ices·Development and O
&M st andards for ApsaraDB for Redi
s

ApsaraDB for Redis

9 > Document Version: 20220620

https://www.alibabacloud.com/help/doc-detail/259681.htm#concept-2087327
https://www.alibabacloud.com/help/doc-detail/52228.htm#concept-tds-4mm-tdb
https://redis.io/topics/cluster-spec#keys-hash-tags

★★★★
★

For complex data structures that
support sub-keys, you must avoid
including excessive sub-keys in one
key. We recommend that you
include less than 1,000 sub-keys in
a key.

Not e Common complex
data structures include hashes,
sets, Zsets, GEO structures,
streams, and structures that
are provided only by
Performance-enhanced
instances of ApsaraDB for
Redis Enhanced Edition (Tair),
such as TairHash, TairBloom,
and TairGIS.

The time complexity of some commands, such as
HGET ALL , is directly related to the number of sub-keys.
Excessive sub-keys increase the t ime complexity of a
command. If you frequently run commands whose time
complexity is O(N) or higher, many issues occur, such as
slow queries, data skew, and hotkeys.

★★★★
☆

Use the serialization method to
convert values into readable
structures.

The bytecode of a programming language may change
when the version of the language changes. If you store
naked objects (such as Java objects and C# objects) in
ApsaraDB for Redis instances, the software stack may
be difficult to upgrade. We recommend that you use
the serialization method to convert values into
readable structures.

Importan
ce

Standard Description

SDK usage standards

Importan
ce

Standard Description

ApsaraDB for Redis
Best Pract ices·Development and O
&M st andards for ApsaraDB for Redi

s

> Document Version: 20220620 10

https://www.alibabacloud.com/help/doc-detail/126164.htm#concept-1254543
https://www.alibabacloud.com/help/doc-detail/145970.htm#concept-2353551
https://www.alibabacloud.com/help/doc-detail/145972.htm#concept-2353553
https://www.alibabacloud.com/help/doc-detail/145971.htm#concept-2353552

★★★★
★

Use JedisPool or JedisCluster clients
to connect to ApsaraDB for Redis
instances.

Not e We recommend
that you use TairJedis clients to
connect to Performance-
enhanced instances of
ApsaraDB for Redis Enhanced
Edition (Tair), because TairJedis
clients support the
encapsulation of new data
structures. For more
information, see TairJedis
client.

If you use a single connection, the client cannot
automatically reconnect to ApsaraDB for Redis
instances after a connection times out. For more
information about how to use JedisPool clients to
connect to ApsaraDB for Redis instances, see Jedis
client, JedisPool optimization, and JedisCluster.

★★★★
☆

Do not use Lettuce clients.

Lettuce clients do not automatically reconnect to
ApsaraDB for Redis instances after multiple requests
time out. If failures occur in an ApsaraDB for Redis
instance and cause switchovers on proxy nodes or data
shards, connections may time out and Lettuce clients
cannot reconnect to the ApsaraDB for Redis instance.
To prevent such risks, we recommend that you use a
Jedis client to connect to ApsaraDB for Redis instances.
For more information, see Jedis client.

★★★★
☆

Design proper fault tolerance
mechanisms for your clients.

Network fluctuations and high usage of resources may
cause connection timeouts or slow queries. To prevent
these risks, you must design proper fault tolerance
mechanisms for your clients.

★★★★
☆

Set longer retry intervals for your
clients.

If retry intervals are shorter than required, such as
shorter than 200 milliseconds, a large number of retries
may occur in a short period of t ime. This can result in a
service avalanche. For more information, see Retry
mechanisms for Redis clients.

Importan
ce

Standard Description

Command usage standards

Best Pract ices·Development and O
&M st andards for ApsaraDB for Redi
s

ApsaraDB for Redis

11 > Document Version: 20220620

https://www.alibabacloud.com/help/doc-detail/126164.htm#concept-1254543
https://www.alibabacloud.com/help/doc-detail/43848.htm#concept-dys-yvb-5db/section-5sn-12z-kjz
https://www.alibabacloud.com/help/doc-detail/43848.htm#concept-dys-yvb-5db/section-bqv-lkc-5db
https://www.alibabacloud.com/help/doc-detail/98726.htm#concept-kfn-zzw-yfb
https://javadoc.io/doc/redis.clients/jedis/2.9.0/redis/clients/jedis/JedisCluster.html
https://www.alibabacloud.com/help/doc-detail/43848.htm#concept-dys-yvb-5db/section-bqv-lkc-5db
https://www.alibabacloud.com/help/doc-detail/303129.htm#concept-2107101

Importan
ce

Standard Description

★★★★
★

Avoid range queries, such as those
by running the KEYS * command.
Instead, use multiple point queries
or run the SCAN command to
reduce latency.

Range queries may cause service interruptions, slow
queries, or congestion.

★★★★
★

Use extended data structures to
perform complex operations. For
more information, see Integration
with multiple Redis modules. Do
not use Lua scripts.

Lua scripts consume a large amount of computing and
memory resources and do not support multi-threading
acceleration. Overly complex or improper Lua scripts
may result in the exhaustion of resources.

★★★★
☆

Use pipelines to reduce the round-
trip t ime (RTT) of data.

If you want to send multiple commands to a server and
your client does not depend on each response from the
server, you can use a pipeline to send the commands at
a t ime. Take note of the following items when you use
pipelines:

A client that uses pipelines exclusively connects to a
server. We recommend that you establish a
dedicated connection for pipeline operations to
separate them from regular operations.

Each pipeline must contain a proper number of
commands. We recommend that you use each
pipeline to send no more than 100 commands.

★★★★
☆

Use transaction commands. For
more information, see Transaction
command group.

When you use transaction commands, take note of the
following limits:

Transactions cannot be rolled back.

If you want to run transaction commands on cluster
instances, use hash tags to ensure that the keys to
be managed are distributed to the same hash slot.
You must also prevent skewed storage that hash
tags may cause.

Do not encapsulate transaction commands in Lua
scripts, because the compilation and loading of
these commands consume a large amount of
computing resources.

ApsaraDB for Redis
Best Pract ices·Development and O
&M st andards for ApsaraDB for Redi

s

> Document Version: 20220620 12

https://www.alibabacloud.com/help/doc-detail/126164.htm#concept-1254543/section-n2s-gty-48a
https://www.alibabacloud.com/help/doc-detail/185969.htm#concept-1960075/section-ccb-jwx-hnb
https://www.alibabacloud.com/help/doc-detail/52228.htm#concept-tds-4mm-tdb

★★★★
☆

Do not use the Pub and Sub
command group to perform a large
number of message distribution
tasks. For more information, see
Pub and Sub command group.

The Pub and Sub command group does not support
data persistence or acknowledge mechanisms that
ensure data reliability. We recommend that you do not
use Pub or Sub commands to perform a large number
of message distribution tasks. For example, if you use
these commands to distribute a message whose size is
greater than 1 KB to more than 100 subscriber clients,
server resources may be exhausted and subscriber
clients may not receive the message.

Not e To improve performance and balance,
ApsaraDB for Redis is optimized for Pub and Sub
commands. In cluster instances, proxy nodes
calculate the hash values of commands based on
channel names and allocate commands to
corresponding data nodes.

Importan
ce

Standard Description

O&M management standards

Importan
ce

Standard Description

★★★★
★

Understand the impacts of
different instance management
operations.

Configuration changes or restarts affect the state of an
ApsaraDB for Redis instance. For example, transient
connections may occur for the instance. Before you
perform the preceding operations, make sure that you
understand the impacts. For more information, see
Instance states and impacts.

★★★★
★

Verify the error handling capabilit ies
or disaster recovery logic of a
client.

ApsaraDB for Redis can monitor the health status of
nodes. If a master node in an instance becomes
unavailable, ApsaraDB for Redis automatically triggers a
master-replica switchover. The roles of master and
replica nodes are switched over to ensure the high
availability of the instance. Before a client is officially
released, we recommend that you manually trigger the
master-replica switchover. This can help you verify the
error handling capabilit ies or disaster recovery logic of
the client. For more information, see Manually switch
workloads from a master node to a replica node.

★★★★
★

Disable t ime-consuming or high-risk
commands.

In a production environment, abuse of commands may
cause problems. For example, the FLUSHALL command
can delete all data. The KEYS command may cause
network congestion. To improve the stability and
efficiency of services, you can disable these commands
to minimize risks. For more information, see Disable
high-risk commands.

Best Pract ices·Development and O
&M st andards for ApsaraDB for Redi
s

ApsaraDB for Redis

13 > Document Version: 20220620

https://www.alibabacloud.com/help/doc-detail/185969.htm#concept-1960075/section-nmv-n5x-hnb
https://www.alibabacloud.com/help/doc-detail/200740.htm#concept-2036360
https://www.alibabacloud.com/help/doc-detail/164222.htm#task-2488873
https://www.alibabacloud.com/help/doc-detail/107695.htm#task-uzq-tgk-5gb

★★★★
☆

Handle pending events at the
earliest opportunity.

To enhance user experience and provide improved
service performance and stability, Alibaba Cloud
occasionally generates pending events to upgrade the
hardware and software of specific servers or replace
network facilit ies. For example, a pending event is
generated when the minor version of databases needs
to be updated. After you receive an event notification
from Alibaba Cloud, you can check the impacts of the
event and change the scheduled time of the event to
meet your business requirements. For more
information, see Query and manage pending events.

★★★★
☆

Configure alerts for core metrics
and better monitor the status of
your instances.

Configure alerts for core metrics such as CPU utilization,
memory usage, and bandwidth usage to monitor the
status of your instances in real t ime. For more
information, see Alert settings.

★★★★
☆

Use O&M features provided by
ApsaraDB for Redis to check the
status of instances or troubleshoot
resource usage exceptions on a
regular basis.

Use slow logs to troubleshoot t imeout issues: Slow
logs help you locate slow queries and the IP
addresses of the clients that send the query
requests. Slow logs provide a reliable basis for
addressing timeout issues.

View monitoring data: ApsaraDB for Redis supports a
variety of performance metrics. These metrics allow
you to gain insights into the status of ApsaraDB for
Redis instances and troubleshoot issues at the
earliest opportunity.

Create a diagnostic report: Diagnostic reports help
you evaluate the status of ApsaraDB for Redis
instances, such as performance level, skewed
requests, and slow logs. Diagnostic reports also help
you identify exceptions on ApsaraDB for Redis
instances.

Use the offline key analysis feature to display details
about big keys: You can use the offline key analysis
feature to identify large keys of ApsaraDB for Redis
instances. You can also learn the memory usage,
distribution, and expiration time of large keys.

Use the real-time key statistics feature: The real-
time key statistics feature helps you identify hotkeys
of ApsaraDB for Redis instances and allows you to
further optimize your databases.

Importan
ce

Standard Description

ApsaraDB for Redis
Best Pract ices·Development and O
&M st andards for ApsaraDB for Redi

s

> Document Version: 20220620 14

https://www.alibabacloud.com/help/doc-detail/187022.htm#task-1963135
https://www.alibabacloud.com/help/doc-detail/43884.htm#concept-sj5-m2z-5db
https://www.alibabacloud.com/help/doc-detail/182843.htm#task-1948179
https://www.alibabacloud.com/help/doc-detail/122091.htm#task-645669
https://www.alibabacloud.com/help/doc-detail/207410.htm#concept-2045851
https://www.alibabacloud.com/help/doc-detail/102093.htm#concept-ufz-byl-jgb
https://www.alibabacloud.com/help/doc-detail/279446.htm#task-2096542

★★★☆
☆

Enable the audit log feature and
evaluate audit logs.

After you enable the audit log feature, the audit
statistics about write operations are recorded.
ApsaraDB for Redis also allows you to query, analyze
online, and export audit logs. These features help you
monitor the security and performance of your ApsaraDB
for Redis instances. For more information, see Enable
the new audit log feature.

Not ice After you enable the audit log
feature, the performance of ApsaraDB for Redis
instances may degrade by 5% to 15%. The actual
performance degradation varies based on the
number of write operations or audit operations. If
your business expects a large number of write
operations, we recommend that you enable the
audit log feature only when you perform O&M
operations, such as troubleshooting. This helps
you prevent performance degradation.

Importan
ce

Standard Description

Best Pract ices·Development and O
&M st andards for ApsaraDB for Redi
s

ApsaraDB for Redis

15 > Document Version: 20220620

https://www.alibabacloud.com/help/doc-detail/102015.htm#concept-ddc-ydr-3gb

Due to network and running environments, applications may encounter temporary faults, such as
transient network jit ter, temporary unavailability of services, and t imeout caused by busy services. You
can configure automatic retry mechanisms to avoid temporary failures and ensure successful
operations.

Causes for temporary failures

Cause Description

The high availability
mechanism triggered

ApsaraDB for Redis can monitor the health status of nodes. If a master node in
an instance fails, ApsaraDB for Redis automatically triggers a master-replica
switchover. The roles of master and replica nodes are switched to ensure high
availability of the instance. At this t ime, the client may encounter the following
temporary failures:

Transient connections in seconds

Read-only state within 30 seconds (to avoid potential risks of data loss and
dual writes caused by primary/secondary failover).

Not e For more information, see Causes and impacts of master-
replica switchovers.

Request jams caused by
slow queries

Request jams and slow queries occur when operations with t ime complexity of
O(n) are executed. In this case, other requests init iated by the client may
experience temporary failures.

Complex network
environments

Complex network environments between the client and Redis server may cause
problems such as occasional network jitter and data retransmission. In this case,
requests init iated by the client may temporarily fail.

Recommended retry rules

Retry rule Description

Only retry idempotent
operations

A timeout event may occur at the following phases:

A command is sent by the client but has not reached ApsaraDB for Redis.

The command reaches ApsaraDB for Redis, but the execution times out.

The command is executed on ApsaraDB for Redis, but a t imeout event occurs
when the result is returned to the client.

A retry may cause an operation to be repeated on ApsaraDB for Redis.
Therefore, not all operations are suitable for a retry mechanism. We recommend
that you retry only idempotent operations, such as SET commands. After you
run the SET a b command multiple t imes, the value of a can only be b or failed
executions. When you run the LPUSH mylist a command which is not
idempotent multiple t imes, mylist may contain multiple a elements.

2.Retry mechanisms for Redis
clients

ApsaraDB for Redis Best Pract ices·Ret ry mechanisms fo
r Redis client s

> Document Version: 20220620 16

https://www.alibabacloud.com/help/doc-detail/200319.htm#concept-2025502

Appropriate number
and interval of retries

Adjust the number and interval of retries based on business requirements and
actual scenarios. Otherwise, the following issues may occur:

If the number of retries is very low or the interval is very long, the application
may fail because operations cannot be performed.

If the number of retries is very high or the interval is very short, the application
may consume more system resources and request jams may cause the server
to fail.

Common retry interval methods include immediate retry, fixed-time retry,
exponentially increasing time retry, and random retry.

Avoid retry nesting Retry nesting may cause repeated or even unlimited retries.

Record retry exceptions
and generate failure
reports

During the retry process, we recommend that you configure the system to
generate retry logs at the WARN level and only when the retry fails.

Retry rule Description

Jedis client
In JedisPool mode, Jedis does not provide retry mechanisms. We recommend that you use TairJedis
which is based on Jedis encapsulation and encapsulates the Jedis retry class to quickly implement retry
policies.

Not e If Performance-enhanced instances instances of ApsaraDB for Redis Enhanced
Edit ion (Tair) are used, this client allows you to use the data structures developed by Alibaba
Cloud. For more information about the data structures, see Commands supported by extended
data structures of ApsaraDB for Redis Enhanced Edit ion (Tair).

In JedisCluster mode, you can specify the maxAttempts parameter to define the number of retries in
case of a failure. The default value is 5.

An example of retry sett ings on the Jedis client:

Best Pract ices·Ret ry mechanisms fo
r Redis client s

ApsaraDB for Redis

17 > Document Version: 20220620

https://github.com/aliyun/alibabacloud-tairjedis-sdk
https://www.alibabacloud.com/help/doc-detail/126164.htm#concept-1254543
https://www.alibabacloud.com/help/doc-detail/145832.htm#concept-2353546

//Add a dependency.
<dependency>
 <groupId>com.aliyun.tair</groupId>
 <artifactId>alibabacloud-tairjedis-sdk</artifactId>
 <version>Enter the latest version number</version>
</dependency>
//Set the key value command to automatically retry five times and the maximum overall retry
period to 10 seconds. For each retry, the system waits for a while between class indexes. I
f the command fails, an exception is thrown.
int maxRetries = 5; //Specify the maximum number of retries.
Duration maxTotalRetriesDuration = Duration.ofSeconds(10); //Specify the maximum retry peri
od. Unit: seconds.
try {
 String ret = new JedisRetryCommand<String>(jedisPool, maxRetries, maxTotalRetriesDurati
on) {
 @Override
 public String execute(Jedis connection) {
 return connection.set("key", "value");
 }
 }.runWithRetries();
} catch (JedisException e) {
 // Indicates that maxRetries attempts have been made or the maximum query time maxTota
lRetriesDuration reached.
 e.printStackTrace();
}

Redisson client
The Redisson client provides two parameters to control the retry logic:

retryAttempts: the number of retries. Default value: 3.

retryInterval: the retry interval. Default value: 1,500 milliseconds.

An example of retry sett ings on the Jedis client:

Config config = new Config();
config.useSingleServer()
 .setTimeout(1000)
 .setRetryAttempts(3)
 .setRetryInterval(1500) //ms
 .setAddress("redis://127.0.0.1:6379");
RedissonClient connect = Redisson.create(config);

StackExchange.Redis client
The StackExchang.Redis client only supports connection retries. An example of retry sett ings on the
StackExchange.Redis client:

var conn = ConnectionMultiplexer.Connect("redis0:6380,redis1:6380,connectRetry=3");

Not e For more information about API-level retry policies, see Polly.

ApsaraDB for Redis Best Pract ices·Ret ry mechanisms fo
r Redis client s

> Document Version: 20220620 18

https://github.com/App-vNext/Polly

Lettuce client
Although the Lettuce client does not provide parameters for retries after a command t imes out, you
can use the following parameters to implement retry policies:

at-most-once execution: The command can be executed once at most. If the client is disconnected
and then reconnected, the command may be lost.

at-least-once execution (default): A minimum of one successful command execution is ensured. This
means that mult iple attempts may be made to ensure a successful execution. If this method is used
and a primary/secondary switchover for an ApsaraDB for Redis instance occurs, a large number of
retry commands may be accumulated on the client. After the primary/secondary switchover is
complete, the CPU utilizat ion of the ApsaraDB for Redis instance may surge.

Not e For more information, see Client-Options and Command execution reliability.

An example of retry sett ings on the Lettuce client:

clientOptions.isAutoReconnect() ? Reliability.AT_LEAST_ONCE : Reliability.AT_MOST_ONCE;

Related information
Use a client to connect to an ApsaraDB for Redis instance

Use a client to connect to an ApsaraDB for Redis instance that has SSL encryption enabled

Best Pract ices·Ret ry mechanisms fo
r Redis client s

ApsaraDB for Redis

19 > Document Version: 20220620

https://github.com/lettuce-io/lettuce-core/wiki/Client-Options
https://github.com/lettuce-io/lettuce-core/wiki/Command-execution-reliability
https://www.alibabacloud.com/help/doc-detail/43848.htm#concept-dys-yvb-5db
https://www.alibabacloud.com/help/doc-detail/301665.htm#task-2103865

ApsaraDB for Redis instances support commands related to Lua scripts. Lua scripts can be used to
efficiently process check-and-set (CAS) commands. This improves the performance of ApsaraDB for
Redis and simplifies the implementation of features that used to be difficult to implement. This topic
describes the syntax and usage of Lua scripts in ApsaraDB for Redis.

Precautions
Commands related to Lua scripts cannot be used in the Data Management (DMS) console. For more
information about DMS, see Overview. You can use a client or redis-cli to connect to ApsaraDB for Redis
instances and use Lua scripts.

Basic syntax

Command Syntax Description

EVAL

 EVAL script
numkeys [key
[key ...]] [arg
[arg ...]]

Executes a specified script that takes parameters and returns the
output.

Parameter description:

script: the Lua script.

numkeys: the number of arguments in the KEYS array. The number
is an non-negative integer.

KEYS[]: the Redis keys that you want to pass to the script as
arguments.

ARGV[]: the additional arguments that you want to pass to the
script. The indexes of the KEYS[] and ARGV[] parameters start from
1.

Not e

The EVAL command loads a script into the script cache of
ApsaraDB for Redis in a similar way as the SCRIPT LOAD
command.

Mixed use or misuse of the KEYS[] and ARGV[] parameters
may cause ApsaraDB for Redis instances to run not as
expected, especially for ApsaraDB for Redis cluster
instances. For more information, see Limits on Lua scripts
in cluster instances.

EVALSHA

 EVALSHA sha1
numkeys key
[key ...] arg
[arg ...]

Evaluates a cached script by its SHA1 digest and runs the script.

If the script is not cached in ApsaraDB for Redis when you use the
EVALSHA command, ApsaraDB for Redis returns the NOSCRIPT error.
Cache the script in ApsaraDB for Redis by using the EVAL or SCRIPT
LOAD command and try again. For more information, see Handle the
NOSCRIPT error.

SCRIPT
LOAD

 SCRIPT LOAD
script

Caches a specified script in ApsaraDB for Redis and returns the SHA1
digest of the script.

3.Usage of Lua scripts

ApsaraDB for Redis Best Pract ices·Usage of Lua script s

> Document Version: 20220620 20

file:///home/admin/dita-files/output/02602202/task18769898/~~47550~~

SCRIPT
EXIST S

 SCRIPT EXISTS
script [script
...]

Returns information about the existence of one or more scripts in the
script cache by using their corresponding SHA1 digests. If a specified
script exists, a value of 1 is returned. Otherwise, a value of 0 is
returned.

SCRIPT
KILL

 SCRIPT KILL Terminates a Lua script in execution.

SCRIPT
FLUSH

 SCRIPT FLUSH Removes all the Lua scripts from the script cache in the Redis server.

Command Syntax Description

For more information about Redis commands, visit the Redis official website.

Some Redis commands are demonstrated in the following examples. Before the following commands
are run, the SET foo value_test command is run.

Sample EVAL command:

EVAL "return redis.call('GET', KEYS[1])" 1 foo

Sample output:

"value_test"

Sample SCRIPT LOAD command:

SCRIPT LOAD "return redis.call('GET', KEYS[1])"

Sample output:

"620cd258c2c9c88c9d10db67812ccf663d96bdc6"

Sample EVALSHA command:

EVALSHA 620cd258c2c9c88c9d10db67812ccf663d96bdc6 1 foo

Sample output:

"value_test"

Sample SCRIPT EXISTS command:

SCRIPT EXISTS 620cd258c2c9c88c9d10db67812ccf663d96bdc6 ffffffffffffffffffffffffffffffffff
ffffff

Sample output:

1) (integer) 1
2) (integer) 0

Optimize memory and network overheads
Issue:

Best Pract ices·Usage of Lua script s ApsaraDB for Redis

21 > Document Version: 20220620

https://redis.io/commands/

A large number of scripts that serve the same purposes are cached in ApsaraDB for Redis. These scripts
take up large amounts of memory and may cause the out of memory (OOM) error. Example of invalid
usage:

EVAL "return redis.call('set', 'k1', 'v1')" 0
EVAL "return redis.call('set', 'k2', 'v2')" 0

Solution:

Do not pass parameters to Lua scripts as constants to reduce memory usage.

