Alibaba Cloud
loT Platform

Developer Guide (Devices)

Issue: 20181113

MORE THAN JusT cLoub | (- AlibabaCloud

Legal disclaimer

Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions of this
legal disclaimer before you read or use this document. If you have read or used this document, it

shall be deemed as your total acceptance of this legal disclaimer.

1. You shall download and obtain this document from the Alibaba Cloud website or other Alibaba
Cloud-authorized channels, and use this document for your own legal business activities only.
The content of this document is considered confidential information of Alibaba Cloud. You shall
strictly abide by the confidentiality obligations. No part of this document shall be disclosed or
provided to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted, or disseminat
ed by any organization, company, or individual in any form or by any means without the prior
written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades, adjustment
s, or other reasons. Alibaba Cloud reserves the right to modify the content of this document
without notice and the updated versions of this document will be occasionally released through
Alibaba Cloud-authorized channels. You shall pay attention to the version changes of this
document as they occur and download and obtain the most up-to-date version of this document
from Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud products and
services. Alibaba Cloud provides the document in the context that Alibaba Cloud products and
services are provided on an "as is", "with all faults" and "as available" basis. Alibaba Cloud
makes every effort to provide relevant operational guidance based on existing technologies
. However, Alibaba Cloud hereby makes a clear statement that it in no way guarantees the
accuracy, integrity, applicability, and reliability of the content of this document, either explicitly
or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial losses incurred
by any organizations, companies, or individuals arising from their download, use, or trust in
this document. Alibaba Cloud shall not, under any circumstances, bear responsibility for any
indirect, consequential, exemplary, incidental, special, or punitive damages, including lost
profits arising from the use or trust in this document, even if Alibaba Cloud has been notified of
the possibility of such a loss.

5. By law, all the content of the Alibaba Cloud website, including but not limited to works, products
, images, archives, information, materials, website architecture, website graphic layout, and
webpage design, are intellectual property of Alibaba Cloud and/or its affiliates. This intellectu

al property includes, but is not limited to, trademark rights, patent rights, copyrights, and trade

secrets. No part of the Alibaba Cloud website, product programs, or content shall be used,
modified, reproduced, publicly transmitted, changed, disseminated, distributed, or published
without the prior written consent of Alibaba Cloud and/or its affiliates. The names owned by
Alibaba Cloud shall not be used, published, or reproduced for marketing, advertising, promotion
, or other purposes without the prior written consent of Alibaba Cloud. The names owned by
Alibaba Cloud include, but are not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other
brands of Alibaba Cloud and/or its affiliates, which appear separately or in combination, as well
as the auxiliary signs and patterns of the preceding brands, or anything similar to the company
names, trade names, trademarks, product or service names, domain names, patterns, logos

, marks, signs, or special descriptions that third parties identify as Alibaba Cloud and/or its
affiliates).

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

IoT Platform Developer Guide (Devices) / Legal disclaimer

Issue: 20181113 1

Generic conventions

Table -1: Style conventions

Style Description Example
This warning information indicates a
situation that will cause major system Danger:
changes, faults, physical injuries, and Resetting will result in the loss of user
other adverse results. configuration data.
This warning information indicates a
''''' situation that may cause major system | &% Warning:
changes, faults, physical injuries, and | Restarting will cause business
other adverse results. interruption. About 10 minutes are
required to restore business.
This indicates warning information,
supplementary instructions, and other Note:
content that the user must understand. | Take the necessary precautions to
save exported data containing sensitive
information.
This indicates supplemental instructio
ns, best practices, tips, and other Note:
content that is good to know for the You can use Ctrl + A to select all files.
user.
> Multi-level menu cascade. Settings > Network > Set network type
Bold It is used for buttons, menus, page Click OK.
names, and other Ul elements.
Couri er It is used for commands. Runthecd /d C./w ndows command
f ont to enter the Windows system folder.
Italics |[Itisused for parameters and variables. |bae 1 og list --instanceid
I nstance_I D
[] or [a]b] It indicates that it is a optional value, i pconfig[-all]|-t]
and only one item can be selected.
{} or{alb} |Itindicates that it is a required value, swich{stand | slave}
and only one item can be selected.

Contents

Legal disClaimer..........coiiiieiiiiiiciiirrs s s e s I
Generic CoONVENLIONS..........coiiieeiiiriecr e rr s s s s s s r e e e e nmn e rnnns I
1 Download device SDKS..........ccmmimmmiiiiiimmrieis s e ssssss e eeees 1
72 OS] 1 5
2.1 AULheNntiCate dEVICESccooiiie e e e e aaae e 5

2.1.1 Authenticate deVICEScooiiiiiii e 6

2.1.2 Unique-certificate-per-device authentication..............cccccoiiiiiiiiiiiii e, 8

2.1.3 Unique-certificate-per-product authentication..................ccccciiiiiiiieeee . 9

2.2 Protocols for connecting deVICES.uiiiiiiieiiiii et 12

2.2.1 Establish MQTT over TCP conneClioNS...........ccoooviiiiiiiiiiiiiieeeeeee e 12

2.2.2 Establish MQTT over WebSocket connections...........cccccvvieeeiiiiiieiics 21

2.2.3 CoAP-based CONNECLIONS..........ceuiiiiiiiieieie e 23

2.2.4 Establish communication over the HTTP protocol...........ccccceeveiiiiieeeiiiiiicnns 30

2.3 OTA DeVEIOPMENT.....cciiee ettt e e e e e e e e e e e e e e e s eaeeeeeeaaeaeeeeas 36

2.4 Connect sub-devices to the CloUd.........coooiiiiiiii e 41

2.4.1 Connect sub-devices to 10T Platform.........ccccccvveeeeeeiiiiiicce e 42

2.5 DEVICe SNAUOWS.......ciiiiiiii et e e e e e e ——————— 52

2.5.1 Device shadow JSON format...........ccceeeeiiiiiiieiiiiiiiieeeee e 52

2.5.2 Device shadow data stream.............cooviviieiiiiiiiiiiieeee e 55

2.5.3 Use deViCe SNAUOWS.........ooiiiiiiiiiiiiiie e e e e e e e e e e e e e eeeeeeeeeeees 64

2.6 Configure @ TSL-based AEVICE.........ccuieiiiiiiiice e a e e e 67

3 Java SDK....... e e e e ennn 77
4 IOS SDK......ceeeerrcr e 80
C I o I 7205 84
6 General ProtoCols..........ciiiiiciirr e e 89
B.1 OVEBIVIEBW.....eiiieeeei e e ettt e e et e e e e e e e e e e et e e e e e e e et a e e e eeeaaaaeeeeeeeeeessannnsanaa s 89

6.2 DEVEIOP COre SDK.... ittt e et e et e e e e e e e e nneeeeas 91

LG IS T= Y=Y ST I | SR 97

B.3.1 SEIVEI SDK ...t a e 97

6.3.2 Interfaces fOr TCP ... 99

6.3.3 Interfaces for UDP..........co e 103

AN LT 21 G d (o] o oo 1 108

1 Download device SDKs

loT Platform provides multiple device SDKs to help you develop your devices and quickly connect

them to the Cloud. As an alternative to SDKs, you can also use Alink Protocol for development.
Prerequisites

Before developing devices, finish all console configurations, and obtain necessary informations

such as the device details and topic information. For more information, see the User Guide.
Device SDKs

Select a device SDK according to the protocol and the features that you require. We recommend

that you use C SDK as it provides more features.

Note:
If you have specific development requirements that cannot be met by the current SDKs, you can

develop according to the Alink protocol.

C SDK Java SDK | Android [iOS SDK (HTTP/2 General

SDK SDK protocol
MQTT \/ \ v N
CoAP N
HTTP/HTTPS v
HTTP/2 N
Other protocols N
Device certification: v N N N \ N
unique-certificate-per-
device authentication
Device certification: \ N

unigue-certificate-per-
product authentication

OTA development \/

Connecting sub \
-devices to loT
Platform

Device shadow v v v

C SDK Java SDK | Android |iOS SDK |[HTTP/2 General
SDK SDK protocol

Device development |+ \
based on TSL

Remote configuration |+

Supported platforms
Click here to view and query the platforms supported by Alibaba Cloud IoT Platform.

If the platform you want to use is not supported by IoT Platform, please open an issue on the

Github page.
Download SDKs

+ CSDK

Version |Release | Developri Downloa{ Updates
number | date t link
environm

t

V2.2.1 2018/09 |GNU RELEASED_KXdded supports for connecting devices to WiFi

/03 make on | 2.2.1 and using open-source applications to locally
64-bit control devices.
Linux

» Added supports for countdown routine before
devices go offline.

* Added supports for OTA using iTls to download
firmware files.

V2.1.0 [2018/03 | GNU RELEASED_Xdded support for CMake: You can use QT or

131 make on | 2_10_20180 vS2017 on Linux or Windows to open a project
64-bit | 337.zip and compile software in CMake compiling
Linux method.

* Added support for TSL model definition on loT

Platform: You can set FEATURE_CMP_ENABLED
= y andFEATURE_DM ENABLED = y to

define TSL models to provide API operations for
properties, events, and services.

» Added support for unique-certificate-
per-product: You can set FEATURE SU
PPORT_PRODUCT_SECRET = y to enable

https://certification.aliyun.com/open/#/certificationlist
https://github.com/aliyun/iotkit-embedded/issues
https://github.com/aliyun/iotkit-embedded/issues
https://linkkit-sdk-download.oss-cn-shanghai.aliyuncs.com/linkkit2.2.1.tar.gz
https://linkkit-sdk-download.oss-cn-shanghai.aliyuncs.com/linkkit2.2.1.tar.gz
http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/iot-sdk-c/RELEASED_V2_10_20180331.7z
http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/iot-sdk-c/RELEASED_V2_10_20180331.7z
http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/iot-sdk-c/RELEASED_V2_10_20180331.7z

Version |Release |Developri Downloa{ Updates
number | date t link
environm

t

unique-certificate-per-product authentication
and streamline the production queuing process.

* Added support for iTLS: You can set
FEATURE_MQTT_DI RECT_NOTLS = y and
FEATURE_MQTT_DI RECT_NO TLS = nto
enable ID? encryption. You can use iTLS to
establish data connections to enhance security
and reduce memory consumption.

+ Added support for remote configuration: You
can set FEATURE_SERVI CE_OTA_ ENABLED
= y and FEATURE_SERVI CE_COTA ENABLED

= y to enable the cloud to push configuration

information to devices.

+ Optimized sub-device management of gateways
: Added some features.

« Java SDK

Supported |Update history Download link

protocol

MQTT 2017-05-27: Added support for device |iotx-sdk-mqtt-java: The Java version
authentication in the China (Shanghai |that supports MQTT is only a demo of
) region. Added the device shadow open-source library implementation. It
demo on the Java client. is used only for reference.

Instructions: See Java SDK.

 iOS SDK
Download link:

* https://github.com/CocoaPods/Specs.git
* https://github.com/aliyun/aliyun-specs.git

Instructions:iOS SDK
e HTTP/2 SDK

Download link: jot-http2-sdk-demo.

* General protocol

http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/iotx-sdk-java/iotx-sdk-mqtt-java-20170526.zip?spm=a2c4g.11186623.2.20.VMVBFk&file=iotx-sdk-mqtt-java-20170526.zip
https://github.com/CocoaPods/Specs.git
https://github.com/aliyun/aliyun-specs.git
http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/java-http2-sdk-demo/iot-http2-sdk-demos.zip

Instructions: See General protocol.

» Other open-source libraries

Download link: https://github.com/mqtt/mqtt.github.io/wiki/libraries

https://github.com/mqtt/mqtt.github.io/wiki/libraries?spm=a2c4g.11186623.2.22.VMVBFk

2 C-SDK

2.1 Authenticate devices

To secure devices, loT Platform provides certificates for devices, including product certificates

(ProductKey and ProductSecret) and device certificates (DeviceName and DeviceSecret). A

device certificate is a unique identifier used to authenticate a device. Before a device connects

to loT Hub through a protocol, the device reports the product certificate or the device certificate,

depending on the authentication method. The device can connect to loT Platform only when

it passes authentication. 10T Platform supports various authentication methods to meet the

requirements of different environments.

IoT Platform supports the following authentication methods:

* Unique-certificate-per-device authentication: Each device has been installed with its own

unique device certificate.

» Unique-certificate-per-product authentication: All devices under a product have been installed

with the same product certificate.

» Sub-device authentication: This method can be applied to sub-devices that connect to loT

Platform through the gateway.

These methods have their own advantages in terms of accessibility and security. You can choose

one according to the security requirements of the device and the actual production conditions. The

following table shows the comparison among these methods.

Table 2-1: Comparison of authentication methods

Items

Unique-certificat
e-per-device

authentication

Unique-certificat
e-per-product

authentication

Sub-device

authentication

Information written into
the device

ProductKey,
DeviceName, and
DeviceSecret

ProductKey and
ProductSecret

ProductKey

Whether to enable
authentication in loT
Platform

No. Enabled by default

Yes. You must enable
dynamic register.

Yes. You must enable
dynamic register.

DeviceName pre-
registration

Yes. You need to
make sure that the

Yes. You need to
make sure that the

Yes.

Items

Unique-certificat
e-per-device

authentication

Unique-certificat
e-per-product

authentication

Sub-device

authentication

specified DeviceName
is unique under a
product.

specified DeviceName
is unique under a
product.

Certificate installation
requirement

Install a unique device
certificate on every
device. The safety of
every device certificate
must be guaranteed.

Install the same
product certificate
on all devices under
a product. Make
sure that the product

Install the same
product certificate
into all sub-devices
. The security of the
gateway must be

certificate is safely guaranteed.
kept.
Security High Medium Medium

Upper limit for
registrations

Yes. A product can
have a maximum of
500,000 devices.

Yes. A product can
have a maximum of
500,000 devices.

Yes. A maximum of
200 sub-devices can
be registered with one
gateway.

Other external reliance

None

None

Security of the
gateway.

2.1.1 Authenticate devices

To secure devices, loT Platform provides certificates for devices, including product certificates

(ProductKey and ProductSecret) and device certificates (DeviceName and DeviceSecret). A

device certificate is a unique identifier used to authenticate a device. Before a device connects

to loT Hub through a protocol, the device reports the product certificate or the device certificate,

depending on the authentication method. The device can connect to loT Platform only when

it passes authentication. loT Platform supports various authentication methods to meet the

requirements of different environments.

IoT Platform supports the following authentication methods:

» Unique-certificate-per-device authentication: Each device has been installed with its own

unique device certificate.

* Unique-certificate-per-product authentication: All devices under a product have been installed

with the same product certificate.

» Sub-device authentication: This method can be applied to sub-devices that connect to loT

Platform through the gateway.

These methods have their own advantages in terms of accessibility and security. You can choose

one according to the security requirements of the device and the actual production conditions. The

following table shows the comparison among these methods.

Table 2-2: Comparison of authentication methods

Item

Unique-certificat
e-per-device

authentication

Unique-certificat
e-per-product

authentication

Sub-device

authentication

Information written into
the device

ProductKey,
DeviceName, and
DeviceSecret

ProductKey and
ProductSecret

ProductKey

Whether to enable
authentication in loT
Platform

No. Enabled by default

Yes. You must enable
dynamic register.

Yes. You must enable
dynamic register.

DeviceName pre-
registration

Yes. You need to
make sure that the
specified DeviceName
is unique under a
product.

Yes. You need to
make sure that the
specified DeviceName
is unique under a
product.

Yes.

Certificate installation
requirement

Install a unique device
certificate on every
device. The safety of
every device certificate
must be guaranteed.

Install the same
product certificate
on all devices under
a product. Make
sure that the product

Install the same
product certificate
into all sub-devices
. The security of the
gateway must be

certificate is safely guaranteed.
kept.
Security High Medium Medium

Upper limit for
registrations

Yes. A product can
have a maximum of
500,000 devices.

Yes. A product can
have a maximum of
500,000 devices.

Yes. A maximum of
1500 sub-devices can
be registered with one
gateway.

Other external reliance

None

None

Security of the
gateway.

2.1.2 Unique-certificate-per-device authentication
This topic describes unique-certificate-per-device authentication and how to use this

authentication method.
What is unique-certificate-per-device authentication

loT Platform uses unique-certificate-per-device authentication by default. The device needs to

be installed with a unique device certificate in advance. When connecting to loT Platform, the
device must use ProductKey, DeviceName, and DeviceSecret for authentication. When the device
passes the authentication, loT Platform activates the device. The device and loT Platform then

can transmit data.

Note:
Unique-certificate-per-device authentication is a secure authentication method. We recommend

that you use this authentication method.

Workflow of unique-certificate-per-device authentication

Figure 2-1: Unique-certificate-per-device authentication

You can use the following process to authenticate a device with unique-certificate-per-device

authentication:

1. Create a product and a device, as shown in "Create products and devices." The device obtains

authentication information including ProductKey, DeviceName, and DeviceSecret.
2. Install the ProductKey, DeviceName, and DeviceSecret on the device.

3. Power on and connect the device to loT Platform. The device will initiate an authentication

request to loT Platform.

4. loT Platform authenticates the device. If the device passes authentication, loT Platform
establishes a connection to the device, and the device begins to publish or subscribe to topics

for data upload and download.
Procedure

1. Use an Alibaba Cloud account to log on to the /oT Platform console.
2. Create a product and add a device to the product, as shown in #unique 12.

3. From the left-side navigation pane, select Devices. Select the device, and click View to obtain

the ProductKey, DeviceName, and DeviceSecret, as shown in the following figure:

http://iot.console.aliyun.com/

Figure 2-2: ProductKey, DeviceName, and DeviceSecret

4. Download the device SDK, select a connection protocol, and configure the device SDK.

5. Add the ProductKey, DeviceName, and DeviceSecret to the device SDK.

6. Perform the following configurations as needed: OTA settings, sub-device connection, device
TSL model development, and device shadow management.

7. Install the device SDK that already includes the ProductKey, DeviceName, and DeviceSecret

on the device.

2.1.3 Unique-certificate-per-product authentication
This topic describes the unique-certificate-per-product authentication and how to use this

authentication method.
What is unique-certificate-per-product authentication

Unique-certificate-per-product authentication requires that devices under a product are installed
with the same firmware. A product certificate (ProductKey and ProductSecret) is installed on the
firmware. Using this authentication method can simplify the installation process. After the firmware
has been installed, the device dynamically obtains a DeviceSecret from IoT Platform when it is

activated.

Note:

* Only the device C SDK supports unique-certificate-per-product authentication.

* Make sure that the device supports unique-certificate-per-product authentication.

» Unique-certificate-per-product authentication has risks of product certificate leakage because
all devices under a product are installed with the same firmware. To resolve this issue, go to
Product Information page. Disable Dynam ¢ Regi st er to reject authentication requests

from any new devices.

Workflow of unique-certificate-per-product authentication

Figure 2-3: Unique-certificate-per-product authentication

You can use the following process to authenticate a device with unique-certificate-per-product

authentication:

1. Create a product, as shown in "Create products and devices," and obtain the product certificate

2. On the Product Information page, enable Dynam ¢ Regi st er. The system will send an SMS

to verify your access to loT Platform.

Note:
During verification, the system will reject dynamic activation requests from any new devices if
dynamic registration is disabled. Activated devices will not be affected.
3. On the Devices page, add the device to the product. You can use the MAC address and ID
information such as IMEI or SN as DeviceName to pre-register the device with the platform.

The device isin | nact i ve status.

Note:
The system verifies the DeviceName to activate a device. We recommend that you use the
device ID information that can be read directly from the device as the DeviceName.

4. Install the same product certificate on all devices under the product, and set FEATURE SU
PPORT_PRODUCT _SECRET = vy in the device C SDK to enable unique-certificate-per-product
authentication.

5. Power on the device and connect the device to the network. The device sends an
authentication request to loT Platform to perform unique-certificate-per-product authentication.
If the device passes authentication, loT Platform dynamically assigns the corresponding
DeviceSecret to the device. The device obtains the ProductKey, DeviceName, and

DeviceSecret required for connecting to loT Platform.

Note:
In this method, loT Platform dynamically assigns a DeviceSecret to the device only for the first
activation after the device has been added to loT Platform. To reactivate a device, delete the

device from loT Platform and add it again.

6. The device uses the ProductKey, DeviceName, and DeviceSecret to connect to lIoT Platform,

and publish or subscribe to topics for data upload and download.
Procedure

1. Use an Alibaba account to log on to /oT Platform console.

2. Create a product, as shown in Create products.

http://iot.console.aliyun.com/

3. Obtain the product certificate that is generated by IoT Platform, including ProductKey and

ProductSecret.

a. Select the product, and click View to go to the Product Information page.

b. Obtain the product certificate, as shown in the following figure:

Figure 2-4: Product Information

c. Enable Dynam ¢ Regi strati on, and enter the SMS verification code to verify your
access to loT Platform.

4. On the Devices page, create a device. Use device information such as the MAC address,
IMEI, or SN as the DeviceName.

5. Select a connection protocol, download the device C SDK, and configure the C SDK.

6. Add the obtained product certificate (ProductKey and ProductSecret) to the device SDK.

7. In the device SDK, set FEATURE_SUPPORT_PRODUCT_SECRET = y to enable unique-
certificate-per-product authentication.

8. For more information, see | OT_CMP_Init in/src/cnp/iotx_cnp_api.c. A code example

is as follows:

#i f def SUPPORT_PRODUCT _SECRET
/* Unique certificate per product */
if (1 OrX_CvP_DEVI CE_SECRET_PRODUCT == pparam >secret _type
& & 0 >= HAL_GCet Devi ceSecret (devi ce_secret)) {
HAL Get Product Secr et (product _secret);
if (strlen(product_secret) == 0) {
CVP_ERR(cnp_l og_error_secret _1);
return FAIL_RETURN;

}
/[* auth */
if (FAIL_RETURN == iotx_cnp_aut h(product _key, devi ce_nam
e, device_ id)) {
CVMP_ERR(cnp_| og_error_auth);
return FAI L _RETURN;
}

}
#endi f /**< SUPPORT_PRODUCT_SECRET*/

9. Perform the following configurations as needed: OTA settings, sub-device connection, device

TSL model development, and device shadow management.

10.Install the device SDK that already includes the product certificate on the device.

2.2 Protocols for connecting devices

2.2.1 Establish MQTT over TCP connections

This topic describes the TCP-based MQTT connection and provides two modes of device

authentication.

+ MQTT clients directly connect to the specified domain names without providing additional
device credential information. We recommend that you use this authentication mode for

devices with limited resources.

» After HTTPS authentication, connect to the special value-added services of MQTT, such as

distributing communication traffic from devices among clusters.

Note:
When you configure the MQTT CONNECT packet:

* The keepalive value in the Connect command must be larger than 30 seconds, otherwise, the
connection will be denied. We recommend that you set the value in the range of 60 to 300

seconds.

* If multiple devices are connected using the same set of ProductKey, DeviceName, and

DeviceSecret, some devices will be brought offline.

+ The default setting of the MQTT protocol is that open-source SDKs are automatically

connected. You can view device behaviors using Log Service.

For more information, see the example of \ sanpl e\ myt t \ ngt t - exanpl e. ¢ in device SDK

code package that you downloaded.
Direct connection to the MQTT client domain
+ Without an existing demo
If you use the open-source MQTT package for access, see the following procedure:

1. We recommend that you use TLS to encrypt, because it provides higher security. If you are

using TLS to encrypt, you need to download a root certificate.

2. If you want to access the server using an MQTT client, see Open-source MQTT client

references. For more information about the MQTT protocol, see http.//mqtt.org.

Note:

Alibaba Cloud does not provide technical support if you are using third-party code.

http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/cert_pub/root.crt
https://github.com/mqtt/mqtt.github.io/wiki/libraries
https://github.com/mqtt/mqtt.github.io/wiki/libraries
http://mqtt.org/

3. Instructions for MQTT connection

Connection domain: ${ Your Pr oduct Key}.i ot-as-mqtt. ${Your Regi onl d}.

al i yuncs. com 1883

Replace ${YourProductKey} with your product ID. Replace ${YourRegionld} with your
device region ID. For the expressions of region IDs, see Regions and zones.

The MQTT Connect packets include the following parameters:

myttClientld: clientld+"|securenode=3, si gnnet hod=hmacshal,
ti mest anp=132323232| "
mgt t User nane: devi ceName+" &' +pr oduct Key
mgt t Passwor d: si gn_hmac(devi ceSecret, cont ent)
Sort the following parameters in alphabetical order and then encrypt the parameters

based on the specified sign method.

The value of content is the parameters sent to the server (productKey, deviceName,
timestamp, and clientld). Sort these parameters in alphabetical order and then splice the

parameters and parameter values.

+ clientld: Indicates the client ID. We recommend that you use the MAC address or the
serial number of the device as the client ID. The length of the client ID must be within

64 characters.
» timestamp: The current time in milliseconds.This parameter is optional.
» mqttClientld: The expanded parameters are in | | .
+ signmethod: Specifies a signature algorithm.

» securemode: The current security mode. Values include: 2 (TLS direct connection)

and 3 (TCP direct connection).

Example: Ifclientld = 12345, devi ceNanme = device, productKey = pk,

t

i mestanp = 789, signmethod=hmacshal, devi ceSecret=secret, submitthe

MQTT parameters over TCP:

mgt t cl i ent | d=12345| secur enpnde=3, si gnnet hod=hnmacshal, ti mest anp=789|
user nane=devi ce&pk

https://www.alibabacloud.com/help/doc-detail/40654.htm

passwor d=hrmacshal("secret", "clientl dl12345devi ceNanmedevi cep
r oduct Keypkti nmest anp789").toHexString(); // The |ast paranmeter is
a binary-to-hexadecinmal string. Its case is insensitive.

The result is:

FAFD82A3D602B37FBOFA8B7892F24A477F851A14

Note:
The three parameters are: mqttClientld, mqttUsername, and mqttPassword of the MQTT
Connect logon packets.

* With an existing demo

1. An MQTT connection over TCP is supported only when you directly connect to a
domain. Set the values of FEATURE_MQTT_DIRECT, FEATURE_MQTT_DIRECT, and
FEATURE_MQTT_DIRECT_NOTLS in make.settings to y.

FEATURE_MQTT_DI RECT

FEATURE_MJTT_DI RECT = y
FEATURE_MQTT_DI RECT_NOTLS = y

2. In the SDK, call IOT_MQTT_Construct to connect to the cloud.

pclient = | OI_MJIT_Construct (&mtt_parans);
if (NULL == pclient) {
EXAMPLE_TRACE(" MJTT construct failed");

rc = -1;
goto do_exit;
}

The function declaration is as follows:

/**
* @rief Construct the MJIT client

* This function initialize the data structures, establish MJIT
connecti on.

*

* @aram|[in] plnitParanms: specify the MJIT client paraneter.
*

* @etval NULL : Construct failed.

* @etval NOT_NULL : The handle of MJIT client.

* @ee None.

*/
void *1 OT_MJIT _Construct(iotx_mytt_paramt *plnitParans);

Connect after the HTTPS authentication

1. Authenticate devices

Use HTTPS for device authentication. The authentication URL is htt ps: //i ot -auth. ${

Your Regi onl d}. al i yuncs. comf aut h/ devi cenane. Replace ${YourRegionld} with your

device region ID. For the expressions of region IDs, see Regions and zones.

