
Alibaba Cloud
AnalyticDB for PostgreSQL

Best Practices
Issue: 20190514



AnalyticDB for PostgreSQL Best Practices /  Legal disclaimer

Legal disclaimer
Alibaba Cloud reminds you to carefully read and fully understand the terms and 
conditions of this legal disclaimer before you read or use this document. If you have 
read or used this document, it shall be deemed as your total acceptance of this legal 
disclaimer.
1. You shall download and obtain this document from the Alibaba Cloud website

 or other Alibaba Cloud-authorized channels, and use this document for your 
own legal business activities only. The content of this document is considered
 confidential information of Alibaba Cloud. You shall strictly abide by the 
confidentiality obligations. No part of this document shall be disclosed or provided
 to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted, 
or disseminated by any organization, company, or individual in any form or by any 
means without the prior written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades
, adjustments, or other reasons. Alibaba Cloud reserves the right to modify 
the content of this document without notice and the updated versions of this
 document will be occasionally released through Alibaba Cloud-authorized 
channels. You shall pay attention to the version changes of this document as they 
occur and download and obtain the most up-to-date version of this document from 
Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud 
products and services. Alibaba Cloud provides the document in the context that
 Alibaba Cloud products and services are provided on an "as is", "with all faults
" and "as available" basis. Alibaba Cloud makes every effort to provide relevant
 operational guidance based on existing technologies. However, Alibaba Cloud 
hereby makes a clear statement that it in no way guarantees the accuracy, integrity
, applicability, and reliability of the content of this document, either explicitly 
or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial
 losses incurred by any organizations, companies, or individuals arising from 
their download, use, or trust in this document. Alibaba Cloud shall not, under any
 circumstances, bear responsibility for any indirect, consequential, exemplary, 
incidental, special, or punitive damages, including lost profits arising from the use

Issue: 20190514 I



AnalyticDB for PostgreSQL Best Practices /  Legal disclaimer

 or trust in this document, even if Alibaba Cloud has been notified of the possibility
 of such a loss.

5. By law, all the content of the Alibaba Cloud website, including but not limited to 
works, products, images, archives, information, materials, website architecture, 
website graphic layout, and webpage design, are intellectual property of Alibaba
 Cloud and/or its affiliates. This intellectual property includes, but is not limited
 to, trademark rights, patent rights, copyrights, and trade secrets. No part of the
 Alibaba Cloud website, product programs, or content shall be used, modified
, reproduced, publicly transmitted, changed, disseminated, distributed, or 
published without the prior written consent of Alibaba Cloud and/or its affiliates
. The names owned by Alibaba Cloud shall not be used, published, or reproduced 
for marketing, advertising, promotion, or other purposes without the prior written
 consent of Alibaba Cloud. The names owned by Alibaba Cloud include, but are 
not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other brands of Alibaba 
Cloud and/or its affiliates, which appear separately or in combination, as well as
 the auxiliary signs and patterns of the preceding brands, or anything similar to 
the company names, trade names, trademarks, product or service names, domain
 names, patterns, logos, marks, signs, or special descriptions that third parties 
identify as Alibaba Cloud and/or its affiliates).

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

II Issue: 20190514



AnalyticDB for PostgreSQL Best Practices /  Legal disclaimer

Issue: 20190514 III



AnalyticDB for PostgreSQL Best Practices /  Generic conventions

Generic conventions
Table -1: Style conventions
Style Description Example

This warning information 
indicates a situation that will 
cause major system changes, 
faults, physical injuries, and other
 adverse results.

Danger:
Resetting will result in the loss of
user configuration data.

This warning information 
indicates a situation that may 
cause major system changes, 
faults, physical injuries, and other
 adverse results.

Warning:
Restarting will cause business
interruption. About 10 minutes are
required to restore business.

This indicates warning informatio
n, supplementary instructions, 
and other content that the user 
must understand.

Notice:
Take the necessary precautions
to save exported data containing
sensitive information.