The following commands serve the same purposes as the preceding sample commands but cac
he scripts only once.
EVAL "return redis.call('set', KEYS[1], ARGV[1])" 1 k1 v1
EVAL "return redis.call('set', KEYS[1], ARGV[1])" 1 k2 v2

Use the following command syntax to reduce memory and network overheads:

SCRIPT LOAD "return redis.call('set', KEYS[1], ARGV[1])" # After this command is run,
the following output is returned: "55b22c0d0cedf3866879ce7c854970626dcef0c3"
EVALSHA 55b22c0d0cedf3866879ce7c854970626dcef0c3 1 k1 v1
EVALSHA 55b22c0d0cedf3866879ce7c854970626dcef0c3 1 k2 v2

Flush the Lua script cache
Issue:

Used memory of an ApsaraDB for Redis instance may be higher than expected because the Lua script
cache takes up memory of the instance. When the used memory of the instance approaches or exceeds
the upper limit and Lua scripts are used, the OOM error is returned. Error example:

-OOM command not allowed when used memory > 'maxmemory'.

Solution:

Flush the Lua script cache by running the SCRIPT FLUSH command on the client. Different from the
FLUSHALL command, the SCRIPT FLUSH command is synchronous. If ApsaraDB for Redis caches an large
number of Lua scripts, the SCRIPT FLUSH command can block ApsaraDB for Redis for an extended period
of t ime and an instance may become unavailable. Proceed with caution. We recommend that you
perform this operation during off-peak hours.

Not e If you click Clear Dat a in the ApsaraDB for Redis console, data can be cleared but the
Lua script cache cannot be flushed.

Do not write large Lua scripts that may take up excessive amount of memory. Moreover, do not write
large amounts of data to Lua scripts. Otherwise, memory usage significantly increases and the OOM
error may even occur. To reduce memory usage, we recommend that you enable data evict ion by using
the volat ile-lru policy. By default , data evict ion is enabled in ApsaraDB for Redis. For more information
about data evict ion, see How does ApsaraDB for Redis evict data by default? However, ApsaraDB for
Redis does not evict the Lua script cache regardless of whether data evict ion is enabled.

Handle the NOSCRIPT error
Issue:

ApsaraDB for Redis Best Pract ices·Usage of Lua script s

> Document Version: 20220620 22

file:///home/admin/dita-files/output/02602202/task18769898/~~38679~~

If the script is not cached in ApsaraDB for Redis when you use the EVALSHA command, ApsaraDB for
Redis returns the NOSCRIPT error. Error example:

(error) NOSCRIPT No matching script. Please use EVAL.

Solution:

Run the EVAL or SCRIPT LOAD command to cache the script in ApsaraDB for Redis and try again. In some
scenarios such as instance migrations and configuration changes, ApsaraDB for Redis st ill f lushes the
Lua script cache because ApsaraDB for Redis cannot ensure the persistence and replicability of Lua
scripts. For this reason, your client must have the ability to handle this error. For more information, see
Caching, persistence, and replicat ion of scripts.

The following sample Python code shows a method for handling the NOSCRIPT error. The sample code
prepends strings by using Lua scripts.

Not e You can also use redis-py to handle this error. redis-py provides the Script class that
encapsulates the judgement logic for Lua scripts of ApsaraDB for Redis, such as a catch statement
for the NOSCRIPT error.

Best Pract ices·Usage of Lua script s ApsaraDB for Redis

23 > Document Version: 20220620

import redis
import hashlib
strin indicates a string in Lua scripts. This function returns the sha1 value of strin in
the string format.
def calcSha1(strin):
 sha1_obj = hashlib.sha1()
 sha1_obj.update(strin.encode('utf-8'))
 sha1_val = sha1_obj.hexdigest()
 return sha1_val
class MyRedis(redis.Redis):
 def __init__(self, host="localhost", port=6379, password=None, decode_responses=False):
 redis.Redis.__init__(self, host=host, port=port, password=password, decode_response
s=decode_responses)
 def prepend_inLua(self, key, value):
 script_content = """\
 local suffix = redis.call("get", KEYS[1])
 local prefix = ARGV[1]
 local new_value = prefix..suffix
 return redis.call("set", KEYS[1], new_value)
 """
 script_sha1 = calcSha1(script_content)
 if self.script_exists(script_sha1)[0] == True: # Check whether ApsaraDB for Re
dis already caches the script.
 return self.evalsha(script_sha1, 1, key, value) # If the script is already cach
ed, the EVALSHA command is used to run the script.
 else:
 return self.eval(script_content, 1, key, value) # Otherwise, use the EVAL comma
nd to run the script. Note that the EVAL command can cache scripts in ApsaraDB for Redis. A
nother method is to use the SCRIPT LOAD and EVALSHA commands.
r = MyRedis(host="r-******.redis.rds.aliyuncs.com", password="***:***", port=6379, decode_r
esponses=True)
print(r.prepend_inLua("k", "v"))
print(r.get("k"))

Handle t imeouts of Lua scripts
Issue:

Slow Lua requests may block ApsaraDB for Redis because Lua script execution is atomic in ApsaraDB
for Redis. One Lua script can block ApsaraDB for Redis for up to 5 seconds when the script is being
executed. After 5 seconds, ApsaraDB for Redis returns the BUSY error for other commands until the
script execution is complete.

BUSY Redis is busy running a script. You can only call SCRIPT KILL or SHUTDOWN NOSAVE.

Solution:

Run the SCRIPT KILL command to terminate the Lua script or wait until the Lua script execution is
complete.

ApsaraDB for Redis Best Pract ices·Usage of Lua script s

> Document Version: 20220620 24

Not e

During the first 5 seconds when a slow Lua script is being executed, the SCRIPT KILL
command does not take effect because ApsaraDB for Redis is being blocked.

To prevent ApsaraDB for Redis from being blocked for an extended period of t ime, we
recommend that you est imate the amount of t ime required to execute a Lua script when
you write the Lua script, check for infinite loop, and split the Lua script if necessary.

Issue:

If a Lua script has already run write commands against the dataset, the SCRIPT KILL command does
not take effect. Error example:

(error) UNKILLABLE Sorry the script already executed write commands against the dataset.
You can either wait the script termination or kill the server in a hard way using the SHU
TDOWN NOSAVE command.

Solution:

On the Inst ances page of the ApsaraDB for Redis console, click rest art in the Act ions column
corresponding to the instance. If the issue persists, .

Caching, persistence, and replication of scripts
Issue:

ApsaraDB for Redis keeps caching the Lua scripts in an instance that have been executed if the instance
is not restarted or the SCRIPT FLUSH command is not run for the instance. However, ApsaraDB for Redis
cannot ensure the persistence of Lua scripts or the synchronization of Lua scripts from the current node
to other nodes in scenarios such as instance migrations, configuration changes, version upgrades, and
instance switchovers.

Solut ion:

Store all Lua scripts in your on-premise device. Recache the Lua scripts in ApsaraDB for Redis by using
the EVAL or SCRIPT LOAD command if necessary to prevent the NOSCRIPT error from occurring when Lua
scripts are cleared during an instance restart or a high availability (HA) switchover.

Limits on Lua scripts in cluster instances
Redis clusters impose limits on the usage of Lua scripts. The following addit ional limits exist for
ApsaraDB for Redis cluster instances:

Not e If an error message indicating that the EVAL command fails to run is returned, such as
 ERR command eval not support for normal user , update the minor version of the ApsaraDB for

Redis instance to the latest version. For more information, see Update the minor version.

All keys that a script uses must be allocated to the same hash slot. Otherwise, the following error
message is returned:

-ERR eval/evalsha command keys must be in same slot\r\n

Not e You can run the CLUSTER KEYSLOT command to obtain the hash slot of a key.

Best Pract ices·Usage of Lua script s ApsaraDB for Redis

25 > Document Version: 20220620

https://www.alibabacloud.com/help/doc-detail/56450.htm#concept-itn-f44-tdb

A Lua script may not be stored in other nodes when you run the SCRIPT LOAD command on one node.

The following Pub/Sub commands are not supported: PSUBSCRIBE, PUBSUB, PUBLISH,
PUNSUBSCRIBE, SUBSCRIBE, and UNSUBSCRIBE.

The UNPACK function is not supported.

If all the operations can be performed in the same hash slot and you want to break through the limits
that the cluster architecture imposes on your Lua script, you can set the script_check_enable parameter
to 0 in the ApsaraDB for Redis console. This way, the system does not check your Lua script at the
backend. In this case, you st ill need to specify at least one key in the KEYS array so that proxy nodes can
route commands in the Lua script. If you cannot make sure that all the operations are performed in the
same hash clot, an error is returned. For more information, see Modify parameters of an instance.

Addit ional limit s on t he proxy mode

Lua scripts use the redis.call or redis.pcall function to run Redis commands. For Redis commands,
all keys must be specified by using the KEYS array, which cannot be replaced by Lua variables. If you
do not use the KEYS array to specify the keys, the following error message is returned:

-ERR bad lua script for redis cluster, all the keys that the script uses should be passed
using the KEYS array\r\n

Examples of valid and invalid usage:

The following two commands must be run in advance.
SET foo foo_value
SET {foo}bar bar_value
Example of valid usage
EVAL "return redis.call('mget', KEYS[1], KEYS[2])" 2 foo {foo}bar
Examples of invalid usage
EVAL "return redis.call('mget', KEYS[1], '{foo}bar')" 1 foo
EVAL "return redis.call('mget', KEYS[1], ARGV[1])" 1 foo {foo}bar

Keys must be included in all the commands that you want to run. Otherwise, the following error
message is returned:

-ERR for redis cluster, eval/evalsha number of keys can't be negative or zero\r\n

Examples of valid and invalid usage:

Example of valid usage
EVAL "return redis.call('get', KEYS[1])" 1 foo
Example of invalid usage
EVAL "return redis.call('get', 'foo')" 0

You cannot run the EVAL, EVALSHA, or SCRIPT command in the MULTI or EXEC transactions.

ApsaraDB for Redis Best Pract ices·Usage of Lua script s

> Document Version: 20220620 26

https://www.alibabacloud.com/help/doc-detail/43885.htm#concept-q1w-kxn-tdb

Not e If you want to use the features that are unavailable for the proxy mode, you can
enable the direct ion connection mode for an ApsaraDB for Redis cluster instance. However,
migrations or configuration changes fail for cluster instances when Lua scripts that do not conform
to the requirements of the proxy mode are executed in direct connection mode. This is because
cluster instances rely on proxy nodes to migrate data during migrations and configuration changes.

To prevent subsequent migrations and configuration changes based on Lua scripts from failing, we
recommend that you conform to the usage limits of Lua scripts in proxy mode when you use Lua
scripts in direct connection mode.

Best Pract ices·Usage of Lua script s ApsaraDB for Redis

27 > Document Version: 20220620

This topic describes how to use the TairGIS data structure provided by ApsaraDB for Redis Enhanced
Edit ion (Tair) to monitor user trajectories based on points, lines, and planes.

Background information
Location-based services (LBS) use a variety of technologies to locate devices in real t ime, and provide
information and basic services for device users based on the mobile Internet. In recent years, a large
number of industrial applications and research projects use LBS technologies. These technologies play
an important role in many applications.

The COVID-19 pandemic that emerged in 2020 has posed grave health threats to mankind and put
countries around the world on pause. To control the spread of the COVID-19 pandemic, China has
mobilized the whole country and galvanized the people into a nationwide response. Gradually, cit ies
across China begin to recover from the COVID-19 pandemic. Employees go back to work, enterprises
resume production, and students go back to schools. While the spread of the pandemic in China is
under control, many other countries are st ill f ighting to flatten the curve of COVID-19 cases. Epidemic
prevention and control remains challenging. LBS offers an efficient solut ion to handle these challenges.
LBS allows you to monitor user trajectories to identify risks and ensure the safety of people. LBS can
also facilitate epidemiological surveys.

ApsaraDB for Redis Community Edit ion supports native Redis GEO commands provided by open source
Redis. You can use these native Redis GEO commands to describe location data. However, these
commands offer limited support for LBS applications because these commands provide only limited
precision and features. TairGIS commands available for performance-enhanced instances of ApsaraDB
for Redis Enhanced Edit ion (Tair) provide more features than the native Redis GEO commands. For more
information, see TairGIS commands.

TairGIS allows you to significantly reduce the costs of developing LBS applications. One of the typical
applications of TairGIS is geofencing security systems for senior and child care.

Implementation methods
To monitor the trajectories of a specific group of users, you must obtain the location data of these
users. You can use the following two methods to obtain the location data:

Use the Global Posit ioning System (GPS) service on user mobile phones. In this method, users must
enable the GPS service on their mobile phones.

Cooperate with telecom carriers.

In scenarios similar to epidemic control, user trajectories are monitored to check whether users have
been to high-risk areas such as those with epidemic outbreaks. In most cases, you do not need to store
the historical trajectory data of users. Alerts can be sent when users enter high-risk areas. This provides
maximum protect ion for user privacy.

4.Best Practices for Redis
Enhanced Edition
4.1. Monitor user trajectories by using
TairGIS

ApsaraDB for Redis Best Pract ices·Best Pract ices for Re
dis Enhanced Edit ion

> Document Version: 20220620 28

https://www.alibabacloud.com/help/doc-detail/145971.htm#concept-2353552

You can use polygons to indicate high-risk areas based on the well-known text (WKT) language, and
store the polygons as TairGIS data. You can use points, lines, or polygons to indicate user trajectories
based on WKT, and store the points, lines, or polygons as TairGIS data. Then, you can run TairGIS
commands to query the intersect ions between the user trajectories and these high-risk areas to
determine whether a user has been to these high-risk areas.

Not e WKT is a text markup language for representing vector geometry objects on a map,
spatial reference systems of spatial objects, and transformations between spatial reference
systems.

The methods to process location data vary based on the methods that you use to obtain the location
data. The following examples provide details.

Examples
Use the GPS service to obtain the location data

After you obtain the current GPS data of a user, you can run the GIS.CONTAINS command to check
whether the user location is in a high-risk area. For more information about the GIS.CONTAINS
command, see GIS.CONTAINS. If the user is on a road, you can use the GPS data to locate the specific
road. Then, run the GIS.INTERSECTS command to check whether the user is approaching a high-risk
area. If the user approaches a high-risk area, alerts are sent. For more information about the
GIS.INTERSECTS command, see GIS.INTERSECTS.

You can use WKT to describe the GPS data of a user as a point, such as POINT(30 11) . You can use
WKT to describe the road information as a linestring, such as LINESTRING (30 10, 40 40) . The
following sample code demonstrates how to implement the business logic:

GIS.ADD your_province your_location 'POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))' // Ad
d the GPS information of a user to the TairGIS data structure.
GIS.CONTAINS your_province 'POINT (30 11)'
GIS.INTERSECTS your_province 'LINESTRING (30 10, 40 40)'

Cooperate with telecom carriers to obtain the location data

In scenarios where base stat ions are deployed by telecom carriers in a sparse manner, the location
data that you obtain indicates an area. The area may be a sector that is covered by a base stat ion or
the entire coverage area of the base stat ion. You can use WKT to describe the area as a polygon,
such as POLYGON ((10 22, 30 45, 16 53, 10 22)) . You can run the GIS.INTERSECTS command to
analyze the intersect ions between the polygon and the high-risk areas. For more information about
the GIS.INTERSECTS command, see GIS.INTERSECTS. Sample code:

GIS.ADD your_province your_location 'POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))' // Ad
d the location information that you obtain from the base stations of the telecom carrier
to the TairGIS data structure.
GIS.INTERSECTS your_province 'POLYGON ((10 22, 30 45, 16 53, 10 22))'

Not e For more information about TairGIS commands, see TairGIS.

Summary

Best Pract ices·Best Pract ices for Re
dis Enhanced Edit ion

ApsaraDB for Redis

29 > Document Version: 20220620

https://www.alibabacloud.com/help/doc-detail/145971.htm#concept-2353552/section-z46-ume-l72
https://www.alibabacloud.com/help/doc-detail/145971.htm#concept-2353552/section-js6-e0z-uh4
https://www.alibabacloud.com/help/doc-detail/145971.htm#concept-2353552/section-js6-e0z-uh4
https://www.alibabacloud.com/help/doc-detail/145971.htm#concept-2353552

Performance-enhanced instances of ApsaraDB for Redis Enhanced Edit ion (Tair) provide the TairGIS data
structure. TairGIS provides an easy method for you to store and process geographic data by using LBS
applications. TairGIS can also deliver high performance in high-concurrency scenarios.

Distributed locks are one of the most widely adopted features in large applications. You can implement
distributed locks based on Redis by using a variety of methods. This topic describes the common
methods to implement distributed locks and the best pract ices for implementing distributed locks by
using ApsaraDB for Redis Enhanced Edit ion (Tair). These best pract ices are developed based on the
accumulated experience of Alibaba Group in using ApsaraDB for Redis Enhanced Edit ion (Tair) and
distributed locks.

Distributed locks and their use scenarios
If a specific resource needs to be concurrently accessed by mult iple threads in the same process during
application development, you can use mutexes (also known as mutual exclusion locks) and read/write
locks. If a specific resource needs to be concurrently accessed by mult iple processes on the same host,
you can use interprocess synchronization primit ives such as semaphores, pipelines, and shared memory.
However, if a specific resource needs to be concurrently accessed by mult iple hosts, you must use
distributed locks. Distributed locks are mutual exclusion locks that have global presence. You can apply
distributed locks to resources in distributed systems to prevent logical failures that may be caused by
resource contention.

Features of distributed locks
Mutually exclusive

At any given moment, only one client can hold a lock.

Deadlock-free

Distributed locks use a lease-based locking mechanism. If a client acquires a lock and then encounters
an exception, the lock is automatically released after a period of t ime. This prevents resource
deadlocks.

Consistent

4.2. Implement high-performance
distributed locks by using TairString

ApsaraDB for Redis Best Pract ices·Best Pract ices for Re
dis Enhanced Edit ion

> Document Version: 20220620 30

Switchovers in ApsaraDB for Redis may be triggered by external or internal errors. External errors
include hardware failures and network exceptions, and internal errors include slow queries and system
defects. After a switchover is triggered, a replica node is promoted to be the new master node to
ensure high availability (HA). In this scenario, if your business has high requirements for mutual
exclusion, locks must remain the same after a switchover.

Implement distributed locks based on open source Redis

Not e The methods described in this sect ion also apply to ApsaraDB for Redis Community
Edit ion.

Acquire a lock

In Redis, you need to only run the SET command to acquire a lock. The following sect ion provides a
command example and describes the parameters or options used in the command:

SET resource_1 random_value NX EX 5

Parameters or options

Parameter/option Description

resource_1
The key of the distributed lock. If the key exists, the corresponding resource is
locked and cannot be accessed by other clients.

random_value A random string. The value must be unique across clients.

EX
The validity period of the key. Unit: seconds. You can also use the PX option to
set a validity period accurate to the millisecond.

NX Specifies to set the key only if the key does not exist in Redis.

In the sample code, the validity period of the resource_1 key is set to 5 seconds. If the client does not
release the key, the key expires after 5 seconds and the lock is reclaimed by the system. Then, other
clients can lock and access the resource.

Release a lock

In most cases, you can run the DEL command to release a lock. However, this may cause the following
issue.

i. At the t1 t ime point, the key of the distributed lock is resource_1 for application 1, and the
validity period for the resource_1 key is set to 3 seconds.

Best Pract ices·Best Pract ices for Re
dis Enhanced Edit ion

ApsaraDB for Redis

31 > Document Version: 20220620

ii. Application 1 remains blocked for more than 3 seconds due to specific reasons, such as long
response t ime. The resource_1 key expires and the distributed lock is automatically released at
the t2 t ime point.

iii. At the t3 t ime point, application 2 acquires the distributed lock.

iv. Application 1 resumes from being blocked and runs the DEL resource_1 command at the t4
t ime point to release the distributed lock that is held by application 2.

This example shows that a lock needs to be released only by the client that sets the lock. Therefore,
before a client runs the DEL command to release a lock, the client must first run the GET command to
check whether the lock was set by itself. In most cases, a client uses the following Lua script in Redis
to release the lock that was set by the client:

if redis.call("get",KEYS[1]) == ARGV[1] then
 return redis.call("del",KEYS[1])
else
 return 0
end

Renew a lock

If a client cannot complete the required operations within the lease t ime of the lock, the client must
renew the lock. A lock can be renewed only by the client that sets the lock. In Redis, a client can use
the following Lua script to renew a lock:

if redis.call("get",KEYS[1]) == ARGV[1] then
 return redis.call("expire",KEYS[1], ARGV[2])
else
 return 0
end

Implement distributed locks based on ApsaraDB for Redis Enhanced
Edition (Tair)
If your instance is a performance-enhanced or persistent memory-optimized instance of the ApsaraDB
for Redis Enhanced Edit ion (Tair), you can run string-enhanced commands to implement distributed
locks without the help of Lua scripts. For more information about performance-enhanced and
persistent memory-optimized instances, see Performance-enhanced instances and Persistent memory-
optimized instances.

Acquire a lock

The method to acquire a lock in ApsaraDB for Redis Enhanced Edit ion (Tair) is the same as that used in
open source Redis. The method is to run the SET command. Sample command:

SET resource_1 random_value NX EX 5

Release a lock

The CAD command of ApsaraDB for Redis Enhanced Edit ion (Tair) provides an elegant and efficient
way for you to release a lock. For more information about the CAD command, see CAD. Sample
command:

/* if (GET(resource_1) == my_random_value) DEL(resource_1) */
CAD resource_1 my_random_value

ApsaraDB for Redis Best Pract ices·Best Pract ices for Re
dis Enhanced Edit ion

> Document Version: 20220620 32

https://www.alibabacloud.com/help/doc-detail/126164.htm#concept-1254543
https://www.alibabacloud.com/help/doc-detail/183956.htm#concept-1952913
https://www.alibabacloud.com/help/doc-detail/145833.htm#concept-2353547/section-dcp-pdf-67w

Renew a lock

You can run the CAS command to renew a lock. For more information, see CAS. Sample command:

CAS resource_1 my_random_value my_random_value EX 10

Not e The CAS command does not check whether the new value is the same as the original
value.

Sample code based on Jedis
Define the CAS and CAD commands

enum TairCommand implements ProtocolCommand {
 CAD("CAD"), CAS("CAS");
 private final byte[] raw;
 TairCommand(String alt) {
 raw = SafeEncoder.encode(alt);
 }
 @Override
 public byte[] getRaw() {
 return raw;
 }
}

Acquire a lock

public boolean acquireDistributedLock(Jedis jedis,String resourceKey, String randomValue,
int expireTime) {
 SetParams setParams = new SetParams();
 setParams.nx().ex(expireTime);
 String result = jedis.set(resourceKey,randomValue,setParams);
 return "OK".equals(result);
}

Release a lock

public boolean releaseDistributedLock(Jedis jedis,String resourceKey, String randomValue)
{
 jedis.getClient().sendCommand(TairCommand.CAD,resourceKey,randomValue);
 Long ret = jedis.getClient().getIntegerReply();
 return 1 == ret;
}

Renew a lock

public boolean renewDistributedLock(Jedis jedis,String resourceKey, String randomValue, i
nt expireTime) {
 jedis.getClient().sendCommand(TairCommand.CAS,resourceKey,randomValue,randomValue,"EX
",String.valueOf(expireTime));
 Long ret = jedis.getClient().getIntegerReply();
 return 1 == ret;
}

Best Pract ices·Best Pract ices for Re
dis Enhanced Edit ion

ApsaraDB for Redis

33 > Document Version: 20220620

https://www.alibabacloud.com/help/doc-detail/145833.htm#concept-2353547/section-grp-odg-i2l

Methods to ensure lock consistency
The replicat ion between a master node and a replica node is asynchronous. If a master node crashes
after data changes are writ ten to the master node and an HA switchover is triggered, the data changes
in the buffer may not be replicated to the new master node. This results in data inconsistency. Note
that the new master node is the original replica node. If the lost data is related to a distributed lock,
the locking mechanism becomes faulty and service exceptions occur. This sect ion describes three
methods that you can use to ensure lock consistency.

