
Alibaba Cloud
物联⽹平台

Manage Device
Issue: 20191210

物联⽹平台 Manage Device / Legal disclaimer

Legal disclaimer
Alibaba Cloud reminds you to carefully read and fully understand the terms and
 conditions of this legal disclaimer before you read or use this document. If you
have read or used this document, it shall be deemed as your total acceptance of this
 legal disclaimer.
1. You shall download and obtain this document from the Alibaba Cloud website

 or other Alibaba Cloud-authorized channels, and use this document for your
own legal business activities only. The content of this document is considered
 confidential information of Alibaba Cloud. You shall strictly abide by the
confidentiality obligations. No part of this document shall be disclosed or
provided to any third party for use without the prior written consent of Alibaba
Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted
, or disseminated by any organization, company, or individual in any form or by
any means without the prior written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades
, adjustments, or other reasons. Alibaba Cloud reserves the right to modify
the content of this document without notice and the updated versions of this
 document will be occasionally released through Alibaba Cloud-authorized
channels. You shall pay attention to the version changes of this document as they
 occur and download and obtain the most up-to-date version of this document
from Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud
 products and services. Alibaba Cloud provides the document in the context
that Alibaba Cloud products and services are provided on an "as is", "with all
 faults" and "as available" basis. Alibaba Cloud makes every effort to provide
relevant operational guidance based on existing technologies. However, Alibaba
 Cloud hereby makes a clear statement that it in no way guarantees the accuracy
, integrity, applicability, and reliability of the content of this document, either
explicitly or implicitly. Alibaba Cloud shall not bear any liability for any errors
 or financial losses incurred by any organizations, companies, or individuals
arising from their download, use, or trust in this document. Alibaba Cloud shall
 not, under any circumstances, bear responsibility for any indirect, consequent

Issue: 20191210 I

物联⽹平台 Manage Device / Legal disclaimer

ial, exemplary, incidental, special, or punitive damages, including lost profits
arising from the use or trust in this document, even if Alibaba Cloud has been
notified of the possibility of such a loss.

5. By law, all the contents in Alibaba Cloud documents, including but not limited
to pictures, architecture design, page layout, and text description, are intellectu
al property of Alibaba Cloud and/or its affiliates. This intellectual property
includes, but is not limited to, trademark rights, patent rights, copyrights, and
 trade secrets. No part of this document shall be used, modified, reproduced,
publicly transmitted, changed, disseminated, distributed, or published without
the prior written consent of Alibaba Cloud and/or its affiliates. The names owned
 by Alibaba Cloud shall not be used, published, or reproduced for marketing,
advertising, promotion, or other purposes without the prior written consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limited
 to, "Alibaba Cloud", "Aliyun", "HiChina", and other brands of Alibaba Cloud
and/or its affiliates, which appear separately or in combination, as well as the
auxiliary signs and patterns of the preceding brands, or anything similar to the
 company names, trade names, trademarks, product or service names, domain
names, patterns, logos, marks, signs, or special descriptions that third parties
identify as Alibaba Cloud and/or its affiliates.

6. Please contact Alibaba Cloud directly if you discover any errors in this document
.

II Issue: 20191210

物联⽹平台 Manage Device / Legal disclaimer

Issue: 20191210 III

物联⽹平台 Manage Device / Document conventions

Document conventions
Style Description Example

A danger notice indicates a
situation that will cause major
system changes, faults, physical
 injuries, and other adverse
results.

Danger:
Resetting will result in the loss
of user configuration data.

A warning notice indicates a
situation that may cause major
system changes, faults, physical
 injuries, and other adverse
results.

Warning:
Restarting will cause business
interruption. About 10
minutes are required to restart
an instance.

A caution notice indicates
 warning information,
supplementary instructions,
and other content that the user
must understand.

Notice:
If the weight is set to 0, the
server no longer receives new
requests.

A note indicates supplemental
instructions, best practices, tips
, and other content.

Note:
You can use Ctrl + A to select
all files.

> Closing angle brackets are used
 to indicate a multi-level menu
cascade.

Click Settings > Network > Set
network type.

Bold Bold formatting is used for
buttons, menus, page names,
and other UI elements.

Click OK.

Courier font Courier font is used for
commands.

Run the cd /d C:/window
command to enter the Windows
system folder.

Italic Italic formatting is used for
parameters and variables.

bae log list --instanceid

Instance_ID

[] or [a|b] This format is used for an
optional value, where only one
item can be selected.

ipconfig [-all|-t]

Issue: 20191210 I

物联⽹平台 Manage Device / Document conventions

Style Description Example
{} or {a|b} This format is used for a

required value, where only one
item can be selected.

switch {active|stand}

II Issue: 20191210

物联⽹平台 Manage Device / Document conventions

Issue: 20191210 III

物联⽹平台 Manage Device / Contents

Contents
Legal disclaimer...I
Document conventions...I
1 Device lifecycle management.. 1

1.1 Add devices... 1
1.2 Connect devices and disconnect devices.. 1
1.3 Disable and Enable devices..3
1.4 Delete devices..42 TSL... 5
2.1 Overview... 5
2.2 Define features.. 9
2.3 Import Thing Specification Language (TSL)..233 Data parsing... 25
3.1 Data parsing.. 254 Tags.. 37

5 Device group...41
6 Device shadows...45

6.1 Device Shadow overview..45
6.2 Device shadow JSON format... 47
6.3 Device shadow data stream..517 Manage files..61

8 Configure the NTP service...63
9 Gateways and sub-devices... 66

9.1 Gateways and sub-devices..66
9.2 Sub-device management.. 67
9.3 Connect sub-devices to IoT Platform.. 6810 Develop devices based on Alink Protocol......................... 71
10.1 Communications over Alink protocol... 71
10.2 Device identity registration.. 81
10.3 Add a topological relationship..84
10.4 Connect and disconnect sub-devices.. 93
10.5 Device properties, events, and services.. 98
10.6 Desired device property values...114
10.7 Disable and delete devices..119
10.8 Device tags...122
10.9 TSL model.. 126
10.10 Firmware update.. 129
10.11 Remote configuration... 133

IV Issue: 20191210

物联⽹平台 Manage Device / Contents
10.12 Device network status.. 138
10.13 Common codes on devices..14311 Error codes for device SDKs...144

Issue: 20191210 V

物联⽹平台 Manage Device / Contents

VI Issue: 20191210

物联⽹平台 Manage Device / 1 Device lifecycle management

1 Device lifecycle management
1.1 Add devices

The device management function of IoT Platform allows you to view and manage
the lifecycle of a device. You first add a device in IoT Platform. You can add a device
in the IoT Platform console or by calling the API operation.

Use the console to add a device
1. Log on to the IoT Platform console.
2. In the left-side navigation pane, choose Devices > Products.
3. On the Products page that appears, click Create Product. In the displayed dialog

box, enter the required product information to create a product.
For more information, see #unique_5.

4. In the left-side navigation pane, click Devices.
5. On the Devices page, add a device.

• You can click Batch Add to add multiple devices at a time.
• You can click Add Device to add a single device.
For more information, see #unique_6 and #unique_7.

1.2 Connect devices and disconnect devices
When a device is connected to IoT Platform, the device is in the Online state. When
a device is disconnected from IoT Platform, the device is in the Offline state.

Connect a device to IoT Platform
Develop a device and connect the device to IoT Platform.

Note:
The following section describes how to directly connect a device to IoT Platform.
For more information about how to connect sub-devices to IoT Platform, see
Connect sub-devices to IoT Platform.

Issue: 20191210 1

http://iot.console.aliyun.com/

物联⽹平台 Manage Device / 1 Device lifecycle management

1. Develop the device.
IoT Platform provides device SDKs in multiple programming languages. These
SDKs encapsulate protocols for communication between devices and IoT
Platform. For more information about using a device SDK, see #unique_10.
When developing a device, configure the identity information of the device. The
 identity information is used to authenticate the device when it connects to IoT
Platform.
IoT Platform supports the following methods for the authentication of devices
that are directly connected:
• #unique_11: This method requires that each device has a unique device

certificate installed in advance. The device certificate includes the
ProductKey, DeviceName, and DeviceSecret of the device.

• #unique_12: This method allows you to install the same firmware (a product
certificate including ProductKey and ProductSecret) on all devices of
a product. Then, you can use the product certificate to perform device
authentication. To use this method, you need to enable dynamic device
registration on the Product Details page of the product. When a device
initiates a connection request, IoT Platform verifies the product certificate.
After the authentication is passed, IoT Platform assigns the corresponding
DeviceSecret to the device.

2. Install the device SDK to the device.
3. Power on the device, connect the device to the network, and then the device

connects to IoT Platform.
Disconnect a device from IoT Platform

After a device is disconnected from IoT Platform, the status of the device in IoT
Platform is Offline. Two types of device disconnection are available.
• Active disconnection: a device disconnects from IoT Platform.
• Forcible disconnection: IoT Platform disconnects from the device. For example

, if another device uses the same device certificate to access IoT Platform, the
current device is forced to disconnect from IoT Platform. A forcible disconnect
ion also occurs when you have deleted or disabled the device in IoT Platform.

2 Issue: 20191210

物联⽹平台 Manage Device / 1 Device lifecycle management

1.3 Disable and Enable devices
By disabling a device, the device cannot be connected to IoT Platform. By enabling
a disabled device, the device can be connected to IoT Platform again. This topic
describes how to disable and enable a device.

Disable a device

Note:
After a device is disabled, IoT Platform retains the information associated to the
device. However, the device cannot be connected to IoT Platform, and you cannot
perform operations related to the device.

To disable a device in the console, follow these steps:
1. Log on to the IoT Platform console.
2. In the left-side navigation pane, choose Devices > Devices.
3. In the Device List section on the page that appears, find the device that you want

to disable. Turn off the Enabled switch.

Enable a device
After you disable a device, you can enable it again.
To enable a device in the console, Follow these steps:
1. In the IoT Platform console, open the Devices page. In the Device List section, find the

device that you want to enable.

Issue: 20191210 3

http://iot.console.aliyun.com/
http://iot.console.aliyun.com/

物联⽹平台 Manage Device / 1 Device lifecycle management

2. Turn on the Enabled switch.

1.4 Delete devices
You can delete devices from IoT Platform. After a device is deleted from IoT
Platform, the device ID becomes invalid and all information associated with the
device is deleted. You cannot perform operations related to the device by using IoT
Platform.

Procedure
1. Log on to the IoT Platform console.
2. In the left-side navigation pane, choose Devices > Devices.
3. In the Device List section on the page that appears, find the device that you want

to delete.
4. Click Delete in the Actions column and confirm the deletion.

Result
After the device is deleted, the device certificate becomes invalid and cannot be
restored.

4 Issue: 20191210

http://iot.console.aliyun.com/

物联⽹平台 Manage Device / 2 TSL

2 TSL
2.1 Overview

Thing Specification Language (TSL) is a data model that digitizes a physical entity
and constructs the entity data model in IoT Platform. In IoT Platform, a TSL model
refers to a set of product features. After you have defined features for a product, the
system automatically generates a TSL model of the product. A TSL model describes
what a product is, what the product can do, and what services the product can
provide.
A TSL model is a file in JSON format. TSL files are the digitized expressions of
physical entities, such as sensors, vehicle-mounted devices, buildings and factories
. A TSL file describes an entity in three dimensions: property (what the entity is
), service (what the entity can do), and event (what event information the entity
reports). Defining these three dimensions is to define the product features.
Therefore, the feature types of a product are Properties, Services and Events. You
can define these three types of features in the console.
Feature type Description
Property Describes a running status of a device, such as the current

 temperature read by the environmental monitoring
equipment. You can use GET and SET methods to send
requests to get and set device properties.

Service Indicates a feature or method of a device that can be used by
 a user. You can set input parameters and output parameters
 for a service. Compared with properties, services can
implement more complex business logic, for example, a
specific task.

Event Indicates the notifications of a type of event occurred when a
 device is running. Events typically indicate notifications that
 require actions or attention, and they may contain multiple
output parameters. For example, events can be notifications
about the completion of tasks, system failures, or temperatur
e alerts. You can subscribe to events or push events to a
message receiving target.

Issue: 20191210 5

物联⽹平台 Manage Device / 2 TSL

The TSL format
The format of Thing Specification Language (TSL) is JSON. This article introduces
the JSON fields of TSL.
In the Define Feature tab of your target product, click View TSL.
The following section details each JSON field.
{
 "schema":"TSL schema of a thing",
 "link":"System-level URI in the cloud, used to invoke services and
 subscribe to events",
 "profile":{
 "productKey":" Product ID",
 },
 "properties":[
 {
 "identifier":"Identifies a property. It must be unique
under a product",
 "name":"Property name",
 "accessMode":"Read/write type of properties, including
Read-Only and Read/Write",
 "required":"Determines whether a property that is required
 in the standard category is also required for a standard feature",
 "dataType":{
 "type":"Data type: int (original), float (original),
double (original), text (original), date (UTC string in milliseconds
), bool (integer, 0 or 1), enum (integer), struct (supports int, float
, double, text, date, enum, and bool), array (supports int, double,
float, struct, and text)",
 "specs":{
 "min":"Minimum value, available only for the int,
float, and double data types",
 "max":"Maximum value, available only for the int,
float, and double data types",
 "unit":"Property unit",
 "unitName":"Unit name",
 "size":"Array size, up to 128 elements, available
only for the array data type",
 "item":{
 "type":"Type of an array element"
 }
 }
 }
 }
],
 "events":[
 {
 "identifier":"Identifies an event that is unique under a
product, where "post" are property events reported by default",
 "name":"Event name",
 "desc":"Event description",
 "type":"Event types, including info, alert, and error",
 "required":"Whether the event is required for a standard
feature",
 "outputData":[
 {
 "identifier":"Uniquely identifies a parameter",
 "name":"Parameter name",
 "dataType":{

6 Issue: 20191210

物联⽹平台 Manage Device / 2 TSL
 "type":"Data type: int (original), float
 (original), double (original), text (original), date (UTC string
in milliseconds), bool (integer, 0 or 1), enum (integer), struct (
supports int, float, double, text, date, enum, and bool), array (
supports int, double, float, struct, and text)",
 "specs":{
 "min":"Minimum value, available only for
the int, float, and double data types",
 "max":"Maximum value, available only for
the int, float, and double data types",
 "unit":"Property unit",
 "unitName":"Unit name",
 "size":"Array size, up to 128 elements,
available only for the array data type",
 "item":{
 "type":"Type of an array element"
 }
 }
 }
 }
],
 "method":"Name of the method to invoke the event,
generated according to the identifier"
 }
],
 "services":[
 {
 "identifier":"Identifies a service that is unique under a
product (set and get are default services generated according to the
read/write type of the property)",
 "name":"Service name",
 "desc":"Service description",
 "required":"Whether the service is required for a standard
 feature",
 "inputData":[
 {
 "identifier":"Uniquely identifies an input
parameter",
 "name":"Name of an input parameter",
 "dataType":{
 "type":"Data type: int (original), float
 (original), double (original), text (original), date (UTC string
in milliseconds), bool (integer, 0 or 1), enum (integer), struct (
supports int, float, double, text, date, enum, and bool), array (
supports int, double, float, struct, and text)",
 "specs":{
 "min":"Minimum value, available only for
the int, float, and double data types",
 "max":"Maximum value, available only for
the int, float, and double data types",
 "unit":"Property unit",
 "unitName":"Unit name",
 "size":"Array size, up to 128 elements,
available only for the array data type",
 "item":{
 "type":"Type of an array element"
 }
 }
 }
 }
],
 "outputData":[
 {

Issue: 20191210 7

物联⽹平台 Manage Device / 2 TSL
 "identifier":"Uniquely identifies an output
parameter",
 "name":"Name of an output parameter",
 "dataType":{
 "type":"Data type: int (original), float
 (original), double (original), text (original), date (UTC string
in milliseconds), bool (integer, 0 or 1), enum (integer), struct (
supports int, float, double, text, date, enum, and bool), array (
supports int, double, float, struct, and text)",
 "specs":{
 "min":"Minimum value, available only for
the int, float, and double data types",
 "max":"Maximum value, available only for
the int, float, and double data types",
 "unit":"Property unit",
 "unitName":"Unit name",
 "size":"Array size, up to 128 elements,
available only for the array data type",
 "item":{
 "type":"Type of an array element,
available only for the array data type"
 }
 }
 }
 }
],
 "method":"Name of the method to invoke the service, which
is generated according to the identifier"
 }
]
}

If the product is connected to a gateway as a sub-device and the connection
protocol is Modbus or OPC UA, you can view the TSL extension configuration.
{
"profile": {
"productKey": "Product ID",
 },
"properties": [
 {
"identifier": "Identifies a property. It must be unique under a
product",
"operateType": "(coilStatus/inputStatus/holdingRegister/inputRegister
)",
"registerAddress": "Register address",
"originalDataType": {
"type": "Data type: int16, uint16, int32, uint32, int64, uint64, float
, double, string, customized data(returns hex data according to big-
endian)",
"specs": {
"registerCount": "The number of registers, available only for string
and customized data",
"swap16": "swap the first 8 bits and the last 8 bits of the 16 bits of
 the register data(for example, byte1byte2 -> byte2byte10). Available
for all the other data types except string and customized data",
"reverseRegister": "Ex: Swap the bits of the original 32 bits data (
for example, byte1byte2byte3byte4 ->byte3byte4byte1byte2”. Available
for all the other data types except string and customized data"
 }
 },
"scaling": "Scaling factor",

8 Issue: 20191210

物联⽹平台 Manage Device / 2 TSL
"pollingTime": "Polling interval. The unit is ms",
"trigger": "The trigger of data report. Currently, two types of
triggering methods are supported: 1: report at the specified time; 2:
report when changes occurred"
 }
]
}

Use TSL
1. In the IoT Platform console, Define features or Import Thing Specification Language (TSL).
2. Develop the SDK.

See the documentations of Link Kit SDK for help information.
3. Connect the SDK to IoT Platform. Then, devices can report properties and events

 to IoT Platform, and in IoT Platform, you can set properties and call device
services.

2.2 Define features
Defining features for products is to define Thing Specification Language (TSL),
including defining properties, services, and events. This article describes how to
define features in the IoT Platform console.

Procedure
1. Log on to the IoT Platform console.
2. In the left-side navigation pane, click Devices > Product.
3. On the Products page, find the product for which you want to define features and

click View.
4. Click Define Feature.

Issue: 20191210 9

https://www.alibabacloud.com/help/product/93051.htm
http://iot.console.aliyun.com/

物联⽹平台 Manage Device / 2 TSL

5. Add self-defined features. Click the Add Feature button corresponding to
Self-defined Feature to add custom features for the product. You can define
properties, services and events for the product.

• Define a property. In the Add Self-defined Feature dialog box, select Properties
as the feature type. Enter information for the property and then clickOK.

10 Issue: 20191210

物联⽹平台 Manage Device / 2 TSL

The parameters of properties are listed in the following table.
Parameter Description
The function
name Property name, for example, Power Consumption. Each

feature name must be unique in the product.
A feature name must start with a Chinese character, an
English letter, or a digit, can contain Chinese characters,
English letters, digits, dashes(-) and underscores (_), and
cannot exceed 30 characters in length.

Issue: 20191210 11

物联⽹平台 Manage Device / 2 TSL

Parameter Description
Identifier Identifies a property. It must be unique in the product. It is

the parameter identifier in Alink JSON TSL, and is used
as the key when a device is reporting data of this property.
Specifically, IoT Platform uses this parameter to verify and
determine whether or not to receive the data. An identifier
can contain English letters, digits, and underscores (_),
and cannot exceed 50 characters in length. For example,
PowerConsumption.

Note:
An identifier cannot be any one of the following words:
set, get, post, time, and value, because they are system
parameter names.

12 Issue: 20191210

物联⽹平台 Manage Device / 2 TSL

Parameter Description
Data Type - int32: 32-bit integer. If you select int32, you are required

to define the value range, step, and unit.
- float: Float. If you select float, you are required to define

the value range, step, and unit.
- double: Double float. If you select double, you are required

to define the value range, step, and unit.
- enum: Enumeration. You must specify enumeration items

with values and descriptions. For example,1 indicates
heating mode and 2 indicates cooling mode.

- bool: Boolean. You must specify the Boolean values. Values
include 0 and 1. For example, you can use 0 to indicate
disabled and 1 to indicate enabled.

- text: Text string. You must specify the data length. The
maximum value is 2048 bytes.

- date: Timestamp. A UTC timestamp in string type, in
milliseconds.

- struct: A JSON structure. Define a JSON structure, and
add new JSON parameters. For example, you can define
that the color of a lamp is a structure composed of three
parameters: red, green, and blue. Structure nesting is not
supported.

- array: Array. You must select a data type for the elements
in the array from int32, float, double, text and struct.
Make sure that the data type of elements in an array is the
same and that the length of the array does not exceed 128
elements.

Note:
When the gateway connection protocol is Modbus, you do
not set this parameter.

Step The smallest granularity of changes of properties, events,
and input and output parameter values of services. If the
data type is int32, float, or double, step is required.

Unit You can select None or a unit suitable.

Issue: 20191210 13

物联⽹平台 Manage Device / 2 TSL

Parameter Description
Read/Write
Type - Read/Write: GET and SET methods are supported for Read/

Write requests.
- Read-only: Only GET is supported for Read-only requests.

Note:
When the gateway connection protocol is Modbus, you do
not set this parameter.

