Alibaba Cloud
E-MapReduce

Best Practice

Issue: 20181113

MORE THAN JusT cLoub | (- AlibabaCloud

Legal disclaimer

Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions of this
legal disclaimer before you read or use this document. If you have read or used this document, it

shall be deemed as your total acceptance of this legal disclaimer.

1. You shall download and obtain this document from the Alibaba Cloud website or other Alibaba
Cloud-authorized channels, and use this document for your own legal business activities only.
The content of this document is considered confidential information of Alibaba Cloud. You shall
strictly abide by the confidentiality obligations. No part of this document shall be disclosed or
provided to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted, or disseminat
ed by any organization, company, or individual in any form or by any means without the prior
written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades, adjustment
s, or other reasons. Alibaba Cloud reserves the right to modify the content of this document
without notice and the updated versions of this document will be occasionally released through
Alibaba Cloud-authorized channels. You shall pay attention to the version changes of this
document as they occur and download and obtain the most up-to-date version of this document
from Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud products and
services. Alibaba Cloud provides the document in the context that Alibaba Cloud products and
services are provided on an "as is", "with all faults" and "as available" basis. Alibaba Cloud
makes every effort to provide relevant operational guidance based on existing technologies
. However, Alibaba Cloud hereby makes a clear statement that it in no way guarantees the
accuracy, integrity, applicability, and reliability of the content of this document, either explicitly
or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial losses incurred
by any organizations, companies, or individuals arising from their download, use, or trust in
this document. Alibaba Cloud shall not, under any circumstances, bear responsibility for any
indirect, consequential, exemplary, incidental, special, or punitive damages, including lost
profits arising from the use or trust in this document, even if Alibaba Cloud has been notified of
the possibility of such a loss.

5. By law, all the content of the Alibaba Cloud website, including but not limited to works, products
, images, archives, information, materials, website architecture, website graphic layout, and
webpage design, are intellectual property of Alibaba Cloud and/or its affiliates. This intellectu

al property includes, but is not limited to, trademark rights, patent rights, copyrights, and trade

secrets. No part of the Alibaba Cloud website, product programs, or content shall be used,
modified, reproduced, publicly transmitted, changed, disseminated, distributed, or published
without the prior written consent of Alibaba Cloud and/or its affiliates. The names owned by
Alibaba Cloud shall not be used, published, or reproduced for marketing, advertising, promotion
, or other purposes without the prior written consent of Alibaba Cloud. The names owned by
Alibaba Cloud include, but are not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other
brands of Alibaba Cloud and/or its affiliates, which appear separately or in combination, as well
as the auxiliary signs and patterns of the preceding brands, or anything similar to the company
names, trade names, trademarks, product or service names, domain names, patterns, logos

, marks, signs, or special descriptions that third parties identify as Alibaba Cloud and/or its
affiliates).

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

E-MapReduce Best Practice / Legal disclaimer

Issue: 20181113 1

Generic conventions

Table -1: Style conventions

Style Description Example
This warning information indicates a
situation that will cause major system Danger:
changes, faults, physical injuries, and Resetting will result in the loss of user
other adverse results. configuration data.
This warning information indicates a
''''' situation that may cause major system | &% Warning:
changes, faults, physical injuries, and | Restarting will cause business
other adverse results. interruption. About 10 minutes are
required to restore business.
This indicates warning information,
supplementary instructions, and other Note:
content that the user must understand. | Take the necessary precautions to
save exported data containing sensitive
information.
This indicates supplemental instructio
ns, best practices, tips, and other Note:
content that is good to know for the You can use Ctrl + A to select all files.
user.
> Multi-level menu cascade. Settings > Network > Set network type
Bold It is used for buttons, menus, page Click OK.
names, and other Ul elements.
Couri er It is used for commands. Runthecd /d C./w ndows command
f ont to enter the Windows system folder.
Italics |[Itisused for parameters and variables. |bae 1 og list --instanceid
I nstance_I D
[] or [a]b] It indicates that it is a optional value, i pconfig[-all]|-t]
and only one item can be selected.
{} or{alb} |Itindicates that it is a required value, swich{stand | slave}
and only one item can be selected.

Contents

Legal disClaimer..........coiiiieiiiiiiciiirrs s s e s I
Generic CoONVENLIONS..........coiiieeiiiriecr e rr s s s s s s r e e e e nmn e rnnns I
1 Use EMR for real-time MySQL binlog transmission............ccccccee..... 1
2 Use E-MapReduce to process offline jobs........cccoveeeeeirirnciirienceen, 6
3 Use E-MapReduce to collect metrics from a Kafka client.............. 10
4 Submit Storm topologies to process data in Kafka on E-
MapRedUCE........ce et e e e e e e 15
5 Use ES-Hadoop on E-MapReduce..........ccccciiiiimmmmmcinniinnneennneens 22
6 Use Mongo-Hadoop on E-MapReduce.........cccccoiimmmiiiimrecinineennnnnens 29
7 Deep learning with Analytics Zoo on E-MapReduce....................... 34

8 Adaptive execution of Spark SQL..........ccomimmiciiiiiri e 40

1 Use EMR for real-time MySQL binlog transmissi
on

This section describes how to use the SLS plug-in function of Alibaba Cloud and the EMR cluster

to implement quasi-real-time transmission of MySQL binlog.
Basic architecture

RDS -> SLS -> Spark Streaming -> Spark HDFS

The preceding links contain three processes:

1. How to collect RDS binlog to SLS.
2. How to read and analyze the logs in SLS through Spark Streaming.

3. How to save the logs read and processed in the second link to Spark HDFS.
Prepare the environment

1. Install a MySQL database (using MySQL protocol, such as RDS and DRDS), and enable the
log-bin function. Configure the binlog type to ROW mode. (RDS is enabled by default.)
2. Enable the SLS service.

Procedure
1. Check the MySQL database environment.
a. View whether the log-bin function is enabled.

mysql > show vari ables |ike "l og_bin";

fbocococcoococoosacs focoocos +
| Variable_name | Val ue |
fhmcoccococcooocoo fh=cocooo +
| log_bin | ON |
fhmcocococoococooocoo fhcocooo +

1 rowin set (0.02 sec)

b. View the binlog type.

nmysql > show variables |ike "binlog formt";

fhmcocococooccooocoo fmcocooo +
| Variable name | Val ue |
focococococococooooo focococoo +
| binlog format | ROV |
fbocococcocococoooas fcoocaos +

1 rowin set (0.03 sec)

2. Add user permissions. You can also add user permissions directly from the RDS console.

CREATE USER canal | DENTI FI ED BY ' canal ';

GRANT SELECT, REPLI CATI ON SLAVE, REPLI CATION CLIENT ON *. * TO'
canal ' @ % ;
FLUSH PRI VI LEGES;

3. Add the corresponding configuration file for the SLS service, and check if the data is collected
properly.
a. Add the corresponding project and logstore in the SLS console. For example, create a
project named canaltest and a logstore named canal.

b. Configure SLS: create a file named user_local_config.json under the directory of /etc/ilogtail.

"metrics":
"##1. O##canal t est $pl ugi n-1 ocal ": {

"aliuid": "EFxx
"“enabl e": true,
"category": "canal ",
"def aul t Endpoi nt": "xxxEkxxxn
"project_nanme": "canaltest",
"region": "cn-hangzhou",

"version": 2
“log_type": "plugin",

"plugin: {
"inputs": [
{ .
"type": "service_canal",
"detail": {
"|_bst": "*****",
"Password": "FxEET
"Server| D': ****,
"User" "Fxxnt
"Dat aBases": |
"your db"
"I gnoreTabl es": [
"\\' S+ _inner"
"Text ToString" : true
}
}
I,
"flushers": |
{
"type": "flusher_sls",
"detail": {}
}
]
}
}
}
}

The information such as host and password in detail is MySQL database information,
and the user information is the user name authorized previously. AliUid, defaultEndpoint,
project_name, and category are information related with users and SLS. Fill in the informatio

n according to your actual situation.

c. Wait about 2 minutes to see if the log data has been uploaded successfully in the SLS

console.

If the log data acquisition is not successful, view the acquisition log of SLS based on its
prompt for troubleshooting.

4. Prepare and compile the code to jar package, and upload it to OSS.

a. Copy the example code of EMR using Git and modify the code. The command is as follows:
git clone https://github.confaliyun/aliyun-emapreduce-denp.git.The
example code includes the LoghubSample class, which is primarily used to capture and

print data from SLS. The modified code is as below:

package com al i yun. enr. exanpl e

i mport org. apache. spar k. Spar kConf

i mport org. apache. spar k. st orage. St or ageLevel

i mport org. apache. spark. stream ng. al i yun. | ogservi ce. LoghubUtil s

i mport org.apache. spark.stream ng.{ MIIliseconds, Stream ngContext

}
obj ect LoghubSanpl e {
def main(args: Array[String]): Unit = {
if (args.length < 7) {
Systemerr. println(
"""Usage: bin/spark-submt --class LoghubSanpl e exanpl es-1. 0-
SNAPSHOT- shaded. | ar

.stripMargin)
System exi t (1)

val | oghubProject = args(0)
val logStore = args(1)
val | oghubG oupNane = args(2)
val endpoint = args(3)
val accessKeyld = args(4)
val accessKeySecret = args(5)
val batchlnterval = MIliseconds(args(6).tolnt * 1000)
val conf = new SparkConf (). set AppNane("Mysql Sync")
/1 conf.setMaster ("l ocal [4]");
val ssc = new Stream ngCont ext (conf, batchlnterval)
val | oghubStream = LoghubUtils. createStrean(

ssc,

| oghubPr oj ect,

| ogSt or e,

| oghubG oupNarne,

gendpoi nt,

11

accessKeyl d,

accessKeySecret,

St or agelLevel . MEMORY_AND_DI SK)

| oghubSt ream f oreachRDD(rdd =>

rdd. saveAsText Fi | e("/ mysql bi nl og")

ssc.start ()
ssc. awai t Term nati on()

}

}

The main change is as follows: | oghubSt r eam f or eachRDD(r dd => rdd.
saveAsbj ect Fi l e("/ mysqgl bi nl og")).When the example code is run in the EMR
cluster, the data that flows out of Spark Streaming will be saved in HDFS of EMR.