* The authentication request parameters are as follows:

Parameter Required Description

productKey |[Yes ProductKey. You can view the ProductKey in the loT
Platform console.

deviceName |Yes DeviceName. You can view the DeviceName in the loT
Platform console.

sign Yes Signature. The authentication format is HMAC-MD5 for
deviceSecret and content. In the content, all parameters
submitted to the server (except for version, sign, resources,
and signmethod) are sorted alphabetically. Then, the
parameter values are spliced with the parameter names
without using any splice character.

signmethod | No The algorithm type, such as HMAC-MD5 or HMAC-SHA1.
The default type is HMAC-MD5.

clientld Yes The client ID. Its length must be within 64 characters.

timestamp No The timestamp. Serial port validation is not required.

resources No The resource description that you want to obtain, such as
MQTT. Multiple resource names are separated by commas.

« Response parameters:

Parameter Required Description

iotld Yes The connection tag that is issued by the server and used
to specify a value for username in the MQTT Connect
packets.

iotToken Yes The token is valid for seven days. It is used to specify a
value for password in the MQTT Connect packets.

https://www.alibabacloud.com/help/doc-detail/40654.htm

Parameter Required Description

resources No The resource information. The expanded information
includes the MQTT server address and CA certificate

information.

* Request example using x-www-form-urlencoded:

PCST / aut h/ devi cename HTTP/ 1.1

Host: iot-auth.cn-shanghai. aliyuncs.com

Cont ent - Type: application/ x-ww-form url encoded

Content-Length: 123

product Key=123&si gn=123&t i mest anp=123&ver si on=def aul t &l i ent | d=123
& esouces=nqgt t &devi ceNane=t est

sign = hmac_nd5(devi ceSecret, clientldl23devi ceNanet est produ

ct Key123ti nest anpl23)

* Response example:

HTTP/ 1.1 200 OK

Server: Tengi ne

Date: Wed, 29 Mar 2017 13:08:36 GMI

Cont ent - Type: application/json;charset=utf-8
Connecti on: cl ose

{
"code" : 200,
"data" : {
"iotld" : "42ZeOnmk3556498alAl TP",
"i ot Token" : "0d7fdeb9dclf 4344a2cc0d45edcbObchb",
"resources" : {
"mgtt" o {
"host" : "xxx.iot-as-nmgtt.cn-shanghai.aliyuncs.com
"port" : 1883
}
}
ssage" : "success
}

2. Connect to MQTT

a. Download the root.crt file of loT Platform. We recommend that you use TLS protocol version
1.2.

b. Connect the device to the Alibaba Cloud MQTT server address and authenticate the
returned MQTT address and port.

c. TLS is used to establish a connection. The client authenticates the server using
CA certificates. The server authenticates the client using the "username=iotid,
password=iotToken, clientid=custom device identifier (use either the MAC address or the

device serial number to specify clientld)" in the MQTT connect packets.

http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/30539/cn_zh/1495715052139/root.crt

If the iotld or iotToken is invalid, then MQTT Connect fails. The connect ack flag you receive

is 3.
The error code descriptions are as follows:

* 401: request auth error. This error code is usually returned when the signature is invalid.
* 460: param error. Parameter error.

* 500: unknown error. Unknown error.

» 5001: meta device not found. The specified device does not exist.

* 6200: auth type mismatch. An unauthorized authentication type error.

If you use an existing demo, set the value of FEATURE_MQTT_DIRECT in make.settings to "n."

Then call the IOT_MQTT_Construct function to reconnect after the authentication.

FEATURE_MQTT_DI RECT = n

The HTTPS authentication process is documented in the iotx_guider_authenticate of \src\system\

iotkit-system\src\guider.c.
SDK APIs

* |OT_MAQTT_Construct: Call IOT_MQTT_Construct to establish an MQTT connection to the

cloud.

The mqtt-example program automatically quits every time the program sends a message. The

following are methods that you can use to keep the device online:

* When the mqgtt-example program is executed, use the . / ngt t - exanpl e | oop command
to make the device always remain online.

* Modify the demo code. The demo code of the mqtt-example program contains
IOT_MQTT_Destroy. The device goes offline when IOT_MQTT_Destroy is called. To keep
the device online, remove IOT_MQTT_Unregister and IOT_MQTT_Destroy. Use while to

maintain a persistent connection.
The code is as follows:

whi | e(1)

{
| OT_MJIT Yield(pclient, 200);
HAL Sl eepMs(100);

}

The response parameter declaration is as follows:

/**
* @rief Construct the MJIT client

* This function initialize the data structures, establish MJIT

connecti on.
*

* @aram|[in] plnitParanms: specify the MJIT client paraneter.
*

* @etval NULL : Construct failed.

* @etval NOT_NULL : The handle of MJIT client.

* @ee None.

*/

void *1 OT_MJIT Construct(iotx _mgtt _paramt *plnitParans);

+ |OT_MQTT_Subscribe: Call IOT_MQTT_Subscribe to subscribe to a topic in the cloud.

To ensure that callback topic_handle_func can be successfully delivered, keep memory for

topic_filter.
The code is as follows:

/* Subscribe the specific topic */

rc = | OT_MJIT _Subscribe(pclient, TOPI C DATA, | OTrX MJIT QOS1,
_denmp_nessage_arrive, NULL);

if (rc <0) {

| OT_MJIT_Destroy(&pclient);

EXAMPLE_TRACE(" 1 OT_MJIT_Subscribe() failed, rc = %", rc);

rc = -1;
goto do_exit;
}

The response parameter declaration is as follows:

/**

* @rief Subscribe MJIT topic.

* @aram [in] handle: specify the MJIT client.

* @aram|[in] topic_filter: specify the topic filter.

* @aram|[in] qos: specify the MJIT Requested QoS.

* @aram[in] topic_handl e func: specify the topic handl e call back-
functi on.

* @aram|[in] pcontext: specify context. Wen call 'topic_hand

le func', it will be passed back.

*

* @etval -1 : Subscribe fail ed.

* @etval >=0 : Subscribe successful.

The value is a unique ID of this request.

The IDwll be passed back when cal |l back '"iotx _mgtt paramt:
handl e_event' .

* @ee None.

*/

int |OT_MJIT_Subscribe(void *handl e,

const char *topic_filter,

iotx_mgtt_qgos_t qos,

iotx mgtt _event handl e func_fpt topic_handl e func,

voi d *pcontext);

* |OT_MQTT_Publish: Call IOT_MQTT_Publish to publish messages to the cloud.

The code is as follows:

[* Initialize topic information */

menset (& opi c_nsg, 0x0, sizeof(iotx mgtt topic_info t));
strcpy(nmsg_pub, "nessage: hello! start!") ;

topi c_msg. qos = | OTX_MJIT_QOS1;

topic_nmeg.retain = O;

topi c_msg. dup = O;

t opi c_nsg. payl oad = (void *)nsg_pub;

topi c_nsg. payl oad_len = strl en(nsg_pub);

rc = | OT_MJIT_Publish(pclient, TOPI C_DATA, &topic_nsg);
EXAMPLE_TRACE("rc = | OT_MJIT_Publish() = %", rc);

The response parameter declaration is as follows:

*
*

@rief Publish nmessage to specific topic.

@aram [in] handle: specify the MJIT client.
@aram [in] topic_name: specify the topic nane.
@aram [in] topic_nsg: specify the topic nessage.

@etval -1 : Publish fail ed.

@etval 0 : Publish successful, where QS is O.

* @etval >0 : Publish successful, where Q@S is >= 0.

The value is a unique ID of this request.

The IDwll be passed back when cal |l back '"iotx _mgtt paramt:
handl e_event' .

* @ee None.

*/

int |OT_MJIT _Publish(void *handl e, const char *topic_naneg,
iotx mott _topic_info_pt topic _nseQg);

¥ 0% Sk ¥ X ¥ X T~

+ [OT_MQTT Unsubscribe: Call IOT_MQTT_Unsubscribe to cancel the subscription in the cloud.

The code is as follows:
| OT_MJTIT _Unsubscri be(pclient, TOPI C DATA);

The response parameter declaration is as follows:

* %

@rief Unsubscribe MJTT topic.

@aram [in] handle: specify the MJIT client.
@aram[in] topic filter: specify the topic filter.

* %k Xk Xk T~

@etval -1 : Unsubscribe fail ed.

@etval >=0 : Unsubscri be successful.

The value is a unique ID of this request.

The ID will be passed back when call back 'iotx_nmgtt_paramt:
handl e_event'.

* @ee None.

*/

*

int |OT_MJIT _Unsubscri be(void *handl e, const char *topic filter);

IOT_MQTT_Yield: Call IOT_MQTT_Yield to receive data.

Call this operation wherever data needs to be received. Start a separate thread to perform this

operation if the system resources are sufficient.
The code is as follows:

/* handl e the MJIT packet received from T TCP or SSL connection */
| OT_MJIT Yield(pclient, 200);

The response parameter declaration is as follows:

/**

* @rief Handl e MJIT packet fromrenote server and process tineout
request

* which include the MJIT subscribe, unsubscribe, publish(Q0S >= 1),
reconnect, etc..

*
* @aram[in] handle: specify the MJIT client.
* @aram|[in] timeout_mns: specify the tineout in mllisecond in this

| oop.
*

* @eturn status.

* @ee None.

*/

int 1OT_MJIT Yield(void *handle, int tineout nmns);

IOT_MQTT_Destroy: Call IOT_MQTT_Destroy to terminate an MQTT connection and release

the memory.

The code is as follows:
| OT_MQTT Destroy(&pclient);

The response parameter declaration is as follows:

/**
* @rief Deconstruct the MJIT client

* This function disconnect MJIT connection and rel ease the rel ated

resource.
*

* @aram[in] phandl e: pointer of handle, specify the MJIT client.
*

* @etval 0 : Deconstruct success.

* @etval -1 : Deconstruct fail ed.

* @ee None.

*/

int |OT_MJIT _Destroy(void **phandl e);

IOT_MQTT_CheckStateNormal: Call IOT_MQTT_CheckStateNormal to view the current

connection status.

You can use this operation to query the status of an MQTT connection. However, this operation
cannot detect a device disconnection in real time. This operation may detect a disconnection
only when loT Platform sends data or performs keepalive checks.

The response parameter declaration is as follows:

/**

@rief check whether MJIT connection is established or not.

@aram [in] handl e: specify the MJTT client.

@etval false : MJIT in abnormal state.
@ee None.
/

*

*

*

*

* @etval true : MJIT in normal state.

*

*

*

int | OT_MJIT _CheckSt at eNor mal (voi d *handl e) ;

MQTT keep alive

The device sends packets at least once in the time interval specified in keepalive interval_ms.

The packets sent include PING requests.

If the server does not receive any packet in the time interval specified in keepalive_interval_ms,

loT Platform will disconnect the device and the device needs to reconnect to the platform.

The value of keepalive_interval_ms can be configured in IOT_MQTT_Construct. lIoT Platform uses

this value as the heartbeat. The value range of keepalive_interval_ms is 60000-300000.

2.2.2 Establish MQTT over WebSocket connections

Context

loT Platform supports MQTT over WebSocket. WebSocket is used to establish a connection. The

MQTT protocol is used to communicate over the WebSocket connection.
Using WebSocket has the following advantages:

» Allows browser-based applications to establish persistent connections to the server.
» Uses port 433, which allows messages to pass through most firewalls.
Procedure

1. Certificate preparation

The WebSocket protocol includes WebSocket and WebSocket Secure. Websocket and

WebSocket Secure are used for unencrypted and encrypted connections, respectively.

Transport Layser Security (TLS) is used in WebSocket Secure connections. Like a TLS

connection, a WebSocket Secure connection requires a root certificate.

. Client selection

Java clients can directly use the Official client SDK by replacing the connect URL in the
SDK with a URL that is used by WebSocket. For clients that use other language versions or
connections without using the official SDK, see Open-source MQTT clients. Make sure that the

client supports WebSocket.

. Connections

An MQTT over WebSocket connection has a different protocol and port number in the connect
URL from an MQTT over TCP connection. MQTT over WebSocket connections have the same
parameters as MQTT over TCP connections. The securemode parameter is set to 2 and 3 for

WebSocket Secure connections and WebSocket connections, respectively.

» Connect to the domain name of the China (Shanghai) region: ${productKey}.iot-as-mqtt.cn-

shanghai.aliyuncs.com:443

Replace ${productKey} with your product key.

*+ An MQTT Connect packet contains the following parameters:

mgttClientld: clientld+"|securenode=3, si gnnet hod=hmacshal,

ti mest anp=132323232| "

mgt t User nanme: devi ceName+" &' +pr oduct Key

mgt t Password: si gn_hnmac(devi ceSecret, content)sign. Sort the
content paraneters in al phabetical order and sign them accordi ng
to the signing nethod.

cont ent =Paraneters sent to the server (productKey, devi ceNane,
timestanp,clientld). Sort these parameters in al phabetical order
and splice the paraneters and paraneter val ues.

Where,

clientld: Specifies the client ID up to 64 characters. We recommend that you use a MAC

address or SN.
+ timestamp: (Optional) Specifies the current time in milliseconds.
+ mqttClientld: Parameters within | | are extended parameters.
+ signmethod: Specifies a signature algorithm.

» securemode: Specifies the secure mode. Values include 2 (WebSocket Secure) and 3 (

WebSocket).

http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/cert_pub/root.crt?spm=5176.doc30539.2.4.aalCo6&file=root.crt
http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/iotx-sdk-java/iotx-sdk-mqtt-java-20170526.zip?spm=5176.doc42648.2.18.7iyFfe&file=iotx-sdk-mqtt-java-20170526.zip
https://github.com/mqtt/mqtt.github.io/wiki/libraries?spm=5176.doc30539.2.5.aalCo6

The following are examples of MQTT Connect packets with predefined parameter values:

clientld=12345, devi ceNane=devi ce, product Key=pk, ti nmestanp=789,
si gnmet hod=hmacshal, devi ceSecret =secr et

+ For a WebSocket connection:
= Connection domain

ws: //pk.iot-as-mgtt.cn-shanghai . al i yuncs. com 443

= Connection parameters

mgttclientl d=12345| secur ennde=3, si gnnet hod=hnmacshal, ti mest anp=
789|

mgt t User name=devi ce&pk

nmgt t Passwr od=hmacshal("secret", "clientl d12345devi ceNanmedevi cep
roduct Keypkt i mest anp789") .t oHexStri ng() ;

* For a WebSocket Secure connection:
= Connection domain

wss://pk.iot-as-ngtt.cn-shanghai. aliyuncs. com 443

== Connection parameters

mgttclientl d=12345| secur ennde=2, si gnnet hod=hrmacshal, ti mest anp=
789|

mgt t User name=devi ce&pk

mgt t Passw od=hmacshal("secret", "client| d12345devi ceNanedevi cep
roduct Keypkt i nest anp789") .t oHexStri ng() ;

2.2.3 CoAP-based connections

Overview

Constrained Application Protocol (CoAP) is applicable to low-power devices that have limited
resources, such as Narrowband loT (NB-IoT) devices. The process for connecting NB-loT devices

to loT Platform based on CoAP is described in Figure 2-5: CoAP-based connections. i,

Figure 2-5: CoAP-based connections

The CoAP-based connection follows this process:

. The NB-loT module integrates an SDK for accessing Alibaba Cloud loT Platform. The

manufacturer requests unique certificates in the console, including ProductKey, DeviceName,
and DeviceSecret, and installs them to devices.

The NB-loT device accesses loT Platform over the Internet service provider's (ISP's) cellular
network. You need to contact the local ISP to make sure that the NB-loT network has covered
the region where the device is located.

After the device is connected to loT Platform, the ISP's machine-to-machine (M2M) platform
manages service usage and billing for traffic generated by the NB-IoT device.

You can report real-time data collected by the device to loT Platform based on Constrained
Application Protocol/User Datagram Protocol (CoAP/UDP). IoT Platform secures connections
with more than 100 million NB-loT devices and manages related data. The system connects
with big data services, ApsaraDB, and report systems of Alibaba Cloud to achieve intelligent
management.

loT Platform provides data sharing functions and message pushing services to forward data to

related service instances and quickly integrate device assets and actual applications.

Use the SDK to connect an NB-loT device to loT Platform

Follow these instructions to connect the device to loT Platform using the C SDK. For more

information, see Download device SDKs.

CoAP-based connection

The process of connecting devices using the CoAP protocol is described as follows:

1.

Use the CoAP endpoint address: endpoi nt = ${Product Key}. i ot - as- coap. cn-
shanghai . al i yuncs. com 5684. Replace ProductKey with the product key that you have
requested.

Download the rooft certificate using the Datagram Transport Layer Security (DTLS)-based
secure session.

Trigger device authentication to obtain the token for the device before the device sends data.
The device includes this token in reported data. If the token has expired, you need to request a

new token. The system caches the token locally for 48 hours.

CoAP-based connection

1.

Authenticate the device. You can use this function to request the token before the device sends

data. You only need to request a token once.

https://www.alibabacloud.com/help/doc-detail/42648.htm
http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/cert_pub/root.crt?spm=5176.doc30539.2.1.1MRvV5&file=root.crt

PCST /auth

Host: ${product Key}.i ot-as-coap. cn-shanghai . al i yuncs. com

Port: 5684

Accept: application/json or application/cbor

Content-Format: application/json or application/cbor

payl oad: {"productKey":"ZGLEVvTEa7NN', "devi ceNane": " N waSPXsCp
TQUh8FxBGH', "cl i ent1d": "nylight1000002", "si gn": "bccb3d2618af e74b3eab
12b94042f 87b" }

Parameters are described as follows:

* Method: POST, Ony the POST method is supported.

« URL: /auth, URL address.

» Accept: the encoding format for receiving data. Currently, application/json and application/
cbor are supported.

+ Content-Format: encoding format of upstream data. Currently, application/json and

application/cbor are supported.

The payload parameters and JSON data formats are described as follows:

Table 2-3: Payload parameters

Field Name |Required Description

productKey Yes productKey, requested from the loT Platform console.
deviceName | Required deviceName, requested from the IoT Platform console.
sign Required Signature, format: hmacmd5(deviceSecret,content). The

content includes all parameter values that are submitted

to the instance, except for version, sign, resources, and
signmethod. These parameter values are sorted in alphabetic
al order and without concatenated symbols.

signmethod No Algorithm type, hmacmd5 or hmacsha1.
clientld Required Client identifier, a maximum of 64 characters.
timestamp No Timestamp, not used in checks.

The response is as follows:

response: {"token":"eyJOb2tl bil 6ljBkNGUN kyZTN ZDQx OGUSMIA4
Ny g4ZDdhNW 3M UxI i wi ZXhwl j oxNDk4OTg1MTk1f Q DeQ.SWVX8i Bj dazj zNHG
52cRECWL49Uo QX ql1l XrJvl "}

The return codes are described as follows:

Table 2-4: Return codes

Error

Code Description Payload Remarks
2.05 Content Authentication | The request is correct.
passed: token
object
4.00 Bad Request Returned error | The payload in the request is invalid.
message
4.04 Not Found 404 not found | The requested path does not exist.
4.05 Method Not Supported The request method is not allowed.
Allowed method
4.06 Not Acceptable | The required The Accept parameter is not the specified
Accept type.
parameter
4.15 Unsupporte Supported The requested content is not the specified
d Content- content type.
Format
5.00 Internal Server | Error message | The authentication request is timed out

or an error occurs on the authentication
server.

The SDK provides IOT_CoAP_Init and IOT_CoAP_DeviceNameAuth for building CoAP-based

authentication on loT Platform

Example code:

i ot x_coap_context t *p ctx =

NULL;

p_ctx = | OT_CoAP_l nit(&config);

if (NULL !

= p_ctx)

| OT_CoAP_Devi ceNanmeAut h(p_ct x);

do {

count ++;

i f (count

count

11) {
= 1;

}

| OT_CoAP_Yi el d(p_ctx);
} while (m.coap_client_running);
| OT_CoAP _Deinit(&_ctx);

} else {

HAL Printf("l1oTx CoAP init failed\r\n");

}

The function statement is as follows:

/**

* @rief Initialize the CoAP client.
* This function is used to initialize the data structure and network

* and create the DTLS session.

*

* @aram|[in] p_config: Specify the CoAP client paraneter.
*

* @etval NULL: The initialization fail ed.

* @etval NOT_NULL: The contex of CoAP client.

* ©@ee None.

*/

i ot x_coap_context t *1 OT_CoAP I nit(iotx coap_config t *p _config);

/**

@rief Device nane handl e for authentication by the renpte server.

@etval | OIX_SUCCESS: The authentication is passed.

@etval | OTX ERR SEND MSG FAI LED: Sendi ng the aut hentication
nmessage fail ed.
* @etval |1 OTX ERR AUTH FAI LED: The aut hentication failed or tined
out .
* @ee iotx _ret code t.
*/
int | OT_CoAP_Devi ceNanmeAut h(i ot x_coap_context t *p_context);

*
*
* @aram|[in] p_context: Contex pointer to specify the CoAP client.
*
*
*

2. Set upstream data (${endpoint}/topic/${topic}).

This is used to send data to a specified topic. To set ${topic}, chooseProducts >

Notificationsin the 10T Platform console.

To send data to topic/ pr oduct key/ ${ devi ceNane}/ pub, use URL address ${
pr oduct Key}. i ot - as- coap. cn- shanghai . al i yuncs. com 5684/t opi c/ pr oduct key
/ devi ce/ pub to report data if the current device name is device. You can only use a topic

that has the publishing permission to report data.

Example code:

POST /topi c/ ${t opi c}

Host: ${product Key}.i ot-as-coap. cn-shanghai . al i yuncs. com
Port: 5683

Accept: application/json or application/cbor
Content - Format: application/json or application/cbor

payl oad: ${your_dat a}

Cust omOpt i ons: nunber: 61(t oken)

Parameter description:

* Method: POST. The POST method is supported.
« URL: /topic/${topic}. Replace ${topic} with the topic of the current device.

» Accept: Received data encoding methods. Currently, application/json and application/cbor

are supported.
» Content-Format: Upstream data encoding format. The service does not check this format.

+ CustomOptions: Indicates the token that the device has obtained after authentication.

Option Number: 61.
. The SDK provides IOT_CoAP_SendMessage for sending data, and
IOT_CoAP_GetMessagePayload and IOT_CoAP_GetMessageCode for receiving data.

Example code:

/* send data */
static void iotx_post_data_to_server(void *param
{
char path[I OTX_URI _MAX _LEN + 1] = {0};
i ot x_nessage_t nessage;
i ot x_devi cei nfo_t devi nfo;
message. p_payl oad = (unsigned char *)"{\"nanme\":\"hello world\"}";
nmessage. payload len = strlen("{\"nane\":\"hello world\"}");
nmessage. resp_cal | back = i ot x_response_handl er;
message. nsg_type = | OTX_MESSACE_CON;
message. content _type = | OTX _CONTENT_TYPE JSON
i ot x_coap_context _t *p_ctx = (iotx_coap_context_t *)param
i ot x_set devi nf o(&devi nfo);
snprintf(path, 10TX_URI _MAX LEN, "/topic/ %/ %/ update/", (char *)
devi nf 0. product _key,
(char *)devi nfo. devi ce_nane);
| OT_CoAP_SendMessage(p_ctx, path, &message);

}

/* receive data */
static void iotx response_handl er(void *arg, void *p_response)

int len = 0;

unsi gned char *p_payl oad = NULL;

i ot x_coap_resp_code t resp_code;

| OT_CoAP_Cet MessageCode(p_response, & esp_code);

| OT_CoAP_GCet MessagePayl oad(p_response, &p payl oad, & en);

Hal _printf ("[appl]: Message response code: Ox %x \ r \ n ",
resp_code);

Hal _printf ("[appl]: Len: %d, payload: %s, \ r \ n", Len, Fargo
payl oad);

/**

* @Brief send a nmessage using the specific path to the server.
* The client must pass the authentication by the server before
sendi ng nessages.

*

* @aram[in] p_context: Contex pointer to specify the CoAP client.

@aram [in] p_path: Specify the path nane.
@aram [in] p_nessage: The nessage to be sent.

@etval | OrX SUCCESS: The nmessage has been sent.

@etval 10TX ERR MSG TOO LOOG. The nessage is too | ong.
@etval | OTX_ERR NOT_AUTHED: The client has not passed the
aut henti cation by the server.

* @ee iotx _ret code t.

*/

int | OT_CoAP_SendMessage(i ot x_coap_context t *p _context, char *
p_path, iotx_nessage_t *p_nessage);

*
*
*
*
*
*

/**

* @rief Retrieves the length and payl oad pointer of the specified
nessage.
*

* @aram|[in] p_nmessage: The pointer to the nessage to get the
payl oad. This should not be NULL.

* @aram[out] pp_payl oad: The pointer to the payl oad.

* @aram[out] p_len: The size of the payl oad.

* @etval | OTX SUCCESS: The payl oad has been obt ai ned.

* @etval | OTX ERR | NVALI D PARAM The payl oad cannot be obtai ned due
to invalid paraneters.

* @ee iotx _ret_code t.

**/

int | OT_CoAP_GCet MessagePayl oad(voi d *p_nessage, unsigned char **
pp_payload, int *p_len);

/**

* @rief Get the response code froma CoAP nessage.

*

* @aram|[in] p_nmessage: The pointer to the nessage to add the
address information to.

* This should not be null.

* @aram[out] p_resp _code: The response code.

*

* @etval |1 0OTX SUCCESS: The response code to the nessage has been
obt ai ned.
* @etval | OTX_ERR | NVALI D_PARAM The pointer to the nmessage i s NULL

* @ee iotx ret _code t.
**/

int | OT_CoAP_Get MessageCode(voi d *p_nessage, iotx coap resp code t *
p_resp_code);

Restrictions

* The topics follow the Message Queuing Telemetry Transport (MQTT) topic standard. The coap
:// host : port/topic/${topic} operation in CoAP can be used for all ${topic} topics and

MQTT-based topics. You cannot specify parameters in the format of * ? query_Stri ng=xxx

» The client locally caches the requested token that has been transmitted over DTLS and

included in the response.

» The transmitted data size depends on the maximum transmission unit (MTU).The MTU less

than 1KB is recommended.

* Only China (Shanghai) region supports CoAP-based connections.

Descriptions of other functions in the C SDK

+ Use IOT_CoAP_Yield to receive data.

Call this function to receive data. You can run this function in a single thread if the system

allows.

/**

* @rief Handl e CoAP response packet fromrenote server,
* and process tinmeout requests etc..

*

* @aram[in] p_context: Contex pointer to specify the CoAP client.
*

* @eturn status.

* @ee iotx _ret code t.

*

i

nt |1 OT_CoAP_Yiel d(iotx coap _context t *p_context);

* Use IOT_CoAP_Deinit to free up the memory.

/**

* @rief Deinitialize the CoAP client.

* This function is used to rel ease the CoAP DILS sessi on

* and rel ease the rel ated resource. *

* @aram|[in] p_context: Contex pointer to specify the CoAP client.
*

*

*

*/

@eturn None.
@ee None.

void | OT_CoAP Deinit(iotx coap _context t **p context);

For more information about how to use the C SDK, see \ sanpl e\ coap\ coap- exanpl e. c.

2.2.4 Establish communication over the HTTP protocol

Descriptions:

The description of communication over the HTTP protocol is as follows:

» The HTTP server endpoint = https://iot-as-http.cn-shanghai.aliyuncs.com.

* Only the HTTPS protocol is supported.

