
Alibaba Cloud
Table Store

Developer Guide
Issue: 20191127

Table Store Developer Guide / Legal disclaimer

Legal disclaimer
Alibaba Cloud reminds you to carefully read and fully understand the terms and
 conditions of this legal disclaimer before you read or use this document. If you
have read or used this document, it shall be deemed as your total acceptance of this
 legal disclaimer.
1. You shall download and obtain this document from the Alibaba Cloud website

 or other Alibaba Cloud-authorized channels, and use this document for your
own legal business activities only. The content of this document is considered
 confidential information of Alibaba Cloud. You shall strictly abide by the
confidentiality obligations. No part of this document shall be disclosed or
provided to any third party for use without the prior written consent of Alibaba
Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted
, or disseminated by any organization, company, or individual in any form or by
any means without the prior written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades
, adjustments, or other reasons. Alibaba Cloud reserves the right to modify
the content of this document without notice and the updated versions of this
 document will be occasionally released through Alibaba Cloud-authorized
channels. You shall pay attention to the version changes of this document as they
 occur and download and obtain the most up-to-date version of this document
from Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud
 products and services. Alibaba Cloud provides the document in the context
that Alibaba Cloud products and services are provided on an "as is", "with all
 faults" and "as available" basis. Alibaba Cloud makes every effort to provide
relevant operational guidance based on existing technologies. However, Alibaba
 Cloud hereby makes a clear statement that it in no way guarantees the accuracy
, integrity, applicability, and reliability of the content of this document, either
explicitly or implicitly. Alibaba Cloud shall not bear any liability for any errors
 or financial losses incurred by any organizations, companies, or individuals
arising from their download, use, or trust in this document. Alibaba Cloud shall
 not, under any circumstances, bear responsibility for any indirect, consequent

Issue: 20191127 I

Table Store Developer Guide / Legal disclaimer

ial, exemplary, incidental, special, or punitive damages, including lost profits
arising from the use or trust in this document, even if Alibaba Cloud has been
notified of the possibility of such a loss.

5. By law, all the contents in Alibaba Cloud documents, including but not limited
to pictures, architecture design, page layout, and text description, are intellectu
al property of Alibaba Cloud and/or its affiliates. This intellectual property
includes, but is not limited to, trademark rights, patent rights, copyrights, and
 trade secrets. No part of this document shall be used, modified, reproduced,
publicly transmitted, changed, disseminated, distributed, or published without
the prior written consent of Alibaba Cloud and/or its affiliates. The names owned
 by Alibaba Cloud shall not be used, published, or reproduced for marketing,
advertising, promotion, or other purposes without the prior written consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limited
 to, "Alibaba Cloud", "Aliyun", "HiChina", and other brands of Alibaba Cloud
and/or its affiliates, which appear separately or in combination, as well as the
auxiliary signs and patterns of the preceding brands, or anything similar to the
 company names, trade names, trademarks, product or service names, domain
names, patterns, logos, marks, signs, or special descriptions that third parties
identify as Alibaba Cloud and/or its affiliates.

6. Please contact Alibaba Cloud directly if you discover any errors in this document
.

II Issue: 20191127

Table Store Developer Guide / Legal disclaimer

Issue: 20191127 III

Table Store Developer Guide / Document conventions

Document conventions
Style Description Example

A danger notice indicates a
situation that will cause major
system changes, faults, physical
 injuries, and other adverse
results.

Danger:
Resetting will result in the loss
of user configuration data.

A warning notice indicates a
situation that may cause major
system changes, faults, physical
 injuries, and other adverse
results.

Warning:
Restarting will cause business
interruption. About 10
minutes are required to restart
an instance.

A caution notice indicates
 warning information,
supplementary instructions,
and other content that the user
must understand.

Notice:
If the weight is set to 0, the
server no longer receives new
requests.

A note indicates supplemental
instructions, best practices, tips
, and other content.

Note:
You can use Ctrl + A to select
all files.

> Closing angle brackets are used
 to indicate a multi-level menu
cascade.

Click Settings > Network > Set
network type.

Bold Bold formatting is used for
buttons, menus, page names,
and other UI elements.

Click OK.

Courier font Courier font is used for
commands.

Run the cd /d C:/window
command to enter the Windows
system folder.

Italic Italic formatting is used for
parameters and variables.

bae log list --instanceid

Instance_ID

[] or [a|b] This format is used for an
optional value, where only one
item can be selected.

ipconfig [-all|-t]

Issue: 20191127 I

Table Store Developer Guide / Document conventions

Style Description Example
{} or {a|b} This format is used for a

required value, where only one
item can be selected.

switch {active|stand}

II Issue: 20191127

Table Store Developer Guide / Document conventions

Issue: 20191127 III

Table Store Developer Guide / Contents

Contents
Legal disclaimer...I
Document conventions...I
1 Overview.. 1
2 Limits... 3
3 Features and regions...6
4 Terms... 8

4.1 Instance.. 8
4.2 Endpoint..10
4.3 Read/write throughput.. 11
4.4 Region... 145 Wide column model.. 16
5.1 Introduction.. 16
5.2 Primary keys and attributes...17
5.3 Data versions and time to live.. 18
5.4 Naming conventions and data types... 21
5.5 Data operations... 22
5.6 Auto-increment function of the primary key column.............................. 35
5.7 Conditional update.. 37
5.8 Atomic counters.. 406 Timeline model...44
6.1 Introduction.. 44
6.2 Quick start...45
6.3 Basic operations.. 46

6.3.1 Overview.. 46
6.3.2 Initialization...46
6.3.3 Meta management.. 48
6.3.4 Timeline management.. 50
6.3.5 Queue management.. 517 Search Index...54

7.1 Overview... 54
7.2 Features...56
7.3 API operations... 60

7.3.1 Overview.. 60
7.3.2 CreateSearchIndex..67
7.3.3 DescribeSearchIndex.. 70
7.3.4 ListSearchIndex..70
7.3.5 DeleteSearchIndex..71
7.3.6 Array and Nested field types... 71

IV Issue: 20191127

Table Store Developer Guide / Contents
7.3.7 Sort.. 73
7.3.8 Tokenization...73
7.3.9 MatchAllQuery... 77
7.3.10 MatchQuery.. 77
7.3.11 MatchPhraseQuery..79
7.3.12 TermQuery... 80
7.3.13 TermsQuery.. 81
7.3.14 PrefixQuery.. 82
7.3.15 RangeQuery.. 82
7.3.16 WildcardQuery... 83
7.3.17 BoolQuery...84
7.3.18 Nested query...86
7.3.19 GeoDistanceQuery.. 87
7.3.20 GeoBoundingBoxQuery... 88
7.3.21 GeoPolygonQuery... 89
7.3.22 ExistQuery.. 90
7.3.23 Statistics... 91
7.3.24 Aggregation.. 98

7.4 Limits.. 1068 Global secondary index... 111
8.1 Overview..111
8.2 Introduction.. 113
8.3 Scenarios... 115
8.4 Java SDK for global secondary indexes... 124
8.5 APIs... 128
8.6 Appendix... 1289 Tunnel service...130
9.1 Overview..130
9.2 Features... 131
9.3 Description of the data consumption framework.................................. 132
9.4 Quick start... 135
9.5 SDKs.. 137
9.6 Incremental synchronization performance white paper........................13710 HBase..145
10.1 Table Store HBase Client.. 145
10.2 Table Store HBase Client supported functions.................................... 146
10.3 Differences between Table Store and HBase..152
10.4 Migrate from HBase to Table Store... 157
10.5 Migrate HBase of an earlier version..160
10.6 Hello World..16211 Authorization management... 167
11.1 RAM and STS... 167
11.2 Create a RAM user account.. 170
11.3 Grant permissions to a RAM user... 171

Issue: 20191127 V

Table Store Developer Guide / Contents
11.4 Configure an MFA device for a RAM user.. 172
11.5 STS temporary access authorization... 173

11.5.1 Create a temporary role and grant permissions........................173
11.5.2 Authorize temporary access.. 176

11.6 Custom permissions... 181
11.7 Authorize a RAM user account to log on to the console.......................192
11.8 Examples... 193

VI Issue: 20191127

Table Store Developer Guide / 1 Overview

1 Overview
Table Store is a NoSQL multi-model database service independently developed by
Alibaba Cloud. Table Store can store large amounts of structured data and provide
query and analysis services. The distributed storage and powerful index-based
search engine enable Table Store to store PB-grade data while ensuring 10 million
TPS and millisecond-level latency. This document introduces terms, models, and
features of Table Store.

Terms
The following table describes the terms for Table Store.
Term Description
Instance An instance is an entity used to manage tables and data in

Table Store. Each instance is equivalent to a database. Table
 Store implements access control and resource metering for
applications at the instance level.

Read/write throughput The read/write throughput is measured by read/write
capacity units (CUs), which is the smallest billing unit for
read and write operations.

Region A region is a physical data center of Alibaba Cloud.
Endpoint Each Table Store instance has an endpoint. An endpoint must

 be specified before any operations can be performed on
tables or data in Table Store.

Models
Table Store provides multiple models that you can apply for as needed. The
following table describes the models of Table Store.
Model Description
Wide Column model The Wide Column model is applicable to various scenarios,

such as metadata and big data. This model supports multiple
 functions, including data versions, time to live (TTL), auto
-increment of primary key columns, conditional updates,
local transactions, atomic counters, and filters.

Issue: 20191127 1

Table Store Developer Guide / 1 Overview

Model Description
Timeline model The Timeline model is a data model that can meet special

requirements of message data scenarios, such as message
 order preservation, storage of large numbers of messages
, and real-time synchronization. This model also supports
full-text queries and bool queries. The model is also suitable
 for use in scenarios such as instant messaging (IM) and feed
streams.

Features
The following table describes the features of Table Store.
Feature Description
Auto-increment function

of the primary key

column

If you set a primary key column as an auto-increment column
, you do not need to enter values in this column when writing
 data in a row. Instead, Table Store automatically generates
primary key values. The automatically generated key values
are unique within the rows that share the same partition key.
These values increase sequentially.

Conditional update A conditional update is implemented only when specified
conditions are met.

Atomic counters An atomic counter consists of columns. The atomic counter
 provides real-time statistics for some online applications,
such as calculating the real-time page views (PVs) of a post.

#unique_13 Filters can be used to sort results on the server side. Only
results that match the filtering conditions are returned. The
 feature effectively reduces the volume of transferred data
and shortens the response time.

Search index Based on inverted index and columnstore index, search-
based index solves the complex query problem in big data
scenarios.

Global secondary index Global secondary index can be used to create indexes for
attribute columns.

Tunnel Service Tunnel Service provides tunnels that are used to export and
consume data in the full, incremental, and differential modes
. After creating tunnels, you can consume historical and
incremental data exported from a specified table.

HBase support Table Store HBase Client can be used to access Table Store
through Java applications built on HBase APIs.

2 Issue: 20191127

Table Store Developer Guide / 2 Limits

2 Limits
The following table describes the restrictions for Table Store. Some of the restrictio
ns indicate the maximum values that can be used rather than the suggested values.
In order to ensure better performance, please set the table structure and data size
in a single row appropriately.
Item Limit Description
Number of instances
created under an Alibaba
Cloud user account

10 To increase the limit, open

a ticket.
Number of tables in an
instance

64 To increase the limit, open

a ticket.
Instance name length 3-16 Bytes Can contain uppercase

and lowercase letters,
digits, and hyphens.
Must begin with a letter,
and must not end with a
hyphen.
Must not contain the
words, such as ‘ali’, ‘
ay’, ‘ots’, ‘taobao’
and ‘admin’.

Table name length 1-255 Bytes Can contain uppercase
and lowercase letters,
digits, and underscores.
Must begin with a letter or
 underscore.

Column name length 1-255 Bytes Can contain uppercase
and lowercase letters,
digits, and underscores.
Must begin with a letter or
 underscore.

Issue: 20191127 3

https://workorder-intl.console.aliyun.com/#/ticket/createInd
https://workorder-intl.console.aliyun.com/#/ticket/createInd
https://workorder-intl.console.aliyun.com/#/ticket/createInd
https://workorder-intl.console.aliyun.com/#/ticket/createInd

Table Store Developer Guide / 2 Limits

Item Limit Description
Number of primary key
columns

1-4 columns Must be at least one
column.

Size of string type primary
 key column values

1 KB A single primary key
column’s string type
column value is limited to
 1 KB.

Size of string type
attribute column values

2 MB A single attribute column
’s string type column
value is limited to 2 MB.

Size of binary type
primary key column
values

1 KB A single primary key
column’s binary type
column value is limited to
 1 KB.

Size of binary type
attribute column values

2 MB A single attribute column
’s binary type column
value is limited to 2 MB.

Number of attribute
columns in a single row

Unlimited A single row can contain
 an unlimited amount of
attribute columns.

The number of attribute
 columns written by one
request

1024 columns The number of attribute
 columns written by one
PutRow, UpdateRow, or
BatchWriteRow request in
 a single row.

Data size of a single row Unlimited The total size of all
column names, and
column value data, for a
single row is unlimited.

Reserved read/write
throughput for a single
table

0-5000 To increase the limit, open

a ticket.
Number of columns
 in a read request’
s columns_to_get
parameter

0-128 The maximum number of
columns obtained in a row
 of data in the read request
.

Table-level operation QPS 10 The QPS of a table-level
operation on an instance
must not exceed 10.

4 Issue: 20191127

https://workorder-intl.console.aliyun.com/#/ticket/createInd
https://workorder-intl.console.aliyun.com/#/ticket/createInd

Table Store Developer Guide / 2 Limits

Item Limit Description
Number of UpdateTable
 operations for a single
table

increase: Unlimited Lower
: Unlimited

The reserved read/write
 throughput for each
table can be increased or
 lowered unlimited times
 within a calendar day (
from 00:00:00 to 00:00:00
 of the next day in UTC
time).

UpdateTable frequency
for a single table

Maximum of one update
every 2 minutes

The reserved read/write
 throughput for a single
table cannot be adjusted
beyond the frequency of
once every 2 minutes.

The number of rows read
 by one BatchGetRow
request

100 N/A

The number of rows
written by one BatchWrite
Row request

200 N/A

Data size of one
BatchWriteRow request

4 MB N/A

Data returned by one
GetRange operation

5,000 rows or 4 MB The data returned by a
single operation cannot
exceed 5000 rows or 4 MB
. Otherwise, the excessive
 data will be read with a
returned token.

The data size of an HTTP
Request Body

5 MB N/A

Issue: 20191127 5

Table Store Developer Guide / 3 Features and regions

3 Features and regions
Most Table Store features are supported in all regions. This topic describes the
features that are not supported by all regions or are currently in invitational
preview.

Note:
If the feature you are searching for is not included on this list, it means that this
feature is supported in all regions.

Features in invitational preview and supported regions
Table Store has the following features in invitational preview:
• Global secondary index: supported in all regions. You must submit a ticket to enable

this feature.
Features not supported in all regions

Search index and Tunnel Service are not supported in all regions. The following table
describes which regions support the feature.
Region Search index Tunnel Service
China (Hangzhou) Yes Yes
Finance Cloud of China (
Hangzhou)

- Yes

China (Shanghai) Yes Yes
Finance Cloud of China (
Shanghai)

- Yes

China (Qingdao) - -
China (Beijing) Yes Yes
China (Zhangjiakou-
Beijing Winter Olympics)

Yes Yes

China (Hohhot) - -
China (Shenzhen) Yes Yes
Finance Cloud of China (
Shenzhen)

- -

China (Chengdu) - -
6 Issue: 20191127

Table Store Developer Guide / 3 Features and regions

Region Search index Tunnel Service
China (Hong Kong) Yes Yes
Japan (Tokyo) - -
Singapore Yes Yes
Australia (Sydney) - -
Malaysia (Kuala Lumpur) - -
Indonesia (Jakarta) - -
UAE (Dubai) - -
US (Silicon Valley) - -
Germany (Frankfurt) - -
US (Virginia) - -
India (Mumbai) Yes Yes
UK (London) - -

Issue: 20191127 7

Table Store Developer Guide / 4 Terms

4 Terms
4.1 Instance

An instance is a logical entity in Table Store used to manage tables as a database in
a relational database management system (RDBMS).
After activating Table Store, create an instance in the Table Store console and then
 create and manage tables within this instance. An instance is the basic unit in the
resource management system of Table Store. Table Store implements access control
 and resource metering at the instance level.

You can create different instances for multiple businesses to manage their
respective tables. You can also create multiple instances for one business based on
different development, testing, and production purposes.
Table Store allows one Alibaba Cloud account to create up to 10 instances, and up to
 64 tables can be created within each instance.

Naming rule
The name of each instance is unique within each region. You can create instances
of the same names across different service regions. Naming rule for each instance
must:
• Contain English letters, numbers, and hyphens(-)
• Start with English letters

8 Issue: 20191127

Table Store Developer Guide / 4 Terms

• Not end with a hyphen(-)
• Be case-insensitive
• Be 3 Bytes to 16 Bytes in length
• Not contain the words, such as ‘ali’, ‘ay’, ‘ots’, ‘taobao’,and ‘admin’

Instance type
Table Store supports two instance types: high-performance instance and capacity
instance.

Notice:
An instance type cannot be modified once the instance is created.

The two instance types have the same functions and support petabyte-sized data
volumes for a single table, however, they differ in costs and scenarios.
• High-performance instance

High-performance instances support millions of read-write transactions per
second (TPS) with 1 ms average latency of read and write operations per row.
High-performance instances are suitable for scenarios requiring high read and
 write performance and concurrency, such as gaming, financial risk control,
social networking applications, product recommendation systems, and public
opinion sensing.

• Capacity instance
Capacity instances provide write throughput and write performance comparable
 to that of the high-performance instances, but with lower costs. However, the
 capacity instances do not equal the read performance and concurrency of
high-performance instances. The capacity instances are suitable for services
 with high write frequency but low read frequency, and services with high
affordability and reduced performance requirements. This includes access to log
 monitoring data, Internet of Vehicles data, device data, time sequence data, and
logistics data.

Notice:
Capacity instances do not support reserved read/write throughput. All reads
and writes are billed based on the additional read/write throughput.

Issue: 20191127 9

Table Store Developer Guide / 4 Terms

Instance type supported by region
Region Name High-performance

instance
Capacity instance

China East 1 (Hangzhou) Supported Supported
China East 2 (Shanghai) Supported Supported
China North 2 (Beijing) Supported Supported
China North 3 (Zhangjiako
u)

In development Supported

China North 5 (Huhehaote
)

In development Supported

China South 1 (Shenzhen) Supported Supported
China(Hong Kong) In development Supported
Singapore Supported In development
US East 1 (Virginia) Supported In development
US West 1 (Silicon Valley) Supported In development
Asia Pacific NE 1 (Japan) In development Supported
Germany 1 (Frankfurt) In development Supported
Middle East 1 (Dubai) In development Supported
Asia Pacific SE 2 (Sydney) In development Supported
Asia Pacific SE 3 (Kuala
Lumpur)

In development Supported

Asia Pacific SE 5 (Jakarta) In development Supported
Asia Pacific SOU 1 (
Mumbai)

In development Supported

4.2 Endpoint
Each instance corresponds to an endpoint that is also known as the connection URL
. The endpoint needs to be specified before any operations on the tables and data of
 Table Store.

10 Issue: 20191127

Table Store Developer Guide / 4 Terms

• To access the data in Table Store from the Internet, the endpoint uses the
following format:
https://instanceName.region.ots.aliyuncs.com

• To access the data in Table Store from an Alibaba Cloud ECS instance of the same
region through the intranet, the endpoint uses the following format:
https://instanceName.region.ots-internal.aliyuncs.com

For example, to access the Table Store instance in China East 1 (Hangzhou)
region, with the instance name of myInstance:
Endpoint for Internet access: https://myInstance.cn-hangzhou.ots.
aliyuncs.com
Endpoint for intranet access: https://myInstance.cn-hangzhou.ots-
internal.aliyuncs.com

Better performance, such as lower response latency and no unnecessary Internet
traffic, can be expected through the intranet.

• If an application accesses Table Store from an ECS instance in VPC, the endpoint
uses the following format:
https://vpcName-instanceName.region.vpc.ots.aliyuncs.com

For example, the service address used by an application in China East 1
(Hangzhou) region to access the instance named myInstance from a network
named testVPC:
Endpoint of VPC access: https://testVPC-myInstance.cn-hangzhou.vpc.
ots.aliyuncs.com

This VPC access address is only used for access initiated by servers in the testVPC
 network.

4.3 Read/write throughput
The read/write throughput is measured by read/write capacity units (CUs), which is
 the smallest billing unit for the data read and write operations.
• One read CU indicates that 4 KB data is read from the table.
• One write CU indicates that 4 KB data is written into the table.

Issue: 20191127 11

Table Store Developer Guide / 4 Terms

• Data smaller than 4 KB during the operation is rounded up to the nearest CU. For
 example, writing 7.6 KB data consumes two write CUs, and reading 0.1 KB data
consumes one read CU.

When applications use an API to perform Table Store read/write operations, the
corresponding amount of read/write CUs is consumed.

Reserved throughput
The reserved read/write throughput is an attribute of a table. When creating a
table, the application specifies the read/write throughput reserved for the table.
Configuring the reserved read/write throughput does not affect the table’s access
performance and service capability.
For reserved throughput billing, the reserved throughput value is always used to
 calculate the hourly fee even if an application consumes less than the specified
amount of throughput.
For example, suppose that an application reads 3 KB of data per record and 80
records per second from a table. In this case, the application consumes 80 capacity
units per second.
If you set the reserved read throughput to 80 capacity units per second, the hourly
 fee is calculated by using the following formula: Hourly Fee = 80 reserved read
 throughput capacity units x Hourly Price for Reserved Read Throughput. It is
enough for 288000 (80 x 3600 seconds) reads per hour.

Note:
• Reserved read/write throughput can be set to zero.
• When the reserved read/write throughput is greater than zero, Table Store

assigns and reserves enough resources for the table according to this configurat
ion to guarantee low resource costs.

• For a non-zero reserved read/write throughput, your Table Store service
is billed even if no read and write requests are made. To guarantee billing
accuracy, Table Store limits the maximum reserved read/write throughput to
5000 CUs per table (neither read throughput nor write throughput can exceed
5000 CUs). If you require more than 5000 CUs of reserved read/write throughput
for a single table, Open a ticket to increase the throughput.

12 Issue: 20191127

https://workorder-intl.console.aliyun.com/#/ticket/createIndex

Table Store Developer Guide / 4 Terms

• The reserved read/write throughput of a non-existent table is regarded as zero
. To access a non-existent table, one additional read CU or one additional write
CU is consumed depending on the actual operation.

Applications dynamically modify the reserved read/write throughput configuration
 of the table through the UpdateTable operation.

Additional throughput
The additional read/write throughput refers to the portion of the actual consumed
read/write throughput that exceeds the reserved read/write throughput. Its refresh
 interval is one second.
In the following example, the reserved read throughput is set to 100 units. T0, T1,
and T2 show the reserved read throughput and the additional read throughput that
an application consumed in three consecutive seconds:
• T0: The actual read throughput consumption is 120 units. The consumption

of the reserved read throughput and the consumption of the additional read
throughput are 100 units and 20 units, respectively.

• T1: The actual read throughput consumption is 95 units. The consumption
of the reserved read throughput and the consumption of the additional read
throughput are 100 units and 0 units, respectively.

• T2: The actual read throughput consumption is 110 units. The consumption
of the reserved read throughput and the consumption of the additional read
throughput are 100 units and 10 units, respectively.

In the three consecutive seconds, the consumption of the reserved read throughput
 is 100 units, and the total consumption of the additional read throughput is 30
units.

Note:
Table Store uses the average value per hour to calculate the consumption of
the reserved throughput and uses the total amount per hour to calculate the
consumption of the additional throughput.

For the additional read/write throughput mode, it is difficult to estimate the
amount of compute resources that need to be reserved for data tables. Table Store
 is required to provide sufficient service capability to effectively handle access
traffic spikes. For this reason, the unit price of additional read/write throughput is

Issue: 20191127 13

Table Store Developer Guide / 4 Terms

higher than that of reserved read/write throughput. To make sure that low costs are
 maintained, we recommend that you set an appropriate value of the reserved read/
write throughput.

Note:
Because it is difficult to accurately reserve resources based on the additional
read/write throughput, in extreme situations, Table Store may return an error
OTSCapacityUnitExhausted to an application when an access to a single partition
key consumes 10,000 CUs per second. In this case, policies such as backoff retry
are used to reduce the frequency of access to the table.

4.4 Region
Region refers to a service region of Alibaba Cloud.
Table Store is deployed across many service regions. You can select the most
suitable region according to your requirements.
The following table lists the regions supported by Table Store.
Region Name RegionID
China East 1 (Hangzhou) cn-hangzhou
China East 2 (Shanghai) cn-shanghai
China North 2 (Beijing) cn-beijing
China North 3 (Zhangjiakou) cn-zhangjiakou
China North 5 (Huhehaote) cn-huhehaote
China South 1 (Shenzhen) cn-shenzhen
China(Hong Kong) cn-hongkong
Singapore ap-southeast-1
US East 1 (Virginia) us-east-1
US West 1 (Silicon Valley) us-west-1
Asia Pacific NE 1 (Japan) ap-northeast-1
Germany 1 (Frankfurt) eu-central-1
Middle East 1 (Dubai) me-east-1
Asia Pacific SE 2 (Sydney) ap-southeast-2
Asia Pacific SE 3 (Kuala Lumpur) ap-southeast-3

14 Issue: 20191127

Table Store Developer Guide / 4 Terms

Region Name RegionID
Asia Pacific SE 5 (Jakarta) ap-southeast-5
Asia Pacific SOU 1 (Mumbai) ap-south-1

Issue: 20191127 15

Table Store Developer Guide / 5 Wide column model

5 Wide column model
5.1 Introduction

The Wide Column model differs from the relational model in the following aspects:
• The characteristics of Wide Column are: three-dimensional (rows, columns, and

time), schema-free, wide columns, multi-version data, and TTL management.
• The characteristics of the relational model are : two-dimensional (rows and

columns) and fixed schema.

The Wide Column model consists of the following parts:
• Primary key: Every row has a primary key with a multi-column structure (1-4

columns). The primary key is defined as a fixed schema, and is used primarily to
uniquely distinguish a row of data.

• Partition key: The first column of the primary key is called a partition key.
The partition key is used to partition the table by range. Every partition is
distributively dispatched to services on different machines. Within the same
partition key, we provide cross-row transactions. For more information, see
Primary key and attribute.

• Attribute column: In one row, with the exception of the primary key, all other
columns are attribute columns. Attribute columns correspond to many values
. Different values correspond to different versions, and each row stores an
unlimited number of attribute columns.

16 Issue: 20191127

Table Store Developer Guide / 5 Wide column model

• Version: Each value corresponds to a different version that acts as a timestamp to
 define the time to live of that data.

• Data type: Table Store allows many different data types, including String, Binary,
Double, Integer and Boolean.

• Time To Live (TTL): Each table defines the amount of time a data can be stored
before being deleted. For example, if the TTL is defined as one month, the data
written into the table more than a month ago will be cleared automatically. The
write time of the data is determined by the version number. This write time is
usually taken from the server time, but it can also be determined by the time
specified by the application. For more information, see Data versions and Time To Live.

• Max versions: Each table defines the maximum number of version data that can
 be stored in a column, which is used to control the number of versions in each
 column. If the number of versions in an attribute column exceeds the value in
max versions, the earliest version is deleted.

5.2 Primary keys and attributes
In Table Store, tables, rows, primary keys, and attributes are the core components
that you work with. A table is a collection of rows, and each row consists of a
primary key and attributes. The first column of a primary key is called the partition
key.

Primary keys
Primary keys are used to uniquely identify each row in a table. A primary key is a
combination of one to four attributes. When creating a table, you must specify the
composition of the primary key, including the name of each attribute, the data type
 of each attribute, and the sorted order of attributes. In Table Store, you can specify
a data type, such as String, Binary, or Integer, for an attribute.
Table Store indexes data of a table based on the primary key of the table. All rows of
 the table are sorted in ascending or descending order based on the primary key.

Partition keys
The first column of a primary key is called the partition key. Table store assigns a
 row of data to the corresponding partitions determined by the range of each row
’s partition keys to achieve load balancing. Rows that have the same partition
key value belong to the same partition. A partition may store rows with multiple

Issue: 20191127 17

Table Store Developer Guide / 5 Wide column model

partition key values. Table Store separates a partition or merges multiple partitions
 based on specific rules. This process is completed automatically.

Note:
The partition key is used as the minimum partition unit. Data under the same
partition key value cannot split further. To prevent partitions from being too large
to split, we recommend that the total size of all rows with the same partition key
value is less than 10 GB.

Attributes
A row consists of multiple attributes. The number of attributes for each row is not
 restricted, which means that each row has a different number of attributes. The
 value of an attribute of a row can be null. The values of an attribute in multiple
rows can be of different data types.
An attribute includes the version property. Multiple versions of attribute values can
be retained as required for querying or other uses. Additionally, data in an attribute
has its own TTL. For more information, see Data versions and life cycle.

5.3 Data versions and time to live
Version numbers

Each value of an attribute corresponds to a different version. The value of the
version is the version number (timestamp). The version number is used to
determine the Time to live (TTL).
When writing data, you are allowed to specify the version number of an attribute.
If you do not specify a version number, the time from Jan 1, 1970, 00:00:00 UTC to
the present time will be converted to milliseconds and used as the version number
of the attribute. Version numbers are measured in milliseconds. When performing
 a comparison between TTL properties or Max Version Offset properties, you are
 required to divide version numbers by 1000 to convert the unit to seconds. The
version number is used in the following scenarios:
• Time to live (TTL)

The version number can be used to determine the lifecycle of a table. Assume
 that a version number of an attribute is 1468944000000, which is calculated
based on the time of July 20, 2016, 00:00:00 UTC. When you set the TTL as 86400

18 Issue: 20191127

Table Store Developer Guide / 5 Wide column model

 (one day), the data of that version expires on July 21, 2016, 00:00:00 UTC. Then,
the data is automatically deleted.
When the version number of the data is determined by Table Store, the written
data will be automatically cleansed after the specified TTL.

• Read the version number of each row's data
When Table Store reads a row of data, you can specify the maximum number of
versions or the range of version numbers of each attribute, which are allowed to
be read.

Max Versions
When writing data, you can specify the version number of an attribute. The Max
Versions property is used to determine how many versions of data of an attribute in
 a table can be retained. When the number of versions of an attribute exceeds the
value of the Max Versions property, the data of the earliest version will be deleted
asynchronously.
After creating a table, you are allowed to use the UpdateTable function to
dynamically update the Max Versions property of the table.

Note:
• Data whose version exceeds the specified value of Max Versions is considered

invalid. The data is neither visible to you nor being read, even if the data is not
actually deleted.

• Assume that you have decreased the value of Max Versions. When the number of
 versions exceeds the newly specified value of Max Versions, the earliest version
will be deleted asynchronously.

• Assume that you have increased the number of Max Versions. When the
previous data whose version exceeds the previous value of Max Versions and has
 not been deleted, the data will be read.

Max Version Offset
The Max Version Offset property is used to determine the maximum allowed offset
 between the specified version number and the current system time. The property
is measured in seconds. When the offset between the timestamp you have specified
 and the present time is greater than the specified TTL of a table, the written data
expires immediately. You can set the Max Version Offset to prevent this situation.

Issue: 20191127 19

Table Store Developer Guide / 5 Wide column model

To ensure that data is written successfully, Table Store will check the version
number of an attribute when processing write requests. The range of valid version
numbers of an attribute is: [The time when you write data - Max Version
Offset, The time when you write data + Max Version Offset). The version
number of an attribute is measured in milliseconds. After the version number is
divided by 1000, the result that is measured in seconds must fall within this range.
When a version number does not fall within the range, this write request fails.
Assume that the Max Version Offset property of a table is 86400 (one day). On July
 21, 2016, 00:00:00 UTC, you are only allowed to write data whose version number
 is greater than 1468944000000, which is the result converted from July 20, 2016
, 00:00:00 UTC, and less than 1469116800000, which is the result converted from
July 22, 2016, 00:00:00 UTC. When the version number of an attribute in a row is
1468943999000, which is the result converted from July 19, 2016, 23:59:59 UTC, then
 the write request for the row fails.

Time to live
Time to live (TTL) is a property of a table. TTL is used to determine the lifecycle of
 the data. It is measured in seconds. To reduce storage costs, Table Store removes
 data that exceeds the specified TTL in the background to decrease your storage
space.
Assume that the specified TTL of a table is 86400 (one day). On July 21, 2016, 00:
00:00 UTC, attributes whose version numbers are less than 1468944000000 expire
, which is the result converted from July 20, 2016, 00:00:00 UTC. Table Store will
automatically remove the data of these attributes.

Note:
• Data that exceeds the specified TTL is invalid data. The data is neither visible to

you nor being read, even if the data is not actually deleted.
• Assume that you decrease the TTL value. Some pieces of data will expire due to

the decreased TTL value. The expired data is removed asynchronously.
• Assume that you increase the TTL value. If data that exceeds the previous TTL

has not been removed, the data will be read again.

20 Issue: 20191127

Table Store Developer Guide / 5 Wide column model

5.4 Naming conventions and data types
This topic describes the naming conventions and data types of Table Store.

Naming conventions
The following table describes naming conventions of tables and columns in Table
Store.
Item Description
Structure A name can contain uppercase letters (A to Z), lowercase

letters (a to z), digits (0 to 9), and underscores (_).
First character A name must start with an uppercase letter (A to Z), a

lowercase letter (a to z), or an underscore (_).
Case sensitivity A name is case-sensitive.
Length A name can be 1 to 255 characters in length.
Uniqueness • A table name must be unique under the same instance.

• Table names under different Table Store instances can be
the same.

Data types of primary key columns
Data types of values in primary key columns include String, Integer, and Binary.
Data type Description Size limit
String Data is in UTF-8. Empty

strings are allowed.
Up to 1 KB

Integer Data is 64-bit long. Up to 8 Bytes
Binary Data is binary. Empty

values are allowed.
Up to 1 KB

Data types of attribute columns
The following table describes data types of values in attribute columns.
Data type Description Size limit
String Data is in UTF-8. Empty

strings are allowed.
For more information, see
Limits.

Integer Data is 64-bit long. Up to 8 Bytes
Double Data is 64-bit long. Up to 8 Bytes

Issue: 20191127 21

Table Store Developer Guide / 5 Wide column model

Data type Description Size limit
Boolean The value can be True or

False.
Up to 1 Byte

Binary Data is binary. Empty
values are allowed.

For more information, see
Limits.

5.5 Data operations
In Table Store, tables are composed of rows. Each row includes primary keys and
attributes. This topic introduces data operations of Table Store.

Table Store rows
A row is a basic feature in the creation of tables in Alibaba Cloud Table Store. Rows
 are composed of primary keys and attributes. A primary key is required and all
rows in the same table must have the same primary key column name and type.
Attributes are not required and each row may have different attributes.
Table Store data operations include three types:
• Single row operations

- GetRow: Read a single row from the table.
- PutRow: Insert a row into the table. If the row already exists, the existing row

is deleted and the new row is written.
- UpdateRow: Update a row from the table. You can add or delete attribute

columns of an existing row or update the value of an existing attribute column
. If the row does not exist, this operation adds a new row.

- DeleteRow: Delete a row from the table.
• Batch operations

- BatchGetRow: Batch read data from multiple rows with one request.
- BatchWriteRow: Batch insert, update, or delete multiple rows in one request.

• Range read operations
- GetRange: Read data from a table within a certain range.

Single row operations
Single row write operations

22 Issue: 20191127

Table Store Developer Guide / 5 Wide column model

• Table Store has three single row write operations. The following are the
descriptions and considerations of these operations.
- PutRow: Write a new row. If this row already exists, the existing row is deleted

 and the new row is written.
- UpdateRow: Update the data of a row. Based on the request content, Table

 Store adds new columns or modifies/deletes the specified column values
for this row. If this row does not exist, a new row is inserted. However, an
UpdateRow request with only deletion instructions onto a row that does not
exist does not insert a new row.

- DeleteRow: Delete a row. If the row to be deleted does not exist, nothing
happens.

By setting the condition field in the request, you can specify whether a row
 existence check is performed before executing the write operation. Three
condition checking options are available.
- IGNORE: The row existence check is not performed.
- EXPECT_EXIST: The row is expected to exist. The operation succeeds only if

the row exists. Otherwise, the operation fails.
- EXPECT_NOT_EXIST: The row is not expected to exist. The operation succeeds

only if the row does not exist. Otherwise, the operation fails.
If the condition checking is EXPECT_NOT_EXIST, DeleteRow and UpdateRow
fail because it is meaningless to delete or update the non-existing rows. If the
condition checking is EXPECT_NOT_EXIST, you can use PutRow to update a non-
existing row.
If the operation fails, such as a parameter check failure, the data size of the
row is too large, or the existence check fails, an error code is returned to the
application. Applications receive the number of consumed capacity units (CU)
for successful operations.
The rules for calculating the number of write capacity units (CU) consumed in
each operation are defined as follows.
- PutRow: The sum of the data size of the primary key of the modified row and

the data size of the attribute column is divided by 4 KB and rounded up. If
the row existence check condition is not IGNORE, a number of read CUs are
consumed. This is equivalent to the rounded up value after dividing the data

Issue: 20191127 23

Table Store Developer Guide / 5 Wide column model

size of the primary key of this row by 4 KB. If an operation does not meet the
row existence check condition specified by the application, the operation fails
and consumes 1 write CU and 1 read CU. For more information, see API Reference

- PutRow .
- UpdateRow: The sum of the data size of the primary key of the modified row

and the data size of the attribute column is divided by 4 KB and rounded
up. If UpdateRow contains an attribute column which must be deleted, only
the column name is calculated into the data size of this attribute column. If
the row existence check condition is not IGNORE, a number of read CUs are
consumed. This is equivalent to the rounded up value after dividing the data
size of the primary key of this row by 4 KB. If an operation does not meet the
row existence check condition specified by the application, the operation fails
and consumes 1 write CU and 1 read CU. For more information, see API Reference

- UpdateRow.
- DeleteRow: The data size of the primary key of the deleted row is divided by

4 KB and rounded up. If the row existence check condition is not IGNORE,
a number of read CUs are consumed. This is equivalent to the rounded up
value after dividing the data size of the primary key of this row by 4 KB. If an
operation does not meet the row existence check condition specified by the
application, the operation fails and consumes 1 write capacity unit. For more
information, see API Reference - DeleteRow.

