
Alibaba Cloud
⼤数据计算服务

User Guide
Issue: 20191012

⼤数据计算服务 User Guide / Legal disclaimer

Legal disclaimer
Alibaba Cloud reminds you to carefully read and fully understand the terms and
 conditions of this legal disclaimer before you read or use this document. If you
have read or used this document, it shall be deemed as your total acceptance of this
 legal disclaimer.
1. You shall download and obtain this document from the Alibaba Cloud website

 or other Alibaba Cloud-authorized channels, and use this document for your
own legal business activities only. The content of this document is considered
 confidential information of Alibaba Cloud. You shall strictly abide by the
confidentiality obligations. No part of this document shall be disclosed or
provided to any third party for use without the prior written consent of Alibaba
Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted
, or disseminated by any organization, company, or individual in any form or by
any means without the prior written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades
, adjustments, or other reasons. Alibaba Cloud reserves the right to modify
the content of this document without notice and the updated versions of this
 document will be occasionally released through Alibaba Cloud-authorized
channels. You shall pay attention to the version changes of this document as they
 occur and download and obtain the most up-to-date version of this document
from Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud
 products and services. Alibaba Cloud provides the document in the context
that Alibaba Cloud products and services are provided on an "as is", "with all
 faults" and "as available" basis. Alibaba Cloud makes every effort to provide
relevant operational guidance based on existing technologies. However, Alibaba
 Cloud hereby makes a clear statement that it in no way guarantees the accuracy
, integrity, applicability, and reliability of the content of this document, either
explicitly or implicitly. Alibaba Cloud shall not bear any liability for any errors
 or financial losses incurred by any organizations, companies, or individuals
arising from their download, use, or trust in this document. Alibaba Cloud shall
 not, under any circumstances, bear responsibility for any indirect, consequent

Issue: 20191012 I

⼤数据计算服务 User Guide / Legal disclaimer

ial, exemplary, incidental, special, or punitive damages, including lost profits
arising from the use or trust in this document, even if Alibaba Cloud has been
notified of the possibility of such a loss.

5. By law, all the contents in Alibaba Cloud documents, including but not limited
to pictures, architecture design, page layout, and text description, are intellectu
al property of Alibaba Cloud and/or its affiliates. This intellectual property
includes, but is not limited to, trademark rights, patent rights, copyrights, and
 trade secrets. No part of this document shall be used, modified, reproduced,
publicly transmitted, changed, disseminated, distributed, or published without
the prior written consent of Alibaba Cloud and/or its affiliates. The names owned
 by Alibaba Cloud shall not be used, published, or reproduced for marketing,
advertising, promotion, or other purposes without the prior written consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limited
 to, "Alibaba Cloud", "Aliyun", "HiChina", and other brands of Alibaba Cloud
and/or its affiliates, which appear separately or in combination, as well as the
auxiliary signs and patterns of the preceding brands, or anything similar to the
 company names, trade names, trademarks, product or service names, domain
names, patterns, logos, marks, signs, or special descriptions that third parties
identify as Alibaba Cloud and/or its affiliates.

6. Please contact Alibaba Cloud directly if you discover any errors in this document
.

II Issue: 20191012

⼤数据计算服务 User Guide / Legal disclaimer

Issue: 20191012 III

⼤数据计算服务 User Guide / Document conventions

Document conventions
Style Description Example

A danger notice indicates a
situation that will cause major
system changes, faults, physical
 injuries, and other adverse
results.

Danger:
Resetting will result in the loss
of user configuration data.

A warning notice indicates a
situation that may cause major
system changes, faults, physical
 injuries, and other adverse
results.

Warning:
Restarting will cause business
interruption. About 10
minutes are required to restart
an instance.

A caution notice indicates
 warning information,
supplementary instructions,
and other content that the user
must understand.

Notice:
If the weight is set to 0, the
server no longer receives new
requests.

A note indicates supplemental
instructions, best practices, tips
, and other content.

Note:
You can use Ctrl + A to select
all files.

> Closing angle brackets are used
 to indicate a multi-level menu
cascade.

Click Settings > Network > Set
network type.

Bold Bold formatting is used for
buttons, menus, page names,
and other UI elements.

Click OK.

Courier font Courier font is used for
commands.

Run the cd /d C:/window
command to enter the Windows
system folder.

Italic Italic formatting is used for
parameters and variables.

bae log list --instanceid

Instance_ID

[] or [a|b] This format is used for an
optional value, where only one
item can be selected.

ipconfig [-all|-t]

Issue: 20191012 I

⼤数据计算服务 User Guide / Document conventions

Style Description Example
{} or {a|b} This format is used for a

required value, where only one
item can be selected.

switch {active|stand}

II Issue: 20191012

⼤数据计算服务 User Guide / Document conventions

Issue: 20191012 III

⼤数据计算服务 User Guide / Contents

Contents
Legal disclaimer...I
Document conventions...I
1 Data types...1
2 Common commands... 9

2.1 List of common commands..9
2.2 Project operations... 10
2.3 Table operations.. 13
2.4 Instances operations..18
2.5 Resources operations...23
2.6 Functions operations... 25
2.7 Set operations..27
2.8 Other operations..303 Data upload and download..32
3.1 Data upload and download overview..32
3.2 Connection to data tunnel service.. 34
3.3 Cloud data migration... 34
3.4 Data upload and download tools.. 35
3.5 Tunnel commands... 37
3.6 Tunnel SDK..50

3.6.1 Tunnel overview... 50
3.6.2 TableTunnel..51
3.6.3 InstanceTunnel... 54
3.6.4 UploadSession.. 55
3.6.5 DownloadSession..57
3.6.6 TunnelBufferedWriter...58

3.7 Bulk data channel SDK example...59
3.7.1 Example... 59
3.7.2 Simple upload.. 60
3.7.3 Simple download.. 62
3.7.4 Example for multi-thread uploading... 65
3.7.5 Example for multi-thread downloading.......................................67
3.7.6 Example for BufferedWriter uploading....................................... 70
3.7.7 Example for BufferedWriter multi-thread uploading................... 71

3.8 Import or export data using the Data Integration................................... 714 SQL... 76
4.1 SQL summary.. 76
4.2 Operators...77
4.3 Type conversions... 81
4.4 SQL limits.. 88

IV Issue: 20191012

⼤数据计算服务 User Guide / Contents
4.5 Insert Operation.. 91

4.5.1 INSERT OVERWRITE/INTO... 91
4.5.2 MULTI INSERT..93
4.5.3 DYNAMIC PARTITION... 94

4.6 DDL SQL.. 97
4.6.1 Table operations...97
4.6.2 Lifecycle of table...109
4.6.3 Column and Partition operation..111
4.6.4 View operations.. 114

4.7 Lateral View...116
4.8 Differences with other SQL syntax..118
4.9 Select Operation...122

4.9.1 SELECT syntax.. 122
4.9.2 SELECT Sequence..127
4.9.3 Subquery.. 128
4.9.4 UNION, INTERSECT, and EXCEPT.. 130
4.9.5 JOIN..133
4.9.6 SEMI JOIN...137
4.9.7 MAPJOIN HINT... 138
4.9.8 HAVING clause..139
4.9.9 Grouping Sets... 139
4.9.10 SELECT TRANSFORM.. 142

4.10 Script Mode SQL...149
4.11 Common table expression (CTE)...153
4.12 Explain...154
4.13 VALUES.. 157
4.16 Builtin functions.. 160

4.16.1 Compare built-in functions of MaxCompute with MySQL and
Oracle... 160

4.16.2 Date functions...166
4.16.3 Mathematical functions...184
4.16.4 Window functions... 205
4.16.5 Aggregate functions.. 222
4.16.6 String functions.. 230
4.16.7 Other functions...254

4.17 UDF..275
4.17.1 UDF Summary...275
4.17.2 Java UDF... 277
4.17.3 Python UDF...289
4.17.4 UDTF usage...296

4.18 UDT..297
4.19 UDJ.. 309
4.20 Appendix... 320

4.20.1 Escape characters... 320
4.20.2 LIKE usage.. 321

Issue: 20191012 V

⼤数据计算服务 User Guide / Contents
4.20.3 Regular expression... 321
4.20.4 Reserved words and keywords...324
4.20.5 Hive data type mapping table.. 3245 MapReduce... 326

5.1 Summary... 326
5.1.1 MapReduce... 326
5.1.2 Extended MapReduce..329
5.1.3 Open-source MapReduce...330

5.2 Function Introduction..335
5.2.1 Basic concepts.. 335
5.2.2 Commands..336
5.2.3 Input and Output.. 338
5.2.4 Resources... 339
5.2.5 Local run.. 339

5.3 MR limits... 342
5.4 Program Example.. 346

5.4.1 WordCount samples.. 346
5.4.2 MapOnly samples..349
5.4.3 Multi-input and Output... 351
5.4.4 Multi-task samples..355
5.4.5 Secondary Sort samples.. 358
5.4.6 Resource samples... 360
5.4.7 Counter samples... 363
5.4.8 Grep samples.. 366
5.4.9 Join samples... 369
5.4.10 Sleep samples... 372
5.4.11 Unique samples...373
5.4.12 Sort samples... 377
5.4.13 Partition samples.. 379
5.4.14 Pipeline samples... 380

5.5 Java SDK.. 383
5.5.1 Java SDK... 383
5.5.2 Overview of compatible versions of the SDK.............................. 3916 Java Sandbox...414

7 External table... 419
7.1 Overview of External tables... 419
7.2 OSS STS mode authorization.. 421
7.3 Access OSS unstructured data.. 422
7.4 Processing open source format data for OSS...436
7.5 Export unstructured data to OSS.. 443
7.6 Access Table Store data..4528 Spark.. 461
8.1 Spark on MaxCompute overview.. 461
8.2 Set up a Spark on MaxCompute development environment................... 462

VI Issue: 20191012

⼤数据计算服务 User Guide / Contents
8.3 Develop a Spark on MaxCompute application....................................... 464

8.3.1 Develop a Spark on MaxCompute application by using Java or
Scala... 464

8.3.2 Develop a Spark on MaxCompute application by using PySpark.. 472
8.4 Spark on MaxCompute running modes...476
8.5 Diagnose a Spark on MaxCompute job..478
8.6 Spark on MaxCompute FAQ.. 4809 Interactive SQL (Lightning)... 483
9.1 Overview..483
9.2 Quick Start...486
9.3 Access domain name..488
9.4 Access services using JDBC interfaces... 489

9.4.1 JDBC driver...490
9.4.2 Configure JDBC connections..491
9.4.3 Access services using common tools... 493

9.5 SQL reference.. 498
9.6 View tasks..499
9.7 Constraints and limitations.. 500
9.8 FAQs.. 50110 Graph.. 504
10.1 Summary... 504
10.2 Aggregator.. 507
10.3 Function overview..515
10.4 SDK summary.. 519
10.5 Development and debugging.. 520
10.6 Limits...528
10.7 Examples... 529

10.7.1 SSSP..529
10.7.2 PageRank.. 533
10.7.3 Kmeans...535
10.7.4 BiPartiteMatchiing.. 541
10.7.5 Strongly-connected component... 544
10.7.6 Connected component...552
10.7.7 Topology Sorting...554
10.7.8 Linear Regression... 557
10.7.9 Triangle Count.. 561
10.7.10 Vertex Input.. 564
10.7.11 Edge Input.. 57011 View Job Running Information...................................... 577

11.1 Logview..577
11.2 Errors and warnings using the MaxCompute compiler........................ 581

Issue: 20191012 VII

⼤数据计算服务 User Guide / Contents

VIII Issue: 20191012

⼤数据计算服务 User Guide / 1 Data types

1 Data types
This topic describes the data types supported by MaxCompute 2.0, including basic
data types and complex data types.

Basic data types
The following table lists the basic data types supported by MaxCompute 2.0. To
use a new data type, you must configure the set odps.sql.type.system.odps2=true
; or setproject odps.sql.type.system.odps2=true; statement as needed, and pay
attention to the impact on the existing tasks. If you do not set the statement, an
error xxxx type is not enabled in current mode will occur.

Note:
The statement odps.sql.type.system.odps2 for enabling new data types supports
only lowercase letters.
Type New in

MaxCompute 2
.0?

Constant Description

TINYINT Yes 1Y, -127Y The 8-bit signed integer
 type. Range: -128 to
127

SMALLINT Yes 32767S, -100S The 16-bit signed
integer type. Range: -
32768 to 32767

INT Yes 1000, -15645787 The 32-bit signed
integer type. Range:
(-2)

31
 to 2

31
 - 1 (note 1

and note 2)
BIGINT No 100000000000L, -1L The 64-bit signed

integer type. Range:
(-2)

63
 + 1 to 2

63
 - 1

FLOAT Yes N/A The 32-bit binary float
type

DOUBLE No 3.1415926 1E+7 The 64-bit binary float
type

Issue: 20191012 1

⼤数据计算服务 User Guide / 1 Data types

Type New in
MaxCompute 2
.0?

Constant Description

DECIMAL No 3.5BD, 99999999999.
9999999BD

The decimal precision
number type. Integer
range: (-10)

36
 + 1 to

10
36

 - 1; decimal part:
accurate to 10

-18
 (note

5)
VARCHAR(n) Yes N/A The variable-length

character type. 'n' is
 the length, and the
range is 1 to 65535 (
note 3).

STRING No "abc", 'bcd', "alibaba", '
inc'

The string type.
Maximum length: 8 MB
 (note 4)

BINARY Yes N/A The binary data type.
Maximum length: 8 MB

DATETIME No DATETIME '2017-11-11
00:00:00'

The date time type.
Range: January 1, 0000
 to December 31, 9999,
accurate to millisecon
ds (note 6)

2 Issue: 20191012

⼤数据计算服务 User Guide / 1 Data types

Type New in
MaxCompute 2
.0?

Constant Description

TIMESTAMP Yes TIMESTAMP '2017-11-
11 00:00:00.123456789'

The timestamp type
that is irrelevant to
time zones. Range:
January 1, 0000 to
23.59:59.999999999
December 31, 9999

Note:
For some time zone-
related functions,
such as cast(<a
timestamp> as string),
timestamps that
are irrelevant to
the time zone must
be displayed in
accordance with the
current time zone.

BOOLEAN No True, False The Boolean type.
Value: True, False

Note:
The data types listed in the preceding table can be NULL.

When you use new data types in MaxCompute, pay attention to the following
information:
• Applicable scenarios of new data types:

- MaxCompute SQL
- The latest version of MapReduce
- SDK 0.27.2 (public and later versions), and client 0.27.0 and later versions

Issue: 20191012 3

⼤数据计算服务 User Guide / 1 Data types

• New data type flag
Currently, new data types cannot be directly used by default. To use a new data
type, run a flag command. Note that only lowercase letters are supported in the
flag command.
- Session level: To use new data types (such as TINYINT, SMALLINT, INT,

FLOAT, VARCHAR, TIMESTAMP, and BINARY) in SQL or MapReduce (the latest
version), add a set statement before the table statement set odps.sql.type
.system.odps2=true; and submit the two statements. The SQL statements
submitted through MaxCompute Studio are performed automatically. For
more information, see #unique_4.

- Project level: New data types at the project level can be used. To use the new
data types at the project level, the project owner must run the following
command:
setproject odps.sql.type.system.odps2=true;

For more information about the setproject command, see Other operations.
• Impact of using the new data type odps.sql.type.system.odps2 :

- Note 1:
If the new data type flag is enabled, INT in the SQL statement indicates a 32-
bit integer. For example, if you run the cast(a as INT) command, type a is
converted to a 32-bit integer. If the new data type flag is not enabled, type a is
converted to BIGINT (64-bit).
For example, the cast(a as INT) command is equivalent to cast(a as
BIGINT), create table t(a INT), and create table a (BIGINT). If you do
not set odps.sql.type.system.odps2 to true, you can also convert data types
in MaxCompute. However, a warning will be prompted, indicating that INT is
processed as BIGINT. Therefore, we recommend that you write BIGINT in your
scripts.

- The syntax of an integer constant changes.
In SELECT 1 + a;, the integer constant is 1.
■ If the new data type flag is not enabled, the integer constant is processed

 as BIGINT. If the constant length (such as 1000000000000000000000000

4 Issue: 20191012

⼤数据计算服务 User Guide / 1 Data types

) exceeds the value range of BIGINT, the integer constant is processed as
DOUBLE.

■ If the new data type flag is enabled, the integer constant is expressed as 1 (
a 32-digit integer). If the constant value is greater than the maximum INT
value but smaller than the maximum BIGINT value, the integer is converted
to BIGINT. If the constant value is greater than the maximum BIGINT value,
the integer is converted to DOUBLE.

■ Possible compatibility issues: The INT type may lead to inconsistencies
in function prototypes during subsequent operations. For example, the
actions of peripheral tools and subsequent jobs might be changed by new
type tables generated after data is written to disk.

- The rules for converting implicit data types change.
If the new data type flag is enabled, some implicit types may not be converted
. For example, the precision of conversions from STRING to BIGINT, STRING
 to DATETIME, DOUBLE to BIGINT, DECIMAL to DOUBLE, and DECIMAL to
 BIGINT might be reduced. In this case, you can use the CAST function to
convert the data type.
Converting implicit data types affects insert and the calling of functions. You
 can run the SQL statements that meet the requirements before enabling the
new data type flag. However, an error might be displayed after the new data
type flag is enabled.

- The supported operations, built-in functions, and UDFs are different.
If the new type flag is not enabled, some operations and built-in functions that
use new types as parameters and response values are not available.
1. Some built-in functions can be performed only after the new type flag is

enabled, for example, most of the functions that use INT as parameters
have BIGINT overloading. Functions such as YEAR, QUARTER, MONTH, DAY,

Issue: 20191012 5

⼤数据计算服务 User Guide / 1 Data types

HOUR, MINUTE, SECOND, MILLISECOND, NANOSECOND, DAYOFMONTH,
and WEEKOFYEAR can be implemented by using DATEPART built-in functions.

2. The UDF resolutions are different. For example, a UDF contains both
BIGINT and INT. Before the new type flag is enabled, the resolution is
BIGINT. After the new type flag is enabled, the resolution is INT.

- The BIGINT resolutions are different.
An integer constant, such as 123, is of the BIGINT type before a new data type
is used. The integer constant becomes INT type after a new data type is used.
Possible compatibility issues: The INT type may lead to inconsistencies in
function prototypes during subsequent operations. For example, the actions
of peripheral tools and subsequent jobs might be changed by new type tables
generated after data is written to disk.

- Types of supported partition columns are different.
■ Before the new type flag is enabled, only STRING is supported by partition

columns.
■ After the new type flag is enabled, data types such as STRING, VARCHAR,

CHAR, TINYINT, SMALLINT, INT, and BIGINT are supported by partition
columns.

■ If the new type flag is not enabled, partition fields in INSERT operations must
be processed as STRING. For example, you can enter insert overwrite

6 Issue: 20191012

⼤数据计算服务 User Guide / 1 Data types

table t partition (pt = 045) select Note that 045 is not enclosed
by quotation marks ("") and is resolved as an integer (45).

- Action of the LIMIT statement changes.
Take the SELECT * FROM t1 UNION ALL SELECT * FROM t2 limit 10;
statement as an example:
■ Before the new type flag is enabled, the statement is SELECT * FROM t1

UNION ALL SELECT * FROM (SELECT * FROM t2 limit 10) t2;.
■ After the new type flag is enabled, the statement is SELECT * FROM (SELECT

 * FROM t1 UNION ALL SELECT * FROM t2) t limit 10;.
Actions of the UNION, INTERSECT, and EXCEPT, INTERSECT, EXCEPT, LIMIT,
ORDER BY, DISTRIBUTE BY, SORT BY, and CLUSTER BY statements are also
changed if the new type flag is enabled.

- The resolutions of the IN expression are different.
Take the IN expression, such as a in (1, 2, 3), as an example:
■ Before the new type flag is enabled, all the values in the parentheses () must

 be of the same type.
■ After the new type flag is enabled, all the values in the parentheses () can be

 converted to the same implicit type.
• Note 2: If a constant value is greater than the maximum INT value but smaller

than the maximum BIGINT value, the integer is converted to BIGINT. If the
constant value is greater than the maximum BIGINT value, the integer is
converted to DOUBLE. In MaxCompute versions earlier than 2.0, all INT types in
SQL scripts are converted to BIGINT. The following is an example:
create table a_bigint_table(a int); -- Here INT is processed as
BIGINT.
select cast(id as int) from mytable; -- Here INT is processed as
BIGINT.

• Note 3: VARCHAR constants can be expressed through implicit transformation of
STRING constants.

• Note 4: STRING constants can be connected to different strings, for example, abc
 and xyz are resolved as abcxyz, and can be written into different row.

Issue: 20191012 7

⼤数据计算服务 User Guide / 1 Data types

• Note 5:: When you insert a constant to the DECIMAL field, ensure that the
constant is in the same format as that in the constant definition, for example,
3.5BD in the following command:
insert into test_tb(a) values (3.5BD)

• Note 6: The displayed time value does not contain milliseconds. You can use
the tunnel command and -dfp to specify the time format, for example, tunnel
upload -dfp 'yyyy-MM-dd HH:mm:ss.SSS'. For more information about tunnel
commands, see Tunnel commands.

Complex data types
The following table lists the complex data types that are supported by MaxCompute
 2.0.
Type Definition method Construction method
ARRAY • array<int>

• array<struct<a:int, b:
string>>

• array(1, 2, 3)
• array(array(1, 2), array

(3, 4))
MAP • map<string, string>

• map<smallint, array<
string>>

• map(“k1”, “v1”, “
k2”, “v2”)

• map(1S, array(‘a’, ‘
b’), 2S, array(‘x’, ‘
y’))

STRUCT • struct<x:int, y:int>
• struct<field1:bigint,

field2:array<int>, field3
:map<int, int>>

• named_struct(‘x’, 1,
‘y’, 2)

• named_struct(‘field1
’, 100L, ‘field2’,
array(1, 2), ‘field3’,
map(1, 100, 2, 200))

Note:
Complex data types are nestable. For the related built-in functions, see ARRAY, MAP,
STRUCT.

8 Issue: 20191012

⼤数据计算服务 User Guide / 2 Common commands

2 Common commands
2.1 List of common commands

This module explains how to use the relevant commands through the client to help
you quickly understand MaxCompute.
The latest MaxCompute service adjusts the usual commands, the new command
style is more closely used by hive, which is convenient for original Hadoop/HIVE
users.
MaxCompute offers many operations for projects, tables, resources, instances, and other
objects. You can perform operations on these objects using the console commands
and SDK.

Note:
• The common commands introduced in this module are mainly targeted at latest

version of theClient .
• If you want to learn how to install and configure clients, see Install and configure a

clientQuick Start.
• For more information about the SDK, see MaxCompute SDK introductionMaxCompute

SDK introduction.
List of common commands

addaliasalter

costcreate

dropdescdescribedownload/get

extended

flag/flagsfunctions

get

helphistory

jar/mapreduce

Issue: 20191012 9

http://icms.alibaba-inc.com/document/content/1295?version=315&topic=11959

⼤数据计算服务 User Guide / 2 Common commands

kill

lifecyclelist

odpscmd

partition

q/quit

resource

setshowstatus

tunnel

upload

weitwho

Use limits
• When you perform resource operations, please note that the size of each

resource file should not exceed 500 MB, and the total size of resources referenced
by a single SQL or MapReduce task should not exceed 2048 MB. For more
restrictions, seeMR limits。

2.2 Project operations
This article introduces you to command operations for entering the project and
setting space properties (permissions and whitelist functions, etc.).

Enter the workspce
Command format:
use <project_name>;

Action:
• Enter the specified workspce. After entering the workspce, all objects in this

workspce can be operated by the user.
• If the workspce does not exist or the current user is not in this workspce, an

exception is returned.

10 Issue: 20191012

http://icms.alibaba-inc.com/document/content/1295?version=315&topic=11960

⼤数据计算服务 User Guide / 2 Common commands

Example:
odps:my_project>use my_project; --my_project is a workspce the user
has privilege to access.

Note:
The preceding examples uses the MaxCompute client. All MaxCompute command
keywords, workspce names, table names, column names are case insensitive.
Creating a project is creating a MaxCompute project

After running the command, you can access the objects of this workspce. In the
following example, assume that test_src exists in the project ‘my_project’. Run
the following command:
odps:my_project>select * from test_src;

MaxCompute automatically searches the table in my_project. If the table exists, it
returns the data of this table. If the table does not exist, an exception is thrown. To
access the table test_src in another workspce, such as ‘my_project2’, through the
project ‘my_project’, you must first specify the workspce name as follows:
odps:my_project>select * from my_project2.test_src;

The returned data is the data in my_project2, not the initial data of test_src in
my_project.
MaxCompute does not support commands to create or delete workspce. You can
use the MaxCompute console for additional configurations and operations as
needed.For details, see project list

Query workspace
Command format:
list projects;

Features:
Used to view the list of items created by the primary account.

Note:
This command is supported from odpscmd 0.30.2.

Issue: 20191012 11

⼤数据计算服务 User Guide / 2 Common commands

SetProject
Command format:
setproject [<KEY>=<VALUE>];

Action:
• Use setproject command to set workspce attributes.

The following example sets the method that allows a full table scan.
setproject odps.sql.allow.fullscan = true;

• If the value of <KEY>=<VALUE> is not specified, the current workspce attribute
configuration is displayed. Command format:
setproject; --Display the parameters set by the setproject command.

Parameters
Property name Configured

permission

Description Value range

odps.sql.allow.
fullscan

ProjectOwn
er

Determines whether to allow
a full table scan.

True (
permitted
) /false (
prohibited)

odps.table.drop.
ignorenonexistent

All users Whether to report an error
 when deleting a table that
 does not exist. When the
 value is true, no error is
reported.

True (no error
reported)/false

odps.security.ip.
whitelist

ProjectOwn
er

Specify an IP whitelist to
access the workspce.

IP list
separated by
commas (,)

odps.instance.
remain.days

ProjectOwn
er

Determines the duration of
the retention of the instance
information.

[3- 30]

READ_TABLE
_MAX_ROW

ProjectOwn
er

The number of data entries
 returned by running the
Select statement in the client.

[1-10000]

12 Issue: 20191012

⼤数据计算服务 User Guide / 2 Common commands

Examples for odps.security.ip.whitelist
MaxCompute supports a workspce level IP whitelist.

Note:
• If the IP whitelist is configured, only the IP (console IP or IP of exit where SDK is

located) in the whitelist can access this workspce.
• After setting the IP white list, wait for at least five minutes to let the changes

take effect.
• For further assistance, open a ticket to contact Alibaba Cloud technical support

team.
The following are the three formats for an IP list in the whitelist, which can appear
in the same command. Use commas (,) to separate these commands.
• IP address: For example, 101.132.236.134.
• Subnet mask: For example, 100.116.0.0/16.
• Network segment: For example, 101.132.236.134-101.132.236.144.
Example of the command line tool set the IP white list:
setproject odps.security.ip.whitelist=101.132.236.134,100.116.0.0/16,
101.132.236.134-101.132.236.144;

If no IP address is added in the whitelist, then the whitelist function is disabled.
setproject odps.security.ip.whitelist=;

2.3 Table operations
This article will show you how to create, delete and view tables using common
commands through the MaxCompute client.
If you want to operate a table, use common commands in the client. Moreover it is
more convenient to collect tables, apply permissions, and view partitions using the
visible data table manager in DataWorks. For more information, see Table Details.

Create tables
Command format:
CREATE TABLE [IF NOT EXISTS] table_name
 [(col_name data_type [COMMENT col_comment], ...)]
 [COMMENT table_comment]

Issue: 20191012 13

⼤数据计算服务 User Guide / 2 Common commands
 [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
 [LIFECYCLE days]
 [As select_statement]
CREATE TABLE [IF NOT EXISTS] table_name
 LIKE existing_table_name

Action:
Create a table.

Note:
• Both the table name and column name are case insensitive and follow the same

naming conventions. The name can be up to 128 bytes in length and can contain
letters, numbers, and underscores (_).

• The comment content is an effective string, and it can be up to 1,024 bytes in
length.

• [LIFECYCLE days]: The parameter ‘days’ refers to the time required to
complete a ‘Table Operation’ lifecycle. It must be a positive integer. The unit
is ‘day’.

• Suppose that the ‘table_name’ is no-partition table. If calculated from the
last updated date, the data is still not modified after N (days), then MaxCompute
 automatically recycles the table without user intervention (similar to ‘drop
table’ operation).

• Suppose that the ‘table_name’ is a partition table. MaxCompute determines
 whether to recycle the table according to LastDataModifiedTime of each
partition. Unlike non-partitioned tables, a partitioned table is not deleted after
 all its partitions are reclaimed. The lifecycle can only be created for tables and
not for the specified partitions.

Example:
CREATE TABLE IF NOT EXISTS sale_detail(
 shop_name STRING,
 customer_id STRING,
 total_price DOUBLE)

14 Issue: 20191012

⼤数据计算服务 User Guide / 2 Common commands
PARTITIONED BY (sale_date STRING,region STRING); --Create a partition
table sale_detail.

Drop Table
Command format:
DROP TABLE [IF EXISTS] table_name; -- Table name to be deleted.

Action:
• Delete a table.
• If the option [IF EXISTS] is specified, regardless of whether the table exists or not

, the return is successful. If the option [IF EXISTS] is not specified, and the table
does not exist, an exception is returned.

Example:
DROP TABLE sale_detail; -- If the table exists, success returns.
DROP TABLE IF EXISTS sale_detail; -- No matter whether the table
sale_detail exists or not, success returns.

Describe Table
Command format:
DESC <table_name>; -- Table name or view name.
DESC extended <table_name>; -- View the extended table information.

Action:
Return information of a specified table, includes:
• Owner: The owner of the table.
• Project: The project to which a table belongs.
• CreateTime: The creation time of the table.
• LastDDLTime: The last DDL operation.
• LastModifiedTime: The last time of table modification.
• InternalTable: Indicates the object to be described is table. The value is ‘YES’

by default.
• Size: Storage size occupied by table data, usually the compression ratio is 5. The

unit is Byte.
• Native Columns: Non-partition column information, including column name,

type, comment.

Issue: 20191012 15

⼤数据计算服务 User Guide / 2 Common commands

• Partition Columns: Partition column information, including partition name, type
, and comment.

• Extended Info: The information of extended table, such as StorageHandler and
Location.

Example:
odps@ project_name>DESC sale_detail; -- Describe a partition table.
+--
+
| Owner: ALIYUN$odpsuser@aliyun.com | Project: test_project |
| TableComment: |
+--
+
| CreateTime: 2014-01-01 17:32:13 |
| LastDDLTime: 2014-01-01 17:57:38 |
| LastModifiedTime: 1970-01-01 08:00:00 |
+--
+
| Internaltable: Yes | size: 0 |
+--
+
| Native Columns: |
+--
+
| Field | Type | Comment |
+--
+
shop_name	string	
customer_id	string	
total_price	double	
+--
+
| Partition Columns: |
+--
+
| sale_date | string | |
| region | string | |
+--
+

Note:
• The preceding example is executed using the MaxCompute client.
• If the table has no partition, the information of Partition Columns is not

displayed.
• To describe a 'View', the option ‘InternalTable’ cannot be displayed but

the option ‘VirtualView’ can be displayed and its value is ‘YES’ by
default. Similarly, the 'Size' option is replaced by the 'View Text' option, which
represents the definition of the view, for example: select * from src. For more
information, seeView operations.

16 Issue: 20191012

⼤数据计算服务 User Guide / 2 Common commands

View partition table
Command format:
desc table_name partition(pt_spec

Action:
View the specific partition information of a partition table.
Example:
odps@ project_name>desc meta.m_security_users partition (ds='20151010
');
+--
+
| PartitionSize: 2109112 |
+--
+
| CreateTime: 2015-10-10 08:48:48 |
| LastDDLTime: 2015-10-10 08:48:48 |
| LastModifiedTime: 2015-10-11 01:33:35 |
+--
+
OK

Show Tables/Show Tables like
Command format:
SHOW TABLES;
SHOW TABLES like 'chart';

Action:
• SHOW TABLES: List all tables of current project.
• SHOW TABLES like 'chart': Lists the tables on which the following table names of

the current project match the 'chart'. Regular expressions are supported.
Example:
odps@ project_name>show tables;
odps@ project_name>show tables like 'ods_brand*';
ALIYUN$odps_user@aliyun.com:table_name
......

Note:
• The preceding example is executed using the MaxCompute client.
• ALIYUN is a system prompt, indicating the you are an Alibaba Cloud user.

Issue: 20191012 17

⼤数据计算服务 User Guide / 2 Common commands

• In this example,odps_user@aliyun.com is the creator of the table in this
example.

• In this example,table_name is the name of the table.
Show Partitions

Command format:
SHOW PARTITIONS table_name; -- table_name: Specify the table to be
queried. If the table does not exist or it is not a partition table,
an exception is thrown.

Action:
List all partitions of a table.
Example:
odps@ project_name>SHOW PARTITIONS table_name;
partition_col1=col1_value1/partition_col2=col2_value1
partition_col1=col1_value2/partition_col2=col2_value2
…

Note:
• The preceding example is executed using the MaxCompute client.
• Partition_col1 and partition_col2 are the partition columns of the table.
• Col1_value1, col2_value1, col1_value2, and col2_value2 are corresponding

values of the partition columns.

2.4 Instances operations
Show instances/Show P

Command format:
SHOW INSTANCES [FROM startdate TO enddate] [number];
SHOW P [FROM startdate TO enddate] [number];
SHOW INSTANCES [-all];
SHOW P [-all];
SHOW P -p <project name>;

Action:
Displays the information about the instances created by the current users.
Parameters:

18 Issue: 20191012

⼤数据计算服务 User Guide / 2 Common commands

• startdate、enddate: Returns the instance information during the specified
period (from startdate to enddate) in the yyyy-mm-dd format and the unit
is ‘day’. The parameters are optional. If the parameters are not specified,
instances submitted within three days are returned by default.

• number: Specifies the number of instances to be displayed. Based on the
scheduled time, return N (number) instances nearest to the current time. If not
specified, all instances that meet the requirements are shown.

• -all: The information of all instances that meet requirements is returned. To
execute the command, you must have the 'list' permission for the project. This
command can only return 50 records by default. You can -limit number to show
more record. For example, use show p -all -limit 100 to show 100 instance
records in the project.

• The output items: Include StartTime (the time accurate to seconds), RunTime
 (s) and Status (including Waiting, Success, Failed, Running, Cancelled, and
Suspended).

InstanceID and corresponding SQL are as follows:
StartTime RunTime Status InstanceID Query
2015-04-28 13:57:55 1s Success 20150428xxxxxxxxxxxxxxxxxx ALIYUN$xxxxx
@aliyun-inner.com select * from tab_pack_priv limit 20;
...
...

The probable status of an instance is as follows:
• Running
• Success
• Waiting
• Failed (job failed but data in the target table is modified)
• Suspended
• Canceled

Note:
The commands from the preceding example run in MaxCompute client.

 Status Instance
Command format:

Issue: 20191012 19

⼤数据计算服务 User Guide / 2 Common commands
status <instance_id>; -- instance_id: the unique identifier of an
instance, to specify which instance to be queried.

Action:
• Query the status of specified instance, such as Success, Failed, Running, and

Cancelled.
• If this instance is not created by the current user, exception is returned.
Example:
odps@ $project_name>status 20131225123xxxxxxxxxxxxxxx;
Success

Query the status of an instance which ID is 20131225123xxxxxxxxxxxxxxx, and the
result is Success.

Note:
The commands from the preceding example run in MaxCompute client.

Top Instance
Command format:
 top instance;top instance -all;

Action:
Permission requirements: The user must be a project owner or administrator.
top instance: Displays the job information of the current account that is running
in the project. It is displayed, includesding ISNTANCEID , Owner, Type, StartTime,
Progress, Status, Priority, RuntimeUsage (CPU/MEM), TotalUsage (CPU/MEM),
QueueingInfo (POS/LEN) and so on.
top instance-all : Returns all jobs that are currently being executed in the
current project. This command can only return 50 records by default. You can user
-limit number to show more record.
Example:
odps@ $project_name>top instance;

Note:

20 Issue: 20191012

⼤数据计算服务 User Guide / 2 Common commands

The commands from the preceding example run in MaxCompute client (version
0.29.0 or later).

 Kill Instance
Command format:
kill <instance_id>; -- instance_id: The unique identifier of an
instance, which must be ID of an instance whose status is 'Running',
otherwise, an error is returned.

Action:
Stop specified instance. The instance must be in the Running status.
Example:
odps@ $project_name>kill 20131225123xxxxxxxxxxxxxxx;

Stop the instance which ID is 20131225123xxxxxxxxxxxxxxx.

Note:
• The commands from the preceding example run in MaxCompute client.
• This is an asynchronous process. It does not mean that the distributed task has

stopped after the system accepts the request and returns the result. You can
check whether the instance is deleted by using the status command.

Desc Instance
Command format:
desc instance <instance_id>; -- instance_id: The unique identifier of
an instance.

Action:
Get the job information according to instance ID, including SQL, owner, startime,
endtime, status.
Example:
odps@ $project_name> desc instance 20150715xxxxxxxxxxxxxxx;
ID 20150715xxxxxxxxxxxxxxx
Owner ALIYUN$XXXXXX@alibaba-inc.com
StartTime 2015-07-15 18:34:41
EndTime 2015-07-15 18:34:42
Status Terminated
console_select_query_task_1436956481295 Success

Issue: 20191012 21

⼤数据计算服务 User Guide / 2 Common commands
Query select * from mj_test;

Query all the job information related to the instance whose ID is
20150715xxxxxxxxxxxxxxx.

Note:
The commands from the preceding example run in MaxCompute client.

Wait instance
Command format:
wait <instance_id>; -- instance_id: The unique identifier of an
instance.

Action:
Get running task information, including logs based on the instance ID and a
logview link. View task details by accessing the logview link.
Example:
wait 201709251611xxxxxxxxxxxxxx;
ID = 201709251611xxxxxxxxxxxxxx
Log view:
http://logview.odps.aliyun.com/logview/?h=http://service.odps.aliyun.
com/xxxxxxxxxx
Job Queueing...
Summary:
resource cost: cpu 0.05 Core * Min, memory 0.05 GB * Min
inputs:
 alian.bank_data: 41187 (588232 bytes)
outputs:
 alian.result_table: 8 (640 bytes)
Job run time: 2.000
Job run mode: service job
Job run engine: execution engine
M1:
 instance count: 1
 run time: 1.000
 instance time:
 min: 1.000, max: 1.000, avg: 1.000
 input records:
 TableScan_REL5213301: 41187 (min: 41187, max: 41187,
avg: 41187
)
 output records:
 StreamLineWrite_REL5213305: 8 (min: 8, max: 8, avg: 8)
R2_1:
 instance count: 1
 run time: 2.000
 instance time:
 min: 2.000, max: 2.000, avg: 2.000
 input records:
 StreamLineRead_REL5213306: 8 (min: 8, max: 8, avg: 8)
 output records:

22 Issue: 20191012

⼤数据计算服务 User Guide / 2 Common commands
 TableSink_REL5213309: 8 (min: 8, max: 8, avg: 8)

2.5 Resources operations
This article explains how to use common commands to operate resources in the
MaxCompute client.
You can also search and upload resources using the visualized online data
development tools in DataWorks. For more information, see Resource management.

Add a resource
Command format:
add file <local_file> [as alias] [comment 'cmt'][-f];
add archive <local_file> [as alias] [comment 'cmt'][-f];
add table <table_name> [partition <(spec)>] [as alias] [comment 'cmt']
[-f];
add jar <local_file.jar> [comment 'cmt'][-f];

Parameters
• file/archive/table/jar: Indicates the resource type. For more information, see

Resources.
• local_file: Indicates path of the local file, and uses this file name as the

resource name. Resource name also acts as a unique identifier of a resource.
• table_name: Indicates table name in MaxCompute. Currently, external tables

cannot be added into resource.
• [PARTITION (spec)]: When the resource to be added is a partition table,

MaxCompute only supports taking a partition as a resource, not the entire
partition table.

• alias: Specifies a resource name. If this parameter is not specified, the file name
is used as a resource name by default. Jar and Python resources do not support
this function.

• [comment ‘cmt’]: Adds a comment for the resource.
• [-f]: If a name is duplicated, this parameter can be added as a substitute to the

original resource. If this parameter is not specified and the duplicate resource
name exists, the operation fails.

Example
odps@ odps_public_dev>add table sale_detail partition (ds='20150602')
as sale.res comment 'sale detail on 20150602' -f;

Issue: 20191012 23

⼤数据计算服务 User Guide / 2 Common commands
OK: Resource 'sale.res' have been updated.
---Add a resource named sale.res in MaxCompute.

Note:
Each resource file size cannot exceed 500 MB. The resource size referenced by
a single SQL or MapReduce task cannot exceed 2048 MB. For more information
about, see MR Restrictions .

Delete a resource
Command format:
DROP RESOURCE <resource_name>; --resource_name：a specified resource
name.

View the resource list
Command format:
LIST RESOURCES;

Action:
View all resources in the current project.
Example:
odps@ $project_name>list resources;
Resource Name Comment Last Modified Time Type
1234.txt 2014-02-27 07:07:56 file
mapred.jar 2014-02-27 07:07:57 jar

Download resources
Use the following command format to download resources:
GET RESOURCE <resource_name> <path>;

Action:
Download resources to your local device. The resource type must be file, jar,
archive, or py.
Example:
odps@ $project_name>get resource odps-udf-examples.jar d:\;

24 Issue: 20191012

⼤数据计算服务 User Guide / 2 Common commands
OK

2.6 Functions operations
This article explains how to use common commands to operate functions in the
MaxCompute client.
You can also operate functions using the visualized online data development tools
in DataWorks. For more information, see Function Management.

Create a Function
Command format:
CREATE FUNCTION <function_name> AS <package_to_class> USING <
resource_list>;

Parameters
• function_name: An UDF name referenced in SQL.
• package_to_class: For Java UDF, this name is a fully qualified class name (from

top-level package name to UDF class name). This parameter must be in double
quotation marks. And, for Python UDF, this name is a python script name.
classname. For both Java UDF and python script, use double quotation (““)
marks to indicate this parameter. And for the name, use quotation marks.

• resource_list: Provides resource list used by UDF.
- Resources that contain UDF code must be included in the list.
- If the code reads the resource file by the distributed cache interface, this list

also contains the list of resource files read by the UDF.
- The resource list is composed of multiple resource names, separated by a

comma (,). The resource list must be in double quotation (“”) marks.
- Specify the project in which the resource is located as follows: <project_name

>/resources/<resource_name>.
Example:

Issue: 20191012 25

⼤数据计算服务 User Guide / 2 Common commands

• Suppose a Java UDF class org.alidata.odps.udf.examples.Lower is in my_lower.jar,
create function my_lower as follows:
CREATE FUNCTION my_lower AS 'org.alidata.odps.udf.examples.Lower'
USING 'my_lower.jar';

• Suppose a Python UDF MyLower is used in project pyudf_test.py,create function
my_lower as follows:
create function my_lower as 'pyudf_test.MyLower' using 'test_project
/resources/pyudf_test.py';

• Suppose a Java UDF class com.aliyun.odps.examples.udf.UDTFResource is in
udtfexample1.jar, and it depends on file resource file_resource.txt and table
resource table_resource1,create function test_udtf as follows:
create function test_udtf as 'com.aliyun.odps.examples.udf.
UDTFResource' using 'udtfexample1.jar, file_resource.txt, table_reso
urce1,test_archive.zip';

Note:
• Similar to the resource files, the UDF duplicate name can be registered only

once.
• Generally UDF cannot overwrite system built-in functions. Only the project

owner has right to overwrite the built-in functions. If you are using a UDF which
 overwrites the built-in function, the warning is triggered in Summary after SQL
 execution.

Drop a Function
Command format:
DROP FUNCTION <function_name>;

Example:
DROP FUNCTION test_lower;

List Functions
Command format:
list functions; --View all user-defined functions in current project.

26 Issue: 20191012

⼤数据计算服务 User Guide / 2 Common commands
list functions -p my_project; --View all user-defined functions in the
 project 'my_project'.

2.7 Set operations
This topic describes how to use the set command to set MaxCompute or user-
defined system variables and how to clear the settings.

set command
Format
set <KEY>=<VALUE>

Action
You can use the set command to configure operations in MaxCompute.
The following table lists the system variables that are supported by MaxCompute.
System variable Description Value
odps.sql.allow.fullscan Specifies whether to allow

 a partitioned table to be
fully scanned.

• True: The partitioned
table is allowed to be
fully scanned.

• False: The partitioned
table is not allowed to
be fully scanned.

odps.stage.mapper.mem Sets the memory size of
each map worker.

Default value: 1024 MB

odps.stage.reducer.mem Sets the memory size of
each reduce worker.

Default value: 1024 MB

odps.stage.joiner.mem Sets the memory size of
each join worker.

Default value: 1024 MB

odps.stage.mem Sets the memory size of
all workers in specified
MaxCompute jobs. This
set key has lower priority
than that of the preceding
 three ones.

This set key does not have
a default value.

Issue: 20191012 27

⼤数据计算服务 User Guide / 2 Common commands

System variable Description Value
odps.stage.mapper.split.
size

Modifies the input data
 quantity of each map
worker (the input file
shard size) to manage the
 number of workers at
each map stage.

Default value: 256 MB

odps.stage.reducer.num Modifies the number of
workers at each reduce
stage.

This variable does not
have a default value.

odps.stage.joiner.num Modifies the number of
workers at each join stage.

This variable does not
have a default value.

odps.stage.num Modifies the worker
concurrency at all stages
in specified MaxCompute
 jobs. This set key has
lower priority than that of
the preceding three ones.

This variable does not
have a default value.

odps.sql.reshuffle.
dynamicpt

Sets dynamic partitions
 to avoid generating
excessive small files.

• True
• False
Default value: True

Note:
If a small number of
dynamic partitions
are generated, we
recommend that you set
the value of this variable
to False to avoid data
skew.

odps.sql.type.system.
odps2

Sets the value to True
 if the SQL statement
contains new data types

such as TINYINT,
SMALLINT, INT,
FLOAT, VARCHAR, and
TIMESTAMP BINARY.

• True
• False
Default value: False

28 Issue: 20191012

⼤数据计算服务 User Guide / 2 Common commands

System variable Description Value
odps.sql.hive.compatible Specifies whether

to enable the Hive
compatibility mode.
MaxCompute supports
 various syntaxes
specified by Hive, such
as inputRecordReader,
outputRecordReader, and
 Serde only after the Hive
 compatibility mode is
enabled.

• True
• False
Default value: False

Note:
Only lowercase letters can be used in the set command. For settings about project
operations, see Project operations.

Example
set odps.sql.executionengine.coldata.deep.buffer.size.max

• The preceding SQL statement is used to adjust the buffer size of a complex type
column in a table that is written in MaxCompute.

• Application scenarios
1. An output table contains many complex data types.
2. The size of a single complex variable contained in the output table exceeds the

 specified size.
• Description

- The default buffer size is 67,108,864 byte (64 MB).
- If an output table has 3 columns whose schema is of a complex type, such as

string, map, struct, array, and binary, MaxCompute reserves 64 MB for each
column by default. The buffer that is applied for each column is used to store
data for the corresponding batch row count row.

- We recommend that you set a proper value according to the estimated size
of the complex variables in a table. For example, if the size of each complex
variable does not exceed 1,024 byte and the batch row count value is 1024

Issue: 20191012 29

⼤数据计算服务 User Guide / 2 Common commands

(the default value), you can set the flag to 1024 × 1024. The following is an
example:
set odps.sql.executionengine.coldata.deep.buffer.size.max=1048576;

- If the value of each complex variable is between 7 MB and 8 MB, and the value
of batch row count is 32, you can set this value to 8 MB × 32.

- If the output of a task has a complex type, or if the mapjoin table of a task has a
complex type, adjusting the value affects the memory during task running. An
excessive large value might cause out of memory (OOM).

set odps.stage.mapper.split.size

• Similar to set odps.stage.mapper.split.size, the set odps.stage.mapper.
split.size command can also be used to adjust the quantity of data (in MB) read
by each mapper worker. The following is an example:
set odps.stage.mapper.split.size=256

show flags
Format
show flags; --Display parameters set by using the set command.

Note:
You can run the use project command to clear the settings.

2.8 Other operations
Alias command

The ALIAS command reads different resources (data) using a fixed resource name
in MapReduce or UDF without modifying the code.
Command format:
ALIAS <alias>=<real>;

Action:
Create alias for a resource.

30 Issue: 20191012

⼤数据计算服务 User Guide / 2 Common commands

Example:
ADD TABLE src_part PARTITION (ds='20121208') AS res_20121208;
ADD TABLE src_part PARTITION (ds='20121209') AS res_20121209;
ALIAS resName=res_20121208;
jar -resources resName -libjars work.jar -classpath ./work.jar com.
company.MainClass args ... ;//job 1
ALIAS resName=res_20121209;
jar -resources resName -libjars work.jar -classpath ./work.jar com.
company.MainClass args ... ;//job 2

In the preceding example, resource alias resName refers to different resource
tables in two jobs. Different data can be read without modifying the code.

Cost SQL
Command format:
cost sql <SQL Sentence>;

Action:
Estimate an SQL measurement message, including the size of the input data, the
number of UDFs, and the SQL complexity level.

Note:
Use the following information for reference purpose only. Refrain from using it as
an actual charging standard.

Example:
odps@ $odps_project >cost sql select distinct project_name, user_name
 from meta.m_security_users distribute by project_name sort by
project_name;
ID = 20150715113033121xxxxxxxx
Input:65727592 Bytes
UDF:0
Complexity:1.0

Issue: 20191012 31

⼤数据计算服务 User Guide / 3 Data upload and download

3 Data upload and download
3.1 Data upload and download overview

This topic provides an overview of the upload and download processes of
MaxCompute system data, including service connection information, SDKs, tools,
and how to migrate data to the cloud.
DataHub provides a real-time data tunnel, and Tunnel provides a batch data
tunnel. Both of these tunnels can access MaxCompute and provide their own SDKs
 and derivative data upload and download tools. Specifically, the tools include
 DataWorks, DTS, OGG plugin, Sqoop, Flume plugin, LogStash plugin, Fluentd
plugin, Kettle plugin, and MaxCompute client.
The underlying data tunnels used by these tools include:
• DataHub tools

- OGG
- Flume
- LogStash
- Fluentd

• Tunnel tools
- DataWorks
- DTS
- Sqoop
- Kettle
- MaxCompute client

A wide range of data upload and download tools are applicable to most cloud data
migration scenarios. The subsequent topics introduce the tools,Hadoop data migration,
database data synchronization, log collection, and other cloud migration scenarios.
We recommend that you refer to the relevant topics describing these scenarios.

Note:
For information about how to synchronize data in offline mode, we recommend
that you readData integration overview.

32 Issue: 20191012

⼤数据计算服务 User Guide / 3 Data upload and download

Limits
Limits to uploading data while using Tunnel
• Your upload speed is dependent on your network bandwidth and server

performance.
• The number of retransmission attempts has an upper limit. When this upper

limit is exceeded, the system still continues to upload the next data block.
However, your data may be lost as a result. Therefore, we recommend that you
run the select count(*) command after the data upload is completed to check
whether any data is lost.

• Tunnel commands cannot be used to upload or download the data types ARRAY,
MAP, and STRUCT.

• By default, each project supports up to 2,000 concurrent Tunnel connections.
• On the server, the lifecycle for the session of each tunnel spans 24 hours. Each

session can be shared among processes and threads on the server. During these
sessions, you must ensure that each BlockId is unique.

Limits to uploading data while using DataHub
• The size of each field cannot exceed its upper limit. For information about the

limits of each field, see Data types.

Note:
The length of a STRING-type field cannot exceed 8 MB.

• Multiple data entries are packetized into one package before they are uploaded.
Limits of TableTunnel SDK interfaces
• The value of BlockId must be greater than or equal to 0 and less than 20000. The

size of data to be uploaded in a block cannot exceed 100 GB.
• The lifecycle of a session is 24 hours. If your session times out due to large

volume data uploads, you must split your data into multiple sessions.
• The lifecycle of an HTTP request of the RecordWriter class is 120s. If no data

flows over an HTTP connection within 120 seconds, the server closes the
connection.

Issue: 20191012 33

⼤数据计算服务 User Guide / 3 Data upload and download

3.2 Connection to data tunnel service
In different network environments, you need to choose different service addresses
(Endpoints) to connect services, otherwise you will not be able to initiate requests
to services.
Both DataHub and Tunnel use different endpoints in different network
environments. Depending on the network environment, select the appropriate
service address or endpoint, to connect to the service. Select the appropriate
address or endpoint for your network to be able to send requests to the service.

Note:
Different network connections may affect your Billing.
For detailed endpoints information for different network environments, see
Endpoints and Data Centers Access Domains and Data Centers.

3.3 Cloud data migration
Data upload and data download tools of the MaxCompute platform can be used for a wide
range of cloud data migration scenarios. This article introduces some typical
scenarios.

Hadoop data migration
For Hadoop data migration, either use Sqoop or DataWorks.
• Sqoop runs an MR job on the original Hadoop cluster for the distributed data

transmission to MaxCompute and is highly efficient. For more information, see
Sqoop tool introduction.

• DataWorks can be combined with DataX for Hadoop data migration.
Database synchronization

To synchronize the data of a database to MaxCompute, select an appropriate tool
based on the database type and synchronization rule.
• For offline batch data synchronization, use DataWorks. It supports a wide range

of database types, including MySQL, SQL Server, and PostgreSQL. For more
information, see #unique_46. For instance operation instructions, see #unique_47.

• For real-time Oracle data synchronization, use OGG plug-in tools.
34 Issue: 20191012

http://sqoop.apache.org/
http://sqoop.apache.org/

⼤数据计算服务 User Guide / 3 Data upload and download

• For real-time RDS data synchronization, use DTS.
Log collection

For log collection, use Flume, Fluentd, and Logstash tools.

3.4 Data upload and download tools
The MaxCompute platform supports a wide range of data upload and download
tools. The source code for most of the tools can be found on GitHub, the open-
source community to upload and download the data. You can select the tool
according to the scenario. The tools are divided into two types: Alibaba Cloud
DTplus products and open-source products. This article helps you learn more about
these tools.

Alibaba Cloud DTplus products
• Data integration of DataWorks

Data Integration, or data synchronization, of DataWorks is a stable, efficient, and
scalable data synchronization platform provided by Alibaba Cloud. It is designed
 to provide full offline and incremental real-time data synchronization, integratio
n, and exchange services for the heterogeneous data storage systems on Alibaba
Cloud.
Data synchronization tasks support the following data types: MaxCompute,
RDS (MySQL, SQL Server, and PostgreSQL), Oracle, FTP, AnalyticDB (ADS), OSS,
Memcache, and DRDS. For more information, see #unique_40.

• MaxCompute console
- For information about console installation and basic use, see Client introduction.
- Based on the Batch data tunnel SDK, the client provides built-in Tunnel

commands for data upload and download. For more information, see Basic

Tunnel command usage.

Note:
This is an open-source aliyun-odps-console.

• DTS
Data Transmission (DTS) is a data service provided by Alibaba Cloud that supports
data exchanges between RDBMS, NoSQL, OLAP, and other data sources.

Issue: 20191012 35

https://github.com/aliyun/aliyun-odps-console
https://www.alibabacloud.com/help/doc-detail/26592.html

⼤数据计算服务 User Guide / 3 Data upload and download

It provides data migration, real-time data subscription, real-time data
synchronization, and other data transmission features.
DTS supports data synchronization from ApsaraDB for RDS and MySQL instances
to MaxCompute tables. Currently, other data source types are not supported.

Open-source products
• Sqoop

As a tool developed based on the Sqoop 1.4.6 community, Sqoop provides
enhanced MaxCompute support with the ability to import and export data from
MySQL and other relational databases to MaxCompute tables. Data in HDFS/Hive
can also be imported to MaxCompute tables.

Note:
This is an open-source aliyun-maxcompute-data-collectors.

• Kettle
Kettle is an open-source ETL tool based on Java which can run on Windows, Unix
, or Linux. It provides graphic interfaces for you to easily define data transmissi
on topology using drag-and-drop components.

Note:
This is an open-source aliyun-maxcompute-data-collectors.

• Flume
Apache Flume is a distributed and reliable system, which efficiently collects,
aggregates, and moves massive volumes of log data from different data sources to
 a centralized data storage system. It supports multiple Source and Sink plugins.
The DataHub Sink plug-in of Apache Flume allows you to upload log data to
DataHub in real time and archive the data in the MaxCompute tables.

Note:
This is an open-source aliyun-maxcompute-data-collectors.

• Fluentd
Fluentd is an open-source software product that collects logs, including
Application Logs, System Logs, and Access Logs, from various sources. It allows

36 Issue: 20191012

https://github.com/aliyun/aliyun-maxcompute-data-collectors
https://github.com/aliyun/aliyun-maxcompute-data-collectors?spm=a2c4g.11186623.2.15.oSXp9R
https://github.com/aliyun/aliyun-maxcompute-data-collectors?spm=a2c4g.11186623.2.17.oSXp9R

⼤数据计算服务 User Guide / 3 Data upload and download

 you to select plug-ins to filter and store log data to different data processors,
including MySQL, Oracle, MongoDB, Hadoop, and Treasure Data.
The DataHub plug-in of Fluentd allows you to upload data to DataHub in real
time and archive the data in MaxCompute tables.

• LogStash
Logstash is an open-source log collection and processing framework. The
logstash-output-datahub plugin allows you to import data to DataHub. This tool
 can be easily configured to collect and transmit data. When used together with
 MaxCompute or StreamCompute, it allows you to easily create an all-in-one
streaming data solution right from data collection to analysis.
The DataHub plug-in of Logstash allows you to upload data to DataHub in real
time and archive the data in MaxCompute tables.

• OGG
The DataHub plug-in of OGG allows you to incrementally synchronize the Oracle
database data to DataHub in real time and archive the data in MaxCompute tables
.

Note:
This is an open-source aliyun-maxcompute-data-collectors.

3.5 Tunnel commands
This topic introduces you to the instructions for the use of Upload, Show, Resume
and other Tunnel upload and download commands.

Features
The Client provides Tunnel commands for you to use the functions of the original
Dship tool.
Tunnel commands are mainly used to upload or download data.
• Upload: Supports file or directory (level-one) uploading. Data can only be

uploaded to a single table or table partition each time. For partitioned tables, the
destination partition must be specified.
tunnel upload log.txt test_project.test_table/p1="b1",p2="b2";
-- Uploads data in log.txt to the test_project project's test_table
table, partitions: p1="b1",p2="b2".

Issue: 20191012 37

https://github.com/aliyun/aliyun-maxcompute-data-collectors?spm=a2c4g.11186623.2.21.oSXp9R

⼤数据计算服务 User Guide / 3 Data upload and download
tunnel upload log.txt test_table --scan=only;
-- Uploads data from log.txt to the test_table table.--The scan
parameter indicates that the data in log.txt must be scanned to
determine if it complies with the test_table definitions.If it does
not, the system reports an error and the upload is stopped.

• Download: You can only download data to a single file. Only data in one table or
partition can be downloaded to one file each time. For partitioned tables, the
source partition must be specified.
tunnel download test_project.test_table/p1="b1",p2="b2" test_table.
txt;
-- Download data from the table to the test_table.txt file.

• Resume: If an error occurs because of network or the Tunnel service, you can
resume transmission of the file or directory after interruption. This command
allows you to resume the previous data upload operation, but does not support
download operations.
tunnel resume;

• Show: Displays the history of the commands used.
tunnel show history -n 5;
-- Displays details for the last five data upload/download commands.
tunnel show log;
--Displays the log for the last data upload/download.

• Purge: Clears the session directory. Use this command to clear history for last
three days.
tunnel purge 5;
--Clears logs from the previous five days.

Tunnel upload and download limits
Tunnel command does not support uploading and downloading data of the ARRAY,
MAP, and STRUCT types.
Each session has a 24-hour life cycle on the server. It can be used within 24 hours
after being created, and can be shared among processes or threads. The block ID of
 each session must be unique.

Use of Tunnel commands
Tunnel commands allow you to obtain help information using the Help sub-
command on the client. Each command and selection supports short command
format.
odps@ project_name>tunnel help;

38 Issue: 20191012

⼤数据计算服务 User Guide / 3 Data upload and download
 Usage: tunnel <subcommand> [options] [args]
 Type 'tunnel help <subcommand>' for help on a specific subcommand.
Available subcommands:
 upload (u)
 download (d)
 resume (r)
 show (s)
 purge (p)
 help (h)
tunnel is a command for uploading data to / downloading data from
MaxCompute.

Parameters
• upload: Uploads the data to a MaxCompute table.
• download: Downloads the data from a MaxCompute table.
• resume: If data fails to be uploaded, use the Resume command to resume the

upload from where it was interrupted. Do not use this command for download
operations. Each data upload or download operation is called as a session. Run
the Resume command and specify the session ID to be resumed.

• show: Displays the history of the commands used.
• purge: Clears the session directory. Use this command to clear history for last

three days.
• help: Provides 'help' information regarding questions related to Tunnel.

Upload
Import data of local files to MaxCompute tables in the append mode. The sub-
commands are used as follows:
odps@ project_name>tunnel help upload;
usage: tunnel upload [options] <path> <[project.]table[/partition]>
 upload data from local file
 -acp,-auto-create-partition <ARG> auto create target partition if not
 exists, default false
 -bs,-block-size <ARG> block size in MiB, default 100
 -c,-charset <ARG> specify file charset, default ignore.
 set ignore to download raw data
 -cp,-compress <ARG> compress, default true
 -dbr,-discard-bad-records <ARG> specify discard bad records
 action(true|false), default false
 -dfp,-date-format-pattern <ARG> specify date format pattern, default
 yyyy-MM-dd HH:mm:ss;
 -fd,-field-delimiter <ARG> specify field delimiter, support
 unicode, eg \u0001. default ","
 -h,-header <ARG> if local file should have table
 header, default false
 -mbr,-max-bad-records <ARG> max bad records, default 1000
 -ni,-null-indicator <ARG> specify null indicator string,
 default ""(empty string)
 -rd,-record-delimiter <ARG> specify record delimiter, support

Issue: 20191012 39

⼤数据计算服务 User Guide / 3 Data upload and download
 unicode, eg \u0001. default "\r\n
"
 -s,-scan <ARG> specify scan file
 action(true|false|only), default
true
 -sd,-session-dir <ARG> set session dir, default
 D:\software\odpscmd_public\
plugins\ds
 hip
 -ss,-strict-schema <ARG> specify strict schema mode. If false,
 extra data will be abandoned and
 insufficient field will be filled
 with null. Default true
 -te,-tunnel_endpoint <ARG> tunnel endpoint
 -threads <ARG> number of threads, default 1
 -tz,-time-zone <ARG> time zone, default local timezone:
 Asia/Shanghai
For example:
 tunnel upload log.txt test_project.test_table/p1="b1",p2="b2"

Parameters
• -acp: Determines if the operation automatically creates the destination partition

if it does not exist. This one is disabled by default.
• -bs: Specifies the size of each data block uploaded using Tunnel. Default value:

100MiB (1MiB=1024*1024B) .
• -c: Specifies the local data file encoding. Default value: I. When not set, the

encoding of the downloaded source data is used by default.
• -cp: Determines whether the local file is compressed before being uploaded,

reducing traffic usage. It is enabled by default.
• -dbr: Determines whether to ignore corrupted data (including extra, missing

columns or mismatched column data types).
- If this value is true, all the data that does not satisfy table definitions is

ignored.
- When the parameter is set to false, the system displays error messages in case

of corrupted data, but the raw data in the destination table remains unaffected
.

• -dfp: Specifies the format of DateTime data. Default value: yyyy-MM-dd
HH:mm:ss. If you want to specify the time format to the level of milliseconds, use
tunnel upload -dfp 'yyyy-MM-dd HH:mm:ss.SSS', for more information, see
Data types.

• -fd: Specifies the column delimiter of the local data file. The default value is
comma (,).

40 Issue: 20191012

⼤数据计算服务 User Guide / 3 Data upload and download

• -h: Determines whether the data file contains the header. If it is set to true, Dship
skips the header and starts uploading from the next row.

• -mbr: By default, if more than 1,000 rows of corrupted data is uploaded, the
upload is terminated. This parameter allows you to adjust the tolerated volume
of the corrupted data.

• -ni: Specifies the NULL data identifier. Default value: “ “(blank string).
• -rd: Specifies the row delimiter of the local data file. Default value: \r\n.
• -s: Determines whether to scan the local data file. Default value: false.

- If set to true, the system scans the data first, and then imports the data if the
format is correct.

- If set to false, the system imports the data directly without scanning.
- If the value is 'only', then only the local data is scanned. No data is imported

after scanning.
• -sd: Sets the session directory.
• -te: Specifies the tunnel endpoint.
• -threads: Specifies the number of threads. Default value: 1.
• -tz: Specifies the time zone. The default value is the local time zone: Asia/

Shanghai.
Example
• Create a destination table:

CREATE TABLE IF NOT EXISTS sale_detail(
 shop_name STRING,
 customer_id STRING,
 total_price DOUBLE)
PARTITIONED BY (sale_date STRING,region STRING);

• Add a partition:
alter table sale_detail add partition (sale_date='201312', region='
hangzhou');

• Prepare the data file data.txt with the following content:
shop9,97,100
shop10,10,200

Issue: 20191012 41

⼤数据计算服务 User Guide / 3 Data upload and download
shop11,11

The data of the third row of this file is not consistent with the definition in Table
 sale_detail. The three columns are defined by sale_detail, but this row only has
two.

• Import data:
odps@ project_name>tunnel u d:\data.txt sale_detail/sale_date=201312
,region=hangzhou -s false
Upload session: 20150610************************60c
Start upload:d:\data.txt
Total bytes:41 Split input to 1 blocks
2015-06-10 16:39:22 upload block: '1'
ERROR: column mismatch -,expected 3 columns, 2 columns found, please
 check data or delimiter

Because data.txt contains corrupted data, data import fails. The system displays
the session ID and error message.

• Verify data:
odps@ odpstest_ay52c_ay52> select * from sale_detail where sale_date
='201312';
ID = 20150610084135370gyvc61z5
+-----------+-------------+-------------+-----------+--------+
| shop_name | customer_id | total_price | sale_date | region |
+-----------+-------------+-------------+-----------+--------+
+-----------+-------------+-------------+-----------+--------+

The data import failed because of dirty data and hence the table is empty.
Show

Displays historical records. The sub-commands are used as follows:
odps@ project_name>tunnel help show;
usage: tunnel show history [options]
 show session information
 -n,-number <ARG> lines
For example:
 tunnel show history -n 5
 tunnel show log

Parameter
-n: Specifies the number of rows to be displayed.
Example
odps@ project_name>tunnel show history;
20150610************************60c failed 'u --config-file /D
:/console/conf/odps_config.ini --project odpstest_ay52c_ay52 --
endpoint http://service.odps.aliyun.com/api --id Ul*******rI1 --key

42 Issue: 20191012

⼤数据计算服务 User Guide / 3 Data upload and download
 2m*************R d:\data.txt sale_detail/sale_date=201312,region=
hangzhou -s false'

Note:
With reference to the preceding example, 20150610************************60c
 is the session ID of the failed data importing in the previous section.

Resume
Repairs and re-executes historical records (only valid for data uploads). The sub-
commands are used as follows:
odps@ project_name>tunnel help resume;
usage: tunnel resume [session_id] [-force]
 resume an upload session
 -f,-force force resume
For example:
 tunnel resume

Example
Modify the data.txt file as follows:
shopx,x_id,100
shopy,y_id,200

Re-upload the repaired data:
odps@ project_name>tunnel resume 20150610************************60c
 --force;
start resume
20150610************************60c
Upload session: 20150610************************60c
Start upload:d:\data.txt
Resume 1 blocks
2015-06-10 16:46:42 upload block: '1'
2015-06-10 16:46:42 upload block complete, blockid=1
upload complete, average speed is 0 KB/s
OK

Note:
With reference to the preceding example, 20150610************************60c
 is session ID.

Verify data:
odps@ project_name>select * from sale_detail where sale_date='201312';
 ID = 20150610xxxxxxxxxxxa741z5
 +-----------+-------------+-------------+-----------+--------+
 | shop_name | customer_id | total_price | sale_date | region |
 +-----------+-------------+-------------+-----------+--------+
 | shopx | x_id | 100.0 | 201312 | hangzhou|

Issue: 20191012 43

⼤数据计算服务 User Guide / 3 Data upload and download
 | shopy | y_id | 200.0 | 201312 | hangzhou|
 +-----------+-------------+-------------+-----------+--------+

Download
The sub-commands are used as follows:
odps@ project_name>tunnel help download;
usage: tunnel download [options] <[project.]table[/partition]> <path>
 download data to local file
 -c,-charset <ARG> specify file charset, default ignore.
 set ignore to download raw data
 -ci,-columns-index <ARG> specify the columns index(starts from
 0) to download, use comma to split
each
 index
 -cn,-columns-name <ARG> specify the columns name to download,
 use comma to split each name
 -cp,-compress <ARG> compress, default true
 -dfp,-date-format-pattern <ARG> specify date format pattern, default
 yyyy-MM-dd HH:mm:ss
 -e,-exponential <ARG> When download double values, use
 exponential express if necessary.
 Otherwise at most 20 digits will be
 reserved. Default false
 -fd,-field-delimiter <ARG> specify field delimiter, support
 unicode, eg \u0001. default ","
 -h,-header <ARG> if local file should have table header,
 default false
 -limit <ARG> specify the number of records to
 download
 -ni,-null-indicator <ARG> specify null indicator string, default
 ""(empty string)
 -rd,-record-delimiter <ARG> specify record delimiter, support
 unicode, eg \u0001. default "\r\n"
 -sd,-session-dir <ARG> set session dir, default
 D:\software\odpscmd_public\plugins\
dshi
 p
 -te,-tunnel_endpoint <ARG> tunnel endpoint
 -threads <ARG> number of threads, default 1
 -tz,-time-zone <ARG> time zone, default local timezone:
 Asia/Shanghai
usage: tunnel download [options] instance://<[project/]instance_id> <
path>
 download instance result to local file
 -c,-charset <ARG> specify file charset, default ignore.
 set ignore to download raw data
 -ci,-columns-index <ARG> specify the columns index(starts from
 0) to download, use comma to split
each
 index
 -cn,-columns-name <ARG> specify the columns name to download,
 use comma to split each name
 -cp,-compress <ARG> compress, default true
 -dfp,-date-format-pattern <ARG> specify date format pattern, default
 yyyy-MM-dd HH:mm:ss
 -e,-exponential <ARG> When download double values, use
 exponential express if necessary.
 Otherwise at most 20 digits will be
 reserved. Default false
 -fd,-field-delimiter <ARG> specify field delimiter, support

44 Issue: 20191012

⼤数据计算服务 User Guide / 3 Data upload and download
 unicode, eg \u0001. default ","
 -h,-header <ARG> if local file should have table header,
 default false
 -limit <ARG> specify the number of records to
 download
 -ni,-null-indicator <ARG> specify null indicator string, default
 ""(empty string)
 -rd,-record-delimiter <ARG> specify record delimiter, support
 unicode, eg \u0001. default "\r\n"
 -sd,-session-dir <ARG> set session dir, default
 D:\software\odpscmd_public\plugins\
dshi
 p
 -te,-tunnel_endpoint <ARG> tunnel endpoint
 -threads <ARG> number of threads, default 1
 -tz,-time-zone <ARG> time zone, default local timezone:
 Asia/Shanghai
For example:
 tunnel download test_project.test_table/p1="b1",p2="b2" log.txt
 tunnel download instance://test_project/test_instance log.txt

Parameters
• -c: Specifies the local data file encoding. Default value: Ignore.
• -ci: Specifies the column index (starts from 0) for downloading. Separate

multiple entries with commas (,).
• -cn: Specifies the names of the columns to download. Separate multiple entries

with commas (,).
• -cp, -compress: Determines whether the data is compressed before it is

downloaded, reducing traffic usage. It is enabled by default.
• -dfp: Specifies the format of DateTime data. Default value: yyyy-MM-dd

HH:mm:ss.
• -e: When downloading Double type data, use this parameter to express the

values as exponential functions. Otherwise, a maximum of 20 digits can be
retained.

• -fd: Specifies the column delimiter of the local data file. The default value is
comma (,).

• -h: Determines whether the data file contains the header. If set to ‘true’, Dship
skips the header and starts downloading from the second row.

Note:
-h=true and threads>1 cannot be used together.

• -limit: Specifies the number of files to be downloaded.
• -ni: Specifies the NULL data identifier. Default value: “ “(blank string).

Issue: 20191012 45

⼤数据计算服务 User Guide / 3 Data upload and download

• -rd: Specifies the row delimiter of the local data file. Default value: \r\n.
• -sd: Sets the session directory.
• -te: Specifies the tunnel endpoint.
• -threads: Specifies the number of threads. Default value: 1.
• -tz: Specifies the time zone. The default value is the local time zone: Asia/

Shanghai.
Example
Download data to the result.txt:
$./tunnel download sale_detail/sale_date=201312,region=hangzhou
result.txt;
 Download session: 201506101658245283870a002ed0b9
 Total records: 2
 2015-06-10 16:58:24 download records: 2
 2015-06-10 16:58:24 file size: 30 bytes
 OK

Verify the content of the result.txt:
shop9,97,100.0
shop10,10,200.0

Download the data of an instance
Method 1
Run the tunnel download command to download the query result of a specified
instance to your computer.
tunnel download instance://<[project_name/]instance_id> <path>

Parameters
• project_name: the name of the project where the instance resides.
• instance_id: the ID of the instance whose data is to be downloaded.
Example
1. Run a SELECT statement to query the data of a specified instance:

odps@ odps_test_project>select * from wc_in;
ID = 20170724071705393ge3csfb8

46 Issue: 20191012

⼤数据计算服务 User Guide / 3 Data upload and download
... ...

2. Use InstanceTunnel to download the query result to your computer:
odps@ odps_test_project>tunnel download instance://2017072407
1705393ge3csfb8 result;
2017-07-24 15:18:47 - new session: 2017072415184785b6516400090ca8
 total lines: 8
2017-07-24 15:18:47 - file [0]: [0, 8), result
downloading 8 records into 1 file
2017-07-24 15:18:47 - file [0] start
2017-07-24 15:18:48 - file [0] OK. total: 44 bytes
download OK

3. View the query result:
cat result
slkdfj
hellp
apple
tea
peach
apple
tea
teaa

Method 2
Set the use_instance_tunnel parameter to true.
After you set this parameter to true on the MaxCompute console, SQL uses
InstanceTunnel to download the query results that are returned by SELECT
statements. This helps to ensure that the query results can be properly downloaded
in the case that your session times out or the data to be downloaded exceeds the
maximum size that is permitted. You can use one of the following two methods to
enable this function:
• Log on to the latest version of Console. Find the odps_config.ini file. Then set the

use_instance_tunnel parameter to true and the instance_tunnel_max_record
 parameter to 10000.
download sql results by instance tunnel
use_instance_tunnel=true
the max records when download sql results by instance tunnel
instance_tunnel_max_record=10000

Note:
The instance_tunnel_max_record parameter specifies the maximum number
of query result records that SQL can download by using InstanceTunnel. If

Issue: 20191012 47

⼤数据计算服务 User Guide / 3 Data upload and download

this parameter is unspecified, the number of query result records that can be
downloaded is not limited by this parameter.

• Run the following command to set the console.sql.result.instancetunnel
 parameter to true:
odps@ odps_test_tunnel_project>set console.sql.result.instancetunnel
=true;
OK

You can run a SELECT statement to query the data of a specified instance:
odps@ odps_test_tunnel_project>select * from wc_in;
ID = 20170724081946458g14csfb8
Log view:
http://logview/xxxxx.....
+------------+
| key |
+------------+
| slkdfj |
| hellp |
| apple |
| tea |
| peach |
| apple |
| tea |
| teaa |
+------------+
A total of 8 records fetched by instance tunnel.

Note:
When InstanceTunnel is enabled, a message is displayed that states that a total
of eight records is returned, after you run a SELECT statement to query the data
of an instance. You can run the set console.sql.result.instancetunnel
 command to disable InstanceTunnel.

Purge
Purge the session directory. By default, sessions for last three days are purged. The
sub-commands are used as follows:
odps@ project_name>tunnel help purge;
usage: tunnel purge [n]
 force session history to be purged.([n] days before,
default
 3 days)
For example:
 tunnel purge 5

Data types:

48 Issue: 20191012

⼤数据计算服务 User Guide / 3 Data upload and download

Type Required
STRING String type data. The length cannot exceed 8MB.
BOOLEN Upload values only support true, false, 0, and 1. Only the

values true or false (not case-sensitive) are supported for
downloading.

BIGINT Value range: [-9223372036854775807, 9223372036854775807].
DOUBLE • 16-bit valid.

• Uploads support expression in scientific notation.
• Supports only numerical expression for downloading.
• Max value: 1.7976931348623157E308.
• Min value: 4.9E-324.
• Positive infinity: Infinity.
• Negative infinity: -Infinity.

DATETIME By default, Datetime data supports the UTC+8 time zone for
data upload. Use the command to specify the format pattern
for the date in your data.

If you upload DATETIME type data, specify the time and date format. For more
information about specific formats, see SimpleDateFormat.
"yyyyMMddHHmmss": data format "20140209101000"
"yyyy-MM-dd HH:mm:ss" (default): data format "2014-02-09 10:10:00"
"MM/dd/yyyy": data format "09/01/2014"

Example
tunnel upload log.txt test_table -dfp "yyyy-MM-dd HH:mm:ss"

Null: All data types can be Null.
• By default, a blank string indicates a Null value.

Issue: 20191012 49

⼤数据计算服务 User Guide / 3 Data upload and download

• The parameter -null-indicator can be used in the command line to specify a
Null string.

tunnel upload log.txt test_table -ni "NULL"

Character encoding: You can specify the character encoding of the file. Default
value: UTF-8.
tunnel upload log.txt test_table -c "gbk"

Delimiter: The Tunnel commands support custom file delimiters. The row delimiter
is ‘-record-delimiter’, and the column delimiter is -field-delimiter.
Description:
• Row and column delimiters of multiple characters are supported.
• A column delimiter cannot contain a row delimiter.
• Only the follow escape character delimiters are supported in the command line: \

r, \n, and \t.
Example
tunnel upload log.txt test_table -fd "||" -rd "\r\n"

3.6 Tunnel SDK
3.6.1 Tunnel overview

This topic provides an overview of MaxCompute Tunnel, which is a data tunnel that
is used to upload and download data to MaxCompute.
MaxCompute is based on Tunnel SDK and offers data upload and download tools.
For more information, see Client.
When using Maven, you can search for odps-sdk-core in the Maven database to find
different versions of Java SDK. The configuration is as follows:
<dependency>
 <groupId>com.aliyun.odps</groupId>
 <artifactId>odps-sdk-core</artifactId>
 <version>0.24.0-public</version>
</dependency>

The following table describes the interfaces of Tunnel SDK, which may differ
according to the SDK version. For more information, see SDK Java Doc.

50 Issue: 20191012

http://search.maven.org/
https://www.javadoc.io/doc/com.aliyun.odps/odps-sdk-core/0.31.3-public

⼤数据计算服务 User Guide / 3 Data upload and download

Interface Description
TableTunnel The ingress-class interface that is used

 to access the MaxCompute Tunnel
service. You can access MaxCompute
and Tunnel through the Internet or an
 intranet network on Alibaba Cloud.
Data downloaded through an intranet
network is free of charge.

TableTunnel.UploadSession A session that is for uploading data to a
MaxCompute table.

TableTunnel.DownloadSession A session that is for downloading data
from a MaxCompute table.

InstanceTunnel The ingress-class interface that is used
 to access the MaxCompute Tunnel
service. You can access MaxCompute
and Tunnel through the Internet or an
 intranet network on Alibaba Cloud.
Data downloaded through an intranet
network is free of charge.

InstanceTunnel.DownloadSession A session that is for downloading data
to a MaxCompute SQL instance. The
SQL instance must start with theSELECT
keyword and is used for querying data.

Note:
• For information about Tunnel SDK, see SDK Java Doc.
• For information about service connections, see Configure Endpoint.

3.6.2 TableTunnel
This topic provides a definition and describes the processes and limits of
TableTunnel, which itself provides an ingress class for you to use the MaxCompute
Tunnel service to upload and download tables.

Definition
The TableTunnel interface is defined as follows:
public class TableTunnel {
 public DownloadSession createDownloadSession(String projectName,
String tableName);
 public DownloadSession createDownloadSession(String projectName,
String tableName, PartitionSpec partitionSpec);

Issue: 20191012 51

https://www.javadoc.io/doc/com.aliyun.odps/odps-sdk-core/0.31.3-public

⼤数据计算服务 User Guide / 3 Data upload and download
 public UploadSession createUploadSession(String projectName, String
tableName);
 public UploadSession createUploadSession(String projectName, String
tableName, PartitionSpec partitionSpec);
 public DownloadSession getDownloadSession(String projectName, String
tableName, PartitionSpec partitionSpec, String id);
 public DownloadSession getDownloadSession(String projectName, String
tableName, String id);
 public UploadSession getUploadSession(String projectName, String
tableName, PartitionSpec partitionSpec, String id);
 public UploadSession getUploadSession(String projectName, String
tableName, String id);
}

For more information, see Java-sdk-doc.
Parameter description:
• lifecycle: the period of time that starts when a TableTunnel instance is created

and ends when the service process is completed.
• UploadSession and DownloadSession: the objects that you can create by using

TableTunnel. After creating an UploadSession or DownloadSession object, you
can call a session, TableTunnel.UploadSession or TableTunnel.DownloadSe
ssion, to upload or download data.

• Session: the period of time in which a table or partition is uploaded or
downloaded. A session consists of one or more HTTP requests to the Tunnel
RESTful API actions that you call.

• TableTunnel.UploadSession: This session offers the same capabilities as the
INSERT INTO statement. You can create multiple sessions to upload the same
table or partition, and these sessions do not affect each another. The data
uploaded by each session is stored to a unique directory.

• RecordWriter: In TableTunnel.UploadSession, each RecordWriter class
corresponds to an HTTP request and is uniquely identified by its block ID. The
block ID is the name of the file corresponding to the RecordWriter class.

• blockId: If you use the same block ID to open a RecordWriter class multiple
times in the same session, the data uploaded by the RecordWriter class that
is the last to call the close() function overwrites all previous data. This is
helpful in retransmitting data of a block in case that the block data fails to be
transmitted.

52 Issue: 20191012

https://www.javadoc.io/doc/com.aliyun.odps/odps-sdk-core/0.31.3-public

⼤数据计算服务 User Guide / 3 Data upload and download

Process
1. The RecordWriter.write() function uploads your data as files to a temporary

directory.
2. The RecordWriter.close() function moves the files from the temporary

directory to the Data directory.
3. The session.commit() function moves each file in the Data directory to the

directory where the corresponding table is located, and updates the table
metadata accordingly. In this way, data moved into a table by the current task can
be visible to the other MaxCompute tasks such as SQL and MapReduce.

Limits
• The number used for the block ID must be greater than or equal to 0 and less

than 20000. The size of data to be uploaded in a block cannot exceed 100 GB.
• A session is uniquely identified by its ID. The lifecycle of a session is 24 hours. If

your session times out due to large data uploads, you will need to split your data
into multiple sessions to mitigate the chance of session timeouts.

• The lifecycle of an HTTP request of a RecordWriter class is 120s. If there is no
inbound traffic over an HTTP connection within 120 seconds, the server closes
the connection.

Note:
HTTP provides an 8-KB buffer. When you call the RecordWriter.write()
function, your data can be saved to the buffer with no inbound traffic over the
corresponding HTTP connection. In such a case, you can call the TunnelReco
rdWriter.flush() function to make this data stored in the buffer into inbound
traffic over the HTTP connection.

• When you create RecordWriter classes to write logs to MaxCompute, the
RecordWriter classes are likely to time out due to unexpected traffic fluctuations.
Therefore, we recommend that you:
- Do not create a RecordWriter class for each of your data records because each

RecordWriter class corresponds to a file. If you create a RecordWriter class for

Issue: 20191012 53

⼤数据计算服务 User Guide / 3 Data upload and download

every data record, a large number of small files are produced, degrading the
overall performance of MaxCompute.

- Do not create a RecordWriter class to write data in batches until the size of
cached code reaches 65 MB.

• The lifecycle of a RecordReader class is 300s.
3.6.3 InstanceTunnel

This topic describes the interface, parameters, and limits of InstanceTunnel. You
can use InstanceTunnel to call an SQL instance that starts with the SELECT keyword
and is used for querying data.
The InstanceTunnel interface is defined as follows:
public class InstanceTunnel{
 public DownloadSession createDownloadSession(String projectName,
String instanceID);
 public DownloadSession createDownloadSession(String projectName,
String instanceID, boolean limitEnabled);
 public DownloadSession getDownloadSession(String projectName, String
id);
 }

For more information, see Java-sdk-doc.
Parameter description:
• projectName: the name of the project where the specified instance resides.
• instanceID: the ID of the specified instance.
Limits:
• If the number of records does not exceed 10,000, all users who have the

permissions to read the specified instance can call this instance. This is the same
for when calling a RESTful API to query data.

• If the number of records exceeds 10,000, only users who have the permissions to
read all the source tables from which the specified instance queries data can call
 this instance.

54 Issue: 20191012

https://www.javadoc.io/doc/com.aliyun.odps/odps-sdk-core/0.31.3-public

⼤数据计算服务 User Guide / 3 Data upload and download

3.6.4 UploadSession
This paper introduces the UploadSession interface.

UploadSession interface defination
The UploadSession interface is defined as follows:
public class UploadSession {
 UploadSession(Configuration conf, String projectName, String
tableName,
 String partitionSpec) throws TunnelException;
 UploadSession(Configuration conf, String projectName, String
tableName,
 String partitionSpec, String uploadId) throws TunnelExce
ption;
 public void commit(Long[] blocks);
 public Long[] getBlockList();
 public String getId();
 public TableSchema getSchema();
 public UploadSession.Status getStatus();
 public Record newRecord();
 public RecordWriter openRecordWriter(long blockId);
 public RecordWriter openRecordWriter(long blockId, boolean
compress);
 public RecordWriter openBufferedWriter();
 public RecordWriter openBufferedWriter(boolean compress);
 }

Upload Objects description
• Life cycle: Begins with the creation of the Upload instance and ends with the

completion of an upload process.
• Create Upload instance: An instance can be created either by Calling the

Constructor or using the TableTunnel.
- Request mode: Synchronous.
- The server creates a session for this upload instance and a unique UploadId is

generated. Obtain this ID using the getId on the client.
• Upload data:

- Request mode: Synchronous.
- Call the openRecordWriter method to generate a RecordWriter instance. The

blockId identifies the data to be uploaded and indicates its location in the
table within the value range [0, 20000]. If the data upload fails, use BlockId to
re-upload it.

Issue: 20191012 55

⼤数据计算服务 User Guide / 3 Data upload and download

• View upload:
- Request mode: Synchronous.
- Call getStatus to obtain the current upload status.
- Call getBlockList to obtain the successfully uploaded blockId list. Compare

the result with the upload blockId list to find and re-upload failed blockIds.
• End upload:

- Request mode: Synchronous.
- Call the commit (Long[] blocks) method. The blocks list shows successfully

uploaded blocks. The server verifies this list.
- This function enhances data verification. If the provided block list does not

match the block list on the server, an error occurs.
- If Commit fails, try again.

• Six kinds of status are described as follows:
1. UNKNOWN: The initial value when the server creates a session.
2. NORMAL: The upload object is created successfully.
3. CLOSING: The server changes the status to CLOSING when complete is called.
4. CLOSED: The upload is now complete. Precisely, moving the data to the

directory where the result table is located.
5. EXPIRED: The upload session is timed out.
6. CRITICAL: A service error has occurred.

Note:
• The blockIds in the same UploadSession must be unique. In a single

UploadSession, when you use a blockId to open RecordWriter, write a batch
of data, call close, and then call commit. Do not use the same blockID to open
another RecordWriter to write data.

• The maximum size of a block is 100 GB, preferably more than 64 MB.
• The threshold of each session on the server is 24 hours.
• When data is being uploaded, each 8 KB of data written by the Writer triggers

 a network action. If no network actions are triggered within 120 seconds, the
 server closes the connection. In this case, open a new connection when the
Writer becomes unavailable.

56 Issue: 20191012

⼤数据计算服务 User Guide / 3 Data upload and download

• We recommend that you use the openBufferedWriter interface to upload
data. This interface does not show blockId details and contains an internal
data cache for automatic retry upon failures. For more information, see the
introductions and examples of TunnelBufferedWriter.

3.6.5 DownloadSession
This DownloadSession interface is defined as follows:
public class DownloadSession {
 DownloadSession(Configuration conf, String projectName, String
 tableName,
 String partitionSpec) throws TunnelException
 DownloadSession(Configuration conf, String projectName, String
 tableName,
 String partitionSpec, String downloadId) throws TunnelExce
ption
 public String getId()
 public long getRecordCount()
 public TableSchema getSchema()
 public TableTunnel.DownloadStatus getStatus()
 public RecordReader openRecordReader(long start, long count)
 public RecordReader openRecordReader(long start, long count,
boolean compress)
 }

Parameters:
• Life cycle: Begins with the creation of the Download instance and ends with the

completion of a download process.
• Create Download instance: An instance can be created either by Calling the

Constructor or by using the TableTunnel.
- Request mode: Synchronous.
- The server creates a session for this download instance and a unique

DownloadId is generated. Obtain this ID using the getId on the client.
- This operation incurs high costs. The server creates an index for the data files

. Large files generally take longer time to download.
- Simultaneously, the server returns the total number of Records and starts

multiple concurrent downloads based on this value.
• Download data:

- Request mode: Asynchronous.
- Call the openRecordReader method to generate a RecordReader instance.

“start” identifies the start position of downloading this record, which cannot

Issue: 20191012 57

⼤数据计算服务 User Guide / 3 Data upload and download

be less than zero. “count” specifies the number of records for this download
which must be greater than zero.

• View download:
- Request mode: Synchronous.
- Call getStatus to obtain the current download status.

• Following is the list of 4 states:
- UNKNOWN: The initial value when the server creates a session.
- NORMAL: The download object is successfully created.
- CLOSED: The download is now complete.
- EXPIRED: The download session is timed out.

3.6.6 TunnelBufferedWriter
To complete the uploading process, follow these steps:
1. Divide the data.
2. Specify a block ID for each data block by calling the openRecordWriter (id).
3. Use one or more threads to upload the blocks. Even if a single block upload fails,

you must re-upload all the blocks.
4. After uploading all blocks, provide the uploaded blockID list to the server for

verification. Call session.commit([1,2,3,…]) to complete this action.
The connection time-out and other limits on the server block manager
complicate the upload process logic. So, to simplify the process, SDK provides an
 enhanced RecordWriter—TunnelBufferWriter interface.

This interface is defined as follows:
public class TunnelBufferedWriter implements RecordWriter {
 public TunnelBufferedWriter(TableTunnel.UploadSession session
, CompressOption option) throws IOException;
 public long getTotalBytes();
 public void setBufferSize(long bufferSize);
 public void setRetryStrategy(RetryStrategy strategy);
 public void write(Record r) throws IOException;
 public void close() throws IOException;
 }

Parameters:
• Life cycle: Begins with a RecordWriter creation and ends with the completion of

data upload.

58 Issue: 20191012

⼤数据计算服务 User Guide / 3 Data upload and download

• Create TunnelBufferedWriter instance: Call openBufferedWriter interface
ofUploadSession to create an instance.

• Data upload: Call the Write interface. Data is first written to the local cache.
Once the cache is full, the data is submitted to the server in batches to avoid
connection time-out. Automatic retries are supported if the upload fails.

• End upload: Call the close interface, and then call the Commit interface of
UploadSession to complete the upload process.

• Buffer control: Use the setBufferSize interface to modify the size of memory
(bytes), occupied by the buffer preferably greater than 64 MB(default) to prevent
the server from generating numerous small files that may critically impact the
performance. The default value is generally used for this parameter without
additional settings.

• Retry policy setting: You have three retry avoidance policies to choose from:
EXPONENTIAL_BACKOFF, LINEAR_BACKOFF, and CONSTANT_BACKOFF. For
example: The following code segment sets the number of Write retries to 6. To
avoid unnecessary retries, each retry is performed only after exponentially
ascending intervals of 4s, 8s, 16s, 32s, 64s, and 128s. This is the default
configuration and generally cannot be changed.
RetryStrategy retry
 = new RetryStrategy(6, 4, RetryStrategy.BackoffStrategy.EXPONENTIA
L_BACKOFF)
writer = (TunnelBufferedWriter) uploadSession.openBufferedWriter();
writer.setRetryStrategy(retry);

3.7 Bulk data channel SDK example
3.7.1 Example

This article recommends using Tunnel service address and Tunnel Buffered Writer
to upload data.
• MaxCompute provides two service addresses for you to choose from. If you select

the Tunnel service address, it may directly affect your data upload efficiency and
billing. For more information, see Tunnel SDK overview.

• We recommend that you use the TunnelBufferedWriter interface when uploading
data. For more information, see the sample codes in BufferedWriter.

Issue: 20191012 59

⼤数据计算服务 User Guide / 3 Data upload and download

• Operations may vary based on SDK versions. This example is provided only
for your reference. Consider variances between different versions before you
proceed.

3.7.2 Simple upload
 import java.io.IOException;
 import java.util.Date;
 import com.aliyun.odps.Column;
 import com.aliyun.odps.Odps;
 import com.aliyun.odps.PartitionSpec;
 import com.aliyun.odps.TableSchema;
 import com.aliyun.odps.account.Account;
 import com.aliyun.odps.account.AliyunAccount;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.RecordWriter;
 import com.aliyun.odps.tunnel.TableTunnel;
 import com.aliyun.odps.tunnel.TunnelException;
 import com.aliyun.odps.tunnel.TableTunnel.UploadSession;
 public class UploadSample {
 private static String accessId = "<your access id>";
 private static String accessKey = "<your access Key>";
 private static String odpsUrl = "http://service.odps.aliyun.
com/api";
 private static String tunnelUrl = "http://dt.cn-shanghai.
maxcompute.aliyun-inc.com";
 //The tunnelURL must be set if you need to
connect internal network, otherwise, the system uses public network as
 default. The example shows the Tunnel Endpoint of classical network
in HuaDong 2, for other regions, see Access domain and data centers.
 private static String project = "<your project>";
 private static String table = "<your table name>";
 private static String partition = "<your partition spec>";
 public static void main(String args[]) {
 Account account = new AliyunAccount(accessId,
accessKey);
 Odps odps = new Odps(account);
 odps.setEndpoint(odpsUrl);
 odps.setDefaultProject(project);
 try {
 TableTunnel tunnel = new TableTunnel(odps);
 tunnel.setEndpoint(tunnelUrl); //set
tunnelUrl
 PartitionSpec partitionSpec = new PartitionS
pec(partition);
 UploadSession uploadSession = tunnel.
createUploadSession(project,
 table, partitionSpec);
 System.out.println("Session Status is : "
 + uploadSession.getStatus().
toString());
 TableSchema schema = uploadSession.getSchema
();
 // After preparing data, open a Writer to
start writing data. The prepared data is written to one block.
 // When the data written to individual
 blocks is too small, the system will produce a large number of
small files, seriously degrading computing performance. We strongly
 recommend over 64 MB of data be written each time (up to 100 GB of
data can be written to the same block).

60 Issue: 20191012

⼤数据计算服务 User Guide / 3 Data upload and download
 // You can use the average data volume and
record count to estimate the total value. For example: 64MB < Average
data size x Record count < 100GB.
 RecordWriter recordWriter = uploadSession.
openRecordWriter(0);
 Record record = uploadSession.newRecord();
 for (int i = 0; i < schema.getColumns().size
(); i++) {
 Column column = schema.getColumn(i);
 switch (column.getType()) {
 case BIGINT:
 record.setBigint(i, 1L);
 break;
 Case Boolean:
 record.setBoolean(i, true);
 break;
 case DATETIME:
 record.setDatetime(i, new
Date());
 break;
 case DOUBLE:
 record.setDouble(i, 0.0);
 break;
 case STRING:
 record.setString(i, "sample
");
 break;
 default:
 throw new RuntimeException("
Unknown column type: "
 + column.
getType());
 }
 }
 for (int i = 0; i < 10; i++) {
 // Writes data to the server. Each 8
 KB of data written triggers a network transmission.
 // If no network transmission occurs
 for 120 seconds, the server closes the connection. At this time, the
Writer becomes unavailable and you must write data again.
 recordWriter.write(record);
 }
 recordWriter.close();
 uploadSession.commit(new Long[]{0L});
 System.out.println("upload success!") ;
 } catch (TunnelException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }

Constructor:
PartitionSpec(String spec): Uses a string to construct this class of object.
Parameters
spec: The partition definition string, such as pt=’1’,ds=’2’.

Issue: 20191012 61

⼤数据计算服务 User Guide / 3 Data upload and download

In this program, the configuration must be as follows:
private static String partition = “pt=’XXX’,ds=’XXX’”;

Note:
This paper gives the Tunnel Endpoint of East China 2 classical network. The Tunnel
Endpoint settings of other regions can be referred to Configure Endpoint.