» Before transferring data, the device initializes authentication to obtain an access token.

» Each time a device publishes data to 10T Platform, the access token is required. If the token is
invalid, the device must go through the authentication process again in order to obtain a new

access token. Tokens can be cached locally for 48 hours.
Device authentication (${endpoint}/auth)

You call this operation to obtain an access token before transmitting data. You only need to

perform this operation once unless the token becomes invalid.

POST /auth HTTP/ 1.1

Host: iot-as-http.cn-shanghai.aliyuncs.com

Content - Type: application/json

body: {"version":"default","clientld":"nylight1000002", "si gnnmet hod
":"hmacshal", "sign":"4870141D4067227128CBB4377906C3731CAC221C", "
product Key": " ZGLEVTEa7NN', "devi ceName": " Nl waSPXs Cp TQUh8FxBGH" , "

ti mestanp":"1501668289957"}

Parameters:

* Method: POST. The POST method is supported.
+ URL: /auth. This is the URL address. This address only supports the HTTPS protocol.

» Content-Type: Currently only application/json is supported.

The JSON data format has the following properties:

Table 2-5: Request parameters

Field name Required Description

ProductKey Required You can retrieve it in the loT
Platform console.

DeviceName Required You can retrieve it in the loT
Platform console.

Clientld Required The Client ID can be up to 64
characters. We recommend
that you use either the device
MAC address or serial number
as the Client ID.

TimeStamp Optional The timestamp, which is used
to verify that the request is
valid within 15 minutes.

Sign Required The signature, the format
is hmacmd>5 (deviceSecret,
content), where the content

Field name Required Description

is all parameters (except
version, sign, and signmethod
) in alphabetical order, and
the parameters are in listed
together in sequence without
splicing symbols.

SignMethod Optional The algorithm type, set

the value to hmacmd>5 or
hmacsha1. The default value is
hmacmd>5.

Version Optional If you do not set the version,
the value is set to default.

The output is as follows:

Body:
"code": 0, // the status code
"message”: "success", // the nessage
"Info ":{

"token": "eyJOeXBl Ijoi SIdUiw YWnljoi aGLhY3NoYTEi f Q eyJl eHBpcm
U g E1MDI 1MzEIMDCONzcs| nRva2Vul j oi ODAOZnFj YTBi ZTE3NGUXN | i Zj YOCODVI NVWNi
NDg3MTki f Q O Mw29F0CY2YR_600yi OLXz0c8"
}

}

Status codes

Table 2-6: Descriptions

Code Message Description
10000 common error Unknown errors.
10001 param error An exception occurred while

requesting the parameter.

20000 auth check error An error occurred while
authorizing the device.

20004 update session error An error occurred while
updating the session.

40000 request too many The throttling policy limits the
number of requests.

SDKs use the IOT_HTTP_lInit function and the IOT_HTTP_DeviceNameAuth function to

authenticate devices.

handle = I OT_HTTP I nit(&http_param;
if (NULL ! = handle) {
| OT_HTTP_Devi ceNaneAut h(handl e) ;
HAL Printf("loTx HTTP Message Sent\r\n");
} else {
HAL Printf("loTx HTTP init failed\r\n");
return O;

}

Function declaration:

/**

* @lnitializes the HITP cli ent

* This function initializes data.

*

* @param [in] plnitParans: Specify the init paraminformtion.
*

* @retval NULL: Initialization failed.

* @Retval not_null: The context of HITP client.

* @see None.

&/

Void * |OT_HTTP_Init (iotx_http_paramt * pinitparans);
/**

* @brief handl e Devi ce Nane aut hentication with renote server.

*

@param [in] handle: Pointer to context, specify the HITP client.

@retval 0: Authentication successful.
@etval -1 : Authentication failed.

* @ee iotx_err_t.

=

int | OT_HTTP_Devi ceNameAut h(voi d *handl e) ;

L

Uploaded data (${endpoint}/topic/${topic })

Transferring data to a specified topic, you can set ${topic} in the loT Platform console by
selectingProducts > Communication.For example, for ${topic} / pr oduct key/ ${ devi ceNane
}/ pub, if the device name is device123, the device can report data through htt ps: / /i ot - as-

htt p. cn- shanghai . al i yuncs. conf t opi ¢/ pr oduct key/ devi cel23/ pub .

+ Example:

POST /topic/ ${topic} HITP/ 1.1

Host: iot-as-http.cn-shanghai.aliyuncs.com
Password: ${token}

Content - Type: application/octet-stream
Body: ${your_dat a}

Parameters:

* Method: POST. The POST method is supported.

« URL: /topic/${topic}. Replace the ${topic} placeholder with the name of the specific device

topic. This address only supports the HTTPS protocol.

+ Content-Type: Currently only application/octet-stream is supported.

« Password: The ${token} access token, which is returned after device authentication. This

parameter is placed in the header.
Body: The content sent to ${topic}, which is in binary byte with UTF-8 encoding.

Return value:

Body:
{
"code": /1 the status code
"message”: "success", // the nessage
"Info ":
"Messagel d": 892687627916247040,
"Data": byte [] // It is UTF-8 encoding, can be enpty.
}
}

Status codes:

Table 2-7: Descriptions

Code Message Description

10000 common error Unknown errors.

10001 param error An exception occurred while requesting the
parameter.

20001 token is expired The access token is invalid. You need to
obtain a new token by calling the auth
operation for authentication.

20002 token is null The request header has no tokens.

20003 check token error An error occurred during authentication. You
need to obtain a new token by calling the
auth operation for authentication.

30001 publish message error | An error occurred while uploading data.

40000 request too many The throttling policy limits the number of
requests.

C SDK

The SDK uses the IOT_HTTP_SendMessag function to send and receive data.

static int iotx_post_data_to_server(void *handl e)
{
Int ret =-1;
char path[I OTX_URI _MAX_LEN + 1] = {0};
char rsp_buf[1024];
iotx_http t *iotx http context = (iotx _http t *)handl e;
i otx_device_info_t *p_devinfo = iotx_http_context->p_devinfo;
iotx_http nessage paramt nsg_param
nmsg_param r equest _payl oad = (char *)"{\"name\":\"hello world\"}";
nsg_param response_payl oad = rsp_buf;
nsg_paramtimeout ns = iotx _http context->tineout ns;
nmsg_param request _payl oad_I en = strlen(nsg_param request _payl oad) +

nsg_param response_payl oad | en = 1024;
nmsg_param topi c_path = path;
HAL Snprintf(msg_paramtopic_path, 10TX URI _MAX LEN, "/topic/ %/ %/

updat e”,
p_devi nf o- >pr oduct _key, p_devi nfo->devi ce_nane);
if (0 == (ret = | OT_HTTP_SendMessage(iotx_http _context, &rsg _param
))) A
HAL Printf("nmessage response is %\r\n", nsg_paramresponse_p
ayl oad) ;
} else {
HAL Printf("error\r\n");
}
return ret;
}
/**

* @rief Send a nessage with specific path to the server.

* Client nust be authenticated by the server before sendi ng nessage.
*

* @aram[in] handle: pointer to context, specifies the HITP client.
* @aram|[in] nsg_param Specifies the topic path and http payl oad
confi gurati on.

*

* @etval 0 : Successful.
* @etval -1 : Failed.
* @ee iotx _err_t.

*/
int |OT_HTTP_SendMessage(void *handl e, iotx_http_message_paramt *
neg_param ;

Additional functions in the C SDK.

The IOT_HTTP_Disconnect function close the HTTP connection to clear the cache.

/**

* @brief Coses the TCP connection between the client and server.

*

* @aram|[in] handle: pointer to context, specifies the HITP client.
* @eturn None.

* @see None.
*/
void | OT_HTTP_Di sconnect (voi d *handl e) ;

Restrictions

» The specifications of topics based on the HTTP protocol and MQTT protocols are same. The
operation htt ps: //i ot - as- http. cn-shanghai . al i yuncs. coni t opi ¢/ ${t opi c} can
be reused for all topics based on the HTTP protocol and MQTT protocols. The operation can

not set parameters using ? query_Stri ng=xxx.

* The client caches the token locally. When the token expires, you need to obtain a new token.

The new token will then be cached again.
» The size of data transferred by the upload operation is limited to 128 KB.

* Only China (Shanghai) region supports HTTP protocol communication.

2.3 OTA Development

Update firmware

In this example, loT Platform uses the MQTT protocol to update the firmware. Figure 2-6:

Firmware update shows the update process as follows:

Figure 2-6: Firmware update

Device OTA server OTA console

1 Report the current firmware version.
/ otardevicerinforme il rourkroductkey & vourDeviceMams]

Add the firmware in the console and

3 Issue the firmware URL to the device. 7 initiate & firmware update request for
devices.
MQTT
protocol { otasdevices
The firmware update progress is
4 Report the progress of the firmware update. displayed in the console.
[otasdevice/ progress/ i YourProd uctkey i YourDeviceName]
5 Download the firmware using HTTPS
Download the protocol.
firmware using
HTTPS
protocol The console notifies that the update

6 The device completes the firmware update
and reports the latest version.

is successful.

[otavdevicesinformy i vourFroductkeyl 3 vourDeviceams)

Topics for firmware update

» The device publishes a message to this topic to report the firmware version to l1oT Platform.

/ ot a/ devi ce/ i nf or i ${ pr oduct Key}/ ${ devi ceNane}

» The device subscribes to this topic to receive a notification of the firmware update from loT

Platform.

/ ot a/ devi ce/ upgr ade/ ${ pr oduct Key}/ ${ devi ceNane}

+ The device publishes a message to this topic to report the progress of the firmware update to

loT Platform.

/ ot a/ devi ce/ progr ess/ ${ product Key}/ ${ devi ceNane}

Note:

» The device does not periodically send the firmware version to 10T Platform. Instead, the device

sends the firmware version to loT Platform only when the device starts.
* You can view the firmware version to check if the OTA update is successful.

» After you have configured the firmware update for multiple devices in the console of an OTA

server, the update status of each device becomes Pending.

When the OTA system receives the update progress from the device, the update status of the

device changes to Updating.

* An offline device cannot receive any update notifications from the OTA server.

When the device comes online again, the device notifies the OTA server that it is online. When
the server receives the online notification, the server determines whether the device requires

an update. If an update is required, the server sends an update notification to the device.
OTA code description
1. Install the firmware on a device, and start the device.
The initialization code for OTA is as follows:
_ota = 1 OT_OTA | nit(PRODUCT_KEY, DEVI CE NAME, pclient);
f (NULL == h_ota) {
rc

= -1;
printf("initialize OTA failed\n");

h
[

Note:

The MQTT connection (the obtained MQTT client handle pclient) is used to initialize the OTA

module.

The function is declared as follows:

/

*
*

b T I R

*

*

* %
@rief Initialize OTA nodule, and return handl e.
You must construct the MJTT client before you canll this interface
@aram [in] product_key: specify the product key.
@aram [in] device nane: specify the device nane.
@aram [in] ch_signal: specify the signal channel.
@etval 0 : Successful.
@etval -1 : Fail ed.
@ee None.
/

void *1 OT_OTA Init(const char *product_key, const char *devi ce_nane

*
*
*
*
*
|

* % X XNk T~

void *ch_signal);

* %
@rief Report firmwvare version information to OTA server (optional
NOTE: pl ease
@aram [in] handl e: specify the OTA nodul e.
@aram [in] version: specify the firmvare version in string format
@etval 0 : Successful.
@etval < 0 : Failed, the value is error code.
@ee None.
/

nt | OT_OTA Report Version(void *handl e, const char *version);

2. The device downloads the firmware from the received URL.

IOT_OTA _IsFetching(): Identifies whether firmware is available for download.
IOT_OTA_FetchYield(): Downloads a firmware package.
IOT_OTA_IsFetchFinish(): Identifies whether the download has completed or not.

An example code is as follows:

/
[

[/ ldentifies whether firnmware is avail able for downl oad.
f (1OT_OTA | sFetching(h_ota)) {
unsi gned char buf _ota[OTA BUF_LEN;
uint32 t len, size downl oaded, size file;
do {
/llteratively downl oads firmare.
len = | OT_OTA FetchYield(h_ota, buf_ota, OTA BUF_LEN, 1);
if (len > 0) {
/[/Wites the firmmvare into the storage such as the flash.

}
} while (! 1 OT_OTA |IsFetchFinish(h_ota)); //Identifies whether the
firmvare downl oad has conpl eted or not.

exit: Crl o
/**

* @rief Check whether is on fetching state

*

@aram [in] handl e: specify the OTA nodul e.

*

*

* @etval 1 : Yes.
* @etval 0 : No.
*

@ee None.
*/
int | OT_OTA | sFetching(void *handle);
/**
* @Brief fetch firmvare fromrenote server with specific timeout
val ue.
* NOTE: If you want to downl oad nore faster, the bigger 'buf' should
be gi ven.
*
* @aram|[in] handle: specify the OTA nodul e.
* @aram[out] buf: specify the space for storing firmware data.
* @aram[in] buf |len: specify the length of 'buf' in bytes.
* @aram|[in] timeout_s: specify the timeout value in second.
*
* @etval < 0 : Error occur..
* @etval 0 : No any data be downl oaded in 'tinmeout_s' tineout
peri od.
*

@etval (0, len] : The length of data be downl oaded in 'tineout_s
ti meout period in bytes.

* @ee None.

*/

int 1OT_OTA FetchYield(void *handl e, char *buf, uint32_t buf_Ien,
uint32_t tineout_s);

/**

* @brief Check whether is on end-of-fetch state.

*

@aram [in] handl e: specify the OTA nodul e.

*
*
* @etval 1 : Yes.
* @etval 0 : Fal se.
* @ee None.

&/

int | OT_OTA | sFet chFini sh(void *handl e) ;

Note:
If you have insufficient device memory, you need to write the firmware into the system OTA

partition while downloading the firmware.

3. Call IOT_OTA_ReportProgress() to report the download status.

Example code:

if (percent - last_percent > 0) {
| OT_OTA ReportProgress(h_ota, percent, NULL);
}

| OT_MJTT _Yield(pclient, 100); //

You can upload the update progress to loT Platform. The update progress (1% to 100%) is

displayed in real time in the progress column of the updating list in the console.
You can also upload the following error codes:

» -1: Failed to update the firmware.

» -2: Failed to download the firmware.

+ -3: Failed to verify the firmware.

* -4: Failed to write the firmware into flash.

. Call IOT_OTA loctl() to identify whether the downloaded firmware is valid. If the firmware is

valid, the device will run with the new firmware at the next startup.

Example code:

int32_t firmvare_vali d;
| OT_OTA loctl (h_ota, |10OT_OTAG CHECK FI RMAMARE, &firmavare_valid, 4);

if (0 ==firmvare_ valid) {
printf("The firmvare is invalid\n");
} else {

printf("The firmware is valid\n");

If the firmware is valid, modify the system boot parameters to make the hardware system run

with the new firmware at the next startup. The modification method varies by hardware system.

*

*

@rief Get OTA information specified by 'type'.
By this interface, you can get information |ike state, size of
e, md5 of file, etc.

* % X —h X X T~

@aram [in] handl e: handl e of the specific OTA

@aram [in] type: specify what information you want, see detail '
| OT_OTA CndType t'

* @aram [out] buf: specify buffer for data exchange

* @aram|[in] buf_len: specify the length of 'buf' in byte.

* @eturn

@erbatim

NOTE:

1) Wien type is | OT_OTAG FETCHED SI ZE, 'buf' shoul d be pointer of
uint32 t, and 'buf |en' should be 4.

2) When type is |1 OT_OTAG FI LE SI ZE, 'buf' shoul d be pointer of
uint32_t, and 'buf _|en' should be 4.

3) When type is | OT_OTAG MD5SUM ' buf' should be a buffer, and '
buf | en' should be 33.

4) \When type is | OT_OTAG VERSI ON, 'buf' should be a buffer, and '
buf | en' should be OTA VERSI ON LEN MAX.

5) When type is | OT_OTAG CHECK FI RMMRE, 'buf' shoul d be pointer of
uint32 t, and 'buf |en' should be 4.

O, firmvare is invalid; 1, firmvare is valid.

@ndver bati m

* @etval O : Successful.

* @etval < 0 : Failed, the value is error code.

* @ee None.

=

int 1OT_OTA loctl(void *handle, 10T _OTA CndType t type, void *buf,
size_t buf_len);

5. Call IOT_OTA_Deinit to terminate a connection and release the memory.

/**

* @rief Deinitialize OTA nodul e specified by the 'handle', and

rel ease the rel ated resource.

* You nmust call this operation to rel ease resource if reboot is not
i nvoked after downl oadi ng.

*

@aram [in] handl e: specify the OTA nodul e.

*

*

* @etval 0 : Successful.

* @etval < 0 : Failed, the value is error code.
* @ee None.

2/

int |OT_OTA Deinit(void *handle);

6. After the device restarts, the device runs with the new firmware and reports the new firmware

version to loT Platform. After the OTA module is initialized, call IOT_OTA_ReportVersion() to

report the current firmware version. The code is as follows:

if (0! =
rc = -1;
printf("report OTA version failed\n");

| OT_OTA ReportVersion(h_ota, "version2.0")) {

2.4 Connect sub-devices to the cloud

This topic describes how to connect sub-devices to the cloud.
loT Platform currently supports two node types, device and gateway.

» Device: refers to a device to which sub-devices cannot be mounted. Devices can connect
directly to the loT Hub. Alternatively, devices can connect as sub-devices mounted to gateways
that are connected to the loT Hub.

» Gateway: refers to a device to which sub-devices can be mounted. A gateway connects
sub-devices to loT Platform. Gateways can manage sub-devices, maintain their topological

relationships with sub-devices, and synchronize these topological relationships to the cloud.

2.4.1 Connect sub-devices to loT Platform
Gateway and sud-deviceEach device, either a gateway or a sub-device, works as a unique device
on loT Platform. Devices can use unique certificates for authentication when communicating
with the cloud. You need to install the unique certificates to each device, including ProductKey,
DeviceName, and DeviceSecret. Some sub-devices, such as Bluetooth devices and Zigbee
devices, have high requirements for installing these unique certificates. You can select dynamic
registration for authentication. In this way, you only need to register sub-devices in the cloud by

providing ProductKey and DeviceName.

Prerequisites

The gateway has connected to the cloud by using Unique-certificate-per-device authentication.
Context

The ProductKey and DeviceName of the sub-device must be provided on loT Platform before
dynamic registration. When a gateway registers its sub-device, loT Platform verifies DeviceName

of this sub-device. After the DeviceName is verified, loT Platform issues the DeviceSecret.
Follow these steps:

Procedure
1. Log on to the loT Platform console .

2. Configure the gateway SDK.

Note:
A gateway can register its sub-devices, bring its sub-devices online or offline, maintain
the topological relationship between the gateway and its sub-devices, and relay the
communication between the sub-devices and loT Platform. The manufacturer of the gateway
device develops application features based on this SDK, such as connecting sub-devices to
lIoT Platform, receiving messages from sub-devices, publishing messages to sub-device topics
to report status, subscribing to sub-device topics to obtain commands from loT Platform, and

routing messages to sub-devices.

a) Download the SDK. For more information, see Download device SDKs. This section takes a

C SDK for example.
b) Log on to the Linux virtual machine (VM) and configure unique certificates of the gateway.

c) Enable the feature of the gateway and sub-devices in this SDK.

http://iot.console.aliyun.com/
https://www.alibabacloud.com/help/doc-detail/42648.htm

You can configure this SDK by using code in i ot x- sdk- c\ sr ¢\ subdev and following the

demo that is provided in sanpl e\ subdev.

The example code consists of the following parts:

Use the function in subdev to configure this SDK.

deno_gat eway_function(nsg_buf, nmsg_readbuf);
Examples of using the functions provided in the subdev_example_api.h file
(encapsulation of topics) to develop code for gateways.

deno_t hi ng_functi on(nmsg_buf, nsg_readbuf);
Examples of using the functions provided in the subdev_example_api.h file

(encapsulation of topics) to develop code for devices.

deno_only one_devi ce(nmsg_buf, nsg_readbuf);

Add sub-devices to a gateway:

To enable unique-certificate-per-device authentication, register your sub-devices in loT
Platform and the gateway must have the ProductKey, DeviceName, and DeviceSecret
values of the sub-devices. The gateway then uses IOT_Thing_Register/IOT_Subdev
ice_Register to register the sub-devices (registered type: IOTX_Thing_ REGISTER _
TYPE_STATIC).

To enable dynamic authentication, you need to register sub-devices on loT Platform. The
gateway uses |IOT_Thing_Register/IOT_Subdevice_Register to dynamically register the
sub-devices (registered type: IOTX_Thing_REGISTER_TYPE_DYNAMIC).

For more information about dynamic registration, see demo_gateway_function.

The functions provided in the example/subdev_example_api.c/.h file encapsulate topics
for properties, events, and services. You can use these functions directly without working
with the corresponding topics.

To specify the features of the gateway and sub-devices, you need to define

FEATURE_SUBDEVI CE_ENABLED = y in make.settings.

To specify the features of the gateway or a sub-device, you need to define FEATURE_SU
BDEVI CE_STATUS = subdevi ce in make.settings.

3. The gateway establishes Message Queuing Telemetry Transport (MQTT) connections with loT

Platform.

. Register a sub-device.

The gateway obtains the ProductKey and DeviceName of the sub-device, and uses dynamic
registration to obtain DeviceSecret from loT Platform. We recommend that you use a
global unique identifier (GUID), such as the medium access control (MAC) address, as the

DeviceDame.
* Request topic: /sys/{gw_productKey}/{gw_deviceName}/thing/sub/register

Request format:

{"id" : 123,"version":"1.0","parans" : [{ "deviceNane" : "
devi ceNanel1234", "product Key" : "1234556554"}], "nmet hod": "t hi ng. sub
.register"}

* Response topic: /sys/{gw_productKey}/{gw_deviceName}/thing/sub/register_reply
Response format:

{"id":123,"code": 200, "data":[{ "iotld":"12344", "productKey":"xxx
", "devi ceNane": "xxx", "deviceSecret":"xxx"}]}

» The ProductKey and DeviceName values in the JSON object cannot be the same as the
ProductKey and DeviceName values of the gateway.

* The gateway and the sub-device send messages based on Quality of Service 0 (QoS 0).

* The corresponding function is IOT_Subdevice_Register in this SDK. In this function,
register_type supports static registration and dynamic registration. For more information
about how to use this function and signing computing, see sample\subdev\subdev-example
.C.

» If you set register_type to IOTX_SUBDEV_REGISTER_TYPE_DYNAMIC, you can see an
offline sub-device added to the gateway in the console after you use this function.

+ If you set register_type to IOTX_SUBDEV_REGISTER_TYPE_DYNAMIC, you only need
to call this function once. If you call this function again, loT Platform reports that the device
already exists.

» The current version of the SDK has a limitation. The system saves the device_secret value
generated during dynamic registration in a global variable of the device. Therefore, the

device_secret value is not persistent. The DeviceSecret is lost after you restart this device.

If you need to use this function, modify iotx_subdevice_parse_register_reply in the iotx-sdk
-c\src\subdew\iotx_subdev_api.c file to write device_secret to a module that supports data

persistence.

+ If you set register_type to IOTX_SUBDEV_REGISTER_TYPE_STATIC, after you use this
function, you can see an existing sub-device in the console added to the gateway as an

offline sub-device.

/**

@rief Device register
This function is used to register a device and add topol ogy.

@ar am handl e pointer to specify the gateway constructi on.
@aram regi ster type.

| OTX_SUBDEV_REG STER TYPE_STATI C

| OTX_SUBDEV_REG STER_TYPE_DYNAM C

@ar am product key.

@ar am devi ce nane.

@aramtinestanp. [if type = dynamic, nust be NULL]
@aramclient_id. [if type dynam c, must be NULL]
@aramsign. [if type = dynam c, nust be NULL]

@ar am si gn_net hod.

| OTX_SUBDEV_SI GN_METHOD _TYPE_SHA

| OTX_SUBDEV_SI GN_METHOD_TYPE_NMD5

b T R . I T . T N R

*

@eturn 0, Logout success; -1, Logout fail.
*/

int | OT_Subdevi ce_Regi st er(voi d* handl e,

i ot x_subdev_regi ster_types t type,

const char* product key,

const char* devi ce_nane,

Char * tinestanp,

char* client _id,

char* sign,

i ot x_subdev_sign_nmethod types t sign_ type);

5. Build the topological relationship between the gateway and the sub-device in the cloud.
» Add a topological relationship.
— Request topic: /sys/{gw_productKey}/{gw_deviceName}/thing/topo/add

Request format:

{

"id" o "123",

"version":"1.0",

"params" : [{

"devi ceName" : "devi ceNanel234",

"product Key" : "1234556554",

"sign":"",

"si gnmet hod": "hmacShal" // Supports hmacShal, hmacSha256, and
hmacMd5.

"tinmestanp": " xxxx",

"clientld":"xxx",//Indicates a | ocal identifier, and can be
i dentical with productKey&devi ceNane.

}] 1
"met hod": "thing.topo. add"

}
— Response topic: /sys/{gw_productKey}/{gw_deviceName}/thing/topo/add_reply

Request format:

{
"id":"123",
"code": 200,
"data":{}

}

* The ProductKey and DeviceName values in the JSON object cannot be the same as the
ProductKey and DeviceName values of the gateway.
* The gateway and the sub-device send messages based on QoS 0.

+ The IOT_Subdevice_Register function has encapsulated this feature of the SDK. You do

not need to use other functions.

Delete the topological relationship.
* Request topic: /sys/{gw_productKey}/{gw_deviceName}/thing/topo/delete

Request format:

{

"id" o 123,

"version":"1.0",

"paranms" : [{

"devi ceNane" : "devi ceNanel234",
"product Key" : "1234556554"

}] i)

"met hod": "t hi ng. t opo. del et e"”

}

+ Response topic: /sys/{gw_productKey}/{gw_deviceName}/thing/topo/delete_reply

{

"id":123,
"code": 200,
"data":{}

}

* The ProductKey and DeviceName values in the JSON object cannot be the same as the
ProductKey and DeviceName of the gateway.

+ The gateway and the sub-device send messages based on QoS 0.

+ The IOT_Subdevice_Unregister function has encapsulated this feature of the SDK. You

do not need to use other functions.

» Obtain the topological relationship.
— Request topic: /sys/{gw_productKey}/{gw_deviceName}/thing/topo/get

Request format:

{

"id" o 123,
"version":"1.0",

"parans" : {},

"met hod": "thing.topo. get”
}

— Response topic: /sys/{gw_productKey}/{gw_deviceName}/thing/topo/get_reply

8

"id": 123,

"code": 200,

"data": [{

"devi ceNane" : "devi ceNanel234",
"product Key" : "1234556554"

]

}

» The ProductKey and DeviceName values in the JSON object cannot be the same as the

ProductKey and DeviceName of the gateway.

» The gateway and the sub-device send messages based on QoS 0.

* The corresponding function is IOT_Gateway_Get_TOPO in this SDK.

* You can obtain the information about all sub-devices of this gateway, including their
ProductKey, DeviceName, and DeviceSecret certificates, by using this function.

Response parameter get_topo_reply is in JSON format. You need to parse the response.

/**
* @rief Gateway get topo

* This function is used to publish a packet with topo/get topic
and wait for the reply (with TOPO GET_REPLY topic).

* @aram handl e pointer to specify the Gateway.

* @aram get _topo_reply.