Use the Redlock algorithm

The Redlock algorithm is proposed by the founders of the open source Redis project to ensure lock
consistency. The Redlock algorithm is based on the calculat ion of probabilit ies. A single master-
replica Redis instance may lose a lock during an HA switchover, and the probability is k% . If you use
the Redlock algorithm to implement distributed locks, you can calculate the probability at which N
independent master-replica Redis instances all lose locks at the same t ime based on the following
formula: Probability of losing locks = (k%)^N . The more nodes an instance has, the higher the
consistency is. Given the high stability of Redis, the probability can meet the service requirements.

Not e When you use the Redlock algorithm, you do not need to ensure that all the locks in
N Redis instances take effect at the same t ime. In most cases, the Redlock algorithm can meet
your business requirements if you ensure that the locks in M Redis nodes take effect at the
same t ime. Note that M is greater than 1 and less than or equal to N.

The Redlock algorithm has the following issues:

A client takes a long t ime to acquire or release a lock.

You cannot use the Redlock algorithm in cluster or standard master-replica instances.

The Redlock algorithm consumes large amounts of resources. To use the Redlock algorithm, you
must create mult iple independent ApsaraDB for Redis instances or self-managed Redis instances.

Use the WAIT command

The WAIT command of Redis blocks the current client until all the previous write commands are
synchronized from a master node to a specific number of replica nodes. In the WAIT command, you
can specify a t imeout period in milliseconds. The WAIT command is used in ApsaraDB for Redis to
ensure the consistency of distributed locks. Sample command:

SET resource_1 random_value NX EX 5
WAIT 1 5000

When you run the WAIT command, the client will only continue to perform other operations in two
scenarios after the client acquires a lock. One scenario is that data is synchronized to the replica
nodes. The other scenario is that the t imeout period is reached. In this example, the t imeout period is
5,000 milliseconds. If the output of the WAIT command is 1, data is synchronized between the
master node and the replica nodes. In this case, data consistency is ensured. The WAIT command is
far more cost-effect ive than the Redlock algorithm.

Before you use the WAIT command, take note of the following items:

The WAIT command only blocks the client that sends the WAIT command and does not affect
other clients.

ApsaraDB for Redis Best Pract ices·Best Pract ices for Re
dis Enhanced Edit ion

> Document Version: 20220620 34

https://redis.io/topics/distlock#the-redlock-algorithm
https://redis.io/commands/wait

If the WAIT command returns a valid value, the lock is synchronized from the master node to the
replica nodes. However, if an HA switchover is triggered before the command returns a successful
response, data may be lost. In this case, the output of the WAIT command only indicates a
possible synchronization failure, and data integrity cannot be ensured. After the WAIT command
returns an error, you can acquire a lock again or verify the data.

You do not need to run the WAIT command to release a lock. This is because distributed locks are
mutually exclusive. Logical failures do not occur even if you release the lock after a period of t ime.

Use ApsaraDB for Redis Enhanced Edit ion (Tair)

The CAS and CAD commands help you reduce the costs of developing and managing distributed
locks and improve lock performance.

Performance-enhanced instances of the ApsaraDB for Redis Enhanced Edit ion (Tair) provide three
times the performance of open source Redis. Service continuity is ensured even if you use
performance-enhanced instances to implement high-concurrency distributed locks. For more
information about performance-enhanced instances, see Performance-enhanced instances.

Persistent memory-optimized instances of the ApsaraDB for Redis Enhanced Edit ion (Tair) adopt
Intel® Optane™ Persistent Memory to ensure real-t ime data persistence. A response is returned for
each write operation after a successful data persistence attempt. Data loss is prevented even if
power failures occur. For more information about persistent memory-optimized instances, see
Persistent memory-optimized instances. You can also specify the semi-synchronous mode for
master-replica synchronization in persistent memory-optimized instances. In this mode, a
successful response is returned to the client only if data is writ ten to the master node and
synchronized to the replica node. This prevents data loss after HA switchover. The semi-
synchronous mode is degraded to the asynchronous mode if a replica node failure or network
exception occurs during data synchronization.

If a large number of requests are sent to concurrently access and update the shared resources stored in
Redis, an accurate and efficient concurrency control mechanism is required. The mechanism must be
able to help you prevent logical failures and data errors. One of the mechanisms is optimist ic locking.
Compared with open source Redis, performance-enhanced instances of ApsaraDB for Redis Enhanced
Edit ion (Tair) provide the TairString data structure that allows you to implement optimist ic locking to
deliver higher performance at lower costs.

Concurrency and last-writer-wins
The following figure shows a typical scenario where concurrent requests cause race condit ions.

4.3. Implement high-performance
optimistic locking by using TairString

Best Pract ices·Best Pract ices for Re
dis Enhanced Edit ion

ApsaraDB for Redis

35 > Document Version: 20220620

https://www.alibabacloud.com/help/doc-detail/126164.htm#concept-1254543
https://www.alibabacloud.com/help/doc-detail/183956.htm#concept-1952913

1. At the init ial stage, the value of key_1 is hello . The values of this key are strings.

2. At the t1 t ime point, application 1 reads the key_1 value hello .

3. At the t2 t ime point, application 2 reads the key_1 value hello .

4. At the t3 t ime point, application 1 changes the value of key_1 to world .

5. At the t4 t ime point, application 2 changes the value of key_1 to universe .

The value of key_1 is determined by the last write. At the t4 t ime point, application 1 considers the
value of key_1 as world, but the actual value is universe. Therefore, the subsequent operations may
become faulty. This process explains what is last-writer-wins. To resolve the issues that are caused by
last-writer-wins, you must ensure the atomicity of the access and update operations on string data. In
other words, you must convert the string data of the shared resources into atomic variables. To do this,
you can implement high-performance optimist ic locking by using the TairString data structure. This data
structure is offered by performance-enhanced instances of ApsaraDB for Redis Enhanced Edit ion (Tair).

Implement optimistic locking by using TairString
TairString, also known as an extended string (exString), is a string data structure that carries a version
number. Native Redis strings consist of only keys and values. TairStrings consist of keys, values, and
version numbers. For this reason, TairString is more suitable for optimist ic locking. For more information
about TairString commands, see TairString.

Not e The TairString data structure is different from the native Redis String data structure.
Two sets of commands are provided for the two data structures. You can use only one set of
commands in a system.

TairString has the following features:

A version number is provided for each key. The version number indicates the current version of a key. If
you run the EXSET command to create a key, the default version number of the key is 1.

If you run the EXGET command for a specified key, you can retrieve the values of two fields: value
and version.

When you update a TairString value, the version is verified. If the verificat ion fails, the following error
message is returned: ERR update version is stale .

After the TairString value is updated, the version number is automatically incremented by 1.

ApsaraDB for Redis Best Pract ices·Best Pract ices for Re
dis Enhanced Edit ion

> Document Version: 20220620 36

https://www.alibabacloud.com/help/doc-detail/145902.htm#concept-2353550

TairString integrates all the features of Redis String except bit operations.

Due to these features, the locking mechanism is native to TairString data. Therefore, TairString provides
an easy method for you to implement optimist ic locking. Example:

while(true){
 {value, version} = EXGET(key); // Retrieve the value and version number of the key
.
 value2 = update(...); // Save the new value as value 2.
 ret = EXSET(key, value2, version); // Update the key and assign the return value to th
e ret variable.
 if(ret == OK)
 break; // If the return value is OK, the update is success
ful and the while loop exits.
 else if (ret.contanis("version is stale"))
 continue; // If the return value contains the "version is sta
le" error message, the update fails and the while loop is repeated.
}

Not e

If you delete a TairString and create a TairString that has the same key as the deleted
TairString, the key version of the new TairString is 1. The new TairString does not inherit the
key version of the deleted TairString.

You can specify the ABS option to skip version verificat ion and forcibly overwrite the current
version to update a TairString. For more information, see EXSET.

Reduce resource consumption for optimistic locking
In the preceding sample code, if another client updates the shared resource after you run the EXGET
command, you receive an update failure message and the while loop is repeated. The EXGET command
is repeatedly run to retrieve the value and version number of the shared resource before the update is
successful. As a result , two I/O operations are performed to access Redis in each while loop. However,
you need only to send one access request in each while loop by using the EXCAS command of
TairString. For more information about the EXCAS command, see EXCAS. This results in a significant
decrease in the consumption of system resources and improves service performance in high concurrency
scenarios.

When you run the EXCAS command, you can specify a version number in the command to verify the
version. If the verificat ion succeeds, the TairString value is updated. If the verificat ion fails, the
following elements are returned:

 update version is stale

value

version

If the update fails, the command returns the current version number of the TairString. You do not need
to run another query to retrieve the current version number, and only one access request is required for
each while loop. Sample code:

Best Pract ices·Best Pract ices for Re
dis Enhanced Edit ion

ApsaraDB for Redis

37 > Document Version: 20220620

https://www.alibabacloud.com/help/doc-detail/145902.htm#concept-2353550/section-vbp-rx3-ln9
https://www.alibabacloud.com/help/doc-detail/145902.htm#concept-2353550/section-eaj-ag8-jrf

while(true){
 {ret, value, version} = excas(key, new_value, old_version) // Use the CAS command to
replace the original value with a new value.
 if(ret == OK)
 break; // If the return value is OK, the update is successful and the while loop
exits.
 else (if ret.contanis("update version is stale")) // If the return value contains th
e "update version is stale" error message, the update fails. The values of the value and ol
d_version variables are updated.
 update(value);
 old_version = version;
 }

In flash sale scenarios where the sales period or product quantity is limited, you must handle traffic
peaks that occur before, during, and after the sale period. You must also make sure that the number of
purchase orders accepted does not exceed the number of products in stock. To handle these
challenges, performance-enhanced instances of ApsaraDB for Redis Enhanced Edit ion (Tair) offer the
TairString data structure that provides a simple and efficient way to implement bounded counters. You
can use bounded counters to ensure that the accepted purchase orders do not exceed the upper limit .
The solut ions described in this topic are also applicable to other scenarios where rate limit ing or
thrott ling is required.

Bounded counters for flash sales
Based on the integration with Alibaba Tair, performance-enhanced instances of ApsaraDB for Redis
Enhanced Edit ion (Tair) provide the TairString data structure. TairString is more powerful than the native
Redis String data structure. TairString offers all the features of Redis String except bit operations.

The EXINCRBY and EXINCRBYFLOAT commands for TairStrings have similar functions to the INCRBY and
INCRBYFLOAT commands for native Redis strings. You can use these commands to increment or
decrement values. The EXINCRBY and EXINCRBYFLOAT commands support more options than the
two commands for native Redis strings. These options include EX, NX, VER, MIN, and MAX. For more
information, see TairString. The solut ion described in this topic uses the MIN and MAX options. The
following table describes the two options.

Option Description

MIN Specifies the minimum TairString value.

MAX Specifies the maximum TairString value.

If you use native Redis strings to handle the challenges of flash sales, the required code is complex and
difficult to manage. This may lead to excess purchase orders, where users are able to make successful
purchases of items even after these items have already been sold out. TairString allows you to compile
and run simple code to limit the exact number of purchase orders. Sample pseudocode:

4.4. Implement bounded counters by
using TairString

ApsaraDB for Redis Best Pract ices·Best Pract ices for Re
dis Enhanced Edit ion

> Document Version: 20220620 38

https://www.alibabacloud.com/help/doc-detail/145902.htm#concept-2353550
https://www.alibabacloud.com/help/doc-detail/145902.htm#concept-2353550

if(EXINCRBY(key_iphone, -1, MIN:0) == "would overflow")
 run_out();

Bounded counters for throttling
As with Bounded counters for flash sales, you can specify the MAX option of the EXINCRBY command to
implement bounded counters for thrott ling. Sample pseudocode:

if(EXINCRBY(rate_limitor, 1, MAX:1000) == "would overflow")
 traffic_control();

Bounded counters for thrott ling can be used for various purposes such as limit ing the number of
concurrent requests, access frequency, and number of password changes. For example, in concurrency
limit ing scenarios, the number of concurrent requests suddenly exceeds the system performance
threshold. To prevent service failures that cause severe consequences, you can use a bounded counter
as a temporary solut ion to control the number of concurrent requests. This solut ion can respond to
concurrent requests in a t imely manner. If you want to limit the number of queries per second (QPS), you
can compile and run simple code by using the EXINCRBY command for TairStrings to set a bounded
counter for concurrent requests.

public boolean tryAcquire(Jedis jedis,String rateLimitor,int limiter){
 try {
 jedis.sendCommand(TairCommand.EXINCRBY,rateLimitor,"1","EX","1","MAX",String.valueO
f(limiter), "KEEPTTL");
 // Set a bounded counter. EX 1 indicates that the rate limiter expires after 1 seco
nd. MAX limiter indicates that the upper limit is limiter. KEEPTTL indicates that the time-
to-live (TTL) of an existing exstring is not modified.
 return true;
 }catch (Exception e){
 if(e.getMessage().contains("increment or decrement would overflow")){ // Check w
hether the returned result contains error messages.
 return false;
 }
 throw e;
 }
}

TairZset is a data structure developed by Alibaba Cloud. It allows you to sort score data of the DOUBLE
type with respect to 256 dimensions.

Issues with Redis ZSET

4.5. Implement multidimensional
leaderboards by using TairZset

Best Pract ices·Best Pract ices for Re
dis Enhanced Edit ion

ApsaraDB for Redis

39 > Document Version: 20220620

https://www.alibabacloud.com/help/doc-detail/145902.htm#concept-2353550/section-r3q-c56-81d

The Sorted Set (or ZSET) data structure of open source Redis allows you to sort elements only in one
dimension instead of mult iple dimensions based on the DOUBLE-typed score data. For example, you can
use the IEEE Standard for Floating-Point Arithmetic (IEEE 754) standard to concatenate score data to
implement mult idimensional sort ing. However, this method is limited by complex logic, reduced
precision, and the unavailability of the ZINCRBY command.

Introduction to TairZset
To help you implement mult idimensional sort ing, Alibaba Cloud developed the TairZset data structure.
Compared with the preceding method, TairZset provides the following advantages:

Allows DOUBLE-typed scores to be sorted based on a maximum of 256 dimensions. The scores are
displayed from left to right based on their priorit ies.

In a mult idimensional sort ing, a left score has higher priority than a right score. Take the comparison
of three-dimensional scores in the score1#score2#score3 format as an example. TairZset compares
the score1s of mult iple three-dimensional scores and moves on to score2s only when score1s are
equal. If score1s are not equal, the ranking of score1s represents the ranking of the three-
dimensional scores involved. By the same logic, score3s are compared only if score2s are equal. If all
score1s are equal and the same holds true for score2s and score3s, the involved mult idimensional
scores are ranked in ASCII sort order.

For easier understanding, you can imagine number signs (#) as decimal points (.). This way, 0#99 <
99#90 < 99#99 can be seen as 0.99 < 99.90 < 99.99.

Supports the EXZINCRBY command. You no longer need to perform the following operations:
retrieve current data, apply the increments to the data, and then write the data back to Redis
databases.

Supports APIs similar to those available for native Redis ZSET.

Allows you to implement and regular leaderboardsdistributed leaderboards

Supports the open source TairJedis client. For more information about the TairJedis client, visit
alibabacloud-tairjedis-sdk. You can use the TairJedis client without the need to encode, decode, or
encapsulate data. You can also encapsulate clients for other programming languages by referring to
the open source code.

Not e For more information about the TairZset commands used in this topic, see TairZset.

Scenarios
The following ranking requirements are common for various games, applications, and medals:

Support for member query based on the specified score range, create, read, update, delete (CRUD)
operations, and reverse sort ing.

Quick retrieval of sort ing results.

Scalability to implement Workloads can be offloaded to other data shards when the current data
shard has insufficient storage or computing power. distributed leaderboards

Use TairZset to implement medal leaderboards

Rank Participant Gold medal Silver medal Bronze medal

1 A 32 21 16

ApsaraDB for Redis Best Pract ices·Best Pract ices for Re
dis Enhanced Edit ion

> Document Version: 20220620 40

https://github.com/aliyun/alibabacloud-tairjedis-sdk
https://www.alibabacloud.com/help/doc-detail/292812.htm#concept-2097605

2 B 25 29 21

3 C 20 7 12

4 D 14 4 16

5 E 13 21 18

6 F 13 17 14

Rank Participant Gold medal Silver medal Bronze medal

In the medal leaderboard, part icipants are sorted by the numbers of gold, silver, and bronze medals
that they win. If the number of gold medals is the same, they are sorted by the number of silver medals.
If the number of silver medals is also the same, they are sorted by the number of bronze medals. For
example, Part icipants E and F have the same number of gold medals, but Part icipant E has more silver
medals than Part icipant F. In this case, Part icipant E ranks higher than Part icipant F. You can use simple
APIs to implement this mult idimensional sort ing with the help of the TairZset data structure.

You can run the following code to install the dependency. Alibaba Cloud SDK for TairJedis is used in this
example. For more information, visit alibabacloud-tairjedis-sdk.

<dependency>
 <groupId>com.aliyun.tair</groupId>
 <artifactId>alibabacloud-tairjedis-sdk</artifactId>
 <version>1.6.0</version>
</dependency>

The following sample code provides an example:

Best Pract ices·Best Pract ices for Re
dis Enhanced Edit ion

ApsaraDB for Redis

41 > Document Version: 20220620

https://github.com/aliyun/alibabacloud-tairjedis-sdk

JedisPool jedisPool = new JedisPool();
// Create a leaderboard.
LeaderBoard lb = new LeaderBoard("leaderboard", jedisPool, 10, true, false);
// Rank the participants by the number of their gold medals. If the number of gold medals i
s the same, rank the participants by the number of their silver medals. If the number of si
lver medals is also the same, rank the participants by the number of their bronze medals.
// Gold medal Silver medal Bronze medal
lb.addMember("A", 32, 21, 16);
lb.addMember("D", 14, 4, 16);
lb.addMember("C", 20, 7, 12);
lb.addMember("B", 25, 29, 21);
lb.addMember("E", 13, 21, 18);
lb.addMember("F", 13, 17, 14);
// Retrieve the rank of Participant A.
lb.rankFor("A"); // 1
// Retrieve the top 3 participants.
lb.top(3);
// [{"member":"A","score":"32#21#16","rank":1},
// {"member":"B","score":"25#29#21","rank":2},
// {"member":"C","score":"20#7#12","rank":3}]
// Retrieve the entire leaderboard.
lb.allLeaders();
// [{"member":"A","score":"32#21#16","rank":1},
// {"member":"B","score":"25#29#21","rank":2},
// {"member":"C","score":"20#7#12","rank":3},
// {"member":"D","score":"14#4#16","rank":4},
// {"member":"E","score":"13#21#18","rank":5},
// {"member":"F","score":"13#17#14","rank":6}]

Use TairZset to implement leaderboards by hour, day, week, or
month or in real t ime
If you want to implement a monthly leaderboard for a key, the month information must be used as the
index.

Leaderboards of various t ime ranges can be implemented by using mult i-level indexing provided by the
TairZset data structure. In this example, all data for the month of July is stored in a key named julyZset.
The following code shows how to write the sample data to the key:

EXZINCRBY julyZset 7#2#6#16#22#100 7#2#6#16#22_user1
EXZINCRBY julyZset 7#2#6#16#22#50 7#2#6#16#22_user2
EXZINCRBY julyZset 7#2#6#16#23#70 7#2#6#16#23_user1
EXZINCRBY julyZset 7#2#6#16#23#80 7#2#6#16#23_user1

Not e

 7#2#6#16#22#100 indicates that the score was updated to 100 at 16:22 on 6 July. The
date belongs to the second week of July.

 7#2#6#16#22_user1 indicates the user whose score was updated at this point in t ime. A
prefix indicates that t ime is added to the username.

ApsaraDB for Redis Best Pract ices·Best Pract ices for Re
dis Enhanced Edit ion

> Document Version: 20220620 42

Leaderboard type Command and output

Real-time hourly leaderboard. This type
of leaderboards includes the members
whose scores were updated within an
hour before the current t ime. For
example, the current t ime is 16:23, the
leaderboard includes members whose
scores were updated within the range of
15:23 to 16:23.

Not e If the ranking results are
frequently accessed, we recommend
that you cache the ranking results.

Query command:

EXZREVRANGEBYSCORE julyZset 7#2#6#16#23#0
7#2#6#15#23#0

Command output:

1) "7#2#6#16#22_user1"
2) "7#2#6#16#22_user2"

Leaderboard for a specific hour. For
example, you can query the leaderboard
that includes the members whose scores
are updated within the t ime range of
16:00 to 17:00.

Query command:

EXZREVRANGEBYSCORE julyZset 7#2#6#17#0#0
7#2#6#16#0#0

Command output:

1) "7#2#6#16#22_user1"
2) "7#2#6#16#22_user2"

Daily leaderboard. For example, you can
query the leaderboard whose data was
generated on July 5.

Before the query, use the following command to insert a data
record that was generated on July 5:

EXZINCRBY julyZset 7#2#5#10#23#70
7#2#5#10#23_user1

Command output:

"7#2#5#10#23#70"

Query command:

EXZREVRANGEBYSCORE julyZset 7#2#6#0#0#0
7#2#5#0#0#0

Command output:

1) "7#2#5#10#23_user1"

Best Pract ices·Best Pract ices for Re
dis Enhanced Edit ion

ApsaraDB for Redis

43 > Document Version: 20220620

Weekly leaderboard. For example, you
can query the leaderboard for the
second week of July.

Query command:

EXZREVRANGEBYSCORE julyZset 7#3#0#0#0#0
7#2#0#0#0#0

Command output:

1) "7#2#6#16#22_user1"
2) "7#2#6#16#22_user2"
3) "7#2#5#10#23_user1"

Monthly leaderboard. For example, you
can query the leaderboard of July.

Before the query, insert a data record that was generated on
July 20.

EXZINCRBY julyZset 7#4#20#12#20#50
7#4#20#12#20_user1

Command output:

"7#4#20#12#20#50"

Query command:

EXZREVRANGEBYSCORE julyZset 7#6#0#0#0#0
7#0#0#0#0#0

Command output:

1) "7#4#20#12#20_user1"
2) "7#2#6#16#22_user1"
3) "7#2#6#16#22_user2"
4) "7#2#5#10#23_user1"

Leaderboard type Command and output

As the number of monitoring metrics and the amount of data traffic increase, monitoring systems
become more complex and require higher t ime efficiency. This topic describes how to build a high
concurrency fine-grained monitoring system by using TairTS.

Overview of TairTS

4.6. Implement fine-grained
monitoring by using TairTS

ApsaraDB for Redis Best Pract ices·Best Pract ices for Re
dis Enhanced Edit ion

> Document Version: 20220620 44

TairTS is a self-developed module of Tair that supports real-t ime and high concurrency queries and
writes based on the mult i-threading model of ApsaraDB for Redis Enhanced Edit ion (Tair). With TairTS,
you can update or add to exist ing t ime series data, use the gorilla compression algorithm and specific
storage to drast ically reduce storage costs, and specify t ime to live (TTL) sett ings for skeys to make
them automatically roll based on t ime windows. For more information, see TairTS.

Overview of fine-grained monitoring
Architecture of f ine-grained monitoring

The preceding figure shows the architecture of a fine-grained monitoring system. The console sends
fine-grained monitoring configurations to the application, the application writes the configurations to
the collector by using the MQ Telemetry Transport (MQTT) protocol, and the collector processes the
configuration data and then writes the data to ApsaraDB for Redis databases.

High concurrency queries

During high concurrency queries, TairTS ensures query performance and supports aggregate
operations in scenarios such as downsampling, attribute-based filtering, batch query, and the use of
mult iple numerical functions for mult i-level f iltering and query. With TairTS, you can perform batch
query and aggregation by using a single command to reduce network interact ion, receive responses
in milliseconds, and identify issues at the earliest opportunity.

