
Alibaba Cloud
Container Service for Kubernetes

quickstart

Issue: 20181113

Container Service for Kubernetes quickstart / Legal disclaimer

Issue: 20181113 I

Legal disclaimer

Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions of this

legal disclaimer before you read or use this document. If you have read or used this document, it

shall be deemed as your total acceptance of this legal disclaimer.

1. You shall download and obtain this document from the Alibaba Cloud website or other Alibaba

Cloud-authorized channels, and use this document for your own legal business activities only.

The content of this document is considered confidential information of Alibaba Cloud. You shall

 strictly abide by the confidentiality obligations. No part of this document shall be disclosed or

provided to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted, or disseminat

ed by any organization, company, or individual in any form or by any means without the prior

written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades, adjustment

s, or other reasons. Alibaba Cloud reserves the right to modify the content of this document

without notice and the updated versions of this document will be occasionally released through

 Alibaba Cloud-authorized channels. You shall pay attention to the version changes of this

document as they occur and download and obtain the most up-to-date version of this document

 from Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud products and

services. Alibaba Cloud provides the document in the context that Alibaba Cloud products and

 services are provided on an "as is", "with all faults" and "as available" basis. Alibaba Cloud

makes every effort to provide relevant operational guidance based on existing technologies

. However, Alibaba Cloud hereby makes a clear statement that it in no way guarantees the

accuracy, integrity, applicability, and reliability of the content of this document, either explicitly

or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial losses incurred

 by any organizations, companies, or individuals arising from their download, use, or trust in

this document. Alibaba Cloud shall not, under any circumstances, bear responsibility for any

 indirect, consequential, exemplary, incidental, special, or punitive damages, including lost

profits arising from the use or trust in this document, even if Alibaba Cloud has been notified of

the possibility of such a loss.

5. By law, all the content of the Alibaba Cloud website, including but not limited to works, products

, images, archives, information, materials, website architecture, website graphic layout, and

webpage design, are intellectual property of Alibaba Cloud and/or its affiliates. This intellectu

al property includes, but is not limited to, trademark rights, patent rights, copyrights, and trade

Container Service for Kubernetes quickstart / Legal disclaimer

II Issue: 20181113

 secrets. No part of the Alibaba Cloud website, product programs, or content shall be used,

modified, reproduced, publicly transmitted, changed, disseminated, distributed, or published

 without the prior written consent of Alibaba Cloud and/or its affiliates. The names owned by

Alibaba Cloud shall not be used, published, or reproduced for marketing, advertising, promotion

, or other purposes without the prior written consent of Alibaba Cloud. The names owned by

Alibaba Cloud include, but are not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other

brands of Alibaba Cloud and/or its affiliates, which appear separately or in combination, as well

 as the auxiliary signs and patterns of the preceding brands, or anything similar to the company

 names, trade names, trademarks, product or service names, domain names, patterns, logos

, marks, signs, or special descriptions that third parties identify as Alibaba Cloud and/or its

affiliates).

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

Container Service for Kubernetes quickstart / Legal disclaimer

Issue: 20181113 III

Container Service for Kubernetes quickstart / Generic conventions

Issue: 20181113 I

Generic conventions

Table -1: Style conventions

Style Description Example

This warning information indicates a
situation that will cause major system
changes, faults, physical injuries, and
other adverse results.

Danger:
Resetting will result in the loss of user
configuration data.

This warning information indicates a
situation that may cause major system
 changes, faults, physical injuries, and
other adverse results.

Warning:
Restarting will cause business
interruption. About 10 minutes are
required to restore business.

This indicates warning information,
supplementary instructions, and other
content that the user must understand.

Note:
Take the necessary precautions to
save exported data containing sensitive
information.

This indicates supplemental instructio
ns, best practices, tips, and other
content that is good to know for the
user.

Note:
You can use Ctrl + A to select all files.

> Multi-level menu cascade. Settings > Network > Set network type

Bold It is used for buttons, menus, page
names, and other UI elements.

Click OK.

Courier

font

It is used for commands. Run the cd /d C:/windows command
to enter the Windows system folder.

Italics It is used for parameters and variables. bae log list --instanceid

 Instance_ID

[] or [a|b] It indicates that it is a optional value,
and only one item can be selected.

ipconfig [-all|-t]

{} or {a|b} It indicates that it is a required value,
and only one item can be selected.

swich {stand | slave}

Container Service for Kubernetes quickstart / Contents

II Issue: 20181113

Contents

Legal disclaimer..I
Generic conventions.. I
1 Workflow..1
2 Basic operations.. 2

2.1 Create a Kubernetes cluster quickly..2
2.2 Create a deployment application by using an image...6
2.3 Use Yaml to create a statefull tomcat application... 24
2.4 Deploy dependency-based WordPress applications..33

3 Advanced operations...39
3.1 Use Helm to deploy a microservice application...39
3.2 Use a private image repository to create an application..46

Container Service for Kubernetes quickstart / 1 Workflow

Issue: 20181113 1

1 Workflow

The complete workflow for Container Service is as follows.

Step 1: Create a cluster.

You can select the network environment of the cluster, and set the number of nodes and

configurations for the cluster.

If you use a sub-account, grant an appropriate role to the sub-account. For more information, see

Role authorization.

Step 2: Create an application by using an image or orchestration template.

Select an existing image or orchestration template, or create a new image or orchestration

template.

If your application is composed of services supported by multiple images, create the application by

 using an orchestration template.

Step 3: Check the application status and the information of relevant services and

containers after the deployment.

Container Service for Kubernetes quickstart / 2 Basic operations

2 Issue: 20181113

2 Basic operations

2.1 Create a Kubernetes cluster quickly

Prerequisites

Activate the following services: Container Service, Resource Orchestration Service (ROS), and

Resource Access Management (RAM). For more information about the limits and instructions, see

Create a Kubernetes cluster.

Log on to the Container Service console, ROS console, and RAM console to activate the

corresponding services.

Context

This example shows how to quickly create a Kubernetes cluster. Some configurations use the

default or the simplest configuration.

Procedure

1. Log on to the Container Service console.

2. Under Kubernetes, click Clusters in the left-side navigation pane. On the displayed page, click

Create Kubernetes Cluster in the upper-right corner.

3. Set cluster parameters.

Most of the configurations in this example retain the default values. The specific configuration is

shown in the following figure.

https://cs.console.aliyun.com/
https://ros.console.aliyun.com/
https://ram.console.aliyun.com/
https://cs.console.aliyun.com

Container Service for Kubernetes quickstart / 2 Basic operations

Issue: 20181113 3

Configuration Description

Cluster Name The cluster name can be 1–63 characters
 long and contain numbers, Chinese
characters, English letters, and hyphens (-).

Region and Zone The region and zone in which the cluster is
located.

VPC You can select Auto Create or Use Existing.

• Auto Create: The system automatically
creates a NAT Gateway for your VPC
when a cluster is created.

