阿里云 云服务器 ECS

实例

文档版本: 20190722

为了无法计算的价值 | [] 阿里云

<u>法律声明</u>

阿里云提醒您在阅读或使用本文档之前仔细阅读、充分理解本法律声明各条款的内容。如果您阅读 或使用本文档,您的阅读或使用行为将被视为对本声明全部内容的认可。

- 您应当通过阿里云网站或阿里云提供的其他授权通道下载、获取本文档,且仅能用于自身的合法 合规的业务活动。本文档的内容视为阿里云的保密信息,您应当严格遵守保密义务;未经阿里云 事先书面同意,您不得向任何第三方披露本手册内容或提供给任何第三方使用。
- 未经阿里云事先书面许可,任何单位、公司或个人不得擅自摘抄、翻译、复制本文档内容的部分 或全部,不得以任何方式或途径进行传播和宣传。
- 3. 由于产品版本升级、调整或其他原因,本文档内容有可能变更。阿里云保留在没有任何通知或者 提示下对本文档的内容进行修改的权利,并在阿里云授权通道中不时发布更新后的用户文档。您 应当实时关注用户文档的版本变更并通过阿里云授权渠道下载、获取最新版的用户文档。
- 4. 本文档仅作为用户使用阿里云产品及服务的参考性指引,阿里云以产品及服务的"现状"、"有缺陷"和"当前功能"的状态提供本文档。阿里云在现有技术的基础上尽最大努力提供相应的介绍及操作指引,但阿里云在此明确声明对本文档内容的准确性、完整性、适用性、可靠性等不作任何明示或暗示的保证。任何单位、公司或个人因为下载、使用或信赖本文档而发生任何差错或经济损失的,阿里云不承担任何法律责任。在任何情况下,阿里云均不对任何间接性、后果性、惩戒性、偶然性、特殊性或刑罚性的损害,包括用户使用或信赖本文档而遭受的利润损失,承担责任(即使阿里云已被告知该等损失的可能性)。
- 5. 阿里云网站上所有内容,包括但不限于著作、产品、图片、档案、资讯、资料、网站架构、网站画面的安排、网页设计,均由阿里云和/或其关联公司依法拥有其知识产权,包括但不限于商标权、专利权、著作权、商业秘密等。非经阿里云和/或其关联公司书面同意,任何人不得擅自使用、修改、复制、公开传播、改变、散布、发行或公开发表阿里云网站、产品程序或内容。此外,未经阿里云事先书面同意,任何人不得为了任何营销、广告、促销或其他目的使用、公布或复制阿里云的名称(包括但不限于单独为或以组合形式包含"阿里云"、Aliyun"、"万网"等阿里云和/或其关联公司品牌,上述品牌的附属标志及图案或任何类似公司名称、商号、商标、产品或服务名称、域名、图案标示、标志、标识或通过特定描述使第三方能够识别阿里云和/或其关联公司)。
- 6. 如若发现本文档存在任何错误,请与阿里云取得直接联系。

通用约定

格式	说明	样例
•	该类警示信息将导致系统重大变更甚至 故障,或者导致人身伤害等结果。	禁止: 重置操作将丢失用户配置数据。
A	该类警示信息可能导致系统重大变更甚 至故障,或者导致人身伤害等结果。	▲ 警告: 重启操作将导致业务中断,恢复业务所需 时间约10分钟。
	用于补充说明、最佳实践、窍门等,不 是用户必须了解的内容。	道 说明: 您也可以通过按Ctrl + A选中全部文件。
>	多级菜单递进。	设置 > 网络 > 设置网络类型
粗体	表示按键、菜单、页面名称等UI元素。	单击 确定。
courier 字体	命令。	执行 cd /d C:/windows 命令,进 入Windows系统文件夹。
##	表示参数、变量。	bae log listinstanceid Instance_ID
[]或者[a b]	表示可选项,至多选择一个。	ipconfig [-all -t]
{}或者{a b }	表示必选项,至多选择一个。	<pre>swich {stand slave}</pre>

目录

法律声明
· 通用约定
1
2 头例生即同别开绍2
3 实例规格族
4 选择实例规格
4.1 突发型
4.1.1 什么是t5突发性能实例56
4.1.2 t5性能约束实例59
4.1.3 t5无性能约束实例60
4.1.4 管理t5实例61
4.2 共享型62
4.3 通用型63
4.4 计算型64
4.5 内存型64
4.6 大数据型65
4.7 本地SSD型66
4.8 高主频型67
4.9 GPU计算型67
4.9.1 什么是GPU计算型实例67
4.9.2 创建GPU计算型实例67
4.9.3 手动安装GPU驱动81
4.9.4 手动卸载GPU驱动83
4.9.5 在GPU计算型实例中安装GRID驱动85
4.9.6 在vgn5i实例(Windows)中安装GRID驱动90
4.9.7 在vgn5i实例(Linux)中安装GRID驱动93
4.10 GPU图形加速
4.10.1 什么是GPU图形加速实例95
4.10.2 创建ga1实例96
4.11 FPGA计算型97
4.11.1 什么是FPGA实例97
4.11.2 创建f1实例97
4.11.3 创建f3实例98
4.12 弹性裸金属服务器(神龙) 99
4.12.1 什么是弹性裸金属服务器99
4.12.2 创建EBM实例101
4.12.3 安装SGX102
4.13 超级计算集群(SCC)103
4.13.1 什么是超级计算集群103

4.13.2 创建SCC实例	
4.14 已停售的实例规格	106
5 选择实例购买方式	
5.1 预付费(包年包月)	
5.2 按量付费	
5.3 抢占式实例	
5.3.1 什么是抢占式实例	
5.3.2 创建抢占式实例	
5.3.3 停止抢占式实例	
5.4 预留实例券	
5.4.1 预留实例券概述	
5.4.2 预留实例券匹配规则	
5.4.3 购买预留实例券	
5.4.4 管理预留实例券	
5.5 转换计费类型	
5.5.1 按量付费转预付费	
5.5.2 预付费转按量付费	
6 创建实例	
6.1 创建方式导航	
6.2 使用向导创建实例	
6.3 使用自定义镜像创建实例	
6.4 创建相同配置的实例	
A set the set of a bolic set of the low bullets of a bolic	
6.5 使用买例启动模板创建买例	
6.5 使用实例启动模板创建实例 7 连接实例	
 6.5 使用实例启动模板创建实例 7 连接实例 7.1 连接方式导航 	
 6.5 使用实例启动模板创建实例 7 连接实例 7.1 连接方式导航	
 6.5 使用实例启动模板创建实例 7 连接实例 7.1 连接方式导航 7.2 连接Linux实例	
 6.5 使用实例启动模板创建实例 7 连接实例 7.1 连接方式导航	
 6.5 使用实例启动模板创建实例 7 连接实例 7.1 连接方式导航	
 6.5 使用实例启动模板创建实例 7 连接实例 7.1 连接方式导航	
 6.5 使用实例启动模板创建实例 7 连接实例 7.1 连接方式导航	
 6.5 使用实例启动模板创建实例 7 连接实例	
 6.5 使用实例启动模板创建实例 7 连接实例 7.1 连接方式导航	
 6.5 使用实例启动模板创建实例 7 连接实例 7.1 连接方式导航	144 146 146 147 147 150 154 157 159 169 167 167
 6.5 使用实例启动模板创建实例 7 连接实例 7.1 连接方式导航	144 146 146 147 147 150 154 157 159 169 167 167 169
 6.5 使用实例启动模板创建实例 7 连接实例 7.1 连接方式导航 7.2 连接Linux实例 7.2.1 使用管理终端连接Linux实例 7.2.2 使用SSH密钥对连接Linux实例 7.2.3 使用用户名密码验证连接Linux实例 7.2.4 在移动设备上连接Linux实例 7.3 连接Windows实例 7.3.1 使用管理终端连接Windows实例 7.3.2 在本地客户端上连接Windows实例 7.3.3 在移动设备上连接Windows实例 8 管理实例 8.1 启动和停止实例 8.2 重启实例 8.4 重开机实例 	$\begin{array}{c} 144\\ 146\\ 146\\ 146\\ 147\\ 147\\ 147\\ 150\\ 154\\ 157\\ 159\\ 159\\ 162\\ 165\\ 167\\ 167\\ 169\\ 169\\ 169\\ 172\\ \end{array}$
 6.5 使用实例启动模板创建实例	144 146 146 147 147 150 154 157 159 165 167 167 167 169 172
 6.5 使用实例启动模板创建实例	144 146 146 147 147 150 154 157 159 167 167 167 167 169 169 172 172
 6.5 使用实例启动模板创建实例 7 连接实例 7.1 连接方式导航	144 146 146 147 147 150 154 157 159 159 165 165 167 $$
 6.5 使用实例启动模板创建实例 7 连接实例 7.1 连接方式导航	144 146 146 147 147 150 154 157 159 167 167 167 167 167 167 167 167 167 172 172 174 176

8.9.1 什么是实例元数据	
8.9.2 获取实例元数据	
8.10 使用实例自定义数据	
8.10.1 生成实例自定义数据	
8.10.2 配置实例自定义数据	
8.10.3 自定义yum源、NTP服务和DNS服务	191
8.10.4 使用自定义数据配置管理员账号	193
8.11 使用实例标识	
8.12 同步服务器本地时间	198
8.12.1 使用阿里云NTP服务器	
8.12.2 配置Windows实例NTP服务	199
8.12.3 配置Linux实例NTP服务	
9 续费预付费实例	
9.1 续费概览	
9.2 手动续费	
9.3 自动续费	
9.4 续费降配	
10 升降配实例	
10.1 升降配方式汇总	209
10.2 支持变配的实例规格	211
10.3 升配预付费实例	213
10.3.1 预付费实例升级配置	
10.4 降配预付费实例	215
预付费实例续费降配	
10.4.2 预付费实例实时降配规格	
10.4.3 预付费实例降配带宽	
10.5 升降配按量付费实例	219
10.5.1 按量付费实例变更实例规格	219
10.5.2 按量付费实例修改公网带宽	221
11 实例FAO	
/1/4-+-Y	

1 实例概述

一个云服务器 ECS 实例等同于一台虚拟机,包含 CPU、内存、操作系统、网络、磁盘等最基础的 计算组件。您可以方便地定制、更改实例的配置。您对该虚拟机拥有完全的控制权,和您本地服务 器的区别在于,您只需要登录到阿里云,即可使用云服务器,进行独立的管理、配置等操作。

根据业务场景和使用场景,ECS实例可以分为多个规格族。同一业务场景下,还可以选择新旧多个 规格族。同一个规格族里,根据CPU和内存的配置,可以分为多种不同的规格。ECS实例规格定义 了实例的CPU和内存的配置(包括CPU型号、主频等)。关于实例规格的信息,请参考 实例规格 族 和 已停售的实例规格。如果实例配置超出或不能满足您的应用需求,您可以 变更实例规格。

2 实例生命周期介绍

本文介绍实例的生命周期,即从实例创建(购买)开始到释放结束的可能状态。

实例状态

在一个生命周期中,实例有其固有的几个状态,如下表所示。

状态	状态属性	状态解释	API 状态	控制台上 可见
准备中	中间状态	实例创建后,在进入 运行中 之前的状态。如果 长时间处于该状态,说明出现异常。	Pending	否
启动中	中间状态	在控制台上或通过API接口执行重启、启动等操 作后,实例进入 运行中 之前的状态。如果长时 间处于该状态,说明出现异常。	Starting	是
运行中	稳定状态	实例正常运行状态。实例处于这个状态时,您可 以运行您的业务。	Running	是
即将过期	稳定状态	预付费实例过期前15天即进入这个状态。建议 您 续费实例。	Running	是
停止中	中间状态	在控制台上或通过API接口执行停止操作后,实 例进入 已停止 之前的状态。如果长时间处于该 状态,说明出现异常。	Stopping	是
已停止	稳定状态	实例已经创建完成等待启动,或者实例被正常停 止,实例都会处于这个状态。处于这个状态下的 实例不能对外提供业务。	Stopped	是
已过期	稳定状态	预付费实例到期,或者按量付费实例因账号欠费 而停机,都会使实例进入已过期 状态。处于这 个状态的实例,不能对外提供业务。各种资源状 态变化,请参见 预付费(包年包月)和 按量付 费。	Stopped	是

状态	状态属性	状态解释	API 状态	控制台上 可见
过期回收 中	稳定状态	 VPC 类型的预付费实例在到期后 15 天内,实例 维持一段时间的 已过期 状态后,随时会从 已过 期 进入 过期回收中。 进入 过期回收中 之前,您可以续费实例。续 费成功,则所有资源保留,不受影响。 进入 过期回收中 状态后,实例计算资 源(vCPU + 内存)不再保留,本地盘数据 不再保留,云盘和分配的公网IP地址会保 留。此时,您可以续费实例。如果在此状态 时续费成功,云盘和分配的公网IP地址不 变。 	Stopped	是
欠费回收 中	稳定状态	 VPC 类型的按量付费实例在欠费停机后 15 天内,实例维持一段时间的 已过期 状态后,随时会从 已过期 进入 欠费回收中。 进入 欠费回收中 之前,您可以充值账号并 重开机,如果重开机成功,所有资源保留,不受影响。 进入 欠费回收中 状态后,实例计算资源(vCPU + 内存)不再保留,本地盘数据不再保留,云盘和分配的公网IP地址会保留。此时,您可以充值重开机,但是,可能会重开机失败,请隔一段时间后再试或提交工单解决。如果在此状态时重开机成功,云盘和分配的公网IP地址不变。 	Stopped	是
已锁定	稳定状态	因为账户欠费或者安全原因,实例会被锁定。您可以提交工单申请解锁。	Stopped	是
等待释放	稳定状态	申请退款提早释放预付费实例时出现的状态。	Stopped	是

API 状态

实例的 API 状态可以通过调用 DescribeInstanceStatus 或者 DescribeInstances 查看,具体 状态转换如下图所示。

3 实例规格族

您可以了解目前在售的所有ECS实例规格族的信息,包括每种规格族的特点、在售规格和适用场 景。

实例是能够为您的业务提供计算服务的最小单位,它是以一定的规格来为您提供相应的计算能力 的。

根据业务场景和使用场景,ECS实例可以分为多种规格族。同一个规格族里,根据CPU和内存的 配置,可以分为多种不同的规格。ECS_{实例规格}定义了实例的CPU和内存(包括CPU型号、主频 等)这两个基本属性。但是,ECS实例只有同时配合块存储、镜像和网络类型,才能唯一确定一台 实例的具体服务形态。

各个地域可供售卖的实例规格不一定完全相同。请以 实例创建页面 上显示的信息为准。

根据是否适合对业务稳定性具有高要求的企业场景,云服务器ECS实例规格族可分为企业级实例规 格族和入门级实例规格族。企业级实例具有性能稳定且资源独享的特点,在企业级实例中,每一 个vCPU都对应一个Intel Xeon处理器核心的超线程。关于两者的区别,请参见企业级实例与入门 级实例 FAQ。

🗾 说明:

- · 部分实例规格族已停售, 详情请参见 已停售的实例规格。
- ・部分实例规格族之间以及规格族内部可以变更配置。可变更的规格族以及变配规则请参见 变配 规格表。
- · 不支持规格族之间以及规格族内部变更的包括: d1、d1ne、i1、i2、i2g、vgn5i、ga1、gn5、gn6i、f1、f3、ebmc4、ebmg5、sccg5、scch5和sccgn6。

根据系统架构以及使用场景, ECS实例规格族可以分为:

- · 企业级x86计算规格族群,包括:
 - 通用型实例规格族 g5
 - 通用网络增强型实例规格族 sn2ne
 - 密集计算型实例规格族 ic5
 - 计算型实例规格族 c5
 - 计算网络增强型实例规格族 sn1ne
 - 内存型实例规格族 r5
 - 内存增强型实例规格族 re4
 - 内存增强型实例规格族 re4e
 - 内存网络增强型实例规格族 selne
 - 内存型实例规格族 se1
 - 大数据网络增强型实例规格族 d1ne
 - 大数据型实例规格族 d1
 - 本地SSD型实例规格族 i2
 - 本地SSD型实例规格族 i2g
 - 本地SSD型实例规格族 i1
 - 高主频计算型实例规格族 hfc5
 - 高主频通用型实例规格族 hfg5
- · 企业级异构计算规格族群,包括:
 - 轻量级GPU计算型实例规格族vgn5i
 - GPU计算型实例规格族 gn6i
 - GPU计算型实例规格族 gn6v
 - GPU计算型实例规格族 gn5
 - GPU计算型实例规格族 gn5i
 - GPU计算型实例规格族 gn4
 - GPU可视化计算型实例规格族 ga1
 - FPGA计算型实例规格族 f1
 - FPGA计算型实例规格族 f3

· 弹性裸金属服务器(神龙)和超级计算集群(SCC)实例规格族群,包括:

- 高主频型弹性裸金属服务器实例规格族 ebmhfg5
- 计算型弹性裸金属服务器实例规格族 ebmc4
- 通用型弹性裸金属服务器实例规格族 ebmg5
- 高主频型超级计算集群实例规格族 scch5
- 通用型超级计算集群实例规格族 sccg5
- GPU计算型超级计算集群实例规格族 sccgn6
- ·入门级x86计算规格族群,包括:
 - 突发性能实例规格族 t5
 - 上一代入门级实例规格族 xn4/n4/mn4/e4

通用型实例规格族 g5

规格族特点

- ・ I/O优化实例
- · 仅支持SSD云盘和高效云盘
- ・ 处理器与内存配比为1:4
- · 超高网络PPS收发包能力
- · 处理器: 2.5 GHz主频的Intel Xeon Platinum 8163 (Skylake), 计算性能稳定
- · 实例网络性能与计算规格对应(规格越高网络性能越强)
- ・适用场景:
 - 高网络包收发场景,如视频弹幕、电信业务转发等
 - 各种类型和规模的企业级应用
 - 中小型数据库系统、缓存、搜索集群
 - 数据分析和计算
 - 计算集群、依赖内存的数据处理

实例规 格	vCPU	内存(GiB)	本地存 储(GiB)	网络带 宽能 力(出/ <i>)</i> (G b it/ s)	网络收 发包能 力(出/ <i>)</i> **(5PPS	支持 IPv6	多队列	弾性网 卡(包 括一 块主网 ★★→★	单块弹 性网卡 的私有 IP
ecs.g5. large	2	8.0	无	1.0	30	是	2	2	6
ecs.g5. xlarge	4	16.0	无	1.5	50	是	2	3	10
ecs.g5. 2xlarge	8	32.0	无	2.5	80	是	2	4	10
ecs.g5. 3xlarge	12	48.0	无	4.0	90	是	4	6	10
ecs.g5. 4xlarge	16	64.0	无	5.0	100	是	4	8	20
ecs.g5. 6xlarge	24	96.0	无	7.5	150	是	6	8	20
ecs.g5. 8xlarge	32	128.0	无	10.0	200	是	8	8	20
ecs.g5. 16xlarge	64 e	256.0	无	20.0	400	是	16	8	20

通用网络增强型实例规格族 sn2ne

- ・ I/O优化实例
- · 仅支持SSD云盘和高效云盘
- ・ 处理器与内存配比为1:4
- · 超高网络PPS收发包能力
- ・处理器: 2.5 GHz主频的Intel Xeon E5-2682 v4(Broadwell)或Platinum 8163(Skylake
 -),计算性能稳定
- · 实例网络性能与计算规格对应(规格越高网络性能越强)

- ・适用场景:
 - 高网络包收发场景,如视频弹幕、电信业务转发等
 - 各种类型和规模的企业级应用
 - 中小型数据库系统、缓存、搜索集群
 - 数据分析和计算
 - 计算集群、依赖内存的数据处理

实例规 格	vCPU	内存(GiB)	本地存 储(GiB)	网络带 宽能 力(出/ <i>)</i> (G b it/ s)	网络收 发包能 力(出/ <i>)</i> ** (万PPS	支持 IPv6	多队列	弹性网 卡(包 括一 块主网 本)*	单块弹 性网卡 的私有 IP
ecs. sn2ne. large	2	8.0	无	1.0	30	是	2	2	6
ecs. sn2ne. xlarge	4	16.0	无	1.5	50	是	2	3	10
ecs. sn2ne. 2xlarge	8	32.0	无	2.0	100	是	4	4	10
ecs. sn2ne. 3xlarge	12	48.0	无	2.5	130	是	4	6	10
ecs. sn2ne. 4xlarge	16	64.0	无	3.0	160	是	4	8	20
ecs. sn2ne. 6xlarge	24	96.0	无	4.5	200	是	6	8	20
ecs. sn2ne. 8xlarge	32	128.0	无	6.0	250	是	8	8	20

实例规 格	vCPU	内存(GiB)	本地存 储(GiB)	网络带 宽能 力(出/) (G b it/ s)	网络收 发包能 力(出/ <i>)</i> **(万PPS	支持 IPv6	多队列	弾性网 卡(包 括一 块主网 本)*	单块弹 性网卡 的私有 IP
ecs. sn2ne. 14xlarge	56 2	224.0	无	10.0	450	是	14	8	20

密集计算型实例规格族 ic5

规格族特点

- ・ I/O优化实例
- · 仅支持SSD云盘和高效云盘
- ・ 处理器与内存配比为1:1
- · 超高网络PPS收发包能力
- · 处理器: 2.5 GHz主频的Intel Xeon Platinum 8163(Skylake),计算性能稳定
- · 实例网络性能与计算规格对应(规格越高网络性能越强)
- ・适用场景:
 - Web前端服务器
 - 数据分析、批量计算、视频编码
 - 高网络包收发场景,如视频弹幕、电信业务转发等
 - 大型多人在线游戏(MMO)前端

实例规	vCPU	内存(本地存	网络带	网络收	支持	多队列	弹性网	单块弹
格		GiB)	储(GiB)	宽能	发包能	IPv6		卡(包	性网卡
				カ (出/)	カ(出/ <i>)</i>			括一	的私有
				(Gbit/	∗∜万PPS			块主网	IP
				s)				***)*	
ecs.ic5 .large	2	2.0	无	1.0	30	否	2	2	6

实例规 格	vCPU	内存(GiB)	本地存 储(GiB)	网络带 宽能 力(出/ <i>)</i> (G b it/ s)	网络收 发包能 力(出/) ★◆乐万PPS	支持 IPv6	多队列	弹性网 卡(包 括一 块主网 ** >*	单块弹 性网卡 的私有 IP
ecs.ic5 .xlarge	4	4.0	无	1.5	50	否	2	3	10
ecs. ic5. 2xlarge	8	8.0	无	2.5	80	否	2	4	10
ecs. ic5. 3xlarge	12	12.0	无	4.0	90	否	4	6	10
ecs. ic5. 4xlarge	16	16.0	无	5.0	100	否	4	8	20

计算型实例规格族 c5

规格族特点

- ・ I/O优化实例
- · 仅支持SSD云盘和高效云盘
- ・ 处理器与内存配比为1:2
- · 超高网络PPS收发包能力
- · 处理器: 2.5 GHz主频的Intel Xeon Platinum 8163 (Skylake), 计算性能稳定
- · 实例网络性能与计算规格对应(规格越高网络性能越强)
- ・适用场景:
 - 高网络包收发场景,如视频弹幕、电信业务转发等
 - Web前端服务器
 - 大型多人在线游戏(MMO)前端
 - 数据分析、批量计算、视频编码
 - 高性能科学和工程应用

实例规 格	vCPU	内存(GiB)	本地存 储(GiB)	网络带 宽能 力(出/ <i>)</i> (G b it/ s)	网络收 发包能 力(出/) ★◆万PPS	支持 IPv6	多队列	弹性网 卡(包 括一 块主网 * *	单块弹 性网卡 的私有 IP
ecs.c5. large	2	4.0	无	1.0	30	是	2	2	6
ecs.c5. xlarge	4	8.0	无	1.5	50	是	2	3	10
ecs.c5. 2xlarge	8	16.0	无	2.5	80	是	2	4	10
ecs.c5. 3xlarge	12	24.0	无	4.0	90	是	4	6	10
ecs.c5. 4xlarge	16	32.0	无	5.0	100	是	4	8	20
ecs.c5. 6xlarge	24	48.0	无	7.5	150	是	6	8	20
ecs.c5. 8xlarge	32	64.0	无	10.0	200	是	8	8	20
ecs.c5. 16xlarge	64 e	128.0	无	20.0	400	是	16	8	20

计算网络增强型实例规格族 sn1ne

- ・ I/O优化实例
- · 仅支持SSD云盘和高效云盘
- ・ 处理器与内存配比为1:2
- · 超高网络PPS收发包能力
- ・处理器: 2.5 GHz主频的Intel Xeon E5-2682 v4(Broadwell)或Platinum 8163(Skylake
 -),计算性能稳定
- · 实例网络性能与计算规格对应(规格越高网络性能越强)

- ・适用场景:
 - 高网络包收发场景,如视频弹幕、电信业务转发等
 - Web前端服务器
 - 大型多人在线游戏(MMO)前端
 - 数据分析、批量计算、视频编码
 - 高性能科学和工程应用

实例规格

实例规 格	vCPU	内存(GiB)	本地存 储(GiB)	网络带 宽能 力(出/ <i>)</i> (G b it/ s)	网络收 发包能 力(出/) ★◆万PPS	支持 IPv6	多队列	弹性网 卡(包 括一 块主网 本)*	单块弹 性网卡 的私有 IP
ecs. sn1ne. large	2	4.0	无	1.0	30	是	2	2	6
ecs. sn1ne. xlarge	4	8.0	无	1.5	50	是	2	3	10
ecs. sn1ne. 2xlarge	8	16.0	无	2.0	100	是	4	4	10
ecs. sn1ne. 3xlarge	12	24.0	无	2.5	130	是	4	6	10
ecs. sn1ne. 4xlarge	16	32.0	无	3.0	160	是	4	8	20
ecs. sn1ne. 6xlarge	24	48.0	无	4.5	200	是	6	8	20
ecs. sn1ne. 8xlarge	32	64.0	无	6.0	250	是	8	8	20

回到目录 查看其他实例规格族。

内存型实例规格族 r5

规格族特点

- ・ I/O优化实例
- · 仅支持SSD云盘和高效云盘
- ・ 超高网络PPS收发包能力
- · 处理器: 2.5 GHz主频的Intel Xeon Platinum 8163(Skylake),计算性能稳定
- · 实例网络性能与计算规格对应(规格越高网络性能越强)
- ・适用场景:
 - 高网络包收发场景,如视频弹幕、电信业务转发等
 - 高性能数据库、内存数据库
 - 数据分析与挖掘、分布式内存缓存
 - Hadoop、Spark群集以及其他企业大内存需求应用

实例规 格	vCPU	内存(GiB)	本地存 储(GiB)	网络带 宽能 力(出/ <i>)</i> (G b it/ s)	网络收 发包能 力(出/ <i>)</i> ** (万PPS	支持 IPv6	多队列	弾性网 卡(包 括一 块主网 ★★→★	单块弹 性网卡 的私有 IP
ecs.r5. large	2	16.0	无	1.0	30	是	2	2	6
ecs.r5. xlarge	4	32.0	无	1.5	50	是	2	3	10
ecs.r5. 2xlarge	8	64.0	无	2.5	80	是	2	4	10
ecs.r5. 3xlarge	12	96.0	无	4.0	90	是	4	6	10
ecs.r5. 4xlarge	16	128.0	无	5.0	100	是	4	8	20
ecs.r5. 6xlarge	24	192.0	无	7.5	150	是	6	8	20
ecs.r5. 8xlarge	32	256.0	无	10.0	200	是	8	8	20

实例规	vCPU	内存(本地存	网络带	网络收	支持	多队列	弹性网	单块弹
格		GiB)	储(GiB)	宽能	发包能	IPv6		卡(包	性网卡
				カ (出/)	力(出/)			括一	的私有
				(Gbit/	** 《 万PPS			块主网	IP
				s)				***)*	
ecs.r5. 16xlarge	64 e	512.0	无	20.0	400	是	16	8	20

内存增强型实例规格族 re4

规格族特点

- ・ I/O优化实例
- · 仅支持SSD云盘和高效云盘
- · 针对高性能数据库、内存数据库和其他内存密集型企业应用程序进行了优化
- ・ 处理器: 2.2 GHz主频的Intel Xeon E7 8880 v4 (Broadwell),最大睿频2.4 GHz,计算性 能稳定
- ·处理器与内存配比为1:12,高内存资源占比,最大支持1920.0 GiB内存
- · ecs.re4.20xlarge和ecs.re4.40xlarge规格已经通过SAP HANA认证
- ・适用场景:
 - 高性能数据库、内存型数据库(如SAP HANA等)
 - 内存密集型应用
 - 大数据处理引擎(例如Apache Spark或Presto)

实例规 格	vCPU	内存(GiB)	本地存 储(GiB)	网络带 宽能	网络收 发包能	支持 IPv6	多队列	弾性网 卡 (包	单块弹 性网卡
				力(出/ <i>)</i> (G b it/ s)	力(出/) ٭∜万PPS			括一 块主网 *本)*	的私有 IP
ecs. re4. 20xlarge	80 e	960.0	无	15.0	200	是	16	8	20

实例规	vCPU	内存(本地存	网络带	网络收	支持	多队列	弹性网	单块弹
格		GiB)	储(GiB)	宽能	发包能	IPv6		卡(包	性网卡
				力(出/)	力(出/)			括一	的私有
				(Gbit/	** 《 万PPS			块主网	IP
				s)				* * *)*	
ecs. re4. 40xlarge	160	1920.0	无	30.0	450	是	16	8	20

内存增强型实例规格族 re4e

规格族特点

- ・ I/O优化实例
- · 仅支持SSD云盘和高效云盘
- ·针对高性能数据库、内存数据库和其他内存密集型企业应用程序进行了优化
- ・处理器: 2.2 GHz主频的Intel Xeon E7 8880 v4 (Broadwell),最大睿频2.4 GHz,计算性 能稳定
- ·处理器与内存配比为1:24,高内存资源占比,最大支持3840.0 GiB内存
- ・适用场景:
 - 高性能数据库、内存型数据库(如SAP HANA等)
 - 内存密集型应用
 - 大数据处理引擎(例如Apache Spark或Presto)

实例规 格	vCPU	内存(GiB)	本地存 储(GiB)	网络带 宽能 力(出/ <i>)</i> (G b it/ s)	网络收 发包能 力(出/ <i>)</i> ***万PPS	支持 IPv6	多队列	弹性网 卡(包 括一 块主网 *	单块弹 性网卡 的私有 IP
ecs. re4e. 40xlarge	160	3840.0	无	30.0	450	是	16	15	20

内存网络增强型实例规格族 selne

- ・ I/O优化实例
- · 仅支持SSD云盘和高效云盘
- ・ 处理器与内存配比为1:8
- · 超高网络PPS收发包能力
- ・ 处理器: 2.5 GHz主频的Intel Xeon E5-2682 v4 (Broadwell) 或Platinum 8163 (Skylake
), 计算性能稳定
- · 实例网络性能与计算规格对应(规格越高网络性能越强)
- ・适用场景:
 - 高网络包收发场景,如视频弹幕、电信业务转发等
 - 高性能数据库、内存数据库
 - 数据分析与挖掘、分布式内存缓存
 - Hadoop、Spark群集以及其他企业大内存需求应用

实例规格	
------	--

实例规 格	vCPU	内存(GiB)	本地存 储(GiB)	网络带 宽能 力(出/) (Gbit/ s)	网络收 发包能 力(出/ <i>)</i> ** (万PPS	支持 IPv6	多队列	弾性网 卡(包 括一 块主网 ★★)★	单块弹 性网卡 的私有 IP
ecs. se1ne. large	2	16.0	无	1.0	30	是	2	2	6
ecs. se1ne. xlarge	4	32.0	无	1.5	50	是	2	3	10
ecs. se1ne. 2xlarge	8	64.0	无	2.0	100	是	4	4	10
ecs. se1ne. 3xlarge	12	96.0	无	2.5	130	是	4	6	10

实例规 格	vCPU	内存(GiB)	本地存 储(GiB)	网络带 宽能 力(出/ <i>)</i> (G b it/ s)	网络收 发包能 力(出/ <i>)</i> ** 《 万PPS	支持 IPv6	多队列	弹性网 卡(包 括一 块主网 * *	单块弹 性网卡 的私有 IP
ecs. se1ne. 4xlarge	16	128.0	无	3.0	160	是	4	8	20
ecs. se1ne. 6xlarge	24	192.0	无	4.5	200	是	6	8	20
ecs. se1ne. 8xlarge	32	256.0	无	6.0	250	是	8	8	20
ecs. se1ne. 14xlarge	56	480.0	无	10.0	450	是	14	8	20

内存型实例规格族 se1

规格族特点

- ・ I/O优化实例
- · 仅支持SSD云盘和高效云盘
- ・ 处理器与内存配比为1:8
- · 处理器: 2.5 GHz主频的Intel Xeon E5-2682 v4 (Broadwell), 计算性能稳定
- · 实例网络性能与计算规格对应(规格越高网络性能越强)
- ・适用场景:
 - 高性能数据库、内存数据库
 - 数据分析与挖掘、分布式内存缓存
 - Hadoop、Spark群集以及其他企业大内存需求应用

实例规 格	vCPU	内存(GiB)	本地存 储(GiB)	网络带 宽能 力(出/ <i>)</i> (G b it/ s)	网络收 发包能 力(出/) ↔◆万PPS	支持 IPv6	多队列	弾性网 卡(包 括一 块主网 *	单块弹 性网卡 的私有 IP
ecs.se1 .large	2	16.0	无	0.5	10	否	1	2	6
ecs.se1 .xlarge	4	32.0	无	0.8	20	否	1	3	10
ecs. se1. 2xlarge	8	64.0	无	1.5	40	否	1	4	10
ecs. se1. 4xlarge	16	128.0	无	3.0	50	否	2	8	20
ecs. se1. 8xlarge	32	256.0	无	6.0	80	否	3	8	20
ecs. se1. 14xlarge	56 e	480.0	无	10.0	120	否	4	8	20

大数据网络增强型实例规格族 d1ne

- ・ I/O优化实例
- · 仅支持SSD云盘和高效云盘
- ・ 实例配备大容量、高吞吐SATA HDD本地盘, 辅以最大35 Gbit/s实例间网络带宽
- ·处理器与内存配比为1:4,为大数据场景设计
- · 处理器: 2.5 GHz 主频的 Intel Xeon E5-2682 v4(Broadwell)
- · 实例网络性能与计算规格对应(规格越高网络性能越强)

- ・适用场景:
 - Hadoop MapReduce/HDFS/Hive/HBase等
 - Spark内存计算/MLlib等
 - 互联网行业、金融行业等有大数据计算与存储分析需求的行业客户,进行海量数据存储和计 算的业务场景
 - Elasticsearch、日志等

实例规 格	vCPU	内存(GiB)	本地存 储(GiB)	网络带 宽能 力(出/ <i>)</i> (G b it/ s)	网络收 发包能 力(出/ <i>)</i> **(万PPS	支持 IPv6	多队列	弾性网 卡(包 括一 块主网 ★	单块弹 性网卡 的私有 IP
ecs. d1ne. 2xlarge	8	32.0	4 * 5500	6.0	100	是	4	4	10
ecs. d1ne. 4xlarge	16	64.0	8 * 5500	12.0	160	是	4	8	20
ecs. d1ne. 6xlarge	24	96.0	12 * 5500	16.0	200	是	6	8	20
ecs. d1ne- c8d3. 8xlarge	32	128.0	12 * 5500	20.0	200	是	6	8	20
ecs. d1ne. 8xlarge	32	128.0	16 * 5500	20.0	250	是	8	8	20
ecs. d1ne- c14d3. 14xlarge	56	160.0	12 * 5500	35.0	450	是	14	8	20
ecs. d1ne. 14xlarge	56	224.0	28 * 5500	35.0	450	是	14	8	20

▋ 说明:

关于d1ne实例规格族的更多信息,请参见 实例规格族d1和d1ne FAQ。

回到目录 查看其他实例规格族。

大数据型实例规格族 d1

规格族特点

- ・ I/O优化实例
- · 仅支持SSD云盘和高效云盘
- ・ 实例配备大容量、高吞吐SATA HDD本地盘, 辅以最大17 Gbit/s实例间网络带宽
- ·处理器与内存配比为1:4,为大数据场景设计
- · 处理器: 2.5 GHz主频的Intel Xeon E5-2682 v4 (Broadwell)
- ・ 实例网络性能与计算规格对应(规格越高网络性能越强)
- ・适用场景:
 - Hadoop MapReduce、HDFS、Hive、HBase等
 - Spark内存计算、MLlib等
 - 互联网行业、金融行业等有大数据计算与存储分析需求的行业客户,进行海量数据存储和计算的业务场景
 - Elasticsearch、日志等

实例规	vCPU	内存(本地存	网络带	网络收	支持	多队列	弹性网	单块弹
格		GiB)	储(GiB)	宽能	发包能	IPv6		卡(包	性网卡
				カ (出/)	カ (出/)			括一	的私有
				(Gbit/	★◆万PPS			块主网	IP
				s)				* * *)*	
ecs.d1. 2xlarge	8	32.0	4 * 5500	3.0	30	否	1	4	10
ecs.d1. 3xlarge	12	48.0	6 * 5500	4.0	40	否	1	6	10
ecs.d1. 4xlarge	16	64.0	8 * 5500	6.0	60	否	2	8	20
ecs.d1. 6xlarge	24	96.0	12 * 5500	8.0	80	否	2	8	20

实例规 格	vCPU	内存(GiB)	本地存 储(GiB)	网络带 宽能 力(出/ <i>)</i> (G b it/ s)	网络收 发包能 力(出/) ⊷←万PPS	支持 IPv6	多队列	弾性网 卡(包 括一 块主网 ★	单块弹 性网卡 的私有 IP
ecs.d1 -c8d3. 8xlarge	32	128.0	12 * 5500	10.0	100	否	4	8	20
ecs.d1. 8xlarge	32	128.0	16 * 5500	10.0	100	否	4	8	20
ecs.d1- c14d3. 14xlarge	56 9	160.0	12 * 5500	17.0	180	否	6	8	20
ecs.d1. 14xlarge	56 e	224.0	28 * 5500	17.0	180	否	6	8	20

说明:

关于d1实例规格族的更多信息,请参见 实例规格族d1和d1ne FAQ。

回到目录 查看其他实例规格族。

本地SSD型实例规格族 i2

规格族特点

- ・ I/O优化实例
- · 仅支持SSD云盘和高效云盘
- · 配备高性能(高IOPS、大吞吐、低访问延迟)NVMe SSD本地盘
- ・处理器与内存配比为1:8,为高性能数据库等场景设计
- · 处理器: 2.5 GHz主频的Intel Xeon Platinum 8163 (Skylake)
- · 实例网络性能与计算规格对应(规格越高网络性能越强)
- ・适用场景:
 - OLTP、高性能关系型数据库
 - NoSQL数据库(如Cassandra、MongoDB等)
 - Elasticsearch等搜索场景

实例规 格	vCPU	内存(GiB)	本地存 储(GiB)	网络带 宽能 力(出/ <i>)</i> (G b it/ s)	网络收 发包能 力(出/ <i>)</i> **(5PPS	支持 IPv6	多队列	弹性网 卡(包 括一 块主网 * *	单块弹 性网卡 的私有 IP
ecs.i2. xlarge	4	32.0	1 * 894	1.0	50	是	2	3	10
ecs.i2. 2xlarge	8	64.0	1 * 1788	2.0	100	是	2	4	10
ecs.i2. 4xlarge	16	128.0	2 * 1788	3.0	150	是	4	8	20
ecs.i2. 8xlarge	32	256.0	4 * 1788	6.0	200	是	8	8	20
ecs.i2. 16xlarge	64 e	512.0	8 * 1788	10.0	400	是	16	8	20

本地SSD型实例规格族 i2g

规格族特点

- ・ I/O优化实例
- · 仅支持SSD云盘和高效云盘
- · 配备高性能(高IOPS、大吞吐、低访问延迟)NVMe SSD本地盘
- ·处理器与内存配比为1:4,为高性能数据库等场景设计
- · 处理器: 2.5 GHz主频的Intel Xeon Platinum 8163 (Skylake)
- · 实例网络性能与计算规格对应(规格越高网络性能越强)
- ・适用场景:
 - OLTP、高性能关系型数据库
 - NoSQL数据库(如Cassandra、MongoDB等)
 - Elasticsearch等搜索场景

实例规 格	vCPU	内存(GiB)	本地存 储(GiB)	网络带 宽能 力(出/ <i>)</i> (G b it/ s)	网络收 发包能 力(出/) ⊷◆万PPS	支持 IPv6	多队列	弾性网 卡(包 括一 块主网 ★	单块弾 性网卡 的私有 IP
ecs. i2g. 2xlarge	8	32.0	1 * 894	2.0	100	否	2	4	10
ecs. i2g. 4xlarge	16	64.0	1 * 1788	3.0	150	否	4	8	20
ecs. i2g. 8xlarge	32	128.0	2 * 1788	6.0	200	否	8	8	20
ecs. i2g. 16xlarge	64 e	256.0	4 * 1788	10.0	400	否	16	8	20

本地SSD型实例规格族 i1

规格族特点

- ・ I/O优化实例
- · 仅支持SSD云盘和高效云盘
- · 配备高性能(高IOPS、大吞吐、低访问延迟)NVMe SSD本地盘
- ·处理器与内存配比为1:4,为高性能数据库等场景设计
- · 处理器: 2.5 GHz主频的Intel Xeon E5-2682 v4 (Broadwell)
- · 实例网络性能与计算规格对应(规格越高网络性能越强)
- ・适用场景:
 - OLTP、高性能关系型数据库
 - NoSQL数据库(如Cassandra、MongoDB等)
 - Elasticsearch等搜索场景

实例规 格	vCPU	内存(GiB)	本地存 储(GiB)	网络带 宽能 力(出/ <i>)</i> (G b it/ s)	网络收 发包能 力(出/) ★◆万PPS	支持 IPv6	多队列	网包 网 性() 一 王 弾 卡 括 块 *	单 性 的 私 目 10 10 10 10
ecs.i1. xlarge	4	16.0	2*104	0.8	20	否	1	3	10
ecs.i1. 2xlarge	8	32.0	2 * 208	1.5	40	否	1	4	10
ecs.i1. 3xlarge	12	48.0	2 * 312	2.0	40	否	1	6	10
ecs.i1. 4xlarge	16	64.0	2*416	3.0	50	否	2	8	20
ecs.i1 -c5d1. 4xlarge	16	64.0	2* 1456	3.0	40	否	2	8	20
ecs.i1. 6xlarge	24	96.0	2 * 624	4.5	60	否	2	8	20
ecs.i1. 8xlarge	32	128.0	2 * 832	6.0	80	否	3	8	20
ecs.i1- c10d1. 8xlarge	32	128.0	2 * 1456	6.0	80	否	3	8	20
ecs.i1. 14xlarge	56 e	224.0	2 * 1456	10.0	120	否	4	8	20

高主频计算型实例规格族 hfc5

- ・ I/O优化实例
- · 仅支持SSD云盘和高效云盘
- ・计算性能稳定
- · 处理器: 3.1 GHz主频的Intel Xeon Gold 6149 (Skylake)
- ・ 处理器与内存配比为1:2

- · 实例网络性能与计算规格对应(规格越高网络性能越强)
- ・适用场景:
 - 高性能Web前端服务器
 - 高性能科学和工程应用
 - MMO游戏、视频编码

实例规格

实例规 格	vCPU	内存(GiB)	本地存 储(GiB)	网络带 宽能 力(出/) (Gbit/ s)	网络收 发包能 力(出/) ★★万PPS	支持 IPv6	多队列	弹性网 卡(包 括一 田 大 ・ 、 ・	单块弹 性网卡 的私有 IP
ecs. hfc5. large	2	4.0	无	1.0	30	否	2	2	6
ecs. hfc5. xlarge	4	8.0	无	1.5	50	否	2	3	10
ecs. hfc5. 2xlarge	8	16.0	无	2.0	100	否	2	4	10
ecs. hfc5. 3xlarge	12	24.0	无	2.5	130	否	4	6	10
ecs. hfc5. 4xlarge	16	32.0	无	3.0	160	否	4	8	20
ecs. hfc5. 6xlarge	24	48.0	无	4.5	200	否	6	8	20
ecs. hfc5. 8xlarge	32	64.0	无	6.0	250	否	8	8	20

回到目录 查看其他实例规格族。

高主频通用型实例规格族 hfg5

规格族特点

- ・ I/O优化实例
- · 仅支持SSD云盘和高效云盘
- ・计算性能稳定
- · 处理器: 3.1 GHz主频的Intel Xeon Gold 6149 (Skylake)
- ·处理器与内存配比为1:4(56 vCPU规格除外)
- · 实例网络性能与计算规格对应(规格越高网络性能越强)
- ・适用场景:
 - 高性能Web前端服务器
 - 高性能科学和工程应用
 - MMO游戏、视频编码

实例规 格	vCPU	内存(GiB)	本地存 储(GiB)	网络带 宽能 力(出/ <i>)</i> (Gbit/ s)	网络收 发包能 力(出/) ⊷ 《 万PPS	支持 IPv6	多队列	弹性网 卡(包 括一 以 本)	单块弹 性网卡 的私有 IP
ecs. hfg5. large	2	8.0	无	1.0	30	否	2	2	6
ecs. hfg5. xlarge	4	16.0	无	1.5	50	否	2	3	10
ecs. hfg5. 2xlarge	8	32.0	无	2.0	100	否	2	4	10
ecs. hfg5. 3xlarge	12	48.0	无	2.5	130	否	4	6	10
ecs. hfg5. 4xlarge	16	64.0	无	3.0	160	否	4	8	20

实例规 格	vCPU	内存(GiB)	本地存 储(GiB)	网络带 宽能 力(出/ <i>)</i> (G b it/ s)	网络收 发包能 力(出/ <i>)</i> **(万PPS	支持 IPv6	多队列	弹性网 卡(包 括一 块主网 *	单块弹 性网卡 的私有 IP
ecs. hfg5. 6xlarge	24	96.0	无	4.5	200	否	6	8	20
ecs. hfg5. 8xlarge	32	128.0	无	6.0	250	否	8	8	20
ecs. hfg5. 14xlarge	56 e	160.0	无	10.0	400	否	14	8	20

轻量级GPU计算型实例规格族 vgn5i

- ・ I/O优化实例
- · 仅支持SSD云盘和高效云盘
- ・采用NVIDIA P4 GPU计算加速器
- · 实例包含分片虚拟化后的虚拟GPU
 - 计算能力支持NVIDIA Tesla P4的 1/8、1/4、1/2和1:1
 - GPU显存支持1 GB、2 GB、4 GB和8 GB
- ・ 处理器与内存配比为1:3
- ・ 处理器: 2.5 GHz主频的Intel Xeon E5-2682 v4 (Broadwell)
- · 实例网络性能与计算规格对应(规格越高网络性能越强)
- ・适用场景:
 - 云游戏的云端实时渲染
 - AR/VR的云端实时渲染
 - AI (DL/ML) 推理, 适合用户弹性部署含有AI推理计算应用的互联网业务
 - 深度学习的教学练习环境
 - 深度学习的模型实验环境

