
Alibaba Cloud
MQTT

Authorization and Authentication
Issue: 20190914

MQTT Authorization and Authentication / Legal disclaimer

Legal disclaimer
Alibaba Cloud reminds you to carefully read and fully understand the terms and
conditions of this legal disclaimer before you read or use this document. If you have
read or used this document, it shall be deemed as your total acceptance of this legal
disclaimer.
1. You shall download and obtain this document from the Alibaba Cloud website

 or other Alibaba Cloud-authorized channels, and use this document for your
own legal business activities only. The content of this document is considered
 confidential information of Alibaba Cloud. You shall strictly abide by the
confidentiality obligations. No part of this document shall be disclosed or provided
 to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted,
or disseminated by any organization, company, or individual in any form or by any
means without the prior written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades
, adjustments, or other reasons. Alibaba Cloud reserves the right to modify
the content of this document without notice and the updated versions of this
 document will be occasionally released through Alibaba Cloud-authorized
channels. You shall pay attention to the version changes of this document as they
occur and download and obtain the most up-to-date version of this document from
Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud
products and services. Alibaba Cloud provides the document in the context that
 Alibaba Cloud products and services are provided on an "as is", "with all faults
" and "as available" basis. Alibaba Cloud makes every effort to provide relevant
 operational guidance based on existing technologies. However, Alibaba Cloud
hereby makes a clear statement that it in no way guarantees the accuracy, integrity
, applicability, and reliability of the content of this document, either explicitly
or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial
 losses incurred by any organizations, companies, or individuals arising from
their download, use, or trust in this document. Alibaba Cloud shall not, under any
 circumstances, bear responsibility for any indirect, consequential, exemplary,
incidental, special, or punitive damages, including lost profits arising from the use

Issue: 20190914 I

MQTT Authorization and Authentication / Legal disclaimer

 or trust in this document, even if Alibaba Cloud has been notified of the possibility
 of such a loss.

5. By law, all the content of the Alibaba Cloud website, including but not limited to
works, products, images, archives, information, materials, website architecture,
website graphic layout, and webpage design, are intellectual property of Alibaba
 Cloud and/or its affiliates. This intellectual property includes, but is not limited
 to, trademark rights, patent rights, copyrights, and trade secrets. No part of the
 Alibaba Cloud website, product programs, or content shall be used, modified
, reproduced, publicly transmitted, changed, disseminated, distributed, or
published without the prior written consent of Alibaba Cloud and/or its affiliates
. The names owned by Alibaba Cloud shall not be used, published, or reproduced
for marketing, advertising, promotion, or other purposes without the prior written
 consent of Alibaba Cloud. The names owned by Alibaba Cloud include, but are
not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other brands of Alibaba
Cloud and/or its affiliates, which appear separately or in combination, as well as
 the auxiliary signs and patterns of the preceding brands, or anything similar to
the company names, trade names, trademarks, product or service names, domain
 names, patterns, logos, marks, signs, or special descriptions that third parties
identify as Alibaba Cloud and/or its affiliates).

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

II Issue: 20190914

MQTT Authorization and Authentication / Legal disclaimer

Issue: 20190914 III

MQTT Authorization and Authentication / Genericconventions

Generic conventions
Table -1: Style conventions
Style Description Example

This warning information
indicates a situation that will
cause major system changes,
faults, physical injuries, and other
 adverse results.

Danger:
Resetting will result in the loss of
user configuration data.

This warning information
indicates a situation that may
cause major system changes,
faults, physical injuries, and other
 adverse results.

Warning:
Restarting will cause business
interruption. About 10 minutes are
required to restore business.

This indicates warning informatio
n, supplementary instructions,
and other content that the user
must understand.

Notice:
Take the necessary precautions
to save exported data containing
sensitive information.

This indicates supplemental
instructions, best practices, tips,
and other content that is good to
know for the user.

Note:
You can use Ctrl + A to select all
files.

