阿里云 云服务器 ECS

块存储

文档版本: 20190919

为了无法计算的价值 | []阿里云

<u>法律声明</u>

阿里云提醒您在阅读或使用本文档之前仔细阅读、充分理解本法律声明各条款的内容。如果您阅读 或使用本文档,您的阅读或使用行为将被视为对本声明全部内容的认可。

- 您应当通过阿里云网站或阿里云提供的其他授权通道下载、获取本文档,且仅能用于自身的合法 合规的业务活动。本文档的内容视为阿里云的保密信息,您应当严格遵守保密义务;未经阿里云 事先书面同意,您不得向任何第三方披露本手册内容或提供给任何第三方使用。
- 未经阿里云事先书面许可,任何单位、公司或个人不得擅自摘抄、翻译、复制本文档内容的部分 或全部,不得以任何方式或途径进行传播和宣传。
- 3. 由于产品版本升级、调整或其他原因,本文档内容有可能变更。阿里云保留在没有任何通知或者 提示下对本文档的内容进行修改的权利,并在阿里云授权通道中不时发布更新后的用户文档。您 应当实时关注用户文档的版本变更并通过阿里云授权渠道下载、获取最新版的用户文档。
- 4. 本文档仅作为用户使用阿里云产品及服务的参考性指引,阿里云以产品及服务的"现状"、"有缺陷"和"当前功能"的状态提供本文档。阿里云在现有技术的基础上尽最大努力提供相应的介绍及操作指引,但阿里云在此明确声明对本文档内容的准确性、完整性、适用性、可靠性等不作任何明示或暗示的保证。任何单位、公司或个人因为下载、使用或信赖本文档而发生任何差错或经济损失的,阿里云不承担任何法律责任。在任何情况下,阿里云均不对任何间接性、后果性、惩戒性、偶然性、特殊性或刑罚性的损害,包括用户使用或信赖本文档而遭受的利润损失,承担责任(即使阿里云已被告知该等损失的可能性)。
- 5. 阿里云网站上所有内容,包括但不限于著作、产品、图片、档案、资讯、资料、网站架构、网站画面的安排、网页设计,均由阿里云和/或其关联公司依法拥有其知识产权,包括但不限于商标权、专利权、著作权、商业秘密等。非经阿里云和/或其关联公司书面同意,任何人不得擅自使用、修改、复制、公开传播、改变、散布、发行或公开发表阿里云网站、产品程序或内容。此外,未经阿里云事先书面同意,任何人不得为了任何营销、广告、促销或其他目的使用、公布或复制阿里云的名称(包括但不限于单独为或以组合形式包含"阿里云"、Aliyun"、"万网"等阿里云和/或其关联公司品牌,上述品牌的附属标志及图案或任何类似公司名称、商号、商标、产品或服务名称、域名、图案标示、标志、标识或通过特定描述使第三方能够识别阿里云和/或其关联公司)。
- 6. 如若发现本文档存在任何错误,请与阿里云取得直接联系。

通用约定

格式	说明	样例
•	该类警示信息将导致系统重大变更甚至 故障,或者导致人身伤害等结果。	禁止: 重置操作将丢失用户配置数据。
A	该类警示信息可能导致系统重大变更甚 至故障,或者导致人身伤害等结果。	▲ 警告: 重启操作将导致业务中断,恢复业务所需 时间约10分钟。
Ê	用于补充说明、最佳实践、窍门等,不 是用户必须了解的内容。	道 说明: 您也可以通过按Ctrl + A选中全部文件。
>	多级菜单递进。	设置 > 网络 > 设置网络类型
粗体	表示按键、菜单、页面名称等UI元素。	单击 确定。
courier 字体	命令。	执行 cd /d C:/windows 命令,进 入Windows系统文件夹。
##	表示参数、变量。	bae log listinstanceid Instance_ID
[]或者[a b]	表示可选项,至多选择一个。	ipconfig [-all -t]
	表示必选项,至多选择一个。	<pre>swich {stand slave}</pre>

目录

法律声明I
通用约定I
1 快友储概试 1
1 头 1) 阳 闲之 2
2 外行阻止能
3 ム温
3.1 云盈慨还
3.2 E35D公益11 3.3 三舟三則木技术 14
3.5 公⊞
3.4 公皿加山10 3.5 创建云母
351 创建按量付费天盘 18
3.5.2 创建包年旬月天盘
3.5.3 使用快照创建云盘
3.6 挂载云盘
3.7 分区格式化数据盘
3.7.1 Windows格式化数据盘29
3.7.2 Linux格式化数据盘33
3.7.3 分区格式化大于2 TiB数据盘37
3.7.4 在裸设备上创建文件系统49
3.8 扩容云盘51
3.8.1 扩容概述51
3.8.2 在线扩容云盘52
3.8.3 离线扩容云盘56
3.8.4 扩展分区和文件系统_Windows58
3.8.5 扩展分区和文件系统_Linux系统盘64
3.8.6 扩展分区和文件系统_Linux数据盘68
3.8.7 Windows实例更新RedHat VirtIO SCSI驱动
3.9 更换系统盘
3.9.1 更换系统盘(非公共镜像)
3.9.2 更换系统盘(公共镜像)
3.10 凹滚云盈
3.11 转换云盘的다贫力式
3.12 修以ESSD 厶盈性能级別
5.15 旦有公址皿江口芯
0.11 即4330////1
104 104 104
〒 六子外71個・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
6

1 块存储概述

块存储是阿里云为云服务器ECS提供的块设备产品,具有高性能和低时延的特点,支持随机读写。 您可以像使用物理硬盘一样格式化并建立文件系统来使用块存储,可满足大部分通用业务场景下的 数据存储需求。

块存储类型

阿里云为您的云服务器ECS提供了丰富的块存储产品,包括基于分布式存储架构的云盘、共享块存 储以及基于物理机本地硬盘的本地盘产品。

块存储类型	描述
云盘	阿里云为云服务器ECS提供的数据块级别的块存储产品。云盘采用多副本的分 布式机制,具有低时延、高性能、持久性、高可靠等性能,支持随时创建、扩 容以及释放。详情请参见云盘概述。
共享块存储	一种支持多个ECS实例并发读写访问的数据块级存储设备。与云盘类似,采用 多副本的分布式机制,支持多实例并发访问,具有低时延、高性能、高可靠等 特性,适用于完全共享型(shared-everything)架构下对块存储设备的共 享访问场景。详情请参见#unique_5。
本地盘	基于云服务器ECS所在物理机(宿主机)上的本地硬盘设备,为ECS实例提供 本地存储访问能力。为对存储I/O性能和海量存储性价比有极高要求的业务场 景而设计的产品。具有低时延、高随机IOPS、高吞吐量、高性价比等优势。 详情请参见#unique_6。

不同类型块存储的性能,请参见#unique_7。

计费详情

有关块存储的计费方式及价格,请参见#unique_8。

使用限制

有关块存储的使用限制及配额,请参见使用限制块存储章节。

产品区别

阿里云提供了三种常见的数据存储场景产品,分别是块存储、对象存储OSS和文件存储NAS。三种 数据存储产品的区别如下表所示:

数据存储产品	描述
块存储	阿里云为云服务器ECS提供的块设备,具有高性能和低时延的特点,支持随机 读写,可以作为系统盘或者数据盘直接挂载到ECS实例上。使用方法与普通物 理硬盘相同,支持分区格式化并建立文件系统。块存储可用于绝大部分通用业 务场景下的数据存储。
对象存储OSS	一个海量的存储空间,适合存储互联网上产生的图片、短视频、音频等海量非 结构化数据。您可以通过API在任何时间、任何地点访问对象存储里的数据。 常用于互联网业务网站搭建、动静资源分离、CDN加速等业务场景。更多详 情,请参见#unique_10。
文件存储NAS	类似于对象存储OSS,适合存储非结构化的海量数据。但是您需要通过 标准的文件访问协议访问这些数据,例如Linux系统需要使用Network File System (NFS)协议,Windows系统需要使用Server Message Block (SMB,又称为CIFS)协议。您可以通过设置权限让不同的客户端同 时访问同一份文件。文件存储NAS适合企业部门间文件共享、广电非线编、高 性能计算、容器服务等业务场景。更多详情,请参见#unique_11。

2 块存储性能

本文介绍云盘、共享块存储和本地盘的性能衡量指标,性能规格以及性能测试方式。

性能指标

衡量块存储产品的性能指标主要包括IOPS、吞吐量和访问时延。

• IOPS (Input/Output Operations per Second)

IOPS指每秒能处理的I/O个数,表示块存储处理读写(输出/输入)的能力,单位为次。如果您 需要部署事务密集型应用,例如数据库类应用等典型场景,需要关注IOPS性能。

常用的IOPS指标包括顺序操作和随机操作,如下表所示。

指标	描述	数据访问方式
总IOPS	每秒执行的I/O操作总次数	对硬盘存储位置的不连续访问和连续访 问
随机读 IOPS	每秒执行的随机读I/O操作的平均次数	对硬盘存储位置的不连续访问
随机写 IOPS	每秒执行的随机写I/O操作的平均次数	
顺序读 IOPS	每秒执行的顺序读I/O操作的平均次数	对硬盘存储位置的连续访问
顺序写 IOPS	每秒执行的顺序写I/O操作的平均次数	

· 吞吐量 (Throughput)

吞吐量是指单位时间内可以成功传输的数据数量,单位为MBps。如果您需要部署大量顺序读写的应用,例如Hadoop离线计算型业务等典型场景,需要关注吞吐量。

· 访问时延(Latency)

访问时延是指块存储处理一个I/O需要的时间,单位为s、ms或者μs。过高的时延会导致应用性 能下降或报错。

- 如果您的应用对高时延比较敏感,例如数据库应用,建议您使用ESSD云盘、SSD云盘、SSD 共享块存储或本地SSD盘类产品。
- 如果您的应用偏重数据吞吐能力,对时延相对不太敏感,例如Hadoop离线计算等吞吐密集型应用,建议您使用d1或d1ne大数据型实例规格包含的SATA HDD本地盘产品。

容量无法衡量块存储性能,但对于存储设备而言,不同的容量能达到的性能不同,容量越大,存储 设备的数据处理能力越强。相同类型块存储产品的单位容量的I/O性能均一致,但云盘性能随容量 增长而线性增长,直至达到该类型块存储的单盘性能上限。

〕 说明:

块存储容量按照二进制单位计算,单位为GiB、KiB、TiB或者MiB。二进制单位用于表示1024进 位的数据大小。例如,1GiB=1024MiB。

云盘性能

四种类型云盘的性能对比如下表所示。

性能类别	ESSD云盘			SSD云盘	高效云盘	普通云盘***
性能级别(Performanc e Level,简 称PL)	PL3	PL2	PL1	无	无	无
单盘最大容 量	1261~ 32768GiB	461~ 32768GiB	20~ 32768GiB	32768GiB	32768GiB	2000GiB
最大IOPS	1000000	100000	50000	25000*	5000	数百
最大吞吐量	4000MBps	750MBps	350MBps	300MBps*	140MBps	30- 40MBps
单盘性能计 算公式**	IOPS = min{1800 + 50 * 容量, 1000000}	IOPS = min{1800 + 50 * 容量, 100000}	IOPS = min{1800 + 50 * 容量, 50000}	IOPS = min{1800 + 30 * 容量, 25000}	IOPS = min{1800 +8*容量, 5000}	无
	吞吐量 = min{120 + 0.5 * 容 量, 4000} MBps	吞吐量 = min{120 + 0.5 * 容量, 750} MBps	吞吐量 = min{120 + 0.5 * 容量, 350} MBps	吞吐量 = min{120 + 0.5 * 容量, 300} MBps	吞吐量 = min{100+ 0.15 * 容量, 140} MBps	无
数据可靠性	99. 99999999%	99. 99999999%	99. 99999999%	99. 99999999%	99. 99999999%	99. 99999999%
单路随机写 访问时延	0.2ms			0.5–2ms	1–3ms	5–10ms
API名称	cloud_essd			cloud_ssd	cloud_effi ciency	cloud

性能类别	ESSD云盘	SSD云盘	高效云盘	普通云盘***
应用场景	 OLTP数据库:如MySQL、 PostgreSQL、Oracle、SQL Server等关系型数据库 NoSQL数据库:如MongoDB、 HBase、Cassandra等非关系型数据 库 ElasticSearch分布式日志:ELK (Elasticsearch、Logstash和 Kibana)日志分析等 	对数据可靠 性要求高的 中小型开发 测试环境	 ・ 开发测试 应用 ・ 系统盘 	 · 数经或公式 · 数学者 · 公式 · 公式

* SSD云盘的性能因数据块大小而异,数据块越小,吞吐量越小,IOPS越高,如下表所示。只有挂载到I/O优化的实例时,SSD云盘才能获得期望的IOPS性能。挂载到非I/O优化的实例时,SSD云盘无法获得期望的IOPS性能。

数据块大小	IOPS最大值	吞吐量
4KiB	约25000	约100MBps
16KiB	约17200	约260MBps
32KiB	约9600	约300MBps
64KiB	约4800	约300MBps

** 单盘性能计算公式说明:

- ・以单块SSD云盘最大IOPS计算公式为例说明:起步1800 IOPS,每GiB增加30 IOPS,最高 25000 IOPS。
- ・以单块SSD云盘最大吞吐量计算公式为例说明:起步120MBps,每GiB增加0.5MBps,上限为 300 MBps的吞吐量。

*** 普通云盘属于上一代云盘产品,目前已经逐步停止售卖。请根据业务实际需求,选择高效云 盘、SSD云盘、ESSD云盘等其他类型的云盘产品。

共享块存储性能

两种类型共享块存储的性能对比如下表所示。

性能类别	SSD共享块存储	高效共享块存储
单盘最大容量	32768GiB	32768GiB
单台实例最大容量	128TiB	128TiB
最大随机读写IOPS*	30000	5000

性能类别	SSD共享块存储	高效共享块存储
最大顺序读写吞吐量*	512MBps	160MBps
单盘性能计算公式**	IOPS = min{1600 + 40 * 容 量, 30000}	IOPS = min{1000 + 6 * 容量, 5000}
	吞吐量 = min{100 + 0.5 * 容 量, 512} MBps	吞吐量 = min{50 + 0.15 * 容 量, 160} MBps
单路访问时延	0.5–2ms	1–3ms
应用场景	 Oracle RAC ・故障转移集群 ・服务器高可用 	服务器高可用架构

*最大IOPS和吞吐量是在两台或两台以上ECS实例同时压测裸设备能达到的性能数值。

- ** 单盘性能计算公式说明:
- ・以单块SSD共享块存储最大IOPS计算公式为例:起步1600 IOPS,每GiB增加40 IOPS,最高 30000 IOPS。
- ・以单块SSD共享块存储最大吞吐量计算公式为例:起步100MBps,每GiB增加0.5MBps,上限 为512MBps的吞吐量。

本地盘性能

本地盘的性能信息,请参见本地盘。

性能测试

Linux实例和Windows实例都推荐使用FIO工具进行测试块存储性能。

您也可以使用其他工具测试块存储性能,但不同工具测试出来的硬盘基准性能会有差异,如dd、 sysbench、iometer等工具可能会受到测试参数配置和文件系统影响,难以反映真实的磁盘性 能。本文中所描述的性能参数,均为Linux实例下采用FIO工具的测试结果,以此作为块存储产品 性能指标参考。

本文以Linux实例和FIO为例,说明如何使用FIO测试块存储性能。在进行测试前,请确保块存储 设备已经4KiB对齐。

🛕 警告:

测试裸盘可以获得真实的块存储盘性能,但直接测试裸盘会破坏文件系统结构,请在测试前提前做 好数据备份。建议您只在新购无数据的ECS实例上使用工具测试块存储性能,避免造成数据丢失。 ·测试随机写IOPS,运行以下命令:

fio -direct=1 -iodepth=128 -rw=randwrite -ioengine=libaio -bs=4k size=1G -numjobs=1 -runtime=1000 -group_reporting -filename=iotest name=Rand_Write_Testing

・测试随机读IOPS,运行以下命令:

fio -direct=1 -iodepth=128 -rw=randread -ioengine=libaio -bs=4k size=1G -numjobs=1 -runtime=1000 -group_reporting -filename=iotest name=Rand_Read_Testing

·测试顺序写吞吐量,运行以下命令:

fio -direct=1 -iodepth=64 -rw=write -ioengine=libaio -bs=1024k -size
=1G -numjobs=1 -runtime=1000 -group_reporting -filename=iotest -name
=Write_PPS_Testing

・ 测试顺序读吞吐量,运行以下命令:

fio -direct=1 -iodepth=64 -rw=read -ioengine=libaio -bs=1024k -size= 1G -numjobs=1 -runtime=1000 -group_reporting -filename=iotest -name= Read_PPS_Testing

·测试随机写时延,运行以下命令:

fio -direct=1 -iodepth=1 -rw=randwrite -ioengine=libaio -bs=4k -size =1G -numjobs=1 -group_reporting -filename=iotest -name=Rand_Write _Latency_Testing

・ 测试随机读时延,运行以下命令:

fio -direct=1 -iodepth=1 -rw=randread -ioengine=libaio -bs=4k -size =1G -numjobs=1 -group_reporting -filename=iotest -name=Rand_Read_ Latency_Testingrandwrite -ioengine=libaio -bs=4k -size=1G -numjobs=1 -group_reporting -filename=iotest -name=Rand_Write_Latency_Testing

下表以测试随机写IOPS的命令为例,说明命令中各种参数的含义。

参数	说明	
-direct=1	表示测试时忽略I/O缓存,数据直写。	
-iodepth=128	表示使用AIO时,同时发出I/O数的上限为128。	
-rw=randwrite	表示测试时的读写策略为随机写(random writes)。作其它测试时 可以设置为:	
	・ randread(随机读 random reads)	
	・ read(顺序读sequential reads)	
	・write (顺序写sequential writes)	
	・ randrw(混合随机读写mixed random reads and writes)	

参数	说明
-ioengine=libaio	表示测试方式为libaio(Linux AIO,异步I/O)。应用程序使用I/ O通常有两种方式:
	· 同步
	同步的I/O一次只能发出一个I/O请求,等待内核完成才返回。这样 对于单个线程iodepth总是小于1,但是可以透过多个线程并发执行 来解决。通常会用16-32根线程同时工作将iodepth塞满。 ·异步
	异步的I/O通常使用libaio这样的方式一次提交一批I/O请求,然后 等待一批的完成,减少交互的次数,会更有效率。
-bs=4k	表示单次I/O的块文件大小为4KB。未指定该参数时的默认大小也是 4KB。
	·测试IOPS时,建议将bs设置为一个比较小的值,如本示例中的14k
	·测试吞吐量时,建议将bs设置为一个较大的值,如本示例中的1024k。
-size=1G	表示测试文件大小为1GiB。
-numjobs=1	表示测试线程数为1。
-runtime=1000	表示测试时间为1000秒。如果未配置,则持续将前述-size指定大小的文件,以每次-bs值为分块大小写完。
-group_reporting	表示测试结果里汇总每个进程的统计信息,而非以不同job汇总展示信息。
-filename=iotest	指定测试文件的名称,例如iotest。测试裸盘可以获得真实的硬盘性能,但直接测试裸盘会破坏文件系统结构,请在测试前提前做好数据 备份。
-name=Rand_Write _Testing	表示测试任务名称为Rand_Write_Testing,可以随意设定。

3 云盘

3.1 云盘概述

云盘是阿里云为云服务器ECS提供的数据块级别的块存储产品,具有低时延、高性能、持久性、高 可靠等特点。

云盘采用分布式三副本机制,为ECS实例提供99.9999999%的数据可靠性保证。支持在可用区内自动复制您的数据,防止意外硬件故障导致的数据不可用,保护您的业务免于组件故障的威胁。就像 硬盘一样,您可以对挂载到ECS实例上的云盘做分区、格式化、创建文件系统等操作,并对数据进 行持久化存储。

〕 说明:

一块云盘只能挂载到同一地域、同一可用区的一台ECS实例。

云盘类型

・根据性能分类

类型	说明
ESSD云盘	阿里云全新推出的超高性能云盘产品。基于新一代分布式块存储架 构,结合25GE网络和RDMA技术,单盘可提供高达100万的随机读写 能力和更低的单路时延能力。更多详情,请参见#unique_16。
SSD云盘	具备稳定的高随机读写性能、高可靠性的高性能云盘产品。
高效云盘	具备高性价比、中等随机读写性能、高可靠性的云盘产品。
普通云盘	具备高可靠性、一般随机读写性能的云盘产品。

・根据用途分类

类型	说明
系统盘	生命周期与系统盘所挂载的ECS实例相同,随实例一起创建和释放。不 可共享访问。系统盘可选的容量范围与实例所选的镜像有关: - Linux(不包括CoreOS)和FreeBSD: 20 GiB ~ 500 GiB - CoreOS: 30 GiB ~ 500 GiB - Windows: 40 GiB ~ 500 GiB

类型	说明
数据盘	可以与ECS实例同时创建,也可以单独创建。详情请参 见#unique_17。 - 与ECS实例同时创建的数据盘,生命同期与实例相同,随实例一起 创建和释放。 - 单独创建的数据盘,可以单独释放,也可以设置为随ECS实例一起
	释放。如何单独释放,请参见#unique_18。 数据盘的性能由云盘类型决定,详细信息,请参见#unique_19。
	 说明: 作数据盘用时,云盘与共享块存储共享数据盘配额,即一台实例最多 挂载16块数据盘。

云盘性能

各云盘类型的性能,请参见#unique_19。

计费

- ·随包年包月实例一起创建的云盘,或者为包年包月实例单独创建的云盘,需要先付费再使用。详 情请参见#unique_20。
- · 随按量付费实例一起创建的云盘,以及单独创建的云盘,均采用按量付费方式计费。详情请参见按量付费。

您可以使用不同的方式转换云盘的计费方式,如下表所示。

计费方式转换	功能	生效时间	适用的云盘
包年包月—>按量付费	#unique_22	在新的计费周期生效	包年包月实例上挂载的 包年包月数据盘。不能 变更系统盘的计费方 式。
	#unique_23	立即生效	包年包月实例上的系统 盘以及随实例创建的作 数据盘用的云盘。
按量付费—>包年包月	升级配置	立即生效	包年包月实例上挂载的 按量付费数据盘。不能 变更系统盘的计费方 式。
	#unique_25		按量付费实例上的系统 盘和挂载的数据盘。

相关操作

您可以对云盘执行以下操作:

- ·如果您单独创建云盘作为数据盘,需要先在控制台上挂载云盘,再登录ECS实例分区格式化数据 盘。详情请参见、#unique_26和分区格式化数据盘。
- ·如果您想加密存储在云盘上的数据,请参见加密云盘。
- ·如果您的系统盘容量不足,请参见扩容系统盘。
- ·如果您的数据盘容量不足,请参见扩容数据盘。
- ·如果您想更换操作系统,请参见更换系统盘。
- ・如果您想备份云盘的内容,可以为云盘手动创建快照或者为硬盘设置自动快照策略按时自动创建
 快照。具体操作,请参见手动创建快照和#unique_32。
- ·如果您想在一台实例上使用另一台实例的操作系统和数据环境信息,请参见#unique_33。
- ·如果您想将云盘恢复到某份快照时的状态,可以使用快照回滚云盘。具体操作,请参见回滚云盘。。
- ・如果您想将云盘恢复到创建时的状态,请参见重新初始化云盘。
- ·如果您不再需要一块作数据盘用的按量付费云盘,可以卸载数据盘并释放数据盘。具体操作,请 参见#unique_36和#unique_37。
- ・如果您不再需要一块包年包月云盘,可以将它转为按量付费云盘后,再卸载数据盘并释放数据
 盘。详情请参见转为按量付费云盘、#unique_36和#unique_37。

3.2 ESSD云盘

阿里云ESSD(Enhanced SSD,增强型SSD)云盘结合25 GE网络和RDMA技术,为您提供单盘 高达100万的随机读写能力和单路低时延性能。本文介绍了ESSD云盘的性能级别、适用场景及性能 上限,提供了选择不同ESSD云盘性能级别时的参考信息。

应用场景

ESSD云盘具备低时延、快速响应、强大的数据吞吐量的特点,适用于时延敏感的应用或者I/O密集型业务场景。例如:

- ・ 典型的联机事务处理(Online Transaction Processing, OLTP) 关系型数据库,如MySQL、PostgreSQL、Oracle、SQL Server等。
- · NoSQL非关系型数据库,如MongoDB、HBase、Cassandra等。
- ・ 实时分析应用,如Elasticsearch分布式日志和ELK(Elasticsearch、Logstash、Kibana)日志分析等。

产品规格

ESSD云盘的API取值为cloud_essd,提供了三个性能级别的云盘规格。有关如何压测ESSD云盘,请参见《块存储FAQ》如何压测ESSD云盘的性能。

ESSD云盘属性	性能级别III	性能级别II	性能级别I
性能级别(Performance Level,简称PL)	PL3	PL2	PL1
云盘容量范围(GiB)	1,261~32,768	461~32,768	20~32,768
数据可靠性	99.9999999%	99.9999999%	99.9999999%
单盘最大IOPS(Input/ Output Operations Per Second)	1,000,000	100,000	50,000
单盘最大吞吐量(MBps)	4,000	750	350
单盘性能计算公式	IOPS = min{ 1800 + 50 * 容量, 1000000}	IOPS = min{ 1800 + 50 * 容量, 100000}	IOPS = min{1800 + 50 * 容量, 50000}
	吞吐量 = min{120 + 0.5 * 容量, 4000 } MBps	吞吐量 = min{120 + 0.5 * 容量, 750} MBps	吞吐量 = min{120 + 0.5 * 容量, 350} MBps

计费详情

云服务器ECS支持创建按量付费和包年包月两种计费方式的ESSD云盘。详情请参见#unique_41和#unique_42。

有关不同ESSD云盘性能级别的定价详情,请参见块存储定价。

如何选择ESSD云盘性能级别

三种性能级别的ESSD云盘单盘容量范围相同,均支持20 GiB-32,768 GiB的容量范围。三种性能 级别核心差异在于单盘性能上限的不同。ESSD云盘可以作为系统盘和数据盘使用,以下建议适用 于ESSD云盘作为数据盘的场景。

· ESSD PL1适合对并发极限I/O性能要求中等,读写时延较为稳定的业务场景。

适用于中小型MySQL和SQLServer等数据库场景,中小规模ELK日志集群,SAP和Oracle等 企业级商用软件,容器应用。如果您一直使用的是SSD云盘或者高效云盘,可以优先选择ESSD PL1作为数据盘,承载类似的业务系统数据。 · ESSD PL2适合对并发极限I/O性能要求较高,读写时延稳定的业务场景。

适用于中等规模关系型数据库及NoSQL数据库,中等规模ELK日志集群,SAP和Oracle等企业 级商用软件。如果您一直使用的是SSD云盘或者本地SSD实例规格(i1、i2、i2g),可以优先 选择ESSD PL2作为数据盘,承载类似的业务系统数据。

· ESSD PL3适合对并发极限I/O性能极高,读写时延极稳定的业务场景。

适用于中大型核心业务关系型数据库及NoSQL数据库,大型SAP和Oracle系统等。如果您一 直使用的是中高级规格(16核vCPU以上)本地SSD实例规格(i1、i2、i2g),可以优先选择 ESSD PL3作为数据盘,承载类似的业务系统数据。

容量范围与性能级别的关系

对于存储设备而言,不同的容量能达到的性能不同,容量越大,存储设备的数据处理能力越强。所 有ESSD云盘性能级别的单位容量的I/O性能均一致,但云盘性能随容量增长而线性增长,直至达到 该性能级别的单盘性能上限。

性能级别	ESSD云盘容量范围(GiB)	最大IOPS	最大吞吐量(MBps)	
PL1	20~32,768	50,000	350	
PL2	461~32,768	100,000	750	
PL3	1,261~32,768	1,000,000	4,000	

・示例一:张先生在ECS管理控制台上创建ESSD云盘时,选择了20 GiB。则张先生只能选购PL1性能级别的ESSD云盘,对应的IOPS上限为50,000。

 ・示例二:张先生在ECS管理控制台上创建ESSD云盘时,选择了32,000 GiB。则张先生能选 购PL1至PL3性能级别的ESSD云盘,对应的IOPS上限分别为50,000、100,000和1,000,000。

E Am	ESSD云盘 V	32000	GiB 1000000 IOPS	用快照创建磁盘 加密	性能级别:	PL1(单盘IOPS性能上限5万) 🔨	
	ESSD 云盘容量越大,可供选	择的 性能级别 越高 (460 GiB 以上可选 PL2 ,	1260 GiB 以上可选 PL3),他	生能级别越高相应	PL1(单盘IOPS性能上限5万)	云盘性能级别,查看详情>
	如何选择 SSD云盘 / 高效云盘	PL2(单盘IOPS性能上限10万)					
	AND BREAD STATES					PL3(单盘IOPS性能上限100万)	
	购买量:	1	块				

当您创建了ESSD云盘后,如果需要更高的云盘性能,可以通过扩容ESSD云盘实现。更多详情,请 参见#unique_43和#unique_44。

实例规格与云盘性能的关系

部分ECS实例的存储I/O性能和实例规格成正比线性关系。云服务器ECS存储增强型实例g5se的存储I/O性能和实例规格成线性关系,实例规格越高可获得的存储IOPS和吞吐量越高。有关ECS实例的存储I/O性能数据,请参见#unique_45。

