# Alibaba Cloud Elasticsearch

**Product Introduction** 

## Legal disclaimer

Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions of this legal disclaimer before you read or use this document. If you have read or used this document, it shall be deemed as your total acceptance of this legal disclaimer.

- 1. You shall download and obtain this document from the Alibaba Cloud website or other Alibaba Cloud-authorized channels, and use this document for your own legal business activities only. The content of this document is considered confidential information of Alibaba Cloud. You shall strictly abide by the confidentiality obligations. No part of this document shall be disclosed or provided to any third party for use without the prior written consent of Alibaba Cloud.
- 2. No part of this document shall be excerpted, translated, reproduced, transmitted, or disseminated by any organization, company, or individual in any form or by any means without the prior written consent of Alibaba Cloud.
- 3. The content of this document may be changed due to product version upgrades , adjustments, or other reasons. Alibaba Cloud reserves the right to modify the content of this document without notice and the updated versions of this document will be occasionally released through Alibaba Cloud-authorized channels. You shall pay attention to the version changes of this document as they occur and download and obtain the most up-to-date version of this document from Alibaba Cloud-authorized channels.
- 4. This document serves only as a reference guide for your use of Alibaba Cloud products and services. Alibaba Cloud provides the document in the context that Alibaba Cloud products and services are provided on an "as is", "with all faults "and "as available" basis. Alibaba Cloud makes every effort to provide relevant operational guidance based on existing technologies. However, Alibaba Cloud hereby makes a clear statement that it in no way guarantees the accuracy, integrity , applicability, and reliability of the content of this document, either explicitly or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial losses incurred by any organizations, companies, or individuals arising from their download, use, or trust in this document. Alibaba Cloud shall not, under any circumstances, bear responsibility for any indirect, consequential, exemplary, incidental, special, or punitive damages, including lost profits arising from the use

- or trust in this document, even if Alibaba Cloud has been notified of the possibility of such a loss.
- 5. By law, all the content of the Alibaba Cloud website, including but not limited to works, products, images, archives, information, materials, website architecture, website graphic layout, and webpage design, are intellectual property of Alibaba Cloud and/or its affiliates. This intellectual property includes, but is not limited to, trademark rights, patent rights, copyrights, and trade secrets. No part of the Alibaba Cloud website, product programs, or content shall be used, modified , reproduced, publicly transmitted, changed, disseminated, distributed, or published without the prior written consent of Alibaba Cloud and/or its affiliates . The names owned by Alibaba Cloud shall not be used, published, or reproduced for marketing, advertising, promotion, or other purposes without the prior written consent of Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other brands of Alibaba Cloud and/or its affiliates, which appear separately or in combination, as well as the auxiliary signs and patterns of the preceding brands, or anything similar to the company names, trade names, trademarks, product or service names, domain names, patterns, logos, marks, signs, or special descriptions that third parties identify as Alibaba Cloud and/or its affiliates).
- 6. Please contact Alibaba Cloud directly if you discover any errors in this document.

II Issue: 20190806

# **Generic conventions**

Table -1: Style conventions

| Style           | Description                                                                                                                                | Example                                                                                                  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|                 | This warning information indicates a situation that will cause major system changes, faults, physical injuries, and other adverse results. | Danger: Resetting will result in the loss of user configuration data.                                    |
| <b>A</b>        | This warning information indicates a situation that may cause major system changes, faults, physical injuries, and other adverse results.  | Warning: Restarting will cause business interruption. About 10 minutes are required to restore business. |
|                 | This indicates warning informatio n, supplementary instructions, and other content that the user must understand.                          | Notice: Take the necessary precautions to save exported data containing sensitive information.           |
|                 | This indicates supplemental instructions, best practices, tips, and other content that is good to know for the user.                       | Note: You can use Ctrl + A to select all files.                                                          |
| >               | Multi-level menu cascade.                                                                                                                  | Settings > Network > Set network<br>type                                                                 |
| Bold            | It is used for buttons, menus<br>, page names, and other UI<br>elements.                                                                   | Click OK.                                                                                                |
| Courier<br>font | It is used for commands.                                                                                                                   | Run the cd / d C : / windows command to enter the Windows system folder.                                 |
| Italics         | It is used for parameters and variables.                                                                                                   | bae log list<br>instanceid <i>Instance_ID</i>                                                            |
| [] or [a b]     | It indicates that it is a optional value, and only one item can be selected.                                                               | ipconfig [-all -t]                                                                                       |

| Style | Description                                                                  | Example               |
|-------|------------------------------------------------------------------------------|-----------------------|
|       | It indicates that it is a required value, and only one item can be selected. | swich {stand   slave} |

II Issue: 20190806

# Contents

| Legal disclaimer        | I  |
|-------------------------|----|
| Generic conventions     |    |
| 1 What is Elasticsearch |    |
| 2 Concept               | 3  |
| 3 Restful API           |    |
| 4 Performance           |    |
| 5 Overdue payments      | 45 |
| 6 High reliability      |    |
| 7 High security         |    |
| 8 Security features     |    |

### 1 What is Elasticsearch

Elasticsearch is a Lucene-based data search and analysis tool that provides distribute d services. Elasticsearch is an open-source product that complies with the Apache open standards. It is the mainstream search engine for enterprise data.

Alibaba Cloud Elasticsearch includes multiple versions, including Elasticsearch 5 .5.3 with Commercial Feature, Elasticsearch 6.3.2 with Commercial Feature, and Elasticsearch 6.7.0 with Commercial Feature. It also contains the X-Pack plug-in. You can use Alibaba Cloud Elasticsearch to analyze and search data. Alibaba Cloud Elasticsearch provides enterprise-class access control, security monitoring and alarms, and automatic reporting based on the open-source Elasticsearch engine.

X-Pack is an Elastic Stack extension that bundles security, alarming, monitoring , reporting, and graph capabilities into one easy-to-install package. X-Pack is integrated into Kibana to provide services such as permission verification, role permission management, real-time monitoring, visualized reports, and machine learning.

#### **Features**

- · Distributed real-time file storage. Every field is indexed and searchable.
- · A distributed real-time analysis and search engine.
- X-Pack commercial edition for enterprise-class permission management and realtime system monitoring.
- · Scaling to hundreds of servers for processing petabytes of structured and unstructured data.
- · Supports the IK analyzer.
- · 24/7 technical support from official Elasticsearch Technical Support.

#### Built-in plug-ins.

The built-in plug-ins provided by Alibaba Cloud Elasticsearch include but are not limited to the following:

- · IK Analyzer: a lightweight Chinese analyzer kit based on java. It is a popular plugin for language analysis in the open-source community,
- · Pinyin Analyzer: Pinyin analyzer.
- · Smart Chinese Analysis Plugin: the default Lucene Chinese analyzer.

- · ICU Analysis Plug-in: A Lucene ICU analyzer. ICU is a set of stable, tested, powerful , and easy to use libraries, providing Unicode and globalization support for software applications.
- · Mapper Attachments Type Plug-in: allows Elasticsearch index file attachments in common formats by using the Apache text extraction library Tika.

### 2 Concept

#### Cluster

A cluster consists of one or more nodes. Each cluster has a master node, which is automatically polled by the cluster. Master and subordinate nodes are in the scope of a cluster. Elasticsearch applies a decentralized model. It does not have a central node . Therefore, communicating with a node in a cluster is the same as communicating with the cluster.

#### **Shards**

Elasticsearch divides an index into multiple shards and distributes these shards across nodes, allowing you to search by using the index on any of the nodes. The number of shards for an index must be specified before the index has been created. After an index has been created, you can no longer change the number of shards for the index.

#### Replicas

You can create multiple index replicas to enhance the fault tolerance of the system. A replica can be restored to a shard when the shard has been damaged or lost. Using replicas also improves the search performance. Search requests can be load balanced by Elasticsearch among these replicas.

#### Recovery

Data recovery (or data redistribution) is the process of redistributing shards for a node to guarantee the integrity of data when the node joins or leaves a cluster, or when the node recovers from a failure.

#### Gateway

A gateway is used to store snapshots of indexes. By default, an Elasticsearch node stores all the indexes in memory. When the node memory is full, the node saves the indexes to local disks for persistent storage. Index snapshots stored on a gateway can be restored after a cluster restarts for fault recovery, which is faster than reading indexes from local disks. Elasticsearch supports multiple types of gateways, including local file system, distributed file system, Hadoop HDFS, and Alibaba Cloud Object Storage Service (OSS).

#### discovery.zen

discovery.zen is an automatic node discovery mechanism. Elasticsearch is a peer to peer (P2P) system that broadcasts to discover nodes. Nodes communicate with each other through multicast and P2P.

#### **Transport**

Transport is a method used for communication between nodes within a cluster, or between clusters and clients. By default, nodes communicate with each other over TCP. Elasticsearch also supports multiple transmission protocol plug-ins, including HTTP (JSON format), Thrift, Servlet, Memcached, and ZeroMQ.

### 3 Restful API

#### Introduction

Elasticsearch provides a RESTful Web API, which allows you to perform operations including addition, deletion, modification, search, and alias configuration.

For more information about the official Elasticsearch REST API, see Elasticsearch Restful API.

#### Elasticsearch Reference [5.5]

#### Single document APIs

- · Index API
- · Get API
- · Delete API
- · Update API

#### **Multi-document APIs**

- · Multi Get API
- · Bulk API
- · Delete By Query API
- · Update By Query API
- · Reindex API

#### Use REST clients to communicate with clusters

You can use REST clients to access Elasticsearch clusters through HTTP or TCP. We recommend that you use the Elasticsearch official Java REST Client.

#### Use Java APIs to communicate with clusters

Elasticsearch provides a default client for Java users. For more information, see Java API.

#### **Transport client**

A transport client forwards requests to nodes in a cluster. However, it is not a part of a cluster.

A transport client uses the Elasticsearch Transport Protocol to communicate with clusters over port 9300.

Nodes in a cluster also use port 9300 to communicate with each other. You must open port 9300 for your nodes before grouping them into a cluster.



#### Note:

Your Java clients and nodes must use the same Elasticsearch version for them to recognize each other.

#### RESTful API (HTTP)

All other languages can communicate with Elasticsearch over port 9200 using a RESTful API, with your favorite web client. You can use the curl command to communicate with Elasticsearch at the CLI.



