
Alibaba Cloud
Cloud Monitor

Best Practices
Issue: 20190430

Cloud Monitor Best Practices / Legal disclaimer

Legal disclaimer
Alibaba Cloud reminds you to carefully read and fully understand the terms and
conditions of this legal disclaimer before you read or use this document. If you have
read or used this document, it shall be deemed as your total acceptance of this legal
disclaimer.
1. You shall download and obtain this document from the Alibaba Cloud website

 or other Alibaba Cloud-authorized channels, and use this document for your
own legal business activities only. The content of this document is considered
 confidential information of Alibaba Cloud. You shall strictly abide by the
confidentiality obligations. No part of this document shall be disclosed or provided
 to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted,
or disseminated by any organization, company, or individual in any form or by any
means without the prior written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades
, adjustments, or other reasons. Alibaba Cloud reserves the right to modify
the content of this document without notice and the updated versions of this
 document will be occasionally released through Alibaba Cloud-authorized
channels. You shall pay attention to the version changes of this document as they
occur and download and obtain the most up-to-date version of this document from
Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud
products and services. Alibaba Cloud provides the document in the context that
 Alibaba Cloud products and services are provided on an "as is", "with all faults
" and "as available" basis. Alibaba Cloud makes every effort to provide relevant
 operational guidance based on existing technologies. However, Alibaba Cloud
hereby makes a clear statement that it in no way guarantees the accuracy, integrity
, applicability, and reliability of the content of this document, either explicitly
or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial
 losses incurred by any organizations, companies, or individuals arising from
their download, use, or trust in this document. Alibaba Cloud shall not, under any
 circumstances, bear responsibility for any indirect, consequential, exemplary,
incidental, special, or punitive damages, including lost profits arising from the use

Issue: 20190430 I

Cloud Monitor Best Practices / Legal disclaimer

 or trust in this document, even if Alibaba Cloud has been notified of the possibility
 of such a loss.

5. By law, all the content of the Alibaba Cloud website, including but not limited to
works, products, images, archives, information, materials, website architecture,
website graphic layout, and webpage design, are intellectual property of Alibaba
 Cloud and/or its affiliates. This intellectual property includes, but is not limited
 to, trademark rights, patent rights, copyrights, and trade secrets. No part of the
 Alibaba Cloud website, product programs, or content shall be used, modified
, reproduced, publicly transmitted, changed, disseminated, distributed, or
published without the prior written consent of Alibaba Cloud and/or its affiliates
. The names owned by Alibaba Cloud shall not be used, published, or reproduced
for marketing, advertising, promotion, or other purposes without the prior written
 consent of Alibaba Cloud. The names owned by Alibaba Cloud include, but are
not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other brands of Alibaba
Cloud and/or its affiliates, which appear separately or in combination, as well as
 the auxiliary signs and patterns of the preceding brands, or anything similar to
the company names, trade names, trademarks, product or service names, domain
 names, patterns, logos, marks, signs, or special descriptions that third parties
identify as Alibaba Cloud and/or its affiliates).

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

II Issue: 20190430

Cloud Monitor Best Practices / Legal disclaimer

Issue: 20190430 III

Cloud Monitor Best Practices / Generic conventions

Generic conventions
Table -1: Style conventions
Style Description Example

This warning information
indicates a situation that will
cause major system changes,
faults, physical injuries, and other
 adverse results.

Danger:
Resetting will result in the loss of
user configuration data.

This warning information
indicates a situation that may
cause major system changes,
faults, physical injuries, and other
 adverse results.

Warning:
Restarting will cause business
interruption. About 10 minutes are
required to restore business.

This indicates warning informatio
n, supplementary instructions,
and other content that the user
must understand.

Notice:
Take the necessary precautions
to save exported data containing
sensitive information.

This indicates supplemental
instructions, best practices, tips,
and other content that is good to
know for the user.

Note:
You can use Ctrl + A to select all
files.

> Multi-level menu cascade. Settings > Network > Set network
type

Bold It is used for buttons, menus
, page names, and other UI
elements.

Click OK.