实例规格与ESSD云盘性能的关系规则如下所示:

- ·如果ESSD云盘的性能总和不超过实例规格族所对应的存储I/O能力,实际存储性能以ESSD云盘 性能为准。
- ·如果ESSD云盘的性能总和超过了实例规格族所对应的存储I/O能力,实际存储性能以该实例规 格对应的存储I/O能力为准。

以下为两个示例:

- · 示例一:张先生选择了ecs.g5se.xlarge 16 GiB规格实例,该实例规格最大存储I/O性能为60,000 IOPS。ECS实例仅挂载了一块1,800 GiB的ESSD云盘,单盘IOPS最大为100,000。则该 ECS实例最大存储IOPS为60,000,无法达到100,000。
- · 示例二:张先生选择了ecs.g5se.4xlarge 64 GiB规格实例,该实例规格最大存储I/O性能为230,000 IOPS。ECS实例仅挂载了一块1,800 GiB的ESSD云盘,单盘IOPS最大为100,000。则该 ECS实例最大存储IOPS为100,000。

相关操作

- #unique_41
- #unique_42
- #unique_46
- #unique_47
- #unique_48
- #unique_43
- #unique_44

3.3 云盘三副本技术

阿里云分布式文件系统为ECS提供稳定、高效、可靠的数据随机访问能力。

您对云盘的读写最终都会被映射为对阿里云数据存储平台上的文件的读写。阿里云提供一个扁平 的线性存储空间,在内部会对线性地址进行切片,一个分片称为一个Chunk。对于每一个Chunk ,阿里云会复制出三个副本,并将这些副本按照一定的策略存放在集群中的不同节点上,保证您数 据的可靠。

三份副本的原理

在阿里云数据存储系统中,有三类角色,分别称为Master、Chunk Server和Client。您的一个写 操作,经过层层转换,最终会交由Client来执行,执行过程简要说明如下:

- 1. Client计算出这个写操作对应的Chunk。
- 2. Client向Master查询该Chunk的三份副本的存放位置。
- 3. Client根据Master返回的结果,向这3个Chunk Server发出写请求。
- 4. 如果三份都写成功, Client向您返回成功; 反之, Client向您返回失败。

Master的分布策略会综合考虑集群中所有Chunk Server的硬盘使用情况、交换机的分布情况、 电源供电情况、机器负载情况,尽量保证一个Chunk的所有副本分布在不同机架下的不同Chunk Server上,有效防止由于一个Chunk Server或一个机架的故障导致的数据不可用。

数据保护机制

当有数据节点损坏,或者某个数据节点上的部分硬盘发生故障时,集群中部分Chunk的有效副本数 就会小于3。一旦发生这种情况,Master就会发起复制机制,在Chunk Server之间复制数据,使 集群中所有Chunk的有效副本数达到3份。

综上所述,对云盘上的数据而言,所有用户层面的操作都会同步到底层三份副本上,无论是新增、 修改还是删除数据。这种模式,能够保障您数据的可靠性和一致性。

如果ECS实例由于病毒感染、人为误删除或黑客入侵等软故障原因造成数据丢失,需要采用备份、 快照等技术手段来解决。任何一种技术都不可能解决全部的问题,因地制宜地选择合适的数据保护 措施,才能为您宝贵的业务数据筑起一道坚实的防线。

3.4 云盘加密

当您的业务因为安全需求或法规合规要求等原因,需要对存储在云盘上的数据进行加密保护时,您可以使用阿里云ECS云盘加密功能。无需单独构建和维护密钥管理基础设施,即可保护数据的隐私 性和自主性。

本文中的云盘指代云盘和共享块存储。下文中统一简称为云盘,除非特别指出。

什么是云盘加密

使用云盘加密功能,系统会将从ECS实例传输到云盘的数据自动加密,并在读取数据时自动解密。 加密解密在ECS实例所在的宿主机上进行,对从ECS实例传输到云盘的数据进行加密。在加密解密 的过程中,云盘的性能几乎没有衰减。关于性能测试方式,请参见块存储性能。

在创建了一块加密云盘并将其挂载到ECS实例后,系统将对以下数据进行加密:

· 云盘中的静态数据

· 云盘和实例间传输的数据(不支持加密系统盘数据)

· 从加密云盘创建的所有快照(即,加密快照)

云盘加密支持所有在售云盘,包括普通云盘、高效云盘、SSD云盘和ESSD云盘。

云盘加密支持所有在售的实例规格。所有地域都支持云盘的加密。

云盘加密的依赖

云盘加密功能依赖于同一地域的密钥管理服务(Key Management Service,KMS),但是您无 需到密钥管理服务控制台做额外的操作,除非您有单独的KMS操作需求。详情请参见密钥管理服 务(KMS)。

首次使用云盘加密功能(在ECS实例售卖页或者独立云盘售卖页)时,需要根据页面提示授权开通 密钥管理服务(KMS),否则将无法购买带有加密云盘的实例或者加密的独立云盘。

如果通过API或者CLI使用云盘加密功能,例如#unique_51、#unique_52或#unique_53,您需 要先在阿里云网站上开通密钥管理服务。

当您在一个地域第一次使用加密盘时,ECS系统会为您在密钥管理服务(KMS)中的使用地域自动创建一个专为ECS使用的用户主密钥(Customer Master Key, CMK),这个用户主密钥免费,您可以在密钥管理服务控制台上查询到该用户主密钥,但不能删除。

云盘加密的密钥管理

云盘加密功能通过行业标准的AES-256算法,利用数据密钥加密您的卷。每个阿里云账号在每个地 域都具有唯一识别的用户主密钥(CMK),该密钥与数据分开,存储在一个受严格的物理和逻辑安 全控制保护的系统上。 每个地域的新创建云盘都使用这一地域下唯一的256位密钥(来自于CMK)加密。云盘的所有快照 以及从这些快照创建的云盘也关联该密钥。这些密钥受阿里云KMS提供的密钥管理基础设施的保 护,实施强逻辑和物理安全控制以防止未经授权的访问。阿里云的密钥管理基础设施符合(NIST) 800-57中的建议,并使用了符合(FIPS)140-2标准的密码算法。

云盘的加密密钥仅在您的ECS实例所在的宿主机的内存中使用,永远不会以明文形式存储在任何永 久介质(如云盘)上。

使用限制

- ·只能加密云盘,不能加密本地盘。
- ·只能加密数据盘,不能加密系统盘。
- · 已经存在的非加密盘,不能直接转换成加密盘。
- ·已经加密的云盘,也不能转换为非加密云盘。
- ·已经存在的非加密盘产生的快照,不能直接转换成加密快照。
- 加密快照不能转换为非加密快照。
- ・不能共享带有加密快照的镜像。
- ·不能跨地域复制带有加密快照的镜像。
- ・不能导出带有加密快照的镜像。
- ・每个地域每个用户无法自己选择用户主密钥(CMK),由系统为您生成。
- ·每个地域ECS系统创建的用户主密钥(CMK),用户不能删除,但不收费用。
- · 不支持在云盘加密后更换该云盘用于加解密的关联的用户主密钥。

费用

ECS不对云盘加密功能收取额外的费用。

ECS为您在每个地域创建的用户主密钥(CMK)属于服务密钥,不收取额外费用,也不占用您在每 个地域的主密钥数量限制。

您对云盘的任何读写操作(例如mount/umount、分区、格式化等)都不会产生费用。但是,凡 是涉及云盘本身的管理操作(见下面列表),无论是通过ECS管理控制台还是通过API,均会 以API的形式使用到密钥管理服务(KMS),将会记入到您在该地域的KMS服务API调用次 数。请注意,目前KMS每个用户每月有20000次的免费额度,但一旦高频率大量操作超过免费额 度,则会产生费用。详情请参见密钥管理服务计费方式。

对加密云盘的管理操作包括:

・ 创建加密盘(#unique_52、#unique_51或#unique_53)

- ・ 挂载云盘(#unique_54)
- ・卸载云盘(#unique_55)
- ・ 创建快照(#unique_56)
- ・回滚云盘(#unique_57)
- ・重新初始化云盘(#unique_58)

请保证您的账户余额充足,否则会出现操作失败,进而可能产生额外的费用。

创建加密云盘

目前,云盘加密功能只支持数据盘。您可以通过不同渠道创建加密云盘:

- ·通过购买实例页面或购买云盘页面:
 - 勾选加密选项, 创建加密的空盘。
 - 选择加密快照来创建云盘。
- ・通过API或CLI:
 - 指定参数DataDisk.n.Encrypted(#unique_51、#unique_52)或者Encrypted
 (#unique_53)为true。
 - 在CreateInstance或CreateDisk中,指定加密快照的SnapshotId。

转换数据加密状态

已经存在的非加密盘,不能直接转换成加密盘。已经存在的加密盘,不能直接转换成非加密盘。

已经存在的非加密盘产生的快照,不能直接转换成加密快照。已经存在的加密盘产生的快照,不能 直接转换成非加密快照。

所以,如果您需要对现有数据非加密状态转换为加密状态,阿里云推荐用Linux下的rsync命令或 者Windows下的robocopy命令将数据从非加密盘上复制到(新创建的)加密盘上。

如果您需要对现有数据加密状态转换为非加密状态,则用Linux下的rsync命令或者 Windows下的robocopy命令将数据从加密盘上复制到(新创建的)非加密盘上。

3.5 创建云盘

3.5.1 创建按量付费云盘

您可以在ECS管理控制台单独创建按量付费的数据盘,增加ECS实例的存储空间。本文适用于创建 一块没有数据的全新数据盘。云服务器ECS不支持单独创建系统盘。

背景信息

您可以通过以下两种方式创建按量付费云盘。本文描述的是第一种方式。

- · 在ECS管理控制台的存储与快照 > 云盘页面创建一块按量付费云盘。
- · 创建ECS实例时,设置ECS实例的计费方式为按量付费。此时挂载的任何云盘均采用按量付费计 费方式。具体操作,请参见创建ECS实例。

创建按量付费云盘时,您需要注意以下事项:

- 您在所有地域创建的按量付费数据盘不能超过您在所有地域的按量付费实例数量的五倍。更多详 情,请参见使用限制。
- · 不支持合并多块云盘。云盘创建后,每块云盘都是独立个体,无法通过格式化将多块云盘空间合并到一起。建议您提前做好云盘数量和容量的规划。
- · 已创建的多块云盘,不建议制作LVM(Logical Volume Manager)逻辑卷。因为快照只能备 份单块云盘的数据,使用LVM后,回滚云盘时会造成数据差异。

根据本文操作创建的云盘采用按量付费方式,费用详情请参见#unique_63。创建按量付费资源时,您的账户余额不得少于100元或者等值的代金券或者优惠券。

您也可以观看视频Windows系统ECS实例挂载云盘查看完整的创建、挂载、格式化云盘操作。

操作步骤

- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏,单击存储与快照 > 云盘。
- 3. 在磁盘列表页面右上角, 单击创建云盘进入创建页面。
- 4. 选择与待挂载的ECS实例所在的同一个地域和可用区。
- 5. 选择云盘的类型、容量,确认是否加密,并设置购买量。

🚨 云盘	SSD云盘 V 2	GiB 7800 IOPS	书快照创建磁盘 加密
	✓ 启用自动快照策略(推荐 自动快照策略定期触发云盘创	;) 建快照,当云盘出现故障或者云盘中数据	武发生逻辑错误时(如误删数据、感染病毒等),可通过快照快遮恢复数据 <mark>。大陆地域 1 GB数据每月仅需 0.12 元,快照价格</mark> >
	EcsUserGuide-SnapshotPoli	cy 毎周四 15:00 保留 60 天 🗸 🖸	创建自动快照策略>
	如何选择 SSD云盘 / 高效云盘 如何 创建预付费云盘>	: / 普通云盘 , 请看 <mark>详细说明</mark> >	
	购买量:		
		企可以丌通 39 块, С丌通 1 块	
	名称:	创建云盘	❷ 2-128个字符,以大小写字母或中文开头,可包含数字、"."、"_"、""或"-"
	描述:	本示例在华北1(青岛)创建了一块200 作为数据盘使用。	JGiBB9SSD云盘 ❷ 长度为2-256个字符,不能以http://或https://开头

■ 说明:

- ·选择启用自动快照策略能定期创建快照备份云盘数据。具体步骤,请参见#unique_64。
- ·如何确认云盘是否需要加密,请参见#unique_28。

· 您也可以选择使用快照创建云盘, 具体步骤, 请参见使用快照创建云盘。

·如何选择不同规格的ESSD云盘,请参见#unique_16。

6. 勾选相应的服务协议。

7. 确认当前配置和配置费用。

8. 单击确认订单 > 确认创建完成创建。

预期结果

创建成功后,回到磁盘列表页面,刷新列表。

新建的云盘的磁盘状态显示为待挂载。

后续步骤

- ·如果您在创建云盘后,需要以将云盘挂载到ECS实例上,请参见#unique_26。
- · 如果您在创建云盘后,需要转换为包年包月云盘,请参见#unique_48。

相关文档 #unique_66 #unique_67 #unique_68

3.5.2 创建包年包月云盘

您可以在ECS管理控制台上为包年包月ECS实例单独创建包年包月云盘,增加系统的存储空间。本 文适用于创建一块没有数据的全新数据盘。

背景信息

您可以通过以下两种方式创建包年包月云盘。本文描述的是第一种方式。

- · 在ECS管理控制台上为一台包年包月ECS实例自动创建并挂载一块包年包月云盘。
- · 创建ECS实例时,设置ECS实例的计费方式为包年包月。此时挂载的任何云盘均采用包年包月计 费方式。具体操作,请参见创建ECS实例。

创建包年包月云盘时,您需要注意以下事项:

- · 不支持合并多块云盘。云盘创建后,每块云盘都是独立个体,无法通过格式化将多块云盘空间合并到一起。建议您提前做好云盘数量和容量的规划。
- · 已创建的多块云盘,不建议制作LVM(Logical Volume Manager)逻辑卷。因为快照只能备 份单块云盘的数据,使用LVM后,回滚云盘时会造成数据差异。
- · 包年包月云盘不支持直接卸载数据盘并释放云盘。云盘到期时间和实例一致,随实例一起释放。 如果您需要释放云盘,可以将包年包月云盘转换为按量付费云盘,再卸载并释放云盘。

根据本文操作创建的云盘采用包年包月计费方式,费用详情请参见包年包月。

操作步骤

- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏,单击实例与镜像>实例。
- 3. 在顶部状态栏左上角处,选择地域。
- 找到需要添加包年包月云盘的包年包月实例,在操作列中,单击更多 > 资源变配 > 添加包年包 月云盘。

包年包月 2019年9月15日 23:59 到期	管理 远程连接 升隆配 续费 更多 ↓
包年包月	购买相同配置
还有10天释放	实例状态
包年包月 2019年9月9日 23:59 到期	实例设置 ▶
包年包月转按量付费包	密码/密钥 ▶
还添加包年包月云盘	资源变配
共有4条, 毎页显示: 20 ▼ 条	磁盘和镜像 ▶
	网络和安全组
	运维和诊断 ▶

- 5. 在云盘区域框中, 配置以下参数。
 - · 云盘类型: 在列表中选择需要新建的云盘的类型。如何选择不同规格的ESSD云盘, 请参见#unique_16。
 - ・云盘容量:可填容量范围为20 GiB到32768 GiB。
 - · 云盘加密:如果您需要为添加的云盘设置加密属性,勾选加密。云盘加密的详情,请参见云 盘设置加密属性。
 - · (可选)勾选启用自动快照策略,并选择一份已经创建的自动快照策略。

创建自动快照策略的详细步骤请参见#unique_64。

·购买量:在文本框中输入要添加的云盘的数量。

一台ECS实例数据盘数量(包括云盘和共享块存储)最多为16块。

- (可选)云盘名称:可在文本框中输入要添加的云盘名称。
- · (可选) 云盘描述:可在文本框中输入要添加的云盘的描述信息。
- ·如果您需要使用快照创建云盘,单击用快照创建磁盘。具体操作,请参见使用快照创建云盘。 盘。

_ 云盘	SSD云盘 V	200 GiB 7800 IOPS 用技用创建就盘 加密								
	✓ 启用自动快照策略(推荐 自动快照策略定期触发云盘6	芽) 30建体明,当云盘出现放键或者云盘中教假发牛逻辑错误时(如涅制教银,感染病毒等),可通过快照快速恢复数据 <mark>,大陆地域1 GB教假每月仅要 0.12 元,快</mark> 照价格>								
	EcsUserGuide-SnapshotPolicy 毎周四 15:00 保留 60 天 く 〇 創建自动快照策整>									
	如何选择 SSD云盘 / 高效云盘 / 普通云盘 , 请看 <mark>详细说明</mark> > 如何创建预付费云盘 >									
	购买量:	1 块								
		还可以开通 39 块,已开通 1 块								
	名称:	创建云盘 2-128个字符,以大小写字母或中文开头,可包含数字、""、""、""或""								
	描述:	本示例在华北1(青岛)创建了一块200GIB的SSD云盘 St 长度为2-256个字符,不能以http://或http:///或http://开头作为数据盘使用。								

- 6. 勾选 《云服务器ECS服务条款》。
- 7. 单击确认订单。
- 8. 单击创建订单。
- 9. 选择支付方式并单击确认支付。

10.单击管理控制台,在实例列表中单击添加了包年包月云盘的实例名称。

11.单击本实例磁盘,在磁盘列表中可找到新添加的包年包月云盘。

包年包月云盘已自动挂载在该实例中,并处于使用中状态。

后续步骤

- ·如果您在创建云盘后,需要分区格式化云盘,请参见#unique_27或#unique_71。
- ·如果您在创建了云盘后,需要转换为按量付费云盘,请参见#unique_48。

相关文档 #unique_66 #unique_67 #unique_68

3.5.3 使用快照创建云盘

本文介绍如何在云服务器ECS控制台上使用一份快照创建一块云盘,快照对应的历史云盘可以是系 统盘或数据盘。创建的云盘可以挂载到同一地域同一可用区下的任何一台ECS实例上。

前提条件

·您已经为历史系统盘或数据盘创建了快照,并确认快照ID。具体操作,请参见创建快照。

・由于单独创建的云盘采用按量付费计费方式,您的账户不得少于100元的余额、代金券或者优惠券。

背景信息

使用快照创建云盘可以读取已有云盘或者误释放云盘的数据,例如:

- ·如果您需要获取快照中的某些数据,且不希望通过回滚云盘的方式实现。您可以使用快照创建一 块新云盘,然后从已有云盘中读取数据。
- · 当系统盘出现故障导致无法运行实例时,您可以使用系统盘已有的快照创建一块新云盘,再作为数据盘挂载到健康的实例上,从而读取系统盘数据。

使用快照创建云盘,您要注意以下事项:

- 使用快照创建的云盘默认采用按量付费方式计费,并且只能作数据盘用。如果您需要转换云盘的 计费方式,请参见转换计费方式。
- 由于快照存储在对象存储OSS中,在使用快照创建云盘时,云服务器ECS从OSS读取数据并写入
 云盘,该过程需要一段时间,会造成首次访问时云盘性能下降。建议您在正式使用新云盘前,等
 待云盘完成所有数据块的读取,避免初期性能下降带来的不便。
- 您在所有地域创建的按量付费数据盘不能超过您在所有地域的按量付费实例数量的五倍。更多详 情,请参见使用限制。
- ・不支持合并多块云盘。云盘创建后,每块云盘都是独立个体,无法通过格式化将多块云盘空间合
 并到一起。建议您提前做好云盘数量和容量的规划。
- · 已创建的多块云盘,不建议制作LVM(Logical Volume Manager)逻辑卷。因为快照只能备 份单块云盘的数据,使用LVM后,回滚云盘时会造成数据差异。

使用快照创建的云盘默认采用按量付费计费方式。创建后,您可以转换云盘的计费方式:

- ·如果云盘挂载在包年包月实例上,可以通过包年包月实例升级配置转换为包年包月云盘。具体操作,请参见#unique_74。
- ・ 如果云盘挂载在按量付费实例上,可以通过按量付费转包年包月方式转换为包年包月云盘。具体 操作,请参见#unique_25。

您也可以在创建ECS实例的同时使用系统盘或数据盘的快照创建云盘。通过这种方式创建的云 盘,计费方式与实例相同。

操作步骤

- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏, 单击存储与快照 > 云盘。
- 3. 在磁盘列表页面右上角,单击创建云盘。

4. 选择地域和可用区。

由于挂载云盘时,实例与云盘必须在同一个地域同一个可用区,请根据实例部署情况选择云盘的可用区。

- 5. 在创建云盘页面,完成以下选购配置。
 - a) 选择云盘类型,可选项有高效云盘、ESSD云盘以及SSD云盘。
 - b) 单击用快照创建磁盘,并选择一份快照。

📕 说明:

选择的快照是一份加密盘快照时,系统会自动选中加密项。更多详情,请参见云盘加密。

c) (可选)勾选启用自动快照策略,并选择一份已经创建的自动快照策略。 创建自动快照策略的详细步骤请参见#unique_64。

d) 设置云盘的容量,新容量必须大于20GiB,小于32768GiB。

📕 说明:

- ·如果您不设置云盘容量,系统会根据快照对应的源云盘大小自动设置云盘大小。
- ·如果您设置的容量大于快照大小,您必须重新分区才能使用全部容量。
- 如果您的快照容量小于2048 GiB,但您希望设置的新云盘容量大于2048GiB,请提前确认快照对应的历史云盘采用的是GPT (Globally Unique Identifier Partition Table, GUID分区表)分区格式。否则,建议您设置为小于2048GiB,避免配置分区容量时带来数据丢失的风险。更多详情,请参见#unique_75。
- e) 设置购买量。

_ 云盘	SSD云盘 V	200	GiB 7800 IOPS 选择中	auto2.0.20	190731 sn-m5							
		200										
	✓ 昆用自动快照萍路(推荐) 自动快照萍路定期触发云盘创建快照,当云盘出现故障或者云盘中数据发生逻辑描误时(如误脆数据、感染病毒等),可通过快照快速恢复数据,大地地域1G8数据每月仪置0.12元,快照价格>											
	EcsUserGuide-SnapshotPe	olicy 毎周四 15:00 {	保留 60 天 🗸 😳 创建自	动快照策略>								
	如何选择 SSD元盘 / 高改元盘 / 谐振元盘 , 读者 详细说明 > 如何 創建預付 费元盘 >											
	购买量:	1	块									
		还可以开通 39 块 , i	已开通1块									
	名称:	创建云盘		Ø	2-128个字符,以大小写字母或中文开头,可包含数字、""、""、""或""							
	描述:	本示例在华北1(1 作为数据盘使用。	青岛)创建了一块200GiB的	SSD云盘 💋	长服为2-256个字符,不能以http://既http://开头							

- f) 勾选《云服务器 ECS 服务条款》。
- 6. 确认当前配置和配置费用。
- 7. 单击确认订单,根据页面引导完成创建

回到磁盘列表页面后,刷新列表,您可以看到新建的云盘,磁盘状态显示为待挂载。

后续步骤

使用快照创建云盘后,您必须挂载云盘才能恢复快照数据,如果是Linux实例,还需要登录实例执 行mount操作。详细步骤请参见#unique_26。 相关文档 #unique_66

#unique_67
#unique_68

3.6 挂载云盘

您可以将从云盘管理页面单独创建的云盘(作数据盘用)挂载到ECS实例上。您可以选择从实例管 理页面挂载云盘,也可以从云盘管理页面挂载云盘。

前提条件

- ・您已经在同一可用区创建了ECS实例和云盘。详细操作,请参见#unique_77或#unique_78。
- · 挂载云盘时, 实例必须满足以下条件:
 - 实例状态必须为运行中(Running)或者已停止(Stopped),不能为已锁定(Locked))。
 - 实例不欠费。
- · 挂载云盘时,云盘的状态必须为待挂载(Available)。

背景信息

在挂载云盘前,您需要了解以下注意事项:

- ・随实例一起创建的云盘和单独为包年包月实例创建的作数据盘用的包年包月云盘,不需要执行挂载操作。
- ·您只能挂载作数据盘用的云盘,不需要挂载作系统盘用的云盘。
- · 云盘只能挂载到同一地域下同一可用区内的实例上,不能跨可用区挂载。
- ·一台ECS实例最多能挂载16块云盘作数据盘用,同一时刻,一块云盘只能挂载到一台实例上。
- ・通过ECS管理控制台上的云盘页面独立创建的云盘能挂载到同一地域下同一可用区的任意实例
 上(包括包年包月和按量付费的实例)。

在实例管理页面挂载云盘

若要在一台ECS实例上挂载多块云盘,在实例管理页面操作比较方便。按以下步骤在选定的实例上 挂载云盘:

1. 登录ECS管理控制台。

2. 在左侧导航栏, 单击实例与镜像 > 实例。

- 3. 在顶部状态栏左上角处,选择地域。
- 4. 找到需要挂载云盘的实例,单击实例ID。
- 5. 在左侧导航栏中,单击本实例磁盘,并在磁盘列表页面的右上方单击挂载云盘。

<	👝 mongoshake-test									0	
实附详情											
本实例磁盘	磁盘列表									8月建云盘 狂戦云最	
本实例快服	□ 磁盘ID/磁盘名称	标签	磁盘种美(全部) *	磁曲状态(全部) ▼	付费类型(全部) ▼	可卸服(全部) ▼	可用区	磁盘曙性(全部) 👻	已加密/未加密	攝作	
本实例到10月卡 本实例安全组	d-bp1 6yy 0	۲	施放云盦 40GiB	使用中	按量付费	不支持	华东1可用区 H	系统盘	未加密	创建快强 里新初始化温盘 设置自动快服策略 更多 →	
本实例安全防护	- 编辑标签								共有1条,每页显示	π: 20 ♥ € < 1 > »	

- 6. 在弹出的对话框中,完成以下设置:
 - · 目标磁盘:只能选择同一可用区里状态为待挂载的云盘。
 - ·磁盘随实例释放:如果选中,当实例释放时,该云盘也会同时释放。
 - · 自动快照随磁盘释放:如果选中,当云盘释放时,该云盘创建的所有自动快照都会一起释放,但手动快照不会释放。建议您不要选择该选项,保留备份数据。

完成设置后,单击确定,并单击执行挂载。

挂载云盘	\times
您的实例: mongoshake-test (可用区:cn-hangzhou-h)	
可用设备名: 自动分配设备名 <i>i</i> *目标磁盘: d-bp1228 7k9yx4 ▼ □ 磁盘随实例释放 □ 自动快照随磁盘释放 確定	
重要提示: "磁盘挂载"执行成功后,您还需要登录本实例对挂载的磁盘进行"分区格式化和挂载新分区"的操作。操作指南:分区格式化/挂载数据盘	
执行挂载 取	消

7. 刷新本实例磁盘列表。

如果该云盘的状态变为使用中,表示挂载成功。

8. 根据云盘的内容和ECS实例的操作系统,您必须执行不同的操作使云盘可用。

具体操作如下表所示。

云盘的内容	实例的操作系 统	后续操作
全新的空云盘	Linux	#unique_27。大于2 TiB的云盘,请参 见#unique_79。
	Windows	#unique_71。大于2 TiB的云盘,请参 见#unique_79。
使用快照创建的云盘	Linux	远程连接实例,并执行mount <分区> <挂载 点>命令,将需要挂载的分区挂载到合适的挂载点 上,才能正常使用云盘。
	Windows	不需要执行其他操作,能直接使用云盘。

在云盘管理页面挂载云盘

若要将多块云盘挂载到不同的ECS实例上,在云盘管理页面操作比较方便。按以下步骤将选中的云 盘挂载到实例上:

- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏,单击存储与快照 > 云盘。
- 3. 在顶部状态栏左上角处,选择地域。
- 4. 找到待挂载云盘,在操作列中,单击更多>挂载。

磁盘状态(待 挂载) ▼	付费类型 (全部) ▼	可卸载(全 部) ▼	可用区	磁盘属性 (全部) ▼	已加密) 未加密	/ 操作
待挂载	按量付费	支持	华东 1 可 用区 E	数据盘	未加密	创建快照 重新初始化磁盘 设置自动快照策略 更多▼
			共有1条,卷	再页显示: 20	▼ 条	挂载 卸载
						释放修改磁盘描述

- 5. 在弹出的对话框中,完成以下设置:
 - · 目标实例:只能选择同一可用区的ECS实例。
 - ·磁盘随实例释放:如果选中,当实例释放时,该云盘也会同时释放。
 - · 自动快照随磁盘释放:如果选中,当云盘释放时,该云盘创建的所有自动快照都会一起释放,但手动快照不会释放。建议您不要选择该选项,保留备份数据。

完成设置后,单击执行挂载。

挂载云盘	×
您的磁盘: d-t	а (可用区:华东 1 可用区 E)
*目标实例:	请填写挂载实例ID ▼
本实例可用设备名:	自动分配设备名 i
释放行为:	□ 磁盘随实例释放
	□ 自动快照随磁盘释放
重要提示:"磁盘挂载"执行成功后 区"的操作。操作指南:分区格式	,您还需要登录本实例对挂载的磁盘进行"分区格式化和挂载新分化/挂载数据盘
	执行挂载 取消