Description Enter a description or remarks about the property. You can
enter up to 100 characters.

14 Issue: 20191210

物联⽹平台 Manage Device / 2 TSL

Parameter Description
Extended
Information When the gateway connection protocol is Custom, Modbus,

or OPC UA, you can configure extended information.
- When the gateway connection protocol is Custom, add

custom configurations. The custom configurations must
 be written in JSON format, and can contain up to 1,024
characters.

- When the gateway connection protocol is OPC UA, set a
node name. Each node name must be unique under the
property.

- When the gateway connection protocol is Modbus,
configure the following parameters.
■ Operation Type:

■ Coil Status (read-only, 01)
■ Coil Status (read and write, 01-read, 05-write)
■ Coil Status (read and write, 01-read, 0F-write)
■ Discrete Input (read-only, 02)
■ Holding Registers (read-only, 03)
■ Holding Registers (read and write, 03-read, 06-write)
■ Holding Registers (read and write, 03-read, 10-write)
■ Input Registers (read-only, 04)

■ Register Address: Enter a hexadecimal address
beginning with 0x. The range is 0x0 - 0xFFFF. For
example, 0xFE.

■ Original Data Type: Multiple data types are supported,
including int16, uint16, int32, uint32, int64, uint64, float
, double, string, bool, and customized data (raw data).

■ Switch High Byte and Low Byte in Register: Swap the
first 8 bits and the last 8 bits of the 16-bit data in the
register. Options:
■ true

■ false

■ Switch Register Bits Sequence: Swap the bits of the
original 32-bit data. Options:
■ true

■ false

■ Zoom Factor: The zoom factor is set to 1 by default. It
can be set to negative numbers, but cannot be set to 0.

■ Collection Interval: The time interval of data collection.
It is in milliseconds and the value cannot be lower than
10.

■ Data Report: The trigger of data report. It can be either
At Specific Time or Report Changes.

Issue: 20191210 15

物联⽹平台 Manage Device / 2 TSL

• Define a service. In the Add Self-defined Feature dialog box, select Services as
the feature type. Enter information for the service and then click OK.

Note:

16 Issue: 20191210

物联⽹平台 Manage Device / 2 TSL

When the gateway connection protocol is Modbus, you cannot define any
service for the product.

The parameters of services are as follows.

Issue: 20191210 17

物联⽹平台 Manage Device / 2 TSL

Parameter Description
The function
name Service name.

A feature name must start with an English letter, Chinese
 character, or a number. It can contain English letters,
Chinese characters, digits, dashes (-), and underscores (_),
and cannot exceed 30 characters in length.
If you have selected a category with feature template when
 you were creating the product, the system displays the
standard services from the standard feature library for you to
 choose.

Note:
When the gateway connection protocol is Modbus, you
cannot define custom services for the product.

Identifier Identifies a service. It must be unique within the product.
The parameter identifier in Alink JSON TSL. It is used as
the key when this service is called. An identifier can contain
English letters, digits, and underscores (_), and cannot
exceed 30 characters in length.

Note:
Identifiers of input parameters cannot be any one of the
following words: set, get, post, time, and value.

Invoke
Method - Asynchronous: For an asynchronous call, IoT Platform

returns the result directly after the request is sent, and
does not wait for a response from the device.

- Synchronous: For a synchronous call, IoT Platform waits
for a response from the device. If no response is received,
the call times out.

18 Issue: 20191210

物联⽹平台 Manage Device / 2 TSL

Parameter Description
Input
Parameters

(Optional) Set input parameters for the service.
Click Add Parameter, and add an input parameter in the
dialog box that appears.
When the gateway connection protocol is OPC UA, you must
set the parameter index that is used to mark the order of the
parameters.

Note:
- Identifiers of input parameters cannot be any one of the

following words: set, get, post, time, and value.
- You can either use a property as an input parameter or

define an input parameter. For example, you can specify
the properties Sprinkling Interval and Sprinkling
 Amount as the input parameters of the Automatic
Sprinkler service feature. Then, when Automatic
Sprinkler is called, the sprinkler automatically starts
irrigation according to the sprinkling interval and
amount.

- You can add up to 20 input parameters for a service.
Output
Parameters

(Optional) Set output parameters for the service.
Click Add Parameter, and add an output parameter in the
dialog box that appears.
When the gateway connection protocol is OPC UA, you must
set the parameter index that is used to mark the order of the
parameters.

Note:
- Identifiers of input parameters cannot be any one of the

following words: set, get, post, time, and value.
- You can either use a property as an output parameter or

define an output parameter. For example, you can specify
the property SoilHumidity as an output parameter.
Then, when the service Automatic Sprinkler is called, IoT
Platform returns the data about soil humidity.

- You can add up to 20 output parameters for a service.

Issue: 20191210 19

物联⽹平台 Manage Device / 2 TSL

Parameter Description
Extended
Information - When the gateway connection protocol is Custom, add

custom configurations. The custom configurations must
 be written in JSON format, and can contain up to 1,024
characters.

- When the gateway connection protocol is OPC UA, set a
node name. Each node name must be unique under the
service.

Description Enter a description or remarks about the service. You can
enter up to 100 characters.

• Define an event. In the Add Self-defined Feature dialog box, select Events as
the feature type. Enter information for the parameter and then click OK.

Note:

20 Issue: 20191210

物联⽹平台 Manage Device / 2 TSL

When the gateway connection protocol is Modbus, you cannot define any
event for the product.

The parameters of events are as follows.
Parameter Description
The function
name Event name.

A feature name must start with a Chinese character, an
English letter, or a digit, can contain Chinese characters,
English letters, digits, dashes(-) and underscores (_), and
cannot exceed 30 characters in length.

Note:
When the gateway connection protocol is Modbus, you
cannot define events.

Issue: 20191210 21

物联⽹平台 Manage Device / 2 TSL

Parameter Description
Identifier Identifies an event. It must be unique in the product. It is

the parameter identifier in Alink JSON TSL, and is used
as the key when a device is reporting data of this event, for
example, ErrorCode.

Note:
Identifiers of input parameters cannot be any one of the
following words: set, get, post, time, and value.

Event Type - Info: Indicates general notifications reported by devices,
such as the completion of a specific task.

- Alert: Indicates alerts that are reported by devices when
unexpected or abnormal events occur. It has a high
priority. You can perform logic processing or analytics
depending on the event type.

- Error: Indicates errors that are reported by devices
when unexpected or abnormal events occur. It has a high
priority. You can perform logic processing or analytics
depending on the event type.

Output
Parameters

The output parameters of an event. Click Add Parameter, and
add an output parameter in the dialog box that appears. You
can either use a property as an output parameter or define an
output parameter. For example, you can specify the property
Voltage as an output parameter. Then, devices report errors
with the current voltage value for further fault diagnosis.
When the gateway connection protocol is OPC UA, you must
set the parameter index that is used to mark the order of the
parameters.

Note:
- Identifiers of input parameters cannot be any one of the

following words: set, get, post, time, and value.
- You can add up to 50 output parameters for an event.

22 Issue: 20191210

物联⽹平台 Manage Device / 2 TSL

Parameter Description
Extended
Information - When the gateway connection protocol is Custom, add

custom configurations. The custom configurations must
 be written in JSON format, and can contain up to 1,024
characters.

- When the gateway connection protocol is OPC UA, set a
node name. Each node name must be unique under the
event.

Description Enter a description or remarks about the event. You can enter
 up to 100 characters.

2.3 Import Thing Specification Language (TSL)
This article introduces how to import an existing TSL for a product.

Procedure
1. Log on to the IoT Platform console.
2. In the left-side navigation pane, click Devices > Product.
3. On the Products page, find the product for which you want to import TSL and

click View.
4. Click Define Feature > Import TSL.

Note:
• The previously defined features of the product will be overwritten, once you

 have imported a new TSL for the product. Therefore, this function must be
used with caution.

Issue: 20191210 23

http://iot.console.aliyun.com/

物联⽹平台 Manage Device / 2 TSL

• You cannot import a TSL for a product whose gateway connection protocol is
defined as Modbus.

You can import TSL in two ways:
• Copy Product: Copy the TSL of another product. Select an existing product and

click OK to import the TSL of the selected product to this product.
If you want to modify some features, click Edit corresponding to the features
on the Define Feature tab page.

• Import TSL: Paste your self-defined TSL script into the edit box and click OK.

Note:
The size of the imported file cannot exceed 256 KB.
The value of ProductKey in the TSL script must be the ProductKey of the
target product.

24 Issue: 20191210

物联⽹平台 Manage Device / 3 Data parsing

3 Data parsing
3.1 Data parsing

Devices with low configurations and limited resources or devices that have high
requirements for network traffic can send raw data to IoT Platform. This prevents
the devices from directly sending data to IoT Platform in Alink JSON format. You
must write a data parsing script in the IoT Platform console to parse upstream and
downstream data to be in standard Alink JSON format and the custom data format,
respectively.

About data parsing
When receiving raw data from a device, IoT Platform runs the parsing script to
convert the raw data to the Alink JSON data for business processing. When sending
 data to the device, IoT Platform also runs the parsing script to convert the Alink
JSON data to the device custom formatted data.
Data parsing process:

Issue: 20191210 25

物联⽹平台 Manage Device / 3 Data parsing

For more information about sending data upstream and downstream, see "Devices
report properties or events" and "Call device services or set device properties" in
Communications over Alink protocol.

Script format
/**
 * Convert data in Alink JSON format to data format that can be
identified by the device. This feature is called when IoT Platform
sends data to a device.
 * Input: jsonObj Object Required
 * Output: rawData byte[] Array Required
 *
 */
function protocolToRawData(jsonObj) {
 return rawdata;
}

/**
 * Convert the custom formatted data to Alink JSON data. This function
 is called when a device reports data to IoT Platform.
 * Input: rawData byte[] Array Required
 * Output: jsonObj Object Required
 */
function rawDataToProtocol(rawData) {
 return jsonObj;
}

Edit and verify scripts
Only JavaScript is supported to edit scripts. IoT Platform provides an online script
 editor that allows you to edit and submit scripts, and simulate data parsing for
testing.
1. Log on to the IoT Platform console.
2. From the left-side navigation pane, choose Devices > Product.
3. Click Create Product to create a product and set the data type to Do not parse/

Custom. For more information, see #unique_5.

26 Issue: 20191210

物联⽹平台 Manage Device / 3 Data parsing

4. On the Product Details page, click the Data Parsing tab. Edit your data parsing
script in the editor. Only JavaScript is supported. For more information, see
Example: Edit a script.

When you edit the script, you can perform the following operations:
• Click Full Screen to view or edit the script in full screen. Click Exit Full Screen

to exit the full screen.
• ClickSave Draft at the bottom of the page to save the content that you have

edited. The next time you access the Data Parsing page, you will be notified
that you have a draft. You can then choose to restore edit or delete draft.
- A saved draft script will not be published to the running platform and will

not affect a published script.
- A new draft will overwrite any previously saved draft.

5. After you finish editing the script, you can enter analog data in the Analog Input
box. Click Run to test whether the script can be used to parse data correctly. For
more information about analog data and parsing results, see Verify a data parsing

script.
6. If you confirm that the script is correct and can parse data correctly, click

Submit to submit the script to the running platform. When data is exchanged
between IoT Platform and the device, the system will automatically call the
corresponding function in the script to convert data.

Issue: 20191210 27

物联⽹平台 Manage Device / 3 Data parsing

7. Perform a test by sending data to IoT Platform from a real device.
a. Register a device, and develop the device SDK

b. The device connects to IoT Platform and reports data to IoT Platform.
c. In the IoT Platform console, go to the Device Details page of the device. Click

the Status tab to view the device property data.

Example: Edit a script
The following describes the data parsing script format and content of a product. In
this example, the device data is in hexadecimal notation, and the product has three
properties: prop_float, prop_int16, and prop_bool.
1. Create a product and select Do not parse/Custom as the data type. Then, define

the following properties. For more information, see Define features.
Identifier Type Value range Read/write
prop_float float -100 to 100 Read/write
prop_int16 int32 -100 to 100 Read/write
prop_bool bool 0: Enabled. 1:

Disabled.
Read/write

2. Define the communication protocol as follows:
Table 3-1: Upstream data request
Field Number of bytes
Frame type One
Request ID Four
prop_int16 Two
prop_bool One

28 Issue: 20191210

物联⽹平台 Manage Device / 3 Data parsing

Field Number of bytes
prop_float Four

Table 3-2: Upstream data response
Field Number of bytes
Frame type One
Request ID Four
Result code One

Table 3-3: Property setting request
Field Number of bytes
Frame type One
Request ID Four
prop_int16 Two
prop_bool One
prop_float Four

Table 3-4: Property setting response
Field Number of bytes
Frame type One
Request ID Four
Result code One

3. Edit the script.
You must define the following methods in the script:
• protocolToRawData: Convert Alink JSON formatted data to custom formatted

data.
• rawDataToProtocol: Convert custom formatted data to Alink JSON formatted

data.
A script demo is as follows:
var COMMAND_REPORT = 0x00; //Devices report property
var COMMAND_SET = 0x01; //Set property
var COMMAND_REPORT_REPLY = 0x02; //Respond to the reported data

Issue: 20191210 29

物联⽹平台 Manage Device / 3 Data parsing
var COMMAND_SET_REPLY = 0x03; //Respond to the property setting
request
var COMMAD_UNKOWN = 0xff; //Other command
var ALINK_PROP_REPORT_METHOD = 'thing.event.property.post'; //This
is a topic for devices to report property data to IoT Platform.
var ALINK_PROP_SET_METHOD = 'thing.service.property.set'; //This is
a topic for for IoT Platform to send property management commands to
 devices.
var ALINK_PROP_SET_REPLY_METHOD = 'thing.service.property.set'; //
This is a topic for devices to report property setting results to
IoT Platform.
/*
Sample data:
Upstream data
Input->
 0x000000000100320100000000
Output->
 {"method":"thing.event.property.post","id":"1","params":{"
prop_float":0,"prop_int16":50,"prop_bool":1},"version":"1.0"}

Property setting response
Input->
 0x0300223344c8
Output->
 {"code":"200","data":{},"id":"2241348","version":"1.0"}
*/
function rawDataToProtocol(bytes) {
 var uint8Array = new Uint8Array(bytes.length);
 for (var i = 0; i < bytes.length; i++) {
 uint8Array[i] = bytes[i] & 0xff;
 }
 var dataView = new DataView(uint8Array.buffer, 0);
 var jsonMap = new Object();
 var fHead = uint8Array[0]; // command
 if (fHead == COMMAND_REPORT) {
 jsonMap['method'] = ALINK_PROP_REPORT_METHOD; //The Alink
JSON formatted data topic for reporting properties
 jsonMap['version'] = '1.0'; //The fixed protocol version
field in the Alink JSON format
 jsonMap['id'] = '' + dataView.getInt32(1); //The request ID
in Alink JSON format
 var params = {};
 params['prop_int16'] = dataView.getInt16(5); //The value of
prop_int16
 params['prop_bool'] = uint8Array[7]; //The value of
prop_bool
 params['prop_float'] = dataView.getFloat32(8); //The value
of prop_float
 jsonMap['params'] = params; //The value for params in Alink
JSON format
 } else if(fHead == COMMAND_SET_REPLY) {
 jsonMap['version'] = '1.0'; //The fixed protocol version
field in the Alink JSON format
 jsonMap['id'] = '' + dataView.getInt32(1); //The request ID
value in Alink JSON format
 jsonMap['code'] = ''+ dataView.getUint8(5);
 jsonMap['data'] = {};
 }

 return jsonMap;
}
/*
Sample data:
Property setting

30 Issue: 20191210

物联⽹平台 Manage Device / 3 Data parsing
Input->
 {"method":"thing.service.property.set","id":"12345","version":"
1.0","params":{"prop_float":123.452, "prop_int16":333, "prop_bool":1
}}
Output->
 0x0100003039014d0142f6e76d

Upstream data response
Input->
 {"method":"thing.event.property.post","id":"12345","version":"1.
0","code":200,"data":{}}
Output->
 0x0200003039c8
*/
function protocolToRawData(json) {
 var method = json['method'];
 var id = json['id'];
 var version = json['version'];
 var payloadArray = [];
 if (method == ALINK_PROP_SET_METHOD) //Set properties
 {
 var params = json['params'];
 var prop_float = params['prop_float'];
 var prop_int16 = params['prop_int16'];
 var prop_bool = params['prop_bool'];
 //Join raw data according to the custom protocol format
 payloadArray = payloadArray.concat(buffer_uint8(COMMAND_SET
)); //The command field
 payloadArray = payloadArray.concat(buffer_int32(parseInt(id
))); //The ID in Alink JSON format
 payloadArray = payloadArray.concat(buffer_int16(prop_int16
)); //The value of prop_int16
 payloadArray = payloadArray.concat(buffer_uint8(prop_bool
)); //The value of prop_bool
 payloadArray = payloadArray.concat(buffer_float32(prop_float
)); //The value of prop_float
 } else if (method == ALINK_PROP_REPORT_METHOD) { //Response to
device upstream data
 var id = json['id'];
 payloadArray = payloadArray.concat(buffer_uint8(COMMAND_SET
)); // The command field
 payloadArray = payloadArray.concat(buffer_int32(parseInt(id
))); //The ID in Alink JSON format
 payloadArray = payloadArray.concat(buffer_uint8(code));
 } else { //Other commands that will not be processed
 var id = json['id'];
 payloadArray = payloadArray.concat(buffer_uint8(COMMAND_SET
)); //The command field
 payloadArray = payloadArray.concat(buffer_int32(parseInt(id
))); //The ID in Alink JSON format
 payloadArray = payloadArray.concat(buffer_uint8(code));
 }
 return payloadArray;
}
//The following lists some auxiliary functions:
function buffer_uint8(value) {
 var uint8Array = new Uint8Array(1);
 var dv = new DataView(uint8Array.buffer, 0);
 dv.setUint8(0, value);
 return [].slice.call(uint8Array);
}
function buffer_int16(value) {
 var uint8Array = new Uint8Array(2);
 var dv = new DataView(uint8Array.buffer, 0);

Issue: 20191210 31

物联⽹平台 Manage Device / 3 Data parsing
 dv.setInt16(0, value);
 return [].slice.call(uint8Array);
}
function buffer_int32(value) {
 var uint8Array = new Uint8Array(4);
 var dv = new DataView(uint8Array.buffer, 0);
 dv.setInt32(0, value);
 return [].slice.call(uint8Array);
}
function buffer_float32(value) {
 var uint8Array = new Uint8Array(4);
 var dv = new DataView(uint8Array.buffer, 0);
 dv.setFloat32(0, value);
 return [].slice.call(uint8Array);
}

Verify a data parsing script
After you edit a sample script, you can verify the correctness of the script. Enter
analog data in the Analog Input box, and click Run. The system will call this script
to parse the analog data. The parsed result will be displayed in the Parsing Results
box at the right side of the page.
• Parse the device-reported property data

Select Upstreamed Device Data as the simulation type, enter the following
hexadecimal data, and then click Run.
0x00002233441232013fa00000

The data parsing engine will convert the hexadecimal data to JSON data as
defined in the script. The result will be displayed in the Parsing Results area.
{
 "method": "thing.event.property.post",
 "id": "2241348",
 "params": {
 "prop_float": 1.25,
 "prop_int16": 4658,
 "prop_bool": 1
 },
 "version": "1.0",
}

• Parse downstream data from IoT Platform to the device.
Select Received Device Data as the simulation type, enter the following JSON
data, and then click Run.
{
 "id": "12345",
 "version": "1.0",
 "code": 200,
 "method": "thing.event.property.post",
 "data": {}

32 Issue: 20191210

物联⽹平台 Manage Device / 3 Data parsing
}

The data parsing engine will convert the JSON data to the following hexadecimal
data.
0x0200003039c8

• Parse the property setting data from IoT Platform to devices.
Select Received Device Data as the simulation type, enter the following JSON
data, and then click Run.
{
 "method": "thing.service.property.set",
 "id": "12345",
 "version": "1.0",
 "params": {
 "prop_float": 123.452,
 "prop_int16": 333,
 "prop_bool": 1
 }
}

The data parsing engine converts JSON data to the following hexadecimal data.
0x0100003039014d0142f6e76d

• Parse property setting results returned by the device.
Select Upstreamed Device Data as the simulation type, enter the following
hexadecimal data, and then click Run.
0x0300223344c8

The data parsing engine will convert the hexadecimal data to the following JSON
data.
{
 "code": "200",
 "data": {}
 "id": "2241348",
 "version": "1.0",
}

If the script is incorrect, an error message is displayed in the Parsing Results area.
You must troubleshoot the error according to the error message and modify the
script code accordingly.