Courier
 font

It is used for commands. Run the cd / d C :/ windows
 command to enter the Windows

system folder.
Italics It is used for parameters and

variables.
bae log list --
instanceid Instance_ID

[] or [a|b] It indicates that it is a optional
value, and only one item can be
selected.

ipconfig [-all|-t]

Issue: 20190430 I

Cloud Monitor Best Practices / Generic conventions

Style Description Example
{} or {a|b} It indicates that it is a required

value, and only one item can be
selected.

swich {stand | slave}

II Issue: 20190430

Cloud Monitor Best Practices / Generic conventions

Issue: 20190430 III

Cloud Monitor Best Practices / Contents

Contents
Legal disclaimer.. I
Generic conventions.. I
1 Create an alarm template..1
2 Receive alarm notifications in a DingTalk group.................... 6
3 Monitor the intranet... 12
4 Create an alert rule for pods in Container Service for

Kubernetes... 16
5 Best practice for querying monitoring data through APIs.... 21
6 Process ECS status change events.. 26

IV Issue: 20190430

Cloud Monitor Best Practices / 1 Create an alarm template

1 Create an alarm template
This topic illustrates how to use application groups and alarm templates to manage
cloud resource alarm rules for various services more efficiently. These tactics are
especially important for those who need to monitor and manage resources across
several Alibaba Cloud products and regions and who need to modify alarm rules for
these resources in a timely manner.

Purposes
• Configuring alarm rules for application groups rather than for single instances can

improve efficiency by greatly reducing the time required to configure alarm rules.
- By setting the resource range of an alarm rule to application group, your alarm

 rule will be effective for all resources within the target application group, and
 the number of resources monitored can expand as your services are scaled
outward. After initial configuration, you can move specific resources into or out
of the application group easily. You can also modify the alarm rule directly so to
make changes effective to all instances within an application group.

- Conversely, setting the resource range to instance will make your alarm rule
 effective for only one instance. Modifications to your alarm rule will also be
effective for only one instance. As a consequence, supposing that you set all your
 alarm rules this way, as the number of your instances increase, managing alarm
 rules for these instances will become increasingly time consuming and difficult.

• Using alarm templates can also reduce the time required to configure alarm rules.
The monitoring metrics and alarm thresholds of basic services, such as ECS, RDS
, and SLB, are set to fixed values during alarm rule configuration. You can create
 alarm templates easily based on these configurations, and by creating alarm
templates with your target metrics and condition thresholds, you can easily apply
 these templates to alarm rules you configure for an application group, making
configuring rules easy even as your services scale outward. Using alarm templates
also enables you to easily modify multiple alarm rules at the same time.

Procedures
The following case outlines the procedure that can be applied to the typical back-end
services of an e-commerce company. This case serves to illustrate how you can create

Issue: 20190430 1

Cloud Monitor Best Practices / 1 Create an alarm template

 application groups and use alarm templates to easily build a service monitoring and
alarming system on the cloud, even for growing service requirements.
1. Create an alarm template named "EcommerceBackendAlarmTemplate".

a. Log on to the CloudMonitor Console.
b. From the left-side navigation pane, choose Alarm Templates > Alarms.
c. On the Alarm Templates page, click Create Alarm Template in the upper-right

corner.
d. In the displayed dialog box, set the parameters in the Basic Info area.

e. In the View Alarm Rules area, click Add Alarm Rule to add the required alarm
rules to the alarm template.

f. Click OK.

2 Issue: 20190430

https://cms-intl.console.aliyun.com

Cloud Monitor Best Practices / 1 Create an alarm template

2. Create an alarm contact and an alarm contact group.
a. Log on to the CloudMonitor Console.
b. From the left-side navigation pane, choose Alarms > Alarm Contacts.
c. On the Alarm Contact Management page, click Create Alarm Contact in the

upper-right corner. In the displayed dialog box, enter your phone number and
email.
To ensure that you can receive and verify alarm notifications in a timely manner
, the system will send verification codes to your phone and email.

d. Click the Alarm Contact Group tab.
e. In the upper-right corner, click Create Alarm Contact Group.
f. In the displayed dialog box, enter the group name and select the contacts that

you want to add to the group.

Issue: 20190430 3

https://cms-intl.console.aliyun.com

Cloud Monitor Best Practices / 1 Create an alarm template

3. Create an application group and apply the alarm template. Here, we create an
application group named "InventoryManagementOnlineEnvironment" and use the
created alarm template "EcommerceBackendAlarmTemplate".
a. Log on to the CloudMonitor Console.
b. In the left-side navigation pane, click Application Groups.
c. On the Application Groups page, click Create Group in the upper-right corner.
d. In the Basic Information area, set Product Group Name and Contact Group.

The contact group is the alarm contact group for receiving alarm notifications.

e. In the MonitorAlarm area, set Select Template and Notification Methods and
enable Initialize Agent Installation.

4 Issue: 20190430

https://cms-intl.console.aliyun.com

Cloud Monitor Best Practices / 1 Create an alarm template

The selected template is used to initialize alarm rules for the instances in the
group. After new instances are created, a CloudMonitor agent will be automatica
lly installed to collect monitoring data.

f. In the Add Instance dynamically area, add at most three dynamic rules with the
relationship of AND or OR. Then, click Add Product to customize dynamic rules
for RDS and SLB.
Generally, the cloud resources used for inventory management are a server,
database, and SLB resource. You can customize dynamic rules to add ECS
instances. An ECS instance name can be matched through the condition of
Contain, start with, or end with. The instances conforming to the dynamic
rules will be added to the specified application group (including instances to be
created in the future).

g. Click Create Application Group.
The instances conforming to the dynamic rules are added to the created
application group, which can be viewed on the Basic Information page of the
application group.