> Multi-level menu cascade. Settings > Network > Set network
type

Bold It is used for buttons, menus
, page names, and other UI
elements.

Click OK.

Courier
 font

It is used for commands. Run the cd / d C :/ windows
 command to enter the Windows

system folder.
Italics It is used for parameters and

variables.
bae log list --
instanceid Instance_ID

[] or [a|b] It indicates that it is a optional
value, and only one item can be
selected.

ipconfig [-all|-t]

Issue: 20190914 I

MQTT Authorization and Authentication / Genericconventions
Style Description Example
{} or {a|b} It indicates that it is a required

value, and only one item can be
selected.

swich {stand | slave}

II Issue: 20190914

MQTT Authorization and Authentication / Genericconventions

Issue: 20190914 III

MQTT Authorization and Authentication / Contents

Contents
Legal disclaimer.. I
Generic conventions.. I
1 Authentication overview... 1
2 Signature authentication...5
3 Token authentication..7

3.1 Token authentication overview.. 7
3.2 Application server-related methods in token authentication...................... 10

3.2.1 Specifications on token-related methods for the application
server... 10

3.2.2 Apply for tokens... 13
3.2.3 Verify tokens.. 14
3.2.4 Revoke tokens.. 15

3.3 Client-related methods in token authentication...16

IV Issue: 20190914

MQTT Authorization and Authentication / 1 Authenticationoverview

1 Authentication overview
This topic describes the principle behind and the types of authentication of MQTT
clients.

Authentication principle
When an MQTT client sends and receives messages, the MQTT broker authenticates
 the MQTT client based on the Username and Password parameters. The definition
s of the Username and Password parameters vary depending on different scenarios
 of permission verification. A proper authentication mode must be selected during
 MQTT client development based on the actual situation, and the Username and
Password parameters must be set correctly based on the corresponding specifications
.
Authentication modes
Mode Description Scenarios
Signature Signature verification Permanent authorization

, applicable to secure and
trusted clients

Token On-demand token
permission verification

On-demand authorization
, applicable to untrusted
clients

Username
The Username parameter consists of the authentication mode, AccessKeyId, and
InstanceId, which are separated by vertical bars (|).
Example: If MQTT client GID_Test@@@0001 uses InstanceId mqtt-xxxxx and
AccessKey YYYYY, the Username parameter for connecting this MQTT client must be
 set to Signature|YYYYY|mqtt-xxxxx in signature authentication mode and to Token|
YYYYY|mqtt-xxxxx in token authentication mode.
Password

Issue: 20190914 1

MQTT Authorization and Authentication / 1 Authenticationoverview
Permission verification
mode

Password Scenarios

Signature verification Client ID signature
encoded in Base64. For the
 setting method, see the
document about signature
calculation.

Permanent authorization
, applicable to secure and
trusted clients

On-demand token
permission verification

Uploaded token content.
For the setting method, see
 the document about token
 calculation.

On-demand authorization
, applicable to untrusted
clients

Types and comparison of authentication modes
Currently, MQ for MQTT supports signature authentication and token authentica
tion, which correspond to fixed permissions and non-fixed on-demand permissions,
respectively. The two modes and scenarios are detailed as follows.
Signature authentication (fixed permissions)
The signature authentication mode is the default authentication mode recommende
d by MQ for MQTT. In this mode, MQTT clients of the same type are assigned the
same permissions and calculate signatures by using the same account. The MQTT
broker identifies the accounts and permissions of the MQTT clients through signature
 comparison. The signature authentication mode is easy to understand and use.
• Scenarios

The used MQTT clients can be logically classified into the same type, belong to the
 same account, and have the same permissions. The runtime environment of each
 MQTT client is relatively controllable. You do not have to worry about malicious
attacks against devices, such as cracking and stealing.
From the service perspective, MQTT clients of the same type are managed by
the same account, which can be a primary account or a sub-account. Therefore
, the MQTT clients only need to calculate signatures based on the correspond
ing AccessKeySecret. Permissions are managed in the console by the account
administrator.