Issue: 20191210 33

物联⽹平台 Manage Device / 3 Data parsing

Debug a data parsing script in a local computer
IoT Platform Data Parsing does not support debugging on the running platform.
We recommend that you develop and debug the script locally and then paste the
finished script into the online editor. You may use the following debugging method.
// Test Demo
function Test()
{
 //0x001232013fa00000
 var rawdata_report_prop = new Buffer([
 0x00, //The fixed command header. A value of 0 indicates a
property report message.
 0x00, 0x22, 0x33, 0x44, // The ID fields that identify the
request sequence.
 0x12, 0x32, //Two-byte value of prop_int16
 0x01, //One-byte value of prop_bool
 0x3f, 0xa0, 0x00, 0x00 //Four-byte value of prop_float
]);
 rawDataToProtocol(rawdata_report_prop);
 var setString = new String('{"method":"thing.service.property.
set","id":"12345","version":"1.0","params":{"prop_float":123.452, "
prop_int16":333, "prop_bool":1}}');
 protocolToRawData(JSON.parse(setString));
}
Test();

Troubleshoot issues
After a device is connected to IoT Platform and reports data, the reported data can
be displayed in the IoT console if data parsing functions correctly. To view the data,
go to the Device Details page of the device and click the Status tab.
In some occasions, after the device reports data, no data is displayed on the page, as
 shown in the following figure:

34 Issue: 20191210

物联⽹平台 Manage Device / 3 Data parsing

To view device logs: From the left-side navigation pane, choose Maintenance >
Device Log and select the corresponding product. On the Device Log page, click the
TSL Data Analysis tab. You can view the communication log between the device and
IoT Platform.
Use the following process to troubleshoot the issue:
1. View the reported data on the Device Log page. Each log entry records the

converted data and the original data.
2. Check the error codes according to the descriptions in Device log.
3. Troubleshoot the issue based on the error code, the script, and the reported data.
The following lists some errors:
• The data parsing script is not found.

As shown in the following figure, the error code is 6200. To check the description
of the error, see Device log. The error code of 6200 indicates that no script was
found. Check whether the data parsing script has been submitted in the console.

• Alink method does not exist.
The error code is 6450. This error code is described in Device log as follows: The
method parameter is not found in Alink data. This error occurs if the method

Issue: 20191210 35

物联⽹平台 Manage Device / 3 Data parsing

parameter is not found in the Alink data reported by the device or in the parsed
result of Do not parse/Custom data.

You can check the raw data, for example:
17:54:19.064, A7B02C60646B4D2E8744F7AA7C3D9567, upstream-error -
bizType=OTHER_MESSAGE,params={"params":{}},result=code:6450,message:
alink method not exist,...

In the log, the error message is alink method not exist. If this error occurs,
you must correct your script.

36 Issue: 20191210

物联⽹平台 Manage Device / 4 Tags

4 Tags
A tag is a custom identifier you set for a product, a device, or a device group. You
can use tags to flexibly manage your products, devices and groups.
IoT often involves the management of a huge number of products and devices.
How to distinguish various products and devices, and how to achieve centralized
 management become a challenge. Alibaba Cloud IoT Platform allows you to use
tags to address these issues. The use of tags allows the centralized management of
your various products, devices, and groups.
Therefore, we recommend that you create tags for your products, devices and
device groups. The structure of a tag is key: value.
This article describes how to create product tags, device tags, and group tags in the
 console.

Note:
Each product, device, or group can have up to 100 tags.

Product tags
Product tags typically describe the information that is common to all devices of a
 product. For example, a tag can indicate a specific manufacturer, organization,
physical size, or operating system. After a product has been created, you can create
 tags for it.
To create product tags in the console, follow these steps:
1. Log on to the IoT Platform console.
2. In the left-side navigation pane, click Devices > Product.
3. On the Products page, find the product for which you want to create tags and

click View.
4. Click Add under Tag Information.
5. In the dialog box, enter values for Tag Key and Tag Value, and then click OK.

Parameter Description
Tag Key A tag key can contain English letters,

digits and dots (.), and cannot exceed
30 characters.

Issue: 20191210 37

https://iot.console.aliyun.com/

物联⽹平台 Manage Device / 4 Tags

Parameter Description
Tag Value A tag value can contain Chinese

characters, English letters, digits,
underscores (_), hyphens (-), colons
 (:), and dots (.), and cannot exceed
128 characters. A Chinese character is
counted as two characters.

Device tags
You can facilitate device management by creating unique tags for devices. For
example, you can use the device feature information as tags, such as PowerMeter:
room201 for the electricity meter of room 201.
Device tags always follow the devices. You can include tag information in the
messages reported to IoT Platform by devices. When you use the rules engine to
forward these messages to other Alibaba Cloud services, the tag information is also
forwarded to the targets.
To create device tags in the console, follow these steps:
1. Log on to the IoT Platform console.
2. In the left-side navigation pane, click Devices > Device.
3. On the Devices page, find the device for which you want to create tags, click View

to go to the Device Details page.
4. Click Add under Tag Information.

38 Issue: 20191210

https://iot.console.aliyun.com/

物联⽹平台 Manage Device / 4 Tags

5. In the dialog box, enter values for Tag Key and Tag Value, and then click OK.
Parameter Description
Tag Key A tag key can contain English letters

, digits, and dots (.), and can be 2-30
characters in length.

Tag Value A tag value can contain Chinese
characters, English letters, digits,
underscores (_), hyphens (-), colons
 (:), and dots (.), and cannot exceed
128 characters. A Chinese character is
counted as 2 characters.

Group tags
You can manage devices across products by grouping your devices. A group tag
 typically describe the general information of devices in the group and the sub-
groups. For example, you can use region information as a group tag. After you have
created a group, you can create tags for it.
To create group tags, follow these steps:
1. Log on to the IoT Platform console.
2. In the left-side navigation pane, click Devices > Group.
3. On the Group Management page, find the group for which you want to create tags

and click View.
4. Click Add under Tag Information.

Issue: 20191210 39

https://iot.console.aliyun.com/

物联⽹平台 Manage Device / 4 Tags

5. In the dialog box, enter values for Tag Key and Tag Value, and then click OK.
Parameter Description
Tag Key A tag key can contain English letters

, digits, and dots (.), and can be 2-30
characters in length.

Tag Value A tag value can contain Chinese
characters, English letters, digits,
underscores (_), hyphens (-), colons
 (:), and dots (.), and cannot exceed
128 characters. A Chinese character is
counted as 2 characters.

Manage tags in batch
In the console, you only can create, modify, and delete tags one by one. IoT
Platform provides APIs for managing tags in batch. In addition, IoT Platform
provides APIs for querying products, devices, and groups based on tags. For more
information about tag related APIs, see the documents in API reference.

40 Issue: 20191210

物联⽹平台 Manage Device / 5 Device group

5 Device group
IoT Platform supports device groups. You can assign devices from different
products to the same group. This article introduces how to create and manage
device groups in the IoT Platform console.

Procedure
1. Log on to the IoT Platform console.
2. Click Devices > Group.
3. On the group management page, click Create Group, enter group information,

and then click Save.

Note:
You can create up to 1,000 groups (including parent groups and subgroups) .

The parameters are as follows:
• Parent Group: Select a group type.

- Group: Indicates that the group to be created is a parent group.
- Select an existing group: Specifies a group as the parent group and creates a

 subgroup for it.
• Group Name: Enter a name for the group. A group name can be 4 to 30

characters in length and can include Chinese characters, English letters, digits
and underscores (_) . The group name must be unique among the groups for
an account, and cannot be modified once the group has been created.

• Group Description: Describes the group. Can be left empty.
Issue: 20191210 41

https://iot.console.aliyun.com/

物联⽹平台 Manage Device / 5 Device group

4. On the Group Management page, click View to view the Group Details page of the
corresponding group.

5. (Optional) Add tags for the group. Tags can be used as group identifiers when you
manage your groups.
a) Click Add under Tag Information, and then enter keys and values of tags.
b) Click OK to create all the entered tags.

Note:
You can add up to 100 tags for a group.

6. Click Device List > Add Device to Group. Select the devices that you want to add to
the group.

Note:
• You can add up to 1,000 devices at a time. You can add up to 20,000 devices for

 a group in total.

42 Issue: 20191210

物联⽹平台 Manage Device / 5 Device group

• A device can be included in a maximum of 10 groups.

There are two buttons at the upper-right corner of the Add Device to Group
page:.
• Click All to display all the devices.
• Click You have selected to display the devices you have selected.

7. (Optional) Click Subgroups > Create Group to add a subgroup for the group.
Subgroups are used to manage devices in a more specific manner. For example
, you can create subgroups such as "SmartKitchen" and "SmartBedroom" for a

Issue: 20191210 43

物联⽹平台 Manage Device / 5 Device group

parent group "SmartHome", and then you can manage your kitchen devices and
bedroom devices separately. The procedure is as follows:
a) Select the parent group, enter a group name and description, and click Save.

b) On the Subgroups page of the parent group , click View to view the
corresponding Group Details page.

c) Click Device List > Add Device to Group, and then add devices for the
subgroup.

After creating the subgroup and adding devices for it, you can then manage it.
You can also create sub-subgroups within the subgroup.

Note:
• A group can include up to 100 subgroups.
• Only three layers of groups are supported: parent group>subgroup>sub-

subgroup.
• A group can only be a subgroup of one parent group.
• You can not change the relationships between a parent group and its

subgroups once they have been created. If you want to change the relationsh
ips, delete the existing subgroups and create new ones.

• You cannot delete a group that has subgroups. You must delete all its
subgroups before deleting the parent group.

44 Issue: 20191210

物联⽹平台 Manage Device / 6 Device shadows

6 Device shadows
6.1 Device Shadow overview

IoT Platform provides the Device Shadow function to cache property information
for a device. If the device is online, the device can directly receive commands from
IoT Platform. If the device is offline, the device can actively request for cached
commands from IoT Platform after it comes online again.
A device shadow is a JSON file that is used to store the reported status and desired
status information for a device.
Each device has only one shadow. A device can obtain and set the shadow over
MQTT for status synchronization. The synchronization is bi-directional, either from
 the shadow to the device or from the device to the shadow.

Scenarios
• Scenario 1: In an unstable network, a device frequently disconnects from and

reconnects to IoT Platform.
The device frequently disconnects from and reconnects to IoT Platform due to
network instability. When an application that interacts with the device requests
 the current device status, the device is offline, which leads to a request failure.
When the device is reconnected, the application fails to initiate another device
status request.
The Device Shadow function can synchronize with the device to update and store
 the latest device status information in the device shadow. The application can
obtain the current device status information from the device shadow despite of
the connection status.

Issue: 20191210 45

物联⽹平台 Manage Device / 6 Device shadows

• Scenario 2: Multiple applications simultaneously request the device status
information.
In a stable network, a device must respond to each status request from multiple
 applications, even if the responses are the same. The device may be overloaded
with the requests.
By using the Device Shadow function, the device only needs to synchronize status
 information to the device shadow that is stored in IoT Platform. Applications can
 request the latest device status information from the device shadow instead of
the target device. In this way, applications are decoupled from the device.

• Scenario 3: Device disconnection
- In an unstable network, a device frequently disconnects from and reconnects

to IoT Platform. When an application sends a control command to the device,
the device is offline and the command fails to be dispatched to the device.
■ Quality of Service 1 or 2 (QoS 1 or 2) may solve this issue. However, we

recommend that you do not use this method. This method increases the
workload of the server.

■ By using the Device Shadow function, IoT Platform stores the control
commands from the application to the device shadow. Each command is
 stored with the timestamp when the command was received. After the
device is reconnected to IoT Platform, the device obtains these commands
 and checks the timestamp of each command to determine whether to run
the command.

- A device goes offline and fails to receive commands from the application.
When the device is reconnected, the device runs only the valid commands
by checking the timestamp of each command that is pulled from the device
shadow.

View and update a device shadow
You can view and update the shadow of a device in the IoT Platform console.
Procedure:
1. Log on to the IoT Platform console .
2. From the left-side navigation pane, choose Devices > Device.
3. Click View next to the corresponding device. The Device Details page appears.

46 Issue: 20191210

http://iot.console.aliyun.com/

物联⽹平台 Manage Device / 6 Device shadows

4. Click the Device Shadow tab.
You can view the shadow that contains the latest information that is reported by
the device.

5. Click Update Shadow, and enter the desired status information in the "desired"
section.
For more information about the shadow file format, see Device shadow JSON format.
The device obtains the desired status information by subscribing to a specific
topic. When the device is online, IoT Platform pushes the desired value to the
device in real time.
When the device is offline, the device's shadow caches the desired status
information. After the device comes online again, it actively pulls the latest
desired status information from IoT Platform.

Related API operations
Obtain a device shadow: #unique_30

Update a device shadow: #unique_31

6.2 Device shadow JSON format
Format of the device shadow JSON file

The format is as follows:

{
"state": {
"desired": {
"attribute1": integer2,

Issue: 20191210 47

物联⽹平台 Manage Device / 6 Device shadows
"attribute2": "string2",
...
"attributeN": boolean2
},
"reported": {
"attribute1": integer1,
"attribute2": "string1",
...
"attributeN": boolean1
}
},
"metadata": {
"desired": {
"attribute1": {
"timestamp": timestamp
},
"attribute2": {
"timestamp": timestamp
},
...
"attributeN": {
"timestamp": timestamp
}
},
"reported": {
"attribute1": {
"timestamp": timestamp
},
"attribute2": {
"timestamp": timestamp
},
...
"attributeN": {
"timestamp": timestamp
}
}
},
"timestamp": timestamp,
"version": version
}

The JSON properties are described in Table 6-1: JSON property.
Table 6-1: JSON property
Property Description
desired The desired status of the device.

The application writes the desired property of the device,
without accessing the device.

reported The status that the device has reported. The device writes data
to the reported property to report its latest status.
The application obtains the status of the device by reading this
 property.

48 Issue: 20191210

物联⽹平台 Manage Device / 6 Device shadows

Property Description
metadata The device shadow service automatically updates metadata

according to the updates in the device shadow JSON file.
State metadata in the device shadow JSON file contains the
timestamp of each property. The timestamp is represented as
epoch time to obtain exact update time.

timestamp The latest update time of the device shadow JSON file.
version When you request updating the version of the device shadow,

the device shadow checks whether the requested version is
later than the current version.
If the requested version is later than the current one, the
device shadow updates to the requested version. If not, the
device shadow rejects the request.
The version number is increased according to the version
update to ensure the latest device shadow JSON file version.

Example of the device shadow JSON file:

{
"state" : {
"desired" : {
"color" : "RED",
"sequence" : ["RED", "GREEN", "BLUE"]
},
"reported" : {
"color" : "GREEN"
}
},
"metadata" : {
"desired" : {
"color" : {
"timestamp" : 1469564492
},
"sequence" : {
"timestamp" : 1469564492
}
},
"reported" : {
"color" : {
"timestamp" : 1469564492
}
}
},
"timestamp" : 1469564492,
"version" : 1

Issue: 20191210 49

物联⽹平台 Manage Device / 6 Device shadows
}

Empty properties
• The device shadow JSON file contains the desired property only when you have

specified the desired status. The following device shadow JSON file, which does
not contain the desired property, is also effective:

{
"state" : {
"reported" : {
"color" : "red",
}
},
"metadata" : {
"reported" : {
"color" : {
"timestamp" : 1469564492
}
}
},
"timestamp" : 1469564492,
"version" : 1
}

• The following device shadow JSON file, which does not contain the reported
property, is also effective:

{
"state" : {
"desired" : {
"color" : "red",
}
},
"metadata" : {
"desired" : {
"color" : {
"timestamp" : 1469564492
}
}
},
"timestamp" : 1469564492,
"version" : 1
}

Array
The device shadow JSON file can use an array, and must update this array as a
whole when the update is required.
• Initial status:

{
"reported" : { "colors" : ["RED", "GREEN", "BLUE"] }

50 Issue: 20191210

物联⽹平台 Manage Device / 6 Device shadows
}

• Update:

{
"reported" : { "colors" : ["RED"] }
}

• Final status:

{
"reported" : { "colors" : ["RED"] }
}

6.3 Device shadow data stream
IoT Platform predefines two topics for each device to enable data transmission. The
predefined topics have fixed formats.
• Topic: /shadow/update/${YourProductKey}/${YourDeviceName}

Devices and applications publish messages to this topic. When IoT Platform
receives messages from this topic, it will extract the status information in the
messages and will update the status to the device shadow.

• Topic: /shadow/get/${YourProductKey}/${YourDeviceName}
The device shadow updates the status to this topic, and the device subscribes to
the messages from this topic.

Take a lightbulb device of a product bulb_1 as an example to introduce the
communication among devices, device shadows, and applications. In the following
example, the ProductKey is aliDeEf**** and the DeviceName is lightbulb. The device
 publishes messages to and subscribes to messages of the two custom topics using
the method of QoS 1.

Issue: 20191210 51

物联⽹平台 Manage Device / 6 Device shadows

Device reports status automatically
The flow chart is shown in Figure 6-1: Device reports status automatically.
Figure 6-1: Device reports status automatically

1. When the lightbulb is online, the device uses topic /shadow/update/aliDeEf
****/lightbulb to report the latest status to the device shadow.
Format of the JSON message:

{
"method": "update",
"state": {
"reported": {
"color": "red"
}
},
"version": 1
}

The JSON parameters are described in Table 6-2: Parameter description.
Table 6-2: Parameter description
Parameter Description
method The operation type when a device or application requests the

device shadow.
When you update the status, This parameter method is required
and must be set to update.

52 Issue: 20191210

物联⽹平台 Manage Device / 6 Device shadows

Parameter Description
state The status information that the device sends to the device

shadow.
The reported field is required. The status information is
synchronized to the reported field of the device shadow.

version The version information contained in the request.
The device shadow only accepts the request and updates to the
specified version when the new version is later than the current
 version.

2. When the device shadow accepts the status reported by the device lightbulb, the
JSON file of device shadow is successfully updated.

{
"state" : {
"reported" : {
"color" : "red"
}
},
"metadata" : {
"reported" : {
"color" : {
"timestamp" : 1469564492
}
}
},
"timestamp" : 1469564492
"version" : 1
}

3. After the device shadow has been updated, it will return the result to the device
(lightbulb) by sending a message to the topic /shadow/get/aliDeEf****/
lightbulb.
• If the update is successful, the message is as follows:

{
"method":"reply",
"payload": {
"status":"success",
"version": 1
},
"timestamp": 1469564576
}

• If an error occurred during the update, the message is as follows:

Issue: 20191210 53

物联⽹平台 Manage Device / 6 Device shadows
{
"method":"reply",
"payload": {
"status":"error",
"content": {
"errorcode": "${errorcode}",
"errormessage": "${errormessage}"
}
},
"timestamp": 1469564576
}

Error codes are described in Table 6-3: Error codes.
Table 6-3: Error codes
errorCode errorMessage
400 Incorrect JSON file.
401 The method field is not found.
402 the state field is not found.
403 Invalid version field.
404 The reported field is not found.
405 The reported field is empty.
406 Invalid method field.
407 The JSON file is empty.
408 The reported field contains more than 128 attributes.
409 Version conflict.
500 Server exception.

54 Issue: 20191210

物联⽹平台 Manage Device / 6 Device shadows

Application changes device status
The flow chart is shown in Figure 6-2: Application changes device status.
Figure 6-2: Application changes device status

1. The application calls the API #unique_31 to send a command to the device shadow
to change the status of the lightbulb.
The command is sent to topic /shadow/update/aliDeEf****/lightbulb/. The
message is as follows:

{
"method": "update",
"state": {
"desired": {
"color": "green"
}
},
"version": 2
}

2. The application sends an update request to update the device shadow JSON file.
The device shadow JSON file is changed to:

{
"state" : {
"reported" : {
"color" : "red"
},
"desired" : {
"color" : "green"
}
},
"metadata" : {
"reported" : {

Issue: 20191210 55

物联⽹平台 Manage Device / 6 Device shadows
"color" : {
"timestamp" : 1469564492
}
},
"desired" : {
"color" : {
"timestamp" : 1469564576
}
}
},
"timestamp" : 1469564576,
"version" : 2
}

3. After the update, the device shadow sends a message to the topic /shadow/get/
aliDeEf****/lightbulb and returns the result of update to the device. The result
message is created by the device shadow.

{
"method":"control",
"payload": {
"status":"success",
"state": {
"reported": {
"color": "red"
},
"desired": {
"color": "green"
}
},
"metadata": {
"reported": {
"color": {
"timestamp": 1469564492
}
},
"desired" : {
"color" : {
"timestamp" : 1469564576
}
}
}
},
"version": 2,
"timestamp": 1469564576
}

4. When the device lightbulb is online and has subscribed to the topic /shadow/get
/aliDeEf****/lightbulb, the device receives the message and changes its color
to green according to the desired field in the request file. After the device has
updated the status, it will report the latest status to the cloud.
{
method": "update",
"state": {
"reported": {
"color": "green"

56 Issue: 20191210

物联⽹平台 Manage Device / 6 Device shadows
}
},
"version": 3
}

If the timestamp shows that the command has expired, you give up the update.
5. After the latest status has been reported successfully, the device sends a message

to the topic /shadow/update/aliDeEf****/lightbulb to empty the property of
desired field. The message is as follows:

{
"method": "update",
"state": {
"desired":"null"
},
"version": 4
}

6. After the status has been reported, the device shadow is synchronously updated.
The device shadow JSON file is as follows:

{
"state" : {
"reported" : {
"color" : "green"
}
},
"metadata" : {
"reported" : {
"color" : {
"timestamp" : 1469564577
}
},
"desired" : {
"timestamp" : 1469564576
}
},
"version" : 4

Issue: 20191210 57

物联⽹平台 Manage Device / 6 Device shadows
}

Devices request for device shadows
The flow chart is shown in Figure 6-3: The device requests for device shadow.
Figure 6-3: The device requests for device shadow

1. The device lightbulb sends a message to the topic /shadow/update/aliDeEf****/
lightbulb and obtains the latest status saved in the device shadow. The message
is as follows:

{
"method": "get"
}

2. When the device shadow receives above message, the device shadow sends a
message to the topic /shadow/get/aliDeEf****/lightbulb. The message is as
follows:

{
"method":"reply",
"payload": {
"status":"success",
"state": {
"reported": {
"color": "red"
},
"desired": {
"color": "green"
}
},
"metadata": {
"reported": {
"color": {

58 Issue: 20191210

物联⽹平台 Manage Device / 6 Device shadows
"timestamp": 1469564492
}
},
"desired": {
"color": {
"timestamp": 1469564492
}
}
}
},
"version": 2,
"timestamp": 1469564576
}

Devices delete device shadow attributes
The flow chart is shown in Figure 6-4: Delete device shadow attributes.
Figure 6-4: Delete device shadow attributes

The device lightbulb is to delete the specified attributes saved in the device shadow.
The device sends a JSON message to the topic /shadow/update/aliDeEf****/
lightbulb. See the message in the following example.
To delete attributes, set the value of method to delete and set the values of the
attributes to null.
• Delete one attribute:

{
"method": "delete",
"state": {
"reported": {
"color": "null",
"temperature":"null"
}

Issue: 20191210 59

物联⽹平台 Manage Device / 6 Device shadows
},
"version": 1
}

• Delete all the attributes:

{
"method": "delete",
"state": {
"reported":"null"
},
"version": 1
}

60 Issue: 20191210

物联⽹平台 Manage Device / 7 Manage files

7 Manage files
IoT Platform allows devices to upload files over HTTP/2 channels to the Alibaba
Cloud IoT Platform server for storage. After a file is uploaded, you can download
and delete the file in the IoT Platform console.