High concurrency writes

One collector may be insufficient to handle high concurrency writes as applications become larger. In
this regard, TairTS allows you to update or add to exist ing t ime series data to ensure the accuracy of
concurrent writes to mult iple collectors and reduce memory usage. The following code provides an
example on how to concurrently write data:

import com.aliyun.tair.tairts.TairTs;
import com.aliyun.tair.tairts.params.ExtsAggregationParams;
import com.aliyun.tair.tairts.params.ExtsAttributesParams;
import com.aliyun.tair.tairts.results.ExtsSkeyResult;
import redis.clients.jedis.Jedis;
public class test {
 protected static final String HOST = "127.0.0.1";
 protected static final int PORT = 6379;
 public static void main(String[] args) {
 try {
 Jedis jedis = new Jedis(HOST, PORT, 2000 * 100);
 if (!"PONG".equals(jedis.ping())) {
 System.exit(-1);
 }
 TairTs tairTs = new TairTs(jedis);

Best Pract ices·Best Pract ices for Re
dis Enhanced Edit ion

ApsaraDB for Redis

45 > Document Version: 20220620

https://www.alibabacloud.com/help/doc-detail/408954.htm#task-2182393

 //Use the following code if you want to work with a cluster instance:
 //TairTsCluster tairTsCluster = new TairTsCluster(jedisCluster);
 String pkey = "cpu_load";
 String skey1 = "app1";
 long startTs = (System.currentTimeMillis() - 100000) / 1000 * 1000;
 long endTs = System.currentTimeMillis() / 1000 * 1000;
 String startTsStr = String.valueOf(startTs);
 String endTsStr = String.valueOf(endTs);
 tairTs.extsdel(pkey, skey1);
 long num = 5;
 //Concurrently update data in Collector A.
 for (int i = 0; i < num; i++) {
 double val = i;
 long ts = startTs + i*1000;
 String tsStr = String.valueOf(ts);
 ExtsAttributesParams params = new ExtsAttributesParams();
 params.dataEt(1000000000);
 String addRet = tairTs.extsrawincr(pkey, skey1, tsStr, val, params);
 }
 ExtsAggregationParams paramsAgg = new ExtsAggregationParams();
 paramsAgg.maxCountSize(10);
 paramsAgg.aggAvg(1000);
 System.out.println("Updated result of Collector A:");
 ExtsSkeyResult rangeByteRet = tairTs.extsrange(pkey, skey1, startTsStr, endTs
Str, paramsAgg);
 for (int i = 0; i < num; i++) {
 System.out.println(" ts: " + rangeByteRet.getDataPoints().get(i).getTs
() + ", value: " + rangeByteRet.getDataPoints().get(i).getDoubleValue());
 }
 //Concurrently update data in Collector B.
 for (int i = 0; i < num; i++) {
 double val = i;
 long ts = startTs + i*1000;
 String tsStr = String.valueOf(ts);
 ExtsAttributesParams params = new ExtsAttributesParams();
 params.dataEt(1000000000);
 String addRet = tairTs.extsrawincr(pkey, skey1, tsStr, val, params);
 }
 System.out.println("Updated result of Collector B:");
 rangeByteRet = tairTs.extsrange(pkey, skey1, startTsStr, endTsStr, paramsAgg)
;
 for (int i = 0; i < num; i++) {
 System.out.println(" ts: " + rangeByteRet.getDataPoints().get(i).getTs
() + ", value: " + rangeByteRet.getDataPoints().get(i).getDoubleValue());
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Execution results:

ApsaraDB for Redis Best Pract ices·Best Pract ices for Re
dis Enhanced Edit ion

> Document Version: 20220620 46

Updated result of Collector A:
 ts: 1597049266000, value: 0.0
 ts: 1597049267000, value: 1.0
 ts: 1597049268000, value: 2.0
 ts: 1597049269000, value: 3.0
 ts: 1597049270000, value: 4.0
Updated result of Collector B:
 ts: 1597049266000, value: 0.0
 ts: 1597049267000, value: 2.0
 ts: 1597049268000, value: 4.0
 ts: 1597049269000, value: 6.0
 ts: 1597049270000, value: 8.0

TairZset is a data structure developed by Alibaba Cloud. It allows you to sort score data of the DOUBLE
type with respect to 256 dimensions. You can use the Tair-based clients developed in-house to
implement distributed leaderboards where computing tasks can be distributed to mult iple keys (also
called sub-leaderboards). For example, if you specify 10 keys, data is distributed to the 10 keys for
computing.

Context
The precise ranking and imprecise ranking (also called linear interpolation) methods can be used to
implement distributed leaderboards.

Methods to implement distributed leaderboards

Method Description

Precise ranking
(recommended)

In this method, you can distribute data to multiple keys for computing, and query the
ranks of the same member in multiple keys to obtain a total rank of the member.

For example, if you specify three keys and create a leaderboard that has 3,000
members, Tair distributes these members to the three keys (or sub-leaderboards).
During a data query, the FindRank(x) command is used to retrieve three ranks of the x
member from the three keys. Assume the retrieved ranks are 124, 183, and 156. In this
case, the actual rank of the x member is 463, which is the sum of 124, 183, and 156.

Benefits: This method yields precise ranks.

Drawbacks: The of this method is m*O(log(N)). t ime complexity

Linear
interpolation
(unavailable for
now)

In this method, you can classify members into different ranges by member score, record
the number of members and the highest rank in each range, and then use linear
interpolation to estimate the ranks of members whose scores fall between the largest
and the smallest values in each range.

Benefits: This method is fast in rank retrieval and has a t ime complexity of O(m).

Drawbacks: This method retrieves estimated ranks that may differ from the actual
ranks.

This topic describes how to use precise ranking to implement distributed leaderboards.

4.7. Implement distributed
leaderboards by using TairZset

Best Pract ices·Best Pract ices for Re
dis Enhanced Edit ion

ApsaraDB for Redis

47 > Document Version: 20220620

Not e For information about the TairZset commands that are used in this topic, see TairZset.

Prerequisites
The Tair-based client developed by Alibaba Cloud is used. For more information, visit alibabacloud-
tairjedis-sdk.

Implement distributed leaderboards
The following table compares the methods to implement basic features for common leaderboards and
distributed leaderboards.

Basic feature

Common leaderboard Distributed leaderboard

Implementation
method

Time
complexit
y

Implementation method Time complexity

Insertion of a
member

Run the EXZADD
command.

O(log(N))

Use the crc(key) & m
syntax to specify the key into
which you want to insert a
member, and then run the
EXZADD command to insert
the member into the key.

O(log(N))

Update of a
member score

Run the
EXZINCRBY
command.

O(log(N))

Use the crc(key) & m
syntax to specify the key
whose member score you
want to update, and then run
the EXZINCRBY command to
update the score of a member
in the key.

O(log(N))

Removal of a
member

Run the EXZREM
command.

O(M*log(
N))

Use the crc(key) & m
syntax to specify the key
whose member you want to
remove, and then run the
EXZREM command to remove a
member from the key.

O(log(N))

Query of the
number of
members in a
key

Run the EXZCARD
command.

O(1)

Run the EXZCARD command
several t imes to individually
query the number of members
in multiple keys and add the
numbers to obtain a total
number.

O(m)

Not e
In this
column, m
indicates the
number of
shards.

ApsaraDB for Redis Best Pract ices·Best Pract ices for Re
dis Enhanced Edit ion

> Document Version: 20220620 48

https://www.alibabacloud.com/help/doc-detail/292812.htm#concept-2097605
https://github.com/aliyun/alibabacloud-tairjedis-sdk

Query of the
total number
of pages

Run the EXZCARD
command to
query the number
of members in a
key, and then
divide the number
by the number of
entries that can
be displayed on
each page.

O(1)

Run the EXZCARD command
several t imes to individually
query the number of members
in multiple keys and add the
numbers to obtain the total
number. Then, divide the total
number by the number of
entries that can be displayed
on each page.

O(m)

Query of the
total number
of members
whose scores
are within a
specific range

Run the
EXZCOUNT
command.

O(log(N))

Run the EXZCOUNT command
several t imes to individually
query the number of members
whose scores are within a
specific range in multiple keys,
and then add the numbers to
obtain the total number.

m*O(log(N))

Removal of the
members
whose scores
are within a
specific range

Run the
EXZREMRANGEBYS
CORE command.

O(log(N)+
M)

Run the EXZREMRANGEBYSCORE
command several t imes to
individually remove the
members whose scores are
within a specific range from
multiple keys.

m*O(log(N))

Retrieval of a
member score

Run the EXZSCORE
command.

O(1)

Use the crc(key) & m
syntax to specify the key
whose member score you
want to retrieve, and then run
the EXZSCORE command to
retrieve the score of a member
in the key.

O(1)

Retrieval of a
member rank

Run the EXZRANK
command.

O(log(N))

Run the EXZRANKBYSCORE
command to individually
retrieve the rank of the same
member in multiple keys, and
then add the ranks to obtain
the total rank of the member.

m*O(log(N))

Basic feature

Common leaderboard Distributed leaderboard

Implementation
method

Time
complexit
y

Implementation method Time complexity

Best Pract ices·Best Pract ices for Re
dis Enhanced Edit ion

ApsaraDB for Redis

49 > Document Version: 20220620

Retrieval of a
member score
and rank

Run the EXZSCORE
and EXZRANK
commands.

O(log(N))

1. Use the crc(key) & m
syntax to specify the key
whose member score and
rank you want to retrieve,
and then run the
EXZSCORE command to
retrieve the score and
rank of a member in the
key.

2. Run the EXZRANKBYSCORE
command to individually
retrieve the rank of the
same member in multiple
keys, and then add the
ranks to obtain the total
rank of the member.

m*O(log(N))

Query of the
top i members

Run the EXZRANGE
command.

O(log(N)+
M)

Run the EXZRANGE command
several t imes to individually
retrieve the top i members
from multiple keys, and then
obtain the top i members
among all retrieved members.

m*O(log(N))

Query of the
top i pages of
a leaderboard

Run the EXZRANGE
command.

O(log(N))

Retrieve the members
displayed before the ith page
in each sub-leaderboard, rank
the retrieved members of all
sub-leaderboards, and then
obtain the total top i pages of
all retrieved members.

m*O(log(N))

Configuration
of an expiration
time

Run the EXPIRE
command.

O(1)
Specify an expiration time for
each member.

O(m)

Deletion of a
leaderboard

Run the DEL
command.

O(N)
Delete all members from a
key.

m * O(N)

Basic feature

Common leaderboard Distributed leaderboard

Implementation
method

Time
complexit
y

Implementation method Time complexity

The following sample code provides an example:

ApsaraDB for Redis Best Pract ices·Best Pract ices for Re
dis Enhanced Edit ion

> Document Version: 20220620 50

public class DistributedLeaderBoradExample {
 private static final int shardKeySize = 10; // Number of sub-leaderboards.
 private static final int pageSize = 10; // Number of entries that can be displayed
on each page in a leaderboard.
 private static final boolean reverse = true; // In this example, members are ranked in
descending order.
 private static final boolean useZeroIndexForRank = false; // In this example, ranks sta
rt from 1.
 public static void main(String[] args) {
 JedisPool jedisPool = new JedisPool();
 // Create a distributed leaderboard.
 DistributedLeaderBoard dlb = new DistributedLeaderBoard("distributed_leaderboard",
jedisPool,
 shardKeySize, pageSize, reverse, useZeroIndexForRank);
 // Rank the participants by the number of their gold medals. If the number of gold
medals is the same, rank the participants by the number of their silver medals. If the numb
er of silver medals is also the same, rank the participants by the number of their bronze m
edals.
 // Gold medal Silver medal Bronze medal
 dlb.addMember("A", 32, 21, 16);
 dlb.addMember("D", 14, 4, 16);
 dlb.addMember("C", 20, 7, 12);
 dlb.addMember("B", 25, 29, 21);
 dlb.addMember("E", 13, 21, 18);
 dlb.addMember("F", 13, 17, 14);
 // Retrieve the rank of Participant A.
 dlb.rankFor("A"); // 1
 System.out.println(dlb.rankFor("A"));
 // Retrieve the top 3 participants.
 dlb.top(3);
 System.out.println(dlb.top(3));
 // [{"member":"A","score":"32#21#16","rank":1},
 // {"member":"B","score":"25#29#21","rank":2},
 // {"member":"C","score":"20#7#12","rank":3}]
 }

The following table describes the parameters.

Parameter Type Description

shardKeySize int

The number of sub-leaderboards. The default value is 10. The
number of sub-leaderboards cannot be dynamically scaled.
Therefore, you must determine how many sub-leaderboards
you need before you use sub-leaderboards.

pageSize int
The number of entries that can be displayed on each page in a
leaderboard. The default value is 10.

reverse boolean

Valid values:

false: Members are ranked in ascending order. This is the
default value.

true: Members are ranked in descending order.

Best Pract ices·Best Pract ices for Re
dis Enhanced Edit ion

ApsaraDB for Redis

51 > Document Version: 20220620

useZeroIndexForR
ank

boolean

Valid values:

true: Ranks start from 0. This is the default value.

false: Ranks start from 1.

Parameter Type Description

You can provide a high-performance service for potential user select ion by using the TairRoaring data
structure available for ApsaraDB for Redis Enhanced Edit ion (Tair).

Introduction to TairRoaring
Tag-based user select ion is applicable to business scenarios such as personalized recommendation and
precision marketing. A variety of operational marketing strategies are implemented for users marked by
different tags to maximize the interests of advert isers.

Tag-based user select ion has the following characterist ics:

A large number of tags for users. This requires large storage space and high scalability.

A large number of users. This indicates that a variety of dimensions are needed to generate tags and
the data is discret ized.

A heavy computing burden. Applications can select users who are attached different tags based on
a variety of strategies and have a high demand for performance and t imeliness.

The bitmap (or bitset) data structure is able to meet the preceding requirements. This data structure
can use a small amount of storage to implement optimized query of large amounts of data. Bitmap
operations are supported by ApsaraDB for Redis Community Edit ion. However, the native bitmap data
structure may be overwhelmed by massive tagging needs.

The native bitmap data structure is limited by the size of keyspaces. This can lead to a significant
reduction in space efficiency for sparse data.

When bitmap operations are performed by using strings, user code must be written to perform
computing tasks and the round-trip t ime (RTT) increases threefold.

When bitmap data is stored in native Redis, big keys may be generated and cause instability to
clusters.

TairRoaring commands are highly optimized bitmap implementations. For more information, see
TairRoaring commands.

TairRoarings can strike a balance between performance and space complexity in a large number of
scenarios by means of two-level indexes and dynamic containers.

TairRoarings use optimization techniques such as single instruct ion, mult iple data (SIMD),
vectorization, and popcount algorithms to improve computing efficiency and deliver efficient t ime
and space complexity.

TairRoarings provide powerful computing performance and high stability for a variety of business
scenarios based on ApsaraDB for Redis Enhanced Edit ion (Tair).

Compared with the native bitmap data structure, TairRoaring provides lower memory usage and higher
computing efficiency for collect ions. TairRoaring also offers lower latency and higher throughput by
virtue of the high-performance ApsaraDB for Redis Enhanced Edit ion (Tair) service.

4.8. Select users by using TairRoaring

ApsaraDB for Redis Best Pract ices·Best Pract ices for Re
dis Enhanced Edit ion

> Document Version: 20220620 52

https://www.alibabacloud.com/help/doc-detail/311433.htm#concept-2113320

Procedure of potential user selection
User select ion consists of mult iple steps, including model generation and select ion.

1. Use row schemas to store user characterist ics that are classified from different dimensions. In most
cases, raw user data is stored in relat ional databases.

2. Process raw data on demand, and generate mappings between user identifiers (UIDs) and user tags.

3. Update these mappings on a regular basis to the TairRoaring data structure. In most cases, updates
take place two days after the corresponding business data is generated.

4. Accelerate business data processing by using the TairRoaring data structure.

You can query the relat ionship between a user and a user tag.

For example, you can run the following command to determine whether user1 is attached Tag-A.
The serial number of Tag-A is 16161.

TR.GETBIT user1 16161

You can create logical user groups by using operators such as AND , OR , and DIFF and
process the information of these user groups.

For example, you can run the following command to obtain the users who are attached both
Tag-B and Tag-C:

TR.BITOP result AND Tag-B Tag-C

You can also use the TairRoaring data structure in some mapping scenarios such as risk control to
check whether a tag is mapped to a UID.

For example, you can run the following command to query whether user1 is attached Tag-A:

TR.GETBIT Tag-A user1

Best Pract ices·Best Pract ices for Re
dis Enhanced Edit ion

ApsaraDB for Redis

53 > Document Version: 20220620

You can efficiently migrate data from ApsaraDB RDS for MySQL or on-premises MySQL databases to
ApsaraDB for Redis by using the pipeline feature of ApsaraDB for Redis. You can also migrate data from
RDS databases that use other engines to ApsaraDB for Redis by performing the steps described in this
topic.

Scenario
In one of the classic use cases, ApsaraDB for Redis is used as a caching service between applications and
databases to expand the capabilit ies of tradit ional relat ional databases. This also optimizes the
ecosystem. ApsaraDB for Redis is used to store hot data. Applications can directly retrieve hot data
from ApsaraDB for Redis. In addit ion, ApsaraDB for Redis can keep sessions alive for act ive users that use
interact ive applications. This reduces the load on the backend relat ional database and improves user
experience.

To use ApsaraDB for Redis as a cache, you must first transmit data from a relat ional database to
ApsaraDB for Redis. You cannot directly transmit tables in a relat ional database to the ApsaraDB for
Redis database that stores data in a key-value structure. Before you start , you must convert the source
data to a specific structure. This topic describes how to use the open source tool to migrate tables
from MySQL databases to ApsaraDB for Redis in an easy and efficient way. You can use the pipeline
feature of ApsaraDB for Redis to transmit data in MySQL tables to hash tables of ApsaraDB for Redis.

Not e In this example, data is migrated from the source ApsaraDB RDS for MySQL instance to
the dest ination ApsaraDB for Redis instance. A Linux environment that is deployed on an Elast ic
Compute Service (ECS) instance is used to run the command to migrate data. These instances are
deployed in the same virtual private cloud (VPC), therefore they can communicate with each other.

You can follow the same procedure to migrate data from other relat ional databases to ApsaraDB for
Redis. During the migration process, you must extract data from the source database, convert the data
format, and then transmit the data to the heterogeneous database. This migration method is also
suitable for data migration between other heterogeneous databases.

Prerequisites
An ApsaraDB RDS for MySQL instance is created and stores the tables to be migrated.

An ApsaraDB for Redis instance is created as the dest ination.

An ECS instance that runs the Linux system is created.

These instances are deployed in the same VPC and region.

The private IP address of the ECS instance is added to the IP address whitelists of ApsaraDB RDS for
MySQL and ApsaraDB for Redis instances.

MySQL and Redis services are running on the ECS instance to extract, convert, and transmit data.

5.Best Practices for All Editions
5.1. Migrate MySQL data to ApsaraDB
for Redis

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 54

Not e These prerequisites apply only when you migrate data on Alibaba Cloud. If you want to
migrate data in your on-premises environment, make sure that the Linux server that performs
migration can connect to the source relat ional database and the dest ination ApsaraDB for Redis
database.

Data before migration
This topic describes how to migrate the test data stored in the company table of the cust m_inf o
database. The company table contains test data as shown in the following table.

The table contains six columns. After the migration is complete, the values in the id column of the
MySQL table are converted to hash keys in ApsaraDB for Redis. The names of other columns are
converted to hash fields, and the values of these columns are converted to the values of the hash
fields. You can modify the scripts and commands for the migration based on actual scenarios.

Procedure
1. Analyze the source data structure, create the following migration script on the ECS instance, and

then save the script to the mysql_to_redis.sql f ile.

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

55 > Document Version: 20220620

SELECT CONCAT(
 "*12\r\n", #The number 12 specifies the number of the following fields, and depends o
n the data structure of the MySQL table.
 '$', LENGTH('HMSET'), '\r\n', #The HMSET variable specifies the command that you run
to write data to ApsaraDB for Redis.
 'HMSET', '\r\n',
 '$', LENGTH(id), '\r\n', #The id variable specifies the first field after you run the
HMSET command for fields. This field is converted to the hash key in ApsaraDB for Redis
.
 id, '\r\n',
 '$', LENGTH('name'), '\r\n', #The name variable is passed to the hash table as a stri
ng field. Other fields such as sdate are processed in the same way.
 'name', '\r\n',
 '$', LENGTH(name), '\r\n', #The name variable specifies the company name in the MySQL
table. This variable is converted to the value of the field generated by the 'name' par
ameter. Other fields such as sdate are processed in the same way.
 name, '\r\n',
 '$', LENGTH('sdate'), '\r\n',
 'sdate', '\r\n',
 '$', LENGTH(sdate), '\r\n',
 sdate, '\r\n',
 '$', LENGTH('email'), '\r\n',
 'email', '\r\n',
 '$', LENGTH(email), '\r\n',
 email, '\r\n',
 '$', LENGTH('domain'), '\r\n',
 'domain', '\r\n',
 '$', LENGTH(domain), '\r\n',
 domain, '\r\n',
 '$', LENGTH('city'), '\r\n',
 'city', '\r\n',
 '$', LENGTH(city), '\r\n',
 city, '\r'
)
FROM company AS c

2. Run the following command on the ECS instance to migrate data.

mysql -h <MySQL host> -P <MySQL port> -u <MySQL username> -D <MySQL database name> -p -
-skip-column-names --raw < mysql_to_redis.sql | redis-cli -h <Redis host> --pipe -a <Re
dis password>

Options

Name Description Example

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 56

-h

The endpoint of the ApsaraDB RDS for MySQL
database.

Not e This is the first -h in the
command.

rm-
bp1xxxxxxxxxxxx.mysql.rds.aliyu
ncs.com

Not e Use the
endpoint to connect the
Linux server to the
ApsaraDB RDS for MySQL
database.

-P
The service port of the ApsaraDB RDS for MySQL
database.

3306

-u
The username of the ApsaraDB RDS for MySQL
database.

testuser

-D
The database where the MySQL table that you
want to migrate is stored.

mydatabase

-p

The password of the ApsaraDB RDS for MySQL
database.

Not e

If no password is set, you do not
need to specify this parameter.

For higher security, you can enter only
-p, run the command, and then enter
the password as requested by the
prompt. Mysqlpwd233

--skip-
column-
names

The column name is not written into the query
result.

No value is required.

--raw The output column value is not escaped. No value is required.

Name Description Example

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

57 > Document Version: 20220620

-h

The URL that is used to access the Redis
database.

Not e This is the -h option that follows
 redis-cli .

r-
bp1xxxxxxxxxxxxx.redis.rds.aliyu
ncs.com

Not e Use the
endpoint to connect the
Linux server to the
ApsaraDB for Redis
database.

--pipe
Use the pipeline feature of ApsaraDB for Redis to
transmit data.

No value is required.

-a

The password that is used to access the Redis
database.

Not e If no password is set, you can
skip this parameter.

Redispwd233

Name Description Example

Sample code

Not e In the result , errors indicates the number of errors that the system returns, and
 replies indicates the number of responses the system returns. If the value of errors is 0

and the value of replies equals the number of items in the MySQL table, the migration is
completed.

Data after migration
After the data is migrated, one data entry in the MySQL table corresponds to one data entry in the
hash table of ApsaraDB for Redis. You can run the HGET ALL command to query a data entry and view
the following result .

You can adjust the migration solut ion based on the query method required in actual scenarios. For
example, you can convert other columns in the MySQL table to the keys in the hash table and convert
the id column to a field, or ignore the id column.

