
Alibaba Cloud
HybridDB for PostgreSQL

User Guide

Issue: 20181214

HybridDB for PostgreSQL User Guide / Legal disclaimer

Issue: 20181214 I

Legal disclaimer

Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions of this

legal disclaimer before you read or use this document. If you have read or used this document, it

shall be deemed as your total acceptance of this legal disclaimer.

1. You shall download and obtain this document from the Alibaba Cloud website or other Alibaba

Cloud-authorized channels, and use this document for your own legal business activities only.

The content of this document is considered confidential information of Alibaba Cloud. You shall

 strictly abide by the confidentiality obligations. No part of this document shall be disclosed or

provided to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted, or disseminat

ed by any organization, company, or individual in any form or by any means without the prior

written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades, adjustment

s, or other reasons. Alibaba Cloud reserves the right to modify the content of this document

without notice and the updated versions of this document will be occasionally released through

 Alibaba Cloud-authorized channels. You shall pay attention to the version changes of this

document as they occur and download and obtain the most up-to-date version of this document

 from Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud products and

services. Alibaba Cloud provides the document in the context that Alibaba Cloud products and

 services are provided on an "as is", "with all faults" and "as available" basis. Alibaba Cloud

makes every effort to provide relevant operational guidance based on existing technologies

. However, Alibaba Cloud hereby makes a clear statement that it in no way guarantees the

accuracy, integrity, applicability, and reliability of the content of this document, either explicitly

or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial losses incurred

 by any organizations, companies, or individuals arising from their download, use, or trust in

this document. Alibaba Cloud shall not, under any circumstances, bear responsibility for any

 indirect, consequential, exemplary, incidental, special, or punitive damages, including lost

profits arising from the use or trust in this document, even if Alibaba Cloud has been notified of

the possibility of such a loss.

5. By law, all the content of the Alibaba Cloud website, including but not limited to works, products

, images, archives, information, materials, website architecture, website graphic layout, and

webpage design, are intellectual property of Alibaba Cloud and/or its affiliates. This intellectu

al property includes, but is not limited to, trademark rights, patent rights, copyrights, and trade

HybridDB for PostgreSQL User Guide / Legal disclaimer

II Issue: 20181214

 secrets. No part of the Alibaba Cloud website, product programs, or content shall be used,

modified, reproduced, publicly transmitted, changed, disseminated, distributed, or published

 without the prior written consent of Alibaba Cloud and/or its affiliates. The names owned by

Alibaba Cloud shall not be used, published, or reproduced for marketing, advertising, promotion

, or other purposes without the prior written consent of Alibaba Cloud. The names owned by

Alibaba Cloud include, but are not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other

brands of Alibaba Cloud and/or its affiliates, which appear separately or in combination, as well

 as the auxiliary signs and patterns of the preceding brands, or anything similar to the company

 names, trade names, trademarks, product or service names, domain names, patterns, logos

, marks, signs, or special descriptions that third parties identify as Alibaba Cloud and/or its

affiliates).

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

HybridDB for PostgreSQL User Guide / Legal disclaimer

Issue: 20181214 III

HybridDB for PostgreSQL User Guide / Generic conventions

Issue: 20181214 I

Generic conventions

Table -1: Style conventions

Style Description Example

This warning information indicates a
situation that will cause major system
changes, faults, physical injuries, and
other adverse results.

Danger:
Resetting will result in the loss of user
configuration data.

This warning information indicates a
situation that may cause major system
 changes, faults, physical injuries, and
other adverse results.

Warning:
Restarting will cause business
interruption. About 10 minutes are
required to restore business.

This indicates warning information,
supplementary instructions, and other
content that the user must understand.

Note:
Take the necessary precautions to
save exported data containing sensitive
information.

This indicates supplemental instructio
ns, best practices, tips, and other
content that is good to know for the
user.

Note:
You can use Ctrl + A to select all files.

> Multi-level menu cascade. Settings > Network > Set network type

Bold It is used for buttons, menus, page
names, and other UI elements.

Click OK.

Courier

font

It is used for commands. Run the cd /d C:/windows command
to enter the Windows system folder.

Italics It is used for parameters and variables. bae log list --instanceid

 Instance_ID

[] or [a|b] It indicates that it is a optional value,
and only one item can be selected.

ipconfig [-all|-t]

{} or {a|b} It indicates that it is a required value,
and only one item can be selected.

swich {stand | slave}

HybridDB for PostgreSQL User Guide / Contents

II Issue: 20181214

Contents

Legal disclaimer..I
Generic conventions.. I
1 Basic operations.. 1
2 Manage instances.. 4

2.1 Apply for an Internet IP address..4
2.2 Release an Internet IP address...5
2.3 Upgrade the instance configuration... 6
2.4 Change connection addresses...8
2.5 Restart an instance.. 9
2.6 Release an instance.. 9

3 Migrate data.. 11
4 User and permission management.. 12
5 Extension management... 14
6 Operations of JSON data.. 16
7 Use HyperLogLog...24
8 Use the create Library command... 26
9 Use PL ⁄ Java UDF... 28
10 Use SortKey.. 30

HybridDB for PostgreSQL User Guide / 1 Basic operations

Issue: 20181214 1

1 Basic operations

HybridDB for PostgreSQL is consistent with Greenplum Database in operations based on

Greenplum Database, including the schema, supported types, and user permissions. Aside from

 some operations exclusive to Greenplum Database, such as the Distribution Key and AO table,

you can refer to PostgreSQL for all the other operations.

This document introduces the basic operations of HybridDB for PostgreSQL, including creating a

database, creating a distribution key, constructing data, and creating a query.

Create a database

In HybridDB for PostgreSQL instances, you can use SQL statements to create a database

following the same operations in PostgreSQL. For example, after an instance is connected to

Greenplum through the psql tool, run the following command to create a database:

=> create database mygpdb;
CREATE DATABASE
=> \c mygpdb
psql (9.4.4, server 8.3devel)
You are now connected to database "mygpdb" as user "mygpdb".