实例规格

实例规格	vCPU	内存(GiB)	本地存 储(GiE	GPU	GPU 显存(GB)	网络带 宽能 力(出/」 (G b it/ s)	网络收 发包能 力(出/ <i>)</i> **(万PPS	支持 IPv6	多队列	弹性网 卡(包 括一块 主网 本)
ecs. vgn5i -m1. large	2	6	无	P4*1/ 8	1	1	30	是	2	2
ecs. vgn5i -m2. xlarge	4	12	无	P4*1/ 4	2	2	50	是	2	3
ecs. vgn5i -m4. 2xlarge	8	24	无	P4*1/ 2	4	3	80	是	2	4
ecs. vgn5i -m8. 4xlarge	16	48	无	P4*1	8	5	100	是	4	5

送 说明:

更多信息,请参见创建GPU计算型实例。

回到目录 查看其他实例规格族。

GPU计算型实例规格族 gn6i

- ・ I/O优化实例
- ・ 处理器与内存配比为1:4
- · 处理器: 2.5 GHz主频的Intel Xeon Platinum 8163 (Skylake)
- ・支持ESSD(百万IOPS)、SSD云盘和高效云盘
- ·基于X-Dragon神龙新一代计算架构,性能更优

・GPU加速器:T4

- 创新的Turing架构
- 多达320个Turing Tensorcore
- 2560个CUDA Cores
- 可变精度Tensor Cores支持65 TFlops FP16、130 INT8 TOPS、260 INT4 TOPS
- GPU显存16 GB(GPU显存带宽320 GB/s)
- · 实例网络性能与计算规格对应(规格越高网络性能越强)
- ・适用场景:
 - AI (DL/ML) 推理,适合计算机视觉、语音识别、语音合成、NLP、机器翻译、推荐系统
 - 云游戏云端实时渲染
 - AR/VR的云端实时渲染
 - 重载图形计算或图形工作站
 - GPU加速数据库
 - 高性能计算

实例规 格	vCPU	内存(GiB)	本地存 储(GiE	GPU	GPU 显存(GB)	网络带 宽能 力(出/) (Gbit/ s)	网络收 发包能 力(出/ <i>)</i> ** (万PPS	支持 IPv6	多队列	弾性网 卡(包 括一块 ★→ ★
ecs. gn6i- c4g1. xlarge	4	15	无	T4*1	16	4	50	是	2	2
ecs. gn6i- c8g1. 2xlarge	8	31	无	T4*1	16	5	80	是	2	2
ecs. gn6i- c16g1. 4xlarge	16	62	无	T4*1	16	6	100	是	4	3

实例规 格	vCPU	内存(GiB)	本地存 储(GiE	GPU	GPU 显存(GB)	网络带 宽能 力(出/, (G b it/ s)	网络收 发包能 力(出/, **(万PPS	支持 IPv6	多队列	弾性网 卡(包 括一块 主网 ★
ecs. gn6i- c24g1. 6xlarge	24	93	无	T4*1	16	7.5	120	是	6	4
ecs. gn6i- c24g1. 12xlarg	48 e	186	无	T4*2	32	15	240	是	12	6
ecs. gn6i- c24g1. 24xlarg	96 e	372	无	T4*4	64	30	480	是	24	8
ecs. gn6i- c32g1. 8xlarge	32	124	无	T4*1	16	10	160	是	8	6
ecs. gn6i- c48g1. 12xlarg	48 e	186	无	T4*1	16	12	240	是	12	6
ecs. gn6i- c72g1. 18xlarg	72 e	279	无	T4*1	16	21.5	360	是	18	8

送 说明:

更多信息,请参见创建GPU计算型实例。

回到目录 查看其他实例规格族。

GPU计算型实例规格族 gn6v

规格族特点

・ I/O优化实例
- · 仅支持SSD云盘和高效云盘
- ・ 采用NVIDIA V100 GPU计算卡
- ・ 处理器与内存配比为1:4
- · 处理器: 2.5 GHz主频的Intel Xeon Platinum 8163 (Skylake)
- ・ GPU加速器: V100 (SXM2封装)
 - 创新的Volta架构
 - GPU显存16 GB HBM2
 - CUDA Cores 5120
 - Tensor Cores 640
 - GPU显存带宽900 GB/s
 - 支持6个NVLink链路,每个25 GB/s,总共300 GB/s
- · 实例网络性能与计算规格对应(规格越高网络性能越强)

・适用场景:

- 深度学习,如图像分类、无人驾驶、语音识别等人工智能算法的训练以及推理应用

- 科学计算,如计算流体动力学、计算金融学、分子动力学、环境分析等

实例	vCPU	内	本	GPU	GPU	网	网络	支持	多队**	弹	单块
规格		存(地存		显	络带	收发	IPv6	列	性网	弾性
		GiB)	储(Gi		存(宽能	包能			卡(包	网卡
					GB)	力(出/	力(出/			括	的私
						(Gbit	** (·万PP			一块	有IP
						s)				主网	
										***)*	
ecs.	8	32.0	无	1*	1*16	2.5	80	是	4	4	10
gn6v-				NVIDI	A						
c8g1.				V100							
2xlarg	е										
ecs.	32	128.0	无	4*	4*16	10.0	200	是	8	8	20
gn6v-				NVIDI	A						
c8g1.				V100							
8xlarg	e										

实例 规格	vCPU	内 存(GiB)	本 地存 储(Gi	GPU	GPU 显 存(GB)	网 络带 宽能 力(出/ (G b it, s)	网络 收发 包能 力(出/ ★★チアPP	支持 IPv6	多 队** 列	弹性 (包 卡 括 一 主 ++>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	单弹网的有IP
ecs. gn6v- c8g1. 16xlar	64 ge	256.0	无	8 * NVIDI V100	8*16 A	20.0	250	是	16	8	20

更多信息,请参见创建GPU计算型实例。

回到目录 查看其他实例规格族。

GPU计算型实例规格族 gn5

规格族特点

- ・ I/O优化实例
- · 仅支持SSD云盘和高效云盘
- ・ 采用NVIDIA P100 GPU计算卡
- · 多种处理器与内存配比
- ・高性能NVMe SSD本地盘
- · 处理器: 2.5 GHz主频的Intel Xeon E5-2682 v4 (Broadwell)
- · 实例网络性能与计算规格对应(规格越高网络性能越强)
- ・适用场景:
 - 深度学习
 - 科学计算,如计算流体动力学、计算金融学、基因组学研究、环境分析
 - 高性能计算、渲染、多媒体编解码及其他服务器端GPU计算工作负载

实例 规格	vCPU	内 存(GiB)	本 地存 储(Gi	GPU	GPU 显 存(GB)	网 络带 宽能 力(出/ (Gbit s)	网络 收发 包能 力(出/ **(万PP	支持 IPv6	多 队 ** 列	弾 性 卡 括 一 主 ★ → *	单块 弾性 の 木 有 IP
ecs. gn5- c4g1. xlarge	4	30.0	440	1 * NVIDI P100	1*16 A	3.0	30	否	1	3	10
ecs. gn5- c8g1. 2xlarg	8 e	60.0	440	1 * NVIDI P100	1 * 16 A	3.0	40	否	1	4	10
ecs. gn5- c4g1. 2xlarg	8 e	60.0	880	2 * NVIDI P100	2*16 A	5.0	100	否	2	4	10
ecs. gn5- c8g1. 4xlarg	16 e	120.0	880	2 * NVIDI P100	2*16 A	5.0	100	否	4	8	20
ecs. gn5- c28g1 Zvlorg	28	112.0	440	1 * NVIDI P100	1*16 A	5.0	100	否	8	8	20
ecs. gn5- c8g1. 8xlarg	e 32	240.0	1760	4 * NVIDI P100	4 * 16 A	10.0	200	否	8	8	20
ecs. gn5- c28g1 14xlar	56 ge	224.0	880	2 * NVIDI P100	2*16 A	10.0	200	否	14	8	20

实例 规格	vCPU	内 存(GiB)	本 地存 储(Gi	GPU	GPU 显 存(GB)	网 络带 宽能 力(出/ (G b it, s)	网络 收发 包能 力(出/ ★◆(万PP	支持 IPv6	多 队** 列	弹 性 (包 七 大 一 上 、 米 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	单弹网的有IP
ecs. gn5- c8g1. 14xlar	54 ge	480.0	3520	8 * NVIDI P100	8*16 A	25.0	400	否	14	8	20

更多信息,请参见创建GPU计算型实例。

回到目录 查看其他实例规格族。

GPU计算型实例规格族 gn5i

规格族特点

- ・ I/O优化实例
- · 仅支持SSD云盘和高效云盘
- ・采用NVIDIA P4 GPU计算卡
- ·处理器与内存配比为1:4
- · 处理器: 2.5 GHz主频的Intel Xeon E5-2682 v4 (Broadwell)
- · 实例网络性能与计算规格对应(规格越高网络性能越强)
- ・适用场景:
 - 深度学习推理
 - 多媒体编解码等服务器端GPU计算工作负载

实 例 规格	vCPU	内 存(GiB)	本 地存 储(Gi	GPU	GPU 显 存(GB)	网 络带 宽能 力(出/ (G b it s)	网络 收发 包能 力(出/ ,⊷(5PP	支持 IPv6	多 队 ** 列	弾性 卡括 一 主 ★→ *	单 弹 网 的 有IP
ecs. gn5i- c2g1. large	2	8.0	无	1 * NVIDI P4	1*8 A	1.0	10	是	2	2	6
ecs. gn5i- c4g1. xlarge	4	16.0	无	1 * NVIDI P4	1*8 A	1.5	20	是	2	3	10
ecs. gn5i- c8g1. 2xlarg	8 e	32.0	无	1 * NVIDI P4	1*8 A	2.0	40	是	4	4	10
ecs. gn5i- c16g1 4xlarg	16 e	64.0	无	1 * NVIDI P4	1*8 A	3.0	80	是	4	8	20
ecs. gn5i- c16g1 8xlarg	32 e	128.0	无	2* NVIDI P4	2*8 A	6.0	120	是	8	8	20
ecs. gn5i- c28g1 14xlar	56 ge	224.0	无	2 * NVIDI P4	2*8 A	10.0	200	是	14	8	20

] 说明:

更多信息,请参见创建GPU计算型实例。

回到目录 查看其他实例规格族。

GPU计算型实例规格族 gn4

规格族特点

- ・ I/O优化实例
- · 仅支持SSD云盘和高效云盘
- ・采用NVIDIA M40 GPU计算卡
- · 多种处理器与内存配比
- · 处理器: 2.5 GHz主频的Intel Xeon E5-2682 v4 (Broadwell)
- · 实例网络性能与计算规格对应(规格越高网络性能越强)
- ・适用场景
 - 深度学习
 - 科学计算,如计算流体动力学、计算金融学、基因组学研究、环境分析
 - 高性能计算、渲染、多媒体编解码及其他服务器端GPU计算工作负载

实例 规格	vCPU	内 存(GiB)	本 地存 储(Gi	GPU	GPU 显 存(GB)	网 络带 宽能 力(出/ (Gbit, s)	网络 收发 包能 力(出/ ★★万PP	支持 IPv6	多队** 列	弾性 卡括 一 主 本)*	单弹网的有IP
ecs. gn4- c4g1. xlarge	4	30.0	无	1 * NVIDI M40	1 * 12 A	3.0	30	否	1	3	10
ecs. gn4- c8g1. 2xlarg	8 e	30.0	无	1 * NVIDI M40	1 * 12 A	3.0	40	否	1	4	10
ecs. gn4. 8xlarg	32 e	48.0	无	1 * NVIDI M40	1 * 12 A	6.0	80	否	3	8	20

实例规格	vCPU	内 存(GiB)	本 地存 储(Gi	GPU	GPU 显 存(GB)	网 络带 宽能 力(出/ (G b it, s)	网络 收发 包能 力(出/ **(万PP	支持 IPv6	多 队 ** 列	弾性 卡括 一主 *	单 弾 网 的 有IP
ecs. gn4- c4g1. 2xlarg	8 e	60.0	无	2 * NVIDL M40	2*12 A	5.0	50	否	1	4	10
ecs. gn4- c8g1. 4xlarg	16 e	60.0	无	2 * NVIDI M40	2*12 A	5.0	50	否	1	8	20
ecs. gn4. 14xlar	56 ge	96.0	无	2 * NVIDI M40	2*12 A	10.0	120	否	4	8	20

更多信息,请参见 创建GPU计算型实例。

回到目录 查看其他实例规格族。

GPU可视化计算型实例规格族 ga1

- ・ I/O优化实例
- · 仅支持SSD云盘和高效云盘
- ・采用AMD S7150 GPU计算卡
- ・处理器与内存配比为1:2.5
- · 处理器: 2.5 GHz主频的Intel Xeon E5-2682 v4 (Broadwell)
- ・高性能NVMe SSD本地盘
- · 实例网络性能与计算规格对应(规格越高网络性能越强)

- ・适用场景:
 - 渲染、多媒体编解码
 - 机器学习、高性能计算、高性能数据库
 - 其他需要强大并行浮点计算能力的服务器端业务

实 例 规格	vCPU	内 存(GiB)	本 地存 储(Gi	GPU	GPU 显 存(GB)	网 络带 宽能 力(出/ (Gbit, s)	网络 收发 包能 力(出/ **(万PP	支持 IPv6	多 队** 列	弾 性 (包 七 十 二 史 ス ★	单
ecs. ga1. xlarge	4	10.0	1 * 87	0.25 * AMD S7150	2	1.0	20	否	1	3	10
ecs. ga1. 2xlarg	8 e	20.0	1 * 175	0.5 * AMD S7150	4	1.5	30	否	1	4	10
ecs. ga1. 4xlarg	16 e	40.0	1 * 350	1 * AMD S7150	8	3.0	50	否	2	8	20
ecs. ga1. 8xlarg	32 e	80.0	1 * 700	2* AMD \$7150	2*8	6.0	80	否	3	8	20
ecs. ga1. 14xlar	56 ge	160.0	1 * 1400	4 * AMD S7150	4*8	10.0	120	否	4	8	20

间 说明:

更多信息,请参见创建ga1实例。

回到目录 查看其他实例规格族。

FPGA计算型实例规格族 f1

- ・ I/O优化实例
- · 仅支持SSD云盘和高效云盘
- ・采用Intel ARRIA 10 GX 1150计算卡
- ・ 处理器与内存配比为 1:7.5
- · 处理器: 2.5 GHz主频的Intel Xeon E5-2682 v4 (Broadwell)
- · 实例网络性能与计算规格对应(规格越高网络性能越强)
- ・适用场景:
 - 深度学习推理
 - 基因组学研究
 - 金融分析
 - 图片转码
 - 实时视频处理及安全等计算工作负载

实例规 格	vCPU	内存(GiB)	本地存 储(GiE	FPGA	网络带 宽能 力(出/」 (G b it/ s)	网络收 发包能 力(出/) **(万PPS	支持 IPv6	多队列	弹性网 卡(包 括一块 主网 本)*	单块弹 性网卡 的私有 IP
ecs.f1 -c8f1. 2xlarge	8	60.0	无	Intel ARRIA 10 GX 1150	3.0	40	是	4	4	10
ecs.f1 -c8f1. 4xlarge	16	120.0	无	2 * Intel ARRIA 10 GX 1150	5.0	100	是	4	8	20
ecs .f1- c28f1. 7xlarge	28	112.0	无	Intel ARRIA 10 GX 1150	5.0	200	是	8	8	20

实例规	vCPU	内存(本地存	FPGA	网络带	网络收	支持	多队列	弹性网	单块弹
格		GiB)	储(GiE		宽能	发包能	IPv6		卡(包	性网卡
					力 (出/)	力(出/)			括一块	的私有
					(Gbit/	** 《 万PPS			主网	IP
					s)				***)*	
ecs	56	224.0	无	2*	10.0	200	是	14	8	20
.f1-				Intel						
c28f1.				ARRIA						
14xlarg	e			10 GX						
				1150						

回到目录查看其他实例规格族。

FPGA计算型实例规格族 f3

规格族特点

- ・ I/O优化实例
- · 仅支持SSD云盘和高效云盘
- · 采用Xilinx 16nm Virtex UltraScale+器件VU9P
- ・ 处理器与内存配比为 1:4
- · 处理器: 2.5 GHz主频的Intel Xeon Platinum 8163 (Skylake)
- · 实例网络性能与计算规格对应(规格越高网络性能越强)
- ・适用场景:
 - 深度学习推理
 - 基因组学研究
 - 数据库加速
 - 图片转码,如JPEG转WebP
 - 实时视频处理,如H.265视频压缩

实例规 格	vCPU	内存(GiB)	本地存 储(GiE	FPGA	网络带 宽能 力(出/」 (G b it/ s)	网络收 发包能 力(出/ <i>)</i> **(万PPS	支持 IPv6	多队列	弾性 (包) ★ (1) (1) (1) (1) (1) (1) (1) (1)	单块弾 性网卡 的私有 IP
ecs.f3 -c4f1. xlarge	4	16.0	无	1 * Xilinx VU9P	1.5	30	否	2	3	10
ecs.f3 -c8f1. 2xlarge	8	32.0	无	1 * Xilinx VU9P	2.5	50	否	4	4	10
ecs .f3- c16f1. 4xlarge	16	64.0	无	1 * Xilinx VU9P	5.0	100	否	4	8	20
ecs .f3- c16f1. 8xlarge	32	128.0	无	2 * Xilinx VU9P	10.0	200	否	8	8	20
ecs .f3- c16f1. 16xlarg	64 e	256.0	无	4 * Xilinx VU9P	20.0	250	否	16	8	20

回到目录 查看其他实例规格族。

高主频型弹性裸金属服务器实例规格族 ebmhfg5

- ・均为I/O优化实例
- · 仅支持SSD云盘和高效云盘
- ·处理器与内存配比为1:4
- 处理器: 3.7 GHz主频的Intel Xeon E3-1240v6(Skylake), 8 vCPU, 最大睿频4.1 GHz
- ・高网络性能,200万PPS网络收发包能力
- ・仅支持专有网络VPC
- ·提供专属硬件资源和物理隔离
- ・支持Intel SGX加密计算

- ・适用场景:
 - 需要直接访问物理资源,或者需要License绑定硬件等要求的工作负载
 - 游戏和金融等高性能应用
 - 高性能Web服务器
 - 高性能数据库等企业级应用

实例规	vCPU	内存(本地存	网络带	网络收	支持	多队列	弹性网	单块弹
格		GiB)	储(GiB)	宽能	发包能	IPv6		卡(包	性网卡
				カ(出/ <i>)</i>	力(出/ <i>)</i>			括一	的私有
				(Gbit/	** (:万PPS			块主网	IP
				s)				* *)*	
ecs.	8	32.0	无	6.0	200	否	8	6	8
ebmhfg	5								
2xlarge									

更多弹性裸金属服务器的信息,请参见什么是弹性裸金属服务器。

回到目录 查看其他实例规格族。

计算型弹性裸金属服务器实例规格族 ebmc4

- ・均为I/O优化实例
- · 仅支持SSD云盘和高效云盘
- ・ 处理器与内存配比为1:2
- · 处理器: 2.5 GHz主频Intel Xeon E5-2682 v4 (Broadwell),最大睿频2.9 GHz
- · 高网络性能,400万PPS网络收发包能力
- ・仅支持专有网络VPC
- ·提供专属硬件资源和物理隔离

- ・适用场景:
 - 需要直接访问物理资源,或者需要License绑定硬件等要求的工作负载
 - 第三方虚拟化(包括但不限于Xen、KVM等)、AnyStack(包括但不限于OpenStack、 ZStack等)
 - 容器(包括不限于Docker、Clear Container、Pouch等)
 - 中大型企业等重量级数据库应用
 - 视频编码

实例规 格	vCPU	内存(GiB)	本地存 储(GiB)	网络带 宽能 力(出/ <i>)</i> (G b it/ s)	网络收 发包能 力(出/) ★◆(万PPS	支持 IPv6	多队列	弹性网 卡(包 括一 块主网 *[†])*	单块弹 性网卡 的私有 IP
ecs. ebmc4 8xlarge	32	64.0	无	10.0	400	否	8	12	10

更多弹性裸金属服务器的信息,请参见什么是弹性裸金属服务器。

回到目录 查看其他实例规格族。

通用型弹性裸金属服务器实例规格族 ebmg5

- ・均为I/O优化实例
- · 仅支持SSD云盘和高效云盘
- ・ 处理器与内存配比为1:4
- ・ 处理器: 2.5 GHz主频的Intel Xeon Platinum 8163 (Skylake), 96 vCPU, 最大睿频2.7 GHz
- · 高网络性能,400万PPS网络收发包能力
- ・仅支持专有网络VPC
- · 提供专属硬件资源和物理隔离

- ·适用场景:
 - 需要直接访问物理资源,或者需要License绑定硬件等要求的工作负载
 - 第三方虚拟化(包括但不限于Xen、KVM等)、AnyStack(包括但不限于OpenStack、 ZStack等)
 - 容器(包括不限于Docker、Clear Container、Pouch等)
 - 中大型企业等重量级数据库应用
 - 视频编码

实例规 格	vCPU	内存(GiB)	本地存 储(GiB)	网络带 宽能 力(出/ <i>)</i> (G b it/ s)	网络收 发包能 力(出/) ∗√万PPS	支持 IPv6	多队列	弾 卡 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	单块弹 性 网 卡 的私有 IP
ecs. ebmg5 24xlarge	96	384.0	无	10.0	400	否	8	32	10

更多弹性裸金属服务器的信息,请参见什么是弹性裸金属服务器。

回到目录 查看其他实例规格族。

高主频型超级计算集群实例规格族 scch5

- ・均为I/O优化实例
- · 仅支持SSD云盘和高效云盘
- ·同时支持RoCE网络和VPC网络,其中RoCE网络专用于RDMA通信
- · 具备弹性裸金属服务器的所有特性
- · 处理器: 3.1 GHz主频的Intel Xeon Gold 6149 (Skylake)
- ・处理器与内存配比:1:3

- ·适用场景:
 - 大规模机器学习训练
 - 大规模高性能科学计算和仿真计算
 - 大规模数据分析、批量计算、视频编码

实例	vCPU	物理	内	GPU	网	网络	RoCE	支持	多队**	弹	单块
规格		内核	存(络带	收发	网	IPv6	列	性网	弾性
			GiB)		宽能	包能	络(出			卡(包	网卡
					力(出	力(出/	(括	的私
					(Gbit	(万 PPS	Gbit/			一块	有IP
					s)		s)			主网	
										***)*	
ecs.	64	32	192.0	无	10.0	450	46	否	8	32	10
scch5											
16xlar	ge										

ecs.scch5.16xlarge在32个物理内核上提供64个逻辑处理器。更多SCC的信息,请参见什么是超级计算集群。

回到目录 查看其他实例规格族。

通用型超级计算集群实例规格族 sccg5

- ・均为I/O优化实例
- · 仅支持SSD云盘和高效云盘
- ·同时支持RoCE网络和VPC网络,其中RoCE网络专用于RDMA通信
- · 具备弹性裸金属服务器的所有特性
- · 处理器: 2.5 GHz主频的Intel Xeon Platinum 8163(Skylake),计算性能稳定
- ・ 处理器与内存配比: 1:4

- ・适用场景:
 - 大规模机器学习训练
 - 大规模高性能科学计算和仿真计算
 - 大规模数据分析、批量计算、视频编码

实例规格	vCPU	物理 内核	内 存(GiB)	GPU	网 络带 宽能 力(出/ (Gbit s)	网络 收发 包能 力(出/ (万 PPS	RoCE 网 络(出/ (Gbit/ s)	支持 IPv6	多 队** 列	弾性卡括一主 → + +	单弹网的有IP
ecs. sccg5 24xlar	96 ge	48	384.0	无	10.0	450	46	否	8	32	10

ecs.sccg5.24xlarge在48个物理内核上提供96个逻辑处理器。更多SCC的信息,请参见 什么是超级计算集群。

回到目录 查看其他实例规格族。

GPU计算型超级计算集群实例规格族 sccgn6

- ・ I/O优化实例
- ・ 处理器与内存配比为1:4
- · 处理器: 2.5 GHz主频的Intel Xeon Platinum 8163(Skylake),计算性能稳定
- ・具备弹性裸金属服务器的所有特性
- ・存储支持:
 - 支持ESSD云盘(百万IOPS)、SSD云盘和高效云盘
 - 支持高性能并行文件系统CPFS

- ・ 网络互连:
 - 支持25Gbps*2的VPC网络
 - 支持RoCE V2网络,用于低延迟的RDMA通信
- · GPU加速器: V100 (SXM2封装)
 - 创新的Volta架构
 - GPU显存16 GB HBM2
 - CUDA Cores 5120
 - Tensor Cores 640
 - GPU显存带宽900 GB/s
 - 支持6个NVLink链路,每个25 GB/s,总共300 GB/s
- ・适用场景:
 - 超大规模机器学习集群训练场景
 - 大规模高性能科学计算和仿真计算
 - 大规模数据分析、批量计算、视频编码

实例	vCPU	内	本	GPU	网	网络	RoCE	支持	多队**	弹	单块
规格		存(地存		络带	收发	网	IPv6	列	性网	弾性
		GiB)	储(Gi		宽能	包能	络 (出/			卡(包	网卡
					力(出/	力(出/	(括	的私
					(Gbit	** (万PP	Gbit/			一块	有IP
					s)		s)			主网	

ecs.	96	384	无	V100 *9	30	450	25*2	是	8	32	10
scegne				0							
24xlar	ge										

回到目录 查看其他实例规格族。

突发性能实例规格族 t5

- · 处理器: 2.5 GHz主频的Intel Xeon 处理器
- ・搭配DDR4内存

- ・多种处理器和内存配比
- · 可突然提速的vCPU, 持续基本性能, 受到vCPU积分的限制
- · 计算、内存和网络资源的平衡
- ・仅支持专有网络VPC
- ・适用场景:
 - Web应用服务器
 - 轻负载应用、微服务
 - 开发测试压测服务应用

												-
实例	vCPU	内	平均	CPU	最大	本地	网络	网络	支持	多队	弹性	单块
规格		存(基准	积	CPU	存	带	收发	IPv6	列*	网	弾性
		GiB)	CPU	分/小	积分	储(Gi	宽能	包能			卡(包	网卡
			计算	时	余额		力(出	力(出			括	的私
			性能				(Gbit	∗ € 万PI			一块	有IP
							s)				主网	
											*	
											• /	
		0 -	100/	6	1.4.4	7	0.1					0
ecs		0.5	10%	6	144	尤 	0.1	4	是		1	2
lc2m1												
nano												
ecs	1	1.0	10%	6	144	无	0.2	6	是	1	1	2
.t5-												
lc1m1												
· 11												
small												
ecs	1	2.0	10%	6	144	无	0.2	6	是	1	1	2
.t5-												
lc1m2												
• small												
Jinan												

实例 规格	vCPU	内 存(GiB)	平均 基准 CPU 计算 性能	CPU 积 分/小 时	最大 CPU 积分 余额	本地 存 储(Gi	网络 带 宽能 力(出 (G b it s)	网络 收发 包能 力(出 ☞(*万P]	支持 IPv6	多队 列*	弾性 网 卡 (包 干 括 中 ★)	单
ecs .t5- lc1m2 large	2	4.0	10%	12	288	无	0.4	10	是	1	1	2
ecs .t5- lc1m4 large	2	8.0	10%	12	288	无	0.4	10	是	1	1	2
ecs .t5- c1m1 large	2	2.0	15%	18	432	无	0.5	10	是	1	1	2
ecs .t5- c1m2 large	2	4.0	15%	18	432	无	0.5	10	是	1	1	2
ecs .t5- c1m4 large	2	8.0	15%	18	432	无	0.5	10	是	1	1	2
ecs .t5- c1m1 xlarge	4	4.0	15%	36	864	无	0.8	20	是	1	2	6

实例 规格	vCPU	内 存(GiB)	平均 基准 CPU 计算 性能	CPU 积 分/小 时	最大 CPU 积分 余额	本地 存 储(Gi	网络 带 宽能 力(出 (G b it s)	网络 收发 包能 力(出 **(*万PI	支持 IPv6	多队 列*	弾性 网 卡 (包 干 括 一 ★ →	单块 弹 网 的 有IP
ecs .t5- c1m2 xlarge	4	8.0	15%	36	864	无	0.8	20	是	1	2	6
ecs .t5- c1m4 xlarge	4	16.0	15%	36	864	无	0.8	20	是	1	2	6
ecs .t5- c1m1 2xlarg	8 e	8.0	15%	72	1728	无	1.2	40	是	1	2	6
ecs .t5- c1m2 2xlarg	8 e	16.0	15%	72	1728	无	1.2	40	是	1	2	6
ecs .t5- c1m4 2xlarg	8 e	32.0	15%	72	1728	无	1.2	40	是	1	2	6
ecs .t5- c1m1 4xlarg	16 e	16.0	15%	144	3456	无	1.2	60	是	1	2	6

实例	vCPU	内	平均	CPU	最大	本地	网络	网络	支持	多队	弹性	单块
规格		存(基准	积	CPU	存	带	收发	IPv6	列∗	网	弹性
		GiB)	CPU	分/小	积分	储(Gi	宽能	包能			卡(包	网卡
			计算	时	余额		力(出	力(出			括	的私
			性能				(G <mark>b</mark> it	∗ ∜ 万PI			一块	有IP
							s)				主网	
											*	
ecs	16	32.0	15%	144	3456	无	1.2	60	是	1	2	6
.t5-												
c1m2												
·												
4xlarg	e											

说明:

关于t5实例的更多信息,请参见什么是突发性能实例。

回到目录 查看其他实例规格族。

上一代入门级实例规格族 xn4/n4/mn4/e4

- · 处理器: 2.5 GHz主频的Intel Xeon E5-2682 v4 (Broadwell)
- ・搭配DDR4内存
- · 多种处理器和内存配比

规格族	特点	vCPU : 内存	适用场景
xn4	共享基本型实例	1:1	 ・Web应用前端机 ・轻负载应用、微服 务 ・开发测试压测服务 应用

规格族	特点	vCPU:内存	适用场景
n4	共享计算型实例	1:2	 · 网站和Web应用程 序 · 开发环境、构建服 务器、代码存储 库、微服务、测试 和暂存环境 · 轻量级企业应用
mn4	共享通用型实例	1:4	 · 网站和Web应用程 序 · 轻量级数据库、缓 存 · 综合应用,轻量级 企业服务
e4	共享内存型实例	1:8	 ・ 大内存应用 ・ 轻量级数据库、缓存

xn4 实例规格

实例规	vCPU	内存(本地存	网络带	网络收	支持	多队列	弹性网	单块弹
格		GiB)	储(GiB)	宽能	发包能	IPv6		卡(包	性网卡
				カ (出/)	カ(出/)			括一	的私有
				(Gbit/	** 《 万PPS			块主网	IP
				s)				**)*	
ecs. xn4. small	1	1.0	无	0.5	5	否	1	1	2

n4 实例规格

实例规 格	vCPU	内存(GiB)	本地存 储(GiB)	网络带 宽能 力(出/) (G b it/ s)	网络收 发包能 力(出/ <i>)</i> ** (、万PPS	支持 IPv6	多队列	弾性网 卡(包 括一 块主网 ★★→★	单块弹 性网卡 的私有 IP
ecs.n4. small	1	2.0	无	0.5	5	否	1	1	2
ecs.n4. large	2	4.0	无	0.5	10	否	1	1	2
ecs.n4. xlarge	4	8.0	无	0.8	15	否	1	2	6
ecs.n4. 2xlarge	8	16.0	无	1.2	30	否	1	2	6
ecs.n4. 4xlarge	16	32.0	无	2.5	40	否	1	2	6
ecs.n4. 8xlarge	32	64.0	无	5.0	50	否	1	2	6

mn4 实例规格

实例规 格	vCPU	内存(GiB)	本地存 储(GiB)	网络带 定能 力(出/ <i>)</i> (G b it/ s)	网络收 发包能 力(出/ <i>)</i> **(*万PPS	支持 IPv6	多队列	弹性网 卡(包 括一 块主网 * *	单块弹 性网卡 的私有 IP
ecs. mn4. small	1	4.0	无	0.5	5	否	1	1	2
ecs. mn4. large	2	8.0	无	0.5	10	否	1	1	2
ecs. mn4. xlarge	4	16.0	无	0.8	15	否	1	2	6

实例规 格	vCPU	内存(GiB)	本地存 储(GiB)	网络带 宽能 力(出/ <i>)</i> (G b it/ s)	网络收 发包能 力(出/ <i>)</i> **(*万PPS	支持 IPv6	多队列	弹性网 卡(包 括一 块主网 * *	单块弹 性网卡 的私有 IP
ecs. mn4. 2xlarge	8	32.0	无	1.2	30	否	1	2	6
ecs. mn4. 4xlarge	16	64.0	无	2.5	40	否	1	2	6
ecs. mn4. 8xlarge	32	128.0	无	5	50	否	2	8	6

e4 实例规格

实例规 格	vCPU	内存(GiB)	本地存 储(GiB)	网络带 宽能 力(出/ <i>)</i> (G b it/ s)	网络收 发包能 力(出/) ⊷←万PPS	支持 IPv6	多队列	弹性网 卡(包 括一 块主网 本)*	单块弹 性网卡 的私有 IP
ecs.e4. small	1	8.0	无	0.5	5	否	1	1	2
ecs.e4. large	2	16.0	无	0.5	10	否	1	1	2
ecs.e4. xlarge	4	32.0	无	0.8	15	否	1	2	6
ecs.e4. 2xlarge	8	64.0	无	1.2	30	否	1	3	6
ecs.e4. 4xlarge	16	128.0	无	2.5	40	否	1	8	6

回到目录 查看其他实例规格族。

本地存储,或者数据缓存盘,是指挂载在云服务器ECS所在物理机(宿主机)上的本地磁盘,是 一种临时块存储。使用二进制单位GiB。在释放实例计算资源(vCPU + 内存)、宕机迁移等情况 下,本地存储上的数据会丢失。详细的信息,请参见本地盘。

""网络带宽能力指单向能达到的最大能力,出方向和入方向单独计算。

网络收发包能力指出方向和入方向相加能达到的最大能力。网络收发包测试方法,请参见 网络 性能测试方法。

主网卡支持的最大网卡队列数。除弹性裸金属服务器(神龙)实例规格外,辅助网卡支持的最 大网卡队列数与主网卡一致。

vCPU核数不小于2的企业级实例规格支持弹性网卡。vCPU核数不小于4的入门级实例规格支持弹性网卡。关于弹性网卡的更多信息,请参见 弹性网卡。

4选择实例规格

4.1 突发型

4.1.1 什么是t5突发性能实例

突发性能实例(Burstable instance,以下简称为t5实例),是一种能应对突发CPU性能需求的 实例,属于入门级x86计算规格族群。

t5实例介绍

每台t5实例都有一个基准CPU计算性能,并会根据实例规格以指定速度持续获取CPU积分。每台t5 实例一旦启动,就会开始消耗积分以满足需求。当实例实际工作性能高于基准CPU计算性能时,会 消耗更多的CPU积分来提升CPU性能,满足工作需求。t5实例能无缝提高CPU计算性能,不会影响 实例上的环境或应用。

突发性能实例包括 t5性能约束实例 和 t5无性能约束实例。

概念	描述	示例
基准CPU计算性 能	每种t5实例规格都有一个基准CPU计 算性能。 • t5性能约束实例在正常工作负载 时,有一个平均CPU使用率上限。 • t5无性能约束实例不会受到基准 CPU计算性能的限制,可以在任意 时间段内保持高CPU性能,但超额 积分会收取费用。	ecs.t5-lc1m2.small性能约束实例 的平均CPU使用率最大为10%,可消 耗更多积分提升CPU使用率,CPU积 分消耗完毕后,CPU使用率最大为10 %。ecs.t5-lc1m2.small无性能约束 实例没有此限制。
CPU 积分	每台t5实例根据基准CPU计算性能以 固定速度获取CPU积分。一个CPU 积分代表的计算性能与vCPU核数、 CPU使用率和工作时间有关。	 1个CPU积分 = 1个vCPU核以100 %使用率运行1分钟 1个CPU积分 = 1个vCPU核以50 %使用率运行2分钟 1个CPU积分 = 2个vCPU核以25 %使用率运行2分钟 如果希望一个vCPU核一小时(60分 御)都以100%使用率运行,一 个vCPU核每小时需要60个CPU积 分。

t5实例相关概念

概念	描述	示例
初始CPU积分	一台t5实例在创建成功后,每个vCPU 核会分到30个CPU积分,即初始CPU 积分。只有创建实例时才会分配初始 CPU积分。当实例开始消耗CPU积分 时,优先使用初始CPU积分。	以ecs.t5-lc1m2.large为例,实例创 建成功后,会分配60个CPU积分。
CPU积分获得率	t5实例每分钟获取CPU积分。CPU积 分获得率是指单位时间内一台t5实例 获取的CPU积分,取决于基准CPU计 算性能,以分钟为单位。计算公式如 下: CPU积分获得率 = 基准CPU计算性 能 * vCPU数量	以ecs.t5-c1m2.xlarge为例,平均基 准CPU计算性能为15%,所以,CPU 积分分发速度为每分钟0.6个CPU积 分(即每小时36个CPU积分)。
消耗CPU积分	实例开启后即消耗累积的积分,并 且优先消耗初始CPU积分。每分 钟CPU积分的消耗量按以下公式计 算: 每分钟消耗的CPU积分 = 1个CPU 积分 * 实际CPU计算性能	以ecs.t5-lc1m2.small为例,当它以 20% CPU使用率运行1分钟时,会消 耗0.2个CPU积分。
累积CPU积分	当实例的CPU使用率小于基准CPU计 算性能时,因每分钟内CPU积分的消 耗量小于分发量,实例CPU累计积 分可产生净增加。反之,则产生净消 耗。增加速度取决于实际CPU负载 与基准性能之间的差值,计算公式如 下: 每分钟累计的CPU积分 = 1个CPU 积分 * (基准CPU计算性能 - 实际CPU计算性能) 您可以在控制台上查看CPU累积量和 消耗量。	以ecs.t5-lc1m2.small为例, 平均基 准CPU计算性能为15%, 当它以5% CPU使用率运行1分钟后, 会累积0.1 个CPU积分。
最大CPU积分余 额	当CPU积分分发量大于消耗量时, CPU积分会越来越多。获得的积 分在运行的实例上不会过期,但一 个实例可累积获取的积分数存在上 限,即,最大CPU积分余额。不同的 实例规格,上限不同。	以ecs.t5-lc2m1.nano为例,最大 CPU积分余额为144。当CPU积分达 到144时,暂停累积,少于144时,重 新开始累积。

t5实例停机对CPU积分的影响

通过 #unique_69/unique_69_Connect_42_section_imz_wx5_ydb 或 StopInstance接口 停 止实例后, CPU积分变化因t5实例计费方式和网络类型而异, 如下表所示。

网络类型	实例计费方式	实例停止后积分变化
VPC	包年包月	停止实例前累积的CPU积分不
	按量付费(未使用 按量付费实 例停机不收费功能)	会失效,而且会持续累积CPU 积分。
	按量付费(使用 按量付费实例 停机不收费 功能)	停止实例前累积的积分失 效,重启实例后重新获得初始 CPU积分。

已停止的实例重新启动后,继续累积CPU积分。

按量付费实例欠费停机或者包年包月实例过期时,CPU积分仍然有效,但不会再累积CPU积分。当 实例 重开机 或 续费 后,自动累积CPU积分。

t5实例规格

t5实例采用Intel Xeon处理器,实例规格如下表所示。表中,

- · 获取CPU积分/小时 是指单台t5实例所有vCPU核每小时分配到的CPU积分总和。
- ・平均基准CPU计算性能 是指实例中每个vCPU核的平均基准CPU计算性能。

举例

- · 以ecs.t5-c1m1.xlarge为例,
 - 每个vCPU核的平均基准计算性能是15%,所以一台ecs.t5-c1m1.xlarge实例总的平均基准 计算性能是60%(4vCPU*15%)。说明如下:
 - 当该实例只有1个vCPU核工作时,这个vCPU核的平均计算性能是60%。
 - 当该实例只有2个vCPU核工作时,每个vCPU核分配到的平均计算性能是30%。
 - 当该实例只有3个vCPU核工作时,每个vCPU核分配到的平均计算性能是20%。
 - 当该实例的4个vCPU核都工作时,每个vCPU核分配到的平均计算性能是15%。

▋ 说明:

当业务需要时,可以消耗CPU积分来提升CPU性能,每个vCPU核的工作性能能够提升 至100%。

一台实例每小时获取36个CPU积分,即每个vCPU核每小时获取9个CPU积分。

· 以ecs.t5-c1m2.4xlarge为例,

 - 每个vCPU核的平均基准计算性能是15%,所以一台ecs.t5-c1m2.4xlarge实例总的平均基 准计算性能是240%(16vCPU*15%)。说明如下:

■ 当该实例只有1个vCPU核工作时,这个vCPU核的平均计算性能是100%。

■ 当该实例只有2个vCPU核工作时,每个vCPU核分配到的平均计算性能是100%。

■ 当该实例只有3个vCPU核工作时,每个vCPU核分配到的平均计算性能是80%。

■ 当该实例的16个vCPU核都工作时,每个vCPU核分配到的平均计算性能是15%。

📕 说明:

当业务需要时,可以消耗CPU积分来提升CPU性能,每个vCPU核的工作性能够提升 至100%。

- 一台实例每小时获取144个CPU积分,即每个vCPU核每小时获取9个CPU积分。

t5实例计费方式

t5实例支持的计费方式:按量付费和包年包月。不同计费方式的区别,请参见 #unique_72。

4.1.2 t5性能约束实例

t5性能约束实例适合平时不会持续高压力使用CPU,但是偶尔需要提高计算性能完成工作负载的场景,例如轻量级的Web服务器、开发、测试环境以及中低性能数据库等。

t5性能约束实例受平均CPU使用率上限的约束,可用CPU积分不足时无法突破基准CPU计算性能。 如果实例累积的积分较少,性能将在15分钟内逐渐下降到基准性能水平,保证在累积的CPU积分余 额用完时,实例的性能不会急剧下降。当累积的CPU积分消耗完后,t5实例的实际CPU计算性能无 法超过基准CPU计算性能。

费用

收取按量付费或包年包月的费用。不会超额使用积分,因此不产生额外费用。

示例

以一台ecs.t5-lc1m2.small性能约束实例为例,CPU积分变化情况如下:

- 1. 实例创建后,获得30个初始CPU积分。实例启动运行后开始获得CPU积分,平均基准CPU计算 性能为10%,因此速度为0.1个CPU积分/分钟,同时根据实际CPU使用率消耗积分。
- 运行第1分钟开始,假设CPU使用率为5%,实例每分钟消耗0.05个初始CPU积分,同时会获得0
 .1个CPU积分,因此实际上每分钟累积了0.05个CPU积分。
- 3. 运行至第9分钟,假设CPU使用率为50%,实例会消耗0.5个CPU积分,同时又会获得0.1个 CPU积分,因此实际上净消耗了0.4个CPU积分。

4. 累积的CPU积分消耗完毕,实例的CPU使用率不会超过10%。

4.1.3 t5无性能约束实例

t5无性能约束实例可以在任意时间段内保持高CPU性能,而不会受到基准CPU计算性能的限制。

概念

除基本概念外,在使用t5无性能约束实例前,您还需要了解以下概念:

・预支积分

未来24小时应获得的积分,目前已经预支使用的部分。

・超额积分

未来24小时积分使用完后,继续使用的积分会收取费用,按小时出账单。

在t5无性能约束实例用完CPU积分余额时,会优先使用预支积分来应对高CPU性能需求。当CPU使 用率低于基准CPU计算性能时,会使用获得的CPU积分来支付(抵消)使用的预支积分。

计费规则

使用预支积分后,计费规则如下:

· 不收取额外费用的情况:

使用的预支积分小于最大CPU积分余额,例如,t5-lc1m1.small最多可以获得144个积分,且 在未来24小时或实例生命周期(以较短者为准)内,t5实例的平均CPU使用率等于或低于基准 CPU计算性能。此时实例的每小时价格自动涵盖期间的所有使用峰值,获得的CPU积分抵消了 使用的预支积分。

- · 收取额外费用的情况:
 - 如果使用的预支积分超过最大CPU积分余额,会在该时间段结束时收费。
 - 如果预支积分使用完毕,继续使用超额积分,会收取额外费用。
 - 如果使用了预支积分,并且在该积分清零前停止或释放实例,会一次性收取预支积分费用。
 - 从t5无性能约束实例转换为t5性能约束实例时,会立即收取预支积分的费用,实例的累积 CPU积分保持不变。

费用收取标准如下表所示:

地域	Windows实例(美元/积分)	Linux实例(美元/积分)
中国大陆地域	0.0008	0.0008
非中国大陆地域	0.0016	0.0008

示例

假设在美国西部1(硅谷)购买了无性能约束实例,实例规格为t5-lc1m1.small,操作系统为 Linux,CPU积分变化情况如下:

- 1. 实例创建后,获得30个初始CPU积分。实例启动时还会拥有144个预支积分,即未来24小时的 最大CPU积分余额。因此,实例启动时共拥有174个可用CPU积分。
- 2. 实例运行后,假设CPU使用率为50%,实例每分钟消耗0.5个初始CPU积分,同时会获得0.1个 CPU积分,因此实际上每分钟减少了0.4个CPU积分。
- 3. 运行至第75分钟, CPU累积积分使用完毕, 开始使用预支积分保持较高的CPU性能。
- 4. 运行至第75+360分钟, 144个预支积分也使用完毕, 开始使用超额积分保持较高的CPU性能。
- 5. 运行至75+360+125分钟,使用了50个超额积分,然后CPU使用率变为5%,低于基准CPU计算性能,实例开始每分钟获得0.1个积分,用于支付(抵消)已使用的预支积分。当预支积分恢复为144个后,实例开始累计CPU积分(每分钟获得0.1个积分)。

运行至75+360+125分钟,实例不再使用超额积分,此时会收取额外费用:

该时间段内,Linux实例使用了50个超额积分。产生的额外费用为:0.0016美元/积分*50积分=0.08美元。

4.1.4 管理t5实例

您可以通过控制台或API来创建t5实例和变更实例类型。

创建t5实例

创建实例的具体步骤请参见使用向导创建实例。在创建实例时,需要注意以下设置:

- · 网络类型: 仅支持专有网络VPC。
- · 镜像:最小的t5实例规格内存为512 MiB,只能选择Linux系统和Windows Server Version
 1709操作系统。不支持所需内存最少为1 GiB的操作系统,例如Windows Server 2016等。关
 于选择镜像的更多信息,请参见ECS实例操作系统选择说明。
- ・t5实例类型:如果勾选打开t5实例无性能约束模式可以创建t5无性能约束实例,不勾选则创 建t5性能约束实例。您也可以在创建后变更类型。

变更t5实例类型

在实例的生命周期内,您可以通过控制台或者调用ModifyInstanceAttribute接口变更t5实例的 类型,立即生效。

门 说明:

t5实例必须处于运行中(Running)状态才可以变更类型。

按照以下步骤在控制台上转换t5实例类型:

1. 在实例列表中, 找到实例, 并单击实例ID。

2. 在基本信息部分,单击更多,并选择打开无性能约束模式或者关闭无性能约束模式。

如果t5实例遇到以下操作或状态,实例类型根据不同情况有可能变更:

操作/状态	结果
停止实例	启动后,停机不收费的t5实例默认为t5性能约束实例,非停机不收费的t5 实例与停机前的类型保持一致。
重启实例	重启后,t5实例类型不变。
扣款失败	t5无性能约束实例会切换为t5性能约束实例。扣款成功后自动切换回t5无性能约束实例。

查看CPU使用率和CPU积分

您可以在ECS控制台上查看实例的CPU使用率、已消耗CPU积分、累积CPU积分、超额CPU积分 和预支CPU积分。

- 1. 在实例列表中,找到实例,单击实例ID,或者在操作列,单击管理。
- 2. 在监控信息部分查看各项指标。

您也可以远程连接实例后查看CPU使用率:

- · Windows系统:远程连接实例后,在任务管理器中查看CPU使用率。
- · Linux系统: 远程连接实例后,运行top命令查看CPU使用率。

变更实例规格

如果在ECS控制台上看到实例CPU使用率长时间处于基准CPU计算性能,或者基本没有超过基准 CPU计算性能,说明目前的实例规格不一定能满足应用的需求或者超出了应用的需求,您可以考虑 变更实例规格。

根据实例计费方式不同,使用不同的功能变更配置:

- · 包年包月实例:您可以通过升降配变更实例规格。
- · 按量付费实例:您可以使用变更实例规格功能变更配置。

可变配的目标规格族请参见变配规格表。

4.2 共享型

本文介绍入门级实例规格族xn4、n4、mn4和e4,并列出了具体的实例规格。

4.3 通用型

本文介绍通用型实例规格族g5和通用网络增强型实例规格族sn2ne,并列出了具体的实例规格。

通用网络增强型实例规格族 sn2ne

规格族特点

- ・ I/O优化实例
- · 仅支持SSD云盘和高效云盘
- ·处理器与内存配比为1:4
- · 超高网络PPS收发包能力
- ・ 处理器: 2.5 GHz主频的Intel Xeon E5-2682 v4 (Broadwell) 或Platinum 8163 (Skylake
), 计算性能稳定
- · 实例网络性能与计算规格对应(规格越高网络性能越强)
- ・适用场景:
 - 高网络包收发场景,如视频弹幕、电信业务转发等
 - 各种类型和规模的企业级应用
 - 中小型数据库系统、缓存、搜索集群
 - 数据分析和计算
 - 计算集群、依赖内存的数据处理

实例规格	vCPU	内存(GiB)	本地存 储(GiB)	网络 带宽能 力(出/入 (G b it/ s)	网络收 发包能 力(出/入 **(万PPS)	支持 IPv6	多队列	弹性网 卡(包括 一块 主网 卡)
ecs. sn2ne. large	2	8.0	无	1.0	30	是	2	2
ecs. sn2ne. xlarge	4	16.0	无	1.5	50	是	2	3
ecs. sn2ne. 2xlarge	8	32.0	无	2.0	100	是	4	4

实例规格	vCPU	内存(GiB)	本地存 储(GiB)	网络 带宽能 力(出/入 (G b it/ s)	网络收 发包能 力(出/入 **(万PPS)	支持 IPv6	多队列	弹性网 卡(包括 一块 主网 卡)
ecs. sn2ne. 3xlarge	12	48.0	无	2.5	130	是	4	6
ecs. sn2ne. 4xlarge	16	64.0	无	3.0	160	是	4	8
ecs. sn2ne. 6xlarge	24	96.0	无	4.5	200	是	6	8
ecs. sn2ne. 8xlarge	32	128.0	无	6.0	250	是	8	8
ecs. sn2ne. 14xlarge	56	224.0	无	10.0	450	是	14	8

回到目录 查看其他实例规格族。

4.4 计算型

本文介绍密集计算型实例规格族ic5、计算型实例规格族c5和计算网络增强型实例规格 族sn1ne,并列出了具体的实例规格。

4.5 内存型

本文介绍内存型实例规格族r5、内存增强型实例规格族re4、内存增强型实例规格族re4e、内存网络增强型实例规格族se1ne和内存型实例规格族se1,并列出了具体的实例规格。

4.6 大数据型

本文介绍大数据网络增强型实例规格族d1ne和大数据型实例规格族d1,并列出了具体的实例规格。

大数据型实例规格族介绍

d1ne 和 d1 是为 Hadoop 分布式计算、海量日志处理和大型数据仓库等业务场景设计的实例规格 族,旨在解决大数据时代下海量业务数据云上计算和存储难题。适用于互联网行业、金融行业等有 大数据计算与存储分析需求的行业客户,进行海量数据存储和离线计算的业务场景,充分满足以 Hadoop 为代表的分布式计算业务类型对实例存储性能、容量和内网带宽的多方面要求。同时,结 合以 Hadoop 为代表的分布式计算业务的高可用架构设计,d1 和 d1ne 规格族实例采用本地存储 的设计,在保证海量存储空间、高存储性能的前提下,实现与线下 IDC 自建 Hadoop 集群相近的 总拥有成本。

d1ne 和 d1 具有以下特点:

- ·基于企业级架构提供稳定计算能力,保障计算作业的高效处理效率。
- ·更高网络性能(包括单实例最大内网带宽和最大小包转发率),满足业务高峰期实例间数据交互 需求(譬如 MapReduce 计算框架下 Shuffle 过程)。
- ・ 単磁盘 190 MB/s 顺序读写性能(首次创建实例时,磁盘需要预热才能达到最高性能),单实例 最大 5 GB/s 存储吞吐能力,缩短 HDFS 文件读取和写入时间。
- ・本地存储价格比 SSD 云盘降低 97%,大大降低 Hadoop 集群建设成本。

使用 d1ne 和 d1 时请注意:

- · d1 与 d1ne 均不支持变更配置。
- · 当前暂不支持宕机迁移,后续支持时间请留意官网通知。
- ・您不能单独购买本地磁盘,只能在创建 d1 或 d1ne 实例时同时购买本地磁盘。本地磁盘的数量 和容量由您选择的实例规格决定。
- ・当前不支持快照。因此,如果您需要为 d1 和 d1ne 实例创建全镜像,建议通过组合系统盘快照 和数据盘(仅限云盘)快照的方式来创建。
- · 目前您不能基于实例 ID 创建全镜像,所以您也不能使用自定义镜像创建 d1 或 d1ne 实例。
- · d1和 d1ne 实例的数据盘是本地磁盘,有丢失数据的风险(比如宿主机宕机时),如果您的应用不能做到数据可靠性的架构,我们强烈建议您使用云盘搭建您的实例。请勿在本地磁盘上存储需要长期保存的业务数据,并及时做好数据备份和采用高可用架构。如需长期保存,建议将数据存储在云盘上。d1和 d1ne 可以挂载 SSD 云盘。挂载的云盘支持扩容。

·操作带本地磁盘的实例和数据保留关系如下表所示:

操作	本地磁盘数据状态	说明
操作系统重启/控制台重启/强 制重启	保留	本地磁盘存储卷保留,数据保 留。
操作系统关机/控制台停止/强 制停止	保留	本地磁盘存储卷保留,数据保 留。
控制台上释放(实例)	擦除	本地磁盘存储卷擦除,数据不 保留。

4.7 本地SSD型

本文介绍本地SSD型实例规格族i2、i2g和i1,并列出了具体的实例规格。

i1特点和注意事项

i1实例属于高I/O型本地盘存储实例,是专为对存储I/O性能有极高要求的业务场景而设计。适用于 网络游戏、电商、视频直播、媒体等提供在线业务的行业客户,满足I/O密集型应用对块存储的低 时延和高I/O性能需求。适用于对存储I/O性能有较高要求,同时具备应用层高可用架构的业务场 景,如NoSQL非关系型数据库、MPP数据仓库、分布式文件系统等。

i1具有以下特点:

- ・在大型数据库业务场景下,具备每秒数万至数十万次低延迟性随机IOPS读写能力。
- ・在大数据、并行计算等大型数据集业务场景下,具备高达数GiB的顺序读写吞吐能力。
- ·基于本地NVMe SSD磁盘资源,在提供高达数十万随机I/O读写能力的同时,保持在µs级别的时 延水平。

使用i1时请注意:

- ・当前暂不支持变配和宕机迁移,后续支持时间请留意官网通知。
- ·本地盘当前不支持快照功能,因此在需要对i1规格族实例创建全镜像时,建议通过组合系统盘快 照和数据盘(仅限云盘)快照的方式来创建。目前不支持基于实例ID创建全镜像。
- · i1实例专为对存储I/O性能有极高要求的业务场景而设计的存储产品,本地盘与特定规格的实例 相绑定,不可单独购买,不可卸载并挂载到另一台实例上使用。
- · i1实例的数据盘是本地盘,有丢失数据的风险(比如NVMe SSD故障或宿主机故障时),如果 您的应用不能做到数据可靠性的架构,我们强烈建议您使用云盘搭建您的实例。
·本地盘实例的操作和数据保留关系如下表所示。

操作	本地磁盘数据状态	说明
操作系统重启/控制台重启/强 制重启	保留	本地磁盘存储卷保留,数据保 留。
操作系统关机/控制台停止/强 制停止	保留	本地磁盘存储卷保留,数据保 留。
控制台上释放(实例)	擦除	本地磁盘存储卷擦除,数据不 保留。

·请勿在本地盘上存储需要长期保存的业务数据,并及时做好数据备份和采用高可用架构。如需长期保存,建议将数据存储在云盘上。

· VPC网络内,2018年3月1日前欠费或到期停机的i1实例,在15天内本地盘会保留。2018年3月 1日后欠费或到期停机的实例,本地盘在15天内会随实例计算资源(vCPU+内存)一起释放。

4.8 高主频型

本文介绍高主频计算型实例规格族hfc5和高主频通用型实例规格族hfg5,并列出了具体的实例规格。

4.9 GPU计算型

4.9.1 什么是GPU计算型实例

本文介绍GPU计算型实例规格族vgn5i、gn6i、gn6v、gn5、gn5i和gn4,并列出了具体的实例 规格。

4.9.2 创建GPU计算型实例

GPU计算型实例必须安装GPU驱动才可以使用。您可以在创建实例时自动安装GPU驱动,也可以 在实例创建后手动安装GPU驱动。本文介绍如何创建GPU计算型实例并自动安装驱动。

注意事项

如果您使用了自动安装GPU驱动功能,请注意:

- · 自动安装只支持Linux公共镜像。
- 自动安装过程受不同实例规格的内网带宽和CPU核数的影响,安装时间约4~10分钟,在安装过程中无法使用GPU,请勿对实例进行任何操作,也不要安装其它GPU相关软件,以防自动安装失败,导致实例不可用。
- ·如果您在创建完成后更换操作系统,请确保使用同一镜像或者为可自动安装CUDA和GPU驱动的镜像,以防自动安装失败。

- ·您可以远程连接实例,通过安装日志查看安装进程和结果:
 - 如果您勾选了自动安装GPU驱动,安装日志位于/root/nvidia_install.log。
 - 如果您在实例自定义数据配置nvidia_install_v2.0版本的安装脚本,安装日志位于/root/ nvidia/nvidia_install.log。

操作步骤

本步骤重点介绍GPU计算型实例相关的配置,您可以参见创建ECS实例了解其它通用配置。

- 1. 前往ECS售卖页。
- 2. 完成基础配置。在选择配置时,请注意:
 - ・地域:请根据表格提供GPU计算型实例的地域和可用区选择地域和可用区。如果售卖页显示
 的地域和可用区和表格不一致,以售卖页为准。
 - ・ 实例:定位到异构计算GPU/FPGA > GPU计算型,然后根据需求选择实例规格。
 - · 镜像: 部分Linux公共镜像支持自动安装CUDA和GPU驱动, 支持的镜像请参见支持自动安装的镜像。

如果您选择的镜像支持自动安装驱动,勾选自动安装GPU驱动,并选择驱动版本。如果是新 业务系统,建议选择最新的版本。

如果您不勾选自动安装GPU驱动,或者镜像不支持自动安装,则需要在实例自定义数据模块 下配置安装脚本,或者在创建实例后手动安装GPU驱动。如何配置安装脚本,请参见脚本版 本。

📕 说明:

如果调用RunInstances创建GPU计算型实例,必须通过UserData参数上传安装脚本,脚本内容需要采用Base64方式编码。

■ 镜像 *	公共镜像	目定义镜像 共享镜像	镜像市场	0	
	CentOS	✔ 7.6 64位		~	✔ 安全加固 ?
	✓ 自动安装 GPU 驱动	?			
	CUDA 版本 9.1.85 / Dr	iver 版本 390.46	^		
	CUDA 版本 9.1.85 >	Driver 版本 390.46			
▲ 存储	CUDA版本 9.0.176 >				
• 云盘参数和性能	CUDA版本 8.0.61 >				

- 3. 完成网络和安全组配置。在选择配置时,请注意:
 - · 网络: 选择专有网络。
 - · 公网带宽:请根据您的业务需要选择带宽。

🕛 注意:

如果您在基础配置中选用了Windows 2008 R2及以下版本的镜像,在GPU驱动安装生效 后,您将无法通过管理终端连接GPU计算型实例,远程连接时会始终显示黑屏或停留在启动 界面。您需要在此处勾选分配公网IP地址,或者在创建实例后绑定弹性公网IP,以便通过其 他协议连接实例,例如RDP(Windows自带的远程连接)、PCOIP、XenDeskop HDX 3D等。其中RDP不支持DirectX、OpenGL等应用,您需要自行安装VNC服务和客户端。

- 4. 完成系统配置。在选择配置时,请注意:
 - 登录凭证:建议选择密钥对或自定义密码。如果您选择创建后设置,通过管理终端登录实例
 时必须绑定SSH密钥对或者重置密码,然后重启实例使修改生效。如果此时GPU驱动尚未安
 装完成,重启操作会导致安装失败。
 - ・ 实例自定义数据:
 - 如果您在基础配置页面的镜像中选择了自动安装GPU驱动,此处会显示自动安装CUDA和GPU驱动的注意事项和Shell脚本内容。

- 如果您未选择自动安装GPU驱动,可以在实例自定义数据处配置安装脚本,脚本示例请参 见实例自定义数据方式安装脚本。
- 5. 根据需要完成分组设置并确认订单,完成创建GPU计算型实例。

・如果您配置了自动安装脚本,实例启动后会自动安装GPU驱动。安装完成后实例会自动重
 启,重启过后GPU驱动才能正常工作。

GPU驱动在Persistence Mode下工作更稳定。安装脚本会自动开启GPU驱动的
 Persistence Mode,并将该设置添加到Linux系统的自启动脚本中,确保实例重启后还能
 默认开启Persistence Mode。

提供GPU计算型实例的地域和可用区

提供各GPU计算型实例规格族的地域和可用区如下表所示:

实例规格	地域和可用区
gn4	・ 华北2(可用区A)、华东2(可用区B) ・ 华南1(可用区C)
gn5	 ・ 华北2(可用区C、E)、华北5(可用区A) ・ 华东1(可用区G、F)、华东2(可用区D、B、E) ・ 华南1(可用区D) ・ 香港(可用区C、B) ・ 亚太东南1(可用区B、A)、亚太东南2(可用区A)、亚太东南3(可用区A)、亚太东南5(可用区A) ・ 美国西部1(可用区B、A)、美国东部1(可用区B、A) ・ 欧洲中部1(可用区A)
gn5(部署NGC环境)	部分地域下的gn5实例不支持部署NGC(NVIDIA GPU CLOUD)环 境,更多信息请参见在gn5实例上部署NGC环境。
gn5i	・ 华北2(可用区C、E、A) ・ 华东1(可用区B)、华东2(可用区D、B) ・ 华南1(可用区A)
gn6v	华东2(可用区F)

支持自动安装的镜像

支持自动安装CUDA和GPU驱动的镜像如下:

镜像来源	镜像版本
公共镜像	支持如下版本:
	 CentOS 64位(目前提供的所有版本都支持) Ubuntu16.04 64位镜像 SUSE Linux Enterprise Server 12 SP2 64位镜像

镜像来源	镜像版本
镜像市场	请按以下方式获取:
	 · 搜索NVIDIA并选择需要的镜像,目前只支持CentOS 7.3。 · 如果GPU计算型实例用于深度学习,您可以选择预装深度学习框架的 镜像。搜索深度学习并选择需要的镜像,目前只支持CentOS 7.3。

脚本版本

实例首次启动时, cloud-init会自动执行Shell脚本安装CUDA和GPU驱动。

·如果您勾选了自动安装GPU驱动,实例会使用安装脚本的nvidia_install_v1.0版本。目前,可选的CUDA和GPU驱动版本如下:

CUDA	GPU驱动	支持的实例规格
9.1.85	390.46	- gn5 - gn5i - gn6v - gn4
9.0.176	- 390.46 - 384.125 - 384.111	- gn5 - gn5i - gn6v - gn4
8.0.61	- 390.46 - 384.125 - 384.111	- gn5 - gn5i - gn4

·如果您在实例自定义数据配置安装脚本,建议使用安装脚本的nvidia_install_v2.0版本,脚本 内容请参见实例自定义数据方式安装脚本。nvidia_install_v2.0版本具有以下优势:

- 提供最新版本的CUDA、GPU驱动和cuDNN库。
- 登录实例后,如果正在安装驱动,您可以看到安装进度条,如果已经安装完成,无论是否成功,您可以看到安装结果提示(NVIDIA INSTALL OK或NVIDIA INSTALL FAIL)。

使用nvidia_install_v2.0版本时,您需要修改安装脚本的以下参数,指定GPU驱动、CUDA、cuDNN版本号,例如:

```
driver_version="410.79"
cuda_version="9.0.176"
```

cudnn_version="7.4.2"

目前支持的CUDA、GPU驱动和cuDNN库版本如下:

CUDA	GPU驱动	cuDNN
10.0.130	410.79	- 7.4.2 - 7.3.1
9.2.148	- 410.79 - 396.44	- 7.4.2 - 7.3.1 - 7.1.4
9.0.176	- 410.79 - 396.44 - 390.46	- 7.4.2 - 7.3.1 - 7.1.4 - 7.0.5
8.0.61	- 410.79 - 396.44 - 390.46	- 7.1.3 - 7.0.5

实例自定义数据方式安装脚本

通过实例自定义数据方式安装驱动时,建议使用安装脚本的nvidia_install_v2.0版本,脚本内容如下:

#!/bin/sh

```
driver version=$1
cuda version=$2
cudnn_version=$3
NVIDIA_DIR="/root/nvidia"
log=${NVIDIA_DIR}"/nvidia_install.log"
PROCESS_NAME="/var/lib/cloud/instance/scripts/part-001"
DRIVER_PROCESS_NAME=${NVIDIA_DIR}"/NVIDIA-Linux-x86_64"
CUDA_PROCESS_NAME=${NVIDIA_DIR}"/cuda"
CUDNN_PROCESS_NAME=${NVIDIA_DIR}"/cudnn"
DOWNLOAD_PROCESS_NAME="wget"
SUCCESS_STR="NVIDIA INSTALL OK"
DOWNLOAD_SUCCESS_STR="Download OK"
DRIVER_FAIL_STR="Driver INSTALL FAIL"
CUDA_FAIL_STR="CUDA INSTALL FAIL"
CUDNN_FAIL_STR="CUDNN INSTALL FAIL"
DOWNLOAD_FAIL_STR="Download FAIL"
install_notes="The script automatically downloads and installs a
NVIDIA GPU driver and CUDA/CUDNN library.
1. The installation takes 6 to 10 minutes, depending on the intranet
bandwidth and the quantity of vCPU cores of the instance. Please do
```

```
not operate the GPU or install any GPU-related software until the GPU
driver is installed successfully.
2. After the GPU is installed successfully, the instance will restarts
automatically."
check_install()
{
    b=''
    if [ "$1" = "NVIDIA" ]; then
         ProcessName=$DRIVER_PROCESS_NAME
         t=2
    elif [ "$1" = "cuda" ]; then
         ProcessName=$CUDA_PROCESS_NAME
         t=2.5
    elif [ "$1" = "cudnn" ]; then
         ProcessName=$CUDNN_PROCESS_NAME
         t = 0.5
    fi
    i=0
    while true
    do
         pid_num=$(ps -ef | grep $ProcessName |grep -v grep | wc -l)
         if [ $pid_num -eq 0 ]; then
str=$(printf "%-100s" "#")
             b=$(echo "$str" | sed 's/ /#/g')
printf "| %-100s | %d%% \r\n" "$b" "100";
             break
         fi
         i=$(($i+1))
         str=$(printf "%-${i}s" "#")
         b=$(echo "$str" | sed 's/ /#/g')
printf "| %-100s | %d%% \r" "$b" "$i";
         sleep $t
    done
    echo
    return 0
}
check_download()
{
    name=$1
    i=0
    b=''
    filesize=0
    percent=0
    sleep 0.5
    while true
    do
         pid_num=$(ps -ef | grep wget |grep $name |grep -v grep | wc -l
)
         if [ $pid_num -eq 0 ]; then
              filesize=$(du -sk /root/nvidia/${name}* | awk '{print $1
}')
              str=$(printf "%-100s" "#")
             b=$(echo "$str" | sed 's/ /#/g')
             printf "%-8s| %-100s | %d%% \r\n" "${filesize}K" "$b" "100
";
             break
         fi
         line=$(tail -2 /root/nvidia/nvidia_install.log)
filesize=$(echo $line | awk -F ' ' '{print $1}')
         percent=$(echo $line | awk -F '%' '{print $1}' | awk -F ' ' '{
print $NF}')
```

```
if [ "$percent" -ge 0 ] 2>/dev/null ;then
            str=$(printf "%-${percent}s" "#")
           b=$(echo "$str" | sed 's/ /#/g')
printf "%-8s| %-100s | %d%% \r" "${filesize}" "$b" "$
percent";
        else
             continue
        fi
        sleep 0.5
    done
    return 0
}
check_install_log()
{
    if [ ! -f "$log" ];then
        echo "NVIDIA install log $log not exist! Install may fail!"
        echo
        exit 1
    fi
    if [ "$1" = "NVIDIA" ]; then
        succstr=$SUCCESS_STR
        str2=$(cat $log |grep "INSTALL_ERROR")
        echo
        if [ -n "$succstr" ] && [ -z "$str2" ]; then
             echo "$succstr !!"
             echo
             return 0
        else
             echo "NVIDIA install may have some INSTALL_ERROR, please
check log $log !"
             return 1
        fi
    fi
    if [ "$1" = "DRIVER" ]; then
        failstr=$DRIVER_FAIL_STR
    elif [ "$1" = "CUDA" ]; then
        failstr=$CUDA_FAIL_STR
    elif [ "$1" = "CUDNN" ]; then
        failstr=$CUDNN_FAIL_STR
    fi
    str1=$(cat $log |grep "$failstr")
if [ -n "$str1" ] ;then
        echo
        echo "NVIDIA $failstr ! please check install log $log !"
        return 1
    fi
}
check_install_process()
Ł
    echo "CHECKING NVIDIA INSTALL, PLEASE WAIT ....."
    echo "$install_notes"
    echo
    while true
    do
        pid_num=$(ps -ef | grep $PROCESS_NAME |grep -v grep | grep -v
        wc -l)
check |
        if [ $pid_num -eq 0 ];then
             check_install_log "NVIDIA"
```

return 0 else pid_num=\$(ps -ef | grep \$DOWNLOAD_PROCESS_NAME |grep driver |grep -v grep | wc -l) if [\$pid_num -gt 0];then echo "Driver-\${1} downloading, need 10 seconds. Remaining installation time 360 - 600 seconds!" check_download "NVIDIA" fi pid_num=\$(ps -ef | grep \$DOWNLOAD_PROCESS_NAME |grep cuda |grep -v grep | wc -l) if [\$pid_num -gt 0];then echo "CUDA-\${2} downloading, need 150 or more seconds . Remaining installation time 350 - 590 seconds!" while true do check_download "cuda" sleep 1 pid_num=\$(ps -ef | grep \$DOWNLOAD_PROCESS_NAME | grep cuda |grep -v grep | wc -l) if [\$pid_num -eq 0];then break fi done fi pid_num=\$(ps -ef | grep \$DOWNLOAD_PROCESS_NAME |grep cudnn |grep -v grep | wc -l) if [\$pid_num -gt 0];then echo "cuDNN-\${3} downloading, need about 30 seconds. Remaining installation time 200 - 430 seconds!" check_download "cudnn" fi pid_num=\$(ps -ef | grep \$DRIVER_PROCESS_NAME |grep -v grep | wc -l) if [\$pid_num -gt 0];then echo echo "Driver-\${1} installing, need 30 - 160 seconds. Remaining installation time 160 - 400 seconds!" check_install "NVIDIA" check_install_log "DRIVER" fi pid_num=\$(ps -ef | grep \$CUDA_PROCESS_NAME | grep -v grep | wc -l) if [\$pid_num -gt 0];then echo "CUDA-\${2} installing, need 80 - 200 seconds. Remaining installation time 90 - 220 seconds!" check_install "cuda" check_install_log "CUDA" fi pid_num=\$(ps -ef | grep \$CUDNN_PROCESS_NAME |grep -v grep | wc -l) if [\$pid_num -gt 0];then echo "cuDNN-\${3} installing, need 10 seconds. Installation will be successful soon, please wait....." check_install "cudnn" check_install_log "CUDNN" fi fi sleep 1 done }

```
create_nvidia_repo_centos()
{
    baseurl_centos=$(cat /etc/yum.repos.d/CentOS-Base.repo |grep
baseurl | head -1 | awk -F'[/]' '{print $1"//"$3}')
    if [ -z "$baseurl_centos" ]; then
        url="http://mirrors.cloud.aliyuncs.com"
    fi
    cudaurl=$baseurl_centos"/opsx/ecs/linux/rpm/cuda/${version}/\$
basearch/"
    driverurl=$baseurl_centos"/opsx/ecs/linux/rpm/driver/${version}/\$
basearch/"
    echo "[ecs-cuda]" > /etc/yum.repos.d/nvidia.repo
    echo "name=ecs cuda - \$basearch" >> /etc/yum.repos.d/nvidia.repo
    echo $cudaurl >> /etc/yum.repos.d/nvidia.repo
echo "enabled=1" >> /etc/yum.repos.d/nvidia.repo
    echo "gpgcheck=0" >> /etc/yum.repos.d/nvidia.repo
    echo "[ecs-driver]" >> /etc/yum.repos.d/nvidia.repo
    echo "name=ecs driver - \$basearch" >> /etc/yum.repos.d/nvidia.
repo
    echo $driverurl >> /etc/yum.repos.d/nvidia.repo
    echo "enabled=1" >> /etc/yum.repos.d/nvidia.repo
echo "gpgcheck=0" >> /etc/yum.repos.d/nvidia.repo
    yum clean all >> $log 2>&1
    yum makecache >> $log 2>&1
}
disable_nouveau_centos()
{
    echo "blacklist nouveau" > /etc/modprobe.d/blacklist-nouveau.conf
    echo "options nouveau modeset=0" >> /etc/modprobe.d/blacklist-
nouveau.conf
    echo "***exec \"dracut --force\" to regenerate the kernel
initramfs"
    dracut --force
}
disable_nouveau_ubuntu()
{
    echo "blacklist nouveau" > /etc/modprobe.d/blacklist-nouveau.conf
    echo "options nouveau modeset=0" >> /etc/modprobe.d/blacklist-
nouveau.conf
    echo "***exec \"update-initramfs -u\" to regenerate the kernel
initramfs"
    update-initramfs -u
install kernel centos()
{
    kernel_version=$(uname -r)
    kernel devel num=$(rpm -qa | grep kernel-devel | grep $kernel ver
sion | wc - l \rangle
    if [ $kernel_devel_num -eq 0 ];then
        echo "*****exec \"yum install -y kernel-devel-$kernel_version
\""
        yum install -y kernel-devel-$kernel_version
        if [ $? -ne 0 ]; then
             echo "INSTALL_ERROR: install kernel-devel fail!!!"
             return 1
        fi
    fi
    return 0
install_kernel_suse()
{
```

```
kernel_version=$(uname -r|awk -F'-' '{print $1"-"$2}')
    kernel_version\""
        zypper install -y kernel-default-devel=$kernel_version
        if [ $? -ne 0 ]; then
      echo "error: install kernel-default-devel fail!!!"
            return 1
        fi
    fi
install_kernel_ubuntu()
{
    kernel_version=$(uname -r)
    linux_headers_num=$(dpkg --list |grep linux-headers | grep $
kernel_version | wc -l)
    if [ $linux_headers_num -eq 0 ];then
echo "***exec \"apt-get install -y --allow-unauthenticated
linux-headers-$kernel_version\""
        apt-get install -y --allow-unauthenticated linux-headers-$
kernel_version
        if [ $? -ne 0 ]; then
    echo "error: install linux-headers fail!!!"
            return 1
        fi
    fi
}
download()
{
    download_url="${baseurl}/opsx/ecs/linux/binary/nvidia"
    wget ${download_url}/driver/${driver_file}
    if [ $? -ne 0 ]; then
        echo "INSTALL_ERROR: Download driver fail!!! return: $?"
        return 1
    fi
    cudafilelist=$(curl ${download_url}/cuda/${cuda_version}/ |grep "
cuda_${cuda_version}" | awk -F '>' '{print $2}' | awk -F '<' '{print $
1}')
    if [ -z "$cudafilelist" ]; then
        echo "INSTALL_ERROR: Download CUDA fail!!! get cuda-${
cuda_version} filename fail!!"
        return 1
    fi
    mkdir /root/nvidia/cuda
    cd /root/nvidia/cuda
    echo $cudafilelist
    for cudafile in $cudafilelist
    do
        sleep 1
        wget ${download_url}/cuda/${cuda_version}/$cudafile
        if [ $? -ne 0 ]; then
            echo "INSTALL_ERROR: Download CUDA fail!!! wget $cudafile
fail! return: $?"
            return 1
        fi
    done
    chmod +x /root/nvidia/cuda/*
    cd /root/nvidia
    wget ${download_url}/cudnn/${cuda_big_version}/${cudnn_file}
```

```
if [ $? -ne 0 ]; then
        echo "INSTALL_ERROR: Download cuDNN fail!!! return :$?"
        return 1
    fi
    chmod +x /root/nvidia/*
    echo "$DOWNLOAD_SUCCESS_STR !"
    return 0
}
install_driver()
{
    /root/nvidia/$driver_file --silent
    if [ $? -ne 0 ]; then
        echo "INSTALL_ERROR: driver install fail!!!"
        return 1
    fi
    echo "$DRIVER_SUCCESS_STR !"
    return 0
}
install_cuda()
{
    cd /root/nvidia/cuda
    cuda_file=$(ls -S | grep cuda | grep $cuda_version | head -1)
echo "cuda file: "$cuda_file
    if [ -z "$cuda_file" ]
    then
        echo "INSTALL_ERROR: cuda file is null, cuda install fail!!!"
        return 1
    fi
    /root/nvidia/cuda/$cuda_file --silent --toolkit --samples --
samplespath=/root
    if [ $? -ne 0 ]; then
        echo "INSTALL_ERROR: cuda install fail!!!"
        return 1
    fi
    cuda_patchfile=$(ls | grep cuda | grep $cuda_version | grep -v ${
cuda_file})
    for cuda_patch in $cuda_patchfile
    do
        echo "install cuda patch file: "$cuda_patch
        /root/nvidia/cuda/$cuda_patch --silent --installdir=/usr/local
/cuda --accept-eula
        if [ $? -ne 0 ]; then
            echo "INSTALL_ERROR: cuda patch install fail!!!"
            return 1
        fi
    done
    echo "$CUDA_SUCCESS_STR !"
    return 0
}
install_cudnn()
{
    tar zxvf /root/nvidia/$cudnn_file -C /usr/local
    if [ $? -ne 0 ]; then
        echo "INSTALL_ERROR: CUDNN INSTALL FAIL !!!"
        return 1
    fi
    echo "$CUDNN_SUCCESS_STR !"
    return 0
}
```

```
enable_pm()
{
    echo "#!/bin/bash" > /etc/init.d/enable_pm.sh
    echo "nvidia-smi -pm 1" >> /etc/init.d/enable_pm.sh
    echo "exit 0" >> /etc/init.d/enable_pm.sh
    chmod +x /etc/init.d/enable_pm.sh
    str=$(tail -1 $filename |grep "exit")
    if [ -z "$str" ]; then
        echo "/etc/init.d/enable_pm.sh" >> $filename
    else
        sed -i '$i\/etc/init.d/enable_pm.sh' $filename
    fi
    chmod +x $filename
}
issue=$(cat /etc/issue | grep Ubuntu)
if [ -n "$issue" ];then
    os="ubuntu"
    profile_file="/root/.profile"
    filename="/etc/rc.local"
else
    issue=$(cat /etc/issue | grep SUSE)
    if [ -n "$issue" ];then
        os="suse"
        filename="/etc/init.d/after.local"
    else
        os="centos"
        filename="/etc/rc.d/rc.local"
    fi
    profile_file="/root/.bash_profile"
fi
if [ "$1" = "check" ];then
    check_install_process $driver_version $cuda_version $cudnn_version
sed -i '/part-001 /d' $profile_file
    exit 0
else
    mkdir $NVIDIA_DIR
    echo "begin to install, driver: $driver_version, cuda: $cuda_versi
on, cudnn: $cudnn_version " >> $log 2>&1
    driver_file="NVIDIA-Linux-x86_64-"${driver_version}".run"
    cuda_big_version=$(echo $cuda_version | awk -F'.' '{print $1"."$2
}')
    cudnn file="cudnn-"${cuda big version}"-linux-x64-v"${cudnn vers
ion}".tgz"
    echo "sh /var/lib/cloud/instance/scripts/part-001 check" | tee -a
 $profile_file
fi
echo "os:$os" >> $log 2>&1
if [ "$os" = "ubuntu" ]; then
    disable_nouveau_ubuntu >> $log 2>&1
    if [ -f "/etc/apt/sources.list.d/sources-aliyun-0.list" ];                      then
        repo_file="/etc/apt/sources.list.d/sources-aliyun-0.list"
    else
        repo_file="/etc/apt/sources.list"
    fi
```

```
baseurl=$(cat $repo_file |grep "^deb" | head -1 | awk -F'[/]' '{
print $1"//"$3}' |awk -F ' ' '{print $2}')
     if [ -z "$baseurl" ]; then
         baseurl="http://mirrors.cloud.aliyuncs.com"
    fi
elif [ "$os" = "suse" ]; then
    baseurl=$(cat /etc/zypp/repos.d/SLES12-SP2-0.repo |grep baseurl |
head -1| awk -F'[=/]' '{print $2"//"$4}')
if [ -z "$baseurl" ]; then
         baseurl="http://mirrors.cloud.aliyuncs.com"
    fi
elif [ "$os" = "centos" ]; then
baseurl=$(cat /etc/yum.repos.d/CentOS-Base.repo |grep baseurl |
head -1 | awk -F'[/]' '{print $1"//"$3}' |awk -F '=' '{print $2}')
if [ -z "$url" ]; then
         baseurl="http://mirrors.cloud.aliyuncs.com"
     fi
    if [ ! -f "/usr/bin/lsb_release" ]; then
        pkgname=$(yum provides /usr/bin/lsb_release |grep centos|grep
x86_64 |head -1 |awk -F: '{print $1}')
if [ -z "$pkgname" ]; then
             echo "INSTALL_ERROR: /usr/bin/lsb_release pkg not exists!"
 >> $log 2>&1
             exit 1
        fi
        yum install -y $pkgname >> $log 2>&1
     fi
     if [ ! -f "/usr/bin/gcc" ]; then
         yum install -y gcc
     fi
    disable_nouveau_centos >> $log 2>&1
    str=$(lsb_release -r | awk -F'[:.]' '{print $2}')
version=$(echo $str | sed 's/ //g')
    create_nvidia_repo_centos
fi
install_kernel_${os} >> $log 2>&1
if [ $? -ne 0 ]; then
    echo "INSTALL_ERROR: kernel-devel install fail!!!!" >> $log 2>&1
    exit 1
fi
cd /root/nvidia
begin download=$(date '+%s')
download >> $log 2>&1
if [ $? -ne 0 ]; then
    exit 1
fi
end_download=$(date '+%s')
time_download=$((end_download-begin_download))
echo "NVIDIA download OK! Using time $time_download s !!" >> $log 2>&1
begin=$(date '+%s')
install_driver >> $log 2>&1
if [ $? -ne 0 ]; then
    exit 1
fi
end=$(date '+%s')
time_install=$((end-begin))
```

```
echo "NVIDIA install driver OK! Using time $time_install s !!" >> $log
 2>&1
begin=$(date '+%s')
install_cuda >> $log 2>&1
if [ $? -ne 0 ]; then
    exit 1
fi
end=$(date '+%s')
time_install=$((end-begin))
echo "NVIDIA install cuda OK! Using time $time_install s !!" >> $log
2>&1
begin=$(date '+%s')
install_cudnn >> $log 2>&1
if [ $? -ne 0 ]; then
    exit 1
fi
end=$(date '+%s')
time_install=$((end-begin))
echo "NVIDIA install cudnn OK! Using time $time_install s !!" >> $log
2>&1
enable_pm
echo "reboot....." >> $log 2>&1
sleep 2
reboot
```

相关文档

- ・如果在创建实例时没有安装GPU驱动,则必须在创建后手动安装。具体操作,请参见手动安装GPU驱动。
- · 如果gn5、gn5i、gn6v、vgn5i或gn6i实例需要支持OpenGL图形显示,必须安装GRID驱动,具体操作,请参见在GPU计算型实例中安装GRID驱动。
- ·您可以手动卸载GPU驱动和CUDA,具体操作请参见从GPU计算型实例中卸载GPU驱动。
- ・您可以通过云监控控制台或API查看GPU监控数据,具体操作请参见GPU监控。

4.9.3 手动安装GPU驱动

如果在创建实例时没有自动安装GPU驱动,您必须在创建后手动安装。本文介绍如何下载和手动安装GPU驱动。

下载GPU驱动

- 1. 进入NVIDIA 官网。
- 2. 手动查找适用于实例的驱动程序,并单击搜索。筛选信息说明如下表所示。

信息项	gn4	gn5	gn5i	gn6v	gn6i
产品类型	Tesla	Tesla	Tesla	Tesla	Tesla
产品系列	M-Class	P-Series	P-Series	V-Series	T-Series
产品家族	M40	Tesla P100	Tesla P4	Tesla V100	Tesla T4

信息项	gn4	gn5	gn5i	gn6v	gn6i
操作系统	根据实例的镜像	总选择对应的版本	• •		
	 逆 说明: · 如果下拉列 有操作系统 · Debian操(表中没有显示服 。 乍系统,选择Lin	务器操作系统, nux 64-bit。	请单击下拉列表	底部的选择所

3. 确认无误后,单击下载按钮。

为Linux实例安装GPU驱动

```
说明:
```

```
vgn5i实例的驱动安装不适用以下步骤,详细步骤请参见在vgn5i实例(Linux)中安装GRID驱
动。
```

1. 下载并安装kernel对应版本的kernel-devel和kernel-header包。

```
说明:
```

kernel-devel和kernel版本不一致会导致在安装driver rpm过程中driver编译出错。您可以 在实例里运行rpm -qa | grep kernel检测版本是否一致。确认版本后,再重新安装驱动。

2. 运行命令sudo rpm -qa | grep \$(uname -r),确认已经完成下载并安装kerneldevel和kernel-header包:

以CentOS 7.3为例,如果出现以下类似信息,表示已经完成安装。

```
kernel-3.10.0-514.26.2.el7.x86_64
kernel-headers-3.10.0-514.26.2.el7.x86_64
kernel-tools-libs-3.10.0-514.26.2.el7.x86_64
python-perf-3.10.0-514.26.2.el7.x86_64
kernel-tools-3.10.0-514.26.2.el7.x86_64
```

3. 按NVIDIA官网GPU驱动下载页的其他信息描述安装GPU驱动。

以Linux 64-bit Ubuntu 14.04为例:

为Windows实例安装GPU驱动

说明:

vgn5i实例的驱动安装不适用以下步骤,详细步骤请参见在vgn5i实例(Windows)中安装GRID驱动。

直接双击安装文件,按提示完成GPU驱动安装。

📕 说明:

对于Windows系统,GPU驱动安装生效后,Windows自带的远程连接(RDP)协议不支 持DirectX、OpenGL等相关应用。您需要自行安装VNC服务和客户端,或其它支持的协议,例 如PCOIP、XenDeskop HDX 3D等。

4.9.4 手动卸载GPU驱动

您可以手动卸载GPU驱动,卸载命令视安装脚本版本和镜像类型而定。

背景信息

文中以Driver 390.46、CUDA 9.0.176为例,登录root用户操作。如果您是普通用户,请使用 sudo命令进入root权限执行以下命令。

nvidia_install_v1.0版本使用的安装包格式为rpm或者deb, nvidia_install_v2.0版本使用的安装包格式为runfile。

卸载通过nvidia_install_v1.0版本安装的驱动

·如果操作系统为Ubuntu,建议您按照以下步骤卸载:

1. 运行以下命令卸载GPU驱动。

apt-get remove --purge nvidia-390 nvidia-modprobe nvidia-settings apt-get remove nvidia-diag-driver-local-repo-ubuntu1604-390.46

2. (可选)运行以下命令卸载X server。

如果您之前使用deb包安装了驱动,直接使用runfile包安装驱动会报错:存在X server。 您需要先卸载或停止X server并重启实例,再使用runfile包安装驱动。

apt-get remove xserver-xorg xserver-xorg-core

3. 运行以下命令卸载CUDA。

apt autoremove --purge cuda-9.0

4. 运行以下命令重启实例。

reboot

- ·如果操作系统为CentOS 7,建议您按照以下步骤卸载:
 - 1. 运行以下命令卸载GPU驱动。

yum remove xorg-x11-drv-nvidia nvidia-kmod cuda-drivers yum remove nvidia-diag-driver-local-repo-rhel7-390.46

2. 运行以下命令卸载CUDA。

```
yum remove /usr/local/cuda-9.0
```

3. 运行以下命令重启实例。

reboot

- ·如果操作系统为CentOS 6,建议您按照以下步骤卸载:
 - 1. 运行以下命令卸载GPU驱动。

```
yum remove xorg-x11-drv-nvidia nvidia-kmod cuda-drivers
yum remove nvidia-diag-driver-local-repo-rhel6-390.46
```

2. 运行以下命令卸载CUDA。

yum remove /usr/local/cuda-9.0

3. 运行以下命令重启实例。

reboot

卸载通过nvidia_install_v2.0版本安装的驱动

建议您按照以下步骤卸载:

1. 运行以下命令卸载GPU驱动。

/usr/bin/nvidia-uninstall

2. 运行以下命令卸载CUDA和cuDNN库。

/usr/local/cuda/bin/uninstall_cuda_9.0.pl

rm -rf /usr/local/cuda-9.0

4.9.5 在GPU计算型实例中安装GRID驱动

本文介绍如何在操作系统为Linux的GPU计算型实例中安装GRID驱动,并搭建桌面显示环境。

背景信息

如果您的GPU计算型实例(gn5、gn5i、gn6v、vgn5i或gn6i实例)需要OpenGL图形支持,必 须在实例上安装GRID驱动。GPU计算型实例自带的Nvidia GPU计算卡,如P100、P4、V100 等,因为NVIDIA GRID License而限制了GPU图形功能,您可以使用NVIDIA官方发布的试用版 GRID驱动满足使用OpenGL图形功能的需求。

前提条件

・ 您需要创建一台GPU计算型实例,确保实例能访问公网。具体操作,请参考创建GPU计算型实例。

建议您选择公共镜像中的镜像。如果您选择了镜像市场中预装NVIDIA驱动的镜像,创建实例 后您必须按照此方法禁用Nouveau驱动:在/etc/modprobe.d目录下创建一个 nouveau. conf文件,添加blacklist nouveau。

・在本地机器上已经安装了VNC连接软件,比如本示例中使用的VNC Viewer。

在Ubuntu 16.04 64-bit中安装GRID驱动

按以下方式安装GRID驱动。

- 1. 远程连接Linux实例。
- 2. 依次运行以下命令升级系统并安装KDE桌面。

```
apt-get update
apt-get upgrade
apt-get install kubuntu-desktop
```

- 3. 运行reboot 重启系统。
- 4. 再次远程连接Linux实例,并运行以下命令下载NVIDIA GRID驱动包。

NVIDIA GRID驱动包中有多个系统的GRID驱动。Linux GRID驱动是NVIDIA-Linux-

 $x86_64-390.57$ -grid.run_o

```
wget http://nvdia-driver-410.oss-cn-shenzhen.aliyuncs.com/NVIDIA-
Linux-x86_64-410.39-grid.run
```

5. 依次运行以下命令,并按界面提示安装NVIDIA GRID驱动。

chmod 777 NVIDIA-Linux-x86_64-410.39-grid.run

```
./NVIDIA-Linux-x86_64-410.39-grid.run
```

6. 运行命令nvidia-smi 测试驱动安装结果。

如果返回以下类似结果,说明驱动已经成功安装。

\$nvidia-smi Wed Apr 10 10:24:5	8 2019		4
NVIDIA-SMI 410.3	9	Driver Version: 410	.39
 GPU Name Fan Temp Perf	Persistence-M Pwr:Usage/Cap	Bus-Id Disp.A Memory-Usage	Volatile Uncorr. ECC GPU-Util Compute M.
0 Tesla P4 N/A 34C P8	On 10W / 75W	00000000:05:00.0 Off 25MiB / 8191MiB	
1 Tesla P4 N/A 32C P8	On 11W / 75W	00000000:87:00.0 Off 25MiB / 8191MiB	Off 0% Default
+			+
Processes: GPU PID ====================================	Type Process	s name	GPU Memory Usage
No running proc	esses found		 ++

- 7. 按以下步骤添加License服务器并激活License。
 - a. 切换到/etc/nvidia目录: cd /etc/nvidia。
 - b. 创建gridd.conf文件: cp gridd.conf.template gridd.conf。
 - c. 在gridd.conf文件中添加License服务器的信息。

说明:

您需要向NVIDIA购买License后自行搭建License服务器。

```
ServerAddress=License服务器的IP
ServerPort=License服务器的端口(默认为7070)
FeatureType=2
EnableUI=TRUE
```

8. 运行命令安装x11vnc。

apt-get install x11vnc

9. 运行命令lspci | grep NVIDIA 查询GPU BusID。

本示例中, 查询到的GPU BusID为00:07.0。

10.配置X Server环境并重启。

- a. 运行命令nvidia-xconfig --enable-all-gpus --separate-x-screens。
- b. 编辑/etc/X11/xorg.conf, 在Section "Device" 段添加GPU BusID, 如本示例中为 BusID "PCI:0:7:0"。
- c. 运行reboot 重启系统。

在Ubuntu 16.04 64-bit中测试GRID驱动

按以下步骤测试GRID驱动。

1. 运行命令安装GLX测试程序。

apt-get install mesa-utils

2. 运行命令startx 启动X Server。

📃 说明:

- ·如果没有startx命令,执行apt-get install xinit命令安装。
- startx 启动时可能会提示hostname: Name or service not known。这个提示不会 影响X Server启动。您可以运行命令hostname 查得主机名后,再修改/etc/hosts文件,将 127.0.0.1 后的hostname 改为本机的hostname。
- 3. 开启一个新的SSH客户端终端,运行命令启动x11vnc。

x11vnc -display :1

如果看到如下图所示的信息,表示x11vnc已经成功启动。此时,您能通过VNC Viewer等VNC远程连接软件连接实例。

- 4. 登录ECS控制台,在实例所在安全组中添加安全组规则,允许TCP 5900端口的入方向访问。
- 5. 在本地机器上,使用VNC Viewer等VNC远程连接软件,通过实例公网IP地址:5900 连接实例,进入KDE桌面。
- 6. 按以下步骤使用glxinfo 命令查看当前GRID驱动支持的配置。
 - a. 开启一个新的SSH客户端终端。
 - b.运行命令export DISPLAY=:1。
 - c. 运行命令glxinfo -t 列出当前GRID驱动支持的配置。

- 7. 按以下步骤使用glxgears 命令测试GRID驱动。
 - a. 在KDE桌面上,右键单击桌面,并选择Run Command。
 - b. 运行glxgears 启动齿轮图形测试程序。如果出现如下图所示的窗口,表明GRID驱动正常工作。

在CentOS 7.3 64-bit中装GRID驱动

按以下方式安装GRID驱动。

- 1. 远程连接Linux实例。
- 2. 依次运行以下命令升级系统并安装KDE桌面。

```
yum update
yum install kernel-devel
yum groupinstall "KDE Plasma Workspaces"
```

- 3. 运行reboot 重启系统。
- 4. 再次远程连接Linux实例,并运行以下命令下载并解压NVIDIA GRID驱动包。

NVIDIA GRID驱动包中包含多个系统的GRID驱动,其中,LINUX GRID驱动是NVIDIA-Linux-x86_64-390.57-grid.run。

wget http://nvdia-driver-410.oss-cn-shenzhen.aliyuncs.com/NVIDIA-Linux-x86_64-410.39-grid.run

- 5. 按以下步骤关闭nouveau驱动。
 - a. 运行vim /etc/modprobe.d/blacklist.conf, 添加blacklist nouveau。
 - b.运行vim /lib/modprobe.d/dist-blacklist.conf, 添加以下内容。

blacklist nouveau
options nouveau modeset=0

- c. 运行mv /boot/initramfs-\$(uname -r).img /boot/initramfs-\$(uname -r)nouveau.img。
- d.运行dracut /boot/initramfs-\$(uname -r).img \$(uname -r)。
- 6. 运行reboot 重启系统。
- 7. 依次运行以下命令,并按界面提示安装NVIDIA GRID驱动。

chmod 777 NVIDIA-Linux-x86_64-410.39-grid.run

./NVIDIA-Linux-x86_64-410.39-grid.run

8. 运行命令nvidia-smi 测试驱动是否安装成功。

如果返回以下类似结果,说明驱动已经成功安装。

\$nvidia-s Wed Apr	smi 10 10:24:	58 2019		
NVIDIA	-SMI 410.	39	Driver Version: 410	.39
GPU Na Fan Te	ame emp Perf	Persistence-M Pwr:Usage/Cap	Bus-Id Disp.A Memory-Usage	Volatile Uncorr. ECC GPU-Util Compute M.
 0 Te N/A :	esla P4 34C P8	On 10W / 75W	00000000:05:00.0 Off 25MiB / 8191MiB	Off 0% Default
1 Te N/A 3	esla P4 32C P8	On 11W / 75W	00000000:87:00.0 Off 25MiB / 8191MiB	Off 0% Default
+				*
Process GPU ========	ses: PID	Type Process	; name	GPU Memory Usage
No ru +	nning pro	cesses found		

- 9. 按以下步骤添加License服务器并激活License。
 - a. 切换到/etc/nvidia目录: cd /etc/nvidia。
 - b. 创建gridd.conf文件: cp gridd.conf.template gridd.conf。
 - c. 在gridd.conf文件中添加License服务器的信息。

说明:

您需要向NVIDIA购买License后自行搭建License服务器。

```
ServerAddress=License服务器的IP
ServerPort=License服务器的端口(默认为7070)
FeatureType=2
EnableUI=TRUE
```

10.安装x11vnc。

yum install x11vnc

11.运行命令lspci | grep NVIDIA 查询GPU BusID。

本示例中, 查询到的GPU BusID为00:07.0。

12.配置X Server环境:

- a. 运行命令nvidia-xconfig --enable-all-gpus --separate-x-screens。
- b. 编辑/etc/X11/xorg.conf, 在Section "Device" 段添加GPU BusID, 如本示例中为 BusID "PCI:0:7:0"。

13.运行reboot 重启系统。

在CentOS 7.3 64-bit中测试GRID驱动

按以下步骤测试GRID驱动。

- 1. 运行命令startx 启动X Server。
- 2. 开启一个新的SSH客户端终端,运行命令启动x11vnc。

x11vnc -display :0

如果看到如下图所示的信息,表示x11vnc已经成功启动。此时,您能通过VNC Viewer等VNC远程连接软件连接实例。

- 3. 登录ECS管理控制台,在实例所在安全组中添加安全组规则,允许TCP 5900端口的入方向访问。
- 在本地机器上,使用VNC Viewer等VNC远程连接软件,通过实例公网IP地址:5900 连接实例,进入KDE桌面。
- 5. 按以下步骤使用glxinfo 命令查看当前GRID驱动支持的配置。
 - a. 开启一个新的SSH客户端终端。
 - b.运行命令export DISPLAY=:0。
 - c. 运行命令glxinfo -t 列出当前GRID驱动支持的配置。
- 6. 按以下步骤使用glxgears 命令测试GRID驱动。
 - a. 在KDE桌面上,右键单击桌面,并选择Run Command。
 - b. 运行glxgears 启动齿轮图形测试程序。如果出现如下图所示的窗口,表明GRID驱动正常工作。

4.9.6 在vgn5i实例(Windows)中安装GRID驱动

如果您的GPU计算型实例需要支持OpenGL图形显示,必须安装GRID驱动。GPU计算型实例配 备的NVIDIA GPU计算卡尚未激活NVIDIA GRID License,GPU图形功能受到限制。您可以安

装NVIDIA官方发布的试用版GRID驱动来使用OpenGL图形功能。本文以操作系统为Windows Server 2016 64-bit的轻量级GPU计算性实例vgn5i为例,介绍如何安装GRID驱动。

前提条件

· 创建一台vgn5i实例,确保实例可以访问公网,具体操作请参见创建GPU计算型实例。

📕 说明:

建议您选择公共镜像中的镜像。

- · 使用Windows Remote Desktop或者在本地机器上安装远程连接工具,例如VNC Viewer。
- · 获取GRID License:
 - 访问NVIDIA官网填写注册信息,审批通过后即获取90天试用的License。
 - 联系阿里云客户支持人员获取用于临时测试的License。
 - 向NVIDIA购买License。

操作步骤

- 1. 远程连接实例。
- 2. 下载GRID驱动安装包。
 - ・如果实例位于华南1可用区C、可用区D下,请下载GRID 7.0 Guest驱动。
 - ·如果实例位于其它地域和可用区,请下载GRID 8.0 Guest驱动:
 - 适用于Win10、Windows Server 2016的GRID8.0驱动
 - 适用于Win8、Win7、Windows Server 2012R2、Windows Server 2008R2的 GRID8.0驱动
- 3. 双击安装包,按提示完成安装。

蕢 说明:

对于Windows系统,GPU驱动安装生效后,Windows自带的远程连接(RDP)协议有可能 不支持DirectX、OpenGL等相关应用。您需要自行安装VNC服务和客户端,或其它支持此类 应用的协议,例如PCOIP、XenDeskop HDX 3D等。

4. 重启实例。

- 5. 添加License服务器并激活License。
 - a) 远程连接实例。
 - b) 右击桌面, 然后单击NVIDIA 控制面板。

查看(V)	>
排序方式(O)	>
刷新(E)	
粘贴(P)	
粘贴快捷方式(S)	
🧧 NVIDIA 控制面板	
新建(W) 🔶	>
🕺 nView Desktop Manager	
显示设 <mark>置</mark> (D)	

- c) 选择许可 > 管理许可证。
- d) 输入License服务器的IP和端口, 然后单击应用。

MVIDIA 控制国际		-		×
文件(F) 编辑(E) 貞面(K) 報助(H)				
G 📾 🔹 🖸 🐔				
选择一项任务 □-30 设置	🧱 管理许可证			^
-通过税处调整因金设置 -管理 30 设置 ⊖-許可	您可以通过应用许可证未启用附加功能。			
	許可正典型。 ❷ 炮的系统已获 GRID v620 许可。			
	- 談译可证服务器: ////////////////////////////////////			
	二级许可证服务器:			
	演口号:			1
	说明: 必備: 據收许可請求的主要许可证服务器的 IP 地址或全限定主机名。			
	典型的 使用 備形:			
	¢	-		~
· · · · · · · · · · · · · · · · · · ·	应用(A)		职间	

显示您的系统已获取GRID vGPU许可,表示License激活成功。

4.9.7 在vgn5i实例(Linux)中安装GRID驱动

如果您的GPU计算型实例需要支持OpenGL图形显示,必须安装GRID驱动。GPU计算型实例配备的NVIDIA GPU计算卡尚未激活NVIDIA GRID License, GPU图形功能受到限制。您可以安装NVIDIA官方发布的试用版GRID驱动来使用OpenGL图形功能。本文以操作系统为Ubuntu16.04 64-bit的轻量级GPU计算性实例vgn5i为例,介绍如何安装GRID驱动。

前提条件

· 创建一台vgn5i实例,确保实例可以访问公网,具体操作请参见创建GPU计算型实例。

📋 说明:

建议您选择公共镜像中的镜像。

- ・在本地机器上安装远程连接工具,例如VNC Viewer。
- ・ 获取GRID License:
 - 访问NVIDIA官网填写注册信息,审批通过后即获取90天试用的License。
 - 联系阿里云客户支持人员获取用于临时测试的License。
 - 向NVIDIA购买License。

操作步骤

- 1. 禁用nouveau。
 - a) 远程连接实例。
 - b) 查看是否存在blacklist-nouveau.conf文件。
 - ls /etc/modprobe.d/blacklist-nouveau.conf
 - c) 如果文件存在,则跳过本步骤。如果文件不存在,则执行命令vim /etc/modprobe.d/ blacklist-nouveau.conf创建文件,并在文件中添加以下内容禁用nouveau。

```
blacklist nouveau
blacklist lbm-nouveau
options nouveau modeset=0
```

d) 生成kernel initramfs。

rmmod nouveau

update-initramfs -u

e) 重启实例。

reboot

- 2. 下载GRID驱动包。
 - a) 远程连接实例。
 - b) 下载GRID驱动安装包。
 - ・如果实例位于华南1可用区C、可用区D下,请下载GRID 7.0 Guest驱动:

wget http://nvdia-driver-410.oss-cn-shenzhen.aliyuncs.com/ NVIDIA-Linux-x86_64-410.39-grid.run

·如果实例位于其它地域和可用区,请下载GRID 8.0 Guest驱动:

wget http://nvidia-418.oss-cn-shenzhen.aliyuncs.com/NVIDIA-Linux-x86_64-418.70-grid.run

3. 安装GRID驱动。

```
chmod +x NVIDIA-Linux-x86_64-410.39-grid.run
./NVIDIA-Linux-x86_64-410.39-grid.run
```

4. 测试GRID驱动是否安装成功。

nvidia-smi

如果返回以下GRID驱动信息,说明驱动安装成功。

r M	oot(on Ma	у б.	13:44:3	/ 2019	:~# n	vidia-sm	i		
ļ	NVID	IA-SM]	(410.3	9		Drive	r Version: 410	.39	
	GPU Fan	Name Temp	Perf	Persis Pwr:Us	tence-M age/Cap	Bus-Id	Disp.A Memory-Usage	Volatile GPU-Util	Uncorr. ECC Compute M.
	0 N/A	GRID N/A	P4-40 P8	N/A	0n / N/A	0000000 272M	0:00:07.0 Off iB / 4096MiB	 0%	N/A Default
	Proc GPU	esses	PID	Туре	Process	name			GPU Memory Usage

- 5. 添加License服务器。
 - a) 切换到/etc/nvidia目录。

cd /etc/nvidia

b) 创建gridd.conf文件。

cp gridd.conf.template gridd.conf

c) 在gridd.conf文件中添加License服务器的信息。

📕 说明:

您需要向NVIDIA购买License后自行搭建License服务器。

```
ServerAddress=License服务器的IP
ServerPort=License服务器的端口(默认为7070)
FeatureType=1
```

6. 重启实例使License服务器配置生效。

reboot

- 7. 查看License是否激活成功。
 - a) 远程连接实例。
 - b) 查看License状态。

systemctl status nvidia-gridd

返回结果显示License acquired successfully, 表示License激活成功。

roote nvidia-gridd.service - WVIDIA Grid Daemon Loaded: loaded (/etc/systemd/system/nvidia-gridd.service; enabled; vendor preset: enabled) Active: active (running) since Mon 2019-05-06 13:52:15 CST; 3min 27s ago Process: 658 ExecEstar=/usr/bin/nvidia-gridd (code=exited, status=0/SUCCESS) Main PID: 696 (nvidia-gridd) CGroup: /system.slice/nvidia-gridd.service -696 /usr/bin/nvidia-gridd	
May 06 13:52:15 iZwz98pm67586upon94opoZ systemd[1]: Starting NVIDIA Grid Daemon May 06 13:52:15 iZwz98pm67586upon94opoZ nvidia-gridd[696]: Started (696) May 06 13:52:15 iZwz98pm67586upon94opoZ nvidia-gridd[696]: Ignore Service Provider Licensing. May 06 13:52:16 iZwz98pm67586upon94opoZ nvidia-gridd[696]: Calling Load byte_array(tra) May 06 13:52:17 iZwz98pm67586upon94opoZ nvidia-gridd[696]: Calling Load byte array(tra) May 06 13:52:19 iZwz98pm67586upon94opoZ nvidia-gridd[696]: License acquired Successfully. Server URL : The second successfully. Server URL : The second successfully.	quest

4.10 GPU图形加速

4.10.1 什么是GPU图形加速实例

本文介绍GPU可视化计算型实例规格族ga1,并列出了具体的实例规格。

4.10.2 创建ga1实例

本文介绍如何创建ga1实例,并列出了使用时的注意事项。

背景信息

GPU 可视化计算 ga1 规格族实例,使用了 AMD 的 S7150 系列 GPU。阿里云和 AMD 合作优化了 GPU 的驱动程序,您需要使用 镜像市场 里的预装驱动的镜像,分别是:

- · Ubuntu16.04 版预装 AMD GPU 驱动
- · Windows Server 2016 中文版预装AMD GPU驱动
- · Ubuntu16.04(预装AMD驱动和KDE桌面系统)

操作步骤

您可以按照 创建ECS实例 的描述创建 ga1 规格族实例。

在选择配置时,您需要注意以下几点:

- · 实例:选择异构计算 GPU/FPGA > GPU 虚拟化型 > GPU渲染型 ga1。
- · 镜像:选择镜像市场,并单击从镜像市场选择(含操作系统)。在镜像市场的弹出框中输入 GPU 或 AMD 搜索镜像。

〕 说明:

建议购买或订阅这几款镜像,以后创建实例时可以从已购买的镜像或已经订阅的镜像中查找。

・网络:选择 专有网络。因为目前 GPU 渲染型 ga1 规格族实例只支持专有网络(VPC)。

补充说明

- ・您可以通过云监控控制台或API来查看GPU监控数据,详情请参见GPU监控。
- · GPU 可视化计算 ga1 实例使用的驱动是阿里云和 AMD 合作提供的优化版本驱动,目前只通过 阿里云提供的镜像对外输出,不提供驱动的下载链接,暂不支持客户自行安装驱动。
- ・卸载或删除 GPU 驱动相关组件造成驱动不能正常工作的情况,需要通过 更换系统盘 的方式恢复 GPU 的相关功能。

🛕 警告:

此操作会造成数据丢失。

· 创建 GPU 可视化计算 ga1 实例时,选择其它的镜像会造成实例的驱动不能正常工作,用户需要 通过 更换系统盘 的方式重新选择预安装 AMD GPU 驱动的镜像。

- ·如果进入Windows设备管理器时显示GPU驱动未能正常加载,请右击GPU设备名称,单击 更新驱动程序软件,再选择自动搜索更新的驱动程序软件。待Windows系统完成设备驱动更 新,重启系统即可。
- · 对于 Windows 系统, GPU 驱动安装生效后, 阿里云控制台的 远程连接 功能不可用, 管理终端 始终显示黑屏或停留在启动界面。请通过其它协议进入系统, 如 Windows 自带的远程桌面 连接(RDP)。
- · Windows 自带的远程连接(RDP)协议不支持 DirectX、OpenGL 等相关应用,您需要自行 安装 VNC 服务和客户端,或其它支持的协议,例如 PCOIP、XenDeskop HDX 3D 等。

4.11 FPGA计算型

4.11.1 什么是FPGA实例

本文介绍FPGA计算型实例规格族f1和f3,并列出了具体的实例规格。

4.11.2 创建f1实例

本文介绍如何创建f1实例。

前提条件

f1实例需要使用包括Intel开发环境的镜像,目前只能通过共享镜像的方式提供。请提交工单申请 共享镜像。

操作步骤

您可以按照创建ECS实例的描述创建f1规格族实例。

在选择配置时,您需要注意以下几点:

- ・ 地域: 选择 华东1 > 可用区 F。
- ・ 实例:选择 异构计算 GPU/FPGA > FPGA 计算型,并选择合适的f1实例规格。
- ・镜像:选择 共享镜像,并选择我们共享给您的镜像。

目前包括Intel开发环境的镜像只能通过共享镜像的方式提供。镜像里包括quartus17.0、vcs2017.3和dcp sdk,可以在 opt 目录查看。

・ 网络: 选择 专有网络。

f1实例创建成功后,您可以远程连接实例并运行以下命令查看是否已经设置License。

echo \$LM_LICENSE_FILE #是否设置了这个变量

相关文档

您可以参考以下最佳实践使用f1实例:

- · f1实例OpenCL开发最佳实践
- 使用f1 RTL (Register Transfer Level)

4.11.3 创建f3实例

本文介绍如何创建f3实例。

操作步骤

您可以按照创建ECS实例的描述创建f3规格族实例。

在选择配置时,您需要注意以下几点:

· 计费方式:选择按量付费或者包年包月。

f3实例目前不支持抢占式实例。

- ・地域:选择 华东2,并选择 随机分配 可用区。
- · 实例:选择异构计算 GPU/FPGA > FPGA 计算型,并选择需要的实例规格。
- · 镜像:选择 共享镜像,并选择指定的镜像。

📃 说明:

为了方便您测试,我们准备了一个Xilinx开发环境的镜像,目前只能通过共享镜像的方式提供。

·系统盘:我们提供的共享镜像需要一定的系统存储空间,建议您选择200 GiB高效云盘。

· 网络:选择 专有网络。

相关文档

f3实例OpenCL开发最佳实践

f3实例RTL开发最佳实践

4.12 弹性裸金属服务器(神龙)

4.12.1 什么是弹性裸金属服务器

本文介绍弹性裸金属服务器高主频型ebmhfg5、计算型ebmc4和通用型ebmg5的特点,并列出了 具体的实例规格。

弹性裸金属服务器介绍

弹性裸金属服务器(ECS Bare Metal Instance)是一款同时兼具虚拟机弹性和物理机性能及特性的新型计算类产品,是基于阿里云完全自主研发的下一代虚拟化技术而打造的新型计算类服务器产品。与上一代虚拟化技术相比,下一代虚拟化技术的主要创新在于,不仅支持普通虚拟云服务器,而且全面支持嵌套虚拟化技术,保留了普通云服务器的资源弹性,并借助嵌套虚拟化技术保留了物理机的体验。

弹性裸金属服务器融合了物理机与云服务器的各自优势,实现超强超稳的计算能力。通过采用阿里 云自主研发的虚拟化2.0技术,您的业务应用可以直接访问弹性裸金属服务器的处理器和内存,无任 何虚拟化开销。弹性裸金属服务器具备物理机级别的完整处理器特性(例如,intel VT-x),以及 物理机级别的资源隔离优势,特别适合上云部署传统非虚拟化场景的应用。

弹性裸金属服务器通过自研芯片和自研Hypervisor系统软件以及重新定义服务器硬件架构等软硬 件和芯片技术,打造了全球领先的深度融合物理机和虚拟机特性的创新型计算架构。弹性裸金属服 务器开创了一种新型的云服务器形式,它能与阿里云产品家族中的其他计算产品无缝对接,比如存 储、网络、数据库等产品,完全兼容ECS云服务器实例的镜像系统,从而更多元化地结合您的业务 场景进行资源构建。

弹性裸金属服务器通过技术创新实现客户价值。具体而言,弹性裸金属服务器具有以下优势:

用户独占计算资源

作为一款云端弹性计算类产品,弹性裸金属服务器超越了当前时代下物理机级的性能和隔离 性,使您独占计算资源,无虚拟化性能开销和特性损失。在CPU规格选择上支持8核、32核、96 核等多个规格,并支持超高主频实例。以8核产品为例,弹性裸金属服务器实例支持超高主频至 3.7 GHz~4.1 GHz,与同类产品相比,它可以让游戏以及金融类业务获得更好的性能和更快的 响应。

・加密计算

在安全性方面,弹性裸金属服务器除了具备物理隔离特性外,为了更好地保障您云上数据的安全 性,弹性裸金属服务器采用了芯片级可信执行环境(Intel® SGX),能确保加密数据只能在安 全可信的环境中计算。这种芯片级的硬件安全保障相当于为您云上的数据提供了一个保险箱功 能,您可以自己掌控数据加密和密钥保护的全部流程。详情请参见 安装SGX。 ・ 兼容多种专有云

弹性裸金属服务器可以进一步解决客户对高性能计算的强需求,更好地帮助客户搭建新型混合 云。弹性裸金属服务器不仅具有虚拟机的灵活性和弹性,同时具备物理机的一切特性和优势,因 此也具备再次虚拟化的能力,线下的专有云均可无缝平移到阿里云上,而不用担心嵌套虚拟化带 来的性能开销,为客户上云提供一种新途径。

· 异构指令集处理器支持

弹性裸金属服务器采用阿里云完全自主研发的虚拟化2.0技术,零成本支持ARM等其他指令集处 理器。

使用弹性裸金属服务器时,请注意:

・目前不支持规格变配。

· 当弹性裸金属服务器发生硬件故障时,支持故障转移,数据都保留在云盘中。

机型对比

弹性裸金属服务器与物理机、虚拟机的对比如下表所示。其中,Y表示支持,N表示不支持,N/A表示无数据。

功能分类	功能	弹性裸金属服务器	物理机	虚拟机
运维自动化	分钟级交付	Y	Ν	Y
计算	无性能损失	Y	Y	Ν
	无特性损失	Y	Y	Ν
	资源无争抢	Y	Y	N
存储	完全兼容ECS云盘 系统	Y	Ν	Y
	使用云盘(系统 盘)启动	Y	Ν	Y
	系统盘快速重置	Y	N	Y
	使用云服务器ECS 的镜像	Y	N	Y
	物理机和虚拟机之 间相互冷迁移	Y	Ν	Y
	免操作系统安装	Y	N	Y
	免本地RAID,提 供更高云盘数据保 护	Y	N	Y

功能分类	功能	弹性裸金属服务器	物理机	虚拟机
网络	完全兼容ECS VPC网络	Y	Ν	Y
	完全兼容ECS经典 网络	Y	Ν	Y
	物理机集群和虚拟 机集群间VPC无 通信瓶颈	Y	N	Y
管控	完全兼容ECS现有 管控系统	Y	Ν	Y
	VNC等用户体验 和虚拟机保持一致	Y	Ν	Y
	带外网络安全	Y	Ν	N/A

计费方式

弹性裸金属服务器支持按量付费和包年包月。不同计费方式的区别,请参见 #unique_72。

相关文档

更多信息,请参见弹性裸金属服务器FAQ。

4.12.2 创建EBM实例

本文介绍如何创建EBM实例。

您可以按照 创建ECS实例 的描述创建弹性裸金属服务器。

在选择配置时,您需要注意以下几点:

- ・地域:目前只能选择 华东2可用区D、华北2可用区C、华东1可用区G、华南1可用区D。
- · 实例:可以选择ebmhfg5、ebmc4和ebmg5。规格族的详细信息,请参见 实例规格族。
- · 镜像: 只支持部分公共镜像, 如下表所示。

操作系统类别	镜像
Linux	 CentOS 7.2/7.3/7.4/6.9/6.8 64位 Ubuntu 14.04/16.04 64位 Debian 8.9/9.2 64位 OpenSUE 42.3 64位 SUSE Linux Enterprise Server 12 SP2 64位 Aliyun Linux 17.1 64位

操作系统类别	镜像
Windows	 2016 数据中心版 64 位中文版 2016 数据中心版 64 位英文版 2012 R2 数据中心版 64 位中文版 2012 R2 数据中心版 64 位英文版

・存储: 弹性裸金属服务器支持最多挂载16块数据盘。您可以在这里添加数据盘,也可以在实例 创建成功后再 单独创建 并 挂载数据盘。

・网络: 仅支持专有网络VPC。

4.12.3 安装SGX

本文介绍SGX的原理,并给出了安装说明。

原理

英特尔 SGX(Intel Software Guard Extension)是英特尔指令集架构的一个扩展。SGX 为您提 供了围圈(Enclave),即内存中一个加密的可信执行区域,由 CPU 保护您的数据和隐私不被恶 意代码窃取。

SGX 利用新增的处理器指令,在内存中分配一部分区域 EPC(Enclave Page Cache),通过 CPU 内的加密引擎 MEE(Memory Encryption Engine)对其中的数据进行加密。EPC 中加密 的内容只有进入 CPU 后才会被解密成明文。因此,在 SGX 中,您可以不信任操作系统、VMM、 甚至 BIOS,只需要信任 CPU 便能确保隐私数据不会泄漏。

应用

实际应用中,您可以把隐私数据加密后以密文形式传递至云上的围圈中,并通过远程证明把对应的 秘钥也传入围圈。然后在 CPU 的加密保护下利用数据进行运算,结果会以密文形式返回给您。这 种模式下,您既可以利用云计算强大的计算力,又不用担心数据泄漏。

EDL (Enclave Definition Language)

EDL 是 SGX 编程的核心,其中定义了所有围圈里对外读写、处理数据的函数。在编译阶段,SDK 提供的 Edger8r 工具会根据 EDL 中定义的函数生成围圈和普通内存的桥接函数,并做相应的安全 检测。

函数分为信任函数(ecall)和不可信函数(ocall):

- · ecall: 定义在信任区域(trusted),在围圈外被调用,并在围圈内执行。
- · ocall: 定义在不可信区域(untrusted),在围圈内被调用,并在围圈外执行。

// demo.edl
enclave	{ // Add your definition of "secret_t" here trusted {
	<pre>public void get_secret([out] secret_t* secret);</pre>
	};
	untrusted {
	<pre>// This OCALL is for illustration purposes only.</pre>
	<pre>// It should not be used in a real enclave,</pre>
	<pre>// unless it is during the development phase</pre>
	<pre>// for debugging purposes.</pre>
	<pre>void dump_secret([in] const secret_t* secret);</pre>
	};
};	

以安装文件方式安装 SGX

需要先安装对应 Linux 内核版本的头文件,安装 SGX 时包括驱动、PSW、SDK 等组件。

```
📋 说明:
```

样例中的 Makefile 默认安装目录是 /opt/intel/。

1. 下载 适用 SGX 版本的安装文件。

2. 按照 安装指南 的步骤进行安装。

以源代码方式安装 SGX

需要先安装对应 Linux 内核版本的头文件,安装 SGX 时包括驱动、PSW、SDK 等组件。

```
间 说明:
```

样例中的 Makefile 默认安装目录是 /opt/intel/。

- 1. 从 官方 Github 下载源代码。
- 2. 按 README.md 所述流程编译源代码。

4.13 超级计算集群(SCC)

4.13.1 什么是超级计算集群

本文介绍超级计算集群高主频型scch5、通用型sccg5和GPU计算型sccgn6的特点,并列出了具体的实例规格。

超级计算集群介绍

超级计算集群(Super Computing Cluster,简称SCC)在弹性裸金属服务器基础上,加入高速 RDMA(Remote Direct Memory Access)互联支持,大幅提升网络性能,提高大规模集群加 速比。因此SCC在提供高带宽、低延迟优质网络的同时,还具备弹性裸金属服务器的所有优点。 SCC主要用于高性能计算和人工智能/机器学习、科学/工程计算、数据分析、音视频处理等应用场 景。在集群内,各节点间通过RDMA网络互联,提供高带宽低延迟网络,保证了高性能计算和人工 智能/机器学习等应用的高度并行需求。同时,RoCE(RDMA over Convergent Ethernet)网 络速度达到InfiniBand网络级的性能,且能支持更广泛的基于Ethernet的应用。

SCC与阿里云ECS、GPU云服务器等计算类产品一起,为<mark>阿里云弹性高性能计算平台E-HPC提供了</mark> 性能极致的并行计算资源,实现真正的云上超算。

机型对比

SCC与物理机、虚拟机的对比如下表所示。其中,Y表示支持,N表示不支持,N/A表示无数据。

功能分类	功能	SCC	物理机	虚拟机
运维自动化	分钟级交付	Y	N	Y
计算	无性能损失	Y	Y	Ν
	无特性损失	Y	Y	Ν
	资源无争抢	Y	Y	Ν
存储	完全兼容ECS云盘 系统	Y	Ν	Y
	使用云盘(系统 盘)启动	Y	Ν	Y
	系统盘快速重置	Y	N	Y
	使用云服务器ECS 的镜像	Y	N	Y
	物理机和虚拟机之 间相互冷迁移	Y	N	Y
	免操作系统安装	Y	N	Y
	免本地RAID,提 供更高云盘数据保 护	Y	Ν	Y
网络	完全兼容ECS VPC网络	Y	Ν	Y
	完全兼容ECS经典 网络	Y	Ν	Y
	物理机集群和虚拟 机集群间VPC无 通信瓶颈	Y	N	Y

功能分类	功能	SCC	物理机	虚拟机
管控	完全兼容ECS现有 管控系统	Y	Ν	Y
	VNC等用户体验 和虚拟机保持一致	Y	Ν	Y
	带外网络安全	Y	Ν	N/A

计费方式

SCC支持包年包月。不同计费方式的区别,请参见#unique_72。

相关文档

更多信息,请参见SCC FAQ。

4.13.2 创建SCC实例

本文介绍如何创建SCC实例。

操作步骤

您可以按照 创建ECS实例 的描述创建超级计算集群实例。

在选择配置时,您需要注意以下几点:

- ・地域:请根据表格提供SCC实例的地域和可用区选择地域和可用区。如果售卖页显示的地域和可用区和表格不一致,以售卖页为准。
- ・网络: 仅支持专有网络(VPC 网络)。
- ・ 实例:支持scch5(高主频型超级计算集群实例规格族)、sccg5(通用型超级计算集群实例规 格族)和sccgn6(GPU计算型超级计算集群实例规格族)。
- · 镜像:选择公共镜像。目前支持定制版的Linux CentOS 7.5。

沿旧.
- 况明:

0

定制版镜像支持 RDMA RoCE 驱动和 OFED 堆栈。您可以通过 IB verbs 编程使用 RDMA 功能或者通过 MPI 进行 RDMA 通讯。

▋ 镜像 *	公共镜像	自定义	镜像	共享镜像	镜像市场	?	
	CentOS	~	7.5 64位	Ì SCC定制			~

・存储:超级计算集群支持最多挂载 16 块数据盘。您可以在这里添加数据盘,也可以在实例创建 成功后再 単独创建 并 挂载数据盘。

提供SCC实例的地域和可用区

提供各SCC实例规格族的地域和可用区如下表所示:

实例规格	地域和可用区
scch5	华东 2(可用区D、可用区B)
sccg5	华东 2(可用区D、可用区B)
sccgn6	 ・ 华东2 ・ 华北2 ・ 华北3

相关操作

如果您不仅需要使用 RDMA 功能,还需要使用 HPC 调度器以及集群扩容缩容服务,可以通过 E-HPC 控制台创建 SCC 集群来创建 SCC 实例。

📕 说明:

目前 SCC 集群在售区域请参见提供SCC实例的地域和可用区,付费类型只支持包年包月。

4.14 已停售的实例规格

本文所列实例规格在中国站已全部停售,其中, sn2、sn1、n1、n2和e3在国际

站(International)仍然在售。

指标说明

- · 网络收发包能力指出方向和入方向相加能达到的最大能力。网络收发包测试方法请参见网络性能 测试方法。
- ·多队列指当前规格支持的最大网卡队列数。CentOS 7.3镜像默认采用最大网卡队列数。
- · vCPU核数不小于2的企业级实例规格支持弹性网卡。vCPU核数不小于4的入门级实例规格支持 弹性网卡。关于弹性网卡的更多信息,请参见弹性网卡概述。

变配说明

规格之间的变配逻辑请参见可变配的实例规格。

通用型实例规格族sn2

规格族特点

·处理器与内存配比为1:4

- ・处理器: 2.5 GHz主频的Intel Xeon E5-2682 v4(Broadwell)或E5-2680 v3(Haswell
 -),计算性能稳定
- · 实例网络性能与计算规格对应(规格越高网络性能强)
- ・适用场景:
 - 各种类型和规模的企业级应用
 - 中小型数据库系统、缓存、搜索集群
 - 数据分析和计算
 - 数据分析和计算

实例规格	vCPU	内存(GiB)	本地存 储(GiB)	网络 带宽能 力(出/入) (Gbit/s)	网络收 发包能 力(出/入) (万PPS)	多队列	弾性网 卡(包括 一块主网 卡)
ecs.sn2. medium	2	8.0	无	0.5	10	1	2
ecs.sn2. large	4	16.0	无	0.8	20	1	3
ecs.sn2. xlarge	8	32.0	无	1.5	40	1	4
ecs.sn2. 3xlarge	16	64.0	无	3.0	50	2	8
ecs.sn2. 7xlarge	32	128.0	无	6.0	80	3	8
ecs.sn2. 13xlarge	56	224.0	无	10.0	120	4	8

计算型实例规格族sn1

规格族特点

- ・ 处理器与内存配比为1:2
- ・ 处理器: 2.5 GHz主频的Intel Xeon E5-2682 v4(Broadwell)或E5-2680 v3(Haswell
 -),计算性能稳定
- · 实例网络性能与计算规格对应(规格越高网络性能强)

- ・适用场景:
 - Web 前端服务器
 - 大型多人在线游戏(MMO)前端
 - 数据分析、批量计算、视频编码
 - 高性能科学和工程应用

实例规格

实例规格	vCPU	内存(GiB)	本地存 储(GiB)	网络 带宽能 力(出/入) (Gbit/s)	网络收 发包能 力(出/入) (万PPS)	多队列	弾性网 卡(包括 一块主网 卡)
ecs.sn1. medium	2	4.0	无	0.5	10	1	2
ecs.sn1. large	4	8.0	无	0.8	20	1	3
ecs.sn1. xlarge	8	16.0	无	1.5	40	1	4
ecs.sn1. 3xlarge	16	32.0	无	3.0	50	2	8
ecs.sn1. 7xlarge	32	64.0	无	6.0	80	3	8

高主频计算型实例规格族 c4/ce4/cm4

规格族特点

- ・ I/O 优化实例
- ・ 仅支持 SSD 云盘和高效云盘
- ・计算性能稳定
- · 处理器: 3.2 GHz 主频的 Intel Xeon E5-2667 v4 (Broadwell) 处理器
- · 实例网络性能与计算规格对应(规格越高网络性能越强)
- ・适用场景:
 - 高性能 Web 前端服务器
 - 高性能科学和工程应用
 - MMO 游戏、视频编码

c4实例规格

实例规格	vCPU	内存(GiB)	本地存 储(GiB)	网络 带宽能 力(出/入) (Gbit/s)	网络收 发包能 力(出/入) (万PPS)	多队列	弾性网 卡(包括 一块主网 卡)
ecs.c4. xlarge	4	8.0	无	1.5	20	1	3
ecs.c4. 2xlarge	8	16.0	无	3.0	40	1	4
ecs.c4. 3xlarge	12	24.0	无	4.5	60	2	6
ecs.c4. 4xlarge	16	32.0	无	6.0	80	2	8

ce4实例规格

实例规格	vCPU	内存(本地存	网络	网络收	多队列	弹性网
		GiB)	储(GiB	带宽能	发包能		卡(包括
)	力(出/入)	力(出/入)		一块主网
				(Gbit/s	(万PPS		卡)
))		
ecs.ce4. xlarge	4	32.0	无	1.5	20	1	3
ecs.ce4. 2xlarge	8	64.0	无	3.0	40	1	3

cm4实例规格

实例规格	vCPU	内存(本地存	网络	网络收	多队列	弹性网
		GiB)	储(GiB	带宽能	发包能		卡(包括
)	力(出/入)	力(出/入)		一块主网
				(Gbit/s	(万PPS		卡)
))		
ecs.cm4. xlarge	4	16.0	无	1.5	20	1	3

实例规格	vCPU	内存(GiB)	本地存 储(GiB)	网络 带宽能 力(出/入) (Gbit/s)	网络收 发包能 力(出/入) (万PPS)	多队列	弾性网 卡 (包括 一块主网 卡)
ecs.cm4. 2xlarge	8	32.0	无	3.0	40	1	4
ecs.cm4. 3xlarge	12	48.0	无	4.5	60	2	6
ecs.cm4. 4xlarge	16	64.0	无	6.0	80	2	8
ecs.cm4. 6xlarge	24	96.0	无	10.0	120	4	8

入门级实例 n1/n2/e3

规格族特点

- · 处理器: 2.5 GHz主频的Intel Xeon E5-2680 v3 (Haswell)
- · 实例网络性能与计算规格对应(规格越高网络性能强)
- ・均为I/O优化实例
- ・支持以下两种云盘:
 - SSD云盘
 - 高效云盘

规格族	特点	vCPU:内存	适用场景
n1	共享计算型实例	1:2	 ・中小型Web服务器 ・批量处理 ・分布式分析 ・广告服务
n2	共享通用型实例	1:4	 ・中型Web服务器 ・批量处理 ・分布式分析 ・广告服务 ・Hadoop集群

规格族	特点	vCPU:内存	适用场景
e3	共享内存型实例	1:8	 Cache/Redis 搜索类 内存数据库 高I/O的数据 库如Oracle、 MongoDB Hadoop集群 大量的数据处理加 工场景

n1实例规格

实例规格	vCPU	内存(GiB)	本地存储(GiB)	弹性网卡(包括一 块主网卡)
ecs.n1.tiny	1	1.0	无	1
ecs.n1.small	1	2.0	无	1
ecs.n1.medium	2	4.0	无	1
ecs.n1.large	4	8.0	无	2
ecs.n1.xlarge	8	16.0	无	2
ecs.n1.3xlarge	16	32.0	无	2
ecs.n1.7xlarge	32	64.0	无	2

n2实例规格

实例规格	vCPU	内存(GiB)	本地存储(GiB)	弹性网卡(包括一 块主网卡)
ecs.n2.small	1	4.0	无	1
ecs.n2.medium	2	8.0	无	1
ecs.n2.large	4	16.0	无	2
ecs.n2.xlarge	8	32.0	无	2
ecs.n2.3xlarge	16	64.0	无	2
ecs.n2.7xlarge	32	128.0	无	2

e3实例规格

实例规格	vCPU	内存(GiB)	本地存储(GiB)	弾性网卡(包括一 块主网卡)
ecs.e3.small	1	8.0	无	1
ecs.e3.medium	2	16.0	无	1
ecs.e3.large	4	32.0	无	2
ecs.e3.xlarge	8	64.0	无	2
ecs.e3.3xlarge	16	128.0	无	2

系列I实例规格

系列I实例规格包括:t1、s1、s2、s3、m1、m2、c1、c2。这些规格均为旧有的共享型实例规 格,按照1核、2核、4核、8核、16核的方式分型分组,对规格族不敏感。

规格族特点

- · 采用不低于1.9 GHz主频的Intel Xeon E5-2420处理器
- ・最新一代DDR3内存
- · I/O优化与非I/O优化可选
- I/O优化实例规格

I/O优化实例支持两种磁盘:

- ・ SSD云盘
- ・高效云盘

规格分类	实例规格	vCPU	内存(GiB)
Standard	ecs.s2.large	2	4
	ecs.s2.xlarge	2	8
	ecs.s2.2xlarge	2	16
	ecs.s3.medium	4	4
	ecs.s3.large	4	8
High Memory	ecs.m1.medium	4	16
	ecs.m2.medium	4	32
	ecs.m1.xlarge	8	32
High CPU	ecs.c1.small	8	8
	ecs.c1.large	8	16

规格分类	实例规格	vCPU	内存(GiB)
	ecs.c2.medium	16	16
	ecs.c2.large	16	32
	ecs.c2.xlarge	16	64

非I/O优化实例规格

非I/O优化实例仅支持普通云盘。

规格分类	实例规格	vCPU	内存 (GiB)
Tiny	ecs.t1.small	1	1
Standard	ecs.s1.small	1	2
	ecs.s1.medium	1	4
	ecs.s1.large	1	8
	ecs.s2.small	2	2
	ecs.s2.large	2	4
	ecs.s2.xlarge	2	8
	ecs.s2.2xlarge	2	16
	ecs.s3.medium	4	4
	ecs.s3.large	4	8
High Memory	ecs.m1.medium	4	16
	ecs.m2.medium	4	32
	ecs.m1.xlarge	8	32
High CPU	ecs.c1.small	8	8
	ecs.c1.large	8	16
	ecs.c2.medium	16	16
	ecs.c2.large	16	32
	ecs.c2.xlarge	16	64

5选择实例购买方式

5.1 预付费(包年包月)

包年包月是一种预付费模式,即您需要先付费再使用资源。

适用资源

在云服务器ECS中,目前可以采用包年包月方式计费的资源包括:

- · ECS实例,包括CPU配置和内存容量
- ・镜像
- ・系统盘和/或数据盘

如果您要创建一个包年或包月的ECS实例,创建实例页面底部显示的 预估费用 即是以上三种资源的 费用总和。

您可以使用ECS TCO计算器 快速分析上云成本。

支付方式

您可以使用以下任一种方式支付包年包月资源的费用:

- ·账号绑定的信用卡或PayPal账号。您可以参考《账号管理》的配置账号绑定账号与信用卡或PayPal账号。
- ・账号名下的可用于预付费产品的优惠券。

您可以登录管理控制台,通过费用中心 > 优惠券管理 查看优惠券的 适用场景,从而判断优惠券是否适用于预付费产品。

结算周期

包年包月按1个月计费。包年包月计费周期以UTC+8时区的时间为准,起点是资源开通的时间 点,终点是一个月或一年后第二天的00:00:00。

举例:您于2017年3月12日13:23:56开通了一个包月ECS实例,那么,这个实例的第一个计费周期 的终点为2017年4月13日00:00:00。

资源不同,价格单位不同。下表为各种资源的价格单位。

资源	价格单位
ECS实例	USD/月
镜像	USD/月
系统盘	USD/(GiB*月)
数据盘	USD/(GiB*月)

一个结算周期到期后,您可以选择续费ECS实例继续使用资源。关于续费操作,参考 手动续费 或 自动续费。

到期后资源状态

根据您是否已经开通 自动续费 功能,包年包月实例到期后,相关资源的状态不同。

未开通自动续费

如果包年包月实例未开通自动续费功能,实例到期当天00:00:00到第二天的00:00之间的24 小时内随时会自动停止服务。如果到期后15天内未成功续费,则各种相关资源的状态如下表所 示。

时间段	ECS实例和镜 像	系统盘	数据盘	公网IP地址	快照
到期当天	停止服 务*,镜像不 可用。	停止服务,但 是数据仍被保 留。	停止服务,但 是数据仍被保 留。	 经典网络实 例:分配的公 网IP地址保 窗。 专有如果分配 了公网IP地 址,保留;如 果绑定而且 未解绑EIP地 址,保留。 	所有快照不受影响。

时间段	ECS实例和镜 像	系统盘	数据盘	公网IP地址	快照
到期15天后	自动释放。	随实例一起释 放,数据无法 恢复。	 云盘默认会 随实例一起释 放。如果您已 经将吃以置为 不吃、 释放,云盘停 止工作。 本起释放。 共享卸载。 	 经典网络实 例3:分配的公 例1P地址释 放。 专有如果分配 了公网IP地 北,释放;如 果绑定而且 未解绑EIP地 址,自动解 绑。 	自动快照自动 删除。手动快 照不受影响。

* 停止服务 后,您无法正常远程连接实例,无法访问架设在实例上的网站,业务会出现异常等。

ੋ 说明:

已到期的实例,不能开通自动续费功能。

・开通自动续费

如果您已经开通了自动续费功能,但是到期后在规定时间内未能成功续费,各种资源的状态如下 表所示。

时间段	ECS实例和镜 像	系统盘	数据盘	公网IP地址	快照
到期后15天内	正常工作*。	正常工作。	正常工作。	公网IP地址不 受影响。	所有快照不受 影响。

时间段	ECS实例和镜 像	系统盘	数据盘	公网IP地址	快照
到期15天后	实例在到期后 第15天00:00: 00到第16天的 00:00:00随时 停止服务**。 之后,镜像不 可用。	停止服务,但 是数据仍被保 留。	停止服务,但 是数据仍被保 留。	 经典网络实 例:分配的公 网IP地址保 留。 专有网络实 例:如果分配 了公网IP地 址,保留;如 果绑定而且 未解绑EIP地 址,保留。 	所有快照不受 影响。
到期30天后	自动释放。	随实例一起释 放,数据无法 恢复。	 云盘默认会 随实例一起释 放。如果设置为 不释放了案 不释放,云盘 停止工盘随实例 一起释放。 共算卸载。 	 经典网络实 例:分配的公 网IP地址释 放。 专有如果分配 了公网IP地 址, 解次配 果绑定而且 未解绑EIP地 址,自动解 绑。 	自动快照自动 删除。手动快 照不受影响。

* 正常工作 是指您可以正常地启动、停止实例,并能通过控制台的 管理终端 或其它远程连接方 式连接到实例。

** 停止服务 后,您无法正常远程连接实例,无法访问架设在实例上的网站,业务会出现异常 等。

5.2 按量付费

按量付费是一种先使用后付费方式。使用这种方式,您可以按需取用资源,随时开启和释放资源,无需提前购买大量资源。与传统主机投入相比,成本可以降低30%-80%。

适用资源

在云服务器 ECS 中,目前可以采用按量付费方式计费的资源包括:

· ECS 实例,包括 CPU 配置和内存容量

- ・镜像
- ·磁盘,包括系统盘和/或数据盘

如果您要创建一个按量付费的 ECS 实例,创建实例页面底部显示的 预估费用 即是以上三类资源的 费用总和。

开通按量付费资源时,您需要了解以下信息:

- ·更换资源配置:可以变更实例规格(包括 CPU 和内存)。
- 更换计费模式:您可以将按量付费实例、系统盘和数据盘转换为包年包月计费模式。具体操作方法,参见按量付费转包年包月。

支付方式

您能使用信用卡或PayPal账号支付按量付费资源的费用。关于绑定账号和信用卡或PayPal账 号,请参见 添加支付信息。

在您开通按量付费资源并产生消费时,阿里云会对您的PayPal账号进行一次预授权。

计费周期

按量付费资源从创建开始计费,到释放结束计费,按秒计费。但是,专有网络按量付费实例可以设 置为实例停机不收费,即开通 实例停机不收费 后,专有网络按量付费实例从创建开始计费,实例处 于 已停止 状态时停止计费,实例启动后又重新计费,周而复始,按秒计费。除了实例外,实例停机 不收费 功能不影响其他资源的计费。

实例从创建到释放的生命周期内不足USD 0.01,将补齐按照USD 0.01收取。

资源类别	按量付费实例 + 镜像	系统盘	数据盘
计费周期	按秒计费	按秒计费	按秒计费
价格单位	USD/小时	USD/(GiB*小时)	USD/(GiB*小时)

结算周期

按量付费实例按秒计费,但是按小时出账单结算。结算时,您需要知道以下信息:

- · 按量付费ECS资源会与您账号下其它后付费产品统一结算。
- ·一般情况下,只要您的账号月累积消费金额不足USD 1,000,阿里云都是在次月1日扣款。
- ・针对部分用户,阿里云可能会与用户约定一个额度,当用户账号的累积消费金额超过这个额度时 即扣款。

累积消费金 额	欠费日(T)	扣款日	扣款说明
月累积消费 金额不足1, 000美元 特定的额度	次月1日 超额当天	T、T+7、T +14	 如果在欠费日(T)扣款失败,阿里云会在T+7日和T+14日尝试再扣款。 如果三次扣款都失败,T+15日开始,实例会自动欠费停机。此时,实例停止工作,但是数据会被保留。
			 亩。久贞停机后,停止订页。 - 欠费停机后,您只能通过提交工单补缴费。结清账单后,您应在T+30日内重新开机,否则实例会被自动释放。 - 如果T+30日时仍没结清账单,实例会被释放,数据无法恢复。

结算说明

- ·结算范围:按资源实际开通时长结算。实际开通时长是指:
 - 按ECS实例实际开通时长结算。实际开通时长是指ECS从 开通 到 释放 或者到期这整个过程 中能正常工作的时长。如果从开通到释放的过程中,实例因欠费而被自动停机,那么在欠费 停机这段时间内,计费停止,一直到账单结清 重开机 后才会重新开始计费。
 - 系统盘和/或数据盘:从创建到释放过程中工作的时长,以小时为单位整点结算。
- ・释放规则
 - 欠费停机后,按量付费的云盘会被限制使用,无法实现正常的I/O读写访问,会影响挂载该欠 费磁盘的ECS实例正常运行,包括但不限于:应用程序读写性能低下,部分操作提示严重超 时,某些操作系统版本下关机或重启失败等情况。
 - 已设置自动释放时间的ECS实例,会按照设置时间系统自动释放,计费结束时间以系统实际
 释放时间为准(精确到秒)。
 - 释放通知:因到期/欠费释放,系统会邮件通知。

欠费停机后保留15天

如果三次扣款都失败,T+15日开始,实例会自动欠费停机。账号欠费停机后,如果未在规定时间内 缴费并 重开机,您不能正常使用资源。下表列出账号欠费停机后各种资源的不同使用状态。

时间段	ECS实例和镜像	系统盘 + 数据盘	公网IP地址	快照
欠费后15日内	停止服务*(欠费 停机**,镜像不可 用。	欠费后, 云盘和 本地用, 云盘和 使用, 无法实现 正常, 会影子, 云波、 可, 会影子, 云波、 了, 会影子, 不可, 一,	经典网络实例:分配的公网IP地址保留。专有网络实例:如果分配了公网IP地址,保留;如果绑定了弹性公网IP(EIP))地址,保留。	快照不受影响
欠费15日后	自动释放。因欠费释放,系统会通过邮件通知。	所有云盘,包括系 统盘和数据盘(无 论以何种方式创 建的数据盘,无 论是的数据在实 例上),都会自动 释放,数据无法恢 复。 本地盘自动释 放,数据无法恢 复。 如果挂载了共享 以存储,自动卸 载,数据仍被保 留。	经典网络实例:分配的公网IP地址 释放。 专有网络实例:如 果分配了公网IP 地址,释放;如 果绑定了EIP地 址,自动解绑。	自动快照自动删 除。手动快照不受 影响。

* 停止服务 后,您无法正常远程连接实例,无法访问架设在实例上的网站,业务会出现异常等。

**欠费停机 是指按量付费ECS因账号欠费而自动停止服务的状态。此时,实例的状态是 已过期。处 于这个状态的实例不计费。

FAQ

按量计费的云服务器ECS停机或欠费停机后, 会产生费用吗?