3.7.3 Simple download
This topic describes how to use MaxCompute Java SDK to download data.

Download data by using the DownloadSession interface of TableTunnel
import java.io.IOException;
 import java.util.Date;
 import com.aliyun.odps.Column;
 import com.aliyun.odps.Odps;
 import com.aliyun.odps.PartitionSpec;
 import com.aliyun.odps.TableSchema;
 import com.aliyun.odps.account.Account;
 import com.aliyun.odps.account.AliyunAccount;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.RecordReader;
 import com.aliyun.odps.tunnel.TableTunnel;
 import com.aliyun.odps.tunnel.TableTunnel.DownloadSession;
 import com.aliyun.odps.tunnel.TunnelException;
 public class DownloadSample {
 private static String accessId = "<your access id>";
 private static String accessKey = "<your access Key>";
 private static String odpsUrl = "http://service.odps.aliyun.com/
api";
 private static String tunnelUrl = "http://dt.cn-shanghai.
maxcompute.aliyun-inc.com";
 //tunnelUrl specifies the tunnel URL. This parameter is mandatory
 when you download data over your intranet. If this parameter is set
to null, your data is downloaded via the Internet.
 private static String project = "<your project>";
 private static String table = "<your table name>";
 private static String partition = "<your partition spec>";
 public static void main(String args[]) {
 Account account = new AliyunAccount(accessId, accessKey);
 Odps odps = new Odps(account);
 odps.setEndpoint(odpsUrl);
 odps.setDefaultProject(project);
 TableTunnel tunnel = new TableTunnel(odps);
 tunnel.setEndpoint(tunnelUrl);//Set tunnelUrl.
 PartitionSpec partitionSpec = new PartitionSpec(partition);
 try {
 DownloadSession downloadSession = tunnel.createDown
loadSession(project, table,
 partitionSpec);
 System.out.println("Session Status is : "
 + downloadSession.getStatus().
toString());
 long count = downloadSession.getRecordCount();
 System.out.println("RecordCount is: " + count);

62 Issue: 20191012

⼤数据计算服务 User Guide / 3 Data upload and download
 RecordReader recordReader = downloadSession.
openRecordReader(0,
 count);
 Record record;
 while ((record = recordReader.read()) != null
) {
 consumeRecord(record, downloadSession
.getSchema());
 }
 recordReader.close();
 } catch (TunnelException e) {
 e.printStackTrace();
 } catch (IOException e1) {
 e1.printStackTrace();
 }
 }
 private static void consumeRecord(Record record, TableSchema
schema) {
 for (int i = 0; i < schema.getColumns().size(); i++)
 {
 Column column = schema.getColumn(i);
 String colValue = null;
 switch (column.getType()) {
 case BIGINT: {
 Long v = record.getBigint(i);
 colValue = v == null ? null : v.
toString();
 break;
 }
 case BOOLEAN: {
 Boolean v = record.getBoolean(i);
 colValue = v == null ? null : v.
toString();
 break;
 }
 case DATETIME: {
 Date v = record.getDatetime(i);
 colValue = v == null ? null : v.
toString();
 break;
 }
 case DOUBLE: {
 Double v = record.getDouble(i);
 colValue = v == null ? null : v.
toString();
 break;
 }
 case STRING: {
 String v = record.getString(i);
 colValue = v == null ? null : v.
toString();
 break;
 }
 default:
 throw new RuntimeException("Unknown
column type: "
 + column.getType());
 }
 System.out.print(colValue == null ? "null" :
colValue);
 if (i != schema.getColumns().size())
 System.out.print("\t");
 }
 System.out.println();

Issue: 20191012 63

⼤数据计算服务 User Guide / 3 Data upload and download
 }
 }

Note:
• In the preceding command, a tunnel endpoint on the classic network in the

China East 2 (Shanghai) region is used as an example. For more information
about how to configure tunnel endpoints in the other regions, see Access domains

and data centers.
• To make the test easier, we use System.out.printl to output data. You can

choose to output data as a file in TXT format.
Download data by using the DownloadSession interface of InstanceTunnel

Odps odps = OdpsUtils.newDefaultOdps(); //Initialize Open Data
Processing Service (ODPS) objects.
 Instance i = SQLTask.run(odps, "select * from wc_in;");
 i.waitForSuccess();

 //Create an instance tunnel.
 InstanceTunnel tunnel = new InstanceTunnel(odps);
 //Create a download session based on the specified instance ID.
 InstanceTunnel.DownloadSession session = tunnel.createDown
loadSession(odps.getDefaultProject(), i.getId());

 long count = session.getRecordCount();
 //Specify the number of records that will be presented.
 System.out.println(count);

 //Obtain data by using the same method as you do with TableTunnel.
 TunnelRecordReader reader = session.openRecordReader(0, count);
 Record record;
 while ((record = reader.read()) != null) {
 for (int col = 0; col < session.getSchema().getColumns().size();
 ++col) {
 //Specify that all the fields in the wc_in table are strings
and will be directly printed.
 System.out.println(record.get(col));
 }
 }
 reader.close();

Download data by using SQLTask.getResultSet()
Odps odps = OdpsUtils.newDefaultOdps(); //Initialize ODPS objects.
 Instance i = SQLTask.run(odps, "select * from wc_in;");
 i.waitForSuccess();

 //Obtain the result iterator based on the specified instance
object.
 ResultSet rs = SQLTask.getResultSet(i);
 for (Record r : rs) {
 //Specify the number of records that will be presented.
 System.out.println(rs.getRecordCount());

64 Issue: 20191012

⼤数据计算服务 User Guide / 3 Data upload and download
 for (int col = 0; col < rs.getTableSchema().getColumns().size();
 ++col) {
 //Specify that all the fields in the wc_in table are strings
and will be directly printed.
 System.out.println(r.get(col));
 }
 }

3.7.4 Example for multi-thread uploading
import java.io.IOException;
 import java.util.ArrayList;
 import java.util.Date;
 import java.util.concurrent.Callable;
 import java.util.concurrent.ExecutorService;
 import java.util.concurrent.Executors;
 import com.aliyun.odps.Column;
 import com.aliyun.odps.Odps;
 import com.aliyun.odps.PartitionSpec;
 import com.aliyun.odps.TableSchema;
 import com.aliyun.odps.account.Account;
 import com.aliyun.odps.account.AliyunAccount;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.RecordWriter;
 import com.aliyun.odps.tunnel.TableTunnel;
 import com.aliyun.odps.tunnel.TunnelException;
 import com.aliyun.odps.tunnel.TableTunnel.UploadSession;
 class UploadThread implements Callable<Boolean> {
 private long id;
 private RecordWriter recordWriter;
 private Record record;
 private TableSchema tableSchema;
 public UploadThread(long id, RecordWriter recordWriter,
Record record,
 TableSchema tableSchema) {
 this.id = id;
 this.recordWriter = recordWriter;
 this.record = record;
 this.tableSchema = tableSchema;
 }
 @Override
 public Boolean call() {
 for (int i = 0; i < tableSchema.getColumns().size();
i++) {
 Column column = tableSchema.getColumn(i);
 switch (column.getType()) {
 Case bigint:
 record.setBigint(i, 1L);
 Break;
 Case Boolean:
 record.setBoolean(i, true);
 break;
 case DATETIME:
 record.setDatetime(i, new Date());
 break;
 case DOUBLE:
 record.setDouble(i, 0.0);
 break;
 case STRING:
 record.setString(i, "sample");
 break;
 default:

Issue: 20191012 65

⼤数据计算服务 User Guide / 3 Data upload and download
 throw new RuntimeException("Unknown
column type: "
 + column.getType());
 }
 }
 for (int i = 0; i < 10; i++) {
 try {
 recordWriter.write(record);
 } catch (IOException e) {
 recordWriter.close();
 e.printStackTrace();
 return false;
 }
 }
 recordWriter.close();
 return true;
 }
 }
 public class UploadThreadSample {
 private static String accessId = "<your access id>";
 private static String accessKey = "<your access Key>";
 private static String odpsUrl = "<http://service.odps.aliyun.
com/api>";
 private static String tunnelUrl = "<http://dt.cn-shanghai.
maxcompute.aliyun-inc.com>";
 //The tunnelURL must be set if you need to
connect internal network, otherwise, the system uses public network as
 default. The example shows the Tunnel Endpoint of classical network
in HuaDong 2, for other regions, see Access domain and data centers.
 private static String project = "<your project>";
 private static String table = "<your table name>";
 private static String partition = "<your partition spec>";
 private static int threadNum = 10;
 public static void main(String args[]) {
 Account account = new AliyunAccount(accessId,
accessKey);
 Odps odps = new Odps(account);
 odps.setEndpoint(odpsUrl);
 odps.setDefaultProject(project);
 try {
 TableTunnel tunnel = new TableTunnel(odps);
 tunnel.setEndpoint(tunnelUrl); //set
tunnelUrl
 PartitionSpec partitionSpec = new PartitionS
pec(partition);
 UploadSession uploadSession = tunnel.
createUploadSession(project,
 table, partitionSpec);
 System.out.println("Session Status is : "
 + uploadSession.getStatus().
toString());
 ExecutorService pool = Executors.newFixedTh
readPool(threadNum);
 ArrayList<Callable<Boolean>> callers = new
ArrayList<Callable<Boolean>>();
 for (int i = 0; i < threadNum; i++) {
 RecordWriter recordWriter =
uploadSession.openRecordWriter(i);
 Record record = uploadSession.
newRecord();
 callers.add(new UploadThread(i,
recordWriter, record,
 uploadSession.
getSchema()));

66 Issue: 20191012

⼤数据计算服务 User Guide / 3 Data upload and download
 }
 pool.invokeAll(callers);
 pool.shutdown();
 Long[] blockList = new Long[threadNum];
 for (int i = 0; i < threadNum; i++)
 blockList[i] = Long.valueOf(i);
 uploadSession.commit(blockList);
 System.out.println("upload success!") ;
 } catch (TunnelException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

The Tunnel Endpoint can be specified or left blank.
• If specified, the uploading data goes through the specified Endpoint.
• If not specified, the uploading data goes through public network.
• This paper gives the Tunnel Endpoint of East China 2 classical network. The

Tunnel Endpoint settings of other regions can be referred to Configure Endpoint.
3.7.5 Example for multi-thread downloading

This article shows you how to use the TableTunnel interface to achieve
multithreaded download through code examples.
import java.io.IOException;
 import java.util.ArrayList;
 import java.util.Date;
 import java.util.List;
 import java.util.concurrent.Callable;
 import java.util.concurrent.ExecutionException;
 import java.util.concurrent.ExecutorService;
 import java.util.concurrent.Executors;
 import java.util.concurrent.Future;
 import com.aliyun.odps.Column;
 import com.aliyun.odps.Odps;
 import com.aliyun.odps.PartitionSpec;
 import com.aliyun.odps.TableSchema;
 import com.aliyun.odps.account.Account;
 import com.aliyun.odps.account.AliyunAccount;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.RecordReader;
 import com.aliyun.odps.tunnel.TableTunnel;
 import com.aliyun.odps.tunnel.TableTunnel.DownloadSession;
 import com.aliyun.odps.tunnel.TunnelException;
 class DownloadThread implements Callable<Long> {
 private long id;
 private RecordReader recordReader;
 private TableSchema tableSchema;
 public DownloadThread(int id,
 RecordReader recordReader, TableSchema
tableSchema) {
 this.id = id;

Issue: 20191012 67

⼤数据计算服务 User Guide / 3 Data upload and download
 this.recordReader = recordReader;
 this.tableSchema = tableSchema;
 }
 @Override
 public Long call() {
 Long recordNum = 0L;
 try {
 Record record;
 while ((record = recordReader.read()) ! =
null) {
 recordNum++;
 System.out.print("Thread " + id + "\t
");
 consumeRecord(record, tableSchema);
 }
 recordReader.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 return recordNum;
 }
 private static void consumeRecord(Record record, TableSchema
schema) {
 for (int i = 0; i < schema.getColumns().size(); i++)
 {
 Column column = schema.getColumn(i);
 String colValue = null;
 switch (column.getType()) {
 case BIGINT: {
 Long v = record.getBigint(i);
 colValue = v == null ? null : v.
toString();
 Break;
 }
 case BOOLEAN: {
 Boolean v = record.getBoolean(i);
 colValue = v == null ? null : v.
toString();
 break;
 }
 case DATETIME: {
 Date v = record.getDatetime(i);
 colValue = v == null ? null : v.
toString();
 break;
 }
 case DOUBLE: {
 Double v = record.getDouble(i);
 colValue = v == null ? null : v.
toString();
 break;
 }
 case STRING: {
 String v = record.getString(i);
 colValue = v == null ? null : v.
toString();
 break;
 }
 Default:
 throw new RuntimeException("Unknown
column type: "
 + column.getType());
 }

68 Issue: 20191012

⼤数据计算服务 User Guide / 3 Data upload and download
 System.out.print(colValue == null ? "null" :
colValue);
 If (I! = schema.getColumns().size())
 System.out.print("\t");
 }
 System.out.println();
 }
 }
 public class DownloadThreadSample {
 private static String accessId = "<your access id>";
 private static String accessKey = "<your access Key>";
 private static String odpsUrl = "http://service.odps.aliyun.
com/api";
 private static String tunnelUrl = "http://dt.cn-shanghai.
maxcompute.aliyun-inc.com";
 //The tunnelURL must be set if you need to
connect internal network, otherwise, the system uses public network as
 default. The example shows the Tunnel Endpoint of classical network
in HuaDong 2, for other regions, see Access domain and data centers.
 private static String project = "<your project>";
 private static String table = "<your table name>";
 private static String partition = "<your partition spec>";
 private static int threadNum = 10;
 public static void main(String args[]) {
 Account account = new AliyunAccount(accessId,
accessKey);
 Odps odps = new Odps(account);
 odps.setEndpoint(odpsUrl);
 odps.setDefaultProject(project);
 TableTunnel tunnel = new TableTunnel(odps);
 tunnel.setEndpoint(tunnelUrl); //set tunnelUrl
 PartitionSpec partitionSpec = new PartitionSpec(
partition);
 DownloadSession downloadSession;
 try {
 downloadSession = tunnel.createDownloadSessio
n(project, table,
 partitionSpec);
 System.out.println("Session Status is : "
 + downloadSession.getStatus
().toString());
 long count = downloadSession.getRecordCount
();
 System.out.println("RecordCount is: " + count
);
 ExecutorService pool = Executors.newFixedTh
readPool(threadNum);
 ArrayList<Callable<Long>> callers = new
ArrayList<Callable<Long>>();
 long start = 0;
 long step = count / threadNum;
 for (int i = 0; i < threadNum - 1; i++) {
 RecordReader recordReader =
downloadSession.openRecordReader(
 step * i, step);
 callers.add(new DownloadThread(i,
recordReader, downloadSession.getSchema()));
 }
 RecordReader recordReader = downloadSession.
openRecordReader(step * (threadNum - 1), count
 - ((threadNum - 1) * step));
 callers.add(new DownloadThread(threadNum - 1
, recordReader, downloadSession.getSchema()));
 Long downloadNum = 0L;

Issue: 20191012 69

⼤数据计算服务 User Guide / 3 Data upload and download
 List<Future<Long>> recordNum = pool.invokeAll
(callers);
 for (Future<Long> num : recordNum)
 downloadNum += num.get();
 System.out.println("Record Count is: " +
downloadNum);
 pool.shutdown();
 } catch (TunnelException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 } catch (InterruptedException e) {
 e.printStackTrace();
 } catch (ExecutionException e) {
 e.printStackTrace();
 }
 }
 }

Note:
The Tunnel Endpoint can be specified or left blank.
• If specified, the downloading data goes through the specified Endpoint.
• If not specified, the downloading data goes through public network Endpoint.
• This paper gives the Tunnel Endpoint of East China 2 classical network. The

Tunnel Endpoint settings of other regions can be referred to Configure Endpoint.
3.7.6 Example for BufferedWriter uploading

This article shows you how to use the BufferedWriter interface to upload data
through code examples.
// Initializes MaxCompute and Tunnel code
RecordWriter writer = null;
TableTunnel.UploadSession uploadSession = tunnel.createUploadSession(
projectName, tableName);
try {
 int i = 0;
 // Generates TunnelBufferedWriter instance
 writer = uploadSession.openBufferedWriter();
 Record product = uploadSession.newRecord();
 for (String item : items) {
 product.setString("name", item);
 product.setBigint("id", i);
 // Calls the Write interface to write data
 writer.write(product);
 i += 1;

} finally {
 if (writer ! = null) {
 // Closes TunnelBufferedWriter
 writer.close();

// Submits data via uploadSession to end the upload process

70 Issue: 20191012

⼤数据计算服务 User Guide / 3 Data upload and download
uploadSession.commit();

3.7.7 Example for BufferedWriter multi-thread uploading
This article shows you how to use BufferedWriter interface to realize multithreaded
upload through code examples.
class UploadThread extends Thread {
 private UploadSession session;
 private static int RECORD_COUNT = 1200;
 public UploadThread(UploadSession session) {
 this.session = session;
 }
 @Override
 Public void run (){
 RecordWriter writer = up.openBufferedWriter();
 Record r = up.newRecord();
 for (int i = 0; i < RECORD_COUNT; i++) {
 r.setBigint(0, i);
 writer.write(r);
 }
 writer.close();
 }
};
public class Example {
 public static void main(String args[]) {
 // Initializes MaxCompute and Tunnel code
 TableTunnel.UploadSession uploadSession = tunnel.createUplo
adSession(projectName, tableName);
 UploadThread t1 = new UploadThread(up);
 UploadThread t2 = new UploadThread(up);
 t1.start();
 t2.start();
 t1.join();
 t2.join();
 uploadSession.commit();
 }

3.8 Import or export data using the Data Integration
Use #unique_40 function of DataWorks to create data synchronization tasks and
import and export MaxCompute data.

Prerequisites
Before importing or exporting data, complete the required operations first. For
more information, see Prepare an Alibaba Cloud account and Purchase and create a project.

Add MaxCompute data source

Note:

Issue: 20191012 71

⼤数据计算服务 User Guide / 3 Data upload and download

• Only the project administrator can create a data source. Other roles can only
view the data source.

• If the data source you want to add is a current MaxCompute project, skip this
operation. After this project is created and appears as a Data Integration data
source, this project is added as a MaxCompute data source named odps_first by
default.

Procedure
1. Log on to the DataWorks console as an administrator and click Enter Workspace from

the Actions column of the relevant project in the Project List.
2. Select Data Integration from the upper navigation pane. Click Data Source from

the left-side navigation pane.
3. Click New Source.Select MaxCompute (ODPS) from the Large Data Storage

section.
4. Enter required configurations in the data dialog box.

Parameters
• Name: Contains letters, numbers, and underscores (_). It must begin with a

letter or an underscore (_) , and cannot exceed 60 characters.
• Data source description: Provides a brief description of the data source,

and cannot exceed 80 characters.
• Data source type: Currently, it is ODPS.
• ODPS Endpoint: Read-only by default. The value is automatically read from the

system configuration.
• ODPS Item name: Name of the project, helps to identify the corresponding

MaxCompute project.
• Access ID: The Access ID associated with the account of the MaxCompute

project owner.
• AccessKey: The AccessKey associated with the account of the MaxCompute

project owner, used in pairs with the Access ID.
5. (Optional). Click Test Connectivity to test the connectivity after entering all the

required information in the relevant fields.
6. If the connectivity test is successful, click Save.

Note:
72 Issue: 20191012

https://workbench.data.aliyun.com/console?spm=a2c4g.11186623.2.7.bBZHDz

⼤数据计算服务 User Guide / 3 Data upload and download

For more information about the other data sources configurations, see #unique_68.
Import data through Data Integration

Take importing MySQL data to MaxCompute as an example, you can configure a
synchronization task using Wizard Mode or Script Mode.
Configure a synchronization task in Wizard mode
1. Create a Wizard Mode synchronization task.
2. Select the source.

Select the MySQL data source and the source table “mytest”. The data browsing
area is collapsed by default. Click Next.

3. Select a Target.
The target must be a previously created MaxCompute table. You can also create a
new table by clicking Quick Table Creation.
Parameters
• Partition information: Specify every level of partition. When writing data

to a table with three levels of partitions, you must configure the last partition
level, for example, pt=20150101, type=1, biz=2. This item is unavailable for
non-partitioned tables.

• Data clearing rules:
- Clear existing data before writing: Before data is imported to a table

or partition, all data in the table or partition is cleared, which is equivalent
to Insert Overwrite.

- Retain existing data before writing: Existing data is not cleared
before new data is imported. Each operation appends new data, which is
equivalent to Insert Into.

4. Map the fields.
Select the mapping between fields. Configure the field mapping relationships.
The Source Table Fields on the left correspond one to one with the Target Table
Fields on the right.

Issue: 20191012 73

⼤数据计算服务 User Guide / 3 Data upload and download

5. Control the channel.
Click Next to configure the maximum job rate and dirty data check rules.
Parameters
• Maximum job rate: Determines the highest rate possible for data

synchronization jobs. The actual rate of the job may vary with the network
environment, database configuration, and other factors.

• Concurrent job count: For a single synchronization job, Concurrent job
count * Individual job transmission rate = Total job transmission rate.

When a maximum job rate is specified, how do you select the concurrent job
count?
• If your data source is an online business database, we recommend that you

 refrain from setting a large value for the concurrent job count to avoid
interference with the online database.

• If you require a high data synchronization rate, we recommend that you select
the highest job rate and a large concurrent job count.

6. Preview and store.
Make sure the configuration of the task is correct, and click Save.

Run a synchronization task
Run a synchronization task directly
If system variable parameters are set in the synchronization task, the variable
parameter configuration window is displayed during task operation.
After saving the task, click Run to run the task immediately. Click Submit and the
synchronization task will be submitted to the scheduling system of the DataWorks.
The scheduling system automatically and periodically runs the task from the
second day according to the configuration attributes. For more information on
scheduling configurations, see Scheduling configuration description.

Configure a synchronization task in Script mode
Use the following script to configure synchronization tasks. Other configurations
and job operation are the same as Wizard Mode.
{
 "type": "job",
 "version": "1.0",

74 Issue: 20191012

https://www.alibabacloud.com/help/doc-detail//50130.html

⼤数据计算服务 User Guide / 3 Data upload and download

 "configuration": {
 "reader": {
 "plugin": "mysql",
 "parameter": {
 "datasource": "mysql",
 "where": "",
 "splitPk": "id",
 "connection": [
 {
 "table": [
 "person"
],
 "datasource": "mysql"
 }
],
 "connectionTable": "person",
 "Column ":[
 "id",
 "name"
]
 }
 },
 "writer": {
 "plugin": "odps",
 "parameter": {
 "datasource": "odps_first",
 "table": "a1",
 "truncate": true,
 "partition": "pt=${bdp.system.bizdate}",
 "Column ":[
 "id",
 "col1"
]
 }
 },
 "Setting ":{
 "speed": {
 "mbps": "1",
 "concurrent": "1"
 }
 }
 }
}

Referenes
• For the Reader configurations about different types of data sources, see Configure

Reader Plug-ins.
• For the Writer configurations about different types of data sources, see Configure

Writer Plug-ins.

Issue: 20191012 75

https://www.alibabacloud.com/help/faq-list/74300.htm
https://www.alibabacloud.com/help/faq-list/74300.htm
https://www.alibabacloud.com/help/faq-list/74301.htm
https://www.alibabacloud.com/help/faq-list/74301.htm

⼤数据计算服务 User Guide / 4 SQL

4 SQL
4.1 SQL summary

This article introduces you to MaxCompute SQL keywords, type conversion
instructions, partition tables, UNION ALL operations and use restrictions.

SQL summary
MaxCompute SQL is suitable for various scenarios. The massive data (GB, TB,
or EB level) must be processed based on an offline batch calculation. It takes
several seconds or even minutes to schedule after a job is submitted. Therefore
, MaxCompute SQL is preferred for services that process tens of thousands of
transactions per second.
The MaxCompute SQL syntax is similar to SQL and can be considered as a subset
 of standard SQL. However, the MaxCompute SQL must not be confused with a
database. It does not have database characteristics including transactions, primary
 key constraints, indexes, and so on. The maximum size of SQL in MaxCompute is 2
MB.

Reserved words
MaxCompute SQL considers the keywords of SQL statement as reserved words. If
you use keywords for name tables, columns, or partitions, you must escape the
keywords with the `` symbol, otherwise an error is occurred. Reserved words are
case insensitive and the most common words used are as follows: (For a complete
reserved word list, see MaxCompute SQL Reserved Word).
% & && () * +
 - . / ; < <= <>
 = > >= ? ADD ALL ALTER
 AND AS ASC BETWEEN BIGINT BOOLEAN BY
 CASE CAST COLUMN COMMENT CREATE DESC DISTINCT
 DISTRIBUTE DOUBLE DROP ELSE FALSE FROM FULL
 GROUP IF IN INSERT INTO IS JOIN
 LEFT LIFECYCLE LIKE LIMIT MAPJOIN NOT NULL
 ON OR ORDER OUTER OVERWRITE PARTITION RENAME
 REPLACE RIGHT RLIKE SELECT SORT STRING TABLE

76 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
 THEN TOUCH TRUE UNION VIEW WHEN WHERE

Type conversion
MaxCompute SQL allows conversion between data types. The conversion
methods include explicit type conversion and implicit type conversion. For more
information, see Type Conversion.
• Explicit conversions: Uses CAST to convert a value type.
• Implicit conversions: MaxCompute automatically performs implicit conversions

 while running based on the context environment and conversion rules. Implicit
conversion scope includes various operators, built-in functions, and so on.

Partitioned table
MaxCompute SQL supports partitioned tables. Specify the partition as it simplifies
the operation. For example, improve SQL running efficiency, reduce the cost, and so
on. For more information, see Basic concept>Partition.

UNION ALL
To be involved in a UNION ALL operation, the data type of columns, column
numbers, and column names must be consistent, otherwise an error occurs.

4.2 Operators
Operators are used to perform program code operations. This article introduces
four types of operators: relational operator, arithmetic operator, bit operator and
logical operator.

Relational operators
Operator Description
A=B If A or B is NULL, NULL is returned. If A is equal to B, TRUE is

returned; otherwise FALSE is returned.
A<>B If A or B is NULL, NULL is returned. If A is not equal to B, TRUE is

returned; otherwise FALSE is returned.
A<B If A or B is NULL, NULL is returned. If A is less than B, TRUE is

returned; otherwise FALSE is returned.
A<=B If A or B is NULL, NULL is returned. If A is not greater than B,

TRUE is returned; otherwise FALSE is returned.

Issue: 20191012 77

⼤数据计算服务 User Guide / 4 SQL

Operator Description
A>B If A or B is NULL, NULL is returned. If A is greater than B, TRUE is

returned; otherwise FALSE is returned.
A>=B If A or B is NULL, NULL is returned; if A is not less than B, TRUE is

 returned; otherwise, FALSE is returned.
A IS NULL If A is NULL, TRUE is returned; otherwise, FALSE is returned.
A IS NOT NULL If A is NULL, TRUE is returned; otherwise FALSE is returned.
A LIKE B If A or B is NULL, NULL is returned. If String A matches the

SQL simple regular B TRUE is returned; otherwise FALSE is
returned. The (%) character in B matches an arbitrary number of
characters and the (_) character in B matches any character in A.
To match (%) or(_), use by the escape characters ('%')'and ('_').
‘aaa’ like‘a_’= TRUE
‘aaa’ like‘a%’ = TRUE
‘aaa’ like‘aab’= FALSE
‘a%b’ like‘a\\%b’= TRUE
‘axb’ like ‘a\\%b’= FALSE

A RLIKE B A is a string, and B is a string constant regular expression. If any
 substring of A matches the Java regular expression B, TRUE is
returned; otherwise FALSE is returned. If expression B is empty
, report an error and exit. If expression A or B is NULL, NULL is
returned.

A IN B B is a set. If expression A is NULL, NULL is returned. If expression
 A is in expression B, TRUE is returned; otherwise FALSE is
returned. If expression B has only one element NULL, that is
, A IN (NULL), return NULL. If expression B contains NULL
element, take NULL as the type of other elements in B set. B must
 be a constant and at least has one element; all types must be
consistent.

BETWEEN AND The expression is A [NOT] BETWEEN B AND C. Empty if A, B, or C
is empty. TRUE if A is larger than or equal to B and less than or
equal to C; otherwise FALSE is returned.

The common use:
select * from user where user_id = '0001';
select * from user where user_name <> 'maggie';
select * from user where age > ‘50’;
select * from user where birth_day >= '1980-01-01 00:00:00';
select * from user where is_female is null;
select * from user where is_female is not null;
select * from user where user_id in (0001,0010);

78 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
select * from user where user_name like 'M%';

The Double values in MaxCompute are different in precision. For this reason, we do
 not recommend using the equal sign for comparison between two Double data. You
 can subtract two Double types, and then take the absolute value into consideration
. When the absolute value is small enough, the two double values are considered
equal.
Example:
abs(0.9999999999 - 1.0000000000) < 0.000000001
 -- 0.9999999999 and 1.0000000000 have the precision of 10 decimal
digits, while 0.000000001 has the precision of 9 decimal digits.
 -- It is considered that 0.9999999999 is equal to 1.0000000000.

Note:
• ABS is a built-in function provided by MaxCompute to take absolute value. For

more information, see ABS.
• In general, the DOUBLE type in MaxCompute can retain 14-bit decimal.

Arithmetic operators
Operator Description
A + B If expression A or B is NULL, NULL is returned; otherwise the

result of A+B is returned.
A ‒ B If expression A or B is NULL, NULL is returned; otherwise the

result of A ‒ B is returned.
A * B If expression A or B is NULL, NULL is returned; otherwise result

of A * B is returned.
A / B If expression A or B is NULL, NULL is returned; otherwise the

result of A / B is returned. If Expression A and B are BIGINT types
, the result is DOUBLE type.

A % B If expression A or B is NULL, NULL is returned; otherwise the
reminder result from dividing A by B is returned.

+A Result A is returned.
-A If expression A is NULL, NULL is returned; otherwise ‒A is

returned.

Issue: 20191012 79

⼤数据计算服务 User Guide / 4 SQL

The common use:
select age+10, age-10, age%10, -age, age*age, age/10 from user;

Note:
• You can only use STRING, BIGINT, and DOUBLE to perform arithmetic

operations. (Using Datetime type and Boolean type is restricted.)
• Before you begin these operations, the type STRING is converted into DOUBLE

by implicit type conversion.
• If BIGINT and DOUBLE both are involved in arithmetic operation, the type

BIGINT is converted into DOUBLE by implicit type conversion.
• When A and B are BIGINT types, the return result of A/B will be a DOUBLE type.

For other arithmetic operations, the return value is also a BIGINT type.
Bitwise operators

Operator Description
A & B Return the result of bitwise AND of A and B. For example: 1&2, return

 0; 1&3, return 1; Bitwise AND of NULL and other values, all return
NULL. Expression A and B must be BIGINT .

A | B Return the result of bitwise OR of A and B. For example: 1|2, return3
. 1|3, return 3. Bitwise OR of NULL and other values, all return NULL.
Expression A and B must be BIGINT type.

Note:
Bitwise operator does not support implicit conversions, only supports the type
BIGINT.

Logical operators
Operator Description

TRUE and TRUE=TRUE
TRUE and FALSE=FALSE
FALSE and TRUE=FALSE
FALSE and NULL=FALSE
NULL and FALSE=FALSE

A and B

TRUE and NULL=NULL

80 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Operator Description
NULL and TRUE=NULL
NULL and NULL=NULL
TRUE or TRUE=TRUE
TRUE or FALSE=TRUE
FALSE or TRUE=TRUE
FALSE or NULL=NULL
NULL or FALSE=NULL
TRUE or NULL=TRUE
NULL or TRUE=TRUE

A or B

NULL or NULL=NULL
If A is NULL, NULL is returned.
If A is TRUE, FALSE is returned.

NOT A

If A is FALSE, TRUE is returned.

Note:
Only the type Boolean can be involved in logic operations and the implicit type
conversion is not supported.

4.3 Type conversions
MaxCompute SQL allows for conversion between data types. The two conversion
methods are explicit type conversion and implicit type conversion.

Explicit conversion
Explicit conversions use CAST to convert a value type to another. The following
table lists the types that can be explicitly converted in MaxCompute SQL.
From/
To

BIGINT DOUBLE STRING DATETIMEBOOLEANDECIMALFLOAT

BIGINT N/A Yes Yes No Yes Yes Yes
DOUBLE Yes N/A Yes No Yes Yes Yes
STRING Yes Yes N/A Yes Yes Yes Yes
DATETIMENo No Yes N/A No No No

Issue: 20191012 81

⼤数据计算服务 User Guide / 4 SQL

From/
To

BIGINT DOUBLE STRING DATETIMEBOOLEANDECIMALFLOAT

BOOLEANYes Yes Yes No N/A Yes Yes
DECIMALYes Yes Yes No Yes N/A Yes
FLOAT Yes Yes Yes No Yes Yes N/A

Y means can be converted. N means cannot be converted. ‒ means conversion is not
 required.
Example:
select cast(user_id as double) as new_id from user;
select cast('2015-10-01 00:00:00' as datetime) as new_date from user;

Note:
• To convert the Double type to the Bigint type, digits after the decimal point are

dropped. For example, cast(1.6 as bigint) = 1.
• To convert the STRING type that meets the Double format to the Bigint type, it

is converted to the Double type, and then to the Bigint type. The digits after the
decimal point are dropped. For example, cast(“1.6” as bigint) = 1.

• The STRING type that meets the Bigint format can be converted to the Double
type, and must keep one digit after the decimal point. For example, cast(“1” as
 double) = 1.0.

• Explicit conversions of unsupported types may return an exception.
• If a conversion fails during execution, the conversion is aborted with an

exception.
• To convert the DATETIME type, use the default format yyyy-mm-dd hh:mi:ss. For

more information, see Conversions between the STRING type and the DATETIME type.
• Some types cannot be explicitly converted, but can be converted using built-in

SQL functions. For example, the to_char function can be used to convert values
of the BOOLEAN type to the STRING type. For more information, see TO_CHAR.
The to_date function can be used to convert values of the STRING type to the
DATETIME type. For more information, see TO_DATE.

• For more information, see CAST.

82 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• If a DECIMAL value exceeds the value range, MSB overflow error or LSB overflow
 truncation may occur for CAST STRING TO DECIMAL.

• MaxCompute supports conversion of complex data types. However, there are
several conditions for conversions of complex data types. For the implicit
conversion of complex data types, data subtypes must be supported. In Struct-
type conversion, field names can be inconsistent, but the number of fields must
be consistent, and the specified fields must be able to be converted implicitly or
explicitly. The following are examples of complex data types and explanations
as to whether they can be converted based on the preceding conditions:
- array<bigINT> can be implicitly or explicitly converted into array<STRING>.
- array<bigINT> can be explicitly converted into array<INT>, but cannot be

implicitly converted.
- array<bigINT> cannot be implicitly or explicitly converted into array<

datetime>.
- struct<a:bigINT,b:INT> can be implicitly converted into struct<col1:

STRING,col2:bigINT>, but cannot be implicitly or explicitly converted into
struct<a:STRING>.

Implicit conversion and scope
Implicit type conversion is an automatic type conversion performed by
MaxCompute according to the usage context and type conversion rules. The
following table lists the types that can be implicitly converted using MaxCompute.

BOOLEANTINYINTSMALLINTINT BIGINTFLOATdouble Decimal stringvarchartimestampbinary
boolean
 to

Yes No No No No No No No No No No No

tinyint
 to

No Yes Yes Yes Yes Yes Yes Yes Yes Yes No No

smallint
 to

No No Yes Yes Yes Yes Yes Yes Yes Yes No No

int to No No Yes Yes Yes Yes Yes Yes Yes Yes No N/A
bigint
to

No No No No Yes Yes Yes Yes Yes Yes No No

float to No No No No Yes Yes Yes Yes Yes Yes No N/A

Issue: 20191012 83

⼤数据计算服务 User Guide / 4 SQL

BOOLEANTINYINTSMALLINTINT BIGINTFLOATdouble Decimal stringvarchartimestampbinary
double
 to

No No No No No No Yes Yes Yes Yes No No

decimal
 to

No No No No No No No Yes Yes Yes No No

string
to

No No No No No No Yes Yes Yes Yes No No

varchar
 to

No No No No Yes Yes Yes Yes No No N/A N/A

timestamp
 to

No No No No No No No No Yes Yes Yes No

binary
 to

No No No No No No No No No No No Yes

Y means can be converted. N means cannot be converted.

Note:
• The DECIMAL type and DATETIME constant definition mode are added to

MaxCompute2.0. 100BD indicates a DECIMAL, the value is 100. DATETIME2017
-11-11 00:00:00 indicates a constant of the DATETIME type. The constant
definition is convenient because it can be directly used in values clauses and
tables.

• In the earlier version of MaxCompute, values of the DOUBLE type can be
 implicitly converted to the BIGINT type. Owing to some reasons, such
conversions may lead to data loss, which is not allowed by common database
systems.

Common use:
select user_id+age+'12345',
 concat(user_name,user_id,age)
 from user;

Note:
• Implicit conversions of unsupported types may cause an error.
• If a conversion fails during execution, an exception occurs.

84 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• MaxCompute automatically performs implicit conversions based on the
context environment. We recommend that you use CAST to perform an explicit
conversion when the types do not match.

• Implicit conversion rules are applicable to a specific range of scopes. In some
scopes, only some rules can take effect. For more information, see the scopes of
implicit conversions.

• Implicit conversions under relational operators
Relational operators include equal to (=), not equal to (<>), less than (<), less than
 or equal to (<=), greater than (>), greater than or equal to (>=), IS NULL, IS NOT
NULL, LIKE, RLIKE, and IN. For the particularities, implicit conversion rules of
LIKE, RLIKE, and IN are discussed separately. The following descriptions do not
contain these three special operators.
The following table describes implicit conversion rules when different types of
data is involved in relational operations.
From/To BIGINT DOUBLE STRING DATETIME BOOLEAN DECIMAL
BIGINT N/A DOUBLE DOUBLE No No DECIMAL
DOUBLE DOUBLE N/A DOUBLE No No DECIMAL
STRING DOUBLE DOUBLE N/A DATETIME No Decimal
DATETIME No No DATETIME N/A No No
BOOLEAN No No No No N/A No
DECIMAL DECIMAL DECIMAL DECIMAL No No N/A

Note:
- If two types cannot be implicitly converted, the relational operation is

aborted by an error.
- For more information about the relational operators, see Relational Operators.

• Implicit conversions under special relational operators
Special relational operators include LIKE, RLIKE, and IN.
- The usage of LIKE and RLIKE is as follows:

source like pattern;

Issue: 20191012 85

⼤数据计算服务 User Guide / 4 SQL
source rlike pattern;

The following illustrates the notes for LIKE and RLIKE in implicit conversions:
■ The source and pattern parameters of LIKE and RLIKE can only be of the

STRING type.
■ Other types can neither be involved in the operations nor be implicitly

converted to the STRING type.
- The usage of IN is as follows:

key in (value1, value2, …)

Implicit conversion rules of IN:
■ Data in the value column must be consistent.
■ To compare keys and values, if BIGINT, DOUBLE, and STRING types are

compared, convert them to DOUBLE type. If the DATETIME and STRING
types are compared, convert them to DATETIME type. Conversions between
other types are not allowed.

• Implicit conversions under arithmetic operators
Arithmetic operators include addition (+), subtraction (-), multiplication (*),
division (/), modulo (%), unary plus (+), and unary minus (-). Their implicit
conversion rules are described as follows:
- Only the STRING, BIGINT, DOUBLE, and DECIMAL types can be involved in the

 operation.
- The STRING type are implicitly converted to the DOUBLE type before the

operation.
- When the BIGINT and DOUBLE types are involved in the operation, the BIGINT

 type is implicitly converted to the DOUBLE type.
- The DATETIME and BOOLEAN types are not allowed in the arithmetic

operation.
• Implicit conversions under logical operators

Logical operators include AND, OR, and NOT. Their implicit conversion rules are
as follows:
- Only the BOOLEAN type can be involved in the logical operation.
- Other types are not allowed in the logical operation, and cannot be implicitly

converted to other types.
86 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Implicit conversions for Built-in functions
MaxCompute SQL provides numerous system functions. You can calculate one or
multiple columns of any row and output data of any type. Their implicit conversion
rules are described as follows:
• To call a function, if the data type of an input parameter is different from that

 defined in the function, convert the data type of the input parameter to that
defined in the function.

• Parameters of different built-in functions of MaxCompute SQL have different
requirements on implicit conversions. For more information, see Built-in Functions.

Implicit conversions under CASE WHEN
For more information about CASE WHEN, see CASE WHEN Expressions. Its implicit
conversion rules are listed as follows:
• If the types of the returned values are BIGINT and DOUBLE, convert all to the

DOUBLE type.
• If a STRING type exists in return types, convert all to the STRING type. If the

conversion fails (such as BOOLEAN type conversion), an error is returned.
• Conversions between other types are not allowed.

Conversions between the STRING Type and DATETIME Type
MaxCompute supports conversions between the STRING type and DATETIME type.
The conversion format is yyyy-mm-dd hh:mi:ss.
Unit STRING(case-insensitive) Value range
Year yyyy 0001 - 9999
Month mm 01 - 12
Day dd 01 - 28, 29, 30, 31
Hour hh 00 - 23
Minute mi 00 - 59
Second ss 00 - 59

Note:
• In the value range of each unit, if the first digit is 0, it cannot be ignored. For

example, 2014-1-9 12:12:12 is an invalid DATETIME format and it cannot be
Issue: 20191012 87

⼤数据计算服务 User Guide / 4 SQL

converted from the STRING type to the DATETIME type. It must be written as
2014-01-09 12:12:12.

• Only the STRING type that meets the preceding format requirements can be
converted to the DATETIME type. For example, cast(“2013-12-31 02:34:
34” as datetime) converts2013-12-31 02:34:34 of the STRING type to the
DATETIME type. Similarly, when the DATETIME type is converted to the STRING
type, the default conversion format is yyyy-mm-dd hh:mi:ss.

For example, the following conversions return an exception:
cast("2013/12/31 02/34/34" as datetime)
cast("20131231023434" as datetime)
cast("2013-12-31 2:34:34" as datetime)

The threshold of dd depends on the actual days of a month. If the value exceeds the
actual days of the month, the conversion is aborted with an error.
Example:
cast("2013-02-29 12:12:12" as datetime) -- Returns an error because
February 29, 2013 does not exist.
cast("2013-11-31 12:12:12" as datetime) -- Returns an exception
because November 31, 2013 does not exist.

MaxCompute provides the TO_DATE function to convert the STRING type that
does not meet the DateDATETIME ime format to the DATETIME type. For more
information, see TO_DATE.

4.4 SQL limits
Some users may fail to notice specific limits and find the service has stopped. The
limits for MaxCompute SQL include the following:
Boundary name Maximum value/

Limit
Class Description

Length of table
name

128 bytes Length limit Table names and column
 names cannot contain
special characters. It must
 start with a letter and can
contain only English letters
 (a-z, A-Z), numbers, and
underscores (_).

88 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Boundary name Maximum value/
Limit

Class Description

Annotation
length

1,024 bytes Length limit The annotation can contain
 valid strings for up to 1,024
 bytes.

Column
definitions

1,200 Quantity limit One table can contain a
maximum of 1,200 column
definitions.

Partitions 60,000 Quantity limit One table can contain
a maximum of 60,000
partitions.

Partition levels
of a table

6 levels Quantity limit A table can contain a
maximum of six levels of
partition.

Statistical
definitions

100 Quantity limit One table can contain a
maximum of 100 statistical
definitions.

Statistical
definitions

64,000 Length limit A statistical definition can
 contain a maximum of 64,
000 bytes.

Screen display 10,000 rows Quantity limit The screen display of a
SELECT statement outputs a
 maximum of 10,000 rows.

INSERT targets 256 Quantity limit A multiins operation can
insert a maximum of 256
targets at a time.

UNION ALL 256 Quantity limit The UNION ALL operation
 can be performed on a
maximum of 256 tables.

MAPJOIN Eight small tables Quantity limit A MAPJOIN operation
can be performed on a
maximum of eight small
tables.

MAPJOIN
 memory
restriction

512 MB Quantity limit The memory size of all
 small tables on which
MAPJOIN operation is
performed cannot exceed
512 MB.

Issue: 20191012 89

⼤数据计算服务 User Guide / 4 SQL

Boundary name Maximum value/
Limit

Class Description

Window
functions

Five Quantity limit A SELECT statement can
contain a maximum of five
window functions.

ptinsubq 1,000 rows Quantity limit The results returned by
PT IN SUBQUERY cannot
exceed 1,000 rows.

SQL statement 2 MB Length limit The maximum length of an
SQL statement is 2 MB.

Number of
conditions for a
where clause

256 Quantity limit A where clause can use a
maximum of 256 conditions
.

Length of
column records

8 MB Quantity limit The maximum length of a
cell in tables is 8 MB.

Number of
parameters of
an in statement

1,024 Quantity limit Specifies the maximum
 number of parameters
 of an in statement, for
example, in (1,2,3….,1024).
An excess of parameters of
 in(…) results in compilatio
n pressure. 1,024 is a
recommended value, not a
limit value.

jobconf.json 1 MB Length limit The size of ‘jobconf.json’
is 1 MB. Including too many
 partitions in a table may
cause ‘jobconf.json’ to
exceed 1 MB.

View Not writable Operation
restriction

A view cannot be written
or operated by using an
INSERT statement.

Column data
type

Not allowed Operation
limit

The data type and position
 of a column cannot be
modified.

java udf
function

Cannot be abstract
 or static

Operation
limit

A Java UDF cannot be
abstract or static.

90 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Boundary name Maximum value/
Limit

Class Description

A maximum
 of 10,000
partitions can
be queried.

10,000 Quantity limit A maximum of 10,000
partitions can be queried.

Note:
The limits of MaxCompute SQL cannot be modified.

4.5 Insert Operation
4.5.1 INSERT OVERWRITE/INTO

Function definition:
INSERT OVERWRITE|INTO TABLE tablename [PARTITION (partcol1=val1,
partcol2=val2 ...)] [(col1,col2 ...)]
select_statement
FROM from_statement;

Note:
• Insert syntax of MaxCompute is different from MySQL or Oracle Insert syntax.

The keyword table must be added following insert overwrite|into, instead of
using tablename directly.

• When the target table for Insert is a partitioned table, expressions such as
functions are not allowed in [PARTITION (partcol1=val1, partcol2=val2 …)] .

• Currently, INSERT OVERWRITE does not support inserting columns. You can
use INSERT INTO instead.

Insert overwrite/into saves calculation results into a destination table.
The difference between insert into and insert overwrite is that insert into
inserts added data into the table or partition, while insert overwrite clears source
data from the table or partition before inserting the data in it.

Note:
The partition size in the MaxComputer partition table gets different data partition
sizes when the same partition is repeatedly INSERT OVERWRITEd with the value

Issue: 20191012 91

⼤数据计算服务 User Guide / 4 SQL

described. This is because the file splitting logic changes when you select from the
same partition on the same table and insert overwrite back to the same partition
on the same table, thus causing the size of the data to change. But the total length
of the data is constant around INSERT OVERWRITE, so users don't have to worry
about billing for storage.

While processing data through MaxCompute SQL, insert overwrite/into is the
most common statement. It can save the calculation result into a table, needed for
the subsequent calculation. For example, use the following statements to calculate
the sale detail of different regions from the table sale_detail:
create table sale_detail_insert like sale_detail;
alter table sale_detail_insert add partition(sale_date='2013', region
='china');
insert overwrite table sale_detail_insert partition (sale_date='2013
', region='china')
select shop_name, customer_id, total_price from sale_detail;

Note:
The correspondence between source table and destination table depends on the
column sequence in select clause, not the column name correspondence between
the two tables. The following statement is still valid:
insert overwrite table sale_detail_insert partition (sale_date='2013
', region='china')
select customer_id, shop_name, total_price from sale_detail;
-- When the sale_detail_insert table is created, the column sequence
is as below:
-- shop_name string, customer_id string, total_price bigint
-- When data is inserted from sale_detail to sale_detail_insert, the
insertion sequence of sale_detail is as below:
-- customer_id, shop_name, total_price
-- Inserts data in sale_detail.customer_id into sale_detail_insert.
shop_name.
-- Inserts data in sale_detail.shop_name into sale_detail_insert.
customer_id.

To insert data into a partition, the partition column cannot appear in the Select list.
insert overwrite table sale_detail_insert partition (sale_date='2013
', region='china')
select shop_name, customer_id, total_price, sale_date, region from
sale_detail;

92 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
-- Returns an error. The items sale_date and region are partition
 columns, which cannot appear in the INSERT statement of static
partitions.

Simultaneously, the value of the partition can only be a constant and expressions
cannot appear. The following statements are invalid:
insert overwrite table sale_detail_insert partition (sale_date=
datepart('2016-09-18 01:10:00', 'yyyy') , region='china')
select shop_name, customer_id, total_price from sale_detail;

4.5.2 MULTI INSERT
MaxCompute SQL supports inserting different result tables or partitions in a single
SQL statement.
Statement format:
FROM from_statement
INSERT OVERWRITE | INTO TABLE tablename1 [PARTITION (partcol1=val1,
partcol2=val2 ...)]
select_statement1 [FROM from_statement]
[INSERT OVERWRITE | INTO TABLE tablename2 [PARTITION (partcol1=val3,
partcol2=val4 ...)]
select_statement2 [FROM from_statement]]

Note:
• Generally, up to 256 ways of output can be written in a single SQL statement. A

syntax error occurs, if the output exceeds 256 ways.
• In a multi insert statement:

- For a partitioned table, a target partition cannot appear multiple times.
- For an unpartitioned table, this table cannot appear multiple times.

• Different partitions within a partitioned table cannot have an Insert overwrite
operation and an Insert into operation at the same time; otherwise, an error is
returned.

For an unpartitioned table, this table cannot appear multiple times.
create table sale_detail_multi like sale_detail;
from sale_detail
insert overwrite table sale_detail_multi partition (sale_date='2010
', region='china')
select shop_name, customer_id, total_price where
insert overwrite table sale_detail_multi partition (sale_date='2011
', region='china')
select shop_name, customer_id, total_price where
-- Return result successfully. Insert the data of sale_detail into
the 2010 sales records and 2011 sales records in China region.
from sale_detail

Issue: 20191012 93

⼤数据计算服务 User Guide / 4 SQL
insert overwrite table sale_detail_multi partition (sale_date='2010
', region='china')
select shop_name, customer_id, total_price
insert overwrite table sale_detail_multi partition (sale_date='2010
', region='china')
select shop_name, customer_id, total_price;
-- An error is thrown. The same partition appears for multiple times.
from sale_detail
insert overwrite table sale_detail_multi partition (sale_date='2010
', region='china')
select shop_name, customer_id, total_price
insert into table sale_detail_multi partition (sale_date='2011',
region='china')
select shop_name, customer_id, total_price;
-- An error is thrown. Different partitions within a partition table
cannot have both an ‘insert overwrite’ operation and an ‘insert into
’ operation.

4.5.3 DYNAMIC PARTITION
To ‘insert overwrite’ into a partition table, specify the partition value in the
statement. It can also be realized in a more flexible way, to specify a partition
column in a partition table but not give the value.

OverView
Correspondingly, the columns in Select clause are used to specify these partition
values.
Statement format:
insert overwrite table tablename partition (partcol1, partcol2 ...)
select_statement from from_statement;

Note:
• In the ‘select_statement’ field, the following field provides a dynamic

partition value for the target table. If the target table has only one-level dynamic
 partition, the last field value of select_statement is the dynamic partition value
of the target table.

• Currently, a single worker can only output up to 512 dynamic partitions in a
distributed environment, otherwise it leads to abnormality.

• Currently, any dynamic partition SQL cannot generate more than 2,000 dynamic
partitions; otherwise it causes abnormality.

94 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• The value of dynamic partition cannot be NULL, and also does not support
special or Chinese characters, otherwise an exception is thrown. The exception
is as follows:
FAILED: ODPS-0123031:Partition exception - invalid dynamic
partition value:
 province=xxx

• If the destination table has multi-level partitions, it is allowed to specify parts
of partitions to be static partitions through ‘Insert’ statement, but the static
partitions must be advanced partitions.

Examples
A simple example to explain dynamic partition is as follows:
create table total_revenues (revenue bigint) partitioned by (region
string);
 insert overwrite table total_revenues partition(region)
 select total_price as revenue, region
 from sale_detail;

As mentioned in the preceding example, user is unable to know which partitions
are generated before running SQL. Only after the Select statement running ends,
user can confirm which partitions have been generated using ‘region’ as the
value. This is why the partition is called as the Dynamic Partition.
Other Examples:
create table sale_detail_dypart like sale_detail; --Create target
table.

• --Example 1:
insert overwrite table sale_detail_dypart partition (sale_date,
region)
select shop_name,customer_id,total_price,sale_date,region from
sale_detail;
 -- Return successfully.

- In ‘sales_detail’ table, the value of the sale_date determines the sales_date
partition value of the target table, and the value of the region determines the
region partition value of the target table.

- In a dynamic partition, the correspondence between the select_statement
field and the dynamic partition of the target table is determined by the

Issue: 20191012 95

⼤数据计算服务 User Guide / 4 SQL

order of the fields. In this example, if the Select statement is written as the
following:
select shop_name,customer_id,total_price,region,sale_date from
 sale_detail;

the region value determines the sale_date partition value of the target table,
and the value of sale_date determines the region partition value of the target
table.

• --Example 2:
insert overwrite table sale_detail_dypart partition (sale_date='2013
', region)
 select shop_name,customer_id,total_price,region from
sale_detail;
 -- Return successfully; multiple partitions; specify a secondary
 partition.

• --Example 3:
insert overwrite table sale_detail_dypart partition (sale_date='2013
', region)
 select shop_name,customer_id,total_price from sale_detail;
 -- Return failure information. When inserting a dynamic
partition, the dynamic partition column must appear in Select list.

• --Example 4:
insert overwrite table sales partition (region='china', sale_date)
select shop_name,customer_id,total_price,sale_date from sale_detail;
 -- Return failure information. User cannot specify the
lowsubpartition only, but needs to insert advanced partition
dynamically.

When the old version of MaxCompute performs dynamic partitioning, if
the partition column type is not exactly the same as the column type in the
corresponding select list, an error is reported. MaxCompute 2.0 supports implicit
conversion, as shown in the following :
create table parttable(a int, b double) partitioned by (p string);
insert into parttable partition(p) select key, value, current_ti
mestmap() from src;
select * from parttable;

The result is as follows:
a b c
0 NULL 2017-01-23 22:30:47.130406621
0 NULL 2017-01-23 22:30:47.130406621

96 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

4.6 DDL SQL
4.6.1 Table operations

This topic describes how to create, view, delete, rename, and modify table
information through the client.

Create tables
Statement format:
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name
[(col_name data_type [COMMENT col_comment], ...)]
[COMMENT table_comment]
[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
[CLUSTERED BY (col_name [, col_name, ...]) [SORTED BY (col_name [
ASC | DESC] [, col_name [ASC | DESC] ...])] INTO number_of_buckets
BUCKETS] - Sets the Shuffle and Sort attributes when you create hash
cluster tables.
[STORED BY StorageHandler] - Used only for external tables.
[WITH SERDEPROPERTIES (Options)] - Used only for external tables.
[LOCATION OSSLocation];- Used only for external tables.
[LIFECYCLE days]
[AS select_statement]
 CREATE TABLE [IF NOT EXISTS] table_name
 LIKE existing_table_name

Consider the following points:
• When a table is created, an error is returned if another table has the same name,

but the if not exists option is not specified. If the option is specified, no
matter whether another table that has the same name exists or even if the source
table structure and the target table structure are inconsistent, a success message
is returned. The meta information of the existing table that has the same name
remains unchanged.

• Both the table name and column name are not case sensitive. They can contain
 letters, numbers, and underscores (_), but must begin with a letter. Neither of
them can exceed 128 bytes in length.

• Up to 1,200 column definitions are allowed in a table.
• Supported data types include bigint, double, boolean, datetime, decimal, and

string.

Note:

Issue: 20191012 97

⼤数据计算服务 User Guide / 4 SQL

If new data types (such as TINYINT, SMALLINT, INT, FLOAT, VARCHAR,
TIMESTAMP, and BINARY) are used in a SQL statement, use the set statement to
enable the new data type flag:
- Session-level: Add a set statement set odps.sql.type.system.odps2=true;

before the SQL statement and submit the two statements simultaneously.
- Project-level: New data types at the project level can be used. To use the new

data types at the project level, the project owner must run the following
command:
setproject odps.sql.type.system.odps2=true;

For more information about the setproject command, seeOther operations . For
precautions on enabling new data types for a project, see Data types.

• Use partitioned by to specify the partition field, which supports the following
data types: tinyint, smallint, int, bigint, varchar, and string.
The value of partition cannot have a double-byte character and must begin with
a letter, followed by a letter or number. The name cannot exceed 128 bytes in
length. Special characters can be used, including spaces, colons (:), underscores
(_), dollar signs ($), pound signs (#), periods (.), exclamation points (!), and at
signs (@). Other characters, such as (\t), (\n), and (/) are considered undefined
characters. If the partition field is used to partition a table, a full scan is not
needed when you add a partition or update or read data in a partition. This
makes table processing more efficient.

• Up to 60,000 partitions for up to six levels are allowed in a table.
• The content of a comment is a string whose length does not exceed 1024 bytes.
• lifecycle indicates the lifecycle of a table, the unit is 'days.' The statement

create table like does not copy the lifecycle attribute from source table
• clustered by is used to specify hash keys. MaxCompute executes hash

computation formulas on specified columns, and places computation results into
buckets based the specified hash keys.
- To prevent data skew and hotspots and better execute parallel statements,

we recommend that you specify columns in clustered by in the case that the
value range is large and a small number of duplicate key values exist. Also,
to better execute join statements, we recommend that you select commonly

98 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

used join or aggregation keys. Join and aggregation keys are similar to primary
keys in conventional databases.

- sorted by specifies how to sort fields in a bucket. We recommend that you
keep the value of sorted by consistent with that of clustered by to make
performance higher. After fields are specified in the sorted by clause,
MaxCompute automatically generates indexes. It also executes the clause
faster based on the indexes when you query data.

- INTO number_of_buckets BUCKETS specifies the number of hash buckets. The
value of this field varies depending on the data size. By default, MaxCompute
supports up to 1,111 reducers. Therefore, up to 1,111 hash buckets are
allowed. You can run the set odps.sql.reducer.instances=xxx; command
to increase the maximum value of this field. However, the maximum value
cannot exceed 4,000. If the maximum value exceeds 4,000, performance
deteriorates as a result.
We recommend that you follow the following points when you specify the
number of hash buckets:
■ We recommend that the size of each bucket be around 500 MB. For example,

if you want to add 1,000 buckets to a 500-GB partition, the size of each
bucket is 500 MB on average. If a table contains a large amount of data, you
can increase the size of each bucket from 500 MB to 2 or 3 GB. You can also
run the set odps.sql.reducer.instances=xxx command to increase the
maximum number of hash buckets that are allowed.

■ If two tables are joined frequently, specify the same number of hash
buckets for them to better execute join statements and to skip Shuffle
 and Sort. If the number of hash buckets for one table is different from that
for the other table, we recommend that you use the greater number for

Issue: 20191012 99

⼤数据计算服务 User Guide / 4 SQL

both tables. This keeps statement concurrency and execution efficiency at
proper levels.

- Hash cluster tables help optimize the following aspects:
■ Bucket pruning
■ Aggregation
■ Storage

- Hash cluster tables are subject to the following limits:
■ The insert into statement is not supported. You can add data only by

using the insert overwrite statement.
■ A tunnel cannot be uploaded to a range cluster table because data uploaded

 over a tunnel is unordered.
• For more information about external tables, see Access OSS unstructured data.
Assume that the table sale_detail is created to store sales records. The table
uses sale_date and region as partition columns. Table creation statements are
described as follows:
create table if not exists sale_detail(
(
shop_name string,
customer_id string,
total_price double)
)
partitioned by (sale_date string,region string);
 -- Create a partition table sale_detail.

The statement create table...as select ... can also be used to create a table.
After creating a table, the data is copied to the new table, such as:
create table sale_detail_ctas1 as
select * from sale_detail;

If the table sale_detailh as data, the example mentioned preceding copies all data
of sale_detail into the table sale_detail_ctas1.

Note:
sale_detail is a partitioned table, while the table created by the statement
create table...as select... does not copy the partition attribute. The partition
column of the source table becomes a general column of object table. In other
words, sale_detail_ctas1 is a non-partitioned table with 5 columns.

100 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

In the statement create table...as select... if using a constant as a column
value in select clause, it is suggested specify the column name, such as:
CREATE TABLE sale_detail_ctas2
AS
SELECT shop_name, customer_id, total_price, '2013' AS sale_date, '
China' AS region
FROM sale_detail;

If the column name is not specified, the statement is as shown as follows:
CREATE TABLE sale_detail_ctas3
AS
SELECT shop_name, customer_id, total_price, '2013', 'China'
FROM sale_detail;

Then the forth column and fifth column of the created table sale_detail_ctas3
 become system generated names, like _c5, _c6.
To allow the destination table to have the same structure as the source table, try to
use create table … like’ statement, such as:
create table sale_detail_like like sale_detail;

Now the table structure of sale_detail_like is exactly the same as sale_detail.
Except the life cycle, attributes including the column name, column comment, and
table comment, of the two tables are the same. But the data in sale_detail cannot
be copied into the table sale_detail_like.
An example of creating a hash cluster table is as follows:
CREATE TABLE T1 (a string, b string, c bigint) CLUSTERED BY (c) SORTED
 by (c) INTO 1024 BUCKETS; -- Creates a hash cluster non-partitioned
table with a few clicks.
CREATE TABLE T1 (a string, b string, c bigint) PARTITIONED BY (dt
string) CLUSTERED BY (c) SORTED by (c) INTO 1024 BUCKETS; - Creates a
hash cluster partitioned table.

View table information
Statement format:
desc <table_name>;
desc extended <table_name>; --View external table information.

For example:

Issue: 20191012 101

⼤数据计算服务 User Guide / 4 SQL

• To view the info of the preceding table sale_detail, run the following statement:
desc sale_detail;

Return info:
odps@ $odps_project>desc sale_detail;
+--
+
| Owner: ALIYUN$lili.ll@alibaba-inc.com | Project: $odps_project
 |
| TableComment:
 |
+--
+
| CreateTime: 2017-06-28 15:05:17
 |
| LastDDLTime: 2017-06-28 15:05:17
 |
| LastModifiedTime: 2017-06-28 15:05:17
 |
+--
+
| InternalTable: YES | Size: 0
 |
+--
+
| Native Columns:
 |
+--
+
| Field | Type | Label | Comment
 |
+--
+
| shop_name | string | |
 |
| customer_id | string | |
 |
| total_price | double | |
 |
+--
+
| Partition Columns:
 |
+--
+
| sale_date | string |
 |
| region | string |
 |
+--
+

102 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
OK

• To view the information of the preceding table sale_detail_like, run the
following statement:
desc sale_detail_like

Return info:
odps@ $odps_project>desc sale_detail_like;
+--
+
| Owner: ALIYUN$lili.ll@alibaba-inc.com | Project: $odps_project
 |
| TableComment:
 |
+--
+
| CreateTime: 2017-06-28 15:42:17
 |
| LastDDLTime: 2017-06-28 15:42:17
 |
| LastModifiedTime: 2017-06-28 15:42:17
 |
+--
+
| InternalTable: YES | Size: 0
 |
+--
+
| Native Columns:
 |
+--
+
| Field | Type | Label | Comment
 |
+--
+
| shop_name | string | |
 |
| customer_id | string | |
 |
| total_price | double | |
 |
+--
+
| Partition Columns:
 |
+--
+
| sale_date | string |
 |
| region | string |
 |
+--
+

Issue: 20191012 103

⼤数据计算服务 User Guide / 4 SQL
OK

In preceding example, we can see that the attributes of sale_detail_like coincide
with that of sale_detail, except for the lifecycle. For more information, see Table

operations.

Note:
The data size you obtain by using the describe table command includes the size
of data in the recycle bin. If you want to clear the recycle bin, run the command.
Then, run the describe table command, and the returned data size no longer
includes the size of data in the recycle bin. To obtain details about data in the
recycle bin, run the show recyclebin command.

Check the information of sale_detail_ctas1, you can find that sale_date and
region are only normal columns and not partitions of the table.
• As more data types are being added to MaxCompute, the types of data returned

by the desc command increase. For details, see Data types. If new data types are
used in MaxCompute, you need to enable new data types when you execute SQL
statements. However, you do not need to do so when you run the desc command.

Note:
If the output of SQL statements depends on the input of the desc table
 command, we recommend that you promptly update settings to parse new data
types in MaxCompute.

For example:
set odps.sql.type.system.odps2=true;
CREATE TABLE test_newtype (
 c1 tinyint
 ,c2 smallint
 ,c3 int
 ,c4 BIGINT
 ,c5 float
 ,c6 DOUBLE
 ,c7 decimal
 ,c8 binary
 ,c9 timestamp
 ,c10 ARRAY<map<BIGINT,BIGINT>>
 ,c11 map<STRING,ARRAY<BIGINT>>
 ,c12 STRUCT<s1:STRING,s2:BIGINT>
 ,c13 varchar(20))
LIFECYCLE 1

104 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
;

Information returned by the desc test_newtype; command (some of the
information is not presented):
| Native Columns:
 |
+--
+
| Field | Type | Label | Comment
 |
+--
+
| c1 | tinyint | |
 |
| c2 | smallint | |
 |
| c3 | int | |
 |
| c4 | bigint | |
 |
| c5 | float | |
 |
| c6 | double | |
 |
| c7 | decimal | |
 |
| c8 | binary | |
 |
| c9 | timestamp | |
 |
| c10 | array<map<bigint,bigint>> | |
 |
| c11 | map<string,array<bigint>> | |
 |
| c12 | struct<s1:string,s2:bigint> | |
 |
| c13 | varchar(20) | |
 |
+--
+

You can run the DESC EXTENDED table_name; command to view the Clustering
 attribute of a hash cluster table. In the following example, the Clustering attribute
is displayed in Extended Info.

+--
+
| Owner: ALIYUN$xxxxxxx@aliyun.com | Project: xxxxx |
| TableComment: |
+--
+
| CreateTime: 2017-12-25 11:18:26 |
| LastDDLTime: 2017-12-25 11:18:26 |
| LastModifiedTime: 2017-12-25 11:18:26 |
| Lifecycle: 2 |
+--
+

Issue: 20191012 105

⼤数据计算服务 User Guide / 4 SQL
| InternalTable: YES | Size: 0 |
+--
+
| Native Columns: |
+--
+
| Field | Type | Label | Comment |
+--
+
a	string		
b	string		
c	bigint		
+--
+
| Partition Columns: |
+--
+
| dt | string | |
+--
+
| Extended Info: |
+--
+
| TableID: 91a3395d3ef64b4d9ee1d28527552864 |
| IsArchived: false |
| PhysicalSize: 0 |
| FileNum: 0 |
| ClusterType: hash |
| BucketNum: 1024 |
| ClusterColumns: [c] |
| SortColumns: [c ASC] |
+--
+

If the table is a partitioned table that has the Clustering attribute, run the
following command to view the partition attributes in addition to running the
preceding command to view the table attributes:
DESC EXTENDED table_name partition(pt_spec);

Use the select statement to view data in the table. For details, see Introduction to the

SELECT Syntax.
View table creation statements

Run the following command to view the format of statements that are used for
creating a table:
SHOW CREATE TABLE <table_name>;

Note:
DDL statements used for creating a table are generated after this command is
executed, which helps you rebuild the database schema through SQL.

106 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Drop a table
Statement format:
DROP TABLE [IF EXISTS] table_name;

Note:
• If the option if exists is not specified and the table does not exist, exception

returns. If this option is specified, no matter whether the table exists or not, all
return success.

• Data in OSS is not deleted when the external tables are deleted.
For example:
create table sale_detail_drop like sale_detail;
 drop table sale_detail_drop;
 --If the table exists, return success; otherwise, return exception
.
 drop table if exists sale_detail_drop2;
 --No matter whether the table sale_detail_drop2 exists or not, all
 return success.

Rename a table
Statement format:
ALTER TABLE table_name RENAME TO new_table_name;

Note:
• Rename operation is used to update the table name only and not the data in the

table.
• If the new_table_name is duplicated an error may occur.
• If the table table_name does not exist, error may occur.

For example:
create table sale_detail_rename1 like sale_detail;
alter table sale_detail_rename1 rename to sale_detail_rename2;

Change the owner of a table
MaxCompute SQL allows you to run the changeowner command to change the owner
of a table.

Issue: 20191012 107

⼤数据计算服务 User Guide / 4 SQL

Example:
alter table table_name changeowner to 'ALIYUN$xxx@aliyun.com';

Alter the comments of a table
Command format:
ALTER TABLE table_name SET COMMENT 'tbl comment';

Note:
• The table table_name must exist.
• The comment length must not exceed 1024 bytes.

For example:
alter table sale_detail set comment 'new comments for table sale_detai
l';

Use the command desc to view the comment modification in the table. For more
information, see describe table in Common commands > Table operations.

Alter LastDataModifiedTime of a table
MaxCompute SQL supports touch operation to modify LastDataModifiedTime of a
table. The result is to modify LastDataModifiedTime of a table to be current time.
Statement format:
ALTER TABLE table_name TOUCH;

Note:
• If the table table_name does not exist, an error is returned.
• This operation changes the value of LastDataModifiedTime of a table and this

is when MaxCompute identifies change in the table data and then begins the
corresponding lifecycle calculation.

Modify the Hash Clustering attribute of a table
You can execute the alter table statement to add or remove the Hash Clustering
 attribute of a partitioned table.

108 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Add the Hash Clustering attribute:
ALTER TABLE table_name
[CLUSTERED BY (col_name [, col_name, ...]) [SORTED BY (col_name [
ASC | DESC] [, col_name [ASC | DESC] ...])] INTO number_of_buckets
BUCKETS]

Remove the Hash Clustering attribute:
ALTER TABLE table_name NOT CLUSTERED;

Note:
• The alter table statement cannot modify the Clustering attribute of a non-

partitioned table because this attribute cannot be modified once it is specified
for a non-partitioned table.

• The alter table statement takes effect only on the new partitions of a table.
Therefore, you do not need to execute the partition alter table statement for
the existing partitions. After the Clustering attribute is added, data is stored to
the new partitions in compliance with hash clustering.

Empty data from a non-partitioned table
Empty data in specified non-partitioned table. This command does not support
partitioned table. For the partitioned table, use ALTER TABLE table_name DROP
PARTITION to clear the data in the partition.
Command format:
TRUNCATE TABLE table_name;

4.6.2 Lifecycle of table
MaxCompute provides data life cycle management functions to facilitate you to
release storage space and simplify the process of data recovery.

Modify lifecycle of table
Statement format:
ALTER TABLE table_name SET lifecycle days;

Note:

Issue: 20191012 109

⼤数据计算服务 User Guide / 4 SQL

• The parameter ‘days’ refers to the time required to complete the lifecycle. It
must be a positive integer and its unit is ‘day’.

• Suppose that the table ‘table_name’ is a no-partition table. Calculated from
 the last updated date, the data is still not modified after N (days) days, then
MaxCompute automatically recycles the table without user intervention (similar
 to ‘drop table’ operation).

• In MaxCompute, once the data in the table is modified, the LastDataMo
difiedTime is updated. So MaxCompute judges whether to recycle this table
based on the LastDataModifiedTime setting and lifecycle.

• · Suppose the table ‘table_name’ is a partition table. MaxCompute determines
 whether to recycle the table according to LastDataModifiedTime of each
partition.

• · Unlike no-partition table, after the last partition of a partitioned table has been
 recycled, the table is not deleted.

• · The lifecycle can be set for a table, not for the partition.
• · It can be specified while creating a table.

Example:
create table test_lifecycle(key string) lifecycle 100;
 -- Create a new table test_lifecycle and the lifecycle is 100 days.
 alter table test_lifecycle set lifecycle 50;
 -- Alter the lifecycle for the table test_lifecycle and set it to be
50 days.

Disable lifecycle of table
In some cases, the data in specified partitions do not need to be recycled by the
lifecycle function. For example, data in the beginning of the month, or the data
during the Global Shopping Day period. You can disable the lifecycle function using
 some specific partitions.

110 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Statement format:
ALTER TABLE table_name partition_spec ENABLE|DISABLE LIFECYCLE;

An example is shown as follows.
ALTER TABLE trans PARTITION(dt='20141111') DISABLE LIFECYCLE;

4.6.3 Column and Partition operation
This article shows you how to add, delete, and modify table partition command
operations.

Add partition
Statement format:
ALTER TABLE TABLE_NAME ADD [IF NOT EXISTS] PARTITION partition_spec
partition_spec:(partition_col1 = partition_col_value1, partition_col2
 = partiton_col_value2, ...)

Note:
• The partition name must be lowercase.
• Only ‘creating partitions’ are supported wherein, ‘creating partition

columns’ are not supported.
• If the same name partition has already existed and the option [if not exists] is

not specified, an exception returns.
• Currently, the maximum number of partitions supported in a single

MaxCompute table is 60,000.
• For tables that have multi-level partitions, to add a new partition, all partition

values must be specified.
Example:
add a new partition for the table ‘sale_detail’.
alter table sale_detail add if not exists partition (sale_date='201312
', region='hangzhou');
-- Add partition successfully, to store the sale detail of hangzhou
region in December of 2013.
alter table sale_detail add if not exists partition (sale_date='201312
', region='shanghai');
-- Add partition successfully, to store the sale detail of shanghai
region in December of 2013.
alter table sale_detail add if not exists partition(sale_date='
20111011');
-- Only specify a partition sale_date, error occurs and return.

Issue: 20191012 111

⼤数据计算服务 User Guide / 4 SQL
alter table sale_detail add if not exists partition(region='shanghai
');
-- Only specify a partition region, error occurs and return.

Drop partition
Delete the syntax format for the partition is as follows:
ALTER TABLE TABLE_NAME DROP [IF EXISTS] PARTITION partition_spec;
partition_spec:(partition_col1 = partition_col_value1, partition_col2
 = partiton_col_value2, ...)

Note:
If the partition does not exist and the option [if exists] is not specified, then an
error returns.

Example:
delete a partition from the table sale_detail.
alter table sale_detail drop if exists partition(sale_date='201312',
region='hangzhou');
-- -Delete the sale details of Hangzhou in December of 2013 successful
ly.

Add column
Statement format:
ALTER TABLE table_name ADD COLUMNS (col_name1 type1, col_name2 type2
...)

ALTER TABLE table_name ADD COLUMNS (col_name1 type1 comment 'XXX',
col_name2 type2 comment 'XXX');

Note:
You cannot specify order for a new column. By default, a new column is placed in
the last column.

Modify column name
Statement format:
ALTER TABLE table_name CHANGE COLUMN old_col_name RENAME TO new_col_na
me;

Note:
• Column ‘old_col_name’ refers to an existing column.

112 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• A column named ‘new_col_name’ cannot exist in the table.
Alter Column/Partition Comment

Modify column/partition comment is as follows:
ALTER TABLE table_name CHANGE COLUMN col_name COMMENT comment_string;

Note:
The maximum comment content is 1024 bytes.

Modify column names and column notes simultaneously
Statement format:
ALTER TABLE table_name CHANGE COLUMN old_col_name new_col_name
column_type COMMENT column_comment;

Note:
• Column ‘old_col_name’ must be an existing column.
• A column named ‘new_col_name’ cannot exist in the table.
• The content of the comment cannot exceed 1024 bytes.

Modify LastDataModifiedTime of table/partition
MaxCompute MaxCompute SQL supports ‘touch’ operation to modify LastDataMo
difiedTime of a partition. The result is to modify ‘LastDataModifiedTime’ of a
partition to be current time.
Statement format:
ALTER TABLE table_name TOUCH PARTITION(partition_col='partition_
col_value', ...)

Note:
• If ‘table_name’ or ‘partition_col’ does not exist, an error returns.
• If the specified partition_col_value does not exist, an error returns.
• This operation changes the value of ‘LastDataModifiedTime’ in the table and

 now MaxCompute determines whether the data of the table or partition has
changed and the lifecycle calculation begins again.

Issue: 20191012 113

⼤数据计算服务 User Guide / 4 SQL

Modify partition value
MaxCompute SQL supports to change the partition value for corresponding
partition value through ‘rename’ operation.
Statement format:
ALTER TABLE table_name PARTITION (partition_col1 = partition_
col_value1, partition_col2 = partiton_col_value2, ...)
RENAME TO PARTITION (partition_col1 = partition_col_newvalue1,
partition_col2 = partiton_col_newvalue2, ...)

Note:
• The name of a partition column cannot be modified. Only the values in that

column can be altered.
• To modify values in one or more partitions among multi-level partitions, users

must write values for partitions at each level.
4.6.4 View operations
Create view

Statement format:
CREATE [OR REPLACE] VIEW [IF NOT EXISTS] view_name
 [(col_name [COMMENT col_comment], ...)]
 [COMMENT view_comment]
 [AS select_statement]

Note:
• To create a view, you must have ‘read’ privilege on the table referenced by

view.
• Views can only contain one valid ‘select’ statement.
• Other views can be referenced by a view, but this view cannot reference itself.

Circular reference is not supported.
• Writing the data into a view is not allowed, such as, using insert into or insert

 overwrite to operate view
• After a view was created,it may be inaccessable if the referenced table is

altered, such as deleting a referenced table. You must maintain corresponding
relationship between referenced tables and views.

114 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• If the option ‘if not exists’ is not specified and the view has already existed,
using create view causes abnormality. If this situation occurs, use create
or replace view to recreate a view. After reconstruction, the privileges keep
unchanged.

Example:
create view if not exists sale_detail_view
(store_name, customer_id, price, sale_date, region)
comment 'a view for table sale_detail'
as select * from sale_detail;

Drop view
Statement format:
DROP VIEW [IF EXISTS] view_name;

Note:
If the view does not exist and the option [if exists] is not specified, error occurs.

Example:
DROP VIEW IF EXISTS sale_detail_view;

Rename view
Statement format:
ALTER VIEW view_name RENAME TO new_view_name;

Note:
If the same name view has already existed, error occurs.

Example:
create view if not exists sale_detail_view
 (store_name, customer_id, price, sale_date, region)
 comment 'a view for table sale_detail'
 as select * from sale_detail;

Issue: 20191012 115

⼤数据计算服务 User Guide / 4 SQL
 alter view sale_detail_view rename to market;

4.7 Lateral View
Lateral view is used in conjunction with UDTF such as split, explode, etc. It can split
a row of data into multiple rows, and aggregate the split data on this basis.

Single Lateral View statement
Syntax:
lateralView: LATERAL VIEW [OUTER] udtf(expression) tableAlias AS
columnAlias (',' columnAlias) * fromClause: FROM baseTable (lateralVie
w)*

Notes:
• Lateral view outer: When the table function does not output any rows, the

corresponding Input rows remain in the Lateral View results, and all table
function output lists are null.

Example:
Suppose we have a table called "pageAds" which has two columns of data.The first
column is "pageid string" and the second column is "adid_list", a comma-separated
collection of AD IDs.
 string pageid Array<int> adid_list
“front_page” [1, 2, 3]
“contact_page” [3, 4, 5]

The requirement is to count the number of times all AD IDs have appeared. The
implementation process is as follows.
1. Split the AD IDs as follows:

SELECT pageid, adid
 FROM pageAds LATERAL VIEW explode(adid_list) adTable AS adid;

The execution result is as follows:
string pageid int adid
“front_page” 1
“front_page” 2
“front_page” 3

116 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

string pageid int adid
“contact_page” 3
“contact_page” 4
“contact_page” 5

2. The statistics for the aggregation:
SELECT adid, count(1)
 FROM pageAds LATERAL VIEW explode(adid_list) adTable AS adid
GROUP BY adid;

Result:
int adid count(1)
1 1
2 1
3 2
4. 1
50 1

Multiple Lateral View statements
A from statement can be followed by multiple Lateral View statements, the
subsequent Lateral View statement can reference all the former tables and columns
.
The following table is an example:
Array<int> col1 Array<string> col2
[1, 2] [“a”, “b”, “c”]
[3, 4] [“d”, “e”, “f”]

• Execute a single statement:
SELECT myCol1, col2 FROM baseTable
 LATERAL VIEW explode(col1) myTable1 AS myCol1;

Result:
int mycol1 Array<string> col2
1 [“a”, “b”, “c”]
2 [“a”, “b”, “c”]

Issue: 20191012 117

⼤数据计算服务 User Guide / 4 SQL

int mycol1 Array<string> col2
3 [d”, “e”, “f”]
4 [d”, “e”, “f”]

• Add a Lateral View statement as follows:
SELECT myCol1, myCol2 FROM baseTable
 LATERAL VIEW explode(col1) myTable1 AS myCol1
 LATERAL VIEW explode(col2) myTable2 AS myCol2;

Result is as follows:
int myCol1 string myCol2
1 “a”
1 “b”
1 “c”
2 “a”
2 “b”
2 “c”
3 “d”
3 “e”
3 “f”
4 “d”
4 “e”
4 “f”

4.8 Differences with other SQL syntax
This article takes a SQL perspective. and introduces MaxCompute by comparing
MaxCompute SQL with Hive, MySQL, Oracle, SQL Server Unsupported pant, and
DML syntax.

DDL syntax not supported by MaxCompute
Syntax MaxCompute Hive MySQL Oracle SQL

Server
CREATE TABLE—
PRIMARY KEY

N N Y Y Y

118 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Syntax MaxCompute Hive MySQL Oracle SQL
Server

CREATE TABLE—
NOT NULL

N N Y Y Y

CREATE TABLE—
CLUSTER BY

Y Y N Y Y

CREATE TABLE—
EXTERNAL TABLE

Y(OSS, OTS,
TDDL)

Y N N N

CREATE TABLE
—TEMPORARY
TABLE

N Y Y Y Y （with
#prefix）

INDEX—CREATE
INDEX

N Y Y Y Y

VIRTUAL COLUMN N N (only 2
predefined)

N Y Y

DML syntax not supported by MaxCompute
Syntax MaxCompute Hive MySQL Oracle SQL Server
CTE Y Y Y Y Y
SELECT—recursive
 CTE

N N N Y Y

SELECT—GROUP
BY ROLL UP

Y Y Y Y Y

SELECT—GROUP
BY CUBE

Y Y N Y Y

SELECT—
GROUPING SET

Y Y N Y Y

SELECT—IMPLICT
JOIN

Y Y N Y Y

SELECT—PIVOT N N N Y Y

Issue: 20191012 119

⼤数据计算服务 User Guide / 4 SQL

Syntax MaxCompute Hive MySQL Oracle SQL Server
SEMI JOIN Y Y (

corelated

expression
 must
 be in
WHERE
, EXISTS
must be
corelated
)

Y N (has
IN and
EXISTS
, but no
 SEMI
 JOIN
grammer
)

N (has IN and
 EXISTS, but
no SEMI JOIN
grammer)

SELEC
TRANSFROM

Y Y N N N

SELECT—corelated
 subquery

Y Y (
corelated

expression
 must
 be in
WHERE
, EXISTS
must be
corelated
)

Y Y Y

ORDER BY NULLS
FIRST/LAST

Y Y Y Y Y

LATERAL VIEW Y Y N Y (
LATERAL
 keyword
)

Y (CROSS
 APPLY
keyword)

SET OPERATOR—
UNION (disintct)

Y Y Y Y Y

SET OPERATOR—
INTERSECT

Y N N Y Y

SET OPERATOR—
MINUS/EXCEPT

Y N N Y Y（keyword
EXCEPT）

INSERT INTO ...
VALUES

Y Y Y Y Y

120 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Syntax MaxCompute Hive MySQL Oracle SQL Server
INSERT INTO (
ColumnList)

Y Y Y Y Y

UPDATE … WHERE N Y Y Y Y
UPDATE … ORDER
BY LIMIT

N N Y N Y

DELETE … WHERE N Y Y Y Y
DELETE … ORDER
BY LIMIT

N N Y N N

ANALYTIC
—reusable
WINDOWING
CLUSUE

Y Y N N N (can
implement
with join)

ANALYTIC—
CURRENT ROW

Y Y N Y Y

ANALYTIC—
UNBOUNDED

Y N Y Y Y

ANALYTIC—RANGE
 …

N Y N Y Y

WHILE DO N N Y Y Y
SCRIPTING syntax not supported by MaxCompute

Syntax MaxCompute Hive MySQL Oracle SQL Server
TABLE
VARIABLE

Y Y (
TEMPORARY
 TABLE)

Y (
TEMPORARY
 TABLE)

Y (
TEMPLORARY
 TABLE)

Y

SCALER
VARIABLE

Y Y Y (DECLARE
 x INT)

Y Y

ERROR
HANDLING
—RAISE
ERROR

N N Y Y Y

ERROR
HANDLING
—TRY
CATCH

N N N Y Y

Issue: 20191012 121

⼤数据计算服务 User Guide / 4 SQL

Syntax MaxCompute Hive MySQL Oracle SQL Server
FLOW
CONTROL—
LOOP

N N Y Y Y

CURSOR N N Y Y Y

4.9 Select Operation
4.9.1 SELECT syntax

This topic describes MaxCompute SELECT syntax and the precautions for executing
nested queries, sorting operations, and grouping queries by using SELECT syntax.

SELECT statement format
The SELECT statement format is as follows:
SELECT [ALL | DISTINCT] select_expr, select_expr, ...
FROM table_reference
[WHERE where_condition]
[GROUP BY col_list]
[ORDER BY order_condition]
[DISTRIBUTE BY distribute_condition [SORT BY sort_condition]]
[LIMIT number]

Column expressions
When using the SELECT statement to read data from a table, specify the names of
the columns to be read, or use an asterisk (*) wildcard to specify all columns. The
following is an example SELECT statement:
select * from sale_detail;

To specify only the shop_name column in the sale_detail table, use the following
statement:
select shop_name from sale_detail;

Use a WHERE clause when you specify a filtering condition. For example:
select * from sale_detail where shop_name like 'hang%';

When you use a SELECT statement, up to 10,000 rows of results can be displayed. If
the SELECT statement serves as a clause, all the results are returned to the upper-
level query.

122 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Note:
• Full table scans cannot be specified when SELECT statements are used on a

partitioned table.
For new projects created after January 10, 2018, full table scans cannot be
specified for a partitioned table in a project. Instead, you must specify each
partition condition to be scanned. This is to help reduce excessive resource
usage and lower costs. If your instances are billed by the Pay-As-You-Go billing
 method, the total number of partition conditions to be scanned is regarded as
one billable item.
If the table definition is t1(c1,c2) partitioned by(ds), you cannot run the
following statement in a new project. Otherwise, an error may occur:
Select * from t1 where c1=1;
Select * from t1 where (ds=‘20180202’ or c2=3);
Select * from t1 left outer join t2 on a.id =b.id and a.ds=b.ds and
b.ds=‘20180101’);
--When Join statement is running, if the partition clipping
condition is placed in where clause, the partition clipping takes
effect. If you put it in on clause, the partition clipping of sub
table takes effect, and the main table performs a full table scan.

If you perform a full table scan on a partitioned table, you can add a set
statement set odps.sql.allow.fullscan=true; before the SQL statement that
is used to scan the partitioned table. The set statement must be entered together
with the SQL statement. In the case that the sales_detail table is a partitioned
table, submit the following simple query statements at the same time for a full
table scan:
set odps.sql.allow.fullscan=true;
select * from sale_detail;

• table_reference supports nested subqueries, for example:
select * from (select region from sale_detail) t where region = '
shanghai';

Note:
When you use a SELECT statement, up to 10,000 rows of results can be displayed.
If the SELECT statement serves as a clause, all the results are returned to the
upper-level query.

Use DISTINCT to remove duplicates
Issue: 20191012 123

⼤数据计算服务 User Guide / 4 SQL

DISTINCT: If duplicated data rows exist, you can use the Distinct option before the
field to remove duplicates. In this case, only one value is returned. If you use the
ALL option, or do not specify this option, all duplicated values in the fields are
returned.
If you use the Distinct option, only one row of a record is returned, which is shown
as follows:
select distinct region from sale_detail;
select distinct region, sale_date from sale_detail;
-- Performs the Distinct option on multiple columns. The Distinct
option has an effect on Select column sets rather than a single column
.

WHERE clause conditions
The filter conditions supported by WHERE clauses as shown in the following table:
Filter criteria Description
> ,<, =, >=, <=, <> Relational operators
like, rlike The source and pattern parameters of like and rlike can only

be of the String type.
in, not in If a subquery is attached to the in or not in a condition, only

the values of one column are returned for the subquery, and
the returned values cannot exceed 1,000 entries.

You can specify a partition scope in the WHERE clause of a SELECT statement that
is used to scan specified partitions of a table instead of a whole table, shown as
follows:
SELECT sale_detail. * FROM sale_detail WHERE sale_detail.sale_date >=
 '2008' AND sale_detail.sale_date <= '2014';

The WHERE clause of MaxCompute SQL supports query by using the between-and
condition. The preceding SQL statement can be rewritten as follows:
SELECT sale_detail. * FROM sale_detail WHERE sale_detail.sale_date
BETWEEN '2008' AND '2014';

Queries using GROUP BY
GROUP BY: Query by group. In most cases, GROUP BY is used in combination with an
aggregation function. For a SELECT statement that contains an aggregate function to be
used in combination with GROUP BY, it must comply with the following rules:

124 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• Rule i: The key using GROUP BY is the name of a column in the input table.
• Rule ii: The key using GROUP BY is an expression consisting of columns of the

input table. However, this expression cannot be the alias of an output column of
the SELECT statement.

Note:
In the case that rules i and ii are in conflicting with each other, rule i takes priority
over rule ii. Specifically, if the key using GROUP BY is a column or expression of the
input table and an output column of SELECT, rule i takes priority over rule ii.

For example:
select region from sale_detail group by region;
-- Runs successfully with the name of a column in the input table
directly used as the group by column
select sum(total_price) from sale_detail group by region;
-- Runs successfully with the table grouped by the region value and
returns the total sales of each group
Select region, sum (total_price) from sale_detail group by region;
-- Runs successfully with the table grouped by the region value and
returns the region value (unique in the group) and total sales of each
 group
select region as r from sale_detail group by r;
 -- Runs with the alias of the Select column and returns an error
select 2 + total_price as r from sale_detail group by 2 + total_price;
-- Requires a complete expression of the column
Select region, total_price from sale_detail group by region;
-- Returns an error; all columns not using an aggregate function in
the Select statement must exist in group by
select region, total_price from sale_detail group by region,
total_price;
-- Runs successfully

The preceding restrictions are imposed because GROUP BY operations come before
SELECT operations during SQL parsing. Therefore, GROUP BY statements can only
accept the columns or expressions of the input table as keys.

Note:
For more information, see Aggregate Functions.

Queries using ORDER BY, SORT BY, and DISTRIBUTE
• ORDER BY: Globally sorts all data based on certain columns. To sort records in

descending order, use the DESC keyword. For global sorting, order by must be
used together with limit. When ORDER BY is used for sorting, NULL is considered

Issue: 20191012 125

⼤数据计算服务 User Guide / 4 SQL

to be smaller than any other value. This action is the same as that in MySQL but
different from that in Oracle.
Unlike GROUP BY, ORDER BY must be followed by the alias of the SELECT column.
If the SELECT operation is performed on a column and the column alias is not
specified, the column name is used as the column alias.
select * from sale_detail order by region;
-- Returns an error because order by is not used together with limit
select * from sale_detail order by region limit 100;
select region as r from sale_detail order by region limit 100;
-- Returns an error because ORDER BY is not followed by a column
alias
select region as r from sale_detail order by r limit 100;

The number in [limit number] is a constant to limit the number of output rows.
If you want to directly view the result of a SELECT statement without LIMIT from
the screen output, you can view up to 10,000 rows. The upper limit of screen
display varies by project. However, the upper limit can be controlled through the
setproject console.

• SORT BY: For partial ordering, DISTRIBUTE BY must be added in front of the
statement. SORT BY is used to partially sort the results of DISTRIBUTE BY. Aliases
of SELECT output columns must be used.
select region from sale_detail distribute by region sort by region;
select region as r from sale_detail sort by region;
-- Returns an error and exits because no distribute by exists.

• DISTRIBUTE BY: Performs hash-based sharding on data by values of certain
columns. Aliases of SELECT output columns must be used.
select region from sale_detail distribute by region;
-- Runs successfully because the column name is an alias
select region as r from sale_detail distribute by region;
-- Returns an error because DISTRIBUTE BY is not followed by a
column alias
select region as r from sale_detail distribute by r;

ORDER BY and GROUP BY cannot be used together with DISTRIBUTE BY and SORT BY.
Aliases of SELECT output columns must be used.

Note:
• The keys of ORDER BY, SORT BY, and DISTRIBUTE BY must be output columns

(namely, column aliases) of SELECT statements.

126 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• In MaxCompute SQL parsing, ORDER BY, SORT BY, and DISTRIBUTE BY come
after SELECT operations. Therefore, they can only accept the output columns of
SELECT statements as keys.

4.9.2 SELECT Sequence
The actual logic execution sequence of SELECT statements written in compliance
with the preceding SELECT syntax are different from the standard writing
sequence.
See the following example:
SELECT key
 ,MAX(value)
FROM src t
WHERE value > 0
GROUP BY key
HAVING SUM(value) > 100
ORDER BY key
LIMIT 100
;

The actual logic execution sequence is FROM->WHERE->GROUP BY->HAVING->SELECT-
>ORDER BY->LIMIT.
• ORDER BY can only reference columns generated in the SELECT list rather than

accessing columns in the FROM source table.
• The HAVING operation can access GROUP BY keys and aggregate functions.

When the SELECT operation is performed, SELECT can only access group keys
and aggregate functions rather than columns in the FROM source table if GROUP
 BY exists.

• The columns generated in the select list can only be referenced in by, rather than
 accessing the columns in the source table of from.

To avoid confusion, MaxCompute allows users to write a query statement by the
execution sequence. For example, the preceding statement can be written as
follows:
FROM src t
WHERE value > 0
GROUP BY key
HAVING SUM(value) > 100
SELECT key
 ,MAX(value)
ORDER BY key
LIMIT 100

Issue: 20191012 127

⼤数据计算服务 User Guide / 4 SQL
;

example2：
SELECT shop_name
 ,total_price
 ,region
FROM sale_detail
WHERE total_price > 150
DISTRIBUTE BY region
SORT BY region
;

In fact, the order of logical execution isFROM->WHERE->SELECT->DISTRIBUTE BY->
SORT BY.

4.9.3 Subquery
Basic definition of a subquery

A normal SELECT operation reads data from several tables, for example, select
column_1, column_2 … from table_name. However, the query object can be
another SELECT operation, which is shown as follows:
select * from (select shop_name from sale_detail) a;

Note:
The subquery must have an alias.

In a FROM clause, a subquery can be used as a table to perform JOIN operations
with other tables or subqueries, which is shown as follows:
create table shop as select * from sale_detail;
select a.shop_name, a.customer_id, a.total_price from
(select * from shop) a join sale_detail on a.shop_name = sale_detail.
shop_name;

IN SUBQUERY / NOT IN SUBQUERY
IN SUBQUERY is similar to LEFT SEMI JOIN.
For example:
SELECT * from mytable1 where id in (select id from mytable2);
-- is equivalent to
SELECT * from mytable1 a LEFT SEMI JOIN mytable2 b on a.id=b.id;

Currently, MaxCompute supports both IN SUBQUERY and CORRELATED conditions
.

128 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

For example:
SELECT * from mytable1 where id in (select id from mytable2 where
value = mytable1.value);

where value = mytable1.value in the subquery is a CORRELATED condition.
MaxCompute of early versions reports errors for such expressions that reference
source tables both in subqueries and in outer queries. MaxCompute supports such
 expressions now. In fact, such filtering conditions are a part of the ON condition in
SEMI JOIN.
NOT IN SUBQUERY is similar to LEFT ANTI JOIN. However, they have one significan
t difference.
For example:
SELECT * from mytable1 where id not in (select id from mytable2);
-- If none of the IDs in mytable2 are NULL, this statement is
equivalent to
SELECT * from mytable1 a LEFT ANTI JOIN mytable2 b on a.id=b.id;

If mytable2 contains any column whose ID is NULL, the NOT IN expression is NULL
, so that the WHERE condition is invalid and no data is returned. This is different
from LEFT ANTI JOIN.
MaxCompute 1.0 supports [NOT] IN SUBQUERY not serving as a JOIN condition, for
 example, in a non-WHERE statement, or failure in conversion to a JOIN condition
even in a WHERE statement. MaxCompute 2.0 still supports this feature. However
, [NOT] IN SUBQUERY cannot be converted to SEMI JOIN, and a separate job must
 be started to run subqueries. Therefore, [NOT] IN SUBQUERY does not support
CORRELATED conditions.
For example:
SELECT * from mytable1 where id in (select id from mytable2) OR value
 > 0;

As the WHERE clause includes OR, [NOT] IN SUBQUERY cannot be converted to
SEMI JOIN. A separate job must be started to run subqueries.
In addition, partition tables are specially processed:
SELECT * from sales_detail where ds in (select dt from sales_date);

If ds is a partition column, select dt from sales_date separately starts a job
to run subqueries, instead of converting to SEMI JOIN. After running, the results

Issue: 20191012 129

⼤数据计算服务 User Guide / 4 SQL

are compared with ds one by one. If a ds value in sales_detail is not in the returned
results, the partition is not read to make sure that partition pruning is still valid.

EXISTS SUBQUERY/NOT EXISTS SUBQUERY
In an EXISTS SUBQUERY, when at least one data row exists in the subquery, TRUE
 is returned; otherwise, FALSE is returned. NOT EXISTS subquery is completely
opposite of this.
Currently, MaxCompute supports only subqueries including the correlated WHERE
 conditions. EXISTS SUBQUERY/NOT EXISTS SUBQUERY is implemented by
converting to LEFT SEMI JOIN or LEFT ANTI JOIN.
For example:
SELECT * from mytable1 where exists (select * from mytable2 where id
 = mytable1.id);
-- is equivalent to
Select * From mytable1 a left semi join mytable2 B on A. ID = B. ID;

While
SELECT * from mytable1 where not exists (select * from mytable2 where
id = mytable1.id);
-- is equivalent to
SELECT * from mytable1 a LEFT ANTI JOIN mytable2 b on a.id=b.id;

4.9.4 UNION, INTERSECT, and EXCEPT
This topic describes the syntax of UNION ALL, UNION DISTINCT, INTERSECT ALL,
INTERSECT DISTINCT, EXCEPT ALL, and EXCEPT DISTINCT, and provides examples
of query statements.
The following are example syntax statements:
select_statement UNION ALL select_statement;
select_statement UNION [DISTINCT] select_statement;
select_statement INTERSECT ALL select_statement;
select_statement INTERSECT [DISTINCT] select_statement;
select_statement EXCEPT ALL select_statement;
select_statement EXCEPT [DISTINCT] select_statement;
select_statement MINUS ALL select_statement;
select_statement MINUS [DISTINCT] select_statement;

• UNION: Returns the union of two data sets.
• INTERSECT: Returns the intersection of two data sets.
• EXCEPT: Returns the supplementary set of a data set in another set.
• MINUS: Means the same as EXCEPT.

130 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Examples
• UNOIN ALL

SELECT * FROM VALUES (1, 2), (1, 2), (3, 4) t(a, b)
 UNION ALL
SELECT * FROM VALUES (1, 2), (1, 4) t(a, b);

Result: The two data sets are merged.
+------------+------------+
 | a | b |
 +------------+------------+
1	2
1	4
1	2
1	2
3	4
 +------------+------------+

• UNION DISTINCT
SELECT * FROM VALUES (1, 2), (1, 2), (3, 4) t(a, b)
UNION
SELECT * FROM VALUES (1, 2), (1, 4) t(a, b);

Result: The result is the same as SELECT DISTINCT * FROM (< Result of UNOIN
ALL>) t;.
+------------+------------+
 | a | b |
 +------------+------------+
1	2
1	4
3	4
 +------------+------------+

• INTERSECT ALL
SELECT * FROM VALUES (1, 2), (1, 2), (3, 4), (5, 6) t(a, b)
INTERSECT ALL
SELECT * FROM VALUES (1, 2), (1, 2), (3, 4), (5, 7) t(a, b);

Result: Repeated rows are not deleted. Each repeated row can be regarded as a
unique row with a unique number.
+------------+------------+
 | a | b |
 +------------+------------+
1	2
1	2
3	4

Issue: 20191012 131

⼤数据计算服务 User Guide / 4 SQL
 +------------+------------+

• INTERSECT DISTINCT
SELECT * FROM VALUES (1, 2), (1, 2), (3, 4), (5, 6) t(a, b)
INTERSECT
SELECT * FROM VALUES (1, 2), (1, 2), (3, 4), (5, 7) t(a, b);

Result: The result is the same as SELECT DISTINCT * FROM (< Result of
INTERSECT ALL>) t;.
+------------+------------+
 | a | b |
 +------------+------------+
 | 1 | 2 |
 | 3 | 4 |
 +------------+------------+

• EXCEPT ALL
SELECT * FROM VALUES (1, 2), (1, 2), (3, 4), (3, 4), (5, 6), (7, 8)
t(a, b)
EXCEPT ALL
SELECT * FROM VALUES (3, 4), (5, 6), (5, 6), (9, 10) t(a, b);

Result: Repeated rows are not deleted. Each repeated row can be regarded as a
unique row with a unique number.
+------------+------------+
 | a | b |
 +------------+------------+
1	2
1	2
3	4
7	8
 +------------+------------+

• EXCEPT DISTINCT
SELECT * FROM VALUES (1, 2), (1, 2), (3, 4), (3, 4), (5, 6), (7, 8)
t(a, b)
EXCEPT
SELECT * FROM VALUES (3, 4), (5, 6), (5, 6), (9, 10) t(a, b);

Result: The result is the same as SELECT DISTINCT * FROM left_branch EXCEPT
ALL SELECT DISTINCT * FROM right_branch;.
+------------+------------+
| a | b |
+------------+------------+
| 1 | 2 |
| 7 | 8 |

132 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
+------------+------------+

Note:
- The sequence of rows in the result set is not guaranteed to be in any specific

order.
- The two data sets in one set operation must contain the same number of

columns. If not, implicit type conversion is involved. Out of compatibility
 reasons, implicit type conversion of STRING and non-STRING data in set
operations is disabled.

- Up to 256 tables can be contained in one set operation. If more than 256 tables
 are involved, an error is returned.

- If UNION is followed by CLUSTER BY, DISTRIBUTE BY, SORT BY, ORDER BY, or
a LIMIT clause, when set odps.sql.type.system.odps2=false;, the clause
applies to the last SELECT statement. When set odps.sql.type.system.
odps2=true;, the clause applies to all the preceding UNION results. Consider
the following example:
set odps.sql.type.system.odps2=true;
 SELECT explode(array(3, 1)) AS (a) UNION ALL SELECT explode(
array(0, 4, 2)) AS (a) ORDER
 BY a LIMIT 3;

Result:
+------+
 | a |
 +------+
 | 0 |
 | 1 |
 | 2 |
 +------+

4.9.5 JOIN
You can use a JOIN operation to join two tables and obtain query results from the
joined tables. In MaxCompute, JOIN operations include LEFT OUTER JOIN, RIGHT
OUTER JOIN, FULL OUTER JOIN, and INNER JOIN. MaxCompute supports multiple
JOIN operations in an SQL statement, but does not support CROSS JOIN. A CROSS
JOIN operation joins two tables without specifying conditions in the ON clause and
returns the cartesian product of the input tables.

Issue: 20191012 133

⼤数据计算服务 User Guide / 4 SQL

The command syntax is as follows:
join_table:
 table_reference join table_factor [join_condition]
 | table_reference {left outer|right outer|full outer|inner}
join table_reference join_condition
 table_reference:
 table_factor
 | join_table
 table_factor:
 tbl_name [alias]
 | table_subquery alias
 | (table_references)
 join_condition:
 on equality_expression (and equality_expression)

Note:
• equality_expression indicates an equality expression.
• If partition pruning conditions are specified in the WHERE clause, partition

pruning takes effect for both tables. If partition pruning conditions are specified
in the ON clause, partition pruning takes effect for the right table but not the
left table. A full table scan is run for the left table. For more information, see
Reasonableness evaluation of partition pruning.

• LEFT OUTER JOIN: the LEFT JOIN operation. It returns all queried rows from the
left table, including those that do not match any rows in the right table.
select a.shop_name as ashop, b.shop_name as bshop from shop a
 left outer join sale_detail b on a.shop_name=b.shop_name;
 -- Both the shop and sale_detail tables have the shop_name
column. Therefore, aliases are assigned to the shop_name columns in
the SELECT clause to distinguish between the columns.

Note:
If the values in some rows of the right table are duplicate, we recommend that
you do not use LEFT JOIN consecutively many times. Otherwise, data bloat may
occur during the JOIN operation and interrupt your jobs.

• RIGHT OUTER JOIN: the RIGHT JOIN operation. It returns all queried rows from
the right table, including those that do not match any rows in the left table.
select a.shop_name as ashop, b.shop_name as bshop from shop a

134 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
 right outer join sale_detail b on a.shop_name=b.shop_name;

• FULL OUTER JOIN: the FULL JOIN operation. It returns all queried rows from both
the left and right tables.
select a.shop_name as ashop, b.shop_name as bshop from shop a
 full outer join sale_detail b on a.shop_name=b.shop_name;

In the following example, the left table is test_table_a and the right table is
test_table_b. The JOIN clause is used to join tables. The WHERE clause is used
to specify filter conditions. To query rows whose value of the origin column is
equal to that of the id column and whose data timestamp is greater than 20180101,
you can use LEFT JOIN to return all queried rows in the left table test_table_a.
Normally, if you use LEFT JOIN, it returns all queried rows in the left table. If you
use RIGHT JOIN, it returns all queried rows in the right table.
An error example is as follows:
SELECT s.id
 ,s.name
 ,s.origin
 ,d.value
FROM test_table_a s
LEFT JOIN test_table_b d
ON s.origin = d.id
WHERE s.ds > "20180101" AND d.ds>"20180101";

If you use the JOIN clause before the WHERE clause, the JOIN operation is performed
first. Then, the results obtained from the JOIN operation are filtered based on the
conditions specified by the WHERE clause. The final results are the intersection of
two tables but not all queried rows in the left table.
To return all queried rows in the left table, you can modify the SQL statement as
follows:
SELECT s.id
 ,s.name
 ,s.origin
 ,d.value
FROM (select * from test_table_a where ds > "20180101") s
LEFT JOIN (select * from test_table_b where ds > "20180101") d

Issue: 20191012 135

⼤数据计算服务 User Guide / 4 SQL
ON s.origin = d.id;

INNER JOIN: returns a result table that combines the queried rows from two tables
that meet the conditions specified by the ON clause. The keyword INNER can be
omitted.
select a.shop_name from shop a inner join sale_detail b on a.shop_name
=b.shop_name;
select a.shop_name from shop a join sale_detail b on a.shop_name=b.
shop_name;

If you specify multiple conditions in the ON clause, you must specify equivalent
conditions and use and to connect these conditions. You can specify a non-
equivalent condition or use or to connect multiple conditions in the ON clause only
for MAPJOIN.
select a.* from shop a full outer join sale_detail b on a.shop_name=b.
shop_name
 full outer join sale_detail c on a.shop_name=c.shop_name;
 -- MaxCompute supports multiple JOIN operations in an SQL
statement.
select a.* from shop a join sale_detail b on a.shop_name ! = b.
shop_name;
 -- MaxCompute does not support a non-equivalent condition and
returns an error.

MaxCompute supports the following implicit JOIN operation:
SELECT * FROM table1, table2 WHERE table1.id = table2.id;
-- The effect of this statement is equivalent to the following
statement:
SELECT * FROM table1 JOIN table2 ON table1.id = table2.id;

MaxCompute also supports the NATURAL JOIN operation, in which the conditions
used to join two tables are automatically determined based on the common fields
in the two tables. MaxCompute supports OUTER NATURAL JOIN. You can use the
USING clause so that the JOIN operation returns common fields only once. For
example, to join the src table that contains the key1, key2, a1, and a2 fields and the
src2 table that contains the key1, key2, b1, and b2 fields, you can run the following
statement:
SELECT * FROM src NATURAL JOIN src2;
-- Both the src and src2 tables contain the key1 and key2 fields. In
 this case, the preceding statement is equivalent to the following
statement:

136 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
SELECT src.key1 as key1, src.key2 as key2, src.a1, src.a2, src2.b1,
src2.b2 FROM src INNER JOIN src2 ON src.key1 = src2.key1 AND src.key2
 = src2.key2;

You can use parentheses () to specify the priority of JOIN operations. The JOIN
operation enclosed in parentheses () has a higher priority. In the following
example, the src2 JOIN src3 operation is performed first and the src JOIN operation
is then performed on the obtained results.
SELECT * FROM src JOIN (src2 JOIN src3 on xxx) ON yyy;

4.9.6 SEMI JOIN
MaxCompute supports SEMI JOIN. In SEMI JOIN, the right table does not appear
in the result set and is only used to filter data in the left table. Supported syntaxes
include: LEFT SEMI JOIN and LEFT ANTI JOIN.

LEFT SEMI JOIN
When a JOIN condition is valid, data in the left table is returned. That is, if the ID of
 a row in mytable1 appears in all IDs in mytable2, this row is saved in the result set.
For example:
SELECT * from mytable1 a LEFT SEMI JOIN mytable2 b on a.id=b.id;

Only the data in mytable1 is returned if the ID of mytable1 appears in the ID of
mytable2.

LEFT ANTI JOIN
When a JOIN condition is invalid, data in the left table is returned. That is, if the ID
of a row in mytable1 does not appear in any ID in mytable2, this row is stored in the
 result set.
For example:
SELECT * from mytable1 a LEFT ANTI JOIN mytable2 b on a.id=b.id;

Only the data in mytable1 is returned if the ID of mytable1 does not appear in the ID
 of mytable2.

Issue: 20191012 137

⼤数据计算服务 User Guide / 4 SQL

4.9.7 MAPJOIN HINT
This topic describes how to use a MAPJOIN statement to join a large table with one or
more small tables. It is faster than common JOIN operations.
A typical scenario of MAPJOIN is as follows: When the data volume is small, SQL
loads all your specified small tables into the memory of the program by performing
the JOIN operation to join your tables faster.

Note:
When you use MAPJOIN, note the following:
• The left table of a LEFT OUTER JOIN clause must be a large table.
• The right table of a RIGHT OUTER JOIN clause must be a large table.
• Both the left and right tables of an INNER JOIN clause can be large tables.
• MAPJOIN cannot be used in a FULL OUTER JOIN clause.
• MAPJOIN supports small tables as subqueries.
• When MAPJOIN is used and a small table or subquery must be referenced, the

alias must be referenced.
• MAPJOIN supports non-equivalent JOIN conditions or multiple conditions

connected by using OR statements. You can choose not to use ON statements. You
can also use mapjoin on 1 = 1 to express a Cartesian product, for example,
select /* + mapjoin(a) */ a.id from shop a join table_name b on 1=1,
which may cause data expansion.

• Currently, MaxCompute allows up to 256 small tables to be specified in a
MAPJOIN statement. If you specify more than 256 small tables, a syntax error is
returned.

• If MAPJOIN is used, the total memory occupied by all small tables cannot exceed
640 MB. Note that MaxCompute uses compressed storage, so the data size is
sharply expanded after small tables are loaded into the memory. The limit of
640 MB refers to the size after small tables are loaded into the memory.

