
Alibaba Cloud
物联⽹平台

Device Access
Issue: 20191126

物联⽹平台 Device Access / Legal disclaimer

Legal disclaimer
Alibaba Cloud reminds you to carefully read and fully understand the terms and
 conditions of this legal disclaimer before you read or use this document. If you
have read or used this document, it shall be deemed as your total acceptance of this
 legal disclaimer.
1. You shall download and obtain this document from the Alibaba Cloud website

 or other Alibaba Cloud-authorized channels, and use this document for your
own legal business activities only. The content of this document is considered
 confidential information of Alibaba Cloud. You shall strictly abide by the
confidentiality obligations. No part of this document shall be disclosed or
provided to any third party for use without the prior written consent of Alibaba
Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted
, or disseminated by any organization, company, or individual in any form or by
any means without the prior written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades
, adjustments, or other reasons. Alibaba Cloud reserves the right to modify
the content of this document without notice and the updated versions of this
 document will be occasionally released through Alibaba Cloud-authorized
channels. You shall pay attention to the version changes of this document as they
 occur and download and obtain the most up-to-date version of this document
from Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud
 products and services. Alibaba Cloud provides the document in the context
that Alibaba Cloud products and services are provided on an "as is", "with all
 faults" and "as available" basis. Alibaba Cloud makes every effort to provide
relevant operational guidance based on existing technologies. However, Alibaba
 Cloud hereby makes a clear statement that it in no way guarantees the accuracy
, integrity, applicability, and reliability of the content of this document, either
explicitly or implicitly. Alibaba Cloud shall not bear any liability for any errors
 or financial losses incurred by any organizations, companies, or individuals
arising from their download, use, or trust in this document. Alibaba Cloud shall
 not, under any circumstances, bear responsibility for any indirect, consequent

Issue: 20191126 I

物联⽹平台 Device Access / Legal disclaimer

ial, exemplary, incidental, special, or punitive damages, including lost profits
arising from the use or trust in this document, even if Alibaba Cloud has been
notified of the possibility of such a loss.

5. By law, all the contents in Alibaba Cloud documents, including but not limited
to pictures, architecture design, page layout, and text description, are intellectu
al property of Alibaba Cloud and/or its affiliates. This intellectual property
includes, but is not limited to, trademark rights, patent rights, copyrights, and
 trade secrets. No part of this document shall be used, modified, reproduced,
publicly transmitted, changed, disseminated, distributed, or published without
the prior written consent of Alibaba Cloud and/or its affiliates. The names owned
 by Alibaba Cloud shall not be used, published, or reproduced for marketing,
advertising, promotion, or other purposes without the prior written consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limited
 to, "Alibaba Cloud", "Aliyun", "HiChina", and other brands of Alibaba Cloud
and/or its affiliates, which appear separately or in combination, as well as the
auxiliary signs and patterns of the preceding brands, or anything similar to the
 company names, trade names, trademarks, product or service names, domain
names, patterns, logos, marks, signs, or special descriptions that third parties
identify as Alibaba Cloud and/or its affiliates.

6. Please contact Alibaba Cloud directly if you discover any errors in this document
.

II Issue: 20191126

物联⽹平台 Device Access / Legal disclaimer

Issue: 20191126 III

物联⽹平台 Device Access / Document conventions

Document conventions
Style Description Example

A danger notice indicates a
situation that will cause major
system changes, faults, physical
 injuries, and other adverse
results.

Danger:
Resetting will result in the loss
of user configuration data.

A warning notice indicates a
situation that may cause major
system changes, faults, physical
 injuries, and other adverse
results.

Warning:
Restarting will cause business
interruption. About 10
minutes are required to restart
an instance.

A caution notice indicates
 warning information,
supplementary instructions,
and other content that the user
must understand.

Notice:
If the weight is set to 0, the
server no longer receives new
requests.

A note indicates supplemental
instructions, best practices, tips
, and other content.

Note:
You can use Ctrl + A to select
all files.

> Closing angle brackets are used
 to indicate a multi-level menu
cascade.

Click Settings > Network > Set
network type.

Bold Bold formatting is used for
buttons, menus, page names,
and other UI elements.

Click OK.

Courier font Courier font is used for
commands.

Run the cd /d C:/window
command to enter the Windows
system folder.

Italic Italic formatting is used for
parameters and variables.

bae log list --instanceid

Instance_ID

[] or [a|b] This format is used for an
optional value, where only one
item can be selected.

ipconfig [-all|-t]

Issue: 20191126 I

物联⽹平台 Device Access / Document conventions

Style Description Example
{} or {a|b} This format is used for a

required value, where only one
item can be selected.

switch {active|stand}

II Issue: 20191126

物联⽹平台 Device Access / Document conventions

Issue: 20191126 III

物联⽹平台 Device Access / Contents

Contents
Legal disclaimer...I
Document conventions...I
1 Download device SDKs...1
2 Create a product... 2
3 Create devices...5

3.1 Create multiple devices at a time... 5
3.2 Create a device.. 6
3.3 Manage devices... 84 Authenticate devices .. 11
4.1 Authenticate devices ...12
4.2 Unique-certificate-per-device authentication... 14
4.3 Unique-certificate-per-product authentication....................................... 155 Topics... 19
5.1 What is a topic?... 19
5.2 Create a topic category.. 226 Protocols for connecting devices....................................... 25
6.1 Use CoAP protocol... 25

6.1.1 CoAP standard..25
6.1.2 Establish connections over CoAP.. 25

6.2 Use HTTP protocol...33
6.2.1 HTTP standard... 33
6.2.2 Establish connections over HTTP..347 Generic protocol SDK..40

7.1 Overview... 40
7.2 Use the basic features.. 43
7.3 Use the advanced features... 54

IV Issue: 20191126

物联⽹平台 Device Access / 1 Download device SDKs

1 Download device SDKs
IoT Platform provides multiple device SDKs to help you develop your devices and
connect them to IoT Platform.

Prerequisites
Before you develop a device SDK, you must complete all the required configurat
ions in the IoT Platform console and obtain all necessary information (such as the
device certificate information and topic information). For more information about
console configurations, see the related documents in the User Guide.

Device SDKs provided by IoT Platform
You can install and configure an SDK provided by IoT Platform on your device, and
then your device can connect to IoT Platform by using the SDK.
Download device SDK from C SDK

If the provided SDK does not meet your business requirement, contact Alibaba
Cloud by sending an email to linkkitSDK-query@list.alibaba-inc.com. The email
content must include the following information:
• Subject: Consultation on IoT Platform SDKs
• The body of the email must include:

Company name
Contact
Phone Number
The programming language or software that you use to develop your
device
Your business requirements
Your device amount and development schedule

Develop your own SDK based on the Alink protocol
If you have specific development requirements that cannot be met by the provided
SDK, you can develop your own SDK based on the Alink protocol. For more
information, see Alink protocol.

Generic protocol SDK
You can use the generic protocol SDK provided by IoT Platform to build a bridge to
connect your devices or platforms with IoT Platform, so that they can communicate
with each other.

Issue: 20191126 1

https://www.alibabacloud.com/help/doc-detail/96623.htm

物联⽹平台 Device Access / 2 Create a product

2 Create a product
The first step when you start using IoT Platform is to create products. A product is a
collection of devices that typically have the same features. For example, a product
can refer to a product model and a device is then a specific device of the product
model.

Context
This topic describes how to create products in the IoT Platform console.

Procedure
1. Log on to the IoT Platform console.
2. In the left-side navigation pane, click Devices > Product, and then click Create

Product.
3. Enter all the required information and then click OK.

The parameters are as follows.
Parameter Description
Product Name The name of the product that you want to create. The

product name must be unique within the account. For
example, you can enter the product model as the product
name. A product name is 4 to 30 characters in length, and
can contain Chinese characters, English letters, digits, and
underscores. A Chinese character counts as two characters.

Node Type • Direct devices: Indicates that devices of this product
connect to IoT Platform directly.

• Gateway sub-devices: Indicates that devices of this
product cannot connect to IoT Platform directly, but
connect to gateway devices and use the communication
channels of gateway devices to communication with IoT
Platform.

• Gateway devices: Indicates that devices of this product
connect to IoT Platform directly and can be mounted
with sub-devices . A gateway can manage sub-devices,
maintain topological relationships with sub-devices, and
synchronize topological relationships to IoT Platform.

For more information about gateway devices and sub-
devices, see #unique_7.

2 Issue: 20191126

http://iot.console.aliyun.com/

物联⽹平台 Device Access / 2 Create a product

Parameter Description
Gateway
Connection
Protocol

Select a protocol for sub-device and gateway
communication.
• Custom: Indicates that you want to use another protocol

 as the connection protocol for sub-device and gateway
communication.

• Modbus: Indicates that the communication protocol
between sub-devices and gateways is Modbus.

• OPC UA: Indicates that the communication protocol
between sub-devices and gateways is OPC UA.

• ZigBee: indicates that the communication protocol
between sub-devices and gateways is ZigBee.

• BLE: indicates that the communication protocol between
 sub-devices and gateways is BLE.

Network
Connection
Method

Select a network connection method for the devices:
• WiFi
• Cellular (2g/3g/4G)
• Ethernet
• Other

Data Type Select a format in which devices exchange data with IoT
Platform. Options are ICA Standard Data Format (Alink
JSON) and Do not parse/Custom.
• ICA Standard Data Format (Alink JSON): The standard

data format defined by IoT Platform for device and IoT
Platform communication.

• Do not parse/Custom: If you want to customize the
serial data format, select Do not parse/Custom. Custom
formatted data must be converted to Alink JSON script
by #unique_8so that your devices can communicate with
the IoT Platform.

