
Alibaba Cloud
Container Service for Kubernetes

Best Practices

Issue: 20181127

Container Service for Kubernetes Best Practices / Legal disclaimer

Issue: 20181127 I

Legal disclaimer

Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions of this

legal disclaimer before you read or use this document. If you have read or used this document, it

shall be deemed as your total acceptance of this legal disclaimer.

1. You shall download and obtain this document from the Alibaba Cloud website or other Alibaba

Cloud-authorized channels, and use this document for your own legal business activities only.

The content of this document is considered confidential information of Alibaba Cloud. You shall

 strictly abide by the confidentiality obligations. No part of this document shall be disclosed or

provided to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted, or disseminat

ed by any organization, company, or individual in any form or by any means without the prior

written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades, adjustment

s, or other reasons. Alibaba Cloud reserves the right to modify the content of this document

without notice and the updated versions of this document will be occasionally released through

 Alibaba Cloud-authorized channels. You shall pay attention to the version changes of this

document as they occur and download and obtain the most up-to-date version of this document

 from Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud products and

services. Alibaba Cloud provides the document in the context that Alibaba Cloud products and

 services are provided on an "as is", "with all faults" and "as available" basis. Alibaba Cloud

makes every effort to provide relevant operational guidance based on existing technologies

. However, Alibaba Cloud hereby makes a clear statement that it in no way guarantees the

accuracy, integrity, applicability, and reliability of the content of this document, either explicitly

or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial losses incurred

 by any organizations, companies, or individuals arising from their download, use, or trust in

this document. Alibaba Cloud shall not, under any circumstances, bear responsibility for any

 indirect, consequential, exemplary, incidental, special, or punitive damages, including lost

profits arising from the use or trust in this document, even if Alibaba Cloud has been notified of

the possibility of such a loss.

5. By law, all the content of the Alibaba Cloud website, including but not limited to works, products

, images, archives, information, materials, website architecture, website graphic layout, and

webpage design, are intellectual property of Alibaba Cloud and/or its affiliates. This intellectu

al property includes, but is not limited to, trademark rights, patent rights, copyrights, and trade

Container Service for Kubernetes Best Practices / Legal disclaimer

II Issue: 20181127

 secrets. No part of the Alibaba Cloud website, product programs, or content shall be used,

modified, reproduced, publicly transmitted, changed, disseminated, distributed, or published

 without the prior written consent of Alibaba Cloud and/or its affiliates. The names owned by

Alibaba Cloud shall not be used, published, or reproduced for marketing, advertising, promotion

, or other purposes without the prior written consent of Alibaba Cloud. The names owned by

Alibaba Cloud include, but are not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other

brands of Alibaba Cloud and/or its affiliates, which appear separately or in combination, as well

 as the auxiliary signs and patterns of the preceding brands, or anything similar to the company

 names, trade names, trademarks, product or service names, domain names, patterns, logos

, marks, signs, or special descriptions that third parties identify as Alibaba Cloud and/or its

affiliates).

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

Container Service for Kubernetes Best Practices / Legal disclaimer

Issue: 20181127 III

Container Service for Kubernetes Best Practices / Generic conventions

Issue: 20181127 I

Generic conventions

Table -1: Style conventions

Style Description Example

This warning information indicates a
situation that will cause major system
changes, faults, physical injuries, and
other adverse results.

Danger:
Resetting will result in the loss of user
configuration data.

This warning information indicates a
situation that may cause major system
 changes, faults, physical injuries, and
other adverse results.

Warning:
Restarting will cause business
interruption. About 10 minutes are
required to restore business.

This indicates warning information,
supplementary instructions, and other
content that the user must understand.

Note:
Take the necessary precautions to
save exported data containing sensitive
information.

This indicates supplemental instructio
ns, best practices, tips, and other
content that is good to know for the
user.

Note:
You can use Ctrl + A to select all files.

> Multi-level menu cascade. Settings > Network > Set network type

Bold It is used for buttons, menus, page
names, and other UI elements.

Click OK.

Courier

font

It is used for commands. Run the cd /d C:/windows command
to enter the Windows system folder.