This indicates supplemental 
instructions, best practices, tips, 
and other content that is good to 
know for the user.

Note:
You can use Ctrl + A to select all
files.

> Multi-level menu cascade. Settings > Network > Set network
type

Bold It is used for buttons, menus
, page names, and other UI 
elements.

Click OK.

Courier
 font

It is used for commands. Run the cd  / d  C :/ windows
 command to enter the Windows

system folder.
Italics It is used for parameters and 

variables.
bae  log  list  --
instanceid  Instance_ID

[] or [a|b] It indicates that it is a optional 
value, and only one item can be 
selected.

ipconfig  [-all|-t]

Issue: 20190514 I



AnalyticDB for PostgreSQL Best Practices /  Generic conventions

Style Description Example
{} or {a|b} It indicates that it is a required 

value, and only one item can be 
selected.

swich  {stand | slave}

II Issue: 20190514



AnalyticDB for PostgreSQL Best Practices /  Generic conventions

Issue: 20190514 III



AnalyticDB for PostgreSQL Best Practices /  Contents

Contents
Legal disclaimer...................................................................... I
Generic conventions................................................................ I
1 Bulk update..........................................................................1
2 Improve performance of AnalyticDB for PostgreSQL.............. 7
3 Scheduled maintenance tasks..............................................10
4 Special characters in import............................................... 13

IV Issue: 20190514



AnalyticDB for PostgreSQL Best Practices /  1 Bulk update

1 Bulk update
Update, also called Merge, indicates updating the latest data to AnalyticDB for 
PostgreSQL. If the updated data already exists, it replaces the old version. If the 
updated data does not exist, it is inserted to the database. Such data merge is usually
 completed offline. For example, you can set to update data on a daily basis to 
AnalyticDB for PostgreSQL. Some users may require real-time updates, that is, the 
latency is at the minute or second level.
This document describes how to merge data in AnalyticDB for PostgreSQL and 
explains the principle behind it. In addition, you can learn how to use the bulk 
operation to update multiple data.

Simple update
Data merge is about modifying the data, that is, running the Update, Delete, Insert, 
or Copy operations. Take an Update operation for example, updating the record on
 a single row in a column-store table. The following figure shows the data updating 
process in AnalyticDB for PostgreSQL.

Issue: 20190514 1



AnalyticDB for PostgreSQL Best Practices /  1 Bulk update

The procedure is described as follows:
1. The user sends an Update SQL request to the master node.
2. The master node initiates distributed transactions, locking the table to be updated

 (AnalyticDB for PostgreSQL does not allow concurrent updates to the same table), 
and distributing updating requests to matched slave nodes.

3. Slave nodes scan the index to locate the data to update, and update the data. For 
column-store tables, the updating logic is to delete the old data row and write the
 new data row at the end of the table. The updated data page in the column-store
 table is written to the memory cache, and the change in the corresponding table
 file length (because data is written to the table end, the length of the correspond
ing table file is increased) is written to the log (xlog file).

4. Before the Update process ends, the updated data page and xlog file in the memory
 are both synchronized to the mirror node. After the synchronization is complete, 
the master node ends the distributed transaction, and returns the message about 
successful execution to the user.

2 Issue: 20190514



AnalyticDB for PostgreSQL Best Practices /  1 Bulk update

The whole process is long and contains lots of operations, such as SQL statement 
parsing, transactions distributing, locking, connection establishment between the 
master node and slave nodes, and the synchronization of data and log between slave 
nodes and the mirror node. These operations all consume CPU or I/O resources and 
prolong the response of the request.
Therefore, for AnalyticDB for PostgreSQL, we recommend that you avoid updates to a 
single data row, and try to update data by using bulk operations as much as possible. 
That is:
• Put updates in one SQL statement to reduce the overhead for statement parsing, 

node communications, and data synchronization.
• Put updates in one transaction to avoid unnecessary overhead.

