
Alibaba Cloud
DataWorks

Data Development
Issue: 20190920

DataWorks Data Development / Legal disclaimer

Legal disclaimer
Alibaba Cloud reminds you to carefully read and fully understand the terms and
conditions of this legal disclaimer before you read or use this document. If you have
read or used this document, it shall be deemed as your total acceptance of this legal
disclaimer.
1. You shall download and obtain this document from the Alibaba Cloud website

 or other Alibaba Cloud-authorized channels, and use this document for your
own legal business activities only. The content of this document is considered
 confidential information of Alibaba Cloud. You shall strictly abide by the
confidentiality obligations. No part of this document shall be disclosed or provided
 to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted,
or disseminated by any organization, company, or individual in any form or by any
means without the prior written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades
, adjustments, or other reasons. Alibaba Cloud reserves the right to modify
the content of this document without notice and the updated versions of this
 document will be occasionally released through Alibaba Cloud-authorized
channels. You shall pay attention to the version changes of this document as they
occur and download and obtain the most up-to-date version of this document from
Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud
products and services. Alibaba Cloud provides the document in the context that
 Alibaba Cloud products and services are provided on an "as is", "with all faults
" and "as available" basis. Alibaba Cloud makes every effort to provide relevant
 operational guidance based on existing technologies. However, Alibaba Cloud
hereby makes a clear statement that it in no way guarantees the accuracy, integrity
, applicability, and reliability of the content of this document, either explicitly
or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial
 losses incurred by any organizations, companies, or individuals arising from
their download, use, or trust in this document. Alibaba Cloud shall not, under any
 circumstances, bear responsibility for any indirect, consequential, exemplary,
incidental, special, or punitive damages, including lost profits arising from the use

Issue: 20190920 I

DataWorks Data Development / Legal disclaimer

 or trust in this document, even if Alibaba Cloud has been notified of the possibility
 of such a loss.

5. By law, all the content of the Alibaba Cloud website, including but not limited to
works, products, images, archives, information, materials, website architecture,
website graphic layout, and webpage design, are intellectual property of Alibaba
 Cloud and/or its affiliates. This intellectual property includes, but is not limited
 to, trademark rights, patent rights, copyrights, and trade secrets. No part of the
 Alibaba Cloud website, product programs, or content shall be used, modified
, reproduced, publicly transmitted, changed, disseminated, distributed, or
published without the prior written consent of Alibaba Cloud and/or its affiliates
. The names owned by Alibaba Cloud shall not be used, published, or reproduced
for marketing, advertising, promotion, or other purposes without the prior written
 consent of Alibaba Cloud. The names owned by Alibaba Cloud include, but are
not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other brands of Alibaba
Cloud and/or its affiliates, which appear separately or in combination, as well as
 the auxiliary signs and patterns of the preceding brands, or anything similar to
the company names, trade names, trademarks, product or service names, domain
 names, patterns, logos, marks, signs, or special descriptions that third parties
identify as Alibaba Cloud and/or its affiliates).

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

II Issue: 20190920

DataWorks Data Development / Legal disclaimer

Issue: 20190920 III

DataWorks Data Development / Generic conventions

Generic conventions
Table -1: Style conventions
Style Description Example

This warning information
indicates a situation that will
cause major system changes,
faults, physical injuries, and other
 adverse results.

Danger:
Resetting will result in the loss of
user configuration data.

This warning information
indicates a situation that may
cause major system changes,
faults, physical injuries, and other
 adverse results.

Warning:
Restarting will cause business
interruption. About 10 minutes are
required to restore business.

This indicates warning informatio
n, supplementary instructions,
and other content that the user
must understand.

Notice:
Take the necessary precautions
to save exported data containing
sensitive information.

This indicates supplemental
instructions, best practices, tips,
and other content that is good to
know for the user.

Note:
You can use Ctrl + A to select all
files.

> Multi-level menu cascade. Settings > Network > Set network
type

Bold It is used for buttons, menus
, page names, and other UI
elements.

Click OK.

Courier
 font

It is used for commands. Run the cd / d C :/ windows
 command to enter the Windows

system folder.
Italics It is used for parameters and

variables.
bae log list --
instanceid Instance_ID

[] or [a|b] It indicates that it is a optional
value, and only one item can be
selected.

ipconfig [-all|-t]

Issue: 20190920 I

DataWorks Data Development / Generic conventions

Style Description Example
{} or {a|b} It indicates that it is a required

value, and only one item can be
selected.

swich {stand | slave}

II Issue: 20190920

DataWorks Data Development / Generic conventions

Issue: 20190920 III

DataWorks Data Development / Contents

Contents
Legal disclaimer.. I
Generic conventions.. I
1 Data development...1

1.1 Solution...1
1.2 SQL code encoding principles and standards.. 4
1.3 Console functions.. 9

1.3.1 Introduction to console.. 9
1.3.2 Version... 11
1.3.3 Structure.. 13
1.3.4 Relationship... 15

1.4 Business flow... 16
1.4.1 Business flow..16
1.4.2 Resource...21
1.4.3 Register the UDFs... 25

1.5 Node type.. 27
1.5.1 Node types overview... 27
1.5.2 Data integration node... 28
1.5.3 MaxCompute SCRIPT node..29
1.5.4 ODPS SQL node...30
1.5.5 SQL Component node... 35
1.5.6 ODPS Spark node..40
1.5.7 Virtual node... 43
1.5.8 ODPS MR node... 45
1.5.9 SHELL node..52
1.5.10 PyODPS node.. 56
1.5.11 for-each node..61
1.5.12 do-while node... 62
1.5.13 Cross-tenant nodes..69
1.5.14 Merge node...73
1.5.15 Branch node... 77
1.5.16 Assignment node.. 83
1.5.17 OSS object inspection..88
1.5.18 PAI node... 92
1.5.19 Custom node type... 93
1.5.19.1 Overview of custom node types.. 93
1.5.19.2 Create a wrapper..95
1.5.19.3 Create a custom node type..97
1.5.20 AnalyticDB for MySQL node...100
1.5.21 Data Lake Analytics node.. 104
1.5.22 AnalyticDB for PostgreSQL node.. 108

IV Issue: 20190920

DataWorks Data Development / Contents
1.6 Scheduling configuration..111

1.6.1 Basic attributes... 111
1.6.2 Parameter configuration... 113
1.6.3 Scheduling time.. 124
1.6.4 Dependencies... 134
1.6.5 Cross-cycle dependencies..150
1.6.6 Node context...155
1.6.7 Create instances immediately..161

1.7 Configuration management.. 168
1.7.1 Overview of configuration management168
1.7.2 Configuration center... 169
1.7.3 Project configuration.. 174
1.7.4 Templates... 174
1.7.5 Theme management..175
1.7.6 Table levels...175
1.7.7 Back up and restore data...176

1.8 Manual business flow... 177
1.8.1 Manual business flow overview... 177
1.8.2 Resource...178
1.8.3 Function... 182
1.8.4 Table.. 185

1.9 Manual task node type... 191
1.9.1 ODPS SQL node... 191
1.9.2 PyODPS node.. 193
1.9.3 Manual data intergration node.. 196
1.9.4 ODPS MR node..202
1.9.5 SQL component node.. 208
1.9.6 Virtual node..213
1.9.7 SHELL Node..215

1.10 Manual task parameter settings.. 219
1.10.1 Basic Attributes...219
1.10.2 Configure manual node parameters... 220

1.11 Component management.. 227
1.11.1 Create components..227
1.11.2 Use components..234

1.12 Queries...235
1.13 Running log..238
1.14 Public Tables..240
1.15 Table Management... 242
1.16 External tables... 248
1.17 Functions... 260
1.18 Editor shortcut list... 261
1.19 Recycle Bin...2642 DataService studio.. 266
2.1 DataService studio overview... 266

Issue: 20190920 V

DataWorks Data Development / Contents
2.2 Glossary... 267
2.3 Generate API.. 268

2.3.1 Configure the Data Source...268
2.3.2 Overview of generating API... 268
2.3.3 Generate API in Wizard Mode..269
2.3.4 Generate API in Script Mode... 274

2.4 Register API... 280
2.5 API service test.. 284
2.6 Publish an API... 285
2.7 Delete API.. 286
2.8 Call an API...286
2.9 FAQ.. 2883 Function Studio...290
3.1 Overview..290
3.2 Releases... 291
3.3 Get started... 291

3.3.1 Create projects..291
3.3.2 Develop UDFs..292
3.3.3 Debug UDFs.. 292
3.3.4 Publish UDFs.. 293
3.3.5 Develop MapReduce projects...294
3.3.6 Perform Git operations..297
3.3.7 Collaboratively edit the same code file...298
3.3.8 Perform unit testing..298
3.3.9 Search a project's code by keyword..298
3.3.10 Automatically generate code..298

VI Issue: 20190920

DataWorks Data Development / 1 Data development

1 Data development
1.1 Solution

This topic describes how to operate the data development mode. The data
development mode has been upgraded to the three-level structure comprising of
project, solution, and business flow. This data development mode abandons the
conventional directory organization mode.

Project-solution-business flow
In the latest version of DataWorks , the data development mode is upgraded to
integrate different node task types based on business types. This structure improves
 the facilitation of code development by businesses, and allow the development to
be implemented across multiple business flows from a wider perspective. The three
-level structure of the project-solution-business flow redefines the development
process and improves the users' development experience.
• Project: The basic unit for the permission organization that is used for controllin

g user permissions, such as development and O&M permissions. In the same
project, all project member codes can be developed and managed in a collaborat
ive manner.

• Solution: Users can customize a solution by combining some business flows. The
following are the solution advantages:
- A solution contains multiple business flows.
- The same business flow can be reused in different solutions.
- The immersion development can be implemented for a combined solution.

Issue: 20190920 1

DataWorks Data Development / 1 Data development

• Business flow: An abstract entity of the business, which allows users to organize
data code development from the business perspective. A business flow can be
reused by multiple solutions. The following are the business flow advantages:
- The business flow helps users to organize codes from the business perspective

. It provides the task type-based code organization mode. It supports multiple
levels of sub-directories (preferentially up to four-levels).

- The entire business flow can be viewed and optimized from the business
perspective.

- The business flow dashboard is provided to improve the development efficiency.
- The release and O&M can be organized based on the business flow.

Immersion development experiences
You can double-click any created solution to switch from the development area to
 the solution area. The directory displays only the current solution content, which
 provides a clean environment, that is not affected by other project codes that are
unrelated to the current solution.
1. Go to the DataStudio page and create a solution.

2 Issue: 20190920

DataWorks Data Development / 1 Data development

2. Select the business flow for viewing from the created solution.

3. Right-click View All Business Flows to view nodes of the selected business flow or
modify the solution.

4. Go to another page.
• Click Publish to go to the Task Publish page. Nodes in the To Be Released status

under the current solution are displayed on this page.
• Click O&M to go to the O&M Center > Periodic Instances page. By default,

periodic instances of all nodes under the current solution are displayed on this
page.

A business flow can be reused by multiple solutions, which allows you to focus on
 solution development. Other users can edit your referenced business flows, or
business flows in other solutions, and implement collaborative development.

Issue: 20190920 3

DataWorks Data Development / 1 Data development

1.2 SQL code encoding principles and standards
Short Description: This topic describes the basic SQL code encoding principles and
standards.

Encoding principles
The SQL code is encoded as follows:
• The code is comprehensive and healthy.
• The code lines are clear, neat, and orderly.
• The code lines are well arranged and have a good hierarchical structure.
• The comments must be provided to improve the code's readability.
• The principle requires no constraint conventions for developers coding behavior

. In practice, the general requirement preconditions are not violated, rational
 deviations from this convention are acceptable. If they are beneficial to code
development then this convention can be continuously improved and supplement
ed.

• All keywords and reserved words used in SQL codes are in lowercase, such as the
following: Select, From, Where, And, Or, Union, Insert, Delete, Group, Having, and
 Count.

• Keywords and reserved codes used in SQL codes, and other codes including field
names and table alias must be in lowercase.

• Four spaces are equivalent to an indention unit. All indentions must be the integer
multiples of an indention unit and aligned according to the code hierarchy.

• You are not allowed to use the select asterisk (*) operation. The column name must
 be specified in all operations.

• The corresponding brackets must be on the same column.
SQL coding specification

The SQL code specification is as follows:
• Code header

The code header must have the following information such as: subject, function
description, author, and date. The log and title bars must be reserved so that other

4 Issue: 20190920

DataWorks Data Development / 1 Data development

users can edit records. Note that each line must not exceed 80 characters in length.
The following is a template:

-- MaxCompute (ODPS) SQL
--
**
-- Subject : Transactio n
-- Function descriptio n : Transactio n refund analysis
 -- Author : With code
 -- Create time : 20170616
 -- Change log :
 -- Modified on Modified by Content
-- yyyymmdd name comment
-- 20170831 Without code Add a judgment on the
transactio n biz_type = 1234
--
**

• Field arrangement requirements:
- Each selected field for the SELECT statement occupies one line.
- One indention next to the word "select" is followed by the first selected field.

That is, the field is two indentions away from the line start .
- Each alternating field starts with two indentions, followed by a comma (,) and

then the field name.
- The comma (,) between two fields come before the second field.
- The as statement must be in the same line as the related fields. We recommend

that the "as" statements with multiple fields must be aligned in the same
column.

• INSERT sub-statement arrangement requirements
The INSERT sub-statement must be written in the same row. You are not allowed to
 use the line feed.

Issue: 20190920 5

DataWorks Data Development / 1 Data development

• SELECT sub-statement arrangement requirements
Sub-statements used by the SELECT statements, include From, Where, Group by,
Having, Order by, Join, and Union, must conform to the following requirements:
- The line feed.
- The sub-statements must be left-aligned with the SELECT statement.
- You must reserve two indentions between the first letter of a sub-statement and

its subsequent code.
- The logical operators, such as "AND" and "OR" in a "WHERE" sub-statement

must be left-aligned with WHERE.
- If the length of a sub-statement exceeds two indentions, add a space to the sub-

statement, and write the subsequent code. For example: "order by" and "group
by"

• The spacing requirements before and after an operator as follows: A space must
be reserved before and after an arithmetic operator or a logical operator, and
operators must be written on the same line unless the line exceeds 80 characters in
length.

6 Issue: 20190920

DataWorks Data Development / 1 Data development

• Compiling the "CASE" statement
In a "SELECT" statement, the "CASE" statement is used to judge or assign field
values. The correct compiling of the "CASE" statement is critical for enhancing the
code lines readability.
The following conventions are stipulated for compiling the "CASE" statement:
- The "WHEN" sub statement is in the same line as the "CASE" statement and

starts after one indention.
- Each "WHEN" sub statement occupies one line. The line feed is acceptable if the

 statement is too long.
- A "CASE" statement must contain the "ELSE" sub statement. The "ELSE" sub

statement must be aligned with the "WHEN" sub statement.

• Nesting query compiling specification
The nesting sub-query is often used in Extract, transform, load (ETL) development
of the data warehouse system. Therefore, it is important to arrange codes in a
hierarchical manner. For example:

• Table alias definition convention
- The alias must be added to all tables. Once an alias is defined for an operation

table in a "SELECT" statement, the alias must be used whenever there are table
Issue: 20190920 7

DataWorks Data Development / 1 Data development

statement references. To facilitate the code compiling, the alias must be simple
and concise whenever possible and keywords must be avoided.

- The table alias is defined with simple characters. We recommend that aliases are
 defined in alphabetical order.

- The hierarchy must be shown before using the multi-layered nesting sub-
query of an alias. The SQL statement alias is defined by the layer. Layer 1 to 4
are represented by P (Part), S (Segment), U (Unit), and D (Detail), respectively.
Alternatively, Layer 1 to 4 can be represented by a, b, c, and d. Sub-statements
in the same layer are differentiated from each other by numbers, such as 1, 2, 3,
and 4 behind the letter that represents the layer. A comment can be added for a
table alias.

8 Issue: 20190920

DataWorks Data Development / 1 Data development

• Comments within the SQL statement
- The comment must be added for each SQL statement.
- The comment for each SQL statement exclusively occupies a single line, and is

placed in front of the statement.
- The field comment must be added behind the field.
- Comments must be added to branch condition expressions that are difficult to

understand.
- Comments must be added to describe important calculation functions.
- If a function is too long, the statement must be segmented based on the

implemented functions, and comments must be added to describe each segment
.

- Comments must be added to a constant or variable to explain the saved value,
but comments are optional for a valid value range.

1.3 Console functions
1.3.1 Introduction to console

The interface function points are described below:
No. Feature Description
1 Show my files View nodes under your account in the current

column.

Issue: 20190920 9

DataWorks Data Development / 1 Data development

No. Feature Description
2 Code search Search for a code or a code segment.
3 [+] Creates a solution, business flow, folder, node,

table, resource, or function entry.
4 Reload Refreshes the current directory tree.
5 Locate Locates the selected file position.
6 Import Imports local data to an online table. Note: The

encoding format.
7 Filter Filter nodes based on the specified conditions.
8 Save Saves the current code.
9 Save as query file Saves the current code as a temporary file, which

is displayed in the temporary query column.
10 Submit Submits the current node.
11 Submit and unlock Submits the current node and unlocks the node to

 edit the code.
12 Steal lock Edits a node that you do not have ownership over.
13 Run Runs the current node code.
14 Run after setting

parameters
Runs the code of the current node with the
configured parameters.

15 Precompile Edit and test the current node parameters.
16 Stop run Stops the run code.
17 Reload Refreshes the page and returns to the previously

saved page.
18 Run smoke test

in development
environment

Tests the current node code in the development
environment.

19 View smoke test ;
og in development
environment

Views the run log of a node in the development
environment.

20 Go to scheduling
 system of
development
environment

Goes to the O&M center of the development
environment.

10 Issue: 20190920

DataWorks Data Development / 1 Data development

No. Feature Description
21 Format The sequence codes of the current node. It is

often used when the code on a single line is too
long.

22 Publish Publishes the submitted code. After the code
is published, the code is under the production
environment.

23 O&M Goes to the O&M center of the production
environment.

24 Scheduling
Configuration

Configures the scheduling attributes, parameters
, and Resource Groups of a node.

25 Relationship View the relationship between tables used by the
code.

26 Version View the submission and publish records of the
current node.

27 Structure View the code structure of the current node. If
the code is too long, you can quickly locate a code
 segment based on the key information in the
structure.

1.3.2 Version
A version is a submission and release record of the current node, where each
submission generates a new version. You can check the related status, change type,
and release remarks as required to facilitate operations on the node.

Note:
Only a submitted node has the version information.

Issue: 20190920 11

DataWorks Data Development / 1 Data development

• File ID: The current node ID.
• Version: A new version is generated for each release. The first release is V1, the

second modification is V2, and so on.
• Submitter: The operator who submits and releases the node.
• Submission time: The version release time. If a version is submitted and then

released, the release time covers the submission time. By default, the last release
time of the operation is recorded.

• Change type: The operation history of the current node. It is set to Added if the
node is first released, and set to Modified if the node is modified.

• Status: The operation status record of the current node.
• Remarks: Changes the description of the current node when submitted. It facilitate

s other personnel to locate the related version when operating the node.
• Action: You can select Code and Roll Back in this column.

- View code: Click it to view the version code and precisely search for a record
version to be roll back.

- Roll back: Click it to roll back the current node to a previous version as required
. You must submit the node for release again after roll back.

12 Issue: 20190920

DataWorks Data Development / 1 Data development

• Compare: Click it to compare the code and parameters of two versions.

Click View Details to go to the details page and compare the code and scheduling
attribute changes.

Note:
Only two versions can be compared. You cannot compare only one or more than
three nodes.

1.3.3 Structure
The structure is based on the current Code, which parses the process diagram that
runs under SQL, helps users quickly review the edited SQL situation, so that it can be
easily modified and viewed.

Structure
As shown in SQL:
INSERT OVERWRITE TABLE dw_user_in fo_all_d PARTITION (dt
='${ bdp . system . bizdate }')
SELECT COALESCE (a . uid , b . uid) AS uid

 , b . gender
 , b . age_range
 , B . flavdiac
 , a . region
 , a . device
 , a . identity
 , a . method
 , a . url
 , a . referer
 , a . time
FROM (

 VALUES
 From fig
 WHERE dt = ${ bdp . system . bizdate }

Issue: 20190920 13

DataWorks Data Development / 1 Data development
) a
LEFT OUTER JOIN (

 VALUES
 FROM ods_user_i nfo_d
 WHERE dt = ${ bdp . system . bizdate }
) b
on a . uid = b . uid ;

According to this Code, the structure is parsed:

When the mouse is placed in a circle, the corresponding explanation is displayed:
1. Source table: The target table for the SELECT query.
2. Filter: Filters the specific partitions in the table that you want to query.

14 Issue: 20190920

DataWorks Data Development / 1 Data development

3. In the first part of the intermediate table (query view): Place the query data results
into a temporary table.

4. Join: The mosaic of the results in the two-part query through join.
5. In the second section, the intermediate table (the query view): Summarizes the

results of join in a temporary table. This temporary table exists for three days and
is automatically cleared three days later.

6. Target table (insert): Inserts data obtained in the second part of the table in insert
override.

1.3.4 Relationship
This topic describes relationships that displays the relations between the current
node and other nodes. This relationship displays two parts: The dependency diagram
and the internal relationship diagram.

Dependency graph
Depending on the node dependency, the dependency graph shows whether the
current node dependency meets expectations. If the dependency graph does not meet
 expectations, you can return to the schedule configuration interface to reset.

Internal relationship diagram
The internal relationship diagram is parsed based on the node code, for example:
INSERT OVERWRITE TABLE dw_user_in fo_all_d PARTITION (dt
='${ bdp . system . bizdate }')
SELECT COALESCE (a . uid , b . uid) AS uid

Issue: 20190920 15

DataWorks Data Development / 1 Data development
 , b . gender
 , b . age_range
 , B . flavdiac
 , a . region
 , a . device
 , a . identity
 , a . method
 , a . url
 , a . referer
 , a . time
FROM (

 VALUES
 From fig
 WHERE dt = ${ bdp . system . bizdate }
) a
LEFT OUTER JOIN (

 VALUES
 FROM ods_user_i nfo_d
 WHERE dt = ${ bdp . system . bizdate }
) b
on a . uid = b . uid ;

According to the preceding SQL, the parsed internal relationship map join "
dw_user_info_all_d" with "ods_log_info_d", and export table as follows :

1.4 Business flow
1.4.1 Business flow

A business flow integrates different node task types by business type, such a structure
 improves business code development facilitation. The system organizes data
development centered by the business flow, and provides container dashboards of
various types of development nodes. In this way, tools, optimization operations, and

16 Issue: 20190920

DataWorks Data Development / 1 Data development

 management operations are arranged based on data dashboards objects, making
development and management more convenient and intelligent.

DataWorks code structure
A work project supports multiple types of computing engines. A work project
contains multiple business flows, each of which is a collection of various types
of objects that are systematically associated with each other. You can view each
business flow in the automatically generated flowcharts. Objects in a process can
be any of the following types: data integration task, data development task, table,
resource, function, algorithm, and operation flow.
Each object type corresponds to an independent folder, in which sub-folders can be
 created. To facilitate management, we recommend that you create a maximum of
four layers of sub-folders. The planned business flow structure becomes too complex
 when more than four layers of sub-folders are created. We recommend that you split
 the business flow into one or more business flows and manage the related business
flows in one solution. This business flow organization method is more efficient.

Business flow composition
1. Data Integration: For more information about Data Integration, see #unique_13.
2. Data Development: For more information about Data Integration, see #unique_14.
3. Table: For more information about Data Integration, see #unique_15.
4. Resources: For more information about Data Integration, see Introduction to

resources.
5. Functions: For more information about Data Integration, see Introduction to

functions.

Issue: 20190920 17

DataWorks Data Development / 1 Data development

Double-click the name of a Business Flow node to view the relationship between
nodes of the business flow in a workflow chart.

Business flow dashboard
You can check all business flows under a project on the business flow dashboard.

18 Issue: 20190920

DataWorks Data Development / 1 Data development

Business flow object dashboard
An object set dashboard is created for each object type in a business flow, and
each object corresponds to an object card on the dashboard. You can attach the
operation and optimization suggestions to the corresponding object, so that the
object management is intelligent and convenient.
For example, on the object card of the data development task, the baseline strong
protection and custom reminder icons are displayed, facilitating you to understand
the current task protection status. You can double-click the icon of each object under
the Business Flow to open the dashboard of the object type.

Issue: 20190920 19

DataWorks Data Development / 1 Data development

Data Integration task dashboard

Data Development task dashboard

Note:
The number of nodes in a single business flow cannot exceed 100.

Create a business flow
Right-click Business Flow under Data Development, select Create Business Flow.

20 Issue: 20190920

DataWorks Data Development / 1 Data development

1.4.2 Resource
This topic describes how to create, upload, reference, and download resources.
If you want to use .jar, you need to upload the file to the project resource. You
 can upload text files, MaxCompute tables, and various compressed package
formats, including .zip, .tgz, .tar.gz, .tar, and .jar as different types of resources to
 MaxCompute. Then, you can read or use these resources while running UDFs or
MapReduce.
MaxCompute provides APIs for reading and using resources. The following types of
MaxCompute resources are available:
• File
• Archive: The compression type is identified by the extension in the resource name.

The following compressed file types are supported: .zip, .tgz, .tar.gz, .tar, and .jar.
• JAR: The compiled Java jar packages.
In DataWorks, to create a resource you need to add a resource. Currently, DataWorks
supports adding three resource types in a visual manner, including the .jar and file
resources. The newly created entries are the same, but the differences are as follows:

Issue: 20190920 21

DataWorks Data Development / 1 Data development

• JAR resource: You need to compile the Java code in the offline Java environment,
compress the code into a JAR package, and upload the package as the JAR resource
 to ODPS.

• Small files: These resources are directly edited on DataWorks.
• File resource: Select a large file when you create file resources. You can also upload

 local resource files.

Note:
The resource package for upload cannot exceed 30 MB.

Create a resource instance
1. Right-click Business Flow under Data Development, and select Create Business

Flow.

22 Issue: 20190920

DataWorks Data Development / 1 Data development

2. Right-click Resource, and select Create Resource > JAR.

Issue: 20190920 23

DataWorks Data Development / 1 Data development

3. The Create Resource dialog box is displayed. Enter the resource name according to
the naming convention, and set the resource type to JAR. Select a local JAR package
for upload, and click OK to submit the package in the development environment.

Note:
• If this JAR package has been uploaded to the MaxCompute client, you must

deselect Upload to ODPS . Otherwise, an error will occur during the upload
process.

• The resource name is not always the same as the uploaded file.
• The naming convention for a resource name: A string can contain 1 to 128

characters, including letters, numbers, underscores (_), and periods (.). The
name is case insensitive. If the resource is a JAR resource, the extension is .jar.

24 Issue: 20190920

DataWorks Data Development / 1 Data development

4. Click OK to submit the resource to the development scheduling server.

5. Release a node task.
For more information about operations, see #unique_19.

1.4.3 Register the UDFs
Currently, the Python and Java APIs support UDFs implementation. To compile a UDF
program, you can upload the UDF code by Adding resources and then register the
UDF.
UDF registration procedure:
1. Right-click Business Flow under Data Development, and select Create Business

Flow.

Issue: 20190920 25

DataWorks Data Development / 1 Data development

2. In the offline Java environment, edit the program, compress the program into a
JAR package, create a JAR resource, submit and release the program. For more
information about the Java environment, see Create resources.

3. Create a function.
Right-click Function, select Create Function, and enter the new function
configuration.

4. Edit the function configuration.

• Class name: The main class name that implements the UDF.
• Resource list: The resource name in the second step. If there are multiple

resources, separate them with commas (,).
• Description: The UDF description. It is optional.

26 Issue: 20190920

DataWorks Data Development / 1 Data development

5. Submit the task.
After the configuration is completed, click Save in the upper-left corner of the page
or press Ctrl+S to Submit (and Unlock) the node in the development environment.

6. Release a task
For more information about the operation, see #unique_19.

1.5 Node type
1.5.1 Node types overview

This topic describes how to apply the seven different node types in DataWorks in
different scenarios.

Virtual node
A virtual node is a control node that does not generate any data. The virtual node is
generally used as the root node for planning the overall node workflow. For more
information about virtual nodes, see #unique_23.

Note:
The final workflow output table contains multiple branch input tables. Virtual nodes
are usually used if these input tables do not have any dependencies between them.

ODPS SQL node
An ODPS SQL task allows you to edit and maintain the SQL code on the Web, and
easily implement code runs, debug, and collaboration. DataWorks also provides
code version management, automatic resolution of upstream and downstream
dependencies, and other features. For more information about the examples, see
#unique_24.
By default, DataWorks uses the MaxCompute project as the space for development
and production, so that the code content of the MaxCompute SQL node follows the
 MaxCompute SQL syntax . MaxCompute SQL syntax is similar to Hive, which can
be considered a subset of the standard SQL. However, MaxCompute SQL cannot be
equated with a database because it does not possess the following database features:
transactions, primary key constraints, and indexes.
For more information about MaxCompute SQL syntax, see SQL overview.

Issue: 20190920 27

https://www.alibabacloud.com/help/doc-detail/27860.htm

DataWorks Data Development / 1 Data development

ODPS MR node
MaxCompute supports MapReduce programmed APIs, whose Java APIs can be used to
compile the MapReduce program for data processing in MaxCompute. You can create
MaxCompute MR nodes and use them for task scheduling. For more information
about the examples, see #unique_25.

PyODPS node
The Python SDKin MaxCompute can be used to operate MaxCompute.
The PyODPS node in DataWorks can be integrated with MaxCompute Python SDK. You
can edit the Python code to operate MaxCompute on a PyODPS node in DataWorks.
For more information, see #unique_26.

SQL component node
An SQL component node is an SQL code process template that contains multiple input
and output parameters. To handle an SQL code process, you need to import, filter,
join, and aggregate one or more data source tables to form a target table required for
new business. For more information, see#unique_27.

Data integration node
A data integration node is a stable, efficient, and automatically scalable external
data synchronization cloud service provided by the Alibaba Cloud DTplus platform.
With the data synchronization node, you can easily synchronize data in the business
system to MaxCompute. For more information, see #unique_13.

1.5.2 Data integration node
Currently, the data integration task supports the following data sources:
MaxCompute, MySQL, DRDS, SQL Server, PostgreSQL, Oracle, MongoDB, DB2, OTS,
OTS Stream, OSS, FTP, Hbase, LogHub, HDFS, and Stream. For details about more
supported data sources, see #unique_29.

Configure a integration task
For more information, see #unique_30/unique_30_Connect_42_section_tfn_1kc_p2b

Node scheduling configuration.
Click the Scheduling Configuration on the right of the node task editing area to go
to the node scheduling configuration page. For more information, see Scheduling
configuration.

28 Issue: 20190920

https://www.alibabacloud.com/help/doc-detail/34615.htm

DataWorks Data Development / 1 Data development

Submit the node
After the configuration is completed, click Save in the upper left corner of the page or
press Ctrl+S to submit (and unlock) the node to the development environment.

Publish a node task
For more information about the operation, see Release management.

Test in the production environment.
For more information about the operation, see #unique_32.

1.5.3 MaxCompute SCRIPT node
1. On the DataStudio page, move the cursor over the Create icon and select Business

Flow. The Create Business Flow dialog box appears.

2. On the DataStudio page, move the cursor over the Create icon and choose Data
Analytics > ODPS SCRIPT.

Issue: 20190920 29

DataWorks Data Development / 1 Data development

3. Edit the MaxCompute SCRIPT node.
You can edit the script code of the node. For more information, see #unique_34.

4. Set scheduling parameters of the node.
Click Schedule on the right of the node editing area to go to the node scheduling
configuration page. For more information, see Scheduling configuration.

5. Submit the node.
After the scheduling configuration is completed, click Save in the upper-left corner
of the page to submit and unlock the node to the development environment.

6. Publish the node.
For more information, see Publish management.

7. Test the node in the production environment.
For more information, see #unique_32.

1.5.4 ODPS SQL node
This topic describes the ODPS SQL node functions. The ODPS SQL node syntax is
similar to SQL, and is suited for distributed scenario with massive data volume at
the TB-level, but has low real-time requirements. The ODPS SQL node is an OLAP
application oriented throughput. We recommend you use ODPS SQL if your business
needs to handle tens of thousands transactions because it requires a long period to
complete the job process from preparation to submission.

30 Issue: 20190920

DataWorks Data Development / 1 Data development

1. Create a business flow.
Right-click Business Flow under Data Development, and select Create Business
Flow.

Issue: 20190920 31

DataWorks Data Development / 1 Data development

2. Create ODPS SQL node.
Right-click Data Development, and select Create Data Development Node > ODPS
SQL.

3. Edit the node code.
For more information about the SQL syntax statements, see MaxCompute SQL
 statements.

32 Issue: 20190920

https://www.alibabacloud.com/help/doc-detail/27860.htm
https://www.alibabacloud.com/help/doc-detail/27860.htm

DataWorks Data Development / 1 Data development

4. Query result display
DataWorks query results are connected to the spreadsheet function, making it
easier for users to operate the data results.
The query results are displayed in spreadsheet style. Users can perform operations
in DataWorks, open it in a spreadsheet, or freely copy content stations in local excel
files.

• Hide column: Select one or more columns to hide the column.
• Copy row: Select one or more rows that need to be copied to the left side, and

click Copy Row.
• Copy column: The top column selects a column or more points that need to be

copied to the selected column.
• Copy: You can freely copy the selected content.
• Search: The search bar is displayed in the upper-right corner of the query

results for facilitating data search in the table.