Italics It is used for parameters and variables. bae log list --instanceid

 Instance_ID

[] or [a|b] It indicates that it is a optional value,
and only one item can be selected.

ipconfig [-all|-t]

{} or {a|b} It indicates that it is a required value,
and only one item can be selected.

swich {stand | slave}

Container Service for Kubernetes Best Practices / Contents

II Issue: 20181127

Contents

Legal disclaimer..I
Generic conventions.. I
1 Cluster... 1

1.1 Update expired certificates of a Kubernetes cluster.. 1

2 Application.. 3
3 Network..4

3.1 Deploy high-reliability Ingress Controller... 4

4 Release.. 12
4.1 Implement Layer-4 canary release by using Alibaba Cloud Server Load Balancer in

 a Kubernetes cluster.. 12

5 Istio.. 17
5.1 Implement Istio distributed tracking in Kubernetes.. 17

6 DevOps.. 28

Container Service for Kubernetes Best Practices / 1 Cluster

Issue: 20181127 1

1 Cluster

1.1 Update expired certificates of a Kubernetes cluster
When cluster certificates expire, communication with the cluster API server by using kubectl

or calling APIs is disabled, and the expired certificates on cluster nodes cannot be updated

automatically through template deployment. To update the certificates, you can log on to each

cluster node and run the container stating commands, docker run.

Update the expired certificates on a Master node

1. Log on to a Master node with the root permission.

2. Run the following command in any directory to update the expired certificates on the Master

node:

$ docker run -it --privileged=true -v /:/alicoud-k8s-host --pid
host --net host \
 registry.cn-hangzhou.aliyuncs.com/acs/cert-rotate:v1.0.0 /renew/
upgrade-k8s.sh --role master

3. Repeat the preceding steps on each cluster Master node to update all the expired certificates.

Update the expired certificates on a Worker node

1. Log on to a Master node with the root permission.

2. Run the following command to obtain the cluster rootCA private key:

$ cat /etc/kubernetes/pki/ca.key

3. Run either of the following commands to obtain the cluster root private key encoded through

base64:

• If the cluster rootCA private key has a blank line, run the following command:

$ sed '1d' /etc/kubernetes/pki/ca.key| base64 -w 0

• If the cluster rootCA private key does not have any blank line, run the following command:

$ cat /etc/kubernetes/pki/ca.key | base64 -w 0

4. Log on to a Worker node with the root permission.

5. Run the following command in any directory to update the expired certificates on the Worker

node.

$ docker run -it --privileged=true -v /:/alicoud-k8s-host --pid
host --net host \

Container Service for Kubernetes Best Practices / 1 Cluster

2 Issue: 20181127

 registry.cn-hangzhou.aliyuncs.com/acs/cert-rotate:v1.0.0 /renew/
upgrade-k8s.sh --role node --rootkey ${base64CAKey}

Note:

In step 3, you have obtained ${base64CAKey}, which is the cluster root private key encoded

through base64.

6. Repeat the preceding steps on each cluster Worker node to update all the expired certificates.

Container Service for Kubernetes Best Practices / 2 Application

Issue: 20181127 3

2 Application

Container Service for Kubernetes Best Practices / 3 Network

4 Issue: 20181127

3 Network

3.1 Deploy high-reliability Ingress Controller
In Kubernetes clusters, Ingress is a collection of rules that authorize the inbound access to

the cluster and provide you with Layer-7 Server Load Balancer capabilities. You can provide

the externally accessible URL, Server Load Balancer, SSL, and name-based virtual host. As

the access layer of the cluster traffic, the high reliability of Ingress is important. This document

introduces how to deploy a set of high-reliability Ingress access layer with good performance.

Prerequisites

• You have created a Kubernetes cluster. For more information, see Create a Kubernetes

cluster.

• You have connected to the master node by using SSH. For more information, see Access

Kubernetes clusters by using SSH.

High-reliability deployment architecture

To implement high reliability, the single point of failure must be solved first. Generally, the

single point of failure is solved by deployment with multiple copies. Similarly, use the multi-node

deployment architecture to deploy the high-reliability Ingress access layer in Kubernetes clusters.

As Ingress is the access point of the cluster traffic, we recommend that you have the Ingress

node exclusive to you to avoid the business applications and Ingress services from competing for

resources.

