Alibaba Cloud
E-MapReduce

Best Practices

Issue: 20190918

MORE THAN JusT cLoub | (- AlibabaCloud

Legal disclaimer

Alibaba Cloud reminds you to carefully read and fully understand the terms and
conditions of this legal disclaimer before you read or use this document. If you have
read or used this document, it shall be deemed as your total acceptance of this legal

disclaimer.

1. You shall download and obtain this document from the Alibaba Cloud website
or other Alibaba Cloud-authorized channels, and use this document for your
own legal business activities only. The content of this document is considered
confidential information of Alibaba Cloud. You shall strictly abide by the

confidentiality obligations. No part of this document shall be disclosed or provided
to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted,
or disseminated by any organization, company, or individual in any form or by any
means without the prior written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades
, adjustments, or other reasons. Alibaba Cloud reserves the right to modify
the content of this document without notice and the updated versions of this

document will be occasionally released through Alibaba Cloud-authorized
channels. You shall pay attention to the version changes of this document as they
occur and download and obtain the most up-to-date version of this document from
Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud
products and services. Alibaba Cloud provides the document in the context that
Alibaba Cloud products and services are provided on an "as is", "with all faults
" and "as available" basis. Alibaba Cloud makes every effort to provide relevant
operational guidance based on existing technologies. However, Alibaba Cloud
hereby makes a clear statement that it in no way guarantees the accuracy, integrity
, applicability, and reliability of the content of this document, either explicitly
or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial
losses incurred by any organizations, companies, or individuals arising from
their download, use, or trust in this document. Alibaba Cloud shall not, under any
circumstances, bear responsibility for any indirect, consequential, exemplary,

incidental, special, or punitive damages, including lost profits arising from the use

or trust in this document, even if Alibaba Cloud has been notified of the possibility
of such a loss.

5. By law, all the content of the Alibaba Cloud website, including but not limited to
works, products, images, archives, information, materials, website architecture,
website graphic layout, and webpage design, are intellectual property of Alibaba

Cloud and/or its affiliates. This intellectual property includes, but is not limited
to, trademark rights, patent rights, copyrights, and trade secrets. No part of the
Alibaba Cloud website, product programs, or content shall be used, modified

, reproduced, publicly transmitted, changed, disseminated, distributed, or
published without the prior written consent of Alibaba Cloud and/or its affiliates

. The names owned by Alibaba Cloud shall not be used, published, or reproduced
for marketing, advertising, promotion, or other purposes without the prior written
consent of Alibaba Cloud. The names owned by Alibaba Cloud include, but are
not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other brands of Alibaba
Cloud and/or its affiliates, which appear separately or in combination, as well as
the auxiliary signs and patterns of the preceding brands, or anything similar to
the company names, trade names, trademarks, product or service names, domain
names, patterns, logos, marks, signs, or special descriptions that third parties

identify as Alibaba Cloud and/or its affiliates).

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

E-MapReduce Best Practices / Legal disclaimer

Issue: 20190918 111

Generic conventions

Table -1: Style conventions

Style Description Example
This warning information
indicates a situation that will Danger:
cause major system changes, Resetting will result in the loss of
faults, physical injuries, and other | user configuration data.
adverse results.
This warning information
indicates a situation that may . Warning:
cause major system changes, Restarting will cause business
faults, physical injuries, and other | interruption. About 10 minutes are
adverse results. required to restore business.
This indicates warning informatio
n, supplementary instructions, Notice:
and other content that the user Take the necessary precautions
must understand. to save exported data containing

sensitive information.

This indicates supplemental
instructions, best practices, tips, Note:
and other content that is good to | You can use Ctrl + A to select all
know for the user. files.

> Multi-level menu cascade. Settings > Network > Set network

type

Bold It is used for buttons, menus Click OK.
, page names, and other Ul
elements.

Courier |Itis used for commands. Runthe cd / d C :/ windows
font command to enter the Windows
system folder.

Italics |Itisused for parameters and bae log list --
variables. instanceid Instance_ID

[] or [a|b] |Itindicates that it is a optional ipconfig [-all|-t]
value, and only one item can be
selected.

Style

Description

Example

{} or {a|b}

It indicates that it is a required
value, and only one item can be
selected.

swich {stand | slave}

E-MapReduce Best Practices / Generic conventions

Issue: 20190918 111

Contents

Legal diSClaimer......cc.cvuiiuiiuiiiiiiiiiiiieie e ceeeeeneeneeeneenns I
GeneriC CONVENTIONS.oviuuiiuiiuiiniiiiriirieiieeeeeereareaseaesenes I
1 Use E-MapReduce to collect metrics from a Kafka client......1
2 Use E-MapReduce to process offline jobs........c.cccecevureennennnene. 6
3 Submit Storm topologies to process data in Kafka on E-
MaPREAUCE.cuienriniiniiriiineiiereerternereerenetncrnsensenssnsessenens 10
4 Use ES-Hadoop on E-MapReduce.........cccceuiuieiiniinrennennnnnns 17
5 Use Mongo-Hadoop on E-MapReduce.........cccccevvuvencinnrennnnnnn 24
6 Deep learning with Analytics Zoo on E-MapReduce.............. 30
7 Adaptive execution of Spark SQL.......ccccevuervuirenirencreciennennnns 36
8 E-MapReduce data migration solution............cccceeeuienrennnnens 42
9 Use EMR Data Science clusters for deep learning................. 51
10 Use Flink jobs to process OSS data..........cccccevevnrinnrinnrennnnnn. 60
11 Connect to ApsaraDB for HBase using E-MapReduce Hive...67
12 Use EMR for real-time MySQL binlog transmission............. 73
13 Run Flume on a Gateway node to synchronize data............. 79
14 Isolate OSS data of different users........cccceceeeuiivreniencinnrnnnnnn. 83
15 Configure a network connection for using Sqoop to transfer
data from a database to an EMR cluster........cc.cccccceevninnnnnnen. 86
16 Use E-MapReduce to submit a Spark Streaming job for
consuming Kafka data........ccccceeeiiniiniiiiiiiiiiiiiiiicieeeeenees 89

17 Use Kafka Connect to migrate data.......c...ccoeeeneeenrennrennnnnnnns 95

1 Use E-MapReduce to collect metrics from a Kafka
client

This section describes how to use E-MapReduce to collect metrics from a Kafka client

to conduct effective performance monitoring.
Background

Kafka provides a collection of metrics that are used to measure the performance of
Broker, Consumer, Producer, Stream, and Connect. E-MapReduce collects metrics for
Kafka Broker by using Ganglia to monitor the running status of this Kafka Broker. A
Kafka system consists of two roles: a Kafka Broker and multiple Kafka clients. When
an issue of read/write performance occurs, you must perform an analysis on the both
Kafka Broker and clients. Metrics from Kafka clients are important for performing

the analysis.
Principle
- Collect Metrics for Kafka performance
Kafka supports multiple external Metrics Reporters. JMX Reporter is
built in to Kafka by default. You can use the JMX tool to view metrics

of Kafka. You can implement your own Metrics Reporter such as

org.apache.kafka.common.metrics.MetricsReporter to collect custom metrics.
- Store Metrics
You can customize Kafka metrics. In addition, you need a data store to keep these

metrics for later use and analysis. You can store metrics to Kafka without using

a third-party data store as Kafka itself is a data store. In addition, Kafka can be

easily integrated with other services. You can collect metrics from a client as the

following figure shows:

metrics <: data !

reporter \
trics

Kafka Consumer s

Kafka
/metris/
data
metrics | _— |
reporter >
Kafka Producer data
Prerequisites
- Restrictions

- Support for only Java applications;
- Support for only clients of Kafka 0.10 or later;
- Without compiling code by yourself, E-MapReduce has published the jar package

in Maven. You can download the latest version from the download link.

http://mvnrepository.com/artifact/com.aliyun.emr/emr-kafka-client-metrics?spm=a2c4e.11153940.blogcont624050.20.24d04bcauktP9S

In this section, we use E-MapReduce to automatically create a Kafka cluster. For

more information, see Create a cluster.
We use the following versions of E-MapReduce and Kafka:

- EMR Version: EMR-3.12.1

- Cluster Type: Kafka

- Software: Kafka-Manager (1.3.3.16), Kafka (2.11-1.0.1), ZooKeeper (3.4.12), and
Ganglia (3.7.2)

- The network type of this Kafka cluster is VPC in the China (Hangzhou) region.
The master instance group is configured with a public IP and an internal

network IP. The following figure shows the details.

Cluster
dtplus_docs Pay-As-You-Go
C-03523B2790770FF3 Yes Idle EMR-3.14.0
cn-hangzhou No 9 Minutes12 Seconds AliyunEmrEcsDefaultRole
2018-11-13 15:50:55 Standard

Software Network

EMR-3.14.0 en-hangzhou-g

KAFKA vpc

Ganglia3.7.2 / Zookeeper34.13 / Kafkal.0.1 / Kafka-Manager1.3.3.16

| Host Master Instance Group 48

Master Instance Group(MASTER)

Pay-AsVou-Ga ECSID BiFAEERT Public IP Intranet IP Created At

Hosts: 1 CPU: 4 Cores . . o B
Memory: 8GE 2 @ Norma 471107642 92.168.0.92 2018-11-13 15:51:03
Data Disk Type: SSD Disk80GE*4 Disks
Core Instance Group(CORE) Pay-As-You-Go
Hosts: 2 CPU: 4 Cores
Memoary: 8GB
Data Disk Type: S50 DiskBOGE™4 Disks

Configure metrics

Metric Description
metric . reporters The sample Metrics Reporter: org

apache . kafka . clients
reporter . EMRClientM

etricsRepo rter

emr . metrics . reporter . The metrics that stores bootstrap.
bootstrap . servers servers of a Kafka cluster.
emr . metrics . reporter . The metrics that stores Zookeeper

zookeeper . connect addresses of a Kafka cluster.

../DNemapreduce1883011/EN-US_TP_17840.dita#concept_nrp_154_y2b

- Load metrics

- Place the emr-kafka-client-metrics jar package on a client. Add the path of the
jar package to the classpath of a client-side application.
- Install the emr-kafka-client-metrics dependency on the jar package of a client-

side application.
Procedures
1. Download the latest emr-kafka-client-metrics package.

wget http :// central . maven . org / maven2 / com / aliyun / emr
/ emr - kafka - client - metrics / 1 . 4 . 3 / emr - kafka - client
- metrics -1 . 4 . 3 . jar

2. Create a test topic.

kafka - topics . sh -- zookeeper emr - header - 1 : 2181 / kafka
- 1.0 .1 -- partitions 10 -- replicatio n - factor 2 ==
topic test - metrics -- create

3. Copythe emr - kafka - client - metrics package to the lib directory of a
Kafka client.

cp emr - kafka - client - metrics - 1 . 4 . 3 . jar / usr / 1lib
/ kafka - current / libs /

4. Write data to a test topic. You can write the configurations of a Kafka Producer to

the local client.conf file.

client . conf :

metric . reporters = org . apache . kafka . clients . reporter
EMRClientM etricsRepo rter

emr . metrics . reporter . bootstrap . servers
9092

emr . metrics . reporter . zookeeper . connect
2181 / kafka -1 . 0 . 1

bootstrap . servers = emr - worker - 1 : 9092

emr - worker - 1

emr - header - 1

Commnad

kafka - producer - perf - test . sh -- topic test - metrics --
throughput 1000 -- num - records 100000

-- record - size 1024 -- producer . config client . conf

5. View the current metrics from a client. The default metrics topicis _emr -

client - metrics .

Kafka - console - consumer . sh -- Topic _ emr - client -
metrics -- Bootstrap - server emr — worker - 1 : 9092

-- from - beginning

The returned message is shown as follows.

{ prefix =
, client
attribute
timestamp

tag . client - id

producer |,

request - rate ,
1533805225 045
producer - 1 }

client . ip = 192 . 168 . XXX . XXX

process = 25536 @ emr - header - 1 . cluster - xxxx ,

value = 894 . 4685104965 012 ,
group = producer - metrics ,

Note:
Field name Description:
client.ip The IP address of a client host.

client.process

The process ID of a client-side applicatio
n.

attribute The attribute name of a metric.
value The value of a metric.
timestamp The timestamp when you collect a metric

tag.xxx

Other tag information of a metric.

2 Use E-MapReduce to process offline jobs

This section describes how to use E-MapReduce to read data from OSS, and a set of

offline data processing operations, such as data collection and data clean-up.
Overview

E-MapReduce clusters can be used in various scenarios. E-MapReduce supports all
the scenarios that the Hadoop ecosystem and Spark support. E-MapReduce is based
on Hadoop and Spark clusters. You can use Alibaba Cloud ECS instances hosted by E-

MapReduce clusters in the same way as you would on your physical machines.

Two popular kinds of big data processing that we use today are offline and online data

processing.

- Offline data processing: You only want to obtain the analytical results of data
without a major concern about the time it takes. For example, in a batch data
processing scenario, you receive data from OSS and output processing results to
0SS, using MapReduce, Hive, Pig, and Spark.

- Online data processing: You want to obtain the analytical results of data with a
strict requirement on the time it takes, such as real-time streaming data processing
. Deeply integrated with Spark MLlib, GrapX, and SQL, Spark Streaming can be

used to process streaming messages.
This section describes how to run an offline job called word count in E-MapReduce.
Process
0SS -> EMR -> Hadoop MapReduce
This process includes two steps:

1. Store data to OSS.
2. Read data from OSS and analyze the data by using E-MapReduce.

Prerequisites

- The following steps are performed in a Windows system. You need to ensure that

Maven and Java have been installed and configured properly into your system.

- You can use E-MapReduce to automatically create a Hadoop cluster. For more

information, see Create a cluster.

- EMR Version: EMR-3.12.1

- Cluster Type: HADOOP

- Software: HDFS2.7.2, YARN2.7.2, Hive2.3.3, Ganglia3.7.2, Spark2.3.1, HUE4.1.0,
Zeppelin0.8.0, Tez0.9.1, Sqoop1.4.7, Pig0.14.0, ApacheDS2.0.0, and Knox0.13.0

- The network type of this Hadoop cluster is VPC in the China (Hangzhou) region.
The master instance group is configured with a public IP and an internal
network IP. The high availability mode is set to No (a non-HA mode). The

following figure shows the details.

Cluster
dtplus_docs Pay-As-You-Go
C-DC57F7CB35A17ECD Yes Idle EMR-3.14.0
cn-hangzhou No 1 Hoursl Minutesd6 Seconds AliyunEmrEcsDefaultRole
2018-11-13 10:28:29 Standard
Software Network
cn-hangzhou-f
vpc
2.7.2 [Hive2 3.3 / Ganglia3.7.2 / Spark2.3.1 / HUE4.1.0 / Tez0.9.1 / Sqoopl47
Pig0.14.0 / ApacheDS2.0.0 / Knox0.13.
I Host Master Instance Group 4&
Master Instance Grou :":NAS_EB] _ ECSID EERETE Public IP Intranet IP Created At
Pay-As-You-Go
Hosts: 1 CPU: 4 Cores __ i
2700y @ Norma 47.110.64.34 192.168.1.20 2018-11-13 10:28:35

Memory: BGB

Data Disk Type: 55D DiskBOGE*1 Disks

Care Instance Group(CORE)
Pay-As-You-Go

Hosts: 2 CPU: 4 Cores
Memory: BGB

Data Disk Type: Ultra DiskB0GB*4 Disks

Procedures
1. Download sample code to your local disk.
Open git bash in your system and execute the clone command as follows.

git clone https :// github . com / aliyun / aliyun - emapreduce
- demo . git

Executethe mvn dinstall command to compile the code.

. For more information about how to create a bucket, see Create a bucket.

E] Note:

You must create a bucket and an E-MapReduce cluster in the same region.

. Upload jar packages and resource files

a. Log on to the OSS console and click the Files tab.

b. Click Upload to upload resources files in the aliyun - emapreduce - demo /
resources directory and jar packagesinthe aliyun - emapreduce - demo
/ target directory.

. Create a workflow project

For more information, see Workflow project management.

. Create a job

For more information, see Edit jobs. Take a MapReduce job as an example.

New Job

Description:

* Type She

Cancel

https://oss.console.aliyun.com
../DNemapreduce1876943/EN-US_TP_17961.dita#concept_rqw_qz2_z2b
../DNemapreduce1876943/EN-US_TP_17962.dita#concept_iny_t1f_z2b

6. After you configure a job, click Run. The following figure shows the details.

- For more information about how to use 0SS, see #unique_7.
- For more information about how to configure jobs, see the job section of the E-

MapReduce User Guide.

Note:

- If the OSS output URI already exists, an error occurs when you execute a job.

- When you click the Insert an OSS UNI button and select OSSREF as a File Prefix
, E-MapReduce downloads OSS files to your cluster and add these files to a
specified classpath.

- Currently, only OSS Standard storage is supported for all operations.
View logs

For more information about how to view logs of an execution plan, see Connect to a

cluster using SSH.

../DNemapreduce1876943/EN-US_TP_17923.dita#concept_sns_sww_y2b
../DNemapreduce1876943/EN-US_TP_17923.dita#concept_sns_sww_y2b

3 Submit Storm topologies to process data in
Kafka on E-MapReduce

This topic describes how to deploy Storm clusters and Kafka clusters on E-

MapReduce and run Storm topologies to consume data in Kafka.
Prepare the environment

The test is performed using EMR that is deployed in the China East 1 (Hangzhou)
region. The version of EMR is 3.8.0. The component versions required for this test are

as follows.

- Kafka: 2.11_1.0.0
- Storm: 1.0.1

In this topic, we use Alibaba Cloud E-MapReduce to create a Kafka cluster

automatically. For more information, see Create a cluster.

- Create a Hadoop cluster

Version Configuration

EMR-3.8.0
@) Hadoep Kafka

ApacheDS (2.0.0) Knox (0.13.0) Hadoop YARN (2.7.2) Hadoop HDFS (2.7.2)
Ganglia (3.7.2) Zepplin (0.7.1) HUE(3.12.0) Sgoop (1.4.6) Tez (0.8.4)
Pig (0.14.0) Spark (22.1) Hive (2.3.2)

[omiog

../DNemapreduce1883011/EN-US_TP_17840.dita#concept_nrp_154_y2b

- Create a Kafka cluster

Wersion Configuration
EMR-3.8.0
Hadoop -l Kafka

Zookeeper (3.4.8) Kafka Manager (1.3.3.13) Kafka (2.11_1.0.0) Ganglia (3.7.2)

O
|:| Note:

- If you choose classic network as the network type, put the Hadoop cluster
and the Kafka cluster in the same security group to save time for configuring
connections between instances.

- Ifyou choose VPC as the network type, put the Hadoop cluster and the Kafka
cluster in the same VPC and the same security group to save time for configurin
g a VPC peering connection.

- If you are familiar with networking and security groups for ECS, you can create

configurations as needed.