* @aramlength [in/fout]. in -- get topo reply buffer |ength,
out -- reply length

* @eturn 0, |ogout success; -1, logout fail ed.
*/

int |10T_Gateway_ Get TOPQ(voi d* handl e,

char* get topo _reply,

uint32_t* |ength);

6. Connect the sub-device to loT Platform.

Request topic: /ext/session/{gw_productKey}/{gw_deviceName}/combine/login

Request format:

{

"id":"123",

"parans": {

"product Key": "xxxxx",// Sub-devi ce Product Key

"devi ceNanme": "xxxx",// Sub- devi ce Devi ceNanme

"clientld":"xxxx",

"timestanp”: " xXxxx",

"si gnMet hod": "hmacnd5 or hmacshal or hnmacsha256",

"sign":"xxxxx", [//Sub-device signature

"cl eanSession":"true or false" // If this parameter is set to true
, the systemclears all QS 1- or 2-based nessages m ssed by the
of fli ne sub-device

}

/] Sub-devi ces with ProductKey, Devi ceNane and Devi ceSecret follow
the same signature rules as the gateway.

sign = hmac_nd5(devi ceSecret, clientldl23devi ceNanet est produ

ct Key123ti nest anpl123)

Response topic: /ext/session/{gw_productKey}/{gw_deviceName}/combine/login_reply

Response format:

{

n I dll : n 123" ,

"code": 200,
"message": "success"

}

The ProductKey and DeviceName values in the JSON object cannot be the same as the
ProductKey and DeviceName of the gateway.

The gateway and the sub-device send messages based on QoS 0.

The corresponding function is IOT_Subdevice_Login in this SDK. For more information
about how to use this function, see sample\subdev\subdev-example.c.

You can see the sub-device in online status in the console after you call this function.

/**

*

*

@rief Subdevice |ogin
This function is used to publish a packet with the LOG N topi c,

wait for the reply (with

* % %k ¥ X ¥ %

LOG N REPLY topic), and then subscribe to sone subdevice topics.

@ar am handl e pointer to specify the Gateway.

@ar am product key.

@ar am devi ce nane.

@Paramtinmestanp. [If aster_type = dynami c, must be null]
@aramclient _id. [if register_type = dynanm c, nust be NULL]

* @aramsign. [if register _type = dynamic, nust be NULL]
* @aram sign nethod, HmacShal or HmacMl5.

* @aram cl ean session, true or fal se.
*

* @eturn 0, login success; -1, login fail ed.

*/

i nt 1 OT_Subdevi ce_Logi n(voi d* handl e,

const char* product_key,

const char* devi ce_nane,

const char* tinmestanp,

const char* client id,

const char* sign

i ot x_subdev_sign_nethod types t sign_method type,

i ot x_subdev_cl ean_sessi on_types_t cl ean_session_type);

7. Interact with the sub-device.

« Request topic: You can use the topic in the format of /${productKey}/${deviceName}/xxx
specified on loT Platform, or in the format of /sys/${productKey}/${deviceName}/thing/xxx.

« The gateway publishes data to the topic of the sub-device. In the topic, /${productKey}/${
deviceName}/ corresponds to ProductKey and DeviceName of the sub-device.

» The format of the MQTT payload is unrestricted.

* This SDK provides three functions: IOT_Gateway_Subscribe, IOT_Gateway Unsubscribe
, and IOT_Gateway_Publish, to subscribe to and publish messages. For more information

about how to use this function, see sample\subdev\subdev-example.c.

*
*

@rief Gateway Subscribe
This function is used to subscribe to sone topics.

@ar am handl e pointer to specify the Gateway.
@aramtopic |list.

@ar am QoS.

@aram function to receive data.

@ar am t opi c_handl e_func's userdat a.

L I I I A

@eturn 0, Subscribe success; -1, Subscribe fail.

*
~

int | OT_Gateway_Subscri be(voi d* handl e,
const char *topic_filter
i nt qos,
i ot x_subdev_event handl e _func_fpt topic_handl e func,
voi d *pcontext);
/**
* @rief Gateway Unsubscri be
This function is used to unsubscri be from some topics.

*
*
* @aram handl e pointer to specify the Gateway.
* @aramtopic list.
*
*

@eturn 0, Unsubscribe success; -1, Unsubscribe fail.
=
int | OT_Gateway_ Unsubscri be(voi d* handl e, const char* topic filter);

/**

@rief Gateway Publish
This function is used to publish sone packets.

@ar am handl e pointer to specify the Gateway.
@ar am t opi c.
@aram ngtt packet.

L I R T T

* @eturn 0, Publish success; -1, Publish fail.
*/

int 1 OT_Gateway_Publish(voi d* handl e,

const char *topic_nane,

iotx mytt topic_info_pt topic _neQ);

8. Disconnect the sub-device from loT Platform.
* Request topic: /ext/session/{gw_productKey}/{gw_deviceName}/combine/logout

Request format:

{

"id": 123,

"parans": {

"product Key": " xxxxx",// Product Key of the sub-device
"devi ceNanme": "xxxxx",// Devi ceNane of the sub-device

}
}

» Response topic: /ext/session/{gw_productKey}/{gw_deviceName}/combine/logout_reply

{

n I dll : n 123" ,

"code": 200,
"message": "success"

}
* The ProductKey and DeviceName values in the JSON object cannot be the same as the

ProductKey and DeviceName values of the gateway.
» The gateway and the sub-device send messages based on QoS 0.

* The corresponding function is IOT_Subdevice_Logout in this SDK. For more information

about how to use this function, see sample\subdev\subdev-example.c.

* You can see the sub-device in offline status in the console after you use this function.

/**

* @rief Subdevice | ogout

* This function is used to unsubscri be from sone subdevi ce topi cs,
publish a packet with the

* LOGOUT topic, and then wait for the reply (with LOGOUT _REPLY topic

@ar am handl e pointer to specify the Gateway.
@ar am product key.
@ar am devi ce nane.

E o T

*

* @eturn 0, |ogout success; -1, |logout fail ed.
*/

i nt | OT_Subdevi ce_Logout (voi d* handl e,

const char* product key,

const char* devi ce_nane);

9. Unregister the sub-device dynamically.
* Request topic: /sys/{gw_productKey}/{gw_deviceName}/thing/sub/unregister

Request format:

{

"id" o 123,

"version":"1.0",

"paranms" : [{

"devi ceNane" : "devi ceNanel234",
"product Key" : "1234556554"

}] i)

"met hod": "t hi ng. sub. unregi ster"
}

+ Response topic: /sys/{gw_productKey}/{gw_deviceName}/thing/sub/unregister_reply

{

"jid": 123,
"code": 200,
"data":{}

}

* The ProductKey and DeviceName values in the JSON object cannot be the same as the
ProductKey and DeviceName of the gateway.

+ The gateway and the sub-device send messages based on QoS 0.

» The corresponding function is IOT_Subdevice_Unregister in this SDK. For more information
about how to use this function, see sample\subdev\subdev-example.c.

» The sub-device is destroyed and cannot be used after you call this function. Do not call this

function if you still need the sub-device.

/**

* @rief Device unregister

* This function is used to delete the topol ogical relationship and
unregi ster the devi ce.

* The device must dynamically register again if you want to use this
device after unregistration.

@ar am handl e pointer to specify the gateway constructi on.
@ar am product key.
@ar am devi ce nane.

* % %k ¥ X ¥

@Return O, unregister success;-1, unregister fail.

*/

i nt | OT_Subdevi ce_Unregi ster(voi d* handl e,
const char* product_key,

const char* devi ce_nane);

Note:

+ gw_productKey indicates ProductKey of the gateway.

+ gw_deviceName indicates DeviceName of the gateway.

For more information about other functions in this SDK, use the subdev-example code.

2.5 Device shadows

2.5.1 Device shadow JSON format

Format of the device shadow JSON file

The format is as follows:

"state": {

"desired": {
"attributel": integer?2,
"attribute2": "string2",

" éftri but eN': bool ean2

}

, eported”: {
"attributel": integerl,
"attribute2": "stringl",

" éitri but eN': bool eanl
}
}

"metadata": {
"desired": {
"attributel": {
"timestanp": tinestanp
e
"attribute2": {
"timestanp": tinestanp

H

‘.'éitributeN': {

"timestanp”: tinestanp
}
}

: eported": {
"attributel": {
"timestanp”: tinestanp
b
"attribute2": {
"timestanp”: tinestanp

}

‘.'éitributeN': {

"timestanp”: tinestanp
}
}
}

i mestanp”: tinestanp,
"version": version

}

The JSON properties are described in Table 2-8: JSON property.

Table 2-8: JSON property

Property Description

desired The desired status of the device.
The application writes the desired property of the device, without
accessing the device.

reported The status that the device has reported. The device writes data to the
reported property to report its latest status.
The application obtains the status of the device by reading this property.

metadata The device shadow service automatically updates metadata according to
the updates in the device shadow JSON file.

State metadata in the device shadow JSON file contains the timestamp
of each property. The timestamp is represented as epoch time to obtain
exact update time.

timestamp The latest update time of the device shadow JSON file.

version When you request updating the version of the device shadow, the device
shadow checks whether the requested version is later than the current
version.

If the requested version is later than the current one, the device shadow
updates to the requested version. If not, the device shadow rejects the
request.

The version number is increased according to the version update to
ensure the latest device shadow JSON file version.

Example of the device shadow JSON file:

{

"state" : {
"desired" : {
"color" : "RED'

"sequence" : [:'RED', "GREEN', "BLUE"]
}

'eported" A
"color" : "GREEN'

}

e
"metadata" : {

"desired" : {
"color" : {
"timestanp” : 1469564492

}

,equence" A

"timestanp" : 1469564492
}
}

: eported" : {
"color" : {
"timestanp” : 1469564492

}
%
"ti mest amp" : 1469564492,

"version" : 1

}
Empty properties

* The device shadow JSON file contains the desired property only when you have specified the
desired status. The following device shadow JSON file, which does not contain the desired

property, is also effective:

"state" : {
"reported" : {
"color" : "red",
}
}l
"metadata" : {
"reported” : {
"color" : {
"tinmestanp" : 1469564492
}
%
"t mest anp” @ 1469564492,
"version" : 1
}
» The following device shadow JSON file, which does not contain the reported property, is also
effective:
"state" : {
"desired" : {
"color" : "red",
}
",rretadata" A
"desired" : {

"color" : {

"timestanp" : 1469564492
}
%
""timastarrp" . 1469564492,

"version" : 1

}
Array

The device shadow JSON file can use an array, and must update this array as a whole when the

update is required.

* |nitial status:

{
"reported” : { "colors" : ["RED', "CGREEN', "BLUE"] }

}
* Update:

{
"reported" : { "colors" : ["RED'] }

* Final status:

ireported" : { "colors" : ["RED'] }
}

2.5.2 Device shadow data stream

loT Platform predefines two topics for each device to enable data transmission. The predefined

topics have fixed formats.
+ topic/ shadow updat e/ ${ pr oduct Key}/ ${ devi ceNane}

The device and application publish messages to this topic. 10T Platform updates the status to

the device shadow after receiving messages from this topic.

 topic/ shadow get/ ${ pr oduct Key}/ ${ devi ceNane}

The device shadow updates the status to this topic, and the device subscribes to the messages

from this topic.

The following section takes the lightbulb (productkey:10000 and deviceName:lightbulb) as an
example and demonstrates the communication among the device, device shadow, and the

application. The device publishes and subscribes to the predefined topics with QoS 1.

Device reports status automatically

The flow chart is as shown in Figure 2-7: Device reports status automatically.

Figure 2-7: Device reports status automatically

o

The device reports the latest
ﬂ status to device shadow.
m OO Device shadow

Device shadow sends the operation result
(successful or failed) to the device.

Obtains the latest status.

9 Persists the JSON content of device shadow to the database.

- ~
s

-
s

~- -

1. When the lightbulb is online, the device uses topic / shadow/ updat e/ 10000/ | i ght bul b to

report the latest status to the device shadow.

Format of the JSON message:

"met hod": "update",

"state": {
"reported": {
"color": "red"
}

}

"version": 1

}

The JSON parameters are described in Table 2-9: JSON parameters.

Table 2-9: JSON parameters

Parameter Description

method Represents the operation type when the device or application requests the
device shadow.
This parameter must be set to "update" when you perform updates.

state Represents the status information that the device sends to the device

shadow.

Parameter

Description

The reported field is required. The status information is synchronized to
the reported field of the device shadow.

version

Represents the version information contained in the request.
The device shadow only accepts the request and updates to the specified
version when the new version is later than the current version.

2. When the device shadow accepts the status reported by the lightbulb, the device shadow

JSON file is successfully updated.

{

"state" : {
"reported” : {
"color" : "red"
}

"metadata" : {

"reported" : {
"color" :
"timestanp”

}
}
}

i mest anp”
"version" : 1

}

1469564492

1469564492

3. After the update, the device shadow sends the result of the update to the device by sending a

message to topic /shadow/get/10000/lightbulb. The device is subscribed to this topic.

If the update is s

uccessful, the message is as follows:

"met hod": "reply",
"payl oad": {
"status":"success",
"version": 1

}

}

i mestanp":

1469564576

If an error occurred during the update, the message is as follows:

"met hod": "reply",
"payl oad": {
"status":"error",
"content": {

"errorcode":

"${errorcode}",

“errormessage": "${errornmessage}"

}
H

"tinmestanp”:

}

1469564576

The meaning of the error codes is described in Table 2-10: Error codes.

Table 2-10: Error codes

errorCode errorMessage

400 Invalid JSON format.

401 The method field is missing.
402 The state field is missing.
403 Invalid version field.

404 The reported field is missing.
405 The reported field is blank.
406 Invalid method field.

407 The JSON file is empty.

408 The reported field contains more than 128 attributes.
409 Version conflict.

500 Server exception.

Application changes device status

The flow chart is as shown in Figure 2-8: Application changes device status.

Figure 2-8: Application changes device status

@

Device shadow sends the latest
status to the device.

The application updates the wanted

&

status to device shadow.

<
<

O O Device shadow

4

A 4

The device reports the latest status to device shadow.