#### Note:

Elasticsearch provides official clients for several languages, including Groovy, Javascript, NET, PHP, Perl, Python, and Ruby.

For more clients and plug-ins provided by communities, see **Document**.

#### Structure of a curl request over HTTP

```
Curl - X < VERB > '< PROTOCOL >: // < HOST >:< PORT >/< PATH >? <

QUERY_STRI NG > '- d ' < BODY >'
```

- · VERB: an HTTP method: GET, POST, PUT, HEAD, and DELETE.
- · PROTOCOL: http or https . Use https only if HTTPS is enabled for Elasticsearch.
- HOST: the hostname of any node in your Elasticsearch cluster or localhost for a local node.
- PORT: the port that runs the Elasticsearch HTTP service. The default port number is 9200.
- PATH: API endpoint, for example, \_count returns the number of documents in a cluster. PATH may contain multiple components, such as \_cluster / stats and \_nodes / stats / jvm .
- QUERY\_STRING: optional query parameters. For example, the ? pretty parameter makes the JSON response much easier to read.

· BODY: JSON-encoded request body (only if the request requires one).

#### Example

Count the number of documents in an Elasticsearch cluster:

```
curl - XGET ' http:// localhost: 9200 / _count ? pretty ' - d '
{
    " query ": {
        " match_all ": {}
    }
}'
```

The body of the response to the curl request:

```
{
    " count " : 0 ,
    " _shards " : {
        " total " : 5 ,
        " successful " : 5 ,
        " failed " : 0
    }
}
```

Use the curl - i command to display the HTTP header:

```
curl - i - XGET 'localhost: 9200 /'
```

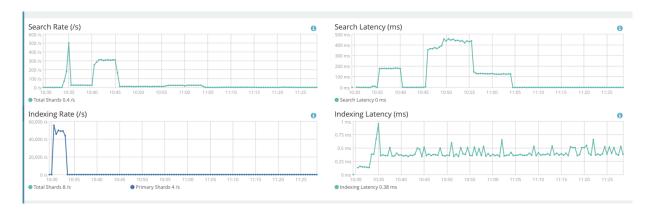
#### Full request:

Shorthand for the request:

# 4 Performance

#### Performance benchmarking

All benchmarks are run by the Elasticsearch official macrobenchmarking framework Rally, on Alibaba Cloud Elasticsearch cluster version 5.5.3 in the Hangzhou region. The test reports are as follows:




#### Note:

Benchmarking uses the official geonames data, which is 3.3 GB in size and includes up to 11,520,617 documents.

Test on Cluster 1 (including three nodes, with four CPU cores and 16 GB memory per node)

#### **Kibana metrics**



| Metric                   | Operation | Value    | Unit |
|--------------------------|-----------|----------|------|
| Indexing time            |           | 26.3543  | min  |
| Merge time               |           | 11.0297  | min  |
| Refresh time             |           | 3.05238  | min  |
| Flush time               |           | 0.04485  | min  |
| Merge throttle time      |           | 1.39282  | min  |
| Total Young Gen GC       |           | 92.902   | s    |
| Total Old Gen GC         |           | 0.4      | s    |
| Heap used for segments   |           | 18.7955  | MB   |
| Heap used for doc values |           | 0.360752 | МВ   |

| Metric                        | Operation    | Value     | Unit   |
|-------------------------------|--------------|-----------|--------|
| Heap used for terms           |              | 17.2739   | МВ     |
| Heap used for norms           |              | 0.0877075 | MB     |
| Heap used for points          |              | 0.241213  | MB     |
| Heap used for stored fields   |              | 0.831932  | MB     |
| Segment count                 |              | 133       |        |
| Min Throughput                | Index-append | 51751.7   | docs/s |
| Median Throughput             | Index-append | 52303     | docs/s |
| Max Throughput                | Index-append | 54076.3   | docs/s |
| 50th percentile latency       | Index-append | 743.939   | ms     |
| 90th percentile latency       | index-append | 1045.7    | ms     |
| 99th percentile latency       | index-append | 1325.21   | ms     |
| 100th percentile latency      | index-append | 1794.39   | ms     |
| 50th percentile service time  | index-append | 743.939   | ms     |
| 90th percentile service time  | index-append | 1045.7    | ms     |
| 99th percentile service time  | index-append | 1325.21   | ms     |
| 100th percentile service time | index-append | 1794.39   | ms     |
| error rate                    | index-append | 0         | 9⁄0    |
| Min Throughput                | Force-merge  | 0.95      | ops/s  |
| Median Throughput             | force-merge  | 0.95      | ops/s  |
| Max Throughput                | force-merge  | 0.95      | ops/s  |
| 100th percentile latency      | Force-merge  | 1052.54   | ms     |

| Metric                         | Operation   | Value   | Unit  |
|--------------------------------|-------------|---------|-------|
| 100th percentile service time  | force-merge | 1052.54 | ms    |
| error rate                     | force-merge | 0       | %     |
| Min Throughput                 | index-stats | 100.04  | ops/s |
| Median Throughput              | index-stats | 100.05  | ops/s |
| Max Throughput                 | index-stats | 100.09  | ops/s |
| 50th percentile latency        | index-stats | 4.85232 | ms    |
| 90th percentile latency        | index-stats | 5.14185 | ms    |
| 99th percentile latency        | index-stats | 77.3127 | ms    |
| 99.9th percentile latency      | index-stats | 123.888 | ms    |
| 100th percentile latency       | index-stats | 128.01  | ms    |
| 50th percentile service time   | index-stats | 4.78006 | ms    |
| 90th percentile service time   | index-stats | 4.9831  | ms    |
| 99th percentile service time   | index-stats | 9.66475 | ms    |
| 99.9th percentile service time | index-stats | 48.4445 | ms    |
| 100th percentile service time  | index-stats | 127.945 | ms    |
| error rate                     | index-stats | 0       | 9/0   |
| Min Throughput                 | node-stats  | 100.05  | ops/s |
| Median Throughput              | node-stats  | 100.1   | ops/s |
| Max Throughput                 | node-stats  | 100.55  | ops/s |
| 50th percentile latency        | node-stats  | 4.55259 | ms    |
| 90th percentile latency        | node-stats  | 4.78784 | ms    |

| Metric                         | Operation  | Value   | Unit  |
|--------------------------------|------------|---------|-------|
| 99th percentile latency        | node-stats | 18.8034 | ms    |
| 99.9th percentile latency      | node-stats | 43.7684 | ms    |
| 100th percentile latency       | node-stats | 48.1474 | ms    |
| 50th percentile service time   | node-stats | 4.48138 | ms    |
| 90th percentile service time   | node-stats | 4.69386 | ms    |
| 99th percentile service time   | node-stats | 5.64618 | ms    |
| 99.9th percentile service time | node-stats | 27.8155 | ms    |
| 100th percentile service time  | node-stats | 43.6905 | ms    |
| error rate                     | node-stats | 0       | %     |
| Min Throughput                 | default    | 49.81   | ops/s |
| Median Throughput              | default    | 50      | ops/s |
| Max Throughput                 | default    | 50      | ops/s |
| 50th percentile latency        | default    | 19.7245 | ms    |
| 90th percentile latency        | default    | 94.1457 | ms    |
| 99th percentile latency        | default    | 133.091 | ms    |
| 99.9th percentile latency      | Default    | 137.285 | ms    |
| 100th percentile latency       | default    | 138.043 | ms    |
| 50th percentile service time   | default    | 19.1469 | ms    |
| 90th percentile service time   | default    | 19.9554 | ms    |

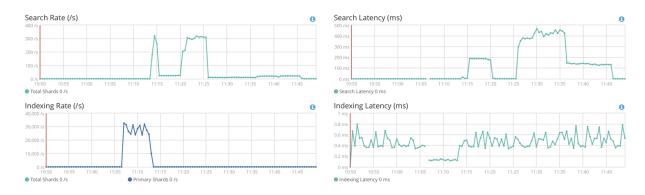
| Metric                         | Operation | Value   | Unit  |
|--------------------------------|-----------|---------|-------|
| 99th percentile service time   | default   | 25.3462 | ms    |
| 99.9th percentile service time | default   | 54.7931 | ms    |
| 100th percentile service time  | default   | 133.771 | ms    |
| error rate                     | default   | 0       | %     |
| Min Throughput                 | term      | 200.05  | ops/s |
| Median Throughput              | term      | 200.08  | ops/s |
| Max Throughput                 | term      | 200.12  | ops/s |
| 50th percentile latency        | term      | 3.07948 | ms    |
| 90th percentile latency        | term      | 3.37296 | ms    |
| 99th percentile latency        | term      | 22.3272 | ms    |
| 99.9th percentile latency      | term      | 26.9648 | ms    |
| 100th percentile latency       | term      | 28.1562 | ms    |
| 50th percentile service time   | term      | 3.00599 | ms    |
| 90th percentile service time   | term      | 3.15279 | ms    |
| 99th percentile service time   | term      | 4.22302 | ms    |
| 99.9th percentile service time | term      | 26.9017 | ms    |
| 100th percentile service time  | term      | 28.0823 | ms    |
| error rate                     | term      | 0       | %     |
| Min Throughput                 | phrase    | 199.84  | ops/s |
| Median Throughput              | phrase    | 200.04  | ops/s |
| Max Throughput                 | phrase    | 200.09  | ops/s |

| Metric                         | Operation                | Value   | Unit  |
|--------------------------------|--------------------------|---------|-------|
| 50th percentile latency        | phrase                   | 3.76927 | ms    |
| 90th percentile latency        | phrase                   | 13.6055 | ms    |
| 99th percentile latency        | phrase                   | 28.0245 | ms    |
| 99.9th percentile latency      | phrase                   | 34.7198 | ms    |
| 100th percentile latency       | phrase                   | 35.551  | ms    |
| 50th percentile service time   | phrase                   | 3.67227 | ms    |
| 90th percentile service time   | phrase                   | 4.08037 | ms    |
| 99th percentile service time   | Phrase                   | 16.9256 | ms    |
| 99.9th percentile service time | phrase                   | 24.4886 | ms    |
| 100th percentile service time  | phrase                   | 29.8604 | ms    |
| error rate                     | phrase                   | 0       | %     |
| Min Throughput                 | country_ag<br>g_uncached | 4.95    | ops/s |
| Median Throughput              | country_ag<br>g_uncached | 4.99    | ops/s |
| Max Throughput                 | country_ag<br>g_uncached | 5       | ops/s |
| 50th percentile latency        | country_ag<br>g_uncached | 330.923 | ms    |
| 90th percentile latency        | country_ag<br>g_uncached | 2780.17 | ms    |
| 99th percentile latency        | country_ag<br>g_uncached | 2866    | ms    |
| 99.9th percentile latency      | country_ag<br>g_uncached | 2880.39 | ms    |