2 Issue: 20190914

MQTT Authorization and Authentication / 1 Authenticationoverview
• Signature calculation

Signatures are calculated by using each MQTT client's independent information
to prevent signature stealing. MQ for MQTT requires each MQTT client to use its
unique client ID as the to-be-signed content. For the signature calculation method,
see .

Token authentication (on-demand permissions)
The token authentication mode supports access through on-demand credentials and
 is applicable in the scenario where the permissions of each MQTT client need to
be classified with a small granularity or MQTT clients need to be assigned only on-
demand permissions with a limited validity period. The token service allows you to
set the resources that are accessed by a single MQTT client, the permission level that
is assigned to the MQTT client, and the permission expiration time.
For more information about the process and precautions of token authentication, see
#unique_4.
• Scenarios

The service party has an independent local account system and needs to split the
identities of Alibaba Cloud accounts for the second time, or even needs to assign an
 independent account and permissions to each MQTT client. In this case, the RAM
 user system of Alibaba Cloud cannot meet the requirement for refined classifica
tion of MQTT clients.
Though the MQTT clients belong to the same Alibaba Cloud account, they need to
 play different roles assigned by local accounts (owned by the service department
 or a single MQTT client). This requirement cannot be met by using Alibaba Cloud
 accounts in signature authentication mode. The use of fixed permissions cannot
 meet the requirements of mobile terminals that need to protect against cracking
 and hijacking. Use of only on-demand and non-fixed permissions makes it more
flexible to control permissions on a per-client basis and assign permissions on a
per-resource basis.

• Token usage
The token authentication mode is relatively complex. The service party needs
to have the account (device) management capability, manage the permissions
and permission validity period of each device, apply for tokens on secure and

Issue: 20190914 3

MQTT Authorization and Authentication / 1 Authenticationoverview
controllable application servers and authorization servers, and deliver the tokens
to MQTT clients. For usage instructions, see the document about the token service.

4 Issue: 20190914

MQTT Authorization and Authentication / 2 Signatureauthentication

2 Signature authentication
This topic describes how to calculate a signature and create a signature in the console
when signature authentication is used by MQ for MQTT.

Use the MQTT SDK to access the MQTT broker
If signature verification is used, the Connect message that the MQTT client sends for
 connecting to the MQTT broker must set the Username and Password parameters
based on the specifications described here. The setting and calculation methods are
as follows:
Username
The Username parameter consists of the authentication mode, AccessKeyId, and
InstanceId, which are separated by vertical bar (|). The authentication mode is set to
Signature in signature authentication mode.
Example: If MQTT client GID_Test@@@0001 uses InstanceId mqtt-xxxxx and
AccessKeyId YYYYY, the Username parameter for connecting this MQTT client must
be set to Signature|YYYYY|mqtt-xxxxx in signature authentication mode.
Password
The Password parameter indicates the result of client ID signing. The calculation
method is as follows:
For example, a client ID is GID_AAA@@@BBB001.
Calculate the signature of the to-be-signed string by using AccesKeySecret and HMAC
 SHA-1 to obtain a binary array. Encode the binary array in Base64 to obtain the final
signature string Password, that is, eqweq+adwe23fssf.
Each language provides a function library to implement the HMAC algorithm. You
can also refer to the demo project.

Verify the signature in the console
The MQ for MQTT console provides the signature calculation tool so that you can
compare and check whether your signature calculation is correct.
In the left-side navigation pane of the MQ for MQTT console, choose Signature
Verification, and enter the AccessKeyId, AccessKeySecret, and Client ID of the

Issue: 20190914 5

MQTT Authorization and Authentication / 2 Signatureauthentication
application-used account to obtain the Username and Password parameters that need
to be set in the application.

Note:
The tool uses only frontend JavaScript of the web browser for calculation and
does not transmit AccessKeySecret to MQ, removing the risk of AccessKeySecret
disclosure. In the actual situation, the tool is only used by the console for troublesho
oting and data comparison.
Calculate the signature on the MQTT client. Alternatively, calculate on the MQTT
broker and then send the result to the MQTT client for security purposes.