- ~
.

~~~~~~~

9 Persists the JSON content of device shadow to the database.




1. The application sends a command to the device shadow to change the status of the lightbulb.

The application sends a message to topic / shadow/ updat e/ 10000/ | i ght bul b/ . The

message is as follows:

"met hod": "update",
"state": {
"desired": {
"color": "green"

}

}

}

2. The application sends an update request to update the device shadow JSON file. The device

shadow JSON file is changed to:

ersion": 2

{

"state" : {
"reported” : {
"color" : "red"

"desired" : {
“color" : "green"

}

}l
"metadata" : {

"reported” : {
"color" : {
"tinmestanp" : 1469564492

}

"t’:iesired" |

"color" : {

"tinmestanp" : 1469564576

}
%
"ti mest amp" : 1469564576,

"version" : 2

}
3. After the update, the device shadow sends a message to topic / shadow’ get / 10000/

I i ght bul b and returns the result of update to the device. The result message is created by

the device shadow.

"met hod": "control ",

"payl oad": {
"status":"success",
"state": {

"reported": {
"color": "red"



"aesi red": {

“color": "green"
}

}

"metadata": {
"reported": {
"color": {
"timestanp": 1469564492
}

b

"desired" : {
"color" : {

"timestanp” : 1469564576
}
}
}
b,

‘version": 2,
"tinmestanp": 1469564576
}

4. When the lightbulb is online and subscribed to topic / shadow/ get / 10000/ | i ght bul b, the
lightbulb receives the message and changes its color to green based on the desired field in the

request file.
If the timestamp shows that the command has expired, you can choose to not update the

lightbulb status.

5. After the update, the device sends a message to topic / shadow/ updat e/ 10000/ | i ght bul b

to report the latest status. The message is as follows:

"met hod": "update",
"state": {
"desired":"nul |"

},

"version": 3

}

6. After the status has been reported, the device shadow is synchronously updated. The device

shadow JSON file is as follows:

{

"state" : {
"reported" : {
"color" : "green"
}

"metadata" : {
"reported” : {
“col or"

"timestanp” : 1469564577
}



}

" esired" : {

"timestanp” : 1469564576
}

b

"version" : 3

}

Device obtains device shadow

The flow chart is as follows:

Figure 2-9: Device obtains device shadow

o

The device sends a command to

device shadow to query the device
n shadow status. 3

Obtains the latest status.

O O Device shadow

<
¢

The server sends the latest device shadow status to the device.
@ Obtains the device shadow status from the database.

——————————
- ~
~x

- -
__________

1. The lightbulb sends a message to topic / shadow/ updat e/ 10000/ | i ght bul b and obtains

the latest status saved in the device shadow. The message is as follows:

“met hod": "get"
}

2. When the device shadow receives above message, the device shadow sends a message to
topic / shadow/ get / 10000/ | i ght bul b. The lightbulb is subscribed to this topic, and the

message is as follows:

"met hod": "repl y",

"payl oad": {
"status":"success",
"state": {
"reported": {
“color": "red"
"desired": {

“color": "green"



}
}

tadata": {
"reported": {

"color": {

"timestanp”": 1469564492
}
}

"desired": {

"col or":

"tinmestanp": 1469564492
}
}
}
}

, ersion": 2,
"timestanp": 1469564576
}

3. The SDK uses the IOT_Shadow_Pull operation to obtain the device shadow.
| OT_Shadow_Pul | (h_shadow) ;

Function prototype:

/**

@rief Synchronize device shadow data from cl oud.
It is a synchronous interface.

@aram [in] handl e: The handl e of device shaodw.
@etval SUCCESS RETURN : Success.

@etval other : See iotx_err_t.

* @ee None.

*/

iotx_err_t |OT_Shadow Pull (void *handl e);

E o T .

Device deletes device shadow attributes

The flow chart is as follows:



Figure 2-10: Delete device shadow attributes

The device sends a command to
ﬂ device shadow to delete attribute&

The server sends the operation result
(success or failure) to the device.

Obtains the latest status.

O O Device shadow

<
<

@) Deletes device shadow status from the database.

,,,,,
.

~ -
_________

1. The lightbulb wants to delete the specified attributes saved in the device shadow. The lightbulb
sends a JSON message to topic / shadow/ updat e/ 10000/ | i ght bul b. The message is as

follows:

+ The JSON format for deleting the specified attributes:

"met hod": "del ete",
"state": {
"reported": {
"color": "null",
"tenperature":"null"
}

b

"version": 1

}

+ The JSON format for deleting all attributes:

"met hod": "del ete",
"state": {
"reported”:"null"
},

"version": 1

}

To delete attributes, you need to set method to delete and set the values of the attributes to null



2. The SDK uses the IOT_Shadow_DeleteAttribute operation to delete device shadow attributes.

The following parameters are provided:

| OT_Shadow Del et eAttri bute(h_shadow, &attr tenperature);
| OT_Shadow Del et eAttri but e(h_shadow, &attr_light);
| OT_Shadow_Dest r oy( h_shadow) ;

Function prototype:

/**

* @rief Delete the specific attribute.

*

* @aram|[in] handle: The handl e of device shaodw.

* @aram|[in] pattr: The paraneter to be deleted from server.
* @etval SUCCESS RETURN : Success.

* @etval other : See iotx err _t.

* @ee None.

*/

iotx_err_t |OT_Shadow Del eteAttribute(void *handl e, iotx _shado
w attr_pt pattr);

2.5.3 Use device shadows

This topic describes the communication between devices, device shadows, and applications.
Context

A device shadow is the shadow that is built on loT Platform based on a special topic for the
related device. This device synchronizes status to the cloud using this device shadow. The
cloud can quickly obtain the device status from the device shadow even when the device is not

connected to loT Platform.

Procedure

1. The C SDK provides the IOT_Shadow_Construct function to create the device shadow.

The function is declared as follows:

/**

* @rief Construct the device shadow.

* This function is used to initialize the data structures, establish
MOTT- based connecti ons.

* and subscribe to the topic: "/shadow get/ ${product key}/${

devi ce_nane}".

*

* @aram|[in] pparam The specific initial paramneter.

* @etval NULL : The construction of the shadow fail ed.
* @etval NOT_NULL : The construction is successful.

* @ee None.

*/



void *1 OT_Shadow Construct (i ot x_shadow _para_pt pparan);

2. Use the IOT_Shadow_RegisterAttribute function to register the properties of the device

shadow.

The function is declared as follows:

/**

* @rief Create a data type registered to the server.

*

* @aram[in] handl e: The handl e of the device shadow.

* @aram|[in] pattr: The paranmeter registered to the server.
* @etval SUCCESS RETURN : Success.

* @etval other : See iotx err_t.

* @ee None.

*

/

iotx_err_t |OT_Shadow RegisterAttribute(void *handl e, iotx_shado
w attr_pt pattr);

3. You can use the I0T_Shadow_Pull function in the C SDK to synchronize device status to loT

Platform whenever the device shadow starts.

The function is declared as follows:

/**

* @rief Synchronize device shadow data to the cloud.
* |t is a synchronization function.

* @aram]|[in] handle: The handl e of the device shadow.
* @etval SUCCESS RETURN : Success.

* @etval other : See iotx err _t.

* @ee None.

*/

iotx_err_t |0OT_Shadow Pull (void *handl e);

4. When the device updates its status, you can use IOT_Shadow_PushFormat_|Init,
I0OT_Shadow_PushFormat_Add, and IOT_Shadow_PushFormat_Finalize in the C SDK to
update the device status, and use IOT_Shadow_Push in the C SDK to synchronize the status

to the cloud.

The function is declared as follows:

* %

@rief Start processing the structure of the data type fornmat.

@aram [in] handl e: The handl e of the device shadow.

@aram [out] pformat: The format structure of the device shadow.
@aram [in] buf: The buffer that stores the device shadow.
@aram [in] size: The maxi mum | ength of the device shadow
attribute.

* @etval SUCCESS RETURN : Success.

* @etval other : See iotx_err_t.

* @ee None.

* % X kX F T~



*/
iotx_err_t |OT_Shadow PushFormat |nit(
voi d *handl e,
format _data_pt pfornmat,
char *buf,
uintl6 t size);

* %

@rief The format of the attribute nane and val ue for the update.

@aram [in] handl e: The handl e of the device shadow.

@aram [in] pformat: The format structure of the device shadow.
@aram [in] pattr: The data type format created in the added
nmenber attributes.

* @etval SUCCESS RETURN : Success.

* @etval other : See iotx_err_t.

* @ee None.

*/

iotx_err_t |OT_Shadow PushFor mat Add(

voi d *handl e,

format _data_pt pfornmat,

i ot x_shadow attr_pt pattr);

* % X F X T~

/**

* @Brief Conplete processing the structure of the data type fornmat.
*

* @aram|[in] handl e: The handl e of the device shadow.

* @Param [in] pformat: The format structure of the device shadow.

* @etval SUCCESS RETURN : Success.

* @etval other : See iotx err_t.

* @ee None.

*

/

iotx_err_t |OT_Shadow PushFormat _Finalize(void *handl e, format_dat
a_pt pformat);

5. To disconnect the device from loT Platform, use IOT_Shadow_DeleteAttribute and
IOT_Shadow_Destroy in the C SDK to delete all properties that have been created for this

device on loT Platform, and release the device shadow.

The function is declared as follows:

*
*

@rief Deconstruct the specific device shadow.

@aram [in] handl e: The handl e of the device shadow.
@etval SUCCESS RETURN : Success.

@etval other : See iotx err_t.

@ee None.

b T R R

~



iotx_err_t |OT_Shadow Destroy(void *handl e);

2.6 Configure a TSL-based device

This topic describes how to configure a device based on a TSL model.

Note:
Only loT Platform Pro supports this feature.

Prerequisites

Create a product, add a device, and define the TSL in the loT Platform console. A TSL model
describes the properties, services, and events of a device, as shown in figure Figure 2-11: Create

devices.

Figure 2-11: Create devices

Establish a connection to loT Platform

1. For more information about establishing an MQTT connection to connect a device and loT
Platform, see Establish MQTT over TCP connections.
2. Call the linkkit_start operation in the device SDK to establish a connection to loT Platform and

subscribe to topics.

When you use the device SDK, save a shadow for the device. A shadow is an abstraction of a
device, which is used to retrieve the status information of the device. The interaction process
between a device and loT Platform is a synchronization process between the device and

shadow and between the shadow and loT Platform.

Variable get_tsl_from_cloud is used to synchronize the TSL model from loT Platform when the

device comes online.

+ get_tsl_from_cloud = 0: Indicates that a TSL model has been pre-defined. TSL_STRING is

used as the standard TSL model.

The SDK copies the TSL model that is created in the console, uses the TSL model to define
TSL_STRING in linkkit_sample.c, and then calls the linkkit_set_tsl operation to set the pre-
defined TSL model.

Note:



Use the C escape character correctly.

+ get _tsl from_cloud = 1: Indicates that no TSL model has been pre-defined. The SDK must

dynamically retrieve the TSL model from loT Platform.

Dynamically retrieving a TSL model consumes a large amount of memory and bandwidth.
The specific consumption depends on the complexity of the TSL model. A TSL model of 10

KB consumes about 20 KB of memory and 10 KB of bandwidth.

3. Use the linkkit_ops_t parameter to register the callback.

linkkit_start(8, get_tsl_fromcloud, |inkkit_Ioglevel debug, &
al i nkops, linkkit cloud domain_sh, sanple _ctx);
if (! get tsl _fromcloud) {
linkkit_set tsl(TSL_STRING strlen(TSL_STRI NG );
}

Function implementation:

typedef struct _linkkit_ops {

int (*on_connect)(void *ctx);

int (*on_disconnect)(void *ctx);

int (*raw data_arrived)(void *thing_id, void *data, int len, void

*ctx);

int (*thing_create)(void *thing_id, void *ctx);

int (*thing_enable)(void *thing id, void *ctx);

int (*thing_disable)(void *thing id, void *ctx);
#i f def RRPC_ENABLED

int (*thing_call _service)(void *thing id, char *service, int
request _id, int rrpc, void *ctx);
#el se

int (*thing_call _service)(void *thing id, char *service, int
request _id, void *ctx);
#endi f /* RRPC_ENABLED */

int (*thing_prop_changed)(void *thing id, char *property, void *
ctx);
} linkkit _ops_t;
/**
* @rief start linkkit routines, and install callback funstions(
async type for cloud connecting).
*

* @aram max_buffered _nsg, specify max buffered nessage si ze.

* @aram ops, callback function struct to be installed.

* @aramget _tsl_fromcloud, config if device need to get tsl from
cloud(! 0) or local (0), if local selected, nust invoke |linkkit_ se

t_tsl totell tsl to dmafter start conplete.

* @aramlog_level, config |log | evel.

* (@aram user_context, user context pointer.

* @aram donai n_type, specify the could server donain.

*

* @eturn int, O when success, -1 when fail.

*/

int linkkit_start(int max_buffered nsg, int get tsl fromcloud

, linkkit_loglevel t log level, linkkit_ops_t *ops, |inkkit_cl
oud_donai n_type_t donmain_type, void *user_context);

/**



* @rief install user tsl.
*

* @aramtsl, tsl string that contains json description for thing
obj ect .
* @aramtsl _len, tsl string |ength.

*

* @eturn pointer to thing object, NULL when fails.
*/
extern void* linkkit_set tsl(const char* tsl, int tsl_len);

4. After you have connected the device to loT Platform, log on to the loT Platform console and

verify whether the device has come online.

Figure 2-12: Device comes online

Send property changes to loT Platform

1. When the properties of a device change, the device automatically sends the changes to loT
Platform by publishing to topic / sys/ { pr oduct Key}/ { devi ceNane}/t hi ng/ event/
property/ post.

Request:

TOPI C. /sys/{product Key}/{devi ceNane}/t hi ng/ event/ property/ post
REPLY TOPI C. /sys/{product Key}/{devi ceNane}/t hi ng/ event/ property/
post _reply

request

i

"id" o "123",
"version":"1.0",
“paranms" : {
"Power Swi tch" : 1

" et hod" : "t hi ng. event . property. post"

}

response
{
"jd":"123",
"code": 200,
"data":{}

}

2. The SDK calls the linkkit_set_value operation to modify the property of the shadow, and then

calls the linkkit_trigger_event operation to synchronize the shadow to loT Platform.

Note:

The device will automatically send the current property of the shadow to loT Platform.



Function:

I'inkkit_set val ue(linkkit_method_set property val ue, sanpl e->t hi ng,
EVENT _PROPERTY_POST | DENTI FI ER, val ue, value_str); // set value
return linkkit_trigger_event (sanpl e->t hi ng, EVENT_PROPERTY_POST _

| DENTI FI ER, NULL); // update value to cloud

Function implementation:

/**

* @rief set value to property, event output, service output itens.
* if identifier is struct type or service output type or event
output type, use '.' as delinmeter like "identifierl.ientifier2"

* to point to specific item

* val ue and value _str could not be NULL at the same tine;

* if value and value_str both as not NULL, value shall be used and

val ue_str will be ignored.
* if value is NULL, value str not NULL, value str will be used.
* in brief, value will be used if not NULL, value str will be used

only if value is NULL.
*

* @aram net hod _set, specify set value type

* @aramthing_id, pointer to thing object, specify which thing to
set .

* @aramidentifier, property, event output, service output

i dentifier.

* @aramvalue, value to set.(input int* if target value is int type
or enumor bool, float* if float type,

* long long* if date type, char* if text type).

* @aramvalue str, value to set in string format if value is null

*

* @eturn 0 when success, -1 when fail

*/

extern int |inkkit_set_val ue(linkkit_method_set_t nethod_set, const

voi d* thing id, const char* identifier,

const voi d* val ue, const char* value_str);

/**

* @rief trigger a event to post to cloud.

*

* @aramthing_id, pointer to thing object.

* @aramevent _identifier, event identifier to trigger.

* @aram property_identifier, used when trigger event with nethod "
event . property.post”, if set, post specified property, if NULL, post
all.

*

* @eturn 0 when success, -1 when fail

*/

extern int linkkit_trigger_event(const void* thing_id, const char*

event _identifier, const char* property_identifier);

Get a device property on loT Platform

1. You can log on to the loT Platform console and use topic / sys/ { pr oduct Key}/ {

devi ceNane}/t hi ng/ servi ce/ property/ get to geta property of a device



Request:

TOPI C. /sys/{product Key}/{devi ceNane}/t hi ng/ servi ce/ property/ get
REPLY TOPI C. /sys/{product Key}/{devi ceNane}/t hi ng/ service/ property/

get _reply
request

{

“id" o "123",
"version":"1.0"
"parans” : |

" power Swi t ch"

]

}

response

: thod": "t hi ng. service. property. get”

{

"id":"123",
"code": 200,
"data":{

"power Switch": 0
}

}

2. When the device receives the GET command from loT Platform, the SDK executes the

command to read the property value from the shadow and returns the value to loT Platform.
Set a device property on loT Platform

1. You can log on to the loT Platform console and use topic / sys/ { pr oduct Key}/ {

devi ceNane}/t hi ng/ servi ce/ property/ set to seta property of a device client.

Request:

TOPI C. /sys/{product Key}/{devi ceNanme}/t hi ng/ servi ce/ property/set
REPLY TOPI C. /sys/{product Key}/{devi ceNane}/t hi ng/ service/ property/

set _reply

payl oad:

{

"id" o "123",
"version":"1.0"
"paranms” : {

"Power Swi tch" : O,

"Hethod":"thing.service.property.set"

}

response
{
"id":"123",
"code": 200,
"data":{}



}

2. The SDK registers the thing_prop_changed callback function in the linkkit_ops_t parameter
of the linkkit_start method to respond to the request sent from loT Platform for setting device

properties.

3. The linkkit_get_value parameter in the callback function is used to get the device property of
the shadow, which is the same as the device property that is modified on IoT Platform.

4. After setting the new property value, you can implement the linkkit_answer_service function to
return the result to 10T Platform. You can choose whether to perform this task based on your

business needs.

Function implementation:

static int thing prop_changed(void* thing_id, char* property, void*
ct x)

char* value_str = NULL;

linkkit_get val ue(linkkit_method_get property value, thing_id,
property, NULL, &val ue_str);

LI NKKI T_PRI NTF( " #### property(%) new val ue set: % ####\n",
property, value_str);

/* do user's process |ogical here. */

linkkit trigger_event(thing_ id, EVENT PROPERTY_ POST | DENTI Fl ER,
property);

return O;

}

Callback function:
int (*thing prop_changed)(void *thing_id, char *property, void *ctx);

Function implementation:

/**

* @rief get value from property, event output, service input/output
itemns.

* if identifier is struct type or service input/output type or event
output type, use '.' as delineter like "identifierl.ientifier2"

* to point to specific item

* value and value_str could not be NULL at the sane tineg;

* if value and value_str both as not NULL, value shall be used and

val ue_str will be ignored.
* if value is NULL, value_str not NULL, value_str will be used.
* in brief, value will be used if not NULL, value str will be used

only if value is NULL.
* @aram net hod_get, specify get val ue type.
* @aramthing_id, pointer to thing object, specify which thing to get

* @aramidentifier, property, event output, service input/output
identifier.



* @aramvalue, value to get(input int* if target value is int type or
enum or bool, float* if float type,

* long long* if date type, char* if text type).

* @aramvalue str, value to get in string format. DO NOT nodify this

when function returns,

* user should copy to user's own buffer for further process.

* user should NOT free the nmenory.

*

* @eturn 0 when success, -1 when fail

*/

extern int linkkit_get_val ue(linkkit_method_get t nethod_get, const

voi d* thing id, const char* identifier,

voi d* val ue, char** value_str);

Function:

linkkit set value(linkkit_method set service_output_val ue, thing,
identifier, &sanple->service_customoutput contrastratio, NULL);
i nkkit _answer _service(thing, service_identifier, request _id, 200);

Function implementation:

/**

* @rief set value to property, event output, service output itens.

* if identifier is struct type or service output type or event output
type, use '.' as delineter like "identifierl.ientifier2"

* to point to specific item

* value and value_str could not be NULL at the sane tineg;

* if value and value_str both as not NULL, value shall be used and

val ue_str will be ignored.
* if value is NULL, value_str not NULL, value_str will be used.
* in brief, value will be used if not NULL, value str will be used

only if value is NULL.
*

* @aram et hod_set, specify set value type
* @aramthing id, pointer to thing object, specify which thing to set

* @aramidentifier, property, event output, service output identifier

* @aramvalue, value to set.(input int* if target value is int type
or enumor bool, float* if float type,

* long long* if date type, char* if text type).

* @aramvalue_str, value to set in string format if value is null
*

* @eturn 0 when success, -1 when fail.

*/

extern int linkkit_set value(linkkit_method set t nethod set, const
voi d* thing_id, const char* identifier,

const voi d* value, const char* value_str);

/**

* @rief answer to a service when a service requested by cloud.

* X *

@aramthing_id, pointer to thing object.

@aram service_identifier, service identifier to answer, user should
get this identifier from handl e_dm call back_fp_t type call back
* report that "dm.cal |l back_type_servi ce_requested" happened, use this
function to generate response to the service sender.



* @aramresponse_id, id value in response payload. its value is from
"dm cal | back_type service requested" type call back function

* use the sane id as the request to send response as the sane

communi cati on sessi on.

* @param code, code value in response payl oad. for exanple, 200 when
service is successfully executed, 400 when not successfully execut ed.

* @aramrrpc, specify rrpc service call or not.
*

* @eturn 0 when success, -1 when fail.

*/

extern int |inkkit_answer_service(const void* thing_id, const char*
service_identifier, int response_id, int code);

loT Platform requests a service from the device.

1. loT Platform uses topic / sys/ { pr oduct Key}/ { devi ceNane}/t hi ng/ servi ce/ { dsl
.service.identifer} toinvoke a service from the device. The service is defined in

dsl.service.identifer of the standard TSL model.

TOPI C. /sys/{product Key}/{devi ceNane}/t hi ng/ servi ce/ {dsl . servi ce.

i dentifer}

REPLY TOPI C:

/ sys/ {product Key}/{devi ceNane}/t hi ng/ servi ce/ {dsl . service.identifer}

_reply
request

L

id" oo "123",
"version":"1.0",
"params" : {

" Sprinkl eTi me" : 50,

" Sprinkl eVol une" : 600

"Hethod":"thing.service.AutoSprinkIe"
}

response

{

"id":"123",

"code": 200,

"data":{}

}

2. The SDK registers the thing_call_service callback function in the linkkit_ops_t parameter of the

linkkit_start method, to send a response to the service request.

3. After setting the new property value, you must call the linkkit_answer_service function to send

a response to loT Platform.

Function:

int (*thing_call _service)(void *thing_id, char *service, int
request _id, void *ctx);

Function implementation:



static int handl e_service_custon(sanpl e_context t* sanple, void*
thing, char* service identifier, int request_id)

{

char identifier[128] = {0};

/*

* get iutput val ue.

*/

snprintf(identifier, sizeof(identifier), "%.%", service_identifier
, "SprinkleTinme");

i nkkit_get _val ue(linkkit_nethod_get_service_i nput _val ue, thing,
identifier, &sanple->service_custom.input_transparency, NULL);

/*

* set output value according to user's process result.

*/

snprintf(identifier, sizeof(identifier), "%.%", service_identifier
, "Sprinkl eVol ume") ;

sanpl e- >servi ce_custom out put _contrastrati o = sanpl e->servi ce_cu
stom.input _transparency >= 0 ? sanpl e->servi ce_custom i nput
_transparency : sanpl e->servi ce_custom.input_transparency * -1;
l'inkkit set val ue(linkkit_method set service_output_val ue, thing,
identifier, &sanple->service_customoutput contrastratio, NULL);

i nkkit _answer _service(thing, service_identifier, request _id, 200);
return O;

}
Send events to loT Platform

1. A device subscribes to topic / sys/ { pr oduct Key}/{devi ceNane}/t hi ng/ event/{
dsl . event.identifer}/post tosendan eventto loT Platform. The event is defined in

dsl.event.identifer of the standard TSL model.

Request:

TOPI C. /sys/{product Key}/{devi ceNane}/t hi ng/ event/{dsl. event.

i dentifer}/post

REPLY TOPI C. /sys/{product Key}/{devi ceNane}/thi ng/ event/{dsl . event.
i dentifer}/post reply

request

{

n i dll : n 123" ,
"version":"1.0"
"paranms" : {

"Error Code" : O

"hethod":"thing.event.Error.post"

}

response:

{

“id" o "123",
"code": 200,
"data" : {}

}

2. The SDK calls the linkkit_trigger_event method to send an event to loT Platform.



Function:

static int post_event _error(sanple_context t* sanple)

{

char event_output _identifier[64];
snprintf(event output identifier, sizeof(event output identifier)
"0s. %", EVENT_ERRCR | DENTI FI ER, EVENT_ERROR _QUTPUT | NFO_| DENTI F

)

i nt errorCode = O;

I'i nkkit_set_val ue(linkkit_met hod_set _event _out put _val ue,

sanpl e- >t hi ng,

event output _identifier,

&error Code, NULL);

return linkkit trigger_event (sanpl e->t hing, EVENT _ERROR | DENTI FI ER
NULL) ;

}

Function implementation:

*
*

@rief trigger a event to post to cloud.

@aramthing_id, pointer to thing object.

@aram event _identifier, event identifier to trigger.

@aram property identifier, used when trigger event with nethod "
event. property.post”, if set, post specified property, if NULL, post
all.

*

* @eturn 0 when success, -1 when fail.

*/

extern int linkkit_trigger_event(const void* thing_id, const char*
event _identifier, const char* property_identifier);

EE T T

| ER



3 Java SDK

This topic describes how to connect devices to Alibaba Cloud IoT Platform over the MQTT

protocol. The Java SDK is used as an example.

Prerequisites

In this demo, a Maven project is used. Install Maven first.

Context

This demo is not made for the Android operating system. If you are using Android, see open-

source library https://github.com/eclipse/paho.mqtt.android.

Procedure
1.
2.

Download the mqttClient SDK at iotx-sdk-mqtt-java.
Use IntelliJ IDEA or Eclipse to import the demo into a Maven project.

Log on to the Alibaba Cloud loT Platform console, and select Devices. Click View next to the

device to obtain the ProductKey, DeviceName, and DeviceSecret.
Modify and run the SimpleClient4lOT.java configuration file.

a) Configure the parameters.

[** Cbtain Product Key, DeviceNane, and Devi ceSecret fromthe
consol e */

private static String productKey

private static String deviceNanme

private static String deviceSecret = "";

[** The topics used for testing */

private static String subTopic = "/"+product Key+"/" +devi ceNane+"/
get";

private static String pubTopic = "/"+product Key+"/" +devi ceNane+"/
pub”;

b) Connect to MQTT server.

/[l The client device ID. It can be specified using either MAC
address or device serial nunber. It cannot be enpty and nust
contain no nore than 32 characters

String clientld = | net Address. get Local Host () . get Host Addr ess() ;

/1 Authenticate the device

Map paranms = new HashMap();

par ans. put (" product Key", productKey); // Specifies the product key
that the user registered in the console

par ans. put ("devi ceNane", devi ceNane); // Specifies the device nane
that the user registered in the console

parans. put ("clientld", clientld);

String t = SystemcurrentTineMIIlis()+"";

params. put ("ti mestanp", t);


https://github.com/eclipse/paho.mqtt.android
http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/iotx-sdk-java/iotx-sdk-mqtt-java-20170526.zip

/1 Specifies the MJQIT server. |f using the TLS protocol, begin the
URL with SSL. If using the TCP protocol, begin the URL with TCP

String targetServer = "ssl://"+product Key+".iot-as-nqgtt.cn-

shanghai . al i yuncs. com 1883";

[/ Cient ID format:

String mgttclientld = clientld + "|securenpde=2, si gnnet hod=

hmacshal, ti nestamp="+t+"|"; // Specifies the custom device

identifier. Valid characters include |etters and nunbers. For nore
i nformation, see Establish MJIT over TCP connections (https://

hel p. al i yun. conf docunent _det ai | / 30539. ht M ?spnmra2c4g. 11186623. 6.

592. R3LQgNT)

String nmgttUsernane = devi ceNane+" &" +product Key; // Specifies

user nane for nmat

String mgtt Password = SignUtil.sign(parans, deviceSecret,

hmacshal");// Signature

/'l Code excerpt for connecting over MJIT

Mittcdient sanpleCient = new Mgttdient(url, myttclientld

per si st ence) ;

Myt t Connect Opti ons connCpts = new Mtt Connect Opti ons();

connOpts. setMgttVersion(4);// MJT 3.1.1

connOpt s. set Socket Fact or y( socket Fact ory) ;

/1 Configure autonmatic reconnection

connOpt s. set Aut omat i cReconnect (true);

/[l If set to true, then all offline nmessages are cleared. These
messages include all QS 1 or QS 2 nessages that are not received

connOpt s. set Cl eanSessi on(fal se);

connOpt s. set User Nanme( gt t User nane) ;

connOpt s. set Passwor d( mgt t Passwor d. t oChar Array()) ;

connOpt s. set KeepAl i vel nterval (80);// Specifies the heart beat
interval. W recommend that you set it to 60 seconds or |onger

sanpl eCl i ent. connect (connOpt s) ;

c) Send data.

String content = "The content of the data to be sent. It can be in
any format";

Myt t Message nmessage = new Mjtt Message(content. get Bytes("utf-8"));
message. set Qs(0);// Message QS. 0: At npbst once. 1: At |east
once

sanmpl eCl i ent . publish(topic, nmessage);// Send data to a specified

t opi ¢

d) Receive data.

/'l Subscribe to a specified topic. Wen new data is sent to the
topic, the specified callback method is called

sanpl eCl i ent. subscri be(topic, new | Mgtt MessagelLi stener () {
@verride

public void nessageArrived(String topic, MjttMssage nessage)

t hrows Exception {

/1l After the device successfully subscribes to a topic, when new
data is sent to the topic, the specified callback nethod is called

L you subscribe to the sanme topic again, only the initia
subscription takes effect.

}



s

@ Note:

For more information about MQTT connection parameters, see Establish MQTT over TCP

connections.



4 i0S SDK

This document describes how to connect your iOS devices to loT Platform using the iOS SDK.

The SDK uses CocoaPods to manage dependencies. We recommend that you use CocoaPods

version 1.1.1 or later.

The iOS SDK has the following features: establish connections using the message queuing
telemetry transport (MQTT) protocol, maintain persistent connections, and send MQTT-based

upstream and downstream requests.
Integrate the SDK

1. To integrate the SDK, add the following lines to the Podfile in your Xcode project directory.

source ' https://github. conf CocoaPods/ Specs. git'
source 'https://github.confaliyun/aliyun-specs.git'
target "necslinkdeno" do

pod ' | M_Channel Cor e’

pod ' OpenSSL'

end

2. Log on to the Alibaba Cloud IoT Platform console, and select Devices. Click View next to the

device to obtain the ProductKey, DeviceName, and DeviceSecret.

3. To develop your code using the SDK, see the following instructions.

Initialize the SDK

Use the ProductKey, DeviceName, and DeviceSecret to establish a secure persistent connection

with loT Platform and configure your server address and port.

#i npor t

#i mpor t

LKI oTConnect Config * config = [ LKIoTConnect Confi g new ;

confi g. product Key = @your product key";

confi g. devi ceNane = @your devi ce nane";