Authentication
Mode

Currently, only Device Secret is supported.

Product Descriptio
n

Describe the product information. You can enter up to 100
characters.

After the product is created successfully, you are automatically redirected to the
Products page.

What's next

Issue: 20191126 3

物联⽹平台 Device Access / 2 Create a product

1. To configure features for a product (such as Notifications, TSL (Define Feature), and
Service Subscription), go to the product list, find the target product and then click its
corresponding View button.

2. Register devices on IoT Platform.
3. Develop your physical devices by referring to Developer Guide (Devices).
4. To publish a product, go to the product details page and click Publish.

Note that before you publish a product, you must make sure that you have
 configured all the correct information for the product, have completed
debugging the features, and have verified that it meets the criteria for being
published.
When the product status is Published, you can view the product information but
cannot modify or delete the product.

To cancel the publishing of a product, click Cancel Publishing.

4 Issue: 20191126

物联⽹平台 Device Access / 3 Create devices

3 Create devices
3.1 Create multiple devices at a time

A product is a collection of devices. After you create products, you can create
specific devices for the product models. You can create one device or multiple
devices at a time. This topic explains how to create multiple devices at a time.

Procedure
1. Log on to the IoT Platform console.
2. In the left-side navigation pane, click Devices > Device, and then click Batch Add.
3. Select a product that you have created. The devices to be created will be assigned

with the features of the selected product.
4. Select how the devices are to be named. Two methods:

• Auto Generate: You do not specify names for the devices that you want to
create. You only specify the number of devices, and the system automatically
generates names for the devices.

• Batch Upload: You specify a name for each device you want to create. Under
Upload File, click Download .csv Template to download the naming template.
Enter device names in the template table and save the file. Then, click Upload
File to upload the naming file.

Note:
• Device names must be 4-32 characters in length, and can contain English

letters, digits, hyphens, underscores, @ symbols, dots, and colons.
• Each device name must be unique in the product.
• A file can include up to 1,000 names.

Issue: 20191126 5

http://iot.console.aliyun.com/

物联⽹平台 Device Access / 3 Create devices

• The size of the file cannot exceed 2 MB.

5. Click OK to start batch device creation.
6. After the devices are successfully created, click Download Device Certificate to

download the file containing the information of created devices.
Result

On the Batch Management tab page of Devices page, you can:
• Click View Details to view the detailed information of the devices.
• Click Download CSV to download the certificates of the devices.

3.2 Create a device
A product is a collection of devices. After you have created a product, you must
register devices under the product with IoT Platform. You can create devices
individually or create multiple devices at one time. This topic describes how to
create devices individually.

Procedure
1. Log on to the IoT Platform console.
2. In the left-side navigation pane, choose Devices > Device, and then click Add

Device.

6 Issue: 20191126

http://iot.console.aliyun.com/

物联⽹平台 Device Access / 3 Create devices

3. In the Add Device dialog box, enter the device information and click OK.

Parameter Description
Product Select a product. The device to be created will be assigned the

features and properties of the selected product.
Note:

If the product is associated with another platform, make sure
that your account has sufficient activation codes to create the
device.

DeviceName Set the device name. If you left this parameter empty, the
system automatically generates a device name that contains
numbers and letters.
• The device name is unique within the product.
• The device name must be 4 to 32 characters in length and

can contain letters, numbers, and special characters. The
supported special characters are hyphens (-), underscores (_
), at signs (@), periods (.) , and colons (:).

Note name Set the alias. The alias must be 4 to 64 characters in length
and can contain Chinese characters, letters, numbers, and
 underscores (_). One Chinese character is counted as two
characters.

Result
After the device is created, the View Device Certificate dialog box appears
automatically. You can view and copy the device certificate information. A
device certificate is the authentication certificate of a device when the device
is communicating with IoT Platform. It contains three key fields: ProductKey,
DeviceName, and DeviceSecret.

Issue: 20191126 7

物联⽹平台 Device Access / 3 Create devices

Parameter Description
ProductKey The key of the product to which the device belongs. It is the

GUID that is issued by IoT Platform to the product.
DeviceName The unique identifier of the device within the product. A

 device uses the DeviceName and the ProductKey as the
device identifier to authenticate to and communicate with
IoT Platform.

DeviceSecret The device key issued by IoT Platform for device authentica
tion and encryption. It must be used in pairs with the
DeviceName.

You can also click View next to the newly created device on the Device List page.
On the Device Details page, click the Device Information tab to view device
information.

What's next
Follow instructions in Device development documentation to develop the device SDK.

3.3 Manage devices
After you create a device in IoT Platform, you can manage or view device
information in the IoT Platform console.

Manage devices of an account
From the left-side navigation pane, choose Devices > Device. The Devices page
appears.

8 Issue: 20191126

物联⽹平台 Device Access / 3 Create devices

Task Procedure
View devices under a
specific product

Select a product in the upper-left corner of the page.

Search for a device Enter a device name, note name, or device tag to
search for a device. Fuzzy search is supported.

View detailed information
 about a device

Click View next to the corresponding device.

Delete a device Click Delete next to the corresponding device.
Note:

After a device is deleted, the device certificate
becomes invalid and the data about this device in IoT
Platform is deleted.

View detailed information about a device
In the device list, click View next to the corresponding device. The Device Details
page appears.

Issue: 20191126 9

物联⽹平台 Device Access / 3 Create devices

Task Procedure
Activate the device The Inactive status indicates that the device is not

connected to IoT Platform. To develop the device and
activate the device, see Download device SDKs.

View device information View the basic information about the device,
including device certificate information, firmware

information, extended information, and tag information.
View device data • On the Status tab page, view the latest values, data

records, and desired values of properties.
• On the Events tab page, view the records about

device reported events.
• On the Invoke Service tab page, view the service

call records.
View device log On the Device Log tab page, click Read Now to view

the device log information. The information include
device activities, upstream messages, downstream
messages, TSL data, and QoS=1 message contents. For
more information about device logs, see Device log.

10 Issue: 20191126

http://gitlab.alibaba-inc.com/Apsaras64/pub/wikis/Linkkit_Iterations/V230/Devinfo_Report

物联⽹平台 Device Access / 4 Authenticate devices

4 Authenticate devices
To secure devices, IoT Platform provides certificates for devices, including product
certificates (ProductKey and ProductSecret) and device certificates (DeviceName
and DeviceSecret). A device certificate is a unique identifier used to authenticate a
device. Before a device connects to IoT Hub through a protocol, the device reports
the product certificate or the device certificate, depending on the authentication
method. The device can connect to IoT Platform only when it passes authentication.
IoT Platform supports various authentication methods to meet the requirements of
different environments.
IoT Platform supports the following authentication methods:
• Unique-certificate-per-device authentication: Each device has been installed

with its own unique device certificate.
• Unique-certificate-per-product authentication: All devices under a product have

been installed with the same product certificate.
• Sub-device authentication: This method can be applied to sub-devices that

connect to IoT Platform through the gateway.
These methods have their own advantages in terms of accessibility and security.
You can choose one according to the security requirements of the device and the
actual production conditions. The following table shows the comparison among
these methods.
Table 4-1: Comparison of authentication methods
Items Unique-certificat

e-per-device
authentication

Unique-certificat
e-per-product
authentication

Sub-device
authentication

Information
written into the
device

ProductKey,
DeviceName, and
DeviceSecret

ProductKey and
ProductSecret

ProductKey

Whether to enable
 authentication in
IoT Platform

No. Enabled by
default.

Yes. You must
enable dynamic
register.

Yes. You must
enable dynamic
register.

Issue: 20191126 11

物联⽹平台 Device Access / 4 Authenticate devices

Items Unique-certificat
e-per-device
authentication

Unique-certificat
e-per-product
authentication

Sub-device
authentication

DeviceName pre-
registration

Yes. You need to
 make sure that
 the specified
DeviceName is
unique under a
product.

Yes. You need to
 make sure that
 the specified
DeviceName is
unique under a
product.

Yes.

Certificate
installation
requirement

Install a unique
device certificat
e on every device
. The safety of
 every device
certificate must be
guaranteed.

Install the same
product certificat
e on all devices
under a product.
Make sure that the
product certificate
is safely kept.

Install the same
product certificate
into all sub-devices
. The security of
the gateway must
be guaranteed.

Security High Medium Medium
Upper limit for
registrations

Yes. A product can
have a maximum of
 500,000 devices.

Yes. A product can
have a maximum of
 500,000 devices.

Yes. A maximum
of 200 sub-devices
 can be registered
with one gateway.

Other external
reliance

None None Security of the
gateway.

4.1 Authenticate devices
To secure devices, IoT Platform provides certificates for devices, including product
certificates (ProductKey and ProductSecret) and device certificates (DeviceName
and DeviceSecret). A device certificate is a unique identifier used to authenticate a
device. Before a device connects to IoT Hub through a protocol, the device reports
the product certificate or the device certificate, depending on the authentication
method. The device can connect to IoT Platform only when it passes authentication.
IoT Platform supports various authentication methods to meet the requirements of
different environments.
IoT Platform supports the following authentication methods:
• Unique-certificate-per-device authentication: Each device has been installed

with its own unique device certificate.

12 Issue: 20191126

物联⽹平台 Device Access / 4 Authenticate devices

• Unique-certificate-per-product authentication: All devices under a product have
been installed with the same product certificate.

• Sub-device authentication: This method can be applied to sub-devices that
connect to IoT Platform through the gateway.