6 Issue: 20190914

MQTT Authorization and Authentication / 3 Tokenauthentication

3 Token authentication
3.1 Token authentication overview

Message Queue for MQTT provides MQTT clients with temporary access permissions
with a limited validity period through token authentication. The MQTT token service
issues temporary credentials to users that are managed by the local account system,
and limits the users' access permission. This implements refined permissions control
on a per-client and per-resource basis.
As the administrator of the local account, the user applies for a temporary access
credential (Token) for the actual client, and the client uses the temporary credential
for actual business access. Users who manage local accounts can apply for temporary
 credentials (tokens) for clients. Then, the clients use temporary credentials to
access services. A token represents the temporary identity of an MQTT client and is
 assigned permissions, resource lists, and access types by a service administrator.
This implements refined permissions control on a per-client and per-resource basis.
Term Definition Description
Token Temporary credential Message Queue for MQTT

 issues the temporary
credential to assign a
single MQTT client the
permission to access
specific resources.

AppServer Application server The server that enables
 users to manage local
 accounts and applies
for and manages token
 services on behalf of
clients

AuthServer Authentication Server Message Queue for MQTT
 authorization server
that processes the token-
related requests that are
initiated by the application
server

Issue: 20190914 7

MQTT Authorization and Authentication / 3 Tokenauthentication
Procedure

The token authentication mode is more complex than the signature authentication
mode. You must deploy your application server based on the process shown in the
following figure, and ensure that the MQTT client is initialized with the capability to
interact with the application server to obtain and update tokens.
Figure 3-1: Authentication process

The procedure is as follows:
1. The MQTT client connects to the application server for authentication upon

startup.
2. The MQTT client applies for the required permissions on all the topics from the

application server.
3. The application server verifies whether the MQTT client is authorized to operate

the topics. If the MQTT client is authorized, the application server applies for the
resource-related tokens from the authorization server.

4. Message Queue for MQTT authorization server verifies the token application
request and returns the corresponding tokens if the request is valid.

5. The MQTT client performs local persistence of the tokens that are returned by
the application server, and maps required permissions to the tokens. Tokens are
cached for the following two purposes:
• When the MQTT client is restarted with the same permissions for access, the

application server returns the cached tokens to the MQTT client. This avoids
repeated token application.

• If the authorization server cannot process the client token application request
due to an error, the application server returns the previously applied token for
local disaster recovery.

8 Issue: 20190914

MQTT Authorization and Authentication / 3 Tokenauthentication
6. The MQTT client sets token parameters based on the specifications to connect to

 the MQTT broker. The MQTT client can send and receive messages after being
authenticated by the MQTT broker.

7. The MQTT client sends and receives messages properly. If the MQTT broker
determines that the token has expired, it triggers an authentication failure and
disconnects the MQTT client. In this case, the MQTT client needs to re-apply for a
token.

Client behavior constraints
• The MQTT client must set the token as a connection parameter in Password and

upload the token when establishing a connection.
• The MQTT client must know the validity period of the used token and ensure that it

 is within the validity period. If the token expires, the MQTT broker may disconnect
 the MQTT client.

• The MQTT client can listen to the token expiration notifications that are pushed by
the MQTT broker, but the MQTT broker does not guarantee that the push is always
triggered. Those notifications are only for troubleshooting.

• The MQTT client must perform persistence of the tokens that are returned by the
application server to avoid applying for the same token during each reconnection
. Otherwise, the application server may crash when receiving connection requests
from many MQTT clients at the same time.

• The MQTT client can update a token in two ways. One way is to disconnect the
MQTT client first and reinitialize the connection using the new token. The other
way is to use the MQTT-provided dynamic token update function through system
topics. If the token is updated dynamically, the MQTT client must ensure that the
 local configuration is also updated to avoid that the old token is used during the
next connection initialization.