- Configure the environment for Storm

Consuming Kafka data fails if you run Storm topologies in the initial environment.
To avoid such failures, you need to install the following dependencies for the Storm

environment:

- curator-client

- curator-framework

- curator-recipes

- json-simple

- metrics-core

- scala-library

- zookeeper

- commons-cli

- commons-collections
- commons-configuration
- htrace-core

- jcl-over-slf4j

- protobuf-java

- guava

- hadoop-common

- kafka-clients

- kafka

- storm-hdfs

- storm-kafka

These dependencies have been tested. If you need additional dependencies,

perform the following operations to add them to the lib folder of Storm.

http://central.maven.org/maven2/org/apache/curator/curator-client/2.10.0/curator-client-2.10.0.jar
http://central.maven.org/maven2/org/apache/curator/curator-framework/2.10.0/curator-framework-2.10.0.jar
http://central.maven.org/maven2/org/apache/curator/curator-recipes/2.10.0/curator-recipes-2.10.0.jar
http://central.maven.org/maven2/com/googlecode/json-simple/json-simple/1.1/json-simple-1.1.jar
http://central.maven.org/maven2/com/yammer/metrics/metrics-core/2.2.0/metrics-core-2.2.0.jar
http://central.maven.org/maven2/org/scala-lang/scala-library/2.11.7/scala-library-2.11.7.jar
http://central.maven.org/maven2/org/apache/zookeeper/zookeeper/3.4.6/zookeeper-3.4.6.jar
http://central.maven.org/maven2/commons-cli/commons-cli/1.3.1/commons-cli-1.3.1.jar
http://central.maven.org/maven2/commons-collections/commons-collections/3.2.2/commons-collections-3.2.2.jar
http://central.maven.org/maven2/commons-configuration/commons-configuration/1.6/commons-configuration-1.6.jar
http://central.maven.org/maven2/org/htrace/htrace-core/3.0.4/htrace-core-3.0.4.jar
http://central.maven.org/maven2/org/slf4j/jcl-over-slf4j/1.6.6/jcl-over-slf4j-1.6.6.jar
http://central.maven.org/maven2/com/google/protobuf/protobuf-java/2.5.0/protobuf-java-2.5.0.jar
http://search.maven.org/remotecontent?filepath=com/google/guava/guava/23.0/guava-23.0.jar
http://central.maven.org/maven2/org/apache/hadoop/hadoop-common/3.0.0/hadoop-common-3.0.0.jar
http://central.maven.org/maven2/org/apache/kafka/kafka-clients/1.0.0/kafka-clients-1.0.0.jar
http://central.maven.org/maven2/org/apache/kafka/kafka_2.10/0.10.0.1/kafka_2.10-0.10.0.1.jar
http://central.maven.org/maven2/org/apache/storm/storm-hdfs/1.1.2/storm-hdfs-1.1.2.jar
http://central.maven.org/maven2/org/apache/storm/storm-kafka/1.1.2/storm-kafka-1.1.2.jar

[hadoop@emr-header-1 ~]$ 11
total 8524
-PW-PW-P--
-PW-PW-P--
-PW-PW-P--
-PW-r--r--
-rPW-r--r--
-PW-r--r--
-PW-PW-Pr--

hadoop hadoop 52988 Jun commons-cli-1.3.1, jar

hadoop hadoop 588337 Nov commons-collections-3.2.2.jar
hadoop hadoop 298829 Feb commons-configuration-1.6.jar
root root 73448 Feb curator-client-2.10.0. jar
root root 195437 Feb curator-framework-2.10.0. jar
root root 281476 Feb curator-recipes-2.10.0. jar
hadoop hadoop 31212 Apr htrace-core-3.0.4.jar

hadoop hadoop 17289 Jun jcl-over-slf4j-1.6.6.jar
hadoop hadoop 16046 Aug json-simple-1.1.jar

hadoop hadoop 82123 Nov metrics-core-2.2.0.jar
-rw-rw-r-- 1 hadoop hadoop 533455 Mar protobuf-java-2.5.0. jar
-rw-r--r-- 1 root root 5745606 Feb scala-library-2.11.7.jar
-rw-rw-r-- 1 hadoop hadoop 792964 Feb zookeeper-3.4.6. jar
[hadoop@emr-header-1 ~]1$ pwd

/home/hadoop

[hadoop@emr-header-1 ~]$ sudo cp ./* /usr/lib/storm-current/lib/

-PW-rw-r--

-PW-rw-r--
-PW-rW-r--

R R R RRRRRRRRR

You need to perform the preceding operations on each node in the Hadoop cluster.
After the operations are complete, restart Storm in the E-MapReduce console as

shown in the following figure.

Services Monitoring Data

cpu_idle(35)

Actions «

CONFIGURE All Components

START All Compenents

STOP All Components

RESTART All Compeonents

RESTART Logviewer

RESTART Mimbus e p—
RESTART Supervisor

RESTART U

——————— P bctions ~ 25%

T
a
E]
[%:]
4

-
Actions *

You can view operation logs to check the status of Storm:

Operation Logs Refresh

D Operation Start Time Duration (s) Status Progress (%) Remarks Manage

]
[

Create Storm topologies and Kafka topics

- E-MapReduce provides sample code that you can use directly. The links are as

follows:

- e-mapreduce-demo
- e-mapreduce-sdk

- Write data to topics

1. Log on to the Kafka cluster.

2. Create a test topic with 10 partitions and 2 replicas.

/ usr / lib / kafka - current / bin / kafka - topics . sh --
partitions 10 -- replicatio n - factor 2 —-- zookeeper
emr - header - 1 :/ kafka - 1 . 06 . @ -- topic test -- create

3. Write 100 records of data to the test topic.

/ usr / lib / kafka - current / bin / kafka - producer - perf

- test . sh —-- num - records 100 -- throughput 10000 --
record - size 1024 -- producer - props bootstrap . servers =
emr - worker - 1 : 9092 -- topic test
il
Note:

The preceding command is run on the emr-header-1 node in the Kafka cluster. You

can also run the command on client nodes.

- Run a Storm topology.

Log on to the Hadoop cluster, compile the project and copy the examples - 1 .
1 - shaded . jar filethatunder/ target / shaded directory tothe emr-
header-1 node. In this example, the file is stored in the HDFS root directory. Run

the following command to submit the topology:

/ usr / 1lib / storm - current / bin / storm jar examples - 1 . 1
- shaded . jar com . aliyun . emr . example . storm . StormKafka

https://github.com/aliyun/aliyun-emapreduce-demo
https://github.com/aliyun/aliyun-emapreduce-sdk

Sample test aaa . bbb . ccc . ddd hdfs :// emr - header - 1
9000 sample

- View the running status of a topology
- View the running status of Storm

You can use the Web UI to view the services on a cluster in the following ways:

B With Knox. For more information, see Knox instructions.

B Use SSH. For more information, see Use SSH to log on to a cluster.

In this topic, we use SSH to access the Web UI. The endpointis http ://

localhost : 9999 / index . html .You can see the topology that we have
submitted. Click the topology to view the running logs:

Topology actions

Deactivate Rebalance Kill Change Log Level

Topology stats

Window A Emitted Transferred Complete latency (ms) Acked Failed

10m Os 40 0 [}

3h Om 0s 640 400 22.200 100

1d Oh Om Os 640 400 22.200 100

All time 640 400 22.200 100

Spouts (All time)

Search:

Id * Executors Tasks Emitted Transferred Complete latency (ms) Acked Failed Error Host Error Port Last error Error Time

spout 1 1 280 220 22.200 100 0

Showing 1to 1 of 1 entries

Bolts (All time)

Search:

Id * Executors Tasks Emitted Transferred Capacity (last 10m) Execute latency (ms) Executed Process latency (ms) Acked Failed Error Host ErrorPort Lasterror Error Time

__acker 1 1 180 80 0.000 0.000 200 0.000 200 0

bolt 1 1 180 100 0.000 0.400 100 0.200 100 0

Showing 1 to 2 of 2 entries

- View the output files in HDFS

B View the output files in HDFS.

[root @ emr - header - 1 ~]# hadoop fs - 1s / foo /

- rw-r ——r -- 3 root hadoop 615000 2018 - 02
- 11 13 : 37 / foo / bolt - 2 - @ - 1518327393 692 . txt
- frw - r ——r -- 3 root hadoop 205000 2018 - 02

- 11 13 : 37 / foo / bolt - 2 - 0 - 1518327441 777 . txt
[root @ emr - header - 1 ~]# hadoop fs - cat / foo /
bolt - 2 - 0 - 1518327441 777 . txt | we - 1

200

B Write 120 records of data to the test topic in Kafka.

[root @ emr - header - 1 ~]# / usr / 1lib / kafka - current

/ bin / kafka - producer - perf - test . sh -- num - records
120 -- throughput 10000 -- record - size 1024 --

producer - props bootstrap . servers = emr - worker - 1

9092 -- topic test

../DNemapreduce1876943/EN-US_TP_17921.dita#concept_knp_s1x_y2b
../DNemapreduce1876943/EN-US_TP_17923.dita#concept_sns_sww_y2b

120 records sent , 816 . 326531 records / sec (0 . 80

MB / sec), 35 . 37 ms avg latency , 134 . 00 ms
max latency , 35 ms 50th , 39 ms 95th , 41 ms
99th , 134 ms 99 . 9th .

B Output the line number of the HDFS file.

[root @ emr - header - 1 ~]# hadoop fs - cat / foo /
bolt - 2 - 0 - 1518327441 777 . txt | wc -1
320

Summary

We have successfully deployed a Storm cluster and a Kafka cluster on E-MapReduce
, run a Storm topology and consumed Kafka data. E-MapReduce also supports the
Spark streaming and the Flink components, which can run in Hadoop clusters and

process Kafka data.

Note:

E-MapReduce does not provide the Storm cluster option. Therefore, we have created
a Hadoop cluster and have installed the Storm components. If you do not need to use
other components, you can easily disable them in the E-MapReduce console. Then a

Hadoop cluster is equivalent to a Storm cluster.

4 Use ES-Hadoop on E-MapReduce

ES-Hadoop is a tool used to connect the Hadoop ecosystem provided by Elasticsearch
(ES). It enables users to use tools such as MapReduce (MR), Spark, and Hive to process
data in ES (ES-Hadoop also supports taking a snapshot of ES indices and storing it in
HDFS, which is not discussed in this topic).

Background

We know that the advantage of the Hadoop ecosystem is processing large data sets.
But the disadvantage is also obvious: interactive analysis can be delayed. ES is adept
at many types of queries, especially ad-hoc queries. Subsecond response time has
been reached. ES-Hadoop has combined both advantages. With ES-Hadoop, users
only need to make small changes to the code for quickly processing data stored in ES.

ES also provides acceleration.

ES-Hadoop uses ES as the data source of data processing engines, such as MR, Spark,
and Hive. ES plays the role of storage in architectures where compute and storage are
separated. This is the same for other data sources of MR, Spark, and Hive. But ES has
faster data filtering ability compared with other data sources. This ability is one of the

most critical abilities of an analytics engine.

EMR has already integrated with ES-Hadoop. Users can use ES-Hadoop directly

without any configurations. The following examples introduce ES-Hadoop on EMR.
Preparation

ES can automatically create indices and identify data types based on input data. In
some cases, this feature is helpful, by avoiding many actions by users. However, it
also cause problems. The biggest problem is that sometimes the data types identified
by ES are not correct. For example, we define a field called age. The data type of this
column is INT but it may be identified as LONG in the ES index. Users need to convert
data types when performing some specified actions. We recommend that you create

indices manually to avoid such problems.

In the following examples, we use the company index and the employees ' type (you

can consider an ES index as a database and a type as a table in the database). This

type defines four fields (field types are defined by ES).
{

" 49d ": Tlong ,

" name ": text ,

" age ": nteger ,
" birth ": date

}

Run the following commands to create an index in Kibana (you can also use cURL

commands):
PUT company
{
" mappings ": {
" employees ": {
" properties ": {
n -id Il: {
n type n : n 'Long n
"’name Mo &
n type ll: n text H’
" fields ": {
" keyword ": {
" type ": " keyword ",
" ignore_abo ve ": 256
+
}
I
" birth ": {
n type Il: n date n
I
" addr ": {
n type Il: n text n
}
}
1,
" settings ": {
" dndex ": {
" number_of_ shards ": " 5 ",
" number_of_ replicas ": " 1 "
+
}
}
Note:

Specify the index parameters in settings as needed. This step is optional.

Prepare a file where each row is a JSON

object as follows:

{" -d 1, name ": " zhangsan ", " birth ": " 1990 - 01 - @1 ", "
addr ": " No . 969 , wenyixi Rd , yuhang , hangzhou "}

{" 49d ": 2, " name ": " 1isi ", " birth ": " 1991 - 01 - @1 ", "
addr ": " No . 556 , xixi Rd , xihu , hangzhou "}

{" id " 3, " name ": " wangwu ", " birth ": " 1992 - 01 - 01 ", "
addr ": " No . 699 wangshang Rd , binjiang , hangzhou "}

Save the file to the specified directory in HDFS (for example, / es - hadoop /

employees . txt).

Mapreduce

In the following example, we read the JSON files in the / es - hadoop directory in
HDFS and write each row in the JSON files into ES as a document. Writing is finished
in the map stage through EsOutputFormat.

Use the following options to set ES.

- es.nodes: ES nodes. The formats is host:port. For ES hosted on Alibaba Cloud, set
the value to the endpoint of ES provided by Alibaba Cloud.

- es.net.http.auth.user: Username.
- es.net.http.auth.pass: Password.
- es.nodes.wan.only: For ES hosted on Alibaba Cloud, set the value to true .

- es.resource: The indices and types of ES.
- es.input.json: If the input file is in JSON format, set the value to true . Otherwise,

you need to parse the input data using the map() function and output the

corresponding Writable class.

Notice:

Disable speculative execution for map tasks and reduce tasks

package com . aliyun . emr ;

import java . io . IOExceptio n ;

import org . apache . hadoop . conf . Configurat don ;

import org . apache . hadoop . fs . Path ;

import org . apache . hadoop . io . NullWritab Tle ;

import org . apache . hadoop . io . Text ;

import org . apache . hadoop . mapreduce . Job ;

import org . apache . hadoop . mapreduce . Mapper ;

import org . apache . hadoop . mapreduce . lib . dinput .
FileInputF ormat ;

import org . apache . hadoop . mapreduce . lib . dinput .
TextInputF ormat ;

import org . apache . hadoop . util . GenericOpt -ionsParser ;
import org . apache . hadoop . util . Tool ;

import org . apache . hadoop . util . ToolRunner ;

import org . elasticsea rch . hadoop . mr . EsOutputFo rmat ;

public class Test implements Tool {
private Configurat -on conf ;

@ Override
public int run (String [] args) throws Exception {

String [] otherArgs = new GenericOpt dionsParser (conf ,
args). getRemaini ngArgs ();

conf . setBoolean (" mapreduce . map . speculativ e ", false);

conf . setBoolean (" mapreduce reduce . speculativ e ", false
)3
conf . set (" es nodes ", "< your_es_ho st >: 9200 ");
conf . set (" es net . http auth user ", "< your_usern ame
>1) ;5
conf . set (" es net . http auth pass ", "< your_passw ord
>my;
conf . set (" es nodes . wan . only ", " true ");
conf . set (" es resource ", " company / employees ");
conf . set (" es input . json ", " yes ");
Job job = Job getInstanc e (conf);
job . setInputFo rmatClass (TextInputF ormat . class);
job . setOutputF ormatClass (EsOutputFo rmat . class);
job . setMapOutp utKeyClass (NullWritab 1le . class);
job . setMapOutp utValueCla ss (Text . class);
job . setJarByCl ass (Test . class);
job . setMapperC Tlass (EsMapper class);
FileInputF ormat setInputPa ths (job , new Path (
otherArgs [0 1));
return job . waitForCom pletion (true) 2 0 : 1 ;
}
@ Override
public void setConf (Configurat -on conf) {
this conf = conf ;
}
@ Override
public Configurat don getConf () {
return conf ;
}
public static class EsMapper extends Mapper < Object ,
Text , NullWritab 1le , Text > {
private Text doc = new Text ();
@ Override
protected void map (Object key , Text value , Context
context) throws IOExceptio n , Interrupte dException {
if (value getLength () > 0) {
doc . set (value);
context . write (NullWritab 1le . get (), doc);
}
+
}
public static void main (String [] args) throws
Exception {
int ret = ToolRunner . run (new Test (), args);
System . exit (ret);
}

}

Compile and package the code into a JAR file called mr - test . jar .Submititto
an instance that has installed an EMR client program (such as a gateway, or any node

in an EMR cluster).

Run the following commands on any node that has installed an EMR client to run the
MapReduce program:
hadoop jar mr - test . jar com . aliyun . emr . Test -

Dmapreduce . job . reduces = @ - libjars mr - test . jar / es -
hadoop

At this point, writing data to ES has finished. You can query the written data through

Kibana (or by using the cURL commands).

GET
{
" query ": {
" match_all ": {}
}

}
Spark

In this example, we write data to an index in ES using Spark instead of MapReduce.
Spark persists a resilient distributed dataset (RDD) to ES using the JavaEsSpark class.
Users also need to use the options mentioned above in the MapReduce section to set
ES.

package com . aliyun . emr ;

import java . util . Map ;

import java . util . concurrent . atomic . AtomicInte ger ;
import org . apache . spark . SparkConf ;

import org . apache . spark . SparkConte xt ;

import org . apache . spark . api . java . JavaRDD ;

import org . apache . spark . api . java . function . Function ;
import org . apache . spark . sql . Row ;

import org . apache . spark . sql . SparkSessi on ;

import org . elasticsea rch . spark . rdd . api . java
JavaEsSpar k ;

import org . spark_proj ect . guava . collect . ImmutableM ap ;

public class Test {

public static void main (String [] args) {
)

SparkConf conf = new SparkConf ();

conf . setAppName (" Es - test ");

conf . set (" es . nodes ", "< your_es_ho st >: 9200 ");

conf . set (" es . net . http . auth . user ", "< your_usern ame
>")s

conf . set (" es . net . http . auth . pass ", "< your_passw ord

>3
conf . set (" es . nodes . wan . only ", " true ");

SparkSessi on SS = new SparkSessi on (new SparkConte
xt (conf));

final AtomicInte ger employeesN o = new AtomicInte ger
(0);

JavaRDD < Map < Object , ? >> javaRDD = ss . read (). text ("

hdfs :// emr - header - 1 : 9000 / es - hadoop / employees . txt ")

. javaRDD (). map ((Function < Row , Map < Object , ?
>>) row -> ImmutableM ap . of (" employees " + employeesN o .
getAndAdd (1), row . mkString ()));

JavaEsSpar k . saveToEs (javaRDD , " company / employees ");

}
}

Package the code in a JAR file called spark-test.jar. Run the following command to
write data:

spark - submit -- master yarn -- class com . aliyun . emr
Test spark - test . jar

After the task has finished, you can query the results through Kibana or the cURL

commands.

In addition to Spark RDD . ES-Hadoop also provides a Spark SQL component to

read and write ES data. For more information, see the official website of ES-Hadoop.
Hive
This example introduces SQL statements to read and write ES data through Hive.

First, run the hive command to enter CLI and create a table:
CREATE DATABASE IF NOT EXISTS company

Then create an external table that is stored in ES. Specify the option using

TBLPROPERTIES.

CREATE EXTERNAL table IF NOT EXISTS employees (
id BIGINT ,
name STRING ,
birth TIMESTAMP ,
addr STRING

STORED BY ' org . elasticsea rch . hadoop . hive . EsStorageH

andler '
TBLPROPER IES (
' es . resource ' = ' tpcds / ss ',
' es . nodes ' = '< your_es_ho st >',
''es . net . http . auth . user ' = '< your_usern ame >',
'es . net . http . auth . pass ' = '< your_passw ord >',
' es . nodes . wan . only ' = ' true ',
' es . resource ' = ' company / employees '
)3
Note:

We set the data type of the birth columns to TIMESTAMP in the Hive table. In ES,
we set it to DATE. This is because Hive and EC handle data types differently. Parsing

of converted date data can fail when Hive writes data to ES. In contrast, parsing of

https://www.elastic.co/guide/en/elasticsearch/hadoop/current/spark.html

returned data can also fail when Hive reads ES data. For more information, click here

Insert some data into the table:

INSERT INTO TABLE employees VALUES (1 , " zhangsan ", "
1990 - 01 - 01 "," No . 969 , wenyixi Rd , yuhang , hangzhou
"

INSERT INTO TABLE employees VALUES (2 , " ldisi ", " 1991 -
1 - 01 ", " No . 556 , xixi Rd , xihu , hangzhou ");

INSERT INTO TABLE employees VALUES (3 , " wangwu ", " 1992
- 01 -01", " No . 699 wangshang Rd , binjiang , hangzhou ");

Execute queries to view the results:

SELECT % FROM employees LIMIT 100 ;
OK

1 zhangsan 1990 - 01 - 01 No . 969 , wenyixi Rd ,
yuhang , hangzhou

2 lisi 1991 - 01 - 01 No . 556 , xixi Rd , xihu

, hangzhou

3 wangwu 1992 - 01 - 01 No . 699 wangshang Rd ,

binjiang , hangzhou

https://www.elastic.co/guide/en/elasticsearch/hadoop/current/mapping.html
https://www.elastic.co/guide/en/elasticsearch/hadoop/current/mapping.html

5 Use Mongo-Hadoop on E-MapReduce

Mongo-Hadoop is a component provided by MongoDB for Hadoop components to
connect to MongoDB. Using Mongo-Hadoop is similar to using ES-Hadoop which is
described in the previous topic. EMR has already integrated with Mongo-Hadoop.
Users can directly use Mongo-Hadoop without any deployment configuration. This

topic describes how to use Mongo-Hadoop using some examples.
Preparation

We use the same data model for the following examples:

{
" 49d ": Tlong ,
" name ": text ,
" age ": nteger ,
" birth ": date
}

We write data into the specified collection (similar to a table in a database) in a
MongoDB database. Therefore, we need to first ensure that the collection exists in the
MongoDB database. First, run the MongoDB client program on a client node that can
access the MongoDB database. You may need to download the client program from
the MongoDB website and install it. Take the connection to ApsaraDB for MongoDB as

an example:

mongo -- host dds — XXXXXXXXXX XXXXXXXXXX X . mongodb . rds .
aliyuncs . com : 3717 -- authentica tionDataba se admin - u
root - p 123456
The hostname of the MongoDB database is dds-
XXXXXXXXXXXXXXXXxxxxx.mongodb.rds.aliyuncs.com. The port number is 3717. The
actual port number depends on the MongoDB cluster. For an external MongoDB
cluster that you have deployed on your own, the default port number is 27017. In
this example, the password is set to 123456 using the -p option. Run the following

commands in CLI to create a collection named employees in the company database:

> use company ;
> db . createColl ection (" employees ")

Prepare a file where each row is a JSON object as follows.