Container Service for Kubernetes Best Practices / 3 Network

Issue: 20181127 5

As mentioned in the preceding deployment architecture figure, multiple exclusive Ingress

instances form a unified access layer to carry the traffic at the cluster entrance and expand or

contract the Ingress nodes based on the backend business traffic. If your cluster scale is not large

 in the early stage, you can also deploy the Ingress services and business applications in the

hybrid mode, but we recommend that you limit and isolate the resources.

Instructions on deploying high-reliability Ingress access layer

• Ingress Server Load Balancer: The frontend Server Load Balancer instance of the Ingress

access layer.

• Ingress node: The cluster node in which the Ingress pod is deployed.

• Ingress pod: The Ingress service.

Container Service for Kubernetes Best Practices / 3 Network

6 Issue: 20181127

The Ingress Server Load Balancer, Ingress node, and Ingress pod are associated based on the

tag node-role.kubernetes.io/ingress=true:

1. The Ingress Server Load Balancer backend only mounts the cluster nodes with the tag node-

role.kubernetes.io/ingress=true.

2. The Ingress pod is only deployed to the cluster nodes with the tag node-role.kubernetes.

io/ingress=true.

Step 1 Add a label for Ingress nodes

1. Log on to the Container Service console.

2. Under Kubernetes, click Clusters > Nodes in the left-side navigation pane.

3. Select the cluster from the Cluster drop-down list. View the instance IDs of the worker nodes

and then click Label Management in the upper-right corner.

4. The Label Management page appears. Select the worker nodes and then click Add Tag. Add

the label node-role.kubernetes.io/ingress：true to the worker nodes and then click

OK.

On the Label Management page, you can see the label is added to the worker nodes.

https://cs.console.aliyun.com/

Container Service for Kubernetes Best Practices / 3 Network

Issue: 20181127 7

You can also log on to the master node and run the command kubectl label no nodeID

node-role.kubernetes.io/ingress=true to add the label to the worker nodes quickly.

Step 2 Create an Ingress service

1. Log on to the Container Service console.

2. Under Kubernetes, clickApplication > Deployment in the left-side navigation pane.

3. Select the cluster from the Clusters drop-down list and kube-system from the Namespace

drop-down list. Click Delete at the right of nginx-ingress-controller and then click OK in the

displayed dialog box.

An Ingress Controller is deployed by default when the cluster is initialized. For more

information, see ingress-nginx. You must delete the Ingress Controller deployed by default first

and then deploy a new set of high-reliability Ingress Controller access layer.

Note:

The Ingress Controller deployed by default is associated with the nginx-ingress-lb service. Do

not delete the associated service when deleting the deployment. The nginx-ingress-lb service

is about to be updated later.

4. Click Create by template in the upper-right corner.

https://cs.console.aliyun.com/
https://github.com/kubernetes/ingress-nginx

Container Service for Kubernetes Best Practices / 3 Network

8 Issue: 20181127

5. Select the cluster from the Clusters drop-down list and kube-system from the Namespace drop-

down list. Select a sample template or Custom from the Resource Type drop-down list. Click

DEPLOY.

In this example, redeploy the Ingress Controller to the target Ingress node in the DaemonSet

 method. You can also deploy the Ingress Controller by using deployment together with the

affinity.

nginx ingress pods
 apiVersion: extensions/v1beta1
 kind: DaemonSet
 metadata:
 name: nginx-ingress-controller
 labels:
 app: ingress-nginx
 namespace: kube-system
 spec:

Container Service for Kubernetes Best Practices / 3 Network

Issue: 20181127 9

 template:
 metadata:
 labels:
 app: ingress-nginx
 spec:
 nodeSelector:
 node-role.kubernetes.io/ingress: "true" ##Deploy the pod to
 the corresponding node by using the label selector.
 serviceAccount: admin
 containers:
 - name: nginx-ingress-controller
 image: registry.cn-hangzhou.aliyuncs.com/acs/aliyun-
ingress-controller:aliyun-nginx-0.9.0-beta. 19.2
 args:
 - /nginx-ingress-controller
 - --default-backend-service=$(POD_NAMESPACE)/default-
http-backend
 - --configmap=$(POD_NAMESPACE)/nginx-configuration
 - --tcp-services-configmap=$(POD_NAMESPACE)/tcp-
services
 - --udp-services-configmap=$(POD_NAMESPACE)/udp-
services
 - --annotations-prefix=nginx.ingress.kubernetes.io
 - --publish-service=$(POD_NAMESPACE)/nginx-ingress-lb
 - --v=2
 env:
 - name: POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: POD_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 ports:
 - name: http
 containerPort: 80
 - name: https
 containerPort: 443
 livenessProbe:
 failureThreshold: 3
 httpGet:
 path: /healthz
 port: 10254
 scheme: HTTP
 initialDelaySeconds: 10
 periodSeconds: 10
 successThreshold: 1
 timeoutSeconds: 1
 readinessProbe:
 failureThreshold: 3
 httpGet:
 path: /healthz
 port: 10254
 scheme: HTTP
 periodSeconds: 10
 successThreshold: 1
 timeoutSeconds: 1