欠费停机 是指按量付费ECS因账号欠费而自动停止服务的状态。此时,实例的状态是 已过期。处于 这个状态的实例不计费。

停机 是指按量付费ECS实例在正常运行期间,您通过 ECS管理控制台 或 StopInstance 接口,使 实例进入 已停止 状态。根据实例的网络类型不同,按量付费实例进入 已停止 状态后所需要的费用 不同:

- · 专有网络:可以设置为实例停机不收费,即开通 实例停机不收费 功能后,专有网络按量付费 实例从创建开始计费,实例处于 已停止 状态时停止计费,实例启动后又重新计费。除了实例
 外,实例停机不收费 功能不影响其他资源的计费。
- · 经典网络:进入已停止状态后仍然正常计费。

5.3 抢占式实例

5.3.1 什么是抢占式实例

抢占式实例是一种按需实例,旨在降低您部分场景下使用ECS的成本。

抢占式实例介绍

创建抢占式实例时,您需要指定出价模式,当指定的实例规格当前市场价格低于您的出价时,您就 能成功创建抢占式实例,并按当前市场价格计费。抢占式实例创建成功后,操作与按量付费实例相 同,您也可以将它与其他云产品(如云盘、EIP地址等)组合使用。

抢占式实例一旦创建就拥有一小时保护期,即在创建后第一个小时内,我们不会因为市场供需关 系而释放您的实例,您可以在该抢占式实例上正常运行业务。超过保护周期,即一小时后,我们 每5分钟检测一次实例规格当前市场价格和库存,如果某一时刻的市场价格高于您的出价或资源库 存不足,我们将释放您的抢占式实例。

〕 说明:

实例释放后数据无法恢复。建议您提前 创建快照 备份数据。

抢占式实例的生命周期如下图所示。

过了保护周期后,我们会因为市场价格变化或资源库存调整等因素自动释放您的抢占式实例。实例 创建之后,您能主动释放抢占式实例。

因为市场价格变化或资源库存调整而被动释放时,抢占式实例会进入待回收状态,约5分钟后实例 自动释放。您可以通过实例元数据或者 DescribeInstances 接口返回的 OperationLocks 信息 查看实例是否进入待回收状态。

道 说明:

虽然通过API可以知道抢占式实例是否进入 待回收 状态,并在回收等待的时间里保存少量数 据,但是我们仍然建议您将应用设计成在抢占式实例立即回收的情况下也可以正常恢复工作。您可 以通过主动释放实例检测在抢占式实例立即回收的情况下应用是否正常工作。

一般,我们会从出价最低的实例开始终止抢占式实例。如果多个抢占式实例的出价相同,则随机确 定实例的终止顺序。

关于抢占式实例配额,请参见使用限制。

应用场景

抢占式实例适用于无状态的应用场景,比如可弹性伸缩的Web站点服务、图像渲染、大数据分析和 大规模并行计算等。您的应用程序的分布度、可扩展性和容错能力越高,使用抢占式实例越能节省 成本和提升吞吐量。

您可以在抢占式实例上部署以下常见业务:

- ・ 实时分析业务
- 大数据业务
- ・地理空间勘测分析业务
- · 图像和媒体编码业务
- ・科学计算业务
- ·可弹性伸缩的业务站点、网络爬虫业务
- · 图像和媒体编码业务
- ・測试业务

有状态应用,比如数据库,不宜使用抢占式实例,因为竞价失败等因素导致实例被释放时,应用状 态难以保存。

价格和计费

抢占式实例的价格和计费有以下特点:

・价格

抢占式实例的价格是指实例规格(包括vCPU和内存)的价格,不包括系统盘、数据盘、网络带 宽等资源的价格。

系统盘、数据盘按 按量付费 规则计费。网络带宽按按量付费实例的带宽计费规则计费,详细信 息,请参见 公网带宽计费。

・市场价格

创建抢占式实例时,如果出价高于当前市场价格而且资源库存充足,您的实例就会运行。

在一小时的保护周期内,实例规格会按照市场价格计费。超过保护周期,即一小时后,按照实时 的市场价格计费。

抢占式实例的市场价格会因为市场对某一种实例规格的供需变化而浮动。因此,您可以充分利用 抢占式实例的价格浮动特性,在适当的时间购买抢占式实例,降低计算成本,并在整体成本下降 的前提下,提升业务在该时间周期内的吞吐量。

・计费方式

抢占式实例按秒计费。成功创建实例时的市场价格为小时价,您只需要将价格除以3600即可得 到每秒的价格。

从创建到释放抢占式实例的费用精确到小数点后两位。累计费用不足0.01美元的部分则不收取。 · 计费时长

按实际使用时长计费。实际使用时长是指从抢占式实例的创建到释放。释放后,抢占式实例才 停止计费。如果您使用 StopInstance 接口或者 在ECS管理控制台上 停止实例,实例会继续计 费。如果您暂时不需要使用抢占式实例,建议您先创建快照备份数据和环境,再释放实例,需要 时再重新购买。

使用限制

使用抢占式实例时,请注意以下限制:

- · 抢占式实例不支持转换为预付费实例。
- · 抢占式实例不支持变更实例规格。

相关文档

关于抢占式实例的更多问题,请参见 抢占式实例FAQ。

关于使用API创建抢占式实例的操作,请参见使用API管理抢占式实例。

5.3.2 创建抢占式实例

您可以在ECS控制台上创建抢占式实例。本文主要介绍创建抢占式实例和查看抢占式实例账单的步骤。

注意事项

在使用抢占式实例时,您需要考虑以下内容:

- ·选择一个合理的出价:您的出价应该足够高,而且要充分考虑到市场价格的波动。这样,您的抢 占请求才会被接受处理,而且创建后才不会因为价格因素被释放。另外,出价还必须符合您根据 自身业务评估后的预期。
- · 使用的镜像必须包含所需软件的配置,确保实例在创建完成后可以随时启动。您还能使用实例自 定义数据在启动时运行命令。
- 建议您使用不受抢占式实例释放影响的存储介质来保存您的重要数据。例如,您可以使用独立创 建的云盘(不能设置为随实例一起释放)、OSS、RDS等存储数据。
- ・将工作拆分为小的任务(使用网格、Hadoop或基于队列的架构)或者使用检查点,便于您经常 保存计算结果。
- 使用抢占式实例释放通知来监控抢占式实例的状态。您可以通过实例元数据每分钟获取一次实例 的状态,阿里云ECS释放抢占式实例时,会提前5分钟更新元数据信息。
- ·测试您的应用程序,确保它能很好地处理意外释放的实例。您可以使用按量付费实例来运行该应 用程序,然后自行释放这台实例,从而确认应用程序是否能处理自动释放的实例。

创建抢占式实例

本步骤重点介绍抢占式实例相关的选项,如需了解其它参数,请参考使用向导创建实例。

- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏中,单击实例。
- 3. 在实例列表页面中, 单击创建实例。
- 4. 选择计费方式为抢占式实例。

5. 设置设置单台实例规格上限价格。

当您的出价高于当前市场成交价,而且库存充足时,您就能按照市场成交价创建实例。抢占式实 例支持一次性竞价请求,包括以下2种出价模式:

- ·使用自动出价:选择跟随当前市场价格的模式,即表示始终接受实时的市场价格作为实例规 格的计费价格。
- · 设定您的最高价:您必须为指定的实例规格设置一个价格上限,即您愿意为这个实例规格支付的最高价格。

▋ 说明:

您能看到一个价格区间,最高价格与同规格按量付费实例相同。您可以结合自身业务,同时 考虑可能的价格波动,在价格区间内设置一个合理的价格。如果您的出价充分考虑了可能的 价格波动,一小时保护周期后,您仍能较长时间持有抢占式实例。否则,一小时后,实例随 时可能被释放。

- 6. 选择或者输入您要购买的台数。
- 7. 参考使用向导创建实例配置其余参数。
- 8. 确认订单信息后,单击创建实例。

抢占式实例创建成功后,您可以在实例列表中查看该实例信息。抢占式实例会被标记为按量-抢占 式实例。进入实例详情页后,在 付费信息 部分可查看创建实例时设置的出价策略。

您可以通过阿里云CLI、OpenAPI Explorer和阿里云SDK等开发者工具调用RunInstances 创建 抢占式实例。

送明:

如果需要跟随当前市场实际价格,将SpotStrategy参数设为SpotAsPriceGo。如果需要设置能 接受的最高价,将SpotStrategy参数设为SpotWithPriceLimit。

查看抢占式实例账单

与按量付费实例的收费金额不同,抢占式实例的收费金额是实际成交价格。

从实例详情页面:

- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏中, 单击实例。
- 3. 在实例列表页面,单击待查看抢占式实例的实例ID或者操作列下的管理。
- 4. 在实例详情页面,单击付费信息右侧的更多 > 查询消费明细。
- 5. 在消费明细页面,单击待查看抢占式实例操作列下的详情。

从费用中心页面:

- 1. 登录ECS管理控制台。
- 2. 单击费用 > 进入费用中心。
- 3. 在费用中心页面,单击消费记录 > 消费明细。
- 4. 在消费明细页面,找到待查看抢占式实例,单击操作列下的详情。

您可以按产品、支付状态、账期等条件筛选。

5.3.3 停止抢占式实例

本文介绍如何停止抢占式实例,以及不同情况下停止后再启动的效果。

操作步骤

- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏中,单击实例。
- 3. 在实例列表页面中,单击待停止抢占式实例操作列下的更多 > 实例状态 > 停止。
- 4. 在停止实例对话框中,单击确定。

您可以通过阿里云CLI、OpenAPI Explorer和阿里云SDK等开发者工具调用 StopInstance 接口 停止抢占式实例。

抢占式实例停止后再启动效果

仅VPC类型的抢占式实例支持按量付费实例停机不收费功能。根据抢占式实例的网络类型和出价模 式不同,实例停止后再启动会有不同的表现,如下表所示。

网络类型	出价模式	停止模式	停止后再启动效果
经典网络	SpotWithPr iceLimit	保留并收费	在保护周期内能正常启动。过了保护周期: 如果您设置的价格不低于市场价格并且资源 库存充足,能正常启动。 如果您设置的价格低于市场价,或者资源库 存不足,不能启动。
	SpotAsPric eGo	保留并收费	在保护周期内能正常启动。过了保护周期: ・如果资源库存充足,能正常启动。 ・如果资源库存不足,不能启动。

网络类型	出价模式	停止模式	停止后再启动效果
VPC	SpotWithPr iceLimit SpotAsPric eGo	保留并收费	在保护周期内能正常启动。过了保护周期: • 如果您设置的价格不低于市场价格并且资源 库存充足,能正常启动。 • 如果您设置的价格低于市场价,或者资源库 存不足,不能启动。
		停机不收费	在保护周期内,只要资源充足就能正常启动。过 了保护周期: ·如果您设置的价格不低于市场价格并且资源 库存充足,能正常启动。 ·如果您设置的价格低于市场价,或者资源库 存不足,不能启动。
		保留并收费	在保护周期内能正常启动。过了保护周期: ・如果资源库存充足,能正常启动。 ・如果资源库存不足,不能启动。
		停机不收费	在保护周期内,只要资源充足就能正常启动。过 了保护周期: ・如果资源库存充足,能正常启动。 ・如果资源库存不足,不能启动。

5.4 预留实例券

5.4.1 预留实例券概述

预留实例券是一种抵扣券,可以抵扣按量付费实例(不含抢占式实例)的账单,也能够预留实例资 源。相比预付费实例,预留实例券与按量付费实例这种组合模式可以兼顾灵活性和成本,比预付费 方式的包月价格更优惠。

上线说明

预留实例券功能从2019年4月11日起逐步开放,请前往邀测页面申请使用资格。

概念对比

预留实例券、按量付费实例和预付费实例的区别见下表:

对比项	预留实例券	按量付费实例	预付费实例
形式	一种抵扣券。	以按量付费方式购买的 实例,等同于一台实际 运行的虚拟机。	以预付费方式购买的实 例,等同于一台实际运 行的虚拟机。

对比项	预留实例券	按量付费实例	预付费实例
用途	无法单独使用,需要匹 配按量付费实例,抵扣 按量付费实例账单。	可以独立管理、配 置,既可以用作简单的 Web服务器,也可以 与其他阿里云产品搭配 提供强大的解决方案。	可以独立管理、配 置,既可以用作简单的 Web服务器,也可以 与其他阿里云产品搭配 提供强大的解决方案。

付款类型、有效期和预留实例数量

购买预留实例券时,您可以根据自身预算组合付款类型、有效期和预留实例数量。

· 付款类型有三种:

全预付、部分预付和0预付。详细的付款类型说明,请参阅预留实例券计费。

是否支持0预付根据您的云服务器使用情况而定。

・有效期有两种:

1年和3年。

预留实例券过期后,匹配的按量付费实例会正常运行,但无法再抵扣按量付费实例账单。

· 预留实例数量:

一张预留实例券下预留实例的数量,即可以同时匹配同规格按量付费实例的数量。

属性

预留实例券自动匹配按量付费实例。您也可以管理已有预留实例券,进行拆分、合并和范围调整等 操作,灵活匹配其它规格的按量付费实例。属性包括:

- ·操作系统:目前,预留实例券仅支持匹配运行Linux系统的按量付费实例。
- · 实例规格:预留实例券的规格,可以体现实例规格族和实例大小信息,用于匹配相应规格的按量 付费实例。
- ·范围:预留实例券的匹配范围,分为地域级和可用区级。

▋ 说明:

建议您针对明确的实例资源需求购买可用区级预留实例券,同时搭配地域级预留实例券应对临 时的需求。

·计算力:预留实例券可匹配的计算资源上限,由实例规格和预留实例数量决定。

使用限制

目前,预留实例券使用限制如下:

- 预留实例券数量
 - 地域级预留实例券数量:在所有地域下,您最多可以持有20张地域级预留实例券。
 - 可用区级预留实例券数量:可用区级预留实例券的数量单独计算,在每个可用区下,您最多可以各持有20张可用区级预留实例券。

例如,您可以在华东1(杭州)和华北1(青岛)下各购买10张地域级预留实例券,但地域级预 留实例券的总数不得超过20张。您可以在华东1(杭州)的可用区B、可用区H下各购买20张可 用区级预留实例券。如果需要更多预留实例券,您可以提交工单申请。

・ 実例类型

只能匹配按量付费实例(不含抢占式实例)。

・ 实例规格

能够使用预留实例券的规格族包括:

sn1ne、sn2ne、se1ne、ic5、c5、g5、r5、hfc5、hfg5和t5。其中,突发性能实例t5只支 持可用区级预留实例券,不支持地域级预留实例券,也不支持合并、拆分或者范围调整。

费用

预留实例券的计费标准,请参阅预留实例券计费。

相关链接

预留实例券的匹配规则,请参阅预留实例券匹配规则。

预留实例券的购买操作,请参阅购买预留实例券。

预留实例券的管理操作,请参阅管理预留实例券。

使用API购买预留实例券,请参阅PurchaseReservedInstancesOffering。

使用API查询预留实例券,请参阅DescribeReservedInstances。

使用API管理预留实例券,请参阅ModifyReservedInstances。

联系我们

如果您在使用预留实例券时遇到任何问题, 欢迎使用钉钉通讯客户端扫描以下二维码加入技术支持 钉钉群。

5.4.2 预留实例券匹配规则

预留实例券需要匹配按量付费实例才能体现账单优势,本文为您介绍预留实例券的匹配规则和常见 操作。

预留实例券匹配规则

您无法手动管理预留实例券和按量付费实例的匹配状态。购买预留实例券后,在有效期内预留实例 券将自动匹配按量付费实例,匹配要素包括:操作系统、实例规格和范围。

如果您的账号下暂时没有可以匹配的按量付费实例,预留实例券会闲置,但会继续产生费用。在您 购买符合要求的按量付费实例后立即自动匹配,匹配成功后即开始抵扣按量付费实例账单。具体计 费细节,请参阅预留实例券计费。

购买成功后,生效时间按整点计算,从生效时间开始计费,失效时间为到期日次日的零点。例 如,您在2019-02-26 13:45:00成功购买了一张预留实例券,有效期为一年,该预留实例券的生效 时间和计费开始时间为2019-02-26 13:00:00,失效时间为2020-02-27 00:00:00。如果您在购买 预留实例券时已经持有可匹配的实例,则从2019-02-26 13:00~14:00的小时账单开始抵扣,直至 预留实例券失效。

建议您根据业务场景,提前购置可以匹配按量付费实例的预留实例券。预留实例券也提供了灵活的 管理方式,让您可以根据业务场景管理预留实例券,最大程度地享受抵扣,灵活地控制成本。 地域级和可用区级预留实例券的特点见下表:

特点	地域级	可用区级	示例
实例大小灵活	支持,可以匹	不支持,必须	您持有以下运行中的按量付费实例:
112	配回一地或ト 同一规格族但	的按量付费实	2台Linux实例, ecs.c5.xlarge, 华北1(青
	大小不同的按	例	岛)。名称分别为C5PAYG-1和C5PAYG-2。
	量付费买例		您购买了以下预留实例券:
			1张地域级券,ecs.c5.2xlarge,华北1(青
			岛)。名称为C5RI。
			购买成功后,C5RI同时匹
			配C5PAYG1和C5PAYG2,抵 扣C5PAVG1和C5PAVG2的账单
可用区灵活性	支持。可以匹	不支持。必须	您持有以下运行中的按量付费实例:
	配同一地域下	匹配特定可用	1台Linux实例 ecs c5 xlarge 华北1 (青
	所有可用区的 按量付费实例	区下的按量付 费实例	岛)可用区B。名称为C5PAYG-b。
			您购买了以下预留实例券:
			1张地域级券,ecs.c5.xlarge,华北1(青
			岛)。名称为C5RI。
			购买成功后,C5RI匹配C5PAYG-b,抵 扣C5PAYG-b的账单。
			由于业务需要,您释放掉了C5PAYG-b,在可用
			区C启动了一台相同规格的C5PAYG-c,则该预
			留实例券继续匹配C5PAYG-c,抵扣C5PAYG-c
			的账单。
资源预留	不支持,实例	支持,预留指	您购买了以下预留实例券:
	资源库存紧张时可能需要等	定数量的实例 容源 保证启	5张可用区级券,ecs.c5.xlarge,华北1(青
	待	动成功	岛)可用区B。有效期为1年,预留实例数量为2
			o
			华北1(青岛)可用区B下将为您预留10台实 例,规格为ecs.c5.xlarge,预留期限是1年。

5.4.3 购买预留实例券

本文为您介绍购买预留实例券的注意事项和操作步骤。

注意事项

- · 购买预留实例券前,请确保您要匹配的按量付费实例符合预留实例券使用要求。
- · 您无法手动管理预留实例券和按量付费实例的匹配状态,请确保您已了解预留实例券匹配规则。

操作步骤

- 1. 登录ECS管理控制台。
- 在左侧导航栏中,单击预留实例券。如果您尚未使用过预留实例券功能,单击申请邀测获取使用 资格。
- 3. 在预留实例券页面中,单击购买预留实例券。
- 4. 配置地域信息。
 - a. 选择地域。
 - b. 配置资源预留。

📙 说明:

仅可用区级预留实例券支持资源预留,但地域级预留实例券具有实例大小和可用区灵活性。

- 5. 配置实例信息。
 - a. 选择实例规格。

📃 说明:

购买地域级预留实例券时需要选择实例大小,但在匹配按量付费实例时不做大小限制。

b. 选择付款类型。

支持全预付、部分预付和0预付,详细说明请参阅预留实例券计费。

- 6. 配置购买参数。
 - a. (可选)填写券名。
 - b. 填写预留实例券有效期。

支持1年和3年。

c. 填写预留实例数量。

可以同时匹配同规格按量付费实例的数量。例如,实例规格设置为ecs.g5.large,预留实例数量设置为3,该预留实例券就可以同时匹配3台规格为ecs.g5.large的按量付费实例。

7. 勾选《云服务器 ECS 服务条款》和《通用服务条款》,然后单击确认购买。

8. 在确认购买对话框中,确认参数,然后单击创建订单。

9. 确认支付信息,单击确认支付。

下一步

您已经成功购买了一张预留实例券,成功匹配按量付费实例后即可抵扣按量付费实例账单。您还可 以管理预留实例券,应对按量付费实例的变化。

5.4.4 管理预留实例券

购买预留实例券之后,您可以通过拆分或者合并预留实例券来匹配更多规格的按量付费实例,还可以调整预留实例券的范围。

注意事项

为便于描述,待拆分、合并或调整的预留实例券称为原券,拆分、合并或调整后得到的预留实例券称为目标券。

拆分、合并或调整预留实例券前,请确认符合以下条件:

- ・原券已经购买成功且在有效期内,即处于已生效状态。
- ·没有其他处理中的拆分、合并或调整请求。
- · 支持更改实例大小,但不支持更改实例规格族。

提交拆分、合并或调整请求后:

- · 原券进入处理中状态,处理完成后状态会自动刷新。
- ·您不能更改或取消处理中的请求,如果想回滚所做更改,需要重新发起更改请求。

成功拆分、合并或调整预留实例券后:

- · 目标券的生效时间按整点计算,如果成功匹配新的按量付费实例,在同一个小时即开始抵扣按量 付费实例账单。
- · 原券的失效时间按整点计算,价格更新为0美元。
- ·如果目标券为可用区级预留实例券,资源预留的类型也会自动更新。

例如,您在2019-02-26 13:45:00成功将一张规格为ecs.g5.2xlarge的可用区级预留实例券(RI1))拆分成两张规格为ecs.g5.xlarge的可用区级预留实例券(RI2和RI3)。则RI1的失效时间为2019-02-26 13:00:00,RI2和RI3的生效时间也为2019-02-26 13:00:00。从2019-02-26 13:00:00开始,可抵扣和预留的实例规格也由ecs.g5.2xlarge变为ecs.g5.xlarge,不再抵扣ecs.g5.2xlarge实例的小时账单。如果RI2和RI3在生效后立即成功匹配到实例,也从2019-02-26 13:00:00开始抵扣ecs.g5.xlarge实例的小时账单。

如果拆分、合并或调整预留实例券失败,原券继续可用。

拆分预留实例券

您可以将一张预留实例券拆分为数张计算力更小的预留实例券,匹配相应规格的按量付费实例,应 对业务量的分流。

- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏中,单击预留实例券。
- 3. 在预留实例券页面中,单击原券操作列下的拆分。
- 4. 在拆分实例券页面, 配置各个目标券的名称、实例规格和实例数量。

目标券计算力的总和必须等于原券计算力。

5. 单击确认。

合并预留实例券

如果业务量再度集中,您可以将数张预留实例券合并为一张计算力更大的预留实例券,匹配相应规 格的按量付费实例。

(!) 注意:

合并预留实例券前,请确保:

- · 原券的过期日期必须相同。
- · 购买原券时的币种必须相同。
- ・如果原券是地域级预留实例券,必须位于同一地域,如果原券是可用区级预留实例券,必须位 于同一可用区。

1. 登录ECS管理控制台。

- 2. 在左侧导航栏中, 单击预留实例券。
- 3. 在预留实例券页面中, 单击原券操作列下的合并。
- 4. 在合并实例券页面,选择各个原券,然后配置目标券的名称、实例规格和实例数量。

📕 说明:

目标券计算力必须等于原券计算力的总和,且目标券的实例规格必须存在。例如,您可以用2张 实例规格为ecs.g5.2xlarge的预留实例券合并出1张实例规格为ecs.g5.4xlarge的预留实例 券,但不能用1张实例规格为ecs.g5.xlarge的预留实例券和2张实例规格为ecs.g5.2xlarge的 预留实例券合并出1张实例规格为ecs.g5.5xlarge的预留实例券。

5. 单击确认。

调整预留实例券的范围

如果业务区域发生变化,您可以调整预留实例券的范围,包括:

- · 将范围从可用区级改为地域级。
- · 将范围从地域级改为可用区级。
- ・在同一地域下更改可用区。

不支持跨地域调整预留实例券的范围。例如,如果您持有华东1(杭州)可用区B下的可用区级预 留实例券,可以调整为华东1(杭州)其它可用区下的可用区级预留实例券,或者调整为华东1(杭 州)下的地域级预留实例券,但不能将范围改为其它地域或者其它地域下的可用区。

- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏中,单击预留实例券。
- 3. 在预留实例券页面中, 单击原券操作列下的修改。
- 4. 在修改实例券页面, 配置新的地域信息。
- 5. 单击确认。

5.5 转换计费类型

5.5.1 按量付费转预付费

您目前可以通过ECS管理控制台将按量付费实例转换成包年包月实例。

限制

您每次最多只能将 20 个按量付费实例转换为包年包月实例。

前提条件

待转换的 ECS 实例需要满足以下条件:

- ·不能是系列I实例规格,也不能是n1、n2、e3实例规格族中的任一种实例规格。
- 不能是抢占式实例。
- ・ 归属于您的账号下。
- ・状态为 运行中 或 已停止。

如果您在 ECS 实例处于 运行中 或 已停止 时下单成功,但是在支付未完成时实例状态发生了变 化不再处于上述状态,那么支付会失败,从而导致付费方式转换失败。当实例重新处于上述状态 时,您可以去订单中心重新支付这个订单。

・没有设置自动释放时间。

如果实例已经设置过自动释放时间,您需要先关闭自动释放设置才能进行转换操作。

· 实例不能有未完成的转换订单。

如果实例有未支付的转换订单,您需要作废这个未支付的订单后才能执行新的转换操作。

操作步骤

- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏中,单击实例。
- 3. 选择需要的地域。
- 选择需要转换付费方式的一个或多个按量付费实例,单击实例列表下方的按量付费转包年包
 月。
- 5. 在转换页面上,单击 批量更改。
- 6. 在弹出的对话框中,
 - · (必须)设置转换为包年包月后的购买时长。如果是多个实例一起转换,只能设置相同的购买时长。
 - (可选)如果您选中的实例已经挂载了按量付费的磁盘,而且您需要同时转换磁盘的计费方式,可以选择转为包年包月磁盘。

按量付费转包	年包月	\times
时长:	1 个月 🔻	
数据盘	转为包年包月磁盘 勾选后若实例挂载了按量付费的磁盘,将转为包年包月磁盘(将不支持卸载且随实例一起释放)	
	确定即	消

7. 单击 确定。下单后,会创建订单并跳转到支付页面进行支付。

支付成功即完成转换操作。

FAQ

下单失败如何处理?

下单失败可能是由以下原因造成的:

- · 实例当前状态不支持转换
- · 实例已经设置了释放时间, 暂不支持转换
- · 实例当前处于已过期状态,暂不支持转换
- · 实例的信息发生变化,不允许转换

· 实例存在未支付的转换订单

如果出现以上明确的错误提示,您应该根据错误提示调整实例。

支付完成后多久能完成转换?

支付完成后,会有异步任务执行转换操作。目前同时转换1~20个实例的付费方式所需时间为1~ 4秒。转换完成后,您可以在控制台上看到实例的付费方式已经更新为包年包月。

转换失败如何处理?

请提交工单。

转换之后带宽付费方式是否发生变化?

不变。目前按量付费转包年包月功能只支持转换实例和磁盘的付费方式。

我有一个转换订单,但是还没有支付,这时我升级了实例的配置,这个转换订单还有效吗?

按量付费转换包年包月时会下一个新购订单,这个订单是需要支付的。如果您在订单未支付时升级 了实例的配置,由于实例组件已经发生变化,原订单的金额已经不足以满足转换要求,此时订单会 被禁止支付。如果您仍然需要转换实例的付费方式,只能先作废当前未支付订单,再执行新的转换 操作。

5.5.2 预付费转按量付费

创建一台预付费实例(包括包年包月和按周付费)后,如果您需要更灵活的计费方式,按实际资源 使用量支付费用,您可以将实例的计费方式转为按量付费。

转换计费方式时,您需要注意以下信息:

· 实例的系统盘, 随实例创建的作数据盘用的云盘, 以及直接为实例创建的作数据盘用的预付费云 盘, 也从预付费转为按量付费。

· 公网带宽的计费方式不变。

转为按量付费后,请确保账户余额充足以免发生欠费影响您的使用。若不再使用该实例,您可以设 置自动释放时间或者手动释放,具体操作请参见释放实例。

转换须知

· 是否支持预付费转按量付费功能根据您的云服务器使用情况而定。

・每个账户每月有最大退款额度的限制,以转换页面显示为准。当月退款额度超限后不能再操作退款,下月1号自动清零。

因为计费方式转换而产生的退款额度,根据实例的vCPU数和当前计费周期里剩余的小时数来计算,即一个退款单位是1 vCPU * 1 小时。

例如,购买了一台4 vCPU的实例,够买时长为6个月,使用了4个月后转为按量付费,则 该ECS实例本次消耗的退款额度为4 (vCPU) * 60 (退款天数) * 24 (小时/天) = 5760 (退款额度)。

・若实例包含未生效的续费、升级订单、会全额退款。已生效的订单会退还部分款项。

· 计费方式转换后,因备案、故障或机房迁移等原因赠送的使用时长自动作废。

前提条件

- · 待转换的ECS实例和云盘的计费方式必须为包年包月或者按周付费。
- ·待转换的ECS实例状态为运行中或已停止。

操作步骤

- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏,选择实例与镜像>实例。
- 3. 选择地域。
- 4. 选择需要转换计费方式的预付费实例,在操作列,选择更多 > 资源变配 > 预付费转按量付费。
- 5. 在转换页面上,阅读转换须知,并阅读确认 《云服务器 ECS 服务条款》。
- 6. 单击确认转换。

转换成功后,您可以前往ECS管理控制台查看,该实例的付费方式已变为按量。同时,单击实例ID进入实例详情页,在左侧导航栏中,单击本实例磁盘,实例系统盘以及随实例创建的数据盘(如果有)的付费方式也变为按量付费。

FAQ

转换失败如何处理?

转换失败可能是由以下原因造成的:

- · 实例当前状态不支持转换
- ・实例当前处于已过期状态,暂不支持转换
- · 实例的信息发生变化,不允许转换

如果出现以上明确的错误提示,您应该根据错误提示调整实例。如果问题仍旧存在,请提交工单。
6 创建实例

6.1 创建方式导航

本文介绍创建ECS实例的几种方式,内容包括从基本的创建操作到进阶自定义功能。

按照向导指引创建ECS实例是常见的方式,您可以灵活地选择配置项,确保满足业务的需求。详细 操作,请参见使用向导创建实例。

📋 说明:

如果您有习惯使用的操作系统、应用程序等配置,您可以先创建自定义镜像,在创建实例过程中选择自定义镜像,提高配置效率。详细操作,请参见使用自定义镜像创建实例。

如果您需要一台和当前实例相同配置的实例,可以直接创建相同配置的实例,请参见创建相同配置 的实例。

您还可以提前创建启动模板,设置好模板后能实现一键创建,更加方便快捷。请参见通过启动模板 创建实例。更多启动模板的介绍,请参见什么是实例启动模板。

6.2 使用向导创建实例

本文介绍如何使用 ECS 管理控制台向导创建一个实例。

前提条件

- ・ 在创建ECS实例前, 您已经完成准备工作。
- ·如果创建Linux实例时需要绑定SSH密钥对,需要在目标地域创建一个SSH密钥对。
- ·如果要设置自定义数据,需要准备实例自定义数据。
- ·如果要让实例扮演某个角色,需要创建实例RAM角色,并授予角色相应的权限。

操作步骤

- 1. 登录云服务器ECS管理控制台。
- 2. 在左侧导航栏, 单击 实例。
- 3. 在 实例列表 页面,单击 创建实例,进入 创建 页面。
- 4. 完成 基础配置:
 - a) 选择 计费方式:包年包月、按量付费 或者抢占式实例。

抢占式实例的创建方式,请参见创建抢占式实例。

b) 选择地域和可用区。系统默认随机分配可用区,您可以选择适用的可用区。如何选择地域和 可用区,请参见地域和可用区。

- ・ 实例创建完成后,不可更改地域和可用区。
- 部分实例规格族并不是全地域提供。详细信息,请参见什么是GPU计算型实例、创 建f1实例、创建SCC实例和创建EBM实例。
- c)选择实例规格并设置实例数量:可供选择的实例规格由您所选择的地域决定。不同实例规格 适用的应用场景,请参见实例规格族。

🗾 说明:

- · 每个账号有限定的按量付费实例或抢占式实例配额。以页面上显示的信息为准。
- ·如果您使用弹性网卡,企业级实例规格族必须选择不少于2 vCPU核的实例规格,入门 级实例规格族必须选择不少于4 vCPU核的实例规格。各种实例规格支持的弹性网卡数 量,请参见实例规格族。
- ·如果您要使用SSD云盘作为存储设备,请选择I/O优化实例。

d) 选择镜像。您可以选择公共镜像、自定义镜像、共享镜像或从镜像市场选择镜像。

📕 说明:

- · 如果您要使用SSH密钥对,必须选择Linux系统。
- ·如果您要设置实例自定义数据,只能选择特定的镜像,详细信息请参见实例自定义数据。
- ·公共镜像仅包括初始系统环境,更多镜像可以在镜像市场获取。
- e) 选择存储:
 - ・系统盘:必选项,用于安装操作系统。指定系统盘的云盘类型和容量:
 - 云盘类型:地域不同会影响可供选择的云盘类型。
 - 容量:系统盘默认容量为40 GiB。如果选择的镜像文件大于40 GiB,则默认为镜像文件大小。系统盘的容量范围由镜像决定,如下表所示。

镜像	系统盘容量范围(GiB)
Linux(不包括CoreOS)+FreeBSD	[max{20, 镜像文件大小}, 500]
CoreOS	[max{30,镜像文件大小},500]

镜像	系统盘容量范围(GiB)
Windows	[max{40, 镜像文件大小}, 500]

·数据盘:可选项。如果在此时创建云盘作为数据盘,必须选择云盘类型、容量、数量,并
 设置是否加密。您也可以在实例创建后参见创建按量付费云盘为实例添加新的数据盘。您
 可以创建空云盘,也可以使用快照创建云盘。最多可以添加16块云盘作数据盘。

📕 说明:

此时创建的云盘有以下特点:

- 计费方式与实例相同。
- 包年包月数据盘只能随实例一起释放,按量付费的数据盘可以设置为随实例一起释放。
- ·如果您选择的是带本地盘的实例规格族(比如i1、d1、d1ne等),这里会显示实例规格
 对应的本地盘信息,不可配置。各种本地盘实例规格对应的本地盘信息,请参见实例规格
 族。
- 5. 单击下一步:网络和安全组,完成网络和安全组设置:
 - a) 选择网络类型:
 - · 专有网络: 必须选择专有网络和交换机。如果您没有创建专有网络和交换机,可以选择默 认专有网络和默认交换机。
 - · 经典网络:如果您是在2016年6月16日12:00(UTC+8)以后第一次购买ECS实例,不能 再选择经典网络。
 - b) 设置公网带宽:
 - 如果需要为实例分配一个公网IP地址,必须选中分配公网IPv4地址,选择按使用流量计费公网带宽,并指定带宽。通过这种方式分配的公网IP地址不能与实例解绑。关于如何选择公网带宽计费方式,请参见公网带宽计费。
 - ·如果您的实例不需要访问公网或者您的VPC类型ECS实例使用弹性公网IP(EIP)地址访问公网,您不需要分配公网IP地址。EIP地址随时能与实例解绑。
 - c) 选择安全组。如果您自己没有创建安全组,可以使用默认安全组。默认安全组的规则,请参 见安全组概述。
 - d)添加弹性网卡。如果所选实例规格支持弹性网卡,可以添加弹性网卡,并为网卡选择交换机。

📋 说明:

这里添加的弹性网卡默认会随实例一起释放,您可以在ECS控制台或者使用DetachNetworkInterface接口分离实例和网卡。

- 6. (可选) 单击 下一步:系统配置,完成系统配置项:
 - ·选择并设置登录凭证。您可以选择创建后设置,也可以当前直接设置。根据镜像选择不同的
 登录凭证:
 - Linux系统:可以选择使用密钥对或密码作为登录凭证。
 - Windows系统:只能使用密码作为登录凭证。
 - · 设置实例名称以及显示在操作系统内部的计算机名。
 - ・ 设置高级选项:
 - 实例RAM角色:为实例授予一个RAM角色。
 - 实例自定义数据: 自定义实例启动行为或向实例传入数据。
- (可选)单击下一步:分组设置,完成实例分组管理:如果您有多台实例,为了方便管理,建 议您为实例添加标签。

8. 确认订单:

- ・ 在 所选配置 部分,确认配置信息。您可以单击编辑图标重新编辑配置。
 - (可选)单击保存为启动模板可以将此次选型配置记录成启动模板,方便后续引用。更
 多详情,请参见实例启动模板。
 - (可选)单击生成Open API最佳实践脚本可以获取创建实例时的 API 最佳实践列表。
 左侧 API 工作流 罗列出您对应操作下的能使用关联 API 以及请求参数的值。右侧提供面向编程语言的 SDK 示例,目前支持 Java 和 Python 示例。更多详情,请参见 《ECS API 参考》简介。
- · (可选)如果计费方式为按量付费,可以设置自动释放服务时间。
- (可选)如果计费方式为 包年包月,可以设置购买时长,并选择是否开启 自动续费。
- ·确认配置费用。实例和公网带宽的计费方式决定了显示的费用信息,如下表所示。

实例计费方式	费用估算
按量付费或抢占 式实例	公网流量费用 + 配置费用。其中,配置费用包括:实例规格(CPU 和内 存的配置)、系统盘、数据盘(如果有)和本地盘(如果有)的费用。
包年包月	公网流量费用 + 配置费用。其中,配置费用包括:实例规格(CPU和内 存的配置)、系统盘、数据盘(如果有)和本地盘(如果有)的费用。

· 阅读并确认 云服务器ECS服务条款。

9. 单击 创建实例。

实例开通后,单击管理控制台回到ECS管理控制台查看新建的ECS实例。在相应地域的实例列表

里,您能查看新建实例的实例名称、公网IP地址、内网IP地址或私网IP等信息。

后续步骤

- ·您可以通过FTP服务上传本地文件到ECS实例。关于部署FTP服务的详细操作,请参见使用ECS 实例创建FTP站点。
- · 创建实例后, 建议您对操作系统做安全合规性检查和加固:
 - Linux实例,请参见《安全公告和技术》手册中的Linux操作系统加固。
 - Windows实例,请参见《安全公告和技术》手册中的Windows操作系统安全加固。
- ·如果您随实例创建了数据盘,只有分区格式化后您才能正常使用数据盘,具体操作,请参见Windows格式化数据盘或Linux格式化数据盘。

6.3 使用自定义镜像创建实例

如果您要创建一个实例,与现有的某个实例拥有完全相同的操作系统、应用程序和数据,您可以使 用这个实例创建自定义镜像,并根据这个自定义镜像创建实例。采用这种方法可以提高工作或交付 效率。

背景信息

- ·如果自定义镜像与要创建的实例在同一个地域,您需要使用以下任一方法创建自定义镜像:
 - 导入镜像
 - #unique_204
 - #unique_205
- ・如果自定义镜像与要创建的实例在不同的地域,您需要将自定义镜像复制到目标地域。详细信息,请参见 #unique_206。
- ·如果镜像属于不同的账号,必须先完成镜像共享。详细信息,请参见 #unique_207。

操作步骤

- 1. 登录 ECS管理控制台。
- 2. 在左侧导航栏中, 单击 实例。

您也可以在左侧导航栏中单击镜像,找到要使用的自定义镜像,并在 操作 列中单击 创建实例。

3. 在 实例列表 页的右上角,单击 创建实例。

4. 在创建实例页面,按 创建ECS实例 配置信息,但是需要注意以下配置:

· 地域:必须选择镜像所在的地域。

・镜像:选择自定义镜像或者共享镜像,并在下拉列表中选择需要的镜像。

📋 说明:

如果您选择的自定义镜像中包含了一个或多个数据盘快照,系统会自动根据这些快照创建相 同数量的云盘作为数据盘,每个云盘大小与对应的快照相同。您可以增加云盘容量,但不能 缩小。

5. 确认订单。

6.4 创建相同配置的实例

本文介绍如何购买相同配置功能,提高在特定场景下横向扩展的效率。

操作步骤

- 1. 登录 云服务器管理控制台。
- 2. 选择地域。
- 3. 在左侧导航栏中, 单击 实例。
- 4. 找到需要的实例,在操作列,选择更多>购买相同配置。
- 左购买相同配置页面,确认当前配置。如果您想修改部分配置,选择更多配置,修改计费方式、安全组、公网带宽、带宽、登录验证方式、实例名称等信息。
- 6. 对于包年包月预付费实例,您可以修改购买时长。
- 7. 设置 购买量。
- 8. 阅读并确认 《云服务器 ECS 服务条款》。
- 9. 如果是包年包月预付费实例,单击 去下单。如果是按量付费实例,单击 去开通。

6.5 使用实例启动模板创建实例

您可以直接使用现有实例启动模板配置实例,省去重复选择配置项的时间。

前提条件

您已经 创建模板 或 创建实例启动模板的新版本。

操作步骤

- 1. 登录 ECS控制台。
- 2. 在左侧导航栏中,单击实例启动模板。

3. 找到模板或版本,在操作列中,单击创建实例。

4. 在 自定义购买 页面,选择模板和版本,待配置信息加载完成,检查所有配置信息。

如果需要修改参数,或者所选的模板缺少必要参数,单击编辑图标修改配置。

 如果您选择的是包年包月实例,则选择购买时长并勾选服务协议,单击确认下单,完成支付后 可登录控制台查看新建实例。

如果您选择的是按量付费实例,则勾选服务协议,单击 创建实例。实例创建成功后,可登录控 制台查看新建实例。

7 连接实例

7.1 连接方式导航

根据ECS实例的网络设置和操作系统,以及您本地设备的操作系统,您可以选择合适的方法连接ECS实例。

连接Linux实例

采用不同的方法连接Linux实例,如下表所示。

能访问公网	本地设备操作系统	连接方法
是/否	Windows或者类Unix	使用管理终端连接Linux实例
是	Windows	使用PuTTY等远程连接工具连接: · 登录凭证为SSH密钥对:使用SSH密钥对连接Linux实例 · 登录凭证为密码:使用用户名密码验证连接Linux实例
是	Linux或者Mac OS等类Unix 系统	使用命令连接: 登录凭证为SSH密钥对:使用SSH密钥对连接Linux实例 登录凭证为密码:使用用户名密码验证连接Linux实例
是	iOS或者Android	使用SSH Control Lite或 者JuiceSSH等App连接:在移 动设备上连接Linux实例

连接Windows实例

采用不同的方法连接Windows实例,如下表所示。

! 注意:

Windows实例创建成功后,实例的操作系统内部需要进行初始化,一般需要2~3分钟,初始化期间请不要重启实例。如果您创建了非I/O优化的Windows实例,需要10分钟完成初始化,请等待初始化完成后再连接实例。