These methods have their own advantages in terms of accessibility and security.
You can choose one according to the security requirements of the device and the
actual production conditions. The following table shows the comparison among
these methods.
Table 4-2: Comparison of authentication methods
Item Unique-certificat

e-per-device
authentication

Unique-certificat
e-per-product
authentication

Sub-device
authentication

Information
written into the
device

ProductKey,
DeviceName, and
DeviceSecret

ProductKey and
ProductSecret

ProductKey

Whether to enable
 authentication in
IoT Platform

No. Enabled by
default.

Yes. You must
enable dynamic
register.

Yes. You must
enable dynamic
register.

DeviceName pre-
registration

Yes. You need to
 make sure that
 the specified
DeviceName is
unique under a
product.

Yes. You need to
 make sure that
 the specified
DeviceName is
unique under a
product.

Yes.

Certificate
installation
requirement

Install a unique
device certificat
e on every device
. The safety of
 every device
certificate must be
guaranteed.

Install the same
product certificat
e on all devices
under a product.
Make sure that the
product certificate
is safely kept.

Install the same
product certificate
into all sub-devices
. The security of
the gateway must
be guaranteed.

Security High Medium Medium
Upper limit for
registrations

Yes. A product can
have a maximum of
 500,000 devices.

Yes. A product can
have a maximum of
 500,000 devices.

Yes. A maximum of
 1500 sub-devices
can be registered
with one gateway.

Issue: 20191126 13

物联⽹平台 Device Access / 4 Authenticate devices

Item Unique-certificat
e-per-device
authentication

Unique-certificat
e-per-product
authentication

Sub-device
authentication

Other external
reliance

None None Security of the
gateway.

4.2 Unique-certificate-per-device authentication
Using unique-certificate-per-device authentication method requires that each
device has be installed with a unique device certificate in advance. When you
connect a device to IoT Platform, IoT Platform authenticates the ProductKey,
DeviceName, and DeviceSecret of the device. After the authentication is passed, IoT
Platform activates the device to enable data communication between the device and
IoT Platform.

Context
The unique-certificate-per-device authentication method is a secure authentication
 method. We recommend that you use this authentication method.
Workflow of unique-certificate-per-device authentication:

Procedure
1. In the IoT Platform console, create a product. For more information, see Create a product

in the User Guide.

14 Issue: 20191126

http://iot.console.aliyun.com/

物联⽹平台 Device Access / 4 Authenticate devices

2. Register a device to the product you have created and obtain the device
certificate.

3. Install the certificate to the device.
Follow these steps:
a) Download a device-side SDK.
b) Configure the device-side SDK. In the device-side SDK, configure the device

certificate (ProductKey, DeviceName, and DeviceSecret).
c) Develop the device-side SDK based on your business needs, such as OTA

development, sub-device connection, TSL-based device feature development,
and device shadows development.

d) During the production process, install the developed device SDK to the device.
4. Power on and connect the device to IoT Platform. The device will initiate an

authentication request to IoT Platform using the unique-certificate-per-product
method.

5. IoT Platform authenticates the device certificate. After the authentication is
passed and the connection with IoT Platform has been established, the device
can communicate with IoT Platform by publishing messages to topics and
subscribing to topic messages.

4.3 Unique-certificate-per-product authentication
Using unique-certificate-per-product authentication method requires that
devices of a product have been installed with a same firmware in which a product
certificate (ProductKey and ProductSecret) has been installed. When a device
initiates an activation request, IoT Platform authenticates the product certificate

Issue: 20191126 15

物联⽹平台 Device Access / 4 Authenticate devices

of the device. After the authentication is passed, IoT Platform assigns the
corresponding DeviceSecret to the device.

Context

Note:
• This authentication method has risks of product certificate leakage because

all devices of a product are installed with the same firmware. On the Product
Details page, you can disable Dynamic Registration to reject authentication
requests from new devices.

• The unique-certificate-per-product method is used to obtain the DeviceSecret
of devices from IoT Platform. The DeviceSecret is only issued once. The device
stores the DeviceSecret for future use.

Workflow of unique-certificate-per-product authentication:

Procedure
1. In the IoT Platform console, create a product. For more information, see Create a product

in the User Guide.
2. On the Product Details page, enable Dynamic Registration. IoT Platform sends

an SMS verification code to confirm your identity.

Note:

16 Issue: 20191126

http://iot.console.aliyun.com/

物联⽹平台 Device Access / 4 Authenticate devices

If Dynamic Registration is not enabled when devices initiate activation requests,
IoT Platform rejects the activation requests. Activated devices are not affected.

3. Register a device. The status of a newly registered device is Inactive.
IoT Platform authenticates the DeviceName when a device initiates an activation
 request. We recommend that you use an identifier that can be obtained directly
 from the device, such as the MAC address, IMEI or serial number, as the
DeviceName.

4. Install the product certificate to the device.
Follow these steps:
a) Download a device-side SDK.
b) Configure the device-side SDK to use the unique-certificate-per-product

authentication method. In the device-side SDK, configure the product
certificate (ProductKey and ProductSecret).

c) Develop the device-side SDK based on your business needs, such as OTA
development, sub-device connection, TSL-based device feature development,
and device shadows development.

d) During the production process, install the developed device SDK to the device.
5. Power on the device and connect the device to the network. The device sends

an authentication request to IoT Platform to perform unique-certificate-per-
product authentication.

6. After the product certificate has been authenticated by IoT Platform, IoT
Platform dynamically assigns the corresponding DeviceSecret to the device.
Then, the device has obtained its device certificate (ProductKey, DeviceName,
and DeviceSecret) and can connect to IoT Platform. After the connection with

Issue: 20191126 17

物联⽹平台 Device Access / 4 Authenticate devices

IoT Platform has been successfully established, the device can communicate
with IoT Platform by publishing messages to topics and subscribing to topic
messages.

Note:
IoT Platform dynamically assigns DeviceSecret to devices only for the first
activation of devices. If you want to reinitialize a device, go to IoT Platform
console to delete the device and repeat the procedures to register and activate a
device.

18 Issue: 20191126

物联⽹平台 Device Access / 5 Topics

5 Topics
The cloud and devices communicate with each other in IoT Platform through
topics. The device reports messages to a specified topic and subscribes to messages
from the topic. IoT Platform sends commands to topics, and subscribes to specific
topics to obtain device information.

5.1 What is a topic?
A server and a device communicate with each other in IoT Platform through
topics. Topics are associated with devices, and topic categories are associated with
products. A topic category of a product is automatically applied to all devices under
the product to generate device-specific topics for message communication.

Topic category
To simplify authorization and facilitate communication between devices and
IoT Platform, topic categories were introduced. A topic category is a set of topics
within the same product. For example, topic category /${YourProductKey}/$ {
YourDeviceName}/user/update is a set that contains the following two topics: /${
YourProductKey}/device1/user/update and /${YourProductKey}/device2/user/
update.
After a device is created, all topic categories of the product are automatically
applied to the device. You do not need to assign topics to each individual device.
Figure 5-1: Automatically create a topic

Issue: 20191126 19

物联⽹平台 Device Access / 5 Topics

Descriptions for topic categories:
• A topic category uses a forward slash (/) to separate elements in different

hierarchical levels. A topic category contains the following fixed elements: ${
YourProductKey} indicates the product identifier; ${YourDeviceName} indicates
the device name.

• Each element name can contain only letters, numbers, and underscores (_). An
element in each level cannot be left empty.

• A device can have Pub and Sub permissions to a topic. Pub indicates that the
device can publish messages to the topic. Sub indicates that the device can
subscribe to the topic.

• A device must send a sub request to IoT Platform to subscribe to a specified topic.
If you want the device to unsubscribe from the topic, you must configure the
device to send an unsub request.

Topic
A topic category is used for topic definition rather than communication. Only
topics can be used for communication.
• Topics use the same format as topic categories. The difference is that variable ${

YourDeviceName} in the topic category is replaced by a specific device name in
the topic.

• A topic is automatically derived from the topic category of the product based on
the corresponding device name. A topic contains the device name (DeviceName
) and can be used for data communication only by the specified device. For
example, topic /${YourProductKey}/device1/user/update belongs to the device
named device1. Only device1 can publish messages and subscribe to this topic.
Other devices cannot use this topic.

Supported wildcards
To use the rules engine data forwarding function to forward device data, you must
specify the source topic of the messages when writing an SQL statement. When you
specify a topic in setting a forwarding rule, you can use the following wildcards. One
element can contain only one wildcard.

20 Issue: 20191126

物联⽹平台 Device Access / 5 Topics

Wildcard Description
Must be set as the last element in the topic. This wildcard can

match any element in the current level and sub-levels. For
example, in topic /${YourProductKey}/device1/user /#,
wildcard # is added next to the /user element to represent
all elements after /user. This topic can represent /${
YourProductKey}/device1/user/update and /${YourProduc
tKey}/device1/user/update/error.

+ Matches all elements in the current level. For example, in
topic /${YourProductKey}/+/user/update, the device name
element is replaced by wildcard + to represent all devices
under the product. This topic can represent /${YourProduc
tKey}/device1/user/update and /${YourProductKey}/
device2/user/update.

System topics and custom topics
IoT Platform supports the following types of topics:
Type Description
System topics The system-defined topics. System topics cannot be modified

 and deleted. System topics include topics used by IoT
Platform functions, such as TSL model-related functions and
firmware upgrade.
For example, topics related to TSL models generally start
with/sys/. Topics related to firmware upgrade start with
/ota/. Topics for the device shadow function start with /
shadow/.

Note:
System topics are not completely displayed in the Topic
Categories list and the Topic List. For more information
about function-specific topics, see related function
documentation.

Custom topics You can customize a topic category on the Topic Categories tab
page according to your business requirements. The topic
categories you have customized for the product will be
automatically applied to all devices under the product.