{"4d ": 1, " name ": " zhangsan ", " birth ": " 1990 - 01 - @1 ", "
addr ": " No . 969 , wenyixi Rd , yuhang , hangzhou "}

{"did": 2, " name ": " lisi ", " birth ": " 1991 - @1 - 61 ", "

addr ": " No . 556 , xixi Rd , xihu , hangzhou "}
{" did ": 3, " name ": " wangwu ", " birth ": " 1992 - @1 - 01 ", "
addr ": " No . 699 wangshang Rd , binjiang , hangzhou "}

Save the file to the specified directory on HDFS (for example, the file path can be /

mongo - hadoop / employees . txt).
Mapreduce

In the following example, we read JSON files in the / mongo - hadoop directory on

HDFS and write each row in the JSON files as a document to the MongoDB database.

package com . aliyun . emr ;

import com . mongodb . BasicDBObj ect ;

import com . mongodb . hadoop . MongoOutpu tFormat ;
import com . mongodb . hadoop . io . BSONWritab Tle ;
import java . io . IOExceptio n ;

import org . apache . hadoop . conf . Configurat don ;
import org . apache . hadoop . fs . Path ;

import org . apache . hadoop . io . Text ;

import org . apache . hadoop . mapreduce . Job ;

import org . apache . hadoop . mapreduce . Mapper ;
import org . apache . hadoop . mapreduce . lib . dinput .
FileInputF ormat ;

import org . apache . hadoop . mapreduce . lib . dinput .
TextInputF ormat ;

import org . apache . hadoop . util . GenericOpt -ionsParser ;
import org . apache . hadoop . util . Tool ;

import org . apache . hadoop . util . ToolRunner ;

public class Test implements Tool {
private Configurat -on conf ;

@ Override
public dint run (String [] args) throws Exception {

String [] otherArgs = new GenericOpt ionsParser (conf ,
args). getRemaini ngArgs ();

conf . set (" mongo . output . uri ", " mongodb ://< your_usern
ame >:< your_passw ord >@ dds - XXXXXXXXXX XXXXXXXXXX X . mongodb
rds . aliyuncs . com : 3717 / company . employees ? authSource =
admin ");

Job job = Job . getInstanc e (conf);

job . setInputFo rmatClass (TextInputF ormat . class);
job . setOutputF ormatClass (MongoOutpu tFormat . class);
job . setOutputK eyClass (Text . class);

job . setMapOutp utValueCla ss (BSONWritab 1le . class);

job . setJarByCl ass (Test . class);
job . setMapperC Tlass (MongoMappe r . class);

FileInputF ormat . setInputPa ths (job , new Path (
otherArgs [0 1));

return job . waitForCom pletion (true) ? 0 : 1 ;

}

@ Override
public Configurat -on getConf () {
return conf ;
}

@ Override
public void setConf (Configurat -on conf) {
this . conf = conf ;
}

public static class MongoMappe r extends Mapper < Object
, Text , Text , BSONWritab 1le > {

private BSONWritab Tle doc = new BSONWritab 1le ();
private int employeeNo = 1 ;
private Text id

@ Override
protected void map (Object key , Text value , Context
context) throws IOExceptio n , Interrupte dException {
if (value . getLength () > 0) {
doc . setDoc (BasicDBObj ect . parse (value . toString

()));
id = new Text (" employee " + employeeNo ++);
context . write (id , doc);
}
}
}

public static void main (String [] args) throws
Exception {
int ret = ToolRunner . run (new Test (), args);
System . exit (ret);

}
}

Compile and package the code into a JAR file called mr - test . jar .Runthe

following command:

hadoop jar mr - test . jar com . aliyun . emr . Test -
Dmapreduce . job . reduces = 0@ - libjars mr - test . jar / mongo
- hadoop

After the execution is complete, you can view the results using the MongoDB client

program:

> db . employees . find ();

{" _id " : " employeel ", " id " : 1 , " pame " : " zhangsan ", "
bﬁrthh" HL 139@ —hel - ?1 ", "maddr " : " No . 969 , wenyixi Rd
, Yyuhang , angzhou

{" _id " : " employee2 ", " id " : 2 , " pname " : " lisi ", " birth
"o " 1991 - 01 - 01 ", " addr " : " No . 556 , xixi Rd , xihu

, hangzhou " }

{ " _id " : " employee3 ", " id " : 3, name wangwu ",
birth " " 1992 - 01 - 01 ", " addr " " No 699 wangshang Rd
, binjiang , hangzhou " }
Spark
In this example, we write data to a MongoDB database using Spark instead of
MapReduce.
package com aliyun emr ;
import com . mongodb BasicDBObj ect ;
import com . mongodb hadoop MongoOutpu tFormat ;
import java util concurrent atomic . AtomicInte ger ;
import org . apache hadoop conf . Configurat ion ;
import org . apache spark . SparkConte xt ;
import org . apache spark api . java JavaPairRD D ;
import org . apache spark api java JavaRDD ;
import org . apache spark api java function Function ;
import org . apache spark sql Row ;
import org . apache . spark . sql SparkSessi on ;
import org . bson BSONObject ;
import scala Tuple2 ;
public class Test {
public static void main (String [] args) {
SparkSessi on ss = new SparkSessi on (new SparkConte
xt ());
final AtomicInte ger employeeNo = new AtomicInte ger (
0);

3

JavaRDD < Tuple2 < Object ,
ss

mongo - hadoop / employees txt ")

javaRDD (). map ((Function < Row ,

BSONObject >>

javaRDD
read (). text (" hdfs :// emr - header - 1

9000 /

Tuple2 < Object ,

BSONObject >>) row -> {
BSONObject bson = BasicDBObj ect parse (row .
mkString ());
return new Tuple2 <>(" employee " + employeeNo
getAndAdd (1), bson);
1}
JavaPairRD D < Object , BSONObject > documents = JavaPairRD
D fromJavaRD D (javaRDD);
Configurat -on outputConf +dig = new Configurat don ();
outputConf g . set (" mongo output uri ", " mongodb ://<
your_usern ame >:< your_passw ord >@ dds — XXXXXXXXXX XXXXXXXXXX

X mongodb rds aliyuncs com 3717 / company employees ?
authSource = admin ");
// It is saved as a " Hadoop file ." Actually , the
data is written into the MongoDB database through
the MongoOutpu tFormat class
documents saveAsNewA PIHadoopFi le (

" file :/// this - dis - completely - unused ",

Object class ,

BSONObject class ,
MongoOutpu tFormat class ,
outputConf -g

)3

Package the code into a JAR file named spark - test . jar .Run the following

command to write data.

spark - submit -- master yarn -- class com . aliyun . emr .
Test spark - test . jar

After the writing has finished, you can use the MongoDB client to view the results.
Hive

This example describes how to use Hive to read and write data in MongoDB databases

through SQL statements.
First, runthe hive command to enter CLI mode and create a table:

CREATE DATABASE IF NOT EXISTS company ;

You need to create an external table that is stored in a MongoDB database. Before you
do that, create a MongoDB collection named employees as described in the Preparatio

n section.

Go back to CLI mode, execute the following SQL statements to create an external

table. Connection to MongoDB is set through the TBLPROPERTIES clause.

CREATE EXTERNAL TABLE IF NOT EXISTS employees (
id BIGINT ,
name STRING ,
birth STRING ,
addr STRING

STORED BY ' com . mongodb . hadoop . hive . MongoStora geHandler
1

WITH SERDEPROPE RTIES (' mongo . columns . mapping '='{" +id ":"
_id "}')

TBLPROPERT IES (' mongo . uri '=' mongodb ://< your_usern ame >:<
your_passw ord >@ dds — XXXXXXXXXX XXXXXXXXXX X . mongodb . rds .
aliyuncs . com : 3717 / company . employees ? authSource = admin ');

Notice:
Values of the id column in Hive are mapped to values of the _id column in MongoDB
through SERDEPROPERTIES. You can map column values as needed. Note that the
data type of the birth column is set to STRING. The reason is that Hive and MongoDB
handle DATE format differently. After Hive sends data in DATE format to MongoDB,

NULL may be returned when the data is queried in Hive.

Insert some data into the table:

INSERT INTO TABLE employees VALUES (1 , " zhangsan ", "
1990 - 01 - 01 "," No . 969 , wenyixi Rd , yuhang , hangzhou
"

INSERT INTO TABLE employees VALUES (2 , " 1ldisi ", " 1991 -
1 - 01 ", " No . 556 , xixi Rd , xihu , hangzhou ");

INSERT INTO TABLE employees VALUES (3 , " wangwu ", " 1992
- 01 -01", " No . 699 wangshang Rd , binjiang , hangzhou ");

Execute the following statement to see the results:

SELECT * FROM employees LIMIT 100 ;

OK

1 zhangsan 1990 - 01 - 01 No . 969 , wenyixi Rd ,
yuhang , hangzhou

2 lisi 1991 - 01 - 01 No . 556 , xixi Rd , xihu
, hangzhou

3 wangwu 1992 - 01 - 01 No . 699 wangshang Rd ,

binjiang , hangzhou

6 Deep learning with Analytics Zoo on E-
MapReduce

This topic describes how to use Analytics Zoo to develop deep learning applications
on Alibaba Cloud E-MapReduce.

Introduction

Analytics Zoo is an analytics and Al platform that unites Apache Spark and Intel
BigDL into an integrated pipeline. It helps users develop deep learning applications

based on big data and end-to-end pipelines.
System requirements

- JDK 8
- Spark cluster (Spark 2.x supported by EMR is recommended)
- Python 2.7(also Python 3.5 or Python 3.6), pip

Installation of Analytics Zoo

- The latest release of Analytics Zoo is 0.2.0.

- Installation for Scala users
- Download the pre-build version.

You can download the Pre-build version from the Analytics Zoo page on GitHub.

- Build Analytics Zoo using the make-dist.sh script.
Install Apache Maven and set the environment variable MAVEN_OPTS as follows:

export MAVEN_OPTS ="- Xmx2g - XX : ReservedCo deCacheSiz e =
512m "

If you use ECS instances to compile code, we recommend that you modify the

mirror of the Maven repository.

< mirror >

< id > nexus - aliyun </ id >

< mirrorOf > central </ mirrorOf >

< name > Nexus aliyun </ name >

< url > http :// maven . aliyun . com / nexus / content /
groups / public </ url >

https://analytics-zoo.github.io/master/#release-download/

</ mirror >

Download an Analytics Zoo release. Extract the file, move to the corresponding

directory, and run the following command:

bash make - dist . sh

After building Analytics Zoo, you can find a dist directory, which contains all the
needed files to run an Analytics Zoo program. Use the following command to

copy the files in the dist directory to the directory of the EMR software stack:
cp - r dist / / usr / lib / analytics_ zoo
- Installation for Python users

Analytics Zoo can be installed either with pip or without pip. When you install
Analytics Zoo with pip, PySpark and BigDL are installed. This may cause a software
conflict because PySpark has already been installed on the EMR cluster. To avoid

such conflicts, install Analytics Zoo without pip.
- Installation without pip
First, you need to run the following command:

bash make - dist . sh

Change to the pyzoo directory and install Analytics Zoo:

python setup . py install

- Setting environment variables

After building Analytics Zoo, copy the dist directory to the directory of the EMR

software stack and set the environment variable. Add the following lines to the /

etc / profile . d / analytics_ zoo . sh file.

export ANALYTICS_ ZOO_HOME =/ usr / 1lib / analytics_ zoo
export PATH =$ ANALYTICS_ ZOO_HOME / bin :$ PATH

You do not need to set SPARK_HOME because it has already been set on EMR.

https://github.com/intel-analytics/analytics-zoo

Using Analytics Zoo
- Use Spark to train and test deep learning models.

- Use Analytics Zoo to do text classification. You can find the code and description

on GitHub. Download the required data as required. Submit the following

commands:
spark - submit -- master yarn \
-— deploy - mode cluster -- driver - memory 8g \
-- executor - memory 20g -—- class com . intel . analytics

zoo . examples . textclassi fication . TextClassi fication \

/ usr / lib / analytics_ zoo / 1lib / analytics - zoo - bigdl_0

6 .0 -spark_.2 .1 .0-0.2.0- jar - with - dependenci es
jar -- baseDir / news

- You can log on to the instance of the Spark cluster through ssh proxy to view the

status of the jobs.

Stages for All Jobs

Active Stages: 1
Pending Stages: 1
Completed Stages: 698
Skipped Stages: 293

Active Stages (1)

Stage Id ~ Description Submitted Duration Tasks: Succeeded/Total Input Output Shuffle Read Shuffle Write
1392 reduce at DistriOptimizer.scala:320 +details (kill) 2018/09/12 12:21:47 Unknown 072

Pending Stages (1)

Stage Id ~ Description Submitted Duration Tasks: Succeeded/Total Input Output Shuffle Read Shuffle Write

1391 coalesce at DataSet.scala:361 +details Unknown Unknown 0/4

Completed Stages (698)

Page: 2 3 4 5 6 7 > 7 Pages. Jumpto 1 . Show 100 items in a page. Go
Stage ld ~ Description Submitted Duration Tasks: Succeeded/Total Input Output Shuffle Read Shuffle Write
1390 count at DistriOptimizer.scala:369 +details 2018/09/12 12:21:47 12 ms 2/2 4.5 MB
1388 reduce at DistriOptimizer.scala:320 +details 2018/09/12 12:21:46 09s 2/2 5.6 GB
1386 count at DistriOptimizer.scala:369 +details 2018/09/12 12:21:46 12 ms 2/2 4.5 MB
1384 reduce at DistriOptimizer.scala:320 +details 2018/09/12 12:21:45 10s 2/2 5.6 GB
1382 count at DistriOptimizer.scala:369 +details 2018/09/12 12:21:45 11 ms 2/2 4.5 MB
1380 reduce at DistriOptimizer.scala:320 +details 2018/09/12 12:21:44 09s 2/2 5.6 GB
1378 count at DistriOptimizer.scala:369 +details 2018/09/12 12:21:44 11 ms 7 2/2 4.5 MB
1376 reduce at DistriOptimizer.scala:320 +details 2018/09/12 12:21:43 10s 22 5.6 GB
1374 count at DistriOptimizer.scala:369 +details 2018/09/12 12:21:43 11 ms 2/2 g 4.5MB.

You can also view the accuracy of each epoch through logs.

INFO optim . DistriOpti mizer $: [Epoch 2 9600 / 15107]
[Iteration 194][wall Clock 193 . 266637037s] Trained
128 records in 0 . 958591653 seconds . Throughput is
133 . 52922 records / second . Loss is O . 74216986

INFO optim . DistriOpti mizer $: [Epoch 2 9728 / 15107]
[Iteration 195][wall Clock 194 . 224064816s] Trained
128 records in 0 . 957427779 seconds . Throughput is
133 . 69154 records / second . Loss is O . 51025534

INFO optim . DistriOpti mizer $: [Epoch 2 9856 / 15107]
[Iteration 196][wall Clock 195 . 189488678s] Trained
128 records in 0 . 965423862 seconds . Throughput is
132 . 58424 records / second . Loss is ®@ . 553785

INFO optim . DistriOpti mizer $: [Epoch 2 9984 / 15107]
[Iteration 197][wall Clock 196 . 164318688s] Trained

https://github.com/intel-analytics/analytics-zoo/tree/master/zoo/src/main/scala/com/intel/analytics/zoo/examples/textclassification
../DNemapreduce1876943/EN-US_TP_17923.dita#concept_sns_sww_y2b

128 records in 0 . 97483001 seconds . Throughput is
131 . 30495 records / second . Loss is O . 5517549 .

- Use PySpark and Jupyter to train deep learning models on Analytics Zoo.
- Install Jupyter.
pip install jupyter
- Run the following command to start Jupyter.

jupyter - with - zoo . sh

- We recommend that you use the pre-defined Wide And Deep Learning models

provided by Analytics Zoo, for more information please refer to GitHub.

1. Import data.
@ localhost:8889/notebooks/Untitled1.ipynb?kernel_name=python2
’ 7 Ju pyter Untitled1 Last Checkpoint: 20 minutes ago (autosaved)

File Edit View Insert Cell Kernel Widgets Help

B+ < @& B 44 ¥ MRun H C » Code =]

In [2]: from zoo.models.recommendation import *
from zoo.models.recommendation.utils import *
from zoo.common.nncontext import init_ nncontext
import os
import sys
import datetime as dt
from bigdl.dataset.transformer import *
from bigdl.dataset.base import *
from bigdl.nn.criterion import *
from bigdl.optim.optimizer import *
from bigdl.util.common import *
import matplotlib

matplotlib.use('agg')
import matplotlib.pyplot as plt
%pylab inline

Populating the interactive namespace from numpy and matplotlib
In [3]: sc = init_nncontext("WideAndDeep Example")

MIn [5]: from bigdl.dataset import movielens
movielens_data = movielens.get_id ratings("/tmp/movielens/")
min_user_ id = np.min(movielens_data[:,0])
max_user_id = np.max(movielens_data[:,0])
min_movie_id = np.min(movielens_data[:,1])
max_movie_id = np.max(movielens_data[:,1])
rating labels= np.unique(movielens_data[:,2])

print (movielens_data.shape)
print(min_user_ id, max_user_id, min_movie id, max movie_id, rating labels)

2. Build a model and create an optimizer.

https://github.com/intel-analytics/analytics-zoo/tree/master/zoo/src/main/scala/com/intel/analytics/zoo/examples/recommendation

In [10]:

In [11]:

wide_n_deep = WideAndDeep(5, column_info, "wide n_deep")

creating: createZooWideAndDeep

Create an Optimizer
batch_size = 8000

optimizer = Optimizer(
model=wide_n_deep,
training_rdd=train_data,
criterion=ClassNLLCriterion(),
optim method=Adam(learningrate = 0.001, learningrate decay=0.00005),
end_trigger=MaxEpoch(10),
batch_size=batch_size)

Set the validation logic
optimizer.set_validation(

batch_size=batch_size,

val_rdd=test_data,

trigger=EveryEpoch(),

val_method=[ToplAccuracy(), Loss(ClassNLLCriterion())]
)
log_dir='/tmp/bigdl_summaries/
app_name='wide_n_deep-'+dt.datetime.now().strftime("$Y%msd-%HEMES")
train_summary = TrainSummary(log_dir=log dir,

app_name=app_name)
val_summary = ValidationSummary(log_dir=log_dir,
app_name=app_name)

optimizer.set_train_ summary(train_summary)
optimizer.set_val_ summary(val_summary)
print("saving logs to %s" % (log_dir + app_name))

mmnkimms mmAnkAAT AT T Al kAt A

3. Start the training process.

In [12]: %%time

Boot training process
optimizer.optimize()
print("Optimization Done.")