Example:
select /* + mapjoin(a) */
 a.shop_name,
 b.customer_id,
 b.total_price
from shop a join sale_detail b

138 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
on a.shop_name = b.shop_name;

MaxCompute SQL does not support complex JOIN conditions, such as non-
equivalent expressions and the OR logic, in the ON conditions of common JOIN
operations. However, MAPJOIN supports such operations.
Example:
select /*+ mapjoin(a) */
 a.total_price,
 b.total_price
from shop a join sale_detail b
on a.total_price < b.total_price or a.total_price + b.total_price <
500;

4.9.8 HAVING clause
HAVING clauses are used because the Where keyword of MaxCompute SQL cannot
be used together with aggregate functions.
Function definition.
SELECT column_name, aggregate_function(column_name)
FROM table_name
WHERE column_name operator value
GROUP BY column_name
HAVING aggregate_function(column_name) operator value

Example.
A table named Orders contains four fields: Customer, OrderPrice, Order_date, and
Order_id. To query customers whose OrderPrice is smaller than 2,000, The SQL
statement is as follows:
SELECT Customer,SUM(OrderPrice) FROM Orders
GROUP BY Customer
HAVING SUM(OrderPrice)<2000

4.9.9 Grouping Sets
This topic describes how to use the GROUPING SETS clause when you need to execute
multiple UNION ALL clauses for scenarios where you need to aggregate and analyze
data of multiple dimensions.
GROUPING SETS by MaxCompute is an extension to the GROUP BY clause in the SELECT
 statement. You can group results in various ways by using GROUPING SETS without
executing multiple SELECT statements. This can allow the MaxCompute engine to
produce better implementation plans with higher performance.

Issue: 20191012 139

⼤数据计算服务 User Guide / 4 SQL

Note:
A number of examples in this topic are demonstrated by using MaxCompute
Studio. We recommend that you install MaxCompute Studio by following the
instructions provided in Install IntelliJ IDEA before you proceed with subsequent
operations.

Example
1. Prepare data.

create table requests LIFECYCLE 20 as
select * from values
 (1, 'windows', 'PC', 'Beijing'),
 (2, 'windows', 'PC', 'Shijiazhuang'),
 (3, 'linux', 'Phone', 'Beijing'),
 (4, 'windows', 'PC', 'Beijing'),
 (5, 'ios', 'Phone', 'Shijiazhuang'),
 (6, 'linux', 'PC', 'Beijing'),
 (7, 'windows', 'Phone', 'Shijiazhuang')
as t(id, os, device, city);

2. Use one of the following two methods to group data:
• Execute multiple SELECT statements.

SELECT NULL, NULL, NULL, COUNT(*)
FROM requests
UNION ALL
SELECT os, device, NULL, COUNT(*)
FROM requests GROUP BY os, device
UNION ALL
SELECT null, null, city, COUNT(*)
FROM requests GROUP BY city;

• Use GROUPING SETS.
SELECT os,device, city ,COUNT(*)
FROM requests
GROUP BY os, device, city GROUPING SETS((os, device), (city), ());

Data is aggregated as follows:
+----+--------+------+------------+
| os | device | city | cnt |
+----+--------+------+------------+
NULL	NULL	NULL	7
NULL	NULL	Beijing	4
NULL	NULL	Shijiazhuang	3
ios	Phone	NULL	1
linux	PC	NULL	1
linux	Phone	NULL	1
windows	PC	NULL	3
windows	Phone	NULL	1

140 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
+----+--------+------+------------+

Note:
Expressions not used in GROUPING SETS use NULL as placeholders. You can
execute UNION statements on grouping sets, such as the city column in lines 1
through 5.

CUBE and ROLLUP
CUBE and ROLLUP are special GROUPING SETS functions.
CUBE lists all possible combinations of specified columns as grouping sets. ROLLUP
 aggregates data by level to produce grouping sets.
Example code:
GROUP BY CUBE(a, b, c) is equal to GROUPING SETS((a,b,c),(a,b),(a,c),(
b,c),(a),(b),(c),()).

GROUP BY ROLLUP(a, b, c) is equal to GROUPING SETS((a,b,c),(a,b),(a)).

GROUPING and GROUPING_ID
NULL is used as placeholders in grouping sets, but it can also be a value that is
manually entered. In the code, however, placeholder NULLs are indistinguishable
from value NULLs. The GROUPING function is provided to address this issue.
GROUPING allows you to specify the name of a column as a parameter. If the specified
lines are aggregated based on a column whose name is used as a parameter in this
function, 0 is returned, indicating that NULL is an entered value. Otherwise, 1 is
returned, indicating that NULL is a placeholder.
GROUPING_ID can be used to specify the names of one or more columns as
parameters. The GROUPING results in these columns are formed into integers by
using BitMap.
Example code:
SELECT a,b,c ,COUNT(*),
GROUPING(a) ga, GROUPING(b) gb, GROUPING(c) gc, GROUPING_ID(a,b,c)
groupingid
FROM VALUES (1,2,3) as t(a,b,c)

Issue: 20191012 141

⼤数据计算服务 User Guide / 4 SQL
GROUP BY CUBE(a,b,c);

Data is aggregated as follows:
+------------+------------+------------+------------+------------
+------------+------------+------------+
| a | b | c | _c3 | ga | gb
 | gc | groupingid |
+------------+------------+------------+------------+------------
+------------+------------+------------+
| NULL | NULL | NULL | 1 | 1 | 1
 | 1 | 7 |
| NULL | NULL | 3 | 1 | 1 | 1
 | 0 | 6 |
| NULL | 2 | NULL | 1 | 1 | 0
 | 1 | 5 |
| NULL | 2 | 3 | 1 | 1 | 0
 | 0 | 4 |
| 1 | NULL | NULL | 1 | 0 | 1
 | 1 | 3 |
| 1 | NULL | 3 | 1 | 0 | 1
 | 0 | 2 |
| 1 | 2 | NULL | 1 | 0 | 0
 | 1 | 1 |
| 1 | 2 | 3 | 1 | 0 | 0
 | 0 | 0 |
+------------+------------+------------+------------+------------
+------------+------------+------------+

4.9.10 SELECT TRANSFORM
This topic describes how to use the SELECT TRANSFORM statement to perform
operations that MaxCompute SQL does not directly support. Specifically, by using
SELECT TRANSFORM, you can start a specified child process and enter data of
a required format into the child process through standard input (stdin). Then,
you can parse the standard output (stdout) of the child process to obtain the final
output. This process does not require you to compile user-defined functions (UDFs).
Example code:
SELECT TRANSFORM(arg1, arg2 ...)
(ROW FORMAT DELIMITED (FIELDS TERMINATED BY field_delimiter (ESCAPED
BY character_escape)?)?
(LINES SEPARATED BY line_separator)?
(NULL DEFINED AS null_value)?)?
USING 'unix_command_line'
(RESOURCES 'res_name' (',' 'res_name')*)?
(AS col1, col2 ...)?
(ROW FORMAT DELIMITED (FIELDS TERMINATED BY field_delimiter (ESCAPED
BY character_escape)?)?
(LINES SEPARATED BY line_separator)? (NULL DEFINED AS null_value)?)?

Parameters:

142 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• The SELECT TRANSFORM keyword can be replaced with the MAP or REDUCE keyword,
but the meaning remains unchanged. However, to make the syntax clearer, we
recommend that you use SELECT TRANSFORM.

• arg1,arg2... indicates arguments in the TRANSFORM clause. The format of
arguments in the TRANSFORM clause is similar to that of items in the SELECT clause.
In the default format, the results of expressions for each argument are combined
by using \t after they are implicitly converted into strings, and then they are
entered into the specified child process. The default format is configurable. For
more information, see the ROW FORMAT clause described in the following section.

• USING: specifies the command for starting a child process.

Note:
- In most MaxCompute SQL statements, the USING clause can only specify

resources. However, with the SELECT TRANSFORM statement, the USING clause
can specify commands to ensure compatibility with the syntax of Hive.

- The format of the USING clause is similar to the syntax of a Shell script.
However, a Shell script is actually not executed to start the child process, and
the child process is created according to the command input. Therefore, a
number of Shell functions such as input and output redirection, pipe, and
loop are unavailable. A Shell script can be used as the command for a child
process if needed.

• RESOURCES: specifies the resources that the specified child process can access.
You can use one of the following two methods to specify resources:
- Use the RESOURCES clause, for example, using 'sh foo.sh bar.txt'

Resources 'foo.sh','bar.txt'.
- Add the set odps.sql.session.resources=foo.sh,bar.txt; clause before

SQL statements. This clause takes effect globally once it is specified, which
means that all SELECT TRANSFORM statements can access the resources
specified by this clause.

Issue: 20191012 143

⼤数据计算服务 User Guide / 4 SQL

• ROW FORMAT: specifies the input or output format.
The syntax includes two ROW FORMAT clauses: One specifies the input format, and
the other specifies the output format. By default, \t is used to separate columns,
\n is used to separate rows, and Null is represented by \N.

Note:
- Only one character is accepted by field_delimiter, character_escape, and

line_separator. If you specify a string, the first character in the string takes
priority over the others.

- Hive specifies the syntax for each format. Such syntaxes as
inputRecordReader, outputRecordReader, and Serde are supported by
MaxCompute. To use these formats, you need to enable compatibility with
Hive by adding set odps.sql.hive.compatible=true; preceding SQL
statements. For more information about the syntaxes supported by Hive, see
Hive.

- If you specify a syntax such as inputRecordReader or outputRecordReader
supported by Hive, statements may be executed at lower speeds.

• AS: specifies output columns.
- You can specify data types in the AS clause, for example, as(col1:bigint,

col2:boolean). If you do not specify data types, for example, as(col1, col2),
strings are returned by default.

- The output is obtained by parsing the stdout of the child process. If the
specified data types do not include STRING, the system implicitly calls the
CAST function, which may encounter runtime exceptions.

- You are not allowed to specify data types for only some of the specified
columns, for example, as(col1, col2:bigint).

- If you skip the AS clause, the field preceding the first \t in the stdout is a key,
and all the following parts are values, equivalent to as(key, value).

Call Shell scripts
In the case that you execute a Shell script to generate 50 lines of data starting from 1
to 50, the output of the data field is as follows:
SELECT TRANSFORM(script) USING 'sh' AS (data)
FROM (

144 Issue: 20191012

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Transform#LanguageManualTransform-TRANSFORMExamples
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Transform#LanguageManualTransform-TRANSFORMExamples

⼤数据计算服务 User Guide / 4 SQL
 SELECT 'for i in `seq 1 50`; do echo $i; done' AS script
) t
;

The Shell commands are used as the input of the TRANSFORM clause.
SELECT TRANSFORM is not only a language extension. Simple functions such as
AWK, Python, Perl, and Shell allow you to compile scripts in commands, so that you
 do not need to compile independent script files or upload resources.

Call Python scripts
Python is a simple function that can allow you to compile scripts in commands so
that you do not need to compile independent script files or upload resources. The
following is an example of how to call Python scripts.
1. Compile a Python script file. In this example, the file name is myplus.py

#!/usr/bin/env python
import sys
line = sys.stdin.readline()
while line:
 token = line.split('\t')
 if (token[0] == '\\N') or (token[1] == '\\N'):
 print '\\N'
 else:
 print int(token[0]) + int(token[1])
 line = sys.stdin.readline()

2. Add the Python script file as a resource to MaxCompute.
add py ./myplus.py -f;

Note:
You can add resources by using the DataWorks console.

3. Use SELECT TRANSFORM to call the resource.
Create table testdata(c1 bigint,c2 bigint); - Creates a test table.
insert into Table testdata values (1,4),(2,5),(3,6); - Inserts test
data into the test table.

- Execute the SELECT TRANSFORM statement:
SELECT
TRANSFORM (testdata.c1, testdata.c2)
USING 'python myplus.py'resources 'myplus.py'
AS (result bigint)
FROM testdata;

- Or:
set odps.sql.session.resources=myplus.py;
SELECT TRANSFORM (testdata.c1, testdata.c2)
USING 'python myplus.py'
AS (result bigint)

Issue: 20191012 145

⼤数据计算服务 User Guide / 4 SQL
FROM testdata;

The returned information is as follows:
+-----+
| cnt |
+-----+
| 5 |
| 7 |
| 9 |
+-----+

Python scripts do not require MaxCompute to run in a Python framework, and they
are not subject to any format requirements.
In MaxCompute, Python commands can be used as the input of the TRANSFORM
 clause. For example, you can call Shell scripts by running Python commands.
SELECT TRANSFORM('for i in xrange(1, 50): print i;') USING 'python'
AS (data);

Call Java scripts
Calling a Java script is similar to calling a Python script. In this example, you
need to compile a Java script file, export it as a .jar package, and then run the add
 command to add the .jar package as a resource to MaxCompute. The resource will
be called by using SELECT TRANSFORM.
1. Compile a Java script file, and export it as a .jar package. In this example, the

name of the .jar package is Sum.jar.
package com.aliyun.odps.test;
import java.util.Scanner
public class Sum {
 public static void main(String[] args) {
 Scanner sc = new Scanner(System.in);
 while (sc.hasNext()) {
 String s = sc.nextLine();
 String[] tokens = s.split("\t");
 if (tokens.length < 2) {
 throw new RuntimeException("illegal input");
 }
 if (tokens[0].equals("\\N") || tokens[1].equals("\\N"))
 {
 System.out.println("\\N");
 }
 System.out.println(Long.parseLong(tokens[0]) + Long.
parseLong(tokens[1]));
 }
 }

146 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
}

2. Add the .jar package as a resource to MaxCompute.
add jar ./Sum.jar -f;

3. Use SELECT TRANSFORM to call the resource.
Create table testdata(c1 bigint,c2 bigint); - Creates a test table.
insert into Table testdata values (1,4),(2,5),(3,6); - Inserts test
data into the test table.
- Execute the SELECT TRANSFORM statement:
SELECT TRANSFORM(testdata.c1, testdata.c2) USING 'java -cp Sum.jar
com.aliyun.odps.test.Sum' resources 'Sum.jar' from testdata;
- Or:
set odps.sql.session.resources=Sum.jar;
SELECT TRANSFORM(testdata.c1, testdata.c2) USING 'java -cp Sum.jar
com.aliyun.odps.test.Sum' FROM testdata;

The returned information is as follows:
+-----+
| cnt |
+-----+
| 5 |
| 7 |
| 9 |
+-----+

You can run most Java utilities by using the preceding method.

Note:
Although user-defined table-valued function (UDTF) frameworks are provided
for Java and Python, compiling code by using SELECT TRANSFORM is easier.
SELECT TRANSFORM is a simpler process because it is not subject to any format
requirements and can be called offline. The paths for Java and Python offline
scripts can be obtained from the JAVA_HOME and PYTHON_HOME environment
variables, respectively.

Call scripts of other languages
In addition to the language extensions mentioned above, SELECT TRANSFORM
supports commonly used Unix command and script interpreters such as AWK and
Perl.

Issue: 20191012 147

⼤数据计算服务 User Guide / 4 SQL

An example of how to output column 2 by calling AWK:
SELECT TRANSFORM(*) USING "awk '//{print $2}'" as (data) from testdata
;

An example of calling Perl:
SELECT TRANSFORM (testdata.c1, testdata.c2) USING "perl -e 'while($
input = <STDIN>){print $input;}'" FROM testdata;

Note:
Currently PHP and Ruby are not deployed in the MaxCompute cluster. Therefore,
MaxCompute does not allow you to call PHP or Ruby scripts.

Call scripts in tandem
SELECT TRANSFORM allows you to call scripts in tandem. For example, you can use
distribute by and sort by to preprocess data.
SELECT TRANSFORM(key, value) USING 'cmd2' from
(
 SELECT TRANSFORM(*) USINg 'cmd1' from
 (
 SELECt * FROM data distribute by col2 sort by col1
) t distribute by key sort by value
) t2;

You can use either the map or reduce keywords with the same results.
@a := select * from data distribute by col2 sort by col1;
@b := map * using 'cmd1' distribute by col1 sort by col2 from @a;
reduce * using 'cmd2' from @b;

SELECT TRANSFORM performance
The performance of SELECT TRANSFORM and UDTF varies depending on the
specific scenario. In general, the performance of SELECT TRANSFORM is optimal
when the data size is comparatively small, and the performance of UDTF is optimal
when the data size is large.
SELECT TRANSFORM is easier to use, and therefore is more suitable for adhoc data
analysis.
Benefits of UDTF
• In UDTF, the output and input must follow the specified data types, and

therefore UDTF does not require data type conversion as is required by SELECT
TRANSFORM.

148 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• In UDTF, processes are not suspended if the operating system pipe is empty or
fully occupied as is the case for SELECT TRANSFORM.

• In UDTF, constant parameters do not need to be transmitted, which is required
by SELECT TRANSFORM.

Benefits of SELECT TRANSFORM
• SELECT TRANSFORM supports a child process and a parent process and

therefore can take advantage of multiple cores in servers.
• SELECT TRANSFORM calls underlying systems to read and write the data to be

transmitted, which allows it to have performance that is higher than that of Java.
• SELECT TRANSFORM supports tools such as AWK and can run native code. This

offers SELECT TRANSFORM more advantages compared to Java.

4.10 Script Mode SQL
This topic describes Script Mode SQL and how to run this language.

Note:
The fees information detailed in the instructions section of Other operations for Script
Mode SQL is provided as reference purposes only. The fees displayed on the billing
console are the actual fees charged to your account. For more information, see View

billing details.
What is Script Mode SQL

MaxCompute supports Script Mode SQL. In script mode type of SQL, statements
are compiled as a whole according to the logic in an SQL script file. Then the script
 file is submitted to MaxCompute to generate one execution plan, so that these
statements are scheduled in one queue and run all at once.
Script Mode SQL is used similarly to other common programming languages. This
language can assist in compiling scripts more efficiently by eliminating the need to
organize statements for these scripts.
Script Mode SQL supports the following tools:
• MaxCompute Studio: For more information, see What is Studio.
• MaxCompute command line interface (CLI): For more information, see Install and

configure a client.
Issue: 20191012 149

⼤数据计算服务 User Guide / 4 SQL

Syntax
--set
set odps.sql.type.system.odps2=true;
[set odps.stage.reducer.num=xxx;]
[...]
--ddl
create table table1 xxx;
[create table table2 xxx;]
[...]
--dml
@var1 := SELECT [ALL | DISTINCT] select_expr, select_expr, ...
 FROM table3
 [WHERE where_condition];
@var2 := SELECT [ALL | DISTINCT] select_expr, select_expr, ...
 FROM table4
 [WHERE where_condition];
@var3 := SELECT [ALL | DISTINCT] var1.select_expr, var2.select_expr
, ...
 FROM @var1 join @var2 on ...;
INSERT OVERWRITE|INTO TABLE [PARTITION (partcol1=val1, partcol2=val2
 ...)]
 SELECT [ALL | DISTINCT] select_expr, select_expr, ...
 FROM @var3;
[@var4 := SELECT [ALL | DISTINCT] var1.select_expr, var.select_expr
, ... FROM @var1
 UNION ALL | UNION
 SELECT [ALL | DISTINCT] var1.select_expr, var.select_expr
, ... FROM @var2;
 CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name
 AS
 SELECT [ALL | DISTINCT] select_expr, select_expr, ...
 FROM var4;]
[...]

• Script Mode SQL supports SET statements, data manipulation language (DML)
statements, and data definition language (DDL) statements (excluding such
statements as DESC and SHOW whose results are displayed on your screen).

• A complete script must start with SET statements, followed by DDL statements,
and end with DML statements. One part may either be empty or contain several
statements. Different types of statements cannot co-occur in one part.

• The at sign @ indicates a variable.
• A script can contain up to one statement, such as a SELECT statement, whose

result is displayed on your screen. If one script contains two or more such
statements, errors are more likely to occur. Therefore, we recommend that you
do not run such SELECT statements.

• A script can contain only one CREATE TABLE AS statement, and must end with
this statement. We recommend that you separate the CREATE TABLE AS statement
from INSERT statements.

150 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• If a statement fails to run, all the other statements in the same script also fail.
• A job is generated to process data only after all the input data is prepared.
• If a table is written and then read, the following error occurs:

insert overwrite table src2 select * from src where key > 0;
@a := select * from src2;
select * from @a;

To avoid this error, modify your SQL script as follows:
@a := select * from src where key > 0;
 insert overwrite table src2 select * from @a;
 select * from @a;

Example
create table if not exists dest(key string , value bigint) partitioned
 by (d string);
create table if not exists dest2(key string,value bigint) partitioned
by (d string);
@a := select * from src where value >0;
@b := select * from src2 where key is not null;
@c := select * from src3 where value is not null;
@d := select a.key,b.value from @a left outer join @b on a.key=b.key
and b.value>0;
@e := select a.key,c.value from @a inner join @c on a.key=c.key;
@f := select * from @d union select * from @e union select * from @a;
insert overwrite table dest partition (d='20171111') select * from @f;
@g := select e.key,c.value from @e join @c on e.key=c.key;
insert overwrite table dest2 partition (d='20171111') SELECT * from @g
;

Scenarios
We recommend that you use Script Mode SQL in the two following scenarios:
• You require multiple layers of query clauses to be nested into one statement, or

require a complicated script to be split into multiple simpler statements.
• You require the input data obtained from multiple sources at long intervals to be

 combined into a script. However, the input data cannot be combined by using
table variables alone.

Run Script Mode SQL by using MaxCompute Studio
Before running Script Mode SQL, you must first install MaxCompute Studio, add
your project link, and create a MaxCompute SQL script file. For more information,
see Install IntelliJ IDEA, Project space connection management, and Create MaxCompute Script module.

Issue: 20191012 151

⼤数据计算服务 User Guide / 4 SQL

After submitting your script, you can view the corresponding plan for running the
 script in a directed acyclic graph (DAG). This is the case even though the script
contains multiple statements.

Run Script Mode SQL by using MaxCompute Console (odpscmd)
For the following examples, we recommend that you use MaxCompute CLI
(odpscmd) v0.27.0 or a later version, which can be downloaded from Directory Listing

 For odpscmd. After installing the odpscmd tool, you can use the -s parameter to
submit your script.
To edit the myscript.sql source code file in script mode, run the following
command:
odpscmd -s myscript.mxql;

Note:
-s is a parameter similar to -f and -e rather than a command in the odpscmd tool.
The odpscmd tool does not support Script Mode SQL or table variables.

Run Script Mode SQL by using DataWorks
You can create a node that runs in script mode, as shown in the following figure.

On this node, you can compile your script in script mode and then click Run on the
toolbar to submit your script to MaxCompute. You can visit the URL of Logview in
the command output to obtain the script execution plan and result.

152 Issue: 20191012

http://odps.alibaba-inc.com/official_downloads/odpscmd/
http://odps.alibaba-inc.com/official_downloads/odpscmd/

⼤数据计算服务 User Guide / 4 SQL

4.11 Common table expression (CTE)
MaxCompute supports CTEs in standard SQL to improve the readability and
execution efficiency of SQL statements.
Syntax structure of CTE.
WITH
 cte_name AS

 cte_query

 [,cte_name2 AS

 cte_query2

 ,……]

• cte_name refers to the CTE name, which must be unique in current WITH clause.
The cte_name identifier in any position of the query indicates the CTE.

• cte_query is a SELECT statement, whose result set is used to populate the CTE.
Example:
INSERT OVERWRITE TABLE srcp PARTITION (p='abc')
SELECT * FROM (
 SELECT a.key, b.value
 FROM (
 SELECT * FROM src WHERE key IS NOT NULL) a
 JOIN (
 SELECT * FROM src2 WHERE value > 0) b
 ON a.key = b.key
) c
UNION ALL
SELECT * FROM (
 SELECT a.key, b.value
 FROM (
 SELECT * FROM src WHERE key IS NOT NULL) a
 LEFT OUTER JOIN (
 SELECT * FROM src3 WHERE value > 0) b
 ON a.key = b.key AND b.key IS NOT NULL
)d;

A JOIN clause is written on both sides of UNION at the top layer, and same
queries are formed on the left table of JOIN. You must repeat this code if writing
subqueries.
The preceding statement can be rewritten as follows using the CTE:
with
 a as (select * from src where key is not null),
 b as (select * from src2 where value>0),
 c as (select * from src3 where value>0),
 d as (select a.key,b.value from a join b on a.key=b.key),

Issue: 20191012 153

⼤数据计算服务 User Guide / 4 SQL
 e as (select a.key,c.value from a left outer join c on a.key=c.key
and c.key is not null)
insert overwrite table srcp partition (p='abc')
select * from d union all select * from e;

After rewriting, the subquery corresponding to "a" only need to be rewritten once
, and then can be reused subsequently. The WITH clause in the CTE specifies
 multiple subqueries that can be repeatedly used like variables in the entire
statement. Besides being reused, subqueries do not have to be repeatedly nested.

4.12 Explain
The Explain operation of MaxCompute SQL helps to display the description of the
final execution plan structure corresponding to a DML statement. The execution
plan is the program used at the final stage to run SQL semantics.
Function definition.
EXPLAIN <DML query>;

The execution result of ‘explain’ includes the following:
• The dependency structure of all the tasks corresponding to this DML statement.
• All task dependency structures in a task.
• All operator dependency structures in a task.
For examples.
EXPLAIN
SELECT abs(a.key), b.value FROM src a JOIN src1 b ON a.value = b.value
;

The output result of Explain consists of the following parts:
• The dependency between jobs: job0 is root job, As the query requires one job

(job0), only one row of information is required.
• The dependency between tasks:

In Job job0:
root Tasks: M1_Stg1, M2_Stg1

154 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
J3_1_2_Stg1 depends on: M1_Stg1, M2_Stg1

Job0 contains three tasks, among which M1_Stg1 and M2_Stg1 are run first,
followed by J3_1_2_Stg1.
The naming rules of tasks are as follows:
- MaxCompute contains four types of tasks: MapTask, ReduceTask, JoinTask,

and LocalWork.
- The first letter of a task name represents the current task type. For example,

M2Stg1 is a MapTask.
- The number following the first letter represents the current task ID, which

must be unique in all tasks corresponding to the current query.
- The numbers separated by underscores (_) represent the direct dependencies

 of the current task. For example, J3_1_2_Stg1 indicates that the current task (
whose ID is 3) depends on two tasks whose IDs are 1 and 2.

• The third part is the operator structure in the task. The operator string describes
the execution semantics of a task:
In Task M1_Stg1:
 Data source: yudi_2.src # Data source describes the input content
of the current task
 TS: alias: a # TableScanOperator
 RS: order: + # ReduceSinkOperator
 keys:
 a.value
 values:
 a.key
 partitions:
 a.value
In Task J3_1_2_Stg1:
 JOIN: a INNER JOIN b # JoinOperator
 SEL: Abs(UDFToDouble(a._col0)), b._col5 # SelectOperator
 FS: output: None # FileSinkOperator
In Task M2_Stg1:
 Data source: yudi_2.src1
 TS: alias: b
 RS: order: +
 keys:
 b.value
 values:
 b.value
 partitions:

Issue: 20191012 155

⼤数据计算服务 User Guide / 4 SQL
 b.value

- Description of operators:
■ TableScanOperator: Describes the logic of FROM statement blocks in a

Query statement. The input table name (alias) is displayed in the EXPLAIN
results.

■ SelectOperator: Describes the logic of SELECT statement blocks in a
QUERY statement. The columns to be passed to the next operator are
displayed in the Explain results, separated by commas (,).
■ If column references are to be passed, < alias >.< column_name > is

displayed
■ If expression results are to be transmitted, they are displayed as

functions, for example, func1(arg1_1, arg1_2, func2(arg2_1, arg2_2
)).

■ If constants are to be passed, the values are directly displayed.
■ FilterOperator: Describes the logic of WHERE statement blocks in a

QUERY statement. A WHERE condition expression is displayed in the
Explain results, with the display rules similar to those of SelectOperator.

■ JoinOperator: Describes the logic of JOIN statement blocks in a QUERY
statement. Both the tables to be joined and the JOIN method are displayed
in the Explain results.

■ GroupByOperator: Describes the logic of aggregate operations. This
structure is displayed if an aggregate function is used in a QUERY
statement. The aggregate function content is displayed in the Explain
results.

■ ReduceSinkOperator: Describes the logic of data distribution operations
between tasks. If the result of the current task is to be passed to another
task, ReduceSinkOperator must be used at the end of the current task to
perform the data distribution operation. The sorting method of output

156 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

results, distributed keys, values, and columns used to calculate the hash
value are displayed in the Explain results.

■ FileSinkOperator: Describes the storage operation of final data. If Insert
statement blocks exist in the QUERY statement, the target table name is
displayed in the Explain results.

■ LimitOperator: Describes the logic of Limit statement blocks in a QUERY
statement. The number of LIMIT is displayed in the Explain results.

■ MapjoinOperator: Similar to JoinOperator, it describes JOIN operations in
large tables.

Note:
If a QUERY statement is so complicated that Explain has too many results, API
restrictions are triggered, which leads to incomplete display of Explain results. In
this case, you can split the QUERY and perform the Explain operation on each part
to understand the job structure.

4.13 VALUES
This topic describes the INSERT … VALUES command operation.
In the test phase, you need to prepare some data for simple testing:
• If you want to create a few data records (such as 10 or fewer records), you can use

the INSERT … VALUES statement to quickly write the data.
• If you want to create a large number of data records (such as more than 10

records), you can incorporate the data records into a .txt or .csv file and then
upload the file by using Tunnel. For more information about this method, see
Import data. Alternatively, you can incorporate the data records into a file and then
import the file by using DataWorks. For more information about this method, see
Introduction to console.

Note:
Currently, the INSERT OVERWRITE statement cannot insert columns, therefore we
recommend that you use the INSERT INTO statement instead.

Statement format:
INSERT INTO TABLE tablename

Issue: 20191012 157

⼤数据计算服务 User Guide / 4 SQL
[PARTITION (partcol1=val1, partcol2=val2 ...)][co1name1,colname2...]
[VALUES (col1_value,col2_value,...),(col1_value,col2_value,...),...]

Example 1::
drop table if exists srcp;
create table if not exists srcp (key string ,value bigint) partitioned
 by (p string);
insert into table srcp partition (p='abc') values ('a',1),('b',2),('c
',3);

After the preceding statements are complete, the result of Partition abc is as
follows:

| key | value | p |

a	1	abc
b	2	abc
c	3	abc

If you want to run the INSERT statement to write data into only some columns of a
table, use the insert list function as follows.
Example 2:
drop table if exists srcp;
create table if not exists srcp (key string ,value bigint) partitioned
 by (p string);
insert into table srcp partition (p)(key,p) values ('d','20170101'),('
e','20170101'),('f','20170101');

After the preceding statements are complete, the result of Partition 20170101 is as
follows:

| key | value | p |

d	NULL	20170101
e	NULL	20170101
f	NULL	20170101

158 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

For columns not specified in values, the default value is NULL. The insert list
 function is not necessarily used with values, and can also be used with the insert
into…select… function.
In fact, the values is not only used in the INSERT statement, any DML statement can
also be used.
The INSERT…VALUES method has a limitation: values must be constants. You can use
the values table function of MaxCompute to perform some simple operations on the
inserted data. For more information, see Example 3.
Example 3:
drop table if exists srcp;
create table if not exists srcp (key string ,value bigint) partitioned
 by (p string);
insert into table srcp partition (p) select concat(a,b), length(a)+
length(b),'20170102' from values ('d',4),('e',5),('f',6) t(a,b);

The values (…), (…) t(a, b) is used to define a table named t whose columns
are a and band data types are STRING for column a and BIGINT for column b.
The data types are derived from the values list. In this way, with no physical table
prepared, it is possible to simulate a multi-row table with arbitrary data and
perform arbitrary calculations.
After the preceding statements are complete, the result of Partition 20170102 is as
follows:

| key | value | p |

d4	2	20170102
e5	2	20170102
f6	2	20170102

The use of VALUES TABLE can also replace the combination of select * from dual
 and to spell out the constants as follows:
select 1 c from dual
union all
select 2 c from dual;
--The same as:

Issue: 20191012 159

⼤数据计算服务 User Guide / 4 SQL
select * from values (1), (2) as t (c);

A special usage of values is as follows.
select abs(-1), length('abc'), getdate();

As the preceding statement shows, the SELECT statement can be run without
the FROM statement, if the expression list of the SELECT statement does not use
any upstream table data. The underlying implementation is selecting from an
anonymous values table in one row and zero columns. In this way, to test some
functions, such as your UD, you do not need to manually create DUAL tables.

Note:
• Values only support constants and do not support functions including ARRAY

complex types. Currently, MaxCompute cannot construct corresponding
constants. Therefore, we recommend that you modify the statement as follows:
insert into table srcp (p ='abc') select 'a',array('1', '2', '3');.

which can provide the same effect.
• To write the DATETIME and TIMESTAMP data types through values, specify the

type names in the VALUES statement, for example:
insert into table srcp (p ='abc') values (datetime'2017-11-11
 00:00:00',timestamp'2017-11-11 00:00:00.123456789');

4.16 Builtin functions
4.16.1 Compare built-in functions of MaxCompute with MySQLand Oracle

The following table compares the built-in functions used in MaxCompute with
those of MySQL and Oracle.
Function type MaxCompute MySQL Oracle

DATEDIFF DATEDIFF MONTHS_BET
WEEN

DATEADD DATE_ADD N/A

Date functions

DATEPART DATE_FORMAT EXTRACT (
datetime)

160 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

DATETRUNC DATE_FORMAT EXTRACT (
datetime)

FROM_UNIXTIME FROM_UNIXTIME N/A
GETDATE NOW CURRENT_DATE
ISDATE STR_TO_DATE (If '

false' is returned,
the string cannot be
converted to date.)

N/A

LASTDAY LAST_DAY LAST_DAY
TO_DATE STR_TO_DATE() DATE
TO_CHAR DATE_FORMAT TO_CHAR (

datetime)
UNIX_TIMESTAMP UNIX_TIMESTAMP N/A
WEEKDAY WEEKDAY N/A
WEEKOFYEAR WEEKOFYEAR N/A
YEAR YEAR YEAR
QUARTER QUARTER QUARTER
MONTH MONTH MONTH
DAY DAY DAY
DAYOFMONTH DAYOFMONTH N/A
HOUR HOUR HOUR
MINUTE MINUTE MINUTE
CURRENT_TIMESTAMP CURRENT_TI

MESTAMP
CURRENT_TI
MESTAMP

ADD_MONTHS ADDDATE ADD_MONTHS
LAST_DAY LAST_DAY N/A
NEXT_DAY N/ NEXT_DAY
MONTHS_BETWEEN timestampdiff MONTHS_BET

WEEN
ABS ABS ABS
ACOS ACOS ACOS

Mathematical

functions

ASIN ASIN ASIN

Issue: 20191012 161

⼤数据计算服务 User Guide / 4 SQL

ATAN ATAN ATAN
CEIL CEIL CEIL
CONV CONV N/A
COS COS COS
COSH N/A COSH
COT COT COT
EXP EXP EXP
FLOOR FLOOR FLOOR
LN LN LN
LOG LOG LOG
POW POW POWER
RAND RAND N/A
ROUND ROUND ROUND
SIN SIN SIN
SINH N/A SINH
SQRT SQRT SQRT
TAN TAN TAN
TANH N/A TANH
TRUNC TRUNCATE TRUNC
LOG2 LOG2 LOG
LOG10 LOG10 LOG
BIN BIN BITAND
HEX HEX RAWTOHEX
UNHEX UNHEX HEXTORAW
RADIANS RADIANS RADIANS
DEGREES DEGREES DEGREES
SIGN SIGN SIGN
E N/A EXP
PI PI PI
FACTORIAL N/A N/A

162 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

CBRT N/A N/A
SHIFTLEFT << N/A
SHIFTRIGHT >> N/A
SHIFTRIGHTUNSIGNED >>> N/A
DENSE_RANK DENSE_RANK DENSE_RANK
RANK RANK RANK
LAG LAG LAG
LEAD LEAD LEAD
PERCENT_RANK PERCENT_RANK PERCENT_RANK
ROW_NUMBER ROW_NUMBER ROW_NUMBER
CLUSTER_SAMPLE N/A N/A

Window functions

NTILE NTILE NTILE
COUNT COUNT COUNT
AVG AVG AVG
MAX MAX MAX
MIN MIN MIN
MEDIAN N/A MEDIAN
STDDEV STDDEV STDDEV
STDDEV_SAMP STDDEV_SAMP STDDEV_SAMP
SUM SUM SUM
WM_CONCAT GROUP_CONCAT WM_CONCAT
COLLECT_LIST N/A COLLECT
COLLECT_SET N/A COLLECT
VARIANCE/VAR_POP VAR_POP VARIANCE/

VAR_POP
VAR_SAMP VAR_SAMP VAR_SAMP
COVAR_POP N/A COVAR_POP
COVAR_SAMP N/A COVAR_SAMP

Aggregate

functions

PERCENTILE N/A N/A
String functions CHAR_MATCHCOUNT N/A N/A

Issue: 20191012 163

⼤数据计算服务 User Guide / 4 SQL

CHR CHAR CHR
CONCAT CONCAT CONCAT
GET_JSON_OBJECT JSON_EXTRACT() N/A
INSTR INSTR INSTR
IS_ENCODING N/A N/A
KEYVALUE N/A N/A
LENGTH LENGTH LENGTH
LENGTHB LENGTHB LENGTHB
MD5 MD5 N/A
REGEXP_EXTRACT N/A N/A
REGEXP_INSTR REGEXP_INSTR REGEXP_INSTR
REGEXP_REPLACE REGEXP_REPLACE REGEXP_REPLACE
REGEXP_SUBSTR REGEXP_SUBSTR REGEXP_SUBSTR
REGEXP_COUNT N/A REGEXP_COUNT
SPLIT_PART N/A N/A
SUBSTR SUBSTR SUBSTR
SUBSTRING SUBSTRING SUBSTR
TOLOWER LOWER LOWER
TOUPPER UPPER UPPER
TO_CHAR DATE_FORMAT TO_CHAR
TRIM TRIM TRIM
LTRIM LTRIM LTRIM
RTRIM RTRIM LTRIM
REVERSE REVERSE REVERSE
SPACE SPACE SPACE
REPEAT REPEAT REPEAT
ASCII ASCII ASCII
CONCAT_WS CONCAT_WS N/A
LPAD LPAD LPAD
RPAD RPAD RPAD

164 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

REPLACE REPLACE REPLACE
SOUNDEX SOUNDEX SOUNDEX
SUBSTRING_INDEX SUBSTRING_INDEX N/A
TRANSLATE N/A TRANSLATE
URL_DECODE N/A N/A
URL_ENCODE N/A PERCENTILE

_CONT
CRC32 CRC32 N/A
CAST CAST CAST
COALESCE COALESCE COALESCE
DECODE N/A DECODE
GET_IDCARD_AGE N/A N/A
GET_IDCARD_BIRTHDAY N/A N/A
GET_IDCARD_SEX N/A N/A
GREATEST GREATEST N/A
ORDINAL N/A GREATEST
LEAST LEAST N/A
MAX_PT N/A LEAST
UUID UUID N/A
SAMPLE N/A UID
IF IF IF
CASE WHEN CASE WHEN CASE WHEN
SPLIT SPLIT N/A
STR_TO_MAP N/A N/A
EXPLODE N/A N/A
MAP N/A N/A
MAP_KEYS N/A N/A
MAP_VALUES N/A N/A
NVL IFNULL N/A

Other functions

ARRAY N/A N/A

Issue: 20191012 165

⼤数据计算服务 User Guide / 4 SQL

SIZE N/A N/A
ARRAY_CONTAINS N/A N/A
POSEXPLODE N/A N/A
TRANS_ARRAY N/A N/A
INLINE N/A N/A
NAMED_STRUCT N/A N/A

4.16.2 Date functions
This article explains various functions that MaxCompute SQL offers to operate
datetime types.

DATEADD
Command format:
datetime dateadd(datetime date, bigint delta, string datepart)

Command description:
Modify the value of date according to a specified unit ‘datepart’ and specified
scope ‘delta’.
Parameter description:
• date: Datetime type, value of date. If the input is string type, it is converted to

‘datetime’ type by implicit conversion. If it is another type, an exception is
indicated.

• delta: Bigint type, date scope to be modified. If the input is ‘string’ type or
‘double’ type, it is converted to ‘bigint’ type by implicit conversion. If it is
another data type, exception occurs. If ‘delta’ is greater than zero, do ‘add’
operation, otherwise do ‘minus’ operation.

• datepart: a String type constant. This field value follows ‘string’ and
‘datetime’ type conversion agreement, where, ‘yyyy’ indicates year; ‘mm’
indicates month.
See Conversion between String type and Datetime type. In addition, the extensional
date format is also supported: year- ‘year’; month-‘month’ or ‘mon’;
day-‘day’; hour-‘hour. If it is not a constant or unsupported format or other
data type, an exception is indicated.

166 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Return value:Datetime type. If any input is NULL, return NULL.

Note:
• While increasing or decreasing ‘delta’ according to specified unit, it causes

the carry or back space for higher unit. Day, month, hour, minute, second are
calculated by 10 hexadecimal, 12 hexadecimal, 24 hexadecimal, 60 hexadecimal
, 60 hexadecimal respectively.

• If the unit of ‘delta’ is month, the calculation rule is shown as follows:
If the month part of ‘datetime’ does not cause the spillover of day after adding
 ‘delta’, then do not change the day, else the day value is set to the last day of
the result month.

• The value of ‘datepart’ follows ‘string’ and ‘datetime’ type conversion
agreement, that is, ‘yyyy’ indicates year; ‘mm’ indicates month and so on
. If no special description exists, related datetime built-in functions follow this
agreement. Moreover, if no special instructions, the part of all datetime built-in
functions supports extended date format: year- ‘year’; month-‘month’ or ‘
mon’; day-‘day’; hour-‘hour.

For example:
select dateadd(datetime '2005-02-28 00:00:00', 1, 'dd') ;
--return 2005-03-01 00:00:00.Add one day. The result is beyond the
last day in February. The actual value is the first day of next month.
select dateadd(datetime '2005-02-28 00:00:00', -1, 'dd');
--return 2005-02-27 00:00:00.Minus one day.
select dateadd(datetime '2005-02-28 00:00:00', 20, 'mm');
--return 2006-10-28 00:00:00.Add 20 months. The month spillover is
caused and the year is added ‘1’.
select dateadd(datetime '2005-02-28 00:00:00', 1, 'mm');
--return 2005-03-28 00:00:00
select dateadd(datetime '2005-01-29 00:00:00', 1, 'mm');
--return 2005-02-28 00:00:00.No 29th is in Feb. of 2005. The date is
intercepted to the last day of current month.
select dateadd(datetime '2005-03-30 00:00:00', -1, 'mm');
--return 2005-02-28 00:00:00

In MaxCompute SQL, the datetime type has no direct constant representation, the
following usage is wrong:
select dateadd(2005-03-30 00:00:00, -1, 'mm') from tbl1;

If you must describe the datetime type constant, try the following methods:
select dateadd(cast("2005-03-30 00:00:00" as datetime), -1, 'mm') from
 tbl1;

Issue: 20191012 167

⼤数据计算服务 User Guide / 4 SQL
-- The String type constant is converted to datatime type by explicit
conversion.

DATEDIFF
Command format:
bigint datediff(datetime date1, datetime date2, string datepart)

Command description:
Calculate the difference between two datetime date1 and date2 in specified time
unit ‘datepart’.
Parameter description:
• datet1, date2: Datetime type, minuend, meiosis. If the input is ‘string’, it is

converted to ‘datetime’ by implicit conversion. If it is another data type, an
exception indicated.

• datepart: a String type constant. The extensional date format is supported.
If ‘datepart’ does not meet the specified format or is other data type, an
exception is indicated.

Return value:
Returns the Bigint type. Any input parameter is NULL, return NULL. If date1 is less
than date2, then the returned value may be negative.

Note:
The lower unit part is cut off according to ‘datepart’ in the calculation process
and then calculate the result.

For example:
If start = 2005-12-31 23:59:59, end = 2006-01-01 00:00:00:
 datediff(end, start, 'dd') = 1
 datediff(end, start, 'mm') = 1
 datediff(end, start, 'yyyy') = 1
 datediff(end, start, 'hh') = 1
 datediff(end, start, 'mi') = 1
 datediff(end, start, 'ss') = 1
 datediff(datetime '2013-05-31 13:00:00', '2013-05-31 12:30:00', '
ss') = 1800
 datediff(datetime '2013-05-31 13:00:00', '2013-05-31 12:30:00', '
mi') = 30
If start = 19:33:23. 234, end = 19:33:23. 250 .Dates with milliseconds
 do not belong to the standard datetime style, and cannot be converted
 implicitly directly.Explicit conversion is required here:

168 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
datediff(to_date('2018-06-04 19:33:23.250', 'yyyy-MM-dd hh:mi:ss.ff3
'),to_date('2018-06-04 19:33:23.234', 'yyyy-MM-dd hh:mi:ss.ff3') , '
ff3') = 16

DATEPART
Command format:
bigint datepart(datetime date, string datepart)

Command format:
Extracts the value of the specified time unit ’datepart’ in ‘date’.
Parameter description:
Return value:
• date: Datetime type. If the input is ‘string’ type, it is converted to ‘datetime’

type. If it is another data type, an exception is indicated.
• datepart: String type constant. The extensional date format is supported.

If ‘datepart’ does not meet the specified format or is other data type, an
exception is indicated.

Returns the Bigint type. If any input is NULL, return NULL.
For example:
datepart(datetime '2013-06-08 01:10:00', 'yyyy') = 2013
datepart(datetime '2013-06-08 01:10:00', 'mm') = 6

DATETRUNC
Command format:
datetime datetrunc (datetime date, string datepart)

Usage:：
Return the remained date value after the specified time unit ‘datepart’ has been
intercepted.
Parameter description:：
• date: Datetime type. If the input is ‘string’ type, it is converted to ‘datetime’

type. If it is another data type, an exception indicated.

Issue: 20191012 169

⼤数据计算服务 User Guide / 4 SQL

• datepart: String type constant. The extensional date format is supported.
If ‘datepart’ does not meet the specified format or is other data type, an
exception is indicated.

Return value:
Datetime type. If any input is NULL, return NULL.
For example:
datetrunc(datetime '2011-12-07 16:28:46', 'yyyy') = 2011-01-01 00:00:
00
datetrunc(datetime '2011-12-07 16:28:46', 'month') = 2011-12-01 00:00:
00
datetrunc(datetime '2011-12-07 16:28:46', 'DD') = 2011-12-07 00:00:00

GETDATE
Command format:
datetime getdate()

Command description:
Get present system time. Use UTC+8 as MaxCompute standard time.
Return value:
Datetime type, return present date and time.

Note:
In a MaxCompute SQL task (executed in a distributed manner), ‘getdate’ always
returns a fixed value. The return result is any time in MaxCompute SQL execution
period and the precision of time is accurate to seconds.

ISDATE
Command format:
boolean isdate(string date, string format)

Command description:
Determines whether a date string can be converted to a datetime value according
 to corresponding format string. If the conversion is successful, return TRUE,
otherwise return FALSE.
Parameter description:

170 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• date: date value of String format. If the input is ‘bigint’, or ‘double’ or
‘datetime’, it is be converted to ‘string’ type. If it is another data type, an
exception is indicated.

• format: a String type constant. The extensional date format is not supported.
If redundant format strings appear in ‘format’, then get the datatime value
corresponding to the first format string, other strings are taken as separators.
For example, isdate (‘1234-yyyy’, ‘yyyy-yyyy’) returns ‘TRUE’.

Return value:
Boolean type. If any parameter is NULL, return NULL.

LASTDAY
Command format:
datetime lastday(datetime date)

Command format:
Get the last day in the same month of the date, intercepted to day and the ‘hh:mm:
ss’ part is ‘00:00:00’.
Parameter description:
date: Datetime type. If the input is ‘string’ type, it is converted to ‘datetime’
type. If it is another data type, an exception is reported.
Return value:
Datetime type. If the input is NULL, return NULL.

TO_DATE
Command format:
datetime to_date(string date, string format)

Command description:
Convert a string ‘date’ to the datetime value according to a specified format.
Parameter description:
• date: String type, date value to be converted. If the input is ‘bigint’, or

‘double’ or ‘datetime’, it is converted to ‘string’ type by implicit
conversion. If it is another data type or null, an exception is indicated.

Issue: 20191012 171

⼤数据计算服务 User Guide / 4 SQL

• format: String type constant, date format. If it is not a constant or is other data
type, the exception is caused. The field ‘format’ does not support extensional
format and other characters are ignored as invalid characters in analysis
process.
The parameter format contains ‘yyyy’ at least; otherwise the expecion is
indicated. If redundant format strings appear in format, then get the datatime
value corresponding to the first format string, other strings are taken as
separators. For example, to_date (‘1234-2234’, ‘yyyy-yyyy’) returns
‘1234-01-01 00:00:00’.
Format format: yyyy is a four-digit year, mm is a two-digit month, DD is a two
-digit day, HH is a 24-hour system, MI is a two-digit minute, SS is a two-digit
second, FF3 is a three-digit precision millisecond.

Return value:
Datetime type, the format is yyyy-mm-dd hh: mi: ss. If any input is NULL, return
NULL.
For example:
to_date('Alibaba2010-12*03', 'Alibabayyyy-mm*dd') = 2010-12-03 00:00:
00
to_date('20080718', 'yyyymmdd') = 2008-07-18 00:00:00
to_date('200807182030','yyyymmddhhmi')=2008-07-18 20:30:00
to_date('2008718', 'yyyymmdd') = null
-- The format does not meet the requirements. An exception is thrown.
to_date('Alibaba2010-12*3', 'Alibabayyyy-mm*dd') = null
-- Format is not compatible and exception is thrown.
to_date('2010-24-01', 'yyyy') = null
-- Format is not compatible and exception is thrown.
to_date('20181030 15-13-12.345','yyyymmdd hh-mi-ss.ff3')=2018-10-30 15
:13:12

TO_CHAR
Command format:
string to_char(datetime date, string format)

Command description:
Convert the ‘date’ of datetime type to a string according to a specified format.
Parameter description:

172 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• date: Datetime type, the date value to be converted. If the input is ‘string’ type,
it is converted to ‘datetime’ type by implicit conversion. If it is another data
type, an exception indicated.

• format: String type constant. If it is not a constant or is other data type, the
exception is indicated. In ‘format’, the date format part is replaced with the
corresponding data and other characters are output directly.

Return value:
Returns the String type. Any input parameter is NULL, return NULL.
For example:
to_char(datetime '2010-12-03 00:00:00', 'Alibabayyyy-mm*dd') = '
Alibaba2010-12*03'
to_char(datetime '2008-07-18 00:00:00', 'yyyymmdd') = '20080718'
to_char(datetime 'Alibaba2010-12*3', 'Alibabayyyy-mm*dd') -- Format is
 not compatible and exception is thrown.
to_char(datetime '2010-24-01', 'yyyy') -- Format is not compatible and
 exception is thrown.
to_char(datetime '2008718', 'yyyymmdd') -- Format is not compatible
and exception is thrown.

See TO_CHAR for conversion from other types to string type.
UNIX_TIMESTAMP

Command format:
bigint unix_timestamp(datetime date)

Command description:
Convert the date of Datetime type to UNIX format date of Bigint type.
Parameter description:
date: Datetime type date value. If the input is ‘string’ type, it is converted to
‘datetime’ type and involved in calculation. If it is another type, an exception
indicated.
Return value:
Bigint type, it indicates UNIX format date value. If ‘date’ is NULL, return NULL.

Issue: 20191012 173

⼤数据计算服务 User Guide / 4 SQL

for example:
select unix_timestamp(datetime '2009-03-20 11:11:00'); --return
1237518660.

FROM_UNIXTIME
Command format:
datetime from_unixtime(bigint unixtime)

Command description:
Convert the numeric UNIX time value ‘unixtime’ to datetime value.
Parameter description:
unixtime: Bigint type, number of seconds, UNIX format date time value. If the input
is ‘string’, ‘double’, it is converted to ‘bigint’ type by implicit conversion.
Return value:
Datetime type date value. If ‘unixtime’ is NULL, return NULL.

Note:
If you have set odps.sql.hive.compatible=true; , and the input type is string,
the reture type will be string too.

For example:
from_unixtime(123456789) = 1973-11-30 05:33:09

WEEKDAY
Command format:
bigint weekday(datetime date)

Command description:
Return the nth day of present week corresponding to the date.
Parameter description:
date: Datetime type. If the input is ‘string’ type, it is converted to ‘datetime’
type and then involved in operation. If it is another date type, an exception
indicated.
Return value:

174 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Bigint type. If the input parameter is NULL, return NULL. Monday is the first day of
a week and the return value is 0. Days are in ascending order starting from 0. If the
day is Sunday, then return is 6.

WEEKOFYEAR
Command format:
bigint weekofyear(datetime date)

Command description:
Return the nth week of a year which the date is included in. Monday is taken as the
first day of a week.

Note:
Whether this week belongs to this year, or the next year, it depends on which year
(4 days or more) most of the time of this week belongs to.

Parameter description:
date: Datetime type. If the input is ‘string’ type, it is converted to ‘datetime’
type and then involved in operation. If it is another date type, an exception is
indicated.
Return value:
Bigint type. If the input is NULL, return NULL.
For example:
select weekofyear(to_date("20141229", "yyyymmdd")) from dual;
Result:
+------------+
| _c0 |
+------------+
| 1 |
+------------+
 -Although 20141229 belongs to 2014, most of the dates of the week are
 in 2015, therefore, the return result is 1, indicating that it is the
 first week of 2015.
 select weekofyear(to_date("20141231", "yyyymmdd")) from dual；
-- Return 1.
 select weekofyear(to_date("20141229", "yyyymmdd")) from dual；
-- Return 53.

Maxcomputerte2.0 New Extended Mathematical Functions
With the upgraded version of MaxCompute 2.0, some new date functions are added
to the product. If the functions are used to design a new data type compatible

Issue: 20191012 175

⼤数据计算服务 User Guide / 4 SQL

with the Hive mode, you must add the following two set statements before the SQL
statement of the new functions:
set odps.sql.type.system.odps2=true;--Enable the new type.

If you want to submit both at the same time, run the following statements:
set odps.sql.type.system.odps2=true;
select year('1970-01-01 12:30:00');--return 1970.

The new extended functions are described as follows.
YEAR

Command format:
INT year(string date)

Command description:
Returns the year of a date.
Parameter description:
date: String-type date value. The format must at least include ‘yyyy-mm-dd’ and
cannot include additional strings. Otherwise, null is returned.
Return value:
INT type.
For example:
year('1970-01-01 12:30:00') = 1970
year('1970-01-01') = 1970
year('70-01-01') = 70
year(1970-01-01) = null
year('1970/03/09') = null
year(null) Returns an exception

QUARTER
Command format:
INT quarter(datetime/timestamp/string date)

Note:
Before the SQL statement which uses the QUARTER function,add set odps.sql.
type.system.odps2=true; to use the new data type function normally.

176 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Command description:
Returns the quarter of a date, range: 1‒4.
Parameter description:
date: Datetime, Timestamp, or String-type date value. The format must at least
include ‘yyyy-mm-dd’. Otherwise, null is returned.
Return value:
Int type, null input returns null.
For example:
quarter('1970-11-12 10:00:00') = 4
quarter('1970-11-12') = 4

MONTH
Command format:
INT month(string date)

Note:
Before the SQL statement which uses the MONTH function, add set odps.sql.
type.system.odps2=true; to use the new data type function normally.

Command description:
Returns the month of a date.
Parameter description:
date: String-type date value. Other value types return an exception.
Return value:
INT type.
For example:
month('2014-09-01') = 9

Issue: 20191012 177

⼤数据计算服务 User Guide / 4 SQL
month('20140901') = null

DAY
Command format:
INT day(string date)

Note:
Before the SQL statement which uses the function, add set odps.sql.type.system
.odps2=true; to use the new data type function normally.

Command description:
Returns the day of a date.
Parameter description:
date: String-type date value. Other value types return an exception.
Return value:
INT type.
For example:
day('2014-09-01') = 1
day('20140901') = null

DAYOFMONTH
Command format:
INT dayofmonth(date)

Note:
Before the SQL statement which uses the DAYOFMONTH function, add set odps.
sql.type.system.odps2=true; to use the new data type function normally.

Command description:
Returns the day of a date.
For example, after command int dayofmonth(2017-10-13) runs, 13 returns.
Parameter description:
date: String-type date value. Other value types return an exception.

178 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Return value:
INT type.
For example:
dayofmonth('2014-09-01') = 1
dayofmonth('20140901') = null

HOUR
Command format:
INT hour(string date)

Note:
Before the SQL statement which uses the HOUR function, add set odps.sql.type.
system.odps2=true; to use the new data type function normally.

Command description:
Returns the hour of a date.
Parameter description:
date: String-type date value. Other value types return an exception.
Return value:
Int type.
For example:
hour('2014-09-01 12:00:00')=12
hour('12:00:00')=12
hour('20140901120000')=null

MINUTE
Command format:
INT minute(string date)

Note:
Before the SQL statement which uses the MINUTE function, add set odps.sql.
type.system.odps2=true; to use the new data type function normally.

Command description:
Issue: 20191012 179

⼤数据计算服务 User Guide / 4 SQL

Returns the minute of a date.
Parameter description:
date: String-type date value. Other value types return an exception.
Return value:
Int type.
For example:
minute('2014-09-01 12:30:00') = 30
minute('12:30:00') = 30
minute('20140901120000') = null

SECOND
Command format:
INT second(string date)

Note:
Before the SQL statement which uses the SECOND function, add set odps.sql.
type.system.odps2=true; to use the new data type function normally.

Command description:
Returns the second of a date.
Parameter description:
date: String-type date value. Other value types return an exception.
Return value:
INT type.
For example:
second('2014-09-01 12:30:45') = 45
second('12:30:45') = 45

180 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
second('20140901123045') = null

CURRENT_TIMESTAMP
Command format:
timestamp current_timestamp()

Note:
Before the SQL statement which uses the CURRENT_TIMESTAMP function, add set
 odps.sql.type.system.odps2=true; to use the new data type function normally.

Command description:
Returns the current timestamp as a Timestamp-type value. The value is not fixed.
Return value:
Timestamp type.
For example:
select current_timestamp() from dual;--Returns '2017-08-03 11:50:30.
661'

ADD_MONTHS
Command format:
string add_months(string startdate, int nummonths)

Note:
Before the SQL statement which uses the ADD_MONTHS function, add set odps.
sql.type.system.odps2=true; to use the new data type function normally.

Command description:
Returns the date given by startdate plus the nummonths value.
Parameter description:
• startdate: String-type value. The format must at least include the ‘yyyy-mm-dd

’ date. Otherwise, null is returned.
• num_months: Int-type value.
Return value:

Issue: 20191012 181

⼤数据计算服务 User Guide / 4 SQL

A String-type date, in the format ‘yyyy-mm-dd’.
For example:
Add_months ('2017-02-14', 3) = '2017-05-14'
add_months('17-2-14',3) = '0017-05-14'
add_months('2017-02-14 21:30:00',3) = '2017-05-14'
add_months('20170214',3) = null

LAST_DAY
Command format:
string last_day(string date)

Note:
Before the SQL statement which uses the LAST_DAY function, add set odps.sql.
type.system.odps2=true; to use the new data type function normally.

Command description:
Returns the date of the last day of the month that contains the given date.
Parameter description:
date: String type, with the format ‘yyyy-MM-dd HH:mi:ss’ or ‘yyyy-MM-dd’.
Return value:
A String-type date, in the format ‘yyyy-mm-dd’.
For example:
last_day('2017-03-04') = '2017-03-31'
last_day('2017-07-04 11:40:00') = '2017-07-31'
last_day('20170304') = null

NEXT_DAY
Command format:
string next_day(string startdate, string week)

Note:
Before the SQL statement which uses the NEXT_DAY function, add set odps.sql.
type.system.odps2=true; to use the new data type function normally.

Command description:

182 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Returns the first date larger than the specified startdate that matches the day of the
week given by the week parameter. It is the date of a specific day in the next week.
Parameter description:
• startdate: String type, with the format ‘yyyy-MM-dd HH:mi:ss’ or ‘yyyy-MM-

dd’.
• week: String type, the first two or three letters of a day of the week, or the full

name of the day of the week. For example: Mo, TUE, or FRIDAY.
Return value:
A String-type date, in the format ‘yyyy-mm-dd’.
For example:
next_day('2017-08-01','TU') = '2017-08-08'
next_day('2017-08-01 23:34:00','TU') = '2017-08-08'
Next_day ('20170801 ', 'tu') = NULL

MONTHS_BETWEEN
Command format:
double months_between(datetime/timestamp/string date1, datetime/
timestamp/string date2)

Note:
Before the SQL statement which uses the MONTHS_BETWEEN function, add set
odps.sql.type.system.odps2=true; to use the new data type function normally.

Command description:
Returns the number of months between date1 and date2.
Parameter description:
• date1: Datetime, Timestamp, or String type, with the format ‘yyyy-MM-dd

HH:mi:ss’ or ‘yyyy-MM-dd’.
• date2: Datetime, Timestamp, or String type, with the format ‘yyyy-MM-dd

HH:mi:ss’ or ‘yyyy-MM-dd’.
Return Value:
Returns the Double type.

Issue: 20191012 183

⼤数据计算服务 User Guide / 4 SQL

• When date1 is later than date2, the returned value is positive. When date2 is later
 than date1, the returned value is negative.

• When date1 and date2 correspond to the last days of two months, the returned
value is an integer representing the number of months. Otherwise, the formula is
 (date1 - date2)/31.

Examples:
months_between('1997-02-28 10:30:00', '1996-10-30') = 3.9495967741
935485
months_between('1996-10-30','1997-02-28 10:30:00') = -3.9495967741
935485
months_between('1996-09-30','1996-12-31') = -3.0

4.16.3 Mathematical functions
This article introduces you to the mathematical function commands and
instructions supported by MaxCompute SQL.

ABS
Function definition:
Double abs(Double number)
Bigint abs(Bigint number)
Decimal abs(Decimal number)

Usage:
Returns an absolute value.
Parameter description:
number: It is any number of Type Double, Bigint, or Decimal.
• If the input is Bigint and return Bigint.
• If the input is Double, return Double.
• If the input is Decimal, return Decimal.
If the input is String, it is converted to Double by implicit conversion. If the input is
another type, an error occurs.
Return value:
The return result depends on the type of input parameter. Example, if the input is
null, return null.

Note:
184 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

When the value of input Bigint type exceeds the maximum value of Bigint, return
Double type. In this case, the precision may be absent.

Example:
abs(null) = null
abs(-1) = 1
abs(-1.2) = 1.2
abs("-2") = 2.0
abs(122320837456298376592387456923748) = 1.2232083745629837e32

The following is a completed ABS function example used in SQL. The use methods
of other built-in functions (except Window Function and Aggregation Function) are
similar.
select abs(id) from tbl1;
-- Take the absolute value of the id field in tbl1.

ACOS
Function definition:
Double acos(Double number)
Decimal acos(Decimal number)

Usage:
Calculates the inverse cosine of a number.
Parameter description:
number: Double or Decima type, -1<=number <=1. If the input is String or Bigint, it
is converted to Double by implicit conversion. If the input is another type, an error
occurs.
Return value:
Returns the Double or Decimal type, the value is between 0 to π. If number is null,
return null.
Example:
acos("0.87") = 0.5155940062460905
acos(0) = 1.5707963267948966

ASIN
Function definition:
Double asin(Double number)

Issue: 20191012 185

⼤数据计算服务 User Guide / 4 SQL
Decimal asin(Decimal number)

Usage:
Calculates the inverse sine function of number.
Parameter description:
number: Double or Decima type, -1<=number <=1. If the input is String or Bigint, it
is converted to Double by implicit conversion. If the input is another type, an error
occurs.
Return value:
Returns the Double or Decimal type, the value is between -π/2 to π/2. If the number
 is null, return null.
Example:
asin(1) = 1.5707963267948966
asin(-1) = -1.5707963267948966

ATAN
Function definition:
Double atan(Double number)

Usage:
Calculates the back-cut function of number.
Parameter description:
Number: Double type, if the input is String or Bigint, it is converted to Double by
implicit conversion. If the input is another type, an error occurs.
Return value:
Returns the Double type, the value is between -π/2 to π/2. If the number is null,
return null.
Example:
atan(1) = 0.7853981633974483

186 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
atan(-1) = -0.7853981633974483

CEIL
Function definition:
Bigint ceil(Double value)
Bigint ceil(Decimal value)

Usage:
This function returns the smallest integral value not less than the argument.
Parameter description:
value: Double or Decimal type, If the input is String or Bigint, it is converted to
Double by implicit conversion. If the input is another type, an error occurs.
Return value:
Returns the Bigint type. If the number is null, return null.
Example:
ceil(1.1) = 2
ceil(-1.1) = -1

CONV
Function definition:
String conv(String input, Bigint from_base, Bigint to_base)

Usage:
Converts a number into a Hexadecimal number.
Parameter description:
• input: an integer to be converted, represented by String. Accept the implicit

conversion of Bigint and Double.
• from_base, to_base: Decimal value, the acceptable values can be 2, 8, 10 and 16.

Accept the implicit conversion of String and Double.
Return value:
Returns the String type. If the number is null, return null. The conversion process
 runs at a 64-bit precision. An exception is thrown when overflow occurs. If the
 input is a negative value (begin with ‘-’), an exception is thrown. If the input

Issue: 20191012 187

⼤数据计算服务 User Guide / 4 SQL

value is a decimal, it is converted to an integer before hex conversion. The decimal
part is excluded.
Example:
conv('1100', 2, 10) = '12'
conv('1100', 2, 16) = 'c'
conv('ab', 16, 10) = '171'
conv('ab', 16, 16) = 'ab'

COS
Function definition:
Double cos(Double number)
Decimal cos(Decimal number)

Usage:
Input is the radian value.
Parameter description:
number: Double or Decimal type. If the input is String, it is converted to Double by
implicit conversion. If the input is another type, an error occurs.
Return value:
Returns the Double or Decimal type. If the number is NULL, return NULL.
Example:
cos(3.1415926/2)=2.6794896585028633e-8
cos(3.1415926)=-0.9999999999999986

COSH
Function definition:
Double cosh(Double number)
Decimal cosh(Decimal number)

Usage:
It is the Hyperbolic cosine function
Parameter description:
number: Double or Decimal type. If the input is String, it is converted to Double by
implicit conversion. If the input is another type, an error occurs.
Return value:

188 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Returns the Double or Decimal type. If the number is NULL, return NULL.
COT

Function definition:
Double cot(Double number)
Decimal cot(Decimal number)

Usage:
Inputs the radian value.
Parameter description:
number: Double or Decimal type. If the input is String or Bigint, it is converted to
Double by implicit conversion. If the input is another type, an error occurs.
Return value:
Returns the Double or Decimal type. If the number is NULL, return NULL.

EXP
Function definition:
Double exp(Double number)
Decimal exp(Decimal number)

Usage:
It is the Exponential function.
Return value:
Returns the exponent value of number.
Parameter description:
number: Double or Decimal type. If the input is String or Bigint, it is converted to
Double by implicit conversion. If the input is another type, an error occurs.
Return value:
Returns the Double or Decimal type. If the number is NULL, return NULL.

FLOOR
Function definition:
Bigint floor(Double number)

Issue: 20191012 189

⼤数据计算服务 User Guide / 4 SQL
Bigint floor(Decimal number)

Usage:
Returns the largest integral value not greater than the argument.
Parameter description:
number: Double or Decimal type. If the input is String or Bigint type, it is converted
to Double by implicit conversion. If the input is another type, an error occurs.
Return value:
Returns the Bigint type. If the input is null, return null.
Example:
floor(1.2)=1
floor(1.9)=1
floor(0.1)=0
floor(-1.2)=-2
floor(-0.1)=-1
floor(0.0)=0
Floor (-0.0) = 0

LN
Function definition:
Double ln(Double number)
Decimal ln(Decimal number)

Usage:
Returns the natural logarithm of the number.
Parameter description:
number: Double or Decimal type.
• If the input is String or Bigint type, it is converted to Double by implicit

conversion. If the input is another type, an error occurs.
• If the number is null, return null. If number is negative or 0, an exception is

thrown.
Return value:
Returns the Double or Decimal type.

190 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

LOG
Function definition:
Double log(Double base, Double x)
Decimal log (decimal base, decimal X)

Usage:
 Returns the logarithm of x whose base number is base.
Parameter description:
• base: Double or Decimal type. If the input is String or Bigint, it is converted to

Double by implicit conversion. If the input is another type, an error occurs.
• x: Double or Decimal type. If the input is String or Bigint, it is converted to

Double by implicit conversion. If the input is another type, an error occurs.
Return value:
Returns the logarithm value of Double or Decimal type.
• If base or x is null, return null.
• If one of base or x is negative or zero, it causes abnormality.
• If base is 1, it also causes abnormality.

POW
Function definition:
Double pow(Double x, Double y)
Decimal pow(Decimal x, Decimal y)

Usage:
Return x to the yth power, that is x^y.
Parameter description:
• X: Double or Decimal type. If the input is String or Bigint, it is converted to

Double by implicit conversion. If the input is another type, an error occurs.
• Y: Double or Decimal type. If the input is String or Bigint, it is converted to

Double by implicit conversion. If the input is another type, an error occurs.
Return value:
Returns the Double or Decimal type. If X or Y is null, return null.

Issue: 20191012 191

⼤数据计算服务 User Guide / 4 SQL

RAND
Function definition:
Double rand(Bigint seed)

Usage:
Return a random number (that changes from row to row), Specifying the seed
makes sure the generated random number sequence is deterministic, Return value
range is from 0 to 1.
Parameter description:
seed: Bigint type, random number seed, to determine starting values of the random
number sequence.
Return Value:
Returns the Double type.
Example:
select rand() from dual;
select rand(1) from dual;

ROUND
Function definition:
Double round(Double number, [Bigint Decimal_places])
Decimal round(Decimal number, [Bigint Decimal_places])

Usage:
Four to five homes to the specific decimal point position.
Parameter description:
• number: Double or Decimal type. If the input is String or Bigint, it is converted to

Double by implicit conversion. If the input is another type, an error occurs.
• Decimal_place: A Bigint type constant, four to five homes to the decimal point

position. If it is other type, an exception is thrown. If you exclude it, it indicates
four to five homes into a single digit. The default value is zero

Return value:

192 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Returns the Double or Decimal type. If number or Decimal_places is null, return
null.

Note:
Decimal_places can be negative. The negative is counted from decimal point to
the left. Deletethe decimal part. If decimal_place is greater than the length of the
integer part, return 0.

Example:
round(125.315) = 125.0
round(125.315, 0) = 125.0
Round (125.315, 1) = 125.3
round(125.315, 2) = 125.32
round(125.315, 3) = 125.315
round(-125.315, 2) = -125.32
round(123.345, -2) = 100.0
round(null) = null
round(123.345, 4) = 123.345
round(123.345, -4) = 0.0

SIN
Function definition:
Double sin(Double number)
Decimal sin(Decimal number)

Usage:
Calculates the sine function of number, the input is the radian value.
Parameter description:
number: Double or Decimal type. If the input is String or Bigint, it is converted to
Double by implicit conversion. If the input is another type, an error occurs.
Return value:
Returns the Double or Decimal type. If the number is NULL, return NULL.

SINH
Function definition:
Double sinh(Double number)
Decimal sinh(Decimal number)

Usage:

Issue: 20191012 193

⼤数据计算服务 User Guide / 4 SQL

Calculates the hyperbolic sine function of number.
Parameter description:
number: Double or Decimal type. If the input is String or Bigint, it is converted to
Double by implicit conversion. If the input is another type, an error occurs.
Return value:
Returns the Double or Decimal type. If the number is NULL, return NULL.

SQRT
Function definition:
Double sqrt(Double number)
Decimal sqrt(Decimal number)

Usage:
Calculates the square root of number.
Parameter description:
number: Double or Decimal type, must be greater than zero, if it is less than zero,
an exception occur. If the input is String or Bigint, it is converted to Double by
implicit conversion. If the input is another type, an error occurs.
Return value:
Returns the Double or Decimal type. If the number is NULL, return NULL.

TAN
Function definition:
Double tan(Double number)
Decimal tan(Decimal number)

Usage:
Calculates the tangent function of the number, the input is the radian value.
Parameter description:
number: Double or Decimal type. If the input is String or Bigint, it is converted to
Double by implicit conversion. If the input is another type, an error occurs.
Return value:
Returns the Double or Decimal type. If the number is NULL, return NULL.

194 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

TANH
Function definition:
Double tanh(Double number)
Decimal tanh(Decimal number)

Usage:
Calculates the hyperbolic tangent function of number.
Parameter description:
number: Double or Decimal type. If the input is String or Bigint, it is converted to
Double by implicit conversion. If the input is another type, an error occurs.
Return value:
Returns the Double or Decimal type. If the number is NULL, return NULL.

TRUNC
Function definition:
Double trunc(Double number[, Bigint Decimal_places])
Decimal trunc(Decimal number[, Bigint Decimal_places])

Usage:
This function is used to intercept the input number to a specified decimal point
place.
Parameter description:
• number: Double or Decimal type. If the input is String or Bigint, it is converted to

Double by implicit conversion. If the input is another type, an error occurs.
• Decimal_places: a Bigint type constant, the decimal point place to intercept

the number. Other types are converted to Bigint. If this parameter is excluded,
default to intercept to single digit.

Return value:
Returns the Double or Decimal type. If the number or Decimal_places is NULL,
return NULL.

Note:

Issue: 20191012 195

⼤数据计算服务 User Guide / 4 SQL

• If the Double type is returned, the display of the returned result may not be as
expected, such as trunc(125.815, 1) (this problem exists in all the systems).

• The part to be truncated is supplemented by zero.
• Decimal_places can be negative. The negative is truncated from the decimal

point to the left and delete the decimal part. If Decimal_place are greater than
the length of the integer, return zero.

Example:
trunc(125.815) = 125.0
trunc(125.815, 0) =125.0
trunc(125.815, 1) = 125.80000000000001
trunc(125.815, 2) = 125.81
trunc(125.815, 3) = 125.815
trunc(-125.815, 2) = -125.81
trunc(125.815, -1) = 120.0
trunc(125.815, -2) = 100.0
trunc(125.815, -3) = 0.0
trunc(123.345, 4) = 123.345
trunc(123.345, -4) = 0.0

Maxcomputerte2.0 New Extended Mathematical Functions
With the upgrade to MaxCompute 2.0, some mathematical functions have been
added to the product. If a new function uses a new data type, add the following set
statement before using the new functions SQL statement:
set odps.sql.type.system.odps2=true;

The new extended functions are described as follows.
LOG2

Function definition:
Double log2(Double number)
Double log2(Decimal number)

Note:
Before the SQL statement which uses the LOG2 function, add set odps.sql.type.
system.odps2=true; to use the new data type function normally.

Usage:
Returns the log base 2 of a specific number.
Parameter description:

196 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

number: Double or Decimal type.
Return Value:
Returns the Double type. If the input is zero or null, the returned value is null.
The example is as follows:
log2(null)=null
log2(0)=null
log2(8)=3.0

LOG10
Function definition:
Double log10(Double number)
Double log10(Decimal number)

Note:
Before the SQL statement which uses the LOG10 function, add set odps.sql.type.
system.odps2=true; to use the new data type function normally.

Usage:
Returns the log base 10 of the specific number.
Parameter description:
number: Double or Decimal type.
Return Value:
Returns the Double type. If the input is zero or null, the returned value is null.
The example is as follows:
log10(null)=null
log10(0)=null
log10(8)=0.9030899869919435

BIN
Function definition:
String bin(Bigint number)

Note:

Issue: 20191012 197

⼤数据计算服务 User Guide / 4 SQL

Before the SQL statement which uses the function, add set odps.sql.type.system
.odps2=true; to use the new data type function normally.

Usage:
Returns the binary code expression for the specific number.
Parameter description:
number: Bigint type.
Return value:
String type. If the input is zero, then zero is returned; if the input is null, null is
returned.
Example:
bin(0)='0'
bin(null)='null'
bin(12)='1100'

HEX
Function definition:
String hex(Bigint number)
String hex(String number)
String hex (binary number)

Note:
Before the SQL statement which uses the HEX function, add set odps.sql.type.
system.odps2=true; to use the new data type function normally.

Usage:
This function is used to converts integers or characters to hexadecimal format.
Parameter description:
number: If number is of the Bigint type, the hexadecimal format of the number is
returned. If this variable is a String type, the hexadecimal format of the string is
returned.
Return value:
Returns the String type. If the input is zero, then zero is returned; if the input is null
, an exception is returned.

198 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Example:
hex(0)=0
hex('abc')='616263'
hex(17)='11'
hex('17')='3137'
hex(null) results in an exception and returns failed.

Note:
If the input parameter is a Binary type, add set odps.sql.type.system.odps2=
true;, and submit it with SQL to use the new data type normally.

UNHEX
Function definition:
BINARY unhex(String number)

Note:
Before the SQL statement which uses the UNHEX function, add set odps.sql.type
.system.odps2=true; to use the new data type function normally.

Usage:
Returns the string represented by a given hexadecimal string.
Parameter description:
number: A hexadecimal string.
Return value:
Returns the Binary type. If the input is zero, failed is returned. If the input is null,
null is returned.
Example:
Unhex ('616263') = 'abc'
unhex(616263)='abc'

RADIANS
Function definition:
Double radians(Double number)

Note:
Issue: 20191012 199

⼤数据计算服务 User Guide / 4 SQL

Before the SQL statement which uses the RADIANS function, add set odps.sql.
type.system.odps2=true; to use the new data type function normally.

Usage:
This function is used to converts degrees to radians.
Parameter description:
number: Double type.
Return value:
Returns the Double type, if the input is null, null is returned.
Example:
radians(90)=1.5707963267948966
radians(0)=0.0
radians(null)=null

DEGREES
Function definition:
Double degrees(Double number)
Double degrees(Decimal number)

Note:
Before the SQL statement which uses the function, add set odps.sql.type.system
.odps2=true; to use the new data type function normally.

Usage:
This function is used to converts radians to degrees.
Parameter description:
number: Double or Decimal type.
Return value:
Returns Double data type. If the input is null, null is returned.
Example:
degrees(1.5707963267948966)=90.0
degrees(0)=0.0

200 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
Degrees (null) = NULL

SIGN
Function definition:
Double sign(Double number)
Double sign(Decimal number)

Note:
Before the SQL statement which uses the SIGN function, add set odps.sql.type.
system.odps2=true; to use the new data type function normally.

Usage:
Applies the sign of the input data. 1.0 indicates a positive number and -1.0 indicates
 a negative number. Otherwise, 0.0 is returned.
Parameter description:
number: Double or Decimal type.
Return value:
Returns Double data type. If the input is 0, 0.0 is returned. If the input is null, null is
 returned.
Example:
sign(-2.5)=-1.0
Sign (2.5) = 1.0
sign(0)=0.0
sign(null)=null

E
Function definition:
Double e()

Note:
Before the SQL statement which uses the E function, add set odps.sql.type.
system.odps2=true; to use the new data type function normally.

Usage:
This function is used to return the e value.

Issue: 20191012 201

⼤数据计算服务 User Guide / 4 SQL

Return Value:
Returns the Double type.
Example:
e()=2.718281828459045

PI
Function definition:
Double pi()

Note:
Before the SQL statement which uses the PI function, add set odps.sql.type.
system.odps2=true; to use the new data type function normally.

Usage:
This function is used to return the π value.
Return Value:
Returns the Double type.
Example:
pi()=3.141592653589793

FACTORIAL
Function definition:
Bigint factorial(Int number)

Note:
Before the SQL statement which uses the FACTORIAL function, add set odps.sql.
type.system.odps2=true; to use the new data type function normally.

Usage:
This function is used to return the factorial for the specific number.
Parameter description:
number: Int-type data, range: [0 ‒20].

202 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Return value:
Returns the Bigint type, if the input is zero, one is returned. If the input is null or
outside the range [0 ‒20], null is returned.
Example:
factorial(5)=120 --5! = 5*4*3*2*1 = 120

CBRT
Function definition:
Double cbrt(Double number)

Note:
Before the SQL statement which uses the CBRT function, add set odps.sql.type.
system.odps2=true; to use the new data type function normally.

Usage:
This function is used to return the cube root.
Parameter description:
number: Double type.
Return value:
Returns Double data type. If the input is null, null is returned.
Example:
cbrt(8)=2
cbrt(null)=null

SHIFTLEFT
Function definition:
Int shiftleft(Tinyint|Smallint|Int number1, Int number2)
Bigint shiftleft(Bigint number1, Int number2)

Note:
Before the SQL statement which uses the SHIFTLEFT function, add set odps.sql.
type.system.odps2=true; to use the new data type function normally.

Usage:
Issue: 20191012 203

⼤数据计算服务 User Guide / 4 SQL

Shifts to the left by a given number of places (<<).
Parameter description:
• number1: Tinyint|Smallint|Int|Bigint integer.
• number2: An Int integer.
Return value:
Returns the Int or Bingint type.
Example:
shiftleft(1,2)=4 --Shifts the binary value of 1 two places to the
left (1<<2,0001 shifted to 0100)
shiftleft(4,3)=32 --Shifts the binary value of 4 three places to the
left (4<<3,0100 shifted to 10,0000)

SHIFTRIGHT
Function definition:
Int shiftright(Tinyint|Smallint|Int number1, Int number2)
Bigint shiftright(Bigint number1, Int number2)

Note:
Before the SQL statement which uses the SHIFTRIGHT function, add set odps.sql
.type.system.odps2=true; to use the new data type function normally.

Usage:
This function is used for shifts right by a given number of places (>>).
Parameter description:
• number1: Tinyint|Smallint|Int|Bigint integer.
• number2: An Int integer.
Return value:
Returns the Int or Bigint type.
Example:
shiftright(4,2)=1 -- Shifts the binary value of 4 two places to the
right (4>>2,0100 shifted to 0001)

204 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
shiftright(32,3)=4 -- Shifts the binary value of 32 three places to
the right (32>>3,100000 shifted to 0100)

SHIFTRIGHTUNSIGNED
The command format is as follows:
Int shiftrightunsigned(Tinyint|Smallint|Int number1, Int number2)
Bigint shiftrightunsigned(Bigint number1, Int number2)

Note:
Before the SQL statement which uses the SHIFTRIGHTUNSIGNED function, add set
 odps.sql.type.system.odps2=true; to use the new data type function normally.

The command description is as follows:
This function is used for unsigned right shift by a given number of places (>>>).
Parameter description:
• number1: Tinyint|Smallint|Int|Bigint integer.
• number2: An Int integer.
Return value:
Returns the Int or Bigint type.
Example:
shiftrightunsigned(8,2)=2 -- Shifts the unsigned binary value of 8 two
 places to the right (8>>>2,1000 shifted to 0010)
shiftrightunsigned(-14,2)=1073741820 -- Shifts the unsigned binary
 value of -14 two places to the right (-14>>>2, 11111111 11111111
11111111 11110010 shifted to 00111111 11111111 11111111 11111100)

4.16.4 Window functions
In MaxCompute SQL, window functions help in analyzing and processing the
workflow flexibly. Window function can only appear in the ‘select’ clause.
However using both the nested window function and aggregate function in window
function is not allowed. Also, it cannot be used at the same level as that of the
aggregation function together.
Currently, in a MaxCompute SQL statement, you can use five window functions.
Window function syntax:
window_func() over (partition by [col1,col2…]

Issue: 20191012 205

⼤数据计算服务 User Guide / 4 SQL
[order by [col1[asc|desc], col2[asc|desc]…]] windowing_clause)

• partition by specifies open window columns. The rows of which partitioned
columns have the same values are considered in the same window. Currently, a
window can contain at most 100,000,000 rows data. We recommend that the rows
must not exceed 5,000,000, otherwise, an error is reported at runtime.

• The clause order by specifies how the data is ordered in a window.
• In windowing_clause part, use rows to specify window open way. The two

methods are as follows:
- Rows between x preceding|following and y preceding|following, which

indicates the window range is from rows x preceding /following to rows y
preceding/following.

- Rows x preceding|following: the window range is from rows x preceding /
following to the present row.

- ‘x’, ‘y’ must be an integer constant that is greater than or equal to 0 and
corresponding value range is 0~10000. If the value is 0, it indicates the present
row. Use the rows method to specify window range on condition that you have
specified ‘order by’ clause for.

Note:
Not all window functions can be specified window open way using rows. The
window functions support this usage include AVG, count, Max, min, StdDev, sum.

COUNT
Function definition:
Bigint count([distinct] expr) over(partition by [col1, col2…]
 [order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:
Calculates the total number of retrieved rows.
Parameter description:
• expr: Any data type. When it is NULL, this row is not counted. If the ‘distinct’

keyword is specified, it indicates using the unique count value.
• partition by [col1, col2…]: Specifies the columns to use window function.

206 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• order by col1 [asc|desc], col2[asc|desc]: If ‘order by’ clause is not
specified, return the count vale of ‘expr’ in the current window. If ‘order
by’ clause is specified, the return result is ordered according to the specified
sequence and the value is a cumulative count value from start row to the current
row in the current window.

Return value:
Bigint type.

Note:
If the keyword ‘distinct’ is specified, the ‘order by’ clause cannot be used.

Example:
Thethe table ‘test_src’ already exists and the column ‘user_id’ of bigint type
exists in this table.
select user_id,
 count(user_id) over (partition by user_id) as count
 from test_src;

 | user_id | count |

 | 1 | 3 |
 | 1 | 3 |
 | 1 | 3 |
 | 2 | 1 |
 | 3 | 1 |

 -- the ‘order by’ clause is not specified, return the count value
of user_id in the current window.
 select user_id,
 count(user_id) over (partition by user_id order by user_id) as
 count
 from test_src;

 | user_id | count |

 | 1 | 1 | -- start row of the window
 | 1 | 2 | --two records exist from start row to current row.
Return 2.
 | 1 | 3 |
 | 2 | 1 |
 | 3 | 1 |

 -- The ‘order by’ clause is specified and return a cumulative
count value from start row to current row in the current window.

AVG
Function definition:
avg([distinct] expr) over(partition by [col1, col2…]

Issue: 20191012 207

⼤数据计算服务 User Guide / 4 SQL
 [order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:
Calculates the average.
Parameter description:
• distinct: if the keyword ‘distinct’ is specified, it indicates taking average of

the unique value.
• expr: Double type.

- If the input is ‘string’ type or ‘bigint’ type, it is converted to ‘double’
type by implicit conversion and involved in the operation. If it is another data
type, an exception is thrown.

- If this value is NULL, then this row is not counted in the calculation.
- If the data type is Boolean, then this row is excluded from the calculation.

• partition by [col1, col2...]: Specified the olumns to use window function.
• order by col1[asc|desc], col2[asc|desc]: If ‘order by’ clause is not

specified, return the average of all values in the current window. If ‘order
by’ clause is specified, the return result is ordered according to the specified
sequence and returns the cumulative average from start row to current row in
the current window.

Return value:
Double type.

Note:
If the keyword ‘distinct’ isn specified, the ‘order by’ clause cannot be used.

MAX
Function definition:
max([distinct] expr) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:
Calculates the maximum value.
Parameter description:

208 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• expr: Any types expect ‘Boolean’. If the value is NULL, this row is not involved
in the calculation. If the keyword ‘distinct’ is specified, it indicates taking the
max value of the unique value.

• partition by [col1, col2…]: Specifies columns to use window function.
• order by [col1[asc|desc], col2[asc|desc: If ‘order by’ clause is not

specified, return the maximum value in the current window. If ‘order by’
clause is specified, the return result is ordered according to the specified
sequence and return the maximum value from start row to current row in the
current window.

Return value:
Same as the ‘expr’ type..

Note:
If the keyword ‘distinct’ is specified, the ‘order by’ clause cannot be used.

MIN
Function definition:
min([distinct] expr) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:
Calculates the minimum value of the column.
Parameter description:
• exprAny types except ‘Boolean’. If the value is NULL, this row is not counted

in the calculation. If the keyword ‘distinct’ is specified, it indicates using the
minimum value of a unique value.

• partition by [col1, col2…]: Specifies columns to use window function.
• order by [col1[asc|desc], col2[asc|desc: If ‘order by’ clause is not

specified, return the minimum value in the current window. If ‘order by’
clause is specified, the return result is ordered according to the specified
sequence and return the minimum value from start row to current row in the
current window.

Return value:

Issue: 20191012 209

⼤数据计算服务 User Guide / 4 SQL

the same type with ‘expr’.

Note:
If the keyword ‘distinct’ is specified, the ‘order by’ clause cannot be used.

MEDIAN
Function definition:
Double median(Double number1,number2...) over(partition by [col1, col2
…])
Decimal median(Decimal number1,number2...) over(partition by [col1,
col2…])

Usage:
Calculates the median.
Parameter description:
• number1,number1…: 1 to 255 digits of a Double or Decimal type.

- When the input value is a String type or a Bigint type, the operation is
performed after the implicit conversion to a Double type, and other types
throw exceptions.

- Return NULL when the input value is null.
- When the input value is a Double type, it converts to the Array of Double by

default .
• partition by [col1, col2…]: Specifies columns to use window function.
Return value:
Double type.

STDDEV
Function definition:
Double stddev([distinct] expr) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])
Decimal stddev([distinct] expr) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:
Calculates population standard deviation.
Parameter description:

210 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• expr: Double type.
- If the input is ‘string’ or ‘bigint’ type, it is converted to ‘double’ type

 and is counted in the operation. If it is another data type, an exception is
thrown.

- If the input value is ‘NULL’, this row is excluded.
- If the keyword ‘distinct’ is specified, it indicates calculating the population

standard deviation of the unique value.
• partition by [col1, col2..]: Specifies columns to use window function.
• order by col1[asc|desc], col2[asc|desc]: If ‘order by’ clause is not

specified, return the population standard deviation in the current window. If
‘order by’ clause is specified, the return result is ordered according to the
specified sequence and return the population standard deviation from start row
to current row in the current window.

Return value:
When the input is ‘decimal’ type, return ‘decimal’; otherwise, return ‘double
’.
Example:
select window, seq, stddev_pop('1\01') over (partition by window order
 by seq) from dual;

Note:
• If the keyword ‘distinct’ is specified, the ‘order by’ clause cannot be used.
• Stddev_pop is an alias function of stddev function and its usage is the same as

that of stddev
STDDEV_SAMP

Function definition:
Double stddev_samp([distinct] expr) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])
Decimal stddev_samp([distinct] expr) over((partition by [col1,col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:
Calculate sample standard deviation.

Issue: 20191012 211

⼤数据计算服务 User Guide / 4 SQL

Parameter description:
• Expr: Double type.

- If the input is ‘string’ or ‘bigint’ type, it is converted to ‘double’
type and counted in the operation. If it is another data type, an exception is
indicated.

- If the input value is NULL, this row is excluded.
- If the keyword ‘distinct’ is specified, it indicates calculating the sample

standard deviation of the unique value.
• partition by [col1, col2..]: Specifies columns to use window function.
• Order by col1[asc|desc], col2[asc|desc]: If ‘order by’ clause is not

specified, return the sample standard deviation in the current window. If ‘order
by’ clause is specified, the return result is ordered according to the specified
sequence and return the sample standard deviation from start row to current
row in the current window.

Return value:
When the input is ‘decimal’ type, return ‘decimal’; otherwise, return ‘double
’.

Note:
If the keyword ‘distinct’ is specified, the ‘order by’ clause cannot be used.

SUM
Function definition:
sum([distinct] expr) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:
Calculates the sum of elements.
Parameter description:

212 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• Expr: Double type.
- If the input is ‘string’ or ‘bigint’ type, it is converted to ‘double’

type and counted in the operation. If it is another data type, an exception is
indicated.

- If the input value is NULL, this row is excluded.
- If the keyword ‘distinct’ is specified, it indicates calculating the sum of the

unique value.
• Partition by [col1, col2..]: Specifies columns to use window function.
• Order by col1[asc|desc], col2[asc|desc]: If ‘order by’ clause is not

specified, return the sum in the current window. If ‘order by’ clause is
specified, the return result is ordered according to the specified sequence and
return the sum from start row to current row in the current window.

Return value:
• If the input parameter is ‘bigint’ type, return ‘bigint’ type.
• If the input parameter is ‘Decimal’ type, return ‘Decimal’ type.
• If the input parameter is ‘double’ type or ‘string’ type, return ‘double’

type.

Note:
If the keyword ‘distinct’ is specified, the ‘order by’ clause cannot be used.

DENSE_RANK
Function definition:
Bigint dense_rank() over(partition by [col1, col2…]
order by [col1[asc|desc], col2[asc|desc]…])

Usage:
Calculates the dense rank. The data in the same row of col2 has the same rank.
Parameter description:
• partition by [col1, col2..]: Specifies columns to use window function.
• order by col1[asc|desc], col2[asc|desc]: Specifies the value which the rank

is based on.
Return value:

Issue: 20191012 213

⼤数据计算服务 User Guide / 4 SQL

Bigint type.
Example:
The data in table ‘emp’ is as follows:
| empno | ename | job | mgr | hiredate| sal| comm | deptno |
7369,SMITH,CLERK,7902,1980-12-17 00:00:00,800,,20
7499,ALLEN,SALESMAN,7698,1981-02-20 00:00:00,1600,300,30
7521,WARD,SALESMAN,7698,1981-02-22 00:00:00,1250,500,30
7566,JONES,MANAGER,7839,1981-04-02 00:00:00,2975,,20
7654,MARTIN,SALESMAN,7698,1981-09-28 00:00:00,1250,1400,30
7698,BLAKE,MANAGER,7839,1981-05-01 00:00:00,2850,,30
7782,CLARK,MANAGER,7839,1981-06-09 00:00:00,2450,,10
7788,SCOTT,ANALYST,7566,1987-04-19 00:00:00,3000,,20
7839,KING,PRESIDENT,,1981-11-17 00:00:00,5000,,10
7844,TURNER,SALESMAN,7698,1981-09-08 00:00:00,1500,0,30
7876,ADAMS,CLERK,7788,1987-05-23 00:00:00,1100,,20
7900,JAMES,CLERK,7698,1981-12-03 00:00:00,950,,30
7902,FORD,ANALYST,7566,1981-12-03 00:00:00,3000,,20
7934,MILLER,CLERK,7782,1982-01-23 00:00:00,1300,,10
7948,JACCKA,CLERK,7782,1981-04-12 00:00:00,5000,,10
7956,WELAN,CLERK,7649,1982-07-20 00:00:00,2450,,10
7956,TEBAGE,CLERK,7748,1982-12-30 00:00:00,1300,,10

Now, all employees need to be grouped by department, and each group must be
sorted in descending order according to SAL to obtain the serial number in own
group.
SELECT deptno
 , ename
 , sal
 , DENSE_RANK() OVER (PARTITION BY deptno ORDER BY sal DESC
) AS nums--Deptno as a window column, and sort in descending order
according to sal.
 FROM emp;
--The result is as follows:

| deptno | ename | sal | nums |

10	JACCKA	5000.0	1
10	KING	5000.0	1
10	CLARK	2450.0	2
10	WELAN	2450.0	2
10	TEBAGE	1300.0	3
10	MILLER	1300.0	3
20	SCOTT	3000.0	1
20	FORD	3000.0	1
20	JONES	2975.0	2
20	ADAMS	1100.0	3
20	SMITH	800.0	4
30	BLAKE	2850.0	1
30	ALLEN	1600.0	2
30	TURNER	1500.0	3
30	MARTIN	1250.0	4
30	WARD	1250.0	4
30	JAMES	950.0	5

214 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

RANK
Function definition:
Bigint rank() over(partition by [col1, col2…]
order by [col1[asc|desc], col2[asc|desc]…])

Usage:
Calculates the rank. The ranking of the same row data with col2 drops.
Parameter description:
• Partition by [col1, col2..]: Specifies columns to use window function.
• Order by col1[asc|desc], col2[asc|desc]: Specifies the value which the rank

is based on.
Return value:
Bigint type.
Example:
The data in table ‘emp’ is as follows:
| empno | ename | job | mgr | hiredate| sal| comm | deptno |
7369,SMITH,CLERK,7902,1980-12-17 00:00:00,800,,20
7499,ALLEN,SALESMAN,7698,1981-02-20 00:00:00,1600,300,30
7521,WARD,SALESMAN,7698,1981-02-22 00:00:00,1250,500,30
7566,JONES,MANAGER,7839,1981-04-02 00:00:00,2975,,20
7654,MARTIN,SALESMAN,7698,1981-09-28 00:00:00,1250,1400,30
7698,BLAKE,MANAGER,7839,1981-05-01 00:00:00,2850,,30
7782,CLARK,MANAGER,7839,1981-06-09 00:00:00,2450,,10
7788,SCOTT,ANALYST,7566,1987-04-19 00:00:00,3000,,20
7839,KING,PRESIDENT,,1981-11-17 00:00:00,5000,,10
7844,TURNER,SALESMAN,7698,1981-09-08 00:00:00,1500,0,30
7876,ADAMS,CLERK,7788,1987-05-23 00:00:00,1100,,20
7900,JAMES,CLERK,7698,1981-12-03 00:00:00,950,,30
7902,FORD,ANALYST,7566,1981-12-03 00:00:00,3000,,20
7934,MILLER,CLERK,7782,1982-01-23 00:00:00,1300,,10
7948,JACCKA,CLERK,7782,1981-04-12 00:00:00,5000,,10
7956,WELAN,CLERK,7649,1982-07-20 00:00:00,2450,,10
7956,TEBAGE,CLERK,7748,1982-12-30 00:00:00,1300,,10

Now, all employees need to be grouped by department, and each group must be
sorted in descending order according to SAL to obtain the serial number in own
group.
SELECT deptno
 , ename
 , sal

Issue: 20191012 215

⼤数据计算服务 User Guide / 4 SQL
 , RANK() OVER (PARTITION BY deptno ORDER BY sal DESC) AS nums
--Deptno as a window column, and sort in descending order according to
 sal.
 FROM emp;
--The result is as follows:

| deptno | ename | sal | nums |

10	JACCKA	5000.0	1
10	KING	5000.0	1
10	CLARK	2450.0	3
10	WELAN	2450.0	3
10	TEBAGE	1300.0	5
10	MILLER	1300.0	5
20	SCOTT	3000.0	1
20	FORD	3000.0	1
20	JONES	2975.0	3
20	ADAMS	1100.0	4
20	SMITH	800.0	5
30	BLAKE	2850.0	1
30	ALLEN	1600.0	2
30	TURNER	1500.0	3
30	MARTIN	1250.0	4
30	WARD	1250.0	4
30	JAMES	950.0	6

LAG
Function definition:
lag(expr，Bigint offset, default) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]])

Command description:
Take the value of nth row in front of current row in accordance with offset. If the
current row number is rn, take the value of the row which row number is rn-offset.
Parameter description:
• expr: Any type.
• offset: A Bigint type constant. If the input is String type or Double type, convert

it to Bigint type by implicit conversion. Offset > 0;
• default: Define the default value while the specified range of ‘offset’ crosses

the limit. It is constant and default is null.
• partition by [col1, col2..]: Specifies columns to use window function.
• order by col1[asc|desc], col2[asc|desc]: Specifies the order method for

return result.
Return Value:

216 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Returns the same with ‘expr’.
LEAD

Command format:
lead(expr，Bigint offset, default) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]])

Command description:
Take the value of nth row following current row in accordance with offset. If the
current row number is rn, take the value of the row which row number is rn+offset.
Parameter description:
• expr: Any type.
• offset: A Bigint type constant. If the input is String, Decimal or Double type,

convert it to Bigint type by implicit conversion. Offset > 0.
• default: Define the default value while the specified range of offset crosses the

limit. It is constant.
• partition by [col1, col2..]: Specifies columns to use window function.
• order by col1[asc|desc], col2[asc|desc]: Specifies the order method for

return result.
Return Value:
Same as the ‘expr’ type.
Example:
select c_Double_a,c_String_b,c_int_a,lead(c_int_a,1) over(partition by
 c_Double_a order by c_String_b) from dual;
select c_String_a,c_time_b,c_Double_a,lead(c_Double_a,1) over(
partition by c_String_a order by c_time_b) from dual;
select c_String_in_fact_num,c_String_a,c_int_a,lead(c_int_a) over(
partition by c_String_in_fact_num order by c_String_a) from dual;

PERCENT_RANK
Command format:
Percent_rank () over (partition by [col1, col2...]
order by [col1[asc|desc], col2[asc|desc]…])

Command description:
Calculate relative ranking of a certain row in a group of data.

Issue: 20191012 217

⼤数据计算服务 User Guide / 4 SQL

Parameter description:
• partition by [col1, col2..]: Specifies columns to use window function.
• order by col1[asc|desc], col2[asc|desc]: Specifies the value based on the

ranking.
Return Value:
Returns the Double type, value scope is [0, 1]. The calculation method of relative
ranking is (rank-1)/(number of rows -1).

Note:
The current limit of rows in a single window cannot exceed 10,000,000.

ROW_NUMBER
Command format:
row_number() over(partition by [col1, col2…]
order by [col1[asc|desc], col2[asc|desc]…])

Command description:
Calculates the row number, beginning from 1.
Parameter description:
• partition by [col1, col2..]: Specifies columns to use window function.
• order by col1[asc|desc], col2[asc|desc]: Specifies the order method for

return result.
Return Value:
Returns the Bigint type.
Example:
The data in table emp is as follows:
| empno | ename | job | mgr | hiredate| sal| comm | deptno |
7369,SMITH,CLERK,7902,1980-12-17 00:00:00,800,,20
7499,ALLEN,SALESMAN,7698,1981-02-20 00:00:00,1600,300,30
7521,WARD,SALESMAN,7698,1981-02-22 00:00:00,1250,500,30
7566, Jones, Manager, fig-04-02 00:00:00, 2975, 20
7654,MARTIN,SALESMAN,7698,1981-09-28 00:00:00,1250,1400,30
7698,BLAKE,MANAGER,7839,1981-05-01 00:00:00,2850,,30
7782,CLARK,MANAGER,7839,1981-06-09 00:00:00,2450,,10
7788, Scott, analyst, fig-04-19 00:00:00, 3000, 20
7839,KING,PRESIDENT,,1981-11-17 00:00:00,5000,,10
7844,TURNER,SALESMAN,7698,1981-09-08 00:00:00,1500,0,30

218 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
7876,ADAMS,CLERK,7788,1987-05-23 00:00:00,1100,,20
7900,JAMES,CLERK,7698,1981-12-03 00:00:00,950,,30
7902,FORD,ANALYST,7566,1981-12-03 00:00:00,3000,,20
7934,MILLER,CLERK,7782,1982-01-23 00:00:00,1300,,10
7948,JACCKA,CLERK,7782,1981-04-12 00:00:00,5000,,10
7956,WELAN,CLERK,7649,1982-07-20 00:00:00,2450,,10
7956, tebage, clerk, maid-12-30 00:00:00, 1300, 10

Now, all employees need to be grouped by department, and each group must be
sorted in descending order according to SAL to obtain the serial number in own
group.
SELECT deptno
 , ename
 , Sal
 , Row_number () over (partition by deptno order by Sal DESC
) as Nums --Deptno as a window column, and sort in descending order
according to sal.
 FROM emp;
--The result is as follows:

| deptno | ename | sal | nums |

10	JACCKA	5000.0	1
10	KING	5000.0	2
10	CLARK	2450.0	3
10	WELAN	2450.0	4
10	TEBAGE	1300.0	5
10	MILLER	1300.0	6
20	SCOTT	3000.0	1
20	FORD	3000.0	2
20	JONES	2975.0	3
20	ADAMS	1100.0	4
20	SMITH	800.0	5
30	BLAKE	2850.0	1
30	ALLEN	1600.0	2
30	TURNER	1500.0	3
30	MARTIN	1250.0	4
30	WARD	1250.0	5
30	JAMES	950.0	6

CLUSTER_SAMPLE
Command format:
boolean cluster_sample([Bigint x, Bigint y])
over(partition by [col1, col2..])

Command description:
Used for Group sampling.
Parameter description:

Issue: 20191012 219

⼤数据计算服务 User Guide / 4 SQL

• x: A Bigint type constant, x>=1. If you specify the parameter y, x indicates
dividing a window into x parts. Otherwise x indicates selecting x rows records in
a window (if x rows are in this window, return true). If x is NULL, return NULL.

• y: A Bigint type constant, y>=1, y<=x. It indicates selecting y parts records from x
parts in a window (in other words, if y parts records exist, return value is true). If
y is NULL, return NULL.