• Use Existing: If the selected VPC has a
NAT Gateway, Container Service uses

Container Service for Kubernetes quickstart / 2 Basic operations

4 Issue: 20181113

Configuration Description

the NAT Gateway. Otherwise, the system
automatically creates a NAT Gateway
by default. If you do not want the system
to automatically create a NAT Gateway,
deselect the Configure SNAT for VPC
check box.

Note:
If you deselect the check box, configure
the NAT Gateway on your own to
implement the VPC Internet environment
with secure access, or manually
configure the SNAT. Otherwise,
instances in the VPC cannot access the
Internet normally, which leads to cluster
creation failure.

Node Type Pay-As-You-Go and Subscription types are
supported.

MASTER Configuration Select an instance type and system disk.

• Instance Type: For details, seeInstance
type families

• System Disk: SSD disk and Ultra Disk are
supported.

WORKER Configuration You can select to create a Worker node or
add existing ECS instances. If you select
to add an instance, you can configure it as
follows.

• Instance Type: For details, seeInstance
type families

• System Disk: SSD Disk and Ultra Disk are
supported.

• Attach Data Disk: SSD Disk, Ultra Disk,
and Basic Disk are supported.

Login Key Pair and Password are supported. For
details, seeAccess Kubernetes clusters by
using SSH key pairs

Container Service for Kubernetes quickstart / 2 Basic operations

Issue: 20181113 5

Configuration Description

Pod Network CIDR and Service CIDR (
optional)

For more information about the specific plan,
see Plan Kubernetes CIDR blocks under
VPC.

Note:
This option is available when you select Use
Existing VPC.

Configure SNAT SNAT must be configured if you select Auto
Create a VPC. If you select Use Existing
VPC, you can select whether to automatically
configure SNAT Gateway. If you select not to
configure SNAT automatically, configure the
NAT Gateway or configure SNAT manually.

SSH Login • If you select to enable SSH access for
Internet, you can access a cluster by using
 SSH.

• If you select not to enable SSH access
for Internet, you cannot access a cluster
by using SSH or connect to a cluster by
using kubectl. You can manually enable
SSH access. For details, see Access
Kubernetes clusters by using SSH.

Monitoring Plug-in You can install a cloud monitoring plug-in
 on the ECS node to view the monitoring
information of the created ECS instances in
the CloudMonitor console.

RDS Whitelist (optional) Add the IP addresses of the ECS instances to
the RDS instance whitelist.

Note:
This option is available when select to Use
Existing VPC.

Show Advance Config • Network Plugin: Flannel and Terway
network plug-ins are supported. By default,
Flannel is used. For details, see Do I
select the Terway or Flannel plug-in for my
Kubernetes cluster network?.

Container Service for Kubernetes quickstart / 2 Basic operations

6 Issue: 20181113

Configuration Description

• Pod Number for Node: Maximum number
of pods that can be run by a single node.

• Custom Image: Indicates whether to
install a custom image. The ECS instance
 installs the default CentOS version if no
custom image is selected.

• Cluster CA: Indicates whether to use a
custom cluster CA.

4. Click Create Cluster in the upper-right corner.

What's next

After the cluster is successfully created, you can view the cluster in the Cluster List.

Now you have quickly created a Kubernetes cluster.

2.2 Create a deployment application by using an image
You can use an image to create an Nginx application that is accessible for the Internet.

Prerequisites

Create a Kubernetes cluster. For more information, see Create a Kubernetes cluster.

Procedure

1. Log on to the Container Service console.

2. Under Kubernetes, click Application > Deployment in the left-side navigation pane, and then

click Create by image in the upper-right corner.

3. Configure Name, Cluster, Namespace, Replicas, and Type. The configured value of the

replicas parameter specifies the number of pods contained in the application. Click Next.

Note:

In this example, select the Deployment type.

If you do not configure Namespace, the system uses the default namespace by default.

https://cs.console.aliyun.com

Container Service for Kubernetes quickstart / 2 Basic operations

Issue: 20181113 7

4. Configure containers.

Note:

You can configure multiple containers for the pod of the application.

a) Configure the general settings for the application.

• Image Name: Click Select image to select the image in the displayed dialog box and

then click OK. In this example, select the nginx image.

Besides, you can enter a private registry in the format of domainname/namespace/

imagename:tag to specify an image.

• Image Version: Click Select image version to select a version. If you do not select an

image version, the system uses the latest version by default.

• Always pull image: Container Service caches the image to improve deployment

efficiency. During deployment, if the tag of the newly configured image is consistent with

that of the cached image, Container Service reuses the cached image rather than pull

the same image again. Therefore, if you do not modify the image tag when changing

your codes and image for convenience of upper-layer business, the early image on

the local cache is used in the application deployment. With this check box selected,

Container Service ignores the cached image and re-pulls an image when deploying an

application so as to make sure the latest image and codes are used.

• Resource Limit: Specify the upper limit for the resources (CPU and memory) that can

be used by this application to avoid occupying excessive resources. CPU is measured in

millicores, that is, one thousandth of one core. Memory is measured in bytes, which can

be Gi, Mi, or Ki.

• Resource Request: Specify how many resources (CPU and memory) are reserved

for the application, that is, these resources are exclusive to the container. Other

Container Service for Kubernetes quickstart / 2 Basic operations

8 Issue: 20181113

services or processes will compete for resources when the resources are insufficient. By

specifying the Resource Request, the application will not become unavailable because of

insufficient resources.

• Init Container: Selecting this check box creates an Init Container which contains useful

tools. For more information, see https://kubernetes.io/docs/concepts/workloads/pods/init-

containers/.

b) Optional: Configure data volumes.

Local storage and cloud storage can be configured.

• Local storage: Supports hostPath, configmap, secret, and temporary directory. The local

data volumes mount the corresponding mount source to the container path. For more

information, see Volumes.

• Cloud storage: Supports three types of cloud storage: cloud disks, Network Attached

Storage (NAS), and Object Storage Service (OSS).

In this example, configure a cloud disk as the data volume and mount the cloud disk to the /

tmp container path. Then container data generated in this path are stored to the cloud disk.

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/storage/volumes/?spm=0.0.0.0.8VJbrE

Container Service for Kubernetes quickstart / 2 Basic operations

Issue: 20181113 9

c) Optional: Configure Log Service. You can configure collection methods and customize tags

for this service.

Note:

Make sure that a Kubernetes cluster is deployed and that the log plug-in is installed on the

cluster.

Configure log collection methods as follows:

• Log Store: Configure a Logstore generated in Log Service which is used to store

collected logs.

• Log path in the container: Supports stdout and text logs.

▬ stdout: Collects standard output logs of containers.

▬ text log: Collects logs in the specified path in the container. In this example, collect

text logs in the path of /var/log/nginx. Wildcards are also supported.

You can also configured custom tags. The customized tags are collected to the container

 output logs. A custom tag can help you tag container logs, providing convenience to log

analysis such as log statistics and filter.

Container Service for Kubernetes quickstart / 2 Basic operations

10 Issue: 20181113

d) Optional: Configure environment variables.