Optimization Done.
CPU times: user 85.9 ms, sys: 16.7 ms, total: 103 ms
Wall time: 2min 52s

4. View training results.

MIn [16]:

loss = np.array(train_summary.read_scalar("Loss"))
topl = np.array(val_summary.read scalar("ToplAccuracy"))

plt.figure(figsize = (12,12))
plt.subplot(2,1,1)
plt.plot(loss[:,0],loss[:,1],label="loss")
plt.x1im(0,loss.shape[0]+10)
plt.grid(True)

plt.title("loss")

plt.subplot(2,1,2)
plt.plot(topl[:,0],topl[:,1],label="topl')
plt.x1im(0,loss.shape[0]+10)
plt.title("topl accuracy")

plt.grid(True)

loss

E-MapReduce

Best Practices / 6 Deep learning with Analytics Zoo on

E-MapReduce

18

17

16

15

14

13

12

046

044

042

040

038

036

034

1055

topl accuracy

200

600 800

Issue: 20190918

35

7 Adaptive execution of Spark SQL

Spark SQL of Alibaba Cloud Elastic MapReduce (E-MapReduce) 3.13.0 supports
adaptive execution. It is used to set the number of reduce tasks automatically, solve

data skew, and dynamically optimize execution plans.
Solved problems
Adaptive execution of Spark SQL solves the following problems:
- The number of shuffle partitions

Currently, the number of tasks in the reduce stage in Spark SQL depends on the
value of the spark . sql . shuffle . partition parameter (the default value
is 200). Once this parameter has been specified for a job, the number of reduce

tasks in all stages is the same value when the job is running.

For different jobs, and for different reduce stages of one job, the actual data size
can be quite different. For example, data to be processed in the reduce stage may
have a size of 10 MB or 100 GB. If the parameter is specified using the same value,
it has a significant impact on the actual processing efficiency. For example, 10 MB
of data can be processed using only one task. If the value of the spark . sql

. shuffle . partition parameter is set to the default value of 200, then 10
MB of data is partitioned to be processed by 200 tasks. This increases scheduling

overheads and lowers processing efficiency.

By setting the range of the shuffle partition number, the adaptive execution
framework of Spark SQL can dynamically adjust the number of reduce tasks in the

range for different stages of different jobs.

This significantly reduces the costs for optimization (no need to find a fixed value

). Additionally, the numbers of reduce tasks in different stages of one job can be

dynamically adjusted.
Parameter:
Attribute Default value Description
spark.sqgl.adaptive. false Enables or disables
enabled adaptive execution.

Attribute Default value Description

spark.sqgl.adaptive. 1 The minimum number of
minNumPostShufflePar reduce tasks.

titions

spark.sqgl.adaptive. 500 The maximum number of
maxNumPostShufflePar the reduce tasks.

titions

spark.sqgl.adaptive.shuffle | 67108864 Dynamically adjusts the
.targetPostShuffleInp number of reduce tasks
utSize based on the partition size

. For example, if the value
is set to 64 MB, then each
task in the reduce stage
processes more than 64

MB data.
spark.sql.adaptive.shuffle | 20000000 Dynamically adjusts the
.targetPostShuffleRow number of reduce tasks
Count based on the row number

in the partition. For
example, if the value is set
t0 20000000, then each
task in the reduce stage
processes more than 20,
000,000 rows of data.

- Data skew

Data skew is a common issue in SQL join operations. It refers to the scenario where
certain tasks involve too much data in the processing, which leads to long tails.

Currently, Spark SQL does not perform optimization for skewed data.

The Adaptive Execution framework of Spark SQL can automatically detect skewed

data and perform optimization for it at runtime.

SparkSQL optimizes skewed data as follows: it splits the data that is in the skewed
partition, processes the data through multiple tasks, and then combines the results

through SQL union operations.

Supported join types:

Type Description

Inner Skewed data can be handled in both
tables.

Type

Description

skewedPartitionFactor

Cross Skewed data can be handled in both
tables.
LeftSemi Skewed data can only be handled in the
left table.
LeftAnti Skewed data can only be handled in the
left table.
LeftOuter Skewed data can only be handled in the
left table.
RightOuter Skewed data can only be handled in the
right table.
Parameter:
Attribute Default value Description
spark.sql.adaptive. false Enables or disables
enabled the adaptive execution
framework.
spark.sql.adaptive. false Enables or disables the
skewed]Join.enabled handling of skewed data.
spark.sqgl.adaptive. 10 A partition is identified

as a skewed partition
only when the following
scenarios occur. First

, the size of a partition

is greater than this
value (median size of all
partitions) and the value
of the spark.sql.adaptive
.skewedPartitionSizeT
hreshold parameter.
Second, the rows in a
partition are greater than
this value (median rows
in all partitions) and
the value of the spark.
sql.adaptive.skewedPart
itionSizeThreshold
parameter.

verbose

Attribute Default value Description
spark.sqgl.adaptive. 67108864 The size threshold for a
skewedPartitionSizeT skewed partition.
hreshold

spark.sqgl.adaptive. 10000000 The row number
skewedPartitionRowCo threshold for a skewed
untThreshold partition.
spark.shuffle.statistics. false When the value of

this parameter is true

, MapStatus collects
information about the
number of rows in each
partition for handling
skewed data.

- Execution plan optimization at runtime

Catalyst optimizer of Spark SQL converts logical plans that are converted from SQL

statements into physical execution plans and executes those physical execution

plans. However, the physical execution plan produced by Catalyst may not be

optimal because of lack or inaccuracy of statistics. For example, Spark SQL may

choose SortMergeJoinExec instead of BroadcastJoin, while BroadcastJoin is the

optimal option in the scenario.

The Adaptive Execution framework of Spark SQL determines whether to use

BroadcastJoin instead of SortMergeJoin to improve query performance based on

the size of the shuffle write in the shuffle stage.

Parameter:
Attribute Default value Description
spark.sql.adaptive. false Enables or disables
enabled the adaptive execution
framework.
spark.sql.adaptive.join. true Whether to determine
enabled a better join strategy at
runtime.
spark.sql.adaptiveBr Equals to spark.sql. Determines whether to
oadcastjJoinThreshold autoBroadcastJoinThr use broadcast join to
eshold. optimize join queries.

E-MapReduce

Best Practices / 7 Adaptive execution of Spark SQL

Test

Take some TPC-DS queries as test samples.

- Shuffle partition number

Query 30

Native Spark:

Completed Stages: 15
Complated Stages (15

Slage ki

- Dmscngiion

14 Expcution: g30-+2.4, ention 1, StandamdPun-trus
I Ot Bonchman soaly 436

13 benchman g30-v2.4
Coflect Bt Cusry scai 124

2 basnchman g30-v2.4

Dot at Ousry Scaia: 124

Adjusts the number of reduce tasks adaptively.

Completed Stages (16)

Stage
- Description

a1 Execaition: qa0-v2.4, iteration: 1, StandardRun=1ns

save at Banchmark scala: 435

a0 Benchmank g0-v2.4
collpct at Ouery scala: 124

33 benchmark gl0-v2.4

nun it ThreadPoolExecuion javac] 145

Sutimattad

218020
sctads 13:3748

20160570

rsEs 13T

20180520

solals 133722

20180520

+iiatails 13:44:32

20180520

+atails | 134427

20180520

soataily 13015

Tasks:
Durstion fuccesaed Total

=

Tasks:
Duration Succeedod Total

as5s (IR
4
as |

Inget

Input

S Shwitte
Dutput Rssd ‘Wirite
M40
Li:]

1208

365G T3 B

Shiatfa Shitfs
Output Read Wiite
351
KA

12.5GB

1568 2000.0 MB

40

Issue: 20190918

E-MapReduce Best Practices / 7 Adaptive execution of Spark SQL

- Execution plan optimization at runtime (SortMergeJoin to BroadcastJoin).

Uses BroadcastJoin adaptively.

Issue: 20190918 41

8 E-MapReduce data migration solution

This topic describes how to migrate data from a self-built cluster to an E-MapReduce
(EMR) cluster.

Applicable migration scenarios include:

- Migrating data from an offline Hadoop cluster to E-MapReduce.

- Migrating data from a self-built Hadoop cluster on ECS to E-MapReduce.
Supported data sources include:

- HDFS incremental upstream data sources such as RDS incremental data and Flume

Network interconnection between new and old clusters
- Self-built Hadoop cluster on an offline IDC

A self-built Hadoop cluster can be migrated to E-MapReduce through 0SS, or by
using Alibaba Cloud Express Connect, to establish a connection between your

offline IDC and the VPC in which your E-MapReduce cluster is located.

- Self-built Hadoop cluster on ECS instances

Because VPC networks are logically isoloated, we recommend that you use the
VPC-Connected E-MapReduce service to establish an interconnection. Depending
on the specific network types involved for interconnection, you need to perform

the following actions:
- Interconnection between classic networks and VPC networks

For a Hadoop cluster built on ECS instances, you need to interconnect the
classic network and VPC network using the ECS ClassicLink method. For more

information, see Build a ClassicLink connection.

- Interconnection between VPC networks

To ensure optimal connectivity between VPC networks, we recommned that you

create the new cluster in the same region and zone as the old cluster.

HDFS data migration

- Synchronize data with DistCp
For more information, see Hadoop DistCp.

You can migrate full and incremental HDFS data using the DistCp tool. To alleviate
pressures on your current cluster resources, we recommend that you execute the

distcp command after the new and old cluster networks are interconnected.
- Full data synchronization

hadoop distcp - pbugpcax - m 1000 - bandwidth 30 hdfs
:// oldcluster 1ip : 8020 / user / hive / warehouse / user /
hive / warehouse

- Incremental data synchronization

hadoop distcp - pbugpcax - m 1000 - bandwidth 30 =
update - delete hdfs :// oldcluster 1ip : 8020 / user / hive /
warehouse / user / hive / warehouse

Parameter descriptions:

hdfs :// oldcluster 1ip : 8020 indicatesthe namenode IP of the old

cluster. If there are multiple namenodes, input the namenode that is in the

active status.

- By default, the number of replicas is 3. If you want to keep the original number
of replicas, add r after -p, such as -prbugpcax. If the permissions and ACL do not
need to be synchronized, remove p and a after -p.

- -m indicates the amount of maps and the size of the cluster, which corresponds
to the data volume. For example, if a cluster has a 2000-core cpu, you can specify
2000 maps.

- -bandwidth indicates an estimated value of the synchronized speed of a single
map, which is implemented by controlling the copy speed of replicas.

- -update, verifies the checksum and file size of the source and target files. If the

file sizes compared are different, the source file updates the target cluster data.

If there are data writes during the synchronization of the old and new clusters, -

update can be used for incremental data synchronization.

- -delete, if data in the old cluster no longer exists, the data in the new cluster will
be deleted.

Note:

http://hadoop.apache.org/docs/r2.7.5/hadoop-distcp/DistCp.html

- The overall speed of migration is affected by cluster badwidth and size. The
larger the number of files, the longer the checksum takes to process. If you
have a large amount of data to migrate, try to synchronize several directories to
evaluate the overall time. If synchronization is performed within the specified
time period, you can split the directory into several small directories and
synchronize them one at a time.

- A sshort service stop is required for the full data synchronization to enable
double write and double counting, and to directly switch the service to the new

cluster.

- HDFS permission configuration

HDFS provides permission settings. Before migrating HDFS data, you need

to ensure whether the old cluster has an ACL rule and if the rule is to be

synchronized, and check if dfs . permission s . enabled and dfs .
namenode . acls . enabled were configured the same in the old and new

clusters. The configurations will take effect immediately.

If there is an ACL rule to be synchronized, the distcp parameter must be added to
-p to synchronize the permission parameter. If the distcp operation displays that
the cluster does not support the ACL, this means that you did not set the ACL rule
for the corresponding cluster. If the new cluster is not configured with the ACL
rule, you can add it and restart NM. If the old cluster does not support an ACL rule,

you do not need to set or synchronize an ACL rule.

Hive metadata synchronization
- Overview

Hive metadata is generally stored in MySQL. When compared with MySQL data

synchronization, note that:

- The location must be changed

- Hive version alignment is required
E-MapReduce supports Hive metabases, including

- Unified metabase, whereby EMR manages RDS and each user has a schema
- Self-built RDS
- Self-built MySQL on ECS instances

To ensure data is consistent after migration between the old and new clusters, we
recommend that you stop the metastore service during the migration, open the
metastore service on the old cluster after the migration, and then submit jobs on

the new cluster.

- Procedure:

1. Delete the metabase of the new cluster and input drop database xxx .
2. Run the mysqldump command to export the table structure and data of the old
cluster's metabase.

3. Replace the location. Tables and partitions in the Hive metadata all have

location information witinh the dfs nameservices prefix, such as hdfs

:// mycluster : 8020 /.However, the nameservices prefix of an E-

MapReduce cluster is emr-cluster, which means you need to replace the location

information.
To replace the location information, export the data as follows.

mysqgldump -- databases hivemeta -- single - transactio n -
u root - p > hive_datab ases . sql

Use sed to replace hdfs :// oldcluster : 8020 /with hdfs :// emr -

cluster /and then import data into the new database.

mysql hivemeta - p < hive_datab ases . sql

4. n the interface of the new cluster, stop the hivemetastore service.

5. Log on to the new metabase and create a database.

6. In the new metabase, import all data exported from the old metabase after the
location field is replaced.

7. Currently, E-MapReduce Hive version is the latest stable version. However, if
the Hive version of your self-built cluster is earlier, any imported data may not
be directly usable. To resolve this issue, you need to execute the upgraded Hive
script (ignore table and field problems). For more information, see Hive upgrade

scripts. For example, to upgrade Hive 1.2 to 2.3.0, execute upgrade - 1 . 2 .
©-to-2.0.0.mysql . sql , upgrade - 2 . 0 . 0 - to - 2
1.0 .mysql . sql, upgrade -2 .1 .0 -to-2.2 .0 . mysql

sql ,and upgrade - 2 . 2 . 0 -to-2.3 .0 . mysql . sql in
sequence. This script is mainly used to build the table, add the field, and change
the content.

8. Exceptions that the table and the field already exist can be ignored. After all
metadata are revised, restart MetaServer, input the hive command inthe

command line, query the database and table, and verify the information is

correct.
Flume data migration
- Flume simultaneous write in two clusters configuration

Enable the Flume service in the new cluster and write the data to the new cluster in

accordance with the rules that are identical to the old cluster.

https://github.com/apache/hive/tree/master/metastore/scripts/upgrade/mysql
https://github.com/apache/hive/tree/master/metastore/scripts/upgrade/mysql

- Write the Flume partition table

When executing the Flume data double-write, you must control the start timing

to make sure that the new cluster is synchronized when Flume starts a new time
partition. If Flume synchronizes all the tables every hour, you need to enable the
Flume synchronization service before the next synchronization. This ensures that
the data written by Flume in the new hour is properly duplicated. Incomplete old
data is then synchronized when full data synchronization with DistCp is performed
. The new data generated after the simultaneous write time is enabled is not

synchronized.

Note:
When you partition data, do NOT put the new written data into the data

synchronization directory.
Job synchronization

If the verion upgrades of Hadoop, Hive, Spark, and MapReduce are large, you may

rebuild your jobs on demand.
Common issues and corresponding solutions are as follows:
- Gateway OOM
Change / etc / ecm / hive - conf / hive - env . sh .

export HADOOP_HEA PSIZE = 512 ischanged to 1024.

- Insufficient job execution memory

mapreduce.map.java.opts adjusts the startup parameters passed to the virtual

machine when the JVM virtual machine is started. The default value -Xmx200m
indicates the maximum amount of heap memory used by this Java program. When

the amount is exceeded, the JVM displays the Out of Memory exception

and terminates the set mapreduce . map . java . opts =-

Xmx3072m process .

mapreduce.map.memory.mb sets the memory limit of the Container, which is read
and controlled by NodeManager. When the memory size of the Container exceeds

this parameter value, NodeManager will kill the Container.

set mapreduce . map . memory . mb = 3840

Data verification
Data is verified through a customer's self-generated reports.
Presto cluster migration

If a Presto cluster is used for data queries, the Hive configuration files need to be

modified. For more information, see Presto documentation.
The Hive properties that need to be modified are as follows:

connector . name = hive - hadoop2

hive . metastore . uri = thrift :// emr - header - 1 . cluster -

500148414 : 9083

hive . config . resources =/ etc / ecm / hadoop - conf / core - site

xml , / etc / ecm / hadoop - conf / hdfs - site . xml
hive . allow - drop - table = true
hive . allow - rename - table = true

hive . recursive - directorie s = true
Appendix
Alignment example of upgrading Hive version 1.2 to 2.3:

source [/ usr / lib / hive - current / scripts / metastore / upgrade
/ mysql / upgrade - 1 .2 .0 - to-2.0.0 . mysql . sql
CREATE TABLE COMPACTION _QUEUE (
CQ_ID bigint PRIMARY KEY ,
CQ_DATABAS E varchar (128) NOT NULL ,
CQ_TABLE varchar (128) NOT NULL ,
CQ_PARTITI ON varchar (767),
CQ_STATE char (1) NOT NULL ,
CQ_TYPE char (1) NOT NULL ,
CQ_WORKER_ 1ID varchar (128),
Cq_start bigint ,
CQ_RUN_AS varchar (128),
CQ_HIGHEST _TXN_ID bigint ,
CQ_META_IN FO varbinary (2048),
CQ_HADOOP_ JOB_ID varchar (32)
) ENGINE = InnoDB DEFAULT CHARSET = latinl ;
CREATE TABLE TXNS (
TXN_ID bigint PRIMARY KEY ,
TXN_STATE char (1) NOT NULL ,
TXN_STARTE D bigint NOT NULL ,
TXN_LAST_H EARTBEAT bigint NOT NULL ,
TXN_USER varchar (128) NOT NULL ,
TXN_HOST varchar (128) NOT NULL ,
TXN_AGENT_ INFO varchar (128),
TXN_META_I NFO varchar (128),
TXN_HEARTB EAT_COUNT int
) ENGINE = InnoDB DEFAULT CHARSET = latinl ;
CREATE TABLE HIVE_LOCKS (

https://prestodb.io/docs/current/connector/hive.html

HL_LOCK_EX T_ID bigint NOT NULL ,

HL_LOCK_IN T_ID bigint NOT NULL ,

HL_TXNID bigint ,

HL_DB varchar (128) NOT NULL ,

HL_TABLE varchar (128),

HL_PARTITI ON varchar (767),

HL_LOCK_ST ATE char (1) not null ,

HL_LOCK_TY PE char (1) not null ,

HL_LAST_HE ARTBEAT bigint NOT NULL ,

HL_ACQUIRE D_AT bigint ,

HL_USER varchar (128) NOT NULL ,

HL_HOST varchar (128) NOT NULL ,

HL_HEARTBE AT_COUNT int ,

HL_AGENT_I NFO varchar (128),

HL_BLOCKED BY_EXT_ID bigint ,

HL_BLOCKED BY_INT_ID bigint ,

PRIMARY KEY (HL_LOCK_EX T_ID , HL_LOCK_IN

KEY HIVE_LOCK_ TXNID_INDE X (HL_TXNID)
) ENGINE = InnoDB DEFAULT CHARSET = latinl ;
CREATE INDEX HL_TXNID_I DX ON HIVE_LOCK
source [/ usr / lib / hive - current / scripts /
/ mysql / upgrade - 1 2 @ - to - 2 0] 0]
source [/ usr / lib / hive - current / scripts /
/ mysql / upgrade - 2 0 O - to - 2 1 0
CREATE TABLE TXN_COMPON ENTS (

TC_TXNID bigint ,

TC_DATABAS E varchar (128) NOT NULL ,

TC_TABLE varchar (128),

TC_PARTITI ON varchar (767),

FOREIGN KEY (TC_TXNID) REFERENCES TXNS
) ENGINE = InnoDB DEFAULT CHARSET = latinl ;
source [/ usr / lib / hive - current / scripts /
/ mysql / upgrade - 2 0 O - to - 2 1 0
source / usr / lib / hive - current / scripts /
/ mysql / upgrade - 2 . 1 ©-to-2.2.0.
CREATE TABLE IF NOT EXISTS ° NOTIFICATI
(

" NL_ID ° BIGINT (20) NOT NULL ,
EVENT_ID ° BIGINT (20) NOT NULL ,
EVENT_TIME = INT (11) NOT NULL ,

 EVENT_TYPE ° wvarchar (32) NOT NULL ,
DB_NAME ° varchar (128),

* TBL_NAME ° varchar (128),

' MESSAGE ° mediumtext ,

PRIMARY KEY (° NL_ID)

) ENGINE = InnoDB DEFAULT CHARSET = latinl ;
CREATE TABLE IF NOT EXISTS ° PARTITION_

" PART_NAME_ ID ° bigint (20) NOT NULL ,

' DB_NAME ° varchar (128) CHARACTER SET
latinl_bin DEFAULT NULL ,

" EVENT_TIME ° bigint (20) NOT NULL ,

" EVENT_TYPE ° nt (11) NOT NULL ,

* PARTITION_ NAME ° varchar (767) CHARACTE
COLLATE latinl_bin DEFAULT NULL ,

' TBL_NAME ° varchar (128) CHARACTER SET
latinl_bin DEFAULT NULL ,

PRIMARY KEY (° PART_NAME_ 1ID °),

KEY ° PARTITIONE VENTINDEX ° (° PARTITION_
) ENGINE = InnoDB DEFAULT CHARSET = latinl ;
CREATE TABLE COMPLETED_ TXN_COMPON ENTS (

CTC_TXNID bigint NOT NULL ,

CTC_DATABA SE varchar (128) NOT NULL ,

T_ID),

S (HL_TXNID);
metastore / upgrade
mysql sql
metastore / upgrade
mysq'l sql

(TXN_ID)

metastore / upgrade
mysq'l sql

metastore / upgrade
mysql . sql
ON_LOG °
EVENTS = (
latinl COLLATE
R SET latinl
latinl COLLATE
NAME)

CTC_TABLE varchar (128),
CTC_PARTIT 1ION varchar (767)
) ENGINE = InnoDB DEFAULT CHARSET = latinl ;
source [/ usr / 1lib / hive current / scripts / metastore / upgrade
/ mysql / upgrade - 2 . 1 . - to-2.2 .0 . mysql . sql
source / usr / 1lib / hive current / scripts / metastore / upgrade
/ mysql / upgrade - 2 . 2 . - to-2.3 .0 . mysql . sql
CREATE TABLE NEXT_TXN_ D (
NTXN_NEXT bigint NOT NULL
) ENGINE = InnoDB DEFAULT CHARSET = latinl ;
INSERT INTO NEXT_TXN_I D VALUES (1);
CREATE TABLE NEXT_LOCK_ ID (
NL_NEXT bigint NOT NULL
) ENGINE = InnoDB DEFAULT CHARSET = latinl ;
INSERT INTO NEXT_LOCK_ 1ID VALUES (1);

HO | © |

9 Use EMR Data Science clusters for deep learning

Data Science cluster is a new model available in E-MapReduce (EMR) 3.13.0 and later
versions for machine learning and deep learning. You can use GPU or CPU models to
perform data training through Data Science clusters. Training data can be stored on
HDFS and OSS. EMR supports TensorFlow for distributed training on large amounts
of data.