Issue: 20190920 33

DataWorks Data Development / 1 Data development

5. Node scheduling configuration.
Click Schedule on the right of the node task editing area to go to the Node
Scheduling Configuration page. For more information about node scheduling
configuration, see Scheduling configuration.

6. Submit the node.
After the configuration is completed, click Save in the upper-left corner of the page
or press Ctrl+S to submit (and unlock) the node to the development environment.

7. Publish a node task.
For more information about the operation, see Release management.

8. Test in the production environment.
For more information about the operation, see #unique_32.

34 Issue: 20190920

DataWorks Data Development / 1 Data development

1.5.5 SQL Component node
Procedure

1. Right-click the Business Flow under Data Development, and select Create Business
Flow.

Issue: 20190920 35

DataWorks Data Development / 1 Data development

2. Right-click Data Development, and select Create Data Development Node > SQL
Component Node.

36 Issue: 20190920

DataWorks Data Development / 1 Data development

3. To improve the development efficiency, the data task developers can use
components contributed by project and tenant members to create data processing
nodes.
• Components created by members of the local project are under Project

Components.
• Components created by tenant members are located under Public Components.
When you create a node, set the node type to SQL Component node, and specify the
node name.

Specify parameters for the selected component.

Enter the parameter name, and set the parameter type to Table or String.
Specify the three get_top_n parameters in sequence.
Specify the following input table for the Table type: test_project.test_table
parameters.

Issue: 20190920 37

DataWorks Data Development / 1 Data development

4. Node scheduling configuration.
Click the Scheduling Configuration on the right of the node task editing area to go
to the Node Scheduling Configuration page. For more information, see Scheduling
configuration.

5. Submit a node.
After completing the configuration, click Save in the upper-left corner of the page
or press Ctrl+S to submit (and unlock) the node in the development environment.

6. Publish a node task.
For more information about the operation, see Publish management.

7. Test in a production environment.
For more information about the operation, see #unique_32.

Upgrade the SQL component node version
After the component developer releases a new version, the component users can
choose whether to upgrade the used instance of the existing component to the latest
used component version.
With the component version mechanism, developers can continuously upgrade
components and component users can continuously enjoy the improved process
execution efficiency and optimized business effects after upgrading the components.
For example, user A uses the v1.0 component developed by user B, and user B
upgrades the component to V.2.0. User A can still use the v1.0 component after the
upgrade, but will receive an upgrade reminder. After comparing the new code with
the old code, user A finds that the business effects of the new version are better than
that of the old version, and therefore can determine whether to upgrade to the latest
version of the component.
You can easily upgrade an SQL component node based on the component template,
by selecting Upgrade. After checking whether the SQL component node parameter
 settings are effective in the new version, and then make some adjustments based
on the new version component instructions, and then submit and release the node
similar to a common SQL component node.

38 Issue: 20190920

DataWorks Data Development / 1 Data development

Interface functions

The interface features are described below:
No. Feature Description
1 Save Saves the current component settings.
2 Steal lock edit Steals lock edit of the node if you are not the

owner of the current component.
3 Submit Submit the current component in the developmen

t environment.
4 Publish component Publish a universal global component to the

entire tenant, so that all users in the tenant can
view and use the public component.

5 Resolve input and
output parameters

Resolve the input and output parameters of the
current code.

6 Precompilation Edit the custom and component parameters of the
 current component.

7 Run Run the component locally in the development
environment.

8 Stop run Stop a running component.
9 Format Sort the current component code by keyword.
10 Parameter settings View the component information, input

parameter settings, and output parameter
settings.

11 Version View the submission and release records of the
current component.

Issue: 20190920 39

DataWorks Data Development / 1 Data development

No. Feature Description
12 Reference records View the usage record of the component.

1.5.6 ODPS Spark node
DataWorks supports the ODPS Spark node type. This topic describes how to create
and configure an ODPS Spark node.

WordCount
1. In Data Analytics, right-click Workflow and select Create Workflow.
2. Right-click Resource, choose Create Resource > JAR, and upload the compiled JAR

package.

For more information about the WordCount sample code, see #unique_38.

40 Issue: 20190920

DataWorks Data Development / 1 Data development

3. Right-click Data Analytics under Workflow and choose Create Data Analytics Node
> ODPS Spark to create an ODPS Spark node.

4. In the ODPS Spark dialog box that appears, configure the node information.

5. After the ODPS Spark node is configured, publish and run the node.

Issue: 20190920 41

DataWorks Data Development / 1 Data development

Python
1. Prepare and upload the Python resource.
2. Create and configure an ODPS Spark node.

3. After the ODPS Spark node is configured, publish and run the node.
Lenet (BigDL)

1. Upload the JAR package and data (the mnist.zip file of the archive resource type).
2. Create and configure an ODPS Spark node.

3. After the ODPS Spark node is configured, publish and run the node.

42 Issue: 20190920

DataWorks Data Development / 1 Data development

1.5.7 Virtual node
A virtual node is a control node that does not generate any data. Generally, it is used
as the root node for the overall workflow node planning.

Note:
The final workflow output table contains multiple branch input tables. The virtual
nodes are usually used if these input tables do not have any dependencies.

Create a virtual node task
1. Right-click Business Flow under Data Development, and select Create Business

Flow.

Issue: 20190920 43

DataWorks Data Development / 1 Data development

2. Right-click Data Development, and select Create Data Development Node > Virtual
Node.

3. Set the node type to Virtual Node, and enter the node name. Select the target folder,
and click Submit.

4. Edit the node code: You do not need to edit the virtual node code.

44 Issue: 20190920

DataWorks Data Development / 1 Data development

5. Node scheduling configuration.
Click the Schedule on the right-side of the node task editing area to go to the
Node Scheduling Configuration page. For more information about scheduling
configuration, see Scheduling configuration.

6. Submit the node.
After completing the configuration, click Save in the upper-left corner of the page
or press Ctrl+S to submit (and unlock) the node to the development environment.

7. Publish a node task.
For more information about the operation, see Publishmanagement.

8. Test in the production environment.
For more information about the operation, see #unique_32.

1.5.8 ODPS MR node
This topic describes the ODPS MR node functions. The MaxCompute supports
MapReduce programming APIs. You can use the Java API provided by MapReduce to
write MapReduce programs for processing data in MaxCompute. You can create ODPS
MR nodes and use them in Task Scheduling.
For more information about how to edit and use the ODPS MR, see the examples in
the MaxCompute documentation WordCount examples.
To use an ODPS MR node, you must upload and release the resource for usage, and
then create the ODPS MR node.

Issue: 20190920 45

https://www.alibabacloud.com/help/doc-detail/27886.htm

DataWorks Data Development / 1 Data development

Create a resource instance
1. Right-click Business Flow under Data Development, and select Create Business

Flow.

2. Right-click Resource, and select Create Resource > JAR.

46 Issue: 20190920

DataWorks Data Development / 1 Data development

3. Enter the resource name in Create Resource according to the naming convention,
and set the resource type to JAR, and then select a local JAR package.

Note:
• If this JAR package has been uploaded to the ODPS client, you must deselect

Upload to ODPS. Otherwise, an error will be reported during the upload
process.

• The resource name is not always the same as the uploaded file name.
• The resource name can be 1 to 128 characters in length, and include letters,

numbers, underscores (_), and periods (.). It is case insensitive. The resource
 file extension is .jar if the resource is a JAR resource, and .py for a python
resource.

Issue: 20190920 47

DataWorks Data Development / 1 Data development

4. Click Submit to submit the resource to the development scheduling server.

5. Publish a node task.
For more information about the operation, see Release management.

48 Issue: 20190920

DataWorks Data Development / 1 Data development

Create an ODPS MR node
1. Right-click the Business Flow under Data Development, and select Create Business

Flow.

Issue: 20190920 49

DataWorks Data Development / 1 Data development

2. Right-click Data Development, and select Create Data Development Node > ODPS
MR.

50 Issue: 20190920

DataWorks Data Development / 1 Data development

3. Edit the node code. Double click the new ODPS MR node and enter the following
interface:

The node code editing example as follows:
jar - resources base_test . jar - classpath ./ base_test . jar
 com . taobao . edp . odps . brandnorma lize . Word . NormalizeW
ordAll

The code description as follows:
• The code - resources base_test . jar indicates the file name of the

referenced JAR resource.
• The code - classpath is the JAR package path.
• The code com . taobao . edp . odps . brandnorma lize . Word .

NormalizeW ordAll indicates the main class in the JAR package is called
during execution. It must be consistent with the main class name in the JAR
package.

When one MR calls multiple JAR resources, the classpath must be written as
follows: - classpath ./ xxxx1 . jar ,./ xxxx2 . jar , that is, two paths
must be separated by a comma (,).

4. Node scheduling configuration.
Click the Schedule on the right of the node task editing area to go to the Node
Scheduling Configuration page. For more information about node scheduling
configuration, see Scheduling configuration.

Issue: 20190920 51

DataWorks Data Development / 1 Data development

5. Submit the node.
After completing the configuration, click Save in the upper-left corner of the page
or press Ctrl+S to submit (and unlock) the node in the development environment.

6. Publish a node task.
For more information about the operation, see Release management.

7. Test in the production environment.
For more information about the operation, see #unique_32.

1.5.9 SHELL node
This topic describes the SHELL node. The SHELL node supports standard SHELL
syntax but not the interactive syntax. The SHELL task can run on the default resource

52 Issue: 20190920

DataWorks Data Development / 1 Data development

group. If you want to access an IP address or a domain name, add the IP address or
domain name to the whitelist by choosing Project Configuration.

Procedure
1. Right-click Business Flow under Data Development, and select Create Business

Flow.

Issue: 20190920 53

DataWorks Data Development / 1 Data development

2. Right-click Data Development, and select Create Data Development Node > SHELL.

3. Set the node type to SHELL, and enter the node name. Select the target folder, and
then click Submit.

4. Edit the node code.
Go to the SHELL node code editing page and edit the code.

If you want to call the System Scheduling Parameters in a SHELL statement, then
compile the SHELL statement as follows:
echo "$ 1 $ 2 $ 3 "

Note:

54 Issue: 20190920

DataWorks Data Development / 1 Data development

Separate multiple parameters by spaces, for example: Parameter 1 Parameter
2... For more information about the usage of system scheduling parameters, see
#unique_42.

5. Schedule node configuration.
Click the Scheduling Configuration on the right of the node task editing area to
go to the Node Scheduling Configuration page. For more information about Node
Scheduling Configuration, see Scheduling configuration.

6. Submit the node.
After completing the configuration, click Save in the upper-left corner of the page
or press Ctrl+S to submit (and unlock) the node to the development environment.

7. Release a node task.
For more information about the operation, see Release management.

8. Test the production environment.
For more information about the production environment, see #unique_32.

Use cases
Connect to a database with SHELL
• If the database is built on Alibaba Cloud and the region is China (Shanghai), you

must open the database with the following whitelisted IP addresses to connect to
the database.
10.152.69.0/24,10.153.136.0/24,10.143.32.0/24,120.27.160.26,10.46.67.156,120.27.
160.81,10.46.64.81,121.43.110.160,10.117.39.238,121.43.112.137,10.117.28.203,118
.178.84.74,10.27.63.41,118.178.56.228,10.27.63.60,118.178.59.233,10.27.63.38,118.
178.142.154,10.27.63.15,100.64.0.0/8

Note:
If the database is built on Alibaba Cloud, but the region is not China (Shanghai).
We recommend that you use the Internet or buy an ECS instance in the same
database region, as the scheduling resource to run the SHELL task on a custom
resource group.

Issue: 20190920 55

DataWorks Data Development / 1 Data development

• If the database is built locally, we recommend that you use the Internet connection
and open the database in the preceding whitelisted IP addresses.

Note:
If you are using a Custom Resource Group to run the SHELL task, you must add
the IP addresses of machines in the Custom Resource Group to the preceding
whitelist.

1.5.10 PyODPS node
This topic describes the PyODPS node functions. The PyODPS node type in DataWorks
can be integrated with the Python SDK of MaxCompute. You can edit the Python code
to operate MaxCompute on a PyODPS node of DataWorks.
The Python SDK provided in MaxCompute can be used to operate MaxCompute.

Note:
The Python 2.7 is used in the underlying layer. The data size of the PyODPS node
process cannot exceed 50 MB, while the memory occupied cannot exceed 1 GB.

56 Issue: 20190920

https://www.alibabacloud.com/help/doc-detail/34615.htm

DataWorks Data Development / 1 Data development

Create a PyODPS node
1. Right-click the Business Flow under Data Development, and select Create Business

Flow.

Issue: 20190920 57

DataWorks Data Development / 1 Data development

2. Right-click Data Development, and select Create Data Development Node >
PyODPS.

3. Edit the PyODPS node.
a. MaxCompute portal

On DataWorks, the PyODPS node contains a global variable odps or o, which
is the MaxCompute entry. You do not need to manually define a MaxCompute
entry.
print (odps . exist_tabl e (' PyODPS_iri s '))

b. Run the SQL statements
PyODPS supports MaxCompute SQL query and can read the execution result.
The return value of the execute_sql or run_sql method is the running instance.

Note:
Not all commands that can be executed on the MaxCompute console are SQL
statements accepted by MaxCompute. You need to use other methods to call
non-DDL/DML statements. For example, use the run_security_query method to

58 Issue: 20190920

DataWorks Data Development / 1 Data development

call the GRANT or REVOKE statements, and use the run_xflow or execute_xflow
method to call PAI commands.
o . execute_sq l (' select * from dual ') # Run the
 SQL statements in synchronou s mode . Blocking
continues until execution of the SQL statement is
 completed .
instance = o . runsql (' select * from dual ') # Run
the SQL statements in asynchrono us mode .
print (instance . getlogview _address ()) # Obtain the
logview address .
instance . waitforsuc cess () # Blocking continues until
execution of the SQL statement is completed .

c. Configure the runtime parameters
The runtime parameters must be set sometimes. You can set the hints
parameter with the dict parameter type.
o . execute_sq l (' select * from PyODPS_iri s ', hints
={' odps . sql . mapper . split . size ': 16 })

After you add sql.settings to the global configuration, the related runtime
parameters are added upon each running.python.
from odps import options
options . sql . settings = {' odps . sql . mapper . split . size
': 16 }
o . execute_sq l (' select * from PyODPS_iri s ') # "
hints " is added based on the global configurat ion
.

d. Read the SQL statement execution results
The instance that runs the SQL statement can perform the open_reader
operation. In this case, the structured data is returned as the SQL statement
execution result.
with o . execute_sq l (' select * from dual ').
open_reade r () as reader :
for record in reader : # Process each record .

In another case, desc may be executed in an SQL statement. In this case, the
 original SQL statement execution result is obtained through the reader.raw
attribute.
with o . execute_sq l (' desc dual '). open_reade r () as
 reader :
print (reader . raw)

Note:
Issue: 20190920 59

DataWorks Data Development / 1 Data development

The user-defined scheduling parameters are used in data development. If a
PyODPS node is triggered on the page, and the time must be specified. The
PyODPS node time cannot be directly replaced by an SQL node.

You can configure system parameters as following:

You can configure user-defined parameters as following.

4. Node scheduling configuration.
Click the Schedule on the right of the node task editing area to go to the
Node Scheduling Configuration page. For more information, see Scheduling
configuration.

5. Submit the node.
After completing the configuration, click Save in the upper-left corner of the page
or press Ctrl+S to submit (and unlock) the node in the development environment.

6. Publish a node task.
For more information about the operation, see Release management.

60 Issue: 20190920

DataWorks Data Development / 1 Data development

7. Test in the production environment.
For more information about the operation, see #unique_32.

1.5.11 for-each node
This topic describes how to use a for-each node to repeat a loop twice and display the
loop count.

Create a workflow
1. On the DataStudio page, click Data Analytics in the left-side navigation pane. Move

the pointer over the Create icon and choose Control > for-each.
2. In the Create Node dialog box that appears, set the parameters and click Commit.
3. In the created workflow, create an assignment node as the parent node of the for-

each node.
The assignment node is a SHELL node. The sample code for the node is as follows:
echo ' this is name , ok ';

The outputs parameter is the default output parameter of the assignment node.
Edit the for-each node

Note:
• The start and end nodes of the for-each node have fixed logic and cannot be edited

.
• After modifying the code for the SHELL node of the for-each node, save the

modification. You are not prompted to save the modification when submitting the
 node. If you do not save the modification, the latest code cannot be updated in
time.

The code for the SHELL node is as follows:
echo ${ dag . loopTimes } ---- Displays the loop count .

A for-each node supports the following environment variables:
• ${dag.foreach.current}: the current data row.
• ${dag.loopDataArray}: the input dataset.
• ${dag.offset}: the offset of the loop count to 1.

Issue: 20190920 61

DataWorks Data Development / 1 Data development

• ${dag.loopTimes}: the loop count, whose value equals to the value of ${dag.offset}
plus 1.

// Compare the code of the SHELL node with that of
 a common for loop .
data =[] // It is equivalent to ${ dag . loopDataAr ray }.

// i is equivalent to ${ dag . offset }.
for (int i = 0 ; i < data . length ; i ++) {

 print (data [i]); // data [i] is equivalent to ${ dag
. foreach . current }.

}

The ${dag.loopDataArray} parameter is the default input parameter of the for-each
node. Set this parameter to the value of the outputs parameter of the parent node. If
you do not set this parameter, an error occurs when you submit the node.
Click the Submit icon. On the O&M page that appears, check the running result.

1.5.12 do-while node
You can define mutually dependent nodes, including a loop decision node named
"end", on a do-while node. DataWorks repeatedly runs the nodes and exits the loop
only when the end node returns False.

Note:
A loop can be repeated for a maximum of 128 times. If the loop count exceeds this
limit, an error occurs.

The do-while node supports the MaxCompute SQL, SHELL, and Python languages.
If you use MaxCompute SQL, you can use a case statement to evaluate whether the
specified condition for exiting the loop is met. The following figure shows the sample
code for the end node.

Simple example
This section describes how to use a do-while node to repeat a loop five times and
display the loop count each time the loop runs.
1. On the DataStudio page, click Data Analytics in the left-side navigation pane. Move

the pointer over the Create icon and choose Control > do-while.
2. In the Create Node dialog box that appears, set the parameters and click Commit.

62 Issue: 20190920

DataWorks Data Development / 1 Data development

3. Double-click the created do-while node and define the loop body.
The do-while node consists of the start, sql, and end nodes.
• The start node marks the startup of a loop and does not have any business effect.
• DataWorks provides the sql node as a sample business processing node. You

 need to replace the sql node with your own business processing node, for
example, a SHELL node named "Display loop count." The following figure shows
the sample code for the SHELL node.

• The end node marks the end of a loop and determines whether to start the loop
again. In this example, it defines the condition for exiting the loop for the do-
while node.
The end node only assigns values True and False, indicating whether to start a
loop again or exit the loop. The following figure shows the sample code for the
end node.
The ${dag.loopTimes} variable is used in both the "Display loop count" node and
 the end node. It is a reserved variable of the system. It indicates the loop count
 and increments from 1. The internal nodes of the do-while node can directly
reference this variable.
The value of the ${dag.loopTimes} variable is compared with 5 in the code,
limiting the total number of times the loop runs. The value is 1 for the first run,
2 for the second run, and so on. When the loop runs for the fifth time, the value
is 5. In this case, the conditional statement ${dag.loopTimes}<5 is False, and the
do-while node exits the loop.

Issue: 20190920 63

DataWorks Data Development / 1 Data development

4. Run the do-while node.
You can configure the scheduling settings for the do-while node as needed and
submit it to O&M for running.
• do-while node: The do-while node is displayed as a whole node in O&M. To view

the loop details about the do-while node, right-click the node and select View
Internal Nodes.

• Internal loop body: This view is divided into three parts.
- The left pane of the view lists the rerun history of the do-while node. A record

 is generated for each run of the whole do-while instance.
- The middle pane of the view shows a loop record list. Each record correspond

s to each run of the do-while node. The running status of the node for each
run is also displayed.

- The right pane of the view shows the details about the do-while node each
time the loop runs. You can click a record in the loop record list to view the
running status of the corresponding instance.

5. Check the running result.
Access the internal loop body. In the loop record list, click the record correspond
ing to the third run. The loop count is 3 in the run logs.
You can also view the run logs of the end node that are generated when the loop
runs for the third time and for fifth time, respectively.
The conditional statement 3<5 is True when the loop runs for the third time,
while the conditional statement 5<5 is False when the loop runs for the fifth time.
Therefore, the do-while node exits the loop after the fifth run.

Based on the preceding simple example, the do-while node works in the following
process:
1. Run from the start node.
2. Run nodes in sequence based on the defined node dependencies.
3. Define the condition for exiting a loop for the end node.
4. Run the conditional statement of the end node after the loop ends for the first time.
5. Record the loop count as 1 and start the loop again if the conditional statement

returns True in the run logs of the end node.

64 Issue: 20190920

DataWorks Data Development / 1 Data development

6. Exit the loop if the conditional statement returns False in the run logs of the end
node.

Complex example
Besides the preceding simple scenarios, do-while nodes can also be used in complex
 scenarios where each row of data is processed in sequence by using a loop. Before
processing data in such scenarios, make sure that:
• You have deployed a parent node that can export queried data to the do-while node

. You can use an assignment node to meet this condition.
• The do-while node can obtain the output of the parent node. You can configure the

context and dependencies to meet this condition.
• The internal nodes of the do-while node can reference each row of data. In this

 example, the existing node context is enhanced and the system variable ${dag.
offset} is assigned to help you reference the context of the do-while node.

This section describes how to use the do-while node to respectively display records 0
and 1 in two rows of the tb_dataset table each time the loop runs.
1. On the DataStudio page, click Data Analytics in the left-side navigation pane. Move

the pointer over the Create icon and choose Control > do-while.
2. In the Create Node dialog box that appears, set the parameters and click Commit.
3. Double-click the created do-while node and define the loop body.

a. Create a parent node named "Initialize dataset" for the do-while node. The
parent node generates a test dataset.

b. Click Schedule in the upper-right corner to configure a dedicated context for the
 do-while node. Set Parameter Name to input and Value Source to the output of
the parent node.

c. Type the code for the business processing node named "Print each data row."
• ${ dag . offset }: a reserved variable of DataWorks. This variable

indicates the offset of the loop count to 1. The offset is 0 for the first run, 1 for
the second run, and so on. The offset equals to the loop count minus 1.

• ${ dag . input }: the context that you configure for the do-while node. As
mentioned above, the do-while node is configured with the input parameter,

Issue: 20190920 65

DataWorks Data Development / 1 Data development

with Value Source set to the output of the parent node named "Initialize
dataset."
The internal nodes of the do-while node can directly use ${dag.${ctxKey}} to
 reference the context. In this example, ${ctxKey} is set to input. Therefore,
you can use ${dag.input} to reference the context.

• ${ dag . input [${ dag . offset }]}: The node "Initialize dataset"
exports a table. DataWorks can obtain a row of data in the table based on the
specified offset. The value of ${dag.offset} increments from 0. Therefore, the
displayed results are ${dag.input[0]}, ${dag.input[1]}, and so on until all data
in the dataset is displayed.

d. Define the condition for exiting the loop for the end node. As shown in the
following figure, the values of ${dag.loopTimes} and ${dag.input.length}
are compared. If the value of ${dag.loopTimes} is smaller than that of
${dag.input.length}, the end node returns True and the do-while node continues
the loop. Otherwise, the end node returns False and the do-while node exits the
loop.

Note:
The system automatically sets the ${dag.input.length} variable to the number
of rows in the array specified by the input parameter based on the context
configured for the do-while node.

66 Issue: 20190920

DataWorks Data Development / 1 Data development

4. Run the nodes and view the running result.
• The node "Initialize dataset" generates data rows 0 and 1.

• The following figures show the running result of the node "Print each data row."
Figure 1-1: Display the first row of data

Figure 1-2: Display the second row of data

Issue: 20190920 67

DataWorks Data Development / 1 Data development

• The following figures show the running result of the end node.
Figure 1-3: Run logs generated when the loop runs for the first time

Figure 1-4: Run logs generated when the loop runs for the second time

As shown in the preceding figures, the loop count is smaller than the number of
 the rows when the loop runs for the first time. Therefore, the end node returns
 True and the loop continues. The loop count equals to the number of the rows
when the loop runs for the second time. Therefore, the end node returns False
and the loop stops.

Summary
• Compared with the while, foreach, and do...while statements, a do-while node:

- Contains a loop body that runs a loop before evaluating the conditional
statement, providing the same function as the do...while statement. A do-while
 node can also use the system variable ${dag.offset} and the node context to
implement the function of the foreach statement.

- Cannot achieve the function of the while statement because a do-while node
runs a loop before evaluating the conditional statement.

68 Issue: 20190920

DataWorks Data Development / 1 Data development

• The do-while node works in the following process:
1. Run nodes in the loop body starting from the start node based on node

dependencies.
2. Run the code defined for the end node.

- Run the loop again if the end node returns True.
- Stop the loop if the end node returns False.

• Method to use the context: The internal nodes of the do-while node can use ${dag.
${ctxKey}} to reference the context defined for the do-while node.

• System parameters: DataWorks automatically issues the following system variables
for the internal nodes of the do-while node:
- ${dag.loopTimes}: the loop count, starting from 1.
- ${dag.offset}: the offset of the loop count to 1, starting from 0.

1.5.13 Cross-tenant nodes
This topic describes cross-tenant nodes that are typically used to associate nodes
from different tenants. The cross-tenant nodes are divided into sender and recipient
nodes.

Prerequisites
A sender node and the recipient node must use the same Cron expression. You can
choose Schedule > Scheduling Mode to view the Cron expression, as shown in the
following figure.

Issue: 20190920 69

DataWorks Data Development / 1 Data development

Create a node
1. On the Data Studio page, right-click Control, and choose Create Control Node >

Cross-Tenant Node.

Enter a name in the dialog box and click Submit.
2. Complete the node configuration. Set the node type to Sendor Receive. Authorize

a target workspace and a target Alibaba Cloud account. This example sets the
node type to Send. Therefore, you need to enter the workspace and account that is

70 Issue: 20190920

DataWorks Data Development / 1 Data development

authorized by the recipient node. Save and submit the node after completing the
node configuration.

Follow the same procedure to create a control node under the recipient's account
and workspace. Set the node type to Receive. Afterward, the information about

Issue: 20190920 71

DataWorks Data Development / 1 Data development

the available sender nodes will appear. You must also set the timeout timer. The
timeout timer restarts when the recipient node starts running.

The sender node sends a message to the message center, and starts running the
message after it is successfully delivered. The recipient node continuously pulls
 messages from the message center. The recipient node starts running when it
successfully pulls a message within the timeout period.
If the recipient node will not be created when it does not receive a message within
the timeout period. The timeout of a message can be set to a maximum of 24 hours.
Example:
On October 8, 2018, a periodically created instance was successfully run and a
message was sent to the message center. The recipient node is displayed, if you
create a retroactive instance for the recipient node with the business date set to
October 7, 2018.

72 Issue: 20190920

DataWorks Data Development / 1 Data development

1.5.14 Merge node
This topic describes the merge node concept, and how to create a merge node
and define the merging logic. It also shows you the scheduling configuration and
operation details of the merge node through a practical case.

Concept
• The merge node is a type of logical control family nodes in DataStudio.
• The merge node can merge the running states of upstream nodes, and aims to solve

 the issues of dependency mounting and running trigger of downstream nodes of
branch nodes.

• The current logical definition of merge node does not support selecting nodes that
 are in the running state, but supports merging multiple downstream nodes of the
branch nodes, so that more downstream nodes can be mounted to the merge node
as a dependency.

For example, the branch node C defines two logically exclusive branches C1 and C2.
Different branches use different logic to write to the same MaxCompute table. If the
downstream node B depends on the output of this MaxCompute table, and must use
 the merge node J to merge branches first. Then add merge node J to the upstream
 dependency of B. If B is mounted directly under C1 and C2, at any given time one
of the branch nodes will fail to run because it does not meet branch conditions. B
cannot be triggered by the schedule to run.

Create a merge node
Merge Node is located in the Control class directory of the new node menu, as shown
in the following figure.

Issue: 20190920 73

DataWorks Data Development / 1 Data development

Define the merge logic
To add a merge branch, click Add. You can enter the output name or the parent node
output table name, and view records under the merge condition,. The execution
results will display the running status. Currently, there are only two running states:
Successful, Branch Not Running, as shown in the following figure.

74 Issue: 20190920

DataWorks Data Development / 1 Data development

The scheduling attribute of the merge node is shown in the following figure.

An example of the merge node
In the downstream node, you can define the branch direction under different
conditions by selecting the corresponding branch node output after adding the
branch node as the upstream node. For example, in the business process shown in the
figure below,Branch_1 and Branch_2 are both downstream nodes of the branch node.

Issue: 20190920 75

DataWorks Data Development / 1 Data development

Branch_1 depends on the output of 'autotest.fenzhi121902_1', as shown in the
following figure.

Branch_2 depends on the output of 'autotest.fenzhi121902_2', as shown in the
following figure.

The scheduling attribute of the merge node is shown in the following figure.

76 Issue: 20190920

DataWorks Data Development / 1 Data development

Run the task
When the branch meets the specified condition, select the downstream node of the
branch to run. You can view the run details in the Running Log.
When the branch does not meet the condition and does not select the downstream
node of the branch to run. You can view the node that is set to 'skip' in the Running
Log.
The downstream node of the merge node is running normally.

1.5.15 Branch node
The branch node is a logical control family nodes provided in DataStudio. The branch
node can define the Branch Logic and the direction of downstream branches under
Different Logical Conditions.

Create a branch node
The branch node is located in the Control class directory of the new node menu, as
shown in the following figure.

Issue: 20190920 77

DataWorks Data Development / 1 Data development

Define the branch logic
1. After creating the branch node, go to the Branch Logic Definition page, as shown in

the following figure.

78 Issue: 20190920

DataWorks Data Development / 1 Data development

2. In the Branch Logic Definition page, you can use Add Branch button to define the
Branch Conditions, Associated to Node Output, and the Branch Describe, as shown
in the following figure.

The parameters are as follows:
• Branch conditions

- The branch condition only supports defining logical judgment condition
according to Python comparison operators.

- If the value of the running state expression is true, it means the correspond
ing branching condition is satisfied. Otherwise, the branching condition is
unsatisfactory.

- If a parsing error of the running state expression occurs, the running state of
the whole branch node is set to failure.

- The branching conditions supports using global variables, and parameters
defined in the node context, such as ${Input} in the figure. This can be a
node input parameter defined in the branching node.

• Associated to node output
- The node output is used to mount dependencies for the downstream node of

the branch node.
- When the branch does not meet conditions, the downstream node mounted

on the associated node output is selected for running. This also refers to the
status of other upstream nodes that the node depends on.

Issue: 20190920 79

DataWorks Data Development / 1 Data development

- When the branch does not meet the condition, the downstream node
mounted on the associated node output will not run. The downstream node is
 placed in a not running state because it does not meet the branch condition.

• Branch description: The description of the branch definition.
Define two branches as follows: ${Input}==1 and ${Input}>2, as shown in the
following figure.

- Edit: Click the Edit button to modify the setting branches. The related
dependencies will also be updated.

- Delete: Click the Delete button to delete the setting branches. The related
dependencies will also be updated.

Scheduling configuration
After defining the branch condition, the output name is automatically added to the
node Output of the Schedule, and the downstream node can depend on the output
name mount. As shown in the following figure:

Note:

80 Issue: 20190920

DataWorks Data Development / 1 Data development

You need to enter output records and context dependencies established by the
connection manually if there are no output records in the scheduling configuration
for context dependencies.

Output case - downstream node mounted to a branch node
You can define the branch direction under different conditions by selecting the
corresponding branch node output in the downstream node, after adding the branch
node as the upstream node. For example, in the business process shown in the figure
below,Branch_1 and Branch_2 are both downstream nodes of the branch node.

Branch_1 depends on the output of 'autotest.fenzhi121902_1', as shown in the
following figure.

Issue: 20190920 81

DataWorks Data Development / 1 Data development

Branch_2 depends on the output of 'autotest.fenzhi121902_2', as shown in the
following figure.

Submit scheduling operation
Submit the dispatch to the operation center to run, and the branch node satisfies the
condition that is dependent on 'autotest.fenzhi121902_1' .Therefore, the print result
of the log is as follows.
• When the branch meets the condition, select the downstream node of the branch

to run. You can see the details of the run in Running Log.
• When the branch does not meet the condition, do not select the downstream node

of the branch run. You can view the node set to 'skip' in the Running Log.
Addition: supported Python comparison operators

In the following table, we assume that variable a is 10 and variable b is 20.
Comparison
operators

Description Example

== Equal - Compares objects for
equality.

（a==b）returns 'false'

!= Not equal - Compares whether
two objects are not equal.

（a!=b）returns 'true'

<> Not equal - Compares whether
two objects are not equal.

（a<>b）returns 'true'. This
operator is similar to '!='.

82 Issue: 20190920

DataWorks Data Development / 1 Data development

Comparison
operators

Description Example

> Greater than - Returns whether
 x is greater than y.

（a>b）returns 'false'

< Less than - Returns whether x
 is less than y. All comparison
operators return 1 for true, and
 0 for false. This is equivalent to
 the special variables True and
False, respectively.

（a<b）returns 'true'

>= Greater than or equal to -
Returns whether x is greater
than or equal to y.

（a>=b）returns 'false'

<= Less than or equal to - Returns
whether x is less than or equal
to y.

（a<=b）returns 'true'

1.5.16 Assignment node
This topic describes the functions of the Assignment Node. The Assignment Node is
a special node type that supports the assignment of output parameters by writing
code in the node. The Assignment Node transfers the integrated node context to
downstream nodes for reference, which in turn is used as values.