• partition by [col1, col2]: Specifies columns to use window function.
Return Value:
Returns the Boolean type.
Example:
If two columns key and value are in the table test_tbl, key is grouping field. The
corresponding values of key have groupa and groupb, the field value indicates value
of key shown as follows:

 | key | value |

 | groupa | -1.34764165478145 |
 | groupa | 0.740212609046718 |
 | groupa | 0.167537127858695 |
 | groupa | 0.630314566185241 |
 | GroupA | 0.0112401388646925 |
 | groupa | 0.199165745875297 |
 | groupa | -0.320543343353587 |
 | groupa | -0.273930924365012 |
 | groupa | 0.386177958942063 |
 | groupa | -1.09209976687047 |
 | groupb | -1.10847690938643 |
 | groupb | -0.725703978381499 |
 | groupb | 1.05064697475759 |
 | groupb | 0.135751224393789 |
 | groupb | 2.13313102040396 |
 | groupb | -1.11828960785008 |
 | groupb | -0.849235511508911 |
 | groupb | 1.27913806620453 |
 | groupb | -0.330817716670401 |
 | groupb | -0.300156896191195 |
 | groupb | 2.4704244205196 |
 | groupb | -1.28051882084434 |

To select 10% values from each group, the following MaxCompute SQL is
recommended:
Select key, Value
 from (
 Select key, value, cluster_sample (10, 1) over (partition by
key) as flag
 from tbl

220 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
) sub
 where flag = true;

| Key | value |

| groupa | 0.167537127858695 |
| groupb | 0.135751224393789 |

NTILE
Command format:
BIGINT ntile(BIGINT n) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause]))

Command description:
Used to cut grouped data into N slices in order and return the current slice value, if
the slice is uneven, the distribution of the first slice is increased by default.
Parameter description:
N: bigint data type.
Return Value:
Returns the bigint type.
Example:
The data in the table EMP is as follows:
| Empno | ename | job | Mgr | hiredate | Sal | REM | deptno |
7369, Smith, clerk, maid-12-17 00:00:00, 800, 20
7499, Allen, salesman, maid-02-20 00:00:00, 1600,300, 30
7521, Ward, salesman, maid-02-22 00:00:00, 1250,500, 30
7566, Jones, Manager, fig-04-02 00:00:00, 2975, 20
7654 Martin, salesman, fig-09-28 00:00:00, fig, 30
7698, Blake, Manager, fig-05-01 00:00:00, 2850, 30
7782, Clark, Manager, fig-06-09 00:00:00, 2450, 10
7788, Scott, analyst, fig-04-19 00:00:00, 3000, 20
00:00:00, King, President, 1991-11-17 5000, 7839, 10
7844, Turner, salesman, fig-09-08 00:00:00, 1500,0, 30
7876, Adams, clerk, maid-05-23 00:00:00, 1100, 20
7900 James, clerk, maid-12-03 00:00:00, 950, 30
7902 Ford, analyst, fig-12-03 00:00:00, 3000, 20
7934 Miller, clerk, fig-01-23 00:00:00, 1300, 10
7948, jaccka, clerk, fig-04-12 00:00:00, 5000, 10
7956, welan, clerk, fig-07-20 00:00:00, 2450, 10

Issue: 20191012 221

⼤数据计算服务 User Guide / 4 SQL
7956, tebage, clerk, maid-12-30 00:00:00, 1300, 10

All employees now need to be divided into three groups according to Sal high to low
cut, and get the serial number of the employee's own group.
Select deptno, ename, Sal, ntile (3) over (partition by depno order by
 Sal DESC) as nt3 from EMP;
-- Execution results as follows

| Deptno | ename | Sal | nt3 |

10	jaccka	5000.0	1
10	King	5000.0	1
10	welan	2450.0	2
10	Clark	2450.0	2
10	tebage	1300.0	3
10	Miller	1300.0	3
20	Scott	3000.0	1
20	Ford	3000.0	1
20	Jones	2975.0	2
20	Adams	1100.0	2
20	Smith	800.0	3
30	Blake	2850.0	1
30	Allen	1600.0	1
30	Turner	1500.0	2
30	Martin	1250.0	2
30	ward	1250.0	3
30	James	950.0	3

4.16.5 Aggregate functions
The relation between the input and the output of aggregate functions is a many-to-
one relationship; that is, to aggregate multiple input records into an output record.
Use it with the group by clause in SQL.

COUNT
Function definition:
bigint count([distict|all] value)

Usage:
Counts the record numbers.
Parameter description:
• distinct|all: Specifies whether to remove duplicate records while counting. The

default all counts all records. If the field ‘distinct’ is specified, then a unique
count value is used.

• value: Any type. If the value is NULL, the corresponding row is not counted.
Count (*), returns all rows.

222 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Return Value:
Returns the Bigint type.
Example:
-- If the table tbla has the column col1 and the data type is Bigint.
+------+
| COL1 |
+------+
| 1 |
+------+
| 2 |
+------+
| NULL |
+------+
select count(*) from tbla; -- value is 3.
select count(col1) from tbla; -- value is 2

Use the aggregation function with the group by clause. Example, suppose that the
table test_src has two columns, key is a String type, and value is a Double type.
-- The data of test_src is shown as follows:
+-----+-------+
| key | value |
+-----+-------+
| a | 2.0 |
+-----+-------+
| a | 4.0 |
+-----+-------+
| b | 1.0 |
+-----+-------+
| b | 3.0 |
+-----+-------+
-- Now run following sentence and get the result:
select key, count(value) as count from test_src group by key;
+-----+-------+
| key | count |
+-----+-------+
| a | 2 |
+-----+-------+
| b | 2 |
+-----+-------+
-- The aggregation function calculates the aggregate value that
has the same key value.The preceding rules apply to the following
aggregate functions also.

AVG
Function definition:
double avg(double value)
decimal avg(decimal value)

Usage:
Calculates the average value.

Issue: 20191012 223

⼤数据计算服务 User Guide / 4 SQL

Parameter description:
value: Double or Decimal type. If the input is String or Bigint type, it is converted
 to Double type by implicit conversion. If it is another data type, an exception is
thrown. If this value is NULL, a corresponding row is not counted in the calculation
. The input cannot be Boolean type.
Return value:
If the input is Decimal type, then return Decimal type. If it is the other valid types,
then return Double type.
Example:
-- If the table tbla has a column value and its data type is Bigint.
+-------+
| value |
+-------+
| 1 |
| 2 |
| NULL |
+-------+
-- the avg of this column is: (1+2)/2=1.5
select avg(value) as avg from tbla;
+------+
| avg |
+------+
| 1.5 |
+------+

MAX
Function definition:
max(value)

Usage:
Calculates the maximum value.
Parameter description:
value: Any data type. If the column value is NULL, the corresponding row is not
counted in the operation. Values of the Boolean type are excluded from calculation.
Return value:
The return value is matchs the value type.
Example:
-- If the table tbla has a column clo1 and its data type is Bigint.
+------+

224 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
| col1 |
+------+
| 1 |
+------+
| 2 |
+------+
| NULL |
+------+
Select max (value) from tbla; -- return value is 2

MIN
Function definition:
MIN(value)

Usage:
Calculates the minimum value of the column.
Parameter description:
Any data type. If the column value is NULL, the corresponding row is not counted in
 the operation. A Boolean type is excluded from the operation.
Example:
-- If the table tbla has a column value and its data type is Bigint.
+------+
| value|
+------+
| 1 |
+------+
| 2 |
+------+

+------+
Select min (value) from tbla; -- return value is 1

MEDIAN
Function definition:
double median(double number)
decimal median(decimal number)

Usage:
Calculates the median.
Parameter description:

Issue: 20191012 225

⼤数据计算服务 User Guide / 4 SQL

number: Double or Decimal type. If the input is String or Bigint type, it is converted
 to Double type and is counted in the operation. If it is another data type, an
exception is thrown.
Return value:
Returns the Double or Decimal type.
Example:
-- If the table tbla has a column value and its data type is Bigint.
+------+
| value|
+------+
| 1 |
+------+
| 2 |
+------+
| 3 |
+------+
| 4 |
+------+
| 5 |
+------+
select MEDIAN(value) from tbla; -- return value is 3.0

STDDEV
Function definition:
double stddev(double number)
decimal stddev(decimal number)

Usage:
Calculates a population standard deviation.
Parameter description:
number: Double type or Decimal type. If the input is String or Bigint type, it is
converted to Double type and is counted in operation. If it is another data type, an
exception is thrown.
Return value:
Returns a Double or Decimal type.
Example:
-- If the table tbla has a column value and its data type is Bigint.
+------+
| value|
+------+
| 1 |

226 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
+------+
| 2 |
+------+
| 3 |
+------+
| 4 |
+------+
| 5 |
+------+
select STDDEV(value) from tbla; -- return value is 1.4142135623730951

STDDEV_SAMP
Function definition:
double stddev_samp(double number)
decimal stddev_samp(decimal number)

Usage:
Calculates a sample standard deviation.
Parameter description:
number: Double type or Decimal type. If the input is String or Bigint type, it is
converted to Double type and is counted in operation. If it is another data type, an
exception is thrown.
Return value:
Returns a Double or Decimal type.
Example:
-- If the table tbla has a column value and its data type is Bigint.
+------+
| value|
+------+
| 1 |
+------+
| 2 |
+------+
| 3 |
+------+
| 4 |
+------+
| 5 |
+------+

Issue: 20191012 227

⼤数据计算服务 User Guide / 4 SQL
select STDDEV_SAMP(value) from tbla; -- return value is 1.5811388300
841898

SUM
Function definition:
sum(value)

Usage:
Calculates the sum of elements.
Parameter description:
value: Double, Decimal, or Bigint type. If the input is String type, it is converted to
Double type and counted in operation. If the value in the column is NULL, this row
is counted A Boolean type excluded from this calculation.
Return value:
If the input parameter is Bigint type, return Bigint type. If the input parameter is
Double type or String type, return Double type.
Example:
-- If the table tbla has a column value and its data type is Bigint.
+------+
| value|
+------+
| 1 |
+------+
| 2 |
+------+
| NULL |
+------+
select sum(value) from tbla; -- return value is 3

WM_CONCAT
• Function definition

string wm_concat(string separator, string str)

• Usage
Uses a specific separator to link the value in str.

228 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• Parameter description
- · Separator: a String type constant. Constants of other types or non-constants

can throw exceptions.
- Str: String type. If the input is String type, it is converted to Double type and is

counted in operation. If it is another data type, an exception is thrown.
• Return value

Returns the String type.

Note:
For the sentence select wm_concat(',', name) from test_src;, if test_src is
empty set, this MaxCompute SQL sentence returns NULL.

• Example：Merge table test after being grouped and sorted.
--create table test.
create table test(id int , alphabet string);

--insert data into table.
insert into test values (1,'a'),(1,'b'),(1,'c'),(2,'D'),(2,'E'),(2,'
F');

--The table test is grouped and sorted according to ID column.Then
merge the contents of the same group.
SELECT id,WM_CONCAT('',alphabet) FROM test GROUP BY id ORDER BY id
LIMIT 100;
+------------+------------+
| id | _c1 |
+------------+------------+
| 1 | abc |
| 2 | DEF |
+------------+------------+

COLLECT_LIST
Function definition:
ARRAY collect_list(col)

Usage:
Within a given group, the expression specified by col is used to aggregate the data
into an array.
Parameter description:
col: A table column can be any data type.
Return value:

Issue: 20191012 229

⼤数据计算服务 User Guide / 4 SQL

Returns the ARRAY type.

Note:
Please add set odps.sql.type.system.odps2=true; in front of the SQL statement
that uses this function, and submit it with SQL to use the new data type normally.

COLLECT_SET
Function definition:
ARRAY collect_set(col)

Usage:
Within a given group, the expression specified by col is used to aggregate the data
into an array of non-repeating elements.
Parameter description:
col: A table column can be any data type.
Return value:
Return ARRAY type.

Note:
Please add set odps.sql.type.system.odps2=true; in front of the SQL statement
that uses this function and submit it with SQL to use the new data type function
normally.

4.16.6 String functions
This article introduces the string functions such as CHAR_MATCHCOUNT, CHR,
CONCAT, GET_JSON_OBJECT, INSTR, IS_ENCODING supported by MaxCompute.

CHAR_MATCHCOUNT
Command format:
bigint char_matchcount(string str1, string str2)

Usage:
Calculates the total number of times each character in str1 is duplicated in str2.
Parameter description:

230 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• str1, str2: String type, must be effective UTF-8 strings. If invalid character is in
matching process, return a negative value.

• Return value: Bigint type, Any NULL input, return NULL.
Example:
char_matchcount('abd','aabc') = 2
-- Two strings 'a', 'b' in str1 appear in str2.

CHR
Command format:
string chr(bigint ascii)

Usage:
Convert the specified ASCII code ‘ascii’ into character.
Parameter description:
• ascii: Bigint type ASCII value. If the input is ‘string’ or ‘double’, it is

converted to ‘bigint’ by implicit conversion. If the input is other types, an
exception is thrown.

• Return value: String type. The parameter value range is [0,255]. An exception is
thrown if exceeding this range. If the input is NULL, return NULL.

CONCAT
Command format:
string concat(string a, string b...)

Usage:
The return value is a result of connecting all strings.
Parameter description:
• a, b… String type. If the input is Bigint, Double, Decimal or Datetime, it is

 converted to String by implicit conversion. If the input is other types, an
exception is thrown.

• String: Return value: String type. If no parameter exists or a certain parameter is
 NULL, return NULL.

Example:
concat('ab','c') = 'abc'

Issue: 20191012 231

⼤数据计算服务 User Guide / 4 SQL
concat() = NULL
concat('a', null, 'b') = NULL

GET_JSON_OBJECT
Command format:
STRING GET_JSON_OBJECT(STRING json,STRING path)

Usage:
In a standard json string, the specified string is extracted according to the path.
Parameter description:
• json: String type, standard json format string.
• path: String type, describing the path in json, starting with a dollor sign ($). For a

description of the new implementation, see JsonPath.
- $: Root object
- . : Child operator
- [] : Subscript operator for array
- * : Wildcard for []

• String: Returns string type.

Note:
• Return NULL if json is null or invalid json format.
• Return NULL if path is null or invalid (does not exist in json).
• If json is valid and path also exists, the corresponding string is returned.

Example:
+----+
json
+----+
{"store":
{"fruit":[{"weight":8,"type":"apple"},{"weight":9,"type":"pear"}],
"bicycle":{"price":19.95,"color":"red"}
},
"email":"amy@only_for_json_udf_test.net",
"owner":"amy"
}

Use the following query process to extract information in the JSON object:
odps> SELECT get_json_object(src_json.json, '$.owner') FROM src_json;
amy

232 Issue: 20191012

http://goessner.net/articles/JsonPath/index.html#e2

⼤数据计算服务 User Guide / 4 SQL
odps> SELECT get_json_object(src_json.json, '$.store.fruit\[0]') FROM
src_json;
{"weight":8,"type":"apple"}
odps> SELECT get_json_object(src_json.json, '$.non_exist_key') FROM
src_json;
NULL

Example:
get_json_object('{"array":[["aaaa",1111],["bbbb",2222],["cccc",3333
]]}','$.array[1][1]')= "2222"
get_json_object('{"aaa":"bbb","ccc":{"ddd":"eee","fff":"ggg","hhh":["
h0","h1","h2"]},"iii":"jjj"}','$.ccc.hhh[*]') = "["h0","h1","h2"]"
get_json_object('{"aaa":"bbb","ccc":{"ddd":"eee","fff":"ggg","hhh":["
h0","h1","h2"]},"iii":"jjj"}','$.ccc.hhh[1]') = "h1"

INSTR
Command format:
bigint instr(string str1, string str2[, bigint start_position[, bigint
 nth_appearance]])

Usage:
Calculates where substring str2 is located in str1.
Parameter description:
• str1: String type. If the input is Bigint, Double, Decimal or Datetime, it is

converted to String by implicit conversion. If the input is other types, an
exception is thrown.

• str2: String type. If the input is Bigint, Double, Decimal or Datetime, it is
converted to String by implicit conversion. If the input is other types, an
exception is thrown.

• start_position: Bigint type, for other types, an exception is thrown. It indicates
 from which character of str1 a search must be started from and the default
starting position is the first character position 1. If it is less than 0, it causes
abnormality.

• nth_appearance：bigint type, greater than 0, represents position of the second
match of a substring in the string. If the chain is of a different type or less than or
 equal to 0, an exception is thrown.

• Return value: Bigint type.

Note:
• If str2 is not found in str1, return 0.-

Issue: 20191012 233

⼤数据计算服务 User Guide / 4 SQL

• If any input parameter is null, return null
• If str2 is NULL and always can be matched successfully, instr (‘abc’, ‘’)

returns 1.
Example:
instr('Tech on the net', 'e') = 2
instr('Tech on the net', 'e', 1, 1) = 2
instr('Tech on the net', 'e', 1, 2) = 11
instr('Tech on the net', 'e', 1, 3) = 14

IS_ENCODING
Command format:
boolean is_encoding(string str, string from_encoding, string
to_encoding)

Usage:
Determine whether the input string ‘str’ can be changed into a character set ‘
to_encoding’ from a specified character set ‘from_encoding’. It can be used to
Determine whether the input is garbled. The common use is to set ‘from_encoding
’ to be ‘utf-8’ and ‘to_encoding’ to be ‘gbk’.
Parameter description:
• str: String type, if the input is NULL, return NULL. The empty string can be

assumed to be belonged to any character set.
• from_encoding, to_encoding: String type, source, destination character sets. If

the input is NULL, return NULL.
• Return value: Boolean type. If ‘str’ can be converted successfully, return true,

otherwise, return false.
Example:
is_encoding('test', 'utf-8', 'gbk') = true
is_encoding('test', 'utf-8', 'gbk') = true
-- These two traditional Chinese characters are in GBK stock in China.
is_encoding('test', 'utf-8', 'gb2312') = false
-- The grapheme inventory of ‘GB2312’ does not contain these two
Chinese characters.

KEYVALUE
Command format:
KEYVALUE(STRING srcStr,STRING split1,STRING split2, STRING key)

234 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
KEYVALUE(STRING srcStr,STRING key) //split1 = ";"，split2 = ":"

Usage:
split ‘srcStr’ into ‘key-value’ pairs by split1 and separate ‘key-value’ pairs
by split2. Return the value corresponding to key.
Parameter description:
• srcStr: Source string to be split.
• key: Specified to return the nth string. After the source string is split by ‘split1

’ and ‘split2’, return the corresponding value according to the specification
of the ‘key’ value.

• split1, split2: Strings used as delimiters by which ‘srcStr’ is split. If these two
 parameters are not specified in the expression, the default value of ‘split1’ is
 ’;’ and that of ‘split2’ is ’:’. If a string that has been split by split1 and has
multiple split2, the return result is not defined.

Return value:
• String type.
• If ‘split1’ or ‘split2’ is NULL, return NULL.
• If ‘scrStr’ and ‘key’ are NULL or in case of no matched ‘key’, return NULL.
• If multiple ‘key-value’ matches, return the value corresponding to the first

matched key.
Example 1:
keyvalue('0:1\;1:2', 1) = '2'

Note:
The source string is "0:1\;1:2". As split1 and split2 are not specified, the default
split1 is ";" and split2 is ":".
After the split1 split, the key-value pair is 0:1\,1:2.
After split2 split, it becomes:
0 1/
1 2

Returns the value(2) of the key corresponding to 1.

Issue: 20191012 235

⼤数据计算服务 User Guide / 4 SQL

Example 2:
keyvalue("\;decreaseStore:1\;xcard:1\;isB2C:1\;tf:21910\;cart:1\;
shipping:2\;pf:0\;market:shoes\;instPayAmount:0\;","\;",":","tf") = "
21910" value:21910.

Note:
The source string is as follows:
“\;decreaseStore:1\;xcard:1\;isB2C:1\;tf:21910\;cart:1\;shipping:2\;
pf:0\;market:shoes\;instPayAmount:0\;”

The key-value pairs derived from the split after splitting according to the split1 '\;'
are as follows:
decreaseStore:1，xcard:1，isB2C:1，tf:21910，cart:1，shipping:2，pf:0，
market:shoes，instPayAmount:0

After you split, follow the split2 ":", the results are as follows:
decreaseStore 1
 xcard 1
 isB2C 1
 tf 21910
 cart 1
 shipping 2
 pf 0
 market shoes
 instPayAmount 0

The value of the key parameter is "tf", the return value of the corresponding value
parameter is 21910.

LENGTH
Command format:
bigint length(string str)

Usage:
Return the length of a string.
Parameter description:
• str: String type. If the input is Bigint，Double，Decimal or Datetime, it is

converted to String by implicit conversion. If the input is other types, an
exception is thrown.

236 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• Return value: Bigint type. If ‘str’ is NULL, return NULL. If ‘str’ is non UTF-8
coding format, return -1.

Example:
length('hi! China') = 6

LENGTHB
Command format:
bigint lengthb(string str)

Usage:
Return the length of ‘str’ and its unit is byte.
Parameter description:
• str: String type. If the input is Bigint，Double，Decimal or Datetime, it is

converted to String by implicit conversion. If the input is other types, an
exception is thrown.

• Return value: Bigint type. If ‘str’ is NULL, return NULL.
Example:
lengthb('hi! China') = 10

MD5
Command format:
string md5(string value)

Usage:
Calculate the md5 value of input string.
Parameter description:
• value: String type. If the input value is of the Bigint, Double, Decimal or Datetime

 type, it is implicitly converted to the String type before calculation. If the input
 value is of another type, an exception is thrown. If the input is NULL, return
NULL.

• Return value: String type.

Issue: 20191012 237

⼤数据计算服务 User Guide / 4 SQL

REGEXP_EXTRACT
Command format:
string regexp_extract(string source, string pattern[, bigint
occurrence])

Usage:
Split the string source according to pattern (regular expression rules), and return
the characters of the occurrence(nth) group.
Parameter description:
• source: String type, a string to be searched.
• pattern: A string type constant. If pattern is a null string, an exception is thrown.

If ‘group’ is not specified in pattern, then also an exception is thrown.
• Occurrence: A bigint type constant, must be greater than 0 or equal to 0. If it is

 other type or less than 0, an exception is thrown. If not specified, the default
value is 1, which indicates returning the first group. If ‘occurrence’ is equal to
0, then return substrings that satisfy the entire ‘pattern’.

• Return value: String type. Any input is NULL, return NULL.
Example:
regexp_extract('foothebar', 'foo(. *?)(bar)', 1) = the
regexp_extract('foothebar', 'foo(. *?)(bar)', 2) = bar
regexp_extract('foothebar', 'foo(. *?)(bar)', 0) = foothebar
regexp_extract('8d99d8', '8d(\\d+)d8') = 99
-- If regular SQL is submitted on MaxCompute, two "\" must be used as
the shift character.
regexp_extract('foothebar', 'foothebar')
-- The exception is thrown. ‘group’ is not specified in ‘pattern’.

REGEXP_INSTR
Function definition:
bigint regexp_instr(string source, string pattern[,
bigint start_position[, bigint nth_occurrence[, bigint return_option
]]])

Usage:
Returns the start position/end position of the substring, which matches the pattern
 with the source from start_position and nth_occurrence.. Any input parameter is
null, return null.
Parameter description:

238 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• source: String type, to be searched.
• pattern: A string type constant. If ‘pattern’ is null, an exception is thrown.
• start_position: Bigint type constant, the start position of search. If it is not

specified, default value is 1. If it is other type or a value is less than or equal to 0,
an exception is thrown.

• nth_occurrence: A bigint type constant. If not specified, the default value is 1.
It appears at the first position, when searched. If it is less than or equal to 0 or
other type, an exception is thrown.

• return_option: A bigint type constant. Its value is 0 or 1. If it is other type or an
invalid value, an exception is thrown. 0 indicates returning the start position of
the matched value. 1 indicates returning the end position of the matched value.

• Return value: Bigint type, the start or end position of a matched substring in
source specified by return_option.

Example:
regexp_instr("i love www.taobao.com", "o[[:alpha:]]{1}", 3, 2) = 14

REGEXP_REPLACE
Command format:
string regexp_replace(string source, string pattern, string replace_st
ring[, bigint occurrence])

Usage:
replace the substring in source which is matched ‘pattern’ for nth occurrence to
be a specified string ‘replace_string’ and then return.
Parameter description:
• source: String type, a string to be replaced.
• pattern: String type constant. The pattern to be matched. If it is null, an

exception is thrown.
• replace_string: String type, the string after replacing matched pattern.
• occurrence: Bigint type constant, must be greater than or equal to 0. It indicates

 replacing nth matching to be replace_string. If it is 0, it indicates all matched
substrings have been replaced. If it is other type or less than 0, an exception is
thrown. It can be 0 by default.

Issue: 20191012 239

⼤数据计算服务 User Guide / 4 SQL

• Return value: String type. When referencing a group which is not existent, do
 not replace the string. Returns NULL when the source, pattern, occurrence
parameter is entered as null, returns NULL, replace_string is null, but pattern
will not match, if the replace_string is null and the pattern is matched, returns
the original string.

Note:
When the reference group does not exist, it is considered to be undefined.

Example:
regexp_replace("123.456.7890", "([[:digit:]]{3})\\.([[:digit:]]{3})\\.
([[:digit:]]{4})",
"(\\1)\\2-\\3", 0) = "(123)456-7890"
regexp_replace("abcd", "(.)", "\\1 ", 0) = "a b c d "
regexp_replace("abcd", "(.)", "\\1 ", 1) = "a bcd"
regexp_replace("abcd", "(.)", "\\2", 1) = "abcd"
-- Only a group is defined in pattern and the referenced second group
is not existent.
-- Please avoid this. The result to reference nonexistent group is not
 defined.
regexp_replace("abcd", "(. *)(.)$", "\\2", 0) = "d"
regexp_replace("abcd", "a", "\\1", 0) = "bcd"
-- No group definition is in pattern, so '\1' references a nonexistent
 group,
 -- Please avoid this. The result to reference nonexistent group is
not defined.

REGEXP_SUBSTR
Command format:
string regexp_substr(string source, string pattern[, bigint start_posi
tion[, bigint nth_occurrence]])

Usage:
Starting from start_position, find a substring in source which matches with a
specified pattern for the nth occurrence.
Parameter description:
• source: String type, string to be searched.
• pattern: A string type constant. The pattern to be matched. If it is null, an

exception is thrown.
• start_position: A Bigint type constant, must be greater than 0. Other types or less

 than equal to 0 throw exceptions. If not specified the default value is 1, which

240 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

 indicates a match begins with the first character of source. If not specified,
default value is 1. It indicates a matching value from the first character of source.

• nth_occurrence: a Bigint type constant, must be greater than 0. If not specified,
the default value is 1. It indicates the return substring of the first matched value.
If not specified, the default value is 1. It indicates the return substring of the first
 matched value.

• Return value: String type. Any input parameter is NULL, return NULL. If no
matching record exists, return NULL.

Example:
regexp_substr ("I love aliyun very much", "a[[:alpha:]]{5}") = "aliyun
"
regexp_substr('I have 2 apples and 100 bucks!', '[[:blank:]][[:alnum
:]]*', 1, 1) = " have"
regexp_substr('I have 2 apples and 100 bucks!', '[[:blank:]][[:alnum
:]]*', 1, 2) = "2"

REGEXP_COUNT
Command format:
bigint regexp_count(string source, string pattern[, bigint start_posi
tion])

Usage:
Counts the number of occurrences that a substring matches with a specified
pattern, starting from start_position in source.
Parameter description:
• Source: String type, the string to be searched. If it is the other type, an exception

is thrown.
• Pattern: String type constant, the pattern to be matched. If it is a null string or

other data type, an exception is thrown.
• start_position: Bigint type constant, must be greater than 0. If it is other data

 type or a value which is less than or equal to 0, an exception is thrown. If not
 specified, default value is 1, which indicates a matched value from the first
character of source.

• Return value: Bigint type. If matching does not exists, return 0. If any input
parameter is null, return null.

Issue: 20191012 241

⼤数据计算服务 User Guide / 4 SQL

Example:
regexp_count('abababc', 'a.c') = 1
regexp_count('abcde', '[[:alpha:]]{2}', 3) = 1

SPLIT_PART
Command format:
string split_part(string str, string separator, bigint start[, bigint
end])

Usage:
Split the string str according to the separator and return the substring from nth
start part to nth end part.
Parameter description:
• str: String type, the string to be split. If it is Bigint, Double, Decimal or Datetime

, it is converted to a String in an implicit conversion. If it is other data type, an
exception is thrown.

• separator: A string type constant, the separator used to split the string. It can be
a character or a string. If it is other data type, an exception is thrown.

• start: A bigint type constant, must be greater than 0. If it is not a constant or
other data type, an exception is thrown. It indicates the start number of the
return part (start from 1). If the end is not specified, returns the part specified by
 ‘start’.

• ‘end’: A bigint type constant, must be greater than or equal to ‘start’,
otherwise an exception is thrown. It refers to the end number of the return part.
If it is not a constant or is other data type, then also an exception is thrown. It can
 be excluded as it indicates the last part.

Return value: String type. If any parameter is null, return null. If separator is an
empty string, return the source string str.

Note:
• If ‘delimiter’ does not exist in str, then specify ‘start’ as 1, and return the

 entire str. If the input value is an empty string, the output value is an empty
string.

242 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• If the start value is greater than the number of parts after split, for example, the
 split produces 6 parts but the ‘start’ value is greater than 6, then returns an
empty string.

Example:
split_part('a,b,c,d', ',', 1) = 'a'
split_part('a,b,c,d', ',', 1, 2) = 'a,b'
split_part('a,b,c,d', ',', 10) = ''

SUBSTR
Command format:
string substr(string str, bigint start_position[, bigint length])

Usage:
Returns a substring of ‘str’ from start_position with the given length.
Parameter description:
• ‘str’: String type. If the input is Bigint, Double, Decimal or Datetime, it is

converted to String in an implicit conversion. If it is other data type, an exception
 is thrown.

• The start_position:Bigint type starts at 1. Returns empty strings when start_posi
tion is 0.When start_position is negative, the starting position is counted
backwards from the end of the string, the last character is -1, and the previous
number is -2,-3 and so on. Other types throw exceptions.

• length: Bigint type, must be greater than 0. If it is other type or less than 0, an
exception is thrown. This parameter indicates the length of a child string.

• Return value: String type. If the input is NULL, return NULL.

Note:
If the length is excluded, return the substring from start to end.

Example:
substr("abc", 2) = "bc"
substr("abc", 2, 1) = "b"
substr("abc",-2,2)="bc"

Issue: 20191012 243

⼤数据计算服务 User Guide / 4 SQL
substr("abc",-3)="abc"

SUBSTRING
Command format:
string substring(string|binary str, int start_position[, int length])

Usage:
Returns the substring of ‘str’ from start_position with the given length.
Parameter description:
• str: String or Binary type, returns NULL or throws an exception for the other type
• ‘start_position’: Int type, starting at 1. Returns empty strings when start_posi

tion is 0.When start_position is negative, the starting position is counted
backwards from the end of the string, the last character is-1, and the previous
number is in turn-2,-3 and so on. Other types throw exceptions.

• length: Bigint type, must be greater than 0. If it is other type or less than 0, an
exception is thrown. This parameter indicates the length of the child string.

• Return value: String type. If the input is NULL, return NULL.

Note:
If the length is excluded, return the substring from start to end.

For example:
substring('abc', 2) = 'bc'
substring('abc', 2, 1) ='"b'
substring('abc',-2,2)='bc'
substring('abc',-3,2)='ab'
substring(BIN(2345),2,3)='001'

TOLOWER
Command format:
string tolower(string source)

Usage:
Input the lowercase string corresponding to the English string source.
Parameter description:

244 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• Source: String type. If the input is Bigint, Double, Decimal or Datetime, it is
converted to String in an implicit conversion. If it is other data type, an exception
 is throwm.

• Return Value: String type. If the input is NULL, return NULL.
Example:
tolower("aBcd") = "abcd"
tolower("Haha Cd") = "haha cd"

TOUPPER
Command format:
string toupper(string source)

Usage:
Output the uppercase string corresponding to the English string ‘source’.
Parameter description:
• Source: String type. If the input is Bigint, Double, Decimal or Datetime, it is

converted to String in an implicit conversion. If it is other data type, an exception
 is throwm.

• Return Value: String type. If the input is NULL, return NULL.
Example:
toupper("aBcd") = "ABCD"
toupper("HahaCd") = "HAHACD"

TO_CHAR
Command format:
string to_char(boolean value)
string to_char(bigint value)
string to_char(double value)
string to_char(decimal value)

Usage:
Convert Boolean type, Bigint type or Double type to corresponding String type.
Parameter description:

Issue: 20191012 245

⼤数据计算服务 User Guide / 4 SQL

• Value: Boolean, Bigint or Double type is acceptable. If it is other data type, an
 exception is thrown. For formatted output of the datetime type, see another
function TO_CHAR that has the same name.

• Return value: String type. If the input is NULL, return NULL.
Example:
to_char(123) = '123'
to_char(true) = 'TRUE'
to_char(1.23) = '1.23'
to_char(null) = NULL

TRIM
Command format:
string trim(string str)

Usage:
Removes left space and right space for the input string str.
Parameter description:
• ‘str’: String type. If the input is Bigint, Double, Decimal or Datetime, it is

converted to String in an implicit conversion. If it is other data type, an exception
 is throwm.

• Return value: String type. If the input is NULL, return NULL.
LTRIM

Command format:
string ltrim(string str)

Usage:
Removes the left space for the input string str.
Parameter description:
• ‘str’: String type. If the input is Bigint, Double, Decimal or Datetime, it is

converted to String in an implicit conversion. If it is other data type, an exception
 is throwm.

• Return value: String type. If the input is NULL, return NULL.

246 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Example:
select ltrim(' abc ') from dual;
Returns:
+-----+
| _c0 |
+-----+
| abc |
+-----+

RTRIM
Command format:
string rtrim(string str)

Usage:
Removes the right space for the input string str.
Parameter description:
• ‘str’: String type. If the input is Bigint, Double, Decimal or Datetime, it is

converted to String in an implicit conversion. If it is other data type, an exception
 is throwm.

• Return value: String type. If the input is NULL, return NULL.
Example:
select rtrim('a abc ') from dual;
Returns:
+-----+
| _c0 |
+-----+
| a abc |
+-----+

REVERSE
Command format:
STRING REVERSE(string str)

Usage:
Returns a reversed-order string.
Parameter description:
• str: String type. If the input is Bigint, Double, Decimal or Datetime, it is

converted to String in an implicit conversion. If it is other data type, an exception
 is throwm.

Issue: 20191012 247

⼤数据计算服务 User Guide / 4 SQL

• Return value: String type. If the input is NULL, return NULL.
Example:
select reverse('abcedfg') from dual;
Returns:
+-----+
| _c0 |
+-----+
| gfdecba |
+-----+

SPACE
Command format:
STRING SPACE(bigint n)

Usage:
A space string function that returns a string of length n.
Parameter description:
• n: Bigint type. The length cannot exceed 2 MB. If it is NULL, an exception is

thrown.
• Return value: String type.
Example:
select length(space(10)) from dual; ----Returns 10.
select space(400000000000) from dual; ----Error, the length exceeds 2
MB.

REPEAT
Command format:
STRING REPEAT(string str, bigint n)

Usage:
Returns the str string that is repeated for n times.
Parameter description:
• ‘str’: String type. If the input is Bigint, Double, Decimal or Datetime, it is

converted to String in an implicit conversion. If it is other data type, an exception
 is throwm.

248 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• n: Bigint type. The length does not exceed 2 MB. If it is NULL, an exception is
thrown.

• Return value: String type.
Example:
select repeat('abc',5) from lxw_dual;
Returns:abcabcabcabcabc

ASCII
Command format:
Bigint ASCII(string str)

Usage:
Returns the ascii of the first character of str.
Parameter description:
• str: String type. If the input is Bigint, Double, Decimal or Datetime, it is

converted to String in an implicit conversion. If it is other data type, an exception
 is throwm.

• Return value: Bigint type.
Example:
select ascii('abcde') from dual;
Returns:97

Maxcomputerte2.0 Extension function
With the upgrade to MaxCompute 2.0, some mathematical functions have been
added to the product. If a new function uses a new data type, you must add the
following set statement before using the new functions SQL statement:
set odps.sql.type.system.odps2=true;

Note:
Add set odps before the SQL statement that uses the functionset odps.sql.type
.system.odps2 = true;, and commit runs with SQL to use the new data type
function normally.

The enhanced and extended string functions are described as follows.

Issue: 20191012 249

⼤数据计算服务 User Guide / 4 SQL

CONCAT_WS
Command format:
string concat_ws(string SEP, string a, string b...)
string concat_ws(string SEP, array)

Note:
Add set odps before the SQL statement that uses the functionset odps.sql.type
.system.odps2 = true;, and commit runs with SQL to use the new data type
function normally.

Usage:
Concatenates all strings in the parameters, connected by the specified delimiter.
Parameter description:
• SEP: String-type delimiter. If not specified, an exception is returned.
Return value:
String type. If no parameters exist or any parameter is null, return null.
Example:
concat_ws(':','name','hanmeimei')='name:hanmeimei'
concat_ws(':','avg',null,'34')=null

LPAD
Command format:
string lpad(string a, int len, string b)

Note:
Add set odps before the SQL statement that uses the functionset odps.sql.type
.system.odps2 = true;, and commit runs with SQL to use the new data type
function normally.

Usage:
Uses string b to pad string a to the left to the place specified by len.
Parameter description:
• len: Int-type integer.

250 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• a/b…: String type.
Return value:
String type. If len is smaller than the number of places in a, a is truncated from the
 left to obtain a string with the number of places specified by len. If len is 0, return
empty.
Example:
lpad('abcdefgh',10,'12')='12abcdefgh'
lpad('abcdefgh',5,'12')='abcde'
lpad('abcdefgh',0,'12') Returns a blank result

RPAD
Command format:
string rpad(string a, int len, string b)

Note:
Add set odps before the SQL statement that uses the functionset odps.sql.type
.system.odps2 = true;, and commit runs with SQL to use the new data type
function normally.

Usage:
Uses string b to pad string a to the right to the place specified in len.

Note:
You need to add the set odps statement before the SQL statement that uses the
functionset odps.sql.type.system.odps2 = true, otherwise the error is
reported.

Parameter description:
• len: Int-type integer.
• a/b…: String type.
Return value:
String type. If len is smaller than the number of places in a, a is truncated from the
 left to obtain a string with the number of places specified by len. If len is 0, return
empty.

Issue: 20191012 251

⼤数据计算服务 User Guide / 4 SQL

Example:
rpad('abcdefgh',10,'12')='abcdefgh12'
rpad('abcdefgh',5,'12')='abcde'
rpad('abcdefgh',0,'12') Returns a blank result

REPLACE
Command format:
string replace(string a, string OLD, string NEW)

Note:
Add set odps before the SQL statement that uses the functionset odps.sql.type
.system.odps2 = true;, and commit runs with SQL to use the new data type
function normally.

Usage:
Uses string NEW to replace the portion of string a that completely matches string
OLD and returns string a.
Parameter description:
The parameters are all String type.
Return value:
String type. If the input is null, return null.
Example:
replace('ababab','abab','12')='12ab'
replace('ababab','cdf','123')='ababab'
replace('123abab456ab',null,'abab')=null

SOUNDEX
Command format:
string soundex(string a)

Note:
Add set odps before the SQL statement that uses the functionset odps.sql.type
.system.odps2 = true;, and commit runs with SQL to use the new data type
function normally.

252 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Usage:
Converts a normal string to a soundex string.
Parameter description: a is of type String.
Return value: String type. If the input value is NULL, return NULL.
Example:
soundex('hello')='H400'

SUBSTRING_INDEX
Command format:
string substring_index(string a, string SEP, int count))

Note:
Add set odps before the SQL statement that uses the functionset odps.sql.type
.system.odps2 = true; and commit runs with SQL to use the new data type
function normally.

Usage:
Truncates string a to the portion in front of the delimiter specified by count. If
count is positive, the portion to the left of the delimiter is used. If count is negative,
the portion to the right is used.
Parameter description: a/sep belong to the string type, and count belongs to the int
 type.
Return value:
String type. If the input is null, return null.

Issue: 20191012 253

⼤数据计算服务 User Guide / 4 SQL

4.16.7 Other functions
This article shows you how to use functions such as cast, decode, least, array, split,
map, and so on.

CAST
Function definition:
cast(expr as <type>)

Convert the result of expression to object type. For example, cast (‘1’ as bigint)
is to convert string ‘1’ to bingint ‘1’. If the conversion is unsuccessful or the
conversion is not supported, an exception occurs.

Note:
• cast (double as bigint) converts double type value to bigint type value.
• cast(string as bigint) converts a value of the string type into a value of the bigint

 type. If the string is composed of numerals expressed in integer form, it is
directly converted into a value of the bigint type.

• If the string is composed of numerals expressed in the float or exponent form, it
will be converted into a value of the double type first and then into a value of the
 bigint type.

• cast(string as datetime) or cast(datetime as string) adopts the default format
yyyy-mm-dd hh:mi:ss.

COALESCE
Function definition:
coalesce(expr1, expr2, ...)

Usage:
Return the first value which is not NULL from the list. If all values in the list are
NULL, return NULL.
Parameter description:
expr: value to be tested. All these values have the same data type or be NULL,
otherwise an expection occurs.
Return value:

254 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Return value type is the same as parameter type.

Note:
There must be one parameter at least, otherwise an exception occurs.

DECODE
Function definition:
decode(expression, search, result[, search, result]...[, default])

Usage:
Implement the selection function of if-then-else branch.
Parameter description:
• expression: expression to be compared.
• search: A search string to be compared with the expression.
• result: the returned value when the values of search and expression match.
• default: it is optional. If all search items do not match the expression, return this

default value. If it is not specified, return NULL.
Return Value:
• return matched search.
• If no matching record exists, return default.
• If default is not specified, return NULL.

Note:
- You must specify at least three parameters.
- All of the result types must be the same or NULL. Inconsistent data type

 causes an exception. All of the search and expression types must be
consistent, otherwise an exception is reported.

- If the option search in decode has repeated record and has been matched,
return the first value.

Example:
Select
decode(customer_id,
1, 'Taobao',
2, 'Alipay',
3, 'Aliyun',

Issue: 20191012 255

⼤数据计算服务 User Guide / 4 SQL
Null, 'N/A',
'Others') as result
from sale_detail;

The decode function mentioned previously implements the function in following if-
then-else sentence:
if customer_id = 1 then
result := 'Taobao';
elsif customer_id = 2 then
result := 'Alipay';
elsif customer_id = 3 then
result := 'Aliyun';
...
else
result := 'Others';
end if;

Note:
• Calculating NULL= NULL by MaxCompute SQL, return NULL, while the values of

NULL and NULL are equal in decode function.
• In the preceding example, if the value of customer_id is NULL, decode function

returns N/A as a result.
GET_IDCARD_AGE

Function definition:
get_idcard_age(idcardno)

Usage:
Returns the current age based on the ID number which is the difference of the
current year and the year of birth identified in the ID.
Parameter description:
idcardno: String type, ID number of 15-digit or 18-digit. In the calculation, the
validity of the ID is checked according to the province code and the last digit, and
Null is returned if the check fails.
Return Value:
Returns the Bigint type. Input is Null, returns Null. Returns Null if the difference of
the current year and the year of birth is larger than 100.

256 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

GET_IDCARD_BIRTHDAY
Function definition:
get_idcard_birthday(idcardno)

Usage:
Returns date of birth based on the ID number.
Parameter description:
idcardno: String type, ID number of 15-digit or 18-digit. In the calculation, the
validity of the ID is checked according to the province code and the last digit, and
Null is returned if the check fails.
Return Value:
Returns the Datetime type. Input is Null, returns Null.

GET_IDCARD_SEX
Function definition:
get_idcard_sex(idcardno)

Usage:
Returns the gender based on the ID number and the value is either M (male) or F (
female).
Parameter description:
idcardno: String type, ID number of 15-digit or 18-digit. In the calculation, the
validity of the ID is checked according to the province code and the last digit, and
Null is returned if the check fails.
Return Value:
Returns the String type. Input is Null, returns Null.

GREATEST
Function definition:
greatest(var1, var2, ...)

Usage:
Return the greatest input parameter.

Issue: 20191012 257

⼤数据计算服务 User Guide / 4 SQL

Parameter description:
var1/var2: Its type can be Bigint, Double, Decimal，Datetime or String type. If all
values are NULL, return NULL.
Return Value:
• The greatest value in input parameter. If the implicit conversion is not needed,

return type is the same as input parameter type.
• NULL is the least value.

If the input parameter types are different,
- For Double, Bigint, Decimal and String type, convert them to be Double type.
- For String and Datetime, convert them to be Datetime type.
- Other implicit conversion is not allowed.

ORDINAL
Function definition:
ordinal(bigint nth, var1, var2, ...)

Usage:
Return the location value specified by ‘nth’ after the input variables are sorted by
 small to large.
Parameter description:
• nth: Bigint type, specify the location to return its value. If it is NULL, return

NULL.
• var1/var2: Its type can be Bigint, Double, Datetime or String type.
Return Value:
• The value in nth bit. If the implicit conversion is not needed, return type is the

same as input parameter type.
• If implicit conversion is in input parameters,

- For Double, Bigint and String type, convert them to be Double type.
- For String and Datetime type, convert them to be Datetime type.
- Other implicit conversion is not allowed.

• NULL is the least value.

258 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Example:
ordinal(3, 1, 3, 2, 5, 2, 4, 6) = 2

LEAST
Function definition:
least(var1, var2, ...)

Usage:
return the least value in input parameter.
Parameter description:
var1/var2: Its type can be Bigint, Double, Decimal，Datetime or String type. If all
values are NULL, return NULL.
Return Value:
• The least value in input parameter; If the implicit conversion is not needed,

return type is the same as input parameter type.
• If implicit conversion is in input parameters,

- For Double, Bigint and String type, convert them to be Double type.
- For ‘string’ type and ‘datetime’ type, convert them to be ‘datetime’

type.
- Converts to Decimal type when Decimal type compares to Double, Bigint or

String type.
- Other implicit conversion is not allowed.

• NULL is the least value.
MAX_PT

Function definition:
max_pt(table_full_name)

Usage:
For a partitioned table, this function returns the maximum value of the level-one
 partition of the partitioned table, which is sorted alphabetically, and there is a
corresponding data file for the partition.
Parameter description:

Issue: 20191012 259

⼤数据计算服务 User Guide / 4 SQL

table_full_name: String type, specifys the name of table, which must be with the
name of project, for example: prj.src). You must own read permission on this table.
Return Value:
Return value: Returns the value of the largest level-one partition.
Example:
Example: Suppose that ‘tbl’ is a partitioned table, all partitions of the table are as
follows, and there are data files:
pt =‘20120901’
pt =‘20120902’

In the following statement, the return value of max_pt is ‘20120902’, and the
MaxCompute SQL statement reads the data in the ‘20120902’ partition.
select * from tbl where pt=max_pt('myproject.tbl');

Note:
If a new partition is added by using alter table, but there is no data file in this
partition, then this partition is not returned.

UUID
Function definition:
string uuid()

Usage:
Return a random ID. Example: 29347a88-1e57-41ae-bb68-a9edbdd94212.

Note:
UUID returns a random global ID with a low probability of duplication.

SAMPLE
Function definition:
boolean sample(x, y, column_name)

Usage:

260 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

sample all values of column_name according to the setting of x and y and filter out
the rows which do not meet the sampling condition.
Parameter description:
• x, y: Bigint type, indicates hash to x portions, take yth portions. y can be ignored.

- If y is ignored, take the first portion. If y in parameter is ignored, then
column_name is ignored at the same time.

- x and y are Bigint constants and greater than 0. If it is other data type or less
than or equal to 0, an exception is thrown. If y>, x exception is also thrown.
If any input of x and y is NULL, return NULL.

• column_name: the destination column to be sampled.
- column_name can be omitted, in which case, a random sample is taken

according to the values of x and y.
- It can be any data type and the column value can be NULL. Do not need

implicit type conversion.
- If column_name is the constant NULL, an exception is reported.

Return Value:
Boolean type.

Note:
To avoid data skew brought by NULL value, NULL values in column_name will
be carried out a uniform hash in x portions. If column_name is not added, the
output is not necessarily uniform since the data size is smaller. So column_name is
 suggested to be added to get better output.

Example:
Suppose that the table tbla is existent and a column cola is in this table:
select * from tbla where sample (4, 1 , cola) = true;
-- The values are carried out Hash into 4 portions and take the first
portion.
select * from tbla where sample (4, 2) = true;

Issue: 20191012 261

⼤数据计算服务 User Guide / 4 SQL
-- The values do random Hash into 4 portions for each row of data and
take the second portion.

CASE WHEN EXPRESSION
MaxCompute provides two kinds of case when syntax formats, as follows:
case
when (_condition1) then result1
when (_condition2) then result2
...
else resultn
end
case
when (_condition1) then result1
when (_condition2) then result2
when (_condition3) then result3
...
else resultn
end

Case when expression can return different values according to the computing result
 of expression values flexibly.
The following sentences is used to get the region according to different shop_name:
select
case
when shop_name is null then 'default_region'
when shop_name like 'hang%' then 'zj_region'
end as region
From sale_detail;

Note:
• If the types of result include Bigint and Double, convert them to Double type and

 then return the result.
• If the types of result include string type, convert them to be string type and then

return the result. If the conversion is unsuccessfully, the error is reported. (such
 as Boolean type).

• Expect these, the conversion between other types is not allowed.
If expression

Function definition:
if(testCondition, valueTrue, valueFalseOrNull)

Usage:

262 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Judge if testCondition is true. If it is true, return valueTrue, otherwise return
valueFalse or Null.
Parameter description:
• testCondition: The expression to be judged. Boolean type.
• valueTrue: It returns when the expression testCondition is true.
• valueFalseOrNull: It returns when the expression testCondition is not true and

also can be null.
Return Value:
The return type is the same as the valueTrue or valueFalseOrNul type.
Example:
select if(1=2,100,200) from dual;
--Returned results:
+ ------------ +
| _c0 |
+------------+
| 200 |
+------------+

SPLIT
Function definition:
split(str, pat)

Purpose: After the STR is split by Pat, the array is returned.
Parameter description:
• str: String type, specifies the string to be separated.
• pat: String type, specifies the delimiter, supports regular expressions.
Return Value:
array <string>

The result is the elements in str separated by pat.
Example:
select split("a,b,c",",") from dual;
Results:
+------+
| _c0 |
+------+
| [a, b, c] |

Issue: 20191012 263

⼤数据计算服务 User Guide / 4 SQL
+------+

Note:
Set commands supported by MaxCompute SQL and MapReduce for MaxCompute 2
.0
• Once data type such as Tinyint、Smallint、 Int、 Float、Varchar or TIMESTAMP

BINARY is involved when running an SQL statement, set odps.sql.type.system
.odps2=true; must be added before the SQL statement. The set statement and
SQL statement are submitted simultaneously.

• Project level: that is, the project level is supported for new type opening. The
project owner can be set to project as needed, with the following commands:
set odps.sql.type.system.odps2=true;

STR_TO_MAP
Function declaration:
str_to_map(text [, delimiter1 [, delimiter2]])

Purpose: use ‘delimiter1’ to separate ‘text’ into K-V pairs, then use ‘
delimiter2’ to separate each K-V pair.
Parameter description
• text: String type, specifies the string to be separated.
• delimiter1: string type, separator that does not specify the default ','.
• delimiter1: string type, separator, default to '=' when not specified '.
Return value: map <string, string >. The elements are the K-V results of the
separation of 'text' by the strings 'delimiter1' and 'delimiter2'.
Example:
Select fig ('test1 & 1-test2 & 2 ','-','&');

Return result:
+------------+
| A |
+------------+

264 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
| {Test1: 1, Test2: 2} |

EXPLODE
Function definition:
explode(var)

Usage:
Converts one row of data into a multi-row UDTF.
• If var is Array type, the array stored in the column is converted to multiple rows.
• If var is Map type, each key-value pair of the map stored in the column is

converted to a row with two columns, one column for the key and one for the
value.

Parameter description:
var: array<T> type or map<K, V> type.

Return Value:
Rows after conversion are returned.

Note:
The following restrictions apply when using UDTF:
• One select can only have one UDTF and no other columns can appear.
• It cannot be used with group by, cluster by, distribute by, or sort by.

Example:
explode(array(null, 'a', 'b', 'c')) col

MAP
Function definition:
MAP map(K key1, V value1, K key2, V value2, ...)

Usage:
Uses the given key/value pairs to create a map.
Parameter descriptio:
key/value

Issue: 20191012 265

⼤数据计算服务 User Guide / 4 SQL

• All key types are consistent, including those after implicit conversion, and must
be basic.

• All value types are consistent, including those after implicit conversion, and can
be of any type.

Return Value:
Returns the map type.
Example:
For example, the fields in t_table are(c1 bigint,c2 string,c3 string, c4 bigint ,c5
bigint), with the following data
+------------+----+----+------------+------------+
| c1 | c2 | c3 | c4 | c5 |
+------------+----+----+------------+------------+
1000	k11	k21	86	15
1001	k12	k22	97	2
1002	k13	k23	99	1
+------------+----+----+------------+------------+

Execute SQL:
select map(c2,c4,c3,c5) from t_table;

The result is as follows:
+ ---- +
| _c0 |
+------+
| {k11:86, k21:15} |
| {k12:97, k22:2} |
| {k13:99, k23:1} |
+------+

MAP_KEYS
Function definition:
ARRAY map_keys(map<K, V>)

Usage:
Returns an array of all the keys in the map parameter.
Parameter description:
map：map type data.
Return value:

266 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Returns the array type, enter null, and null.
Example:
For example, the field of t_table_map is (c1 bigint,t_map map<string,bigint>),
data as follows
+------------+-------+
| C1 | t_map |
+ ------------ + ------- +
| 1000 | {k11:86, k21:15} |
| 1001 | {k12:97, k22:2} |
| 1002 | {k13:99, k23:1} |
+------------+-------+

Execute SQL:
select c1,map_keys(t_map) from t_table_map;

The result is as follows:
+------------+------+
| c1 | _c1 |
+------------+------+
1000	[k11, k21]
1001	[k12, k22]
1002	[k13, k23]
+------------+------+

MAP_VALUES
Function definition:
ARRAY map_values(map<K, V>)

Usage:
Returns an array of all the values in the map parameter.
Parameter description:
map: map-type data.
Return Value:
Returns the array type, enter null, and null.
Example:
select map_values(map('a',123,'b',456));
Results:

Issue: 20191012 267

⼤数据计算服务 User Guide / 4 SQL
[123, 456]

ARRAY
Function definition:
ARRAY array(value1,value2, ...)

Usage:
Creates an array using the given values.
Parameter description:
value: This parameter can be of any type, but all the values must be of the same
type.
Return Value:
Returns the array type.
Example:
For example, the fields in t_table are (c1 bigint,c2 string,c3 string, c4 bigint ,c5
bigint), with the following data
+------------+----+----+------------+------------+
| c1 | c2 | c3 | c4 | c5 |
+------------+----+----+------------+------------+
1000	k11	k21	86	15
1001	k12	k22	97	2
1002	k13	k23	99	1
+------------+----+----+------------+------------+

Execute SQL:
select array(c2,c4,c3,c5) from t_table;

Results:
+------+
| _c0 |
+------+
| [k11, 86, k21, 15] |
| [k12, 97, k22, 2] |
| [k13, 99, k23, 1] |
+ ---- +

SIZE
Function definition:
INT size(map)

268 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
INT size(array)

Usage:
• size(map<K，V>) returns the number of K/V pairs in the given map.
• size(array<T>) returns the number of elements in the given array.
Parameter description:
• map<K, V>: Map-type data.
• array<T>: Array-type data.
Return Value:
Returns the Int type.
Example:
select size(map('a',123,'b',456)) from dual;--Returns 2
select size(map('a',123,'b',456,'c',789)) from dual;--Returns 3
select size(array('a','b')) from dual;--Returns 2
select size(array(123,456,789)) from dual;--Returns 3

ARRAY_CONTAINS
Function definition:
boolean array_contains(ARRAY<T> a,value v)

Usage:
Checks if the given array a contains v.
Parameter description:
• a: Array-type data.
• v: The given v must be of the same type as the data in the array.
Return Value:
Returns the Boolean type.
Example:
If the field of t_table_array is (c1 bigint, t_array array<string>), the data is as
follows:
+ ------------ + --------- +
| c1 | t_array |
+------------+---------+
| 1000 | [k11, 86, k21, 15] |

Issue: 20191012 269

⼤数据计算服务 User Guide / 4 SQL
| 1001 | [k12, 97, k22, 2] |
| 1002 | [k13, 99, k23, 1] |
+------------+---------+

Execute SQL:
select c1, array_contains(t_array,'1') from t_table_array;

Results:
+------------+------+
| c1 | _c1 |
+------------+------+
1000	false
1001	false
1002	true
+------------+------+

SORT_ARRAY
Function definition:
ARRAY sort_array(ARRAY<T>)

Usage:
This function used to sorts the given array.
Parameter description:
ARRAY<T>: Array-type data, the data in the array can be of any type.
Return Value:
Returns the array type.
Example:
select sort_array(array('a','c','f','b')),sort_array(array(4,5,7,2,5,8
)),sort_array(array('You','Me','He')) from dual;
Results:

270 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
[a, b, c, f] [2, 4, 5, 5, 7, 8] [He, You, Me]

Execute SQL
Select sort_array (C1), sort_array (C2), sort_array (C3) from t_array;

Return result:
[a, b, c, f] [2, 4, 5, 5, 7, 8] [He, You, Me]

POSEXPLODE
Function definition:
posexplode(ARRAY<T>)

Usage:
Explodes the given array. Each value is given a row and each row has two columns
corresponding to the subscript (starting from 0) and the array element.
Parameter description:
ARRAY: Array-type data, the data in the array can be of any type.
Return Value:
Returns the table generation function.
Example:
select posexplode(array('a','c','f','b')) from dual;
Results:
+------------+-----+
| pos | val |
+------------+-----+
0	a
1	c
2	f
3	b
+------------+-----+

STRUCT
Function definition:
STRUCT struct(value1,value2, ...)

Usage:
Creates a struct using the given value list.
Parameter description:

Issue: 20191012 271

⼤数据计算服务 User Guide / 4 SQL

value: Each value can be of any type.
Return Value:
Returns the STRUCT<col1:T1, col2:T2, ... > Type. field names are sequential:
col1, col2, …
Example:
select struct('a',123,'ture',56.90) from dual;
Results:
{col1:a, col2:123, col3:ture, col4:56.9}

NAMED_STRUCT
Function definition:
STRUCT named_struct(string name1, T1 value1, string name2, T2 value2
, ...)

Usage:
Creates a struct using the given name/value list.
Parameter description:
• value: Each value can be of any type.
• name: Specifies the name of a String-type field.
Return Value:
Returns the STRUCT<name1:T1, name2:T2, ... >type. The field names of the
generated struct are sequential: name1, name2, …
Example:
select named_struct('user_id',10001,'user_name','LiLei','married','F
','weight',63.50) from dual;
Results:
{user_id:10001, user_name:LiLei, married:F, weight:63.5}

INLINE
Command Format:
inline(array<struct<f1:T1, f2:T2, ... >>)

as shown in the following figure:
Explodes the given struct array. Each element is given one row and each struct
element corresponds to one column in each row.

272 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Parameter description:
STRUCT<f1:T1, f2:T2, ... >: The values in the array can be of any type.
Return Value:
Returns the table generation function.
Example:
If the field in Table t_table is (t_struct struct<user_id:bigint,user_name:
string,married:string,weight:double> <user_id: bigint,="" user_name:=""
string,="" married:="" weight:="" double="">), the table data is as follows:</
user_id:>
+----------+
| T_struct |
+----------+
{user_id:10001, user_name:LiLei, married:F, weight:63.5}
{user_id:10001, user_name:LiLei, married:F, weight:63.5}
+----------+

Execute SQL:
select inline(array(t_struct)) from t_table;

Return result:
+------------+----+----+------------+------------+
| user_id | user_name | married | weight |
+------------+----+----+------------+------------+
| 10001 | LiLei | N | 63.5 |
| 10002 | HanMeiMei | Y | 43.5 |
+------------+-----------+---------+------------+

TRANS_ARRAY
Function definition:
trans_array (num_keys, separator, key1,key2,…,col1, col2,col3) as (
key1,key2,…,col1, col2)

Usage:
A UDTF that converts one row of data to multiple rows, and converts an array
separated with fixed-separator format in column into multiple rows.
Parameter description:
• num_keys: Bigint type constant, must be larger than or equal to 0. It is used as

the number of columns to transpose key when converting to multiple rows.
Issue: 20191012 273

⼤数据计算服务 User Guide / 4 SQL

• Key: Duplicate columns in multiple rows when converting one row to multiple
rows.

• separator: String type constant. It is a separator used to split a string into
multiple elements. Exception is thrown when it is null.

• keys: As column of key when you transpose. It is specified by num_keys. If
num_keys specifies that all columns are keys (that is, num_keys equals the
number of all columns), only one row is returned.

• cols: An array to convert to rows. All columns after keys are considered as an
 array to be transposed. String type. The stored contents are arrays of string
format, such as “Hangzhou; Beijing; shanghai”, they are arrays separated by
 “;”.

Return Value:
Transposed rows, new column names are specified by as. The type of column that
is as key remains unchanged, and all other columns are String type. The number of
 rows to be split depends on the array that has maximum number, no-value locales
are complemented with NULL.

Note:
The following restrictions apply when using UDTF:
• All columns that are considered as keys must be placed front, and columns to be

 transposed must be placed behind.
• One select can only have one UDTF and no other columns can appear.
• One select can only have one UDTF and no other columns can appear.

Example:
The data in the t_table table is as follows:
+----------+----------+------------+
| login_id | login_ip | login_time |
+----------+----------+------------+
wangwangA 192.168.0.1,192.168.0.2 20120101010000,20120102010000
| Wangwangb | 192.168.25.10, 192.168.67.22, 192,168.6. 3 | maid,
20120223080000 |

274 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
+----------+----------+------------+

Execute SQL:
trans_array(1, ",", login_id, login_ip, login_time) as (login_id,
login_ip,login_time)

Results:
+----------+----------+------------+
| Login_id | login_ip | login_time |
+----------+----------+------------+
wangwangB	192.168.45.10	20120111010000
wangwangB	192.168.67.22	20120112010000
wangwangB	192.168.6.3	20120223080000
wangwangA	192.168.0.1	20120101010000
wangwangA	192.168.0.2	20120102010000
+----------+----------+------------+

If the table contains the following data:
Login_id LOGIN_IP LOGIN_TIME
wangwangA 192.168.0.1,192.168.0.2 20120101010000

NULL is complemented to the no-value locales in the array:
Login_id Login_ip Login_time
wangwangA 192.168.0.1 20120101010000
wangwangA 192.168.0.2 NULL

4.17 UDF
4.17.1 UDF Summary

MaxCompute provides many built-in functions to meet the computing requests of
the users.
A User Defined Function (UDF) is similar to any other Built-in Function. For the
corresponding relationship between Java and MaxCompute data types, see Parameters

and Return Value Types.
If you use Maven to search “odps-sdk-udf” from Maven to get different versions of
Java SDK,the configuration is as follows:
<dependency>
 <groupId>com.aliyun.odps</groupId>
 <artifactId>odps-sdk-udf</artifactId>
 <version>0.29.10-public</version>

Issue: 20191012 275

http://search.maven.org/
http://search.maven.org/

⼤数据计算服务 User Guide / 4 SQL
</dependency>

In MaxCompute, you can expand two types of UDF:
UDF Class Description
 UDF(User Defined Scalar
Function)

User Defined Scalar function. The relationship
between input and output is a one-to-one relationship
. Read a row data and write an output value.

UDTF (UserDefined Table
Valued Function)

User-defined table valued functions are used in
scenarios where the calling of one function leads to
multiple rows of data being output. It is a unique user
-defined function which can return multiple fields,
while UDFcan only output a return value.

UDAF（User Defined
Aggregation Function）

User Defined Aggregation Function (UDAF), the
relationship between its input and output is one-to-
many relationships. That is to aggregate multiple
input records to an output value. It can be used with a
Group By clause.. For more information, see Aggregate

functionsAggregation Functions.

Note:
• UDF stands for the set of user-defined functions, including User Defined Scalar

 Function, User Defined Aggregation Function and User Defined Table Valued
Function. In a narrower sense, it represents user User Defined Scalar Function.
The document uses this term frequently and the readers can judge the specific
meaning according to the context .

• If the system prompts that memory is insufficient with an UDF involved in
the SQL statement, configure set odps.sql.udf.joiner.jvm.memory=xxxx
; to resolve this issue. This is because the data is huge and data skew also
exists., This leads the memory size to occupythe task, which exceeds the default
memory size.

MaxCompute UDF supports cross-project sharing. A UDF in project_b can be
used in project_a. For more information, , see Authorization in Security Guide
documentation. other_project:udf_in_other_project(arg0, arg1) as res from table_t
;。

UDF Examples
Please see UDF Example in Quick Start Volume.

276 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

4.17.2 Java UDF
MaxCompute UDF includes three types: UDF, UDAF, and UDTF. This article focuses
on how to implement these three functions through Java.

Parameter and return value type
The data types of UDF supported by MaxCompute SQL include thebasic types: bigint
, double, boolean, datetime, decimal, string, tinyint, smallint, int, float, varchar,
binary, and timestamp. Complex types: array, map, and struct.
• The use of some basic types including tinyint, smallint, int, float, varchar, binary,

and timestamp through Java UDF is as follows:
- UDTF get ‘signature’ by @Resolve annotation, for example, @Resolve("

smallint->varchar(10)").
- UDF gets ‘signature’ by the reflection analysis ‘evaluate’. In this case, the

MaxCompute built-in type and the Java type comply with one-to-one mapping.
- UDAF gets the signature with the @Resolve annotation, and maxcompute2.0

supports the use of new types in annotations, for example, @Resolve("
smallint-> varchar (10)").

• JAVA UDF uses three complex data types :‘array’, ‘map’, and ‘struct’:
- UDAFs and UDTFs specify signature by @Resolve annotation, for example,

@Resolve("array<string>,struct<a1:bigint,b1:string>,string->map<

string,bigint>,struct<b1:bigint>").
- The UDF maps the input and output types of the UDF through the signature of

 the evaluate method, reference is made to the mapping of the maxcompute
type to the Java type. In this relationship, Array maps java.util.List, Map maps
java.util.Map, and Struct maps com.aliyun.odps.data.Struct.

- UDAF gets the signature with the @Resolve annotation, and MaxCompute2.0
supports the use of new types in annotations, for example, @Resolve("
smallint-> varchar (10)").

Note:
■ com.aliyun.odps.data.Struct does not see field name and field type from

reflection, so it must be complemented by @Resolve annotation. In other
 words, to use Struct in a UDF, add the @Resolve annotation to the UDF

Issue: 20191012 277

⼤数据计算服务 User Guide / 4 SQL

class. This annotation only affects overloads of parameters or return values
 that contain com.aliyun.odps.data.Struct.

■ Currently, only one @Resolve annotation can be provided on class. Therefore, only one overload

 in a UDF with a struct parameter or return value can exist.

The following table lists the relations between MaxCompute and Java data types.
MaxCompute Type Java Type
Tinyint java.lang.Byte
Smallint java.lang.Short
Int java.lang.Integer
Bigint java.lang.Long
Float java.lang.Float
Double java.lang.Double
Decimal java.math.BigDecimal
Boolean java.lang.Boolean
String java.lang.String
Varchar com.aliyun.odps.data.Varchar
Binary com.aliyun.odps.data.Binary
Datetime java.util.Date
Timestamp java.sql.Timestamp
array java.util.List
Map java.util.Map
Struct com.aliyun.odps.data.Struct

Note:
• The corresponding data type in Java and the return value data type is the object.

Make sure that the first letter is uppercase.
• The NULL value in SQL is represented by a NULL reference in Java; therefore, ‘

Java primitive type’ is not allowed because it cannot represent a NULL value in
SQL.

• Here, Java type corresponding to the ‘array’ type is ‘list’.

278 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

UDF
To implement UDF, the class ‘com.aliyun.odps.udf.UDF’ must be inherited and
the ‘evaluate’ method must be applied. The ‘evaluate’ method must be a non-
static public method. The parameter type and return value type of Evaluate method
 is considered as UDF signature in SQL. It means that the user can implement
multiple evaluate methods in UDF. To call UDF, the framework must match the
correct evaluate method according to the parameter type called by UDF.
Note：Classes with the same class name but different functional logic mustappear
in different jar packages. For example, UDF (UDAF/UDTF): udf1, udf2 correspond
to the resources udf1.jar and udf2.jar respectively, if both jars contain
com.aliyun.UserFunction.class, when two udfs are used in the same SQL statement,
the system randomly loads one of the classes. This causes inconsistency in the udf
execution behavior or compilation failure.
UDF samples are as follows:
package org.alidata.odps.udf.examples;
 import com.aliyun.odps.udf.UDF;

public final class Lower extends UDF {
 Public String evaluate (string s){
 If (Stream = NULL){
 return null;
 }
 return s.toLowerCase();
 }
}

UDF is initialized and terminated through void setup(ExecutionContext ctx) and
void close().
The use method of UDF is similar to built-in functions in MaxCompute SQL. For
more information, see Built-in Functions.

Other UDF examples
In the following code, UDF with three overloads is defined. The first, second, and
third overloads use ARRAY, MAP, and STRUCT respectively as a parameter. Since the
third overloads use a struct as a parameter or return value, therefore, a @Resolve
 annotation must be placed on the UDF class to specify the specific type of struct.
@Resolve ("struct, string-> string ")
public class UdfArray extends UDF {
 public String evaluate(List vals, Long len) {
 return vals.get(len.intValue());

Issue: 20191012 279

⼤数据计算服务 User Guide / 4 SQL
 }
 Public String evaluate (MAP map, string key){
 return map.get(key);
 }
 public String evaluate(Struct struct, String key) {
 return struct.getFieldValue("a") + key;
 }
}

The user can pass the complex type directly into the UDF:
create function my_index as 'UdfArray' using 'myjar.jar';
select id, my_index(array('red', 'yellow', 'green'), colorOrdinal) as
color_name from colors;

UDAF
To implement Java UDAF, inherit the class ‘com.aliyun.odps.udf.Aggregator’ and
the following interfaces must be applied:
public abstract class Aggregator implements ContextFunction {
 @Override
 public void setup(ExecutionContext ctx) throws UDFException {

 }
 @Override
 public void close() throws UDFException {
 }
 /**
 * Create an aggregate buffer
 * @return Writable - Aggregate buffer
 */
 abstract public Writable newBuffer();
 /**
 * @param buffer: aggregation buffer
 * @param args: specified parameter to call UDAF in SQL
 * @throws UDFException
 */
 abstract public void iterate(Writable buffer, Writable[] args)
throws UDFException;
 /**
 * generate final result
 * @param buffer
 * @return final result of Object UDAF
 * @throws UDFException
 */
 abstract public Writable terminate(Writable buffer) throws
UDFException;
 abstract public void merge(Writable buffer, Writable partial) throws
 UDFException;
}

The three most important interfaces are ‘iterate’, ‘merge’, and ‘terminate
’. The main logic of UDAF relies on these three interfaces. In addition, user must
realize defined Writable buffer.

280 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Take ‘achieve average calculation’ as an example and next figure describes the
realization logical and computational procedure of this function in MaxCompute
UDAF:

In the preceding figure , the input data is sliced according to a certain size.For
more information about slicing, see MapReduce). The size of each slice is suitable
for a worker to complete in the specified time. This slice size must be configured
manually by the user.
The calculation process of UDAF is divided into two steps:
• In the first step, each worker counts the data quantity and total sum in a slice.

You can consider the data quantity and total sum in each slice as an intermediate
 result.

• In the second step, a worker gathers the information of each slice generated in
the first stage. In the final output, r.sum / r.count is the average of all input data.

Use the following UDAF encoding example to calculate the average:
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import com.aliyun.odps.io.DoubleWritable;
import com.aliyun.odps.io.Writable;
import com.aliyun.odps.udf.Aggregator;
import com.aliyun.odps.udf.UDFException;
import com.aliyun.odps.udf.annotation.Resolve;
@Resolve("double->double")
public class AggrAvg extends Aggregator {
 private static class AvgBuffer implements Writable {
 private double sum = 0;
 private long count = 0;

Issue: 20191012 281

⼤数据计算服务 User Guide / 4 SQL
 @Override
 public void write(DataOutput out) throws IOException {
 out.writeDouble(sum);
 out.writeLong(count);
 }
 @Override
 public void readFields(DataInput in) throws IOException {
 sum = in.readDouble();
 count = in.readLong();
 }
 }
 private DoubleWritable ret = new DoubleWritable();
 @Override
 public Writable newBuffer() {
 return new AvgBuffer();
 }
 @Override
 public void iterate(Writable buffer, Writable[] args) throws
UDFException {
 DoubleWritable arg = (DoubleWritable) args[0];
 AvgBuffer buf = (AvgBuffer) buffer;
 if (arg ! = null) {
 buf.count += 1;
 buf.sum += arg.get();
 }
 }
 @Override
 public Writable terminate(Writable buffer) throws UDFException {
 AvgBuffer buf = (AvgBuffer) buffer;
 if (buf.count == 0) {
 ret.set(0);
 } else {
 ret.set(buf.sum / buf.count);
 }
 return ret;
 }
 @Override
 public void merge(Writable buffer, Writable partial) throws
UDFException {
 AvgBuffer buf = (AvgBuffer) buffer;
 AvgBuffer p = (AvgBuffer) partial;
 buf.sum += p.sum;
 buf.count += p.count;
 }
}

Note:
• For Writable’s readFields function, since the partial writable object can be

 reused, the same object readFields function is called multiple times. This
function expects the entire object to be reset each time it is called. If the object
contains a collection, it must be emptied.

• The use method of UDAF is similar to aggregation functions in MaxCompute
SQL. For more information, see Aggregation Functions.

282 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• How to run UDTF is similar to UDF. For more information, see Java UDF

Development.
UDTF

Java UDTF class must inherit the class ‘com.aliyun.odps.udf.UDTF’. This class has
four interfaces:
Interface Definition Description
public void setup(
ExecutionContext ctx)
throws UDFException

The initialization method to call user-defined
initialization behavior before UDTF processes the
input data. ‘Setup’ will be called first and once for
each worker.

public void process(
Object[] args) throws
UDFException

The framework calls this method. Each record in SQL
calls ‘process’ once accordingly. The parameters of
 ‘process’ are the specified UDTF input parameters
 in SQL. The input parameters are passed in as Object
[], and the results are output through ‘forward’
function. The user must call ‘forward’ in the ‘
process’ function by itself to determine the output
data.

public void close() throws
UDFException

The termination method of UDTF. The framework
 calls this method, and only once; that is, after
processing the last record.

public void forward
(Object …o) throws
UDFException

The user calls the ‘forward’ method to output data
. Each ‘forward’ represents the output of a record,
corresponding to the column specified by UDTF 'as’
clause in SQL.

A UDTF program sample is as follows:
package org.alidata.odps.udtf.examples;
import com.aliyun.odps.udf.UDTF;
import com.aliyun.odps.udf.UDTFCollector;
import com.aliyun.odps.udf.annotation.Resolve;
import com.aliyun.odps.udf.UDFException;
// TODO define input and output types, e.g., "string,string->string,
bigint".
 @Resolve("string,bigint->string,bigint")
 public class MyUDTF extends UDTF {
 @Override
 public void process(Object[] args) throws UDFException {
 String a = (String) args[0];
 Long b = (Long) args[1];
 for (String t: a.split("\\s+")) {
 forward(t, b);
 }
 }

Issue: 20191012 283

⼤数据计算服务 User Guide / 4 SQL
 }

Note:
The preceding example is for reference only. How to run UDTF is similar to using
UDF. For more information, see Java UDF Development.

In SQL,use this UDTF as the following example. Suppose that the register function
name in MaxCompute is ‘user_udtf’.
select user_udtf(col0, col1) as (c0, c1) from my_table;

Suppose the values of col0 and col1 in my_table are:
+------+------+
| col0 | col1 |
+------+------+
| A B | 1 |
| C D | 2 |
+------+------+

Then the ‘SELECT’ result is:
+----+----+
| c0 | c1 |
+----+----+
A	1
B	1
C	2
D	2
+----+----+

Instructions
UDTFs are often used as following in SQL:
select user_udtf(col0, col1) as (c0, c1) from my_table;
select user_udtf(col0, col1, col2) as (c0, c1) from (select * from
my_table distribute by key sort by key) t;
select reduce_udtf(col0, col1, col2) as (c0, c1) from (select col0,
col1, col2 from (select map_udtf(a0, a1, a2, a3) as (col0, col1, col2
) from my_table) t1 distribute by col0 sort by col0, col1) t2;

But using UDTF has the following limits:

284 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• Other expressions are not allowed in the same SELECT clause:
select value, user_udtf(key) as mycol ...

• UDTF cannot be nested.
select user_udtf1(user_udtf2(key)) as mycol...

• It cannot be used with ‘group by / distribute by / sort by’ in the same SELECT
clause.
select user_udtf(key) as mycol ... group by mycol

Other UDTF Examples
In UDTF, learn more aboutMaxCompute Resources. The following describes how to
use UDTFs to read MaxCompute resources:
1. Compile a UDTF program. Once the compilation is successful, export the Jar

package (udtfexample1.jar).
package com.aliyun.odps.examples.udf;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.Iterator;
import com.aliyun.odps.udf.ExecutionContext;
import com.aliyun.odps.udf.UDFException;
import com.aliyun.odps.udf.UDTF;
import com.aliyun.odps.udf.annotation.Resolve;
/**
 * project: example_project
 * table: wc_in2
 * partitions: p2=1,p1=2
 * columns: colc,colb
 */
@Resolve("string,string->string,bigint,string")
public class UDTFResource extends UDTF {
 ExecutionContext ctx;
 long fileResourceLineCount;
 long tableResource1RecordCount;
 long tableResource2RecordCount;
 @Override
 public void setup(ExecutionContext ctx) throws UDFException {
 this.ctx = ctx;
 try {
 InputStream in = ctx.readResourceFileAsStream("file_resource.txt
");
 BufferedReader br = new BufferedReader(new InputStreamReader(in
));
 String line;
 fileResourceLineCount = 0;
 while ((line = br.readLine()) ! = null) {
 fileResourceLineCount++;
 }
 br.close();

Issue: 20191012 285

⼤数据计算服务 User Guide / 4 SQL
 Iterator<Object[]> iterator = ctx.readResourceTable("table_reso
urce1").iterator();
 tableResource1RecordCount = 0;
 while (iterator.hasNext()) {
 tableResource1RecordCount++;
 iterator.next();
 }
 iterator = ctx.readResourceTable("table_resource2").iterator();
 tableResource2RecordCount = 0;
 while (iterator.hasNext()) {
 tableResource2RecordCount++;
 iterator.next();
 }
 } catch (IOException e) {
 throw new UDFException(e);
 }
}
 @Override
 public void process(Object[] args) throws UDFException {
 String a = (String) args[0];
 long b = args[1] == null ? 0 : ((String) args[1]).length();
 forward(a, b, "fileResourceLineCount=" + fileResourceLineCount
 + "|tableResource1RecordCount="
 + tableResource1RecordCount + "|tableResource2RecordCount=" +
tableResource2RecordCount);
 }
}

2. Add resources in MaxCompute:
Add file file_resource.txt;
Add jar udtfexample1.jar;
Add table table_resource1 as table_resource1;
Add table table_resource2 as table_resource2;

3. Create UDTF (my_udtf) in MaxCompute:
create function mp_udtf as com.aliyun.odps.examples.udf.UDTFResource
 using
'udtfexample1.jar, file_resource.txt, table_resource1, table_reso
urce2';

4. Create the resource tables: table_resource1, table_resource2 and the physical
table tmp1 in MaxCompute. Insert corresponding data into the tables.

5. Run this UDTF.
select mp_udtf("10","20") as (a, b, fileResourceLineCount) from tmp1
;
Return result:
+-------+------------+-------+
| a | b | fileResourceLineCount |
+-------+------------+-------+
| 10 | 2 | fileResourceLineCount=3|tableResource1RecordCount=0|
tableResource2RecordCount=0 |
| 10 | 2 | fileresourcelinecount = 3 | tableResource1RecordCount = 0
 | tableResource2RecordCount = 0 |

286 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
+-------+------------+-------+

UDTF Examples—Complex Data Types
The code in the following example defines UDF with three overloads. The
first overload uses ‘array’ as the parameter; the second uses ‘map’ as the
parameter; and the third uses ‘struct’ as the parameter. Since the third overload
uses ‘struct’ as the parameter or returned value, the UDF class must havethe
@Resolve annotation to specify the specific type of ‘struct’.
@Resolve("struct<a:bigint>,string->string")
public class UdfArray extends UDF {
 public String evaluate(List<String> vals, Long len) {
 return vals.get(len.intValue());
 }
 public String evaluate(Map<String,String> map, String key) {
 return map.get(key);
 }
 public String evaluate(Struct struct, String key) {
 return struct.getFieldValue("a") + key;
 }
}

Users can pass in the complex data type in the UDF:
create function my_index as 'UdfArray' using 'myjar.jar';
select id, my_index(array('red', 'yellow', 'green'), colorOrdinal) as
color_name from colors;

Hive UDF Compatibility Example
MaxCompute 2.0 supports Hive-style UDFs. Some Hive UDFs and UDTFs can be used
 directly in MaxCompute.

Notice:
Currently, the compatible Hive version is 2.1.0, and the corresponding Hadoop
version is 2.7.2. UDFs that are developed in other versions of Hive/Hadoop may
need to be recompiled using this Hive/Hadoop version.

Example:
package com.aliyun.odps.compiler.hive;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInsp
ectorFactory;
import java.util.ArrayList;
import java.util.List;
import java.util.Objects;
public class Collect extends GenericUDF {

Issue: 20191012 287

⼤数据计算服务 User Guide / 4 SQL
 @Override
 public ObjectInspector initialize(ObjectInspector[] objectInspectors
) throws UDFArgumentException {
 if (objectInspectors.length == 0) {
 throw new UDFArgumentException("Collect: input args should >= 1
");
 }
 for (int i = 1; i < objectInspectors.length; i++) {
 if (objectInspectors[i] ! = objectInspectors[0]) {
 throw new UDFArgumentException("Collect: input oi should be
the same for all args");
 }
 }
 return ObjectInspectorFactory.getStandardListObjectInspector(
objectInspectors[0]);
 }
 @Override
 public Object evaluate(DeferredObject[] deferredObjects) throws
HiveException {
 List<Object> objectList = new ArrayList<>(deferredObjects.length);
 for (DeferredObject deferredObject : deferredObjects) {
 objectList.add(deferredObject.get());
 }
 return objectList;
 }
 @Override
 public String getDisplayString(String[] strings) {
 return "Collect";
 }
}

Note:
For the use of Hive UDF, see:
• https://cwiki.apache.org/confluence/display/Hive/HivePlugins

• https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide+UDTF

• https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy

The UDF can pack any type and amount of parameters into array to output. Suppose
that the output jar package is named test.jar:
--Add resource
Add jar test.jar;
--Create function
CREATE FUNCTION hive_collect as 'com.aliyun.odps.compiler.hive.Collect
' using 'test.jar';
--Use function
set odps.sql.hive.compatible=true;
select hive_collect(4y,5y,6y) from dual;
+------+
| _c0 |
+------+
| [4, 5, 6] |

288 Issue: 20191012

https://cwiki.apache.org/confluence/display/Hive/HivePlugins
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide+UDTF
https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy

⼤数据计算服务 User Guide / 4 SQL
+------+

Note:
The UDF supports all data types, including array, map, struct, and other complex
types.

Note:
• MaxCompute’s add jar command permanently creates a resource in the project

, specify the jar when creating an UDF, but you cannot automatically add all jars
to the classpath.

• To use compatible Hive UDF, add set odps.sql.hive.compatible=true;
opposite the SQL statement, and submit it with SQL statement.

• When using compatible Hive UDFs, you must pay attention to JAVA sandbox limits
of MaxCompute.

4.17.3 Python UDF
The MaxCompute UDF consists of UDF, UDAF, and UDTF functions. This article
explains how to implement these three functions through MaxCompute Python.

RESTRICTED ENVIRONMENT
The Python version of MaxCompute UDF is 2.7 and executes user code in sandbox
mode; that is, the code is executed in a restricted environment.
• Read and Write local files
• Promoter process
• Start thread
• Use SOCKET to communicate
• Other system calls
Because of these restrictions, user-uploaded code must be implemented throughj
pure Python, and the C extension module is disabled.
In addition, not all modules are available in the Python standard library, and
modules that involve these features are disabled. Description of available modules
in the standard library are as follows:
• All modules implemented by pure Python are available.

Issue: 20191012 289

⼤数据计算服务 User Guide / 4 SQL

• The following modules are available in C-implemented extended modules.
- array
- audioop
- binascii
- _bisect
- cmath
- _codecs_cn
- _codecs_hk
- _codecs_iso2022
- _codecs_jp
- _codecs_kr
- _codecs_tw
- _collections
- cStringIO
- datetime
- _functools
- future_builtins
- _hashlib
- _heapq
- itertools
- _json
- _locale
- _lsprof
- math
- _md5
- _multibytecodec
- operator
- _random
- _sha256
- _sha512
- _sha
- _struct
- strop

290 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

- time
- unicodedat
- _weakref
- cPickle

• Some modules have limited functionalities. For example, the sandbox limits
the degree to which user code can write data to the standard output and the
standard error output; that is, sys.stdout/sys.stderr can write 20 KB at most;
otherwise, the excessive characters will be ignored.

Third-party Libraries
Common third-party libraries are installed in the operating environment to
supplement the standard library. The supported third-party libraries also include
numpy.

Note:
The use of third-party libraries is also subject to 'prohibit local', 'network I/O', and
other restrictions. Therefore, APIs that have such functions are also prohibited in a
 third-party library.

Parameters and return value types
The parameters and return values are specified as follows:
@odps.udf.annotate(signature)

MaxCompute SQL data types that are currently supported by the Python UDF
include bigint, String, double, Boolean, and datetime. The SQL statement must
determine the parameter type and the return value type for all functions before
 execution. So for Python, a dynamically-typed language, you must specify the
function signature by adding a decorator to the UDF class.
The function signature is specified by a string. The syntax is as follows:
arg_type_list '->' type_list
 arg_type_list: type_list | '*' | ''
type_list: [type_list ','] type
'bigint' | 'string' | 'double' | 'boolean' | 'datetime'

• The left side of the arrow indicates the type of the parameter and the right side
indicates the type of the returned value.

Issue: 20191012 291

⼤数据计算服务 User Guide / 4 SQL

• Only the UDTF returned value can be multiple columns, while UDF and UDAF can
 only return one column.

• ‘*’ represents varargs. By using varargs, UDF/UDTF/UDAF can match any type
of parameter.

A valid signature example is as follows:
The 'bigint, double-> string' # parameter is bigint, double, and the
return value is string

The 'bigint, boolean-> string, datetime '# udtf parameter is bigint,
Boolean, the return value is string, datetime

'*->string' # variable length parameter, input parameter arbitrary,
return value string

The '-> doubles' # parameter is empty and the return value is double

At the query semantic parsing stage, unqualified signatures are removed, and
an error is returned. The execution is then stopped. During execution, the UDF
parameter will be passed to the user as the type specified by the function signature.
The type of the user returned value must be consistent with the type specified by
the function signature; otherwise, an error is returned. MaxCompute SQL data type
corresponds to the Python type as follows:
ODPS SQL
type

Bigint String Double Boolean Datetime

Python Type int str float bool int

Note:
• Datetime type is passed to user code in the form of an int, with a value of epoch

 UTC Number of milliseconds from time to date. The user can deal with ‘
datetime’ type through the ‘datetime’ module in the Python standard library
.

• NULL corresponds to NONE in Python.
In addition, the parameter of odps.udf.int(value[, silent=True]) has been adjusted
. Parameter ‘silent’ is added. . When ‘silent’ is true, if the value cannot be
converted into ‘int’, report no error and return NONE.

292 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

UDF
Implementation of the Python UDF is very simple. You are required to define a new-
style class, and implements the evaluate method. For example:
from odps.udf import annotate

@annotate("bigint,bigint->bigint")
class MyPlus(object):

 def evaluate(self, arg0, arg1):
 if None in (arg0, arg1):
 return None
 return arg0 + arg1

Note:
A Python UDF must have its signature specified through annotate.

Since October 16, 2018, the use of Python UDF in the MaxCompute public cloud
environment has been fully opened.

UDAF
• class odps.udf.BaseUDAF: Inherit this class to implement a Python UDAF.
• BaseUDAF.new_buffer(): Implement this method and return the median

‘buffer’ of the aggregate function. Buffer must be marshallable object (such as
list, dict), and the size of the buffer must not increase with the amount of data, in
case of limit, Buffer size after Marshal must not exceed 2 MB.

• BaseUDAF.iterate(buffer[, args, ...]): This method aggregates ‘args’ into the
median ‘buffer’.

• BaseUDAF.merge(buffer, pbuffer): This method aggregates two median buffers;
that is, aggregate ‘pbuffer merger’ into ‘buffer’.

• BaseUDAF.terminate(buffer): This method converts the median ‘buffer’ into
the MaxCompute SQL basic types.

An example of an average value of UDAF is as follows:
@annotate('double->double')
class Average(BaseUDAF):

 def new_buffer(self):
 return [0, 0]

 def iterate(self, buffer, number):
 if number is not None:
 buffer[0] += number
 buffer[1] += 1

Issue: 20191012 293

https://docs.python.org/3.3/library/marshal.html#module-marshal

⼤数据计算服务 User Guide / 4 SQL
 def merge(self, buffer, pbuffer):
 buffer[0] += pbuffer[0]
 buffer[1] += pbuffer[1]

 def terminate(self, buffer):
 if buffer[1] == 0:
 return 0.0
 return buffer[0] / buffer[1]

UDTF
• class odps.udf.BaseUDTF: The basic class of Python UDTF. Users inherit this

class and implement methods such as process, close, and so on.
• BaseUDTF.__init__(): The initialization method, the inheritance class, if you

implement this method, the base class's initialization method, super(BaseUDTF,
self).__init__() must be called in the beginning.
The init method can only be called once during the entire UDTF life cycle; that
is, before the first record is processed. When the UDTF must save the internal
state, all states can be initialized in this method.

• BaseUDTF. process ([args,...]): This is one of the MaxCompute methods. The
 framework calls this method. Each record in SQL calls ‘process’ once
accordingly. The parameters of ‘process’ are the specified UDTF input
parameters in SQL.

• BaseUDTF.forward([args, ...]): The UDTF output method, which is called by user
 codes. Each time ‘forward’ is called, a record is output. The parameters of ‘
forward’ are the UDTF output parameters specified in SQL.

• BaseUDTF.close(): The termination method of UDTF. This method is called
by the MaxCompute SQL framework and only to be called once; that is, after
processing the last record.

Examples of UDTF are:
#coding:utf-8
explode. py

from odps.udf import annotate

from odps.udf import BaseUDTF

@annotate('string -> string')
class Explode(BaseUDTF):
 """Output string comma-separated to multiple records
 """

294 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
 def process(self, arg):
 props = arg.split(',')
 for p in props:
 self.forward(p)

Note:
A Python UDTF can also specify the parameter type or returned value type without
adding ‘annotate’. In this case, the function can match any input parameter in
SQL. The returned value type cannot be deduced, but all output parameters will be
considered to be ‘String’ type. So when ‘forward’ is called, all output values
must be converted into ‘str’ type.

Referring to resources
Python UDF can reference resource files through the ‘odps.distcache’ module.
Currently, referencing file resources and table resources are supported.
• odps.distcache.get_cache_file(resource_name)

- Returns the resource content for the specified name. resource_name: ‘str’
type, corresponding to the existing resource name in the current project. If
the resource name is invalid or has no responding resources, returns an error.

- The return value is file-like object the caller must call the close method to
release the open resource file after this object has been used.

The example of using ‘get_cache_file’ is as follows:
@annotate('bigint->string')
class DistCacheExample(object):

def __init__(self):
 cache_file = get_cache_file('test_distcache.txt')
 kv = {}
 for line in cache_file:
 line = line.strip()
 if not line:
 continue
 k, v = line.split()
 kv[int(k)] = v
 cache_file.close()
 self.kv = kv

def evaluate(self, arg):
 return self.kv.get(arg)

• odps.distcache.get_cache_table(resource_name):
- Returns the contents of the specified resource table. resource_name: ‘str’

type, corresponding to the existing resource table name in the current project

Issue: 20191012 295

⼤数据计算服务 User Guide / 4 SQL

. If the resource name is invalid or has no responding resources, returns an
error.

- Returned value: Returned value is a ‘generator’ type. The caller obtains the
table content through traversal. Each traversal has a record stored in the table
 in the form of a tuple.

The example of using ‘get_cache_table’ is as follows:
from odps.udf import annotate
from odps.distcache import get_cache_table

@annotate('->string')
class DistCacheTableExample(object):
 def __init__(self):
 self.records = list(get_cache_table('udf_test'))
 self.counter = 0
 self.ln = len(self.records)

 def evaluate(self):
 if self.counter > self.ln - 1:
 return None
 ret = self.records[self.counter]
 self.counter += 1
 return str(ret)

4.17.4 UDTF usage
This topic describes how to use Java user-defined table-valued functions (UDTFs)
and Python UDTFs.

Usage
In typical cases, a UDTF is used as follows in Structured Query Language (SQL):
select user_udtf(col0, col1, col2) as (c0, c1) from my_table;
select user_udtf(col0, col1, col2) as (c0, c1) from (select * from
my_table distribute by key sort by key) t;
select reduce_udtf(col0, col1, col2) as (c0, c1) from (select col0,
col1, col2 from (select map_udtf(a0, a1, a2, a3) as (col0, col1, col2
) from my_table) t1 distribute by col0 sort by col0, col1) t2;

UDTFs are subject to the following limits:

296 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• A select clause cannot contain any other expressions.
select value, user_udtf(key) as mycol ...

• A UDTF cannot be nested.
select user_udtf1(user_udtf2(key)) as mycol...

• A select clause cannot be used with a group by, distribute by, or sort by
 clause.
select user_udtf(key) as mycol ... group by mycol

4.18 UDT
MaxCompute has introduced the User-defined type (UDT) based on the new
generation SQL engine. UDT allows you to reference classes or objects of third-
party languages in SQL statements to obtain data or call methods.

Scenarios
UDT are typically applied in the following scenarios:
• Scenario 1: MaxCompute does not have built-in functions to complete tasks that

can be easily performed using other languages. For example, some tasks can be
performed by calling built-in Java classes only once. The procedure of using user
 defined functions (UDFs) to complete these tasks is complex.

• Scenario 2: You need to call a third-party library in SQL statements to implement
the corresponding function. You want to use a function provided by a third-party
 library directly in a SQL statement, instead of wrapping the function inside a
UDF.

• Scenario 3: Select Transform allows you to include objects and classes in SQL
statements to make these SQL statements easier to read and maintain. For some
languages, such as Java, the source code can be executed only after it is compiled
. You want to reference objects and classes of these languages in SQL statements.

Overview
UDT allows you to reference classes or objects of third-party languages in SQL
statements to obtain data or call methods.
There are major differences between UDT supported by MaxCompute and other
 SQL engines. UDT supported by other SQL engines are similar to the struct

Issue: 20191012 297

⼤数据计算服务 User Guide / 4 SQL

composite type in MaxCompute. Some proprietary SQL languages provide features
 that allow you to call third-party libraries, such as the CREATE TYPE statement in
 Oracle databases. UDT supported by MaxCompute is similar to the CREATE TYPE
 statement. A UDT contains both fields and methods. In addition, MaxCompute
does not require that you use Data Definition Language (DDL) statements to define
type mappings. Instead, MaxCompute allows you to reference types directly in SQL
statements.
Example:
set odps.sql.type.system.odps2=true;
-- Enable new data type support in MaxCompute. The following example
will use a new type of Integer (int).
SELECT java.lang.Integer.MAX_VALUE;

The output is as follows:
+-----------+
| max_value |
+-----------+
| 2147483647 |
+-----------+

You can shorten the statement by removing java.lang in the same way as in Java:
set odps.sql.type.system.odps2=true;
SELECT Integer.MAX_VALUE;

The expression in the preceding SELECT statement is similar to a Java expression
 and is executed in the same way as in Java. The expression specifies a UDT in
MaxCompute.
You can use UDF to implement all functions provided by UDT. If you use a UDF to
implement the same function, you need to follow these steps:
1. Define a UDF class.

package com.aliyun.odps.test;
public class IntegerMaxValue extends com.aliyun.odps.udf.UDF {
 public Integer evaluate() {
 return Integer.MAX_VALUE;
 }
}

2. Compile the UDF and pack it into a JAR package. Upload the JAR package and
create a function.
add jar odps-test.jar;

298 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
create function integer_max_value as 'com.aliyun.odps.test.
IntegerMaxValue' using 'odps-test.jar';

3. Call the function in a SQL statement.
select integer_max_value();

Using a UDT simplifies this procedure. By using UDT, you can use external
functions provided by other languages in SQL statements more easily.

How UDT works
The example shows how to use UDT to access Java static fields. You can use UDT
to implement more functions. The following example shows the UDT execution
procedure and its functions.
-- Sample data
@table1 := select * from values ('100000000000000000000') as t(x);
@table2 := select * from values (100L) as t(y);
-- Logic of the code
@a := select new java.math.BigInteger(x) x from @table1; --
Create a new object
@b := select java.math.BigInteger.valueOf(y) y from @table2; --
Call a static method.
select /*+mapjoin(b)*/ x.add(y).toString() from @a a join @b b; --
Call an instance method

The output is follows:
100000000000000000100

This example also shows how to retrieve UDT columns using subqueries, which
is difficult to complete using UDF. The x column retrieved by variable a is
java.math.BigInteger type. It is not a built-in type. You can pass the UDT data to
another operator and then call its method. You can also use the UDT data in data
shuffling.

Issue: 20191012 299

⼤数据计算服务 User Guide / 4 SQL

This figure shows that a UDT has three stages: M1, R2, and J3. When a Join clause
 is used, data reshuffling is required, which is the same as MapReduce. Data is
processed at multiple stages. Typically, data processing at different stages are
performed in different processes or different physical machines.
Only the new java.math.BigInteger(x) method is called at the M1 stage.
The java.math.BigInteger.valueOf(y) and x.add(y).toString() methods are called
separately at the J3 stage. These methods are called at different stages in different
 processes or physical machines. The UDT encapsulates these stages and acts as a
JVM.
Features
• UDT currently only supports Java. Other languages will be supported in later

versions.

300 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• UDT also allows you to upload JAR packages and directly reference the packages.
UDT has provided flags.
- You can use set odps.sql.session.resources to specify one or more

resources that you need to reference and separate the resources with commas
(,). Example: set odps.sql.session.resources=foo.sh,bar.txt;.

Note:
This flag is the same as the resource setting flag in Select Transform.
Therefore, this flag controls two functions. For example, you can use a UDT
to reference the UDF JAR package that we have mentioned in the Overview
section.
set odps.sql.type.system.odps2=true;
set odps.sql.session.resources=odps-test.jar;
--To reference the JAR package, you must first upload the package
 to the corresponding project and make sure that it is a JAR type
 resource.
select new com.aliyun.odps.test.IntegerMaxValue().evaluate();

- You can use odps.sql.session.java.imports to specify one or more default
JAR packages separated with commas (,). It is similar to the Java import
statement. You can specify a class path, such as java.math.BigInteger, or use
*. Currently, static import is not supported.
For example, you can use a UDT to reference the UDF JAR package that we
have mentioned in Overview.
set odps.sql.type.system.odps2=true;
set odps.sql.session.resources=odps-test.jar;
set odps.sql.session.java.imports=com.aliyun.odps.test. *;
-- Specify the default JAR package.
select new IntegerMaxValue().evaluate();

• UDT supports the following operations:
- Instantiate objects using the new operator.
- Instantiate arrays using the new operator, including ArrayList initialization.

Example: new Integer[] { 1, 2, 3 }.
- Call methods, including static methods. You can create objects in the factory

pattern.
- Access fields, including static fields.

Note:
Issue: 20191012 301

⼤数据计算服务 User Guide / 4 SQL

- Only public methods and public fields are supported.
- Identifiers in UDT include package names, class names, method names, and

field names. All identifiers are case-sensitive.
- UDT supports type conversion and SQL syntax, for example, cast (1 as java

.lang.Object). UDT does not support type conversion using Java syntax, for
example, (Object)1.

- Anonymous classes and lambda expressions are not supported. They may be
supported in later versions.

- UDT is typically used in expressions. Functions that do not return values
cannot be called in expressions. Therefore, UDT currently does not support
 calling functions that do not return values. This issue will be resolved in a
later version.

• By default, you can reference all classes provided by Java SDK.

Note:
The runtime currently uses JDK1.8. Later versions may be not supported.

• All operators use the MaxCompute SQL semantics. The result of String.valueOf(
1) + String.valueOf(2) is 3. The two strings are implicitly converted to double
type values and summed. If you use Java string concatenation to merge the
strings, the result will be 12.
In addition to the string concatenation methods in MaxCompute and Java, you
may also have confusion about the equal (=) operator. The equal (=) operator in
SQL statements is used as a comparison operator. To compare two Java objects,
you must call the equals method. You cannot use the equal (=) operator to verify
 whether two objects are equal. When UDT are used, you cannot guarantee that
 one object is equal to another object. For more information, see the following
descriptions.

302 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

• Java data types are mapped to built-in data types. For more information, see the
data type mapping table in Java UDFs. The mapping table can be applied to UDT.
- Built-in type data can directly call the method of the Java type to which the

built-in type is mapped. Example: '123'.length() , 1L.hashCode().
- UDT can be used in built-in functions and UDF. For example, in chr(Long.

valueOf('100')), Long.valueOf returns a java.lang.Long type value. Built-in
function chr supports the built-in type of BIGINT.

- Java primitive type data is automatically converted to boxing type data and the
 preceding two rules can be applied in this situation.

Note:
For certain built-in new data types, you must add the set odps.sql.type.system.
odps2=true; statement to declare these types. Otherwise, an error occurs.

• UDT completely support Java generics. For example, based on the parameter
type, the compiler knows the type of the value returned by the java.util.Arrays
.asList(new java.math.BigInteger('1')) method is java.util.List<java.
math.BigInteger>.

Note:
You must set the type parameter in a construct function or use java.lang.Object,
which is the same as in Java. For example, the result of new java.util.
ArrayList(java.util.Arrays.asList('1', '2')) is java.util.ArrayList<
Object>. The result of new java.util.ArrayList<String>(java.util.Arrays.
asList('1', '2')) is java.util.ArrayList<String>.

• UDT does not have a clear definition of equal objects. This is caused by data
reshuffling. The join example shows that objects may be transmitted between
different processes or physical machines. During the transmission, an object

Issue: 20191012 303

⼤数据计算服务 User Guide / 4 SQL

may be referenced as two different objects. For example, an object may be
shuffled to two machines and then reshuffled.
Therefore, when you use UDT, you must use the equals method to compare two
objects instead of using the equal (=) operator.
The correlations between objects in a row or column can be guaranteed.
However, the correlations between objects in different rows or columns are not
guaranteed.

• Currently, UDT cannot be used as shuffle keys in the join, group by, distribute by,
sort by, order by, and cluster by clauses.
UDT can be used at any stages in expressions, but cannot be output as final
results. For example, you cannot call the group by new java.math.BigInteger
('123') method. Instead, you can call the group by new java.math.BigInteger
('123').hashCode() method. This is because the value returned by hashCode
is an int.class type, which can be used as a built-in type of int. This applies the
built-in type to Java type mapping rules.

• UDT have made the data type conversion rules more flexible:
- UDT objects can be converted to objects of its base classes by implicit

conversion.
- UDT objects can be forcibly converted to objects of its base classes or

subclasses.
- Data type conversion for two objects without inheritance applies the native

conversion rules. The conversion may change the data. For example, java.lang
.Long type data can be forcibly converted to java.lang.Integer type data. It is a
process of converting built-in BIGINT type data to INT type data. This process
may cause data changes or even data precision changes.

• Currently, you cannot save UDT objects, which means that you cannot add
UDT objects to tables. DDL does not support UDT. You cannot create tables
that contain UDT, unless you convert the data to built-in types using implicit
conversion. In addition, the final output cannot be UDT type. To resolve
this issue, you can call the toString() method to convert the UDT data to

304 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

java.lang.String type data because all Java classes support the toString() method.
You can use this method to check UDT data during debugging.
You can also add the set odps.sql.udt.display.tostring=true; statement to
enable MaxCompute to convert all UDT data to strings by calling the java.util
.Objects.toString(...) method for debugging. This flag is typically used for
debugging because it can only be applied to the print statement. It cannot be
applied to the insert statement.
Binary is a built-in type and supports auto serialization. You can then save the
byte[] arrays. The saved byte[] arrays can be deserialized to binary type.
Some classes may have their own serialization and deserialization methods,
such as protobuffer. To save UDT, you must call serialization and deserialization
methods to convert the data to binary data.

• You can use UDT to achieve the function provided by the scalar function.
With the built-in functions collect list and explode, you can use UDT to achieve the
functions provided by the aggregator and table functions.