Issue: 20191126 21

物联⽹平台 Device Access / 5 Topics

5.2 Create a topic category
This article introduces how to create a topic category for a product. Topic
categories will be automatically assigned to devices of the product.

Procedure
1. Log on to the IoT Platform console.
2. In the left-side navigation pane, click Devices > Product
3. On the Products page, find the product for which you want to create a topic

category, and click View in the operation column.
4. On the Product Details page, click Topic Categories > Create Topic Category.

22 Issue: 20191126

https://iot.console.aliyun.com

物联⽹平台 Device Access / 5 Topics

5. Define a topic category.

• Device Operation Authorizations: Indicates the operations that devices can
perform on the topics of this topic category. You can select from Publish,
Subscribe, and Publish and Subscribe.

• Topic Category: Enter a custom topic category name according to the Topic
Rule on the page.

• Description: Describes the topic category. You can leave this box empty.
6. Click OK.

Wildcard characters in topic categories
When you create topic categories, you can use wildcards. For more information
about wildcards, see What is a topic? Supported wildcards:
• #: Includes the category level you enter and all lower levels in topics.

Issue: 20191126 23

物联⽹平台 Device Access / 5 Topics

• +: Includes only one category level in topics, and not lower levels.

Note:
When you want to create topic categories with wildcards, note that:
• Only topics with Device Operation Authorizations as Subscription support

wildcards.
• # can only be at the end of topics.
• For topics with wildcard characters, you cannot click Publish to publish

messages on the Topic List tab page of devices.

24 Issue: 20191126

物联⽹平台 Device Access / 6 Protocols for connecting devices

6 Protocols for connecting devices
6.1 Use CoAP protocol
6.1.1 CoAP standard
Protocol version

IoT Platform supports the Constrained Application Protocol (CoAP) [RFC7252]. For
more information, see RFC 7252.

Channel security
IoT Platform uses Datagram Transport Layer Security (DTLS) V1.2 to secure
channels. For more information, see DTLS v1.2.

Open-source client reference
For more information, see http://coap.technology/impls.html.

Note:
If you use third-party code, Alibaba Cloud does not provide technical support.

Alibaba Cloud CoAP agreement
• Do not use a question mark (?) to set a parameter.
• Resource discovery is not supported.
• Only the User Datagram Protocol (UDP) is supported, and DTLS must be used.
• Follow the Uniform Resource Identifier (URI) standard, and keep CoAP URI

resources consistent with Message Queuing Telemetry Transport (MQTT)-based
topics. For more information, see MQTT standard.

6.1.2 Establish connections over CoAP
IoT Platform supports connections over CoAP. CoAP is suitable for resource-
constrained, low-power devices, such as NB-IoT devices. This topic describes how

Issue: 20191126 25

http://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc6347
http://coap.technology/impls.html
https://www.alibabacloud.com/help/doc-detail/30540.htm

物联⽹平台 Device Access / 6 Protocols for connecting devices

to connect devices to IoT Platform over CoAP and two supported authentication
methods, which are DTLS and symmetric encryption.

Use the symmetric encryption method
1. Connect to the CoAP server. The endpoint address is ${YourProductKey}.coap.

cn-shanghai.link.aliyuncs.com:${port}.
Note:
• ${YourProductKey}: Replace it with the ProductKey value of the device.
• ${port}: The port number. Set the value to 5682.

2. Authenticate the device.
Request message:
POST /auth
Host: ${YourProductKey}.coap.cn-shanghai.link.aliyuncs.com
Port: 5682
Accept: application/json or application/cbor
Content-Format: application/json or application/cbor
payload: {"productKey":"a1NUjcV****","deviceName":"ff1a11e7c0
8d4b3db2b1500d8e0e55","clientId":"a1NUjcV****&ff1a11e7c08d4b3db2b1
500d8e0e55","sign":"F9FD53EE0CD010FCA40D14A9FE******", "seq":"10"}

Table 6-1: Parameter description
Parameter Description
Method The request method. The supported method is POST.
URL /auth.
Host The endpoint address. The format

is ${YourProductKey}.coap.cn-
shanghai.link.aliyuncs.com. Replace ${YourProductKey}
with the ProductKey value of the device.

Port The port number. Set the value to 5682.
Accept The encoding format of the data that is to be received by

 the device. Currently, application/json and application/
cbor are supported.

Content-Format The encoding format of the data that the device sends to
IoT Platform. Currently, application/json and application/
cbor are supported.

26 Issue: 20191126

物联⽹平台 Device Access / 6 Protocols for connecting devices

Parameter Description
payload The device information for authentication, in JSON format.

For more information, see the following table payload

parameters.
Table 6-2: payload parameters
Parameter Required Description
productKey Yes The unique identifier issued by IoT Platform to

 the product. You can obtain this information
on the device details page in the IoT Platform
console.

deviceName Yes The device name that you specified, or
is generated by IoT Platform, when you
registered the device. You can obtain this
information on the device details page in the
IoT Platform console.

ackMode No The communication mode. Options:
• 0: After receiving a request from the device,

the server processes data and then returns
the result with an acknowledgment (ACK).

• 1: After receiving a request from the device,
the server immediately returns an ACK and
then starts to process data. After the data
processing is complete, the server returns
the result.

The default value is 0.

Issue: 20191126 27

物联⽹平台 Device Access / 6 Protocols for connecting devices

Parameter Required Description
sign Yes Signature.

The signature algorithm is hmacmd5(
DeviceSecret,content).
The value of content is a string that is built by
sorting and concatenating all the parameters
(except version, sign, resources, and
signmethod) that need to be submitted to
the server in alphabetical order, without any
delimiters.
Signature calculation example:
sign= hmac_md5(mRPVdzSMu2nVBxzK77ER
PIMxSYIv****, clientIda1NUjcV****&
ff1a11e7c08d4b3db2b1500d8e0e55
deviceNameff1a11e7c08d4b3db2b1
500d8e0e55productKeya1NUjcV****
seq10timestamp1524448722000)

signmethod No The algorithm type. The supported types are
hmacmd5 and hmacsha1. The default value is
hmacmd5.

clientId Yes The device identifier, which can be any string
up to 64 characters in length. We recommend
that you use the MAC address or the SN code of
the device as the clientId.

timestamp No The timestamp. Currently, timestamp is not
verified.

Response example:
{"random":"ad2b3a5eb51d64f7","seqOffset":1,"token":"MZ8m37hp01
w1SSqoDFzo0010500d00.ad2b"}

Table 6-3: Response parameters
Parameter Description
random The encryption key used for data communication.
seqOffset The authentication sequence offset.
token The returned token after the device is authenticated.

28 Issue: 20191126

物联⽹平台 Device Access / 6 Protocols for connecting devices

3. The device sends data.
Request message:
POST /topic/${topic}
Host: ${YourProductKey}.coap.cn-shanghai.link.aliyuncs.com
Port: 5682
Accept: application/json or application/cbor
Content-Format: application/json or application/cbor
payload: ${your_data}
CustomOptions: number:2088(token), 2089(seq)

Table 6-4: Request parameters
Parameter Required Description
Method Yes The request method. The supported

request method is POST.
URL Yes The format is /topic/${topic}.

Replace the variable ${topic} with
the device topic used by the device to
publish data.

Host Yes The endpoint address. The format is ${
YourProductKey}.coap.cn-shanghai
.link.aliyuncs.com. Replace the
variable ${YourProductKey} with the
ProductKey value.

Port Yes The port number. Set the value to 5682.
Accept Yes The encoding format of the data

which is to be received by the device
. Currently, application/json and
application/cbor are supported.

Content-Format Yes The encoding format of the data
which is sent by the device. Currently,
application/json and application/cbor
are supported.

payload Yes The encrypted data that is to be sent.
Encrypt the data using the Advanced
Encryption Standard (AES) algorithm.

Issue: 20191126 29

物联⽹平台 Device Access / 6 Protocols for connecting devices

Parameter Required Description
CustomOptions Yes The option value can be 2088 and 2089,

which are described as follows:
• 2088: Indicates the token. The value

is the token returned after the
device is authenticated.

Note:
Token information is required
every time the device sends data. If
the token is lost or expires, initiate
a device authentication request
again to obtain a new token.

• 2089: Indicates the sequence. The
 value must be greater than the
seqOffset value that is returned after
 the device is authenticated, and
must be a unique random number.
Encrypt the value with AES.

Response message for option
number:2090 (IoT Platform
message ID)

After a message has been sent to IoT Platform, a status code and a message ID are
 returned.

Establish DTLS connections
1. Connect to the CoAP server. The endpoint address is ${YourProductKey}.coap.

cn-shanghai.link.aliyuncs.com:${port}.
Note:
• ${YourProductKey}: Replace it with the ProductKey value of the device.
• ${port}: The port number. Set the port number to 5684 for DTLS connections.

2. Download the root certificate.

30 Issue: 20191126

http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/cert_pub/root.crt?spm=5176.doc30539.2.1.1MRvV5&file=root.crt

物联⽹平台 Device Access / 6 Protocols for connecting devices

3. Authenticate the device. Call auth to authenticate the device and obtain the
device token. Token information is required when the device sends data to IoT
Platform.
Request message:
POST /auth
Host: ${YourProductKey}.coap.cn-shanghai.link.aliyuncs.com
Port: 5684
Accept: application/json or application/cbor
Content-Format: application/json or application/cbor
payload: {"productKey":"ZG1EvTEa7NN","deviceName":"NlwaSPXsCp
TQuh8FxBGH","clientId":"mylight1000002","sign":"bccb3d2618afe74b3eab
12b94042f87b"}

For more information about parameters (except for Port parameter, where the
port for this method is 5684) and payload content, see Parameter description.
Response example:
response: {"token":"f13102810756432e85dfd351eeb41c04"}

Table 6-5: Return codes
Code Message Payload Description
2.05 Content The token is

contained in
 the payload
 if the
authentica
tion has
passed.