You can configure environment variables for the pod by using key-value pairs. Environment

variables are used to add environment labels or pass configurations for the pod. For more

information, see Pod variable.

e) Configure the lifecycle rule.

You can configure the following parameters for the container lifecycle: container config

start, post start, and pre-stop. For more information, see https://kubernetes.io/docs/tasks/

configure-pod-container/attach-handler-lifecycle-event/.

• Container Config: Select the stdin check box to enable standard input for the container.

Select the tty check box to assign an virtual terminal to for the container to send signals

to the container. These two options are usually used together, which indicates to bind the

terminal (tty) to the container standard input (stdin). For example, an interactive program

obtains standard input from you and then displays the obtained standard input in the

terminal.

• Start: Configure a pre-start command and parameter for the container.

• Post Start: Configure a post-start command for the container.

• Pre Stop: Configure a pre-end command for the container.

https://kubernetes.io/docs/tasks/inject-data-application/environment-variable-expose-pod-information/?spm=0.0.0.0.8VJbrE
https://kubernetes.io/docs/tasks/configure-pod-container/attach-handler-lifecycle-event/
https://kubernetes.io/docs/tasks/configure-pod-container/attach-handler-lifecycle-event/

Container Service for Kubernetes quickstart / 2 Basic operations

Issue: 20181113 11

f) Optional: Configure Health Check

The health check function includes liveness probes and readiness probes. Liveness

probes are used to detect when to restart the container. Readiness probes determine if the

container is ready for receiving traffic. For more information about health check, see https://

kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes.

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes

Container Service for Kubernetes quickstart / 2 Basic operations

12 Issue: 20181113

Request method Configuration description

HTTP request An HTTP GET request is sent to the
container. The following are supported
parameters:

• Protocol: HTTP/HTTPS
• Path: Path to access the HTTP server
• Port: Number or name of the port

exposed by the container. The port
number must be in the range of 1 to
65535.

Container Service for Kubernetes quickstart / 2 Basic operations

Issue: 20181113 13

Request method Configuration description

• HTTP Header: Custom headers in the
HTTP request. HTTP allows repeated
headers. Supports key-value configurat
ion.

• Initial Delay (in seconds): Namely, the
initialDelaySeconds. Seconds for the
first probe has to wait after the container
is started. The default is 3.

• Period (in seconds): Namely, the
periodseconds. Intervals at which the
probe is performed. The default value is
10. The minimum value is 1.

• Timeout (in seconds): Namely, the
timeoutSeconds. The time of probe
timeout. The default value is 1 and the
minimum value is 1.

• Success Threshold: The minimum
number of consecutive successful probes
 that are considered as successful after
 a failed probe. The default is 1 and the
minimum is 1. It must be 1 for a liveness
probe.

• Failure Threshold: The minimum number
 of consecutive failed probes that are
considered as failed after a successful
 probe. The default value is 3. The
minimum value is 1.

TCP connection A TCP socket is send to the container.
The kubelet attempts to open a socket
to your container on the specified port.
If a connection can be established, the
container is considered healthy. If not, it is
considered as a failure. The following are
supported parameters:

• Port: Number or name of the port
exposed by the container. The port
number must be in the range of 1 to
65535.

• Initial Delay (in seconds): Namely, the
initialDelaySeconds. Seconds for the
first liveness or readiness probe has to

Container Service for Kubernetes quickstart / 2 Basic operations

14 Issue: 20181113

Request method Configuration description

wait after the container is started. The
default is 15.

• Period (in seconds): Namely, the
periodseconds. Intervals at which the
probe is performed. The default value is
10. The minimum value is 1.

• Timeout (in seconds): Namely, the
timeoutSeconds. The time of probe
timeout. The default value is 1 and the
minimum value is 1.

• Success Threshold: The minimum
number of consecutive successful probes
 that are considered as successful after
 a failed probe. The default is 1 and the
minimum is 1. It must be 1 for a liveness
probe.

• Failure Threshold: The minimum number
 of consecutive failed probes that are
considered as failed after a successful
 probe. The default value is 3. The
minimum value is 1.

Command Detect the health of the container by
executing probe detection commands in
the container. The following are supported
parameters:

• Command: A probe command used to
detect the health of the container.

• Initial Delay (in seconds): Namely, the
initialDelaySeconds. Seconds for the
first liveness or readiness probe has to
wait after the container is started. The
default is 5.

• Period (in seconds): Namely, the
periodseconds. Intervals at which the
probe is performed. The default value is
10. The minimum value 1.

• Timeout (in seconds): Namely, the
timeoutSeconds. The time of probe
timeout. The default value is 1 and the
minimum value is 1.

Container Service for Kubernetes quickstart / 2 Basic operations

Issue: 20181113 15

Request method Configuration description

• Success Threshold: The minimum
number of consecutive successful probes
 that are considered as successful after
 a failed probe. The default is 1 and the
minimum is 1. It must be 1 for a liveness
probe.

• Failure Threshold: The minimum number
 of consecutive failed probes that are
considered as failed after a successful
 probe. The default value is 3. The
minimum value is 1.

5. Click Next after completing the configurations.

6. Configure advanced settings.

a) Configure Access Control.

You can configure how to expose the backend pod and click Create. In this example, select

Cluster IP Service and Ingress to create an nginx application that is accessible for Internet.

Note:

To meet communication requirements of the application, you can configure access control

based on your needs:

• Internal applications: For applications that work only inside a cluster, you can create

services of Cluster IP or Node Port for internal communication as needed.

• External applications: For applications that need to be exposed to Internet, you can

configure access control by using one of the following methods:

▬ Create a service of Server Load Balancer: Use the Server Load Balancer (SLB)

service provided by Alibaba Cloud, which provides Internet accessibility for the

application.

▬ Create a service of ClusterIP or NodePort, and create Ingress: This method provides

Internet accessibility through ingress. For more information, see https://kubernetes.io/

docs/concepts/services-networking/ingress/.

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/

Container Service for Kubernetes quickstart / 2 Basic operations

16 Issue: 20181113

1. Click Create at right of Service. Configure a service in the displayed dialog box, and then

click Create.

• Name: You can enter your custom name. The default is applicationname-svc.

• Type: Select one from the following three service types.

Container Service for Kubernetes quickstart / 2 Basic operations

Issue: 20181113 17

▬ ClusterIP: Expose the service by using the internal IP address of your cluster. With

this type selected, the service is accessible only within the cluster.

▬ NodePort: Expose the service by using the IP address and static port (NodePort)

on each node. A NodePort service routes to a ClusterIP service, which is

automatically created. You can access the NodePort service outside the cluster by

requesting<NodeIP>:<NodePort>.

▬ Server Load Balancer: The Server Load Balancer service, which is provided by

 Alibaba Cloud. You can configure Internet access or intranet access by using

this type of service. Server Load Balancer can route to the NodePort service and

ClusterIP service.

• Port Mapping: Add a service port and a container port. If you select NodePort for

Type, you must configure a node port to avoid port conflicts. TCP and UDP protocols

are supported.