Create a distribution key

In HybridDB for PostgreSQL, tables are distributed on all of the Segments following a hash or

random distribution rule. You can specify the distribution key when creating a table. By doing this

, data imported is assigned to the specific Segment according to the hash value calculated by the

distribution key.

=> create table vtbl(id serial, key integer, value text, shape cuboid
, location geometry, comment text) distributed by (key);
CREATE TABLE

When no distribution key is specified, that is, with no “distributed by (key)” followed in the

command, Greenplum randomizes the ID field using the round-robin approach.

Best practices

Distribution keys are vital to query performance. When you are specifying distribution keys, we

recommend that you follow the “Even” principle. What’s more, specifying a more business-cued

field can significantly improve the performance.

To be specific, the best practices include:

• Select the evenly distributed columns or multiple columns to prevent data from tilting.

HybridDB for PostgreSQL User Guide / 1 Basic operations

2 Issue: 20181214

• Select the fields commonly used in JOIN, especially for statements with high concurrency.

• Select the condition columns with high concurrent query and high filter rate.

• Do not use random distribution.

For details, see Reference.

Construct data

1. Create a function to generate a random string.

CREATE OR REPLACE FUNCTION random_string(integer) RETURNS text AS $
body$
SELECT array_to_string(array
 (SELECT substring('0123456789ABCDEFGHIJ
KLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
 FROM (ceil(random()*62))::
int
 FOR 1)
 FROM generate_series(1, $1)), '');
$body$
LANGUAGE SQL VOLATILE;

2. Create a distribution key.

CREATE TABLE tbl(id serial, KEY integer, locate geometry, COMMENT
text) distributed by (key);

3. Construct data.

INSERT INTO tbl(KEY, COMMENT, locate)
 SELECT
 KEY,
 COMMENT,
 ST_GeomFromText(locate) AS locate
 FROM
 (SELECT
 (a + 1) AS KEY,
 random_string(ceil(random() * 24)::integer) AS COMMENT,
 'POINT(' || ceil(random() * 36 + 99) || ' ' || ceil(random
() * 24 + 50) || ')' AS locate
 FROM
 generate_series(0, 99999) AS a)
 AS t;

Create a query

• Query

 => select * from tbl where key = 751;
 | id | key | value | shape | locate
 | comment |
 +-----+-----+-------+--------------
+--+----------------+
 | 751 | 751 | red | 01010000000000000000C05B400000000000004A40
 | B9hPhjeNWPqV |
 (1 row)

#reference

HybridDB for PostgreSQL User Guide / 1 Basic operations

Issue: 20181214 3

 Time: 513.101 ms

• Query plan

 => explain select * from tbl where key = 751;
 Gather Motion 1:1 (slice1; segments: 1) (cost=0.00..1519.28 rows
=1 width=53)
 -> Seq Scan on tbl (cost=0.00..1519.28 rows=1 width=53)
 Filter: key = 751
 Settings: effective_cache_size=8GB; gp_statistics_use_fkeys=on
 Optimizer status: legacy query optimizer

Reference

• Pivotal Greenplum Official Documentation

• Greenplum 4.3 Best Practices

http://gpdb.docs.pivotal.io/4380/common/welcome.html
http://gpdb.docs.pivotal.io/4300/pdf/GPDB43BestPractices.pdf

HybridDB for PostgreSQL User Guide / 2 Manage instances

4 Issue: 20181214

2 Manage instances

2.1 Apply for an Internet IP address

If your application is deployed on an ECS instance in the same region as your HybridDB for

PostgreSQL instance and has the same network type, you do not need to apply for an Internet

IP address. If your application is deployed on an ECS that is located in a different region or has a

network type different from your HybridDB for PostgreSQL instance, or is deployed on a platform

other than Alibaba Cloud, an Internet IP address is necessary for access to the HybridDB for

PostgreSQL instance.

Note:

Instances in the same region (can be in different zones) with the same network type can access

each other through the intranet network.

Scenarios

Internet IP addresses and intranet IP addresses are used in the following scenarios:

• Use an intranet IP addresses only:

▬ Your application is deployed on an ECS instance in the same region as your HybridDB for

PostgreSQL instance and shares the same network type with the ECS instance.

• Use an Internet IP addresses only:

▬ The ECS instance where your application is deployed and your HybridDB for PostgreSQL

instance are in different regions.

▬ Your application is deployed in a third-party system other than Alibaba Cloud.

• Use both Internet and intranet IP addresses:

▬ Some application modules are deployed on an ECS instance in the same region with the

same network type, while other modules are deployed on an ECS instance in a different

region.

▬ Some modules of the application are deployed on an ECS instance in the same region with

the same network type, while other modules are deployed in systems other than Alibaba

Cloud.

HybridDB for PostgreSQL User Guide / 2 Manage instances

Issue: 20181214 5

Notes

• Before connecting to the database, you must add the IP addresses or IP ranges to a whitelist.

For more information, see Set up a whitelist.

• Exercise caution when you select an Internet IP address, because the instance may be

exposed to security risks. To reach a higher transmission rate and higher security level, we

recommend you transfer your applications to the ECS instance located in the same region as

the HybridDB for PostgreSQL instance.

Procedure

1. Log on to the HybridDB for PostgreSQL console.

2. Select the Region of the instance.

3. Locate the target instance. In the Actions column, click Manage.

4. On the Basic Information page, click Apply for internet address to go to the Database

Connection page. You can also directly click Database Connection on the left-side pane.

5. On the Database Connection page, click Apply for internet address.

6. On the dialog box that appears, click OK to generate an Internet IP address.

After allocating the Internet IP address, you can click Release Internet Address on the Database

Connection page to release the Internet IP address.