The request is successful.

4.00 Bad Request no payload The payload in the request is invalid
.

4.01 Unauthoriz
ed

no payload The request is unauthorized.

4.03 Forbidden no payload The request is forbidden.
4.04 Not Found no payload The requested path does not exist.
4.05 Method Not

Allowed
no payload The request method is not allowed.

4.06 Not
Acceptable

no payload The value of Accept parameter is
not in a supported format.

Issue: 20191126 31

物联⽹平台 Device Access / 6 Protocols for connecting devices

Code Message Payload Description
4.15 Unsupporte

d Content-
Format

no payload The value of Content-Format
parameter is not in a supported
format.

5.00 Internal
Server Error

no payload The authentication request is timed
 out or an error occurred on the
authentication server.

4. The device sends data.
The device publishes data to a specified topic.
In the IoT Platform console, on the Topic Categories tab page of the product, you
can create topic categories.
Currently, only topics with the permission to publish messages can be used for
publishing data, for example, /${YourProductKey}/${YourDeviceName}/pub.
Specifically, if a device name is device, and its product key is a1GFjLP3xxC, the
device can send data through the address a1GFjLP3xxC.coap.cn-shanghai.link.
aliyuncs.com:5684/topic/a1GFjLP3xxC/device/pub.
Request message:
POST /topic/${topic}
Host: ${YourProductKey}.coap.cn-shanghai.link.aliyuncs.com
Port: 5684
Accept: application/json or application/cbor
Content-Format: application/json or application/cbor
payload: ${your_data}
CustomOptions: number:2088(token)

Table 6-6: Request parameters
Parameter Required Description
Method Yes The request method. The supported request

method is POST.
URL Yes /topic/${topic} Replace the variable ${topic

} with the device topic which will be used to
publish data.

Host Yes The endpoint address. The format
is ${YourProductKey}.coap.cn-
shanghai.link.aliyuncs.com. Replace
${YourProductKey} with the ProductKey value
of the device.

32 Issue: 20191126

物联⽹平台 Device Access / 6 Protocols for connecting devices

Parameter Required Description
Port Yes Set the value to 5684.
Accept Yes The encoding format of the data that is to be

received by the device. Currently, application/
json and application/cbor are supported.

Content-
Format

Yes The encoding format of the data that the device
 sends to IoT Platform. Currently, application/
json and application/cbor are supported.

CustomOpti
ons

Yes • Number: 2088.
• The value of token is the token information

returned after auth is called to authenticate
the device.

Note:
Token information is required every time
the device sends data. If the token is lost
or expires, initiate a device authentication
request again to obtain a new token.

6.2 Use HTTP protocol
6.2.1 HTTP standard
HTTP protocol versions

• Supports Hypertext Transfer Protocol (HTTP) version 1.0. For more information,
see RFC 1945

• Supports HTTP version 1.1. For more information, see RFC 2616

Channel security
Uses Hypertext Transfer Protocol Secure (HTTPS) to guarantee channel security.
• Does not support passing parameters with question marks (?).
• Resource discovery is currently not supported.
• Only HTTPS is supported.
• The URI standard, the HTTP URI resources, and the MQTT topic must be

consistent. See MQTT standard.

Issue: 20191126 33

https://tools.ietf.org/html/rfc1945
https://tools.ietf.org/html/rfc2616
https://www.alibabacloud.com/help/doc-detail/30540.htm

物联⽹平台 Device Access / 6 Protocols for connecting devices

6.2.2 Establish connections over HTTP
IoT Platform supports HTTP connections, and only the HTTPS protocol is
supported. This topic describes how to connect devices to IoT Platform over HTTP.

Restrictions
• HTTP communications are applicable to simple data report scenarios.
• The HTTP server endpoint is https://iot-as-http.cn-shanghai.aliyuncs.com.
• Only the China (Shanghai) region supports HTTP communication.
• Only the HTTPS protocol is supported.
• The standards for HTTPS-based topics are the same as the standards for MQTT-

based topics in MQTT standards. Devices connect to IoT Platform over HTTP and
send data to IoT Platform by using https://iot-as-http.cn-shanghai.aliyuncs
.com/topic/${topic}. The value of ${topic} can be the same topics used for
MQTT communications. You cannot specify parameters in the format of ?
query_String=xxx.

• The size of data from devices is limited to 128 KB.
• Only POST method is supported.
• The value of Content-Type in the HTTP header of an authentication request must

be application/json.
• The value of Content-Type in the HTTP header of an upstream data request must

be application/octet-stream.
• The token returned for the device authentication will expire after a certain

period of time. Currently, the token is valid for seven days. Make sure that you
understand any negative impact that token expiration will have on your business
.

Procedure
The communication process includes performing device authentication to obtain a
device token and using the obtained token for data reporting.
1. Authenticate the device to obtain the device token.

Endpoint: https://iot-as-http.cn-shanghai.aliyuncs.com
Authentication request:
POST /auth HTTP/1.1
Host: iot-as-http.cn-shanghai.aliyuncs.com

34 Issue: 20191126

物联⽹平台 Device Access / 6 Protocols for connecting devices
Content-Type application/json
body: {"version":"default","clientId":"mylight1000002","signmethod
":"hmacsha1","sign":"4870141D4067227128CBB4377906C3731CAC221C","
productKey":"ZG1EvTEa7NN","deviceName":"NlwaSPXsCpTQuh8FxBGH","
timestamp":"1501668289957"}

Table 6-7: Parameters
Parameter Description
Method The request method. The supported method is POST.
URL The URL of the /auth request. Only HTTPS is supported.
Host The endpoint: iot-as-http.cn-shanghai.aliyuncs.com.
Content-Type The encoding format of the upstream data that the

device sends to IoT Platform. Only application/json is
supported. If another encoding format is used, a parameter
error is returned.

body The device information for authentication, in JSON format.
For more information, see the following table Fields in body.

Table 6-8: Fields in body
Field Required? Description
productKey Yes The unique identifier of the product to which

 the device belongs. You can obtain this
information from the Device Details page of the
 IoT platform console.

deviceName Yes The device name. You can obtain this
information from the Device Details page of the
 IoT platform console.

clientId Yes The client ID, a string of up to 64 characters.
We recommend that you use the MAC address
or SN code as the client ID.

timestamp No The timestamp. A request is valid within 15
minutes after the timestamp is created. The
timestamp is in the format of numbers. The
value is the number of milliseconds that have
elapsed since 00:00, January 1, 1970 (GMT).

Issue: 20191126 35

物联⽹平台 Device Access / 6 Protocols for connecting devices

Field Required? Description
sign Yes The signature value.

The signature algorithm is in the format of
hmacmd5(deviceSecret,content).
The value of content is a string that contains
all the parameters to be reported to IoT
Platform except version, sign, and signmethod
. These parameters are sorted in alphabetical
order and spliced without any separators.
Signature example:
If clientId=12345, deviceName=device,
productKey=pk, timestamp=789, signmethod=
hmacsha1, and deviceSecret=secret, then the
signature algorithm is hmacsha1("secret","
clientId12345deviceNamedeviceproductKeyp

ktimestamp789").toHexString();. In this
example, binary data will be converted to a
case-insensitive hexadecimal string.

signmethod No The algorithm type. The type can be hmacmd5
or hmacsha1.
If you do not specify this parameter, the
default value is hmacmd5.

version No The version number. If you do not specify this
parameter, the value is "default".

Sample response:
body:
{
 "code": 0,// The status code
 "message": "success", // The message
 "Info": {
 "token": "6944e5bfb92e4d4ea3918d1eda3942f6"
 }
}

Note:
36 Issue: 20191126

物联⽹平台 Device Access / 6 Protocols for connecting devices

• Cache the returned token value locally.
• Token information is required each time when the device reports data to IoT

Platform. If the token expires, you must re-authenticate the device to obtain a
 new token.

Table 6-9: Error codes
Code Message Description
10000 common error Unknown error.
10001 param error A parameter error occurred.
20000 auth check error An error occurred while authentica

ting the device.
20004 update session error An error occurred while updating the

session.
40000 request too many Too many requests. The throttling

policy limits the number of requests.
2. Send data to IoT Platform.

The device sends data to a specific topic.
To send data to a custom topic, you must create a topic category on the Topic
Categories tab page of the corresponding product in the IoT Platform console.
For more information, see Create a topic category.
For example, a topic category is /${YourProductKey}/${YourDeviceName}/user
/pub. If the device name is device123, and its ProductKey is a1GFjLPXXXX, the
device can send data through https://iot-as-http.cn-shanghai.aliyuncs.com
/topic/a1GFjLPXXXX/device123/user/pub.
Upstream data request:
POST /topic/${topic} HTTP/1.1
Host: iot-as-http.cn-shanghai.aliyuncs.com
password:${token}
Content-Type: application/octet-stream
body: ${your_data}

Table 6-10: Parameter description
Parameter Description
Method The request method. The supported method is POST.

Issue: 20191126 37

物联⽹平台 Device Access / 6 Protocols for connecting devices

Parameter Description
URL /topic/${topic}. Replace ${topic} with the topic to which

data is sent. Only HTTPS is supported.
Host The endpoint: iot-as-http.cn-shanghai.aliyuncs.com.
password This parameter is included in the request header. The value

of this parameter is the token returned after calling auth to
authenticate the device.