6. A message indicating the deployment status is displayed on the page after you click DEPLOY.

After the successful deployment, click Kubernetes Dashboard in the message to go to

Container Service for Kubernetes Best Practices / 3 Network

10 Issue: 20181127

the dashboard. Select kube-system as the namespace. Click Daemon Sets in the left-side

navigation pane and view the nginx-ingress-controller.

7. Click Pods in the left-side navigation pane to view the pods of nginx-ingress-controller.

Step 3 Update Ingress Server Load Balancer service

1. Log on to the Container Service console.

2. Under Kubernetes, clickApplication > Service in the left-side navigation pane. in the left-

side navigation pane.

3. Select the cluster from the Clusters drop-down list and kube-system from the Namespace drop-

down list. Click Update.

An Ingress Server Load Balancer service is deployed by default when the cluster is initialized.

 For more information, see ingress-nginx. You must update the Ingress Server Loadbalancer

service to automatically identify the ingress node that is mounted for marking.

https://cs.console.aliyun.com/
https://github.com/kubernetes/ingress-nginx

Container Service for Kubernetes Best Practices / 3 Network

Issue: 20181127 11

4. In the displayed dialog box, add the annotation service.beta.kubernetes.io/

alicloud-loadbalancer-backend-label "node-role.kubernetes.io/ingress=

true", and then click OK.

You can also log on to the master node of the cluster and run the command kubectl apply

 -f https://acs-k8s-ingress.oss-cn-hangzhou.aliyuncs.com/nginx-ingress

-slb-service.yml to update the nginx-ingress-lb service.

Then, you have deployed the high-reliability access layer of Ingress, which allows you to effectivel

y deal with the challenges of single point of failure and business traffic, and quickly expand the

Ingress access layer by adding tags.

Container Service for Kubernetes Best Practices / 4 Release

12 Issue: 20181127

4 Release

4.1 Implement Layer-4 canary release by using Alibaba Cloud
Server Load Balancer in a Kubernetes cluster

In a Kubernetes cluster, Layer-7 Ingress cannot properly implement gray release for services

accessed by using TCP/UDP. This document introduces how to implement Layer-4 canary release

 by using Server Load Balancer.

Prerequisites

• You have created a Kubernetes cluster. For more information, see #unique_12.

• You have connected to the master node by using SSH. For more information, see #unique_13.

Step 1 Deploy the old version of the service

1. Log on to the Container Service console.

2. Click Application > Deployment in the left-side navigation pane.

3. Click Create by template in the upper-right corner.

4. Select the cluster and namespace from the Clusters and Namespace drop-down lists. Select a

sample template or Custom from the Resource Type drop-down list. Click DEPLOY.

In this example, an nginx orchestration that exposes the service by using SLB.

apiVersion: extensions/v1beta1
 kind: Deployment
 metadata:
 labels:
 run: old-nginx
 name: old-nginx
 spec:
 replicas: 1
 selector:
 matchLabels:
 run: old-nginx
 template:
 metadata:
 labels:
 run: old-nginx
 app: nginx
 spec:
 containers:
 - image: registry.cn-hangzhou.aliyuncs.com/xianlu/old-nginx
 imagePullPolicy: Always
 name: old-nginx
 ports:

https://cs.console.aliyun.com

Container Service for Kubernetes Best Practices / 4 Release

Issue: 20181127 13

 - containerPort: 80
 protocol: TCP
 restartPolicy: Always

 apiVersion: v1
 kind: Service
 metadata:
 labels:
 run: nginx
 name: nginx
 spec:
 ports:
 - port: 80
 protocol: TCP
 targetPort: 80
 selector:
 app: nginx
 sessionAffinity: None
 type: LoadBalancer ##Expose the service by using Alibaba Cloud
SLB.