Application server behavior constraints
• The application server must authenticate the MQTT client to prevent the MQTT

client from applying for a token by using a forged identity.
• The application server must manage the token-client relationship to prevent the

same MQTT client from calling a token repeatedly.
• The application server must implement local disaster recovery to prevent service

congestion due to temporary failed access to the authorization server.

Issue: 20190914 9

MQTT Authorization and Authentication / 3 Tokenauthentication
Related APIs

You can call related APIs to implement token authentication.
The application server is responsible for token application and revocation, and
interacts with the authorization server by using HTTPS APIs. Each API requires
authentication by using an AccessKey and a request signature. Currently, the APIs for
token application, revocation, and verification are available.
Message Queue for MQTT clients provide three APIs for dynamic token update,
listening to token expiration notifications, and listening to token invalidity
notifications, respectively.

Token service addresses
Currently, the token service supports public cloud regions in Mainland China and
the Singapore region. Finance Cloud is not supported at present. The specific service
addresses are as follows:
Service region Token server address
China (Beijing) Mqauth.aliyuncs.com
Internet Mqauth.aliyuncs.com
China (Hangzhou) Mqauth.aliyuncs.com
China (Shanghai) Mqauth.aliyuncs.com
China (Shenzhen) Mqauth.aliyuncs.com
Singapore Mqauth.ap-southeast-1.aliyuncs.com

3.2 Application server-related methods in token authentication
3.2.1 Specifications on token-related methods for theapplication server

Your application server must set parameters and obtain return values based on the
following specifications when calling methods of the authorization server. Otherwise,
the call may fail.

Signature calculation
When the application server calls a method, for example, the token application
method, the authorization server verifies the call parameters and filters invalid

10 Issue: 20190914

MQTT Authorization and Authentication / 3 Tokenauthentication
requests. The application server must sort and concatenate request parameters by
 using the specified method based on the following rules to form the to-be-signed
string, and then encrypt the string by using the AccessKeySecret to obtain a signature
.

Note:
The signature calculation rules use logic that is different from the signature
verification logic of the MQTT client.

The details are as follows:
• Parameter pairs are in the format key=value.
• Parameter pairs are separated by ampersands (&).
• Parameter pairs are sorted in the alphabetic order of keys during signature

calculation.
• If a parameter pair contains multiple values of the same key, that is, same-name

parameters, they are sorted in alphabetic order and connected by commas (,).
Examples

Assume that the original HTTP method of a request is as follows:
https :// mqauth . aliyuncs . com / token / apply

The parameters are as follows:
parama = a
paramc = c2 , c1
paramb = b2 , b1 , b3

Sort the parameters by key as follows:
parama = a
paramb = b2 , b1 , b3
paramc = c2 , c1

Sort the values of the same parameter in the alphabetic order. For example, sort "b2,
b1,b3" as follows:
parama = a
paramb = b1 , b2 , b3
paramc = c1 , c2

The concatenated string to be signed is as follows:
parama = a & paramb = b1 , b2 , b3 & paramc = c1 , c2

Issue: 20190914 11

MQTT Authorization and Authentication / 3 Tokenauthentication

Calculate the signature by using the AccessKeySecret and the HMAC SHA-1 algorithm.
Note:
• HTTP or HTTPS can be selected for HTTP-based token management.
• The HTTP methods are GET and POST. POST is recommended in the production

environment, and GET can be used in the test environment.
Response status codes

The authorization server properly processes the received token request and returns a
response in the JSON string format to the caller. The caller can retrieve specific values
 from the string as needed.
The JSON string has the following key-value mapping:
Key Type Description
success Boolean Indicates whether the call

is successful.
message String The processing result or

error description.
code Integer The response code, which

 indicates the request
processing result or error
type.

tokenData String The token string, which
 is returned for token
application.