UDT examples
• Example of using Java arrays

set odps.sql.type.system.odps2=true;
set odps.sql.udt.display.tostring=true;
select
 new Integer[10], -- Create an array that contains 10 elements
.
 new Integer[] {c1, c2, c3}, -- Create an array that contains
three elements by initializing an ArrayList.
 new Integer[][] { new Integer[] {c1, c2}, new Integer[] {c3, c4
} }, -- Create a multidimensional array.
 new Integer[] {c1, c2, c3} [2], -- Access the elements in the
array using indexes.
 java.util.Arrays.asList(c1, c2, c3); -- This is another way
to create a built-in array. It creates a List<Integer>, which can be
 used as an array<int>.
from values (1,2,3,4) as t(c1, c2, c3, c4);

• Example of using JSON
The runtime of UDT carries a JSON dependency (version 2.2.4), which can be
directly used in JSON.
set odps.sql.type.system.odps2=true;
set odps.sql.session.java.imports=java.util.*,java,com.google.gson
. *; -- To import multiple packages, separate the packages with
commas (,).
@a := select new Gson() gson; -- Create a gson object.
select

Issue: 20191012 305

⼤数据计算服务 User Guide / 4 SQL
gson.toJson(new ArrayList<Integer>(Arrays.asList(1, 2, 3))), --
Convert an object to a JSON string.
cast(gson.fromJson('["a","b","c"]', List.class) as List<String>) --
Deserialize the JSON string. The gson also forcibly converts the
deserialized result from List<Object> type to List<String> type.
from @a;

Compared with built-in function get_json_object, this method is simple and
it improves efficiency by extracting content from the JSON string and then
deserializing the string to a supported data type.
In addition to JSON dependencies, MaxCompute runtime also carries other
 dependencies, including commons-logging (1.1.1), commons-lang (2.5),
commons-io (2.4), and protobuf-java (2.4.1).

• Example of using composite types
Built-in types of array and map are mapped to java.util.List and java.util.Map,
respectively. Results:
- Java objects in classes calling the java.util.List or java.util.Map interface can

be used in MaxCompute SQL composite type data processing.
- Array and map type data in MaxCompute can directly call the List or Map

interface.
set odps.sql.type.system.odps2=true;
set odps.sql.session.java.imports=java.util.*;
select
 size(new ArrayList<Integer>()), -- Call built-in function
 size to obtain the size of the ArrayList.
 array(1,2,3).size(), -- Call the List method
for built-in type array.
 sort_array(new ArrayList<Integer>()), -- Sort the data in the
ArrayList.
 al[1], -- The Java List method
does not support indexing. However, the array type supports indexing
.
 Objects.toString(a), -- With this method, you can now
convert array type to string type data.
 array(1,2,3).subList(1, 2) -- Get a sublist.

306 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
from (select new ArrayList<Integer>(array(1,2,3)) as al, array(1,2,3
) as a) t;

• Example of aggregation
To use UDT to achieve aggregation, you must first use built-in function collect_set

or collect_list to convert the data to the List type, and then call the UDT methods to
aggregate the data.
The following example shows how to obtain the median from BigInteger
data. You cannot directly call the built-in median function because the data is
java.math.BigInteger type.
set odps.sql.session.java.imports=java.math.*;
@test_data := select * from values (1),(2),(3),(5) as t(value);
@a := select collect_list(new BigInteger(value)) values from @
test_data; -- Aggregate the data to a list.
@b := select sort_array(values) as values, values.size() cnt from @a
; -- To obtain the median, first sort the data.
@c := select if(cnt % 2 == 1, new BigDecimal(values[cnt div 2]), new
 BigDecimal(values[cnt div 2 - 1].add(values[cnt div 2])).divide(new
 BigDecimal(2))) med from @b;
-- Final output
select med.toString() from @c;

You cannot use the collect_list function to implement partial aggregation
because it aggregates all data. Using the built-in aggregator or UDAF object is
more efficient. We recommend that you use the built-in aggregator if possible.
Aggregating all data in a group increases the risk of data skew.
If the logic of the UDAF object is to aggregate all data, which is the same as the
 built-in function wm_concat, using the collect_list function is more efficient
than using the UDAF object.

Issue: 20191012 307

⼤数据计算服务 User Guide / 4 SQL

• Example of using the table-valued function
The table-valued function allows you to input and output multiple rows and
columns. To input or output multiple rows and columns, follow these steps:
1. To input multiple rows or columns, reference the example of using the

aggregate function.
2. To output multiple rows, you can use a UDT to define a Collection type (List or

 Map), and then call the explode function to split the collection into multiple
rows.

3. A UDT can contain multiple fields. You can retrieve the data from the fields by
calling different getter methods. The data is then output in multiple rows.

The following example shows how to split a JSON string and output the splitting
result in multiple columns:
@a := select '[{"a":"1","b":"2"},{"a":"1","b":"2"}]' str; -- Sample
data
@b := select new com.google.gson.Gson().fromJson(str, java.util.List
.class) l from @a; -- Deserialize the JSON string.
@c := select cast(e as java.util.Map<Object,Object>) m from @b
lateral view explode(l) t as e; -- Call the explode function to
split the string.
@d := select m.get('a') as a, m.get('b') as b from @c; -- Output the
 splitting result in multiple columns.
select a.toString() a, b.toString() b from @d; -- The final output.
Columns a and b in variable d are Object type.

Features, performance, and security
UDT has the following features:
• Easy to use. You do not need to define any functions.
• You can directly use all functions supported by the JDK. This improves the

flexibility of SQL.
• You can directly reference objects and classes of other languages in SQL

statements, which is easy to manage.
• You can directly reference libraries of other languages. This enables you to reuse

 your code.
• You can achieve functions based on the object-oriented concept.
Improvements that will be made to UDT later:
• UDT will support functions that do not return values, including functions that

return values but the returned values are ignored and the passed in data is used,

308 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

such as the add method provided by the List interface. This method returns the
list that you have passed in.

• Anonymous classes and lambda expressions will be supported.
• You can use UDT as shuffle keys.
• More languages will be supported, such as Python.
The execution procedure of UDT is similar to UDF. UDT and UDFs have almost the
same performance. In addition, the compute engine has been greatly improved.
Therefore, UDT has higher performance in certain scenarios.
• Deserialization is not required for objects in only one process. Deserialization is

 required only when the objects are transmitted among processes. This means
that UDT do not incur any serialization or deserialization overhead when no data
reshuffling is performed, such as calling the join or aggregator function.

• The runtime of UDT is based on Codegen. It is not based on reflection. Therefore,
no performance reduction is experienced. Multiple UDT is wrapped in one
FunctionCall and executed at the same time. For example, you may think that
multiple UDT methods are called in values[x].add(values[y]).divide(
java.math.BigInteger.valueOf(2)), but actually only one method is called.
UDT focus on small-granularity data processing. However, this does not incur
additional overhead for the interface where multiple functions are called.

UDT is restricted by the Java sandbox model, as same as UDF. To perform restricted
operations, you must enable sandbox isolation or apply to join a sandbox whitelist.

4.19 UDJ
Based on the MaxCompute 2.0 computing engine, MaxCompute introduces a new
interface: user defined join (UDJ) to the user defined function (UDF) framework.
This interface allows you to handle multiple tables more flexibly based on user-
defined methods. It also simplifies the operations performed in the underlying
distributed system using MapReduce. This is a major improvement of MaxCompute
in big data processing based on NewSQL.

Overview
MaxCompute provides multiple native Join methods, including INNER JOIN, RIGHT
JOIN, OUTER JOIN, LEFT JOIN, FULL JOIN, SEMIJOIN , and ANTISEMIJOIN methods.

Issue: 20191012 309

⼤数据计算服务 User Guide / 4 SQL

You can use these native join methods in most scenarios. However, these methods
do not support handling multiple tables.
In most cases, you can build your code framework using UDFs. However, the
current UDF, UDTF, and UDAF frameworks only support handling one table. To
perform user-defined operations for multiple tables, you have to use native join
 methods, UDFs, UDTFs, and complex SQL statements. In certain cases, when
handling multiple tables, you even have to use custom MapReduce framework
instead of SQL, in order to complete the required computing task.
In any situation, these operations require technological expertise and may cause
the following issues:
• For the computing platform, calling multiple join methods in SQL statements

may cause a "black box," which is complex and difficult to execute with the least
overheads.

• Using MapReduce even make optimal execution of code becomes impossible.
Most of the MapReduce code is written in Java. The execution of the MapReduce
 code is less efficient than the execution of MaxCompute code generated by the
LLVM code generator at an optimized native runtime.

Examples
The following example describes how to use UDJ in MaxCompute. This example
uses the payment table and the user_client_log table.
• The payment (user_id string,time datetime,pay_info string) table stores the

 payment information of a user. Each payment record includes the user ID,
payment time, and the payment details.

• The user_client_log(user_id string,time datetime,content string) table stores the
 client log records for a user. Each record contains the user ID, operation time,
and operation.

Requirement: For each record in the user_client_log table, locate the payment
record that has the time closest to the operation time, and join and output the
content of both records.
The sample data is as follows:
payment

310 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

user_id time pay_info
2656199 2018-02-13 22:30:00 gZhvdySOQb
8881237 2018-02-13 08:30:00 pYvotuLDIT
8881237 2018-02-13 10:32:00 KBuMzRpsko

user_client_log
user_id time content
8881237 2018-02-13 00:30:00 click MpkvilgWSmhUuPn
8881237 2018-02-13 06:14:00 click OkTYNUHMqZzlDyL
8881237 2018-02-13 10:30:00 click OkTYNUHMqZzlDyL

The following is a record in the user_client_log table.
user_id time content
8881237 2018-02-13 00:30:00 click MpkvilgWSmhUuPn

The following payment record has the time closest to the operation time in the
preceding client log record.
user_id time pay_info
8881237 2018-02-13 08:30:00 pYvotuLDIT

These two records are merged as follows:
8881237 2018-02-13 00:30:00 click MpkvilgWSmhUuPn,

pay pYvotuLDIT
The merging result of the two tables is as follows:
user_id time content
8881237 2018-02-13 00:30:00 click MpkvilgWSmhUuPn,

pay pYvotuLDIT
8881237 2018-02-13 06:14:00 click OkTYNUHMqZzlDyL,

pay pYvotuLDIT
8881237 2018-02-13 10:30:00 click OkTYNUHMqZzlDyL,

pay KBuMzRpsko

Issue: 20191012 311

⼤数据计算服务 User Guide / 4 SQL

Call native join operations
If you use standard join methods, you have to join these two tables based on the
common user_id field. You must locate the payment record that has the closest time
 to the operation time in each client log record. The SQL statement may be written
as follows:
SELECT
 p.user_id,
 p.time,
 merge(p.pay_info, u.content)
FROM
 payment p RIGHT OUTER JOIN user_client_log u
ON p.user_id = u.user_id and abs(p.time - u.time) = min(abs(p.time - u
.time))

When you join two rows in the tables, you must calculate the minimum difference
 between the p.time and u.time under the same user_id. However, you cannot
call the aggregate function in the join condition. Therefore, this task cannot be
completed by calling the standard join method.
In a distributed system, the join method merges rows retrieved from two or more
tables based on a field that is shared by these tables. If you use the join method in
 standard SQL, you only have a few options to handle the merged data. Therefore
, a generic interface, such as UDJ, is required to handle the merged data in a
customized manner and output the result. This interface may be integrated as a
plug-in.

Use Java to write UDJ code
The following describes how to use UDJ to achieve a function that cannot be
implemented by calling a native join method.
Prerequisites
Since UDJ is a new feature, a new SDK is required.
<dependency>
 <groupId>com.aliyun.odps</groupId>
 <artifactId>odps-sdk-udf</artifactId>
 <version>0.29.10-public</version>
 <scope>provided</scope>
</dependency>

The SDK contains a new abstract class UDJ. By extending this UDJ, you can
implement all UDJ functions.
package com.aliyun.odps.udf.example.udj;

312 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
import com.aliyun.odps.Column;
import com.aliyun.odps.OdpsType;
import com.aliyun.odps.Yieldable;
import com.aliyun.odps.data.ArrayRecord;
import com.aliyun.odps.data.Record;
import com.aliyun.odps.udf.DataAttributes;
import com.aliyun.odps.udf.ExecutionContext;
import com.aliyun.odps.udf.UDJ;
import com.aliyun.odps.udf.annotation.Resolve;
Import java. util. arraylist;
import java.util.Iterator;
/** For each record of the right table, find the nearest record of the
 left table and
 * merge two records.
 */
@Resolve("->string,bigint,string")
public class PayUserLogMergeJoin extends UDJ {
 private Record outputRecord;
 /** Will be called prior to the data processing phase. User could
implement
 * use this method to do initialization work.
 */
 @Override
 public void setup(ExecutionContext executionContext, DataAttributes
dataAttributes) {
 //
 outputRecord = new ArrayRecord(new Column[]{
 new Column("user_id", OdpsType.STRING),
 new Column("time", OdpsType.BIGINT),
 new Column("content", OdpsType.STRING)
 });
 }
 /** Override this method to implement join logic.
 * @param key Current join key
 * @param left Group of records of the left table corresponding to
the current key
 * @param right Group of records of the right table corresponding to
 the current key
 * @param output Used to output the result of UDJ
 */
 @Override
 public void join(Record key, Iterator<Record> left, Iterator<Record
> right, Yieldable<Record> output) {
 outputRecord.setString(0, key.getString(0));
 if (! right.hasNext()) {
 // Empty the right group and do nothing.
 return;
 } else if (! left.hasNext()) {
 // Empty left group. Output all records of the right group
without merge.
 while (iter.hasNext()) {
 Record logRecord = right.next();
 outputRecord.setBigint(1, logRecord.getDatetime(0).getTime());
 outputRecord.setString(2, logRecord.getString(1));
 output.yield(outputRecord);
 }
 return;
 }
 ArrayList<Record> pays = new ArrayList<>();
 // The left group of records will be iterated from the start to
the end
 // for each record of the right group, but the iterator cannot be
reset.
 // So we save every record of the left to an ArrayList.

Issue: 20191012 313

⼤数据计算服务 User Guide / 4 SQL
 left.forEachRemaining(pay -> pays.add(pay.clone()));
 while (right.hasNext()) {
 Record log = right.next();
 long logTime = log.getDatetime(0).getTime();
 long minDelta = Long.MAX_VALUE;
 Record nearestPay = null;
 // Iterate through all records of the left, and find the pay
record that has
 // the minimal difference in terms of time.
 for (Record pay: pays) {
 long delta = Math.abs(logTime - pay.getDatetime(0).getTime());
 if (delta < minDelta) {
 minDelta = delta;
 nearestPay = pay;
 }
 }
 // Merge the log record with the nearest pay record and output
the result.
 outputRecord.setBigint(1, log.getDatetime(0).getTime());
 outputRecord.setString(2, mergeLog(nearestPay.getString(1), log.
getString(1)));
 output.yield(outputRecord);
 }
 }
 String mergeLog(String payInfo, String logContent) {
 return logContent + ", pay " + payInfo;
 }
 @Override
 public void close() {
 }
}

Note:
In this example, the NULL values in the entries are not processed. To simplify the
data processing procedure for better presentation, this example assumes that no
NULL values are contained in the tables.

Each time you call this join method of UDJ, records that match the same key in the
two tables are returned. Therefore, UDJ searches all records in the payment table to
 locate the record with the time closest to each record the user_client_log table.
Assume that the user only has a few payment records. In this case, you can load the
data in the payment table to the RAM. Typically, the RAM has enough space to store
 the payment data of a user generated in one day. What if this assumption is invalid
? How can we resolve this issue? This issue will be discussed in topic Use the SORT
BY clause

314 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Create a UDJ in MaxCompute
After you have written the UDJ code in Java, upload the code to MaxCompute SQL as
a plug-in. You must register the code with MaxCompute first. Assume that the code
is packed into JAR package odps-udj-example.jar.
Use the Add JAR command to upload the JAR package to MaxCompute as follows:
add jar odps-udj-example.jar;

Use the CREATE FUNCTION statement to create UDJ function pay_user_log_merge_j
oin, referencing the corresponding Java class and using the odps-udj-example.jar
JAR package.
com.aliyun.odps.udf.example.udj.PayUserLogMergeJoin:

create function pay_user_log_merge_join
 as 'com.aliyun.odps.udf.example.udj.PayUserLogMergeJoin'
 using 'odps-udj-example.jar';

Use UDJ in MaxCompute SQL
After you have registered UDJ in the database, the function can be used by
MaxCompute SQL.
1. Create a sample source table

create table payment (user_id string,time datetime,pay_info string);
create table user_client_log(user_id string,time datetime,content
string);

2. Create sample data:
Create the data in the payment table
INSERT OVERWRITE TABLE payment VALUES
('1335656', datetime '2018-02-13 19:54:00', 'PEqMSHyktn'),
('2656199', datetime '2018-02-13 12:21:00', 'pYvotuLDIT'),
('2656199', datetime '2018-02-13 20:50:00', 'PEqMSHyktn'),
('2656199', datetime '2018-02-13 22:30:00', 'gZhvdySOQb'),
('8881237', datetime '2018-02-13 08:30:00', 'pYvotuLDIT'),
('8881237', datetime '2018-02-13 10:32:00', 'KBuMzRpsko'),
('9890100', datetime '2018-02-13 16:01:00', 'gZhvdySOQb'),
('9890100', datetime '2018-02-13 16:26:00', 'MxONdLckwa')
;
--Create data in the user_client_log table
INSERT OVERWRITE TABLE user_client_log VALUES
('1000235', datetime '2018-02-13 00:25:36', 'click FNOXAibRjkIaQPB
'),
('1000235', datetime '2018-02-13 22:30:00', 'click GczrYaxvkiPultZ
'),
('1335656', datetime '2018-02-13 18:30:00', 'click MxONdLckpAFUHRS
'),
('1335656', datetime '2018-02-13 19:54:00', 'click mKRPGOciFDyzTgM
'),

Issue: 20191012 315

⼤数据计算服务 User Guide / 4 SQL
('2656199', datetime '2018-02-13 08:30:00', 'click CZwafHsbJOPNitL
'),
('2656199', datetime '2018-02-13 09:14:00', 'click nYHJqIpjevkKToy
'),
('2656199', datetime '2018-02-13 21:05:00', 'click gbAfPCwrGXvEjpI
'),
('2656199', datetime '2018-02-13 21:08:00', 'click dhpZyWMuGjBOTJP
'),
('2656199', datetime '2018-02-13 22:29:00', 'click bAsxnUdDhvfqaBr
'),
('2656199', datetime '2018-02-13 22:30:00', 'click XIhZdLaOocQRmrY
'),
('4356142', datetime '2018-02-13 18:30:00', 'click DYqShmGbIoWKier
'),
('4356142', datetime '2018-02-13 19:54:00', 'click DYqShmGbIoWKier
'),
('8881237', datetime '2018-02-13 00:30:00', 'click MpkvilgWSmhUuPn
'),
('8881237', datetime '2018-02-13 06:14:00', 'click OkTYNUHMqZzlDyL
'),
('8881237', datetime '2018-02-13 10:30:00', 'click OkTYNUHMqZzlDyL
'),
('9890100', datetime '2018-02-13 16:01:00', 'click vOTQfBFjcgXisYU
'),
('9890100', datetime '2018-02-13 16:20:00', 'click WxaLgOCcVEvhiFJ')
;

3. In MaxCompute SQL, use the UDJ function you have created:
SELECT r.user_id, from_unixtime(time/1000) as time, content FROM (
SELECT user_id, time as time, pay_info FROM payment
) p JOIN (
SELECT user_id, time as time, content FROM user_client_log
) u
ON p.user_id = u.user_id
USING pay_user_log_merge_join(p.time, p.pay_info, u.time, u.content)
r
AS (user_id, time, content)
;

The syntax of UDJ is similar to the standard join syntax. The only difference is
that the USING clause is added to UDJ.
• The name of the UDJ function in SQL is pay_user_log_merge_join.
• (p.time, p.pay_info, u.time, u.content) are the columns used in these two

tables.
• r is the alias of the result returned by the UDJ function. You can reference this

alias in other SQL statements.
• (user_id, time, content) are the columns returned by the UDJ function.
Execute this SQL statement, and the result is as follows:
+---------+------------+---------+
| user_id | time | content |
+---------+------------+---------+
| 1000235 | 2018-02-13 00:25:36 | click FNOXAibRjkIaQPB |

316 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
| 1000235 | 2018-02-13 22:30:00 | click GczrYaxvkiPultZ |
| 1335656 | 2018-02-13 18:30:00 | click MxONdLckpAFUHRS, pay
PEqMSHyktn |
| 1335656 | 2018-02-13 19:54:00 | click mKRPGOciFDyzTgM, pay
PEqMSHyktn |
| 2656199 | 2018-02-13 08:30:00 | click CZwafHsbJOPNitL, pay
pYvotuLDIT |
| 2656199 | 2018-02-13 09:14:00 | click nYHJqIpjevkKToy, pay
pYvotuLDIT |
| 2656199 | 2018-02-13 21:05:00 | click gbAfPCwrGXvEjpI, pay
PEqMSHyktn |
| 2656199 | 2018-02-13 21:08:00 | click dhpZyWMuGjBOTJP, pay
PEqMSHyktn |
| 2656199 | 2018-02-13 22:29:00 | click bAsxnUdDhvfqaBr, pay
gZhvdySOQb |
| 2656199 | 2018-02-13 22:30:00 | click XIhZdLaOocQRmrY, pay
gZhvdySOQb |
| 4356142 | 2018-02-13 18:30:00 | click DYqShmGbIoWKier |
| 4356142 | 2018-02-13 19:54:00 | click DYqShmGbIoWKier |
| 8881237 | 2018-02-13 00:30:00 | click MpkvilgWSmhUuPn, pay
pYvotuLDIT |
| 8881237 | 2018-02-13 06:14:00 | click OkTYNUHMqZzlDyL, pay
pYvotuLDIT |
| 8881237 | 2018-02-13 10:30:00 | click OkTYNUHMqZzlDyL, pay
KBuMzRpsko |
| 9890100 | 2018-02-13 16:01:00 | click vOTQfBFjcgXisYU, pay
gZhvdySOQb |
| 9890100 | 2018-02-13 16:20:00 | click WxaLgOCcVEvhiFJ, pay
MxONdLckwa |
+---------+------------+---------+

As shown in the preceding code, the task that could not be performed by calling
native join methods has been completed by using UDJ.

Pre-sorting
To locate the matching payment record, an iterator is used to search all records in
 the payment table. To perform this task, you must load all payment records with
the same user_id to an ArrayList. This method can be applied when the number of
payment records is small. If a large number of payment records has been generated
, due to RAM size limits, you must find another method to load the data. This
section describes how to address this issue using the SORT BY clause.
When the size of the payment data is too large to be stored in the RAM, it would be
 easier to address this issue if all data in the table has already been sorted by time.
You then only need to compare the first element in these two lists.
UDJ in Java:
@Override
public void join(Record key, Iterator<Record> left, Iterator<Record>
right, Yieldable<Record> output) {
 outputRecord.setString(0, key.getString(0));
 if (! right.hasNext()) {
 return;

Issue: 20191012 317

⼤数据计算服务 User Guide / 4 SQL
 } else if (! left.hasNext()) {
 while (right.hasNext()) {
 Record logRecord = right.next();
 outputRecord.setBigint(1, logRecord.getDatetime(0).getTime());
 outputRecord.setString(2, logRecord.getString(1));
 output.yield(outputRecord);
 }
 return;
 }
 long prevDelta = Long.MAX_VALUE;
 Record logRecord = right.next();
 Record payRecord = left.next();
 Record lastPayRecord = payRecord.clone();
 while (true) {
 long delta = logRecord.getDatetime(0).getTime() - payRecord.
getDatetime(0).getTime();
 if (left.hasNext() && delta > 0) {
 // The delta of time between two records is decreasing, we can
still
 // explore the left group to try to gain a smaller delta.
 lastPayRecord = payRecord.clone();
 prevDelta = delta;
 payRecord = left.next();
 } else {
 // Hit to the point of minimal delta. Check with the last pay
record,
 // output the merge result and prepare to process the next
record of
 // right group.
 Record nearestPay = Math.abs(delta) < prevDelta ? payRecord :
lastPayRecord;
 outputRecord.setBigint(1, logRecord.getDatetime(0).getTime());
 String mergedString = mergeLog(nearestPay.getString(1),
logRecord.getString(1));
 outputRecord.setString(2, mergedString);
 output.yield(outputRecord);
 if (right.hasNext()) {
 logRecord = right.next();
 prevDelta = Math.abs(
 logRecord.getDatetime(0).getTime() - lastPayRecord.
getDatetime(0).getTime()
);
 } else {
 break;
 }
 }
 }
}

In the native SQL language, you only need to make a few modifications to this
example and add a SORT BY clause to the end of the UDJ clause, and then sort the
data in both tables by time. Note: After you have modified the UDJ code, you must
update the corresponding JAR package.
SELECT r.user_id, from_unixtime(time/1000) as time, content FROM (
 SELECT user_id, time as time, pay_info FROM payment
) p JOIN (
 SELECT user_id, time as time, content FROM user_client_log
) u
ON p.user_id = u.user_id

318 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL
USING pay_user_log_merge_join(p.time, p.pay_info, u.time, u.content)
r
AS (user_id, time, content)
SORT BY p.time, u.time
;

The execution result is the same as the result before the code is modified.
This method uses the SORT BY clause to pre-sort the data. To achieve the same
result, only a maximum of three records need to be cached.

UDJ performance
Without UDJ, you have to use MapReduce to handle complex cross-table computing
 tasks in a distributed system. The applicable scenarios include complex business
scenarios such as advertising and information search.
The following example uses an online MapReduce job to test the UDJ performance.
This MapReduce job uses a complex algorithm to join two tables. This example uses
 UDJ to rewrite the SQL statements of the MapReduce job and then check whether
 the execution result is correct. Under the same programming concurrency, the
comparison of performance is as follows:

As shown in the figure, using UDJ helps to describe the complex logic of handling
 multiple tables, and greatly improves the query performance. The code is only
executed inside the UDJ function, and the entire logic of the code, such as the logic
of the map stage in this example, is executed by the high-performance MaxCompute
 native runtime. UDJ optimizes the MaxCompute runtime engine and the data

Issue: 20191012 319

⼤数据计算服务 User Guide / 4 SQL

exchange between interfaces. The join logic of UDJ is more efficient than that at the
reduce stage in MapReduce.

4.20 Appendix
4.20.1 Escape characters

In MaxCompute SQL, a string constant can be set off by single (‘) or double
quotation marks (“). The string set off by single quotation marks can contain
double quotation marks or the string set off by double quotation marks can contain
single quotation marks. Otherwise, you must use an escape character to indicate it.
The following expressions are acceptable:
"I'm a happy manong."
'I\'m a happy manong.'

In MaxCompute SQL, ‘\’ is a kind of escape character used to express the special
 character in a string or express its followed characters as characters themselves.
To read a string constant, if ‘\’ is followed by three effective 8 hexadecimal digits
 and corresponding range is from 001 to 177, the system converts it to correspond
ing characters according to an ASCII value.
The following table lists some special escape characters:
Escape Character
\b backspace
\t tab
\n newline
\r carriage-return
\’ single quotation mark
\” double quotation marks
\ \ Backslash
\; Semicolon
\Z control-Z

320 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Escape Character
\0 or \00 Terminator
select length('a\tb') from dual;

The result is 3, which indicates that three characters are in the string. The ‘\t’
is considered as one character. Other following characters are expressed as
themselves.
select 'a\ab',length('a\ab') from dual;

The result: ‘aab’, 3. ‘\a’ is expressed as general ‘a’.
4.20.2 LIKE usage

In LIKE matching, ‘%’ indicates matching any multiple characters. The ‘_’
indicates matching a single character. To match ‘%’ or ‘_’ itself, you must
escape it. The ‘\\%’ matches the character ‘%’ and ‘_’ matches the
character ‘_’.
 'abcd' like 'ab%' -- true
 'abcd' like 'ab_' -- false
 'ab_cde' like 'ab_c%'; -- true

Notice:
MaxCompute SQL only supports the UTF-8 character set. If the data is encoded in
another format, it is possible that the calculation result is not correct.

4.20.3 Regular expression
The regular expressions in MaxCompute SQL use the PCRE standard, matched by
characters. The meta character to be supported is as follows:
Metacharacter Description
^ Top of line (TOL)
$ End of line
. Any character
* Matches for zero or multiple times
+ Matches for once or multiple times
? Matches for zero time or once

Issue: 20191012 321

⼤数据计算服务 User Guide / 4 SQL

Metacharacter Description
? Matches modifier. When this character follows any other

 constraints (*, +,? {n}, {n, {n, m},}, the match mode is non
greedy. Non greedy mode matches strings as little as possible
, while the default greedy mode matches strings as more as
possible.

A | B A or B
(abc)* Matches ‘abc’ for zero or multiple times
{n} or {m, n} Matching times
[ab] Matches any character in the brackets. In the example, it is to

 match a or b.
[a-d] Matches any character in a, b, c, and d.
[^ab] ^ indicats ‘non’, to match any character which is not a and

 b.
[::] See POSIX character group in next table.
\ Escape character
\n N is a digit from 1 to 9 and is backward referenced.
\d digits
\ D Non-number

POSIX character group:
POSIX Character
Group

Description Range

[[:alnum:]] letter and digit characters [a-zA-Z0-9]
[[:alpha:]] letter [a-zA-Z]
[[:ascii:]] ASCII character [\x00-\x7F]
[[:blank:]] Space character and tabs [\t]
[[:cntrl:]] Control character [\x00-\x1F\x7F]
[[:digit:]] Digit character [0-9]
[[:graph:]] Characters except white

space characters
[\x21-\x7E]

[[:lower:]] Lowercase characters [a-z]
[[:print:]] [:graph:] and white space

characters
[\x20-\x7E]

322 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

POSIX Character
Group

Description Range

[[:punct:]] punctuation [][!” [][!”#$%&’()*+,./:;<=>?
@\^_`{|}~-]

[[:space:]] White space characters [\t\r\n\v\f]
[[:upper:]] Uppercase characters [A-Z]
[[:xdigit:]] hexadecimal character [A-Fa-f0-9]

Because the system uses a backslash () as an escape character, all “\” which
 appear in the regular expression pattern perform two escapes. For example,
the regular expression needs to match the string “a+b”. The “+” is a special
character in regular expressions and must be expressed by escape. The expression
 in a regular engine is “a\+b”, because the system needs to explain a layer of
escape, the expression which can match this string is “a\\+b”.
Suppose that the table test_dual is:
select 'a+b' rlike 'a\\\+b' from test_dual;

| _c1 |

| true |

In extreme cases, to match the character “ \”, because “ \” is a special character
in a regular engine, it needs to be expressed by “\”, while the system does an
escape for it again, it is written as “\\”.
select 'a\\b', 'a\\b' rlike 'a\\\\b' from test_dual;

| _c0 | _c1 |

| a\b | true |

Note:
To write a\\b in MaxCompute SQL, and the output result is a\b.

If TAB exists in a string, when the system reads these two characters \t, they are
already saved as one character by the system. Therefore, in regular expression, it is
a general character.
select 'a\tb', 'a\tb' rlike 'a\tb' from test_dual;| _c0 | _c1 |

Issue: 20191012 323

⼤数据计算服务 User Guide / 4 SQL
| a b | true |

4.20.4 Reserved words and keywords
This document shows all reserved words in MaxCompute SQL.

Notice:
• These cannot be used to name a table, column, or partition,otherwise an error

occurs.
• Reserved words are not case sensitive.
 % & && () * +
 - . / ; < <= <>
 ADD AFTER ALL
 ALTER ANALYZE AND ARCHIVE ARRAY AS ASC
 BEFORE BETWEEN BIGINT BINARY BLOB BOOLEAN BOTH DECIMAL
 BUCKET BUCKETS BY CASCADE CASE CAST CFILE
 CHANGE CLUSTER CLUSTERED CLUSTERSTATUS COLLECTION COLUMN COLUMNS
 COMMENT COMPUTE CONCATENATE CONTINUE CREATE CROSS CURRENT
 CURSOR DATA DATABASE DATABASES DATE DATETIME DBPROPERTIES
 DEFERRED DELETE DELIMITED DESC DESCRIBE DIRECTORY DISABLE
 DISTINCT DISTRIBUTE DOUBLE DROP ELSE ENABLE END
 ESCAPED EXCLUSIVE EXISTS EXPLAIN EXPORT EXTENDED EXTERNAL
 FALSE FETCH FIELDS FILEFORMAT FIRST FLOAT FOLLOWING
 FORMAT FORMATTED FROM FULL FUNCTION FUNCTIONS GRANT
 GROUP HAVING HOLD_DDLTIME IDXPROPERTIES IF IMPORT IN
 INDEX INDEXES INPATH INPUTDRIVER INPUTFORMAT INSERT INT
 INTERSECT INTO IS ITEMS JOIN KEYS LATERAL
 LEFT LIFECYCLE LIKE LIMIT LINES LOAD LOCAL
 LOCATION LOCK LOCKS LONG MAP MAPJOIN MATERIALIZED
 MINUS MSCK NOT NO_DROP NULL OF OFFLINE
 ON OPTION OR ORDER OUT OUTER OUTPUTDRIVER
 OUTPUTFORMAT OVER OVERWRITE PARTITION PARTITIONED PARTITIONP
ROPERTIES PARTITIONS
 PERCENT PLUS PRECEDING PRESERVE PROCEDURE PURGE RANGE
 RCFILE READ READONLY READS REBUILD RECORDREADER RECORDWRITER
 REDUCE REGEXP RENAME REPAIR REPLACE RESTRICT REVOKE
 RIGHT RLIKE ROW ROWS SCHEMA SCHEMAS SELECT
 SEMI SEQUENCEFILE SERDE SERDEPROPERTIES SET SHARED SHOW
 SHOW_DATABASE SMALLINT SORT SORTED SSL STATISTICS STATUS STORED
 STREAMTABLE STRING STRUCT TABLE TABLES TABLESAMPLE TBLPROPERTIES
 TEMPORARY TERMINATED TEXTFILE THEN TIMESTAMP TINYINT TO
 TOUCH TRANSFORM TRIGGER TRUE TYPE UNARCHIVE UNBOUNDED UNDO
 UNION UNIONTYPE UNIQUEJOIN UNLOCK UNSIGNED UPDATE USE
 USING UTC UTC_TMESTAMP VIEW WHEN WHERE WHILE DIV

4.20.5 Hive data type mapping table
The data type mapping table for MaxCompute and hive is as follows:
Hive Data Type MaxCompute Data Type
BOOLEAN Boolean

324 Issue: 20191012

⼤数据计算服务 User Guide / 4 SQL

Hive Data Type MaxCompute Data Type
TINYINT Tinyint
SMALLINT Smallint
INT Int
BIGINT Bigint
FLOAT Float
DOUBLE Double
Decimal Decimal
String String
Varchar Varchar
Char String
BINARY Binary
Timestamp Timestamp
Date Datetime
ARRAY Array
Map <key, value> MAP
STRUCT STRUCT
Union This feature is not supported.

Issue: 20191012 325

⼤数据计算服务 User Guide / 5 MapReduce

5 MapReduce
5.1 Summary
5.1.1 MapReduce

This article describes the MapReduce programming interface supported by
MaxCompute and its limitations.
MaxCompute provides three versions of MapReduce programming interface:
• MaxCompute MapReduce: Native interface for MaxCompute, which is faster than

 other interfaces. It is more convenient to develop a program without exposing
file system.

• MR2 (Extended MapReduce): The extension to MaxCompute, which supports
more complex job scheduling logic. MapReduce is implemented in the same way
as the MaxCompute native interface.

• Hadoop compatible version: Highly compatible with Hadoop MapReduce , but not
compatible with MaxCompute native interface and MR2.

The preceding three versions are basically the same in the Basic concepts, Job

submission, Input and output, and Resource, and the only difference is the Java SDK. This
article introduces the principle of MapReduce. For more detailed description of
MapReduce, see Hadoop MapReduce Course.

Note:
You are not yet able to read or write data from the external tables through
MapReduce.

Scenarios
MapReduce was originally proposed by Google as a distributed data processing
model and is now widely applied in multiple business scenarios. The following are
the examples:
• Search: web crawl, flip index, PageRank.

326 Issue: 20191012

http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html
http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html

⼤数据计算服务 User Guide / 5 MapReduce

• Web access log analytics:
- Analyze and mine the web access, shopping behavior characteristics to

achieve personalized recommendation.
- Analyze user's access behavior.

• Statistics and analysis for the text:
- The Wordcount and TFIDF analysis of Mo Yan novels.
- Reference analysis and statistics of academic papers and patent documents.
- Wikipedia data analysis, and so on.

• Massive Data Mining: Unstructured data, spatial and temporal data, image data
mining.

• Machine Learning: Supervised learning, unsupervised learning, classification
algorithm such as decision tree, SVM, and so on..

• Natural Language Processing:
- Training and forecasting based on big data.
- Based on the corpus to construct the current matrix of words, frequent

itemset data mining, repeated document detection and so on.
• Advertisement recommendations: User-click (CTR) and purchase behavior (CVR

) forecasts.
Processing data process

The processing data process of MapReduce is divided into two stages: Map and
Reduce. Map must be executed first, and then Reduce. The processing logic of
Map and Reduce is defined by the user, but must comply with the MapReduce
framework protocol. The process is as follows:
1. Before executing Map, the input data must be sliced, that is, input data is divided

into blocks of equal size. Each block is processed as the input of a single Map
Worker, so that multiple Map Workers can work simultaneously.

2. After the slice is split, multiple Map Worker can work together. Each Map Worker
 performs computing after reading the data and output the result to Reduce.
Because Map Worker outputs the data, it must specify a key for each output
record. The value of this Key determines which Reduce Worker the data has been
 sent to. The relationship between key value and Reduce Worker is an any-to-one
 relationship. Data with the same key is sent to the same Reduce Worker, and a
single Reduce Worker may receive data of multiple key values.

Issue: 20191012 327

⼤数据计算服务 User Guide / 5 MapReduce

3. Before Reduce stage, MapReduce framework sorts the data according to their
Key values, and make sure data with same Key value is grouped together. If a
user specifies Combiner, the framework calls Combiner to aggregate the same
key data. The user must define the logic of Combiner. Compared to the classical
MapReduce framework, the input parameter and output parameter of Combiner
must be consistent with the Reduce in MaxCompute. This processing is generally
called as Shuffle.

4. At Reduce stage, data with the same key is shuffled to the same Reduce Worker. A
 Reduce Worker receives data from multiple Map Workers. Each Reduce Worker
 executes Reduce operation for multiple records of the same key. Then these
multiple records become a value through Reduce processing.

Note:
A brief introduction to the MapReduce framework is mentioned in the preceding
process. For more information, see relevant documents.

The following example uses WordCount to explain the stages of MaxCompute
MapReduce.
Assumethat a text named ‘a.txt’, where each row is indicated by a number, and
the frequency of appearance of each number must be counted. The number in
the text is called as‘Word’ and the number appearance occurrence is called as
'Count'. To complete this function through MaxCompute MapReduce, the following
figure illustrates the required steps:

Procedure:
328 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce

1. First, text is sliced and the data in each slice is entered into a single Map Worker.
2. Map processes the input. Once Map gets a number, it sets the Count as 1. Then,

output <Word,Count>queues sequence is followed. Take ‘Word’ as the Key of
output data.

3. In the initial actions of Shuffle stage, the output of each Map Worker is sorted
according to Key value (value of Word). The Combine operation is executed after
sorting to accumulate the Count of same Key value (Word value) and constitute a
new <Word,Count> queue. This process is called as the combiner sorting.

4. In the later actions of Shuffle, data is transmitted to Reduce. Reduce Worker
sorts the data based on the Key value again after receiving the data.

5. At the time of processing data, each Reduce Worker adopts that same logic as
that of a Combiner by accumulating Count with the same Key value (Word value)
to get the output.

6. Result.

Note:
Because the data in MaxCompute is stored in tables, the input and output of
MaxCompute MapReduce can only be a table. User-defined output is not allowed
and the corresponding file system interface is not provided.

5.1.2 Extended MapReduce
Compared with the traditional MapRudece, the extended MapReduce model
provided by MaxCompute changes the underlying scheduling and I/O model, and
avoids redundant I/O operations during the performance.
The traditional MapReduce model requires that the data must be loaded to the
distributed file system (such as HDFS or MaxCompute table) after each round of
MapReduce operation. However, a general MapReduce application usually consists
 of multiple MapReduce jobs, and each job output must be written to the disk. The
 following Map task is an example of a task used only to read the data, prepared
 for the subsequent Shuffle stage, but which actually results in redundant I/O
operations.
The calculation scheduling logic of MaxCompute supports more complex
programming paradigm. In the preceding scenario, the next Reduce operation
can be executed after the Reduce operation and inserting a Map operation is not
necessary. In this way, MaxCompute provides an extensional MapReduce model

Issue: 20191012 329

⼤数据计算服务 User Guide / 5 MapReduce

, that is, numerous Reduce operations can follow a Map operation, such as Map>
Reduce> Reduce.
Hadoop Chain Mapper/Reducer also supports analogous serial Map or Reduce
operations, but has major differences compared with the extensional MaxCompute
 (MR2) model.
The Hadoop Chain Mapper/Reducer is based on the traditional MapReduce model
, and can only add one or multiple Mapper operations (it is not allowed to add
Reducer operations) after the original Mapper or Reducer. The benefits of extended
 MapReduce are, a user can reuse previous business logic of Mapper and can
split one Map stage or Reduce stage into multiple Mapper stages. The underlying
scheduling and I/O model are not changed essentially.
Compared with MaxCompute , MR2 is basically consistent in a way Map/Reduce
functions are written. The main difference is in the performance. For more
information, see Extended MapReduce example.

5.1.3 Open-source MapReduce
This article introduces the application background of open-source MapReduce and
the basic usage of HadoopMR plug-in.
MaxCompute offers a set of native MapReduce programming models and interfaces
. The inputs and outputs for these interfaces are MaxCompute tables, and the data
is organized to be processed in the record format.
However, MaxCompute APIs differ significantly from APIs for the Hadoop
framework. Previously, to migrate your Hadoop MapReduce jobs to MaxCompute
, firstly, you were needed to rewrite the MapReduce code, compile, and debug the
 code using MaxCompute APIs, compress the final code into a JAR package, and
finally upload the package to the MaxCompute platform. This process is tedious
 and requires a lot of development and testing efforts. If you are not required to
modify the original Hadoop MapReduce code partially, running it in MaxCompute
console is the best solution.
Now, the MaxCompute platform provides a plug-in that allows you to adapt Hadoop
MapReduce code to MaxCompute MapReduce specifications. MaxCompute offers
a degree of flexibility regarding binary-level compatibility for Hadoop MapReduce
jobs. It means that, without modifying the code, you can specify configurations to
directly run original Hadoop MapReduce Jar packages on MaxCompute. Download

330 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce

the development plug-in to get started. This plug-in is currently in the testing stage,
therefore, does not support custom comparators or key types.
In the following example, a WordCount program is used to introduce the basic
usage of the plug-in.

Download the HadoopMR Plug-in
Click here to download the plug-in named hadoop2openmr-1.0.jar.

Note:
This Jar package contains the dependencies with Hadoop 2.7.2. Do not include
Hadoop dependencies in the Jar packages of your jobs to avoid version conflicts.

Prepare a Jar package
Compile and export the WordCount JAR package named wordcount_test.jar. The
WordCount program source code is as follows:
package com.aliyun.odps.mapred.example.hadoop;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
import java.util.StringTokenizer;
public class WordCount {
 public static class TokenizerMapper
 extends Mapper<Object, Text, Text, IntWritable>{
 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();
 public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
 StringTokenizer itr = new StringTokenizer(value.toString
());
 while (itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 context.write(word, one);
 }
 }
 }
 public static class IntSumReducer
 extends Reducer<Text,IntWritable,Text,IntWritable> {
 private IntWritable result = new IntWritable();
 public void reduce(Text key, Iterable<IntWritable> values,
 Context context
) throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }

Issue: 20191012 331

http://repo.aliyun.com/download/hadoop2openmr-1.0.jar
http://repo.aliyun.com/download/hadoop2openmr-1.0.jar

⼤数据计算服务 User Guide / 5 MapReduce
 result.set(sum);
 context.write(key, result);
 }
 }
 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 Job job = Job.getInstance(conf, "word count");
 job.setJarByClass(WordCount.class);
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}

Prepare the test data
1. Create input and output tables.

create table if not exists wc_in(line string);
create table if not exists wc_out(key string, cnt bigint);

2. Run Tunnel to import data to the input table.
The data in the data.txt file to be imported is as follows:
hello maxcompute
hello mapreduce

Use the Tunnel command on the MaxCompute console to import data from data.txt
to wc_in.
tunnel upload data.txt wc_in;

Configure the mapping between the table and the HDFS file path
The configuration file is wordcount-table-res.conf:
{
 "file:/foo": {
 "resolver": {
 "resolver": "com.aliyun.odps.mapred.hadoop2openmr.resolver.
TextFileResolver",
 "properties": {
 "text.resolver.columns.combine.enable": "true",
 "text.resolver.seperator": "\t"
 }
 },
 "tableInfos": [
 {
 "tblName": "wc_in",
 "partSpec": {},
 "label": "__default__"
 }

332 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce
],
 "matchMode": "exact"
 },
 "file:/bar": {
 "resolver": {
 "resolver": "com.aliyun.odps.mapred.hadoop2openmr.resolver.
BinaryFileResolver",
 "properties": {
 "binary.resolver.input.key.class" : "org.apache.hadoop.io.
Text",
 "binary.resolver.input.value.class" : "org.apache.hadoop.io.
LongWritable"
 }
 },
 "tableInfos": [
 {
 "tblName": "wc_out",
 "partSpec": {},
 "label": "__default__"
 }
],
 "matchMode": "fuzzy"
 }
}

Parameters
The configuration is a JSON file that describes the mapping relationships between
 HDFS files and the MaxCompute tables. Generally, you must configure both the
 input and output. One HDFS path corresponds to one Resolver, tableInfos, and
matchMode.
• resolver: Specifies the method of processing file data.

Currently, you can choose from two built-in Resolvers:
com.aliyun.odps.mapred.hadoop2openmr.resolver.TextFileResolver and
com.aliyun.odps.mapred.hadoop2openmr.resolver.BinaryFileResolver. In
addition to specifying the Resolver name, configure some properties about data
parsing for the Resolver.
- TextFileResolver: Regards an input or output as plain text if the data is of plain

 text type. When configuring an input Resolver, configure such properties as
text.resolver.columns.combine.enable and text.resolver.seperator. When text
.resolver.columns.combine.enable is set to true, all the columns in the input
table are combined into a single string based on the delimiter specified by text
.resolver.seperator. Otherwise, the first two columns in the input table are
used as the key and value.

- BinaryFileResolver: Converts binary data into a type that is supported by
MaxCompute, for example, Bigint, Boolean, and Double. When configuring an

Issue: 20191012 333

⼤数据计算服务 User Guide / 5 MapReduce

 output Resolver, configure the properties binary.resolver.input.key.class and
 binary.resolver.input.value.class, which define the key and value types of the
intermediate result, respectively.

• tableInfos: Specifies the MaxCompute table that corresponds to HDFS. Currently
, only the tblName parameter (table name) is configurable. The partSpec and
label parameters must be the same as the values set for the parameters in this
example.

• matchMode: Specifies the path matching mode. The exact mode indicates exact
matching, and the fuzzy mode indicates fuzzy matching. Use a regular expression
 in fuzzy mode to match the HDFS input path.

Job Submission
Use the MaxCompute command line tool odpscmd to submit jobs. For the
installation and configuration of MaxCompute command line tool, see the Console. In
odpscmd, run the following command:
jar -DODPS_HADOOPMR_TABLE_RES_CONF=./wordcount-table-res.conf -
classpath hadoop2openmr-1.0.jar,wordcount_test.jar com.aliyun.odps.
mapred.example.hadoop.WordCount /foo/bar;

Note:
• wordcount-table-res.conf is a map with /foo/bar configured.
• wordcount_test.jar is your Jar package of Hadoop MapReduce.
• com.aliyun.odps.mapred.example.hadoop.WordCount is the class name of job

to be run.
• /foo/bar refers to the path on HDFS, which is mapped to wc_in and wc_out in the

 JSON configuration file.
• With the mapping relation configured, manually import the Hadoop HDFS input

 file to wc_in for MR calculations by using data integration functions of DataX
 or DataWorks, and manually export the result wc_out to your HDFS output
directory(/bar).

• In the preceding output, assume that hadoop2openmr-1.0.jar, wordcount_
test.jar, and wordcount-table-res.conf are stored in the current directory of
odpscmd. If an error occurs, make the relevant changes when specifying the
configuration and -classpath.

The running process is as follows:
334 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce

After running the job, check the results table wc_out to verify whether a job is
complete:

5.2 Function Introduction
5.2.1 Basic concepts
Map/Reduce

Map and Reduce support corresponding Map/Reduce methods, setup methods, and
 cleanup methods. The setup method is called before the Map/Reduce method, and
each worker calls it only once.
The cleanup method is called after the map/reduce method, and each worker calls
it only once.
For a detailed example, see Program examples.

Sort/Group
Some columns in output key records can be taken as sort columns, but user-defined
 comparator is not supported. You can select several columns from the sort column

Issue: 20191012 335

⼤数据计算服务 User Guide / 5 MapReduce

 as Group columns, but the user-defined Group comparator is not supported. Sort
columns are used to sort your data while Group columns are used for a Secondary
Sort.
For more information, see SecondarySort Example.

Partition
Supports setting the partition column and customized partitioner. Partition
columns have a higher priority than customized partitioners.
According to Hash logic, the partitioner distributes the output data on the Map
terminal to different Reduce Workers.

Combiner
Combines adjacent records in the Shuffle stage. You can choose whether to use
Combiner according to different business logic.
Combiner helps to optimize the MapReduce computing framework and the logic
 of Combiner is generally similar to Reduce. After Map outputs the data, the
framework performs a local combiner operation for the data which has the same
key value on the Map terminal.
For more information, see WordCount code examples.

5.2.2 Commands
The MaxCompute console provides a JAR command to run MapReduce job. The
detailed syntax is shown as follows:
Usage:
jar [<GENERIC_OPTIONS>] <MAIN_CLASS> [ARGS];
 -conf <configuration_file> Specify an application configurat
ion file
 -resources <resource_name_list> file\table resources used in
mapper or reducer, seperate by comma
 -classpath <local_file_list> classpaths used to run mainClass
 -D <name>=<value> Property value pair, which will be used to
run mainClass
 -l Run job in local mode
For example:
 jar -conf /home/admin/myconf -resources a.txt,example.jar -
classpath ../lib/example.jar:./other_lib.jar -Djava.library.path=./
native -Xmx512M mycompany.WordCount -m 10 -r 10 in out;

 <GENERIC_OPTIONS> includes the following parameters (optional parameters):
• -conf <configuration file>: Specify an JobConf configuration file.

336 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce

• -resources <resource_name_list>: Indicates the resource statement used in
MapReduce running time. Generally, the resource name in which Map/Reduce
function is included must be specified in ‘resource_name_list’.

Note:
If the user has read other MaxCompute resources in the Map/Reduce function,
then these resource names also must be added in ‘source_name_list’.
Multiple resources are separated by commas (,). If you must use span project
resources, then add the prefix PROJECT/resources/, for example: -resources
otherproject/resources/resfile.
For more information about how to read the resource in the Map/Reduce
function, see Use Resource Example.

• -classpath <local_file_list>: the classpath used to specify the local JAR package of
‘main’ class (include relative paths and absolute paths).
Package names are separated using system default file delimiters. Generally,
the delimiter is a semicolon (;) in a Windows system and a comma (,) in a Linux
system.

Note:
In most cases, users generally write the main class and Map/Reduce function in
a package, such as WordCount Code Example. This means that, in the running period
of the example program, mapreduce-examples.jar appears in ‘-resources’
parameter and ‘-classpath’ parameter, however, ‘-resources’ references
the Map/Reduce function, and runs in a distributed environment, while ‘-
classpath’ references ‘Main’ class, and runs locally. The specified path of the
JAR package is also a local path.

• -D <prop_name>=<prop_value> : Multiple Java properties of <mainClass> in a
local mode can be defined.

• -l: run MapReduce job in local mode, mainly used for program debugging.
User can specify the configuration file ‘JobConf’ by option ‘-conf’. This file can
modify the JobConf settings in the SDK.
An example of a configuration file ‘JobConf’ is as follows:
<configuration>

Issue: 20191012 337

⼤数据计算服务 User Guide / 5 MapReduce
 <property>
 <name>import.filename</name>
 <value>resource.txt</value>
 </property>
 </configuration>

In the preceding example, the variable ‘import.filename’ is defined and its value
is ‘resource.txt’.
User can get this variable value through the JobConf interface in the MapReduce
program. Alternatively, users can also get the value through the JobConf interface
in the SDK. For a detailed example, see Use Resource Example.
Example:
add jar data\mapreduce-examples.jar;
 jar -resources mapreduce-examples.jar -classpath mapreduce-
examples.jar
 org.alidata.odps.mr.examples.WordCount wc_in wc_out;
 add file data\src.txt;
 add jar data\mapreduce-examples.jar;
 jar -resources src.txt,mapreduce-examples.jar -classpath data\
mapreduce-examples.jar
 org.alidata.odps.mr.examples.WordCount wc_in wc_out;
 add file data\a.txt;
 add table wc_in as test_table;
 add jar data\work.jar;
 jar -conf odps-mapred.xml -resources a.txt,test_table,work.jar
 -classpath data\work.jar:otherlib.jar
 -D import.filename=resource.txt org.alidata.odps.mr.examples.
WordCount args;

5.2.3 Input and Output
• Built-in data types include: BIGINT, DOUBLE, STRING, DATETIME, and BOOLEAN

. User-defined types (UDFs) are not supported.
• Multiple-table input is allowed, and the schema of input tables can be different

. In a Map function, users can obtain corresponding Table information of the
current record.

• The input can be null. View as an input is not supported.
• Reduce accepts multiple outputs and can output data to different tables or

different partitions in the same table. The schema of different outputs can be
different. Different outputs are distinguished through the label however, the
default output does not need any label. An output cannot be empty.

For more input and output examples, see Program Examples.

338 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce

5.2.4 Resources
You can learn more about MaxCompute resources in the Map/Reduce section. Any
Worker of Map/Reduce can load resources to the memory for you to apply the code
for further use.
For more information, see Use resource example.

5.2.5 Local run
Basic stages introduction

Local run prerequisite: By setting –local parameter in the jar command, user can
simulate MapReduce running process on the local to initiate local debugging.
At local operation time: The client downloads required meta information of input
tables, resources, and meta information of output tables from MaxCompute, and
saves them into a local directory named ‘warehouse’.
After running the program: The calculation result is output into a file in the
‘warehouse’. If the input table and referenced resources have been downloaded
in the local warehouse directory, the data and files in ‘warehouse’ directory are
referenced directly during the next run time, and the downloading process does not
need to be repeated.

Difference between running locally and running distributed environments
In the local operation course, multiple Map and Reduce workers are yet to start
data processing. But these workers do not run concurrently and run serially.
The distinguishing points between the simulation process and real distributed
operation are as follows:
• A limit on the row number of input table exists. Currently, up to 100 rows of data

 can be downloaded.
• Usage of resources: In a distributed environment, MaxCompute limits the size of

the referenced resource. For more information, see Application Restriction. Note that
in the local running environment, the resource size has no limits.

• Security limits: MaxCompute, MapReduce, and UDF program running in a
distributed environment are limited by Java Sandbox. Note that in local operations
this limit is not applicable.

Issue: 20191012 339

⼤数据计算服务 User Guide / 5 MapReduce

Example:
A local operation example is as follows:
 odps:my_project> jar -l com.aliyun.odps.mapred.example.WordCount
wc_in wc_out
 Summary:
 counters: 10
 map-reduce framework
 combine_input_groups=2
 combine_output_records=2
 map_input_bytes=4
 map_input_records=1
 map_output_records=2
 map_output_[wc_out]_bytes=0
 map_output_[wc_out]_records=0
 reduce_input_groups=2
 reduce_output_[wc_out]_bytes=8
 reduce_output_[wc_out]_records=2
 OK

For a detailed WordCount example, see WordCount Code example.
If a user runs local debugging command for the first time, a path named
‘warehouse’ appears in the current path after the command is executed
successfully. The directory structure of warehouse is as follows:
<warehouse>
 |____my_project(project directory)
 |____ <__tables__>
 | |__wc_in(table directory)
 | | |____ data(file)
 | | |
 | | |____ <__schema__> (file)
 | |__wc_out(table data directory)
 | |____ data(file)
 | |
 | |____ <__schema__> (file)
 |
 |____ <__resources__>
 |
 |___table_resource_name (table resource)
 | |____<__ref__>
 |
 |___ file_resource_name (file resource)

• The same level directory of myproject indicates the project. ‘wcin’ and
 ‘wc_out’ indicate tables. The table files read by user in JAR command is
downloaded into this directory.

• The contents in <__schema__> indicate table meta information. The format is
defined as follows:
 project=local_project_name
 table=local_table_name
 columns=col1_name:col1_type,col2_name:col2_type

340 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce
 partitions=p1:STRING,p2:BIGINT

Columns and column types are separated by colons (:), and columns are
separated by commas (,). Corresponding to <__schema__> file, the Project name
and Table name must be declared, such as project_name.table_name, and
separated by a comma (,) and column definition. project_name.table_name,
col1_name:col1_type,col2_name:col2_type,……

• The file ‘data; indicates the table data. The column quantity and corresponding
data must comply with the definition in _schema_. Moreover, extra columns and
missing columns are not allowed.
The content of _schema_ in wc_in is as follows:
my_project.wc_in,key:STRING,value:STRING

The content of ‘data’ is as follows:
0,2

The client downloads the meta information of table and part of the data from
MaxCompute, and save them into the two preceding files. If you run this example
again, the data in the directory ‘wc_in’ is used directly and will not be
downloaded again.

Note:
The function to download the data from MaxCompute is only supported in
MapReduce local operation mode. If the local debugging is executed in Eclipse

development plug-in, the data of MaxCompute cannot be downloaded to local.
The content of ‘_schema_’ in wc_out is as follows:
my_project.wc_out,key:STRING,cnt:BIGINT

The content of ‘data’ is as follows:
 0,1

Issue: 20191012 341

https://www.alibabacloud.com/help/doc-detail/27981.html
https://www.alibabacloud.com/help/doc-detail/27981.html

⼤数据计算服务 User Guide / 5 MapReduce
 2,1

The client downloads the meta information of wc_out from MaxCompute and
saves it to the file _schema_. The file ‘data’ is a result data file generated after
the local operation.

Note:
- Users can also edit _schema_ file and ‘data’ and then place these two files

into the corresponding table directory.
- When running on the local, the client can detect the table directory

already exists, and does not download the information of this table from
MaxCompute. The table directory on the local can be a table that does not
exist in MaxCompute.

5.3 MR limits
In order to avoid that you have not paid attention to restrictions so that business
stops after the business starts, this article will summarize the MaxCompute MR
restrictions to help you.
The restrictions of MaxCompute MapReduce are as follows:
Restricted
 item

Value Type Configuration
 item

Default
 value

Configurab
le?

Description

Memory
occupied
 by the
instance

[
256MB
,12GB]

Memory
 limit

odps.stage
.mapper(
reducer).mem
 and odps.
stage.mapper
(reducer).jvm
.mem

2048M
＋
1024M

Yes Memory occupied
 by a single map
instance or reduce
instance, including
 the framework
memory (2,048 MB
by default) and heap
 memory of the Java
virtual machine (JVM)
(1,024 MB by default).

Number
 of
resources

256 Number
 limit

N/A None No The number of
resources referenced
by a single job cannot
 exceed 256. The
table and archive are
regarded as a unit.

342 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce

Restricted
 item

Value Type Configuration
 item

Default
 value

Configurab
le?

Description

Numbers
 of inputs
 and
outputs

1024
 and
256

Number
 limit

N/A None No The number of inputs
 of one job cannot
 exceed 1024. (A
partition of a table is
regarded as one input
. The number of input
 tables cannot exceed
 64). The number of
 outputs of one job
cannot exceed 256.

Number
 of
counters

64 Number
 limit

N/A None No The number of
custom counters in
one job cannot exceed
 64. The group name
and counter name of
 a counter must not
contain #. The overall
 length of the group
name and the counter
 name of a counter
must be within 100.

map
instance

[1,
100000
]

Number
 limit

odps.stage.
mapper.num

None Yes The number of map
instances of one job
 is calculated by the
framework based on
 the split size. If no
 input table exists,
you can set the value
directly in odps.stage
.mapper.num. The
final number ranges
from 1 to 100,000.

Issue: 20191012 343

⼤数据计算服务 User Guide / 5 MapReduce

Restricted
 item

Value Type Configuration
 item

Default
 value

Configurab
le?

Description

reduce
instance

[0,
2000]

Number
 limit

odps.stage.
reducer.num

None Yes The number of reduce
 instances of one job
 is 1/4 of that of map
instances by default.
The reduce instance
 number configured
 by the user ranges
from 0 to 2,000. It may
 occur that the data
 volume processed
by reduce is several
times that processed
 by map. In this case
, the reduce phase
gets slower and can
initiate at most 2000
instances.

Number
of retries

3 Number
 limit

N/A None No The maximum
number of retries
allowed for a single
 map instance or
reduce instance is
3. Some exceptions
 that do not allow
retries may cause task
 execution failures.

Local
debug
mode

100 Number
 limit

N/A None No In local debug mode
, the number of map
 instances is 2 by
default and cannot
 exceed 100. The
number of reduce
 instances is 1 by
default and cannot
 exceed 100. The
number of download
 records of one input
 is 1 by default and
cannot exceed 100.

344 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce

Restricted
 item

Value Type Configuration
 item

Default
 value

Configurab
le?

Description

Number
of times of
 reading a
 resource
repeatedly

64 Number
 limit

N/A None No The number of times
 that a map instance
 or reduce instance
 reads one resource
 repeatedly cannot
exceed 64 .

Resource
length

2G Length
 limit

N/A None No The total length of a
resource referenced
by a job cannot exceed
 2 GB.

split size [1,) Length
 limit

odps.stage.
mapper.split.
size

256M Yes The framework splits
 the map based on
the configured split
 size, of which the
number of maps is
then determined.

Content
length of
the string
column

8 MB Length
 limit

N/A None No The content in the
string column of the
 MaxCompute table
cannot exceed 8 MB.

Worker
running
timeout
period

［1,
3600］

Time
limit

odps.function
.timeout

600 Yes Timeout period for
the worker when the
map or reduce worker
 does not read or
write data or actively
 send heartbeat data
 by using context
.progress(). The
default value is 600s.

The
supported
 field
types of
 table
referenced
 by MR

BIGINT
,
DOUBLE
,
STRING
,
DATETIME
,
BOOLEAN

Data
type
limit

N/A None No When the MR task
refers to a table, an
 error occurs if the
table contains other
types of fields.

Issue: 20191012 345

⼤数据计算服务 User Guide / 5 MapReduce

Restricted
 item

Value Type Configuration
 item

Default
 value

Configurab
le?

Description

Read data
from OSS

Feature
 limit

N/A None No Not supported

MaxCompute
 2.0 new
types

Feature
 limit

N/A None No Not supported

5.4 Program Example
5.4.1 WordCount samples
Prerequisites

1. Prepare a Jar package of the test program. Assume the package is named
mapreduce-examples.jar,and the local storage path is data\resources.
• Create tables:

create table wc_in (key string, value string);
create table wc_out(key string, cnt bigint);

• Add resources:
add jar data\resources\mapreduce-examples.jar -f;

2. Prepare tables and resources for testing the WordCount operation.
3. Run tunnel to import data.

tunnel upload data wc_in;

The contents of data file imported into the table wc_in, as follows:
hello,odps

Procedure
Run WordCount in odpscmd.
jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar

346 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce
com.aliyun.odps.mapred.open.example.WordCount wc_in wc_out

Expected output
The content of output table wc_out is as follows:
+------------+------------+
| key | cnt |
+------------+------------+
| hello | 1 |
| odps | 1 |
+------------+------------+

Sample code
 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 Import java. util. iterator;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 public class WordCount {
 public static class TokenizerMapper extends MapperBase {
 private Record word;
 private Record one;
 @Override
 public void setup(TaskContext context) throws IOException{
 word = context.createMapOutputKeyRecord();
 one = context.createMapOutputValueRecord();
 one.set(new Object[] { 1L });
 System.out.println("TaskID:" + context.getTaskID().toString
());
 }
 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 throws IOException {
 for (int i = 0; i < record.getColumnCount(); i++) {
 word.set(new Object[] { record.get(i).toString() });
 context.write(word, one);
 }
 }
 }
 /**
 * A combiner class that combines map output by sum them.
 **/
 public static class SumCombiner extends ReducerBase {
 private Record count;
 @Override
 public void setup(TaskContext context) throws IOException{
 count = context.createMapOutputValueRecord();
 }

Issue: 20191012 347

⼤数据计算服务 User Guide / 5 MapReduce
 // Assemblyer implements the same interface as reducer, you
can immediately reduce the output of the mapper for a reduce that is
performed locally on the mapper.
 @Override
 public void reduce(Record key,Iterator<Record>values,
TaskContext context)
 throws IOException {
 long c = 0;
 while(values.hasNext()) {
 Record val = values.next();
 c += (Long) val.get(0);
 }
 count.set(0, c);
 context.write(key, count);
 }
 }
 /**
 * A reducer class that just emits the sum of the input values.
 **/
 public static class SumReducer extends ReducerBase {
 private Record result = null;
 @Override
 public void setup(TaskContext context) throws IOException{
 result = context.createOutputRecord();
 }
 @Override
 public void reduce(Record key,Iterator<Record>values,
TaskContext context)
 Throws ioexception {
 Long Count = 0;
 while(values.hasNext()) {
 Record val = values.next();
 count += (Long) val.get(0);
 }
 result.set(0, key.get(0));
 result.set(1, count);
 context.write(result);
 }
 }
 public static void main(String[] args) throws Exception {
 if (args.length ! = 2) {
 System.err.println("Usage: WordCount <in_table> <out_table
>");
 System.exit(2);
 }
 JobConf job = new JobConf();
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(SumCombiner.class);
 job.setReducerClass(SumReducer.class);
// The schema that sets the key and value of the mapper's intermediate
 result, the mapper's intermediate output is also the form of a record
.
 job.setMapOutputKeySchema(SchemaUtils.fromString("word:string
"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("count:
bigint"));
 // Set input and output table information
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 Jobclient. runjob (job);
 }

348 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce
 }

5.4.2 MapOnly samples
For MapOnly jobs, Map directly sends <Key,Value> pairs to tables on MaxCompute.
You only need to specify the output table. However, you can skip specifying the Key/
Value metadata to be output by Map.

Prerequisites
1. Prepare a JAR package of the test program. Assume the package is named

mapreduce-examples.jar,the local storage path is data\resources.
2. Prepare tables and resources for testing the MapOnly operation.

• Create tables:
create table wc_in (key string, value string);
create table wc_out(key string, cnt bigint);

• Add resources:
add jar data\resources\mapreduce-examples.jar -f;

3. Use the tunnel command to import the data:
tunnel upload data wc_in;

The contents of data file are imported into the “mr_src” table:
 hello,odps
 hello,odps

Procedure
Run MapOnly in odpscmd:
jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.MapOnly wc_in wc_out map

Expected output
The content of output table wc_out is as follows:
+------------+------------+
| key | cnt |
+------------+------------+
| hello | 1 |
| hello | 1 |

Issue: 20191012 349

⼤数据计算服务 User Guide / 5 MapReduce
+------------+------------+

Sample code
 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.mapred.JobClient;
 Import com. aliyun. ODPS. mapred. mapperbase;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.data.TableInfo;
 public class MapOnly {
 public static class MapperClass extends MapperBase {
 @Override
 public void setup(TaskContext context) throws IOException{
 boolean is = context.getJobConf().getBoolean("option.mapper.
setup", false);
 // The Main function sets option.mapper.setup to true in
jobconf to execute the following logic.
 if (is) {
 Record result = context.createOutputRecord();
 result.set(0, "setup");
 result.set(1, 1L);
 context.write(result);
 }
 }
 @Override
 public void map(long key, Record record, TaskContext context)
throws IOException {
 boolean is = context.getJobConf().getBoolean("option.mapper.
map", false);
 // The Main function sets option.mapper.map to true in
jobconf to execute the following logic.
 if (is) {
 Record result = context.createOutputRecord();
 result.set(0, record.get(0));
 result.set(1, 1L);
 context.write(result);
 }
 }
 @Override
 public void cleanup(TaskContext context) throws IOException {
 boolean is = context.getJobConf().getBoolean("option.mapper.
cleanup", false);
 // The Main function sets option.mapper.cleanup to true in
jobconf to execute the following logic.
 if (is) {
 Record result = context.createOutputRecord();
 result.set(0, "cleanup");
 result.set(1, 1L);
 context.write(result);
 }
 }
 }
 public static void main(String[] args) throws Exception {
 if (args.length ! = 2 && args.length ! = 3) {
 System.err.println("Usage: OnlyMapper <in_table> <out_table>
 [setup|map|cleanup]");
 System.exit(2);
 }

350 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce
 JobConf job = new JobConf();
 job.setMapperClass(MapperClass.class);
 // For maponly jobs, the number of reducers must be explicitly
 set to 0
 job.setNumReduceTasks(0);
 // Set table information for Input Output
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 if (args.length == 3) {
 String options = new String(args[2]);
 // Jobconf can set custom key, value, and getJobConf can get
relevant settings in mapper through getJobConf of context.
 if (options.contains("setup")) {
 job.setBoolean("option.mapper.setup", true);
 }
 if (options.contains("map")) {
 job.setBoolean("option.mapper.map", true);
 }
 if (options.contains("cleanup")) {
 job.setBoolean("option.mapper.cleanup", true);
 }
 }
 Jobclient. runjob (job);
 }
 }

5.4.3 Multi-input and Output
Prerequisites

1. Prepare a Jar package of the test program. Assume the package is named
mapreduce-examples.jar, and the local storage path is data\resources.

2. Prepare tables and resources for testing the multi-input and output operations.
• Create tables:

create table wc_in1(key string, value string);
create table wc_in2(key string, value string);
create table mr_multiinout_out1 (key string, cnt bigint);
create table mr_multiinout_out2 (key string, cnt bigint)
partitioned by (a string, b string);
alter table mr_multiinout_out2 add partition (a='1', b='1');
alter table mr_multiinout_out2 add partition (a='2', b='2');

• Add resources:
add jar data\resources\mapreduce-examples.jar -f;

3. Run tunnel to import data.
tunnel upload data1 wc_in1;

Issue: 20191012 351

⼤数据计算服务 User Guide / 5 MapReduce
tunnel upload data2 wc_in2;

The data imported into the wc_in1 table is as follows:
 hello,odps

The data imported into the wc_in2 table is as follows:
 hello,world

Procedure
Run MultipleInOut in odpscmd.
jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.MultipleInOut wc_in1,wc_in2
mr_multiinout_out1,mr_multiinout_out2|a=1/b=1|out1,mr_multiinout_out2|
a=2/b=2|out2;

Expected output
The content of ‘mr_multiinout_out1’ is as follows:
+------------+------------+
| key | cnt |
+------------+------------+
| default | 1 |
+------------+------------+

The content of ‘mr_multiinout_out2’ is as follows:
+--------+------------+---+---+
| key | cnt | a | b |
+--------+------------+---+---+
odps	1	1	1
world	1	1	1
out1	1	1	1
hello	2	2	2
out2	1	2	2
+--------+------------+---+---+

Sample code
 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 Import java.util.iterator;
 import java.util.LinkedHashMap;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;

352 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 /**
 * Multi input & output example.
 **/
 public class MultipleInOut {
 public static class TokenizerMapper extends MapperBase {
 Record word;
 Record one;
 @Override
 public void setup(TaskContext context) throws IOException{
 word = context.createMapOutputKeyRecord();
 one = context.createMapOutputValueRecord();
 one.set(new Object[] { 1L });
 }
 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 Throws ioexception {
 for (int i = 0; i < record.getColumnCount(); i++) {
 word.set(new Object[] { record.get(i).toString() });
 context.write(word, one);
 }
 }
 }
 public static class SumReducer extends ReducerBase {
 private Record result;
 private Record result1;
 private Record result2;
 @Override
 public void setup(TaskContext context) throws IOException{
 // For different outputs you need to create different
records, which are distinguished by label
 result = context.createOutputRecord();
 result1 = context.createOutputRecord("out1");
 result2 = context.createOutputRecord("out2");
 }
 @Override
 public void reduce(Record key,Iterator<Record>values,
TaskContext context)
 Throws ioexception {
 Long Count = 0;
 while(values.hasNext()) {
 Record val = values.next();
 count += (Long) val.get(0);
 }
 long mod = count % 3;
 if (mod == 0) {
 result.set(0, key.get(0));
 result.set(1, count);
 // No label is specified. Default output is adopted.
 context.write(result);
 } else if (mod == 1) {
 result1.set(0, key.get(0));
 result1.set(1, count);
 context.write(result1, "out1");
 } else {
 result2.set(0, key.get(0));
 result2.set(1, count);
 context.write(result2, "out2");
 }
 }
 @Override
 public void cleanup(TaskContext context) throws IOException {
 Record result = context.createOutputRecord();

Issue: 20191012 353

⼤数据计算服务 User Guide / 5 MapReduce
 result.set(0, "default");
 result.set(1, 1L);
 context.write(result);
 Record result1 = context.createOutputRecord("out1");
 result1.set(0, "out1");
 result1.set(1, 1L);
 context.write(result1, "out1");
 Record result2 = context.createOutputRecord("out2");
 result2.set(0, "out2");
 result2.set(1, 1L);
 context.write(result2, "out2");
 }
 }
 // Convert the partition string such as "ds = 1/pt = 2" into map
 form
 public static LinkedHashMap<String, String> convertPartSpecToMap
(
 String partSpec) {
 LinkedHashMap<String, String> map = new LinkedHashMap<String,
String>();
 if (partSpec ! = null && ! partSpec.trim().isEmpty()) {
 String[] parts = partSpec.split("/");
 for (String part : parts) {
 String[] ss = part.split("=");
 if (ss.length ! = 2) {
 throw new RuntimeException("ODPS-0730001: error part
spec format: "
 + partSpec);
 }
 map.put(ss[0], ss[1]);
 }
 }
 return map;
 }
 public static void main(String[] args) throws Exception {
 String[] inputs = null;
 String[] outputs = null;
 if (args.length == 2) {
 inputs = args[0].split(",");
 outputs = args[1].split(",");
 } else {
 System.err.println("MultipleInOut in... out...") ;
 System.exit(1);
 }
 JobConf job = new JobConf();
 job.setMapperClass(TokenizerMapper.class);
 job.setReducerClass(SumReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("word:string
"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("count:
bigint"));
 // Parse the user input table strings.
 for (String in : inputs) {
 String[] ss = in.split("\\|");
 if (ss.length == 1) {
 InputUtils.addTable(TableInfo.builder().tableName(ss[0]).
build(), job);
 } else if (ss.length == 2) {
 LinkedHashMap<String, String> map = convertPartSpecToMap(
ss[1]);
 InputUtils.addTable(TableInfo.builder().tableName(ss[0]).
partSpec(map).build(), job);
 } else {

354 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce
 System.err.println("Style of input: " + in + " is not
right");
 System.exit(1);
 }
 }
 // Parse the user output table strings.
 for (String out : outputs) {
 String[] ss = out.split("\\|");
 if (ss.length == 1) {
 OutputUtils.addTable(TableInfo.builder().tableName(ss[0]).
build(), job);
 } else if (ss.length == 2) {
 LinkedHashMap<String, String> map = convertPartSpecToMap(
ss[1]);
 OutputUtils.addTable(TableInfo.builder().tableName(ss[0]).
partSpec(map).build(), job);
 } else if (ss.length == 3) {
 if (ss[1].isEmpty()) {
 LinkedHashMap<String, String> map = convertPartSpecToMap
(ss[2]);
 OutputUtils.addTable(TableInfo.builder().tableName(ss[0
]).partSpec(map).build(), job);
 } else {
 LinkedHashMap<String, String> map = convertPartSpecToMap
(ss[1]);
 OutputUtils.addTable(TableInfo.builder().tableName(ss[0
]).partSpec(map)
 .label(ss[2]).build(), job);
 }
 } else {
 System.err.println("Style of output: " + out + " is not
right");
 System.exit(1);
 }
 }
 Jobclient. runjob (job);
 }
 }

5.4.4 Multi-task samples
Prerequisites

1. Prepare the Jar package of the test program. Assume the package is named
mapreduce-examples.jar, and the local storage path is data\resources.

2. Prepare tables and resources for testing the MultiJobs operation.
• Create tables:

create table mr_empty (key string, value string);
create table mr_multijobs_out (value bigint);

• Add resources:
add table mr_multijobs_out as multijobs_res_table -f;

Issue: 20191012 355

⼤数据计算服务 User Guide / 5 MapReduce
Add jar data \ resources \ mapreduce-examples.jar-f;

Procedure
Run MultiJobs in odpscmd.
jar -resources mapreduce-examples.jar,multijobs_res_table -classpath
data\resources\mapreduce-examples.jar
 com.aliyun.odps.mapred.open.example.MultiJobs mr_multijobs_out;

Expected output
The output table ‘mr_multijobs_out’ is as follows:
+------------+
| value |
+------------+
| 0 |
+------------+

Sample code
 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 import java.util.Iterator;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.RunningJob;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 /**
 * MultiJobs
 *
 * Running multiple job
 *
 **/
 public class MultiJobs {
 public static class InitMapper extends MapperBase {
 @Override
 public void setup(TaskContext context) throws IOException{
 Record record = context.createOutputRecord();
 long v = context.getJobConf().getLong("multijobs.value", 2);
 record.set(0, v);
 context.write(record);
 }
 }
 public static class DecreaseMapper extends MapperBase {
 @Override
 public void cleanup(TaskContext context) throws IOException {
 // Obtain the variable values defined by the main function
from JobConf.
 long expect = context.getJobConf().getLong("multijobs.expect
.value", -1);
 long v = -1;
 int count = 0;

356 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce
 // Read the data in the resource table, which is the output
table of the previous job
 Iterator<Record> iter = context.readResourceTable("
multijobs_res_table");
 while (iter.hasNext()) {
 Record r = iter.next();
 v = (Long) r.get(0);
 if (expect ! = v) {
 throw new IOException("expect: " + expect + ", but: " +
v);
 }
 count++;
 }
 if (count ! = 1) {
 throw new IOException("res_table should have 1 record, but
: " + count);
 }
 Record record = context.createOutputRecord();
 v--;
 record.set(0, v);
 context.write(record);
 // Sets counter, which can be obtained in the main function
after the job has completed successfully
 context.getCounter("multijobs", "value").setValue(v);
 }
 }
 public static void main(String[] args) throws Exception {
 if (args.length ! = 1) {
 System.err.println("Usage: TestMultiJobs <table>");
 System.exit(1);
 }
 String tbl = args[0];
 long iterCount = 2;
 System.err.println("Start to run init job.") ;
 JobConf initJob = new JobConf();
 initJob.setLong("multijobs.value", iterCount);
 initJob.setMapperClass(InitMapper.class);
 InputUtils.addTable(TableInfo.builder().tableName("mr_empty").
build(), initJob);
 OutputUtils.addTable(TableInfo.builder().tableName(tbl).build
(), initJob);
 initJob.setMapOutputKeySchema(SchemaUtils.fromString("key:
string"));
 initJob.setMapOutputValueSchema(SchemaUtils.fromString("value:
string"));
 // Maponly job needs to explicitly set reducer number to 0
 initJob.setNumReduceTasks(0);
 JobClient.runJob(initJob);
 while (true) {
 System.err.println("Start to run iter job, count: " +
iterCount);
 JobConf decJob = new JobConf();
 decJob.setLong("multijobs.expect.value", iterCount);
 decJob.setMapperClass(DecreaseMapper.class);
 InputUtils.addTable(TableInfo.builder().tableName("mr_empty
").build(), decJob);
 OutputUtils.addTable(TableInfo.builder().tableName(tbl).
build(), decJob);
 // Maponly job needs to explicitly set reducer number to 0
 decJob.setNumReduceTasks(0);
 RunningJob rJob = JobClient.runJob(decJob);
 iterCount--;
 // Exit the loop if the number of iterations has been
reached

Issue: 20191012 357

⼤数据计算服务 User Guide / 5 MapReduce
 if (rJob.getCounters().findCounter("multijobs", "value").
getValue() == 0) {
 break;
 }
 }
 if (iterCount ! = 0) {
 throw new IOException("Job failed.") ;
 }
 }
 }

5.4.5 Secondary Sort samples
Prerequisites

1. Prepare a JAR package of the test program. Assume the package is named
“mapreduce-examples.jar”.The local storage path is data\resources.

2. Prepare tables and resources for testing the SecondarySort operation.
• Create tables:

create table ss_in(key bigint, value bigint);
create table ss_out(key bigint, value bigint)

• Add resources:
add jar data\resources\mapreduce-examples.jar -f;

3. Import the data through tunnel command:
tunnel upload data ss_in;

The contents of data file imported into the table “ss_in” are as follows:
1,2
2,1
1,1
2,2

Procedure
Run SecondarySort on the odpscmd:
jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.SecondarySort ss_in ss_out;

Expected output
The contents in the output table “ss_out” are as follows:

| key | value |

358 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce

1	1
1	2
2	1
2	2

Sample code
 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 import java.util.Iterator;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.data.TableInfo;

 * This is an example ODPS Map/Reduce application. It reads the
input table that
 * must contain two integers per record. The output is sorted by
the first and
 * second number and grouped on the first number.

 public class SecondarySort {

 * Read two integers from each line and generate a key, value
pair as ((left,
 * right), right).

 public static class MapClass extends MapperBase {
 private Record key;
 private Record value;
 @Override
 public void setup(TaskContext context) throws IOException {
 key = context.createMapOutputKeyRecord();
 value = context.createMapOutputValueRecord();

 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 throws IOException {
 long left = 0;
 long right = 0;
 if (record.getColumnCount() > 0) {
 left = (Long) record.get(0);
 if (record.getColumnCount() > 1) {
 right = (Long) record.get(1);

 key.set(new Object[] { (Long) left, (Long) right });
 value.set(new Object[] { (Long) right });
 context.write(key, value);

 * A reducer class that just emits the sum of the input values.

Issue: 20191012 359

⼤数据计算服务 User Guide / 5 MapReduce

 public static class ReduceClass extends ReducerBase {
 private Record result = null;
 @Override
 public void setup(TaskContext context) throws IOException {
 result = context.createOutputRecord();

 @Override
 public void reduce(Record key, Iterator<Record> values,
TaskContext context)
 throws IOException {
 result.set(0, key.get(0));
 while (values.hasNext()) {
 Record value = values.next();
 result.set(1, value.get(0));
 context.write(result);

 public static void main(String[] args) throws Exception {
 if (args.length ! = 2) {
 System.err.println("Usage: secondarysrot <in> <out>");
 System.exit(2);

 JobConf job = new JobConf();
 job.setMapperClass(MapClass.class);
 job.setReducerClass(ReduceClass.class);
 // set multiple columns to key
 // compare first and second parts of the pair
 job.setOutputKeySortColumns(new String[] { "i1", "i2" });
 // partition based on the first part of the pair
 job.setPartitionColumns(new String[] { "i1" });
 // grouping comparator based on the first part of the pair
 job.setOutputGroupingColumns(new String[] { "i1" });
 // the map output is LongPair, Long
 job.setMapOutputKeySchema(SchemaUtils.fromString("i1:bigint,i2
:bigint"));
 Job. Fig (schemeiutils. fromstring ("i2x: bigint "));
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 JobClient.runJob(job);
 System.exit(0);

5.4.6 Resource samples
Prerequisites

1. Prepare a Jar package of the test program. Assume the package is named
mapreduce-examples.jar, and the local storage path is data\resources.

360 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce

2. Prepare the test table and the resource.
• Create the tables:

create table mr_upload_src(key bigint, value string);

• Add the resource:
add jar data\resources\mapreduce-examples.jar -f;
add file data\resources\import.txt -f;

• The contents of import.txt:
1000,odps

Procedure
Run Upload on the odpscmd:
jar -resources mapreduce-examples.jar,import.txt -classpath data\
resources\mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.Upload import.txt mr_upload_src;

Expected output
The content in the output table “mr_upload_src” is as follows:
+------------+------------+
| key | value |
+------------+------------+
| 1000 | odps |
+------------+------------+

Sample code
 package com.aliyun.odps.mapred.open.example;
 import java.io.BufferedInputStream;
 import java.io.FileNotFoundException;
 import java.io.IOException;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 /**
 * Upload
 *
 * Import data from text file into table
 *
 **/
 public class Upload {
 public static class UploadMapper extends MapperBase {
 @Override
 public void setup(TaskContext context) throws IOException{

Issue: 20191012 361

⼤数据计算服务 User Guide / 5 MapReduce
 Record record = context.createOutputRecord();
 StringBuilder importdata = new StringBuilder();
 BufferedInputStream bufferedInput = null;
 try {
 byte[] buffer = new byte[1024];
 int bytesRead = 0;
 String filename = context.getJobConf().get("import.
filename");
 bufferedInput = context.readResourceFileAsStream(filename
);
 while ((bytesRead = bufferedInput.read(buffer)) ! = -1) {
 String chunk = new String(buffer, 0, bytesRead);
 importdata.append(chunk);
 }
 String lines[] = importdata.toString().split("\n");
 for (int i = 0; i < lines.length; i++) {
 String[] ss = lines[i].split(",");
 record.set(0, Long.parseLong(ss[0].trim()));
 record.set(1, ss[1].trim());
 context.write(record);
 }
 } catch (FileNotFoundException ex) {
 throw new IOException(ex);
 } catch (IOException ex) {
 throw new IOException(ex);
 } finally {
 }
 }
 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 Throws ioexception {
 }
 }
 public static void main(String[] args) throws Exception {
 if (args.length ! = 2) {
 System.err.println("Usage: Upload <import_txt> <out_table
>");
 System.exit(2);
 }
 JobConf job = new JobConf();
 job.setMapperClass(UploadMapper.class);
 // Set the Resource Name, which can be obtained from jobconf
in the map
 job.set("import.filename", args[0]);
 // Maponly job needs to explicitly set reducer number to 0
 job.setNumReduceTasks(0);
 job.setMapOutputKeySchema(SchemaUtils.fromString("key:bigint
"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("value:
string"));
 InputUtils.addTable(TableInfo.builder().tableName("mr_empty").
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 Jobclient. runjob (job);
 }
 }

A user can set up JobConf through the following methods:

362 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce

• Use JobConf interface in SDK. This method is used is the preceding example
. Moreover, this is the most recommended method and is given the highest
priority.

• In jar command lines, specify new JobConf file through the parameter -conf.
This method is of the lowest priority.

5.4.7 Counter samples
Prerequisites

1. Prepare the Jar package of the test program. Assume the package is named
mapreduce-examples.jar, and the local storage path is data\resources.

2. Prepare the UserDefinedCounters test table and resource.
• Create tables:

create table wc_in (key string, value string);
create table wc_out(key string, cnt bigint);

• Add resources:
add jar data\resources\mapreduce-examples.jar -f;

3. Use the tunnel command to import the data:
tunnel upload data wc_in;

The data imported into the wc_in the table wc_in, is as follows:
hello,odps

Procedure
Execute UserDefinedCounters on the odpscmd:
jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.UserDefinedCounters wc_in wc_out

Expected output
The output of Counters is as follows:
Counters: 3
com.aliyun.odps.mapred.open.example.UserDefinedCounters$MyCounter
MAP_TASKS=1
REDUCE_TASKS=1

Issue: 20191012 363

⼤数据计算服务 User Guide / 5 MapReduce
TOTAL_TASKS=2

The content of output table “wc_out” is as follows:
+------------+------------+
| key | cnt |
+------------+------------+
| hello | 1 |
| odps | 1 |
+------------+------------+

Sample code
 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 import java.util.Iterator;
 import com.aliyun.odps.counter.Counter;
 import com.aliyun.odps.counter.Counters;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.mapred.RunningJob;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.data.TableInfo;
 /**
 *
 * User Defined Counters
 *
 **/
 public class UserDefinedCounters {
 enum MyCounter {
 TOTAL_TASKS, MAP_TASKS, REDUCE_TASKS
 }
 public static class TokenizerMapper extends MapperBase {
 private Record word;
 private Record one;
 @Override
 public void setup(TaskContext context) throws IOException{
 super.setup(context);
 Counter map_tasks = context.getCounter(MyCounter.MAP_TASKS);
 Counter total_tasks = context.getCounter(MyCounter.
TOTAL_TASKS);
 map_tasks.increment(1);
 total_tasks.increment(1);
 word = context.createMapOutputKeyRecord();
 one = context.createMapOutputValueRecord();
 one.set(new Object[] { 1L });
 }
 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 Throws ioexception {
 for (int i = 0; i < record.getColumnCount(); i++) {
 word.set(new Object[] { record.get(i).toString() });
 context.write(word, one);
 }
 }
 }

364 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce
 public static class SumReducer extends ReducerBase {
 private Record result = null;
 @Override
 public void setup(TaskContext context) throws IOException{
 result = context.createOutputRecord();
 Counter reduce_tasks = context.getCounter(MyCounter.
REDUCE_TASKS);
 Counter maid = context. getcounter (mycounter);
 reduce_tasks.increment(1);
 total_tasks.increment(1);
 }
 @Override
 public void reduce(Record key,Iterator<Record>values,
TaskContext context)
 Throws ioexception {
 Long Count = 0;
 while(values.hasNext()) {
 Record val = values.next();
 count += (Long) val.get(0);
 }
 result.set(0, key.get(0));
 result.set(1, count);
 context.write(result);
 }
 }
 public static void main(String[] args) throws Exception {
 if (args.length ! = 2) {
 System.err
 .println("Usage: TestUserDefinedCounters <in_table> <
out_table>");
 System.exit(2);
 }
 JobConf job = new JobConf();
 job.setMapperClass(TokenizerMapper.class);
 job.setReducerClass(SumReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("word:string
"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("count:
bigint"));
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 RunningJob rJob = JobClient.runJob(job);
 // After the job has completed successfully, you can get the
value of the custom counter inside the job
 Counters counters = rJob.getCounters();
 long m = counters.findCounter(MyCounter.MAP_TASKS).getValue();
 long r = counters.findCounter(MyCounter.REDUCE_TASKS).getValue
();
 long total = counters.findCounter(MyCounter.TOTAL_TASKS).
getValue();
 System.exit(0);
 }

Issue: 20191012 365

⼤数据计算服务 User Guide / 5 MapReduce
 }

5.4.8 Grep samples
Prerequisites

1. Prepare the Jar package of the test program. Assume the package is named
mapreduce-examples.jar, and the local storage path is data\resources.

2. Prepare tables and resources for testing the Grep operation.
• Create tables:

create table mr_src(key string, value string);
create table mr_grep_tmp (key string, cnt bigint);
create table mr_grep_out (key bigint, value string);

• Add resources:
add jar data\resources\mapreduce-examples.jar -f;

3. Use the tunnel command to import the data:
tunnel upload data mr_src;

The contents of data file imported into the table “mr_src”:
 hello,odps
 hello,world

Procedure
Execute Grep on the odpscmd:
jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.Grep mr_src mr_grep_tmp mr_grep_ou
t hello;

Expected output
The content of output table “mr_grep_out” is as follows:
+------------+------------+
| key | value |
+------------+------------+
| 2 | hello |
+------------+------------+

Sample code
 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 import java.util.Iterator;
 import java.util.regex.Matcher;

366 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce
 import java.util.regex.Pattern;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.Mapper;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.mapred.RunningJob;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 /**
 *
 * Extracts matching regexs from input files and counts them.
 *
 **/
 public class Grep {
 /**
 * RegexMapper
 **/
 public class RegexMapper extends MapperBase {
 private Pattern pattern;
 private int group;
 private Record word;
 private Record one;
 @Override
 public void setup(TaskContext context) throws IOException{
 JobConf job = (JobConf) context.getJobConf();
 pattern = Pattern.compile(job.get("mapred.mapper.regex"));
 group = job.getInt("mapred.mapper.regex.group", 0);
 word = context.createMapOutputKeyRecord();
 one = context.createMapOutputValueRecord();
 one.set(new Object[] { 1L });
 }
 @Override
 public void map(long recordNum, Record record, TaskContext
context) throws IOException {
 for (int i = 0; i < record.getColumnCount(); ++i) {
 String text = record.get(i).toString();
 Matcher = pattern. matcher (text);
 while (matcher.find()) {
 word.set(new Object[] { matcher.group(group) });
 context.write(word, one);
 }
 }
 }
 }
 /**
 * LongSumReducer
 **/
 public class LongSumReducer extends ReducerBase {
 private Record result = null;
 @Override
 public void setup(TaskContext context) throws IOException{
 result = context.createOutputRecord();
 }
 @Override
 public void reduce(Record key, Iterator<Record> values,
TaskContext context) throws IOException {
 Long Count = 0;
 while(values.hasNext()) {
 Record val = values.next();

Issue: 20191012 367

⼤数据计算服务 User Guide / 5 MapReduce
 count += (Long) val.get(0);
 }
 result.set(0, key.get(0));-
 result.set(1, count);
 context.write(result);
 }
 }
 /**
 * A {@link Mapper} that swaps keys and values.
 **/
 public class InverseMapper extends MapperBase {
 private Record word;
 private Record count;
 @Override
 public void setup(TaskContext context) throws IOException{
 word = context.createMapOutputValueRecord();
 count = context.createMapOutputKeyRecord();
 }
 /**
 * The inverse function. Input keys and values are swapped.
 **/
 @Override
 public void map(long recordNum, Record record, TaskContext
context) throws IOException {
 word.set(new Object[] { record.get(0).toString() });
 count.set(new Object[] { (Long) record.get(1) });
 context.write(count, word);
 }
 }
 /**
 * IdentityReducer
 **/
 public class IdentityReducer extends ReducerBase {
 private Record result = null;
 @Override
 public void setup(TaskContext context) throws IOException{
 result = context.createOutputRecord();
 }
 /** Writes all keys and values directly to output. **/
 @Override
 public void reduce(Record key, Iterator<Record> values,
TaskContext context) throws IOException {
 result.set(0, key.get(0));
 while(values.hasNext()) {
 Record val = values.next();
 result.set(1, val.get(0));
 context.write(result);
 }
 }
 }
 public static void main(String[] args) throws Exception {
 if (args.length < 4) {
 System.err.println("Grep <inDir> <tmpDir> <outDir> <regex>
 [<group>]");
 System.exit(2);
 }
 JobConf grepJob = new JobConf();
 grepJob.setMapperClass(RegexMapper.class);
 grepJob.setReducerClass(LongSumReducer.class);
 grepJob.setMapOutputKeySchema(SchemaUtils.fromString("word:
string"));
 grepJob.setMapOutputValueSchema(SchemaUtils.fromString("count:
bigint"));

368 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), grepJob);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), grepJob);
 // Set the regular expression for grepjob's grep
 grepJob.set("mapred.mapper.regex", args[3]);
 if (args.length == 5) {
 grepJob.set("mapred.mapper.regex.group", args[4]);
 }
 @SuppressWarnings("unused")
 RunningJob rjGrep = JobClient.runJob(grepJob);
 // Grepjob output as input to sortjob
 JobConf sortJob = new JobConf();
 sortJob.setMapperClass(InverseMapper.class);
 sortJob.setReducerClass(IdentityReducer.class);
 sortJob.setMapOutputKeySchema(SchemaUtils.fromString("count:
bigint"));
 sortJob.setMapOutputValueSchema(SchemaUtils.fromString("word:
string"));-
 InputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), sortJob);
 OutputUtils.addTable(TableInfo.builder().tableName(args[2]).
build(), sortJob);
 sortJob.setNumReduceTasks(1); // write a single file
 sortJob.setOutputKeySortColumns(new String[] { "count" });
 @SuppressWarnings("unused")
 RunningJob rjSort = JobClient.runJob(sortJob);
 }
 }

5.4.9 Join samples
The MaxCompute MapReduce framework does not support join logic on its own
. Therefore, you have to apply join samples of the data in your own map/reduce
function which requires you to do some extra work.
Suppose,to join two tables (Key bigint, value string) and (key bigint, value string
), the output table is chain bigint (value1 string, value2 string), where value1 and
value2 are the values of the scanner.

Prerequisites
1. Prepare the jar package for the test program, assuming the name is maid and the

local storage path is data \ resources.
2. Prepare tables and resources for testing the Join operation.

• Create tables:
create table mr_Join_src1(key bigint, value string);
create table mr_Join_src2(key bigint, value string);

Issue: 20191012 369

⼤数据计算服务 User Guide / 5 MapReduce
create table mr_Join_out(key bigint, value1 string,value2 string);

• Add resources:
add jar data\resources\mapreduce-examples.jar -f;

3. Run tunnel to import the data:
tunnel upload data1 mr_Join_src1;
tunnel upload data2 mr_Join_src2;

Import the contents of the maid data as follows:
 1, hello
 2, ODPS

Import the contents of the maid data as follows:
1, ODPS
3,hello
4, ODPS

Procedure
Join in odpscmd as follows:-
jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.Join mr_Join_src1 mr_Join_src2
mr_Join_out;

Expected output
After the job is completed successfully, the contents of the table maid are output, as
follows:
+------------+------------+------------+
| key | value1 | value2 |
+------------+------------+------------+
| 1 | hello | odps |
+------------+------------+------------+

Sample code
 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 Import java. util. arraylist;
 import java.util.Iterator;
 import java.util.List;
 import org.apache.commons.logging.Log;
 import org.apache.commons.logging.LogFactory;
 Import com. aliyun. ODPS. Data. record;-
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;

370 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 /**
 * Join, mr_Join_src1/mr_Join_src2(key bigint, value string),
mr_Join_out(key
 * bigint, value1 string, value2 string)
 *
 */
 public class Join {
 public static final Log LOG = LogFactory.getLog(Join.class);
 public static class JoinMapper extends MapperBase {
 private Record mapkey;
 private Record mapvalue;
 private long tag;
 @Override
 public void setup(TaskContext context) throws IOException{
 mapkey = context.createMapOutputKeyRecord();
 mapvalue = context.createMapOutputValueRecord();
 tag = context.getInputTableInfo().getLabel().equals("left
") ? 0: 1;
 }
 @Override
 public void map(long key,Record record, TaskContext context)
 Throws ioexception {
 mapkey.set(0,record.get(0));
 mapkey.set(1,tag);
 for (int i = 1; i< record.getColumnCount();i++) {
 mapvalue.set(i -1, record.get(i));
 }
 context.write(mapkey,mapvalue);
 }
 }
 public static class JoinReducer extends ReducerBase {
 private Record result = null;
 @Override
 public void setup(TaskContext context) throws IOException{
 result = context.createOutputRecord();
 }
 //Reduce function all records for each input will be the same
key
 @Override
 public void reduce(Record key,Iterator<Record>values,
TaskContext context)
 Throws ioexception {
 long k = key.getBigint(0);
 List<Object[]> leftValues = new ArrayList<Object[]>();
 //Is a key + tag combination because it is set up, this
ensures that record data in the left table is in front of the input
record for the reduce function.
 while(values.hasNext()) {
 Record value = values.next();
 long tag = (Long)key.get(1);
 //The data for the left table is first cached into memory
 if (tag == 0) {
 leftValues.add(value.toArray().clone());
 }else {
 //The data that touches the right table is output by a
join with all the data on the left table, the data for the left table
is all in memory.
//This implementation is just a functional display with relatively low
 performance and is not recommended for practical production.
 for (Object[] leftValue :leftValues) {

Issue: 20191012 371

⼤数据计算服务 User Guide / 5 MapReduce
 int index = 0;
 result.set(index++,k);
 for (int i = 0;i<leftValue.length;i++) {
 result.set(index++,leftValue[i]);
 }
 for (int i = 0;i< value.getColumnCount();i++) {
 result.set(index++,value.get(i));
 }
 context.write(result);
 }
 }
 }
 }
 }
 public static void main(String[] args) throws Exception {
 if (args.length ! = 3) {
 System.err.println("Usage: Join <input table1> <input table2
> <out>");
 System.exit(2);
 }
 JobConf job = new JobConf();
 job.setMapperClass(JoinMapper.class);
 job.setReducerClass(JoinReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("key:bigint,
tag:bigint"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("value:
string"));
 job.setPartitionColumns(new String[]{"key"});
 job.setOutputKeySortColumns(new String[]{"key", "tag"});
 job.setOutputGroupingColumns(new String[]{"key"});
 job.setNumReduceTasks(1);
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
label("left").build(), job);
 InputUtils.addTable(TableInfo.builder().tableName(args[1]).
label("right").build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[2]).
build(), job);
 Jobclient. runjob (job);
 }
 }

5.4.10 Sleep samples
Prerequisites

1. Prepare the Jar package of the test program. Assume the package is named
mapreduce-examples.jar, and the local storage path is data\resources.

2. Prepare resources for testing the SleepJob operation.
Add jar data \ resources \ mapreduce-examples.jar-f;

Procedure
Run Sleep on the odpscmd is as follows:
 jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
 com.aliyun.odps.mapred.open.example.Sleep 10;

372 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce
 jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
 com.aliyun.odps.mapred.open.example.Sleep 100;

Expected output
The job runs successfully. The run time of different sleep durations can be
compared to determine the effect.

Sample code
package com.aliyun.odps.mapred.open.example;
import java.io.IOException;
import com.aliyun.odps.mapred.JobClient;
Import com.aliyun.odps.mapred.mapperbase;
import com.aliyun.odps.mapred.conf.JobConf;
public class Sleep {
 private static final String SLEEP_SECS = "sleep.secs";
 public static class MapperClass extends MapperBase {
 // Because the data is not entered, the map function is not
executed, and the related logic can only be written in setup
 @Override
 public void setup(TaskContext context) throws IOException {
 try {
 // Get the number of sleep seconds set in jobconf to sleep
 Thread.sleep(context.getJobConf().getInt(SLEEP_SECS, 1) * 1000
);
 } catch (InterruptedException e) {
 throw new RuntimeException(e);
 }
 }
 }
 public static void main(String[] args) throws Exception {
 if (args.length ! = 1) {
 System.err.println("Usage: Sleep <sleep_secs>");
 System.exit(-1);
 }
 JobConf job = new JobConf();
 job.setMapperClass(MapperClass.class);
 // This instance is also a maponly, so you need to set the
reductor number to 0.
 job.setNumReduceTasks(0);
 // Because there is no input table, the number of mapper needs to
be specified explicitly by the user
 job.setNumMapTasks(1);
 job.set(SLEEP_SECS, args[0]);
 JobClient.runJob(job);
 }
}

5.4.11 Unique samples
Prerequisites

1. Prepare the JAR package of the test program. Assume the package is named
mapreduce-examples.jar, and the local storage path is data\resources.

Issue: 20191012 373

⼤数据计算服务 User Guide / 5 MapReduce

2. Prepare tables and resources for testing the Unique operation.
• Create tables:

create table ss_in(key bigint, value bigint);
create table ss_out(key bigint, value bigint);

• Add resources:
add jar data\resources\mapreduce-examples.jar -f;

3. Use the tunnel command to import the data.
tunnel upload data ss_in;

The contents of data file are imported into the table ss_in.
 1,1
 1,1
 2,2
 2,2

Procedure
Run Unique on the odpscmd, as follows:
jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.Unique ss_in ss_out key;

Expected output
The content of output table ss_out is as follows:
+------------+------------+
| key | value |
+------------+------------+
| 1 | 1 |
| 2 | 2 |
+------------+------------+

Sample code
 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 Import java. util. iterator;
 Import com. aliyun. ODPS. Data. record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 /**

374 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce
 * Unique Remove duplicate words
 *
 **/
 public class Unique {
 public static class OutputSchemaMapper extends MapperBase {
 private Record key;
 private Record value;
 @Override
 public void setup(TaskContext context) throws IOException{
 key = context.createMapOutputKeyRecord();
 value = context.createMapOutputValueRecord();
 }
 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 Throws ioexception {
 long left = 0;
 long right = 0;
 if (record.getColumnCount() > 0) {
 left = (Long) record.get(0);
 if (record.getColumnCount() > 1) {
 right = (Long) record.get(1);
 }
 key.set(new Object[] { (Long) left, (Long) right });
 value.set(new Object[] { (Long) left, (Long) right });
 context.write(key, value);
 }
 }
 }
 public static class OutputSchemaReducer extends ReducerBase {
 private Record result = null;
 @Override
 public void setup(TaskContext context) throws IOException{
 result = context.createOutputRecord();
 }
 @Override
 public void reduce(Record key,Iterator<Record>values,
TaskContext context)
 Throws ioexception {
 result.set(0, key.get(0));
 while(values.hasNext()) {
 Record value = values.next();
 result.set(1, value.get(1));
 }
 context.write(result);
 }
 }
 public static void main(String[] args) throws Exception {
 if (args.length > 3 || args.length < 2) {
 System.err.println("Usage: unique <in> <out> [key|value|all
]");
 System.exit(2);
 }
 String ops = "all";
 if (args.length == 3) {
 Ops = ARGs [2];
 }
 // Reduce input grouping is determined by the settings of the
scanner, this parameter if it is not set
 /Default is mapoutputkeyschema
 // Key Unique
 if (ops.equals("key")) {
 JobConf job = new JobConf();
 job.setMapperClass(OutputSchemaMapper.class);

Issue: 20191012 375

⼤数据计算服务 User Guide / 5 MapReduce
 job.setReducerClass(OutputSchemaReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("key:bigint
,value:bigint"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("key:
bigint,value:bigint"));
 job.setPartitionColumns(new String[] { "key" });
 job.setOutputKeySortColumns(new String[] { "key", "value
" });
 job.setOutputGroupingColumns(new String[] { "key" });
 job.set("tablename2", args[1]);
 job.setNumReduceTasks(1);
 job.setInt("table.counter", 0);
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 Jobclient. runjob (job);
 }
 // Key&Value Unique
 if (ops.equals("all")) {
 JobConf job = new JobConf();
 job.setMapperClass(OutputSchemaMapper.class);
 job.setReducerClass(OutputSchemaReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("key:bigint
,value:bigint"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("key:
bigint,value:bigint"));
 job.setPartitionColumns(new String[] { "key" });
 job.setOutputKeySortColumns(new String[] { "key", "value
" });
 job.setOutputGroupingColumns(new String[] { "key", "value
" });
 Job. Set ("tablename2", argS [1]);
 job.setNumReduceTasks(1);
 job.setInt("table.counter", 0);
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 Jobclient. runjob (job);
 }
 // Value Unique
 if (ops.equals("value")) {
 JobConf job = new JobConf();
 job.setMapperClass(OutputSchemaMapper.class);
 job.setReducerClass(OutputSchemaReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("key:bigint
,value:bigint"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("key:
bigint,value:bigint"));
 job.setPartitionColumns(new String[] { "value" });
 job.setOutputKeySortColumns(new String[] { "value" });
 job.setOutputGroupingColumns(new String[] { "value" });
 job.set("tablename2", args[1]);-
 job.setNumReduceTasks(1);
 job.setInt("table.counter", 0);
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 Jobclient. runjob (job);
 }
 }

376 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce
 }

5.4.12 Sort samples
Prerequisites

1. Prepare the Jar package of the test program. Assume the package is named
mapreduce-examples.jar, and the local storage path is data\resources.