Create an assignment node
Go to Control and click the Assignment Node that is located in the class directory of
the new node menu, as shown in the following figure.

Issue: 20190920 83

DataWorks Data Development / 1 Data development

Write the logic value of the assignment node
The assignment node has a fixed output parameter that names outputs in the Node
Context. It supports the usage of MaxCompute, Shell, and Python to write code to
assign parameters, whose values are the operation and calculation results of the node
code. Only one language can be selected for a single assignment node.

Note:

84 Issue: 20190920

DataWorks Data Development / 1 Data development

• The value of the output parameter takes only the output from the last line of code
as follows:
- The output of the SELECT statement on the last line of MaxCompute SQL.
- The data from the ECHO statement on the last line of shell.
- The output of the PRINT statement on the last line of Python.

• The maximum transfer value of the output parameter is 2M. If the assignment
statement output value exceeds this limit, the assignment node will fail to run.

Use the assignment node output on the downstream node
Add an Assignment Node as an upstream dependency in the downstream node, and
define the Assignment Node output as an input parameter for the node through node
context. Then reference the node in code to obtain the specific values of the upstream
assignment node output parameters. For more information, seeNode context.

Issue: 20190920 85

DataWorks Data Development / 1 Data development

An example of assignment node
1. Create the business flow, and then create the following nodes as shown in the

figure, respectively.

2. By default, the system will display an Outputs parameter when the assignment
node is configured. After the task is run, you can find the relevant parameter
results in the related Operation Center > Properties > Context page.

86 Issue: 20190920

DataWorks Data Development / 1 Data development

3. The upstream Outputs parameter is used as the downstream input parameter, as
shown in the figure below.

Run the assignment node task

Note:
Typically, you can supplement data running in the above configuration parameters
in O&M. The above configuration parameters can be validated through patch data
operation, but the test operation parameters cannot be validated.

1. When the task is configured and scheduled, a run instance is generally generated
the next day. The following figure is an example of running supplementary data.

2. You can view the context input and output parameters, and click the next link to
view the input or output results during runtime.

3. In the Running Log, you can view the final code output through 'finalResult'.

Issue: 20190920 87

DataWorks Data Development / 1 Data development

1.5.17 OSS object inspection
You can use the Object Storage Service (OSS) object inspection feature to monitor
OSS objects if child tasks depend on that OSS objects are stored to OSS. For example,
you can start a task for synchronizing OSS data files to DataWorks only after the OSS
data files are generated. In this case, you can use the OSS object inspection feature to
monitor the OSS data files.
Inspection objects: OSS objects of all tenants.
1. In Data Analytics, click the Create icon and choose Control > OSS Object

Inspection.

88 Issue: 20190920

DataWorks Data Development / 1 Data development

2. In the Create Node dialog box that appears, set the parameters and click Commit.

3. On the OSS Object Inspection page that appears, set the parameters.

No. Parameter Description
1 OSS Object The storage path of the OSS object. You can add

a scheduling parameter to the storage path. For
more information, see #unique_42.

2 Timeout The timeout period. During the timeout period,
DataWorks checks whether the OSS object exists
 in OSS every five seconds. If the OSS object is
not detected before the timeout period ends, the
 OSS object inspection task fails.

Issue: 20190920 89

DataWorks Data Development / 1 Data development

No. Parameter Description
3 Storage Address The storage space of the OSS object. Valid

values:
• Myself: detects the OSS object in the storage

space of the current tenant.
• Other: detects the OSS object in the storage

space of another tenant.

Note:
• When the OSS object inspection task is running, it monitors the OSS object

through MaxCompute. Make sure that MaxCompute has the required
permissions on the OSS bucket. For more information, see #unique_52.

• In the development or production environment, the task monitors the
OSS object through the access identity of the development or production
environment. Make sure that the access identity has the required permissions
on the OSS bucket.

90 Issue: 20190920

DataWorks Data Development / 1 Data development

4. Grant MaxCompute the permission to access OSS in the Resource Access
Management (RAM) console.
MaxCompute uses RAM and Security Token Service (STS) of Alibaba Cloud to
resolve security issues of accounts.
• If the owners of MaxCompute and OSS are using the same Alibaba Cloud

account, you can authorize MaxCompute to access OSS with one click in the
RAM console.

• If the owners of MaxCompute and OSS are using different Alibaba Cloud
accounts, you can authorize MaxCompute to access OSS as follows:
a. Create a role in the RAM console.

Create a role, such as AliyunODPSDefaultRole or AliyunODPSRoleForOth
erUser, and set the following policy:
-- The owners of MaxCompute and OSS are using
different Alibaba Cloud accounts .

{
" Statement ": [
{
" Action ": " sts : AssumeRole ",
" Effect ": " Allow ",
" Principal ": {
" Service ": [
" The ID of the Alibaba Cloud account used by
the owner of MaxCompute @ odps . aliyuncs . com "

]
}
}
],
" Version ": " 1 "
}

b. Create the AliyunODPSRolePolicy permission policy that contains the
permissions required for accessing OSS.
{
" Version ": " 1 ",
" Statement ": [
{
" Action ": [
 " oss : ListBucket s ",
 " oss : GetObject ",
 " oss : ListObject s ",
 " oss : PutObject ",
 " oss : DeleteObje ct ",
 " oss : AbortMulti partUpload ",
 " oss : ListParts "
],
" Resource ": "*",
" Effect ": " Allow "
}

Issue: 20190920 91

DataWorks Data Development / 1 Data development
]
}
-- You can also add other permission s as
required .

c. Grant the AliyunODPSRolePolicy permission policy to the role.
5. Go to Operation Center and view the run logs.

If the following log information is found, the OSS object is not detected:
< Error >
 < Code > NoSuchKey </ Code >
 < Message > The specified key does not exist . </ Message
>
 < RequestId ></ RequestId >
 < HostId > OSS object </ HostId >
 < Key > xc / 111 . txt </ Key >
</ Error >

1.5.18 PAI node
Machine Learning Platform for Artificial Intelligence (PAI) nodes are used to
call tasks created on PAI and schedule production activities based on the node
configuration. PAI nodes can be added to DataWorks only after PAI experiments are
created on PAI.

Create a PAI experiment
Only experiments that can be found on PAI can be loaded into PAI nodes.

Create a PAI node
Follow the instructions in the preceding section to create a PAI experiment. In this
example, the experiment name is Heart Disease Prediction_4294. Then, create a PAI
node in DataWorks. The procedure is as follows:
1. Select a Business flow you created, right-click Algorithm and choose Create

Algorithm Node > PAI.
2. Enter the node name.
3. Select a PAI experiment you created on PAI and load it.

After the experiment is loaded, click Edit in PAI Console or directly submit the
experiment.

92 Issue: 20190920

DataWorks Data Development / 1 Data development

1.5.19 Custom node type
1.5.19.1 Overview of custom node types
DataStudio supports default node types such as ODPS SQL and Shell. You can create
custom node types to meet your special requirements.
To create a custom node type, you need to create a custom wrapper and use it to
define a custom node type.

Open the Node Config page
1. Go to the DataStudio page.
2. Click Node Config in the upper-right corner to go to the Node Config page.

Note:
Only the workspace owner and administrators can access the Node Config page.

View the list of wrappers
The Wrappers page displays all the wrappers you have created. You can click Create in
the upper-right corner to create a custom wrapper.
• If a node type is created and has not been deployed, Not Deployed is displayed

in both the Version in Development Environment and Version in Production
Environment columns.

• If a node type has been deployed, the version and the deployment time are
displayed in these columns.

• If a node type is under deployment, Deploying is displayed as the version.
You can click Settings, View Versions, or Delete in the Actions column of each
wrapper.
Action Description
Settings You can click Settings to configure the wrapper. The page

that appears depends on the wrapper status. The Deploy in
Production Environment page appears if the wrapper has been
deployed in the production environment.

Issue: 20190920 93

DataWorks Data Development / 1 Data development

Action Description
View Versions You can click View Versions to view all historical versions of

the wrapper.
• View: you can click this button to view the settings of the

selected version.
• Roll Back: you can click this button to roll back to the

selected version. After you click this button, the system
creates a new version for the wrapper, and in the new
version, the wrapper uses the basic settings and the
resource file of the selected version. The new version equals
the latest version among all the versions plus 1.

• Download: you can click Download to download the
resource file of the selected version.

Delete If an error occurs while a node type is using the wrapper, you
need to delete the node type.

Note:
Before deleting a wrapper, ensure that no node type is
associated with the wrapper.

Create a custom wrapper
A wrapper is the core processing logic of a node type. For example, after you write
SQL statements in an ODPS SQL node, the system calls the corresponding wrapper to
parse and run the statements. You need to create a wrapper before creating a custom
node type. Currently, only the Java programming language is supported.
The procedure of creating a wrapper includes four steps: specify settings for the
wrapper, deploy the wrapper in the development environment, test the wrapper
in the development environment, and deploy the wrapper in the production
environment. For more information, see #unique_57.

View default node types
The Default Node Types page is for demonstration purpose only, and configurations
displayed on this page cannot be modified. The value of the Tabs column is fixed to
Data Analytics.

View the list of custom node types
The Custom Node Types page displays all custom node types in the workspace. You
can click Create to create a custom node type. For more information, see #unique_58.

94 Issue: 20190920

DataWorks Data Development / 1 Data development

The workspace owner or node type creator can change and delete existing node types.
• Change: you can click Change to edit the settings for the node type.
• Delete: you need to delete a node type if an error occurs while the node type is

using the wrapper.

Note:
Before deleting a wrapper, ensure that no node type is associated with the
wrapper.

Use a custom node type
After a custom node type is created, go to the DataStudio page and click the Create
button. The created custom node type is displayed in the cascading menu. Similar to
default node types, you can create nodes of the custom type.
1.5.19.2 Create a wrapper
The procedure of creating a wrapper includes four steps: specify settings for a
wrapper, deploy the wrapper in the development environment, test the wrapper
in the development environment, and deploy the wrapper in the production
environment.

Specify settings for a wrapper
1. Go to the Wrappers page, click Create in the upper-right corner.
2. Specify the parameters on the Settings page.

Parameter Description
Name A wrapper name must start with a letter and can only

contain letters, numbers, and underscores (_).
Owner You can select an owner from the workspace members. You

 are not allowed to edit wrappers owned by other members
even if you are an administrator. Only the workspace owner
can edit the wrappers of other members.

Resource Type Two types are supported: JAR and Archive. Archive indicates
the ZIP file format.

Issue: 20190920 95

DataWorks Data Development / 1 Data development

Parameter Description
Resource File You can either upload a local file or enter the path of a file

stored in an OSS bucket.
Note:

The size of a local file can be up to 50 MB, and the size of a
file that is stored in an OSS bucket can be up to 200 MB.

Class Name Enter the full path of the class in user wrapper implementa
tion.

Parameter
Example

Design parameters based on the package you upload.

Version Select Create Version if you are creating a new version.
Select Overwrite Version if you are editing and rolling back a
 version.

Description Enter a description for the wrapper version.
3. Click Save and then click Next.

Note:
The settings are updated to the database after you click Save.
• If you only modify basic settings of a wrapper without changing the resource

file, the modification takes immediate effect after you click Save.
• If you change the resource file, the change only applies after deployment.

Deploy the wrapper in the development environment
After you specify the parameters on the Settings page and click Next, the information
on the Deploy in Development Environment page is updated accordingly. You can
identify the changes by checking the file name and MD5 checksum.
Click Deploy in Development Environment. You can view the deployment progress in
real time. After the wrapper is deployed, click Next.

Test the wrapper in the development environment
Specify arguments for testing, and click Test to send the arguments to the wrapper.
This step is to validate deployment and logic of the wrapper. You can also locally test
the wrapper before upload it for deployment.

96 Issue: 20190920

DataWorks Data Development / 1 Data development

After the test, review the output logs in the Test Results section on the right to
determine whether the test is passed. If the test is passed, select Test Passed and click
Next.

Deploy the wrapper in the production environment
After you click Deploy in Production Environment, the wrapper is deployed in the
production environment. You can view the deployment progress in real time.

Note:
The wrapper to be deployed in the production environment must be the latest
version that has been deployed in the development environment and have passed the
test. Otherwise, a message appears, indicating that the deployment in the production
environment fails.

Click Complete. You can view and edit your wrappers on the Wrappers tab.
1.5.19.3 Create a custom node type
The Configure Custom Node Type page consists of three sections: Basic Information,
Interaction, and Wrapper.
1. On the DataStudio page, choose Node Config > Custom Node Types.
2. Click Create in the upper-right corner.
3. Specify the parameters in the Basic Information section.

Parameter Description
Name Name the node type. The name cannot be changed after the

 node type is created. Each node type has a unique name
within the workspace. The name is up to 20 characters in
length, and can only contain letters, spaces, and underscore
s (_).

Tabs You can select Ad-Hoc Query, Data Analytics, and Manually
Triggered Workflows.

Folder You can select Data Integration or Data Analytics.

Issue: 20190920 97

DataWorks Data Development / 1 Data development

4. Specify the parameters in the Interaction section.
Parameter Description
Shortcut Menu • The following options are selected by default:

Rename, Move, Clone, Steal Lock, View Versions
, Locate in Operation Center, Delete, and Submit
for Review.

• You can also select Send to DataWorks Desktop (
Shortcut).

Tool Bar • The following options are selected by default
: Save, Commit, Commit and Unlock, Steal
Lock, Run, Show/Hide, Run with Arguments,
Stop, Reload, Run Smoke Test in Developmen
t Environment, View Smoke Test Log in
Development Environment, Run Smoke Test,
View Smoke Test Log, Go to Operation Center of
Development Environment, and Format.

• You can also select Precompile.
Editor Type You can select Editor Only or Data Source Selection

Section and Editor.
Right-Side Bar • The Properties and Versions options are selected

by default.
• You can also select Lineage and Code Structure.

Auto Parse Option If you enable Auto Parse Option, the Auto Parse
option is displayed in the Properties tab. Otherwise
, it is not displayed. If you set Auto Parse to Yes for a
node, the input and output of the node is automatica
lly parsed from the code.

5. Specify the parameters in the Wrapper section.
• The following table describes the parameters you need to specify if you set the

editor type to Editor Only.
Parameter Description
Wrapper Select a wrapper that has been deployed.
Editor Language You can select JSON or ODPS SQL.

98 Issue: 20190920

DataWorks Data Development / 1 Data development

Parameter Description
Use MaxCompute as
Engine

Select Yes if your wrapper uses MaxCompute as
the compute engine. Select No in other scenarios.
This parameter is set to Yes by default.

• The following table describes the parameters you need to specify if you set the
editor type to Data Source Selection Section and Editor.
Parameter Description
Wrapper Select a wrapper that has been deployed.
Editor Language You can select JSON or ODPS SQL.
Connection Type Select the type of connections.

6. Click Save and Exit to create the custom node type. Then, you can use the custom
node type that is created.

Issue: 20190920 99

DataWorks Data Development / 1 Data development

1.5.20 AnalyticDB for MySQL node
You can create an AnalyticDB for MySQL node in DataWorks to build an online ETL
process.
1. Go to the DataStudio page, and choose Create > Data Analytics > AnalyticDB for

MySQL.

Note:
You can also select a workflow, right-click Data Analytics, and then choose Create
Data Analytics Node > AnalyticDB for MySQL.

100 Issue: 20190920

DataWorks Data Development / 1 Data development

2. In the Create Node dialog box, enter the Node name, select the Destination folder,
and then click Commit. The Location field is optional. You can specify this field to
classify and manage nodes.

Issue: 20190920 101

DataWorks Data Development / 1 Data development

3. Edit the AnalyticDB for MySQL node.
You can select a connection and edit SQL code on the node editing tab.
a. Select a connection.

Select a target connection for the node. If you cannot find the required
connection in the drop-down list, click Add Connection to open the Add
Connection page. You can add the connection on the Data Integration page. For
more information, see Configure a connection.

b. Edit SQL statements.
After selecting a connection, you can write SQL statements based on the syntax
supported by AnalyticDB for MySQL. You can write DML and DDL statements in
the code editor.

c. Save and run the SQL statements.
After you finish editing the SQL statements, click the Save button to save the
settings of the node to the server. Then, click the Run button to run the SQL
statements you have saved.

102 Issue: 20190920

DataWorks Data Development / 1 Data development

4. Set properties of the node.
Click Properties on the right of the node editing tab to go to the Properties page.
For more information, see Properties.

5. Commit the node.
After you set the properties, click Save in the tool bar to commit the node to
the development environment. After you commit the node to the development
environment, the node is unlocked.

6. Deploy the node.
For more information, see Deploy a node.

7. Test the node in the production environment.
For more information, see #unique_32.

Issue: 20190920 103

DataWorks Data Development / 1 Data development

1.5.21 Data Lake Analytics node
You can create a Data Lake Analytics node in DataWorks to build an online ETL
process.
1. Go to the DataStudio page, and choose Create > Data Analytics > Data Lake

Analytics.

Note:
You can also select a workflow, right-click Data Analytics, and then choose Create
Data Analytics Node > Data Lake Analytics.

104 Issue: 20190920

DataWorks Data Development / 1 Data development

2. In the Create Node dialog box, enter the Node name, select the Destination folder,
and then click Commit. The Location field is optional. You can specify this field to
classify and manage nodes.

Issue: 20190920 105

DataWorks Data Development / 1 Data development

3. Edit the Data Lake Analytics node.
You can select a connection and edit SQL code on the node editing tab.
a. Select a connection.

Select a target connection for the node. If you cannot find the required
connection in the drop-down list, click Add Connection to open the Add
Connection page. You can add the connection on the Data Integration page. For
more information, see Configure a connection.

b. Edit SQL statements.
After selecting a connection, you can write SQL statements based on the syntax
supported by Data Lake Analytics. You can write DML and DDL statements in the
code editor.

c. Save and run the SQL statements.
After you finish editing the SQL statements, click the Save button to save the
settings of the node to the server. Then, click the Run button to run the SQL
statements you have saved.

106 Issue: 20190920

DataWorks Data Development / 1 Data development

4. Set properties of the node.
Click Properties on the right of the node editing tab to open the Properties tab. For
more information, see Properties.

5. Commit the node.
After you set the properties, click Save in the tool bar to commit the node to
the development environment. After you commit the node to the development
environment, the node is unlocked.

6. Deploy the node.
For more information, see Deploy a node.

7. Test the node in the production environment.
For more information, see #unique_32.

Issue: 20190920 107

DataWorks Data Development / 1 Data development

1.5.22 AnalyticDB for PostgreSQL node
You can create an AnalyticDB for PostgreSQL node in DataWorks to build an online
ETL process.
1. Go to the DataStudio page, and choose Create > Data Analytics > AnalyticDB for

PostgreSQL.

Note:
You can also select a workflow, right-click Data Analytics, and then choose Create
Data Analytics Node > AnalyticDB for PostgreSQL.

108 Issue: 20190920

DataWorks Data Development / 1 Data development

2. In the Create Node dialog box, enter the Node name, select the Destination folder,
and then click Commit. The Location field is optional. You can specify this field to
classify and manage nodes.

Issue: 20190920 109

DataWorks Data Development / 1 Data development

3. Edit the AnalyticDB for PostgreSQL node.
You can select a connection and edit SQL code on the node editing tab.
a. Select a connection.

Select a target connection for the node. If you cannot find the required
connection in the drop-down list, click Add Connection to open the Add
Connection page. You can add the connection on the Data Integration page. For
more information, see Configure a connection.

b. Edit SQL statements.
After selecting a connection, you can write SQL statements based on the
PostgreSQL syntax. You can write DML and DDL statements in the SQL code
editor.

c. Save and run the SQL statements.
After you finish editing the SQL statements, click the Save button to save the
settings of the node to the server. Then, click the Run button to run the SQL
statements you have saved.

110 Issue: 20190920

DataWorks Data Development / 1 Data development

4. Set properties of the node.
Click Properties on the right of the node editing tab to open the Properties tab. For
more information, see Properties.

5. Commit the node.
After you set the properties, click Save in the tool bar to commit the node to
the development environment. After you commit the node to the development
environment, the node is unlocked.

6. Deploy the node.
For more information, see Deploy a node.

7. Test the node in the production environment.
For more information, see #unique_32.

1.6 Scheduling configuration
1.6.1 Basic attributes

The figure below shows the basic attribute configuration interface:

Issue: 20190920 111

DataWorks Data Development / 1 Data development

• Node Name: The node name of the created workflow node. To modify the node
name, right-click the node on the directory tree and choose Rename from the
short-cut menu.

• Node ID: The unique node ID generated when a task is submitted and cannot be
modified.

• Node Type: The node type that you select when creating a workflow node and
cannot be modified.

• Owner: The node owner. By default, the owner of a newly created node is the
current logon user. To modify the owner, click the input box, and enter the owner
name or select another user.

Note:
When you select another user, the user must be a member of the current project.

• Description: Generally used to describe the business and node purpose.
• Parameter: A parameter used to assign value to a variable in the code during task

scheduling.
For example, when a variable "pt=${datetime}" is used to indicate the code time
, you can assign a value to the variable here. The assigned value can use the
scheduling built-in time parameter "datetime=$bizdate".

Parameter value assignment formats for various node types
• ODPS SQL, ODPS PL, ODPS MR types: Variable name 1 = Parameter 1

Variable name 2 = Parameter 2 ..., separate multiple parameters with
spaces.

• SHELL type: Parameter 1 Parameter 2 ..., separate multiple
parameters with spaces.

Some frequently-used time parameters are provided as built-in scheduling
parameters. For more information about these parameters, see #unique_42.

112 Issue: 20190920

DataWorks Data Development / 1 Data development

1.6.2 Parameter configuration
In common data R&D scenarios, the node code of various types does not remain
unchanged after compilation every time when it is called. Before calculation, You
need to dynamically import values such as the date and time based on requirement
changes and time changes to replace variable values.
DataWorks provides the parameter configuration feature to apply to such business
 scenarios. After configuring parameters, you can assign them to nodes that
 are automatically and periodically scheduled to parse the required values.
Currently, parameters are divided into system parameters and custom parameters (
recommended). This section describes the parameters in detail and uses examples to
show how to operate them.

Parameter types
Parameter type Call method Applicable type Parameter text box

example
System parameters
: including bdp.
system.bizdate and
bdp.system.cyctime

To use the system
 parameters in
the scheduling
system, directly
reference ${bdp.
system.bizdate}
and ${bdp.system.
cyctime} in the code
 without having
to set them in the
 Parameter text
box. The system
 automatically
replaces the values
of the parameters.

All node types None

Issue: 20190920 113

DataWorks Data Development / 1 Data development

Parameter type Call method Applicable type Parameter text box
example

Reference ${key1},
${key2} in the code
 and enter "key1=
value1 key2=value2
" in the Parameter
text box.

Non-SHELL nodes • Constant
parameters:
param1="abc"
param2=1234

• Variables:
param1=$[
yyyymmdd
], which is
calculated based
 on the value
of bdp.system.
cyctime

Non-system
parameters: custom
 parameters (
recommended)

Reference $1 $2
 $3 in the code
and enter "value1
 value2 value3" in
the Parameter text
box.

Shell nodes Constant
parameters: "abc"
1234
Variables: $[
yyyymmdd], which
is calculated based
on the value of bdp.
system.cyctime.

As described in the preceding table, The variable values are based on the values of
system parameters. You can use custom variables to flexibly define the obtained part
and format.

Note:
Choose Schedule > Basic Information and assign values to non-system parameters
in the Parameter text box (assign values to scheduling variables). Note the following
when configuring parameters:

114 Issue: 20190920

DataWorks Data Development / 1 Data development

• No space can be added on either side of the equation mark (=) of a parameter.
Correct example: bizdate =$ bizdate

• Multiple parameters (if any) must be separated with spaces.

System parameters
DataWorks provides two system parameters, which are defined as follows:
• ${bdp.system.cyctime}: The scheduled runtime of an instance. Default format:

yyyymmddhh24miss.
• ${bdp.system.bizdate}: The business date on which an instance is calculated, in

the default format of yyyymmdd. The default business date is one day before the
scheduled runtime.

According to the definitions, the formula for calculating the scheduled runtime and
business date is as follows: Scheduled runtime = Business date + 1 .
To use the system parameters, directly reference ${bizdate} in the code without
having to set them in the Parameter text box. The system automatically replaces the
fields that reference this system parameter in the code.

Note:
The scheduling attributes of a periodic node are configured to define the scheduling
rules of the runtime. Therefore, you can calculate the business date based on the
scheduled runtime of an instance and obtain the values of system parameters for the
instance.

Issue: 20190920 115

DataWorks Data Development / 1 Data development

The scheduling parameter configuration of a PyODPS node is slightly different from
that of a common node. For more information, see #unique_26.

Example of system parameters
Set a MaxCompute SQL node to be run once every hour from 00:00 to 23:59 every day.
To use system parameters in the code, follow these steps:
1. Directly reference system parameters in the code. The node code is as follows:

insert overwrite table tb1 partition (ds =' 20150304 ')
select
c1 , c2 , c3
from (
select * from tb2
where ds ='${ bdp . system . cyctime }') t
full outer join (
select * from tb3
where ds = '${ bdp . system . bizdate }') y
on t . c1 = y . c1 ;

2. After the preceding step, your node is partitioned by using the system parameters.
Set the scheduling time attributes and scheduling dependencies. In this example,
Recurrence is set to Hour.

3. After setting the scheduling cycle and dependency, submit the node. You can check
the node in O&M. The node generates periodic instances during running from the
second day. You can right-click an instance and select View Log to view the time
when the system parameters are parsed.
For example, the scheduling system creates 24 running instances for the node on
 January 14, 2019. Because the business date is January 13, 2019 (the day before
the running date) for all instances, ${bdp.system.bizdate} is always displayed as
20190113. The runtime is the running date plus the scheduled time. Therefore, ${

116 Issue: 20190920

DataWorks Data Development / 1 Data development

bdp.system.cyctime} is displayed as 20190114000000 plus the scheduled time of
each instance.
Open the run logs of each instance and search for the replaced values of
parameters in the code:
• Because the scheduled time for the first instance is 2019-01-14 00:00:00, bdp.

system.bizdate is replaced with 20190113, and bdp.system.cyctime is replaced
with 20190114000000.

• Because the scheduled time for the second instance is 2019-01-14 01:00:00, bdp
.system.bizdate is replaced with 20190113, and bdp.system.cyctime is replaced
with 20190114010000.

• Similarly, because the scheduled time for the twenty-fourth instance is 2019-
01-14 23:00:00, bdp.system.bizdate is replaced with 20190113, and bdp.system.
cyctime is replaced with 20190114230000.

Custom parameters for non-SHELL nodes
To configure a scheduling parameter for a non-SHELL node, add ${Variable name}
in the code to reference the function, and then assign a value to the scheduling
parameter.

Note:
The name of a variable in the SQL code can contain only lowercase letters (a‒
z), uppercase letters (A‒Z), digits, and underscores (_). If the variable name is
date , the value of $bizdate is automatically assigned to this variable. (For more

information, see the list of built-in scheduling parameters). You do not need to
assign a value during scheduling parameter configuration. Even if another value is
assigned, it is not used in the code because the value of $bizdate is automatically
assigned in the code by default.

Example of custom parameters for non-SHELL nodes
Set a MaxCompute SQL node to run once every hour from 00:00 to 23:59 every day. To
use the custom variables thishour and lasthour in the code, follow these steps:
1. Reference the parameters in the code as follows:

insert overwrite table tb1 partition (ds =' 20150304 ')
select
 c1 , c2 , c3
from (
 select * from tb2

Issue: 20190920 117

DataWorks Data Development / 1 Data development
 where ds ='${ thishour }') t
full outer join (
 select * from tb3
 where ds = '${ lasthour }') y
on t . c1 = y . c1 ;

2. Choose Schedule > Basic Information and assign values to the variables referenced
in the code in the Parameter text box.
Configure the custom parameters as follows:
• thishour=$[yyyy-mm-dd/hh24:mi:ss]
• lasthour=$[yyyy-mm-dd/hh24:mi:ss-1/24]

Note:
The value of yyyy-mm-dd/hh24:mi:ss corresponds to that of cyctime. For more
information, see Custom variables.

You can enter thishour =$[yyyy - mm - dd / hh24 : mi : ss] lasthour

=$[yyyy - mm - dd / hh24 : mi : ss - 1 / 24] in the Parameter text box.
3. Set the node to be run once every hour.
4. After setting the scheduling cycle and dependency, submit the node. You can

check the node in O&M. The node generates periodic instances during running
from the second day. You can right-click an instance and select View Log to view
the time when the custom parameters are parsed. Because the value of cyctime
is 20190114010000, the value of thishour is 2019-01-14/01:00:00, and the value of
lasthour, which represents the last hour, is 2019-01-14/00:00:00.

Custom parameters for SHELL nodes
The parameter configuration procedure of a SHELL node is similar to that of a
non-SHELL node except that the rules are different. For a SHELL node, variable
names cannot be customized. Instead, they must be named $1, $2, $3, and so on.
For example, for a SHELL node, the SHELL syntax declaration in the code is: $1 is
configured as $xxx (built-in scheduling parameter) during scheduling parameter
configuration for the node. That is, the value of $xxx is used to replace $1 in the code.

Note:
For a SHELL node, when the number of parameters reaches 10, use ${10} to declare
the variable.

Example of custom parameters for SHELL nodes
118 Issue: 20190920

DataWorks Data Development / 1 Data development

Set a SHELL node to be run once at 01:00 each day. To use the custom constant
parameter myname and the custom variable parameter ct in the code, follow these
steps:
1. Reference the parameters in the code as follows:

echo " hello $ 1 , two days ago is $ 2 , the system
param is ${ bdp . system . cyctime }";

2. Choose Schedule > Basic Information and assign values to the variables referenced
in the code in the Parameter text box. Value assignment rule: parameter 1
parameter 2 parameter 3 ... (Replaced variables are parsed based on the
parameter location, for example, $1 is replaced with the value of parameter 1). In
this example, set $1 and $2 to abcd and $[yyyy-mm-dd-2], respectively.

3. Set the node to be run once at 01:00 every day.
4. After setting the scheduling cycle and dependency, submit the node. You can

check the node in O&M. The node generates periodic instances during running
from the second day. Right-click an instance and select View Log. The logs show
that $1 in the code is replaced with constant abcd, $2 is replaced with 2019-01-12
(two days before the running date), and ${bdp.system.cyctime} is replaced with
20190114010000.

Custom variables
A custom variable can be a constant parameter or a built-in scheduling parameter.
Variable value being a constant value
For example, an SQL node includes the variable ${Variable name} in the code.
Configure the parameter item Variable name='Fixed value' for the node.
Code: select xxxxxx type='${type}'
Value assigned to the scheduling variable: type='aaa'
When the node is being scheduled, the variable in the code is replaced with type='aaa
'.
Variable value being a variable
Variables are built-in scheduling parameters whose values depend on the system
parameters ${bdp.system.bizdate} and ${bdp.system.cyctime}.
For example, an SQL node includes the variable ${Variable name} in the code.
Configure the parameter item Variable name=Scheduling parameter for the node.

Issue: 20190920 119

DataWorks Data Development / 1 Data development

Code: select xxxxxx dt=${datetime}
Value assigned to the scheduling variable: datetime=$bizdate
When the node is being scheduled on July 22, 2017, the variable in the code is
replaced with dt=20170721.
List of variables
$bizdate: The business date in the format of yyyymmdd. Note: For daily scheduling,
this parameter is set to the day before the current date by default.
For example, the code of a MaxCompute SQL node includes pt=${datetime}, and the
 parameter configured for the node is datetime=$bizdate. When the node is run on
July 22, 2017, $bizdate is replaced with pt=20170721.
$cyctime: The time at which the node is scheduled to run. If no scheduling time is
configured for a daily node, cyctime is set to 00:00 of the current day. The time is
accurate to the second. This parameter is usually used for nodes that are scheduled
by hour or minute. Example: cyctime=$cyctime.

Note:
The time parameters configured by using $[] and ${} are different. $bizdate indicates
the business date that is one day before the current date by default. $cyctime
indicates the time at which the node is scheduled to run. If no scheduling time is
configured for a daily node, cyctime is set to 00:00 of the current day. The time is
accurate to the second. This parameter is usually used for nodes that are scheduled
by hour or minute. For example, if the node is scheduled to run at 00:30 on the
current day, $cyctime is yyyy-mm-dd 00:30:00. A {} parameter is involved in the
computation with bizdate as the benchmark. During data patching, the parameter
value is replaced with the selected business date. A [] parameter is involved in the
computation with cyctime as the benchmark, which is calculated in the same way as
the time in Oracle. During data patching, the parameter value is replaced with the
selected business date plus one day. For example, if the date 20140510 is selected as
the business date, cyctime is replaced with 20140511.

Examples of $cyctime: (Assume that $cyctime=20140515103000)
• $[yyyy] = 2014, $[yy] = 14, $[mm] = 05, $[dd] = 15, $[yyyy-mm-dd] = 2014-05-15, $[

hh24:mi:ss] = 10:30:00, $[yyyy-mm-dd hh24:mi:ss] = 2014-05-1510:30:00
• $[hh24:mi:ss - 1/24] = 09:30:00

120 Issue: 20190920

DataWorks Data Development / 1 Data development

• $[yyyy-mm-dd hh24:mi:ss -1/24/60] = 2014-05-1510:29:00
• $[yyyy-mm-dd hh24:mi:ss -1/24] = 2014-05-15 09:30:00
• $[add_months(yyyymmdd,-1)] = 20140415
• $[add_months(yyyymmdd,-12*1)] = 20130515
• $[hh24] =10
• $[mi] =30
Method for testing $cyctime:
After the instance start to run, right-click the node and select View Node Attribute.
Check whether the scheduling time is the time at which the instance is run
periodically.
The value of the parameter in Running Parameter is replaced with the scheduling
time minus 1 hour.
$jobid: The ID of the workflow to which a node belongs. Example: jobid=$jobid.
$nodeid: The ID of a node. Example: nodeid=$nodeid.
$taskid: The ID of a node, that is, the ID of a node instance. Example: taskid=$taskid.
$bizmonth: The business month in the format of yyyymm.
• Note: If the month of a business date is equal to the current month, the value of

 $bizmonth is the month of the business date minus 1. Otherwise, the value of $
bizmonth is the month of the business date.