• annotation: Add an annotation to the service. Server Load Balancer configuration

parameters are supported, see Access services by using Server Load Balancer.

• Label: You can add a label to the service to identify the service.

2. Click Create at the right of Ingress. Configure rout rules for the backend pod in

the displayed dialog box, and then click Create. For more information about route

configuration, see Ingress configurations.

Note:

Container Service for Kubernetes quickstart / 2 Basic operations

18 Issue: 20181113

When you create an application by using an image, you can create ingress for only one

service. In this example, use a virtual host name as the testing domain name. You need

to add a record to the hosts. In actual work scenarios, use a filing domain name.

101.37.224.146 foo.bar.com #the IP address of ingress

3. The created service and ingress are displayed in the access control section. You can

reconfigure the service and ingress by clicking Update and Delete.

Container Service for Kubernetes quickstart / 2 Basic operations

Issue: 20181113 19

b) Optional: Configure Horizontal Pod Autoscaling (HPA).

You can choose whether to enable HPA. To meet the demands of applications under

different loads, Container Service supports the container auto scaling, which automatically

adjusts the number of containers according to the container CPU and memory usage.

Note:

To enable auto scaling, you must configure required resources for the deployment.

Otherwise, the container auto scaling cannot take effect. See the basic configuration of

containers.

• Metric: CPU and memory. Configure a resource type as needed.

• Condition: The percentage value of resource usage. The container begins to expand

when the resource usage exceeds this value.

• Maximum Replicas: The maximum number of replicas that the deployment can expand

to.

Container Service for Kubernetes quickstart / 2 Basic operations

20 Issue: 20181113

• Minimum Replicas: The minimum number of replicas that the deployment can contract

to.

c) Optional: Configure Scheduling Affinity.

You can configure node affinity, pod affinity, and pod anti affinity. For more information, see

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity.

Note:

Affinity scheduling depends on node tags and pod tags. You can use built-in tads to

schedule as well as configure tags for nodes and pods in advance.

1. Set Node Affinity by configuring node tags.

Node scheduling supports both required and preferred rules, and various operators such

as In, NotIn, Exists, DoesNotExist, GT, and LT.

• Required rules must be satisfied and correspond to requiredDuringSchedu

lingIgnoredDuringExecution. The required rules have the same effect as

NodeSelector. In this example, the pod can be scheduled to only nodes with

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity

Container Service for Kubernetes quickstart / 2 Basic operations

Issue: 20181113 21

corresponding tags. You can add multiple required rules, but you only need to meet

one of them.

• Preferred rules are not necessary satisfied and correspond to preferredD

uringSchedulingIgnoredDuringExecution. In this example, the schedule

tries not to schedule the pod to the node with the corresponding tag. You can also

set weights for preferred rules. If multiple nodes that match the criteria exist, the node

with the highest weight is scheduled as a priority. You can define multiple preferred

rules, but all rules must be satisfied before scheduling.

2. Configure Pod Affinity to deploy the pod of the application in a topology domain

together with other pods. For example, services that communicate with each other can

be deployed to the same topology domain (such as a host) by configuring pod affinity

scheduling to reduce network latency between them.

Container Service for Kubernetes quickstart / 2 Basic operations

22 Issue: 20181113

Schedule pods according to tags of pods running on nodes. Available expressions are

In, NotIn, Exists, DoesNotExist.

• Required rules must be satisfied and correspond to requiredDuringSchedu

lingIgnoredDuringExecution. The pod affinity scheduling must meet configured

rules.

▬ Namespace: The scheduling policy is based on pod tags so it is constrained by

namespaces.

▬ Topology Key: Specifies the domain to be scheduled through tags of nodes.

For example, if you set kubernetes.io/hostname as the topology key, nodes

are used to identify topologies. If you specifybeta.kubernetes.io/os as the

topology key, operating systems of nodes are used to identify topologies.

▬ Selector: By clicking the Add button at the right of Selector, you can add hard

constraint rules.

▬ View Applicaiton List: Click View Applicaiton List, a dialog box is displayed.

In the dialog box, you can view applications in each namespace and export

application tags to this affinity configuration dialog box.

▬ Hard constraints: Configure tags of existing applications, operators, and tag

values. In this example, schedule the application to be created to this host that

runs applications with the app: nginx tag.

• Preferred rules, that is, soft constraints, corresponding to preferredDuringSched

ulingIgnoredDuringExecution. The pod affinity scheduling meet configured

rules as soon as possible. For soft constraint rules, you can configure the weight of

each rule. Other configuration requirements are the same as hard constraint rules.

Note:

Weight: Specifies the weight of one soft constraint rule in the range of 1 to 100.

Weights of nodes that satisfies configured soft constraint rules are calculated through

algorithm and then the pod is scheduled to the node with the greatest weight.

3. Configure Pod Anti Affinity to deploy the pod of the application in a topology domain

excluding other pods. Scenarios that use pod anti affinity scheduling include:

• Distribute pods of a service to different topology domains (such as hosts) to improve

the stability of the service.

Container Service for Kubernetes quickstart / 2 Basic operations

Issue: 20181113 23

• Grant a pot the exclusive access to a node so as to guarantee no other pods use

resources of the node.

• Distribute pods of services that may affect each other to different hosts.

Note:

Configuration methods of pod anti affinity scheduling are the same as that of pod

affinity. But the same scheduling rules have different meanings for pod anti affinity

scheduling. Select an appropriate scheduling rule based on scenarios.

7. Click Create.

8. After you create the application, the create success page is displayed and objects contained in

the application are listed by default. You can click View detail to view the deployment details.

The nginx-deployment page is displayed by default.

9. Click Application > Ingress in the left-side navigation pane, a rule is displayed under the

Ingress list.

Container Service for Kubernetes quickstart / 2 Basic operations

24 Issue: 20181113

10.Access the Ingress testing domain in a browser and you can see that the Nginx welcome page

is displayed.

2.3 Use Yaml to create a statefull tomcat application

Prerequisites

• Create a Kubernetes cluster. For more information, see Create a Kubernetes cluster quickly.

• You have created the resource objects involved in this example, such as storage volumes,

config maps, secrets, node labels, and other resource objects.

Context

In a Container Service Kubernetes orchestration template, you must define resource objects

required for running an application, and combine the resource objects into a complete application

by using label selector.

This example shows how to create a tomcat application by customizing a template in an orchestrat

ion template. The resource objects involved are as follows:

1. Storage volumes

2. Config maps

3. Secrets

4. Nodes specified by labels

Container Service for Kubernetes quickstart / 2 Basic operations

Issue: 20181113 25

5. Health check

6. Server/Load Balancer

Procedure

1. Log on to the Container Service console.

2. Under Kubernetes, click Application > Deployment in the left-side navigation pane.

3. On the Deployment page, click Create by template in the upper-right corner.

4. Configure the template. Customize the template to create a tomcat application.

• Clusters: Select a cluster. Resource objects are to be deployed in this cluster.

