Alibaba Cloud
loT Platform

Developer Guide (Devices)

Issue: 20190115

MORE THAN JusT cLoub | (- AlibabaCloud

Legal disclaimer

Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions of this
legal disclaimer before you read or use this document. If you have read or used this document, it

shall be deemed as your total acceptance of this legal disclaimer.

1. You shall download and obtain this document from the Alibaba Cloud website or other Alibaba
Cloud-authorized channels, and use this document for your own legal business activities only.
The content of this document is considered confidential information of Alibaba Cloud. You shall
strictly abide by the confidentiality obligations. No part of this document shall be disclosed or
provided to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted, or disseminat
ed by any organization, company, or individual in any form or by any means without the prior
written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades, adjustment
s, or other reasons. Alibaba Cloud reserves the right to modify the content of this document
without notice and the updated versions of this document will be occasionally released through
Alibaba Cloud-authorized channels. You shall pay attention to the version changes of this
document as they occur and download and obtain the most up-to-date version of this document
from Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud products and
services. Alibaba Cloud provides the document in the context that Alibaba Cloud products and
services are provided on an "as is", "with all faults" and "as available" basis. Alibaba Cloud
makes every effort to provide relevant operational guidance based on existing technologies
. However, Alibaba Cloud hereby makes a clear statement that it in no way guarantees the
accuracy, integrity, applicability, and reliability of the content of this document, either explicitly
or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial losses incurred
by any organizations, companies, or individuals arising from their download, use, or trust in
this document. Alibaba Cloud shall not, under any circumstances, bear responsibility for any
indirect, consequential, exemplary, incidental, special, or punitive damages, including lost
profits arising from the use or trust in this document, even if Alibaba Cloud has been notified of
the possibility of such a loss.

5. By law, all the content of the Alibaba Cloud website, including but not limited to works, products
, images, archives, information, materials, website architecture, website graphic layout, and

webpage design, are intellectual property of Alibaba Cloud and/or its affiliates. This intellectu

al property includes, but is not limited to, trademark rights, patent rights, copyrights, and trade
secrets. No part of the Alibaba Cloud website, product programs, or content shall be used,
modified, reproduced, publicly transmitted, changed, disseminated, distributed, or published
without the prior written consent of Alibaba Cloud and/or its affiliates. The names owned by
Alibaba Cloud shall not be used, published, or reproduced for marketing, advertising, promotion
, or other purposes without the prior written consent of Alibaba Cloud. The names owned by
Alibaba Cloud include, but are not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other
brands of Alibaba Cloud and/or its affiliates, which appear separately or in combination, as well
as the auxiliary signs and patterns of the preceding brands, or anything similar to the company
names, trade names, trademarks, product or service names, domain names, patterns, logos

, marks, signs, or special descriptions that third parties identify as Alibaba Cloud and/or its
affiliates).

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

IoT Platform Developer Guide (Devices) / Legal disclaimer

Issue: 20190115 1

Generic conventions

Table -1: Style conventions

Style Description Example
This warning information indicates a
situation that will cause major system Danger:
changes, faults, physical injuries, and Resetting will result in the loss of user
other adverse results. configuration data.
This warning information indicates a
''''' situation that may cause major system | &% Warning:
changes, faults, physical injuries, and | Restarting will cause business
other adverse results. interruption. About 10 minutes are
required to restore business.
This indicates warning information,
supplementary instructions, and other Notice:
content that the user must understand. | Take the necessary precautions to
save exported data containing sensitive
information.
This indicates supplemental instructio
ns, best practices, tips, and other Note:
content that is good to know for the You can use Ctrl + A to select all files.
user.
> Multi-level menu cascade. Settings > Network > Set network type
Bold It is used for buttons, menus, page Click OK.
names, and other Ul elements.
Couri er It is used for commands. Runthecd /d C. /w ndows command
f ont to enter the Windows system folder.
Italics |[Itisused for parameters and variables. |bae 1 og |ist --instanceid
I nstance_|I D
[l or [a|b] It indicates that it is a optional value, i pconfig[-all]|-t]
and only one item can be selected.
{} or{alb} [Itindicates that itis a required value, swi ch{stand | sl ave}
and only one item can be selected.

Contents

Legal disSClaimer.... ..o I
Generic CONVENLIONS.......c..c it rce s rr s r e e s s emn e e e nmn e renns I
1 Download device SDKSs......... it e e e 1
2 Authenticate devices ... s 5
2.1 Authenticate deVICEScoooiiiiieeec e ———— 6
2.2 Unique-certificate-per-device authentication.............cccooooiiiiii e 8
2.3 Unique-certificate-per-product authentication............ccccccceeeiiiiiiiccii s 9
3 Protocols for connecting devices......ccccccceeeeeiiiiiiiiiirnrnnseeeccennnnnes 12
3.1 Establish MQTT connections over TCP...........uiiiiiiiiiii e 12
3.2 Establish MQTT over WebSocket connections...............coooiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee, 16
3.3 Establish communication over the COAP protoCol..........ccuviviiiiiiiiiiiiiee e 18
3.4 Establish communication over the HTTPS protocol.............cccceeeeeiiiiiiiiiiiiiii, 25
4 Configure a TSL-based device.......ccccemmmmmccccciiiiirir s 30
5 OTA Development........ccciiiiimiimeciiiirrrresssss s s e snnsses 40
6 Error codes for sub-device development............coommmmeciiiiiiinnnnnnn. 46
7 Device ShadOWs.........cooiieeiiiiiirr s e s e s e s em e rmnas 49
7.1 Device shadow JSON fOrmat...........oooiiiiiiiiiiieeeee e 49
7.2 Device shadow data Stream...........ccooooiiiiiiiiiiceeee e 52
7.3 USE deViCe SNAUOWS.......ooiiiiiiiieie ettt e e e e e e e e e e e e s e neeeees 60
8 Java SDK ...t e e s e e ennn 63
9 Develop devices based on Alink Protocol...........ccccciiinnnnnnennnnn. 66
1S TR B TS o] o] (o oo) A 66
9.2 Device identity registration.............oeiiii oo 71
9.3 Add a topological relatioNShiP....... ..o 75
9.4 Connect devices to 10T Platform..........ceeeeiiiiiiiiii e 83
9.5 Device properties, events, and SEIVICES............uuuiuiiiiiiiieiie e 86
9.6 Send configuration data to gateway devViCeS..........occuiiiieiiiiiiiie e 98
9.7 Disable and delete dEVICES...........uuuuuuiuiieieii e 113
1S IR T DT T = T RS EEE 116
9.9 TSL MOGEL....eiii ittt e e e e et e e e e e e eatae e e e e e enanees 119
9.10 Firmware UPAate...........oooiiiiiiiiccce et 122
9.11 Remote configuration............coo i 126

9.12 COMMON COAES ON AEVICES. ... ceeeeeeeeee e e e et e e e e e e e e e e e e e aeans 130

1 Download device SDKs

loT Platform provides multiple device SDKs to help you develop your devices and quickly connect

them to the Cloud. As an alternative to SDKs, you can also use Alink protocol for development.
Prerequisites

Before developing devices, finish all console configurations, and obtain necessary informations

such as the device details and topic information. For more information, see the User Guide.
Device SDKs

Select a device SDK according to the protocol and the features that you require. We recommend

that you use C SDK as it provides more features.

Note:
If you have specific development requirements that cannot be met by the current SDKs, you can

develop according to the Alink protocol.

C SDK Java SDK [Android [iOS SDK ([(HTTP/2 General

SDK SDK protocol
MQTT v v v v
CoAP \/
HTTP/HTTPS \/
HTTP/2 ol
Other protocols N
Device certification: N\ N N N N \
unique-certificate-per-
device authentication
Device certification: \ N

unique-certificate-per-
product authentication

OTA development \
Connecting sub \
-devices to loT

Platform

Device shadow v N\ N\

C SDK Java SDK | Android |iOS SDK |[HTTP/2 General
SDK SDK protocol

Device development |+ \
based on TSL

Remote configuration |+

Supported platforms
Click here to view and query the platforms supported by Alibaba Cloud IoT Platform.

If the platform you want to use is not supported by IoT Platform, please open an issue on the

Github page.
Download SDKs

+ CSDK

Version |Release | Developri Downloa{Updates
number | date t link
environm

t

V2.2.1 2018/09 |GNU RELEASED_Xdded supports for connecting devices to WiFi

/03 make on | 2.2.1 and using open-source applications to locally
64-bit control devices.
Linux

- Added supports for countdown routine before
devices go offline.

- Added supports for OTA using iTls to download
firmware files.

https://certification.aliyun.com/open/#/certificationlist
https://github.com/aliyun/iotkit-embedded/issues
https://github.com/aliyun/iotkit-embedded/issues
https://linkkit-sdk-download.oss-cn-shanghai.aliyuncs.com/linkkit2.2.1.tar.gz
https://linkkit-sdk-download.oss-cn-shanghai.aliyuncs.com/linkkit2.2.1.tar.gz

Version

number

Release

date t

Developn

environnj

t

Downloa

link

Updates

V2.1.0

2018/03
131

GNU
make on
64-bit
Linux

RELEASED_Xdded support for CMake: You can use QT or

2 10 _201
331.zip

80 vS2017 on Linux or Windows to open a project
and compile software in CMake compiling
method.

- Added support for TSL model definition on loT
Platform: You can set FEATURE CMP_ENABLED

= y andFEATURE_DM ENABLED = y to
define TSL models to provide API operations for
properties, events, and services.

- Added support for unique-certificate-per-
product: You can set FEATURE SUPPORT _PROD
UCT_SECRET = vy to enable unique-certificate-
per-product authentication and streamline the
production queuing process.

- Added support for iTLS: You can set
FEATURE_MQTT_DI RECT_NOTLS = y and
FEATURE_MQTT_DI RECT_NO TLS = nto
enable ID? encryption. You can use iTLS to
establish data connections to enhance security
and reduce memory consumption.

- Added support for remote configuration: You
can set FEATURE_SERVI CE_OTA _ENABLED
= y and FEATURE_SERVI CE_COTA ENABLED

= y to enable the cloud to push configuration
information to devices.

- Optimized sub-device management of gateways
: Added some features.

Java SDK

Supported

protocol

Update history

Download link

MQTT

2017-05-27: Added support for device
authentication in the China (Shanghai
) region. Added the device shadow

demo on the Java client.

iotx-sdk-mqtt-java: The Java version
that supports MQTT is only a demo of
open-source library implementation. It
is used only for reference.

Instructions: See Java SDK.

http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/iot-sdk-c/RELEASED_V2_10_20180331.7z
http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/iot-sdk-c/RELEASED_V2_10_20180331.7z
http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/iot-sdk-c/RELEASED_V2_10_20180331.7z
http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/iotx-sdk-java/iotx-sdk-mqtt-java-20170526.zip?spm=a2c4g.11186623.2.20.VMVBFk&file=iotx-sdk-mqtt-java-20170526.zip

iOS SDK
Download link:

- https://github.com/CocoaPods/Specs.git
- https.//github.com/aliyun/aliyun-specs.git

Instructions:iOS SDK
HTTP/2 SDK

Download link: jot-http2-sdk-demo.

General protocol

Instructions: See General protocol.

Other open-source libraries

Download link: https://github.com/mqtt/mqtt.github.io/wiki/libraries

https://github.com/CocoaPods/Specs.git
https://github.com/aliyun/aliyun-specs.git
http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/java-http2-sdk-demo/iot-http2-sdk-demos.zip
https://github.com/mqtt/mqtt.github.io/wiki/libraries?spm=a2c4g.11186623.2.22.VMVBFk

2 Authenticate devices

To secure devices, loT Platform provides certificates for devices, including product certificates

(ProductKey and ProductSecret) and device certificates (DeviceName and DeviceSecret). A

device certificate is a unique identifier used to authenticate a device. Before a device connects

to loT Hub through a protocol, the device reports the product certificate or the device certificate,

depending on the authentication method. The device can connect to loT Platform only when

it passes authentication. 10T Platform supports various authentication methods to meet the

requirements of different environments.

loT Platform supports the following authentication methods:

» Unique-certificate-per-device authentication: Each device has been installed with its own

unique device certificate.

» Unique-certificate-per-product authentication: All devices under a product have been installed

with the same product certificate.

» Sub-device authentication: This method can be applied to sub-devices that connect to loT

Platform through the gateway.

These methods have their own advantages in terms of accessibility and security. You can choose

one according to the security requirements of the device and the actual production conditions. The

following table shows the comparison among these methods.

Table 2-1: Comparison of authentication methods

Items

Unique-certificat
e-per-device

authentication

Unique-certificat
e-per-product

authentication

Sub-device

authentication

Information written into
the device

ProductKey,
DeviceName, and
DeviceSecret

ProductKey and
ProductSecret

ProductKey

Whether to enable
authentication in loT
Platform

No. Enabled by default

Yes. You must enable
dynamic register.

Yes. You must enable
dynamic register.

Items

Unique-certificat
e-per-device

authentication

Unique-certificat
e-per-product

authentication

Sub-device

authentication

DeviceName pre-
registration

Yes. You need to
make sure that the
specified DeviceName
is unique under a
product.

Yes. You need to
make sure that the
specified DeviceName
is unique under a
product.

Yes.

Certificate installation
requirement

Install a unique device
certificate on every
device. The safety of
every device certificate
must be guaranteed.

Install the same
product certificate
on all devices under
a product. Make
sure that the product

Install the same
product certificate
into all sub-devices
. The security of the
gateway must be

certificate is safely guaranteed.
kept.
Security High Medium Medium

Upper limit for
registrations

Yes. A product can
have a maximum of
500,000 devices.

Yes. A product can
have a maximum of
500,000 devices.

Yes. A maximum of
200 sub-devices can
be registered with one
gateway.

Other external reliance

None

None

Security of the
gateway.

2.1 Authenticate devices

To secure devices, loT Platform provides certificates for devices, including product certificates

(ProductKey and ProductSecret) and device certificates (DeviceName and DeviceSecret). A

device certificate is a unique identifier used to authenticate a device. Before a device connects

to loT Hub through a protocol, the device reports the product certificate or the device certificate,

depending on the authentication method. The device can connect to IoT Platform only when

it passes authentication. loT Platform supports various authentication methods to meet the

requirements of different environments.

loT Platform supports the following authentication methods:

* Unique-certificate-per-device authentication: Each device has been installed with its own

unique device certificate.

* Unique-certificate-per-product authentication: All devices under a product have been installed

with the same product certificate.

» Sub-device authentication: This method can be applied to sub-devices that connect to loT

Platform through the gateway.

These methods have their own advantages in terms of accessibility and security. You can choose

one according to the security requirements of the device and the actual production conditions. The

following table shows the comparison among these methods.

Table 2-2: Comparison of authentication methods

Item

Unique-certificat
e-per-device

authentication

Unique-certificat
e-per-product

authentication

Sub-device

authentication

Information written into
the device

ProductKey,
DeviceName, and
DeviceSecret

ProductKey and
ProductSecret

ProductKey

Whether to enable
authentication in loT
Platform

No. Enabled by default

Yes. You must enable
dynamic register.

Yes. You must enable
dynamic register.

DeviceName pre-
registration

Yes. You need to
make sure that the
specified DeviceName
is unique under a
product.

Yes. You need to
make sure that the
specified DeviceName
is unique under a
product.

Yes.

Certificate installation
requirement

Install a unique device
certificate on every
device. The safety of
every device certificate
must be guaranteed.

Install the same
product certificate
on all devices under
a product. Make
sure that the product

Install the same
product certificate
into all sub-devices
. The security of the
gateway must be

certificate is safely guaranteed.
kept.
Security High Medium Medium

Upper limit for
registrations

Yes. A product can
have a maximum of
500,000 devices.

Yes. A product can
have a maximum of
500,000 devices.

Yes. A maximum of
1500 sub-devices can
be registered with one
gateway.

Other external reliance

None

None

Security of the
gateway.

2.2 Unique-certificate-per-device authentication

Using unique-certificate-per-device authentication method requires that each device has be
installed with a unique device certificate in advance. When you connect a device to loT Platform,
loT Platform authenticates the ProductKey, DeviceName, and DeviceSecret of the device. After
the authentication is passed, loT Platform activates the device to enable data communication

between the device and loT Platform.
Context

The unique-certificate-per-device authentication method is a secure authentication method. We

recommend that you use this authentication method.

Workflow of unique-certificate-per-device authentication:

. . i 5. Activate the device
1.Create a product - 2. Add a device BN 5 | ocrollthe device R 4-Connect the device [REE
to loT Platform on loT Platform

Obtain the product certificate, Create a device with Install the ProductKey, Power on the device and loT Platform authenticates
and the ProductKey. DeviceName, and obtain the DeviceName, and connect itto loT Platform. the device by the product
device certificate: DeviceName DEV'CESEC_"H on the The device, with the product and device certificates. If the
and DeviceSecret. device. and device certificates, device is authenticated

initiates an authentication

successfully, itis activated.
request to loT Platform.

Procedure

1. In the /oT Platform console, create a product. For more information, see Create a product in the

User Guide.

2. Register a device to the product you have created and obtain the device certificate.

loT Platform Devices > Device Details

SHSSET PO A TS HLS
Data Overview

oduct : test11 View Productke: 1 E Copy DeviceSecret : =****** Show
Quick Start
Device Information Topic List Events Invoke Service Status Device Log
Devices
Product
Device Information
Device
Product Name test1t ProductKey i L4 Cop Regicn China East 2 (Shanghai)
Group
Edge Management Node Type Device DeviceName Sl e DeviceSecret T Show
Rules Current Status Inactive IP Address - Firmware Version
Applications p - -
Created At 11/20/2018, 09:38:26 Activated At Last Online
Data Analysis
Extended Services
Documentation Tag Information

Device Tag:No tags/Add

3. Install the certificate to the device.
Follow these steps:

a) Download a device-side SDK.

http://iot.console.aliyun.com/

b) Configure the device-side SDK. In the device-side SDK, configure the device certificate
(ProductKey, DeviceName, and DeviceSecret).

c) Develop the device-side SDK based on your business needs, such as OTA development,
sub-device connection, TSL-based device feature development, and device shadows
development.

d) During the production process, install the developed device SDK to the device.

4. Power on and connect the device to loT Platform. The device will initiate an authentication

request to loT Platform using the unique-certificate-per-product method.

5. loT Platform authenticates the device certificate. After the authentication is passed and the
connection with loT Platform has been established, the device can communicate with loT

Platform by publishing messages to topics and subscribing to topic messages.

2.3 Unique-certificate-per-product authentication

Using unique-certificate-per-product authentication method requires that devices of a product have
been installed with a same firmware in which a product certificate (ProductKey and ProductSecret)
has been installed. When a device initiates an activation request, loT Platform authenticates

the product certificate of the device. After the authentication is passed, 0T Platform assigns the

corresponding DeviceSecret to the device.

Context

g] Note:

» This authentication method has risks of product certificate leakage because all devices of a
product are installed with the same firmware. On the Product Details page, you can disable
Dynanmi ¢ Regi strati on to reject authentication requests from new devices.

* The unique-certificate-per-product method is used to obtain the DeviceSecret of devices from
loT Platform. The DeviceSecret is only issued once. The device stores the DeviceSecret for

future use.
Workflow of unique-certificate-per-product authentication:

2. Enable D 4. Installthe 5. Connect the 6. Activate the
nable Dynamic . .
1.Create a product g 5 ty 3.Add a device device device to loT —— device on lot
caser Platform Platform
p odu t
v o
ce e es underthe
. an cra

Obtainthe product certificate On the Product Informatiol
Productkey and Produ t ret nable “Dynamic Regis t
\j nter the SMS verificatiol
:

Instal ch Pr r on the device and 10T Platform authenticates
onnect it to 10T Platform. The the device by the product
ctie

certificates,

Procedure

1. In the IoT Platform console, create a product. For more information, see Create a product in the

User Guide.