2.2 Release an Internet IP address

If the network environment changed after the Internet address is allocated, you can release

the Internet address on HybridDB for PostgreSQL console if you don't need it any more. After

releasing the Internet address, make sure to change the application configurations which related

to this address.

Before performing this operation, please read the following scenarios.

Scenarios

Internet IP addresses and intranet IP addresses are used in the following scenarios:

• Use an intranet IP addresses only:

▬ Your application is deployed on an ECS instance in the same region as your HybridDB for

PostgreSQL instance and shares the same network type with the ECS instance.

• Use an Internet IP addresses only:

https://gpdb.console.aliyun.com

HybridDB for PostgreSQL User Guide / 2 Manage instances

6 Issue: 20181214

▬ The ECS instance where your application is deployed and your HybridDB for PostgreSQL

instance are in different regions.

▬ Your application is deployed in a third-party system other than Alibaba Cloud.

• Use both Internet and intranet IP addresses:

▬ Some application modules are deployed on an ECS instance in the same region with the

same network type, while other modules are deployed on an ECS instance in a different

region.

▬ Some modules of the application are deployed on an ECS instance in the same region with

the same network type, while other modules are deployed in systems other than Alibaba

Cloud.

Procedure

1. Log on to the HybridDB for PostgreSQL console.

2. Select the Region of the instance.

3. Locate the target instance. In the Actions column, click Manage.

4. Click Database Connection on the left-side navigation.

5. On the Database Connection page, Click Release Internet Address.

If you haven't applied for an Internet address since you created an instance, there is only

Apply for Internet address on the Database Connection page.

6. Click OK on the dialog box to release the Internet address.

2.3 Upgrade the instance configuration

During the usage of HybridDB for PostgreSQL, some computing resources (such as CPU,

disk space, memory, and the number of data processing nodes) may become the bottleneck

hindering further growth of data processing speed as the data size and computing workload surge

 dynamically.

HybridDB for PostgreSQL provides online upgrading of the instance configuration to support

dynamic expansion of instances, but downgrading instance configuration is not supported. This

document describes how to upgrade the instance configuration.

View the instance configuration

HybridDB for PostgreSQL instance configuration includes group types and number of groups. For

more information, see Instance types.

https://gpdb.console.aliyun.com

HybridDB for PostgreSQL User Guide / 2 Manage instances

Issue: 20181214 7

Follow these steps to view the current instance configuration.

1. Log on to the HybridDB for PostgreSQL console.

2. Select the region of the instance. For example, China East 1.

3. Click Manage on the right side of the target instance.

On the Basic Information page, the Configuration Information section displays the instance

class, instance details, instance groups, and the total computing resources.

HybridDB for PostgreSQL currently has two instance classes available:

• High-performance group: the group type name starts with gpdb.group.segsdx. This type

features a better I/O capability that secures higher performance.

• High-capacity group: the group type name starts with gpdb.group.seghdx. This type features a

larger and more affordable space to meet higher storage demands.

Upgrade the instance configuration

Follow these steps to upgrade the instance configuration.

1. Log on to the HybridDB for PostgreSQL console.

2. Select the region of the instance. For example, China East 1.

3. Click the Upgrade on the right side of the target instance.

4. On the Configuration upgrade page, select the expected group type and group quantity, and

then click Activate.

HybridDB for PostgreSQL supports a diversity of group type and group quantity combos. For

more information, see Configuration combo lookup table. A new group type and group quantity

combo must meet the following constraints:

• The new and old computing groups must be of the same instance class, and the new group

configuration must be equal to or higher than the old one.

• If the new group configuration is equal to the old group type, the new group quantity must be

 larger than the old one.

Apart from the preceding constraints, you must also evaluate the data size and computing

workload of your service to select a proper group type and quantity combo. For more

information, see How to select instance type.

Note:

https://gpdb.console.aliyun.com/
https://gpdb.console.aliyun.com/
https://www.aliyun.com/price/product#/gpdb/detail

HybridDB for PostgreSQL User Guide / 2 Manage instances

8 Issue: 20181214

The instance upgrading process may take 30 minutes to three hours depending on your

data size. Your instance remains read-only in this process to ensure data consistency, and

 experiences two transient disconnections. Be prepared in advance. When the upgrading

process is completed, the instance resumes the running state. You can visit the database

normally and the instance’s database kernel is automatically upgraded to the latest version.

After the preceding operations are done, you can return to the console to check the running state

of the target instance. When the upgrading process is completed, the instance state becomes

Running. Otherwise, it is in Upgrading.

2.4 Change connection addresses

In HybridDB for PostgreSQL, you can change the connection address of an instance. For example

, if you switch your service to a different HybridDB for PostgreSQL instance, you do not need to

modify the application. You only need to configure the new instance to use the connection address

 of the old instance.

Prerequisites

• The instance is running.

• The instance has set up a whitelist.

Procedure

1. Log on to the HybridDB for PostgreSQL console.

2. Select the Region of the instance.

3. Locate the target instance. In the Actions column, click Manage.

4. In the left-side navigation pane, click Database Connection.

5. On the Database Connection page, click Modify Connection Address.

6. In the dialog box displayed, click Connection Type and select a network type.

You can select Intranet Address or Internet Address. The Internet Address option is only

available after you have applied for a public IP address.

7. Enter the relevant information in Connection Address and Port, and click OK.

After the page is refreshed, the new connection address is displayed.

https://gpdb.console.aliyun.com

HybridDB for PostgreSQL User Guide / 2 Manage instances

Issue: 20181214 9

2.5 Restart an instance

HybridDB for PostgreSQL keeps updating the database kernel version to better meet your

requirements. The latest database kernel version is used by default when you create an instance.

After a new version is released, you can restart the instance to update its database kernel to enjoy

 new features in the new version. This document describes how to restart an instance.

Procedure

Follow these steps to restart an instance.