| Metric                         | Operation                | Value   | Unit  |
|--------------------------------|--------------------------|---------|-------|
| 100th percentile latency       | country_ag<br>g_uncached | 2882.11 | ms    |
| 50th percentile service time   | country_ag<br>g_uncached | 197.883 | ms    |
| 90th percentile service time   | country_ag<br>g_uncached | 213.402 | ms    |
| 99th percentile service time   | country_ag<br>g_uncached | 256.649 | ms    |
| 99.9th percentile service time | country_ag<br>g_uncached | 290.496 | ms    |
| 100th percentile service time  | country_ag<br>g_uncached | 296.875 | ms    |
| error rate                     | country_ag<br>g_uncached | 0       | 9%    |
| Min Throughput                 | country_ag<br>g_cached   | 99.92   | ops/s |
| Median Throughput              | country_ag<br>g_cached   | 100.06  | ops/s |
| Max Throughput                 | country_ag<br>g_cached   | 100.11  | ops/s |
| 50th percentile latency        | country_ag<br>g_cached   | 3.30479 | ms    |
| 90th percentile latency        | country_ag<br>g_cached   | 3.52514 | ms    |
| 99th percentile latency        | country_ag<br>g_cached   | 52.8258 | ms    |
| 99.9th percentile latency      | country_ag<br>g_cached   | 112.895 | ms    |
| 100th percentile latency       | country_ag<br>g_cached   | 119.435 | ms    |
| 50th percentile service time   | country_ag<br>g_cached   | 3.23149 | ms    |
| 90th percentile service time   | country_ag<br>g_cached   | 3.41319 | ms    |

| Metric                         | Operation              | Value   | Unit  |
|--------------------------------|------------------------|---------|-------|
| 99th percentile service time   | country_ag<br>g_cached | 7.60955 | ms    |
| 99.9th percentile service time | country_ag<br>g_cached | 26.2229 | ms    |
| 100th percentile service time  | country_ag<br>g_cached | 119.365 | ms    |
| error rate                     | country_ag<br>g_cached | 0       | %     |
| Min Throughput                 | scroll                 | 61.59   | ops/s |
| Median Throughput              | scroll                 | 61.67   | ops/s |
| Max Throughput                 | scroll                 | 61.94   | ops/s |
| 50th percentile latency        | scroll                 | 164549  | ms    |
| 90th percentile latency        | scroll                 | 237443  | ms    |
| 99th percentile latency        | scroll                 | 253860  | ms    |
| 100th percentile latency       | scroll                 | 255710  | ms    |
| 50th percentile service time   | scroll                 | 399.964 | ms    |
| 90th percentile service time   | scroll                 | 424.303 | ms    |
| 99th percentile service time   | scroll                 | 523.877 | ms    |
| 100th percentile service time  | scroll                 | 639.45  | ms    |
| error rate                     | scroll                 | 0       | %     |
| Min Throughput                 | expression             | 2       | ops/s |
| Median Throughput              | expression             | 2       | ops/s |
| Max Throughput                 | expression             | 2       | ops/s |
| 50th percentile latency        | expression             | 409.927 | ms    |

| Metric                        | Operation       | Value   | Unit  |
|-------------------------------|-----------------|---------|-------|
| 90th percentile latency       | expression      | 434.544 | ms    |
| 99th percentile<br>latency    | expression      | 532.412 | ms    |
| 100th percentile latency      | expression      | 537.618 | ms    |
| 50th percentile service time  | expression      | 409.812 | ms    |
| 90th percentile service time  | expression      | 428.156 | ms    |
| 99th percentile service time  | expression      | 532.33  | ms    |
| 100th percentile service time | expression      | 537.495 | ms    |
| error rate                    | expression      | 0       | 9/0   |
| Min Throughput                | painless_static | 2       | ops/s |
| Median Throughput             | painless_static | 2       | ops/s |
| Max Throughput                | painless_static | 2       | ops/s |
| 50th percentile latency       | painless_static | 497.626 | ms    |
| 90th percentile latency       | painless_static | 643.32  | ms    |
| 99th percentile latency       | painless_static | 700.559 | ms    |
| 100th percentile latency      | painless_static | 704.679 | ms    |
| 50th percentile service time  | painless_static | 490.705 | ms    |
| 90th percentile service time  | painless_static | 500.663 | ms    |
| 99th percentile service time  | painless_static | 642.124 | ms    |
| 100th percentile service time | painless_static | 683.621 | ms    |


| Metric                        | Operation                | Value   | Unit  |
|-------------------------------|--------------------------|---------|-------|
| error rate                    | painless_static          | 0       | 9/0   |
| Min Throughput                | painless_dynamic         | 2       | ops/s |
| Median Throughput             | painless_dynamic         | 2       | ops/s |
| Max Throughput                | painless_dynamic         | 2       | ops/s |
| 50th percentile<br>latency    | painless_dynamic         | 473.087 | ms    |
| 90th percentile latency       | painless_dynamic         | 554.729 | ms    |
| 99th percentile latency       | painless_dynamic         | 668.363 | ms    |
| 100th percentile latency      | painless_dynamic         | 706.557 | ms    |
| 50th percentile service time  | painless_dynamic         | 469.145 | ms    |
| 90th percentile service time  | painless_dynamic         | 501.774 | ms    |
| 99th percentile service time  | painless_dynamic         | 606.61  | ms    |
| 100th percentile service time | painless_dynamic         | 624.751 | ms    |
| error rate                    | painless_dynamic         | 0       | %     |
| Min Throughput                | large_filt<br>ered_terms | 1.64    | ops/s |
| Median Throughput             | large_filt<br>ered_terms | 1.64    | ops/s |
| Max Throughput                | large_filt<br>ered_terms | 1.65    | ops/s |
| 50th percentile latency       | large_filt<br>ered_terms | 33013.5 | ms    |
| 90th percentile latency       | large_filt<br>ered_terms | 40869   | ms    |
| 99th percentile latency       | large_filt<br>ered_terms | 42644   | ms    |

| Metric                        | Operation                  | Value   | Unit  |
|-------------------------------|----------------------------|---------|-------|
| 100th percentile latency      | large_filt<br>ered_terms   | 42936.2 | ms    |
| 50th percentile service time  | large_filt<br>ered_terms   | 598.001 | ms    |
| 90th percentile service time  | large_filt<br>ered_terms   | 626.81  | ms    |
| 99th percentile service time  | large_filt<br>ered_terms   | 771.815 | ms    |
| 100th percentile service time | large_filt<br>ered_terms   | 796.884 | ms    |
| error rate                    | large_filt<br>ered_terms   | 0       | %     |
| Min Throughput                | large_proh<br>ibited_terms | 1.69    | ops/s |
| Median Throughput             | large_proh<br>ibited_terms | 1.69    | ops/s |
| Max Throughput                | large_proh<br>ibited_terms | 1.7     | ops/s |
| 50th percentile latency       | large_proh<br>ibited_terms | 27732.3 | ms    |
| 90th percentile latency       | large_proh<br>ibited_terms | 34305.5 | ms    |
| 99th percentile latency       | large_proh<br>ibited_terms | 35840.4 | ms    |
| 100th percentile latency      | large_proh<br>ibited_terms | 35993.5 | ms    |
| 50th percentile service time  | large_proh<br>ibited_terms | 586.382 | ms    |
| 90th percentile service time  | large_proh<br>ibited_terms | 618.185 | ms    |
| 99th percentile service time  | large_proh<br>ibited_terms | 661.378 | ms    |
| 100th percentile service time | large_proh<br>ibited_terms | 823.782 | ms    |

| Metric     | Operation                  | Value | Unit |
|------------|----------------------------|-------|------|
| error rate | large_proh<br>ibited_terms | 0     | %    |

### Test on Cluster 2 (including three nodes, with two CPU cores and 8 GB memory per node)

#### **Kibana metrics**



| Metric                      | Operation | Value     | Unit |
|-----------------------------|-----------|-----------|------|
| Indexing time               |           | 23.9479   | min  |
| Merge time                  |           | 14.3001   | min  |
| Refresh time                |           | 5.26405   | min  |
| Flush time                  |           | 0.0308333 | min  |
| Merge throttle time         |           | 1.27945   | min  |
| Total Young Gen GC          |           | 183.74    | s    |
| Total Old Gen GC            |           | 1.125     | s    |
| Heap used for segments      |           | 18.8167   | MB   |
| Heap used for doc values    |           | 0.452751  | MB   |
| Heap used for terms         |           | 17.2004   | МВ   |
| Heap used for norms         |           | 0.0852051 | МВ   |
| Heap used for points        |           | 0.241465  | МВ   |
| Heap used for stored fields |           | 0.836876  | МВ   |

| Metric                         | Operation    | Value   | Unit   |
|--------------------------------|--------------|---------|--------|
| Segment count                  |              | 140     |        |
| Min Throughput                 | index-append | 28115.4 | docs/s |
| Median Throughput              | index-append | 28645.5 | docs/s |
| Max Throughput                 | index-append | 30037.8 | docs/s |
| 50th percentile latency        | index-append | 1447.76 | ms     |
| 90th percentile latency        | index-append | 1847.05 | ms     |
| 99th percentile latency        | index-append | 2264.68 | ms     |
| 99.9th percentile latency      | index-append | 2515.95 | ms     |
| 100th percentile latency       | index-append | 2608.68 | ms     |
| 50th percentile service time   | index-append | 1447.76 | ms     |
| 90th percentile service time   | index-append | 1847.05 | ms     |
| 99th percentile service time   | index-append | 2264.68 | ms     |
| 99.9th percentile service time | index-append | 2515.95 | ms     |
| 100th percentile service time  | index-append | 2608.68 | ms     |
| error rate                     | index-append | 0       | 9⁄0    |
| Min Throughput                 | force-merge  | 2.1     | ops/s  |
| Median Throughput              | force-merge  | 2.1     | ops/s  |
| Max Throughput                 | force-merge  | 2.1     | ops/s  |
| 100th percentile latency       | force-merge  | 475.984 | ms     |
| 100th percentile service time  | force-merge  | 475.984 | ms     |
| error rate                     | force-merge  | 0       | %      |