config. devi ceSecret = @your device secret"”;

config.server = @ww. yourserver.com';// If set to nil, then IoT
Platformis used as the server to connect to.

config.port = 1883,// Your server port. If the server value is set to
nil, then port setting can be ski pped.

config.receiveOflineMsg = NG // If you want to receive nessages when
the client is offline, set it to YES

[[ LKI oTExpress sharedl nstance] start Connect: confi g connectLi stener: self

l;



/1 If config.server is set to nil, then the China (Shanghai) node
is connected by default: ${yourproductKey}.iot-as-nmgtt.cn-shanghai .
al i yuncs. com 1883°

Upstream request
The SDK encapsulates operations such as upstream publish, subscribe, and unsubscribe.

The upstream request can only be used after the SDK is initialized and a connection is establishe

d

/**

The renpte procedure call (RPC) request APl encapsul ates the upstream
request and downstream response of the business |ogic. The request
nmessages cont ai ni ng your business data are encapsul ated by the SDK

based on the Alink protocol. A request nessage resenbles the foll owi ng

{

"id":"msgld" // Message |ID

"systent: {

"version": "1.0", // Message version. Required. The current version is
1.0

“time": "" [/ The tinme (in nmilliseconds) of the nessage. Required

}

’equest": {

I

"paranms": {

%

@aramtopic The topic that is requested by RPC, depending on your
busi ness logic. The conplete topic is as foll ows:

/ sys/ ${ product Key}/ ${ devi ceNane}/ app/ abc/ cba

@aram opts This is an optional paraneter

Exampl e, {"extraParam':{"nethod":"thing.topo.add"}}

This inserts "method":"thing.topo.add" into the final business data.
The paraneter is on the sane |evel as the params in the business data.
@ar am paranms The busi ness data paraneter.

@ar am r esponseHandl er The response handl er of your business server.
For nore information, see LKExpressResponse

*/

-(void)i nvokeW t hTopic: (NSString *)topic opts: (NSDi cti onary* _Nullable
)opt s

parans: (NSDi cti onary*) parans respHandl er: (LKExpr essResponseHand| er)
responseHandl er;

/**

The data is upstreaned directly. It is not converted to the Alink
prot ocol .

@ar am topi ¢ The nessage topic

@aram dat The data that is passed through

@ar am conpl et eCal | back The cal | back of data upstreamresult

*/

-(voi d)upl oadDat a: (NSString *)topic data: (NSData *)dat conpl ete: (
LKExpr essOnUpst r eanmResul t) conpl et eCal | back;

/**

No receipt is issued for upstream data. The SDK encapsul ates the
busi ness nessages based on the Alink protocol.

@aram topi ¢ The conpl ete nmessage topic

@ar am par ams The busi ness par anet er

@ar am conpl et eCal | back The cal | back of data upstream result



*/

-(void)publish: (NSString *) topic parans: (NSD ctionary *)parans
compl et e: (LKExpr essOnUpst r eanResul t) conpl et eCal | back

/**

Subscribe to a topic

@aram topi c The topic of a subscribed nessage, dependi ng on your
busi ness logic. A conplete topic section nust be specified.

I sys/ ${ pr oduct Key}/ ${ devi ceNane}/ app/ abc/ cba

@ar am conpl eti onHandl er The cal | back when the subscription has
ended. |If the error field is enpty, the subscription is successful.
O herwi se, the subscription has failed.

*/

- (void)subscribe: (NSString *)topic conplete: (void (~)(NSError *
_Null abl e error))conpl eti onHandl er;

/**

Unsubscri be froma topic

@aram topi c The topic of a subscribed nessage, dependi ng on your
busi ness logic. A conplete topic section nust be specified.

/ sys/ ${product Key}/ ${devi ceNane}/ app/ abc/ cba

@ar am conpl eti onHandl er The cal | back when the subscription has
ended. If the error field is enpty, the subscription is successful.
O herwi se, the subscription has failed.

*/

- (void)unsubscribe : (NSString *)topic conplete: (void (")(NSError *
_Null abl e error))conpl eti onHandl er;

The differences among the three upstream methods are as follows:

-(void)invokeWt hTopi c: (NSString )topic opts: (NSDictionary _Nullable
)opts respHandl er: (LKExpr essResponseHandl| er) responseHand! er; :The
following is a response model for business request. The server throws back a response in the
responseHandler callback when a request is sent out.

upl oadDat a: (NSString )topic data: (NSData )dat conpl ete: (LKExpressO
nUpst r eanResul t) conpl et eCal | back; : This is a data passthrough method. The
message is directly sent upstream to the cloud. No response is sent back.
-(void)publish: (NSString ) topic parans: (NSDi ctionary ) parans

conpl et e: (LKExpr essOnUpst r eanResul t) conpl et eCal | back; : The data is sent
upstream after it is encapsulated as business data based on the Alink protocol. For more

information about the Alink protocol, see the API Reference.

An example of business requests and responses is as follows:

NSString *topic = @/ sys/ ${product Key}/ ${devi ceNane}/ account/ bi nd";
NSDi ctionary *parans = @

@i ot Token": token,

)5

[[ LKI oTExpress sharedl nstance] invokeWthTopic:topic

opts: nil

par ans: par ans

respHandl er: "( LKExpr essResponseHandl er * _Nonnull response) ({

if (![ response successed]) {



NSLog( @ Busi ness request failed");

5
/'l ${productKey} refers to the ProductKey

/1 ${deviceNane} refers to Devi ceNane

An example of calling the operation to subscribe to topic is as follows:

NSString *topic = @/sys/ ${product Key}/ ${devi ceNane}/ app/ down/ event";
[[ LKI oTExpr ess sharedl nstance] subscribe:topic conplete: ~(NSError *

error) {

if (error ! =nil) {

NSLog( @ Busi ness request failed");
}

s

Downstream data listener

The following is the downstream message listener API pushed from the cloud once you subscribe

to a topic.

@r ot ocol LKExpressDownLi st ener <NSCbj ect >

- (voi d)onDownstream (NSString *) topic data: (id _Nullable) data;///<
topi c: The nessage topic. data: The nessage content. The data type of
the paraneter can be either NSString or NSDi ctionary

- (BOOL) shoul dHandl e: (NSString *)topic;///<You can first filter the
data before you use onDownstream data: to push the data. If NOis
returned, then the data is not pushed. If YES is returned, then

onDownstream data: is used to push the data.

@nd

[[LKI oTExpr ess sharedl nstance] addDownstreanli st ener: LKExpr essD

ownlLi st ener TypeGw | i stener: (i d<LKExpr essDownLi st ener >) downLi st ener];
/'l The downListener in this SDK is a weak reference object. Therefore
, the caller needs to maintain its life cycle.

Recommendations

We recommend that you decouple ProductKey, DeviceName, and DeviceSecret from the client
user account when you establish a channel connection. Your application uses only one set of

ProductKey, DeviceName, and DeviceSecret to establish a connection with 0T Platform.

The client user account can be switched by rebinding the ProductKey, DeviceName, and

DeviceSecret of the device with a different client user account.

Two different client user accounts can use the same channel, if ProductKey, DeviceName, and
DeviceSecret are rebound. This means that the binding between the channel and the client user

account can be changed dynamically.



5 HTTP/2 SDK

You can use the HTTP/2 protocol to establish communication between your devices and loT
Platform. The following is an HTTP/2 SDK development demo that you can use as reference to

help you develop your own HTTP/2 SDK.
Prerequisites

In this demo, a Maven project is used. You must have installed Maven before you begin.
Procedure

1. Download the HTTP/2 SDK at the following link: iot-http2-sdk-demo.
2. Use IntelliJ IDEA or Eclipse to import the demo into a Maven project.

3. Obtain the device information (ProductKey, DeviceName, and DeviceSecret) on the loT

Platform console. For more information, see User Guide>Create products and devices.

4. Modify the H2Client.java configuration file.
a. Configure the parameters.

[/ Cbtain the Product Key, DeviceNane, and Devi ceSecret of the
device fromthe 10T Platform consol e.

String productKey = "";

String deviceNane = "";

String deviceSecret = "";

/1l The topics that are used to recei ve nessages.
String subTopic = "/" + productKey + "/" + deviceNanme + "/get";
String pubTopic = "/" + productKey + "/" + deviceNanme + "/update”;

b. Connect to the HTTP/2 server to receive data.

/1 endPoint: https://${uid}.iot-as-http2.${region}.aliyuncs.com
String endPoint = "https://" + productKey + ".iot-as-http2.cn-
shanghai . al i yuncs. cont';

/1 The unique identifier of the client device.
String clientld = | net Address. get Local Host () . get Host Addr ess() ;

/1l Configure for device connection
Profile profile = Profil e.getDeviceProfil e(endPoi nt, productKey,
devi ceNane, devi ceSecret, clientld);

/1A value of true indicates that all offline nessages will be
cleared. Ofline nessages refer to all nessages that were not
recei ved when nmessages were sent with QS 1 or QS 2.
profile.setd eanSessi on(fal se);

/I Construct the client
MessageCient client = Messaged i entFactory. messageClient(profile

)E

/] Receive data


http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/java-http2-sdk-demo/iot-http2-sdk-demos.zip

client.connect (nessageToken -> {

Message m = nessageToken. get Message() ;
Systemout. println("receive message from" + m;
return MessageCal | back. Acti on. Conmi t Success;

DK

¢. Subscribe to topics.

/1 Subscribe to topics. After the topic subscription is successful
, you can receive nessages by using the callback interface when
the device i s connect ed.

Conpl et abl eFut ure subFuture = client.subscribe(subTopic);
Systemout.println("sub result : " + subFuture.get());

d. Send data.

// Send nessages.

MessageToken nmessageToken = client. publish(pubTopi c, new Message("
hello iot".getBytes(), 0));

System out. println("publish success, messageld: " + nessageToken.
get Publ i shFuture().get().get Messagel d());

5. Run the code after you have modified the configuration file.
Interface description
* Identity authentication interface

When you connect devices to loT Platform, you can use Profile to configure identity information

of the devices. The interface parameters are as follows:

Profile profile = Profil e.getDeviceProfil e(endPoint, productKey,
devi ceNane, devi ceSecret, clientld);
MessageC ient client = Messaged i ent Factory. nessaged ient(profile);
client.connect (nessageToken -> {
Message m = nessageToken. get Message() ;
Systemout.println("receive nessage from" + m;
return MessageCal | back. Acti on. Conmi t Success;

1)

Description of parameters in Profile.

Name Type Required| Description

endPoint String Yes The endpoint address. The endpoint
format is: https://${productKey}.iot-as
-http2.${regionld}.aliyuncs.com. For
example, https://al2sdABC1234.iot-as-
http2.cn-shanghai.aliyuncs.com

productKey String Yes The ID of the product to which the
device belongs. You can get this
information on the loT Platform console.




Name Type Required| Description

deviceName String Yes The name of the device. You can get
this information on the loT Platform
console.

deviceSecret String Yes The secret of the device. You can get
this information on the loT Platform
console.

clientld String Yes The unique identifier of the client device.

cleanSession Boolean | No Determines whether or not to clear the
messages that were not received when
they were sent with QoS 1 or QoS 2.

heartBeatInterval Long No The interval of heartbeat, in milliseconds

heartBeatTimeOut Long No The timeout time of a heartbeat, in
milliseconds.

multiConnection Boolean | No Determines whether or not to use
multiple connections. If the device
productKey and deviceName are used
for device connection, set this parameter
value as false.

callbackThreadCorePoolSize |Integer |No The size of the core callback thread pool

callbackThreadMaximu Integer [No The maximum size of the callback

mPoolSize thread pool.

callbackThreadBlocki Integer [No The blocking queue of the callback

ngQueueSize thread.

authParams Map No Custom authentication parameters.

Connect to loT Platform

After the MessageClient value is received, you can connect a device to loT Platform. loT

Platform will then authenticate the device identity and, if authentication is successful, the

messages will be sent and received. When you are configuring the connection, you need to

configure a message receiving interface that is able to handle messages without setting a




callback interface. Then, the server can push messages that have been subscribed to the SDK

. The configuration for the connection is as follows:

voi d connect (MessageCal | back nessageCal | back) ;

Message subscription

/**

* Subscribe to a topic

* @aramtopic t opi c

* @eturn conpl etabl eFuture for subscribe result
*/

Conpl et abl eFut ure subscribe(String topic);

/**

* Subscribe to a topic and define the call back topic

* @aramtopic topi c

* @aram nessageCal | back cal | back when nessage received on this
topic

* @eturn conpl etabl eFuture for subscribe result

*/

Conpl et abl eFuture subscribe(String topic, MessageCall back nessageCal
| back) ;

/**

* unsubscribe a topic
*

* @aramtopic t opi c
* @eturn conpl etabl eFuture for unsubscribe result
*/

Conpl et abl eFut ure unsubscri be(String topic);

Receive messages

When you set configurations for receiving messages, you must configure the callback interface
MessageCallback. Additionally, you must set configurations for the connection and for topic
subscription by including the interface MessageClient. The configuration for the message

receiving interface is as follows:

/**
*

* @aram nessageToken nessage token

:/ @eturn Action action after consuning

Action consune(final MessageToken nmessageToken);
When messages are received by using MessageToken.getMessage, this method will be called
. Because the interfaces are called in the thread pool, note the following security issues. The
returned values of this method will decide whether or not to return ACKs for messages sent

with QoS 1 and QoS2.



Return value Description

Action.CommitSuccess ACK will be returned.

Action.CommitFailure ACK will not be returned, and the message
will be received later.

Action.CommitAckManually ACK will not be returned automatically. Call
MessageClient.ack() to return ACK manually.

* Publish messages

/**

* Publish a nessage to a specified topic
*

* @aramtopic t opi ¢

* @par am nessage nmessage entity
* @eturn conpl etabl eFuture for publish result
*/

MessageToken publish(String topic, Message nessage);



6 General protocols

6.1 Overview

The Alibaba Cloud IoT Platform already supports MQTT, CoAP, HTTP and other common
protocols, yet fire protection agreement GB/T 26875.3-2011, Modbus and JT808 is not supported,
and in some specialized cases, devices may not be able to connect to IoT Platform. At this point,
you need to use general protocol SDK to quickly build a bridge between your devices and platform

to Alibaba Cloud loT Platform, allowing two-way data communication.
General protocol SDK

The general protocol SDK is a protocol self-adaptive framework, using for high-efficiency bi-
directional communication between your devices or platform to loT Platform. The SDK architectu

re is shown below:

General protocol provides two SDKs: Core SDK and Server SDK.
* General protocol core SDK

Core SDK abstracts abilities like session and configuration management. It acts like a net
bridge between devices and loT Platform and communicates with the Platform in representa
tion of devices. This greatly simplifies the development of loT Platform. Its main features

include:

= provides non-persistent session management capabilities.

= provides configuration management capabilities based on configuration files.
— provides connection management capabilities.

= provides upstream communication capability.

— provides downstream communication capabilities.

= supports device authentication.

If your devices are already connected to the internet and you want to build a bridge between
loT Platform and your devices or existing platform, choose core SDK.

* General protocol server SDK

Server SDK provides device connection service on the basis of core SDK function. lts main

features include:



= supports any protocol that is based on TCP/UDP.

= supports TLS/SSL encryption for transmission.

= supports horizontal expansion of the capacity of device connection.
— provides Netty-based communication service.

= provides automated and customizable device connection and management capability.

If you want to build the connection service from scratch, choose server SDK which provides

socket for communication.
Development and deployment
Create products and devices in loT console

Create products and devices in console. See Create a product (Pro Edition) for more information.
Acquire the ProductKey, DeviceName and DeviceSecret of the net bridge device you've just

created.

Note:
Net bridge is a virtual concept, and you can use the information of any device as device

information of the net bridge.
SDK dependency

General protocol SDKs are currently only available in Java, and supports JDK 1.8 and later

versions. Maven dependencies:

<l -- Core SIK -->

<dependency>
<gr oupl d>com al i yun. openser vi ces</ groupl d>
<artifactld>i ot-as-bridge-sdk-core</artifactld>
<ver si on>1. 0. 0</ ver si on>

</ dependency>

<l -- Server SDK -->

<dependency>
<groupl d>com al i yun. openser vi ces</ gr oupl d>
<artifactld>i ot-as-bridge-sdk-server</artifactld>
<ver si on>1. 0. 0</ ver si on>

</ dependency>

Develop SDK

Develop Core SDKand Server SDK briefly introduces the development process. For detailed

implementation, refer to javadoc.

Deployment



The completed bridge connection service can be deployed on Alibaba Cloud using services like

ECS and SLB, or deployed in local environment to guarantee communication security.

The whole process (if using Alibaba Cloud ECS to deploy) is shown below:

6.2 Develop Core SDK

You can integrate the loT Platform bridge service with existing connection services or platforms
that use the general protocol core SDK to allow devices or servers to quickly access Alibaba

Cloud loT Platform.
Prerequisites

For information about the concepts, functions, and Maven dependencies of the general protocol

core SDK, see Overview.
Configuration management

The general protocol core SDK uses file-based configuration management by default. For
information about customized configurations, see Custom components > Configuration

management. The general protocol core SDK supports:

+ Java Properties, JSON, and HOCON formats.
» Structured configuration to simplify maintenance.

» The override of file configurations with Java system properties, such as java -Dmyapp.foo.bar=

10.

+ Configuration file separation and nested references.

Table 6-1: application.conf

Net bridge is a virtual concept. You can use the pr oduct Key, devi ceNane, and devi ceSecr et

of any device as the information of the net bridge.

Parameter Required Description
pr oduct Key Yes The product ID of the net bridge product.
devi ceNane No The device name of the net bridge device. The default

value is the ECS instance MAC address.

devi ceSecret [No The device secret of the net bridge device.

htt p2Endpoi nt |Yes HTTP/2 gateway service address.



https://github.com/lightbend/config/blob/master/HOCON.md

Parameter

Required

Description

The address formatis ${ Ul D} . i ot - as- ht t p2.
${ Regi onl d}. al i yuncs. com 443.
where:

+ ${ Ul D} indicates your account ID. To view your
account ID, log on to the Alibaba Cloud console,
hover your mouse over your account image, and
click Security Settings. You are then directed to
the Account Management page that displays your
account ID.

* ${Regi onl d} indicates the region ID where your
service is located. For example, if the region is
Shanghai, the HTTP/2 gateway service address
is 123456789. i ot - as- ht t p2. cn- shanghai .
al i yuncs. com 443.

For information about Regionld expressions, see

Regions and zones.

aut hEndpoi nt

Yes

Device authentication service address

Device authentication service address: htt ps: //
iot-auth. ${Regionld}.aliyuncs.com auth/
bri dge.

${ Regi onl d} indicates the region ID where your
service is located. For example, if the region is Shanghai,
the device authentication service address is htt ps: //
i ot - aut h. cn-shanghai . al i yuncs. conf aut h/
bri dge.

For information about Regionld expressions, see
Regions and zones.

popdientP
rofile

Yes

Call APIs to configure the client. For details, see the AP/
client configuration.

Table 6-2: API client configuration

Parameter Required Description

accessKey Yes The access key of the API caller.
accessSecret Yes The secret key of the API caller.
name Yes The region name of the API.
region Yes The region ID of the API.



https://www.alibabacloud.com/help/doc-detail/40654.htm
https://www.alibabacloud.com/help/doc-detail/40654.htm
https://www.alibabacloud.com/help/doc-detail/40654.htm
https://www.alibabacloud.com/help/doc-detail/40654.htm

Parameter Required Description

product Yes The name of the product. Set it to | ot if not specified.

endpoint Yes The endpoint of the API.

Endpoint structure: i ot .

${Regi onl d}. al i yuncs. com

${ Regi onl d} indicates the region ID of your service.
For example, If the region is Shanghai, the endpoint is
i ot.cn-shanghai . al i yuncs. com

For information about Regionld expressions, see
Regions and zones.

devices.conf

Configure the ProductKey, DeviceName, and DeviceSecret of the device. For information about

customizing configuration files, see Custom components > Configuration management.

XXXX [/ Oiginal identifiers of the device

{
"product Key": "123",

devi ceNane: ,
devi ceSecr et :

}

Interfaces
Initialization

comaliyun.iot.as.bridge.core. Bri dgeBoot st r ap initializes the communication
between the device and Alibaba Cloud IoT Platform. After the BridgeBootstrap instance is created,
the Basic configurations component of the gateway will be initialized. For information about

customizing configurations, see Custom components > Configuration management.
Complete the initialization using one of the following interfaces:

* boot strap() : initialization without downstream messaging.
* boot strap(Downl i nkChannel Handl er handl er) : initialize using Downl i nkCh

annel Handl er specified by the developer.

Sample code:

Bri dgeBoot strap bootstrap = new Bri dgeBootstrap();
/1 Do not inplenment downstream nessagi ng
boot strap. boot strap() ;

Connect devices to loT Platform


https://www.alibabacloud.com/help/doc-detail/40654.htm
https://www.alibabacloud.com/help/doc-detail/40654.htm

Only devices that are online can establish a connection with or send connection requests to loT
Platform. There are two methods that can enable devices to get online: local session initialization

and device authentication.
1. Session initialization

The general protocol SDK provides non-persistent local session management. See Custom

components > Session management for information on customization.
Interfaces for creating new instances:

« comaliyun.iot.as.bridge.core. nodel . Sessi on. new nst ance(String
originalldentity, Object channel)
« comaliyun.iot.as.bridge.core. nodel . Sessi on. new nst ance(String
originalldentity, Object channel, int heartBeatlnterval)
» comaliyun.iot.as.bridge.core. nodel . Sessi on. new nstance(String
originalldentity, Object channel, int heartBeatlnterval, int

hear t Beat Pr obes)

ori gi nal I denti ty indicates the unique device identifier and has the same function as

SN in the original protocol. channel is the communication channel between devices and
bridge service, and has the same function as a channel in Netty. hear t Beat | nt er val

and heart Beat Pr obes are used for heartbeat monitoring. The unit of heartBeatInterval is
seconds. heartBeatProbes indicates the maximum number of undetected heartbeats that is
allowed. If this number is exceeded, a heartbeat timeout event will be sent. To handle a timeout

event, registercom al i yun. i ot. as. bri dge. cor e. sessi on. Sessi onLi st ener.

2. Authenticate devices

After the initialization of local device session, use com al i yun. i ot. as. bri dge. core

. handl er. Upl i nkChannel Handl er. doOnl i ne( Sessi on newSessi on, String
originalldentity, String... credentials) tocomplete local device authentication
and Alibaba Cloud IoT Platform online authentication. The device will then either be allowed

to communicate or will be disconnected according to the authentication result. SDK provides
online authentication for IoT Platform. By default, local authentication is disabled. If you need to

set up local authentication, see Customized components > Connection authentication.
Sample code:

Upl i nkChannel Handl er upl i nkHandl er = new Upl i nkChannel Handl er () ;
Sessi on sessi on = session. new nstance (device, Channel );
bool ean success upl i nkHandl er. doOnl i ne(session, originalldentity);



if (success) {
/1 Successfully got online, and will accept communication

requests.
} else {
/[l Failed to get online, and will reject conmunication requests
and di sconnect (if connected).
}

Device Offline

When a device disconnects or detects that it needs to disconnect, a device offline operation must
be initiated. Use com al i yun. i ot . as. bri dge. cor e. handl er . Upl i nkChannel Handl er.

doOfline(String originalldentity) tobring a device offline.
Sample code:

Upl i nkChannel Handl er upl i nkHandl er = new Upl i nkChannel Handl er () ;
Upl i nkhandl er. dooffline (originalidentity );

Report Data

You can use com al i yun. i ot. as. bri dge. core. handl er. Upl i nkChannel Handl er to
report data to Alibaba Cloud loT Platform. Data reporting involves three key steps: identify the
device that is going to report data, locate the corresponding session for this device, and report

data to loT Platform. Use the following interfaces to report data.

Note:

Make sure that the data report has been managed and security issues have been handled.

+ Conpl et abl eFut ure doPubl i shAsync(String originalldentity, String topic
, byte[] payl oad, int gos):send data asynchronously and return immediately. You
can then obtain the sending result using future.

+ Conpl et abl eFut ure doPubl i shAsync(String originalldentity, Protocol Me
ssage pr ot ocol Msg) : send data asynchronously and return immediately. You can then
obtain the sending result using future.

* bool ean doPublish(String originalldentity, Protocol Message protocol Msg
, int timeout):send data asynchronously and wait for the response.

* bool ean doPublish(String originalldentity, String topic, byte[]

payl oad, int qos, int timeout):senddataasynchronously and wait for the response.
Sample code:

Upl i nkChannel Handl er upl i nkHandl er = new Upl i nkChannel Handl er () ;
Devi celdentity identity = ConfigFactory. get Devi ceConfi gManager ().
get Devi vi cel denti t y(devi ce);



if (identity == null) {
/| Devices are not mapped with those registered on |oT Platform
and nmessages are dropped.

return;
}
Sessi on sessi on = Sessi onManager Fact ory. get | nst ance() . get Sessi on(
devi ce);
if (session == null) {

/1l The device is not online. You can either get the device online
or drop nessages. Make sure devices are online before reporting data
to IoT Platform

}

bool ean success = uplinkHandl er. doPubl i sh(session, topic, payload, O,
10);
i f(success) {
/'l Data is successfully reported to Alibaba Cloud IoT Platform
} else {
/! Failed to report data to |oT Platform
}

Downstream Messaging

The general protocol SDK provides com al i yun. i ot. as. bri dge. core. handl er.
Downl i nkChannel Handl er as the downstream data distribution processor. It supports unicast

and broadcast (if the message sent from the cloud does not include specific device information).
Sample code:

public class Sanpl eDownl i nkHandl er i npl ements Downl i nkChannel Handl er {

@verride
publ i c bool ean pushToDevi ce( Sessi on session, String topic, byte[]
payl oad) {
/'l Process nessages pushed to the device
}
@verride

publ i c bool ean broadcast (String topic, byte[] payl oad) {
/'l Process broadcast
}

}

Custom components

You can customize the device connection authentication, session management, and configurat
ion management components. You must complete the initialization and substitution of those

components before calling BridgeBootstrap intialization.
Connection authentication

To customize the device connection authentication, implement com al i yun. i ot . as. bri dge.
core. aut h. Aut hPr ovi der and then, before initializing BridgeBootstrapcall, call com al i yun.
i ot.as. bridge. core. aut h. Aut hProvi der Factory. i nit (Aut hProvi der custom zed

Pr ovi der) to replace the original authentication component with the customized component.



Session management

To customize the session management, implement com al i yun. i ot. as. bri dge. core.
sessi on. Sessi onManager and then, before initializing BridgeBootstrapcall, call com al i yun
.iot.as.bridge.core. session. Sessi onManager Fact ory. i ni t (Sessi onManager <?
> cust om zedSessi onManager) to replace the original session management component with

the customized component.
Configuration management

To customize the configuration management, implement com al i yun. i ot . as. bri dge.

core. confi g. Devi ceConfi gManager and com al i yun. i ot. as. bri dge. confi g.

Bri dgeConf i gManager . Then, before initializing BridgeBootstrapcall, call com al i yun. i ot
.as. bridge. core. config. ConfigFactory.init(BridgeConfigVanager bcm

Devi ceConf i gManager dcm to replace the original configuration management component
with the customized component. If the parameters are left empty, the general protocol SDK default

values will be used.

6.3 Server SDK

6.3.1 Server SDK

You can use the general protocol server SDK to quickly build a bridge service that connects your

existing devices or services to Alibaba Cloud loT Platform.
Prerequisites

Refer to Overview for concepts, functions and Maven dependencies of the general protocol server

SDK.
Configuration Management

The general protocol server SDK uses file-based configuration management by default. Add the
socketServer parameter in application.conf, and set the socket server related parameters listed

in the following table. For customized configuration, refer to Custom Components > Configuration

Management .
Parameter Description Required
address The connection listening address. No

Supports network names like eth1,
and IPv4 addresses with 10.30 prefix.




Parameter Description Required

backlog The number of backlogs for TCP No
connection.

ports: Connection listening port. The No
default port is 9123. You can specify
multiple ports.

listenType The type of socket server. Can be No
udp ort cp. The default value is t cp
. Case insensitive.

broadcastE Whether UDP broadcasts are No

nabled supported. Used when | i st enType
is udp. The default value is true.

unsecured Whether unencrypted TCP No
connection is supported. Used when
listenType is tcp.

keyPassword The certificate store password. Used | No
when listenType is tcp. -

=] Note:

Effective when keyPassword,
keyStoreFile, and keyStoreType
are all configured. Otherwise,
keyPassword does not need to be
configured.

keyStoreFile The file address of the certificate No
store. Used when listenType is tcp.
keyStoreType The type of certificate store. Used No
when listenType is tcp.
Interfaces

The following two articles assume that you have a basic understanding of Netty-based

development. Refer to Netty Documentation for more details on Netty-based development.

* Interfaces for TCP

» Interfaces for UDP

Custom Components

Besides file-based configuration, you can also set your own customized configurations.



https://netty.io/wiki/user-guide-for-4.x.html