2. On the Product Details page, enable Dynamni ¢ Regi strati on. loT Platform sends an SMS

verification code to confirm your identity.

E] Note:

If Dynamic Registration is not enabled when devices initiate activation requests, loT Platform

rejects the activation requests. Activated devices are not affected.

IoT Platform Products > Product Details

test11 [Pro Edition | w
Data Overview
Cop e Show & Manag
Quick Start
Pro
Devices
Praduct
Product Information m
Device
Group Product Name test11 Node Type Device Created At 1115/2018, 15:05:04
Biy i Pro Edition EEavE= Data Type ICARRESEIEE (Alink JSON)
Rules Dynamic -
Registration Enabled ProductSecret Show
Applications . . .
Status Developing Comectlo g pateway Connecton ope ya

Data Analysis
Extended Services Description

Documentation

3. Register a device. The status of a newly registered device is | nact i ve.

loT Platform authenticates the DeviceName when a device initiates an activation request. We
recommend that you use an identifier that can be obtained directly from the device, such as the

MAC address, IMEI or serial number, as the DeviceName.
4. Install the product certificate to the device.
Follow these steps:

a) Download a device-side SDK.

b) Configure the device-side SDK to use the unique-certificate-per-product authentication
method. In the device-side SDK, configure the product certificate (ProductKey and
ProductSecret).

c) Develop the device-side SDK based on your business needs, such as OTA development,
sub-device connection, TSL-based device feature development, and device shadows
development.

d) During the production process, install the developed device SDK to the device.

http://iot.console.aliyun.com/

5. Power on the device and connect the device to the network. The device sends an

authentication request to loT Platform to perform unique-certificate-per-product authentication.

6. After the product certificate has been authenticated by loT Platform, loT Platform dynamically
assigns the corresponding DeviceSecret to the device. Then, the device has obtained its
device certificate (ProductKey, DeviceName, and DeviceSecret) and can connect to loT
Platform. After the connection with IoT Platform has been successfully established, the device
can communicate with loT Platform by publishing messages to topics and subscribing to topic

messages.

Note:
loT Platform dynamically assigns DeviceSecret to devices only for the first activation of
devices. If you want to reinitialize a device, go to loT Platform console to delete the device and

repeat the procedures to register and activate a device.

3 Protocols for connecting devices

3.1 Establish MQTT connections over TCP

This topic describes how to establish MQTT connections over TCP by using two device

authentication methods: the MQTT client and the HTTPS protocol.

Note:
When you configure MQTT CONNECT packets:

* Do not use the same device certificate (ProductKey, DeviceName, and DeviceSecret) for
multiple physical devices for connection authentication. This is because when a new device
initiates authentication to loT Platform, a device that is already connected to IoT Platform
using the same device certificate will be brought offline. Later, the device which was brought
offline will try to connect again, causing the newly connected device to be brought offline
instead.

* In MQTT connection mode, open-source SDKs automatically reconnect to loT Platform after

they are brought offline. You can check the actions of devices by viewing the device logs.
Connect the MQTT client to loT Platform using defined domain names

1. We recommend that you use the TLS protocol for encryption, because it provides better
security. Click here to download the TLS root certificate.
2. Connect devices to the server using the MQTT client. For connection methods, see Open-

source MQTT client references. For more information about the MQTT protocol, see http:/mqtt

.org.

Note:
Alibaba Cloud does not provide technical support for third-party code.
3. Establish an MQTT connection.

Connection domain ${ Your Product Key}.iot-as-ngtt. ${YourRegi onld}.
name al i yuncs. com 1883

Replace ${ Your Pr oduct Key} with your ProductKey.

Replace ${ Your Regi onl d} with the region ID of your device. For
information about regions and zones, see Regions and zones.

http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/cert_pub/root.crt
https://github.com/mqtt/mqtt.github.io/wiki/libraries
https://github.com/mqtt/mqtt.github.io/wiki/libraries
http://mqtt.org/
http://mqtt.org/
https://www.alibabacloud.com/help/doc-detail/40654.htm

Variable header: Keep
Alive

The Keep Alive parameter must be included in the CONNECT packet
. The allowed range of Keep Alive value is 30-1200 seconds. If the
value of Keep Alive is not in this range, loT Platform will reject the
connection. We recommend that you set a value larger than 300
seconds. If the Internet connection is not stable, set a larger value.

Parameters in an
MQTT CONNECT
packet

mgttClientld: clientld+"|securenode=3, si gnnet hod=
hmacshal, ti nest anp=132323232| "

ngt t User nane: devi ceNanme+" &' +pr oduct Key

mgt t Passwor d: si gn_hmac(devi ceSecr et, cont ent)

ngt t Passwor d: Sort the parameters to be submitted to the server
alphabetically and then encrypt the parameters based on the
specified sign method.

The content value is a string that is built by sorting and concatenating
the ProductKey, DeviceName, timestamp (optional) and clientld in
alphabetical order, without any delimiters.

« clientld: The client ID is a device identifier. We recommend that
you use the MAC address or the serial number of the device as the
client ID. The length of the client ID must be within 64 characters.

» timestamp: The 13-digit timestamp of the current time. This
parameter is optional.

+ mqttClientld: Extended parameters are placed between vertical
bars (]).

+ signmethod: The signature algorithm. Valid values: hmacmd5,
hmacsha1, and hmacsha256. Default value: hmacmd>5.

» securemode: The current security mode. Value options: 2 (TLS
connection) and 3 (TCP connection).

Example:

Suppose thatcl i ent 1 d=12345, devi ceNanme=devi ce,

pr oduct Key=pk, tinestanp=789, signnethod=hmacshal,
devi ceSecr et =secr et . The MQTT CONNECT packet sent over
TCP is as follows:

mgt t cl i ent | d=12345| secur enpde=3, si gnrmet hod=

hmacshal, ti nest anp=789|

mgt t User nane=devi ce&pk

ngt t Passwor d=hmacshal("secret","clientldl2

345devi ceNanmedevi cepr oduct Keypkt i mest anp789") .

toHexString(); //The toHexString() function

converts a binary string to a hexadeci mal string
The string is case-insensitive.

The encrypted password is as follows:

FAFD82A3D602B37FBOFA8B7892F24A477F851A14

Connect the MQTT client to loT Platform through HTTPS

1.

Authenticate the device.

Use HTTPS for device authentication. The authentication URL is https://iot-auth. ${

Your Regi onl d}. al i yuncs. coml aut h/ devi cenane. Replace ${ Your Regi onl d} with

the region ID of your device. For more information about regions, see Regions and zones.

* Request parameters

Parameter Required Description

productkey |Yes The unique identifier of the product. You can view it in the
loT Platform console.

deviceName |Yes The device name. You can view it in the 10T Platform
console.

sign Yes The signature. The format is hmacmd5(deviceSecret,
content). The content value is a string that is built by sorting
and concatenating of all the parameters (except version,
sign, resources, and signmethod) that need to be submitted
to the server in alphabetical order.

signmethod | No The signature algorithm. Valid values: hmacmd5,
hmacsha1, and hmacsha256. Default value: hmacmd>5.

clientld Yes The client ID. The length must be within 64 characters.

timestamp No Timestamp. Timestamp verification is not required.

resources No The resource that you want to obtain, such as MQTT. Use
commas (,) to separate multiple resource names.

* Response para

meters

Parameter Required Description

iotld Yes The connection tag that is issued by the server. It is used to
specify a value for the user name for the MQTT CONNECT
packet.

iotToken Yes The token is valid for seven days. It is used as the
password for the MQTT CONNECT packet.

resources No The resource information. The extended information

includes the MQTT server address and CA certificate

information.

https://www.alibabacloud.com/help/doc-detail/40654.htm

* Request example using x-www-form-urlencoded:

POST / aut h/ devi cenanme HTTP/ 1.1

Host: iot-auth.cn-shanghai. aliyuncs. com

Cont ent - Type: application/x-ww-formurl encoded

Content-Length: 123

product Key=123&si gn=123&t i nest anp=123&ver si on=def aul t &l i ent | d=123
&r esouces=nqt t &devi ceNanme=t est

sign = hnmac_nd5(devi ceSecret, clientldl23devi ceNanet est produ

ct Key123ti mest anp123)

* Response example:

HTTP/ 1.1 200 OK

Server: Tengi ne

Date: Wed, 29 Mar 2017 13:08: 36 GVl

Content - Type: application/json;charset=utf-8
Connecti on: cl ose

{
"code" : 200,
"data" : {
"iotld" : "42ZeOnk3556498alAl TP",
"i ot Token" : "0d7f deb9dclf 4344a2cc0d45edcbObcb”,
"resources" : {
"mgtt" o {
"host" : "xxx.iot-as-mgtt.cn-shanghai.aliyuncs.com
"port" : 1883
}
}
ssage" : "success
}

2. Establish an MQTT connection.

a. Download the root.crt file of 10T Platform. We recommend that you use TLS 1.2.

b. Connect the device client to the Alibaba Cloud MQTT server using the returned MQTT host
address and port of device authentication.

c. Establish a connection over TLS. The device client authenticates the loT Platform server by
CA certificates. The loT Platform server authenticates the device client by the information
in the MQTT CONNECT packet. In the packet, username=iotld, password=iotToken,
clientld=custom device identifier (we recommend that you use the MAC address or the

device serial number as the device identifier).

If the iotld or iotToken is invalid, then the MQTT connection fails. The connect acknowledg

ment (ACK) flag you receive is 3.
The error codes are described as follows:

* 401: request auth error. This error code is returned when the signature is mismatched.

* 460: param error. Parameter error.

http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/30539/cn_zh/1495715052139/root.crt

* 500: unknown error. Unknown error.
» 5001: meta device not found. The specified device does not exist.

* 6200: auth type mismatch. The authentication type is invalid.
MQTT Keep Alive
In a keep alive interval, the device must send at least one packet, including ping requests.

If loT Platform does not receive any packets in a keep alive interval, the device is disconnected

from loT Platform and needs to reconnect to the server.

The keep alive time must be in a range of 30 to 1200 seconds. We recommend that you set a

value larger than 300 seconds.

3.2 Establish MQTT over WebSocket connections

Context

loT Platform supports MQTT over WebSocket. WebSocket is used to establish a connection. The

MQTT protocol is used to communicate over the WebSocket connection.
Using WebSocket has the following advantages:

» Allows browser-based applications to establish persistent connections to the server.

+ Uses port 433, which allows messages to pass through most firewalls.

Procedure

1. Certificate preparation

The WebSocket protocol includes WebSocket and WebSocket Secure. Websocket and
WebSocket Secure are used for unencrypted and encrypted connections, respectively.
Transport Layser Security (TLS) is used in WebSocket Secure connections. Like a TLS

connection, a WebSocket Secure connection requires a root certificate.

2. Client selection
Java clients can directly use the Official client SDK by replacing the connect URL in the
SDK with a URL that is used by WebSocket. For clients that use other language versions or

connections without using the official SDK, see Open-source MQTT clients. Make sure that the

client supports WebSocket.

3. Connections

An MQTT over WebSocket connection has a different protocol and port number in the connect

URL from an MQTT over TCP connection. MQTT over WebSocket connections have the same

http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/cert_pub/root.crt?spm=5176.doc30539.2.4.aalCo6&file=root.crt
http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/iotx-sdk-java/iotx-sdk-mqtt-java-20170526.zip?spm=5176.doc42648.2.18.7iyFfe&file=iotx-sdk-mqtt-java-20170526.zip
https://github.com/mqtt/mqtt.github.io/wiki/libraries?spm=5176.doc30539.2.5.aalCo6

parameters as MQTT over TCP connections. The securemode parameter is set to 2 and 3 for

WebSocket Secure connections and WebSocket connections, respectively.

« Connect to the domain name of the China (Shanghai) region: ${productKey}.iot-as-mqtt.cn-

shanghai.aliyuncs.com:443

Replace ${productKey} with your product key.

* An MQTT Connect packet contains the following parameters:

mgttClientld: clientld+"|securenode=3, si gnnmet hod=hnacshal,

ti mest anp=132323232| "

mgt t User nanme: devi ceNanme+" &" +pr oduct Key

mgt t Passwor d: si gn_hnmac(devi ceSecret, content)sign. Sort the
content paraneters in al phabetical order and sign them accordi ng
to the signing nethod.

content =Paraneters sent to the server (productKey, devi ceNane,
timestanp,clientld). Sort these parameters in al phabetical order
and splice the paraneters and paraneter val ues.

Where,

- clientld: Specifies the client ID up to 64 characters. We recommend that you use a MAC
address or SN.

- timestamp: (Optional) Specifies the current time in milliseconds.

- mqttClientld: Parameters within | | are extended parameters.

- signmethod: Specifies a signature algorithm.

- securemode: Specifies the secure mode. Values include 2 (WebSocket Secure) and 3 (

WebSocket).

The following are examples of MQTT Connect packets with predefined parameter values:

clientld=12345, devi ceNane=devi ce, product Key=pk, ti nmestanp=789,
si gnnmet hod=hmacshal, devi ceSecret =secr et

« For a WebSocket connection:
- Connection domain

ws: //pk.iot-as-mgtt.cn-shanghai . al i yuncs. com 443

- Connection parameters

mgt t cl i ent | d=12345| secur enode=3, si gnnet hod=hmacshal, ti nest anp=
789|
ngt t User nane=devi ce&pk

mgt t Passw od=hmacshal("secret", "cli ent| d12345devi ceNanedevi cep
r oduct Keypkti nest anp789") .t oHexStri ng();

» For a WebSocket Secure connection:
- Connection domain

wss: //pk.iot-as-mgtt.cn-shanghai. aliyuncs. com 443

- Connection parameters

mgt t cl i ent | d=12345| secur enbde=2, si gnnet hod=hmacshal, ti nmest anp=
789|

ngt t User nane=devi ce&pk

mgt t Passw od=hmacshal("secret"”, "client| d12345devi ceNanedevi cep
r oduct Keypkti nest anp789") .t oHexStri ng();

3.3 Establish communication over the CoAP protocol

loT Platform supports connections over CoAP. CoAP is suitable for resource-constrained, low-

power devices, such as NB-lIoT devices. This topic describes how to connect devices to loT

Platform over CoAP and two supported authentication methods, which are DTLS and symmetric

encryption.

CoAP-based connection procedure

The following figure shows the procedure for connecting NB-lIoT devices to loT Platform.

The procedure is as follows:

1.

Integrate an Alibaba Cloud IoT Platform SDK into the NB-loT module of device clients.
Specifically, in the 10T Platform console, you need to register products and devices, obtain
the unique device certificates (that is, the ProductKey, DeviceName, and DeviceSecret
components), and then install the certificates to the devices.

Establish a connection over your target carriers' cellular networks for NB-loT devices to
connect to loT Platform. We recommend that you contact your local carrier to make sure that
the NB-loT network is available in the region where your devices are located.

After the devices are connected to loT Platform, a machine-to-machine (M2M) platform
manages the data traffic and fees incurred by the NB-loT devices. The M2M platform is
operated by your specified carrier.

Over the CoAP/UDP protocol, devices send data to loT Platform in real time. loT Platform is a
secure service that can connect and manage data for hundreds of millions of NB-loT devices.

Then, through Rules Engine of 10T Platform, the device data can be forwarded to other Alibaba

Cloud product instances, such as big data products, ApsaraDB for RDS, Table Store, and other
products.
5. Use the APIs and message pushing services provided by loT Platform to forward data to

supported service instances and quickly integrate device assets and actual applications.
Establish DTLS connections

1. Connect to the CoAP server. The endpoint address is ${ Your Pr oduct Key} . coap. cn-

shanghai . l i nk. al i yuncs. com ${port}.
Note:

* ${ Your Pr oduct Key} : Replace this variable with the ProductKey value of the device.
* ${port}: The port number. Set the port number to 5684 for DTLS connections.
2. Download the root certificate.

3. Authenticate the device. Call aut h to authenticate the device and obtain the device token.

Token information is required when the device sends data to loT Platform.

Request message:

POST /auth
Host: ${ Your Product Key}. coap. cn-shanghai . | i nk. al i yuncs. com
Port: 5684

Accept: application/json or application/cbor

Content - Format: application/json or application/cbor

payl oad: {"productKey":"ZGLEVTEa7NN', "devi ceNane": " N waSPXsCp
TQUh8FXxBGH', "clientld": "nylight1000002", "si gn": "bccb3d2618af e74b3eab
12b94042f 87b"}

Table 3-1: Parameter description

Parameter Description
Method The request method. The supported method is POST.
URL [aut h.
Host The endpoint address. The endpoint format
is ${ Your Pr oduct Key} . coap. cn-
shanghai . | i nk. al i yuncs. com Replace the variable

${ Your Pr oduct Key} with the ProductKey value of the device.

Port Set the value to 5684.

Accept The encoding format of the data that is to be received by the device.
Currently, application/json and application/cbor are supported.

Content-Format The encoding format of the data that the device sends to loT Platform
. Currently, application/json and application/cbor are supported.

http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/cert_pub/root.crt?spm=5176.doc30539.2.1.1MRvV5&file=root.crt

Parameter

Description

payload

The device information for authentication, in JSON format. For more
information, see the following table payload parameters.

Table 3-2: payload parameters

Parameter

Required

Description

productKey

Yes

The unique identifier issued by loT Platform to the
product. You can obtain this information on the device
details page in the loT Platform console.

deviceName

Yes

The device name that you specified, or is generated by

loT Platform, when you registered the device. You can
obtain this information on the device details page in the
loT Platform console.

ackMode

No

The communication mode. Value options:

« 0: After receiving a request from the device client,
the server processes data and then returns the
result with an acknowledgment (ACK).

« 1: After receiving a request from the client, the
server immediately returns an ACK and then
starts to process data. After the data processing is
complete, the server returns the result.

The default value is 0.

sign

Yes

The signature.

The signature algorithm is hmacnd5(Devi ceSecr et
content).

The value of cont ent is a string that is built by sorting
and concatenating all the parameters (except ver si on
, Si gn, resour ces, and si gnnet hod) that need to
be submitted to the server in alphabetical order, without
any delimiters.

signmethod

No

The algorithm type. The supported types are hmacmd5
and hmacsha1.

clientld

Yes

The device client ID, which can be any string up to 64
characters in length. We recommend that you use
the MAC address or the SN code of the device as the
clientld.

timestamp

No

The timestamp. Currently, timestamp is not verified.

Response example:

response:

Table 3-3: Return codes

{"token":"f13102810756432e85df d351eeb41c04"}

Code Message Payload Description
2.05 Content The token is The request is successful.
contained in
the payload if
the authentica
tion has
passed.
4.00 Bad Request no payload The payload in the request is invalid.
4.01 Unauthorized | no payload The request is unauthorized.
4.03 Forbidden no payload The request is forbidden.
4.04 Not Found no payload The requested path does not exist.
4.05 Method Not no payload The request method is not allowed.
Allowed
4.06 Not Acceptable | no payload The value of Accept parameter is not in a
supported format.
4.15 Unsupporte no payload The value of Content-Format parameter is
d Content- not in a supported format.
Format
5.00 Internal Server |no payload The authentication request is timed out or
Error an error occurred on the authentication
server.

4. The device sends data.

The device publishes data to a specified topic. In the loT Platform console, on the Topic

Categories tab page of the product, you can create topic categories.

Currently, only topics with the permission to publish messages can be used for publishing

data, for example, / ${ Your Pr oduct Key}/ ${ Your Devi ceNane}/ pub. Specifically, if a

device name is device, and its product key is a1GFjLP3xxC, the device can send data through

the address alGFj LP3xxC. coap. cn- shanghai . | i nk. al i yuncs. com 5684/ t opi c/
alGFj LP3xxC devi ce/ pub.