Issue: 20190430 5

Cloud Monitor Best Practices / 2 Receive alarm notifications in aDingTalk group

2 Receive alarm notifications in a DingTalk group
This topic discusses how you can receive alarm notifications in a DingTalk group.
Among the alarm notification methods available on CloudMonitor, one option is to
send alarm notifications to a DingTalk group.
To add this notification method to existing alarm rules, you only need to add the
webhook address of the DingTalk robot to your contacts. You do need to modify any
other configurations in your alarm rules.
After the webhook address is added to an existing contact, all alarm notifications that
were previously sent by email or SMS can also be received by the DingTalk group.

Create a DingTalk robot (desktop version)
1. Open the DingTalk group in which you want to receive alarm notifications.

6 Issue: 20190430

Cloud Monitor Best Practices / 2 Receive alarm notifications in aDingTalk group
2. In the upper-right corner of the group page, click the Group Settings icon and

choose ChatBot.

3. In the ChatBot window, click Custom.

Issue: 20190430 7

Cloud Monitor Best Practices / 2 Receive alarm notifications in aDingTalk group
4. In the Robot details window, click Add.

8 Issue: 20190430

Cloud Monitor Best Practices / 2 Receive alarm notifications in aDingTalk group
5. In the Add Robot window, enter a name for the robot. For example, you can name

the robot "CloudMonitor alarm notification". Once you have entered a name, click
Finished.

Issue: 20190430 9

Cloud Monitor Best Practices / 2 Receive alarm notifications in aDingTalk group
6. Click Copy and then click Finished.

Add a DingTalk robot to your alarm contacts
You can add the webhook address of the created DingTalk robot to your alarm
contacts so that you can receive alarm notifications from the DingTalk group where
you created the robot.
1. Log on to the CloudMonitor Console.
2. From the left-side navigation pane, choose Alarms > Alarm Contacts.

3. On the Alarm Contact Management page, find the target contact and click Edit. In
the Set Alarm Contact window, add the webhook address of the DingTalk robot.

10 Issue: 20190430

https://cloudmonitor.console.aliyun.com

Cloud Monitor Best Practices / 2 Receive alarm notifications in aDingTalk group
Alternatively, click Create Alarm Contact to create a contact to use the DingTalk
robot.

Issue: 20190430 11

Cloud Monitor Best Practices / 3 Monitor the intranet

3 Monitor the intranet
This topic describes how to use CloudMonitor to monitor the intranet and internal
VPC services, specifically helping you closely manage the availability of ECS services,
the connectivity of ECS to RDS and Redis instances, and the responsiveness of SLB
instances in a VPC.

Principle
Before you can begin to monitor the intranet, you will need to install a CloudMonit
or agent on your server and create monitoring tasks in the CloudMonitor console
, selecting the server on which the agent is installed as the detection source, and
configure the target URL or port. The principle behind these prerequisites and the
procedure that follows is to allow the detection source to send an HTTP request or a
 Telnet request through the agent and collect the response time and status codes, so
 that this data can be sent to CloudMonitor for alarm and visualization monitoring
purposes.

12 Issue: 20190430

Cloud Monitor Best Practices / 3 Monitor the intranet

Monitor the intranet
• Prerequisites

- The CloudMonitor agent has been installed on the detection source.
- You have created an application group and added the detection source to the

group.
• Procedure

1. Log on to the CloudMonitor Console.
2. In the left-side navigation pane, click Application Groups.
3. On the Application Groups page, click the application group for which you want

to create an availability monitoring task.
4. In the left-side navigation pane, click Availability Monitoring.
5. In the upper-right corner, click Create Configuration.

- To monitor the responsiveness of a local ECS process in a VPC, select the
target ECSs to be monitored as Target Server and enter the addresses in
localhost : port / path format as Detection Target.

- To monitor the responsiveness of the SLB in a VPC, select an ECS that is
located in the VPC as Target Server and enter the SLB address as Detection
Target.

- To monitor the responsiveness of the RDS or Redis used in the ECS backend
in a VPC, add the RDS or Redis in the VPC to the application group, select

Issue: 20190430 13

https://cms-intl.console.aliyun.com

Cloud Monitor Best Practices / 3 Monitor the intranet

the corresponding ECS as Target Server, and select RDS or Redis instances as
Detection Target.