1. Log on to the HybridDB for PostgreSQL console.

2. Select the region of the instance. For example, China East 1.

3. Click Manage on the right side of the target instance to go to the Basic Information page.

4. Click Restart Instance on the upper right corner of the page and click OK in the dialog box. If

you have your mobile phone associated to the instance, you must verify the operation by using

the verification code sent to your mobile phone.

Note:

The restart process usually takes 3 to 30 minutes. During this period, the instance is

unavailable for external services. Be prepared in advance. After the instance is restarted, the

instance resumes the running state and you can visit the database normally.

After the preceding operations are done, you can return to the console to check the running

state of the target instance. When the instance restart is completed, the instance state becomes

Running. Otherwise, it is in Restarting.

2.6 Release an instance

You can manually release Pay-As-You-Go instances based on your business needs.

Prerequisite

The instance must be a Pay-As-You-Go type instance.

Note:

Pay-As-You-Go instances can be released at any time.

Procedure

1. Log on to the HybridDB for PostgreSQL console.

https://gpdb.console.aliyun.com/
https://gpdb.console.aliyun.com

HybridDB for PostgreSQL User Guide / 2 Manage instances

10 Issue: 20181214

2. Select the region of the instance you want to release.

3. Select the instance and click Manage in the Actions bar.

4. On the Basic Information page, click Release on the right-side of the Status section.

5. In the dialog box that appears, click the check box before Yes, delete this instance and then

click OK to release the specified instance.

Note:

Released instances cannot be recovered. Make sure if you need the instance before you

perform this operation.

HybridDB for PostgreSQL User Guide / 3 Migrate data

Issue: 20181214 11

3 Migrate data

For more information about operations on data migration, see Migrate data using different

solutions.

HybridDB for PostgreSQL User Guide / 4 User and permission management

12 Issue: 20181214

4 User and permission management

You can do the user management and permission management to secure your HybridDB for

PostgreSQL databases. This documents describes the corresponding methods.

User management

During an instance creation, the system requires you to specify an initial user name and

password. This initial user is the “root user”. After the instance is ready, you can connect to the

database with this root user account. You can view the information of all the users by running

the \du+ command after you connect to the database using psql (a client tool of PostgreSQL or

Greenplum). Refer to the following example:

Note:

Some other internal management users will also be created apart from the root user.

postgres=> \du+
 List of roles
 Role name | Attributes | Member of |
Description
--------------+-----------------------------------+-----------
+---------------
 root_user | | |
rds_superuser
 ...

HybridDB for PostgreSQL does not enable the super user permission, but offers a corresponding

role of RDS_SUPERUSER, which is consistent with the permission system in ApsaraDB for RDS

 (PostgreSQL). Therefore, the root user (such as the root_user in the preceding example) has the

RDS_SUPERUSER permission. You can only identify this permission attribute by viewing the user

 description.

The root user has the following permissions:

• CREATEROLE, CREATEDB and LOGIN permissions, not including the SUPERUSER

permission. You can use the root user account to create databases and users.

• View and modify the data tables of other non-super users and perform actions such as

SELECT, UPDATE, DELETE, and changing Owner.

• View the connection information of other non-super users, cancel the SQL statement, and

terminate the connection.

• Run the CREATE EXTENSION and DROP EXTENSION commands to create and delete

extensions.

http://gpdb.docs.pivotal.io/4380/client_tool_guides/client/unix/psql.html

HybridDB for PostgreSQL User Guide / 4 User and permission management

Issue: 20181214 13

• Create other users with the RDS_SUPERUSER permission. For example,

CRATE ROLE root_user2 RDS_SUPERUSER LOGIN PASSWORD 'xyz' ;

Permission management

You can manage permissions at the database, schema and table levels. For example, if you want

 to grant the reading permission of a table to a user and revoke the modification permission, you

can use the following example:

GRANT SELECT ON TABLE t1 TO normal_user1;
REVOKE UPDATE ON TABLE t1 FROM normal_user1;
REVOKE DELETE ON TABLE t1 FROM normal_user1;

Reference

For more specific user and permission management methods, see Managing Roles and Privileges

.

http://gpdb.docs.pivotal.io/4380/admin_guide/roles_privs.html
http://gpdb.docs.pivotal.io/4380/admin_guide/roles_privs.html

HybridDB for PostgreSQL User Guide / 5 Extension management

14 Issue: 20181214

5 Extension management

HybridDB for PostgreSQL is developed based on the Greenplum Database and is enhanced with

some in-depth extensions by Alibaba Cloud. This document introduces the extension types, and

how to create or delete an extension.

Extension types

HybridDB for PostgreSQL supports the following extensions:

• PostGIS: supports geographic information data.

• MADlib: supports function library on Machine Learning.

• fuzzystrmatch: supports fuzzy matching of strings.

• orafunc: supports some Oracle functions.

• oss_ext: supports reading data from OSS.

• hll: supports using the HyperLogLog algorithm to perform statistical analysis.

• pljava: supports compiling user-defined functions (UDF) in PL/Java.

• pgcrypto: supports encryption functions.

• intarray: supports integer array-related functions, operators and indexes.

Create an extension

Run the following command to create an extension:

CREATE EXTENSION <extension name>;
CREATE SCHEMA <schema name>;
CREATE EXTENSION IF NOT EXISTS <extension name> WITH SCHEMA <schema
name>;

Note:

You need to create the plpythonu extension before creating the MADlib extension, as shown in

the following example.

CREATE EXTENSION plpythonu;
CREATE EXTENSION madlib;

Delete an extension

Run the following command to delete an extension:

Note:

#type
#create
#delete

HybridDB for PostgreSQL User Guide / 5 Extension management

Issue: 20181214 15

If some other objects are dependent on the extension, you need to add the CASCADE key word

to remove all the dependencies first.