6. 刷新云盘列表。

如果该云盘的状态变为使用中,表示挂载成功。

7. 根据云盘的内容和ECS实例的操作系统,您必须执行不同的操作使云盘可用。

具体操作如下表所示。

云盘的内容	实例的操作系统	后续操作
全新的空云盘	Linux	#unique_27。大于2 TiB的 云盘,请参见 #unique_79。
	Windows	#unique_71。大于2 TiB的 云盘,请参见 #unique_79。
使用快照创建的云盘	Linux	连接实例并执行 mount 命令 挂载分区后,才能正常使用云 盘。

云盘的内容	实例的操作系统	后续操作
	Windows	不需要执行其他操作,能直接 使用云盘。

后续步骤

使用云盘一段时间后,根据业务需求,您能执行以下不同的操作:

- ·您可以通过重新初始化系统盘,将云盘回复到初始状态。具体操作,请参见#unique_35。
- ·如果需要更大容量的云盘,您可以扩容。具体操作,请参见#unique_80或者#unique_81。
- ·您可以通过创建快照备份云盘的数据,或者为磁盘设置自动快照策略,创建自动快照。具体操作,请参见创建快照和#unique_32。
- ·如果您需要将云盘恢复到某个时刻的状态,可以使用快照回滚云盘。具体操作,请参见#unique_34。
- ·如果您的实例不再需要一块云盘,为免产生不必要的费用,可以卸载数据盘并释放云盘。具体操作,请参见#unique_36和#unique_37。

相关文档 #unique_82 Windows ECS实例挂载数据盘

3.7 分区格式化数据盘

3.7.1 Windows格式化数据盘

本文介绍如何为Windows实例的全新数据盘创建一个MBR单分区并挂载NTFS文件系统。您也可 以根据业务需要,对数据盘进行多分区配置。

背景信息

格式化数据盘可能存在以下风险:

- ·数据盘分区和格式化是高风险行为,请慎重操作。本文介绍如何处理一块全新的数据盘,如果您 的数据盘上有数据,请务必为数据盘创建快照,避免数据丢失。具体操作,请参见创建快照。
- · 云服务器ECS仅支持数据盘分区操作,不支持系统盘分区操作。如果您强行使用第三方工具对系统盘做分区操作,可能引发系统崩溃和数据丢失等未知风险。仅允许在扩容系统盘后做扩展分区或新增分区操作,具体操作,请参见#unique_86。

操作步骤

本操作步骤仅适用于不大于2TiB的数据盘,大于2TiB的数据盘,请参见#unique_79。示例步骤 以Windows Server 2012 R2 64位操作系统为例,ECS实例挂载的是20GiB的数据盘,分区并格 式化了一个MBR单分区。

- 1. 远程连接实例。
- 2. 在Windows Server桌面,右键单击开始图标,选择磁盘管理。

	程序和功能(F)	
	电源选项(O)	
	事件查看器(V)	
	系统(Y)	
	设备管理器(M)	
	网络连接(W)	
	磁盘管理(K)	
	计算机管理(G)	
	命令揭示符(C)	
	命令提示符(管理员)(A)	
	任务管理器(T)	
	控制面极(P)	
	文件资源管理器(E)	
	搜索(S)	
	运行(R)	
	关机或注销(U)	
	桌面(D)	
_		

3. 查找到未格式化分区的数据盘(如磁盘 2),其处于脱机状态。

a'				80.0	1819			
文件(F) 操作(A	(1) 単語(い) 作品	B(H)				R		
e e 🖬 📰 🖥	🗊 🗟 🗙 I	nii 🚅 🔍 1	8					
8	有間	供型	交绊系统	10.05	28	时用空间	外期用	
- 0C3	104	基本	NTES	状态既好 (40.00 GB	29.16 GB	73 %	
→ (60)	24	85	NIPS	W0107 (-	30.00 G8	2632.08	100%	
日 単立 0 日本 40.00 GB	(C) 40.00 GB N	rtts ///						
	00200918	at Bd 3	1 292)					
離本 20.00 GB 联机	(12) 30.00 GB N 14(12)(19)7 (19)	1775 1918)						
⁽⁾ 第 組営 2 第5日 20.00 G8 開約 ①	20.00 GB							
_								

4. 右键单击磁盘 2周边的空白区, 在弹出的菜单中, 选择联机。

联机后,磁盘2的状态显示为没有初始化。

5. 右键单击磁盘 2周边的空白区, 在弹出菜单中, 选择初始化磁盘。

④ 磁盘 2 未利			
20.00 GB 没有初始化	_	20.00 GB 初始化碳曲(1)	
		(i)和(O) 脱机(O)	
■ 未分配 ■ 主		屬性(P)	
		帮助(H)	

- 6. 在初始化磁盘对话框里,选择磁盘2,并选择磁盘分区形式:
 - MBR目前仍是最常用的分区形式,但是,MBR只支持处理不大于2 TiB的数据盘,而且,只 支持分4个主区,如果您要将磁盘分成更多的区,需要将某个主区作为扩展区并在其中创建逻 辑分区。
 - · GPT是一种新的分区形式,早期版本的Windows不能识别这种分区形式。GPT能处理的数据盘容量由操作系统和文件系统决定。在Windows操作系统里,GPT最多可以支持128个主分区。

在本示例中,我们选择MBR分区形式,并单击确定。

7. 在磁盘管理对话框,右键单击磁盘 2的未分配区域,选择新建简单卷。

- 8. 在新建简单卷向导对话框中,完成以下操作:
 - a) 单击下一步。
 - b) 指定卷大小:指定简单卷大小。如果您只要创建一个主区,使用默认值。单击下一步。

	新建简单卷向导	×
指定卷大小 远撑介于最大和最小值的卷大小。		
最大磁盘空间量(MB):	20477	
最小磁盘空间量(MB):	8	
简单卷大小(MB)(S):	20477 ×	
	< 上一步(B) 下一步(N) > 取得	i

c) 分配驱动器号和路径:选择一个驱动器号(即盘符),如本示例中选择F。单击下一步。

新建简单卷向导	×
分配驱动器号和器径 为了使于访问,可以给磁盘分区分配驱动器号或驱动器路径。	
 ④ 分配以下驱动器号(A); ○ 論人以下驱命 NTFS 艾特克中(M); ○ 不分娩驱动器号或驱动器号或(D) 	2 v 100-
< 上一步(B) 下一步(N) > 取消

d) 格式化分区:选择格式化设置,包括文件系统、分配单元大小和卷标,确认是否执行快速格式化和启用文件和文件夹压缩。这里使用默认设置。单击下一步。

	新建简单卷向导	×
格式化分区 要在这个磁盘分区上储存数据,你必	须先將其格式化。	
這择是否要格式化这个卷;如果要	各式化,要使用什么设置。	
○ 不要格式化这个卷(D)		
 按下列设置格式化这个卷(0) 	•	
文件系统(F):	NTFS V	
分配单元大小(A):	厳込値 ~	
卷标(V):	泰 氏力198	
▼执行快速格式化(P)		
□ 启用文件和文件夹压机	R(E)	
	< 上一步(B) 下一步(N) > 取消	i

e) 开始创建新简单卷。当向导对话框里出现以下截图中的信息时,说明已经完成新简单卷的创
 建。单击完成关闭新建简单卷向导对话框。

新建简单卷向导	
正在完成新建简单卷向导	
你已经成功完成新建简单卷向导。	
已选择下列设置:	
老英型: 簡単巻	^
地球和Join 2 卷大小: 20477 MB	
- 認助器号或路径: F: 文件系统: NTFS	=
分配单元大小、默认值	_
老标: 新加老 快速格式化: 是	v
若要关闭此向导,请单击"完成"。	
t three shall	Inter
预期结果

格式化分区完成后,磁盘管理中磁盘 2的状态如下图所示。

□ 磁盘 2 基本 20.00 GB 联机	1830年(7) 20.0g GB NTFS 秋志明好 住分園
■ 未分配 ■ 主分区	

您可以在这台电脑中查看到新建的驱动器新加卷 (F:)。至此,您就可以开始使用这个数据盘了。

相关文档 #unique_88

3.7.2 Linux格式化数据盘

本文描述如何为Linux实例的全新数据盘创建一个单分区并挂载文件系统。您也可以根据业务需要,对数据盘进行多分区配置。

前提条件

在格式化Linux实例的数据盘之前,请做好以下准备工作:

- · 单独购买的数据盘必须挂载数据盘后才能格式化。随实例一起购买的数据盘,无需挂载。如何挂载数据盘,请参见#unique_26。
- · 在ECS控制台的云盘页面中,选择更多 > 修改属性查看数据盘的设备名。

🧾 说明:

数据盘的设备名默认由系统分配,I/O优化实例的数据盘设备名从/dev/vdb递增排列,包括/ dev/vdb-/dev/vdz。如果数据盘设备名为dev/xvd*(*是a-z的任意一个字母),表示您使 用的是非I/O优化实例。

背景信息

本文操作仅适用小于等于2 TiB的数据盘。大于2 TiB的数据盘, 请参见#unique_79。

本示例使用I/O优化实例,操作系统为CentOS 7.6,为一块新的20 GiB数据盘(设备名为/dev/vdb)创建一个单分区,分区格式使用MBR,挂载的是ext4文件系统。

如果您需要使用GPT分区格式,请参见#unique_79。

格式化操作可能存在如下风险:

磁盘分区和格式化是高风险行为,请慎重操作。本文描述如何处理一块全新的数据盘,如
 果您的数据盘上有数据,请务必为数据盘创建快照,避免数据丢失。如何创建快照,请参见#unique_85。

· 云服务器ECS仅支持数据盘分区操作,不支持系统盘分区操作。如果您强行使用第三方工具对系统盘做分区操作,可能引发系统崩溃和数据丢失等未知风险。仅允许在扩容系统盘后做扩展分区或新增分区操作,具体操作请参见#unique_90。

操作步骤

- 1. 远程连接ECS实例。具体步骤请参见#unique_91。
- 2. 运行fdisk -1命令查看实例上的数据盘。

| ■ 说明:

执行命令后,如果不存在/dev/vdb,表示您的实例没有数据盘。确认数据盘是否已挂载。

- 3. 依次运行以下命令,创建一个单分区数据盘。
 - a)运行fdisk -u /dev/vdb命令:分区数据盘。
 - b) 输入p: 查看数据盘的分区情况。本示例中, 数据盘没有分区。
 - c) 输入n: 创建一个新分区。
 - d) 输入p:选择分区类型为主分区。

本示例中创建一个单分区数据盘,所以只需要创建主分区。如果要创建四个以上分区,您应该创建至少一个扩展分区,即选择e(extended)。

- e) 输入分区编号并按回车键。本示例中, 仅创建一个分区, 输入1。
- f) 输入第一个可用的扇区编号:按回车键采用默认值2048。
- g) 输入最后一个扇区编号。本示例中, 仅创建一个分区, 按回车键采用默认值。
- h) 输入p: 查看该数据盘的规划分区情况。
- i) 输入w:开始分区,并在完成分区后退出。

```
[root@ecshost~ ]# fdisk -u /dev/vdb
Welcome to fdisk (util-linux 2.23.2).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.
Device does not contain a recognized partition table
Building a new DOS disklabel with disk identifier 0x3e60020e.
Command (m for help): p
Disk /dev/vdb: 21.5 GB, 21474836480 bytes, 41943040 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: dos
Disk identifier: 0x3e60020e
Device Boot Start End Blocks Id System
Command (m for help): n
Partition type:
```

p primary (0 primary, 0 extended, 4 free) e extended Select (default p): p Partition number (1-4, default 1): 1 First sector (2048-41943039, default 2048): Using default value 2048 Last sector, +sectors or +size{K,M,G} (2048-41943039, default 41943039): Using default value 41943039 Partition 1 of type Linux and of size 20 GiB is set Command (m for help): p Disk /dev/vdb: 21.5 GB, 21474836480 bytes, 41943040 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk label type: dos Disk identifier: 0x3e60020e Device Boot Start End Blocks Id System /dev/vdb1 2048 41943039 20970496 83 Linux Command (m for help): w The partition table has been altered! Calling ioctl() to re-read partition table. Syncing disks.

4. 运行fdisk -lu /dev/vdb命令查看新分区。

如果出现以下信息,表示新分区已创建完成。

[root@ecshost~]# fdisk -lu /dev/vdb

Disk /dev/vdb: 21.5 GB, 21474836480 bytes, 41943040 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk label type: dos Disk identifier: 0x3e60020e

Device Boot Start End Blocks Id System /dev/vdb1 2048 41943039 20970496 83 Linux

5. 运行mkfs.ext4 /dev/vdb1命令在新分区上创建一个文件系统。

本示例中,创建一个ext4文件系统。您也可以根据自己的需要,创建其他文件系统。例如:如果 您需要在 Linux、Windows和Mac系统之间共享文件,可以运行mkfs.vfat命令创建VFAT文 件系统。

1 说明:

创建文件系统所需时间取决于数据盘大小。

```
[root@ecshost~ ]# mkfs.ext4 /dev/vdb1
mke2fs 1.42.9 (28-Dec-2013)
Filesystem label=
OS type: Linux
```

Block size=4096 (log=2) Fragment size=4096 (log=2) Stride=0 blocks, Stripe width=0 blocks 1310720 inodes, 5242624 blocks 262131 blocks (5.00%) reserved for the super user First data block=0 Maximum filesystem blocks=2153775104 160 block groups 32768 blocks per group, 32768 fragments per group 8192 inodes per group Superblock backups stored on blocks: 32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208, 4096000 Allocating group tables: done Writing inode tables: done

- Creating journal (32768 blocks): done Writing superblocks and filesystem accounting information: done
- 6. (可选) 运行cp /etc/fstab /etc/fstab.bak命令备份etc/fstab文件。
- 7. 运行echo /dev/vdb1 /mnt ext4 defaults 0 0 >> /etc/fstab命令向/etc/fstab 写》新公区信息

写入新分区信息。

如果要把数据盘单独挂载到某个文件夹,例如单独用来存放网页,则将命令中/mnt替换成所需的挂载点路径。

📕 说明:

Ubuntu 12.04系统不支持barrier, 您需要运行echo '/dev/vdb1 /mnt ext4 barrier =0 0 0' >> /etc/fstab命令。

8. 运行cat /etc/fstab命令查看/etc/fstab中的新分区信息。

```
[root@ecshost~ ]# cat /etc/fstab
#
# /etc/fstab
#
# Created by anaconda on Wed Dec 12 07:53:08 2018
#
# Accessible filesystems, by reference, are maintained under '/dev/
disk'
# See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for
more info
#
UUID=d67c3b17-255b-4687-be04-f29190d37396 / ext4 defaults 1 1
/dev/vdb1 /mnt ext4 defaults 0 0
```

9. 运行mount /dev/vdb1 /mnt命令挂载文件系统。

10.运行df -h命令查看目前磁盘空间和使用情况。

如果出现新建文件系统的信息,表示挂载成功,您不需要重启实例即可以使用新的文件系统。

[root@ecshost~]# df -h

Filesystem Size Used Avail Use% Mounted on

/dev/vda1 40G 1.6G 36G 5% / devtmpfs 234M 0 234M 0% /dev tmpfs 244M 0 244M 0% /dev/shm tmpfs 244M 484K 244M 1% /run tmpfs 244M 0 244M 0% /sys/fs/cgroup tmpfs 49M 0 49M 0% /run/user/0 /dev/vdb1 20G 45M 19G 1% /mnt

3.7.3 分区格式化大于2 TiB数据盘

本文描述了如何在不同的操作系统里分区格式化一块大于2 TiB的数据盘。

注意事项

- · 创建快照的速度和数据的增量成正比, 云盘占用的容量越大, 创建快照的时间也会更长。
- ·阿里云块存储支持的分区格式分包括MBR(Master Boot Record,主分区引导记
 - 录)和GPT(Globally Unique Identifier Partition Table, GUID分区表)。其

中,MBR只支持处理不大于2 TiB的容量,且只支持划分4个主区。如果您需要使用大于2 TiB的数据盘,您必须采用GPT格式。

MBR和GPT分区格式间相互转换有数据丢失的风险。您在使用快照创建云盘或者扩容云盘 容量,并且希望设置的新容量大于2 TiB时,建议您提前查询数据盘采用的分区格式是否 为MBR。如果您需要保留数据,建议您重新创建并挂载一块数据盘,采用GPT分区格式后,再 将已有数据拷贝至新的数据盘上。

・大于2 TiB的数据盘请采用下表中描述的分区工具、分区格式和文件系统。

操作系统	分区工具	分区格式	文件系统
Windows	磁盘管理	GPT	NTFS
Linux	parted	GPT	ext4或xfs

准备工作

1. 数据盘已经挂载到实例上。具体操作请参见#unique_26。

2. 远程登录实例。具体连接方法请参见#unique_95。

分区格式化Windows数据盘

此章节以Windows Server 2008 R2 64位操作系统为例,说明如何在Windows实例中分区格式 化一块大于2 TiB的全新数据盘。

1. 在Windows Server桌面的任务栏里,单击服务器管理器。

2. 在服务器管理器的左侧导航栏里,选择存储 > 磁盘管理。

■ 服务器管理器								
文件 (F) 操作 (A) 查看 (V) 帮助 (H)								
🗢 🔿 🖄 📅 😰 🕇	Κ 😼							
■ 服务器管理器(iZ z	磁盘管理	卷列表	長 + 图形视	<u>图</u>				
● ● ● 角色	卷 布局	类型	文件系统	状态				
□ 31 97112	□□	基本		状态良好	(主分区)			<u>,</u>
田 報 配置 田	□□ (C:) 简単 □□ (C:) 简単	基本	NTES	状态良好	(条统, 启动, (主公区)	沽动,	故障转储,	主分区)
	□□□ (2:) 間早	垒平 基本	NTFS	状态良好	(主分区) (主分区)			
www.mindows Seiver Backup				000000	<u>а,, с</u> ,			
	🤕 磁盘	Ŀ						
	未知 4000_00_GB		4000.00	CP				
	脱机 ①		+000.00	90				
	帮助							

- 3. 找到需要分区格式化的磁盘(本示例中为磁盘 4)。磁盘状态显示为脱机。
- 4. 右击磁盘 4周边空白处,单击联机。

(词) 磁盘 4		
未知 4000.00 GB 脱机 () 那師	联机 (0) 属性 (P)) GB
(TTTLAL)	帮助(H)	
≟i CD-RO∎ î CD-ROM (D:)	0	

联机后,磁盘4的状态显示为没有初始化。

5. 右键单击磁盘 4周边的空白区, 在弹出菜单中, 选择初始化磁盘。

6. 在初始化磁盘 对话框里,选择磁盘 4,并选择磁盘分区形式为GPT。

初始化磁盘	×
磁盘必须经过初始化,逻辑磁盘管理器才能访问。	
选择磁盘 (S):	_
☑ 磁盘 4	
为所选磁盘使用以下磁盘分区形式:	
C MBR(主自动记录)(M)	
● GPT (GUID 分区表)(G)	
注意: 所有早期版本的 Windows 不识别 GPT 分区形式。建议在大于 2TB 的磁盘或基于 Itanium 的计算机所用的磁盘上使用这种分区形 式。	
确定取消	

7. 在磁盘管理窗口,右键单击磁盘 4的未分配区域,选择新建简单卷,创建一个4 TiB的NTFS格式的卷。

□ 磁盘 4 基本 3999.88 GB 联机	3999.88 GB 未分配 届性 (P)	
CD-ROM (D:)		

- 8. 在新建简单卷向导中,单击下一步,并完成以下操作。
 - a. 指定卷大小:指定简单卷大小。如果您只要创建一个主区,使用默认值。单击下一步。您也可以把磁盘 4分成多个分区来使用。

 说明:
 64

 NTFS卷上的最大尺寸,理论上,3NTFS的最大卷包含2
 -1个簇。实际上,WinXP

 Pro中,NTFS卷的最大限制是2
 -1个簇。例如,如果是64 KiB的簇,那NTFS卷的最大尺

寸就是约256 TiB。如果选择4 KiB的簇,那NTFS卷的最大尺寸就是约16 TiB。NTFS会根据磁盘的容量来自动选择簇的大小。

新建简单卷向导	×
指定卷大小 选择介于最大和最小值的卷大小。	,
最大磁盘空间量(MB):	4095870
最小磁盘空间里(MB):	8
简单卷大小(MB)(S):	4095870
	< 上一步 (8) 下一步 (8) > 取消

b. 分配驱动器号和路径:选择一个驱动器号(即盘符),例如G。单击下一步。

新建資単卷向导					
分配驱动器号和路径 为了便于访问,可以给磁盘分区分配驱动器号或驱动器路径。					
 ○ 分配以下驱动器号(A): ○ 装入以下空白 NTFS 文件夹中(M): □ 浏览(R) ○ 不分配驱动器号或驱动器路径(D) 					
< 上一步 (B) 下一步 (N) > 取消					

c. 格式化分区:选择格式化设置,包括文件系统、分配单元大小和卷标,确认是否执行快速格式化和启用文件和文件夹压缩。例如,选择执行快速格式化。单击下一步。

新建简单卷向导	×
格式化分区 要在这个磁盘分区上储存数据,允	您必须先将其格式化。
选择是否要格式化这个卷; 如果要	要格式化,要使用什么设置。
○ 不要格式化这个卷 囧)	
◎ 按下列设置格式化这个卷(D):
文件系统(F):	NTFS
分配单元大小(A):	默认值
卷标(V):	新加卷
☑ 执行快速格式化 (P)	
□ 启用文件和文件夹压线	宿(E)
	< 上一步 (B) 下一步 (B) > 取消

d. 开始创建新简单卷:当向导对话框里显示已经完成新简单卷的创建时,单击完成,关闭新建 简单卷向导。

格式化分区完成后,磁盘管理中磁盘 4的状态如下截图所示。

🗔 磁盘 4	
基本	新加卷 (G:)
3999.88 GB	3999.87 GB NTIFS
联机	状态良好(主分区)

更换Windows数据盘分区格式

📋 说明:

转换分区格式有数据丢失的风险,请确认您已完成数据备份工作。

此章节以Windows Server 2012 R2 64位操作系统为例,假设需要操作的数据盘容量为3 TiB。

- 1. 在Windows Server桌面,右键单击开始图标,选择磁盘管理。
- 2. 找到需要分区格式化的磁盘(本示例中为磁盘 2)。

3. 右键单击一个简单卷, 在弹出菜单中, 选择删除卷。

□ 磁盘 2 基本 3000.00 GB 联机	新加卷1 (E:) 14.23 GB NTFS 状态良好 (主分区)	新加卷2 (H:) 9.77 GB NTFS 状态良好 (主分区)	(1:) 2024.00 GB NTFS 打开(O) 资源管理器(E)	952.00 GB 未分配
公 CD-ROM 0 CD-ROM (D:) 无媒体			将分区标记为活动分区(M) 更改驱动器号和路径(C) 格式化(F) 扩展卷(X) 压缩卷(H)	
			添加鏡像(A) 删除卷(D) 履性(P) 帮助(H)	

- 4. 右键单击磁盘周边的空白区, 在弹出菜单中, 选择转换成GPT磁盘。
- 5. 在磁盘管理窗口,右键单击磁盘的未分配区域,选择新建简单卷,创建一个3 TiB的NTFS格式的卷。

□ 磁盘 2 基本 2999.88 GB 联机	2999.88 GB 未分配	新建简单卷(I) 新建跨区卷(N)	
CD-ROM (D:)		新建带区卷(T) 新建镜像卷(R) 新建 RAID-5 卷(W)	
70味14		扂性(P)	
		帮助(H)	

- 6. 在新建简单卷向导中,单击下一步,并完成以下操作。
 - a. 指定卷大小:指定简单卷大小。如果您只要创建一个主区,使用默认值。单击下一步。您也可以把磁盘 2分成多个分区来使用。

	新建简单卷向导	x
指定卷大小 选择介于最大和最小值的卷大小。		
最大磁盘空间量(MB):	3071870	
最小磁盘空间量(MB):	8	
简单卷大小(MB)(S):	3071870	
	< 上一步(B) 下一步(N) > 取消	

 64

 NTFS卷上的最大尺寸,理论上,3NTFS的最大卷包含2
 -1个簇。实际上,WinXP

 Pro中,NTFS卷的最大限制是2
 -1个簇。例如,如果是64 KiB的簇,那NTFS卷的最大尺

寸就是约256 TiB。如果选择4 KiB的簇,那NTFS卷的最大尺寸就是约16 TiB。NTFS会根据磁盘的容量来自动选择簇的大小。

b. 分配驱动器号和路径:选择一个驱动器号(即盘符),例如E,单击下一步。

新建简单卷向导	x
分配驱动器号和路径 为了便于访问,可以给磁盘分区分配驱动器号或驱动器路径。	
 ● 分配以下驱动器号(A): ● 装入以下空白 NTFS 文件夹中(M): □ 浏览(R) ○ 不分配驱动器号或驱动器路径(D) 	
< 上一步(B) 下一步(N) > 取消	

c. 格式化分区:选择格式化设置,包括文件系统、分配单元大小和卷标,确认是否执行快速格 式化和启用文件和文件夹压缩。例如,选择执行快速格式化。单击下一步。

新建	简单卷向导			
格式化分区 要在这个磁盘分区上储存数据,你必须先将其格式化。				
选择是否要格式化这个卷;如果要格式化	, 要使用什么设置。			
○ 不要格式化这个卷(D)				
● 按下列设置格式化这个卷(O):				
文件系统(F): N	TFS ¥			
分配单元大小(A): 默	以值			
卷标(V): 新	加卷			
☑ 执行快速格式化(P)				
□ 启用文件和文件夹压缩(E)				
	< 上一步(B) 下一步(N) > 取消			

d. 开始创建新简单卷:当向导对话框里显示已经完成新简单卷的创建时,单击完成,关闭新建简单卷向导。

格式化分区完成后,磁盘管理中磁盘4的状态如下截图所示。

分区格式化Linux数据盘

此章节以CentOS 7.4 64位操作系统为例,说明如何在Linux实例上使用parted工具和 e2fsprogs工具分区并格式化一个大容量数据盘。假设需要处理的数据盘是一个新建的3 TiB的空 盘,设备名为/dev/vdd。

前提条件

您的Linux实例上已经安装了parted工具和e2fsprogs工具。

[root@ecshost~]# yum install -y parted

[root@ecshost~]# yum install -y e2fsprogs

操作步骤

按以下步骤分区格式化大容量数据盘,并挂载文件系统。

 运行命令fdisk -1查看数据盘是否存在。返回结果应包括如下所示的信息。如果没有,表示您 未挂载数据盘。

```
[root@ecshost~ ]# fdisk -l
Disk /dev/vdd: 3221.2 GB, 3221225472000 bytes, 6291456000 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
```

- 2. 运行命令parted /dev/vdd开始分区。
 - a. 运行命令mklabel gpt,将默认的MBR分区格式转为GPT分区格式。
 - b. 运行命令mkpart primary 1 100%,划分一个主分区,并设置分区的开始位置和结束位置。
 - c. 运行命令align-check optimal 1检查分区是否对齐。

```
■ 说明:
```

```
如果返回的是1 not aligned,说明分区未对齐,建议您运行以下命令,再根据 (<
optimal_io_size>+<alignment_offset>) /<physical_block_size>的公式计算
出最佳分区模式的起始扇区值。假设1024为计算得出的推荐扇区值,则您可以运行mkpart
primary 1024s 100%重新划分一个主分区。
```

```
[root@ecshost~ ]# cat /sys/block/vdd/queue/optimal_io_size
[root@ecshost~ ]# cat /sys/block/vdd/queue/minimum_io_size
[root@ecshost~ ]# cat /sys/block/vdd/alignment_offset
[root@ecshost~ ]# cat /sys/block/vdd/queue/physical_block_size
```

d. 运行命令print, 查看分区表。

```
(parted) mklabel gpt
(parted) mkpart primary 1 100%
(parted) align-check optimal 1
1 aligned
(parted) print
Model: Virtio Block Device (virtblk)
Disk /dev/vdd: 3221GB
Sector size (logical/physical): 512B/512B
Partition Table: gpt
Disk Flags:
Number Start End Size File system Name Flags
1 17.4kB 3221GB 3221GB primary
```

- e. 运行命令quit, 退出parted操作。
- 3. 运行命令partprobe, 使系统重读分区表。

- 4. 运行以下命令,为/dev/vdd1分区创建一个文件系统。
 - ・创建一个ext4文件系统。

[root@ecshost~]# mkfs -t ext4 /dev/vdd1

・创建一个xfs文件系统。

[root@ecshost~]# mkfs -t xfs /dev/vdd1

📕 说明:

- ·如果数据盘的容量为16 TiB,您需要使用指定版本的e2fsprogs工具包格式化,请参见附录 一:升级e2fsprogs工具包。
- ·如果您要关闭ext4文件系统的lazy init功能,避免该功能对数据盘I/O性能的影响,请参见附录二:关闭lazy init功能。
- 5. 运行命令mkdir /test, 创建一个名为/test的挂载点。
- 6. 运行命令mount /dev/vdd1 /test, 将分区/dev/vdd1挂载到/test。
- 7. 运行命令df -h, 查看目前磁盘空间和使用情况。

如果返回结果里出现新建文件系统的信息,说明挂载成功,您可以使用新的文件系统了。

[root@ecshost~]# df -h Filesystem Size Used Avail Use% Mounted on /dev/vda1 40G 6.4G 31G 18% / devtmpfs 487M 0 487M 0% /dev tmpfs 497M 0 497M 0% /dev/shm tmpfs 497M 364K 496M 1% /run tmpfs 497M 0 497M 0% /sys/fs/cgroup tmpfs 100M 0 100M 0% /run/user/0 /dev/vdd1 2.9T 89M 2.8T 1% /test

- 8. (推荐)向/etc/fstab写入新分区信息,启动开机自动挂载分区。
 - a. 运行命令cp /etc/fstab /etc/fstab.bak, 备份etc/fstab。
 - b. 运行命令echo /dev/vdd1 /test ext4 defaults 0 0 >> /etc/fstab, 向/etc/ fstab里写入新分区信息。
 - c. 运行命令cat /etc/fstab, 查看/etc/fstab的信息。

如果返回结果里出现了写入的新分区信息,说明写入成功。

至此,您已经成功分区并格式化了一个3 TiB数据盘。

附录一: Linux实例升级e2fsprogs工具包

如果数据盘容量为16 TiB,您需要使用1.42及以上版本的e2fsprogs工具包完成ext4文件系统格式化。如果e2fsprogs版本低于1.42,会出现如下错误信息。

mkfs.ext4: Size of device /dev/vdd too big to be expressed in 32 bits using a blocksize of 4096.