Also, a certain number of read CUs are consumed by write operations based on
specified conditions.
Examples
The following examples illustrate how the number of write CUs are calculated
for single row write operations.
Example 1: Use PutRow to write a row.
//PutRow operation
//row_size=len('pk')+len('value1')+len('value2')+8Byte+1300Byte+
3000Byte=4322Byte
{
 primary_keys:{'pk':1},
 attributes:{'value1':String(1300Byte), 'value2':String(3000Byte
)}
}

//Original row
//row_size=len('pk')+len('value2')+8Byte+900Byte=916Byte

24 Issue: 20191127

Table Store Developer Guide / 5 Wide column model
//row_primarykey_size=len('pk')+8Byte=10Byte
{
 primary_keys:{'pk':1},
 attributes:{'value2':String(900Byte)}
}

The consumption of the read/write CUs for PutRow is described as follows.
- When the existence check condition is set to EXPECT_EXIST: The number of

write CUs consumed is the rounded up value after dividing 4,322 bytes by 4 KB
, and the number of read CUs is the rounded up value after dividing 10 bytes (
data size of the primary key of the row) by 4 KB. Therefore, PutRow consumes
2 write CUs and 1 read CU.

- When the existence check condition is set to IGNORE: The number of write
CUs consumed is the rounded up value after dividing 4,322 bytes by 4 KB. No
read CU is consumed. Therefore, PutRow consumes 1 write CU and 0 read CU.

- When the existence check condition is set to EXPECT_NOT_EXIST: The
existence check condition of the specified row fails. PutRow consumes 1 write
 CU and 1 read CU.

Example 2: Use UpdateRow to write a new row.
//UpdateRow operation
//Length of attribute column deleted is calculated for row size
//row_size=len('pk')+len('value1')+len('value2')+8Byte+900Byte=
922Byte
{
 primary_keys:{'pk':1},
 attributes:{'value1':String(900Byte), 'value2':Delete}
}

//The original row does not exist
//row_size=0

The consumption of read/write CUs for UpdateRow is described as follows.
- When the existence check condition is set to IGNORE: The number of write

CUs consumed is the rounded up value after dividing 922 bytes by 4 KB. No

Issue: 20191127 25

Table Store Developer Guide / 5 Wide column model

read CU is consumed. Therefore, UpdateRow consumes 1 write CU and 0 read
CU.

- When the existence check condition is set to EXPECT_EXIST: The existence
check condition of the specified row fails. UpdateRow consumes 1 write CU
and 1 read CU.

Example 3: Use UpdateRow to update an existing row.
//UpdateRow operation
//row_size=len('pk')+len('value1')+len('value2')+8Byte+1300Byte+
3000Byte=4322Byte
{
 primary_keys:{'pk':1},
 attributes:{'value1':String(1300Byte), 'value2':String(3000Byte
)}
}
//Original row
//row_size=len('pk')+len('value1')+8Byte+900Byte=916Byte
//row_primarykey_size=len('pk')+8Byte=10Byte
{
 primary_keys:{'pk':1},
 attributes:{'value1':String(900Byte)}
}

The consumption of read/write CUs for UpdateRow is described as follows.
- When the existence check condition is set to EXPECT_EXIST: The number of

 write CUs consumed is the rounded up value after dividing 4,322 bytes by
4 KB, and the number of read CUs is the rounded up value after dividing 10
bytes (data size of the primary key of the row) by 4 KB. Therefore, UpdateRow
consumes 2 write CUs and 1 read CU.

- When the existence check condition is set to IGNORE: The number of write
CUs consumed is the rounded up value after dividing 4,322 bytes by 4 KB. No
read CU is consumed. Therefore, UpdateRow consumes 1 write CU and 0 read
CU.

Example 4: Use DeleteRow to delete a non-existent row.
//The original row does not exist
//row_size=0

//DeleteRow operation
//row_size=0
//row_primarykey_size=len('pk')+8Byte=10Byte
{
 primary_keys:{'pk':1},
}

26 Issue: 20191127

Table Store Developer Guide / 5 Wide column model

The data size before and after modification is 0. Whether the DeleteRow
operation succeeds or fails, at least 1 write CU is consumed. Therefore, this
DeleteRow consumes 1 write CU.
The consumption of read/write CUs for DeleteRow is described as follows.
- When the existence check condition is set to EXPECT_EXIST: The number of

write CUs consumed is the rounded up value after dividing 10 bytes (data size
 of the primary key of the row) by 4 KB. No read CU is consumed. Therefore,
DeleteRow consumes 1 write CU and 0 read CU.

- When the existence check condition is set to IGNORE: The number of write
CUs consumed is the rounded up value after dividing 10 bytes (data size of the
 primary pey of the row) by 4 KB, and the number of read CUs is the rounded
 up value after dividing 10 bytes by 4 KB. Therefore, DeleteRow consumes 1
write CU and 1 read CU.

For more information, see PutRow, UpdateRow, and DeleteRow.
Single row read operations
• GetRow is the only single row read operation.

Applications provide the complete primary key and names of all columns to be
returned. The column names can be either the primary key or attribute columns
. Users are also able to not specify any column names to be returned, in which
case all row data is returned.
Table Store calculates the consumed read CUs by adding the data size of the
primary key of the read row and the data size of the read attribute column. The
data size is divided by 4 KB and rounded up as the number of read CUs consumed
 in this read operation. If the specified row does not exist, 1 read CU is consumed
. Single row read operations do not consume write CUs.
Example
This example illustrates how the number of read CUs consumed by GetRow is
calculated.
//GetRow operation

//row_size=len('pk')+len('value1')+len('value2')+8Byte+1200Byte+
3100Byte=4322Byte
{

Issue: 20191127 27

Table Store Developer Guide / 5 Wide column model
 primary_keys:{'pk':1},
 attributes:{'value1':String(1200Byte), 'value2':String(3100Byte
)}
}

//GetRow operation
//Reading data size=len('pk')+len('value1')+8Byte+1200Byte=1216Byte
{
 primary_keys:{'pk':1},
 columns_to_get:{'value1'}
}

The number of consumed read CUs is rounded up after dividing 1218 Bytes by
4KB. This GetRow consumes 1 read CU.
For more information, see GetRow.

Multi-Row operations
Table Store provides two multi-row operations: BatchWriteRow and BatchGetRow.
• BatchWriteRow: Used to insert, modify, or delete multiple rows from one

 or more tables. BatchWriteRow can be considered as a batch of multiple
PutRow, UpdateRow, and DeleteRow operations. The sub-operations in a single
BatchWriteRow are executed independently. Table Store separately returns the
execution results for each sub-operation to the application. Sometimes, parts of
the request are successful, while other parts fail. Even if an error is not returned
 for the overall request, the application must still check the return results for
each sub-operation to determine the actual status. The write CUs consumed by
each BatchWriteRow sub-operation are calculated independently.

• BatchGetRow: Used to read multiple rows from one or more tables. In
BatchGetRow, each sub-operation is executed independently. Table Store
separately returns the execution results for each sub-operation to the applicatio
n. Sometimes, parts of the request are successful, while other parts fail. Even
 if an error is not returned for the overall request, the application must still
check the return results for each sub-operation to determine the actual status
. The read capacity units consumed by each BatchGetRow sub-operation are
calculated independently.

For more information, see BatchWriteRow and BatchGetRow .
Range read operations

GetRange is a range read operation in Table Store. GetRange returns data in a
specified range of primary keys to applications.

28 Issue: 20191127

Table Store Developer Guide / 5 Wide column model

Rows in Table Store tables are sorted in ascending order of primary keys. GetRange
 specifies a left-closed-right-open range, and returns data from rows with primary
 keys in this range. End points of ranges are composed of either effective primary
 keys or the virtual points: INF_MIN and INF_MAX. The number of columns for
 the virtual point must be the same as that of the primary key. Here, INF_MIN
represents an infinitely small value, so any values of other types are always greater
. INF_MAX represents an infinitely large value, so any values of other types are
always less.
GetRange must specify the columns to be retrieved by their names. The request
 column name can contain multiple column names. If a row has a primary key
in the read range, but does not contain another column specified for return, the
results returned by the request do not contain data from this row. If columns to be
retrieved are not specified, the entire row is returned.
GetRange must specify the read direction, which can be either forward or backward
. For example, a table has two primary key columns A and B, and A < B. When [A
, B) is read in the forward direction, rows with the primary key greater than or
equal to A and less than B are returned in the order A to B. When [B,A) is read in the
 backward direction, rows greater than A and less than or equal to B are returned in
 the order B to A.
GetRange can specify the maximum number of returned rows. Table Store ends
the operation as soon as the maximum number of rows are returned according to
 the forward or backward direction, even if some rows remain unreturned in the
specified ranges.
GetRange may stop execution and return data to the application in the following
situations:
• The total size of row data to be returned reaches 4 MB.
• The number of rows to be returned is equal to 5000.
• The number of returned rows is equal to the maximum number of rows specified

 in requests to be returned.
• In premature-return situations, responses returned by GetRange contain the

primary key for the next row of unread data. Applications can use this value as
 the starting point for subsequent GetRange operations. If the primary key for

Issue: 20191127 29

Table Store Developer Guide / 5 Wide column model

 the next unread row is null, this indicates all data in the read range has been
returned.

Table Store accumulates the total data size of the primary key and attribute column
 read for all rows from the read range start point to the next row of unread data. The
 data size is then divided by 4 KB and rounded up to find the number of consumed
read CUs. For example, if the read range contains 10 rows and the primary key and
actual data size of the attribute column read for each row is 330 Bytes, the number
of consumed read CU is 1 (divide the total read data size 3.3 KB by 4 KB and rounded
 up to 1).
Examples
The following examples illustrate how the number of read CUs are calculated for
GetRange. In these examples, the table contents are as follows. PK1 and PK2 are the
 table’s primary key columns, and their types are String and Integer, respectively.
A and B are the table’s attribute columns.
PK1 PK2 Attr1 Attr2
'A' 2 'Hell' 'Bell'
'A' 5 'Hello' Non-exist
'A' 6 Non-exist 'Blood'
'B' 10 'Apple' Non-exist
'C' 1 Non-exist Non-exist
'C' 9 'Alpha' Non-exist

Example 1: Read Data in a specified range.
//Request
table_name: "table_name"
direction: FORWARD
inclusive_start_primary_key: ("PK1", STRING, "A"), ("PK2", INTEGER, 2)
exclusive_end_primary_key: ("PK1", STRING, "C"), ("PK2", INTEGER, 1)

//Response
cosumed_read_capacity_unit: 1
rows: {
 {
 primary_key_columns:("PK1", STRING, "A"), ("PK2", INTEGER, 2)
 attribute_columns:("Attr1", STRING, "Hell"), ("Attr2", STRING,
 "Bell")
 },
 {
 primary_key_columns:("PK1", STRING, "A"), ("PK2", INTEGER, 5)
 attribute_columns:("Attr1", STRING, "Hello")
 },

30 Issue: 20191127

Table Store Developer Guide / 5 Wide column model
 {
 primary_key_columns:("PK1", STRING, "A"), ("PK2", INTEGER, 6)
 attribute_columns:("Attr2", STRING, "Blood")
 }，
 {
 primary_key_columns:("PK1", STRING, "B"), ("PK2", INTEGER, 10)
 attribute_columns:("Attr1", STRING, "Apple")
 }
 }

Example 2: Use INF_MIN and INF_MAX to read all data in a table.
// Request
table_name: "table_name"
direction: FORWARD
inclusive_start_primary_key: ("PK1", INF_MIN)
exclusive_end_primary_key: ("PK1", INF_MAX)

//Response
cosumed_read_capacity_unit: 1
rows: {
 {
 primary_key_columns:("PK1", STRING, "A"), ("PK2", INTEGER, 2)
 attribute_columns:("Attr1", STRING, "Hell"), ("Attr2", STRING,
 "Bell")
 },
 {
 primary_key_columns:("PK1", STRING, "A"), ("PK2", INTEGER, 5)
 attribute_columns:("Attr1", STRING, "Hello")
 },
 {
 primary_key_columns:("PK1", STRING, "A"), ("PK2", INTEGER, 6)
 attribute_columns:("Attr2", STRING, "Blood")
 }，
 {
 primary_key_columns:("PK1", STRING, "B"), ("PK2", INTEGER, 10)
 attribute_columns:("Attr1", STRING, "Apple")
 }
 {
 primary_key_columns:("PK1", STRING, "C"), ("PK2", INTEGER, 1)
 }
 {
 primary_key_columns:("PK1", STRING, "C"), ("PK2", INTEGER, 9)
 attribute_columns:("Attr1", STRING, "Alpha")
 }
 }

Example 3: Use INF_MIN and INF_MAX in certain Primary Key columns.
// Request
table_name: "table_name"
direction: FORWARD
inclusive_start_primary_key: ("PK1", STRING, "A"), ("PK2", INF_MIN)
exclusive_end_primary_key: ("PK1", STRING, "A"), ("PK2", INF_MAX)

//Response
cosumed_read_capacity_unit: 1
rows: {
 {
 primary_key_columns:("PK1", STRING, "A"), ("PK2", INTEGER, 2)

Issue: 20191127 31

Table Store Developer Guide / 5 Wide column model
 attribute_columns:("Attr1", STRING, "Hell"), ("Attr2", STRING,
 "Bell")
 },
 {
 primary_key_columns:("PK1", STRING, "A"), ("PK2", INTEGER, 5)
 attribute_columns:("Attr1", STRING, "Hello")
 },
 {
 primary_key_columns:("PK1", STRING, "A"), ("PK2", INTEGER, 6)
 attribute_columns:("Attr2", STRING, "Blood")
 }
 }

Example 4: Backward reading.
// Request
table_name: "table_name"
direction: BACKWARD
inclusive_start_primary_key: ("PK1", STRING, "C"), ("PK2", INTEGER, 1)
exclusive_end_primary_key: ("PK1", STRING, "A"), ("PK2", INTEGER, 5)

//Response
cosumed_read_capacity_unit: 1
rows: {
 {
 primary_key_columns:("PK1", STRING, "C"), ("PK2", INTEGER, 1)
 },
 {
 primary_key_columns:("PK1", STRING, "B"), ("PK2", INTEGER, 10)
 attribute_columns:("Attr1", STRING, "Apple")
 },
 {
 primary_key_columns:("PK1", STRING, "A"), ("PK2", INTEGER, 6)
 attribute_columns:("Attr2", STRING, "Blood")
 }
 }

Example 5: Specify a column name not including a PK.
// Request
table_name: "table_name"
direction: FORWARD
inclusive_start_primary_key: ("PK1", STRING, "C"), ("PK2", INF_MIN)
exclusive_end_primary_key: ("PK1", STRING, "C"), ("PK2", INF_MAX)
columns_to_get: "Attr1"

//Response
cosumed_read_capacity_unit: 1
rows: {
 {
 attribute_columns: {"Attr1", STRING, "Alpha"}
 }
 }

Example 6: Specify a column name including a PK.
// Request
table_name: "table_name"

32 Issue: 20191127

Table Store Developer Guide / 5 Wide column model
direction: FORWARD
inclusive_start_primary_key: ("PK1", STRING, "C"), ("PK2", INF_MIN)
exclusive_end_primary_key: ("PK1", STRING, "C"), ("PK2", INF_MAX)
columns_to_get: "Attr1", "PK1"

//Response
cosumed_read_capacity_unit: 1
rows: {
 {
 primary_key_columns:("PK1", STRING, "C")
 }
 {
 primary_key_columns:("PK1", STRING, "C")
 attribute_columns:("Attr1", STRING, "Alpha")
 }
 }

Example 7: Use limit and breakpoints.
//Request 1
table_name: "table_name"
direction: FORWARD
inclusive_start_primary_key: ("PK1", STRING, "A"), ("PK2", INF_MIN)
exclusive_end_primary_key: ("PK1", STRING, "A"), ("PK2", INF_MAX)
limit: 2

//Response 1
cosumed_read_capacity_unit: 1
rows: {
 {
 primary_key_columns:("PK1", STRING, "A"), ("PK2", INTEGER, 2)
 attribute_columns:("Attr1", STRING, "Hell"), ("Attr2", STRING,
 "Bell")
 },
 {
 primary_key_columns:("PK1", STRING, "A"), ("PK2", INTEGER, 5)
 attribute_columns:("Attr1", STRING, "Hello")
 }
 }
next_start_primary_key:("PK1", STRING, "A"), ("PK2", INTEGER, 6)

// Request 2
table_name: "table_name"
direction: FORWARD
inclusive_start_primary_key: ("PK1", STRING, "A"), ("PK2", INTEGER, 6)
exclusive_end_primary_key: ("PK1", STRING, "A"), ("PK2", INF_MAX)
limit: 2

// Response 2
cosumed_read_capacity_unit: 1
rows: {
 {
 primary_key_columns:("PK1", STRING, "A"), ("PK2", INTEGER, 6)
 attribute_columns:("Attr2", STRING, "Blood")
 }
 }

Example 8: Use GetRange to calculate the consumed read CUs.

Issue: 20191127 33

Table Store Developer Guide / 5 Wide column model

GetRange is performed on the following table. PK1 is the table’s primary key
column, Attr1 and Attr2 are the attribute columns.
PK1 Attr1 Attr2
1 Non-existent String(1000Byte)
2 8 String(1000Byte)
3 String(1000Byte) Non-existent
4 String(1000Byte) String(1000Byte)
// Request
table_name: "table2_name"
direction: FORWARD
inclusive_start_primary_key: ("PK1", INTEGER, 1)
exclusive_end_primary_key: ("PK1", INTEGER, 4)
columns_to_get: "PK1", "Attr1"

//Response
cosumed_read_capacity_unit: 1
rows: {
 {
 primary_key_columns:("PK1", INTEGER, 1)
 },
 {
 primary_key_columns:("PK1", INTEGER, 2),
 attribute_columns:("Attr1", INTEGER, 8)
 },
 {
 primary_key_columns:("PK1", INTEGER, 3),
 attribute_columns:("Attr1", STRING, String(1000Byte))
 },
 }

For this GetRange request:
• Data size of the first row: len (‘PK1’) + 8 Bytes = 11 Bytes
• Data size of the second row: len (‘PK1’) + 8 Bytes + len (‘Attr1’) + 8 Bytes = 24

 Bytes
• Data size of the third row: len (‘PK1’) + 8 Bytes + len (‘Attr1’) + 1000 Bytes =

1016 Bytes
The number of consumed read CUs is the rounded up value after dividing 1051
Bytes (11 Bytes + 24 Bytes + 1016 Bytes) by 4 KB. So this GetRange consumes 1 read
CU.
For more information, see GetRange.

34 Issue: 20191127

Table Store Developer Guide / 5 Wide column model

Best Practice
Data operations

Table Store SDK for data operation
Use Table Store Java SDK for table operations

Use Table Store Python SDK for table operations

5.6 Auto-increment function of the primary key column
If you set a primary key column as an auto-increment column, you do not need to
 enter this column when writing data in a row. Instead, Table Store automatically
 generates the primary key value, which is unique in the partition key, and which
increases progressively.

Features
Table Store, in conjunction with the auto-increment function of an primary key
column, has the following features:
• The system architecture exclusive to Table Store and the implementation

through an auto-increment primary key column make sure that the value
generated for the auto-incrementing column is unique and strictly incrementing.

• The automatically generated auto-increment column value is a 64-bit signed long
 integer.

• The level of the partition key increases progressively.
• The auto-increment function is a table level. The tables with an auto-increment

column and the tables without an auto-increment column can be created in the
same instance.

If the auto-increment primary key column is set, the conditional update logic is not
changed. See the following table for more information.
API IGNORE EXPECT_EXIST EXPECT_NOT

_EXIST
PutRow: The row
exists.

Fail Succeed Fail

PutRow: The row
does not exist.

Succeed Fail Fail

Issue: 20191127 35

Table Store Developer Guide / 5 Wide column model

API IGNORE EXPECT_EXIST EXPECT_NOT
_EXIST

UpdateRow: The
row exists.

Fail Succeed Fail

UpdateRow: The
row does not exist.

Succeed Fail Fail

DeleteRow: The
row exists.

Fail Fail Fail

DeleteRow: The
row does not exist.

Succeed Succeed Fail

Limits
Table Store Auto-increment function of the primary key column mainly has the
following restrictions:
• Table Store supports multiple primary keys. The first primary key is a partition

 key that cannot be set as an auto-increment column. However, one of other
primary keys can be set as an auto-increment column.

• Only one primary key per table can be set as an auto-increment column.
• The attribute column cannot be set as an auto-increment column.
• The auto-increment column can only be set at the time the table is created. The

existing table cannot set the auto-increment column.
Interface

• CreateTable
- Set a column as an auto-incrementing column during table creation. For more

information, see Primary key column auto-increment.
- After table creation, you cannot configure the auto-incrementing feature of

the table.
• UpdateTable

You cannot change the auto-increment attribute of a table by using UpdateTable.
• PutRow/UpdateRow/BatchWriteRow

- When writing the table, you do not need to set specific values for the column
that you want to set as auto-incrementing. You only need to set a placeholder,

36 Issue: 20191127

Table Store Developer Guide / 5 Wide column model

for example, AUTO_INCREMENT. For more information, see Primary key column

auto-increment.
- You can set ReturnType in ReturnContent as RT_PK, that is, to return the

complete primary key value, which can be used in the GetRow query.
• GetRow/BatchGetRow

GetRow requires a complete primary key column, which can be obtained by
setting ReturnType in PutRow, UpdateRow, or BatchWriteRow as RT_PK.

• Other interfaces
Not changed

Usage
Java SDK: Auto-increment of the primary key column

Billing
The auto-increment function of primary key columns does not affect the existing
 billing logic. Returned data of the primary key column does not consume
additional read CUs.

5.7 Conditional update
A conditional update is an update of table data that executes only when specified
conditions are met. A conditional update can be based on a combination of up to
10 conditions. Supported conditions include arithmetic operations (=, ! =, >, >=,
<, and <=) and logical operations (NOT, AND, and OR). The conditional update is
applicable to PutRow, UpdateRow, DeleteRow, and BatchWriteRow.
The column-based judgment conditions include the row existence condition and
column-based condition.
• The Row existence condition is classified into IGNORE, EXPECT_EXIST, and EXPECT_NOT

_EXIST. When a table needs to be updated, the system first checks the row
existence condition. If the row existence condition is not met, an error occurs
during the update.

• The column-based condition supports SingleColumnValueCondition and
CompositeColumnValueCondition, which are used to perform the condition-
based judgment based on the values of a column or certain columns, similar to
the conditions used by the Table Store filters.

Issue: 20191127 37

Table Store Developer Guide / 5 Wide column model

Conditional update also supports optimistic locking strategy. That is, when a row
needs to be updated, the system first obtains the value of a column. For example,
the value of Column A is 1, and its condition is set as Column A = 1. Set Column A =
2, then update the row. If a failure occurs during the update, it means that the row
has been successfully updated by another client.

Note:
In highly concurrent applications such as webpage view counting or gaming
(where atomic counter updates are required), the probability of failed conditional
updates is high. If this occurs, we recommend that you retry the update until
successful.

Procedure
1. Construct SingleColumnValueCondition.

 // set condition Col0==0.
 SingleColumnValueCondition singleColumnValueCondition = new
SingleColumnValueCondition("Col0",
 SingleColumnValueCondition.CompareOperator.EQUAL,
ColumnValue.fromLong(0));
 // If column Col0 does not exist, the condition check fails.
 singleColumnValueCondition.setPassIfMissing(false);
 // Only check the latest version
 singleColumnValueCondition.setLatestVersionsOnly(true);

2. Construct CompositeColumnValueCondition.
 // condition composite1 is (Col0 == 0) AND (Col1 > 100)
 CompositeColumnValueCondition composite1 = new CompositeColumnValue
Condition(CompositeColumnValueCondition.LogicOperator.AND);
 SingleColumnValueCondition single1 = new SingleColumnValueCondition
("Col0",
 SingleColumnValueCondition.CompareOperator.EQUAL,
ColumnValue.fromLong(0));
 SingleColumnValueCondition single2 = new SingleColumnValueCondition
("Col1",
 SingleColumnValueCondition.CompareOperator.GREATER_THAN,
ColumnValue.fromLong(100));
 composite1.addCondition(single1);
 composite1.addCondition(single2);

 // condition composite2 is ((Col0 == 0) AND (Col1 > 100)) OR (
Col2 <= 10)
 CompositeColumnValueCondition composite2 = new CompositeColumnValue
Condition(CompositeColumnValueCondition.LogicOperator.OR);
 SingleColumnValueCondition single3 = new SingleColumnValueCondition
("Col2",
 SingleColumnValueCondition.CompareOperator.LESS_EQUAL,
ColumnValue.fromLong(10));
 composite2.addCondition(composite1);

38 Issue: 20191127

Table Store Developer Guide / 5 Wide column model
 composite2.addCondition(single3);

3. Implement an increasing column by the optimistic locking strategy based on the
conditional update.
 private static void updateRowWithCondition(SyncClient client,
String pkValue) {
 // construct the primary
 PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.
createPrimaryKeyBuilder();
 primaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME,
PrimaryKeyValue.fromString(pkValue));
 PrimaryKey primaryKey = primaryKeyBuilder.build();

 // read a row
 SingleRowQueryCriteria criteria = new SingleRowQueryCriteria(
TABLE_NAME, primaryKey);
 criteria.setMaxVersions(1);
 GetRowResponse getRowResponse = client.getRow(new GetRowRequest
(criteria));
 Row row = getRowResponse.getRow();
 long col0Value = row.getLatestColumn("Col0").getValue().asLong
();

 // Col0 = Col0 + 1 by conditional update
 RowUpdateChange rowUpdateChange = new RowUpdateChange(
TABLE_NAME, primaryKey);
 Condition condition = new Condition(RowExistenceExpectation.
EXPECT_EXIST);
 ColumnCondition columnCondition = new SingleColumnValueCon
dition("Col0", SingleColumnValueCondition.CompareOperator.EQUAL,
ColumnValue.fromLong(col0Value));
 condition.setColumnCondition(columnCondition);
 rowUpdateChange.setCondition(condition);
 rowUpdateChange.put(new Column("Col0", ColumnValue.fromLong(
col0Value + 1)));

 try {
 client.updateRow(new UpdateRowRequest(rowUpdateChange));
 } catch (TableStoreException ex) {
 System.out.println(ex.toString());
 }
 }

Example
The following operations are examples of updates that are executed for highly
concurrent applications:
 // Get the old value
 old_value = Read();
 // compute such as increment 1
 new_value = func(old_value);
 // Update by the new value

Issue: 20191127 39

Table Store Developer Guide / 5 Wide column model
 Update(new_value)；

The conditional update makes sure Update (new_value) if value equals to
old_value in a highly concurrent environment where old_value may be updated by
another client.

Billing
Writing or updating data successfully does not affect the capacity unit (CU)
calculation rules of the interfaces. However, if the conditional update fails, one unit
 of write CU and one unit of read CU are consumed, which are billable.

5.8 Atomic counters
Atomic counter is a new feature of Table Store that allows you to implement an
 atomic counter on an attribute. This feature provides statistics data for online
applications such as keeping track of the number of page views (PV) on various
topics.
In traditional database systems (without atomic counters), you must perform read
, modify, and write (RMW) operations to increment an attribute value by one or
 other number. You must read the previous attribute value from a database, and
 modify it on a client. Finally, you write the modified value to the database. The
consistency issue occurs in a database while multiple clients modify data at the
same time.
Currently, you can fix this issue by starting a transaction to lock a row. Then you
 can perform RMW operations in this transaction. You can use a transaction to
ensure consistent data in a row when multiple clients modify a single row. However
, this solution reduces write performance of atomic counters. RMW operations will
increase network overhead.
To deal with increasing overhead, atomic counters are used in Table Store. A
transaction within a sequence of RMW operations is sent to a database as a request
. The database performs the operations on a row by locking the row. To ensure data
 consistency, you can update atomic counters on a database server to improve write
 performance.

40 Issue: 20191127

Table Store Developer Guide / 5 Wide column model

Methods
The following methods are added in the RowUpdateChange class to operate an
atomic counter:
• RowUpdateChange increment(Column column) is used to increment or

decrement an attribute value by a number.
• void addReturnColumn(String columnName) is used to specify the name of an

atomic counter that will be returned.
• void setReturnType(ReturnType.RT_AFTER_MODIFY) is used to specify a flag to

indicate that the updated value of the atomic counter must be returned.
You can use RowUpdateChange to increment an atomic counter by a number as
follows:
private static void incrementByUpdateRowApi(SyncClient client) {
 // You can specify a primary key.
 PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.
createPrimaryKeyBuilder();
 primaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME,
PrimaryKeyValue.fromString("pk0"));
 PrimaryKey primaryKey = primaryKeyBuilder.build();

 RowUpdateChange rowUpdateChange = new RowUpdateChange(
TABLE_NAME, primaryKey);

 // You can increment the price value by 10 without specifying
a timestamp.
 rowUpdateChange.increment(new Column("price", ColumnValue.
fromLong(10)));

 // You can specify a flag to indicate that the updated value
of the atomic counter must be returned.
 rowUpdateChange.addReturnColumn("price");
 rowUpdateChange.setReturnType(ReturnType.RT_AFTER_MODIFY);

 // You can update the price attribute.
 UpdateRowResponse response = client.updateRow(new UpdateRowR
equest(rowUpdateChange));

 // You can display the updated value.
 Row row = result.getRow();
 System.out.println(row);
 }

Note:
• RowUpdateChange.addReturnColumn(an attribute name) is used to specify the

name of an atomic counter that will be returned.
• RowUpdateChange.setReturnType(RT_AFTER_MODIFY is used to specify a flag

to indicate that the updated value of the atomic counter must be returned.
Issue: 20191127 41

Table Store Developer Guide / 5 Wide column model

Scenarios
You can use an atomic counter to keep track of a row in real time. Assume that you
 create a table to store pictures. Each row in the table has a user ID. An attribute of
 the row is used to store pictures. Another attribute of the row is used as an atomic
counter to count the number of pictures.
• UpdateRow is used to add a picture to the table and increment the atomic

counter by one.
• UpdateRow is used to remove a picture from the table and decrement the atomic

counter by one.
• GetRow is used to read the value of the atomic counter to check the number of

pictures.
This design ensures database consistency. When you add a picture to the table, the
atomic counter is incremented by one instead of decremented by one.

Restrictions
Note the following restrictions when using atomic counters:
• Atomic counters only support the Integer type.
• The default value of an empty atomic counter is zero. When you implement an

atomic counter on an existing attribute with a non-Integer type, an OTSParamet
erInvalid error occurs.

• You can update an atomic counter by using a positive or a negative number, but
you must avoid an integer overflow. If an overflow issue appears, an OTSParamet
erInvalid error occurs.

• When you modify an atomic counter, the value will not be returned by default.
You can use addReturnColumn() and setReturnType() to specify the name and
updated value of an atomic counter that will be returned.

• You cannot update an attribute and an atomic counter simultaneously for a
single request. If you have incremented or decremented the attribute A, then you
 cannot perform other operations, such as overwrite and delete operations on
the attribute A.

• You can perform multiple update operations on the same row using a BatchWrite
Row request. When you perform an atomic counter operation on a row, other
operations in this BatchWriteRow request cannot be performed on this row.

42 Issue: 20191127

Table Store Developer Guide / 5 Wide column model

• You can only implement an atomic counter on an attribute with the latest version
. After you perform the update operation on the atomic counter, the atomic
counter will be specified with a new version.

• An error may occur when an atomic counter encounters network timeouts or
system failures. You can retry the operation. An atomic counter may be updated
twice. This symptom leads to an overcounting or undercounting issue. In this
case, we recommend that you can use conditional update to precisely update the
attribute.

Issue: 20191127 43

Table Store Developer Guide / 6 Timeline model

6 Timeline model
6.1 Introduction
Overview

The Timeline model is a data model designed for message data scenarios. The
model supports some special requirements of message data scenarios, such as
message order preservation, storage of large numbers of messages, and real-time
synchronization. The model also supports the full-text search and bool query. The
model is applicable to message scenarios such as instant messaging (IM) and Feed
streams.

Architecture
The Timeline model provides clear core modules in a simple design. You can easily
use this model, and set the model according to your business. The architecture of
the model includes the following components:
• Store: a store of Timeline data. The store is similar to a table in a database.
• Identifier: an identifier used to identify Timeline data.
• Meta: the metadata used to describe Timeline data. The metadata is stored in a

free-schema structure and can contain any column.
• Queue: stores all messages in a Timeline.
• SequenceId: the serial number of a message body in the Queue. The SequenceId

 values must be incremental and unique. The Timeline model generates
SequenceId values by using an auto-increment column. You can also specify
SequenceId values by manual.

• Message: the message body in the Timeline. The message is stored in a free-
schema structure and can contain any column.

• Index: includes Meta Index and Message Index. You can customize indexes for
any columns in Meta or Message to provide the bool query.

Features
The Timeline model supports the following features:

44 Issue: 20191127

Table Store Developer Guide / 6 Timeline model

• Manages Meta data and messages, including basic data operations such as create
, read, update, and delete.

• Supports the bool query and full-text search for Meta data and messages.
• Generates SequenceId values in two ways: auto-increment column and manual

setting.
• Supports the Timeline Identifier that contains multiple columns.
• Compatible with the Timeline 1. X model. The TimelineMessageForV1 example of

 the Timeline model can directly read messages from and write messages to the
V1 version.

Timeline
<dependency>
 <groupId>com.aliyun.openservices.tablestore</groupId>
 <artifactId>Timeline</artifactId>
 <version>2.0.0</version>
</dependency>

Table Store Java SDK (integrated with the Timeline model)
<dependency>
 <groupId>com.aliyun.openservices</groupId>
 <artifactId>tablestore</artifactId>
 <version>4.12.1</version>
</dependency>

6.2 Quick start
This topic describes how to get started with the Timeline model by using sample
code.

Procedure
1. Log on to the Table Store console and create a Table Store instance. For more

information, see #unique_41.
2. Download and install the Table Store Java SDK. For more information, see

#unique_42.
3. Determine an endpoint and configure an AccessKey pair to initialize the

instance. For more information, see #unique_43.
4. Download the sample code to get started with the Timeline model.

Issue: 20191127 45

https://github.com/aliyun/tablestore-timeline/blob/master/src/test/java/examples/v2/TimelineV2.java

Table Store Developer Guide / 6 Timeline model

6.3 Basic operations
6.3.1 Overview

The Timeline model is a data model designed for messaging applications. This
model has many specialized features such as message order preservation, storage of
large numbers of messages, and real-time synchronization to effectively implement
messaging functions. The model also supports full-text search and bool query. The
model is also suitable for instant messaging (IM) and feed stream scenarios. The
Timeline model Java SDK includes the following operations:
• Initialization

• Meta management

• Timeline management

• Queue management

6.3.2 Initialization
Initialize the TimelineStore Factory

You can use SyncClient as a parameter to initialize the TimelineStore Factory and
 create a Store that manages Meta data and Timeline data. The retry operation
 after an error occurs depends on the retry policy of SyncClient. You can set
SyncClient for the retry. If you have any special requirements, you can implement
the RetryStrategy operation to customize the policy.
/**
 * Set the retry policy.
 * Code: configuration.setRetryStrategy(new DefaultRetryStrategy());
 * */
ClientConfiguration configuration = new ClientConfiguration();

SyncClient client = new SyncClient(
 "http://instanceName.cn-shanghai.ots.aliyuncs.com",
 "accessKeyId",
 "accessKeySecret",
 "instanceName", configuration);

TimelineStoreFactory factory = new TimelineStoreFactoryImpl(client);

Initialize MetaStore
Create a schema for a Meta table. The schema includes parameters such as
Identifier and MetaIndex. Create a Store that manages Meta data by using the

46 Issue: 20191127

Table Store Developer Guide / 6 Timeline model

TimelineStore Factory. You need to specify the following parameters: Meta table
name, index, table name, primary key field, index name, and index type.
TimelineIdentifierSchema idSchema = new TimelineIdentifierSchema.
Builder()
 .addStringField("timeline_id").build();

IndexSchema metaIndex = new IndexSchema();
metaIndex.addFieldSchema(//Configure the index field and index type.
 new FieldSchema("group_name", FieldType.TEXT).setIndex(true).
setAnalyzer(FieldSchema.Analyzer.MaxWord)
 new FieldSchema("create_time", FieldType.Long).setIndex(true)
);

TimelineMetaSchema metaSchema = new TimelineMetaSchema("groupMeta",
idSchema)
 .withIndex("metaIndex", metaIndex); //Set the index.