• Namespace: Select a namespace to which resource objects belong. The default

namespace is default. Except for the underlying computing resources such as nodes and

persistent storage volumes, most of the resource objects must act on a namespace.

• Resource Type: Alibaba Cloud Container Service provides multiple resource types of

Kubernetes yaml sample templates, enabling you to quickly deploy resource objects. You

can write a template based on the format requirements of Kubernetes yaml orchestration to

describe the resource type you want to define.

• Add Deployment: If you are not familiar with Kubernetes yaml orchestration, click Add

Deployment to configure through the web interface.

https://cs.console.aliyun.com

Container Service for Kubernetes quickstart / 2 Basic operations

26 Issue: 20181113

a) First create a basic tomcat template on which this example shows how to configure

resource objects in a yaml file.

apiVersion: apps/v1beta2 # for versions before 1.8.0 use apps/
v1beta1
kind: Deployment
metadata:
 name: tomcat-deployment
 labels:
 app: tomcat
spec:
 replicas: 1
 selector:
 matchLabels:
 app: tomcat
 template:
 metadata:
 labels:
 app: tomcat
 spec:
 containers:
 - name: tomcat
 image: tomcat # replace it with your exactly <
image_name:tags>
 ports:
 - containerPort: 8080

b) Add a storage volume based on the basic template

Before adding a data volume, apply for a storage volume and create the storage volume

claim. You can apply for a storage volume by using one of the following methods: Use

Alibaba Cloud cloud disks, Use Alibaba Cloud NAS, and Use Alibaba Cloud OSS.

Create the storage volume claim after applying for a storage volume. For more information,

see Create a persistent storage volume claim. In this example, use Alibaba Cloud cloud

Container Service for Kubernetes quickstart / 2 Basic operations

Issue: 20181113 27

disks as the storage volumes and use the cloud disk static storage volumes by using PV/

PVC. The PVC name is pvc-yunpan-test.

apiVersion: apps/v1beta2 # for versions before 1.8.0 use apps/
v1beta1
kind: Deployment
metadata:
 name: tomcat-deployment
 labels:
 app: tomcat
spec:
 replicas: 1
 selector:
 matchLabels:
 app: tomcat
 template:
 metadata:
 labels:
 app: tomcat
 spec:
 containers:
 - name: tomcat
 image: tomcat # replace it with your exactly <
image_name:tags>
 ports:
 - containerPort: 8080
 volumeMounts: #add volume
 - name: pvc-yunpan-test
 mountPath: /data
 volumes: #add volume
 - name: pvc-yunpan-test
 persistentVolumeClaim:
 claimName: pvc-yunpan-test

c) Add a config map

Before using a config map, create a config map. For information about creating and using a

config map, see Use a config map in a pod.

In this example, use the config map name and content in the following sample. The config

map name is special-config. The config maps are SPECIAL_LEVEL:very andSPECIAL_TY

PE:charm. Use config maps by means of environment variables.

apiVersion: apps/v1beta2 # for versions before 1.8.0 use apps/
v1beta1
kind: Deployment
metadata:
 name: tomcat-deployment
 labels:
 app: tomcat
spec:
 replicas: 1
 selector:
 matchLabels:
 app: tomcat
 template:
 metadata:

Container Service for Kubernetes quickstart / 2 Basic operations

28 Issue: 20181113

 labels:
 app: tomcat
 spec:
 containers:
 - name: tomcat
 image: tomcat # replace it with your exactly <
image_name:tags>
 ports:
 - containerPort: 8080
 volumeMounts:
 - name: pvc-yunpan-test
 mountPath: /data
 env:
 - name: SPECIAL_LEVEL_KEY #add configmap
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: SPECIAL_LEVEL
 - name: SPECIAL_TYPE_KEY #add configmap
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: SPECIAL_TYPE
 volumes:
 - name: pvc-yunpan-test
 persistentVolumeClaim:
 claimName: pvc-yunpan-test

d) Add a secret

Create a secret first. For more information, see Create a secret.

apiVersion: apps/v1beta2 # for versions before 1.8.0 use apps/
v1beta1
kind: Deployment
metadata:
 name: tomcat-deployment
 labels:
 app: tomcat
spec:
 replicas: 1
 selector:
 matchLabels:
 app: tomcat
 template:
 metadata:
 labels:
 app: tomcat
 spec:
 containers:
 - name: tomcat
 image: tomcat # replace it with your exactly <
image_name:tags>
 ports:
 - containerPort: 8080
 volumeMounts:
 - name: pvc-yunpan-test
 mountPath: /data
 env:
 - name: SPECIAL_LEVEL_KEY
 valueFrom:

Container Service for Kubernetes quickstart / 2 Basic operations

Issue: 20181113 29

 configMapKeyRef:
 name: special-config
 key: SPECIAL_LEVEL
 - name: SPECIAL_TYPE_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: SPECIAL_TYPE
 - name: SECRET_USERNAME #add secret
 valueFrom:
 secretKeyRef:
 name: account
 key: username
 - name: SECRET_PASSWORD #add secret
 valueFrom:
 secretKeyRef:
 name: account
 key: password
 volumes:
 - name: pvc-yunpan-test
 persistentVolumeClaim:
 claimName: pvc-yunpan-test

e) Add a node

When you deploy an application, you can deploy the application on a node with the specific

label. For instructions, see Schedule a pod to a specified node.

In this example, label a node with group:worker. When the application deployment succeeds

, the application is deployed on the labeled node.

apiVersion: apps/v1beta2 # for versions before 1.8.0 use apps/
v1beta1
kind: Deployment
metadata:
 name: tomcat-deployment
 labels:
 app: tomcat
spec:
 replicas: 1
 selector:
 matchLabels:
 app: tomcat
 template:
 metadata:
 labels:
 app: tomcat
 spec:
 containers:
 - name: tomcat
 image: tomcat
 ports:
 - containerPort: 8080
 volumeMounts:
 - name: pvc-yunpan-test
 mountPath: /data
 env:
 - name: SPECIAL_LEVEL_KEY
 valueFrom:
 configMapKeyRef:

Container Service for Kubernetes quickstart / 2 Basic operations

30 Issue: 20181113

 name: special-config
 key: SPECIAL_LEVEL
 - name: SPECIAL_TYPE_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: SPECIAL_TYPE
 - name: SECRET_USERNAME
 valueFrom:
 secretKeyRef:
 name: account
 key: username
 - name: SECRET_PASSWORD
 valueFrom:
 secretKeyRef:
 name: account
 key: password
 volumes:
 - name: pvc-yunpan-test
 persistentVolumeClaim:
 claimName: pvc-yunpan-test
 nodeSelector: #add node selector
 group: worker

f) Add health check

On Container Service platform, you can add health check for the application to check the

 health status of the application. Use liveness probes and readiness probes to detect the

health status of a container in the application.