您需要按以下方式安装高版本的e2fsprogs,如本示例中使用的1.42.8。

1. 运行命令 rpm -qa | grep e2fsprogs检查e2fsprogs当前的版本。

```
$sudo rpm -qa | grep e2fsprogs
e2fsprogs-libs-1.41.12-3
e2fsprogs-1.41.12-3
e2fsprogs-libs-1.39-33.1.alios5
e2fsprogs-devel-1.39-33.1.alios5
```

如果当前版本低于1.42,按以下步骤安装软件。

2. 运行以下命令下载1.42.8版本的e2fsprogs。您可以在 e2fsprogs找到最新的软件包。

wget https://www.kernel.org/pub/linux/kernel/people/tytso/e2fsprogs/ v1.42.8/e2fsprogs-1.42.8.tar.gz

3. 依次运行以下命令,编译高版本的工具。

```
tar xvzf e2fsprogs-1.42.8.tar.gz
cd e2fsprogs-1.42.8
./configure
make
make install
```

4. 运行以下命令检查是否成功更新版本。

rpm -qa | grep e2fsprogs

附录二: Linux实例关闭lazy init功能

ext4文件系统默认开启lazy init功能。该功能开启时,实例会发起一个线程持续地初始化ext4文件系统的metadata,从而延迟metadata初始化。所以在格式化数据盘后的近期时间内,云盘的IOPS性能会受到影响,IOPS性能测试的数据会明显偏低。

如果您需要在格式化以后马上测试数据盘性能,请运行以下命令在格式化文件系统时关闭lazy_init 功能。

```
mke2fs -0 64bit,has_journal,extents,huge_file,flex_bg,uninit_bg,
dir_nlink,extra_isize -E lazy_itable_init=0,lazy_journal_init=0 /dev
/vdd1
```

📃 说明:

关闭lazy init功能后,格式化的时间会大幅度地延长,格式化32 TiB的数据盘可能需要10-30分钟。请您根据自身的需要选择是否使用lazy init功能。

3.7.4 在裸设备上创建文件系统

本文以Ubuntu系统ECS实例为例,介绍了如何在裸设备上创建一个文件系统。若云盘不需要划分 逻辑分区(例如/dev/vdb1或/dev/vdb2),您可以跳过创建云盘分区,直接在裸设备上创建文件 系统。该方法仅适用于Linux系统ECS实例。

前提条件

您已经创建并挂载了一块云盘,详细步骤请参见创建按量付费云盘和挂载云盘。

操作步骤

- 1. 以root权限远程连接ECS实例。连接方式请参见#unique_99。
- 2. 执行以下命令, 查看已挂载的云盘名称。

fdisk -l

假设回显信息如下图所示,表示ECS实例有两块云盘,/dev/vda表示系统盘,/dev/vdb表示数 据盘。

dzdZ:~# fdisk -1 root@iZuf6em Disk /dev/vda: 80 GiB, 85899345920 bytes, 167772160 sectors Units: sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disklabel type: dos Disk identifier: 0x6c740fc2 Device Boot Start End Sectors Size Id Type /dev/vda1 * 2048 83886046 83883999 40G 83 Linux Disk /dev/vdb: 100 GiB, 107374182400 bytes, 209715200 sectors Units: sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes

- 3. 为/dev/vdb数据盘创建文件系统。例如:
 - ・创建ext4文件系统

mkfs.ext4 /dev/vdb

・创建ext3文件系统

mkfs.ext3 /dev/vdb

・创建xfs文件系统

mkfs.xfs /dev/vdb

· 创建btrfs文件系统

mkfs.btrfs /dev/vdb

4. (可选) 创建挂载点, 例如/media/vdb。

您也可以将云盘挂载到已有目录下。

mkdir /media/vdb

5. 将云盘挂载至挂载点。

mount /dev/vdb /media/vdb

6. 使用df命令查看挂载情况。

显示云盘对应的挂载点信息,表示挂载成功。

[root@ecshost ~]# df -h Filesystem Size Used Avail Use% Mounted on udev 3.9G 0 3.9G 0% /dev tmpfs 798M 2.9M 795M 1% /run /dev/vda1 40G 3.2G 35G 9% / tmpfs 3.9G 0 3.9G 0% /dev/shm tmpfs 5.0M 0 5.0G 0% /run/lock tmpfs 3.9G 0 3.9G 0% /sys/fs/cgroup tmpfs 798M 0 798M 0% /run/user/0 /dev/vdb 98G 61M 93G 1% /media/vdb

相关文档

Windows格式化数据盘

本文介绍如何为Windows实例的全新数据盘创建一个MBR单分区并挂载NTFS文件系统。您也可以根据业务需要,对数据盘进行多分区配置。

Linux格式化数据盘

本文描述如何为Linux实例的全新数据盘创建一个单分区并挂载文件系统。您也可以根据业务需要,对数据盘进行多分区配置。

3.8 扩容云盘

3.8.1 扩容概述

在阿里云,随着业务的发展和应用数据增长,您能随时扩展云盘容量。

扩容场景

您可以通过以下方式增加单台实例的存储容量:

- · 扩容已有云盘, 您需要自行扩展已有分区或者扩展新建分区。详情请参见扩容已有云盘。
- · 创建一块新云盘,作为数据盘挂载到实例上,并需要自行分区格式化。
- 更换系统盘的同时指定更高的系统盘容量。详情请参见更换系统盘。

扩容云盘系列文档主要讲解扩容已有云盘的操作步骤和注意事项。

系统盘扩容上限

新值必须大于系统盘现有容量,小于等于500 GiB。系统盘容量限制和镜像的关系如下表所示。

镜像	扩容限制(GiB)
Linux(不包括CoreOS)和 FreeBSD	[max{20, 系统盘当前容量}, 500]
CoreOS	[max{30,系统盘当前容量},500]
Windows	[max{40, 系统盘当前容量}, 500]

例如,一台CentOS系统的ECS实例扩容前系统盘容量为35 GiB。更换系统盘后,容量必须大于等于35 GiB,小于等于500 GiB。

数据盘扩容上限

新值必须大于数据盘现有容量。不同云盘类别的数据盘扩容上限如下表所示。

云盘类别	扩容前容量(GiB)	扩容上限(GiB)
普通云盘	< 2000	2000
SSD云盘或高效云盘	< 6144	6144
SSD云盘或高效云盘	≥ 6144	不支持扩容
ESSD云盘	< 32768	32768

扩容云盘相关操作

- 1. 在控制台或通过API(ResizeDisk)扩容云盘。具体操作,请参见扩容云盘。
- 2. 在控制台或通过API(RebootInstance)重启实例。具体操作,请参见重启实例。
- 3. 远程登录实例完成扩展分区和文件系统操作:

云盘扩容前	扩容后云盘容量(GiB)	分区和文件系统操作
未创建分区	< 2048	 Windows分区格式化数据盘 Linux分区格式化数据盘
	≥ 2048	分区格式化大于2 TiB云盘
已创建分区	< 2048	 ・ 扩展文件系统_Windows ・ 扩展文件系统_Linux系统盘 ・ 扩展文件系统_Linux数据盘
	≥ 2048	 GPT (Globally Unique Identifier Partition Table) 分区格式: 扩展文件系统_Windows 扩展文件系统_Linux系统盘 扩展文件系统_Linux数据盘 MBR (Master Boot Record) 分区格式:不支持 扩容
		 说明: 云盘扩容后容量大于2048 GiB时,不支持使 用MBR分区格式。如果您需要扩容到超过2048 GiB时,请提前查询云盘使用的分区格式。如果使 用的是MBR格式,建议您重新创建并挂载一块数 据盘,使用GPT分区格式后将数据拷贝至新的云盘。

3.8.2 在线扩容云盘

阿里云支持在线扩容系统盘和数据盘,即无需重启ECS实例便可以完成扩容。随着业务的发展和应用数据增长,您可以参照本文描述在线扩容云盘容量。

前提条件

- ·为防止扩容过程中误操作导致数据丢失,请创建快照以备份数据。详细步骤请参见创建快照。
- ·如果您的Windows实例创建时间早于2019-03-30,请检查实例是否需要更新RedHat VirtIO SICI驱动。详细步骤请参见Windows实例更新RedHat VirtIO SCSI驱动。

背景信息

在线扩容操作时,ECS实例无需经过控制台或者API RebootInstance重启,便可以直接看到云盘 容量扩展。扩容的操作方式区别点在于:

- · 在线扩容:无需重启ECS实例。实例处于运行中(Running)状态即可扩容。
- ・ 离线扩容:需要重启ECS实例。实例处于运行中(Running)状态和已停止(Stopped)状态
 均可以扩容。详细步骤请参见离线扩容。

在线扩容云盘的使用限制如下:

- ・系统限制
 - 云盘的扩容上限请参见扩容概览。
 - 扩容云盘只是扩大存储容量,而不是扩容文件系统,扩容后您必须自行分配存储空间。详细
 步骤请参见后续步骤。
 - 扩容云盘后,不支持通过回滚云盘等其他方式实现云盘缩容。
 - 在线扩容系统盘对实例操作系统有如下限制:
 - Windows实例操作系统不能是Windows Server 2003。
 - Linux实例通过uname -a查看到的内核版本不能低于3.6.0。
 - Linux实例仅适用于以下公共镜像,其他镜像不支持在线扩容系统盘。

发行版	涉及范围
CentOS 7	公共镜像CentOS 7.2及以上版本
CentOS 6	公共镜像CentOS 6.8及以上版本
Ubuntu 16	公共镜像Ubuntu 16所有版本
Ubuntu 18	公共镜像Ubuntu 18所有版本
Debian 8	公共镜像Debian 8.9及以上版本
Debian 9	公共镜像Debian 9所有版本
Red Hat Enterprise Linux 7	公共镜像Red Hat Enterprise Linux 7.4及以上版本(包 含SAP)
Red Hat Enterprise Linux 6	公共镜像Red Hat Enterprise Linux 6.9及以上版本
Red Hat Enterprise Linux 8	公共镜像Red Hat Enterprise Linux 8所有版本
SUSE 12	公共镜像SUSE 12 SP2及以上版本(包含SAP)
OpenSUSE	公共镜像OpenSUSE 42.3及以上版本

- ・不支持项
 - 不支持在线扩容ESSD云盘。ESSD云盘扩容请参见离线扩容云盘。
 - 不支持扩容正在创建快照的云盘。
 - 包年包月ECS实例续费降配后,当前计费周期的剩余时间内,不支持扩容实例的包年包月云盘。
 - MBR格式分区不支持大于2 TiB的云盘容量。如果待扩容的云盘采用的是MBR分区格式,且 需要扩容到超过2 TiB时,建议您重新创建并挂载一块数据盘,然后使用GPT分区方式并将数 据拷贝至新数据盘中。
- ・支持项
 - 支持状态为使用中的数据盘,且所挂载的实例状态为运行中(Running)。
 - 支持在线扩容I/O优化实例。
 - 支持在线扩容高效云盘和SSD云盘。
 - 对于Windows实例, 仅支持NTFS文件系统扩容。

操作步骤

- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏,单击存储与快照 > 云盘。
- 3. 在顶部状态栏左上角处,选择地域。

4. 找到需要扩容的云盘,在操作列,单击更多 > 磁盘扩容。

磁盘属性(数据盘) ▼	已加密/未加密	操作
数据盘	未加密	创建快照 重新初始化磁盘 设置自动快照策略 更多▼
数据盘	未加密	挂载 仓 卸载
数据盘	未加密	释放 仓 修改磁盘描述 修改属性
数据盘	未加密	● 按量付费转包年包月 磁盘扩容

- 5. 勾选 在线扩容。
- 6. 设置扩容后的容量。
- 7. 确认费用, 阅读服务条款, 然后单击确定扩容。

磁盘扩容 ⑦ 云盘扩容须如								
确认订单				支付		\rightarrow	支付成功	
磁盘名称	磁盘类型	支持卸载	付费方式	当前容量	扩容方式	扩容后容量	费用	操作
OnlineResizeDiskTest / d-bp1 udnbe	高效云盘(系统盘)	不支持	按量付费	40GB	✓ 在浅扩容 ②	120 GB 🔺	¥ 0.00 /8寸 省:¥ 0.399/8寸	移除
								☑ 《云服务器 ECS 服务条款》
								确定扩容

8. 完成支付。

未勾选在线扩容或不满足在线扩容限制条件的ECS实例,需要在控制台或者使用API RebootInstance重启实例使操作生效。详细步骤请参见重启实例和RebootInstance。

后续步骤

根据云盘是否挂载以及是否分区,扩容后的下一步操作选项如下表所示。

云盘状态分类	下一步操作
未挂载未分区的云 盘	如果您的云盘是待挂载(Available)状态的数据盘,支
	付完成后扩容操作直接生效。您可以按以下步骤操作:
	1. 在控制台或通过API AttachDisk挂载云盘,详细步骤
	请参见挂载云盘
	2. 分区扩容或者格式化操作:
	・ 分区格式化小于2 TiB的Linux数据盘
	・ 分区格式化小于2 TiB的Windows数据盘
	・ 分区格式化大于2 TiB云盘
已挂载未分区的云	执行分区格式化操作:
盘	・ 分区格式化小于2 TiB的Linux数据盘
	 ・ 分区格式化小于2 TiB的Windows数据盘 ハ豆物式化小丁2 TiB的Windows数据盘
	• 万区恰 式化人丁2 11B云盘
已挂载并分区的云 盘	执行分区扩容和文件系统扩展操作:
	・Linux实例请参见#unique_112
	・Windows实例请参见#unique_113

相关文档 #unique_114 #unique_115 #unique_116

3.8.3 离线扩容云盘

随着业务的发展和应用数据增长,您可以参照本文描述扩容云盘容量,包括系统盘和数据盘。

前提条件

为防止扩容过程中误操作导致数据丢失,请创建快照以备份数据。具体操作,请参见创建快照。

背景信息

离线扩容操作时,实例必须经过控制台重启实例或者调用API RebootInstance操作,才可以看到 云盘容量扩展。具体操作,请参见#unique_118。实例处于运行中(Running)状态和已停止(Stopped)状态均可以扩容。

离线扩容云盘的使用限制如下:

- ・系统限制
 - 系统盘和数据盘的扩容上限请参见扩容概述。
 - 扩容云盘只是扩大存储容量,而不是扩容文件系统。请扩容后自行分配存储空间,更多详 情,请参见后续步骤。
- ・不支持项
 - 不支持扩容正在创建快照的云盘。
 - 包年包月实例续费降配后,当前计费周期的剩余时间内,不支持扩容实例的包年包月云盘。
 - Windows Server 2003实例不支持系统盘扩容。
 - MBR格式分区不支持大于2 TiB的云盘容量。如果待扩容的云盘采用的是MBR分区格式,且 需要扩容到超过2 TiB时,建议您重新创建并挂载一块数据盘,然后使用GPT分区方式并将数 据拷贝至新数据盘中。
- ・支持项
 - 支持状态为使用中(In Use)的云盘,且所挂载的实例状态为运行中(Running)或已停止(Stopped)。
 - 支持扩容类型为普通云盘、高效云盘、SSD云盘和ESSD云盘的云盘。
 - 对于Windows实例, 仅支持NTFS文件系统扩容。

操作步骤

- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏,单击存储与快照 > 云盘。
- 3. 在顶部状态栏左上角处,选择地域。
- 4. 找到需要扩容的云盘,在操作列,单击更多 > 磁盘扩容。
- 5. 设置扩容后的容量,变更后的容量不允许小于当前容量。
- 6. 确认费用,阅读服务条款,然后单击确定扩容。
- 7. 完成支付。
- 8. 重启实例使扩容生效。

实例必须经过控制台重启实例或者调用API RebootInstance,才可以看到云盘容量扩展。在 实例操作系统里重启无效。具体操作,请参见#unique_118。

后续步骤

根据云盘是否挂载以及是否分区,扩容后的下一步操作选项如下表所示。

云盘状态分类	下一步操作
未挂载未分区的云 盘	如果您的云盘是待挂载(Available)状态的数据盘,支 付完成后扩容操作直接生效。您可以按以下步骤操作:
	 在控制台或通过API AttachDisk挂载云盘,详细步骤 请参见挂载云盘 公区扩充式表均式化操作。
	 2. 方区扩存或有格式化标开: 分区格式化小于2 TiB的Linux数据盘 分区格式化小于2 TiB的Windows数据盘 分区格式化大于2 TiB云盘
已挂载未分区的云 盘	执行分区格式化操作: · 分区格式化小于2 TiB的Linux数据盘 · 分区格式化小于2 TiB的Windows数据盘 · 分区格式化大于2 TiB云盘
已挂载并分区的云 盘	执行分区扩容和文件系统扩展操作: • Linux实例请参见#unique_112 • Windows实例请参见#unique_113

相关文档 #unique_114

#unique_115
#unique_116

3.8.4 扩展分区和文件系统_Windows

扩容云盘只是扩大存储容量,不会扩容文件系统。您需要参照本文描述自行格式化新增的存储容 量,以便扩展存储空间。

前提条件

1. 创建快照以备份数据,防止操作失误导致数据丢失。具体操作,请参见创建快照。

2. 通过ECS控制台或者API扩容云盘。

3. 云盘已挂载到实例上,实例已处于运行中状态。

4. 数据盘已完成分区格式化。具体操作,请参见Windows分区格式化数据盘。

背景信息

本文仅适用于状态为使用中的云盘,且所挂载的实例状态为运行中。

- ・ 对于待挂载数据盘,请参见挂载云盘和分区格式化数据盘。
- 数据盘扩容后容量大于2048GiB时,您必须使用GPT分区格式。如果您已经 使用了MBR分区格式,但无需保留数据盘上的数据,请参见#unique_75/ unique_75_Connect_42_Windows2012Snapshot。

扩展系统盘分区

在ECS控制台上扩容系统盘后,对应系统盘分区的文件系统并未扩容。您需要连接实例扩容文件系统。本示例中以Windows Server 2008 R2企业版64位中文版操作系统为例。扩容前的系统盘容 量为50GiB,扩容为72GiB,文件系统类型为NTFS。

- 1. 远程连接Windows实例。
- 2. 打开服务器管理器。
- 3. 在左侧导航栏中,选择存储>磁盘管理。
- 4. 选择操作 > 刷新或操作 > 重新扫描磁盘。

5. 在磁盘管理区域,查看未分配容量。本例中,磁盘 0是扩容的系统盘。

💵 服务器管理器		_ 8 ×
文件(P) 操作(A) 查看(V) ;	郫助 (H)	
🗢 🔿 🖄 🗊 😨 😹		
 ■ 服务器管理器 (ECS-FCE4) ● 角色 ● 动助能 ● 诊断 ● ● 诊断 ● ● 作音看器 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	磁盘管理 卷列表 + 图形视图 操作 巻 布局 类型 文件系统 状态 磁盘管理 磁盘管理 磁盘管理 磁盘管理 □ 0:) 简单 基本 NTPS 状态表好 (呈分区) 磁盘管理	F F
→ 磁盘管理	 ▲ ▲ ▲ 基本 72.00 GB 联机 第 100.00 GB 100.00 GB 第 100.00 GB 	

6. 右键单击磁盘 0主分区的空白处,并选择扩展卷。

□ 磁盘 0 基本 72.00 GB	(C:) 50.00 gb ntfs		22.00 GB	
联机	状态良好(系统,	更改驱动器号和路径 扩展卷(X)	(C)	
		压缩卷 00		
		帮助(H)		

7. 根据扩展卷向导的指示完成扩展卷操作。

扩展卷向导 选择磁盘 您可以用至少一个磁盘上的	的空间来扩展卷。	×
您只能将此卷扩展到如下所 者被扩展的卷是启动卷或系	所示的可用空间,因为 《统卷。	不能将磁盘转换为动态磁盘,或
可用 (火):	The day of the	已选的(S): 磁盘 0 22527 MB
	添加(G) >	
	< 刪除(匙)	
	〈全部刪除(M)	
参大小总数(MB):		73725
最大可用空间里(MB):		22527
选择空间量(MB)(@):		22527
	<u> < 上一步</u>	▶ ④ 下─步 ④ > 取消

完成后,新增空间会自动合入原来的卷中,如下图所示。

🗔 磁盘 0	
基本 72.00 GB 联机	(C:) [72.00 GB NTFS]] 状态良好(系统,启动,页面文件,活动,故障转储,主分区)

扩展数据盘分区

在ECS控制台上扩容数据盘后,数据盘的每个分区的文件系统并未扩容。您需要连接实例扩容文件 系统。本示例中以Windows Server 2008 R2企业版64位中文版操作系统为例。扩容前的数据盘 容量为80GiB,扩容为120GiB,文件系统类型为NTFS。

- 1. 远程连接Windows实例。
- 2. 打开服务器管理器。
- 3. 在左侧导航栏中,选择存储>磁盘管理。

4. 选择操作 > 刷新或操作 > 重新扫描磁盘。

5. 在磁盘管理区域,查看未分配的数据盘容量。本例中,磁盘1是扩容的数据盘。

■ 服务器管理器						1 ×
文件(P) 操作(A) 查看(V) 帮	助(H)					
🗢 🔿 🔰 📅 🚺 🖬	9					
	磁盘管理 卷列:	E + 图形视图			操作	—
■ ▶ 角色	参 布局 类型	文件系统 状态		容量 戸	磁盘管理	
	□ (C:) 简单 基本	NTFS 状态良好(系统,启动,页面	文件,活动,故障转储,主分区)	40.00 GB 19	再么撮作	-
U N D N D N D N D N D N D N D N D N D N	□ ①:) 简单 基本	NTFS 状态良好(主分区)		80.00 GB 79	923/1#TF	·
□ 200 存储						
▲ Lindoxx Server Backup						
	</th <th></th> <th></th> <th></th> <th></th> <th></th>					
	基本 40.00 GB 联机	(C:) 40.00 GB NTFS 状态良好(系统,启动,页面文件,活动	动,故障转储,主分区)			
	□□ 磁盘 1					
	肇平 120.00 GB 联机	U:J 80.00 GB NTFS 状态良好(主分区)	40.00 GB 未分配			
	■ 未分配 ■ 主分区					

- 6. 扩展磁盘 1。
 - ·如果新磁盘空间用于扩容已有的分区,按照以下步骤完成扩容:
 - a. 右键单击磁盘1主分区的空白处,并选择扩展卷。

▲			•
□ 磁盘 0 基本 40.00 GB 联机	(C:) 40.00 GB NTFS 状态良好(系统,启动),页面文件,活动,故障转储,主分区)	
□ 磁盘 1 基本 120.00 GB 联机	(D:) 80.00 GB NTFS 状态良好 (主分区)	将分区标记为活动分区 (M) 更改驱动器号和路径 (C) 格式化 (R)	
		扩展卷 (2) 压缩卷 (2) 删除卷 (2)	
■ 未分配 ■ 主分[x	帮助(出)	

b. 根据扩展卷向导的指示完成扩展卷操作。

完成后,新增的数据盘空间会自动合入原来的卷中。

•		
□ 磁盘 0 基本 40.00 GB 联机	(C:) 40.00 GB NTFS 状态良好(系统,启动,页面文件,活动,故障转储,主分区)	
□ 磁盘 1 基本 120.00 GB 联机	(D:) 120.00 GB NTFS 状态良好 (主分区)	
■ 未分配 ■ 主分区		

- ·如果新磁盘空间用于增加新的分区,按照以下步骤完成扩容:
 - a. 右键单击磁盘1未分配区的空白处,并选择新建简单卷。

•			
■ 磁盘 0 基本 40.00 GB 联机	(C:) 40.00 GB NTFS 状态良好(系统,启动,页面文件,活动,	故障转储 ,主分区)	
□ 磁盘 1 基本 120.00 GB 联机	(D:) 80.00 GB NTFS 状态良好(主分区)	40.00 GB 未分配	新建简单卷 (I) 属性 (P)
			帮助(H)
■ 未分配 ■ 主分区			

b. 根据新建简单卷向导的指示完成扩展卷操作。

完成后,新增的数据盘空间会新建一个分区。

□■ 磁盘 0 基本 40.00 GB 联机	(C:) 40.00 GB NTFS 状态良好(系统,启动,页面文件,活动,故网	章转储,主分区)
 磁盘 1 基本 120.00 GB 联机 	(D:) 80.00 GB NTFS 状态良好 (主分区)	新加巻 (E:) 40.00 GB NTFS 状态良好(主分区)
■ 未分配 ■ 主分区		

相关文档

#unique_122
#unique_123

3.8.5 扩展分区和文件系统_Linux系统盘

本文提供了如何使用growpart和resize2fs工具完成Linux系统盘分区扩容及文件系统扩展的操作 指导。

前提条件

在扩展系统盘扩展分区和文件系统前,请提前完成以下工作。

- 1. 创建快照以备份数据,防止操作失误导致数据丢失。具体操作,请参见创建快照。
- 2. 通过ECS控制台或者API扩容云盘容量。具体操作,请参见#unique_125。
- 3. 远程连接ECS实例。连接方式请参见#unique_99。

- 4. 根据操作系统安装growpart或者xfsprogs扩容格式化工具。
 - · CentOS 7、Aliyun Linux:

```
yum install cloud-utils-growpart
yum install xfsprogs
```

· Ubuntu 14、Ubuntu 16、Ubuntu 18、Debian 9:

```
apt install cloud-guest-utils
apt install xfsprogs
```

Debian 8、OpenSUSE 42.3、OpenSUSE 13.1、SUSE Linux Enterprise Server 12
 SP2:请使用上游版本(upstream)的growpart或者xfsprogs工具

〕 说明:

当出现因扩容格式化工具问题导致的扩容失败时,您可以卸载工具后重新安装。

- 5. 检查实例的内核版本,例如运行uname -a命令查看内核版本。
 - ·内核版本大于3.6.0,该情况请参见高内核版本的操作步骤。
 - · 内核版本小于3.6.0,该情况请参见低内核版本的操作步骤。如CentOS 6、Debian
 7和SUSE Linux Enterprise Server 11 SP4等发行版,需要经过一次控制台重启或
 者API重启才能完成分区扩容。

背景信息

本文的操作步骤适用于以下分区和文件系统格式的云盘:

- ・分区格式支持mbr、gpt
- ・文件系统支持ext*、xfs、btrfs

扩展高内核版本实例的系统盘分区和文件系统

此处以CentOS 7操作系统为例演示分区扩展的步骤。

1. 运行fdisk -1命令查看现有云盘大小。

以下示例返回云盘(/dev/vda)容量是100GiB。

```
[root@ecshost ~]# fdisk -l
Disk /dev/vda: 107.4 GB, 107374182400 bytes, 209715200 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: dos
Disk identifier: 0x0008d73a
Device Boot Start End Blocks Id System
```

41943039

20970496

83

Linux

2048

/dev/vda1 *

2. 运行df -h命令查看云盘分区大小。

以下示例返回分区(/dev/vda1)容量是20GiB。

[root@ecshost	~]# df	-h			
Filesystem	Size	Used	Avail	Use%	Mounted on
/dev/vda1	20G	1.5G	18G	8%	/
devtmpfs	7.8G	0	7.8G	0%	/dev
tmpfs	7.8G	0	7.8G	0%	/dev/shm
tmpfs	7.8G	344K	7.8G	1%	/run
tmpfs	7.8G	0	7.8G	0%	/sys/fs/cgroup
tmpfs	1.6G	0	1.6G	0%	/run/user/0

3. 运行growpart <DeviceName> <PartionNumber>命令调用growpart为需要扩容的云盘和

对应的第几个分区扩容。

示例命令表示为系统盘的第一个分区扩容。

[root@ecshost ~]# growpart /dev/vda 1
CHANGED: partition=1 start=2048 old: size=41940992 end=41943040 new:
size=209710462,end=209712510

若运行命令后报以下错误,您可以运行LANG=en_US.UTF-8切换ECS实例的字符编码类型。

[root@ecshost ~]# growpart /dev/vda 1
unexpected output in sfdisk --version [sfdisk, 来自 util-linux 2.23.2]
[root@ecshost ~]# LANG=en_US.UTF-8

4. 运行resize2fs <PartitionName>命令调用resize2fs扩容文件系统。

示例命令表示为扩容系统盘的/dev/vda1分区文件系统。

```
[root@ecshost ~]# resize2fs /dev/vda1
resize2fs 1.42.9 (28-Dec-2013)
Filesystem at /dev/vda1 is mounted on /; on-line resizing required
old_desc_blocks = 2, new_desc_blocks = 7
The filesystem on /dev/vda1 is now 26213807 blocks long.
```