Bulk update
Follow these steps to use one SQL statement to update multiple independent data 
rows.
1. Prepare the target table
Suppose that the table to be updated is target_table. The target_table is defined as 
follows.
create  table  target_tab le ( c1  int , c2  int , primary  
key  ( c1 ));
insert  into  target_tab le  select  generate_s eries ( 1 , 
10000000 );

The target table is usually quite big. Suppose that you want to insert 10 million rows 
of data to target_table. The target_table is indexed to facilitate updates. A primary key
 is defined and a unique index is included consequently.
2. Prepare the stage table
The stage table (source_table in this example) is necessary for bulk update. It is a
temporary table created for updating data. To update the data in target_table, you
first insert the new data to source_table, and then import the new data by using the
Copy command, OSS external table, or other means to target_table.
In the following example, some data is directly generated in source_table.
create  table  source_tab le ( c1  int , c2  int );

Issue: 20190514 3



AnalyticDB for PostgreSQL Best Practices /  1 Bulk update
insert  into  source_tab le  select  generate_s eries ( 1 , 
100 ), generate_s eries ( 1 , 100 );

3. Bulk update
After the source_table data is ready, run the update  set  … from  … where

.. statement.

Note:
To utilize the index to a maximum extent, you can use set  optimizer = on  to
start the ORCA optimizer before the update operation. If the ORCA optimizer is not
started, you can run set  enable_nes tloop  = on  to use the index.
set  optimizer = on ;
update  target_tab le  set  c2  = source_tab le . c2  from  
source_tab le  where  target_tab le . c1 = source_tab le . c1 ;

The update operation’s query plan is as follows:
=> explain  update  target_tab le  set  c2  = source_tab
le . c2  from  source_tab le  where  target_tab le . c1 = 
source_tab le . c1 ;

                                                         QUERY  
PLAN

-----------------------------------------------------------------------------------------------------------------------------
 Update   ( cost = 0 . 00 .. 586 . 10  rows = 25  width = 1 )
   ->  Result   ( cost = 0 . 00 .. 581 . 02  rows = 50  width = 26
)

         ->  Redistribu te  Motion  4 : 4   ( slice1 ; segments
: 4 )  ( cost = 0 . 00 .. 581 . 02  rows = 50  width = 22 )

               Hash  Key : public . target_tab le . c1
               ->  Assert   ( cost = 0 . 00 .. 581 . 01  rows = 50  
width = 22 )

                     Assert  Cond : NOT  public . target_tab le .
c1  IS  NULL

                     ->  Split   ( cost = 0 . 00 .. 581 . 01  rows =
50  width = 22 )

                           ->  Nested  Loop   ( cost = 0 . 00 .. 581
. 01  rows = 25  width = 18 )

                                 Join  Filter : true
                                 ->  Table  Scan  on  source_tab
le   ( cost = 0 . 00 .. 431 . 00  rows = 25  width = 8 )

                                 ->  Index  Scan  using  
target_tab le_pkey  on  target_tab le   ( cost = 0 . 00 .. 150 .
01  rows = 1  width = 14 )

                                       Index  Cond : public .
target_tab le . c1  = source_tab le . c1

From the plan, AnalyticDB for PostgreSQL uses the index. But if you add more data to
 source_table, the optimizer may deem that using Nest Loop associated method and 

4 Issue: 20190514



AnalyticDB for PostgreSQL Best Practices /  1 Bulk update

index scanning is not as efficient as dropping the index. As a result, it may use Hash 
associated method and table scanning for the execution. For example,
postgres => insert  into  source_tab le  select  generate_s
eries ( 1 , 1000 ), generate_s eries ( 1 , 1000 );
INSERT  0  1000
postgres => analyze  source_tab le ;
ANALYZE
postgres => explain  update  target_tab le  set  c2  = 
source_tab le . c2  from  source_tab le  where  target_tab le
. c1 = source_tab le . c1 ;