TimelineMetaStore timelineMetaStore = serviceFactory.createMetaStore(
metaSchema);

Create a table
Create a table by using the parameters in metaSchema. Afterward, create and
configure an index.
timelineMetaStore.prepareTables();

Delete a table
If a table contains an index, delete the index before deleting the table from the
Store.
timelineMetaStore.dropAllTables();

Initialize TimelineStore
Create a schema for a Timeline table. The schema includes parameters such as
Identifier and TimelineIndex. Create a Store that manages Timeline data by using
the TimelineStore Factory. You need to specify the following parameters: Timeline
table name, index, table name, primary key field, index name, and index type.
The BatchStore operation improves the concurrency performance on the basis
of DefaultTableStoreWriter of Table Store. You can set the number of concurrent
threads in the thread pool.
TimelineIdentifierSchema idSchema = new TimelineIdentifierSchema.
Builder()
 .addStringField("timeline_id").build();

IndexSchema timelineIndex = new IndexSchema();

Issue: 20191127 47

Table Store Developer Guide / 6 Timeline model
timelineIndex.setFieldSchemas(Arrays.asList(//Configure the index
field and index type.
 new FieldSchema("text", FieldType.TEXT).setIndex(true).
setAnalyzer(FieldSchema.Analyzer.MaxWord),
 new FieldSchema("receivers", FieldType.KEYWORD).setIndex(true
).setIsArray(true)
));

TimelineSchema timelineSchema = new TimelineSchema("timeline",
idSchema)
 .autoGenerateSeqId() //Specify the auto-increment column as
the method to generate the SequenceId value.
 .setCallbackExecuteThreads(5) //Set the number of initial
threads of DefaultTableStoreWriter to 5.
 .withIndex("metaIndex", timelineIndex); //Set the index.

TimelineStore timelineStore = serviceFactory.createTimelineStore(
timelineSchema);

Create a table
Create a table by using the parameters in TimelineSchema. Afterward, create and
configure an index.
timelineStore.prepareTables();

Delete a table
If a table contains an index, delete the index before deleting the table from the
Store.
timelineStore.dropAllTables();

6.3.3 Meta management
You can call some operations, such as Insert, Delete, Update, Read, and Search, to
manage Meta data. The Search operation works on the basis of the Search Index
feature. Only the MetaStore that has IndexSchema configured supports the Search
operation. An index can be LONG, DOUBLE, BOOLEAN, KEYWORD, or GEO_POINT
type. The index attributes include Index, Store, and Array, and have the same
descriptions as those of the Search Index feature. For more information, see
Overview.

Insert
The TimelineIdentifer value is used to identify Timeline data. Table Store
overwrites repeated Identifier values.
TimelineIdentifier identifier = new TimelineIdentifier.Builder()
 .addField("timeline_id", "group")
 .build();

48 Issue: 20191127

Table Store Developer Guide / 6 Timeline model
TimelineMeta meta = new TimelineMeta(identifier)
 .setField("filedName", "fieldValue");

timelineMetaStore.insert(meta);

Read
You can cal this operation to read TimelineMeta data in one row based on the
Identifier value.
TimelineIdentifier identifier = new TimelineIdentifier.Builder()
 .addField("timeline_id", "group")
 .build();

timelineMetaStore.read(identifier);

Update
You can call this operation to update the Meta attribute that corresponds to the
specified TimelineIdentifier value.
TimelineIdentifier identifier = new TimelineIdentifier.Builder()
 .addField("timeline_id", "group")
 .build();
TimelineMeta meta = new TimelineMeta(identifier)
 .setField("filedName", "new value");

timelineMetaStore.update(meta);

Delete
You can call this operation to delete the TimelineMeta data in one row based on the
Identifier value.
TimelineIdentifier identifier = new TimelineIdentifier.Builder()
 .addField("timeline_id", "group")
 .build();

timelineMetaStore.delete(identifier);

Search
You can call this operation to specify two search parameters: SearchParameter and
the native SDK class SearchQuery. This operation returns Iterator<TimelineMeta>.
You can iterate all result sets by using the iterator.
/**
 * Search meta by SearchParameter.
 * */
SearchParameter parameter = new SearchParameter(
 field("fieldName").equals("fieldValue")
);
timelineMetaStore.search(parameter);

Issue: 20191127 49

Table Store Developer Guide / 6 Timeline model
/**
 * Search meta by SearchQuery.
 * */
TermQuery query = new TermQuery();
query.setFieldName("fieldName");
query.setTerm(ColumnValue.fromString("fieldValue"));

SearchQuery searchQuery = new SearchQuery().setQuery(query);
timelineMetaStore.search(searchQuery);

6.3.4 Timeline management
You can call the operations for the fuzzy query and bool query to manage Timeline
data. The query operations work on the basis of the Search Index feature. Only the
TimelineStore that has IndexSchema configured supports the query operations.
An index can be LONG, DOUBLE, BOOLEAN, KEYWORD, GEO_POINT, or TEXT
type. The index attributes include Index, Store, Array, and Analyzer, and have the
same descriptions as those of the Search Index feature. For more information, see
Overview.

Search
You can call this operation to use the bool query. This query requires the field for
 a fuzzy query. You need to set the index type of the field to TEXT, and specify the
tokenizer.
/**
 * Search timeline by SearchParameter.
 * */
SearchParameter searchParameter = new SearchParameter(
 field("text").equals("fieldValue")
);
timelineStore.search(searchParameter);

/**
 * Search timeline by SearchQuery.
 * */
TermQuery query = new TermQuery();
query.setFieldName("text");
query.setTerm(ColumnValue.fromString("fieldValue"));
SearchQuery searchQuery = new SearchQuery().setQuery(query).setLimit(
10);
timelineStore.search(searchQuery);

Flush
The BatchStore operation works on the basis of the DefaultTableStoreWriter class
in the SDK of Table Store. You can call the flush operation to trigger the process of

50 Issue: 20191127

Table Store Developer Guide / 6 Timeline model

sending the undelivered messages in the Buffer to Table Store and wait until Table
Store stores all these messages.
/**
 * Flush messages in buffer, and wait until all messages are stored.
 * */
timelineStore.flush();

6.3.5 Queue management
Obtain a Queue instance

A Queue is an abstract of a one message queue. The Queue corresponds to all
 messages of an identifier under a TimelineStore. You can call the required
operation of TimelineStore to create a Queue instance.
TimelineIdentifier identifier = new TimelineIdentifier.Builder()
 .addField("timeline_id", "group_1")
 .build();

// The Queue corresponds to an identifier of a TimelineStore.
TimelineQueue timelineQueue = timelineStore.createTimelineQueue(
identifier);

The Queue instance manages a message queue that corresponds to an identifier of a
 TimelineStore. This instance provides some operations, such as Store, StoreAsync,
BatchStore, Delete, Update, UpdateAsync, Get, and Scan.

Store
You can call this operation to synchronously store messages. To use this operation,
you can set SequenceId in two ways: auto-increment column and manual setting.
timelineQueue.store(message);//Auto-increment column
timelineQueue.store(sequenceId, message);//Manual setting

StoreAsync
You can call this operation to asynchronously store messages. You can customize
 callbacks to process successful or failed storage. This operation returns Future<
TimelineEntry>.
TimelineCallback callback = new TimelineCallback() {
 @Override
 public void onCompleted(TimelineIdentifier i, TimelineMessage m,
TimelineEntry t) {
 // do something when succeed.
 }

 @Override

Issue: 20191127 51

Table Store Developer Guide / 6 Timeline model
 public void onFailed(TimelineIdentifier i, TimelineMessage m,
Exception e) {
 // do something when failed.
 }
};

timelineQueue.storeAsync(message, callback);//Generate the SequenceId
value by using an auto-increment column.
timelineQueue.storeAsync(sequenceId, message, callback);//Specify the
SequenceId value by manual.

BatchStore
You can call this operation to store multiple messages in the callback and non-
callback ways. You can customize callbacks to process successful or failed storage.
timelineQueue.batchStore(message);//Auto-increment column
timelineQueue.batchStore(sequenceId, message);//Manual setting

timelineQueue.batchStore(message, callback);//Auto-increment column
timelineQueue.batchStore(sequenceId, message, callback);//Manual
setting

Get
You can call this operation to read one row based on the SequenceId value. If the
message does not exist, no error occurs and the system returns null.
timelineQueue.get(sequenceId);

GetLatestTimelineEntry
You can call this operation to read the latest message. If the message does not exist,
no error occurs and the system returns null.
timelineQueue.getLatestTimelineEntry();

GetLatestSequenceId
You can call this operation to obtain the SequenceId value of the latest message. If
the message does not exist, no error occurs and the system returns 0.
timelineQueue.getLatestSequenceId();

Update
You can call this operation to synchronously update a message based on the
SequenceId value.
TimelineMessage message = new TimelineMessage().setField("text", "
Timeline is fine.");

//update message with new field

52 Issue: 20191127

Table Store Developer Guide / 6 Timeline model

message.setField("text", "new value");
timelineQueue.update(sequenceId, message);

UpdateAsync
You can call this operation to asynchronously update a message based on the
SequenceId value. You can customize callbacks to process a successful or failed
update. This operation returns Future<TimelineEntry>.
TimelineMessage oldMessage = new TimelineMessage().setField("text", "
Timeline is fine.") ;
TimelineCallback callback = new TimelineCallback() {
 @Override
 public void onCompleted(TimelineIdentifier i, TimelineMessage m,
TimelineEntry t) {
 // do something when succeed.
 }

 @Override
 public void onFailed(TimelineIdentifier i, TimelineMessage m,
Exception e) {
 // do something when failed.
 }
};

TimelineMessage newMessage = oldMessage;
newMessage.setField("text", "new value");
timelineQueue.updateAsync(sequenceId, newMessage, callback);

Delete
You can call this operation to delete one row based on the SequenceId value.
timelineQueue.delete(sequenceId);

Scan
You can call this operation to read messages in one queue in forward or backward
order based on the Scan parameter. This operation returns Iterator<TimelineEntry
>. You can iterate all result sets by using the iterator.
ScanParameter scanParameter = new ScanParameter().scanBackward(Long.
MAX_VALUE, 0);

timelineQueue.scan(scanParameter);

Issue: 20191127 53

Table Store Developer Guide / 7 Search Index

7 Search Index
7.1 Overview

You can use the multiple efficient index schemas of search index to solve complex
query problems in big data scenarios.
A table in Table Store is a distributed NoSQL data schema. Such tables can support
 storage and read/write of large-scale data, such as monitoring data and log data.
Originally, Table Store only supports queries based on primary key columns, such
as reading data in a single row and within a specified range. Other types of queries
were not available, such as queries based on non-primary key columns and the bool
 query.
To resolve this issue, Table Store has provided the search index feature. Based on
 inverted indexes and column-oriented storage, search index supports multiple
queries, including but not limited to:
• Query based on non-primary key columns
• Bool query
• Full-text search
• Query by geographical location
• Prefix query
• Fuzzy query
• Nested query

Index differences
Aside from queries based on primary key columns in the primary table, Table
Store provides two index schemas for accelerated queries: global secondary index
 and search index. The following table describes the differences among the three
indexes.

54 Issue: 20191127

Table Store Developer Guide / 7 Search Index

Index type Description Scenario
Table A table is similar to a big map

. Tables only support queries
based on primary key columns.

• You can specify the complete
primary key columns.

• You can specify the prefixes
of primary key columns.

Global
secondary
index

You can create one or more
global secondary indexes and
 issue query requests against
these indexes. This way, you
can perform queries based on
 the primary key columns of
these indexes.

• You can determine the
required columns in advance
, and only a few columns are
required.

• You can specify the complete
 primary key columns or
the prefixes of primary key
columns.

Search index Search index uses inverted
indexes, Bkd-trees, and column
-oriented storage to meet
various query scenarios.

All query and analysis scenarios
 that the table and the global
secondary index do not support
.

Precautions
Index synchronization
If you have created a search index for a table, data is written to the table first. When
 the write is successful, success message is immediately returned to the user. At the
 same time, another asynchronous thread reads the newly written data from the
table and writes the data to the search index. This is an asynchronous process.
The asynchronous data synchronization between a table and search index does not
affect the write performance of Table Store. The indexing latency is within seconds
, most of which are within 10 seconds. You can view the indexing latency in the
Table Store console in real time.
TTL
You cannot create a search index in a table where you have specified the time to live
 (TTL) parameter.
max versions
You cannot create a search index in a table where you have specified the max
versions parameter.

Issue: 20191127 55

Table Store Developer Guide / 7 Search Index

You can customize the timestamp whenever you write data to an attribute column
 that allows only one version. If you first write a major version number and then a
minor version number, the index of the major version number may be overwritten
by the index of the minor version number.

Features
Search index can solve complex query problems in big data scenarios. Other
systems such as databases and search engines can also solve data query problems
. The differences between Table Store and databases and search engines are
illustrated as follows:

Table Store can provide all features of databases and search engines, except for
join operations, transactions, and relevance of search results. Table Store also has
high data reliability of databases and supports advanced queries of search engines.
Therefore, Table Store can replace the common database plus search engine
architecture. If you do not need join operations, transactions, and relevance of
search results, we recommend that you use search index of Table Store.

7.2 Features
This topic describes the core features of search index.

Core features
Query based on non-primary key columns
Originally, Table Store only supports queries based on complete primary key
columns or their prefixes. Queries based on non-primary key columns were not
available in some scenarios. Search index enables Table Store to support queries

56 Issue: 20191127

Table Store Developer Guide / 7 Search Index

based on non-primary key columns. You only need to create a search index for the
column to be queried.
Bool query
Bool query is applicable to order scenarios. In order scenarios, a table may contain
 dozens of fields. You cannot determine how to combine fields required for queries
 when you create a table. Even if the combination of required fields is specified,
hundreds of combinations may be available. If you use a relational database, you
 need to create hundreds of indexes. In addition, if a certain combination is not
created in advance, you cannot query the corresponding data.
However, you can use Table Store to create a search index that includes the
required field names, which can be combined in a query as needed. Search index
also supports multiple logical operators, such as AND, OR, and NOT.
Query by geographical location
With the popularization of mobile devices, geographical location data is becoming
 increasingly important. The data is used in most apps, such as WeChat Moments
, Sina Weibo, food delivery apps, sports apps, and Internet of Vehicles (IoV) apps.
These apps provide geographical location data. Therefore, they must support query
 features.
Search index supports queries based on the following geographical location data:
• Near: queries points within a specified radius based on a central point.
• Within: queries points within a specified rectangular or polygonal area.
Based on these query features, you can use Table Store to easily query geographical
location data without resorting to other databases or search engines.
Full-text search
Search index can tokenize data to perform full-text search. However, unlike
search engines, Table Store cannot return relevant results in response to a query.
Therefore, if you need relevant results, we recommend that you use search engines.
Five tokenization types are available, including single-word tokenization, delimiter
tokenization, minimum semantic unit-based tokenization, maximum semantic
unit-based tokenization, and fuzzy tokenization. For more information, see
Tokenization.

Issue: 20191127 57

Table Store Developer Guide / 7 Search Index

Fuzzy query
Search index supports queries based on wildcards. This feature is similar to the
LIKE operator in relational databases. You can specify characters and wildcards
such as question marks (?) or asterisks (*) to query data in the way similar to the
LIKE operator.
Prefix query
Search index supports the prefix query feature. This feature is applicable to any
natural language. For example, in the query based on the prefix "apple", the system
may return words such as "apple6s" and "applexr".
Nested query
In addition to a flat structure, online data such as labeled pictures have some
complex multilayered structures. For example, a database stores a large number of
 pictures, and each picture has multiple elements, such as houses, cars, and people
. Each element in a picture has a unique score. The score is evaluated based on the
 size and position of the element in a picture. Therefore, each picture has multiple
 labels. Each label has a name and a weighted score. You can use nested queries
based on the conditions or field names of the labels.
The following example shows the JSON data format in a query:
{
 "tags": [
 {
 "name": "car",
 "score": 0.78
 },
 {
 "name": "tree",
 "score": 0.24
 }
]
}

You can use the nested query effectively to store and query data of multilayered
logical relationships. This query facilitates the modeling of complex data.
Deduplication
Search index supports deduplication for query results. Deduplication allows you to
 specify the highest frequency of occurrence of an attribute value to achieve high
cardinality. For example, when you search for a laptop on an e-commerce platform

58 Issue: 20191127

Table Store Developer Guide / 7 Search Index

, the first page may display products of a certain brand. This is not a user-friendly
result. However, the deduplication feature of Table Store can resolve this issue.
Sorting
A table sorts data based on the alphabetical order of primary key columns. To sort
data by other fields, you need to use the sorting feature of search index. Table Store
 supports multiple types of sorting, such as ascending sorting, descending sorting,
single-field sorting, and multi-field sorting. By default, Table Store returns results
based on the order of primary key columns. You can use this method to sort global
data.
Total number of rows
You can specify the number of rows that the system returns for the current request
 when you use search index for a query. If you do not specify any query condition
 for search index, the system returns the total number of rows where you have
created indexes. When you stop writing new data to a table and create indexes on
all attributes, the system returns the total number of rows in the table. This feature
applies to data verification and data management.

SQL
Table Store does not support SQL statements and operators. However, most of these
SQL features can match similar features of search index, as shown in the following
table.
SQL Search index Supported
SHOW API operation: DescribeSe

archIndex
Yes

SELECT Parameter: ColumnsToGet Yes
FROM Parameter: index name Supported for single

indexes and not supported
 for multiple indexes

WHERE Query: a variety of queries
 such as TermQuery

Yes

ORDER BY Parameter: sort Yes
LIMIT Parameter: limit Yes
DELETE API operation: query

followed by DeleteRow
Yes

Issue: 20191127 59

Table Store Developer Guide / 7 Search Index

SQL Search index Supported
LIKE Query: wildcard query Yes
AND Parameter: operator = and Yes
OR Parameter: operator = or Yes
NOT Query: bool query Yes
BETWEEN Query: range query Yes
NULL ExistQuery Yes

7.3 API operations
7.3.1 Overview

This topic describes the operations, fields, queries, and billing methods of search
index.

SDKs
You can use the following SDKs to implement search index.
• Java SDK

• Python SDK

• Go SDK

• Node.js SDK

• .NET SDK

API operations
Action Operation Description
Create CreateSearchIndex Creates a search index.
Describe DescribeSearchIndex Queries detailed

information of a search
index.

List ListSearchIndex Queries the list of search
indexes.

Delete DeleteSearchIndex Deletes a specified search
index.

Search Search Searches for required data
.

60 Issue: 20191127

Table Store Developer Guide / 7 Search Index

Fields
The value of a search index field in Table Store is the value of the field of the same
name in the corresponding table. The types of these fields must match each other,
as described in the following table.
Field type in the search
index

Field type in the table Description

Long Integer 64-bit long integers.
Double Double 64-bit long floating-point

numbers.
Boolean Boolean Boolean values.
Keyword String Character strings that

cannot be tokenized.
Text String Character strings or text

that can be tokenized. For
more information, see
Tokenization.

Geopoint String Geographical coordinates
in the latitude,
longitude format.
Example: 35.8,-45.91.

Nested String Nested type fields, such as
 "{["a": 1], ["a": 3]}."

Notice:
The types in this table must correspond to each other. Otherwise, Table Store
discards the data as dirty data. Make sure fields of the Geopoint and Nested types
must comply with the formats described in the preceding table. If the formats do
not match, Table Store discards the data as dirty data. As a result, the data may be
available in the table, but be unavailable in the search index.

Aside from the type attribute, search index fields also have additional attributes.

Issue: 20191127 61

Table Store Developer Guide / 7 Search Index

Attribute Type Option Description
Index Boolean Specifies whether

to create an index
for a column.

• True indicates
that Table Store
 creates an
inverted index
or spatial index
for the column.

• False indicates
that Table Store
 does not create
an index for the
column.

• If no indexes
exist, you cannot
 query by the
column.

EnableSortAndAgg Boolean Specifies whether
 to enable sorting
and aggregation.

• True indicates
that data can be
 sorted by using
the column.

• False indicates
that data cannot
 be sorted
by using the
column.

Store Boolean Specifies whether
 to store original
values in the index.

True indicates
that Table Store
stores the original
 values in the
column to the
index. Therefore,
Table Store reads
 values of the
column directly
 from the index,
rather than from
the primary table
. This optimizes
query performanc
e.

62 Issue: 20191127

Table Store Developer Guide / 7 Search Index

Attribute Type Option Description
IsArray Boolean Specifies whether

 the column is an
array.

• True indicates
that the column
is an array. Data
 written to the
column must be
 a JSON array,
such as ["a","b","
c"].

• You do not need
 to explicitly
 specify this
parameter for
Nested columns
because they are
 arrays.

• Array type data
 can be used
in all queries
because arrays
 do not affect
queries.

For more information about the attributes that each field type supports, see the
following table.
Type Index EnableSort

AndAgg
Store Array

Long Supported Supported Supported Supported
Double Supported Supported Supported Supported
Boolean Supported Supported Supported Supported
Keyword Supported Supported Supported Supported
Text Supported Not supported Supported Supported
Geopoint Supported Supported Supported Supported
Nested Required for

child fields.
Required for
child fields.

Required for
child fields.

Nested fields
are arrays.

Issue: 20191127 63

Table Store Developer Guide / 7 Search Index

Query parameters and types
You must specify SearchRequest in a query. The following table describes
parameters that are included in SearchRequest.
Parameter Data type Description
offset Integer Specifies the position

from which the current
query starts.

limit Integer Specifies the maximum
number of items that the
current query returns.

getTotalCount Boolean Specifies whether to
return the total number
 of matched rows. This
parameter is set to false
 by default. A value of
true may affect the query
performance.

Sort Sort Specifies the field and
method for sorting.

collapse Collapse Specifies the name of
the field that you want
to collapse in the query
result.

query Query Specifies the type of
the current query. The
following table lists the
query types.

Name Query Description
Query by matching all
rows

MatchAllQuery You can use MatchAllQu
ery to check the total
number of rows.

Query by tokenized data MatchQuery You can use MatchQuery
to tokenize the query data
, and query the tokenized
data. Logical operator OR
applies to tokens.

64 Issue: 20191127

Table Store Developer Guide / 7 Search Index

Name Query Description
Query by matched
phrases

MatchPhraseQuery This query is similar to
MatchQuery. The matched
 tokens must be adjacent
to each other in the query
 data.

Query by exact match TermQuery You can use TermQuery to
match exact strings. Table
 Store uses exact matches
 to query data in a table,
and does not tokenize the
query data.

Query by multiple terms TermsQuery This query is similar to
TermQuery. You can use
TermsQuery to match
multiple terms, which
is similar to the SQL IN
 operator.

Query by prefix PrefixQuery You can use PrefixQuery
 to query data in a table
by matching a specified
prefix.

Query by range RangeQuery You can use RangeQuery
 to query data within a
specified range in a table.

Query by wildcards WildcardQuery You can use WildcardQu
ery to query data based on
 strings that contain one
or more wildcards. This
query is similar to the SQL
 LIKE operator.

Query by a combination of
 filtering conditions

BoolQuery You can use BoolQuery
 to combine multiple
filtering conditions by
using Logical operators,
such as AND, OR, and NOT
.

Issue: 20191127 65

Table Store Developer Guide / 7 Search Index

Name Query Description
Query by matching data
 within a rectangular
geographical area

GeoBoundingBoxQuery You can use GeoBoundin
gBoxQuery to specify a
rectangular geographic
al area as a filtering
condition in a query.
Table Store returns the
rows where the value of
 a field falls within the
rectangular geographical
area.

Query by matching
data within a circular
geographical area

GeoDistanceQuery You can use GeoDistanc
eQuery to specify a
circular geographical area
 as a filtering condition in
a query, which consists of
 a central point and radius
. Table Store returns the
 rows where the value of
 a field falls within the
circular geographical area
.

Query by matching
data within a polygonal
geographical area

GeoPolygonQuery You can use GeoPolygon
Query to specify a
polygonal geographic
al area as a filtering
condition in a query.
Table Store returns the
rows where the value of
 a field falls within the
polygonal geographical
area.

Pricing
For more information, see #unique_77.

66 Issue: 20191127

Table Store Developer Guide / 7 Search Index

7.3.2 CreateSearchIndex
You can call this operation to create a search index. To use the search index feature
for a table, you must create a search index in the table. One table can contain
multiple search indexes.
You can call the Search operation to query fields (including primary key columns
and attribute columns) included in the search index.

Description
Parameters:
• TableName: specifies the name of the table for which you want to create a search

 index.
• IndexName: specifies the name of the search index.
• IndexSchema: defines the schema of the search index.

- IndexSetting
■ RoutingFields: specifies the routing fields. You can specify some primary

key columns as routing fields. Table Store distributes data that is written to
 a search index to different partitions based on the specified routing fields.

Issue: 20191127 67

Table Store Developer Guide / 7 Search Index

The data with the same routing field values is distributed to the same data
partition.

- FieldSchemas
■ FieldName: required. This parameter specifies the name of the field that is a

 column name in the table. The name is of the string type.
■ FieldType: required. This parameter specifies the type of the field. For more

information, see the "Fields" section in Overview.
■ Index: optional. This parameter specifies whether to create an index for the

field. The index is of the Boolean type. Default value: true.
■ IndexOptions: optional. This parameter specifies whether to store terms

 such as position and offset in an inverted list. Use the default value in
general conditions.

■ EnableSortAndAgg: optional. This parameter specifies whether to enable
 sorting and aggregation. This parameter is of the Boolean type. Default
value: true.

■ Store: optional. This parameter specifies whether to store original values
 in the index to accelerate queries. This parameter is of the Boolean type.
Default value: true.

FAQ
How many indexes can be created in a table?
Assume that you have a table with five fields: ID, name, age, city, and sex, and you
need to query by name, age, or city. There are two methods to create search indexes
:
• Method 1: Create a search index for an index field

In this case, you need to create three search indexes: name_index, age_index,
and city_index. You can use city_index to query data by city, and age_index to
query data by age.
However, you cannot use this method to query students who are younger than 12
 years old and live in Chengdu.
The implementation of this method is similar to that of secondary indexes.
In this case, one index field for one search index brings no benefits to search

68 Issue: 20191127

Table Store Developer Guide / 7 Search Index

indexing but increases costs. Therefore, we recommend that you do not use this
method to create a search index.

• Method 2: Create a search index for multiple index fields
In this case, you only need to create a search index named student_index.
The fields include name, age, and city. You can use the city index field in the
 student_index to query data by city. You can use the age index field in the
student_index to query data by age.
You can use the age and city index fields in the student_index to query students
who are younger than 12 years old and live in Chengdu.
This method provides more functions at low cost. We recommend that you use
this method.

Limits
1. Timeliness of index creation
It takes a few minutes to create a search index. During the creation process, you can
 write data into the table.
2. Quantity
For more information, see Limits.

Examples
/**
 *Create a search index that contains the Col_Keyword and Col_Long
columns. Set the type of data in Col_Keyword to KEYWORD. Set the type
of data in Col_Long to LONG.
 */
private static void createSearchIndex(SyncClient client) {
 CreateSearchIndexRequest request = new CreateSearchIndexRequest();
 request.setTableName(TABLE_NAME); // Set the table name.
 request.setIndexName(INDEX_NAME); // Set the index name.
 IndexSchema indexSchema = new IndexSchema();
 indexSchema.setFieldSchemas(Arrays.asList(
 new FieldSchema("Col_Keyword", FieldType.KEYWORD) // Set
the field name and field type.
 .setIndex(true) // Set the parameter to true to
enable indexing.
 .setEnableSortAndAgg(true), // Set the parameter
to true to enable sorting and aggregation.
 new FieldSchema("Col_Long", FieldType.LONG)
 .setIndex(true)
 .setEnableSortAndAgg(true)));
 request.setIndexSchema(indexSchema);
 client.createSearchIndex(request); // Use the client to create a
search index.

Issue: 20191127 69

Table Store Developer Guide / 7 Search Index
}

7.3.3 DescribeSearchIndex
You can call this operation to query the details of a Search Index structure. To use
the Search Index feature for a table, you must create a Search Index structure in the
table. One table can contain multiple Search Index structures.

Description
Name: DescribeSearchIndex
Parameters:
• TableName: the name of the target table where you request the details of the

Search Index structure.
• IndexName: the name of the target index.

Example
private static DescribeSearchIndexResponse describeSearchIndex(
SyncClient client) {
 DescribeSearchIndexRequest request = new DescribeSearchIndexR
equest();
 request.setTableName(TABLE_NAME); // Set the name of the table.
 request.setIndexName(INDEX_NAME); // Set the name of the index.
 DescribeSearchIndexResponse response = client.describeSearchIndex(
request);
 System.out.println(response.jsonize()); // Display the details of
the response.
 return response;
}

7.3.4 ListSearchIndex
You can call this operation to retrieve the list of all Search Index structures
associated with an instance or a table.

Description
Name: ListSearchIndex
TableName: the name of the target table. If you do not specify this optional
parameter, Table Store returns the list of all indexes on the instance. If you specify
 a table, Table Store returns the list of all Search Index structures associated with
the table.

Example
private static List<SearchIndexInfo> listSearchIndex(SyncClient client
) {

70 Issue: 20191127

Table Store Developer Guide / 7 Search Index
 ListSearchIndexRequest request = new ListSearchIndexRequest();
 request.setTableName(TABLE_NAME); // Set the name of the table.
 return client.listSearchIndex(request).getIndexInfos(); // Return
all Search Index structures of the specified table.
}

7.3.5 DeleteSearchIndex
You can call this operation to delete a Search Index structure.

Description
Name: DeleteSearchIndex
Parameters:
• TableName: the name of the target table where you delete the Search Index

structure.
• IndexName: the name of the target index that you want to delete.

Example
private static void deleteSearchIndex(SyncClient client) {
 DeleteSearchIndexRequest request = new DeleteSearchIndexRequest();
 request.setTableName(TABLE_NAME); // Set the name of the table.
 request.setIndexName(INDEX_NAME); // Set the name of the index.
 client.deleteSearchIndex(request); // Use client to delete the
target Search Index structure.
}

7.3.6 Array and Nested field types
Aside from basic field types, such as Long, Double, Boolean, Keyword, Text, and
Geopoint, search index also provides two special field types.
One is the Array type. The Array type can be attached to the basic field types. For
example, a field of Long type plus an Array type forms an integer array. This field
can contain multiple long integers. If any data of a row is matched in the query, the
row is returned.
The other is the Nested type, which provides more features than the Array type.

Array type
Basic Array types, such as:
• Long Array: an array of long integers. Format: "[1000, 4, 5555]."
• Boolean Array: an array of Boolean values. Format: "[true, false]."
• Double Array: an array of floating-point numbers. Format: "[3.1415926, 0.99]."
• Keyword Array: an array of strings.

Issue: 20191127 71

Table Store Developer Guide / 7 Search Index

• Text Array: an array of text. This type is not common.
• GeoPoint Array: an array of geographical locations. Format: "[34.2, 43.0], [21.4,

45.2]."
The Array type is only supported in search index. Therefore, when the type of an
index field involves Array, the field in the table must be of the String type. The basic
 data type in the search index remains, such as Long or Double. For example, when
 a price field is of the Double Array type, the field must be of the String type in the
table, and of the Double type in the search index, with isArray set to true.

Nested type
A Nested column contains nested documents. One document or one row can
contain multiple child documents, and these child documents are saved to the same
 Nested column. You need to specify the schema of child documents in the Nested
column. The structure includes the fields of the child documents and the property
of each field. The following example defines the format of a Nested column in Java:
// Specify the FieldSchema class for the child documents.
List<FieldSchema> subFieldSchemas = new ArrayList<FieldSchema>();
subFieldSchemas.add(new FieldSchema("tagName", FieldType.KEYWORD)
 .setIndex(true).setEnableSortAndAgg(true));
subFieldSchemas.add(new FieldSchema("score", FieldType.DOUBLE)
 .setIndex(true).setEnableSortAndAgg(true));

// Set FieldSchema of the child documents as subfieldSchemas of the
Nested column.
FieldSchema nestedFieldSchema = new FieldSchema("tags", FieldType.
NESTED)
 .setSubFieldSchemas(subFieldSchemas);

This example defines the format of a Nested column named tags. The child
documents include two fields: one is a KEYWORD field named tagName and the
other is a DOUBLE field named score.
Table Store writes Nested columns as strings in JSON arrays to the table. The
following example shows the data format of a Nested column:
[{"tagName":"tag1", "score":0.8}, {"tagName":"tag2", "score":0.2}]

This column contains two child documents. Even if a column contains only one
child document, you must provide the strings in JSON arrays.
The Nested type has the following limits:
1. Nested indexes do not support the IndexSort feature. However, IndexSort can

improve query performance in many scenarios.
72 Issue: 20191127

Table Store Developer Guide / 7 Search Index

2. The nested query provides lower performance than other types of queries.
Apart from the preceding limits, the Nested type supports all queries and sorting,
and will support statistical aggregation in the future.

7.3.7 Sort
You can use Sort to specify the method of sorting the result when you call the
Search operation to search indexes.
The Search Index feature supports multiple sorting methods.
If you have not specified the sorting method for the search, the system applies the
IndexSort parameter for the required indexes. By default, Table Store returns the
query result in the order of primary key columns.
Table Store supports the following sorting methods:
• ScoreSort

Sort the result by relevance score. ScoreSort is applicable to relevance scenarios
such as full-text indexing.

• PrimaryKeySort
Sort the result by the value of a primary key.

• FieldSort
Sort the result by the value of a specified field.

• GeoDistanceSort
Sort the result by the distance, radius, from a central point.

7.3.8 Tokenization
Search index can tokenize words for queries. If the field type is set to text, you can
set an additional tokenization parameter for this field to specify the method in
which the text is tokenized. Tokenization cannot be set for fields of non-text types.
You can use MatchQuery and MatchPhraseQuery to query text data. TermQuery,
TermsQuery, PrefixQuery, and WildcardQuery are also used in a few scenarios.
The following tokenization methods are supported:

Methods
Single-word tokenization
• Name: single_word

Issue: 20191127 73

Table Store Developer Guide / 7 Search Index

• Applies to: all natural languages, such as Chinese, English, and Japanese
• Parameter:

- caseSensitive: specifies whether this method is case-sensitive. The default
value is false. False indicates that all English letters are converted to lowercase
 letters.

- delimitWord: specifies whether to tokenize alphanumeric characters. The
default value is false.

English letters or numbers are tokenized based on spaces or punctuation, and
English letters are converted to lowercase letters. For example, "Hang Zhou" is
tokenized into "hang" and "zhou". You can use MatchQuery or MatchPhraseQuery
 to query data that contains "hang", "HANG", or "Hang". If you do not need the
system to automatically convert English letters to lowercase letters, you can set the
caseSensitive parameter to true.
Alphanumeric characters such as product models cannot be tokenized by this
method because there are no spaces or punctuation between letters and numbers
. For example, "IPhone6" remains "IPhone6" after tokenization. When querying
 by MatchQuery or MatchPhraseQuery, you can retrieve data only by specifying
 "iphone6" to query. You can set the delimitWord parameter to true to separate
English letters from numbers. This way, "iphone6" is tokenzied into "iphone" and "6
".
Delimiter tokenization
• Name: split
• Applies to: all natural languages, such as Chinese, English, and Japanese
• Parameter:

- delimiter: The default delimiter is a space. You can set the delimiter to any
character based on your needs.

Search index tokenizes words based on general dictionaries, but words from some
 special industries need to be tokenized based on their custom dictionaries. In this
 case, tokenization methods provided by search index cannot meet the needs of
users.

74 Issue: 20191127

Table Store Developer Guide / 7 Search Index

Delimiter tokenization, or custom tokenization, can address this need. Users
segment words in their own way and tokenize the segmented words with a specific
delimiter. Then, the tokenized words are written to Table Store.

Note:
When you create a search index, the delimiter set in the field for tokenization must
be the same as that in the written data. Otherwise, data may not be retrieved.

Minimum semantic unit-based tokenization
• Name: min_word
• Applies to: Chinese
• Parameter:

- None
In addition to word-level tokenization, search index also provides semantic-level
tokenization. By using this method, text is tokenized into minimum semantic units.
In most cases, this method can meet basic requirements in the full-text search
scenario.
Maximum semantic unit-based tokenization
• Name: max_word
• Applies to: Chinese
• Parameter:

- None
Aside from the minimum semantic unit-based tokenization, the more complex
maximum semantic unit-based tokenization is provided to obtain as many semantic
 units as possible. However, different semantic units may overlap. The total length
 of the tokenized words is greater than the length of the original text. The index
fields are increased.
This method can generate more tokens and increase the probability of obtaining
 results. However, the index fields are greatly increased. MatchPhraseQuery also
tokenizes words in the same way. This way, tokens may overlap and data may not be
 retrieved. Therefore, This tokenization method is more suitable for MatchQuery.
Fuzzy tokenization

Issue: 20191127 75

Table Store Developer Guide / 7 Search Index

• Name: fuzzy
• Applies to: all natural languages, such as Chinese, English, and Japanese
• Parameter:

- minChars: specifies the minimum number of characters for a token. We
recommend that you set this value to 2.