📋 说明:

如果您使用的是xfs文件系统,运行xfs_growfs /dev/vda1命令扩容文件系统。

5. 运行df -h命令查看云盘分区大小。

返回分区(/dev/vda1)容量是100GiB,表示已经成功扩容。

[root@ecshost	~]# df	-h			
Filesystem	Size	Used	Avail	Use%	Mounted on
/dev/vda1	99G	1.6G	93G	2%	/
devtmpfs	7.8G	0	7.8G	0%	/dev
tmpfs	7.8G	0	7.8G	0%	/dev/shm
tmpfs	7.8G	500K	7.8G	1%	/run
tmpfs	7.8G	0	7.8G	0%	/sys/fs/cgroup
tmpfs	1.6G	0	1.6G	0%	/run/user/0

扩展低内核版本实例的系统盘分区和文件系统

此处以CentOS 6操作系统为例演示分区扩展的步骤。

1. 安装dracut-modules-growroot工具。

[root@ecshost ~]# yum install -y dracut-modules-growroot

如果您使用的是其他软件包管理器,请将yum修改为对应的命令。

2. 覆盖已有的initramfs文件。

[root@ecshost ~]# dracut -f

3. 运行fdisk -1命令查看现有云盘大小。

以下示例返回云盘(/dev/vda1)容量是100GiB。

[root@ecshost ~]# fdisk -l Disk /dev/vda: 107.4 GB, 107374182400 bytes 255 heads, 63 sectors/track, 13054 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x0003a7b4

Device	Boot	Start	End	Blocks	Id	System
/dev/vda1	*	1	2611	20970496	83	Linux

4. 运行df -h命令查看云盘分区大小。

以下示例返回分区(/dev/vda1)容量是20GiB。

[root@ecshost ~]# df -h
Filesystem Size Used Avail Use% Mounted on
/dev/vda1 20G 1.1G 18G 6% /
tmpfs 7.8G 0 7.8G 0% /dev/shm

5. 运行growpart <DeviceName><PartionNumber>命令调用growpart为需要扩容的云盘和

对应的第几个分区扩容。

示例命令表示为系统盘的第一个分区扩容。

[root@ecshost ~]# growpart /dev/vda 1
CHANGED: partition=1 start=2048 old: size=41940992 end=41943040 new:
 size=209710462,end=209712510

6. 在控制台重启实例或者调用API RebootInstance。详细步骤请参见重启实

例和RebootInstance。

7. 再次远程连接实例。

8. 运行resize2fs <PartitionName>命令调用resize2fs扩容文件系统。

示例命令表示为扩容系统盘的/dev/vda1分区文件系统。

```
[root@ecshost ~]# resize2fs /dev/vda1
resize2fs 1.41.12 (17-May-2010)
Filesystem at /dev/vda1 is mounted on /; on-line resizing required
old desc_blocks = 2, new_desc_blocks = 7
Performing an on-line resize of /dev/vda1 to 26213807 (4k) blocks.
The filesystem on /dev/vda1 is now 26213807 blocks long.
```

门 说明:

如果您使用的是xfs文件系统,运行xfs_growfs /dev/vda1命令扩容文件系统。

9. 运行df -h命令查看云盘分区大小。

返回分区(/dev/vda1)容量是100GiB,表示已经成功扩容。

[root@ecshost	~]# df	-h				
Filesystem	Size	Used	Avail	Use%	Mounted	on
/dev/vda1	99G	1.1G	93G	2%	/	
tmpfs	7.8G	0	7.8G	0%	/dev/shm	n

相关文档

#unique_123

3.8.6 扩展分区和文件系统_Linux数据盘

扩容云盘只是扩大存储容量,不会扩容文件系统,您需要按照本文步骤扩容文件系统,实现ECS实 例存储空间的扩展。

前提条件

在扩展数据盘扩展分区和文件系统前,请提前完成以下工作。

1. 创建快照以备份数据,防止操作失误导致数据丢失。具体操作,请参见创建快照。

2. 通过ECS控制台或者API扩容云盘容量。具体操作,请参见#unique_125。

3. 远程连接ECS实例。连接方式请参见#unique_99。

确认分区格式和文件系统

本示例中,数据盘采用高效云盘,ECS实例的操作系统为CentOS 7.5 64 位,数据盘设备名为/dev/vdb。
1. 运行fdisk -lu <DeviceName>确认数据盘是否分区。

本示例中,原有的数据盘空间已做分区/dev/vdb1。

- ·如果"System"="Linux",说明数据盘使用的是MBR分区格式。
- ・如果"System"="GPT",说明数据盘使用的是GPT格式。

```
[root@ecshost ~]# fdisk -lu /dev/vdb
Disk /dev/vdb: 42.9 GB, 42949672960 bytes, 83886080 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: dos
Disk identifier: 0x9277b47b
```

Device Boot Start End Blocks Id System /dev/vdb1 2048 41943039 20970496 83 Linux

2. 运行blkid <PartitionName>确认文件系统的类型。

本示例中, /dev/vdb1的文件系统类型为ext4#

```
[root@ecshost ~]# blkid /dev/vdb1
/dev/vdb1: UUID="e97bf1e2-fc84-4c11-9652-73******24" TYPE="ext4"
```


未分区并且未创建文件系统的数据盘,以及已分区但未创建文件系统的数据盘,不会返回结 果。

- 3. 运行以下命令确认文件系统的状态。
 - · ext*文件系统: e2fsck -n <dst_dev_part_path>
 - · xfs文件系统: xfs_repair -n <dst_dev_part_path>

🛕 警告:

本示例中,文件系统状态为clean。如果状态不是clean,请排查并修复。

```
[root@ecshost ~]# e2fsck -n /dev/vdb1
e2fsck 1.42.9 (28-Dec-2013)
Warning! /dev/vdb1 is mounted.
Warning: skipping journal recovery because doing a read-only
filesystem check.
/dev/vdb1: clean, 11/1310720 files, 126322/5242624 blocks
```

选择分区或文件系统扩容方式

根据您查询到的分区格式和文件系统情况确定操作选项。

扩容场景	相关操作
数据盘已分区并创建文件 系统	 如果您需要扩展数据盘已有的MBR分区,请参见选项一:扩展已 有MBR分区。 如果新增空间用于增加新的MBR分区,请参见选项二:新增并格 式化MBR分区。 如果您需要扩展数据盘已有的GPT分区,请参见选项三:扩展已 有GPT分区。 如果新增空间用于增加新的GPT分区,请参见选项四:新增并格 式化GPT分区。
全新数据盘,未分区,未 创建文件系统	在控制台扩容数据盘空间后,请参见分区并格式化数据盘或 者#unique_75。
数据盘是裸设备,已创建 文件系统,未分区	在控制台扩容数据盘空间后,请参见选项五:扩容裸设备文件系统。
数据盘未挂载到实例上	挂载数据盘到实例后,参见本文档的操作步骤完成扩容。

▋ 说明:

- 如果一个已有分区采用了MBR分区格式,则不支持扩容到2 TiB及以上。为避免造成数据丢失,建议您创建一块大于2 TiB的云盘,格式化一个GPT分区,再将MBR分区中的数据拷贝到GPT分区中。具体操作,请参见#unique_75。
- · 当出现因扩容格式化工具问题导致的扩容失败时,您可以提前升级工具版本,或者卸载工具后 重新安装。

选项一:扩展已有MBR分区

蕢 说明:

为了防止数据丢失,不建议扩容已挂载的分区和文件系统。请先取消挂载(umount)分区,完成 扩容并正常使用后,重新挂载(mount)。针对不同的Linux内核版本,推荐以下操作方式:

- · 实例内核版本 < 3.6: 先取消挂载该分区,再修改分区表,最后扩容文件系统。
- ・ 实例内核版本 ≥ 3.6: 先修改对应分区表,再通知内核更新分区表,最后扩容文件系统。

如果新增空间用于扩容已有的MBR分区,按照以下步骤在实例中完成扩容:

1. 修改分区表。

a) 运行fdisk -lu /dev/vdb,并记录旧分区的起始和结束的扇区位置。

本示例中, /dev/vdb1的起始扇区是2048, 结束扇区是41943039。

[root@ecshost ~]# fdisk -lu /dev/vdb Disk /dev/vdb: 42.9 GB, 42949672960 bytes, 83886080 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk label type: dos Disk identifier: 0x9277b47b

Device Boot Start End Blocks Id System /dev/vdb1 2048 41943039 20970496 83 Linux

b) 查看数据盘的挂载路径,根据返回的文件路径卸载分区,直至完全卸载已挂载的分区。

[root@ecshost ~]# mount | grep "/dev/vdb"
/dev/vdb1 on /mnt type ext4 (rw,relatime,data=ordered)
[root@ecshost ~]# umount /dev/vdb1
[root@ecshost ~]# mount | grep "/dev/vdb"

c) 使用fdisk工具删除旧分区。

A.运行fdisk -u /dev/vdb:分区数据盘。

B. 输入p: 打印分区表。

C. 输入d: 删除分区。

D. 输入p: 确认分区已删除。

E. 输入w: 保存修改并退出。

```
[root@ecshost ~]# fdisk -u /dev/vdb
Welcome to fdisk (util-linux 2.23.2).
Changes will remain in memory only, until you decide to write
 them.
Be careful before using the write command.
Command (m for help): p
Disk /dev/vdb: 42.9 GB, 42949672960 bytes, 83886080 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: dos
Disk identifier: 0x9277b47b
Device Boot Start End Blocks Id System
/dev/vdb1 2048 41943039 20970496 83 Linux
Command (m for help): d
Selected partition 1
Partition 1 is deleted
Command (m for help): p
Disk /dev/vdb: 42.9 GB, 42949672960 bytes, 83886080 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: dos
Disk identifier: 0x9277b47b
Device Boot Start End Blocks Id System
Command (m for help): w
The partition table has been altered!
Calling ioctl() to re-read partition table.
WARNING: Re-reading the partition table failed with error 16:
Device or resource busy.
The kernel still uses the old table. The new table will be used at
the next reboot or after you run partprobe(8) or kpartx(8)
```

Syncing disks.

d) 使用fdisk命令新建分区。

A. 运行fdisk -u /dev/vdb: 分区数据盘。

- B. 输入p: 打印分区表。
- C. 输入n: 新建分区。
- D. 输入p: 选择分区类型为主分区。

E. 输入<###>:选择分区号。本示例选取了1。

🛕 警告:

新分区的起始位置必须和旧分区的起始位置相同,结束位置必须大于旧分区的结束位

置,否则会导致扩容失败。

F. 输入w: 保存修改并退出。

本示例中,将/dev/vdb1由20 GiB扩容到40 GiB。

```
[root@ecshost ~]# fdisk -u /dev/vdb
Welcome to fdisk (util-linux 2.23.2).
Changes will remain in memory only, until you decide to write
 them.
Be careful before using the write command.
Command (m for help): p
Disk /dev/vdb: 42.9 GB, 42949672960 bytes, 83886080 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: dos
Disk identifier: 0x9277b47b
Device Boot Start End Blocks Id System
Command (m for help): n
Partition type:
p primary (0 primary, 0 extended, 4 free)
e extended
Select (default p): p
Partition number (1-4, default 1): 1
First sector (2048-83886079, default 2048):
Using default value 2048
Last sector, +sectors or +size{K,M,G} (2048-83886079, default
 83886079):
Partition 1 of type Linux and of size 30 GiB is set
Command (m for help): p
Disk /dev/vdb: 42.9 GB, 42949672960 bytes, 83886080 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: dos
Disk identifier: 0x9277b47b
Device Boot Start End Blocks Id System
/dev/vdb1 2048 62916607 31457280 83 Linux
Command (m for help): w
The partition table has been altered!
Calling ioctl() to re-read partition table.
```

Syncing disks.

- e) 运行lsblk /dev/vdb确保分区表已经增加。
- f)运行e2fsck -n /dev/vdb1再次检查文件系统,确认扩容分区后的文件系统状态为clean
- 2. 通知内核更新分区表。

运行partprobe <dst_dev_path>或者partx -u <dst_dev_path>,以通知内核数据盘的分区表已经修改,需要同步更新。

3. 扩容文件系统。

0

· ext*文件系统(例如ext3和ext4):运行resize2fs /dev/vdb1并重新挂载分区。

[root@ecshost ~]# resize2fs /dev/vdb1 resize2fs 1.42.9 (28-Dec-2013) Resizing the filesystem on /dev/vdb1 to 7864320 (4k) blocks. The filesystem on /dev/vdb1 is now 7864320 blocks long. [root@ecshost ~]# mount /dev/vdb1 /mnt

- · xfs文件系统: 先运行mount /dev/vdb1 /mnt/命令, 再运行xfs_growfs /dev/vdb1
 - 0

```
[root@ecshost ~]# mount /dev/vdb1 /mnt/
[root@ecshost ~]# xfs_growfs /dev/vdb1
meta-data=/dev/vdb1
                                  isize=512
                                               agcount=4,
agsize=1310720 blks
                                  sectsz=512
                                               attr=2,
projid32bit=1
                                  crc=1
                                               finobt=0 spinodes=0
                                               blocks=5242880,
data
         =
                                  bsize=4096
 imaxpct=25
                                  sunit=0
                                               swidth=0 blks
         =version 2
                                               ascii-ci=0 ftype=1
naming
                                  bsize=4096
                                  bsize=4096
                                               blocks=2560,
log
        =internal
version=2
                                               sunit=0 blks, lazy-
                                  sectsz=512
count=1
realtime =none
                                  extsz=4096
                                               blocks=0,
 rtextents=0
data blocks changed from 5242880 to 7864320
```

选项二:新增并格式化MBR分区

如果新增空间用于增加新的MBR分区,按照以下步骤在实例中完成扩容:

1. 运行fdisk -u /dev/vdb命令新建分区。

本示例中,为新增的20GiB新建分区,作为/dev/vdb2使用。

[root@ecshost ~]# fdisk -u /dev/vdb
Welcome to fdisk (util-linux 2.23.2).

Changes will remain in memory only, until you decide to write them. Be careful before using the write commad.

Command (m for help): p Disk /dev/vdb: 42.9 GB, 42949672960 bytes, 83886080 sectors Units = sectors of 1 \star 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk label type: dos Disk identifier: 0x2b31a2a3 Device Boot Blocks Start End Id System /dev/vdb1 2048 41943039 20970496 83 Linux Command (m for help): n Partition type: primary (1 primary, 0 extended, 3 free) р extended е Select (default p): p Partition number (2-4, default 2): 2 First sector (41943040-83886079, default 41943040): Using default value 41943040 Last sector, +sectors or +size{K,M,G} (41943040-83886079, default 83886079): Using default value 83886079 Partition 2 of type Linux and of size 20 GiB is set Command (m for help): w The partition table has been altered! Calling ioctl() to re-read partition table. Syncing disks.

2. 运行命令lsblk /dev/vdb查看分区。

[root@ecshost ~]# lsblk /dev/vdb NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT vdb 253:16 0 40G 0 disk -vdb1 253:17 0 20G 0 part -vdb2 253:18 0 20G 0 part

3. 格式化新的分区。

· 创建ext4文件系统: mkfs.ext4 /dev/vdb2

```
[root@ecshost ~]# mkfs.ext4 /dev/vdb2
mke2fs 1.42.9 (28-Dec-2013)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
Stride=0 blocks, Stripe width=0 blocks
1310720 inodes, 5242880 blocks
262144 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=2153775104
160 block groups
32768 blocks per group, 32768 fragments per group
8192 inodes per group
Superblock backups stored on blocks:
        32768, 98304, 163840, 229376, 294912, 819200, 884736,
 1605632, 2654208,
        4096000
```

Allocating group tables: done Writing inode tables: done Creating journal (32768 blocks): done Writing superblocks and filesystem accounting information: done [root@ecshost ~]# blkid /dev/vdb2 /dev/vdb2: UUID="e3f336dc-d534-4fdd-****-b6ff1a55bdbb" TYPE="ext4"

・ 创建ext3文件系统: mkfs.ext3 /dev/vdb2

```
[root@ecshost ~]# mkfs.ext3 /dev/vdb2
mke2fs 1.42.9 (28-Dec-2013)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
Stride=0 blocks, Stripe width=0 blocks
1310720 inodes, 5242880 blocks
262144 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=4294967296
160 block groups
32768 blocks per group, 32768 fragments per group
8192 inodes per group
Superblock backups stored on blocks:
        32768, 98304, 163840, 229376, 294912, 819200, 884736,
 1605632, 2654208,
        4096000
```

```
Allocating group tables: done
Writing inode tables: done
Creating journal (32768 blocks): done
Writing superblocks and filesystem accounting information: done
[root@ecshost ~]# blkid /dev/vdb2
/dev/vdb2: UUID="dd5be97d-a630-4593-***-5056def914ea"
SEC_TYPE="ext2" TYPE="ext3"
```

・ 创建xfs文件系统: mkfs.xfs -f /dev/vdb2

```
[root@ecshost ~]# mkfs.xfs -f /dev/vdb2
meta-data=/dev/vdb2
                                  isize=512
                                               agcount=4,
agsize=1310720 blks
                                  sectsz=512
                                               attr=2,
 projid32bit=1
                                  crc=1
                                               finobt=0, sparse=0
         =
data
        =
                                  bsize=4096
                                               blocks=5242880,
 imaxpct=25
                                  sunit=0
                                               swidth=0 blks
                                  bsize=4096
                                               ascii-ci=0 ftype=1
naming
         =version 2
        =internal log
                                  bsize=4096
                                               blocks=2560,
log
version=2
                                  sectsz=512
                                               sunit=0 blks, lazy-
count=1
                                  extsz=4096
realtime =none
                                               blocks=0,
 rtextents=0
[root@ecshost ~]# blkid /dev/vdb2
/dev/vdb2: UUID="66251477-3ae4-4b44-***-5604420dbecb" TYPE="xfs"
```

· 创建btrfs文件系统: mkfs.btrfs /dev/vdb2

```
[root@ecshost ~]# mkfs.btrfs /dev/vdb2
btrfs-progs v4.9.1
```

See http://btrfs.wiki.kernel.org for more information. Label: (null) UUID: 6fb5779b-57d7-4aaf-bf09-82b46f54a429 Node size: 16384 Sector size: 4096 20.00GiB Filesystem size: Block group profiles: Data: 8.00MiB single Metadata: DUP 1.00GiB System: DUP 8.00MiB SSD detected: no Incompat features: extref, skinny-metadata Number of devices: 1 Devices: ID SIZE PATH 20.00GiB /dev/vdb2 1 [root@ecshost ~]# blkid /dev/vdb2 /dev/vdb2: UUID="6fb5779b-57d7-4aaf-***-82b46f54a429" UUID_SUB="9bdd889a-ab69-4653-****-d1b6b8723378" TYPE="btrfs"

4. 运行mount /dev/vdb2 /mnt挂载文件系统。

5. 运行df -h查看目前数据盘空间和使用情况。

显示新建文件系统的信息,表示挂载成功。

```
[root@ecshost ~]# df -h
Filesystem Size Used Avail Use% Mounted on
/dev/vda1 40G 1.6G 36G 5% /
devtmpfs 3.9G 0 3.9G 0% /dev
tmpfs 3.9G 0 3.9G 0% /dev/shm
tmpfs 3.9G 460K 3.9G 1% /run
tmpfs 3.9G 0 3.9G 0% /sys/fs/cgroup
/dev/vdb2 9.8G 37M 9.2G 1% /mnt
tmpfs 783M 0 783M 0% /run/user/0
```

选项三: 扩展已有GPT分区

如果新增空间用于扩容已有的GPT分区,按照以下步骤在实例中完成扩容。示例采用一块1 TiB的数据盘,扩容后为32TiB,已有分区为/dev/vdb1。

1. 使用fdisk工具查看待扩展的数据盘分区。

```
[root@ecshost ~]# fdisk -l
Disk /dev/vda: 42.9 GB, 42949672960 bytes, 83886080 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: dos
Disk identifier: 0x000b1b45
Device Boot Start End Blocks Id System
```

/dev/vda1 * 2048 83875364 41936658+ 83 Linux WARNING: fdisk GPT support is currently new, and therefore in an experimental phase. Use at your own discretion.

Disk /dev/vdb: 35184.4 GB, 35184372088832 bytes, 68719476736 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes

```
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: gpt
Disk identifier: BCE92401-F427-45CC-8B0D-B30EDF279C2F
# Start End Size Type Name
1 2048 2147483647 1024G Microsoft basic mnt
```

2. 查看数据盘的挂载路径,根据返回的文件路径卸载分区,直至完全卸载已挂载的分区。

```
[root@ecshost ~]# mount | grep "/dev/vdb"
/dev/vdb1 on /mnt type ext4 (rw,relatime,data=ordered)
[root@ecshost ~]# umount /dev/vdb1
[root@ecshost ~]# mount | grep "/dev/vdb"
```

- 3. 使用parted工具为分区分配容量。
 - a)运行parted /dev/vdb进入parted分区工具。
 - b) (可选)运行help查看工具使用说明。
 - c)运行print查看待扩容的分区号(Number)和容量(Size)。

本示例中,待扩容的分区为1号分区,已有容量为1100GiB,以下步骤会将所有新增容量分配 到该分区。

d)运行resizepart <分区号> <容量分配百分比>扩展分区。

示例操作为resizepart 1 100%。

e)运行print查看分区号(Number)和容量(Size)是否发生变化。

```
[root@ecshost ~]# parted /dev/vdb
GNU Parted 3.1
Using /dev/vdb
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted) print
Model: Virtio Block Device (virtblk)
Disk /dev/vdb: 35.2TB
Sector size (logical/physical): 512B/512B
Partition Table: gpt
Disk Flags:
Number Start
                                File system Name
                Fnd
                        Size
                                                   Flags
        1049kB 1100GB 1100GB ext4
1
                                             mnt
(parted) resizepart 1 100%
(parted) print
Model: Virtio Block Device (virtblk)
Disk /dev/vdb: 35.2TB
Sector size (logical/physical): 512B/512B
Partition Table: gpt
Disk Flags:
Number
        Start
                End
                        Size
                                File system
                                             Name
                                                    Flags
1
        1049kB 35.2TB 35.2TB ext4
                                             mnt
```

f)运行quit退出parted分区工具。

4. 运行fsck -f /dev/vdb1确认文件系统一致性。

[root@ecshost ~]# fsck -f /dev/vdb1 fsck from util-linux 2.23.2 e2fsck 1.42.9 (28-Dec-2013) Pass 1: Checking inodes, blocks, and sizes Pass 2: Checking directory structure Pass 3: Checking directory connectivity Pass 4: Checking reference counts Pass 5: Checking group summary information /dev/vdb1: 11/67108864 files (0.0% non-contiguous), 4265369/268435200 blocks

5. 扩展分区对应的文件系统并重新挂载分区。

· ext*文件系统(例如ext3和ext4):运行resize2fs /dev/vdb1并重新挂载分区。

[root@ecshost ~]# resize2fs /dev/vdb1 resize2fs 1.42.9 (28-Dec-2013) Resizing the filesystem on /dev/vdb1 to 8589934331 (4k) blocks. The filesystem on /dev/vdb1 is now 8589934331 blocks long. [root@ecshost ~]# mount /dev/vdb1 /mnt

· xfs文件系统: 先运行mount /dev/vdb1 /mnt/命令, 再运行xfs_growfs /dev/vdb1

[root@ecshost ~]# mount /dev/vdb1 /mnt/ [root@ecshost ~]# xfs_growfs /dev/vdb1

选项四:新增并格式化GPT分区

如果新增空间用于增加新的分区并希望使用GPT分区格式,按照以下步骤在实例中完成扩容。示例 采用一块32 TiB的数据盘,已有一个4.8TiB的分区/dev/vdb1,此次新建了一个/dev/vdb2分 区。

1. 使用fdisk工具查看数据盘中已有分区的信息。

```
[root@ecshost ~]# fdisk -l
Disk /dev/vda: 42.9 GB, 42949672960 bytes, 83886080 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: dos
Disk identifier: 0x000b1b45
   Device Boot
                                               Blocks
                      Start
                                     End
                                                        Id System
                            83875364
                                            41936658+ 83
/dev/vda1
                      2048
                                                             Linux
            *
WARNING: fdisk GPT support is currently new, and therefore in an
 experimental phase. Use at your own discretion.
Disk /dev/vdb: 35184.4 GB, 35184372088832 bytes, 68719476736 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: gpt
Disk identifier: BCE92401-F427-45CC-8B0D-B30EDF279C2F
```

#

	Start	End	Size	Туре		Name
1	2048	10307921919	4.8T	Microsoft	basic	mnt

- 2. 使用parted工具创建新分区并分配容量。
 - a)运行parted /dev/vdb进入分区工具。
 - b) 运行print free查看数据盘待分配的容量,记录已有分区的扇区位置和容量。

示例中/dev/vdb1的起始位置为1049KB,结束扇区为5278GB,容量为5278GiB。

```
(parted) print free
Model: Virtio Block Device (virtblk)
Disk /dev/vdb: 35.2TB
Sector size (logical/physical): 512B/512B
Partition Table: gpt
Disk Flags:
Number
        Start
                End
                         Size
                                 File system
                                                     Flags
                                               Name
        17.4kB
                1049kB
                         1031kB
                                 Free Space
 1
        1049kB 5278GB
                         5278GB
                                 ext4
                                               mnt
        5278GB
                35.2TB
                        29.9TB
                                 Free Space
```

c)运行mkpart <分区名称> <起始扇区> <容量分配百分比>。

示例新建了一个名为test的/dev/vdb2分区,起始扇区为上一个分区的结束扇区,并将所有新增空间分配给该分区。

d) 运行print查看容量(Size) 是否发生变化。

```
(parted) mkpart test 5278GB 100%
(parted) print
Model: Virtio Block Device (virtblk)
Disk /dev/vdb: 35.2TB
Sector size (logical/physical): 512B/512B
Partition Table: gpt
Disk Flags:
Number
        Start
                                 File system
                                              Name
                Fnd
                        Size
                                                     Flags
        1049kB
                5278GB
                        5278GB
                                 ext4
                                              mnt
 1
 2
        5278GB
                35.2TB
                        29.9TB
                                              test
```

- e) 运行quit退出parted分区工具。
- 3. 为新分区创建文件系统。
 - · 创建ext4文件系统: mkfs.ext4 /dev/vdb2
 - · 创建ext3文件系统: mkfs.ext3 /dev/vdb2
 - ・ 创建xfs文件系统: mkfs.xfs -f /dev/vdb2
 - ・ 创建btrfs文件系统: mkfs.btrfs /dev/vdb2

示例中创建了一个xfs文件系统,如下所示。

[root@ecshost ~]# mkfs -t xfs /dev/vdb2

meta-data agsize=2	a=/dev/vdb2 268435455 blks	isize=512	agcount=28,
C	= =	sectsz=512 crc=1	<pre>attr=2, projid32bit=1 finobt=0, sparse=0</pre>
data	=	bsize=4096	blocks=7301444096,
imaxpct=	=5		
	=	sunit=0	swidth=0 blks
naming	=version 2	bsize=4096	ascii-ci=0 ftype=1
log	=internal log	bsize=4096	blocks=521728,
version	=2		,
	=	sectsz=512	sunit=0 blks, lazy-
count=1			
realtime	=none	extsz=4096	<pre>blocks=0, rtextents=0</pre>

4. 运行fdisk -l查看分区容量变化。

[root@ecshost ~]# fdisk -l Disk /dev/vda: 42.9 GB, 42949672960 bytes, 83886080 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk label type: dos Disk identifier: 0x000b1b45

Device Boot Start End Blocks Id System /dev/vda1 * 2048 83875364 41936658+ 83 Linux WARNING: fdisk GPT support is currently new, and therefore in an experimental phase. Use at your own discretion.