Create cluster
- Prerequisites for creating an EMR Data Science cluster:

- EMR 3.13.0 or later.

- Data Science as the cluster type.

Create a cluster

Create Cluster

Software Configuration Hardware Configuration Basic Configuration 0K

Version Configuration

EMR Version: | EMR-3.16.0

Cluster Type: Hadoop Druid ° Data Science Kafka ZooKeeper

Required Services: Jupyter (44.0) Analytics Zoo (0.2.0) ApacheDS (2.0.0) Tensorflow on YARN (1.0.0)
Zeppelin (0.8.0) Spark (2.3.2) YARN (2.7.2 HDFS (2.7.2) ZooKeeper (3.4.13)

Ganglia (3.7.2)

Optional Services: | TensorFlow (18.0] | [Hued10) | [Hive 233 |

Enable Custom Setting: 0

Select a CPU model for Master Instance Type, and select a CPU or GPU model for

Core Instance Type.

Master Instance Type: @ 4 vCPU 16GB ecs.gS.xlarge
System Disk Type: Ultra Disk ESSD Disk ol SSD Disk
System Disk Size: 120 GB * Disks IOPS 5400
Data Disk Type: @ @ Ultra Disk ESSD Disk 55D Disk
Data Disk Size: g0 GB * 1 Disks [OPS 2440
Master Instances: Instances

Care [nstance Type: o ‘4\.-CF'U 16GB ecs.gSxlarge

System Disk Type: o 55D Disk
¥ 4 vCPU 16GB
System Disk Size: 00
24 vCPU 96GE
Data Disk Type: @ 8vCPU 32GB 55D Disk
16 wCPU 64GE
Data Disk Size: 1440
Core Instances: 4 yCPU 8GB
16 vCPU 32GB -

If you select a GPU model, EMR provides Nvidia GPU drivers and the corresponding

Cudnn installation.

After the cluster is created, the corresponding service, driver, and Cudnn are

installed. The docker service is installed on all core nodes.

Run TensorFlow on a Data Science cluster

- TensorFlow

TensorFlow is an open-srouce machine learning framework for deep learning of
machine learning tasks and training neural models. For more information about

TensorFlow, see TensorFlow.

- TensorFlow on YARN

TensorFlow on YARN developed by the EMR kernel team is a distributed
TensorFlow framework based on YARN scheduling. It supports running
TensorFlow jobs on YARN and using GPU for training. For information about how

to use TensorFlow on YARN, see TensorFlow instructions.

- Use TensorFlow on YARN to perform deep learning

TensorFlow on YARN can use high-level APIs for training with more concise
codes. This topic takes the Wide and Deep model as an example for training. For
information about more models, see github. Click here to download training data.
Data for training is adult.data and adult.test. This example writes training steps in

Python according to the stand-alone version.
1. Define training data, and then upload training data and validation data to HDFS.
Put the training data to the /ml/ directory of hdfs:

hdfs dfs - put adut . data adult . test / ml /

2. Specify the training data path in the training code:

TRAIN_FILE S = [' hdfs :// emr - header - 1 . cluster -
500157403 : 9000 / ml / adult . data ']
EVAL_FILES = [' hdfs :// emr - header - 1 . cluster - 500157403

: 9000 / ml / adult . test ']

HDFS schema is set according to your cluster. If the cluster is not a high

availability cluster (HA cluster), you only need to check the fs . defaultFsS

https://www.tensorflow.org/
https://github.com/tensorflow/models/tree/master/official/wide_deep#tensorflow-linear-model-tutorial
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/

propertyin core - site . xml .If the cluster is an HA cluster, by default, the

HDFS schema is emr-cluster.

3. Define feature columns.
Define the corresponding features according to the wide and deep model:

""" Build a wide and deep mode'l for predicting
income category

(gender , race , education , marital_st atus , relationsh
mw -, . .
workclass , occupation , native_cou ntry , age ,

education_ num , capital_ga 1in , capital_lo ss ,
hours_per_ week) = INPUT_COLU MNS
Continuous columns can be converted to categorica
1 via bucketizat don

age_bucket s = +tf . feature_co T1lumn . bucketized _column (
age , boundaries =[18, 25, 30, 35, 40 , 45, 50 ,

, 60 , 65 1)
Wide columns and deep columns

wide_colum ns = [

Interactio ns between different categorica 1 features

can also

be added as new virtual features

tf . feature_co 1lumn . crossed_co lumn (

['" education ', ' occupation '], hash_bucke t_size = int (le4
D)5

tf . feature_co 1lumn . crossed_co lumn (

[age_bucket s , race , ' occupation '], hash_bucke t_size =
int (1e6)),

tf . feature_co 1lumn . crossed_co lumn (

[' native_cou ntry ', ' occupation '], hash_bucke t_size = 1int
(le4)),

gender ,
native_cou ntry ,
education ,
occupation ,
workclass ,
marital_st atus ,
relationsh Hip ,
age_bucket s ,

deep_colum ns = [
Use indicator columns for Tow dimensiona 1
vocabulari es

tf . feature_co Tlumn . indicator_ column
tf . feature_co 1lumn . indicator_ column
tf . feature_co 1lumn . indicator_ column

workclass),
education),
marital_st atus),

tf . feature_co Tlumn . indicator_ column gender),
tf . feature_co 1lumn . dindicator_ column relationsh dip),
tf feature_co Tlumn indicator_ column race),

O ~—~—~—~—~~

Use embedding columns for high imensiona 1
vocabulari es

tf . feature_co T1lumn . embedding_ column (

native_cou ntry , dimension = embedding_ size),

tf . feature_co 1lumn . embedding_ column (occupation ,
dimension = embedding_ size),

age ,

education_ num ,

capital_ga 1in ,

capital_lo ss ,

hours_per_ week ,

]

4. Define input_fn.
You can use input_fn to obtain training data:

def input_fn (filenames ,

num_epochs = None ,

shuffle = True ,

skip_heade r_lines = 0 ,

batch_size = 200):

""" Generates features and labels for training or

evaluation
mmnn
dataset = +tf . data . TextLineDa taset (filenames). skip (
skip_heade r_lines). map (parse_csv)
if shuffle
dataset = dataset . shuffle (buffer_siz e = batch_size * 10
)
dataset = dataset . repeat (num_epochs)
dataset = dataset . batch (batch_size)

iterator = dataset . make_one_s hot_iterat or ()
features = -dterator . get_next ()

return features , parse_labe 1_column (features . pop (
LABEL_COLU MN))

train_inpu t = Tlambda : “nput_fn (

TRAIN_FILE S ,

batch_size = 40

)

Don ' t shuffle evaluation data
eval_input = Tlambda : “dnput_fn (
EVAL_FILES ,
batch_size = 40 ,
shuffle = False

)

5. Initiate Estimator.

The following example uses the pre-defined TensorFlow's wide and deep model
to build the Estimator:

tf . estimator . DNNLinearC ombinedCla ssifier (

config = config ,

linear_fea ture_colum ns = wide_colum ns ,

dnn_featur e_columns = deep_colum ns ,

dnn_hidden _units = hidden_uni ts or [1606 , 70 , 50 , 25
]

)

6. Train the models:

train_spec = +tf . estimator . TrainSpec (train_inpu t ,
max_steps = 1000

)

exporter = tf . estimator . FinalExpor ter (' census ',
json_servi ng_input_f n)

eval_spec = tf . estimator . EvalSpec (eval_input ,

steps = 100 ,
exporters =[exporter],
name =' census - eval '

)

tf . estimator . train_and_ evaluate (estimator , train_spec

, eval_spec)
After the codes are complete, you can submit a task to your Data Science cluster.
We recommend that you send the task to the cluster to perform standalone
training using a standalone model. After verifying the task without code errors,
you can submit a distributed task and specify worker and ps resources for

training. An example command for submitting a task is as follows:

el_submit - t tensorflow - ps - a wide_and_d eep - m
local - x True - f ./ - pn 1 - pc 1 - pm 2000 - wn

1 - wc 1 - wg 1 - wm 2000 - c python census_sin
gle .

The running status of the submitted task can be viewed in the YARN pag

Apps Apps Apps Apps Containers Memory Memory Memory VCores VCores VCores GCores GCores GCores Active Decommissioned Lost —Unhealtr
Submitted Pending Running Completed ~ Running Used Total Reserved =~ Used Total = Reserved Used Total Reserved Nodes Nodes Nodes Nodes
1 0 1 [3 5.25GB 26.50 0B 3 16 0 1 2 0 2 [}]]

GB
Scheduler Metrics
Scheduler Type Scheduling Resource Type Minimum Allocation Maximum Allocation
Capacity Scheduler [MEMORY, CPU, GPU] <memory:32, vCores:1, gCores:0> <memory:13568, vCores:8, gCores:1>
Show 20 + entries Search:
D - U Name ¢ ApplicatonType o, o StarTime ¢ FinishTime ¢ State ¢ FinalStatus ¢ Progress ¢ TrackingUl o 5/ack
application 1539156175145 0001 root wide_and_deep tensorflow-ps default Wed Oct 10 N/A RUNNING UNDEFINED ApplicationMaster 0
18:17:05
+0800 2018
Showing 1 to 1 of 1 entries
.
Click the ApplicationMaster link to view the running status and details of the
task.
App Info:
Key Value
App ID application_1539156175145_0015
App Type tensorflow-ps
App Command python census_single.py
App Mode local
App Container Number 2
App Ps Number 1
App Worker Number 1
App Worker Number Per GPU 1
App Resourec Cpu 2
App Resourec Gpu 1
App Resourec Mem 4,000MB
All Containers:
/ Container Container Container Container Container Finish Container
Container ID CPU GPU MEM Role Status Allocate Time Start Time e Log
container_1539156175145_0015_01_000002 1 0 2,000MB ps RUNNING 2018-10-11 2018-10-11 N/A log
11:45:38 11:45:38
container_1539156175145_0015_01_000003 1 1 2,000MB worker RUNNING 2018-10-11 2018-10-11 N/A log
11:45:38 11:45:38
CPU GPU
15 7
6
12
5
9 4
6 3
2
3
1
0+ 0+
0:00 000 0:10 020 030 040 051 101 141 121 131 142 0:00 0:00 010 020 030 040 051 101 141 121 131 142

Click log to go to ps or worker to view training information.

> C @ NotSecure | emr-worker-1.cluster-500159381:804

~ ResourceManager Showing 4096 bytes. Click here for full log

questsDependencyWarning: urllib3 (1.22) or chardet (2.2.1) doesn't match a supported version!

RM Home RequestsDependencyWarning)
INFO:tensorflow:Using config: {'_save checkpoints_secs': 600, ' session config': None, '_keep_checkpoint max': 5, '_task type': u'chief', '_train distribuf
INFO:tensorflow:Start Tensorflow server.

NodeManager

2018-10-11 10:30:49.184647: I tensorflow/core/platform/cpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow binary was not compile
Tools 2018-10-11 10:30:49.339606: I tensorflow/stream executor/cuda/cuda_gpu_executor.cc:898] successful NUMA node read from SysFS had negative value (-1), but 1
2018-10-11 10:30:49.339989: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1356] Found device 0 with properties:

name: Tesla P4 major: 6 minor: 1 memoryClockRate(GHz): 1.1135

pciBusID: 0000:00:0b.0

totalMemory: 7.43GiB freeMemory: 7.31GiB

2018-10-11 10:30:49.340025: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1435] Adding visible gpu devices: 0

2018-10-11 .659716: I tensorflow/core/common_runtime/gpu/gpu_device.cc:923] Device interconnect StreamExecutor with strength 1 edge matrix:
2018-10-11 .659776: T tensorflow/core/common_runtime/gpu/gpu_device. 0

2018-10-11 .659794: I tensorflow/core/common_runtime/gpu/gpu_device. N

2018-10-11 53] Created TensorFlow device (/job:chief/replica:0/task:0/device:GPU:0 w:

2018-10-11 10 9.792150:
2018-10-11 10:30:49.792192:
2018-10-11 10:30:49.792750:
Picked up _JAVA OPTIONS: -XX:ErrorFile=/tmp/hs_err.log

SLF4J: Class path contains multiple SLF4J bindings.

SLF4J: Found binding in [jar:file:/mnt/disk3/yarn/filecache/10/el-on-yarn-1.0.0.jar!/org/s1£4j/impl/StaticLoggerBinder.class]

SLF4J: Found binding in [jar:file:/opt/apps/ecm/service/hadoop/2.7.2-1.2.10-gpu/package/hadoop-2.7.2-1.2.10-gpu/share/hadoop/common/1ib/s1£4j-1og4312-1.7.
SLF4J: See http://www.sl1fdj.org/codes.html#multiple bindings for an explanation.

SLF4J: Actual binding is of type [org.slf4j.impl.LogdjLoggerFactory]

INFO:tensorflow:Calling model fn.

INFO:tensorflow:Done calling model fn.

INFO: tensorfl: eate CheckpointSaverHook.

INFO:tensorfl: aph was finalized.

2018-10-11 10 5.070582: I tensorflow/core/distributed_runtime/master_session.cc:1136] Start master session 989a426030234d3b with config: allow_soft_pl:
INFO: tensorfl: nning local init op.

INFO:tensorflow:Done running local init_op.

INFO:tensorflow:Saving checkpoints for 1 into hdfs://emr-header-1.cluster-500159381:9000/census/model.ckpt.

INFO:tensorflow:loss = 20.34863, step = 0

INFO: tensorfl: obal_step/sec: 32.336

INFO:tensorfl ss = 17.772442, step = 100 (3.093 sec)

INFO: tensorfl: obal_step/sec: 45.4349

INFO: tensorfl: ss = 16.894323, step = 200 (2.201 sec)

INFO:tensorflow:global step/sec: 45.7951

INFO:tensorflow:loss = 17.784704, step = 300 (2.184 sec)

tensorflow/core/distributed runtime/rpc/grpc_channel.cc:215] Initialize GrpcChannelCache for job chief -> {0 -> localhost:38!
tensorflow/core/distributed runtime/rpc/grpc_channel.cc:215] Initialize GrpcChannelCache for job ps -> {0 -> 192.168.0.49:441

T
1
I

.660116: I tensorflow/core/common_runtime/gpu/gpu_device.
1
I
I tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc:332] Started server with target: grpc://localhost:38934

In this example, after the training ends, you can find models in the HDFS path /

census where models are generated.

[root@emr-header-1 ~]# hdfs dfs -1s /census
Found 9 items
=PW-r=====
=rw-r-

=rW-r-

=rW-r-

=rW-r-

=rW-r-

=rW-r-

=rW-r-

=rW-r-

]

hadoop hadoop 132
hadoop hadoop 40

2018-10-11 : /census/checkpoint

2018-10-11 @ /census/events.out.tfevents.1539225054.emr-worker-1.cluster-500159381
hadoop hadoop 1839928 2018-10-11 Jcensus/graph. pbtxt
hadoop hadoop 12406864 2018-10-11 : Jcensus/model .
hadoop hadoop 2463 2018-10-11 10@: Jcensus/model . ckpt-1.index
hadoop hadoop 870015 2018-10-11 1@: /census/model . ckpt-1.meta
hadoop hadoop 12406864 2 0
hadoop hadoop 2463 2

2

'918-10-11 10@: /census/model . ckpt-1
918-10-11 10@: Jcensus/model . ckpt-10000 . index
918-10-11 10@: Jcensus/model . ckpt-10008.meta

LS I NI I N N X

hadoop hadoop 870015

Question descriptions

If the following errors display, check if there are empty lines in adult.data and

adult.test.

tensorflow . python . framework . errors_imp 1 . InvalidArg
umentError : Expect 15 fields but have 0 in record
(0]

[[Node : DecodeCSV = DecodeCSV [OUT_TYPE =[DT_INT32 , DT_STRING
, DT_INT32 , DT_STRING , DT_INT32 , ..., DT_INT32 , DT_INT32 ,
DT_INT32 , DT_STRI
NG , DT_STRING], field_deli m =",", na_value ="", wuse_quote_
delim = true](ExpandDims , DecodeCSV / record_def aults_0 ,
DecodeCSV / record_def aults_1 , D
ecodeCSV / record_def aults_2 , DecodeCSV / record_def aults_3 ,
DecodeCSV / record_def aults_4 , DecodeCSV / record_def aults_5 ,
DecodeCSV / record_def ault
s_6 , DecodeCSV / record_def aults_7 , DecodeCSV / record_def
aults_8 , DecodeCSV / record_def aults_9 , DecodeCSV / record_def
aults_10 , DecodeCSV / record_
defaults_1 1 , DecodeCSV / record_def aults_12 , DecodeCSV /
record_def aults_13 , DecodeCSV / record_def aults_14)]]

[[Node : TIteratorGe tNext = TIteratorGe tNext [output_sha pes
:[[?)l]; [?;l]: [?:l]) [?)l]) [?)l]; [?;l]: [?:l]) [?)
11, [?, 1], [?, 11, [?, 1],

[z, 11, [?2, 11, [?, 111, output_typ es =[DT_INT32 , DT_INT32
, DT_INT32 , DT_STRING , DT_INT32 , DT_STRING , DT_INT32 ,
DT_STRING , DT_STRING , DT_STRING

, DT_STRING , DT_STRING , DT_STRING , DT_STRING], _device

="/ job : chief / replica : 0 / task : 0 / device : CPU : 0 "](
OneShotIte rator)]]

[[Node : global_ste p / cond / pred_id_S6 15 = _HostRecv [
client_ter minated = false , recv_devic e ="/ job : ps / replica
© / task : @ / device : CPU : 0 ", send_d

evice ="/ job : chief / replica : 0 / task : @ / device : GPU : 0 ",
send_devic e_incarnat ion = 6104642431 418663740 , tensor_nam e
=" edge_602_g lobal_step / cond / pred_

id ", tensor_typ e = DT_BOOL , _device ="/ job : ps / replica : 0
/ task : @ / device : CPU : 0 "T(O)1]

2

10 Use Flink jobs to process OSS data

This topic describes how to create a Hadoop cluster by using E-MapReduce (EMR) and

use Flink jobs to process Object Storage Service (0OSS) data in the cluster.