Note:

* To run the example code locally, create a Hadoop cluster in the local environment in
advance.

* Because the Spark SDK of EMR is updated, its example code is old and cannot directly
transfer the AccessKey ID and AccessKey Secret of OSS in the parameter. You need to

set the Spark SDK with the SparkConf constructor, as shown in the following figure:

trait RunLocally {
val conf = new SparkConf (). set AppNane(get AppNane) . set Mast er ("

| ocal [4]")

conf.set ("spark. hadoop. fs.oss.inmpl", "comaliyun.fs.o0ss.nat.
Nat i veOssFi | eSyst ent')

conf . set ("spar k. hadoop. mapr educe. j ob. run-local ", "true")
conf . set ("spark. hadoop. fs. oss. endpoi nt", " Your Endpoi nt")
conf. set ("spark. hadoop. fs. oss. accessKeyl d", "Yourld")

conf . set ("spark. hadoop. fs. 0ss. accessKeySecret", "YourSecret")
conf . set ("spark. hadoop. j ob. runl ocal ", "true")

conf.set ("spark. hadoop.fs.oss.inmpl", "comaliyun.fs.oss. nat.
Nat i veCssFi | eSyst em')

conf. set ("spark. hadoop. fs. oss. buffer.dirs", "/mt/disk1l")

val sc = new Spar kCont ext (conf)
def get AppNane: String
}

* During local debugging, you need to change /mysqlbinlogloghubStream.foreachRDD(
rdd => in rdd.saveAsObjectFile("/mysqlbinlog")) to the local HDFS address.

b. Compile code.

After local debugging is complete, you can run the following command to package and

compile the code:

mvn cl ean install

c. Upload the jar package.

Create a directory on an OSS instance where the bucket is giaozhou-EMR/jar, and upload
examples-1.1-shaded.jar under the directory of /target/shaded to the OSS directory through
the OSS console or the SDK of OSS. The uploaded jar package address is oss://qgiaozhou-

EMR/jar/examples-1.1-shaded.jar. This address will be used later.

5. Create an EMR cluster and tasks, and run the execution plans.

a. Create an EMR cluster in the EMR console, which takes about 10 minutes.
b. Create a job of the Spark type.

Replace SLS_endpoi nt $SLS access_i d $SLS_secr et _key with your actual values.

Make sure that the order of the parameters is correct. Otherwise, errors may be reported.

--master yarn --deploy-node client --driver-nmenory 4g --executor
-menory 2g --executor-cores 2 --class comaliyun. EMR exanpl e

. LoghubSanpl e ossref://EMR-test/jar/exanpl es-1. 1-shaded. | ar
canal test canal sparkstream ng $SLS endpoi nt $SLS access id $
SLS secret_key 1

c. After the execution plan is created, bind jobs to the EMR cluster. Start to run the jobs.

d. Search for the IP address of the master node.

After you login through SSH, run the following command:
hadoop fs -Is /

You can see the directory at the beginning of mysglbinlog, and view the mysqlbinlog file with

the following command:

hadoop fs -1s /nysgl binl og

You can also run hadoop fs -cat /nysql bi nl og/ part-00000 command to view the

file content.

6. Troubleshoot.

If you don’t see the normal results, you can troubleshoot problems in the running records of

EMR.

2 Use E-MapReduce to process offline jobs

This section describes how to use E-MapReduce to read data from OSS, and a set of offline data

processing operations, such as data collection and data clean-up.

Overview

E-MapReduce clusters can be used in various scenarios. E-MapReduce supports all the scenarios
that the Hadoop ecosystem and Spark support. E-MapReduce is based on Hadoop and Spark
clusters. You can use Alibaba Cloud ECS instances hosted by E-MapReduce clusters in the same

way as you would on your physical machines.
Two popular kinds of big data processing that we use today are offline and online data processing.

+ Offline data processing: You only want to obtain the analytical results of data without a major
concern about the time it takes. For example, in a batch data processing scenario, you receive
data from OSS and output processing results to OSS, using MapReduce, Hive, Pig, and Spark.

+ Online data processing: You want to obtain the analytical results of data with a strict
requirement on the time it takes, such as real-time streaming data processing. Deeply
integrated with Spark MLIib, GrapX, and SQL, Spark Streaming can be used to process

streaming messages.

This section describes how to run an offline job called word count in E-MapReduce.

Process
0SS -> EMR -> Hadoop MapReduce
This process includes two steps:

1. Store data to OSS.
2. Read data from OSS and analyze the data by using E-MapReduce.

Prerequisites

» The following steps are performed in a Windows system. You need to ensure that Maven and
Java have been installed and configured properly into your system.
* You can use E-MapReduce to automatically create a Hadoop cluster. For more information,

see Create a cluster.

— EMR Version: EMR-3.12.1
= Cluster Type: HADOOP

- Software: HDFS2.7.2, YARN2.7.2, Hive2.3.3, Ganglia3.7.2, Spark2.3.1, HUE4.1.0,
Zeppelin0.8.0, Tez0.9.1, Sqoop1.4.7, Pig0.14.0, ApacheDS2.0.0, and Knox0.13.0

= The network type of this Hadoop cluster is VPC in the China (Hangzhou) region. The master
instance group is configured with a public IP and an internal network IP. The high availability

mode is set to No (a non-HA mode). The following figure shows the details.

Cluster
ame: dtplus_docs Software Configuration Billing Method: Pay-As-You-Go atic
D: C-DCSTF/CB35A178CD on: Yes Current Status: Idle on: EMR-3.14.0
Region: cn-hangzhou High Availability: No Runtime: 1 Hoursl Minutes46 Seconds ECS Role: AliyunEmrEcsDefaultRole
Start Time: 2018-11-13 10:28:29 Security Mode: Standard
Software Network

on ID: cn-hangzheou-f

peE: VpC
2.7.2 [Hive2 3.3 / Ganglia3.7.2 / Spark2.3.1 / HUE4.1.0 / Tez0.9.1 / Sqoopl47

/ Pig0.14.0 / ApacheD52.0.0 / Knox0.13.0

I Host Master Instance Group 4&
Master Instance Grou :-(r,.-‘AS'EB] - ECSID BHEEEEE Public IP Intranet IP Created At

Pay-As-You-Go
Hosts: 1 CPU: 4 Cores
27oqf @ Normal 47.110.64.34 192.168.1.20 2018-11-13 10:28:35

Memory: BGB
Data Disk Type: 55D DiskBOGE*1 Disks

Care Instance Group(CORE)
Pay-As-You-Go

Hosts: 2 CPU: 4 Cores
Memory: BGB

Data Disk Type: Ultra DiskB0GB*4 Disks

Procedures
1. Download sample code to your local disk.
Open git bash in your system and execute the clone command as follows.
git clone https://github.confaliyun/aliyun-emapreduce-denp. git

Execute the mvn i nstal | command to compile the code.

2. For more information about how to create a bucket, see Create a bucket.

E] Note:

You must create a bucket and an E-MapReduce cluster in the same region.

3. Upload jar packages and resource files

a. Log on to the OSS console and click the Files tab.

https://oss.console.aliyun.com

b. Click Upload to upload resources files in the al i yun- enapr educe- deno/ r esour ces

directory and jar packages in the al i yun- emapr educe- deno/ t ar get directory.

4. Create a workflow project

For more information, see Workflow project management.

5. Create ajob

For more information, see Edit jobs. Take a MapReduce job as an example.

New Job

Description:

* Type She
Cancel

6. After you configure a job, click Run. The following figure shows the details.

* For more information about how to use OSS, see OSS usage instructions.

* For more information about how to configure jobs, see the Cite LeftjobCite Right section of
the E-MapReduce User Guide.
3

[=]] Note:

+ If the OSS output URI already exists, an error occurs when you execute a job.

* When you click the Insert an OSS UNI button and select OSSREF as a File Prefix, E
-MapReduce downloads OSS files to your cluster and add these files to a specified

classpath.

../DNemapreduce1876943/EN-US_TP_17961.dita#concept_rqw_qz2_z2b
../DNemapreduce1876943/EN-US_TP_17962.dita#concept_iny_t1f_z2b
https://www.alibabacloud.com/help/zh/doc-detail/42799.html?spm=a2c5t.11065259.1996646101.searchclickresult.63fc71f3FgiO9g

» Currently, only OSS Standard storage is supported for all operations.
View logs

For more information about how to view logs of an execution plan, see Connect to a cluster using

SSH.

../DNemapreduce1876943/EN-US_TP_17923.dita#concept_sns_sww_y2b
../DNemapreduce1876943/EN-US_TP_17923.dita#concept_sns_sww_y2b

3 Use E-MapReduce to collect metrics from a
Kafka client

This section describes how to use E-MapReduce to collect metrics from a Kafka client to conduct

effective performance monitoring.
Background

Kafka provides a collection of metrics that are used to measure the performance of Broker,
Consumer, Producer, Stream, and Connect. E-MapReduce collects metrics for Kafka Broker by
using Ganglia to monitor the running status of this Kafka Broker. A Kafka system consists of two
roles: a Kafka Broker and multiple Kafka clients. When an issue of read/write performance occurs
, you must perform an analysis on the both Kafka Broker and clients. Metrics from Kafka clients

are important for performing the analysis.
Scenarios
» Collect metrics for Kafka performance

Kafka supports multiple external Metrics Reporters. JMX Reporter is built in to Kafka by default
. You can use the JMX tool to view metrics of Kafka. You can implement your own Metrics

Reporter such as org.apache.kafka.common.metrics.MetricsReporter to collect custom metrics.
+ Store metrics

You can customize Kafka metrics. In addition, you need a data store to keep these metrics for

later use and analysis. You can store metrics to Kafka without using a third-party data store as

Kafka itself is a data store. In addition, Kafka can be easily integrated with other services. You

can collect metrics from a client as the following figure shows:

data
metrics < !
reporter \
Kafka Consumer e
Kafka
metri
data
metrics |__—— |
reporter >
Kafka Producer data

E-MapReduce provides a sample emr-kafka-client-metrics. You can download the source code

from the link: source code.