• For example, the code of a MaxCompute SQL node includes pt=${datetime}, and the
 parameter configured for the node is datetime=$bizmonth. When the node is run
on July 22, 2017, $bizmonth is replaced with pt=201706.

$gmtdate: The current date in the format of yyyymmdd. The value of this parameter
is the current date by default. During data patching, the value of gmtdate that is
imported is the business date plus 1.
For example, the code of a MaxCompute SQL node includes pt=${datetime}, and the
parameter configured for the node is datetime=$gmtdate. When the node is run on
July 22, 2017, $gmtdate is replaced with pt=20170722.
${...} custom parameter
• You can customize a time format based on $bizdate, where yyyy indicates the

four-digit year, yy indicates the two-digit year, mm indicates the month, and dd
Issue: 20190920 121

DataWorks Data Development / 1 Data development

indicates the day. You can use any combination of these parameters, for example,
${yyyy}, ${yyyymm}, ${yyyymmdd}, and ${yyyy-mm-dd}.

• $bizdate is accurate to the day. Therefore, ${...} can only represent the year, month
, or day.

• Methods for obtaining the period plus or minus a certain duration:
Next N years: ${yyyy+N}
Previous N years: ${yyyy-N}
Next N months: ${yyyymm+N}
Previous N months: ${yyyymm-N}
Next N weeks: ${yyyymmdd+7*N}
Previous N weeks: ${yyyymmdd-7*N}
Next N days: ${yyyymmdd+N}
Previous N days: ${yyyymmdd-N}

${yyyymmdd}: The business date in the format of yyyymmdd. The value of this
parameter is the same as that of $bizdate, and the parameter supports various
separators, for example, yyyy-mm-dd.
• Note: For daily scheduling, this parameter is set to the day before the current date

by default. You can customize a time format for this parameter, for example, yyyy-
mm-dd for ${yyyy-mm-dd}.

122 Issue: 20190920

DataWorks Data Development / 1 Data development

• Examples:
- The code of a MaxCompute SQL node includes pt=${datetime}, and the

parameter configured for the node is datetime=${yyyy-mm-dd}. When the node
is run on July 22, 2018, ${yyyy-mm-dd} is replaced with pt=2018-07-21.

- The code of a MaxCompute SQL node includes pt=${datetime}, and the
parameter configured for the node is datetime=${yyyymmdd-2}. When the node
is run on July 22, 2018, ${yyyymmdd-2} is replaced with pt=20180719.

- The code of a MaxCompute SQL node includes pt=${datetime}, and the
parameter configured for the node is datetime=${yyyymm-2}. When the node is
run on July 22, 2018, ${yyyymmdd-2} is replaced with pt=201805.

- The code of a MaxCompute SQL node includes pt=${datetime}, and the
parameter configured for the node is datetime=${yyyy-2}. When the node is run
on July 22, 2018, ${yyyy-2} is replaced with pt=2016.

- You can assign values to multiple parameters during MaxCompute SQL node
configuration, for example, startdatetime=$bizdate enddatetime=${yyyymmdd+
1} starttime=${yyyy-mm-dd} endtime=${yyyy-mm-dd+1}.

FAQs
• Q: The table partition format is pt=yyyy-mm-dd hh24:mi:ss, but spaces are not

allowed in scheduling parameters. How can I configure the format of $[yyyy-mm-
dd hh24:mi:ss]?
A: Use the custom variables datetime=$[yyyy-mm-dd] and hour=$[hh24:mi:ss] to
 obtain the date and time, respectively. Then, join them together to form pt="${
datetime} ${hour}" in the code. (Separate the two custom variables with a space).

• Q: The table partition is pt="${datetime} ${hour}" in the code. To obtain the data for
the last hour when the node is run, the custom variables datetime=$[yyyymmdd]
and hour=$[hh24-1/24] can be used to obtain the date and time, respectively.
However, for an instance running at 00:00, the calculation result is 23:00 of the
current day, instead of 23:00 of the previous day. What measures can I take in this
case?
A: Modify the formula of datetime to $[yyyymmdd-1/24] and keep the formula of
hour unchanged at $[hh24-1/24]. The calculation result is as follows:
- For an instance that is scheduled to run at 2015-10-27 00:00:00, the values of

 $[yyyymmdd-1/24] and $[hh24-1/24] are 20151026 and 23, respectively. This
Issue: 20190920 123

DataWorks Data Development / 1 Data development

 is because the scheduling time minus 1 hour is a time value that belongs to
yesterday.

- For an instance that is scheduled to run at 2015-10-27 01:00:00, the values of $[
yyyymmdd-1/24] and $[hh24-1/24] are 20151027 and 00, respectively. This is
because the scheduling time minus 1 hour is a time value that belongs to the
current day.

DataWorks offers four node execution modes.
• Running on DataStudio: You must assign a temporary value on the parameter

configuration page to ensure proper running. The configurations are not saved as
node attributes and do not take effect in the other three execution modes.

• Automatic running at an interval: No configuration is needed in the Parameter
text box. The scheduling system automatically replaces the parameters with the
scheduled runtime of the current instance.

• Running triggered by testing or data patching: You must specify a business date
 when the run is triggered. The scheduled runtime is derived from the formula
described earlier to get the two system parameter values of each instance.

1.6.3 Scheduling time
This section describes how to set the scheduling time of nodes, including the
scheduling cycle and dependencies. You can also specify whether a node depends on
the instance of the last cycle.
The following figure shows the scheduling time configuration page.

124 Issue: 20190920

DataWorks Data Development / 1 Data development

Instance creation modes
• Next Day: If you select this option, instances are generated in full mode. (Nodes

published before 22:00 create instances the next day, while nodes published after
22:00 create instances the third day.)

• Immediately After Publishing: If you select this option, instances are immediately
generated after nodes are published.

Node status
• Normal: If you select this option, a node is scheduled and run normally based on

the following scheduling cycle configuration. It is the default option for nodes.
• Zero-load: If you select this option, a node is scheduled based on the following

scheduling cycle configuration. However, once this node is scheduled, the system
does not actually run the node but directly returns a success response.

• Error Retry: If you select this check box, a node is rerun when it encounters an
error. By default, a node can be automatically rerun for a maximum of three times
with an interval of 2 minutes.

• Pause Scheduling: If you select this check box, a node is scheduled based on the
following scheduling cycle configuration. However, once this node is scheduled,
the system does not actually run the node but directly returns a failure response. It
is used when a node is suspended but will be run later.

Scheduling cycle
In DataWorks, after a node is submitted, the underlying scheduling system generates
 an instance every day from the next day based on the scheduling time of the node,
and runs the instances based on the running results and time points of its ancestor
instances. Nodes that are submitted after 23:30 create instances from the third day.

Note:
If you schedule a node to run on every Monday, the node is run only on Mondays.
On the other days, once this node is scheduled, the system does not actually run the
node but directly returns a success response. Therefore, you need to set the business
 date to one day earlier than the runtime for weekly scheduled nodes during testing
or data patching.
For a node that runs cyclically, the priority of its dependency is higher than that of
its scheduling time. That is, when the scheduling time is reached, the node instance

Issue: 20190920 125

DataWorks Data Development / 1 Data development

is not run immediately but first checks whether all the ancestor instances have been
run.
• If not all the ancestor instances have been run but the scheduling time is reached,

the instance remains in the Not Running status.
• If all the ancestor instances have been run but the scheduling time is not reached,

the instance enters the Waiting for Scheduled Time status.
• If all the ancestor instances have been run and the scheduling time is reached, the

instance enters the Waiting for Resource status.
Dependency on the last-cycle instance

Before specifying whether a node depends on instance of the last cycle, you must
understand the following concepts:
• Last-cycle instance: indicates the instance generated on the last calendar day.

Assume that the current day is August 8, 2018. The instance generated on August 7,
2018 is called the last-cycle instance.

• Dependency on the last-cycle instance: indicates that a node depends on the
last-cycle instance of its parent node. Assume that you have configured daily
scheduling nodes A and B. If you want the instance of node B to be run only after
 that of node A generated on the last day is run, you can configure a cross-cycle
dependency. That is, you can configure node B to make it depend on the last-cycle
instance of node A.

The following figure shows how to configure the dependency on the last-cycle
instance.
You can select any of the following options for Dependent Node:
• Level 1 Child Node: indicates that the current node depends on the last-cycle

instances of its descendant nodes. For example, node A has descendant nodes B, C,
and D. If you select this option, node A depends on the last-cycle instances of nodes
 B, C, and D.

• Current Node: indicates that the current node depends on its own last-cycle
instance.

• Customize: indicates that the current node depends on the last-cycle instance of a
 specified node. You need to enter the ID of the specified node. If multiple nodes
exist, separate their IDs with commas (,), for example, 12345,23456.

126 Issue: 20190920

DataWorks Data Development / 1 Data development

Scheduling by day
Nodes scheduled by day are run automatically once every day. When you create a
periodic node, the node is set to run at 00:00 every day by default. You can specify
another runtime as needed. For example, you can specify the runtime to 13:00 every
day, as shown in the following figure.
1. If Specify Time is cleared, the scheduled date of the daily node is the date of the

 current day in the YYYY-MM-DD format and the scheduling time of the node is
randomly generated between 00:00 and 00:30.

2. If Specify Time is selected, the scheduling time of the daily node is a specified time
 of the current day in the YYYY-MM-DD HH:MM format. A scheduled node can be
 run only after its ancestor node is run and the scheduling time is reached. The
node cannot be run if either one of the conditions is not met. The conditions are in
no particular order.

Scenarios:
Import, statistical processing, and export nodes are all daily nodes with the runtime
 of 13:00, as shown in the preceding figure. Statistical processing nodes depend
on import nodes, and export nodes depend on statistical processing nodes. The
following figure shows the configuration of their dependencies. (When configuring
the dependencies for a statistical processing node, set its ancestor node to an import
node).

Issue: 20190920 127

DataWorks Data Development / 1 Data development

Based on the configuration in the preceding figure, the scheduling system
automatically generates instances for the nodes and runs them as follows:

Scheduling by week
Nodes scheduled by week are automatically run at specific time points of specific
days each week. On the other days, the system still generates instances to ensure the
proper running of descendant instances. However, once a node is scheduled, the
system does not actually run any logic or consume any resources but directly returns
a success response.

128 Issue: 20190920

DataWorks Data Development / 1 Data development

As shown in the preceding figure, the system schedules instances on every Monday
 and Friday, but returns success responses without scheduling instances on every
Tuesday, Wednesday, Thursday, Saturday, and Sunday.
Based on the configuration in the preceding figure, the scheduling system
automatically generates instances for the nodes and runs them as follows:

Scheduling by month
Nodes scheduled by month are automatically run at specific time points of specific
 days each month. On the other days, the system still generates instances to ensure
the proper running of descendant instances. However, once a node is scheduled, the
system does not actually run any logic or consume any resources but directly returns
a success response.

Issue: 20190920 129

DataWorks Data Development / 1 Data development

As shown in the preceding figure, the system schedules instances on the first day of
each month, but returns success responses without scheduling instances for the rest
days of the month.
Based on the configuration in the preceding figure, the scheduling system
automatically generates instances for the nodes and runs them as follows:

Scheduling by hour
Nodes scheduled by hour are run once every N hours in a specific period every day,
for example, once every hour from 01:00 to 04:00 every day.

Note:
The scheduling time is a closed interval. For example, if a node scheduled by hour
is configured to run once every hour from 00:00 to 03:00, the time period is [00:00,
03:00], and the interval is 1 hour. The scheduling system generates four instances
every day, which are run at 00:00, 01:00, 02:00, and 03:00, respectively.

130 Issue: 20190920

DataWorks Data Development / 1 Data development

As shown in the preceding figure, the node is automatically scheduled once every 6
hours from 00:00 to 23:59 every day. Therefore, the scheduling system automatically
generates instances for the node and runs them as follows:

Scheduling by minute
Nodes scheduled by minute are run once every N minutes in a specific period every
day, as shown in the following figure.
The node is scheduled once every 30 minutes from 00:00 to 23:00 every day.

Issue: 20190920 131

DataWorks Data Development / 1 Data development

Currently, the minimum interval is 5 minutes for a scheduled node by minute. The
CRON expression is automatically generated based on the preceding configuration
and cannot be manually modified.

Note:
132 Issue: 20190920

DataWorks Data Development / 1 Data development

For more information about how to generate instances immediately after nodes are
published, see #unique_70.

FAQs
Q: Node A is scheduled by hour, and its descendant node B is scheduled by day. Is it
 feasible that node B is automatically run every day after all instances of node A are
executed?
A: A node can depend on any other node, and there are no limits on the scheduling
type of the node. Therefore, a node scheduled by day can depend on a node scheduled
 by hour. To enable node B to be automatically run every day after all 24 instances of
 node A are run, do not specify the daily runtime for node B. Then, configure node A
 as an ancestor of node B. For more information, see the Dependencies section. [DO
NOT TRANSLATE]
Q: Node A is run once every hour, and node B is run once every day. How do I
configure the scheduling time for the two nodes so that the instance of node B is run
after the first instance of node A is run every day?
A: For node A, select Depend on Last Interval and set Dependent Node to Current
Node. For node B, set Recurrence to Day, select Specify Time, and set Run At to 00:00.
Q: Node A is run every Monday and node B depends on node A. How do I enable node
B to be run every Monday?
A: Configure the scheduling time of node B to be the same as those of node A. That is,
you need to set Recurrence to Week and Run Every to Monday.
Q: How are the instances of a node affected when the node is deleted?
A: When a node is deleted after running for a period, its instances are remained
because the scheduling system still generates one or more instances for the node
based on the scheduling time. Therefore, when the instances are initiated after the
node is deleted, an error message appears because the required code is unavailable,
as shown in the following figure.

Issue: 20190920 133

DataWorks Data Development / 1 Data development

Q: Can I enable a node to process monthly data on the last day of each month?
A: No. Currently, the system does not support setting the execution date to the last
day of each month. If you enable a node to run on the thirty-first day of each month
, the scheduling system runs a node instance in each month that has 31 days and
returns a success response without running the node instance in any other month.
We recommend that you configure a node to process the data of the past month on the
 first day of each month.

1.6.4 Dependencies
Scheduling dependencies are the foundation for building orderly business flows. You
need to correctly configure the dependencies between nodes to ensure that business
data is produced effectively and in time. This helps standardize data R&D scenarios.
DataWorks V2.0 allows you to configure dependencies in any of the following modes:
automatic recommendation, automatic parsing, and custom configuration. For more
information about dependency configuration examples, see #unique_75.

Regardless of the dependency configuration mode, the overall scheduling logic is that
descendant nodes can be scheduled only after ancestor nodes are run. Therefore,
each workflow node must have at least one parent node. The dependencies between
the parent nodes and child nodes are the core of scheduling dependencies. The
following sections describe the principle and configuration methods of scheduling
dependencies in detail.

Note:

134 Issue: 20190920

DataWorks Data Development / 1 Data development

Data problems exist for workspaces created before January 10, 2019. You must
submit a ticket to apply for troubleshooting. Projects created on January 10 and later
 are not affected.

Standardized data development scenarios
• Before configuring scheduling dependencies, you need to understand the following

basic concepts:
- DataWorks node: defines the operations performed on data. For more

information, see #unique_76.
- Output name: refers to the default output name that the system assigns to each

node. Each output name ends with . out . You can also customize the output
name, but make sure that the node output name is unique for the tenant. For
more information, see #unique_76.

- Output table: refers to the table following INSERT or CREATE in the SQL
statement of a node.

- Input table: refers to the table following FROM in the SQL statement of a node.
- SQL statement: refers to MaxCompute SQL.
In practice, a DataWorks node can contain a single SQL statement or multiple SQL
statements.
Ancestor and descendant nodes are associated by output names. The ancestor
node of the upmost node that is created can be configured as the root node of the
workspace (workspace name: projectnam e_root).

• Principles of standardized data development
In a standardized data development process, multiple ancestor and descendant
SQL nodes are created. We recommend that you follow these principles:
- The input table of a descendant node must be the output table of its ancestor

node.
- One table can only be exported by one node.
The purpose is to quickly configure complex dependencies by using the automatic
parsing feature when business processes are inflated.

Issue: 20190920 135

https://www.alibabacloud.com/help/doc-detail/27860.htm

DataWorks Data Development / 1 Data development

• Example of a standardized data development process

Each node and its code in the preceding figure are described as follows:
- The code of Task_1 is as follows. The input data of this node comes from the

ods_raw_lo g_d table, and the data is exported to the ods_log_in fo_d

table.
INSERT OVERWRITE TABLE ods_log_in fo_d PARTITION (dt =

${ bdp . system . bizdate })
 SELECT ... // It represents your SELECT operation .
 FROM (
 SELECT ... // It represents your SELECT operation .
 FROM ods_raw_lo g_d
 WHERE dt = ${ bdp . system . bizdate }
) a ;

- The code of Task_2 is as follows. The input data of this node comes from the
ods_user_i nfo_d and ods_log_in fo_d tables, and the data is exported

to the dw_user_in fo_all_d table.
INSERT OVERWRITE TABLE dw_user_in fo_all_d PARTITION (
dt ='${ bdp . system . bizdate }')
SELECT ... // It represents your SELECT operation .
FROM (

 SELECT *

136 Issue: 20190920

DataWorks Data Development / 1 Data development
 FROM ods_log_in fo_d
 WHERE dt = ${ bdp . system . bizdate }
) a
LEFT OUTER JOIN (

 SELECT *
 FROM ods_user_i nfo_d
 WHERE dt = ${ bdp . system . bizdate }
) b
ON a . uid = b . uid ;

- The code of Task_3 is as follows. The input data of this node comes from the
dw_user_in fo_all_d table, and the data is exported to the rpt_user_i

nfo_d table.
INSERT OVERWRITE TABLE rpt_user_i nfo_d PARTITION (dt
='${ bdp . system . bizdate }')
SELECT ... // It represents your SELECT operation .
FROM dw_user_in fo_all_d
WHERE dt = ${ bdp . system . bizdate }
GROUP BY uid ;

Ancestor node
An ancestor node indicates the parent node on which the current node depends.
You must enter the output name of the ancestor node, rather than the ancestor node
name. (A node may contain multiple output names. Enter an output name as needed.)
You can search for the output name of the ancestor node to be added, or run the SQL
statement for lineage analysis to parse the output name.

Note:
If you use the first method, the crawler searches for the output name among the
output names of nodes that have been submitted to the scheduling system.

Issue: 20190920 137

DataWorks Data Development / 1 Data development

• Search by entering the output name of the parent node
You can search for the output name of a node and configure the node as the
ancestor node of the current node to create a dependency.

• Search by entering the table name corresponding to the output name of the parent
node
When using this method, make sure that one of the output names of the parent
node is the table name following INSERT or CREATE in the SQL statement of the

138 Issue: 20190920

DataWorks Data Development / 1 Data development

node, such as projectname. Table name. (Such output names can be automatically
parsed.)

Click Submit. The output name can be searched by other nodes by searching the
table name.

Current node output
The current node output indicates the output of the current node.
The system assigns a default output name that ends with .out to each node. You can
also customize the output name or obtain an output name by automatic parsing.

Note:
The output name of a node must be globally unique for your Alibaba Cloud account.

Issue: 20190920 139

DataWorks Data Development / 1 Data development

Automatic dependency parsing
DataWorks can parse different dependencies based on the actual SQL content of
the node. The parsed output names of the parent node and the current node are as
follows:
• Output name of the parent node: projectname.The table name following INSERT.
• Output names of the current node:

- projectname.The table name following INSERT.
- projectname.The table name following CREATE (generally used for temporary

tables).

Note:
If you upgrade from DataWorks V1.0 to DataWorks V2.0, the output name of the
current node is projectname. The name of the current node.

If multiple INSERT and FROM clauses are displayed, multiple output and input names
are automatically parsed.

If you create multiple nodes with dependencies, and all input tables of descendant
nodes come from the output tables of ancestor nodes, the automatic parsing feature
can be used to quickly configure dependencies for the entire workflow.

140 Issue: 20190920

DataWorks Data Development / 1 Data development

Note:
• To make the node more flexible, we recommend that a node contain only one

 output node, so that you can flexibly assemble SQL business processes for
decoupling.

• If a table in an SQL statement is both an output table and a referenced table (a
depended table), the table is parsed only as an output table.

• If a table in an SQL statement is referenced or exported for multiple times, only
one scheduling dependency is parsed.

• If the SQL code contains a temporary table (for example, a table whose name
starts with t_ is specified as a temporary table during attribute configuration), the
table is not involved in a scheduling dependency.

Issue: 20190920 141

DataWorks Data Development / 1 Data development

When automatic parsing applies, you can add input and output to enable characters
in SQL statements to be automatically parsed into input and output names, or delete
input and output to avoid characters from being automatically parsed into input and
output names.

Right-click a table name and select Add Input, Add Output, Remove Input, or Remove
Output to modify the dependencies. This method applies to all table names in SQL
statements. If you select Add Input, the characters are parsed as the input name of the
parent node. If you select Add Output, the characters are parsed as the output name
of the current node. If you select Remove Input or Remove Output, the characters are
not parsed.

Note:

142 Issue: 20190920

DataWorks Data Development / 1 Data development

In addition to right-clicking characters in SQL statements, you can add comments to
modify the dependencies. The specific code is as follows:
 --@ extra_inpu t = table name -- Add an input .
--@ extra_outp ut = table name -- Add an output .
--@ exclude_in put = table name -- Delete an input .
 --@ exclude_ou tput = table name -- Delete an output .

Custom dependencies
When dependencies between nodes cannot be accurately parsed by running the SQL
statement for lineage analysis, you can set Auto Parse to No in the following figure
and configure dependencies.

When Auto Parse is set to No, you can click Auto Recommendation to enable
automatic recommendation of ancestor dependencies. The system recommends all
other SQL nodes that export the input table of the current node based on the SQL
lineage of the project. You can select one or more nodes in the recommendation list as
needed and configure them as the ancestor nodes of the current node.

Note:
The recommended nodes must be submitted to the scheduling system on the
previous day, and can be recognized by the automatic recommendation feature after
data is generated on the second day.

Common scenarios:
• The input table of the current node is not equivalent to the output table of the

ancestor node.
• The output table of the current node is not equivalent to the input table of the

descendant node.
In custom mode, you can configure dependencies in the following ways:

Issue: 20190920 143

DataWorks Data Development / 1 Data development

• Manually add ancestor nodes
1. Create three nodes. The system configures an output name for each of them by

default.

144 Issue: 20190920

DataWorks Data Development / 1 Data development

2. Configure the upmost node task_1 to depend on the root node of the workspace,
and click Save.

3. Configure task_2 to depend on the output name of task_1, and click Save.

4. Configure task_3 to depend on the output name of task_2, and click Save.

Issue: 20190920 145

DataWorks Data Development / 1 Data development

5. After the configuration is complete, click Submit to check whether the
dependency is correct. If the submission is successful, the dependency
configuration is correct.

146 Issue: 20190920

DataWorks Data Development / 1 Data development

• Build dependencies by dragging and dropping
1. Create three nodes, configure the upmost node task_1 to depend on the root

node, and click Save.

2. Drag the three nodes to connect them.

3. View the dependency configuration of task_2 and task_3. The output name of
the parent node is automatically generated.

Issue: 20190920 147

DataWorks Data Development / 1 Data development

4. After the configuration is complete, click Submit to check whether the
dependency is correct. If the submission is successful, the dependency
configuration is correct.

FAQs
Q: After automatic parsing, the submission fails. The following error message is
displayed: The output workshop_yanshi.tb_2 of the parent node does not exist.
Submit this node after submitting the parent node.

A: This problem can be caused by either of the following reasons:

148 Issue: 20190920

DataWorks Data Development / 1 Data development

• The ancestor node is not submitted. Submit the ancestor node and try again.
• The ancestor node is submitted, but the output name of the ancestor node is not

workshop_yanshi.tb_2.

Note:
Usually, the output names of the parent node and the current node are automatically
parsed based on the table name following INSERT, CREATE, or FROM. Make sure that
the configuration method is consistent with that described in the section "Automatic
dependency parsing."

Q: In the output of the current node, the descendant node name and ID are empty and
 cannot be specified. Why does this happen?
A: If the current node does not have any descendant node, the descendant node name
 and ID are empty. After a descendant node is configured for the current node, the
corresponding content is automatically parsed.
Q: What is the output name of a node used for?
A: The output name of a node is used to establish dependencies with other nodes. If
the output name of node A is ABC and node B takes ABC as its input, the dependency
is established between nodes A and B.
Q: Can a node have multiple output names?
A: Yes. If a descendant node references an output name of the current node as its
parent node output name, the dependency is established between the descendant
node and the current node.
Q: Can multiple nodes have the same output name?
A: No. The output name of each node must be unique for your Alibaba Cloud account
. If multiple nodes export data to the same MaxCompute table, we recommend that
you use Table name_Partition ID as the output of these nodes.
Q: How can I configure no parsing of intermediate tables during automatic
dependency parsing?
A: Right-click the intermediate table name in the SQL code and select Remove Input
or Remove Output, and then perform the automatic parsing of the input and output
again.
Q: How do I configure dependencies of the upmost node?

Issue: 20190920 149

DataWorks Data Development / 1 Data development

A: In general, the upmost node depends on the root node of the workspace.
Q: Why do I find a non-existent output name of node B when searching for the
ancestor node output name on node A?
A: Because the search feature works based on the submitted node information. After
 node B is submitted, if you delete the output name of node B and does not submit
node B to the scheduling system, the deleted output name of node B can still be found
 on node A.
Q: How do I implement the node flow of A->B->C once an hour (run node B after node
A is completed, and run node C after node B is completed)?
A: Set the output of node A as the input of node B and the output of node B as the
input of node C, and set the scheduling periods of nodes A, B, and C to 1 hour.

1.6.5 Cross-cycle dependencies
Cross-cycle dependencies allow nodes to depend on instances of nodes in the last
cycle.
DataWorks supports the following types of cross-cycle dependencies:
• Dependency on instances of child nodes

- Node dependency: depends on instances of child nodes in the last cycle. For
example, node A has three child nodes, namely, nodes B, C, and D, and node A
depends on instances of nodes B, C, and D in the last cycle.

- Business scenario: The current node depends on instances of child nodes in the
last cycle to cleanse the output tables of the current node and check whether the
 final result is generated properly.

• Dependency on the instance of the current node
- Node dependency: depends on the instance of the current node in the last cycle.
- Business scenario: The current node depends on the data output result of the

instance of the current node in the last cycle.

150 Issue: 20190920

DataWorks Data Development / 1 Data development

• Dependency on instances of custom nodes: You need to manually enter the IDs of
the nodes on which the current node depends. Separate the IDs with commas (,),
for example, 12345,23456.
- Node dependency: depends on instances of custom nodes in the last cycle.
- Business scenario: In the business logic, the current node depends on the

proper output of other service data that is not processed by the current node.

Note:
The difference between cross-cycle dependencies and dependencies in the current
cycle lies in that cross-cycle dependencies are displayed as dotted lines in Operation
Center.
Before bringing a node offline, you must delete all dependencies of the node so that
other nodes can run properly.

Take the xc_create and xc_select nodes in a workflow as an example. The following
figure shows the dependency between the two nodes.

The following figure shows how the dependency is displayed in Operation Center.

Issue: 20190920 151

DataWorks Data Development / 1 Data development

Cross-cycle dependencies: instances of child nodes
Node dependency: depends on instances of child nodes in the last cycle. For example
, node A has three child nodes, namely, nodes B, C, and D, and node A depends on
instances of nodes B, C, and D in the last cycle.
Business scenario: The current node depends on instances of child nodes in the last
cycle to cleanse the output tables of the current node. The current node starts to run
in the current cycle only when the child nodes were run successfully in the last cycle.
Select Cross-Cycle Dependencies and set Depend On to Instances of Child Nodes for
the xc_create node. The following figure shows how the dependency is displayed in
Operation Center.

152 Issue: 20190920

DataWorks Data Development / 1 Data development

Cross-cycle dependencies: instances of current node
Node dependency: The current node depends on the running status of the instance of
 the current node in the last cycle. If the current node is not finished in the last cycle,
the current node will not run in the current cycle.
Business scenario: The current node depends on the data cleansing result in the last
cycle. In this example, Instance Recurrence is set to Hour.
The following figure shows how the dependency is displayed in Operation Center.

Issue: 20190920 153

DataWorks Data Development / 1 Data development

Cross-cycle dependencies: instances of custom nodes
Node dependency: The output tables of the xc_information node are not used in the
code of the xc_create node. However, the xc_create node depends on the data output
 result of the xc_information node in the last cycle according to the business logic.
That is, the xc_create node depends on the instance of the xc_information node in the
 last cycle.
Business scenario: In the business logic, the xc_create node depends on proper data
 output the xc_information node in the last cycle, but the xc_create node does not
process the output data of the xc_information node.
For example, the ID of the xc_information node is 1000374815. Set Depend On to
Instances of Custom Nodes and enter the node ID 1000374815 for the xc_create node.
The following figure shows how the dependency is displayed in Operation Center.

154 Issue: 20190920

DataWorks Data Development / 1 Data development

1.6.6 Node context
This topic describes the node context functions. The node context is used to transfer
the parameter between upstream and downstream nodes. The basic method uses
the node context function as the first defined output parameters, and their values
on the upstream node. Then the defined input parameter on the downstream node.
The value references the output parameters of the upstream node. You can use this
parameter in the downstream node to obtain values, which is transferred from the
upstream node.
Node context parameter can be configured at Schedule > Node Context in a specific
node, as shown in the following figure.

Issue: 20190920 155

DataWorks Data Development / 1 Data development

Output parameters
The Node Output Parameters can be defined in Node Context. The two types of Output
Parameter values are the Constant and Variable. The Constant is a fixed string and the
Variable are global variables supported by the system. The output parameter can be
reused in the downstream node as an input parameter value, after the upstream node
is submitted with the output parameter.

Note:
The assigned value to the defined Output parameter on the current node through
internal code writing, for example the PyODPS node is not supported.

156 Issue: 20190920

DataWorks Data Development / 1 Data development

The fields are described as follows.
Field Description Note
No. The value of No

. is generated by
 the system and
 automatically
increased.

N/A

Parameter name The defined output
parameter name.

N/A

Type The parameter type. There are two types of output
parameter values, which are the
Constant and Variable .

Value The source value. 1. The string can be entered when the
selected Type is Constant .

2. When the selected type is
Variable , the following

parameters are supported:
System variables, Schedule
built-in parameters, Customized
parameters $ {...}and $ […] .

Description A brief description of
 the parameters.

N/A

Action Edit and Delete can
be selected

Edit and Delete are not supported
when a downstream node dependency
exists. Before adding references to the
upstream nodes, please ensure the
upstream output is defined correctly.

Issue: 20190920 157

DataWorks Data Development / 1 Data development

Input parameters
The Node Input Parameters are used for defining a reference to the output of the
upstream node which it is dependent on, and it can be used inside the node similar to
that as other parameters.
• The definition of The Node Input Parameters

1. Add a dependent upstream node on the Scheduling Dependencies.

2. Add an input parameter definition with value, which references the upstream
node, in the Node Context > The Node Input Parameters.

The fields are described as follows.
Field Description Note
No. The value of No. is generated

 by the system and is
automatically increased.

N/A

Parameter
name

The defined input parameter
name.

N/A

Value of the
source

The parameter value source
 that is a reference to the
upstream node value.

The specific parameter value
 when the upstream node is
running.

Description A brief description of the
parameters.

Automatically parsed from the
 upstream node.

Parent Node
ID

Parent Node ID Automatically parsed from the
 upstream node.

Action Edit and Delete can be
selected

N/A

158 Issue: 20190920

DataWorks Data Development / 1 Data development

• Use of input parameters
The reuse format defined input parameter is similar to that as to other systems.
The format is ${ input parameter name }. For example, a reference in a
shell node is shown in the following figure.

Global variables supported by the system
• System variable

$ { projectid }: Project ID
$ { project name }: MaxCompute project name
$ { nodeid }: Node ID
$ { gmtdate }: 00 : 00 : 00 at the instance date , format :
 ' yyyy - mm - dd 00 : 00 : 00 '.
$ { taskid }: Instance Task ID
$ { seq }: Task instance sequence number , represents the
 instance ' s sequence number in the same node on
current day .
$ { cyctime }: instance time
$ { status }: Status of instance - Success , Failure
$ { bizdate }: Business Date
$ { finishtime }: Instance End Time
$ { taskType }: Instance Status —— NORMAL , MANUAL , PAUSE , SKIP
, UNCHOOSE , SKIP_CYCLE
$ { nodeName }: Node name

• For more information about additional parameter settings, see #unique_42.
Examples

The node test22 is the upstream node of node test223. Please configure the Node
Context > The Node Output Parameters on node test22. In this example, the
parameter name is date1 and the value is ${ yyyymmdd }, click Run as shown in
the following figure.

Issue: 20190920 159

DataWorks Data Development / 1 Data development

After node test22 is submitted configure the downstream node test223.

Note:
Please ensure the Dependencies > Upstream Node Output Name in test223 similar to
Dependencies > Output Name in test22.