5.2. Rankings of online game players

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 58

ApsaraDB for Redis is compatible with open source Redis. This topic provides an example on how to use
ApsaraDB for Redis to create rankings of online game players sorted by score.

Environment settings

Cloud service Description

Elastic Compute Service (ECS)
instance

The ECS instance runs the Ubuntu 16.04.6 operating system.

The ECS instance and the ApsaraDB for Redis instance are deployed
in the same virtual private cloud (VPC).

ApsaraDB for Redis instance
The ApsaraDB for Redis instance and the ECS instance are deployed in
the same VPC.

Not e If the ApsaraDB for Redis instance and the ECS instance are deployed in different VPCs,
you can migrate the ApsaraDB for Redis instance to the VPC of the ECS instance. For more
information about how to change the VPC of an ApsaraDB for Redis instance, see Change the VPC
or vSwitch of an ApsaraDB for Redis instance. If the ApsaraDB for Redis instance and the ECS
instance are deployed in different types of networks, see Connect an ECS instance to an ApsaraDB
for Redis instance in different types of networks.

Procedure
1. Configure the IP address whitelist of the ApsaraDB for Redis instance to make sure that the ECS

instance and the ApsaraDB for Redis instance can communicate with each other.

i. Obtain the private IP address of the ECS instance. For more information, see How do I query IP
addresses of ECS instances?

ii. Add the private IP address of the ECS instance to the whitelist of the ApsaraDB for Redis
instance. For more information, see Configure whitelists.

2. Log on to the ECS instance. For more information, see Overview.

3. On the ECS instance, run the following commands to install the dependencies for the environment:

sudo apt-get update
sudo apt-get install openjdk-8-jdk
apt install maven

4. Run the following commands to download and decompress the sample code file:

wget https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/120287/cn_zh/1615
470698355/source.tar.gz
tar xvf source.tar.gz && cd source

5. Run the vim src/main/java/t est /GameRankSample.java command to change the value of each
parameter in the sample code based on your requirements.

5.2. Rankings of online game players
sorted by score

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

59 > Document Version: 20220620

https://www.alibabacloud.com/help/doc-detail/201876.htm#task-2038839
https://www.alibabacloud.com/help/doc-detail/196129.htm#task-2013087
https://www.alibabacloud.com/help/doc-detail/40637.htm#concept-40637-zh/section-vpl-qbg-qgb
https://www.alibabacloud.com/help/doc-detail/56464.htm#concept-lmv-qhf-vdb
https://www.alibabacloud.com/help/doc-detail/71529.htm#concept-tmr-pgx-wdb

Not e After you run the preceding command, the system opens the editor. Enter a to
enter the edit ing mode.

Examples

Parameter Description

String host Enter the internal endpoint and port number of the ApsaraDB for Redis
instance. For more information about how to obtain the internal endpoint
and port number, see View endpoints.port

String authString

The password of the account that has the read and writ e permissions. The
password format varies based on the account that you select. For more
information about how to create an account, see Create and manage
database accounts.

Not e

If you are using the default account, which is named after the
instance ID, enter only the password.

If you are using a custom account, enter a password in the
format of <user>:<password> . For example, if the username
of a custom account is testaccount and the password is
Rp829dlwa, you must enter testaccount:Rp829dlwa.

6. To save the configuration file and exit the editor, press the Esc key to exit the edit mode, enter :w
q, and press the Enter key.

7. To run the sample code, run the following commands.

mvn clean package assembly:single -DskipTests
java -classpath target/demo-0.0.1-SNAPSHOT.jar test.GameRankSample

Output

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 60

https://www.alibabacloud.com/help/doc-detail/107717.htm#concept-apt-fkl-5gb
https://www.alibabacloud.com/help/doc-detail/92665.htm#task-kth-pr4-hfb

Comments on the sample code

package test;
import java.util.ArrayList;
import java.util.List;
import java.util.Set;
import java.util.UUID;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.Tuple;
public class GameRankSample {
 static int TOTAL_SIZE = 20;
 public static void main(String[] args) {
 //The endpoint of the instance. You can view the endpoint in the ApsaraDB for Redis con
sole.
 String host = "r-gs50a75e1968****.redis.hangzhou.rds.aliyuncs.com";
 int port = 6379;
 Jedis jedis = new Jedis(host, port);
 try {
 //The password of the instance.
 String authString = jedis.auth("Pass!123"); //password
 if (!authString.equals("OK")) {
 System.err.println("AUTH Failed: " + authString);
 return;
 }
 //The key.
 String key = "Game name: Keep Running, Alibaba Cloud!";
 //Clears all data.
 jedis.del(key);
 //Creates multiple player accounts.
 List<String> playerList = new ArrayList<String>();
 for (int i = 0; i < TOTAL_SIZE; ++i) {
 //Generates a random ID for each player.
 playerList.add(UUID.randomUUID().toString());
 }
 System.out.println("Inputs all players ");
 //Records the score of each player.
 for (int i = 0; i < playerList.size(); i++) {
 //Generates random numbers as the scores of players.
 int score = (int) (Math.random() * 5000);
 String member = playerList.get(i);
 System.out.println("Player ID:" + member + ", Player Score: " + score);
 //Adds the player IDs and scores to a specified sorted set.
 jedis.zadd(key, score, member);
 }
 //Prints the rankings of all players.
 System.out.println();

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

61 > Document Version: 20220620

 System.out.println(" " + key);
 System.out.println(" Ranking list of all players");
 //Obtains the sorted list of players from the specified sorted set.
 Set<Tuple> scoreList = jedis.zrevrangeWithScores(key, 0, -1);
 for (Tuple item : scoreList) {
 System.out.println(
 "Player ID:" +
 item.getElement() +
 ", Player Score:" +
 Double.valueOf(item.getScore()).intValue()
);
 }
 //Prints information about the top five players.
 System.out.println();
 System.out.println(" " + key);
 System.out.println(" Top players");
 scoreList = jedis.zrevrangeWithScores(key, 0, 4);
 for (Tuple item : scoreList) {
 System.out.println(
 "Player ID:" +
 item.getElement() +
 ", Player Score:" +
 Double.valueOf(item.getScore()).intValue()
);
 }
 //Prints a list of specific players.
 System.out.println();
 System.out.println(" " + key);
 System.out.println(" Players with scores from 1,000 to 2,000");
 //Obtains the list of players whose scores range from 1,000 to 2,000 from the specifi
ed sorted set.
 scoreList = jedis.zrangeByScoreWithScores(key, 1000, 2000);
 for (Tuple item : scoreList) {
 System.out.println(
 "Player ID:" +
 item.getElement() +
 ", Player Score:" +
 Double.valueOf(item.getScore()).intValue()
);
 }
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 jedis.quit();
 jedis.close();
 }
 }
}

5.3. Correlation analysis on E-

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 62

You can use ApsaraDB for Redis to perform a correlat ion analysis on E-commerce store items.

Scenario introduction
The correlat ion between items is the case where mult iple items are added to the same shopping cart.
The analysis results are crucial for the E-commerce industry and can be used to analyze shopping
behaviors. For example:

On the details page of a specific item, recommend related items to the user who is browsing this
page.

Recommend related items to a user who just added an item to the shopping cart.

Place highly correlated items together on the shelf.

You can use ApsaraDB for Redis to create a sorted set for each item. For a specific item, the set consists
of items that are added with this item to the shopping cart. Members of the set are scored based on
how often they appear in the same cart with that specific item. Each t ime item A and item B appear in
the same shopping cart, the respective sorted sets for item A and item B in ApsaraDB for Redis are
updated.

Sample code

package shop.kvstore.aliyun.com;
import java.util.Set;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.Tuple;
 public class AliyunShoppingMall {
 public static void main(String[] args)
 {
 //ApsaraDB for Redis connection. This information can be obtained from the cons
ole
 String host = "xxxxxxxx.m.cnhza.kvstore.aliyuncs.com";
 int port = 6379;
 Jedis jedis = new Jedis(host, port);
 try {
 //ApsaraDB for Redis instance password
 String authString = jedis.auth("password");//password
 if (! authString.equals("OK"))
 {
 System.err.println("AUTH Failed: " + authString);
 return;
 }
 //Products
 String key0="Alibaba Cloud: Product: Beer";
 String key1 = "Alibaba Cloud: Product: Chocolate";
 String key2 = "Alibaba Cloud: Product: Cola";
 String key3 = "Alibaba Cloud: Product: Gum";
 String key4 = "Alibaba Cloud: Product: Beef Jerky";
 String key5="Alibaba Cloud: Product: Chicken Wings";
 final String[] aliyunProducts=new String[]{key0,key1,key2,key3,key4,key5};
 //Initialize to clear the possible existing data

5.3. Correlation analysis on E-
commerce store items

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

63 > Document Version: 20220620

 //Initialize to clear the possible existing data
 for (int i = 0; i < aliyunProducts.length; i++) {
 jedis.del(aliyunProducts[i]);
 }
 //Simulated shopping behaviors
 for (int i = 0; i < 5; i++) { //Simulates the shopping behaviors of multipl
e customers
 customersShopping(aliyunProducts,i,jedis);
 }
 System.out.println();
 //Uses ApsaraDB for Redis to generate the correlated relationship between i
tems
 for (int i = 0; i < aliyunProducts.length; i++) {
 System.out.println(">>>>>>>>>>and"+aliyunProducts[i]+"was purchased wit
h <<<<<<<<<<<<<<<");
 Set<Tuple> relatedList = jedis.zrevrangeWithScores(aliyunProducts[i], 0
, -1);
 for (Tuple item : relatedList) {
 System.out.println("Item name:"+item.getElement()+", Purchased toge
ther times:"+Double.valueOf(item.getScore()).intValue());
 }
 System.out.println();
 }
 } catch (Exception e) {
 e.printStackTrace();
 }finally{
 jedis.quit();
 jedis.close();
 }
 }
 private static void customersShopping(String[] products, int i, Jedis jedis) {
 //Simulates three simple shopping behaviors and randomly selects one as the beh
avior of the user
 int bought=(int)(Math.random()*3);
 if(bought==1){
 //Simulated business logic: the user has purchased the following products:
 System.out.println("User"+i+"purchased"+products[0]+","+products[2]+","+pro
ducts[1]);
 //Records the correlations between the items to SortSet in ApsaraDB for Red
is
 jedis.zincrby(products[0], 1, products[1]);
 jedis.zincrby(products[0], 1, products[2]);
 jedis.zincrby(products[1], 1, products[0]);
 jedis.zincrby(products[1], 1, products[2]);
 jedis.zincrby(products[2], 1, products[0]);
 jedis.zincrby(products[2], 1, products[1]);
 }else if(bought==2){
 //Simulated business logic: the user has purchased the following products
 System. out. println ("user" + i + "purchased" + products [4] + ", "+ produ
cts [2] +", "+ products [3]);
 //Records the correlations between the items to SortSet in ApsaraDB for Red
is
 jedis.zincrby(products[4], 1, products[2]);
 jedis.zincrby(products[4], 1, products[3]);
 jedis.zincrby(products[3], 1, products[4]);

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 64

 jedis.zincrby(products[3], 1, products[2]);
 jedis.zincrby(products[2], 1, products[4]);
 jedis.zincrby(products[2], 1, products[3]);
 }else if(bought==0){
 //Simulated business logic: the user has purchased the following products:
 System.out.println("user"+i+"purchased"+products[1]+","+products[5]);
 //Records the correlations between the items to SortSet in ApsaraDB for Red
is
 jedis.zincrby(products[5], 1, products[1]);
 jedis.zincrby(products[1], 1, products[5]);
 }
 }
 }

Results
After you access the ApsaraDB for Redis instance with the correct address and password and run the
Java code, the following output is displayed:

User 0 purchased Alibaba Cloud: Product: Chocolate, Alibaba Cloud: Product: Chicken Wings
User 1 purchased Alibaba Cloud: Product: Beef Jerky, Alibaba Cloud: Product: Cola, Alibaba
Cloud: Product: Gum
User 2 purchased Alibaba Cloud: Product: Beer, Alibaba Cloud: Product: Cola, Alibaba Cloud:
product: Chocolate
User 3 purchased Alibaba Cloud: Product: Beef Jerky, Alibaba Cloud: Product: Cola, Alibaba
Cloud: Product: Gum
User 4 purchased Alibaba Cloud: Product: Chocolate, Alibaba Cloud: Product: Chicken Wings
>>>>>>>>>>Alibaba Cloud: Product: Beer was purchased with<<<<<<<<<<<<<<<
Item Name: Alibaba Cloud: Product: Chocolate. Purchased together times: 1
Item name: Alibaba Cloud: Product:Cola. Purchased together times: 1
>>>>>>>>>>Alibaba Cloud: Product: Chocolate was purchased with<<<<<<<<<<<<<<<<<<<<
Item name: Alibaba Cloud: Product: Chicken Wings. Purchased together times: 2
Item name: Alibaba Cloud: Product: Beer. Purchased together times: 1
Item name: Alibaba Cloud: Product: Cola. Purchased together times: 1
>>>>>>>>>>Alibaba Cloud: Product: Cola was purchased with<<<<<<<<<<<<<<<<<
Item name: Alibaba Cloud:Product: Beef Jerky. Purchased together times: 2
Item name: Alibaba Cloud: Product: Gum. Purchased together times: 2
Item name: Alibaba Cloud: Product: Chocolate. Purchased together times: 1
Item name: Alibaba Cloud: Product: Beer. Purchased together times: 1
>>>>>>>>>>Alibaba Cloud: Product: Gum was purchased with<<<<<<<<<<<<<<<<<<<<
Item name: Alibaba Cloud: Product: Beef Jerky. Purchased together times: 2
Item name: Alibaba Cloud: Product: Cola. Purchased together times: 2
>>>>>>>>>>Alibaba Cloud: Product: Beef Jerky was purchased with<<<<<<<<<<<<<<<
Item name: Alibaba Cloud: Product: Cola. Purchased together times: 2
Item name: Alibaba Cloud: Product: Gum. Purchased together times: 2
>>>>>>>>>>Alibaba Cloud: Product: Chicken Wings was purchased with<<<<<<<<<<<<<<
Item name: Alibaba Cloud: Product: Chocolate. Purchased together times: 2

5.4. Publish and subscribe to
messages

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

65 > Document Version: 20220620

Similar to Redis, ApsaraDB for Redis provides publishing (pub) and subscript ion (sub) features. ApsaraDB
for Redis allows mult iple clients to subscribe to messages published by a client.

Scenario
Messages published by ApsaraDB for Redis are non-persistent. This means the message publisher is only
responsible for publishing a message and does not save previously sent messages, regardless of
whether these messages were received. Thus, messages are lost after being published. Message
subscribers can only receive messages after they have subscribed to the publisher. They will not receive
the earlier messages in the channel.

In addit ion, the message sender (publisher client) does not necessarily connect to a server exclusively.
While you are publishing messages, you can also perform other operations (for example, the List
operations) from the same client at the same t ime. However, the message receiver (subscriber client)
needs to connect to a server exclusively. That is, during the subscript ion period, the client cannot
perform any other operations. The operations are blocked while the client is wait ing for messages in the
channel. Therefore, message subscribers must use a dedicated server or a separate thread to receive
messages (see the following example).

Sample code
For the message sender (publisher client)

package message.kvstore.aliyun.com;
import redis.clients.jedis.Jedis;
public class KVStorePubClient {
 private Jedis jedis;
 public KVStorePubClient(String host,int port, String password){
 jedis = new Jedis(host,port);
 //The password of the ApsaraDB for Redis instance.
 String authString = jedis.auth(password);
 if (! authString.equals("OK"))
 {
 System.err.println("AUTH Failed: " + authString);
 return;
 }
 }
 public void pub(String channel,String message){
 System.out.println(" >>> PUBLISH > Channel:"+channel+" > message sent: "+message);
 jedis.publish(channel, message);
 }
 public void close(String channel){
 System.out.println(" >>> PUBLISH ends > Channel: "+channel+" > Message:quit");
 //The message publisher stops sending by sending a quit message.
 jedis.publish(channel, "quit");
 }
}

For the message receiver (subscriber client)

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 66

package message.kvstore.aliyun.com;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPubSub;
public class KVStoreSubClient extends Thread{
 private Jedis jedis;
 private String channel;
 private JedisPubSub listener;
 public KVStoreSubClient(String host,int port, String password){
 jedis = new Jedis(host,port);
 //The password of the ApsaraDB for Redis instance.
 String authString = jedis.auth(password);//password
 if (! authString.equals("OK"))
 {
 System.err.println("AUTH Failed: " + authString);
 return;
 }
 }
 public void setChannelAndListener(JedisPubSub listener,String channel){
 this.listener=listener;
 this.channel=channel;
 }
 private void subscribe(){
 if(listener==null || channel==null){
 System.err.println("Error:SubClient> listener or channel is null");
 }
 System.out.println(" >>> SUBSCRIBE > Channel:"+channel);
 System.out.println();
 //When the receiver is listening for subscribed messages, the process is blocked un
til the quit message is received (in a passive manner) or the subscription is actively canc
eled.
 jedis.subscribe(listener, channel);
 }
 public void unsubscribe(String channel){
 System.out.println(" >>> UNSUBSCRIBE > Channel:"+channel);
 System.out.println();
 listener.unsubscribe(channel);
 }
 @Override
 public void run() {
 try{
 System.out.println();
 System.out.println("---------SUBSCRIBE begins-------");
 subscribe();
 System.out.println("----------SUBSCRIBE ends-------");
 System.out.println();
 }catch(Exception e){
 e.printStackTrace();
 }
 }
}

For the message listener

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

67 > Document Version: 20220620

package message.kvstore.aliyun.com;
import redis.clients.jedis.JedisPubSub;
public class KVStoreMessageListener extends JedisPubSub{
 @Override
 public void onMessage(String channel, String message) {
 System.out.println(" <<< SUBSCRIBE< Channel: " + channel + ">Message received: " +
message);
 System.out.println();
 //When a quit message is received, the subscription is canceled (in a passive manne
r).
 if(message.equalsIgnoreCase("quit")){
 this.unsubscribe(channel);
 }
 }
 @Override
 public void onPMessage(String pattern, String channel, String message) {
 // TODO Auto-generated method stub
 }
 @Override
 public void onSubscribe(String channel, int subscribedChannels) {
 // TODO Auto-generated method stub
 }
 @Override
 public void onUnsubscribe(String channel, int subscribedChannels) {
 // TODO Auto-generated method stub
 }
 @Override
 public void onPUnsubscribe(String pattern, int subscribedChannels) {
 // TODO Auto-generated method stub
 }
 @Override
 public void onPSubscribe(String pattern, int subscribedChannels) {
 // TODO Auto-generated method stub
 }
}

Sample main code block

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 68

package message.kvstore.aliyun.com;
import java.util.UUID;
import redis.clients.jedis.JedisPubSub;
public class KVStorePubSubTest {
 //The connection information of ApsaraDB for Redis. This information can be obtained fr
om the console.
 static final String host = "xxxxxxxxxx.m.cnhza.kvstore.aliyuncs.com";
 static final int port = 6379;
 static final String password="password";//password
 public static void main(String[] args) throws Exception{
 KVStorePubClient pubClient = new KVStorePubClient(host, port,password);
 final String channel = "KVStore Channel-A";
 //The message sender starts sending messages, but no clients have subscribed to
the channel, so the messages will not be received.
 pubClient.pub(channel, "Alibaba Cloud message 1: (No subscribers. This message
will not be received)");
 //The message receiver.
 KVStoreSubClient subClient = new KVStoreSubClient(host, port,password);
 JedisPubSub listener = new KVStoreMessageListener();
 subClient.setChannelAndListener(listener, channel);
 //The message receiver subscribes.
 subClient.start();
 //The message sender continues sending messages.
 for (int i = 0; i < 5; i++) {
 String message=UUID.randomUUID().toString();
 pubClient.pub(channel, message);
 Thread.sleep(1000);
 }
 //The message receiver unsubscribes.
 subClient.unsubscribe(channel);
 Thread.sleep(1000);
 pubClient.pub(channel, "Alibaba Cloud message 2:(Subscription canceled. This me
ssage will not be received)");
 //The message publisher stops sending by sending a quit message.
 //When other message receivers receive quit in listener.onMessage(), the UNSUBS
CRIBE operation is performed.
 pubClient.close(channel);
 }
 }

Returned result
After you access the ApsaraDB for Redis instance with the correct address and password and run the
preceding Java code, the following output is displayed:

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

69 > Document Version: 20220620

 >>> PUBLISH > Channel:KVStore Channel-A > Sends the message Aliyun Message 1: (No subscri
bers. This message will not be received)
----------SUBSCRIBE starts-------
 >>> SUBSCRIBE > Channel: KVStore Channel-A
 >>> PUBLISH > Channel: KVStore Channel-A> sends message: 0f9c2cee-77c7-4498-89a0-1dc5a2f6
5889
 <<< SUBSCRIBE < Channel:KVStore Channel-A >receives message: 0f9c2cee-77c7-4498-89a0-1dc5
a2f65889
 >>> PUBLISH > Channel: KVStore Channel-A> sends message: ed5924a9-016b-469b-8203-7db63d06
f812
 <<< SUBSCRIBE < Channel:KVStore Channel-A >receives message: ed5924a9-016b-469b-8203-7db6
3d06f812
 >>> PUBLISH > Channel: KVStore Channel-A> sends message: f1f84e0f-8f35-4362-9567-25716b15
31cd
 <<< SUBSCRIBE < Channel:KVStore Channel-A >receives message: f1f84e0f-8f35-4362-9567-2571
6b1531cd
 >>> PUBLISH > Channel: KVStore Channel-A> sends message: 746bde54-af8f-44d7-8a49-37d1a245
d21b
 <<< SUBSCRIBE< Channel:KVStore Channel-A >receives message: 746bde54-af8f-44d7-8a49-37d1a
245d21b
 >>> PUBLISH > Channel: KVStore Channel-A> sends message: 8ac3b2b8-9906-4f61-8cad-84fc1f15
a3ef
 <<< SUBSCRIBE < Channel:KVStore Channel-A >receives message: 8ac3b2b8-9906-4f61-8cad-84fc
1f15a3ef
 >>> UNSUBSCRIBE > Channel: KVStore Channel-A
----------SUBSCRIBE ends-------
 >>> PUBLISH > Channel:KVStore Channel-A > sends the message Aliyun Message 2: (The subscr
iption has been canceled, so the message will not be received)
 >>> PUBLISH ends> Channel:KVStore Channel-A > Message:quit

The preceding example demonstrates a situation where only one publisher and one subscriber are
involved. There can be mult iple publishers, subscribers, and even mult iple message channels. In such
scenarios, you are required to change the code to fit the scenario.

ApsaraDB for Redis provides the pipeline feature similar to that of Redis.

Scenario
A client interacts with a server through one-way pipelines. One pipeline is used to send requests and
the other is used to receive responses. You can send operation requests consecutively from the client
to the server. However, during this period, the server does not send the response to each operation
request. The client receives the response to each request from the server after it sends a quit message
to the server.

Pipelines are useful, for example, when several operation commands need to be quickly submitted to
the server but the responses and operation results are not required immediately. In this case, pipelines
are used as a batch processing tool to optimize the performance. The performance is enhanced
because the overhead of the TCP connection is reduced.

5.5. Pipeline

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 70

However, the client that uses pipelines in the app connects to the server exclusively, and non-pipeline
operations are blocked until the pipelines are closed. If you need to perform other operations at the
same t ime, you can establish a dedicated connection for pipeline operations to separate them from
conventional operations.