6. Click OK. Then, you can view the detection results in the corresponding
monitoring chart of the task. If detection fails, you will receive an alarm
notification.

14 Issue: 20190430

Cloud Monitor Best Practices / 3 Monitor the intranet

7. Click Monitoring Charts of a task to view the monitoring details.

Issue: 20190430 15

Cloud Monitor Best Practices / 4 Create an alert rule for pods inContainer Service for Kubernetes

4 Create an alert rule for pods in Container Service
for Kubernetes

This topic describes how to create an alert rule for one or more pods in Container
Service for Kubernetes.

Background information
CloudMonitor provides an additional alert function for Container Service for
Kubernetes. This function monitors metrics such as CPU utilization and inbound
bandwidth of Container Service, providing you with information about the usage of
 Container Service. After you deploy Container Service, CloudMonitor automatica
lly involves Container Service into its monitoring system. You can log on to the
CloudMonitor console and access the Container Services for Kubernetes page to view
 detailed monitoring data. After you configure an alert rule for a metric, you can
receive alert notification when the metric data exceeds the defined threshold.

Prerequisites
We recommend that you perform the following operations before you create an alert
 rule for Container Service for Kubernetes: 1. Deploy Container Service. 2. Create
 application groups, alert contacts, and alert contact groups in the CloudMonitor
console.

Procedure
Precautions
• Monitoring data is stored for up to 31 days.
• You can view the monitoring data for up to 14 consecutive days.
Create an alert template for Container Service for Kubernetes
1. Log on to the CloudMonitor console.
2. In the left-side navigation pane, choose Alarms > Alarm Templates. The Alarm

Templates page is displayed.

16 Issue: 20190430

https://cms-intl.console.aliyun.com

Cloud Monitor Best Practices / 4 Create an alert rule for pods inContainer Service for Kubernetes
3. Click Create Alarm Templates in the upper-right corner. The Create Alarm

Template page is displayed.

4. Configure template information: Set the service name to Kubernetes and configure
related metrics.

5. Click Add.
Apply the template to a Kubernetes application group
1. Log on to the CloudMonitor console.
2. In the left-side navigation pane, choose Alarms > Alarm Templates. The Alarm

Templates page is displayed.

Issue: 20190430 17

https://cms-intl.console.aliyun.com

Cloud Monitor Best Practices / 4 Create an alert rule for pods inContainer Service for Kubernetes
3. Click Apply to Group in the Actions column corresponding to the just-created alert

template for Container Service for Kubernetes.

4. Select the group for which you want to create an alert rule, and click OK.
Subsequent operations

Alert notification for the Kubernetes application group is automatically sent to
Default Contact Group. If you want all alerts for the Kubernetes application group to
 be sent to the same contact group, directly change the contacts in Default Contact
Group.
Directly modify a contact group
1. Log on to the CloudMonitor console.
2. In the left navigation pane, choose Alarms > Alarm Contacts. The Alarm Contacts

page is displayed.
3. Click the Alarm Contact Group tab. The Alarm Contact Group tab is displayed.

18 Issue: 20190430

https://cms-intl.console.aliyun.com

Cloud Monitor Best Practices / 4 Create an alert rule for pods inContainer Service for Kubernetes
4. Click the modification icon. On the Edit Group page that appears, change the

contacts and click OK.
If you want alerts for different Kubernetes applications to be sent to different contact
 groups, you must modify the associated alert contact groups for each Kubernetes
application group.
Modify the associated contact group of an application group
1. Log on to the CloudMonitor console.
2. In the left-side navigation pane, click Application Groups. The Application Groups

page is displayed.
3. Find the Kubernetes application group and click the group name. The group details

page is
displayed.

4. Click the modification icon. On the page that appears, change the contact group
and click OK. All alerts for the Kubernetes application group will be sent to the
new alert contact group.

You can use OpenAPI to modify the contact groups of multiple Kubernetes applicatio
n groups.
Modify contact groups through OpenAPI
1. Log on to OpenAPI Explorer.
2. In the left-side cloud service list, click CloudMonitor. In the search box, enter

UpdateMyGr oups . Click the API in the search result. The API call page is
displayed.

3. Set GroupId to the group ID to be modified.
Issue: 20190430 19

https://cms-intl.console.aliyun.com
https://api.aliyun.com

Cloud Monitor Best Practices / 4 Create an alert rule for pods inContainer Service for Kubernetes
4. Set ContactGro ups to the contact group to which alert notification is to be

sent.
5. Click Initiate a Call.