Test

Without compiling code by yourself, E-MapReduce has published the jar package in Maven. You

can download the latest version from the download link.

» Configure metrics

Metric Description

metric.reporters The sample Metrics Reporter: or g. apache.
kaf ka.clients.reporter. EMRC i ent M
etri csReporter

enr. metrics.reporter. bootstrap. The metrics that stores bootstrap.servers of a
servers Kafka cluster.
enr.netrics.reporter.zookeeper. The metrics that stores Zookeeper addresses
connect of a Kafka cluster.

* Load metrics

— Place the emr-kafka-client-metrics jar package on a client. Add the path of the jar package
to the classpath of a client-side application.

— Install the emr-kafka-client-metrics dependency on the jar package of a client-side applicatio
n.

* Prerequisites

https://github.com/aliyun/aliyun-emapreduce-sdk/tree/master-2.x/external/emr-kafka
http://mvnrepository.com/artifact/com.aliyun.emr/emr-kafka-client-metrics?spm=a2c4e.11153940.blogcont624050.20.24d04bcauktP9S

= In this section, we use E-MapReduce to automatically create a Kafka cluster. For more

information, see Create a cluster.

We use the following versions of E-MapReduce and Kafka:

« EMR Version: EMR-3.12.1

+ Cluster Type: Kafka

+ Software: Kafka-Manager (1.3.3.16), Kafka (2.11-1.0.1), ZooKeeper (3.4.12), and

Ganglia (3.7.2)

+ The network type of this Kafka cluster is VPC in the China (Hangzhou) region. The

master instance group is configured with a public IP and an internal network IP. The

following figure shows the details.

Cluster

ame: dtplus_docs

23B2790770FF3
n-hangzhou

Start Time: 2018-11-13 15:50:55

Software

on: EMR-3.14.0
pe: KAFKA

are: Ganglia3.7.2 / Zookeeper3.4

Host

Master Instance Group(MASTER)

Yes

High Availability: No
Mode: Standard
.13 / Kafkal.0.1 / Kafka-Manager13.3.16

Master Instance Group 4

ECSID

Pay-As-You-Go

Hosts: 1 CPU: 4 Cores
Memory: 8GB

Data Disk Type: SSD DiskBOGB*4 Disks.

Core Instance Group(CORE) Pay-As-You-Go

Hosts; 2 CPU: 4 Cores
Memory: 8GB
Data Disk Type: S50 Disk80GE™4 Disks

* Procedures

BEEERT

@ Normal

od: Pay-As-You-Go

dle

time: § Minutes12 Seconds

Network

ID: en-hangzhou-g

vpe

Public IP Intranet IP

192.168.0.92

47.11076.42

n: E

4.0

S Role: AliyunEmrEcsDefaultRole

Created At

2018-11-13 15:51:03

../DNemapreduce1883011/EN-US_TP_17840.dita#concept_nrp_154_y2b

1. Download the latest emr-kafka-client-metrics package.

wget http://central.maven. or g/ maven2/ com al i yun/ enr/ enr - kaf ka-
client-metrics/1.4.3/enr-kafka-client-metrics-1.4.3.jar

2. Copy the emr-kafka-client-metrics package to the lib directory of a Kafka client.

cp enrt-kafka-client-netrics-1.4.3.jar /usr/lib/kafka-current/libs/

3. Create a test topic

kaf ka-t opi cs. sh --zookeeper enr-header-1:2181/kafka-1.0.1 --
partitions 10 --replication-factor 2 --topic test-nmetrics --
create

4. Write data to a test topic. You can write the configurations of a Kafka Producer to the local

client.conf file.

client.conf:
metric.reporters=org. apache. kaf ka. clients.reporter. EMRC i ent M

etri csReporter
ent.metrics.reporter. bootstrap. servers=enr-worker-1:9092
ent.metrics.reporter.zookeeper. connect =enr - header - 1: 2181/ kaf ka-1. 0
.1

boot strap. server s=enr - wor ker-1: 9092

Conmmad:

kaf ka- producer-perf-test.sh --topic test-netrics --throughput 1000
--numrecords 100000

--record-size 1024 --producer.config client.conf

5. View the current metrics from a client. The default metrics topicis _enr-client-netrics

Kaf ka- consol e- consuner.sh -- Topic _ enr-client-netrics --
Boot st rap-server enr-worker-1: 9092
--from begi nni ng

The returned message is shown as follows.

{prefix=kaf ka. producer, client.ip=192. 168. xxx.xxx, client.process=
25536@nT - header - 1. ¢l ust er - XxxXx,

attri bute=request-rate, value=894.4685104965012, ti mestanp=
1533805225045, group=producer-netrics,

tag. client-id=producer-1}

Field name Description:

client.ip The IP address of a client host.
client.process The process ID of a client-side application.
attribute The attribute name of a metric.

value The value of a metric.

Field name Description:

timestamp The timestamp when you collect a metric.
tag.xxx Other tag information of a metric.
il
=] Note:
Restrictions

» Support for only Java applications

» Support for only clients of Kafka 0.10 or later

4 Submit Storm topologies to process data in
Kafka on E-MapReduce

This topic describes how to deploy Storm clusters and Kafka clusters on E-MapReduce and run

Storm topologies to consume data in Kafka.
Prepare the environment

The test is performed using EMR that is deployed in the China East 1 (Hangzhou) region. The

version of EMR is 3.8.0. The component versions required for this test are as follows.

+ Kafka: 2.11_1.0.0
e Storm: 1.0.1

In this topic, we use Alibaba Cloud E-MapReduce to create a Kafka cluster automatically. For

more information, see Create a cluster.

» Create a Hadoop cluster

Version Configuration

EMR-3.8.0
®) Hadoop Kafka

ApacheDS (2.0.0) Knox (0.13.0) Hadoop YARN (2.7.2) Hadoop HOFS (2.7.2)
Ganglia (3.7.2) Zepplin (0.7.1) HUE (3.12.0) Sgoop (1.4.6) Tez (0.8.4)
Pig (0.14.0) Spark (22.1) Hive (2.3.2)

[omiog

« Create a Kafka cluster

../DNemapreduce1883011/EN-US_TP_17840.dita#concept_nrp_154_y2b

Wersion Configuration

EMR-3.8.0
Hadoop -l Kafka
Zookeeper (3.4.8) Kafka Manager (1.3.3.13) Kafka (2.11_1.0.0) Ganglia (3.7.2)

E] Note:

* If you choose classic network as the network type, put the Hadoop cluster and the Kafka
cluster in the same security group to save time for configuring connections between
instances.

* If you choose VPC as the network type, put the Hadoop cluster and the Kafka cluster in
the same VPC and the same security group to save time for configuring a VPC peering
connection.

* If you are familiar with networking and security groups for ECS, you can create configurat
jons as needed.

Configure the environment for Storm

Consuming Kafka data fails if you run Storm topologies in the initial environment. To avoid such

failures, you need to install the following dependencies for the Storm environment:

» curator-client

* curator-framework
* curator-recipes

* json-simple

* metrics-core

» scala-library

* Zookeeper

e commons-cli

http://central.maven.org/maven2/org/apache/curator/curator-client/2.10.0/curator-client-2.10.0.jar
http://central.maven.org/maven2/org/apache/curator/curator-framework/2.10.0/curator-framework-2.10.0.jar
http://central.maven.org/maven2/org/apache/curator/curator-recipes/2.10.0/curator-recipes-2.10.0.jar
http://central.maven.org/maven2/com/googlecode/json-simple/json-simple/1.1/json-simple-1.1.jar
http://central.maven.org/maven2/com/yammer/metrics/metrics-core/2.2.0/metrics-core-2.2.0.jar
http://central.maven.org/maven2/org/scala-lang/scala-library/2.11.7/scala-library-2.11.7.jar
http://central.maven.org/maven2/org/apache/zookeeper/zookeeper/3.4.6/zookeeper-3.4.6.jar
http://central.maven.org/maven2/commons-cli/commons-cli/1.3.1/commons-cli-1.3.1.jar

* commons-collections

» commons-configuration
» htrace-core

» jcl-over-sif4j

» protobuf-java

* guava

» hadoop-common

* kafka-clients

» kafka

» storm-hdfs

» storm-kafka

These dependencies have been tested. If you need additional dependencies, perform the

following operations to add them to the lib folder of Storm.