Prerequisites

- You have registered an Alibaba Cloud account. For more information, see Create an

Alibaba Cloud account.
- You have activated EMR and OSS.

- You have authorized the Alibaba Cloud account. For more information, see

#unique_19.

Context
During practical applications, you always need to consume data stored in OSS. In
EMR, you can run a Flink job to consume data stored in OSS buckets. You can perform
the following steps to create a Flink job in EMR and run the Flink job on a Hadoop

cluster to obtain and output the specified content of a file stored in OSS.

Step 1: Prepare the environment
Before creating a Flink job, you must prepare the Maven and Java environment on
your local host and create a Hadoop cluster in EMR. If you are using Maven 3.0 or

later, we recommend that you use Java 2.0 or earlier to ensure compatibility.

1. Install Maven and Java on your local host.
2. Log on to the EMR console and create a Hadoop cluster. You must select Flink in

the Optional Services field. For more information, see #unique_5.

Step 2: Prepare testing data

Before creating a Flink job, you must upload testing data to OSS. The following is

an example of uploading a file named test . txt .The file content is: Nothing is

impossible for a willing heart. While there is a life, there is a hope.

1. Log on to the OSS console.

https://www.alibabacloud.com/help/doc-detail/50482.htm
https://www.alibabacloud.com/help/doc-detail/50482.htm
https://emr.console.aliyun.com
https://oss.console.aliyun.com/

2. Create a bucket and upload the file to the bucket. For more information, see

#unique_20 and #unique_21.

The sample path of the uploaded fileis oss :// emr - logs2 / hengwu / test
. txt .Keep the path for later use.

Note:
After uploading the file, keep the OSS logon window open for later use.

Step 3: Build a JAR file and upload it to OSS or the Hadoop cluster

Download EMR sample code aliyun-emapreduce-demo and compile the code to create
aJAR file. You can upload the JAR file to the header node of the Hadoop cluster or an
0SS bucket. The following is an example of uploading the JAR file to an OSS bucket.

1. Download EMR sample code aliyun-emapreduce-demo to your local disk.

2. Runthe mvn clean package - DskipTests command to create the JAR

file.

The new JAR file is installed in the . . / target /directory, for example, target /

examples - 1 . 2 . 0 . jar .
3. Go to the OSS console and upload the JAR file to an OSS directory.

The sample path of the JAR fileis oss :// emr - logs2 / hengwu / examples -

1. 2. 0 . jar .Keep the path for later use.

Step 4: Create and run a Flink job

1. Log on to the EMR console.
2. On the Data Platform tab, create a project. For more information, see #unique_22.

3. Open the new project, select the Edit Job tab, and create a job with the type of
Flink.

https://github.com/aliyun/aliyun-emapreduce-demo
https://github.com/aliyun/aliyun-emapreduce-demo
https://oss.console.aliyun.com/
https://emr.console.aliyun.com

4. After the new Flink job is created, specify the content of the job.

'::- E-MapReduce Overview &= Cluster Management B Data Platform 5 Metadata & System Management v Help
B Fink-test
E ~ o (8P FLINK FJ-AD3F69A8F3790C6F Content: | Run ‘ m
@ Flink-test_copy 1 run -m yarn-cluster -yjm 1024 -ytm 1024 -yn 4 -ys 4 -ynm flink-oss-sample -c
- com.aliyun.emr.example.flink.F1link0S5Sample ossref://emr-logs2/hengwu/examples-1.2.0.jar --input
E oss://emr-logs2/hengwu/test. txt
.g‘
£
g
Q
-
3
’9 —
|
;
:a Command (Reference Only) w -
flink run -m yarn-cluster -yjm 1024 -ytm 1824 -yn 4 -ys 4 -ynm flink-oss-sample -c com.aliyun.emr.example.fl l:j'
ink.Flinkosssample ossref://emr-logs2/hengwu/examples-1.2.8.jar --input oss://emr-logs2/hengwu/test.txt
Project Name: Default Log Records Workflow =+ Enter an OSS path 5 Upload to 0SS
The job content is a snippet of code. An example is shown as follows.
run - m yarn - cluster - yjm 1024 - ytm 1024 - yn 4
- ys 4 - ynm flink - oss - sample - ¢ com . aliyun . emr
example . flink . Flink0SSSa mple ossref :// emr - logs2 /
hengwu / examples - 1 . 2 . 0 . jar -- input oss :// emr - logs2

/ hengwu / test . txt

Key parameters in the preceding code are described as follows:

ossref :// emr - logs2 / hengwu / examples - 1 . 2 . 0 . jar :
indicates the path of the uploaded JAR file.
oss :// emr - logs2 / hengwu / test . txt :indicates the path of the

testing data.

E] Note:

Replace the value of each parameter with values based on the configurations in
the Step 1: Prepare the environment and Step 3: Build a JAR file and upload it to
0SS or the Hadoop cluster topics.

5. After the job configuration is complete, click Run in the upper-right corner, and

select the name of the new Hadoop cluster in the Target Cluster field.

6. Click OK to run the Flink job.

When the job is running, the Log window appears. After the job is complete, the
file content is obtained from an OSS bucket and output to logs. At this point, the

Flink job that runs on an EMR cluster to consume OSS data is complete.

Log Records Workflow

2019-87-19 11:49:88,582 apache.flink.yarn.AbstractYarnCluster
2019-97-19 11:49:08,599 : e.hadoop.yarn.client.api.impl.Yar
e.flink.yarn.AbstractYarnCluster

arn.AbstractYarnClusterD

.apache.flink.yarn.AbstractYarnClusterl

Starting e ution of program

lothing is impossible for a willing heart

hile there is life, there is hope~

Program execution finished

Job with JoblD /tfcccacdbbt8/0ad 93969374023 has ftinished.
Job Runtime: 8292 ms

Accumulator Results:

56193209al12fledBcbl1176ab2597f4 (java.util.Arraylist) [2 elements]

Step 5: View the logs and details of the job (Optional)

You can view the logs and details of the job to identify the cause of a job failure and

details of the job.

1. View the logs of the job.

You can view logs in the EMR console or on an SSH client.
Log on to the EMR console to view logs.

After submitting a job in the console, you can open the Details page of a job
listed on the Records tab. On the Details page, you can view the results of the
job.

(i) Overview &= Cluster Management B5 Data Platform B Metadata 4§ System Management v’ Help

2oud 1

Job Instance Info Log YARN Containers

qor 1Pl @

st) [1 elements]

SMOIPHOJ, 25

.impl. CommonShel1JoblLauncherImpl - [COMMAND] [FII-1E44BCROA
in
Fri Jul 26 14:1¢ 3
e - [FII-1E44E

[FII-1E44BC00

sapangs feioduwia) O

Spioday T

c.a.emr. flow.agent. i

You can log on to the header node of a Hadoop cluster by using SSH to view logs.

By default, the logs of a Flink job are stored in the / mnt / diskl / log

/ flink / flink -< user >- client -< hostname >. log file based
on the configurations in the log4j file. For more information about detailed
configurations, see the / etc / ecm / flink - conf / log4j - yarn -

session . properties file.

The user field indicates the account with which you submit the Flink job. The
hostname field indicates the name of the instance to which you submit the

job. Assume that you log on as a root user and submit a Flink job on the emr-

header-1 instance. In this case, the log pathis / mnt / diskl / log / flink /
flink - flink - historyser ver - 0 - emr - header - 1 . cluster -

126601 . log .
2. View the details of the job.

You can use Yarn Ul You can access Yarn Ul by using SSH and Knox. For more

information about SSH, see #unique_23. For more information about Knox, see

https://emr.console.aliyun.com

#unique_24 and Access links and ports. The following takes Knox as an example to

describe how to view the details of a job.

a) On the Connect Strings tab of the Hadoop cluster, click the link next to Yarn Ul

to open the Hadoop console.

i E-Map Reduce 5 Metadata {& System Management v Help 7

EMR-
Public Connect Strings

Cluster Overview

Service Mame Instructions

Cluster Management

o ¥ o (i

HDFS Ul -
Cluster Service v
Cluster Resources YARN UL .
£ Instances

Spark History Server UL

& Cluster Scripts

Hue Description '
Connect Strings
i Auto Scaling Zeppelin 2 tion o
:b Users ~
Ganglia UI o -
. f . . . f .
b) In the Hadoop console, click the ID of the job to view the details of the job.
@hadmap All Applications
~ Cluster Cluster Metrics
About Apps Submitted Apps Pending Apps Running Apps Completed Containers Running Memory Used Memory Total
Nodes 27 0 2 25 4 4.50 GB 22.50 GB 0
W Cluster Nodes Metrics
pplications
NEW Active Nodes Decommissioning Nodes Decommissioned Nodes Lost Nodes Unhe
NEW_SAVING 2 Q Q 0 0
SUBMITTED Scheduler Metrics
ACCEPTED
RUNNING Scheduler Type Scheduling Resource Type Minimum Allocation Maximum Alla
EX‘:EBED Capacity Scheduler [MEMORY] <memory:32, vCores: 1> <memory:11520, vCores:8>
KILLED Show 20 entries
Scheduler Jr— R
D v User? Name ¢ Application Type ¢ Q”e”f FE)") cal 'OA" StariT\mF F'n'ShT'mf State ¢ FinalStatus ¢
» Tools ¢ riority & ¢ ¢
[ication 1563269227529 0028 hadoop flink-oss-sample Apache Flink I default 0 FriJul 19 FriJul 19 FINISHED SUCCEEDED
11:49:00 11:49:16
+0800 +0800
2019 2019
application_1563269227529 0027 hadoop LAUNCHER:FJI- FLOW_FLINK default 0 FriJul 19 FriJul 19 FINISHED SUCCEEDED
64A4608006F1036C_0:25220 11:48:54 11:49:16
+0800 +0800
2019 2019
application 1563269227529 0026 hadoop flink-oss-sample Apache Flink default 0 FriJul 19 Fri Jul 19 FINISHED SUCCEEDED
11:45:35 11:45:50
+0800 +0800
2019 2019
1563269227529 0025_hadoon | AUNCHER-F.II- FIOW_FIINK default_0 Friul19 _ Friul 19 FINISHED _SUCCEEDED

https://www.alibabacloud.com/help/doc-detail/89065.htm

User:

Name:

Application Type:

Application Tags:

Application Priority:
YarnApplicationState:

Queue:

FinalStatus Reported by AM:
Started:

Elapsed:

Tracking URL:

Log Aggregation Status:
Diagnostics:

Unmanaged Application:
Application Node Label expression:
AM container Node Label expression:

Application Overview
hadoop
flink-0ss-sample
Apache Flink
flink, fj-72c097d13e428963, fji-64a460800611036¢, fji-64a4608006f1036¢_0,1250460021754461
0 (Higher Integer value indicates higher priority)
FINISHED
default
SUCCEEDED
Fri Jul 19 11:49:00 +0800 2019
15sec
History
SUCCEEDED

false
<Not set>
<DEFAULT_PARTITION>

Application Metrics
Total Resource Preempted: <memory:0Q, vCores:0>
Total Number of Non-AM Containers Preempted: 0
Total Number of AM Containers Preempted: 0
Resource Preempted from Current Attempt: <memory:0, vCores:0>

Number of Non-AM Containers Preempted from Current Attempt:
Aggregate Resource Allocation:

Aggregate Pr Resource All

Show 20 - entries

Node
http://emr-worker-2.cluster-

Attempt ID v Started
appattempt 1563269227529 0028 000001 Fri Jul 19 11:49:00

Logs ¢
Logs 0

Nodes blacklisted by the app ¢

0

22961 MB-seconds, 21 vcore-seconds

0 MB-seconds, 0 vcore-seconds
Search:

Nodes blacklisted by the system ¢
0

¢) If you need to view a list of running Flink jobs, you can click the link next to

Tracking URL on the Details page. The Flink Dashboard page that appears

displays the list of running Flink jobs.

You can also access http://emr-header-1:8082 to view a list of completed jobs.

11 Connect to ApsaraDB for HBase using E-
MapReduce Hive

This topic describes how to connect E-MapReduce Hive and ApsaraDB for HBase. The
analysis of HBase tables is based on the connection between Hive and ApsaraDB for
HBase.

Note:
ApsaraDB for HBase will be integrated into Spark. We recommend that you use Spark

to analyze HBase data at that time.
Preparations

- Purchase a Pay-As-You-Go EMR cluster and create configurations based on the
actual scenarios. Note: Make sure ApsaraDB for HBase and the EMR cluster are
in the same VPC. We recommend that you do not enable High Availability for the
cluster.

- Add the IP addresses of all nodes in the EMR cluster to the whitelist of ApsaraDB
for HBase.

- You can view the endpoint of ZooKeeper that is built in Hive in the ApsaraDB for
HBase console.

- You need to contact the Alibaba Cloud team to open the HDFS ports of an ApsaraDB

for HBase for you.
Procedures
1. Modify Hive configurations

- Go to the Hive configuration directory / etc / ecm / hive - conf /.
- Modify the hbase - site . xml file by setting the value of the hbase .
zookeeper . quorum property to the endpoint of ZooKeeper that is built in

HBase.

< property >
< name > hbase . zookeeper . quorum </ name >
< value > hb - bplmhyea77 54bpigt - 001 . hbase . rds
. aliyuncs . com , hb - bplmhyea77 54bpigt - 002 . hbase . rds
. aliyuncs . com , hb - bplmhyea77 54bpigt - 003 . hbase . rds .
aliyuncs . com </ value >

</ property >
2. Connect to an HBase table using a Hive table

Create a table in Hive using the HBase handler. By doing this, the same table is

created in ApsaraDB for HBase as well.

a. Start the Hive command-line interface (CLI).

[root@emr-header-2 hive-confJ# hive

Logging initialized using configuration in file:/etc/eom/hive-conf-2,3.3-1.8.1/hive-log4j2.properties Async: true

Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e;-spark, tez) or using Hive 1.X releases.
hive>

>

b. Use the following statement to create a table in Hive.

CREATE TABLE hive_hbase _table (key int , value string
)

STORED BY ' org . apache . hadoop . hive . hbase . HBaseStora
geHandler '

WITH SERDEPROPE RTIES (" hbase . columns . mapping " = ": key
, cfl : val ")

TBLPROPERT IES (" hbase . table . name " " hive_hbase _table
", " hbase . mapred . output . outputtabl e " = " hive_hbase
_table ");

c. Insert data to the HBase table in Hive.

hives insert into hive_hbase_table values(212,'bab');
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = root_20181914173030_00e99198-9aa5-4d29-b@11-dc7b36365020

Number of reduce tasks is set to @ since there's no reduce operator

Starting Job = job_1536221485395_0084, Tracking URL = http://emr-header-1.cluster-74778:20888/proxy/application_1536221485395_0084/
Kill Command = /usr/lib/hadoop-current/bin/hadoop job -kill job_1536221485395_0084

Hadoop job information for Stage-3: number of mappers: 1; number of reducers: @

2018-10-14 17:30:40,833 Stage-3 map , reduce = 9%

2018-10-14 17:30:47,25Z Stage-3 map 0@%, reduce = @%, Cumulative CPU 3.66 sec
MapReduce Total cumulative CPU time: 3 seconds 66@ msec

Ended Job = job_1536221485395_0084

MapReduce Jobs Launched:

Stage-Stage-3: Map: 1 Cumulative CPU: 3.66 sec HDFS Read: 11867 HDFS Write: @ SUCCESS
Total MapReduce CPU Time Spent: 3 seconds 660 msec

0K

Time taken: 17.385 seconds

e

Verify that the HBase table has been created and the data has been inserted to
the table.

[root@iZbpl6kudidclejitibbdzZ ~]# hbase shell
: Class path contains multiple SLF4] bindings.
: Found binding in [jar:file:/opt/apps/t-apsara-hbase-1.4.6.3/1ib/s1f4j-10g4j12-1.7.10. jar!/org/s1f4j/impl/StaticLoggerBinder.class]
: Found binding in [jar:file:/opt/apps/t-emr-hadoop-2.7.2.2/share/hadoop/common/lib/s1f4j-log4j12-1.7.1@. jar!/org/s1f4j/impl/StaticlLoggerBinder.class]
: See http://www.slf4j.org/codes. html#multiple_bindings for an explanation.
: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
HBase Shell; enter "help<RETURN>' for list of supported commands.
Type "exit<RETURN>" to leave the HBase Shell
Version 1.4.6.3, r89ac288a5add370c@7548ec3ce25f6elf3210d23, Fri Jul 6 14:13:46 CST 2018

hbase(main):001:@> list

BASE_TABLE
B_IDX

B_IDX1

B_IDX2

DEFAULT ., TEST_IDX
MY_TABLE
PROD_METRICS
SYSTEM.MUTEX
SYSTEM: CATALOG
SYSTEM: FUNCTION
SYSTEM: SEQUENCE
SYSTEM:STATS

nive_hbase_table
rretoy

tv
18 row(s) in 0.211@ seconds

hbase(main):@04:0* scan 'hive_hbase_table"’

ROW COLUMN+CELL

212 column=cfl:valy timestemp=1539503446271, value=bab
1 row(s) in 0,0950 seconds

e. Write data to the HBase table using the put command.

hbase(main):@@85:@= put 'hive_hbase_table’,'132','cfl;val’, 'acb’
row(s) in 0.8430 seconds

bab
Time taken: @.273 seconds, Fetched: 2 “row(s)

f. Delete the table in Hive using the drop command. The table in HBase is deleted

as well, which is to be verified in the subsequent step.

> drop table hive_hbase_table;
QK

Time taken: 6.3087 seconds

View the contents on the table in HBase using the scan command. An error
message appears showing the table does not exist.

hbase(main):@88:0* scan 'hive_hbase_table’

ROW COLUMN+CELL

ERROR: Unknown table hive_hbase_table!

Note:

Existing HBase tables can be connected using the Hive external tables. Deleting
a Hive external table does not cause the deletion of the corresponding HBase
table.

g. Create a table in ApsaraDB for HBase and write test data to the table using the

put command.

hbase(main):020:0* create 'hbase_table','f’
@ row(s) in 1.3010 seconds

=» Hbase::Table - hbase_table
hbase(main):@021:@&- put "hbase_table','1122','f:coll’, "hello’

@ row(s) in 0.9190 seconds

hbase(main):@22:@> put ‘hbase_table',*1122",'f:col2’, ' hbase’
@ row(s) in 0.9110 seconds

h. Create a Hive external table to connect to an HBase table and select all data from

the HBase table.

hive> create external table hbase_table(key int, coll string, col2 string)
> STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler’
> WITH SERDEPROPERTIES (“hbase.columns.mapping” = “f:coll,f:col2")
> TBLPROPERTIES("hbase.table.name" = “"hbase_table", “hbase.mapred.output.outputtable” = "hbase_table");
0K
Time taken: @.129 seconds
hive> select * from hbase_table;
0K
1122 hello hbase
Time taken: @.181 seconds, Fetched: 1 row(s)
hive> []

i. Verify that deleting the Hive external table does not cause the deletion of the

corresponding HBase table.

hive> drop table hbase_table;
0K

Time taken: @.102 seconds
hives []

hbase(main):023:@> scan 'hbase_table’
ROW COLUMN+CELL

1122 column=f:coll, timestamp=1539510170256, value=hello
1122 column=f:colZ,-timestomp=1539510181752; 'value=shbase
1 row(s) in 0.0160 seconds

Summary

For more operations on HBase using Hive, see HBase Integration. The operations in
this topic are based on Hive installed on an Alibaba Cloud EMR cluster. Operations
based on Hive installed on a custom MapReduce cluster of ECS instances are similar.