Sample code 1
Performance comparison

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

71 > Document Version: 20220620

package pipeline.kvstore.aliyun.com;
import java.util.Date;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.Pipeline;
public class RedisPipelinePerformanceTest {
 static final String host = "xxxxxx.m.cnhza.kvstore.aliyuncs.com";
 static final int port = 6379;
 static final String password = "password";
 public static void main(String[] args) {
 Jedis jedis = new Jedis(host, port);
 //The password of the ApsaraDB for Redis instance.
 String authString = jedis.auth(password);// password
 if (! authString.equals("OK")) {
 System.err.println("AUTH Failed: " + authString);
 jedis.close();
 return;
 }
 //Runs several commands consecutively.
 final int COUNT=5000;
 String key = "KVStore-Tanghan";
 //1 ---Without using pipeline operations---
 jedis.del(key);//Initializes the key.
 Date ts1 = new Date();
 for (int i = 0; i < COUNT; i++) {
 //Sends a request and receives a response.
 jedis.incr(key);
 }
 Date ts2 = new Date();
 System.out.println("Without Pipeline > value is: "+jedis.get(key)+" > Time
elapsed: " + (ts2.getTime() - ts1.getTime())+ "ms");
 //2 ----Using pipeline operations---
 jedis.del(key);//Initializes the key.
 Pipeline p1 = jedis.pipelined();
 Date ts3 = new Date();
 for (int i = 0; i < COUNT; i++) {
 //Sends the request.
 p1.incr(key);
 }
 //Receives the response.
 p1.sync();
 Date ts4 = new Date();
 System.out.println("Using Pipeline > value is:"+jedis.get(key)+" > Time ela
psed:" + (ts4.getTime() - ts3.getTime())+ "ms");
 jedis.close();
 }
 }

Output 1
After you access the ApsaraDB for Redis instance with the correct address and password and run the
preceding Java code, the following output is displayed: The output shows that the performance is
enhanced with pipelines.

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 72

Without pipelines > value: 5,000 > Time elapsed: 5,844 ms
With pipelines > value: 5000 > Time elapsed: 78 ms

Sample code 2
With pipelines defined in Jedis, responses are processed in two methods, as shown in the following
sample code:

package pipeline.kvstore.aliyun.com;
import java.util.List;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.Pipeline;
import redis.clients.jedis.Response;
 public class PipelineClientTest {
 static final String host = "xxxxxxxx.m.cnhza.kvstore.aliyuncs.com";
 static final int port = 6379;
 static final String password = "password";
 public static void main(String[] args) {
 Jedis jedis = new Jedis(host, port);
 //The password of the ApsaraDB for Redis instance.
 String authString = jedis.auth(password);// password
 if (! authString.equals("OK")) {
 System.err.println("AUTH Failed: " + authString);
 jedis.close();
 return;
 }
 String key = "KVStore-Test1";
 jedis.del(key);//Initializes the key.
 //-------- Method 1
 Pipeline p1 = jedis.pipelined();
 System.out.println("-----Method 1-----");
 for (int i = 0; i < 5; i++) {
 p1.incr(key);
 System.out.println("Pipeline sends requests");
 }
 //After pipeline sends all requests, the client starts receiving responses.
 System.out.println("Sending requests completed. Start to receive responses"
);
 List<Object> responses = p1.syncAndReturnAll();
 if (responses == null || responses.isEmpty()) {
 jedis.close();
 throw new RuntimeException("Pipeline error: no responses received");
 }
 for (Object resp : responses) {
 System.out.println("Pipeline receives response: " + resp.toString());
 }
 System.out.println();
 //-------- Method 2
 System.out.println("-----Method 2-----");
 jedis.del(key);//Initializes the key.
 Pipeline p2 = jedis.pipelined();
 //Declare the responses first.
 Response<Long> r1 = p2.incr(key);
 System.out.println("Pipeline sends requests");

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

73 > Document Version: 20220620

 System.out.println("Pipeline sends requests");
 Response<Long> r2 = p2.incr(key);
 System.out.println("Pipeline sends requests");
 Response<Long> r3 = p2.incr(key);
 System.out.println("Pipeline sends requests");
 Response<Long> r4 = p2.incr(key);
 System.out.println("Pipeline sends requests");
 Response<Long> r5 = p2.incr(key);
 System.out.println("Pipeline sends requests");
 try{
 r1.get(); //Errors occur because the client has not started receiving r
esponses.
 }catch(Exception e){
 System.out.println(" <<< Pipeline error: the client has not started rec
eiving responses >>> ");
 }
 //After pipeline sends all requests, the client starts receiving responses.
 System.out.println("Sending requests completed. Start to receive responses"
);
 p2.sync();
 System.out.println("Pipeline receives response: " + r1.get());
 System. out. println ("Pipeline receives response: " + r2.get ());
 System. out. println ("Pipeline receives response: " + r3.get ());
 System. out. println ("Pipeline receives response: " + r4.get ());
 System. out. println ("Pipeline receives response: " + r5.get ());
 jedis.close();
 }
 }

Output 2
After you access the ApsaraDB for Redis instance with the correct address and password and run the
Java code, the following output is displayed:

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 74

----- Method 1 -----
Pipeline sends requests
Pipeline sends requests
Pipeline sends requests
Pipeline sends requests
Pipeline sends requests
After pipeline sends all requests, the client starts receiving responses.
Pipeline receives response: 1
Pipeline receives response: 2
Pipeline receives response: 3
Pipeline receives response: 4
Pipeline receives response: 5
----- Method 2 -----
Pipeline sends requests
Pipeline sends requests
Pipeline sends requests
Pipeline sends requests
Pipeline sends requests
 <Pipeline error: The client has not started receiving responses>
After pipeline sends all requests, the client starts receiving responses.
Pipeline receives response: 1
Pipeline receives response: 2
Pipeline receives response: 3
Pipeline receives response: 4
Pipeline receives response: 5

ApsaraDB for Redis supports the transaction mechanism defined in Redis.

Scenario
You can run MULT I , EXEC, DISCARD, WAT CH , and UNWAT CH commands to perform atomic operations
in transactions.

Not e The definit ion of transaction in Redis is different from that in relat ional databases. If an
operation fails or the transaction is canceled by the DISCARD command, Redis does not perform
transaction rollbacks.

Sample code 1: Two clients process different keys

package transcation.kvstore.aliyun.com;
import java.util.List;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.Transaction;
public class KVStoreTranscationTest {
 static final String host = "xxxxxx.m.cnhza.kvstore.aliyuncs.com";
 static final int port = 6379;
 static final String password = "password";
 //**Note that these two keys have different content.
 static String client1_key = "KVStore-Transcation-1";
 static String client2_key = "KVStore-Transcation-2";
 public static void main(String[] args) {

5.6. Process transactions

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

75 > Document Version: 20220620

http://redis.io/topics/transactions

 public static void main(String[] args) {
 Jedis jedis = new Jedis(host, port);
 //The password of the ApsaraDB for Redis instance.
 String authString = jedis.auth(password);//password
 if (! authString.equals("OK")) {
 System.err.println("authentication failed: " + authString);
 jedis.close();
 return;
 }
 jedis.set(client1_key, "0");
 //Starts another thread to simulate the other client.
 new KVStoreTranscationTest().new OtherKVStoreClient().start();
 Thread.sleep(500);
 Transaction tx = jedis.multi();//Starts the transaction.
 //The following operations are submitted to the server as atomic operations.
 tx.incr(client1_key);
 tx.incr(client1_key);
 Thread.sleep(400);//The suspension of the thread does not affect the subsequent ope
rations in a transaction. Other thread operations cannot be performed.
 tx.incr(client1_key);
 Thread.sleep(300);//The suspension of the thread does not affect the subsequent ope
rations in a transaction. Other thread operations cannot be performed.
 tx.incr(client1_key);
 Thread.sleep(200);//The suspension of the thread does not affect the subsequent ope
rations in a transaction. Other thread operations cannot be performed.
 tx.incr(client1_key);
 List<Object> result = tx.exec();//Performs the operations.
 //Parses and prints the results.
 for(Object rt : result){
 System.out.println("Client 1 > transaction in progress> "+rt.toString());
 }
 jedis.close();
 }
 class OtherKVStoreClient extends Thread{
 @Override
 public void run() {
 Jedis jedis = new Jedis(host, port);
 //The password of the ApsaraDB for Redis instance.
 String authString = jedis.auth(password);// password
 if (! authString.equals("OK")) {
 System.err.println("AUTH Failed: " + authString);
 jedis.close();
 return;
 }
 jedis.set(client2_key, "100");
 for (int i = 0; i < 10; i++) {
 try {
 Thread.sleep(300);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.println("Client 2 > "+jedis.incr(client2_key));
 }
 jedis.close();
 }

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 76

 }
 }
}

Output 1
After you access the ApsaraDB for Redis instance with the correct address and password and run the
preceding Java code, the following output is displayed: Here, we can see that client 1 and client 2 are in
different threads. The transaction operations submitted by client 1 are sequentially implemented.
Client 2 sends requests to perform an operation on another key during this period, but the operation is
blocked. Client 2 must wait until all the transaction operations of client 1 are complete.

Client 2 > 101
Client 2 > 102
Client 2 > 103
Client 2 > 104
Client 1> transaction in progress> 1
Client 1> transaction in progress> 2
Client 1> transaction in progress> 3
Client 1> transaction in progress> 4
Client 1> transaction in progress> 5
Client 2 > 105
Client 2 > 106
Client 2 > 107
Client 2 > 108
Client 2 > 109
Client 2 > 110

Sample code 2: Two clients process the same key
By modifying the preceding code, the two clients can process the same key. The other parts of the
code remain unchanged.

//**Note that the content of these two keys is now the same.
 static String client1_key = "KVStore-Transcation-1";
 static String client2_key = "KVStore-Transcation-1";

Output 2
After the modified Java code is executed, the following output is displayed: The two clients are in
different threads but process the same key. However, while client 1 uses the transaction mechanism to
process this key, client 2 is blocked and must wait until all the transaction operations of client 1 are
completed.

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

77 > Document Version: 20220620

Client 2 > 101
Client 2 > 102
Client 2 > 103
Client 2 > 104
Client 1> transaction in progress> 105
Client 1> transaction in progress> 106
Client 1> transaction in progress> 107
Client 1> transaction in progress> 108
Client 1> transaction in progress> 109
Client 2 > 110
Client 2 > 111
Client 2 > 112
Client 2 > 113
Client 2 > 114
Client 2 > 115

Keys that are frequently accessed in Redis are known as hotkeys. If hotkeys are improperly managed,
Redis processes may be blocked and your service may be interrupted. This topic describes the solut ions
that use ApsaraDB for Redis to resolve the hotkey issue.

Overview
Causes

The hotkey issue can have the following two causes:

The size of data consumed by users is much greater than that of produced data, as in the cases of
hot sale items, hot news, hot comments, and celebrity live streaming.

The hotkey issue tends to occur unexpectedly, for example, the sales price promotion of popular
commodit ies during Double 11. When one of these commodit ies is browsed or purchased tens of
thousands of t imes, a large number of requests are processed, which causes the hotkey issue.
Similarly, the hotkey issue tends to occur in scenarios where more read requests are processed than
write requests. For example, hot news, hot comments, and celebrity live streaming.

In these cases, hotkeys are accessed much more frequently than other keys. Therefore, most of the
user traffic is centralized to a specific Redis instance, and the Redis instance may reach a
performance bott leneck.

When a piece of data is accessed on the server, the data is part it ioning. During this process, the
corresponding key is accessed on the server. When the load exceeds the performance threshold of
the server, the hotkey issue occurs.

Impacts of the hotkey issue
The traffic is aggregated and reaches the upper limit of the physical network adapter.

Excessive requests queue up, and the part it ioning service stops responding.

The database is overloaded and the service is interrupted.

5.7. Discover and resolve the hotkey
issue

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 78

When the number of hotkey requests on a server exceeds the upper limit of the network adapter on the
server, the server stops providing other services due to the concentrated traffic. If hotkeys are densely
distributed, a large number of hotkeys are cached. When the cache capacity is exhausted, the
part it ioning service stops responding. After the caching service stops responding, the newly generated
requests are cached on the backend database. Due to its poor performance, this database is prone to
exhaustion when the database handles a large number of requests. The exhaustion of the database
leads to service interruption and a dramatic downgrading of the performance.

Common solutions
Rebuild the server or client to improve the performance.

Use a server cache

The client sends requests to the server. The server provides a mult i-thread service, and a cache space is
available based on the cache LRU policy. When the server is congested, it directly responds to the
requests instead of forwarding them to the database. The server sends the requests from the client to
the database and rewrite the data to the cache only after the congestion is cleared. By using this
solut ion, the cache is accessed and rebuilt .

However, this solut ion has the following issues:

Cache building of the mult i-thread service when the cache fails

Cache building when the cache is missing

Dirty reading

Use Memcache and Redis

In this solut ion, a separate cache is deployed on the client to resolve the hotkey issue. The client first
accesses the service layer and then the cache layer of the same server. This solut ion has the following
advantages: nearby access, high speed, and no bandwidth limit . However, it has the following
disadvantages:

Wasted memory resources

Dirty reading

Use a local cache

Using the local cache generates the following issues:

hotkeys must be detected in advance.

The cache capacity is limited.

The inconsistency duration is long.

The omission of hotkeys.

If tradit ional hotkey solut ions are all defect ive, how can the hotkey issue be resolved?

ApsaraDB for Redis provides the solution to the hotkey issue
Read/write split t ing solut ion

The nodes in the architecture serve the following purposes:

Load balancing is implemented at the Server Load Balancer (SLB) layer.

Read/write split t ing and automatic routing are implemented at the proxy layer.

Write requests are processed by the master node.

Read requests are processed by the read replica nodes.

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

79 > Document Version: 20220620

High availability (HA) is implemented on the replica node and the master node.

In pract ice, the client sends requests to SLB, and SLB distributes these requests to mult iple proxies. The
proxies identify, classify, and then distribute requests. For example, a proxy node sends all write
requests to the master node and all read requests to the read replica nodes. But the read replica nodes
in the module can be expanded to solve the hotkey reading issue. Read/write split t ing supports flexible
scaling for hotkey reading and can store a large number of hotkeys. It is client-friendly.

Hot data solut ion

In this solut ion, hotkeys are act ively discovered and stored to resolve the hotkey issue. The client
accesses an SLB instance and requests are distributed to a proxy node through the SLB instance. Then,
the proxy node forwards the requests to the backend Redis instances.

A cache is added to the server. A local cache is added to each proxy node. This cache uses the LRU
algorithm to cache hot data. A hotkey computing module is added to the backend data node to return
the hot data.

The proxy architecture has the following benefits:

The proxy nodes cache the hot data, and its reading capability can be scaled out.

The database node computes the hot data set at a specified t ime.

The database returns the hot data to the proxy nodes.

The proxy architecture is transparent to the client, therefore, no compatibility is required.

Process hotkeys

Read hot data

The processing of hotkeys is divided into two jobs: writ ing and reading. During the data writ ing process,
SLB receives data K1 and writes it to a Redis database through a proxy node. If K1 becomes a hotkey
after the calculat ion conducted by the backend hotkey computing module, the proxy node caches the
hotkey. In this way, the client can directly access K1 without using Redis. The proxy node can be scaled
out. Therefore, the accessibility of the hot data can be enhanced.

Discover hot data

The database first counts the requests that occur in a specified cycle. When the number of requests
reaches a threshold, the database detects the hotkeys and stores them in an LRU list . When a client
attempts to access data by sending a request to proxy nodes, Redis enters the feedback phase and
marks the data if it f inds that the dest ination is a hotkey.

The database uses the following methods to compute the hot data:

Hot data stat ist ics based on stat ist ical thresholds

Hot data stat ist ics based on stat ist ical cycles

Statist ics collect ion method based on the version number without resett ing the init ial value

Computing hotkeys on the database has a minor impact on the performance and occupies only a
small amount of memory.

Comparison of two solutions
The preceding analysis shows that compared with the tradit ional solut ions, Alibaba Cloud has made
significant improvements in resolving the hotkey issue. The read/write split t ing solut ion and the hot
data solut ion can be extended. These two solut ions are transparent to the client, though they cannot
ensure complete data consistency. The read/write split t ing solut ion supports storing a larger amount
of hot data, while the proxy-based solut ion is more cost-effect ive.

5.8. ApsaraDB for Redis supports

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 80

ApsaraDB for Redis works as an important support for processing surging e-commerce promotions and
orders during Double 11 Shopping Fest ival.

Background
ApsaraDB for Redis provides mult iple edit ions as follows: standard single-replica edit ion, standard dual-
replica edit ion, and cluster edit ion.

The standard single-replica edit ion and standard dual-replica edit ion feature high compatibility and
support Lua script ing and geographical location-based computing. The cluster edit ion provides large
capacit ies and high performance, and solves the issues caused by single-server performance limits due
to Redis single-thread model.

ApsaraDB for Redis works in a two-node hot standby structure by default and supports backup and
recovery. Also, the Redis source code team of Alibaba Cloud constantly optimizes and upgrades the
ApsaraDB for Redis service, and provides powerful security protect ions. This topic simplifies some
scenarios of Double 11 Shopping Fest ival and describes the features of ApsaraDB for Redis. Actual
scenarios are more complex.

Store social relations for hundreds of millions of users in Weitao
community
Weitao community carries social relat ions for hundreds of millions of Taobao users. Taobao users can
specify a list of followers and merchants can maintain the data of regular customers or followers. The
following figure shows the overall social relat ions.

5.8. ApsaraDB for Redis supports
Double 11 Shopping Festival

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

81 > Document Version: 20220620

To express these social relat ions, a tradit ional relat ional database model requires complex business
design and results in poor user experience. A cluster instance of ApsaraDB for Redis caches followers
chains of Weitao community. This simplifies the storage of followers data, and ensures excellent user
experience during Double 11 Shopping Fest ival. Hash tables store followers data of Weitao community.
The following figure shows the storage structure. You can call required API operations to query the
following data:

Whether Users A and B are followers of each other

List of items User A is following

Paginate comments to live videos in Tmall based on a cursor
When mobile users view live videos during Double 11 Shopping Fest ival, they can obtain more comments
to the live videos in three ways:

Pull down for incremental comments: obtain a specified number of incremental comments from the
specified posit ion up.

Pull-down refresh: obtain a specified number of the latest comments.

Pull up for incremental comments: obtain a specified number of incremental comments from the
specified posit ion down.

The mobile live video streaming system uses ApsaraDB for Redis to optimize the business scenario. This
ensures the success rate of comments to live videos and supports more than 50,000 transactions per
second (TPS) and response t ime in milliseconds. The live video streaming system writes two types of
data for each live video, including indexes and comments. The system writes indexes in sorted sets to
sort comments, and stores the comments in hash tables. You can obtain an index ID from the indexes
and retrieve a list of comments by reading the hash tables. The following figure shows the process of
writ ing comments.

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 82

After a user refreshes the list , the background retrieves the corresponding comments. This process is as
follows:

1. Obtain the current index ID.

2. Retrieve the index list .

3. Obtain the comments.

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

83 > Document Version: 20220620

Sort orders in Cainiao order fulfillment center
After a user buys a commodity during Double 11 Shopping Fest ival, Cainiao warehouse and distribution
system generates and processes a corresponding logist ics order. The decision-making system generates
an order fulfillment plan based on the order data. Therefore, the warehouse and distribution system
can provide intelligent and collaborative services across each stage. The plan specifies the t ime for
issuing the order to the warehouse, the t ime for outbound delivery, the t ime for item collect ion, and
the t ime for delivering the item. The order fulfillment center provides the logist ics service according to
the order fulfillment plan. Due to the limited capacit ies of warehouses and distribution, the system
processes the earliest orders in priority. Therefore, ApsaraDB for Redis sorts the orders by priority before
the order fulfillment center issues them to the warehouse or for delivery.

The order fulfillment center uses ApsaraDB for Redis to sort logist ics orders and determine the priorit ies
of these orders.

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 84

The flash sales strategy is commonly used for promotional events and brand marketing in the e-
commerce industry. This strategy can help you increase the number of unique visitors and customer
loyalty to your platform. An excellent business system can improve the stability of your platform and
ensure the fairness of flash sales. This improves user experience and the reputation of your platform
and maximizes the benefits of flash sales. This topic describes how to use the caching feature of
ApsaraDB for Redis to build a highly concurrent business system for handling flash sales.

Characteristics of flash sales
A flash sales act ivity is used to sell scarce or special commodit ies for specified quantit ies in a limited
period of t ime. This attracts a large number of buyers. However, only a few buyers can place orders
during the promotional event. A flash sales act ivity increases the number of unique visitors and order
requests by dozens or hundreds of t imes that in regular sales act ivit ies on your platform within a short
period of t ime.

A flash sales act ivity is divided into three phases:

Before the promotional event: Buyers continuously refresh the commodity details page. As a result ,
the number of requests for this page spikes.

During the promotional event: Buyers place orders. The number of order requests reaches a peak.

After the promotional event: Specific buyers that have placed orders continue to query the status of
orders or cancel orders. Most buyers continue to refresh the commodity details page and wait for
opportunit ies to place orders after other buyers cancel their orders.

In most cases, a database uses row-level locking to handle requests submitted by buyers. The database
allows only the requests that hold the lock to query inventory data and place orders. However, in these
cases, the database cannot handle high concurrency. This may cause services to be blocked by a large
number of requests and cause the server to stop responding to the buyers.

Business system for handling flash sales

5.9. Use ApsaraDB for Redis to build a
business system that can handle flash
sales

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

85 > Document Version: 20220620

During a flash sales act ivity, the business system may receive a large amount of user traffic. However,
only a few of the requests are valid. You can identify and block invalid requests in each phase in
advance by using the hierarchy of the system architecture.

Use the browser cache and Content Delivery Network (CDN) to process user traffic that requests stat ic
content

Before a flash sales act ivity, buyers continue to refresh the commodity details page. As a result , the
number of requests for this page spikes. To resolve this issue, you must present details of commodit ies
for flash sales and details of regular commodit ies on different web pages. Use stat ic elements to
present details of commodit ies for flash sales. Stat ic data is cached in the browser and on CDN nodes,
except for the place-order feature that requires interact ion between the browser and server. This way,
only a small fract ion of the traffic that is caused by page refreshes before the promotion is redirected
to the server.

Use a read/write split t ing instance of ApsaraDB for Redis to cache content and block invalid requests

CDN is used to filter and block user traffic in Phase 1. In Phase 2, you can use a read/write split t ing
instance of ApsaraDB for Redis to block invalid requests. In Phase 2, the business system retrieves data.
The read/write split t ing instance can handle more than 600,000 queries per second (QPS), which can
meet the business demands.

Use the data control module to cache the data of commodit ies for flash sales to the read/write
split t ing instance, and specify the tag that indicates whether the flash sales act ivity begins:

"goodsId_count": 100 // The total number of commodities.
"goodsId_start": 0 // The tag that indicates whether the flash sales activity begins.
"goodsId_access": 0 // The number of order requests that are accepted.

1. Before the flash sales act ivity begins, the value of the goodsId_start parameter retrieved by the
server cluster is 0. A value of 0 indicates that the flash sales act ivity has not begun.

2. After the data control module changes the value of the goodsId_start parameter to 1, the flash
sales act ivity begins.

3. Then, the server cluster caches the goodsId_start tag and accepts order requests. The cluster
updates the number of accepted order requests in goodsId_access. The number of remaining
commodit ies is calculated in the following method: goodsId_count - goodsId_access.

4. After the number of placed orders reaches the value of goodsId_count, the business system blocks
subsequent order requests. The number of remaining commodit ies is set to 0.

As a result , the business system accepts only a small fract ion of the order requests. For high
concurrency scenarios, a large amount of traffic is directed to the system. In this case, you can control
the percentage of order requests that the system accepts.

Use a master-replica instance of ApsaraDB for Redis to cache inventory data and speed up the removal
of the item from the inventory

After the business system receives an order request, the system checks the order information and
removes the item from the inventory. To prevent retrieving data directly from the backend database,
you can use a master-replica instance of ApsaraDB for Redis to remove the item from the inventory. The
master-replica instance supports more than 100,000 QPS. ApsaraDB for Redis can help you optimize
inventory queries, block invalid order requests, and increase the overall throughput of the business
system to handle flash sales.