| Metric                         | Operation   | Value   | Unit  |
|--------------------------------|-------------|---------|-------|
| Min Throughput                 | index-stats | 97.75   | ops/s |
| Median Throughput              | index-stats | 100.05  | ops/s |
| Max Throughput                 | index-stats | 100.07  | ops/s |
| 50th percentile latency        | index-stats | 5.09015 | ms    |
| 90th percentile latency        | index-stats | 10.7365 | ms    |
| 99th percentile latency        | index-stats | 234.761 | ms    |
| 99.9th percentile latency      | index-stats | 277.393 | ms    |
| 100th percentile latency       | index-stats | 281.866 | ms    |
| 50th percentile service time   | index-stats | 5.01096 | ms    |
| 90th percentile service time   | index-stats | 5.30021 | ms    |
| 99th percentile service time   | index-stats | 12.0005 | ms    |
| 99.9th percentile service time | index-stats | 141.631 | ms    |
| 100th percentile service time  | index-stats | 150.153 | ms    |
| error rate                     | index-stats | 0       | %     |
| Min Throughput                 | node-stats  | 100.01  | ops/s |
| Median Throughput              | node-stats  | 100.08  | ops/s |
| Max Throughput                 | node-stats  | 100.49  | ops/s |
| 50th percentile latency        | node-stats  | 4.90659 | ms    |
| 90th percentile latency        | node-stats  | 5.29285 | ms    |
| 99th percentile<br>latency     | node-stats  | 29.3245 | ms    |

| Metric                         | Operation  | Value   | Unit  |
|--------------------------------|------------|---------|-------|
| 99.9th percentile latency      | node-stats | 43.3885 | ms    |
| 100th percentile latency       | node-stats | 44.6019 | ms    |
| 50th percentile service time   | node-stats | 4.83552 | ms    |
| 90th percentile service time   | node-stats | 5.12694 | ms    |
| 99th percentile service time   | node-stats | 9.08739 | ms    |
| 99.9th percentile service time | node-stats | 39.744  | ms    |
| 100th percentile service time  | node-stats | 44.5383 | ms    |
| error rate                     | node-stats | 0       | %     |
| Min Throughput                 | default    | 47.83   | ops/s |
| Median Throughput              | default    | 48.28   | ops/s |
| Max Throughput                 | default    | 48.73   | ops/s |
| 50th percentile latency        | default    | 617.465 | ms    |
| 90th percentile latency        | default    | 1033.98 | ms    |
| 99th percentile latency        | default    | 1083.23 | ms    |
| 99.9th percentile latency      | default    | 1095.4  | ms    |
| 100th percentile latency       | default    | 1097.14 | ms    |
| 50th percentile service time   | default    | 18.646  | ms    |
| 90th percentile service time   | default    | 24.9381 | ms    |
| 99th percentile service time   | default    | 35.7667 | ms    |

| Metric                         | Operation | Value   | Unit  |
|--------------------------------|-----------|---------|-------|
| 99.9th percentile service time | default   | 57.3679 | ms    |
| 100th percentile service time  | default   | 151.505 | ms    |
| error rate                     | default   | 0       | %     |
| Min Throughput                 | term      | 199.43  | ops/s |
| Median Throughput              | term      | 200.07  | ops/s |
| Max Throughput                 | term      | 200.13  | ops/s |
| 50th percentile latency        | term      | 2.9728  | ms    |
| 90th percentile latency        | term      | 7.10648 | ms    |
| 99th percentile latency        | term      | 22.4487 | ms    |
| 99.9th percentile latency      | term      | 29.0737 | ms    |
| 100th percentile latency       | term      | 29.6253 | ms    |
| 50th percentile service time   | term      | 2.87833 | ms    |
| 90th percentile service time   | term      | 3.08983 | ms    |
| 99th percentile service time   | term      | 19.9777 | ms    |
| 99.9th percentile service time | term      | 29.0082 | ms    |
| 100th percentile service time  | term      | 29.5597 | ms    |
| error rate                     | term      | 0       | %     |
| Min Throughput                 | phrase    | 199.71  | ops/s |
| Median Throughput              | phrase    | 200.04  | ops/s |
| Max Throughput                 | phrase    | 200.07  | ops/s |
| 50th percentile latency        | phrase    | 3.61484 | ms    |

| Metric                         | Operation                | Value   | Unit  |
|--------------------------------|--------------------------|---------|-------|
| 90th percentile latency        | phrase                   | 16.5523 | ms    |
| 99th percentile latency        | phrase                   | 31.394  | ms    |
| 99.9th percentile latency      | phrase                   | 33.902  | ms    |
| 100th percentile latency       | phrase                   | 34.5784 | ms    |
| 50th percentile service time   | phrase                   | 3.47402 | ms    |
| 90th percentile service time   | phrase                   | 3.90958 | ms    |
| 99th percentile service time   | phrase                   | 19.3773 | ms    |
| 99.9th percentile service time | phrase                   | 22.7947 | ms    |
| 100th percentile service time  | phrase                   | 27.8164 | ms    |
| error rate                     | phrase                   | 0       | %     |
| Min Throughput                 | country_ag<br>g_uncached | 4.63    | ops/s |
| Median Throughput              | country_ag<br>g_uncached | 4.65    | ops/s |
| Max Throughput                 | country_ag<br>g_uncached | 4.67    | ops/s |
| 50th percentile latency        | country_ag<br>g_uncached | 14864.3 | ms    |
| 90th percentile latency        | country_ag<br>g_uncached | 21046   | ms    |
| 99th percentile latency        | country_ag<br>g_uncached | 22902   | ms    |
| 99.9th percentile latency      | country_ag<br>g_uncached | 22997.6 | ms    |
| 100th percentile latency       | country_ag<br>g_uncached | 23018.7 | ms    |

| Metric                         | Operation                | Value   | Unit  |
|--------------------------------|--------------------------|---------|-------|
| 50th percentile service time   | country_ag<br>g_uncached | 204.174 | ms    |
| 90th percentile service time   | country_ag<br>g_uncached | 242.492 | ms    |
| 99th percentile service time   | country_ag<br>g_uncached | 345.382 | ms    |
| 99.9th percentile service time | country_ag<br>g_uncached | 378.302 | ms    |
| 100th percentile service time  | country_ag<br>g_uncached | 422.53  | ms    |
| error rate                     | country_ag<br>g_uncached | 0       | %     |
| Min Throughput                 | country_ag<br>g_cached   | 98.37   | ops/s |
| Median Throughput              | country_ag<br>g_cached   | 100.06  | ops/s |
| Max Throughput                 | country_ag<br>g_cached   | 100.13  | ops/s |
| 50th percentile latency        | country_ag<br>g_cached   | 3.2638  | ms    |
| 90th percentile latency        | country_ag<br>g_cached   | 4.69259 | ms    |
| 99th percentile latency        | country_ag<br>g_cached   | 189.143 | ms    |
| 99.9th percentile latency      | country_ag<br>g_cached   | 249.851 | ms    |
| 100th percentile latency       | country_ag<br>g_cached   | 256.028 | ms    |
| 50th percentile service time   | country_ag<br>g_cached   | 3.18679 | ms    |
| 90th percentile service time   | country_ag<br>g_cached   | 3.42086 | ms    |
| 99th percentile service time   | country_ag<br>g_cached   | 20.4171 | ms    |

| Metric                         | Operation              | Value   | Unit  |
|--------------------------------|------------------------|---------|-------|
| 99.9th percentile service time | country_ag<br>g_cached | 117.273 | ms    |
| 100th percentile service time  | country_ag<br>g_cached | 255.951 | ms    |
| error rate                     | country_ag<br>g_cached | 0       | %     |
| Min Throughput                 | scroll                 | 59.16   | ops/s |
| Median Throughput              | scroll                 | 60.44   | ops/s |
| Max Throughput                 | scroll                 | 61.02   | ops/s |
| 50th percentile latency        | scroll                 | 168347  | ms    |
| 90th percentile latency        | scroll                 | 240658  | ms    |
| 99th percentile latency        | scroll                 | 257048  | ms    |
| 100th percentile latency       | scroll                 | 258853  | ms    |
| 50th percentile service time   | scroll                 | 402.962 | ms    |
| 90th percentile service time   | scroll                 | 431.267 | ms    |
| 99th percentile service time   | scroll                 | 455.632 | ms    |
| 100th percentile service time  | scroll                 | 601.214 | ms    |
| error rate                     | scroll                 | 0       | 9⁄0   |
| Min Throughput                 | expression             | 2       | ops/s |
| Median Throughput              | expression             | 2       | ops/s |
| Max Throughput                 | expression             | 2       | ops/s |
| 50th percentile latency        | expression             | 409.417 | ms    |
| 90th percentile latency        | expression             | 434.858 | ms    |

| Metric                        | Operation        | Value   | Unit  |
|-------------------------------|------------------|---------|-------|
| 99th percentile latency       | expression       | 501.498 | ms    |
| 100th percentile latency      | expression       | 517.438 | ms    |
| 50th percentile service time  | expression       | 409.165 | ms    |
| 90th percentile service time  | expression       | 434.749 | ms    |
| 99th percentile service time  | expression       | 498.681 | ms    |
| 100th percentile service time | expression       | 517.332 | ms    |
| error rate                    | expression       | 0       | 9/0   |
| Min Throughput                | painless_static  | 1.96    | ops/s |
| Median Throughput             | painless_static  | 1.97    | ops/s |
| Max Throughput                | painless_static  | 1.97    | ops/s |
| 50th percentile latency       | painless_static  | 3163.94 | ms    |
| 90th percentile latency       | painless_static  | 3679.27 | ms    |
| 99th percentile latency       | painless_static  | 3994.52 | ms    |
| 100th percentile latency      | painless_static  | 4006.5  | ms    |
| 50th percentile service time  | painless_static  | 503.588 | ms    |
| 90th percentile service time  | painless_static  | 528.807 | ms    |
| 99th percentile service time  | painless_static  | 600.103 | ms    |
| 100th percentile service time | painless_static  | 623.666 | ms    |
| error rate                    | painless_static  | 0       | %     |
| Min Throughput                | painless_dynamic | 2       | ops/s |