- maxChars: specifies the maximum number of characters for a token. We
recommend that you set this value to a number smaller than or equal to 7.

• Limits:
- A text field cannot exceed 32 characters in length. Only the first 32 characters

 of a text field is retained and the characters after the 32nd character are
truncated and discarded.

Assume that you need to be able to quickly obtain results for short text, such as
headlines, movie names, or book titles by using drop-down prompts. In this case,
you can use fuzzy tokenization to tokenize text content into n-grams, whose lengths
 are between minChars and maxChars.
This method has minimal delay when obtaining results, but the index fields are
increased greatly. Therefore, this tokenization method is suitable for short text.

Comparison
The following table compares the five tokenization methods.

Single-word
tokenization

Delimiter
tokenization

Minimum
 semantic
unit-based
tokenization

Maximum
 semantic
unit-based
tokenization

Fuzzy
tokenization

Index
expansion

Medium Small Small Large Huge

Relevance Weak Weak Medium Relatively
strong

Relatively
strong

Applicable
language

All All Chinese Chinese All

Length limit No No No No 32
characters

Recall rate High Low Low Medium Medium

76 Issue: 20191127

Table Store Developer Guide / 7 Search Index

7.3.9 MatchAllQuery
You can use MatchAllQuery to query the total number of rows or any number of
rows in a table.

Example
/**
 * Use MatchAllQuery to query the total number of rows in a table.
 * @param client
 */
private static void matchAllQuery(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();

 /**
 * Set the query type to MatchAllQuery.
 */
 searchQuery.setQuery(new MatchAllQuery());

 /**
 * In the MatchAllQuery-based query result, the value of
TotalCount is the total number of rows in a table. This value is an
approximate value when you query a table that contains a large number
of rows.
 *To return only the total number of rows without any specific
data, you can set Limit to 0. Then, Table Store returns no data in the
 rows.
 */
 searchQuery.setLimit(0);
 SearchRequest searchRequest = new SearchRequest(TABLE_NAME,
INDEX_NAME, searchQuery);

 /**
 * Set the total number of matched rows.
 */
 searchQuery.setGetTotalCount(true);
 SearchResponse resp = client.search(searchRequest);
 /**
 * Check whether Table Store returns matched data from all
partitions. When the value of isAllSuccess is false, Table Store may
fail to query some partitions and return a part of data.
 */
 if (! resp.isAllSuccess()) {
 System.out.println("NotAllSuccess!") ;
 }
 System.out.println("IsAllSuccess: " + resp.isAllSuccess());
 System.out.println("TotalCount: " + resp.getTotalCount()); // The
total number of rows.
 System.out.println(resp.getRequestId());
}

7.3.10 MatchQuery
You can use MatchQuery to query data in the fields of Text type in full-text search
scenarios. Table Store tokenizes the value of Text type in the index and the target

Issue: 20191127 77

Table Store Developer Guide / 7 Search Index

value that you specify for the MatchQuery type based on your configuration.
Therefore, Table Store can match tokenized terms in a query.
For example, the title field value in a row is "Hangzhou West Lake Scenic Area".
Table Store tokenizes the value into "Hangzhou", "West", "Lake", "Scenic", and "Area
". If you specify the target term as "Lake Scenic" in MatchQuery, Table Store returns
 this row in the query result.

Parameters
• fieldName: the name of the target field.
• text: the target term. Table Store tokenizes this term into multiple terms.
• minimumShouldMatch: the minimum number of terms that the value of the

fieldName field in a row contains when Table Store returns this row in the query
result.

• operator: the operator used in a logical operation. The default operator OR
specifies that Table Store returns the row when some of the tokens of the field
value in the row match the target term. The operator AND specifies that Table
Store returns the row only when all tokens of the field value in the row match the
 target term.

Example
/**
 * Search the table for rows where the value of Col_Keyword matches "
hangzhou". Table Store returns matched rows and the total number of
matched rows.
 * @param client
 */
private static void matchQuery(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 MatchQuery matchQuery = new MatchQuery(); // Set the query type to
 MatchQuery.
 matchQuery.setFieldName("Col_Keyword"); // Set the name of the
field that you want to match.
 matchQuery.setText("hangzhou"); // Set the value that you want to
match.
 searchQuery.setQuery(matchQuery);
 searchQuery.setOffset(0); // Set Offset to 0.
 searchQuery.setLimit(20); // Set Limit to 20 to return 20 rows or
fewer.
 SearchRequest searchRequest = new SearchRequest(TABLE_NAME,
INDEX_NAME, searchQuery);
 SearchResponse resp = client.search(searchRequest);
 System.out.println("TotalCount: " + resp.getTotalCount());
 System.out.println("Row: " + resp.getRows()); // If you do not set
 columnsToGet, Table Store only returns primary keys by default.

 SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.
ColumnsToGet();

78 Issue: 20191127

Table Store Developer Guide / 7 Search Index
 columnsToGet.setReturnAll(true); // Set columnsToGet to true to
return all columns.
 searchRequest.setColumnsToGet(columnsToGet);

 resp = client.search(searchRequest);
 System.out.println("TotalCount: " + resp.getTotalCount()); // The
total number of matched rows instead of the number of returned rows.
 System.out.println("Row: " + resp.getRows());
}

7.3.11 MatchPhraseQuery
This query is similar to MatchQuery, but evaluates the positional relationship
between multiple tokens. Table Store exactly matches the order and position of
these tokens in the target row.
For example, the field value is "Hangzhou West Lake Scenic Area". If you specify
the target term as "Hangzhou Scenic Area" in Query, Table Store returns the row
that contains this target term when you use MatchQuery. However, when you use
 MatchPhraseQuery, Table Store does not return the row that contains this target
 term. The distance between "Hangzhou" and "Scenic Area" in Query is 0. But the
distance in the field is 2, because the two words "West" and "Lake" exist between "
Hangzhou" and "Scenic Area".

Parameters
• fieldName: the name of the target field.
• text: the target term. Table Store tokenizes this term into multiple terms before

the query.
Example

/**
 * Search the table for rows where the value of Col_Text matches "
hangzhou shanghai." Table Store returns the total number of rows that
match the phrase as a whole and matched rows in this query.
 * @param client
 */
private static void matchPhraseQuery(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 MatchPhraseQuery matchPhraseQuery = new MatchPhraseQuery(); // Set
 the query type to MatchPhraseQuery.
 matchPhraseQuery.setFieldName("Col_Text"); // Set the field that
you want to match.
 matchPhraseQuery.setText("hangzhou shanghai"); // Set the value
that you want to match.
 searchQuery.setQuery(matchPhraseQuery);
 searchQuery.setOffset(0); // Set Offset to 0.
 searchQuery.setLimit(20); // Set Limit to 20 to return 20 rows or
fewer.
 SearchRequest searchRequest = new SearchRequest(TABLE_NAME,
INDEX_NAME, searchQuery);
 SearchResponse resp = client.search(searchRequest);

Issue: 20191127 79

Table Store Developer Guide / 7 Search Index
 System.out.println("TotalCount: " + resp.getTotalCount());
 System.out.println("Row: " + resp.getRows()); // Return primary
keys only by default.

 SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.
ColumnsToGet();
 columnsToGet.setReturnAll(true); // Set columnsToGet to true to
return all columns.
 searchRequest.setColumnsToGet(columnsToGet);

 resp = client.search(searchRequest);
 System.out.println("TotalCount: " + resp.getTotalCount()); // The
total number of matched rows instead of the number of returned rows.
 System.out.println("Row: " + resp.getRows());
}

7.3.12 TermQuery
You can use TermQuery to query data that exactly matches the specified value of
a field. When a table contains a Text string, Table Store tokenizes the string and
exactly matches any of the tokens. For example, Table Store tokenizes Text string
"tablestore is cool" into "tablestore," "is," and "cool". When you specify any of these
tokens as a query string, you can retrieve the query result that contains the token.

Parameters
• fieldName: the name of the target field.
• term: the target term. Table Store does not tokenize this term, but exactly

matches the whole term.
Example

/**
 * Search the table for rows where the value of Col_Keyword exactly
matches "hangzhou".
 * @param client
 */
private static void termQuery(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 TermQuery termQuery = new TermQuery(); // Set the query type to
TermQuery.
 termQuery.setFieldName("Col_Keyword"); // Set the name of the
field that you want to match.
 termQuery.setTerm(ColumnValue.fromString("hangzhou")); // Set the
value that you want to match.
 searchQuery.setQuery(termQuery);
 SearchRequest searchRequest = new SearchRequest(TABLE_NAME,
INDEX_NAME, searchQuery);

 SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.
ColumnsToGet();
 columnsToGet.setReturnAll(true); // Set columnsToGet to true to
return all columns.
 searchRequest.setColumnsToGet(columnsToGet);

 SearchResponse resp = client.search(searchRequest);

80 Issue: 20191127

Table Store Developer Guide / 7 Search Index
 System.out.println("TotalCount: " + resp.getTotalCount()); // The
total number of matched rows instead of the number of returned rows.
 System.out.println("Row: " + resp.getRows());
}

7.3.13 TermsQuery
This query is similar to TermQuery, but supports multiple terms. This query is also
similar to the SQL IN operator.

Parameters
fieldName: the name of the target field.
terms: the target terms. Table Store returns the data in a row when the system
matches one term in the row.

Example
/**
 * Search the table for rows where the value of Col_Keyword exactly
matches "hangzhou" or "xi'an".
 * @param client
 */
private static void termQuery(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 TermsQuery termsQuery = new TermsQuery(); // Set the query type to
 TermsQuery.
 termsQuery.setFieldName("Col_Keyword"); // Set the name of the
field that you want to match.
 termsQuery.addTerm(ColumnValue.fromString("hangzhou")); // Set the
 value that you want to match.
 termsQuery.addTerm(ColumnValue.fromString("xi'an")); // Set the
value that you want to match.
 searchQuery.setQuery(termsQuery);
 SearchRequest searchRequest = new SearchRequest(TABLE_NAME,
INDEX_NAME, searchQuery);

 SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.
ColumnsToGet();
 columnsToGet.setReturnAll(true); // Set columnsToGet to true to
return all columns.
 searchRequest.setColumnsToGet(columnsToGet);

 SearchResponse resp = client.search(searchRequest);
 System.out.println("TotalCount: " + resp.getTotalCount()); // The
total number of matched rows instead of the number of returned rows.
 System.out.println("Row: " + resp.getRows());

Issue: 20191127 81

Table Store Developer Guide / 7 Search Index
}

7.3.14 PrefixQuery
You can use PrefixQuery to query data that matches a specified prefix. When a table
contains a TEXT string, Table Store tokenizes the string and matches any of the
tokens with the specified prefix.

Parameters
• fieldName: the name of the target field.
• prefix: the value of the specified prefix.

Example
/**
 * Search the table for rows where the value of Col_Keyword contains
the prefix that exactly matches "hangzhou".
 * @param client
 */
private static void prefixQuery(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 PrefixQuery prefixQuery = new PrefixQuery(); // Set the query type
 to PrefixQuery.
 prefixQuery.setFieldName("Col_Keyword");
 prefixQuery.setPrefix("hangzhou");
 searchQuery.setQuery(prefixQuery);
 SearchRequest searchRequest = new SearchRequest(TABLE_NAME,
INDEX_NAME, searchQuery);

 SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.
ColumnsToGet();
 columnsToGet.setReturnAll(true); // Set columnsToGet to true to
return all columns.
 searchRequest.setColumnsToGet(columnsToGet);

 SearchResponse resp = client.search(searchRequest);
 System.out.println("TotalCount: " + resp.getTotalCount()); // The
total number of matched rows instead of the number of returned rows.
 System.out.println("Row: " + resp.getRows());

7.3.15 RangeQuery
You can use RangeQuery to query data that falls within a specified range. When a
table contains a TEXT string, Table Store tokenizes the string and matches any of
the tokens that falls within the specified range.

Parameters
• fieldName: the name of the target field.
• from: the value of the start position.
• to: the value of the end position.

82 Issue: 20191127

Table Store Developer Guide / 7 Search Index

• includeLow: specifies whether the query result includes the value of the from
parameter. This is a parameter of Boolean type.

• includeUpper: specifies whether the query result includes the value of the to
parameter. This is a parameter of Boolean type.

Example
/**
 * Search the table for rows where the value of Col_Long is greater
than 3. Table Store sorts these rows by Col_Long in descending order.
 * @param client
 */
private static void rangeQuery(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 RangeQuery rangeQuery = new RangeQuery(); // Set the query type to
 RangeQuery.
 rangeQuery.setFieldName("Col_Long"); // Set the name of the
target field.
 rangeQuery.greaterThan(ColumnValue.fromLong(3)); // Specify the
range of the value of the field. The required value is larger than 3.
 searchQuery.setQuery(rangeQuery);

 // Sort the result by Col_Long in descending order.
 FieldSort fieldSort = new FieldSort("Col_Long");
 fieldSort.setOrder(SortOrder.DESC);
 searchQuery.setSort(new Sort(Arrays.asList((Sort.Sorter)fieldSort
)));

 SearchRequest searchRequest = new SearchRequest(TABLE_NAME,
INDEX_NAME, searchQuery);

 SearchResponse resp = client.search(searchRequest);
 System.out.println("TotalCount: " + resp.getTotalCount()); // The
total number of matched rows instead of the number of returned rows.
 System.out.println("Row: " + resp.getRows());

 /**
 * You can specify a value for SearchAfter to start a new query
. For example, you can set SearchAfter to 5 and sort the result by
Col_Long in descending order. Then, you retrieve the rows that follow
 the row whose Col_Long is equal to 5. This is similar to the method
where you specify that the value of Col_Long is smaller than 5.
 */
 searchQuery.setSearchAfter(new SearchAfter(Arrays.asList(
ColumnValue.fromLong(5))));
 searchRequest = new SearchRequest(TABLE_NAME, INDEX_NAME,
searchQuery);
 resp = client.search(searchRequest);
 System.out.println("TotalCount: " + resp.getTotalCount()); // The
total number of matched rows instead of the number of returned rows.
 System.out.println("Row: " + resp.getRows());
}

7.3.16 WildcardQuery
You can use WildcardQuery to query data that matches wildcard characters. You
can specify a value you want to match as a string that consists of one or more

Issue: 20191127 83

Table Store Developer Guide / 7 Search Index

wildcard characters. An asterisk (*) is interpreted as a number of characters or
an empty string. A question mark (?) is interpreted as any single character. For
example, when you search the string "table*e", you can retrieve query results such
as "tablestore".

Parameters
• fieldName: the name of the target field.
• value: the value that contains one or more wildcard characters. Table Store

supports two types of wildcard characters: asterisk (*) and question mark (?).
The value cannot start with an asterisk (*) and the length of the value can be 10
bytes or less.

Example
/**
 * Search the table for rows where the value of Col_Keyword matches "
hang*u".
 * @param client
 */
private static void wildcardQuery(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 WildcardQuery wildcardQuery = new WildcardQuery(); // Set the
query type to WildcardQuery.
 wildcardQuery.setFieldName("Col_Keyword");
 wildcardQuery.setValue("hang*u"); //Specify a string that contains
 one or more wildcard characters in wildcardQuery.
 searchQuery.setQuery(wildcardQuery);
 SearchRequest searchRequest = new SearchRequest(TABLE_NAME,
INDEX_NAME, searchQuery);

 SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.
ColumnsToGet();
 columnsToGet.setReturnAll(true); // Set columnsToGet to true to
return all columns.
 searchRequest.setColumnsToGet(columnsToGet);

 SearchResponse resp = client.search(searchRequest);

 System.out.println("TotalCount: " + resp.getTotalCount()); // The
total number of matched rows instead of the number of returned rows.
 System.out.println("Row: " + resp.getRows());
}

7.3.17 BoolQuery
You can use BoolQuery to query data based on a combination of filtering
conditions. This query contains one or more subqueries as filtering conditions.
Table Store returns the rows that match the subqueries.
You can combine these subqueries in different ways. If you specify these subqueries
 as mustQueries, Table Store returns the result that matches all these subqueries. If

84 Issue: 20191127

Table Store Developer Guide / 7 Search Index

you specify these subqueries as mustNotQueries, Table Store returns the result that
 matches none of these subqueries.

Parameter
• mustQueries: specifies the subqueries that the query result must match. This

parameter is equivalent to the AND operator.
• mustNotQueries: specifies the subqueries that the query result must not match.

This parameter is equivalent to the NOT operator.
• shouldQueries: specifies the subqueries that the query result may or may not

match. If the query result matches the subqueries, the overall relevance score is
higher. This parameter is equivalent to the OR operator.

• minimumShouldMatch: specifies the minimum number of shouldQueries that
the query result must match.

Examples
/**
 * Use BoolQuery to query data that matches a combination of filtering
 conditions.
 * @param client
 */
public static void boolQuery(SyncClient client) {
 /**
 * Condition 1: Use RangeQuery to query data where the value of
Col_Long is greater than 3.
 */
 RangeQuery rangeQuery = new RangeQuery();
 rangeQuery.setFieldName("Col_Long");
 rangeQuery.greaterThan(ColumnValue.fromLong(3));

 /**
 * Condition 2: Use MatchQuery to query data where the value of
Col_Keyword matches "hangzhou".
 */
 MatchQuery matchQuery = new MatchQuery(); // Set the query type to
 MatchQuery.
 matchQuery.setFieldName("Col_Keyword"); // Set the name of the
field that you want to match.
 matchQuery.setText("hangzhou"); // Set the value that you want to
match.

 SearchQuery searchQuery = new SearchQuery();
 {
 /**
 * Create a query of BoolQuery type where the result meets
Conditions 1 and 2 at the same time.
 */
 BoolQuery boolQuery = new BoolQuery();
 boolQuery.setMustQueries(Arrays.asList(rangeQuery, matchQuery
));
 searchQuery.setQuery(boolQuery);
 SearchRequest searchRequest = new SearchRequest(TABLE_NAME,
INDEX_NAME, searchQuery);

Issue: 20191127 85

Table Store Developer Guide / 7 Search Index
 SearchResponse resp = client.search(searchRequest);
 System.out.println("TotalCount: " + resp.getTotalCount()); //
Display the total number of matched rows instead of the number of
returned rows.
 System.out.println("Row: " + resp.getRows());
 }

 {
 /**
 * Create a query of BoolQuery type where the result meets at
least one of Condition 1 and 2.
 */
 BoolQuery boolQuery = new BoolQuery();
 boolQuery.setShouldQueries(Arrays.asList(rangeQuery,
matchQuery));
 boolQuery.setMinimumShouldMatch(1); // Specify that the result
 meets at least one of the conditions.
 searchQuery.setQuery(boolQuery);
 SearchRequest searchRequest = new SearchRequest(TABLE_NAME,
INDEX_NAME, searchQuery);
 SearchResponse resp = client.search(searchRequest);
 System.out.println("TotalCount: " + resp.getTotalCount()); //
Display the total number of matched rows instead of the number of
returned rows.
 System.out.println("Row: " + resp.getRows());
 }
}

7.3.18 Nested query
This topic describes how to query nested fields. You can use a nested query to query
the data of nested fields.
You must use the NestedQuery operation to wrap the nested field before its query
data can be used. In NestedQuery, you must specify a subquery of any type and the
path of the nested field.
You can only query fields of the nested type.
Common fields and nested fields can be queried simultaneously within a request.

Parameters
• path: the tree path of the nested fields content. For example, news.title indicates

the title nested within the news field.
• query: the query to perform on the child field of the nested field. It can be of any

type.
Examples

/**
 * The NESTED column contains nested_1 and nested_2. You need
to search the col_nested.nested_1 column for data that matches "
tablestore".
 * @param client

86 Issue: 20191127

Table Store Developer Guide / 7 Search Index
 */
private static void nestedQuery(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 NestedQuery nestedQuery = new NestedQuery(); // Set the query type
 to NestedQuery.
 nestedQuery.setPath("col_nested"); // Set the path of the NESTED
field.
 TermQuery termQuery = new TermQuery(); // Specify a subquery for
NestedQuery.
 termQuery.setFieldName("col_nested.nested_1"); // Set the name
of the field that you want to match. The field name must contain the
prefix of the Nested column.
 termQuery.setTerm(ColumnValue.fromString("tablestore")); // Set
the value that you want to match.
 nestedQuery.setQuery(termQuery);
 nestedQuery.setScoreMode(ScoreMode.None);
 searchQuery.setQuery(nestedQuery);
 searchQuery.setGetTotalCount(true);
 SearchRequest searchRequest = new SearchRequest(TABLE_NAME,
INDEX_NAME, searchQuery);

 SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.
ColumnsToGet();
 columnsToGet.setReturnAll(true); // Set ReturnAll to true to
return all columns.
 searchRequest.setColumnsToGet(columnsToGet);

 SearchResponse resp = client.search(searchRequest);
 System.out.println("TotalCount: " + resp.getTotalCount()); //
Display the total number of matched rows instead of the number of
returned rows.
 System.out.println("Row: " + resp.getRows());
}

7.3.19 GeoDistanceQuery
You can use GeoDistanceQuery to query data that falls within a distance from a
central point. You can specify the central point and the distance from this central
point in the query. Table Store returns the rows where the value of a field falls
within the distance from the central point.

Parameters
• fieldName: the name of the target field.
• centerPoint: the central coordinate point that consists of latitude and longitude

values.
• distanceInMeter: the distance from the central point. This is a value of Double

type. Unit: meters.
Example

/**
 * Search the table for rows where the value of Col_GeoPoint falls
within a specified distance from a specified central point.
 * @param client

Issue: 20191127 87

Table Store Developer Guide / 7 Search Index
 */
public static void geoDistanceQuery(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 GeoDistanceQuery geoDistanceQuery = new GeoDistanceQuery(); //
Set the query type to GeoDistanceQuery.
 geoDistanceQuery.setFieldName("Col_GeoPoint");
 geoDistanceQuery.setCenterPoint("5,5"); // Specify coordinates for
 a central point.
 geoDistanceQuery.setDistanceInMeter(10000); // You can specify 10,
000 meters or less as the distance from the central point.
 searchQuery.setQuery(geoDistanceQuery);

 SearchRequest searchRequest = new SearchRequest(TABLE_NAME,
INDEX_NAME, searchQuery);

 SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.
ColumnsToGet();
 columnsToGet.setColumns(Arrays.asList("Col_GeoPoint")); //Specify
 Col_GeoPoint as the column that you want to return.
 searchRequest.setColumnsToGet(columnsToGet);

 SearchResponse resp = client.search(searchRequest);
 System.out.println("TotalCount: " + resp.getTotalCount()); // The
total number of matched rows instead of the number of returned rows.
 System.out.println("Row: " + resp.getRows());
}

7.3.20 GeoBoundingBoxQuery
You can use GeoBoundingBoxQuery to query data that falls within a geographic
rectangular area. You can specify the geographic rectangular area as a filtering
condition in the query. Table Store returns the rows where the value of a field falls
within the geographic rectangular area.

Parameters
• fieldName: the name of the target field.
• topLeft: coordinates of the upper-left corner of the geographic rectangular area.
• bottomRight: coordinates in the lower-right corner of the geographic rectangula

r area. You can use the upper-left corner and lower-right corner to determine a
unique geographic rectangular area.

Example
/**
 * The data type of Col_GeoPoint is Geopoint. You can obtain the rows
where the value of Col_GeoPoint falls within a geographic rectangular
area. For the geographic rectangular area, the upper-left vertex is "
10,0" and the lower-right vertex is "0,10".
 * @param client
 */
public static void geoBoundingBoxQuery(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 GeoBoundingBoxQuery geoBoundingBoxQuery = new GeoBoundingBoxQuery
(); // Set the query type to GeoBoundingBoxQuery.

88 Issue: 20191127

Table Store Developer Guide / 7 Search Index
 geoBoundingBoxQuery.setFieldName("Col_GeoPoint"); // Set the name
of the field that you want to match.
 geoBoundingBoxQuery.setTopLeft("10,0"); // Specify coordinates for
 the upper-left vertex of the geographic rectangular area.
 geoBoundingBoxQuery.setBottomRight("0,10"); // Specify coordinates
 for the lower-right vertex of the geographic rectangular area.
 searchQuery.setQuery(geoBoundingBoxQuery);

 SearchRequest searchRequest = new SearchRequest(TABLE_NAME,
INDEX_NAME, searchQuery);

 SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.
ColumnsToGet();
 columnsToGet.setColumns(Arrays.asList("Col_GeoPoint")); //Specify
 Col_GeoPoint as the column that you want to return.
 searchRequest.setColumnsToGet(columnsToGet);

 SearchResponse resp = client.search(searchRequest);
 System.out.println("TotalCount: " + resp.getTotalCount()); // The
total number of matched rows instead of the number of returned rows.
 System.out.println("Row: " + resp.getRows());
}

7.3.21 GeoPolygonQuery
You can use GeoPolygonQuery to query data that falls within a geographic polygon
area. You can specify the geographic polygon area as a filtering condition in the
query. Table Store returns the rows where the value of a field falls within the
geographic polygon area.

Parameters
• fieldName: the name of the target field.
• points: the coordinate points that compose the geographic polygon.

Example
/**
 * Search the table for rows where the value of Col_GeoPoint falls
within a specified geographic polygon area.
 * @param client
 */
public static void geoPolygonQuery(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 GeoPolygonQuery geoPolygonQuery = new GeoPolygonQuery(); // Set
the query type to GeoPolygonQuery.
 geoPolygonQuery.setFieldName("Col_GeoPoint");
 geoPolygonQuery.setPoints(Arrays.asList("0,0","5,5","5,0")); //
Specify coordinates for vertices of the geographic polygon.
 searchQuery.setQuery(geoPolygonQuery);

 SearchRequest searchRequest = new SearchRequest(TABLE_NAME,
INDEX_NAME, searchQuery);

 SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.
ColumnsToGet();
 columnsToGet.setColumns(Arrays.asList("Col_GeoPoint")); //Specify
 Col_GeoPoint as the column that you want to return.

Issue: 20191127 89

Table Store Developer Guide / 7 Search Index
 searchRequest.setColumnsToGet(columnsToGet);

 SearchResponse resp = client.search(searchRequest);
 System.out.println("TotalCount: " + resp.getTotalCount()); // The
total number of matched rows instead of the number of returned rows.
 System.out.println("Row: " + resp.getRows());
}

7.3.22 ExistQuery
ExistQuery is also called a null query. It is usually used in queries for sparse data to
determine whether a column of a row has a value. For example, ExistQuery is used
to query the rows in which the value of the address column is not null.

Note:
If you want to query whether a column contains null values, you must use
ExistQuery and the bool query with the must_not clause.

Parameter
fieldName: the column name

Examples
/**
 * Use ExistQuery to query the rows in which the value of the address
column is not null.
 * @param client
 */
private static void termsQuery(SyncClient client) {
 SearchQuery searchQuery = new SearchQuery();
 ExistsQuery existQuery = new ExistsQuery(); // Set the query type
to ExistsQuery.
 existQuery.setFieldName("address");
 searchQuery.setQuery(termsQuery);
 SearchRequest searchRequest = new SearchRequest(TABLE_NAME,
INDEX_NAME, searchQuery);

 SearchRequest.ColumnsToGet columnsToGet = new SearchRequest.
ColumnsToGet();
 columnsToGet.setReturnAll(true); // Set ReturnAll to true to
return all columns.
 searchRequest.setColumnsToGet(columnsToGet);

 SearchResponse resp = client.search(searchRequest);

 System.out.println("TotalCount: " + resp.getTotalCount()); //
Display the total number of matched rows instead of the number of
returned rows.
 System.out.println("Row: " + resp.getRows());

90 Issue: 20191127

Table Store Developer Guide / 7 Search Index
}

7.3.23 Statistics
This topic describes statistical operations used in search index-based queries.

Types
• Minimum value

- Definition: Query the minimum value of a field. This query is equivalent to
the SQL MIN function. If a row does not include a field value, the row is not
included in the statistics. However, you can set a default value for rows that do
 not have any value for the specified field.

- The following table describes the parameters.
Parameter Description
aggregationName The name given to the aggregation to distinguish

it from other aggregation operations. You can find
the required aggregation results based on its name
.

fieldName The name of the field for which to obtain statistics
. Only fields of the long and double types are
supported.

missing The default value of rows that do not have any
value for the specified field. If a row is missing a
value for a specified field and this parameter is not
 specified, the row is ignored. If this parameter is
set, the value of this parameter is used as the field
value of the row.

- Java example
/**
 * The price of each product is listed in the product table. Query
 the minimum price among the products produced in Zhejiang.
 * The equivalent SQL statement: SELECT min (column_price) FROM
product where place_of_production = "Zhejiang";
 */
public void min(SyncClient client) {
 // Create a query
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .searchQuery(
 SearchQuery.newBuilder()
 .query(QueryBuilders.term("place_of_production","
Zhejiang"))

Issue: 20191127 91

Table Store Developer Guide / 7 Search Index
 .limit(0) // If you only want to obtain the
aggregation results, you can set the number of matched results to
be returned to 0 to reduce the response time.
 .addAggregation(AggregationBuilders.min("min_agg_1
", "column_price").missing(100))
 .build())
 .build();
 //Execute the query
 SearchResponse resp = client.search(searchRequest);
 //Obtain the aggregation results
 System.out.println(resp.getAggregationResults().getAsMinAg
gregationResult("min_agg_1").getValue());
}

• Maximum value
- Definition: Query the maximum value of a field. This query is equivalent to

the SQL MAX function. If a row does not include a field value, the row is not
included in the statistics. However, you can set a default value for rows that do
 not have any value for the specified field.

- Parameters
Parameter Description
aggregationName The name given to the aggregation to distinguish

it from other aggregation operations. You can find
the required aggregation results based on its name
.

fieldName The name of the field for which to obtain statistics
. Only fields of the long and double types are
supported.

missing The default value of rows that do not have any
value for the specified field. If a row is missing a
value for a specified field and this parameter is not
 specified, the row is ignored. If this parameter is
set, the value of this parameter is used as the field
value of the row.

- Java example
/**
 * The price of each product is listed in the product table. Query
 the maximum price among the products produced in Zhejiang.
 * The equivalent SQL statement: SELECT max (column_price) FROM
product where place_of_production = "Zhejiang";
 */
public void max(SyncClient client) {
 // Create a query
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .searchQuery(

92 Issue: 20191127

Table Store Developer Guide / 7 Search Index
 SearchQuery.newBuilder()
 .query(QueryBuilders.term("place_of_production", "
Zhejiang"))
 .limit(0) // If you only want to obtain the
aggregation results, you can set the number of matched results to
be returned to 0 to reduce the response time.
 .addAggregation(AggregationBuilders.max("max_agg_1
", "column_price").missing(0))
 .build())
 .build();
 //Execute the query
 SearchResponse resp = client.search(searchRequest);
 //Obtain the aggregation results
 System.out.println(resp.getAggregationResults().getAsMaxAg
gregationResult("max_agg_1").getValue());
}

• Sum
- Definition: Query the total value of all rows for a numeric field. This query is

equivalent to the SQL SUM function. If a row does not include a field value, the
 row is not included in the statistics. However, you can set a default value for
rows that do not have any value for the specified field.

- Parameters
Parameter Description
aggregationName The name given to the aggregation to distinguish

it from other aggregation operations. You can find
the required aggregation results based on its name
.

fieldName The name of the field for which to obtain statistics
. Only fields of the long and double types are
supported.

missing The default value of rows that do not have any
value for the specified field. If a row is missing a
value for a specified field and this parameter is not
 specified, the row is ignored. If this parameter is
set, the value of this parameter is used as the field
value of the row.

- Java example
/**
 * The sales volume of each product is listed in the product table
. Query the total number of the sold products that are produced in
 Zhejiang. Set the value of missing to 10.
 * The equivalent SQL statement: SELECT sum (column_price) FROM
product where place_of_production = "Zhejiang";
 */
public void sum(SyncClient client) {
 // Create a query

Issue: 20191127 93

Table Store Developer Guide / 7 Search Index
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .searchQuery(
 SearchQuery.newBuilder()
 .query(QueryBuilders.term("place_of_production", "
Zhejiang"))
 .limit(0) // If you only want to obtain the
aggregation results, you can set the number of matched results to
be returned to 0 to reduce the response time.
 .addAggregation(AggregationBuilders.sum("sum_agg_1
", "column_number").missing(10))
 .build())
 .build();
 //Execute the query
 SearchResponse resp = client.search(searchRequest);
 //Obtain the aggregation results
 System.out.println(resp.getAggregationResults().getAsSumAg
gregationResult("sum_agg_1").getValue());
}

• Average
- Definition: Query the average value of all rows for a numeric field. This query

 is equivalent to the SQL AVG function. If a row does not include a field value,
the row is not included in the statistics. However, you can set a default value
for rows that do not have any value for the specified field.

- Parameters
Parameter Description
aggregationName The name given to the aggregation to distinguish

it from other aggregation operations. You can find
the required aggregation results based on its name
.

fieldName The name of the field for which to obtain statistics
. Only fields of the long and double types are
supported.

missing The default value of rows that do not have any
value for the specified field. If a row is missing a
value for a specified field and this parameter is not
 specified, the row is ignored. If this parameter is
set, the value of this parameter is used as the field
value of the row.

- Java example
/**
 * The sales volume of each product is listed in the product table
. Query the average price of the products produced in Zhejiang.
 * The equivalent SQL statement: SELECT avg (column_price) FROM
product where place_of_production = "Zhejiang";

94 Issue: 20191127

Table Store Developer Guide / 7 Search Index
 */
public void avg(SyncClient client) {
 // Create a query
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .searchQuery(
 SearchQuery.newBuilder()
 .query(QueryBuilders.term("place_of_production", "
Zhejiang"))
 .limit(0) // If you only want to obtain the
aggregation results, you can set the number of matched results to
be returned to 0 to reduce the response time.
 .addAggregation(AggregationBuilders.avg("avg_agg_1
", "column_number"))
 .build())
 .build();
 //Execute the query
 SearchResponse resp = client.search(searchRequest);
 //Obtain the aggregation results
 System.out.println(resp.getAggregationResults().getAsAvgAg
gregationResult("avg_agg_1").getValue());
}

• Count
- Definition: Query the total number of values for a field. This query is

equivalent to the SQL COUNT function. If the field value in a row does not
exist, the row is not included in the statistics.

Note:
The current count operation does not support the COUNT (*) function.
To count the rows in an index or the matched rows in a query, use query
operations and set the setGetTotalCount parameter to true in the query.

- Parameters
Parameter Description
aggregationName The name given to the aggregation to distinguish

it from other aggregation operations. You can find
the required aggregation results based on its name
.

fieldName The name of the field for which to obtain statistics
. Only fields of the long, double, Boolean, keyword
, and geo_point types are supported.

- Java example
/**
 * The punishment records of each merchant is recorded in the
merchant table. Query the number of merchants in Zhejiang who have
 punishment records. (Assume that merchants with no punishment
records do not have a value for the specified field.)

Issue: 20191127 95

Table Store Developer Guide / 7 Search Index
 * The equivalent SQL statement: SELECT count(column_history) FROM
 product where place_of_production="Zhejiang";
 */
public void count(SyncClient client) {
 // Create a query
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .searchQuery(
 SearchQuery.newBuilder()
 .query(QueryBuilders.term("place", "Zhejiang"))
 .limit(0)
 .addAggregation(AggregationBuilders.count("
count_agg_1", "column_history"))
 .build())
 .build();
 //Execute the query
 SearchResponse resp = client.search(searchRequest);
 //Obtain the aggregation results
 System.out.println(resp.getAggregationResults().getAsCount
AggregationResult("count_agg_1").getValue());
}

- Distinct count
■ Definition: Query the number of distinct values for a field. This query is

equivalent to the SQL COUNT (distinct) function. You can set a default value
for rows that do not have any value for the specified field.

■ Parameters
Parameter Description
aggregationName The name given to the aggregation to distinguis

h it from other aggregation operations. You can
find the required aggregation results based on its
 name.

fieldName The name of the field for which to obtain
statistics. Only fields of the long, double, Boolean
, keyword, and geo_point types are supported.

missing The default value of rows that do not have any
value for the specified field. If a row is missing
 a value for a specified field and this parameter
 is not specified, the row is ignored. If this
parameter is set, the value of this parameter is
used as the field value of the row.

■ Java example
/**
 * Query the number of distinct provinces from which all
products come.
 * The equivalent SQL statement: SELECT count(distinct
column_place) FROM product;

96 Issue: 20191127

Table Store Developer Guide / 7 Search Index
 */
public void distinctCount(SyncClient client) {
 // Create a query
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .searchQuery(
 SearchQuery.newBuilder()
 .query(QueryBuilders.matchAll())
 .limit(0)
 .addAggregation(AggregationBuilders.distinctCo
unt("dis_count_agg_1", "column_place"))
 .build())
 .build();
 //Execute the query
 SearchResponse resp = client.search(searchRequest);
 //Obtain the aggregation results
 System.out.println(resp.getAggregationResults().getAsDisti
nctCountAggregationResult("dis_count_agg_1").getValue());
}

Multiple statistics
Each request supports multiple statistics.
Java example
public void multipleAggregation(SyncClient client) {
 // Create a query
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .searchQuery(
 SearchQuery.newBuilder()
 .query(QueryBuilders.matchAll())
 .limit(0)
 .addAggregation(AggregationBuilders.min("name1", "long
"))
 .addAggregation(AggregationBuilders.sum("name2", "long
"))
 .addAggregation(AggregationBuilders.distinctCount("
name3", "long"))
 .build())
 .build();
 //Execute the query
 SearchResponse resp = client.search(searchRequest);
 //Obtain the results of the first aggregation
 System.out.println(resp.getAggregationResults().getAsMinAg
gregationResult("name1").getValue());
 //Obtain the results of the second aggregation
 System.out.println(resp.getAggregationResults().getAsSumAg
gregationResult("name2").getValue());
 //Obtain the results of the third aggregation
 System.out.println(resp.getAggregationResults().getAsDisti
nctCountAggregationResult("name3").getValue());

Issue: 20191127 97

Table Store Developer Guide / 7 Search Index
}

7.3.24 Aggregation
This topic describes aggregation operations in search index-based queries.

Types
• Group by field values

- Definition: Group query results based on values for a field. Same values are
grouped together. The value of each group and the number of corresponding
values are returned. Errors may occur when the number of values in a group is
 large.