Enter the parameter name of test22 date1 in the Node Context > The Node Input
Parameter > Parameter Name, and there will be options available in theValue of the
drop-down menu. Choose the specific source and click Save.

160 Issue: 20190920

DataWorks Data Development / 1 Data development

1.6.7 Create instances immediately
This topic describes how to immediately create instances from a published node. You
can view the instance dependency relationships in the O&M center.

Instance creation methods
You can choose the following methods to create instances from a published node.
• Next day

If you choose this method, the nodes published before 23:30 create instances the
following day. The nodes published after 23:30-00:00 create instances three days
later.

• Immediately after publishing
If you choose this method, the nodes create instances immediately after they are
published.

Issue: 20190920 161

DataWorks Data Development / 1 Data development

Creating an instance for creating nodes after the node is published
1. On the DataStudio page, create a Business Flow.

162 Issue: 20190920

DataWorks Data Development / 1 Data development

2. Create a node in the created business flow. The following example uses an ODPS
SQL node.

Issue: 20190920 163

DataWorks Data Development / 1 Data development

3. Double-click the node, edit the code, and click Schedule on the right-navigation
pane of the page. Then set the instance creation method to Immediately After
Publishing.

Note:
• You can publish the node any time. However, both unpublished and published

nodes will not create instances during the time period 23:30 to 24:00.
• After an Immediately After Publishing Node is published, you must wait 10

minutes to create instances.
• If you change the instance creation method from Next Day to Immediately After

Publishing to republish the node. Only the instances that have been run are
retained. After the node is republished, it will pend 10 minutes before deleting
instances that have not been run, and then create now instances.

• An Immediately After Publishing node determines whether to create new
instances based on the CRON Expression. If the expression changes, the node
then creates new instances. Therefore, if you need to republish Immediately

164 Issue: 20190920

DataWorks Data Development / 1 Data development

After Publishing node to create a new instance, you must change the CRON
Expression of the node.

Scenarios
The Immediately After Publishing method typically uses the following scenario: The
predecessor node uses the Next Day method to create instances. The successor nodes
all use the Immediately After Publishing method to create instances. The following
figure shows the dependency relationships between these nodes:

This scenario includes the following situations:
1. If the upstream and downstream nodes are new nodes added to today, this means

the upstream node must wait until the following day to create the first instance:
• Daily run upstream nodes: The instance created by the daily run upstream node

today does not have an upstream node. If the dependency type is set to custom,

Issue: 20190920 165

DataWorks Data Development / 1 Data development

the instance created by the upstream node will depend on an instance created
by another node.

• Once a minute or hourly run upstream nodes: If the dependency type is set to
upstream-downstream dependency and the upstream node is not once a minute
or hourly run node, only the first created instance will not have an upstream
node.

• Weekly or monthly run upstream nodes: If the node dependency type is self-
dependent, only the first instance created by this node does not have an
upstream node.

Note:
A daily run upstream node will not create the first instance until the following
day. Therefore, instances created by the downstream nodes today will become
independent instances without upstream nodes and cannot be run. If the
dependency type of the downstream nodes is set to self-dependent, the
instances created the next day will depend on those independent instances. As
a result, the task is isolated and cannot be run.

• Conclusion: When the upstream and downstream nodes are new nodes added to
the current day and the dependency type is set to self-dependent, the instance
created first will not have an upstream instance. As a result, the task cannot run
successfully.

2. If the upstream node has created a predecessor instance, and the successor nodes
are added Immediately After Publishing nodes:
• Daily run downstream nodes: The instance created by this node today will

depend on the existing upstream instance. If the dependency type is set to self-
dependent, all instances created by this node will have an upstream instance.

• Once a minute or hourly run downstream nodes:The instance created by this
node on the current day will depend on the existing upstream instance. If the
dependency type is set to self-dependent, only the first instance does not have an
upstream instance.

• Weekly or monthly run downstream nodes: Despite of the set dependency type,
the instance created by this node will depend on the existing upstream instance.

• Conclusion:To successfully run a self-dependent node , make sure the node can
successfully run on the day before.

166 Issue: 20190920

DataWorks Data Development / 1 Data development

3. If the daily run upstream node has a created instance, and an hourly run upstream
 node is changed to a daily run node that uses the Immediately After Publishing
method:
• Nodes before modification: Both the upstream and downstream nodes are

hourly run nodes that use the Next Day method.

• Update: The hourly run node that depends on the upstream node is changed to a
daily run node that uses the Immediately After Publishing method.

• Instance creation and dependencies after modification: The dotted line in
the preceding figure indicates the time when the node is submitted and
republished. The node will delete all instances that are created 10 minutes after
the node is republished, and create a new daily run instance. The hourly run
successor nodes of the republished node will depend on the newly created daily
run instance. If the republished node dependency type is set to self-dependent,

Issue: 20190920 167

DataWorks Data Development / 1 Data development

the newly created instance will depend on the instance created by the Next Day
node.

• Instances after modification: Before the node is published, it creates hourly run
instances. After the node is republished, it creates daily run instances.

• Conclusion: The dependencies of the republished node remain unchanged. Only
the instance created on the current day is affected.

1.7 Configuration management
1.7.1 Overview of configuration management

Configuration management can configure the DataStudio interface, including code
, folder, theme, add and delete modules, and more. You can enter the configuration
management page by clicking the option in the lower-left corner of data development
.

168 Issue: 20190920

DataWorks Data Development / 1 Data development

Configuration management is separated into five modules. For more information, see
the following documents:
• #unique_84
• #unique_78
• #unique_85
• #unique_86
• #unique_87

1.7.2 Configuration center
The configuration center sets the common features, including module management
and editor management.

Issue: 20190920 169

DataWorks Data Development / 1 Data development

Module management
Module management can add and delete modules in the left-side navigation pane
function module of the DataStudio interface, you can click filter to display functional
 modules on the left-side, you can also sort the module functions by dragging and
dropping.
When you move the cursor over the module you want to add, the module turns blue
and displays Add.

When the cursor moves over the module that needs to be removed, the module turns
red and displays Remove.

170 Issue: 20190920

DataWorks Data Development / 1 Data development

Note:
The template management filtering takes effect immediately in the current project, if
you want it to take effect for all projects, click Apply Settings To All Projects.

Editor management
The editor is the setting for code and keywords, and the settings takes effect in real
time without the need to refresh the interface.
• Thumbnail view

The current interface code is displayed on the right side of the code, and the
shaded area in the figure is in the displayed area. When the code is longer, you can
move the cursor up and down to switch the displayed code area.

Issue: 20190920 171

DataWorks Data Development / 1 Data development

• Check for errors
Check the error statement in the current code. When the cursor is placed in the red
 error code area, an error-specific field condition is displayed.

• Auto save
Automatically cache the currently edited code to avoid the page from crashing
and losing edited code that has not been saved. You can choose Use Server-Saved
Code in the left-side navigation pane or Use Locally Cached Code in the right-side
navigation pane.

172 Issue: 20190920

DataWorks Data Development / 1 Data development

• Code style
You can select a favorite code style of either uppercase or lowercase. You can enter
keywords or use the keyword association shortcut to enter the required keywords.

• Code font size
The code font size supports a minimum font size of 12 and a maximum font size of
18. You can change the setting based on your code writing habits and volume.

• Code Hint
Code prompts are used during code entry, and intelligent prompt displays are
separated into the following sections.
- Space Smart Tip: Add a space after selecting associated keywords, tables, and

fields.
- Keywords: The prompt code supports the keywords entered.
- Syntax templates: The syntax templates are supported.
- Project: The associated project name.
- Table: The required table for association.
- Field: The smart prompt for table fields.

Issue: 20190920 173

DataWorks Data Development / 1 Data development

• Theme
The theme style is the DataStudio interface style setting, which currently supports
both black and white.

• Application
Apply the above template management and editor management settings to all
currently existing projects.

1.7.3 Project configuration
Project configuration includes the following four configuration items: partition date
format, partition field naming, temporary table prefix, and upload table (import table
) prefix.

• Partition Date Format: By default, this is the display format of the code parameters
. You can modify the parameters format based on requirements.

• Partition field naming: The default field name of the partition.
• Temporary table prefix: The fields that begin with "t_" are identified as temporary

tables by default.
• Upload table (import table) prefix: The table name prefix when the DataStudio

interface uploads the table.
1.7.4 Templates

By default, the template management is the content that is displayed in front of the
code after the node is created. The project administrator can modify the template
display style as required.
Currently, the title is set for the ODPS SQL template, the ODPS MR template, the ODPS
PL template, the PERL template, and the SHELL template.

174 Issue: 20190920

DataWorks Data Development / 1 Data development

The following is an example of the SQL node template display style:

1.7.5 Theme management
This topic is an overview of theme management. There are many tables in table
 management, where the tables are stored under the second-level sub-Folder
according to the selected topics. These folders are summarized in the table, which is
the theme. The administrator can add multiple themes based on project requiremen
ts, classify and organize the tables according to their purpose and name.

1.7.6 Table levels
This topic is a description of table levels. Table levels is the physical level design of
 a table. Based on the importance of the table in the project, the table is separated
to prevent issues from when a problem occurs in a table, the impact on the project
cannot be accurately located, which affects normal online operation.

Issue: 20190920 175

DataWorks Data Development / 1 Data development

There is no default hierarchy for the project. The project owner or administrator
needs to be added manually according to the purpose and project requirements.

1.7.7 Back up and restore data
This topic describes how to back up and restore data. When you back up your data,
your resources are also backed up at the same time. For more information about
resources, see Resource.

Note:
• Only workspace administrators can export backups and restore data from

backups on the Config Center page. For more information about how to open the
Config Center page, see Overview of configuration management.

• Workflows of earlier versions cannot be backed up. We recommend that you use
the latest version for data analytics.

You can create both full backups and incremental backups for a workspace. You can
 select Alibaba Cloud Version 2, Apsara Stack Version 3.6.1 or Later, or Apsara Stack
Version 3.6 or Earlier as the version of each backup.

Note:
• You can download backup files in XML format.
• You can restore a workspace from backup files. However, errors may occur during

 restoration. We recommend that you use full backups whenever possible.

176 Issue: 20190920

DataWorks Data Development / 1 Data development

1.8 Manual business flow
1.8.1 Manual business flow overview

In a Manual Business Flow, all created nodes must be manually triggered and cannot
be executed by scheduling. Therefore, it is unnecessary to configure the parent node
dependency and local node output for nodes in a manual business flow.

The functions of the manual business flow interface are described below:
No. Function Description
1 Submit Submits all nodes in the current manual business

 flow.
2 Run Runs all nodes in the current manual business

 flow. Because the dependency does not exist
 among manual tasks, these tasks will run
concurrently.

3 Stop run Stops a running node.
4 Publish Goes to the task publish interface, where you can

 publish some or all submitted nodes , but does
not publish to the production environment.

5 Go to O&M Goes to the O&M center.
6 Reload Reloads the current manual business flow

interface.

Issue: 20190920 177

DataWorks Data Development / 1 Data development

No. Function Description
7 Auto layout Automatically sequence the nodes in the current

manual business flow.
8 Zoom-in Zoom-in the interface.
9 Zoom-out Zoom-out the interface.
10 Query Query a node in the current manual business flow

.
11 Full screen Shows nodes in the current manual business flow

in full-screen mode.
12 Parameters Configures the parameters. The priority of a flow

parameter is higher than that of a node parameter
. If a parameter key matches a parameter, the
business flow parameter is configured preferenti
ally.

13 Operation records Views the operation history of all nodes in the
current manual business flow.

14 Version Views the submission and published records of all
 nodes in the current manual business flow.

1.8.2 Resource
This topic is an overview of resource in Manual Business Flow. Resource is a unique
concept in MaxCompute, which supports uploading and submitting the Manual
Business Flow, and must be available if you want to use MaxCompute UDFs or
MaxCompute MR.
• ODPS SQL UDF: After compiling a UDF, you must upload the compiled JAR package

 to ODPS. When running this UDF, ODPS automatically downloads the JAR package
, extracts the user code, and runs the UDF. The process of uploading the JAR
package is creating a resource in ODPS. The JAR package is a type of ODPS resource
.

• ODPS MapReduce: After compiling a MapReduce program, you must upload the
compiled JAR package as a resource to ODPS. When running a MapReduce job, the
 MapReduce framework automatically downloads this JAR resource and extracts
the user code.

178 Issue: 20190920

DataWorks Data Development / 1 Data development

Similarly, you can upload text files, ODPS tables, and various compressed packages,
such as .zip, .tgz, .tar.gz, .tar, and .jar as different types of resources to ODPS. Then,
you can read or use these resources when running UDFs or MapReduce.
The ODPS provides reading and using resources for APIs. The following types of ODPS
resources are available:
• File
• Archive: The compression type is identified by the extension in the resource name.

The following compressed file types are supported: .zip, .tgz, .tar.gz, .tar, and .jar.
• JAR: The compiled Java JAR packages.
In DataWorks, you can add a resource by creating a resource. Currently, DataWorks
supports the addition of three types of resources in a visual manner, including JAR,
Python, and file resources. The created new entries are the same, but the differences
are as follows:
• JAR resource: You need to compile the Java code in the offline Java environment,

compress the code into a JAR package, and upload the package as the JAR resource
 to MaxCompute.

• Small files: These resources are edited on DataWorks.
• File resource: When creating file resources, you need to select big files. You can

also upload local resource files.

Issue: 20190920 179

DataWorks Data Development / 1 Data development

Create a resource instance
1. Click Manual Business Flow in the left-side navigation pane, and select Create

Business Flow.

2. Right-click Resource, and select Create Resource > JAR.

180 Issue: 20190920

DataWorks Data Development / 1 Data development

3. The Create Resource dialog box is displayed. Enter the resource name according to
the naming convention, set the resource type to JAR, select a local JAR package to
upload, and click Submit to submit the package in the development environment.

Note:
• If this JAR package has been uploaded to the ODPS client, you must deselect

Upload to ODPS resource. Otherwise, an error will be reported during upload.
• The resource name is not necessarily the same as the uploaded file name.
• Naming convention for a resource name: A string of 1 to 128 characters,

including letters, numbers, underscores (_), and periods (.). The name is case
insensitive. If the resource is a ()wewweJAR resource, the file extension is .jar.

Issue: 20190920 181

DataWorks Data Development / 1 Data development

4. Click Submit to submit the resource to the development scheduling server.

5. Release a node task
For more information about the operation, see #unique_19.

1.8.3 Function
Register the UDF

MaxCompute supports UDFs. For more information, see UDF overview.
DataWorks provides the visual GUI to register functions for replacing the
MaxCompute command line add function .
Currently, the Python and Java APIs supports the implementation of UDF. To compile
a UDF program, you can upload the UDF code by Adding resources and then register
the UDF.

182 Issue: 20190920

https://www.alibabacloud.com/help/doc-detail/27866.htm

DataWorks Data Development / 1 Data development

UDF registration procedure
1. Click Manual Business Flow in the left-side navigation pane, select Create Business

Flow.

2. In the offline Java environment, you can edit the program, and compress the
program into a JAR package. Then create a JAR resource, submit and publish the
program.
You can also create a Python resource. You can compile and save the Python code,
and submit the code, and then publish the code. For more information, see Create
Resources.

3. Select Function > Create Function, and enter the new function configuration, and
then click Submit.

Issue: 20190920 183

DataWorks Data Development / 1 Data development

4. Edit the function configuration.

• Class Name: The name of the main class that implements the UDF. When the
 resource is Python, the typical writing style is: Python resource name.Class
name ('.py' is not required in the resource name).

• Resources: The name of the resource in the second step. If there are multiple
resources, separate them with commas (,).

• Description: The UDF description. It is optional.
5. Submit the job.

After the configuration is completed, click Save in the upper-left corner of the page
or press Ctrl+S to submit (and unlock) the node to the development environment.

6. Publish a node task
For more information about publishing a node task, see #unique_19.

184 Issue: 20190920

DataWorks Data Development / 1 Data development

1.8.4 Table
Create a table

1. Click Manual Business Flow, and select Create Business Flow.

2. Right-click Table, and select Create Table.

Issue: 20190920 185

DataWorks Data Development / 1 Data development

3. Set basic attributes.

• Chinese Name: The Chinese name of the created table.
• Level-1 Topic: The name of the level-1 target folder of the created table.
• Level-2 Topic: The name of the level-2 target folder of the created table.
• Description: The description of the created table.
• Click Create Topic. On the displayed Topic Management page, create level-1 and

level-2 topics.

186 Issue: 20190920

DataWorks Data Development / 1 Data development

4. Create a table in DDL mode
Click DDL Mode. In the displayed dialog box, enter the standard table creation
statements.

After editing the table creation SQL statements, click Generate Table Structure to
automatically enter information in the Basic Attributes, Physical Model Design,
and Table Structure Design areas.

Issue: 20190920 187

DataWorks Data Development / 1 Data development

5. Create a table on the GUI
If creating a table in DDL mode is not applicable, you can create the table on the
GUI by performing the following settings.
• Physical model design

- Partition Type: It can be set to Partitioned Table or Non-partitioned Table.
- Life Cycle: The life cycle function of MaxCompute. Data in the table (or

partition) that is not updated within a period specified by the Life Cycle (unit:
day) will be cleared.

- Level: It can be set to DW, ODS, or RPT.
- Physical Category: It can be set to Basic Business Layer, Advanced Business

Layer, or Other. Click Create Level. On the displayed Level Management page,
create level.

• Table structure design
- English Field Name: The English name of a field can contain letters, numbers

, and underscores (_).
- Chinese Name: The abbreviated Chinese name of a field.
- Field Type: The MaxCompute data type, which can only be String, Bigint,

Double, Datetime, or Boolean.
- Description: The detailed description of a field.
- Primary Key: Select this parameter to indicate the field is the primary key or a

 field in the joint primary key.
- Click Add Field to add a column for a new field.
- Click Delete Field to delete a created field.

Note:
If you delete a field from the created table and submit the table again,
you must drop the current table and create one with the same name. This
operation is not allowed in the production environment.

- Click Move Up to adjust the field order of the created table. However, to adjust
the field order of a created table, you must drop the current table and create

188 Issue: 20190920

DataWorks Data Development / 1 Data development

one with the same name. This operation is not allowed in the production
environment.

- Click Move Down, so the operation is the same as that of Move Up.
- Click Add Partition to create a partition for the current table. To add a

partition to the created table, you must drop the current table and create
one with the same name. This operation is not allowed in the production
environment.

- Click Delete Partition to delete a partition. To delete a partition from a created
table, you must drop the current table and create one with the same name.
This operation is not allowed in the production environment.

- Action: You can confirm to submit a new field, delete a field, and edit more
attributes.
More attributes include information related to the data quality, which is
provided for the system to generate the verification logic. They are used in
scenarios, such as data profiling, SQL scan, and test rule generation.
■ 0 Allowed: If it is selected, the field value can be zero. This option is

applicable only to Bigint and Double fields.
■ Negative value allowed: If it is selected, the field value can be a negative

number. This option is applicable only to Bigint and Double fields.
■ Security level: It can be set to Non-sensitive, Sensitive, or Confidential.

C : Customer data , B : Company data , S : Business
 data
C1 — C2 , B1 , and S1 are non - sensitive data .
C3 , B2 – B4 , S2 , and S3 are sensitive data .
C4 , S4 , and B4 are confidenti al data .

■ Unit: The amount unit, which can be in dollars or cents. This option is not
required for fields unrelated to the amount.

■ Lookup table name/key value: It is applicable to enumerated value-type
 fields, such as the member type and status. You can enter the name
of the dictionary table (or dimension table) corresponding to the field
. For example, the name of the dictionary table corresponding to the
member status is dim_user_status. If you use a globally unique dictionary
 table, enter the corresponding key_type of the field in the dictionary

Issue: 20190920 189

DataWorks Data Development / 1 Data development

table. For example, the corresponding key value of the member status is
TAOBAO_USER_STATUS.

■ Value range: The maximum and minimum values of the current field. It is
applicable only to Bigint and Double fields.

■ Regular expression verification: The regular expression used by the
current field. For example, if a field is a mobile phone number, the value
can be limited to an 11-digit number through regular expression (or more
strict limitations).

■ Maximum length: The maximum number of characters of the field value. It
 is applicable only to string fields.

■ Date precision: The precision of the date, which can be set to Hour, Day,
Month, or others. For example, the precision of month_id in the monthly
summary table is Month, although, the field value is 2014-08-01 (it seems
that the precision is Day). It is applicable to date values of the datetime or
string type.

■ Date format: The format is applicable only to the date values of the string
type. The format of the date value stored in the field is similar to yyyy-mm-
dd hh:mm:ss.

■ KV primary separator/secondary separator: It is applicable to a large field
 (of the string type) combined with KV pairs. For example, if a product
expansion attribute has a value similar to "key1:value1;key2:value2;key3
:value3;...", the semicolon (;) is the primary separator of the field that
separates the KV pairs, and the colon (:) is the secondary separator that
separates the key and value in a KV pair.

• Partition field design: This option is displayed only when the Partition Type in
the Physical Model Design area is set to Partitioned Table.

• Field type: We recommend that you use the string type for all fields.
• Date partition format: If a partition field is a date (although its data type may be

string), and select or enter a date format, such as yyyymmmdd.
• Date partition granularity: For example, Day, Month, or Hour.

Submit a table
After editing the table structure information, submit the new table to the
development environment and production environment.

190 Issue: 20190920

DataWorks Data Development / 1 Data development

• Click Load from Development Environment. If the table has been submitted to the
development environment, this button is highlighted. After you click the button,
the information of the created table in the development environment overwrites
the information on the current page.

• Click Submit to Development Environment, the system checks whether all required
items on the current editing page are completely set. If any omission exists, an
alarm is reported to prevent you from submitting the table.

• Click Load from Production Environment, to submit the detailed information of
the table to the production environment. Information on the current page will be
overwritten.

• Click Create in Production Environment, to create the table in the project of the
production environment.

1.9 Manual task node type
1.9.1 ODPS SQL node

The ODPS SQL adopts a syntax similar to that of SQL, and is applicable to a
distributed scenario, where the amount of data is massive (TB-level) with low real-
time requirement. It is an OLAP application oriented to throughput. ODPS SQL
is recommended if a business needs to handle thousands or tens of thousands of
transactions because it takes a long time to complete the process from preparation to
submission of a job.

Issue: 20190920 191

DataWorks Data Development / 1 Data development

1. Create a business flow.
Click Manual Business Flow in the left-side navigation pane, and select Create
Business Flow.

2. Create ODPS SQL node.
Right-click Data Development, and select Create Data Development Node > ODPS
SQL.

192 Issue: 20190920

DataWorks Data Development / 1 Data development

3. Edit the node code.
For more information about the syntax of the SQL statements, see MaxCompute
SQL statements.

4. Node scheduling configuration.
Click the Schedule on the right of the node task editing area to go to the
Node Scheduling Configuration page. For more information, see Scheduling
configuration.

5. Submit the node.
After the configuration is completed, click Save in the upper-left corner of the page
or press Ctrl+S to submit (and unlock) the node to the development environment.

6. Publish a node task.
For more information about the operation, see Release management.

7. Test in the production environment.
For more information about the operation, see #unique_102.

1.9.2 PyODPS node
This topic describes the PyODPS node functions. DataWorks provides the PyODPS task
type and integrates the Python SDK of MaxCompute. You can edit the Python code to
operate MaxCompute on a PyODPS node of DataWorks.

Create a PyODPS Node
MaxCompute provides the Python SDK, which can be used to operate MaxCompute.
To create a PyODPS node, perform the following steps:

Issue: 20190920 193

https://www.alibabacloud.com/help/doc-detail/27860.htm
https://www.alibabacloud.com/help/doc-detail/27860.htm
https://www.alibabacloud.com/help/doc-detail/34615.htm

DataWorks Data Development / 1 Data development

1. Create a business flow
Click Manual Business Flow in the left-side navigation pane, and select Create
Business Flow.

2. Create a PyODPS node.
Right-click Data Development, and select Create Data Development Node >
PyODPS.

194 Issue: 20190920

DataWorks Data Development / 1 Data development

3. Edit the PyODPS node.
a. ODPS portal

On DataWorks, the PyODPS node contains a global variable odps or o, which is
the ODPS entry. You do not need to manually define an ODPS entry.
print (odps . exist_tabl e (' PyODPS_iri s '))

b. Run the SQL statements
PyODPS supports ODPS SQL query and can read the execution result. The return
value of the execute_sql or run_sql method is the running instance.

Note:
Not all commands that can be executed on the ODPS console are SQL
statements that are accepted by ODPS. You need to use other methods to call
non DDL/DML statements. For example, use the run_security_query method to
call the GRANT or REVOKE statements, and use the run_xflow or execute_xflow
method to call PAI commands.
o . execute_sq l (' select * from dual ') # Run the
 SQL statements in synchronou s mode . Blocking
continues until execution of the SQL statement is
 completed .
instance = o . runsql (' select * from dual ') # Run
the SQL statements in asynchrono us mode .
print (instance . getlogview _address ()) # Obtain the
logview address .
instance . waitforsuc cess () # Blocking continues until
execution of the SQL statement is completed .

c. Configure the runtime parameters
The runtime parameters must be set sometimes. You can set the hints
parameter with the parameter type of dict.
o . execute_sq l (' select * from PyODPS_iri s ', hints
={' odps . sql . mapper . split . size ': 16 })

After you add sql.settings to the global configuration, related runtime
parameters are added upon each running.python.
from odps import options
options . sql . settings = {' odps . sql . mapper . split . size
': 16 }

Issue: 20190920 195

DataWorks Data Development / 1 Data development
o . execute_sq l (' select * from PyODPS_iri s ') # " hints
" is added based on the global configurat ion .

d. Read the SQL statement execution results
The instance that runs the SQL statement can directly perform the open_reader
operation. In one case, the structured data is returned as the SQL statement
execution result.
with odps . execute_sq l (' select * from dual ').
open_reade r () as reader :
for record in reader : # Process each record .

In another case, desc may be executed in an SQL statement. In this case, the
 original SQL statement execution result is obtained through the reader.raw
attribute.
with odps . execute_sq l (' desc dual '). open_reade r ()
as reader :
print (reader . raw)

Note:
User-defined scheduling parameters are used in data development. If a PyODPS
node is directly triggered on the page, the time must be clearly specified. The
time of a PyODPS node cannot be directly replaced like that of an SQL node.

4. Node scheduling configuration.
Click the Schedule on the right of the node task editing area to go to the
node scheduling configuration page. For more information, see Scheduling
configuration.

5. Submit the node.
After the configuration is completed, click Save in the upper left corner of the page
or press Ctrl+S to submit (and unlock) the node to the development environment.

6. Publish a node task.
For more information about the operation, see Release management.

7. Test in the production environment.
For more information about the operation, see #unique_102.

1.9.3 Manual data intergration node
Currently, the data intergration task supports the following data sources:
MaxCompute, MySQL, DRDS, SQL Server, PostgreSQL, Oracle, MongoDB, DB2, Table

196 Issue: 20190920

DataWorks Data Development / 1 Data development

Store, OTSStream, OSS, FTP, Hbase, LogHub, HDFS, and Stream. For details about
more supported data sources, see #unique_29.

1. Create a business flow
Click Manual Business Flow in the left-side navigation pane, select Create Business
Flow.

Issue: 20190920 197

DataWorks Data Development / 1 Data development

2. Create a data intergration node
Right-click Data Integration, and select Create Data Data Integration Node > Data
Integration.

3. Configure a intergration task
You can enter the source table name and target table name to complete a simple
task configuration.
After you enter a table name, a list of objects that match the table name is
automatically displayed(Currently, only exact match is supported. Therefore, you
must enter the correct and complete table name), Some objects are not supported
by the current intergration center and are marked Not supported. You can move
the mouse over an object. The detailed information about the object, such as
the database, IP address, and owner of the table, is automatically displayed. The
information helps you select an appropriate table object. After selecting an object,

198 Issue: 20190920

DataWorks Data Development / 1 Data development

click the object. The column information is automatically filled in. You can edit
columns, for example, moving, deleting, or adding column.
a. Configure intergration tables.

b. Edit the data source.
Generally, you do not need to edit the content of the source table unless
necessary.
• Click Insert on the right of a column to insert a new column.
• Click Delete on the right of a column to delete the column.

c. Edit the data destination.
Generally, you do not need to edit the field information of the destination table
unless necessary (for example, you need to import data of only some columns).

Note:
If the destination is an ODPS table, columns cannot be deleted. In configuration
of a intergration task, the field settings of the source table matches those of the
destination table in one-to-one relationship by page instead of by field name.

d. Incremental intergration and full intergration.
• Shard format for incremental intergration: ds=${bizdate}
• Shard format for full intergration: ds=*

Note:
If multiple shards need to be synchronized, the intergration center supports
simple regular expressions.

Issue: 20190920 199

DataWorks Data Development / 1 Data development

• For example, if you need to synchronize multiple shards, but it is difficult to
write regular expressions, use the following method: ds = 20180312 |

ds = 20180313 | ds = 20180314 ;

• If you need to synchronize shards in the same range, the intergration center
supports an extended syntax similar to the following: /* query */ ds >=

20180313 and ds < 20180315 ; If this method is used, you must add /
query/.

• The variable bizdate must be defined in the following parameter: - p "-

Dbizdate =$ bizdate - Denv_path =$ env_path - Dhour =$ hour

". If you need to customize a variable, for example, pt =${ selfVar },
also define the variable in the parameter, for example, - p "- Dbizdate =$

bizdate - Denv_path =$ env_path - Dhour =$ hour - DselfVar =

xxxx ".
e. Field mapping.

Fields are mapped based on the locations of fields in the source table and
destination table, instead of based on the field names and types.

Note:

200 Issue: 20190920

DataWorks Data Development / 1 Data development

If the source table is an ODPS table, fields cannot be added during data
intergration. If the source table is not an ODPS table, fields can be added during
data intergration.

f. Tunnel control.
Tunnel control is used to control the speed and error rate when you select a
intergration task.
• DMU: Data migration unit, which measures the resources (including the CPU,

memory, and network) consumed during data integration.
• Concurrent job count: Maximum number of threads used to concurrently

read data from or write data into the data storage media in a data intergration
 task.

• intergration speed: Maximum speed of the intergration task.
• Maximum error count: It is used to control the amount of dirty data, and is set

 by yourself based on the amount of synchronized data when the field types of
 the source table do not match those of the destination table. It indicates the
maximum dirty data count allowed. If it is set to 0, no dirty data is allowed; if
it is not specified, dirty data is allowed.

• Task resource group: To select a resource group where the current intergrati
on node is located, you can add or modify the resource group on the data
integration page.

4. Node scheduling configuration.
Click the Schedule on the right of the node task editing area to go to the
node scheduling configuration page. For more information, see Scheduling
configuration.

5. Submit a node task.
After the configuration is completed, click Save in the upper left corner of the page
or press Ctrl+S to submit (and unlock) the node to the development environment.

6. Publish a node task.
For more information about the operation, see Release management.

7. Test in the production environment.
For more information about the operation, see #unique_32.

Issue: 20190920 201

DataWorks Data Development / 1 Data development

1.9.4 ODPS MR node
MaxCompute supports MapReduce programming APIs. You can use the Java API
 provided by MapReduce to write MapReduce programs for processing data in
MaxCompute. You can create ODPS MR nodes and use them in Task Scheduling.
For how to edit and use the ODPS MR, see the examples in the MaxCompute
documentation WordCount examples.
To use an ODPS MR node, you must first upload and release the resource to be used,
and then create the ODPS MR node.

Create a resource instance
1. Create a business flow

Click Manual Business Flow in the left-side navigation pane, select Create Business
Flow.

202 Issue: 20190920

https://www.alibabacloud.com/help/doc-detail/27886.htm

DataWorks Data Development / 1 Data development

2. Right-click Resource, and select Create Resource > jar.

Issue: 20190920 203

DataWorks Data Development / 1 Data development

3. Enter the resource name in the Create Resource according to the naming
convention, set the resource type to jar, select a local jar package to the uploaded.

Note:
• If this jar package has been uploaded on the ODPS client, you must deselect

Uploaded as the ODPS resource. In this upload, the resource will also be
uploaded to ODPS. Otherwise, an error will be reported during the upload
process.

• The resource name is not necessarily the same as the name of the uploaded file.
• Naming convention for a resource name: a string of 1 to 128 characters,

including letters, numbers, underlines, and dots. The name is case insensitive.
If the resource is a jar resource, the extension is .jar. If the resource is a Python
resource, the extension is .py.

204 Issue: 20190920

DataWorks Data Development / 1 Data development

4. Click Submit to submit the resource to the development scheduling server.

5. Publish a node task.
For more information about the operation, see Release management.

Create an ODPS MR node
1. Create a business flow

Click Manual Business Flow in the left-side navigation pane, select Create Business
Flow.

Issue: 20190920 205

DataWorks Data Development / 1 Data development

2. Create an ODPS MR node.
Right-click Data Development, and select Create Data Development Node > ODPS
MR.

206 Issue: 20190920

DataWorks Data Development / 1 Data development

3. Edit the node code.Double click the new ODPS MR node and enter the following
interface.

Node code editing example:
jar - resources base_test . jar - classpath ./ base_test . jar
 com . taobao . edp . odps . brandnorma lize . Word . NormalizeW
ordAll

The code is described below:
• - resources base_test . jar : indicates the file name of the referenced jar

resource.
• - classpath : jar package path, you can right-click the Reference resource and

obtain this path.

Note:
Double click the new ODPS MR node and enter the jar resource after entering
the ODPS MR node interface.

• com . taobao . edp . odps . brandnorma lize . Word . NormalizeW

ordAll : indicates the main class in the jar package that is called during
execution. It must be consistent with the main class name in the jar package.