                                              QUERY  PLAN
------------------------------------------------------------------------------------------------------
 Update   ( cost = 0 . 00 .. 1485 . 82  rows = 275  width = 1 )
   ->  Result   ( cost = 0 . 00 .. 1429 . 96  rows = 550  width =
26 )

         ->  Assert   ( cost = 0 . 00 .. 1429 . 94  rows = 550  
width = 22 )

               Assert  Cond : NOT  public . target_tab le . c1  
IS  NULL

               ->  Split   ( cost = 0 . 00 .. 1429 . 93  rows = 550
 width = 22 )

                     ->  Hash  Join   ( cost = 0 . 00 .. 1429 . 92  
rows = 275  width = 18 )

                           Hash  Cond : public . target_tab le .
c1  = source_tab le . c1

                           ->  Table  Scan  on  target_tab le   (
cost = 0 . 00 .. 477 . 76  rows = 2500659  width = 14 )

                           ->  Hash   ( cost = 431 . 01 .. 431 . 01  
rows = 275  width = 8 )

                                 ->  Table  Scan  on  source_tab
le   ( cost = 0 . 00 .. 431 . 01  rows = 275  width = 8 )

The bulk update approach described reduces SQL compilation, inter-node 
communications, transactions, and other overheads, and can greatly boost data 
updating performance and reduce resource consumption.

Bulk delete
For delete operations, you can use a stage table similar to that used for bulk update, 
and use the following delete command with a “Using” clause to delete data by bulk:
delete  from  target_tab le  using  source_tab le  where  
target_tab le . c1  = source_tab le . c1 ;

The bulk delete operation also uses the index.
explain  delete  from  target_tab le  using  source_tab le  
where  target_tab le . c1  = source_tab le . c1 ;

                                             QUERY  PLAN
-----------------------------------------------------------------------------------------------------
 Delete  ( slice0 ; segments : 4 )  ( rows = 50  width = 10 )
   ->  Nested  Loop   ( cost = 0 . 00 .. 41124 . 40  rows = 50  
width = 10 )

         ->  Seq  Scan  on  source_tab le   ( cost = 0 . 00 .. 6
. 00  rows = 50  width = 4 )

Issue: 20190514 5



AnalyticDB for PostgreSQL Best Practices /  1 Bulk update

         ->  Index  Scan  using  target_tab le_pkey  on  
target_tab le   ( cost = 0 . 00 .. 205 . 58  rows = 1  width = 14
)

               Index  Cond : target_tab le . c1  = source_tab le
. c1

Merge data by using Delete and Insert
To merge data, you must first put the data to merge to the stage table. If you know 
in advance that the data to be merged already exists in the target table, you can use 
update statements to merge the data. But in most cases, part of the data to be merged 
already exists in the target table, and part of it is new, with no matched records in the
 target table. In this case, you can use a combination of bulk delete and bulk insert. 
The sample code is as follows.
set  optimizer = on ;
delete  from  target_tab le  using  source_tab le  where  
target_tab le . c1  = source_tab le . c1 ;
insert  into  target_tab le  select  * from  source_tab le ;

Update data in real time by using Values() expressions
To use the stage table, you must maintain its lifecycle. Some users want to update data
 to AnalyticDB for PostgreSQL by bulk in real time, that is, to continuously synchroniz
e data or merge data to AnalyticDB for PostgreSQL.
If you use the aforementioned method, you must create and delete (or truncate) the
 stage table repeatedly. In fact, you can use Values expressions to achieve an effect 
similar to stage tables, without the effort to maintain the table. The approach is to 
first splice the data to update into a Values expression, and then run the update or 
delete commands by using the following method:
update  target_tab le  set  c2  = t . c2  from  ( values ( 1 ,
1 ),( 2 , 2 ),( 3 , 3 ),…( 2000 , 2000 )) as  t ( c1 , c2 ) where
 target_tab le . c1 = t . c1
delete  from  target_tab le  using  ( values ( 1 , 1 ),( 2 , 2 ),

( 3 , 3 ),…( 2000 , 2000 )) as  t ( c1 , c2 ) where  target_tab
le . c1  = t . c1

Note:
Both set  optimizer = on ; and set  enable_nes tloop = on ; generate
query plans that use indexes. In complicated cases, however, such as multiple index
fields or partition tables are involved, the ORCA optimizer must be used to match the
index.