If you want to customize configurations, implement com.aliyun.iot.as.bridge.server.config.

BridgeServerConfigManager first and call com.aliyun.iot.as.bridge.server.config.ServerConf

igFactory.init(BridgeServerConfigManager bcm) to replace default configuration management

components with customized ones, and then initialize these components. Then, connect the net

bridge products to the Internet.

6.3.2 Interfaces for TCP

You can build an access service which uses TCP transmission protocol and bridge it to Alibaba

Cloud loT Platform using the interfaces of the general protocol SDK for TCP.

Bootstrap

com.aliyun.iot.as.bridge.server.BridgeServerBootstrap is the bootstrap class for booting socket

server and bridge service. After a new BridgeServerBootstrap is created, components based on

configuration files will be initialized.

Example:

Bri dgeServer Boot strap bootstrap = new Bri dgeSer ver Boot strap(new
TcpDecoder Factory() {

@verride
publ i c Byt eToMessageDecoder new nstance() {
/'l Return decoder

new TcpEncoder Factory() {
@verride

publ i c MessageToByt eEncoder <? > newl nstance() {

// Return encoder

}
}, new TcpBasedPr ot ocol Adapt or Handl er Factory() {
@ Override

publ i c Custoni zedTcpBasedPr ot ocol Handl er newl nst ance() {
/1l Return protocol adapter

}
}, new Def aul t Downl i nkChannel Handl er () ) ;

try {
bootstrap.start();

} catch (Boot Exception | ConfigException e) {
/1l Process boot exception

}
Instantiation of TCP type BridgeServerBootstrap

+ com.aliyun.iot.as.bridge.server.channel.factory. TcpDecoderFactory: Create a new decoder
instance using factory method to decode upload data. Thread is secure. Can be null.

+ com.aliyun.iot.as.bridge.server.channel.factory. TcpEncoderFactory: Create a new encoder
instance using factory method to encode downstream data to adapt to TCP protocol. Thread is

secure. Can be null.



» com.aliyun.iot.as.bridge.server.channel.factory. TcpBasedProtocolAdaptorHandlerFactory:
Create a new protocol adapter instance using factory method to adapt decoded data so they
can be uploaded to the cloud. Thread is secure. Cannot be null.

» com.aliyun.iot.as.bridge.core.handler.DownlinkChannelHandler: Distributor for downstream
data. Supports unicast and broadcast. Unicast forwards data directly to the device by default
. Broadcast settings must be customized by developers. Can be null. Null indicates that

downstream data is not allowed.
Start socket server

After the creation of BridgeServerBootstrap, call com.aliyun.iot.as.bridge.server.BridgeServ

erBootstrap.start() to start the socket server.
Protocol decoding

The component for protocol decoding derives from
io.netty.handler.codec.ByteToMessageDecoder. Refer to ByteToMessageDecoder Documentat

ion for details.
Example:

public class Sanpl eDecoder extends Byt eToMessageDecoder ({

@verride
prot ected voi d decode( Channel Handl er Cont ext ctx, ByteBuf in, List<

Obj ect> out) throws Exception {
/'l The decodi ng protocol

}
}
Protocol encoding

The component for protocol encoding derives from
io.netty.handler.codec.MessageToByteEncoder<|>. Refer to Message ToByteEncoder Documentat

ion for details.
Example:

public class Sanpl eEncoder extends MessageToByt eEncoder <Stri ng>{
@verride
protected voi d encode( Channel Handl er Cont ext ctx, String mnsg,
Byt eBuf out) throws Exception {
/'l Protocol encoding

}


http://netty.io/4.1/api/io/netty/handler/codec/ByteToMessageDecoder.html
http://netty.io/4.1/api/io/netty/handler/codec/ByteToMessageDecoder.html
http://netty.io/4.1/api/io/netty/handler/codec/MessageToByteEncoder.html
http://netty.io/4.1/api/io/netty/handler/codec/MessageToByteEncoder.html

Protocol adapter

To reduce cost and improve the efficiency of development, the general protocol server SDK

provides protocol adapters with extensible and customizable basic capability class com.aliyun.iot.
as.bridge.server.channel.CustomizedTcpBasedProtocolHandler. It encapsulates details to access
Alibaba Cloud loT Platform, so you can focus on protocol related business. The protocol adapter

derives from this class.
Device Online

Only online devices can establish a connection with or send connection requests to IoT Platform.

There are two steps for devices to get online: local session initialization and device authentication.
1. Session Initialization

Refer to Core SDK develop > Device Online > Session Initialization

2. Device Authentication

After local session initialization, call doOnline(ChannelHandlerContext ctx, Session
newSession, String originalldentity, String... credentials) to complete local device authentication
and Alibaba Cloud IoT Platform online authentication. The device can communicate with loT
Platform if authentication succeeds, and will be disconnect from loT Platform if authentication

fails.
Example:

Sessi on sessi on

bool ean success

if (success) {
/1 Successfully got online, and will accept communication

Sessi on. newl nst ance(devi ce, channel);
doOnl i ne(session, originalldentity);

requests.
} else {
/! Failed to get online, will reject comunication requests and
di sconnect (if connected).
}

Device Offline

When the device is disconnected or detects that it needs to be disconnected, the device offline
action should be initiated. Using server SDK, devices will automatically get offline when they are
disconnected, so you can focus on other tasks. Call doOffline(Session session) to bring devices

offline.

Report Data



The protocol adapter needs to use override channelRead(ChannelHandlerContext ctx, Object msg

). It is the entrance for all devices to report data. Object msg is the data output from the decoder.

There are three steps for data reporting: identify the device that is going to report data, find the
corresponding session for this device, and then report data to IoT Platform. Use the following

interfaces to report data:

» CompletableFuture doPublishAsync(Session session, String topic, byte[] payload, int qos):
send data asynchronously and return immediately. Developers obtain the sending result using
future.

+ CompletableFuture doPublishAsync(Session session, ProtocolMessage protocolMsg): send
data asynchronously and return immediately. Developers obtain the sending result using future.

* boolean doPublish(Session session, ProtocolMessage protocolMsg, int timeout): send data
asynchronously and wait for the response.

* boolean doPublish(Session session, String topic, byte[] payload, int qos, int timeout): send data

asynchronously and wait for the response.
Example:

Devi celdentity identity = ConfigFactory. get Devi ceConfi gManager ().
get Devi vi cel denti ty(devi ce);
if (identity == null) {

/'l Devices are not mapped with those registered on IoT Platform
Messages are dropped.

return;
}
Sessi on session = SessionManager Factory. getlnstance(). get Sessi on(
devi ce);
if (session == null) {

/'l The device is not online. Please get online or drop messages.
Make sure devices are online before reporting data to 1oT Platform

}

bool ean success = doPublish(session, topic, payload, 0, 10);
i f(success) {
/! Data is successfully reported to Alibaba Cloud IoT Platform
} else {
/! Failed to report data to |oT Platform
}

Downstream Messaging
Refer to Core SDK development > Downstream Messaging for details.

The SDK provides com.aliyun.iot.as.bridge.core.handler.DefaultDownlinkChannelHandler as the
downstream data distributor. It supports unicast and broadcast. Unicast forwards data from the
cloud directly to the device by default, and broadcast requires developers to customize specific

implementations. Customization can be realized by deriving subclass.



Example:

i mport io0.netty.channel. Channel;
import lo. netty. Channel. channel future;

public class Sanpl eDownl i nkChannel Handl er i npl ements Downl i nkCh
annel Handl er {

@verride
publ i c bool ean pushToDevi ce( Sessi on session, String topic, byte[]
payl oad) {
/1 Obtain communi cati on channel from device's correspondi ng
sessi on.
Channel channel = (Channel) session. getChannel (). get();
if (channel ! = null && channel.isWitable()) {

String body = new String(payl oad, StandardCharsets. UTF_8);
/'l Send downstream data to devices
Channel Future future = channel . pi peline().witeAndFl ush(
body) ;
future. addLi st ener (Channel Fut ur eLi st ener . FI RE_EXCEP
TI ON_ON_FAI LURE) ;
return true;

return fal se;

}

@verride

publ i c bool ean broadcast (String topic, byte[] payl oad) {
t hrow new Runti neException("not inplenented");

}

6.3.3 Interfaces for UDP

You can build an access service which uses UDP transmission protocol and bridge it to Alibaba

Cloud loT Platform using the interfaces of the general protocol SDK for UDP.
Bootstrap

com.aliyun.iot.as.bridge.server.BridgeServerBootstrap is the bootstrap class for booting socket
server and bridge service. After a new BridgeServerBootstrap is created, components based on

configuration files will be initialized.
Example:

Bri dgeServer Boot strap bootstrap = new Bri dgeSer ver Boot strap(new
UdpDecoder Factory() {

@verride
publ i c MessageToMessageDecoder new nstance() {
/'l Return decoder

}
}, new UdpEncoder Factory() {
@verride

publ i c MessageToMessageEncoder <?> newl nstance() {
/'l Return encoder

}
}, new UdpBasedPr ot ocol Adapt or Handl er Fact ory() {



@verride
publ i c Custonm zedUdpBasedPr ot ocol Handl er newl nstance() {

/'l Return protocol adapter

}
1)
try {
bootstrap.start();

} catch (Boot Exception | ConfigException e) {
/'l Process boot exception

}
Instantiation of UDP type BridgeServerBootstrap

« com.aliyun.iot.as.bridge.server.channel.factory.UdpDecoderFactory: Create a new decoder
instance using the factory method to decode upload data. Thread is secure. Can be null.

+ com.aliyun.iot.as.bridge.server.channel.factory.UdpEncoderFactory: Create a new encoder
instance using the factory method to encode downstream data to adapt to UDP protocol.
Thread is secure. Can be null.

+ com.aliyun.iot.as.bridge.server.channel.factory.UdpBasedProtocolAdaptorHandlerFactory:
Create a new protocol adapter instance using the factory method to adapt decoded data so

they can be uploaded to the cloud. Thread is secure. Cannot be null.
Start socket server

After the creation of BridgeServerBootstrap, call com.aliyun.iot.as.bridge.server.BridgeServ

erBootstrap.start() to start the socket server.
Protocol decoding

The component for protocol decoding derives from
io.netty.handler.codec.MessageToMessageDecoder<I>. Refer to Message ToMessageDecoder

Documentation for details.
Example:

public class Sanpl eDecoder extends MessageToMessageDecoder <Dat agr anPa
cket> {
@verride
protected voi d decode( Channel Handl er Cont ext ctx, DatagranPacket in,
Li st <Ohj ect> out) throws Exception {
/'l The decodi ng pr ot ocol
}


http://netty.io/4.1/api/index.html?io/netty/handler/codec/MessageToMessageDecoder.html
http://netty.io/4.1/api/index.html?io/netty/handler/codec/MessageToMessageDecoder.html

}

Protocol encoding

The component for protocol encoding derives from
io.netty.handler.codec.MessageToMessageEncoder<|>. Refer to Message ToMessageEncoder

Documentation for details.

Example:

public class Sanpl eEncoder extends MessageToMessageEncoder <T>{
@verride
protected voi d encode( Channel Handl er Cont ext ctx, T msg, Byt eBuf
out) throws Exception {
/'l Protocol encoding

}
}
Protocol adapter

To reduce cost and improve the efficiency of development, the general protocol server SDK
provides protocol adapters with extensible and customizable basic capability class com.aliyun.iot.
as.bridge.server.channel.CustomizedUdpBasedProtocolHandler. It encapsulates details to access
Alibaba Cloud loT Platform, so you can focus on other business. The protocol adapter derives

from this class.
Device Online

Only online devices can establish a connection with or send connection requests to IoT Platform.

There are two steps for devices to get online: local session initialization and device authentication.
1. Session Initialization

Refer to Core SDK develop > Device Online > Session Initialization for details.

2. Device Authentication

After local session initialization, call doOnline(Session newSession, String originalldentity,
String... credentials) or doOnline(String originalldentity, String... credentials) to complete local
device authentication and Alibaba Cloud loT Platform online authentication. The device can
communicate with loT Platform if authentication succeeds, and will be disconnect from loT

Platform if authentication fails.
Example:

Sessi on sessi on
bool ean success
if (success) {

Sessi on. newl nst ance(devi ce, channel);
doOnl i ne(session, originalldentity);


http://netty.io/4.1/api/index.html?io/netty/handler/codec/MessageToMessageEncoder.html
http://netty.io/4.1/api/index.html?io/netty/handler/codec/MessageToMessageEncoder.html

/1 Successfully got online, and will accept communication

requests.
} else {
/! Failed to get online, and will reject communication requests
and di sconnect (if connected).
}

Device Offline

When the device is disconnected or detects that it needs to be disconnected, the device offline
action should be initiated. Using server SDK, devices will automatically get offline when they are
disconnected, so you can focus on other tasks. Call doOffline(Session session) to bring devices

offline.
Report Data

The protocol adapter needs to use override channelRead(ChannelHandlerContext ctx, Object msg

). It is the entrance for all devices to report data. Object msg is the data output from the decoder.

There are three steps for data reporting: identify the device that is going to report data, find the
corresponding session for this device, and then report data to IoT Platform. Use the following

interfaces to report data:

+ CompletableFuture doPublishAsync(String originalldentity, String topic, byte[] payload, int qos
): send data asynchronously and return immediately. Developers obtain the sending result
using future.

» CompletableFuture doPublishAsync(String originalldentity, ProtocolMessage protocolMsg):
send data asynchronously and return immediately. Developers obtain the sending result using
future.

* boolean doPublish(String originalldentity, ProtocolMessage protocolMsg, int timeout): send
data asynchronously and wait for the response.

* boolean doPublish(String originalldentity, String topic, byte[] payload, int qos, int timeout): send

data asynchronously and wait for the response.
Example:

Devi celdentity identity = ConfigFactory. get Devi ceConfi gManager ().
get Devi vi cel denti t y(devi ce);
if (identity == null) {

[l Devices are not mapped with those registered on |oT Platform
Messages are dropped.

return;
}

Sessi on sessi on = Sessi onManager Fact ory. get | nst ance() . get Sessi on(
devi ce);
if (session == null) {



/1l The device is not online. Please get online or drop nmessages.
Make sure devices are online before reporting data to IoT Platform

}

bool ean success = doPublish(session, topic, payload, 0, 10);

i f (success) {
// Data is successfully reported to Alibaba C oud |oT Platform

} else {
/1l Failed to report data to IoT Platform
}

Downstream Messaging

Not supported yet.



7 Alink Protocol

loT Platform provides device SDKs for you to configure devices. These device SDKs already

encapsulate protocols for data exchange between devices and IoT Platform. However, in some

cases, the device SDKs provided by IoT Platform cannot meet your requirements because of the

complexity of the embedded system. This topic describes how to encapsulate data and establish

connections from devices to loT Platform using Alink protocol. Alink protocol is a data exchange

standard for loT development. Data are in JSON format.

Connection process

As shown in the following figure, devices can be connected to loT Platform as directly connected

devices or sub-devices. The connection process includes these key steps: register the device,

establish a connection, and report data.

Directly connected devices can be connected to loT Platform by using the following methods:

If Unique-certificate-per-device authentication is enabled, install the three key fields
(ProductKey, DeviceName, and DeviceSecret) into a device in advance, register the device
with loT Platform, connect the device to 0T Platform, and report data to IoT Platform.

If dynamic registration based on Unique-certificate-per-product authentication is enabled, install
the product certificate (ProductKey and ProductSecret) on a device, register the device with loT

Platform, connect the device to loT Platform, and report data to loT Platform.

The gateway starts the connection process for sub-devices. Sub-devices can be connected to 10T

Platform by using the following methods:

If Unique-certificate-per-device authentication is enabled, install the ProductKey, DeviceName,
and DeviceSecret on a sub-device. The sub-device sends these three key fields to the
gateway. The gateway adds the topological relationship and sends the data of the sub-device
through the gateway connection.

If dynamic registration is enabled, install ProductKey on a sub-device in advance. The sub-
device sends the ProductKey and DeviceName to the gateway. The gateway forwards the
ProductKey and DeviceName to loT Platform. loT Platform verifies the received DeviceName
and sends a DeviceSecret to the sub-device. The sub-device sends the obtained ProductKey,
DeviceName, and DeviceSecret to the gateway. The gateway adds the topological relationship

and sends data to loT Platform through the gateway connection.



Device identity registration

The following methods are available for identity registration:

Unique certificate per device: Obtain the ProductKey, DeviceName, and DeviceSecret of a

device on loT Platform and use them as the unique identifier. Install these three key fields on

the firmware of the device. After the device is connected to IoT Platform, the device starts to

communicate with loT Platform.

Dynamic registration: You can perform dynamic registration based on unique-certificate-per-

product authentication for directly connected devices and perform dynamic registration for sub-

devices.

= To dynamically register a directly connected device based on unique-certificate-per-product

authentication, follow these steps:

1.

In the loT Platform console, pre-register the device and obtain the ProductKey and
ProductSecret. When you pre-register the device, use device information that can be
directly read from the device as the DeviceName, such as the MAC address or SN.
Enable dynamic registration in the console.

Install the product certificate on the device firmware.

The device authenticates to loT Platform. If the device passes authentication, loT
Platform assigns a DeviceSecret to the device.

The device uses the ProductKey, DeviceName, and DeviceSecret to establish a

connection to loT Platform.

— To dynamically register a sub-device, follow these steps:

1.

3.
4,

In the loT Platform console, pre-register the sub-device and obtain the ProductKey.
When you pre-register the sub-device, use device information that can be read directly

from the sub-device as the DeviceName, such as the MAC address and SN.

. Enable dynamic registration in the console.

Install the ProductKey on the firmware of the sub-device or on the gateway.

The gateway authenticates to loT Platform on behalf of the sub-device.

Dynamically register a sub-device

Upstream

Topic: /sys/{productKey}/{deviceName}/thing/sub/register

Reply topic: /sys/{productKey}/{deviceName}/thing/sub/register_reply



Request message

"id': "123",
"version": "1.0",
"parans": |

"devi ceNane": "devi ceNanel234",
"product Key": "1234556554"

}

]1
thod": "thing.sub.register”

}

Response message

"id': "123",
"code": 200,
"data": [

"fotld": "12344",
"product Key": "1234556554",
"devi ceNane": "devi ceNanel234",
"devi ceSecret": "XXXXXX"
}
]
}

Parameter description

Parameters Type Description

id Long Message ID. Reserved
parameter for future use.

version String Protocol version. Currently, the
value can only be 1.0.

params List Parameters used for dynamic
registration.

deviceName String Name of the sub-device.

productKey String ProductKey of the sub-device.

iotld String Unique identifier of the sub-
device.

deviceSecret String DeviceSecret key.

method String Request method.

code Integer Result code.

Error messages



Error code Message Description
460 request parameter error The request parameters are
incorrect.
6402 topo relation cannot add by A device cannot be added to
self itself as a sub-device.
401 request auth error Signature verification has

failed.

Dynamically register a directly connected device based on unique-certificate-per-product

authentication

Directly connected devices send HTTP requests to perform dynamic register. Make sure that you

have enabled dynamic registration based on unique certificate per product in the console.

+ URL template: https://iot-auth.cn-shanghai.aliyuncs.com/auth/register/device

e HTTP method: POST

Request message

PCST /auth/register/device HITP/ 1.1

Host :
Cont ent - Type:
Content-Length: 123

i ot - aut h. cn-shanghai . al i yuncs. com
appl i cati on/ x- ww- f or m ur | encoded

product Key=1234556554&devi ceNanme=devi ceNanmel1234&r andonr567345&si gn=
adf v123hdf dhé&si gnMet hod=HmacMD5

Response message

"code": 200,
"data": {
"product Key":
"devi ceNane":
"devi ceSecret":
}5
"message”:

}

"success"

Parameter description

"1234556554",
"devi ceNamel1234",
"adsf weaf dsf "

Parameters Type Description
productKey String Unique identifier of the product
deviceName String Device name.

random

String

Random number.




Parameters Type Description

sign String Signature.

signMethod String Signing method. The
supported methods are
hmacmd5, hmacsha1, and

hmacsha256.
code Integer Result code.
deviceSecret String DeviceSecret key.

Sign the parameters

All parameters reported to loT Platform will be signed except si gn and si gnMet hod. Sort the
signing parameters in alphabetical order, and splice the parameters and values without any
splicing symbols. Then, sign the parameters by using the algorithm specified by si gnMet hod.
sign = hmac_shal( product Secret, devi ceNanedevi ceNanmel234product Key123455
6554r andon23)

Add topological relationships

After a sub-device has registered with IoT Platform, the gateway reports the topological
relationship of Gateways and sub-devices to loT Platform before the sub-device connects to loT
Platform. IoT Platform verifies the identity and the topological relationship during connection. If the
verification is successful, loT Platform establishes a logical connection with the sub-device and
associates the logical connection with the physical connection of the gateway. The sub-device
uses the same protocols as a directly connected device for data upload and download. Gateway

information is not required to be included in the protocols.

After you delete the topological relationship of the sub-device from IoT Platform, the sub-device
can no longer connect to loT Platform through the gateway. 0T Platform will fail the authentication

because the topological relationship does not exist.
Add topological relationships of sub-devices
Upstream

» Topic: /sys/{productKey}/{deviceName}/thing/topo/add
* Reply topic: /sys/{productKey}/{deviceName}/thing/topo/add_reply

Request message

{



"jid': "123",

"version": "1.0",

"paranms": |

{

"devi ceNane": "devi ceNanel234",
"product Key": "1234556554",
"sign": "XXXXXX",
"si gnmet hod": "hmacShal",
"timestamp": "1524448722000",
"clientld": "xxxxxx"

| }

thod": "thing.topo.add"

}

Response message

11} i dll : n 123" ,
“code": 200,
"data": {}

Parameter description

Parameters Type Description

id Long Message ID. Reserved
parameter for future use.

version String Protocol version. Currently, the
value can only be 1.0.

params List Request parameters.

deviceName String Device name. The value is the
name of a sub-device.

productKey String ProductKey. The value is the
name of a sub-device.

sign String Signature.

signmethod String Signing method. The
supported methods are
hmacSha1, hmacSha256,
hmacMd5, and Sha256.

timestamp String Timestamp.

clientld String Identifier of a sub-device. This
parameter is optional and
may have the same value as
ProductKey or DeviceName.




Parameters Type Description

code Integer Result code. A value of 200
indicates the request is
successful.

Signature algorithm

Note:

loT Platform supports common signature algorithms.

1. All parameters reported to loT Platform will be signed except si gn and si gnMet hod. Sort the
signing parameters in alphabetical order, and splice the parameters and values without any
splicing symbols. Sign the signing parameters by using the algorithm specified by the signing
method.

2. For example, sign the parameters in par ans in the request as follows:

3. sign=hmac_nd5(devi ceSecret, clientldl23devi ceNaret est product Key123ti
nmest anp1524448722000)

Error messages

Error code Message Description
460 request parameter error The request parameters are
incorrect.
6402 topo relation cannot add by A device cannot be added to
self itself as a sub-device.
401 request auth error Signature verification has
failed.

Delete topological relationships of sub-devices

A gateway can publish a message to this topic to request loT Platform to delete the topological

relationship between the gateway and a sub-device.
Upstream

» Topic: /sys/{productKey}/{deviceName}/thing/topo/delete
* Reply topic: /sys/{productKey}/{deviceName}/thing/topo/delete_reply

Request message

{



"jid': "123",
"version": "1.0",
"paranms": |

"devi ceNane": "devi ceNanel234",
"product Key": "1234556554"

: }
"met hod": "t hi ng. t opo. del et e"
}

Response message

"id': "123",
"code": 200,
"data": {}

Parameter description

Parameters Type Description

id Long Message ID. Reserved
parameter for future use.

version String Protocol version. Currently, the
value can only be 1.0.

params List Request parameters.

deviceName String DeviceName. This is the name
of a sub-device.

productKey String ProductKey. This is the
ProductKey of a sub-device.

method String Request method.

code Integer Result code. A value of 200
indicates the request is
successful.

Error messages

Error code Message Description

460 request parameter error The request parameters are
incorrect.

6100 device not found The device does not exist.

Obtain topological relationships of sub-devices




Upstream

» Topic: /sys/{productKey}/{deviceName}/thing/topo/get

* Reply topic: /sys/{productKey}/{deviceName}/thing/topo/get_reply

A gateway can publish a message to this topic to obtain the topological relationships between the

gateway and its connected sub-devices.

Request message

"id": "123",

"version": "1.0",

"paranms": {},

"met hod": "t hing.topo.get"
}

Response message

n i dll : n 123" ,
"code": 200,
"data": |

"devi ceNane": "devi ceNanel234",
"product Key": "1234556554"

}
]

}

Parameter description

Parameters Type Description

id Long Message ID. Reserved
parameter for future use.

version String Protocol version. Currently, the
value can only be 1.0.

params Object Request parameters. This can
be left empty.

method String Request method.

deviceName String Name of the sub-device.

productKey String ProductKey of the sub-device.

code Integer Result code. A value of 200
indicates the request is
successful.




Error messages

Error code Message Description
460 request parameter error The request parameters are
incorrect.

Report new sub-devices
Upstream

» Topic: /sys/{productKey}/{deviceName}/thing/list/found

» Reply topic: /sys/{productKey}/{deviceName}/thing/list/found_reply. In some scenarios, the
gateway can discover new sub-devices. The gateway reports information of a sub-device to loT
Platform. loT Platform forwards sub-device information to third-party applications, and the third

-party applications choose the sub-devices to connect to the gateway.

Request message

i
"id': "123",
"version": "1.0",
"paranms": |
"devi ceNane": "devi ceNanel234",
"product Key": "1234556554"
: }
"method”: "thing.list.found"
}

Response message

{
"id': "123",
"code": 200,
"data":{}

Parameter description

Parameters Type Description

id Long Message ID. Reserved
parameter for future use.

version String Protocol version. Currently, the
value can only be 1.0.

params Object Request parameters. This can
be left empty.




Parameters Type Description

method String Request method.

deviceName String Name of the sub-device.

productKey String ProductKey of the sub-device.

code Integer Result code. A value of 200
indicates the request is
successful.

Error messages

Error code Message Description

460 request parameter error The request parameters are
incorrect.

6250 product not found The sub-device does not exist.

6280 devicename not meet specs The name of the sub-device

is invalid. The device name
must be 4 to 32 characters

in length and can contain
letters, numbers, hyphens (-),
underscores (_), at signs (@),
periods (.), and colons (:).

Notify the gateway to add topological relationships of the connected sub-devices
Downstream

* Topic: /sys/{productKey}/{deviceName}/thing/topo/add/notify
* Reply topic: /sys/{productKey}/{deviceName}/thing/topo/add/notify_reply

loT Platform publishes a message to this topic to notify a gateway to add topological relationships
of the connected sub-devices. You can use this topic together with the topic that reports new
sub-devices to loT Platform. loT Platform can subscribe to a data exchange topic to receive the
response from the gateway. The data exchange topic is / { pr oduct Key}/ { devi ceNane}/

t hi ng/ downl i nk/ r epl y/ nessage.

Request message

.,
"id": "123",
"version": "1.0",
"parans": |

{



"devi ceNane": "devi ceNanel234",
"product Key": "1234556554"

}

1,
thod": "thing.topo.add. notify"

}

Response message

11} i dll : n 123" ,
“code": 200,
"data": {}

Parameter description

Parameters Type Description

id Long Message ID. Reserved
parameter for future use.

version String Protocol version. Currently, the
value can only be 1.0.

params Object Request parameters. This can
be left empty.

method String Request method.

deviceName String Name of the sub-device.

productKey String ProductKey of the sub-device.

code Integer Result code. A value of 200
indicates the request is
successful.

Connect devices to loT Platform

Make sure that a directly connected device has been registered with IoT Platform before

connecting to loT Platform.

Make sure that a sub-device has been registered with IoT Platform before connecting to IoT
Platform. In addition, you also need to make sure that the topological relationship with the gateway
has been added to the gateway. loT Platform will verify the identity of the sub-device according to

the topological relationship to identify whether the sub-device can use the gateway connection.
Connect sub-devices to loT Platform

Upstream



» Topic: /ext/session/{productKey}/{deviceName}/combine/login

* Reply topic: /ext/session/{productKey}/{deviceName}/combine/login_reply

Request message

(O
"id': "123",
"paranms": {
"product Key": "123",
"devi ceNane": "test",
"clientld": "123",
"timestanp": "123",
"signMet hod": "hmacnd5",
"sign": "XXXXXX",
"cl eanSessi on": "true"
}
}

Response message

lli dll : n 123" ,

"code": 200,
"message": "success"
n dat a.Il : man

}

Sign the parameters

1. All parameters reported to loT Platform will be signed except si gn and si gnMet hod. Sort the
signing parameters in alphabetical order, and splice the parameters and values without any
splicing symbols. Then, sign the parameters by using the algorithm specified by si gnMet hod.

2. sign= hmac_nmd5(devi ceSecret, cleanSessiontrueclientldl23devi ceNanetes

t product Key123ti mest anp123)