20 Issue: 20190430

Cloud Monitor Best Practices / 5 Best practice for querying monitoringdata through APIs

5 Best practice for querying monitoring data
through APIs
Background information

Large-sized enterprises typically have their own O&M systems. When moving
 businesses to the cloud, these enterprises must integrate the cloud resource
monitoring data with their existing systems. This topic describes how to use
CloudMonitor APIs to query the monitoring data of various services and integrate
Apsara Stack monitoring data into your existing systems.

Prerequisites
Before you query monitoring data through APIs, we recommend that you learn about
the three types of APIs provided by CloudMonitor to query monitoring data:
• QueryProjectMeta: queries which services can be monitored by CloudMonitor. For

more information, see #unique_8.
• QueryMetricMeta: queries which metrics are available for a monitored service. For

more information, see #unique_9.
• QueryMetricList and QueryMetricLast: query monitoring data by service and

metric. For more information, see #unique_10 and #unique_11.
Procedure

Precautions
• QueryMetricList and QueryMetricLast allow you to query data for a certain metric

for all your instances. To query data for multiple metrics, you can create multiple
threads, or create a single thread to cyclically obtain data of different metrics.

• QueryMetricList supports up to 20 queries per second (QPS) and QueryMetricLast
supports up to 30 QPS.

• QueryMetricLast is applicable to scenarios where you need to regularly obtain the
most recent monitoring data. The time window automatically slides forward. The
latest data is obtained in each period.

• There may be a gap between the occurrence of an event and the time when it is
monitored. The gap varies with service. We recommend that you extend the time
window to 5 to 10 minutes when using QueryMetricLast to query the latest data.

Issue: 20190430 21

Cloud Monitor Best Practices / 5 Best practice for querying monitoringdata through APIs
• Data that is obtained every few seconds is stored for 7 days. Data that is obtained

every few minutes is stored for 31 days.
• You do not need to specify Dimensions to query the data of all your instances.
Case study
The following example demonstrates how to use QueryMetricLast to query the latest
monitoring data and use QueryMetricList to query the monitoring data in a specified
time range.
undefined
package main

import (
 " encoding / json "
 " testing "

 " github . com / aliyun / alibaba - cloud - sdk - go / services /
cms "

)

// TestQueryM etricLast

func TestQueryM etricLast (t * testing . T) {
 // For more informatio n about how to obtain
 the AccessKey pair , see https :// yq . aliyun . com /
articles / 608581 .

 cmsClient , _ := cms . NewClientW ithAccessK ey (
 "< Specify the region . If you are not sure ,
enter cn - hangzhou >", // Region ID

 "< your access key id >", // AccessKey
ID

 "< your Access Key Secret >") // AccessKey Secret

 // Obtain the latest monitoring data for the
specified instance in the specified time range .

 request := cms . CreateQuer yMetricLas tRequest ()
 // Use QueryProje ctMeta and QueryMetri cMeta to
obtain project and metric .

 request . Metric = " cpu_total "
 // Period is set to 60 , indicating that monitoring
 data is obtained every 60 seconds . The value of
period varies with metric . Most metrics are polled at
 a 60 - second period .

 request . Period = " 60 "
 // The start time of query data
 request . StartTime = " 2018 - 11 - 29 11 : 00 : 00 "
 // The end time of query data
 request . EndTime = " 2018 - 11 - 29 12 : 00 : 00 "
 // The number of response data records displayed per
 page for this query . Up to 1 , 000 data records
can be returned for each query .

 request . Length = " 100 "
 // The page cursor . If the returned result contains
 cursor != "", the current page is not the last page
. You must use cursors to query the next page .

 request . Cursor = ""

 t . Log (" start query ")

22 Issue: 20190430

Cloud Monitor Best Practices / 5 Best practice for querying monitoringdata through APIs
 for {
 response , _ := cmsClient . QueryMetri cLast (request)
 // response code
 if response . Code ! = " 200 " || ! response . IsSuccess
() {

 t . Fatalf (" code :% s , success :% v , msg :% s ,
httpstatus :% d , response :% v \ n ", response . Code , response
. IsSuccess (), response . Message , response . GetHttpSta tus
(), response)

 }

 var datapoints [] map [string] interface {}
 err := json . Unmarshal ([] byte (response . Datapoints),
 & datapoints)
 if err ! = nil {
 t . Fatal (err)
 }

 t . Logf (" batch count % d \ n ", len (datapoints))
 for _ , v := range datapoints {
 t . Log (v)
 }

 // If the returned result contains cursor =="", the
 current page is the last page . Exit the loop and
 end this round of query .

 if response . Cursor == "" {
 t . Log (" end of loop ")
 break
 }

 // If there are more pages , assign the cursor
as the query condition for the next page in the
next request .

 request . Cursor = response . Cursor
 t . Logf (" cursor :% s \ n ", response . Cursor)
 }

 t . Log (" finished ")
}

// TestBatchQ ueryMultiI nstance
// You can use QueryMetri cList to query the monitoring
 data of a specified instance in a specified time
range .