Content-Type The encoding format of the upstream data that the device
sends to IoT Platform. Only application/octet-stream is
supported. If another encoding format is used, a parameter
error is returned.

body The data content sent to the target topic.
Sample response:
body:
{
 "code": 0, // The status code
 "message": "success", // The message
 "Info": {
 "messageId": 892687627916247040,
 }
}

Table 6-11: Error codes
Code Message Description
10000 common error Unknown error.
10001 param error A parameter error occurred.
20001 token is expired The token has expired. You must call

auth to re-authenticate the device and
obtain a new token.

20002 token is null The request header does not contain
any token information.

20003 check token error An error occurred while obtaining
identity information according to
the token. You must call auth to re-
authenticate the device and obtain a
new token.

30001 publish message
error

An error occurred while reporting
data.

38 Issue: 20191126

物联⽹平台 Device Access / 6 Protocols for connecting devices

Code Message Description
40000 request too many Too many requests. The throttling

policy limits the number of requests.

Issue: 20191126 39

物联⽹平台 Device Access / 7 Generic protocol SDK

7 Generic protocol SDK
7.1 Overview

Alibaba Cloud IoT Platform supports communication over MQTT, CoAP, or HTTP.
Other types of protocols, such as the fire protection agreement GB/T 26875.3-2011,
Modbus, and JT808, are not supported. In specific scenarios, some devices may not
be able to directly connect to IoT Platform. You must use the generic protocol SDK
to build a bridge for your devices or platforms with IoT Platform, so that they can
communicate with each other.

Architecture
The generic protocol SDK is a self-adaptive protocol framework. This SDK is used
 to provide a bridge service for the bi-directional communication between IoT
Platform and your devices or platforms.
The following figure shows the architecture.

Scenarios
The generic protocol SDK can be applied to the following scenarios:
• Your device cannot be directly connected to IoT Platform because of the network

 or hardware restrictions.
• Your device supports only protocols that are not supported by IoT Platform.

40 Issue: 20191126

物联⽹平台 Device Access / 7 Generic protocol SDK

• A connection is already established between the device and your server. You
want to connect the device to IoT Platform without modifying the device and
protocol.

• The device is directly connected to your server. Additional logic processing is
required.

Features
The generic protocol SDK enables the bridge server to communicate with IoT
Platform.
Basic features:
• Allows you to manage configurations based on a configuration file.
• Allows you to manage device connections.
• Provides upstream communication capabilities.
• Provides downstream communication capabilities.
Advanced features:
• Allows you to manage configurations based on interfaces.
• Provides interfaces that can be called to report properties, events, and tags.

Terms
Term Description
device The device in a real IoT scenario that cannot directly

communicate with IoT Platform by using the protocols
supported by IoT Platform.

bridge server The server to which the device is connected. This server uses a
specific protocol to communicate with the device and uses the
generic protocol SDK to communicate with IoT Platform.

original protocol The specific protocol used between the device and the bridge
server. The generic protocol SDK does not involve the definition
 and implementation of the original protocol.

original device
identifier

The unique identifier used by the device to communicate with
the bridge server over the original protocol. Among the generic
protocol SDK interface parameters, the originalIdentity
parameter specifies the identifier of the device's original
identity.

Issue: 20191126 41

物联⽹平台 Device Access / 7 Generic protocol SDK

Term Description
device certificate The device certificate information obtained after you register

the device with IoT Platform. The information includes
ProductKey, DeviceName, and DeviceSecret. In a scenario
that uses the generic protocol, you do not need to install the
device certificate on the device. Instead, you must configure the
generic protocol SDK file: devices.conf. The bridge maps the
originalIdentity of the device to the device certificate.

bridge certificate The device certificate information returned after you register
the bridge device with IoT Platform. The information includes
 ProductKey, DeviceName, and DeviceSecret. The bridge
certificate uniquely identifies the bridge in IoT Platform.

Development and deployment
1. Create products and devices.

Log on to the IoT Platform console and create products and devices. For more
information, see Create a product and Create a device or Create multiple devices at a time.
Obtain the device certificate of the bridge. This certificate must be provided
when you configure the generic protocol SDK.

Note:
Bridge is a virtual concept. You can use any device certificate as the certificate
information of the bridge.

2. Configure the generic protocol SDK.
The generic protocol SDK supports only the Java language. Only JDK 1.8 and later
 versions are supported.
For more information about how to configure the generic protocol SDK, see Use

the basic features.

42 Issue: 20191126

物联⽹平台 Device Access / 7 Generic protocol SDK

3. Deploy the bridge service.
You can deploy a developed bridge service on Alibaba Cloud in a scalable
manner by using Alibaba Cloud services such as ECS and SLB. You can also deploy
the bridge service in local environment to guarantee secure communication.
The following figure shows the procedures of using ECS to deploy the bridge
service:

7.2 Use the basic features
Based on the generic protocol SDK, your device can connect to and communicate
with Alibaba Cloud IoT Platform by using the bridge service. This topic describes
how to configure the generic protocol SDK to implement basic capabilities,
including device connection and disconnection and message upstreaming and
downstreaming.
See generic protocol SDK demo in GitHub.

Flow diagram
The following flow diagram shows the overall process for how to use the generic
protocol SDK to connect a device to IoT Platform.

Issue: 20191126 43

https://github.com/aliyun/alibabacloud-iot-bridge-core-demo

物联⽹平台 Device Access / 7 Generic protocol SDK

Import the SDK
Add the following dependency in your maven project to import the generic protocol
 SDK.
<dependency>
 <groupId>com.aliyun.openservices</groupId>
 <artifactId>iot-as-bridge-sdk-core</artifactId>
 <version>2.0.0</version>
</dependency>

Initialization
• Initialize the SDK.

You must create a BridgeBootstrap object and call the bootstrap method. After
the generic protocol SDK initialization is complete, the SDK reads the bridge
information and initiates a request for the bridge to connect to IoT Platform.
In addition to calling bootstrap, you can also register the
DownlinkChannelHandler callback with the generic protocol SDK to receive
downstream messages from IoT Platform.
Sample code:
BridgeBootstrap bridgeBootstrap = new BridgeBootstrap();
bridgeBootstrap.bootstrap(new DownlinkChannelHandler() {
 @Override

44 Issue: 20191126

物联⽹平台 Device Access / 7 Generic protocol SDK
 public boolean pushToDevice(Session session, String topic, byte
[] payload) {
 //get message from cloud
 String content = new String(bytes);
 log.info("Get DownLink message, session:{}, {}, {}", session
, topic, content);
 return true;
 }

 @Override
 public boolean broadcast(String topic, byte[] payload) {
 return false;
 }
});

• Configure bridge information.
By default, a bridge is configured based on a configuration file. By default,
the configuration file is read from application.conf under the default
resource file path of the Java project (generally src/main/resources/). The
file is in the format of HOCON (JSON superset). The generic protocol SDK uses
typesafe.config to parse the configuration file.
You can configure a bridge device either by specifying a bridge device or
dynamically registering a bridge device. This topic only describes how to specify
a bridge device. For more information about how to dynamically register a
bridge device, see Dynamically register a bridge device.
Table 7-1: Bridge configuration parameters
Parameter Required Description
productKey Yes The key of

the product
to which the
bridge device
belongs .

Issue: 20191126 45

https://github.com/lightbend/config/blob/master/HOCON.md

物联⽹平台 Device Access / 7 Generic protocol SDK

Parameter Required Description
deviceName No The device

name of the
bridge device.
- You must

provide this
 parameter
 if you have
 registered
 the bridge
 device in
 advance
and want to
 configure
the device
 based
on the
specified
 device
certificate
informatio
n.

- You do not
 need to
provide this
 parameter
 if you
have not
registered
the bridge
 device in
 advance
and want
 to use
the MAC
address of
the bridge
 server as
the device
 name to
dynamicall
y register
 a device
with IoT
Platform.46 Issue: 20191126

物联⽹平台 Device Access / 7 Generic protocol SDK

Parameter Required Description
deviceSecret No The device

secret of the
bridge device.
- You must

provide this
 parameter
 if you have
 registered
 the bridge
 device in
 advance
and want to
 configure
the device
 based
on the
specified
 device
certificate
informatio
n.

- You do not
 need to
provide this
 parameter
 if you
choose to
dynamicall
y register
the bridge
 device
rather than
 have the
 bridge
 device
registered
in advance.

Issue: 20191126 47

物联⽹平台 Device Access / 7 Generic protocol SDK

Parameter Required Description
http2Endpoint Yes The endpoint

of the HTTP/2
gateway
service.
The bridge
device and
IoT Platform
establish a
persistent
connection
over the
HTTP/2
protocol. The
endpoint is in
the format of
${productKey

}.iot-as-

http2 .${

RegionId}.

aliyuncs.com

:443.
Replace
${ProductKey}

with the
ProductKey of
the product
to which your
bridge device
belongs.
Replace
${RegionId}

with the ID
of the region
where your
service is
located.
For more
information
about regions,
see Regions and

zones.
For example,
if the
ProductKey
of the bridge
device is
alabcabc123,
the region
is China
(Shanghai),
then the
HTTP/2
gateway
service
endpoint is
alabcabc123.

iot-as-http2

.cn-shanghai

.aliyuncs.

com:443.

48 Issue: 20191126

https://www.alibabacloud.com/help/doc-detail/40654.htm
https://www.alibabacloud.com/help/doc-detail/40654.htm

物联⽹平台 Device Access / 7 Generic protocol SDK

Parameter Required Description
authEndpoint Yes The service

URL for device
authentication.
The device
authentication
service URL is
in the format
of https://
iot-auth .${

RegionId}.

aliyuncs.com

/auth/bridge.
Replace
${RegionId}

with the ID
of the region
where your
service is
located.
For more
information
about regions,
see Regions and

zones.
For example,
if the region
is China
(Shanghai),
then the
device
authentication
service
address is
https://iot

-auth.cn-

shanghai.

aliyuncs.com

/auth/bridge.