| Metric                        | Operation                | Value   | Unit  |
|-------------------------------|--------------------------|---------|-------|
| Median Throughput             | painless_dynamic         | 2       | ops/s |
| Max Throughput                | painless_dynamic         | 2       | ops/s |
| 50th percentile latency       | painless_dynamic         | 611.305 | ms    |
| 90th percentile latency       | painless_dynamic         | 786.806 | ms    |
| 99th percentile latency       | painless_dynamic         | 973.432 | ms    |
| 100th percentile latency      | painless_dynamic         | 982.484 | ms    |
| 50th percentile service time  | painless_dynamic         | 494.097 | ms    |
| 90th percentile service time  | painless_dynamic         | 518.082 | ms    |
| 99th percentile service time  | painless_dynamic         | 606.748 | ms    |
| 100th percentile service time | painless_dynamic         | 638.903 | ms    |
| error rate                    | painless_dynamic         | 0       | %     |
| Min Throughput                | large_filt<br>ered_terms | 1.39    | ops/s |
| Median Throughput             | large_filt<br>ered_terms | 1.4     | ops/s |
| Max Throughput                | large_filt<br>ered_terms | 1.4     | ops/s |
| 50th percentile latency       | large_filt<br>ered_terms | 65601.1 | ms    |
| 90th percentile latency       | large_filt<br>ered_terms | 82494.7 | ms    |
| 99th percentile latency       | large_filt<br>ered_terms | 86452.2 | ms    |
| 100th percentile latency      | large_filt<br>ered_terms | 86857.3 | ms    |
| 50th percentile service time  | large_filt<br>ered_terms | 707.17  | ms    |

| Metric                        | Operation                  | Value   | Unit  |
|-------------------------------|----------------------------|---------|-------|
| 90th percentile service time  | large_filt<br>ered_terms   | 747.949 | ms    |
| 99th percentile service time  | large_filt<br>ered_terms   | 847.069 | ms    |
| 100th percentile service time | large_filt<br>ered_terms   | 927.917 | ms    |
| error rate                    | large_filt<br>ered_terms   | 0       | %     |
| Min Throughput                | large_proh<br>ibited_terms | 1.46    | ops/s |
| Median Throughput             | large_proh<br>ibited_terms | 1.46    | ops/s |
| Max Throughput                | large_proh<br>ibited_terms | 1.46    | ops/s |
| 50th percentile latency       | large_proh<br>ibited_terms | 55916.3 | ms    |
| 90th percentile latency       | large_proh<br>ibited_terms | 70529.7 | ms    |
| 99th percentile latency       | large_proh<br>ibited_terms | 73769.1 | ms    |
| 100th percentile latency      | large_proh<br>ibited_terms | 74143.9 | ms    |
| 50th percentile service time  | large_proh<br>ibited_terms | 679.394 | ms    |
| 90th percentile service time  | large_proh<br>ibited_terms | 717.476 | ms    |
| 99th percentile service time  | large_proh<br>ibited_terms | 782.085 | ms    |
| 100th percentile service time | large_proh<br>ibited_terms | 822.723 | ms    |
| error rate                    | large_proh<br>ibited_terms | 0       | %     |

### Benchmarking result

Cluster 1 (baseline) against Cluster 2 (contender)

| Metric                            | Operation        | Baseline  | Contender | Diff     | Unit   |
|-----------------------------------|------------------|-----------|-----------|----------|--------|
| Indexing<br>time                  |                  | 26.3543   | 23.9479   | -2.40645 | min    |
| Merge time                        |                  | 11.0297   | 14.3001   | 3.27042  | min    |
| Refresh time                      |                  | 3.05238   | 5.26405   | 2.21167  | min    |
| Flush time                        |                  | 0.04485   | 0.0308333 | -0.01402 | min    |
| Merge<br>throttle time            |                  | 1.39282   | 1.27945   | -0.11337 | min    |
| Total Young<br>Gen GC             |                  | 92.902    | 183.74    | 90.838   | s      |
| Total Old<br>Gen GC               |                  | 0.4       | 1.125     | 0.725    | s      |
| Heap used for segments            |                  | 18.7955   | 18.8167   | 0.02126  | МВ     |
| Heap used<br>for doc<br>values    |                  | 0.360752  | 0.452751  | 0.092    | МВ     |
| Heap used for terms               |                  | 17.2739   | 17.2004   | -0.07343 | МВ     |
| Heap used for norms               |                  | 0.0877075 | 0.0852051 | -0.0025  | МВ     |
| Heap used for points              |                  | 0.241213  | 0.241465  | 0.00025  | МВ     |
| Heap used<br>for stored<br>fields |                  | 0.831932  | 0.836876  | 0.00494  | МВ     |
| Segment count                     |                  | 133       | 140       | 7        |        |
| Min<br>Throughput                 | index-<br>append | 51751.7   | 28115.4   | -23636.2 | docs/s |
| Median<br>Throughput              | index-<br>append | 52303     | 28645.6   | -23657.5 | docs/s |
| Max<br>Throughput                 | index-<br>append | 54076.3   | 30037.8   | -24038.5 | docs/s |

| Metric                              | Operation        | Baseline | Contender | Diff     | Unit  |
|-------------------------------------|------------------|----------|-----------|----------|-------|
| 50th<br>percentile<br>latency       | index-<br>append | 743.939  | 1447.76   | 703.818  | ms    |
| 90th<br>percentile<br>latency       | index-<br>append | 1045.7   | 1847.05   | 801.342  | ms    |
| 99th<br>percentile<br>latency       | index-<br>append | 1325.21  | 2264.68   | 939.47   | ms    |
| 100th<br>percentile<br>latency      | index-<br>append | 1794.39  | 2608.68   | 814.293  | ms    |
| 50th<br>percentile<br>service time  | index-<br>append | 743.939  | 1447.76   | 703.818  | ms    |
| 90th<br>percentile<br>service time  | index-<br>append | 1045.7   | 1847.05   | 801.342  | ms    |
| 99th<br>percentile<br>service time  | index-<br>append | 1325.21  | 2264.68   | 939.47   | ms    |
| 100th<br>percentile<br>service time | index-<br>append | 1794.39  | 2608.68   | 814.293  | ms    |
| error rate                          | index-<br>append | 0        | 0         | 0        | %     |
| Min<br>Throughput                   | force-merge      | 0.950072 | 2.10087   | 1.1508   | ops/s |
| Median<br>Throughput                | force-merge      | 0.950072 | 2.10087   | 1.1508   | ops/s |
| Max<br>Throughput                   | force-merge      | 0.950072 | 2.10087   | 1.1508   | ops/s |
| 100th<br>percentile<br>latency      | force-merge      | 1052.54  | 475.984   | -576.556 | ms    |

| Metric                               | Operation   | Baseline | Contender | Diff     | Unit  |
|--------------------------------------|-------------|----------|-----------|----------|-------|
| 100th<br>percentile<br>service time  | force-merge | 1052.54  | 475.984   | -576.556 | ms    |
| error rate                           | force-merge | 0        | 0         | 0        | %     |
| Min<br>Throughput                    | index-stats | 100.037  | 97.7524   | -2.28456 | ops/s |
| Median<br>Throughput                 | index-stats | 100.049  | 100.048   | -0.00112 | ops/s |
| Max<br>Throughput                    | index-stats | 100.085  | 100.068   | -0.01745 | ops/s |
| 50th<br>percentile<br>latency        | index-stats | 4.85232  | 5.09015   | 0.23784  | ms    |
| 90th<br>percentile<br>latency        | index-stats | 5.14185  | 10.7365   | 5.59466  | ms    |
| 99th<br>percentile<br>latency        | index-stats | 77.3127  | 234.761   | 157.448  | ms    |
| 99.9th<br>percentile<br>latency      | index-stats | 123.888  | 277.393   | 153.505  | ms    |
| 100th<br>percentile<br>latency       | index-stats | 128.01   | 281.866   | 153.856  | ms    |
| 50th<br>percentile<br>service time   | index-stats | 4.78006  | 5.01096   | 0.23091  | ms    |
| 90th<br>percentile<br>service time   | index-stats | 4.9831   | 5.30021   | 0.31711  | ms    |
| 99th<br>percentile<br>service time   | index-stats | 9.66475  | 12.0005   | 2.33576  | ms    |
| 99.9th<br>percentile<br>service time | index-stats | 48.4445  | 141.631   | 93.186   | ms    |

| Metric                               | Operation   | Baseline | Contender | Diff     | Unit  |
|--------------------------------------|-------------|----------|-----------|----------|-------|
| 100th<br>percentile<br>service time  | index-stats | 127.945  | 150.153   | 22.2078  | ms    |
| error rate                           | index-stats | 0        | 0         | 0        | %     |
| Min<br>Throughput                    | node-stats  | 100.054  | 100.007   | -0.04689 | ops/s |
| Median<br>Throughput                 | node-stats  | 100.098  | 100.085   | -0.01341 | ops/s |
| Max<br>Throughput                    | node-stats  | 100.551  | 100.494   | -0.0566  | ops/s |
| 50th<br>percentile<br>latency        | node-stats  | 4.55259  | 4.90659   | 0.354    | ms    |
| 90th<br>percentile<br>latency        | node-stats  | 4.78784  | 5.29285   | 0.50501  | ms    |
| 99th<br>percentile<br>latency        | node-stats  | 18.8034  | 29.3245   | 10.5211  | ms    |
| 99.9th<br>percentile<br>latency      | node-stats  | 43.7684  | 43.3885   | -0.3799  | ms    |
| 100th<br>percentile<br>latency       | node-stats  | 48.1474  | 44.6019   | -3.54548 | ms    |
| 50th<br>percentile<br>service time   | node-stats  | 4.48138  | 4.83552   | 0.35414  | ms    |
| 90th<br>percentile<br>service time   | node-stats  | 4.69386  | 5.12694   | 0.43308  | ms    |
| 99th<br>percentile<br>service time   | node-stats  | 5.64618  | 9.08739   | 3.44121  | ms    |
| 99.9th<br>percentile<br>service time | node-stats  | 27.8155  | 39.744    | 11.9285  | ms    |