When one MR calls multiple jar resources, classpath must be written as follows:
- classpath ./ xxxx1 . jar ,./ xxxx2 . jar , that is, two paths must be
separated by a comma.

Issue: 20190920 207

DataWorks Data Development / 1 Data development

4. Node scheduling configuration.
Click the Schedule on the right of the node task editing area to go to the
node scheduling configuration page. For more information, see Scheduling
configuration.

5. Submit the node.
After the configuration is completed, click Save in the upper left corner of the page
or press Ctrl+S to submit (and unlock) the node to the development environment.

6. Publish a node task.
For more information about the operation, see Release management.

7. Test in the production environment.
For more information about the operation, see #unique_102.

1.9.5 SQL component node
Procedure

1. Create Business Flow
Click Manual Business Flow in the left-side navigation pane, select Create Business
Flow.

208 Issue: 20190920

DataWorks Data Development / 1 Data development

2. Create an SQL component node
Right-click Data Development, and select Create Data Development Node > SQL
Component Node.

Issue: 20190920 209

DataWorks Data Development / 1 Data development

3. To improve the development efficiency, data task developers can use components
contributed by project members and tenant members to create data processing
nodes.
• Components created by members of the local project are located under Project

Components.
• Components created by tenant members are located under Public Components.
When create a node, set the node type to the SQL component node type, and
specify the name of the node.

Specify parameters for the selected component.

Enter the parameter name, and set the parameter type to Table or String.
Specify three get_top_n parameters in sequence.
Specify the following input table for the parameters of the Table type: test_project.
test_table.

210 Issue: 20190920

DataWorks Data Development / 1 Data development

4. Node scheduling configuration.
Click the Schedule Configuration on the right of the node task editing area to go
to the node scheduling configuration page. For more information, see Scheduling
configuration.

5. Submit a node.
After the configuration is completed, click Save in the upper left corner of the page
or press Ctrl+S to submit (and unlock) the node to the development environment.

6. Publish a node task.
For more information about the operation, see Release management.

7. Test in a production environment.
For more information about the operation, see #unique_102.

Upgrade the version of an SQL component node.
After the component developer release a new version, the component users can
choose whether to upgrade the use instance of the existing component to the latest
version of the used component.
With the component version mechanism, developers can continuously upgrade
components and component users can continuously enjoy the improved process
execution efficiency and optimized business effects after upgrade of components.
For example, user A uses the v1.0 component developed by user C, and the
component owner C upgrades the component to V.2.0. After the upgrade, user A can
still use the v1.0 component, but will receive the upgrade reminder. After comparing
 the new code with the old code, user A finds that the business effects of the new
version are better than those of the old version, and therefore can determine whether
to upgrade the component to the latest version.
To upgrade an SQL component node developed based on the component template
, you only need to select Upgrade, check whether parameter settings of the SQL
component node are still effective in the new version, make some adjustments based
 on the instructions of the new version component, and then submit and release the
node like a common SQL component node.

Issue: 20190920 211

DataWorks Data Development / 1 Data development

Interface functions

The interface features are described below:
No. Feature Description
1 Save Click it to save settings of the current component.
2 Submit Click it to submit the current component to the

development environment.
3 Submit and Unlock Click it to submit the current node and unlock the

 node to edit the code.
4 Steallock Edit Click it to steallock edit the node if you are not the

 owner of the current component.
5 Run Click it to run the component locally in the

development environment.
6 Advanced Run (with

Parameters)
Click it to run the code of the current node using
the parameters configured for the code.

Note:
Advanced Run is unavailable to a Shell node.

7 Stop Run Click it to stop a running component.
8 Re-load Click it to refresh the interface and restore the

last saved status. Unsaved content will be lost.
Note:

If cache is enabled in the configuration center,
after the interface is refreshed, you are notified
of the code that is cached but not saved. In this
case, select the version that you need.

212 Issue: 20190920

DataWorks Data Development / 1 Data development

No. Feature Description
9 Parameter Settings Click it to view the component information,

input parameter settings, and output parameter
settings.

10 Attributes Click it set the owner, description, parameters,
and resource group of the node.

11 Kinship Click it to view the map of kinship between SQL
component nodes and the internal kinship map of
 each SQL component node.

12 Version Click it to view the submission and release
records of the current component.

1.9.6 Virtual node
A virtual node is a control node that does not generate any data. Generally, it is used
as the root node for overall planning of nodes in the workflow.

Create a virtual node task
1. Create a business flow

Click Manual Business Flow in the left-side navigation pane, select Create Business
Flow.

Issue: 20190920 213

DataWorks Data Development / 1 Data development

2. Create a virtual node. Right-click Data Development, and select Create Data
Development Node > Virtual Node.

3. Set the node type to Virtual Node, enter the node name, select the target folder, and
click Submit.

4. Edit the node code: You do not need to edit the code of a virtual node.

214 Issue: 20190920

DataWorks Data Development / 1 Data development

5. Node scheduling configuration.
Click the Schedule on the right of the node task editing area to go to the
node scheduling configuration page. For more information, see Scheduling
configuration.

6. Submit the node.
After the configuration is completed, click Save in the upper left corner of the page
or press Ctrl+S to submit (and unlock) the node to the development environment.

7. Publish a node task.
For more information about the operation, see Release management.

8. Test in the production environment.
For more information about the operation, see #unique_102.

1.9.7 SHELL Node
SHELL tasks support standard SHELL syntax but not interactive syntax. SHELL
task can run on the default resource group. If you want to access an IP address or a

Issue: 20190920 215

DataWorks Data Development / 1 Data development

domain name, add the IP address or domain name to the whitelist by choosing Project
Configuration.

Procedure
1. Create Business Flow

Click Manual Business Flow in the left-side navigation pane, select Manual
Business Flow.

216 Issue: 20190920

DataWorks Data Development / 1 Data development

2. Create a SHELL node.
Right-click Data Development, and select Create Data Development Node > SHELL.

3. Set the node type to SHELL, enter the node name, select the target folder, and click
Submit.

Issue: 20190920 217

DataWorks Data Development / 1 Data development

4. Edit the node code.
Go to the SHELL node code editing page and edit the code.

If you want to call the System Scheduling Parameters in a SHELL statement,
compile the SHELL statement as follows:
echo "$ 1 $ 2 $ 3 "

Note:
Parameter 1 Parameter 2... Multiple parameters are separated by spaces. For more
information on the usage of system scheduling parameters, see #unique_42.

5. Node scheduling configuration.
Click the Schedule on the right of the node task editing area to go to the
node scheduling configuration page. For more information, see Scheduling
configuration.

6. Submit the node.
After the configuration is completed, click Save in the upper left corner of the page
or press Ctrl+S to submit (and unlock) the node to the development environment.

7. Release a node task.
For more information about the operation, see Release management.

8. Test in the production environment.
For more information about the operation, see #unique_102.

Use cases
Connect to a database using SHELL

218 Issue: 20190920

DataWorks Data Development / 1 Data development

• If the database is built on Alibaba Cloud and the region is China (Shanghai), you
must open the database to the following whitelisted IP addresses to connect to the
database.
10.152.69.0/24,10.153.136.0/24,10.143.32.0/24,120.27.160.26,10.46.67.156,120.27.
160.81,10.46.64.81,121.43.110.160,10.117.39.238,121.43.112.137,10.117.28.203,118
.178.84.74,10.27.63.41,118.178.56.228,10.27.63.60,118.178.59.233,10.27.63.38,118.
178.142.154,10.27.63.15,100.64.0.0/8

Note:
If the database is built on Alibaba Cloud but the region is not China (Shanghai), we
recommend that you use the Internet or buy an ECS instance in the same region
of the database as the scheduling resource to run the SHELL task on a custom
resource group.

• If the database is built locally, we recommend that you use the Internet connection
and open the database to the preceding whitelisted IP addresses.

Note:
If you are using a custom resource group to run the SHELL task, you must add the
IP addresses of machines in the custom resource group to the preceding whitelist.

1.10 Manual task parameter settings
1.10.1 Basic Attributes

The figure below shows the basic attribute configuration interface:

• Node Name: It is the node name that you enter when creating a workflow node. To
modify a node name, right-click the node on the directory tree and choose Rename
from the short-cut menu.

Issue: 20190920 219

DataWorks Data Development / 1 Data development

• Node ID: It is the unique node ID generated when a task is submitted, and cannot
be modified.

• Node ID: It is the unique node ID generated when a task is submitted, and cannot
be modified.

• Owner: It is the node owner. The owner of a newly created node is the current
logon user by default. To modify the owner, click the input box, and enter the
owner name or directly select another user.

Note:
When you select another user, the user must be a member of the current project.

• Description: It is generally used to describe the business and purpose of the node.
• Parameter: It is used to assign value to a variable in the code during task

scheduling.
For example, when a variable "pt=${datetime}" is used to indicate the time in the
code, you can assign a value to the variable here. The assigned value can use the
scheduling built-in time parameter "datetime=$bizdate".

• Resource Group: It specifies the resource group for running the node.
Parameter value assignment formats for various node types

• ODPS SQL, ODPSPL, ODPS MR, and XLIB types: Variable name 1 =

Parameter 1 Variable name 2 = Parameter 2 ..., Multiple
parameters are separated by spaces.

• SHELL type: Parameter 1 Parameter 2 ..., Multiple parameters are
separated by spaces.

Some frequently-used time parameters are provided as built-in scheduling
parameters. For more information about these parameters, see #unique_42.

1.10.2 Configure manual node parameters
To ensure that tasks can dynamically adapt to environment changes when running
automatically at the scheduled time, DataWorks provides the parameter configuration
feature. Pay special attention to the following issues before configuring parameters.

220 Issue: 20190920

DataWorks Data Development / 1 Data development

• No space can be added on either side of the equation mark "=" of a parameter.
Correct: bizdate=$bizdate

• Multiple parameters (if any) must be separated by spaces.

System parameters
DataWorks provides two system parameters, which are defined as follows:
• ${bdp.system.cyctime}: It is defined as the scheduled run time of an instance.

Default format: yyyymmddhh24miss.
• ${bdp.system.bizdate}: It is defined as the business date on which an instance is

 calculated. Default business data is one day before the running date, which is
displayed in default format: yyyymmdd.

According to the definitions, the formula for calculating the runtime and business
date is as follows: Runtime = Business date - 1 .
To use the system parameters, directly reference '${bizdate}' in the code without
setting system parameters in the editing box, and the system will automatically
replace the reference fields of system parameters in the code.

Note:
The scheduling attribute of a periodic task is configured with a scheduled runtime.
Therefore, you can backtrack the business date based on the scheduled runtime of
an instance and retrieve the values of system parameters for the instance.

Issue: 20190920 221

DataWorks Data Development / 1 Data development

Example
Set an ODPS_SQL task that runs every hour between 00:00 and 23:59 every day. To use
system parameters in the code, perform the following statement.
insert overwrite table tb1 partition (ds =' 20180606 ')
select
c1 , c2 , c3
from (
select * from tb2
where ds ='${ bizdate }');

Configure scheduling parameters for a non-Shell node

Note:
The name of a variable in the SQL code can contain only a-z, A-Z, numbers, and
underlines. If the variable name is "date", the value "$bizdate" is automatically
assigned to this variable, and you do not need to assign the value in the scheduling
parameter configuration. Even if another value is assigned, this value is not used
in the code because the value "$bizdate" is automatically assigned in the code by
default.

For a non-Shell node, you need to first add ${variable name} (indicating that the
function is referenced) in the code, then input a specific value to assign the value to
the scheduling parameter.
For example, for an ODPS SQL node, add ${variable name} in the code, and then
configure the parameter item "variable name=built-in scheduling parameter" for the
node.
For a parameter referenced in the code, you must add the parsed value during
scheduling.

222 Issue: 20190920

DataWorks Data Development / 1 Data development

Configure scheduling parameters for a Shell node
The parameter configuration procedure of a Shell node is similar to that of a non-
Shell node except that rules are different. For a Shell node, variable names cannot be
customized and must be named '$1,$2,$3...'.
For example, for a Shell node, the Shell syntax declaration in the code is: $1, and the
node parameter configuration in scheduling is: $xxx (built-in scheduling parameter).
That is, the value of $xxx is used to replace $1 in the code.
For a parameter referenced in the code, you must add the parsed value during
scheduling.

Note:
For a Shell node, when the number of parameters reaches 10, ${10} should be used to
declare the variable.

The variable value is a fixed value
Take an SQL node for example. For ${variable name} in the code, configure the
parameter item "variable name="fixed value"" for the node.
Code: select xxxxxx type=’${type}’
Value assigned to the scheduling variable: type="aaa"
During scheduling, the variable in the code is replaced by type='aaa'.

The variable value is a built-in scheduling parameter
Take an SQL node for example. For ${variable name} in the code, configure the
parameter item variable name=scheduling parameter for the node.
Code: select xxxxxx dt=${datetime}
alue assigned to the scheduling variable: datetime=$bizdate
During scheduling, if today is July 22, 2017, the variable in the code is replaced by dt=
20170721.

Issue: 20190920 223

DataWorks Data Development / 1 Data development

Built-in scheduling parameter list
$bizdate: business date in the format of yyyymmdd NOTE: This parameter is widely
used, and is the date of the previous day by default during routine scheduling.
For example: In the code of the ODPS SQL node, pt=${datetime}. In the parameter
configuration of the node, datetime=$bizdate. Today is July 22, 2017. When the node is
 executed today, $bizdate is replaced by pt=20170721.
For example, In the code of the ODPS SQL node, pt=${datetime}. In the parameter
configuration of the node, datetime=$gmtdate. Today is July 22, 2017. When the node
is executed today, $gmtdate is replaced by pt=20170722.
For example, In the code of the ODPS SQL node, pt=${datetime}. In the parameter
configuration of the node, datetime=$bizdate. Today is July 1, 2017. When the node is
executed today, $bizdate is replaced by pt=20130630.
For example, In the code of the ODPS SQL node, pt=${datetime}. In the parameter
configuration of the node, datetime=$gmtdate. Today is July 1, 2017. When the node is
 executed today, $gmtdate is replaced by pt=20170701.
$cyctime: scheduled time of the task. If no scheduled time is configured for a daily
 task, cyctime is 00:00 of the current day. The time is accurate to hour, minute, and
 second, and is generally used for a hour-level or minute-level scheduling task.
Example: cyctime=$cyctime.

Note:
Pay attention to the difference between the time parameters configured using $[]
and ${}. $bizdate: business date, which is one day before the current time by default.
$cyctime: It is the scheduled time of the task. If no scheduled time is configured for
a daily task, the task is executed on 00:00 of the current day. The time is accurate to
hour, minute, and second, and is generally used for an hour-level or minute-level
scheduling task. If a task is scheduled to run on 00:30, for example, on the current
day, the scheduled time is yyyy-mm-dd 00:30:00. If the time parameter is configured
using [], cyctime is used as the benchmark for running. For more information about
the usage, see the instructions below. The time calculation method is the same with
that of Oracle. During data population, the parameter value after replacement will

224 Issue: 20190920

DataWorks Data Development / 1 Data development

be the business date + 1 day. For example, if the date of 20140510 is selected as the
business date, the cyctime will be replaced by 20140511.

$jobid: ID of the workflow to which a task belongs. Example: jobid=$jobid.
$nodeid: ID of a node. Example: nodeid=$nodeid.
$taskid: ID of a task, that is, ID of a node instance. Example: taskid=$taskid.
$bizmonth: business month in the format of yyyymm.
• If the month of a business date is equal to the current month, $bizmonth = Month

of the business date - 1; otherwise, $bizmonth = Month of the business date.
• For example: In the code of the ODPS SQL node, pt=${datetime}. In the parameter

configuration of the node, datetime=$bizmonth. Today is July 22, 2017. When the
node is executed today, $bizmonth is replaced by pt=201706.

$gmtdate: current date in the format of yyyymmdd. The value of this parameter is the
 current date by default. During data population, gmtdate that is input is the business
 date plus 1.
Custom parameter ${…} Parameter description:
• Time format customized based on $bizdate, where yyyy indicates the 4-digit year,

yy indicates the 2-digit month, mm indicates the month, and dd indicates the day.
The parameter can be combined as expected, for example, ${yyyy}, ${yyyymm}, ${
yyyymmdd}, ${yyyy-mm-dd}.

• $bizdate is accurate to year, month, and day. Therefore, the custom parameter
 ${……} can only represent the year, month, or day.

• Methods for obtaining the period plus or minus certain duration:
Next N years: ${yyyy+N}
Previous N years: ${yyyy-N}
Next N months: ${yyyymm+N}
Previous N months: ${yyyymm-N}
Next N weeks: ${yyyymmdd+7*N}
Previous N weeks: ${yyyymmdd-7*N}
Next N days: ${yyyymmdd+N}
Previous N days: ${yyyymmdd-N}

Issue: 20190920 225

DataWorks Data Development / 1 Data development

${yyyymmdd}: business date in the format of yyyymmdd. The value is consistent with
that of $bizdate.
• Note: The value is consistent with that of $bizdate. This parameter is widely used

, and is the date of the previous day by default during routine scheduling. The
format of this parameter can be customized, for example, the format of ${yyyy-mm
-dd} is yyyy-mm-dd.

• For example: In the code of the ODPS SQL node, pt=${datetime}. In the parameter
 configuration of the node, datetime=${yyyymmdd}. Today is July 22, 2013. When
the node is executed today, ${yyyymmdd} is replaced by pt=20130721.

${yyyymmdd-/+N}: yyyymmdd plus or minus N days
${yyyymm-/+N}: yyyymm plus or minus N month
${yyyy-/+N}: year (yyyy) plus or minus N years
${yy-/+N}: year (yy) plus or minus N years
NOTE: yyyymmdd indicates the business date and supports any separator, such as
yyyy-mm-dd. The preceding parameters are derived from the year, month, and day of
 the business date.
Example:
• In the code of the ODPS SQL node, pt=${datetime}. In the parameter configuration

 of the node, datetime=${yyyy-mm-dd}. Today is July 22, 2018. When the node is
executed today, ${yyyy-mm-dd} is replaced by pt=2018-07-21.

• In the code of the ODPS SQL node, pt=${datetime}. In the parameter configuration
 of the node, datetime=${yyyymmdd-2}. Today is July 22, 2018. When the node is
executed today, ${yyyymmdd-2} is replaced by pt=20180719.

• In the code of the ODPS SQL node, pt=${datetime}. In the parameter configurat
ion of the node, datetime=${yyyymm-2}. Today is July 22, 2018. When the node is
executed today, ${yyyymm-2} is replaced by pt=201805.

• In the code of the ODPS SQL node, pt=${datetime}. In the parameter configuration
of the node, datetime=${yyyy-2}. Today is July 22, 2018. When the node is executed
today, ${yyyy-2} is replaced by pt=2018.

In the ODPS SQL node configuration, multiple parameters are assigned values, for
example, startdatetime=$bizdate enddatetime=${yyyymmdd+1} starttime=${yyyy-mm
-dd} endtime=${yyyy-mm-dd+1}.

226 Issue: 20190920

DataWorks Data Development / 1 Data development

Example: (Assume $cyctime=20140515103000)
• $[yyyy] = 2014, $[yy] = 14, $[mm] = 05, $[dd] = 15, $[yyyy-mm-dd] = 2014-05-15, $[

hh24:mi:ss] = 10:30:00, $[yyyy-mm-dd hh24:mi:ss] = 2014-05-1510:30:00
• $[hh24:mi:ss - 1/24] = 09:30:00
• $[yyyy-mm-dd hh24:mi:ss -1/24/60] = 2014-05-1510:29:00
• $[yyyy-mm-dd hh24:mi:ss -1/24] = 2014-05-1509:30:00
• $[add_months(yyyymmdd,-1)] = 2014-04-15
• $[add_months(yyyymmdd,-12*1)] = 2013-05-15
• $[hh24] =10
• $[mi] =30
Method for testing the parameter $cyctime:
After the instance runs, right-click the node to check the node attribute. Check
whether the scheduled time is the time at which the instance runs periodically.
Result after the parameter value is replaced by the scheduled time minus one hour.

1.11 Component management
1.11.1 Create components
Definition of components

A component is an SQL code process template containing multiple input and output
 parameters. To handle an SQL code process, one or more source data tables are
imported, filtered, joined, and aggregated to form a target table required for new
business.

Value of components
In actual businesses, many SQL code processes are similar. The input and output
tables in a process have the same or compatible structures but different names. In
this case, component developers can abstract such SQL process to an SQL component
 node, and variable input and output tables in the SQL process to input and output
parameters to reuse the SQL code.

Issue: 20190920 227

DataWorks Data Development / 1 Data development

When using SQL component nodes, component users only need to select components
 like their own business flows from the component list, configure specific input and
 output tables in their own businesses for these components, and generate new SQL
 component nodes without repeatedly copying the code. This greatly improves the
development efficiency and avoids repeated development. Publishing and scheduling
 of the SQL component nodes after generation is the same as those of common SQL
nodes.

Composition of components
Like a function definition, a component consists of the input parameters, output
parameters, and component code processes.

Component input parameters
A component input parameter contains the attributes such as the name, type,
description, and definition. The parameter type can be table or string.
• A table-type parameter specifies tables to be referenced in a component process.

When using a component, the component user can set the parameter to the table
required for the specific business.

• A string-type parameter specifies variable control parameters in a component
process. For example, if a result table of a specific process only outputs the sales
amount of top N cities in each region, the value of N can be specified by the string-
type parameter.
If a result table of a specific process needs to output the total sales amount of
 a province, a province string-type parameter can be set to specify different
provinces and obtain the sales amount of the specified province.

• Parameter description specifies the role of a parameter in a component process.
• Parameter definition is a text definition of the table structure, which is required

only for table-type parameters. When this attribute is specified, the component
user must provide an input table that is compatible with the field names and types
 defined by the table parameter so that the component process can run properly
. Otherwise, an error is reported when the component process runs because the
 specified field in the input table cannot be found. The input table must contain
 the field names and types defined by the table parameter. The fields and types
can be in different orders, and the input table can also contain other fields. The

228 Issue: 20190920

DataWorks Data Development / 1 Data development

definition is for reference only. It provides guidance for users and does not need to
be immediately and forcibly checked.

• The recommended definition format of the table parameter is as follows:
Field 1 name Field 1 type Field 1 comment
Field 2 name Field 2 type Field 2 comment
Field n name Field n type Field n comment

Example:
area_id string ‘ Region ID ’
city_id string ‘ City ID ’
order_amt double ‘ Order amount ’

Component output parameters
• A component output parameter contains the attributes such as the name, type,

description, and definition. The parameter type can only be table. A string-type
output parameter does not have the logical meaning.

• A table-type parameter: specifies tables to be generated from a component process
. When using a component, the component user can set the parameter to the result
table that the component process generates for the specific business.

• Parameter description: specifies the role of a parameter in a component process.
• Parameter definition: it is a text definition of the table structure. When this

attribute is specified, the component user must provide the parameter with an
output table that has the same number of fields and compatible type as defined by
 the table parameter so that the component process can run properly. Otherwise
, an error is reported when the component process runs because the number of
fields does not match or the type is incompatible. The field names of the output
table do not need to be consistent with those defined by the table parameter. The
definition is for reference only. It provides guidance for users and does not need to
be immediately and forcibly checked.

• The recommended definition format of the table parameter is as follows:
Field 1 name Field 1 type Field 1 comment
Field 2 name Field 2 type Field 2 comment
Field n name Field n type Field n comment

Example:
area_id string ‘ Region ID ’
city_id string ‘ City ID ’
order_amt double ‘ Order amount ’

Issue: 20190920 229

DataWorks Data Development / 1 Data development
rank bigint ‘ Rank ’

Component process bodies
The reference format of the parameters in a process body is as follows: @@{
parameter name}
By compiling an abstract SQL working process, the process body controls the
specified input tables based on the input parameters and generates output tables with
 business value.
Certain skills are required for the development of a component process. Input
parameters and output parameters must be well used for the component process
code so that different values of input parameters and output parameters can generate
 correct and runnable SQL code.

Example of creating a component
You can create a component as shown in the following figure.

Source table schema definition
The source MySQL schema definition of the sales data is described in the following
table:
Field Name Field type Field description
order_id varchar Order ID
report_date datetime Order date
customer_name varchar Customer Name

230 Issue: 20190920

DataWorks Data Development / 1 Data development

Field Name Field type Field description
order_level varchar Order grade
order_number double Order quantity
order_amt double Order amount
back_point double Discount
shipping_type varchar Transportation mode
profit_amt double Profit amount
price double Unit price
shipping_cost double Transportation cost
area varchar Region
province varchar Province
city varchar City
product_type varchar Product Type
product_sub_type varchar Product subtype
product_name varchar Product Name
product_box varchar Product packing box
shipping_date Datetime Transportation date

Business implication of components
Component name: get_top_n
Component description:
In the component process, the specified sales data table is used as the input
parameter (table type), the number of the top cities is used as the input parameter (
string type), and the cities are ranked by sales amount. In this way, the component
user can easily obtain the rank of the specified top N cities in each region.

Definition of component parameters
Input parameter 1:
Parameter name: myinputtable type: table
Input parameter 2:
Parameter name: topn type: string

Issue: 20190920 231

DataWorks Data Development / 1 Data development

Input parameter 3:
Parameter name: myoutput type: table
Parameter definition:
area_id string
city_id string
order_amt double
rank bigint
Table creation statement:
CREATE TABLE IF NOT EXISTS company_sa les_top_n

(
area STRING COMMENT ' Region ',
city STRING COMMENT ' City ',
sales_amou nt DOUBLE COMMENT ' Sales amount ',
rank BIGINT COMMENT ' Rank '

)
COMMENT ' Company sales ranking '
PARTITIONE D BY (pt STRING COMMENT '')
LIFECYCLE 365 ;

Definition of component process bodies
INSERT OVERWRITE TABLE @@{ myoutput } PARTITION (pt ='${
bizdate }')

 SELECT r3 . area_id ,
 r3 . city_id ,
 r3 . order_amt ,
 r3 . rank
from (
SELECT

 area_id ,
 city_id ,
 rank ,
 order_amt_ 1505468133 993_sum as order_amt ,
 order_numb er_1505468 133991_sum ,
 profit_amt _150546813 4000_sum
FROM

 (SELECT
 area_id ,
 city_id ,
 ROW_NUMBER () OVER (PARTITION BY r1 . area_id ORDER BY
 r1 . order_amt_ 1505468133 993_sum DESC)
AS rank ,

 order_amt_ 1505468133 993_sum ,
 order_numb er_1505468 133991_sum ,
 profit_amt _150546813 4000_sum
FROM

 (SELECT area AS area_id ,
 city AS city_id ,
 SUM (order_amt) AS order_amt_ 1505468133 993_sum ,
 SUM (order_numb er) AS order_numb er_1505468 133991_sum
,

232 Issue: 20190920

DataWorks Data Development / 1 Data development
 SUM (profit_amt) AS profit_amt _150546813 4000_sum
FROM

 @@{ myinputtab le }
WHERE

 SUBSTR (pt , 1 , 8) IN ('${ bizdate }')
GROUP BY

 area ,
 city)
 r1) r2
WHERE

 r2 . rank >= 1 AND r2 . rank <= @@{ topn }
ORDER BY

 area_id ,
 rank limit 10000) r3 ;

Sharing scope of components
There are two sharing scopes: project component and public component.
After a component is published, it is visible to users within the project by default. The
 component developer can click the Publish Component icon to publish a universal
global component to the entire tenant, allowing all users in the tenant to view and use
 the public component. Whether a component is public depends on whether the icon
in the following figure is visible:

Use of components
How can users use a developed component? For more information, see #unique_114

Reference records of components
The component developer can click the Reference Records tab to view the reference
record of a component.

Issue: 20190920 233

DataWorks Data Development / 1 Data development

1.11.2 Use components
To improve the development efficiency, data task developers can use components
contributed by project and tenant members to create data processing nodes.
• Components created by members of the local project are located under Project

Components.
• Components created by tenant members are located under Public Components.
For more information about how to use the components, see #unique_27.

Interface functions

234 Issue: 20190920

DataWorks Data Development / 1 Data development

The interface functions are described below:
No. Function Description
1 Save Click it to save settings of the current component.
2 Steallock Edit Click it to steallock edit the node if you are not the

 owner of the current component.
3 Submit Click it to submit the current component to the

development environment.
4 Publish Component Click it to publish a universal global component

to the entire tenant, so that all users in the tenant
can view and use the public component.

5 Resolve Input and
Output Parameters

Click it to resolve the input and output
parameters of the current code.

6 Pre-compile Click it to edit custom and component parameters
 of the current component.

7 Run Click it to run the component locally in the
development environment.

8 Stop Run Click it to stop a running component.
9 Format Click it to sort the current component code by

keyword.
10 Parameter settings Click it to view the component information,

input parameter settings, and output parameter
settings.

11 Version Click it to view the submission and release
records of the current component.

12 Reference Records Click it to view the use record of the component.

1.12 Queries
Temporary query facilitates you to use the editing code, test whether the actual
conditions of the local code meets the expectations, and check the code status.
Therefore, temporary query does not support submitting, releasing, and setting the

Issue: 20190920 235

DataWorks Data Development / 1 Data development

scheduling parameters. To use the scheduling parameters, create a node in Data
development or Manual business flow.

Create a folder
1. Click the Queries in the left-hand navigation bar, select folder.

2. Enter the folder name, select the folder directory, and click Submit.

Note:
A multi-level folder directory is supported. Therefore, you can store the folder in
another folder that has been created.

Create a node
Temporary query only supports the SHELL and SQL nodes.

236 Issue: 20190920

DataWorks Data Development / 1 Data development

Take the new ODPS SQL node as an example, right-click the folder name and select
Create Node > ODPS SQL.

No. Function Description
1 Save Click it to save the entered code.
2 Steallock Edit A user other than the node owner can click it to

edit the node.
3 Run Click it to run the code locally (in the developmen

t environment).
4 Advanced Run (with

Parameters)
Click it to run the code of the current node using
the parameters configured for the code.

Note:
Advanced Run is unavailable to a Shell node.

Issue: 20190920 237

DataWorks Data Development / 1 Data development

No. Function Description
5 Stop Run Click it to stop the code that is being run.
6 Reload Click it to refresh the page, reload, and restore the

last saved status. Unsaved content will be lost.
Note:

If the cache has been enabled in the
configuration center, a message is displayed
after page refreshing, indicating that the
unsaved code has been cashed. Select a required
version.

7 Format Click it to sort the current node code by keyword
format. It is often used when a row of code is too
long.

1.13 Running log
The Running Log page displays the record of all tasks that have locally run in the past
three days. You can click it to view the task history and filter the running records by
task status.

Note:
The Running Log is only retained for three days.

238 Issue: 20190920

DataWorks Data Development / 1 Data development

View the Running Log
1. Click to switch to the Running Log page (tasks in all status are displayed by

default).

Issue: 20190920 239

DataWorks Data Development / 1 Data development

2. Click the drop-down list box and select the task filter criterion.

3. Click the target running record. The Running Log page displays the log of the
running record.

Save the log to a temporary file
To save the SQL statements in the running record, click the Save icon to save the SQL
statements that have run to a temporary file.
Enter the file name and directory, and click Submit.

1.14 Public Tables
In the Public Table area, you can view tables created in all projects under the current
 tenant.

240 Issue: 20190920

DataWorks Data Development / 1 Data development

• Project: Project name. The prefix "odps." is added to each project name. For
example, if a project name is "test", "odps.test" is displayed.

• Table Name: Name of the table in the project.
Click a table name to view the column and partition information of the table, and
preview the table data.
• Column Information: Click it to view the field quantity, field type, and field

description of the table.
• Partition Information: Click it to view the partition information and partition

quantity of the table. A maximum of 60,000 partitions are allowed. If you have set
the life cycle, the actual number of partitions depends on the life cycle.

• Data Preview: Click it to preview data in the current table.

Issue: 20190920 241

DataWorks Data Development / 1 Data development

Environment switchover
Similar to Table Management, Public Table supports the development and production
 environments. The current environment is displayed in blue. After you click an
environment to be queried, the corresponding environment is displayed.

1.15 Table Management
Create a table

1. Click Table Management in the upper left corner of the page.

242 Issue: 20190920

DataWorks Data Development / 1 Data development

2. Select the + icon to create a table.

3. Enter the table name, only MaxCompute tables are supported currently, click
Submit.

Issue: 20190920 243

DataWorks Data Development / 1 Data development

4. Set basic attributes.
• Chinese Name: Chinese name of the table to be created.
• Level-1 Topic: Name of the level-1 target folder of the table to be created.
• Level-2 Topic: Name of the level-2 target folder of the table to be created.
• Description: Description of the table to be created.
• Click Create Topic. On the displayed Topic Management page, create level-1 and

level-2 topics.

5. Create a table in DDL mode.
Click DDL Mode. In the displayed dialog box, enter the standard table creation
statements.
After editing the table creation SQL statements, click Generate Table Structure.
Information in the Basic Attributes, Physical Model Design, and Table Structure
Design areas is automatically entered.

244 Issue: 20190920

DataWorks Data Development / 1 Data development

6. Create a table on the GUI
If creating a table in DDL mode is not applicable, you can create the table on the
GUI by performing the following settings.
• Physical model design

- Table type: It can be set to Partitioned Table or Non-partitioned Table.
- Life Cycle:Life cycle function of MaxCompute. Data in the table (or partition)

that is not updated within a period specified by Life Cycle (unit: day) will be
cleared.

- Level: It can be set to DW, ODS, or RPT.
- Physical Category: It can be set to Basic Business Layer, Advanced Business

Layer, or Other. Click Create Level. On the displayed Level Management page,
create a level.