Prerequisites
• The device is connected to IoT Platform.

For more information about device SDK development, see Link Kit SDK documentation.
• The HTTP/2 file upload function is compiled and configured on the device.

Procedure
1. Log on to the IoT Platform console.
2. In the left-side navigation pane, choose Devices > Device, and then click View

next to the corresponding device.

3. On the Device Details page, click the Manage Files tab.
On the Manage Files tab page, you can view the files that were uploaded by the
device through the HTTP/2 channel.

Note:

Issue: 20191210 61

https://www.alibabacloud.com/help/product/93051.htm
http://iot.console.aliyun.com/

物联⽹平台 Manage Device / 7 Manage files

The maximum file size that can be stored on the IoT Platform server for each
Alibaba Cloud account is 1 GB. The maximum number of files that can be stored
for each device is 1,000.

You can perform the following operations on an uploaded file:
Operation Description
Download Download the file to your local device.
Delete Delete the file.

In addition to file management in the console, you can also query or delete files
by calling the following cloud API operations: #unique_34, #unique_35, and #unique_36.

62 Issue: 20191210

物联⽹平台 Manage Device / 8 Configure the NTP service

8 Configure the NTP service
IoT Platform provides the NTP service to resolve the following issues on embedded
devices: limited resources, no NTP service available in the system, and inaccurate
timestamp.

How NTP works
Based on the NTP protocol, IoT Platform acts as the NTP server. A device sends a
 message of a specific topic to IoT Platform with the sending time in the message
payload. IoT Platform adds the message receiving time and response sending time
 to the payload of the response packet. After the device receives the response, the
device records its local time when it receives the response. All these four time will
 be used to calculate the time difference between the device and IoT Platform to
obtain the exact current time on the device.

Note:
The NTP service can be used for time calibration only after the device is connected
to IoT Platform.
An embedded device, which does not have an accurate time after it is powered,
cannot pass the certificate verification during the TLS connection establishment
process. If it does not connect to IoT Platform, this issue cannot be resolved by the
NTP service of IoT Platform.

NTP service procedure
Request topic: /ext/ntp/${YourProductKey}/${YourDeviceName}/request
Response topic: /ext/ntp/${YourProductKey}/${YourDeviceName}/response

Note:
ProductKey and DeviceName are part of the device certificate, which can be
obtained from the IoT Platform console.

1. The device subscribes to the topic: /ext/ntp/${YourProductKey}/${YourDevice
Name}/response.

Issue: 20191210 63

物联⽹平台 Manage Device / 8 Configure the NTP service

2. The device publishes a QoS 0 message with the current timestamp of the device
in the payload to the topic /ext/ntp/${YourProductKey}/${YourDeviceName}/
request. For example:
{
 "deviceSendTime":"1571724098000"
}

Note:
The data type of the timestamp, which supports Long and String.
Only QoS 0 messages are supported for this feature.

3. The device receives a response from the NTP server. The payload includes the
following information:
{
 "deviceSendTime":"1571724098000",
 "serverRecvTime":"1571724098110",
 "serverSendTime":"1571724098115",
}

4. The device calculates the current exact Unix time.
The time when the device receives the message from the server is recorded as $
{devicerecvtime}, and the exact time on the device is: ($ {Serverrecvtime} + $
{serversendtime} + $ {devicerecvtime}-$ {devicesendtime})/2

Example
In this example, the device time is 1571724098000, the server time is 1571724098
100, the network delay is 10 ms, and the time spent before the server sends a
response for a received request is 5 ms.

Device time Server time
deviceSend 1571724098000 (

deviceSendTime)
1571724098100

serverReceive 1571724098010 1571724098110 (
serverRecvTime)

serverSend 1571724098015 1571724098115 (
serverSendTime)

deviceReceive 1571724098025 (
deviceRecvTime)

1571724098125

64 Issue: 20191210

物联⽹平台 Manage Device / 8 Configure the NTP service

The device calculates the current exact Unix time as (1571724098110 + 1571724098
115 +15717240980255 - 1571724098000)/2 = 1571724098125.
If the device directly uses the timestamp returned from the server, the device will
have a time error due to the network delay.

Issue: 20191210 65

物联⽹平台 Manage Device / 9 Gateways and sub-devices

9 Gateways and sub-devices
9.1 Gateways and sub-devices

IoT Platform allows devices to connect to it directly, or be mounted as sub-devices
to gateways that connect to IoT Platform.

Gateways and devices
When you create a product, you must select a node type for the devices of the
product. Currently, IoT Platform supports two node types, Device and Gateway.
• Device: Devices of this node type cannot be mounted with sub-devices, but

can be connected directly to the IoT Platform or be mounted as sub-devices to
gateways.

• Gateway: Devices of this node type can connect to IoT Platform directly and can
 be mounted with sub-devices. Gateways are then used to manage sub-devices
, maintain topological relationships with sub-devices, and synchronize these
topological relationships to IoT Platform.

The topological relationship between a gateway and its sub-devices is shown in the
following figure:

66 Issue: 20191210

物联⽹平台 Manage Device / 9 Gateways and sub-devices

Connect gateways and sub-devices to IoT Platform
Once a gateway has been connected to IoT Platform, the gateway will synchroniz
e its topological relationships with its sub-devices to IoT Platform. A gateway
supports device authentication, message reporting, instruction receiving, and
other communications with IoT Platform for all its sub-devices. That is, sub-devices
 are managed by their corresponding gateway.
1. Develop the gateway and connect the gateway to Iot Platform.

For more information about how to connect gateways to IoT Platform, see Link Kit

SDK.
2. You can connect sub-devices to IoT Platform using either of the following two

methods:
• The Unique-certificate-per-device authentication method. This method requires you

to install the device certificates (namely, the ProductKey, DeviceName, and
DeviceSecret) in the physical sub-devices, and then connect the sub-devices to
IoT Platform.

• The Unique-certificate-per-product authentication method. This method requires you
to enable Dynamic Registration on the product details page and register
devices in the IoT Platform console. Then, when a physical sub-device is being
connected, the gateway will initiate a connection request to IoT Platform
for the sub-device. IoT Platform then verifies the sub-device information. If
the verification passes, IoT Platform will assign the DeviceSecret to the sub-
device. The sub-device then receives all the required information (namely, the
ProductKey, DeviceName, and DeviceSecret) to successfully connect to IoT
Platform.

9.2 Sub-device management
You can add sub-devices to a gateway device, and send the TSL and the extended
service information of the sub-devices to the gateway.

Procedure
1. In the left-side navigation pane, click Devices > Device .
2. On the Devices page, find the gateway device for which you want to add sub-

devices and click View corresponding to it. You are directed to the Device Details
page.

Issue: 20191210 67

https://www.alibabacloud.com/help/product/93051.htm
https://www.alibabacloud.com/help/product/93051.htm

物联⽹平台 Manage Device / 9 Gateways and sub-devices

3. Click Sub-device Management > Add Sub-device.

4. Enter the information of the sub-device in the dialog box.
Parameter Description
Product Select the name of the product for which the sub-device

belongs.
Device Select the name of the device that you want to add as a sub-

device.
What's next

The topologiacal relationship between the gateway and the sub-device has been
 built. On the details page of the sub-device, you can view the gateway device
information.

9.3 Connect sub-devices to IoT Platform
Sub-devices do not directly connect to IoT Platform. Instead, they connect to IoT
Platform through gateway devices by using the communication channel between
the gateway and IoT Platform.

Context
When you develop a gateway device, you must implement the following capabilities
 in the gateway: manage its topological relationship with sub-devices, connect sub
-devices to IoT Platform, and enable the communication between sub-devices and
IoT Platform.
You can use the device SDKs provided by Alibaba Cloud to develop gateways. For
more information, see Link Kit SDK.

68 Issue: 20191210

https://www.alibabacloud.com/help/product/93051.htm

物联⽹平台 Manage Device / 9 Gateways and sub-devices

If you develop your own SDK for gateway devices, you must encapsulate the Alink
protocol data of the sub-devices in the gateway device. For more information, see
the chapter: Alink protocol data related to sub-devices.

Procedure
You can use a gateway device to connect a sub-device to IoT Platform by using the
following process.
1. Connect the gateway device to IoT Platform.
2. Connect the sub-device to the gateway device.

A sub-device does not directly connect to IoT Platform. Therefore, you do not
need to install a device SDK of IoT Platform on the sub-device. The sub-device
supplier develops the sub-device.
The gateway device supplier provides the following capabilities to the gateway
device: the gateway device detects the sub-device and obtain the device certificat
e of the sub-device that is issued by IoT Platform, detects the sub-device going
online and offline, and sends messages from IoT Platform to the sub-device. All
 these capabilities are achieved by the gateway device supplier or by using the
protocol that is defined by the suppliers for the gateway device and sub-device.

3. The gateway device checks whether the topological relationship with the sub-
device is available.
If the topological relationship already exists between the gateway and the sub-
device, skip step 5.

4. Optional step. The gateway device reports the ProductKey and DeviceName of
the sub-device to IoT Platform to register the sub-device.
This step is only applicable when the gateway device has not obtain the
DeviceSecret of the sub-device and you have enabled dynamic registration for
the sub-device in the IoT Platform console.

5. Optional step. Add the topological relationship between the gateway and the sub-
device.
If no topological relationship exists between the gateway and the sub-device,
create a topological relationship.

6. The gateway device sends a connection request to IoT Platform on behalf of the
sub-device.

Issue: 20191210 69

物联⽹平台 Manage Device / 9 Gateways and sub-devices

For more information about sub-device management, see Link Kit SDK.
Example

For more information about how to connect a gateway device to IoT Platform, see
Connect a sub-device to IoT Platform.

70 Issue: 20191210

https://www.alibabacloud.com/help/product/93051.htm

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol

10 Develop devices based on Alink Protocol
10.1 Communications over Alink protocol

IoT Platform provides device SDKs for you to configure devices. These device
SDKs already encapsulate protocols for data exchange between devices and IoT
Platform. You can use these SDKs to develop your devices. If these SDKs do not
meet your business requirements, you can develop your own SDK with an Alink
communication channel by yourself.
For SDKs provided by IoT Platform, see Device SDKs.
The Alink protocol is a data exchange standard for IoT development that allows
communication between devices and IoT Platform. The protocol exchanges data
that is formatted in Alink JSON.
The following sections describe the device connection procedures and data
communication processes (upstream and downstream) when using the Alink
protocol.

Connect devices to IoT Platform
As shown in the following figure, devices can be connected to IoT Platform as
directly connected devices or sub-devices. The connection process involves the
following key steps: authenticate the device, establish a connection, and the device
reports data to IoT Platform.
Directly connected devices can be connected to IoT Platform by using the following
 methods:
• If Unique-certificate-per-device authentication is enabled, install the device certificate

(ProductKey, DeviceName, and DeviceSecret) to the physical device for
authentication, connect the device to IoT Platform, and then report data to IoT
Platform.

• If dynamic registration based on Unique-certificate-per-product authentication is enabled,
install the product certificate (ProductKey and ProductSecret) to the physical
device for authentication, connect the device to IoT Platform, and then report
data to IoT Platform.

Issue: 20191210 71

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Sub-devices connect to IoT Platform through their gateways. Sub-devices can be
connected to IoT Platform by using the following methods:
• If Unique-certificate-per-device authentication is enabled, install the ProductKey,

DeviceName, and DeviceSecret to the physical sub-device for authentication. The
sub-device then sends its certificate information to the gateway, and then the
gateway builds the topological relationship.The sub-device data are sent to IoT
Platform through the gateway communication channel.

• If dynamic registration is enabled, install the ProductKey to the physical sub-
device for authentication in advance. The sub-device sends the ProductKey and
DeviceName to the gateway, and then the gateway forwards the ProductKey and
DeviceName to IoT Platform. IoT Platform then verifies the received DeviceName
 and sends the DeviceSecret to the sub-device. The sub-device sends its certificat
e (ProductKey, DeviceName, and DeviceSecret) to the gateway for building
topological relationship. The sub-device data are sent to IoT Platform through
the gateway communication channel.

72 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Devices report properties or events

• Pass-through (Do not parse/Custom) data

1. The device reports raw data to IoT Platform using the topic for passing
through data.

2. IoT Platform parses the received data using the data parsing script that you
have submitted in the IoT Platform console. The rawDataToProtocol method
in the script is called to convert the raw data reported by the device to Alink
JSON data.

3. IoT Platform uses the Alink JSON data for further processes.

Note:
If you have configured rules for data forwarding, the Alink JSON data will be
forwarded to the targets according to the rules.
- The data forwarded by the rules engine are the data that have been parsed

by the data parsing script.
Issue: 20191210 73

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
- When you configure SQL statements for rules, to obtain the device

properties, specify the data topic to be /sys/{productKey}/{deviceName}/
thing/event/property/post.

- When you configure SQL statements for rules, to obtain the device events,
specify the data topic to be /sys/{productKey}/{deviceName}/thing/
event/{tsl.event.identifier}/post.

4. IoT Platform calls the protocolToRawData method in the data parsing script to
convert the result data to the data format of the device.

5. IoT Platform pushes the converted data to the device.
6. You can query the device property data using the API #unique_45 and query the

device event data using the API #unique_46.

74 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
• Non-pass through (Alink JSON) data

1. The device reports Alink JSON data to IoT Platform using the topic for non-
pass through data.

2. IoT Platform handles the received data.

Note:
If you have configured rules for data forwarding, the data will be forwarded
to the targets according to the rules.
- When you configure SQL statements for rules, to obtain the device

properties, specify the data topic to be /sys/{productKey}/{deviceName}/
thing/event/property/post.

Issue: 20191210 75

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
- When you configure SQL statements for rules, to obtain the device events,

specify the data topic to be /sys/{productKey}/{deviceName}/thing/
event/{tsl.event.identifier}/post.

3. IoT Platform returns the results to the device.
4. You can query the device property data using the API #unique_45 and query the

device event data using the API #unique_46.
Call device services or set device properties

• Call device services or set device properties asynchronously

1. Set a device property or call a device service using the asynchronous method.

Note:
- Call the API #unique_47 to set a property asynchronously.

76 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
- Call the API #unique_48 to call a service asynchronously (if you select

Asynchronous as the method when you define the service, this service is
called in the asynchronous method).

2. IoT Platform verifies the parameters.
3. IoT Platform uses the asynchronous method to handle the request and return

the results. If the call is successful, the message ID is included in the response.

Note:
If the data type is pass-through (Do not parse/Custom), IoT Platform will call
the protocolToRawData method in the data parsing script to convert the data
before sending the data to the device.

4. IoT Platform sends the data to the device, and then the device handles the
request asynchronously.

Note:
- If the data is pass-through (Do not parse/Custom) data, the topic for pass-

through data is used.
- If the data is non-pass through (Alink JSON) data, the topic for non-pass

through data is used.
5. After the device has completed the requested operation, it returns the results

to IoT Platform.
6. IoT Platform receives the results, and

- If the data type is pass-through (Do not parse/Custom), IoT Platform will
call the rawDataToProtocol method in the data parsing script to convert the
data returned by the device.

- If you have configured rules for data forwarding, IoT Platform rules engine
will forward the data to the targets according to the rules.
■ When you configure SQL statements for rules, to obtain the results

of service processing, specify the data topic as /sys/{productKey}/{
deviceName}/thing/downlink/reply/message.

■ If the data type is pass-through (Do not parse/Custom), the data
forwarded by the rules engine is the data that has been parsed by the
data parsing script.

Issue: 20191210 77

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
• Call services using the synchronous method.

1. Call the API #unique_48 to call a service synchronously (if you select
Synchronous as the method when you define the service, this service is called
in the synchronous method).

2. IoT Platform verifies the parameters.
3. The synchronous call method is where IoT Platform calls the RRPC topic to

send the request data to the device, and waits for the device to return a result.

Note:

78 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
If the data type of the device is Do not parse/Custom, IoT Platform will call
the protocolToRawData method in the data parsing script to convert the data
before sending the data to the device.

4. After the device has completed the requested operation, it returns the results
 to IoT Platform. If IoT Platform does not receive a result within the timeout
period, it will send a timeout error to you.

5. IoT Platform returns the results to you.

Note:
If the data type of the device is Do not parse/Custom, IoT Platform will call
the rawDataToProtocol method in the data parsing script to convert the data
returned by the device, and then will send the results to you.

Build topological relationships between gateways and sub-devices.

1. After a sub-device has been connected to a gateway, the gateway sends a message
 using the topic for adding topological relationship messages to notify IoT

Issue: 20191210 79

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Platform to build topological relationship between the gateway and the sub-
device. IoT Platform handles the request and then returns a result.

2. Also, a gateway can send a message using the topic for deleting topological
relationship messages to notify IoT Platform to remove a sub-device from the
gateway.

3. Call the API #unique_49 to query topological relationships of devices.
4. If you use the rules engine to forward device messages to another Alibaba Cloud

service, and you receive device messages from that service, the process of
building a topological relationship is as the following.
a. The gateway device reports the information of the sub-device that has been

detected to IoT Platform.
b. IoT Platform receives the message and then forwards the message to the data

forwarding target that you have specified when you were configuring the rule.
c. You obtain the sub-device information from the data forwarding target service

and then determine whether or not to build the topological relationship. Call
the API #unique_50 to send a request for building topological relationship to IoT
Platform.

d. IoT Platform receives the request from #unique_50, and then pushes the request
to the gateway.

e. The gateway receives the request and builds the topological relationship with
the sub-device.

Note:
• Gateways use the topic /sys/{productKey}/{deviceName}/thing/topo/add to

build topological relationships with sub-devices.
• Gateways use the topic /sys/{productKey}/{deviceName}/thing/topo/delete

 to delete topological relationships with sub-devices.
• Gateways use the topic /sys/{productKey}/{deviceName}/thing/topo/get to

query the topological relationships with sub-devices.
• Gateways use the topic /sys/{productKey}/{deviceName}/thing/list/found to

report information of sub-devices.
• Gateways use the topic /sys/{productKey}/{deviceName}/thing/topo/add/

notify to initiate requests for building topological relationships.

80 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol

10.2 Device identity registration
Before you connect a device to IoT Platform, you need to register the device identity
to identify it on IoT Platform.
The following methods are available for identity registration:
• Unique certificate per device: Obtain the ProductKey, DeviceName, and

DeviceSecret of a device on IoT Platform and use them as the unique identifier
. Install these three key fields on the firmware of the device. After the device is
connected to IoT Platform, the device starts to communicate with IoT Platform.

• Dynamic registration: You can perform dynamic registration based on unique-
certificate-per-product authentication for directly connected devices and
perform dynamic registration for sub-devices.
- To dynamically register a directly connected device based on unique-

certificate-per-product authentication, follow these steps:
1. In the IoT Platform console, pre-register the device and obtain the

ProductKey and ProductSecret. When you pre-register the device, use
 device information that can be directly read from the device as the
DeviceName, such as the MAC address or the serial number of the device.

2. Enable dynamic registration in the console.
3. Install the product certificate on the device firmware.
4. The device authenticates to IoT Platform. If the device passes authentica

tion, IoT Platform assigns a DeviceSecret to the device.
5. The device uses the ProductKey, DeviceName, and DeviceSecret to establish

 a connection to IoT Platform.
- To dynamically register a sub-device, follow these steps:

1. In the IoT Platform console, pre-register a sub-device and obtain the
ProductKey. When you pre-register the sub-device, use device information
 that can be read directly from the sub-device as the DeviceName, such as
the MAC address and SN.

2. Enable dynamic registration in the console.
3. Install the ProductKey on the firmware of the sub-device or on the gateway.
4. The gateway authenticates to IoT Platform on behalf of the sub-device.