Issue: 20191126 49

https://www.alibabacloud.com/help/doc-detail/40654.htm
https://www.alibabacloud.com/help/doc-detail/40654.htm

物联⽹平台 Device Access / 7 Generic protocol SDK

Parameter Required Description
popClientP
rofile

No This
parameter
must be
provided if
you use the
MAC address
of the bridge
server to
dynamically
register the
bridge device.
For more
information,
see Dynamically

register a bridge

device.

Use the following format to configure the bridge device certificate:
Server endpoint
http2Endpoint = "https://a1tN7OBmTcd.iot-as-http2.cn-shanghai.
aliyuncs.com:443"
authEndpoint = "https://iot-auth.cn-shanghai.aliyuncs.com/auth/
bridge"

Gateway device info, productKey & deviceName & deviceSecret
productKey = ${bridge-ProductKey-in-Iot-Plaform}
deviceName = ${bridge-DeviceName-in-Iot-Plaform}
deviceSecret = ${bridge-DeviceSecret-in-Iot-Plaform}

Device authentication and connection
• Configure device connection.

The device connection interface in the generic protocol SDK:
/**
 * Device authentication
 * @param newSession Device session information, which is returned
in a downstream callback.
 * @param originalIdentity The original identity of the device
 * @return
 */

50 Issue: 20191126

物联⽹平台 Device Access / 7 Generic protocol SDK
public boolean doOnline(Session newSession, String originalIdentity
);

When the device is connected to the bridge device, it must pass in a session.
When a downstream message is called back, the session is called back to the
bridge device. The session contains the original identifier field, so that the bridge
 device can determine which device the message came from.
In addition, the session also has an optional channel field, which can be designed
 to store device connection information. For example, your bridge server is built
 based on Netty. You can use this field to store the channel object correspond
ing to the persistent connection of the device. When a message is sent from IoT
Platform, the bridge device can directly obtain the channel from the session for
subsequent operations. The data type of the channel field is Object. The generic
protocol SDK does not process data stored in the channel field. You can also store
 any device-related information in the channel field according to the scenario.
Sample code for device connection:
UplinkChannelHandler uplinkHandler = new UplinkChannelHandler();
//Create a session
Object channel = new Object();
Session session = Session.newInstance(originalIdentity, channel);
//Connect the device to the bridge
boolean success = uplinkHandler.doOnline(session, originalIdentity);
if (success) {
 //If the device is connected, the bridge device accepts new
communication requests from the device.
} else {
 //If the device connection fails, the bridge device rejects
subsequent communication requests, such as disconnection requests.
}

• Map an original identifier to a device certificate.
You must configure the mapping between the device certificate and the original
identifier of a device. By default, a configuration file is used to configure the
mapping. The configuration file is read from devices.conf under the default
resource file path of the Java project (generally src/main/resources/). The
file is in the format of HOCON (JSON superset). The generic protocol SDK uses
typesafe.config to parse the configuration file.
Use the following format to configure the device certificate information:
${device-originalIdentity} {
 prodyctKey : ${device-ProductKey-in-Iot-Plaform}
 deviceName : ${device-DeviceName-in-Iot-Platform}
 deviceSecret : ${device-DeviceSceret-in-Iot-Platform}

Issue: 20191126 51

https://github.com/lightbend/config/blob/master/HOCON.md

物联⽹平台 Device Access / 7 Generic protocol SDK
}

Parameter Required Description
productKey Yes The key of the product to which the device

belongs.
deviceName Yes The device name.
deviceSecret Yes The device secret.

Device sends data to IoT Platform
The interface for data upstreaming in the generic protocol SDK:
/**
 * Send upstream messages from the device by synchronously calling the
 interface
 * @param originalIdentity The original identifier of the device
 * @param protocolMsg The message to be sent, including the topic,
payload, and QoS information
 * @param timeout The timeout period in seconds
 * @return Indicates whether the message is sent successfully within
the timeout period
 */
boolean doPublish(String originalIdentity, ProtocolMessage protocolMsg
, int timeout);
/**
 * Send upstream messages from the device by asynchronously calling
the interface
 * @param originalIdentity The original identifier of the device
 * @param protocolMsg The message to be sent, including the topic,
payload, and QoS information
 * @return After this interface is called, CompletableFuture is
returned immediately. The caller can further process this Future.
 */
CompletableFuture<ProtocolMessage> doPublishAsync(String originalId
entity,
 ProtocolMessage
protocolMsg);

Sample code:
DeviceIdentity deviceIdentity =
 ConfigFactory.getDeviceConfigManager().getDeviceIdentity(
originalIdentity);
ProtocolMessage protocolMessage = new ProtocolMessage();
protocolMessage.setPayload("Hello world".getBytes());
protocolMessage.setQos(0);
protocolMessage.setTopic(String.format("/%s/%s/update",
 deviceIdentity.getProductKey(), deviceIdentity.getDeviceName
()));
//Synchronous sending
int timeoutSeconds = 3;
boolean success = upLinkHandler.doPublish(originalIdentity, protocolMe
ssage, timeoutSeconds);
//Asynchronous sending

52 Issue: 20191126

物联⽹平台 Device Access / 7 Generic protocol SDK
upLinkHandler.doPublishAsync(originalIdentity, protocolMessage);

Bridge device pushes data to device
When the bridge device calls the bootstrap method, it registers
DownlinkChannelHandler with the generic protocol SDK. When the generic protocol
SDK receives a downstream message, it calls back the pushToDevice method in
DownlinkChannelHandler. You can edit the pushToDevice method to configure the
bridge device to process downstream messages.

Note:
Do not create a time-consuming logic in the pushToDevice method. Otherwise, the
thread that receives downstream messages will be blocked. Use the asynchronous
transmission if a time-consuming logic or I/O logic exists, for example, sending
downstream messages through a persistent connection to the devices.

Sample code:
private static ExecutorService executorService = new ThreadPool
Executor(
 Runtime.getRuntime().availableProcessors(),
 Runtime.getRuntime().availableProcessors() * 2,
 60, TimeUnit.SECONDS,
 new LinkedBlockingQueue<>(1000),
 new ThreadFactoryBuilder().setDaemon(true).setNameFormat("bridge-
downlink-handle-%d").build(),
 new ThreadPoolExecutor.AbortPolicy());
public static void main(String args[]) {
 //Use application.conf & devices.conf by default
 bridgeBootstrap = new BridgeBootstrap();
 bridgeBootstrap.bootstrap(new DownlinkChannelHandler() {
 @Override
 public boolean pushToDevice(Session session, String topic,
byte[] payload) {
 //get message from cloud
 //get downlink message from cloud
 executorService.submit(() -> handleDownLinkMessage(session
, topic, payload));
 return true;
 }
 @Override
 public boolean broadcast(String s, byte[] bytes) {
 return false;
 }
 });
}
private static void handleDownLinkMessage(Session session, String
topic, byte[] payload) {
 String content = new String(payload);
 log.info("Get DownLink message, session:{}, topic:{}, content:
{}", session, topic, content);
 Object channel = session.getChannel();
 String originalIdentity = session.getOriginalIdentity();

Issue: 20191126 53

物联⽹平台 Device Access / 7 Generic protocol SDK
 //for example, you can send the message to device via channel, it
depends on you specific server implementation
}

Parameter Description
Session A session is transmitted by a device when the device is

connecting to the bridge device. A session can be used to
identify the device to which the downstream message is sent.

topic The topic of the downstream message.
payload The payload of a downstream message in binary format.

Device disconnection
A device is disconnected under the following situations:
• When the bridge device is disconnected from IoT Platform, all connected devices

 are automatically disconnected from IoT Platform.
• The bridge device reports a disconnection request for a device to IoT Platform.
The interface for bridge device to report device disconnection in the generic
protocol SDK:
/**
 * Report a disconnection request to IoT Platform for a device
 * @param originalIdentity The original identifier of the device
 * @return Indicates whether the message is sent successfully
 */
boolean doOffline(String originalIdentity);

Sample code:
upLinkHandler.doOffline(originalIdentity);

7.3 Use the advanced features
This topic describes how to use the advanced features of the generic protocol SDK.
The advanced features include customizing the configuration file path, configuring
dynamic bridge registration, calling the data reporting interfaces encapsulated in
the generic protocol SDK to report properties, events, and tags.

Customize configurations
By default, the configuration file of a bridge device and the mapping configuration
file of the device certificate are read from application.conf and devices.conf,

54 Issue: 20191126

物联⽹平台 Device Access / 7 Generic protocol SDK

respectively, under a fixed path. The generic protocol SDK allows you to customize
configurations. Before you call bootstrap, call the ConfigFactory.init method to
customize the path of a configuration file. You can also customize an instance to
implement the corresponding interface.
Sample code to customize configurations:
//Define config
//You can specify the location path of config files
//or you can create an instance and implement the corresponding
interface
//Config.init() must be called before bridgeBootstrap.bootstrap()
ConfigFactory.init(
 ConfigFactory.getBridgeConfigManager("application-self-define.conf
"),
 selfDefineDeviceConfigManager);
bridgeBootstrap.bootstrap();

private static DeviceConfigManager selfDefineDeviceConfigManager = new
 DeviceConfigManager() {
 @Override
 public DeviceIdentity getDeviceIdentity(String originalIdentity) {
 //Suppose you dynamically get deviceInfo in other ways
 return devicesMap.get(originalIdentity);
 }

 @Override
 public String getOriginalIdentity(String productKey, String
deviceName) {
 //you can ignore this
 return null;
 }
};

Dynamically register a bridge device
When you need to deploy a bridge application on a large number of servers, it is
cumbersome to specify different bridge devices for different bridge servers. You
can configure the bridge information file application.conf to dynamically register
bridge devices with IoT Platform. You must provide the productKey and popClientP
rofile parameters in the configuration file. The generic protocol SDK will call the
IoT Platform API and use the bridge servers' MAC codes as the device names to
register bridge devices.