// You can specify multiple instances for batch query .
// To obtain the monitoring data for multiple instances
 over a specified time range , you can specify
multiple instances for a query . Up to 10 instances
can be specified at a time .

func TestBatchQ ueryMultiI nstance (t * testing . T) {
 // For more informatio n about how to obtain the
AccessKey pair , see https :// yq . aliyun . com / articles /
608581

 cmsClient , _ := cms . NewClientW ithAccessK ey (
 "< Specify the region . If you are not sure ,
enter cn - hangzhou >", // Region ID

 "< your access key id >", // AccessKey
ID

 "< your Access Key Secret >") // AccessKey Secret

Issue: 20190430 23

Cloud Monitor Best Practices / 5 Best practice for querying monitoringdata through APIs
 // Query the monitoring data for the specified
instance over the specified time range .

 request := cms . CreateQuer yMetricLis tRequest ()
 // Use QueryProje ctMeta and QueryMetri cMeta to obtain
 project and metric .

 request . Project = " acs_ecs_da shboard "
 request . Metric = " cpu_total "
 // Period is set to 60 , indicating that monitoring
 data is obtained every 60 seconds . The value of
period varies with metric . Most metrics are polled at
 a 60 - second period .

 // The start time of query data
 request . StartTime = " 2018 - 11 - 25 11 : 00 : 00 "
 // The end time of query data
 request . EndTime = " 2018 - 11 - 29 12 : 00 : 00 "
 // The number of response data records displayed per
 page for this query . Up to 1 , 000 data records
can be returned for each query .

 request . Length = " 10 "
 request . Dimensions = "[{' instanceId ':' AY14061311
3321409088 '},{' instanceId ':' AY14061311 320829774f '},{'
instanceId ':' AY14061311 330190512d '}]"

 // The page cursor . If the returned result contains
 cursor != "", the current page is not the last page
. You must use cursors to query the next page .

 request . Cursor = ""

 t . Log (" start query ")

 for {
 response , _ := cmsClient . QueryMetri cList (request)
 // Response code
 if response . Code ! = " 200 " || ! response . IsSuccess
() {

 t . Fatalf (" code :% s , success :% v , msg :% s ,
httpstatus :% d , response :% v \ n ", response . Code , response
. IsSuccess (), response . Message , response . GetHttpSta tus
(), response)

 }

 var datapoints [] map [string] interface {}
 err := json . Unmarshal ([] byte (response . Datapoints),
 & datapoints)
 if err ! = nil {
 t . Fatal (err)
 }

 t . Logf (" batch count % d \ n ", len (datapoints))
 for _ , v := range datapoints {
 t . Log (v)
 }

 // If the returned result contains cursor =="", the
 current page is the last page . Exit the loop and
 end this round of query .

 if response . Cursor == "" {
 t . Log (" end of loop ")
 break
 }

 // If there are more pages , assign the cursor
as the query condition for the next page in the
next request .

 request . Cursor = response . Cursor

24 Issue: 20190430

Cloud Monitor Best Practices / 5 Best practice for querying monitoringdata through APIs
 t . Logf (" cursor :% s \ n ", response . Cursor)
 }

 t . Log (" finished ")
}

Issue: 20190430 25

Cloud Monitor Best Practices / 6 Process ECS status change events

6 Process ECS status change events
This topic describes how CloudMonitor automatically processes ECS status change
events by using MNS message queues.

Overview
An ECS instance status change event is triggered when the instance status changes
. Specifically, a status change event can indicate changes resulting from operations
 on the console, the usage of APIs or SDKs, automatic scaling, detection of overdue
payments, system exceptions, and more.
To automate the processing of ECS status change events, CloudMonitor provides
two methods: function calculation formulas and MNS message queues. This topic
describes three best practice cases that use MNS message queues.

26 Issue: 20190430

Cloud Monitor Best Practices / 6 Process ECS status change events

Preparations
• Create a message queue.

1. Log on to the MNS Console.
2. On the Queue List page, select the target region, and click Create Queue in the

upper-right corner.

3. In the New Queue dialog box, enter the queue name (for example, ecs-cms-
event) and other required information, and then click OK.

Issue: 20190430 27

https://mns.console.aliyun.com/

Cloud Monitor Best Practices / 6 Process ECS status change events

• Create an alarm rule for status change events.
1. Log on to the CloudMonitor Console.
2. In the left-side navigation pane, click Event Monitoring.
3. Switch to the Alarm Rules tab page, and then click Create Event Alerts.