Issue: 20191210 81

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Dynamically register a sub-device

Upstream
• Request topic: /sys/{productKey}/{deviceName}/thing/sub/register
• Reply topic: /sys/{productKey}/{deviceName}/thing/sub/register_reply
Request message
{
 "id": "123",
 "version": "1.0",
 "params": [
 {
 "deviceName": "deviceName1234",
 "productKey": "1234556554"
 }
]
}

Response message
{
 "id": "123",
 "code": 200,
 "data": [
 {
 "iotId": "12344",
 "productKey": "1234556554",
 "deviceName": "deviceName1234",
 "deviceSecret": "xxxxxx"
 }
]
}

Parameter description
Parameter Type Description
id String Message ID. You need to define IDs for

upstream messages using numbers, and
 the message IDs must be unique within
the device.

version String Protocol version. Currently, the value
can only be 1.0.

params List Parameters used for dynamic registrati
on.

deviceName String Name of the sub-device.
productKey String ID of the product to which the sub-

device belongs.

82 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Parameter Type Description
iotId String Unique identifier of the sub-device.
deviceSecret String DeviceSecret key.
code Integer Result code.

Error messages
Error code Error message Description
460 request parameter error The request parameters

are incorrect.
6402 topo relation cannot add

by self
A device cannot be added
to itself as a sub-device.

401 request auth error Signature verification has
 failed.

Dynamically register a directly connected device based on unique-certificate-per-product
authentication

Directly connected devices send HTTP requests to perform dynamic register. Make
 sure that you have enabled dynamic registration based on unique certificate per
product in the console.
• URL template: https://iot-auth.cn-shanghai.aliyuncs.com/auth/register/

device

• HTTP method： POST
Request message
POST /auth/register/device HTTP/1.1
Host: iot-auth.cn-shanghai.aliyuncs.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 123
productKey=1234556554&deviceName=deviceName1234&random=567345&sign=
adfv123hdfdh&signMethod=HmacMD5

Response message
{
 "code": 200,
 "data": {
 "productKey": "1234556554",
 "deviceName": "deviceName1234",
 "deviceSecret": "adsfweafdsf"
 },
 "message": "success"

Issue: 20191210 83

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
}

Parameter description
Parameter Type Description
productKey String ID of the product to which the device

belongs.
deviceName String Name of the device
random String Random number.
sign String Signature.
signMethod String Signing method. The supported

methods are hmacmd5, hmacsha1, and
hmacsha256.

code Integer Result code.
deviceSecret String DeviceSecret key.

Sign the parameters
All parameters reported to IoT Platform will be signed except sign and signMethod
. Sort the signing parameters in alphabetical order, and splice the parameters and
values without any splicing symbols.
Then, sign the parameters by using the algorithm specified by signMethod.
Example:
sign = hmac_sha1(productSecret, deviceNamedeviceName1234produc
tKey1234556554random123)

10.3 Add a topological relationship
After a sub-device has registered with IoT Platform, the gateway reports the
topological relationship of gateways and sub-devices to IoT Platform before the
sub-device connects to IoT Platform.
IoT Platform verifies the identity and the topological relationship during
connection. If the verification is successful, IoT Platform establishes a logical
connection with the sub-device and associates the logical connection with the
physical connection of the gateway. The sub-device uses the same protocols as a
directly connected device for data upload and download. Gateway information is
not required to be included in the protocols.

84 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
After you delete the topological relationship of the sub-device from IoT Platform
, the sub-device can no longer connect to IoT Platform through the gateway. IoT
Platform will fail the authentication because the topological relationship does not
exist.

Add topological relationships of sub-devices
Upstream
• Request topic: /sys/{productKey}/{deviceName}/thing/topo/add
• Reply topic: sys/{productKey}/{deviceName}/thing/topo/add_reply
Request data format when using the Alink protocol
{
 "id": "123",
 "version": "1.0",
 "params": [
 {
 "deviceName": "deviceName1234",
 "productKey": "1234556554",
 "sign": "xxxxxx",
 "signmethod": "hmacSha1",
 "timestamp": "1524448722000",
 "clientId": "xxxxxx"
 }
]
}

Response data format when using the Alink protocol
{
 "id": "123",
 "code": 200,
 "data": {}
}

Parameter description
Parameter Type Description
id String Message ID. You need to define IDs for

upstream messages using numbers, and
 the message IDs must be unique within
the device.

version String Protocol version. Currently, the value
can only be 1.0.

params List Input parameters of the request.
deviceName String Device name. The value is the name of

the sub-device.
Issue: 20191210 85

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Parameter Type Description
productKey String Product ID. The value is the ID of the

product to which the sub-device belongs
.

sign String Signature.
Signature algorithm:
Sort all the parameters (except for sign
 and signMethod) that will be submitted
to the server in lexicographical order,
and then connect the parameters and
values in turn (no connect symbols).
Sign the signing parameters by using
the algorithm specified by the signing
method.
For example, in the following request,
sort the parameters in params in
alphabetic order and then sign the
parameters.
sign= hmac_md5(deviceSecret,
clientId123deviceNametestprodu
ctKey123timestamp1524448722000)

signmethod String Signing method. The supported
methods are hmacSha1, hmacSha256,
hmacMd5, and Sha256.

timestamp String Timestamp.
clientId String Identifier of a sub-device. This

parameter is optional and may have
 the same value as ProductKey or
DeviceName.

code Integer Result code. A value of 200 indicates the
request is successful.

Error messages

86 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Error code Error message Description
460 request parameter error The request parameters are

incorrect.
6402 topo relation cannot add by self A device cannot be added to

itself as a sub-device.
401 request auth error Signature verification has failed

.
Delete topological relationships of sub-devices

A gateway can publish a message to this topic to request IoT Platform to delete the
topological relationship between the gateway and a sub-device.
Upstream
• Request topic: /sys/{productKey}/{deviceName}/thing/topo/delete
• Reply topic: /sys/{productKey}/{deviceName}/thing/topo/delete_reply
Request data format when using the Alink protocol
{
 "id": "123",
 "version": "1.0",
 "params": [
 {
 "deviceName": "deviceName1234",
 "productKey": "1234556554"
 }
]
}

Response data format when using the Alink protocol
{
 "id": "123",
 "code": 200,
 "data": {}
}

Parameter description
Parameter Type Description
id String Message ID. You need to define IDs for

upstream messages using numbers, and
 the message IDs must be unique within
the device.

Issue: 20191210 87

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Parameter Type Description
version String Protocol version. Currently, the value

can only be 1.0.
params List Request parameters.
deviceName String Device name. The value is the name of

the sub-device.
productKey String Product ID. The value is the ID of the

product to which the sub-device belongs
.

code Integer Result code. A value of 200 indicates the
request is successful.

Error messages
Error code Error message Description
460 request parameter error The request parameters are

incorrect.
6100 device not found The device does not exist.

Obtain topological relationships of sub-devices
Upstream
• Request topic: /sys/{productKey}/{deviceName}/thing/topo/get
• Reply topic: /sys/{productKey}/{deviceName}/thing/topo/get_reply
A gateway can publish a message to this topic to obtain the topological relationsh
ips between the gateway and its connected sub-devices.
Request data format when using the Alink protocol
{
 "id": "123",
 "version": "1.0",
 "params": {}
}

Response data format when using the Alink protocol
{
 "id": "123",
 "code": 200,
 "data": [
 {
 "deviceName": "deviceName1234",
 "productKey": "1234556554"

88 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
 }
]
}

Parameter description
Parameter Type Description
id String Message ID. You need to define IDs for

upstream messages using numbers, and
 the message IDs must be unique within
the device.

version String Protocol version. Currently, the value
can only be 1.0.

params Object Request parameters. This can be left
empty.

deviceName String Name of the sub-device.
productKey String Product ID of the sub-device.
code Integer Result code. A value of 200 indicates the

request is successful.
Error messages
Error code Error message Description
460 request parameter error The request parameters are

incorrect.
Report new sub-devices

Upstream
• Request topic: /sys/{productKey}/{deviceName}/thing/list/found
• Reply topic: /sys/{productKey}/{deviceName}/thing/list/found_reply
In some scenarios, the gateway can discover new sub-devices. The gateway reports
 information of a new sub-device to IoT Platform. IoT Platform forwards the sub-
device information to third-party applications, and the third-party applications
choose the sub-devices to connect to the gateway.
Request data format when using the Alink protocol
{
 "id": "123",
 "version": "1.0",
 "params": [

Issue: 20191210 89

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
 {
 "deviceName": "deviceName1234",
 "productKey": "1234556554"
 }
]
}

Response data format when using the Alink protocol
{
 "id": "123",
 "code": 200,
 "data":{}
}

Parameter description
Parameter Type Description
id String Message ID. You need to define IDs for

upstream messages using numbers, and
 the message IDs must be unique within
the device.

version String Protocol version. Currently, the value
can only be 1.0.

params Object Request parameters. This parameter
can be left empty.

deviceName String Name of the sub-device.
productKey String Product ID of the sub-device.
code Integer Result code. A value of 200 indicates the

request is successful.
Error messages
Error code Error message Description
460 request parameter error The request parameters are

incorrect.
6250 product not found The specified product to which

the sub-device belongs does not
 exist.

90 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Error code Error message Description
6280 devicename not meet specs The name of the sub-device is

invalid. The device name must
 be 4 to 32 characters in length
 and can contain letters, digits
, hyphens (-), underscores (_
), at signs (@), periods (.), and
colons (:).

Notify the gateway to add topological relationships of the connected sub-devices
Downstream
• Request topic: /sys/{productKey}/{deviceName}/thing/topo/add/notify
• Reply topic: /sys/{productKey}/{deviceName}/thing/topo/add/notify_reply
IoT Platform publishes a message to this topic to notify a gateway to add topological
relationships of the connected sub-devices. You can use this topic together with the
topic that reports new sub-devices to IoT Platform. IoT Platform can subscribe to
a data exchange topic to receive the response from the gateway. The data exchange
topic is /{productKey}/{deviceName}/thing/downlink/reply/message.
Request data format when using the Alink protocol
{
 "id": "123",
 "version": "1.0",
 "params": [
 {
 "deviceName": "deviceName1234",
 "productKey": "1234556554"
 }
],
 "method": "thing.topo.add.notify"
}

Response data format when using the Alink protocol
{
 "id": "123",
 "code": 200,
 "data": {}
}

Parameter description

Issue: 20191210 91

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Parameter Type Description
id String Message ID. IoT Platform generates IDs

for downstream messages.
version String Protocol version. Currently, the value

can only be 1.0.
params Object Request parameters. This parameter

can be left empty.
method String Request method. The value is thing.

topo.add.notify.
deviceName String Name of the sub-device.
productKey String Product ID of the sub-device.
code Integer Result code. A value of 200 indicates the

request is successful.
Notify the gateway about topological relationship change

When you add, delete, disable, or enable sub-devices on IoT Platform, IoT Platform
 will change the topological relationships accordingly and will send notifications to
 the gateway.
The gateway subscribes to the topic: /sys/{productKey}/{deviceName}/thing/
topo/change for topological relationship change notifications.
Message format when using the Alink protocol
{
 "id":"123",
 "version":"1.0",
 "params":{
 "status":0, //0:create 1:delete 2-enable 8-disable
 "subList":[{
 "productKey":"a1hRrzD****",
 "deviceName":"abcd"
 }]
 },
 "method":"thing.topo.change"
}

Parameter Type Description
id String Message ID. IoT Platform generates IDs

for downstream messages.
version String Protocol version. Currently, the value

can only be 1.0.

92 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Parameter Type Description
method String Request method. The value is thing.

topo.change.
params Object Message content parameters, including

status and sublist.
status Integer The operation result of topological

relationship change.
• 0: Create
• 1: Delete
• 2: Disable
• 8: Enable

deviceName String Name of the sub-device.
productKey String Product ID of the sub-device.

Response data format when using the Alink protocol
{
 "id":"123",
 "code":200,
 "message":"success",
 "data":{}
}

10.4 Connect and disconnect sub-devices
Register devices with IoT Platform, assign the devices to a gateway device as
sub-devices, and then connect these sub-devices to IoT Platform using the
communication channel of the gateway device. When a sub-device is connecting
to IoT Platform, IoT Platform verifies the identity of the sub-device according to
the topological relationship between the gateway and the sub-device to identify
whether the sub-device can use the channel of the gateway.

Note:
For messages about sub-device connection and disconnection, the QoS is 0.

Connect a sub-device to IoT Platform

Note:

Issue: 20191210 93

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
A gateway device can have up to 1500 sub-devices connected to IoT Platform. When
the maximum number is reached, IoT Platform will deny new connection requests
from sub-devices of the gateway.

Upstream
• Request topic: /ext/session/${productKey}/${deviceName}/combine/login
• Response topic: /ext/session/${productKey}/${deviceName}/combine/

login_reply

Note:
Because sub-devices use channels of gateways to communicate with IoT Platform,
these topics are topics of gateway devices. Replace the variables ${productKey}
and ${deviceName} in the topics with the corresponding information of the
gateway device.

Request message
{
 "id": "123",
 "params": {
 "productKey": "123",
 "deviceName": "test",
 "clientId": "123",
 "timestamp": "123",
 "signMethod": "hmacmd5",
 "sign": "xxxxxx",
 "cleanSession": "true"
 }
}

Note:
In the request message, the values of parameters productKey and deviceName are
the corresponding information of the sub-device.

Response message:
{
 "id":"123",
 "code":200,
 "message":"success"
 "data":""
}

Request Parameters

94 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Parameter Type Description
id String Message ID. You need to define IDs for upstream

 messages using numbers, and the message IDs
must be unique within the device.

params Object Request parameters.
deviceName String Name of the sub-device.
productKey String The unique identifier of the product to which the

 device belongs.
sign String Signature of the sub-device. Sub-devices use the

same signature rules as gateways.
Sign algorithm:
1. Sort all the parameters (except sign and

signMethod and cleanSession) to be
submitted to the server in alphabetical order,
and then concatenate the parameters and
values in turn (without any delimiters).

2. Then, sign the parameters by using the
algorithm specified by signMethod and the
DeviceSecret of the sub-device.

Example:
sign= hmac_md5(deviceSecret, clientId12
3deviceNametestproductKey123timestamp123
)

signMethod String Sign method. The supported methods are
hmacSha1, hmacSha256, hmacMd5, and Sha256.

timestamp String Timestamp.
clientId String The device identifier. The value of this

parameter can be the value of ProductKey and
DeviceName.

cleanSession String • A value of true indicates that when the sub-
device is offline, messages sent based on QoS=
1 method will be cleared.

• A value of false indicates that when the sub-
device is offline, messages sent based on QoS=
1 method will not be cleared.

Response parameters
Issue: 20191210 95

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Parameter Type Description
id String The message ID.
code Integer Result code. A value of 200 indicates that the

request is successful.
message String Result message.
data Object Additional information in the response, in JSON

format.
Error messages
Error code Error message Description
460 request parameter error The request parameters are

incorrect.
429 rate limit, too many subDeviceO

nline msg in one minute
The authentication requests
 from the device are limited
because the device requested
authentication to IoT Platform
too frequently.

428 too many subdevices under
gateway

The number of sub-devices
connected to IoT Platform has
reached the upper limit.

6401 topo relation not exist The topological relationship
between the gateway and the
sub-device does not exist.

6100 device not found The sub-device does not exist.
521 device deleted The sub-device has been

deleted.
522 device forbidden The sub-device has been

disabled.
6287 invalid sign The password or signature of

the sub-device is incorrect.
Disconnect a sub-device from IoT Platform

Upstream
• Request topic: /ext/session/{productKey}/{deviceName}/combine/logout
• Response topic: /ext/session/{productKey}/{deviceName}/combine/

logout_reply

96 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol

Note:
Because sub-devices use channels of gateways to communicate with IoT Platform,
these topics are topics of gateway devices. Replace the variables ${productKey}
and ${deviceName} in the topics with the corresponding information of the
gateway device.

Request message:
{
 "id": 123,
 "params": {
 "productKey": "xxxxx",
 "deviceName": "xxxxx"
 }
}

Note:
In the request message, the values of parameters productKey and deviceName are
the corresponding information of the sub-device.

Response message:
{
 "id": "123",
 "code": 200,
 "message": "success",
 "data": ""
}

Request Parameters
Parameter Type Description
id String The message ID. You need

to define IDs for upstream
 messages using numbers
, and the message IDs
must be unique within the
 device.

params Object Request parameters.
deviceName String Name of the sub-device.
productKey String The unique identifier of

the product to which the
device belongs.

Issue: 20191210 97

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Response parameters
Parameter Type Description
id String The message ID.
code Integer Result code. A value of 200 indicates that the

request is successful.
message String Result message.
data Object Additional information in the response, in JSON

format.
Error messages
Error code Error message Description
460 request parameter error The request parameters are

incorrect.
520 device no session The sub-device session does not

 exist.
For more information about sub-device connections, see Device identity registration. For
more information about error codes, see Error codes for device SDKs.

10.5 Device properties, events, and services
If you have defined the TSL for a product, the devices of this product can separately
report data regarding the properties, events, and services that you have defined. For
information about the data format of TSL, see Data format . This topic describes how
data is reported based on the TSL.
When you create a product, you must select a data type for devices of the product.
IoT Platform supports two data types: ICA Standard Data Format (Alink JSON) and
Do not parse/Custom. We recommend that you select Alink JSON, because it is the
standard data format of IoT Platform.
• ICA Standard Data Format (Alink JSON): Devices generate data in the standard

 format defined by IoT Platform, and then report the data to IoT Platform. The
following sections provide examples of Alink JSON data format.

• Do not parse/Custom: Devices report raw data, such as binary data, to IoT
Platform, and then IoT Platform parses the raw data to be standard data using
the parsing script that you have submitted in the console. Data generated by IoT

98 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Platform is in Alink JSON format, and before sending the data to devices, IoT
Platform will parse the data to the format that the devices support.

Devices report properties
Report data (Do not parse/Custom)
• Request topic: /sys/{productKey}/{deviceName}/thing/model/up_raw
• Response topic: /sys/{productKey}/{deviceName}/thing/model/up_raw_reply
The raw data of a request message:

Note:
In raw data, the request methodthing.event.property.post must be included.
0x020000007b00

Response message from IoT Platform:
{
 "id":"123",
 "code":200,
 "method":"thing.event.property.post"
 "data":{}
}

Report Data (Alink JSON)
• Request topic: /sys/{productKey}/{deviceName}/thing/event/property/post
• Response topic: /sys/{productKey}/{deviceName}/thing/event/property/

post_reply

Request message:
{
 "id": "123",
 "version": "1.0",
 "params": {
 "Power": {
 "value": "on",
 "time": 1524448722000

Issue: 20191210 99

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
 },
 "WF": {
 "value": 23.6,
 "time": 1524448722000
 }
 }
}

Table 10-1: Request Parameters
Parameter Type Description
id String The message ID. You need to define IDs

 for upstream messages using numbers
, and the message IDs must be unique
within the device.

version String The protocol version. Currently, the
value is 1.0.

params Object The request parameters. In the
preceding request example, the device
 reports two properties: Power and WF
. Property information includes time (
the time when the property is reported)
and value (the value of the property).

time Long The time when the property is reported.
value Object The value of the property.

Response message:
{
 "id": "123",
 "code": 200,
 "data": {}
}

Table 10-2: Response parameters
Parameter Type Description
id String The message ID.
code Integer The result code. See Common codes on

devices.
data String The data that is returned when the

request is successful.

100 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Table 10-3: Error codes
Error code Error message Description
460 request parameter error The request parameters are incorrect.
6106 map size must less than

200
The number of reported properties
exceeds the maximum limit. Up to 200
properties can be reported at a time.

6313 tsl service not available The TSL verification service is not
available.
IoT Platform verifies all the received
 properties according to the TSLs of
products.
If the TSL verification service is
available, but some reported properties
 do not match with any properties
defined in the TSL, IoT Platform ignores
the invalid properties. If all the reported
 properties do not match with any
properties defined in the TSL, IoT
Platform ignores them all. In this case,
the response will still indicate that the
verification is successful.
This error is reported when a system
exception occurs.

You can use the Rules engine to forward property information reported by devices to
other supported Alibaba Cloud services. For more information about topics and
data formats, see Messages about device properties reported by devices.

Set device properties
Push data to devices (Do not parse/Custom)
• Request topic: /sys/{productKey}/{deviceName}/thing/model/down_raw
• Response topic: /sys/{productKey}/{deviceName}/thing/model/down_raw_r

eply

Issue: 20191210 101

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Push data to devices (Alink JSON)
• Request topic: /sys/{productKey}/{deviceName}/thing/service/property/set
• Response topic: /sys/{productKey}/{deviceName}/thing/service/property/

set_reply

Request message:
{
 "id": "123",
 "version": "1.0",
 "params": {
 "temperature": "30.5"
 },
 "method": "thing.service.property.set"
}

Table 10-4: Request Parameters
Parameter Type Description
id String The message ID. IoT Platform generates

IDs for downstream messages.
version String The protocol version. Currently, the

value is 1.0.
params Object The property parameters. In the

preceding request example, the
property to be set is
{ "temperature": "30.5" }

method String Request method. The value is thing.
service.property.set.

Response message:
{
 "id": "123",
 "code": 200,
 "data": {}
}

Table 10-5: Response parameters
Parameter Type Description
id String The message ID.

102 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Parameter Type Description
code Integer The result code. See Common codes on

devices.
data String The data that is returned when the

request is successful.
You can use the Rules engine to forward the property setting results from devices to
other supported Alibaba Cloud services. For message topics and data formats, see
Devices return result data to the cloud.