DROP EXTENSION <extension name>;
DROP EXTENSION IF EXISTS <extension name> CASCADE;

HybridDB for PostgreSQL User Guide / 6 Operations of JSON data

16 Issue: 20181214

6 Operations of JSON data

The JSON type has become the standard data type of the Internet and the Internet of Things

(IoT). You can view the specific protocols at the JSON Official Website. PostgreSQL supports

JSON well. HybridDB for PostgreSQL also supports the JSON data type based on the

PostgreSQL syntax.

This document introduces the basic operations and supported objects of the JSON data in

HybridDB for PostgreSQL, including checking compatibility, converting strings to JSON, internal

 data types, operators, and functions. In addition, some usage examples are provided for your

reference.

Check whether the current version supports JSON

Start a HybridDB for PostgreSQL instance, and run the following command to check whether the

current version supports JSON or not:

=> SELECT '""'::json;

If the operation fails, restart the instance and run the preceding command again.

This command dictates a force type conversion from a string to the JSON format, and the

following results indicates whether the JSON type is supported.

• If the system prompts the following response, it indicates that the JSON type is supported and

the instance is ready for use.

 json

 ""
 (1 row)

• If the system prompts the following response, it indicates that the JSON type is not supported

yet.

 ERROR: type "json" does not exist
 LINE 1: SELECT '""'::json;
 ^

JSON conversion in the database

Database operations mainly involve: read and write. Writing JSON data means converting strings

to JSON format. The content in the strings must conform to the JSON standard, including strings,

numbers, arrays, and objects. For example:

http://www.json.org/
#check
#datatype
#datatype
#operator
#function
#code

HybridDB for PostgreSQL User Guide / 6 Operations of JSON data

Issue: 20181214 17

String

=> SELECT '"hijson"'::json;
 json

 "hijson"
(1 row)

:: represents force type conversion in PostgreSQL, Greenplum and HybridDB for PostgreSQL.

The JSON type input function is called during the conversion process. Therefore, JSON format

check is performed during the type conversion as follows:

=> SELECT '{hijson:1024}'::json;
ERROR: invalid input syntax for type json
LINE 1: SELECT '{hijson:1024}'::json;
 ^
DETAIL: Token "hijson" is invalid.
CONTEXT: JSON data, line 1: {hijson...
=>

The aforementioned " are necessary for "hijson". Because the JSON standard requires the

KEY value to be a string, the {hijson:1024} here returns a syntax error.

Apart from the type conversion, the conversion from the database record to the JSON string is

also performed.

We do not normally use only one string or one number for JSON, but an object that contains one

 or more key-value pairs. So for Greenplum, conversion to objects is applicable to a majority of

JSON scenarios, such as:

=> select row_to_json(row('{"a":"a"}', 'b'));
 row_to_json

 {"f1":"{\"a\":\"a\"}","f2":"b"}
(1 row)
=> select row_to_json(row('{"a":"a"}'::json, 'b'));
 row_to_json

 {"f1":{"a":"a"},"f2":"b"}
(1 row)

We can also see the differences between the string and JSON here, so as to conveniently convert

 a full record into the JSON type.

JSON internal data types

• Object

The object is the most frequently used data in JSON, such as:

 => select '{"key":"value"}'::json;

HybridDB for PostgreSQL User Guide / 6 Operations of JSON data

18 Issue: 20181214

 json

 {"key":"value"}
 (1 row)

• Integer and floating point

The JSON protocol only has three types of numbers: integer, floating point and constant

expression. Greenplum provides good support for all three number types.

 => SELECT '1024'::json;
 json

 1024
 (1 row)
 => SELECT '0.1'::json;
 json

 0.1
 (1 row)

The following information is required in some special situations:

 => SELECT '1e100'::json;
 json

 1e100
 (1 row)
 => SELECT '{"f":1e100}'::json;
 json

 {"f":1e100}
 (1 row)

And the extra-long number is also included as follows:

 => SELECT '9223372036854775808'::json;
 json

 9223372036854775808
 (1 row)

• Array

 => SELECT '[[1,2], [3,4,5]]'::json;
 json

 [[1,2], [3,4,5]]
 (1 row)

Operators

Operator types supported by JSON

=> select oprname,oprcode from pg_operator where oprleft = 3114;
 oprname | oprcode
---------+---------------------------

HybridDB for PostgreSQL User Guide / 6 Operations of JSON data

Issue: 20181214 19

 -> | json_object_field
 ->> | json_object_field_text
 -> | json_array_element
 ->> | json_array_element_text
 #> | json_extract_path_op
 #>> | json_extract_path_text_op
(6 rows)

Basic usage

=> SELECT '{"f":"1e100"}'::json -> 'f';
 ?column?

 "1e100"
(1 row)
=> SELECT '{"f":"1e100"}'::json ->> 'f';
 ?column?

 1e100
(1 row)
=> select '{"f2":{"f3":1},"f4":{"f5":99,"f6":"stringy"}}'::json#>array
['f4','f6'];
 ?column?

 "stringy"
(1 row)
=> select '{"f2":{"f3":1},"f4":{"f5":99,"f6":"stringy"}}'::json#>'{f4,
f6}';
 ?column?