Request message:

POST /topic/ ${t opi c}

Host: ${ Your Product Key}. coap. cn- shanghai . | i nk. al i yuncs. com
Port: 5684

Accept: application/json or application/cbor
Content-Format: application/json or application/cbor

payl oad: ${your_dat a}

Cust omOpt i ons: numnber: 2088(t oken)

Table 3-4: Request parameters

Parameter Required Description
Method Yes The request method. The supported method is POST.
URL Yes [t opi c/ ${t opi c} Replace the variable ${t opi c}
with the device topic which will be used to publish data.
Host Yes The endpoint address. The format is
${ Your Pr oduct Key} . coap. cn-
shanghai . l'i nk. al i yuncs. com Replace
${ Your Pr oduct Key} with the ProductKey value of
the device.
Port Yes Set the value to 5684.
Accept Yes The encoding format of the data that is to be received

by the device. Currently, application/json and applicatio
n/cbor are supported.

Content-Format | Yes The encoding format of the data that the device
sends to loT Platform. The server does not verify this
parameter. Currently, application/json and application/
cbor are supported.

CustomOptions | Yes « Number: 2088.

* The value of token is the token information returned
after auth is called to authenticate the device.

Note:
Token information is required every time the device
sends data. If the token is lost or expires, initiate a
device authentication request again to obtain a new
token.

Use the symmetric encryption method

1. Connect to the CoAP server. The endpoint address is ${ Your Pr oduct Key} . coap. cn-

shanghai . i nk. al i yuncs. com ${port}.

Note:

* ${ Your Product Key} : Replace it with the ProductKey value of the device.
* ${port}: The port number. Set the value to 5682.

2. Authenticate the device.

Request message:

PCST /auth
Host: ${ Your Product Key}. coap. cn-shanghai . | i nk. al i yuncs. com
Port: 5682

Accept: application/json or application/cbor

Content-Format: application/json or application/cbor

payl oad: {"productKey":"alNy cVKHZS", "devi ceNane":"fflalle7cO
8d4b3db2b1500d8e0e55", "cli ent 1 d": "alNUj cVKHZS&S f 1alle7c08d4b3db2bl
500d8e0e55", "si gn": " FOFD53EEOCDO10FCA40D14A9FEAB81EQ", "seq": " 10"}
For more information about parameters (except for Port parameter, where the port for this

method is 5682) and payload content, see Parameter description.
Response example:

{"random': "ad2b3a5eb51d64f 7", "seqOf fset ": 1, "t oken": " MZ8nB87hp01
w1SSqoDFz00010500d00. ad2b"}

Table 3-5: Response parameters

Parameter Description

random The encryption key used for data communication.
seqOffset The authentication sequence offset.

token The returned token after the device is authenticated.

3. The device sends data.
Request message:

PCST /topi c/ ${t opi c}

Host: ${ Your Product Key}. coap. cn-shanghai . | i nk. al i yuncs. com
Port: 5682

Accept: application/json or application/cbor
Content - Format: application/json or application/cbor

payl oad: ${your_dat a}

Cust omOpt i ons: nunber: 2088(t oken), 2089(seq)
Table 3-6: Request parameters

Parameter Required Description

Method Yes The request method. The supported method
is POST.

URL Yes The formatis / t opi c/ ${t opi c}. Replace
the variable ${t opi c} with the device topic
used by the device to publish data.

Host Yes The endpoint address. The format is ${

Your Pr oduct Key} . coap. cn- shanghai .

I i nk. al i yuncs. com Replace the variable
${ Your Pr oduct Key} with the ProductKey

value.

Port Yes The port number. Set the value to 5682.

Accept Yes The encoding format of the data which is
to be received by the device. Currently,

application/json and application/cbor are
supported.

Content-Format Yes The encoding format of the data which is sent
by the device. Currently, application/json and
application/cbor are supported.

payload Yes The encrypted data that is to be sent. Encrypt
the data using the Advanced Encryption
Standard (AES) algorithm.

Parameter

Required

Description

CustomOptions

Yes

The option value can be 2088 and 2089,
which are described as follows:

2088: Indicates the token. The value is
the token returned after the device is
authenticated.

Note:

Token information is required every time
the device sends data. If the token is lost
or expires, initiate a device authentication
request again to obtain a new token.
2089: Indicates the sequence. The value
must be greater than the seqOffset
value that is returned after the device is
authenticated, and must be a unique
random number. Encrypt the value with
AES.

Response message for option

nunber: 2090 (I oT Platform
nessage | D)

After a message has been sent to loT Platform, a status code and a message ID are returned.

3.4 Establish communication over the HTTPS protocol

loT Platform supports HTTPS connections. It does not support HTTP connections.

Description

* The HTTPS server endpointis htt ps: //i ot - as- htt p. cn-shanghai . al i yuncs. com

« Currently, only the region cn-shanghai supports HTTPS connections.

* Only the HTTPS protocol is supported.

» The standards for HTTPS topics are the same as the standards for MQTT topics in MQTT

standard. Devices send data to loT Platform through htt ps: / /i ot - as- htt p. cn- shanghai

.aliyuncs. coni t opi c/ ${t opi c}. The value of ${topic} can be the same topic used in

MQTT communications. You cannot specify parameters in the format of ? query_Stri ng=

XXX.

* The size of data from devices is limited to 128 KB.

Procedure

1. Connect to the HTTPS server.

The endpoint address: htt ps: //i ot -as-http. cn-shanghai . al i yuncs. com

2. Authenticate the device to get the device token.

Device authentication request message example:

POST /auth HTTP/ 1.1
Host: iot-as-http.cn-shanghai.aliyuncs. com

application/json

body: {"version":"default","clientld":"nylight1000002","si gnnethod
":"hmacshal", "sign":"4870141D4067227128CBB4377906C3731CAC221C", "
product Key": " ZGLEVTEa7NN', " devi ceName": " Nl waSPXs Cp TQUh8FxBGH" , "

Cont ent - Type:

timestanp”:"1501668289957"}

Table 3-7: Parameter description

Parameter Description

Method The request method. The supported method is POST.
URL / aut h URL address. Only HTTPS is supported.

Host The endpoint address: i ot - as- htt p. cn-

shanghai . al i yuncs. com

Content-Type

The format of the data that the device sends to loT Platform. Only
application/json is supported.

body

The device information for authentication, in JSON format. For more
information, see the following table Parameters in body.

Table 3-8: Parameters in body

Parameter Required? Description

productKey Yes The unique identifier of the product to which the device
belongs. You can obtain this information on the device
details page in the loT Platform console.

deviceName Yes The device name. You can obtain this information on
the device details page in the loT Platform console.

clientld Yes The device client ID. It can be any string up to 64
characters in length. We recommend that you use
either the MAC address or the SN code as the clientld.

timestamp No Timestamp. The request is valid within 15 minutes after

the timestamp is created.

Parameter Required? Description

sign Yes Signature.

The signature algorithm is in the format of hrmacnd5(
Devi ceSecret, content).

The value of cont ent is a string that is built by sorting
and concatenating all the parameters (except ver si on
, Si gn, and si gnnet hod) that need to be submitted to
the server in alphabetical order, without any delimiters.
Signature example:

Ifclientld = 12345, devi ceNane = devi ce

, product Key = pk,tinestanp = 789,

si gnmet hod = hmacshal, and devi ceSecret =
secr et , then the signature algorithm is hmacshal("
secret","clientldl2345devi ceNanmedevi cep
roduct Keypkti mest anp789") .t oHexStri ng

() ; - In this example, binary data will be converted to
hexadecimal data.

signmethod No The algorithm type. The supported types are hmacmd5
and hmacsha1.
The default value is hmacmd5.

version No The version. If you leave this blank, the value is default.

Response example:

body:
{ "code": 0, // the status code
:_rress?ge": "success", // the result nessage
| nI gkéni : "6944e5bf b92e4d4ea3918dleda3942f 6"
: }
Note:

* The returned token can be cached locally.

+ Token information is required every time when the device reports data to loT Platform. If the

token is lost or expires, initiate a device authentication request again to obtain a new token

Table 3-9: Error codes

Code Message Description
10000 common error Unknown error.
10001 param error A parameter exception occurred during the request.
20000 auth check error | An error occurred while authenticating the device.
20004 update session | An error occurred while updating the session.

error
40000 request too many | Too many requests. The throttling policy limits the

number of requests.

3. The device sends data to IoT Platform.
The device send data to the specified topic.

In the IoT Platform console, on the Topic Categories tab page of the product, you can create

topic categories.

For example, a topic category is / ${ Your Pr oduct Key}/ ${ Your Devi ceNane}/ pub. If

a device name is device123, and its product key is a1GFjLP3xxC, the device sends data
through https://iot-as-http.cn-shanghai . al i yuncs. conitopi c/ alGrj LP3xxC/
devi cel23/ pub.

Request message format:

POST /topic/${topic} HITP/ 1.1

Host: iot-as-http.cn-shanghai.aliyuncs.com
passwor d: ${t oken}

Content - Type: application/octet-stream
body: ${your_dat a}

Table 3-10: Parameter description

Parameter Description
Method The request method. The supported request method is POST.
URL /topi c/ ${t opi c}. Replace ${t opi c} with the topic for receiving

device data. Only HTTPS is supported.

Host The endpoint address: i ot-as-http.cn-
shanghai . al i yuncs. com

password This parameter is included in the request header. The value of this
parameter is the token returned when using the aut h interface to
authenticate the device.

Parameter Description

body The data content sent to ${topic}, which is in binary byte[] array format
and encoded with UTF-8.

Response example:

body:
"code": 0, // the status code
"message": "success", // the result nessage
"info": {

"messagel d": 892687627916247040,
"Data": byte []/UTF-8 encoded data, and possibly enmpty

}
}

Table 3-11: Error codes

Code Message Description

10000 common error Unknown error.

10001 param error A parameter exception occurred during the
request.

20001 token is expired The token is invalid. Call aut h to
authenticate the device again to obtain a new
token.

20002 token is null The request header contains no token
information.

20003 check token error Failed to identify the device based on the
token. Call aut h to authenticate the device
again and obtain a new token.

30001 publish message error | An error occurred while publishing data.

40000 request too many Too many requests. The throttling policy limits
the number of requests.

4 Configure a TSL-based device

This topic describes how to configure a device based on a TSL model.

Note:
Only IoT Platform Pro supports this feature.

Prerequisites

Create a product, add a device, and define the TSL in the loT Platform console. A TSL model
describes the properties, services, and events of a device, as shown in figure Figure 4-1: Create

devices.

Figure 4-1: Create devices

Establish a connection to loT Platform

1. For more information about establishing an MQTT connection to connect a device and loT
Platform, see Establish MQTT connections over TCP.

2. Call the linkkit_start operation in the device SDK to establish a connection to loT Platform and

subscribe to topics.

When you use the device SDK, save a shadow for the device. A shadow is an abstraction of a
device, which is used to retrieve the status information of the device. The interaction process
between a device and loT Platform is a synchronization process between the device and

shadow and between the shadow and loT Platform.

Variable get_tsl_from_cloud is used to synchronize the TSL model from loT Platform when the

device comes online.

+ get_tsl_from_cloud = 0: Indicates that a TSL model has been pre-defined. TSL_STRING is

used as the standard TSL model.

The SDK copies the TSL model that is created in the console, uses the TSL model to define
TSL_STRING in linkkit_sample.c, and then calls the linkkit_set tsl operation to set the pre-
defined TSL model.

Note:

Use the C escape character correctly.

» get_tsl_from_cloud = 1: Indicates that no TSL model has been pre-defined. The SDK must

dynamically retrieve the TSL model from loT Platform.

Dynamically retrieving a TSL model consumes a large amount of memory and bandwidth.
The specific consumption depends on the complexity of the TSL model. A TSL model of 10

KB consumes about 20 KB of memory and 10 KB of bandwidth.

3. Use the linkkit_ops_t parameter to register the callback.

linkkit start(8, get tsl fromcloud, |inkkit_ |oglevel debug, &
al i nkops, |inkkit_cloud_domai n_sh, sanple_ctx);
if (! get_tsl_fromcloud) {
linkkit _set tsl(TSL_STRING strlen(TSL_STRI NG);
}

Function implementation:

t ypedef struct _linkkit_ops {

int (*on_connect)(void *ctx);

int (*on_disconnect)(void *ctx);

int (*raw data_arrived)(void *thing_id, void *data, int len, void

*ctx);

int (*thing_create)(void *thing id, void *ctx);

int (*thing_enable)(void *thing_id, void *ctx);

int (*thing_disable)(void *thing_ id, void *ctx);
#i f def RRPC_ENABLED

int (*thing_call_service)(void *thing_id, char *service, int
request _id, int rrpc, void *ctx);
#el se

int (*thing_call _service)(void *thing_id, char *service, int
request _id, void *ctx);
#endi f /* RRPC_ENABLED */

int (*thing_prop_changed)(void *thing_id, char *property, void *
ctx);
} linkkit_ops_t;
/**
* @rief start linkkit routines, and install callback funstions(
async type for cloud connecting).

* @param max_buffered nsg, specify max buffered nessage size.

* @aram ops, callback function struct to be installed.

* @aramget tsl fromcloud, config if device need to get tsl from
cloud(! 0) or local (0), if local selected, nust invoke |inkkit_se
t tsl to tell tsl to dmafter start conplete.

@aram | og | evel, config log |evel.

@ar am user _context, user context pointer.

@ar am donai n_t ype, specify the could server domain.

*
* @eturn int, O when success, -1 when fail.

*/

int linkkit_start(int max_buffered_nsg, int get_tsl_fromcloud
, linkkit loglevel t log level, linkkit ops t *ops, |inkkit_cl
oud_donmai n_type t domain_type, void *user_context);

/**

* @rief install user tsl.
*

* @aramtsl, tsl string that contains json description for thing
obj ect.
* @aramtsl _len, tsl string |ength.

*

* @eturn pointer to thing object, NULL when fails.
*/
extern void* |inkkit_set tsl(const char* tsl, int tsl _len);

4. After you have connected the device to loT Platform, log on to the IoT Platform console and

verify whether the device has come online.

Figure 4-2: Device comes online

Send property changes to loT Platform

1. When the properties of a device change, the device automatically sends the changes to loT
Platform by publishing to topic / sys/ { pr oduct Key}/ { devi ceNane}/t hi ng/ event/
property/ post.

Request:

TOPI C. /sys/{product Key}/{devi ceNane}/t hi ng/ event/ property/ post
REPLY TOPI C. /sys/{product Key}/{devi ceNane}/t hi ng/ event/ property/
post _reply

request

L

"id" o "123",
"version":"1.0",
"params" : {
"Power Switch" : 1

"ﬁEthod":"thing.event.property.post"
}

response

{

"id":"123",

"code": 200,

"data":{}

}

2. The SDK calls the linkkit_set_value operation to modify the property of the shadow, and then

calls the linkkit_trigger_event operation to synchronize the shadow to loT Platform.

Note:

The device will automatically send the current property of the shadow to loT Platform.

Function:

linkkit set val ue(linkkit_nethod set property val ue, sanpl e->t hi ng,
EVENT_PROPERTY_POST_| DENTI FI ER, val ue, value_str); // set val ue

return Iinkkit _trigger_event (sanpl e->t hi ng, EVENT_PROPERTY_POST _
| DENTI FI ER, NULL); // update val ue to cloud

Function implementation:

/**

* @rief set value to property, event output, service output itens.
* if identifier is struct type or service output type or event
output type, use '.' as delineter like "identifierl.ientifier2"

* to point to specific item

* val ue and val ue _str could not be NULL at the sanme tine;

* if value and value_str both as not NULL, value shall be used and

val ue_str will be ignored.
* if value is NULL, value_str not NULL, value_str will be used.
* in brief, value will be used if not NULL, value str will be used

only if value is NULL.
*

* @param net hod_set, specify set val ue type

* @aramthing_id, pointer to thing object, specify which thing to

set .

* @aramidentifier, property, event output, service output

i dentifier.

* @aramvalue, value to set.(input int* if target value is int type
or enum or bool, float* if float type,

* long long* if date type, char* if text type).

* @param val ue _str, value to set in string format if value is null

*

* @eturn 0 when success, -1 when fail

*/

extern int linkkit_set value(linkkit_method_set t nethod set, const
voi d* thing_id, const char* identifier,

const voi d* val ue, const char* value_str);

/**

* @rief trigger a event to post to cloud.

*

* @aramthing_id, pointer to thing object.

* @aramevent _identifier, event identifier to trigger.

* @aram property identifier, used when trigger event with nethod "

event . property.post", if set, post specified property, if NULL, post
all.

*

* @eturn 0 when success, -1 when fail

*/

extern int linkkit_trigger_event(const void* thing id, const char*

event _identifier, const char* property_identifier);

Get a device property on loT Platform

1. You can log on to the loT Platform console and use topic / sys/ { pr oduct Key}/ {

devi ceNane}/t hi ng/ servi ce/ property/ get to geta property of a device.

Request:

TOPI C. /sys/{product Key}/{devi ceName}/t hi ng/ servi ce/ property/get
REPLY TOPI C. /sys/{product Key}/{devi ceNane}/t hi ng/ service/ property/
get _reply

request

"id" o "123",
"version":"1.0",

“parans” : |
"power Swi t ch"

] 1

"met hod": "t hi ng. service. property. get"
}

response

{

"id":"123",
"code": 200,
"data":{

"power Switch": 0
}

}

2. When the device receives the GET command from loT Platform, the SDK executes the

command to read the property value from the shadow and returns the value to loT Platform.
Set a device property on loT Platform

1. You can log on to the loT Platform console and use topic / sys/ { pr oduct Key}/ {

devi ceNane}/t hi ng/ servi ce/ property/ set to seta property of a device client.

Request:

TOPI C. /sys/{product Key}/{devi ceNane}/t hi ng/ servi ce/ property/set
REPLY TOPI C. /sys/{product Key}/{devi ceNane}/thi ng/ service/ property/

set _reply

payl oad:

{

"id" o "123",
"version":"1.0",
"paranms" : {

"Power Swi tch" : O,

" et hod" : "t hi ng. service. property. set"

}

response

{
"id":"123",
"code": 200,
"data":{}

}

2. The SDK registers the thing_prop_changed callback function in the linkkit_ops_t parameter
of the linkkit_start method to respond to the request sent from loT Platform for setting device
properties.

3. The linkkit_get_value parameter in the callback function is used to get the device property of
the shadow, which is the same as the device property that is modified on IoT Platform.

4. After setting the new property value, you can implement the linkkit_answer_service function to
return the result to 10T Platform. You can choose whether to perform this task based on your

business needs.

Function implementation:

static int thing prop_changed(void* thing_ id, char* property, void*
ct x)

char* value_str = NULL;

linkkit_get val ue(linkkit_method_get property value, thing_id,
property, NULL, &val ue_str);

LI NKKI T_PRI NTF(" #### property(%) new val ue set: % ####\n",
property, value_str);

/* do user's process |ogical here. */
linkkit trigger_event(thing_ id, EVENT PROPERTY_POST | DENTI Fl ER

property);
return O;

}

Callback function:
int (*thing prop_changed)(void *thing_id, char *property, void *ctx);

Function implementation:

/**

* @rief get value from property, event output, service input/output
itemns.

* if identifier is struct type or service input/output type or event
output type, use '.' as delinmeter like "identifierl.ientifier2"

* to point to specific item

* value and value_str could not be NULL at the sane tine;

* if value and value_str both as not NULL, value shall be used and

val ue_str will be ignored.
* if value is NULL, value_str not NULL, value_str will be used.
* in brief, value will be used if not NULL, value str will be used

only if value is NULL.
* @aram et hod_get, specify get value type
* @aramthing_id, pointer to thing object, specify which thing to get

* @aramidentifier, property, event output, service input/output
identifier.