5. Click Application > Deployment and Application > Service in the left-side navigation pane to

check the deployment and service.

6. Click the external endpoint at the right of the service to go to the Nginx default welcome page.

In this example, old is displayed on the Nginx welcome page, which indicates that the currently

accessed service corresponds to the backend old-nginx container.

To easily display the results of multiple releases , we recommend that you log on to the master

node and execute the curl command to view the deployment results.

bash
for x in {1.. 10} ; do curl EXTERNAL-IP; done ##EXTERNAL-IP is the
 external endpoint of the service.
old
old
old
old
old
old
old
old
old
old

Step 2 Bring new deployment version online

1. Log on to the Container Service console.

2. Click Application > Deployment in the left-side navigation pane.

3. Click Create by template in the upper-right corner.

https://cs.console.aliyun.com

Container Service for Kubernetes Best Practices / 4 Release

14 Issue: 20181127

4. Select the cluster and namespace from the Clusters and Namespace drop-down lists. Select a

sample template or Custom from the Resource Type drop-down list. Click DEPLOY.

In this example, create a new version of nginx deployment that contains the app:nginx label.

The label is used to use the same nginx service as that of the old version of deployment to

bring the corresponding traffic.

The orchestration template in this example is as follows:

apiVersion: extensions/v1beta1
 kind: Deployment
 metadata:
 labels:
 run: new-nginx
 name: new-nginx
 spec:
 replicas: 1
 selector:
 matchLabels:
 run: new-nginx
 template:
 metadata:
 labels:
 run: new-nginx
 app: nginx
 spec:
 containers:
 - image: registry.cn-hangzhou.aliyuncs.com/xianlu/new-nginx
 imagePullPolicy: Always
 name: new-nginx
 ports:
 - containerPort: 80
 protocol: TCP
 restartPolicy: Always

5. Click Deployment in the left-side navigation pane. The deployment of new-nginx is displayed

on the Deployment page.

6. Log on to the master node and execute the curl command to view the service access.

bash
for x in {1.. 10} ; do curl EXTERNAL-IP; done ##EXTERNAL-IP is the
 external endpoint of the service.
new
new
new
old
new
old
new
new
old

Container Service for Kubernetes Best Practices / 4 Release

Issue: 20181127 15

old

You can see that the old service and new service are accessed for five times respectively. This

 is mainly because the service follows the Server Load Balancer policy of average traffic to

process traffic requests, and the old deployment and new deployment are the same pod, which

 makes their traffic ratio as 1:1.

Step 3 Adjust traffic weight

You must adjust the number of pods in the backend to adjust the corresponding weight for the

canary release based on Server Load Balancer. For example, to make the new service to have

higher weight, you can adjust the number of new pods to four.

Note:

If the old application version and new application version coexist, the results returned after

executing the curl command of a sample do not conform to the configured weight strictly. In this

example, to obtain the approximate effect, execute the curl command for 10 times to observe

more samples.

1. Log on to the Container Service console.

2. Under Kubernetes, click Application > Deployment in the left-side navigation pane.

3. Select the cluster and namespace from the Clusters and Namespace drop-down lists. Click

Update at the right of the deployment.

4. In the displayed dialog box, set the number of pods to four.

Note:

The default update method of Kubernetes deployment resources is rollingUpdate. Therefore,

during the update process, the minimum number of containers that provide the service is

guaranteed and this number can be adjusted in the template.

5. After the deployment, log on to the master node and execute the curl command to view the

effect.

bash
 # for x in {1.. 10} ; do curl EXTERNAL-IP; done ##EXTERNAL-IP is
the external endpoint of the service.
 new
 new
 new

https://cs.console.aliyun.com

Container Service for Kubernetes Best Practices / 4 Release

16 Issue: 20181127

 new
 new
 old
 new
 new
 new
 old

You can see the new service is requested for eight times and the old service is requested twice

among the 10 requests.

You can dynamically adjust the number of pods to adjust the weights of the new service and old

service and implement the canary release.