Devices report events
Report data (Do not parse/Custom)
• Request topic: /sys/{productKey}/{deviceName}/thing/model/up_raw
• Response topic: /sys/{productKey}/{deviceName}/thing/model/up_raw_reply
The raw data of a request message:

Note:
In raw data, the request methodthing.event.{tsl.event.identifier}.post must
be included. tsl.event.identifier indicates the event identifier in the TSL.
0xff0000007b00

Response message from IoT Platform:
{
 "id":"123",
 "code":200,
 "method":"thing.event.{tsl.event.identifier}.post"
 "data":{}
}

Report Data (Alink JSON)
• Request topic: /sys/{productKey}/{deviceName}/thing/event/{tsl.event.

identifier}/post

• Response topic: /sys/{productKey}/{deviceName}/thing/event/{tsl.event.
identifier}/post_reply

Request message:
{
 "id": "123",

Issue: 20191210 103

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
 "version": "1.0",
 "params": {
 "value": {
 "Power": "on",
 "WF": "2"
 },
 "time": 1524448722000
 }
}

Table 10-6: Request Parameters
Parameter Type Description
id String The message ID. You need to define IDs

 for upstream messages using numbers
, and the message IDs must be unique
within the device.

version String The protocol version. Currently, the
value is 1.0.

params List The parameters of the reported events.
value Object The event information. In the preceding

request example, the events are:
{
 "Power": "on",
 "WF": "2"
 }

time Long The UTC timestamp when the event
occurs.

Response message:
{
 "id": "123",
 "code": 200,
 "data": {}
}

Table 10-7: Response parameters
Parameter Type Description
id String The message ID.

104 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Parameter Type Description
code Integer The result code. See Common codes on

devices.
Note:

IoT Platform verifies all the events
reported by devices according to the
TSLs of products. If the reported event
does not match with any events defined
in the TSL, an error code is returned.

data String The data that is returned when the
request is successful.

For example, an event alarm has been defined in the TSL of a product:
{
 "schema": "https://iot-tsl.oss-cn-shanghai.aliyuncs.com/schema.json
",
 "link": "/sys/${productKey}/airCondition/thing/",
 "profile": {
 "productKey": "al123456789",
 "deviceName": "airCondition"
 },
 "events": [
 {
 "identifier": "alarm",
 "name": "alarm",
 "desc": "Fan alarm",
 "type": "alert",
 "required": true,
 "outputData": [
 {
 "identifier": "errorCode",
 "name": "ErrorCode",
 "dataType": {
 "type": "text",
 "specs": {
 "length": "255"
 }
 }
 }
],
 "method": "thing.event.alarm.post"
 }
]
}

Request message of reporting an event:
{
 "id": "123",
 "version": "1.0",
 "params": {
 "value": {

Issue: 20191210 105

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
 "errorCode": "error"
 },
 "time": 1524448722000
 }
}

You can use the Rules engine to forward event information reported by devices to
other supported Alibaba Cloud services. For more information about topics and
data formats, see Messages about events reported by devices

Call device services
Push data to devices (Do not parse/Custom)
• Request topic: /sys/{productKey}/{deviceName}/thing/model/down_raw
• Response topic: /sys/{productKey}/{deviceName}/thing/model/down_raw_r

eply

Push data to devices (Alink JSON)
• Request topic: /sys/{productKey}/{deviceName}/thing/service/{tsl.service

.identifier}

• Response topic: /sys/{productKey}/{deviceName}/thing/service/{tsl.
service.identifier}_reply

Service calling methods
Supports synchronous calls and asynchronous calls. When you define a service, you
are required to select a method for the service.
• Synchronous method: IoT Platform uses the RRPC method to push requests to

devices. For information about the RRPC method, see What is RRPC.
• Asynchronous method: IoT Platform pushes requests to devices in an

asynchronous manner, and the devices return operation results in an
asynchronous manner.
Only when asynchronous method is selected for a service does IoT Platform
subscribe to the response topic. You can use the Rules engine to forward the results
of asynchronous calls returned by devices to other supported Alibaba Cloud
services. For more information about topics and data formats, see #unique_59/

unique_59_Connect_42_section_mgr_2tl_b2b.
Request message:
{

106 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
 "id": "123",
 "version": "1.0",
 "params": {
 "Power": "on",
 "WF": "2"
 },
 "method": "thing.service.{tsl.service.identifier}"
}

Table 10-8: Request Parameters
Parameter Type Description
id String The message ID. IoT Platform generates

IDs for downstream messages.
version String The protocol version. Currently, the

value is 1.0.
params Map The parameters used to call a service,

including the identifier and value of the
service. Example:
{
 "Power": "on",
 "WF": "2"
 }

method String Request method.
Note:

tsl.service.identifier indicates
the identifier of the service in TSL. For
information about how to define a TSL,
see Overview.

Response message:
{
 "id": "123",
 "code": 200,
 "data": {}
}

Table 10-9: Response parameters
Parameter Type Description
id String The message ID.

Issue: 20191210 107

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Parameter Type Description
code Integer The result code. See Common codes on

devices.
data String The data that is returned when the

request is successful.
The value of data is determined by the
 TSL of the product. If the device does
not return any information about the
service, the value of data is empty. If the
 device returns service information, the
 returned data value will strictly comply
 with the definition of the service in the
TSL.

For example, the service SetWeight has been defined in the TSL of the product as
follows:
{
 "schema": "https://iotx-tsl.oss-ap-southeast-1.aliyuncs.com/schema.
json",
 "profile": {
 "productKey": "testProduct01"
 },
 "services": [
 {
 "outputData": [
 {
 "identifier": "OldWeight",
 "dataType": {
 "specs": {
 "unit": "kg",
 "min": "0",
 "max": "200",
 "step": "1"
 },
 "type": "double"
 },
 "name": "OldWeight"
 },
 {
 "identifier": "CollectTime",
 "dataType": {
 "specs": {
 "length": "2048"
 },
 "type": "text"
 },
 "name": "CollectTime"
 }
],

108 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
 "identifier": "SetWeight",
 "inputData": [
 {
 "identifier": "NewWeight",
 "dataType": {
 "specs": {
 "unit": "kg",
 "min": "0",
 "max": "200",
 "step": "1"
 },
 "type": "double"
 },
 "name": "NewWeight"
 }
],
 "method": "thing.service.SetWeight",
 "name": "SetWeight",
 "required": false,
 "callType": "async"
 }
]
}

Request message of a service call:
{
 "method": "thing.service.SetWeight",
 "id": "105917531",
 "params": {
 "NewWeight": 100.8
 },
 "version": "1.0.0"
}

Response message:
{
 "id": "105917531",
 "code": 200,
 "data": {
 "CollectTime": "1536228947682",
 "OldWeight": 100.101
 }
}

Gateway devices report data
A gateway device can report properties and events of itself and properties and
events of its sub-devices to IoT Platform.

Note:
• A gateway can report up to 200 properties and 20 events at one time.
• A gateway can report up to 20 properties and events of sub-devices.

Report data (Do not parse/Custom)
Issue: 20191210 109

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
• Request topic: /sys/{productKey}/{deviceName}/thing/model/up_raw
• Response topic: /sys/{productKey}/{deviceName}/thing/model/up_raw_reply
The raw data of a request message:

Note:
In raw data, the request methodthing.event.property.pack.post must be
included.
0xff0000007b00

Response message from IoT Platform:
{
 "id": "123",
 "code": 200,
 "method": "thing.event.property.pack.post",
 "data": {}
}

Report data (Alink JSON)
• Request topic: /sys/{productKey}/{deviceName}/thing/event/property/pack/

post

• Response topic: /sys/{productKey}/{deviceName}/thing/event/property/pack
/post_reply

Request message:
{
 "id": "123",
 "version": "1.0",
 "params": {
 "properties": {
 "Power": {
 "value": "on",
 "time": 1524448722000
 },
 "WF": {
 "value": { },
 "time": 1524448722000
 }
 },
 "events": {
 "alarmEvent1": {
 "value": {
 "param1": "on",
 "param2": "2"
 },
 "time": 1524448722000
 },
 "alertEvent2": {

110 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
 "value": {
 "param1": "on",
 "param2": "2"
 },
 "time": 1524448722000
 }
 },
 "subDevices": [
 {
 "identity": {
 "productKey": "",
 "deviceName": ""
 },
 "properties": {
 "Power": {
 "value": "on",
 "time": 1524448722000
 },
 "WF": {
 "value": { },
 "time": 1524448722000
 }
 },
 "events": {
 "alarmEvent1": {
 "value": {
 "param1": "on",
 "param2": "2"
 },
 "time": 1524448722000
 },
 "alertEvent2": {
 "value": {
 "param1": "on",
 "param2": "2"
 },
 "time": 1524448722000
 }
 }
 }
]
 }
}

Table 10-10: Request Parameters
Parameter Type Description
id String The message ID. You need to define IDs

 for upstream messages using numbers
, and the message IDs must be unique
within the device.

version String The protocol version. Currently, the
value is 1.0.

params Object The request parameters.

Issue: 20191210 111

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Parameter Type Description
properties Object The information about a property,

including property identifier, value and
time when the property was generated.

events Object The information about an event,
including event identifier, value and
time when the event was generated.

subDevices Object The sub-device information.
productKey String The ProductKey of a sub-device.
deviceName String The name of a sub-device.

Response message:
{
 "id": "123",
 "code": 200,
 "data": {}
}

Table 10-11: Response parameters
Parameter Type Description
id String The message ID.
code Integer Result code. A value of 200 indicates

that the request is successful.
Note:

IoT Platform then verifies the devices,
topological relationships, and property
and event definitions in the TSL. If any
one of the verifications fails, the data
report also fails.

data Object The data that is returned when the
request is successful.

Devices report TSL historical data
• Request topic: /sys/{productKey}/{deviceName}/thing/event/property/pack/

post

• Response topic: /sys/{productKey}/{deviceName}/thing/event/property/pack
/post_reply

112 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Request message:
{
 "id": 123,
 "version": "1.0",
 "method": "thing.event.property.history.post",
 "params": [
 {
 "identity": {
 "productKey": "",
 "deviceName": ""
 },
 "properties": [
 {
 "Power": {
 "value": "on",
 "time": 123456
 },
 "WF": {
 "value": "3",
 "time": 123456
 }
 },
 {
 "Power": {
 "value": "on",
 "time": 123456
 },
 "WF": {
 "value": "3",
 "time": 123456
 }
 }
],
 "events": [
 {
 "alarmEvent": {
 "value": {
 "Power": "on",
 "WF": "2"
 },
 "time": 123456
 },
 "alertEvent": {
 "value": {
 "Power": "off",
 "WF": "3"
 },
 "time": 123456
 }
 }
]
 },
 {
 "identity": {
 "productKey": "",
 "deviceName": ""
 },
 "properties": [
 {
 "Power": {
 "value": "on",
 "time": 123456

Issue: 20191210 113

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
 },
 "WF": {
 "value": "3",
 "time": 123456
 }
 }
],
 "events": [
 {
 "alarmEvent": {
 "value": {
 "Power": "on",
 "WF": "2"
 },
 "time": 123456
 },
 "alertEvent": {
 "value": {
 "Power": "off",
 "WF": "3"
 },
 "time": 123456
 }
 }
]
 }
]
}

Response message from IoT Platform:
{
 "id":"123",
 "code":200,
 "data":{}
}

10.6 Desired device property values
After you set a desired property value for a device in IoT Platform, the property
value is updated in real time if the device is online. If the device is offline, the
desired value is cached in IoT Platform. When the device comes online again, it will
obtain the desired value and update the property value. This topic describes the
message formats related to desired property values.

Obtain desired property values
Upstream data in Alink JSON format
A device requests the desired property values from IoT Platform.
• Request topic: /sys/{productKey}/{deviceName}/thing/property/desired/get

114 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
• Response topic: /sys/{productKey}/{deviceName}/thing/property/desired/

get_reply

Request format
{
 "id" : "123",
 "version": "1.0",
 "params" : [
 "power",
 "temperature"
]
}

Response format
{
 "id":"123",
 "code": 200,
 "data":{
 "power": {
 "value": "on",
 "version": 2
 }
 }
}

Table 10-12: Request parameters
Parameter Type Description
id String The message ID. Define the message ID to be a

string of numbers, and be unique in the device.
version String The protocol version. Currently, the value can

only be 1.0.

Issue: 20191210 115

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Parameter Type Description
params List The identifier list of properties of which you

want to obtain the desired values.
In this example, the following property
identifiers are listed:
[
 "power",
 "temperature"
]

Table 10-13: Response parameters
Parameter Type Description
id String The message ID.
code Integer The result code. For more information, see the

common codes on the device.
data Object The desired value information that is returned.

In this example, the desired value information
about property "power" is returned. The
information includes the value and version of
the property.
{
 "power": {
 "value": "on",
 "version": 2
 }
}

Note:
If no desired value is set for a property in IoT
Platform or the desired value has been cleared,
the returned data will not contain the identifier
of this property. In this example, the property
"temperature" does not have a desired value,
therefore, the returned data does not contain
this property identifier.

For more information about the parameters in
data, see the following table Parameters in data.

116 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Table 10-14: Parameters in data
Parameter Type Description
key String The identifier of the property, such as "power"

in this example.
value Object The desired value.
version Integer The current version of the desired value.

Note:
When you set the desired property value for the
first time, this value is 0. After the first desired
value is set, the version automatically changes
to 1. Then, the version increases by 1 every
time you set the desired value.

Clear desired property values
Upstream data in Alink JSON format
Requests to clear the desired property values that are cached in IoT Platform.
• Request topic: /sys/{productKey}/{deviceName}/thing/property/desired/

delete

• Response topic: /sys/{productKey}/{deviceName}/thing/property/desired/
delete_reply

Request format
{
 "id" : "123",
 "version": "1.0",
 "params" : [{
 "power": {
 "version": 1
 },
 "temperature": {
 }
 }
}

Response format
{
 "id":"123",
 "code":200,
 "data":{
 }

Issue: 20191210 117

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
}

Table 10-15: Request parameters
Parameter Type Description
id String The message ID. Define the message ID to be a

string of numbers, and be unique in the device.
version String The protocol version. Currently, the value can

only be 1.0.
params List The list of the properties of which you want to

clear the desired values. A property is identified
by the identifier and version. For example:
{
 "power": {
 "version": 1
 },
 "temperature": { }
}

For more information about params, see the
following table Parameters in params.

Table 10-16: Parameters in params
Parameter Type Description
key String The identifier of the property. In this example

, the following property identifiers are listed:
power and temperature.

118 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Parameter Type Description
version Integer The current version of the desired value.

Note:
• You can obtain the value of the version

 parameter from topic /sys/{productKey}/{
deviceName}/thing/property/desired/get.

• If you set version to 2, IoT Platform clears
the desired value only if the current version
is 2. If the current version of the desired
value is 3 in IoT Platform, this clear request
will be ignored.

• If you are not sure about the current version,
do not specify this parameter in the request.
When there is no version in the request,
IoT Platform does not verify the version, but
clears the desired value directly.

Table 10-17: Response parameters
Parameter Type Description
id String The message ID.
code Integer The result code. For more information, see the

common codes on the device.
data String The returned data.

10.7 Disable and delete devices
Gateways can disable and delete their sub-devices.

Disable devices
Downstream
• Request topic: /sys/{productKey}/{deviceName}/thing/disable
• Reply topic: /sys/{productKey}/{deviceName}/thing/disable_reply
This topic disables a device connection. IoT Platform publishes messages to this
 topic asynchronously, and the devices subscribe to this topic. Gateways can
subscribe to this topic to disable the corresponding sub-devices.

Issue: 20191210 119

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Request message
{
 "id": "123",
 "version": "1.0",
 "params": {},
 "method": "thing.disable"

Response message
{
 "id": "123",
 "code": 200,
 "data": {}
}

Parameter description
Parameter Type Description
id String Message ID. IoT Platform

 generates IDs for
downstream messages.

version String Protocol version.
Currently, the value is 1.0.

params Object Request parameters.
Leave empty.

method String Request method.
code Integer Results information.

For more information,
seeCommon codes on devices

Enable devices
Downstream
• Request Topic: /sys/{productKey}/{deviceName}/thing/enable
• Reply topic: /sys/{productKey}/{deviceName}/thing/enable_reply
This topic enables a device connection. IoT Platform publishes messages to this
 topic asynchronously, and the devices subscribe to this topic. Gateways can
subscribe to this topic to enable the corresponding sub-devices.
Request message
{
 "id": "123",
 "version": "1.0",

120 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
 "params": {},
 "method": "thing.enable"
}

Response message
{
 "id": "123",
 "code": 200,
 "data": {}
}

Parameter description
Parameter Type Description
id String Message ID. IoT Platform

 generates IDs for
downstream messages.

version String Protocol version.
Currently, the value is 1.0.

params Object Request parameters.
Leave empty.

method String Request method.
code Integer Result code. For more

 information, see the
common codes.

Delete devices
Downstream
• Request topic: /sys/{productKey}/{deviceName}/thing/delete
• Reply topic: /sys/{productKey}/{deviceName}/thing/delete_reply
This topic deletes a device connection. IoT Platform publishes messages to this
 topic asynchronously, and the devices subscribe to this topic. Gateways can
subscribe to this topic to delete the corresponding sub-devices.
Request message
{
 "id": "123",
 "version": "1.0",
 "params": {},
 "method": "thing.delete"

Issue: 20191210 121

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
}

Response message
{
 "id": "123",
 "code": 200,
 "data": {}
}

Parameter description
Parameter Type Description
id String Message ID. IoT Platform

 generates IDs for
downstream messages.

version String Protocol version.
Currently, the value is 1.0.

params Object Request parameters.
Leave empty.

method String Request method.
code String Result code. For more

 information, see the
common codes.

10.8 Device tags
Some static extended device information, such as vendor model and device model,
can be saved as device tags.

Report tags
Upstream
• Request topic: /sys/{productKey}/{deviceName}/thing/deviceinfo/update
• Reply topic: /sys/{productKey}/{deviceName}/thing/deviceinfo/update_rep

ly

Request message
{
 "id": "123",
 "version": "1.0",
 "params": [
 {
 "attrKey": "Temperature",
 "attrValue": "36.8"

122 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
 }
]
}

Response message
{
 "id": "123",
 "code": 200,
 "data": {}
}

Parameter description
Parameter Type Description
id String Message ID. You need to

define IDs for upstream
messages using numbers
, and the message IDs
must be unique within the
 device.

version String Protocol version.
Currently, the value can
only be 1.0.

params Object Request parameters.
This parameter can
contain a maximum of 200
 items.

attrKey String Tag name.
• Length: Up to 100 bytes.
• Valid characters:

Lowercase letters a to
 z, uppercase letters A
 to Z, digits 0 to 9, and
underscores (_).

• The tag name must
start with an English
letter or underscore (_).

attrValue String Tag value.

Issue: 20191210 123

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Parameter Type Description
code Integer Result code. A value of 200

 indicates the request is
successful.

Error codes
Error code Error message Description
460 request parameter error The request parameters are

incorrect.
6100 device not found The device does not exist.

Delete tags
Upstream
• Request topic: /sys/{productKey}/{deviceName}/thing/deviceinfo/delete
• Reply topic: /sys/{productKey}/{deviceName}/thing/deviceinfo/delete_rep

ly

Request message
{
 "id": "123",
 "version": "1.0",
 "params": [
 {
 "attrKey": "Temperature"
 }
]
}

Response message
{
 "id": "123",
 "code": 200,
 "data": {}
}

Parameter description

124 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Parameter Type Description
id String Message ID. You need to

define IDs for upstream
messages using numbers
, and the message IDs
must be unique within the
 device.

version String Protocol version.
Currently, the value can
only be 1.0.

params Object Request parameters.
attrKey String Tag name.

• Length: Up to 100 bytes.
• Valid characters:

Lowercase letters a to
 z, uppercase letters A
 to Z, digits 0 to 9, and
underscores (_).

• The tag name must
start with an English
letter or underscore (_).

attrValue String Tag value.
code Integer Result code. A value of 200

 indicates the request is
successful.

Error messages
Error code Error message Description
460 request parameter error The request parameters are

incorrect.
6100 device not found The device does not exist.