2. Prepare tables and resources for testing the SORT operation.
• Create tables:

create table ss_in(key bigint, value bigint);
create table ss_out(key bigint, value bigint);

• Add resources:
add jar data\resources\mapreduce-examples.jar -f;

3. Use the tunnel command to import the data.
tunnel upload data ss_in;

The contents of data file in the table ss_in are as follows:
 2,1
 1,1
 3,1

Procedure
Run Sort on the odpscmd, as follows:
jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.Sort ss_in ss_out;

Expected output
The content of the output table ss_out is as follows:
+------------+------------+
| key | value |
+------------+------------+
1	1
2	1
3	1
+------------+------------+

Sample code
 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 import java.util.Date;

Issue: 20191012 377

⼤数据计算服务 User Guide / 5 MapReduce
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.example.lib.IdentityReducer;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 /**
 * This is the trivial map/reduce program that does absolutely
nothing other
 * than use the framework to fragment and sort the input values.
 *
 **/
 public class Sort {
 static int printUsage() {
 System.out.println("sort <input> <output>");
 return -1;
 }
 /**
 * Implements the identity function, mapping record's first two
columns to
 * outputs.
 **/
 public static class IdentityMapper extends MapperBase {
 private Record key;
 private Record value;
 @Override
 public void setup(TaskContext context) throws IOException{
 key = context.createMapOutputKeyRecord();
 value = context.createMapOutputValueRecord();
 }
 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 Throws IOException {
 Key.set (new object [] {(long) record.get (0)});
 value.set(new Object[] { (Long) record.get(1) });
 context.write(key, value);
 }
 }
 /**
 * The main driver for sort program. Invoke this method to
submit the
 * map/reduce job.
 *
 * @throws IOException
 * When there is communication problems with the job tracker.
 **/
 public static void main(String[] args) throws Exception {
 JobConf jobConf = new JobConf();
 jobConf.setMapperClass(IdentityMapper.class);
 jobConf.setReducerClass(IdentityReducer.class);
 // For global order, the number of reducers is set to 1, all
the data will be concentrated on a reducer.
 // Can be used only for small volumes of data, which need to
be considered in other ways, such as terasort.
 jobConf.setNumReduceTasks(1);
 Jobconf.setmapoutputkeyschema schemautils schemeiutils.
fromstring ("key: bigint "));
 jobConf.setMapOutputValueSchema(SchemaUtils.fromString("value:
bigint"));

378 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), jobConf);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), jobConf);
 Date starttime = new date ();
 System.out.println("Job started: " + startTime);
 JobClient.runJob(jobConf);
 Date end_time = new Date();
 System.out.println("Job ended: " + end_time);
 System.out.println("The job took "
 + (end_time.getTime() - startTime.getTime()) / 1000 + "
seconds.") ;
 }
 }

5.4.13 Partition samples
The following example takes Partition as input and output.
Example 1:
 public static void main(String[] args) throws Exception {
 JobConf job = new JobConf();

 LinkedHashMap<String, String> input = new LinkedHashMap<String,
String>();
 input.put("pt", "123456");
 InputUtils.addTable(TableInfo.builder().tableName("input_table").
partSpec(input).build(), job);
 LinkedHashMap<String, String> output = new LinkedHashMap<String,
String>();
 output.put("ds", "654321");
 Outpututils. addtable (tableinfo. builder (). tablename ("
output_table "). partspec (output). build (), job);
 JobClient.runJob(job);

Example 2:
 package com.aliyun.odps.mapred.open.example;

 public static void main(String[] args) throws Exception {
 if (args.length ! = 2) {
 System.err.println("Usage: WordCount <in_table> <out_table
>");
 System.exit(2);

 JobConf job = new JobConf();
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(SumCombiner.class);
 job.setReducerClass(SumReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("word:string
"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("count:
bigint"));
 Account account = new AliyunAccount("my_access_id", "
my_access_key");
 Odps odps = new Odps(account);
 odps.setEndpoint("odps_endpoint_url");
 odps.setDefaultProject("my_project");
 Table table = odps.tables().get(tblname);

Issue: 20191012 379

⼤数据计算服务 User Guide / 5 MapReduce
 TableInfoBuilder builder = TableInfo.builder().tableName(
tblname);
 for (Partition p : table.getPartitions()) {
 if (applicable(p)) {
 LinkedHashMap<String, String> partSpec = new LinkedHashMap
<String, String>();
 for (String key : p.getPartitionSpec().keys()) {
 partSpec.put(key, p.getPartitionSpec().get(key));

 InputUtils.addTable(builder.partSpec(partSpec).build(),
conf);

 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 Jobclient. runjob (job);

Note:
• The preceding example combines the MaxCompute SDK and MapReduce SDK to

achieve a MapReduce task.
• The code cannot be compiled and is only an example of main functions.
• The Applicable function is user logic that determines whether the Partition can

be used as the input of MapReduce job.
5.4.14 Pipeline samples
Prerequisites

1. Prepare the Jar package of the test program. Assume the package is named
mapreduce-examples.jar, and the local storage path is data\resources.

2. Prepare tables and resources for testing the the WordCountPipeline operation.
• Create tables:

create table wc_in (key string, value string);

380 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce
create table wc_out(key string, cnt bigint);

• Add resources:
add jar data\resources\mapreduce-examples.jar -f;

3. Use the tunnel command to import the data:
tunnel upload data wc_in;

The data imported into the wc_in the table wc_in is as follows:
hello,odps

Procedure
Run WordCountPipeline on the odpscmd, as follows:
jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.WordCountPipeline wc_in wc_out;

Expected output
The content of output table wc_out is as follows:
+------------+------------+
| key | cnt |
+------------+------------+
| hello | 1 |
| odps | 1 |
+------------+------------+

Sample code
 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 Import java. util. iterator;
 import com.aliyun.odps.Column;
 import com.aliyun.odps.OdpsException;
 import com.aliyun.odps.OdpsType;
 Import com. aliyun. ODPS. Data. record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.Job;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.pipeline.Pipeline;
 public class WordCountPipelineTest {
 public static class TokenizerMapper extends MapperBase {
 Record word;
 Record one;
 @Override
 public void setup(TaskContext context) throws IOException{
 word = context.createMapOutputKeyRecord();
 one = context.createMapOutputValueRecord();
 one.setBigint(0, 1L);
 }
 @Override

Issue: 20191012 381

⼤数据计算服务 User Guide / 5 MapReduce
 public void map(long recordNum, Record record, TaskContext
context)
 Throws ioexception {
 for (int i = 0; i < record.getColumnCount(); i++) {
 String[] words = record.get(i).toString().split("\\s+");
 for (String w : words) {
 word.setString(0, w);
 context.write(word, one);
 }
 }
 }
 }
 public static class SumReducer extends ReducerBase {
 private Record value;
 @Override
 public void setup(TaskContext context) throws IOException{
 value = context.createOutputValueRecord();
 }
 @Override
 public void reduce(Record key,Iterator<Record>values,
TaskContext context)
 Throws ioexception {
 Long Count = 0;
 while(values.hasNext()) {
 Record val = values.next();
 count += (Long) val.get(0);
 }
 value.set(0, count);
 context.write(key, value);
 }
 }
 public static class IdentityReducer extends ReducerBase {
 private Record result;
 @Override
 public void setup(TaskContext context) throws IOException{
 result = context.createOutputRecord();
 }
 @Override
 public void reduce(Record key,Iterator<Record>values,
TaskContext context)
 Throws ioexception {
 while (values.hasNext()) {
 result.set(0, key.get(0));
 result.set(1, values.next().get(0));
 context.write(result);
 }
 }
 }
 public static void main(String[] args) throws OdpsException {
 if (args.length ! = 2) {
 System.err.println("Usage: WordCountPipeline <in_table> <
out_table>");
 System.exit(2);
 }
 Job job = new Job();
 /***
 * In the process of constructing pipeline, if you do not
specify mapper's OutputKeySortColumns，PartitionColumns，OutputGrou
pingColumns,
 * the framework defaults to its OutputKey as the default
configuration for the three
 ***/
 Pipeline pipeline = Pipeline.builder()
 . Addmapper (maid. Class)

382 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce
 .setOutputKeySchema(
 new Column[] { new Column("word", OdpsType.STRING
) })
 .setOutputValueSchema(
 new Column[] { new Column("count", OdpsType.BIGINT
) })
 .setOutputKeySortColumns(new String[] { "word" })
 .setPartitionColumns(new String[] { "word" })
 .setOutputGroupingColumns(new String[] { "word" })
 .addReducer(SumReducer.class)
 .setOutputKeySchema(
 new Column[] { new Column("word", OdpsType.STRING
) })
 .setOutputValueSchema(
 new Column[] { new Column("count", OdpsType.BIGINT
)})
 .addReducer(IdentityReducer.class).createPipeline();
 // Set pipeline to jobconf and jobconf if you need to set the
assemblyer
 job.setPipeline(pipeline);
 // Set table information for Input Output
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 // Job submit and wait for end
 job.submit();
 job.waitForCompletion();
 System.exit(job.isSuccessful() == true ? 0 : 1);
 }
 }

5.5 Java SDK
5.5.1 Java SDK

This article introduces common MapReduce interfaces.
If you are using Maven, you can search "odps-sdk-mapred" from Maven Library to
get the required Java SDK (available in different versions). The configuration is as
follows:
<dependency>
 <groupId>com.aliyun.odps</groupId>
 <artifactId>odps-sdk-mapred</artifactId>
 <version>0.20.7-public</version>

Issue: 20191012 383

http://search.maven.org/

⼤数据计算服务 User Guide / 5 MapReduce
</dependency>

Interface Description
MapperBase The user-defined Map function is required to inherit from this

class. It processes the record object of the input table, processes
 the object into key value and outputs the value to the Reduce
stage, or outputs result record to the result table without passing
 through the Reduce stage. Jobs that do not pass through the
Reduce stage, but directly outputs computation results are called
 Map-Only job.

ReducerBase Your customized Reduce function must inherit from this class.
The set of Values associated with a Key is reduced.

TaskContext It is one of the input parameters of multiple member functions in
 MapperBase and ReducerBase. Contains contextual information
about tasks.

JobClient It is used for submitting and managing jobs. The submission
mode includes blocking (synchronous) mode or non-blocking (
asynchronous) mode.

RunningJob Indicates object in job running and used for tracing MapReduce
job instance during the job running process.

JobConf Describes configuration of a MapReduce task. The JobConf object
 is generally defined in the main program (main function), then
jobs are submitted by JobClient to MaxCompute.

MapperBase
Main function interfaces are as follows.
Interface Description
void cleanup(TaskContext context) The Map method is called after the map

stage ends.
void map(long key, Record record,
TaskContext context)

The Map method processes records of
the input table.

void setup(TaskContext context) The Map method is called before the
map stage begins.

ReducerBase
Main function interfaces are as follows.

384 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce

Interface Description
void cleanup(TaskContext context) The Reduce method is called after the

reduce stage ends.
void reduce(Record key, Iterator<
Record > values, TaskContext context)

The Reduce method processes input
table records.

void setup(TaskContext context) The Reduce method is called before the
reduce stage begins.

TaskContext
Main function interfaces are as follows.
Interface Description
TableInfo[] getOutputTableInfo() Gets output table information.
Record createOutputRecord() Creates the record object of the default

output table.
Record createOutputRecord(String label
)

Creates the record object of the output
table with a specified label.

Record createMapOutputKeyRecord() Creates the record object of Key output
by Map.

Record createMapOutputValueRecord() Creates the record object of Value
output by Map.

void write(Record record) Writes record to default output and is
used for writing output data by Reduce
client, and can be called on the Reduce
client multiple times.

void write(Record record, String label) Writes record to the given label output
 and is used for writing output data by
Reduce client, and can be called on the
Reduce client multiple times.

void write(Record key, Record value) Map writes record for an intermediate
result. It can be called in Map function
 and called on the Map client multiple
times.

BufferedInputStream readResour
ceFileAsStream(String resourceName)

Reads file type resource.

Iterator<Record > readResourceTable(
String resourceName)

Reads table type resource.

Issue: 20191012 385

⼤数据计算服务 User Guide / 5 MapReduce

Interface Description
Counter getCounter(Enum<? > > name) Gets the Counter object with the

specified name.
Counter getCounter(String group, String
 name)

Gets the Counter object with specified
name and the group name.

void progress() Reports heartbeat information to the
 MapReduce framework. If a user’s
 method takes a long time to process
, and no framework is called in the
process, this method can be called to
 avoid task timeout. Timeout of the
framework is 600s by default.

Notice:
• MaxCompute TaskContext interface provides the progress function, however

, this function is to prevent the Worker from being terminated as it runs for
long time and the framework considers it as a timeout Worker. This interface is
similar to sending heartbeat information to the framework, but does not report
the progress of the Worker.

• The default timeout schedule of MaxCompute MapReduce Worker is 10 minutes
 (system default, cannot be controlled by the user). If the schedule exceeds 10
minutes and Worker is unable to send heartbeat information to the framework
 (not to call progress interface), the framework is forced to stop this Worker and
 MapReduce task fails and exits. We recommend calling the progress interface
 regularly in Mapper/Reducer functions to prevent the worker from being
terminated by the framework.

JobConf
Main function interfaces are as follows:
Interface Description
void setResources(String resourceNa
mes)

Declares resources used in this job. Only
 the declared resource can be read by
 TaskContext object during Mapper/
Reducer running process.

void setMapOutputKeySchema(Column
[] schema)

Sets the Key attribute output from
Mapper to Reducer.

386 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce

Interface Description
void setMapOutputValueSchema(
Column[] schema)

Sets the Value attribute output from
Mapper to Reducer.

void setOutputKeySortColumns(String[]
cols)

Sets key sort columns output from
Mapper to Reducer.

void setOutputGroupingColumns(String
[] cols)

Sets Key grouping columns.

void setMapperClass(Class<? extends
Mapper > theClass)

Sets Mapper function of the job.

void setPartitionColumns(String[] cols) Sets the partition column specified in
the job. The default is all columns of Key
 output by Mapper.

void setReducerClass(Class<? extends
Reducer theClass)

Sets Reducer of the job.

void setCombinerClass(Class<? extends
Reducer theClass)

Sets combiner of the job, running on
 Map client. Its function is similar to
performing Reduce operation on the
identical local Key values by a single
Map.

void setSplitSize(long size) Sets the size of input slice. Unit: MB. The
 default value is 640.

void setNumReduceTasks(int n) Sets the number of Reducer tasks. The
default is 1/4 of Mapper tasks.

void setMemoryForMapTask(int mem) Sets the memory size of single Worker in
 the Mapper task. Unit: MB. The default
value is 2048.

void setMemoryForReduceTask(int mem
)

Sets the memory size of single Worker
for Reducer task. Unit: MB. The default
value is 2048.

Note:
• Usually, GroupingColumns are included in KeySortColumns, while KeySortCol

umns and PartitionColumns are included in the Key.
• In the Map side, mappers’ output records are distributed to reducers according

 to the hash values computed using PartitionColumns, and then sorted by
KeySortColumns.

Issue: 20191012 387

⼤数据计算服务 User Guide / 5 MapReduce

• In the Reduce side, after being sorted by KeySortColumns, input records are
grouped as input groups of the reduce function sequentially. In other words ,
records with the same GroupingColumns values are treated as the same input
group.

JobClient
Main function interfaces are as follows:
Interface Description
static RunningJob runJob(JobConf job) Returns immediately after submitting

 a MapReduce job in a synchronous (
blocking) mode.

static RunningJob submitJob(JobConf
job)

Returns immediately after submitting
a MapReduce job in an asynchronous (
non-blocking) mode.

RunningJob
Main function interfaces are as follows.
Interface Description
String getInstanceID() Gets an instance ID for checking run log

and job management.
boolean isComplete() Checks whether job is complete.
boolean isSuccessful() Checks whether job instance is

successful.
void waitForCompletion() Waits until job instance is complete. It

is typically iused for jobs submitted is
asynchronous mode.

JobStatus getJobStatus() Checks job instance status.
void killJob() Ends the job.
Counters getCounters() Gets Counter information.

InputUtils
Main function interfaces are as follows:

388 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce

Interface Description
static void addTable(TableInfo table,
JobConf conf)

Adds table to the task input. It can be
called multiple times. The new added
 table is added to input queue in an
append mode.

static void setTables(TableInfo [] tables,
JobConf conf)

Adds tables to the task input.

OutputUtils
Main function interfaces are as follows:
Interface Description
static void addTable(TableInfo table,
JobConf conf)

Adds table to the task output. It can be
 called multiple times. Also, adds the
new added table to output queue in an
append mode.

static void setTables(TableInfo [] tables,
JobConf conf)

Adds multiple tables to the task output.

Pipeline
Pipeline is the subject of MR2. It can be constructed by Pipeline.builder. Pipelines
are as follows:
 public Builder addMapper(Class<? extends Mapper> mapper)
 public Builder addMapper(Class<? extends Mapper> mapper,
 column [] keyschema, column [] valueschema, string []
sortcols,
 SortOrder [] order, string [] partcols,
 Class<? extends Partitioner> theClass, String[] groupCols)
 public Builder addReducer(Class<? extends Reducer> reducer)
 public Builder addReducer(Class<? extends Reducer> reducer,
 column [] keyschema, column [] valueschema, string []
sortcols,
 SortOrder [] order, string [] partcols,
 Class<? extends Partitioner> theClass, String[] groupCols)
 public setoutputkeyschema builder (Column [] keyschema)
 public setoutputvalueschema builder (Column [] valueschema)
 public setoutputkeysortcolumns builder (String [] sortcols)
 public setoutputkeysortorder builder (Sortorder [] order)
 public setpartitioncolumns builder (String [] partcols)
 public Builder setPartitionerClass(Class<? extends Partitioner>
theClass)
 void setOutputGroupingColumns(String[] cols)

Example:
 job job = new job ();
 pipeline pipeline = pipeline. builder ()

Issue: 20191012 389

⼤数据计算服务 User Guide / 5 MapReduce
 . addmapper (Tokenizermapper. class)
 . setoutputkeyschema (
 new column [] {new column ("word", OdpsType. string)})
 . setoutputvalueschema (
 new column [] {new column ("count", OdpsType. bigint)})
 . addreducer (Sumreducer. class)
 . setoutputkeyschema (
 new column [] {new column ("count", OdpsType. bigint)})
 . setoutputvalueschema (
 new column [] {new column ("word", OdpsType. string),
 new column ("count", OdpsType. bigint)})
 . addreducer (Identityreducer. class). createPipeline ();
 job. setpipeline (pipeline);
 job. addinput (...)
 job. addoutput (...)
 job. submit ();

As shown in the preceding example, a user can construct a Map in the main class,
and then consecutively get MapReduce tasks of two Reduces. If you are familiar
with the basic functions of MapReduce, then you can use MR2 as well, as the
functions are similar.

Note:
• Specifically, we recommend that users must complete the configuration of

MapReduce task by JobConf,
• as JobConf can get MapReduce task of single Reduce only after configuring Map.

Data Type
The data types supported in MapReduce include: BIGINT, STRING, DOUBLE,
BOOLEAN, and DATETIME. MaxCompute between MaxCompute data types and Java
types are as follows:
MaxCompute SQL Type Java Type
Bigint Long
String String
Double Double
Boolean Boolean
Datetime Date
Decimal BigDecimal

390 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce

5.5.2 Overview of compatible versions of the SDK
A detailed list of maxcompute compatible versions of mapreduce compatibility
with hadoop mapreduce, as shown in the following table:
Type Interface Is it

compatible
?

Mapper void map(KEYIN key, VALUEIN value
, org.apache.hadoop.mapreduce.
Mapper.Context context)

Yes

Mapper void run(org.apache.hadoop.
mapreduce.Mapper.Context context)

Yes

Mapper void setup(org.apache.hadoop.
mapreduce.Mapper.Context context)

Yes

Reducer Void cleanup (Org. Apache. hadoop.
mapreduce. reducer. Context Context
)

Yes

Reducer void reduce(KEYIN key, VALUEIN
 value, org.apache.hadoop.
mapreduce.Reducer.Context context)

Yes

Reducer void run(org.apache.hadoop.
mapreduce.Reducer.Context context)

Yes

Reducer void setup(org.apache.hadoop.
mapreduce.Reducer.Context context)

Yes

Partitioner int getPartition(KEY key, VALUE
value, int numPartitions)

Yes

Mapcontext (inheritance) InputSplit getInputSplit() No,
throw
exception

ReduceContext nextKey() Yes
ReduceContext getValues() Yes
TaskInputOutputContext getCurrentKey() Yes
TaskInputOutputContext getCurrentValue() Yes
TaskInputOutputContext getOutputCommitter() No,

throw
exception

Issue: 20191012 391

⼤数据计算服务 User Guide / 5 MapReduce

Type Interface Is it
compatible
?

TaskInputOutputContext nextKeyValue() Yes
TaskInputOutputContext write(KEYOUT key, VALUEOUT value) Yes
TaskAttemptContext getCounter(Enum < > counterName) Yes
TaskAttemptContext getCounter(String groupName, String

 counterName)
Yes

TaskAttemptContext setStatus(String msg) Empty
implementa
tion

TaskAttemptContext getStatus() Empty
implementa
tion

TaskAttemptContext getTaskAttemptID() No,
throw
exception

TaskAttemptContext getProgress() No,
throw
exception

TaskAttemptContext progress() Yes
Job addArchiveToClassPath(Path archive) No
Job addCacheArchive(URI uri) No
Job addCacheFile(URI uri) No
Job addFileToClassPath(Path file) No
Job cleanupProgress() No
Job createSymlink() No,

throw
exception

Job failTask(TaskAttemptID taskId) No
Job getCompletionPollInterval(

Configuration conf)
Empty
implementa
tion

Job getCounters() Yes
Job getFinishTime() Yes

392 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce

Type Interface Is it
compatible
?

Job getHistoryUrl() Yes
Job getInstance() Yes
Job getInstance(Cluster ignored) Yes
Job getInstance(Cluster ignored,

Configuration conf)
Yes

Job getInstance(Configuration conf) Yes
Job getInstance(Configuration conf,

String jobName)
Empty
implementa
tion

Job getInstance(JobStatus status,
Configuration conf)

No,
throw
exception

Job getJobFile() No,
throw
exception

Job getJobName() Empty
implementa
tion

Job getJobState() No,
throw
exception

Job getPriority() No,
throw
exception

Job getProgressPollInterval(Configurat
ion conf)

Empty
implementa
tion

Job getReservationId() No,
throw
exception

Job getSchedulingInfo() No,
throw
exception

Job getStartTime() Yes
Issue: 20191012 393

⼤数据计算服务 User Guide / 5 MapReduce

Type Interface Is it
compatible
?

Job getStatus() No,
throw
exception

Job getTaskCompletionEvents(int
startFrom)

No,
throw
exception

Job getTaskCompletionEvents(int
startFrom, int numEvents)

No,
throw
exception

Job getTaskDiagnostics(TaskAttemptID
taskid)

No,
throw
exception

Job getTaskOutputFilter(Configuration
conf)

No,
throw
exception

Job getTaskReports(TaskType type) No,
throw
exception

Job getTrackingURL() Yes
Job isComplete() Yes
Job isRetired() No,

throw
exception

Job isSuccessful() Yes
Job isUber() Empty

implementa
tion

Job killJob() Yes
Job killTask(TaskAttemptID taskId) No
Job mapProgress() Yes
Job monitorAndPrintJob() Yes
Job reduceProgress() Yes

394 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce

Type Interface Is it
compatible
?

Job setCacheArchives(URI[] archives) No,
throw
exception

Job setCacheFiles(URI[] files) No,
throw
exception

Job setCancelDelegationTokenUponJo
bCompletion(boolean value)

No,
throw
exception

Job setCombinerClass(Class<? extends
Reducer> cls)

Yes

Job setCombinerKeyGroupingComparat
orClass(Class<? extends RawCompara
tor> cls)

Yes

Job setGroupingComparatorClass(Class
<? extends RawComparator> cls)

Yes

Job setInputFormatClass(Class<? extends
 InputFormat> cls)

Empty
implementa
tion

Job setJar(String jar) Yes
Job setJarByClass(Class<? > cls) Yes
Job setJobName(String name) Empty

implementa
tion

Job setJobSetupCleanupNeeded(boolean
needed)

Empty
implementa
tion

Job setMapOutputKeyClass(Class<? >
theClass)

Yes

Job setMapOutputValueClass(Class<? >
theClass)

Yes

Job setMapperClass(Class<? extends
Mapper> cls)

Yes

Issue: 20191012 395

⼤数据计算服务 User Guide / 5 MapReduce

Type Interface Is it
compatible
?

Job setMapSpeculativeExecution(boolean
 speculativeExecution)

Empty
implementa
tion

Job setMaxMapAttempts(int n) Empty
implementa
tion

Job setMaxReduceAttempts(int n) Empty
implementa
tion

Job setNumReduceTasks(int tasks) Yes
Job setOutputFormatClass(Class<?

extends OutputFormat> cls)
No,
throw
exception

Job setOutputKeyClass(Class<? > theClass
)

Yes

Job setOutputValueClass(Class<? >
theClass)

Yes

Job setPartitionerClass(Class<? extends
Partitioner> cls)

Yes

Job setPriority(JobPriority priority) No,
throw
exception

Job setProfileEnabled(boolean newValue) Empty
implementa
tion

Job setProfileParams(String value) Empty
implementa
tion

Job setProfileTaskRange(boolean isMap,
String newValue)

Empty
implementa
tion

Job setReducerClass(Class<? extends
Reducer> cls)

Yes

396 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce

Type Interface Is it
compatible
?

Job setReduceSpeculativeExecution(
boolean speculativeExecution)

Empty
implementa
tion

Job setReservationId(ReservationId
reservationId)

No,
throw
exception

Job setSortComparatorClass(Class<?
extends RawComparator> cls)

No,
throw
exception

Job setSpeculativeExecution(boolean
speculativeExecution)

Yes

Job setTaskOutputFilter(Configuration
conf, org.apache.hadoop.mapreduce.
Job.TaskStatusFilter newValue)

No,
throw
exception

Job setupProgress() No,
throw
exception

Job setUser(String user) Empty
implementa
tion

Job setWorkingDirectory(Path dir) Empty
implementa
tion

Job submit() Yes
Job toString() No,

throw
exception

Job waitForCompletion(boolean verbose) Yes.
Task Execution & Environment mapreduce.map.java.opts Empty

implementa
tion

Task Execution & Environment mapreduce.reduce.java.opts Empty
implementa
tion

Issue: 20191012 397

⼤数据计算服务 User Guide / 5 MapReduce

Type Interface Is it
compatible
?

Task Execution & Environment mapreduce.map.memory.mb Empty
implementa
tion

Task Execution & Environment mapreduce.reduce.memory.mb Empty
implementa
tion

Task Execution & Environment mapreduce.task.io.sort.mb Empty
implementa
tion

Task Execution & Environment mapreduce.map.sort.spill.percent Empty
implementa
tion

Task Execution & Environment mapreduce.task.io.soft.factor Empty
implementa
tion

Task Execution & Environment mapreduce.reduce.merge.inmem.
thresholds

Empty
implementa
tion

Task Execution & Environment mapreduce.reduce.shuffle.merge.
percent

Empty
implementa
tion

Task Execution & Environment mapreduce.reduce.shuffle.input.
buffer.percent

Empty
implementa
tion

Task Execution & Environment mapreduce.reduce.input.buffer.
percent

Empty
implementa
tion

Task Execution & Environment mapreduce.job.id Empty
implementa
tion

Task Execution & Environment mapreduce.job.jar Empty
implementa
tion

398 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce

Type Interface Is it
compatible
?

Task Execution & Environment mapreduce.job.local.dir Empty
implementa
tion

Task Execution & Environment mapreduce.task.id Empty
implementa
tion

Task Execution & Environment mapreduce.task.attempt.id Empty
implementa
tion

Task Execution & Environment mapreduce.task.is.map Empty
implementa
tion

Task Execution & Environment mapreduce.task.partition Empty
implementa
tion

Task Execution & Environment mapreduce.map.input.file Empty
implementa
tion

Task Execution & Environment mapreduce.map.input.start Empty
implementa
tion

Task Execution & Environment mapreduce.map.input.length Empty
implementa
tion

Task Execution & Environment mapreduce.task.output.dir Empty
implementa
tion

JobClient cancelDelegationToken(Token <
DelegationTokenIdentifier> token)

No,
throw
exception

JobClient close() Empty
implementa
tion

Issue: 20191012 399

⼤数据计算服务 User Guide / 5 MapReduce

Type Interface Is it
compatible
?

JobClient displayTasks(JobID jobId, String type
, String state)

No,
throw
exception

JobClient getAllJobs() No,
throw
exception

JobClient getCleanupTaskReports(JobID jobId) No,
throw
exception

JobClient getClusterStatus() No,
throw
exception

JobClient getClusterStatus(boolean detailed) No,
throw
exception

JobClient getDefaultMaps() No,
throw
exception

JobClient getDefaultReduces() No,
throw
exception

JobClient getDelegationToken(Text renewer) No,
throw
exception

JobClient getFs() No,
throw
exception

JobClient getJob(JobID jobid) No,
throw
exception

JobClient getJob(String jobid) No,
throw
exception

400 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce

Type Interface Is it
compatible
?

JobClient getJobsFromQueue(String
queueName)

No,
throw
exception

JobClient getMapTaskReports(JobID jobId) No,
throw
exception

JobClient getMapTaskReports(String jobId) No,
throw
exception

JobClient getQueueAclsForCurrentUser() No,
throw
exception

JobClient getQueueInfo(String queueName) No,
throw
exception

JobClient getQueues() No,
throw
exception

JobClient getReduceTaskReports(JobID jobId) No,
throw
exception

JobClient getReduceTaskReports(String jobId) No,
throw
exception

JobClient getSetupTaskReports(JobID jobId) No,
throw
exception

JobClient getStagingAreaDir() No,
throw
exception

JobClient getSystemDir() No,
throw
exception

Issue: 20191012 401

⼤数据计算服务 User Guide / 5 MapReduce

Type Interface Is it
compatible
?

JobClient getTaskOutputFilter() No,
throw
exception

JobClient getTaskOutputFilter(JobConf job) No,
throw
exception

JobClient init(JobConf conf) No,
throw
exception

JobClient isJobDirValid(Path jobDirPath,
FileSystem fs)

No,
throw
exception

JobClient jobsToComplete() No,
throw
exception

JobClient monitorAndPrintJob(JobConf conf,
RunningJob job)

No,
throw
exception

JobClient renewDelegationToken(Token<
DelegationTokenIdentifier> token)

No,
throw
exception

JobClient run(String[] argv) No,
throw
exception

JobClient runJob(JobConf job) Yes
JobClient setTaskOutputFilter(JobClient.

TaskStatusFilter newValue)
No,
throw
exception

JobClient setTaskOutputFilter(JobConf job,
JobClient.TaskStatusFilter newValue)

No,
throw
exception

JobClient submitJob(JobConf job) Yes
JobClient submitJob(String jobFile) No,

throw
exception

402 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce

Type Interface Is it
compatible
?

JobConf deleteLocalFiles() No,
throw
exception

Jobconf deleteLocalFiles(String subdir) No,
throw
exception

Jobconf normalizeMemoryConfigValue(long
val)

Empty
implementa
tion

Jobconf setCombinerClass(Class<? extends
Reducer> theClass)

Yes

Jobconf setCompressMapOutput(boolean
compress)

Empty
implementa
tion

Jobconf setInputFormat(Class<? extends
InputFormat> theClass)

No,
throw
exception

JobConf setJar(String jar) No,
throw
exception

JobConf setJarByClass(Class cls) No,
throw
exception

JobConf setJobEndNotificationURI(String uri) No,
throw
exception

JobConf setJobName(String name) Empty
implementa
tion

JobConf setJobPriority(JobPriority prio) No,
throw
exception

JobConf setKeepFailedTaskFiles(boolean keep
)

No,
throw
exception

Issue: 20191012 403

⼤数据计算服务 User Guide / 5 MapReduce

Type Interface Is it
compatible
?

JobConf setKeepTaskFilesPattern(String
pattern)

No,
throw
exception

JobConf setKeyFieldComparatorOptions(
String keySpec)

No,
throw
exception

JobConf setKeyFieldPartitionerOptions(String
 keySpec)

No,
throw
exception

JobConf setMapDebugScript(String
mDbgScript)

Empty
implementa
tion

JobConf setMapOutputCompressorClass(
Class<? extends CompressionCodec>
codecClass)

Empty
implementa
tion

JobConf setMapOutputKeyClass(Class<? >
theClass)

Yes

JobConf setMapOutputValueClass(Class<? >
theClass)

Yes

JobConf setMapperClass(Class<? extends
Mapper> theClass)

Yes

JobConf setMapRunnerClass(Class<? extends
MapRunnable> theClass)

No,
throw
exception

JobConf setMapSpeculativeExecution(boolean
 speculativeExecution)

Empty
implementa
tion

JobConf setMaxMapAttempts(int n) Empty
implementa
tion

JobConf setMaxMapTaskFailuresPercent(int
percent)

Empty
implementa
tion

404 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce

Type Interface Is it
compatible
?

JobConf setMaxPhysicalMemoryForTask(long
 mem)

Empty
implementa
tion

JobConf setMaxReduceAttempts(int n) Empty
implementa
tion

JobConf setMaxReduceTaskFailuresPercent(
int percent)

Empty
implementa
tion

JobConf setMaxTaskFailuresPerTracker(int
noFailures)

Empty
implementa
tion

JobConf setMaxVirtualMemoryForTask(long
vmem)

Empty
implementa
tion

JobConf setMemoryForMapTask(long mem) Yes
JobConf setMemoryForReduceTask(long mem

)
Yes

JobConf setNumMapTasks(int n) Yes
JobConf setNumReduceTasks(int n) Yes
JobConf setNumTasksToExecutePerJvm(int

numTasks)
Empty
implementa
tion

JobConf setOutputCommitter(Class<? extends
OutputCommitter> theClass)

No,
throw
exception

JobConf setOutputFormat(Class<? extends
OutputFormat> theClass)

Empty
implementa
tion

JobConf setOutputKeyClass(Class<? > theClass
)

Yes

JobConf setOutputKeyComparatorClass(Class
<? extends RawComparator> theClass
)

No,
throw
exception

Issue: 20191012 405

⼤数据计算服务 User Guide / 5 MapReduce

Type Interface Is it
compatible
?

JobConf setOutputValueClass(Class<? >
theClass)

Yes

JobConf setOutputValueGroupingComparat
or(Class<? extends RawComparator>
theClass)

No,
throw
exception

JobConf setPartitionerClass(Class<? extends
Partitioner> theClass)

Yes

JobConf setProfileEnabled(boolean newValue) Empty
implementa
tion

JobConf setProfileParams(String value) Empty
implementa
tion

JobConf setProfileTaskRange(boolean isMap,
String newValue)

Empty
implementa
tion

JobConf setQueueName(String queueName) No,
throw
exception

JobConf setReduceDebugScript(String
rDbgScript)

Empty
implementa
tion

JobConf setReducerClass(Class<? extends
Reducer> theClass)

Yes

JobConf setReduceSpeculativeExecution(
boolean speculativeExecution)

Empty
implementa
tion

JobConf setSessionId(String sessionId) Empty
implementa
tion

JobConf setSpeculativeExecution(boolean
speculativeExecution)

No,
throw
exception

JobConf setUseNewMapper(boolean flag) Yes

406 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce

Type Interface Is it
compatible
?

JobConf setUseNewReducer(boolean flag) Yes
JobConf setUser(String user) Empty

implementa
tion

JobConf setWorkingDirectory(Path dir) Empty
implementa
tion

FileInputFormat Not involved No,
throw
exception

TextInputFormat Not involved Yes
InputSplit mapred.min.split.size. No,

throw
exception

FileSplit map.input.file No,
throw
exception

RecordWriter Not involved No,
throw
exception

RecordReader Not involved No,
throw
exception

OutputFormat Not involved No,
throw
exception

OutputCommitter abortJob(JobContext jobContext, int
status)

No,
throw
exception

OutputCommitter abortJob(JobContext context,
JobStatus.State runState)

No,
throw
exception

OutputCommitter abortTask(TaskAttemptContext
taskContext)

No,
throw
exception

Issue: 20191012 407

⼤数据计算服务 User Guide / 5 MapReduce

Type Interface Is it
compatible
?

OutputCommitter abortTask(TaskAttemptContext
taskContext)

No,
throw
exception

OutputCommitter cleanupJob(JobContext jobContext) No,
throw
exception

OutputCommitter cleanupJob(JobContext context) No,
throw
exception

OutputCommitter commitJob(JobContext jobContext) No,
throw
exception

OutputCommitter commitJob(JobContext context) No,
throw
exception

OutputCommitter commitTask(TaskAttemptContext
taskContext)

No,
throw
exception

OutputCommitter needsTaskCommit(TaskAttemp
tContext taskContext)

No,
throw
exception

OutputCommitter needsTaskCommit(TaskAttemp
tContext taskContext)

No,
throw
exception

OutputCommitter setupJob(JobContext jobContext) No,
throw
exception

OutputCommitter setupJob(JobContext jobContext) No,
throw
exception

OutputCommitter setupTask(TaskAttemptContext
taskContext)

No,
throw
exception

408 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce

Type Interface Is it
compatible
?

OutputCommitter setupTask(TaskAttemptContext
taskContext)

No,
throw
exception

Counter getDisplayName() Yes
Counter getName() Yes
Counter getValue() Yes
Counter increment(long incr) Yes
Counter setValue(long value) Yes
Counter setDisplayName(String displayName) Yes
DistributedCache CACHE_ARCHIVES No,

throw
exception

DistributedCache CACHE_ARCHIVES_SIZES No,
throw
exception

DistributedCache CACHE_ARCHIVES_TIMESTAMPS No,
throw
exception

Distributed cache CACHE_FILES No,
throw
exception

DistributedCache CACHE_FILES_SIZES No,
throw
exception

DistributedCache CACHE_FILES_TIMESTAMPS No,
throw
exception

DistributedCache CACHE_LOCALARCHIVES No,
throw
exception

DistributedCache CACHE_LOCALFILES No,
throw
exception

Issue: 20191012 409

⼤数据计算服务 User Guide / 5 MapReduce

Type Interface Is it
compatible
?

DistributedCache CACHE_SYMLINK No,
throw
exception

DistributedCache addArchiveToClassPath(Path archive
, Configuration conf)

No,
throw
exception

DistributedCache addArchiveToClassPath(Path archive
, Configuration conf, FileSystem fs)

No,
throw
exception

DistributedCache addCacheArchive(URI uri, Configurat
ion conf)

No,
throw
exception

DistributedCache addCacheFile(URI uri, Configuration
conf)

No,
throw
exception

DistributedCache addFileToClassPath(Path file,
Configuration conf)

No,
throw
exception

DistributedCache addFileToClassPath(Path file,
Configuration conf, FileSystem fs)

No,
throw
exception

DistributedCache addLocalArchives(Configuration conf
, String str)

No,
throw
exception

DistributedCache addLocalFiles(Configuration conf,
String str)

No,
throw
exception

DistributedCache checkURIs(URI[] uriFiles, URI[]
uriArchives)

No,
throw
exception

DistributedCache createAllSymlink(Configuration conf
, File jobCacheDir, File workDir)

No,
throw
exception

410 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce

Type Interface Is it
compatible
?

DistributedCache createSymlink(Configuration conf) No,
throw
exception

DistributedCache getArchiveClassPaths(Configuration
conf)

No,
throw
exception

DistributedCache getArchiveTimestamps(Configurat
ion conf)

No,
throw
exception

DistributedCache getCacheArchives(Configuration conf
)

No,
throw
exception

DistributedCache getCacheFiles(Configuration conf) No,
throw
exception

DistributedCache getFileClassPaths(Configuration conf
)

No,
throw
exception

DistributedCache getFileStatus(Configuration conf, URI
 cache)

No,
throw
exception

DistributedCache getFileTimestamps(Configuration
conf)

No,
throw
exception

DistributedCache getLocalCacheArchives(Configurat
ion conf)

No,
throw
exception

DistributedCache getLocalCacheFiles(Configuration
conf)

No,
throw
exception

DistributedCache getSymlink(Configuration conf) No,
throw
exception

Issue: 20191012 411

⼤数据计算服务 User Guide / 5 MapReduce

Type Interface Is it
compatible
?

DistributedCache getTimestamp(Configuration conf,
URI cache)

No,
throw
exception

DistributedCache setArchiveTimestamps(Configuration
 conf, String timestamps)

No,
throw
exception

DistributedCache setCacheArchives(URI[] archives,
Configuration conf)

No,
throw
exception

DistributedCache setCacheFiles(URI[] files, Configurat
ion conf)

No,
throw
exception

DistributedCache setFileTimestamps(Configuration
conf, String timestamps)

No,
throw
exception

DistributedCache setLocalArchives(Configuration conf
, String str)

No,
throw
exception

DistributedCache setLocalFiles(Configuration conf,
String str)

No,
throw
exception

IsolationRunner Not involved No,
throw
exception

Profiling Not involved Empty
implementa
tion

Debugging Not involved Empty
implementa
tion

Data Compression Not involved Yes
Skipping Bad Records Not involved No,

throw
exception

412 Issue: 20191012

⼤数据计算服务 User Guide / 5 MapReduce

Type Interface Is it
compatible
?

Job Authorization mapred.acls.enabled No,
throw
exception

Job Authorization mapreduce.job.acl-view-job No,
throw
exception

Job Authorization mapreduce.job.acl-modify-job No,
throw
exception

Job Authorization mapreduce.cluster.administrators No,
throw
exception

Job Authorization mapred.queue.queue-name.acl-
administer-jobs

No,
throw
exception

MultipleInputs Not involved No,
throw
exception

Multi{anchor:_GoBack}
pleOutputs

Not involved Yes

org.apache.hadoop.mapreduce
.lib.db

Not involved No,
throw
exception

org.apache.hadoop.mapreduce
.security

Not involved No,
throw
exception

org.apache.hadoop.mapreduce.
lib.jobcontrol

Not involved No,
throw
exception

org.apache.hadoop.mapreduce
.lib.chain

Not involved No,
throw
exception

org.apache.hadoop.mapreduce
.lib.db

Not involved No,
throw
exception

Issue: 20191012 413

⼤数据计算服务 User Guide / 6 Java Sandbox

6 Java Sandbox
MaxCompute, MapReduce and UDF are limited by the Java sandbox when running
in the distributed environment. However, the main program of MapReduce jobs,
such as MR Main, is not restricted. The specific limits are as follows.
• Direct access to local files is not allowed. You can only access files by using

interfaces provided by MaxCompute MapReduce/Graph.
- Read resources specified by the resources option, including files, Jar packages

, and resource tables.
- Output log information through System.out and System.err. You can view log

information by running the Log command on the MaxCompute console.
• Direct access to the distributed file system is not allowed. You can only access

table records by using MaxCompute MapReduce/Graph.
• JNI call restrictions are not allowed.
• Creation of Java threads is not allowed. Initiation of sub-processes to run Linux

commands is not allowed.
• Network access, including obtaining local IP addresses, is not allowed.
• Java reflection is restricted: suppressAccessChecks permission is denied. A

private attribute or method cannot be set to accessible for obtaining private
attributes or calling private methods.

Specifically for the user code, access denied is thrown if you follow these steps.
• java.io.File

public boolean delete()
public void deleteOnExit()
public boolean exists()
public boolean canRead()
public boolean isFile()
public boolean isDirectory()
public boolean isHidden()
public long lastModified()
public long length()
public String[] list()
public String[] list(FilenameFilter filter)
public File[] listFiles()
public File[] listFiles(FilenameFilter filter)
public File[] listFiles(FileFilter filter)
public boolean canWrite()
public boolean createNewFile()
public static File createTempFile(String prefix, String suffix)
public static File createTempFile(String prefix, String suffix,File
directory)

414 Issue: 20191012

⼤数据计算服务 User Guide / 6 Java Sandbox
public boolean mkdir()
public boolean mkdirs()
public boolean renameTo(File dest)
public boolean setLastModified(long time)
public boolean setReadOnly()

• java.io.RandomAccessFile
RandomAccessFile(String name, String mode)
RandomAccessFile(File file, String mode)

• java.io.FileInputStream
FileInputStream(FileDescriptor fdObj)
FileInputStream(String name)
FileInputStream(File file)

• java.io.FileOutputStream
FileOutputStream(FileDescriptor fdObj)
FileOutputStream(File file)
FileOutputStream(String name)
FileOutputStream(String name, boolean append)

• java.lang.Class
public ProtectionDomain getProtectionDomain()

• java.lang.ClassLoader
ClassLoader()
ClassLoader(ClassLoader parent)

• java.lang.Runtime
public Process exec(String command)
public Process exec(String command, String envp[])
public Process exec(String cmdarray[])
public Process exec(String cmdarray[], String envp[])
public void exit(int status)
public static void runFinalizersOnExit(boolean value)
public void addShutdownHook(Thread hook)
public boolean removeShutdownHook(Thread hook)
public void load(String lib)
public void loadLibrary(String lib)

• java.lang.System
public static void exit(int status)
public static void runFinalizersOnExit(boolean value)
public static void load(String filename)
public static void loadLibrary(String libname)
public static Properties getProperties()
public static void setProperties(Properties props)
public static String getProperty(String key) //Only some keys are
allowed for file access.
public static String getProperty(String key, String def) // Only
some keys are allowed for file access.
public static String setProperty(String key, String value)
public static void setIn(InputStream in)

Issue: 20191012 415

⼤数据计算服务 User Guide / 6 Java Sandbox
public static void setOut(PrintStream out)
public static void setErr(PrintStream err)
public static synchronized void setSecurityManager(SecurityManager s
)

List of keys allowed by System.getProperty is as follows:
java.version
java.vendor
java.vendor.url
java.class.version
os.name
os.version
os.arch
file.separator
path.separator
line.separator
java.specification.version
java.specification.vendor
java.specification.name
java.vm.specification.version
java.vm.specification.vendor
java.vm.specification.name
java.vm.version
java.vm.vendor
java.vm.name
file.encoding
user.timezone

• java.lang.Thread
Thread()
Thread(Runnable target)
Thread(String name)
Thread(Runnable target, String name)
Thread(ThreadGroup group, ...)
public final void checkAccess()
public void interrupt()
public final void suspend()
public final void resume()
public final void setPriority (int newPriority)
public final void setName(String name)
public final void setDaemon(boolean on)
public final void stop()
public final synchronized void stop(Throwable obj)
public static int enumerate(Thread tarray[])
public void setContextClassLoader(ClassLoader cl)

• java.lang.ThreadGroup
ThreadGroup(String name)
ThreadGroup(ThreadGroup parent, String name)
public final void checkAccess()
public int enumerate(Thread list[])
public int enumerate(Thread list[], boolean recurse)
public int enumerate(ThreadGroup list[])
public int enumerate(ThreadGroup list[], boolean recurse)
public final ThreadGroup getParent()
public final void setDaemon(boolean daemon)
public final void setMaxPriority(int pri)
public final void suspend()
public final void resume()

416 Issue: 20191012

⼤数据计算服务 User Guide / 6 Java Sandbox
public final void destroy()
public final void interrupt()
public final void stop()

• java.lang.reflect.AccessibleObject
public static void setAccessible(...)
public void setAccessible(...)

• java.net.InetAddress
public String getHostName()
public static InetAddress[] getAllByName(String host)
public static InetAddress getLocalHost()

• java.net.DatagramSocket
public InetAddress getLocalAddress()

• java.net.Socket
Socket(...)

• java.net.ServerSocket
ServerSocket(...)
public Socket accept()
protected final void implAccept(Socket s)
public static synchronized void setSocketFactory(...)
public static synchronized void setSocketImplFactory(...)

• java.net.DatagramSocket
DatagramSocket(...)
public synchronized void receive(DatagramPacket p)

• java.net.MulticastSocket
MulticastSocket(...)

• java.net.URL
URL(...)
public static synchronized void setURLStreamHandlerFactory(...)
java.net.URLConnection
public static synchronized void setContentHandlerFactory(...)
public static void setFileNameMap(FileNameMap map)

• java.net.HttpURLConnection
public static void setFollowRedirects(boolean set)
java.net.URLClassLoader
URLClassLoader(...)

• java.security.AccessControlContext
public AccessControlContext(AccessControlContext acc, DomainCombiner
 combiner)

Issue: 20191012 417

⼤数据计算服务 User Guide / 6 Java Sandbox
public DomainCombiner getDomainCombiner()

418 Issue: 20191012

⼤数据计算服务 User Guide / 7 External table

7 External table
7.1 Overview of External tables

MaxCompute is the core computing component of the Alibaba Cloud big data
platform. It possesses powerful computing capabilities and can schedule parallel
computing tasks on a large volume of nodes. It also provides a set of proven
processing management mechanisms for distributed computing failover, retry, and
other functions.
As the entry of distributed data processing, MaxCompute SQL provides powerful
 support for quick processing and storing of exabytes of offline data. With the
continuous expansion of big data business, many new cases of data usage are
emerging, and the MaxCompute computing frameworks are also evolving. Access
to powerful computation capabilities is gradually opening to external data sources
instead of to internal data with special formats.
At this stage, MaxCompute SQL faces structured data stored in the internal
MaxCompute table in cfile format. For other user data outside of MaxCompute
tables (including text and various types of unstructured data), you must first
import the data to MaxCompute tables using various tools and then compute it. The
process of data import has great limitations. For example, to process OSS data in
MaxCompute, two common methods can be used:
• To download data from OSS using the OSS SDK or other tools, the data is then

imported into the table through the MaxCompute tunnel.
• Write the UDF and call the OSS SDK directly within the UDF to access the OSS

data.
But there are shortcomings in both of these practices:
• You must relay data outside of the MaxCompute system. If the OSS data volume

is too large, you need to consider using concurrent operations to accelerate the
 process and you cannot make full use of MaxCompute's large-scale computing
capabilities.

Issue: 20191012 419

⼤数据计算服务 User Guide / 7 External table

• The second type typically needs to apply for UDF network access, there is also a
 problem for developers to control the number of job concurrency and how the
data is split.

This section describes the functionality of an External table, support is designed
 to provide the ability to process data other than existing MaxCompute tables. In
 this framework, you use a simple DDL statement to create an external table in
MaxCompute. Then, you can associate MaxCompute tables with the external data
 source to provide various data access and output capabilities. After creating an
external table, you can use it like a MaxCompute table (in most situations), to take
full advantage of MaxCompute SQL's powerful computing functions.

Note:
Using the external tables feature, the data of the external tables is not copied and
placed on the MaxCompute for storage.

Here, a variety of data covers two dimensions:
A variety of data storage media: a plug-in framework can be used to connect to a wide
variety of data storage media, such as OSS, OTS.
Diverse data formats: The MaxCompute table is structured data, external tables can not
be limited to structured data.
• There is no structured data, such as images, audio, video files, raw bindings, and

 so on.
• Semi-structured data, such as CSV, TSV, and so on, implies a certain schema text

 file. Structured Data for a non-cfile, such as an orc/parquet file, or even hbase/
OTS data.

We'll take some examples to help you gain insight into the processing of unstructur
ed data:
• To access OSS and OTS unstructured data see accessing OSS unstructured data and

accessing OTS unstructured data.
• External tables access the OSS account, and in Ram customize the permissions

that authorize MaxCompute to access the OSS seeOSS STS mode authorization.
• The unstructured framework of MaxCompute supports output of MaxCompute

data directly to OSS via insert, see Unstructured data exported to OSS.

420 Issue: 20191012

⼤数据计算服务 User Guide / 7 External table

• To work with data on middleware databases, see Processing open source format data for

OSShandling data in a variety of open source formats.

7.2 OSS STS mode authorization
This article introduces you how to customize the permissions of MaxCompute to
access OSS in RAM.
The location access OSS account supports the incoming plaintext AccessKeyId and
AccessKeySecret when creating the external table, but there is a risk of leaking
the account. In some scenarios, this risk is intolerable, so MaxCompute provides a
more secure way to access OSS.
MaxCompute combines Alibaba Cloud's Access Control Service (RAM) and Token
Service (STS) to address account security issues. You can grant permissions in two
ways:
• When the owner of MaxCompute and OSS are the same account, a one-click

authorization operation can be performed directly on the RAM console.
• Custom authorization.

1. The first thing you need to authorize MaxCompute to access the OSS
permissions in RAM. Create a role, and the role name such as AliyunODPS
DefaultRole or AliyunODPSRoleForOtherUser , and set the policy content:
-- When the owner of MaxCompute and OSS are the same account

"Statement ":[

"Action": "STS: apererole ",
"Effect": "allow ",
"Principal ":{
"Service ":[
"Maid"

}

"Version": "1"

-- When the owner of MaxCompute and OSS are not the same account

"Statement ":[

"Action": "STS: apererole ",
"Effect": "allow ",
"Principal ":{
"Service ":[
"MaxCompute's owner cloud account page"

Issue: 20191012 421

⼤数据计算服务 User Guide / 7 External table

"Version": "1"

2. Grant the role the necessary permissions to access the OSS * . As follows:

Version: "1 ",
"Statement ":[

"Action ":[
 "Oss: listbuckets ",
 "Oss: GetObject ",
 "Oss: maid ",
 "Oss: putobject ",
 "Oss: deleteobject ",
 "Oss: maid ",
 "Oss: listparts"

"Resource ":"*",
"Effect": "allow"

-- Can Customize other Permissions

3. The permission box is then granted to the role.

Note:
After the authorization is complete, view the role details to obtain the Ran
information of the Role. You need to specify this Ran information when you create
the OSS external table.

7.3 Access OSS unstructured data
This topic describes how to access OSS unstructured data in MaxCompute by using
different methods.

Note:
You can use DataWorks and MaxCompute to create, search, query, configure,
process, and analyze external tables. For more information, see #unique_158. For
information about how to use an external table to process unstructured data, see
External table overview.

422 Issue: 20191012

⼤数据计算服务 User Guide / 7 External table

Authorize OSS data access permission with STS mode
Authorize OSS data access permission to MaxCompute account in advance so that
MaxCompute can directly access the OSS. You can authorize permissions in one of
the following two ways:
• When the MaxCompute owner and OSS owner use the same account, you can

use this account to log on to the Alibaba Cloud and authorize the role to access OSS
resources.

• Customize authorization.
1. Log on to the RAM console. If the MaxCompute owner and OSS owner use

different accounts, navigate to the RAM Roles page and use the OSS owner
account to create a role such as AliyunODPSDefaultRole or AliyunODPS
RoleForOtherUser to grant MaxCompute the permissions to access OSS.

2. Modify the policy content of role as follows:
--If MaxCompute and OSS owners use the same account, do the
following:
{
"Statement": [
{
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "odps.aliyuncs.com"
]
 }
}
],
"Version": "1"
}
--If MaxCompute and OSS owners use different accounts, do the
following:
{
"Statement": [
{
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service ":[
 "MaxCompute's Owner account: id@odps.aliyuncs.com"
]
 }
}
],
"Version": "1"

Issue: 20191012 423

https://ram.console.aliyun.com/overview
https://account.alibabacloud.com/login/login.html

⼤数据计算服务 User Guide / 7 External table
}

3. Grant the necessary permission AliyunODPSRolePolicy to the role to access
OSS as follows:
{
"Version": "1",
"Statement": [
{
 "Action": [
 "oss:ListBuckets",
 "oss:GetObject",
 "oss:ListObjects",
 "oss:PutObject",
 "oss:DeleteObject",
 "Oss: maid ",
 "oss:ListParts"
],
 "Resource": "*",
 "Effect": "Allow"
}
]
}
--You can customize other permissions.

4. Authorize the permission AliyunODPSRolePolicy to this role.
Read OSS text data by using a built-in extractor

When accessing external data sources, you must use different custom extractor. You
can also use MaxCompute’s built-in extractor to read conventionally-formatted
data stored in OSS. You only need to create an external table and use this table as the
source table for query operations.
In this example, assume that you have a CSV data file in OSS. The endpoint is oss-cn
-shanghai-internal.aliyuncs.com, the bucket is oss-odps-test, and the data file
is stored in /demo/vehicle.csv.
• Create an external table

Use the following statements to create an external table:
CREATE EXTERNAL TABLE IF NOT EXISTS ambulance_data_csv_external
(
vehicleId int,
recordId int,
patientId int,
calls int,
locationLatitute double,
locationLongtitue double,
recordTime string,
direction string
)
STORED BY 'com.aliyun.odps.CsvStorageHandler' -- (1)
WITH SERDEPROPERTIES (

424 Issue: 20191012

https://www.alibabacloud.com/product/oss
https://www.alibabacloud.com/product/oss

⼤数据计算服务 User Guide / 7 External table
 'odps.properties.rolearn'='acs:ram::xxxxx:role/aliyunodpsdefaultrol
e'
) -- (2)
LOCATION 'oss://oss-cn-shanghai-internal.aliyuncs.com/oss-odps-test/
Demo/'; -- (3)(4)

The above statement is described below:
- com.aliyun.odps.CsvStorageHandler is the built-in StorageHandler for

processing CSV-format files. It defines how CSV files are read and written.
You only need to specify this name. The relevant logic is implemented by the
system.

- The information in odps.properties.rolearn comes from the Arn
 information of AliyunODPSDefaultRole in RAM. You can get it through the role

 details in the RAM console.
- You must specify an OSS directory for LOCATION. By default, the system reads

all the files in this directory.
■ We recommend you to use the domain name of the intranet, to avoid

incurring fees for the OSS data-flow.
■ We recommend that the region you store the OSS data is the same as the

region you open MaxCompute. Because MaxCompute can only be deployed
in some regions, cross-regional data connectivity cannot be guaranteed.

■ OSS connection format is oss://oss-cn-shanghai-internal.aliyuncs.com
/bucketname/directoryname/. You do not have to add a file name after the
directory. Some common errors are shown as follows:
http://oss-odps-test.oss-cn-shanghai-internal.aliyuncs.com/Demo
/ -- HTTP connection is not supported.
https://oss-odps-test.oss-cn-shanghai-internal.aliyuncs.com/
Demo/ -- HTTPS connection is not supported.
oss://oss-odps-test.oss-cn-shanghai-internal.aliyuncs.com/Demo
 -- The connection address is incorrect.
oss://oss://oss-cn-shanghai-internal.aliyuncs.com/oss-odps-test
/Demo/vehicle.csv -- You do not need to specify the file name.

- In the MaxCompute system, external tables only record the associated OSS
directory. If you DROP (delete) this table, the corresponding LOCATION data is
not deleted.

In the returned information, Extended Info contains external tables
information such as StorageHandler and Location.

Issue: 20191012 425

https://ram.console.aliyun.com/#/role/detailAliyunODPSDefaultRole/info
https://ram.console.aliyun.com/#/role/detailAliyunODPSDefaultRole/info

⼤数据计算服务 User Guide / 7 External table

• Query an external table
After creating an external table, you can use it as a normal table. Assume the
data in /demo/vehicle.csv is as follows:
1,1,51,1,46.81006,-92.08174,9/14/2014 0:00,S
1,2,13,1,46.81006,-92.08174,9/14/2014 0:00,NE
1,3,48,1,46.81006,-92.08174,9/14/2014 0:00,NE
1,4,30,1,46.81006,-92.08174,9/14/2014 0:00,W
1,5,47,1,46.81006,-92.08174,9/14/2014 0:00,S
1,6,9,1,46.81006,-92.08174,9/14/2014 0:00,S
1,7,53,1,46.81006,-92.08174,9/14/2014 0:00,N
1,8,63,1,46.81006,-92.08174,9/14/2014 0:00,SW
1,9,4,1,46.81006,-92.08174,9/14/2014 0:00,NE
1,10,31,1,46.81006,-92.08174,9/14/2014 0:00,N

Run the following SQL statement:
select recordId, patientId, direction from ambulance_data_csv_e
xternal where patientId > 25;

Note:
Currently, external table can only be operated through MaxCompute SQL.
MaxCompute MapReduce cannot operate the external table.

This statement submits a job, scheduling the built-in CSV extractor to read and
process data from OSS. The result is as follows:
+------------+------------+-----------+
| recordId | patientId | direction |
+------------+------------+-----------+
| 1 | 51 | S |
| 3 | 48 | NE |
| 4 | 30 | W |
| 5 | 47 | S |
| 7 | 53 | N |
| 8 | 63 | SW |
| 10 | 31 | N |
+------------+------------+-----------+

Read OSS text data by using a custom extractor
When OSS data is in a complex format, and the built-in extractor cannot meet your
requirements, you must use a custom extractor to read data from OSS files.
For example, assume you have a TXT data file that is not in CSV format, and | is
used as the column delimiter between records. For example, the data in /demo/
SampleData/CustomTxt/AmbulanceData/vehicle.csv is as follows:
1|1|51|1|46.81006|-92.08174|9/14/2014 0:00|S
1|2|13|1|46.81006|-92.08174|9/14/2014 0:00|NE

426 Issue: 20191012

⼤数据计算服务 User Guide / 7 External table
1|3|48|1|46.81006|-92.08174|9/14/2014 0:00|NE
1|4|30|1|46.81006|-92.08174|9/14/2014 0:00|W
1|5|47|1|46.81006|-92.08174|9/14/2014 0:00|S
1|6|9|1|46.81006|-92.08174|9/14/2014 0:00|S
1|7|53|1|46.81006|-92.08174|9/14/2014 0:00|N
1|8|63|1|46.81006|-92.08174|9/14/2014 0:00|SW
1|9|4|1|46.81006|-92.08174|9/14/2014 0:00|NE
1|10|31|1|46.81006|-92.08174|9/14/2014 0:00|N

• Define an extractor.
Write a common extractor by using the delimiter as the parameter. This allows
you to process all text files with similar formats.
/**
 * Text extractor that extract schematized records from formatted
plain-text(csv, tsv etc.)
 **/
public class TextExtractor extends Extractor {
 private InputStreamSet inputs;
 private String columnDelimiter;
 private DataAttributes attributes;
 private BufferedReader currentReader;
 private boolean firstRead = true;
 public TextExtractor() {
 // default to ",", this can be overwritten if a specific
delimiter is provided (via DataAttributes)
 this.columnDelimiter = ",";
 }
 // no particular usage for execution context in this example
 @Override
 public void setup(ExecutionContext ctx, InputStreamSet inputs,
DataAttributes attributes) {
 this.inputs = inputs; // inputs is an InputStreamSet, each call
to next() returns an InputStream. This InputStream can read all the
content in an OSS file.
 this.attributes = attributes;
 // check if "delimiter" attribute is supplied via SQL query
 String columnDelimiter = this.attributes.getValueByKey("
delimiter"); //The delimiter parameter is supplied by a DDL
statement.
 if (columnDelimiter ! = NULL)
 {
 this.columnDelimiter = columnDelimiter;
 }
 // note: more properties can be inited from attributes if needed
 }
 @Override
 public Record extract() throws IOException {//extractor() calls
return one record, corresponding to one record in an external table.
 String line = readNextLine();
 if (line == null) {
 return null; // A return value of NULL indicates that this
table has no readable records.
 }
 return textLineToRecord(line); // textLineToRecord splits a row
 of data into multiple columns according to the delimiter.
 }
 @Override
 public void close(){
 // no-op
 }

Issue: 20191012 427

⼤数据计算服务 User Guide / 7 External table
}

See here for a complete implementation of the textLineToRecord splitting data.
• Define StorageHandler.

A StorageHandler acts as a centralized portal for custom external table logic.
package com.aliyun.odps.udf.example.text;
public class TextStorageHandler extends OdpsStorageHandler {
 @Override
 public Class<? extends Extractor> getExtractorClass() {
 return TextExtractor.class;
 }
 @Override
 public Class<? extends Outputer>getOutputerClass() {
 return TextOutputer.class;
 }
}

• Compile and package custom code.
Compile your custom code into a package and upload it to MaxCompute.
add jar odps-udf-example.jar;

• Create an external table.
Similar to using the built-in extractor, first, you must create an external table.
The difference is that, when specifying the external table access data, you must
use a custom StorageHandler.
Use the following statements to create an external table:
CREATE EXTERNAL TABLE IF NOT EXISTS ambulance_data_txt_external
(
vehicleId int,
recordId int,
patientId int,
calls int,
locationLatitute double,
locationLongtitue double,
recordTime string,
direction string
)
STORED BY 'com.aliyun.odps.udf.example.text.TextStorageHandler' --
STORED BY specifies the custom StorageHandler class name.
 with SERDEPROPERTIES (
'delimiter'='\\|', -- SERDEPROPERITES can specify parameters, these
 parameters are passed through the DataAttributes to the Extractor
code.
'odps.properties.rolearn'='acs:ram::xxxxxxxxxxxxx:role/aliyunodps
defaultrole'
)
LOCATION 'oss://oss-cn-shanghai-internal.aliyuncs.com/oss-odps-test/
Demo/SampleData/CustomTxt/AmbulanceData/'

428 Issue: 20191012

https://github.com/aliyun/aliyun-odps-java-sdk/blob/master/odps-sdk-impl/odps-udf-example/src/main/java/com/aliyun/odps/udf/example/text/TextExtractor.java

⼤数据计算服务 User Guide / 7 External table
USING 'odps-udf-example.jar'; --You must also specify the jar
package containing the class definition.

• Query an external table.
Run the following SQL statement:
select recordId, patientId, direction from ambulance_data_txt_e
xternal where patientId > 25;

Read OSS non-text data by using a custom extractor
The preceding sections show how the built-in extractor or a custom extractor can
 conveniently process CSV and other text data stored in OSS. Following sections
 using audio data (WAV format files) as an example show how to use a custom
extractor to access and process non-text files in OSS.
However, this section describes how to use MaxCompute SQL as a portal to process
audio files stored in OSS.
Create the external table SQL as follows:
CREATE EXTERNAL TABLE IF NOT EXISTS speech_sentence_snr_external
(
sentence_snr double,
id string
)
STORED BY 'com.aliyun.odps.udf.example.speech.SpeechStorageHandler'
WITH SERDEPROPERTIES (
 'mlfFileName'='sm_random_5_utterance.text.label' ,
 'speechSampleRateInKHz' = '16'
)
LOCATION 'oss://oss-cn-shanghai-internal.aliyuncs.com/oss-odps-test/
dev/SpeechSentenceTest/'
USING 'odps-udf-example.jar,sm_random_5_utterance.text.label';

As in the preceding example, you must create an external table. Then, use the
schema of this table to define the information that you want to extract from the
audio file:
• The statement signal-to-noise ratio (SNR) in an audio file: sentence_snr.
• The name of the audio file: id.
After creating the external table, use a standard Select statement to perform a
query. This operation triggers the extractor to perform computation. When reading
 and processing OSS data, in addition to simple deserialization on text files, you can
 use custom extractor to perform more complex data processing and extraction
logic.

Issue: 20191012 429

⼤数据计算服务 User Guide / 7 External table

In this example, use the custom extractor encapsulated in com.aliyun.odps.
udf.example.speech.SpeechStorageHandler to calculate the average SNR of
valid statements in the audio file, and extract structured data for SQL operations
(WHERE sentence_snr > 10). After this operation is completed, the operation
returns all audio files with an SNR that are greater than 10 along with the
corresponding SNR values.
Multiple WAV format files are stored at the OSS address oss://oss-cn-hangzhou-
zmf.aliyuncs.com/oss-odps-test/dev/SpeechSentenceTest/. The MaxCompute
framework reads all the files at this address and, when necessary, performs file-
level sharing. The framework automatically allocates the file to multiple computing
nodes for processing.
On each computing node, the extractor is responsible for processing the file set
allocated to the node by InputStreamSet. The special processing logic is similar
to a single-host program. The algorithm is implemented by using the single host
method according to its class.
Details about the SpeechSentenceSnrExtractor formulation logic are as follows:
First, read the parameters in the setup interface to perform initialization and
import the audio processing model (using resource introduction):
public SpeechSentenceSnrExtractor(){
 this.utteranceLabels = new HashMap<String, UtteranceLabel>();
 }
 @Override
 public void setup(ExecutionContext ctx, InputStreamSet inputs,
DataAttributes attributes){
 this.inputs = inputs;
 This. Attributes = attributes;
 this.mlfFileName = this.attributes.getValueByKey(MLF_FILE_A
TTRIBUTE_KEY);
 String sampleRateInKHzStr = this.attributes.getValueByKey(
SPEECH_SAMPLE_RATE_KEY);
 this.sampleRateInKHz = Double.parseDouble(sampleRateInKHzStr);
 try {
 // read the speech model file from resource and load the model
into memory
 BufferedInputStream inputStream = ctx.readResourceFileAsStream(
mlfFileName);
 loadMlfLabelsFromResource(inputStream);
 inputStream.close();
 } catch (IOException e) {
 throw new RuntimeException("reading model from mlf failed with
exception " + e.getMessage());
 }
 }

430 Issue: 20191012

⼤数据计算服务 User Guide / 7 External table

The extract() interface implements reading and processing logic of the voice file,
computes the signal-to-noise ratio (SNR) of the data based on the voice model, and
fills Record with the result in the format of [snr, id].
The preceding example simplifies the implementation process and does not include
the relevant audio processing algorithm logic. See the example code provided by the
MaxCompute SDK from the open-source community.
@Override
 public Record extract() throws IOException {
 SourceInputStream inputStream = inputs.next();
 if (inputStream == null){
 return null;
 }
 // process one wav file to extract one output record [snr, id]
 String fileName = inputStream.getFileName();
 fileName = fileName.substring(fileName.lastIndexOf('/') + 1);
 logger.info("Processing wav file " + fileName);
 String id = fileName.substring(0, fileName.lastIndexOf('.'));
 // read speech file into memory buffer
 long fileSize = inputStream.getFileSize();
 byte[] buffer = new byte[(int)fileSize];
 int readSize = inputStream.readToEnd(buffer);
 inputStream.close();
 // compute the avg sentence snr
 double snr = computeSnr(id, buffer, readSize);
 // construct output record [snr, id]
 Column[] outputColumns = this.attributes.getRecordColumns();
 ArrayRecord record = new ArrayRecord(outputColumns);
 record.setDouble(0, snr);
 record.setString(1, id);
 return record;
 }
 private void loadMlfLabelsFromResource(BufferedInputStream
fileInputStream)
 throws IOException {
 // skipped here
 }
 // compute the snr of the speech sentence, assuming the input buffer
 contains the entire content of a wav file
 private double computeSnr(String id, byte[] buffer, int validBuffe
rLen){
 // computing the snr value for the wav file (supplied as byte
buffer array), skipped here
 }

Run the query:
select sentence_snr, id
 from speech_sentence_snr_external
where sentence_snr > 10.0;

Results:
--

Issue: 20191012 431

https://github.com/aliyun/aliyun-odps-java-sdk/blob/master/odps-sdk-impl/odps-udf-example/src/main/java/com/aliyun/odps/udf/example/speech/SpeechSentenceSnrExtractor.java

⼤数据计算服务 User Guide / 7 External table
| sentence_snr | id |
--
| 34.4703 | J310209090013_H02_K03_042 |
--
| 31.3905 | tsh148_seg_2_3013_3_6_48_80bd359827e24dd7_0 |
--
| 35.4774 | tsh148_seg_3013_1_31_11_9d7c87aef9f3e559_0 |
--
| 16.0462 | tsh148_seg_3013_2_29_49_f4cb0990a6b4060c_0 |
--
| 14.5568 | tsh_148_3013_5_13_47_3d5008d792408f81_0 |
--

By using the custom extractor, you can process multiple voice data files stored on
OSS on the SQL statement in a distributed way. You can also use the same method
given the large-scale computing power of MaxCompute to process various types of
unstructured data such as image or video files.

Partition data
In earlier sections, data linked to an external table is implemented through a
designated OSS Directory on LOCATION. During this process, MaxCompute reads
all data under the OSS Directory, including all files in sub-directory. For directories with
largest amounts of data, especially those with data that is continually accumulating
over time, scanning the entire directory may cause unnecessary IO and data
processing time. In which case, you can typically implement one of the following
two solutions:
• Reduce access data volume: You can implement changes in terms of the data

storage organization, use multiple external tables to describe different parts of
the data, or have each EXTERNAL TABLE LOCATION refer to a subset of the data.

• Partition data: An external table is the same as an internal table, it supports functions

of partition table, you are available to manage data systemization based on partition
function.

• Standard Organization and Path Format of Partitioned Data in OSS

Unlike its internal tables, MaxCompute does not have the authority to manage
data stored in external memory (such as OSS). As such, if using the partition

432 Issue: 20191012

⼤数据计算服务 User Guide / 7 External table

table function on your system is a requirement, the storage path for data files in
OSS must conform to a certain format. This format is as follows.
partitionKey1=value1\partitionKey2=value2\...

Related examples are as follows

Assume that you save your daily LOG files on OSS and want to access part of
the data when processed with MaxCompute, based on the granularity of Day.
Assuming that these LOG files are CSV files (usage of complicated and customized
format is similar), you can define data using the following partitioned external table.
CREATE EXTERNAL TABLE log_table_external (
 click STRING,
 ip STRING,
 url STRING,
)
 PARTITIONED BY (
 year STRING,
 month STRING,
 day STRING
)
 STORED BY 'com.aliyun.odps.CsvStorageHandler'
 WITH SERDEPROPERTIES (
 'odps.properties.rolearn'='acs:ram::xxxxx:role/aliyunodpsdefaultrol
e'
)
 LOCATION 'oss://oss-cn-hangzhou-zmf.aliyuncs.com/oss-odps-test/
log_data/';

Like the previous table statement, the difference with the previous example
is that when you define an external table, the external table is specified as a
partition table through the PARTITIONED BY syntax, and the example is a three-
tier partition table, the key for the partition is year, month, and day.
In order for a partition like this to work effectively, you must comply with the
aforementioned path format when storing data on OSS. The following is an
example of a valid path storage layout.
osscmd ls oss://oss-odps-test/log_data/
2017-01-14 08:03:35 128MB Standard oss://oss-odps-test/log_data/year
=2016/month=06/day=01/logfile
2017-01-14 08:04:12 127MB Standard oss://oss-odps-test/log_data/year
=2016/month=06/day=01/logfile. 1
2017-01-14 08:05:02 118MB Standard oss://oss-odps-test/log_data/year
=2016/month=06/day=02/logfile
2017-01-14 08:06:45 123MB Standard oss://oss-odps-test/log_data/year
=2016/month=07/day=10/logfile
2017-01-14 08:07:11 115MB Standard oss://oss-odps-test/log_data/year
=2016/month=08/day=08/logfile

Issue: 20191012 433

⼤数据计算服务 User Guide / 7 External table
...

Note:
If you have prepared the offline data, that is, if you have uploaded the offline
data to the OSS storage service with osscmd or other OSS tools, you then define
the data path format.

You can introduce the partition information into MaxCompute by using the
ALTER TABLE ADD PARTITIONDDL pant statement.
An example of the corresponding DDL statement is as follows.
ALTER TABLE log_table_external ADD PARTITION (year = '2016', month =
 '06', day = '01')
ALTER TABLE log_table_external ADD PARTITION (year = '2016', month =
 '06', day = '02')
ALTER TABLE log_table_external ADD PARTITION (year = '2016', month =
 '07', day = '10')
ALTER TABLE log_table_external ADD PARTITION (year = '2016', month =
 '08', day = '08')
...

Note:
These actions are the same as the standard maxcompute internal table
operation, and for more information about the partition, see #unique_73. When
the data is ready and the PARTITION information has been imported into the
system, the partitioning of the external table data on OSS can be performed by
means of an SQL statement.

Assuming that you only want to analyze how many different IPs there are in LOG
on June 1, 2016, the following command can be used:
SELECT count(distinct(ip)) FROM log_table_external WHERE year = '
2016' AND month = '06' AND day = '01';

At this point, for log_table_external, the directory that corresponds to the
external table will only access the files under the log_data/year=2016/month=
06/day=01 subdirectory (logfile and logfile 1), not on the whole log_data/ to avoid a
large number of useless I/O operations.
Similarly, if you only want to analyze the data for the second half of 2016, you can
use the following command:
SELECT count(distinct(ip)) FROM log_table_external

434 Issue: 20191012

⼤数据计算服务 User Guide / 7 External table
WHERE year = '2016' AND month > '06';

At this point, only access the second half of the LOG stored on OSS.
• Customized Path of Partitioned Data in OSS

If you have historical data stored in OSS but this data is not stored by using the
partitionKey1=value1\partitionKey2=value2\... path format, you can still
access it using MaxCompute’s partition mode. MaxCompute also provides a way
to import partitions through a customized path.
Assume that only a simple partition value is on your data path (and no partition
key information). The following is an example of the data path storage layout:
osscmd ls oss://oss-odps-test/log_data_customized/
2017-01-14 08:03:35 128MB Standard oss://oss-odps-test/log_data_c
ustomized/2016/06/01/logfile
2017-01-14 08:04:12 127MB Standard oss://oss-odps-test/log_data_c
ustomized/2016/06/01/logfile. 1
2017-01-14 08:05:02 118MB Standard oss://oss-odps-test/log_data_c
ustomized/2016/06/02/logfile
2017-01-14 08:06:45 123MB Standard oss://oss-odps-test/log_data_c
ustomized/2016/07/10/logfile
2017-01-14 08:07:11 115MB Standard oss://oss-odps-test/log_data_c
ustomized/2016/08/08/logfile
...

The external table builder DDL can see the previous example and also specify the
partition key in the clause.
To bind different subdirectories to different partitions, you can do so by using a
command similar to the following customized partition path:
ALTER TABLE log_table_external ADD PARTITION (year = '2016', month = '
06', day = '01')
LOCATION 'oss://oss-cn-hangzhou-zmf.aliyuncs.com/oss-odps-test/
log_data_customized/2016/06/01/';

When LOCATION information is added in ADD PARTITION to customize a partition
data path. Even if the data is not stored in the recommended format of partitionK
ey1=value1\partitionKey2=value2\..., you can still access the partition data of
the subdirectory.

Issue: 20191012 435

⼤数据计算服务 User Guide / 7 External table

7.4 Processing open source format data for OSS
This article will show you how to process various popular open source data formats
(ORC, PARQUET, SEQUENCEFILE, RCFILE, AVRO and TEXTFILE) stored on OSS
through unstructured frameworks in MaxCompute.
Accessing the OSS unstructured data shows you how to access the text stored on the OSS on
MaxCompute, audio, image, and other format data. The non-structural framework
directly calls the implementation of the open source community to parse the open
source data format, and seamlessly with the MaxCompute system.

Note:
Before processing the Open Source format data for OSS, it is necessary to authorize
STS mode for OSS.

Create External Table
The MaxCompute unstructured data framework is associated with a variety of data
through external table, external of Open Source format data associated with OSS
DROP TABLE [IF EXISTS] <external_table>;
CREATE EXTERNAL TABLE [IF NOT EXISTS] <external_table>
(<column schemas>)
[PARTITIONED BY (partition column schemas)]
[ROW FORMAT SERDE '<serde class>'
 [With serdeproperties ('ODPS. properties. rolearn '=' $ {roleran
 }'[, 'name2 '= 'value2',...]
]
STORED AS <file format>
LOCATION 'oss://${endpoint}/${bucket}/${userfilePath}/';

Note:
The syntax format is quite similar to hive's syntax, but the following issues need to
be noted:
• STORED AS keyword, which is not STORED BY keyword used for ordinary

unstructured appearance in this grammar format, is unique in reading open
source compatible data at present.
STORED AS is followed by file format names, such as ORC/PARQUET/RCFILE/

SEQUENCEFILE/TEXTFILE.
• The column schemas of the external tables must match the schema where the

stored data is stored on the specific OSS.

436 Issue: 20191012

⼤数据计算服务 User Guide / 7 External table

• ROW FORMAT SERDE option is not required, and is only available in a number of
special formats, for example, textfile needs to be used.

• When WITH SERDEPROPERTIES associates OSS privileges with STS mode

authorization, this parameter is required to specify the odps.properties.rolearn
 attribute, whose value is the Role Arn information specifically used in RAM.
If you do not use STS mode, you do not need to specify this property to pass in
the clear text AccessKeyId and the AccessKeySecret directly at location.

• Location if you associate OSS with clear AK, write as follows:
LOCATION 'oss://${accessKeyId}:${accessKeySecret}@${endpoint}/${
bucket}/${userPath}/'

• Accessing the OSS External tables is not currently supported with outer-network
 Endpoint.

• Currently the STORE AS single file size cannot exceed 3G, split is recommended
if the file is too large.

Example of PARQUET data associated with OSS
Assume that some parquet files are stored on an OSS path, and that each file is in
parquet format, the schema is stored in 16 columns (4 columns bigint, 4 columns
double, and 8 columns string) the data for the build table Div statement is as
follows:
CREATE EXTERNAL TABLE tpch_lineitem_parquet
(
 Rochelle orderkey bigint,
 l_partkey bigint,
 l_suppkey bigint,
 Rochelle linenumber bigint,
 l_quantity double,
 l_extendedprice double,
 l_discount double,
 l_tax double,
 l_returnflag string,
 l_linestatus string,
 l_shipdate string,
 l_commitdate string,
 l_receiptdate string,
 l_shipinstruct string,
 l_shipmode string,
 _Comment string
)
STORED AS PARQUET

Issue: 20191012 437

⼤数据计算服务 User Guide / 7 External table
LOCATION 'oss://${accessKeyId}:${accessKeySecret}@oss-cn-hangzhou-zmf.
aliyuncs.com/bucket/parquet_data/';

The default parquet data is not compressed, and if you need to compress parquet
data on MaxCompute, you need set set odps.sql.hive.compatible=true;. The
supported compression types are: SNAPPY, GZIP.

Text data associated with OSS
If the data is stored as TEXTFILE file on OSS in JSON format for each row and
organized by multiple directories in OSS, then MaxCompute partition table and
data association can be used. An example of DDL statement for partition table is
shown below.
CREATE EXTERNAL TABLE tpch_lineitem_textfile
(
 l_orderkey bigint,
 l_partkey bigint,
 l_suppkey bigint,
 l_linenumber bigint,
 l_quantity double,
 l_extendedprice double,
 l_discount double,
 l_tax double,
 l_returnflag string,
 Maid string,
 l_shipdate string,
 Rochelle Commission string,
 l_receiptdate string,
 l_shipinstruct string,
 l_shipmode string,
 l_comment string
)
PARTITIONED BY (ds string)
ROW FORMAT serde 'org.apache.hive.hcatalog.data.JsonSerDe'
STORED AS TEXTFILE
Location 'oss: // $ {accesskeyid}: $ {accesskeysecret} @ fig /';

If the sub-directory under the OSS table directory is organized as Partition Name,
the example is as follows.
oss://${accessKeyId}:${accessKeySecret}@oss-cn-hangzhou-zmf.aliyuncs.
com/bucket/text_data/ds=20170102/'
oss://${accessKeyId}:${accessKeySecret}@oss-cn-hangzhou-zmf.aliyuncs.
com/bucket/text_data/ds=20170103/'
...

You can ADD PARTITION using the following pant statement.
ALTER TABLE tpch_lineitem_textfile ADD PARTITION(ds="20170102");

438 Issue: 20191012

⼤数据计算服务 User Guide / 7 External table
ALTER TABLE tpch_lineitem_textfile ADD PARTITION(ds="20170103");

If the OSS partition directory is not organized in this way, or not in the table
directory at all, the example is as follows:
oss://${accessKeyId}:${accessKeySecret}@oss-cn-hangzhou-zmf.aliyuncs.
com/bucket/text_data_20170102/;
oss://${accessKeyId}:${accessKeySecret}@oss-cn-hangzhou-zmf.aliyuncs.
com/bucket/text_data_20170103/;
...

In this case, you can use the following pant statement to ADD PARTITION.
ALTER TABLE tpch_lineitem_textfile ADD PARTITION(ds="20170102")
LOCATION 'oss://${accessKeyId}:${accessKeySecret}@oss-cn-hangzhou-zmf.
aliyuncs.com/bucket/text_data_20170102/';
ALTER TABLE tpch_lineitem_textfile ADD PARTITION(ds="20170103")
LOCATION 'oss://${accessKeyId}:${accessKeySecret}@oss-cn-hangzhou-zmf.
aliyuncs.com/bucket/text_data_20170103/';
...

Text data supports serdeproperties (key: default)

Fields terminator：'\001'
Escape delimitor：'\\'
Collection items terminator：'\002'
Map keys terminator：'\003'
Lines terminate: '\ N'
Null defination：'\\N'

CSV data associated with OSS
The Tasmania statement format is as follows.

CREATE EXTERNAL TABLE [IF NOT EXISTS]
(<column schemas>)
[PARTITIONED BY (partition column schemas)]
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2. OpenCSVSerde'
 WITH SERDEPROPERTIES
 ('Separates atorchare' =, ', 'pigeon techar' = '"', 'escarechar '=
 '\\')
STORED AS TEXTFILE
LOCATION 'oss://${endpoint}/${bucket}/${userfilePath}/';

As you can see from the above statement, the CSV data pant Statement supports
serdeproperties (key: default)

separatorChar：','
quoteChar：'"'
Escarechar :'\'

Note:
Issue: 20191012 439

⼤数据计算服务 User Guide / 7 External table

hive OpenCSVSerde only supports string types.
OpenCSVSerde does not currently belong to Builtin Serde. When DML statements
are executed, you need to set odps.sql.hive.compatible = true.

JSON data associated with OSS
The Tasmania statement format is as follows, and SERDEPROPERTIES is supported.

CREATE EXTERNAL TABLE [IF NOT EXISTS]
(<column schemas>)
[PARTITIONED BY (partition column schemas)]
ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe'
STORED AS TEXTFILE
LOCATION 'oss://${endpoint}/${bucket}/${userfilePath}/';

ORC data associated with OSS
The Tasmania statement format is as follows.

CREATE EXTERNAL TABLE [IF NOT EXISTS]
(<column schemas>)
[PARTITIONED BY (partition column schemas)]
STORED AS ORC
LOCATION 'oss://${endpoint}/${bucket}/${userfilePath}/';

AVRO data associated with OSS
The format of the DDL statement is as follows.

CREATE EXTERNAL TABLE [IF NOT EXISTS]
(<column schemas>)
[PARTITIONED BY (partition column schemas)]
STORED AS AVRO
LOCATION 'oss://${endpoint}/${bucket}/${userfilePath}/';

SEQUENCEFILE data associated with OSS

CREATE EXTERNAL TABLE [IF NOT EXISTS]
(<column schemas>)
[PARTITIONED BY (partition column schemas)]
STORED AS SEQUENCEFILE
LOCATION 'oss://${endpoint}/${bucket}/${userfilePath}/';

Read and process open source format data for OSS
Compare the two external representations created in the previous article, you
can see that for different file types, Simply modify the format name after STORED
 AS. In the following example, only the processing of the appearance (tpch_linei

440 Issue: 20191012

⼤数据计算服务 User Guide / 7 External table

tem_parquet) corresponding to the above PARQUET data will be described
centrally. If you want to work with different file types, just specify parquet/ORC/
TEXTFILE/RCFILE/TEXTFILE as long as you want to create the appearance when the
 DDL is created, the statement that processes the data is the same.
• Read and process open source data directly from OSS

After creating a data table to associate, you can directly do the same thing as a
normal MaxCompute table, as shown below.
SELECT l_returnflag, l_linestatus,
SUM(l_extendedprice*(1-l_discount)) AS sum_disc_price,
AVG(l_quantity) AS avg_qty,
COUNT(*) AS count_order
FROM tpch_lineitem_parquet
WHERE l_shipdate <= '1998-09-02'
Group by l_returnflag, l_linestatus;

The appearance tpch_lineitem_parquet is used as a common internal table,
except that the MaxCompute internal computing engine reads the corresponding
 PARQUET data directly from OSS for processing.
The external partition table for the associated textfile that was created in the
previous article, becauseROW FORMAT+ STORED AS is used, you need to set flag
manually (Only use STORED AS, odps.sql.hive.compatible is FALSE by default.)
and then reads again, otherwise there will be an error.
SELECT * FROM tpch_lineitem_textfile LIMIT 1;
Failed: Maid: User Defined Function exception-traceback:
com.aliyun.odps.udf.UDFException: java.lang.ClassNotFoundException:
com.aliyun.odps.hive.wrapper.HiveStorageHandlerWrapper
--You need to manually set up hive compatible flag.
set odps.sql.hive.compatible=true;
Select * from Maid limit 1;
+------------+------------+------------+--------------+------------
+-----------------+------------+------------+--------------
+--------------+------------+--------------+---------------
+----------------+------------+-----------+
| l_orderkey | l_partkey | l_suppkey | l_linenumber | l_quantity
 | l_extendedprice | l_discount | l_tax | l_returnflag
 | l_linestatus | l_shipdate | l_commitdate | l_receiptdate |
l_shipinstruct | l_shipmode | l_comment |
+------------+------------+------------+--------------+------------
+-----------------+------------+------------+--------------
+--------------+------------+--------------+---------------
+----------------+------------+-----------+
| 5640000001 | 174458698 | 9458733 | 1 | 14.0
 | 23071.58 | 0.08 | 0.06 | N | O
 | 1998-01-26 | 1997-11-16 | 1998-02-18 | TAKE BACK
RETURN | SHIP | cuses nag silently. quick |
+------------+------------+------------+--------------+------------
+-----------------+------------+------------+--------------

Issue: 20191012 441

⼤数据计算服务 User Guide / 7 External table
+--------------+------------+--------------+---------------
+----------------+------------+-----------+

Note:
Direct use of the external table, each time reading data requires I/O operations
involving external OSS, and the MaxCompute system itself does not use many
high-performance optimizations for internal storage, so there will be a loss in
performance. Therefore, if it is a scenario that requires repeated computation of
data and is sensitive to the efficiency of computation, it is recommended to use
the following usage: first import the data into MaxCompute and then calculate
it.
These complex data types are involved in SQL (create, select, insert, etc.). The
statement set odps. sql. type. system. odps2 = true; should be added
before the SQL statement, and the set statement and the SQL statement should
be submitted together for execution at execution time. See for details Data types.

• Importing the open source data from OSS into MaxCompute for Calculation

First, create an internal table tpch_lineitem_internal, which is the same as the
external table schema, and then import the open source data from OSS into the
internal table of MaxCompute for storage in the internal data storage format of
MaxCompute.
CREATE TABLE tpch_lineitem_internal LIKE tpch_lineitem_parquet;
INSERT OVERWRITE TABLE tpch_lineitem_internal;
SELECT * FROM tpch_lineitem_parquet;

Next take the same action directly to the internal table:
SELECT l_returnflag, l_linestatus,
SUM(l_extendedprice*(1-l_discount)) AS sum_disc_price,
AVG(l_quantity) AS avg_qty,
COUNT(*) AS count_order
FROM tpch_lineitem_internal
WHERE l_shipdate <= '1998-09-02'
GROUP BY l_returnflag, l_linestatus;

By doing so, you can pilot the data into the MaxCompute system for storage,
computational processing of the same data will be more efficient.

442 Issue: 20191012

⼤数据计算服务 User Guide / 7 External table

7.5 Export unstructured data to OSS
The unstructured data processing framework of MaxCompute allows you to export
MaxCompute data to OSS through the INSERT method. MaxCompute also associates
OSS with external tables to export data to OSS.
You can create, search for, configure, and process external tables through a visual
interface in the DataWorks console. You can also query, compute, and analyze data
in external tables. DataWorks is powered by MaxCompute. For more information,
see #unique_158.
Access OSS unstructured data describes how MaxCompute can access and process
unstructured data stored in OSS through external tables.
The two scenarios for exporting data to OSS are as follows:
• Data in MaxCompute internal tables is exported to external tables that are

associated with OSS.
• After MaxCompute processes data stored in OSS through external tables, the

results are directly exported to the external tables.
Similar to how you access OSS data, you can export data to OSS through a built-in or
 custom StorageHandler in MaxCompute.

Export data to OSS through a built-in StorageHandler
Using a built-in StorageHandler in MaxCompute, you can export data to OSS in the
specified format. You only need to create an external table and specify the built-in
StorageHandler to associate OSS with the table. The system will then implement the
 related logic.
MaxCompute supports two built-in StorageHandlers:
• com.aliyun.odps.CsvStorageHandler defines how to read and write data in CSV

format. With this specification, the column delimiter is a comma (,) and the line
break is \n.

• com.aliyun.odps.TsvStorageHandler defines how to read and write data in TSV
format. With this specification, the column delimiter is \t and the line break is \
n.

• Create an external table
CREATE EXTERNAL TABLE [IF NOT EXISTS] <external_table>

Issue: 20191012 443

⼤数据计算服务 User Guide / 7 External table
(<column schemas>)
[PARTITIONED BY (partition column schemas)]
STORED BY '<StorageHandler>'
[WITH SERDEPROPERTIES ('odps.properties.rolearn'='${roleran}')]
LOCATION 'oss://${endpoint}/${bucket}/${userfilePath}/';

- The <StorageHandler> parameter following STORED BY specifies the built-
in StorageHandler corresponding to CSV or TSV files. If the data file to be
exported to OSS is a TSV file, use com.aliyun.odps.TsvStorageHandler. If the
data file to be exported to OSS is a CSV file, use com.aliyun.odps.CsvStorage
Handler.

- When granting OSS data access permissions through Custom Authorizat
ion of STS Mode Authorization, you must use WITH SERDEPROPERTIES to
specify the odps.properties.rolearn property. The property value is the
Alibaba Cloud Resource Name (ARN) of a custom role used in RAM.

Note:
For more information about STS mode authorization, see Access OSS unstructured

data.
- LOCATION specifies the file storage path in OSS. If the odps.properties.

rolearn property is not set in the WITH SERDEPROPERTIES clause and a
plaintext AccessKey pair is used for authorization, LOCATION is set as follows:
LOCATION 'oss://${accessKeyId}:${accessKeySecret}@${endpoint}/${
bucket}/${userPath}/'

• Perform an INSERT operation on the external table to export data to OSS.

Note:
The size of a single file inserted into OSS cannot exceed 5 GB.

After the external table is associated with the OSS storage path, you can perform
standard SQL INSERT OVERWRITE/INSERT INTO operations on the external
table to export data to OSS.
INSERT OVERWRITE|INTO TABLE <external_tablename> [PARTITION (
partcol1=val1, partcol2=val2 ...)]
select_statement
FROM <from_tablename>

444 Issue: 20191012

⼤数据计算服务 User Guide / 7 External table
[WHERE where_condition];

- from_tablename: This table can either be an internal or external table,
including an external table stored in OSS or Table Store.

- INSERT writes external table data to OSS based on the StorageHandler format (
TSV or CSV) specified by the STORED BY clause.

After the INSERT operation is complete, a series of files will be generated in the
corresponding OSS storage path specified by LOCATION.
For example, if the OSS storage location of the external table is oss://oss-cn-
hangzhou-zmf.aliyuncs.com/oss-odps-test/tsv_output_folder/, a series of
files will be generated in tsv_output_folder:
osscmd ls oss://oss-odps-test/tsv_output_folder/
2017-01-14 06:48:27 39.00B Standard oss://oss-odps-test/tsv_output
_folder/.odps/.meta
2017-01-14 06:48:12 4.80MB Standard oss://oss-odps-test/tsv_output
_folder/.odps/20170113224724561g9m6csz7/M1_0_0-0.tsv
2017-01-14 06:48:05 4.78MB Standard oss://oss-odps-test/tsv_output
_folder/.odps/20170113224724561g9m6csz7/M1_1_0-0.tsv
2017-01-14 06:47:48 4.79MB Standard oss://oss-odps-test/tsv_output
_folder/.odps/20170113224724561g9m6csz7/M1_2_0-0.tsv
...

The tsv_output_folder folder in OSS bucket oss-odps-test specified by
LOCATION contains a .odps folder that includes some .tsv files and a .meta file.
Similar file structures are specific to export of data from MaxCompute to OSS:
- When you use MaxCompute to execute INSERT INTO/OVERWRITE on an

external table and write data to an OSS storage path, all data is written to a .
odps folder in the specified LOCATION.

- The .meta file in the .odps folder is an extra macro data file written by
MaxCompute to record valid data in the current folder. If the INSERT
operation is successful, all data in the current folder is valid. You are only
required to parse the macro data if a job fails. If a job fails or is terminated,
you can re-execute the INSERT OVERWRITE statement.

- If the external table is a partitioned table, a corresponding partition
subdirectory will be generated under the tsv_output_folder folder based
on the partition value specified by the INSERT statement. The partition
subdirectory contains the .odps folder. Example: test/tsv_output_folder/

Issue: 20191012 445

⼤数据计算服务 User Guide / 7 External table

first-level partition name = partition value/n-level partition name

 = partition value/.odps/20170113224******/M1_2_0-0.tsv

The number of files generated by a built-in StorageHandler in MaxCompute is the
 same as the number of concurrent jobs in the corresponding SQL stage.
If the INSER OVERWITE ... SELECT ... FROM ... ; operation allocates 1,000
mappers on source data table from_tablename, 1,000 TSV or CSV files will be
generated.

Export data to OSS through a custom StorageHandler
In addition to built-in StorageHandlers used to export TSV and CSV files to OSS
, MaxCompute also provides an SDK using an unstructured data processing
framework to export data files in custom formats.
To export data to OSS, you must first create an external table and then perform
an INSERT operation on the external table in a similar manner as using a built-
in StorageHandler. However, you must specify a custom StorageHandler in the
STORED BY clause when creating the external table.

Note:
The MaxCompute unstructured data processing framework uses the
StorageHandler API to describe the processing of various data storage formats.
Specifically, StorageHandler acts as a wrapper class that allows you to specify
a custom Extractor and Outputer. An Extractor reads, parses, and extracts
data, while an Outputer processes and exports data. A custom StorageHandler
must inherit OdpsStorageHandler to implement the getExtractorClass and
getOutputerClass APIs.

Using the TextStorageHandler example that customizes an Extractor to access OSS
as an example, the following section demonstrates how MaxCompute can export
data to OSS text files through a custom StorageHandler, and use | as the column
delimiter and \n as the line break. For more information, see Access OSS unstructured

data.

Note:

446 Issue: 20191012

⼤数据计算服务 User Guide / 7 External table

After MaxCompute Studio is configured with MaxCompute Java Module, you can view the
corresponding sample code in examples. Alternatively, click here to view the
complete code.

• Define an Outputer
The output logic must implement an Outputer API.
package com.aliyun.odps.examples.unstructured.text;
import com.aliyun.odps.data.Record;
import com.aliyun.odps.io.OutputStreamSet;
import com.aliyun.odps.io.SinkOutputStream;
import com.aliyun.odps.udf.DataAttributes;
import com.aliyun.odps.udf.ExecutionContext;
import com.aliyun.odps.udf.Outputer;
import java.io.IOException;
public class TextOutputer extends Outputer {
 private SinkOutputStream outputStream;
 private DataAttributes attributes;
 private String delimiter;
 public TextOutputer (){
 // default delimiter, this can be overwritten if a delimiter
 is provided through the attributes.
 this.delimiter = "|";
 }
 @Override
 public void output(Record record) throws IOException {
 this.outputStream.write(recordToString(record).getBytes());
 }
 // no particular usage of execution context in this example
 @Override
 public void setup(ExecutionContext ctx, OutputStreamSet
outputStreamSet, DataAttributes attributes) throws IOException {
 this.outputStream = outputStreamSet.next();
 this.attributes = attributes;
 this.delimiter = this.attributes.getValueByKey("delimiter");
 if (this.delimiter == null)
 {
 this.delimiter=",";
 }
 System.out.println("Extractor using delimiter [" + this.
delimiter + "].") ;
 }
 @Override
 public void close() {
 // no-op
 }
 private String recordToString(Record record){
 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < record.getColumnCount(); i++)
 {
 if (null == record.get(i)){
 sb.append("NULL");
 }
 else{
 sb.append(record.get(i).toString());
 }
 if (i ! = record.getColumnCount() - 1){
 sb.append(this.delimiter);
 }

Issue: 20191012 447

https://github.com/aliyun/aliyun-odps-java-sdk/tree/master/odps-sdk-impl/odps-udf-example/src/main/java/com/aliyun/odps/udf/example/text

⼤数据计算服务 User Guide / 7 External table
 }
 sb.append("\n");
 return sb.toString();
 }
}

There are three Outputer APIs: setup, output, and close, which correspond to
three Extractor APIs: setup, extract, and close. setup () and close () are called
only once in an Outputer. You can perform initialization in the setup API. The
three parameters returned by setup() must be saved as the Outputer class
variable to be used in the output() or close() API. The close () API is used to
mark the end of the code.
Data processing occurs in the output(Record) API. The MaxCompute system
calls output(Record) once based on each input record processed by the current
Outputer. Assume that when an output(Record) call returns, the code has
already consumed the Record. After the current output(Record) call returns, the
system will use the memory used by the Record for other purposes. Therefore,
when the information in Record is used across multiple output() function calls,
you must call the record.clone() method to save the current record.

Note:
When you use a custom StorageHandler for an external table to implement
an Outputer API, the record passed into Outputer.output(Record record) is
the record generated by the previous operator of the Outputer. In this case,
the column name has changed. Column names are not fixed. For example,
the column name generated by the some_function(column_a) expression is a
temporary column name.
Therefore, we recommend that you use record.get (index) instead of record.
get (column name) to obtain the content of a column.