Disk /dev/vdb: 35184.4 GB, 35184372088832 bytes, 68719476736 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk label type: gpt Disk identifier: BCE92401-F427-45CC-8B0D-B30EDF279C2F

#	Start	End	Size	Туре		Name
1	2048	10307921919	4.8T	Microsoft	basic	mnt
2	10307921920	68719474687	27.2T	Microsoft	basic	test

5. 运行blkid查看存储设备的文件系统类型。

```
[root@ecshost ~]# blkid
/dev/vda1: UUID="ed95c595-4813-480e-***-85b1347842e8" TYPE="ext4"
/dev/vdb1: UUID="21e91bbc-7bca-4c08-***-88d5b3a2303d" TYPE="ext4"
PARTLABEL="mnt" PARTUUID="576235e0-5e04-4b76-***-741cbc7e98cb"
/dev/vdb2: UUID="a7dcde59-8f0f-4193-***-362a27192fb1" TYPE="xfs"
PARTLABEL="test" PARTUUID="464a9fa9-3933-4365-***-c42de62d2864"
```

6. 挂载新分区。

[root@ecshost ~]# mount /dev/vdb2 /mnt

选项五: 扩容裸设备文件系统

当数据盘没有创建分区,并且在裸设备上创建了文件系统时,您可以参见以下步骤直接扩容文件系 统。

1. 根据文件系统的类型,执行不同的扩容命令。

· ext*: 使用root权限执行resize2fs命令扩容文件系统,例如:

resize2fs /dev/vdb

· xfs:使用root权限执行xfs_growfs命令扩容文件系统,例如:

xfs_growfs /dev/vdb

2. 运行df -h查看数据盘扩容结果。

显示容量完成扩充,表示扩容成功。

[root@ecshost ~]# df -h Filesystem Size Used Avail Use% Mounted on /dev/vda1 40G 1.6G 36G 5% / devtmpfs 3.9G 0 3.9G 0% /dev tmpfs 3.9G 0 3.9G 0% /dev/shm tmpfs 3.9G 460K 3.9G 1% /run tmpfs 3.9G 0 3.9G 0% /sys/fs/cgroup /dev/vdb 98G 37G 61G 37% /mnt tmpfs 783M 0 783M 0% /run/user/0

```
相关文档
#unique_131
#unique_132
```

3.8.7 Windows实例更新RedHat VirtIO SCSI驱动

阿里云支持对云盘在线扩容,即无需重启ECS实例便可以完成扩容云盘。如果您的ECS实例创建 时间早于2019年3月30日且有在线扩容需求,请根据本文描述检查是否需要更新RedHat VirtIO SCSI驱动。

使用说明

- · 驱动仅支持Windows Server 2008及更高版本操作系统。
- ·如果ECS实例的数据盘数量较多,可能需要1-2分钟完成驱动的更新。

检查驱动版本

方式一:使用PowerShell检查驱动版本

- 1. 远程连接Windows实例。详情请参见#unique_133。
- 2. 打开CMD命令行窗口。
- 3. 输入powershell进入PowerShell交互界面。

4. 输入以下命令检查驱动版本,根据返回信息判断ECS实例是否支持在线扩容。

```
[System.Diagnostics.FileVersionInfo]::GetVersionInfo("C:\Windows\
System32\drivers\viostor.sys")
```

- ・如果Red Hat VirtIO SCSI driver文件版本大于等于58011, 您可以直接在线扩容云盘。
- ・如果Red Hat VirtIO SCSI driver文件版本小于58011,请更新RedHat VirtIO SCSI驱
 动。

方式二:手动检查驱动版本

- 1. 远程连接Windows实例。
- 2. 进入系统目录C:\Windows\System32\drivers。
- 3. 右键单击viostor.sys文件,选择属性,查看详细信息>文件版本号。

η.	· 本地磁盘 (C:) ▼	Windows - System	m32 • drivers •	▼ 🚱 捜索		
들 ()	り 工具(T) 帮助	<u>ታ</u> (H)				
•	■ 打开方式					
	名称	▼ 类型	- 修改日期			
	🚳 viostor. sys	系统文件	2018/11/5 19:56			
	🚳 vioser. sys	系统文件	2018/10/21 12:11			
	N pvp	tor sys Fet		X		
	🚳 net					
	🚳 bal 常规	数字签名 安全	: 详细信息 以前的版本			
		/#				
~	る tdx 」唐旧	<u>1</u> 且				
A	a dxg	91				
	tep 文件	说明 Red Hat Vi	rtIO SCSI driver			
	◎ ard 类型 系统文件					
	Srv 文件	版本 60.61.101.	58011			
	S SYV	·名称 Ked Hat Vi	rt10 SUS1 controller			
	→ → 本 よ 本 品	版本 60.61.101.	58011			
	■ 版权	Copyright	(C) 2008-2017 Red Hat, I	inc.		
	⇒ dfs 大小	39.7 KB				
	- 🖹 🦳 修改	日期 2018/11/5	19:56			

- ·如果Red Hat VirtIO SCSI driver文件版本大于等于58011,您可以直接在线扩容云盘。
- ・如果Red Hat VirtIO SCSI driver文件版本小于58011, 请更新RedHat VirtIO SCSI驱动。

步骤一: 下载驱动程序

下载并解压virtio驱动包,本文后续步骤假设您解压后驱动包所在路径为C:\Users

\Administrator\Desktop\virtioDriver。ECS实例的操作系统与解压后文件夹目录的对应 关系如下表所示。

驱动文件(夹)名称	文件(夹)描述
win7	Windows Server 2008 R2和Windows 7
Wlh	Windows Server 2008
Win8	Windows Server 2012和Windows Server 2012 R2
win10	Windows 10、Windows Server 2016及更新版本的 Windows Server系统
amd64	64位
x86	32位

步骤二:更新RedHat VirtIO SCSI驱动

方式一:使用pnputil添加和安装驱动

- 1. 打开CMD命令行窗口。
- 2. 运行以下命令添加驱动包。

pnputil -i -a <path to virtio driver inf>


```
请确保您已经将目标.inf文件解压到指定的目录(<path to virtio driver
inf>中,如C:\Users\Administrator\Desktop\virtioDriver\Wlh
\amd64\*.inf)。
```

3. 重启ECS实例的操作系统,使驱动更新生效。

方式二:手动添加驱动

1. 打开设备管理器。

2. 右键单击存储控制器下的Red Hat VirtIO SCSI controller,并选择更新驱动程序软件。

3. 选择浏览计算机以查找驱动程序软件。

4. 选择从计算机的设备驱动程序列表中选择。

5. 单击从磁盘安装。

6. 选择对应文件夹下的驱动文件viostor,并按向导提示更新驱动。

7. 重启ECS实例的操作系统,使得驱动更新生效。

下一步

在线扩容云盘

3.9 更换系统盘

3.9.1 更换系统盘(非公共镜像)

更换系统盘是指为您重新分配一个系统盘,原来的系统盘会被释放,系统盘ID会更新。如果在创 建ECS实例时选择了错误的操作系统,或者随着业务发展,需要扩大系统盘容量或者使用其他操作 系统,您可以通过更换系统盘实现。

前提条件

将系统盘的镜像更换为非公共镜像之前,您必须先完成以下工作:

- ·如果更换为自定义镜像:
 - 如果要使用某台ECS实例上的镜像,您必须对指定实例的系统盘创建快照,并使用快照创建 自定义镜像。具体操作,请参见#unique_137和#unique_33。如果这台实例与您要更换系 统盘的实例不在同一个地域,您需要复制镜像。具体操作,请参见#unique_138。
 - 如果要使用本地物理镜像文件,您需要在控制台导入镜像或者使用Packer创建并导入镜像。 镜像所在地域必须与您的实例相同。具体操作,请参见#unique_139和#unique_140。
 - 如果要使用其他地域的镜像,您需要先复制镜像。具体操作,请参见#unique_138。

📕 说明:

通过上述方式创建的镜像,在更换系统盘时,都出现在自定义镜像的列表里。

- ·如果要使用其他阿里云账号的镜像,您必须先获得共享镜像。具体操作,请参见#unique_141。
- ·如果更换为Linux系统,而且选择SSH密钥对认证,您必须先创建SSH密钥对。具体操作,请参见#unique_142。
- 更换系统盘是一个高危操作,可能会造成数据丢失或业务停止。为了最大限度地减少更换
 系统盘对您业务的影响,建议在更换系统盘之前先为当前系统盘创建快照。详细步骤请参见#unique_143。
- ·如果要对Windows Server系统ECS实例更换系统盘,请确保系统盘有足够的空间。建议预留 1GiB的空间,否则更换系统盘后,系统可能无法正常启动。

☰ 说明:

避免在您的业务高峰期创建快照,以免影响业务。一个40GiB的快照,第一次创建大约需要40分钟。因此请预留出足够的时间。而且,创建快照可能会降低块存储I/O性能(一般在10%以内),出现短暂瞬间变慢。

背景信息

您可以在更换系统盘时为ECS实例选择公共镜像、共享镜像、自定义镜像或镜像市场里的任一种镜像。本文介绍如何将系统盘的镜像更换为非公共镜像。如果您需要使用公共镜像,请参见#unique_30。

📃 说明:

微软已经停止支持Windows Server 2003。为了保证您的数据安全,阿里云不推荐ECS实例继续 使用Windows Server 2003系统,也不再提供这个镜像。更多信息,请参见关于阿里云不再支持 Windows Server 2003系统镜像。

更换系统盘是一个高危操作,可能会造成数据丢失或业务停止。您必须认真阅读以下注意事项:

更換系统盘之前

- 原系统盘的会被释放,建议您提前创建快照备份数据。具体操作,请参见#unique_137。
- 更换系统盘需要停止实例,因此会中断您的业务。具体操作,请参见#unique_144。
- 为了保证有足够的快照额度完成新系统盘的自动快照策略,您可以删除不需要的历史系统盘
 快照。具体操作,请参见#unique_145。
- 不能更换系统盘的云盘类型。

・更换系统盘之后

- ECS实例IP地址和MAC地址不变。
- 云盘ID会改变, ECS实例会被分配一个新的系统盘, 历史系统盘被释放。
- 历史系统盘快照不能用于回滚新的系统盘。
- 手动创建的快照不受影响,您仍能用历史系统盘快照创建自定义镜像。
- 历史系统盘如果设置了自动快照策略,而且设置了自动快照随磁盘释放,历史系统盘的自动
 快照会自动删除。历史自动快照策略不再适用于新的系统盘,需要您重新设置。
- 需要您重新部署业务运行环境,有可能会对您的业务造成长时间的中断。
- · 跨操作系统更换系统盘

蕢 说明:

跨操作系统更换系统盘是指互相互换Linux和Windows Server系统,跨操作系统更换系统 盘后,ECS实例无法识别数据盘的文件系统格式。非中国大陆地域不支持跨操作系统更换系统 盘,仅支持Linux不同发行版本或Windows Server不同版本之间的更换。

- 如果数据盘没有重要数据,您可以重新初始化数据盘,再为数据盘创建相应系统支持的文件
 系统。具体操作,请参见重新初始化数据盘。
- 如果数据盘上有重要数据,您可以做以下操作:
 - Windows Server系统更换为Linux系统:单独安装软件识别,例如NTFS-3G等,因为 Linux缺省情况下无法识别NTFS格式。
 - Linux系统更换为Windows Server系统:单独安装软件识别,例如Ext2Read和 Ext2Fsd等,因为Windows Server缺省情况下无法识别ext3、ext4、xfs等文件系统格 式。
 - Windows Server系统更换为Linux系统:您能选择使用密码认证或SSH密钥对认证。

操作步骤

- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏,选择实例与镜像>实例。

- 3. 在顶部状态栏处,选择地域。
- 找到需要更换系统盘的实例,在操作列中,单击更多 > 实例状态 > 停止。
 当实例状态变为已停止时,表示实例已经成功停止。
- 5. 在操作列中, 单击更多 > 磁盘和镜像 > 更换系统盘。
- 6. 在弹出的对话框里,仔细阅读更换系统盘注意事项后,单击确定,更换系统盘。
- 7. 在更换系统盘页面上, 配置以下参数。
 - a) 镜像类型:选择自定义镜像、共享镜像或镜像市场,并选择需要的镜像。
 - b)系统盘:不能更换系统盘的云盘类型,但是您能根据业务需求和新镜像的需求扩容系统 盘,最大容量为500GiB。扩容时能设置的最小容量与系统盘当前容量和镜像有关,如下表所 示。

镜像	扩容的容量限制(GiB)
Linux(不包括CoreOS)+FreeBSD	[Max{20,系统盘当前容量},500]
CoreOS	[Max{30,系统盘当前容量},500]
Windows Server	[Max{40,系统盘当前容量},500]

📃 说明:

如果您操作过续费降配,进入下一个计费周期前,您不能修改系统盘容量。

- c) 安全设置:
 - ·如果新的操作系统是Windows Server系统,您只能使用密码认证。
 - ·如果您的实例是I/O优化实例,而且新的操作系统是Linux系统,您可以选择使用密码认证或SSH密钥对认证。您必须设置登录密码或者绑定SSH密钥对。
- d)确认配置费用:一般是指系统盘的费用。系统盘价格,请参见云产品价格页。如果您选择的 自定义镜像来源于镜像市场,可能会产生费用,也包括在配置费用里。镜像的计费信息,请 参见#unique_146。

|≡| 说明:

系统盘价格说明:系统盘按起始容量起售,按起售价收费,超过起始容量后,每增加1GiB按 线性计费价格收费。起始容量的系统盘,包年包月价格的单位为元/月,按量付费价格的单位 为元/小时。

e) 确认无误后, 单击确定更换。

预期结果

登录ECS控制台监控实例状态,更换系统盘大概需要10分钟。完成后,实例会自动启动。

后续步骤

更换系统盘后,您可能需要做以下操作:

- ・ (可选) 历史系统盘应用的自动快照策略自动失效。您需要为新系统盘设置自动快照策略。具体 操作,请参见#unique_147。
- ·如果更换前后都是Linux系统,而且,实例上原来挂载了数据盘并设置了开机自动挂载分区。更 换系统盘后,历史系统盘中的数据盘分区挂载信息丢失。您必须在新系统盘的/etc/fstab文件 写入新分区信息,并挂载分区,不需要对数据盘格式化并分区。操作步骤如下,具体的操作命 令,请参见Linux格式化数据盘。
 - 1. (建议) 备份/etc/fstab。
 - 2. 向/etc/fstab写入新分区信息。
 - 3. 查看/etc/fstab中的新分区信息。
 - 4. 运行mount命令挂载分区。
 - 5. 运行命令df -h查看文件系统空间和使用情况。

完成挂载分区后,无需重启ECS实例即可开始使用新的数据盘。

相关文档 #unique_148

3.9.2 更换系统盘(公共镜像)

更换系统盘是指为您重新分配一块系统盘,系统盘ID会更新,原来的系统盘会被释放。

前提条件

将系统盘的镜像更换为公共镜像之前,您必须先完成以下工作:

- ·如果要对Windows系统盘做更换,请确保系统盘有足够的空间。建议预留1 GiB的空间,否则 系统盘更换后,系统可能无法正常启动。
- ・如果要更换为Linux系统,而且选择SSH密钥对认证,您必须先创建SSH密钥对。具体操作,请 参见创建SSH密钥对。
- ·更换系统盘是高危操作,可能会造成数据丢失或业务停止,为了最大限度地减少更换系统盘对您 业务的影响,建议在更换系统盘之前先为当前系统盘创建快照。具体操作,请参见创建快照。

🧾 说明:

避免在您的业务高峰期创建快照,以免影响业务。一份40 GiB的快照,第一次创建大约需 要40分钟。因此请预留出足够的时间。

背景信息

如果您在创建ECS实例时选择了错误的操作系统,或者随着业务发展,需要使用其他操作系统,您 能通过更换系统盘来更换操作系统。您能将系统盘的镜像更换为公共镜像、共享镜像、自定义镜像 或镜像市场里的任一种镜像。

📃 说明:

微软已经停止支持Windows Server 2003。为了保证您的数据安全,阿里云不推荐ECS实例继续 使用Windows Server 2003系统,也不再提供该镜像。更多信息,请参见关于阿里云不再支持 Windows Server 2003公共镜像。

更换系统盘后,您需要注意以下几点。

- ·为实例重新分配一块系统盘,磁盘ID会更新,原系统盘被释放。
- · 系统盘的云盘类型不变。
- ・实例的IP地址和MAC地址不变。
- ・为了保证有足够的快照额度完成新系统盘的自动快照策略,您可以删除不需要的旧系统盘快照。
 具体操作,请参见#unique_150。

更换系统盘是高风险操作,在更换系统盘之前,请务必认真阅读以下注意事项。

更换系统盘存在如下风险:

- ·原系统盘的会被释放,建议您提前创建快照备份数据。具体操作,请参见创建快照。
- · 更换系统盘需要停止实例,因此会中断您的业务。
- 更换完成后,您需要在新的系统盘中重新部署业务运行环境,有可能会对您的业务造成长时间的 中断。
- ・更换系统盘后,磁盘ID会改变,历史系统盘快照不能用于回滚新的系统盘。

📕 说明:

更换系统盘后,您手动创建的快照不受影响,您仍能用这些快照创建自定义镜像。如果您为旧 的系统盘设置了自动快照策略,而且设置了自动快照随磁盘释放,则自动快照策略不再适用于 新的系统盘。而且,旧系统盘的自动快照会自动删除。

跨操作系统更换系统盘请注意以下事项:

· 跨操作系统更换是指互相更换Windows与Linux系统。

非中国大陆的地域暂不支持Linux和Windows系统的互换,仅支持Linux不同发行版本 或Windows不同版本之间的更换。

- · 跨操作系统更换时,数据盘的文件系统格式可能会无法识别。
 - 如果您的数据盘没有重要数据,建议您重新初始化数据盘,再将其格式化为相应系统的默认 文件系统。具体操作,请参见重新初始化数据盘。
 - 如果您的数据盘上有重要数据,您需要做以下操作:
 - Windows系统更换为Linux系统:需要单独安装软件识别,例如NTFS-3G等,因为 Linux缺省情况下无法识别NTFS格式。
 - Linux系统更换为Windows系统:需要单独安装软件识别,例如Ext2Read、Ext2Fsd 等,因为Windows缺省情况下无法识别ext3、ext4、XFS等文件系统格式。
 - 如果您将操作系统从Windows系统换为Linux系统,您能选择使用密码认证或SSH密钥对认证。

更换Windows操作系统请注意以下事项:

·目前Windows操作系统仅支持用户名及密码认证方式。

Linux操作系统可以同时支持密码认证和SSH密钥认证。因此,如果您将操作系统 从Windows系统更换为Linux系统,可以有更多的认证方式选项。

・如果您使用的是非I/O优化实例,仅支持更换为下列Windows Server公共镜像,且只能调用API ReplaceSystemDisk完成操作。

镜像版本	镜像ID
Windows Server 2008 R2企业版	win2008r2_64_ent_sp1_en-us_40G_ali
英文	base_20170915.vhd
Windows Server 2008 R2企业版	win2008r2_64_ent_sp1_zh-cn_40G_ali
中文	base_20170915.vhd
Windows Server 2012 R2数据中	win2012r2_64_dtc_17196_zh-cn_40G_ali
心版中文	base_20170915.vhd
Windows Server 2012 R2数据中	win2012r2_64_dtc_17196_en-us_40G_ali
心版英文	base_20170915.vhd
Windows Server 2016数据中心版	win2016_64_dtc_1607_zh-cn_40G_alibase_20170
中文	915.vhd
Windows Server 2016数据中心版	win2016_64_dtc_1607_en-us_40G_alibase_20170
英文	915.vhd

本文介绍如何将系统盘的镜像更换为公共镜像。如果您需要使用非公共镜像,请参

见#unique_151。

操作步骤

- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏,选择实例与镜像>实例。
- 3. 在顶部状态栏处,选择地域。
- 找到需要更换系统盘的实例,在操作列中,单击更多 > 实例状态 > 停止,并按页面提示停止实例。

| ■ 说明:

对于按量付费的VPC类型实例而言,停机不收费模式下,更换系统盘后可能无法成功启动实例。建议您停止实例时关闭停机不收费。具体操作,请参见#unique_152。

- 5. 实例停止后,在操作列中,单击更多 > 磁盘和镜像 > 更换系统盘。
- 6. 在弹出的对话框里,仔细阅读更换系统盘注意事项后,单击确定,更换系统盘。
- 7. 在更换系统盘页面上, 配置以下参数。
 - a) 镜像类型:选择公共镜像,并选择需要的镜像版本。

如果您需要使用其他镜像,请参见#unique_151。

b)系统盘:不能更换系统盘的云盘类型,但是您能根据业务需求和新镜像的需求扩容系统 盘,最大容量为500 GiB。扩容时能设置的最小容量与系统盘当前容量有关,如下表所示。

镜像	扩容的容量限制(GiB)
Linux(不包括CoreOS)+ FreeBSD	[Max{20, 系统盘当前容量}, 500]
CoreOS	[Max{30,系统盘当前容量},500]
Windows	[Max{40,系统盘当前容量},500]

📋 说明:

如果您的实例已经做过续费降配操作,进入下一个计费周期前,您不能修改系统盘容量。

- c) 安全设置:
 - ·如果新的操作系统是Windows系统,您只能使用密码认证。

镜像类型:	公共镜像 自定义镜像 共享镜像 镜像市场 ②
公共镜像:	■ Windows Server ~ Version 1709 数据中心版 64位中文版 (不含UI) ~ 教我选择>>
	✓ 安全加固 ②
系统盘:	高效云盘 ✔ ✔ ✔ ✔ 如何选择 SSD云盘 / 高效云盘 / 普通云盘 , 请看 详细说明>
登录名:	administrator
登录密码:	8 - 30 个字符,且同时包含三项(大写字母、小写字母、数字、特殊符号)
确认密码:	

·如果您的实例是I/O优化实例,而且新的操作系统是Linux系统,您能选择使用密码认证 或SSH密钥对认证。您必须设置登录密码或者绑定SSH密钥对。

镜像类型:	公共镜像 自定义镜像 共享镜像 镜像市场	0
公共镜像:	● CentOS ~ 7.4 64位 ~ 数我选择>>	
	✔ 安全加固 ②	
系统盘:	高效云盘 ✔ ✔ ✔ ♀ 如何选择 SSD云盘 / 高效云盘 / 普通云盘 , 请看 详细说明>	
安全设置:	设置密钥 自定义密码	
	密钥对由公有密钥和私有密钥文件构成,目前只有 I/O 优化实例支持。它们共同帮助您安全地连接到您的实例,详情参考> 如果您选择了密钥对的登陆方式,我们将默认禁用用户名密码的登陆方式	
密钥对:	请选择密钥对 ~ C 您也可以到管理控制台,新建密钥对>	

d) 确认配置费用:目前中国站所有公共镜像都不收费,这里的配置费用指系统盘的费用。系统 盘价格,请参见云产品价格页。

系统盘价格说明:系统盘按起始容量起售,起始容量按起售价收费,超过起始容量后,每增加1 GiB按线性计费价格收费。起始容量的系统盘,包年包月价格的单位为元/月,按量付费价格的单位为元/小时。

e) 确认无误后, 单击确定更换。

预期结果

登录ECS控制台监控系统状态,完成操作系统更换大概需要10分钟。完成后,实例会自动启动。

后续步骤

更换系统盘后,您可能需要做以下操作:

- (可选)自动快照策略与磁盘ID绑定。更换了新的系统盘后,旧磁盘上应用的自动快照策略自动失效。您需要对新系统盘设置自动快照策略。具体操作,请参见为新的系统盘设置自动快照策略。
- ·如果更换前后都是Linux系统,而且,实例上原来挂载了数据盘并设置了开机自动挂载分区。更 换系统盘后,原来系统盘中的数据盘分区挂载信息丢失。您必须在新系统盘的/etc/fstab文件 写入新分区信息,并挂载分区,不需要对数据盘格式化并分区。操作步骤如下,具体的操作命 令,请参见#unique_27。
 - 1. (建议) 备份etc/fstab。
 - 2. 向etc/fstab写入新分区信息。
 - 3. 查看etc/fstab中的新分区信息。
 - 4. 运行mount命令挂载分区。
 - 5. 查看文件系统空间和使用情况:运行命令df -h。

挂载操作完成后,不需要重启实例即可开始使用新的数据盘。

相关文档

#unique_148

3.10 回滚云盘

如果当前系统出现问题,您希望将一块云盘的数据恢复到之前的某一时刻,而且您已经为云盘创建了快照,您可以使用回滚磁盘功能实现。

前提条件

回滚云盘前必须确认以下信息:

・ 您已经为云盘创建快照,而且要回滚的云盘当前没有正在创建的快照。具体操作,请参见#unique_31。

- ・ 云盘未被释放。
- ・云盘必须已经挂载到某台ECS实例上,而且已经停止实例。具体操作,请参见#unique_26和#unique_154。

如果是按量付费的VPC类型实例,而且已经开启了按量付费实例停机不收费功能,停止实例 时,在提醒对话框中,单击确定之后,在停止实例对话框中,选中停止后仍旧保留实例并继续 收费复选框。如果使用停机不收费模式,回滚云盘后可能无法成功启动实例。

停止实例	×
? 您所选的 1 个实例 ~ 将执行停止操作,您	是否确认操作?
停止方式: 停止 〇 强制停止 	
停止模式: 停止后仍旧保留实例	列并继续收费
包年包月实例停止后不会改变到期时间 如果您停止实例是为了更换系统盘、重新初 私网IP等操作,建议您勾选"停止后仍旧保 动失败。]始化磁盘、更改实例规格、修改 留实例并继续收要" 选项 , 避免启
	确定取消

背景信息

回滚云盘前,请注意以下事项:

- ·回滚云盘是不可逆操作,一旦回滚完成,原有的数据将无法恢复,请谨慎操作。
- ·回滚云盘后,从快照的创建日期到回滚云盘时这段时间内的数据会丢失。如果您要保留这部分数据,请参见回滚云盘后同步数据。
- 回滚系统盘后, 默认自动绑定相应实例当前的密钥对或密码。

操作步骤

- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏,选择实例与镜像>实例。

- 3. 在顶部状态栏处,选择地域。
- 4. 找到需要回滚云盘的实例,进入实例详情页面。
- 5. 在左侧导航栏中,单击本实例快照。
- 6. 选择需要的快照,在操作列中,单击回滚磁盘。
- 7. 在弹出的提示框中,单击确定。

说明:

如果您选择回滚后立即启动实例,云盘回滚成功后,实例会自动启动。

后续步骤

如果在数据盘创建快照后,您做过扩容操作,回滚云盘后,您需要登录实例重新扩容文件系统。具 体操作请参见:

• #unique_80

• #unique_81

相关文档 #unique_156

3.11 转换云盘的计费方式

创建云盘后,您可以转换云盘的计费方式,本文介绍了多种转换方式,以及各个转换方式适用的云 盘和生效时间。

云盘的计费方式与创建方式有关:

- · 随包年包月实例一起创建的云盘,需要先付费再使用。更多计费信息,请参见#unique_20。
- ・随按量付费实例一起创建的云盘,以及通过ECS管理控制台的云盘页面创建的云盘,均采用按量
 付费方式计费。更多计费信息,请参见#unique_21。

您能使用不同的方式转换云盘的计费方式,如下表所示。

计费方式转换	转换方式	适用的云盘	生效时间
包年包月—>按量付费	#unique_22	包年包月实例上挂载的 包年包月云盘。不能变 更系统盘的计费方式。	在新的计费周期生效
		 说明: 按周付费的实例不 支持续费降配,所 以,无法变更按周 付费实例上挂载的包 年包月云盘的计费方 式。 	
	包年包月转按量付费	包年包月实例的系统 盘,随实例创建的作数 据盘用的云盘,以及从 控制台实例页面单独为 实例创建的作数据盘用 的包年包月云盘。	立即生效
按量付费—>包年包月	升级配置	包年包月实例上挂载的 按量付费数据盘。不能 变更系统盘的计费方 式。	立即生效
	按量付费转包年包月	按量付费实例上挂载的 系统盘和数据盘。	

3.12 修改ESSD云盘性能级别

您可以在使用ESSD云盘的过程中,在线升级性能级别。

背景信息

您在创建ECS实例时可以选择ESSD云盘作为系统盘或者数据盘,也可以单独创建一块ESSD云盘。 创建ESSD云盘的详细步骤请参见#unique_61和#unique_159。更多有关ESSD云盘的信息,请 参见#unique_16。

升级ESSD云盘性能级别时,您需要注意以下内容:

- · 您的账号不能处于欠费状态。
- ・若ESSD云盘已挂载到包年包月ECS实例上,则实例不能处于过期状态。
- 新创建的ESSD云盘请您等待云盘进入待挂载(Available)状态后再升级ESSD云盘性能级
 别。

· 升级ESSD云盘性能级别后,系统按照新性能级别单价计算消费账单。

本文描述如何在ECS管理控制台上升级ESSD云盘性能级别,您也可以调用API #unique_160完成 操作。

操作步骤

- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏,单击存储与快照 > 云盘。
- 3. 在顶部状态栏左上角处,选择地域。
- 4. 找到目标ESSD云盘,在操作列,单击更多 > 修改性能级别。

磁盘种类(全部) ▼	磁盘状态(全部) ▼	付盡类型(全部) ▼	可卸載(全部) ▼	可用区	磁盘属性(全部) 👻	已加密/未加密	撮作
ESSD云盘 PL2 🕖 461GiB	待挂戴	按量付费	支持	华东 1 可用区 H	数据盘	未加密	创建快照 重新初始化碳盘 设置自动快照策略 更多 -
高效云盘 20GiB	使用中	按量付费	支持	华东 1 可用区 G	数据盘	未加密	/主歌 全 印影
高效云盘 40GiB	使用中	按量付费	不支持	华东 1 可用区 G	系统盘	未加密	作成 會 修改磁盘描述 修改 居性
高效云盘 40GiB	已过期	包年包月	不支持	华东1可用区 H	系统盘	未加密	↑ 大型 (大型 (大型 (大型 (大型 (大型 (大型 (大型 (大型 (大型
SSD云盘 20GiB	待挂载	按量付费	支持	华东 1 可用区 G	数据盘	未加密	8 修改性能级别 灾国日初代来策略 交多 -

5. 在修改性能级别窗口中,选择一个更高的性能级别,单击确定。

修改性能级别		\times
磁盘ID:	d-bp1gc znvp0	
磁盘名称:	-	
*性能级别:	PL2: 单盘IOPS性能上限10万(适用的云盘容量范围:461GiB-32TB)	•
配置费用:	PL1: 单盘IOPS性能上限5万(适用的云盘容量范围: 10GiB-32TB) PL2: 单盘IOPS性能上限10万(适用的云盘容量范围: 461GiB-32TB) PL3: 单盘IOPS性能上限100万(适用的云盘容量范围: 1261GiB-32TB)	3)
	确定	取消