* @aramvalue, value to get(input int* if target value is int type or
enum or bool, float* if float type,

* long long* if date type, char* if text type).

* @aramvalue_str, value to get in string format. DO NOT nodify this

when function returns,

* user should copy to user's own buffer for further process.

* user should NOT free the menory.

*

* @eturn 0 when success, -1 when fail

*/

extern int linkkit _get value(linkkit_ method get t nethod get, const

voi d* thing_id, const char* identifier,

voi d* val ue, char** value_str);

Function:

i nkkit_set_val ue(linkkit_method_set_service_out put _val ue, thing,
identifier, &sanple->service customoutput contrastratio, NULL);
I'i nkkit_answer _service(thing, service_identifier, request_id, 200);

Function implementation:

/**

* @rief set value to property, event output, service output itens.

* if identifier is struct type or service output type or event output
type, use '.' as delineter like "identifierl.ientifier2"

* to point to specific item

* val ue and value _str could not be NULL at the sane tine;

* if value and val ue_str both as not NULL, value shall be used and

val ue_str will be ignored.
* if value is NULL, value_str not NULL, value_str wll be used.
* in brief, value will be used if not NULL, value str will be used

only if value is NULL.
*

* @param net hod_set, specify set val ue type
* @aramthing_id, pointer to thing object, specify which thing to set

* @aramidentifier, property, event output, service output identifier

* @aramvalue, value to set.(input int* if target value is int type
or enumor bool, float* if float type,

* long long* if date type, char* if text type).

* @param val ue_str, value to set in string format if value is null

*

* @eturn 0 when success, -1 when fail.

*/

extern int linkkit_set value(linkkit_method_set t nethod set, const
voi d* thing_id, const char* identifier,

const voi d* val ue, const char* value_str);

/**

* @rief answer to a service when a service requested by cl oud.

* x F

@aramthing_id, pointer to thing object.
@aram service_identifier, service identifier to answer, user should
get this identifier fromhandl e _dmcall back fp_ t type call back
* report that "dmcal |l back type service requested" happened, use this
function to generate response to the service sender.
* @aramresponse_id, id value in response payload. its value is from
"dm cal | back_type_service requested" type call back function
* use the sane id as the request to send response as the sane
comuni cati on session.
* @aram code, code value in response payl oad. for exanple, 200 when
service is successfully executed, 400 when not successfully execut ed.
* @aramrrpc, specify rrpc service call or not.
*
* @eturn 0 when success, -1 when fail
*/

extern int |inkkit_answer_service(const void* thing id, const char*
service_ identifier, int response_id, int code);

loT Platform requests a service from the device.

1. 10T Platform uses topic / sys/ { pr oduct Key}/{devi ceNane}/t hi ng/ servi ce/ {dsl
.service.identifer} toinvoke a service from the device. The service is defined in

dsl.service.identifer of the standard TSL model.

TOPI C. /sys/{product Key}/{devi ceNane}/t hi ng/ servi ce/ {dsl . service.

i dentifer}

REPLY TOPI C:

/ sys/ {product Key}/{devi ceNane}/t hi ng/ servi ce/ {dsl . service.identifer}
_reply

request

{

"id" ;o "123",

"version":"1.0",

"paranms” : {

"Sprinkl eTi me" : 50,
" Sprinkl eVol une" : 600

" et hod" : "t hi ng. servi ce. Aut oSpri nkl e"

}

response

{
"jd":"123",
"code": 200,
"data":{}

}

2. The SDK registers the thing_call_service callback function in the linkkit_ops_t parameter of the

linkkit_start method, to send a response to the service request.

3. After setting the new property value, you must call the linkkit_answer_service function to send

a response to loT Platform.

Function:

int (*thing_call _service)(void *thing_id, char *service, int
request id, void *ctx);

Function implementation:

static int handl e_service_custon(sanpl e_context_t* sanple, void*
thing, char* service_ identifier, int request _id)

{

char identifier[128] = {0};

/*

* get iutput val ue.

*/

snprintf(identifier, sizeof(identifier), "%.%", service_ identifier
, "Sprinkl eTinme");

linkkit get value(linkkit_method get service_ input_val ue, thing,
identifier, &sanple->service_custom.input_transparency, NULL);

/*

* set output value according to user's process result.

*/

snprintf(identifier, sizeof(identifier), "%.%", service_ identifier
, "Sprinkl eVol ume") ;

sanpl e- >servi ce_custom out put _contrastrati o = sanpl e->servi ce_cu
stom.input _transparency >= 0 ? sanpl e->servi ce_custom i nput
_transparency : sanpl e->servi ce_custom i nput_transparency * -1;
linkkit_set val ue(linkkit_method_set service_output_val ue, thing,
identifier, &sanple->service customoutput contrastratio, NULL);

I'i nkkit _answer _service(thing, service_identifier, request_id, 200);
return O;

}
Send events to loT Platform

1. A device subscribes to topic / sys/ { pr oduct Key}/{devi ceNane}/t hi ng/ event/{
dsl . event.identifer}/post tosendan eventto loT Platform. The event is defined in

dsl.event.identifer of the standard TSL model.

Request:

TOPI C. /sys/{product Key}/{devi ceNane}/t hi ng/ event/{dsl. event.

i dentifer}/post

REPLY TOPI C. /sys/{product Key}/{devi ceNane}/thi ng/ event/{dsl . event.
i dentifer}/post reply

r equest

{

"id" o "123",
"version":"1.0"
“"paranms" : {

"ErrorCode" : O

"Hethod":"thing.event.Error.post"

}

response:

{

"jid" o "123",
"code": 200,
"data" : {}

}

2. The SDK calls the linkkit_trigger_event method to send an event to loT Platform.

Function:

static int post_event _error(sanple_context t* sanple)

{

char event_output _identifier[64];

snprintf(event output _identifier, sizeof(event_output _identifier),
"0s. %", EVENT_ERROR | DENTI FI ER, EVENT_ERROR _QUTPUT | NFO_| DENTI FI ER

)

int errorCode = 0O;

l'i nkkit_set val ue(linkkit nethod set event output_ val ue,

sanpl e- >t hi ng,

event output identifier,

&error Code, NULL);

return linkkit _trigger_event (sanpl e->t hing, EVENT_ERROR | DENTI FlI ER,
NULL) ;

}

Function implementation:

*
*

@rief trigger a event to post to cloud.

@aramthing id, pointer to thing object.

@aram event _identifier, event identifier to trigger.

@aram property_identifier, used when trigger event with nethod "
event.property.post”, if set, post specified property, if NULL, post
all.

*

* @eturn 0 when success, -1 when fail.

*/

extern int linkkit _trigger _event(const void* thing id, const char*
event _identifier, const char* property_identifier);

I

5 OTA Development

Update firmware

In this example, loT Platform uses the MQTT protocol to update the firmware. Figure 5-1:

Firmware update shows the update process as follows:

Figure 5-1: Firmware update

Device OTA server

1 Report the current firmware wversion

ote/device/inforn/$ {TourProdustRay} /§ {ToarDevizeNane}
3 Issne the firmware URL to the device. 2
cta/device/upgrade,/§ {YourProductRey} /§ {TourDeviceNans}

Download the firmware using HITFS

WITT 4 protocel.

nrotecol

5 Report the progress of the firmware update.

{ otafdevice/mragress/§ {TourProductRey} /§ {TourDeviceNans=

The device completes the firmware update
6 and reports the latest wersion

ote/device/inforn/d {YourProduc tRey} /8 {TourDevi ceFane]

Topics for firmware update

OTA censole

Add the firmware in the console and
initiate a firmware update request
for devices.

The firoware update progress is
displayed in the console.

The console notifies that the
update is successful.

» The device publishes a message to this topic to report the firmware version to loT Platform.

/ ot a/ devi ce/ i nf or mi ${ pr oduct Key}/ ${ devi ceNane}

» The device subscribes to this topic to receive a notification of the firmware update from loT

Platform.

/ ot a/ devi ce/ upgr ade/ ${ pr oduct Key} / ${ devi ceNane}

+ The device publishes a message to this topic to report the progress of the firmware update to

loT Platform.

/ ot a/ devi ce/ progr ess/ ${ product Key}/ ${ devi ceNane}

Note:

» The device does not periodically send the firmware version to lIoT Platform. Instead, the device
sends the firmware version to loT Platform only when the device starts.

* You can view the firmware version to check if the OTA update is successful.

+ After you have configured the firmware update for multiple devices in the console of an OTA

server, the update status of each device becomes Pending.

When the OTA system receives the update progress from the device, the update status of the
device changes to Updating.

* An offline device cannot receive any update notifications from the OTA server.

When the device comes online again, the device notifies the OTA server that it is online. When
the server receives the online notification, the server determines whether the device requires

an update. If an update is required, the server sends an update notification to the device.
OTA code description
1. Install the firmware on a device, and start the device.

The initialization code for OTA is as follows:

_ota = | OT_OTA | nit(PRODUCT_KEY, DEVI CE_NAME, pclient);
f (NULL == h_ota) {

rc = -1,

printf("initialize OTA failed\n");

h
[

Note:
The MQTT connection (the obtained MQTT client handle pclient) is used to initialize the OTA

module.

The function is declared as follows:

/**

* @rief Initialize OTA nodul e, and return handl e.
* You must construct the MJIT client before you canll this interface

* @aram|[in] product_key: specify the product key.
* @aram]|[in] device_nane: specify the device nane.
* @aram|[in] ch_signal: specify the signal channel.
*

* @etval O : Successful.

* @etval -1 : Failed.

* @ee None.

*/

void *1 OT_OTA Init(const char *product_key, const char *devi ce_nane
, void *ch_signal);

/**

@rief Report firmwvare version information to OTA server (optional

NOTE: pl ease

* ¥ X XN %

@aram [in] handl e: specify the OTA nodul e.
@aram [in] version: specify the firmvare version in string format

*
* @etval O : Successful.

* @etval < 0 : Failed, the value is error code.

* @ee None.

=]

int | OT_OTA ReportVersion(void *handl e, const char *version);

2. The device downloads the firmware from the received URL.

+ |OT_OTA IsFetching(): Identifies whether firmware is available for download.
+ |OT_OTA FetchYield(): Downloads a firmware package.
* IOT_OTA_IsFetchFinish(): Identifies whether the download has completed or not.

An example code is as follows:

/[l ldentifies whether firmvare is avail able for downl oad.
if (1OT_OTA |IsFetching(h_ota)) {
unsi gned char buf ota[OTA BUF LEN;
uint32 t len, size downl oaded, size file;
do {
/llteratively downl oads firmare.
len = | OT_OTA FetchYield(h_ota, buf_ota, OTA BUF _LEN, 1);
if (len > 0) {
/IWites the firmvare into the storage such as the flash.

}
} while (! 1OT_OTA | sFetchFinish(h_ota)); //ldentifies whether the
firmvare downl oad has conpl eted or not.

exit: Crl o
/**

* @rief Check whether is on fetching state

*

@aram [in] handl e: specify the OTA nodul e.

*

*

* @etval 1 : Yes.
* @etval 0 : No.
*

@ee None.
*/
int | OT_OTA | sFetching(void *handle);
/**
* @Brief fetch firmvare fromrenote server with specific timeout
val ue.
* NOTE: If you want to downl oad nore faster, the bigger 'buf' should
be gi ven.
*
* @aram|[in] handle: specify the OTA nodul e.
* @aram[out] buf: specify the space for storing firmware data.
* @aram[in] buf |len: specify the length of 'buf' in bytes.
* @aram|[in] timeout_s: specify the timeout value in second.
*
* @etval < 0 : Error occur..
*

@etval 0 : No any data be downl oaded in 'tinmeout_s' tineout
peri od.

* @etval (0, len] : The length of data be downl oaded in 'tinmeout_s
" timeout period in bytes.

* @ee None.

*/

int |OT_OTA FetchyYield(void *handl e, char *buf, uint32_t buf_len,
uint32_t tineout_s);

/**

@rief Check whether is on end-of-fetch state.

*

*

* @aram|[in] handle: specify the OTA nodul e.
*

* @etval 1 : Yes.

* @etval 0 : Fal se.

* @ee None.

*/
int | OT_OTA | sFet chFini sh(void *handl e) ;

Note:
If you have insufficient device memory, you need to write the firmware into the system OTA

partition while downloading the firmware.

3. Call IOT_OTA_ReportProgress() to report the download status.

Example code:

if (percent - last _percent > 0) {
| OT_OTA ReportProgress(h_ota, percent, NULL);

}
| OT_MJIT _Yield(pclient, 100); //

You can upload the update progress to loT Platform. The update progress (1% to 100%) is

displayed in real time in the progress column of the updating list in the console.
You can also upload the following error codes:

» -1: Failed to update the firmware.

» -2: Failed to download the firmware.

+ -3: Failed to verify the firmware.

+ -4: Failed to write the firmware into flash.

4. Call IOT_OTA loctl() to identify whether the downloaded firmware is valid. If the firmware is

valid, the device will run with the new firmware at the next startup.

Example code:

int32_t firmnare_valid;
| OT_OTA loctl (h_ota, |10OT_OTAG CHECK FI RMMRE, &firmnare_valid, 4);

if (0 ==firmware_valid) {
printf("The firmvare is invalid\n");
} else {

printf("The firmware is valid\n");

}

If the firmware is valid, modify the system boot parameters to make the hardware system run

with the new firmware at the next startup. The modification method varies by hardware system.

*

*

@rief Get OTA information specified by 'type'.
By this interface, you can get information |like state, size of
le, nd5 of file, etc.

@aram [in] handl e: handl e of the specific OTA

@aram [in] type: specify what information you want, see detail
| OT_OTA CndType_t'

* @aram[out] buf: specify buffer for data exchange

* @aram[in] buf_len: specify the Iength of 'buf' in byte.

* @eturn

@erbatim

NOTE:

1) Wien type is | OT_OTAG FETCHED Sl ZE, 'buf' shoul d be pointer of
uint32_t, and 'buf_len' should be 4.

2) Wen type is | OT_OTAG FI LE_SI ZE, ' buf' shoul d be pointer of
uint32_t, and 'buf _len' should be 4.

3) Wien type is | OT_OTAG MD5SUM ' buf' should be a buffer, and '
buf len'" should be 33.

4) \When type is | OT_OTAG VERSI ON, 'buf' should be a buffer, and '
buf | en' should be OTA VERSI ON_LEN MAX

5) When type is | OT_OTAG CHECK FI RMMRE, ' buf' shoul d be pointer of
uint32_t, and 'buf_len' should be 4.

O, firmvare is invalid; 1, firmvare is valid.

@ndver bati m

* % ok —h X T~

* @etval O : Successful.

* @etval < 0 : Failed, the value is error code.

* @ee None.

&/

int 10OT_OTA loctl(void *handle, 10T _OTA CndType t type, void *buf,
size_t buf_len);

5. Call IOT_OTA_Deinit to terminate a connection and release the memory.

/**

* @rief Deinitialize OTA nodul e specified by the 'handle', and

rel ease the rel ated resource.

* You must call this operation to rel ease resource if reboot is not
i nvoked after downl oadi ng.

*

@aram [in] handl e: specify the OTA nodul e.

@etval 0 : Successful.

@etval <0 : Failed, the value is error code.
@ee None.

/

EE I 3

int |OT_OTA Deinit(void *handle);
6. After the device restarts, the device runs with the new firmware and reports the new firmware
version to loT Platform. After the OTA module is initialized, call IOT_OTA_ReportVersion() to

report the current firmware version. The code is as follows:

if (0! = 10T_OTA ReportVersion(h_ota, "version2.0")) {
rc = -1,
printf("report OTA version failed\n");

6 Error codes for sub-device development

This article describes errors that may occur during sub-device development.
Introduction

* When an loT Platform service error occurs on a directly-connected device, the user client is
notified of the error when the TCP connection is closed.

* In the case that a communication error occurs on a sub-device connected to loT Platform
through a gateway and the gateway is still physically connected to 10T Platform, the gateway
must send an error message through the gateway connection to notify the user client of the

error.
Response format

When a communication error has occurred between a sub-device and loT Platform, loT Platform

sends an MQTT error message to the gateway through the gateway connection.

The format of the topic varies depending on the scenario. The JSON format of the message

content is as follows:

id: Message ID specified in the request paraneters
code: Error code (the success code is 200)
nessage: Error nessage

}

Sub-device failed to go online

The error message is sent to topic /ext/session/{gw_productKey}/{gw_deviceName}/combine/

login_reply.

Table 6-1: Error codes

Code Message Description
460 request Invalid parameter format, for example, invalid JSON format or
parameter invalid authentication parameters.
error
429 too many Authentication requests have been denied. This error occurs
requests when a device initiates authentication requests to loT Platform
too frequently or a sub-device has come online more than five
times in one minute.

Code Message Description

428 too many The number of sub-devices connected to a gateway has
subdevices reached the maximum. Currently, up to 1500 sub-devices can
under gateway | be connected to a gateway.

6401 topo relation No topological relationship has been established between the
not exist sub-device and the gateway.

6100 device not The specified sub-device does not exist.
found

521 device deleted | The sub-device has already been deleted.

522 device The specified sub-device has been disabled.
forbidden

6287 invalid sign Authentication failed due to invalid username or password.

500 server error An exception occurs on loT Platform.

Sub-device automatically goes offline

The error message is sent to topic /ext/session/{gw_productKey}/{gw_deviceName}/combine/

logout_reply.

Table 6-2: Error codes

Code Message Description

460 request Invalid parameter format, for example, invalid JSON
parameter error | format or invalid parameters.

520 device no session | The sub-device session does not exist, because the sub
-device has gone offline or has never been connected to
loT Platform..

500 server error An exception occurs on loT Platform.

Sub-device forced to go offline

The error message is sent to topic /ext/session/{gw_productKey}/{gw_deviceName}/combine/

logout_reply.

Table 6-3: Error codes

Code Message Description
427 device connect in | Disconnection of current session. When another
elsewhere device uses the same device certificate of ProductKey
, DeviceName, and DeviceSecret to connect to loT
Platform, the current device is forced offline.
521 device deleted The device has been deleted.
522 device forbidden | The device has been disabled.

Sub-device failed to send message

The error message is sent to topic /ext/error/{gw_productKey}/{gw_deviceName}.

Table 6-4: Error codes

Code

Message

Description

520

device session
error

Sub-device session error.

* The sub-device session does not exist. The sub-
device is not connected to loT Platform or has gone
offline.

* The sub-device session exists, however, the session
is not established through the current gateway.

7 Device shadows

7.1 Device shadow JSON format

Format of the device shadow JSON file

The format is as follows:

{

"state": {

"desired": {
"attributel": integer?2,
"attribute2": "string2",

" éftri but eN': bool ean2

}

’ eported": {
"attributel": integerl,
"attribute2": "stringl",

" ;aitri but eN': bool eanl
}
}

"metadata": {
"desired": {
"attributel": {
"timestanp": tinestanp
)i
"attribute2": {
"timestanp”: tinestanp

b

;'éitributeN': {

"timestanp”: tinestanp
}
}

: eported": {
"attributel": {
"timestanp”: tinestanp
e
"attribute2": {
"timestanp”: tinestanp

}

"attributeN': {

"timestanp”: tinestanp
}
}
}

i mestanp”: timestanp,
"version": version

}

The JSON properties are described in Table 7-1: JSON property.

Table 7-1: JSON property

Property Description

desired The desired status of the device.
The application writes the desired property of the device, without
accessing the device.

reported The status that the device has reported. The device writes data to the
reported property to report its latest status.
The application obtains the status of the device by reading this property.

metadata The device shadow service automatically updates metadata according to
the updates in the device shadow JSON file.