[hadoop@emr-header-1 ~]1% 11
total 8524
-rW-rw-r--
-rW-rW-r--
-PW-PrW-r--
-rwW-r--r--
-rW-r--r--
-rW-r--r--
-PW-rW-r--

hadoop hadoop 52988 Jun commons-cli-1.3.1.jar

hadoop hadoop 588337 Nov commons-collections-3.2.2.jar
hadoop hadoop 298829 Feb commons-configuration-1.6.jar
root root 73448 Feb curator-client-2.10.0. jar
root root 195437 Feb curator-framework-2.10.0. jar
root root 281476 Feb curator-recipes-2.10.0. jar
hadoop hadoop 31212 Apr htrace-core-3.0.4. jar

hadoop hadoop 17289 Jun jcl-over-slf4j-1.6.6.jar
hadoop hadoop 16046 Aug json-simple-1.1.jar

hadoop hadoop 82123 Nov metrics-core-2.2.0.jar
-rw-rw-r-- 1 hadoop hadoop 533455 Mar protobuf-java-2.5.0.
-rw-r--r-- 1 root root 5745606 Feb scala-library-2.11.7.jar
-rw-rw-r-- 1 hadoop hadoop 792964 Feb zookeeper-3.4.6.jar
[hadoop@emr-header-1 ~]1$ pwd

/home/hadoop

[hadoop@emr-header-1 ~]% sudo cp ./* /usr/lib/storm-current/lib/

-rW-rw-r--

-PW-rW-r--
-PW-rW-r--

R R RRRRRRBRRBRR

You need to perform the preceding operations on each node in the Hadoop cluster. After the
operations are complete, restart Storm in the E-MapReduce console as shown in the following

figure.

http://central.maven.org/maven2/commons-collections/commons-collections/3.2.2/commons-collections-3.2.2.jar
http://central.maven.org/maven2/commons-configuration/commons-configuration/1.6/commons-configuration-1.6.jar
http://central.maven.org/maven2/org/htrace/htrace-core/3.0.4/htrace-core-3.0.4.jar
http://central.maven.org/maven2/org/slf4j/jcl-over-slf4j/1.6.6/jcl-over-slf4j-1.6.6.jar
http://central.maven.org/maven2/com/google/protobuf/protobuf-java/2.5.0/protobuf-java-2.5.0.jar
http://search.maven.org/remotecontent?filepath=com/google/guava/guava/23.0/guava-23.0.jar
http://central.maven.org/maven2/org/apache/hadoop/hadoop-common/3.0.0/hadoop-common-3.0.0.jar
http://central.maven.org/maven2/org/apache/kafka/kafka-clients/1.0.0/kafka-clients-1.0.0.jar
http://central.maven.org/maven2/org/apache/kafka/kafka_2.10/0.10.0.1/kafka_2.10-0.10.0.1.jar
http://central.maven.org/maven2/org/apache/storm/storm-hdfs/1.1.2/storm-hdfs-1.1.2.jar
http://central.maven.org/maven2/org/apache/storm/storm-kafka/1.1.2/storm-kafka-1.1.2.jar

E-MapReduce Best Practice / 4 Submit Storm topologies to process data in
Kafka on E-MapReduce

Status Health Check
Services o Meonitoring Data

[Normal | HDFS 0 Actions » CPu-idle(®]

100%
—

=3 YARN Actions + 80%
60%
m Hive Actions = 4%
2%

m Ganglia Actions « 0%
11-13
m ZooKeesper
CONFIGURE All Components
=3 Spark START All Components
STOP All Components

RESTART All Components

m Tez RESTART Logviewer

; -13 11-1
m Sqoop FESTART Nimbus H¥) 7
RESTART Si i
. upEmEer ty_max_used(3s)
[Normal Pig RESTART Ul

m Storm = Actions 5%
20%
15%
m HAProoy Actions = 10%
5%

nas

m ApacheDs Actions = o 1113 .
1-12> 11-1

- A

You can view operation logs to check the status of Storm:

Operation Logs Refresh
ID Operation Start Time Duration (s) Status Progress (%) Remarks Manage
23726 START STORM L. 2018-11-13 16:10:21 88 (%) Succe _ 100 ok
23725 RESTART STOR... 2018-11-13 16:09:57 102 (%) Succe _ 100 ok

Create Storm topologies and Kafka topics
» E-MapReduce provides sample code that you can use directly. The links are as follows:

* e-mapreduce-demo
* e-mapreduce-sdk

» Write data to topics

18 Issue: 20181113

https://github.com/aliyun/aliyun-emapreduce-demo
https://github.com/aliyun/aliyun-emapreduce-sdk

1. Log on to the Kafka cluster.

2. Create a test topic with 10 partitions and 2 replicas.

{usr/lib/kafka-current/bin/kaf ka-topics.sh --partitions 10 --
replication-factor 2 --zookeeper enr-header-1:/kafka-1.0.0 --topic
test --create

3. Write 100 records of data to the test topic.

{usr/lib/kaf ka-current/bin/kaf ka- producer-perf-test.sh --num
records 100 --throughput 10000 --record-size 1024 --producer-props
boot st rap. server s=enr-wor ker-1: 9092 --topic test

Note:
The preceding command is run on the emr-header-1 node in the Kafka cluster. You can also

run the command on client nodes.
* Run a Storm topology.
Log on to the Hadoop cluster, copy the exanpl es- 1. 1- shaded. j ar file (the test topic data

is compiled to this file in step 2) to the emr-header-1 node. In this example, the file is stored in

the HDFS root directory. Run the following command to submit the topology:

[fusr/lib/stormcurrent/bin/stormjar exanpl es-1.1-shaded.jar com
al i yun. enr . exanpl e. st orm St or nKaf kaSanpl e test aaa. bbb. ccc. ddd hdfs
://enr-header-1: 9000 sanpl e

» View the running status of a topology
— View the running status of Storm
You can use the Web Ul to view the services on a cluster in the following ways:

» With Knox. For more information, see Knox instructions.

* Use SSH. For more information, see Use SSH to log on to a cluster.

In this topic, we use SSH to access the Web Ul. The endpointis http://1 ocal host:
9999/ i ndex. ht m . You can see the topology that we have submitted. Click the topology

to view the running logs:

../DNemapreduce1876943/EN-US_TP_17921.dita#concept_knp_s1x_y2b
../DNemapreduce1876943/EN-US_TP_17923.dita#concept_sns_sww_y2b

Topology actions

Deactivate Rebalance Kill Change Log Level

Topology stats
Window A Emitted Transferred Complete latency (ms) Acked Failed
10m Os 40 0 0 0
3h Om 0s 640 400 22.200 100
1d Oh Om Os 640 400 22.200 100
All time 640 400 22.200 100

Spouts (All time)

Id * Executors Tasks Emitted Transferred Complete latency (ms) Acked Failed Error Host Error Port Last error Error Time
spout 1 1 280 220 22.200 100]

Showing 1t 1 of 1 entries

Bolts (All time)

Search:

Id * Executors Tasks Emitted Transferred Capacity (last 10m) Execute latency (ms) Executed Process latency (ms) Acked Failed Error Host ErrorPort Lasterror Error Time

acker 1 1 180 80 0.000 0.000 200 0.000 200 0

bolt 1 1 180 100 0.000 0.400 100 0.200 100 0

Showing 1 to 2 of 2 entries

= View the output files in HDFS

m View the output files in HDFS.

[root @nr-header-1 ~]# hadoop fs -Is /foo/

STWr--1-- 3 root hadoop 615000 2018-02-11 13:37 /fool/
bol t - 2-0-1518327393692. t xt
STW-r--1-- 3 root hadoop 205000 2018-02-11 13: 37 /foo/

bol t-2-0-1518327441777. t xt

[root @nr-header-1 ~]# hadoop fs -cat /foo/bolt-2-0-1518327441
777.txt | we -1
200

m Write 120 records of data to the test topic in Kafka.

[root @nr-header-1 ~]# /usr/lib/kafka-current/bin/kaf ka-
producer-perf-test.sh --numrecords 120 --throughput 10000 --
record-size 1024 --producer-props bootstrap. servers=enrt-worker -
1: 9092 --topic test

120 records sent, 816.326531 records/sec (0.80 MB/sec), 35.37
nms avg |l atency, 134.00 ns max | atency, 35 ns 50th, 39 nms 95t h,
41 s 99th, 134 ns 99. 9t h.

m Output the line number of the HDFS file.

[root @nr-header-1 ~]# hadoop fs -cat /foo/bolt-2-0-1518327441
777.txt | we -1
320

Summary

We have successfully deployed a Storm cluster and a Kafka cluster on E-MapReduce, run a
Storm topology and consumed Kafka data. E-MapReduce also supports the Spark streaming and

the Flink components, which can run in Hadoop clusters and process Kafka data.

Note:

E-MapReduce does not provide the Storm cluster option. Therefore, we have created a Hadoop
cluster and have installed the Storm components. If you do not need to use other components,
you can easily disable them in the E-MapReduce console. Then a Hadoop cluster is equivalent to

a Storm cluster.

5 Use ES-Hadoop on E-MapReduce

ES-Hadoop is a tool used to connect the Hadoop ecosystem provided by Elasticsearch (ES).
It enables users to use tools such as MapReduce (MR), Spark, and Hive to process data in ES
(ES-Hadoop also supports taking a snapshot of ES indices and storing it in HDFS, which is not

discussed in this topic).
Background

We know that the advantage of the Hadoop ecosystem is processing large data sets. But the
disadvantage is also obvious: interactive analysis can be delayed. ES is adept at many types of
queries, especially ad-hoc queries. Subsecond response time has been reached. ES-Hadoop has
combined both advantages. With ES-Hadoop, users only need to make small changes to the code

for quickly processing data stored in ES. ES also provides acceleration.

ES-Hadoop uses ES as the data source of data processing engines, such as MR, Spark, and Hive
. ES plays the role of storage in architectures where compute and storage are separated. This is
the same for other data sources of MR, Spark, and Hive. But ES has faster data filtering ability
compared with other data sources. This ability is one of the most critical abilities of an analytics

engine.

EMR has already integrated with ES-Hadoop. Users can use ES-Hadoop directly without any

configurations. The following examples introduce ES-Hadoop on EMR.

Preparation

ES can automatically create indices and identify data types based on input data. In some cases,
this feature is helpful, by avoiding many actions by users. However, it also cause problems. The
biggest problem is that sometimes the data types identified by ES are not correct. For example,
we define a field called age. The data type of this column is INT but it may be identified as LONG
in the ES index. Users need to convert data types when performing some specified actions. We

recommend that you create indices manually to avoid such problems.