apiVersion: apps/v1beta2 # for versions before 1.8.0 use apps/
v1beta1
kind: Deployment
metadata:
 name: tomcat-deployment
 labels:
 app: tomcat
spec:
 replicas: 1
 selector:
 matchLabels:
 app: tomcat
 template:
 metadata:
 labels:
 app: tomcat
 spec:
 containers:
 - name: tomcat
 image: tomcat
 ports:
 - containerPort: 8080
 livenessProbe: #add health check
 httpGet:
 path: /
 port: 8080
 initialDelaySeconds: 30
 timeoutSeconds: 5
 periodSeconds: 5
 readinessProbe: #add health check

Container Service for Kubernetes quickstart / 2 Basic operations

Issue: 20181113 31

 httpGet:
 path: /
 - port: 8080
 initialDelaySeconds: 5
 timeoutSeconds: 1
 periodSeconds: 5
 volumeMounts:
 - name: pvc-yunpan-test
 mountPath: /data
 env:
 - name: SPECIAL_LEVEL_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: SPECIAL_LEVEL
 - name: SPECIAL_TYPE_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: SPECIAL_TYPE
 - name: SECRET_USERNAME
 valueFrom:
 secretKeyRef:
 name: account
 key: username
 - name: SECRET_PASSWORD
 valueFrom:
 secretKeyRef:
 name: account
 key: password
 volumes:
 - name: pvc-yunpan-test
 persistentVolumeClaim:
 claimName: pvc-yunpan-test
 nodeSelector:
 group: worker

g) Creates a LoadBalancer type service for the tomcat deployment.

To access applications deployed on Container Service from external networks such as the

public network, you can expose the application by creating a LoadBalancer type service. A

 LoadBalancer type service creates Load Balancer on Alibaba Cloud. You can access the

application through the Load Balancer IP address.

For information about creating a service, see Create a service.

In this example, the orchestration template is as follows:

apiVersion: v1
kind: Service
metadata:
 name: tomcat-svc
 labels:
 app: tomcat-svc
spec:
 selector:
 app: tomcat
 ports:

Container Service for Kubernetes quickstart / 2 Basic operations

32 Issue: 20181113

 - protocol: TCP
 port: 8080
 targetPort: 8080
 type: LoadBalancer

5. After the configuration is completed according to the application requirements, click Create.

6. After the deployment succeeds, click Service in the left navigation pane, and select the tomcat-

svc service to view its external endpoint.

7. Entering the external endpoint in the browser address bar, you can access the tomcat app

welcome page .

Container Service for Kubernetes quickstart / 2 Basic operations

Issue: 20181113 33

What's next

According to your orchestration template, you can explore features of the tomcat application in

storage volumes, secrets, config maps, node scheduling, and health check.

2.4 Deploy dependency-based WordPress applications

Prerequisites

• Create a Kubernetes cluster. For more information, see Create a Kubernetes cluster quickly.

• Create storage volumes and storage volume claims. For how to create a storage volume, see

Use Alibaba Cloud cloud disks, Use Alibaba Cloud NAS, and Use Alibaba Cloud OSS. For how

to create a storage volume claim, see Create a persistent storage volume claim. Use Alibaba

Cloud disks as storage volumes. In the example, choose PV/PVC for the storage volume

mount. Create two storage volume claims: wordpress-pv-claim and wordpress-mysql-pv-claim

which are used in the wordpress yaml file and the wordpress-mysql yaml file respectively, to

mount corresponding storage volumes.

Context

This example shows how to create dependency-based applications by customizing a template in a

 orchestration template.

The main components are:

Container Service for Kubernetes quickstart / 2 Basic operations

34 Issue: 20181113

• wordpress

• mysql

Resources involved:

• Storage volume

• Secret

• Service

Procedure

1. Log on to the Container Service console.

2. Use the prepared storage volume claims. Create two storage volume claims: wordpress-

pv-claim and wordpress-mysql-pv-claim which are used in the wordpress yaml file and the

wordpress-mysql yaml file respectively, to mount corresponding storage volumes.

3. Click Application > Secret in the left-side navigation pane, select a cluster and namespace,

and click Create in the upper-right corner. For the creation process, see Create a secret.

Since a user name and password is required to create and access the MySQL database,

create a secret to manage the user name and password.

Before using a secret, create a secret that needs to be encrypted. In this example, the MySQL

root password is created as the secret and the secret name is mysql-pass. This secret is used

in the WordPress yaml file and wordpress-mysql yaml file.

https://cs.console.aliyun.com
https://help.aliyun.com/document_detail/74731.html?spm=a2c4g.11186623.6.603.tOE0Jx

Container Service for Kubernetes quickstart / 2 Basic operations

Issue: 20181113 35

4. Click Application > Deployment in the left-side navigation pane, and click Create by

template in the upper-right corner.

Select a cluster and namespace. The yaml file for creating WordPress deployment is as follows

:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: wordpress
 labels:
 app: wordpress
spec:
 selector:
 matchLabels:
 app: wordpress
 tier: frontend
 strategy:
 type: Recreate
 template:
 metadata:

Container Service for Kubernetes quickstart / 2 Basic operations

36 Issue: 20181113

 labels:
 app: wordpress
 tier: frontend
 spec:
 containers:
 - image: wordpress:4
 name: wordpress
 env:
 - name: WORDPRESS_DB_HOST
 value: wordpress-mysql #Use the name to point to the
mysql to be accessed. The name corresponds to the mysql service name
.
 - name: WORDPRESS_DB_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mysql-pass
 key: password-wordpress
 ports:
 - containerPort: 80
 name: wordpress
 volumeMounts:
 - name: wordpress-pvc
 mountPath: /var/www/html
 volumes:
 - name: wordpress-pvc
 persistentVolumeClaim:
 claimName: wordpress-pv-claim

The yaml file for creating mysql deployment is as follows:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: wordpress-mysql
 labels:
 app: wordpress
spec:
 selector:
 matchLabels:
 app: wordpress
 tier: mysql
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: wordpress
 tier: mysql
 spec:
 containers:
 - image: mysql:5.6
 name: mysql
 env:
 - name: MYSQL_ROOT_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mysql-pass
 key: password-mysql
 ports:
 - containerPort: 3306
 name: mysql

Container Service for Kubernetes quickstart / 2 Basic operations

Issue: 20181113 37

 volumeMounts:
 - name: wordpress-mysql-pvc
 mountPath: /var/lib/mysql
 volumes:
 - name: wordpress-mysql-pvc
 persistentVolumeClaim:
 claimName: wordpress-mysql-pv-claim

5. To enable external access for the WordPress, you need to create the access method exposed

by the WordPress service. In this example, create the WordPress service of the LoadBalancer

type so that Container Service automatically creates Alibaba Cloud Server Load Balancer to

provide external access.

Create a service named WordPress-mysql for the WordPress mysql so that the WordPress

 deploymet created on the WordPress mysql can be accessed. As the mysql is called only

internally for the WordPress, you do not need to create a LoadBalancer type of service for it.

For how to create a service, see Create a service.