State metadata in the device shadow JSON file contains the timestamp
of each property. The timestamp is represented as epoch time to obtain
exact update time.

timestamp The latest update time of the device shadow JSON file.

version When you request updating the version of the device shadow, the device
shadow checks whether the requested version is later than the current
version.

If the requested version is later than the current one, the device shadow
updates to the requested version. If not, the device shadow rejects the
request.

The version number is increased according to the version update to
ensure the latest device shadow JSON file version.

Example of the device shadow JSON file:

"state" : {

"desired"

"color" : "RED',
"sequence" : ["RED', "GREEN', "BLUE"]
}1

"reported" : {

"color" : "GREEN'

}

)

"metadata" : {

"desired" : {

"color" : {

"tinmestanp" : 1469564492
e

"sequence" : {
"tinmestanp" : 1469564492
}

}

, eported” : {
"color" :
"tinmestanp" : 1469564492

}

}

.

"timestanp" : 1469564492,
"version" : 1

}

Empty properties

* The device shadow JSON file contains the desired property only when you have specified the
desired status. The following device shadow JSON file, which does not contain the desired

property, is also effective:

{

"state" : {
"reported" : {
"color" : "red",
}

}

"metadata" : {
"reported" : {

"color" : {

"tinmestanp" : 1469564492

}
%
"ti mest amp" : 1469564492,

"version" : 1

}

» The following device shadow JSON file, which does not contain the reported property, is also

effective:

"state" : {
"desired" : {
"col or" "red",

}

"’rretadata" s {

"desired" : {

"color" :

"tinestanmp" : 1469564492
}

}

}l
"tinmestanp" : 1469564492,

"version" : 1

}

Array

The device shadow JSON file can use an array, and must update this array as a whole when the

update is required.

« Initial status:

"reported" { "colors"
}

* Update:
"reported" { "colors"
}

* Final status:
"reported" { "colors"

[ll REDI,

" GREEN",

["RED] }

["RED'] }

7.2 Device shadow data stream

loT Platform predefines two topics for each device to enable data transmission. The predefined

topics have fixed formats.

» Topic: / shadow updat e/ ${ Your Pr oduct Key}/ ${ Your Devi ceNane}

Devices and applications publish messages to this topic. When loT Platform receives

messages from this topic, it will extract the status information in the messages and will update

the status to the device shadow.

+ Topic: / shadow get / ${ Your Pr oduct Key}/ ${ Your Devi ceNane}

The device shadow updates the status to this topic, and the device subscribes to the messages

from this topic.

Take a lightbulb device of a product bulb_1 as an example to introduce the communication among
devices, device shadows, and applications. In the following example, the ProductKey is 10000 and

the DeviceName is lightbulb. The device publishes messages to and subscribes to messages of

the two custom topics using the method of QoS 1.

"BLUE"]

}

Device reports status automatically

The flow chart is shown in Figure 7-1: Device reports status automatically.

Figure 7-1: Device reports status automatically

o

The device reports the latest
ﬂ status to device shadow.
m 0O Device shadow

Device shadow sends the operation result
(successful or failed) to the device.

Obtains the latest status.

@ Persists the JSON content of device shadow to the database.

s

S

~- -
—————————

1. When the lightbulb is online, the device uses topic / shadow/ updat e/ 10000/ | i ght bul b to

report the latest status to the device shadow.

Format of the JSON message:

"met hod": "update",
"state": {
"reported": {
"color": "red"

}

}

"version": 1

}

The JSON parameters are described in Table 7-2: Parameter description.

Table 7-2: Parameter description

Parameter Description
nmet hod The operation type when a device or application requests the device
shadow.

When you update the status, This parameter et hod is required and must
be set to updat e.

Parameter Description

Sstate The status information that the device sends to the device shadow.
The r eport ed field is required. The status information is synchronized to
the reported field of the device shadow.

version The version information contained in the request.
The device shadow only accepts the request and updates to the specified
version when the new version is later than the current version.

2. When the device shadow accepts the status reported by the device lightbulb, the JSON file of

device shadow is successfully updated.

"state" : {
"reported" : {
"col or" "red"

}

"metadata" : {
"reported” : {

"color" : {

"timestanp” : 1469564492

}
}

}l
"timestanp" : 1469564492

"version" : 1

}
3. After the device shadow has been updated, it will return the result to the device (lightbulb) by

sending a message to the topic / shadow get/ 10000/ | i ght bul b.

+ If the update is successful, the message is as follows:

"met hod": "reply",
"payl oad": {
"status":"success",
"version": 1

},
"tinmestanp": 1469564576

}

» If an error occurred during the update, the message is as follows:

"met hod": "reply",

"payl oad": {

"status":"error",

"content": {

"errorcode": "${errorcode}",
“errormessage”: "${errornessage}”

}

},

"tinmestanp":

}

1469564576

Error codes are described in Table 7-3: Error codes.

Table 7-3: Error codes

errorCode errorMessage

400 Incorrect JSON file.

401 The method field is not found.
402 the state field is not found.
403 Invalid version field.

404 The reported field is not found.
405 The reported field is empty.
406 Invalid method field.

407 The JSON file is empty.

408 The reported field contains more than 128 attributes.
409 Version conflict.

500 Server exception.

Application changes device status

The flow chart is shown in Figure 7-2: Application changes device status.

Figure 7-2: Application changes device status

@ -

Device shadow sends the latest
status to the device.

The application updates the wanted

status to device shadow.

<

0 O Device shadow

- ===
- ~
~.

4]

The device reports the latest status to device shadow.

A}
!)
! Device Shadow SDK |

S

@ Persists the JSON content of device shadow to the database.

1. The application sends a command to the device shadow to change the status of the lightbulb.

The application sends a message to topic / shadow/ updat e/ 10000/ | i ght bul b/ . The

message is as follows:

"met hod": "update",

"state": {
"desired": {
"“color": "green"
}

}

}

2. The application sends an update request to update the device shadow JSON file. The device

ersion": 2

shadow JSON file is changed to:

{

"state" : {
"reported” : {
"color" : "red"
}!
"desired" : {
“color" : "green"
}

}

"metadata" : {
"reported” : {

“color" :

"tinmestanp" : 1469564492

}
oo
"desired" : {

"color" : {

"timestanp" : 1469564576

}
%
"ti mest amp" : 1469564576,

"version" : 2

}
3. After the update, the device shadow sends a message to the topic / shadow get / 10000/

I i ght bul b and returns the result of update to the device. The result message is created by

the device shadow.

"met hod": "control ",

"payl oad": {
"status":"success",
"state": {
"reported": {
"color": "red"

}

"desired": {
"color": "green"

}

"metadata": {
"reported": {

"col or":

"tinmestanp": 1469564492
}

i

"desired" : {

"color" : {

"tinmestanp" : 1469564576
}
}
}
}

’ ersion": 2,
"tinmestanp": 1469564576
4. When the device lightbulb is online and has subscribed to the topic / shadow/ get / 10000/
I i ght bul b, the device receives the message and changes its color to green according to the
desi r ed field in the request file. After the device has updated the status, it will report the latest

status to the cloud.

met hod": "update",

"state": {
"reported": {
“color": "green"
}

}

version": 3
}
If the timestamp shows that the command has expired, you give up the update.
5. After the latest status has been reported successfully, the device client sends a message to
the topic / shadow/ updat e/ 10000/ | i ght bul b to empty the property of desired field. The

message is as follows:

"met hod": "update”,
"state": {
"desired":"nul |"

}

}

6. After the status has been reported, the device shadow is synchronously updated. The device

ersion": 4

shadow JSON file is as follows:

"state" : {

"reported" : {
"color" : "green"
}

b
"metadata" : {

"reported" : {

"color" :

"timestanp" : 1469564577
}
}

: esired" :
"tinmestanp" : 1469564576

}
}

",ersi on" : 4
}

Devices request for device shadows

The flow chart is shown in Figure 7-3: The device requests for device shadow.

Figure 7-3: The device requests for device shadow

o

The device sends a command to

device shadow to query the device
n shadow status. 3

Obtains the latest status.

0 O Device shadow

N

The server sends the latest device shadow status to the device.
@ Obtains the device shadow status from the database.

s

/
I
| Device Shadow SDK }
\ 7

~ -

1. The device lightbulb sends a message to the topic / shadow' updat e/ 10000/ | i ght bul b

and obtains the latest status saved in the device shadow. The message is as follows:

{
"met hod": "get
}

2. When the device shadow receives above message, the device shadow sends a message to

the topic / shadow/ get / 10000/ | i ght bul b. The message is as follows:

{

"met hod": "repl y",
"payl oad": {
"status":"success",

"state": {
"reported": {

"color": "red"
"desired": {
“color": "green"

"metadata": {
"reported": {

“col or":

"tinmestanp": 1469564492

}
b
"desired": {

"color": {

"timestanp": 1469564492

e e

\ ersion": 2,
"tinmestanp": 1469564576

}

Devices delete device shadow attributes

The flow chart is shown in Figure 7-4: Delete device shadow attributes.

Figure 7-4: Delete device shadow attributes

The device sends a command to
ﬂ device shadow to delete attribute&

The server sends the operation result
(success or failure) to the device.

Obtains the latest status.

© O Device shadow

<
<

@ Deletes device shadow status from the database.

————m——
- ~
~a

~ -

The device lightbulb is to delete the specified attributes saved in the device shadow. The device
sends a JSON message to the topic / shadow/ updat e/ 10000/ | i ght bul b. See the message

in the following example.

To delete attributes, set the value of net hod to del et e and set the values of the attributes to

nul | .

» Delete one attribute:

"method": "delete",
"state": {
"reported": {
"color": "null",
“"tenperature":"nul "
}

}

ersion": 1

}

» Delete all the attributes:

"met hod": "del ete",
"state": {
"reported":"null"

"version": 1

}

7.3 Use device shadows

This topic describes the communication between devices, device shadows, and applications.
Context

A device shadow is the shadow that is built on lIoT Platform based on a special topic for the
related device. This device synchronizes status to the cloud using this device shadow. The
cloud can quickly obtain the device status from the device shadow even when the device is not

connected to loT Platform.

Procedure

1. The C SDK provides the IOT_Shadow_Construct function to create the device shadow.

The function is declared as follows:

/**

* @rief Construct the device shadow.

* This function is used to initialize the data structures, establish
MOTT- based connecti ons.

* and subscribe to the topic: "/shadow get/${product_key}/ ${
devi ce_nane}".

*

* @aram|[in] pparam The specific initial paraneter.

* @etval NULL : The construction of the shadow fail ed.

* @etval NOT_NULL : The construction is successful.

* @ee None.

*

/

voi d *1 OT_Shadow Construct (i ot x_shadow_para_pt pparan);

2. Use the IOT_Shadow_RegisterAttribute function to register the properties of the device

shadow.

The function is declared as follows:

/**

* @rief Create a data type registered to the server.

*

* @aram[in] handle: The handl e of the device shadow.

* @aram|[in] pattr: The paraneter registered to the server.
* @etval SUCCESS RETURN : Success.

* @etval other : See iotx err_t.

* @ee None.

*

/

iotx_err_t |OT_Shadow RegisterAttribute(void *handl e, iotx_shado
w attr_pt pattr);

3. You can use the IOT_Shadow_Pull function in the C SDK to synchronize device status to loT

Platform whenever the device shadow starts.

The function is declared as follows:

/**

@rief Synchronize device shadow data to the cl oud.
It is a synchronization function.

@aram [in] handl e: The handl e of the device shadow.
@etval SUCCESS RETURN : Success.

@etval other : See iotx err _t.

* @ee None.

*/

iotx_err_t |0OT_Shadow Pull (void *handl e);

* % X Ok X

4. When the device updates its status, you can use IOT_Shadow_PushFormat_|Init,
IOT_Shadow_PushFormat_Add, and IOT_Shadow_PushFormat_Finalize in the C SDK to
update the device status, and use IOT_Shadow_Push in the C SDK to synchronize the status

to the cloud.

The function is declared as follows:

/**

* @rief Start processing the structure of the data type fornat.
*

@aram [in] handl e: The handl e of the device shadow.

@aram [out] pformat: The format structure of the device shadow.
@aram [in] buf: The buffer that stores the device shadow.
@aram [in] size: The maxi mum | ength of the device shadow
attribute.

* @etval SUCCESS RETURN : Success.

* @etval other : See iotx_err_t.

* @ee None.

*/

iotx_err_t |OT_Shadow PushFormat _Init(

L

voi d *handl e,

format _data_pt pfornmat,
char *buf,

uintl6 t size);

* %

@rief The format of the attribute nane and val ue for the update.

@aram [in] handl e: The handl e of the device shadow.

@aram [in] pformat: The format structure of the device shadow.
@aram [in] pattr: The data type format created in the added
menber attri butes.

* @etval SUCCESS RETURN : Success.

* @etval other : See iotx_err_t.

* @ee None.

*/

iotx_err_t |OT_Shadow PushFor mat Add(

voi d *handl e,

format _data_ pt pfornmat,

i ot x_shadow_attr_pt pattr);

* %k * ok k

/**

* @Brief Conplete processing the structure of the data type fornmat.
*

* @aram|[in] handle: The handl e of the device shadow.

* @Param [in] pformat: The format structure of the device shadow.

* @etval SUCCESS RETURN : Success.

* @etval other : See iotx_err_t.

* @ee None.

*/

iotx_err_t |OT_Shadow PushFormat Finalize(void *handl e, format_dat
a_pt pformat);

5. To disconnect the device from loT Platform, use IOT_Shadow_DeleteAttribute and

IOT_Shadow_Destroy in the C SDK to delete all properties that have been created for this

device on loT Platform, and release the device shadow.

The function is declared as follows:

/**

* @rief Deconstruct the specific device shadow.

*

* @aram[in] handle: The handl e of the device shadow.
* @etval SUCCESS RETURN : Success.

* @etval other : See iotx_err_t.

* @ee None.

*/

iotx _err_t |OT_Shadow Destroy(void *handl e);

8 Java SDK

This topic describes how to connect devices to Alibaba Cloud IoT Platform over the MQTT

protocol. The Java SDK is used as an example.

Prerequisites

In this demo, a Maven project is used. Install Maven first.

Context
This demo is not made for the Android operating system. If you are using Android, see open-

source library https://github.com/eclipse/paho.mqtt.android.
Procedure
1. Download the mqttClient SDK at iotx-sdk-mqtt-java.
2. Use Intellid IDEA or Eclipse to import the demo into a Maven project.

3. Log on to the Alibaba Cloud loT Platform console, and select Devices. Click View next to the

device to obtain the ProductKey, DeviceName, and DeviceSecret.
4. Modify and run the SimpleClient4lOT.java configuration file.

a) Configure the parameters.

[** (Cbtain Product Key, DeviceNane, and Devi ceSecret fromthe
console */

private static String productKey

private static String deviceName = "";

private static String deviceSecret = "";

/** The topics used for testing */

private static String subTopic = "/"+product Key+"/"+devi ceNane+"/
get";
private static String pubTopic = "/"+product Key+"/" +devi ceNane+"/
pUb";

b) Connect to MQTT server.

/1l The client device ID. It can be specified using either MAC
address or device serial nunber. It cannot be enpty and nust
contain no nore than 32 characters

String clientld = | net Address. get Local Host () . get Host Addr ess() ;

/1 Aut henticate the device

Map parans = new HashMap();

par ans. put (" product Key", productKey); // Specifies the product key
that the user registered in the console

par ans. put ("devi ceNane", deviceNane); // Specifies the device nanme
that the user registered in the console

parans. put ("clientld", clientld);

Stringt = SystemcurrentTimeMIlis()+"";

par ans. put ("ti mestamp", t);

https://github.com/eclipse/paho.mqtt.android
http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/iotx-sdk-java/iotx-sdk-mqtt-java-20170526.zip

/1 Specifies the MJQIT server. |f using the TLS protocol, begin the
URL with SSL. If using the TCP protocol, begin the URL with TCP

String targetServer = "ssl://"+product Key+".iot-as-nqgtt.cn-

shanghai . al i yuncs. com 1883";

/[l Client ID format:

String mgttclientld = clientld + "|securennde=2, si gnnet hod=

hmacshal, ti nestanp="+t+"|"; // Specifies the custom device

identifier. Valid characters include |etters and nunbers. For nore
i nformation, see Establish MJIT over TCP connections (https://

hel p. al i yun. conf docunent _det ai | / 30539. ht Ml ?spnra2c4g. 11186623. 6.

592. R3LQgNT)

String nmgttUsernane = devi ceNane+" &" +product Key; // Specifies

user nane for nmat

String mgtt Password = SignUil. sign(parans, deviceSecret,

hmacshal");// Signature

/'l Code excerpt for connecting over MJIT

Mittdient sanpleCient = new Mgttdient(url, myttclientld

per si st ence) ;

Myt t Connect Opti ons connCpts = new Mytt Connect Opti ons();

connOpts. setMgttVersion(4);// MJT 3.1.1

connOpt s. set Socket Fact or y(socket Fact ory) ;

/1 Configure automatic reconnection

connOpt s. set Aut omat i cReconnect (true);

/[l If set to true, then all offline nessages are cleared. These
messages include all QS 1 or QoS 2 nessages that are not received

connOpt s. set Cl eanSessi on(fal se);

connOpt s. set User Nanme(gt t User nane) ;

connOpt s. set Passwor d(ngt t Passwor d. t oChar Array()) ;

connOpt s. set KeepAl i vel nterval (80);// Specifies the heartbeat
interval. W recommend that you set it to 60 seconds or |onger

sanpl eCl i ent. connect (connQpt s) ;

c) Send data.

String content = "The content of the data to be sent. It can be in
any format";

Myt t Message nmessage = new Mjtt Message(content. getBytes("utf-8"));
message. set Qs(0);// Message QS. 0: At npbst once. 1: At |east
once

sanmpl eCl i ent. publish(topic, nmessage);// Send data to a specified

t opi ¢

d) Receive data.

/1l Subscribe to a specified topic. Wien new data is sent to the
topic, the specified callback method is called

sanmpl eCl i ent . subscri be(topic, new | Mjtt MessagelLi stener () {
@verride

public void nessageArrived(String topic, MjttMssage nessage)

t hrows Exception {

/1l After the device successfully subscribes to a topic, when new
data is sent to the topic, the specified callback nethod is called

L you subscribe to the sanme topic again, only the initia
subscription takes effect.

}

DK

@ Note:

For more information about MQTT connection parameters, see Establish MQTT

connections over TCP.

9 Develop devices based on Alink Protocol

9.1 Alink protocol

This article describes how to encapsulate Alink protocol data and establish connections from

devices to loT Platform using the Alink protocol.

The Alink protocol is a data exchange standard for loT development that allows communication

between devices and loT Platform. The protocol exchanges data that is formatted in Alink JSON.

The following sections introduce the device connection procedures and data pass through

processes (upstream and downstream) when using the Alink protocol.
Connect devices to loT Platform

As shown in the following figure, devices can be connected to loT Platform as directly connected
devices or sub-devices. The connection process involves the following key steps: authenticate the

device, establish a connection, and report data.
Directly connected devices can be connected to loT Platform by using the following methods:

» If #unique_34 is enabled, install the three key fields (ProductKey, DeviceName, and
DeviceSecret) to the physical device for authentication, connect the device to loT Platform, and
report data to loT Platform.

+ If dynamic registration based on #unique_35 is enabled, install the product certificate
(ProductKey and ProductSecret) to the physical device for authentication, connect the device to

loT Platform, and report data to loT Platform.

The gateway starts the connection process for sub-devices. Sub-devices can be connected to loT

Platform by using the following methods:

» If #unique_34 is enabled, install the ProductKey, DeviceName, and DeviceSecret to the
physical sub-device for authentication. The sub-device then sends these three key fields to
the gateway, and the gateway adds the topological relationship and sends the data of the sub-
device through the gateway connection channel.