Container Service for Kubernetes Best Practices / 5 Istio

Issue: 20181127 17

5 Istio

5.1 Implement Istio distributed tracking in Kubernetes
Background

Microservice is a focus in the current era. More and more IT enterprises begin to embrace the

microservices. The microservice architecture splits a complex system into several small services

 and each service can be developed, deployed, and scaled independently. As a heaven-made

match, the microservice architecture and containers (Docker and Kubernetes) further simplify the

microservice delivery and strengthen the flexibility and robustness of the entire system.

When monolithic applications are transformed to microservices, the distributed application

architecture composed of a large number of microservices also increases the complexity of

operation & maintenance, debugging, and security management. As microservices grow in scale

 and complexity, developers must be faced with complex challenges such as service discovery

, Server Load Balancer, failure recovery, indicator collection, monitoring, A/B testing, throttling,

access control, and end-to-end authentication, which are difficult to resolve.

In May 2017, Google, IBM, and Lyft published the open-source service network architecture Istio

, which provides the connection, management, monitoring, and security protection of microservi

ces. Istio provides an infrastructure layer for services to communicate with each other, decouples

 the issues such as version management, security protection, failover, monitoring, and telemetry

 in application logics and service access. Being unrelated to codes, Istio attracts enterprises to

transform to microservices, which will make the microservice ecology develop fast.

Architecture principle of Istio

In Kubernetes, a pod is a collection of close-coupled containers, and these containers share

the same network namespace. With the extension mechanism of Initializer in Kubernetes, an

Envoy container is automatically created and started for each business pod, without modifying the

 deployment description of the business pod. The Envoy takes over the inbound and outbound

traffic of business containers in the same pod. Therefore, the microservice governance functions

, including the traffic management, microservice tracking, security authentication, access control,

and strategy implementation, are realized by operating on the Envoy.

Container Service for Kubernetes Best Practices / 5 Istio

18 Issue: 20181127

An Istio service mesh is logically split into a data plane and a control plane.

• The data plane is composed of a collection of intelligent proxies (Envoys) deployed as sidecars

 that mediate and control all network communication between microservices.

• The control plane is used to manage and configure the proxies to route traffic, and enforce

polices at the runtime.

An Istio is mainly composed of the following components:

• Envoy: The Envoy is used to mediate all the inbound and outbound traffic for all the services

in the service mesh. Functions such as dynamic service discovery, Server Load Balancer, fault

injection, and traffic management are supported. The Envoy is deployed as a sidecar to the

pods of related services.

• Pilot: The Pilot is used to collect and verify the configurations and distribute the configurations

to all kinds of Istio components.

• Mixer: The Mixer is used to enforce the access control and usage policies in the service mesh,

and collect telemetry data from Envoy proxies and other services.

• Istio-Auth: Istio-Auth provides strong service-to-service and end user authentication.

For more information about Istio, see the Istio official document.

Install Istio

Use an Alibaba Cloud Container Service Kubernetes cluster as an example.

Alibaba Cloud Container Service has enabled the Initializers plug-in by default for Kubernetes

clusters if the cluster version is later than 1.8. No other configurations are needed.

Note:

https://istio.io/docs/concepts/what-is-istio/overview.html

Container Service for Kubernetes Best Practices / 5 Istio

Issue: 20181127 19

After you deploy the Istio, a sidecar is injected to each pod to take over the service

communication. Therefore, we recommend that you verify this in the independent test

environment.

Create a Kubernetes cluster

1. Log on to the Container Service console.

2. Under Kubernetes, click Clusters in the left-side navigation pane, and click Create

Kubernetes cluster in the upper-right corner.

3. Configure the parameters to create a cluster. For how to create a Kubernetes cluster, see

Create a Kubernetes cluster.

4. After the cluster is created, click Manage at the right of the cluster when the cluster status is

changed to Running.

5. On the cluster Basic Information page, you can configure the corresponding connection

information based on the page information. You can connect to the cluster either by using

Connect to a Kubernetes cluster by using kubectl or Access Kubernetes clusters by using SSH.

https://cs.console.aliyun.com/

Container Service for Kubernetes Best Practices / 5 Istio

20 Issue: 20181127

Deploy Istio release version

Log on to the master node and run the following command to get the latest Istio installation

package.

curl -L https://git.io/getLatestIstio | sh -

Run the following command:

cd istio-0.4.0 ##Change the working directory
 to Istio
export PATH=$PWD/bin:$PATH ##Add the istioctl client to
PATH environment variable

Run the following command to deploy Istio.

kubectl apply -f install/kubernetes/istio.yaml ## Deploy
Istio system components
kubectl apply -f install/kubernetes/istio-initializer.yaml ##
Deploy Istio initializer plug-in

After the deployment, run the following command to verify if the Istio components are successfully

 deployed.