• Table structure design
- English Field Name: English name of a field, which may contain letters, digits

, and underscores (_).
- Chinese Name: Abbreviated Chinese name of a field.
- Field Type: MaxCompute data type, which can only be String, Bigint, Double,

Datetime, or Boolean.
- Description: Detailed description of a field.
- Primary Key: Select it to indicate the field is the primary key or a field in the

joint primary key.
- Click Add Field to add a column for a new field.
- Click Delete Field to delete a created field.

Note:
If you delete a field from a created table and submit the table again, you must
drop the current table and create one with the same name. This operation is
not allowed in the production environment.

- Click Move Up to adjust the field order of the table to be created. However,
to adjust the field order of a created table, you must drop the current table

Issue: 20190920 245

DataWorks Data Development / 1 Data development

and create one with the same name. This operation is not allowed in the
production environment.

- Click Move Down, the operation is the same as that of Move Up.
- Click Add Partition to create a partition for the current table. To add a

partition to a created table, you must drop the current table and create
one with the same name. This operation is not allowed in the production
environment.

- Click Delete Partition to delete a partition. To delete a partition from a created
table, you must drop the current table and create one with the same name.
This operation is not allowed in the production environment.

- Action: You can confirm to submit a new field, delete a field, and edit more
attributes.
More properties mainly contain information related to data quality, which
is provided for the system to generate validation logic. They are used in
scenarios such as data profiling, SQL scan, and test rule generation.
■ 0 Allowed: If it is selected, the field value can be zero. This option is

applicable only to bigint and double fields.
■ Negative Value Allowed: If it is selected, the field value can be a negative

number. This option is applicable only to bigint and double fields.
■ Security Level：The security level is 0-4. The higher the number, the

higher the security requirement. If your security level does not meet the
 digital requirements, you cannot access the corresponding fields in the
form.

■ Unit: Unit of the amount, which can be dollar or cent. This option is not
required for fields unrelated to the amount.

■ Lookup Table Name/Kay Value: It is applicable to enumerated value-
type fields, such as the member type and status. You can enter the name
 of the dictionary table (or dimension table) corresponding to the field
. For example, the name of the dictionary table corresponding to the
member status is dim_user_status. If you use a globally unique dictionary
 table, enter the corresponding key_type of the field in the dictionary

246 Issue: 20190920

DataWorks Data Development / 1 Data development

table. For example, the corresponding key value of the member status is
AOBAO_USER_STATUS.

■ Value Range: The maximum and minimum values of the current field. It is
applicable only to bigint and double fields..

■ Regular Expression Verification: Regular expression used by the current
 field. For example, if a field is a mobile phone number, its value can
be limited to an 11-digit number by regular expression (or more strict
limitation).

■ Maximum Length: Maximum number of characters of the field value. It is
applicable only to string fields.

■ Date Precision: Precision of the date, which can be set to Hour, Day,
Month, or others. For example, the precision of month_id in the monthly
 summary table is Month, although the field value is 2014-08-01 (it seems
that the precision is Day). It is applicable to date values of the Datetime or
String type.

■ Date Format: It is applicable only to date values of the string type. The
format of the date value actually stored in the field is similar to yyyy-mm-
dd hh:mm:ss.

■ KV Primary Separator/Secondary Separator: It is applicable to a large
field (of the string type) combined by KV pairs. For example, if a product
 expansion attribute has a value similar to "key1:value1;key2:value2;key3
:value3;...", the semicolon (;) is the primary separator of the field that
separates the KV pairs, and the colon (:) is the secondary separator that
separates the key and value in a KV pair.

• Partition Field Design: This option is displayed only when Partition Type in the
Physical Model Design area is set to Partitioned Table.

• Field Type: We recommend that you use the string type for all fields.
• Date Partition Format: If a partition field is a date (although its data type may be

string), select or enter a date format, such as yyyymmmdd.
• Date Partition Granularity: For example, Day, Month, or Hour. Configure

the partition granularity as per your needs. By default, if multiple partition
granularities are required, the greater the granularity is, the higher the partition
 level is. For example, if three partitions (hour, day, and month) exist, the
relationship among the multiple partitions is: level-1 partition (month), level-2
partition (day), and level-3 partition (hour).

Issue: 20190920 247

DataWorks Data Development / 1 Data development

Submit a table
After editing the table structure information, submit the new table to the
development environment and production environment.
• Click Load from Development Environment. If the table has been submitted to the

development environment, this button is highlighted. After you click the button,
the information of the created table in the development environment overwrites
the information on the current page.

• Click Submit to Development Environment. The system checks whether all
required items on the current editing page are completely set. If any omission
exists, an alarm is reported, forbidding you to submit the table.

• Click Load from Production Environment. The detailed information of the table
submitted to the production environment overwrites the information on the
current page.

• Click Create in Production Environment. The table is created in the project of the
production environment.

Query tables by type
On the Table Management page, you can select Development Environment or
Production Environment to query tables. The query results are sorted by folder of
topics.
• If you select Development Environment, you can only query tables in the

development environment.
• If you select Production Environment, you can query tables in the production

environment. Be cautious when operating the tables in the production environmen
t.

1.16 External tables
External table overview

Before you use external tables, you need to understand the following concepts.
Name Description

248 Issue: 20190920

DataWorks Data Development / 1 Data development

Object Storage
Service（OSS）

OSS supports Standard, Infrequent Access, and Archive
storage types. It is applicable to service scenarios that involve
different requirements for data storage and access. Additional
ly, OSS supports seamless integration with Apache Hadoop, E-
MapReduce, BatchCompute, MaxCompute, Machine Learning
Platform for AI (PAI), Data Lake Analytics, Function Compute,
and other Alibaba Cloud services.

MaxCompute The big data computing service is a fast and fully-managed
data warehousing solution. When used in conjunction with
 OSS, it enables you to effectively analyze and process large-
scale data with reduced costs. Forrester names MaxCompute
 as one of the world's leading cloud-based data warehouses
because of its processing performance.

External tables
of MaxCompute

This function is based on the new generation of the computing
 framework of MaxCompute v2.0. It allows you to directly
query data that is stored in OSS without loading data into the
 internal tables of MaxCompute. This not only saves time and
 effort for data migration but also saves costs for storage of
duplicate data. You can use the external tables of MaxCompute
 to query data that is stored in Table Store in a similar way.

The following figure shows the processing architecture of the external tables.

Currently, MaxCompute supports processing external tables in the storage of
unstructured data such as OSS and Table Store. Based on the flow of data and the
processing rules, you can understand that the main function of the unstructured data
 processing framework is to import and export data and connect the input and output
 of MaxCompute. The following example describes the processing rules applied to
external tables in OSS.
1. Data stored in OSS is converted through the unstructured data processing

framework and passed to user-defined interfaces using the InputStream Java class
Issue: 20190920 249

DataWorks Data Development / 1 Data development

. To implement the extracting rules, you need to read, parse, convert, and calculate
 the input streams. The data must be returned in the record format, which is the
general format in MaxCompute.

2. These records can be used in structured data processing based on the SQL engine
built into MaxCompute to generate new records.

3. You can perform further calculations before the data of records are output through
 the OutputStream Java class and are imported into OSS by MaxCompute.

You can create, search, query, configure, process, and analyze external tables in GUI
through DataWorks, which is powered by MaxCompute.

Network and access authorization
Since MaxCompute is separate from OSS, network connectivity between them on
different clusters may affect the ability of MaxCompute to access the data stored in
OSS. We recommend that you use the private endpoint (it ends with - internal .

aliyuncs . com) to access the data stored in OSS through MaxCompute.
Authorization is required for MaxCompute to access data stored in OSS. MaxCompute
 guarantees secure access to data using Resource Access Management (RAM) and
Security Token Service (STS) provided by Alibaba Cloud. You request the STS token
 for MaxCompute as the table creator. Therefore, MaxCompute and OSS must be
under the same Alibaba Cloud account. A similar authorization process applies when
accessing data stored in Table Store.
1. STS authorization

If MaxCompute requires direct access to data stored in OSS, you need to grant the
OSS access to RAM users first. Security Token Service (STS) is a security token
management service provided by Alibaba Cloud. It is a product based on Resource
Access Management (RAM). Authorized RAM users can issue tokens with custom
validity and access through STS. Applications can use tokens to directly call
Alibaba Cloud APIs to manipulate resources. For more information, see OSS STS

250 Issue: 20190920

DataWorks Data Development / 1 Data development

mode authorization. You can choose either of the following methods to grant
access.
• If MaxCompute and OSS are under the same Alibaba Cloud account, log on and

perform Authorize. You can click Data Development and Create Table to jump to
the Authorize page as shown in the following figure.

• Custom authorization. First, you need to grant MaxCompute access to OSS
through RAM. Log on to the RAM console (if MaxCompute and OSS are under
different Alibaba Cloud accounts, use the account for OSS to log on). Go to the
Role Management page and click Create Role. Set the value of Role Name to
AliyunODPSDefaultRole or AliyunODPSRoleForOtherUser.
Configure Role Details.
-- When MaxCompute and OSS are under the same
Alibaba Cloud account .

{
" Statement ": [
{
" Action ": " sts : AssumeRole ",
" Effect ": " Allow ",
" Principal ": {
" Service ": [
" odps . aliyuncs . com "
]
 }
 }
],
" Version ": " 1 "
}

Issue: 20190920 251

DataWorks Data Development / 1 Data development
-- When MaxCompute and OSS are under different
Alibaba Cloud accounts .

{
" Statement ": [
{
" Action ": " sts : AssumeRole ",
" Effect ": " Allow ",
" Principal ": {
" Service ": [
" Alibaba Cloud account for MaxCompute @ odps . aliyuncs .
com "

]
 }
 }
],
" Version ": " 1 "
}

Configure Role Authorization Policies. Search for the AliyunODPSRolePolicy
policy that is required for granting OSS access. Attach the AliyunODPSRolePolicy
policy to the role. If you can not find this policy through Search and Attach,
authorize the role through Input and Attach. The policy content of the
AliyunODPSRolePolicy policy is shown as follows.

{
 " Version ": " 1 ",
 " Statement ": [
 {
 " Action ": [
 " oss : ListBucket s ",
 " oss : GetObject ",
 " oss : ListObject s ",
 " oss : PutObject ",
 " oss : DeleteObje ct ",
 " oss : AbortMulti partUpload ",
 " oss : ListParts "
],
 " Resource ": "*",
 " Effect ": " Allow "
 },
 {
 " Action ": [
 " ots : ListTable ",
 " ots : DescribeTa ble ",
 " ots : GetRow ",
 " ots : PutRow ",
 " ots : UpdateRow ",
 " ots : DeleteRow ",
 " ots : GetRange ",
 " ots : BatchGetRo w ",
 " ots : BatchWrite Row ",
 " ots : ComputeSpl itPointsBy Size "
],
 " Resource ": "*",
 " Effect ": " Allow "
 }
]

252 Issue: 20190920

DataWorks Data Development / 1 Data development
}

2. Using OSS data sources in Data Integration
You can directly use the OSS data sources that have already been created in Data
Integration.

Create external tables
1. Use DDL statements to create tables

Go to the Data Development page. See Table Management and use DDL statements
to create tables. You need to follow the ODPS syntax (See Table Operations). If you
have STS authorization, then you do not need to include the odps . properties

. rolearn attribute. The following example shows how to use DDL statements to
create a table. The EXTERNAL keyword in the statement indicates that this table is
an external table.

CREATE EXTERNAL TABLE IF NOT EXISTS ambulance_
data_csv_e xternal (
vehicleId int ,
recordId int ,
patientId int ,
calls int ,
locationLa titute double ,
locationLo ngtitue double ,
recordTime string ,
direction string
)
STORED BY ' com . aliyun . odps . udf . example . text .
TextStorag eHandler ' -- The STORED BY clause specifies
 the StorageHan dler for the correspond ing file
format . This clause is required .
with SERDEPROPE RTIES (
' delimiter '='\\|', -- The SERDEPROPE RITES clause specifies
 the parameters used when serializin g or deserializ
ing data . These parameters are passed into the code
 of Extractor through DataAttrib utes . This clause is
 optional .
' odps . properties . rolearn '=' acs : ram :: xxxxxxxxxx xxx :
role / aliyunodps defaultrol e '
)
LOCATION ' oss :// oss - cn - shanghai - internal . aliyuncs . com
/ oss - odps - test / Demo / SampleData / CustomTxt / AmbulanceD
ata /' -- The LOCATION clause specifies the
 location of the external tables . This clause is
optional .
USING ' odps - udf - example . jar '; -- The USING clause
specifies the Jar files that store the user - defined

Issue: 20190920 253

DataWorks Data Development / 1 Data development
 classes . This clause is optional , depending on
whether you use user - defined classes .

The parameters following STORED BY that are corresponding to the built-in
storage handlers for csv or tsv files are shown as follows:
• The com . aliyun . odps . CsvStorage Handler parameter is for

CSV format. It defines how to read and write data in CSV format. The format
has columns separated by the comma (,) and rows terminated by the newline
character (\n). For example, STORED BY ' com . aliyun . odps .

CsvStorage Handler ' is a sample parameter.
• The com . aliyun . odps . TsvStorage Handler parameter is for TSV

format. It defines how to read and write data in TSV format. The format has
columns separated by the tab character (\t) and rows terminated by the newline
character (\n).

The parameters following STORED BY also support specifying the storage
handlers for the open-source file formats such as TextFile, SequenceFile, RCFile,
AVRO, ORC, and Parquet. For TextFile formats, you can specify the SerDe class. For
example, org . apache . hive . hcatalog . data . JsonSerDe .
• org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe -> stored as textfile
• org.apache.hadoop.hive.ql.io.orc.OrcSerde -> stored as orc
• org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe -> stored as

parquet
• org.apache.hadoop.hive.serde2.avro.AvroSerDe -> stored as avro
• org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe -> stored as sequencefile
For external tables that are in the open-source formats, the statements to create
tables are as follows.

CREATE EXTERNAL TABLE [IF NOT EXISTS] (< column
schemas >)
[PARTITIONE D BY (partition column schemas)]
[ROW FORMAT SERDE '']
STORED AS
[WITH SERDEPROPE RTIES (' odps . properties . rolearn '='${
roleran }'
[,' name2 '=' value2 ',...]
)]

254 Issue: 20190920

DataWorks Data Development / 1 Data development
LOCATION ' oss ://${ endpoint }/${ bucket }/${ userfilePa th }/';

Attributes of the SERDEPROPERTIES clause are shown in the following table.
Currently, for gzip-compressed data from CSV and TST files in OSS, MaxCompute
only supports reading through the built-in extractor. You can choose whether the
file is gzip-compressed. Attribute settings are different based on file formats.
Attribute Value Default value Description
odps.text.option.gzip.
input.enabled

true/false false Enables or disables
 the reading of
compressed data.

odps.text.option.gzip.
output.enabled

true/false false Enables or disables
 the writing of
compressed data.

odps.text.option.
header.lines.count

N (a non-negative
integer)

0 Skip the first N
lines of the file.

odps.text.option.null.
indicator

String "" Replaces NULL
with the value of
the string.

odps.text.option.
ignore.empty.lines

true/false true Specifies whether
 to ignore blank
lines.

odps.text.option.
encoding

UTF-8/UTF-16/US-
ASCII

UTF-8 Specifies the
encoding set of the
 file.

The LOCATION clause specifies the storage address of the external table
in the format of oss://oss-cn-shanghai-internal.aliyuncs.com/BucketName/
DirectoryName. You can select the directory in OSS through the dialog boxes. Do
not select the files.
You can find tables that are created using DDL statements in the node directorie
s in the Tables tab. You can modify Level 1 Topic or Level 2 Topic to change the
directories for the tables.

2. External tables in Table Store
The statements to create external tables in Table Store are as follows.

CREATE EXTERNAL TABLE IF NOT EXISTS ots_table_
external (
odps_order key bigint ,
odps_order date string ,

Issue: 20190920 255

DataWorks Data Development / 1 Data development
odps_custk ey bigint ,
odps_order status string ,
odps_total price double
)
STORED BY ' com . aliyun . odps . TableStore StorageHan dler
'
WITH SERDEPROPE RTIES (
' tablestore . columns . mapping '=': o_orderkey ,: o_orderdat e ,
o_custkey , o_ordersta tus , o_totalpri ce ', -- (3)
' tablestore . table . name '=' ots_tpch_o rders '
' odps . properties . rolearn '=' acs : ram :: xxxxx : role /
aliyunodps defaultrol e '
)
LOCATION ' tablestore :// odps - ots - dev . cn - shanghai . ots -
internal . aliyuncs . com ';

Description:
• com . aliyun . odps . TableStore StorageHan dler is the

MaxCompute built-in storage handler to process data in Table Store.
• SERDEPROPE RITES provides options for parameters. You must specify

tablestore.columns.mapping and tablestore.table.name when using
TableStoreStorageHandler.
- tablestore . columns . mapping : This parameter is required. It

describes the columns of the table in Table Store that MaxCompute accesses,
including the primary key columns and property columns. A primary
key column is indicated with the colon sign (:) at the beginning of the
column name. In this example, primary key columns are p:o_orderkey
and :o_orderdate. The others are property columns. Table Store supports
up to four primary key columns. The data types include String, Integer
and Binary. The first column of the primary key is the partition key. You
must specify all primary key columns of the table in Table Store when
specifying the mapping. You only need to specify the property columns that
MaxCompute accesses instead of specifying all property columns..

- tablestore . table . name : The name of the table to access in Table
Store. If the table name does not exist in Table Store, an error is reported.
MaxCompute does not create a table in Table Store.

• LOCATION : Specifies the name and the endpoint of the Table Store instance.

256 Issue: 20190920

DataWorks Data Development / 1 Data development

3. Create a table in GUI
Go to the Data Development page, see Table Management to create a table in GUI.
An external table has the following attributes.
• Basic attributes

- Table name (Create a table and enter the name)
- Table alias
- Level 1 Topic and Level 2 Topic
- Description

• Physical model
- Table type: Select External table.
- Partition: External tables in Table Store do not support partitioning.
- Select the memory address: Specify the LOCATION clause. You can specify

the LOCATION clause in the Physical model section. Select an option the
storage location of the external table in the dialog box. Then you can perform
Authorize.

- Select storage format: Select the file format as required. CSV, TSV, TextFile,
SequenceFile, RCFile, AVRO, ORC, and Parquet, and custom file formats
are supported. If you select a custom file format, you need to select the

Issue: 20190920 257

DataWorks Data Development / 1 Data development

corresponding resource. The classes are parsed from the resources
automatically when you submit the resources. You can select the class name.

- rolearn : If you have STS authorization, you do not need to specify the
rolearn attribute.

• Table structure design

- Data type: MaxCompute 2.0 supports INYINT, SMALLINT, INT, BIGINT,
VARCHAR and STRING types for fields.

- Actions: You can create, modify, and delete the fields.
- Length/Set: You can set the maximum length of the VARCHAR type columns.

For composite data types, you can fill in the definitions for them.
Supported data type

Basic data types that are supported by external tables are shown in the following
table.
Data type New Examples Description
TINYINT Yes 1Y，-127Y A signed eight-bit integer in

the range -128 to 127.
SMALLINT Yes 32767S， -100S A signed 16-bit integer in the

range -32,768 to 32,767.
INT Yes 1000, -15645787 A signed 32-bit integer in the

range -231 to 231-1.
BIGINT No 100000000000L, -1L A signed 64-bit integer in the

range -263 + 1 to 263 - 1.
FLOAT Yes None A 32-bit binary floating point

number.

258 Issue: 20190920

DataWorks Data Development / 1 Data development

DOUBLE No 3.1415926 1E+7 An eight-byte double precision
 floating-point number (a
64-bit binary floating point
number).

DECIMAL No 3.5BD， 9999999999
9.9999999BD

A decimal exact numeric.
Precision can range from -
1036 + 1 to 1036 -1, scale from
10 to 18.

VARCHAR(n) Yes None A variable-length character
string. The length is n that is
in the range 1 to 65535.

STRING No “abc”，’bcd
’，”alibaba”

A string. Currently, the
maximum length is 8M.

BINARY Yes None A binary number. Currently,
the maximum length is 8M.

DATETIME No DATETIME ‘2017-
11-11 00:00:00’

The data type for dates and
times. UTC‒8 is used as the
standard time of the system.
The range is from 0000-01- 01
 to 9999-12-31, accurate to a
millisecond.

TIMESTAMP Yes TIMESTAMP ‘2017
-11-11 00:00:00.
123456789’

TIMESTAMP data type, which
 is independent of time zones
. The range is from 0000-01-
01 to 9999-12-31, accurate to a
nanosecond.

BOOLEAN No TRUE，FALSE Logical Boolean (TRUE/FALSE)
Composite data types supported by external tables are shown in the following tables.
Type Definition Constructor
ARRAY array< int >; array< struct<

a:int, b:string >>
array(1, 2, 3); array(array(1
, 2); array(3, 4))

MAP map< string, string >; map
< smallint, array< string>>

map(“k1”, “v1”, “k2”,
“v2”); map(1S, array(‘a
’, ‘b’), 2S, array(‘x’,
‘y))

Issue: 20190920 259

DataWorks Data Development / 1 Data development

STRUCT struct< x:int, y:int>; struct
< field1:bigint, field2:array
< int>, field3:map< int, int
>>

named_struct(‘x’, 1, ‘
y’, 2); named_struct(‘
field1’, 100L, ‘field2’,
array(1, 2), ‘field3’, map
(1, 100, 2, 200)

If you need to use data types newly supported by MaxCompute 2.0 (TINYINT,
SMALLINT, INT, FLOAT, VARCHAR, TIMESTAMP, BINARY or composite data types),
you need to include set odps . sql . type . system . odps2 = true ;

before the statements to create a table. Submit and execute the statements to create
a table with the set statement. If compatibility with HIVE is required, we recommend
that you include the odps . sql . hive . compatible = true ; statement.

View and process external tables
You can find the external tables in the Tables view.

The processing of external tables is similar to that of internal tables. For more
information about external tables, see #unique_15 and #unique_122.

1.17 Functions
The function list provides the currently available functions, function classification,
function usage description, and instances.
The function list contains six parts, including other functions, string processing
functions, mathematical functions, date functions, window functions, and aggregate
 functions. These functions are provided by the system. You can view the description
and example of a function by dragging the function.

260 Issue: 20190920

DataWorks Data Development / 1 Data development

1.18 Editor shortcut list
Common shortcuts for code editing.

Windows chrome version
Ctrl + S Save
Ctrl + Z Undo
Ctrl + Y Redo
Ctrl + D Select the same word
Ctrl + X Cut a row
Ctrl + Shift + K Delete a row
Ctrl + C Copy the current row

Issue: 20190920 261

DataWorks Data Development / 1 Data development

Ctrl + i Select a row
Shift + Alt + Dragging with the mouse Column mode editing,

modifying all the contents in this part
Alt + mouse Click multi-column mode edit, multi-line indents
Ctrl + Shift + L Add a cursor for all the identical string instances, batch

changes
Ctrl + F Find
Ctrl + H Replace
Ctrl + G Locate to a specified row
Alt + Enter Select all the matching keywords in search
Alt ↓ / Alt ↑ Move the current row down/up
Shift + Alt + ↓ / Shift + Alt + ↑ Copy the current row down/up
Shift + Ctrl + K Delete the current row
Ctrl + Enter / Shift + Ctrl + Enter Move the cursor down/up
Shift + Ctrl + \ Jump the cursor to the matching brackets
Ctrl +] / Ctrl + [Increase/decrease indent
Home / End Move to the beginning/end of the current row
Ctrl + Home / Ctrl + End Move to the beginning/end of the current file
Ctrl + → / Ctrl + ← Move the cursor right/left by words
Shift + Ctrl + [/ Shift + Ctrl +] Hide/Show block pointed by

cursor
Ctrl + K + Ctrl + [/ Ctrl + K + Ctrl +] Hide/Show subblock

pointed by cursor
Ctrl + K + Ctrl + 0 / Ctrl + K + Ctrl + j Fold/unfold all

areas
Ctrl + / Write/Cancel comments for the row or code block where the cursor stays

262 Issue: 20190920

DataWorks Data Development / 1 Data development

MAC chrome version
cmd + S Save
cmd + Z Undo
cmd + Y Redo
cmd + D Select the same word
cmd + X Cut a row
cmd + shift + K Delete a row
cmd + C Copy the current row
cmd + i Select the current row
cmd + F Find
cmd + alt + F Replace
alt ↓ / alt ↑Move the current row down/up
shift + alt + ↓ / shift + alt + ↑ Copy the current row down/up
shift + cmd + K Delete the current row
cmd + Enter / shift + cmd + Enter Move the cursor down/up
shift + cmd + \ Jump the cursor to the matching brackets

` cmd +] / cmd + [Increase/decrease indent
cmd + ← / cmd + → Move to the beginning/end of the current row
cmd + ↑ / cmd + ↓ Move to the beginning/end of the current file
alt + → / alt + ← Move the cursor right/left by words
alt + cmd + [/ alt + cmd +] Hide/Show block pointed by cursor
cmd + K + cmd + [/ cmd + K + cmd +] Hide/Show subblock

pointed by cursor
cmd + K + cmd + 0 / cmd + K + cmd + j Fold/unfold all areas
cmd + /Write/Cancel comments for the row or code block where the cursor stays

Issue: 20190920 263

DataWorks Data Development / 1 Data development

Multiple cursors/select
alt + Clicking with the mouse Insert the cursor
alt + cmd + ↑/↓ Insert the cursor up/down
cmd + U Undo the last cursor operation
shift + alt + I Insert a cursor to the end of each row of the selected code

block
cmd + G ∕ shift + cmd + G Find the next/previous item
cmd + F2 Select all the characters that the mouse has chosen
shift + cmd + L Select all the parts that the mouse has chosen
alt + Enter Select all the matching keywords in search
shift + alt + Dragging with the mouse Select multi-columns for

editing
shift + alt + cmd + ↑ / ↓ Move the cursor up/down to select multi-

columns for editing
shift + alt + cmd + ← / → Move the cursor right/left to select multi-

columns for editing

1.19 Recycle Bin
DataWorks has its own recycle bin, click Recycle Bin in the upper left corner of the
page.

On the Recycle Bin page, you can check all deleted nodes in the current project. You
can also right-click a node to restore or permanently delete it.
Click Show My Files on the right of the Recycle Bin page to view your deleted nodes.

264 Issue: 20190920

DataWorks Data Development / 1 Data development

Note:
If a node is permanently deleted from the recycle bin, it cannot be restored.

Issue: 20190920 265

DataWorks Data Development / 2 DataService studio

2 DataService studio
2.1 DataService studio overview

DataService Studio aims to build a data service bus to help enterprises centrally
manage private and public APIs. DataService Studio allows you to quickly create APIs
 based on data tables and register existing APIs with the DataService Studio platform
for centralized management and release. In addition, DataService Studio is connected
 to API Gateway. You can deploy APIs to API Gateway with one-click. DataService
Studio works together with API Gateway to provide a secure, stable, low-cost, and
easy-to-use data sharing service.
DataService Studio adopts the serverless architecture. All you need to care is the
query logic of APIs, instead of the infrastructure such as the running environmen
t. DataService Studio prepares the computing resources for you, supports elastic
scaling, and requires zero O&M cost.

Creation of data APIs
DataService Studio currently supports the use of the visualized wizard to quickly
 create data APIs based on tables of the relational database and NoSQL database.
You can configure a data API in several minutes without writing codes. To meet the
 personalized query requirements of advanced users, DataService Studio provides
the custom SQL script mode to allow you compile the API query SQL statements by
 yourself. It also supports multi-table association, complex query conditions, and
aggregate functions.

API registration
DataService Studio also supports centralized management of the existing API services
 that you register with DataService Studio and the APIs created based on data tables
. Currently only RESTful APIs can be registered. Supported request methods include
 GET, POST, PUT, and DELETE. Supported data types include forms, JSON data, and
XML data.

API gateway
API Gateway provides API management services, including API publish, management
, and maintenance, and API subscription duration management. It provides you with

266 Issue: 20190920

DataWorks Data Development / 2 DataService studio

a simple, fast, low-cost, and low-risk method to implement microservice aggregation,
frontend-backend isolation, and system integration, and opens functions and data to
partners and developers.
DataService Studio has been connected to API Gateway. You can deploy any APIs
created and registered in DataService Studio to API Gateway for management, such as
 API authorization and authentication, traffic control, and metering.

API Market
The Ali cloud API market is the most comprehensive API trading market in China
, covering finance, artificial intelligence, e-commerce, transportation geography
, Living Services, corporate management and the eight main categories of public
affairs, thousands of API products have been sold online.
After your APIs from DataService Studio have been published to API Gateway, you can
 then publish them to Alibaba Cloud API Marketplace. This is an easy way to achieve
financial gains for your company.

2.2 Glossary
The data services related words are explained below.
• Data sources: database links. Data Service accesses data through data sources. Data

 sources can only be configured in Data Integration.
• Create APIs: create APIs based on data tables.
• Register APIs: register existing APIs to Data Service for central management.
• Wizard: guides you through the procedure of API creation. This method is suitable

for beginners who want to create simple APIs. You do not need to write any code.
• Script: allows you to create APIs by writing SQL scripts. This method supports

 table join queries, complex queries, and aggregate functions. This method is
suitable for experienced developers who want to create complex APIs.

• API groups: an API group is a set of APIs for a certain scenario or for consuming a
specific service. API groups are the smallest group units in Data Service, as well as
 the smallest units managed by API Gateway. API groups are published in Alibaba
Cloud API Market as API products.

• API Gateway: a service provided by Alibaba Cloud to manage APIs. API Gateway
supports API subscription duration management, permission management, access
 management, and traffic control.

Issue: 20190920 267

DataWorks Data Development / 2 DataService studio

• API Market: Alibaba Cloud API Market is the most complete and integrated
domestic API trading platform established on Alibaba Cloud Market.

2.3 Generate API
2.3.1 Configure the Data Source

Before you can use the data API to generate a service, you must configure the data
 source in advance. Data Service allows you to obtain schema information of data
tables from data sources and handle API requests.
You can configure a data source on the data integration > data source page in the
dataworks console, support for different data source types and how to configure them
is shown in the following table.
Data source name Wizard mode

 to generate
data API

Script Mode
 generation
data API

Configuration method

RDS (ApsaraDB for
RDS)

Supported Supported The RDS includes MySQL,
PostgreSQL, and SQL Server.

DRDS Supported Supported #unique_131
MySQL Supported Supported #unique_132
PostgreSQL Supported Supported #unique_133
SQL Server Supported Supported #unique_134
Oracle Supported Supported #unique_135
AnalyticDB(ADS) Supported Supported #unique_136
Table Store(OTS) Yes No #unique_137
MongoDB Supported No #unique_138

2.3.2 Overview of generating API
The Data Service currently supports faster generation of tables from relational and
 neosql databases through a visually configured wizard mode. data API, you don't
need to have the ability to code to configure a data API in a matter of minutes. To
meet the personalized query requirements of advanced users, Data Service provides
 the custom SQL script mode to allow you compile the API query SQL statements by

268 Issue: 20190920

DataWorks Data Development / 2 DataService studio

 yourself. It also supports multi-table association, complex query conditions, and
aggregate functions.
The functions of the wizard mode and the script mode are listed as follows:
Features Features Wizard mode Script Mode

Query a single data table from
one data source

Supported SupportedQuery object

Query multiple joined tables
from one data source

No Supported

Query for an exact number Supported Supported
Query for a range of numbers No Supported
Match an exact string Supported Supported
Fuzzy search for strings Supported Supported

Filter bar

Set required and optional
parameters

Supported Supported

Return the field value Supported Supported
Return a mathematical
calculation of field values

No Supported

Return an aggregate calculation
of field values

No Supported

Query results

Display results with pagination Supported Supported
2.3.3 Generate API in Wizard Mode

This article will introduce you to the steps and considerations of the wizard mode
generation API.
Using the wizard mode to generate data, the API is simple and easy to get started
without writing any code, the API can be quickly generated by checking the
configuration from the product interface. We recommend that users who do not
have high requirements for the functions of the API or have little code development
experience use the wizard.

Note:
Before you configure the API, configure the data source in the Data integration >
Data Source page of the dataworks console.

Issue: 20190920 269

DataWorks Data Development / 2 DataService studio

Configure the API basic information
1. Navigate to the API Service list > Generate API.
2. Click Wizard Mode to fill in the API basics.

Note the settings for the API grouping during configuration. An API group includes
a collection of APIs that are used for a specific scenario. It is the minimum
management unit in API Gateway. In the Alibaba Cloud API Market, each API group
corresponds to a specific API product.

Note:
The set up example for API grouping is as follows:
For example, you would like to configure an API product for weather inquiry,
weather search API by city name weather search API, scenic spot name search
weather API and zip search weather API three kinds of APIS, then you can create
an API group called a weather query, and put the above three APIs in this group.
The API is shown as a weather query product when published to the market.
Of course, if your generated API is used in your own app, you can use grouping as
a classification.

Currently, the build API only supports HTTP protocol, GET request mode, and
JSON return type.

3. After providing the API basic information, click Next to go to the API parameter
configuration page.

270 Issue: 20190920

DataWorks Data Development / 2 DataService studio

Configure API parameters
1. Navigate to the Data source type > Data source name > Table and select the tables

that you want to configure.

Note:
You need to configure the data source in advance in the data set, and the data table
drop-down box supports the table name search.

2. Second, specify request and response parameters.
When a data table has been selected, all fields of the table are displayed on the left
. Select the fields to be used as request parameters and response parameters, then
add them to the corresponding parameter list.