6 Issue: 20190514



AnalyticDB for PostgreSQL Best Practices /  2 Improve performance of AnalyticDBfor PostgreSQL

2 Improve performance of AnalyticDB for
PostgreSQL

AnalyticDB for PostgreSQL is developed based on Greenplum Database and is
enhanced with some in-depth extensions by Alibaba Cloud. It is a distributed cloud
database that is composed of multiple groups to provide MPP (Massively Parallel
Processing) data warehousing service.
This document introduces the best practices for using AnalyticDB for PostgreSQL. 
We recommend that you choose from the mentioned methods to follow in order to 
improve the performance of AnalyticDB for PostgreSQL, speed up the import process
, and reduce the cost.

Use Compressed Column Storage
For tables with infrequent updates and many fields, we recommend that you use 
Compressed Column Storage. This method increases the compression ratio three-fold
 while guaranteeing performance, and the import speed is usually faster.
For example, you can add the clause WITH  ( APPENDONLY = true , ORIENTATIO

N = column , COMPRESSTY PE = zlib , COMPRESSLE VEL = 3 , BLOCKSIZE

= 1048576 ) to the tabulation statements to create compressed column store tables.
For the specific syntax, see CREATE TABLE.

Use the Nested Loop JOIN
By default, the Nested Loop JOIN is not enabled for AnalyticDB for PostgreSQL
 instances. For queries that only involve or return a small amount of data, the 
performance may not be optimal.
Take the following SQL statement as an example:
select  * from  T1  join  T2  on  T1 . c1  = T2 . c1  where
 T1 . c2  >= ' 230769548 ' and  T1 . c2  < ' 230769549 ' limit  
100 ;

In this example, the T1 and T2 tables are both big in size. The selection conditions of 
T1  ( T1 . c2  >= ‘ 230769548 ’ and T1 . c2  < ‘ 23432442 ’) filter a vast

majority of data records and contain LIMIT clauses.

Issue: 20190514 7

https://www.alibabacloud.com/help/doc-detail/35402.htm
http://gpdb.docs.pivotal.io/4380/ref_guide/sql_commands/CREATE_TABLE.html


AnalyticDB for PostgreSQL Best Practices /  2 Improve performance of AnalyticDBfor PostgreSQL
As a result, the query actually involves only a small portion of the total data size. In 
this case, the Nested Loop JOIN method is optimal.
You can perform the following SET command to activate the Nested Loop JOIN:
show  enable_nes tloop  ;

 enable_nes tloop
-----------------
 off
SET  enable_nes tloop  = on  ;
show  enable_nes tloop  ;

 enable_nes tloop
-----------------
 on
explain  select  * from  T1  join  T2  on  T1 . c1  = T2 . c1
 where  T1 . c2  >= ' 230769548 ' and  T1 . c2  < ' 23432442 ' 
limit  100 ;

                                            QUERY  PLAN
-----------------------------------------------------------------------------------------------
 Limit   ( cost = 0 . 26 .. 16 . 31  rows = 1  width = 18608 )
   ->  Nested  Loop   ( cost = 0 . 26 .. 16 . 31  rows = 1  width
= 18608 )

         ->  Index  Scan  using  T1  on  c2   ( cost = 0 . 12 ..
8 . 14  rows = 1  width = 12026 )

               Filter : (( c2  >= ' 230769548 ':: bpchar ) AND  ( c2
 < ' 230769549 ':: bpchar ))

         ->  Index  Scan  using  T2  on  c1   ( cost = 0 . 14 ..
8 . 15  rows = 1  width = 6582 )

               Index  Cond : (( c1 ):: text  = ( T1 . c1 ):: text )

From the query plan, the T1 and T2 tables adopt the Nested Loop JOIN, and achieve 
the optimal performance.