In the following examples, we use the conpany index and the enpl oyees' type (you can
consider an ES index as a database and a type as a table in the database). This type defines four

fields (field types are defined by ES).

"id": |ong,
"name":. text,
"age": integer,

"birth": date

}

Run the following commands to create an index in Kibana (you can also use cURL commands):

PUT conpany
{
"mappi ngs": {
"enpl oyees": {
"properties": {
"id" {
"type": "long"

"name": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256

}
}
I
"birth": {
"type": "date"
}

"addr”: {
"t ype" o "text"

}
}
b
"settings": {
"index": {
"nunber of shards": "5",
"nunmber _of replicas": "1"
}

}
}

Note:

Specify the index parameters in settings as needed. This step is optional.
Prepare a file where each row is a JSON object as follows:

{"id": 1, "name": "zhangsan", "birth": "1990-01-01", "addr": "No. 969
, wenyi xi Rd, yuhang, hangzhou"}

{"id": 2, "nane": "lisi", "birth": "1991-01-01", "addr": "No. 556,
xi xi Rd, xihu, hangzhou"}

{"id": 3, "name": "wangwu", "birth": "1992-01-01", "addr": "No. 699
wangshang Rd, binjiang, hangzhou"}

Save the file to the specified directory in HDFS (for example, / es- hadoop/ enpl oyees. t xt).

Mapreduce

In the following example, we read the JSON files in the / es- hadoop directory in HDFS and write
each row in the JSON files into ES as a document. Writing is finished in the map stage through

EsOutputFormat.
Use the following options to set ES.

* es.nodes: ES nodes. The formats is host:port. For ES hosted on Alibaba Cloud, set the value to

the endpoint of ES provided by Alibaba Cloud.
» es.net.http.auth.user: Username.
» es.net.http.auth.pass: Password.
+ es.nodes.wan.only: For ES hosted on Alibaba Cloud, set the value to t r ue.
» es.resource: The indices and types of ES.

+ es.input.json: If the input file is in JSON format, set the value to t r ue. Otherwise, you need to

parse the input data using the map() function and output the corresponding Writable class.

Note:

Disable speculative execution for map tasks and reduce tasks

package com al i yun. enr;

i mport java.io.| OException;

i mport org. apache. hadoop. conf. Confi gurati on;

i mport org. apache. hadoop. f s. Pat h;

i mport org.apache. hadoop.io. Nul | Witable;

i mport org.apache. hadoop. i o. Text;

i mport org. apache. hadoop. mapr educe. Job;

i nport org. apache. hadoop. mapr educe. Mapper ;

i mport org. apache. hadoop. mapr educe. | i b.input. Fil el nput For mat ;
i mport org. apache. hadoop. mapr educe. | i b. i nput. Text | nput For mat ;
i mport org. apache. hadoop. util. Generi cOpti onsPar ser;

i mport org. apache. hadoop. util. Tool;

i mport org. apache. hadoop. util . Tool Runner;

i mport org. el asticsear ch. hadoop. nr. EsQut put For mat ;

public class Test inplenents Tool {
private Configuration conf;

@verride
public int run(String[] args) throws Exception {

String[] otherArgs = new GenericOptionsParser(conf, args).
get Rermai ni ngArgs();

conf . set Bool ean(" mapr educe. nap. specul ati ve", false);
conf . set Bool ean(" mapr educe. reduce. specul ati ve", false);
conf.set("es.nodes", "<your_es_host>: 9200");
conf.set("es.net. http.auth.user", "<your_ username>");

conf.set("es.net. http.auth. pass”, "<your_password>");

conf.set("es. nodes. wan. only", "true");
conf.set("es.resource", "conpany/enployees");
conf.set("es.input.json", "yes");

Job job = Job. getlnstance(conf);

j ob. set | nput For mat C ass(Text | nput For mat . cl ass) ;
j ob. set Qut put For mat Gl ass(EsQut put For mat . cl ass) ;
j ob. set MapCQut put Keyd ass(Nul | Wi tabl e. cl ass) ;

j ob. set MapCQut put Val ueC ass(Text . cl ass);

j ob. set Jar ByCl ass(Test . cl ass);

j ob. set Mapper O ass(EsMapper. cl ass) ;

Fi | el nput For mat . set | nput Pat hs(j ob, new Pat h(otherArgs[0]));

return job.waitForConpletion(true) ? 0 : 1;
}

@verride

public void set Conf(Configuration conf) {
this.conf = conf;

}

@verride

public Configuration getConf() {
return conf;

}

public static class EsMapper extends Mapper<Object, Text, Null Witab
le, Text> {
private Text doc = new Text();

@verride
protected void map(bj ect key, Text value, Context context) throws
| OException, |nterruptedException {
if (value.getlLength() > 0) {
doc. set (val ue);
context.wite(Null Witable.get(), doc);
}
}
}

public static void main(String[] args) throws Exception {
int ret = Tool Runner.run(new Test (), args);
Systemexit(ret);
}
}

Compile and package the code into a JAR file called nt - t est . j ar . Submit it to an instance that

has installed an EMR client program (such as a gateway, or any node in an EMR cluster).

Run the following commands on any node that has installed an EMR client to run the MapReduce

program:

hadoop jar nr-test.jar comaliyun.enr. Test -Dmapreduce.job.reduces=0 -
libjars nr-test.jar /es-hadoop

At this point, writing data to ES has finished. You can query the written data through Kibana (or by

using the cURL commands).

GET

"query": {
"match_all": {}
}

}
Spark

In this example, we write data to an index in ES using Spark instead of MapReduce. Spark
persists a resilient distributed dataset (RDD) to ES using the JavaEsSpark class. Users also need

to use the options mentioned above in the MapReduce section to set ES.

package com al i yun. enr;

i mport java.util.Mp;

i mport java.util.concurrent.atom c. Atom clnteger;

i nport org. apache. spar k. Spar kConf ;

i mport org. apache. spar k. Spar kCont ext ;

i mport org. apache. spark. api . j ava. JavaRDD;

i nport org. apache. spark. api . java. functi on. Functi on;

i mport org. apache. spark. sqgl . Row

i mport org. apache. spark. sql . Spar kSessi on;

i mport org. el asticsearch. spark. rdd. api . j ava. JavaEsSpar k;
i mport org.spark_project.guava. col | ect. | nmut abl eMap;

public class Test {

public static void main(String[] args) {
Spar kConf conf = new SparkConf();
conf. set AppNane("Es-test");
conf.set("es.nodes", "<your_es_host>: 9200");
conf.set("es.net. http.auth.user", "<your_ username>");
conf.set("es.net. http. aut h. pass”, "<your_password>");
conf.set("es. nodes. wan. only", "true");

Spar kSessi on ss = new Spar kSessi on(new Spar kCont ext (conf));
final Atom clnteger enployeesNo = new Atoniclnteger(0);
JavaRDD<Map<Obj ect, ? >> javaRDD = ss.read().text("hdfs://ent-
header - 1: 9000/ es- hadoop/ enpl oyees. t xt ")
.javaRDD() . map((Functi on<Row, Map<Cbject, ? >>) row ->
| mut abl eMap. of (" enpl oyees" + enpl oyeesNo. get AndAdd(1), row. nkString
()));

JavaEsSpar k. saveToEs(j avaRDD, "conpany/enpl oyees");
}

}

Package the code in a JAR file called spark-test.jar. Run the following command to write data:
spark-subnmit --nmaster yarn --class comaliyun.enr.Test spark-test.jar

After the task has finished, you can query the results through Kibana or the cURL commands.

In addition to Spar k RDD. ES-Hadoop also provides a Spark SQL component to read and write

ES data. For more information, see the official website of ES-Hadoop.
Hive
This example introduces SQL statements to read and write ES data through Hive.
First, run the hi vecommand to enter CL| and create a table:
CREATE DATABASE | F NOT EXI STS conpany;
Then create an external table that is stored in ES. Specify the option using TBLPROPERTIES.

CREATE EXTERNAL tabl e | F NOT EXI STS enpl oyees(
id Bl G NT,
name STRI NG
birth TI MESTAMP,
addr STRI NG

)
STORED BY ' org. el asti csearch. hadoop. hi ve. EsSt or ageHand| er'
TBLPROPERTI ES(

'es.resource' = 'tpcds/ss',
'es. nodes' = '<your_es_host>",
"es.net.http.auth.user' = '<your_usernane>',
"es.net.http.auth. pass' = '<your_ password>',
'es. nodes.wan.only' = "true',
"es.resource' = 'conpany/enpl oyees'

)

Note:

We set the data type of the birth columns to TIMESTAMP in the Hive table. In ES, we set it to
DATE. This is because Hive and EC handle data types differently. Parsing of converted date data
can fail when Hive writes data to ES. In contrast, parsing of returned data can also fail when Hive

reads ES data. For more information, click here .
Insert some data into the table:

| NSERT | NTO TABLE enpl oyees VALUES (1, "zhangsan", "1990-01-01", " No.
969, wenyi xi Rd, yuhang, hangzhou");

I NSERT | NTO TABLE enpl oyees VALUES (2, "lisi", "1991-01-01", "No. 556
, Xixi Rd, xihu, hangzhou");

https://www.elastic.co/guide/en/elasticsearch/hadoop/current/spark.html
https://www.elastic.co/guide/en/elasticsearch/hadoop/current/mapping.html

I NSERT | NTO TABLE enpl oyees VALUES (3, "wangwu", "1992-01-01", "No.
699 wangshang Rd, binjiang, hangzhou");

Execute queries to view the results:

SELECT * FROM enpl oyees LIM T 100;

(04

1 zhangsan 1990- 01-01 No. 969, wenyixi Rd, yuhang, hangzhou
2 lisi 1991-01-01 No. 556, xixi Rd, xihu, hangzhou