| Metric                               | Operation  | Baseline | Contender | Diff     | Unit  |
|--------------------------------------|------------|----------|-----------|----------|-------|
| 100th<br>percentile<br>service time  | node-stats | 43.6905  | 44.5383   | 0.84783  | ms    |
| error rate                           | node-stats | 0        | 0         | 0        | %     |
| Min<br>Throughput                    | default    | 49.8129  | 47.8334   | -1.97948 | ops/s |
| Median<br>Throughput                 | default    | 50.0009  | 48.281    | -1.71982 | ops/s |
| Max<br>Throughput                    | default    | 50.0045  | 48.7269   | -1.2776  | ops/s |
| 50th<br>percentile<br>latency        | default    | 19.7245  | 617.465   | 597.74   | ms    |
| 90th<br>percentile<br>latency        | default    | 94.1457  | 1033.98   | 939.834  | ms    |
| 99th<br>percentile<br>latency        | default    | 133.091  | 1083.23   | 950.137  | ms    |
| 99.9th<br>percentile<br>latency      | default    | 137.285  | 1095.4    | 958.114  | ms    |
| 100th<br>percentile<br>latency       | default    | 138.043  | 1097.14   | 959.1    | ms    |
| 50th<br>percentile<br>service time   | default    | 19.1469  | 18.646    | -0.50082 | ms    |
| 90th<br>percentile<br>service time   | default    | 19.9554  | 24.9381   | 4.98271  | ms    |
| 99th<br>percentile<br>service time   | default    | 25.3462  | 35.7667   | 10.4206  | ms    |
| 99.9th<br>percentile<br>service time | default    | 54.7931  | 57.3679   | 2.57481  | ms    |

| Metric                               | Operation | Baseline | Contender | Diff     | Unit  |
|--------------------------------------|-----------|----------|-----------|----------|-------|
| 100th<br>percentile<br>service time  | default   | 133.771  | 151.505   | 17.7337  | ms    |
| error rate                           | default   | 0        | 0         | 0        | %     |
| Min<br>Throughput                    | term      | 200.055  | 199.431   | -0.62401 | ops/s |
| Median<br>Throughput                 | term      | 200.076  | 200.072   | -0.00349 | ops/s |
| Max<br>Throughput                    | term      | 200.119  | 200.13    | 0.01076  | ops/s |
| 50th<br>percentile<br>latency        | term      | 3.07948  | 2.9728    | -0.10668 | ms    |
| 90th<br>percentile<br>latency        | term      | 3.37296  | 7.10648   | 3.73353  | ms    |
| 99th<br>percentile<br>latency        | term      | 22.3272  | 22.4487   | 0.12153  | ms    |
| 99.9th<br>percentile<br>latency      | term      | 26.9648  | 29.0737   | 2.10889  | ms    |
| 100th<br>percentile<br>latency       | term      | 28.1562  | 29.6253   | 1.46915  | ms    |
| 50th<br>percentile<br>service time   | term      | 3.00599  | 2.87833   | -0.12766 | ms    |
| 90th<br>percentile<br>service time   | term      | 3.15279  | 3.08983   | -0.06296 | ms    |
| 99th<br>percentile<br>service time   | term      | 4.22302  | 19.9777   | 15.7546  | ms    |
| 99.9th<br>percentile<br>service time | term      | 26.9017  | 29.0082   | 2.10648  | ms    |

| Metric                               | Operation | Baseline | Contender | Diff     | Unit  |
|--------------------------------------|-----------|----------|-----------|----------|-------|
| 100th<br>percentile<br>service time  | term      | 28.0823  | 29.5597   | 1.4774   | ms    |
| error rate                           | term      | 0        | 0         | 0        | %     |
| Min<br>Throughput                    | phrase    | 199.842  | 199.711   | -0.13145 | ops/s |
| Median<br>Throughput                 | phrase    | 200.04   | 200.038   | -0.00174 | ops/s |
| Max<br>Throughput                    | phrase    | 200.087  | 200.074   | -0.0125  | ops/s |
| 50th<br>percentile<br>latency        | phrase    | 3.76927  | 3.61484   | -0.15442 | ms    |
| 90th<br>percentile<br>latency        | phrase    | 13.6055  | 16.5523   | 2.94681  | ms    |
| 99th<br>percentile<br>latency        | phrase    | 28.0245  | 31.394    | 3.36944  | ms    |
| 99.9th<br>percentile<br>latency      | phrase    | 34.7198  | 33.902    | -0.81778 | ms    |
| 100th<br>percentile<br>latency       | phrase    | 35.551   | 34.5784   | -0.97253 | ms    |
| 50th<br>percentile<br>service time   | phrase    | 3.67227  | 3.47402   | -0.19825 | ms    |
| 90th<br>percentile<br>service time   | phrase    | 4.08037  | 3.90958   | -0.17079 | ms    |
| 99th<br>percentile<br>service time   | phrase    | 16.9256  | 19.3773   | 2.45168  | ms    |
| 99.9th<br>percentile<br>service time | phrase    | 24.4886  | 22.7947   | -1.69386 | ms    |

| Metric                               | Operation                | Baseline | Contender | Diff     | Unit  |
|--------------------------------------|--------------------------|----------|-----------|----------|-------|
| 100th<br>percentile<br>service time  | phrase                   | 29.8604  | 27.8164   | -2.04399 | ms    |
| error rate                           | phrase                   | 0        | 0         | 0        | %     |
| Min<br>Throughput                    | country_ag<br>g_uncached | 4.95005  | 4.6328    | -0.31724 | ops/s |
| Median<br>Throughput                 | country_ag<br>g_uncached | 4.99422  | 4.65258   | -0.34163 | ops/s |
| Max<br>Throughput                    | country_ag<br>g_uncached | 5.00022  | 4.67361   | -0.32661 | ops/s |
| 50th<br>percentile<br>latency        | country_ag<br>g_uncached | 330.923  | 14864.3   | 14533.3  | ms    |
| 90th<br>percentile<br>latency        | country_ag<br>g_uncached | 2780.17  | 21046     | 18265.8  | ms    |
| 99th<br>percentile<br>latency        | country_ag<br>g_uncached | 2866     | 22902     | 20036    | ms    |
| 99.9th<br>percentile<br>latency      | country_ag<br>g_uncached | 2880.39  | 22997.6   | 20117.2  | ms    |
| 100th<br>percentile<br>latency       | country_ag<br>g_uncached | 2882.11  | 23018.7   | 20136.6  | ms    |
| 50th<br>percentile<br>service time   | country_ag<br>g_uncached | 197.883  | 204.174   | 6.29064  | ms    |
| 90th<br>percentile<br>service time   | country_ag<br>g_uncached | 213.402  | 242.492   | 29.0907  | ms    |
| 99th<br>percentile<br>service time   | country_ag<br>g_uncached | 256.649  | 345.382   | 88.7335  | ms    |
| 99.9th<br>percentile<br>service time | country_ag<br>g_uncached | 290.496  | 378.302   | 87.8056  | ms    |

| Metric                              | Operation                | Baseline | Contender | Diff     | Unit  |
|-------------------------------------|--------------------------|----------|-----------|----------|-------|
| 100th<br>percentile<br>service time | country_ag<br>g_uncached | 296.875  | 422.53    | 125.655  | ms    |
| error rate                          | country_ag<br>g_uncached | 0        | 0         | 0        | %     |
| Min<br>Throughput                   | country_ag<br>g_cached   | 99.9249  | 98.3659   | -1.55896 | ops/s |
| Median<br>Throughput                | country_ag<br>g_cached   | 100.064  | 100.056   | -0.00795 | ops/s |
| Max<br>Throughput                   | country_ag<br>g_cached   | 100.112  | 100.135   | 0.02245  | ops/s |
| 50th<br>percentile<br>latency       | country_ag<br>g_cached   | 3.30479  | 3.2638    | -0.04099 | ms    |
| 90th<br>percentile<br>latency       | country_ag<br>g_cached   | 3.52514  | 4.69259   | 1.16745  | ms    |
| 99th<br>percentile<br>latency       | country_ag<br>g_cached   | 52.8258  | 189.143   | 136.317  | ms    |
| 99.9th<br>percentile<br>latency     | country_ag<br>g_cached   | 112.895  | 249.851   | 136.956  | ms    |
| 100th<br>percentile<br>latency      | country_ag<br>g_cached   | 119.435  | 256.028   | 136.593  | ms    |
| 50th<br>percentile<br>service time  | country_ag<br>g_cached   | 3.23149  | 3.18679   | -0.0447  | ms    |
| 90th<br>percentile<br>service time  | country_ag<br>g_cached   | 3.41319  | 3.42086   | 0.00767  | ms    |
| 99th<br>percentile<br>service time  | country_ag<br>g_cached   | 7.60955  | 20.4171   | 12.8075  | ms    |

| Metric                               | Operation              | Baseline | Contender | Diff     | Unit  |
|--------------------------------------|------------------------|----------|-----------|----------|-------|
| 99.9th<br>percentile<br>service time | country_ag<br>g_cached | 26.2229  | 117.273   | 91.0502  | ms    |
| 100th<br>percentile<br>service time  | country_ag<br>g_cached | 119.365  | 255.951   | 136.586  | ms    |
| error rate                           | country_ag<br>g_cached | 0        | 0         | 0        | %     |
| Min<br>Throughput                    | scroll                 | 61.5897  | 59.1628   | -2.42689 | ops/s |
| Median<br>Throughput                 | scroll                 | 61.6735  | 60.4406   | -1.23292 | ops/s |
| Max<br>Throughput                    | scroll                 | 61.9387  | 61.019    | -0.91967 | ops/s |
| 50th<br>percentile<br>latency        | scroll                 | 164549   | 168347    | 3798.13  | ms    |
| 90th<br>percentile<br>latency        | scroll                 | 237443   | 240658    | 3214.79  | ms    |
| 99th<br>percentile<br>latency        | scroll                 | 253860   | 257048    | 3187.91  | ms    |
| 100th<br>percentile<br>latency       | scroll                 | 255710   | 258853    | 3143.03  | ms    |
| 50th<br>percentile<br>service time   | scroll                 | 399.964  | 402.962   | 2.99858  | ms    |
| 90th<br>percentile<br>service time   | scroll                 | 424.303  | 431.267   | 6.96397  | ms    |
| 99th<br>percentile<br>service time   | scroll                 | 523.877  | 455.632   | -68.2449 | ms    |