- Parameters
Parameter Description
groupByName The name given to the aggregation to distinguish it from

 other aggregation operations. You can find the required
aggregation results based on its name.

fieldName The name of the field to be aggregated. Only fields of the
 keyword, long, double, and bool types are supported. [
DO NOT TRANSLATE]

groupBySorter Add sorting rules for items in a group. By default, group
items are sorted in descending order. When you set
multiple sorting rules, items are sorted in the order in
which the rules were added. Supported parameters are as
follows:
■ Sort by parameter keys in alphabetical order.
■ Sort by parameter keys in reverse alphabetical order.
■ Sort by the number of rows in ascending order.
■ Sort by the number of rows in descending order.
■ Sort by the values of sub-aggregations in ascending

order.
■ Sort by the values of sub-aggregations in descending

order.
size The number of returned groups.

98 Issue: 20191127

Table Store Developer Guide / 7 Search Index

Parameter Description
subAggregation
and subGroupBy

Add sub-aggregations. Sub-aggregations perform
additional aggregation operations on the group content.
Example:
■ Scenario

Query the number of products in each category and
the maximum and minimum product prices in each
category.

■ Method
Group query results by product categories, and then
add two sub-aggregations to obtain the maximum and
minimum product prices in each category.

■ Result
■ Fruits: 5. The minimum price is CNY 3, and the

maximum price is CNY 15.
■ Toiletries: 10. The minimum price is CNY 1, and the

maximum price is CNY 98.
■ Electronic devices: 3. The minimum price is CNY 2,

300, and the maximum price is CNY 8,699.
■ Other products: 15. The minimum price is CNY 80,

and the maximum price is CNY 1,000.
- Java example

/**
 * Query the number of products in each category and the maximum
and minimum product prices in each category.
 * Example of returned results: "Fruits: 5. The minimum price
 is CNY 3, and the maximum price is CNY 15. Toiletries: 10.
The minimum price is CNY 1, and the maximum price is CNY 98.
Electronic devices: 3. The minimum price is CNY 2,300, and the
maximum price is CNY 8,699. Other products: 15. The minimum price
is CNY 80,
 and the maximum price is CNY 1,000.
 */
public void groupByField(SyncClient client) {
 // Create a query
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .searchQuery(
 SearchQuery.newBuilder()
 .query(QueryBuilders.matchAll())
 .limit(0)
 .addGroupBy(GroupByBuilders
 .groupByField("name1", "column_type")
 .addSubAggregation(AggregationBuilders.min("
subName1", "column_price"))

Issue: 20191127 99

Table Store Developer Guide / 7 Search Index
 .addSubAggregation(AggregationBuilders.max("
subName2", "column_price"))
)
 .build())
 .build();
 // Execute the query
 SearchResponse resp = client.search(searchRequest);
 // Obtain the aggregation results
 for (GroupByFieldResultItem item : resp.getGroupByResults().
getAsGroupByFieldResult("name1").getGroupByFieldResultItems()) {
 // Value
 System.out.println(item.getKey());
 // Count
 System.out.println(item.getRowCount());
 // Minimum price
 System.out.println(item.getSubAggregationResults().
getAsMinAggregationResult("subName1").getValue());
 // Maximum price
 System.out.println(item.getSubAggregationResults().
getAsMaxAggregationResult("subName2").getValue());
 }
}

• Group by range
- Definition: Group query results based on value ranges of a field. Field values

that fall within a certain range are grouped together. The number of items in
each range is returned. For example, group the sales volume of a product by [0
, 1000), [1000, 10000), and [10000, ∞) ranges to obtain the sales volume of each
 range.

- Parameters
Parameter Description
groupByName The name given to the aggregation to distinguish it from

 other aggregation operations. You can find the required
aggregation results based on its name.

fieldName The name of the field to be aggregated. Only fields of the
long and double types are supported.

range[double_fro
m, double_to)

Add ranges for grouping. The range can start from the
Double.MIN_VALUE and end at the Double.MAX_VALUE.

100 Issue: 20191127

Table Store Developer Guide / 7 Search Index

Parameter Description
subAggregation
and subGroupBy

Add sub-aggregations. Sub-aggregations perform
additional aggregation operations on the group content
. For example, after you group query results by sales
 volume and then by province, you can obtain which
province has the largest proportion in a certain range
 of sales volume. You must add a GroupByField sub-
aggregation in the GroupByRange aggregation to execute
this query.

- Java example
/**
 * Group sales volume by [0, 1000), [1000, 5000), and [5000, ∞)
ranges to obtain the sales volume in each range.
 */
public void groupByRange(SyncClient client) {
 // Create a query
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .searchQuery(
 SearchQuery.newBuilder()
 .query(QueryBuilders.matchAll())
 .limit(0)
 .addGroupBy(GroupByBuilders.groupByField()
 .groupByRange("name1", "column_number")
 .addRange[0, 1000)
 .addRange[1000, 5000)
 .addRange[5000, Double.MAX_VALUE)
)
 .build())
 .build();
 // Execute the query
 SearchResponse resp = client.search(searchRequest);
 // Obtain the aggregation results
 for (GroupByRangeResultItem item : resp.getGroupByResults().
getAsGroupByRangeResult("name1").getGroupByRangeResultItems()) {
 // Range
 System.out.println(item.getKey());
 // Count
 System.out.println(item.getRowCount());
 }
}

• Group by geographical distance
- Definition: Group query results based on their geographical distances to a

central point. Distance differences that fall within a certain range are grouped
 together. The number of items in each range is returned. For example, group
 people based on their geographical distances to a Wanda Plaza to obtain the

Issue: 20191127 101

Table Store Developer Guide / 7 Search Index

number of people in each distance range. Group the distance differences by [0
, 1000m) [1000m, 5000m), and [5000m, ∞) ranges.

- Parameters
Parameter Description
groupByName The name given to the aggregation to distinguish it from

 other aggregation operations. You can find the required
aggregation results based on its name.

fieldName The name of the field to be aggregated. Only fields of the
geo_point type are supported.

origin(double lat,
double lon)

lat indicates the latitude of the central point, and lon
indicates the longitude of the central point.

range[double_fro
m, double_to)

Add ranges for grouping. Unit: m. The range can start
 from the Double.MIN_VALUE and end at the Double.
MAX_VALUE.

subAggregation
and subGroupBy

Add sub-aggregations. Sub-aggregations perform
additional aggregation operations on the group content.

- Java example
/**
 * Group people based on their geographical distances to a Wanda
Plaza to obtain the number of people in each distance range. Group
 the distance differences by [0,1000m) [1000m, 5000m), and [5000m,
 ∞) ranges.
 */
public void groupByGeoDistance(SyncClient client) {
 // Create a query
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .searchQuery(
 SearchQuery.newBuilder()
 .query(QueryBuilders.matchAll())
 .limit(0)
 .addGroupBy(GroupByBuilders
 .groupByGeoDistance("name1", "column_geo_point
")
 .origin(3.1, 6.5)
 .addRange[0, 1000)
 .addRange[1000, 5000)
 .addRange[5000, Double.MAX_VALUE)
)
 .build())
 .build();
 // Execute the query
 SearchResponse resp = client.search(searchRequest);
 // Obtain the aggregation results
 for (GroupByGeoDistanceResultItem item : resp.getGroupBy
Results().getAsGroupByGeoDistanceResult("name1").getGroupBy
GeoDistanceResultItems()) {
 // Range

102 Issue: 20191127

Table Store Developer Guide / 7 Search Index
 System.out.println(item.getKey());
 // Count
 System.out.println(item.getRowCount());
 }
}

• Group by filter
- Definition: Filter the query results and group them together to obtain the

number of items matching each filter. Results are returned in the order in
 which the filters are added. For example, you can add the following three
 filters to obtain the number of items matching each filter: sales volume
exceeds 100, production place is Zhejiang, and description contains Hangzhou
.

- Parameters
Parameter Description
groupByName The name given to the aggregation to distinguish it from

 other aggregation operations. You can find the required
aggregation results based on its name.

filter The added filters of a query. Filters are added using
QueryBuilders.

subAggregation
and subGroupBy

Add sub-aggregations. Sub-aggregations perform
additional aggregation operations on the group content.

- Java example
/**
 * Filter the query results. For example, add the following three
filters to obtain the number of items matching each filter: sales
volume exceeds 100, production place is Zhejiang, and description
contains Hangzhou.
 */
public void groupByFilter(SyncClient client) {
 // Create a query
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .searchQuery(
 SearchQuery.newBuilder()
 .query(QueryBuilders.matchAll())
 .limit(0)
 .addGroupBy(GroupByBuilders
 .groupByFilter("name1")
 .addFilter(QueryBuilders.range("number").
greaterThanOrEqual(100))
 .addFilter(QueryBuilders.term("place","
Zhejiang"))
 .addFilter(QueryBuilders.match("text","
Hangzhou"))
)
 .build())

Issue: 20191127 103

Table Store Developer Guide / 7 Search Index
 .build();
 // Execute the query
 SearchResponse resp = client.search(searchRequest);
 // Obtain the aggregation results in the order of addFilter.
 for (GroupByFilterResultItem item : resp.getGroupByResults().
getAsGroupByFilterResult("name1").getGroupByFilterResultItems()) {
 // Count
 System.out.println(item.getRowCount());
 }
}

Multiple aggregations
A request supports multiple aggregations.

Note:
Implementing multiple complicated aggregations at the same time may cause a
long response time.

Java example:
public void multipleGroupBy(SyncClient client) {
 // Create a query
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .tableName("tableName")
 .indexName("indexName")
 .searchQuery(
 SearchQuery.newBuilder()
 .query(QueryBuilders.matchAll())
 .limit(0)
 .addAggregation(AggregationBuilders.min("name1", "long
"))
 .addAggregation(AggregationBuilders.sum("name2", "long
"))
 .addAggregation(AggregationBuilders.distinctCount("
name3", "long"))
 .addGroupBy(GroupByBuilders.groupByField("name4", "
type"))
 .addGroupBy(GroupByBuilders.groupByRange("name5", "
long").addRange(1, 15))
 .build())
 .build();
 // Execute the query
 SearchResponse resp = client.search(searchRequest);
 //Obtain the results of the first aggregation
 System.out.println(resp.getAggregationResults().getAsMinAg
gregationResult("name1").getValue());
 //Obtain the results of the second aggregation
 System.out.println(resp.getAggregationResults().getAsSumAg
gregationResult("name2").getValue());
 //Obtain the results of the third aggregation
 System.out.println(resp.getAggregationResults().getAsDisti
nctCountAggregationResult("name3").getValue());
 //Obtain the results of the fourth aggregation
 for (GroupByFieldResultItem item : resp.getGroupByResults().
getAsGroupByFieldResult("name4").getGroupByFieldResultItems()) {
 // Key
 System.out.println(item.getKey());
 // Count

104 Issue: 20191127

Table Store Developer Guide / 7 Search Index
 System.out.println(item.getRowCount());
 }
 // Obtain the results of the fifth aggregation
 for (GroupByRangeResultItem item : resp.getGroupByResults().
getAsGroupByRangeResult("name4").getGroupByRangeResultItems()) {
 // Count
 System.out.println(item.getRowCount());
 }
}

Nesting
GroupBy type aggregations support nesting. You can add sub-aggregations and
 GroupBy type sub-aggregations to a GroupBy type aggregation. GroupBy type
 aggregations can contain endless levels for nesting. However, to ensure the
performance and reduce the complexity of aggregations, you are allowed only to set
 a certain number of levels for nesting.
Nested aggregations are used to perform additional aggregation operations within a
group. A two-level nested aggregation is used as an example:
• GroupBy + SubGroupBy: Group items by province and then by city to obtain data

for each city in each province.
• GroupBy + SubAggregation: Group items by province to obtain the maximum

value of an indicator for each province.
Java example:
/**
 * Nested aggregations example: Two aggregations and one GroupByFie
ld are added to the outermost level, and two aggregations and one
GroupByRange are added to the GroupByField.
 */
public void subGroupBy(SyncClient client) {
 // Create a query
 SearchRequest searchRequest = SearchRequest.newBuilder()
 .indexName("index_name")
 .tableName("table_name")
 .returnAllColumns(true)
 .searchQuery(
 SearchQuery.newBuilder()
 .query(QueryBuilders.match("textField", "hello"))
 .limit(10)
 .addAggregation(AggregationBuilders.min("name1", "
fieldName1"))
 .addAggregation(AggregationBuilders.max("name2", "
fieldName2"))
 .addGroupBy(GroupByBuilders
 .groupByField("name3", "fieldName3")
 .addSubAggregation(AggregationBuilders.max("
subName1", "fieldName4"))
 .addSubAggregation(AggregationBuilders.sum("
subName2", "fieldName5"))
 .addSubGroupBy(GroupByBuilders
 .groupByRange("subName3", "fieldName6")

Issue: 20191127 105

Table Store Developer Guide / 7 Search Index
 .addRange(12, 90)
 .addRange(100, 900)
))
 .build())
 .build();
 // Execute the query
 SearchResponse resp = client.search(searchRequest);
 // The aggregation results of the first level
 AggregationResults aggResults = resp.getAggregationResults();
 System.out.println(aggResults.getAsMinAggregationResult("name1").
getValue());
 System.out.println(aggResults.getAsMaxAggregationResult("name2").
getValue());

 // Retrieve the GroupByField results of the first level and the
results of the aggregations nested in the GroupByField.
 GroupByFieldResult results = resp.getGroupByResults().getAsGroup
ByFieldResult("someName1");
 for (GroupByFieldResultItem item : results.getGroupByFieldResul
tItems()) {
 System.out.println("Count" + item.getRowCount());
 System.out.println("key:" + item.getKey());

 //Retrieve the results of sub-aggregations
 //The results of the SubAggregation: min
 System.out.println(item.getSubAggregationResults().getAsMaxAg
gregationResult("subName1"));
 //The results of the SubAggregation: max
 System.out.println(item.getSubAggregationResults().getAsSumAg
gregationResult("subName2"));
 //The results of the SubGroupBy: GroupByRange
 GroupByRangeResult subResults = resp.getGroupByResults().
getAsGroupByRangeResult("subName3");
 for (GroupByRangeResultItem subItem : subResults.getGroupBy
RangeResultItems()) {
 System.out.println("Count:" + subItem.getRowCount());
 System.out.println("key:" + subItem.getKey());
 }
 }
}

7.4 Limits
This topic describes the limits when using search index.

Mapping
Item Limit Description
Index fields 200 The maximum number of

fields that can be indexed.
EnableSortAndAgg fields 100 The maximum number of

 fields that can be sorted
and aggregated.

Nested levels 1 The maximum number of
nested levels.

106 Issue: 20191127

Table Store Developer Guide / 7 Search Index

Item Limit Description
Nested fields 25 The maximum number of

nested fields.
Total length of primary
key columns

1,000 The sum of all primary
key columns can be up to
1,000 Bytes in length.

Total length of strings in
primary key columns

1,000 The sum of strings in all
primary key columns can
 be up to 1,000 Bytes in
length.

String length in each
 attribute column (
keyword index)

4 KB None

String length in each
attribute column (text
index)

2 MB Same as the length limit
 of attribute columns in
tables.

String length of a query
that contains wildcards

10 The string length of a
 query that contains
wildcards can be up to 10
characters.

Search
Type Item Limit Description

offset + limit 2,000 To read more
than 2,000 rows,
you must specify
 the next_token
parameter.

timeout 10s None

General limits

Capacity unit (CU) 100,000 • This limit does
 not apply
to scanning
and analysis
requests.

• If your business
 requirements
exceed this limit
, submit a ticket.

Issue: 20191127 107

Table Store Developer Guide / 7 Search Index

Type Item Limit Description
QPS 100,000 • The upper limit

 for lightweigh
t transaction
processing is 100
,000 queries per
second (QPS).

• Each index is
allowed to take
 up to 8 vCPU
for analytical
queries or text
queries because
 each request
takes a long time
.

• The preceding
limits are fixed
 by default. If
your business
 requiremen
ts exceed the
default limits,
submit a ticket.

Aggregations at the
 same level

5 The number of
aggregations is
recalculated each
 time you add a
new aggregation to
SubGroupBy.

Aggregation

GroupBy type
aggregations at the
 same level

5 The number of
 GroupBy type
aggregations is
recalculated each
 time you add a
new GroupBy type
 aggregation to
SubGroupBy.

108 Issue: 20191127

Table Store Developer Guide / 7 Search Index

Type Item Limit Description
Nested levels for
 a GroupBy type
aggregation

3 The GroupBy type
 aggregation is
included in the
calculation of the
number of nested
levels.

Filters in a
GroupByFilter
aggregation

10 None

Groups returned
by a GroupByField
aggregation

200 None

Ranges in a
GroupByRange
aggregation

100 None

Ranges in a
GroupByGeo
distance aggregatio
n

10 None

Index
Item Limit Description
Rate 50,000 rows

/s • Table Store requires several minutes for load
balancing when writing data to a table for the first
time or when a large amount of data is required to
be written in a short span of time.

• Text field-based indexing is limited to 10,000 rows
per second because this indexing consumes more
CPU resources for tokenization.

• If your business requirements exceed this limit,
submit a ticket.

Synchroniz
ation
latency

10s • The value is less than 10s when the writing rate is
steady.

• The synchronization latency is within one minute
in most cases.

• New indexes need to be initialized. This process
takes up to one minute.

Issue: 20191127 109

Table Store Developer Guide / 7 Search Index

Item Limit Description
Number of
rows

10 billion If your business requirements exceed this limit,
submit a ticket.

Total size 10 TB If your business requirements exceed this limit,
submit a ticket.

Other limits
Item Value
Supported regions China (Beijing), China (Shanghai),

China (Hangzhou), China (Shenzhen),
Singapore, India (Mumbai), China (Hong
 Kong), and China (Zhangjiakou-Beijing
Winter Olympics)

Regions awaiting release US (Silicon Valley)

Note:
If your business requirements exceed the default limits, submit a ticket.
Describe the scenario, limit items, requirements, and reasons in the ticket. Your
requirements will be considered during future development.

110 Issue: 20191127

Table Store Developer Guide / 8 Global secondary index

8 Global secondary index
8.1 Overview

Before you use the Global Secondary Index structure, you need to understand the
following terms, limits, and notes.

Terms
Term Description
Index You can create an index for some

columns in a primary table. The index is
 read-only.

Pre-defined column Table Store uses a schema-free model.
You can write the unlimited number of
 columns to a row. You do not need to
specify a fixed number of attributes in
a schema. You can also pre-define some
 columns and specify their data types
when you create a table.

Single-column index You can create an index only for one
column.

Composite index You can create an index for multiple
columns in a table. A composite index
can have Indexed columns 1 and 2.

Indexed attribute column You can map pre-defined columns in
 a primary table to non-primary key
columns in an index.

Autocomplete Table Store automatically adds the
primary key column that you have not
specified in a primary table to an index
when you create the index.

Limits
• You can create a maximum of five indexes in a primary table. You cannot create

more indexes if you have created five indexes.

Issue: 20191127 111

Table Store Developer Guide / 8 Global secondary index

• An index contains a maximum of four indexed columns. These indexed columns
 include a combination of primary keys and pre-defined columns of the primary
table. If you specify more indexed columns, you cannot create the index.

• An index contains a maximum of eight attribute columns. If you specify more
attribute columns, you cannot create the index.

• You can specify an indexed column as Integer, String, or Binary type. The
 constraint of Indexed columns is the same as that for primary keys of the
primary table.

• If an index combines multiple columns, the size limit for the index is the same as
that for primary keys of the primary table.

• When you specify the column of String or Binary type as an attribute column
 of an index, the limits for the attribute column are the same as those for the
attribute column of the primary table.

• You cannot create an index in a table that has Time To Live (TTL) configured.
If you want to index a table that has TTL configured, use DingTalk to request
technical support.

• You cannot create an index in a table that has Max Versions configured. If a table
 has Max Versions configured, you cannot create any index for the table. If you
index the table, you cannot use the Max Versions feature.

• You cannot customize versions when writing data to an indexed primary table.
Otherwise, you cannot write data to the primary table.

• You cannot use the Stream feature in an index.
• An indexed primary table cannot contain repeated rows that have the same

primary key during the same BatchWrite operation. Otherwise, you cannot write
 data to the primary table.

Notes
• Table Store automatically adds the primary key column that you have not

specified to the index. When you scan an index, you must specify the range of
primary key columns. The range can be from negative infinity to positive infinity.
For example, a primary table includes Primary keys PK0 and PK1 and Pre-defined
column Defined0.
When you create an index for the Defined0 column, Table Store generates an
index that has Primary keys Defined0, PK0, and PK1. When you create an index

112 Issue: 20191127

Table Store Developer Guide / 8 Global secondary index

for the Defined0 and PK1 columns, Table Store generates an index that has
Primary keys Defined0, PK1, and PK0. When you create an index for the primary
 key columns, Table Store generates an index that has Primary keys PK1 and
PK0. When you create an index, you can only specify the column that you want
to index. Table Store automatically adds the target columns to the index. For
example, a primary table contains Primary keys PK0 and PK1 and Pre-defined
column Defined0.
- When you create an index for the Defined0 column, Table Store generates the

index that has Primary keys Defined0, PK0, and PK1.
- When you create an index for the PK1 column, Table Store generates the index

 that has Primary keys PK1 and PK0.
• You can specify pre-defined columns as attribute columns in the primary table

. When you specify a pre-defined attribute as an indexed attribute column, you
 can search this index for the attribute value instead of searching the primary
table. However, this increases storage costs. If you do not specify a pre-defined
attribute as an indexed attribute column, you have to search the primary table.
You can choose between these methods based on your requirements.

• We recommend that you do not specify a column related to the time or date as
 the first primary key column of an index. This type of column may slow down
 index updates. We recommend that you hash the column related to the time
or date and create an index for the hashed column. To solve related issues, use
DingTalk to request technical support.

• We recommend that you do not define an attribute of low cardinality, even an
attribute that contains enumerated values, as the first primary key column of an
index. For example, the gender attribute restricts the horizontal scalability of the
index and leads to poor write performance.

8.2 Introduction
A global secondary index in Tablestore has the following features:
• Supports asynchronous data synchronization between a table and table indexes

. Under normal network conditions, the data synchronization latency is in
milliseconds.

Issue: 20191127 113

Table Store Developer Guide / 8 Global secondary index

• Supports single-field indexes, compound indexes, and covered indexes. Pre-
defined attributes are attributes specified in advance in a table. You can create an
index on any pre-defined attribute or on a table primary key. In addition, you can
specify a table pre-defined attributes as index attributes or choose not to specify
attributes. If you specify pre-defined attributes as the index attributes, you can
directly query this index to retrieve data from the base table instead of querying
the table. For example, a base table includes three primary keys PK0, PK1, and
PK2. Additionally, the table have three pre-defined attributes Defined0, Defined1,
and Defined2.
- You can create an index on PK2 without specifying an attribute.
- You can create an index on PK2 and specify Defined0 as an attribute.
- You can create an index on PK3 and PK2 without specifying an attribute.
- You can create an index on PK3 and PK2 and specify Defined0 as an attribute.
- You can create an index on PK2, PK1, and PK3 and specify Defined0, Defined1,

and Defined2 as an attribute.
- You can create an index on Defined0 without specifying an attribute.
- You can create an index on Define0 and PK1 and specify Defined1 as an

attribute.
- You can create an index on Define1 and Define0 without specifying an

attribute.
- You can create an index on Define1 and Define0 and specify Defined2 as an

attribute.
• Supports sparse indexes. You can specify a base table pre-defined attribute

as an index attribute. This row will be indexed even when all primary keys
exist despite the pre-defined attribute being excluded from the base table row.
However, this row will not be indexed when a row excludes one or more indexed
attributes. For example, a base table includes three primary keys that are PK0,
PK1, and PK2. Additionally, the table have three pre-defined attributes Defined0,
Defined1, and Defined2. You can create an index on Defined0 and Defined1, and
specify Defined2 as an attribute.
- An index will include a row in a base table that excludes the Defined2 attribute

 and includes pre-defined attributes Defined0 and Defined1.
- This row is excluded from the index when a base table row excludes Defined1

but includes the pre-defined attributes Defined0 and Defined2.
114 Issue: 20191127

Table Store Developer Guide / 8 Global secondary index

• Supports creating and deleting indexes on an existing base table. Existing data
in a base table will be copied to an index when you create this index on the base
table.

• When you query an index, the query is not automatically performed on the base
table of the created index. You need to query the base table. This feature will be
supported in later versions.

8.3 Scenarios
The global secondary index is a new Table Store feature. When you create a table
, the primary index is composed of all the primary keys. Table Store uses primary
 keys to uniquelyidentify each row in a table. However, you need to query a table
 by attributes, primary keys, or primary keys that are not from the first column
in more scenarios. Due to insufficient indexes, you can only fetch the results by
scanning the entire table and setting filter conditions. If you obtain few results after
 querying a table with large data volume, the query can cause excessive consumptio
n of resources.
The Table Store Global secondary index feature is similar to that of DynamoDB GSI

and HBase Phoenix. You can create an index with one or more specified attributes. In
addition, you can sort data in the created index by specified attributes. Every data
you write to a base table will be asynchronously synchronized to the created index
on the base table. You only have to write data to a base table, and can query indexes
created on this base table. This configuration greatly improves query performance
in most scenarios. For example, you can create a base table for a common phone log
query as follows:
CellNumber StartTime

 (Unix
timestamps)

CalledNumber Duration BaseStatio
nNumber

123456 1532574644 654321 60 1
234567 1532574714 765432 10 1
234567 1532574734 123456 20 3
345678 1532574795 123456 5 2
345678 1532574861 123456 100 2
456789 1532584054 345678 200 3

Issue: 20191127 115

https://docs.aws.amazon.com/zh_cn/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/zh_cn/amazondynamodb/latest/developerguide/GSI.html
http://phoenix.apache.org/secondary_indexing.html

Table Store Developer Guide / 8 Global secondary index

• CellNumber and StartTime are primary keys that represent a calling number
 and the start time of a call, respectively.

• CalledNumber, Duration, and BaseStationNumberare pre-defined attributes that
represent a called number, call duration, and the base station number.

When you end a phone call, the call information is written to this table. You
can create global secondary indexes on CalledNumber and BaseStationNumber
 respectively to meet various query requirements. For more information about how
to create an index, see example in Appendix.
If you have the following query requirements:
• You want to fetch the rows where the CellNumber value matches 234567.

You can sort data by primary keys in Table Store. In addition, you can call the
getRange method to scan data sequentially. When you call the getRange method,
you need to specify 234567 both as the minimum and maximum values for PK0
(CellNumber). Meanwhile, you need to specify 0 as the minimum value of PK1
(StartTime) and specify INT_MAX as the maximum value of PK1. Then you can
query the base table.
private static void getRangeFromMainTable(SyncClient client, long
cellNumber)
{
 RangeRowQueryCriteria rangeRowQueryCriteria = new RangeRowQu
eryCriteria(TABLE_NAME);

 // You can specify primary keys.
 PrimaryKeyBuilder startPrimaryKeyBuilder = PrimaryKeyBuilder.
createPrimaryKeyBuilder();
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1,
PrimaryKeyValue.fromLong(cellNumber));
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2,
PrimaryKeyValue.fromLong(0));
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(startPrima
ryKeyBuilder.build());

 // You can specify primary keys.
 PrimaryKeyBuilder endPrimaryKeyBuilder = PrimaryKeyBuilder.
createPrimaryKeyBuilder();
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1,
PrimaryKeyValue.fromLong(cellNumber));
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2,
PrimaryKeyValue.INF_MAX);
 rangeRowQueryCriteria.setExclusiveEndPrimaryKey(endPrimary
KeyBuilder.build());

 rangeRowQueryCriteria.setMaxVersions(1);

 String strNum = String.format("%d", cellNumber);

116 Issue: 20191127

Table Store Developer Guide / 8 Global secondary index
 System.out.println("A cell number " + strNum + "makes the
following calls:");
 while (true) {
 GetRangeResponse getRangeResponse = client.getRange(new
GetRangeRequest(rangeRowQueryCriteria));
 for (Row row : getRangeResponse.getRows()) {
 System.out.println(row);
 }

 // If the value of nextStartPrimaryKey is not null, you can
continue to read data from the base table.
 if (getRangeResponse.getNextStartPrimaryKey() ! = null) {
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(
getRangeResponse.getNextStartPrimaryKey());
 } else {
 break;
 }
 }
}

• If you want to fetch the rows where the value of CalledNumber is 123456.
Table Store sorts all rows by primary keys. Because CalledNumber is a pre-
defined attribute, you cannot directly query a table by this attribute. Therefore,
you can query an index that is created on CalledNumber .
IndexOnBeCalledNumber:
PK0 PK1 PK2
CalledNumber CellNumber StartTime
123456 234567 1532574734
123456 345678 1532574795
123456 345678 1532574861
654321 123456 1532574644
765432 234567 1532574714
345678 456789 1532584054

Note:
Table Store will auto complement primary keys of an index. When building this
index, Table Store adds all primary keys of a base table to an index created on
this base table. Therefore, the index includes three primary keys.

Because IndexOnBeCalledNumber is an index that is created on CalledNumber,
you can directly query this index to fetch results.
private static void getRangeFromIndexTable(SyncClient client, long
cellNumber) {

Issue: 20191127 117

Table Store Developer Guide / 8 Global secondary index
 RangeRowQueryCriteria rangeRowQueryCriteria = new RangeRowQu
eryCriteria(INDEX0_NAME);

 // You can specify primary keys.
 PrimaryKeyBuilder startPrimaryKeyBuilder = PrimaryKeyBuilder.
createPrimaryKeyBuilder();
 startPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_1,
PrimaryKeyValue.fromLong(cellNumber));
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1,
PrimaryKeyValue.INF_MIN);
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2,
PrimaryKeyValue.INF_MIN);
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(startPrima
ryKeyBuilder.build());

 // You can specify primary keys.
 PrimaryKeyBuilder endPrimaryKeyBuilder = PrimaryKeyBuilder.
createPrimaryKeyBuilder();
 endPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_1,
PrimaryKeyValue.fromLong(cellNumber));
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1,
PrimaryKeyValue.INF_MAX);
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2,
PrimaryKeyValue.INF_MAX);
 rangeRowQueryCriteria.setExclusiveEndPrimaryKey(endPrimary
KeyBuilder.build());

 rangeRowQueryCriteria.setMaxVersions(1);

 String strNum = String.format("%d", cellNumber);
 System.out.println("A cell number" + strNum + "was called by the
 following numbers");
 while (true) {
 GetRangeResponse getRangeResponse = client.getRange(new
GetRangeRequest(rangeRowQueryCriteria));
 for (Row row : getRangeResponse.getRows()) {
 System.out.println(row);
 }

 // If the value of nextStartPrimaryKey is not null, you can
continue to read data from the base table.
 if (getRangeResponse.getNextStartPrimaryKey() ! = null) {
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(
getRangeResponse.getNextStartPrimaryKey());
 } else {
 break;
 }
 }

118 Issue: 20191127

Table Store Developer Guide / 8 Global secondary index
}

• If you want to fetch the rows where the value of BaseStationNumber matches 002
 and the value of StartTime matches 1532574740.
This query specifies bothBaseStationNumber and StartTime as conditions.
Therefore, you can create a compound index on the BaseStationNumber and
StartTime .
IndexOnBaseStation1:
PK0 PK1 PK2
BaseStationNumber StartTime CellNumber
001 1532574644 123456
001 1532574714 234567
002 1532574795 345678
002 1532574861 345678
003 1532574734 234567
003 1532584054 456789

You can query the IndexOnBaseStation1index.
private static void getRangeFromIndexTable(SyncClient client,
 long baseStationNumber,
 long startTime) {
 RangeRowQueryCriteria rangeRowQueryCriteria = new RangeRowQu
eryCriteria(INDEX1_NAME);

 // You can specify primary keys.
 PrimaryKeyBuilder startPrimaryKeyBuilder = PrimaryKeyBuilder.
createPrimaryKeyBuilder();
 startPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_3,
PrimaryKeyValue.fromLong(baseStationNumber));
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2,
PrimaryKeyValue.fromLong(startTime));
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1,
PrimaryKeyValue.INF_MIN);
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(startPrima
ryKeyBuilder.build());

 // You can specify primary keys.
 PrimaryKeyBuilder endPrimaryKeyBuilder = PrimaryKeyBuilder.
createPrimaryKeyBuilder();
 endPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_3,
PrimaryKeyValue.fromLong(baseStationNumber));
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2,
PrimaryKeyValue.INF_MAX);
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1,
PrimaryKeyValue.INF_MAX);

Issue: 20191127 119

Table Store Developer Guide / 8 Global secondary index
 rangeRowQueryCriteria.setExclusiveEndPrimaryKey(endPrimary
KeyBuilder.build());

 rangeRowQueryCriteria.setMaxVersions(1);

 String strBaseStationNum = String.format("%d", baseStationNumber
);
 String strStartTime = String.format("%d", startTime);
 System.out.println("All called numbers forwarded by the base
station" + strBaseStationNum + " that start from" + strStartTime + "
are listed as follows:");
 while (true) {
 GetRangeResponse getRangeResponse = client.getRange(new
GetRangeRequest(rangeRowQueryCriteria));
 for (Row row : getRangeResponse.getRows()) {
 System.out.println(row);
 }

 // If the nextStartPrimaryKey value is not null, you can
continue to read data from the base table.
 if (getRangeResponse.getNextStartPrimaryKey() ! = null) {
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(
getRangeResponse.getNextStartPrimaryKey());
 } else {
 break;
 }
 }
}

• If you want to fetch the rows where the value of BaseStationNumber 003matches
the StartTime value range from 1532574861 to 1532584054. Only the Duration will
be displayed in the rows.
In this query, you specify both BaseStationNumber and StartTime as conditions.
Only Duration appears in the result set. You can issue a query on the last index,
and then fetch Duration by querying the base table.
private static void getRowFromIndexAndMainTable(SyncClient client,
 long baseStatio
nNumber,
 long startTime,
 long endTime,
 String colName) {
 RangeRowQueryCriteria rangeRowQueryCriteria = new RangeRowQu
eryCriteria(INDEX1_NAME);

 // You can specify primary keys.
 PrimaryKeyBuilder startPrimaryKeyBuilder = PrimaryKeyBuilder.
createPrimaryKeyBuilder();
 startPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_3,
PrimaryKeyValue.fromLong(baseStationNumber));
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2,
PrimaryKeyValue.fromLong(startTime));
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1,
PrimaryKeyValue.INF_MIN);
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(startPrima
ryKeyBuilder.build());

 // You can specify primary keys.

120 Issue: 20191127

Table Store Developer Guide / 8 Global secondary index
 PrimaryKeyBuilder endPrimaryKeyBuilder = PrimaryKeyBuilder.
createPrimaryKeyBuilder();
 endPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_3,
PrimaryKeyValue.fromLong(baseStationNumber));
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2,
PrimaryKeyValue.fromLong(endTime));
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1,
PrimaryKeyValue.INF_MAX);
 rangeRowQueryCriteria.setExclusiveEndPrimaryKey(endPrimary
KeyBuilder.build());

 rangeRowQueryCriteria.setMaxVersions(1);

 String strBaseStationNum = String.format("%d", baseStationNumber
);
 String strStartTime = String.format("%d", startTime);
 String strEndTime = String.format("%d", endTime);

 System.out.println("The list of calls forwarded by the base
 station" + strBaseStationNum + "from" + strStartTime + "to" +
strEndTime + "is listed as follows:");
 while (true) {
 GetRangeResponse getRangeResponse = client.getRange(new
GetRangeRequest(rangeRowQueryCriteria));
 For (Row row: fig. getrows ()){
 PrimaryKey curIndexPrimaryKey = row.getPrimaryKey();
 PrimaryKeyColumn mainCalledNumber = curIndexPrimaryKey.
getPrimaryKeyColumn(PRIMARY_KEY_NAME_1);
 PrimaryKeyColumn callStartTime = curIndexPrimaryKey.
getPrimaryKeyColumn(PRIMARY_KEY_NAME_2);
 PrimaryKeyBuilder mainTablePKBuilder = PrimaryKeyBuilder
.createPrimaryKeyBuilder();
 mainTablePKBuilder.addPrimaryKeyColumn(PRIMARY_KE
Y_NAME_1, mainCalledNumber.getValue());
 mainTablePKBuilder.addPrimaryKeyColumn(PRIMARY_KE
Y_NAME_2, callStartTime.getValue());
 PrimaryKey mainTablePK = mainTablePKBuilder.build(); //
You can specify primary keys for the base table.