Parameter description

Parameters Type Description

id Long Message ID. Reserved
parameter for future use.

params List Input parameters of the
request.
deviceName String DeviceName of a sub-device.

productKey String ProductKey of a sub-device.




Parameters

Type

Description

sign

String

Signature of a sub-device.
Sub-devices use the same
signature rules as the gateway.

signmethod

String

Signing method. The
supported methods are
hmacSha1, hmacSha256,
hmacMd5, and Sha256.

timestamp

String

Timestamp.

clientld

String

Identifier of a device client.
This parameter can have the
same value as the ProductKey
or DeviceName parameter.

cleanSession

String

If the value is true, this
indicates to clear offline
information for all sub-devices
, which is information that has
not been received by QoS 1.

code

Integer

Result code. A value of 200
indicates the request is
successful.

message

String

Result code.

data

String

Additional information in the
response, in JSON format.

Note:

A gateway can accommodate a maximum of 200 concurrent online sub-devices. When the

maximum number is reached, the gateway rejects any connection requests.

Error messages

Error code Message Description

460 request parameter error The request parameters are
incorrect.

429 rate limit, too many The authentication requests

subDeviceOnline msg in one
minute

from the device are throttled
because the device requests




Error code Message Description
authentication to loT Platform
too frequently.

428 too many subdevices under Too many sub-devices connect

gateway to the gateway at the same
time.

6401 topo relation not exist The topological relationship
between the gateway and the
sub-device does not exist.

6100 device not found The sub-device does not exist.

521 device deleted The sub-device has been
deleted.

522 device forbidden The sub-device has been
disabled.

6287 invalid sign The password or signature of

the sub-device is incorrect.

Disconnect sub-devices from loT Platform

Upstream

» Topic: /ext/session/{productKey}/{deviceName}/combine/logout

* Reply topic: /ext/session/{productKey}/{deviceName}/combine/logout_reply

Request message

"id": 123,
"paranms": {

"product Key":

"devi ceNane":

}
}

Response message

"jd": "123",
"code": 200,

"XXXXX",
XXXXX"

"message": "success",

"dat a":

}

Parameter description




Parameters Type Description

id Long Message ID. Reserved
parameter for future use.

params List Input parameters of the
request.

deviceName String DeviceName of a sub-device.

productKey String ProductKey of a sub-device.

code Integer Result code. A value of 200
indicates the request is
successful.

message String Result code.

data String Additional information in the
response, in JSON format.

Error messages

Error code Message Description

460 request parameter error The request parameters are
incorrect.

520 device no session The sub-device session does
not exist.

For information about sub-device connections, see Connect sub-devices to loT Platform. For

information about error codes, see Error codes.
Device property, event, and service protocols
A device sends data to loT Platform either in standard mode or in passthrough mode.

1. If passthrough mode is used, the device sends raw data such as a binary data stream to loT
Platform. loT Platform runs the script you have submitted to convert the raw data to a standard
format.

2. If standard mode is used, the device generates data in the standard format and then sends the
data to loT Platform. For information about standard formats, see the requests and responses

in this topic.

Report device properties



Note:

Set the parameters according to the output and input parameters in the TSL model.

Upstream (passthrough)

» Topic: /sys/{productKey}/{deviceName}/thing/model/up_raw
* Reply topic: /sys/{productKey}/{deviceName}/thing/model/up_raw_reply

Upstream (non-passthrough)

» Topic: /sys/{productKey}/{deviceName}/thing/event/property/post
* Reply topic: /sys/{productKey}/{deviceName}/thing/model/up_raw_reply

Request message

"id": "123",
"version": "1.0",
"paranms": {
"Power": {
"val ue": "on",

"tinme": 1524448722000
"val ue": 23. 6,
"tinme": 1524448722000

}

}1
thod": "thing.event.property. post”

}

Response message

{
"id': "123",
"code": 200,
"data": {}

Parameter description

Parameters Type Description

id Long Message ID. Reserved
parameter for future use.

version String Protocol version. Currently, the
value can only be 1.0.

params Object Request parameters.

method String Request method.




Parameters Type Description

Power String Property name.

value String Property value.

time Long UTC timestamp in milliseconds

code Integer Result code.

Error messages

Error code Message Description

460 request parameter error The request parameters are
incorrect.

6106 map size must less than 200 A device can report a
maximum of 200 properties at
any one time.

6313 tsl service not available When a device reports a
property to loT Platform, loT
Platform examines whether the
property format is the same
as the predefined format.

This error message occurs

when this verification service

is unavailable. For more

information about property

verification, see What is Thing

Specification Language (TSL)?
Note:

loT Platform compares the format of each reported property with the predefined format in the

TSL model to verify the validity of the property. loT Platform directly drops invalid properties and

keeps only the valid properties. If all properties are invalid, loT Platform drops all properties.

However, the response returned to the device will still indicate that the request is successful.

Set device properties

Note:

Set the parameters according to the output and input parameters in the TSL model.




Downstream (passthrough)

» Topic: /sys/{productKey}/{deviceName}/thing/model/down_raw

* Reply topic: /sys/{productKey}/{deviceName}/thing/model/down_raw_reply

Downstream (non-passthrough)

» Topic: /sys/{productKey}/{deviceName}/thing/service/property/set

* Reply topic: /sys/{productKey}/{deviceName}/thing/service/property/set_reply

Request message

n i dll : n 123" ,
"version": "1.0",
"parans": {
"tenperature": "30.5"
" ﬁet hod": "t hing. service. property. set"
}
Response message
n i dll : n 123" ,
"code": 200,
"data": {}
Parameter description
Parameters Type Description
id Long Message ID. Reserved
parameter for future use.
version String Protocol version. Currently, the
value can only be 1.0.
params Object Parameters that are used to
set the properties.
method String Request method.
temperature String Property name.
code Integer Result code. For more
information, see the common
codes on the device.

Get device properties




Note:

+ Set the parameters according to the output and input parameters in the TSL model.

» Currently, device properties are retrieved from the device shadow.
Downstream (passthrough)

» Topic: /sys/{productKey}/{deviceName}/thing/model/down_raw
* Reply topic: /sys/{productKey}/{deviceName}/thing/model/down_raw_reply

After a device receives a request to get the device properties, it returns the obtained properties in
a reply message to loT Platform. lIoT Platform can subscribe to a data exchange topic to obtain
the returned properties. The data exchange topic is { pr oduct Key}/ { devi ceNane}/ t hi ng/

downl i nk/ r epl y/ nessage.
payload: Ox001FFEE23333
Downstream (non-passthrough)

+ Topic: /sys/{productKey}/{deviceName}/thing/service/property/get

* Reply topic: /sys/{productKey}/{deviceName}/thing/service/property/get_reply

After a device receives a request to get the device properties, it returns the obtained properties
in a reply message. loT Platform subscribes to a data exchange topic to obtain the returned

properties. The data exchange topicis / { pr oduct Key}/ {devi ceNane}/ t hi ng/ downl i nk/

repl y/ message.

Request message

.,
"id': "123",
"version": "1.0",
"parans": |
" power ",
Ilterrpll
] ’
"met hod": "thing.service.property.get"
}

Response message

"jd': "123",
"code": 200,
"data": {
n po\,\er " : n On" ,
Ilt el,.r.F)II : n 23"

}



}

Parameter description

Parameters Type Description

id Long Message ID. Reserved
parameter for future use.

version String Protocol version. Currently, the
value can only be 1.0.

params List Names of the desired
properties.

method String Request method.

power String Property name.

temp String Property name.

code Integer Result code.

Report device events

Upstream (passthrough)

» Topic: /sys/{productKey}/{deviceName}/thing/model/up_raw

* Reply topic: /sys/{productKey}/{deviceName}/thing/model/up_raw_reply

Upstream (non-passthrough)

* Topic: /sys/{productKey}/{deviceName}/thing/event/{tsl.event.identifier}/post

* Reply topic: /sys/{productKey}/{deviceName}/thing/event/{tsl.event.identifier}/post_reply

Request message

"met hod": "thing.event.{tsl.event.identifier}.post”

i
11} I dll : n 123" ,
"version": "1.0",
"paranms": {
"val ue": {
"Power": "on"
" Wll : n 2"
} ’
"time": 1524448722000
}

Response message

“id": 123",




"code": 200,
"data": {}

Parameter description

Parameters Type Description

id Long Message ID. Reserved
parameter for future use.

version String Protocol version. Currently, the
value can only be 1.0.

params List Parameters of the event to be
reported.

method String Request method.

value Object Parameter values of the event.

Power String Parameter name of the event
. You can select a parameter
name based on the TSL model

WF String Parameter name of the event
. You can select a parameter
name based on the TSL model

code Integer Result code. For more
information, see the common
codes on the device.

time Long UTC timestamp in milliseconds

Note:

« tsl.event.identifier isthe identifier of the event in the TSL model. For information

about TSL models, see What is Thing Specification Language (TSL)?.

* |oT Platform will compare the format of the received event with the event format that was

predefined in the TSL model to verify the validity of the event. loT Platform directly drops an

invalid event and returns a message indicating that the request has failed.

Invoke device services

Downstream (passthrough)




» Topic: /sys/{productKey}/{deviceName}/thing/model/down_raw
* Rely topic: /sys/{productKey}/{deviceName}/thing/model/down_raw_reply

If the invoke method of a service is set to Synchronous in the console, loT Platform uses RRPC to

publish a message synchronously to this topic.

If the invoke method of a service is set to Asynchronous in the console, loT Platform publishes
a message asynchronously to this topic. The device also replies asynchronously. loT Platform
subscribes to the asynchronous reply topic only after the invoke method of the current service
has been set to Asynchronous. This reply topic is /sys/{productKey}/{deviceName}/thing/model/
down_raw_reply. loT Platform subscribes to a data exchange topic to obtain the result for an
asynchronous call. The data exchange topic is / { pr oduct Key}/ { devi ceNane}/t hi ng/

downl i nk/ repl y/ nessage.
Downstream (non-passthrough)

» Topic: /sys/{productKey}/{deviceName}/thing/service/{tsl.service.identifier}

* Reply Topic: /sys/{productKey}/{deviceName}/thing/service/{tsl.service.identifier}_reply

If the invoke method of a service is set to Synchronous in the console, loT Platform uses RRPC to

publish a message synchronously to this topic.

If the invoke method of a service is set to Asynchronous in the console, loT Platform publishes

a message asynchronously to this topic. The device also replies asynchronously. loT Platform
subscribes to the asynchronous reply topic only after the invoke method of the current service
has been set to Asynchronous. The reply topic is /sys/{productKey}/{deviceName}/thing/service/
{tsl.service.identifier}_reply. loT Platform subscribes to a data exchange topic to obtain the result
for an asynchronous call. The data exchange topic is / { pr oduct Key}/ { devi ceNane}/t hi ng/

downl i nk/ r epl y/ nessage.

Request message

.
"id": "123",
"version": "1.0",
"paranms": {
"Power": "on",
"WEot 2
3
"met hod": "thing.service.{tsl.service.identifier}"
}

Response message

{



"jid': "123",
"code": 200,
"data": {}

Parameter description

Parameters Type Description

id Long Message ID. Reserved
parameter for future use.

version String Protocol version. Currently, the
value can only be 1.0.

params List Parameters of the service to
be invoked.

method String Request method.

value Object Parameter name of the service

Power String Parameter name of the service

WF String Parameter name of the service

code Integer Result code. For more

information, see the common
codes on the device.

Note:
tsl.service.identifier isthe identifier of the service that has been defined in the TSL
model. For more information about TSL models, see What is Thing Specification Language

(TSL)?.
Disable and delete devices
Disable devices
Downstream

» Topic: /sys/{productKey}/{deviceName}/thing/disable
» Reply topic: /sys/{productKey}/{deviceName}/thing/disable_reply



This topic disables a device connection. loT Platform publishes messages to this topic asynchrono
usly, and the devices subscribe to this topic. Gateways can subscribe to this topic to disable the

corresponding sub-devices.

Request message

“id': "123",

"version": "1.0",
"parans": {},

“met hod": "thing.disable"

}

Response message

" i dll : n 123" ,
"code": 200,
"data": {}

Parameter description

Parameters Type Description

id Long Message ID. Reserved
parameter for future use.

version String Protocol version. Currently, the
value can only be 1.0.

params Object Request parameters. Leave
empty.

method String Request method.

code Integer Result code. For more

information, see the common
codes on the device.

Enable devices
Downstream

» Topic: /sys/{productKey}/{deviceName}/thing/enable
* Reply topic: /sys/{productKey}/{deviceName}/thing/enable_reply

This topic enables a device connection. loT Platform publishes messages to this topic asynchrono
usly, and the devices subscribe to this topic. Gateways can subscribe to this topic to enable the

corresponding sub-devices.



Request message

"id": "123",

"version": "1.0",
"parans": {},

"met hod": "t hing. enabl e"

}

Response message

"id': "123",
"code": 200,
"data": {}

Parameter description

Parameters Type Description

id Long Message ID. Reserved
parameter for future use.

version String Protocol version. Currently, the
value can only be 1.0.

params Object Request parameters. Leave
empty.

method String Request method.

code Integer Result code. For more

information, see the common
codes on the device.

Delete devices
Downstream

* Topic: /sys/{productKey}/{deviceName}/thing/delete
* Reply topic: /sys/{productKey}/{deviceName}/thing/delete_reply

This topic deletes a device connection. loT Platform publishes messages to this topic asynchrono
usly, and the devices subscribe to this topic. Gateways can subscribe to this topic to delete the

corresponding sub-devices.

Request message

11} i dll : n 123" ,
"version": "1.0",



"parans": {},
"met hod": "thing. del ete"

}

Response message

" i dll : n 123" ,
“code": 200,
"data": {}

Parameter description

Parameters Type Description

id Long Message ID. Reserved
parameter for future use.

version String Protocol version. Currently, the
value can only be 1.0.

params Object Request parameters. Leave
empty.

method String Request method.

code String Result code. For more

information, see the common
codes on the device.

Device tags
Report tags
Upstream

» Topic: /sys/{productKey}/{deviceName}/thing/deviceinfo/update
* Reply topic: /sys/{productKey}/{deviceName}/thing/deviceinfo/update_reply

Device information such as vendor and device model, and static extended information can be

saved as device tags.

Request message

lli dll : n 123" ,
"version": "1.0",
"params": |

"attrKey": "Tenperature",
"attrVal ue": "36.8"

}



]
}

Response message

" i dll : n 123" ,
“code": 200,
"data": {}

Parameter description

thod": "thing. devi cei nfo. updat e"

Parameters

Type

Description

id

Long

Message ID. Reserved
parameter for future use.

version

String

Protocol version. Currently, the
value can only be 1.0.

params

Object

Request parameters.
This parameter can contain a
maximum of 200 items.

method

String

Request method.

attrkey

String

Tag name.

* Length: Up to 100 bytes.

» Valid characters:
Lowercase letters ato z
, uppercase letters A to
Z, numbers 0 to 9, and
underscores (_).

* The tag name must start
with an English letter or
underscore ().

attrValue

String

Tag value.

code

Integer

Result code. A value of 200
indicates the request is
successful.

Error code




Error code Message Description

460 request parameter error The request parameters are
incorrect.

6100 device not found The device does not exist.

Delete tags

Upstream

» Topic: /sys/{productKey}/{deviceName}/thing/deviceinfo/delete

* Reply topic: /sys/{productKey}/{deviceName}/thing/deviceinfo/delete_reply

Request message

11} i dll : n 123" ,
"version": "1.
"params": |
"attrKey": "Tenperature"
: }
thod": "thing. devicei nfo. del ete"

}

Response message

11} i dll : n 123" ,
"code": 200,
"data": {}

Parameter description

Parameters Type Description

id Long Message ID. Reserved
parameter for future use.

version String Protocol version. Currently, the
value can only be 1.0.

params Object Request parameters.

method String Request method.

attrkey String Tag name.

* Length: Up to 100 bytes.




Parameters Type Description

* Valid characters:
Lowercase letters ato z
, uppercase letters A to
Z, numbers 0 to 9, and
underscores (_).

* The tag name must start
with an English letter or
underscore (_).

attrValue String Tag value.

code Integer Result code. A value of 200
indicates the request is
successful.

Error messages

Error code Message Description

460 request parameter error The request parameters are
incorrect.

6100 device not found The device does not exist.

TSL models

A device can publish requests to this topic to obtain the Device TSL model from IoT Platform.

+ Topic: /sys/{productKey}/{deviceName}/thing/dsltemplate/get

* Reply topic: /sys/{productKey}/{deviceName}/thing/dsltemplate/get_reply

Request message

lli dll : n 123" ,
"version": "1.0",
"parans": {},

"met hod": "thing.dsltenplate. get"

}

Response message

n i dll : n 123" ,
"code": 200,
"data": {
"schema": "https://iot-tsl.oss-cn-shanghai.aliyuncs. com schena.

j son",

"l'ink": "/sys/ 1234556554/ ai r Condi ti on/thing/",




"profile":
"product Key": "1234556554",
"devi ceNanme": "airCondition"

}

"properties": |

"identifier": "fan_array_property",
"nanme": "Fan array property",
"accesshbde": "r",
"required": true,
"dataType": {
"type": "array",
"specs": {
"size": "128",
"item': {
"type": "int"
}
}
}
Il
"events": |

"identifier": "alarni,
"nane": "al arni,
"desc": "Fan alert",
"type": "alert",
"required": true,
"out put Data": |

"identifier": "error Code",
"nane": "Error code",
"dat aType": {
"type": "text",
"specs": {
"l ength": "255"
}
}
}
]

" et hod" : "t hi ng. event. al arm post "
}
]

"services": |

"identifier": "tineReset",
"name": "tineReset",
"desc": "Tine calibration",
"inputData": [

"identifier": "tinmeZone",
"nane": "Tine zone",
"dat aType": {
"type": "text",
"specs":
"l ength": "512"
}

}
}

],
"out put Data": |
{



"identifier": "curTime",
"nane": "Current tinme",
"dat aType": {
"type": "date",
"specs": {}

}
]

" et hod" : "t hi ng. service.tineReset"
s
{

"identifier": "set",

"name": "set"

"required": true,

"desc": "Set properties",

"met hod": "thing.service.property.set”
"inputData": [

"identifier": "fan_int_property",
"name": "lInteger property of the fan",
"accesshbde": "rw',
"required": true,
"dat aType": {
"type": "int",
"specs": {
"mn": "0",
"max": "100",
"unit": "g/m",
"uni tNanme": "MIlilitter"
}
}
}

],
"output Data": []

"identifier": "get",
"name": "get"
"required": true,
"desc": "Get properties”,
"met hod": "thing.service.property.get"
"“i nputData": [
"array_property"
"fan_int_property",
"batch_enumattr _id",
"fan_fl| oat _property",
"fan_doubl e_property",
"fan_text _property",
"Maid ",
"bat ch_bool ean_attr _id",
"fan_struct _property”
] 1
"out put Data": |
{
"identifier": "fan_array_property",
"nanme": "Fan array property",
"accesshbde": "r",
"required": true,
"dat aType": {
"type": "array",
"specs": {
"size": "128",



"iten: {

lltypell: lli nt n
}
}
}
]
}
]
}

}

Parameter description

Parameters Type Description

id Long Message ID. Reserved
parameter for future use.

version String Protocol version. Currently, the
value can only be 1.0.

params Object Leave empty.

method String Request method.

productKey String ProductKey. This is
1234556554 in this example.

deviceName String Device name. This is airConditi
on in this example.

data Object TSL model of the device. For
more information, seeWhat is
Thing Specification Language
(TSL)?

Error code

Error code Message Description

460 request parameter error The request parameters are
incorrect.

6321 tsl: device not exist in product | The device does not exist.

Update firmware
For information about the firmware update, see Develop OTA features and Firmware update.
Report the firmware version

Upstream



» Topic: /ota/device/inform/{productKey}/{deviceName}. The device publishes a message to this

topic to report the current firmware version to loT Platform.

Request message

i
"id": 1,
"paranms": {
"version": "1.0.1"
}
}

Parameter description

Parameters Type Description

id Long Message ID. Reserved
parameter for future use.

version String Version information of the
firmware.

Push firmware information
Upstream
» Topic: /ota/device/upgrade/{productKey}/{deviceName}

loT Platform publishes messages to this topic to push firmware information. The devices subscribe

to this topic to obtain the firmware information.

Request message

“code": "1000",

"data":
"size": 432945,
"version": "2.0.0",
"url": "https://iotx-ota-pre.oss-cn-shanghai. aliyuncs. com nopoll 0

.4.4. tar. gz?Expi res=1502955804&0SSAccessKey | d=XXXIIXKXKXKX
&Si gnat ur e=Xf gJu7P6DWAj st KIgXJEHOgQAKUYBD&securi t y-t oken=CAl SuQl1g6
Ft 5B2yf Sj | pK6MGsyNL1JIx5j o6mvnf Bgl | PTvl vt 5D50Tz2I Ht | f 3NpAusdsv03nWk T7v 4f
| gFy Tl NVAEVYZJOPKGr GRODz DbDasun¥ZsJbo4f %2 FMBgEaXPS2MsVf J¥2BzLr f Oceu
sbFbpj zJ6xaCAGKypQL2i Nv2BY2Fr 692 F59dc9Fc QSkLO0B8Zr FsKxBl t dUROFbI KP%
2BpKWBKUGF LC1dy s Qc OLWEP4KY2Bkk MyH8 Ui c3h%2Boy %2BgJt 8 H2PpHhd9NhXuV2Wwiz n2
9%2Fdt JO TknxR7ARasaBghel c4zqAY2FPPlI WjAKvkXba7al 0001f V4j N5JXQF AUSKLOBt R
j of HAWfroj Nz BJAAPPYSSy3Rvr 7bef Qr r ybY1l LOGI Zy%2BVi 02VSZDxshl 5Z3McK
ARWt 06 MAWIOABA2TTXXA 40BOxuq¥%@2B3JGoABXC54TA 07%R2FIWTLTsCUgzzel i XVOK
8Cf NOkf TucMaHk e Ye CdFk mP2 Fk ADhXAnr nGf 5a4FbnKMQph2cKsr 8y 8Uf W.C6I z
vJsCd XTnbJBMeuW go5zI ynSlpnigf %2F9N3hVc6%@2BEel kOxf | 2t ycsUpbL2
FoaGk6 BAF8hWEWYUXsv59d5Uk 98D ,

"md5": "93230c3bde425a9d7984a594ac55eale",

"sign": "93230c3bde425a9d7984a594ac5h5eale”,

"si gnMet hod": " MI5"

}s



"id": 1507707025,
"message": "success"

}

Parameter description

Parameters Type Description

id Long Message ID. Reserved
parameter for future use.

message String Result code.

version String Version information of the
firmware.

size Long Firmware size in bytes.

url String OSS address of the firmware.

sign String Firmware signature.

signMethod String Signing method. Currently, the
supported methods are MD5
and sha275.

md5 String This parameter is reserved.

This parameter is used to be
compatible with old device
information. When the signing
method is MD5, loT Platform
will assign values to both the
sign and md5 parameters.

Report update progress

Upstream

» Topic: /ota/device/progress/{productKey}/{deviceName}

A device subscribes to this topic to report the firmware update progress.

Request message

" | du 1,
"parans":
n St epn "o lu ,

"desc": "Firmnare update has fail ed.

avail able. "

}

No firmmvare information is




}

Parameter description

Description

Message ID. Reserved
parameter for future use.

Firmware upgrade progress
information.
Values:

* Avalue from 1 to 100
indicates the progress
percentage.

* A value of -1 indicates the
firmware update has failed.

* A value of -2 indicates that
the firmware download has
failed.

* A value of -3 indicates that
firmware verification has
failed.

* A value of -4 indicates that
the firmware installation has
failed.

Parameters Type
id Long

step String
desc String

Description of the current step
. If an exception occurs, this
parameter displays an error
message.

Request firmware information from loT Platform
» Topic: /ota/device/request/{productKey}/{deviceName}
Request message

"id":o1,

"paranms": {
"version": "1.0.1"
}

}

Parameter description




Parameters Type Description

id Long Message ID. Reserved
parameter for future use.

version String Version information of the
firmware.

Remote configuration

Request configuration information from loT Platform

Upstream

* Topic: /sys/{productKey}/{deviceName}/thing/config/get

* Reply topic: /sys/{productKey}/{deviceName}/thing/config/get_reply

Request message

"id": 123,
"version": "1.0",
"paranms": {

"configScope":

"get Type": "file"

"met hod": "t hi ng. config. get"

}

Response message

.

"id": "123",

"version": "1.0",

"code": 200,

"dat a":
"configld": "123dagdah",
"configSize": 1234565,
"sign": "123214adf adgadg",
"si gnMet hod": " Sha256",

“url":

"https://iotx-config.oss-cn-shanghai.aliyuncs. conl nopoll 0

"product ",

.4. 4. tar. gz?Expi res=1502955804&0SSAccessKey | d=XXXXXXXAKXKXK
&Si gnat ur e=Xf gJu7P6DWAj st KIgXJEHOgQAKUYBD&securi t y-t oken=CAl SuQl1g6

Ft 5B2yf Sj | pK6MGsyNL1JIx5j o6mvnf Bgl | PTvl vt 5D50Tz2I Ht | f 3NpAusdsv03nWk T7v 4f

| gFy Tl NVAEVYZJ OPKG GRODz DbDasun¥ZsJbo4f 92 FMBgEaXPS2M/ Vf J9%2BzLr f Oceu
sbFbpj zJ6xaCAGKypQL2i NY2BY2Fr 692 F59dc9Fc QSkLOB8Zr FsKxBl t dUROFbI KP%

2BpKWEKuGF LC1dy s Qc OLWEPAKY2Bkk MyH8 Ui c3h%@2Boy %2BgJt 8H2 PpHhd9NhXuV2Wiz n2
%2Fdt JO TknxR7ARasaBghel c4zqAY2FPPI WJAKvkXba7al 0001f V4] N5JXQF AUSKLOBt R

j of HWDj NzBJAAPPYSSy3Rvr 7nbef Qr rybY1l LOBi Zy%2BVi 02VSZDxshl 5Z3McK
ARWt 06 MAWVIABA2TTXXO 40BOxuq%@2B3JGoABXCH4TA o7%2FIWTLTsCUgzzel i XVOK
8Cf NOkf Tuc MaHk e Ye CdFk m2 Fk ADhXAnr nGf 5a4FbnKMQph2cKsr 8y 8Uf W.C6I z
vJsC XTnbJBMeuW gqo5zI ynSlpnigf %2F9N3hVc6%@2BEel kOxf | 2t ycsUpbL2

FoaGk6 BAFShWBWYUXsv59d5Uk%3D" ,
"get Type":

"file"




}

Parameter description

Parameters Type Description

id Long Message ID. Reserved
parameter for future use.

version String Protocol version. Currently, the
value can only be 1.0.

configScope String Configuration scope. Currently
, loT Platform supports only
product dimension configurat
ion. Set the value to product.

getType String Type of the desired configurat
ion. Currently, the supported
type is file. Set the value to file.

configld String Configuration ID.

configSize Long Configuration size in bytes.

sign String Signature.

signMethod String Signing method. The
supported signing method is
Sha256.

url String OSS address of the confgurati
on.

code Integer Result code. A value of 200
indicates that the request is
successful.

Error code

Error code Message Description

6713 thing config function is not Remote configuration is

available disabled for the device. Enable

remote configuration for the
device.

6710 no data No configuration data is

available.

Push configurations




Downstream

» Topic: /sys/{productKey}/{deviceName}/thing/config/push
* Reply topic: /sys/{productKey}/{deviceName}/thing/config/push_reply

A device subscribes to this topic to obtain configurations that have been pushed by IoT Platform.
After you have configured configuration push for multiple devices in the IoT Platform console, lIoT
Platform pushes configurations to the devices asynchronously. loT Platform subscribes to a data
exchange topic to obtain the result that is returned by the device. The data exchange topic is / {

pr oduct Key}/ { devi ceNane}/ t hi ng/ downl i nk/r epl y/ nessage.

Request message

"id": "123",
"version": "1.0",
"parans":
"configld": "123dagdah",
"configSize": 1234565,
"sign": "123214adf adgadg",
"si gnMet hod": " Sha256",
"url": "https://iotx-config.oss-cn-shanghai.aliyuncs.com nopoll _0
.4.4. tar. gz?Expi res=1502955804&0SSAccessKey | d=XXXXXXKIXKXKXKX
&Si gnat ur e=Xf gJu7P6DWAj st KIgXJEHOgQAKUYBD&securi t y-t oken=CAl SuQl1g6
Ft 5B2yf Sj | pK6MGsyNL1JIx5j o6mvnf Bgl | PTvl vt 5D50Tz2I Ht | f 3NpAusdsv03nWk T7v 4f
| gFy Tl NVAEV YZJOPKGr GRODz DbDasun¥ZsJbo4f %2 FMBgEaXPS2MsVf J¥2BzLr f Oceu
sbFbpj zJ6xaCAGKypQL2i NY2BY2Fr 692F59dc9FcQSkLO0B8Zr FsKxBl t dUROFbI KP%
2BpKWBKUGF LC1dy s Qc OLWEP4AKY2Bkk MyH8 Ui c3h%2Boy %2BgJt 8 H2PpHhd9NhXuV2Wwiz n2
92Fdt JO TknxR7ARasaBqghel c4zqA%2FPPI WAKvkXba7al 0001f V4j N5JXQF AUSKLOBt R
j of HAWfroj Nz BJAAPPYSSy3Rvr 7bef Qr r ybY1l LOGI Zy%2BVi 02VSZDxshl 5Z3McK
ARWt 06 MAWIABA2TTXXO 40BOxuq¥2B3JGoABXC54TA 07%R2F1WTLTsCUgzzel i XVOK
8Cf NOkf TucMaHk e Ye CdFk mP2 Fk ADhXANnr nGf 5a4FbnKMQph2cKsr 8y 8Uf W.C6I z
vJsCd XTnbJBMeuW gqo5zI ynSlpnigf %2F9N3hVc6%@2BEel kOxf | 2t ycsUpbL2
FoaGk6BAF8hWEWYUXsv59d5Uk98D" ,
"get Type": "file"

"met hod": "t hi ng. confi g. push"
}

Response message

"id': "123",
"code": 200,
"data": {}

Parameter description

Parameters Type Description

id Long Message ID. Reserved
parameter for future use.




Parameters Type Description

version String Protocol version. Currently, the
value can only be 1.0.

configScope String Configuration scope. Currently
, loT Platform supports only
product dimension configurat
ion. Set the value to product.

getType String Type of the desired configurat
ion. The supported type is files
. Set the value to file.

configld String Configuration ID.

configSize Long Configuration size in bytes.

sign String Signature.

signMethod String Signing method. The
supported signing method is
Sha256.

url String OSS address of the confgurati
on.

code Integer Result code. For more
information, see the common
codes on the device.

Common codes on devices

Common codes on devices indicate the results that are returned to loT Platform in response to

requests from loT Platform.

Result code Message Description

200 success The request is successful.

400 request error Internal service error.

460 request parameter error The request parameters are
invalid. The device has failed
input parameter verification.

429 too many requests The system is busy. This code
can be used when the device
is too busy to process the
request.




Result code

Message

Description

100000-110000

Devices use numbers from
100000 to 110000 to indicate
device-specific error messages
to distinguish them from error
message on loT Platform.




	Contents
	​Legal​ ​disclaimer​
	​Generic​ ​convention​​s​
	1 ​Download​ ​device​ ​SDKs​
	2 ​C​-​SDK​
	2.1 ​Authentica​​te​ ​devices​ 
	2.1.1 ​Authentica​​te​ ​devices​ 
	2.1.2 ​Unique​-​certificat​​e​-​per​-​device​ ​authentica​​tion​
	2.1.3 ​Unique​-​certificat​​e​-​per​-​product​ ​authentica​​tion​

	2.2 ​Protocols​ ​for​ ​connecting​ ​devices​
	2.2.1 ​Establish​ ​MQTT​ ​over​ ​TCP​ ​connection​​s​
	2.2.2 ​Establish​ ​MQTT​ ​over​ ​WebSocket​ ​connection​​s​
	2.2.3 ​CoAP​-​based​ ​connection​​s​
	2.2.4 ​Establish​ ​communicat​​ion​ ​over​ ​the​ ​HTTP​ ​protocol​

	2.3 ​OTA​ ​Developmen​​t​
	2.4 ​Connect​ ​sub​-​devices​ ​to​ ​the​ ​cloud​
	2.4.1 ​Connect​ ​sub​-​devices​ ​to​ ​IoT​ ​Platform​

	2.5 ​Device​ ​shadows​
	2.5.1 ​Device​ ​shadow​ ​JSON​ ​format​
	2.5.2 ​Device​ ​shadow​ ​data​ ​stream​
	2.5.3 ​Use​ ​device​ ​shadows​

	2.6 ​Configure​ ​a​ ​TSL​-​based​ ​device​

	3 ​Java​ ​SDK​
	4 ​iOS​ ​SDK​
	5 ​HTTP​/​2​ ​SDK​
	6 ​General​ ​protocols​
	6.1 ​Overview​
	6.2 ​Develop​ ​Core​ ​SDK​
	6.3 ​Server​ ​SDK​
	6.3.1 ​Server​ ​SDK​
	6.3.2 ​Interfaces​ ​for​ ​TCP​
	6.3.3 ​Interfaces​ ​for​ ​UDP​


	7 ​Alink​ ​Protocol​