+ If dynamic registration is enabled, install the ProductKey to the physical sub-device for
authentication in advance. The sub-device sends the ProductKey and DeviceName to the
gateway, and the gateway forwards the ProductKey and DeviceName to loT Platform. loT

Platform then verifies the received DeviceName and sends a DeviceSecret to the sub-device

loT Platform Developer Guide (Devices) / 9 Develop devices based on Alink

Protocol

. The sub-device sends the obtained ProductKey, DeviceName, and DeviceSecret to the
gateway, and the gateway adds the topological relationship and sends data to loT Platform

through the gateway connection channel.

Obtain the -
Dynamically

Productkey .
register the

and .
DeviceName Sub=atE Add

Sub-device topological
relationships

Pre-register
a device

The gateway has obtained the Report
three key fields of the sub-device - data to loT
Platform

Enable dynamic registration D\rl'!amil:allv
based on unique certificate per TEEI_StEr a
product and report Productkey device

Directly
connected
device

Pre-register a device with loT Platform

Devices report properties or events

Pass through data (the data type is Do not parse/Custom.)

m loT Platform Rule Engine _:'_
Devejoper
1

1. Pass through data. ! !
1.1 Parse data to
Alink JSON datz
using parsing scripts.
1.2 Process
according to the
data.
1.3 Forward data 1.3.1 Forward data to
uzing Rule Engine if the defined targets.
rules have been
defined.
1.4 Parse the result
1.5 Return the results data back to binary
data using parsing

scripts.

2. Query properties or E\.'ents:

12.1 Return the querizd resultsl

1. The device reports binary data to loT Platform using the topic for pass through data.
2. |oT Platform parses the received data using the data parsing script that you have submitted
on the loT Platform console. The rawDataToProtocol method in the script is called to convert

the binary data reported by the device to Alink JSON data

3. that is used for processing.

Issue: 20190115 67

If you have configured rules for data forwarding, the Alink JSON data will be forwarded to
the targets according to the rules.

4. |oT Platform parses the returned data to binary data using the data parsing script that you

have submitted on the loT Platform console.

5. loT Platform pushes the converted binary data to the device.

E] Note:

- The data forwarded by the rules engine is the data that has been parsed by the data
parsing script.
- When you configure data forwarding using the rules engine, to obtain the device properties
, use the topic: /sys/{productKey}/{deviceName}/thing/event/property/post.
- When you configure data forwarding using the rules engine, to obtain the device events,
use the topic: /sys/{productKey}/{deviceName}/thing/event/{tsl.event.identifier}/post.
» Non-pass through (Alink JSON) data

3

Developer
1

-

T
I
I
1. Pass through data. H

:I 1.1 Process

according to the
data.

1.2 Forward data ﬂ 1.2.1 Forward data to
using Rule Engine if the defined targets.
rules have been

definad.

1.3 Return the results

2. Query properties or e-.'ems:

.

:2.1 Return the queried re;:JItsI

——————————]

1. The device reports Alink JSON data to loT Platform using the topic for non-pass through

data.

2. loT Platform handles the received data.

If you have configured rules for data forwarding, the data will be forwarded to the targets

according to the rules.

3. loT Platform returns the results to the device.

g] Note:

- When you configure data forwarding using the rules engine, to obtain the device properties

, use the topic: /sys/{productKey}/{deviceName}/thing/event/property/post.

- When you configure data forwarding using the rules engine, to obtain the device events,

use the topic: /sys/{productKey}/{deviceName}/thing/event/{tsl.event.identifier}/post.
Call device services or set device properties

» Call device services or set device properties asynchronously

X

User

1
: 1. Call a service.

1.2 Return the
message 1. 1.1 Verify the parametars.

1.3 Parse the data if
the data type is Do not

parse/Custom.

1.4 Send data to device.

-4

2. Return results.

2.1 Parse the result data if

the data type is Do not
parse/Custom.

2.2 Forward data using Rule Engine if rules have
| - been defined.

2.2.1 Forward data to
the defined targets.

1. The user sets a device property or calls a device service using the asynchronous call
method.

2. |oT Platform verifies the parameters.

3. loT Platform uses the asynchronous call method to handle the request and return the
results. If the call is successful, a message ID, which is to be sent to the device, is included

in the response.

If the data type is pass through (Do not parse/Custom), 10T Platform will call the protocolTo
RawData method in the data parsing script to convert the data before sending the data to
the device.

4. |oT Platform sends the data to the device, and the device handles the request

asynchronously.

- If the data is pass through (Do not parse/Custom) data, use the topic for pass through
data.

- If the data is non-pass through (Alink JSON) data, use the topic for non-pass through
data.

5. After the device has completed the requested operation, it will return the results.

- If the data type is pass through (Do not parse/Custom), loT Platform will call the
rawDataToProtocol method in the data parsing script to convert the data returned by the
device.

- If you have configured rules for data forwarding, the data will be forwarded to the targets

according to the rules.

Note:

- When you configure data forwarding using the rules engine, use the topic: /sys/{productKey
}{deviceName}/thing/downlink/reply/message to obtain the calling results.

- If the data type is pass through (Do not parse/Custom), the data forwarded by the rules
engine is the data that has been parsed by the data parsing script.

+ Call device services and set device properties synchronously

X

User

S
1
1
1

1. Call a service.

1.1 Verify the parameters.

1.2 Parse the data if the data
type is Do not parse/Custom.

T,

1.3 Send data to device.

1.4 Wait for rasults. If no result is
received within the timeout time,
return an errer message.

2. Return results.

2.1 Parse the result data if
2 2 Return rasults. the data type is Do not
parse,/Custom.

mmmmm e

1. The user calls a device service using the synchronous call method.

2. 10T Platform verifies the parameters.

If the data type is pass through (Do not parse/Custom), loT Platform will call the protocolTo
RawData method in the data parsing script to convert the data before sending the data to
the device.

3. The synchronous call method is where loT Platform calls the RRPC topic to send the
request data to the device, and waits for the device to return a result.

4. After the device has completed the requested operation, it will return the results. If a result is

not received within the timeout period, a timeout error will be returned.

If the data type is pass through (Do not parse/Custom), loT Platform will call the
rawDataToProtocol method in the data parsing script to convert the data returned by the
device.

5. loT Platform returns the results to the user.

9.2 Device identity registration

Before you connect a device to IoT Platform, you need to register the device identity to identify it

on loT Platform.

The following methods are available for identity registration:

» Unique certificate per device: Obtain the ProductKey, DeviceName, and DeviceSecret of a
device on loT Platform and use them as the unique identifier. Install these three key fields on
the firmware of the device. After the device is connected to loT Platform, the device starts to
communicate with loT Platform.

» Dynamic registration: You can perform dynamic registration based on unique-certificate-per-
product authentication for directly connected devices and perform dynamic registration for sub-

devices.

- To dynamically register a directly connected device based on unique-certificate-per-product

authentication, follow these steps:

1. In the loT Platform console, pre-register the device and obtain the ProductKey and
ProductSecret. When you pre-register the device, use device information that can be
directly read from the device as the DeviceName, such as the MAC address or the serial
number of the device.

2. Enable dynamic registration in the console.

3. Install the product certificate on the device firmware.

4. The device authenticates to loT Platform. If the device passes authentication, loT
Platform assigns a DeviceSecret to the device.

5. The device uses the ProductKey, DeviceName, and DeviceSecret to establish a
connection to loT Platform.

- To dynamically register a sub-device, follow these steps:

1. In the loT Platform console, pre-register a sub-device and obtain the ProductKey. When
you pre-register the sub-device, use device information that can be read directly from the

sub-device as the DeviceName, such as the MAC address and SN.
2. Enable dynamic registration in the console.
3. Install the ProductKey on the firmware of the sub-device or on the gateway.

4. The gateway authenticates to loT Platform on behalf of the sub-device.
Dynamically register a sub-device
Upstream

» Topic: /sys/{productKey}/{deviceName}/thing/sub/register
* Reply topic: /sys/{productKey}/{deviceName}/thing/sub/register_reply

Request message

"id": "123",

"version": "1.0",
"params": |

"devi ceNane": "devi ceNanel234",
"product Key": "1234556554"

}

I
thod": "thing.sub.register”

}

Response message

11} i dll : n 123" ,
"code": 200,
"data": |

"fotld": "12344",
"product Key": "1234556554",
"devi ceNane": "devi ceNanel234",
"devi ceSecret": "XXXXXX"
}
]
}

Parameter description

Parameter Type Description

id String Message ID. Reserve the
value of the parameter for
future use.

version String Protocol version. Currently, the

value can only be 1.0.

params List Parameters used for dynamic
registration.

deviceName String Name of the sub-device.

productKey String ID of the product to which the
sub-device belongs.

iotld String Unique identifier of the sub-
device.

deviceSecret String DeviceSecret key.

method String Request method.

code Integer Result code.

Error messages

Error code Error message Description
460 request parameter error The request parameters are
incorrect.
6402 topo relation cannot add by A device cannot be added to
self itself as a sub-device.
401 request auth error Signature verification has
failed.

Dynamically register a directly connected device based on unique-certificate-per-product

authentication

Directly connected devices send HTTP requests to perform dynamic register. Make sure that you

have enabled dynamic registration based on unique certificate per product in the console.

+ URL template: htt ps://i ot - aut h. cn- shanghai . al i yuncs. conf aut h/ r egi st er/

devi ce

* HTTP method : POST
Request message

PCST /auth/register/device HITP/ 1.1

Host: i ot-auth.cn-shanghai. aliyuncs. com

Cont ent - Type: application/x-ww-form url encoded

Content-Length: 123

pr oduct Key=1234556554&devi ceNane=devi ceNanel1234& andon=567345&si gn=
adf v123hdf dh&si gnMet hod=Hnac VD5

Response message

{
“code": 200,
"data": {
"product Key": "1234556554",
"devi ceNane": "devi ceNanel234",
"devi ceSecret": "adsfweafdsf"
}
"message": "success"
}

Parameter description

Parameter Type Description

productKey String ID of the product to which the
device belongs.

deviceName String Name of the device

random String Random number.

Parameter Type Description

sign String Signature.

signMethod String Signing method. The
supported methods are
hmacmd5, hmacsha1, and

hmacsha256.
code Integer Result code.
deviceSecret String DeviceSecret key.

Sign the parameters

All parameters reported to loT Platform will be signed except si gn and si gnMet hod. Sort the
signing parameters in alphabetical order, and splice the parameters and values without any

splicing symbols.
Then, sign the parameters by using the algorithm specified by si gnMet hod.

Example:

sign = hmac_shal(product Secret, devi ceNanedevi ceNanmel1234pr oduc
t Key1234556554r andonil23)

9.3 Add a topological relationship

After a sub-device has registered with IoT Platform, the gateway reports the topological
relationship of Gateways and sub-devices to loT Platform before the sub-device connects to loT

Platform.

loT Platform verifies the identity and the topological relationship during connection. If the verificati
on is successful, 10T Platform establishes a logical connection with the sub-device and associates
the logical connection with the physical connection of the gateway. The sub-device uses the same
protocols as a directly connected device for data upload and download. Gateway information is

not required to be included in the protocols.

After you delete the topological relationship of the sub-device from loT Platform, the sub-device
can no longer connect to loT Platform through the gateway. 0T Platform will fail the authentication

because the topological relationship does not exist.
Add topological relationships of sub-devices
Upstream

+ Topic: /sys/{productKey}/{deviceName}/thing/topo/add

* Reply topic: sys/{productKey}/{deviceName}/thing/topo/add_reply

Request data format when using the Alink protocol

11} i dll : n 123" ,
"version": "1.0",

" parans"

|

"devi ceNane": "devi ceNanel234",
"product Key": "1234556554",
"sign': "XXXXXX",

"si gnmet hod": "hmacShal",
"timestamp": "1524448722000",
"clientld": "xxxxxx"

}
]

}

" met hod"

: "thing.topo. add"

Response data format when using the Alink protocol

"id': "123",
"code": 200,
"data": {}

Parameter description

Parameter Type Description

id String Message ID. Reserve the
parameter value for future use.

version String Protocol version. Currently, the
value can only be 1.0.

params List Input parameters of the
request.

deviceName String Device name. The value is the
name of the sub-device.

productKey String Product ID. The value is the
ID of the product to which the
sub-device belongs.

sign String Signature.

signmethod String Signing method. The
supported methods are
hmacSha1, hmacSha256,
hmacMd5, and Sha256.

timestamp String Timestamp.

Parameter Type Description

clientld String Identifier of a sub-device. This
parameter is optional and
may have the same value as
ProductKey or DeviceName.

code Integer Result code. A value of 200
indicates the request is
successful.

Signature algorithm

Notice:

loT Platform supports common signature algorithms.

Sort all the parameters (except for si gn and si gnMet hod) that will be submitted to the server in

lexicographical order, and then connect the parameters and values in turn (no connect symbols).
Sign the signing parameters by using the algorithm specified by the signing method.

For example, in the following request, sort the parameters in par ans in alphabetic order and then

sign the parameters.

si gn= hmac_md5(devi ceSecret, clientldl23devi ceNanet est product Key123ti
mest anpl1524448722000)

Error messages

Error code Error message Description

460 request parameter error The request parameters are incorrect

6402 topo relation cannot add by self A device cannot be added to itself as
a sub-device.

401 request auth error Signature verification has failed.

Delete topological relationships of sub-devices

A gateway can publish a message to this topic to request loT Platform to delete the topological

relationship between the gateway and a sub-device.
Upstream

» Topic: /sys/{productKey}/{deviceName}/thing/topo/delete
* Reply topic: /sys/{productKey}/{deviceName}/thing/topo/delete_reply

Request data format when using the Alink protocol

i
"id': "123",
"version": "1.0",
"paranms": |
"devi ceNane": "devi ceNanel234",
"product Key": "1234556554"
: }
"met hod": "t hi ng. t opo. del et e"
}

Response data format when using the Alink protocol

{
"id': "123",
"code": 200,
"data": {}

Parameter description

Parameter Type Description

id String Message ID. Reserve the
parameter value for future use.

version String Protocol version. Currently, the
value can only be 1.0.

params List Request parameters.

deviceName String Device name. The value is the
name of the sub-device.

productKey String Product ID. The value is the
ID of the product to which the
sub-device belongs.

method String Request method.

code Integer Result code. A value of 200
indicates the request is
successful.

Error messages

Error code Error message Description

460 request parameter error The request parameters are incorrect

6100 device not found The device does not exist.

Obtain topological relationships of sub-devices

Upstream

+ Topic: /sys/{productKey}/{deviceName}/thing/topo/get

* Reply topic: /sys/{productKey}/{deviceName}/thing/topo/get_reply

A gateway can publish a message to this topic to obtain the topological relationships between the

gateway and its connected sub-devices.

Request data format when using the Alink protocol

"id': "123",

"version": "1.0",

"parans": {},

"met hod": "thing.topo.get"

}

Response data format when using the Alink protocol

" i dll : n 123" ,
"code": 200,
"data": [

“devi ceNane": "devi ceNanel234",
"product Key": "1234556554"

}
]
}
Parameter description
Parameter Type Description
id String Message ID. Reserve the
value of the parameter for
future use.
version String Protocol version. Currently, the
value can only be 1.0.
params Object Request parameters. This can
be left empty.
method String Request method.
deviceName String Name of the sub-device.
productKey String Product ID of the sub-device.

Parameter Type Description

code Integer Result code. A value of 200
indicates the request is
successful.

Error messages

Error code Error message Description

460 request parameter error The request parameters are incorrect

Report new sub-devices

Upstream

» Topic: /sys/{productKey}/{deviceName}/thing/list/found

* Reply topic: /sys/{productKey}/{deviceName}/thing/list/found_reply

In some scenarios, the gateway can discover new sub-devices. The gateway reports informatio

n of a new sub-device to loT Platform. loT Platform forwards the sub-device information to third

-party applications, and the third-party applications choose the sub-devices to connect to the

gateway.

Request data format when using the Alink protocol

lli dll : n 123" ,
"version": "1.0",
"params": |

“devi ceNane": "devi ceNanel234",
"product Key": "1234556554"

| }
thod": "thing.list.found"
}

Response data format when using the Alink protocol

lli dll : n 123" ,
"code": 200,
"data": {}

Parameter description

Parameter Type Description
id String Message ID. Reserve the
value of the parameter for
future use.
version String Protocol version. Currently, the
value can only be 1.0.
params Object Request parameters. This
parameter can be left empty.
method String Request method.
deviceName String Name of the sub-device.
productKey String Product ID of the sub-device.
code Integer Result code. A value of 200
indicates the request is
successful.
Error messages
Error code Error message Description
460 request parameter error The request parameters are incorrect
6250 product not found The specified product to which the
sub-device belongs does not exist.
6280 devicename not meet specs The name of the sub-device is

invalid. The device name must be
4 to 32 characters in length and
can contain letters, digits, hyphens
(-), underscores (_), at signs (@),
periods (.), and colons (:).

Notify the gateway to add topological relationships of the connected sub-devices

Downstream

» Topic: /sys/{productKey}/{deviceName}/thing/topo/add/notify

* Reply topic: /sys/{productKey}/{deviceName}/thing/topo/add/notify_reply

loT Platform publishes a message to this topic to notify a gateway to add topological relationships

of the connected sub-devices. You can use this topic together with the topic that reports new

sub-devices to loT Platform. 0T Platform can subscribe to a data exchange topic to receive the

response from the gateway. The data exchange topic is / { pr oduct Key}/ { devi ceNane}/

t hi ng/ downl i nk/ r epl y/ nessage.

Request data format when using the Alink protocol

"id': "123",
"version": "1.0",
"parans": |

"devi ceNane": "devi ceNanel234",
"product Key": "1234556554"

}
]

}

Response data format when using the Alink protocol

{
"idt: "123",
"code": 200,
"data": {}

Parameter description

"met hod": "t hi ng. t opo. add. noti fy"

Parameter Type Description

id String Message ID. Reserve the
value of the parameter for
future use.

version String Protocol version. Currently, the
value can only be 1.0.

params Object Request parameters. This
parameter can be left empty.

method String Request method.

deviceName String Name of the sub-device.

productKey String Product ID of the sub-device.

code Integer Result code. A value of 200
indicates the request is
successful.

9.4 Connect devices to loT Platform

Make sure that a directly connected device has been registered with loT Platform before

connecting to loT Platform.

Make sure that a sub-device has been registered with IoT Platform before connecting to loT
Platform. In addition, you also need to make sure that the topological relationship with the gateway
has been added to the gateway. loT Platform will verify the identity of the sub-device according to

the topological relationship to identify whether the sub-device can use the gateway connection.
Connect sub-devices to loT Platform
Upstream

» Topic: /ext/session/{productKey}/{deviceName}/combine/login

* Reply topic: /ext/session/{productKey}/{deviceName}/combine/login_reply

Request message

"id": "123",

"paranms": {
"product Key": "123",
"devi ceNanme": "test",

"clientld": "123",
"timestanp”: "123",
"si gnMet hod": "hmacnmd5",
"sign": "XXXXXX",
"cl eanSession": "true"
}
}

Response message

"id":"123",
"code": 200,
"message": "success"
"data":""
}
Parameter description
Parameter Type Description
id String Message ID. Reserve the
value of the parameter for
future use.
params Object Request parameters.
deviceName String Name of the sub-device.

Parameter

Type

Description

productKey

String

ID of the product to which the
sub-device belongs.

sign

String

Signature of a sub-device.
Sub-devices use the same
signature rules as the gateway.

signmethod

String

Sign method. The supported
methods are hmacSha1,
hmacSha256, hmacMd5, and
Sha256.

timestamp

String

Timestamp.

clientld

String

Identifier of a device client.
This parameter can have the
same value as the ProductKey
or DeviceName parameter.

cleanSession

String

A value of true indicates that
when the device is offline,
messages sent based on QoS
=1 method will be cleared.

code

Integer

Result code. A value of 200
indicates that the request is
successful.

message

String

Result message.

data

String

Additional information in the
response, in JSON format.