3. Finally, edit and complete parameter information.
Click Edit in the upper-right corner of the request and return parameter lists to
enter the parameter information Edit page, sets the name of the parameter, sample
value, default, mandatory, fuzzy match (only string type is supported) settings) and
the description. The optional and description fields are required.

You need to pay attention to the settings that return result paging during the
configuration process.
• If you do not enable the response pagination, the API outputs up to 500 records by

default.
• If the return result may exceed 500, turn on the response pagination function.
The following public parameters are available only when the response pagination
feature is enabled:

Issue: 20190920 271

DataWorks Data Development / 2 DataService studio

• Common request parameters
- pageNum: the current page number.
- Pagesize: The page size, that is, the number of records per page.

• Common response parameters
- pageNum: the current page number.
- Pagesize: The page size, that is, the number of records per page.
- totalNum: the total number of records.

Note:
• The request parameter only supports the equivalent query, and the return

parameter only supports the output of the field value as is.
• As far as possible, set an indexed field to a request parameter.
• You are allowed to specify no request parameters for an API. In that case, the

pagination feature must be enabled.
• To make it easy for API callers to understand the details of an API, we recommend

 that you specify the sample value, default value, and description parameters of
the API.

• Click on the configured API to view a list of the APIs that have been generated in
the current table, avoid generating the same API.

When the configuration of the API parameters is complete, click Next to enter the API
testing section.

API Testing
After completing configuration of API parameters, you can start the API test.

272 Issue: 20190920

DataWorks Data Development / 2 DataService studio

Set parameters and click Start Test to send the API request online. The API request
details and response are displayed on the right. If the test fails, read the error
message carefully and make the appropriate adjustments to test your API again.
You need to note the settings for the normal return example during the configuration
process. When testing an API, the system automatically generates exception
examples and error codes. However, normal response examples are not automatically
generated. After the test succeeds, you need to click Save as Normal Response Sample
to save the current test result as the normal response sample. If sensitive data is
included in the response, you can manually edit it.

Note:
• Normal response examples provide an important reference value for the API

callers. Specify an example if possible.
Issue: 20190920 273

DataWorks Data Development / 2 DataService studio

• The API calling delay is the delay of the current API request, which is used to
 evaluate the API performance. If the latency is too high, you may consider
optimizing your database.

After completing the API test, click Finish. The data API is successfully created.
API details viewing

Back on the API service list page, click details in the Action column to view the details
of the API. This page displays detailed information about an API from the view of a
caller.

2.3.4 Generate API in Script Mode
This article introduces you to the steps that script mode can take to generate the API.
To meet the needs of high-end users for personalized queries, the Data Service also
 provides a script pattern for customizing SQL, allows you to write your own SQL
queries for the API, multi-Table Association, complex query conditions and Aggregate
 functions are supported.

Configure the API basic information
1. Navigate to the API Service list > Generate API.

274 Issue: 20190920

DataWorks Data Development / 2 DataService studio

2. Click Script Mode to fill in the API basics.

Note the settings for the API grouping during configuration. An API group includes
a collection of APIs that are used for a specific scenario. It is the minimum
management unit in API Gateway. In the Alibaba Cloud API Marketplace, each API
group corresponds to a specific API product.

Note:
The set up example for API grouping is as follows:
For example, you would like to configure an API product for weather inquiry,
weather search API by city name weather search API, scenic spot name search
weather API and zip search weather API three kinds of APIS, then you can create
an API group called a weather query, and put the above three APIs in this group.
The API is shown as a weather query product when published to the marketplace.
Of course, if your generated API is used in your own app, you can use grouping as
a classification.

Currently, the build API only supports HTTP protocol, GET request mode, and
JSON return type.

3. After providing the API basic information, click Next to go to the API parameter
configuration page.

Issue: 20190920 275

DataWorks Data Development / 2 DataService studio

Configure the API Parameters
1. Select the data source and table.

Navigate to the data source type > data source name > data table, click the
appropriate table name in the data table list, you can view the field information for
this table.

Note:
• You need to configure the data source in advance in the data set formation.
• You must select a data source. Table join queries across data sources are not

supported.
2. Write SQL queries for the API.

You can enter the SQL code in the code box on the right side. The system supports
one-click SQL function, checking fields in the list of fields, and clicking Generate
SQL, the SQL statement for SELECT xxx FROM xxx is automatically
generated and inserted at the right cursor.

Note:
• One-click SQL addition is especially useful when the number of fields is

relatively large, which can greatly improve the efficiency of SQL writing.
• The field of the SELECT query is the return parameter of the API, the parameter

 at the where condition is the request parameter for the API, And the request
parameter is identified with $.

276 Issue: 20190920

DataWorks Data Development / 2 DataService studio

3. Finally, edit and complete parameter information.
After writing the API query SQL, click the parameters in the upper-right corner
to switch to the parameter information Edit page, you can edit the type, sample
values, default values, and descriptions of the parameters here, where Type and
description are required.

Note:
To help the caller of the API get a more comprehensive understanding of the API,
please complete the API parameter information as much as possible.

You need to pay attention to the settings that return result paging during the
configuration process.
• If you do not enable the response pagination, the API outputs up to 500 records by

default.
• If the return result may exceed 500, turn on the response pagination function.
The following public parameters are available only when the response pagination
feature is enabled:
• Common request parameters

- pageNum: the current page number.
- Pagesize: The page size, that is, the number of records per page.

Issue: 20190920 277

DataWorks Data Development / 2 DataService studio

• Common response parameters
- pageNum: the current page number.
- pageSize: The page size, that is, the number of records per page.
- totalNum: the total number of records.

Note:
SQL rule prompt.
• Only one SQL statement is supported, and multiple SQL statements are not

supported.
• Only the `SELECT` clause is supported. Other clauses such as `INSERT`, `UPDATE

`, and `DELETE` are not supported.
• The query field for select is the return parameter for the API, the variable Param

in the $ {Param} in the where condition is a request parameter for the API.
• SELECT * is not supported, columns of the query must be specified explicitly.
• Single table queries, table join queries, and nested queries within one data source

 are supported.
• If the column name of the SELECT query column has a table name prefix (such as

T. name), the alias must be taken as the return parameter name (such as T. name
as name).

• If you use the aggregate function (min/max/sum/count, etc), the alias must be
taken as the return parameter name (such as sum (Num) as total \ _ num).

• In SQL, $ {Param} is uniform when the request parameter is replaced, contains $
{Param} in the string }. When $ {Param} has an escape character \, it does not do
request parameter processing, processed as an ordinary string.

• Putting $ {Param} in quotation marks is not supported, such as '$ {ID}', 'ABC $ {xyz}
123 ', concat ('abc ', $ {xyz}, '123') can be passed if necessary ') implementation.

When the configuration of the API parameters is complete, click Next to enter the API
testing section.

API Testing
After completing configuration of API parameters, you can start the API test.

278 Issue: 20190920

DataWorks Data Development / 2 DataService studio

Set parameters and click Start Test to send the API request online. The API request
details and response are displayed on the right. If the test fails, read the error
message carefully and make the appropriate adjustments to test your API again.
You need to note the settings for the normal return example during the configuration
process. When testing an API, the system automatically generates exception
examples and error codes. However, normal response examples are not automatically
generated. After the test succeeds, you need to click Save as Normal Response Sample
to save the current test result as the normal response sample. If sensitive data is
included in the response, you can manually edit it.

Note:
• Normal response examples provide an important reference value for the API

callers. Specify an example if possible.
Issue: 20190920 279

DataWorks Data Development / 2 DataService studio

• The API calling delay is the delay of the current API request, which is used to
 evaluate the API performance. If the latency is too high, you may consider
optimizing your database.

After completing the API test, click Finish. The data API is successfully created.
API details viewing

Back on the API service list page, click details in the Action column to view the details
of the API. This page displays detailed information about an API from the view of a
caller.

2.4 Register API
This section describes how to register an API.
You can register currently available APIs in Data Service. These APIs can be managed
 and published to API Gateway together with APIs created based on data tables.
Currently, you can only register RESTful APIs supporting GET, POST, PUT, and
DELETE requests and content types form,JSON,and XML.

Configure the API basic information
1. You can go to the registration API page by selecting the Register API in the API

Service list.

280 Issue: 20190920

DataWorks Data Development / 2 DataService studio

2. Configure the API basic information.

Parameters:
• Protocol: Only HTTP is supported.
• Backbround Service Host: Enter the host of the API. The host must start with

http:// or https://, and cannot contain the path.
• Backbround Service Path: Enter the path of the API. Put parameter names in

brackets, for example, /user/[userid].
If a parameter is defined in the path, the system automatically adds the
parameter in the path to the request parameter list in the second step of the API
registration wizard.

• API path: The alias of the background service path. It allows an API for the
background service host and path to register as multiple APIs.
Parameters defined in Backbround Service Path must also be defined in brackets
 in API Path.

• Request method: The options include GET, POST, PUT, and DELETE. Different
request methods correspond to different subsequent configuration items.

• Return Type: Select JSON or XML.
3. After providing the API basic information, click Next to go to the API parameter

configuration page.

Issue: 20190920 281

DataWorks Data Development / 2 DataService studio

Configure API parameters
After configuring the basic API information, you can configure the API parameters.
including the request parameters, response example, and error code of the API.

• Request Parameters:
- Parameter location: The options include Path, Header, Query, and Body.

Different request methods support different optional parameter locations. You
can select the options as required.

- Constant parameters: The parameters that have the fixed values and are
invisible to callers. The constant parameters do not need to be input during API
 calling. However, the background service always receives the defined constant
parameters and their values. Constant parameters are applicable if you want to
fix the value of a parameter or hide the parameters to the callers.

• Request Body is required only when the request mode is POST or PUT. You can
enter the desc The content types of the request body include JSON and XML.

Note:
If the request body is defined in the request body definition and the body location
parameter is defined in the request parameter definition, the body location
parameter is invalid. The request body is applied.

• You can enter a normal example or an exception example for API callers to refer to
when writing the return parse code.

• Enter the common errors and solutions in API calling. This enables API callers to
troubleshoot and solve these errors.

Note:
To ensure that the API is easily used by the callers, provide complete API
parameter information if possible, especially the parameter sample values,
default values, and response examples.

282 Issue: 20190920

DataWorks Data Development / 2 DataService studio

API Testing
After completing configuration of API parameters, you can start the API test.

Set parameters and click Start Test to send the API request online. The API request
details and response are displayed on the right. If the test fails, read the error
message carefully and make the appropriate adjustments to test your API again.
You need to note the settings for the normal return example during the configuration
process. When testing an API, the system automatically generates exception
examples and error codes. However, normal response examples are not automatically
generated. After the test succeeds, you need to click Save as Normal Response Sample
to save the current test result as the normal response sample. If sensitive data is
included in the response, you can manually edit it.

Note:
Issue: 20190920 283

DataWorks Data Development / 2 DataService studio

• Normal response examples provide an important reference value for the API
callers. Specify an example if possible.

• The API calling delay is the delay of the current API request, which is used to
 evaluate the API performance. If the latency is too high, you may consider
optimizing your database.

After completing the API test, click Finish. The data API is successfully created.

2.5 API service test
This article will show you how to test your API.
When creating and registering an API, you can test the API. For more information, see
#unique_144.
The system also provides an independent API service test function for you to perform
routine API tests online. You can choose More > Test in the Actions column of the API
list to go to the API test page. Alternatively, you can click API Service Test in the left-
side navigation pane, enter the API test page, and select the corresponding API.

Note:
The API service test page provides only the API online test function and does not
allow update and storage of the API normal response examples. To update an API
normal response example, click Edit in the API list, enter the API editing mode, and
update the content of the normal response example in the API test process.

284 Issue: 20190920

DataWorks Data Development / 2 DataService studio

2.6 Publish an API
API Gateway is an API hosting service that provides full life cycle management
covering API release, management, O&M, and sales. It provides you with a
simple, fast, low-cost, and low-risk method to implement microservice aggregation,
frontend-backend isolation, and system integration, and opens functions and data to
partners and developers.
API Gateway provides permission management, traffic control, access control, and
metering services. The service makes it easy for you to create, monitor, and secure
 APIs. Therefore, we recommend that you publish the APIs that have been created
 and registered in Data Service to API Gateway. Data Service and API Gateway are
connected, which allows you to publish APIs to API Gateway easily.

Publish APIs to API Gateway

Note:
To release an API, you must first activate the API Gateway service.

After activating API Gateway, you can click Publish in the Actions column of the API
service list to release the API to API Gateway. The system automatically registers the
API to API Gateway during the publish process. The system creates a group in API
Gateway with the same name as the API group and releases the API to the group.
After the release, you can go to the API Gateway console to view the API information.
You can also set the throttling and access control functions in API Gateway.
If your API needs to be called by your application, you must create an application
in API Gateway, authorize the API to the application, and encrypt the signature
call using the AppKey and AppSecret. For more information, see API Gateway help
 documentation. At the same time, the API gateway also provides the SDK in the
mainstream programming language, you can quickly integrate your API into your
own applications, for more information, please refer to the SDK download and user's
guide.

Publish APIs to Alibaba Cloud API Marketplace
After your APIs from Data Service have been published to API Gateway, you can
then publish them to Alibaba Cloud API Marketplace. This is an easy way to achieve
financial gains for your company.

Issue: 20190920 285

https://www.alibabacloud.com/product/api-gateway
https://www.alibabacloud.com/help/doc-detail/29490.htm
https://www.alibabacloud.com/help/doc-detail/29490.htm
https://www.alibabacloud.com/help/doc-detail/56930.htm
https://www.alibabacloud.com/help/doc-detail/56930.htm

DataWorks Data Development / 2 DataService studio

Before selling the API to the Ali cloud API market, first of all, it is necessary to enter
the Ali cloud market as a service provider.

Note:
Select to enter API Marketplace as shown in the following figure. Note: only
enterprise users are allowed to enter Alibaba Cloud API Marketplace.

Procedure
1. Enter the Ali cloud service provider platform.
2. Click commodity management > publish the merchandise and select the access

type as the API service.
3. Select the API grouping that you want to list (one grouping corresponds to one API

commodity).
4. Configure commodity information and submit audit.
Once your product has been successfully published to Alibaba Cloud API Marketplace
, users can purchase it worldwide.

2.7 Delete API
Choose More > Delete in the Actions column of the API service list to delete an API.

Note:
• An API can be deleted only when it is in offline status. If it is online, deprecate the

API and then delete it.
• The delete operation is irreversible. Delete an API with caution.

2.8 Call an API
This section describes how to call an API after this API is released on API Gateway.
API Gateway provides API authorization and the SDK for calling APIs. You can
authorize yourself, your associates, or third parties to use APIs. If you want to call an
API, perform the following operations.

286 Issue: 20190920

DataWorks Data Development / 2 DataService studio

Three elements for calling an API
To call an API, you need the following three elements:
• API: the API that you are about to call, which is clearly defined by the API

parameters.
• app: Identity that you use to call the API. The AppKey and AppSecret are provided

to authenticate your identity.
• Permission relationship between the API and app: When an app needs to call an

 API, the app must have the permission of this API. This permission is granted
through authorization.

Procedure
1. Get the API documentation

The acquisition method varies according to the channel that you use to obtain the
API. It is generally divided into API services purchased from the data market and
not required to purchase, two ways are actively authorized by the provider. For
more information, see get API documentation.

2. Create a project
The app is the identity that you use to call an API. Each app has a set of AppKey
and AppSecret, which are equivalent to an account and a password. For more
information, see creating an application.

3. Get the permission
Authorization means granting an app the permission to call an API. Your app must
be authorized first to call an API.
The authorization method varies according to the channel that you use to obtain
the API. For more information, see obtaining authorization.

4. Call API
You can directly use the multi-language call sample provided by API Gateway
Console, or use a self-compiled HTTP or HTTPS request to call the API. For more
information, see calling the API.

Issue: 20190920 287

https://www.alibabacloud.com/help/doc-detail/42740.htm
https://www.alibabacloud.com/help/doc-detail/29488.htm
https://www.alibabacloud.com/help/doc-detail/29489.htm
https://www.alibabacloud.com/help/doc-detail/29490.htm

DataWorks Data Development / 2 DataService studio

2.9 FAQ
• Q: Do I have to activate the API gateway?

A: API Gateway provides the API hosting service. If you plan to open your APIs to
other users, the API Gateway service must be activated first.

• Q: Where can I configure the data sources?
A: To create a data source, select DataWorks > Data Integration > Data Sources
. After the configuration, Data Service automatically reads the data source
information.

• Q: What is the difference between a wizard-created API and a script-created API?
A: The script mode provides more powerful functions. For more information, see
#unique_149.

• Q: What is an API group in Data Service? Is it the same as an API group in API
Gateway?
A: An API group contains several APIs in a certain scenario. It is the minimum
unit. In a word, the two are equivalent. When you publish an API group from Data
 Service to API Gateway, the gateway automatically creates an API group with the
same name.

• Q: How can I configure an API group appropriately?
A: Typically, an API group includes APIs that provide similar functions or solve a
specific issue. For example, the API for querying weather by city name and the API
for querying weather by latitude and longitude can be put into an API group named
 "weather query".

• Q: How many API groups can be created?
A: An Alibaba Cloud acocunt can create up to 100 API groups.

• Q: In what situations do I have to enable API response output pagination?
A: By default, an API outputs up to 500 records. To output more records, enable API
 response output pagination. When no API request parameters have been set, the
API may output a large number of records, and the API response output pagination
 is automatically enabled.

• Q: Do APIs created by Data Source support POST requests?
A: Currently, a created API supports only the GET request.

288 Issue: 20190920

DataWorks Data Development / 2 DataService studio

• Q: Does Data Service support HTTP?
A: Currently, Data Service does not support HTTP. HTTP may be supported in later
 versions.

Issue: 20190920 289

DataWorks Data Development / 3 Function Studio

3 Function Studio
3.1 Overview

Function Studio is a web project coding and development tool independently
developed by the Alibaba Group for function development scenarios. It is an
important component of DataWorks.
Based on an innovative underlying architecture, Function Studio occupies few
resources, supports high concurrency, and is convenient, flexible, and efficient.
Function Studio provides functions such as syntax highlighting, automatic code
completion, intelligent error correction, and syntax error hinting. It also supports
 online development and debugging, collaborative coding, and publishing of UDF
resources and functions to DataWorks with one click.

Features
• Function Studio allows you to edit MaxCompute Java user-defined functions (UDFs

) and to compile and publish them to DataWorks with one click.
• Function Studio allows you to manage the files and folders of projects.
• Function Studio provides a context-based intelligent editor that allows you to

intelligently edit multiple Java files concurrently. Function Studio also supports
searching for definitions and references, code hinting and completion, highlighti
ng of keywords in the syntax, and real-time syntax error hinting.

• Function Studio supports UDF, user defined aggregate function (UDAF), and user-
defined table-generating function (UDTF) templates, and automatically publishes
resources and functions to the workflows in DataWorks, greatly improving the UDF
 development efficiency.

• Function Studio allows you to perform common Git operations such as commit and
 push in the DataWorks development environment, supporting version control of
code files.

• Function Studio allows you to redirect DataStudio to Function Studio with one
click to view the source codes of UDFs, facilitating the online maintenance and
management of UDFs.

290 Issue: 20190920

DataWorks Data Development / 3 Function Studio

Future versions
Function Studio will support more languages, such as Python, and more platform-
based function development scenarios, such as real-time computing.

3.2 Releases
This topic describes the releases of Function Studio to inform you about the new
features and syntax characteristics of Function Studio, improving the efficiency of
project development.

Function Studio 1.0
Released on: December 11, 2018
• An IDE that supports the online development of Java UDFs.
• UDF development with one click, including compilation and publishing of UDF

resources and functions.
• Maintenance or secondary development of published functions or resources in

Function Studio.
• Advanced editing functions of Java, such as code hinting, redirection, and

refactoring.
• Git features.
• Online debugging and hot code replacement in run or debug mode.

3.3 Get started
3.3.1 Create projects

This topic describes how to create a project in Function Studio.
You can click Create Project or Import Project from Git to create a project.
1. In the top navigation bar, choose Project > Create Project, or choose Project >

Import Project from Git.
• If you select Create Project, in the Create Project dialog box, set the project

name, project description, and project template.

Note:

Issue: 20190920 291

DataWorks Data Development / 3 Function Studio

Currently, Function Studio supports Java and Python.
• If you select Import Project from Git, in the Import Project from Git dialog box,

set the Git repo URL, project name, project description, and project template.

Note:
Function Studio allows you to directly import a project from Git. Only HTTP
projects are supported. You must convert SSH projects to HTTP projects.

2. Click OK.
3.3.2 Develop UDFs

After a project is created, the framework code is automatically generated, based on
which you can create Java UDFs, UDAFs, and UDTFs. This topic takes creating a UDF
as an example to describe how to develop UDFs, UDAFs, and UDTFs.
1. Choose Add > UDF.
2. In the dialog box that appears, enter the class name and click OK. The framework

code is automatically generated.
3. Modify the variables in the evaluate method as needed.

3.3.3 Debug UDFs
You can debug UDFs (Java only), UDAFs, and UDTFs.

Debug UDFs (Java only)
1. Create a main method.

Currently, Function Studio only allows you to call and debug UDFs online by using
the main method.

2. Set the debugging configuration.
Click Run/Debug Config in the upper-right corner.
Select the main method you just created. Other information is automatically
generated.
Parameter Description
Main class Required. The main method you want to debug.
VM options Optional. The JVM startup parameter.
Program Variables Optional. The startup variables.
JRE Currently, only JDK1.8 is supported.

292 Issue: 20190920

DataWorks Data Development / 3 Function Studio

Parameter Description
PORT The HTTP port you must open. This parameter

is optional for UDF, UDAF, and UDTF projects.
ECS instance The instance type.
Enable Hot Code Replacement Indicates whether to enable hot code

replacement.
3. Enable debugging.

In the Lower.java file, set a breakpoint for the evaluate method and click Debug.
After debugging is enabled, you can debug the method. You can click Step In

to step into the UDF and view the variables.
Debug UDAFs

To debug UDAFs, you must manually construct the relevant data and use a warehouse
 to simulate the MaxCompute table. The schema and data of the table are saved in the
warehouse, which can be used to compile the main method for testing.
After the warehouse is initialized, call relevant UDAFs for testing.

Debug UDTFs
You can debug UDTFs in the same way as you debug UDAFs. The initialized project
already provides the UDTF test class. You can directly run the class to simulate the
data and debug UDTFs.
Click Run. If the application throws no error, the UDTF test is passed.

3.3.4 Publish UDFs
This topic describes how to submit resources or functions to the DataWorks
development environment.

Submit resources to the DataWorks development environment
1. In the MaxCompute project section, click the Publish icon in the upper-right

corner.
2. Click Submit Resource to Development Environment.
3. In the dialog box that appears, set the parameters, and then click OK. After the

resource is published, the link of the resource in the DataWorks appears.
4. Open the link to locate the published resource.

Issue: 20190920 293

DataWorks Data Development / 3 Function Studio

Submit functions to the DataWorks development environment
1. In the MaxCompute project section, click the Publish icon in the upper-right

corner.
2. Click Submit Function to Development Environment.
3. In the dialog box that appears, set parameters, and then click OK. After the

function is published, the link of the function in the DataWorks appears.
4. Open the link to go to the function details page. You can edit the function in

Function Studio.

Note:
The resources and functions you published are in the development environment.
To use them online, you must publish them to an online environment through the
Publish Task page.

3.3.5 Develop MapReduce projects
After a project is created, the framework code is automatically generated for the
project, based on which you can create MapReduce tasks. This topic takes the
WordCount sample code as an example to describe how to perform the test and
publish the project from the very beginning.

Create projects
1. In the top navigation bar, choose Project > Create Project.
2. In the Create Project dialog box, set parameters.

In the specified MaxCompute workspace cdo_datax, create a project named
wordcountDemo, and select UDFJava Project as the project template.

3. Click OK.
Develop projects

The mapred package comes with the MapReduce sample code of WordCount. The
sample code is used to count words in an input table and write the statistical result
to an output table. The input table and output table are different tables. For more
information, see MapReduce.

294 Issue: 20190920

DataWorks Data Development / 3 Function Studio

Debug projects
Currently, you cannot debug MapReduce projects in Function Studio. To debug
a MapReduce project, you must publish the code to the DataWorks development
environment, and then verify the logic in DataWorks.

Note:
Currently, Function Studio only allows you to write, compile, and package code.

Publish projects
1. Function Studio allows you to compile and package the code and publish it to the

DataWorks development environment.
a. Click the Publish icon and then select Submit Resource to Development

Environment.
b. In the Submit Resource to Development Environment dialog box, set

parameters.
Parameter Description
Target Workspace The target workspace in which you publish the JAR

 package. The target workspace must be the same
as the workspace where you create the DataWorks
 compute node of the ODPS MR type in step 2. In
this example, the target workspace is cdo_datax.

Target Workflow The target workflow.
Resource You can specify the resource name, which is

referenced in the subsequent compute node
scripts.

Force Overwrite The project name can be the same as the name
used in the previous publish. If you select Force
Overwrite, the new name is used.

c. Click OK. The code is published to the DataWorks development environment.
A message appears, indicating whether the code is published successfully.

Issue: 20190920 295

DataWorks Data Development / 3 Function Studio

2. Create a compute node of the ODPS MR type in DataWorks for testing.
a. Open the DataWorks workspace named cdo_datax, and create a compute node of

 the ODPS MR type.
b. The information in the red box of the following figure must be added to the

script of the compute node. Currently, you must manually replace some
variables in the script with those in the JAR package.

Note:
Replace the following variables in the script with those in the JAR package that
you published in Function Studio and generate the final code:
• jar -resources: Replace it with the name of the JAR package that you

published in Function Studio.
• - classpath : Replace it with the path of the JAR package in DataWorks.
• Separate the parameters of the main method of a class by space.

c. Click the target workflow, and select Resource to view the information of the JAR
package that you published in Function Studio and replace relevant information
in the script with that in the JAR package.
• The name of the JAR package is WordCountD emo_1 . 0 . 0 . jar ,

corresponding to - resource in the script.
• Right-click the JAR package and choose View Change History. The path of

the JAR package is http :// schedule @{ env } inside . cheetah

. alibaba - inc . com / scheduler / res ? id = 106342493 ,
corresponding to - classpath in the script.

The final script:
Manually replace relevant informatio n in the
script with that in the JAR package . The final
script is generated .
jar - resources WordCountD emo_1 . 0 . 0 . jar

- classpath http :// schedule @{ env } inside . cheetah .
alibaba - inc . com / scheduler / res ? id = 106342493

296 Issue: 20190920

DataWorks Data Development / 3 Function Studio
com . alibaba . dataworks . mapred . WordCount wordcount_
demo_input wordcount_ demo_outpu t

d. Create a test table and prepare test data.
After the data is prepared, run the script in the development environment.
Now, the test of WordCount in the development environment has been
completed. The compute node, JAR package, and input and output tables of
WordCount are all in the development environment. Therefore, you need to
publish them to the production environment.

3. Publish the resource package, data tables, and nodes to the production
environment of DataWorks.
a. Commit the code of the compute node.
b. Configure the publish items.
c. On Publish Task page, select the JAR package and node that you want to publish

and click Publish in the Actions column.
d. Publish the tables.
e. On the Operation Center tab page, perform testing for the MapReduce project

online.
The log indicates that the project has run successfully.

Function Studio allows you to write, compile, and publish the code to a DataWorks
compute node. You must manually generate a compute node in DataWorks, and run
 the compute node in the development environment and production environment
separately.

3.3.6 Perform Git operations
You can associate a new project to a Git repo and then perform common Git
operations on the project.
1. In the top navigation bar, choose Version > Version Control.

• Locate the row that contains the target file, and then click + next to the file to
add the file to the Git repo.

• Click √ to commit and push the file.
• Click ... to pull or push the file.

2. Click master at the bottom to associate a remote branch with a local branch. You
can also create a branch.

Issue: 20190920 297

DataWorks Data Development / 3 Function Studio

3.3.7 Collaboratively edit the same code file
Function Studio allows multiple users to edit the same file of the same project
collaboratively.
You can click Share in the upper-right corner and invite other users to edit the file
collaboratively.
You can click Shared from Others to view the list of shared projects.
The following figure shows a scenario where multiple users edit the same file of the
same project.

3.3.8 Perform unit testing
Currently, Function Studio supports the unit testing (UT) feature, including detecting
the UT runner, running the UT code, and displaying the running results.

Detect the UT runner

Note:
• The UT class files must be stored in the src / test / java directory. A Java

UT class file that is not stored in this directory cannot be identified as the Java UT
class.

• After the Java UT class file is created, add the @ Test annotation of org . junit

. Test to the test case.
Run the UT code

Click Run test to run the UT code.
3.3.9 Search a project's code by keyword

This topic describes how to search a project's code by keyword in Function Studio.
Function Studio allows you to search the code of a project by keyword.

3.3.10 Automatically generate code
Currently, Function Studio supports most of the code generation features available in
Java, including generating a constructor, getter, or setter method, overriding methods
that a subclass inherits from a superclass, and implementing methods of an interface.

Portal
Currently, you can generate the Java code in either of the following two ways:

298 Issue: 20190920

DataWorks Data Development / 3 Function Studio

• Right-click the blank area and choose Generate.
• Press cmd+m.

Constructor
1. On the Generate Code panel, click Constructor.
2. Select the fields for the constructor. The constructor that contains the statement to

 initialize such fields is generated.
Getter and setter

You can generate the code of the getter and setter methods in the same way as you
generate the constructor.

Note:
If a Java class does not have any field or the Java class is overridden by the @data
annotation of Lombok, the getter or setter function is not required for the Java class.
In this case, the Getter, Setter, and Getter And Setter options do not appear on the
Generate panel.

Override methods
On the Generate panel, click Override Methods. All methods that can be overridden
are listed on the Generate Code panel.
Select a method. The code for overriding this method is generated.

Implement methods
You can generate code for implementing methods in a similar way as that described
in "Override methods."

Note:
When creating a class to implement an interface, each of the methods defined on the
interface must have code implementation. Otherwise, the statement has a syntax
error and is marked by a red wave line.

In addition to the Implement Methods option on the Generate panel, you can also use
code hinting to achieve the same purpose.

Issue: 20190920 299

	Contents
	Legal disclaimer
	Generic conventions
	1 Data development
	1.1 Solution
	1.2 SQL code encoding principles and standards
	1.3 Console functions
	1.3.1 Introduction to console
	1.3.2 Version
	1.3.3 Structure
	1.3.4 Relationship

	1.4 Business flow
	1.4.1 Business flow
	1.4.2 Resource
	1.4.3 Register the UDFs

	1.5 Node type
	1.5.1 Node types overview
	1.5.2 Data integration node
	1.5.3 MaxCompute SCRIPT node
	1.5.4 ODPS SQL node
	1.5.5 SQL Component node
	1.5.6 ODPS Spark node
	1.5.7 Virtual node
	1.5.8 ODPS MR node
	1.5.9 SHELL node
	1.5.10 PyODPS node
	1.5.11 for-each node
	1.5.12 do-while node
	1.5.13 Cross-tenant nodes
	1.5.14 Merge node
	1.5.15 Branch node
	1.5.16 Assignment node
	1.5.17 OSS object inspection
	1.5.18 PAI node
	1.5.19 Custom node type
	1.5.19.1 Overview of custom node types
	1.5.19.2 Create a wrapper
	1.5.19.3 Create a custom node type

	1.5.20 AnalyticDB for MySQL node
	1.5.21 Data Lake Analytics node
	1.5.22 AnalyticDB for PostgreSQL node

	1.6 Scheduling configuration
	1.6.1 Basic attributes
	1.6.2 Parameter configuration
	1.6.3 Scheduling time
	1.6.4 Dependencies
	1.6.5 Cross-cycle dependencies
	1.6.6 Node context
	1.6.7 Create instances immediately

	1.7 Configuration management
	1.7.1 Overview of configuration management
	1.7.2 Configuration center
	1.7.3 Project configuration
	1.7.4 Templates
	1.7.5 Theme management
	1.7.6 Table levels
	1.7.7 Back up and restore data

	1.8 Manual business flow
	1.8.1 Manual business flow overview
	1.8.2 Resource
	1.8.3 Function
	1.8.4 Table

	1.9 Manual task node type
	1.9.1 ODPS SQL node
	1.9.2 PyODPS node
	1.9.3 Manual data intergration node
	1.9.4 ODPS MR node
	1.9.5 SQL component node
	1.9.6 Virtual node
	1.9.7 SHELL Node

	1.10 Manual task parameter settings
	1.10.1 Basic Attributes
	1.10.2 Configure manual node parameters

	1.11 Component management
	1.11.1 Create components
	1.11.2 Use components

	1.12 Queries
	1.13 Running log
	1.14 Public Tables
	1.15 Table Management
	1.16 External tables
	1.17 Functions
	1.18 Editor shortcut list
	1.19 Recycle Bin

	2 DataService studio
	2.1 DataService studio overview
	2.2 Glossary
	2.3 Generate API
	2.3.1 Configure the Data Source
	2.3.2 Overview of generating API
	2.3.3 Generate API in Wizard Mode
	2.3.4 Generate API in Script Mode

	2.4 Register API
	2.5 API service test
	2.6 Publish an API
	2.7 Delete API
	2.8 Call an API
	2.9 FAQ

	3 Function Studio
	3.1 Overview
	3.2 Releases
	3.3 Get started
	3.3.1 Create projects
	3.3.2 Develop UDFs
	3.3.3 Debug UDFs
	3.3.4 Publish UDFs
	3.3.5 Develop MapReduce projects
	3.3.6 Perform Git operations
	3.3.7 Collaboratively edit the same code file
	3.3.8 Perform unit testing
	3.3.9 Search a project's code by keyword
	3.3.10 Automatically generate code