 "stringy"
(1 row)
=> select '{"f2":["f3",1],"f4":{"f5":99,"f6":"stringy"}}'::json#>>'{f2
,0}';
 ?column?

 f3
(1 row)

JSON functions

Supported functions

postgres=# \df *json*
 List of
functions
 Schema | Name | Result data type |
 Argument data types | Type
------------+---------------------------+------------------
+---+--------
 pg_catalog | array_to_json | json | anyarray
 | normal
 pg_catalog | array_to_json | json | anyarray
, boolean | normal
 pg_catalog | json_array_element | json | from_json
 json, element_index integer | normal
 pg_catalog | json_array_element_text | text | from_json
 json, element_index integer | normal
 pg_catalog | json_array_elements | SETOF json | from_json
 json, OUT value json | normal

HybridDB for PostgreSQL User Guide / 6 Operations of JSON data

20 Issue: 20181214

 pg_catalog | json_array_length | integer | json
 | normal
 pg_catalog | json_each | SETOF record | from_json
 json, OUT key text, OUT value json | normal
 pg_catalog | json_each_text | SETOF record | from_json
 json, OUT key text, OUT value text | normal
 pg_catalog | json_extract_path | json | from_json
 json, VARIADIC path_elems text[] | normal
 pg_catalog | json_extract_path_op | json | from_json
 json, path_elems text[] | normal
 pg_catalog | json_extract_path_text | text | from_json
 json, VARIADIC path_elems text[] | normal
 pg_catalog | json_extract_path_text_op | text | from_json
 json, path_elems text[] | normal
 pg_catalog | json_in | json | cstring
 | normal
 pg_catalog | json_object_field | json | from_json
 json, field_name text | normal
 pg_catalog | json_object_field_text | text | from_json
 json, field_name text | normal
 pg_catalog | json_object_keys | SETOF text | json
 | normal
 pg_catalog | json_out | cstring | json
 | normal
 pg_catalog | json_populate_record | anyelement | base
anyelement, from_json json, use_json_as_text boolean | normal
 pg_catalog | json_populate_recordset | SETOF anyelement | base
anyelement, from_json json, use_json_as_text boolean | normal
 pg_catalog | json_recv | json | internal
 | normal
 pg_catalog | json_send | bytea | json
 | normal
 pg_catalog | row_to_json | json | record
 | normal
 pg_catalog | row_to_json | json | record,
boolean | normal
 pg_catalog | to_json | json |
anyelement | normal
(24 rows)

Basic usage

=> SELECT array_to_json('{{1,5},{99,100}}'::int[]);
 array_to_json

 [[1,5],[99,100]]
(1 row)
=> SELECT row_to_json(row(1,'foo'));
 row_to_json

 {"f1":1,"f2":"foo"}
(1 row)
=> SELECT json_array_length('[1,2,3,{"f1":1,"f2":[5,6]},4]');
 json_array_length

 5
(1 row)
=> select * from json_each('{"f1":[1,2,3],"f2":{"f3":1},"f4":null,"f5
":99,"f6":"stringy"}') q;
 key | value
-----+-----------

HybridDB for PostgreSQL User Guide / 6 Operations of JSON data

Issue: 20181214 21

 f1 | [1,2,3]
 f2 | {"f3":1}
 f4 | null
 f5 | 99
 f6 | "stringy"
(5 rows)
=> select json_each_text('{"f1":[1,2,3],"f2":{"f3":1},"f4":null,"f5":"
null"}');
 json_each_text

 (f1,"[1,2,3]")
 (f2,"{""f3"":1}")
 (f4,)
 (f5,null)
(4 rows)
=> select json_array_elements('[1,true,[1,[2,3]],null,{"f1":1,"f2":[7,
8,9]},false]');
 json_array_elements

 1
 true
 [1,[2,3]]
 null
 {"f1":1,"f2":[7,8,9]}
 false
(6 rows)
create type jpop as (a text, b int, c timestamp);
=> select * from json_populate_record(null::jpop,'{"a":"blurfl","x":43
.2}', false) q;
 a | b | c
--------+---+---
 blurfl | |
(1 row)
=> select * from json_populate_recordset(null::jpop,'[{"a":"blurfl
","x":43.2},{"b":3,"c":"2012-01-20 10:42:53"}]',false) q;
 a | b | c
--------+---+--------------------------
 blurfl | |
 | 3 | Fri Jan 20 10:42:53 2012
(2 rows)

Code Examples

Create a table

create table tj(id serial, ary int[], obj json, num integer);
=> insert into tj(ary, obj, num) values('{1,5}'::int[], '{"obj":1}', 5
);
INSERT 0 1
=> select row_to_json(q) from (select id, ary, obj, num from tj) as q;
 row_to_json

 {"f1":1,"f2":[1,5],"f3":{"obj":1},"f4":5}
(1 row)
=> insert into tj(ary, obj, num) values('{2,5}'::int[], '{"obj":2}', 5
);
INSERT 0 1
=> select row_to_json(q) from (select id, ary, obj, num from tj) as q;
 row_to_json

 {"f1":1,"f2":[1,5],"f3":{"obj":1},"f4":5}

HybridDB for PostgreSQL User Guide / 6 Operations of JSON data

22 Issue: 20181214

 {"f1":2,"f2":[2,5],"f3":{"obj":2},"f4":5}
(2 rows)

Multi-table JOIN

create table tj2(id serial, ary int[], obj json, num integer);
=> insert into tj2(ary, obj, num) values('{2,5}'::int[], '{"obj":2}',
5);
INSERT 0 1
=> select * from tj, tj2 where tj.obj->>'obj' = tj2.obj->>'obj';
 id | ary | obj | num | id | ary | obj | num
----+-------+-----------+-----+----+-------+-----------+-----
 2 | {2,5} | {"obj":2} | 5 | 1 | {2,5} | {"obj":2} | 5
(1 row)
=> select * from tj, tj2 where json_object_field_text(tj.obj, 'obj')
 = json_object_field_text(tj2.obj, 'obj');
 id | ary | obj | num | id | ary | obj | num
----+-------+-----------+-----+----+-------+-----------+-----
 2 | {2,5} | {"obj":2} | 5 | 1 | {2,5} | {"obj":2} | 5
(1 row)

JSON function indexing

CREATE TEMP TABLE test_json (
 json_type text,
 obj json
);
=> insert into test_json values('aa', '{"f2":{"f3":1},"f4":{"f5":99,"
f6":"foo"}}');
INSERT 0 1
=> insert into test_json values('cc', '{"f7":{"f3":1},"f8":{"f5":99,"
f6":"foo"}}');
INSERT 0 1
=> select obj->'f2' from test_json where json_type = 'aa';
 ?column?