表 7-1: 在移动设备上连接Windows实例

能访问公网	本地设备操作系统	连接方法
是/否	Windows或者类Unix	使用管理终端连接Windows实 例
是	Windows	使用远程桌面连 接(MSTSC)连接:本地客户 端上连接Windows实例
是	Linux	使用rdesktop等软件连接:本 地客户端上连接Windows实例
是	Mac OS	使用Microsoft Remote Desktop Connection for Mac连接:本地客户端上连 接Windows实例
是	iOS或者Android	使用Microsoft Remote Desktop等App连接:在移动 设备上连接Windows实例

7.2 连接Linux实例

7.2.1 使用管理终端连接Linux实例

本文介绍如何使用云服务器 ECS 管理控制台的管理终端连接 Linux 实例,并说明一些相关的操作。

使用场景

如果普通远程连接软件(比如 PuTTY、Xshell、SecureCRT 等)无法使用,您可以使用云服务器 ECS 管理控制台的管理终端连接实例,查看云服务器操作界面当时的状态。

管理终端适用的场景包括但不限于:

- ・如果您的实例引导速度慢(如启动自检),您可以通过管理终端查看进度。
- ·如果您的实例内部设置错误(比如,误操作开启了防火墙),导致无法使用软件远程连接,您可以通过管理终端连接到实例后修改设置(比如关闭防火墙)。
- ・如果应用消耗 CPU 或带宽比较高(例如云服务器被肉鸡、进程 CPU或带宽跑满),导致无法远程连接,您可以通过管理终端连接到实例,结束异常进程等。

前提条件

- ・您已经创建了实例。
- · 您已经设置了实例登录密码。如果未设置, 您可以 重置实例密码。

操作步骤

- 1. 登录 云服务器 ECS 管理控制台。
- 2. 在左侧导航栏里,单击实例。
- 3. 在 实例列表 页上,选择目标地域。
- 4. 在实例列表里,找到需要连接的实例,在操作列,单击远程连接。
- 5. 连接管理终端:
 - ·使用主账号第一次连接管理终端时,按以下步骤连接管理终端:
 - a. 在 远程连接密码 对话框中,复制密码。

▋ 说明:

- 连接密码仅在第一次连接管理终端时显示一次。如果您以后需要使用这个密码连接管 理终端,请记下该密码。
- 如果您以RAM用户身份第一次连接管理终端,不会出现这个对话框。
- **b.** 单击 关闭。
- c. 在弹出的 输入远程连接密码 对话框中粘贴密码后, 单击 确定, 开始连接 管理终端。
- ·如果您忘记了密码或者以RAM用户身份第一次连接管理终端时,按以下步骤操作:
 - a. 修改远程连接密码。
 - b. 单击界面左上角的 发送远程命令 > 连接远程连接。
 - c. 在弹出的 输入远程连接密码 对话框中,输入刚修改的新密码。
 - d. 单击确定,开始连接管理终端。
- ・使用主账号或RAM用户身份再次连接管理终端 时,在 输入远程连接密码 对话框中输入密码,单击 确定,开始连接管理终端。
- 6. 输入用户名 root 和实例登录密码登录 ECS 实例。

📕 说明:

- · Linux 系统一般不会显示密码输入过程。
- ・您可以单击界面左上角的 发送远程命令 > CTRL+ALT+Fx(x 为 1 10),切换不同的管 理终端连接 Linux 实例执行不同的操作。
- ·如果出现黑屏,可能是因为 Linux 实例处于休眠状态,单击键盘上任意键即可唤醒。

修改远程连接密码

如果您希望使用方便记忆的远程连接密码,或者忘记了密码,您可以按照以下步骤修改远程连接密码。

📕 说明:

如果您需要连接非 I/O 优化实例,修改密码后,您需要在 ECS 管理控制台重启实例使新密码生效。重启操作需要停止您的实例,中断您的业务,所以请谨慎执行。

- 1. 进入管理终端界面。
- 2. 关闭弹出的 远程连接密码 对话框或 输入远程连接密码 对话框。
- 3. 在界面的右上角, 单击 修改远程连接密码。
- 4. 在弹出的 修改远程连接密码 对话框里,输入新密码后,单击 确定,关闭对话框。
- 5. 新密码生效:
 - ·如果您要连接的是 I/O 优化实例,新密码会立即生效。
 - ·如果您要连接的是非 I/O 优化实例,您必须先在控制台上 重启实例,密码才会生效。在 ECS 实例内部重启无效。

复制长命令

如果您需要连接 Linux 实例,您可以使用 复制命令输入 功能输入比较长的文本、文件下载地址 等。

- 1. 进入管理终端界面。
- 2. 在界面右上角,单击复制命令输入。
- 3. 在弹出的 复制粘贴命令 对话框中,输入具体的命令后,单击 确定,即可将命令复制到 Linux 的命令行界面。

相关文档

- · 在PC端,您可以使用其他方式远程连接 Linux 实例:
 - 使用SSH密钥对连接Linux实例
 - 使用用户名密码验证连接Linux实例
- · 在移动设备端,您可以参考在移动设备上连接Linux实例。

7.2.2 使用SSH密钥对连接Linux实例

本文介绍了如何在Windows和Linux环境中使用SSH密钥对登录Linux实例。

前提条件

- · 您已经拥有一台分配了密钥对的Linux实例。您可以在创建ECS实例时分配密钥对,也可以为实例绑定密钥对。
- · 实例所在的安全组必须添加以下安全组规则。具体操作,请参见添加安全组规则。

网络类型	网卡类型	规则方向	授权策略	协议类型	端口范围	授权类型	授权对象	优先级
VPC	不需要配 置	入方向	允许	SSH(22)	22/22	地址段访 问	0.0.0.0 /0	1
经典网络	公网							

操作方式

根据本地设备的操作系统,您可以用不同的方式使用 SSH 密钥对登录 Linux 实例:

- ・本地为Windows环境
- · 本地为Linux或支持SSH命令的环境

本地为Windows环境

本节以PuTTY和PuTTYgen为例,介绍如何在Windows环境中将阿里云生成的私钥文件转换为PuTTY支持的格式,并通过SSH远程连接工具登录Linux实例。

📕 说明:

请提前下载并安装PuTTY和PuTTYgen。

1. (可选)如果您正在使用阿里云生成的.pem私钥文件,必须先按以下步骤转为.ppk私钥文件。 如果您使用的私钥文件本身已经是.ppk文件,可以略过这一步。

📋 说明:

在使用SSH密钥对时下载.pem私钥文件。

- a. 启动PuTTYgen。本示例中的PuTTYgen版本为0.68。
- b. 在Parameters > Type of key to generate中,选中RSA。

📋 说明:

Number of bits in a generated key的值不需要设置,软件会根据导入的私钥信息自动更新。

c. 单击Load, 选择显示所有类型的文件, 找到您的. pem文件。

道 说明: PuTTYgen默认你	又显示扩展名为.ppk的文件。				
😴 Load private key:					×
	下载 ▶		- 4 , ∣	搜索 下载	م
组织▼ 新建文件夹					0
☆ 收藏夹	▲ 名称 ▲	修改日期	类型	大小	
📙 下载	E dans dramation i bit south		1000		
	- starting at use		1.0		
≫ 取江切归的业直					
篇 库	Ξ				
al Git					选择要预览 的文件
					нэ
▶ 图片					
→ ○ ○ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □					
🥾 计算机		111			
As OSDisk (C:)					
Σ ^γ	(千省(N):		All Files PuTTV P	(*.*) rivate Key Eiles	(* ppk)
			All Files	(*.*)	

- d. 选择您从阿里云下载的.pem格式的私钥文件, 然后单击打开。
- e. 单击OK(确定)关闭确认对话框。
- f. 单击Save private key。PuTTYgen会显示一条关于在没有口令的情况下保存密钥的警告,单击是(Y)。
- g. 指定与密钥对相同的私钥名称,保存。PuTTY会自动为文件添加.ppk扩展名。
- 2. 启动PuTTY。

3. 选择Connection > SSH > Auth, 再单击Browse…, 选择前面所生成的.ppk文件。

- 4. 单击Session。
 - · 在Host Name (or IP address)里输入账号和需要连接的实例公网IP地址,格式为root@IP 地址。
 - ・在Port里输入端口号22。
 - · Connection type选择SSH。

5. 单击Open,开始连接您的Linux实例。

当页面上出现Connection established.时,说明您已经成功地使用密钥对登录实例。

本地为Linux或其它支持SSH命令的环境

本节介绍如何在Linux或其他支持SSH命令的环境(如Windows下的MobaXterm)下使用SSH 密钥对登录Linux实例。

・方式一

1. 找到您所下载的.pem私钥文件在本地机上的存储路径,例如/root/mysshkey.pem。

蕢 说明:

在使用SSH密钥对时下载.pem私钥文件。此处路径和文件名称仅为示例,请根据实际情况 修改。

- 运行命令修改私钥文件的属性: chmod 400 [.pem私钥文件在本地机上的存储路径]。例如, chmod 400 /root/mysshkey.pem。
- 3. 运行命令连接至实例: ssh -i [.pem私钥文件在本地机上的存储路径] root@[公网IP地 址]。例如, ssh -i /root/mysshkey.pem root@10.10.10.100。
- ・方式二

您也可以通过SSH配置来简化连接命令。

1. 进入根目录下的ssh目录,按照如下方式修改config文件。

```
Host ecs // 输入ECS实例的名称
HostName 192.*.*.* // 输入ECS实例的公网IP地址
Port 22 // 输入端口号,默认为22
User root // 输入登录账号
IdentityFile ~/.ssh/ecs.pem // 输入.pem私钥文件在本机的地址
```

- 2. 保存config文件。
- 3. 重启SSH。
- 4. 运行命令连接至实例: ssh [ECS名称]。例如, ssh ecs。

相关连接

您也可以使用用户名密码验证连接Linux实例。具体操作,请参见使用用户名密码验证连接Linux实例和使用管理终端连接Linux实例。

7.2.3 使用用户名密码验证连接Linux实例

本文仅介绍如何使用用户名和密码验证远程连接 Linux 实例。

前提条件

在远程连接之前,请确保:

- ・ 实例必须处于 运行中 状态。如果实例未运行,请 启动实例。
- ・ 实例已经设置登录密码。如果未设置密码或密码丢失,请 重置密码。

・ 实例能访问公网:

专有网络(VPC)下,在创建实例时购买带宽从而分配到一个公网 IP 地址,或者在创建实例
 后 绑定一个弹性公网 IP 地址。

- 经典网络下,您的实例必须分配了公网 IP 地址。以下是获取公网 IP 地址的方法:

- 无论是包年包月实例还是按量付费实例,只要您在创建实例时购买了带宽就会被分配一个 公网 IP 地址。
- 如果您在创建包年包月实例时未设置带宽,可以 升降配 获取公网 IP 地址。
- · 实例所在的安全组必须添加以下安全组规则(具体操作,请参考 添加安全组规则):

网络类型	网卡类型	规则方向	授权策略	协议类型	端口范围	授权类型	授权对象	优先级
VPC	不需要配 置	入方向	允许	SSH(22)	22/22	地址段访 问	0.0.0.0 /0	1
经典网络	公网							

操作方式

根据本地设备的操作系统,您可以用不同的方式使用 SSH 协议远程连接 Linux 实例:

- ・本地设备使用 Windows 操作系统
- ・本地设备使用 Linux 或 Mac OS X 系统
- ・本地设备使用 Android 或 iOS 系统

本地设备使用 Windows 操作系统

如果本地设备使用 Windows 操作系统,您可以使用远程连接软件(如 PuTTY)连接 Linux 实例。本文档以 PuTTY 为例说明如何远程连接 Linux 实例。执行以下操作前,请先 下载 PuTTY。

按以下步骤连接 Linux 实例。

- 1. 双击 putty.exe, 启动程序, 进入 PuTTY 主界面。
- 2. 配置 Session:
 - · Host Name: 输入实例的公网 IP 地址或弹性公网 IP 地址。
 - · Port: 输入 22。
 - · Connection Type:选择 SSH。
 - · (可选) Saved Session:如果您希望以后不再输入上述信息直接进入登录界面,可以在这 里为这个会话指定一个便于识别的名称,再单击 Save 保存。

3. 单击 Open 进入登录页面。

蕢 说明:

首次连接时会出现以下警告,表示PuTTY无法确认远程服务器(实例)的真实性,只能提供 服务器的公钥指纹,需要您确认是否信任该服务器,并将其公钥指纹加入到本地机器的注册表 中。一般选择 是,之后,如果您登录时再次弹出这个警告,表示您的实例可能发生了中间人攻 击。关于这个警告更详细的信息,请参考 PuTTY官网文档。

4. 根据提示, 分别输入您 ECS 实例的用户名 (默认为 root) 和密码, 并回车确认。

说明:

一般 Linux 系统不会显示密码的输入过程。

当 PuTTY 的界面上出现Welcome to Alibaba Cloud Elastic Compute Service

!时,表示您已经成功连接到实例。

至此,您可以开始操作您的实例了。

本地设备使用 Linux 或 Mac OS X 系统

如果本地设备使用 Linux 或 Mac OS X 系统,按以下步骤远程连接实例。

1. 输入SSH 命令连接: ssh root@实例的(弹性)公网 IP。

2. 输入实例登录密码。

当界面上出现Welcome to Alibaba Cloud Elastic Compute Service !时, 表示您已经成功连接到实例。

至此,您可以开始操作您的实例了。

本地设备使用 Android 或 iOS 系统

如果您需要从移动设备上远程连接 Linux 实例,您可以使用 app 连接。根据移动设备的操作系统 不同,您可以有不同的选择。具体的操作描述,请参考 在移动设备上连接Linux实例。

相关链接

如果您使用的是 SSH 密钥对,请参考 使用SSH密钥对连接Linux实例。

如果您要使用 ECS 控制台的管理终端,请参考使用管理终端连接Linux实例。

如果希望在 Windows 操作系统中远程连接 CentOS 实例,并使用图形化界面管理实例,您可以在 实例上安装 VNC Server,并通过 VNC Viewer 连接实例。具体操作,请参考 在 Linux 实例上自 动安装并运行 VNC Server。

7.2.4 在移动设备上连接Linux实例

本文介绍了如何在移动设备上连接 Linux 实例,以 SSH Control Lite 为例介绍如何在 iOS 设备上 连接 Linux 实例,以 JuiceSSH 为例介绍如何在 Android 设备上连接 Linux 实例。

前提条件

在连接之前,您应先确认以下事项:

- ・ 实例处于 运行中 状态。
- · 实例拥有公网 IP 地址, 允许公网访问。
- · 您应该已经设置了实例的登录密码。如果密码丢失,您需要 重置实例登录密码。
- · 实例所在的安全组里, 您已经 添加安全组规则:

网络类型	网卡类型	规则方向	授权策略	协议类型	端口范围	授权类型	授权对象	优先级
VPC 网 络	不需要配 置	入方向	允许	SSH(22)	22/22	地址段访 问	0.0.0.0 /0	1
经典网络	公网							

使用 SSH Control Lite 连接 Linux 实例

如果您使用 iOS 设备,请确保已经安装了 SSH Control Lite。本示例中使用用户名和密码进行认证。

- 1. 启动 SSH Control Lite, 单击 Hosts。
- 2. 在 Hosts 页面, 在左上角, 单击 +。
- 3. 在弹出菜单中, 单击 Connection。
- 4. 在 Connection 页面上, 输入连接信息后, 单击 Save。需要输入的连接信息包括:
 - · Name: 指定 Host 名称,如本例中,设置为 DocTest。
 - · Protocol: 采用默认值 SSH。
 - · Host: 输入需要连接的 Linux 实例的公网 IP 地址。
 - · Port: 输入端口号 22。
 - · Username: 输入用户名 root。
 - · Password: 输入实例登录密码。
- 5. 在页面底部单击 Remote Controls。
- 6. 在 Remote Controls 页面,在左上角,单击+,创建一个新的远程连接会话,如本例中命名为 New remote。

以上步骤1-步骤6的操作如下图所示:

7. 在 New remote 页面上, 单击 Host1。

8. 在弹出菜单中,单击 Bind。

9. 选择刚添加的 Linux 实例,如本例中的 DocTest。

10.在 New remote 页面上,在右上角单击 Done。进入 Edit 状态后,单击 DocTest。

11.在弹出菜单中,单击 Connect。

以上步骤 7 - 步骤 11 的操作如下图所示:

12.在弹出的提示信息中,根据您的需要,选择 Yes, Once 或 Yes, Permanently。连接成功

后,DocTest 前的指示图标会变为绿色。

13.在 New remote 页面上, 单击 DocTest。

14.在弹出菜单中,单击 Console,进入 Linux 实例的管理界面。

以上步骤 12 - 步骤 14 的操作如下图所示:

至此,您已经成功地连接了 Linux 实例。

使用 JuiceSSH 连接 Linux 实例

如果您使用 Android 设备,请确保已经安装了 JuiceSSH。本示例中使用用户名和密码进行认证。

1. 启动 JuiceSSH, 并单击 Connections。

2. 在 Connections 页面上, 单击 + 图标。

- 3. 在 New Connection 页面上,添加连接信息后,单击 / 图标。需要添加的连接信息包括:
 - · Nickname: 指定连接会话的名称,如本例中,设置为 DocTest。
 - · Type: 采用默认值 SSH。
 - · Address: 输入需要连接的 Linux 实例公网 IP 地址。
 - · 按以下步骤设置 Identity:
 - a. 单击 Identity, 在下拉列表里单击 New。
 - b. 在 New Identity 页面上,添加如下信息后,单击 / 图标。需要添加的信息包括:
 - NickName: 可选项, 您可以根据管理需要设置一个身份名称, 方便后续管理。如本 例中, 设置为 DocTest。
 - Username: 输入用户名 root。
 - Password: 单击 SET(OPTIONAL) 后, 输入实例登录密码。
 - ・ Port: 输入端口号 22。
- 4. 确认提示信息后,单击 ACCEPT。
- 5. (可选)第一次连接时, app 会提示您如何设置字体等。确认信息后, 单击 OK I'VE GOT IT!。

至此, 您已经成功连接了 Linux 实例。

7.3 连接Windows实例

7.3.1 使用管理终端连接Windows实例

本文介绍如何使用云服务器 ECS 管理控制台的管理终端连接 Windows 实例,并说明一些相关的操作。

使用场景

如果普通远程连接软件(比如 PuTTY、Xshell、SecureCRT 等)无法使用,您可以使用云服务器 ECS 管理控制台的管理终端连接实例,查看云服务器操作界面当时的状态。

管理终端适用的场景包括但不限于:

- ·如果您的实例引导速度慢(如启动自检),您可以通过管理终端查看进度。
- ·如果您的实例内部设置错误(比如,误操作开启了防火墙),导致无法使用软件远程连接,您可以通过管理终端连接到实例后修改设置(比如关闭防火墙)。
- ·如果应用消耗 CPU 或带宽比较高(例如云服务器被肉鸡、进程 CPU或带宽跑满),导致无法远程连接,您可以通过管理终端连接到实例,结束异常进程等。

前提条件

- ・您已经创建了实例。
- · 您已经设置了实例登录密码。如果未设置, 您可以 重置实例密码。

操作步骤

- 1. 登录 云服务器 ECS 管理控制台。
- 2. 在左侧导航栏里,单击实例。
- 3. 在 实例列表 页上,选择目标地域。
- 4. 在实例列表里,找到需要连接的实例,在 操作 列,单击 远程连接。
- 5. 连接管理终端:
 - ·使用主账号第一次连接管理终端时,按以下步骤连接管理终端:
 - a. 在 远程连接密码 对话框中,复制密码。

📕 说明:

- 连接密码仅在第一次连接管理终端时显示一次。如果您以后需要使用这个密码连接管
 理终端,请记下该密码。
- 如果您以RAM用户身份第一次连接管理终端,不会出现这个对话框。
- **b.** 单击 关闭。
- c. 在弹出的 输入远程连接密码 对话框中粘贴密码后, 单击 确定, 开始连接 管理终端。
- ·如果您忘记了密码或者以RAM用户身份第一次连接管理终端时,按以下步骤操作:
 - a. 修改远程连接密码。
 - b. 单击界面左上角的发送远程命令 > 连接远程连接。
 - c. 在弹出的 输入远程连接密码 对话框中,输入刚修改的新密码。
 - d. 单击确定,开始连接管理终端。
- ・使用主账号或RAM用户身份再次连接管理终端 时,在 输入远程连接密码 对话框中输入密码,单击 确定,开始连接管理终端。

6. 输入用户名和密码登录 ECS 实例。

蕢 说明:

在 管理终端 界面的左上角单击 发送远程命令 > CTRL+ALT+DELETE,即可进入 Windows 实例的登录界面。

修改远程连接密码

如果您希望使用方便记忆的远程连接密码,或者忘记了密码,您可以按照以下步骤修改远程连接密 码。

| ■ 说明:

如果您需要连接非 I/O 优化实例,修改密码后,您需要在 ECS 管理控制台重启实例使新密码生效。重启操作需要停止您的实例,中断您的业务,所以请谨慎执行。

1. 进入管理终端界面。

- 2. 关闭弹出的 远程连接密码 对话框或 输入远程连接密码 对话框。
- 3. 在界面的右上角,单击修改远程连接密码。
- 4. 在弹出的 修改远程连接密码 对话框里,输入新密码后,单击 确定,关闭对话框。
- 5. 新密码生效:
 - ·如果您要连接的是 I/O 优化实例,新密码会立即生效。
 - ・如果您要连接的是非 I/O 优化实例,您必须先在控制台上 重启实例,密码才会生效。在 ECS 实例内部重启无效。

复制长命令

如果您需要连接 Linux 实例,您可以使用 复制命令输入 功能输入比较长的文本、文件下载地址 等。

- 1. 进入管理终端界面。
- 2. 在界面右上角,单击复制命令输入。
- 3. 在弹出的 复制粘贴命令 对话框中,输入具体的命令后,单击 确定,即可将命令复制到 Linux 的命令行界面。

相关文档

- · 在PC端,您可以在本地客户端上连接Windows实例。
- · 在移动设备端,您可以参考在移动设备上连接Windows实例

7.3.2 在本地客户端上连接Windows实例

本文介绍如何通过本地客户端连接Windows实例。

前提条件

在远程连接Windows实例之前,请确保:

- · 实例状态必须为运行中。如果实例不在运行中,必须启动实例。
- ・实例已经设置登录密码。如果未设置或密码丢失,必须重置实例登录密码。
- ・ 实例能访问公网:
 - 专有网络(VPC)下,在创建实例时购买带宽从而分配到一个公网 IP 地址,或者在创建实例
 后绑定一个弹性公网 IP 地址。
 - 经典网络下,您的实例必须分配了公网IP地址。以下是获取公网IP地址的方法:
 - 无论是包年包月实例还是按量计费实例,您在创建实例时购买了带宽即会被分配一个公网 IP地址。
 - 如果您在创建包年包月实例时未设置带宽,可以升级带宽获取公网IP地址。

· 实例所在的安全组必须添加以下安全组规则(具体操作,请参见添加安全组规则):

网络类型	网卡类型	规则方向	授权策略	协议类型	端口范围	授权类型	授权对象	优先级
VPC	不需要配 置	入方向	允许	RDP(3389)	3389/ 3389	地址段访 问	0.0.0.0 /0	1
经典网络	公网							

操作方式

根据本地设备的操作系统不同,您可以用不同的远程连接软件连接 Windows 实例:

- ・本地设备使用 Windows 操作系统
- ・本地设备使用 Linux 操作系统
- ・本地设备使用Mac OS操作系统
- ・ 本地设备使用Android或iOS系统

本地设备使用Windows操作系统

如果本地设备使用Windows操作系统,您可以使用Windows自带的远程桌面连接工具MSTSC连接Windows实例。

- 1. 选择以下任一方式启动 远程桌面连接(MSTSC):
 - ·选择开始>附件>远程桌面连接。
 - ・ 単击 开始 图标,在搜索框里中输入 mstsc 后按回车键确认。
 - ・按快捷键 Win(Windows 徽标键)+R 启动 运行 窗口,输入 mstsc 后按回车键。
- 2. 在 远程桌面连接 对话框中:
 - a. 单击 显示选项。
 - b. 输入实例的公网IP地址或EIP地址。
 - c. 输入用户名,默认为 Administrator。

如果您希望下次登录时不再手动输入用户名和密码,可以选择 允许我保存凭据。

- d. (可选)如果您希望将本地文件拷贝到实例中,您可以设置通过远程桌面共享本地电脑资源:单击本地资源选项卡,然后,
 - ·如果您需要从本地直接复制文字信息到实例中,选择剪贴板。
 - ·如果您需要从本地复制文件到实例中,单击详细信息,选择驱动器后再选择文件存放的盘 符。
- e. (可选)如果您对远程桌面窗口的大小有特定的需求,可以选择显示选项卡,再调整窗口大小。一般选择全屏。
- f. 单击连接。

本地设备使用Linux操作系统

如果本地设备使用Linux操作系统,您可以使用远程连接工具连接Windows实例。这里以rdesktop为例说明。

1. 下载并启动rdesktop。

2. 运行以下命令连接Windows实例。将示例中的参数改为您自己的参数。

rdesktop -u administrator -p password -f -g 1024*720 192.168.1.1 -r clipboard:PRIMARYCLIPBOARD -r disk:sunray=/home/yz16184

参数	说明
-u	用户名,Windows实例默认用户名是 Administrator。
-p	登录Windows实例的密码。
-f	默认全屏,需要用 Ctrl+Alt+Enter 组合键进 行全屏模式切换。
-g	分辨率,中间用星号(*)连接,可省略,省 略后默认为全屏显示。
192.168.1.1	需要远程连接的服务器IP地址。需要替换为您 的Windows实例的公网IP地址或 EIP 地址。
-d	域名,例如域名为INC,那么参数就是 -d inc。
-r	 多媒体重新定向。比如: ・ 开启声音: -r sound。 ・ 使用本地的声卡: -r sound : local。 ・ 开启 U 盘: -r disk:usb=/mnt/usbdevice。
-r clipboard:PRIMARYCLIPBOARD	实现本地设备Linux系统和Windows实例之间直接复制粘贴文字。支持复制粘贴中文。
-r disk:sunray=/home/yz16184	指定本地设备Linux系统上的一个目录映射到 Windows实例上的硬盘,这样就可以不再依 赖Samba或者FTP传送文件。

参数说明如下表所示。

本地设备使用Mac OS操作系统

如果您本地使用Mac OS操作系统,请参见微软官网文档操作。

本地设备使用Android或iOS系统

如果要使用移动设备远程连接您的Windows实例,您可以使用app。

具体的操作描述,请参见在移动设备上连接Windows实例。

相关文档

如果登录Windows实例报身份验证错误,请参见登录Windows实例报错: The function requested is not supported (出现身份验证错误,要求的函数不受支持)。

7.3.3 在移动设备上连接Windows实例

本文介绍了如何在移动设备上连接Windows实例,以微软公司发行的Microsoft Remote Desktop为例,介绍如何在iOS设备或Android设备上连接Windows实例。

前提条件

在连接之前,您应先确认以下事项:

- ・ 实例处于 运行中 状态。
- ・ 实例拥有公网 IP 地址, 允许公网访问。
- · 您应该已经设置了实例的登录密码。如果密码丢失,您需要 重置实例登录密码。
- · 实例所在的安全组里, 您已经 添加安全组规则:

网络类型	网卡类型	规则方向	授权策略	协议类型	端口范围	授权类型	授权对象	优先级
VPC 网 络	不需要配 置	入方向	允许	SSH(22)	22/22	地址段访 问	0.0.0.0 /0	1
经典网络	公网							

操作步骤

请确保已经安装了 Microsoft Remote Desktop。

- 1. 启动 RD Client。在页面右上角, 单击 +。
- 2. 在 Add New 页面,选择 桌面。
- 3. 在 编辑桌面 页面,设置连接信息后,单击 保存。需要设置的连接信息包括:
 - · PC 名称: 输入需要连接的 Windows 实例的公网 IP 地址。
 - · 用户帐户: 输入 Windows 实例账号 administrator, 并输入实例登录密码。
- 4. 在 远程桌面 页面,单击需要连接的 Windows 实例图标。
- 5. 在验证确认页面,确认信息后,单击接受。
- 至此, 您已经成功连接到 Windows 实例。

8 管理实例

8.1 启动和停止实例

本文介绍启动和停止实例,以及VPC内实例停机不收费功能相关的操作。

启动实例

如果实例目前处于已停止状态,您可以在控制台上启动实例,使实例进入运行中状态。

- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏中,单击实例。
- 3. 选择地域。
- 找到需要启动的实例,在操作列,选择更多>实例状态>启动。如果您需要同时启动多台已停止的实例,可以选中多台实例,并在实例列表底部,单击启动。
- 5. 在启动实例对话框中,确认信息,并单击确定。

您可以通过阿里云CLI、OpenAPI Explorer和阿里云SDK等开发者工具调用StartInstance启动 实例。

停止预付费实例

如果预付费实例目前处于运行中状态,您可以在控制台上停止实例,使实例进入已停止状态。停止 预付费实例不会影响实例的计费。

道 说明:

停止实例会中断您的业务,请谨慎执行。

- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏里,单击实例。
- 3. 选择地域。
- 4. 找到需要停止的预付费实例,在操作列,选择更多 > 实例状态 > 停止。

如果您需要同时停止多台运行中的实例,可以选中多台实例,并在实例列表底部,单击停止。

5. 在停止实例对话框里,选择停止方式,并单击确定。

停止按量付费实例

如果按量付费实例目前处于运行中状态,您可以在控制台上停止实例,使实例进入已停止状态。

停止实例会中断您的业务,请谨慎执行。抢占式实例的停止过程和按量付费实例一致。

更多信息,请参考停止抢占式实例。

停止按量付费实例可能会影响实例的计费,具体动作由是否启用了VPC内实例停机不收费功能决 定。

- · 经典网络下的按量付费实例不支持VPC内实例停机不收费功能,实例停止后继续收费。只有释放 实例后,实例才会停止计费。
- · VPC下的按量付费实例支持VPC内实例停机不收费功能:
 - 如果没有启用VPC内实例停机不收费功能,实例停止后继续收费。
 - 如果启用了VPC内实例停机不收费功能,您可以在停止实例时选择是否保留实例并收费。如果选择不保留实例,vCPU、内存和公网IP将不再产生费用,但其他资源将继续计费。详细的实例停机不收费说明,请参考按量付费实例停机不收费。
- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏里,单击实例。
- 3. 选择地域。
- 找到需要停止的按量付费实例,在操作列,选择更多 > 实例状态 > 停止。如果您需要同时停止 多台运行中的实例,可以选中多台实例,并在实例列表底部,单击停止。
- 5. 根据实例网络类型和是否启用了VPC内实例停机不收费,弹出的界面不同,请根据实际情况操 作:
 - ·如果实例的网络类型为经典网络,或者没有启用VPC内实例停机不收费:
 - a. 在停止实例对话框中,选择停止方式。
 - b. 单击确定。
 - ·如果启用了VPC内实例停机不收费:
 - a. 在提醒对话框中, 阅读VPC内实例停机不收费的说明。
 - b. 单击确定。
 - c. 在停止实例 对话框中,选择停止方式和 停止模式。

🗾 说明:

如果选择停止后不保留实例,停止实例后,该实例对应的停止模式列会显示为停机不收 费。否则,显示为保留并收费。

d. 单击确定。

如果需要关闭VPC内实例停机不收费,请参考关闭功能。

成功停止实例后,实例会进入已停止状态。

您可以通过阿里云CLI、OpenAPI Explorer和阿里云SDK等开发者工具调用StopInstance停止 按量付费实例。

8.2 重启实例

本文介绍如何通过控制台或者API重启实例。

注意事项

- · 待重启的实例必须处于运行中状态。
- 重启操作会造成您的实例停止工作,造成业务中断,请谨慎执行。

操作步骤

- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏中, 单击实例。
- 3. 选择地域。
- 4. 找到需要重启的实例。
 - ・如果重启一个实例,在操作列中,单击更多>实例状态>重启。
 - ・如果重启多个实例,选择实例(所选实例的状态必须一致),并在页面底部单击重启。
- 5. 在重启实例对话框中,选择重启方式,并单击确定。

您也可以调用RebootInstance重启实例。

8.3 释放实例

本文介绍如何手动释放按量付费实例,以及自动释放实例的相关操作。

注意事项

仅按量付费实例支持释放功能,包括抢占式实例,请及时释放不再需要的按量付费实例节省费用。

📋 说明:

释放后数据无法恢复,建议您在释放之前先创建快照备份数据。

对于按量付费实例,如果您未开启 按量付费实例停机不收费,停止实例后会继续计费,只有释放后 才停止计费。

对于包年包月实例, 计费周期到期后, 您可以手动释放; 如果一直未续费, 实例也会自动释放。

您也可以为按量付费实例开启实例释放保护功能,避免误操作释放实例造成不可挽回的后果。

手动释放实例

您可以通过控制台立即释放按量付费实例。

- 1. 登录 ECS管理控制台。
- 2. 在左侧导航栏中, 单击 实例。
- 3. 选择地域。
- 4. 设置释放:
 - ・如果您要释放单个实例:找到需要释放的实例,在操作列中,选择更多>实例状态>释放 设置。
 - ・如果您要释放多个实例:根据付费方式筛选按量计费实例,选择需要释放的多个实例,在列表下方,单击释放设置。
- 5. 在弹出的窗口中,选择 立即释放。
- 6. 单击下一步,并单击确认。

您可以通过阿里云CLI、OpenAPI Explorer和阿里云SDK等开发者工具调用DeleteInstance释 放实例。

开启自动释放

您也可以开启自动释放功能,设置自动释放实例的时间。如果重复设置自动释放时间,以最新的一 次设置为准。

- 1. 登录 ECS管理控制台。
- 2. 在左侧导航栏中,单击实例。
- 3. 选择地域。

- 4. 设置释放:
 - ・如果您要释放单个实例:找到需要释放的实例,在操作列中,选择更多>实例状态>释放 设置。
 - ·如果您要释放多个实例:根据 付费方式 筛选按量计费实例,选择需要释放的多个实例,在列 表下方,单击 释放设置。
- 5. 在弹出的窗口中,选择定时释放。
- 6. 开启自动释放开关,并设置释放的日期和时间。

📃 说明:

最早只能设置在30分钟后自动释放实例,时间精确到分钟。

7. 单击下一步,然后单击确认。

您可以通过阿里云CLI、OpenAPI Explorer和阿里云SDK等开发者工具调用ModifyInstanceAutoReleaseTime为按量付费实例设定自动释放时间。

关闭自动释放

- 1. 登录 ECS管理控制台。
- 2. 在左侧导航栏中,单击实例。
- 3. 选择地域。
- 4. 释放设置:
 - ·如果您要关闭单个实例的自动释放:找到需要释放的实例,在操作列中,选择更多>实例 状态>释放设置。
 - ·如果您要关闭多个实例的自动释放:根据 付费方式 筛选按量计费实例,选择需要释放的多个 实例,在列表下方,单击 释放设置。
- 5. 在弹出的窗口中,选择 定时释放。
- 6. 关闭自动释放开关。
- 7. 单击下一步,然后单击确认。

您可以通过阿里云CLI、OpenAPI Explorer和阿里云SDK等开发者工具调用ModifyInstanceAutoReleaseTime为按量付费实例取消自动释放。

8.4 重开机实例

在结清按量付费实例的欠费账单后请及时重开机,否则实例将会被释放。本文介绍重开机相关概念 和操作。

注意事项

对于按量付费实例,如果欠费日(T)后15天(T+15)内扣款失败,实例会因欠费而被停机,实例 进入已过期状态。您必须在欠费日后30天(T+30)内提交工单结清账单并重开机。否则,实例会 被释放,所有数据无法恢复。

如果在欠费日后30天(T+30)内没有重开机,ECS实例将在欠费之日起30天后自动释放,数据不可恢复。

前提条件

按量付费实例处于已过期或者欠费回收中状态。

提交工单结清账单。

操作步骤

按以下步骤在 ECS 管理控制台上重开机一台实例:

- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏中, 单击实例。
- 3. 选择地域。
- 4. 选中需要重开机的实例,在实例列表底部,选择更多 > 重开机。
- 5. 选择立刻重开机,或者设置重开机时间。

如果选择立刻重开机,约10分钟后,选中的实例会进入正常运行状态。

您可以通过阿里云CLI、OpenAPI Explorer和阿里云SDK等开发者工具调用ReactivateInstances重开机。

8.5 查看实例信息

本文介绍如何查看您账号下拥有的实例资源概况和单个实例的详情。

在概览页查看实例资源概况

ECS管理控制台 的首页默认为 概览 页。

在 概览 页中, 您可以查看账号下ECS实例的概况, 包括:

- · 综述。列出了ECS实例和快照的总量。
- ·我的资源。列出了每个地域下ECS实例等各种资源的概况。

在实例列表页查看实例信息

按以下步骤进入实例列表页:

- 1. 登录 ECS管理控制台。
- 2. 在左侧导航栏中,单击实例。
- 3. 选择地域。

您可以看到所选地域下已有ECS实例的信息,包括 实例ID/名称、可用区、IP地址、状态、网络类型、付费方式、操作 等。您可以按照以下步骤 自定义列表项 调整显示的列表项,操作步骤如下:

- 1. 在实例列表右上角,单击 😱 图标。
- 2. 在 自定义列表项 对话框里,选择需要显示的实例信息后,单击 确定。

在实例详情页查看单个实例信息

您可以在 实例详情 页查看单个ECS实例的详细信息,步骤如下:

- 1. 登录 ECS管理控制台。
- 2. 在左侧导航栏中, 单击 实例。
- 3. 选择地域。
- 4. 找到需要查看详情的ECS实例,单击实例ID或 操作 列下的 管理。

目前, 实例详情 页包含的信息如下表:

信息分类	描述
基本信息	实例标识相关的信息,包括实例ID、所在可用区、名称、地域、 实例规格、实例规格族、镜像ID、密钥对名称(仅适用于Linux实 例)等。
配置信息	实例配置相关的信息,包括CPU、内存、是否I/O优化实例、操作系统、IP地址、带宽计费方式、当前使用带宽值、专有网络(仅适用于专有网络实例)等。
付费信息	实例计费相关的信息,包括付费方式、停止模式、创建时间、自动释 放时间(仅适用于按量付费实例)等。
监控信息	实例运行相关的信息,包括CPU和网络使用情况。

您还可以从 实例详情 页切换到 本实例磁盘、本实例快照、本实例安全组等页面查看本实例相关的 其它类型资源。

8.6 重置实例登录密码

本文介绍如何重置实例登录密码,适用于在创建时未设置密码或者忘记密码的情况。

注意事项

- · 对于正在运行的实例,您需要在重置实例登录密码后重启实例才能使新密码生效。重启操作可能 会对您的业务造成影响,请提前规划好操作时间,建议在业务低谷时操作,将影响降到最低。
- ・如果ECS实例使用密码认证, 绑定密钥对后, 密码验证方式自动失效。但如果在绑定密钥对之后 重置实例密码, 除使用密钥对方式之外, 您也可以使用密码方式登录实例。

前提条件

实例必须处于稳定状态,比如已停止、运行中。关于实例的状态,请参考实例生命周期。

操作步骤

按以下步骤在控制台上修改一台或多台实例的登录密码:

- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏中,单击实例。
- 3. 选择地域。
- 4. 根据需要修改密码的实例数量,执行不同的操作:
 - ·修改一台实例的登录密码:选择实例,在操作列,选择更多 > 密码/密钥 > 重置实例密码。

· 同时修改多台实例的登录密码:选择多台处于稳定状态的实例,在列表底部单击重置实例密码。

•	2000		۲	0 🚸	⊵	杭州 可用区	F		●已停止
•	Sector 1		۲	۰ 🔅	⊵	杭州可用区	F		●已停止
•	ACCURATE ON A		۲	🗢 🍂	⊵	杭州可用区	G		●已停止
	启动停	正重启	重要	冒实例密码	3	续费 按	量付费转包年包月	释放设置	更多▲

- 5. 在弹出的重置密码对话框中,设置符合要求的新密码,再单击提交。
- 6. 根据实例的状态,执行不同操作:
 - ·运行中的实例:重启实例使新密码生效。
 - · 已停止的实例: 启动实例后新密码自动生效。

您可以通过阿里云CLI、OpenAPI Explorer和阿里云SDK等开发者工具调 用ModifyInstanceAttribute中的Password参数修改实例登录密码。

相关操作

您也可以在实例内部修改登录密码,但是仍然需要在控制台重启实例后才会生效。建议您直接在控 制台操作。

8.7 在实例内部修改登录密码

本文以CentOS和Windows操作系统为例,介绍如何在实例内部修改Linux实例和Windows实例 的登录密码。

修改Linux实例的登录密码

以CentOS 6.8为例,修改步骤如下所示:

- 1. 登录实例。
- 2. 执行命令passwd 用户名,例如passwd root。
- 3. 输入新密码。
- 4. 重新输入确认密码。

在控制台重启或者调用API重启实例后密码后才能生效,在操作系统内部重启无效。

修改Windows实例的登录密码

以Windows Server 2008为例,修改步骤如下所示:

- 1. 登录实例。
- 2. 单击开始 > 运行, 输入compmgmt.msc并回车。
- 3. 在计算机管理界面中,单击计算机管理 > 本地用户和组 > 用户。
- 4. 右击待修改的用户名,例如Administrator。
- 5. 单击设置密码。

6. 在为 Administrator 设置密码对话框中,单击继续,输入新密码和确认密码,然后单击确定。
在控制台重启或者调用API重启实例后密码后才能生效,在操作系统内部重启无效。

8.8 开启实例释放保护

如果您的ECS实例承载了关键业务,可以为ECS实例开启实例释放保护,防止手动释放ECS实例,有效避免因沟通不畅、操作疏忽等原因造成不可挽回的后果。本文为您介绍如何开启和关闭实例释放保护,查看实例的保护状态,并演示了保护效果。

使用限制

- · 实例释放保护仅适用于按量付费实例。
- ·因合理原因自动执行的释放行为优先级更高,包括但不限于:
 - 账号欠费超过15天,实例被自动释放。
 - 实例设置了自动释放时间,到期后被自动释放。
 - 实例存在安全合规风险,被停止或释放。
 - 实例由弹性伸缩自动创建,在缩容时被移出伸缩组并释放。

创建实例时开启

📃 说明:

本步骤重点介绍实例释放保护相关的选项,如需了解其它配置,请参阅使用向导创建实例。

您可以在创建实例过程中配置实例释放保护选项,步骤如下:

- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏中, 单击实例。
- 3. 在实例列表页面,单击创建实例。
- 在基本配置页面中, 计费方式配置为按量付费, 根据需要配置其余选项, 然后单击下一步: 网络 和安全组。
- 5. 在网络和安全组页面中,根据需要配置所有选项,然后单击下一步:系统配置。
- 在系统配置页面中,勾选防止通过 控制台 或 API 误删除释放,根据需要配置其余选项,然后单 击下一步:分组设置。

→ 基础配置 (必項) —	─────────────────────────────────────	3 系统配置 ————————————————————————————————————	④ 分组设置	(5) 确认订单 必填
登录凭证:	● 密钥对 ○ 自定义密码 ○ 创建后设置			
密钥对: ⑦	· · · ·	○ 详情参考 新建密钥对		
	若不填选 密钥对 / 自定义密码 , 则默认为创建后再设置。			
实例名称:		2-128个字符,以大小写字母或中文开头,可包含数字、""、"_"、""或"-"		
描述:		长度为2-256个字符,不能以http://或https://开头		
主机名: ⑦	/////////////////////////////////////	分隔字符成多段,每段允许使用大小写字母、数字或连字符(),但不能连续使5	用点号()或连字符(-),不能以点号()或连字符(-)开头或结尾,	
有序后缀:	为 实例名称 和 主机名 添加有序后缀			
	有序后缀从 001 开始递增,最大不能超过 999。例如:Locall	ost001, LocalHost002和MyInstance001, MyInstance002。		
实例释放保护:	✓ 防止通过 控制台 或 API 误删除释放 ⑦			

7. 根据需要配置其余选项,直至成功创建实例。

使用RunInstances或CreateInstance创建实例时,您可以通过DeletionProtection控制是否 开启实例释放保护。

通过修改实例信息开启或关闭

您也可以修改现有实例的信息,开启或关闭实例释放保护,步骤如下:

- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏中,单击实例。
- 3. 在实例列表页面中,单击待修改实例操作列下的更多 > 实例设置 > 修改实例属性。
- 4. 在修改实例属性对话框中, 勾选开启实例释放保护。

如果需要关闭实例释放保护,请取消勾选开启实例释放保护。

修改实例属性		\times
* 实例名称:	长度限制为2-128个字符。	
HostName :	表示操作系统内部的计算机名。 Windows 系统,长度为 2-15 个字符,允许使用大小写字 母、数字或连字符(-)。不能以连字符(-)开头或结尾,不能连续使用连字符(-),也不能仅使用数字。 其他操作系统(Linux 等),长度为 2-64 个字符,允许使用点 号(.)分隔字符成多段,每段允许使用大小写字母、数字或连 字符(-),但不能连续使用点号(.)或连字符(-)。不能以点号(.) 或连字符(-)开头或结尾。 新的HostName会在实例重启后生效。	
实例描述:		
您所选的1イ	长度限制为2-256个字符。 ☑ 开启实例释放保护	
	確	定取消

5. 单击确定。

使用ModifyInstanceAttribute修改实例信息时,您可以通过DeletionProtection控制是否开 启实例释放保护。

查看开启状态

您可以查看现有实例的信息,确认实例是否已经开启实例释放保护,步骤如下:

- 1. 登录ECS管理控制台。
- 2. 在左侧导航栏中,单击实例。
- 3. 在实例列表页面中,单击待查看实例ID/名称列下的实例ID,或者单击待查看实例操作列下的管理。
- 4. 在实例详情页面中,查看付费信息下的是否开启释放保护。

· · · · · · · · · · · · · · · · · · · 		头例关型:1/01元化				
关例片间		操作系统:				
本实例磁盘		· · · · · · · · · · · · · · · · · · ·				
本实例快照						
木实际通性网卡		弹性公网IP: - 📕				
		私有IP:				
本实例安全组 		结时我 MID· 等理结时我 MID				
本实例安全防护						
		带宽计费方式:				
	>	当前使用带宽: 0Mbps (峰值)				
		专有网络:				
		虚拟交换机:				
		付费信息				
		付费方式: 按量				
		停止模式:-				
		创建时间: 2019年5月24日 13:23				
		自动释放时间:-				
		是否开启释放保护:否				

保护效果示例

开启实例释放保护后,如果您手动释放实例,会释放失败并弹出以下警告信息。如果确定要手动释 放实例,请提前关闭实例释放保护。

警告信息		×
	操作有错误发生: i	
	确定	自动诊断

开启实例释放保护后,如果使用DeleteInstance删除实例,会返回错误码InvalidOperation. DeletionProtection。

8.9 使用实例元数据

8.9.1 什么是实例元数据

本文介绍实例元数据的概念,并列出了支持的实例元数据项,您可以使用实例元数据灵活管理或配置ECS实例。

实例元数据介绍

实例元数据包含了ECS实例在阿里云系统中的基本信息,例如实例ID、IP地址、网卡MAC地址和 操作系统类型等。实例还支持动态实例元数据项,动态实例元数据是在实例初次启动以后产生或自 定义的数据,目前包括系统事件、实例标识和实例自定义数据。