Use the ORCA optimizer
AnalyticDB for PostgreSQL supports the ORCA optimizer. When you perform a 
complicated SQL statement and find the unsatisfactory performance, you can try the 
ORCA optimizer.
You can enable the ORCA by running the following SET command in the database 
connection.

Note:
The SET command acts at the connection level and is only valid within the same
connection. You need to run the SET command again for a new connection to enable
the ORCA.
EXPLAIN  < SQL  text >
SET  optimizer  = on ;

8 Issue: 20190514



AnalyticDB for PostgreSQL Best Practices /  2 Improve performance of AnalyticDBfor PostgreSQL
EXPLAIN  < SQL  text >

In the preceding example, you can view that the query plan uses the EXPLAIN 
command before and after enabling the ORCA respectively. In this way, you can 
check whether the ORCA has actually changed the SQL query plan.

Use a compression method
Now, AnalyticDB for PostgreSQL supports two compression methods for storage: zlib 
and RLE.
• RLE is applicable to the scenario where the same data values are physically stored 

continuously.
• Zlib is applicable to other scenarios.
The compression approach can be specified at the field level or table level. For details,
see CREATE TABLE.

Use other numeric types
If the query contains the unique value statistics operation of COUNT(DISTINCT), we 
recommend that you do not use the string or numeric type for the statistic fields, but
 try to use other numeric types (such as integer type). This method can improve the 
performance several-fold.

Issue: 20190514 9

http://gpdb.docs.pivotal.io/4380/ref_guide/sql_commands/CREATE_TABLE.html


AnalyticDB for PostgreSQL Best Practices /  3 Scheduled maintenance tasks

3 Scheduled maintenance tasks
When an update operation (including INSERT VALUES, UPDATE, DELETE, and ALTER
 TABLE ADD COLUMN) is performed on a system, junk data that may no longer be 
used is left in the system table and the updated data table. This junk data reduces 
the system performance and takes up a large amount of disk space. We recommend 
that you clear such data on a regular basis by following the methods provided in this 
document.

Clear junk data without locking the table
You can clear some junk data without locking the table. The method is as follows.
• Command: connect to every database, log on to the database as the database

owner, and run the VACUUM  command.
• Frequency: at least once a day.

- If data is updated in real time (that is, INSERT VALUES, UPDATE, and DELETE
operations are performed continuously), we recommend that you run the 
VACUUM  command once every two hours.

- If data update is performed by bulk once a day, you can run the command once 
after the bulk update every day.

• Impact to the system: no table is locked, and tables can be read and written
 to normally. But it may increase the CPU and I/O usage, and impact query 
performance.

• Example: you can use the following Linux Shell script file and run it as a scheduled
 crontab task.

#!/ bin / bash
export  PGHOST = myinst . gpdb . rds . tbsite . net
export  PGPORT = 3432
export  PGUSER = myuser
export  PGPASSWORD = mypass

# do  not  echo  command , just  get  a  list  of  db
dblist =` psql  - d  postgres  - c  " copy  ( select  datname  
from  pg_stat_da tabase ) to  stdout "`
for  db  in  $ dblist  ; do

    # skip  the  system  databases
    if  [[ $ db  == template0  ]] ||  [[ $ db  == template1  ]] ||
 [[ $ db  == postgres  ]] || [[ $ db  == gpdb  ]] ; then
        continue
    fi
    echo  processing  $ db
    # vacuum  all  tables  ( catalog  tables / user  tables )
    psql  - d  $ db  - e  - a  - c  " VACUUM ;"

10 Issue: 20190514



AnalyticDB for PostgreSQL Best Practices /  3 Scheduled maintenance tasks
done

Clear junk data during maintenance windows
You can clear all junk data during maintenance windows of services when services 
are suspended. The method is as follows.
• Command: connect to every database, and log on to the database as the database 

owner (you must have the owner permission for all the operation objects).
1. Run the REINDEX  SYSTEM  < database  name > command.
2. Run the VACUUM  FULL  < table  name >, REINDEX  TABLE  < table  

name > command on every data table (non-system table).
• Frequency: at least once per week. If almost all the data is updated every day, you 

can run the command once a day.
• Impact on the system: the command locks tables for VACUUM FULL or REINDEX 

and these tables become not readable or writable. This may increase the CPU and I
/O usage.