Note: Configuration items in the configuration file hbase - site . xml of Hive

may be different from those of ApsaraDB for HBase. You only need to configure the

https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration

hbase . zookeeper . quorum property for connecting to ApsaraDB for HBase

using Hive.

12 Use EMR for real-time MySQL binlog
transmission

This section describes how to use the SLS plug-in function of Alibaba Cloud and the E-

MapReduce cluster to implement quasi-real-time transmission of MySQL binlog.
Basic architecture

RDS -> SLS -> Spark Streaming -> Spark HDFS

The preceding links contain three processes:

1. How to collect RDS binlog to SLS.
2. How to read and analyze the logs in SLS through Spark Streaming.

3. How to save the logs read and processed in the second link to Spark HDFS.

Prepare the environment

1. Install a MySQL database (using MySQL protocol, such as RDS and DRDS), and
enable the log-bin function. Configure the binlog type to ROW mode. (RDS is
enabled by default.)

2. Enable the SLS service.
Procedure
1. Check the MySQL database environment.

a. View whether the log-bin function is enabled.

mysql > show variables like " log_bin ";
o ——— o +

| Variable_n ame | Value |

o ———— o +

| Tlog_bin | ON |

o —— t————— +

b. View the binlog type.

mysql > show variables like " binlog_for mat ";
e ———— o +

| Variable_n ame | Value |

dom e to————— +

| binlog_for mat | ROW |

1 row in set

(0 . 03 sec)

2. Add user permissions. You can also add user permissions directly from the RDS

console.
CREATE USER canal IDENTIFIED BY ' canal ';
GRANT SELECT , REPLICATIO N SLAVE , REPLICATIO N CLIENT
ON *x. * TO ' canal '@'%';
FLUSH PRIVILEGES ;

3. Add the corresponding configuration file for the SLS service, and check if the data

is collected properly.

a. Add the corresponding project and logstore in the SLS console. For example,

create a project named canaltest and a logstore named canal.

b. Configure SLS: create a file named user_local_config.json under the directory

of /etc/ilogtail.
{
" metrics ": {
"## 1 . O ## canaltest $ plugin - local ": {
n a'L-iu-id II: ll****ll’
" enable ": true ,
" category ": " canal ",
" defaultEnd point ": "xkxkxxx'",
" project_na me ": " canaltest ",
" region ": " cn - hangzhou ",
" version ": 2
" log_type ": " plugin ",
" plugin ": {
" dnputs ": [
{
" type ": " service_ca nal ",
" detail ": {
n Host ll: Il*****ll’
" Password ": "xxxx'",
" ServerID ": *xxx*x%x,
n User n ll***ll,
" DataBases ": [
" yourdb "
1,
" IgnoreTabl es ": [
"\\ S + _inner "
1,
" TextToStri ng " true
+
}
1,
" flushers ": [
{
" type ": " flusher_sl s ",
" detail ": {}
}
]
}

The information such as host and password in detail is MySQL database
information, and the user information is the user name authorized previously
. AliUid, defaultEndpoint, project_name, and category are information related

with users and SLS. Fill in the information according to your actual situation.

c. Wait about 2 minutes to see if the log data has been uploaded successfully in the

SLS console.

If the log data acquisition is not successful, view the acquisition log of SLS based

on its prompt for troubleshooting.

4. Prepare and compile the code to jar package, and upload it to OSS.

a. Copy the example code of EMR using Git and modify the code. The command is
as follows: git clone https :// github . com / aliyun / aliyun -

emapreduce - demo . git .The example code includes the LoghubSample

class, which is primarily used to capture and print data from SLS. The modified

code is as below:

package com . aliyun . emr . example
import org . apache . spark . SparkConf
import org . apache . spark . storage . Storagelev el
import org . apache . spark . streaming . aliyun . logservice .
LoghubUtil s
import org . apache . spark . streaming .{ Millisecon ds ,
StreamingC ontext }
object LoghubSamp 1le {
def main (args : Array [String]): Unit = {
if (args . length < 7) {
System . err . println (
""" Usage : bin / spark - submit -- class LoghubSamp Tle
examples - 1 . 0 - SNAPSHOT - shaded . jar

""", stripMargi n)
System . exit (1)

+
val loghubProj ect = args (0)
val logStore = args (1)
val loghubGrou pName = args (2)
val endpoint = args (3)
val accesskeyI d = args (4)
val accessKeyS ecret = args (5)
val batchInter val = Millisecon ds (args (6). toInt =*
1000)
val conf = new SparkConf (). setAppName (" Mysql Sync ")
// conf . setMaster (" local [4]");
val ssc = new StreamingC ontext (conf , batchInter val
val loghubStre am = LoghubUtil s . createStre am (
ssc ,

loghubProj ect ,
logStore ,

loghubGrou pName |,

gendpoint ,

1,

accessKeyI d ,

accessKeyS ecret ,

StorageLev el . MEMORY_AND _DISK)
loghubStre am . foreachRDD (rdd =>

rdd . saveAsText File ("/ mysqglbinlo g ")

)

ssc . start ()
ssc . awaitTermi nation ()

+
+
The main change is as follows: loghubStre am . foreachRDD (rdd =>

rdd . saveAsObje ctFile ("/ mysqlbinlo g ")).When the example

code is run in the EMR cluster, the data that flows out of Spark Streaming will be
saved in HDFS of EMR.

Note:

- To run the example code locally, create a Hadoop cluster in the local

environment in advance.

- Because the Spark SDK of EMR is updated, its example code is old and
cannot directly transfer the AccessKey ID and AccessKey Secret of OSS in the
parameter. You need to set the Spark SDK with the SparkConf constructor, as

shown in the following figure:

trait RunLocally {

val conf = new SparkConf (). setAppName (getAppName).
setMaster (" local [4 1")

conf . set (" spark . hadoop . fs . oss . impl ", " com .
aliyun . fs . oss . nat . NativeOssF -ileSystem ")

conf . set (" spark . hadoop . mapreduce . job . run - local
u’ " true u)

conf . set (" spark . hadoop . fs . oss . endpoint ", "
YourEndpoi nt ")

conf . set (" spark . hadoop . fs . oss . accessKeyI d ", "
YourId ")

conf . set (" spark . hadoop . fs . oss . accessKeyS ecret ",
" YourSecret ")

conf . set (" spark . hadoop . job . runlocal ", " true ")
conf . set (" spark . hadoop . fs . oss . impl ", " com .
aliyun . fs . oss . nat . NativeOssF -ileSystem ")

conf . set (" spark . hadoop . fs . oss . buffer . dirs ", "/
mnt / diskl ")
val sSC = new SparkConte xt (conf)

def getAppName : String

}
- During local debugging, you need to change /mysqlbinlogloghubStream.
foreachRDD(rdd => in rdd.saveAsObjectFile("/mysqlbinlog")) to the local
HDFS address.

b. Compile code.

After local debugging is complete, you can run the following command to

package and compile the code:

mvn clean install
c. Upload the jar package.

Create a directory on an OSS instance where the bucket is qiaozhou-EMR/jar,
and upload examples-1.1-shaded.jar under the directory of /target/shaded to
the OSS directory through the OSS console or the SDK of OSS. The uploaded
jar package address is oss://qiaozhou-EMR/jar/examples-1.1-shaded.jar. This
address will be used later.

5. Create an EMR cluster and tasks, and run the execution plans.

a. Create an EMR cluster in the EMR console, which takes about 10 minutes.

b. Create a job of the Spark type.

Replace SLS_endpoi nt $ SLS_access _id $ SLS_secret _key with
your actual values. Make sure that the order of the parameters is correct.

Otherwise, errors may be reported.

-- master yarn -- deploy - mode client -- driver - memory
4g -- executor - memory 2g —- executor - cores 2 -- class
com . aliyun . EMR . example . LoghubSamp Tle ossref ://
EMR - test / jar / examples - 1 . 1 - shaded . jar canaltest

canal sparkstrea ming $ SLS_endpoi nt $ SLS_access _id $
SLS_secret _key 1

c. After the execution plan is created, bind jobs to the EMR cluster. Start to run the

jobs.

d. Search for the IP address of the master node.
After you login through SSH, run the following command:

hadoop fs - 1s /

You can see the directory at the beginning of mysqlbinlog, and view the

mysqlbinlog file with the following command:

hadoop fs - 1s [/ mysqglbinlo g

You can also run hadoop fs - cat / mysqlbinlo g / part - 00000

command to view the file content.

6. Troubleshoot.

If you don’ t see the normal results, you can troubleshoot problems in the running
records of EMR.

13 Run Flume on a Gateway node to synchronize
data

This topic describes how to run Flume on a Gateway node to synchronize data based
on Alibaba Cloud E-MapReduce (EMR) V3.17.0 and later versions.

Background

EMR has supported Apache Flume since V3.16.0 and has supported default
monitoring since V3.17.0.

- Basic data flows

Running Flume on Gateway nodes avoids the impact on EMR Hadoop clusters.
Basic data flows that are streamed through Flume agents installed on Gateway

nodes are shown in the following figure.

EMR clusters

gateway node

Flurme S&gent

gateway node

Data sources

Flume Agent

gateway node

Flume Agent

o Other Sink

Prepare the environment

The test is performed using EMR that is deployed in the China East 1 (Hangzhou)

region. The version of EMR is V3.17.0. The components required for this test are as

follows.

- Flume: 1.8.0

You can use EMR to automatically create a Hadoop cluster. For more information, see

Create a cluster.
Click Create Cluster, click Flume for the cluster type, and select Flume from

Optional Services.

£ Software Settings

EMR Versio EMR-3.17.0
& ApacheDs 200 & e 020 | 21 Spark 232)
8% Ganglia (3.7.2)
ces: [29 Frume (153

Create a Gateway node and associate it to the Hadoop cluster created in the

previous step.

Procedure

- Run Flume

- The default path of Flume configuration filesis / etc / ecm / flume - conf
. properties

. See Use Flume for modifying the configuration file flume
for Flume agents. After the modification, use the following command to run a

Flume agent.
nohup flume - ng agent - n al - f flume properties &

- You can use the - ¢ flagor the -- conf flag to replace the default

configuration file with a custom file. For example:

al - f flume properties

nohup flume - ng agent - n
c path - to - flume - conf &

@ Notice:

For more information, see Use Flume. You need to add the zookeeperQ uorum
configuration item to the flume . properties configuration file when the

Flume agents installed on Gateways use sinks to write data to HBase. For example:

al . sinks . k1l . zookeeperQ uorum = emr - header - 1 . cluster -
46349 : 2181

The hostname of the ZooKeeper cluster emr - header - 1 . cluster - 46349
is the value of the hbase . zookeeper . quorum configuration item in the /

etc / ecm / hbase - conf / hbase - site . xml file.

- View monitoring information

Monitoring data of Flume agents is displayed in the cluster console by default.
On the Clusters and Services page, click FLUME to jump to the cluster console as
shown in the following figure.

i'= E-MapReduce () overview == Cluster Management B Data Platform ¢ Alerts [operation Log Help L EMR Scheduling (Former Version) 7

g mees) > B >
O S —— oo | & comectsting | ¥
Status Component Deployment Configure History
e
@ | Monitoring Data Time Period: 1Hour 6 Hours 12 Hours 1Day 7 Days
flume. CHANNEL.EventPutAttemptCoun ume.CHANNEL ChannelFillPercentage
[+ 30000000 100
%
5 20000000 ~— SRR SE—— e
, 50
50000000
0 0 — —
flume. SOURCE GenericProcessingF: ime.CHANNEL.EventPutst
H’ 1 15000000
o 10000000
1] 5000000
ue 0 0
==
& flume.SOURCE.OpenConnectionCount ume.CHANNEL.EventTakeSuccessCount

1 15000000

Notice:

Monitoring data is classified by the components (sources, channels, or sinks) of
Flume agents. For example, CHANNEL.channell represents monitoring data of
the channell channel component. Note: Avoid using the same component name

when configuring different agents.

Refer to the official Flume website for viewing monitoring data of Flume agents
using Ganglia by creating proper configurations. After doing this, monitoring data

of Flume agents will not be displayed in the console.

- View logs

By default, the log path of a Flume agentis / mnt / diskl / log / flume /S${
flume - agent - name }/ flume . log .You can modifythe / etc / ecm /
flume - conf / log4j . properties configuration file to change the log path.

However, we recommend that you do not change the default log path.

Notice:
A log path contains a Flume agent name. Provide a unique name for each agent to

avoid logs of different agents to be stored in the same directory.

14 Isolate OSS data of different users

This topic describes how to use Resource Access Management (RAM) to isolate Object

Storage Service (OSS) data of different users.
Prerequisite

An Alibaba Cloud account is created.
Background

E-MapReduce allows you to use RAM to isolate data of different users.
Step 1: Log on to the RAM console

1. Log on to the RAM console by using an Alibaba Cloud account.
Step 2: Create a RAM user

1. In the left-side navigation pane, click Identities, and click Users.

2. Click Create User.

Note:

To create multiple RAM users at a time, click Add User.
3. Specify the Logon Name and Display Name parameters.

4. Under Access Mode, select Console Password Logon or Programmatic Access.

Note:
We recommend that you select only one access mode for the RAM users to ensure
the security of your Alibaba Cloud account. This prevents RAM users who have
terminated their employment contracts with the company from accessing Alibaba

Cloud resources.

5. Click OK.
Step 3: Create permission policies

In addition to providing the default permission policies, RAM allows you to customize
permission policies for flexible authorization. You can create multiple permission

policies based on your needs.

1. In the left-side navigation pane, click Permissions, and click Policies.

2. On the page that appears, click Create Policy.

https://ram.console.aliyun.com/

3. On the Create Custom Policy page, specify the Policy Name and Note parameters.

4. Select Script in Configuration Mode.

For more information about how to configure a permission policy in script mode,

see the permission policy syntax and structure. In the following example, two

permission policies are created in script mode:

Production environment (prod-bucket)

Test environment (test-bucket)
{
" Version ": " 1",
" Statement ": [
{
" Effect ": " Allow ",
" Action ": [
" oss : ListBucket s "
1,
" Resource ": [
" acs : o0oss ixixix"
]
1,
{
" Effect ": " Allow ",
" Action ": [
" oss : Listobject s ",
" oss : GetObject ",
" oss : PutObject ",
" oss : DeleteObje «ct "
1,
" Resource ": [
" acs : oss :x:x: test -
bucket ",
" acs : oss :x:x: test -
bucket /x"
]
}
]
}

{
" Version ": " 1 ",
" Statement ": [
{
" Effect ": " Allow ",
" Action ": [
" oss : ListBucket s "
1,
" Resource ": [
" acs : 0Ss ix:k:x"
]
%,
" Effect ": " Allow ",
" Action ": [
" oss : Listobject s ",
" oss : GetObject ",
" oss : PutObject "
1,
" Resource ": [
" acs : 0Ss :*:%: prod -
bucket ",
" acs : 0Ss :*:%: prod -
bucket /x"
]
}
]
+

After the preceding permission policies are granted to a RAM user, the RAM user is

subject to the following restrictions in the E-MapReduce console:

- All buckets are displayed on the OSS selection page for creating clusters, jobs,

and execution plans, but only the authorized buckets can be accessed.

- Only the contents of the authorized buckets are accessible.

- Only the authorized buckets can be read and written. An error is returned if the

RAM user performs read or write operation on unauthorized buckets.

5. Click OK.

Step 4:

S.
6.

Grant permissions to the RAM user

. In the left-side navigation pane, click Identities, and click Users.
. In the User Logon Name/Display Name column, find the target RAM user.

. Click Add Permissions. On the page that appears, the principle is automatically

filled in.

In the Policy Name column, select the target policies by clicking the corresponding

rOws.

Note:
You can click X in the section on the right side of the page to delete the selected
policy.
Click OK.
Click Finished.

(Optional) Step 5: Authorize the RAM user to log on to the Alibaba Cloud console

If the console logon permission is not granted to the RAM user when the RAM user is

created, you can grant the permission to the RAM user as follows:

1.
2.

In the left-side navigation pane, click Identities, and click Users.

In the User Logon Name/Display Name column, click the username of the target

RAM user.

. In the Console Logon Management section of the Authentication tab, click Modify

Logon Settings.

. Under Console Password Logon, select Enabled.

. Click OK.

Log on to the E-MapReduce console as the RAM user

. Log on to the Alibaba Cloud console as the RAM user.
. After logging on to the console, select E-MapReduce.

https://signin.alibabacloud.com/login.htm

15 Configure a network connection for using
Sqoop to transfer data from a database to an EMR
cluster

When you need to transfer data from external databases to your EMR cluster, make
sure that the networks are connected. This topic describes how to configure network
connections for accessing ApsaraDB for RDS instances, user-created databases hosted

on ECS, and on-premises databases.
ApsaraDB for RDS
- Classic network

We recommend that you use an EMR cluster deployed in the classic network to
access a classic network RDS instance. You can set internal and public IP addresses
for classic network RDS instances. Sqoop synchronizes data by running map

tasks on the master node and worker nodes. However, only the master node of a
classic network EMR cluster can access the public network. You need to access the
internal IP address of the RDS instance for Sqoop. Make sure that the internal 1P
address of the EMR cluster is in the whitelist of the RDS instance.

Basic Information Sat Whitelist Migrats Zons ~
7
China (Hangzhou)ZoneG Standard (High-availability)
3433
Apply for Internet Address
Local SSD Disk

MNote: Use the connection string above to connect to the instance. You need to change the VIP in the connaction string ta the one used in your environment.

For more information about how to create a classic network EMR cluster, see
Create a cluster.

- VPC

If the RDS is in a VPC network, you must specify a VPC network for the EMR

cluster. We recommend that you use the same VPC for your EMR cluster and the

RDS instance to save time for configuring a network connection. Otherwise, use

Express Connect to configure a network connection.

China (Hangzhou) Zone K China (Hangzhou) Zone G [[ELEeN Qe dal China (Hangzhou) Zone B China (Hangzhou) Zone E | China (Hangzhou) Zone
Classic Newori. [JEES

High Availability

Eor Ll Compute Optimized ~ Memory Optimized | High Clock Speed | Entry-Level (Shared)

odes

User-created database hosted on ECS
- Classic network

The process for accessing a classic network user-created database and a classic
network RDS instance is similar. Use the classic network for the EMR cluster to
access the internal IP address of the user-created database. Make sure that the
ECS instance on which the database is deployed and the instances of the EMR
cluster are in the same security group. In the ECS console, choose Security Groups

> Manage Instances > Add Instance.

- VPC

The process for accessing a VPC user-created database and a VPC RDS instance is
similar. Use a VPC for your EMR cluster. Make sure that the ECS instance where the

database is deployed and the EMR cluster are in the same security group.
On-premises database

You can assign an EIP address to your EMR cluster and access the public IP address
of the database. Or, you can use Express Connect to connect the VPCs to access the

database.
- Associate an EIP

We recommend that you use a VPC EMR cluster if the on-premises database can

be accessed over the public network. Create an EMR cluster in a VPC. Then, in the

https://www.alibabacloud.com/help/zh/product/27782.html
https://www.alibabacloud.com/help/zh/product/27782.html

ECS console, choose Manage > Configuration Information > More > Bind EIP and
associate an EIP with each ECS instance. After the configurations, your cluster can

access the public IP address of the on-premises database.

- Express Connect

If the on-premises database is not allowed to be accessed over the public network,
create an EMR cluster in a VPC and use Express Connect to connect the on-
premises IDC and the VPC. For more information about Express Connect, see

Express Connect.

https://www.alibabacloud.com/help/product/27782.html
https://www.alibabacloud.com/help/product/27782.html

16 Use E-MapReduce to submit a Spark Streaming
job for consuming Kafka data

This topic describes how to create a Hadoop cluster and Kafka cluster by using E-

MapReduce (EMR) and run a Spark Streaming job to consume Kafka data.
Prerequisites

- You have registered an Alibaba Cloud account. For more information, see Create an

Alibaba Cloud account.

- You have activated EMR.

- You have authorized the Alibaba Cloud account. For more information, see
#unique_19.