The following table lists the error codes.
Code Description
200 This code is returned when the call is

successful.
400 This code is returned when an error

occurs during parameter verification.
407 This code is returned when an error

occurs during signature calculation.
409 This code is returned when an error

occurs during token creation.
12 Issue: 20190914

MQTT Authorization and Authentication / 3 Tokenauthentication
Code Description
410 This code is returned when the token

revocation failed.
1 This code is returned when the token is

forged and cannot be parsed.
2 This code is returned when the token has

 expired.
3 This code is returned when the token has

 been revoked.
3.2.2 Apply for tokens
Method

https://{tokenServerUrl}/token/apply
Scenario

After verifying the permissions of an MQTT client, the application server calls this
method to request a token for this client from the MQTT authorization server.

Request parameters
Name Type Description
actions String The token permission type

, which can be R (read), W
 (write), or R,W (read and
 write). **Note:** To grant
 both the read and write
permissions, enter R and
W and separate them with
a comma (,).

resources String The resource name that
indicates an MQTT topic
. Multiple topics are
separated by commas
 (,). Each token can run
 and operate up to 100
 resources. Multiple
topics are sorted in the
alphabetic order.

Issue: 20190914 13

MQTT Authorization and Authentication / 3 Tokenauthentication
Name Type Description
accessKey String The AccessKeyId of the

 account used in the
current request.

expireTime long The token expiration
time, in the timestamp
 format and precise
to milliseconds. The
minimum expiration
interval is 60 seconds.

proxyType String The token type, which is
set to MQTT here. Set this
 parameter based on the
service that is used.

serviceName String Set this parameter to mq.
Other values are invalid.

instanceId String The ID of the MQTT
instance, which must
match the client-used
instance ID.

signature String The signature string.
Signature calculation is
required by the following
 fields in the current
request: actions, resources
, expireTime, serviceName
, and instanceId.

3.2.3 Verify tokens
Method

https://{tokenServerUrl}/token/query
Scenario

This method is called by the application server to check whether a single token is
valid.

14 Issue: 20190914

MQTT Authorization and Authentication / 3 Tokenauthentication
Request parameters

Name Type Description
token String The token that you want to

 verify.
accessKey String The AccessKeyId of the

 account used in the
current request.

signature String The signature string. The
Token field in the current
request requires signature
calculation.

3.2.4 Revoke tokens
Method

https://{tokenServerUrl}/token/revoke
Scenario

This method is called by the application server to terminate previous token
authorization in advance.

Request parameters
Name Type Description
token String The token to be revoked.
accessKey String The AccessKeyId of the

 account used in the
current request.

signature String The signature string. The
Token field in the current
request requires signature
calculation.

Issue: 20190914 15

MQTT Authorization and Authentication / 3 Tokenauthentication

3.3 Client-related methods in token authentication
This topic describes how an MQTT client uploads and updates tokens, and
how it listens to notifications about token expiration and invalidity when token
authentication is used.

Set parameters for MQTT client connection in token authentication mode
MQTT supports three token types. Each MQTT client can apply for one token per type
 at most, and may apply for and use one or more types as needed. The following table
lists the token types.
Type identifier Description
R A read-only token that has only the read

permission for the specified resources
W A write-only token that has only the write

 permission for the specified resources
RW A read-write token that has the read

and write permissions for the specified
resources

Parameter settings of MQTT client connection in token authentication mode:
Username: consists of the authentication mode, AccessKeyId, and InstanceId,
which are separated by vertical bars (|). The authentication mode is Token in token
authentication mode.
Example: If MQTT client GID_Test@@@0001 uses InstanceId mqtt-xxxxx and
AccessKeyId YYYYY, the Username parameter for connecting this MQTT client must
be set to Token|YYYYY|mqtt-xxxxx in token authentication mode.
Password: the content of the token to be used by the MQTT client. The parameter
value is a complete string that consists of all the tokens concatenated in sequence by
token type and token content that are connected by vertical bars (|). Different types of
tokens are concatenated in no particular order.
Example 1: If an MQTT client has only the read-only token 123 in the string format,
then Password must be set to R|123.
Example 2: If an MQTT client has two token types (123 as the read-only token and
abcd as the write-only token), then Password must be set to R|123|W|abcd.