 // You can query the base table.
 SingleRowQueryCriteria criteria = new SingleRowQ
ueryCriteria(TABLE_NAME, mainTablePK);
 criteria.addColumnsToGet(colName); // You can read the
Duration attribute value of the base table.
 // You can specify 1 to indicate the latest data version
 will be read.
 criteria.setMaxVersions(1);
 GetRowResponse getRowResponse = client.getRow(new
GetRowRequest(criteria));
 Row mainTableRow = getRowResponse.getRow();

 System.out.println(mainTableRow);
 }

 // If the nextStartPrimaryKey value is not null, you can
continue to read data from the base table.
 if (getRangeResponse.getNextStartPrimaryKey() ! = null) {
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(
getRangeResponse.getNextStartPrimaryKey());
 } else {
 break;
 }
 }

Issue: 20191127 121

Table Store Developer Guide / 8 Global secondary index
}

To improve query performance, you can create a compound index on BaseStatio
nNumber and StartTime. You can specify Duration as an attribute of this index.
The following index is created.
IndexOnBaseStation2:
PK0 PK1 PK2 Defined0
BaseStatio
nNumber

StartTime CellNumber Duration

001 1532574644 123456 600
001 1532574714 234567 10
002 1532574795 345678 5
002 1532574861 345678 100
003 1532574734 234567 20
003 1532584054 456789 200

You can query the IndexOnBaseStation2 index:
private static void getRangeFromIndexTable(SyncClient client,
 long baseStationNumber,
 long startTime,
 long endTime,
 String colName) {
 RangeRowQueryCriteria rangeRowQueryCriteria = new RangeRowQu
eryCriteria(INDEX2_NAME);

 // You can specify primary keys.
 PrimaryKeyBuilder startPrimaryKeyBuilder = PrimaryKeyBuilder.
createPrimaryKeyBuilder();
 startPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_3,
PrimaryKeyValue.fromLong(baseStationNumber));
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2,
PrimaryKeyValue.fromLong(startTime));
 startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1,
PrimaryKeyValue.INF_MIN);
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(startPrima
ryKeyBuilder.build());

 // You can specify primary keys.
 PrimaryKeyBuilder endPrimaryKeyBuilder = PrimaryKeyBuilder.
createPrimaryKeyBuilder();
 endPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_3,
PrimaryKeyValue.fromLong(baseStationNumber));
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2,
PrimaryKeyValue.fromLong(endTime));
 endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1,
PrimaryKeyValue.INF_MAX);

122 Issue: 20191127

Table Store Developer Guide / 8 Global secondary index
 rangeRowQueryCriteria.setExclusiveEndPrimaryKey(endPrimary
KeyBuilder.build());

 // You can specify the attribute name to read.
 rangeRowQueryCriteria.addColumnsToGet(colName);

 rangeRowQueryCriteria.setMaxVersions(1);

 String strBaseStationNum = String.format("%d", baseStationNumber
);
 String strStartTime = String.format("%d", startTime);
 String strEndTime = String.format("%d", endTime);

 System.out.println("The duration of calls forwarded by the
base station" + strBaseStationNum + "from" + strStartTime + "to" +
strEndTime + "is listed as follows:");
 while (true) {
 GetRangeResponse getRangeResponse = client.getRange(new
GetRangeRequest(rangeRowQueryCriteria));
 for (Row row : getRangeResponse.getRows()) {
 System.out.println(row);
 }