更多操作,请参见获取实例元数据。

实例元数据列表

下表包含了ECS实例目前能获取的基本实例元数据项:

实例元数据项	说明	引入版本
/dns-conf/nameservers	实例的DNS配置。	2016-01-01
/eipv4	实例主网卡挂载的弹性公网IP(IPv4类型)。	2016-01-01
/hostname	实例的主机名。	2016-01-01
/instance/instance-type	实例规格。	2016-01-01
/image-id	创建实例时所使用的镜像ID。	2016-01-01
/image/market-place/ product-code	镜像市场镜像的商品码。	2016-01-01

实例元数据项	说明	引入版本
/image/market-place/ charge-type	镜像市场镜像的计费方式。	2016-01-01
/instance-id	实例ID。	2016-01-01
/mac	实例的MAC地址,如果实例存在多个网卡,只显示 eth0上的MAC地址。	2016-01-01
/network-type	网络类型,只支持VPC类型实例。	2016-01-01
/network/interfaces/ macs	网卡的MAC地址列表。	2016-01-01
/network/interfaces/ macs/[mac]/network- interface-id	网卡的标识ID,其中[mac]参数需要替换为实 例MAC地址。	2016-01-01
/network/interfaces/ macs/[mac]/netmask	网卡对应的子网掩码。	2016-01-01
/network/interfaces/ macs/[mac]/vswitch- cidr-block	网卡所属的虚拟交换机IPv4 CIDR段。	2016-01-01
/network/interfaces/ macs/[mac]/vpc-cidr- block	网卡所属的VPC IPv4 CIDR段。	2016-01-01
/network/interfaces/ macs/[mac]/private- ipv4s	网卡分配的私网IPv4地址列表。	2016-01-01
/network/interfaces/ macs/[mac]/vswitch-id	网卡所属安全组的虚拟交换机 ID。	2016-01-01
/network/interfaces/ macs/[mac]/vpc-id	网卡所属安全组的VPC ID。	2016-01-01
/network/interfaces/ macs/[mac]/primary-ip -address	网卡主私有IP地址。	2016-01-01
/network/interfaces/ macs/[mac]/gateway	网卡对应的IPv4网关地址。	2016-01-01
/instance/max-netbw- egress	实例规格的出方向内网最大带宽。单位:Kbit/s。	2016-01-01
/instance/max-netbw- ingerss	实例规格的入方向内网最大带宽。单位:Kbit/s。	2016-01-01
/private-ipv4	实例主网卡的私网IPv4地址。	2016-01-01

实例元数据项	说明	引入版本
/public-ipv4	实例主网卡的公网IPv4地址。	2016-01-01
/ntp-conf/ntp-servers	NTP服务器地址。	2016-01-01
/owner-account-id	实例拥有者的阿里云账号ID。	2016-01-01
/public-keys	当前实例所有公钥的列表。	2016-01-01
/region-id	实例所属地域。	2016-01-01
/zone-id	实例所属可用区。	2016-01-01
/serial-number	实例所对应的序列号。	2016-01-01
/source-address	Linux实例的包管理软件(主要为Yum源或者apt 源)获取更新的镜像库。	2016-01-01
/kms-server	Windows实例的KMS激活服务器。	2016-01-01
/wsus-server/wu-server	Windows实例的更新服务器。	2016-01-01
/wsus-server/wu-status- server	Windows实例的更新状态监控服务器。	2016-01-01
/vpc-id	实例所属VPC ID。	2016-01-01
/vpc-cidr-block	实例所属VPC CIDR段。	2016-01-01
/vswitch-cidr-block	实例所属虚拟交换机CIDR段。	2016-01-01
/vswitch-id	实例所属虚拟交换机ID。	2016-01-01
/ram/security- credentials/[role-name]	实例RAM角色策略所生成的STS临时凭证。只有 在实例指定了RAM角色后,您才能获取STS临时凭 证。其中[role-name]参数需要替换为实例RAM角 色的名称。	2016-01-01
	说明:STS临时凭证更新时间早于凭证失效前半小时,在这半小时内,新旧STS临时凭证均可以使用。	
/instance/spot/ termination-time	抢占式实例的操作系统设置的停机释放时间,时区标 准为UTC+0,格式为yyyy-MM-ddThh:mm:ssZ。 例如,2018-04-07T17:03:00Z。	2016-01-01
/instance/virtualization -solution	ECS虚拟化方案,支持Virt 1.0和Virt 2.0。	2016-01-01
/instance/virtualization- solution-version	内部Build号。	2016-01-01
/instance-identity/pkcs7	实例标识签名。	2016-01-01

运维类动态实例元数据项

更多信息,请参见系统事件。

标识类动态实例元数据项

实例标识用于快速辨识并区分 ECS 实例,可以为应用程序权限控制和软件激活等提供重要的信任基础。实例标识由动态生成的 实例标识文档(document)和 实例标识签名(signature)组成。 更多信息,请参见使用实例标识。

配置类动态实例元数据项

实例自定义数据主要通过不同类型的自定义脚本实现,然后在创建实例时指定,提供了自定义启动 行为及传入数据的功能,例如,自动获取软件资源包、开启服务、打印日志、安装依赖包、初始化 Web服务环境等其他配置实例环境的操作。实例自定义数据也可以作为普通数据,将某些信息传入 实例中,您可以在实例中引用这些数据。

在实例开始运行时(Running),系统首先以管理员或者root权限运行实例自定义数据,其次运行 初始化或 /etc/init信息。

更多信息,请参见生成实例自定义数据。

8.9.2 获取实例元数据

本文介绍如何为Linux实例和Windows实例获取实例元数据。

使用限制

仅支持获取专有网络VPC类型实例的实例元数据。

如果您手动更改了部分实例信息,这种更改不会体现到实例元数据中。

为Linux实例获取实例元数据

1. 远程连接实例。关于如何远程连接实例,请参见连接实例导航。

2. 执行以下命令访问元数据的根目录。

curl http://100.100.100.200/latest/meta-data/

- 3. 在URL中添加具体的元数据名称即可获取具体的元数据,具体请参见 实例元数据列表和 动态实 例元数据项。例如:
 - ·执行以下命令获取实例ID。

curl http://100.100.100.200/latest/meta-data/instance-id

·执行以下命令获取创建实例时所使用的镜像ID。

curl http://100.100.100.200/latest/meta-data/image-id

·执行以下命令获取活跃中的系统事件。

curl http://100.100.100.200/latest/maintenance/active-systemevents

・执行以下命令获取实例标识文档。

curl http://100.100.100.200/latest/dynamic/instance-identity/ document

・执行以下命令获取实例自定义数据。

curl http://100.100.100.200/latest/user-data

为Windows实例获取实例元数据

1. 远程连接实例。关于如何远程连接实例,请参见连接实例导航。

2. 使用PowerShell执行以下命令可以获取实例元数据信息。

Invoke-RestMethod http://100.100.100.200/latest/meta-data/

3. 在URL中添加具体的实例元数据项名称即可获取元数据信息,具体请参见 实例元数据列表和 动态实例元数据项。例如:

・执行以下命令获取实例ID。

Invoke-RestMethod http://100.100.100.200/latest/meta-data/instance
-id

·执行以下命令获取创建实例时所使用的镜像ID。

Invoke-RestMethod http://100.100.100.200/latest/meta-data/image-id

·执行以下命令获取活跃中的系统事件。

Invoke-RestMethod http://100.100.100.200/latest/maintenance/active
-system-events

・执行以下命令获取实例标识文档。

Invoke-RestMethod http://100.100.100.200/latest/dynamic/instanceidentity/document

·执行以下命令获取实例自定义数据。

Invoke-RestMethod http://100.100.100.200/latest/user-data

8.10 使用实例自定义数据

8.10.1 生成实例自定义数据

本文介绍如何生成实例自定义数据,并介绍了执行实例自定义数据的脚本类型。

操作步骤

本示例中,自定义数据开发环境为Windows,执行工具为 Upstart Job 脚本,ECS实例操作系统为CentOS。生成实例自定义数据步骤如下:

- 1. 使用编辑器创建文本文件,例如,Notepad++。
- 2. 在创建的文本文件中编辑自定义数据的相关脚本。

📃 说明:

第一行必须满足实例自定义脚本的格式要求,比如 #!/bin/sh、#cloud-config、# upstart-job、[bat] 和 [powershell]。更多详情,请参见 Linux 实例自定义数据 和 Windows 实例自定义数据。 3. 调试脚本文件以确认内容正确。

运行频率

实例开始运行时(Running),系统首先以管理员或者root权限运行实例自定义数据,其次运行初始化或 /etc/init信息。

修改实例自定义数据后,是否要重新运行修改过的自定义数据取决于脚本类型和模块类型。例如:

- ·如果您通过Shell脚本配置自定义数据,如User-Data脚本,我们不会运行修改后的自定义数据。
- ·如果自定义数据配置的是类似Byobu、Set Hostname和Set Passwords之类的模块,我们不 会运行修改后的自定义数据。
- ・如果自定义数据配置的是类似bootcmd、update_etc_hosts和yum_add_repo之类的模
 块,我们会运行修改后的自定义数据。

更多详情,请参见cloud-init文档 Modules,并关注模块频率(Module Frequency)。

Linux实例自定义数据

Linux实例自定义数据可以由几类Linux实例自定义脚本执行,包括 User-Data 脚本、Cloud Config、Include 文件、Gzip 压缩脚本 和 Upstart Job 等类型脚本。脚本采用开源的cloudinit架构,以为数据来源,自动化配置Linux实例属性。更多详情,请参见cloud-init Formats。 如果您制作的是 Include文件或 Gzip 压缩脚本,上传脚本文件到可用的存储服务中并获取链 接,并设置链接有效期为您的期望值。

推荐您使用阿里云对象存储OSS制作链接,更多详情,请参见 OSS #unique_274 和 设置生命周 期规则。

User-Data 脚本

User-Data可以是一个Shell脚本。仅在首次启动实例时执行一次。首行固定为 #!,例如 #!/bin/ sh。User-Data脚本在Base64编码前脚本内容不能超过 16 KB。以下为User-Data脚本示例:

```
#!/bin/sh
echo "Hello World. The time is now $(date -R)!" | tee /root/output10.
txt
service httpd start
chkconfig httpd on
```

实例创建完成后,启动并连接实例,执行命令 cat [file],查看脚本的执行结果。

[root@XXXX2z ~]# cat output.txt

Hello World. The time is now Mon, 24 Jul 2017 13:03:19 +0800!

Cloud Config

Cloud Config是实现实例自定义数据最简单的方式,其交互方式非常友善。您可以使用Cloud Config预先配置实例的部分服务,如更新yum源、导入SSH密钥、安装依赖包等。Cloud Config首行固定为 #cloud-config,且页首不能有空格,需要以YAML文件的方式呈现。根据您 配置的服务不同,实例自定义数据的运行频率也会不同。

Cloud Config 脚本在Base64编码前脚本内容不能超过16 KB。以下为Cloud Config脚本示例:

```
#cloud-config
apt:
primary:
- arches: [default]
uri: http://us.archive.ubuntu.com/ubuntu/
bootcmd:
- echo 192.168.1.130 us.archive.ubuntu.com >> /etc/hosts
```

实例创建完成后, 启动并连接实例, 查看运行结果。

Include文件

Include文件的内容由脚本链接组成,一行一个链接。实例启动时, cloud-init读取Include文件 中脚本链接里的内容,一旦在某一行读取脚本内容时出错,实例停止读取自定义数据。Include文 件首行固定为 <u>#include</u>且页首不能有空格。实例自定义数据的运行频率跟随Include文件中配置 的脚本类型。

Include文件中脚本链接包含的内容在Base64编码前脚本内容不能超过16 KB。以下为Include文件示例:

```
#include
http://ecs-image-test.oss-cn-hangzhou.aliyuncs.com/UserData/myscript.
sh
```

实例创建完成后, 启动并连接实例, 查看执行结果。

Gzip 压缩脚本

User-Data 脚本、Cloud Config 和 Include文件均要求脚本内容Base64编码前不能超过16 KB。若您的脚本内容有超出16 KB的趋势,可以采用Gzip压缩脚本。将脚本文件压缩后制作成脚 本链接,以Include文件的形式呈现。Gzip压缩脚本首行固定为 #include,且页首不能有空格。 实例自定义数据的运行频率跟随脚本类型。以下为Gzip压缩脚本示例:

#include

```
http://ecs-image-test.oss-cn-hangzhou.aliyuncs.com/userdata/config.gz
```

如果您制作的是 Gzip 压缩脚本文件,您需要压缩脚本文件为 .gz 格式。

Upstart Job

```
使用Upstart Job类型脚本时,需要您的实例安装upstart作为init system,目前采用upstart的
有CentOS 6、Ubuntu 10/12/14以及Debian 6/7。Upstart Job脚本将您的实例自定义数据放到
/etc/init 目录下。Upstart Job脚本首行固定为 #upstart-job,且页首不能有空格。每次启
动实例均会执行您的实例自定义数据。以下为Upstart Job脚本示例:
```

```
#upstart-job
description "upstart test"
start on runlevel [2345]
stop on runlevel [!2345]
exec echo "Hello World. The time is now $(date -R)!" | tee /root/
output.txt
```

Windows实例自定义数据

Windows实例自定义数据由ECS自主研发,为Windows实例提供运行初始化脚本的能力。 在Base64编码前,自定义数据内容必须小于16 KB,只能输入半角字符,不能有多余字符。 Windows实例自定义数据支持Bat批处理程序和PowerShell脚本。

Bat批处理程序

首行固定为 [bat], 且页首不能有空格。例如:

```
[bat]
echo "bat test" > c:\1.txt
```

实例创建完成后,连接实例查看执行结果,在C:\盘添加了1.txt 文本文件。

PowerShell

首行固定为 [powershell], 且页首不能有空格。例如:

```
[powershell]
write-output "Powershell Test" | Out-File C:\2.txt
```

8.10.2 配置实例自定义数据

本文介绍如何通过控制台将生成的实例自定义数据配置到实例,以及如何查看和修改已有的实例自定义数据。

限制条件

配置实例自定义数据时,请注意:

- · 仅网络类型为专有网络VPC的实例支持配置实例自定义数据。
- ·实例如果采用了已停售的实例规格,必须是I/O优化实例。其他实例规格族无I/O优化限制。
- · 实例自定义数据需要Base64编码后传入,且编码前的自定义数据不能超过16 KB。
- · 实例必须使用公共镜像或继承于公共镜像的自定义镜像,且只支持下列操作系统:

系统平台	操作系统
Windows	Windows Server 2008 R2及以后的操作系 统
Linux	 CentOS Ubuntu SUSE Linux Enterprise OpenSUSE Debian Aliyun Linux

设置实例自定义数据

- 1. 登录 ECS管理控制台。
- 2. 参阅 创建ECS实例 创建一台Linux实例。

说明:

创建实例时,在 高级选项 中的 实例自定义数据 文本框中输入自定义数据。若您的自定义数据 已经过Base64加密,勾选 输入已采用 Base64 编码。

- 3. 实例启动后,参考 连接方式导航 远程连接到目标实例。
- 4. 根据您指定的自定义数据查看运行结果,如果出现故障,您需要注意查看相关日志文件。以下为 在CentOS实例上使用Upstart Job脚本配置自定义数据的输出示例:

从上面的结果中您可以看到,在实例的 /etc/init 文件夹中生成了一个 part-001.conf 启 动任务文件。

您可以通过阿里云CLI、OpenAPI Explorer和阿里云SDK等开发者工具调用 RunInstances 设置实例自定义数据,相关参数为 UserData。

查看实例自定义数据

您可以通过指定服务器(100.100.100.200)查看实例自定义数据。

1. 远程连接实例,请参考连接方式导航。

2. 在实例内部运行:

- · curl http://100.100.100.200/latest/user-data 查看Linux实例自定义数据。
- Invoke-RestMethod http://100.100.100.200/latest/user-data/査
 看Windows实例自定义数据。

您可以通过阿里云CLI、OpenAPI Explorer和阿里云SDK等开发者工具调用 DescribeUserData 查看实例自定义数据。

修改自定义数据

修改自定义数据之前,您必须停止实例。修改自定义数据后,是否要重新运行修改过的自定义数据 取决于脚本类型和模块类型,更多信息,请参阅 生成实例自定义数据。

对于按量付费 VPC 类型实例,若您修改自定义数据后需要立即启动实例时,建议您关闭停机不收 费选项。

- 1. 登录 ECS管理控制台。
- 2. 在左侧导航栏中,单击实例。
- 3. 选择地域。
- 4. 选中需要修改自定义数据的实例,并在操作列中,单击实例设置>设置用户数据。
- 5. 在弹窗中填入信息后单击确定。

您可以通过阿里云CLI、OpenAPI Explorer和阿里云SDK等开发者工具调用 ModifyInstanceAttribute 修改实例自定义数据。

8.10.3 自定义yum源、NTP服务和DNS服务

本文档主要介绍在创建Linux实例时如何使用实例自定义数据配置 yum 源、NTP 服务和 DNS 服务。您也可以使用这个脚本自定义 Windows 实例的 NTP 服务和 DNS 服务。

注意事项

目前,实例启动时,阿里云会为实例自动配置预定义的 yum 源、NTP 服务和 DNS 服务。如果您 需要自行管理 yum 源、NTP 服务和 DNS 服务,可以使用实例自定义数据,但需要注意:

- ·如果您自定义了 yum 源,阿里云官方将不再提供 yum 源相关支持。
- ・如果您自定义了 NTP 服务,阿里云官方不再提供相关时间服务。

操作步骤

1. 登录 云服务器ECS管理控制台。

2. 在基础配置页面中,注意以下实例自定义数据相关的配置。

- ・ 实例规格:选择 I/O 优化实例。
- · 镜像:选择支持的镜像,例如,公共镜像的 CentOS 7.2。
- 3. 在网络和安全组页面中, 注意 网络类型配置为专有网络。
- 4. 在系统配置页面中, 在 自定义数据 输入框中输入如下内容:

```
#!/bin/sh
# Modify DNS
echo "nameserver 8.8.8.8" | tee /etc/resolv.conf
# Modify yum repo and update
rm -rf /etc/yum.repos.d/*
touch myrepo.repo
echo "[base]" | tee /etc/yum.repos.d/myrepo.repo
echo "name=myrepo" | tee -a /etc/yum.repos.d/myrepo.repo
echo "baseurl=http://mirror.centos.org/centos" | tee -a /etc/yum.
repos.d/myrepo.repo
echo "gpgcheck=0" | tee -a /etc/yum.repos.d/myrepo.repo
echo "enabled=1" | tee -a /etc/yum.repos.d/myrepo.repo
yum update -y
# Modify NTP Server
echo "server ntp1.aliyun.com" | tee /etc/ntp.conf
systemctl restart ntpd.service
```

▋ 说明:

- ・第一行必须是 #!/bin/sh, 前面不能带空格。
- · 全文不能有多余的空格和回车。
- ·您可以根据实例情况定制具体的 DNS、NTP Server 和 yum 源 URL。
- ·上述内容适用于 CentOS 7.2 镜像,如果是其他镜像,请根据需要修改实例自定义脚本。
- · 您也可以使用 cloud config 类脚本更改 yum 源设置,但是不够灵活,不能适配阿里云 对部分 yum 源进行预配置的情况。建议使用 script 类的脚本修改 yum 源设置。
- 5. 根据需要完成其余配置。
- 6. 单击 确认下单。
- 7. 实例启动完成后,登录实例查看具体的效果,如下图所示。

由上图可知,您已经成功自定义了 DNS 服务、NTP 服务和 yum 源。

8.10.4 使用自定义数据配置管理员账号

本文档主要介绍在创建Linux实例时如何使用实例自定义数据配置管理员账号。您也可以使用脚本 自定义 Windows 实例的管理员账号。

应用场景

购买 ECS 实例时,您可以使用实例自定义数据达到以下效果。

- · 不使用 ECS 实例默认自带的 root 用户作为管理员。
- · 创建一个新的管理员账号,并自定义用户名。
- ・新创建的管理员账号在管理该实例的时候只使用 SSH 密钥对进行远程登录,不使用用户密码。
- ・该用户如果需要进行与管理员权限相关的操作,可在免密码的情况下使用 sudo 提权。

操作步骤

- 1. 登录 云服务器ECS管理控制台。
- 2. 在基础配置页面中,注意以下实例自定义数据相关的配置。
 - ・ 实例规格:选择 I/O 优化实例。
 - · 镜像:选择支持的镜像,例如,公共镜像的 CentOS 7.2。
- 3. 在网络和安全组页面中,注意 网络类型配置为专有网络。
- 4. 在系统配置页面中, 在 自定义数据 输入框中输入如下内容:

```
#!/bin/sh
useradd test
echo "test ALL=(ALL) NOPASSWD:ALL" | tee -a /etc/sudoers
mkdir /home/test/.ssh
touch /home/test/.ssh/authorized_keys
echo "ssh-rsa AAAAB3NzaC1yc2EAAAABJQAAAQEAhGqhEh/rGbIMCGItF
VtYpsXPQrCaunGJKZVIWtINrGZwusLc290qDZ93KCeb8o6X1Iby1Wm+psZY8THE+/
BsXq0M0HzfkQZD2vXuhRb4xi1298JHskX+0jnbjqYGY+Brgai9BvKDXTTSyJtCYU
nEKxvcK+d1ZwxbNuk2QZ0ryHESDbSaczlNFgFQEDxhCrvko+zWLjTVnomVUDhdMP2g6f
Z0tgFVwkJFV0bE7oob3N0Vcrx2TyhfcAjA4M2/Ry7U2MFADDC+EVkpoVDm0S0T/
hYJgaVM1xMDlSeE7kzX7yZbJLR1XAWV1xzZkNclY5w1kPnW8qMYuSwhpXzt4gsF0w==
rsa-key-20170217" | tee -a /home/test/.ssh/authorized_keys
```

▋ 说明:

- ・第一行必须是 #!/bin/sh, 前面不能带空格。
- · 全文不要有多余的空格和回车。
- ・最后一行的密钥为您的公钥,您可以自定义。
- ·如果需要做其他的配置,可以直接在脚本中添加。
- ·示例脚本仅限于 CentOS 7.2 镜像,其他镜像请根据操作系统类型进行自定义修改。
- 5. 根据需要完成其余配置。

- 6. 单击确认下单。
- 7. 实例启动完成后,您可以使用自定义的 test 用户通过 SSH 私钥登录到实例中,同时也可以使用 sudo 提权,并执行各种需要管理员权限的操作,如图中示例所示。

8.11 使用实例标识

本文介绍实例标识的概念和使用方法,并分别给出传入和不传入自定义参数时的示例。

实例标识介绍

作为 实例元数据 的一部分,实例标识可以帮助您快速辨识并区分 ECS 实例,为应用程序权限控制 和软件激活等提供重要的信任基础。实例标识的所有信息均实时生成,随取即用,并跟随实例信息 而动态变化。

实例标识由动态生成的 实例标识文档(document)和 实例标识签名(signature)组成。

属性	描述	能否变更
account-id	实例所属用户账号 ID	否
create-time	实例创建时间	否
instance-id	实例 ID	否
mac	实例主网卡 MAC 地址	否
region-id	实例所属的地域 ID	否

实例标识文档 用于描述实例的各种信息,包含的主要属性如下表所示:

属性	描述	能否变更
serial-number	实例的序列号	否
zone-id	实例所属可用区 ID	否
instance-type	实例规格	实例变更实例规格后会发生变 化
image-id	实例使用的镜像 ID	实例更换系统盘后会发生变化
private-ip	实例的私网 IP 地址	VPC 类型实例修改私网 IP 地 址后会发生变化

实例标识签名 采用 PKCS#7 格式加密,纯数字化,安全可靠。

实例标识签名 还支持传入自定义 audience 参数,audience 参数可以是随机字符串、时间戳、规律性变化的信息或者根据算法所生成的数据。传入 audience 参数后,即使他人获取了标识文档 和标识签名的部分信息,也很难猜测到 audience 参数取值,可以有效防止签名被非法冒用。

一旦传入 audience 参数,您需要同时设置标识文档及标识签名。例如,当您获取标识签名时传入 了 audience参数,则需要在 OpenSSL 校验之前,手动把 audience 参数的信息加入实时生成的 标识文档末尾处,格式为 "audience": "audience####",参数之间使用半角逗号(,)连接。

应用场景

在以下场景中,您可以借助 实例标识(instance-identity)实现鉴权、授权或者判断运行环境 等目的:

- 传统的线下手动激活的软件授权是一码单用,但由于云上软件的使用时间及场景多变,您可以在 上架 云市场 应用软件时使用实例标识灵活地完成用户授权。更多详情,参阅下文 示例一.不传 入 audience 参数。
- ・ 当您在 ECS 实例中写入敏感数据时,您可以使用实例标识确保当前所写入的位置是您的 ECS 实例而不是其他环境。
- ・其他需要确认目标服务器来源的场景。

使用方法

使用实例标识会使用到 OpenSSL,如果您没有配置 OpenSSL 服务,请前往 OpenSSL官网 下载 并更新 OpenSSL 服务。

此处以 CentOS 7.4 为例,示范如何使用实例标识。

- 1. 远程连接 Linux 实例。
- 运行 curl http://100.100.100.200/latest/dynamic/instance-identity/ document 获取实例标识文档。

- 运行 curl http://100.100.100.200/latest/dynamic/instance-identity/pkcs7 或者 curl http://100.100.100.200/latest/dynamic/instance-identity/pkcs7 ?audience=XXXX 获取实例标识签名。
- 4. 使用 OpenSSL 认证实例标识。

```
openssl smime -verify -in $signature -inform PEM -content $DOCUMENT
  -certfile AliyunPubkey -noverify > /dev/null
```

📕 说明:

- ・ \$signature 处填入您获取的标识签名。
- ・ \$DOCUMENT 处填入您获取的标识文档。

(可选)如果您在第三步传入了 audience 参数,您需要手动将信息附加到实例标识文档末

尾处,格式为 "audience": "audience####",参数之间使用半角逗号(,)连接。

・AliyunPubkey 处填入阿里云公有证书。

以下为阿里云公有证书。

```
----BEGIN CERTIFICATE----
MIIDdzCCAl+gAwIBAgIEZmbRhzANBgkqhkiG9w0BAQsFADBsMRAwDgYDVQQGEwdV
bmtub3duMRAwDgYDVQQIEwdVbmtub3duMRAwDgYDVQQHEwdVbmtub3duMRAwDgYD
VQQKEwdVbmtub3duMRAwDgYDVQQLEwdVbmtub3duMRAwDgYDVQQDEwdVbmtub3du
MB4XDTE4MDIyMzAxMjkzOFoXDTM4MDIxODAxMjkzOFowbDEQMA4GA1UEBhMHVW5r
bm93bjEQMA4GA1UECBMHVW5rbm93bjEQMA4GA1UEBxMHVW5rbm93bjEQMA4GA1UE
ChMHVW5rbm93bjEQMA4GA1UECxMHVW5rbm93bjEQMA4GA1UEAxMHVW5rbm93bjCC
ASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAIJwy5sbZDiNyX4mvdP32pqM
YMK4k7+5lRnVR2Fky/5uwyGSPbddNXaXzwEm+u4wIsJiaAN30ZgJpYIoCGik+9lG
5gVAIr0+/3rZ61IbeVE+vDenDd8g/m/YIdYBfC2IbzgS9EVGAf/gJdtD0DXrDfQj
Fk2rQsvpftV0Us3Vpl90+jeCQLoRbZYm0c5v7jP/L2IK0MjhiywPF2kpDeisMtnD
/ArkSPIlg1qVYm3F19v3pa6ZioM2hnwXg5DibYlgVvsIBGhvYqdQ1KosNVcVGGQa
HCUuVGdS7vHJYp3byH0vQYYygzxUJT2TqvK7pD57eYMN5drc7e19oyRQvbPQ3kkC
AwEAAaMhMB8wHQYDVR00BBYEFAwwrnHlRgFvPGo+UD5zS1xAkC91MA0GCSqGSIb3
DQEBCwUAA4IBAQBBLhDRgezd/OOppuYEVNB9+XiJ9dNmcuHUhjNTnjiKQWVk/YDA
v+T2V3t9yl8L8o61tRIVKQ++lDhjlVmur/mbBN25/UNRpJllfpUH6oOaqvQAze4a
nRgyTnBwVBZkdJ0d1sivL9NZ4pKelJF3Ylw6rp0YMqV+cwkt/vRtzRJ31ZEeBhs7
vKh7F6BiGCHL5ZAwEUYe8O3akQwjgrMUcfuiFs4/sAeDMnmgN6Uq8DFEBXDpAxVN
sV/6Hockdfinx85RV2AUwJGfClcVcu4hMhOvKR0pcH27xu9bBIeMuY0vvzP2VyOm
DoJeqU7qZjyCaUBkPimsz/1eRod6d4P5qxTj
 ----END CERTIFICATE-
```

示例一. 不传入 audience 参数

以在云市场上架一份镜像为例,示范如何从应用软件卖家角度使用实例标识。

1. 进入 ECS 实例环境。

2. 确认当前 ECS 实例使用的镜像是否来自于 镜像市场。具体可以通过 Metadata 中的 product-

code 项(镜像市场镜像的商品码)和 charge-type 项(镜像市场镜像的计费方式)。更多详

情,请参阅什么是实例元数据。

```
curl http://100.100.100.200/latest/meta-data/image/market-place/
product-code
curl http://100.100.100.200/latest/meta-data/image/market-place/
charge-type
```

- 3. 在当前工作目录下创建临时文件 cert.cer,并保存阿里云公有证书到该文件中。
- 4. 辨别实例身份。示例脚本如下:

```
#!/usr/bin/bash
function verify_signature_without_audience(){
curl 100.100.200/latest/dynamic/instance-identity/document >
document
echo "-----BEGIN CERTIFICATE-----" > signature
curl 100.100.100.200/latest/dynamic/instance-identity/pkcs7 >>
signature
echo "" >> signature
echo "----END CERTIFICATE-----" >> signature
openssl smime -verify -in signature -inform PEM -content document -
certfile cert.cer -noverify > /dev/null
}
verify_signature_without_audience
```

5. 若标识返回结果为 Verification successful,则放开应用软件的权限控制。

示例二. 传入 audience 参数

同样以在云市场上架一份镜像为例,示范如何从应用软件卖家角度使用实例标识。结合您自定 义的 audience 参数,并在放开权限控制之前,通过应用端 Server 实现策略控制,防止授权 码(License)被非法使用。您的 audience 参数取值可以是随机字符串、时间戳、规律性变化的 信息或者根据您的算法所生成的数据。

- 1. 进入 ECS 实例环境。
- 2. 确认当前 ECS 实例使用的镜像是否来自于 镜像市场。具体可以通过 Metadata 中的 productcode 项(镜像市场镜像的商品码)和 charge-type 项(镜像市场镜像的计费方式)。

```
curl http://100.100.100.200/latest/meta-data/image/market-place/
product-code
curl http://100.100.100.200/latest/meta-data/image/market-place/
charge-type
```

- 3. 在当前工作目录下创建临时文件 cert.cer,并保存阿里云公有证书到该文件中。
- 4. 辨别实例身份。示例脚本如下:

```
#!/usr/bin/bash
function verify_signature_with_specified_audience(){
audience='your audience' #此处填入您的 audience 取值
document=$(curl 100.100.100.200/latest/dynamic/instance-identity/
document)
```

```
audience_json=',"audience":''"'${audience}'"}'
echo -n ${document%?}${audience_json} > document
echo "----BEGIN CERTIFICATE----" > signature
curl 100.100.200/latest/dynamic/instance-identity/pkcs7?audience
=${audience} >> signature
echo "" >> signature
echo "----END CERTIFICATE----" >> signature
openssl smime -verify -in signature -inform PEM -content document -
certfile cert.cer -noverify > /dev/null
}
verify_signature_with_specified_audience
```

5. 若标识返回结果为 Verification successful,则放开应用软件的权限控制。

8.12 同步服务器本地时间

8.12.1 使用阿里云NTP服务器

阿里云提供了内网和公网NTP服务器,帮助您方便地同步各网络下实例的本地时间。

内网和公网NTP服务器

时区和时间一致性对于云服务器 ECS 非常重要,有时会直接影响到任务执行的结果,例如,您在更 新数据库或者分析日志时,时间顺序对结果有很大影响。为避免在实例上运行业务时出现逻辑混乱 和网络请求错误等问题,您需要将统一相关实例的时区设置。另外,您还可以通过NTP服务同步网 络中所有服务器的本地时间。

📃 说明:

NTP 是用于同步网络中计算机时间的协议,全称为网络时间协议(Network Time Protocol)。

云服务器 ECS 为您提供了高精度的时间参考 NTP 服务器,其中ntp.cloud.aliyuncs.com服务 器在地域级别上提供原子参考钟服务,适用于金融、通讯、科研和天文等以时间精度核心的生产行 业。各网络下的阿里云 NTP 服务器地址如下表所示:

经典网络内网	专有网络VPC内网	公网
ntp.cloud.aliyuncs.com		ntp1.aliyun.com
ntp1.cloud.aliyuncs.com	ntp7.cloud.aliyuncs.com	ntp2.aliyun.com
ntp2.cloud.aliyuncs.com	ntp8.cloud.aliyuncs.com	ntp3.aliyun.com
ntp3.cloud.aliyuncs.com	ntp9.cloud.aliyuncs.com	ntp4.aliyun.com
ntp4.cloud.aliyuncs.com	ntp10.cloud.aliyuncs.com	ntp5.aliyun.com
ntp5.cloud.aliyuncs.com	ntp11.cloud.aliyuncs.com	ntp6.aliyun.com
ntp6.cloud.aliyuncs.com	ntp12.cloud.aliyuncs.com	ntp7.aliyun.com

其他互联网基础服务

阿里云还提供了其他的互联网基础服务,如下表所示:

公共服务	描述
公共DNS:223.5.5.5 / 223.6.6.6	域名: http://www.alidns.com
公共镜像站: https://opsx.alibaba.com/ mirror	镜像同步频率:每天凌晨2:00-4:00。覆盖了大 多数开源软件及Linux发行版。

8.12.2 配置Windows实例NTP服务

本文介绍如何开启和配置Windows NTP服务,保证实例本地时间精确同步。

Windows实例NTP服务介绍

目前,所有地域下ECS实例默认采用CST(China Standard Time)时区,您也可以根据自己的 业务需求为ECS实例设置或者修改时区。

本文以Windows Server 2008 R2企业版64位为例,介绍如何使用NTP服务同步Windows实例的本地时间。

开启NTP服务

Windows Server操作系统默认开启Windows Time服务。为了保证NTP服务配置成功后能正常同步时间,实例中必须开启NTP服务。按以下步骤检查并开启NTP服务:

- 远程连接Windows实例。选择开始 > 所有程序 > 附件 > 运行,打开运行对话框,并运行命令 services.msc。
- 2. 在 服务 窗口, 找到并双击 Windows Time 服务。
- 3. 在 Windows Time的属性(本地计算机) 对话框中,执行以下操作:
 - a. 将 启动类型 设置为 自动。
 - b. 确认 服务状态 为 已启动。如果不是,单击 启动。
 - c. 单击应用, 并单击确定。

修改默认NTP服务器地址

Windows Server操作系统默认配置微软NTP服务器(time.windows.com),但是可能经常同步出错。使用阿里云ECS实例时,您可以将默认NTP服务器更换成阿里云提供的内网NTP服务器。 详细的服务器地址,请参考使用阿里云NTP服务器。按以下步骤修改默认NTP服务器地址:

1. 远程连接Windows实例。

2. 在任务栏的通知区域,单击日期和时间,并单击 更改日期和时间设置。

- 3. 在日期和时间对话框里,单击 Internet 时间选项卡,并单击更改设置。
- 4. 在 Internet 时间设置 对话框里,选择 与Internet时间服务器同步,填写一个阿里云内 网NTP服务器地址,并单击 立即更新。

修改NTP服务时间同步间隔

NTP服务的时间同步间隔默认是5分钟,您可以根据业务需求自定义同步间隔。按以下步骤修改时间同步间隔:

1. 远程连接Windows实例。

- 2. 选择开始 > 所有程序 > 附件 > 运行,打开运行对话框,并运行命令 regedit。
- 3. 在 注册表编辑器 的左侧目录树中, 找到 HKEY_LOCAL_MACHINE > SYSTEM > CurrentControlSet > services > W32Time > TimeProviders > NtpClient, 并双 击SpecialPollInterval键值。
- 在 编辑 DWORD (32 位)值 对话框中,在 基数 栏里选择 十进制,并按需要填写 数值数据。填入的数值即是您需要的同步时间间隔(单位为秒)。

8.12.3 配置Linux实例NTP服务

本文以Centos 6.5为例介绍如何修改Linux实例时区,以及开启和配置Linux NTP服务,保证实 例本地时间精确同步。

背景信息

目前,所有地域下ECS实例默认采用CST(China Standard Time)时区,您也可以根据自己的 业务需求为ECS实例设置或者修改时区。

另外,您还可以根据实际需要启用标准NTP服务或者配置自定义NTP服务。

操作步骤

1. 远程连接 Linux实例。

🗾 说明:

您需要以root身份打开并编辑时区配置文件,所以此处使用sudo命令。

- 2. 执行命令sudo rm /etc/localtime删除系统里的当地时间链接。
- 执行命令sudo vi /etc/sysconfig/clock用vim打开并编辑配置文件/etc/sysconfig/ clock。
- 输入i添加时区城市,例如添加Zone=Asia/Shanghai,按下Esc键退出编辑并输入:wq保存并 退出。

可执行命令ls /usr/share/zoneinfo查询时区列表, Shanghai为列表条目之一。

- 执行命令sudo ln -sf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime更新 时区修改内容。
- 6. 执行命令hwclock -w更新硬件时钟(RTC)。
- 7. 执行命令sudo reboot重启实例。
- 8. 执行命令date -R查看时区信息是否生效,未生效可重走一遍步骤。

后续步骤

NTP 服务能保证 ECS 实例的本地时间与标准时间同步。在Linux系统中,您可以通过ntpdate和 ntpd两种方式实现NTP时间同步。ntpdate为断点更新,ntpd为步进式地逐渐调整时间。对新购 实例,您可以使用ntpdate同步时间,对已经承载有运行中业务的实例,建议您使用ntpd同步时 间。此处提供标准NTP服务配置和自定义NTP服务配置,您可以根据需要选择性地配置。关于更 多NTP服务信息请参考内网和公共NTP服务器。

前提条件

NTP服务的通信端口为UDP 123,设置NTP服务之前请确保您已经打开UDP 123端口。您可以通过netstat -nupl查看实例是否开通UDP 123端口。您可以参考文档 添加安全组规则 放行UDP 123端口。

启用标准NTP服务

- 1. 远程连接 Linux实例。
- 2. 执行命令sudo service ntpd start运行NTP服务。
- 3. 执行命令chkconfig ntpd on启用NTP服务。
- 4. 执行命令ntpstat查看是否启用了NTP服务。
- 5. (可选)执行命令ntpq -p可查看NTP服务对等端的列表信息;执行命令sudo chkconfig
 --list ntpd可查看NTP服务的运行级别。

配置自定义NTP服务

- 1. 远程连接 Linux实例。
- 2. 执行命令sudo vi /etc/ntp.conf用vim打开并编辑NTP服务配置文件。
- 找到server ntp 服务器 iburst的信息后,输入i开始编辑文件,给您暂时不需要的NTP服务器句首加上#隐藏起来。
- 4. 新添加一行NTP服务器信息,格式为: server 您需要添加的NTP服务器 iburst。完成编辑 后按下Esc键并输入:wq保存退出。
- 5. 执行命令sudo service ntpd start启用自定义的NTP服务。

- 6. 执行命令chkconfig ntpd on, 启用NTP服务。
- 7. 执行命令ntpstat查看是否启用了NTP服务。

9 续费预付费实例

9.1 续费概览

包年包月实例到期后,如果您想继续使用实例,需要在规定时间内为实例续费,否则,实例和磁 盘均会自动释放,数据永久丢失,无法找回。关于包年包月资源过期后的状态变化,请参考预付 费(包年包月)。

📃 说明:

- ・续费订单一旦支付成功,不可取消。
- · 按量付费实例不需要续费, 您只需要保证账号关联的信用卡或PayPal账号余额充足即可。

目前,阿里云ECS支持以下续费方式:

- · 手动续费。具有以下特点:
 - 续费时不能调整实例配置。
 - 支持的续费时长: 1个月或1年。
- · 自动续费。创建实例时或实例创建后,您可以为实例启用自动续费功能,实例到期前会自动续费。具有以下特点:
 - 续费时不能调整实例配置。
 - 支持的续费时长:按实例当前的计费周期续费。
- · 续费降配。实例创建后,您可以在续费实例的同时降低实例及关联资源的配置,在下一个计费周 期使用更低配置的资源,降低费用。具有以下特点:
 - 续费时可以调整实例配置。
 - 支持的续费时长: 1个月或1年。

9.2 手动续费

介绍

手动续费仅适用于 包年包月 实例。

当您的包年包月实例处于 已过期 或 停机 状态时,您可以手动为它们续费。手动续费时,您可以选择续费一个月或一年,所以,如果您需要修改您包年或包月实例的时长,您可以选择手动续费。

· 当实例处于 已过期 状态时,您的实例仍能正常工作。如果过期后 15 天内手动续费成功,您的 实例会从过期当天开始进入下一个计费周期。

举例:如果您的实例在 2017 年 4 月 25 日 00:00:00 过期,但在 2017 年 5 月 9 日手动续费一个月成功,则这次续费的计费周期是 2017 年 4 月 25 日至 2017 年 5 月 25 日 00:00:00。

- ・如果过期后 15 天内未续费或续费不成功,实例被 停机,您的实例停止工作,但是阿里云仍为您 保留数据。
- ・停机后,
 - 如果 15 天内续费成功,您的实例会从续费日当天进入新的计费周期。
 - 举例:如果您的实例在 2017 年 5 月 10 日 00:00:00 开始停机,但在 2017 年 5 月 23 日 08: 09:35 手动续费一个月成功,则这次续费的计费周期是 2017 年 5 月 23 日 08:09:35 至 2017 年 6 月 24 日 00:00:00。
 - 如果 15 天内未续费或续费失败,您的实例会在停机后第 15 天自动释放,数据无法恢复。

操作步骤

您可以按以下步骤手动续费。

- 1. 登录 云服务器管理控制台。
- 2. 在左侧导航中,单击实例。
- 3. 在 实例列表 页,选择需要的地域,再通过实例名称、实例 ID 或状态(已过期)等条件查找 ECS 实例。
- 4. 在操作列,单击续费,进入续费页面。
- 5. 在续费页面上,
 - a. 确认实例配置信息;
 - b. 选择所需的续费时长,单击确认订单。
- 6. 在 支付 页面,确认订单信息后,单击 支付,完成续费操作。

9.3 自动续费

介绍

自动续费仅适用于 包年包月 实例。本文描述自动续费功能,并说明如何开通和关闭自动续费功能。

购买ECS实例后,一直到实例停机前,您都可以在 续费管理 页面开通自动续费功能。

📕 说明:

实例到期后不能再开通自动续费功能。

自动续费不支持修改包年包月实例的计费周期,即开通自动续费后,如果是包月实例,会自动按月 续费;如果是包年实例,会自动按年续费。

自动续费功能不支持包年与包月的转换。如果您需要转换实例的计费周期时长,可以通过 手动续 费 功能实现。

开通自动续费功能后,

- · ECS实例到期前第7天、第3天和第1天,系统会给您发送实例到期提醒。
- ECS实例期后,阿里云会在实例到期当天(T)自动从您绑定的信用卡或PayPal账户中扣除实例 的费用。如果扣款失败,阿里云会分别在第7天(T+6)和第15天(T+14)再次扣款,直到续费 成功或者三次续费均失败使实例自动停机。
 - 如果在T+14前自动扣款成功,您的实例会从过期当天开始进入下一个计费周期。

举例:如果您的实例在2017年4月25日00:00:00过期,但在2017年5月9日自动后款成功成功,则这次续费的计费周期是2017年4月25日00:00:01至2017年5月25日00:00:00。

- 如果续费三次续费操作均失败,实例将在过期15天后停机。停机后,您的实例将停止工作,您将无法登录或远程连接到实例,此时,您只能手动续费。停机后15天内没有续费或续费失败,您的实例将被释放,数据无法恢复。
- 每次扣款失败,阿里云都会给您绑定的邮箱发送扣款失败提醒信息,请注意查收并处理,以
 免因停机而影响您的业务。
- 自动续费在T、T+6和T+14天的08:00:00(UTC+8)开始执行。但是,因为系统每天会对所有 到期实例依次执行操作,所以,您的实例的续费时间可能会在08:00:00(UTC+8)后,一般不 会超过当天18:00:00(UTC+8)。

如果在自动续费前已经完成了手动续费,那么在当前计费周期内不会再进行自动续费操作。

开通自动续费功能

按照以下步骤开通自动续费功能:

- 1. 登录 ECS管理控制台。
- 2. 在页面顶部,选择费用>续费管理。
- 3. 在左边导航栏里,选择弹性计算。
- 4. 在 弹性计算 页面上,选择 手动续费 选项卡。
- 5. 选择未过期的实例,在操作列里,单击开通自动续费。

如果需要开通多台实例的自动续费功能,选中多台未过期实例后,在列表底部单击 开通自动续 费。

6. 在 开通自动续费 对话框里,确认实例的信息和续费时长,再单击 开通自动续费。

开通自动续费后,单击 自动续费 选项卡。如果列表里出现刚才这些实例的信息,表示实例已经开通 自动续费功能。

关闭自动续费功能

如果您已经开通了自动续费功能,按以下步骤关闭自动续费功能:

- 1. 登录 ECS管理控制台。
- 2. 在页面顶部,选择费用>续费管理。
- 3. 在左边导航栏里,选择弹性计算。
- 4. 在 弹性计算 页面上,选择 自动续费 选项卡。
- 5. 找到实例,在操作列,单击修改自动续费。

📃 说明:

如果需要取消多台实例的自动续费功能,选中多台实例后,在列表底部单击修改自动续费。

6. 在 修改自动续费 对话框里,选择 取消自动续费 后,单击 确定。

取消自动续费后,单击 手动续费 选项卡。如果列表里出现刚才这些实例的信息,表示实例已经取消 了自动续费功能。

9.4 续费降配

您可以在续费时降低实例配置以控制成本,本文介绍如何进行续费降配操作。

包年包月实例过期后,如果未在规定的时间内续费,实例自动释放,数据永久丢失,无法找回。关 于包年包月资源过期后的状态变化,请参考预付费(包年包月)。

在使用包年包月实例过程中,如果您觉得当前实例配置过高,想要降低配置以减少费用,可以使用 续费降配功能,在实例释放前为实例续费,同时设置在新的计费周期降低实例配置。

您也可以使用续费降配功能将数据盘的计费方式从包年包月转为按量付费。

注意事项

执行续费降配操作时,您需要注意以下几点:

- ·续费降配是指续费时可以同时降低实例规格。
- ・仅适用于包年包月实例。

- ·您可以在两个时间段进行续费降配操作:
 - 实例到期前15日内
 - 实例到期后自动释放前15日内

例如,您持有一台预付费实例,到期时间为2019年4月30日,您可以在2019年4月16日 至2019年4月30日之间续费降配实例。如果未能及时续费,实例进入过期回收中状态,您也可以 在2019年5月1日至2019年5月15日之间续费降配实例。否则,2019年5月16日,实例会自动释 放。

- ・续费降配后,新配置会在新的计费周期内生效,当前计费周期剩余时间内配置不会发生变化。
- ·如果续费降配时更改了实例规格,必须在进入新计费周期后7天内重启实例使新配置生效。如果
 您选择在新计费周期的第7天重启实例,则前6天内实例会继续使用原来的高配,重启后才开始
 使用降低后的配置。
- · 续费降配后,当前计费周期的剩余时间内不能再升级配置、扩容系统盘或者扩容包年包月数据盘(挂载在 Linux实例上的云盘或 Windows实例上的云盘),请谨慎操作。
- ・续费订单支付成功后不可取消。

操作步骤

按以下步骤在续费包年包月实例的同时降低配置:

- 1. 登录 ECS管理控制台。
- 2. 在左侧导航栏中,单击实例。
- 3. 选择地域。
- 4. 找到包年包月实例,并在操作列中,单击升降配。
- 5. 在 升降配向导 对话框中,选择 续费降配,并单击 继续。

6. 在 续费降配 页面上,完成以下任一操作:

实例规格:	1核1GB ecsn1.timy	1核2GB ecs.n1.small						
重启时间:	请选择重启时间 🗐 17 👻	: 03						
敗掘盘:	磁盘ID	磁盘名称	磁盘种类	容量	设备名	付费方式	支持卸载	
	d-bp15q5d1u4awbpqznwss		SSD云盘	20 GB	/dev/xvdb	包年包月	不支持 🔲 转换为	的按量付费
公网带宽:	按使用流量 ⑦							
	后付费模式,按使用流量(单位为GB))计费,每小时扣费。前						
带宽:	50M	I 100M	200M	0 Mbps	*			
	选择 0M 带宽后,若实例是经典网络,	公网 IP 地址仍将保留	,若实例是专有网络则	则公网 IP 不会保留。				
续费时长:	1个月 1年							
	续费后到期时间为: 2019-01-26 00:0 续费价楷按照基础带宽进行计算	00						

・降低 实例规格 配置。如果选择降低实例规格,您需要设置实例 重启时间。

🗐 说明:

- 能变配的实例规格以页面上显示的信息为准。实例规格的详细信息,请参考实例规格
 族。
- 实例重启会暂停业务,所以,请选择在业务低谷时重启实例,减少对业务的影响。重启必须在进入下一个计费周期后7天内完成。
- ·如果创建实例时一起创建了数据盘(包年包月),可以选择将数据盘的付费方式转换为按量 付费。如果不转换,在新的计费周期里,数据盘计费时长与实例相同。
- ・设置帯宽值。
- ・设置续费时长。
- 7. 单击 去支付,并按照页面提示完成操作。
- (可选)如果您更换了实例规格,或者将经典实例的公网带宽首次从0 Mbps变为一个非零值,在下一个计费周期7天内您必须在 控制台 或使用API RebootInstance 重启实例,使新配置生效。

▋ 说明:

VPC网络类型的ECS实例的公网带宽首次从0 Mbps变为一个非零值,不需要重启实例。

10升降配实例

10.1 升降配方式汇总

创建实例后,您可以修改实例规格,即vCPU核数和内存的大小,也可以修改公网带宽的配置。本 文罗列了多种升降配的方式。

升级或降低实例规格

您只能同时升级或降低实例的vCPU核数和内存大小(即实例规格族),不能单独调整其中一个配置。根据实例的计费方式,您必须使用不同的方式修改实例配置,如下表所示。

说明:

要确认您的实例能否变更规格,以及能够变更的目标规格,可以先查看支持变配的实例规格。

实例计费 方式	升级规格方式	如何生效	降低规格方式	如何生效
预付费	预付费实例升级 配置	在控制台重启实例或使 用RebootInstance接 口重启实例,新规格即 时生效。	 · 续费降配 · 预付费实例 实时降配规 格(是否支持 此功能根据您 的云服务器使 用情况而定) 	在控制台重启实例或使 用RebootInstance接 口重启实例,使新规格 生效。 · 通过续费降配:进 入新计费周期 后,您需要在7天 内在控制台重启实 例,新规格实时生 效。 · 通过实时降 配:在控制台重 启实例或使 用RebootInstance转 口重启实例,新规 格即时生效。
按量付费	按量付费实例变 更实例规格	启动实例后,新规格生 效。	按量付费实例变 更实例规格	启动实例后,新规格生 效。

调整公网带宽

根据实例的计费方式以及对带宽的需求不同,您可以采用不同的方式修改公网带宽,如下表所示。

实例计费方式	是否永久升级带宽	是否立即生效	适用的功能	说明
包年包月	是	是	预付费实例升级配 置	仅适用于经典网络 类型ECS实例或未 绑定EIP的VPC类 型ECS实例。升级 后不会改变公网或 私网IP地址。
包年包月	是	在下一个计费周期 生效	续费降配	续费时调整公网 带宽。公网带宽降 低到0 Mbps时, VPC类型ECS实 例的公网IP地址 在新计费周期会 释放;经典网络 类型ECS实例的公 网IP地址仍然保 留。
按量付费或包年包 月	是	是	按量付费实例修改 公网带宽	 仅适用于 绑定了 弹性公网IP(EIP))地址的VPC类 型ECS实例。您可以在当前生命周期 内随时调整EIP地 址的带宽。

创建实例后分配公网IP地址

在创建实例时,您能通过将公网带宽设置为一个非零值,为ECS实例分配公网IP地址。如果此时未 分配公网IP地址,实例创建成功后,您能通过不同的功能为实例分配公网IP地址。但是,目前只 有包年包月实例能在创建成功后再分配公网IP地址。详细信息,如下表所示。

功能	是否立即生效	说明
预付费实例升级配置	是	仅适用于经典网络类型ECS实
续费降配	在下一个计费周期生效	例或未绑定EIP的VPC类型ECS 实例。将公网带宽设置为一个 非零值,为实例分配一个公网 IP地址。
10.2 支持变配的实例规格

如果您当前使用的实例规格(族)不适用于当前业务,可以先在本文查看是否能够变更,以及能够 变更的选项,然后选择一种升降配方式来变更实例规格。

影响

变更配置后,对不同类型的实例有如下影响:

- ・ 经典网络类型实例:
 - 对于已停售的实例规格,非 I/O 优化实例变配到 I/O 优化实例时,实例私网 IP 地址、磁盘 设备名和软件授权码会发生变化。对于 Linux 实例,普通云盘(cloud)会被识别为 xvda 或者 xvdb,高效云盘(cloud_efficiency)和 SSD 云盘(cloud_ssd)会被识别为 vda 或者 vdb。
 - 对于 在售的实例规格族,实例的私网 IP 地址会发生变化。

・VPC类型实例:

对于 已停售的实例规格, 非 I/O 优化实例变配到 I/O 优化实例时, 云服务器磁盘设备名和软件 授权码会发生变化。Linux 实例的普通云盘(cloud)会被识别为 xvda 或者 xvdb, 高效云 盘(cloud_efficiency)和 SSD 云盘(cloud_ssd)会被识别为 vda 或者 vdb。

可变配的实例规格

以下表格中,可变配的目标规格族适用于预付费实例和按量付费实例。

▋ 说明:

- ・不同的实例规格供应的可用区信息不同。变配操作时,与当前可用区是否提供目标规格(族)有关。
- ・不支持实例规格族内或规格族之间变更的包括: d1、d1ne、i1、i2、ga1、gn5、f1、f3、 ebmc4、ebmg5、sccg5和scch5。

表 10-1: 入门级实例

源实例规格族	可变配的目标规格(族)
t5	 t5 sn1ne, sn2ne, se1ne, c4, cm4, ce4 hfc5, hfg5, g5, r5, c5, ic5, re4, n4, mn4, xn4, e4

源实例规格族	可变配的目标规格(族)
n4、mn4、xn4、 e4	 n4、mn4、xn4、 e4 sn1、sn2、se1、n1、n2、e3、sn1ne、sn2ne、se1ne、c4、cm4、ce4、hfc5、hfg5、g5、r5、c5、ic5、re4、t5

表 10-2: 企业级实例

源实例规格族	可变配的目标规格(族)
g5、r5、c5、ic5	 g5、r5、c5、ic5 sn1ne、sn2ne、se1ne、c4、cm4、ce4 hfc5、hfg5、re4、t5、n4、mn4、xn4 e4
sn1ne、sn2ne、se1ne	 sn1ne、sn2ne、se1ne c4、cm4、ce4、hfc5、hfg5、g5、r5、 c5、ic5、re4、t5、n4、mn4、xn4、e4
se1	 se1 sn1、sn2、n1、n2、e3、sn1ne、sn2ne 、se1ne、c4、cm4、ce4、hfc5、hfg5、 g5、r5、c5、ic5、re4、t5、n4、mn4、 xn4、e4
re4	 re4 sn1ne、sn2ne、se1ne、c4、cm4、ce4 hfc5、hfg5、g5、r5、c5、ic5、t5、n4 mn4、xn4、e4、ecs.se1.14xlarge
hfc5、hfg5	 hfc5、hfg5 sn1ne、sn2ne、se1ne、c4、cm4、ce4 g5、r5、c5、ic5、re4、t5、n4、mn4 xn4、e4
gn4	gn4
gn5i	gn5i
gn6v	gn6v

源实例规格族	可变配的目标规格(族)
t1、s1、s2、s3、m1、m2、c1、c2	 t1、s1、s2、s3、m1、m2、c1、c2 sn1、sn2、se1、n1、n2、e3、sn1ne、sn2ne、se1ne、c4、cm4、ce4、hfc5、hfg5、g5、r5、c5、ic5、re4、t5、n4、mn4、xn4、e4
n1、n2、e3	 n1、n2、e3 sn1、sn2、se1、sn1ne、sn2ne、se1ne c4、cm4、ce4、hfc5、hfg5、g5、r5 c5、ic5、re4、t5、n4、mn4、xn4、e4
sn1、sn2	 sn1、sn2 se1、n1、n2、e3、sn1ne、sn2ne、se1ne、c4、cm4、ce4、hfc5、hfg5、g5、r5、c5、ic5、re4、t5、n4、mn4、xn4、e4
c4、ce4、cm4	 · c4、ce4、cm4 · sn1ne、sn2ne、se1ne、hfc5、hfg5、g5 、r5、c5、ic5、re4、t5、n4、mn4、xn4 、e4

10.3 升配预付费实例

10.3.1 预付费实例升级配置

当预付费的实例规格无法满足您的业务需求时,您能使用预付费实例升级配置功能升级实例规格。 此外,您也可以升级公网带宽。

升级配置类型

使用升级配置功能,可以升级实例规格,也可以完成以下操作:

- ·转换数据盘计费方式:将按量付费数据盘转为包年包月数据盘。不能变更系统盘的计费方式。
- · 修改公网带宽:适用于经典网络类型ECS实例和未绑定EIP的VPC类型ECS实例。如果您在创 建实例时没有购买公网带宽,即没有分配公网IP地址,可以使用这个功能为实例分配一个公 网IP地址。

费用

升级配置后,您需要为当前计费周期的剩余时间补差价。

限制

使用升级配置功能有以下限制:

- · 仅适用于包年包月实例。
- ·两次变更操作之间的间隔不得少于5分钟。
- · 您只能升级实例规格(包括实例vCPU核数和内存容量),不能单独升级其中一个配置。
- · 不支持实例规格族内或规格族之间变更的包括:

d1、d1ne、i1、i2、ga1、gn5、f1、f2、f3、ebmc4、ebmg5、sccg5和scch5。支持变更的规格族以及变配规则请参见 变配规格表。

- · 仅经典网络类型ECS实例和未绑定EIP的VPC类型ECS实例能通过这个功能修改公网带宽。
- ·只能将数据盘的计费方式从按量付费转为包年包月,但是不能转换系统盘的计费方式。
- ・ 在当前计费周期内,如果您已经执行过 续费降配 操作,只有进入新的计费周期后,您才能升级
 配置。当前计费周期的剩余时间内不能再升级。
- 升级实例规格,或者经典网络实例公网带宽首次从0 Mbps升级到一个非零值后,您必须在控制 台或使用API RebootInstance 重启实例,新配置才能生效。

操作步骤

- 1. 登录 ECS管理控制台。
- 2. 在左侧导航栏中, 单击 实例。
- 3. 选择地域。
- 4. 选中需要升级配置的包年包月实例,并在操作列中,单击升降配。
- 5. 在 升降配向导 对话框中,选择 升级配置,并单击 继续。
- 6. 在升级配置页面上,完成以下任意一个操作:
 - ・ 选择 实例规格。

实例规格能否升级以及支持升级到哪种规格,以界面上显示的信息为准。

- ・如果实例 挂载了按量付费数据盘,您能勾选该数据盘将计费方式转换为包年包月。
- ·如果实例为经典网络类型ECS实例或者未绑定EIP的VPC类型ECS实例,可以修改公网带宽。

如果您创建实例时没有购买公网带宽,即没有分配公网IP地址,可以在这里将公网带宽设为 一个非零值,从而分配公网IP地址。

7. 确认价格后,单击 确认订单,并按页面提示完成升配操作。

8. 升级实例规格,或者经典网络类型ECS实例公网带宽首次从0 Mbps升级到一个非零值后,您必须在控制台或使用API RebootInstance 重启实例,新配置才能生效。

VPC类型ECS实例公网带宽首次从0 Mbps变为一个非零值,不需要重启实例。

您可以通过阿里云CLI、OpenAPI Explorer和阿里云SDK等开发者工具调用 DescribeResourcesModification 接口查询可变更的实例规格。

10.4 降配预付费实例

10.4.1 续费降配

您可以在续费时降低实例配置以控制成本,本文介绍如何进行续费降配操作。

包年包月实例过期后,如果未在规定的时间内续费,实例自动释放,数据永久丢失,无法找回。关 于包年包月资源过期后的状态变化,请参考预付费(包年包月)。

在使用包年包月实例过程中,如果您觉得当前实例配置过高,想要降低配置以减少费用,可以使用 续费降配功能,在实例释放前为实例续费,同时设置在新的计费周期降低实例配置。

您也可以使用续费降配功能将数据盘的计费方式从包年包月转为按量付费。

注意事项

执行续费降配操作时,您需要注意以下几点:

- ·续费降配是指续费时可以同时降低实例规格。
- ・仅适用于包年包月实例。
- ·您可以在两个时间段进行续费降配操作:
 - 实例到期前15日内
 - 实例到期后自动释放前15日内

例如,您持有一台预付费实例,到期时间为2019年4月30日,您可以在2019年4月16日 至2019年4月30日之间续费降配实例。如果未能及时续费,实例进入过期回收中状态,您也可以 在2019年5月1日至2019年5月15日之间续费降配实例。否则,2019年5月16日,实例会自动释 放。

- ・续费降配后,新配置会在新的计费周期内生效,当前计费周期剩余时间内配置不会发生变化。
- ·如果续费降配时更改了实例规格,必须在进入新计费周期后7天内重启实例使新配置生效。如果
 您选择在新计费周期的第7天重启实例,则前6天内实例会继续使用原来的高配,重启后才开始
 使用降低后的配置。

- · 续费降配后,当前计费周期的剩余时间内不能再升级配置、扩容系统盘或者扩容包年包月数据盘(挂载在 Linux实例上的云盘或 Windows实例上的云盘),请谨慎操作。
- ・续费订单支付成功后不可取消。

操作步骤

按以下步骤在续费包年包月实例的同时降低配置:

- 1. 登录 ECS管理控制台。
- 2. 在左侧导航栏中, 单击 实例。
- 3. 选择地域。
- 4. 找到包年包月实例,并在操作列中,单击升降配。
- 5. 在 升降配向导 对话框中,选择 续费降配,并单击 继续。
- 6. 在 续费降配 页面上,完成以下任一操作:

实例规格:	1核1GB ecs.n1.tiny	1核2GB ecs.n1.small						
重启时间:	请选择重启时间 🗐 17 🔷	: 03						
数据盘:	磁盘ID	磁盘名称	磁盘种类	容量	设备名	付费方式	支持卸载	
	d-bp15q5d1u4awbpqznwss		SSD云盘	20 GB	/dev/xvdb	包年包月	不支持	□ 转换为按量付费
公岡帝寛:	按使用流量 ②) 计赛,每小时扣费。)	青保证余额充足					
带宽:	50M 选择 0M 带宽后,若实例是经典网络,	100M 公网 IP 地址仍将保留	200M 。若实例是专有网络师	0 Mbps 切公网 IP 不会保留。	Y			
续费时长:	1个月 1年 续期后到期时间为: 2019-01-26 00:0 续期价楷按照基础带宽进行计算	00						

・降低 实例规格 配置。如果选择降低实例规格,您需要设置实例 重启时间。

- 实例重启会暂停业务,所以,请选择在业务低谷时重启实例,减少对业务的影响。重启必须在进入下一个计费周期后7天内完成。
- ・如果创建实例时一起创建了数据盘(包年包月),可以选择将数据盘的付费方式转换为按量
 付费。如果不转换,在新的计费周期里,数据盘计费时长与实例相同。
- ・设置帯宽值。
- ・设置续费时长。
- 7. 单击 去支付,并按照页面提示完成操作。
- (可选)如果您更换了实例规格,或者将经典实例的公网带宽首次从0 Mbps变为一个非零值,在下一个计费周期7天内您必须在 控制台 或使用API RebootInstance 重启实例,使新配置生效。

VPC网络类型的ECS实例的公网带宽首次从0 Mbps变为一个非零值,不需要重启实例。

10.4.2 预付费实例实时降配规格

预付费实例支持实时降低ECS实例规格,包括vCPU核数和内存。实时降配操作后重启实例,立即 生效。

功能限制

- ·达到一定等级的会员支持此功能。
- · 一次只能对一个预付费ECS实例操作实时降配。
- ・本操作仅支持将预付费ECS实例更换为更低规格的配置,不支持更换为同等规格或更高规格的配置。
 置。
- ・每个预付费ECS实例最多只能执行3次实时降配操作。实时降配操作包括:实例规格配置、降低
 带宽配置、云盘付费方式转按量付费。
- ・执行一次实时降配后,5分钟内不能再次进行实时降配操作。

前提条件

当您的ECS实例满足以下条件时,您可以对它执行实时降配操作。

- · 实例的付费类型必须是包年包月。
- · 实例必须处于 已停止(Stopped) 状态。
- ・实例必须处于正常的业务状态,不能是非正常状态(如欠费、已过期、等待释放、已锁定)。
- · 实例如果有未完成的续费降配流程,则不允许执行实时降配,必须等续费降配执行完之后才能执 行实时降配操作。

操作步骤

- 1. 登录 ECS管理控制台。
- 2. 找到需要实时降配的包年包月或按周付费实例,在操作栏中,单击升降配。
- 3. 选择 降低配置,并选择 降低实例规格配置(必须先停止实例)。
- 4. 选择一个实例规格,确认退款金额,并勾选《云服务器ECS服务条款》。
- 5. 单击 立即降配。
- 下一步

启动ECS实例,变更后的实例规格立即生效。

10.4.3 预付费实例降配带宽

预付费实例支持实时降低公网带宽的配置,也支持将带宽计费方式从按固定带宽转换为按使用流 量。

注意事项

根据当前的带宽计费方式不同,你可以使用实时降配功能完成如下操作:

- · 当前的带宽计费方式为 按固定带宽, 您可以:
 - 降低固定带宽的值。
 - 转换为按使用流量,并设置带宽峰值。
- ・当前的带宽计费方式为 按使用流量,您可以调整带宽峰值,但不能转为 按固定带宽。

📃 说明:

如果您的ECS实例网络类型是VPC,带宽降至0 Mbps会同时触发自动解绑公网IP地址的流程。

功能限制

- · 部分账号支持此功能(根据您的云服务器的使用情况而定)。
- · 一次只能对一个预付费ECS实例操作实时降配。
- ・每个预付费ECS实例最多只能执行3次实时降配操作。实时降配操作包括:实例规格配置、降低
 带宽配置、云盘付费方式转按量付费。
- ・执行一次实时降配后,5分钟内不能再次进行实时降配操作。
- ·如果是VPC类型的ECS实例,并且绑定了弹性IP地址,则不能执行降低带宽的操作。

前提条件

当您的ECS实例满足以下条件时,您可以对它执行实时降配操作。

- · 实例的付费类型必须是预付费。
- ・实例必须处于正常的业务状态,不能是非正常状态(如欠费、已过期、等待释放、已锁定)。
- · 实例如果有未完成的续费降配流程,则不允许执行实时降配,只有等续费降配执行完之后才能执行实时降配操作。

操作步骤

- 1. 登录 ECS管理控制台。
- 2. 找到需要实时降配的预付费周付费实例,在操作栏中,单击升降配。
- 3. 选择 降低配置,并选择 降低带宽配置。
- 4. 设置带宽,并勾选 《云服务器ECS服务条款》。
- 5. 单击 立即降配。

实时降配操作后无需重启,立即生效。

10.5 升降配按量付费实例

10.5.1 按量付费实例变更实例规格

本文描述如何变更按量付费实例的实例规格。

注意事项

使用实例时,如果您发现实例配置超出或不能满足您的应用需求,您可以变更实例规格(包括 vCPU和内存)。变更实例规格需要停止实例,会造成您的业务中断,建议您在非业务高峰期时执 行该操作。

变更按量付费实例的规格有以下限制:

- ・两次变更操作之间的间隔不得少于5分钟。
- · 不支持实例规格族内或规格族之间变更的包括:

d1、d1ne、i1、i2、ga1、gn5、f1、f2、f3、ebmc4、ebmg5、sccg5和scch5。支持变更 的规格族以及变配规则请参见 支持变配的实例规格。

前提条件

实例必须处于 已停止 状态。

操作步骤

请按以下步骤变更按量付费实例的实例规格:

- 1. 登录 ECS管理控制台。
- 2. 在左侧导航栏中,单击实例。
- 3. 选择地域。
- 4. 选中需要变更配置的按量付费实例,并在 操作 列中,单击 更改实例规格。
- 5. 在 调整规格 页面中,选择需要的实例规格,再单击 确认调整。

您也可以通过 DescribeResourcesModification 接口查询可变更的实例规格。

变更完成后,变更立即生效。您可以在 实例详情 页的 基本信息 部分查看实例规格信息,如下图所 示。

<	👝 ESS - ang ng ya 200000 2	201			
实例详情	基本信息 远程连接 更多				
本实例磁盘					
本实例快照	ID: i-				
本实例安全组	所在可用区: 华东1可用区 F				
Œ	名称: E\$)1 L				
	描述: ESS				
	地域: 华东 1				
	实例规格: ecs.xn4.small				
	实例规格族: 共享基本型				
	镜像ID:				
	密钥对名称:				

10.5.2 按量付费实例修改公网带宽

在使用按量付费实例时,如果发现公网带宽无法满足或者超出业务需求,您可以调整公网带宽。

修改方式

如果您使用的是VPC实例,而且已经 <mark>绑定弹性公网IP(EIP)</mark>,您可以通过 变更带宽 功能随时调整公网带宽。该功能与实例的计费方式无关。

限制

变更带宽功能仅适用于VPC实例,而且必须已经绑定EIP地址。

变更带宽

按以下步骤变更EIP地址的公网带宽。

- 1. 登录 ECS管理控制台。
- 2. 在左侧导航栏中,单击实例。
- 3. 选择地域。
- 4. 选中绑定了EIP地址的实例,并在操作列中,单击升降配。
- 5. 在 升降配向导 对话框中,选择 变更带宽,并单击 继续。
- 6. 在 确认订单 页面上,设置新的带宽峰值。

7. 单击 去开通,并按页面显示信息完成带宽变更。

相关操作

如果是包年包月的经典网络实例或者未绑定EIP的VPC实例,您可以执行以下操作:

- · 使用 升级配置 立即变更公网带宽。
- · 使用 续费降配 变更下一个计费周期的公网带宽。

11 实例FAQ

- ・购买实例FAQ
 - 如何查看某个地域或可用区是否能购买实例?
 - 购买实例时,资源已经售罄怎么办?
- ・实例计费FAQ
 - 按量付费ECS实例停机或欠费停机后,会产生费用吗?
 - 按量付费转预付费时下单失败如何处理?
 - 支付完成后多久能完成按量付费转预付费?
 - 按量付费转预付费失败时如何处理?
 - 按量付费转预付费之后带宽计费方式是否发生变化?
 - 我有一个按量付费转预付费订单,但是还没有支付,这时我升级了实例的配置,这个转换订 单还有效吗?
 - 预付费转按量付费失败时如何处理?

- ・ 预留实例券FAQ
 - 什么是预留实例券?
 - 预留实例券能否提供库存预留?
 - 预留实例券支持什么平台?
 - 哪些规格族能够使用预留实例券?
 - 预留实例券能否抵扣抢占式实例的账单?
 - 可以调整预留实例券的实例规格族吗?
 - 什么场景购买可用区级预留实例券?
 - 什么场景购买地域级预留实例券?
 - 如何应用可用区灵活性?
 - 如何应用实例大小灵活性?
 - 可用区级的预留实例券支持实例大小灵活性吗?
 - 可用区级的预留实例券支持可用区灵活性吗?
 - 可用区级预留实例券可以调整为地域级预留实例券吗?
 - 可以跨地域调整预留实例券的范围吗?
 - 能否跨帐号使用预留实例券?
 - 预留实例券可以抵扣按量付费实例的存储和网络部分账单吗?
 - 可以控制预留实例券抵扣指定实例的账单吗?
 - 预留实例券如何计费?
 - 预留实例券购买后的生效时间如何计算?
 - 预留实例券修改、拆分、合并后的生效时间如何计算?
 - 为什么购买时看不见0预付的选项?
 - 预留实例券支持修改券的付款类型吗?
 - 预留实例券可以退款吗?
 - 预留实例券可以转售吗?

- ・ 连接实例FAQ
 - 管理终端是独享的吗?
 - 忘记了远程连接密码, 怎么办?
 - 为什么修改了远程连接密码还是连不上管理终端?
 - 管理终端提示授权验证失败, 怎么解决?
 - 连接到管理终端后出现黑屏, 怎么办?
 - 管理终端无法访问了, 怎么办?
 - 我使用IE8.0,为什么无法使用管理终端?
 - 我用Firefox浏览器打开管理终端会报错安全连接失败,怎么办?
 - 如何远程登录到Linux实例?
- ・ 管理实例FAQ
 - 如何操作f1实例?
 - macOS如何通过FTP工具上传文件?
 - 购买ECS后如何备案域名?
 - 如何在实例内部修改登录密码?
 - 为什么无法将按量付费实例转为预付费实例?
- ・ 升降配实例FAQ
 - 如何升级ECS资源?
 - 为什么升级实例配置后没有效果?

如何查看某个地域或可用区是否能购买实例?

您可以前往ECS实例可购买地域,查看实例的可购情况。

购买实例时,资源已经售罄怎么办?

如果在创建实例过程中,您遇到没有资源的情况,建议您采取以下措施:

- 更換地域
- ・更换可用区
- · 更换资源配置

如果依然没有资源,建议您耐心等待一段时间再购买。实例资源是动态的,如果资源不足,阿里云 会尽快补充资源,但是需要一定时间。

您也可以使用到货通知功能:

 实例 实例规格族 场景配置选型 	I/O 优化实例 ⑦	了 vCPU: 请选择 vCPU 代 已购实例规格		♡内存: 『	选择内存 > 🗸 🗘 🗘 🗴 🗸 🗴	査: 如: ecs.sn1ne.large 入	7 网络类型: 请选择	网络类型 🗸	
	架构: x86 计算	异构计算 GPU / FPGA	弹性裸金质	属服务器(神力	这) 高士紹刑 入门级(共高)				
	规格族 💲	实例规格 ↓	vCPU \$	内存 💲	/// 132(//+/	处理器主频 ↓	内网带宽 ↓	内网收发包 💲	规格参考价格
	高主频通用型 hfg5	ecs.hfg5.8xlarge	32 vCPU	128 GiB	Intel Xeon Gold 6149	3.1 GHz	6 Gbps	250 万 PPS	0元/月
	○ 高主频计算型 hfc5	? ecs.hfc5.large	2 vCPU	4 GiB	Intel Xeon Gold 6149	3.1 GHz	1 Gbps	30 万 PPS	元/月
	高主频计算型 hfc5	ecs.hfc5.xlarge	4 vCPU	8 GiB	Intel Xeon Gold 6149	3.1 GHz	1.5 Gbps	50 万 PPS	元/月
	○ 高主频计算型 hfc5	ecs.hfc5.2xlarge	8 vCPU	16 GiB	Intel Xeon Gold 6149	3.1 GHz	2 Gbps	100 万 PPS	● 元/月
	○ 高主频计算型 hfc5	ecs.hfc5.3xlarge	12 vCPU	24 GiB	Intel Xeon Gold 6149	3.1 GHz	2.5 Gbps	130 万 PPS	0元/月
	○ 高主频计算型 hfc5	ecs.hfc5.4xlarge	16 vCPU	32 GiB	Intel Xeon Gold 6149	3.1 GHz	3 Gbps	160 万 PPS	0元/月
	〇 高主频计算型 hfc5	ecs.hfc5.6xlarge	24 vCPU	48 GiB	Intel Xeon Gold 6149	3.1 GHz	4.5 Gbps	200 万 PPS	0元/月
	〇 高主频计算型 hfc5	ecs.hfc5.8xlarge	32 vCPU	64 GiB	Intel Xeon Gold 6149	3.1 GHz	6 Gbps	250 万 PPS	0元/月
	盔 高主频通用型 hfg5 到货通知	ecs.hfg5.14xlarge	56 vCPU	160 GiB	Intel Xeon Gold 6149	3.1 GHz	10 Gbps	400 万 PPS	0 元/月

按量付费ECS实例停机或欠费停机后,会产生费用吗?

欠费停机是指按量付费ECS实例因账号欠费而自动停止服务。此时,实例在控制台上的状态是已过 期。处于这个状态的实例不计费。

停机是指按量付费ECS实例在正常运行期间,您通过ECS管理控制台或StopInstance接口,使实例进入已停止状态。根据实例的网络类型不同,按量付费实例进入已停止状态后所需要的费用不同:

- · 专有网络:可以设置为实例停机不收费,即开通实例停机不收费功能后,专有网络按量付费实例
 从创建开始计费,实例处于已停止状态时停止计费,实例启动后又重新计费。实例停机不收费功
 能只适用于实例的计算资源(即vCPU和内存)和公网IP地址,但云盘仍旧计费。详情请参见按量付费实例停机不收费。
- · 经典网络: 进入已停止状态后仍然正常计费。

按量付费转预付费时下单失败如何处理?

下单失败可能是由以下原因造成的:

- · 实例当前状态不支持转换
- · 实例已经设置了自动释放时间,暂不支持转换
- ・ 实例当前处于已过期状态,暂不支持转换
- · 实例的信息发生变化,不允许转换
- · 实例存在未支付的转换订单

如果出现以上错误提示,请根据错误提示调整实例。

支付完成后多久能完成按量付费转预付费?

支付完成后,会有异步任务执行转换操作。目前同时转换1~20个实例的计费方式所需时间为1~ 4秒。转换完成后,您可以在控制台上看到实例的计费方式已经更新为包年包月。

按量付费转预付费失败时如何处理?

请提交工单。

按量付费转预付费之后带宽计费方式是否发生变化?

不变。目前按量付费转包年包月功能只支持转换实例和云盘的计费方式,变更带宽计费方式请参 见变更公网带宽计费方式。

我有一个按量付费转预付费订单,但是还没有支付,这时我升级了实例的配置,转换订单还有效吗?

按量付费转预付费时会创建一个新购订单,您必须支付该订单才能正常完成转换。如果您在未支付 订单时升级了实例配置,由于实例组件已经发生变化,原订单的金额已经无法满足转换要求,此时 订单会被禁止支付。如果您仍然需要转换实例的计费方式,必须先作废当前未支付订单,再执行新 的转换操作。

预付费转按量付费失败时如何处理?

转换失败可能是由以下原因造成的:

- · 实例当前状态不支持转换
- ・ 实例当前处于已过期状态,不支持转换
- · 实例的信息发生变化,不允许转换

如果出现以上明确的错误提示,建议您根据错误提示调整实例。如果问题仍旧存在,请提交工单。 什么是预留实例券?

预留实例券是一种抵扣券,可以抵扣按量付费实例(不含抢占式实例)的账单,也能够预留实例资 源。相比预付费实例,预留实例券与按量付费实例这种组合模式可以兼顾灵活性和成本,比预付费 方式的包月价格更优惠。

预留实例券能否提供库存预留?

当您购买可用区级的预留实例券时,系统会预留与预留实例券匹配的实例库存。当您购买地域级的 预留实例券时,不提供库存预留。

预留实例券支持什么平台?

目前只支持Linux平台的实例账单抵扣。不论您采用何种方式导入镜像(公共镜像、自定义镜像、 共享镜像、镜像市场),只要使用的是Linux类型的平台即可。

哪些规格族能够使用预留实例券?

能够使用预留实例券的规格族包括: sn1ne、sn2ne、se1ne、ic5、c5、g5、r5、hfc5、hfg5和 t5。 其中,突发性能实例t5只支持可用区级预留实例券,不支持地域级预留实例券,也不支持合并、拆 分或者范围调整。

预留实例券能否抵扣抢占式实例的账单?

不可以。

可以调整预留实例券的实例规格族吗?

不可以。

什么场景购买可用区级预留实例券?

当您有明确的库存预留需求时,建议选择购买可用区级预留实例券。

什么场景购买地域级预留实例券?

您不需要库存预留,但是想更方便、灵活地使用预留实例券抵扣按量付费实例账单,比如需要更好 的可用区灵活性和实例大小灵活性,建议购买地域级预留实例券。

如何应用可用区灵活性?

仅地域级预留实例券支持可用区灵活性。下面举例说明:

您持有以下运行中的按量付费实例:

1台Linux实例, ecs.c5.xlarge, 华北1(青岛)可用区B。名称为C5PAYG-b。

您购买了以下预留实例券:

1张地域级券, ecs.c5.xlarge, 华北1(青岛)。名称为C5RI。

购买成功后,C5RI匹配C5PAYG-b,抵扣C5PAYG-b的账单。

由于业务需要,您释放掉了C5PAYG-b,在可用区C启动了一台相同规格的C5PAYG-c,则该预留实 例券继续匹配C5PAYG-c,抵扣C5PAYG-c的账单。

如何应用实例大小灵活性?

仅地域级预留实例券支持实例大小灵活性。下面举例说明:

您的账户下有一个地域级预留实例券,规格为ecs.g5.4xlarge;可以抵扣到1个ecs.g5.4xlarge按量实例;也可以抵扣2个ecs.g5.2xlarge按量实例;或者抵扣4个ecs.g5.xlarge按量实例。

您的账户下有一个1年期地域级预留实例券,规格为ecs.g5.xlarge;可以抵扣1个ecs.g5.xlarge按 量实例运行1年的账单;或者抵扣1个ecs.g5.2xlarge按量实例运行半年的账单。

可用区级的预留实例券支持实例大小灵活性吗?

不支持。使用可用区级的预留实例券抵扣时,按量付费实例规格必须和券面实例规格完全一致。

可用区级的预留实例券支持可用区灵活性吗?

不支持。使用可用区级的预留实例券抵扣时,按量付费实例的所属可用区必须和券面的可用区信息 完全一致。

可用区级预留实例券可以调整为地域级预留实例券吗?

可以。您在购买预留实例券后,仍然可以随时调整预留实例券的范围,包括:

· 将范围从可用区级改为地域级。

· 将范围从地域级改为可用区级。

· 对于可用区级预留实例券,支持在同一地域下更改可用区。

可以跨地域调整预留实例券的范围吗?

不可以。例如,如果您持有华东1(杭州)可用区B下的可用区级预留实例券,可以调整为华东1 (杭州)其它可用区下的可用区级预留实例券,或者调整为华东1(杭州)下的地域级预留实例 券,但不能将范围改为其它地域或者其它地域下的可用区。

能否跨帐号使用预留实例券?

不可以。

预留实例券可以抵扣按量付费实例的存储和网络部分账单吗?

不可以。预留实例券用于抵扣按量付费实例的计算部分(CPU和内存)的账单。

可以控制预留实例券抵扣指定实例的账单吗?

不可以。当您有多台符合抵扣标准的实例时,系统将自动按优化后的匹配方案进行抵扣。

预留实例券如何计费?

预留实例券自身单独计费,支持多种付款类型:全预付、部分预付和0预付。

购买成功后,预留实例券即开始计算有效期。无论能否匹配到按量付费实例,在有效期内您都需要 按付款类型支付费用,选择全预付可以节省更多成本。

预留实例券购买后的生效时间如何计算?

在购买成功后,预留实例券的生效时间按整点计算,从生效时间开始计费,失效时间为到期日次日 的零点。例如,您在2019-02-26 13:45:00成功购买了一张预留实例券,有效期为一年,该预留实 例券的生效时间和计费开始时间为2019-02-26 13:00:00,失效时间为2020-02-27 00:00:00。如 果您在购买预留实例券时已经持有可匹配的实例,则从2019-02-26 13:00~14:00的小时账单开始 抵扣,直至预留实例券失效。 预留实例券修改、拆分、合并后的生效时间如何计算?

如果您对预留实例券进行修改、拆分或者合并,将会生成新的预留实例券,同时旧的预留实例券会 失效。新的预留实例券生效时间按整点计算,同时旧的预留实例券失效。例如,您在2019-02-26 13:45:00成功将一张规格为ecs.g5.2xlarge的可用区级预留实例券(RI1)拆分成两张规格为ecs. g5.xlarge的可用区级预留实例券(RI2和RI3)。则RI1的失效时间为2019-02-26 13:00:00,RI2 和RI3的生效时间也为2019-02-26 13:00:00。从2019-02-26 13:00:00开始,可抵扣和预留的实 例规格也由ecs.g5.2xlarge变为ecs.g5.xlarge,不再抵扣ecs.g5.2xlarge实例的小时账单。如果 RI2和RI3在生效后立即成功匹配到实例,也从2019-02-26 13:00:00开始抵扣ecs.g5.xlarge实例 的小时账单。

为什么购买时看不见0预付的选项?

目前仅部分账号支持0预付(根据您的云服务器的使用情况而定)。

预留实例券支持修改券的付款类型吗?

不支持。

预留实例券可以退款吗?

发生以下情况时,您可以提交工单申请退款:

·购买预留实例券后,目标地域或可用区下的实例资源库存不足。

·拆分、合并预留实例券或者调整预留实例券范围后,目标地域或可用区下的实例资源库存不足。

预留实例券可以转售吗?

不可以。

管理终端是独享的吗?

是的。如果一个用户已经登录,其他用户则无法再登录。

忘记了远程连接密码,怎么办?

如果忘记远程连接密码,您可以修改远程连接密码。

为什么修改了远程连接密码还是连不上管理终端?

如果您要连接的不是 I/O 优化实例,您需要在管理控制台上重启实例,新密码才会生效。在ECS实例内部重启无效。

管理终端提示授权验证失败,怎么解决?

输入远程连接密码后,提示授权验证失败,可能是因为您输入了错误的远程连接密码,请按以下步 骤排查:

- ·确认您输入了正确的远程连接密码。
- ·如果您忘了密码,可以修改远程连接密码之后再重试。
- ·如果要连接非 I/O 优化实例,修改密码后,您需要先在控制台上重启实例使新的远程连接密码生效。

连接到管理终端后出现黑屏,怎么办?

连接到管理终端后出现黑屏,说明系统处于休眠状态。根据操作系统不同,执行不同的操作:

- ·如果是 Linux 实例,您可以按任意键激活该实例,进入登录界面。
- ・ 如果是 Windows 实例出现持续黑屏,您可以在界面左上角单击发送远程命令 > CTRL+ALT
 +DELETE,进入登录界面。

管理终端无法访问了,怎么办?

您可以使用Chrome浏览器进入管理终端界面,在键盘上按F12键显示开发者工具,然后分 析Console中显示的信息。

我使用IE8.0,为什么无法使用管理终端?

管理终端目前仅支持IE10及以上的IE浏览器。您可以下载最新的IE浏览器或Chrome浏览器。

建议使用Chrome浏览器。阿里云的控制台对Chrome浏览器的兼容性更好。

我用Firefox浏览器打开管理终端会报错安全连接失败,怎么办?

报错原因:可能您使用的Firefox版本没有共用的加密算法。

建议使用Chrome浏览器。阿里云的控制台对Chrome浏览器的兼容性更好。

如何远程登录到Linux实例?

通常Linux系统使用SSH服务提供远程连接。您可以:

- · 通过浏览器在控制台上登录实例
- · PC端使用密码认证登录Linux实例
- · PC端使用SSH密钥对登录Linux实例
- · 移动端动端登录Linux实例

如何操作f1实例?

f1实例试用申请获批之后,阿里云会向您共享一个FPGA开发镜像(目前只能支持CentOS 7u2)。您可以在镜像上免费试用Intel Quartus全套开发组件和f1相应器件的约束文件,体验一整套 云上开发环境。

🗾 说明:

目前只能支持华东1地域。

使用f1实例的基本流程如下:

1. 开发完成后,您可以在工程编译阶段生成一个中间qar文件,将qar文件上传到您的OSS bucket(目前只能支持华东1地域),然后调用API将qar的相关信息注册到阿里云。

建议您在云上完成相应的开发、编译、仿真的操作,从而利用免费的Intel Quartus开发套件。

- 2. 阿里云会审核qar文件注册请求,在安全验证通过后向您发送通知邮件,通知邮件中同时包含 FPGA的镜像ID。
- 部署时,先调用API关联云服务器实例与FPGA镜像,利用f1实例ID和FPGA镜像ID作为参数。
 您可以在任何能访问ECS API的场景下发起关联。
 - ・如果该f1实例从未关联过任何FPGA镜像,可以直接发起关联操作。
 - ・如果该f1实例之前关联并装载过FPGA镜像,在发起关联命令之前,必须保证FPGA镜像已经 从该f1实例上擦除。
- 4. 关联成功后,继续调用API装载FPGA镜像。

装载操作必须从f1实例所在的云服务器上发起,指定FPGA ID后,阿里云的底层服务会把对应的FPGA镜像烧制到实例对应的FPGA器件。

如果想将f1实例恢复至初始状态,可以调用API从f1实例擦除已经烧制的FPGA镜像。

更多f1实例的操作指南,请参见:

- ・ 创建f1实例
- · f1实例OpenCL开发最佳实践
- ・使用f1 RTL(Register Transfer Level)

macOS如何通过FTP工具上传文件?

方式一:通过macOS自带终端上传

您可以通过macOS本身的终端或者iTerm2(单击此处下载iTerm2)上传文件。注意正确地选择 上传文件的路径。 1. 连接FTP服务。

2. 进入正确的目录, Windows系统无需切换, Linux系统切换至htdocs。

```
227 Entering Passive Mode (121,42,75,25,156,83)
150 Here comes the directory listing.
            2 0
                       0
                                    4096 Jan 13 20:30 backup
drwxr-xr-x
            2 521
drwxr-xr-x
                       100
                                    4096 Jan 13 20:30 cgi-bin
                                    4096 Jun 03 03:40 ftplogs
drwxr-xr-x
            2 0
                       0
drwxr-xr-x 20 521
                       100
                                    4096 May 26 16:13 htdocs
drwxr-xr-x 2 521
                       100
                                    4096 Jan 13 20:30 myfolder
            2 0
                                    4096 Jun 03 02:03 www.logs
drwxr-xr-x
                       0
-rw-r--r-- 1 0
                       0
                                    606 Feb 03 15:47 请先读我.txt
226 Directory send OK.
ftp> cd htdocs
```

3. 运行put命令上传。

```
ftp> put wordpress.tar
Local: wordpress.tar remote: wordpress.tar
227 Entering Passive Mode (121,42,75,25,156,121)
L50 Ok to send data.
226 File receive OK.
5720564 bytes sent in 46.2 secs (145.49 Kbytes/sec)
```

方式二: 通过第三方工具上传

- 1. 单击此处下载Yummy FTP。
- 2. 在macOS中安装Yummy FTP。
- 3. 填写FTP的服务器IP、用户名和密码;协议选择标准(FTP),端口选择默认21(或更改为其 您所使用的端口),不选择SSH密匙。

4. 单击连接。安装后打开如图:

00		新建连接	
服务器	192.		
用户名	dis	- G. (11)	
密码	•••••		
起始路径			
协议	标准 (FTP)	≑ □ 压缩	端口 21
□ SSH密	匙: 选择	取消	连接

5. 在右侧选择要上传的目录(Windows不需要选择目录,Linux主机选择htdocs目录),然后在 左边窗口选择要上传的文件,右击上传即可。

00	192.	and the second se	FTP 🚔 👱
		7 📰 🏦 😭 🚸 🕄	€• ⊚• »
▲ ▶ ■ 四 袋 ▼	¢		0
名称	▲ 修改E	名称	▲ 修改日
▶ 🚞 web	今天	> 🖬	15-3
			15-3
		>	15-3
			15-3

说明:

若安装Yummy FTP时系统提示:您的安全性偏好设置仅允许安装来自Mac App Store和被认可的开发者的应用程序,按以下步骤设置您的电脑。

a. 依次打开: 系统偏好设置 > 安全性与隐私。

b. 单击左下角的安全锁, 输入管理员密码解锁。

c. 在允许从以下位置下载的应用程序菜单中,选择任何来源。

设置后即可正常安装该软件。如图:

▲▶ 全部显示	Q.
通用 FileVault 防火墙 隐私	
已经给此用户设定登录实码 更改密码	
✓进入睡眠或开始屏幕保护程序后 立即 ≑ 要求输入	密码
□ 在屏幕锁定时显示信息 设定锁定信息	
☑ 停用自动登录	
 允许从以下位置下载的应用程序: ○ Mac App Store ○ Mac App Store 和被认可的开发者 2 ○ 任何来源 	
点按锁按钮以进行更改。	高级 ?

如问题还未解决,请提交工单联系阿里云。

购买ECS实例后如何备案域名?

待备案的ECS实例需要满足购买要求,且每台实例可申请的备案服务号数量有限,详细信息请参 见备案服务器(接入信息)准备与检查。

备案流程请参见ICP备案快速入门。

如何在实例内部修改登录密码?

详细步骤请参见在实例内部修改登录密码。

为什么无法将按量付费实例转为预付费实例?

待转换的ECS实例需要满足以下条件:

如何升级ECS资源?

有关升级云服务器ECS,请参见升降配。

- ・除带本地存储的实例外, 云服务器ECS支持在线变更CPU、内存和带宽升级, 升级实例生效之后 支持降级。
- ・ 云服务器ECS支持最多挂载16块数据盘,升级数据盘生效后不支持再次降级。

· 云服务器ECS带宽单位为Mbps (Megabit per Second),带宽速率范围为0-200 Mbps。您
 可以进行临时升级带宽、续费降配等操作。

为什么升级实例配置后没有效果?

升级实例配置后,需要在控制台重启实例。