16 Issue: 20190914

MQTT Authorization and Authentication / 3 Tokenauthentication

Note:
Ensure that the token parameters of MQTT client connection are set based on the
preceding rules and that all the tokens are valid. If some tokens are invalid, the
MQTT broker may determine that the token settings are invalid.

Update tokens for clients
In normal cases, to update the token of an MQTT client, disconnect the MQTT client
 first and then connect the MQTT client using the new token. If you want to avoid
client disconnection during token update, you can replace the token data of the MQTT
 broker session through dynamic token update.
During dynamic token update, an MQTT client sends a special message by using a
predefined system topic to update the new token content to the MQTT broker. The
MQTT client must ensure that the local token configuration is updated along with the
 dynamic token update. Otherwise, the old token data may still be used during the
next connection initialization.
Topic sent for token update: $SYS/uploadToken
Content: JSONString
Content description:
Name Type Description
Token String The MQTT client must

upload the token string if
 token authentication is
used.

type String The token type, which
 can be W, R, or RW,
corresponding to three
 permission types. An
MQTT client can have
the three types of tokens
 at most. An incorrect
token type may result in
a permission verification
error.

Response

Issue: 20190914 17

MQTT Authorization and Authentication / 3 Tokenauthentication
A common PubAck message is returned. The MQTT client must wait for the response
 before performing the publish or subscribe operation. Otherwise, the MQTT broker
may still use the old token data for authentication, causing an authentication failure
and a disconnection.

Listen to notifications about imminent token expiration (subscription not required)
To facilitate service debugging and monitoring, the MQTT broker pushes notificati
ons to the MQTT client by using system topics to notify the client of tokens that will
soon expire. The MQTT client can listen to such notifications to detect whether tokens
 are about to expire.
Received topic: $SYS/tokenExpireNotice
Content: JSONString
Content description:
Name Type Description
expireTime Long The token expiration time

, in the timestamp format
 and precise to millisecon
ds. The MQTT client is
typically notified of the
token expiration time once
 five minutes in advance
. However, the MQTT
broker does not guarantee
that a notification is always
 sent.

type String The client-uploaded token
 type, which can be W, R,
or RW, corresponding to
three permission types.

Response:
After receiving a notification about imminent token expiration, the MQTT client
needs to apply for a new token as soon as possible to avoid failed transmission of
messages.

18 Issue: 20190914

MQTT Authorization and Authentication / 3 Tokenauthentication
Listen to notifications about invalid tokens (subscription not required)

To facilitate service debugging and monitoring, the MQTT broker pushes notificati
ons to the MQTT client by using system topics to notify the client of token authentica
tion errors. The MQTT client can listen to such notifications to detect token mismatch
 and other permission errors.
Received topic: $SYS/tokenInvalidNotice
Content: JSONString
Content description:
Name Type Description
code Integer The type of a token

verification error.
type String The client-uploaded token

 type, which can be W, R,
or RW, corresponding to
three permission types.

Response:
Authentication may fail when the MQTT broker encounters a token verification error
, and then the MQTT broker proactively disconnects the MQTT client. The MQTT
broker pushes an error code to the MQTT client before disconnecting the MQTT client
. The MQTT client can identify the cause based on the error code.
Type code Error type
1 The token is forged and cannot be parsed

.
2 The token has expired.
3 The token has been revoked.
4 The resource and token do not match.
5 The permission type and token do not

match.
8 The signature is invalid.
-1 The account permission is invalid.

Issue: 20190914 19

	Contents
	Legal disclaimer
	Generic conventions
	1 Authentication overview
	2 Signature authentication
	3 Token authentication
	3.1 Token authentication overview
	3.2 Application server-related methods in token authentication
	3.2.1 Specifications on token-related methods for the application server
	3.2.2 Apply for tokens
	3.2.3 Verify tokens
	3.2.4 Revoke tokens

	3.3 Client-related methods in token authentication