 {"f3":1}
(1 row)
=> create index i on test_json (json_extract_path_text(obj, '{f4}'));
CREATE INDEX
=> select * from test_json where json_extract_path_text(obj, '{f4}') =
 '{"f5":99,"f6":"foo"}';
 json_type | obj
-----------+---
 aa | {"f2":{"f3":1},"f4":{"f5":99,"f6":"foo"}}
(1 row)

Note:

JSON type cannot be used as the distribution key for now and the JSON aggregate functions are

not supported.

The following is an example of Python access:

#! /bin/env python
import time
import json

HybridDB for PostgreSQL User Guide / 6 Operations of JSON data

Issue: 20181214 23

import psycopg2
def gpquery(sql):
 conn = None
 try:
 conn = psycopg2.connect("dbname=sanity1x2")
 conn.autocommit = True
 cur = conn.cursor()
 cur.execute(sql)
 return cur.fetchall()
 except Exception as e:
 if conn:
 try:
 conn.close()
 except:
 pass
 time.sleep(10)
 print e
 return None
def main():
 sql = "select obj from tj;"
 #rows = Connection(host, port, user, pwd, dbname).query(sql)
 rows = gpquery(sql)
 for row in rows:
 print json.loads(row[0])
if __name__ == "__main__":
 main()

HybridDB for PostgreSQL User Guide / 7 Use HyperLogLog

24 Issue: 20181214

7 Use HyperLogLog

HybridDB for PostgreSQL is nested with native features of Greenplum Database, and also

supports HyperLogLog. It provides solutions for industries with the Internet advertisement analysis

 requirements and requirements similar to estimation analysis computing to facilitate quick

estimation of PV, UV, and other business metrics.

Create a HyperLogLog extension

Run the following command to create a HyperLogLog extension:

CREATE EXTENSION hll;

Basic types

• Run the following command to create a table containing the hll field:

create table agg (id int primary key,userids hll);

• Run the following command to convert int to hll_hashval:

select 1::hll_hashval;

Basic operators

• The hll type supports =, !=, <>, ||, and #.

select hll_add_agg(1::hll_hashval) = hll_add_agg(2::hll_hashval);
select hll_add_agg(1::hll_hashval) || hll_add_agg(2::hll_hashval);
select #hll_add_agg(1::hll_hashval);

• The hll_hashval type supports =, !=, and <>.

select 1::hll_hashval = 2::hll_hashval;
select 1::hll_hashval <> 2::hll_hashval;

Basic functions

• The supported functions include hll_hash_boolean, hll_hash_smallint, hll_hash_bigint, and

other hash functions.

select hll_hash_boolean(true);

HybridDB for PostgreSQL User Guide / 7 Use HyperLogLog

Issue: 20181214 25

select hll_hash_integer(1);

• hll_add_agg: Used to convert int to the hll format.

select hll_add_agg(1::hll_hashval);

• hll_union: The union of hll.

select hll_union(hll_add_agg(1::hll_hashval),hll_add_agg(2::
hll_hashval));

• hll_set_defaults: Used to set the precision.

select hll_set_defaults(15,5,-1,1);

• hll_print: Used for debug information.

select hll_print(hll_add_agg(1::hll_hashval));

Examples

create table access_date (acc_date date unique, userids hll);
insert into access_date select current_date, hll_add_agg(hll_hash_i
nteger(user_id)) from generate_series(1,10000) t(user_id);
insert into access_date select current_date-1, hll_add_agg(hll_hash_i
nteger(user_id)) from generate_series(5000,20000) t(user_id);
insert into access_date select current_date-2, hll_add_agg(hll_hash_i
nteger(user_id)) from generate_series(9000,40000) t(user_id);
postgres=# select #userids from access_date where acc_date=current_da
te;
 ?column?

 9725.85273370708
(1 row)
postgres=# select #userids from access_date where acc_date=current_da
te-1;
 ?column?

 14968.6596883279
(1 row)
postgres=# select #userids from access_date where acc_date=current_da
te-2;
 ?column?

 29361.5209149911
(1 row)

HybridDB for PostgreSQL User Guide / 8 Use the create Library command

26 Issue: 20181214

8 Use the create Library command

HybridDB for PostgreSQL introduces the “Create Library/Drop Library” command to allow you to

import custom software packages. For PL/Java UDF examples created by using this command,

see PL/Java UDF Usage.

This document describes the usage of the Create/Drop Library command.

Syntax

CREATE LIBRARY library_name LANGUAGE [JAVA] FROM oss_location OWNER
ownername
CREATE LIBRARY library_name LANGUAGE [JAVA] VALUES file_content_hex
OWNER ownername
DROP LIBRARY library_name

Parameter description:

• library_name: name of the library to be installed. If the name of the library to be installed

conflicts with an existing library’s name, the existing library must be deleted first to install the

new one.

• LANGUAGE [JAVA]: the language to use. Currently only PL/Java is supported.

• oss_location: location of the package file. You can specify the OSS bucket and object

name. Only one object can be specified and the specified object must not be a compressed file.

The format is:

oss://oss_endpoint filepath=[folder/[folder/]...]/file_name id=
userossid key=userosskey bucket=ossbucket

• file_content_hex: file content. The byte stream is in hexadecimal notation. For example,

73656c6563742031 indicates the hexadecimal byte stream of “select 1”. With this syntax, you

can directly import package files without using the OSS.

• ownername: specify the user.

• DROP LIBRARY: delete a library.