$ kubectl get svc,pod -n istio-systemNAME TYPE CLUSTER-IP EXTERNAL-
IP PORT(S) AGEsvc/istio-ingress LoadBalancer 172.21.10.18 101.37.113
.231 80:30511/TCP,443:31945/TCP 1msvc/istio-mixer ClusterIP 172.21.
14.221 9091/TCP,15004/TCP,9093/TCP,9094/TCP,9102/TCP,9125/UDP,42422/
TCP 1msvc/istio-pilot ClusterIP 172.21.4.20 15003/TCP,443/TCP 1mNAME
 READY STATUS RESTARTS AGEpo/istio-ca-55b954ff7-crsjq 1/1 Running 0
1mpo/istio-ingress-948b746cb-4t24c 1/1 Running 0 1mpo/istio-initialize

Container Service for Kubernetes Best Practices / 5 Istio

Issue: 20181127 21

r-6c84859cd-8mvfj 1/1 Running 0 1mpo/istio-mixer-59cc756b48-tkx6c 3/3
Running 0 1mpo/istio-pilot-55bb7f5d9d-wc5xh 2/2 Running 0 1m

After all the pods are in the running status, the Istio deployment is finished.

Istio distributed service tracking case

Deploy and test the application BookInfo

BookInfo is an application similar to an online bookstore, which is composed of several

independent microservices compiled by different languages. The application BookInfo is deployed

 in the container mode and does not have any dependencies on Istio. All the microservices

are packaged together with an Envoy sidecar. The Envoy sidecar intercepts the inbound and

outbound call requests of services to demonstrate the distributed tracking function of Istio service

mesh.

For more information about BookInfo, see Bookinfo guide.

https://istio.io/docs/guides/bookinfo.html

Container Service for Kubernetes Best Practices / 5 Istio

22 Issue: 20181127

Run the following command to deploy and test the application Bookinfo.

kubectl apply -f samples/bookinfo/kube/bookinfo.yaml

In the Alibaba Cloud Kubernetes cluster environment, every cluster has been configured with

the Server Load Balancer and Ingress. Run the following command to obtain the IP address of

Ingress.

$ kubectl get ingress -o wide
NAME HOSTS ADDRESS PORTS AGE
gateway * 101.37.xxx.xxx 80 2m

If the preceding command cannot obtain the external IP address, run the following command to

obtain the corresponding address.

export GATEWAY_URL=$(kubectl get ingress -o wide -o jsonpath={.items[0
].status.loadBalancer.ingress[0].ip})

The application is successfully deployed if the following command returns 200.

curl -o /dev/null -s -w "%{http_code}\n" http://${GATEWAY_URL}/
productpage

You can open http://${GATEWAY_URL}/productpage in the browser to access the

application. GATEWAY_URL is the IP address of Ingress.

Deploy Jaeger tracking system

Container Service for Kubernetes Best Practices / 5 Istio

Issue: 20181127 23

Distributed tracking system helps you observe the call chains between services and is useful

when diagnosing performance issues and analyzing system failures.

Istio ecology supports different distributed tracking systems, including Zipkin and Jaeger. Use the

Jaeger as an example.

Istio version 0.4 supports Jaeger. The test method is as follows.

kubectl apply -n istio-system -f https://raw.githubusercontent.com/
jaegertracing/jaeger-kubernetes/master/all-in-one/jaeger-all-in-one-
template.yml

After the deployment is finished, if you connect to the Kubernetes cluster by using kubectl, run the

following command to access the Jaeger control panel by using port mapping and openhttp://

localhost:16686 in the browser.

kubectl port-forward -n istio-system $(kubectl get pod -n istio-system
 -l app=jaeger -o jsonpath='{.items[0].metadata.name}') 16686:16686 &

If you connect to the Alibaba Cloud Kubernetes cluster by using SSH, run the following command

to check the external access address of jaeger-query service.