The yaml file used to create WordPress and mysql service is as follows:

apiVersion: v1
kind: Service
metadata:
 name: wordpress
 labels:
 app: wordpress
spec:
 ports:
 -port: 80
 selector:
 app: wordpress
 tier: frontend
 type: LoadBalancer

apiVersion: v1
kind: Service
metadata:
 name: wordpress-mysql
 labels:
 app: wordpress
spec:
 ports:
 - port: 3306
 selector:
 app: wordpress
 tier: mysql
 clusterIP: None

6. When the deployment is completed, click Application > Service in the left-side navigation

pane. Locate the WordPress service and view its external endpoint.

https://help.aliyun.com/document_detail/70098.html?spm=a2c4g.11186623.6.584.WI79Yj

Container Service for Kubernetes quickstart / 2 Basic operations

38 Issue: 20181113

7. Access the external endpoint of the WordPress service in a browser and you can access the

WordPress application through the IP address provided by Server Load Balancer.

What's next

During the configuration of the WordPress application, you can log on to the application by using

the password configured in the secret. In addition, the data generated by the container to which

the WordPress application belongs is saved in the data storage volume.

Container Service for Kubernetes quickstart / 3 Advanced operations

Issue: 20181113 39

3 Advanced operations

3.1 Use Helm to deploy a microservice application
This document describes how to deploy a complex application to Alibaba Cloud Kubernetes

Container Service. You can use different methods to deploy a SpringCloud application based on

different combinations of infrastructure deployment and application deployment.

Deployment methods

1. Deploy infrastructures such as Eureka and ConfigServer together with the application.

2. Deploy the application after building infrastructures on Container Service

Sample application PiggyMetrics

PiggyMetrics is a SpringCloud application project on GitHub with more than 3400 Stars. The

project main body is deployed by using DockerCompose and contains complete source codes and

well-built container images. It is a very good SpringCloud containerization example.

This project contains three business microservices: statistical service, account service, and

 notification service. Each service corresponds to a separate MongoDB. The microservice

architecture diagram(using the author's original diagram) is as follows:

https://github.com/sqshq/PiggyMetrics?spm=a2c4e.11153940.blogcont610430.14.40667737Uedu2h

Container Service for Kubernetes quickstart / 3 Advanced operations

40 Issue: 20181113

SpringCloud basic components include the registry service (Eureka service registration), config

 service (configuration management), gateway (the API gateway, also the JavaScript Web

Interface), monitor service (Hystrix Dashboard/Turbine) and more.

The deployment description file used in this article is on GitHub. If you are interested in the files,

see the link: https://github.com/binblee/PiggyMetrics/tree/master/charts.

Scenario 1 Deploy all services with one-click deployment of helm

PiggyMetrics is deployed to a standalone device in the docker-compose YAML. To deploy

PiggyMetrics to the Kubernetes environment, convert the docker-compose YAML to Kubernetes

deployment YAML. The Yunqi Community has tool named kompose that can convert the compose

file to the Kubernetes deployment file in one click.

Note:

The docker compose template in PiggyMetrics is in version 2.1 that is not supported by kompose.

Therefore, change the version of the docker compose file to version 2.

Additionally, remove the syntax that kompose does not support:

depends_on:
 config:

https://github.com/binblee/PiggyMetrics/tree/master/charts?spm=a2c4e.11153940.blogcont610430.15.40667737Uedu2h
http://kompose.io/?spm=a2c4e.11153940.blogcont610430.16.40667737Uedu2h
https://github.com/sqshq/PiggyMetrics/blob/master/docker-compose.yml?spm=a2c4e.11153940.blogcont610430.17.40667737Uedu2h&file=docker-compose.yml

Container Service for Kubernetes quickstart / 3 Advanced operations

Issue: 20181113 41

 condition: service_healthy #condition is not supported

Add Kubernetes server type annotation：

labels:
 kompose.service.type: loadbalancer

For the changed compose file, see https://github.com/binblee/PiggyMetrics/blob/master/charts/

docker-compose.yml.

Set the environmental variables required for PiggyMetrics deployment before executing kompose.

$ export NOTIFICATION_SERVICE_PASSWORD=passw0rd
$ export CONFIG_SERVICE_PASSWORD=passw0rd
$ export STATISTICS_SERVICE_PASSWORD=passw0rd
$ export ACCOUNT_SERVICE_PASSWORD=passw0rd
$ export MONGODB_PASSWORD=passw0rd
$ kompose convert -f docker-compose.yml -o piggymetrics -c

The -c option of kompose can generate to the helm chart format directory result. Use helm

 command line to deploy all services.

charts $ helm install -n piggymetrics piggymetrics/

You can see that the success message is output after deployment.

Try this configuration on your own Minikube or Alibaba Cloud Container Service for Kubernetes:

https://www.aliyun.com/product/kubernetes. After the deployment is completed, go to the service

list page, you can see all services, and the access addresses and port numbers exposed by the

corresponding LoadBalancer services.

You can access the PiggyMetrics interface by clicking registry service.

Piggymetrics is a personal financial service that allows you to express beautiful reports after

entering your income and expenditure.

https://github.com/binblee/PiggyMetrics/blob/master/charts/docker-compose.yml?spm=a2c4e.11153940.blogcont610430.18.40667737Uedu2h&file=docker-compose.yml
https://github.com/binblee/PiggyMetrics/blob/master/charts/docker-compose.yml?spm=a2c4e.11153940.blogcont610430.18.40667737Uedu2h&file=docker-compose.yml
https://docs.helm.sh/chart_template_guide?spm=a2c4e.11153940.blogcont610430.19.40667737Uedu2h
https://helm.sh/?spm=a2c4e.11153940.blogcont610430.20.40667737Uedu2h
https://helm.sh/?spm=a2c4e.11153940.blogcont610430.20.40667737Uedu2h
https://www.aliyun.com/product/kubernetes?spm=a2c4e.11153940.blogcont610430.21.40667737Uedu2h
https://www.aliyun.com/product/kubernetes?spm=a2c4e.11153940.blogcont610430.21.40667737Uedu2h

Container Service for Kubernetes quickstart / 3 Advanced operations

42 Issue: 20181113

Visit the registry service to see all the services registered to the Eureka server.

Remove PiggyMetrics to prepare for the next experiment:

charts $ helm delete --purge piggymetrics
release "piggymetrics" deleted

Scenario 2 Deploy the application to an existing SpringCloud basic component environment

The preceding Scenario 1 shows how to deploy all basic components (Eureka, Zuul, ConfigServ

er, and Hystrix Dashboard) and service applications (gateway, notification, and statistics) with

one helm chart. In practice, the more common situation is that basic components such as Eureka

 already exist in the cluster. You only need to deploy, upgrade, and maintain your business

applications.

In Alibaba Cloud Container Service for Kubernetes, the App Catalog contains SpringCloud basic

components.

Container Service for Kubernetes quickstart / 3 Advanced operations

Issue: 20181113 43

Deploy Eureka services on the App Catalog. Click the ack-springcloud-eureka component:

To view or change the configuration, click the Values tab:

Deploy directly without changing any parameters. After deployment, enter the Service List

page, you can see that EurekaServer has two examples. The exposed service address is ack-

springcloud-eureka-default-ack-springcloud-eureka-svc.