Notice:

A gateway can accommodate a maximum of 200 concurrent online sub-devices. When the

maximum number is reached, the gateway rejects any connection requests.

Sign the parameters

Sort all the parameters (except si gn and si gnnet hod) to be submitted to the server in

alphabetical order, and then splice the parameters and values in turn (without splice symbols).

Then, sign the parameters by using the algorithm specified by si gnMet hod.

Example:

si gn= hmac_nd5(devi ceSecret,
t product Key123ti mest anp123)

Error messages

cl eanSessi ontruecl i entl dl123devi ceNanet es

Error code Error message Description
460 request parameter error The request parameters are incorrect
429 rate limit, too many subDeviceOnline | The authentication requests from

msg in one minute

the device are throttled because the
device requests authentication to loT
Platform too frequently.

428 too many subdevices under gateway | Too many sub-devices connect to the
gateway at the same time.

6401 topo relation not exist The topological relationship between
the gateway and the sub-device does
not exist.

6100 device not found The sub-device does not exist.

521 device deleted The sub-device has been deleted.

522 device forbidden The sub-device has been disabled.

6287 invalid sign The password or signature of the sub

-device is incorrect.

Disconnect sub-devices from loT Platform

Upstream

» Topic: /ext/session/{productKey}/{deviceName}/combine/logout

* Reply topic: /ext/session/{productKey}/{deviceName}/combine/logout_reply

Request message

"id': 123,

"parans": {
"product Key": "xxxxx",
"devi ceName": " xxxxx"

}
}

Response message

"idt: "123",

"code": 200,

"message": "success",
n dat a.Il : nn
}
Parameter description
Parameter Type Description
id String Message ID. Reserve the
parameter for future use.
params Object Request parameters.
deviceName String Name of the sub-device.
productKey String ID of the product to which the
sub-device belongs.
code Integer Result code. A value of 200
indicates that the request is
successful.
message String Result code.
data String Additional information in the
response, in JSON format.

Error messages

Error code Error message Description

460 request parameter error The request parameters are incorrect

520 device no session The sub-device session does not
exist.

For information about sub-device connections, see Connect sub-devices to loT Platform. For

information about error codes, see Error codes.

9.5 Device properties, events, and services

If you have defined TSL mode for a product, the devices of this product can separately report data

of the properties, events, and services that you have defined. For the data format of TSL, see The

TSL format. This topic describes how data is reported based on the TSL.

loT Platform supports two data types: ICA Standard Data Format (Alink JSON) and Do not parse/

Custom. When you are creating a product, you are required to select a data type for devices of

this product. We recommend that you select the Alink JSON type.

» |ICA Standard Data Format (Alink JSON): Devices generate data in the standard format defined
by loT Platform, and then report the data to loT Platform. For the data format, see the request
examples and response examples in this topic.

* Do not parse/Custom: Devices report raw data, such as binary data, to loT Platform, and then
loT Platform parses the raw data to be standard data using the parsing script that you have

submitted in the console. For how to edit a data parsing script, see Data parsing.
Devices report properties
Report data (Do not parse/Custom)

* Request topic: /sys/{productKey}/{deviceName}/thing/model/up_raw
* Response topic: /sys/{productKey}/{deviceName}/thing/model/up_raw_reply

Report Data (Alink JSON)

* Request topic: /sys/{productKey}/{deviceName}/thing/event/property/post
» Response topic: /sys/{productKey}/{deviceName}/thing/event/property/post_reply

You can configure Rules Engine to forward the received property data to another Alibaba Cloud

product instance. The following figure is an example of rule action configuration.

Write SQL

¥ Rule Query Expression:

SELECT deviceMame() as deviceMame FROM “fsys/a15IBHNUUT Jfstre:

* Field

deviceName() as deviceMame

* Topic :

-

SYS streamlA sireamLAOO | fthingfeven. . |

Condition:

J{t"in-g."eve nt'property/post

fthingfdownlink/reply/message

[.
fthing/lifecycle
AL o 5 AR L=

Request message

"id': "123",

"version": "1.0",
"paranms": {
"Power": {
"val ue": "on",
"tinme": 1524448722000
"WF"
"val ue": 23.6,
"tinme": 1524448722000

}

}l
thod": "thing.event.property. post"”

}

Response message

{
"jid': "123",
"code": 200,
"data": {}

Table 9-1: Request parameters

Parameter Type

Description

id String

Message ID.

version String

Protocol version. Currently, the
value is 1.0.

params Object

Request parameters. In the
request example above, the
device reports two properties

: Power and WF. Property
information includes time (
the time when the property is
reported) and value (the value
of the property).

time Long

The time when the property is
reported.

value Object

The value of the property.

method String

Request method.

Table 9-2: Response parameters

Parameter Type

Description

id String

Message ID.

Parameter Type Description

code Integer Result code. See Common
codes on devices.

data String Data returned when the
request is successful.

Error messages

Error code Error message Description

460 request parameter error The request parameters are incorrect

6106 map size must less than 200 The number of reported properties
exceeds the maximum limit. Up to
200 properties can be reported at a
time.

6313 tsl service not available The TSL verification service is not

available.

loT Platform verifies all the received
properties according to the TSLs

of products. This error is reported
when a system exception occurs.
For TSL definition, see What is Thing
Specification Language (TSL)?.

Note:
If the TSL verification service
is available, but some reported
properties do not match with any
properties defined in the TSL,
loT Platform ignores the invalid
properties. If all the reported
properties do not match with any
properties defined in the TSL, loT
Platform ignores them all. In this
case, the response will still indicate
that the verification is successful.

Set device properties

Push data to devices (Do not parse/Custom)

* Request topic: /sys/{productKey}/{deviceName}/thing/model/down_raw

* Response topic: /sys/{productKey}/{deviceName}/thing/model/down_raw_reply
Push data to devices (Alink JSON)

* Request topic: /sys/{productKey}/{deviceName}/thing/service/property/set

+ Response topic: /sys/{productKey}/{deviceName}/thing/service/property/set_reply

You can get property setting results from the topic of data exchange: / sys/ { pr oduct Key}/ {
devi ceNane}/t hi ng/ downl i nk/ r epl y/ message. You can configure Rules Engine to forward

property setting results to another Alibaba Cloud product instance. The following figure is an

example of rule action configuration.

Write SQL

¥ Rule Cuery Expression:

)

SELECT deviceMame() as deviceMams FROM “fsys/a15IBHMuUT J/stre:

* Field

deviceName() as deviceName

¥ Topic

-

SYS streamLA sireamLAD0D fthing/dow._.
Condition:

fihingfevent/propertyfpost

« fthing/downlinkireply/message}

Bl .
fthingflifecycle
f L o 3 AR L~

Request message

.,
"id": "123",
"version": "1.0",
"paranms": {
"tenperature": "30.5"
"met hod": "thing.service.property.set"
}

Response message

{
"id": "123",
"code": 200,
"data": {}

Table 9-3: Request Parameters

Parameter Type Description
id String Message ID.
version String Protocol version. Currently, the
value is 1.0.
params Object Property parameters. In the
request example above, the
property to be set is
{ "tenperature": "30.
5")
method String Request method.

Table 9-4: Response parameters

Parameter Type Description

id String Message ID.

code Integer Result code. See Common
codes on devices.

data String Data returned when the
request is successful.

Devices report events

Report data (Do not parse/Custom)

* Request topic: /sys/{productKey}/{deviceName}/thing/model/up_raw

* Response topic: /sys/{productKey}/{deviceName}/thing/model/up_raw_reply

Report Data (Alink JSON)

+ Request topic: /sys/{productKey}/{deviceName}/thing/event/{tsl.event.identifier}/post

» Response topic: /sys/{productKey}/{deviceName}/thing/event/{tsl.event.identifier}/post_reply

You can configure Rules Engine to forward the received event data to another Alibaba Cloud

product instance. The following figure is an example of rule action configuration.

Write SQL

* Rule Query Exprassion:

SELECT deviceMame() as deviceName FROM “/sysfatjhoQasrcSy”™ WHE

* Field

deviceMame() as deviceName

* Topic :

SyS

Condition:

Request message

i
" I dll :
“version":
"paranms": {
"val ue": {
" Power " :
" WII : n 2"

1] 123|| ,
" 1. ou ,

on-,

} ’
"time": 1524448722000

"met hod": "thing.event.{tsl.event.

Response message

“idt: "123",
"code": 200,
"data": {}

Table 9-5: Request Parameters

Bulb

fhing/event/property/post

finingfevent/Errorn/post

fining/eventfiemp/post

fhing/event/Errors/post

fining/downlinkreply/message

fining/lifecycle

identifier}.post™”

Parameter Type

Description

id String

Message ID.

Parameter Type Description
version String Protocol version. Currently, the
value is 1.0.
params List Parameters of the reported
events.
value Object The event information. In the
request example above, the
events are
{
n POV\BI’ n : n On" ,
W 2t
}
time Long The UTC timestamp when the
event occurs.
method String Request method.

Table 9-6: Response parameters

Parameter Type Description

id String Message ID.

code Integer Result code. See Common
codes on devices.

data String Data returned when the
request is successful.

Examples

For example, an event alarm has been defined in the TSL of a product:

{

"schema": "https://iot-tsl.oss-cn-shanghai.aliyuncs. com schena.son

linkt: o sys/ ${ pr oduct Key}/ ai r Condi ti on/ t hi ng/",

"profile": {

"product Key": "al 123456789",
"devi ceNane": "airCondition"

)

vents": [

{

"identifier": "alarni,

“nane": "al arn',

"desc": "Fan al arnt,

"type": "alert",
"required": true,

"out putData": |

"identifier": "errorCode",
"nane": "ErrorCode",
"dat aType": {
"type": "text",
"specs": {
"l ength": "255"
}
}
| }
"met hod": "thing.event.alarm post"
}
]
}

The device reports this event:

i
11} I dll : n 123" ,
"version": "1.0",
"paranms": {
"val ue": {
“error Code": "error"
},
"time": 1524448722000
},
"met hod": "thing.event.al arm post"
}
Note:

« tsl.event.identifier indicates the event identifier in the TSL. For TSL template, see
What is Thing Specification Language (TSL)?.

* |oT Platform verifies all the events reported by devices according to the TSLs of products.
If the reported event does not match with any events defined in the TSL, an error code is

returned.
Call device services
* Push data to devices (Do not parse/Custom)

- Request topic: /sys/{productKey}/{deviceName}/thing/model/down_raw
- Response topic: /sys/{productKey}/{deviceName}/thing/model/down_raw_reply

* Push data to devices (Alink JSON)

- Request topic: /sys/{productKey}/{deviceName}/thing/service/{tsl.service.identifier}

- Response topic: /sys/{productKey}/{deviceName}/thing/service/{tsl.service.identifier}_reply

Services can be called in two methods: synchronous method and asynchronous method. When

you define a service, you are required to select a method for the service.

» Synchronous method: l1oT Platform uses the Revert-RPC method to push requests to devices.
For the operation process of Revert-RPC method, see What is RRPC.
» Asynchronous method: loT Platform pushes requests to devices in an asynchronous manner,

and the devices also return operation results in an asynchronous manner,

Only when asynchronous method is selected for a service, does loT Platform subscribe to the
response topic. You can get the operation results from the topic of data exchange: / sys/ {

pr oduct Key}/ { devi ceNane}/ t hi ng/ downl i nk/ r epl y/ nessage.

You can configure Rules Engine to forward service calling results returned by devices to
another Alibaba Cloud product instance. The following figure is an example of rule action

configuration.

Write SQL

* Rule Cuery Expression:

SELECT deviceMame() as deviceMams FROM “fsys/a15IBHMuUT J/stres

* Field

deviceMame() as deviceName

* Topic :

-

Sy streamlLA, streamLADOD fthing/dow. ..
Condition:

fihingfevent/property/post

«fthingrdownlinkireply/message|

fhingflifecycle

Request message

.
"idt: "123",
"version": "1.0",
"paranms": {
"Power": "on",
"WEo 2
b
"met hod": "thing.service.{tsl.service.identifier}"
}

Response message

{

"jid":
"code"
"dat a"

"123",
. 200,
A}

Table 9-7: Request Parameters

Parameter Type Description
id String Message ID.
version String Protocol version. Currently, the
value is 1.0.
params Map Parameters used to call a
service, including the identifier
and value of the service. As in
the example above:
{
n Pov\er n : n On“ ,
"W 2t
}
method String Request method.

Table 9-8: Response parameters

Parameter Type Description

id String Message ID.

code Integer Result code. See Common
codes on devices.

data String Data returned when the

request is successful.

The value of data is
determined by the TSL of the
product. If the device does
not return any information
about the service, the value
of data is empty. If the device
returns service information,
the returned data value will
strictly follow the definition of
the service in the TSL.

Examples

For example, a service SetWeight has been defined in the TSL of the product:

{
- "schema": "https://iotx-tsl.oss-ap-southeast-1.aliyuncs.con schena.
j son",
"profile”: {
"product Key": "testProduct0l"
}1
"services": |
"out put Data": [
"identifier": "d dWight",
"dat aType": {
"specs": {
"unit": "kg",
"mn": "0",
"max": "200",
"step": "1"
}l
"type": "doubl e"
"name”: "0 dwéi ght "
}1
b, |
"identifier": "CollectTi me",
"dat aType": {
"specs": {
"l ength": "2048"
}l
"type": "text"
"name”: "Col | ect Ti me"
: }
"identifier": " Set Wi ght ",
"inputData": |
"identifier": "NewW\ight",
"dat aType": {
"specs": {
"unit": "kg",
"mn": "0",
"max": "200",
"step": "1"
}l
"type": "doubl e"
"name"” : " NewWei ght "
: }
" et hod" : "t hi ng. servi ce. Set Wi ght "
"name": "Set Wi ght",
"required": false
“cal | Type": "async"
]
}

Request message for calling the service:

{

"met hod": "thing.service. Set Wi ght ",
"id": "105917531",
"paranms": {
"NewWéi ght": 100. 8
}

}

\ ersion": "1.0.0"

Response message

{
"id": "105917531",
"code": 200,
"data": {
"Coll ectTinme": "1536228947682",
"d dWeight": 100.101
}
}

Note:
tsl.service.identifier indicates the identifier of the service in TSL. For how to define

TSL, see What is Thing Specification Language (TSL)?.

9.6 Send configuration data to gateway devices

Send extended configuration information of the TSL model and sub-device connection channel

configuration that you configured on the cloud to the gateway device.
» Topic: /sys/{productKey}/{deviceName}/thing/model/config/push

Request message

"id": 123,
"version": "1.0",
"met hod": "thing. nodel.config.push”,
"data": {
"digest":"",
"di gest Met hod": "",
“url": "t
}
}
Parameter description
Parameter Type Description
id String The message ID.
version String The protocol version number.
Default value: 1.0.

Parameter Type Description

method String The method is t hi ng. nodel
confi g. push.

data Object Data

digest String The signature that is used to
verify the integrity of the data
obtained from url.

digestMethod String The signature method. The
default method is sha256.

url String The data url that you get from
0ss.

Response message

{
"id":123,
"code": 200,
"message": "success",
"data": {
"digest":"",
"di gest Met hod": "",
"urfl """
}
}
url data

"model List": [

"profile": {
"product Key": "testOl"
}
"services": |
"out put Data": "",
"identifier": "AngleSel f Adaption",
"inputData": [
"identifier": "testOl",
"index": O
}
1.
"di spl ayNane": "testOl"
], _
"properties": [
"identifier": "identifier",
"di spl ayNane": "test02"

"identifier":

"identifier 01",

"di spl ayNane": "identifier_01"

]!
"events": |
"out put Data": [
"identifier": "testO1",
"index": O
}
1, L
"identifier": "eventl1l",
"di spl ayNane": "abc"
]

P’

"profile": {
"product Key": "test02"
}

roperties": |

"original Dat aType": {
"specs": {
"registerCount": 1,
"reverseRegister": 0,
"swapl6e": O
} 1
"type": "bool"

"identifier": "testO1",

"regi sterAddress": "0x03",
"scaling": 1,

"operateType": "inputStatus",
"pol I'i ngTi me": 1000,
"trigger": 1

"original Dat aType": {
"specs": {
"registerCount": 1,
"reverseRegister": O,
"swapl6e": O
} 1
"type": "bool"

"identifier": "test02",
"regi ster Address": "0x05",
"scaling": 1,

"operat eType": "coil Status",
"pol I'i ngTi me": 1000,
"trigger": 2

]
}

erverList": |

]

"pbaudRate": 1200,
"protocol ": "RTU",
"byteSi ze": 8,
"stopBits": 2,
"parity": 1,
"nanme": "nodbus01",

]

"serial Port": "O0",
"server|d": "D73251B4277742"

)i

{
"protocol ": "TCP",
"port": 8000,
"ip": "192.168.0.1",
"nanme": "nmodbus02",
"serverld": "586CB066D6A34"

%,
"password": "Xl JTgi nONohPEUAy ZxLB7Q==",
"secPol i cy": "Basicl28Rsal5",
"name": "server_ 01",
"sechbde": "Sign",
"user Nane": "123",
"serverld": "55A9D276A7ED4A70",
“url": "tcp: 00",
"timeout”: 10

%!
"password”: "hAaX5s13gwx2JwyvUk OAf Q==",
"nanme": "service_ 09"
"sechMbde": "None",
"user Nanme": "1234",
"serverld": "44895C63E3FF401",
“url": "tcp: 00",
"timeout": 10

}

eviceList": [

"devi ceConfig":

"di spl ayNanePat h": "123",

"serverld": "44895C63E3FF4013924CEF31519ABE7B"
s
"product Key": "testO01",
"devi ceName": "test_ 02"

"devi ceConfig": {
"di spl ayNanePat h": "1",
"serverld": "55A9D276A7TEDAT"

s
"product Key": "test01",
"devi ceName": "test_ 03"

"devi ceConfig": {
"slaveld": 1,
"serverl|d": "Dr3251B4277742D"

s
"product Key": "test02",

"“devi ceNane": "testO1"
}1
{ . .
"devi ceConfig": {
"slaveld": 2,
"serverld": "586CB0O66D6A34E"
}l
"product Key": "test02"
"devi ceNane": "test02"
}

"tslList": [

"schema": "https://iotx-tsl.oss-ap-southeast-1.aliyuncs.

schenma. j son",
"profile": {
"product Key": "test02"
}

"services": |

"out putData": [],
"identifier": "set",
"inputData": [

"identifier": "test02",
"dat aType": {
"specs": {
"unit": "mmdt',
"mn": "0",
"max": "1"

}

,ype": i nt

"name": "FeatureTest 02"
]}
"met hod": "thing.service.property.set”,
"name": "set"
"required": true,
"cal | Type": "async",
"desc": "Set properties"
}1
{
"out putData": [

"identifier": "testO1",
"dat aType": {
"specs": {
"unit": "ni,
"mn": "0",
"max": "1"

}

,ype": i nt

"nane": "FeatureTestO1"
}1
. L
"identifier": "test02",
"dat aType": {
"specs": {
llunitll: llrrml,
llmnll: IIOII,
"max": "1"

}

,ype": "int"

"nanme": "FeatureTest 02"
}
1,
"identifier":
"inputData": [
"test 01",
"test 02"

get",

I
"met hod": "thing.service.property.get”,

com

"nane": "get",
"required": true,
"cal | Type": "async",
"desc": "Get properties"”

}

roperties": [

]

"identifier": "testO1",
"dat aType": {
"specs": {
"unit": "nft,
"mn": "0",
"max": "1"