$ kubectl get svc -n istio-system
NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
jaeger-agent ClusterIP None <none>
5775/UDP,6831/UDP,6832/UDP 1h
jaeger-collector ClusterIP 172.21.10.187 <none>
14267/TCP,14268/TCP,9411/TCP 1h
jaeger-query LoadBalancer 172.21.10.197 114.55.82.11 80:
31960/TCP ##The external access address is 114.55.82.11:80.
zipkin ClusterIP None <none>
9411/TCP

Record the external access IP address and port of jaeger-query and then open the application in

the browser.

By accessing the application BookInfo for multiple times and generating the call chain information,

we can view the call chain information of services clearly.

https://github.com/jaegertracing/jaeger
https://github.com/jaegertracing/jaeger

Container Service for Kubernetes Best Practices / 5 Istio

24 Issue: 20181127

Click a specific Trace to view the details.

You can also view DAG.

Container Service for Kubernetes Best Practices / 5 Istio

Issue: 20181127 25

Implementation principle of Istio distributed tracking

The kernel of Istio service mesh is the Envoy, which is a high-performance and open-source Layer

-7 proxy and communication bus. In Istio, each microservice is injected with an Envoy sidecar and

 this instance is responsible for processing all the inbound and outbound network traffic. Therefore

, each Envoy sidecar can monitor all the API calls between services, record the time required by

each service call, and record whether each service call is successful or not.

Whenever a microservice initiates an external call, the client Envoy will create a new span. A span

 represents the complete interaction process between a collection of microservices, starting from a

 caller (client) sending a request to receiving the response from the server.

In the service interaction process, clients record the request start time and response receipt time,

and the Envoy on the server records the request receipt time and response return time.

Each Envoy distributes their own span view information to the distributed tracking system. When

a microservice processes requests, other microservices may need to be called, which causes the

 creation of a causally related span and then forms the complete trace. Then, an application must

be used to collect and forward the following Headers from the request message:

Container Service for Kubernetes Best Practices / 5 Istio

26 Issue: 20181127

• x-request-id

• x-b3-traceid

• x-b3-spanid

• x-b3-parentspanid

• x-b3-sampled

• x-b3-flags

• x-ot-span-context

Envoys in the communication links can intercept, process, and forward the corresponding Headers

.

Client Tracer Server
Tracer
┌──────────────────┐
 ┌──────────────────┐
│ │ │
 │
│ TraceContext │ Http Request Headers │
TraceContext │
│ ┌──────────────┐ │ ┌───────────────────┐ │
 ┌──────────────┐ │
│ │ TraceId │ │ │ X─B3─TraceId │ │ │
TraceId │ │
│ │ │ │ │ │ │ │
 │ │
│ │ ParentSpanId │ │ Extract │ X─B3─ParentSpanId │ Inject │ │
ParentSpanId │ │
│ │ ├─┼─────────>│ ├────────┼>│
 │ │
│ │ SpanId │ │ │ X─B3─SpanId │ │ │ SpanId
 │ │
│ │ │ │ │ │ │ │
 │ │
│ │ Sampled │ │ │ X─B3─Sampled │ │ │
Sampled │ │
│ └──────────────┘ │ └───────────────────┘ │
 └──────────────┘ │
│ │ │
 │
└──────────────────┘
 └──────────────────┘

For specific codes, see the Istio document https://istio.io/docs/tasks/telemetry/distributed-tracing.

html.

Conclusion

Istio is accelerating the application and popularization of service mesh by using the good

expansion mechanism and strong ecology. In addition to those mentioned in the preceding

https://istio.io/docs/tasks/telemetry/distributed-tracing.html
https://istio.io/docs/tasks/telemetry/distributed-tracing.html

Container Service for Kubernetes Best Practices / 5 Istio

Issue: 20181127 27

sections, Weave Scope, Istio Dashboard, and Istio-Analytics projects provide abundant call link

visualization and analysis capabilities.

Container Service for Kubernetes Best Practices / 6 DevOps

28 Issue: 20181127

6 DevOps

	Contents
	Legal disclaimer
	Generic conventions
	1 Cluster
	1.1 Update expired certificates of a Kubernetes cluster

	2 Application
	3 Network
	3.1 Deploy high-reliability Ingress Controller

	4 Release
	4.1 Implement Layer-4 canary release by using Alibaba Cloud Server Load Balancer in a Kubernetes cluster

	5 Istio
	5.1 Implement Istio distributed tracking in Kubernetes

	6 DevOps