• Define an Extractor
An Extractor is used to read, parse, and process data. If the output tables do not
need to be read through MaxCompute, you do not need to define an Extractor.
package com.aliyun.odps.examples.unstructured.text;
import com.aliyun.odps.Column;
import com.aliyun.odps.data.ArrayRecord;
import com.aliyun.odps.data.Record;
import com.aliyun.odps.io.InputStreamSet;
import com.aliyun.odps.udf.DataAttributes;

448 Issue: 20191012

⼤数据计算服务 User Guide / 7 External table
import com.aliyun.odps.udf.ExecutionContext;
import com.aliyun.odps.udf.Extractor;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
/**
 * Text extractor that extract schematized records from formatted
plain-text(csv, tsv etc.)
 **/
public class TextExtractor extends Extractor {
 private InputStreamSet inputs;
 private String columnDelimiter;
 private DataAttributes attributes;
 private BufferedReader currentReader;
 private boolean firstRead = true;
 public TextExtractor() {
 // default to ",", this can be overwritten if a specific
delimiter is provided (via DataAttributes)
 this.columnDelimiter = ",";
 }
 // no particular usage for execution context in this example
 @Override
 public void setup(ExecutionContext ctx, InputStreamSet inputs,
DataAttributes attributes) {
 this.inputs = inputs;
 this.attributes = attributes;
 // check if "delimiter" attribute is supplied via SQL query
 String columnDelimiter = this.attributes.getValueByKey("
delimiter");
 if (columnDelimiter ! = null)
 {
 this.columnDelimiter = columnDelimiter;
 }
 System.out.println("TextExtractor using delimiter [" + this.
columnDelimiter + "].");
 // note: more properties can be inited from attributes if
needed
 }
 @Override
 public Record extract() throws IOException {
 String line = readNextLine();
 if (line == null) {
 return null;
 }
 return textLineToRecord(line);
 }
 @Override
 public void close(){
 // no-op
 }
 private Record textLineToRecord(String line) throws IllegalArg
umentException
 {
 Column[] outputColumns = this.attributes.getRecordColumns();
 ArrayRecord record = new ArrayRecord(outputColumns);
 if (this.attributes.getRecordColumns().length ! = 0){
 // string copies are needed, not the most efficient one
, but suffice as an example here
 String[] parts = line.split(columnDelimiter);
 int[] outputIndexes = this.attributes.getNeededIndexes
();
 if (outputIndexes == null){

Issue: 20191012 449

⼤数据计算服务 User Guide / 7 External table
 throw new IllegalArgumentException("No outputIndexes
 supplied.");
 }
 if (outputIndexes.length ! = outputColumns.length){
 throw new IllegalArgumentException("Mismatched
output schema: Expecting "
 + outputColumns.length + " columns but get "
 + parts.length);
 }
 int index = 0;
 for(int i = 0; i < parts.length; i++){
 // only parse data in columns indexed by output
indexes
 if (index < outputIndexes.length && i == outputInde
xes[index]){
 switch (outputColumns[index].getType()) {
 case STRING:
 record.setString(index, parts[i]);
 break;
 case BIGINT:
 record.setBigint(index, Long.parseLong(
parts[i]));
 break;
 case BOOLEAN:
 record.setBoolean(index, Boolean.
parseBoolean(parts[i]));
 break;
 case DOUBLE:
 record.setDouble(index, Double.
parseDouble(parts[i]));
 break;
 case DATETIME:
 case DECIMAL:
 case ARRAY:
 case MAP:
 default:
 throw new IllegalArgumentException("Type
 " + outputColumns[index].getType() + " not supported for now.");
 }
 index++;
 }
 }
 }
 return record;
 }
 /**
 * Read next line from underlying input streams.
 * @return The next line as String object. If all of the
contents of input
 * streams has been read, return null.
 */
 private String readNextLine() throws IOException {
 if (firstRead) {
 firstRead = false;
 // the first read, initialize things
 currentReader = moveToNextStream();
 if (currentReader == null) {
 // empty input stream set
 return null;
 }
 }
 while (currentReader ! = null) {
 String line = currentReader.readLine();
 if (line ! = null) {

450 Issue: 20191012

⼤数据计算服务 User Guide / 7 External table
 return line;
 }
 currentReader = moveToNextStream();
 }
 return null;
 }
 private BufferedReader moveToNextStream() throws IOException {
 InputStream stream = inputs.next();
 if (stream == null) {
 return null;
 } else {
 return new BufferedReader(new InputStreamReader(stream
));
 }
 }
}

For more information, see Access OSS unstructured data.
• Define a StorageHandler

package com.aliyun.odps.examples.unstructured.text;
import com.aliyun.odps.udf.Extractor;
import com.aliyun.odps.udf.OdpsStorageHandler;
import com.aliyun.odps.udf.Outputer;
public class TextStorageHandler extends OdpsStorageHandler {
 @Override
 public Class<? extends Extractor> getExtractorClass() {
 return TextExtractor.class;
 }
 @Override
 public Class<? extends Outputer> getOutputerClass() {
 return TextOutputer.class;
 }
}

If the table does not need to be read, you do not need to specify an Extractor API.
• Compile the code into a package

Compile your custom code into a JAR package and upload it to MaxCompute.
If the JAR package is named odps-TextStorageHandler.jar, the code used to
upload the package as a MaxCompute resource is as follows:
add jar odps-TextStorageHandler.jar;

• Create an external table
To export data to OSS, you must first create an external table in a similar
manner as using a built-in StorageHandler. However, you must specify a custom
StorageHandler to export data to the external table.
CREATE EXTERNAL TABLE IF NOT EXISTS output_data_txt_external
(
vehicleId int,
recordId int,
patientId int,

Issue: 20191012 451

⼤数据计算服务 User Guide / 7 External table
calls int,
locationLatitute double,
locationLongtitue double,
recordTime string,
direction string
)
STORED BY 'com.aliyun.odps.examples.unstructured.text.TextStorag
eHandler'
WITH SERDEPROPERTIES(
 'delimiter'='|'
 [,'odps.properties.rolearn'='${roleran}'])
LOCATION 'oss://${endpoint}/${bucket}/${userfilePath}/'
USING 'odps-TextStorageHandler.jar';

Note:
If the odps.properties.rolearn property is required, see Access OSS unstructured

data for more information about custom authorization based on STS. If the property
is not required, refer to one-click authorization or use a plaintext AccessKey pair on
LOCATION.

• Perform an INSERT operation on an external table to export data to OSS
After you create an external table and associate it with an OSS storage path
through a custom StorageHandler, you can perform standard SQL operations
such as INSERT OVERWRITE/INTO on the external table to export data to OSS in
the same way as a built-in StorageHandler.
INSERT OVERWRITE|INTO TABLE <external_tablename> [PARTITION (
partcol1=val1, partcol2=val2 ...)]
select_statement
FROM <from_tablename>
[WHERE where_condition];

After the INSERT operation is complete, a series of files will be generated in the
.odps folder in the OSS storage path specified by LOCATION. This is similar to
what happens when you use a built-in StorageHandler.

7.6 Access Table Store data
This document introduces how to import data from Table Store to the MaxCompute
computing environment. This allows seamless connections between multiple data
sources.
Table Store is a NoSQL database service that built on Alibaba Cloud’s Apsara
distributed file system, enabling you to store and access massive volumes of

452 Issue: 20191012

⼤数据计算服务 User Guide / 7 External table

structured data in real time. For more information about Table Store, see What is

Table Store.
MaxCompute and TableStore are two independent big data computing and storage
services. Therefore, these two services must ensure that the network between them
is open. When MaxCompute’s public cloud service accesses data stored in Table
Store, we recommend that you use Table Store’s private network address, usually a
host name suffixed ‘ots-internal.aliyuncs.com’, for example tablestore://odps-
ots-dev.cn-shanghai.ots-internal.aliyuncs.com.
The previous article showed you how to Access OSS unstructured data.
Both TableStore and MaxCompute have their own type systems. Both Table Store
and MaxCompute have their own data type systems. When you process Table Store
data in MaxCompute, the data type associations are as follow:
MaxCompute Type TableStore Type
STRING STRING
BIGINT INTEGER
DOUBLE Double
BOOLEAN BOOLEAN
BINARY BINARY

Authorization with STS Mode
To access Table Store data, MaxCompute requires a secure authorization channel.
On this issue, MaxCompute integrates Alibaba Cloud Resource Access Management
 (RAM) and Token Service (STS) to implement secure data access.
You can authorize permissions in the following two ways:
• When the MaxCompute and Table Store's owner are the same account, you can

directly log on with the Alibaba Cloud account and click here to complete authorization.

Issue: 20191012 453

https://www.alibabacloud.com/help/doc-detail/27280.html
https://www.alibabacloud.com/help/doc-detail/27280.html
https://ram.console.aliyun.com/?spm=5176.100239.blogcont281191.24.uJg9dR#/role/authorize?request=%7B%22Requests%22:%20%7B%22request1%22:%20%7B%22RoleName%22:%20%22AliyunODPSDefaultRole%22,%20%22TemplateId%22:%20%22DefaultRole%22%7D%7D,%20%22ReturnUrl%22:%20%22https:%2F%2Fram.console.aliyun.com%2F%22,%20%22Service%22:%20%22ODPS%22%7D

⼤数据计算服务 User Guide / 7 External table

• Custom authorization
1. Firstly, you must grant Table Store access permission to MaxCompute in the

RAM console.
Log on to the RAM console (if MaxCompute and Table Store are not the same
account, you must log on with the Table Store account to authorize), and
create the role AliyunODPSDefaultRole.

2. Set its policy content as follows:
--if MaxCompute and Table Store are same account
{
"Statement": [
{
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "odps.aliyuncs.com"
]
 }
}
],
"Version": "1"
}
--if MaxCompute and Table Store are not the same account
{
"Statement ":[
{
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "MaxCompute's Owner cloud account UID@odps.aliyuncs.com"
]
 }
}
],
"Version": "1"
}

Note:
On the upper-right corner, click the avatar to open the Billing Management
page, and then check the account UID.

454 Issue: 20191012

https://account.alibabacloud.com/login/login.html

⼤数据计算服务 User Guide / 7 External table

3. Edit this role’s authorization policy AliyunODPSRolePolicy:
{
"Version": "1",
"Statement ":[
{
 "Action ":[
 "ots:ListTable",
 "ots:DescribeTable",
 "ots:GetRow",
 "ots:PutRow",
 "ots:UpdateRow",
 "ots:DeleteRow",
 "ots:GetRange",

Issue: 20191012 455

⼤数据计算服务 User Guide / 7 External table
 "ots:BatchGetRow",
 "ots:BatchWriteRow",
 "ots:ComputeSplitPointsBySize"
],
 "Resource": "*",
 "Effect": "Allow"
}
]
}
--You can also customize other permissions

4. Grant the permission AliyunODPSRolePolicy to this role.
Creating an External table

In MaxCompute, after creating an external table and introducing the Table Store
 table data descriptions to the MaxCompute meta system, you can process Table
Store data. The following example demonstrates the concept and practice that used
 in MaxCompute’s Table Store access.
Use following statements to create an external table:
DROP TABLE IF EXISTS ots_table_external;
CREATE EXTERNAL TABLE IF NOT EXISTS ots_table_external
(
odps_orderkey bigint,
odps_orderdate string,
odps_custkey bigint,
odps_orderstatus string,
odps_totalprice double
)
STORED BY 'com.aliyun.odps.TableStoreStorageHandler' -- (1)
WITH SERDEPROPERTIES (-- (2)
'tablestore.columns.mapping'=':o_orderkey,:o_orderdate,o_custkey,
o_orderstatus,o_totalprice', -- ①
'tablestore.table.name'='ots_tpch_orders' -- ②
'odps.properties.rolearn'='acs:ram::xxxxx:role/aliyunodpsdefaultrole'
 --③
)
LOCATION 'tablestore://odps-ots-dev.cn-shanghai.ots-internal.aliyuncs.
com'; -- （3）

The statement is described as follows：
• com.aliyun.odps.TableStoreStorageHandler is MaxCompute’s built-in

StorageHandler for processing Table Store data. It defines the interaction
between MaxCompute and Table Store. The relevant logic is implemented by
MaxCompute.

456 Issue: 20191012

⼤数据计算服务 User Guide / 7 External table

• SERDEPROPERITES is an interface that provides parameter options. When using
TableStoreStorageHandler, two options must be specified, tablestore.columns
.mapping and tablestore.table.name and odps.properties.rolearn.
1. tablestore.columns.mapping option: required to describe the columns of

the table store table that MaxCompute is going to access, including primary
key and attribute columns.
- At the beginning of the column name, : indicates a Table Store primary key.

In this example:o_orderkey and :o_orderdate are primary key columns
and all others are attribute columns.

- Table Store supports up to 4 primary keys. Primary keys support the
STRING, INTEGER, and BINARY data types. The first primary key is the
partition key.

- When specifying a mapping relationship, you must provide all the primary
 keys of the specified Table Store table, but you do not have to provide all
 attribute columns, only the attribute columns you must access by using
MaxCompute.

2. tablestore.table.name：the name of the table store table that needs to be
accessed. If you specify an incorrect Table Store table name (such as a table
that does not exist), the system reports an error. MaxCompute does not create
a new Table Store table with the specified name.

3. odps.properties.rolearn: Arn information in RAM's
AliyunODPSDefaultRole. You can get it through the details of the role in the
RAM console.

• LOCATION clause: specific information for specifying Table Storeinstance names
, endpoint, and so on. The secure access to Table Store data here is based on the
premise of RAM/STS authorization introduced earlier.

If you want to view the created external table structure, run the following
statement:
desc extended <table_name>;

In the returned information, “Extended Info” contains external tables informatio
n such as StorageHandler and Location.

Issue: 20191012 457

⼤数据计算服务 User Guide / 7 External table

Access Table Data by Using an External Table
After creating an external table, you can introduce Table Store data to the
MaxCompute ecosystem.There, you can use MaxCompute SQL syntax to access
Table Store data as follows:
SELECT odps_orderkey, odps_orderdate, SUM(odps_totalprice) AS
sum_total
FROM ots_table_external
WHERE odps_orderkey > 5000 AND odps_orderkey < 7000 AND odps_orderdate
 >= '1996-05-03' AND odps_orderdate < '1997-05-01'
GROUP BY odps_orderkey, odps_orderdate
HAVING sum_total> 400000.0;

When using the MaxCompute SQL syntax, all of the accessed Table Store details are
 processed in MaxCompute. This includes column name selection. For example, the
 column names used in the preceding SQL statements (such as odps_orderkey and
odps_totalprice) are not the original primary key names (o_orderkey) or attribute
 column names (o_totalprice) used in Table Store. This is because mapping was
already performed in the DDL statement used to create the external table. Certainly
, you can retain the original Table Store primary key/column names when creating
the external table.
If you perform multiple computations on a single data set, instead of remotely reading
data from Table Store each time, you can import all the necessary data to
MaxCompute, to create a MaxCompute (internal) table. For example:
CREATE TABLE internal_orders AS
SELECT odps_orderkey, odps_orderdate, odps_custkey, odps_totalprice
FROM ots_table_external
Where fig> 5000;

Currently, internal_orders is a MaxCompute table, with all features of a
MaxCompute internal table, including an efficiently compressed column storage
 data format and complete internal macro data, and statistics information.
Furthermore, because the data is stored in MaxCompute, the access speed is faster
 than when accessing external Table Store data. This is especially suitable for
hotspot data that is frequently computed.

Export MaxCompute Data to TableStore

Note:

458 Issue: 20191012

⼤数据计算服务 User Guide / 7 External table

MaxCompute does not directly create external Table Store tables.Therefore, before
outputting data to a Table Store table, you must make sure this table has already
been created (or the system reports an error).

In the preceding operations, the external table ots_table_external has been created
to connect MaxCompute with the Table Store table ots_tpch_orders, and data has
been stored in the internal MaxCompute table internal_orders. Now you can write
the processed data from internal_orders back to Table Store, perform the INSERT
OVERWITE TABLE operation on the external table as follows:
INSERT OVERWRITE TABLE ots_table_external
SELECT odps_orderkey, odps_orderdate, odps_custkey, CONCAT(odps_custk
ey, 'SHIPPED'), CEIL(odps_totalprice)
FROM internal_orders;

Note:
If the data in the ODPS table itself has a certain order, such as sorting once
according to Primary Key, then when writing to the OTS table, the pressure
will be concentrated on an OTS partition, which can not make full use of
the characteristics of distributed writing. Therefore, when this happens, we
recommend that we first scatter the data through distribute by Rand ().
INSERT OVERWRITE TABLE ots_table_external
SELECT odps_orderkey, odps_orderdate, odps_custkey, CONCAT(odps_custk
ey, 'SHIPPED'), CEIL(odps_totalprice)
FROM (SELECT * FROM internal_orders DISTRIBUTE BY rand()) t;

Because Table Store is a KV data NoSQL storage medium, the data output from
MaxCompute only affects the rows with the corresponding primary keys. In this
example, the output only affects data in rows with corresponding dps_orderkey +
odps_orderdate primary key values. In addition, in the Table Store rows, only the
attribute columns specified during External Table(ots_table_external) creation are
updated. Data columns that do not appear in the External Table are not modified.

Note:
• The data in MaxCompute cannot be written to OTS more than 4 MB at a time,

otherwise, the user is required to remove the oversized data and write it back.
An error may be generated at this time:
ODPS-0010000:System internal error - Output to TableStore failed
with exception:

Issue: 20191012 459

⼤数据计算服务 User Guide / 7 External table
TableStore BatchWrite request id XXXXX failed with error code
OTSParameterInvalid and message:The total data size of BatchWrite
Row request exceeds the limit

• It is a single operation to write data in bulk or by branch. Please refer to
BatchWriteRow for a detailed description. Therefore, if the volume of bulk write
data is too large, you can also branch write.

• When writing data in bulk, be aware that you do not have duplicate rows,
otherwise it may cause errors to be reported:
Errorcode: FIG, errormessage: the input parameter is invalid

For a detailed description, please refer to using BatchWriteRow to report an OTSParamet

erInvalid error when submitting 100 pieces of data at a time.

460 Issue: 20191012

https://www.alibabacloud.com/help/doc-detail/27311.htm
https://www.alibabacloud.com/help/doc-detail/27311.htm
https://www.alibabacloud.com/help/faq-detail/38586.htm
https://www.alibabacloud.com/help/faq-detail/38586.htm

⼤数据计算服务 User Guide / 8 Spark

8 Spark
8.1 Spark on MaxCompute overview

This topic provides an overview of Spark on MaxCompute. It is an open-source
framework that functions on the service level to support data processing and
analysis operations. Equipped with unified computing resources and data set
permissions, Spark on MaxCompute allows you to submit and run jobs while using
your preferred development methods.

Features
• Supports different versions of native Spark jobs.

MaxCompute is compatible with the APIs of all native Spark versions that run in
 MaxCompute. Different versions of Spark can run in MaxCompute at the same
time. Spark on MaxCompute provides you with native Spark Web UIs.

• Runs in unified computing resources.
Similar to MaxCompute SQL and MaxCompute MapReduce, Spark on
MaxCompute runs in the unified computing resources activated for MaxCompute
 projects.

• Supports unified data and permission management.
Spark on MaxCompute complies with the permissions you set for MaxCompute
 projects, allowing you to query data without any additional permission
modifications required.

• Provides the same experience as open-source systems.
Spark on MaxCompute provides the same user experience as open-source
systems, both in terms of an open-source application UI and online interactions.
Specifically, it supports native, open-source, and real-time UIs that are essential
 for debugging open-source applications, while also provides the historical log
query function.

Architecture
The Spark on MaxCompute architecture solution allows native Spark engines to run
in MaxCompute. The following figure shows this architecture.

Issue: 20191012 461

⼤数据计算服务 User Guide / 8 Spark

The left half of the diagram shows the architecture of a native Spark engine, and the
 right half shows the architecture of Spark on MaxCompute. This second architectu
re runs on the Cupid platform developed by Alibaba Cloud. This platform also
supports computing frameworks such as native Spark engines.

Supported services
MaxCompute Spark supports the following services:
• All Java and Scala offline jobs such as GraphX, MLlib, RDD, Spark SQL, and

PySpark
• Read and write operations on MaxCompute tables
• Unstructured storage in OSS
MaxCompute Spark will support the following services in its later versions:
• Read and write operations on services such as RDS, Redis, and ECS in VPCs
• Streaming services
• Interactive services such as Spark shell, Spark SQL shell, and PySpark shell

8.2 Set up a Spark on MaxCompute development environment
This topic describes how to set up a Spark on MaxCompute development
environment. To do so, you need to download the Spark on MaxCompute client,
set environment variables, configure the Spark-defaults.conf file, and configure
dependencies.

Download the Spark on MaxCompute client
The Spark on MaxCompute software packages are interoperable with the
authentication function of MaxCompute. This allows Spark on MaxCompute to
serve as a client that submits jobs with the spark-submit script that is encrypted.

462 Issue: 20191012

⼤数据计算服务 User Guide / 8 Spark

The following two Spark on MaxCompute software packages are provided to meet
different needs:
• spark-1.6.3: Develops Spark1.x applications.
• spark-2.3.0: Develops Spark2.x applications.

Set environment variables
• Set the JAVA_HOME environment variable as follows:

We recommend that you use JDK 1.8 or later.
export JAVA_HOME=/path/to/jdk
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
export PATH=$JAVA_HOME/bin:$PATH

• Set the SPARK_HOME environment variable as follows:
export SPARK_HOME=/path/to/spark_extracted_package
export PATH=$SPARK_HOME/bin:$PATH

• If you use PySpark, install Python 2.7 and set the PATH environment variable as
follows:
export PATH=/path/to/python/bin/:$PATH

Configure the Spark-defaults.conf file
You can use the spark-defaults.conf.template file in the $SPARK_HOME/conf
 directory as a template to prepare your own spark-defaults.conf file. However,
before you submit Spark on MaxCompute jobs to MaxCompute, you must set the
required MaxCompute account and region information in your spark-defaults.
conf file.
In the spark-defaults.conf file, you can retain the default settings and enter the
MaxCompute account information as follows:
Set the MaxCompute project and account information:
spark.hadoop.odps.project.name =
spark.hadoop.odps.access.id =
spark.hadoop.odps.access.key =

Configure the endpoint through which the Spark on MaxCompute client
 accesses MaxCompute projects (this endpoint varies depending on the
network conditions and region):
spark.hadoop.odps.end.point = http://service.cn.maxcompute.aliyun.com/
api
Configure the endpoint that runs Spark on MaxCompute (this endpoint
runs in the MaxCompute VPC in your region):
spark.hadoop.odps.runtime.end.point = http://service.cn.maxcompute.
aliyun-inc.com/api

Issue: 20191012 463

http://odps-repo.oss-cn-hangzhou.aliyuncs.com/spark/1.6.3-public/spark-1.6.3-public.tar.gz
http://odps-repo.oss-cn-hangzhou.aliyuncs.com/spark/2.3.0-odps0.30.0/spark-2.3.0-odps0.30.0.tar.gz

⼤数据计算服务 User Guide / 8 Spark
Retain the following default settings:
spark.sql.catalogImplementation=odps
spark.hadoop.odps.task.major.version = cupid_v2
spark.hadoop.odps.cupid.container.image.enable = true
spark.hadoop.odps.cupid.container.vm.engine.type = hyper

Configure dependencies
• Configure the dependencies for Spark on MaxCompute jobs to access

MaxCompute tables.
Spark on MaxCompute jobs use the odps-spark-datasource module to access
MaxCompute tables. The Maven coordinates of this module are as follows:
<!-- Spark-2.x uses the following module:-->
<dependency>
 <groupId>com.aliyun.odps</groupId>
 <artifactId>odps-spark-datasource_2.11</artifactId>
 <version>3.3.3-public</version>
</dependency>

<!-- Spark-1.x uses the following module:-->
<dependency>
 <groupId>com.aliyun.odps</groupId>
 <artifactId>odps-spark-datasource_2.10</artifactId>
 <version>3.3.3-public</version>
</dependency>

• Configure the dependencies for Spark on MaxCompute jobs to access OSS.
If Spark on MaxCompute jobs need to access OSS, add the following
dependencies:
<dependency>
 <groupId>com.aliyun.odps</groupId>
 <artifactId>hadoop-fs-oss</artifactId>
 <version>3.3.3-public</version>
</dependency>

8.3 Develop a Spark on MaxCompute application
8.3.1 Develop a Spark on MaxCompute application by using Javaor Scala

This topic describes how to develop a Spark on MaxCompute application by using
Java or Scala.

Download an example project
You can run the following commands to download an example project:
git clone git@github.com:aliyun/aliyun-cupid-sdk.git
cd aliyun-cupid-sdk

464 Issue: 20191012

⼤数据计算服务 User Guide / 8 Spark
git checkout 3.3.3-public
Download an example project for Spark-2.x.
cd spark/spark-2.x/spark-examples
Download an example project for Spark-1.x.
cd spark/spark-1.x/spark-examples
Package data to create a shaded JAR package in the target directory.
mvn clean package

Configure dependencies for Spark-1.x
If you want to submit your Spark-1.x application by using the Spark on
MaxCompute client, you must add the following dependencies to the pom.xml file:
<properties>
 <spark.version>1.6.3</spark.version>
 <cupid.sdk.version>3.3.3-public</cupid.sdk.version>
 <scala.version>2.10.4</scala.version>
 <scala.binary.version>2.10</scala.binary.version>
</properties>
<dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-core_${scala.binary.version}</artifactId>
 <version>${spark.version}</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-sql_${scala.binary.version}</artifactId>
 <version>${spark.version}</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-mllib_${scala.binary.version}</artifactId>
 <version>${spark.version}</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-streaming_${scala.binary.version}</artifactId>
 <version>${spark.version}</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>com.aliyun.odps</groupId>
 <artifactId>cupid-sdk</artifactId>
 <version>${cupid.sdk.version}</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>com.aliyun.odps</groupId>
 <artifactId>hadoop-fs-oss</artifactId>
 <version>${cupid.sdk.version}</version>
</dependency>
<dependency>
 <groupId>com.aliyun.odps</groupId>
 <artifactId>odps-spark-datasource_${scala.binary.version}</
artifactId>
 <version>${cupid.sdk.version}</version>
</dependency>
<dependency>

Issue: 20191012 465

⼤数据计算服务 User Guide / 8 Spark
 <groupId>org.scala-lang</groupId>
 <artifactId>scala-library</artifactId>
 <version>${scala.version}</version>
</dependency>
<dependency>
 <groupId>org.scala-lang</groupId>
 <artifactId>scala-actors</artifactId>
 <version>${scala.version}</version>
</dependency>

Note:
You need to set the scope parameter as follows:
• Set it to provided for all packages that are released in the Apache Spark

community, such as spark-core and spark-sql.
• Set it to compile for the odps-spark-datasource module.

Develop a Spark-1.x application
• Develop the WordCount application.

For this application, you will need to download aliyun-cupid-sdk.
To submit the code, follow these steps:
1. Build the aliyun-cupid-sdk module.
2. Configure the spark.defaults.conf file.
3. Run the following script:

bin/spark-submit --master yarn-cluster --class \
com.aliyun.odps.spark.examples.WordCount \
${path to aliyun-cupid-sdk}/spark/spark-1.x/spark-examples/target/
spark-examples_2.10-version-shaded.jar

• Develop the Spark SQL application on MaxCompute tables.
For this application, you will need to download aliyun-cupid-sdk.
To submit the code, follow these steps:
1. Build the aliyun-cupid-sdk module.
2. Configure the spark.defaults.conf file.
3. Run the following script:

bin/spark-submit --master yarn-cluster --class \
com.aliyun.odps.spark.examples.sparksql.SparkSQL \

466 Issue: 20191012

https://github.com/aliyun/aliyun-cupid-sdk/blob/3.3.3-public/spark/spark-1.x/spark-examples/src/main/scala/com/aliyun/odps/spark/examples/WordCount.scala
https://github.com/aliyun/aliyun-cupid-sdk/blob/3.3.3-public/spark/spark-1.x/spark-examples/src/main/scala/com/aliyun/odps/spark/examples/sparksql/SparkSQL.scala

⼤数据计算服务 User Guide / 8 Spark
${path to aliyun-cupid-sdk}/spark/spark-1.x/spark-examples/target/
spark-examples_2.10-version-shaded.jar

Note:
- If the "Table Not Found" error is returned, the table you specify in the code

cannot be found in the MaxCompute project.
- You can develop a Spark SQL application for the target table with reference to

 various APIs in the code.
• Develop the GraphX PageRank application.

For this application, you will need to download aliyun-cupid-sdk.
To submit the code, follow these steps:
1. Build the aliyun-cupid-sdk module.
2. Configure the spark.defaults.conf file.
3. Run the following script:

bin/spark-submit --master yarn-cluster --class \
com.aliyun.odps.spark.examples.graphx.PageRank \
${path to aliyun-cupid-sdk}/spark/spark-1.x/spark-examples/target/
spark-examples_2.10-version-shaded.jar

• Develop the MLlib Kmeans-ON-OSS application.
For this application, you will need to download aliyun-cupid-sdk.

Note:
Before you submit the code, make sure that you enter the following OSS account
information in the code:
conf.set("spark.hadoop.fs.oss.accessKeyId", "***")
conf.set("spark.hadoop.fs.oss.accessKeySecret", "***")
conf.set("spark.hadoop.fs.oss.endpoint", "oss-cn-hangzhou-zmf.
aliyuncs.com")

To submit the code, follow these steps:
1. Build the aliyun-cupid-sdk module.
2. Configure the spark.defaults.conf file.
3. Run the following script:

bin/spark-submit --master yarn-cluster --class \
com.aliyun.odps.spark.examples.mllib.KmeansModelSaveToOss \

Issue: 20191012 467

https://github.com/aliyun/aliyun-cupid-sdk/blob/3.3.3-public/spark/spark-1.x/spark-examples/src/main/scala/com/aliyun/odps/spark/examples/graphx/PageRank.scala
https://github.com/aliyun/aliyun-cupid-sdk/blob/3.3.3-public/spark/spark-1.x/spark-examples/src/main/scala/com/aliyun/odps/spark/examples/mllib/KmeansModelSaveToOss.scala

⼤数据计算服务 User Guide / 8 Spark
${path to aliyun-cupid-sdk}/spark/spark-1.x/spark-examples/target/
spark-examples_2.10-version-shaded.jar

• Devel the OSS UnstructuredData application.
For this application, you will need to download aliyun-cupid-sdk.

Note:
Before you submit the code, make sure that you enter the following OSS account
information in the code:
conf.set("spark.hadoop.fs.oss.accessKeyId", "***")
conf.set("spark.hadoop.fs.oss.accessKeySecret", "***")
conf.set("spark.hadoop.fs.oss.endpoint", "oss-cn-hangzhou-zmf.
aliyuncs.com")

To submit the code, follow these steps:
1. Build the aliyun-cupid-sdk module.
2. Configure the spark.defaults.conf file.
3. Run the following script:

bin/spark-submit --master yarn-cluster --class \
com.aliyun.odps.spark.examples.oss.SparkUnstructuredDataCompute \
${path to aliyun-cupid-sdk}/spark/spark-1.x/spark-examples/target/
spark-examples_2.10-version-shaded.jar

Configure dependencies for Spark-2.x
If you want to submit your Spark-2.x application by using the Spark on
MaxCompute client, you must add the following dependencies to the pom.xml file:
<properties>
 <spark.version>2.3.0</spark.version>
 <cupid.sdk.version>3.3.3-public</cupid.sdk.version>
 <scala.version>2.11.8</scala.version>
 <scala.binary.version>2.11</scala.binary.version>
</properties>
<dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-core_${scala.binary.version}</artifactId>
 <version>${spark.version}</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-sql_${scala.binary.version}</artifactId>
 <version>${spark.version}</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-mllib_${scala.binary.version}</artifactId>
 <version>${spark.version}</version>

468 Issue: 20191012

https://github.com/aliyun/aliyun-cupid-sdk/blob/3.3.3-public/spark/spark-1.x/spark-examples/src/main/scala/com/aliyun/odps/spark/examples/oss/SparkUnstructuredDataCompute.scala

⼤数据计算服务 User Guide / 8 Spark
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-streaming_${scala.binary.version}</artifactId>
 <version>${spark.version}</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>com.aliyun.odps</groupId>
 <artifactId>cupid-sdk</artifactId>
 <version>${cupid.sdk.version}</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>com.aliyun.odps</groupId>
 <artifactId>hadoop-fs-oss</artifactId>
 <version>${cupid.sdk.version}</version>
</dependency>
<dependency>
 <groupId>com.aliyun.odps</groupId>
 <artifactId>odps-spark-datasource_${scala.binary.version}</
artifactId>
 <version>${cupid.sdk.version}</version>
</dependency>
<dependency>
 <groupId>org.scala-lang</groupId>
 <artifactId>scala-library</artifactId>
 <version>${scala.version}</version>
</dependency>
<dependency>
 <groupId>org.scala-lang</groupId>
 <artifactId>scala-actors</artifactId>
 <version>${scala.version}</version>
</dependency>

Note:
You need to set the scope parameter as follows:
• Set it to provided for all packages that are released in the Apache Spark

community, such as spark-core and spark-sql.
• Set it to compile for the odps-spark-datasource module.

Issue: 20191012 469

⼤数据计算服务 User Guide / 8 Spark

Develop a Spark-2.x application
• Develop the WordCount application.

For this application, you will need to download aliyun-cupid-sdk.
To submit the code, follow these steps:
1. Build the aliyun-cupid-sdk module.
2. Configure the spark.defaults.conf file.
3. Run the following script:

bin/spark-submit --master yarn-cluster --class \
com.aliyun.odps.spark.examples.WordCount \
${path to aliyun-cupid-sdk}/spark/spark-2.x/spark-examples/target/
spark-examples_2.11-version-shaded.jar

• Develop the Spark SQL application on MaxCompute tables.
For this application, you will need to download aliyun-cupid-sdk.

Note:
- If the "Table Not Found" error is returned, the table you specify in the code

cannot be found in the MaxCompute project.
- You can develop a Spark SQL application for the target table with reference to

 various APIs in the code.
To submit the code, follow these steps:
1. Build the aliyun-cupid-sdk module.
2. Configure the spark.defaults.conf file.
3. Run the following script:

bin/spark-submit --master yarn-cluster --class \
com.aliyun.odps.spark.examples.sparksql.SparkSQL \

470 Issue: 20191012

https://github.com/aliyun/aliyun-cupid-sdk/blob/3.3.3-public/spark/spark-2.x/spark-examples/src/main/scala/com/aliyun/odps/spark/examples/WordCount.scala
https://github.com/aliyun/aliyun-cupid-sdk/blob/3.3.3-public/spark/spark-2.x/spark-examples/src/main/scala/com/aliyun/odps/spark/examples/sparksql/SparkSQL.scala

⼤数据计算服务 User Guide / 8 Spark
${path to aliyun-cupid-sdk}/spark/spark-2.x/spark-examples/target/
spark-examples_2.11-version-shaded.jar

• Develop the GraphX PageRank application.
For this application, you will need to download aliyun-cupid-sdk.
To submit the code, follow these steps:
1. Build the aliyun-cupid-sdk module.
2. Configure the spark.defaults.conf file.
3. Run the following script:

bin/spark-submit --master yarn-cluster --class \
com.aliyun.odps.spark.examples.graphx.PageRank \
${path to aliyun-cupid-sdk}/spark/spark-2.x/spark-examples/target/
spark-examples_2.11-version-shaded.jar

• Develop the MLlib Kmeans-ON-OSS application.
For this application, you will need to download aliyun-cupid-sdk.

Note:
Before you submit the code, make sure that you enter the following OSS account
information in the code:
val spark = SparkSession
 .builder()
 .config("spark.hadoop.fs.oss.accessKeyId", "***")
 .config("spark.hadoop.fs.oss.accessKeySecret", "***")
 .config("spark.hadoop.fs.oss.endpoint", "oss-cn-hangzhou-zmf.
aliyuncs.com")
 .appName("KmeansModelSaveToOss")
 .getOrCreate()

To submit the code, follow these steps:
1. Build the aliyun-cupid-sdk module.
2. Configure the spark.defaults.conf file.
3. Run the following script:

bin/spark-submit --master yarn-cluster --class \
com.aliyun.odps.spark.examples.mllib.KmeansModelSaveToOss \

Issue: 20191012 471

https://github.com/aliyun/aliyun-cupid-sdk/blob/3.3.3-public/spark/spark-2.x/spark-examples/src/main/scala/com/aliyun/odps/spark/examples/graphx/PageRank.scala
https://github.com/aliyun/aliyun-cupid-sdk/blob/3.3.3-public/spark/spark-2.x/spark-examples/src/main/scala/com/aliyun/odps/spark/examples/mllib/KmeansModelSaveToOss.scala

⼤数据计算服务 User Guide / 8 Spark
${path to aliyun-cupid-sdk}/spark/spark-2.x/spark-examples/target/
spark-examples_2.11-version-shaded.jar

• Develop the OSS UnstructuredData application.
For this application, you will need to download aliyun-cupid-sdk.

Note:
Before you submit the code, make sure that you enter the following OSS account
information in the code:
val spark = SparkSession
 .builder()
 .config("spark.hadoop.fs.oss.accessKeyId", "***")
 .config("spark.hadoop.fs.oss.accessKeySecret", "***")
 .config("spark.hadoop.fs.oss.endpoint", "oss-cn-hangzhou-zmf.
aliyuncs.com")
 .appName("SparkUnstructuredDataCompute")
 .getOrCreate()

To submit the code, follow these steps:
1. Build the aliyun-cupid-sdk module.
2. Configure the spark.defaults.conf file.
3. Run the following script:

bin/spark-submit --master yarn-cluster --class \
com.aliyun.odps.spark.examples.oss.SparkUnstructuredDataCompute \
${path to aliyun-cupid-sdk}/spark/spark-2.x/spark-examples/target/
spark-examples_2.11-version-shaded.jar

8.3.2 Develop a Spark on MaxCompute application by usingPySpark
This topic describes how to develop a Spark on MaxCompute application by using
PySpark.
If you want to access MaxCompute tables, you must compile a package for the odps-
spark-datasource package. For more information, see Set up a Spark on MaxCompute

development environment.
Develop a Spark SQL application in Spark 1.6

1. Compile the following code:
from pyspark import SparkContext, SparkConf
from pyspark.sql import OdpsContext
if __name__ == '__main__':
 conf = SparkConf().setAppName("odps_pyspark")
 sc = SparkContext(conf=conf)
 sql_context = OdpsContext(sc)

472 Issue: 20191012

https://github.com/aliyun/aliyun-cupid-sdk/blob/3.3.3-public/spark/spark-2.x/spark-examples/src/main/scala/com/aliyun/odps/spark/examples/oss/SparkUnstructuredDataCompute.scala

⼤数据计算服务 User Guide / 8 Spark
 sql_context.sql("DROP TABLE IF EXISTS spark_sql_test_table")
 sql_context.sql("CREATE TABLE spark_sql_test_table(name STRING,
num BIGINT)")
 sql_context.sql("INSERT INTO TABLE spark_sql_test_table SELECT '
abc', 100000")
 sql_context.sql("SELECT * FROM spark_sql_test_table").show()
 sql_context.sql("SELECT COUNT(*) FROM spark_sql_test_table").
show()

2. Run the following command to submit the code:
./bin/spark-submit \
--jars cupid/odps-spark-datasource_xxx.jar \
example.py

Develop a Spark SQL application in Spark 2.3
1. Compile the following code:

from pyspark.sql import SparkSession
if __name__ == '__main__':
 spark = SparkSession.builder.appName("spark sql").getOrCreate()
 spark.sql("DROP TABLE IF EXISTS spark_sql_test_table")
 spark.sql("CREATE TABLE spark_sql_test_table(name STRING, num
BIGINT)")
 spark.sql("INSERT INTO spark_sql_test_table SELECT 'abc', 100000
")
 spark.sql("SELECT * FROM spark_sql_test_table").show()
 spark.sql("SELECT COUNT(*) FROM spark_sql_test_table").show()

2. Run one of the following commands based on which mode you use:
• In cluster mode, run the following command to submit the code:

spark-submit --master yarn-cluster \
--jars cupid/odps-spark-datasource_xxx.jar \
example.py

• In local mode, run the following command to submit the code:
cd $SPARK_HOME
./bin/spark-submit --master local[4] \
--driver-class-path cupid/odps-spark-datasource_xxx.jar \
/path/to/odps-spark-examples/spark-examples/src/main/python/
spark_sql.py

Required packages
A Python library cannot be directly installed in the MaxCompute cluster. When
PySpark depends on a Python library, plugin, or project, you need to package this
Python library, plugin, or project on your computer and then upload the package
by running the spark-submit script. The Python version that you use to package
the Python library, plugin, or project must be the same as the Python version in

Issue: 20191012 473

⼤数据计算服务 User Guide / 8 Spark

which your Spark on MaxCompute jobs run. You can choose one of the following
two packaging formats: egg and Python.
• Compile egg packages on your computer.

For example, if MLlib requires the NumPy and Setuptools plugins, you need to
compile egg packages for them and then upload the packages by running the --
py-files script. Detailed steps are as follows:

Note:
Spark on MaxCompute jobs run in Python 2.7. Therefore, you must package the
plugins by using Python 2.7 on your computer.

1. To compile egg packages for the NumPy and Setuptools plugins, follow these
steps:
a. Download the NumPy and Setuptools software packages found in Find, install

and publish Python packages with the Python Package Index.
b. Enter the source code path of the Setuptools plugin and run the python

setup.py bdist_egg script. An egg file is generated in the dist directory.
c. Enter the source code path of the NumPy plugin and run the python

 setupeggs.py bdist_egg script. An egg file is generated in the dist
 directory.

2. Run the following command to submit your Spark on MaxCompute jobs:
cd $SPARK_HOME
./bin/spark-submit --master yarn-cluster \
--jars cupid/odps-spark-datasource_2.11-3.3.2-hotfix1.jar \
--py-files /path/to/numpy-1.7.1-py2.7-lunux-x85_64.egg,/path/to/
setuptools-33.1.1-py2.7.egg \
app.py

• Compile Python packages on your computer.
If the Spark on MaxCompute application depends on a large number of plugins
or any of these plugins contain files such as .so files that cannot be imported by
the zipimport module, you need to download all the plugins, compile Python

474 Issue: 20191012

https://pypi.org/
https://pypi.org/

⼤数据计算服务 User Guide / 8 Spark

packages for the plugins, and then upload the packages. Detailed steps are as
follows:
1. Add the following configuration information:

spark.pyspark.python=./public.python-2.7-ucs4.zip/python-2.7-ucs4/
bin/python2.7

2. Run the following command to submit your Spark on MaxCompute jobs:
cd $SPARK_HOME
./bin/spark-submit --master yarn-cluster \
--jars cupid/odps-spark-datasource_2.11-3.3.2-hotfix1.jar \
--archives ./python-2.7-ucs4.zip app.py

If you do not want to submit your Spark on MaxCompute jobs by running the --
archives script, you can submit them as public resources.
1. Add the following configuration information:

spark.hadoop.odps.cupid.resources=public.python-2.7-ucs4.zip
spark.pyspark.python=./public.python-2.7-ucs4.zip/python-2.7-ucs4/
bin/python2.7

2. Run the following command to submit your Spark on MaxCompute jobs:
cd $SPARK_HOME
./bin/spark-submit --master yarn-cluster \
--jars cupid/odps-spark-datasource_2.11-3.3.2-hotfix1.jar app.py

If the Spark on MaxCompute application also depends on other plugins, you can
package them with reference to the following script:
work_root=`dirname $0`
work_root=`cd ${work_root}; pwd`
Step 1 compile python
1.1 python source code
cd ${work_root}
if [! -f Python-2.7.13.tgz]; then
 wget https://www.python.org/ftp/python/2.7.13/Python-2.7.13.tgz
fi
1.2 configure && make && make install
if [! -d ${work_root}/Python-2.7.13]; then
 cd ${work_root}
 tar xf ${work_root}/Python-2.7.13.tgz
fi
if [-d ${work_root}/python-2.7-ucs4]; then
 rm -rf ${work_root}/python-2.7-ucs4
fi
cd ${work_root}/Python-2.7.13
./configure --prefix=${work_root}/python-2.7-ucs4 --enable-unicode=
ucs4
sed -i 's/#.*zlib zlibmodule.c/zlib zlibmodule.c/g' Modules/Setup
make -j20
make install
1.3 install pip

Issue: 20191012 475

⼤数据计算服务 User Guide / 8 Spark
cd ${work_root}
if [! -f get-pip.py]; then
 curl -s https://bootstrap.pypa.io/get-pip.py -o ${work_root}/get
-pip.py
fi
${work_root}/python-2.7-ucs4/bin/python ${work_root}/get-pip.py
1.4 install numpy
${work_root}/python-2.7-ucs4/bin/pip install numpy
1.6 make python zip
if [-f ${work_root}/python-2.7-ucs4.zip]; then
 rm -rf ${work_root}/python-2.7-ucs4.zip
fi
cd ${work_root}
zip -r ${work_root}/python-2.7-ucs4.zip python-2.7-ucs4

8.4 Spark on MaxCompute running modes
This topic describes the running modes of Spark on MaxCompute, including the
local, cluster, and DataWorks modes.

Local mode
The local mode allows you to easily debug application code, through a similar
method to that of native Spark, and allows you to read and write MaxCompute
tables by running the undefinedtunnel command. You need to add the required
tunnel configuration items and endpoint information in the Spark-defaults.conf
 file. The endpoint varies depending on the network conditions and the region
where the MaxCompute project is located. For more information, see Configure

Endpoint. You can enable the local mode in an integrated development environment
(IDE) or command line interface (CLI). To do so, you need to add the spark.master
=local[N] configuration item, where N indicates the CPU resources required for
running in the local mode. The following is an example of enabling the local mode
in the CLI:
1.bin/spark-submit --master local[4] \
--class com.aliyun.odps.spark.examples.SparkPi \
${path to aliyun-cupid-sdk}/spark/spark-2.x/spark-examples/target/
spark-examples_2.11-version-shaded.jar

Cluster mode
In cluster mode, you need to specify Main, which is a custom program entry and a
crucial part of this mode. In this mode, the Main must succeed or fail for the Spark
job to end. This mode is suitable to offline jobs and can be used in combination with

476 Issue: 20191012

⼤数据计算服务 User Guide / 8 Spark

Alibaba Cloud DataWorks for job scheduling. The method of submitting the CLI is
as follows:
1.bin/spark-submit --master yarn-cluster \
–class SparkPi \
${ProjectRoot}/spark/spark-2.x/spark-examples/target/spark-examples_2.
11-version-shaded.jar

DataWorks mode

Note:
Supported Region: China (Hong Kong), West USA 1, Central Europe 1, Asia Pacific
SOU 1, Asia Pacific SE 1.

In DataWorks, you can run offline Spark on MaxCompute jobs in cluster mode. This
helps to integrate Spark on MaxCompute nodes with other types of nodes and better
schedule these nodes. To run an offline Spark on MaxCompute job, follow these
steps:undefined
1. Log on to DataWorks, and then upload and submit resources as a file in the target

 workflow.
2. In the left-side navigation, click a workflow and select ODPS Spark.
3. Drag a Spark on MaxCompute node to the workflow and double-click the node to

define a Spark on MaxCompute job.
4. Select a Spark version, language, and resource file (the file you have uploaded

and submitted in Step 1), specify configuration items (for example, the number
of executors and memory size), and set the endpoint configuration item spark.
hadoop.odps.cupid.webproxy.endpoint for the Spark on MaxCompute service
(the value of the endpoint configuration item is the connection address of
the endpoint serving the region where your Spark on MaxCompute project is
located).

5. Manually run the Spark on MaxCompute node. You can view the logs of this job
and based on the logs you can obtain the LogView data of the job and the URL of
LogView. In addition, you can compile the data to diagnose the job.

Note:
After the Spark on MaxCompute job is defined, you can orchestrate and
centrally schedule and run different types of services in the corresponding
workflow.

Issue: 20191012 477

⼤数据计算服务 User Guide / 8 Spark

8.5 Diagnose a Spark on MaxCompute job
This topic describes how to diagnose a Spark on MaxCompute job based on the
job log. You can use LogView or the Spark Web UI to check whether a Spark on
MaxCompute job is submitted or run.

Background information
When you submit a Spark on MaxCompute job by running the spark-submit script,
MaxCompute creates an instance and adds instance information to the LogView log.
Specifically, you can submit a Spark on MaxCompute job through running the
followingspark-submitscript:
cd $SPARK_HOME
bin/spark-submit --master yarn-cluster --class SparkPi /tmp/spark-2.x
-demo/target/AliSpark-2.x-quickstart-1.0-SNAPSHOT-shaded.jar

After the job is submitted, MaxCompute creates an instance and adds the instance
information to the LogView log as follows:
19/01/05 20:36:47 INFO YarnClientImplUtil: logview url: http://logview
.odps.aliyun.com/logview/?h=http://service.cn.maxcompute.aliyun.com/
api&p=qn_beijing&i=xxx&token=xxx
If the job is submitted, the logged information includes but is not
limited to the following:
19/01/05 20:37:34 INFO Client:
 client token: N/A
 diagnostics: N/A
 ApplicationMaster host: 11.220.xxx.xxx
 ApplicationMaster RPC port: 30002
 queue: queue
 start time: 1546691807945
 final status: SUCCEEDED
 tracking URL: http://jobview.odps.aliyun.com/proxyview/jobview/?h=
http://service.cn.maxcompute.aliyun-inc.com/api&p=project_name&i=xxx&t
=spark&id=application_xxx&metaname=xxx&token=xxx

Note:
When you run a Spark on MaxCompute task in DataWorks, a similar log is created.

478 Issue: 20191012

⼤数据计算服务 User Guide / 8 Spark

Diagnose a Spark on MaxCompute job by using LogView
1. Open a browser. Then use LogView to view the basic information about your

Spark on MaxCompute job, a cupid-type task.

2. On theFuxi Jobstab in the upper pane, find the task namedmaster-0in
theTaskNamecolumn. Then, in the lower pane, click theALLtab.

3. On the TempRoot tab, find the log you want to view, and click the icon in the
StdOut column. Then you can view the log details generated by SparkPi.

Diagnose a Spark on MaxCompute job by using the Spark Web UI
If the log for a Spark on MaxCompute job contains a tracking URL, the job is
submitted to the MaxCompute cluster. Both the Spark Web UI and the History
Server use this tracking URL.

Issue: 20191012 479

⼤数据计算服务 User Guide / 8 Spark

1. Open a browser and enter the tracking URL in the address bar to track your
Spark on MaxCompute job.

2. Find the driver you want to view, and then click stdout in the Logs column.

8.6 Spark on MaxCompute FAQ
This topic describes the FAQ related to Spark on MaxCompute.

How should I migrate open-source Spark code to Spark on MaxCompute?
The method by which you migrate open-source Spark code to Spark on
MaxCompute depends on the access requirements of your Spark on MaxCompute
jobs. Specifically, consider the following:
• If Spark on MaxCompute jobs require access to MaxCompute tables or OSS

, configure the required objects, re-package them, and then upload these
packages to Spark on MaxCompute.

• If Spark on MaxCompute jobs do not require such access, migrate Spark code
by running the JAR packages of the required objects on Spark on MaxCompute.
For this method, you must set the scope parameter to provided for the
corresponding Spark or Hadoop module.

For more information on migrating Spark code, see Set up a Spark on MaxCompute

development environment.

480 Issue: 20191012

⼤数据计算服务 User Guide / 8 Spark

How do I use Spark on MaxCompute to access services in a VPC?
If you want to access services in a VPC, open a ticket.

What can I do if the ID and key in the spark-defaults.conf file are incorrect?
If you receive an error message similar to the following:
Stack:
com.aliyun.odps.OdpsException: ODPS-0410042:
Invalid signature value - User signature dose not match

You can log on to the Alibaba Cloud CDN console and obtain the AccessKey ID and
Access Key Secret from the User Management page. Then change the ID and key in
the spark-defaults.conf file to the obtained AccessKey ID and Access Key Secret,
respectively.

What can I do if I do not have the permissions to operate a project?
If you receive an error message similar to the following:
Stack:
com.aliyun.odps.OdpsException: ODPS-0420095:
Access Denied - Authorization Failed [4019], You have NO privilege '
odps:CreateResource' on {acs:odps:*:projects/*}

You can ask the project owner to grant you the permissions to read and create
resources in the project.

What can I do if Spark on MaxCompute tasks cannot run in a project?
If you receive an error message similar to the following:
Exception in thread "main" org.apache.hadoop.yarn.exceptions.
YarnException: com.aliyun.odps.OdpsException: ODPS-0420095: Access
Denied - The task is not in release range: CUPID

You can check whether the Spark on MaxCompute service is enabled for the region
to which the project belongs. In addition, check whether the Spark-defaults.conf
 file is correctly configured according to the MaxCompute product documentation.
If the Spark on MaxCompute service is enabled and the Spark-defaults.conf
 file is correctly configured, open a ticket or join our DingTalk group 21969532 for
technical support.

What can I do if the system reports a No space left on device error?
You can increase the bucket size, which is determined by the spark.hadoop.odps.
cupid.disk.driver.device_size parameter. The default bucket size is 20 GB and

Issue: 20191012 481

https://account.aliyun.com/login/login.htm?oauth_callback=https://usercenter.console.aliyun.com/

⼤数据计算服务 User Guide / 8 Spark

the maximum bucket size is 100 GB. If the error persists even after you increase
the bucket size to 100 GB, check whether your data, including shuffled data and the
data overflowing from BlockManager, is skewed among blocks during the shuffle or
cache process. If data skew is found, set the spark.executor.cores parameter to
a smaller value to decrease the number of cores that can run concurrently in each
executor while you set the spark.executor.instances parameter to a greater value
to increase the number of executors.

482 Issue: 20191012

⼤数据计算服务 User Guide / 9 Interactive SQL (Lightning)

9 Interactive SQL (Lightning)
9.1 Overview

MaxCompute Lightning provides interactive query services for MaxCompute,
and supports easy connection to MaxCompute projects based on the PostgreSQL
protocol and syntax. This service allows you to quickly query and analyze
MaxCompute project data using standard SQL and commonly used tools.
You can use major BI tools, such as Tableau and FineReport, to easily connect to
MaxCompute projects, and perform BI analysis or ad hoc queries. The quick query
 feature in MaxCompute Lightning allows you to provide services by encapsulating
 project table data in APIs, supporting diverse application scenarios without data
migration.
MaxCompute Lightning offers serverless computing services. No infrastructure is
required and you pay only for queries.

Key features
• Compatibility with the PostgreSQL protocol

MaxCompute Lightning provides Java Database Connectivity (JDBC) or
Open Database Connectivity (ODBC) interfaces that are compatible with the
 PostgreSQL protocol. Tools or applications based on PostgreSQL databases
can easily be connected to MaxCompute projects using default drivers. The
 easy connection enables diverse PostgreSQL tools to be used for analyzing
MaxCompute project data.

• Improved performance
Quick query for MaxCompute tables is optimized, especially for small datasets
and high query concurrency, supporting diverse application scenarios, such as
regular reports and service APIs.

• Unified permissions management
MaxCompute Lightning is a product designed for MaxCompute products and
provides access to MaxCompute projects. This service shares the same access
 control system with MaxCompute projects. This ensures that users can only
query data that they are authorized to access.

Issue: 20191012 483

⼤数据计算服务 User Guide / 9 Interactive SQL (Lightning)

• Out-of-the-box feature and pay by queries
MaxCompute Lightning provides serverless computing services based on
existing MaxCompute computing resources. To perform queries, you only need
to establish connections to MaxCompute projects using MaxCompute Lightning.
You do not need to configure, manage, or maintain MaxCompute Lightning
resources.When using MaxCompute Lightning, you only incur costs for the data
amount processed for each query.

System architecture
MaxCompute Lightning provides a method of connecting endpoints, clients, or
applications to JDBC or ODBC interfaces using PostgreSQL drivers. This enables
 secure data access within the unified access control system for MaxCompute
projects.
Query tasks, connected and submitted by JDBC or ODBC interfaces, use serverless
computing resources of MaxCompute Lightning to ensure query service quality.

484 Issue: 20191012

⼤数据计算服务 User Guide / 9 Interactive SQL (Lightning)

Scenarios
• Ad hoc query

The query for small datasets (less than 100 GB) is optimized to allow you to
easily query MaxCompute tables with low latency. You do not need to import the
MaxCompute data into the AnalyticDB (ADS), Relational Database Service (RDS),
or other systems, which reduces required resources and administration costs.
This scenario has the following characteristics: flexible data objects for queries,
complicated logic, quick query, easy adjustment of query logic, and low latency
query requirements within one minute. Users are often data analysts who master
 SQL skills and want to use familiar client tools for query analysis.

• Reporting and analysis
Analysis reports are generated based on the MaxCompute project data consolidat
ed in the Extract-Transform-Load (ETL) process. The reports are provided to
managers and business users for regular checks.
This scenario has the following characteristics: The queried data objects are
 usually the aggregated data. The queried data objects are included in small
datasets. Queries are based on fixed and simple query logic. The scenario has
 low latency requirements. Latency for most queries is within 5 seconds. The
query latency period varies greatly depending on the data volume and query
complexity.

• Online application
MaxCompute project data can be encapsulated in RESTful APIs to support online
 applications.
In this scenario, MaxCompute Lightning serves as an accelerated query engine to
provide MaxCompute table data as API services with the least amount of manual
intervention. This is enabled by integrating data service components of Alibaba Cloud
DataWorks.

Issue: 20191012 485

⼤数据计算服务 User Guide / 9 Interactive SQL (Lightning)

9.2 Quick Start
This topic describes how to access MaxCompute Lightning services with major
third-party tools, including how to view tables of a specified MaxCompute project,
and how to perform BI analysis.

Prerequisites
• Activate MaxCompute and create a project.

Using MaxCompute Lightning requires that MaxCompute has been activated and
a project has been created.
If you have not activated MaxCompute, activate the service first. For more
information, see Activate MaxCompute. Then, create a MaxCompute project.

• Create a table and import data.
Tables have been created in the project and data has been loaded. For more
information, see MaxCompute Quick Start.

• Obtain account information.
The access ID and access key for the MaxCompute project have been obtained.
You can log on to the Alibaba Cloud website, and click Console to view the
AccessKey page. Contact the owner of the primary account if your RAM user is
not granted permission to view AccessKey. You also need to ensure your RAM
user is granted permission to view project tables.

Prepare client tools for connection
MaxCompute Lightning is compatible with PostgreSQL interfaces and is accessible
to client tools that are connected to PostgreSQL databases.
Tableau Desktop BI tools are used in this tutorial. Download related tools from the
Tableau official website.
Other commonly used client tools, such as SQL Workbench/J, PSQL, FineReport BI,
and MicroStrategy BI tools, can be connected to MaxCompute Lightning in the same
 way as to PostgreSQL databases.

Access services and perform analysis
After the connection service is successful, you can view the data table under the
specified MaxCompute project for BI analysis.

486 Issue: 20191012

https://www.alibabacloud.com/help/doc-detail/58226.htm
https://www.alibabacloud.com/help/doc-detail/27808.htm
https://www.tableau.com/products/desktop

⼤数据计算服务 User Guide / 9 Interactive SQL (Lightning)

1. Select PostgreSQL when establishing a connection to a server.
Start Tableau Desktop. In the left-side navigation pane, select Select > To Servers
> More > PostgreSQL.

2. Enter service connection and user authentication information.
Parameter Description
Server Enter the MaxCompute Lightning endpoint of a specified

region in the Server field. For example, enter the value
lightning.cn-shanghai.maxcompute.aliyun.com as the
endpoint for the China East 2 region.
443

Database MaxCompute project name
ID Verification User name and password
Username/
Password

User Access Key ID/Access Key Secret

SSL connection Select the SSL connection check box.
3. Obtain project table information and create a data source or model.

After you configure the contact information and log on to the Tableau Desktop,
this software loads tables of the connected MaxCompute project. You can choose
tables to create data models and charts as required.
The following figure shows an example of a chart created based on required
dimensions and measures.

Now you have gained access to MaxCompute Lightning using Tableau Desktop. You
can perform BI analysis on the data of the connected MaxCompute projects.

Note:
For better performance, it is recommended that you customize the connection
to the Lightning data source using the TDC file supported by Tableau. For more
information, see Tableau Desktop.

Issue: 20191012 487

⼤数据计算服务 User Guide / 9 Interactive SQL (Lightning)

9.3 Access domain name
MaxCompute Lightning provides region-specific endpoints that allow you to access
MaxCompute Lightning services in the corresponding regions.
The following tables describe the MaxCompute Lightning service connection status
in different regions and public cloud network environments.
Table 9-1: Service connection status in different regions with external network
Region Service status External network endpoint
China East 1 In service lightning.cn-hangzhou.maxcompute.

aliyun.com
China East 2 In service lightning.cn-shanghai.maxcompute.aliyun

.com
China North 2 In service lightning.cn-beijing.maxcompute.aliyun.

com
Southern China 1 In service lightning.cn-shenzhen.maxcompute.

aliyun.com
China (Hong Kong
)

Beta lightning.cn-hongkong.maxcompute.
aliyun.com

Asia Pacific SE 1 Beta lightning.ap-southeast-1.maxcompute.
aliyun.com

Other regions Not activated -
Table 9-2: Service connection status in different regions with classic network
Region Service status Classic network endpoint
China East 1 In service lightning.cn-hangzhou.maxcompute.

aliyun-inc.com
China East 2 In service lightning.cn-shanghai.maxcompute.aliyun

-inc.com
China North 2 In service lightning.cn-beijing.maxcompute.aliyun-

inc.com
Southern China 1 In service lightning.cn-shenzhen.maxcompute.

aliyun-inc.com
China (Hong Kong
)

Beta lightning.cn-hongkong.maxcompute.
aliyun-inc.com

488 Issue: 20191012

⼤数据计算服务 User Guide / 9 Interactive SQL (Lightning)

Region Service status Classic network endpoint
Asia Pacific SE 1 Beta lightning.ap-southeast-1.maxcompute.

aliyun-inc.com
Other regions Not activated -

Table 9-3: Service connection status in different regions with VPC network
Region Service status VPC endpoint
China East 1 In service lightning.cn-hangzhou.maxcompute.

aliyun-inc.com
China East 2 In service lightning.cn-shanghai.maxcompute.aliyun

-inc.com
China East 2
Financial Cloud

In service lightning.cn-shanghai-finance.
maxcompute.aliyun-inc.com

China North 2 In service lightning.cn-beijing.maxcompute.aliyun-
inc.com

Southern China 1 In service lightning.cn-shenzhen.maxcompute.
aliyun-inc.com

China (Hong Kong
)

Beta lightning.cn-hongkong.maxcompute.
aliyun-inc.com

Asia Pacific SE 1 Beta lightning.ap-southeast-1.maxcompute.
aliyun-inc.com

Other regions Not activated -

9.4 Access services using JDBC interfaces
The MaxCompute Lightning query engine is based on PostgreSQL 8.2 and
currently only supports SELECT queries for existing MaxCompute tables. For more
information about the query syntax and functions.
If no data has been added to MaxCompute projects or existing data needs to be
processed, see the MaxCompute help document. You can use the MaxCompute client or
DataWorks to access MaxCompute projects for creating and processing data objects.

Issue: 20191012 489

https://www.postgresql.org/docs/8.2/static/queries.html
https://www.postgresql.org/docs/8.2/static/functions.html
https://www.alibabacloud.com/help/product/27797.htm
https://www.alibabacloud.com/help/doc-detail/27971.htm

⼤数据计算服务 User Guide / 9 Interactive SQL (Lightning)

9.4.1 JDBC driver
MaxCompute provides JDBC interfaces that are fully compatible with the
PostgreSQL protocol. Users can connect SQL client tools to the MaxCompute
Lightning service using JDBC interfaces.
MaxCompute Lightning can be accessed using JDBC drivers from the PostgreSQL
official website or other drivers optimized for MaxCompute Lightning.
1. JDBC drivers from the PostgreSQL official website.

Note:
Many client tools already have PostgreSQL database drivers built in, you can
use the built-in drivers. If it is not integrated, you can download required
drivers from the PostgreSQL official website. Take the SQL Workbench/J client
as an example. You can choose the PostgreSQL official drivers when creating a
connection.

2. JDBC drivers optimized by Alibaba Cloud MaxCompute Lightning
The downloaded MaxCompute Lightning JDBC driver is saved as a
MaxComputeLightningJDBC.jar file. Take the SQL Workbench/J client as an

490 Issue: 20191012

https://jdbc.postgresql.org/
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/89778/cn_zh/1535960228920/MaxComputeLightningJDBC.jar

⼤数据计算服务 User Guide / 9 Interactive SQL (Lightning)

example. In the Driver Management menu, add the MaxCompute Lightning JDBC
driver entry.

When you create a connection, select the MaxCompute Lightning JDBC driver
that you just added from the Driver list.

9.4.2 Configure JDBC connections
To connect SQL client tools to MaxCompute projects, you must have JDBC URLs for
the MaxCompute projects.
The following shows the format of a JDBC URL:
jdbc:postgresql://endpoint:port/database

The following table describes the connection parameters:
Issue: 20191012 491

⼤数据计算服务 User Guide / 9 Interactive SQL (Lightning)

Parameter Value Description
endpoint Access domain name of

MaxCompute Lightning in
 the region

For more information, see Access

domain name. For example, accessing
the Shanghai Region service
through the external network using
lightning.cn-shanghai.maxcompute
.aliyun.com

port 443 -
database Name of a MaxCompute

project
-

User Access Key ID of the user -
password Access Key Secret of the

user
-　

ssl true MaxCompute Lightning servers
are enabled with SSL protection
by default, and you must use SSL
connections.

prepareThr
eshold

0 Optional. When using the JDBC
PrepareStatement function, it is
recommended to set prepareThr
eshold=0.

For example, jdbc:postgresql://lightning.cn-shanghai.maxcompute.aliyun.
com:443/myproject

You must specify the user, password, and SSL connection parameters before
establishing a connection to MaxCompute projects.
You can also add parameters to the JDBC URL to connect to MaxCompute projects.
For example:
jdbc:postgresql://lightning.cn-shanghai.maxcompute.aliyun.com:443/
myproject? ssl=true& prepareThreshold=0&user=xxx&password=yyy

Note:
• lightning.cn-shanghai.maxcompute.aliyun.com: The endpoint of the China East

2 region.
• Myproject: The name of the MaxCompute project you want to access.
• SSL=true: The application of SSL connections.

492 Issue: 20191012

⼤数据计算服务 User Guide / 9 Interactive SQL (Lightning)

• xxx: Access Key ID of the user.
• yyy: Access Key Secret of the user.

9.4.3 Access services using common tools
The following sections use major client tools, such as SQL Workbench/J, PSQL, and
Tableau BI tools, as examples to describe how to access MaxCompute Lightning.
Other commonly used tools can be connected to MaxCompute Lightning in the
same way as to PostgreSQL databases.

Alibaba Cloud Quick BI
1. Log on Quick BI console, click Data source in the left-side navigation pane.
2. On the data source management page, click the Create data source in the upper-

right corner.
3. Select PostgreSQL in the cloud database or external data source, and add a data

source.
4. In the dialog box that appears, enter the connection information for

MaxCompute Lightning. Then, test the connection.
Parameter Description
Database address Enter the endpoint for the region of MaxCompute Lightning

. You can enter the endpoint for a public network, classic
network, or VPC network.

Database Enter the name of the to-be-accessed MaxCompute project.
Schema MaxCompute project name
User name/
Password

User Access Key ID/Access Key Secret.

SQL Workbench/J
SQL Workbench/J is a widely used free and cross-platform SQL query tool. This tool
can be connected to MaxCompute Lightning using the PostgreSQL driver.
1. Download and install SQL Workbench/J.

Issue: 20191012 493

http://www.sql-workbench.eu/downloads.html

⼤数据计算服务 User Guide / 9 Interactive SQL (Lightning)

2. Start SQL Workbench/J, establish a database connection.
Select the PostgreSQL driver, connect SQL Workbench/J to the MaxCompute
Lightning URL of a project. You must enter the Access Key ID and Access Key
Secret of the user.

Alternatively, you can click Extended Properties and set ssl to true in the
displayed dialog box.

494 Issue: 20191012

⼤数据计算服务 User Guide / 9 Interactive SQL (Lightning)

3. After SQL Workbench/J is connected to MaxCompute Lightning, you can view,
query, and analyze the table data in the SQL Workbench/J workspace.

psql
The psql is a PostgreSQL interactive terminal that enables you to perform queries
 using commands. The clients of psql are installed by default when PostgreSQL
databases are installed in a local PC.

Issue: 20191012 495

⼤数据计算服务 User Guide / 9 Interactive SQL (Lightning)

You can connect psql to MaxCompute Lightning using psql commands. The
syntax for the connection is the same as that for the connection to the PostgreSQL
database.
psql -h <endpoint> -U <userid> -d <databasename> -p <port>

Parameter description:
• <endpoint>: The endpoint of MaxCompute Lightning. For more information, see

Access domain name.
• <userid>: Access Key ID.
• <databasename>: MaxCompute project name.
• <port>: 443
After the command is executed, enter the <userid> password (Access Key Secret) in
the command prompt.
Example:

Note:
SSL connections are preferred for psql by default.

Tableau Desktop
Start BI tools, select the PostgreSQL data source, and configure the connection.
When you configure the connection, select the SSL Connection check box.
After logging on to Tableau Desktop, you can create charts for visual analysis.

496 Issue: 20191012

⼤数据计算服务 User Guide / 9 Interactive SQL (Lightning)

Note:
For better performance, it is recommended that you customize the connection to
the Lightning data source using the TDC file supported by Tableau. Procedure:
1. Save the following xml content as a postgresql.tdc file.

<?xml version='1.0' encoding='utf-8' ?>
<connection-customization class='postgres' enabled='true' version='
8.10'>
<vendor name='postgres'/>
<driver name='postgres'/>
<customizations>
<customization name='CAP_CREATE_TEMP_TABLES' value='no' />
<customization name='CAP_STORED_PROCEDURE_TEMP_TABLE_FROM_BUFFER'
value='no' />
<customization name='CAP_CONNECT_STORED_PROCEDURE' value='no' />
<customization name='CAP_SELECT_INTO' value='no' />
<customization name='CAP_SELECT_TOP_INTO' value='no' />
<customization name='CAP_ISOLATION_LEVEL_SERIALIZABLE' value='yes
' />
<customization name='CAP_SUPPRESS_DISCOVERY_QUERIES' value='yes' />
<customization name='CAP_SKIP_CONNECT_VALIDATION' value='yes' />
<customization name='CAP_ODBC_TRANSACTIONS_SUPPRESS_EXPLICIT_COMMIT
' value='yes' />
<customization name='CAP_ODBC_TRANSACTIONS_SUPPRESS_AUTO_COMMIT'
value='yes' />
<customization name='CAP_ODBC_REBIND_SKIP_UNBIND' value='yes' />
<customization name='CAP_FAST_METADATA' value='no' />
<customization name='CAP_ODBC_METADATA_SUPPRESS_SELECT_STAR' value
='yes' />
<customization name='CAP_ODBC_METADATA_SUPPRESS_EXECUTED_QUERY'
value='yes' />
<customization name='CAP_ODBC_UNBIND_AUTO' value='yes' />
<customization name='SQL_TXN_CAPABLE' value='0' />
<customization name='CAP_ODBC_CURSOR_FORWARD_ONLY' value='yes' />
<customization name='CAP_ODBC_TRANSACTIONS_COMMIT_INVALIDATES
_PREPARED_QUERY' value='yes' />
</customizations>
</connection-customization>

2. Save the file to the \My Documents\My Tableau Repository\Datasources
 directory. If it is Tableau Server, save it in C:\ProgramData\Tableau\Tableau
Server\data\tabsvc\vizqlserver\Datasources under Windows, and save it in
/var/opt/tableau/tableau_server/data/tabsvc/vizqlserver/Datasources/

under Linux. .
3. Reopen Tableau and use the PostgreSQL data source to connect to the

MaxCompute Lightning service. For more information about custom data
sources for tdc files, see official Tableau documentation.

FineReport
1. Start FineReport, and select Server > Define database connection.

Issue: 20191012 497

https://onlinehelp.tableau.com/current/pro/desktop/en-us/odbc_customize.html#global_tdc

⼤数据计算服务 User Guide / 9 Interactive SQL (Lightning)

2. Add a JDBC connection.
The configurations are described as follows:
Parameter Description
Database Postgre
Driver org.postgresql.Driver that is integrated in FineReport
URL jdbc:postgresql://<MaxCompute Lightning Endpoint>:

443/<Project_Name>? ssl=true&prepareThreshold=0

For example, jdbc:postgresql://lightning.cn-shanghai
.maxcompute.aliyun.com:443/lightning_demo? ssl=true

&prepareThreshold=0

User name/
Password

User Access Key ID and Access Key Secret

9.5 SQL reference
Based on the official PostgreSQL function, MaxCompute Lightning adds the
following built-in functions.

Query syntax
The MaxCompute Lightning query engine is based on PostgreSQL 8.2 and
currently only supports SELECT queries for existing MaxCompute tables. For more
information about the query syntax, see PostgreSQL documentation.

Function
The MaxCompute Lightning query engine is based on PostgreSQL 8.2 supports
builtin funtion, for more information, see PostgreSQL documentation.
Based on the official PostgreSQL function, MaxCompute Lightning adds the
following builtin functions.

498 Issue: 20191012

https://www.postgresql.org/docs/8.2/static/queries.html
https://www.postgresql.org/docs/8.2/static/functions.html

⼤数据计算服务 User Guide / 9 Interactive SQL (Lightning)

• MAX_PT
Command format
max_pt(table_full_name)

Command description
For partitioned tables, this function returns the maximum value of the level
-one partition of the partitioned table, sorted alphabetically, and there is a
corresponding data file under the partition.
Parameter description
table_full_name: String type, used to specify the table name (must carry the
project name, such as prj.src), you must have read access to this table.
Return value
Returns the value of the largest level-one partition.
Example
Suppose tbl is a partition table, the corresponding partition is as follows, and
both contain data files:
pt =‘20120901’
pt =‘20120902’

Then the partition max_pt returns the value of '20120902' in the following
statement, and the MaxCompute SQL statement reads the data under the pt=‘
20120902’ partition.
select * from tbl where pt=max_pt('myproject.tbl');

9.6 View tasks
MaxCompute Lightning provides a system view stv_recents. By querying the view,
you can view all query tasks that the current user is running.

View running queries
You can execute the query command to view the related information, including
 query ID, user name, query SQL statement, start time, duration, and waiting
resources. Note: The "t" indicates that a query task has not been executed yet and is

Issue: 20191012 499

⼤数据计算服务 User Guide / 9 Interactive SQL (Lightning)

 waiting for resources. The "f" indicates that the resources are being acquired and
that the query task is being executed.
Run the following query command.
select * from stv_recents;

The following figure shows a command output example.

Cancel running queries
You can obtain information on running queries by querying the stv_recents table.
To cancel a running query, execute the following query command.
select cancel('query_id');

In parentheses is the query_id of a running query.

9.7 Constraints and limitations
This article introduces you to the constraints and limitations of using the
MaxCompute Lightning service.

DDL/DML constraints and limitations
MaxCompute Lightning only supports Select queries for MaxCompute tables
and does not support UPDATE, CREATE, DELETE, and INSERT operations on
MaxCompute tables.

500 Issue: 20191012

⼤数据计算服务 User Guide / 9 Interactive SQL (Lightning)

Query constraints and limitations
• A maximum number of 1,024 scanned partitions can be queried when you query

partitioned tables.
• Currently, views cannot be created or used.
• Currently, MAP、ARRAY、TINYINT、BINARY、TIMESTAMP and DECIMAL with

accuracy data types are not supported.
• A maximum of 1 TB data can be scanned for a table in each query.
• The size of the submitted query statement cannot exceed 100 KB.
• The query timeout period is one hour.

UDF constraints and limitations
• User-defined functions (UDF) created using MaxCompute cannot be used in

MaxCompute Lightning.
• PostgreSQL user-defined functions cannot be created or used in MaxCompute

Lightning.
• MaxCompute built-in functions are not supported at this time.

Query concurrency constraints
A maximum of 20 concurrent queries for a MaxCompute project is supported by
MaxCompute Lightning.

9.8 FAQs
This article will help you organize common problems in the application of
MaxCompute Lightning.
• Q: How can I query data using MaxCompute Lightning when I have not created

any tables?
A: You need to use the DataWorks or odpscmd client tool to create tables for a
MaxCompute project and then upload the data. You can access the project using
MaxCompute Lightning and query the tables in the project.

Issue: 20191012 501

https://www.postgresql.org/docs/8.2/static/functions.html

⼤数据计算服务 User Guide / 9 Interactive SQL (Lightning)

• Q: What are the limits on the amount of data that I can query? What is the limit
to the amount of queried data MaxCompute Lightning can process and still show
excellent performance?
A: Currently, a maximum of 1 TB data can be scanned for a table in each query. Of
course, less of queried data will provide better query performance.

Note:
We recommend that the table data to be scanned does not exceed 100 GB.
Query performance gradually decreases with the increase of data volume. If
the queried data exceeds 100 GB, MaxCompute SQL is recommended for better
performance.

• Q: What should I do if I receive the following error message when using BI tools
to drag a partitioned table for analysis: ERROR: AXF Exception: specified
partitions count in odps table: <project_name.table_name> is: xxx,

exceeds the limitation of xxx, please add stricter partition filter.
A: MaxCompute Lightning limits the number of partitions for a partitioned table
 to ensure the query performs efficiently. A maximum of 1,024 partitions can
be scanned for a table in each query. With some BI tools, you can select tables
 for analysis using the drag-and-drop method. In this way, you are not able to
 specify partition settings before the analysis. This may cause the number of
partitions to be scanned to exceed the limit, triggering the report of an error
from MaxCompute Lightning. We recommend that you process the to-be-queried
 tables before the analysis. You can either convert partitioned tables into non-
partitioned tables or reduce the number of partitions to a value lower than 1,024.

• Q: Why is ERROR: SSL required displayed during the connection to
MaxCompute Lightning?
A: MaxCompute Lightning requires SSL connections and therefore users must
use SSL connections. If you use a client tool, you can select the SSL connection
check box. If SSL connections cannot be selected in the client tool, you can
add the SSL parameter to the JDBC URL. In the JDBC URL, you must enter
the endpoint of the region where your project belongs and the name of the
connected project, for example, jdbc:postgresql://lightning.cn-shanghai.
maxcompute.aliyun.com:443/myproject? ssl=true.

502 Issue: 20191012

⼤数据计算服务 User Guide / 9 Interactive SQL (Lightning)

• Q: What should I do when I receive the following error message during a query
using the SQL Workbench/J client: Error:current transaction is aborted,
commands ignored until end of transaction block.
A: Select the Autocommit check box in the client.

Issue: 20191012 503

⼤数据计算服务 User Guide / 10 Graph

10 Graph
10.1 Summary

MaxCompute Graph is a processing framework designed for iterative graph
computing. MaxCompute Graph jobs use graphs to build models. Graphs are
composed of vertices and edges, which contain values.
MaxCompute Graph supports the following graph editing operations:
• Editing the value of Vertex or Edge.
• Add/delete Vertices.
• Add/delete Edges.

Note:
When editing a vertex and an edge, you must maintain their relationship.

This process outputs a final solution after performing iterative graph editing and
evolution. Typical applications include PageRank, SSSP algorithm, and Kmeans algorithm.
Use Java SDK, an interface provided by MaxCompute Graph to compile graph
computing programs.

Graph Data structure
Graphs processed by MaxCompute Graph must be directed graphs consisting of
 vertices and edges. As MaxCompute only provides a two-dimensional storage
structure, you must resolve graph data into two-dimensional tables and store them
in MaxCompute.
During graph computing analysis, use custom GraphLoader to convert two-
dimensional table data to vertices and edges in the MaxCompute Graph engine. You
can determine how to resolve graph data into two-dimensional tables based on your
 service scenarios. In the sample code, the table formats correspond to different
graph data structures.
The vertex structure can be described as < ID, Value, Halted, Edges >, which
respectively indicates the vertex ID (ID), value (Value), status (Halted, indicating
whether an iteration needs to be stopped), and edge set (Edges, indicating lists of
all edges starting from the vertex). The edge structure is described as < DestVertex

504 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph

ID, Value >, which respectively indicates the destination vertex (DestVertexID) and
value (Value).

For example, the preceding figure consists of the following vertices:
Vertex <ID, Value, Halted, Edges>
v0 <0, 0, false, [<1, 5 >, <2, 10 >] >
v1 <1, 5, false, [<2, 3>, <3, 2>, <5, 9>]>
v2 <2, 8, false, [<1, 2>, <5, 1 >]>
v3 <3, Long.MAX_VALUE, false, [<0, 7>, <5, 6>]>
v5 <5, Long.MAX_VALUE, false, [<3, 4 >]>

Graph program logic
Graph loading
The framework calls custom GraphLoader and resolves records of an input table to
vertices or edges.
Distributed architecture: The framework calls custom Partitioner to partition
vertices and distributes them to corresponding Workers. (Default partitioning logic
: Calculates the hash value of a vertex ID and performs the modulo operation on the
 number of Workers.)

Issue: 20191012 505

⼤数据计算服务 User Guide / 10 Graph

For example, assume in the preceding figure that the number of Workers is 2. v0
and v2 are allocated to Worker 0 because the result of the ID mod 2 is 0. v1, v3, and
v5 are allocated to Worker 1 as the result of the ID mod 2 is 1.
Iteration calculation
• An iteration is called a superstep. It traverses all vertices in a non-halted status

(the value of the halted is false) or all vertices that receive messages (a vertex in
halted status is automatically activated after receiving a message), and calls their
compute (ComputeContext context, Iterable messages) method.

• Follow these steps on your implemented compute (ComputeContext context,
Iterable messages) method:
- Process messages sent from the previous SuperStep to the current Vertex.
- Edit graph as needed:

■ Revise value of Vertex/Edge
■ Send messages to certain Vertices
■ Add/Delete Vertex or Edge

- Use Aggregator to collect information to update the global information.
- Set the current vertex to a halted or non-halted status.
- During iteration, the framework asynchronously sends messages to the

corresponding Worker and processes the messages in the next SuperStep
without your intervention.

Iteration termination
506 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph

If any of the following conditions are met, iteration is terminated.
• All vertices are in the halted state (the value of Halted is true) and no new

message is generated.
• A maximum number of iterations is reached.
• The terminate method of an Aggregator returns true.
The pseudocode is as follows:
// 1. load
for each record in input_table {
 GraphLoader.load();

// 2. setup
WorkerComputer.setup();
for each aggr in aggregators {
 aggr.createStartupValue();

for each v in vertices {
 v.setup();

// 3. superstep
for (step = 0; step < max; step ++) {
 for each aggr in aggregators {
 aggr.createInitialValue();

 for each v in vertices {
 v.compute();

// 4. cleanup
for each v in vertices {
 v.cleanup();

WorkerComputer.cleanup();

10.2 Aggregator
This article explains the implementation and related APIs of Aggregator and uses
KmeansClustering as an example to illustrate the use of Aggregator.
In MaxCompute Graph, Aggregator helps to collect and process global informatio
n. In MaxCompute Graph, Aggregator is used to summarize and process global
information.

Aggregator implementation
The logic of Aggregator is divided into the following two parts:
• One part is run on all Workers in distributed mode.

Issue: 20191012 507

⼤数据计算服务 User Guide / 10 Graph

• The other part is only run on the Worker where AggregatorOwner is located in a
single vertex mode.

Operations run on all Workers include creating an initial value and partial
aggregation. The partial aggregation result is sent to the Worker where
AggregatorOwner is located. The Worker then aggregates partial aggregation
objects sent by common Workers to obtain a global aggregation result, and
determines whether the iteration is ended or not. The global aggregation result
is sent to all Workers over the next round of supersteps for the next iteration, as
shown in the following figure.

Aggregator APIs
Aggregator provides five APIs for user implementation. The following section
describes the call time and application of the five APIs.
• createStartupValue(context)

This API runs once on all Workers. It is called before all supersteps start, and
is generally used to initialize AggregatorValue. In the first superstep iteration
 (superstep equals 0), the AggregatorValue object initialized by the API can be
obtained by the call of WorkerContext.getLastAggregatedValue() or ComputeCon
text.getLastAggregatedValue().

508 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph

• createInitialValue(context)
This API is called once on all Workers when each superstep is initiated. It is used
 to initialize AggregatorValue for the current iteration. Generally, the result of
the previous iteration is obtained through WorkerContext.getLastAggregatedVal
ue(), and partial initialization is run.

• aggregate(value, item)
This API runs on all Workers. It is triggered by an explicit call of ComputeCon
text#aggregate(item), while the preceding two APIs are automatically called by
the framework. This API is used to run partial aggregation. The first parameter
 value indicates the result that the Worker has aggregated in the current
superstep. (The initial value is the object returned by createInitialValue). The
 second parameter is transmitted when the user code calls ComputeContext#
aggregate(item). In this API, item is usually used to update value for aggregation
. After all the aggregate operations are executed, the obtained value is the partial
aggregation result of the Worker. Then, the result is sent by the framework to the
 Worker where AggregatorOwner is located.

• merge(value, partial)
This API runs by the Worker where AggregatorOwner is located. It is used to
merge partial aggregation results of Workers to obtain the global aggregation
 object. Similar to aggregate, value indicates aggregated results, while partial
indicates objects to be aggregated. Partial is used to update value.
For example, assume that three Workers w0, w1, and w2 exist with the partial
aggregation results of p0, p1, and p2. If p1, p0, and p2 in sequence are sent to the
 Worker where the AggregatorOwner is located, then the merge sequence will be
 as follows:
1. merge(p1, p0) runs first, and p1 and p0 are aggregated as p1’.
2. merge(p1’, p2) runs, and p1’ and p2 are aggregated as p1’’, which is the

global aggregation result in this superstep.
The preceding example shows that execution of the merge() operation is not
required when only one Worker exists. That is, merge() is not called.

• terminate(context, value)
After the Worker where AggregatorOwner is located runs merge(), the
framework calls terminate(context, value) to perform the final processing. The

Issue: 20191012 509

⼤数据计算服务 User Guide / 10 Graph

 second parameter value indicates the global aggregation result obtained by
merge(). The global aggregation can be modified further in this method. After
terminate() is run, the framework distributes global aggregation objects to all
 Workers for the next superstep. A special feature of terminate() is that if true
is returned, iteration of the entire job ends. Otherwise, iteration continues. In
machine learning scenarios, it is usually determined that a job ends when true is
returned after convergence.

KmeansClustering example
The following section uses typical KmeansClustering as an example to describe
how to use Aggregator. The following section uses KmeansClustering as an example
to describe how to use the Aggregator.

Note:
The complete code is provided in the Kmeans attachment. Here, the code is
resolved in the following sequence.

• GraphLoader section
GraphLoader: The GraphLoader part is used to load an input table and convert it
 to a vertex or edge of a graph. Each row of data in the input table is a sample, a
sample constructs a vertex, and VertexValue is used to store samples.
Initially, a writable class KmeansValue is defined as the VertexValue type:
public static class KmeansValue implements Writable {
 DenseVector sample;
 public KmeansValue() {

 public KmeansValue(DenseVector v) {
 this.sample = v;

 @Override
 public void write(DataOutput out) throws IOException {
 wirteForDenseVector(out, sample);

 @Override
 public void readFields(DataInput in) throws IOException {
 sample = readFieldsForDenseVector(in);

KmeansValue: A DenseVector object is encapsulated in KmeansValue to store a
sample. The DenseVector type is from matrix-toolkits-java. wirteForDenseVector()

510 Issue: 20191012

https://github.com/fommil/matrix-toolkits-java/

⼤数据计算服务 User Guide / 10 Graph

and readFieldsForDenseVector() are used for serialization and deserialization.
For more information, see the complete code in the Kmeans attachment.
The custom KmeansReader code is as follows:
public static class KmeansReader extends
 GraphLoader<LongWritable, KmeansValu
e, NullWritable, NullWritable> {
 @Override
 public void load(
 LongWritable recordNum,
 WritableRecord record,
 MutationContext<LongWritable, KmeansValue, NullWritable,
NullWritable> context)
 throws IOException {
 KmeansVertex v = new KmeansVertex();
 v.setId(recordNum);
 int n = record.size();
 DenseVector dv = new DenseVector(n);
 for (int i = 0; i < n; i++) {
 dv.set(i, ((DoubleWritable)record.get(i)).get());

 v.setValue(new KmeansValue(dv));
 context.addVertexRequest(v);

In KmeansReader, a vertex is created when each row of data (a record) is read.
recordNum is used as the vertex ID, and the record content is converted to the
DenseVector object and encapsulated in VertexValue.

• Vertex
Custom KmeansVertex code:Regarding its logic, partial aggregation is performed
for samples maintained in each iteration. For more information about its
logic, see implementation of Aggregator in the following section:
public static class KmeansVertex extends
 Vertex<LongWritable, KmeansValue,
NullWritable, NullWritable> {
 @Override
 public void compute(
 ComputeContext<LongWritable, KmeansValue, NullWritable, NullWritab
le> context,
 Iterable<NullWritable> messages) throws IOException {
 context.aggregate(getValue());

Issue: 20191012 511

⼤数据计算服务 User Guide / 10 Graph

• Aggregator
The main logic of entire Kmeans is centralized in
Aggregator. Custom KmeansAggrValue is used to maintain the content to be
aggregated and distributed.
public static class KmeansAggrValue implements Writable {
 DenseMatrix centroids;
 DenseMatrix sums; // used to recalculate new centroids
 DenseVector counts; // used to recalculate new centroids
 @Override
 public void write(DataOutput out) throws IOException {
 wirteForDenseDenseMatrix(out, centroids);
 wirteForDenseDenseMatrix(out, sums);
 wirteForDenseVector(out, counts);

 @Override
 public void readFields(DataInput in) throws IOException {
 centroids = readFieldsForDenseMatrix(in);
 sums = readFieldsForDenseMatrix(in);
 counts = readFieldsForDenseVector(in);

Three objects are maintained in KmeansAggrValue. centroids indicates the
existing K centers. If the sample is m-dimensional, centroids is a matrix of K
x m. sums is a matrix of the same size as centroids, and each element records
 the sum of a specific dimension of the sample closest to a specific center. For
 example, sums(i,j) indicates the sum of dimension j of the sample closest to
center i.
counts is a K-dimensional vector, records the number of samples closest to each
 center. sums and counts are used together to calculate a new center, which is a
main content of aggregation.
The next is KmeansAggregator used for custom Aggregator implementation. The
following describes implementation in order of the preceding APIs.
1. Run createStartupValue(), see the following:

public static class KmeansAggregator extends Aggregator<KmeansAggr
Value> {
public KmeansAggrValue createStartupValue(WorkerContext context)
throws IOException {
KmeansAggrValue av = new KmeansAggrValue();
byte[] centers = context.readCacheFile("centers");
String lines[] = new String(centers).split("\n");
int rows = lines.length;
int cols = lines[0].split(",").length; // assumption rows >= 1
av.centroids = new DenseMatrix(rows, cols);
av.sums = new DenseMatrix(rows, cols);
av.sums.zero();

512 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph
av.counts = new DenseVector(rows);
av.counts.zero();
for (int i = 0; i < lines.length; i++) {
 String[] ss = lines[i].split(",");
 for (int j = 0; j < ss.length; j++) {
 av.centroids.set(i, j, Double.valueOf(ss[j]));

return av;

In the preceding method, a KmeansAggrValue object is initialized, the
initial center is read from the resource file centers, and a value is granted to
centroids. The initial values of sums and counts are 0.

2. Run createInitialValue(), see the following:
@Override
public void aggregate(KmeansAggrValue value, Object item)
 throws IOException {
DenseVector sample = ((KmeansValue)item).sample;
// find the nearest centroid
int min = findNearestCentroid(value.centroids, sample);
// update sum and count
for (int i = 0; i < sample.size(); i ++) {
 value.sums.add(min, i, sample.get(i));

value.counts.add(min, 1.0d);

In the createInitialValue() method, findNearestCentroid() is called to find the
 index of the center that has the shortest Euclidean distance with the sample
item. Then, each dimension is added to sums, and the value of counts is plus 1
. For more information about how to implement findNearestCentroid(), see the
 Kmeans attachment.

The preceding three functions run on all Workers to implement partial
aggregation. The following describes global aggregation-related operations that
run on the Worker where AggregatorOwner is located.
1. Run merge:

@Override
public void merge(KmeansAggrValue value, KmeansAggrValue partial)
 throws IOException {
value.sums.add(partial.sums);
value.counts.add(partial.counts);

The implementation logic of merge is to add values of sums and counts
aggregated by each Worker .

2. Run terminate():
@Override

Issue: 20191012 513

⼤数据计算服务 User Guide / 10 Graph
public boolean terminate(WorkerContext context, KmeansAggrValue
value)
 throws IOException {
 // Calculate the new means to be the centroids (original sums)
 DenseMatrix newCentriods = calculateNewCentroids(value.sums, value.
counts, value.centroids);
 // print old centroids and new centroids for debugging
 System.out.println("\nsuperstep: " + context.getSuperstep() +
 "\nold centriod:\n" + value.centroids + " new centriod:\n" +
newCentriods);
 boolean converged = isConverged(newCentriods, value.centroids, 0.
05d);
 System.out.println("superstep: " + context.getSuperstep() + "/"
 + (context.getMaxIteration() - 1) + " converged: " + converged
);
 if (converged || context.getSuperstep() == context.getMaxIteration
() - 1) {
 // converged or reach max iteration, output centriods
 for (int i = 0; i < newCentriods.numRows(); i++) {
 Writable[] centriod = new Writable[newCentriods.numColumns()];
 for (int j = 0; j < newCentriods.numColumns(); j++) {
 centriod[j] = new DoubleWritable(newCentriods.get(i, j));

 context.write(centriod);

 // true means to terminate iteration
 return true;

 // update centriods
 value.centroids.set(newCentriods);
 // false means to continue iteration
 return false;

In terminate(), calculateNewCentroids() is called based on sums and counts
to calculate the average value and obtain the new center. Then, isConverged()
is called based on the Euclidean distance between the new and old centers to
determine whether the center has been converged. If the number of convergenc
es or iterations reaches the upper threshold, the new center is output, and true
 is returned to end the iteration. Otherwise, the center is updated, and false is
returned to continue iteration. For more information about how to implement
calculateNewCentroids() and isConverged(), see the attachment.

• main() method
The main() method is used to build GraphJob, perform related settings, and
submit a job. The code is as follows:
public static void main(String[] args) throws IOException {
 if (args.length < 2)
 printUsage();
 GraphJob job = new GraphJob();
 job.setGraphLoaderClass(KmeansReader.class);
 job.setRuntimePartitioning(false);
 job.setVertexClass(KmeansVertex.class);
 job.setAggregatorClass(KmeansAggregator.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());

514 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 // default max iteration is 30
 job.setMaxIteration(30);
 if (args.length >= 3)
 job.setMaxIteration(Integer.parseInt(args[2]));
 long start = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - start) / 1000.0 + " seconds");

Note:
If job.setRuntimePartitioning(false) is set to false, data loaded by each worker
will not be partitioned based on Partitioner. That is, who loads the data
maintains it.

Conclusion
This article introduces the aggregator features in the MaxCompute graph, the API
 meaning, and the kmeans Clustering example. To sum it up, Aggregator can be
implemented as follows:
1. Each Worker runs createStartupValue during startup to create AggregatorValue.
2. Each Worker runs createInitialValue before each iteration initializes Aggregator

Value in the current round.
3. In an iteration, each vertex uses context.aggregate() to run aggregate(),

implementing partial iteration in the Worker.
4. Each Worker sends the partial iteration result to the Worker where Aggregator

Owner is located.
5. The Worker where AggregatorOwner is located runs merge several times to

implement global aggregation.
6. The Worker where AggregatorOwner is located runs terminate to process the

global aggregation result and determines whether to end the iteration.
Attachment

Kmeans

10.3 Function overview
Running jobs

The MaxCompute console provides JAR commands to run MaxCompute Graph jobs.
These commands are used the same way as MapReduce JAR commands run.

Issue: 20191012 515

https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/cn/odps/0.0.90/assets/graph/Kmeans.gz

⼤数据计算服务 User Guide / 10 Graph

This article introduces you to these commands.
Usage: jar [<GENERIC_OPTIONS>] <MAIN_CLASS> [ARGS]
 -conf <configuration_file> Specify an application
configuration file
 -classpath <local_file_list> classpaths used to run
mainClass
 -D <name>=<value> Property value pair, which is used
to run mainClass
 -local Run job in local mode
 -resources <resource_name_list> file/table resources
used in graph, separated by command

< GENERIC_OPTIONS> can be the following parameters (all are optional):
• -conf < configuration file >: Specifies the JobConf configuration file.
• -classpath < local_file_list >: Indicates the class path for local implementation. It

is mainly used to specify the JAR package containing the main function.
The main function and Graph job are usually written in the same package, for
 example, in the Single Source Shortest Path (SSSP) package. Therefore, the -
resources and -classpath parameters in the sample code both contain the JAR
 package. The difference is that -resources refers to the value of the Graph job
 and runs in a distributed environment, while -classpath refers to the main
function and runs locally. The specified JAR package path is also a local file path
. Package names are separated using system default file delimiters. Generally,
the delimiter is a semicolon (;) in a Windows system and a comma (,) in a Linux
system.

• -D < prop_name > = < prop_value >: Specifies the Java attributes of < mainClass >
for local implementation. Multiple attributes can be defined.

• -local: Runs the Graph job in local mode, which is mainly used for program
debugging.

• -resources <resource_name_list >: Indicates the resource statement used
for Graph job running. Generally, the name of the resource where the Graph
job is located must be specified in resource_name_list. If you read other
MaxCompute resources in the Graph job, the resource names must be added
to resource_name_list. Resource names are separated by commas (,). When
resources are used across projects, PROJECT_NAME/resources/ must be prefixed.
For example, -resources otherproject/resources/resfile;.

516 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph

In addition, run the main function of the Graph job to directly submit a job to
MaxCompute, rather than submitting a job through the MaxCompute console. The
following section uses the PageRank algorithm as an example:
public static void main(String[] args) throws Exception {
 if (args.length < 2)
 printUsage();
 Account account = new AliyunAccount(accessId, accessKey);
 Odps odps = new Odps(account);
 odps.setEndpoint(endPoint);
 odps.setDefaultProject(project);
 SessionState ss = SessionState.get();
 ss.setOdps(odps);
 ss.setLocalRun(false);
 String resource = "mapreduce-examples.jar";
 GraphJob job = new GraphJob();
 // Add the JAR file in use and other files to class cache resource,
corresponding to resources specified by -libjars in the JAR command
 job.addCacheResourcesToClassPath(resource);
 job.setGraphLoaderClass(PageRankVertexReader.class);
 job.setVertexClass(PageRankVertex.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 // default max iteration is 30
 job.setMaxIteration(30);
 if (args.length >= 3)
 job.setMaxIteration(Integer.parseInt(args[2]));
 long startTime = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - startTime) / 1000.0
 + " seconds");

Input and output
You cannot customize input and output formats.
The following example shows how to define a job input. Multiple inputs are
supported:
GraphJob job = new GraphJob();
job.addInput(TableInfo.builder().tableName(“tblname”).build()); //
Table as input
job.addInput(TableInfo.builder().tableName(“tblname”).partSpec("pt1=a/
pt2=b").build()); //Shard as input
//Read-only columns col2 and col0 of the input table. In the load()
method of GraphLoader, column col2 is obtained by record.get(0), and
the sequence is the same
job.addInput(TableInfo.builder().tableName(“tblname”).partSpec("pt1=a/
pt2=b").build(), new String[]{"col2", "col0"});

Note:

Issue: 20191012 517

⼤数据计算服务 User Guide / 10 Graph

• For more information about the job input definition, see the description of the
 addInput() method in a GraphJob. The framework reads records in the input
table and transmits them to custom GraphLoader to load data.

• Limits: Currently, shard filtering conditions are not supported. For more
information , see Application restrictions.

The following example shows how to define a job output. Multiple job outputs are
supported. Each output is marked by a label:
GraphJob job = new GraphJob();
//If the output table is a shard table, the last level of shards must
be provided
job.addOutput(TableInfo.builder().tableName("table_name").partSpec("
pt1=a/pt2=b").build());
// Parameter true indicates overwriting shards specified by tableinfo
, that is, the meaning of INSERT OVERWRITE. Parameter false indicates
the meaning of INSERT INTO
job.addOutput(TableInfo.builder().tableName("table_name").partSpec("
pt1=a/pt2=b").lable("output1").build(), true);

Note:
• For more information about the job output definition, see the description of the

addOutput() method in GraphJob.
• When a Graph job runs, records can be written to an output table using the

write() method of WorkerContext. Labels must be specified for multiple outputs
, such as “output1” in the preceding section.

• For more information, see Application limits.
Read resources

• Add resources to the graph program
In addition to JAR commands, you can use the following two methods of
GraphJob to specify resources read by Graph:
void addCacheResources(String resourceNames)
void addCacheResourcesToClassPath(String resourceNames)

• Use resources in the graph program
To read resources in the Graph program, follow these steps:
public byte[] readCacheFile(String resourceName) throws IOException;
 public Iterable<byte[]>
readCacheArchive(String resourceName) throws IOException;
 public Iterable<byte[]>
readCacheArchive(String resourceName, String relativePath)throws
IOException;

518 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph
 public Iterable<WritableRecord>
readResourceTable(String resourceName);
public BufferedInputStream readCacheFileAsStream(String resourceName
) throws IOException;
public Iterable<BufferedInputStream> readCacheArchiveAsStream(String
 resourceName) throws IOException;
public Iterable<BufferedInputStream> readCacheArchiveAsStream(String
 resourceName, String relativePath) throws IOException;

Note:
- Resources are generally read using the setup() method of WorkerComputer,

stored in Worker Value, and obtained using the getWorkerValue() method.
- To reduce overall memory consumption, use the preceding stream APIs so

that resources can be read and processed simultaneously.
- For more information , see Application limits.

10.4 SDK summary
Maven users can search for odps-sdk-graph in the Maven database to get the required
SDK (available in different versions). The configuration information is as follows:
<dependency>
 <groupId>com.aliyun.odps</groupId>
 <artifactId>odps-sdk-graph</artifactId>
 <version>0.20.7</version>
</dependency>

Main interface Description
GraphJob GraphJob is inherited from JobConf and is used to define,

submit, and manage a MaxCompute Graph job.
Vertex A vertex is a node that is defined by the attributes including

ID, value, halted, and edges. A vertex is implemented by the
setVertexClass interface of GraphJob.

Edge Edge is the abstract of edges in a graph, including the
attributes destVertexId and value. Adjacent tables are used as
 the graph data structure, and outbound edges of a vertex are
stored in edges of the vertex.

GraphLoader GraphLoader is used to load graphs. GraphLoader is
implemented by using the setGraphLoaderClass interface of
GraphJob.

Issue: 20191012 519

http://search.maven.org/

⼤数据计算服务 User Guide / 10 Graph

Main interface Description
VertexResolver VertexResolver is used to customize the conflict processing

 logic to modify graph topology. The setLoadingVertexReso
lverClass and setComputingVertexResolverClass interfaces
of GraphJob provide the conflict processing logic for graph
 topology modification during graph loading and iteration
calculation.

Partitioner Partitioner is used to partition a graph so that the calculatio
ns can be fragmented. Partitioner is implemented by using
 the setPartitionerClass interface of GraphJob. HashPartit
ioner is used by default, that is, the hash value of a vertex ID
is calculated and then a modulo operation is performed for
the number of Workers.

WorkerComputer WorkerComputer allows a Worker to run a custom logic
during startup and exit. WorkerComputer is implemented by
using the setWorkerComputerClass interface of a GraphJob.

Aggregator setAggregatorClass(Class …) defines one or multiple
Aggregators.

Combiner setCombinerClass sets a Combiner.
Counters Indicates a counter. In job running logic, the WorkerCont

ext interface can be used to obtain counters and perform
counting. The framework automatically sums up the result.

WorkerContext Indicates the context object. It encapsulates functions
provided by the framework, such as modifying a graph
topology, sending a message, writing a result, and reading a
resource.

10.5 Development and debugging
MaxCompute does not provide Graph development plugins for users. However, you
can develop the MaxCompute Graph program based on Eclipse. The development
process is as follows:
1. Compile Graph codes and perform basic tests using local debugging.
2. Perform cluster debugging and verify the result.

Example
This section uses the SSSP algorithm as an example to describe how to use Eclipse to
develop and debug a Graph program.

520 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph

Procedure
1. Create a Java project, for example, graph_examples.
2. Add the JAR package in the lib directory of the MaxCompute client to Build Path

of the Eclipse project. The following figure shows a configured Eclipse project:

3. Develop a MaxCompute Graph program.
In the actual development process, an example (such as SSSP) is often copied and
then modified. In this example, only the package path is changed to package
com.aliyun.odps.graph.example.

4. Compile and build the package.
In an Eclipse environment, right-click the source code directory (the src
directory in the figure) and select Export > Java > JAR file to generate a JAR
package. Select the path for storing the target JAR package, for example, D:\\
odps\\clt\\odps-graph-example-sssp.jar.

5. Use the MaxCompute console to run SSSP. For more information about the
related operations, see Run Graph in “Quick start”.

Note:
For more information about the related development procedure, see Introduction
on the Graph development plug-in.

Issue: 20191012 521

https://www.alibabacloud.com/help/doc-detail/27985.html

⼤数据计算服务 User Guide / 10 Graph

Local debugging
MaxCompute Graph supports the local debugging mode. Use Eclipse to perform
breakpoint debugging.
Procedure
1. Download an odps-graph-local maven package.
2. Select the Eclipse project, right-click the main program file (including the main

 function) of the Graph job, and configure its running parameters (by selecting
Run As > Run Configurations).

3. On the Arguments tab page, set Program arguments to 1 sssp_in sssp_out as
the input parameter of the main program.

4. On the Arguments tab page, set VM arguments to the following:
-Dodps.runner.mode=local
-Dodps.project.name=<project.name>
-Dodps.end.point=<end.point>
-Dodps.access.id=<access.id>
-Dodps.access.key=<access.key>

522 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph

5. If MapReduce is in local mode (the value of odps.end.point is not specified), you
must create the sssp_in and sssp_out tables in the warehouse and add data for
sssp_in. Input data is listed as follows:
1,"2:2,3:1,4:4"
2,"1:2,3:2,4:1"
3,"1:1,2:2,5:1"
4,"1:4,2:1,5:1"
5,"3:1,4:1"

For more information about the warehouse, see MapReduce local running.
6. Click Run.