You can use the data control module to cache the inventory data to the ApsaraDB for Redis instance in
advance. The instance stores the commodity data for promotion in a hash table.

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 86

"goodsId" : {
 "Total": 100
 "Booked": 0
}

Not e The goodsId f ield indicates the commodity ID. The Total f ield indicates the
number of the commodit ies in the inventory. The Booked f ield indicates the number of ordered
commodit ies.

To remove the item from the inventory, the flash sales promotion server runs the following Lua script
and connects to the ApsaraDB for Redis instance to obtain the order permission. The Lua script ensures
the atomicity of mult iple commands based on the Redis single-thread model.

local n = tonumber(ARGV[1])
if not n or n == 0 then
 return 0
end
local vals = redis.call("HMGET", KEYS[1], "Total", "Booked");
local total = tonumber(vals[1])
local blocked = tonumber(vals[2])
if not total or not blocked then
 return 0
end
if blocked + n <= total then
 redis.call("HINCRBY", KEYS[1], "Booked", n)
 return n;
end
return 0

Run the SCRIPT LOAD command to cache the Lua script to the ApsaraDB for Redis instance in
advance. Then, run the EVALSHA command to execute the script. This method requires less network
bandwidth than directly running the EVAL command.

1. Cache the Lua script to the ApsaraDB for Redis instance.

SCRIPT LOAD "lua code"

The following result is returned:

"438dd755f3fe0d32771753eb57f075b18fed7716"

2. Run the Lua script.

EVALSHA 438dd755f3fe0d32771753eb57f075b18fed7716 1 goodsId 1

The following result is returned. The result indicates that an item is removed from the inventory.

(integer) 1

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

87 > Document Version: 20220620

Not e In this case, if you run the HGET goodsId Booked command, the return value is
"1" . The return value indicates that a commodity is ordered.

If the ApsaraDB for Redis instance returns the value n as the number of commodit ies that buyers
ordered, the items are successfully removed from the inventory.

Use a master-replica instance of ApsaraDB for Redis to asynchronously write order data to the
database based on message queues

After the items are removed from the inventory, the flash sales business system writes order data to
the database. The system can directly perform operations in the database for a few commodit ies. If
the number of commodit ies for promotion is more than 10,000 or 100,000, lock conflicts may occur and
can cause performance bott lenecks in the database. Therefore, to prevent directly writ ing data to the
database, the flash sales system writes order data to message queues. Orders that are writ ten to
message queues are considered successfully placed orders.

1. The ApsaraDB for Redis instance provides message queues in a list structure.

 orderList {
 [0] = {Order content}
 [1] = {Order content}
 [2] = {Order content}
 ...
 }

2. The flash sales business system writes order content to the ApsaraDB for Redis instance.

LPUSH orderList {Order content}

3. The asynchronous order module sequentially retrieves order data from the ApsaraDB for Redis
instance and writes order data to the database.

 BRPOP orderList 0

The ApsaraDB for Redis instance provides message queues and asynchronously writes order data to the
database to speed up the order process.

Use the data control module to manage the synchronization of promotion data

At the start of the promotion, the flash sales business system uses the read/write split t ing instance of
ApsaraDB for Redis to block invalid traffic and allows a fract ion of valid traffic to continue the order
process. After the promotion, the flash sales business system must process more traffic caused by
order authentication failures and refund requests. Therefore, the data control module regularly
computes data in the database, and synchronizes the data to the master-replica instance and then to
the read/write split t ing instance.

ApsaraDB for Redis read/write split t ing instances support mult iple read replicas, providing high-
performance service for more-reading and less-writ ing scenarios.

Background

5.10. Read/write splitting in Redis

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 88

In ApsaraDB for Redis, whether in the master-replica edit ion or the cluster edit ion, replica serves as a
standby database and does not provide external services. When high availability is enabled and the
primary master fails, the replica can be promoted to the master to take over read and write operations.
In this architecture, read and write requests are completed on the master node with high consistency,
but the performance is limited by the number of master nodes. Often, even when the user data is small,
the cluster specificat ion st ill needs to be updated because the traffic and the concurrency is too high.

In business scenarios where there are more reads than writes, ApsaraDB for Redis provides a read/write
split t ing specificat ion that is transparent, flexible, highly available, and high-performance. This
specificat ion helps users minimize the cost.

Archietecture
Redis cluster mode has several roles, including redis-proxy, Master, replica, and HA. In a read/write
split t ing instance, the read-only replica role is added to take over the read traffic. The replica serves as
a hot standby and does not provide services. This architecture remains compatible with exist ing cluster
specificat ions. The proxy forwards the read and write requests to the master node or a read-only
replica accordingly by weight. The highly available (HA) cluster is responsible for monitoring the health
status of nodes. When an exception occurs, the replica will take over or the read-only replica will be
rebuilt to perform crit ical operations, and the route will be updated.

Typically, according to the data synchronization methods of master nodes and read-only replicas,
there are two replicat ion types: star replicat ion and cascading replicat ion.

Star replicat ion

In the star replicat ion, data volumes are replicated on mult iple nodes in parallel. Since the master node
is connected to all other read-only replica nodes, there is no need to failover a replica node in the
event of a failure thus reducing the duration of recovery.

Redis uses a single-thread and single-process model. The data replicat ion between the master node
and the replica node is processed in the main thread. The CPU utilizat ion on the master node due to
data synchronization increases with the number of read-only replicas. Therefore, the write performance
of the cluster is diminished by the increasing number of read-only replica nodes. In the star replicat ion,
the outbound bandwidth of the master node also increases with the number of read-only replicas. The
tradeoffs between these two replicat ion types is one of latency and throughput. Due to the high CPU
utilizat ion on the master node and the heavy network load, the low-latency star replicat ion delivers
lower throughput than the cascading replicat ion. The performance of the entire cluster is limited by the
master node.

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

89 > Document Version: 20220620

Cascading replicat ion

All read-only replica nodes are replicated sequentially on intermediate and tail nodes, as shown in the
following figure. The master node only needs to synchronize the data to the replica node and the first
read-only replica on the replicat ion chain.

Cascading replicat ion solves the extension problem of star replicat ion. In theory, the number of read-
only replicas can increase infinitely, and the performance of the entire cluster will increase accordingly.

In a chain replicat ion, the longer the replicat ion chain, the greater the delay between the original
master node and the read-only replica at the end of the chain.This shortcoming is usually acceptable,
since that the read/write split t ing is mainly used in scenarios that have low requirements on
consistency. However, if a node in the replicat ion chain fails, all data on the downstream nodes will be
delayed significantly. What's worse, this may lead to a full synchronization that is passed to the end of
the replicat ion chain, and reduce the service performance. To solve this problem, the Redis read/write
split t ing uses an optimized binlog replicat ion provided by Alibaba Cloud to minimize the probability of
full synchronization.

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 90

In light of the preceding discussions and comparisons, Redis chooses a cascading replicat ion
architecture for read/write split t ing.

Advantages of Redis read/write splitt ing
Transparent and compatible

Redis read/write split t ing uses redis_proxy to forward requests. There are certain restrict ions on the use
of mult i-sharding commands. This feature is fully compatible with the upgrade from the master-replica
edit ion to the single-sharding read/write split t ing, and the upgrade from the cluster specificat ion to
the mult i-sharding read/write split t ing.

The user establishes a connection with redis-proxy, a Redis proxy that supports read/write split t ing.
The proxy recognizes whether the request sent by the client is read or write, and then performs load
balancing according to the weight. The proxy forwards write requests to the master and read requests
to the read-only replica. The master also supports read requests by default , which can be controlled by
weight.

You can purchase instances of read/write split t ing specificat ions and use them directly with any client,
with no modificat ion to the business. You can enjoy an improved service performance almost at no cost.

Highly available

The high availability module (HA) monitors the health of all nodes to ensure instance availability. If the
master node fails, the HA module redirects the requests to a new master node. If a read-only replica
fails, the HA module can detect it promptly, create a new read-only replica, and turn the failed node
offline.

In addit ion to the HA module, redis-proxy can also detect the state of each read-only replica in real
t ime. During a read-only replica failure, redis_proxy automatically reduces the weight of this node. If a
read-only replica fails mult iple t imes, redis-proxy will temporarily block this node. After the node
recovers, its weight will be resumed to a normal level.

HA and redis_proxy work together to minimize the business awareness of backend exceptions and
improve service availability.

High performance

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

91 > Document Version: 20220620

In business scenarios where there are more reads than writes, using the cluster edit ion directly is not the
best solut ion. The read/write split t ing provides more options, and you can choose the best
specificat ion based on the business scenario to make full use of the read-only replicas.

Mult iple specificat ions are available: 1 master + 1 read-only replica, 1 master + 3 read-only replicas, and
1 master + 5 read-only replicas. You can submit a t icket if you need a different specificat ion. This service
provides 0.6 million QPS and 192 MB/s service capability. This service breaks the resource limit of a single
machine since it is fully compatible with all commands. In the following versions, there will be no
specificat ion limit , and users can increase or decrease the number of read-only replicas based on the
business traffic.

Specification QPS Bandwidth

1 master
80 to 100 thousand reads and
writes

10 to 48 MB

1 master + 1 read-only replica
0.1 million writes + 0.1 million
reads

20 to 64 MB

1 master + 3 read-only replicas
0.1 million writes + 0.3 million
reads

40 to 128 MB

1 master + 5 read-only replicas
0.1 million writes + 0.5 million
reads

60 to 192 MB

Concluding remarks

The asynchronous replicat ion of the Redis master-replica edit ion may read old data from the read-only
replica, so read/write split t ing feature requires the business to tolerate a certain degree of data
inconsistency. The following edit ions will grant users more flexibility in parameter configurations, such
as the allowed maximum delay t ime.

You can set JedisPool parameters to proper values to improve Redis performance. This topic describes
how to use JedisPool and configure the resource pool parameters. This topic also describes the
recommended sett ings to optimize JedisPool.

Use JedisPool
Jedis 2.9.0 is used in this example. The following sample code shows the Maven dependency:

<dependency>
 <groupId>redis.clients</groupId>
 <artifactId>jedis</artifactId>
 <version>2.9.0</version>
 <scope>compile</scope>
</dependency>

Jedis manages the resource pool by using Apache Commons-pool2. When you define JedisPool, we
recommend that you pay attention to the GenericObjectPoolConfig parameter of the resource pool.
The following sample code shows how to use this parameter.

5.11. JedisPool optimization

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 92

GenericObjectPoolConfig jedisPoolConfig = new GenericObjectPoolConfig();
jedisPoolConfig.setMaxTotal(...);
jedisPoolConfig.setMaxIdle(...);
jedisPoolConfig.setMinIdle(...);
jedisPoolConfig.setMaxWaitMillis(...);
...

The following example shows how to init ialize JedisPool:

//redisHost specifies the IP address of the instance. redisPort specifies the port of the i
nstance. redisPassword specifies the password of the instance. The timeout parameter specif
ies the connection timeout and the read/write timeout.
JedisPool jedisPool = new JedisPool(jedisPoolConfig, redisHost, redisPort, timeout, redisPa
ssword//);
//Run the following command:
Jedis jedis = null;
try {
 jedis = jedisPool.getResource();
 //Specific commands
 jedis.executeCommand()
} catch (Exception e) {
 logger.error(e.getMessage(), e);
} finally {
 //In JedisPool mode, the Jedis resource is returned to the resource pool.
 if (jedis != null)
 jedis.close();
}

Parameters
The Jedis connection is a resource managed by JedisPool in the connection pool. JedisPool is a thread-
safe pool of connections. It allows you to keep all resources within a manageable range. If you set the
GenericObjectPoolConfig parameter to a proper value, you can improve the performance of Redis and
reduce resource consumption. The following two tables describe important parameters and provide
the recommended sett ings.

Parameters related to resource sett ings and resource usage

Parameter Description
Default
value

Recommended settings

maxTotal
The maximum number of connections that
are supported by the pool.

8
For more information, see
Recommended settings.

maxIdle
The maximum number of idle connections in
the pool.

8
For more information, see
Recommended settings.

minIdle
The minimum number of idle connections in
the pool.

0
For more information, see
Recommended settings.

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

93 > Document Version: 20220620

blockWhenE
xhausted

Specifies whether the client must wait when
the resource pool is exhausted. Only when
this parameter is set to true, the
maxWaitMillis parameter takes effect.

true
We recommend that you
use the default value.

maxWaitMill
is

The maximum number of milliseconds that
the client must wait when no connection is
available.

A value of -
1 specifies
that the
connection
never t imes
out.

We recommend that you do
not use the default value.

testOnBorro
w

Specifies whether to validate connections
by using the PING command before the
connections are borrowed from the pool.
Invalid connections are removed from the
pool.

false

We recommend that you
set this parameter to false
when the workload is
heavy. This allows you to
reduce the overhead of a
ping test.

testOnRetur
n

Specifies whether to validate connections
by using the PING command before the
connections are returned to the pool. Invalid
connections are removed from the pool.

false

We recommend that you
set this parameter to false
when the workload is
heavy. This allows you to
reduce the overhead of a
ping test.

jmxEnabled
Specifies whether to enable Java
Management Extensions (JMX) monitoring.

true

We recommend that you
enable JMX monitoring.
Take note that you must
also enable the feature for
your application.

Parameter Description
Default
value

Recommended settings

Idle Jedis object detect ion provides the following four parameters.

Parameters related to idle resource detect ion

Parameter Description Default value Recommended settings

testWhileIdle

Specifies whether to
validate connections by
running the PING
command during the
process of idle resource
detection. Invalid
connections are evicted.

false true

timeBetweenEvictionRun
sMillis

Specifies the cycle of
idle resources
detection. Unit:
milliseconds.

A value of -1 specifies
idle resource detection
is disabled.

We recommend that
you set this parameter
to a proper value. You
can also use the default
configuration in
JedisPoolConfig.

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 94

minEvictableIdleT imeMill
is

The minimum idle t ime
of a resource in the
resource pool. Unit:
milliseconds. When the
upper limit is reached,
the idle resource is
evicted.

1,800,000 (30 minutes)

The default value is
suitable for most cases.
You can also use the
configuration in
JeidsPoolConfig based
on your business
requirements.

numTestsPerEvictionRun

The number of
resources to be
detected within each
cycle.

3

You can change the
value based on your
application connections.
A value of -1 specifies
that the system checks
all connections for idle
resources.

Parameter Description Default value Recommended settings

Jedis provides JedisPoolConfig that uses some configurations of GenericObjectPoolConfig for idle
resource detect ion.

public class JedisPoolConfig extends GenericObjectPoolConfig {
 public JedisPoolConfig() {
 // defaults to make your life with connection pool easier :)
 setTestWhileIdle(true);
 //
 setMinEvictableIdleTimeMillis(60000);
 //
 setTimeBetweenEvictionRunsMillis(30000);
 setNumTestsPerEvictionRun(-1);
 }
}

Not e You can view all default values in
org.apache.commons.pool2.impl.BaseObjectPoolConfig.

Recommended settings
maxTotal: The maximum number of connections.

To set a proper value of maxTotal, take note of the following factors:

The expected concurrent connections based on your business requirements.

The amount of t ime that is consumed by the client to run the command.

The limit of Redis resources. For example, if you mult iply maxTotal by the number of nodes (ECS
instances), the product must be smaller than the supported maximum number of connections in
Redis. You can view the maximum connections on the Instance Information page in the ApsaraDB for
Redis console.

The resource that is consumed to create and release connections. If the number of connections that
are created and released for a request is large, the processes that are performed to create and
release connections are adversely affected.

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

95 > Document Version: 20220620

For example, the average t ime that is consumed to run a command, or the average t ime that is required
to borrow or return resources and to run Jedis commands with network overhead, is approximately 1 ms.
The queries per second (QPS) of a connection is about 1 second/1 millisecond = 1000. The expected
QPS of an individual Redis instance is 50,000 (the total number of QPS divided by the number of Redis
shards). The theoretically required size of a resource pool (maxTotal) is 50,000/1,000 = 50.

However, this is only a theoretical value. To reserve some resources, the value of the maxTotal
parameter can be larger than the theoretical value. However, if the value of the maxTotal parameter is
too large, the connections consume a large amount of client and server resources. For Redis servers
that have a high QPS, if a large number of commands are blocked, the issue cannot be solved even by a
large resource pool.

maxIdle and minIdle

maxIdle is the actual maximum number of connections required by workloads. maxTotal includes the
number of idle connections as a surplus. If the value of maxIdle is too small on heavily loaded systems,
 new Jedis connections are created to serve the requests. minIdle specifies the minimum number of

established connections that must be kept in the pool.

The connection pool achieves its best performance when maxTotal = maxIdle. This way, the
performance is not affected by the scaling of the connection pool. We recommend that you set the
maxIdle and minIdle parameters to the same value if the user traffic fluctuates. If the number of
concurrent connections is small or the value of the maxIdle parameter is too large, the connection
resources are wasted.

You can evaluate the size of the connection pool used by each node based on the actual total QPS
and the number of clients that Redis serves.

Ret rieve proper values based on monit oring dat a

In actual scenarios, a more reliable method is to try to retrieve optimal values based on monitoring data.
You can use JMX monitoring or other monitoring tools to find proper values.

FAQ
Insuf f icient resources

You cannot obtain resources from the resource pool in the following cases:

Timeout:

redis.clients.jedis.exceptions.JedisConnectionException: Could not get a resource from th
e pool
…
Caused by: java.util.NoSuchElementException: Timeout waiting for idle object
at org.apache.commons.pool2.impl.GenericObjectPool.borrowObject(GenericObjectPool.java:44
9)

When you set the blockWhenExhausted parameter to false, the t ime specified by
borrowMaxWaitMillis is not used and the borrowObject call blocks the connection until an idle
connection is available.

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 96

redis.clients.jedis.exceptions.JedisConnectionException: Could not get a resource from th
e pool
…
Caused by: java.util.NoSuchElementException: Pool exhausted
at org.apache.commons.pool2.impl.GenericObjectPool.borrowObject(GenericObjectPool.java:46
4)

This exception may not be caused by a limited pool size. For more information, see Recommended
sett ings. To fix this issue, we recommend that you check the network, the parameters of the resource
pool, the resource pool monitoring (JMX monitoring), the code (for example, the reason is that
 jedis.close() is not executed), slow queries, and the domain name system (DNS).

Preload JedisPool

If you specify a small t imeout value, the project may t ime out after it is started. JedisPool does not
create a Jedis connection in the connection pool when JedisPool defines the maximum number of
resources and the minimum number of idle resources. If no idle connection exists in the pool, a new
Jedis connection is created. This connection is released to the pool after the connection is used.
However, the process in which you create a connection and repeatedly release the connection may take
a long period of t ime. Therefore, we recommend that you preload JedisPool with the minimum number
of idle connections after JedisPool is defined. The following example shows how to preload JedisPool:

List<Jedis> minIdleJedisList = new ArrayList<Jedis>(jedisPoolConfig.getMinIdle());
for (int i = 0; i < jedisPoolConfig.getMinIdle(); i++) {
 Jedis jedis = null;
 try {
 jedis = pool.getResource();
 minIdleJedisList.add(jedis);
 jedis.ping();
 } catch (Exception e) {
 logger.error(e.getMessage(), e);
 } finally {
 }
}
for (int i = 0; i < jedisPoolConfig.getMinIdle(); i++) {
 Jedis jedis = null;
 try {
 jedis = minIdleJedisList.get(i);
 jedis.close();
 } catch (Exception e) {
 logger.error(e.getMessage(), e);
 } finally {
 }
}

You can use the imonitor command developed by Alibaba Cloud to monitor the request status of a
specific node in the Redis cluster, and use redis-faina to discover hotkeys and commands from the
monitoring data.

5.12. Analyze hotkeys in a specific
sub-node of a cluster instance

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

97 > Document Version: 20220620

Background information
When you use the ApsaraDB for Redis cluster edit ion, if the hotkey traffic on a specific node is too
large, other services in the server may fail to continue. If the cache of the hotkey exceeds the current
cache capacity, the sharding service of the cache will crash.

You can use Performance monitoring and Alert settings to monitor the cluster status in real t ime and set
alert rules. When you discover an overloaded sub-node, you can use the imonitor command to view the
client request of the node, and use redis-faina to analyze the hotkey.

Prerequisites
You have act ivated an ECS instance that can interconnect with the ApsaraDB for Redis cluster edit ion.

You have installed Python and Telnet in the ECS instance.

Not e The sample environment in this topic is CentOS 7.4 and Python 2.7.5.

Procedure
1. In the ECS instance, use Telnet to connect to the Redis cluster.

i. Use # telnet <host> <port> to connect to the Redis cluster.

Not e host is the connection address of the Redis cluster. port is the
connection port (the default port number is 6379).

ii. Enter auth <password> for verificat ion.

Not e password is the password for the Redis cluster.

Not e If +OK is returned, the connection is successful.

2. Use imonitor <db_idx> to collect the request data of the target node.

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 98

https://www.alibabacloud.com/help/doc-detail/43887.htm#concept-zyy-zgv-tdb
https://www.alibabacloud.com/help/doc-detail/43884.htm#concept-sj5-m2z-5db

Not e

The imonit or command is similar to the inf o command and the iscan command. This
command added a parameter to the monit or command, and the user can specify the node to
run the monit or command. In this command, the value range of db_idx is [0, nodecount). You
can obtain the value of nodecount by running the inf o command or viewing the instance
topology in the console.

In this example, the value of db_idx of the target node is 0.

If +OK is returned, the output of of monitored request records continues.

3. Collect the monitoring data based on your business requirements and enter the QUIT command.
Press Enter to close the Telnet connection.