3 wangwu 1992-01-01 No. 699 wangshang Rd, binjiang, hangzhou

6 Use Mongo-Hadoop on E-MapReduce

Mongo-Hadoop is a component provided by MongoDB for Hadoop components to connect to
MongoDB. Using Mongo-Hadoop is similar to using ES-Hadoop which is described in the previous
topic. EMR has already integrated with Mongo-Hadoop. Users can directly use Mongo-Hadoop
without any deployment configuration. This topic describes how to use Mongo-Hadoop using

some examples.
Preparation

We use the same data model for the following examples:

"id": |ong,
"name": text,
"age": integer,

"birth": date
}
We write data into the specified collection (similar to a table in a database) in a MongoDB
database. Therefore, we need to first ensure that the collection exists in the MongoDB database.
First, run the MongoDB client program on a client node that can access the MongoDB database.
You may need to download the client program from the MongoDB website and install it. Take the

connection to ApsaraDB for MongoDB as an example:

MONgo - - host dds- XXXXXXXXXXXXXXXXXXXXX. hongodb. rds. al i yuncs. com 3717
--aut henti cati onDat abase adm n -u root -p 123456

The hostname of the MongoDB database is dds-
XXXXXXXXXXXXXXXXXXXXX.mongodb.rds.aliyuncs.com. The port number is 3717. The actual port
number depends on the MongoDB cluster. For an external MongoDB cluster that you have
deployed on your own, the default port number is 27017. In this example, the password is set
to 123456 using the -p option. Run the following commands in CLI to create a collection named
employees in the company database:

> use conpany;
> db. creat eCol | ecti on("enpl oyees")

Prepare a file where each row is a JSON object as follows.

{"id": 1, "name": "zhangsan", "birth": "1990-01-01", "addr": "No. 969
, wenyi xi Rd, yuhang, hangzhou"}

{"id": 2, "nanme": "lisi", "birth": "1991-01-01", "addr": "No. 556,
Xi xi Rd, xihu, hangzhou"}

{"id": 3, "nane": "wangwu", "birth": "1992-01-01", "addr": "No. 699
wangshang Rd, binjiang, hangzhou"}

Save the file to the specified directory on HDFS (for example, the file path can be / mongo-

hadoop/ enpl oyees. t xt).
Mapreduce

In the following example, we read JSON files in the / nbngo- hadoop directory on HDFS and write

each row in the JSON files as a document to the MongoDB database.

package com al i yun. enr;

i mport com nongodhb. Basi cDBObj ect ;

i mport com nongodb. hadoop. MongoCQut put For mat ;

i mport com nongodb. hadoop. i 0. BSONW i t abl e;

i mport java.io.| OException;

i nport org. apache. hadoop. conf. Confi gurati on;

i mport org. apache. hadoop. f s. Pat h;

i mport org. apache. hadoop. i o. Text;

i nport org. apache. hadoop. mapr educe. Job;

i mport org. apache. hadoop. mapr educe. Mapper ;

i nport org. apache. hadoop. mapr educe. | i b. i nput. Fi | el nput For mat ;
i mport org. apache. hadoop. mapr educe. | i b. i nput. Text | nput For mat ;
i mport org. apache. hadoop. util. Generi cOpti onsPar ser;

i nport org. apache. hadoop. util. Tool;

i mport org. apache. hadoop. util. Tool Runner;

public class Test inplenents Tool {
private Configuration conf;

@verride
public int run(String[] args) throws Exception {

String[] otherArgs = new GenericOptionsParser(conf, args).
get Rermai ni ngArgs() ;

conf.set (" nongo. output.uri™, "nongodb://<your_usernane>: <
your _passwor d>@ds- XXXXXXXXXXXXXXXXXXXXX. mongodb. rds. al i yuncs. com 3717
/ conpany. enpl oyees? aut hSour ce=adm n");

Job job = Job. getlnstance(conf);

j ob. set | nput For mat C ass(Text | nput For mat . cl ass) ;

j ob. set Qut put For mat G ass(MongoQut put For mat . cl ass) ;
j ob. set Qut put Keyd ass(Text. cl ass) ;

j ob. set MapCQut put Val ueCl ass(BSONW i t abl e. cl ass) ;

j ob. set Jar ByCl ass(Test . cl ass);
j ob. set Mapper d ass(MongoMapper . cl ass) ;

Fi | el nput For mat . set | nput Pat hs(j ob, new Pat h(ot herArgs[0]));

return job.waitForConpletion(true) ? 0 : 1;
}

@verride
public Configuration getConf() {
return conf;

}

@verride
public void set Conf(Configuration conf) {
this.conf = conf;

}

public static class MongoMapper extends Mapper<Object, Text, Text,
BSONW i t abl e> {
private BSONW i tabl e doc new BSONW i t abl e();
private int enployeeNo =
private Text id;

@verride
protected void map(oj ect key, Text value, Context context) throws
| OException, |nterruptedException {
i f (value.getlLength() > 0) {
doc. set Doc(Basi cDBObj ect . parse(val ue.toString()));
id = new Text ("enpl oyee" + enpl oyeeNo++);
context.wite(id, doc);

}

1;

}
}

public static void main(String[] args) throws Exception {
int ret = Tool Runner.run(new Test (), args);
Systemexit(ret);
}
}

Compile and package the code into a JAR file called nr-test.jar. Run the following

command:

hadoop jar nr-test.jar comaliyun.enr. Test -Dmapreduce.job.reduces=0 -
libjars nr-test.jar /nmongo-hadoop

After the execution is complete, you can view the results using the MongoDB client program:

> db. enpl oyees. find();

{ "_id" : "enpl oyeel", "id" : 1, "nanme" : "zhangsan", "birth" : "1990-
01-01", "addr"™ : "No. 969, wenyixi Rd, yuhang, hangzhou" }

" id" : "enployee2", "id" : 2, "name" : "lisi", "birth" : "1991-01-
01", "addr"™ : "No. 556, xixi Rd, xihu, hangzhou" }

"id* : "enployee3d", "id" : 3, "nane" : "wangwu", "birth" : "1992-01
-01", "addr" : "No. 699 wangshang Rd, binjiang, hangzhou" }

Spark
In this example, we write data to a MongoDB database using Spark instead of MapReduce.

package com al i yun. enr;

i mport com nongodb. Basi cDBObj ect ;

i mport com nongodb. hadoop. MongoCQut put For nat ;

i mport java.util.concurrent.atom c. Atom clnteger;
i mport org. apache. hadoop. conf. Confi gurati on;

i mport org. apache. spar k. Spar kCont ext ;

i mport org. apache. spark. api . j ava. JavaPai r RDD;

i mport org. apache. spark. api . j ava. JavaRDD;

i mport org. apache. spark. api . java. functi on. Functi on;
i mport org. apache. spark. sql . Row;

i nport org. apache. spar k. sgl . Spar kSessi on;

i mport org. bson. BSONObj ect ;

i mport scal a. Tupl e2;

public class Test {
public static void main(String[] args) {
Spar kSessi on ss = new Spar kSessi on(new Spar kCont ext ());

final Atom clnteger enpl oyeeNo = new Atom cl nt eger(0);
JavaRDD<Tupl e2<Chj ect, BSONObj ect >> javaRDD =
ss.read().text ("hdfs://enr-header-1: 9000/ nongo- hadoop/
enpl oyees. txt")
.javaRDD() . map((Functi on<Row, Tupl e2<Obj ect, BSONObj ect
>>) row -> {
BSONCbj ect bson = Basi cDBObj ect . parse(row. nkString());
return new Tupl e2<>("enpl oyee" + enpl oyeeNo. get AndAdd(1),

1)

JavaPai r RDD<Cbj ect, BSONObhj ect > docunments = JavaPai r RDD. f r omJavaRD
D(j avaRDD) ;

bson) ;

Confi guration out put Config = new Configuration();

out put Confi g. set ("nongo. out put.uri", "nmongodb://<your _usernane>: <
your _passwor d>@ds- XXXXXXXXXXXXXXXXXXXXX. mongodb. rds. al i yuncs. com 3717
/ conpany. enpl oyees? aut hSour ce=adm n");

/1 It is saved as a "Hadoop file." Actually, the data is witten
into the MongoDB dat abase through the MongoQut put For mat cl ass.
docunent s. saveAsNewAPI HadoopFi | e(
"file:///this-is-conpletely-unused",
bj ect . cl ass,
BSONObj ect . cl ass,
MongoQut put For mat . cl ass,
out put Confi g
)
}
}

Package the code into a JAR file named spar k-t est . j ar . Run the following command to write

data.
spark-submt --master yarn --class comaliyun.enr. Test spark-test.jar
After the writing has finished, you can use the MongoDB client to view the results.
Hive

This example describes how to use Hive to read and write data in MongoDB databases through

SQL statements.

First, run the hi ve command to enter CLI mode and create a table:
CREATE DATABASE | F NOT EXI STS conpany;

You need to create an external table that is stored in a MongoDB database. Before you do that,

create a MongoDB collection named employees as described in the Preparation section.

Go back to CLI mode, execute the following SQL statements to create an external table.

Connection to MongoDB is set through the TBLPROPERTIES clause.