 // If the nextStartPrimaryKey value is not null, you can
continue to read data from the base table.
 if (getRangeResponse.getNextStartPrimaryKey() ! = null) {
 rangeRowQueryCriteria.setInclusiveStartPrimaryKey(
getRangeResponse.getNextStartPrimaryKey());
 } else {
 break;
 }
 }
}
```

Hence, if you do not specify Duration as an index attribute, you have to retrieve
Duration by querying the base table. However, when you specify Duration
 as an index attribute, this attribute data is stored in the base table and the
index. The configuration improves query performance at the cost of disk space
consumption.

• If you want to fetch the following values from a result set: total call duration,
the average call duration, the maximum call duration, and the minimum call
duration.This result set is a value of BaseStationNumber003 with a StartTime
value range from 1532574861 to 1532584054.
Compared to the last query, return is not required for each call duration.
However, return is required for duration statistics. You can fetch results using
the same method as the last query. Then you can perform Duration calculations
to obtain the required result. In addition, you can execute SQL statements in SQL-
on-OTS to obtain statistics. For more information about how to activate SQL-on-
OTS, see OLAP on Table Store: serverless SQL big data analysis on Data Lake Analytics. You can

Issue: 20191127 123

https://yq.aliyun.com/articles/618501?spm=a2c4e.11155435.0.0.701733127JMFla


Table Store Developer Guide /  8 Global secondary index

use most MySQL syntax in SQL-on-OTS. Additionally, with SQL-on-OTS, you can
easily process complicated calculations that are applicable to your business.

8.4 Java SDK for global secondary indexes
In this section, you can call the createTable method and the scanFromIndex
method in the Java SDK to perform the following operations.
• You can create a base table and an index on this base table at the same time.

private static void createTable(SyncClient client) {
    TableMeta tableMeta = new TableMeta(TABLE_NAME);
    tableMeta.addPrimaryKeyColumn(new PrimaryKeySchema(PRIMARY_KE
Y_NAME_1, PrimaryKeyType.STRING)); // You can specify a primary key 
for a base table.
    tableMeta.addPrimaryKeyColumn(new PrimaryKeySchema(PRIMARY_KE
Y_NAME_2, PrimaryKeyType.INTEGER)); // Set primary key for the base 
table
    tableMeta.addDefinedColumn(new DefinedColumnSchema(DEFINED_CO
L_NAME_1, DefinedColumnType.STRING)); // You can specify a pre-
defined attribute for the base table.
    tableMeta.addDefinedColumn(new DefinedColumnSchema(DEFINED_CO
L_NAME_2, DefinedColumnType.INTEGER)); // You can specify a pre-
defined attribute for the base table.
    tableMeta.addDefinedColumn(new DefinedColumnSchema(DEFINED_CO
L_NAME_3, DefinedColumnType.INTEGER)); // You can specify a pre-
defined attribute for the base table.

    int timeToLive = -1; // You can specify -1 as the Time To Live (
TTL) value so the data never expires.
    int maxVersions = 1; // The maximum version number. You can only
 specify 1 as the version value when a base table have one or more 
indexes.

    TableOptions tableOptions = new TableOptions(timeToLive, 
maxVersions);

    ArrayList<IndexMeta> indexMetas = new ArrayList<IndexMeta>();
    IndexMeta indexMeta = new IndexMeta(INDEX_NAME); // You can 
create an index.
    indexMeta.addPrimaryKeyColumn(DEFINED_COL_NAME_1); // You can 
specify DEFINED_COL_NAME_1 of the base table as an index primary key
.
    indexMeta.addDefinedColumn(DEFINED_COL_NAME_2); // You can 
specify DEFINED_COL_NAME_2 of the base table as an index primary key
.
    indexMetas.add(indexMeta); // You can add the index to the base 
table.

    CreateTableRequest request = new CreateTableRequest(tableMeta, 
tableOptions, indexMetas); // You can create the base table.

    client.createTable(request);
}

• You can create an index on a base table.
private static void createIndex(SyncClient client) {

124 Issue: 20191127



Table Store Developer Guide /  8 Global secondary index
    IndexMeta indexMeta = new IndexMeta(INDEX_NAME); // Create index
 meta.
    indexMeta.addPrimaryKeyColumn(DEFINED_COL_NAME_2); // Specify
 DEFINED_COL_NAME_2 as the first primary key column of the index 
table.
    indexMeta.addPrimaryKeyColumn(DEFINED_COL_NAME_1); // Specify
 DEFINED_COL_NAME_2 as the second primary key column of the index 
table.
    CreateIndexRequest request = new CreateIndexRequest(TABLE_NAME
, indexMeta, true); // Add the index table to the source table, 
including stock data 
    CreateIndexRequest request = new CreateIndexRequest(TABLE_NAME, 
indexMeta, false); // Add the index table to the source table, not 
including stock data 
    client.createIndex(request); // Create an index table.
}

Note:
At the moment, existing data in the base table will not be copied to the index
when you create an index on a base table. The newly created index only includes
incremental data after you create this index. For more information about
incremental data, contact Table Store technical support with DingTalk.

• You can delete an index.
private static void deleteIndex(SyncClient client) {
    DeleteIndexRequest request = new DeleteIndexRequest(TABLE_NAME
, INDEX_NAME); // You can specify the names of a base table and an 
index.
    client.deleteIndex(request); // You can delete an index.
}

• You can read data from an index.
If an index includes an attribute that will be returned in results, you can directly 
retrieve data from the index.
private static void scanFromIndex(SyncClient client) {
    RangeRowQueryCriteria rangeRowQueryCriteria = new RangeRowQu
eryCriteria(INDEX_NAME); // You can specify the name of an index.

    // You can specify the start primary key.
    PrimaryKeyBuilder startPrimaryKeyBuilder = PrimaryKeyBuilder.
createPrimaryKeyBuilder();
    startPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_1, 
PrimaryKeyValue.INF_MIN); // You can specify the minimum value for 
an index primary key.
    startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1, 
PrimaryKeyValue.INF_MIN); // You can specify the minimum value for a
 base table primary key.
    startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2, 
PrimaryKeyValue.INF_MIN); // You can specify the minimum value for a
 base table primary key.
    rangeRowQueryCriteria.setInclusiveStartPrimaryKey(startPrima
ryKeyBuilder.build());

    // You can specify the end primary key.

Issue: 20191127 125



Table Store Developer Guide /  8 Global secondary index
    PrimaryKeyBuilder endPrimaryKeyBuilder = PrimaryKeyBuilder.
createPrimaryKeyBuilder();
    endPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_1, 
PrimaryKeyValue.INF_MAX); // You can specify the maximum value for 
an index attribute.
    endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1, 
PrimaryKeyValue.INF_MAX); // You can specify the maximum value for a
 base table primary key.
    endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2, 
PrimaryKeyValue.INF_MAX); // You can specify the maximum value for a
 base table primary key.
    rangeRowQueryCriteria.setExclusiveEndPrimaryKey(endPrimary
KeyBuilder.build());

    rangeRowQueryCriteria.setMaxVersions(1);

    System.out.println("The results returned from an index are as 
follows:");
    while (true) {
        GetRangeResponse getRangeResponse = client.getRange(new 
GetRangeRequest(rangeRowQueryCriteria));
        for (Row row : getRangeResponse.getRows()) {
            System.out.println(row);
        }

        // If the nextStartPrimaryKey value is not null, you can 
continue to read data from the base table.
        if (getRangeResponse.getNextStartPrimaryKey() ! = null) {
            rangeRowQueryCriteria.setInclusiveStartPrimaryKey(
getRangeResponse.getNextStartPrimaryKey());
        } else {
            break;
        }
    }
}

If an index does not include an attribute that will be returned in results, you
must query the base table.
private static void scanFromIndex(SyncClient client) {
    RangeRowQueryCriteria rangeRowQueryCriteria = new RangeRowQu
eryCriteria(INDEX_NAME); // You can specify the index name.

    // You can specify the start primary key.
    PrimaryKeyBuilder startPrimaryKeyBuilder = PrimaryKeyBuilder.
createPrimaryKeyBuilder();
    startPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_1, 
PrimaryKeyValue.INF_MIN); // You can specify the minimum value for 
an indexed attribute of an index.
    startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1, 
PrimaryKeyValue.INF_MIN); // You can specify the minimum value for a
 primary key of a base table.
    startPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2, 
PrimaryKeyValue.INF_MIN); // You can specify the minimum value for a
 primary key of a base table.
    rangeRowQueryCriteria.setInclusiveStartPrimaryKey(startPrima
ryKeyBuilder.build());

    // You can specify the end primary key.
    PrimaryKeyBuilder endPrimaryKeyBuilder = PrimaryKeyBuilder.
createPrimaryKeyBuilder();

126 Issue: 20191127



Table Store Developer Guide /  8 Global secondary index
    endPrimaryKeyBuilder.addPrimaryKeyColumn(DEFINED_COL_NAME_1, 
PrimaryKeyValue.INF_MAX); // You can specify the maximum value for 
an indexed attribute of an index.
    endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_1, 
PrimaryKeyValue.INF_MAX); // You can specify the maximum value for a
 base table primary key.
    endPrimaryKeyBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2, 
PrimaryKeyValue.INF_MAX); // You can specify the maximum value for a
 base table primary key.
    rangeRowQueryCriteria.setExclusiveEndPrimaryKey(endPrimary
KeyBuilder.build());

    rangeRowQueryCriteria.setMaxVersions(1);

    while (true) {
        GetRangeResponse getRangeResponse = client.getRange(new 
GetRangeRequest(rangeRowQueryCriteria));
        for (Row row : getRangeResponse.getRows()) {
            PrimaryKey curIndexPrimaryKey = row.getPrimaryKey();
            PrimaryKeyColumn pk1 = curIndexPrimaryKey.getPrimary
KeyColumn(PRIMARY_KEY_NAME1);
            PrimaryKeyColumn pk2 = curIndexPrimaryKey.getPrimary
KeyColumn(PRIMARY_KEY_NAME2);
            PrimaryKeyBuilder mainTablePKBuilder = PrimaryKeyBuilder
.createPrimaryKeyBuilder();
            mainTablePKBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME1
, pk1.getValue());
            mainTablePKBuilder.addPrimaryKeyColumn(PRIMARY_KEY_NAME2
, ke2.getValue());
            PrimaryKey mainTablePK = mainTablePKBuilder.build(); // 
You can specify the index primary keys for a base table.

            // You can query a base table.
            SingleRowQueryCriteria criteria = new SingleRowQ
ueryCriteria(TABLE_NAME, mainTablePK);
            criteria.addColumnsToGet(DEFINED_COL_NAME3); // You can 
read the DEFINED_COL_NAME3 attribute from the base table.
            // You can retrieve the latest data version.
            criteria.setMaxVersions(1);
            GetRowResponse getRowResponse = client.getRow(new 
GetRowRequest(criteria));
            Row mainTableRow = getRowResponse.getRow();
            System.out.println(row); 
        }

        // If the value of nextStartPrimaryKey is not null, you can 
continue to read data from the base table.
        if (getRangeResponse.getNextStartPrimaryKey() ! = null) {
            rangeRowQueryCriteria.setInclusiveStartPrimaryKey(
getRangeResponse.getNextStartPrimaryKey());
        } else {
            break;
        }
    }

Issue: 20191127 127



Table Store Developer Guide /  8 Global secondary index
}

8.5 APIs
CreateTable

You can call the CreateTable method to create a table, and an index with pre-
defined attributes at the same time.
When you write data to a base table, an index on this base table is also updated. For
more information, see CreateTable.

CreateIndex
You can call the CreateIndex method to create an index on a base table.

Note:
The current version does not support copying existing base table data to the index
when you call the CreateIndex method to create an index on a base table. This
feature will be supported by later versions.

DeleteIndex
You can call the DeleteIndex method to delete indexes on a base table. The other
indexes on this table will not be affected.

DeleteTable
You can call the DeleteTable method to delete a base table and all indexes on this
table. For more information, see DeleteTable.

8.6 Appendix
You can create tables and indexes as follows:
private static final String TABLE_NAME = "CallRecordTable";
    private static final String INDEX0_NAME = "IndexOnBeCalledNumber";
    private static final String INDEX1_NAME = "IndexOnBaseStation1";
    private static final String INDEX2_NAME = "IndexOnBaseStation2";
    private static final String PRIMARY_KEY_NAME_1 = "CellNumber";
    private static final String PRIMARY_KEY_NAME_2 = "StartTime";
    private static final String DEFINED_COL_NAME_1 = "CalledNumber";
    private static final String DEFINED_COL_NAME_2 = "Duration";
    private static final String DEFINED_COL_NAME_3 = "BaseStatio
nNumber";
    
    private static void createTable(SyncClient client) {
        TableMeta tableMeta = new TableMeta(TABLE_NAME);

128 Issue: 20191127



Table Store Developer Guide /  8 Global secondary index

        tableMeta.addPrimaryKeyColumn(new PrimaryKeySchema(PRIMARY_KE
Y_NAME_1, PrimaryKeyType.INTEGER));
        tableMeta.addPrimaryKeyColumn(new PrimaryKeySchema(PRIMARY_KE
Y_NAME_2, PrimaryKeyType.INTEGER));
        tableMeta.addDefinedColumn(new DefinedColumnSchema(DEFINED_CO
L_NAME_1, DefinedColumnType.INTEGER));
        tableMeta.addDefinedColumn(new DefinedColumnSchema(DEFINED_CO
L_NAME_2, DefinedColumnType.INTEGER));
        tableMeta.addDefinedColumn(new DefinedColumnSchema(DEFINED_CO
L_NAME_3, DefinedColumnType.INTEGER));
    
        int timeToLive = -1; // The time before the data expires.You
 can specify -1 as the Time To Live (TTL) value so the data never 
expires. Unit: seconds. You must specify -1 as the TTL value when a 
table has one or more indexes.
        int maxVersions = 1; //  The maximum number of versions. You 
must specify 1 as the value when a table has one or more indexes.
    
        TableOptions tableOptions = new TableOptions(timeToLive, 
maxVersions);
    
        ArrayList<IndexMeta> indexMetas = new ArrayList<IndexMeta>();
        IndexMeta indexMeta0 = new IndexMeta(INDEX0_NAME);
        indexMeta0.addPrimaryKeyColumn(DEFINED_COL_NAME_1);
        indexMetas.add(indexMeta0);
        IndexMeta indexMeta1 = new IndexMeta(INDEX1_NAME);
        indexMeta1.addPrimaryKeyColumn(DEFINED_COL_NAME_3);
        indexMeta1.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2);
        indexMetas.add(indexMeta1);
        IndexMeta indexMeta2 = new IndexMeta(INDEX2_NAME);
        indexMeta2.addPrimaryKeyColumn(DEFINED_COL_NAME_3);
        indexMeta2.addPrimaryKeyColumn(PRIMARY_KEY_NAME_2);
        indexMeta2.addDefinedColumn(DEFINED_COL_NAME_2);
        indexMetas.add(indexMeta2);
    
        CreateTableRequest request = new CreateTableRequest(tableMeta
, tableOptions, indexMetas);
    
        client.createTable(request);
    }

Issue: 20191127 129



Table Store Developer Guide /  9 Tunnel service

9 Tunnel service
9.1 Overview

Tunnel Service is an integrated service for full and incremental data consumption
based on Table Store API. It provides you with real-time consumption tunnels for
distributed data, including incremental data, full data, and full and incremental
data. By creating tunnels for a table, you can easily consume historical data and
new data in the table.

Background
Table Store is applicable to applications such as metadata management, time series
data monitoring, and message systems. These applications often use incremental
data streams or full and incremental data streams to trigger extra operations,
including:
• Data synchronization: synchronizes data to a cache, search engine, or data 

warehouse.
• Event driving: triggers Function Compute, sends a consumption notification, or 

calls an API operation.
• Stream data processing: connects to a stream-processing engine or a stream- and

 batch-processing engine.
• Data migration: backs up data to OSS or migrates data to a Table Store capacity 

instance.
You can use Tunnel Service to easily build efficient and elastic solutions to consume
 full data, incremental data, and full and incremental data in the preceding 
scenarios.

Features
The following table lists the features provided by Tunnel Service.
Feature Description
Tunnels for full 
and incremental 
data consumption

Tunnel Service allows you to consume incremental data, full 
data, and full and incremental data simultaneously.

130 Issue: 20191127



Table Store Developer Guide /  9 Tunnel service

Feature Description
Orderly 
incremental data 
consumption

Tunnel Service distributes incremental data to one or more 
logical partitions sequentially based on the write time. Data 
in different partitions can be consumed simultaneously.

Consumption 
latency monitoring Tunnel Service allows you to call the DescribeTunnel 

operation to view the recovery point objective (RPO) 
information of the consumed data on each client. Tunnel
 Service also allows you to monitor data consumption of 
tunnels in the Table Store console.

Horizontal scaling 
of data consumptio
n capabilities

Tunnel Service supports automatic load balancing among 
logical partitions to accelerate data consumption.

9.2 Features
Tunnel Service is an integrated service for full and incremental data consumption
based on Table Store API. Tunnel Service provides the following features:

Tunnels for full and incremental data consumption
Tunnel Service allows you to consume incremental data, full data, and full and 
incremental data simultaneously.

Orderly incremental data consumption
Tunnel Service distributes incremental data to one or more logical partitions 
sequentially based on the write time. Data in different partitions can be consumed 
simultaneously.

Consumption latency monitoring
Tunnel Service allows you to call the DescribeTunnel operation to view the recovery
 point objective (RPO) information of the consumed data on each client. Tunnel 
Service also allows you to monitor data consumption of tunnels in the Table Store 
console.

Horizontal scaling of data consumption capabilities
Tunnel Service supports automatic load balancing among logical partitions. With 
this feature, you can add more Tunnel Clients to accelerate data consumption.

Issue: 20191127 131



Table Store Developer Guide /  9 Tunnel service

9.3 Description of the data consumption framework
Tunnel Service uses comprehensive operations of Table Store to consume full
and incremental data. You can easily consume and process history data and
incremental data in tables.
A Tunnel client is an automatic data consumption framework of Tunnel Service. 
The Tunnel client regularly checks heartbeats to detect active channels, update 
status of the Channel and ChannelConnect classes, initialize, run, and terminate 
data processing tasks.
The Tunnel client supports the following features for processing full and 
incremental data: load balancing, fault recovery, checkpoints, and partition 
information synchronization to ensure the sequence of consuming information. 
The Tunnel client allows you to focus on the processing logic of each record.
The following sections describe the features of the Tunnel client, including
automatic data processing, load balancing, and fault tolerance. For more
information, see Github to check source code of the Tunnel client.

Automatic data processing
The Tunnel client regularly checks for heartbeats to detect active channels, update
 status of the Channel and ChannelConnect classes, initialize, run, and terminate 
data processing tasks. This section describes the data processing logic. For more 
information, see source code.
1. Initialize resources of the Tunnel client.

a. Change the status of the Tunnel client from Ready to Started.
b. Set the HeartbeatTimeout and ClientTag parameters in TunnelWorkerConfig

 to run the ConnectTunnel task and connect Tunnel Service to obtain the 
ClientId of the current Tunnel client.

c. Initialize the ChannelDialer class to create a ChannelConnect task. Each 
ChannelConnect class corresponds to a Channel class, and the ChannelCon
nect task records data consumption checkpoints.

d. Set the Callback parameter for processing data and the CheckpointInterval
 parameter for specifying the interval of outputting checkpoints in Tunnel

132 Issue: 20191127

https://github.com/aliyun/aliyun-tablestore-java-sdk


Table Store Developer Guide /  9 Tunnel service

 Service. In this way, you can create a data processor that automatically 
outputs checkpoints.

e. Initialize the TunnelStateMachine class to automatically update the status of 
the Channel class.

2. Regularly check heartbeat messages.
You can set the heartbeatIntervalInSec parameter in TunnelWorkerConfig to set 
the interval for checking the heartbeat.
a. Send a heartbeat request to obtain the list of latest available channels from

 Tunnel Service. The list includes the ChannelId, channel versions, and 
channel status.

b. Merge the list of channels from Tunnel Service with the local list of channels,
and create and update ChannelConnect tasks. Follow these rules:
• Merge: overwrite the earlier version in the local list with the later version 

for the same ChannelId from Tunnel Service, and insert the new channels 
from Tunnel Service into the local list.

• Create a ChannelConnect task: create a ChannelConnect task in WAIT status
 for a channel that has no ChannelConnect task. If the ChannelConnect
 task corresponds to a channel in OPEN status, run the ReadRecords&&
ProcessRecords task that cyclically processes data for this ChannelConnect
 task. For more information, see the ProcessDataPipeline class in source 
code.

• Update an existing ChannelConnect task: after you merge the lists of 
channels, if a channel corresponds to a ChannelConnect task, update 
the ChannelConnect status according to the status of channels with the
 same ChannelId. For example, if channels are in Close status, set their 
ChannelConnect tasks to the Closed status to terminate the corresponding 
pipeline tasks. For more information, see the ChannelConnect.notifyStatus 
method in source code.

3. Automatically process channel status.
Based on the number of active Tunnel clients obtained in the heartbeat request
, Tunnel Service allocates available partitions to different clients to balance the 

Issue: 20191127 133



Table Store Developer Guide /  9 Tunnel service

loads. Tunnel Service automatically processes channel status as described in the 
following figure, and drives channel consumption and load balancing.

Tunnel Service and Tunnel clients change their status by using heartbeat
requests and channel version updates.
a. Each channel is initially in WAIT status.
b. The channel for incremental data changes to the OPEN status only when the 

channel consumption on the parent partition is terminated.
c. Tunnel Service allocates the partition in OPEN status to each Tunnel client.
d. During load balancing, Tunnel Service and Tunnel clients use a scheduling 

protocol for changing a channel status from Open, Closing to Closed. After 
consuming a BaseData channel or a Stream channel, Tunnel clients report the 
channel as Terminated.

134 Issue: 20191127



Table Store Developer Guide /  9 Tunnel service

Automatic load balancing and excellent horizontal scaling
• Multiple Tunnel clients can consume data by using the same Tunnel or TunnelId

. When the Tunnel clients run the heartbeat task, Tunnel Service automatically 
redistributes channels and tries to allocate active channels to each Tunnel client 
to achieve load balancing.

• You can easily add Tunnel clients to scale out. Tunnel clients can run on one or 
more instances.

Automatic resource clearing and fault tolerance
• Resource clearing: if Tunnel clients do not shut down normally, such as

 exceptional exit or manual termination, the system recycles resources 
automatically. For example, the system can release the thread pool, call the 
shutdown method that you have registered for the corresponding channel, and 
terminate the connection to Tunnel Service.

• Fault tolerance: when a Tunnel client has non-parametric errors such as 
heartbeat timeout, the system automatically renews connections to continue 
stable data consumption.

9.4 Quick start
You can use Tunnel Service in the Table Store console.

Prerequisites
You have activated Table Store.

Create a tunnel
1. Log on to the Table Store console.
2. Locate the target table and click Tunnels in the Actions column.
3. On the Tunnels page, click Create Tunnel in the upper-right corner.
4. In the Create Tunnel dialog box that appears, set Tunnel Name and Type.

Tunnel Service provides three types of real-time consumption tunnels for
distributed data, including Incremental, Full, and Differential. You can set the
type as required. This topic uses the Incremental type as an example.
After the tunnel is created, you can check the data in the tunnel, monitor 
consumption latency, and check the number of consumed rows in each channel 
on the Tunnels page.

Issue: 20191127 135

https://ots.console.aliyun.com


Table Store Developer Guide /  9 Tunnel service

Preview data types in a channel
1. In the Table Store console, click Data Editor in the left-side navigation pane. On

the Table Data page that appears, click Insert or Delete in the upper-right corner
to write or delete data, respectively.

2. Click Tunnels in the left-side navigation pane. On the Tunnels page that appears,
locate the tunnel that you created and click Show Channels in the Actions
column. The channels are listed at the bottom of the page.

3. Locate the target channel and click View Simulated Export Records in the Actions
column. In the dialog box that appears, click Start. The data types in the channel
appear.

Enable data consumption for a tunnel
1. Copy a tunnel ID from the tunnel list.
2. Use the Tunnel Service SDK in any programming language to enable data

consumption for the tunnel.
// Customize the data consumption callback, that is, implement the 
process and shutdown methods of the IChannelProcessor interface.
private static class SimpleProcessor implements IChannelProcessor {
    @Override
    public void process(ProcessRecordsInput input) {
        System.out.println("Default record processor, would print 
records count");
        System.out.println(
            String.format("Process %d records, NextToken: %s", input
.getRecords().size(), input.getNextToken()));
        try {
            // Mock record processing.
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
    @Override
    public void shutdown() {
        System.out.println("Mock shutdown");
    }
}

// TunnelWorkerConfig contains more advanced parameters. For more 
information, see the description in the related topic.
TunnelWorkerConfig config = new TunnelWorkerConfig(new SimpleProc
essor());
// Configure TunnelWorker and start automatic data processing.
TunnelWorker worker = new TunnelWorker($tunnelId, tunnelClient, 
config);
try {
    worker.connectAndWorking();
} catch (Exception e) {
    e.printStackTrace();
    worker.shutdown();

136 Issue: 20191127



Table Store Developer Guide /  9 Tunnel service
    tunnelClient.shutdown();
}

View data consumption logs
You can view the consumption logs of incremental data in the data consumptio
n standard output. You can also log on to the Table Store console or call the 
DescribeTunnel operation to view the consumption latency and the number of 
consumed rows in each channel.

9.5 SDKs
You can use the following SDKs to implement Tunnel Service:
• Go SDK

• Java SDK

9.6 Incremental synchronization performance white paper
This topic describes the test on the performance of incremental synchronization
through Tunnel Service, including the test environment, tools, plan, indicators,
results, and summary.

Test environment
• Table Store instance

- Type: high-performance instance
- Region: China (Hangzhou)
- Address: a private IP address, which prevents interference caused by 

unknown network issues.

Issue: 20191127 137



Table Store Developer Guide /  9 Tunnel service

• Test server configuration
- Type: Alibaba Cloud ECS
- Region: China (Hangzhou)
- Model: ecs.mn4.4xlarge balanced entry-level model
- Configuration:

■ CPU: 16 cores
■ Memory: 64 GB
■ NIC: VirtIO network device of Red Hat, Inc.
■ Operating system: CentOS 7u2

Test tools
• Stress testing tool

The stress testing tool of Table Store is used to write data to multiple rows 
simultaneously by calling the BatchWriteRow operation through the Table Store 
Java SDK.

• Pre-splitting tool
The stress testing tool of Table Store is used to automatically create and pre-split 
tables based on the configured table names and the number of partitions.

• Rate statistics tool
The Table Store Java SDK can collect statistics of the consumption rate of 
incremental data and the total number of consumed rows in real time. You can
 add the logic demonstrated in the following example to the callback to collect 
rate statistics.
Example
private static final Gson GSON = new Gson();
    private static final int CAL_INTERVAL_MILLIS = 5000;
    static class PerfProcessor implements IChannelProcessor {
        private static final AtomicLong counter = new AtomicLong(0);
        private static final AtomicLong latestTs = new AtomicLong(0
);
        private static final AtomicLong allCount = new AtomicLong(0
);

        @Override
        public void process(ProcessRecordsInput input) {
            counter.addAndGet(input.getRecords().size());
            allCount.addAndGet(input.getRecords().size());
            if (System.currentTimeMillis() - latestTs.get() > 
CAL_INTERVAL_MILLIS) {
                synchronized (PerfProcessor.class) {

138 Issue: 20191127



Table Store Developer Guide /  9 Tunnel service
                    if (System.currentTimeMillis() - latestTs.get()
 > CAL_INTERVAL_MILLIS) {
                        long seconds = TimeUnit.MILLISECONDS.
toSeconds(System.currentTimeMillis() - latestTs.get());
                        PerfElement element = new PerfElement(System
.currentTimeMillis(), counter.get() / seconds, allCount.get());
                        System.out.println(GSON.toJson(element));
                        counter.set(0);
                        latestTs.set(System.currentTimeMillis());
                    }
                }
            }
        }

        @Override
        public void shutdown() {
            System.out.println("Mock shutdown");
        }
    }

Test plan
When Tunnel Service is used for data synchronization, it synchronizes data 
sequentially within a single channel to maintain the order of data, and synchroniz
es data in different channels in parallel. For incremental data, the number of 
channels is equal to the number of partitions in a table. This performance test
 focuses on how the number of partitions (channels) affects the incremental 
synchronization rate because the overall performance of Tunnel Service is greatly 
correlated with the number of partitions.
• Test scenarios

The test is conducted in the following scenarios:
- Single-server single-partition synchronization
- Single-server 4-partition synchronization
- Single-server 8-partition synchronization
- Single-server 32-partition synchronization
- Single-server 64-partition synchronization
- Double-server 64-partition synchronization
- Double-server 128-partition synchronization

Note:
The test in the preceding scenarios is not an extreme test of the service
performance, and therefore does not impose much pressure on the Table Store
instance.

Issue: 20191127 139



Table Store Developer Guide /  9 Tunnel service

• Test procedure
1. Create and pre-split a table for each test scenario.
2. Create a tunnel for incremental synchronization.
3. Use the stress testing tool to write incremental data.
4. Use the rate statistics tool to measure the QPS in real time, and check the 

consumption of system resources, such as CPU and memory.
5. Check the total bandwidth consumed during the incremental synchronization.

• Test data description
ample data includes four primary key columns and one or two attribute columns
. The size of each row is approximately 220 bytes. The first primary key (partition
 key) is a 4-byte hash value, which eguarantees that stress testing data is evenly 
written to each partition.

Test indicators
This test uses the following indicators:
• QPS (row): the number of rows synchronized per second.
• Average latency (ms per 1,000 rows): the time required to synchronize 1,000 rows

, in milliseconds.
• CPU (core): the total number of single-core CPUs used for data synchronization.
• Memory (GB): the total physical memory used for data synchronization.
• Bandwidth (Mbit/s): the total bandwidth used for data synchronization.

Note:
This performance test is based on user experience, rather than extreme testing.

Test results
This section describes the test results for each scenario. For more information, see 
test details.
• QPS and latency

The following figure shows the number of rows synchronized per second and the
 time required to synchronize 1,000 rows in each scenario. In this figure, the QPS 
increases linearly with the number of partitions.
In the single-server 64-partition synchronization scenario, the gigabit NIC works
 at its full capacity, resulting in only 570,000 QPS. For more information, see 

140 Issue: 20191127



Table Store Developer Guide /  9 Tunnel service

test details. The QPS in the double-server 64-partition synchronization scenario
 reaches 780,000, which is approximately twice the 420,000 QPS in the single-
server 32-partition synchronization scenario. In the double-server 128-partition 
synchronization scenario, the QPS reaches 1,000,000.

• System resource consumption
The following figure shows the CPU and memory usage in each scenario. The 
CPU usage increases linearly with the number of partitions.
The single-server single-partition synchronization uses 0.25 single-core CPUs. 
When the QPS reaches 1,000,000 in the double-server 128-partition synchroniz
ation scenario, only 10.2 single-core CPUs are used. The memory usage increases
 linearly with the number of partitions when it is less than 32. When more 
partitions, for example, 32, 64, or 128 partitions in this test, need to be processed
, the memory usage is stably around 5.3 GB on each server.

• Total bandwidth consumption
The following figure shows the total bandwidth consumed during the incrementa
l synchronization. In this figure, the consumed bandwidth increases linearly 
with the number of partitions.
The single-server 64-partition synchronization uses a total bandwidth of 125 
Mbit/s, which is the maximum rate supported by the gigabit NIC. In the double
-server 64-partition synchronization scenario, the consumed bandwidth is 169 
Mbit/s, which is the actual bandwidth required for 64-partition synchronization
. This is approximately twice the 86 Mbit/s bandwidth required in the single-
server 32-partition synchronization scenario. When the QPS reaches 1,000,000 in
 the double-server 128-partition synchronization scenario, the total bandwidth 
consumed reaches 220 Mbit/s.

Issue: 20191127 141



Table Store Developer Guide /  9 Tunnel service

Test details
• Single-server single-channel: 19,000 QPS.

- Tested at: 17:40, January 30, 2019.
- QPS: steady at approximately 19,000 rows per second, with a peak rate of 21,

800 rows per second.
- Latency: approximately 50 ms per 1,000 rows.
- CPU usage: approximately 25% of a single-core CPU.
- Memory usage: approximately 0.4% of the total physical memory, which is 

approximately 0.256 GB. (Each test server provides 64 GB physical memory.)
- Bandwidth consumption: approximately 4,000 Kbit/s.

• Single-server 4-partition synchronization: 70,000 QPS.
- Tested at: 20:00, January 30, 2019.
- QPS: steady at approximately 70,000 rows per second, with a peak rate of 72,

400 rows per second.
- Latency: approximately 14.28 ms per 1,000 rows.
- CPU usage: approximately 70% of a single-core CPU.
- Memory usage: approximately 1.9% of the total physical memory, which is 

approximately 1.1 GB. (Each test server provides 64 GB physical memory.)
- Bandwidth consumption: approximately 13 Mbit/s.

• Single-server 8-partition synchronization: 130,000 QPS.
- Tested at: 20:20, January 30, 2019.
- QPS: steady at approximately 130,000 rows per second, with a peak rate of 141,

644 rows per second.
- Latency: approximately 7.69 ms per 1,000 rows.
- CPU usage: approximately 120% of a single-core CPU.
- Memory usage: approximately 4.1% of the total physical memory, which is 

approximately 2.62 GB. (Each test server provides 64 GB physical memory.)
- Bandwidth consumption: approximately 27 Mbit/s.

142 Issue: 20191127



Table Store Developer Guide /  9 Tunnel service

• Single-server 32-partition synchronization: 420,000 QPS.
- Tested at: 15:50, January 31, 2019.
- QPS: steady at approximately 420,000 rows per second, with a peak rate of 447,

600 rows per second.
- Latency: 2.38 ms per 1,000 rows.
- CPU usage: approximately 450% of a single-core CPU.
- Memory usage: approximately 8.2% of the total physical memory, which is 

approximately 5.25 GB. (Each test server provides 64 GB physical memory.)
- Bandwidth consumption: approximately 86 Mbit/s.

• Single-server 64-partition synchronization: 570,000 QPS, with the gigabit NIC
working at its full capacity.
- Tested at: 22:10, January 31, 2019.
- QPS: steady at approximately 570,000 rows per second, with a peak rate of 581,

400 rows per second.
- Latency: approximately 1.75 ms per 1,000 rows.
- CPU usage: approximately 640% of a single-core CPU.
- Memory usage: approximately 8.4% of the total physical memory, which is 

approximately 5.376 GB. (Each test server provides 64 GB physical memory.)
- Bandwidth consumption: approximately 125 Mbit/s, which is the maximum 

rate of the gigabit NIC.
• Double-server 64-partition synchronization: 780,000 QPS.

- Tested at: 22:30, January 31, 2019.
- QPS: steady at approximately 390,000 rows per second on each server and 780,

000 rows per second on both servers.
- Latency: approximately 1.28 ms per 1,000 rows.
- CPU usage: approximately 420% of a single-core CPU on each server and 840% 

of a single-core CPU on both servers.
- Memory usage: approximately 8.2% of the total physical memory, which is 

approximately 10.5 GB. (Each test server provides 64 GB physical memory.)
- Bandwidth consumption: approximately 169 Mbit/s. This indicates that 

bandwidth becomes the bottleneck when the number of partitions reaches 64 
in single-server scenarios.

Issue: 20191127 143



Table Store Developer Guide /  9 Tunnel service

• Double-server 128-partition synchronization: 1,000,000 QPS, with both gigabit
NICs almost working at their full capacities.
- Tested at: 23:20, January 31, 2019.
- QPS: steady at approximately 500,000 rows per second on each server and 1,

000,000 rows per second on both servers.
- Latency: approximately 1 ms per 1,000 rows.
- CPU usage: approximately 560% of a single-core CPU on each server and 1,020

% of a single-core CPU on both servers.
- Memory usage: approximately 8.2% of the total physical memory, which is 

approximately 10.5 GB. (Each test server provides 64 GB physical memory.)
- Bandwidth consumption: approximately 220 Mbit/s.

Summary
Based on this performance test for incremental synchronization, the QPS for tables
 with a single or a few partitions is mainly affected by the latency in data reading 
and only few resources on the server are consumed. As the number of partitions 
increases, the overall throughput of incremental synchronization through Tunnel
 Service increases linearly until the system bottleneck, such as the bandwidth 
in this test, is encountered. When a resource on a single server is used up, this 
resource becomes the bottleneck. You can add more servers to increase the overall
 throughput. This test validates the excellent horizontal scaling performance of 
Tunnel Service.

144 Issue: 20191127



Table Store Developer Guide /  10 HBase

10 HBase
10.1 Table Store HBase Client

In addition to SDKs and RESTful APIs, Table Store HBase Client can be used to 
access Table Store through Java applications built on open source HBase APIs. 
Based on Java SDKs for Table Store version 4.2.x and later, Table Store HBase Client 
supports open source APIs for HBase version 1.x.x and later.
Table Store HBase Client can be obtained from any of the following three channels:
• GitHub tablestore-hbase-client project

• Compressed package

• Maven
 <dependencies>
        <dependency>
            <groupId>com.aliyun.openservices</groupId>
            <artifactId>tablestore-hbase-client</artifactId>
            <version>1.2.0</version>
        </dependency>
    </dependencies>

Table Store is a fully managed NoSQL database service. When using TableStore
 HBase Client, you can simply ignore HBase Server. Instead, you only need to 
perform table or data operations using APIs exposed by Client.
Compared with self-built HBase services, Table Store has the following advantages:
Items Table Store Self-built HBase cluster
Cost Billing is based on 

actual data volumes
. By providing high 
performance and capacity
 instances, Table Store
 can be tailored to all 
scenarios.

Allocates resources 
based on traffic peaks
. Resources remain 
idle during off-peak 
periods, resulting in high 
operation and maintenanc
e costs.

Issue: 20191127 145

https://github.com/aliyun/aliyun-tablestore-hbase-client
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/50125/cn_zh/1486705375325/tablestore-hbase-client-1.2.0.zip


Table Store Developer Guide /  10 HBase

Items Table Store Self-built HBase cluster
Security Integrates Alibaba Cloud

 RAM and supports 
multiple authentica
tion and authorization 
mechanisms, VPC, and
 primary/RAM user 
account management. 
Authorization granularity 
can be defined at both the 
table-level and API-level.

Requires extra security 
mechanisms.

Reliability Supports automatic 
redundant data backup
 and failover. Data 
availability is 99.9% or 
greater, and data reliabilit
y is 99.99999999%.

Is dependent on cluster 
reliability.

Scalability Server Load Balancer of
 Table Store supports PB
-level data transfer from
 a single table. Manual
 resizing is not needed 
even if millions of bytes
 of data is concurrently 
stored.

Complex online/offline 
processes are required 
if a cluster reaches high 
usage capacity, which can
 severely impact online 
services.

10.2 Table Store HBase Client supported functions
API support differences between Table Store and HBase

Table Store and HBase, while similar in terms of data model and functions, have 
different APIs. The following sections detail differences between Table Store HBase 
Client APIs and HBase APIs.

Functions supported by Table Store HBase Client APIs:
• CreateTable

Table Store does not support ColumnFamily as all data can be considered to be in
 the same ColumnFamily. This means that TTL and Max Versions of Table Store 

146 Issue: 20191127



Table Store Developer Guide /  10 HBase

are at the table-level. Therefore, Table Store has some support for the following 
functions:
Functions Supported or Not
family max version Table-level Max Versions supported. 

Default value: 1
family min version Unsupported
family ttl Table-level TTL supported
is/set ReadOnly Supported through the sub-account of

 RAM
Pre-partitioning Unsupported
blockcache Unsupported
blocksize Unsupported
BloomFilter Unsupported
column max version Unsupported
cell ttl Unsupported
Control parameter Unsupported

• Put
Functions Supported or Not
Writes multiple columns of data at a 
time

Supported

Specifies a timestamp Supported
Uses the system time by default if no 
timestamp is specified

Supported

Single-row ACL Unsupported
ttl Unsupported
Cell Visibility Unsupported
tag Unsupported

Issue: 20191127 147



Table Store Developer Guide /  10 HBase

• Get
Table Store guarantees high data consistency. If the HTTP 200 status code (OK) 
is returned after data is written to an API, the data is permanently written to all 
copies, and can be read immediately by Get.
Functions Supported or Not
Reads a row of data Supported
Reads all columns in a ColumnFamily Supported
Reads data from a specified column Supported
Reads data with a specified timestamp Supported
Reads data of a specified number of 
versions

Supported

TimeRange Supported
ColumnfamilyTimeRange Unsupported
RowOffsetPerColumnFamily Supported
MaxResultsPerColumnFamily Unsupported
checkExistenceOnly Unsupported
closestRowBefore Supported
attribute Unsupported
cacheblock:true Supported
cacheblock:false Unsupported
IsolationLevel:READ_COMMITTED Supported
IsolationLevel:READ_UNCOMMITTED Unsupported
IsolationLevel:STRONG Supported
IsolationLevel:TIMELINE Unsupported

• Scan
Table Store guarantees high data consistency. If the HTTP 200 status code (OK) 
is returned after data is written to an API, the data is permanently written to all 
copies, which can be read immediately by Scan.
Functions Supported or Not
Determines a scanning range based on 
the specified start and stop

Supported

148 Issue: 20191127



Table Store Developer Guide /  10 HBase

Functions Supported or Not
Globally scans data if no scanning 
range is specified

Supported

prefix filter Supported
Reads data using the same logic as Get Supported
Reads data in reverse order Supported
caching Supported
batch Unsupported
maxResultSize, indicating the 
maximum size of the returned data 
volume

Unsupported

small Unsupported
batch Unsupported
cacheblock:true Supported
cacheblock:false Unsupported
IsolationLevel:READ_COMMITTED Supported
IsolationLevel:READ_UNCOMMITTED Unsupported
IsolationLevel:STRONG Supported
IsolationLevel:TIMELINE Unsupported
allowPartialResults Unsupported

• Batch
Functions Supported or Not
Get Supported
Put Supported
Delete Supported
batchCallback Unsupported

• Delete
Functions Supported or Not
Deletes a row Supported
Deletes all versions of the specified 
column

Supported

Issue: 20191127 149



Table Store Developer Guide /  10 HBase

Functions Supported or Not
Deletes the specified version of the 
specified column

Supported

Deletes the specified ColumnFamily Unsupported
When a timestamp is specified, 
deleteColumn deletes the versions that 
are equal to the timestamp

Supported

When a timestamp is specified, 
deleteFamily and deleteColumn delete
 the versions that are earlier than or 
equal to the timestamp

Unsupported

When no timestamp is specified, 
deleteColumn deletes the latest version

Unsupported

When no timestamp is specified, 
deleteFamily and deleteColumn delete 
the version of the current system time

Unsupported

addDeleteMarker Unsupported
• checkAndXXX

Functions Supported or Not
CheckAndPut Supported
checkAndMutate Supported
CheckAndDelete Supported
Checks whether the value of a 
column meets the conditions. If yes, 
checkAndXXX deletes the column.

Supported

Uses the default value if no value is 
specified

Supported

Checks row A and executes row B. Unsupported
• Exist

Functions Supported or Not
Checks whether one or more rows exist
 and does not return any content

Supported

150 Issue: 20191127



Table Store Developer Guide /  10 HBase

• Filter
Functions Supported or Not
ColumnPaginationFilter columnOffset and count unsupported
SingleColumnValueFilter Supported: LongComparator, 

BinaryComparator, and ByteArrayC
omparable
Unsupported: RegexStringComparato
r, SubstringComparator, and 
BitComparator

Functions not supported by Table Store HBase Client APIs
• Namespaces

Table Store uses instances to manage a data table. An instance is the minimum
billing unit in Table Store. You can manage instances in the Table Store console.
Therefore, the following features are not supported:
- createNamespace(NamespaceDescriptor descriptor)
- deleteNamespace(String name)
- getNamespaceDescriptor(String name)
- listNamespaceDescriptors()
- listTableDescriptorsByNamespace(String name)
- listTableNamesByNamespace(String name)
- modifyNamespace(NamespaceDescriptor descriptor)

• Region management
Data partition is the basic unit for data storage and management in Table Store.
Table Store automatically splits or merges the data partitions based on their data
volumes and access conditions. Therefore, Table Store does not support features
related to Region management in HBase.

• Snapshots
Table Store does not support Snapshots, or related featurs of Snapshots.

Issue: 20191127 151

https://ots.console.aliyun.com


Table Store Developer Guide /  10 HBase

• Table management
Table Store automatically splits, merges, and compacts data partitions in tables. 
Therefore, the following features are not supported:
- getTableDescriptor(TableName tableName)
- compact(TableName tableName)
- compact(TableName tableName, byte[] columnFamily)
- flush(TableName tableName)
- getCompactionState(TableName tableName)
- majorCompact(TableName tableName)
- majorCompact(TableName tableName, byte[] columnFamily)
- modifyTable(TableName tableName, HTableDescriptor htd)
- split(TableName tableName)
- split(TableName tableName, byte[] splitPoint)

• Coprocessors
Table Store does not support the coprocessor. Therefore, the following features 
are not supported:
- coprocessorService()
- coprocessorService(ServerName serverName)
- getMasterCoprocessors()

• Distributed procedures
Table Store does not support Distributed procedures. Therefore, the following 
features are not supported:
- execProcedure(String signature, String instance, Map props)
- execProcedureWithRet(String signature, String instance, Map props)
- isProcedureFinished(String signature, String instance, Map props)

• Increment and Append
Table Store does not support atomic increase/decrease or atomic Append.

10.3 Differences between Table Store and HBase
This topic introduces features of Table Store HBase Client and explains restricted 
and supported functions when compared with HBase. Features are listed as follows.

152 Issue: 20191127



Table Store Developer Guide /  10 HBase

Table
Table Store only supports single ColumnFamilies, that is, it does not support multi-
ColumnFamilies.

Row and Cell
• Table Store does not support ACL settings.
• Table Store does not support Cell Visibility settings.
• Table Store does not support Tag settings.

GET
Table Store only supports single ColumnFamilies. Therefore, it does not support 
ColumnFamily related APIs, including:
• setColumnFamilyTimeRange(byte[] cf, long minStamp, long maxStamp)
• setMaxResultsPerColumnFamily(int limit)
• setRowOffsetPerColumnFamily(int offset)

SCAN
Similar to GET, Table Store does not support ColumnFamily related APIs and cannot
 be used to set partial optimization APIs, including:
• setBatch(int batch)
• setMaxResultSize(long maxResultSize)
• setAllowPartialResults(boolean allowPartialResults)
• setLoadColumnFamiliesOnDemand(boolean value)
• setSmall(boolean small)

Batch
Table Store does not support BatchCallback.

Mutations and Deletions
• Table Store does not support deletion of the specified ColumnFamily.
• Table Store does not support deletion of the versions with the latest timestamp.
• Table Store does not support deletion of all versions earlier than the specified 

timestamp.
Increment and Append

Table Store does not support Increment or Append features.
Issue: 20191127 153



Table Store Developer Guide /  10 HBase

Filter
• Table Store supports ColumnPaginationFilter.
• Table Store supports FilterList.
• Table Store partially supports SingleColumnValueFilter, and supports only 

BinaryComparator.
• Table Store does not support other Filters.

Optimization
Some of the HBase APIs involve access and storage optimization. These APIs are not
 opened currently:
• blockcache: The default value is "true", which cannot be modified.
• blocksize: The default value is "64 KB", which cannot be modified.
• IsolationLevel: The default value is "READ_COMMITTED", which cannot be 

modified.
• Consistency: The default value is "STRONG", which cannot be modified.

Admin
The org.apache.hadoop.hbase.client.Admin APIs of HBase are used for
management and control, most of which are not required in Table Store.
As Table Store is a cloud service, it automatically performs operations such as 
operation and maintenance, management, and control, which does not need to be 
concerned. Table Store currently does not support a few of APIs.
• CreateTable

Table Store only supports single ColumnFamilies. Therefore, you can create 
only one ColumnFamily when creating a table. The ColumnFamily supports the 
MaxVersions and TimeToLive parameters.

154 Issue: 20191127



Table Store Developer Guide /  10 HBase

• Maintenance task
In Table Store, the following APIs related to task maintenance are automatically 
processed:
- abort(String why, Throwable e)
- balancer()
- enableCatalogJanitor(boolean enable)
- getMasterInfoPort()
- isCatalogJanitorEnabled()
- rollWALWriter(ServerName serverName) -runCatalogScan()
- setBalancerRunning(boolean on, boolean synchronous)
- updateConfiguration(ServerName serverName)
- updateConfiguration()
- stopMaster()
- shutdown()

• Namespaces
In Table Store, the instance name is similar to Namespaces in HBase. Therefore, 
it does not support Namespaces related APIs, including:
- createNamespace(NamespaceDescriptor descriptor)
- modifyNamespace(NamespaceDescriptor descriptor)
- getNamespaceDescriptor(String name)
- listNamespaceDescriptors()
- listTableDescriptorsByNamespace(String name)
- listTableNamesByNamespace(String name)
- deleteNamespace(String name)

Issue: 20191127 155



Table Store Developer Guide /  10 HBase

• Region
Table Store automatically performs Region related operations. Therefore, it does
 not support the following APIs:
- assign(byte[] regionName)
- closeRegion(byte[] regionname, String serverName)
- closeRegion(ServerName sn, HRegionInfo hri)
- closeRegion(String regionname, String serverName)
- closeRegionWithEncodedRegionName(String encodedRegionName, String 

serverName)
- compactRegion(byte[] regionName)
- compactRegion(byte[] regionName, byte[] columnFamily)
- compactRegionServer(ServerName sn, boolean major)
- flushRegion(byte[] regionName)
- getAlterStatus(byte[] tableName)
- getAlterStatus(TableName tableName)
- getCompactionStateForRegion(byte[] regionName)
- getOnlineRegions(ServerName sn)
- majorCompactRegion(byte[] regionName)
- majorCompactRegion(byte[] regionName, byte[] columnFamily)
- mergeRegions(byte[] encodedNameOfRegionA, byte[] encodedNam

eOfRegionB, boolean forcible)
- move(byte[] encodedRegionName, byte[] destServerName)
- offline(byte[] regionName)
- splitRegion(byte[] regionName)
- splitRegion(byte[] regionName, byte[] splitPoint)
- stopRegionServer(String hostnamePort)
- unassign(byte[] regionName, boolean force)

Snapshots
Table Store does not support Snapshots related APIs.

Replication
Table Store does not support Replication related APIs.

156 Issue: 20191127



Table Store Developer Guide /  10 HBase

Coprocessors
Table Store does not support Coprocessors related APIs.

Distributed procedures
Table Store does not support Distributed procedures related APIs.

Table Management
Table Store automatically performs Table related operations, which does not need 
to be concerned. Therefore, Table Store does not support the following APIs:
• compact(TableName tableName)
• compact(TableName tableName, byte[] columnFamily)
• flush(TableName tableName)
• getCompactionState(TableName tableName)
• majorCompact(TableName tableName)
• majorCompact(TableName tableName, byte[] columnFamily)
• modifyTable(TableName tableName, HTableDescriptor htd)
• split(TableName tableName)
• split(TableName tableName, byte[] splitPoint)

Restrictions
As Table Store is a cloud service, to guarantee the optimal overall performance,
some parameters are restricted and cannot be reconfigured. For more information
about the restrictions, see Limits.

10.4 Migrate from HBase to Table Store
The following information explains how to migrate HBase to Table Store.

Dependencies
Table Store HBase Client v1.2.0 depends on HBase Client v1.2.0 and Table Store Java
SDK v4.2.1. The configuration of pom.xml is as follows.
 <dependencies>
        <dependency>
            <groupId>com.aliyun.openservices</groupId>
            <artifactId>tablestore-hbase-client</artifactId>
            <version>1.2.0</version>
        </dependency>

Issue: 20191127 157



Table Store Developer Guide /  10 HBase
    </dependencies>

If you want to use another HBase Client or Table Store Java SDK version, you must 
use the exclusion tag. In the following example, HBase Client v1.2.1 and Table Store
 Java SDK v4.2.0 are used.
   <dependencies>
        <dependency>
            <groupId>com.aliyun.openservices</groupId>
            <artifactId>tablestore-hbase-client</artifactId>
            <version>1.2.0</version>
            <exclusions>
                <exclusion>
                    <groupId>com.aliyun.openservices</groupId>
                    <artifactId>tablestore</artifactId>
                </exclusion>
                <exclusion>
                    <groupId>org.apache.hbase</groupId>
                    <artifactId>hbase-client</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>org.apache.hbase</groupId>
            <artifactId>hbase-client</artifactId>
            <version>1.2.1</version>
        </dependency>
        <dependency>
            <groupId>com.aliyun.openservices</groupId>
            <artifactId>tablestore</artifactId>
            <classifier>jar-with-dependencies</classifier>
            <version>4.2.0</version>
        </dependency>
    </dependencies>

Table Store HBase Client v1.2.x is only compatible with HBase Client v1.2.x, 
because API changes exist in HBase Client v1.2.x and earlier.
If you want to use HBase Client version v1.1.x, use Table Store HBase Client version 
v1.1.x.
If you want to use HBase Client version v0.x.x, see Migrate HBase of an earlier version.

Configure the file
To migrate data from HBase Client to Table Store HBase Client, modify the 
following two items in the configuration file.
• HBase Connection type

Set Connection to TableStoreConnection.
    <property>
        <name>hbase.client.connection.impl</name>
        <value>com.alicloud.tablestore.hbase.TablestoreConnection</
value>

158 Issue: 20191127



Table Store Developer Guide /  10 HBase
    </property>

• Configuration items of Table Store
Table Store is a cloud service and provides strict permission management. Table
 Store offers strict permission management. To access Table Store, you must 
configure access information such as the AccessKey.
- You need to configure the following four items before accessing Table Store:

 <property>
   <name>tablestore.client.endpoint</name>
   <value></value>
  </property>
  <property>
   <name>tablestore.client.instancename</name>
   <value></value>
  </property>
  <property>
   <name>tablestore.client.accesskeyid</name>
   <value></value>
  </property>
  <property>
   <name>tablestore.client.accesskeysecret</name>
   <value></value>
  </property>

- Optional items you can configure are as follows.
  <property>
   <name>hbase.client.tablestore.family</name>
   <value>f1</value>
  </property>
  <property>
   <name>hbase.client.tablestore.family.$tablename</name>
   <value>f2</value>
  </property>
  <property>
   <name>tablestore.client.max.connections</name>