4. Store the monitoring data to a .txt f ile, and delete the plus sign (+) at the beginning of the line.
You can replace this sign by using the text edit ing tool. The stored file is as follows:

5. Create a Python script for request analysis, and save it as redis-faina.py. The code is as follows:

#! /usr/bin/env python
import argparse
import sys
from collections import defaultdict
import re
line_re_24 = re.compile(r"""
 ^(? P<timestamp>[\d\.]+)\s(\(db\s(? P<db>\d+)\)\s)?"(? P<command>\w+)"(\s"(? P<key>
[^(? <! \\)"]+)(? <! \\)")?(\s(? P<args>. +))? $
 """, re.VERBOSE)
line_re_26 = re.compile(r"""
 ^(? P<timestamp>[\d\.]+)\s\[(? P<db>\d+)\s\d+\.\d+\.\d+\.\d+:\d+]\s"(? P<command>\w
+)"(\s"(? P<key>[^(? <! \\)"]+)(? <! \\)")?(\s(? P<args>. +))? $
 """, re.VERBOSE)
class StatCounter(object):
 def __init__(self, prefix_delim=':', redis_version=2.6):
 self.line_count = 0
 self.skipped_lines = 0
 self.commands = defaultdict(int)
 self.keys = defaultdict(int)
 self.prefixes = defaultdict(int)
 self.times = []
 self._cached_sorts = {}
 self.start_ts = None
 self.last_ts = None
 self.last_entry = None
 self.prefix_delim = prefix_delim

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

99 > Document Version: 20220620

 self.prefix_delim = prefix_delim
 self.redis_version = redis_version
 self.line_re = line_re_24 if self.redis_version < 2.5 else line_re_26
 def _record_duration(self, entry):
 ts = float(entry['timestamp']) * 1000 * 1000 # microseconds
 if not self.start_ts:
 self.start_ts = ts
 self.last_ts = ts
 duration = ts - self.last_ts
 if self.redis_version < 2.5:
 cur_entry = entry
 else:
 cur_entry = self.last_entry
 self.last_entry = entry
 if duration and cur_entry:
 self.times.append((duration, cur_entry))
 self.last_ts = ts
 def _record_command(self, entry):
 self.commands[entry['command']] += 1
 def _record_key(self, key):
 self.keys[key] += 1
 parts = key.split(self.prefix_delim)
 if len(parts) > 1:
 self.prefixes[parts[0]] += 1
 @staticmethod
 def _reformat_entry(entry):
 max_args_to_show = 5
 output = '"%(command)s"' % entry
 if entry['key']:
 output += ' "%(key)s"' % entry
 if entry['args']:
 arg_parts = entry['args'].split(' ')
 ellipses = ' ...' if len(arg_parts) > max_args_to_show else ''
 output += ' %s%s' % (' '.join(arg_parts[0:max_args_to_show]), ellipses)
 return output
 def _get_or_sort_list(self, ls):
 key = id(ls)
 if not key in self._cached_sorts:
 sorted_items = sorted(ls)
 self._cached_sorts[key] = sorted_items
 return self._cached_sorts[key]
 def _time_stats(self, times):
 sorted_times = self._get_or_sort_list(times)
 num_times = len(sorted_times)
 percent_50 = sorted_times[int(num_times / 2)][0]
 percent_75 = sorted_times[int(num_times * . 75)][0]
 percent_90 = sorted_times[int(num_times * . 90)][0]
 percent_99 = sorted_times[int(num_times * . 99)][0]
 return (("Median", percent_50),
 ("75%", percent_75),
 ("90%", percent_90),
 ("99%", percent_99))
 def _heaviest_commands(self, times):
 times_by_command = defaultdict(int)
 for time, entry in times:

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 100

 times_by_command[entry['command']] += time
 return self._top_n(times_by_command)
 def _slowest_commands(self, times, n=8):
 sorted_times = self._get_or_sort_list(times)
 slowest_commands = reversed(sorted_times[-n:])
 printable_commands = [(str(time), self._reformat_entry(entry)) \
 for time, entry in slowest_commands]
 return printable_commands
 def _general_stats(self):
 total_time = (self.last_ts - self.start_ts) / (1000*1000)
 return (
 ("Lines Processed", self.line_count),
 ("Commands/Sec", '%. 2f' % (self.line_count / total_time))
)
 def process_entry(self, entry):
 self._record_duration(entry)
 self._record_command(entry)
 if entry['key']:
 self._record_key(entry['key'])
 def _top_n(self, stat, n=8):
 sorted_items = sorted(stat.iteritems(), key = lambda x: x[1], reverse = True)
 return sorted_items[:n]
 def _pretty_print(self, result, title, percentages=False):
 print title
 print '=' * 40
 if not result:
 print 'n/a\n'
 return
 max_key_len = max((len(x[0]) for x in result))
 max_val_len = max((len(str(x[1])) for x in result))
 for key, val in result:
 key_padding = max(max_key_len - len(key), 0) * ' '
 if percentages:
 val_padding = max(max_val_len - len(str(val)), 0) * ' '
 val = '%s%s\t(%. 2f%%)' % (val, val_padding, (float(val) / self.line_co
unt) * 100)
 print key,key_padding,'\t',val
 print
 def print_stats(self):
 self._pretty_print(self._general_stats(), 'Overall Stats')
 self._pretty_print(self._top_n(self.prefixes), 'Top Prefixes', percentages = Tr
ue)
 self._pretty_print(self._top_n(self.keys), 'Top Keys', percentages = True)
 self._pretty_print(self._top_n(self.commands), 'Top Commands', percentages = Tr
ue)
 self._pretty_print(self._time_stats(self.times), 'Command Time (microsecs)')
 self._pretty_print(self._heaviest_commands(self.times), 'Heaviest Commands (mic
rosecs)')
 self._pretty_print(self._slowest_commands(self.times), 'Slowest Calls')
 def process_input(self, input):
 for line in input:
 self.line_count += 1
 line = line.strip()
 match = self.line_re.match(line)
 if not match:

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

101 > Document Version: 20220620

 if not match:
 if line != "OK":
 self.skipped_lines += 1
 continue
 self.process_entry(match.groupdict())
if __name__ == '__main__':
 parser = argparse.ArgumentParser()
 parser.add_argument(
 'input',
 type = argparse.FileType('r'),
 default = sys.stdin,
 nargs = '?',
 help = "File to parse; will read from stdin otherwise")
 parser.add_argument(
 '--prefix-delimiter',
 type = str,
 default = ':',
 help = "String to split on for delimiting prefix and rest of key",
 required = False)
 parser.add_argument(
 '--redis-version',
 type = float,
 default = 2.6,
 help = "Version of the redis server being monitored",
 required = False)
 args = parser.parse_args()
 counter = StatCounter(prefix_delim = args.prefix_delimiter, redis_version = args.re
dis_version)
 counter.process_input(args.input)
 counter.print_stats()

Not e The preceding script is from redis-faina.

6. Run the python redis-faina imonitorOut.txt command to parse the monitoring data. imonitor
Out.txt is the monitoring data stored in the example.

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 102

https://github.com/facebookarchive/redis-faina

Not e In the preceding analysis result , Top Keys displays the most requested keys during
this t ime period, and Top Commands displays the most frequently used commands. You can
solve the hotkey problem based on the analysis results.

5.13. Use ApsaraDB for Redis to build

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

103 > Document Version: 20220620

You can use ApsaraDB for Redis to build a live-streaming channel information system that has low
latency and can withstand high traffic volumes.

Background information
Live-streaming channels are one of the main features of the live-streaming system. Except for the live-
streaming window, live users, virtual gifts, comments, likes, rankings, and other data generated during
the live streaming are t ime-limited, highly interact ive, and delay-sensit ive. The Redis caching service is a
suitable solut ion to handle such data.

The best pract ice in this topic demonstrates how to use ApsaraDB for Redis to build a live-streaming
channel information system. This topic describes how to build a live-streaming channel information
system for three types of information:

Real-t ime ranking information

Counting information

Timeline information

Real-time ranking information
Real-t ime ranking information includes an online user list , a ranking of virtual gifts, and live comments.
Live comments can be considered as a message ranking that is sorted based on message dimensions.
The sorted set structure in Redis is suitable to store the real-t ime ranking information.

Redis sets are stored in hash tables. The t ime complexity of create, read, update, and delete (CRUD)
operations is O(1). Each member in a set is associated with a score to facilitate sort ing and other
operations. The following example shows how sorted sets work to build a live-streaming channel
information system. The added and returned live comments are used in the example.

Use unix t imestamp + millisecond as the score format to record the last f ive live comments in the
user55 live-streaming channel:

redis> ZADD user55:_danmu 1523959031601166 message111111111111
(integer) 1
11.160.24.14:3003> ZADD user55:_danmu 1523959031601266 message222222222222
(integer) 1
11.160.24.14:3003> ZADD user55:_danmu 1523959088894232 message33333
(integer) 1
11.160.24.14:3003> ZADD user55:_danmu 1523959090390160 message444444
(integer) 1
11.160.24.14:3003> ZADD user55:_danmu 1523959092951218 message5555
(integer) 1

Return the last three live comments:

5.13. Use ApsaraDB for Redis to build
a live-streaming channel information
system

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 104

redis> ZREVRANGEBYSCORE user55:_danmu +inf -inf LIMIT 0 3
1) "message5555"
2) "message444444"
3) "message33333"

Return three live comments within the specified period of t ime:

redis> ZREVRANGEBYSCORE user55:_danmu 1523959088894232 -inf LIMIT 0 3
1) "message33333"
2) "message222222222222"
3) "message111111111111"

Counting information
For user-related data, the counting information includes the number of unread messages, followers,
and fans, and the experience value. The hash structure in Redis is suitable to store this type of data. For
example, the number of followers can be processed in the following way:

redis> HSET user:55 follower 5
(integer) 1
redis> HINCRBY user:55 follower 1 //Number of followers +1
(integer) 6
redis> HGETALL user:55
1) "follower"
2) "6"

Timeline information
Timeline information is a list of information sorted in chronological order. Timeline information includes
anchor moments and new posts. This information type is arranged in a fixed chronological order and
can be stored by using a Redis list or an ordered list . Example:

redis> LPUSH user:55_recent_activity '{datetime:201804112010,type:publish,title: The show
starts, content: Come on}'
(integer) 1
redis> LPUSH user:55_recent_activity '{datetime:201804131910,type:publish,title: Ask for a
leave, content: Sorry, I have plans today.}'
(integer) 2
redis> LRANGE user:55_recent_activitiy 0 10
1) "{datetime:201804131910,type:publish,title:\xe8\xaf\xb7\xe5\x81\x87\",content:\xe6\x8a\x
b1\xe6\xad\x89\xef\xbc\x8c\xe4\xbb\x8a\xe5\xa4\xa9\xe6\x9c\x89\xe4\xba\x8b\xe9\xb8\xbd\xe4\
xb8\x80\xe5\xa4\xa9}"
2) "{datetime:201804112010,type:publish,title:\xe5\xbc\x80\xe6\x92\xad\xe5\x95\xa6,content:
\xe5\x8a\xa0\xe6\xb2\xb9}"

Related resources
For more information about how to query hotkeys for a live-streaming system, see Use the real-t ime
key stat ist ics feature.

For more information about how to use offline key analysis to eliminate potential risks in workloads
and identify performance bott lenecks, see Offline key analysis.

For more information about how to handle high concurrency, see Cluster master-replica instances.

5.14. Parse AOFs

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

105 > Document Version: 20220620

https://www.alibabacloud.com/help/doc-detail/279446.htm#task-2096542
https://www.alibabacloud.com/help/doc-detail/102093.htm#concept-ufz-byl-jgb
https://www.alibabacloud.com/help/doc-detail/52228.htm#concept-tds-4mm-tdb

Records of command executions and key changes are stored in append-only files (AOFs). You can parse
AOFs to track these records.

Redis persistence modes
Redis Database (RDB) snapshot mode: This mode creates point-in-t ime snapshots of your dataset at
specified intervals. Keys and values are encoded as Redis strings and stored in RDB snapshots.

AOF persistence mode: Similar to the binlog, AOFs keep a record of data changes that occur by
writ ing each change to the end of the file. You can restore the entire dataset by replaying the AOF
from the beginning to the end.

Details of the AOF persistence mode
A Redis client communicates with the Redis server through a protocol called REdis Serializat ion Protocol
(RESP). RESP can serialize the following types of data:

Simple strings:

A string that starts with a plus sign (+) and ends with rn. Example: +OKrn.

Error messages:

A string that starts with a minus sign (-) and ends with rn. Example: -ERR Readonlyrn.

Integers

A data structure that starts with a colon (:), ends with rn, and contains an integer between the
beginning and the end. Example: (:1rn).

Large strings

A string structure that starts with a dollar sign ($)followed by the string length (less than 512 MB)
and rn, and ends with the string content and rn. Example: $0rnrn.

Arrays

A data structure that starts with an asterisk symbol (*), followed by array elements that are
separated by rn. The above four data types can be used as array elements. Example: *1rn$4rnpingrn.

The Redis client sends an array command to the server. The server responds based on the
implementation method of the command and records the responses in the AOF.

Parse AOFs
The following example shows how to parse an AOF by invoking hiredis with Python:

5.14. Parse AOFs

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 106

#! /usr/bin/env python
""" A Redis appendonly file parser
"""
import logging
import hiredis
import sys
if len(sys.argv) != 2:
 print sys.argv[0], 'AOF_file'
 sys.exit()
file = open(sys.argv[1])
line = file.readline()
cur_request = line
while line:
 req_reader = hiredis.Reader()
 req_reader.setmaxbuf(0)
 req_reader.feed(cur_request)
 command = req_reader.gets()
 try:
 if command is not False:
 print command
 cur_request = ''
 except hiredis.ProtocolError:
 print 'protocol error'
 line = file.readline()
 cur_request += line
file.close

The AOF is parsed into the following format, where you can check the operations performed on a
specific key. After you obtain the following results, you can view the operations related to a specific
key at any t ime.

['PEXPIREAT', 'RedisTestLog', '1479541381558']
['SET', 'RedisTestLog', '39124268']
['PEXPIREAT', 'RedisTestLog', '1479973381559']
['HSET', 'RedisTestLogHash', 'RedisHashField', '16']
['PEXPIREAT', 'RedisTestLogHash', '1479973381561']
['SET', 'RedisTestLogString', '79146']

High performance is the most prominent feature of Redis. Robust Redis performance is crucial to ensure
the service availability. A reduced Redis performance can be caused by mult iple reasons. The hotkey
issue is one of the most common reasons. The discovery of hotkeys is the first step to improve Redis
performance. This topic describes how to use the new features of Redis 4.0 to discover the hotkeys.

Not e ApsaraDB for Redis now supports querying hotspot keys by using audit logs. This can
help you query hotspot keys in the Redis service in an easy and accurate way. For more information,
see Query historical hotkeys.

Background information

5.15. Query hotkeys in Redis 4.0

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

107 > Document Version: 20220620

https://www.alibabacloud.com/help/doc-detail/181195.htm#task-1938160

Redis 4.0 added two data evict ion strategies: allkey-lfu and volat ile-lfu. You can also run the OBJECT
command to obtain the access frequency of a specific key, as shown in the following figure.

The native Redis client also added the --hotkeys option to help you discover hotkeys in your business.

Not e This topic describes how to discover hotkeys to optimize the performance of Redis.
This topic is suitable for users who are familiar with the basic features of ApsaraDB for Redis and
are seeking advanced skills. If you are not familiar with Redis, we recommend that you read Product
Overview and Quick Start .

Prerequisites
You have act ivated an Elast ic Compute Service (ECS) instance that can connect to an ApsaraDB for
Redis instance.

You have installed a Redis server whose version is later than 4.0 on the ECS instance.

Not e You can use redis-cli after Redis is installed on the ECS instance.

The maxmemory-policy parameter of the ApsaraDB for Redis instance is set to volat ile-lfu or allkeys-l
fu.

Not e For more information about how to modify the parameters, see Modify parameters
of an instance.

Procedure
1. You can use the following command to query the hotkeys when the ApsaraDB for Redis instance

have running workloads.

redis-cli -h r-***************.redis.rds.aliyuncs.com -a <password> --hotkeys

Not e This topic uses redis-benchmark to simulate a scenario that features a high volume
of writes.

Option descript ions

Option Description

-h
Specifies the endpoint of an ApsaraDB for Redis
instance.

-a
Specifies the password of an ApsaraDB for Redis
instance.

--hotkeys Used to query hotkeys.

Results
The following example shows the result of running this command.

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 108

https://www.alibabacloud.com/help/doc-detail/26342.htm#concept-m3j-s5z-sdb
https://www.alibabacloud.com/help/doc-detail/54592.htm#concept-nyd-f24-tdb
https://www.alibabacloud.com/help/doc-detail/43885.htm#concept-q1w-kxn-tdb
https://www.alibabacloud.com/help/doc-detail/38689.htm#concept-zm4-dy5-ydb

The summary part in the result displays the hotkeys.

This topic describes how to use a lifecycle hook to put Elast ic Compute Service (ECS) instances into the
wait state and then use an Operation Orchestrat ion Service (OOS) template to automatically add or
remove the instances to or from a whitelist of an ApsaraDB for Redis instance.

Prerequisites

An ApsaraDB for Redis instance is created.

Context
A scaling group can be associated with Server Load Balancer (SLB) or ApsaraDB for RDS instances, but
cannot be associated with ApsaraDB for Redis instances. If your business data is stored in an ApsaraDB
for Redis instance, you must manually add or remove ECS instances to or from a whitelist of the
ApsaraDB for Redis instance. This is t ime-consuming and inefficient. You can use lifecycle hooks and
OOS templates to automatically add or remove ECS instances to or from a whitelist of the ApsaraDB for
Redis instance.

Procedure
In the following example, the ACS-ESS-LifeCycleModifyRedisIPWhitelist public template of OOS is used
to demonstrate how to add ECS instances to a whitelist of an ApsaraDB for Redis instance during scale-
out events. Perform the following steps to add ECS instances to a whitelist:

Step 1: Grant OOS permissions to the RAM role

Step 2: Create a lifecycle hook for scale-out events and trigger a scale-out event

Step 3: View the whitelist of the ApsaraDB for Redis instance

Step 4: (Optional) View the execution status of the OOS template

5.16. Automatically add or remove
ECS instances to or from a whitelist of
an ApsaraDB for Redis instance

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

109 > Document Version: 20220620

Not e If you want to remove ECS instances from a whitelist of an ApsaraDB for Redis instance
during scale-in events, you can create lifecycle hooks that are applicable to scale-in events and
then trigger the scale-in events.

Step 1: Grant OOS permissions to the RAM role
You must be granted the permissions to execute OOS templates. Resources of ECS, Auto Scaling, and
ApsaraDB for Redis are involved when O&M operations specified in the ACS-ESS-
LifeCycleModifyRedisIPWhitelist public template are performed.

1.

2. Create a policy.

i.

ii.

iii. On the Creat e Cust om Policy page, configure parameters for the policy and click OK.

The following table describes the parameters used in this example. Use the default values for
parameters that are not mentioned in the table.

Parameter Description

Policy Name Enter ESSHookPolicyForRedisWhitelist.

Conf igurat ion Mode Select Script .

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 110

Policy Document

Enter the following content:

{
 "Version": "1",
 "Statement": [
 {
 "Action": [
 "ecs:DescribeInstances"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "kvstore:ModifySecurityIps"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "ess:CompleteLifecycleAction"
],
 "Resource": "*",
 "Effect": "Allow"
 }
]
}

Parameter Description

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

111 > Document Version: 20220620

3. Attach the policy to the OOSServiceRole RAM role.

i.

ii.

iii. In the Add Permissions panel, configure the parameters and click OK.

The following table describes the parameters used in this example. Use the default values for
parameters that are not mentioned in the table.

Parameter Description

Aut horiz ed Scope Select Alibaba Cloud Account .

Select Policy
Select Custom Policy and then the
ESSHookPolicyForRedisWhitelist policy.

Step 2: Create a lifecycle hook for scale-out events and trigger a
scale-out event
If you want ECS instances to be automatically added to a whitelist of an ApsaraDB for Redis instance
when scale-out events are triggered, you can set the notificat ion method to OOS Template and
configure related parameters when you create lifecycle hooks.

1.

2.

3.

4.

5. Create a lifecycle hook for scale-out events.

i.

ii. Click Creat e Lif ecycle Hook .

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 112

iii. Configure parameters for the lifecycle hook and click OK.

The following table describes the parameters used in this example. Use the default values for
parameters that are not mentioned in the table.

Parameter Description

Name Enter ESSHookForAddRedisWhitelist.

Applicable Scaling Act ivit y
T ype

Select Scale-out Event .

T imeout Period

Enter an appropriate value, such as 300.

Not e The timeout period is the period of t ime during
which to perform customized operations. If the period is
short, the operations may fail to be properly performed.
Estimate the t ime required to perform the operations and
set an appropriate t imeout period.

Execut ion Policy Select Cont inue .

Not if icat ion Met hod

Configure the following settings:

Notification method: Select OOS T emplat e .

OOS template type: Select Public T emplat es .

Public template: Select ACS-ESS-
LifeCycleModifyRedisIPWhitelist from the drop-down list.

The parameters for the ACS-ESS-LifeCycleModifyRedisIPWhitelist
public template:

dbInst anceId : Enter the ID of the ApsaraDB for Redis
instance.

modif yMode : Select Append. This value applies to scale-out
events and allows ECS instances to be added to a whitelist of
the ApsaraDB for Redis instance.

Permissions : Select OOSServiceRole. In Step 1, the
OOSServiceRole RAM role is granted permissions on resources
of ECS, Auto Scaling, and ApsaraDB for Redis. OOS owns the
preceding permissions after it assumes the RAM role.

6. Trigger a scale-out event.

In this example, a scale-out event is manually triggered by executing a scaling rule. You can also
trigger scale-out events by using scheduled or event-triggered tasks.

Not e Lifecycle hooks take effect when scaling act ivit ies are manually triggered by
executing scaling rules. Lifecycle hooks do not take effect when you manually add or remove
ECS instances to or from a scaling group.

i.

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

113 > Document Version: 20220620

ii. Click Creat e Scaling Rule .

iii. In the Create Scaling Rule dialog box, configure the parameters and click OK.

The following table describes the parameters used in this example. Use the default values for
parameters that are not mentioned in the table.

Parameter Description

Rule Name Enter Add1.

Rule T ype Select Simple Scaling Rule.

Operat ion Set this parameter to Add 1 Instances.

iv. On the Scaling Rules page, find the created Add1 scaling rule and click Execut e in the
Act ions column.

v. Click OK.

After the scaling rule is executed, an ECS instance is automatically created. The
ESSHookForAddRedisWhitelist lifecycle hook in the scaling group puts the ECS instance into the
wait state. Auto Scaling automatically notifies OOS to perform the O&M operations specified in the
ACS-ESS-LifeCycleModifyRedisIPWhitelist public template on the ECS instance.

Step 3: View the whitelist of the ApsaraDB for Redis instance
1. Log on to the ApsaraDB for Redis console.

2. In the left-side navigation pane, click Inst ances .

3. Find the ApsaraDB for Redis instance and click its ID in the Inst ance ID/Name column.

4. In the left-side navigation pane, click Whit elist Set t ings .

The following figure shows that the private IP address of the ECS instance is added to the whitelist
of the ApsaraDB for Redis instance as specified in the ACS-ESS-LifeCycleModifyRedisIPWhitelist
public template.

If the ECS instance is created but its private IP address is not added to the whitelist of the
ApsaraDB for Redis instance, log on to the OOS console to view the execution result of O&M tasks.
For more information, see Step 4: (Optional) View the execution status of the OOS template.

Step 4: (Optional) View the execution status of the OOS template
1.

2.

3.

4. On the page that appears, click the Advanced View tab.

The execution status is displayed on the Execut ion Result tab.

ApsaraDB for Redis Best Pract ices·Best Pract ices for Al
l Edit ions

> Document Version: 20220620 114

https://kvstore.console.aliyun.com

If the execution fails, the error message is also displayed on the Execut ion Result tab.

Best Pract ices·Best Pract ices for Al
l Edit ions

ApsaraDB for Redis

115 > Document Version: 20220620

	1.Development and O&M standards for ApsaraDB for Redis
	2.Retry mechanisms for Redis clients
	3.Usage of Lua scripts
	4.Best Practices for Redis Enhanced Edition
	4.1. Monitor user trajectories by using TairGIS
	4.2. Implement high-performance distributed locks by using TairString
	4.3. Implement high-performance optimistic locking by using TairString
	4.4. Implement bounded counters by using TairString
	4.5. Implement multidimensional leaderboards by using TairZset
	4.6. Implement fine-grained monitoring by using TairTS
	4.7. Implement distributed leaderboards by using TairZset
	4.8. Select users by using TairRoaring

	5.Best Practices for All Editions
	5.1. Migrate MySQL data to ApsaraDB for Redis
	5.2. Rankings of online game players sorted by score
	5.3. Correlation analysis on E-commerce store items
	5.4. Publish and subscribe to messages
	5.5. Pipeline
	5.6. Process transactions
	5.7. Discover and resolve the hotkey issue
	5.8. ApsaraDB for Redis supports Double 11 Shopping Festival
	5.9. Use ApsaraDB for Redis to build a business system that can handle flash sales
	5.10. Read/write splitting in Redis
	5.11. JedisPool optimization
	5.12. Analyze hotkeys in a specific sub-node of a cluster instance
	5.13. Use ApsaraDB for Redis to build a live-streaming channel information system
	5.14. Parse AOFs
	5.15. Query hotkeys in Redis 4.0
	5.16. Automatically add or remove ECS instances to or from a whitelist of an ApsaraDB for Redis instance