28 Issue: 20190430

https://cms-intl.console.aliyun.com

Cloud Monitor Best Practices / 6 Process ECS status change events

4. In the Basic Information area, enter a name for the alarm rule, for example, ecs-
test-rule.

Issue: 20190430 29

Cloud Monitor Best Practices / 6 Process ECS status change events

5. In the Event alert area, set the parameters as follows:
- Set Event Type to System Event.
- Set Product Type to ECS and Event Type to StatusNotiifcation, and set other

parameters as needed.
- If Resource Range is set to All Resources, change events of any resource

will trigger notifications. If Resource Range is set to Application Groups,
only change events of the resources within the specified group will trigger
notifications.

6. In the Alarm Type area, select MNS queue, and then specify Region and Queue
(for example, ecs-cms-event).

7. Click OK.
• Install Python dependencies.

The following code is tested in Python 3.6. You can use other programming
languages, such as Java, as needed.
Use PyPi to install the following Python dependencies:
- aliyun-python-sdk-core-v3 of 2.12.1 or later
- aliyun-python-sdk-ecs of 4.16.0 or later
- aliyun-mns of 1.1.5 or later

Procedure
CloudMonitor sends all status change events of ECS instances to MNS. You can then
obtain the notifications from MNS and process them by running code. The following
practice sections overview a complete tutorial of the preceding methods.
Practice 1: Records of all ECS creation and release events
Currently, you cannot query instances that have been released on the ECS console
. If you need to perform these queries, you need to record the life cycle of all ECS
instances in your own database or log through an ECS status change event. Specifical
ly, whenever an ECS instance is created, a Pending event will be sent, and whenever
 an ECS instance is released, a Deleted event will be sent. You can record these two
events by performing the following steps:

30 Issue: 20190430

Cloud Monitor Best Practices / 6 Process ECS status change events

1. Create a Conf file, which must include the MNS endpoint, AccessKeyId and
AccessKeySecret of your Alibaba Cloud account, region ID (for example, cn-
beijing), and the MNS queue name.

Note:
To view the MNS endpoint, you can log on to the MNS console, and click Get
Endpoint on the Queue List page.
class Conf :
 endpoint = ' http ://< id >. mns .< region >. aliyuncs . com
/'
 access_key = '< access_key >'
 access_key _secret = '< access_key _secrect >'
 region_id = ' cn - beijing '
 queue_name = ' test '
 vsever_gro up_id = '< your_vserv er_group_i d >'

2. Use the MNS SDK to compile an MNS client to receive MNS messages.
-*- coding : utf - 8 -*-
import json
from mns . mns_except ion import MNSExcepti onBase
import logging
from mns . account import Account
from . import Conf

class MNSClient (object):
 def __init__ (self):
 self . account = Account (Conf . endpoint , Conf .
access_key , Conf . access_key _secret)
 self . queue_name = Conf . queue_name
 self . listeners = dict ()

 def regist_lis tener (self , listener , eventname ='
Instance : StateChang e '):
 if eventname in self . listeners . keys ():
 self . listeners . get (eventname). append (listener
)
 else :
 self . listeners [eventname] = [listener]

 def run (self):
 queue = self . account . get_queue (self . queue_name)
 while True :
 try :
 message = queue . receive_me ssage (wait_secon
ds = 5)
 event = json . loads (message . message_bo dy)
 if event [' name '] in self . listeners :
 for listener in self . listeners . get (
event [' name ']):
 listener . process (event)
 queue . delete_mes sage (receipt_ha ndle =
message . receipt_ha ndle)
 except MNSExcepti onBase as e :
 if e . type == ' QueueNotEx ist ':

Issue: 20190430 31

Cloud Monitor Best Practices / 6 Process ECS status change events
 logging . error (' Queue % s not exist ,
please create queue before receive message .', self .
queue_name)
 else :
 logging . error (' No Message , continue
waiting ')

class BasicListe ner (object):
 def process (self , event):
 pass

The preceding code is used only to pull MNS messages and delete the messages
after the listener consumption message is called.

3. Register a listener to use a specified event. When this listener determines that it
has received a Pending or Deleted event, it prints a row in the log file.
 # -*- coding : utf - 8 -*-
import logging
from . mns_client import BasicListe ner

class ListenerLo g (BasicListe ner):
 def process (self , event):
 state = event [' content '][' state ']
 resource_i d = event [' content '][' resourceId ']
 if state == ' Panding ':
 logging . info (f ' The instance { resource_i d }
state is { state }')
 elif state == ' Deleted ':
 logging . info (f ' The instance { resource_i d }
state is { state }')

The following Main function can also be used:
mns_client = MNSClient ()

mns_client . regist_lis tener (ListenerLo g ())

mns_client . run ()

In your actual scenario, you can store events in your database or use SLS to
facilitate search and audit tasks at a later date.