Note:
• To dynamically register bridge devices, you only need to modify the bridge

configuration file. The call code is the same as Use the basic features.

Issue: 20191126 55

物联⽹平台 Device Access / 7 Generic protocol SDK

• If the bridge information is already specified in the bridge configuration file,
no device is created. The generic protocol SDK calls the IoT Platform API and
uses the bridge server's MAC code as the device name to register a bridge device
only if the following conditions are met: The deviceName and deviceSecret
parameters are left empty in the configuration file; all parameters in popClientp
rofile are specified. If a device is already registered using the current MAC
code, the device is directly used as the bridge device.

• If a bridge is configured by using this method, we recommend that you do
not perform debugging on a local client by using the configurations for the
production environment. Each time the program is debugged on a local client,
the generic protocol SDK uses the MAC code of the client to register a bridge
device, and associates all devices in the device configuration file devices.conf
 with the bridge. We recommend that you use dedicated devices for testing to
perform debugging to avoid interference with the production environment.

Table 7-2: Configuration parameters
Parameter Required Description
productKey Yes The ProductKey of the product to which the

bridge device belongs.

56 Issue: 20191126

物联⽹平台 Device Access / 7 Generic protocol SDK

Parameter Required Description
http2Endpoint Yes The endpoint of the HTTP/2 gateway service.

The bridge device and IoT Platform establish a
persistent connection over the HTTP/2 protocol.
The endpoint is in the format of ${productKey}.
iot-as-http2 .${RegionId}.aliyuncs.com:443

.
Replace ${productKey} with the ProductKey of
the product to which your bridge device belongs.
Replace ${RegionId} with the ID of the region
where your service is located. For more
information about regions, see Regions and zones.
For example, if the ProductKey of the bridge
device is alabcabc123, the region is China
(Shanghai), then the HTTP/2 gateway service
endpoint is alabcabc123.iot-as-http2.cn-
shanghai.aliyuncs.com:443.

authEndpoint Yes The service URL for device authentication.
The device authentication service URL is in the
format of https://iot-auth .${RegionId}.
aliyuncs.com/auth/bridge.
Replace ${RegionId} with the ID of the region
where your service is located. For more
information about regions, see Regions and zones.
For example, if the region is China (Shanghai),
then the device authentication service address is
https://iot-auth.cn-shanghai.aliyuncs.com/

auth/bridge.

Issue: 20191126 57

https://www.alibabacloud.com/help/doc-detail/40654.htm
https://www.alibabacloud.com/help/doc-detail/40654.htm

物联⽹平台 Device Access / 7 Generic protocol SDK

Parameter Required Description
popClientP
rofile

Yes After this parameter is configured, the generic
protocol SDK calls the IoT Platform API to
automatically register bridge devices.
For more information, see the following table:
Parameters in popClientProfile.

Table 7-3: Parameters in popClientProfile
Parameter Required Description
accessKey Yes The AccessKey ID of your Alibaba Cloud

account.
Log on to the Alibaba Cloud console and click
 your account avatar to go to the Account
Management page. You can create or view the
AccessKey information.

accessSecret Yes The AccessKey Secret of your Alibaba Cloud
account.

name Yes The IoT Platform service region to which
the bridge device connects. This parameter
indicates the region to which the product
identified by productKey belongs.
For more information about regions, see Regions

and zones.
region Yes The ID of the IoT Platform service region

to which the bridge device connects. This
parameter indicates the region to which the
product identified by productKey belongs.
This parameter is expressed in the same way as
the name parameter.

product Yes The product name. Set the value to Iot.

58 Issue: 20191126

https://www.alibabacloud.com/help/doc-detail/40654.htm
https://www.alibabacloud.com/help/doc-detail/40654.htm

物联⽹平台 Device Access / 7 Generic protocol SDK

Parameter Required Description
endpoint Yes The endpoint of the API. The endpoint is in the

format of iot. ${RegionId}.aliyuncs.com.
Replace ${RegionId} with the ID of the region
where your service is located. For more
information about regions, see Regions and zones.
For example, If the region is China (Shanghai),
the endpoint is iot.cn-shanghai.aliyuncs.com.

Sample code to dynamically register bridge devices:
Server endpoint
http2Endpoint = "https://${YourProductKey}.iot-as-http2.cn-shanghai.
aliyuncs.com:443"
authEndpoint = "https://iot-auth.cn-shanghai.aliyuncs.com/auth/bridge"

Gateway device info
You can also specify productKey only, and dynamic register
deviceName & deviceSecret in runtime
productKey = ${YourProductKey}

If you dynamic register gateway device using your mac address, you
have to specify 'popClientProfile'
otherwise you can ignore it
popClientProfile = {
 accessKey = ${YourAliyunAccessKey}
 accessSecret = ${YourAliyunAccessSecret}
 name = cn-shanghai
 region = cn-shanghai
 product = Iot
 endpoint = iot.cn-shanghai.aliyuncs.com
}

Call interfaces to report TSL data
To facilitate use and reduce your encapsulation operations, the generic protocol
SDK encapsulates data reporting interfaces. They are reportProperty, fireEvent,
and updateDeviceTag. The device can use these interfaces to report properties,
report events, and update device tags.
Prerequisites and usage guidelines:
• Before you call reportProperty and fireEvent to report properties and

events, log on to the IoT Platform console and go to the Product Details page of the
corresponding product. Then, click the Define Feature tab and define properties
and events. For more information, see #unique_42.

Issue: 20191126 59

https://www.alibabacloud.com/help/doc-detail/40654.htm
http://iot.console.aliyun.com/

物联⽹平台 Device Access / 7 Generic protocol SDK

• If the tag that is specified in updateDeviceTag already exists, the tag value is
updated. If the tag does not exist, the tag is automatically created. To check the
call result, you can log on to the IoT Platform console and go to the Device Details
page of the corresponding device.

Sample code:
TslUplinkHandler tslUplinkHandler = new TslUplinkHandler();
//report property
//Property 'testProp' is defined in IoT Platform Web Console
String requestId = String.valueOf(random.nextInt(1000));
tslUplinkHandler.reportProperty(requestId, originalIdentity, "testProp
", random.nextInt(100));

//fire event
//Event 'testEvent' is defined in IoT Platform Web Console
requestId = String.valueOf(random.nextInt(1000));
HashMap<String, Object> params = new HashMap<String, Object>();
params.put("testEventParam", 123);
tslUplinkHandler.fireEvent(originalIdentity, "testEvent", ThingEvent
Types.INFO, params);

//update device tag
//'testDeviceTag' is a tag key defined in IoT Platform Web Console
requestId = String.valueOf(random.nextInt(1000));
tslUplinkHandler.updateDeviceTag(requestId, originalIdentity, "
testDeviceTag", String.valueOf(random.nextInt(1000)));

The parameters in this example are described as follows:
Parameter Description
requestId The request ID.
originalIdentity The original identifier of the device.
testProp The identifier of the property. For this example, make

sure that you have defined a property with the identifier
as testProp in the IoT Platform console. This sample code
indicates to report the value of property testProp.

random.nextInt(100) The property value to be reported. The value range of the
property value is also defined in the IoT Platform console.
In this example, use random.nextInt(100) to indicate a
random number less than 100.

testEvent The identifier of the event. For this example, make sure
 that you have defined an event with the identifier as
testEvent in the IoT Platform console. This sample code
indicates to report event testEvent.

60 Issue: 20191126

物联⽹平台 Device Access / 7 Generic protocol SDK

Parameter Description
ThingEventTypes.
INFO

The event type. ThingEventTypes specifies the event type.
A value of INFO indicates that the event type is Info.
For this example, make sure that you have selected Info as
 the event type when you defined event testEvent in the IoT
 Platform console.

params The output parameters of the event. The identifier, data
 type, and value range of output parameters are also
defined in the IoT Platform console. In this example, the
identifier of the output parameter is testEventParam, and
the value is 123.

testDeviceTag The key of the tag. The data type is String. In
this example, the key is testDeviceTag. Set
the key of the tag as instructed based on your
requirements. For more information, see #unique_43/

unique_43_Connect_42_section_igy_bvb_wdb.
String.valueOf(
random.nextInt(1000
))

The value of the tag. The data type is String. In this
example, String.valueOf(random.nextInt(1000
)) indicates a random number less than 1000. Set
the value of the tag as instructed based on your
requirements. For more information, see #unique_43/

unique_43_Connect_42_section_igy_bvb_wdb.

Issue: 20191126 61

	Contents
	Legal disclaimer
	Document conventions
	1 Download device SDKs
	2 Create a product
	3 Create devices
	3.1 Create multiple devices at a time
	3.2 Create a device
	3.3 Manage devices

	4 Authenticate devices
	4.1 Authenticate devices
	4.2 Unique-certificate-per-device authentication
	4.3 Unique-certificate-per-product authentication

	5 Topics
	5.1 What is a topic?
	5.2 Create a topic category

	6 Protocols for connecting devices
	6.1 Use CoAP protocol
	6.1.1 CoAP standard
	6.1.2 Establish connections over CoAP

	6.2 Use HTTP protocol
	6.2.1 HTTP standard
	6.2.2 Establish connections over HTTP

	7 Generic protocol SDK
	7.1 Overview
	7.2 Use the basic features
	7.3 Use the advanced features