| Metric                              | Operation           | Baseline | Contender | Diff     | Unit  |
|-------------------------------------|---------------------|----------|-----------|----------|-------|
| 100th<br>percentile<br>service time | scroll              | 639.45   | 601.214   | -38.236  | ms    |
| error rate                          | scroll              | 0        | 0         | 0        | %     |
| Min<br>Throughput                   | expression          | 1.9994   | 1.9998    | 0.0004   | ops/s |
| Median<br>Throughput                | expression          | 2.00113  | 2.00113   | 0        | ops/s |
| Max<br>Throughput                   | expression          | 2.00186  | 2.00189   | 2e-05    | ops/s |
| 50th<br>percentile<br>latency       | expression          | 409.927  | 409.417   | -0.5091  | ms    |
| 90th<br>percentile<br>latency       | expression          | 434.544  | 434.858   | 0.31406  | ms    |
| 99th<br>percentile<br>latency       | expression          | 532.412  | 501.498   | -30.914  | ms    |
| 100th<br>percentile<br>latency      | expression          | 537.618  | 517.438   | -20.1798 | ms    |
| 50th<br>percentile<br>service time  | expression          | 409.812  | 409.165   | -0.64674 | ms    |
| 90th<br>percentile<br>service time  | expression          | 428.156  | 434.749   | 6.59297  | ms    |
| 99th<br>percentile<br>service time  | expression          | 532.33   | 498.681   | -33.6493 | ms    |
| 100th<br>percentile<br>service time | expression          | 537.495  | 517.332   | -20.1637 | ms    |
| error rate                          | expression          | 0        | 0         | 0        | %     |
| Min<br>Throughput                   | painless_s<br>tatic | 1.99752  | 1.96306   | -0.03446 | ops/s |

| Metric                              | Operation            | Baseline | Contender | Diff     | Unit  |
|-------------------------------------|----------------------|----------|-----------|----------|-------|
| Median<br>Throughput                | painless_s<br>tatic  | 1.99998  | 1.96607   | -0.03391 | ops/s |
| Max<br>Throughput                   | painless_s<br>tatic  | 2.00041  | 1.96914   | -0.03127 | ops/s |
| 50th<br>percentile<br>latency       | painless_s<br>tatic  | 497.626  | 3163.94   | 2666.31  | ms    |
| 90th<br>percentile<br>latency       | painless_s<br>tatic  | 643.32   | 3679.27   | 3035.95  | ms    |
| 99th<br>percentile<br>latency       | painless_s<br>tatic  | 700.559  | 3994.52   | 3293.97  | ms    |
| 100th<br>percentile<br>latency      | painless_s<br>tatic  | 704.679  | 4006.5    | 3301.82  | ms    |
| 50th<br>percentile<br>service time  | painless_s<br>tatic  | 490.705  | 503.588   | 12.8834  | ms    |
| 90th<br>percentile<br>service time  | painless_s<br>tatic  | 500.663  | 528.807   | 28.1439  | ms    |
| 99th<br>percentile<br>service time  | painless_s<br>tatic  | 642.124  | 600.103   | -42.021  | ms    |
| 100th<br>percentile<br>service time | painless_s<br>tatic  | 683.621  | 623.666   | -59.9546 | ms    |
| error rate                          | painless_s<br>tatic  | 0        | 0         | 0        | %     |
| Min<br>Throughput                   | painless_d<br>ynamic | 1.99721  | 1.99513   | -0.00209 | ops/s |
| Median<br>Throughput                | painless_d<br>ynamic | 2.00032  | 1.99838   | -0.00194 | ops/s |
| Max<br>Throughput                   | painless_d<br>ynamic | 2.00089  | 2.00053   | -0.00036 | ops/s |

| Metric                              | Operation                | Baseline | Contender | Diff     | Unit  |
|-------------------------------------|--------------------------|----------|-----------|----------|-------|
| 50th<br>percentile<br>latency       | painless_d<br>ynamic     | 473.087  | 611.305   | 138.218  | ms    |
| 90th<br>percentile<br>latency       | painless_d<br>ynamic     | 554.729  | 786.806   | 232.077  | ms    |
| 99th<br>percentile<br>latency       | painless_d<br>ynamic     | 668.363  | 973.432   | 305.069  | ms    |
| 100th<br>percentile<br>latency      | painless_d<br>ynamic     | 706.557  | 982.484   | 275.926  | ms    |
| 50th<br>percentile<br>service time  | painless_d<br>ynamic     | 469.145  | 494.097   | 24.9528  | ms    |
| 90th<br>percentile<br>service time  | painless_d<br>ynamic     | 501.774  | 518.082   | 16.3086  | ms    |
| 99th<br>percentile<br>service time  | painless_d<br>ynamic     | 606.61   | 606.748   | 0.13817  | ms    |
| 100th<br>percentile<br>service time | painless_d<br>ynamic     | 624.751  | 638.903   | 14.1524  | ms    |
| error rate                          | painless_d<br>ynamic     | 0        | 0         | 0        | %     |
| Min<br>Throughput                   | large_filt<br>ered_terms | 1.64076  | 1.38866   | -0.2521  | ops/s |
| Median<br>Throughput                | large_filt<br>ered_terms | 1.6443   | 1.39554   | -0.24876 | ops/s |
| Max<br>Throughput                   | large_filt<br>ered_terms | 1.65048  | 1.39764   | -0.25283 | ops/s |
| 50th<br>percentile<br>latency       | large_filt<br>ered_terms | 33013.5  | 65601.1   | 32587.5  | ms    |

| Metric                              | Operation                  | Baseline | Contender | Diff     | Unit  |
|-------------------------------------|----------------------------|----------|-----------|----------|-------|
| 90th<br>percentile<br>latency       | large_filt<br>ered_terms   | 40869    | 82494.7   | 41625.7  | ms    |
| 99th<br>percentile<br>latency       | large_filt<br>ered_terms   | 42644    | 86452.2   | 43808.2  | ms    |
| 100th<br>percentile<br>latency      | large_filt<br>ered_terms   | 42936.2  | 86857.3   | 43921.1  | ms    |
| 50th<br>percentile<br>service time  | large_filt<br>ered_terms   | 598.001  | 707.17    | 109.169  | ms    |
| 90th<br>percentile<br>service time  | large_filt<br>ered_terms   | 626.81   | 747.949   | 121.139  | ms    |
| 99th<br>percentile<br>service time  | large_filt<br>ered_terms   | 771.815  | 847.069   | 75.2534  | ms    |
| 100th<br>percentile<br>service time | large_filt<br>ered_terms   | 796.884  | 927.917   | 131.032  | ms    |
| error rate                          | large_filt<br>ered_terms   | 0        | 0         | 0        | %     |
| Min<br>Throughput                   | large_proh<br>ibited_terms | 1.6893   | 1.45607   | -0.23323 | ops/s |
| Median<br>Throughput                | large_proh<br>ibited_terms | 1.69452  | 1.46074   | -0.23379 | ops/s |
| Max<br>Throughput                   | large_proh<br>ibited_terms | 1.69856  | 1.46248   | -0.23608 | ops/s |
| 50th<br>percentile<br>latency       | large_proh<br>ibited_terms | 27732.3  | 55916.3   | 28184    | ms    |
| 90th<br>percentile<br>latency       | large_proh<br>ibited_terms | 34305.5  | 70529.7   | 36224.2  | ms    |

| Metric                              | Operation                  | Baseline | Contender | Diff     | Unit |
|-------------------------------------|----------------------------|----------|-----------|----------|------|
| 99th<br>percentile<br>latency       | large_proh<br>ibited_terms | 35840.4  | 73769.1   | 37928.7  | ms   |
| 100th<br>percentile<br>latency      | large_proh<br>ibited_terms | 35993.5  | 74143.9   | 38150.4  | ms   |
| 50th<br>percentile<br>service time  | large_proh<br>ibited_terms | 586.382  | 679.394   | 93.0121  | ms   |
| 90th<br>percentile<br>service time  | large_proh<br>ibited_terms | 618.185  | 717.476   | 99.2908  | ms   |
| 99th<br>percentile<br>service time  | large_proh<br>ibited_terms | 661.378  | 782.085   | 120.707  | ms   |
| 100th<br>percentile<br>service time | large_proh<br>ibited_terms | 823.782  | 822.723   | -1.05804 | ms   |
| error rate                          | large_proh<br>ibited_terms | 0        | 0         | 0        | %    |

# 5 Overdue payments

#### Pay-As-You-Go

- 1. A notification will be sent to you after 8 days, 12 days, and 14 days of overdue payments.
- 2. Your service will be stopped after 15 days of overdue payments.
- 3. Your Elasticsearch instance will be released 15 days after your service is stopped . The data on the released instance will be permanently deleted and cannot be restored.
- 4. A notification will be sent to you 9 days before your Elasticsearch instance is released.

#### Subscription

- 1. A notification will be sent to you 7 days, 3 days, and 1 day before your subscription expires.
- 2. Your service will be stopped 15 days after your subscription has expired.
- 3. Your Elasticsearch instance will be released 15 days after your service is stopped . The data on the released instance will be permanently deleted and cannot be restored.
- 4. A notification will be sent to you 7 days, 3 days, and 1 day before your Elasticsearch instance is released.

# 6 High reliability

This topic introduces the high reliability of Alibaba Cloud Elasticsearch based on auto-creation, restoration, and storage of snapshots and load balancing.

#### **Auto snapshot**

Alibaba Cloud Elasticsearch instances support the auto snapshot feature. You can enable auto snapshot on the Snapshots page in the Alibaba Cloud Elasticsearch console and then set the snapshot creation cycle. Elasticsearch then creates a snapshot daily at the scheduled time. This feature allows you to back up your data for disaster recovery. For more information, see Snapshots.

Restore snapshots

On the Snapshots page of the Alibaba Cloud Elasticsearch console, you can use a specified snapshot to restore data. For more information, see Auto snapshot guide.



#### Note:

- · Alibaba Cloud Elasticsearch only stores snapshots that are created within the last three days.
- · A snapshot created by the auto snapshot feature can only be restored to the Alibaba Cloud Elasticsearch instance where the snapshot is created.

#### Store snapshots on OSS

Alibaba Cloud Elasticsearch allows you to store the snapshots of your Elasticsearch instance on Alibaba Cloud Object Storage Service (OSS). To store snapshots on OSS, you must first purchase the OSS service in the same region as your Elasticsearch instance. You can call the snapshot creation operation to create a snapshot of the specified index data. For more information, see Snapshots and data restoration.