Practice 2: Automatic restart of ECS servers
In some scenarios, ECS servers may shut down unexpectedly. In this case, you need to
 set automatic restart for the servers.
Use the MNS client in Practice 1 and create a new listener. Then, when the listener
receives a Stopped event, the listener executes a Start command on the target ECS
server.
-*- coding : utf - 8 -*-

32 Issue: 20190430

Cloud Monitor Best Practices / 6 Process ECS status change events
import logging
from aliyunsdke cs . request . v20140526 import StartInsta
nceRequest
from aliyunsdkc ore . client import AcsClient
from . mns_client import BasicListe ner
from . config import Conf

class ECSClient (object):
 def __init__ (self , acs_client):
 self . client = acs_client

 # Start the ECS instance
 def start_inst ance (self , instance_i d):
 logging . info (f ' Start instance { instance_i d
} ...')

 request = StartInsta nceRequest . StartInsta nceRequest
()

 request . set_accept _format (' json ')
 request . set_Instan ceId (instance_i d)
 self . client . do_action_ with_excep tion (request)

class ListenerSt art (BasicListe ner):
 def __init__ (self):
 acs_client = AcsClient (Conf . access_key , Conf .
access_key _secret , Conf . region_id)

 self . ecs_client = ECSClient (acs_client)

 def process (self , event):
 detail = event [' content ']
 instance_i d = detail [' resourceId ']
 if detail [' state '] == ' Stopped ':
 self . ecs_client . start_inst ance (instance_i d)

In your actual scenario, after the Start command is executed, you will receive
Starting, Running, or Stopped event notifications. In this case, you can proceed with
the procedure upon command execution for more detailed O&M with the help of a
timer and a counter.
Practice 3: Automatic removal of preemptible instances from SLB before they are
released
A release alarm event will be sent five minutes before a preemptible instance is
 released. During these five minutes, you can run some processes without your
 services being interrupted. For example, you can manually remove the target
preemptible instance from the backend SLB server.
Use the MNS client in Practice 1 and create a new listener. Then, when the listener
receives the preemptible instance release alarm, the listener calls an SLB SDK.
-*- coding : utf - 8 -*-
from aliyunsdkc ore . client import AcsClient
from aliyunsdkc ore . request import CommonRequ est
from . mns_client import BasicListe ner

Issue: 20190430 33

Cloud Monitor Best Practices / 6 Process ECS status change events

from . config import Conf

class SLBClient (object):
 def __init__ (self):
 self . client = AcsClient (Conf . access_key , Conf .
access_key _secret , Conf . region_id)

 self . request = CommonRequ est ()
 self . request . set_method (' POST ')
 self . request . set_accept _format (' json ')
 self . request . set_versio n (' 2014 - 05 - 15 ')
 self . request . set_domain (' slb . aliyuncs . com ')
 self . request . add_query_ param (' RegionId ', Conf .
region_id)

 def remove_vse rver_group _backend_s ervers (self ,
vserver_gr oup_id , instance_i d):

 self . request . set_action _name (' RemoveVSer verGroupBa
ckendServe rs ')

 self . request . add_query_ param (' VServerGro upId ',
vserver_gr oup_id)

 self . request . add_query_ param (' BackendSer vers ',
 "[{' ServerId ':'" + instance_i
d + "',' Port ':' 80 ',' Weight ':' 100 '}]")

 response = self . client . do_action_ with_excep tion (
self . request)

 return str (response , encoding =' utf - 8 ')

class ListenerSL B (BasicListe ner):
 def __init__ (self , vsever_gro up_id):
 self . slb_caller = SLBClient ()
 self . vsever_gro up_id = Conf . vsever_gro up_id

 def process (self , event):
 detail = event [' content ']
 instance_i d = detail [' instanceId ']
 if detail [' action '] == ' delete ':
 self . slb_caller . remove_vse rver_group _backend_s
ervers (self . vsever_gro up_id , instance_i d)

Notice:
The event name of the preemptible instance release alarm is Instance:Preemptibl
eInstanceInterruption", mns_client.regist_listener(ListenerSLB(Conf.vsever_gro
up_id), 'Instance:PreemptibleInstanceInterruption').

In your actual scenario, you need to apply for a new preemptible instance and attach
it to SLB to guarantee that your services can run normally.

34 Issue: 20190430

	Contents
	Legal disclaimer
	Generic conventions
	1 Create an alarm template
	2 Receive alarm notifications in a DingTalk group
	3 Monitor the intranet
	4 Create an alert rule for pods in Container Service for Kubernetes
	5 Best practice for querying monitoring data through APIs
	6 Process ECS status change events