Context

You always consume Kafka data in practical applications. In EMR, you can run a

Spark Streaming job to consume Kafka data.
Step 1: Create a Hadoop cluster and Kafka cluster

We recommend that you specify the same security group for the Hadoop cluster as
that of the Kafka cluster when creating the two clusters. If the clusters are linked to
different security groups, the two clusters are not accessible by each other. You must

modify the required settings of the security groups to allow mutual access.

1. Log on to the Alibaba Cloud EMR console.

https://www.alibabacloud.com/help/doc-detail/50482.htm
https://www.alibabacloud.com/help/doc-detail/50482.htm
https://emr.console.aliyun.com

2. Create a Hadoop cluster. For more information, see Create a cluster.

ifi Software Settings

Cluster Type: Hadoop Kafka ZooKeeper Data science Druid

i

On-premises data queries, real-time queries, and ad-hoc queries in big data scenarios
E-MapReduce Hadoop is an open-source Hadoop ecosystem. It uses YARN to manage cluster resources, and supports massive distributed storage and computing
of Hive and Spark data stored in HDFS. It supports multiple Hadoop ecosystem compenents, including stream computing components (Spark Streaming, Flink, and

Storm), interactive query compenents (Presto and Impala), Cozie, and Pig. It also supports OS5 storage, Kerberos authentication, and Kerberos encryption.
EMR Version: | EMR-3.21.0

Optional Services:

* Advanced Settings

3. Create a Kafka cluster. For more information, see Create a cluster.

ifi Software Settings

Cluster Type: Hadoop ZooKesper Data science Druid

High-throughput and scalable open-source message system
E-MapReduce Kafka provides a complete solution for service monitoring and metadata management. It is mainly used in log retrieval and monitoring data

integration. E-MapReduce Kafka supports HDFS data processing, streaming data processing, and real-time data analysis

R Version: | EMR-3.21.0

Required Services: [CEVISER Nik)) Ganglia (3.7.2) Kafka (1.1.1) Kafka-Manager (1.3.3.16)

Optional Services:

* Advanced Settings

Step 2: Download a JAR file and upload it to the Hadoop cluster

In this example, the Demo project is customized and compiled to create a new JAR
file. You need to upload the JAR file to the emr-header-1 instance of the Hadoop
cluster.

1. Download the JAR file from this link.

2. Log on to the Alibaba Cloud EMR console.

3. On the Cluster Management tab, click the Cluster ID of the target cluster to enter
the Hadoop cluster.

https://github.com/aliyun/aliyun-emapreduce-demo
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/126974/cn_zh/1563960119361/examples-1.2.0-shaded-2.jar.zip
https://emr.console.aliyun.com

4. In the left-side navigation pane, select Instances and view the IP address of the

emr-header-1 instance in the Hadoop cluster.
5. Log on to the emr-header-1 instance by using SSH.

6. Upload the JAR file to a directory of the emr-header-1 instance.

Note:
The / home / hadoop directory is specified as a repository for data storage in

this case. After you upload the JAR file, we recommend that you keep the logon

window open for later use.
Step 3: Create a topic on the Kafka cluster

You can create a topic in the EMR console. For more information, see #unique_34. You
can also log on to the emr-header-1 instance and create a topic by using the CLI. In
this example, you can create a topic named test with 10 partitions, 2 replicas.

1. Go to the Alibaba Cloud EMR console.

2. On the Cluster Management tab, click the Cluster ID of the target Kafka cluster to
open the Details page of the cluster.

3. In the left-side navigation pane, select Instances and view the IP address of the

emr-header-1 instance in the Kafka cluster.

4. Open a new shell in the SSH client and log on to the emr-header-1 instance in the

new shell.

5. Use the following command to create a topic.

/ usr / lib / kafka - current / bin / kafka - topics . sh --

partitions 10 -- replicatio n - factor 2 -- zookeeper emr
- header - 1 :/ kafka -1 . 6 . 0 -- topic test -- create
Note:

After you create the topic, we recommend that you keep this logon window open

for later use.
Step 4: Run a Spark Streaming job

After performing the preceding steps, you can run a Spark Streaming job on the
Hadoop cluster. The following is an example of running a job to count the number of

words for a data stream.

https://emr.console.aliyun.com

1. Go to the logon window of the emr-header-1 instance in the Hadoop cluster.

If you close the window, you need to log on again. For more information about
the logon procedure, see Step 2: Download a JAR file and upload it to the Hadoop

cluster.

2. Use the following command to submit a job to the Kafka cluster for counting.

spark - submit -- class com . aliyun . emr . example . spark .
streaming . KafkaSampl e / home / hadoop / examples - 1 . 2 . 0
- shaded - 2 . jar 192 . 168 . XXX . XXX : 9092 test 5

In the preceding command, the parameters after the name of the JAR file are

described as follows:

- 192.168.xxx.xxx: indicates the internal or public IP address of a broker in the
Kafka cluster. Figure 16-1: List of components in the Kafka cluster shows an

example.
- test: indicates the name of the topic.

- 5:indicates the time interval.

Figure 16-1: List of components in the Kafka cluster

[ii] Overview o2 Cluster Management B Data Platform B Metadata 4 System Management v Help

< Back 42 Kafka ~ Cument Cluster: C- / EMR!

Step 5: Use Kafka to publish messages

When you perform this step, ensure that the Spark Streaming job is running. After
you start a Kafka producer, the number of words is displayed in a shell on a client
instance of the Hadoop cluster. The value is updated in real time when you enter

words into a shell on a client instance of the Kafka cluster.

1. Go to the logon window of the emr-header-1 instance.
If you close the window, you need to log on again. For more information about the
logon procedure, see Step 3: Create a topic on the Kafka cluster.

2. In the logon window of the client instance in the Kafka cluster, use the following

command to start a producer.

/ usr / lib / kafka - current / / bin / kafka - console - producer .
sh -- topic test -- broker - list emr — worker - 1 : 9092

3. When you enter words in the Kafka logon window, the number of words is

displayed and updated in the Hadoop logon window in real time.

Step 6: View the progress of the Spark Streaming job

After you run a Spark Streaming job, you can view the status of the job in the EMR

console.

1. Go to the EMR console.

https://emr.console.aliyun.com

E-MapReduce Best Practices / 16 Use E-MapReduce to submit a Spark

Streaming job for consuming Kafka data

2. On the Connect Strings page, click the link next to the Spark History Server Ul

service name to view the status of the Spark Streaming job. For more information,

see Access links and ports.

-:::- E*MapReduce Overview =7z Cluster Management B Data Platform & Metadata 4% System Management Help o

Home Page » Cluster Management » Cluster (C-)

Connect Strings
EMR-
Public Connect Strings

E] Cluster Cverview

Service Name Connect String Instructions

L Cluster Management

HDFS UL -
& Cluster Service ~
YARN UL -
'G Cluster Resources
Spark History Server Ul -
E Instances
Hue Description o'
x Cluster Scripts
Connect Strings Zeppelin Description of
i Auto Scaling Ganglia UT -
& Users
» Event Timeline
~ Completed Jobs (1772, only showing 972)
Page: 1 2 3 4 5 6 7 8 9 10 > 10 Pages. Jump to 1 . Show 100 items in a pz
Jobld ~ Description Submitted Duration Stages: Succeeded/Total Tasks (for all stages): Succeeded/Total
1771 Streaming job from [output operation 0, batch time 11:18:35] 2019/07/18 11:18:35 6ms 1A (1 skipped) YR TN . (W—
print at KafkaSample.scala:64

1770 Streaming job from [output operaticn 0, batch time 11:18:35] 2019/07/18 11:18:35 30ms 272 o om
print at KafkaSample.scala:64

1769 Streaming job from [output operation 0, batch time 11:18:34] 2019/07/18 11:18:34 3ms 1/ (1 skipped) [T ¥ T . —
print at KafkaSample.scala:64

1768 Streaming job from [output operation 0, batch time 11:18:34] 2019/07/18 11:18:34 10ms 272 [1k B
print at KafkaSample.scala:64

1767 Streaming job from [output operation 0, batch time 11:18:33] 2019/07/18 11:18:33 ams 1/1 (1 skipped) ~ 3/3(10skipped)
print at KafkaSample.scala:64

1766 Streaming job from [output operation 0, batch time 11:18:33] 2019/07/18 11:18:33 23ms 2/2 [T L
print at KafkaSample.scala:64

1765 Streaming job from [output operation 0, batch time 11:18:32] 2019/07/18 11:18:32 4ms 111 (1 skipped) _ 3/3(10skipped)
ptint at KafkaSample.scala:64

1764 Streaming job from [output operation 0, batch time 11:18:32] 2019/07/18 11:18:32 12ms 272 o om
print at KafkaSample.scala:64

1763 Streaming job from [output operation 0, batch time 11:18:31] 2019/07/18 11:18:31 sms 1A (1 skipped) . 33(10skipped)
print at KafkaSample.scala:64

1762 Streaming job from [output operation 0, batch time 11:18:31] 2019/07/18 11:18:31 24ms 2/2 e
rient b Wofler@rerunles moel o A

94

Issue: 20190918

https://www.alibabacloud.com/help/doc-detail/89065.htm

17 Use Kafka Connect to migrate data

During streaming data processing, data synchronization between Kafka and other
systems or data migration between Kafka clusters is often required. This topic

describes how to use Kafka Connect to migrate data between Kafka clusters.
Prerequisites

- You have registered an Alibaba Cloud account. For more information, see Create an
Alibaba Cloud account.

- You have activated E-MapReduce.

- You have authorized the Alibaba Cloud account. For more information, see Role

authorization.
Context

Kafka Connect is a scalable and reliable tool for fast transmitting streaming data
between Kafka and other systems. For example, you can use Kafka Connect to obtain
binlog data from a database and migrate the data of the database to a Kafka cluster

. In this way, you can migrate the data of the database and indirectly connect the
database to a downstream streaming data processing system. Kafka Connect also
provides a Representational State Transfer (REST) application programming interface

(API) to help you create and manage Kafka Connect connectors.

Kafka Connect can run in standalone or distributed mode. In standalone mode, all
workers run in the same process. Compared with the standalone mode, the distribute
d mode is more scalable and fault-tolerant. It is the most commonly used mode and

the recommended mode for the production environment.

This topic describes how to call the REST API of Kafka Connect to migrate data

between Kafka clusters, where Kafka Connect runs in distributed mode.
Step 1: Create Kafka clusters

Create a source Kafka cluster and a target Kafka cluster in E-MapReduce. Kafka
Connect is installed on the task node. Therefore, a task node must be created in the
target Kafka cluster. Kafka Connect is started on the task node by default after the

cluster is created. The port number is 8083.

https://www.alibabacloud.com/help/doc-detail/50482.htm
https://www.alibabacloud.com/help/doc-detail/50482.htm

We recommend that you add the source Kafka cluster and the target Kafka cluster
to the same security group. If the source Kafka cluster and the target Kafka cluster
belong to different security groups, the two clusters are not accessible to each other

by default. You must modify the required settings of the security groups to allow

mutual access.

1. Log on to the Alibaba Cloud E-MapReduce console.
2. Create the source Kafka cluster and the target Kafka cluster. For more information,

see #unique_32.

E] Note:

When creating the target Kafka cluster, you must configure a task instance, that is,

a task node.

ifi Software Settings

Hadoop ZooKesper Data science Druid

High-throughput and scalable open-source message system

omplete solution for service menitoring and ent. It is mainly used in log retrieval and monitoring data

ports HOFS data processing, streaming d
n: | EMR-3.21.0

g Zookeoper G413) Kafia-Manager (13316)

* Advanced Settings

Step 2: Create a topic for storing the data to be migrated
Create a topic named connect in the source Kafka cluster.

1. Use Secure Shell (SSH) to log on to the header node of the source Kafka cluster. In

this example, the header node is emr-header-1.

https://emr.console.aliyun.com

2. Run the following command as the root user to create a topic named connect:

kafka - topics . sh -- create -- zookeeper emr - header - 1
2181 -- replicatio n - factor 2 -- partitions 10 -- topic
connect

[root@emr-header-1 ~]# kafka-topics.sh --create --zookeeper emr-header-1:2181 --replication-factor 2 --partitions 1@ --topic connect
Created topic "connect".

[root@emr-header-1 ~1# ||

O
= | Note:

After performing the preceding operations, keep the logon window for later use.
Step 3: Create a Kafka Connect connector

On the task node of the target Kafka cluster, run the curl command to create a

Kafka Connect connector by using JavaScript Object Notation (JSON) data.

1. Use SSH to log on to the task node of the target Kafka cluster. In this example, the

task node is emr-worker-3.

2. Optional: Customize Kafka Connect configuration.

Go to the Configuration page of the Kafka service under the target Kafka cluster.
Customize the offset.storage.topic, config.storage.topic, and status.storage.topic
parameters in connect-distributed.properties. For more information, see

#unique_36.

Kafka Connect saves the offsets, configurations, and task status in the topics
specified by the offset.storage.topic, config.storage.topic, and status.storage.topic
parameters, respectively. Kafka Connect automatically creates these topics by
using the default partition and replication factor that are saved in / etc / ecm /

kafka - conf / connect - distribute d . properties .

3. Run the following command as the root user to create a Kafka Connect connector:

curl - X POST - H " Content - Type : applicatio n / json "

-— data '{" name ": " connect - test ", " config ": { " connector
class ": " EMRReplica torSourceC onnector ", " key . converter
": " org . apache . kafka . connect . converters . ByteArrayC
onverter ", " value . converter ": " org . apache . kafka . connect
converters . ByteArrayC onverter ", " src . kafka . bootstrap
servers ": "${ src - kafka - 1dip }: 9092 ", " src . zookeeper
connect ": "${ src - kafka - curator - dip }: 2181 ", " dest
zookeeper . connect ": "${ dest - kafka - curator - ip }: 2181 ",

" topic . whitelist ": "${ source - topic }", " topic . rename .

format ": "${ dest - topic }", " src . kafka . max . poll . records
": " 300"} }' http :// emr - worker - 3 : 8083 / connectors

In the JSON data, the name field indicates the name of the Kafka Connect
connector to create, whichis connect - test inthisexample. The config
field needs to be configured based on your actual requirements. The following

table describes the key variables of the config field.

Variable Description

${source-topic} The topics for storing the data to be migrated in the source
Kafka cluster. For example, connect. Separate multiple
topics with commas (,).

${dest-topic} The topics to which the data is migrated in the target Kafka
cluster. For example, connect.replica.

${src-kafka- The internal IP address of the node where the ZooKeeper
curator-hostname} |service is installed in the source Kafka cluster.

${dest-kafka- The internal IP address of the node where the ZooKeeper
curator-hostname} |service is installed in the target Kafka cluster.

)
=1 Note:

After performing the preceding operations, keep the logon window for later use.
Step 4: View the status of the Kafka Connect connector and task node

View the status of the Kafka Connect connector and task node and make sure that

they are in normal status.

1. Return to the logon window on the task node of the target Kafka cluster. In the

example, the task node is emr-worker-3.

2. Run the following command as the root user to view all Kafka Connect connectors:

curl emr - worker - 3 : 8083 / connectors

[root@emr-worker-3 ~]# curl emr-worker-3:8@83/connectors

["connect-test"][root@emr-worker-3 ~]# I

3. Run the following command as the root user to view the status of the Kafka

Connect connector created in this example, that is, connect-test:

curl emr - worker - 3 : 8083 / connectors / connect - test /
status

3 ﬂ]# Lunl. emr-worker-3: 8083 connectors/connect-test/status
"RUNNING", "worker_id":"192.168. :8083"}, "tasks" :[{"state":"RUNNING","id":@, "worker_id":"192.168. :8083"1], "type":"source"}[r|

oot@emr-worker-3 ~J# ||

Make sure that the Kafka Connect connector (connect-test in this example) is in the
RUNNING status.

4. Run the following command as the root user to view the details of the task node:

curl emr - worker - 3 : 8083 / connectors / connect - test /
tasks

[roottﬁ'en\r worker-3]# curl emr-worl k H /connectors/connect-t
connect-test”, "connector 68 . 18083"}, "tasks" :[{"state”:"RUNNING", "id":@, "worker_id":"192.168. :8083"}], "type": "source"}[r
r-3 -

tm Source(onnact ", 'src., zuukeeper <o mr-header-1. cluster-1 "topic.rename.f

ator . EMRReplicatorSource sr¢. kafka.max . pol

"c . 5 yConverter", "key. convertel g.apache.kafka.con

nect. mnver‘ters EvteAr‘vaonuertP c‘kaFka bootstr ap. server 68. ,"topic. whltehst "connect"” part1t1m1 assignment” AAAAAAABAAd]bZSuZWN&)AAAACgAAAAAAAAABAA
AAAGAAAAMAAAAEAAAABQAAAAYAAAAHAAAACAAAAAKAAAAA" 11] [root@emr-worker

Make sure that no error message about the task node is returned.
Step 5: Generate the data to be migrated
Send the data to be migrated to the connect topic in the source Kafka cluster.

1. Return to the logon window on the header node of the source Kafka cluster. In this

example, the header node is emr-header-1.

2. Run the following command as the root user to send data to the connect topic:

kafka - producer - perf - test . sh -- topic connect -- num -
records 100000 -- throughput 5000 -- record - size 1000 --
producer - props bootstrap . servers = emr - header - 1 : 9092

[root@emr-header-1 ~J# kafka-producer-perf-test.sh --topic connect --num-records 100000 --throughput 5000 --record-size 1080 --producer-props bootstrap.servers=emr-header-1:909

, 4997.4 rec ec 4.5 ms avg 1a+nmv, 9.0 max latency.
, 5005.0 record. 3
, 5000.0 records/se
records sent, 4884.0 records s
100000 records sent, 4901.960784 recm‘ds sec (4. sec), 1.73 ms avq latency, 391 00 s max latency, 1 ms 5@th, 4 ms 95th, 29 ms 99th, 77 ms 99.9%th.
[root@emr-header-1 ~1# [

Step 6: View the result of data migration

After the data to be migrated is generated, Kafka Connect automatically migrates the
data to the corresponding topic in the target Kafka cluster. In this example, the topic

is connect.replica.

1. Return to the logon window on the task node of the target Kafka cluster. In this

example, the task node is emr-worker-3.

2. Run the following command as the root user to check whether the data is migrated:

kafka - consumer - perf - test . sh -- topic connect . replica
-- broker - list emr - header - 1 : 9092 -- messages 100000

[root@emr-worker-3 ~]# kafka-consumer-perf-test.sh --topic connect.replica --broker-list emr-header-1:9292 --messages 1000000
start.time, end.time, data.consumed.in.MB, MB.sec, data.consumed.in.nMsg, nMsg.sec, rebalance.time.ms, fetch.time.ms, fetch.MB.sec, fetch.nMsg.sec

2019-07-22 10:13:17:855, 2019-07-22 10:13:32:055, 95.3674, 6.716@, 100000, 7042.2535, 3019, 11181, 8.5294, 8943.7439
[root@emr-worker-3 ~]# I

According to the command output in the preceding figure, the 100,000 messages

sent to the source Kafka cluster are migrated to the target Kafka cluster.
Summary

This topic describes and demonstrates how to use Kafka Connect to migrate data
between Kafka clusters. For more information about how to use Kafka Connect, see
Kafka official website and REST API.

https://kafka.apache.org/documentation/#connect
https://kafka.apache.org/documentation/#connect
https://docs.confluent.io/current/connect/references/restapi.html

	Contents
	Legal disclaimer
	Generic conventions
	1 Use E-MapReduce to collect metrics from a Kafka client
	2 Use E-MapReduce to process offline jobs
	3 Submit Storm topologies to process data in Kafka on E-MapReduce
	4 Use ES-Hadoop on E-MapReduce
	5 Use Mongo-Hadoop on E-MapReduce
	6 Deep learning with Analytics Zoo on E-MapReduce
	7 Adaptive execution of Spark SQL
	8 E-MapReduce data migration solution
	9 Use EMR Data Science clusters for deep learning
	10 Use Flink jobs to process OSS data
	11 Connect to ApsaraDB for HBase using E-MapReduce Hive
	12 Use EMR for real-time MySQL binlog transmission
	13 Run Flume on a Gateway node to synchronize data
	14 Isolate OSS data of different users
	15 Configure a network connection for using Sqoop to transfer data from a database to an EMR cluster
	16 Use E-MapReduce to submit a Spark Streaming job for consuming Kafka data
	17 Use Kafka Connect to migrate data