由于ESSD云盘可以选择的性能级别与存储容量有关,如果您的ESSD云盘无法选择更高性能级别,可以先扩容云盘,再修改ESSD云盘性能级别。

3.13 查看云盘监控信息

本文提供如何在ECS控制台上查看指定时间段内单块云盘的IOPS和吞吐量的监控信息。

背景信息

使用云盘时,您需要注意以下2个性能指标:

- · IOPS: 指Input/Output Operations per Second,即每秒能处理的I/O个数,用于表示块存储处理读写(输出/输入)的能力。如果要部署事务密集型应用,需要关注IOPS性能。
- ・ 吞吐量:是指单位时间内可以成功传输的数据数量,单位为MBps。如果要部署大量顺序读写的
 应用,需要关注吞吐量。

您可以在ECS控制台上查看指定时间段内单块云盘的IOPS和吞吐量的监控信息。如果您为云盘所挂载的ECS实例安装了云监控插件,也可以在云监控中监控云盘的使用率、IOPS和吞吐量。具体操作,请参见#unique_162。

操作步骤

- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏,选择存储与快照 > 云盘。
- 3. 在顶部状态栏处,选择地域。
- 4. 找到要查看监控信息的云盘,单击磁盘ID,进入磁盘详情页面。
- 5. 在左侧导航栏中,单击磁盘监控信息。
- 6. 在磁盘监控信息页面上,单击 📻 图标,设置监控信息的起止时间。您能查看最多15天间隔的

云盘性能监控信息。

监控信息		2018-03-18 14:2	5 - 2	018-03-18 15:25	Ħ
IOPS(个)	开始时间:	2018-03-18		14 : 25	^ ~
	结束时间:	2018-03-18		15 25	~
	1/小时 6/		时间间隔的	最大15天	确定

7. 查看云盘的IOPS和吞吐量信息。

您可以单击图表中的图例查看单个指标的信息。

3.14 卸载数据盘

当按量付费云盘作数据盘用时,您可以卸载云盘。但是,云盘作系统盘用时,您不能卸载系统盘。 前提条件

在开始操作之前,请确认您已完成以下操作:

- ·云盘已经挂载到实例上,状态为使用中。具体操作,请参见#unique_26。
- ·如果是卸载Linux实例上的某块云盘,而且已经在/etc/fstab文件中写入磁盘分区挂载信
 - 息,必须先删除这个配置信息。

背景信息

卸载云盘时, 需要注意以下事项:

- ·只能卸载状态为使用中,而且磁盘属性为数据盘的按量付费云盘。
- ・不能卸载本地存储。
- · 在Windows操作系统下,您需要注意以下事项:
 - 为了保证数据完整性,建议您暂停对该磁盘的所有文件系统的读写操作,否则未完成读写的数据会丢失。
 - 在ECS控制台上卸载云盘前,必须先远程连接实例,在磁盘管理中对磁盘执行脱机操作。具体操作,请参见远程连接实例。
- · 在Linux操作系统下,您需要注意以下事项:
 - 在ECS控制台上卸载云盘前,必须先远程连接实例,运行umount命令卸载磁盘分区。具体操作,请参见远程连接实例。
 - 如果您已经在/etc/fstab文件中设置了启动实例时自动挂载磁盘分区,在卸载云盘前,您
 必须先在/etc/fstab文件中删除磁盘分区的挂载信息,否则实例重启后您将无法连接实例。

您可以根据需要采用不同的方式卸载云盘,如下表所示。

场景	适用的卸载操作
您要从某台实例上卸载一块或多块云盘	在实例管理页面卸载云盘
您已经明确知道要卸载哪块云盘	在云盘管理页面卸载云盘

在实例管理页面卸载云盘

您可以在实例的管理页面上卸载一台实例上挂载的一块或多块云盘。具体操作步骤如下:

1. 远程连接实例,在实例内部卸载磁盘或分区。

根据操作系统不同,您需要执行不同的操作,如下表所示。

操作系统	操作
Linux	运行umount [磁盘分区]命令。例如: umount /dev/vdb1。

操作系统	操作		
Windows	在磁盘管理对话框,右键单击磁盘名称(如下图所示的 磁盘2), 机。	单击 脱	
	磁盘 2 新加卷 (G:) 20.00 GB 20.00 GB NTFS		
	联机 新建跨区卷(N) 新建带区卷(T) 新建带区卷(R) 新建筑像卷(R) 新建筑像卷(R) 新建筑像卷(N)		
	转换到动态磁盘(C) 转换成 GPT 磁盘(V) 脱机(O)		
	■ 未分配 ■ 未分配 ■ 未分配		

- 2. 登录ECS管理控制台。
- 3. 在左侧导航栏, 单击实例与镜像 > 实例。
- 4. 在顶部状态栏左上角处,选择地域。
- 5. 找到需要操作的实例,单击实例ID,进入实例管理页面。
- 6. 在左侧导航栏中,单击本实例磁盘。
- 7. 找到需要卸载的云盘,在操作栏中,单击更多>卸载。

支持卸载的云盘必须具备以下属性:

- ・磁盘状态必须为使用中。
- 可卸载必须为支持。
- · 磁盘属性必须为数据盘。
- 8. 在弹出的对话框中,单击确认卸载。
- 9. (可选) 如果需要卸载多块云盘,重复第7步和第8步操作。

当云盘的状态变为待挂载时,表明您已经成功卸载云盘。

在云盘管理页面卸载云盘

您可以在云盘管理页面上将某块云盘从实例上卸载。具体操作步骤如下:

1. 远程连接实例,在实例内部卸载磁盘或分区。

根据操作系统不同,您需要执行不同的操作,如下表所示。

操作系统	操作
Linux	运行umount [磁盘分区]。例如:umount /dev/vdb1。

操作系统	操作		
Windows	在磁盘管理对记 机。	舌框,右键单击磁盘名称(如下图所示的磁盘2),单击脱	
	磁盘 2 基本 20.00 GB 联机 新 合 CD-R 方 无媒体 現 未分配	新加港 (G:) 20.00 GB NTFS 建跨区卷(N) 建带区卷(T) 建带区卷(R) 建筑像卷(R) 建筑像参(R) 建筑像卷(R) 建筑像卷(R) 建筑像参(R) 建筑像参(R) 建筑像参(R) 建筑像参(R) 建筑像参(R) 建筑像参(R) 建筑泉山(R) 建筑泉山(R) 建筑泉山(R)	

2. 登录ECS管理控制台。

3. 在左侧导航栏,单击存储与快照 > 云盘。

4. 在顶部状态栏左上角处,选择地域。

5. 找到需要卸载的云盘,在操作栏中,单击更多>卸载。

支持卸载的云盘必须具备以下属性:

- · 磁盘状态必须为使用中。
- 可卸载必须为支持。
- · 磁盘属性必须为数据盘。

6. 在弹出对话框中,单击确认卸载。

当云盘的状态变为待挂载时,表明您已经成功卸载云盘。

后续步骤

如果不再需要该云盘,您可以释放云盘。具体操作,请参见#unique_37。 相关文档 #unique_55

3.15 释放数据盘

本文描述了如何通过ECS控制台释放一块按量付费的数据盘。如果您不再需要某块云盘,可以将其 释放,节省费用。

前提条件

您已经卸载了云盘,云盘状态为待挂载。详细步骤请参见#unique_166。

背景信息

单独释放云盘时,您需要注意以下事项:

- ·不支持释放系统盘,您只能随ECS实例一起释放系统盘。详细步骤请参见#unique_167。
- ・不支持释放包年包月数据盘,您可以转换计费方式为按量付费后再释放云盘。详情请参见#unique_48。
- ·如果您设置了自动快照随云盘释放,云盘的自动快照会随云盘一起释放。但是手动快照不受影响。您可以在挂载云盘时设置自动快照不随云盘一起释放。详细步骤请参见#unique_168。

为了保证拥有足够的快照额度来顺利完成周期性的自动快照策略,建议您删除不需要的手动快照和自动快照。

・释放前确认云盘中的内容是否仍然有效。如果有效,请创建快照以备份数据。详细步骤请参见#unique_137。

操作步骤

- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏, 单击存储与快照 > 云盘。
- 3. 在顶部状态栏左上角处,选择地域。
- 4. 找到需要释放的云盘,在操作列中,单击更多 > 释放。
- 5. 在弹出的对话框中,确认信息后,单击确认释放。

相关文档 #unique_169

4 共享块存储

共享块存储是一种支持多台ECS实例并发读写访问的数据块级存储设备,具备多并发、高性能、高 可靠等特性,数据可靠性高达99.9999999%。

共享块存储正在邀测开放中。

产品优势

共享块存储采用分布式三副本机制,为云服务器ECS提供99.9999999%的数据可靠性,并持久性存 储您的业务数据。共享块存储支持在阿里云可用区内自动复制您的数据,防止硬件故障导致的数据 不可用,保护您的业务免于组件故障的威胁。

应用场景

在典型的集群架构中,多个计算节点通常需要访问同一份业务数据。为防止一个或多个计算节点发 生故障而导致业务中断,您可以使用共享块存储保证集群对外提供业务访问的持续性和高可用性。 建议您将重要的业务数据存储在共享块存储上,并通过集群文件系统对共享块存储进行统一管理。 当多个前端计算节点并发地读写数据时,共享块存储能保持数据在多个计算节点间的一致性。

共享块存储专为企业级用户的核心业务而设计,打造高可用集群架构,适用于完全共享型(Shared-everything)数据库架构下对块存储设备的访问场景。例如,政府、企业和金融行业常 用的高可用架构数据库集群Oracle RAC(Real Application Cluster)以及高可用架构服务器集 群(High-availability cluster)。

共享块存储类型

根据性能不同,共享块存储可以分为以下两种存储类型。

· SSD共享块存储

采用固态硬盘作为存储介质,能够提供稳定的高随机I/O性能和高数据可靠性的存储设备。

・高效共享块存储

采用固态硬盘与机械硬盘的混合介质作为存储介质。

共享块存储性能

共享块存储的性能,请参见块存储性能。

计费

邀测阶段, 共享块存储免费。
使用共享块存储

- · 共享块存储的创建、挂载、卸载、释放等方式与云盘类似。
- · 共享块存储只能单独创建,并且只能作数据盘使用。
- ・一块共享块存储可以同时挂载到同一地域中同一可用区的八台ECS实例。如果您需要同时挂载到
 更多ECS实例,请提交工单申请。
- ・一台ECS实例最多可以挂载16块数据盘。挂载到ECS实例上时,共享块存储与云盘共享数据盘配额。
- ・共享块存储的容量分配方式与普通硬盘类似,您可以对挂载到ECS实例上的共享块存储格式化多
 个分区并创建文件系统。

文件系统

共享块存储不提供预装的集群文件系统,需要您自行安装,例如GFS(Google File System)和 GPFS(General Parallel File System)等集群文件系统。对于典型的Oracle RAC业务场 景,推荐您使用Oracle ASM(Automatic Storage Management)管理存储卷和文件系统。

如果您将共享块存储挂载到多台ECS实例上,不要使用常规文件系统,否则会造成以下数据读写问题。

・存储空间分配冲突

实例A在写入文件时,会查询文件系统和可用的存储空间,写入文件后会修改实例A上的空间分 配记录,但不会修改其他实例的空间分配记录。如果随后实例B也写入了文件,可能会再次分配 实例A已分配的存储空间,造成存储空间分配冲突。

・业务数据不一致

实例A在读取文件时,会记录在缓存中,实例A上另一个进程访问同样的文件时就首先读取缓存 数据。如果期间实例B修改了同样的文件数据,而实例A无法感知,依旧从缓存中读取数据,造 成业务数据不一致。

5本地盘

本地盘是ECS实例所在物理机上的本地硬盘设备。本地盘能够为ECS实例提供本地存储访问能力,具有低时延、高随机IOPS、高吞吐量和高性价比的优势。

存储类型

本文主要描述当前与ECS实例一起销售的本地盘的信息。有关本地盘实例和大数据型实例的性能详 情,请参见实例规格族。

本地盘适用于对存储I/O性能、海量存储性价比有极高要求的业务场景。阿里云提供以下两种本地 盘:

- ・NVMe SSD本地盘: 搭配使用的实例规格族包括i2、i1、 ga1和gn5。其中, i1和i2实例规格族 适用于以下场景:
 - 网络游戏、电商、视频直播、媒体等在线业务。满足I/O密集型应用对块存储的低时延和高I/ O性能需求。
 - 对存储I/O性能有较高要求,同时具备应用层高可用架构的业务场景,如NoSQL非关系型数 据库、MPP数据仓库和分布式文件系统等。
- SATA HDD本地盘:搭配使用的实例规格族包括d1ne和d1。适用于互联网行业、金融行业等 有大数据计算与存储分析需求的行业,进行海量数据存储和离线计算的业务场景。充分满足以 Hadoop为代表的分布式计算业务类型对ECS实例存储性能、存储容量和内网带宽的多方面要 求。

NVMe SSD本地盘性能

NVMe SSD本地盘性能如下表所示。

NVMe SSD指标	单盘性能	综合实例性能
最大容量	1456 GiB	2912 GiB
最大IOPS	240000	480000
写IOPS *	min{165 * 容量, 240000}	2*min{165*容量, 240000}
读IOPS *		
最大读吞吐量	2 GBps	4 GBps
读吞吐量 *	min{1.4 * 容量, 2000}MBps	2*min{1.4*容量, 2000}MBps
最大写吞吐量	1.2 GBps	2.4 GBps
写吞吐量 *	min{0.85 * 容量, 1200}MBps	2*min{0.85*容量, 1200}MBps

NVMe SSD指标	单盘性能	综合实例性能
访问时延	微秒级(µs)	

* 单盘性能计算公式说明:

·以单块NVMe SSD本地盘写IOPS计算公式说明:每GiB为165 IOPS,最高240000 IOPS。

·以单块NVMe SSD本地盘写吞吐量计算公式说明:每GiB为0.85 MBps,最高1200 MBps。

为压测出阿里云提供的标准性能数据及本地盘QoS(Quality of Service,服务质量),您可以 根据本文测试NVMe SSD本地盘在带宽、IOPS以及延迟等性能指标上的表现。参见下文NVMe SSD本地盘性能测试。

SATA HDD本地盘性能

SATA HDD本地盘性能如下表所示。

SATA HDD指标	单盘性能	综合实例性能
最大容量	5500 GiB	154000 GiB
最大吞吐量	190 MBps	5320 MBps
访问时延	毫秒级 (ms)	

计费方式

本地盘的费用包括在本地盘实例的费用里。关于ECS实例的计费方式,请参见#unique_20和#unique_21。

使用说明

 ・本地盘来自单台物理机,数据可靠性取决于物理机的可靠性,存在单点故障风险。建议您在应用 层做数据冗余,保证数据的可用性。您可以使用部署集将业务涉及到的几台ECS实例分散部署在 不同的物理服务器上,保证业务的高可用性和底层容灾能力。详情请参见#unique_175。

🛕 警告:

使用本地盘存储数据有丢失数据的风险,例如ECS实例所在物理机发生硬件故障时。请勿在 本地盘上存储需要长期保存的业务数据。如果您的应用无数据可靠性架构设计,强烈建议您 在ECS实例中同时使用云盘,提高数据可靠性。

・购买了带本地盘的ECS实例后,请登录ECS实例自行分区并格式化本地盘。

- · 本地盘不支持的操作有:
 - 单独创建全新本地盘
 - 使用快照创建本地盘
 - 挂载本地盘
 - 单独卸载并释放本地盘
 - 扩容本地盘
 - 重新初始化本地盘
 - 为本地盘创建快照
 - 使用快照回滚本地盘

磁盘初始化顺序

创建带本地盘的ECS实例时,所有磁盘的初始化顺序遵循以下规则:

- ・规则一:如果指定的镜像不带有数据盘快照,则按照本地盘优先、随ECS实例创建的云盘其次的 顺序排列。
- ·规则二:如果指定的镜像带有数据盘快照,由于制作镜像时,会同时记录数据盘设备名,优先保 留镜像中的数据盘快照所对应的磁盘顺序,其余排列顺序遵循规则一。

以Linux类型镜像中包含两块数据盘快照的场景为例,为您讲解规则二的排序原理:

 假设两块数据盘的原设备名分别是/dev/xvdb和/dev/xvdc:在初始化本地盘实例时,阿里云优 先将/dev/xvdb和/dev/xvdc分配给镜像中指定的数据盘使用。则磁盘初始化顺序为系统盘、镜 像已指定的数据盘1、镜像已指定的数据盘2、本地盘1、本地盘2、云盘1、云盘2、...。如下图 所示。

· 假设两块数据盘的原设备名分别是/dev/xvdc和/dev/xvdd: 在初始化本地盘实例时,阿里云优 先将/dev/xvdc和/dev/xvdd分配给镜像中指定的数据盘使用。剩下的设备名位置再以本地盘优 先的方式填充。则磁盘初始化顺序为系统盘、本地盘1、镜像已指定的数据盘1、镜像已指定的 数据盘2、本地盘2、云盘1、云盘2、...。如下图所示。

生命周期

本地盘的生命周期与它所挂载的本地盘实例相同,更多详情,请参见实例生命周期介绍。

实例操作对本地盘数据的影响

操作本地盘实例对本地盘数据的影响如下表所示。

实例操作	保留本地盘数据	保留本地盘
操作系统重启/控制台重启/强制重启	是	是
操作系统关机/控制台停止/强制停止	是	是
实例自动恢复	否	否
释放实例	否	否
预付费实例到期停机后,实例进入过期回收前	是	是
账号欠费后,按量付费实例进入欠费回收前	是	是
预付费实例到期停机后,实例进入过期回收后	否	是
账号欠费后,按量付费实例进入欠费回收后	否	是
预付费实例到期停机或账号欠费后,释放实例后	否	否
手动续费一台过期的预付费实例	是	是
账号欠费重新充值并重开机一台欠费的按量付费 实例	是	是
手动续费一台过期回收中的预付费实例	否	是
账号欠费重新充值并重开机一台欠费回收中的按 量付费实例	否	是

NVMe SSD本地盘性能测试

Linux实例和Windows实例都推荐使用FIO工具测试本地盘性能。本文以测试裸盘/dev/vdx为例,说明如何使用FIO测试本地盘块存储性能。部分测试命令参数解释请参见块存储性能。

测试裸盘可以获得真实的本地盘性能,但直接测试裸盘会破坏文件系统结构,请在测试前提前做 好数据备份。本文均为裸盘测试,请务必了解写操作会覆盖本地盘数据。建议您只在新购无数据 的ECS实例上测试本地盘性能。

· NVMe SSD本地盘带宽性能测试

- 测试读带宽,运行以下命令:

```
fio -direct=1 -iodepth=128 -rw=read -ioengine=libaio -bs=128k -
numjobs=1 -time_based=1 -runtime=1000 -group_reporting -filename=/
dev/vdx
```

- 测试写带宽,运行以下命令:

```
fio -direct=1 -iodepth=128 -rw=write -ioengine=libaio -bs=128k -
numjobs=1 -time_based=1 -runtime=1000 -group_reporting -filename=/
dev/vdx
```

- ・NVMe SSD本地盘IOPS性能测试
 - 测试随机读IOPS,运行以下命令:

```
fio -direct=1 -iodepth=32 -rw=randread -ioengine=libaio -bs=4k -
numjobs=4 -time_based=1 -runtime=1000 -group_reporting -filename=/
dev/vdx
```

- 测试随机写IOPS,运行以下命令:

```
fio -direct=1 -iodepth=32 -rw=randwrite -ioengine=libaio -bs=4k -
numjobs=4 -time_based=1 -runtime=1000 -group_reporting -filename=/
dev/vdx
```

· NVMe SSD本地盘延迟性能测试

- 测试随机读延迟,运行以下命令:

```
fio -direct=1 -iodepth=1 -rw=randread -ioengine=libaio -bs=4k -
numjobs=1 -time_based=1 -runtime=1000 -group_reporting -filename=/
dev/vdx
```

- 测试随机写延迟,运行以下命令:

```
fio -direct=1 -iodepth=1 -rw=randwrite -ioengine=libaio -bs=4k -
numjobs=1 -time_based=1 -runtime=1000 -group_reporting -filename=/
dev/vdx
```

- 测试顺序读延迟,运行以下命令:

fio -direct=1 -iodepth=1 -rw=read -ioengine=libaio -bs=4k -numjobs
=1 -time_based=1 -runtime=1000 -group_reporting -filename=/dev/vdx

- 测试顺序写延迟,运行以下命令:

```
fio -direct=1 -iodepth=1 -rw=write -ioengine=libaio -bs=4k -
numjobs=1 -time_based=1 -runtime=1000 -group_reporting -filename=/
dev/vdx
```

相关链接

如果您使用的是已经停售的上一代本地SSD盘,请参见上一代磁盘 - 本地SSD盘。

6 块存储FAQ

本文汇总了使用块存储时的常见问题。

- ・ESSD云盘问题
 - 什么是ESSD云盘?
 - 我什么时候可以购买ESSD云盘?
 - 相比于公测阶段, ESSD云盘商业化产品形态有什么不同?
 - 相比SSD云盘或者高效云盘, ESSD云盘有哪些异同?
 - ESSD云盘的性能指标与产品规格是如何计算的?
 - 如何测试ESSD云盘的性能? 如何测试出100万IOPS?
 - ESSD云盘性能和实例性能有什么关系?
 - ESSD云盘如何计费?
 - 哪些地域或者可用区开放了ESSD云盘资源?
 - ESSD云盘能挂载到哪些实例规格族上?
- ・一般性问题
 - 如何根据应用需求选择可用区?
 - 关于云盘的常用操作有哪些?
 - 怎样可以查看块存储的使用情况和剩余空间?
 - 我可以压缩云盘或共享块存储的容量吗?
 - 如何提前释放包年包月云盘?
 - 什么是I/O优化?我能将存量的ECS实例升级为I/O优化的实例吗?
- ・ 性能测试问题
 - 可以使用什么工具测试块存储性能?
 - 为什么用FIO测试性能时,会导致实例宕机?
 - 如何测试共享块存储性能?
 - 如何压测ESSD云盘的性能?

- ・ SSD云盘问题
 - SSD云盘具备怎样的I/O性能?
 - SSD云盘适用于哪些应用场景?
 - 是否支持将原普通云盘更换成SSD云盘?
 - 如何购买SSD云盘, I/O优化的实例及SSD云盘的价格是多少?
 - 购买SSD云盘后是否支持升级?
 - 使用了I/O优化实例和SSD云盘之后, Linux系统在分区挂载的时候为什么报错?
 - 普通云盘和SSD云盘添加挂载信息时需要注意什么?
- ・共享块存储问题
 - 什么是共享块存储?
 - 我什么时候可以购买共享块存储?
 - 共享块存储适用于哪些业务场景?
 - 可以跨地域挂载共享块存储吗?
 - 一台实例上最多挂载多少块共享块存储?
 - 共享块存储的产品规格和性能是什么?
 - 如何测试共享块存储性能?
- ・挂载和卸载云盘问题
 - 什么是设备名(挂载点)?
 - 什么是独立云盘?
 - 一块云盘可以挂载到多台ECS实例上吗?
 - 购买了按量付费云盘并挂载到ECS实例后,还需要执行挂载分区的操作吗?
 - 为Linux实例购买了数据盘,但是系统中看不到怎么办?
 - 一台实例能挂载多少块云盘?
 - 为什么挂载云盘时找不到我想挂载的实例?
 - 云盘和实例在不同的可用区,可以挂载吗?
 - 卸载云盘(数据盘)时,云盘数据会丢吗?
 - 系统盘能够卸载吗?

- ・ 独立云盘问题
 - 单独购买的按量付费数据盘如何收费?
 - 为什么我单独创建的云盘和我的实例一起释放了?
 - 单独购买的按量付费数据盘能够挂载到包年包月ECS实例上吗?
 - 包年包月ECS实例上的数据盘能卸载吗?
 - 我已经操作过续费变配,在续费变配期内是否还能将包年包月云盘转为按量付费云盘?

・云盘快照问题

- 删除云盘的时候, 快照会被保留吗?
- 为什么我的云盘没有自动快照了?
- 可以使用快照单独创建云盘吗?
- ・重新初始化云盘问题
 - 数据盘挂载问题导致数据无法访问,应该如何排查?
 - 重新初始化云盘时,我的快照会丢失吗?
 - 重启Linux系统ECS实例或者重新初始化系统盘后数据盘不见了怎么办?
 - Linux系统ECS实例重新初始化系统盘后如何重新挂载数据盘?

・扩容云盘问题

- 更换系统盘时,我的快照会丢失吗?
- 更换系统盘应该注意什么问题?
- 如何扩容系统盘?
- 系统盘扩容之后是否支持再缩容?
- 所有块存储都支持系统盘扩容吗? 有地域限制吗?
- 包年包月和按量付费的ECS实例都支持扩容系统盘吗?
- 系统盘的容量范围是多少? 最大能扩容到多少?
- 云服务器ECS续费变配后,不支持更换系统盘时指定系统盘容量吗?
- 如何利用快照创建云盘实现无损扩容数据盘?
- 为什么Linux系统ECS实例扩容云盘提示Bad magic number in super-block while trying to open /dev/xvdb1?
- ・ 分区操作问题
 - 数据盘能否再次划分出一个分区用作数据存储?
 - 划分了多个分区的云盘,创建的快照是针对单分区还是所有分区的的?
 - 云盘二次分区有哪些注意事项?
 - 写入数据与分区格式化有什么关系?

- ・回滚云盘问题
 - 数据盘进行二次分区后,此时回滚快照后,数据盘是几个分区?
 - 回滚云盘时为什么报错"执行回滚磁盘需要停止实例,并且确保当前磁盘没有创建中的快照 和没有更换过操作系统。"?
- ・其他问题
 - 如何跨ECS实例拷贝数据?
 - 上一代云盘 本地SSD盘相关问题
 - 如何压测ESSD云盘的性能?

什么是ESSD云盘?

ESSD云盘,又称增强型(Enhanced)SSD云盘,是阿里云推出的超高性能云盘产品。ESSD云盘 结合25GE网络和RDMA技术,为您提供单盘高达100万的随机读写能力和更低的单路时延能力。 更多详情,请参见#unique_16。

我什么时候可以购买ESSD云盘?

2018年7月14日,ESSD云盘开始公测,于2019年6月底正式商业化。您可以在ECS管理控制台或 者调用API CreateDisk创建ESSD云盘。

相比于公测阶段,ESSD云盘商业化产品形态有什么不同?

不同于公测期的产品形态,在正式商业化时,ESSD云盘按照性能上限不同,分为三种不同的规格。最新的ESSD云盘性能详情,请参见#unique_16。

对于存储设备而言,不同的容量能达到的性能不同,容量越大,存储设备的数据处理能力越强。所 有ESSD云盘性能级别的单位容量的I/O性能均一致,但云盘性能随容量增长而线性增长,直至达到 该性能级别的单盘性能上限。

性能级别	ESSD云盘容量范围(GiB)	最大IOPS	最大吞吐量(MBps)
PL1	20~32,768	50,000	350
PL2	461~32,768	100,000	750
PL3	1,261~32,768	1,000,000	4,000

相比SSD云盘或者高效云盘,ESSD云盘有哪些异同?

・共同点:三种云盘都是基于分布式块存储架构的云盘类产品,具备高可靠和弹性扩容等特性,支持快照和加密等数据功能。

・差异点: ESSD云盘的性能相比SSD云盘或者高效云盘都有大幅提升。详情请参见#unique_16和#unique_185。

ESSD云盘的性能指标与产品规格是如何计算的?

ESSD云盘的性能与容量线性相关,容量越大性能越高,相比SSD云盘有大幅的性能提升。更多详

情,请参见#unique_16。

如何测试ESSD云盘的性能?如何测试出100万IOPS?

您可以通过FIO工具测试ESSD云盘性能,具体步骤请参见如何压测ESSD云盘的性能。

ESSD云盘性能和实例性能有什么关系?

部分实例维度的存储I/O性能和实例规格成正比线性关系。例如,云服务器ECS存储增强型实例 g5se的存储I/O性能跟实例规格成线性关系,同一类型的实例规格等级越高可获得的存储IOPS和吞 吐量越高。

当您创建某个规格的g5se实例并挂载ESSD云盘时:

- ・如果ESSD云盘的性能总和不超过实例规格族所对应的存储I/O能力,实际存储性能以ESSD云盘 性能为准。
- ・如果ESSD云盘的性能总和超过了实例规格族所对应的存储I/O能力,实际存储性能以该实例规 格对应的存储I/O能力为准。

例如,当您创建了ecs.g5se.xlarge 16GiB规格实例后,该实例最大存储IOPS为6万。如果挂载 了1块存储I/O能力为2TiB的ESSD云盘(单盘IOPS为101800),该实例最大存储IOPS只能为6 万,而无法达到2TiB ESSD云盘的101800IOPS。

云服务器ECS存储增强型实例g5se的规格及性能请参见#unique_187。

ESSD云盘如何计费?

支持包年包月和按量付费。具体价格请参见价格详情页。

哪些地域或者可用区开放了ESSD云盘资源?