Container Service for Kubernetes quickstart / 3 Advanced operations

44 Issue: 20181113

In PiggyMetrics, the EUREKA service that all containers automatically access on startup is called

registry. In general, the EUREKA service name can be passed as a parameter in the image. In

this experiment, do not change any codes or images. Therefore, take another measure, namely,

expose Eureka to another service called registry.

Use Container Service to deploy the following yaml files.

Note:

If you change the release name during App Catalog deployment, make the same changes to the

followings.

apiVersion: v1
kind: Service
metadata:
 name: registry
spec:
 type: LoadBalancer
 ports:
 - port: 8761
 targetPort: 8761
 selector:
 app: ack-springcloud-eureka-default-ack-springcloud-eureka
 release: ack-springcloud-eureka-default

You can use the kubectl command line to create the service:

$ kubectl apply -f registry-svc.yml

You can also do this through the console interface:

Container Service for Kubernetes quickstart / 3 Advanced operations

Issue: 20181113 45

After deployment, enter the Service List page again, you can see the registry is created:

Copy the helm chart directory of PiggyMetrics to a new directory, piggymetrics-no-eureka. Delete

the following two files:

templates/registry-deployment.yaml

Container Service for Kubernetes quickstart / 3 Advanced operations

46 Issue: 20181113

templates/registry-service.yaml

These two files are the yaml files used to deploy Eureka deployment and svc, respectively. As you

 have used the App Catalog to successfully deploy a new registry service as the basic SpringClou

d component, you do not have to repeat the deployment.

Execute the helm command to deploy PiggyMetrics again.

$ helm install -n piggymetrics piggymetrics-no-eureka/

After all services start, access the registry service and you can see that all PiggyMetrics services

are properly registered with EurekaServer.

The PiggyMetrics application has been deployed to the environment with EurekaServer. Access

GATEWAY to see the familiar login interface.

3.2 Use a private image repository to create an application
In many scenarios, an image in a private image repository is used for deploying an application. In

this document, use Alibaba Cloud image repository service to create a private image repository,

and create an application that uses this private image repository.

Step 1 Create a private image repository

1. Log on to the Container Registry console.

2. Click Repositories in the left-side navigation pane, select the target region, and lick Create

Repository.

3. Configure the image repository in the dialog box, and then click Create Repository. In this

example, select the private image repository type and set the code source as a local repository.

https://cr.console.aliyun.com/

Container Service for Kubernetes quickstart / 3 Advanced operations

Issue: 20181113 47

4. On the repositories page, select the target region, and you can see that the created image

repository. Click Manageon the right.

5. On the repository management page, click Details, and you can follow the guide to use the

private image repository.

Container Service for Kubernetes quickstart / 3 Advanced operations

48 Issue: 20181113

6. Log on to the image repository in the Linux environment and upload the local image to the

private image repository.

$ sudo docker login --username=abc@aliyun.com
 Password
 ## Image repository independent login password:
 Login Succe ed

$ dockeagesr im
 #This example is tomcat ages
REPOSITORY
 TAG IMAGE ID CREATED
SIZE
tomcat
 latest 2d43521f2b1a 6 days ago
463MB

 $ sudo docker tag [ImageId] registry.cn-hangzhou.aliyuncs.com/
kubernetes-java/tomcat-private:[Image version number] #V1
 in this example
 $ sudo docker push registry.cn-hangzhou.aliyuncs.com/kubernetes-
java/tomcat-private:[Inage version number] #V1
 in this example

 The push refers to a repository [registry.cn-hangzhou.aliyuncs.com/
kubernetes-java/tomcat-private]
9072c7b03a1b: Pushed
f9701cf47c58: Pushed
365c8156ff79: Pushed
2de08d97c2ed: Pushed
6b09c39b2b33: Pushed
4172ffa172a6: Pushed
1dccf0da88f3: Pushed
d2070b14033b: Pushed
63dcf81c7ca7: Pushed
ce6466f43b11: Pushed
719d45669b35: Pushed
3b10514a95be: Pushed

Container Service for Kubernetes quickstart / 3 Advanced operations

Issue: 20181113 49

V1: digest: sha256:cded14cf64697961078aedfdf870e704a5227018
8c8194b6f70c778a8289d87e size: 2836

7. Return to the image repository detail page, and click Image version in the left navigation pane,

you can see that the image has been uploaded successfully, and you can view the image

version information.

Step 2 Create a docker-registry secret

When using Kubernetes to create an application by pulling a private image, pass the identity

authentication information of the private image repository to Kubernetes through a docker-registry

 secret.

Create a docker-registry secret as follows:

kubectl create secret docker-registry regsecret --docker-server=
registry-internal.cn-hangzhou.aliyuncs.com --docker-username=abc@
aliyun.com --docker-password=xxxxxx --docker-email=abc@aliyun.com

where:

• --regsecret: Specifies the secret key name and the name is customizable.

• --docker-server: Specifies the Docker repository address.

• --docker-username: Specifies the user name of the Docker repository.

• --docker-password: Specifies the Docker repository login password, namely, the independent

login password of the container image registry.

• --docker-email: Specifies the email address.

Note:

You cannot use the secrets on the Container Service console to create secrets.

To pull an image successfully, add the secret parameter to the yml file.

containers:
 - name: foo
 image: registry-internal.cn-hangzhou.aliyuncs.com/abc/test:1.0
imagePullSecrets:
 - name: regsecret

where:

Container Service for Kubernetes quickstart / 3 Advanced operations

50 Issue: 20181113

• imagePullSecrets declares that a secret key must be specified when you pull the image.

• regsecret must be the same as the preceding secret key name.

• The docker repository name in the image must be the same as that in the -- docker-server.

Step 3 Use a private image repository to create an application

The orchestration is as follows:

apiVersion: apps/v1beta2 # for versions before 1.8.0 use apps/v1beta1
kind: Deployment
metadata:
 name: private-image
 nameSpace: default
 labels:
 app: private-image
spec:
 replicas: 1
 selector:
 matchLabels:
 app: private-image
 template:
 metadata:
 labels:
 app: private-image
 spec:
 containers:
 - name: private-image
 image: registry.cn-hangzhou.aliyuncs.com/xxx/tomcat-private:
latest
 ports:
 - containerPort: 8080
 imagePullSecrets:
 - name: regsecret

For more information, see the official Kubernetes documentation Use a Private Registry.

https://kubernetes.io/docs/concepts/containers/images/?spm=a2c4g.11186623.2.1.XVyfik#using-a-private-registry

	Contents
	Legal disclaimer
	Generic conventions
	1 Workflow
	2 Basic operations
	2.1 Create a Kubernetes cluster quickly
	2.2 Create a deployment application by using an image
	2.3 Use Yaml to create a statefull tomcat application
	2.4 Deploy dependency-based WordPress applications

	3 Advanced operations
	3.1 Use Helm to deploy a microservice application
	3.2 Use a private image repository to create an application