Issue: 20191210 125

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol

10.9 TSL model
A device can publish requests to the request topic to obtain the Device TSL model from
IoT Platform.
• Request topic：/sys/{productKey}/{deviceName}/thing/dsltemplate/get

• Reply topic：/sys/{productKey}/{deviceName}/thing/dsltemplate/get_reply

The Allink data format of a request
{
 "id": "123",
 "version": "1.0",
 "params": {}
}

The Allink data format of a response
{
 "id": "123",
 "code": 200,
 "data": {
 "schema": "https://iot-tsl.oss-cn-shanghai.aliyuncs.com/schema.
json",
 "link": "/sys/1234556554/airCondition/thing/",
 "profile": {
 "productKey": "1234556554",
 "deviceName": "airCondition"
 },
 "properties": [
 {
 "identifier": "fan_array_property",
 "name": "Fan array property",
 "accessMode": "r",
 "required": true,
 "dataType": {
 "type": "array",
 "specs": {
 "size": "128",
 "item": {
 "type": "int"
 }
 }
 }
 }
],
 "events": [
 {
 "identifier": "alarm",
 "name": "alarm",
 "desc": "Fan alert",
 "type": "alert",
 "required": true,
 "outputData": [
 {
 "identifier": "errorCode",
 "name": "Error code",
 "dataType": {

126 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
 "type": "text",
 "specs": {
 "length": "255"
 }
 }
 }
],
 "method": "thing.event.alarm.post"
 }
],
 "services": [
 {
 "identifier": "timeReset",
 "name": "timeReset",
 "desc": "Time calibration",
 "inputData": [
 {
 "identifier": "timeZone",
 "name": "Time zone",
 "dataType": {
 "type": "text",
 "specs": {
 "length": "512"
 }
 }
 }
],
 "outputData": [
 {
 "identifier": "curTime",
 "name": "Current time",
 "dataType": {
 "type": "date",
 "specs": {}
 }
 }
],
 "method": "thing.service.timeReset"
 },
 {
 "identifier": "set",
 "name": "set",
 "required": true,
 "desc": "Set properties",
 "method": "thing.service.property.set",
 "inputData": [
 {
 "identifier": "fan_int_property",
 "name": "Integer property of the fan",
 "accessMode": "rw",
 "required": true,
 "dataType": {
 "type": "int",
 "specs": {
 "min": "0",
 "max": "100",
 "unit": "g/ml",
 "unitName": "Millilitter"
 }
 }
 }
],
 "outputData": []
 },

Issue: 20191210 127

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
 {
 "identifier": "get",
 "name": "get",
 "required": true,
 "desc": "Get properties",
 "method": "thing.service.property.get",
 "inputData": [
 "array_property",
 "fan_int_property",
 "batch_enum_attr_id",
 "fan_float_property",
 "fan_double_property",
 "fan_text_property",
 "Maid ",
 "batch_boolean_attr_id",
 "fan_struct_property"
],
 "outputData": [
 {
 "identifier": "fan_array_property",
 "name": "Fan array property",
 "accessMode": "r",
 "required": true,
 "dataType": {
 "type": "array",
 "specs": {
 "size": "128",
 "item": {
 "type": "int"
 }
 }
 }
 }
]
 }
]
 }
}

Parameter descriptions:
Parameter Type Description
id String Message ID. You need to

define IDs for upstream
messages using numbers
, and the message IDs
must be unique within the
 device.

version String Protocol version.
Currently, the value is 1.0.

params Object Leave this parameter
empty.

128 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Parameter Type Description
productKey String ProductKey. In the

example, the ProductKey
is 1234556554.

deviceName String Device name. In the
example, the device name
is airCondition.

data Object TSL model of the device.
For more information,
seeOverview

Error codes
Error code Error message Description
460 request parameter error The request parameters are

incorrect.
6321 tsl: device not exist in product The device does not exist.

10.10 Firmware update
For information about the firmware update, see #unique_68 and #unique_69.

Report the firmware version
Upstream
• Request topic: /ota/device/inform/{productKey}/{deviceName}

The device publishes a message to this topic to report the current firmware
version to IoT Platform.

Request message
{
 "id": "123",
 "params": {
 "version": "1.0.1"
 }
}

Parameter description

Issue: 20191210 129

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Parameter Type Description
id String Message ID. You need to

define IDs for upstream
messages using numbers
, and the message IDs
must be unique within the
 device.

version String Version information of the
 firmware.

Push firmware information
Downstream
• Request topic: /ota/device/upgrade/{productKey}/{deviceName}

IoT Platform publishes messages to this topic to push firmware information. The
devices subscribe to this topic to obtain the firmware information.

Request message
{
 "code": "1000",
 "data": {
 "size": 432945,
 "version": "2.0.0",
 "url": "https://iotx-ota-pre.oss-cn-shanghai.aliyuncs.com/nopoll_0
.4.4.tar.gz?Expires=1502955804&OSSAccessKeyId=XXXXXXXXXXXXXXXXXXXX
&Signature=XfgJu7P6DWWejstKJgXJEH0qAKU%3D&security-token=CAISuQJ1q6
Ft5B2yfSjIpK6MGsyN1Jx5jo6mVnfBglIPTvlvt5D50Tz2IHtIf3NpAusdsv03nWxT7v4f
lqFyTINVAEvYZJOPKGrGR0DzDbDasumZsJbo4f%2FMQBqEaXPS2MvVfJ%2BzLrf0ceu
sbFbpjzJ6xaCAGxypQ12iN%2B%2Fr6%2F5gdc9FcQSkL0B8ZrFsKxBltdUROFbIKP%
2BpKWSKuGfLC1dysQcO1wEP4K%2BkkMqH8Uic3h%2Boy%2BgJt8H2PpHhd9NhXuV2WMzn2
%2FdtJOiTknxR7ARasaBqhelc4zqA%2FPPlWgAKvkXba7aIoo01fV4jN5JXQfAU8KLO8tR
jofHWmojNzBJAAPpYSSy3Rvr7m5efQrrybY1lLO6iZy%2BVio2VSZDxshI5Z3McK
ARWct06MWV9ABA2TTXXOi40BOxuq%2B3JGoABXC54TOlo7%2F1wTLTsCUqzzeIiXVOK
8CfNOkfTucMGHkeYeCdFkm%2FkADhXAnrnGf5a4FbmKMQph2cKsr8y8UfWLC6Iz
vJsClXTnbJBMeuWIqo5zIynS1pm7gf%2F9N3hVc6%2BEeIk0xfl2tycsUpbL2
FoaGk6BAF8hWSWYUXsv59d5Uk%3D",
 "md5": "93230c3bde425a9d7984a594ac55ea1e",
 "sign": "93230c3bde425a9d7984a594ac55ea1e",
 "signMethod": "Md5"
 },
 "id": "1507707025",
 "message": "success"
}

Parameter description

130 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Parameter Type Description
id String Message ID. IoT Platform

 generates IDs for
downstream messages.

message String Result information.
version String Version information of the

 firmware.
size Long Firmware size in bytes.
url String OSS address of the

firmware.
sign String Firmware signature.
signMethod String Signing method. Currently

, the supported methods
are MD5 and sha256.

md5 String This parameter is
reserved. This parameter
 is used to be compatible
with old device informatio
n. When the signing
 method is MD5, IoT
Platform will assign
values to both the sign
and md5 parameters.

Report update progress
Upstream
• Request topic: /ota/device/progress/{productKey}/{deviceName}

A device subscribes to this topic to report the firmware update progress.
Request message
{
 "id": "1213",
 "params": {
 "step": "-1",
 "desc": "Firmware update has failed. No firmware information is
available."
 }
}

Parameter description

Issue: 20191210 131

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Parameter Type Description
id String Message ID. You need to define IDs for

upstream messages using numbers, and
 the message IDs must be unique within
the device.

step String Firmware update progress information.
Value range:
• A value from 1 to 100 indicates the

progress percentage.
• A value of -1 indicates the firmware

update has failed.
• A value of -2 indicates that the

firmware download has failed.
• A value of -3 indicates that firmware

verification has failed.
• A value of -4 indicates that the

firmware installation has failed.
desc String Description of the current step. If

an exception occurs, this parameter
displays an error message.

Request firmware information from IoT Platform
• Request topic: /ota/device/request/{productKey}/{deviceName}
Request message
{
 "id": "123",
 "params": {
 "version": "1.0.1"
 }
}

Parameter description

132 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Parameter Type Description
id String Message ID. You need to

define IDs for upstream
messages using numbers
, and the message IDs
must be unique within the
 device.

version String Version information of the
 firmware.

Response message:
• Message with firmware information:

{
 "code": "1000",
 "data": {
 "size": 93796291,
 "sign": "f8d85b250d4d787a9f483d89a9747348",
 "version": "1.0.1.9.20171112.1432",
 "url": "https://the_firmware_url",
 "signMethod": "Md5",
 "md5": "f8d85b250d4d787a9f483d89a9747348"
 },
 "id": "8758548588458",
 "message": "success"
}

• No firmware file for update
{
 "code": 500,
 "message": "none upgrade operation of the device."
}

10.11 Remote configuration
This article introduces Topics and Alink JSON format requests and responses for
remote conficuration. For how to use remote configuration, see #unique_71 in User
Guide.

Device requests configuration information from IoT Platform
Upstream
• Request topic: /sys/{productKey}/{deviceName}/thing/config/get
• Reply topic: /sys/{productKey}/{deviceName}/thing/config/get_reply

Issue: 20191210 133

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Request message
{
 "id": 123,
 "version": "1.0",
 "params": {
 "configScope": "product",
 "getType": "file"
 }
}

Response message
{
 "id": "123",
 "version": "1.0",
 "code": 200,
 "data": {
 "configId": "123dagdah",
 "configSize": 1234565,
 "sign": "123214adfadgadg",
 "signMethod": "Sha256",
 "url": "https://iotx-config.oss-cn-shanghai.aliyuncs.com/nopoll_0
.4.4.tar.gz?Expires=1502955804&OSSAccessKeyId=XXXXXXXXXXXXXXXXXXXX
&Signature=XfgJu7P6DWWejstKJgXJEH0qAKU%3D&security-token=CAISuQJ1q6
Ft5B2yfSjIpK6MGsyN1Jx5jo6mVnfBglIPTvlvt5D50Tz2IHtIf3NpAusdsv03nWxT7v4f
lqFyTINVAEvYZJOPKGrGR0DzDbDasumZsJbo4f%2FMQBqEaXPS2MvVfJ%2BzLrf0ceu
sbFbpjzJ6xaCAGxypQ12iN%2B%2Fr6%2F5gdc9FcQSkL0B8ZrFsKxBltdUROFbIKP%
2BpKWSKuGfLC1dysQcO1wEP4K%2BkkMqH8Uic3h%2Boy%2BgJt8H2PpHhd9NhXuV2WMzn2
%2FdtJOiTknxR7ARasaBqhelc4zqA%2FPPlWgAKvkXba7aIoo01fV4jN5JXQfAU8KLO8tR
jofHWmojNzBJAAPpYSSy3Rvr7m5efQrrybY1lLO6iZy%2BVio2VSZDxshI5Z3McK
ARWct06MWV9ABA2TTXXOi40BOxuq%2B3JGoABXC54TOlo7%2F1wTLTsCUqzzeIiXVOK
8CfNOkfTucMGHkeYeCdFkm%2FkADhXAnrnGf5a4FbmKMQph2cKsr8y8UfWLC6Iz
vJsClXTnbJBMeuWIqo5zIynS1pm7gf%2F9N3hVc6%2BEeIk0xfl2tycsUpbL2
FoaGk6BAF8hWSWYUXsv59d5Uk%3D",
 "getType": "file"
 }
}

Parameter description
Parameter Type Description
id String Message ID. You need to

define IDs for upstream
messages using numbers
, and the message IDs
must be unique within the
 device.

version String Protocol version.
Currently, the value is 1.0.

134 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Parameter Type Description
configScope String Configuration scope.

Currently, IoT Platform
 supports only product
dimension configuration.
Value: product.

getType String Desired file type of the
configuration. Currently,
the supported type is file.
Set the value to file.

configId String ID of the configuration.
configSize Long Size of the configuration

file, in bytes.
sign String Signature value.
signMethod String Signing method. The

supported signing method
 is Sha256.

url String The OSS address where
the configuration file is
stored.

code Integer Result code. A value of
 200 indicates that the
operation is successful
, and other status
codes indicate that the
operation has failed.

Error codes
Error code Error message Description
6713 thing config function is not

available
Remote configuration feature of
 the product has been disabled
. On the Remote Configurat
ion page of the IoT Platform
 console, enable remote
configuration for the product .

6710 no data Not found any configured data.

Issue: 20191210 135

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Push configurations in the IoT Platform console to devices.

Downstream
• Request topic: /sys/{productKey}/{deviceName}/thing/config/push
• Reply topic: /sys/{productKey}/{deviceName}/thing/config/push_reply
Devices subscribe to this configuration push topic for configurations that is pushed
by IoT Platform. After you have edited and submitted a configuration file in the
IoT Platform console, IoT Platform pushes the configuration to the devices in
an asynchronous method. IoT Platform subscribes to a data exchange topic for
the result of asynchronous calls. The data exchange topic is /{productKey}/{
deviceName}/thing/downlink/reply/message.
You can use Rules Engine to forward the results returned by the devices to another
Alibaba Cloud product. The following figure shows an example of rule action
configuration.

Request message:
{
 "id": "123",
 "version": "1.0",
 "params": {
 "configId": "123dagdah",
 "configSize": 1234565,
 "sign": "123214adfadgadg",

136 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
 "signMethod": "Sha256",
 "url": "https://iotx-config.oss-cn-shanghai.aliyuncs.com/nopoll_0
.4.4.tar.gz?Expires=1502955804&OSSAccessKeyId=XXXXXXXXXXXXXXXXXXXX
&Signature=XfgJu7P6DWWejstKJgXJEH0qAKU%3D&security-token=CAISuQJ1q6
Ft5B2yfSjIpK6MGsyN1Jx5jo6mVnfBglIPTvlvt5D50Tz2IHtIf3NpAusdsv03nWxT7v4f
lqFyTINVAEvYZJOPKGrGR0DzDbDasumZsJbo4f%2FMQBqEaXPS2MvVfJ%2BzLrf0ceu
sbFbpjzJ6xaCAGxypQ12iN%2B%2Fr6%2F5gdc9FcQSkL0B8ZrFsKxBltdUROFbIKP%
2BpKWSKuGfLC1dysQcO1wEP4K%2BkkMqH8Uic3h%2Boy%2BgJt8H2PpHhd9NhXuV2WMzn2
%2FdtJOiTknxR7ARasaBqhelc4zqA%2FPPlWgAKvkXba7aIoo01fV4jN5JXQfAU8KLO8tR
jofHWmojNzBJAAPpYSSy3Rvr7m5efQrrybY1lLO6iZy%2BVio2VSZDxshI5Z3McK
ARWct06MWV9ABA2TTXXOi40BOxuq%2B3JGoABXC54TOlo7%2F1wTLTsCUqzzeIiXVOK
8CfNOkfTucMGHkeYeCdFkm%2FkADhXAnrnGf5a4FbmKMQph2cKsr8y8UfWLC6Iz
vJsClXTnbJBMeuWIqo5zIynS1pm7gf%2F9N3hVc6%2BEeIk0xfl2tycsUpbL2
FoaGk6BAF8hWSWYUXsv59d5Uk%3D",
 "getType": "file"
 },
 "method": "thing.config.push"
}

Response message
{
 "id": "123",
 "code": 200,
 "data": {}
}

Parameter description
Parameter Type Description
id String Message ID. IoT Platform

 generates IDs for
downstream messages.

version String Protocol version.
Currently, the value is 1.0.

configScope String Configuration scope.
Currently, IoT Platform
 supports only product
dimension configuration.
Value: product.

getType String Desired file type of the
configuration. Currently,
the supported type is file.
Set the value to file.

configId String ID of the configuration.
configSize Long Size of the configuration

file, in bytes.
sign String Signature value.

Issue: 20191210 137

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Parameter Type Description
signMethod String Signing method. The

supported signing method
 is Sha256.

url String The OSS address where
the configuration file is
stored.

method String Request method.
The value is
thing.config.push.

code Integer Result code. For more
information, see Common
codes on devices.

10.12 Device network status
Devices that are connected to Wi-Fi can report the network status to the cloud
through specified device topics. This article describes device topics, data formats,
and network errors that are related to the reporting of device network status.

Note:
If your devices use AliOS Things of version 3.0 or later, the system automatically
monitors and reports network status data.

Device automatically reports status
Data is reported through the following topics.
Request topic: /sys/{productKey}/{deviceName}/_thing/diag/post
Response topic: /sys/{productKey}/{deviceName}/_thing/diag/post_reply
The following is the request format for the Alink protocol.

138 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
• Current data: the data that is immediately reported after being collected by the

device.
The device immediately reports the network status data for the following two
scenarios.
- When a network error occurs, the device immediately reports the error to IoT

Platform.
- If you have set scheduled collection, the device collects data at the specified

time and immediately reports the data.
For example, the device detects a network error at 08:10:29 of August 22, 2019,
and immediately reports the data. Then, the data format for the network error is
 as follows:
{
 "id": "123",
 "version": "1.0",
 "params": {
 "p": {
 "wifi": {
 "rssi": 75,
 "snr": 20,
 "per": 10,
 "err_stats":"10,02,01;10,05,01"
 },
 "_time": 1566432629000
 },
 "model": "quantity=single|format=simple|time=now"
 }
}

Note:
If no error occurs, the err_stats parameter is empty.

• Historical data: the data that is not reported immediately. In most cases, the device
may delay the reporting of the collected network metrics. A device can report
historical data in batches.
Data format:
{
 "id": "123",
 "version": "1.0",
 "params": {
 "p": [
 {
 "wifi": {
 "rssi": 75,
 "snr": 20,
 "per": 10,

Issue: 20191210 139

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
 "err_stats":"10,02,01;10,05,01"
 },
 "_time": 1566432629000
 }
],
 "model": "format=simple|quantity=batch|time=history"
 }
}

Note:
If no error occurs, the err_stats parameter is empty.

Table 10-18: Request parameters
Field Type Description
id String The message ID. The message ID must be a

number string and it must be unique among all
messages for a device.

version String The protocol version. Set the value to 1.0.
params Object Input parameters of the request.
wifi Object The network connection mode of the device

 is WiFi. This parameter value includes four
metrics of the network status.

rssi Integer The received signal strength.
snr Integer The signal-to-noise ratio of the wireless signal.
per Integer The data packet loss rate.
err_stats String The error message. This parameter is only

included in the reported data only when the
device detects a network error.
Format: "type,code,count;type,code,count".
Example: "10,02,01;10,05,01".
Parameter description:
• type: the error type
• code: the error code
• count: the number of errors
For specific errors, you can refer to the err_stats
table below.

140 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Field Type Description
_time Long The timestamp of the network status.

Note:
The timestamp can be empty.

model String The model of the message body. Valid values:
• format: the data format. Only simple format

is supported. It indicates that the data is in a
simplified format.

• quantity: the number of data records to
report.
- single: indicates that a single data record

is reported.
- batch: indicates that multiple data records

are reported. This option is only used to
report historical data.

• time: reports the data based on the collection
time.
- now: reports the current data.
- history: reports the historical data.

Table 10-19: err_stats
Error type Description Cause
0x00 Wireless environment

parameters. • The signal strength (RSSI): 0x01
• Signal-to-noise ratio (SNR): 0x02
• Packet loss rate (drop ratio):

0x03
0x10 The device failed to

connect to IoT Platform. • Router connection failure (Wi-Fi
 fail): 0x01

• The device failed to acquire the
IP address (DHCP fail): 0x02

• DNS failed to resolve the domain
name DNS (DNS fail): 0x03

• TCP handshake failed (TCP fail):
0x04

• TLS handshake failed (TLS fail):
0x05

Issue: 20191210 141

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Error type Description Cause
0x20 Network exceptions

between devices and IoT
Platform.

• IoT Platform rejected the
connection from the device (
CLOUD_REJECT): 0x01

• Errors occurred during
device upload or download (
RW_EXCEPTION): 0x02

• Errors occurred during the
pinging between the device and
IoT Platform (PING_EXCEPTION
): 0x03

0x30 Device runtime
exceptions. • The watchdog timer reset (

WD_RST): 0x01
• Unexpected restart of the device

storage (PANIC_ERR): 0x02
• Reboot errors after the device

powers off (RE-POWER): 0x03
• Reboot errors (FATAL_ERR):

0x04
0x40 Dynamic memory

monitoring. • Total memory (type of total size
): 0x01

• Total idle memory (type of free
size): 0x02

0x50 BLE exceptions. N/A
Response format:
{
 "id": "123",
 "version": "1.0",
 "code": 200,
 "data": {}
}

Table 10-20: Response parameters
Field Type Description
id String The message ID. It is a number string.
code Integer The response code. A value of 200 indicates that

the request is successful.

142 Issue: 20191210

物联⽹平台 Manage Device / 10 Develop devices based on AlinkProtocol
Field Type Description
version String The protocol version. The current protocol

version is 1.0.
data Object If the request is successful, the data object is

empty.

10.13 Common codes on devices
Common codes on devices indicate the results that are returned to IoT Platform in
response to requests from IoT Platform.
Result code Message Description
200 success The request is successful.
400 request error Internal service error.
460 request parameter error The request parameters are

invalid. The device has failed
input parameter verification.

429 too many requests The system is busy. This code
can be used when the device is
too busy to process the request.

100000-110000 Device-specific error messages Devices use numbers from
100000 to 110000 to indicate
device-specific error messages.

Issue: 20191210 143

物联⽹平台 Manage Device / 11 Error codes for device SDKs

11 Error codes for device SDKs
This topic describes error codes for device SDKs.

Common error codes
Table 11-1: Common error codes and descriptions
Error code Cause Solution
400 An error occurred while

processing the request.
Submit a ticket.

429 Traffic throttling is triggered
due to frequent requests.

Submit a ticket.

460 The data reported by the device
 is empty, the format of the
parameters is invalid, or the
 number of parameters has
reached the upper limit.

Follow the data formats
described in Communications over

Alink protocol.

500 An unknown error occurred in
the system.

Submit a ticket.

5005 An error occurred while
 querying the product
information.

Check the product information
 in the console and make sure
that the ProductKey is correct.

5244 An error occurred while
querying the metadata of
LoRaWAN-based products.

Submit a ticket.

6100 An error occurred while
querying the information about
 the specified device.

Log on to the console and check
whether the device information
on the Devices page is correct.

6203 An error occurred while
parsing the topic.

Submit a ticket.