Note:
Check the settings of conf/odps_config.ini in the MaxCompute client to set
parameters. The preceding parameters are commonly used. Other parameters
are described as follows:
• odps.runner.mode: The parameter value is local. This parameter is required

for the local debugging function.
• odps.project.name: (Required). Specifies the current project.
• odps.end.point: (Optional). Specifies the address of the current MaxCompute

 service. If this parameter is not specified, metadata of tables or resources is
only read from the warehouse, and an exception is thrown when the address
does not exist. If this parameter is specified, data is read from the warehouse
first, and then from remote MaxCompute if the address does not exist.

• odps.access.id: Indicates the ID to connect to the MaxCompute service. This
parameter is valid only when odps.end.point is specified.

• odps.access.key: Indicates the key to connect to the MaxCompute service.
This parameter is valid only when odps.end.point is specified.

• odps.cache.resources: Specifies the resource list in use. This parameter has
the same effect as -resources of the JAR command.

• odps.local.warehouse: Specifies the local warehouse path. This parameter is
set to ./warehouse by default ,if not specified.

After SSSP debugging is implemented locally in Eclipse, the following
information is output:
Counters: 3
 com.aliyun.odps.graph.local.COUNTER
 TASK_INPUT_BYTE=211

Issue: 20191012 523

⼤数据计算服务 User Guide / 10 Graph
 TASK_INPUT_RECORD=5
 TASK_OUTPUT_BYTE=161
 TASK_OUTPUT_RECORD=5
 graph task finish

Note:
In the preceding example, the sssp_in and sssp_out tables must exist in the local
warehouse. For more information about the sssp_in and sssp_out tables, see Run

Graph in “Quick start”.
Temporary directory of local job

A temporary directory is created in the Eclipse project directory when local
debugging runs each time, as shown in the following figure.

The temporary directory of a locally running Graph job contains the following
directories and files:
• counters: Stores counting information about job running.
• inputs: Stores input data of the job. Data is preferentially obtained from the local

warehouse. If such data does not exist locally, the MaxCompute SDK reads data
from the server (if odps.end.point is set). An input reads only 10 data records by
default. This threshold can be modified in the -Dodps.mapred.local.record.
limit parameter, of which the maximum value is 10,000.

• outputs: Stores output data of the job. If the local warehouse has an output table
, the result data in the outputoverwrites the corresponding table in the local
warehouse after job running is complete.

• resources: Stores resources used by the job. Similar to inputs, data is preferenti
ally obtained from the local warehouse. If such data does not exist locally, the
data is read from the server using MaxCompute SDK (when odps.end.point is set
).

524 Issue: 20191012

https://www.alibabacloud.com/help/doc-detail/27813.htm
https://www.alibabacloud.com/help/doc-detail/27813.htm

⼤数据计算服务 User Guide / 10 Graph

• job.xml: Indicates job configuration.
• superstep: Stores information about message persistence in each iteration.

Note:
If a detailed log must be output during local debugging, the following log4j
configuration file must be placed in the src directory: log4j.properties
_odps_graph_cluster_debug.

Cluster debugging
After local debugging, submit the job to a cluster for testing.
Procedure
1. Configure the MaxCompute client.
2. Run the add jar /path/work.jar -f; command to update the JAR package.
3. Run a JAR command to run the job, and view the running log and result data.

Note:
For more information about how to run Graph in a cluster, see Run Graph in “Quick
start”.

Performance Tuning
The following section describes common performance tuning methods on the
MaxCompute Graph framework.
Job Parameter configuration
GraphJob configurations that have an impact on performance include:
• setSplitSize(long): Indicates the split size of an input table. The unit is in MB. Its

value must be greater than 0, and the default value is 64.
• setNumWorkers(int): Specifies the number of Workers for a job. The value range

is [1, 1000], and the default value is ‒1. The number of Workers varies depending
on the number of input bytes of the job and split size.

• setWorkerCPU(int): Indicates CPU resources of the Map. A one-core CPU
contains 100 resources. The value range is [50, 800], and the default value is 200.

• setWorkerMemory(int): Indicates memory resources of the Map. The unit is MB.
The value range is [256 MB, 12 GB], and the default value is 4,096 MB.

Issue: 20191012 525

⼤数据计算服务 User Guide / 10 Graph

• setMaxIteration(int): Specifies the maximum number of iterations. The default
 value is ‒1. If the value is smaller than or equal to 0, the maximum number of
iterations is not a condition for job termination.

• setJobPriority(int): Specifies the job priority. The value range is [0, 9], and the
default value is 9. A larger value indicates a smaller priority.

Additional actions that increase overall processing capabilities are as follows:
• You can use the setNumWorkers() method to increase the number of Workers.
• You can use the setSplitSize() method to reduce the split size and increase the

speed for a job to load data.
• Increase the CPU or memory of Workers.
• Set the maximum number of iterations. If applications do not have high

requirements on result precision, you can reduce the number of iterations to
speed up the process.

The interfaces setNumWorkers and setSplitSize can be used together to speed
up data loading. Assume that setNumWorkers is workerNum and setSplitSize is
splitSize, and the total number of input bytes is inputSize. The number of splits
is calculated using the formula: splitNum = inputSize /splitSize. The relationship
between workerNum and splitNum is as follows:
• If splitNum == workerNum, each Worker is responsible for loading one split.
• If splitNum > workerNum, each Worker is responsible for loading one or

multiple splits.
• If splitNum < workerNum, each Worker is responsible for loading zero or one

split.
Therefore, if the first two conditions are met, you can adjust workerNum and
splitSize to enable fast data loading. In the iteration phase, you only need to adjust
workerNum.
If you set runtime partitioning to false, we recommend that you use setSplitSize
to control the number of Workers. Regarding the third condition, the number of
vertices on some Worker may be 0. You can use set odps.graph.split.size=<m>; set
odps.graph.worker.num=<n>; before the JAR command, which has the same effect
as setNumWorkers and setSplitSize.

526 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph

Another common performance problem is data skew. For example, on Counters,
the number of vertices or edges processed by some Workers is much greater than
that processed by other Workers.
Data skew occurs usually when the number of vertices, edges, or messages
corresponding to some keys is much greater than that corresponding to other keys.
Such keys with the large data volume are processed by a small number of Workers,
resulting in a long run time of these Workers.
To resolve this problem, we recommend the following steps:
• Use a combiner to locally aggregate messages of vertices corresponding to such

keys to reduce the number of sent messages.
• Improve the service logic.
Use a Combiner
Define a Combiner to reduce memory that stores messages and network data traffic
 volume and shortens the job execution time. For more information, see introducti
on to Combiner in MaxCompute SDK.
Reduce the Data Input Volume
When the data volume is large, reading data in a disk may extend the processing
time. Therefore, reducing the number of data bytes to be read can increase the
overall throughput, thereby improving job performance. You can use either of the
following methods:
• Reduce the input data volume: For decision-making applications, results

obtained from processing subsets after data sampling only affect the result
precision, instead of the overall accuracy. Therefore, you can perform special
data sampling and import the data to the input table for processing.

• Avoid reading fields that are not used: The TableInfo class of the MaxCompute
Graph framework supports reading specific columns (transmitted using column
 name arrays), rather than reading the entire table or table partition. This
reduces the input data volume and improves job performance.

Built-in JAR Packages
The following JAR packages are loaded to JVMs running the Graph program by
default. You do not have to upload these resources or carry these JAR packages
when running -libjars on the command line.

Issue: 20191012 527

⼤数据计算服务 User Guide / 10 Graph

• commons-codec-1.3.jar
• commons-io-2.0.1.jar
• commons-lang-2.5.jar
• commons-logging-1.0.4.jar
• commons-logging-api-1.0.4.jar
• guava-14.0.jar
• json.jar
• log4j-1.2.15.jar
• slf4j-api-1.4.3.jar
• slf4j-log4j12-1.4.3.jar
• xmlenc-0.52.jar

Note:
In a classpath that runs a JVM, the preceding built-in JAR packages are placed
before users’ JAR packages, which may result in a version conflict. For example, if
your program uses a function of a class in commons-codec-1.5.jar but this function
is not in commons-codec-1.3.jar. Check whether an implementation method exists
in commons-codec-1.3.jar or wait for MaxCompute to upgrade to a supported
version.

10.6 Limits
The limits of MaxCompute Graph are as follows:
• Each job can reference up to 256 resources. A table or an archive is considered as

 one unit (that is, one resource).
• The total number of bytes of resources referenced by one job cannot exceed 512

MB. Each job can reference up to 512 MB of bytes of resources.
• The number of inputs of one job cannot exceed 1,024. and the number of input

tables cannot exceed 64. The number of outputs of one job cannot exceed 256.
• A label can be up to 256 characters in length and can contain letters, numbers,

and special characters including underscores (_), pound signs (#), periods (.),
and hyphens (-). Labels specified for multiple outputs cannot be null or empty
strings.

528 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph

• Each job can have up to 64 custom counters. The group name and counter name
can be up to 100 characters in length. The names cannot contain pound signs (#).

• The number of Workers of one job is calculated by the framework. The
maximum number is 1,000. If this threshold value is exceeded, an exception is
thrown.

• One Worker occupies 200 resources of the CPU by default. The range is [50, 800].
• One Worker occupies 4096 MB of the memory by default. The range is [256 MB,

12 GB].
• A threshold for a Worker to read a resource repeatedly is 64.
• The split size can be set, however,as64 MB is the by default size.. The range is 0 <

split_size <= (9223372036854775807 >> 20).
• In the MaxCompute Graph program, GraphLoader/Vertex/Aggregator running in

a cluster is restricted by the Java sandbox. (The main program of Graph jobs is
not restricted.) For more information about the restrictions, see Java sandbox.

10.7 Examples
10.7.1 SSSP

Dijkstra is a typical algorithm that calculates the Single Source Shortest Path (SSSP
) in a directed graph.
For weighted directed graph G=(V,E), many paths are routed from source vertex s
 to sink vertex v. In these paths, the one that has the smallest edge weight sum is
called the shortest distance from s to v.
The basic concept of the algorithm is as follows:
• Initialization: The distance from source vertex s to s itself is zero (d[s] = 0), and

the distance from another vertex u to s is infinite (d[u]=∞).
• Iteration: If an edge exists from u to v, the shortest distance from s to v is updated

 as: d[v] = min(d[v], d[u] + weight(u, v)). The iteration ends until the distance
from all vertices to s does not change.

The basic concept shows that the algorithm is applicable to solutions using the
MaxCompute Graph program. Each vertex maintains the current shortest distance
 to the source vertex. If the value changes, a message containing the new value and
 the edge weight is sent to the adjacent vertex. In the next iteration, the adjacent

Issue: 20191012 529

⼤数据计算服务 User Guide / 10 Graph

vertex updates the current shortest distance based on the received message. The
iteration ends when the current shortest distance of all vertices does not change.

Sample Code
Code of SSSP is as follows:
import java.io.IOException;

import com.aliyun.odps.io.WritableRecord;
import com.aliyun.odps.graph.Combiner;
import com.aliyun.odps.graph.ComputeContext;
import com.aliyun.odps.graph.Edge;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.WorkerContext;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.data.TableInfo;

public class SSSP {

 public static final String START_VERTEX = "sssp.start.vertex.id";

 public static class SSSPVertex extends
 Vertex<LongWritable, LongWritable, LongWritable, LongWritable> {

 private static long startVertexId = -1;

 public SSSPVertex() {
 this.setValue(new LongWritable(Long.MAX_VALUE));

 public boolean isStartVertex(
 ComputeContext<LongWritable, LongWritable, LongWritable,
LongWritable> context) {
 if (startVertexId == -1) {
 String s = context.getConfiguration().get(START_VERTEX);
 startVertexId = Long.parseLong(s);

 return getId().get() == startVertexId;

 @Override
 public void compute(
 ComputeContext<LongWritable, LongWritable, LongWritable,
LongWritable> context,
 Iterable<LongWritable> messages) throws IOException {
 long minDist = isStartVertex(context) ? 0 : Integer.MAX_VALUE;
 for (LongWritable msg : messages) {
 if (msg.get() < minDist) {
 minDist = msg.get();

 if (minDist < this.getValue().get()) {
 this.setValue(new LongWritable(minDist));
 if (hasEdges()) {
 for (Edge<LongWritable, LongWritable> e : this.getEdges()) {

530 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph
 context.sendMessage(e.getDestVertexId(), new LongWritable(
minDist
 + e.getValue().get()));

 } else {
 voteToHalt();

 @Override
 public void cleanup(
 WorkerContext<LongWritable, LongWritable, LongWritable,
LongWritable> context)
 throws IOException {
 context.write(getId(), getValue());

 public static class MinLongCombiner extends
 Combiner<LongWritable, LongWritable> {

 @Override
 public void combine(LongWritable vertexId, LongWritable combinedMe
ssage,
 LongWritable messageToCombine) throws IOException {
 if (combinedMessage.get() > messageToCombine.get()) {
 combinedMessage.set(messageToCombine.get());

 public static class SSSPVertexReader extends
 GraphLoader<LongWritable, LongWritable, LongWritable, LongWritab
le> {

 @Override
 public void load(
 LongWritable recordNum,
 WritableRecord record,
 MutationContext<LongWritable, LongWritable, LongWritable,
LongWritable> context)
 throws IOException {
 SSSPVertex vertex = new SSSPVertex();
 vertex.setId((LongWritable) record.get(0));
 String[] edges = record.get(1).toString().split(",");
 for (int i = 0; i < edges.length; i++) {
 String[] ss = edges[i].split(":");
 vertex.addEdge(new LongWritable(Long.parseLong(ss[0])),
 new LongWritable(Long.parseLong(ss[1])));

 context.addVertexRequest(vertex);

 public static void main(String[] args) throws IOException {
 if (args.length < 2) {
 System.out.println("Usage: <startnode> <input> <output>");
 System.exit(-1);

Issue: 20191012 531

⼤数据计算服务 User Guide / 10 Graph
 GraphJob job = new GraphJob();
 job.setGraphLoaderClass(SSSPVertexReader.class);
 job.setVertexClass(SSSPVertex.class);
 job.setCombinerClass(MinLongCombiner.class);

 job.set(START_VERTEX, args[0]);
 job.addInput(TableInfo.builder().tableName(args[1]).build());
 job.addOutput(TableInfo.builder().tableName(args[2]).build());

 long startTime = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - startTime) / 1000.0 + "
seconds");

The source code of SSSP is described as follows:
• Row 19: Defines SSSPVertex, where:

- The vertex value indicates the current shortest distance from this vertex to
source vertex startVertexId.

- The compute() method uses the iteration formula d[v] = min(d[v], d[u] +
weight(u, v)) to update the vertex value.

- The cleanup() method writes the vertex and its shortest distance to the source
vertex to the result table.

• Row 58: If the vertex value does not change, voteToHalt() is called to notify the
framework that this vertex enters the halt status. The calculation ends when all
vertices enter the halt state.

• Row 70: Defines MinLongCombiner and combines messages sent to the same
vertex to optimize performance and reduce memory usage.

• Row 83: Defines the SSSPVertexReader class, loads a graph, and resolves each
record in the table into a vertex. The first column of the record is the vertex ID,
and the second column stores all edge sets starting from the vertex, such as 2:2, 3
:1, 4:4.

• Row 106: Runs the main program (main function), defines GraphJob, and
specifies the implementation of Vertex/GraphLoader/Combiner, and the input
and output tables.

532 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph

10.7.2 PageRank
PageRank is a typical algorithm used to calculate the web page ranking. In the
input directed graph G, vertices indicate web pages. If a link exists between web
pages A and B, an edge connecting A and B exists.
The basic concept of the algorithm is as follows:
• Initialization: The vertex value indicates the rank value (of the double type) of

PageRank. In the initial phase, the value of all vertices is 1/TotalNumVertices.
• Iteration formula: PageRank(i) = 0.15/TotalNumVertices + 0.85 x sum. Sum

indicates the sum of PageRank(j)/out_degree(j). (j indicates all vertices pointing
to vertex i.)

The basic concept shows that the algorithm is applicable to solutions using the
 MaxCompute Graph program. Each vertex j maintains the value of PageRank
. PageRank(j)/out_degree(j) is sent to the adjacent vertex (for voting) in each
iteration. In the next iteration, each vertex recalculates the PageRank value using
the iteration formula.

Sample Code
import java.io.IOException;

import org.apache.log4j.Logger;

import com.aliyun.odps.io.WritableRecord;
import com.aliyun.odps.graph.ComputeContext;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.WorkerContext;
import com.aliyun.odps.io.DoubleWritable;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.NullWritable;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.io.Text;
import com.aliyun.odps.io.Writable;

public class PageRank {

 private final static Logger LOG = Logger.getLogger(PageRank.class);

 public static class PageRankVertex extends
 Vertex<Text, DoubleWritable, NullWritable, DoubleWritable> {

 @Override
 public void compute(
 ComputeContext<Text, DoubleWritable, NullWritable, DoubleWrit
able> context,
 Iterable<DoubleWritable> messages) throws IOException {
 if (context.getSuperstep() == 0) {

Issue: 20191012 533

⼤数据计算服务 User Guide / 10 Graph
 setValue(new DoubleWritable(1.0 / context.getTotalNumVertices
()));
 } else if (context.getSuperstep() >= 1) {
 double sum = 0;
 for (DoubleWritable msg : messages) {
 sum += msg.get();

 DoubleWritable vertexValue = new DoubleWritable(
 (0.15f / context.getTotalNumVertices()) + 0.85f * sum);
 setValue(vertexValue);

 if (hasEdges()) {
 context.sendMessageToNeighbors(this, new DoubleWritable(
getValue()
 .get() / getEdges().size()));

 @Override
 public void cleanup(
 WorkerContext<Text, DoubleWritable, NullWritable, DoubleWrit
able> context)
 throws IOException {
 context.write(getId(), getValue());

 public static class PageRankVertexReader extends
 GraphLoader<Text, DoubleWritable, NullWritable, DoubleWritable>
 {

 @Override
 public void load(
 LongWritable recordNum,
 WritableRecord record,
 MutationContext<Text, DoubleWritable, NullWritable, DoubleWrit
able> context)
 throws IOException {
 PageRankVertex vertex = new PageRankVertex();
 vertex.setValue(new DoubleWritable(0));
 vertex.setId((Text) record.get(0));
 System.out.println(record.get(0));

 for (int i = 1; i < record.size(); i++) {
 Writable edge = record.get(i);
 System.out.println(edge.toString());
 if (!(edge.equals(NullWritable.get()))) {
 vertex.addEdge(new Text(edge.toString()), NullWritable.get
());

 LOG.info("vertex edgs size: "
 + (vertex.hasEdges() ? vertex.getEdges().size() : 0));
 context.addVertexRequest(vertex);

 private static void printUsage() {
 System.out.println("Usage: <in> <out> [Max iterations (default 30
)]");
 System.exit(-1);

534 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph
 public static void main(String[] args) throws IOException {
 if (args.length < 2)
 printUsage();

 GraphJob job = new GraphJob();

 job.setGraphLoaderClass(PageRankVertexReader.class);
 job.setVertexClass(PageRankVertex.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());

 // default max iteration is 30
 job.setMaxIteration(30);
 if (args.length >= 3)
 job.setMaxIteration(Integer.parseInt(args[2]));

 long startTime = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - startTime) / 1000.0 + "
seconds");

The source code of PageRank is described as follows:
• Row 23: Defines PageRankVertex, where:

- The vertex value indicates the current PageRank value of the vertex (web page
).

- The compute() method uses the iteration formula PageRank(i) = 0.15/
TotalNumVertices + 0.85 x sum to update the vertex value.

- The cleanup() method writes the vertex and its PageRank value to the result
table.

• Row 55: Defines the PageRankVertexReader class, loads a graph, and resolves
each record in the table into a vertex. The first column of the record is the start
vertex and other columns are the destination vertices.

• Row 88: Runs the main program (main function), defines GraphJob, and specifies
the implementation of Vertex/GraphLoader, the maximum number of iterations (
30 by default), and input and output tables.

10.7.3 Kmeans
The Kmeans algorithm is a typical clustering algorithm.
It performs clustering by using k number of vertices in the space as the centers
 and grouping the vertices closest to them. The values of the clustering centers
are successively updated through iterations until the optimal clustering result is
obtained.

Issue: 20191012 535

⼤数据计算服务 User Guide / 10 Graph

To divide a sample set into k classes, the algorithm operates as follows:
1. Selects the initial centers of k classes.
2. Calculates the distance from any sample to the k centers in iteration i, and

groups the sample to the class of the nearest center.
3. Updates the center value of the class using the mean and other methods.
4. For all k clustering centers, if the value updated after iterations remains

unchanged or is smaller than a threshold, the iteration ends. Otherwise, the
iteration continues.

Sample Code
Code for the K-means clustering algorithm is as follows:
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.log4j.Logger;

import com.aliyun.odps.io.WritableRecord;
import com.aliyun.odps.graph.Aggregator;
Import com. aliyun. ODPS. graph. computercontext;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.WorkerContext;
import com.aliyun.odps.io.DoubleWritable;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.NullWritable;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.io.Text;
import com.aliyun.odps.io.Tuple;
import com.aliyun.odps.io.Writable;

public class Kmeans {
 private final static Logger LOG = Logger.getLogger(Kmeans.class);

 public static class KmeansVertex extends
 Vertex<Text, Tuple, NullWritable, NullWritable> {

 @ Override
 public void compute(
 ComputeContext<Text, Tuple, NullWritable, NullWritable> context,
 Iterable<NullWritable> messages) throws IOException {
 context.aggregate(getValue());
 }

 public static class KmeansVertexReader extends
 GraphLoader<Text, Tuple, NullWritable, NullWritable> {
 @Override
 public void load(LongWritable recordNum, WritableRecord record,
 MutationContext<Text, Tuple, NullWritable, NullWritable> context)
 throws IOException {

536 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph
 KmeansVertex vertex = new KmeansVertex();
 vertex.setId(new Text(String.valueOf(recordNum.get())));
 vertex.setValue(new Tuple(record.getAll()));
 context.addVertexRequest(vertex);

 public static class KmeansAggrValue implements Writable {

 Tuple centers = new Tuple();
 Tuple sums = new Tuple();
 Tuple counts = new Tuple();

 @ Override
 public void write(DataOutput out) throws IOException {
 centers.write(out);
 sums.write(out);
 counts.write(out);

 @Override
 public void readFields(DataInput in) throws IOException {
 centers = new Tuple();
 centers.readFields(in);
 sums = new Tuple();
 sums.readFields(in);
 counts = new Tuple();
 counts.readFields(in);

 @Override
 public String toString() {
 return "centers " + centers.toString() + ", sums " + sums.
toString()
 + ", counts " + counts.toString();

public static class KmeansAggregator extends Aggregator<KmeansAggr
Value> {

 @SuppressWarnings("rawtypes")
 @Override
 public KmeansAggrValue createInitialValue(WorkerContext context)
 throws IOException {
 KmeansAggrValue aggrVal = null;
 if (context.getSuperstep() == 0) {
 aggrVal = new KmeansAggrValue();
 aggrVal.centers = new Tuple();
 aggrVal.sums = new Tuple();
 aggrVal.counts = new Tuple();

 byte[] centers = context.readCacheFile("centers");
 String lines[] = new String(centers).split("\n");

for (int i = 0; i < lines.length; i++) {
 String[] ss = lines[i].split(",");
 Tuple center = new Tuple();
 Tuple sum = new Tuple();
 for (int j = 0; j < ss.length; ++j) {
 center.append(new DoubleWritable(Double.valueOf(ss[j].trim
())));

Issue: 20191012 537

⼤数据计算服务 User Guide / 10 Graph
 sum.append(new DoubleWritable(0.0));

 LongWritable count = new LongWritable(0);
 aggrVal.sums.append(sum);
 aggrVal.counts.append(count);
 aggrVal.centers.append(center);

 } else {
 aggrVal = (KmeansAggrValue) context.getLastAggregatedValue(0);

 return aggrVal;

 @Override
 Public void aggregate (glasvalue, object item){
 int min = 0;
 double mindist = Double.MAX_VALUE;
 Tuple point = (Tuple) item;

for (int i = 0; i < value.centers.size(); i++) {
 Tuple center = (Tuple) value.centers.get(i);
 // use Euclidean Distance, no need to calculate sqrt
 double dist = 0.0d;
 for (int j = 0; j < center.size(); j++) {
 double v = ((DoubleWritable) point.get(j)).get()
 - ((DoubleWritable) center.get(j)).get();
 dist += v * v;

 if (dist < mindist) {
 mindist = dist;
 min = i;

 // update sum and count
 Tuple sum = (Tuple) value.sums.get(min);
 for (int i = 0; i < point.size(); i++) {
 DoubleWritable s = (DoubleWritable) sum.get(i);
 s.set(s.get() + ((DoubleWritable) point.get(i)).get());

 LongWritable count = (LongWritable) value.counts.get(min);
 count.set(count.get() + 1);

 @Override
 public void merge(KmeansAggrValue value, KmeansAggrValue partial)
 {
 for (int i = 0; i < value.sums.size(); i++) {
 Tuple sum = (Tuple) value.sums.get(i);
 Tuple that = (Tuple) partial.sums.get(i);
 for (int j = 0; j < sum.size(); j++) {
 DoubleWritable s = (DoubleWritable) sum.get(j);
 s.set(s.get() + ((DoubleWritable) that.get(j)).get());

for (int i = 0; i < value.counts.size(); i++) {
 LongWritable count = (LongWritable) value.counts.get(i);
 count.set(count.get() + ((LongWritable) partial.counts.get(i
)).get());

538 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph
 @SuppressWarnings("rawtypes")
 @Override
 public boolean terminate(WorkerContext context, KmeansAggrValue
value)
 throws IOException {

 // compute new centers
 Tuple newCenters = new Tuple(value.sums.size());
 for (int i = 0; i < value.sums.size(); i++) {
 Tuple sum = (Tuple) value.sums.get(i);
 Tuple newCenter = new Tuple(sum.size());
 LongWritable c = (LongWritable) value.counts.get(i);
 for (int j = 0; j < sum.size(); j++) {

 DoubleWritable s = (DoubleWritable) sum.get(j);
 double val = s.get() / c.get();
 newCenter.set(j, new DoubleWritable(val));

 // reset sum for next iteration
 s.set(0.0d);

 // reset count for next iteration
 c.set(0);
 newCenters.set(i, newCenter);

 // update centers
 Tuple oldCenters = value.centers;
 value.centers = newCenters;

 LOG.info("old centers: " + oldCenters + ", new centers: " +
newCenters);

 // compare new/old centers
 boolean converged = true;
 for (int i = 0; i < value.centers.size() && converged; i++) {
 Tuple oldCenter = (Tuple) oldCenters.get(i);
 Tuple newCenter = (Tuple) newCenters.get(i);
 double sum = 0.0d;
 for (int j = 0; j < newCenter.size(); j++) {
 double v = ((DoubleWritable) newCenter.get(j)).get()
 - ((DoubleWritable) oldCenter.get(j)).get();
 sum += v * v;

 double dist = Math.sqrt(sum);
 LOG.info("old center: " + oldCenter + ", new center: " +
newCenter
 + ", dist: " + dist);
 // converge threshold for each center: 0.05
 converged = dist < 0.05d;

 if (converged || context.getSuperstep() == context.getMaxIter
ation() - 1) {
 // converged or reach max iteration, output centers
 for (int i = 0; i < value.centers.size(); i++) {
 context.write(((Tuple) value.centers.get(i)).toArray());

 // true means to terminate iteration
 return true;

 // false means to continue iteration
 return false;

Issue: 20191012 539

⼤数据计算服务 User Guide / 10 Graph

 private static void printUsage() {
 System. out. println ("Usage: <in> <out> [Max iterations (default 30
)] ");
 System.exit(-1);

 public static void main(String[] args) throws IOException {
 if (args.length < 2)
 printUsage();

 GraphJob job = new GraphJob();

 job.setGraphLoaderClass(KmeansVertexReader.class);
 job.setRuntimePartitioning(false);
 job.setVertexClass(KmeansVertex.class);
 job.setAggregatorClass(KmeansAggregator.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());

 // default max iteration is 30
 job.setMaxIteration(30);
 if (args.length >= 3)
 job.setMaxIteration(Integer.parseInt(args[2]));

 long start = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - start) / 1000.0 + " seconds");

The source code of Kmeans is described as follows:
• Row 26: Defines KmeansVertex. The compute() method is simple. It calls the

aggregate() method of the context object and transmits the value of the current
vertex (in Tuple type and expressed by vector).

• Row 38: Defines the KmeansVertexReader class, loads a graph, and resolves each
 record in the table as a vertex. The vertex ID does not matter, and transmitte
d recordNum is used as the ID. The vertex value is the Tuple consisting of all
columns of the record.

• Row 83: Defines KmeansAggregator. This class encapsulates the main logic of the
Kmeans algorithm, where:
- createInitialValue creates an initial value for each iteration (k-class center

point). In first iteration (superstep equals to 0), the value is the initial center

540 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph

 point. Otherwise, the value is the new center point when the last iteration
ends.

- The aggregate() method calculates the distance from each vertex to centers of
 different classes, classifies the vertex as the class of the nearest center, and
updates sum and count of the class.

- The merge() method combines sums and counts collected by each Worker.
- The terminate() method calculates the new center point based on sum and

count of each class. If the distance between the new and old center points is
smaller than a threshold value or the number of iterations reaches the upper
limit, the iteration ends (false is returned). The final center point is written to
 the result table.

• Row 236: Runs the main program (main function), defines GraphJob, and
specifies the implementation of Vertex/GraphLoader/Aggregator, the maximum
number of iterations (30 by default), and the input and output tables.

• Row 243: Specifies job.setRuntimePartitioning(false). For the Kmeans algorithm
, vertices do not have to be distributed during graph loading. If RuntimePar
titioning is set to false, the performance for graph loading is improved.

10.7.4 BiPartiteMatchiing
A Bipartite graph means all the graph vertices can be separated into 2 sets, and 2
vertices corresponding to each Edge belong to the 2 sets respectively. For bipartite
graph G, M is one of its sub-graphs. If any two edges in the edge set of M are not
attached to the same vertex, M is called a matching. The bipartite graph matching is
usually used for information matching in scenarios with clear supply and demand
relationships.
The basic concept of the algorithm is as follows:
• From the first vertex on the left, unmatched vertices are selected to search for

the augmenting path.
• If an unmatched vertex is found, the search is successful.
• The path information is updated. If the number of matching edges is increased

by 1, the search is stopped.
• If the augmenting path is not found, the search is no longer started from this

vertex.

Issue: 20191012 541

⼤数据计算服务 User Guide / 10 Graph

Sample Code
BiPartiteMatchiing The code of the algorithm is as follows:
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.util.Random;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.graph.ComputeContext;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.WorkerContext;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.NullWritable;
import com.aliyun.odps.io.Text;
import com.aliyun.odps.io.Writable;
import com.aliyun.odps.io.WritableRecord;
public class BipartiteMatching {
 private static final Text UNMATCHED = new Text("UNMATCHED");
 public static class TextPair implements Writable {
 public Text first;
 public Text second;
 public TextPair() {
 first = new Text();
 second = new Text();

 public TextPair(Text first, Text second) {
 this.first = new Text(first);
 this.second = new Text(second);

 @ Override
 public void write(DataOutput out) throws IOException {
 first.write(out);
 second.write(out);

 @ Override
 public void readFields(DataInput in) throws IOException {
 first = new Text();
 first.readFields(in);
 second = new Text();
 second.readFields(in);

 @ Override
 public String toString() {
 return first + ": " + second;

 public static class BipartiteMatchingVertexReader extends
 GraphLoader<Text, TextPair, NullWritable, Text> {
 @ Override
 public void load(LongWritable recordNum, WritableRecord record,
 MutationContext<Text, TextPair, NullWritable, Text> context)
 throws IOException {
 BipartiteMatchingVertex vertex = new BipartiteMatchingVertex();
 vertex.setId((Text) record.get(0));
 vertex.setValue(new TextPair(UNMATCHED, (Text) record.get(1)));
 String[] adjs = record.get(2).toString().split(",");
 for (String adj : adjs) {
 vertex.addEdge(new Text(adj), null);

542 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph
 context.addVertexRequest(vertex);

 public static class BipartiteMatchingVertex extends
 Vertex <Text, TextPair, NullWritable, Text> {
 private static final Text LEFT = new Text("LEFT");
 private static final Text RIGHT = new Text("RIGHT");
 private static Random rand = new Random();
 @ Override
 public void compute (
 ComputeContext<Text, TextPair, NullWritable, Text> context,
 Iterable messages) throws ioexception {
 if (isMatched()) {
 voteToHalt();
 return;

 switch ((int) context.getSuperstep() % 4) {
 case 0:
 if (isLeft()) {
 context.sendMessageToNeighbors(this, getId());

 break;
 case 1:
 if (isRight()) {
 Text luckyLeft = null;
 for (Text message : messages) {
 if (luckyLeft == null) {
 luckyLeft = new Text(message);
 } else {
 if (rand.nextInt(1) == 0) {
 luckyLeft.set(message);

 if (luckyLeft ! = null) {
 context.sendMessage(luckyLeft, getId());

 break;
 case 2:
 if (isLeft()) {
 Text luckyRight = null;
 for (Text msg : messages) {
 if (luckyRight == null) {
 luckyRight = new Text(msg);
 } else {
 if (rand.nextInt(1) == 0) {
 luckyRight.set(msg);

 if (luckyRight ! = null) {
 setMatchVertex(luckyRight);
 context.sendMessage(luckyRight, getId());

 break;
 case 3:
 if (isRight()) {
 for (Text msg : messages) {
 setMatchVertex(msg);

 break;

Issue: 20191012 543

⼤数据计算服务 User Guide / 10 Graph

 @ Override
 public void cleanup(
 WorkerContext<Text, TextPair, NullWritable, Text> context)
 throws IOException {
 context.write(getId(), getValue().first);

 private boolean isMatched() {
 return ! getValue().first.equals(UNMATCHED);

 private boolean isLeft() {
 return getValue().second.equals(LEFT);

 private boolean isRight() {
 return getValue().second.equals(RIGHT);

 private void setMatchVertex(Text matchVertex) {
 getValue().first.set(matchVertex);

 private static void printUsage() {
 System.err.println("BipartiteMatching <input> <output> [maxIterati
on]");

 public static void main(String[] args) throws IOException {
 if (args.length < 2) {
 printUsage();

 GraphJob job = new GraphJob();
 job.setGraphLoaderClass(BipartiteMatchingVertexReader.class);
 job.setVertexClass(BipartiteMatchingVertex.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 int maxIteration = 30;
 if (args.length > 2) {
 maxIteration = Integer.parseInt(args[2]);

 job.setMaxIteration(maxIteration);
 job.run();

10.7.5 Strongly-connected component
In a digraph, if by starting from any vertex it reaches every vertex in the graph
through Edges, it is called a strongly-connected graph. A strongly-connected
subgraph with an extremely large vertex number is called a strongly-connected
component. The algorithm is based on Parallel coloring algorithm.
Each vertex contains the following components:
• colorID: Stores the color of vertex v during forward traversal. After a calculatio

n ends, vertices with the same colorID belong to one strongly connected
component.

544 Issue: 20191012

http://ilpubs.stanford.edu:8090/1077/3/p535-salihoglu.pdf

⼤数据计算服务 User Guide / 10 Graph

• transposeNeighbors: Stores the neighbor ID of vertex v in the transpose graph of
the input graph.

The algorithm contains the following four steps:
• Transpose graph generation: Contains two supersteps. Each vertex sends its ID to

 its neighbor with the corresponding outbound edge. In the next superstep, these
 IDs are stored as transposeNeighbors values.

• Trim: Contains one superstep. Each vertex that has only one inbound or
 outbound edge sets the colorID as its own ID and the status to inactive.
Subsequent signals sent to the vertex are ignored.

• Forward traversal: A vertex contains two sub-processes (supersteps): startup and
 sleep. In the startup phase, each vertex sets the colorID as its own ID and sends
 the ID to the neighbor with the corresponding outbound edge. In the sleep
phase, the vertex uses the maximum colorID it received to update its own colorID
, and transmits the colorID until the colorID converges. When the colorID
converges, the master process sets the global object to backward traversal.

• Backward traversal: Contains two sub-processes: startup and sleep. In the
startup phase, a vertex whose ID is the same as the colorID transmits its ID
to the neighbor vertex in the transpose graph, and sets its status to inactive.
Subsequent signals sent to the vertex can be ignored. In each sleep step, each
 vertex receives signals matching its colorID, transmits the colorID in the
transpose graph, and then sets its status to inactive. If active vertices exist after
this step ends, the process reverts to the trim step.

Sample Code
The code for strongly connected components is as follows:
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.graph.Aggregator;
import com.aliyun.odps.graph.ComputeContext;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.WorkerContext;
import com.aliyun.odps.io.BooleanWritable;
import com.aliyun.odps.io.IntWritable;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.NullWritable;
import com.aliyun.odps.io.Tuple;
import com.aliyun.odps.io.Writable;

Issue: 20191012 545

⼤数据计算服务 User Guide / 10 Graph
import com.aliyun.odps.io.WritableRecord;

 * Definition from Wikipedia:
 * In the mathematical theory of directed graphs, a graph is said
 * to be strongly connected if every vertex is reachable from every
 * other vertex. The strongly connected components of an arbitrary
 * directed graph form a partition into subgraphs that are themselves
 * Strictly connected.

 * Algorithms with four phases as follows.
 * 1. Transpose Graph Formation: Requires two supersteps. In the first
 * superstep, each vertex sends a message with its ID to all its
outgoing
 * neighbors, which in the second superstep are stored in transposeN
eighbors.

 * 2. Trimming: Takes one superstep. Every vertex with only in-coming
or
 * only outgoing edges (or neither) sets its colorID to its own ID and
 * becomes inactive. Messages subsequently sent to the vertex are
ignored.

 * 3. Forward-Traversal: There are two sub phases: Start and Rest. In
the
 * Start phase, each vertex sets its colorID to its own ID and
propagates
 * its ID to its outgoing neighbors. In the Rest phase, vertices
update
 * their own colorIDs with the minimum colorID they have seen, and
propagate
 * their colorIDs, if updated, until the colorIDs converge.
 * Set the phase to Backward-Traversal when the colorIDs converge.

 * 4. Backward-Traversal: We again break the phase into Start and Rest
.
 * In Start, every vertex whose ID equals its colorID propagates its
ID to
 * the vertices in transposeNeighbors and sets itself inactive.
Messages
 * subsequently sent to the vertex are ignored. In each of the Rest
phase supersteps,
 * each vertex receiving a message that matches its colorID: (1)
propagates
 * its colorID in the transpose graph; (2) sets itself inactive.
Messages
 * subsequently sent to the vertex are ignored. Set the phase back to
Trimming
 * if not all vertex are inactive.

 * http://ilpubs.stanford.edu:8090/1077/3/p535-salihoglu.pdf

public class StronglyConnectedComponents {
 public final static int STAGE_TRANSPOSE_1 = 0;
 public final static int STAGE_TRANSPOSE_2 = 1;
 public final static int STAGE_TRIMMING = 2;
 public final static int STAGE_FW_START = 3;
 public final static int STAGE_FW_REST = 4;
 public final static int STAGE_BW_START = 5;
 public final static int STAGE_BW_REST = 6;

 * The value is composed of component id, incoming neighbors,
 * active status and updated status.

 public static class MyValue implements Writable {

546 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph
 LongWritable sccID;// strongly connected component id
 Tuple inNeighbors; // transpose neighbors
 BooleanWritable active; // vertex is active or not
 BooleanWritable updated; // sccID is updated or not
 public MyValue() {
 this.sccID = new LongWritable(Long.MAX_VALUE);
 this.inNeighbors = new Tuple();
 this.active = new BooleanWritable(true);
 this.updated = new BooleanWritable(false);

 public void setSccID(LongWritable sccID) {
 this.sccID = sccID;

 public LongWritable getSccID() {
 return this.sccID;

 public void setInNeighbors(Tuple inNeighbors) {
 this.inNeighbors = inNeighbors;

 public Tuple getInNeighbors() {
 return this.inNeighbors;

 public void addInNeighbor(LongWritable neighbor) {
 this.inNeighbors.append(new LongWritable(neighbor.get()));

 public boolean isActive() {
 return this.active.get();

 public void setActive(boolean status) {
 this.active.set(status);

 public boolean isUpdated() {
 return this.updated.get();

 public void setUpdated(boolean update) {
 this.updated.set(update);

 @Override
 public void write(DataOutput out) throws IOException {
 this.sccID.write(out);
 this.inNeighbors.write(out);
 this.active.write(out);
 this.updated.write(out);

 @Override
 public void readFields(DataInput in) throws IOException {
 this.sccID.readFields(in);
 this.inNeighbors.readFields(in);
 this.active.readFields(in);
 this.updated.readFields(in);

 @Override
 public String toString() {
 StringBuilder sb = new StringBuilder();
 sb.append("sccID: " + sccID.get());
 sb.append(" inNeighbores: " + inNeighbors.toDelimitedString
(','));
 sb.append(" active: " + active.get());
 sb.append(" updated: " + updated.get());
 return sb.toString();

 public static class SCCVertex extends
 Vertex <LongWritable, MyValue, NullWritable, LongWritable> {

Issue: 20191012 547

⼤数据计算服务 User Guide / 10 Graph
 public SCCVertex() {
 this.setValue(new MyValue());

 @Override
 public void compute(
 ComputeContext < LongWritable, MyValue, NullWritable, LongWritable
> context,
 Iterable <LongWritable> msgs) throws IOException {
 // Messages sent to inactive vertex are ignored.
 if (! this.getValue().isActive()) {
 this.voteToHalt();
 return;

 int stage = ((SCCAggrValue)context.getLastAggregatedValue(0)).
getStage();
 switch (stage) {
 case STAGE_TRANSPOSE_1:
 context.sendMessageToNeighbors(this, this.getId());
 break;
 case STAGE_TRANSPOSE_2:
 for (LongWritable msg: msgs) {
 this.getValue().addInNeighbor(msg);

 case STAGE_TRIMMING:
 this.getValue().setSccID(getId());
 if (this.getValue().getInNeighbors().size() == 0 ||
 this.getNumEdges() == 0) {
 this.getValue().setActive(false);

 break;
 case STAGE_FW_START:
 this.getValue().setSccID(getId());
 context.sendMessageToNeighbors(this, this.getValue().getSccID
());
 break;
 case STAGE_FW_REST:
 long minSccID = Long.MAX_VALUE;
 for (LongWritable msg : msgs) {
 if (msg.get() < minSccID) {
 minSccID = msg.get();

 if (minSccID < this.getValue().getSccID().get()) {
 this.getValue().setSccID(new LongWritable(minSccID));
 context.sendMessageToNeighbors(this, this.getValue().
getSccID());
 this.getValue().setUpdated(true);
 } else {
 this.getValue().setUpdated(false);

 break;
 case STAGE_BW_START:
 if (this.getId().equals(this.getValue().getSccID())) {
 for (Writable neighbor : this.getValue().getInNeighbors().
getAll()) {
 context.sendMessage((LongWritable)neighbor, this.getValue
().getSccID());

 this.getValue().setActive(false);

 break;
 case STAGE_BW_REST:
 this.getValue().setUpdated(false);
 for (LongWritable msg : msgs) {

548 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph
 if (msg.equals(this.getValue().getSccID())) {
 for (Writable neighbor : this.getValue().getInNeighbors().
getAll()) {
 context.sendMessage((LongWritable)neighbor, this.
getValue().getSccID());

 this.getValue().setActive(false);
 this.getValue().setUpdated(true);
 break;

 break;

 context.aggregate(0, getValue());

 @Override
 public void cleanup(
 WorkerContext<LongWritable, MyValue, NullWritable, LongWritab
le> context)
 throws IOException {
 context.write(getId(), getValue().getSccID());

 * The SCCAggrValue maintains global stage and graph updated and
active status.
 * updated is true only if one vertex is updated.
 * active is true only if one vertex is active.

 public static class SCCAggrValue implements Writable {
 IntWritable stage = new IntWritable(STAGE_TRANSPOSE_1);
 BooleanWritable updated = new BooleanWritable(false);
 BooleanWritable active = new BooleanWritable(false);
 public void setStage(int stage) {
 this.stage.set(stage);

 public int getStage() {
 return this.stage.get();

 public void setUpdated(boolean updated) {
 this.updated.set(updated);

 public boolean getUpdated() {
 return this.updated.get();

 public void setActive(boolean active) {
 this.active.set(active);

 public boolean getActive() {
 return this.active.get();

 @ Override
 public void write(DataOutput out) throws IOException {
 this.stage.write(out);
 this.updated.write(out);
 this.active.write(out);

 @ Override
 public void readFields(DataInput in) throws IOException {
 this.stage.readFields(in);
 this.updated.readFields(in);
 this.active.readFields(in);

Issue: 20191012 549

⼤数据计算服务 User Guide / 10 Graph

 * The job of SCCAggregator is to schedule global stage in every
superstep.

 public static class SCCAggregator extends Aggregator<SCCAggrValue> {
 @SuppressWarnings("rawtypes")
 @ Override
 public SCCAggrValue createStartupValue(WorkerContext context)
throws IOException {
 return new SCCAggrValue();

 @SuppressWarnings("rawtypes")
 @ Override
 public SCCAggrValue createInitialValue(WorkerContext context)
 throws IOException {
 return (SCCAggrValue) context.getLastAggregatedValue(0);

 @ Override
 public void aggregate(SCCAggrValue value, Object item) throws
IOException {
 MyValue v = (MyValue)item;
 if ((value.getStage() == STAGE_FW_REST || value.getStage() ==
STAGE_BW_REST)
 && v.isUpdated()) {
 value.setUpdated(true);

 // only active vertex invoke aggregate()
 value.setActive(true);

 @ Override
 public void merge(SCCAggrValue value, SCCAggrValue partial)
 throws IOException {
 boolean updated = value.getUpdated() || partial.getUpdated();
 value.setUpdated(updated);
 boolean active = value.getActive() || partial.getActive();
 value.setActive(active);

 @SuppressWarnings("rawtypes")
 @ Override
 public boolean terminate(WorkerContext context, SCCAggrValue value
)
 throws IOException {
 // If all vertices is inactive, job is over.
 if (! value.getActive()) {
 return true;

 // state machine
 switch (value.getStage()) {
 case STAGE_TRANSPOSE_1:
 value.setStage(STAGE_TRANSPOSE_2);
 break;
 case STAGE_TRANSPOSE_2:
 value.setStage(STAGE_TRIMMING);
 break;
 case STAGE_TRIMMING:
 value.setStage(STAGE_FW_START);
 break;
 case STAGE_FW_START:
 value.setStage(STAGE_FW_REST);
 break;
 case STAGE_FW_REST:
 if (value.getUpdated()) {
 value.setStage(STAGE_FW_REST);
 } else {

550 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph
 value.setStage(STAGE_BW_START);

 break;
 case STAGE_BW_START:
 value.setStage(STAGE_BW_REST);
 break;
 case STAGE_BW_REST:
 if (value.getUpdated()) {
 value.setStage(STAGE_BW_REST);
 } else {
 value.setStage(STAGE_TRIMMING);

 break;

 value.setActive(false);
 value.setUpdated(false);
 return false;

 public static class SCCVertexReader extends
 GraphLoader<LongWritable, MyValue, NullWritable, LongWritable> {
 @ Override
 public void load(
 LongWritable recordNum,
 WritableRecord record,
 MutationContext<LongWritable, MyValue, NullWritable,
LongWritable> context)
 throws IOException {
 SCCVertex vertex = new SCCVertex();
 vertex.setId((LongWritable) record.get(0));
 String[] edges = record.get(1).toString().split(",");
 for (int i = 0; i < edges.length; i++) {
 try {
 long destID = Long.parseLong(edges[i]);
 vertex.addEdge(new LongWritable(destID), NullWritable.get
());
 } catch(NumberFormatException nfe) {
 System.err.println("Ignore " + nfe);

 context.addVertexRequest(vertex);

 public static void main(String[] args) throws IOException {
 if (args.length < 2) {
 System.out.println("Usage: <input> <output>");
 System.exit(-1);

 GraphJob job = new GraphJob();
 job.setGraphLoaderClass(SCCVertexReader.class);
 job.setVertexClass(SCCVertex.class);
 job.setAggregatorClass(SCCAggregator.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 long startTime = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - startTime) / 1000.0 + "
seconds");

Issue: 20191012 551

⼤数据计算服务 User Guide / 10 Graph

10.7.6 Connected component
If there is path between 2 vertices, it means the 2 vertices are connected. If any
two vertices in undirected graph G are connected, G is called a connected graph.
Otherwise, G is called an unconnected graph. A connected sub-graph with a large
number of vertices is called a connected component.
This algorithm calculates connected component members of each vertex, and
outputs the connected component of the vertex value that includes the smallest
vertex ID. The smallest vertex ID is transmitted along edges to all vertices of the
connected component.

Sample Code
Code for connecting components is as follows:
import java.io.IOException;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.graph.ComputeContext;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.WorkerContext;
import com.aliyun.odps.graph.examples.SSSP.MinLongCombiner;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.NullWritable;
import com.aliyun.odps.io.WritableRecord;

 * Compute the connected component membership of each vertex and
output
 * each vertex which's value containing the smallest id in the
connected
 * component containing that vertex.

 * Algorithm: propagate the smallest vertex id along the edges to all
 * vertices of a connected component.

public class ConnectedComponents {
 public static class CCVertex extends
 Vertex<LongWritable, LongWritable, NullWritable, LongWritable> {
 @Override
 public void compute(
 ComputeContext<LongWritable, LongWritable, NullWritable,
LongWritable> context,
 Iterable<LongWritable> msgs) throws IOException {
 if (context.getSuperstep() == 0L) {
 this.setValue(getId());
 context.sendMessageToNeighbors(this, getValue());
 return;

 long minID = Long.MAX_VALUE;
 for (LongWritable id : msgs) {
 if (id.get() < minID) {

552 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph
 minID = id.get();

 if (minID < this.getValue().get()) {
 this.setValue(new LongWritable(minID));
 context.sendMessageToNeighbors(this, getValue());
 } else {
 this.voteToHalt();

 * Output Table Description:

 * | Field | Type | Comment |

 * | v | bigint | vertex id |
 * | minID | bigint | smallest id in the connected component |

 @Override
 public void cleanup(
 WorkerContext<LongWritable, LongWritable, NullWritable, LongWritab
le> context)
 throws IOException {
 context.write(getId(), getValue());

 * Input Table Description:

 * | Field | Type | Comment |

 * | v | bigint | vertex id |
 * | es | string | comma separated target vertex id of outgoing
edges |

 * Example:
 * For graph:
 * 1 ----- 2

 * 3 ----- 4
 * Input table:

 * | v | es |

 * | 1 | 2,3 |
 * | 2 | 1,4 |
 * | 3 | 1,4 |
 * | 4 | 2,3 |

 public static class CCVertexReader extends
 GraphLoader<LongWritable, LongWritable, NullWritable, LongWritable>
 {
 @Override
 public void load(
 LongWritable recordNum,
 WritableRecord record,
 MutationContext<LongWritable, LongWritable, NullWritable,
LongWritable> context)
 throws IOException {
 CCVertex vertex = new CCVertex();
 vertex.setId((LongWritable) record.get(0));

Issue: 20191012 553

⼤数据计算服务 User Guide / 10 Graph
 String[] edges = record.get(1).toString().split(",");
 for (int i = 0; i < edges.length; i++) {
 long destID = Long.parseLong(edges[i]);
 vertex.addEdge(new LongWritable(destID), NullWritable.get());

 context.addVertexRequest(vertex);

 public static void main(String[] args) throws IOException {
 if (args.length < 2) {
 System.out.println("Usage: <input> <output>");
 System.exit(-1);

 GraphJob job = new GraphJob();
 job.setGraphLoaderClass(CCVertexReader.class);
 job.setVertexClass(CCVertex.class);
 job.setCombinerClass(MinLongCombiner.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 long startTime = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - startTime) / 1000.0 + "
seconds");

10.7.7 Topology Sorting
In directed edge (u,v), all vertex sequences satisfying u < v are called topological
sequences. Topological sorting is an algorithm used to calculate the topological
sequence of a directed graph.
Specifically, the algorithm:
1. Find a vertex that does not have any inbound edge from the graph and outputs

the vertex.
2. Delete the vertex and all outbound edges from the graph.
3. Repeat the preceding steps until all vertices are output.

Sample Code
The code for the topology ordering algorithm is as follows:
import java.io.IOException;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.graph.Aggregator;
import com.aliyun.odps.graph.Combiner;
import com.aliyun.odps.graph.ComputeContext;
Import com. aliyun. ODPS. graph. graphjob;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.WorkerContext;
import com.aliyun.odps.io.LongWritable;

554 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph
import com.aliyun.odps.io.NullWritable;
import com.aliyun.odps.io.BooleanWritable;
import com.aliyun.odps.io.WritableRecord;
public class TopologySort {
 private final static Log LOG = LogFactory.getLog(TopologySort.class
);
 public static class TopologySortVertex extends
 Vertex<LongWritable, LongWritable, NullWritable, LongWritable> {
 @Override
 public void compute(
 ComputeContext<LongWritable, LongWritable, NullWritable,
LongWritable> context,
 Iterable<LongWritable> messages) throws IOException {
 // in superstep 0, each vertex sends message whose value is 1 to
 its
 // neighbors
 if (context.getSuperstep() == 0) {
 if (hasEdges()) {
 context.sendMessageToNeighbors(this, new LongWritable(1L));

 } else if (context.getSuperstep() >= 1) {
 // compute each vertex's indegree
 long indegree = getValue().get();
 for (LongWritable msg : messages) {
 indegree += msg.get();

 setValue(new LongWritable(indegree));
 if (indegree == 0) {
 voteToHalt();
 if (hasEdges()) {
 context.sendMessageToNeighbors(this, new LongWritable(-1L
));

 context.write(new LongWritable(context.getSuperstep()),
getId());
 LOG.info("vertex: " + getId());

 context.aggregate(new LongWritable(indegree));

 public static class TopologySortVertexReader extends
 GraphLoader<LongWritable, LongWritable, NullWritable, LongWritable>
 {
 @Override
 public void load(
 LongWritable recordNum,
 WritableRecord record,
 MutationContext<LongWritable, LongWritable, NullWritable,
LongWritable> context)
 throws IOException {
 TopologySortVertex vertex = new TopologySortVertex();
 vertex.setId((LongWritable) record.get(0));
 vertex.setValue(new LongWritable(0));
 String[] edges = record.get(1).toString().split(",");
 for (int i = 0; i < edges.length; i++) {
 long edge = Long.parseLong(edges[i]);
 if (edge >= 0) {
 vertex.addEdge(new LongWritable(Long.parseLong(edges[i])),
 NullWritable.get());

 LOG.info(record.toString());
 context.addVertexRequest(vertex);

Issue: 20191012 555

⼤数据计算服务 User Guide / 10 Graph

 public static class LongSumCombiner extends
 Combiner<LongWritable, LongWritable> {
 @Override
 public void combine(LongWritable vertexId, LongWritable combinedMe
ssage,
 LongWritable messageToCombine) throws IOException {
 combinedMessage.set(combinedMessage.get() + messageToCombine.get
());

 public static class TopologySortAggregator extends
 Aggregator<BooleanWritable> {
 @SuppressWarnings("rawtypes")
 @Override
 public BooleanWritable createInitialValue(WorkerContext context)
 throws IOException {
 return new BooleanWritable(true);

 @Override
 public void aggregate(BooleanWritable value, Object item)
 throws IOException {
 boolean hasCycle = value.get();
 boolean inDegreeNotZero = ((LongWritable) item).get() == 0 ?
false : true;
 value.set(hasCycle && inDegreeNotZero);

 @Override
 public void merge(BooleanWritable value, BooleanWritable partial)
 throws IOException {
 value.set(value.get() && partial.get());

 @SuppressWarnings("rawtypes")
 @Override
 public boolean terminate(WorkerContext context, BooleanWritable
value)
 throws IOException {
 if (context.getSuperstep() == 0) {
 // since the initial aggregator value is true, and in
superstep we don't
 // do aggregate
 return false;

 return value.get();

 public static void main(String[] args) throws IOException {
 if (args.length ! = 2) {
 System.out.println("Usage : <inputTable> <outputTable>");
 System.exit(-1);

 // The input table is in the format of
 // 0 1，2
 // 1 3
 // 2 3
 // 3 -1
 // The first column is vertexid, and the second column is the
 destination vertexid of the vertex edge. If the value is –1, the
vertex does not have any outbound edge
 // The output table is in the format of
 // 0 0
 // 1 1
 // 1 2

556 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph
 // 2 3
 // The first column is the supstep value, in which the topological
 sequence is hidden. The second column is vertexid
 // TopologySortAggregator is used to determine if the graph has
loops
 // If the input graph has a loop, the iteration ends when the
indegree of vertices in the active state is not 0
 // You can use records in the input and output tables to determine
 if the graph has loops
 GraphJob job = new GraphJob();
 job.setGraphLoaderClass(TopologySortVertexReader.class);
 job.setVertexClass(TopologySortVertex.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 job.setCombinerClass(LongSumCombiner.class);
 job.setAggregatorClass(TopologySortAggregator.class);
 long startTime = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - startTime) / 1000.0 + "
seconds");

10.7.8 Linear Regression
In statistics, linear regression is a statistical analysis method used to determine
the dependency between two or more variables. Different from the classification
algorithm that processes discrete prediction,
the regression algorithm can predict the continuous value type. The linear
regression algorithm defines the loss function as the sum of the least square errors
of the sample set. It minimizes the loss function to calculate the weight vector.
A common solution is gradient descent that:
1. Initialize the weight vector to give descent speed rate and iterations (or iteration

convergence condition).
2. Calculate the least square error for each sample.
3. Get the sum of the least square error, update the weight based on the descent

speed rate.
4. Repeat iterations until convergence.

Sample Code
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.graph.Aggregator;
import com.aliyun.odps.graph.ComputeContext;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.MutationContext;

Issue: 20191012 557

⼤数据计算服务 User Guide / 10 Graph
import com.aliyun.odps.graph.WorkerContext;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.io.DoubleWritable;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.NullWritable;
import com.aliyun.odps.io.Tuple;
import com.aliyun.odps.io.Writable;
import com.aliyun.odps.io.WritableRecord;

 * LineRegression input: y,x1,x2,x3,......

public class LinearRegression {
 public static class GradientWritable implements Writable {
 Tuple lastTheta;
 Tuple currentTheta;
 Tuple tmpGradient;
 LongWritable count;
 DoubleWritable lost;
 @Override
 public void readFields(DataInput in) throws IOException {
 lastTheta = new Tuple();
 lastTheta.readFields(in);
 currentTheta = new Tuple();
 currentTheta.readFields(in);
 tmpGradient = new Tuple();
 tmpGradient.readFields(in);
 count = new LongWritable();
 count.readFields(in);
 /* update 1: add a variable to store lost at every iteration */
 lost = new DoubleWritable();
 lost.readFields(in);

 @Override
 public void write(DataOutput out) throws IOException {
 lastTheta.write(out);
 currentTheta.write(out);
 tmpGradient.write(out);
 count.write(out);
 lost.write(out);

 public static class LinearRegressionVertex extends
 Vertex<LongWritable, Tuple, NullWritable, NullWritable> {
 @Override
 public void compute(
 ComputeContext<LongWritable, Tuple, NullWritable, NullWritable>
context,
 Iterable<NullWritable> messages) throws IOException {
 context.aggregate(getValue());

 public static class LinearRegressionVertexReader extends
 GraphLoader<LongWritable, Tuple, NullWritable, NullWritable> {
 @Override
 public void load(LongWritable recordNum, WritableRecord record,
 MutationContext<LongWritable, Tuple, NullWritable, NullWritable>
context)
 throws IOException {
 LinearRegressionVertex vertex = new LinearRegressionVertex();
 vertex.setId(recordNum);
 vertex.setValue(new Tuple(record.getAll()));
 context.addVertexRequest(vertex);

558 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph

 public static class LinearRegressionAggregator extends
 Aggregator<GradientWritable> {
 @SuppressWarnings("rawtypes")
 @Override
 public GradientWritable createInitialValue(WorkerContext context)
 throws IOException {
 if (context.getSuperstep() == 0) {
 /* set initial value, all 0 */
 GradientWritable grad = new GradientWritable();
 grad.lastTheta = new Tuple();
 grad.currentTheta = new Tuple();
 grad.tmpGradient = new Tuple();
 grad.count = new LongWritable(1);
 grad.lost = new DoubleWritable(0.0);
 int n = (int) Long.parseLong(context.getConfiguration()
 .get("Dimension"));
 for (int i = 0; i < n; i++) {
 grad.lastTheta.append(new DoubleWritable(0));
 grad.currentTheta.append(new DoubleWritable(0));
 grad.tmpGradient.append(new DoubleWritable(0));

 return grad;
 } else
 return (GradientWritable) context.getLastAggregatedValue(0);

 public static double vecMul(Tuple value, Tuple theta) {
 /* perform this partial computing: y(i)−hθ(x(i)) for each sample
 */
 /* value denote a piece of sample and value(0) is y */
 double sum = 0.0;
 for (int j = 1; j < value.size(); j++)
 sum += Double.parseDouble(value.get(j).toString())
 * Double.parseDouble(theta.get(j).toString());
 Double tmp = Double.parseDouble(theta.get(0).toString()) + sum
 - Double.parseDouble(value.get(0).toString());
 return tmp;

 @Override
 public void aggregate(GradientWritable gradient, Object value)
 throws IOException {

 * perform on each vertex--each sample i：set theta(j) for each
sample i
 * for each dimension

 double tmpVar = vecMul((Tuple) value, gradient.currentTheta);

 * update 2:local worker aggregate(), perform like merge() below
. This
 * means the variable gradient denotes the previous aggregated
value

 gradient.tmpGradient.set(0, new DoubleWritable(
 ((DoubleWritable) gradient.tmpGradient.get(0)).get() +
tmpVar));
 gradient.lost.set(Math.pow(tmpVar, 2));

 * calculate (y(i)−hθ(x(i))) x(i)(j) for each sample i for each
 * dimension j

 for (int j = 1; j < gradient.tmpGradient.size(); j++)
 gradient.tmpGradient.set(j, new DoubleWritable(

Issue: 20191012 559

⼤数据计算服务 User Guide / 10 Graph
 ((DoubleWritable) gradient.tmpGradient.get(j)).get() +
tmpVar
 * Double.parseDouble(((Tuple) value).get(j).toString
())));

 @Override
 public void merge(GradientWritable gradient, GradientWritable
partial)
 throws IOException {
 /* perform SumAll on each dimension for all samples.
 Tuple master = (Tuple) gradient.tmpGradient;
 Tuple part = (Tuple) partial.tmpGradient;
 for (int j = 0; j < gradient.tmpGradient.size(); j++) {
 DoubleWritable s = (DoubleWritable) master.get(j);
 s.set(s.get() + ((DoubleWritable) part.get(j)).get());

 gradient.lost.set(gradient.lost.get() + partial.lost.get());

 @SuppressWarnings("rawtypes")
 @Override
 public boolean terminate(WorkerContext context, GradientWritable
gradient)
 throws IOException {

 * 1. calculate new theta 2. judge the diff between last step
and this
 * step, if smaller than the threshold, stop iteration

 gradient.lost = new DoubleWritable(gradient.lost.get()
 / (2 * context.getTotalNumVertices()));

 * we can calculate lost in order to make sure the algorithm is
running on
 * the right direction (for debug)

 System.out.println(gradient.count + " lost:" + gradient.lost);
 Tuple tmpGradient = gradient.tmpGradient;
 System.out.println("tmpGra" + tmpGradient);
 Tuple lastTheta = gradient.lastTheta;
 Tuple tmpCurrentTheta = new Tuple(gradient.currentTheta.size());
 System.out.println(gradient.count + " terminate_start_last:" +
lastTheta);
 double alpha = 0.07; // learning rate
 // alpha =
 // Double.parseDouble(context.getConfiguration().get("Alpha"));
 /* perform theta(j) = theta(j)-alpha*tmpGradient */
 long M = context.getTotalNumVertices();

 * update 3: add (/M) on the code. The original code forget this
 step

 for (int j = 0; j < lastTheta.size(); j++) {
 tmpCurrentTheta
 .set(
 J,
 new DoubleWritable(Double.parseDouble(lastTheta.get(j)
 .toString())
 - alpha
 / M
 * Double.parseDouble(tmpGradient.get(j).toString
())));

 System.out.println(gradient.count + " terminate_start_current:"
 + tmpCurrentTheta);

560 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph
 // judge if convergence is happening.
 double diff = 0.00d;
 for (int j = 0; j < gradient.currentTheta.size(); j++)
 diff += Math.pow(((DoubleWritable) tmpCurrentTheta.get(j)).get
()
 - ((DoubleWritable) lastTheta.get(j)).get(), 2);
 if (/*
 * Math.sqrt(diff) < 0.00000000005d ||
 */Long.parseLong(context.getConfiguration().get("Max_Iter_N
um")) == gradient.count
 .get()) {
 context.write(gradient.currentTheta.toArray());
 return true;

 gradient.lastTheta = tmpCurrentTheta;
 gradient.currentTheta = tmpCurrentTheta;
 gradient.count.set(gradient.count.get() + 1);
 int n = (int) Long.parseLong(context.getConfiguration().get("
Dimension"));

 * update 4: Important!!! Remember this step. Graph won't reset
the
 * initial value for global variables at the beginning of each
iteration

 for (int i = 0; i < n; i++) {
 gradient.tmpGradient.set(i, new DoubleWritable(0));

 return false;

 public static void main(String[] args) throws IOException {
 GraphJob job = new GraphJob();
 job.setGraphLoaderClass(LinearRegressionVertexReader.class);
 job.setRuntimePartitioning(false);
 job.setNumWorkers(3);
 job.setVertexClass(LinearRegressionVertex.class);
 job.setAggregatorClass(LinearRegressionAggregator.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 job.setMaxIteration(Integer.parseInt(args[2])); // Numbers of
Iteration
 job.setInt("Max_Iter_Num", Integer.parseInt(args[2]));
 job.setInt("Dimension", Integer.parseInt(args[3])); // Dimension
 job.setFloat("Alpha", Float.parseFloat(args[4])); // Learning rate
 long start = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - start) / 1000.0 + " seconds");

10.7.9 Triangle Count
This algorithm is used to calculate the number of triangles passing through each
vertex.
The algorithm is implemented using the following steps:
1. Each vertex sends its ID to all outbound neighbors.

Issue: 20191012 561

⼤数据计算服务 User Guide / 10 Graph

2. Store inbound and outbound neighbors and sends them to the outbound
neighbors.

3. Calculate the number of endpoint intersections for each Edge, get the sum, and
output the result to the table.

4. Get the sum of the output result in the table, divide it by 3, and get the number of
 triangles.

Sample code
Code for the triangle count algorithm are as follows:
import java.io.IOException;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.graph.ComputeContext;
import com.aliyun.odps.graph.Edge;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.WorkerContext;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.NullWritable;
import com.aliyun.odps.io.Tuple;
import com.aliyun.odps.io.Writable;
import com.aliyun.odps.io.WritableRecord;

 * Compute the number of triangles passing through each vertex.

 * The algorithm can be computed in three supersteps:
 * I. Each vertex sends a message with its ID to all its outgoing
 * neighbors.
 * II. The incoming neighbors and outgoing neighbors are stored and
 * send to outgoing neighbors.
 * III. For each edge compute the intersection of the sets at
destination
 * vertex and sum them, then output to table.

 * The triangle count is the sum of output table and divide by three
since
 * each triangle is counted three times.

public class TriangleCount {
 public static class TCVertex extends
 Vertex<LongWritable, Tuple, NullWritable, Tuple> {
 @Override
 public void setup(
 WorkerContext<LongWritable, Tuple, NullWritable, Tuple>
context)
 throws IOException {
 // collect the outgoing neighbors
 Tuple t = new Tuple();
 if (this.hasEdges()) {
 for (Edge<LongWritable, NullWritable> edge : this.getEdges())
 {
 t.append(edge.getDestVertexId());
 }

562 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph
 this.setValue(t);

 @Override
 public void compute(
 ComputeContext<LongWritable, Tuple, NullWritable, Tuple>
context,
 Iterable<Tuple> msgs) throws IOException {
 if (context.getSuperstep() == 0L) {
 // sends a message with its ID to all its outgoing neighbors
 Tuple t = new Tuple();
 t.append(getId());
 context.sendMessageToNeighbors(this, t);
 } else if (context.getSuperstep() == 1L) {
 // store the incoming neighbors
 for (Tuple msg : msgs) {
 for (Writable item : msg.getAll()) {
 if (! this.getValue().getAll().contains((LongWritable)item
)) {
 this.getValue().append((LongWritable)item);

 // send both incoming and outgoing neighbors to all outgoing
neighbors
 context.sendMessageToNeighbors(this, getValue());
 } else if (context.getSuperstep() == 2L) {
 // count the sum of intersection at each edge
 long count = 0;
 for (Tuple msg : msgs) {
 for (Writable id : msg.getAll()) {
 if (getValue().getAll().contains(id)) {
 count ++;

 // output to table
 context.write(getId(), new LongWritable(count));
 this.voteToHalt();

 public static class TCVertexReader extends
 GraphLoader<LongWritable, Tuple, NullWritable, Tuple> {
 @Override
 public void load(
 LongWritable recordNum,
 WritableRecord record,
 MutationContext<LongWritable, Tuple, NullWritable, Tuple>
context)
 throws IOException {
 TCVertex vertex = new TCVertex();
 vertex.setId((LongWritable) record.get(0));
 String[] edges = record.get(1).toString().split(",");
 for (int i = 0; i < edges.length; i++) {
 try {
 long destID = Long.parseLong(edges[i]);
 vertex.addEdge(new LongWritable(destID), NullWritable.get
());
 } catch(NumberFormatException nfe) {
 System.err.println("Ignore " + nfe);

 context.addVertexRequest(vertex);

Issue: 20191012 563

⼤数据计算服务 User Guide / 10 Graph

 public static void main(String[] args) throws IOException {
 if (args.length < 2) {
 System.out.println("Usage: <input> <output>");
 System.exit(-1);

 GraphJob job = new GraphJob();
 job.setGraphLoaderClass(TCVertexReader.class);
 job.setVertexClass(TCVertex.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 long startTime = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - startTime) / 1000.0 + "
seconds");

10.7.10 Vertex Input
Sample code
import java.io.IOException;
import com.aliyun.odps.conf.Configuration;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.graph.ComputeContext;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.VertexResolver;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.VertexChanges;
import com.aliyun.odps.graph.Edge;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.WritableComparable;
import com.aliyun.odps.io.WritableRecord;

 * The following example describes how to compile a graph job program
to load data of different types. It mainly describes how GraphLoader
 * and VertexResolver are cooperated to build the graph.

 * A MaxCompute Graph job uses MaxCompute tables as the input. Assume
that a job has two tables as the input, one storing vertices and the
other storing edges.
 * The format of the table storing vertex information is as follows:

 * | VertexID | VertexValue |

 * | id0| 9|

 * | id1| 7|

 * | id2| 8|

 * The format of the table storing edge information is as follows:

 * | VertexID | DestVertexID| EdgeValue|

 * | id0| id1| 1|

564 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph
 * | id0| id2| 2|

 * | id2| id1| 3|

 * The preceding two tables show that id0 has two outbound edges
 pointing to id1 and id2 respectively. id2 has an outbound edge
pointing to id1, and id1 has no outbound edges.

 * For data of this type, in GraphLoader::load(LongWritable, Record,
MutationContext),
 * MutationContext#addVertexRequest(Vertex) can be used to add
vertices to the graph, while
 * link MutationContext#addEdgeRequest(WritableComparable, Edge) can
be used to add edges to the graph. In
 * link VertexResolver#resolve(WritableComparable, Vertex, VertexChan
ges, boolean)
 * vertices and edges added in the load() method are combined to a
 vertex object, which is used as the return value and added to the
graph for calculation.

public class VertexInputFormat {
 private final static String EDGE_TABLE = "edge.table";

 * Resolve a record to vertices and edges. Each record indicates a
vertex or an edge according to its source.

 * Similar to com.aliyun.odps.mapreduce.Mapper#map,
 * enter a record to generate key-value pairs. The keys are vertex
IDs,
 * and the values are vertices or edges written based on the context
. These key-value pairs are summarized based on vertex IDs using
LoadingVertexResolver.

 * Note: Vertices or edges added here are requests sent based on the
 record content, and are not used in calculation. Only
 * vertices or edges added using VertexResolver participate in
calculation.

 public static class VertexInputLoader extends
 GraphLoader<LongWritable, LongWritable, LongWritable, LongWritable>
 {
 private boolean isEdgeData;

 * Configure VertexInputLoader.

 * @param conf
 * Indicates the configuration parameters of a job, which are
configured in the main GraphJob or set on the console.
 * @param workerId
 * Indicates the serial number of the operating Worker, which
starts from 0 and can be used to build a unique vertex ID.
 * @param inputTableInfo
 * Indicates information about the input table load to the current
 Worker, which can be used to determine the type of currently input
data, that is, the record format.

 @Override
 public void setup(Configuration conf, int workerId, TableInfo
inputTableInfo) {
 isEdgeData = conf.get(EDGE_TABLE).equals(inputTableInfo.
getTableName());

Issue: 20191012 565

⼤数据计算服务 User Guide / 10 Graph

 * Based on the record content, resolve corresponding edges and
send a request to add them to the graph.

 * @param recordNum
 * Indicates the record serial number, which starts from 1 and is
separately counted in each Worker.
 * @param record
 * Indicates the record in the input table. It contains three
columns, indicating the first vertex, last vertex, and edge weight.
 * @param context
 * Indicates the context, requesting to add resolved edges to the
graph.

 @Override
 public void load(
 LongWritable recordNum,
 WritableRecord record,
 MutationContext<LongWritable, LongWritable, LongWritable,
LongWritable> context)
 throws IOException {
 if (isEdgeData) {

 * Data is from the table that stores edge information.

 * 1. The first column indicates the first vertex ID.

 LongWritable sourceVertexID = (LongWritable) record.get(0);

 * 2. The second column indicates the last vertex ID.

 LongWritable destinationVertexID = (LongWritable) record.get(1
);

 * 3. The third column indicates the edge weight.

 LongWritable edgeValue = (LongWritable) record.get(2);

 * 4. Create an edge that consists of the last vertex ID and
edge weight.

 Edge<LongWritable, LongWritable> edge = new Edge<LongWritable
, LongWritable>(
 destinationVertexID, edgeValue);

 * 5. Send a request to add an edge to the first vertex.

 context.addEdgeRequest(sourceVertexID, edge);

 * 6. If each record indicates a bidirectional edge, repeat
steps 4 and 5. Edge<LongWritable, LongWritable> edge2 = new
 * Edge<LongWritable, LongWritable>(sourceVertexID, edgeValue
);
 * context.addEdgeRequest(destinationVertexID, edge2);

 } else {

 * Data comes from the table that stores vertex information.

 * 1. The first column indicates the vertex ID.

 LongWritable vertexID = (LongWritable) record.get(0);

 * 2. The second column indicates the vertex value.

566 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph

 LongWritable vertexValue = (LongWritable) record.get(1);

 * 3. Create a vertex that consists of the vertex ID and
vertex value.

 MyVertex vertex = new MyVertex();

 * 4. Initialize the vertex.

 vertex.setId(vertexID);
 vertex.setValue(vertexValue);

 * 5. Send a request to add a vertex.

 context.addVertexRequest(vertex);

 * Summarize key-value pairs generated using GraphLoader::load(
LongWritable, Record, MutationContext), which is similar to
 * reduce in com.aliyun.odps.mapreduce.Reducer. For the unique
vertex ID, all actions such as
 * adding/deleting vertices or edges on the ID is stored in
VertexChanges.

 * Note: Not only conflicting vertices or edges added by using the
load() method are called. (A conflict occurs when multiple same vertex
 objects or duplicate edges are added.)
 * All IDs requested to be generated using the load() method are
called.

 public static class LoadingResolver extends
 VertexResolver<LongWritable, LongWritable, LongWritable, LongWritab
le> {

 * Process a request about adding/deleting vertices or edges for
an ID.

 * VertexChanges has four APIs, which correspond to the four APIs
of MutationContext:
 * VertexChanges::getAddedVertexList() corresponds to
 * MutationContext::addVertexRequest(Vertex).
 * In the load() method, if vertex objects with the same ID are
requested to be added, such vertex objects are collected to the return
 list.
 * VertexChanges::getAddedEdgeList() corresponds to
 * MutationContext::addEdgeRequest(WritableComparable, Edge)
 * If edge objects with the same first vertex ID are requested to
be added, such edge objects are collected to the return list.
 * VertexChanges::getRemovedVertexCount() corresponds to
 * MutationContext::removeVertexRequest(WritableComparable)
 * If vertices with the same ID are requested to be deleted, the
number of total deletion requests is returned.
 * VertexChanges#getRemovedEdgeList() corresponds to
 * MutationContext#removeEdgeRequest(WritableComparable,
WritableComparable)
 * If edge objects with the same first vertex ID are requested to
be deleted, such edge objects are collected to the return list.

 * By processing ID changes, you can state whether the ID
participates in calculation using the return value. If the returned
vertex is not null,

Issue: 20191012 567

⼤数据计算服务 User Guide / 10 Graph
 * the ID participates in subsequent calculation. If the returned
vertex is null, the ID does not participate in subsequent calculation.

 * @param vertexId
 * Indicates the ID of the vertex requested to be added or first
vertex ID of the edge requested to be added.
 * @param vertex
 * Indicates an existing vertex object. Its value is always null
in the data loading phase.
 * @param vertexChanges
 * Indicates the set of vertices or edges requested to be added/
deleted on the ID.
 * @param hasMessages
 * Indicates whether the ID has any input message. Its value is
always false in the data loading phase.

 @Override
 public Vertex<LongWritable, LongWritable, LongWritable, LongWritab
le> resolve(
 LongWritable vertexId,
 Vertex<LongWritable, LongWritable, LongWritable, LongWritable
> vertex,
 VertexChanges<LongWritable, LongWritable, LongWritable,
LongWritable> vertexChanges,
 boolean hasMessages) throws IOException {

 * 1. Obtain the vertex object for calculation.

 MyVertex computeVertex = null;
 if (vertexChanges.getAddedVertexList() == null
 || vertexChanges.getAddedVertexList().isEmpty()) {
 computeVertex = new MyVertex();
 computeVertex.setId(vertexId);
 } else {

 * Assume that each record indicates a unique vertex in the
table storing vertex information.

 computeVertex = (MyVertex) vertexChanges.getAddedVertexList().
get(0);

 * 2. Add the edge requested to be added to the vertex to the
vertex object. If data is duplicated, perform deduplication based on
the algorithm needs.

 if (vertexChanges.getAddedEdgeList() ! = null) {
 for (Edge<LongWritable, LongWritable> edge : vertexChanges
 .getAddedEdgeList()) {
 computeVertex.addEdge(edge.getDestVertexId(), edge.getValue
());

 * 3. Return the vertex object and add it to the final graph for
 calculation.

 return computeVertex;

 * Determine actions of the vertex that participates in calculation.

568 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph
 public static class MyVertex extends
 Vertex<LongWritable, LongWritable, LongWritable, LongWritable> {

 * Write the vertex edge to the result table according to the
format of the input table. Ensure that the format and data of the
input and output tables are the same.

 * @param context
 * Indicates the context during running.
 * @param messages
 * Indicates the input message.

 @Override
 public void compute(
 ComputeContext<LongWritable, LongWritable, LongWritable,
LongWritable> context,
 Iterable<LongWritable> messages) throws IOException {

 * Write the vertex ID and value to the result table storing
vertices.

 context.write("vertex", getId(), getValue());

 * Write the vertex edge to the result table storing edges.

 if (hasEdges()) {
 for (Edge<LongWritable, LongWritable> edge : getEdges()) {
 context.write("edge", getId(), edge.getDestVertexId(),
 edge.getValue());

 * Perform one round of iteration.

 voteToHalt();

 * @param args
 * @throws IOException

 public static void main(String[] args) throws IOException {
 if (args.length < 4) {
 throw new IOException(
 "Usage: VertexInputFormat <vertex input> <edge input> <vertex
output> <edge output>");

 * GraphJob is used to configure Graph jobs.

 GraphJob job = new GraphJob();

 * 1. Specify input graph data and the table storing edge data.

 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addInput(TableInfo.builder().tableName(args[1]).build());
 job.set(EDGE_TABLE, args[1]);

 * 2. Specify the data loading mode, resolve the record as edges.
Similar to the map, the generated key is the vertex ID, and the value
is the edge.

 job.setGraphLoaderClass(VertexInputLoader.class);

Issue: 20191012 569

⼤数据计算服务 User Guide / 10 Graph
 * 3. Specify the data loading phase, and generate the vertex for
calculation. Similar to reduce, edges generated by map are combined
to a vertex.

 job.setLoadingVertexResolverClass(LoadingResolver.class);

 * 4. Specify actions of the vertex that participates in
calculation. The vertex.compute() method is used for each round of
iteration.

 job.setVertexClass(MyVertex.class);

 * 5. Specify the output table of the Graph job, and write the
calculation result to the result table.

 job.addOutput(TableInfo.builder().tableName(args[2]).label("vertex
").build());
 job.addOutput(TableInfo.builder().tableName(args[3]).label("edge
").build());

 * 6. Submit the job for execution.

 job.run();

10.7.11 Edge Input
Sample Code
import java.io.IOException;
import com.aliyun.odps.conf.Configuration;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.graph.ComputeContext;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.VertexResolver;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.VertexChanges;
import com.aliyun.odps.graph.Edge;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.WritableComparable;
import com.aliyun.odps.io.WritableRecord;

 * The following example describes how to compile a graph job program
to load data of different types. It mainly describes how GraphLoader
 * and VertexResolver are cooperated to build the graph.

 * A MaxCompute Graph job uses MaxCompute tables as the input. Assume
that a job has two tables as the input, one storing vertices and the
other storing edges.
 * The format of the table storing vertex information is as follows:

 * | VertexID | VertexValue |

 * | id0| 9|

 * | id1| 7|

 * | id2| 8|

570 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph

 * The format of the table storing edge information is as follows:

 * | VertexID | DestVertexID| EdgeValue|

 * | id0| id1| 1|

 * | id0| id2| 2|

 * | id2| id1| 3|

 * The preceding two tables show that id0 has two outbound edges
 pointing to id1 and id2 respectively. id2 has an outbound edge
pointing to id1, and id1 has no outbound edges.

 * For data of this type, in GraphLoader::load(LongWritable, Record,
MutationContext),
 * MutationContext#addVertexRequest(Vertex) can be used to add
vertices to the graph, while
 * link MutationContext#addEdgeRequest(WritableComparable, Edge) can
be used to add edges to the graph. In
 * link VertexResolver#resolve(WritableComparable, Vertex, VertexChan
ges, boolean)
 * vertices and edges added in the load() method are combined to a
 vertex object, which is used as the return value and added to the
graph for calculation.

public class VertexInputFormat {
 private final static String EDGE_TABLE = "edge.table";

 * Resolve a record to vertices and edges. Each record indicates a
vertex or an edge according to its source.
 * Similar to com.aliyun.odps.mapreduce.Mapper#map,
 * enter a record to generate key-value pairs. The keys are vertex
IDs,
 * and the values are vertices or edges written based on the context
. These key-value pairs are summarized based on vertex IDs using
LoadingVertexResolver.

 * Note: Vertices or edges added here are requests sent based on the
 record content, and are not used for calculation. Only
 * vertices or edges added using VertexResolver participate in
calculation.

 public static class VertexInputLoader extends
 GraphLoader<LongWritable, LongWritable, LongWritable, LongWritable>
 {
 private boolean isEdgeData;

 * Configure VertexInputLoader.

 * @param conf
 * Indicates the configuration parameters of a job, which are
configured in the main GraphJob or set on the console.
 * @param workerId
 * Indicates the serial number of the operating Worker, which
starts from 0 and can be used to build a unique vertex ID.
 * @param inputTableInfo
 * Indicates information about the input table loaded to the
current Worker, which can be used to determine the type of currently
input data, that is, the record format.

Issue: 20191012 571

⼤数据计算服务 User Guide / 10 Graph
 @ Override
 public void setup(Configuration conf, int workerId, TableInfo
inputTableInfo) {
 isEdgeData = conf.get(EDGE_TABLE).equals(inputTableInfo.
getTableName());

 * Based on the record content, resolve corresponding edges and
send a request to add them to the graph.

 * @param recordNum
 * Indicates the record serial number, which starts from 1 and is
separately counted in each Worker.
 * @param record
 * Indicates the record in the input table. It contains three
columns, indicating the first vertex, last vertex, and edge weight.
 * @param context
 * Indicates the context, requesting to add resolved edges to the
graph.

 @Override
 public void load(
 LongWritable recordNum,
 WritableRecord record,
 MutationContext<LongWritable, LongWritable, LongWritable,
LongWritable> context)
 throws IOException {
 if (isEdgeData) {

 * Data comes from the table that stores edge information.

 * 1. The first column indicates the first vertex ID.

 LongWritable sourceVertexID = (LongWritable) record.get(0);

 * 2. The second column indicates the last vertex ID.

 LongWritable destinationVertexID = (LongWritable) record.get(1
);

 * 3. The third column indicates the edge weight.

 LongWritable edgeValue = (LongWritable) record.get(2);

 * 4. Create an edge that consists of the last vertex ID and
edge weight.

 Edge<LongWritable, LongWritable> edge = new Edge<LongWritable
, LongWritable>(
 destinationVertexID, edgeValue);

 * 5. Send a request to add an edge to the first vertex.

 context.addEdgeRequest(sourceVertexID, edge);

 * 6. If each record indicates a bidirectional edge, repeat
steps 4 and 5. Edge<LongWritable, LongWritable> edge2 = new
 * Edge<LongWritable, LongWritable>(sourceVertexID, edgeValue
);
 * context.addEdgeRequest(destinationVertexID, edge2);

 } else {

 * Data comes from the table that stores vertex information.

572 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph

 * 1. The first column indicates the vertex ID.

 LongWritable vertexID = (LongWritable) record.get(0);

 * 2. The second column indicates the vertex value.

 LongWritable vertexValue = (LongWritable) record.get(1);

 * 3. Create a vertex that consists of the vertex ID and
vertex value.

 MyVertex vertex = new MyVertex();

 * 4. Initialize the vertex.

 vertex.setId(vertexID);
 vertex.setValue(vertexValue);

 * 5. Send a request to add a vertex.

 context.addVertexRequest(vertex);

 * Summarize key-value pairs generated using GraphLoader::load(
LongWritable, Record, MutationContext), which is similar to
 * reduce in com.aliyun.odps.mapreduce.Reducer. For the unique
vertex ID, all actions such as
 * adding/deleting vertices or edges on the ID is stored in
VertexChanges.

 * Note: Not only conflicting vertices or edges added by using the
load() method are called. (A conflict occurs when multiple same vertex
 objects or duplicate edges are added.)
 * All IDs requested to be generated using the load() method are
called.

 public static class LoadingResolver extends
 VertexResolver<LongWritable, LongWritable, LongWritable, LongWritab
le> {

 * Process a request about adding/deleting vertices or edges for
an ID.

 * VertexChanges has four APIs, which correspond to the four APIs
of MutationContext:
 * VertexChanges::getAddedVertexList() corresponds to
 * MutationContext::addVertexRequest(Vertex).
 * In the load() method, if vertex objects with the same ID are
requested to be added, such vertex objects are collected to the return
 list.
 * VertexChanges::getAddedEdgeList() corresponds to
 * MutationContext::addEdgeRequest(WritableComparable, Edge)
 * If edge objects with the same first vertex ID are requested to
be added, such edge objects are collected to the return list.
 * VertexChanges::getRemovedVertexCount() corresponds to
 * MutationContext::removeVertexRequest(WritableComparable)
 * If vertices with the same ID are requested to be deleted, the
number of total deletion requests is returned.
 * VertexChanges#getRemovedEdgeList() corresponds to
 * MutationContext#removeEdgeRequest(WritableComparable,
WritableComparable)

Issue: 20191012 573

⼤数据计算服务 User Guide / 10 Graph
 * If edge objects with the same first vertex ID are requested to
be deleted, such edge objects are collected to the return list.

 * By processing ID changes, you can state whether the ID
participates in calculation using the return value. If the returned
vertex is not null,
 * the ID participates in subsequent calculation. If the returned
vertex is null, the ID does not participate in subsequent calculation.

 * @param vertexId
 * Indicates the ID of the vertex requested to be added or first
vertex ID of the edge requested to be added.
 * @param vertex
 * Indicates an existing vertex object. Its value is always null
in the data loading phase.
 * @param vertexChanges
 * Indicates the set of vertices or edges requested to be added/
deleted on the ID.
 * @param hasMessages
 * Indicates whether the ID has any input message. Its value is
always false in the data loading phase.

 @Override
 public Vertex<LongWritable, LongWritable, LongWritable, LongWritab
le> resolve(
 LongWritable vertexId,
 Vertex<LongWritable, LongWritable, LongWritable, LongWritable
> vertex,
 VertexChanges<LongWritable, LongWritable, LongWritable,
LongWritable> vertexChanges,
 boolean hasMessages) throws IOException {

 * 1. Obtain the vertex object to participate in calculation.

 MyVertex computeVertex = null;
 if (vertexChanges.getAddedVertexList() == null
 || vertexChanges.getAddedVertexList().isEmpty()) {
 computeVertex = new MyVertex();
 computeVertex.setId(vertexId);
 } else {

 * Assume that each record indicates a unique vertex in the
table storing vertex information.

 computeVertex = (MyVertex) vertexChanges.getAddedVertexList().
get(0);

 * 2. Add the edge requested to be added to the vertex to the
vertex object. If data may be duplicate, perform deduplication based
on the algorithm needs.

 if (vertexChanges.getAddedEdgeList() ! = null) {
 for (Edge<LongWritable, LongWritable> edge : vertexChanges
 .getAddedEdgeList()) {
 computeVertex.addEdge(edge.getDestVertexId(), edge.getValue
());

 * 3. Return the vertex object and add it to the final graph for
 calculation.

 return computeVertex;

574 Issue: 20191012

⼤数据计算服务 User Guide / 10 Graph

 * Determine actions of the vertex that participates in calculation.

 public static class MyVertex extends
 Vertex<LongWritable, LongWritable, LongWritable, LongWritable> {

 * Write the vertex edge to the result table according to the
format of the input table. Ensure that the format and data of the
input and output tables are the same.

 * @param context
 * Indicates the context during running.
 * @param messages
 * Indicates the input message.

 @Override
 public void compute(
 ComputeContext<LongWritable, LongWritable, LongWritable,
LongWritable> context,
 Iterable<LongWritable> messages) throws IOException {

 * Write the vertex ID and value to the result table storing
vertices.

 context.write("vertex", getId(), getValue());

 * Write the vertex edge to the result table storing edges.

 if (hasEdges()) {
 for (Edge<LongWritable, LongWritable> edge : getEdges()) {
 context.write("edge", getId(), edge.getDestVertexId(),
 edge.getValue());

 * Perform one round of iteration.

 voteToHalt();

 * @param args
 * @throws IOException

 public static void main(String[] args) throws IOException {
 If (ARGs. Length <4){
 throw new IOException(
 "Usage: VertexInputFormat <vertex input> <edge input> <vertex
output> <edge output>");

 * GraphJob is used to configure Graph jobs.

 GraphJob job = new GraphJob();

 * 1. Specify input graph data and the table storing edge data.

 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addInput(TableInfo.builder().tableName(args[1]).build());
 job.set(EDGE_TABLE, args[1]);

Issue: 20191012 575

⼤数据计算服务 User Guide / 10 Graph

 * 2. Specify the data loading mode, resolve the record as edges.
Similar to the map, the generated key is the vertex ID, and the value
is the edge.

 job.setGraphLoaderClass(VertexInputLoader.class);

 * 3. Specify the data loading phase, and generate the vertex that
 participates in calculation. Similar to reduce, edges generated by
map are combined to a vertex.

 job.setLoadingVertexResolverClass(LoadingResolver.class);

 * 4. Specify actions of the vertex that participates in
calculation. The vertex.compute() method is used for each round of
iteration.

 job.setVertexClass(MyVertex.class);

 * 5. Specify the output table of the Graph job, and write the
calculation result to the result table.

 job.addOutput(TableInfo.builder().tableName(args[2]).label("vertex
").build());
 job.addOutput(TableInfo.builder().tableName(args[3]).label("edge
").build());

 * 6. Submit the job for execution.

 job.run();

576 Issue: 20191012

⼤数据计算服务 User Guide / 11 View Job Running Information

11 View Job Running Information
11.1 Logview

Logview is a tool to view and debug tasks once the MaxCompute job is submitted.
Using Logview, you can see the following details about a job:
• The Run Status of the task.
• The operation result of the task.
• Details of the task and the progress of each step.
When the job is submitted to MaxCompute, a link to the Logview is generated. You
 can open the Logview link directly on the browser to view information about the
job for each job. The Logview page is valid for seven days.

Features
The following is a combination of a specific Logview web UI interface to introduce
you to each component.

A Logview home page is divided into two upper and lower sections:
• Instance information
• Task information
Instance info
On the Logview home page, the upper half is the MaxCompute instance that you
submit to generate SQL. A unique ID is generated after each SQL commit. Latency
refers to the amount of time it takes to run, and the latency of other pages is similar
.
The following are the four states:
• Waiting: Indicates that the current job is being processed in MaxCompute and is

not committed to Fuxi to run.
Issue: 20191012 577

⼤数据计算服务 User Guide / 11 View Job Running Information

• Waiting List: N indicates that the job was submitted to Fuxi and queued in Fuxi, is
 in the n-bit in the queue.

• Running: The Job runs in Fuxi.
• Terminated: The job has ended with no queue information.
Click the non-terminated status of a job to view detailed queue information.
Click status to view queue details:
• Sub status: The current sub-status information.
• Waitpos: The queuing location, where 0 indicates that it is running, and (-)

indicates that it has not yet arrived Fuxi.
• Queuing length: The total queue length in the Fuxi.
• Total priority: The priority granted by the job runtime after it has been judged by

 the system.
• SubStatus history: When clicked, you can view the detailed history of job

execution. It contains status codes, status descriptions, start time, duration, and
so on. (Currently, some versions have no historical information.)

Task information
In the Logview home page, the lower section is the task description followed by the
result description and other details.
Result:
You can view the result after a job executed, such as the results of a select SQL as
shown in the following figure:

578 Issue: 20191012

⼤数据计算服务 User Guide / 11 View Job Running Information

Detail:
After a job is executed, click detail to view the running status of the task.

• A MaxCompute task consists of one or more Fuxi jobs. For example, when your
SQL task is complex, MaxCompute goes to Fuxi and submit multiple Fuxi jobs.

• Each Fuxi job consists of one or more Fuxi tasks. Simple Map Reduce usually
produces two Fuxi tasks, namely Map and Reduce. You can view the two Fuxi task
 names as M1 and R2, respectively. When SQL is complex, more than one Fuxi
may generate Task as shown in the preceding figure.

• Each task displays name of the task. For example, M1 is a map task, 4 In r54
means that it relies on J4. Execution will not begin until the last execution is
complete. Similarly, j4_1_2_3 indicates that join4 has to rely on M1, M2, M3 three
 tasks to start the operation completely.

Issue: 20191012 579

⼤数据计算服务 User Guide / 11 View Job Running Information

• I/O Records represents the number of records for the input and output of this
task.

Click any Fuxi task to view the Fuxi instance content, as shown in the following
figure:

Each Fuxi task consists of one or more Fuxi instances. When your input data levels
are large MaxCompute activates more nodes to process the data. Each node is a Fuxi
 instance. Double-click the right-side column of the Fuxi task to view, or double-
click the row to open the specific Fuxi instance information.
Towards the lower-end of the page, Logview is grouped for different stages of
instance. Select the failed column to view the wrong node.
In the stdout and stderr columns, you can view standard output and standard error
messages along with the information to be printed.

Troubleshooting through Logview
• Wrong tasks

When a task error occurs, a prompt message for the errors in the result on the
 Logview page pops up. Use the detail page Stderr for Fuxi instance to view
information about a specific instance error.

• Data skew
Slow operation is usually because of individual instances in all Fuxi instances of
a certain Fuxi task. Long Tail is caused by the uneven allocation of tasks within

580 Issue: 20191012

⼤数据计算服务 User Guide / 11 View Job Running Information

the same task. You can view the run results in the summary tab after the task
runs. The output of each task is as follows:
output records:
R2_1_Stg1: 199998999 (min: 22552459, max: 177446540, avg: 99999499)

In the preceding figure, the large difference between min and max suggests that
 a data tilt has occurred at this stage. Meaning, if one word with high frequency
appears, a tilt appears when you join this word.

11.2 Errors and warnings using the MaxCompute compiler
The MaxCompute compiler is based on the next-generation SQL engine called
MaxCompute2.0, which dramatically enhances SQL. It makes the process of
language compilation and the ability of language expression easier. This article
introduces you to the enhanced uses of the compiler.

Compiler ease of use improvements
To fully demonstrate the ease-of-use improvements of the MaxCompute compiler, it
 is recommended that you use MaxCompute studio together.
First, install MaxCompute Studio by adding a MaxCompute project and creating a
project, and then creating a new MaxCompute. The script is as follows:

The following issues are detected in the preceding figure:
• An error with the wm_concat function can be seen in the First insert statement.
• When MaxCompute compares bigint and double data, it converts all data to

double. This conversion from string to double, may cause error when SQL is
executed. However, MaxCompute warns you whether you want to trigger this
operation.

Issue: 20191012 581

⼤数据计算服务 User Guide / 11 View Job Running Information

Point the mouse cursor on an error or warning prompts directly, for a specific
error or warning message. If you do not modify the error and commit directly, it is
blocked by MaxCompute studio, as shown in the following figure:

So, follow the prompts to modify the errors and warnings as follows:

After the modification, submit the script again, and you can now run it smoothly.
You can also use MaxCompute studio to set all warnings as errors, as shown in the
following figure:

582 Issue: 20191012

⼤数据计算服务 User Guide / 11 View Job Running Information

With the preceding settings, it is guaranteed that you won't accidentally miss out on
 any possible errors.
It is recommended that you use MaxCompute studio before submitting any scripts
 The script is checked for static compilation, and we strongly recommend that
you set the warning as an error. Modify all warnings before you submit the script
 to save time and resources. In addition, when an error script is submitted, it is
pushed to your calculation health score. This reduces the priority of the future
 tasks. Moreover, , future unmodified warnings also get incorporated into the
health system. Meaning, the use of MaxCompute compiler and studio can never be
degraded.
In many scenarios, you may receive warnings stating that an implicit type
conversion is unsafe. However, if you need this conversion, eliminate the warnings
by cast (xxx As); Use MaxCompute or a compiler to resolve this problem.

Issue: 20191012 583

	Contents
	Legal disclaimer
	Document conventions
	1 Data types
	2 Common commands
	2.1 List of common commands
	2.2 Project operations
	2.3 Table operations
	2.4 Instances operations
	2.5 Resources operations
	2.6 Functions operations
	2.7 Set operations
	2.8 Other operations

	3 Data upload and download
	3.1 Data upload and download overview
	3.2 Connection to data tunnel service
	3.3 Cloud data migration
	3.4 Data upload and download tools
	3.5 Tunnel commands
	3.6 Tunnel SDK
	3.6.1 Tunnel overview
	3.6.2 TableTunnel
	3.6.3 InstanceTunnel
	3.6.4 UploadSession
	3.6.5 DownloadSession
	3.6.6 TunnelBufferedWriter

	3.7 Bulk data channel SDK example
	3.7.1 Example
	3.7.2 Simple upload
	3.7.3 Simple download
	3.7.4 Example for multi-thread uploading
	3.7.5 Example for multi-thread downloading
	3.7.6 Example for BufferedWriter uploading
	3.7.7 Example for BufferedWriter multi-thread uploading

	3.8 Import or export data using the Data Integration

	4 SQL
	4.1 SQL summary
	4.2 Operators
	4.3 Type conversions
	4.4 SQL limits
	4.5 Insert Operation
	4.5.1 INSERT OVERWRITE/INTO
	4.5.2 MULTI INSERT
	4.5.3 DYNAMIC PARTITION

	4.6 DDL SQL
	4.6.1 Table operations
	4.6.2 Lifecycle of table
	4.6.3 Column and Partition operation
	4.6.4 View operations

	4.7 Lateral View
	4.8 Differences with other SQL syntax
	4.9 Select Operation
	4.9.1 SELECT syntax
	4.9.2 SELECT Sequence
	4.9.3 Subquery
	4.9.4 UNION, INTERSECT, and EXCEPT
	4.9.5 JOIN
	4.9.6 SEMI JOIN
	4.9.7 MAPJOIN HINT
	4.9.8 HAVING clause
	4.9.9 Grouping Sets
	4.9.10 SELECT TRANSFORM

	4.10 Script Mode SQL
	4.11 Common table expression (CTE)
	4.12 Explain
	4.13 VALUES
	4.16 Builtin functions
	4.16.1 Compare built-in functions of MaxCompute with MySQL and Oracle
	4.16.2 Date functions
	4.16.3 Mathematical functions
	4.16.4 Window functions
	4.16.5 Aggregate functions
	4.16.6 String functions
	4.16.7 Other functions

	4.17 UDF
	4.17.1 UDF Summary
	4.17.2 Java UDF
	4.17.3 Python UDF
	4.17.4 UDTF usage

	4.18 UDT
	4.19 UDJ
	4.20 Appendix
	4.20.1 Escape characters
	4.20.2 LIKE usage
	4.20.3 Regular expression
	4.20.4 Reserved words and keywords
	4.20.5 Hive data type mapping table

	5 MapReduce
	5.1 Summary
	5.1.1 MapReduce
	5.1.2 Extended MapReduce
	5.1.3 Open-source MapReduce

	5.2 Function Introduction
	5.2.1 Basic concepts
	5.2.2 Commands
	5.2.3 Input and Output
	5.2.4 Resources
	5.2.5 Local run

	5.3 MR limits
	5.4 Program Example
	5.4.1 WordCount samples
	5.4.2 MapOnly samples
	5.4.3 Multi-input and Output
	5.4.4 Multi-task samples
	5.4.5 Secondary Sort samples
	5.4.6 Resource samples
	5.4.7 Counter samples
	5.4.8 Grep samples
	5.4.9 Join samples
	5.4.10 Sleep samples
	5.4.11 Unique samples
	5.4.12 Sort samples
	5.4.13 Partition samples
	5.4.14 Pipeline samples

	5.5 Java SDK
	5.5.1 Java SDK
	5.5.2 Overview of compatible versions of the SDK

	6 Java Sandbox
	7 External table
	7.1 Overview of External tables
	7.2 OSS STS mode authorization
	7.3 Access OSS unstructured data
	7.4 Processing open source format data for OSS
	7.5 Export unstructured data to OSS
	7.6 Access Table Store data

	8 Spark
	8.1 Spark on MaxCompute overview
	8.2 Set up a Spark on MaxCompute development environment
	8.3 Develop a Spark on MaxCompute application
	8.3.1 Develop a Spark on MaxCompute application by using Java or Scala
	8.3.2 Develop a Spark on MaxCompute application by using PySpark

	8.4 Spark on MaxCompute running modes
	8.5 Diagnose a Spark on MaxCompute job
	8.6 Spark on MaxCompute FAQ

	9 Interactive SQL (Lightning)
	9.1 Overview
	9.2 Quick Start
	9.3 Access domain name
	9.4 Access services using JDBC interfaces
	9.4.1 JDBC driver
	9.4.2 Configure JDBC connections
	9.4.3 Access services using common tools

	9.5 SQL reference
	9.6 View tasks
	9.7 Constraints and limitations
	9.8 FAQs

	10 Graph
	10.1 Summary
	10.2 Aggregator
	10.3 Function overview
	10.4 SDK summary
	10.5 Development and debugging
	10.6 Limits
	10.7 Examples
	10.7.1 SSSP
	10.7.2 PageRank
	10.7.3 Kmeans
	10.7.4 BiPartiteMatchiing
	10.7.5 Strongly-connected component
	10.7.6 Connected component
	10.7.7 Topology Sorting
	10.7.8 Linear Regression
	10.7.9 Triangle Count
	10.7.10 Vertex Input
	10.7.11 Edge Input

	11 View Job Running Information
	11.1 Logview
	11.2 Errors and warnings using the MaxCompute compiler