Restore

Alibaba Cloud Elasticsearch allows you to call the restore operation to restore index data from a specified snapshot. This feature enables support for disaster recovery. For more information, see Snapshots and data restoration.



Note:

- We recommend that you use OSS standard buckets to store snapshots. OSS Archive buckets are not supported.
- · A snapshot stored on OSS can be restored to an Alibaba Cloud Elasticsearch instance in the same region as OSS.
- You can call the corresponding operation to create a snapshot or restore the index data in a specified snapshot.
- By default, each Alibaba Cloud Elasticsearch data node can process 40 MB of data per second. You can reference the Snapshot And Restore page on the official Elasticsearch site and set the <code>max\_restor e\_bytes\_pe r\_sec</code> parameter to tune the data processing capability of the data nodes.

#### Load balancing

Alibaba Cloud Elasticsearch instances support load balancing. You can specify the public or internal network address of your Elasticsearch instance on your client to access the Elasticsearch instance. Your requests are evenly distributed to all data nodes of the Elasticsearch instance based on load balancing.



#### Notice:

The load balancing among these data nodes depends on the number and size of index shards. We recommend that you reference Calculate shard size and then determine the number and size of the index shards properly when you create indexes.

## 7 High security

Access an Alibaba Cloud Elasticsearch instance through its internal IP address

You can access an Alibaba Cloud Elasticsearch instance through its internal IP address from a VPC network. If you want to enhance the security of your access, create an Alibaba Cloud Elastic Compute Service (ECS) instance in the same region and VPC network where the Alibaba Cloud Elasticsearch instance is created. You can then deploy applications on this ECS instance and use the ECS instance to access the internal IP address of the Alibaba Cloud Elasticsearch instance.



#### Note:

A VPC network is isolated from the public network and provides a more secure access environment.

#### Access control

#### Configure a whitelist

You can configure a whitelist or blacklist to limit the access to the internal IP address of an Alibaba Cloud Elasticsearch instance. Only whitelisted or non-blacklisted IP addresses can access the Alibaba Cloud Elasticsearch instance. For more information, see Elasticsearch cluster configuration.

You can configure a whitelist to limit the access to the public IP address of an Alibaba Cloud Elasticsearch instance. Only whitelisted IP addresses can access the Alibaba Cloud Elasticsearch instance. For more information, see Security configuration.

#### **RAM-based access control**

Alibaba Cloud Elasticsearch allows you to create RAM users to manage access permissions. Resources of different RAM users are isolated from each other. RAM users can only manage and view Alibaba Cloud Elasticsearch instances created under their own accounts. For more information, see Access authentication rules.

#### X-Pack role-based access control

Alibaba Cloud Elasticsearch allows you to use X-Pack. X-Pack is an Elastic Stack extension that bundles security, alerting, monitoring, reporting, and graph capabilities into one easy-to-install package. X-Pack can be installed in Kibana and provides a wide range of features, such as authentication, permission control, real-

time monitoring, visualized reports, and machine learning. X-Pack role-based access control allows you to authenticate access requests to indexes. For more information, see Security APIs.

#### System security

- · You can access an Alibaba Cloud Elasticsearch instance through a VPC network. A VPC network provides a more secure access environment.
- You cannot log on to any servers of the nodes that are contained in an Elasticsearch instance.
- No IP addresses are allowed to access the public IP address of an Elasticsearch instance by default. To allow access requests to the public IP address, you must configure a public IP whitelist. For more information, see <u>Public network whitelist</u>.
- You can create a whitelist to limit the access to the public and internal IP addresses of an Alibaba Cloud Elasticsearch instance.
- · An Alibaba Cloud Elasticsearch instance opens ports 9200 and 9300 only, and enables you to access its public and internal IP addresses.



Note:

Port 9300 is closed for Alibaba Cloud Elasticsearch 6.3.2 that has X-Pack installed.

## 8 Security features

This topic compares Alibaba Cloud Elasticsearch instances with user-built Elasticsearch instances to describe the advantages of Alibaba Cloud Elasticsearch in security protection.

#### Background

Open-source software has typically been the first choice of attackers, such as the MongoDB ransomware attacks event. Elasticsearch has also become the target of the attackers. They may attack user-created Elasticsearch services that do not have professional security protection, and then delete important data or intrude into the business system.

#### Elasticsearch ransomware attacks now number in the thousands | ZDNet

https://www.zdnet.com/.../elasticsearch-ransomware-attacks-now-number-in-... ▼ 2017年1月18日 - Just like the MongoDB ransomware assaults of several weeks ago, Elasticsearch incursions are accelerating at a rapid rate. The vast majority of vulnerable Elasticsearch servers are open on Amazon Web Services. There are an estimated 35,000 Elasticsearch clusters open to attack.

### How to Protect Against Elasticsearch Ransomware Attacks - NeuVector

https://neuvector.com > Container Security ▼

As if it wasn't already bad enough, the ransomware attacks on MongoDB users continue to spread and have now targeted exposed Elasticsearch clusters.

#### Ransom attack on Elasticsearch cluster? - Discuss the Elastic Stack

https://discuss.elastic.co/t/ransom-attack-on-elasticsearch-cluster/71310 ▼

It is a tipical ransom attack on MongoDB recently: ... My ElasticSearch Indexes have been mysteriously deleted, how do I debug the cause? All shards are ...

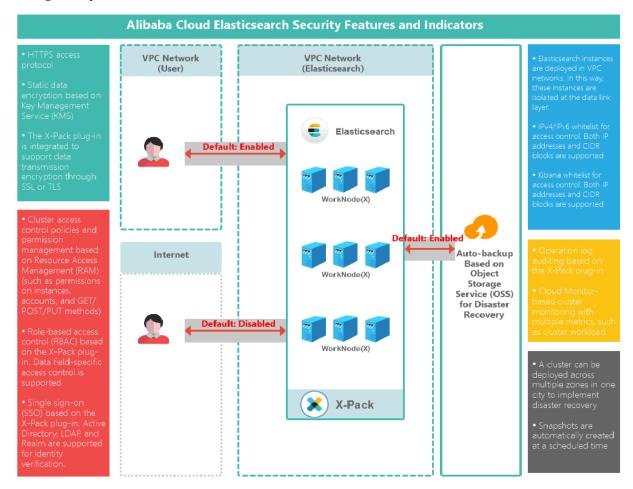
#### After MongoDB attack, ransomware groups hit exposed Elasticsearch ...

https://www.computerworld.com/.../after-mongodb-attack-ransomware-grou... ▼

2017年1月13日 - After deleting data from thousands of publicly accessible MongoDB databases, ransomware groups have started doing the same with ...

#### MongoDB attackers hijacked ElasticSearch servers for ransom

ransom by attackers who just attacked MongoDB databases.


https://blog.360totalsecurity.com/.../mongodb-attackers-hijacked-elasticsearc... ▼ 2017年1月18日 - Hackers have set ElasticSearch as their new target. ... were hijacked and held for

Alibaba Cloud Security Center has released a note about security risk warning on Elasticsearch and provided multiple security hardening strategies and solutions.

Compared with the security protection for user-built Elasticsearch instances, the solutions provided by Alibaba Cloud Elasticsearch for data and service security are more reliable and professional.

#### Security feature descriptions

Alibaba Cloud has released the fully-hosted Elasticsearch service in November 2017. Alibaba Cloud Elasticsearch provides security protection features for you to safeguard your services.



The following table compares Alibaba Cloud Elasticsearch with user-built Elasticsearch services in security protection:

| Security<br>indicator                       | Security protection for user-built Elasticsearch service                                                                                                                                                                                                           | Integrated security features for Alibaba<br>Cloud Elasticsearch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Access                                      | <ul> <li>Purchase cloud security products, such as security groups or firewalls, to control and quarantine source IP addresses.</li> <li>Disable port 9200 unless it is necessary.</li> <li>Bind source IP addresses.</li> <li>Change the default port.</li> </ul> | <ul> <li>Alibaba Cloud Elasticsearch instances are deployed in VPC networks. In this way, they can be isolated at the data link layer.</li> <li>IPv4 and IPv6 whitelists for access control. Both IP addresses and CIDR blocks are supported.</li> <li>Kibana whitelist for access control. Both IP addresses and CIDR blocks are supported.</li> </ul>                                                                                                                                                                                                                                                                                               |
| Authentica<br>tion and<br>authorizat<br>ion | Install third-party security plug-ins, such as Searchguard and Shield.                                                                                                                                                                                             | <ul> <li>Cluster access control policies based on Resource Access Management (RAM), such as the ReadOnlyAc cess policy for granting the readonly permission and the FullAccess policy for granting the administrator permission.</li> <li>Permission control based on RAM, such as permissions on instances, accounts, and GET, POST, and PUT methods.</li> <li>Role-based access control (RBAC) based on the X-Pack plug-in. Data field -specific access control is supported.</li> <li>Single sign-on (SSO) based on the X-Pack plug-in. Active Directory, LDAP, and Elasticsearch native Realm are supported for identity verification.</li> </ul> |
| Data<br>encryption                          | <ul> <li>Use storage media that support static data encryption.</li> <li>Disable HTTP in YML configuration.</li> </ul>                                                                                                                                             | <ul> <li>HTTPS is supported.</li> <li>Static data encryption based on Key<br/>Management Service (KMS).</li> <li>The X-Pack plug-in is integrated to<br/>support data transmission encryption<br/>through SSL or TLS.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Security<br>indicator   | Security protection for user-built Elasticsearch service                                                                                | Integrated security features for Alibaba<br>Cloud Elasticsearch                                                                                                                   |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Monitoring and auditing | Use third-party tools to audit logs and monitor services.                                                                               | <ul> <li>Operation log auditing based on the X-Pack plug-in.</li> <li>CloudMonitor-based cluster monitoring with multiple metrics, such as cluster workload.</li> </ul>           |
| Disaster<br>recovery    | <ul> <li>Purchase file systems to back up data periodical ly.</li> <li>Use multiple clusters to implement disaster recovery.</li> </ul> | <ul> <li>A cluster can be deployed across multiple zones in one city to implement disaster recovery.</li> <li>Snapshots are automatically created at a scheduled time.</li> </ul> |