您可以在以下可用区申请购买ESSD云盘:

- ・ 华东1(杭州)可用区H、可用区I、可用区G
- ・ 华东 2 (上海) 可用区E、可用区F、可用区G
- ・华北2(北京)可用区H、可用区G、可用区F
- ・华北3(张家口)可用区A、可用区B
- ・ 华南1 (深圳) 可用区E、可用区D
- ・西南1(成都)可用区A

- · 中国(香港)可用区C
- ・印度 (孟买) 可用区B
- ・ 英国(伦敦)可用区B
- ・ 澳大利亚(悉尼)可用区B

ESSD云盘能挂载到哪些实例规格族上?

ESSD云盘支持挂载到25GE网络的实例规格族(g6、g5、ic5、c6、c5、r6、r5、g5se)、裸金

属服务器实例规格

族(ebmhfg5、ebmc4、ebmg5、ebmgn6v、ebmgn6i、ebmc5s、ebmg5s、ebmr5s、sccgn6)和 企业级异构计算规格族(vgn5i、gn6i、gn6v、gn5、gn5i、gn4、ga1、f1、f3),其他实例规 格族暂不支持。更多详情,请参见#unique_188。

可以使用什么工具测试块存储性能?

请参见#unique_7。

为什么用FIO测试性能时,会导致实例宕机?

FIO测试工具支持裸盘分区、文件系统两种方式测试I/O性能。如果您直接测试裸盘分区,会破坏裸 盘分区中的文件系统元数据,导致无法访问该裸盘分区中的文件,甚至导致实例宕机。使用FIO的 文件系统测试性能方式时,不存在上述问题。

如何根据应用需求选择可用区?

按量付费的云盘只能挂载到同一可用区的ECS实例上。

- ·针对高可用性应用,建议您在不同可用区中创建多块数据盘,并挂载到ECS实例上。
- ・针对低网络延时应用,建议您在同一可用区中创建数据盘,并挂载到ECS实例上。

关于云盘的常用操作有哪些?

关于云盘的常见操作,请参见以下文档:

- #unique_47
- #unique_189
- #unique_103
- #unique_190
- #unique_191
- #unique_192
- #unique_193
- #unique_194
- #unique_195

#unique_196

#unique_113

怎样可以查看块存储的使用情况和剩余空间?

您可以登录ECS实例,在实例内部查看块存储的使用情况和剩余空间。ECS管理控制台和ECS API 暂时无法查看该类信息。

我可以压缩云盘或共享块存储的容量吗?

阿里云不支持缩容云盘或者共享块存储空间。如果您购买的云盘空间较大需要减小容量,建议您先 创建并挂载一个合适容量的新云盘,拷贝旧盘所需数据到新盘上,再释放旧盘。

如何提前释放包年包月云盘?

阿里云不支持释放包年包月数据盘。您可以转换计费方式为按量付费后再释放云盘,释放云盘前请确认您已备份重要数据。详情请参见#unique_48和释放数据盘。

📃 说明:

包年包月数据盘转成按量付费后,计费账单按小时出账,释放云盘后隔一个小时不会再扣费。转换 云盘的计费方式后实际退款金额以页面显示为准,已使用的代金券不会退还。

什么是I/O优化?我能将存量的ECS实例升级为I/O优化的实例吗?

I/O优化为实例与云盘之间提供更好的网络能力,可保证SSD云盘存储性能的发挥。对于I/O优化的 实例,挂载SSD云盘时能够获得SSD云盘的全部存储性能。

已购买的存量ECS实例支持通过#unique_197和#unique_198将非I/O优化的实例转换为I/O优化 实例。

SSD云盘具备怎样的I/O性能?

请参见#unique_7。

SSD云盘适用于哪些应用场景?

SSD云盘具有高性能、高可靠性等特点,适合数据可靠性要求高的I/O密集型应用,如MySQL、 SQL Server、Oracle、PostgreSQL等中小型关系数据库场景。同时适用对数据可靠性要求高的 中小型开发测试环境。

是否支持将原普通云盘更换成SSD云盘?

由于SSD云盘采用全SSD的存储介质实现,不支持将存量的普通云盘直接更换为SSD云盘。

如何购买SSD云盘,I/O优化的实例及SSD云盘的价格是多少?

请参见SSD云盘及I/O优化实例的价格详情页。

购买SSD云盘后是否支持升级?

支持升级和扩容。详情请参见#unique_43。

使用了I/O优化实例和SSD云盘之后,Linux系统在分区挂载的时候为什么报错?

SSD云盘在Linux系统内挂载点显示为/dev/vd*,与常见的挂载点/dev/xvd*有所区别。建议您按照/dev/vd*挂载点格式填写挂载命令。

普通云盘和SSD云盘添加挂载信息时需要注意什么?

Linux系统添加数据盘时,在格式化数据盘编辑分区信息时,/dev/xvdb1是普通云盘的挂载 点,如果您使用的是高效云盘、SSD云盘和ESSD云盘,挂载点为/dev/vdb1。如果添加了错误的 信息,使用mount -a命令将无法挂载。解决方法如下:

- 1. 运行fdisk -l查看具体的数据盘信息。
- 2. 查看/etc/fstab里面添加的信息是否对应。

📕 说明:

不要重复添加挂载信息,否则会导致实例开机重复挂载,系统无法启动。

- 3. 使用vim修改/etc/fstab文件。
- 4. 将错误的信息注释或者删除, 添加对应的挂载信息。
- 5. 运行mount -a测试是否能挂载成功。

常规的操作流程请参见#unique_27。

什么是共享块存储?

阿里云共享块存储是一种支持多台ECS实例并发读写访问的数据块级存储设备,具备多并发、高性能、高可靠等特性。更多详情,请参见共享块存储。

一块共享块存储可以同时挂载到同一地域中同一可用区的八台ECS实例。如果您需要同时挂载到更 多ECS实例,请提交工单申请。

我什么时候可以购买共享块存储?

共享块存储正处于免费邀测阶段。邀测期间,全地域均支持使用共享块存储。邀测结束后支持按量 付费模式和包年包月模式。

共享块存储适用于哪些业务场景?

共享块存储专为企业级用户的核心业务而设计,打造高可用集群架构,适用于完全共享型(Shared-everything)数据库架构下对块存储设备的访问场景。例如,政府、企业和金融行业常 用的高可用架构数据库集群Oracle RAC(Real Application Cluster)以及高可用架构服务器集群(High-availability cluster)。

可以跨地域挂载共享块存储吗?

不能。您只能将共享块存储挂载到同一地域、同一可用区的ECS实例上。

一台实例上最多挂载多少块共享块存储?

作数据盘用时,共享块存储与云盘共享数据盘配额,即,一台实例上最多只能挂载16块数据盘。 共享块存储的产品规格和性能是什么?

当前支持SSD共享块存储和高效共享块存储,具体规格和性能请参见块存储性能。

如何测试共享块存储性能?

您可以使用FIO工具进行性能压测。测试时,所有客户端的iodepth数值总计不能超过384。例如,四台ECS实例同时压测,建议每个客户端iodepth不能超过96。

·两台ECS实例参与压测时:

- 测试随机写IOPS

- 测试随机读IOPS

- 测试写吞吐量

```
FIO -direct=1 -iodepth=64 -rw=write -ioengine=libaio -bs=64k -size
=1G -numjobs=1 -runtime=1000 -group_reporting -filename=iotest -
name=Write_PPS_Testing
```

- 测试读吞吐量

```
FIO -direct=1 -iodepth=64 -rw=read -ioengine=libaio -bs=64k -size
=1G -numjobs=1 -runtime=1000 -group_reporting -filename=iotest -
name=Read_PPS_Testing
```

・四台ECS实例参与压测时:

- 测试随机写IOPS

```
FIO -direct=1 -iodepth=96 -rw=randwrite -ioengine=libaio -bs=4k -
size=1G -numjobs=1 -runtime=1000 -group_reporting -filename=iotest
    -name=Rand_Write_Testing
```

- 测试随机读IOPS

```
FIO -direct=1 -iodepth=96 -rw=randread -ioengine=libaio -bs=4k -
size=1G -numjobs=1 -runtime=1000 -group_reporting -filename=iotest
    -name=Rand_Read_Testing
```

- 测试写吞吐量

```
FIO -direct=1 -iodepth=64 -rw=write -ioengine=libaio -bs=64k -size
=1G -numjobs=1 -runtime=1000 -group_reporting -filename=iotest -
name=Write_PPS_Testing
```

- 测试读吞吐量

```
FIO -direct=1 -iodepth=64 -rw=read -ioengine=libaio -bs=64k -size
=1G -numjobs=1 -runtime=1000 -group_reporting -filename=iotest -
name=Read_PPS_Testing
```

什么是设备名(挂载点)?

设备名(挂载点)是云服务器ECS上云盘在磁盘控制器总线上的位置。所选配的设备名,在Linux 操作系统下与磁盘设备号对应,在Windows操作系统下与磁盘管理器中的磁盘顺序一致。 什么是独立云盘?

独立云盘,即单独购买的按量付费数据盘,而不是随实例创建的数据盘。它可以在同一个可用区 内的不同ECS实例之间自由挂载和卸载,但不能跨地域、跨可用区挂载。独立云盘必须挂载到实例 上,并分区格式化,才能使用。详情请参见#unique_78。

一块云盘可以挂载到多台ECS实例上吗?

不能。一块数据盘只能挂载到同一可用区的一台实例,不支持跨可用区挂载。

购买了按量付费云盘并挂载到ECS实例后,还需要执行挂载分区的操作吗?

单独购买了按量付费数据盘之后,您需要将该数据盘挂载到实例上,并分区格式化。详情请参见#unique_27和#unique_71。

为Linux实例购买了数据盘,但是系统中看不到怎么办?

如果是单独购买的按量付费数据盘,您需要分区格式化、挂载后才能使用和看到空间。详情请参见#unique_189和#unique_47。

一台实例能挂载多少块云盘?

作数据盘用时,云盘与共享块存储共享数据盘配额,即一台实例最多挂载16块数据盘。

为什么挂载云盘时找不到我想挂载的实例?

请确保您的实例没有被释放,并且实例和云盘处于同一个地域的同一个可用区。

云盘和实例在不同的可用区,可以挂载吗?

不可以。您只能在同一可用区内的不同ECS实例间自由挂载和卸载按量付费云盘。

卸载云盘(数据盘)时,云盘数据会丢吗?

- · 在Windows操作系统下,为了保证数据完整性,强烈建议您暂停对该云盘的所有文件系统的读 写操作,否则未完成读写的数据会丢失。
- ・在Linux操作系统下,您需要登录实例中对该云盘执行umount命令,命令执行成功后再进入控制台卸载云盘。

系统盘能够卸载吗?

不能卸载系统盘,但您可以更换系统盘。详情请参见#unique_151。

单独购买的按量付费数据盘如何收费?

按量付费数据盘按小时为计费单位出账,如果您的账号余额不足,按量付费数据盘的服务会被停 止。 为什么我单独创建的云盘和我的实例一起释放了?

单独创建了数据盘后,包年包月在挂载时可以选择该云盘是否随实例释放。您可以随时通过控制台 或API更改这个选项。详情请参见#unique_47。

单独购买的按量付费数据盘能够挂载到包年包月ECS实例上吗?

可以。

包年包月ECS实例上的数据盘能卸载吗?

包年包月ECS实例不支持直接卸载数据盘。数据盘到期时间和实例一致,随实例一起释放。如果想 要释放数据盘,您可以先将包年包月数据盘转换为按量付费数据盘,再卸载并释放数据盘。如何转 换云盘的计费方式,请参见#unique_38。

我已经操作过续费变配,在续费变配期内是否还能将包年包月云盘转为按量付费云盘?

不能。您可以等到续费变配期结束后,再选择续费变配,转化为按量付费云盘。

删除云盘的时候,快照会被保留吗?

手动快照不会被删除。自动快照是否会被删除,取决于您是否设置了自动快照随磁盘释放。详情请参见#unique_168。

为什么我的云盘没有自动快照了?

快照数量达到快照配额后,系统会自动删除最早创建的自动快照,手动快照不受影响。

VX HH
- 况明:

云盘只有挂载到实例时才会执行自动快照策略。

可以使用快照单独创建云盘吗?

可以。在单独创建按量付费云盘时,选择已有的快照创建即可。详情请参见#unique_46。

数据盘挂载问题导致数据无法访问,应该如何排查?

如果无法访问Linux数据盘的数据,您可以参考以下排查思路。

1. 找到数据所在的云盘,并确认数据盘是否挂载在对应的ECS实例。

- ・在控制台查看。详情请参见#unique_200。
- ・ 在实例内部,使用fdisk -l命令查看数据盘的分区信息是否正常,并使用df -h和mount
 | grep "<devpath>"命令查看挂载情况。

- 2. 用cat命令查看/etc/fstab文件,是否将两块云盘挂载到同一目录。
 - ·如果挂载在同一目录,先挂载的云盘会被后挂载的云盘替换,导致数据无法访问。建议将其 中一块云盘挂载到另外一个目录下。
 - ·如果没有挂载在同一个目录下,但挂载信息仍显示在同一目录,使用11命令查看挂载的两个 目录是否存在连接。如果存在连接,建议用mkdir命令新建一个目录挂载,并测试能否访问 数据。

重启Linux系统ECS实例后数据丢失怎么办?

- · 问题现象: 重启实例后发现某一目录(例如/alidata)所有数据丢失。
- ·问题原因:运行df-h查看,发现没有挂载数据盘分区。
- ・解决方法:本方法以I/O优化实例为例。如果是非I/O优化实例,云盘分区格式为/dev/xvd*1
 ,请您根据实际情况操作。
 - 1. 运行fdisk -l命令查看未挂载的数据盘分区。
 - 2. 运行mount /dev/vdb1 /alidata挂载数据盘分区。
 - 3. 运行df -h查看是否成功挂载数据盘分区。
 - 4. (可选)在/etc/fstab中设置开机自动挂载,避免下次出现同样问题。

重新初始化云盘时,我的快照会丢失吗?

不会,手动快照和自动快照都不会丢失。

重启Linux系统ECS实例或者重新初始化系统盘后数据盘不见了怎么办?

- ・问题现象:Linux实例重启或初始化系统之后,再登录实例运行df -h查看云盘挂载,发现数据
 不见了。
- ・问题原因:
 - 重启实例:如果重启实例前,您没有将挂载信息写入到/etc/fstab中,重启实例之后实例 不会自动挂载数据盘。
 - 重新初始化系统盘:初始化系统盘会重置/etc/fstab文件,重新初始化系统盘后实例不会 自动挂载数据盘。

・ 解决方案:

- 1. 运行mount /dev/xvdb1命令重新挂载数据盘。
- 2. 运行mount命令查看数据盘分区/dev/xvdb1的文件格式。
- 3. 假设您查看到/dev/xvdb1分区使用的是ext3文件系统,执行以下命令将数据盘挂载信息写 入到/etc/fstab文件中。

```
echo '/dev/xvdb1 /data ext3 defaults 0 0' >> /etc/fstab
```

4. 在控制台重启ECS实例。

Linux系统ECS实例重新初始化系统盘后如何重新挂载数据盘?

在Linux实例中,重新初始化系统盘不会改变数据盘里的内容,但是数据盘的挂载信息会丢失。 假设重新初始化系统盘之前,实例上挂载的数据盘分区名称为/dev/vdb1,挂载点名称为/ InitTest。重启Linux实例后,请参见以下步骤创建新的挂载点信息并挂载数据盘分区。

1. 运行mount查看数据盘挂载信息。

返回结果中没有/dev/vdb1的信息。

- 2. 运行fdisk -1查看数据盘分区信息。
- 3. 运行cat /etc/fstab查看数据盘分区/dev/vdb1原有的挂载点名称。
- 4. 运行mkdir /InitTest重新创建数据盘分区的挂载点。

新建的挂载点名称必须与重新初始化系统盘之前/dev/vdb1的挂载点名称保持一致。

- 5. 运行mount /dev/vdb1 /InitTest重新挂载数据盘分区。
- 6. 运行df -h查看挂载结果。
- 7. 按以下步骤检测数据盘/dev/vdb1是否能自动挂载。
 - a. 运行umount /dev/vdb1卸载/dev/vdb1。
 - b. 运行mount查看挂载信息。

如果卸载成功,返回结果中不会有/dev/vdb1的信息。

- c. 运行mount -a自动挂载/dev/vdb1。
- d. 运行mount查看挂载信息。

如果自动挂载成功,返回结果中会有/dev/vdb1的信息。

更换系统盘时,我的快照会丢失吗?

历史系统盘的手动快照仍旧保留,如果自动快照设置了自动快照随磁盘释放则会被删除。

更换系统盘后云盘ID会发生变化,历史系统盘的快照将不能用于回滚新的系统盘。

更换系统盘应该注意什么问题?

更换系统盘之前建议您创建快照备份数据,并且您需要确保系统盘有1GiB以上的预留空间。否则更 换系统盘后,实例可能无法正常启动。

系统盘价格请参见云服务器ECS详细价格总览。

如何扩容系统盘?

您可以通过控制台或者调用#unique_201扩容系统盘。

系统盘扩容之后是否支持再缩容?

不支持。建议您合理选择扩容范围。

所有块存储都支持系统盘扩容吗? 有地域限制吗?

高效云盘、SSD云盘、ESSD云盘支持系统盘扩容。所有的地域都支持扩容系统盘。

- 包年包月和按量付费的ECS实例都支持扩容系统盘吗?
 - 包年包月和按量付费的ECS实例都支持扩容系统盘。

系统盘的容量范围是多少?最大能扩容到多少?

容量范围随实例使用的镜像变化。详情请参见#unique_203。

云服务器ECS续费变配后,不支持更换系统盘时指定系统盘容量吗?

包年包月ECS实例完成续费降配操作后,只有进入新计费周期后才能扩容系统盘,当前计费周期内 不支持扩容系统盘。

如何利用快照创建云盘实现无损扩容数据盘?

在扩容数据盘时,若遇到云盘原因导致无法无损地扩容时,您可以临时新建一块按量付费云盘存放 数据,然后彻底格式化数据盘。请参见以下步骤。

- 1. 为当源数据盘创建快照。详情请参见#unique_204。
- 2. 前往云盘购买页,选择和ECS实例相同的地域及可用区,并选择用快照创建磁盘,选择上一步生成的快照。
- 3. 在ECS控制台,将新建数据盘挂载到同一台ECS实例上。
- 4. 登录ECS实例,运行mount命令挂载新建云盘。有关如何挂载根据快照创建的云盘,请参见#unique_46。
- 5. 抽检查看新建数据盘中的文件是否和源数据盘一致。

- 6. 确认数据一致后,使用fdisk删除原有的分区表,然后再使用fdisk、mkfs.ext3等命令重 新对数据盘执行分区格式化操作,使新建数据盘的可用空间变为扩容之后的大小。详情请参 见#unique_196。
- 7. 运行cp -R命令将新建数据盘中的数据全部拷回源数据盘。

您可以加上--preserve=all参数,保留文件的属性。

- 8. 运行umount命令卸载新建数据盘。
- 9. 在ECS控制台从实例上卸载并释放新建数据盘。

为什么Linux系统ECS实例扩容云盘提示Bad magic number in super-block while trying to open / dev/xvdb1?

- 问题现象: e2fsck -f /dev/xvdb扩容格式化云盘时提示报错Bad magic number in super-block while trying to open /dev/xvdb1
- · 问题原因:可能是由于没有云盘分区导致。
- ・解决方案:分别运行e2fsck -f /dev/xvdb和resize2fs /dev/xvdb实现扩容。然后使用 mount命令挂载云盘。

数据盘能否再次划分出一个分区用作数据存储?

支持。您可以根据需求对数据盘划分多个分区,建议您使用系统自带的工具进行分区操作。

划分了多个分区的云盘,创建的快照是针对单分区还是所有分区的的?

所有分区。快照备份了整块云盘的数据,而不是该云盘的某几个分区。

云盘二次分区有哪些注意事项?

出于数据安全考虑,您需要提前创建快照备份云盘数据,发生操作失误时可以及时回滚云盘。详情 请参见创建快照和#unique_205。

写入数据与分区格式化有什么关系?

一块新云盘或新云盘分区在正常使用前,必须经过初始化,并将数据结构记录到云盘上。格式化的 目的是建立文件系统。因此,在云盘上建立文件系统意味着对云盘有写入数据操作。不同的文件系 统在格式化时写入的文件大小不同:

- ·Windows系统格式化(分为快速和正常格式化):
 - 快速格式化:只是为分区分配文件系统,并重写目录表。快速格式化占用的实际空间相对较少。
 - 正常格式化:不但完成快速格式化工作,还逐扇区扫描分区以确定和标记坏扇区,填充云盘
 空块,相当于写了云盘全盘的数据量。此时,第一份全量快照会近似于云盘容量。

· Linux系统格式化:格式化云盘后,在实例没有写入业务数据前,第一份快照的容量大小与云盘 文件系统格式有关。

数据盘进行二次分区后,此时回滚快照后,数据盘是几个分区?

快照回滚是回滚到快照时间点,如果该时间点尚未进行二次分区,则没有多个分区。

回滚云盘时为什么报错"执行回滚磁盘需要停止实例,并且确保当前磁盘没有创建中的快照和没有更换 过操作系统。"?

- · 问题现象:回滚云盘时,报错"执行回滚云盘需要停止实例,并且确保当前云盘没有创建中的快 照和没有更换过操作系统。"
- · 问题原因: 通常是由于云盘属性或云盘状态不符等原因导致。
- · 解决方案:您可以根据实例状态和相关快照任务排查故障。
 - 检查实例是否已经正常停止。

只有已停止的实例才能进行云盘回滚操作。您可以在控制台的实例列表页查看实例状态。

- 检查相关快照所关联的实例是否更换过系统盘。

如果更换了操作系统,实例的系统盘会随新镜像自动重新创建,系统盘ID会改变。所 以,实例原有的快照将无法再用于回滚。但您可以基于相关快照创建自定义镜像,然 后再通过更换系统盘方式指定该自定义镜像,将实例切换到相应的快照状态。详情请参 见#unique_206和#unique_192。

- 检查相关快照归属的云盘是否有正在创建快照。

为保障数据一致性,如果快照归属云盘有正在进行的快照任务,将不允许进行回滚操作。您可以在实例详情页的本实例快照中,查看是否存在进度不是100%,状态处于未完成的快照任务。

如果您需要强制终止相关快照任务以便尽快进行云盘回滚操作,可以勾选相应快照,并单击删除快照终止快照任务。

如何跨ECS实例拷贝数据?

根据不同的操作系统,您可以参考以下方法跨ECS实例拷贝数据:

- · Linux实例之间数据拷贝
 - lrzsz方式

登录实例,安装lrzsz,然后执行rz上传,sz下载。

您也可以先用sz下载到本地,再rz上传到另一台实例上。

- FTP方式

使用sftp工具,建议用root账号登录进行下载和上传。

- wget命令

把文件或者文件夹压缩后,放在web目录下生成一个下载URL,在另一台实例上用wget命令 进行下载。

· Linux与Windows之间数据拷贝

建议在Linux实例上使用sftp,先下载到本地,然后使用FTP上传到Windows实例。

- ・Windows之间数据拷贝
 - 使用FTP的方式

Windows安装FTP服务的教程请点此查看。

- 两台实例都登录阿里旺旺进行传输

上一代云盘 - 本地SSD盘相关问题

本地SSD盘已经停止售卖。如果您仍在使用本地SSD盘,请参见本地SSD盘介绍和本地SSD盘FAQ

0

如何压测ESSD云盘的性能?

由于压测云盘的性能时,云盘本身以及压测条件都起着重要的作用,因此本文提供了如何配置合适的条件压测ESSD云盘性能的示例,并测试出100万IOPS。为了充分发挥出多核多并发的系统性能,压测出100万IOPS性能指标,您可以参考以下建议测试ESSD云盘的性能。

🛕 警告:

测试裸盘可以获得真实的块存储盘性能,但直接测试裸盘会破坏文件系统结构,请在测试前提前创 建快照做好数据备份。建议您只在新购无数据的ECS实例上使用工具测试块存储性能,避免造成数 据丢失。具体操作,请参见创建快照。

镜像:您可以使用阿里云官方镜像中高版本的Linux镜像版本。例如,CentOS 7.4/7.3/7.2 64 位和AliyunLinux 17.1 64位操作系统。由于对应的驱动还不够完善,不推荐使用其他低版本的 Linux镜像和Windows镜像。 工具:您可以使用FIO作为云盘性能标准的测试工具。

以实例规格ecs.g5se.18xlarge为例,同时ESSD云盘的设备名为/dev/vdb,示范通过随机写(randwrite)测试ESSD云盘的性能。

- 1. 远程连接Linux实例。
- 2. 运行以下命令安装libaio和FIO。

```
sudo yum install libaio -y
sudo yum install libaio-devel -y
sudo yum install fio -y
```

- 3. 运行cd /tmp切换路径。
- 4. 运行vim test100w.sh新建脚本文件,并粘贴以下内容,脚本为随机写randwrite IOPS性能

测试示例。

```
function RunFio
{
numjobs=$1 # 实例中的测试线程数,如示例中的8
iodepth=$2 # 同时发出I/0数的上限,如示例中的64
bs=$3 # 单次I/0的块文件大小,如示例中的4K
rw=$4 # 测试时的读写策略,如示例中的randwrite
filename=$5 # 指定测试文件的名称,如示例中的/dev/vdb
 nr_cpus=`cat /proc/cpuinfo |grep "processor" |wc -l`
if [ $nr_cpus -lt $numjobs ];then
      echo "Numjobs is more than cpu cores, exit!"
      exit -1
 fi
 let nu=$numjobs+1
 cpulist=""
 for ((i=1;i<10;i++))</pre>
 do
      list=`cat /sys/block/vdb/mq/*/cpu_list | awk '{if(i<=NF) print
 $i;}' i="$i" | tr -d ',' | tr '\n' ','
      if [ -z $list ];then
          break
      fi
      cpulist=${cpulist}${list}
 done
 spincpu=`echo $cpulist | cut -d ',' -f 2-${nu}`
 echo $spincpu
 fio --ioengine=libaio --runtime=30s --numjobs=${numjobs} --iodepth=
${iodepth} --bs=${bs} --rw=${rw} --filename=${filename} --time based
=1 --direct=1 --name=test --group_reporting --cpus_allowed=$spincpu
 --cpus_allowed_policy=split
}
echo 2 > /sys/block/vdb/queue/rg_affinity
sleep 5
RunFio 10 64 4k randwrite /dev/vdb
```

蕢 说明:

- ·因测试环境而异,脚本中您需要修改的命令行有:
 - 命令行list=`cat /sys/block/vdb/mq/*/cpu_list | awk '{if(i<=NF)
 print \$i;}' i="\$i" | tr -d ',' | tr '\n' ',' 中的vdb。</pre>
 - 命令行RunFio 10 64 4k randwrite /dev/vdb中的10、64、4k、randwrite和/ dev/vdb。
- • 直接测试裸盘会破坏文件系统结构。如果云盘上的数据丢失不影响业务,可以设置
 filename=[设备名,如本示例中的/dev/vdb]。否则,请设置为filename=[具体的文件
 路径,比如/mnt/test.image]。
- 5. 运行sh test100w.sh开始测试ESSD云盘性能。

脚本解读:

・块设备参数

测试实例时, 脚本中的命令echo 2 > /sys/block/vdb/queue/rq_affinity是将ECS实 例中的块设备中的参数rq_affinity值修改为2:

- 参数rq_affinity的值为1时,表示块设备收到I/O完成(I/O Completion)的事件时,这 个I/O被发送回处理这个I/O下发流程的vCPU所在Group上处理。在多线程并发的情况
 下,I/O Completion就可能集中在某一个vCPU上执行,这样会造成瓶颈,导致性能无法提升。
- 参数rq_affinity的值为2时,表示块设备收到I/O Completion的事件时,这个I/O会在当 初下发的vCPU上执行。在多线程并发的情况下,就可以完全充分发挥各个vCPU的性能。
- ・绑定对应的vCPU
 - 普通模式下,一个设备(Device)只有一个请求列表(Request-Queue)。在多线程并发处理I/O的情况下,这个唯一的Request-Queue就是一个性能瓶颈点。
 - 最新的多队列(Multi-Queue)模式下,一个设备(Device)可以拥有多个处理I/O的 Request-Queue,可以充分发挥后端存储的性能。如果您有4个I/O线程,您需要将4个线

程分别绑定在不同的Request-Queue对应的CPU Core上,这样就可以充分利用Multi-Queue提升性能。

为了充分发挥设备(Device)的性能,需要将I/O线程分发到不同的Request-Queue上处理。脚本中通过以下命令,分别将几个jobs绑定不同的CPU Core上,其中vd为您的云盘设备名,例如,/dev/vdb。

```
fio -ioengine=libaio -runtime=30s -numjobs=${numjobs} -iodepth=${
iodepth} -bs=${bs} -rw=${rw} -filename=${filename} -time_based=
1 -direct=1 -name=test -group_reporting -cpus_allowed=$spincpu -
cpus_allowed_policy=split
```

FIO提供了参数cpusallowed以及cpus_allowed_policy来绑定vCPU。以上命令一共运行了 几个jobs,分别绑定在几个CPU Core上,分别对应着不同的Queue_Id。

关于如何查看Queue_Id绑定的cpu_core_id,您可以:

- ・运行ls /sys/block/vd/mq/查看设备名为vd云盘的Queue_Id,例如vdb。
- · 运行cat /sys/block/vd/mq//cpu_list查看对应设备名为vd*云盘的Queue*绑定到
 的cpu_core_id。