   <value>300</value>
  </property>
  <property>
   <name>tablestore.client.socket.timeout</name>
   <value>15000</value>
  </property>
  <property>
   <name>tablestore.client.connection.timeout</name>
   <value>15000</value>
  </property>
  <property>
   <name>tablestore.client.operation.timeout</name>
   <value>2147483647</value>
  </property>
  <property>
   <name>tablestore.client.retries</name>
   <value>3</value>

Issue: 20191127 159



Table Store Developer Guide /  10 HBase
  </property>

■ hbase.client.tablestore.family and hbase.client.tablestore.family.$
tablename
■ Table Store only supports single ColumnFamilies. When you use HBase

APIs, you must enter the content of the family.
hbase.client.tablestore.family indicates global configuration, while 
hbase.client.tablestore.family.$tablename indicates configuration
of a single table.

■ Rule: For tables whose names are T, search for hbase.client.tablestore
.family.T first. If the family does not exist, search for hbase.client.
tablestore.family. If the family does not exist, use the default value f.

■ tablestore.client.max.connections
Maximum connections. The default value is 300.

■ tablestore.client.socket.timeout
Socket time-out time. The default value is 15 seconds.

■ tablestore.client.connection.timeout
Connection time-out time. The default value is 15 seconds.

■ tablestore.client.operation.timeout
API time-out time. The default value is Integer.MAX_VALUE, indicating that 
the API never times out.

■ tablestore.client.retries
Number of retries when a request fails. The default value is 3.

10.5 Migrate HBase of an earlier version
Table Store HBase Client supports APIs of HBase Client 1.0.0 and later versions.
Compared with earlier versions, HBase Client 1.0.0 has big changes which are 
incompatible with HBase Client of earlier versions.
If you use an HBase Client from version 0.x.x (that is, an earlier version than 1.0.0), 
this topic explains how to integrate your HBase Client version with Table Store.

160 Issue: 20191127



Table Store Developer Guide /  10 HBase

Connection APIs
HBase 1.0.0 and later versions cancel the HConnection APIs, and instead use the 
org.apache.hadoop.hbase.client.ConnectionFactory series to provide the
Connection APIs and replace ConnectionManager and HConnectionManager with
ConnectionFactory.
Creating a Connection API has relatively high cost, however, Connection APIs 
guarantee thread safety. When using a Connection API, you can generate only one 
Connection object in the program. Multiple threads can then share this object.
You also need to manage the Connection lifecycle, and close it after use.
The latest code is as follows:
Connection connection = ConnectionFactory.createConnection(config);
// ...
connection.close();

TableName series
In HBase version 1.0.0 and earlier, you can use a String-type name when creating
a table. For later HBase versions, you can use the org.apache.hadoop.hbase.
TableName.
The latest code is as follows:
String tableName = "MyTable";
// or byte[] tableName = Bytes.toBytes("MyTable");
TableName tableNameObj = TableName.valueOf(tableName);

Table, BufferedMutator, and RegionLocator APIs
From HBase Client v1.0.0, the HTable APIs are replaced with the Table, BufferedMu
tator, and RegionLocator APIs.
• org.apache.hadoop.hbase.client.Table: Used to operate reading, writing, and

other requests of a single table.
• org.apache.hadoop.hbase.client.BufferedMutator: Used for asynchronous

batch writing. This API corresponds to setAutoFlush(boolean) of the
HTableInterface API of the earlier versions.

• org.apache.hadoop.hbase.client.RegionLocator: Indicates the table partition
information.

Issue: 20191127 161



Table Store Developer Guide /  10 HBase

The Table, BufferedMutator, and RegionLocator APIs do not guarantee thread 
safety. However, they are lightweight and can be used to create an object for each 
thread.

Admin APIs
From HBase Client v1.0.0, HBaseAdmin APIs are replaced by org.apache.hadoop
.hbase.client.Admin. As Table Store is a cloud service, and most operation
and maintenance APIs are automatically processed, most Admin APIs are not
supported. For more information, see Differences between Table Store and HBase.
Use the Connection instance to create an Admin instance:
Admin admin = connection.getAdmin();

10.6 Hello World
This topic describes how to use Table Store HBase Client to implement a simple 
Hello World program, and includes the following operations:
• Configure project dependencies.
• Connect Table Store
• Create a table
• Write Data
• Read Data
• Scan data
• Delete a table

Code position
This sample program uses HBase APIs to access Table Store. The complete sample
program is located in the Github aliyun-tablestore-hbase-client project. The directory is src/
test/java/samples/HelloWorld.java.

Use HBase APIs
• Configure project dependencies

Configure Maven dependencies as follows.
   <dependencies>
        <dependency>
            <groupId>com.aliyun.openservices</groupId>
            <artifactId>tablestore-hbase-client</artifactId>

162 Issue: 20191127

https://github.com/aliyun/aliyun-tablestore-hbase-client


Table Store Developer Guide /  10 HBase
            <version>1.2.0</version>
        </dependency>
    </dependencies>

For more information about advanced configurations, see Migrate from HBase to Table

Store.
• Configure the file

Add the following configuration items to hbase-site.xml.
<configuration>
    <property>
        <name>hbase.client.connection.impl</name>
        <value>com.alicloud.tablestore.hbase.TablestoreConnection</
value>
    </property>
    <property>
        <name>tablestore.client.endpoint</name>
        <value>endpoint</value>
    </property>
    <property>
        <name>tablestore.client.instancename</name>
        <value>instance_name</value>
    </property>
    <property>
        <name>tablestore.client.accesskeyid</name>
        <value>access_key_id</value>
    </property>
    <property>
        <name>tablestore.client.accesskeysecret</name>
        <value>access_key_secret</value>
    </property>
    <property>
        <name>hbase.client.tablestore.family</name>
        <value>f1</value>
    </property>
    <property>
        <name>hbase.client.tablestore.table</name>
        <value>ots_adaptor</value>
    </property>
</configuration>

For more information about advanced configurations, see Migrate from HBase to Table

Store.
• Connect Table Store

Create a TableStoreConnection object to connect Table Store.
  Configuration config = HBaseConfiguration.create();
  
  // Create a Tablestore Connection
  Connection connection = ConnectionFactory.createConnection(config
);
  
  // Admin is used for creation, management, and deletion

Issue: 20191127 163



Table Store Developer Guide /  10 HBase
        Admin admin = connection.getAdmin();

• Create a table
Create a table using the specified table name. Use the default table name for 
MaxVersions and TimeToLive.
  // Create an HTableDescriptor, which contains only one ColumnFami
ly
  HTableDescriptor descriptor = new HTableDescriptor(TableName.
valueOf(TABLE_NAME));
  
  // Create a ColumnFamily. Use the default ColumnFamily name for 
Max Versions and TimeToLive. The default ColumnFamily name for Max 
Versions is 1 and for TimeToLive is Integer.INF_MAX
  descriptor.addFamily(new HColumnDescriptor(COLUMN_FAMILY_NAME));
  
  // Use the createTable API of the Admin to create a table
  System.out.println("Create table " + descriptor.getNameAsString
());
  admin.createTable(descriptor);

• Write Data
Write a row of data to Table Store.
  // Create a TablestoreTable for reading, writing, updating, 
deletion, and other operations on a single table
  Table table = connection.getTable(TableName.valueOf(TABLE_NAME));
  
  // Create a Put object with the primary key row_1
  System.out.println("Write one row to the table");
        Put put = new Put(ROW_KEY);
  
  // Add a column. Table Store supports only single ColumnFamilies
. The ColumnFamily name is configured in hbase-site.xml. If the 
ColumnFamily name is not configured, the default name is "f". In 
this case, the value of COLUMN_FAMILY_NAME may be null when data is 
written.
  put.addColumn(COLUMN_FAMILY_NAME, COLUMN_NAME, COLUMN_VALUE);
  
  // Run put for Table, and use HBase APIs to write the row of data 
to Table Store
        table.put(put);

• Read Data
Read data of the specified row.
  // Create a Get object to read the row whose primary key is 
ROW_KEY.
  Result getResult = table.get(new Get(ROW_KEY));
  Result result = table.get(get);
  
  // Print the results
  String value = Bytes.toString(getResult.getValue(COLUMN_FAM
ILY_NAME, COLUMN_NAME));
  System.out.println("Get one row by row key");

164 Issue: 20191127



Table Store Developer Guide /  10 HBase
  System.out.printf("\t%s = %s\n", Bytes.toString(ROW_KEY), value);

• Scan data
Read data in the specified range.
 Scan data of all rows in the table
 System.out.println("Scan for all rows:");
 Scan scan = new Scan();

 ResultScanner scanner = table.getScanner(scan);
 
 // Print the results cyclically
 for (Result row : scanner) {
  byte[] valueBytes = row.getValue(COLUMN_FAMILY_NAME, COLUMN_NAME);
  System.out.println('\t' + Bytes.toString(valueBytes));
 }

• Delete a table
Use Admin APIs to delete a table.
  print("Delete the table");
  admin.disableTable(table.getName());
  admin.deleteTable(table.getName());

Complete code
package samples;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.hadoop.hbase.HTableDescriptor;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.util.Bytes;

import java.io.IOException;

public class HelloWorld {

    private static final byte[] TABLE_NAME = Bytes.toBytes("HelloTable
store");
    private static final byte[] ROW_KEY = Bytes.toBytes("row_1");
    private static final byte[] COLUMN_FAMILY_NAME = Bytes.toBytes("f
");
    private static final byte[] COLUMN_NAME = Bytes.toBytes("col_1");
    private static final byte[] COLUMN_VALUE = Bytes.toBytes("
col_value");

    public static void main(String[] args) {
        helloWorld();
    }

    private static void helloWorld() {

        try  {
            Configuration config = HBaseConfiguration.create();
            Connection connection = ConnectionFactory.createConnection
(config);

Issue: 20191127 165



Table Store Developer Guide /  10 HBase

            Admin admin = connection.getAdmin();

            HTableDescriptor descriptor = new HTableDescriptor(
TableName.valueOf(TABLE_NAME));
            descriptor.addFamily(new HColumnDescriptor(COLUMN_FAM
ILY_NAME));

            System.out.println("Create table " + descriptor.getNameAsS
tring());
            admin.createTable(descriptor);

            Table table = connection.getTable(TableName.valueOf(
TABLE_NAME));

            System.out.println("Write one row to the table");
            Put put = new Put(ROW_KEY);
            put.addColumn(COLUMN_FAMILY_NAME, COLUMN_NAME, COLUMN_VAL
UE);
            table.put(put);

            Result getResult = table.get(new Get(ROW_KEY));
            String value = Bytes.toString(getResult.getValue(
COLUMN_FAMILY_NAME, COLUMN_NAME));
            System.out.println("Get a one row by row key");
            System.out.printf("\t%s = %s\n", Bytes.toString(ROW_KEY), 
value);

            Scan scan = new Scan();

            System.out.println("Scan for all rows:");
            ResultScanner scanner = table.getScanner(scan);
            for (Result row : scanner) {
                byte[] valueBytes = row.getValue(COLUMN_FAMILY_NAME, 
COLUMN_NAME);
                System.out.println('\t' + Bytes.toString(valueBytes));
            }

            System.out.println("Delete the table");
            admin.disableTable(table.getName());
            admin.deleteTable(table.getName());

            table.close();
            admin.close();
            connection.close();
        } catch (IOException e) {
            System.err.println("Exception while running HelloTable
store: " + e.toString());
            System.exit(1);
        }
    }
}

166 Issue: 20191127



Table Store Developer Guide /  11 Authorization management

11 Authorization management
11.1 RAM and STS

The permission management mechanism of Alibaba Cloud includes Resource
Access Management (RAM) and Security Token Service (STS). RAM user accounts
with different permissions can be created to access Table Store, and temporary
access permission can also be granted to RAM users. RAM and STS greatly improve
management flexibility and security.
RAM is used to control the permissions of each account. RAM allows you to manage
permissions by granting different permissions to different RAM user accounts
created under Alibaba Cloud accounts. For more information, see RAM documentation.
STS is a security credential (token) management system that grants users 
temporary access permission.

Background
RAM and STS enable you to securely grant permissions to users without exposing 
your Alibaba Cloud account AccessKey pair. If the AccessKey pair of your Alibaba
 Cloud account is leaked, other users can operate on the resources under the 
account and access important information.
RAM allows you to manage permissions granted to RAM users on different entities
 and minimizes the adverse impact if the AccessKey pair of a RAM user is leaked
. RAM user accounts are often used long term to perform&nbsp;operations. To 
ensure account confidential, the AccessKey pairs of RAM user accounts must be 
kept confidential.
In contrast to the permanent permission management function provided by RAM, 
STS provides temporary access authorization through a temporary AccessKey pair 
and token to allow temporary access to Table Store. The permissions obtained from
 STS are restricted and are only valid for a limited period of time to minimize the 
adverse impact on the system in case of information leakage.

Terms
The following table describes terms related to RAM and STS.

Issue: 20191127 167

https://www.alibabacloud.com/help/doc-detail/28627.htm


Table Store Developer Guide /  11 Authorization management

Term Description 
RAM user account RAM user accounts are created under 

an Alibaba Cloud account and assigned 
independent passwords and permission
s. Each RAM user account has an 
AccessKey pair. RAM user accounts
 can be used to perform authorized
 operations in the same way as the 
Alibaba Cloud account. In most cases, 
a RAM user account can be considered 
as a user with certain permissions or an
 operator with permissions for specific 
operations.

role A role is a set of permissions that a 
user can assume. Roles do not have
 independent logon passwords and 
AccessKey pairs. RAM user accounts 
can assume roles. Permissions of a role
 are granted to RAM user accounts that 
assume the role.

policy Policies are rules used to define 
permissions, such as the permissions to 
read from or write to certain resources.

resource Resources are the cloud resources that
 users can access, such as individual 
Table Store instances, all Table Store
 instances, or a certain table in an 
instance.

The relationship between a RAM user account and its roles is similar to a relationsh
ip between an individual and their social identities in different scenarios. For 
example, a person can assume the role of employee in a company and a role of 
parent at home. Different roles are assigned corresponding permissions. Roles are
 not actual users that can perform operations. Roles are complete only when being
 assumed by RAM user accounts. Furthermore, a role can be assumed by multiple
 users at the same time. The user who assumes a role is automatically assigned all 
permissions of the role.
Example:

168 Issue: 20191127



Table Store Developer Guide /  11 Authorization management

Assume that an Alibaba Cloud account named Alice has two Table Store instances 
named alice_a and alice_b. Alice has full permissions on both instances.
To maintain the security of the Alibaba Cloud account, Alice uses RAM to create two
 RAM user accounts: Bob and Carol. Bob has read and write permissions on alice_a
, and Carol has read and write permissions on alice_b. Bob and Carol both have 
their own AccessKey pairs. If the AccessKey pair of Bob or Carol is leaked, only the
 corresponding instance is affected. Alice can then revoke the permissions of the 
compromised RAM user account through the console.
If Alice needs to authorize another RAM user to read the tables in alice_a, instead
 of disclosing Bob's AccessKey pair to the user, Alice can create a new role such
 as AliceAReader and grant that role the read permission on alice_a. However, 
AliceAReader cannot be used directly because it does not have a corresponding 
AccessKey pair.
To obtain temporary authorization, Alice can call AssumeRole to inform STS that 
the RAM user account Bob wants to assume the AliceAReader role. If AssumeRole
 is successfully called, STS returns a temporary AccessKey ID, AccessKey secret, 
and security token as access credentials. A temporary user assigned with these 
credentials is authorized to temporarily access alice_a. The expiration time of the 
credentials is specified when AssumeRole is called.

Design philosophy behind RAM and STS
RAM and STS are designed with complexity to achieve flexible access control at the 
cost of simplicity.
RAM user accounts and roles are separated to keep the entity that performs 
operations separating from the virtual entity that represents a group of permission
s. Assume that a user requires multiple permissions such as read and write 
permissions, but each operation only requires one of the permissions. In this case
, you can create two roles: one with the read permission and the other one with 
the write permission. Then you can create a RAM user account that does not have 
any permissions but can assume these roles. When the user needs to read or write
 data, the RAM user account can temporarily assume the role with the required 
permission. In addition, roles can be used to grant permissions to other Alibaba
 Cloud users, which makes collaborations easier and maintains strict account 
security.

Issue: 20191127 169



Table Store Developer Guide /  11 Authorization management

Flexible access control does not mean that you have to use all these functions. You
 may only use a subset of functions as needed. For example, if you do not need to 
use temporary access credentials that have an expiration time, you can use only the
 RAM user account function.
The following topics provide examples to show how to use RAM and STS and
suggestions on their usage. Operations in the examples are performed through the
console and command lines to reduce the actual usage of code. If code must be used
to perform such operations, see the API Reference (RAM) and API Reference (STS).

11.2 Create a RAM user account
This topic describes how to create a RAM user account.

Step 1: Log on to the RAM console
You can use your Alibaba Cloud account to log on to the RAM console to create a 
RAM user account. If your Alibaba Cloud account grants a RAM user administrative
 permissions, the RAM user will also be able to create multiple RAM user accounts 
through the RAM console.
• Log on to the RAM console with an Alibaba Cloud account.
• Log on to the RAM console with a RAM user account.

Step 2: Create a RAM user account
Procedure

1. In the left-side navigation pane, click Users under Identities.
2. Click Create User.

Note:
To create multiple RAM users at a time, click Add User.

3. Specify the Logon Name and Display Name parameters.
4. Under Access Mode, select Console Password Logon or Programmatic Access.

• Console Password Logon: If you select this check box, you must also
complete the basic security settings for logon, including deciding whether to
automatically generate a password or customize the logon password, whether

170 Issue: 20191127

https://www.alibabacloud.com/help/doc-detail/28672.htm
https://www.alibabacloud.com/help/doc-detail/28756.htm
https://ram.console.aliyun.com/
https://signin.alibabacloud.com/login.htm


Table Store Developer Guide /  11 Authorization management

the user must reset the password upon the next logon, and whether to enable
multi-factor authentication (MFA).

• Programmatic Access: If you select this check box, an AccessKey pair is
automatically created for the RAM user. The user can access Alibaba Cloud
resources by calling an API operation or by using a development tool.

Note:
We recommend that you select only one access mode for the RAM users to
ensure the security of your Alibaba Cloud account. This prevents RAM users
who have terminated their employment contracts with the company from
accessing Alibaba Cloud resources.

5. Click OK.

11.3 Grant permissions to a RAM user
This topic describes how to grant permissions to a RAM user.

Table Store permission policies
RAM provides three permission policies for Table Store:
• AliyunOTSReadOnlyAccess (read-only permissions on Table Store)
• AliyunOTSWriteOnlyAccess (write-only permissions on Table Store)
• AliyunOTSFullAccess (management permissions on Table Store)
You can choose from the preceding policies to grant permissions to RAM users as
needed. You can also #unique_111.

Procedure
Procedure

1. Log on to the RAM console by using your Alibaba Cloud account.
2. In the left-side navigation pane, choose Permissions > Grants.
3. Click Grant Permission.
4. In the Principal field, enter the principal name and click the target principal.

Note:
You can enter a keyword to search for a RAM user, user group, or role.

Issue: 20191127 171

https://ram.console.aliyun.com/


Table Store Developer Guide /  11 Authorization management

5. In the Policy Name column, select the target policy.

Note:
You can click X to revoke your selection.

6. Click OK.
7. Click Finished.

11.4 Configure an MFA device for a RAM user
This topic describes how to use Multi-Factor Authentication (MFA) to enhance
security for your account.

Context
Context

MFA is a simple and effective authentication method that adds an extra layer of 
security in addition to username and password. After MFA is configured, when a
 RAM user logs on to the Alibaba Cloud website, the system requires the user to 
enter the username and password (first security factor), and then requires the user
 to enter a dynamic verification code (second security factor) from the MFA device. 
The multi-factor authentication provides greater security for your account.

Procedure
The following section uses Google Authenticator app as an example to describe how
 to configure an MFA device for a RAM user.

Procedure
1. In the left-side navigation pane, click Users under Identities.
2. In the User Logon Name/Display Name column, click the username of the target

RAM user.
3. On the Authentication tab, click Enable the virtual MFA device.
4. Download and install the Google Authenticator app on your mobile phone.

• For iOS, install the Google Authenticator app from the App Store.
• For Android, install the Google Authenticator app from the Google Play Store.

Note:

172 Issue: 20191127



Table Store Developer Guide /  11 Authorization management

You need to install a QR code scanner from the Google Play Store for Google
Authenticator to identify QR codes.

5. Open the Google Authenticator app and tap BEGIN SETUP.
6. Select a method to enable the MFA device from the following available options.

• (Recommended) Tap Scan barcode in the Google Authenticator app and scan
the QR codedisplayed on the Scan the code tab in the RAM console.

• Tap Manual entry, enter the username and key, and then tap the √ icon in the
Google Authenticator app.

Note:
You can obtain the username and key from the Retrieve manually enter
information tab in the RAM console.

7. Enter the two consecutive verification codes that are obtained from the Google
Authenticator app, and click Enable.

Note:
The verification code in the Google Authenticator app is refreshed at an interval
of 30 seconds.

What to do next
When a RAM user logs on to the RAM console with the MFA device enabled, the 
RAM user must enter the following information:
1. Username and password of the RAM user
2. Two consecutive verification codes provided by the MFA device

Note:
Before you uninstall or remove an MFA device, you must log on to the Alibaba
Cloud console and disable the MFA device. Otherwise, a logon failure may occur.

11.5 STS temporary access authorization
11.5.1 Create a temporary role and grant permissions

Security Token Service (STS) is a permission management system provided
by Alibaba Cloud. You can use policies specified through STS to control user

Issue: 20191127 173



Table Store Developer Guide /  11 Authorization management

permissions. This topic describes how to use STS to authorize users temporary
permissions to access Table Store.

Context
Context

In typical app development scenarios, you can use STS to set temporary access
 permissions for different users. You can specify the validity period of the 
temporary token to mitigate the risks of RAM user account information being
 leaked. Different authorization policies can be added to control the access 
permissions of different app users. For example, you can control the table paths 
accessed by users to isolate the storage spaces of different app users.

Prerequisites
• Log on to the RAM console with an Alibaba Cloud account.
• You have created a RAM user account named ram_test_app. When a RAM user 

account assumes a role, the account automatically obtains all role permissions 
and does not need to be granted further permissions.

Step 1: Create temporary roles
Create two roles: RamTestAppReadOnly and RamTestAppWrite. Grant read 
permissions to RamTestAppReadOnly and file upload permissions to RamTestApp
Write. Perform the following operations:

Procedure
1. In the left-side navigation pane, click RAM Roles.
2. Click Create RAM Role, select Alibaba Cloud Account, and then click Next.
3. Specify the RAM Role Name and Note parameters.
4. Under Select Trusted Alibaba Cloud Account, select Current Alibaba Cloud

Account or Other Alibaba Cloud Account.

Note:
If you select Other Alibaba Cloud Account, enter the account ID.

5. Click OK.
Step 2: Create custom policies

Repeat the following steps to create two policies named ram-test-app-readonly and 
ram-test-app-write.

174 Issue: 20191127

https://ram.console.aliyun.com/


Table Store Developer Guide /  11 Authorization management

Procedure
1. In the left-side navigation pane, click Policies under Permissions.
2. On the page that appears, click Create Policy.
3. On the Create Custom Policy page, specify the Policy Name and Note parameters.
4. Under Configuration Mode, select Visualized or Script.

• If you select Visualized, click Add Statement. On the page that appears,
configure the permission effect, actions, and resources.

• If you select Script, edit the policy script according to the policy structure and

syntax.
5. Click OK.
The scripts for the ram-test-app-readonly policy and ram-test-app-write policy in
this example are as follows:
• Ram-test-app-readonly

{
"Statement": [
    {
      "Effect": "Allow",
      "Action": [
        "ots:BatchGet*",
        "ots:Describe*",
        "ots:Get*",
        "ots:List*"
      ],
      "Resource": [
        "acs:ots:*:*:instance/ram-test-app",
        "acs:ots:*:*:instance/ram-test-app/table/*"
      ]
    }
],
"Version": "1"
}
      

• ram-test-app-write
    {
 "Statement": [
        {
          "Effect": "Allow",
          "Action": [
            "ots:Create*",
            "ots:Insert*",
            "ots:Put*",
            "ots:Update*",
            "ots:Delete*",
            "ots:BatchWrite*"
          ],
          "Resource": [

Issue: 20191127 175



Table Store Developer Guide /  11 Authorization management
            "acs:ots:*:*:instance/ram-test-app",
            "acs:ots:*:*:instance/ram-test-app/table/*"
          ]
        }
 ],
 "Version": "1"
    }
      

Step 3: Assign policies to roles
Repeat the following steps to assign the ram-test-app-readonly (read-only 
permissions on Table Store) policy to RamTestAppReadOnly and assign the ram-test
-app-write (write-only permissions on Table Store) policy to RamTestAppWrite.

Procedure
1. In the left-side navigation pane, click Grants under Permissions.
2. Click Grant Permission.
3. Under Principle, enter the RAM role name, and click the target RAM role.
4. In the Policy Name column, select the target policies by clicking the

corresponding rows.

Note:
You can click X in the section on the right side of the page to delete the selected
policy.

5. Click OK.
6. Click Finished.

Subsequent operations
Authorize temporary access

11.5.2 Authorize temporary access
After creating roles, you can use STS to grant RAM users temporary permissions to
access Table Store.

Prerequisites
You have completed the operations described in Create a temporary role and grant

permissions.

176 Issue: 20191127



Table Store Developer Guide /  11 Authorization management

Step 1: Authorize a RAM user account to assume roles
Before using STS to authorize access, you must authorize the RAM user account
 to assume roles. Unpredictable risks may occur if any RAM user account could 
assume these roles. Therefore, a RAM user account must have explicitly configured
 permissions to assume the corresponding role. To create two custom authorizat
ion policies and assign them to the RAM user account ram_test_app, perform the 
following steps:

Procedure
1. Create two custom authorization policies:

Note:
For more information about how to create custom authorization policies, see
#unique_111.

• AliyunSTSAssumeRolePolicy2016011401
{
"Version": "1",
"Statement": [
    {
        "Effect": "Allow",
        "Action": "sts:AssumeRole",
        "Resource": "acs:ram:198***237:role/ramtestappreadonly"
    }
]
}
        

• AliyunSTSAssumeRolePolicy2016011402
{
"Version": "1",
"Statement": [
    {
        "Effect": "Allow",
        "Action": "sts:AssumeRole",
        "Resource": "acs:ram:198***237:role/ramtestappwrite"
    }
]
}
        

2. Assign the two policies to the RAM user account ram_test_app.

Note:
For more information, see #unique_117.

Issue: 20191127 177



Table Store Developer Guide /  11 Authorization management

Step 2: Use STS for authorized access
After authorizing roles for a RAM user account, you can use STS for authorized
access. You must download the required Python command line tool of STS from sts.

py.
The call method is as follows. For more information about the parameters, see API 

References (STS).
$python ./sts.py AssumeRole RoleArn=acs:ram::198***237:role/ramtestapp
readonly RoleSessionName=usr001 Policy='{"Version":"1","Statement
":[{"Effect":"Allow","Action":["ots:ListTable","ots:DescribeTable
"],"Resource":["acs:ots:*:*:ram-test-app","acs:ots:*:*:ram-test-app/
*"]}]}' DurationSeconds=1000 --id=id --secret=secret          

Parameters:
Parameter Description
RoleArn The ID of the role to be assumed. You

can log on to the RAM console. On the
Role Management page, click Manage
in the Actions column corresponding to
a role name. On the Basic Information
page of the role, find the Arn.

RoleSessionName The name of a temporary credential. 
We recommend that you use different
 application users to distinguish 
credentials.

Policy The permissions added when a role is
assumed.

Note:
The added policy is used to control
the permissions of the temporary
credential after the role is assumed.
The permissions obtained by the
temporary credential are restricted
by both the role and the added policy.
When a role is assumed, a policy
can be added to further control the
permissions. For example, when
uploading files, you can add a policy
to control upload paths for different
users.

178 Issue: 20191127

https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/cn/oss/0.4.30/assets/tool/sts.py
https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/cn/oss/0.4.30/assets/tool/sts.py
https://www.alibabacloud.com/help/doc-detail/28756.htm
https://www.alibabacloud.com/help/doc-detail/28756.htm


Table Store Developer Guide /  11 Authorization management

Parameter Description
DurationSeconds The validity period of the temporary 

credential. Unit: seconds. Valid values: 
900 to 3600.

id and secret The AccessKey ID and AccessKey secret
 of the RAM user account to assume a 
role.

Test STS
Create a table named test_write_read and specify the name column as the primary
key and of the string type in the Table Store console. Then, use the CLI tool to test the
read and write operations on Table Store.
Use the RAM user account ram_test_app to access Table Store. Replace the 
AccessKey pair in the following example with your own AccessKey pair for testing.
python2.7 ots_console --url https://TableStoreTest.cn-hangzhou.ots.
aliyuncs.com --id <yourAccessKeyId> --key <yourAccessKeySecret>
You cannot access the instance!
ErrorCode: OTSNoPermissionAccess
ErrorMessage: You have no permission to access the requested resource
, please contact the resource owner.        

The access failed because the RAM user account ram_test_app does not have 
permissions to access the resources.

Use temporary permissions to read and write data as well as accessing the console
• Use the temporary permission to write data

Use STS to write data. In this example, the added policy is the same as that of the
 role. The default value 3600 of DurationSeconds is used, and SessionName is set 
to session001. Perform the following steps:
1. Use STS to obtain a temporary credential.

python2.7 ./sts.py AssumeRole RoleArn=acs:ram::198***237:role/
ramtestappwrite RoleSessionName=session001 Policy='{"Statement":
 [{"Effect": "Allow","Action": ["ots:Create*","ots:BatchWrite*","
ots:Put*","ots:Insert*","ots:Update*","ots:Delete*"],"Resource":
 ["acs:ots:*:*:instance/ram-test-app","acs:ots:*:*:instance/ram
-test-app/table/*"]}],"Version": "1"}' --id=<yourAccessKeyId> --
secret=<yourAccessKeySecret>
{
"AssumedRoleUser": {
    "Arn": "acs:ram::198***237:role/ramtestappwrite/session001", 
    "AssumedRoleId": "33062905274959****:session001"
}, 
"Credentials": {

Issue: 20191127 179

https://ots.console.aliyun.com


Table Store Developer Guide /  11 Authorization management
    "AccessKeyId": "***", 
    "AccessKeySecret": "***"
    "SecurityToken": "CAE****0ZQ=="
}, 
"RequestId": "5F92B248-F200-40F8-A05A-C9C7D018E351"
}
       

2. Use the CLI tool to write data. The token parameter will be supported in the
upcoming V1.2.
    python2.7 ots_console --url https://TableStoreTest.cn-hangzhou
.ots.aliyuncs.com --id <yourAccessKeyId> --key <yourAccess
KeySecret> --token=CAE****0ZQ==

    OTS-TableStoreTest>$ put test_write_read '001' age:integer=30
    A new row has been put in table test_write_read
       

• Use the temporary permission to read data
Use STS to read data. In this example, the added policy is the same as that of the 
role. The default value 3600 of DurationSeconds is used, and SessionName is set 
to session002. Perform the following steps:
1. Use STS to obtain a temporary credential.

python2.7 ./sts.py AssumeRole RoleArn=acs:ram::198***237:role/
ramtestappreadonly RoleSessionName=session002 Policy='{"Statement
": [{"Effect": "Allow","Action": ["ots:BatchGet*","ots:Describe
*","ots:Get*","ots:List*"],"Resource": ["acs:ots:*:*:instance/ram
-test-app","acs:ots:*:*:instance/ram-test-app/table/*"]}],"Version
": "1"}' --id=6iT***lRt --secret=****
{
"AssumedRoleUser": {
    "Arn": "acs:ram::198***237:role/ramtestappreadonly/session002
",
    "AssumedRoleId": "396025752746614078:session002"
},
"Credentials": {
    "AccessKeyId": "***",
    "AccessKeySecret": "***",
    "Expiration" : "2017-06-09T09:17:19Z",
    "SecurityToken": "CAE****seQ=="
}, 
"RequestId": "EE788165-B760-4014-952C-E58ED229C80D"
}
       

2. Use the CLI tool to read data. The token parameter will be supported in the
upcoming V1.2.
    python2.7 ots_console --url https://TableStoreTest.cn-hangzhou
.ots.aliyuncs.com --id STS***Q8Q --key **** --token=CAE****Q==

    OTS-TableStoreTest>: get test_write_read '001'
    age:INTEGER='30'

180 Issue: 20191127



Table Store Developer Guide /  11 Authorization management
       

• Use the temporary permission to access the console
STS temporary authorization allows you to use RAM user accounts to log on 
to the Table Store console and manage and view instances and table resources
 under the Alibaba Cloud account. In the preceding example, the RAM user 
account ram_test_app can assume the role RamTestAppReadOnly and have 
the corresponding permissions to view all instances and tables. Perform the 
following steps to log on to the console:
1. Log on to the RAM console with an Alibaba Cloud account.
2. Log on to the RAM console with an Alibaba Cloud account and go to the 

Overview page.
3. Click the link below Account Management. On the RAM User Logon page, set

RAM User Name and Password.
4. After you log on to the console, move the pointer over the username in the

upper-right corner. In the message that appears, click Switch Role.
5. On the Switch Role page that appears, enter an enterprise alias and a role

name to which you want to switch. Click Switch.
Step 4: Use the temporary permission to call the JAVA SDK

Create an OTSClient object and add the AccessKeyId, AccessKeySecret, and Token 
parameters of the STS Token as shown in the following example:
OTSClient client = new OTSClient(otsEndpoint, stsAccessKeyId, 
stsAccessKeySecret, instanceName, stsToken);           

11.6 Custom permissions
This topic describes the definitions and application scenarios of Action, Resource,
and Condition.

Action
Action defines the specific API operation or operations to allow or deny. When
creating a Table Store authorization policy, add the ots: prefix to each API
operation and separate different API operations with commas (,). The asterisk (*)
wildcard is used in Action to specify the prefix matching and suffix matching.
Action is defined as follows:

Issue: 20191127 181

https://ram.console.aliyun.com


Table Store Developer Guide /  11 Authorization management

• Single API operation
"Action": "ots:GetRow"
     

• Multiple API operations
"Action": [
"ots:PutRow",
"ots:GetRow"
]
     

• All read-only API operations
{
  "Version": "1",
  "Statement": [
    {
      "Action": [
        "ots:BatchGet*",
        "ots:Describe*",
        "ots:Get*",
        "ots:List*",
        "ots:Consume*",
        "ots:Search",
        "ots:ComputeSplitPointsBySize"
      ],
      "Resource": "*",
      "Effect": "Allow"
    }
  ]
}                

• All read and write API operations
"Action": "ots:*"               

Resource
Resource in Table Store is composed of multiple fields, including the service, region
, user ID, instance name, and table name. Each field supports asterisk (*) wildcards 
for prefix and suffix matching. The format is as follows:
acs:ots:[region]:[user_id]:instance/[instance_name]/table/[table_name]
   

The fields enclosed in brackets are variables. The value of the region field must
be region IDs, such as cn-hangzhou. The user_id field is set to an Alibaba Cloud
account ID.

Note:

182 Issue: 20191127



Table Store Developer Guide /  11 Authorization management

• Table Store instance names are not case-sensitive. However, the instance_name 
field in Resource must be in lower case.

• Resource is defined for Tunnel Service by instances rather than tables and
includes fields such as service, region, user ID, and instance name in the
definition. The format is as follows:
acs:ots:[region]:[user_id]:instance/[instance_name]
       

Resource is defined as follows:
• All resources of users in all regions

"Resource": "acs:ots:*:*:*"
     

• All instances and their tables of User 123456 in China (Hangzhou)
"Resource": "acs:ots:cn-hangzhou:123456:instance/*"
     

• Instance abc and its tables of User 123456 in China (Hangzhou)
"Resource": [
"acs:ots:cn-hangzhou:123456:instance/abc",
"acs:ots:cn-hangzhou:123456:instance/abc/table/*"
]
     

• All instances with the prefix abc and their tables
"Resource": "acs:ots:*:*:instance/abc*"
     

• All instances with the prefix abc and their tables with the prefix xyz. Instance 
resources do not match acs:ots:*:*:instance/abc*.
"Resource": "acs:ots:*:*:instance/abc*/table/xyz*"
     

• All instances with the suffix abc and their tables with the suffix xyz
"Resource": [
"acs:ots:*:*:instance/*abc",
"acs:ots:*:*:instance/*abc/table/*xyz"
]
     

Table Store API operations
Table Store provides two types of API operations:
• Management API operations for reading from and writing to instances.

Issue: 20191127 183



Table Store Developer Guide /  11 Authorization management

• Data API operations for reading from and writing to tables and rows.
Details about these API operations are as follows:
• Resources for management API operations

Management API operations are instance-based operations and can only be
called through the console. Specifying Action and Resource for Management API
operations determines subsequent use of the console. The acs: ots: [region]:
[user_id]:&nbsp;prefix is omitted in the following accessed resources. Only the
instance and table are described.
API operation/Action Resource
ListInstance instance/*
InsertInstance instance/[instance_name]
GetInstance instance/[instance_name]
DeleteInstance instance/[instance_name]

• Resources for data API operations
Data API operations are table- and row-based operations, which can be called
through the console or by the SDK. Specifying Action and Resource for data API
operations determines subsequent use of the console. The acs:ots:[region
]:[user_id]: prefix is omitted in the following accessed resources. Only the
instance and table are described.
API operation/Action Resource
ListTable instance/[instance_name]/table/*
CreateTable instance/[instance_name]/table/[

table_name]
UpdateTable instance/[instance_name]/table/[

table_name]
DescribeTable instance/[instance_name]/table/[

table_name]
DeleteTable instance/[instance_name]/table/[

table_name]
GetRow instance/[instance_name]/table/[

table_name]

184 Issue: 20191127



Table Store Developer Guide /  11 Authorization management

API operation/Action Resource
PutRow instance/[instance_name]/table/[

table_name]
UpdateRow instance/[instance_name]/table/[

table_name]
DeleteRow instance/[instance_name]/table/[

table_name]
GetRange instance/[instance_name]/table/[

table_name]
BatchGetRow instance/[instance_name]/table/[

table_name]
BatchWriteRow instance/[instance_name]/table/[

table_name]
ComputeSplitPointsBySize instance/[instance_name]/table/[

table_name]
StartLocalTransaction instance/[instance_name]/table/[

table_name]
CommitTransaction instance/[instance_name]/table/[

table_name]
AbortTransaction instance/[instance_name]/table/[

table_name]
CreateIndex instance/[instance_name]/table/[

table_name]
DropIndex instance/[instance_name]/table/[

table_name]
CreateSearchIndex instance/[instance_name]/table/[

table_name]
DeleteSearchIndex instance/[instance_name]/table/[

table_name]
ListSearchIndex instance/[instance_name]/table/[

table_name]
DescribeSearchIndex instance/[instance_name]/table/[

table_name]
Search instance/[instance_name]/table/[

table_name]

Issue: 20191127 185



Table Store Developer Guide /  11 Authorization management

API operation/Action Resource
CreateTunnel instance/[instance_name]/table/[

table_name]
DeleteTunnel instance/[instance_name]/table/[

table_name]
ListTunnel instance/[instance_name]/table/[

table_name]
DescribeTunnel instance/[instance_name]/table/[

table_name]
CosumeTunnel instance/[instance_name]/table/[

table_name]
• Resources for Tunnel Service API operations

API operations for Tunnel Service are instance-based operations and can be
called through the console or by the SDK. Specifying Action and Resource for
Tunnel Service API operations determines subsequent use of the console. The 
acs:ots:[region]:[user_id]:&nbsp;prefix is omitted in the following accessed
resources. Only the instance and table are described.
API operation/Action Resource
ListTable instance/[instance_name]
CreateTable instance/[instance_name]
UpdateTable instance/[instance_name]
DescribeTable instance/[instance_name]
DeleteTable instance/[instance_name]
GetRow instance/[instance_name]
PutRow instance/[instance_name]
UpdateRow instance/[instance_name]
DeleteRow instance/[instance_name]
GetRange instance/[instance_name]
BatchGetRow instance/[instance_name]
BatchWriteRow instance/[instance_name]
ComputeSplitPointsBySize instance/[instance_name]
StartLocalTransaction instance/[instance_name]

186 Issue: 20191127



Table Store Developer Guide /  11 Authorization management

API operation/Action Resource
CommitTransaction instance/[instance_name]
AbortTransaction instance/[instance_name]
CreateIndex instance/[instance_name]
DropIndex instance/[instance_name]
CreateSearchIndex instance/[instance_name]
DeleteSearchIndex instance/[instance_name]
ListSearchIndex instance/[instance_name]
DescribeSearchIndex instance/[instance_name]
Search instance/[instance_name]
CreateTunnel instance/[instance_name]
DeleteTunnel instance/[instance_name]
ListTunnel instance/[instance_name]
DescribeTunnel instance/[instance_name]
CosumeTunnel instance/[instance_name]

• Instructions
- Action and Resource in a policy are verified by string matching. The asterisk

 (*) wildcard is used to specify the prefix matching and suffix matching. If 
Resource is defined as acs:ots:*:*:instance/*/, acs:ots:*:*:instance/abc cannot
 be matched. If Resource is defined as acs:ots:*:*:instance/abc, acs:ots:*:*:
instance/abc/table/xyz cannot be matched.

- To use a RAM user account to manage instance resources through the Table 
Store console, the RAM user account must be granted&nbsp;read permission
s on acs:ots:[region]:[user_id]:instance/* because the console needs to obtain 
the instance list.

- For batch API operations, such as BatchGetRow and BatchWriteRow, the 
backend service authenticates each table to be accessed. Operations can only 
be performed when all tables are authenticated. Otherwise, an error message 
is returned.

Condition
Policies can support a variety of authentication conditions, including IP address-
based access control, HTTPS-based access control, Multi-Factor Authentication (

Issue: 20191127 187



Table Store Developer Guide /  11 Authorization management

MFA)-based access control, and time-based access control. These conditions are 
supported by all Table Store API operations.
• IP address-based access control

RAM allows you to specify IP addresses or CIDR blocks that are used to access 
Table Store&nbsp;resources.&nbsp; Typical application scenarios&nbsp;are as 
follows:
- Specify multiple IP addresses. For example, the following code indicates that 

only access requests from IP addresses 10.101.168.111 and 10.101.169.111 are 
allowed.
{
"Statement": [
    {
        "Effect": "Allow",
        "Action": "ots:*",
        "Resource": "acs:ots:*:*:*",
        "Condition": {
            "IpAddress": {
                "acs:SourceIp": [
                    "10.101.168.111",
                    "10.101.169.111"
                ]
            }
        }
    }
],
"Version": "1"
}
       

- Specify one IP address or CIDR block. For example, the following code 
indicates that only access requests from IP address 10.101.168.111 or CIDR 
block 10.101.169.111/24 are allowed.
{
"Statement": [
    {
        "Effect": "Allow",
        "Action": "ots:*",
        "Resource": "acs:ots:*:*:*",
        "Condition": {
            "IpAddress": {
                "acs:SourceIp": [
                    "10.101.168.111",
                    "10.101.169.111/24"
                ]
            }
        }
    }
],
"Version": "1"
}

188 Issue: 20191127



Table Store Developer Guide /  11 Authorization management
       

• HTTPS-based access control
RAM allows you to specify whether resources must be accessed by requests over 
HTTPS.
The following example indicates that Table Store resources must be accessed by 
requests over HTTPS.
{
    "Statement": [
        {
            "Effect": "Allow",
            "Action": "ots:*",
            "Resource": "acs:ots:*:*:*",
            "Condition": {
                "Bool": {
                    "acs:SecureTransport": "true"
                }
            }
        }
    ],
    "Version": "1"
}
     

• MFA-based access control
RAM allows you to specify whether resources must be accessed by requests that 
have passed&nbsp;MFA.
The following example indicates that Table Store resources must be accessed by 
requests that have passed&nbsp;MFA.
{
    "Statement": [
        {
            "Effect": "Allow",
            "Action": "ots:*",
            "Resource": "acs:ots:*:*:*",
            "Condition": {
                "Bool": {
                    "acs:MFAPresent ": "true"
                }
            }
        }
    ],
    "Version": "1"
}

Issue: 20191127 189



Table Store Developer Guide /  11 Authorization management
     

• Time-based access control
RAM allows you&nbsp;to specify the access time of requests. Access requests
 earlier than the specified time are allowed or denied. The following example 
shows a typical application scenario.
Example: RAM users are allowed to access resources only before 00:00:00 
January 1, 2016 (UTC+8).
{
    "Statement": [
        {
            "Effect": "Allow",
            "Action": "ots:*",
            "Resource": "acs:ots:*:*:*",
            "Condition": {
                "DateLessThan": {
                    "acs:CurrentTime": "2016-01-01T00:00:00+08:00"
                }
            }
        }
    ],
    "Version": "1"
}
     

Scenarios
This section describes specific policies in typical scenarios and offers authorization
 methods based on the definitions of Action, Resource, and Condition.
• Multiple authorization conditions

In this scenario, RAM users using the 10.101.168.111/24 CIDR block are allowed 
to read from and write to all instances named online-01 and online-02 (including

190 Issue: 20191127



Table Store Developer Guide /  11 Authorization management

 all tables of these instances). Access is only allowed before 0:00:00 January 1, 
2016, and all access requests must be made over HTTPS.
The procedure is as follows:
1. Log on to the RAM console with an Alibaba Cloud account. (Assume that RAM is

activated.)
2. In the left-side navigation pane, choose Permissions > Policies to go to the

Policies page.
3. Click Create Policy to go to the Create Custom Policy page.
4. Enter Policy Name and select Script as the Configuration Mode. Enter the

following content in the Policy Document field:
{
"Statement": [
    {
        "Effect": "Allow",
        "Action": "ots:*",
        "Resource": [
            "acs:ots:*:*:instance/online-01",
            "acs:ots:*:*:instance/online-01/table/*",
            "acs:ots:*:*:instance/online-02",
            "acs:ots:*:*:instance/online-02/table/*"
        ],
        "Condition": {
            "IpAddress": {
                "acs:SourceIp": [
                    "10.101.168.111/24"
                ]
            },
            "DateLessThan": {
                "acs:CurrentTime": "2016-01-01T00:00:00+08:00"
            },
            "Bool": {
                "acs:SecureTransport": "true"
            }
        }
    }
],
"Version": "1"
}
       

5. Click OK.
6. In the left-side navigation pane, choose Identities > Users. On the Users page

that appears, click Add Permissions in the Actions column corresponding to a
RAM user account.

7. In the Add Permissions dialog box that appears, search for the newly created
policy, and click the policy to add the permissions to the Selected column.
Click OK. The selected permissions are granted to the RAM user account.

Issue: 20191127 191

https://ram.console.aliyun.com/


Table Store Developer Guide /  11 Authorization management

• Reject requests
In this scenario, RAM users using the IP address 10.101.169.111 are not 
allowed to write to any tables that belong to instances prefixed with online or 
product and located in China (Beijing). This policy does not define actions and 
permissions on instances.
To reject requests, perform the steps described in the preceding "Multiple
authorization conditions" section to create a new policy and grant policy
permissions to the designated RAM user. Copy the following content to Policy
Document during policy creation:
{
    "Statement": [
        {
            "Effect": "Deny",
            "Action": [
                "ots:Create*",
                "ots:Insert*",
                "ots:Put*",
                "ots:Update*",
                "ots:Delete*",
                "ots:BatchWrite*"
            ],
            "Resource": [
                "acs:ots:cn-beijing:*:instance/online*/table/*",
                "acs:ots:cn-beijing:*:instance/product*/table/*"
            ],
            "Condition": {
                "IpAddress": {
                    "acs:SourceIp": [
                        "10.101.169.111"
                    ]
                }
            }
        }
    ],
    "Version": "1"
}

     

11.7  Authorize a RAM user account to log on to the console
Table Store allows you to create and manage instances in the Table Store console.
You can use your Alibaba Cloud account to grant RAM user accounts permissions to
log on to the Table Store console.

Procedure
To grant a RAM user account the permission to log on to the console, perform the 
following steps:

192 Issue: 20191127



Table Store Developer Guide /  11 Authorization management

Procedure
1. Log on to the RAM console with an Alibaba Cloud account.
2. In the left-side navigation pane, click Users.
3. On the User Management page that appears, click Manage in the Actions column

corresponding to a RAM user account to go to the User Details page.
4. In the Access Mode section, select Console Password Logon.
5. Set a password for the RAM user account to log on to the Alibaba Cloud console,

and click OK.
6. In the left-side navigation pane, click Dashboard to go to the RAM Overview page.
7. Click the URL following RAM User Logon Link to go to the RAM User Logon page.

Use the password of the RAM user account set in Step 5 to log on to the Alibaba
Cloud console.

8. In the left-side navigation pane, click the Table Store icon to go to the Table Store
console.

11.8 Examples
If you need to share the data of a Table Store instance under your Alibaba Cloud
account to others but do not want the data to be modified, you can create a RAM
user account and grant the read-only permission to the account. This example
describes how to separate read and write permissions by granting the permissions
to different RAM user accounts.

Create a RAM user account
Procedure

1. Log on to the RAM console with an Alibaba Cloud account.
2. In the left-side navigation pane, click Users to go to the User Management page.
3. In the upper-right corner of the page, click Create User to open the Create User

dialog box.
4. Specify the required information, and select Automatically generate an Access

key for this user. Click OK.

Note:
For this example, username ram_test is used.

Issue: 20191127 193

https://ram.console.aliyun.com
https://ram.console.aliyun.com


Table Store Developer Guide /  11 Authorization management

5. After you create a RAM user account, an AccessKey pair is generated for the
account. Click Save Access Key Information.

Note:
After an AccessKey pair is generated, you cannot view the AccessKey pair in the
console. You must save your AccessKey pair and keep it confidential.

Note:
On the User Details page, you can also select Enable Console Logon for the RAM
user account.

Grant permissions to a RAM user account
Procedure

1. On the User Management page, click ram_test to go to the User
Details&nbsp;page of the RAM user account.

2. In the left-side navigation pane, click User Authorization Policies.
3. In the upper-right corner of the page, click Edit Authorization Policy.
4. In the dialog box that appears, search for Table Store permissions. The

corresponding permissions are displayed on the left side of the dialog box.
5. Select permissions. Click > to add the permissions to the right section of the

dialog box. Click OK.

Note:
For this example, grant AliyunOTS ReadOnlyAccess (read-only permission on
Table Store) to ram_test.

Note:
On the User Details page, you can also select Enable Console Logon for the RAM
user account.

Test example
Use the AccessKey pair of the created RAM user account to test whether the account
has the permissions to create and delete tables. You must replace the AccessKey
pair used in the following example with your own AccessKey pair.
$python ots_console --url https://TableStoreTest.cn-hangzhou.ots.
aliyuncs.com --id <yourAccessKeyId> --key <yourAccessKeySecret>

194 Issue: 20191127



Table Store Developer Guide /  11 Authorization management

$OTS-TableStoreTest>: ct test pk1:string,pk2:integer readrt:1 writert:
1
Fail to create table test.

$OTS-TableStoreTest>: dt test
You will delete the table:test!

press Y (confirm) :Y
Fail to delete table test.
    

The RAM user account ram_test cannot create or delete tables because it has only 
been granted read permissions. You can follow the preceding steps to create a RAM 
user account with the read-only permission for your Alibaba Cloud account.

Issue: 20191127 195


	Contents
	Legal disclaimer
	Document conventions
	1 Overview
	2 Limits
	3 Features and regions
	4 Terms
	4.1 Instance
	4.2 Endpoint
	4.3 Read/write throughput
	4.4 Region

	5 Wide column model
	5.1 Introduction
	5.2 Primary keys and attributes
	5.3 Data versions and time to live
	5.4 Naming conventions and data types
	5.5 Data operations
	5.6 Auto-increment function of the primary key column
	5.7 Conditional update
	5.8 Atomic counters

	6 Timeline model
	6.1 Introduction
	6.2 Quick start
	6.3 Basic operations
	6.3.1 Overview
	6.3.2 Initialization
	6.3.3 Meta management
	6.3.4 Timeline management
	6.3.5 Queue management


	7 Search Index
	7.1 Overview
	7.2 Features
	7.3 API operations
	7.3.1 Overview
	7.3.2 CreateSearchIndex
	7.3.3 DescribeSearchIndex
	7.3.4 ListSearchIndex
	7.3.5 DeleteSearchIndex
	7.3.6 Array and Nested field types
	7.3.7 Sort
	7.3.8 Tokenization
	7.3.9 MatchAllQuery
	7.3.10 MatchQuery
	7.3.11 MatchPhraseQuery
	7.3.12 TermQuery
	7.3.13 TermsQuery
	7.3.14 PrefixQuery
	7.3.15 RangeQuery
	7.3.16 WildcardQuery
	7.3.17 BoolQuery
	7.3.18 Nested query
	7.3.19 GeoDistanceQuery
	7.3.20 GeoBoundingBoxQuery
	7.3.21 GeoPolygonQuery
	7.3.22 ExistQuery
	7.3.23 Statistics
	7.3.24 Aggregation

	7.4 Limits

	8 Global secondary index
	8.1 Overview
	8.2 Introduction
	8.3 Scenarios
	8.4 Java SDK for global secondary indexes
	8.5 APIs
	8.6 Appendix

	9 Tunnel service
	9.1 Overview
	9.2 Features
	9.3 Description of the data consumption framework
	9.4 Quick start
	9.5 SDKs
	9.6 Incremental synchronization performance white paper

	10 HBase
	10.1 Table Store HBase Client
	10.2 Table Store HBase Client supported functions
	10.3 Differences between Table Store and HBase
	10.4 Migrate from HBase to Table Store
	10.5 Migrate HBase of an earlier version
	10.6 Hello World

	11 Authorization management
	11.1 RAM and STS
	11.2 Create a RAM user account
	11.3 Grant permissions to a RAM user
	11.4 Configure an MFA device for a RAM user
	11.5 STS temporary access authorization
	11.5.1 Create a temporary role and grant permissions
	11.5.2 Authorize temporary access

	11.6 Custom permissions
	11.7 Authorize a RAM user account to log on to the console
	11.8 Examples