6250 An error occurred while
 querying the product
information.

Check the product information
 in the console and make sure
that the ProductKey is correct.

6204 The specified device is disabled
. You cannot perform any
operation on this device.

Check the status of the device
 on the Devices page in the
console.

144 Issue: 20191210

物联⽹平台 Manage Device / 11 Error codes for device SDKs

Error code Cause Solution
6450 The method parameter is

missing after the pass-through
 (custom) data is parsed to the
standard Alink format.

On the Device Log page in the
console, or in the local log file
of the device, check whether
the data reported by the device
contains the method parameter.

6760 An error occurs in the system. Submit a ticket.
Table 11-2: Common error codes about parsing scripts
Error code Cause Solution
26001 The system does not find any

parsing script.
Navigate to the Data Parsing
tab in the console and make
sure that the script has been
submitted.

Note:
You cannot run scripts that are
not submitted.

26002 The script runs correctly, but it
contains errors.

Use the same data to test the
script. Check the error message
 and revise the script. We
recommend that you test the
script on a local device before
 you submit the script to IoT
Platform.

26006 The script runs correctly but
 it contains errors. The script
 must contain the protocolTo
RawData and rawDataToP
rotocol methods. An error
occurs if these methods are
missing.

Navigate to the Data
Parsing tab in the console
and check whether the
protocolToRawData and
rawDataToProtocol methods
exist.

Issue: 20191210 145

物联⽹平台 Manage Device / 11 Error codes for device SDKs

Error code Cause Solution
26007 The script runs correctly, but

 the format of the response is
invalid. The script must contain
 the protocolToRawData and
rawDataToProtocol methods
. The protocolToRawData
method must return a byte
[] array, and the rawDataToP
rotocol method must return a
 JSON object. An error occurs
 if the response is not in the
required format.

Test the script in the console
or on a local device, and check
 whether the format of the
responses returned by these
methods is valid.

26010 Traffic throttling is triggered
due to frequent requests.

Submit a ticket.

Table 11-3: Common error codes about TSL models
Error code Cause Solution
5159 When the system verifies

parameters based on the TSL
model, an error occurred while
querying the property.

Submit a ticket.

5160 When the system verifies
parameters based on the TSL
model, an error occurred while
querying the event.

Submit a ticket.

5161 When the system verifies
parameters based on the TSL
model, an error occurred while
querying the service.

Submit a ticket.

6207 The Alink data reported by the
 device or the data returned
 after the system parses the
custom data is not in the JSON
format.

Follow the data formats
described in Device properties,

events, and services when you
report data.

146 Issue: 20191210

物联⽹平台 Manage Device / 11 Error codes for device SDKs

Error code Cause Solution
6300 The specified method does not

exist. When the system verifies
parameters based on the TSL
model, the method parameter
does exist in the Alink data
reported by the device, or after
the pass-through (custom) data
is parsed to Alink format.

On the Device Log page in the
console, or in the local log file
of the device, check whether
the data reported by the device
contains the method parameter.

6301 When the system verifies
parameters based on the TSL
model, the data type is specified
 as an array. However, the type
of data reported by the device is
 not an array.

Navigate to the Define Feature
tab in the console, and check
the data type specified in the
TSL model. Report data with the
required data type.

6302 Some required input
parameters of the service are
not set.

Log on to the console and check
 the TSL model. Make sure that
the required input parameters
are correctly set.

6306 When the system verifies
parameters based on the TSL
model, the following errors may
be found:
• The data types of the input

 parameters are different
from those specified in the
TSL model.

• The values of the input
parameter are not within the
 value range specified in the
TSL model.

Log on to the console and check
 the TSL model. Make sure that
 the data types of the input
parameters are the same as
those defined in the TSL model
, and the parameter values are
within the value range specified
 in the TSL model.

Issue: 20191210 147

物联⽹平台 Manage Device / 11 Error codes for device SDKs

Error code Cause Solution
6307 The input parameter does not

comply with the 32-bit float
data specifications specified
in the TSL model. When the
system verifies parameters
based on the TSL model, the
following errors may be found:
• The data types of the input

parameter are different from
 those specified in the TSL
model.

• The values of the input
parameters are not within
the value range specified in
the TSL model.

6308 The input parameters do not
comply with the Boolean data
specifications specified in the
TSL model. When the system
verifies parameters based on
the TSL model, the following
errors may be found:
• The data types of the input

 parameters are different
from those specified in the
TSL model.

• The values of the input
parameters are not within
the value range specified in
the TSL model.

148 Issue: 20191210

物联⽹平台 Manage Device / 11 Error codes for device SDKs

Error code Cause Solution
6310 The input parameters do not

comply with the text data
specifications specified in the
TSL model. When the system
verifies parameters based on
the TSL model, the following
errors may be found:
• The data types of the

parameters are different
from those specified in the
TSL model.

• The length of the parameters
 exceeds the upper limit
specified in the TSL model.

6322 The input parameters do not
comply with the 64-bit float
data specifications specified
in the TSL model. When the
system verifies parameters
based on the TSL model, the
following errors may be found:
• The data types of the input

 parameters are different
from those specified in the
TSL model.

• The values of the input
parameters are not within
the value range specified in
the TSL model.

6304 The input parameters cannot be
 found in the struct specified in
the TSL model.

6309 The input parameters do not
 comply with the enum data
specifications specified in the
TSL model.

Log on to the console and check
 the TSL model. Make sure that
 the data types of the input
parameters are correct.

Issue: 20191210 149

物联⽹平台 Manage Device / 11 Error codes for device SDKs

Error code Cause Solution
6311 The input parameters do not

comply with the date data
specifications specified in the
TSL model. When the system
verifies parameters based on
the TSL model, the following
errors may be found:
• The data types of the input

 parameters are different
from those specified in the
TSL model.

• The input data is not a UTC
timestamp.

6312 The input parameters do not
comply with the struct data
specifications specified in the
TSL model. When the system
verifies parameters based on
the TSL model, the following
errors may be found:
• The data types of the input

 parameters are different
from those specified in the
TSL model.

• The number of the
parameters contained in the
 struct is different from that
specified in the TSL model.

6320 The specified property cannot
 be found in the TSL model of
the device.

Log on to the console and check
 whether the specified property
 exists in the TSL model. If the
property does not exist, add the
 property.

6321 The Identifier parameter of the
 property, event, or service is
not set.

Submit a ticket.

6317 Parameters required in the TSL
model are not set, such as the
type and specs parameters.

Submit a ticket.

150 Issue: 20191210

物联⽹平台 Manage Device / 11 Error codes for device SDKs

Error code Cause Solution
6324 The input parameters do not

comply with the array data
specifications specified in the
TSL model. When the system
verifies parameters based on
the TSL model, the following
errors may be found:
• The elements in the passed

-in array do not match the
array definition in the TSL
model.

• The number of elements in
the array exceeds the upper
 limit specified in the TSL
model.

• Log on to the console and
check the array definition in
the TSL model.

• View the log reported by the
device and check the number
 of elements in the array
reported by the device.

6325 The type of elements in the
 array is not supported by
IoT Platform. Currently, the
following element types are
supported: int32, float, double,
text, and struct.

Check whether the element
 type is supported by IoT
Platform.

6326 The format of the time field
reported by the device is invalid
.

Follow the formats described in
Device properties, events, and services.
Report data in the required
formats.

6328 The value of the input
parameter is not an array.

Log on to the console and check
 the TSL model. Make sure
that the data type of the input
parameter is array.

System error codes
6318
6313
6329
6323
6316
6314
6301

An error occurred in the system
 while parsing the TSL model.

Submit a ticket.

Issue: 20191210 151

物联⽹平台 Manage Device / 11 Error codes for device SDKs

Device registration error codes
Request topic: /sys/{productKey}/{deviceName}/thing/sub/register.
Error codes: 460, 5005, 5244, 500, 6288, 6100, 6619, 6292, and 6203.
The following table lists the causes and solutions of errors that may occur when
you register a device. For more information about the other error codes, see the
Common error codes section in this topic.
Error code Cause Solution
6288 Dynamic registration is

disabled for the device.
Log on to the console and
enable dynamic registration on
the Product Details page.

6619 The device has been bound to
another gateway.

Navigate to the Device
Information tab in the console
 and check whether the sub-
device has already been bound
to a gateway.

Unique-certificate-per-product authentication
Error codes: 460, 6250, 6288, 6600, 6289, 500, and 6292.
The following table lists the causes and solutions of errors that may occur when you
 dynamically register a directly connected device based on unique-certificate-per-
product authentication. For more information about the other error codes, see the
Common error codes section in this topic.
Error code Cause Solution
6288 Dynamic registration is

disabled for the device.
Log on to the console and
enable dynamic registration on
the Product Details page.

6292 The algorithm for calculating
the signature is not supported
by IoT Platform.

Use algorithms that are
supported by the signMethod
 parameter, as described in
Device identity registration.

6600 An error occurred while
verifying the signature.

Use the supported algorithms
to calculate and verify the
signature, as described in Device

identity registration.

152 Issue: 20191210

物联⽹平台 Manage Device / 11 Error codes for device SDKs

Error code Cause Solution
6289 The device has already been

activated.
Log on to the console and check
the status of the device.

Topology error codes
Add topological relationships
Request topic: /sys/{productKey}/{deviceName}/thing/topo/add.
Error codes: 460, 429, 6402, 6100, 401, 6204, 6400, and 6203.
The following table lists the causes and solutions of error that may occur when you
 add a topological relationship between the gateway and a sub-device. For more
information about the other error codes, see the Common error codes section in
this topic.
Error code Cause Solution
401 The system failed to verify the

 signature while adding the
topological relationship.

Use the supported algorithms
to calculate and verify the
signature, as described in Add a

topological relationship.
6402 The gateway and sub-device

are the same device. When you
 add a topological relationship
, you must not add the current
gateway to itself as a sub-device
.

View the information of all
existing sub-devices, and check
 whether the gateway and a
 sub-device have the same
information.

6400 The number of sub-devices that
 you have added to the gateway
has reached the upper limit.

Log on to the console and check
the number of existing sub-
devices on the Sub-device
Management tab page. For more
information about the limits,
see #unique_74.

Delete topological relationships
Request topic: /sys/{productKey}/{deviceName}/thing/topo/delete.
Error codes: 460, 429, 6100, 6401, and 6203.
The following table lists the cause and solution of the error that may occur when
 you delete a topological relationship between the gateway and a sub-device. For

Issue: 20191210 153

物联⽹平台 Manage Device / 11 Error codes for device SDKs

more information about the other error codes, see the Common error codes section
 in this topic.
Error code Cause Solution
6401 The topological relationsh

ip does not exist when the
system verifies the topological
relationship.

Log on to the console, click
Devices in the left-side
navigation pane, and then click
the Sub-device Management tab
on the Device Details page. You
can then view the information
about the sub-device.

Obtain topological relationships
Request topic: /sys/{productKey}/{deviceName}/thing/topo/get
Error codes: 460, 429, 500, and 6203. For more information about these error codes
, see the Common error codes section in this topic.
The gateway reports a detected sub-device
Request topic: /sys/{productKey}/{deviceName}/thing/list/found.
Error codes: 460, 500, 6250, 6280, and 6203.
The following table lists the cause and solution of error that may occur when a
gateway reports a detected sub-device. For more information about the other error
codes, see the Common error codes section in this topic.
Error code Cause Solution
6280 The name of the sub-device

 reported by the gateway is
invalid. The device name can
 contain Chinese characters,
letters, digits, and underscore
s (_). It must be from 4 to 32
 characters in length. Each
Chinese character accounts for
two character spaces.

Check whether the name of
the sub-device reported by the
gateway is valid.

Sub-device connection and disconnection error codes
A sub-device connects to IoT Platform
Request topic: /ext/session/${productKey}/${deviceName}/combine/login.

154 Issue: 20191210

物联⽹平台 Manage Device / 11 Error codes for device SDKs

Error codes: 460, 429, 6100, 6204, 6287, 6401, and 500.
A sub-device automatically disconnects from IoT Platform
Error messages are sent to this topic: /ext/session/{productKey}/{deviceName}/
combine/logout_reply.
Error codes: 460, 520, and 500.
A sub-device is disconnected from IoT Platform by force
Error messages are sent to this topic: /ext/error/{productKey}/{deviceName}.
Error codes: 427, 521, 522, and 6401.
A sub-devices fails to send a message
Error messages are sent to this topic: /ext/error/{productKey}/{deviceName}.
Error code: 520.
The following table lists the causes and solutions of errors that may occur when a
 sub-device connects to or disconnects from IoT Platform. For more information
about the other error codes, see the Common error codes section in this topic.
Error code Cause Solution
427 The device frequently

reconnects to IoT Platform.
The same device certificate
information is used to connect
another device to IoT Platform
. This disconnects the current
device from IoT Platform.

Navigate to the Device Details
page in the console and
check when the device was
most recently connected to
IoT Platform. You can then
determine whether the same
device certificate information is
used to connect another device
to IoT Platform.

428 The number of sub-devices that
 you have added to the specified
 gateway has reached the upper
 limit. Currently, you can add
up to 1,500 sub-devices to each
gateway.

Check the number of sub-
devices that you have added to
the gateway.

521 The device has been deleted. Navigate to the Devices page in
the console and check whether
the device has been deleted.

Issue: 20191210 155

物联⽹平台 Manage Device / 11 Error codes for device SDKs

Error code Cause Solution
522 The device has been disabled.
520 An error occurred with the

session between the sub-device
and IoT Platform.
• The specified session does

 not exist because the sub-
device is not connected to
 IoT Platform, or the sub-
device is already disconnect
ed from IoT Platform.

• The session exists, but the
 session is not established
through the current gateway.

Navigate to the Devices page
in the console and check the
status of the device.

6287 An error occurred while
verifying the signature based
 on the ProductSecret or
DeviceSecret.

Use the supported algorithms
to calculate and verify the
signature, as described in
Connect and disconnect sub-devices.

Property, event, and service error codes
A device reports a property
Request topic for pass-through data: /sys/{productKey}/{deviceName}/thing/model/
up_raw.
Request topic for Alink data: /sys/{productKey}/{deviceName}/thing/event/property
/post.
Error codes: 460, 500, 6250, 6203, 6207, 6313, 6300, 6320, 6321, 6326, 6301, 6302,
6317, 6323, 6316, 6306, 6307, 6322, 6308, 6309, 6310, 6311, 6312, 6324, 6328, 6325,
6200, 6201, 26001, 26002, 26006, and 26007.
The following table lists the cause and solution of error 6106 that may occur when
 the device reports a property. For more information about the other error codes,
see the Common error codes section in this topic.

156 Issue: 20191210

物联⽹平台 Manage Device / 11 Error codes for device SDKs

Error code Cause Solution
6106 The number of properties that

 are reported by the device
has reached the upper limit.
A device can report up to 200
properties at the same time.

Log on to the console, choose
Maintenance > Device Log, and
check the number of properties
reported by the device. You can
also check this information in
the local log file of the device.

The device reports an event
Request topic for pass-through data: /sys/{productKey}/{deviceName}/thing/model/
up_raw.
Request topic for Alink Data: /sys/{productKey}/{deviceName}/thing/event/{tsl.
identifier}/post.
Error codes: 460, 500, 6250, 6203, 6207, 6313, 6300, 6320, 6321, 6326, 6301, 6302,
6317, 6323, 6316, 6306, 6307, 6322, 6308, 6309, 6310, 6311, 6312, 6324, 6328, 6325,
6200, 6201, 26001, 26002, 26006, and 26007.
For more information about these error codes, see the Common error codes section
 in this topic.
The gateway reports data of multiple sub-devices at the same time
Request topic for pass-through data: /sys/{productKey}/{deviceName}/thing/model/
up_raw.
Request topic for Alink data: /sys/{productKey}/{deviceName}/thing/event/property
/pack/post.
Error codes: 460, 6401, 6106, 6357, 6356, 6100, 6207, 6313, 6300, 6320, 6321, 6326,
6301, 6302, 6317, 6323, 6316, 6306, 6307, 6322, 6308, 6309, 6310, 6311, 6312, 6324,
6328, 6325, 6200, 6201, 26001, 26002, 26006, and 26007.
The following table lists the causes and solutions of errors that may occur when the
 gateway reports data of multiple sub-devices at the same time. For more informatio
n about the other error codes, see the Common error codes section in this topic.

Issue: 20191210 157

物联⽹平台 Manage Device / 11 Error codes for device SDKs

Error code Cause Solution
6401 The topological relationship

does not exist.
Navigate to the Sub-device
Management tab in the console
and check the information
about the sub-device.

6106 The number of properties
reported by the device has
reached the upper limit. A
device can report up to 200
properties at the same time.

Log on to the console, choose
Maintenance > Device Log, and
check the number of properties
reported by the device. You can
also check this information in
the local log file of the device.

6357 The amount of data reported
by the gateway has reached the
 upper limit. When the gateway
 reports data for sub-devices,
the gateway can report data of
 up to 20 devices at the same
time.

Check the report records in the
local log file of the device.

6356 The number of events reported
 by the gateway has reached the
 upper limit. When the gateway
 reports data for sub-devices,
the gateway can report up to
200 events at the same time.

Check the report records in the
local log file of the device.

Error codes about desired device property values
Obtain desired property values
Request topic: /sys/{productKey}/{deviceName}/thing/property/desired/get.
Error codes: 460, 6104, 6661, and 500.
The following table lists the causes and solutions of errors that may occur when you
 perform operations on desired device property values. For more information about
 the other error codes, see the Common error codes section in this topic.

158 Issue: 20191210

物联⽹平台 Manage Device / 11 Error codes for device SDKs

Error code Cause Solution
6104 The number of properties

contained in the request has
 reached the upper limit. A
request can contain up to 200
properties.

Log on to the console, choose
Maintenance > Device Log, and
check the number of properties
in the reported data. You can
also check this information in
the local log file of the device.

6661 An error occurred while
querying the desired property.

Submit a ticket.

A device clears the desired property values
Request topic: /sys/{productKey}/{deviceName}/thing/property/desired/delete.
Error codes: 460, 6104, 6661, 500, 6207, 6313, 6300, 6320, 6321, 6326, 6301, 6302,
6317, 6323, 6316, 6306, 6307, 6322, 6308, 6309, 6310, 6311, 6312, 6324, 6328, and
6325.

Device tag error codes
A device reports tag information
Request topic: /sys/{productKey}/{deviceName}/thing/deviceinfo/update.
Error codes: 460 and 6100.
A device deletes tag information
Request topic: /sys/{productKey}/{deviceName}/thing/deviceinfo/delete.
Error codes: 460 and 500.

Error codes about obtaining TSL models
Request topic: /sys/{productKey}/{deviceName}/thing/dsltemplate/get.
Error codes: 460, 5159, 5160, and 5161.

Error codes about querying firmware information
Request Topic: /ota/device/request/${YourProductKey}/${YourDeviceName}.

Note:
• In the AbstractAlinkJsonMessageConsumer class that provides methods for

upgrading firmware, only the DeviceOtaUpgradeReqConsumer method returns
error codes. Other methods do not return error codes or data.

Issue: 20191210 159

物联⽹平台 Manage Device / 11 Error codes for device SDKs

• The topic used to query firmware information is the same as that used to return
responses.

Error codes: 429, 9112, and 500.
The following table lists the cause and solution of the error that may occur when a
 device queries firmware information. For more information about the other error
codes, see the Common error codes section in this topic.
Error code Cause Solution
9112 The system failed to query

information about the specified
 device.

Check whether the device
information specified in the
console is correct.

Error codes about obtaining the configuration information
Request topic: /sys/{productKey}/{deviceName}/thing/config/get.
Error codes: 460, 500, 6713, and 6710.
The following lists the causes and solution of errors that may occur when a device
attempts to obtain the configuration information. For more information about the
other error codes, see the Common error codes section in this topic.
Error code Cause Solution
6713 Remote configuration services

 are unavailable. The remote
 configuration feature of the
specified product is disabled.

Log on to the console, choose
Maintenance > Remote
Config, and enable the remote
configuration feature for the
specified product.

6710 The system failed to query
 the remote configuration
information.

Log on to the console, choose
Maintenance > Remote Config,
and check whether you have
edited the configuration file for
the specified product.

160 Issue: 20191210

	Contents
	Legal disclaimer
	Document conventions
	1 Device lifecycle management
	1.1 Add devices
	1.2 Connect devices and disconnect devices
	1.3 Disable and Enable devices
	1.4 Delete devices

	2 TSL
	2.1 Overview
	2.2 Define features
	2.3 Import Thing Specification Language (TSL)

	3 Data parsing
	3.1 Data parsing

	4 Tags
	5 Device group
	6 Device shadows
	6.1 Device Shadow overview
	6.2 Device shadow JSON format
	6.3 Device shadow data stream

	7 Manage files
	8 Configure the NTP service
	9 Gateways and sub-devices
	9.1 Gateways and sub-devices
	9.2 Sub-device management
	9.3 Connect sub-devices to IoT Platform

	10 Develop devices based on Alink Protocol
	10.1 Communications over Alink protocol
	10.2 Device identity registration
	10.3 Add a topological relationship
	10.4 Connect and disconnect sub-devices
	10.5 Device properties, events, and services
	10.6 Desired device property values
	10.7 Disable and delete devices
	10.8 Device tags
	10.9 TSL model
	10.10 Firmware update
	10.11 Remote configuration
	10.12 Device network status
	10.13 Common codes on devices

	11 Error codes for device SDKs