CREATE EXTERNAL TABLE | F NOT EXI STS enpl oyees(
id Bl G NT,
name STRI NG
birth STRI NG
addr STRI NG

)

STORED BY ' com npbngodb. hadoop. hi ve. MongoSt or ageHandl er'

W TH SERDEPROPERTI ES(' nongo. col utms. mapping' = {"id":"_id"}")
TBLPROPERTI ES(' nongo. uri' =" nongodb: // <your _user nane>: <your _password
S@IAS- XXXXXXXXXXXXXXXXXXXXX. mongodb. rds. al i yuncs. com 3717/ conpany.
enpl oyees? aut hSour ce=adm n');

Note:
Values of the i d column in Hive are mapped to values of the _i d column in MongoDB through
SERDEPROPERTIES. You can map column values as needed. Note that the data type of the
birth column is set to STRING. The reason is that Hive and MongoDB handle DATE format
differently. After Hive sends data in DATE format to MongoDB, NULL may be returned when the

data is queried in Hive.
Insert some data into the table:

I NSERT | NTO TABLE enpl oyees VALUES (1, "zhangsan", "1990-01-01", " No.
969, wenyi xi Rd, yuhang, hangzhou");

I NSERT | NTO TABLE enpl oyees VALUES (2, "lisi", "1991-01-01", "No. 556
, Xixi Rd, xihu, hangzhou");

I NSERT | NTO TABLE enpl oyees VALUES (3, "wangwu", "1992-01-01", " No.
699 wangshang Rd, binjiang, hangzhou");

Execute the following statement to see the results:

SELECT * FROM enpl oyees LIM T 100;

(04

1 zhangsan 1990- 01-01 No. 969, wenyixi Rd, yuhang, hangzhou
2 lisi 1991-01-01 No. 556, xixi Rd, xihu, hangzhou

3 wangwu 1992-01-01 No. 699 wangshang Rd, binjiang, hangzhou

7 Deep learning with Analytics Zoo on E-
MapReduce

Analytics Zoo is an analytics and Al platform that unites Apache Spark and Intel BigDL into an
integrated pipeline. It helps users develop deep learning applications based on big data and
end-to-end pipelines. This topic describes how to use Analytics Zoo to develop deep learning

applications on Alibaba Cloud E-MapReduce.
Introduction

Analytics Zoo is an analytics and Al platform that unites Apache Spark and Intel BigDL into an
integrated pipeline. It helps users develop deep learning applications based on big data and end-

to-end pipelines.
System requirements

- JDK8
» Spark cluster (Spark 2.x supported by EMR is recommended)
» Python 2.7(also Python 3.5 or Python 3.6), pip

Installation of Analytics Zoo

* The latest release of Analytics Zoo is 0.2.0.

» |nstallation for Scala users
= Download the pre-build version.

You can download the Pre-build version from the Analytics Zoo page on GitHub.

= Build Analytics Zoo using the make-dist.sh script.

Install Apache Maven and set the environment variable MAVEN_OPTS as follows:
export MAVEN OPTS="- Xmx2g - XX: Reser vedCodeCacheSi ze=512n{

If you use ECS instances to compile code, we recommend that you modify the mirror of the

Maven repository.

<m rror>
<i d>nexus-al i yun</id>
<mrrorOf>central </mrrorCf >
<name>Nexus al i yun</ name>
<url >http://mven. al i yun. conf nexus/ cont ent/ groups/ publ i c</url >

https://analytics-zoo.github.io/master/#release-download/

</mrror>

Download an Analytics Zoo release. Extract the file, move to the corresponding directory,

and run the following command:
bash nmake-di st . sh

After building Analytics Zoo, you can find a dist directory, which contains all the needed files
to run an Analytics Zoo program. Use the following command to copy the files in the dist

directory to the directory of the EMR software stack:
cp -r dist/ /usr/lib/analytics zoo
Installation for Python users

Analytics Zoo can be installed either with pip or without pip. When you install Analytics Zoo with
pip, PySpark and BigDL are installed. This may cause a software conflict because PySpark has

already been installed on the EMR cluster. To avoid such conflicts, install Analytics Zoo without
pip.
» Installation without pip
First, you need to run the following command:
bash nmake-di st. sh
Change to the pyzoo directory and install Analytics Zoo:
pyt hon setup.py install
Setting environment variables

After building Analytics Zoo, copy the dist directory to the directory of the EMR software
stack and set the environment variable. Add the following lines to the / et ¢/ profil e. d/

anal yti cs_zoo. shfile.

export ANALYTICS ZOO HOME=/usr/li b/ anal ytics_zoo
export PATH=$ANALYTI CS_ZOO HOVE/ bi n: $PATH

You do not need to set SPARK_HOME because it has already been set on EMR.

Using Analytics Zoo

Use Spark to train and test deep learning models.

https://github.com/intel-analytics/analytics-zoo

= Use Analytics Zoo to do text classification. You can find the code and description on GitHub.

Download the required data as required. Submit the following commands:

spark-subnmit --nmaster yarn \

--depl oy- nbde cluster --driver-menory 8g \

--executor-menory 20g --class comintel.anal ytics. zoo. exanpl es.
textcl assification. Textd assification \

/fusr/lib/lanalytics zoo/lib/analytics-zoo-bigdl 0.6.0-spark 2.1.0-0
.2.0-jar-w th-dependenci es.jar --baseDir /news

= You can log on to the instance of the Spark cluster through ssh proxy to view the status of

the jobs.

Stages for All Jobs

Active Stages: 1
Pending Stages: 1
Completed Stages: 698
Skipped Stages: 203

Active Stages (1)

Stageld ~ Description Submitted Duration Tasks: Succeeded/Total Input Output Shuffle Read Shuffle Write
1392 reduce at DistriOptimizer.scala:320 rdetails (ki) 2018/09/12 12:21:47 Unknown 0/2

Pending Stages (1)

Stage Ild ~ Description Submitted Duration Tasks: Succeeded/Total Input Output Shuffle Read Shuffle Write

1391 coalesce at DataSet.scala:361 +details Unknown Unknown 0/4

Completed Stages (698)

Page: 2 3 4 5 6 7 > 7 Pages. Jumpto 1 . Show 100 items in a page. Go
Stage Id ~ Description Submitted Duration Tasks: Succeeded/Total Input Output Shuffle Read Shuffle Write
1390 count at DistriOptimizer.scala:369 +details 2018/09/12 12:21:47 12 ms 2/2 4.5 MB
1388 reduce at DistriOptimizer.scala:320 +details 2018/09/12 12:21:46 09s 2/2 5.6 GB
1386 count at DistriOptimizer.scala:369 +details 2018/09/12 12:21:46 12ms 2/2 4.5MB
1384 reduce at DistriOptimizer.scala:320 +details 2018/09/12 12:21:45 10s 2/2 5.6 GB
1382 count at DistriOptimizer.scala:369 +details 2018/09/12 12:21:45 11 ms 2/2 4.5 MB
1380 reduce at DistriOptimizer.scala:320 +details 2018/09/12 12:21:44 09s 2/2 5.6 GB
1378 count at DistriOptimizer.scala:369 +details 2018/09/12 12:21:44 11 ms 2/2 4.5 MB
1376 reduce at DistriOptimizer.scala:320 +details 2018/09/12 12:21:43 10s 2/2 | 5.6 GB
1374 count at DistriOptimizer.scala:369 +details 2018/09/12 12:21:43 11 ms 2/2 e 45MB

You can also view the accuracy of each epoch through logs.

I NFO opti m Di stri Optinizer$: [Epoch 2 9600/15107][Iteration 194
][Wall dock 193.266637037s] Trai ned 128 records in 0.958591653
seconds. Throughput is 133.52922 records/second. Loss is O.
74216986.
INFO optim DistriOptimzer$: [Epoch 2 9728/ 15107][Iteration 195
][vall dock 194.224064816s] Trai ned 128 records in 0.957427779
seconds. Throughput is 133.69154 records/second. Loss is O.
51025534.
I NFO optimDistri Optimizer$: [Epoch 2 9856/15107][Iteration 196
][Wall d ock 195.189488678s] Trai ned 128 records in 0.965423862
seconds. Throughput is 132.58424 records/second. Loss is 0.553785.
INFO optimDistri Optimzer$: [Epoch 2 9984/15107][Iteration 197
][Wall O ock 196.164318688s] Trai ned 128 records in 0.97483001
seconds. Throughput is 131.30495 records/second. Loss is 0.5517549

+ Use PySpark and Jupyter to train deep learning models on Analytics Zoo.

https://github.com/intel-analytics/analytics-zoo/tree/master/zoo/src/main/scala/com/intel/analytics/zoo/examples/textclassification
../DNemapreduce1876943/EN-US_TP_17923.dita#concept_sns_sww_y2b

— Install Jupyter.

pip install jupyter

= Run the following command to start Jupyter.

j upyter-with-zoo. sh
— \We recommend that you use the pre-defined Wide And Deep Learning models provided by

Analytics Zoo.

1. Import data.
@® localhost:8889/notebooks/Untitled1.ipynb?kernel_name=python2
: Jupyter Untitled1 Last Checkpoint: 20 minutes ago (autosaved)

File Edit View Insert Cell Kernel Widgets Help

B+ < @ B 424 ¥ MRun B C W Code =]

In [2]: from zoo.models.recommendation import *
from zoo.models.recommendation.utils import *
from zoo.common.nncontext import init_nncontext
import os
import sys
import datetime as dt
from bigdl.dataset.transformer import *
from bigdl.dataset.base import *
from bigdl.nn.criterion import *
from bigdl.optim.optimizer import *
from bigdl.util.common import *
import matplotlib

matplotlib.use('agg')
import matplotlib.pyplot as plt
%pylab inline

Populating the interactive namespace from numpy and matplotlib
In [3]: sc = init_nncontext("WideAndDeep Example")

M In [5]: from bigdl.dataset import movielens
movielens_data = movielens.get_id ratings("/tmp/movielens/")
min_user_ id = np.min(movielens_data[:,0])
max_user_id = np.max(movielens_data[:,0])
min_movie_id = np.min(movielens_data[:,1])
max_movie_id = np.max(movielens_data[:,1])
rating labels= np.unique(movielens_data[:,2])

print (movielens_data.shape)
print(min_user_id, max user_id, min_movie id, max movie_id, rating labels)

2. Build a model and create an optimizer.

In [10]: wide_n_deep = WideAndDeep(5, column_info, "wide n_deep")

creating: createZooWideAndDeep

In [11]: # Create an Optimizer
batch_size = 8000

optimizer = Optimizer(
model=wide_n_deep,
training rdd=train_data,
criterion=ClassNLLCriterion(),
optim method=Adam(learningrate = 0.001, learningrate_decay=0.00005),
end_trigger=MaxEpoch(10),
batch_size=batch_size)

Set the validation logic
optimizer.set_validation(

batch_size=batch_size,

val_rdd=test_data,

trigger=EveryEpoch(),

val_method=[ToplAccuracy(), Loss(ClassNLLCriterion())]
)
log_dir='/tmp/bigdl_summaries/'
app_name='wide_n deep-'+dt.datetime.now().strftime("$Y%m%d-$HIMES")
train_summary = TrainSummary(log_dir=log dir,

app_name=app_name)
val_summary = ValidationSummary(log_dir=log_dir,
app_name=app_name)

optimizer.set_train_summary(train_summary)
optimizer.set_val summary(val_ summary)
print("saving logs to %s" % (log_dir + app_name))

3. Start the training process.

In [12]: %%time
Boot training process
optimizer.optimize()
print("Optimization Done.")