HybridDB for PostgreSQL User Guide / 8 Use the create Library command

Issue: 20181214 27

Examples

• Install a JAR package named analytics.jar.

create library example language java from 'oss://oss-cn-hangzhou.
aliyuncs.com filepath=analytics.jar id=xxx key=yyy bucket=zzz';

• Import the file content directly and the byte stream is in hexadecimal notation.

create library pglib LANGUAGE java VALUES '73656c6563742031' OWNER
 "myuser";

• Delete a library.

drop library example;

• View installed libraries.

select name, lanname from pg_library;

HybridDB for PostgreSQL User Guide / 9 Use PL ⁄ Java UDF

28 Issue: 20181214

9 Use PL ⁄ Java UDF

HybridDB for PostgreSQL supports compiling and uploading JAR software packages written in PL

/Java languages, and using these JAR packages to create user-defined functions (UDF). The PL/

Java language supported in this feature is Community Edition PL/Java 1.5.0 and the JVM version

is 1.8.

This document describes how to create a PL/Java UDF. For more PL/Java examples, see PL/

Java Code. You can also view How to Compile.

Procedure

1. In HybridDB for PostgreSQL, run the following command to create a PL/Java plug-in. The

command only needs to be ran once for the database.

create extension pljava;

2. Compile the UDF based on your business requirements. For example, you can use the

following code to compile the Test.java file:

public class Test
{
 public static String substring(String text, int beginIndex,
 int endIndex)
 {
 return text.substring(beginIndex, endIndex);
 }
}

3. Compile the manifest.txt file.

Manifest-Version: 1.0
Main-Class: Test
Specification-Title: "Test"
Specification-Version: "1.0"
Created-By: 1.7.0_99
Build-Date: 01/20/2016 21:00 AM

4. Run the following command to compile and package the program.

javac Test.java
jar cfm analytics.jar manifest.txt Test.class

5. Upload the analytics.jar file generated in Step 4 to the OSS by using the following OSS

console command.

osscmd put analytics.jar oss://zzz

6. In HybridDB for PostgreSQL, run the “Create Library” command to import the file to HybridDB

for PostgreSQL.

https://github.com/tada/pljava/tree/master/pljava-examples/src/main/java/org/postgresql/pljava/example
https://github.com/tada/pljava/tree/master/pljava-examples/src/main/java/org/postgresql/pljava/example
https://tada.github.io/pljava/build/build.html

HybridDB for PostgreSQL User Guide / 9 Use PL ⁄ Java UDF

Issue: 20181214 29

Note:

The Create Library command only supports filepath and you can import one file a time.

In addition, the “Create Library” command also supports byte streams to directly import files

without using the OSS. For more information, see Use the Create Library Command.

create library example language java from 'oss://oss-cn-hangzhou.
aliyuncs.com filepath=analytics.jar id=xxx key=yyy bucket=zzz';

7. In HybridDB for PostgreSQL, run the following command to create and use the UDF.

create table temp (a varchar) distributed randomly;
insert into temp values ('my string');
create or replace function java_substring(varchar, int, int) returns
 varchar as 'Test.substring' language java;
select java_substring(a, 1, 5) from temp;

HybridDB for PostgreSQL User Guide / 10 Use SortKey

30 Issue: 20181214

10 Use SortKey

SortKey is a table attribute that helps store data in the order of the SortKey to files on a disk.

SortKey offers the following advantages:

• Speed up column-store optimization. The min and max meta information it collects seldom

overlaps with each other, featuring good filtering friendliness.

• Avoid sorting SQL data containing “order by” and “group by” for a second time. The data

directly read from the disk is ordered as required by the sorting conditions.

This document describes the usage of SortKey in different use cases.

Define the SortKey

You can use the CREATE TABLE command to define a new table containing a SortKey. The

syntax is as follows:

CREATE [[GLOBAL | LOCAL] {TEMPORARY | TEMP}] TABLE table_name (
[{ column_name data_type [DEFAULT default_expr] [column_con
straint [...]
[ENCODING (storage_directive [,...])]
]
 | table_constraint
 | LIKE other_table [{INCLUDING | EXCLUDING}
 {DEFAULTS | CONSTRAINTS}] ...}
 [, ...]]
 [column_reference_storage_directive [,]]
)
 [INHERITS (parent_table [, ...])]
 [WITH (storage_parameter=value [, ...])
 [ON COMMIT {PRESERVE ROWS | DELETE ROWS | DROP}]
 [TABLESPACE tablespace]
 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY]
 [SORTKEY (column, [...])]
 [PARTITION BY partition_type (column)
 [SUBPARTITION BY partition_type (column)]
 [SUBPARTITION TEMPLATE (template_spec)]
 [...]
 (partition_spec)
 | [SUBPARTITION BY partition_type (column)]
 [...]
 (partition_spec
 [(subpartition_spec
 [(...)]
)]

HybridDB for PostgreSQL User Guide / 10 Use SortKey

Issue: 20181214 31

)

Example

create table test(date text, time text, open float, high float, low
float, volume int) with(APPENDONLY=true,ORIENTATION=column) sortkey (
volume);

Sort the table

The command is as follows:

VACUUM SORT ONLY [tablename]

Change the SortKey

The command is as follows:

ALTER [[GLOBAL | LOCAL] {TEMPORARY | TEMP}] TABLE table_name SET
SORTKEY (column, [...])

Note:

This command only changes catalog without sorting the data immediately. To sort data, you

must use the VACUUM SORT ONLY command.

Example

alter table test set sortkey (high,low);

Note:

After you update a table (such as Insert, Update, and Delete), data in the table is deemed as non-

SortKey-ordered. Data read from the disk for a query is not regarded as ordered. In this case, you

must rerun the VACUUM SORT ONLY command to re-organize data in the table.

	Contents
	Legal disclaimer
	Generic conventions
	1 Basic operations
	2 Manage instances
	2.1 Apply for an Internet IP address
	2.2 Release an Internet IP address
	2.3 Upgrade the instance configuration
	2.4 Change connection addresses
	2.5 Restart an instance
	2.6 Release an instance

	3 Migrate data
	4 User and permission management
	5 Extension management
	6 Operations of JSON data
	7 Use HyperLogLog
	8 Use the create Library command
	9 Use PL ∕ Java UDF
	10 Use SortKey