• Example: you can use the following Linux Shell script file and run it as a scheduled
 crontab task.

#!/ bin / bash
export  PGHOST = myinst . gpdb . rds . tbsite . net
export  PGPORT = 3432
export  PGUSER = myuser
export  PGPASSWORD = mypass

# do  not  echo  command , just  get  a  list  of  db
dblist =` psql  - d  postgres  - c  " copy  ( select  datname  
from  pg_stat_da tabase ) to  stdout "`
for  db  in  $ dblist  ; do

    # skip  system  databases
    if  [[ $ db  == template0  ]] ||  [[ $ db  == template1  ]] ||
 [[ $ db  == postgres  ]] || [[ $ db  == gpdb  ]] ; then
        continue
    fi
    echo  processing  db  "$ db "
    # do  a  normal  vacuum
    psql  - d  $ db  - e  - a  - c  " VACUUM ;"
    # reindex  system  tables  firstly
    psql  - d  $ db  - e  - a  - c  " REINDEX  SYSTEM  $ db ;"
    # use  a  temp  file  to  store  the  table  list , which
 could  be  vary  large

    cp  / dev / null  tables . txt
    # query  out  only  the  normal  user  tables , excluding  
partitions  of  parent  tables

    psql  - d  $ db  - c  " copy  ( select  '\"'|| tables .
schemaname ||'\".' || '\"'|| tables . tablename ||'\"' from  (
select  nspname  as  schemaname , relname  as  tablename  from
 pg_catalog . pg_class , pg_catalog . pg_namespa ce , pg_catalog
. pg_roles  where  pg_class . relnamespa ce  = pg_namespa ce
. oid  and  pg_namespa ce . nspowner  = pg_roles . oid  and
 pg_class . relkind =' r ' and  ( pg_namespa ce . nspname  = '

Issue: 20190514 11



AnalyticDB for PostgreSQL Best Practices /  3 Scheduled maintenance tasks

public ' or  pg_roles . rolsuper  = ' false ' ) ) as  tables (
schemaname , tablename ) left  join  pg_catalog . pg_partiti ons
 on  pg_partiti ons . partitions chemaname = tables . schemaname
 and  pg_partiti ons . partitiont ablename = tables . tablename
 where  pg_partiti ons . partitiont ablename  is  null ) to  
stdout ;" > tables . txt

    while  read  line ; do
        # some  table  name  may  contain  the  $ sign , so  
escape  it

        line =` echo  $ line  | sed  ' s /\\\$/\\\\\\\$/ g '`
        echo  processing  table  "$ line "
        # vacuum  full  this  table , which  will  lock  the  
table

        psql  - d  $ db  - e  - a  - c  " VACUUM  FULL  $ line ;"
        # reindex  the  table  to  reclaim  index  space
        psql  - d  $ db  - e  - a  - c  " REINDEX  TABLE  $ line ;"
    done  < tables . txt
done

12 Issue: 20190514



AnalyticDB for PostgreSQL Best Practices /  4 Special characters in import

4 Special characters in import
AnalyticDB for PostgreSQL supports multiple data importing methods:
• Import and export data in parallel by using OSS

• Import data from MySQL

• Import data from PostgreSQL

• Import data by using the COPY command

• Synchronize data by using Data Integration

Special characters often cause import failures during data imports. This document 
describes how to pre-process special characters in the imported data in advance to 
eliminate problems arising thereof.
In the aforementioned import methods, tools used for importing data from MySQL 
and PostgreSQL automatically escape and package the special characters, so you can 
directly use the tools without any additional setting. The following content focuses on
 using OSS and the COPY command to import data and describes how to process the 
special characters.