Optimization Done.
CPU times: user 85.9 ms, sys: 16.7 ms, total: 103 ms
Wall time: 2min 52s

4. View training results.

MIn [16]: loss = np.array(train_summary.read scalar("Loss"))
topl = np.array(val_ summary.read_scalar('ToplAccuracy"))

plt.figure(figsize = (12,12))
plt.subplot(2,1,1)
plt.plot(loss[:,0],loss[:,1],label="'1loss")
plt.x1im(0,loss.shape[0]+10)
plt.grid(True)

plt.title("loss")

plt.subplot(2,1,2)
plt.plot(topl[:,0],topl[:,1],label="topl")
plt.x1im(0,loss.shape[0]+10)
plt.title("topl accuracy")

plt.grid(True)

loss

E-MapReduce

Best Practice / 7 Deep learning with Analytics Zoo on E-

MapReduce

18

17

16

15

14

13

12

046

044

042

040

038

036

034

200 400 600 800 1000
topl accuracy
/ -
200 400

Issue: 20181113

39

8 Adaptive execution of Spark SQL

Spark SQL of Alibaba Cloud Elastic MapReduce (E-MapReduce) 3.13.0 supports adaptive

execution. It is used to set the number of reduce tasks automatically, solve data skew, and

dynamically optimize execution plans.

Solved problems

Adaptive execution of Spark SQL solves the following problems:

The number of shuffle partitions

Currently, the number of tasks in the reduce stage in Spark SQL depends on the value of the
spark. sqgl . shuffl e. partiti on parameter (the default value is 200). Once this parameter
has been specified for a job, the number of reduce tasks in all stages is the same value when

the job is running.

For different jobs, and for different reduce stages of one job, the actual data size can be quite
different. For example, data to be processed in the reduce stage may have a size of 10 MB or
100 GB. If the parameter is specified using the same value, it has a significant impact on the
actual processing efficiency. For example, 10 MB of data can be processed using only one
task. If the value of the spar k. sqgl . shuffl e. partiti on parameter is set to the default
value of 200, then 10 MB of data is partitioned to be processed by 200 tasks. This increases

scheduling overheads and lowers processing efficiency.

By setting the range of the shuffle partition number, the adaptive execution framework of Spark
SQL can dynamically adjust the number of reduce tasks in the range for different stages of

different jobs.

This significantly reduces the costs for optimization (no need to find a fixed value). Additionally,

the numbers of reduce tasks in different stages of one job can be dynamically adjusted.

Parameter:
Attribute Default value Description
spark.sqgl.adaptive.enabled false Enables or disables adaptive
execution.
spark.sql.adaptive. 1 The minimum number of
minNumPostShufflePartitions reduce tasks.
spark.sqgl.adaptive. 500 The maximum number of the
maxNumPostShufflePartitions reduce tasks.

Attribute

Default value

Description

spark.sqgl.adaptive.shuffle.
targetPostShufflelnputSize

67108864

Dynamically adjusts the
number of reduce tasks
based on the partition size.
For example, if the value is
set to 64 MB, then each task
in the reduce stage processes
more than 64 MB data.

spark.sql.adaptive.shuffle.
targetPostShuffleRowCount

20000000

Dynamically adjusts the
number of reduce tasks
based on the row number in
the partition. For example, if
the value is set to 20000000,
then each task in the reduce
stage processes more than
20,000,000 rows of data.

« Data skew

Data skew is a common issue in SQL join operations. It refers to the scenario where certain

tasks involve too much data in the processing, which leads to long tails. Currently, Spark SQL

does not perform optimization for skewed data.

The Adaptive Execution framework of Spark SQL can automatically detect skewed data and

perform optimization for it at runtime.

SparkSQL optimizes skewed data as follows: it splits the data that is in the skewed partition,

processes the data through multiple tasks, and then combines the results through SQL union

operations.

Supported join types:

Type Description

Inner Skewed data can be handled in both tables.

Cross Skewed data can be handled in both tables.

LeftSemi Skewed data can only be handled in the left
table.

LeftAnti Skewed data can only be handled in the left
table.

LeftOuter Skewed data can only be handled in the left
table.

Type Description
RightOuter Skewed data can only be handled in the right
table.
Parameter:
Attribute Default value Description
spark.sqgl.adaptive.enabled false Enables or disables the
adaptive execution framework
spark.sqgl.adaptive. false Enables or disables the
skewedJoin.enabled handling of skewed data.
spark.sql.adaptive. 10 A partition is identified as a
skewedPartitionFactor skewed partition only when
the following scenarios occur
. First, the size of a partition
is greater than this value (
median size of all partitions
) and the value of the spark
.sql.adaptive.skewedPart
itionSizeThreshold parameter
. Second, the rows in a
partition are greater than
this value (median rows in
all partitions) and the value
of the spark.sql.adaptive
.skewedPartitionSizeT
hreshold parameter.
spark.sql.adaptive. 67108864 The size threshold for a
skewedPartitionSizeT skewed partition.
hreshold
spark.sql.adaptive. 10000000 The row number threshold for
skewedPartitionRowCo a skewed partition.
untThreshold
spark.shuffle.statistics. false When the value of this

verbose

parameter is true, MapStatus
collects information about
the number of rows in each
partition for handling skewed
data.

» Execution plan optimization at runtime

Catalyst optimizer of Spark SQL converts logical plans that are converted from SQL statements
into physical execution plans and executes those physical execution plans. However,

the physical execution plan produced by Catalyst may not be optimal because of lack or
inaccuracy of statistics. For example, Spark SQL may choose SortMergeJoinExec instead of

BroadcastJoin, while BroadcastJoin is the optimal option in the scenario.

The Adaptive Execution framework of Spark SQL determines whether to use BroadcastJoin
instead of SortMergedJoin to improve query performance based on the size of the shuffle write

in the shuffle stage.

Parameter:
Attribute Default value Description
spark.sqgl.adaptive.enabled false Enables or disables the
adaptive execution framework
spark.sqgl.adaptive.join. true Whether to determine a better
enabled join strategy at runtime.
spark.sql.adaptiveBr Equals to spark.sql. Determines whether to use
oadcastJoinThreshold autoBroadcastJoinThreshold. |broadcast join to optimize join
queries.
Test
Take some TPC-DS queries as test samples.
» Shuffle partition number
- query30
Native Spark:
Campleted Sigon 49
:‘;-Im“ DBescogtion Subwmeted [] ?u:::;um.'rmm ingut Dutgut xu :ﬂ":.

EXDoUton: g30-w2.4, ilemation 1, SandamdRun-trus 20180520 Diz 1w 4.0
[ener——] 0 1 i ARTR IO } 1.2 08
1 1323 |
benchmark g30-+2.4 201 8DET0 £ e 5 Gl & 13 NAE
i a 134 ¥ - e

= Adjusts the number of reduce tasks adaptively.

E-MapReduce Best Practice / 8 Adaptive execution of Spark SQL

Completed Stages (16)

Stage i Tasks: Shuhe Sl
- Description Submitted Duration Succeeded/Total nput Output Read Writs,
" Execation: g30-v2. 4, iteratior: 1, Stardandfunstne

20TR0S20
s a1 Banchmank scala 435 o VA3
40 benchmark gl0-v2.4

oss (TR 3.1
e
20180520 | dgaier | 12568
collact at Guery scaln: 124 cceisits VIAAET mil)
n benichmark q30-v2.4 20180520 = © TS Yees") Tononhie
run at ThsadPooiExsciton mva:1149 sy 1IAANG

Execution plan optimization at runtime (SortMergeJoin to BroadcastJoin).

Uses BroadcastJoin adaptively.

44 Issue: 20181113

	Contents
	​Legal​ ​disclaimer​
	​Generic​ ​convention​​s​
	1 ​Use​ ​EMR​ ​for​ ​real​-​time​ ​MySQL​ ​binlog​ ​transmissi​​on​
	2 ​Use​ ​E​-​MapReduce​ ​to​ ​process​ ​offline​ ​jobs​
	3 ​Use​ ​E​-​MapReduce​ ​to​ ​collect​ ​metrics​ ​from​ ​a​ ​Kafka​ ​client​
	4 ​Submit​ ​Storm​ ​topologies​ ​to​ ​process​ ​data​ ​in​ ​Kafka​ ​on​ ​E​-​MapReduce​
	5 ​Use​ ​ES​-​Hadoop​ ​on​ ​E​-​MapReduce​
	6 ​Use​ ​Mongo​-​Hadoop​ ​on​ ​E​-​MapReduce​
	7 ​Deep​ ​learning​ ​with​ ​Analytics​ ​Zoo​ ​on​ ​E​-​MapReduce​
	8 ​Adaptive​ ​execution​ ​of​ ​Spark​ ​SQL​