Import data in parallel by using OSS
During data import, every line in a file are often regarded as a tuple, and the data in 
each column are divided by specifying a delimiter in each line. The following content
 introduces the usage and constraints of the delimiter, and how to handle the special 
characters in each column.
Delimiter
In the syntax of creating an OSS external table, you can specify a DELIMITER after the
 FORMAT clause as follows:
FORMAT  ' TEXT ' ( DELIMITER  ',')

• For FORMAT  ' TEXT ', DELIMITER  is '\ t ' by default.
• For FORMAT  ' CSV ', DELIMITER  is ',' by default.
You can also define your own delimiter, on the premise that the custom delimiter 
meets the following constraints, as stipulated in the external table creation syntax:

Issue: 20190514 13



AnalyticDB for PostgreSQL Best Practices /  4 Special characters in import

• It must be an ASCII character, and must not be a Chinese character, or two or more
 ASCII characters.

• '\ n 'and '\ r ' are not supported.
• Escape characters except '\ n 'and '\ r ' are supported, with "E" or "e" added

preceding the character.
• The escape character '\ t ' with no "E" added is also supported.
• For the TEXT format, you can set the DELIMITER to OFF and use the single-column

 external tables.
To read data properly, the content of the OSS file you provide must strictly abide by 
the delimiter you set.
Special characters in the data
During data imports, the use cases where may see special characters include the 
following:
• The column contains the same character as the delimiter.

- If you are using the TEXT format, you must add an ESCAPE character before 
each DELIMITER. The ESCAPE character can be specified by using the following
 command when you create an external table. The default value is the backslash
 (\).
FORMAT  ' TEXT ' ( ESCAPE  '\' )

- If you are using the CSV format, you must add double quotation marks (") before
 each DELIMITER.

• The column contains Chinese characters. OSS external table supports Chinese
 character data. But to make sure the display is correct, you must encode the 
created external table as follows:
ENCODING  ' UTF8 '

• The column contains null data. You can set to match null values to a character, and
 replace the specified character with null during data imports. For the CSV format, 
the default value is a null value with no quotation marks. For the TEXT format, the 

14 Issue: 20190514



AnalyticDB for PostgreSQL Best Practices /  4 Special characters in import

default value is "\N". The following command maps space to null. If the column is a 
space, then the value for the column is null in the data imported from the OSS file.
FORMAT  ' text ' ( null  ' ' )

• The column contains escape characters. You can add "ESCAPE" before the escape 
characters. The ESCAPE value is specified during external table creation. For CSV
 format, the default value is the double quotation marks ("). For TEXT format, the 
default value is the backslash (\).
- You can customize the ESCAPE value to a single character. For example, the 

following command sets the ESCAPE value to a backslash:
FORMAT  ' csv ' ( ESCAPE  '\' )

- You can also set ESCAPE to OFF to avoid escaping all characters automatically.
• The column contains single quotation marks or double quotation marks.

- If you are using the TEXT format, you must add an ESCAPE character before 
the single quotation marks or double quotation marks. The default value is a 
backslash (\).

- If you are using the CSV format, you must add an ESCAPE character before the 
single quotation marks or double quotation marks. The default value is double 
quotation marks ("). You also must add the double quotation marks at both the 
beginning and end of the column to enclose the column in the quotation marks.

Import date by using the COPY command
When you use \COPY statements to import data, the usage of delimiter is the same as
 that for using OSS to import data. The handling of special characters in the data is 
also similar.
The difference is that COPY statements and the CREATE  EXTERNAL  TABLE

statement are slightly different in usage. For more information, see Import data by using

the COPY command.

Issue: 20190514 15


	Contents
	Legal disclaimer
	Generic conventions
	1 Bulk update
	2 Improve performance of AnalyticDB for PostgreSQL
	3 Scheduled maintenance tasks
	4 Special characters in import