}

ype": "int
"HanE": "Feat ureTest 01",
"accesshbde": "r",

"required": false

"identifier": "test02",
"dat aType": {
"specs": {
"unit": "',
"mn": "0",
"max": "1"

}

"'ype": "int"
"ﬁane": "Feat ureTest 02",

"accesshbde": "rw',
"required": false

}

vents": [

]

"out putData": [

"identifier": "testO1",
"dat aType": {
"specs": {
"unit": "nft,
"mn": "0",
"max": "1"

}

’ype": i nt

"Hane": "Feat ureTest 01"
} ’
{

"identifier": "test02",
"dat aType": {
"specs": {
"unit": "mmdt',
"mn": "0",
"max": "1"

}

'ype": "int"

"hane": "Feat ureTest 02"

}
1,

"identifier": "post",
"met hod": "thing.event. property. post"”,

"nanme": "post",
"type": "info",
"required": true,
"desc": "Report properties"
}
]
% 1
"schema": "https://iotx-tsl.oss-ap-southeast-1.aliyuncs.conl
schenma. j son",
"profile": {
"product Key": "testOl"
}

"services": |

"outputData": [],

"identifier": "set",
"inputData": [
"identifier": "identifier",
"dat aType": {
"specs": {
"l ength": "2048"
}1
"type": "text"
"name”: "7614"
}l
t, L | o
"identifier": "identifier 01",
"dat aType": {
"specs": {
"l ength": "2048"
I
"type": "text"
"Hane": "Feat ureTest 01"
}
"ﬁethod": "t hing. service. property. set",
“name": "set"
"required": true,
"cal | Type": "async",
"desc": "Set properties",
b
{
"out putData": [
"identifier": "identifier",
"dat aType": {
"specs": {
"l ength": "2048"
I
"type": "text"
"hame”: "7614"
}l
., o _ .
"identifier": "identifier 01",
"dat aType": {
"specs":

“length": "2048"

}

,ype": "text"

"Hane": "Feat ureTest 01"

}

"identifier":
"inputData": [
"identifier",

"identifier_01"

get",

1,
"met hod": "thing.service.property.get",
“name": "get",

"required": true,

"cal | Type": "async",

"desc": "Get properties",

"outputData": [],
"identifier": "AngleSel f Adapti on",
"inputData": [

"identifier": "testO1",
"dat aType": {
"specs": {
"mn": "1",
"max": "10",
"step": "1"
}

,ype": "int"

" ’name" . "Paraneterl",
}
] il

"met hod": "thing.service. Angl eSel f Adapti on",
"nanme": "adaptive angle calibration",
"required": false

"cal | Type": "async"

]

roperties": |

"identifier": "identifier",
"dat aType": {
"specs": {
"l ength": "2048"
}

’ype": "text"

"name": "7614",
"accesshbde": "rw',
"required": true

"identifier": "identifier 01",
"dat aType": {
"specs":
"l ength": "2048"
}

'ype": "text"

"hane": "Feat ureTest 01",
"accessMode": "rw',
"required": false

}

vents": [

]

"out put Data": |
{
"identifier": "identifier",
"dat aType": {
"specs":
"l ength": "2048"
}

'ype": "text"

"hane": "7614"

"identifier": "identifier_ 01",
"dat aType": {
"specs": {
"l ength": "2048"
}

’ype": "text"

"ﬁane": "Feat ureTest 01"

}

identifier": "post",

"met hod": "thing.event. property.post"”,
n r.]a’r.rell : n post n ,

"type": "info",

"required": true,

"desc": "Report properties.”

]

"out put Data": [

"identifier": "testOl",
"dat aType": {
"specs": {
"mn": 1",
“max": "20",
"step": "1"
}

'ype": "int"

" ’name" : "ParaneterTest 1"
}
] ’

"identifier": "eventl1l",

"met hod": "thing.event.eventl. post"”,
“nanme": "event1l",

"type": "info",

"required": false

Parameter description

Parameter Type Description

modelList Object The extended product information of all sub-
devices that are mounted to the gateway.

serverList Object The sub-device channels of the gateway.

devicelist Object The connection configurations of all sub-
devices that are mounted to the gateway.

tslList Object The TSL of all sub-devices that are mounted to
the gateway.

modelList description

Currently, the communication protocols Modbus and OPC UA are supported, but the extended

information of the two protocols are different.
* Modbus

"profile”: {
"product Key":
}

"test 02"
’ roperties": |

"original Dat aType": {
"specs": {
"regi sterCount": 1,
"reverseRegi ster":
"swapl6e": O

0;

})
"type": "bool"

"identifier": "testOl",
"registerAddress": "0x03",
"scaling": 1,
"operat eType":
“pol I'i ngTi ne":
"trigger": 1

"i nput St at us
1000,

"original Dat aType": {
"specs": {
"registerCount": 1,
"reverseRegi ster":
"swapl6e": O

0;

})
"type": "bool"

"identifier": "test02",
"registerAddress": "0x05",
"scaling": 1,
"operat eType":
"pol I'i ngTi ne":
"trigger": 2

"coil Status"
1000,

}

Parameter description

Parameter Type Description
identifier String The identifier of a property, event, or service.
operateType String The operation type. Supported values include:
- coilStatus
- inputStatus
- holdingRegister
- inputRegister
registerAddress String The register address.
originalDataType Object The original data type.
type String Supported values include:
int16, uint16, int32, uint32, int64, uinté4, float
, double, string, and customized data.
specs Object The description.
registerCount Integer The number of data in the register.
swap16 Integer Swaps the first 8 bits and the last 8 bits of the
16-bit data in the register. 0: false; 1: true.
reverseRegister Integer Swaps the bits of the original 32-bit data. O:
false; 1: true.
scaling Integer The zoom factor.
pollingTime Integer The collection interval.
trigger Integer The data report method. 1: report at a specific
time; 2: report when changes are detected.
+ OPCUA
{ .
"profile”: {
"product Key": "test01l"
} L]
"services": |
"out put Data": "",
"identifier": "AngleSel fAdaption",
"i nputData": |
"identifier": "testO1",
"index": O
}

]

’ i spl ayNane": "testO1"

}
]

"identifier":
"di spl ayNane":

"identifier":
"di spl ayNane":

]

vents": [

’roperti es": |

"outputData": |

"identifier",
"test 02"

"identifier_ 01",
"identifier_01"

"identifier": "testO1",
"index": O
}
b o
"identifier": "eventl",
"di spl ayNane": "abc"
]
}
Parameter description
Parameter Type Description
services Object The service.
properties The object. The property.
The events. Object The event.
outputData Object The output parameter, such as event
reporting data and returned result of a service
call.
identifier String The identifier.
inputData Object The input parameter.
index Integer The index information.
displayName String The name that is displayed.

serverList description

Two protocols (Modbus and OPC UA) are supported for channels.

* Modbus protocol

[

"baudRat e":
"protocol ":
"byt eSi ze":
"stopBits":

1200,

" R—rul ,
81

2,

"parity": 1,

"name": "nmodbus01",
"serial Port": "0",
"serverld": "Dr73251B4277742"
} L]
{
"protocol ": "TCP",
"port": 8000,
"ip": "192.168.0.1",
"nanme": "nmodbus02",
"serverld": "586CB066D6A34"
}
]
Parameter Type Description
protocol String The protocol type. It can be TCP or RTU.
port Integer The port number.
ip String The IP address.
name String The channel name.
serverld String The channel ID.
baudRate Integer The baud rate.
byteSize Integer The number of bytes.
stopBits Integer The stop bit.
parity Integer The parity bit. Supported values include:
- E: Even parity check.
- O: Odd parity check.
- N: No parity check.
serialPort String The serial port number.

OPC UA protocol

{
"password": "Xl JTgi nONohPEUAyZxLB7Q==",
"secPol i cy": "Basicl28Rsal5",
"name": "server_ 01",
"sechbde": "Sign",
"user Nane": "123",
"serverld": "55A9D276A7EDA70",
“url": "tcp: 00",
"timeout”: 10
}

Parameter description

Parameter Type Description

password String The password that has been encrypted by the
AES encryption algorithm. For information
about password encryption for OPC UA, see
the information at the end of this table.

secPolicy String The encryption policy. Supported options
include None, Basic128Rsa15, and Basic256.

secMode String The encryption mode. Supported options
include None, Sign, and SignAndEncrypt.

name String The server name.

userName String The user name.

serverld String The server ID.

url String The server connection address.
timeout Integer The timeout value.

Password encryption method for OPC UA

Use the AES encryption algorithm and 128-bit (16-byte) grouping. The default mode is CBC
and the default padding is PKCS5Padding. Use deviceSecret of the device as the secret. The

encrypted result is encoded in Base64.

Code example:

private static String instance = "AES/ CBC/ PKCS5Paddi ng";
private static String algorithm= "AES";

private static String charsetName = "utf-8";

/**

* Encryption algorithm
*

* @aramdata (Data to be encrypted)
* @aram devi ceSecret (The devi ceSecret of the device)
* @eturn
*/
public static String aesEncrypt(String data, String devi ceSecret
) A

try {
Ci pher cipher = Ci pher.getlnstance(instance);

byte[] raw = devi ceSecret. getBytes();
Secr et KeySpec key = new Secr et KeySpec(raw, algorithm;
| vPar anet er Spec i vParaneter = new | vPar anet er Spec(
devi ceSecret. substring(0, 16).getBytes());
ci pher.init(C pher. ENCRYPT_MODE, key, ivParaneter);
byte[] encrypted = cipher. doFi nal (dat a. get Byt es(
char set Nane)) ;

return new BASE64Encoder (). encode(encrypted);

} catch (Exception e) {
e.printStackTrace();

}
return null;
}
public static String aesDecrypt(String data, String deviceSecret
) A
try {
byte[] raw = devi ceSecret. get Byt es(char set Nane) ;
byte[] encryptedl = new BASE64Decoder (). decodeBuf f er (
dat a) ;

Secr et KeySpec key = new Secret KeySpec(raw, algorithn);
Ci pher cipher = Ci pher.getlnstance(instance);
| vPar anet er Spec i vParanmeter = new | vPar anet er Spec(
devi ceSecret. substring(0, 16).getBytes());
ci pher.init(C pher. DECRYPT_MODE, key, ivParaneter);
byte[] original Bytes = ci pher. doFi nal (encryptedl);
String original String = new String(origi nal Bytes,
char set Nane) ;
return original String;
} catch (Exception ex) {
ex. printStackTrace();
}

return null;

}

public static void main(String[] args) throws Exception {
String text = "test123";
String secret = "test TNnj yWHQzni ASWEKTNnj yWHQ est *;
String data = null;
data = aesEncrypt(text, secret);
System out . printl n(data);
System out. printl n(aesDecrypt(data, secret));

}
devicelList description

* Modbus protocol

"devi ceConfig": {
"slaveld": 1,
"serverld": "D73251B4277742D"

}

: roduct Key": "test02",
"devi ceNane": "testO01"

}
Parameter description

Parameter Type Description
deviceConfig Object The device information.
slaveld Integer The slave station ID.
serverld String The channel ID.

Parameter Type Description

productKey String The product ID.

deviceName String The name of the device.

* OPC UA protocol

"devi ceConfig": {
"di spl ayNanePat h": "123",
"serverld": "44895C63E3FF4013924CEF31519ABE7B"

} il
"product Key": "test01",
"devi ceNane": "test_ 02"
}
Parameter description
Parameter Type Description
deviceConfig Object The device connection configuration
information.
productKey String The product ID.
deviceName String The name of the device.
displayNamePath String The name that is displayed.
serverld String The associated channel ID.

9.7 Disable and delete devices

Gateways can disable and delete their sub-devices.
Disable devices
Downstream

» Topic: /sys/{productKey}/{deviceName}/thing/disable
* Reply topic: /sys/{productKey}/{deviceName}/thing/disable_reply

This topic disables a device connection. loT Platform publishes messages to this topic asynchrono
usly, and the devices subscribe to this topic. Gateways can subscribe to this topic to disable the

corresponding sub-devices.

Request message

.
"idt: "123",
"version": "1.0",
"parans": {},

"met hod": "t hing. disabl e"

Response message

"id": "123",
"code": 200,
"data": {}

Parameter description

Parameter Type Description

id String Message ID.

version String Protocol version. Currently, the
value is 1.0.

params Object Request parameters. Leave
empty.

method String Request method.

code Integer Results information. For more
information, seeCommon
codes on devices

Enable devices
Downstream

» Topic: /sys/{productKey}/{deviceName}/thing/enable
» Reply topic: /sys/{productKey}/{deviceName}/thing/enable_reply

This topic enables a device connection. loT Platform publishes messages to this topic asynchrono
usly, and the devices subscribe to this topic. Gateways can subscribe to this topic to enable the

corresponding sub-devices.

Request message

"id': "123",

"version": "1.0",
"parans": {},

"met hod": "t hing. enabl e"

}

Response message

"id": "123",
"code": 200,

"data": {}

}

Parameter description

Parameter Type Description

id String Message ID.

version String Protocol version. Currently, the
value is 1.0.

params Object Request parameters. Leave
empty.

method String Request method.

code Integer Result code. For more
information, see the common
codes.

Delete devices
Downstream
» Topic: /sys/{productKey}/{deviceName}/thing/delete
* Reply topic: /sys/{productKey}/{deviceName}/thing/delete_reply

This topic deletes a device connection. loT Platform publishes messages to this topic asynchrono
usly, and the devices subscribe to this topic. Gateways can subscribe to this topic to delete the

corresponding sub-devices.

Request message

"idt: "123",

"version": "1.0",
"parans": {},

"met hod": "thing.delete"

}

Response message

"idt: "123",
"code": 200,
"data": {}

Parameter description

Parameter Type Description

id String Message ID.

version String Protocol version. Currently, the
value is 1.0.

params Object Request parameters. Leave
empty.

method String Request method.

code String Result code. For more
information, see the common
codes.

9.8 Device tags

Some static extended device information, such as vendor model and device model, can be saved

as device tags.
Report tags

Upstream

» Topic: /sys/{productKey}/{deviceName}/thing/deviceinfo/update

* Reply topic: /sys/{productKey}/{deviceName}/thing/deviceinfo/update_reply

Request message

"id": "123",

"version": "1.0",

"paranms": |
"attrKey":
}

"attrVal ue":

]
}

Response message

"id': "123",
"code": 200,
"data": {}

Parameter description

"Tenperat ure",
" 36. 8"

"met hod": "t hi ng. devi cei nf 0. updat e"

Parameter Type Description

id String Message ID. Reserve the
value of the parameter for
future use.

version String Protocol version. Currently, the
value can only be 1.0.

params Object Request parameters.

This parameter can contain a

maximum of 200 items.

method String Request method.
attrkey String Tag name.

* Length: Up to 100 bytes.

« Valid characters: Lowercase
letters a to z, uppercase
letters A to Z, digits 0 to 9,
and underscores (_).

* The tag name must start
with an English letter or
underscore (_).

attrValue String Tag value.

code Integer Result code. A value of 200
indicates the request is
successful.

Error codes

Error code Error message Description

460 request parameter error The request parameters are incorrect

6100 device not found The device does not exist.

Delete tags
Upstream

+ Topic: /sys/{productKey}/{deviceName}/thing/deviceinfo/delete

* Reply topic: /sys/{productKey}/{deviceName}/thing/deviceinfo/delete_reply

Request message

{

"id": 123",

"version": "1.0",
"paranms": |
"attrKey": "Tenperature"
| }
thod": "thing. devicei nfo.del ete”

}

Response message

11} i dll : n 123" ,
"code": 200,
"data": {}

Parameter description

Parameter Type

Description

id String

Message ID. Reserve the
value of the parameter for
future use.

version String

Protocol version. Currently, the
value can only be 1.0.

params Object

Request parameters.

method String

Request method.

attrkey String

Tag name.

* Length: Up to 100 bytes.

« Valid characters: Lowercase
letters a to z, uppercase
letters A to Z, digits 0 to 9,
and underscores (_).

* The tag name must start
with an English letter or
underscore (_).

attrValue String

Tag value.

code Integer

Result code. A value of 200
indicates the request is
successful.

Error messages

Error code Error message Description

460 request parameter error The request parameters are incorrect

6100 device not found The device does not exist.

9.9 TSL model

A device can publish requests to this topic to obtain the Device TSL model from IoT Platform.

» Topic : /sys/{productKey}/{deviceName}/thing/dsltemplate/get
* Reply topic : /sys/{productKey}/{deviceName}/thing/dsltemplate/get _reply

The Allink data format of a request

"id": "123",

"version": "1.0",

"paranms": {},

"met hod": "thing.dsltenplate. get"

}

The Allink data format of a response

"id': "123",
"code": 200,
"data": {
"schema": "https://iot-tsl.oss-cn-shanghai. aliyuncs. conl schema
j son",
"l'ink": "/sys/ 1234556554/ ai r Condi tion/thing/",
"profile”: {
"product Key": "1234556554",
"devi ceNane": "airCondition"
e
"properties": |
"identifier": "fan_array_property",
"name": "Fan array property",
"accesshMbde": "r",
"required": true,
"dat aType": {
"type": "array"
"specs":
"size": "128",
"item: {
"type": "int"
}
}
}
]!
"events": |
"identifier": "alarnt,

"nane": "al arni,

"desc": "Fan alert",
"type": "alert",
"required": true,
"outputbData": |

"identifier": "errorCode",
"name": "Error code",
"dataType": {
"type": "text",
"specs": {
"l ength": "255"
}

}
}

"Hethod": "t hi ng. event. al arm post "
}
I
"services": |

"identifier": "tineReset",
"name": "tineReset",
"desc": "Tine calibration",
"input Data": [

"identifier": "tinmeZone",
"nanme": "Tinme zone",
"dat aType": {
"type": "text",
"specs": {
"l ength": "512"
}
}
}
])
"outputbData": |

"identifier": "curTi me",
"name": "Current tine"
"dat aType": {
"type": "date",
"specs": {}

}

" et hod" : "thing. service.tineReset"
}s
{

"identifier": "set",

"name": "set"

"required": true,

"desc": "Set properties",

"met hod": "thing.service.property.set”
"inputData": [

"identifier": "fan_int_property",
"nanme": "lInteger property of the fan",
"accesshMbde": "rw',
"required": true,
"dat aType": {
"type": "int",
"specs": {
"mn": "0",
“max": "100",

"unit":

}
}
}

]l
"outputData": []

"identifier":
" narTe“: " get Il'

get ’

"glm",
"uni t Name" ;

"required": true,

"desc": "Get properties”,
"met hod": "thing.service.property.get"”

"inputData": [

"array_property",
"fan_int_property",

"batch_enumattr _id",

"fan_f| oat _property",
"fan_doubl e_property",

"fan_text _property",

“Maid ",

"bat ch_bool ean_attr _id",
"fan_struct _property”

],
"outputbData": |

"identifier"
"name": "Fan arr
"accesshbde"

"required":
"dat aType":

"type": "array",
"specs": {

"size":
"iten':

n t ypell

Parameter descriptions:

. "fan_array_property",
ay property",

'r
true,

{

" 128" ,

{

: i nt

"Mllilitter"

Parameter

Type

Description

id

String

Message ID. Reserve the
parameter value for future use.

version

String

Protocol version. Currently, the
value is 1.0.

params

Object

Leave this parameter empty.

method

String

Request method.

Parameter Type Description

productKey String ProductKey. In the example,
the ProductKey is 1234556554

deviceName String Device name. In the example
, the device name is airConditi
on.

data Object TSL model of the device. For
more information, seeWhat is
Thing Specification Language
(TSL)?

Error codes

Error code Error message Description

460 request parameter error The request parameters are incorrect

6321 tsl: device not exist in product The device does not exist.

9.10 Firmware update

For information about the firmware update, see Develop OTA features and Firmware update.

Report the firmware version

Upstream

» Topic: /ota/device/inform/{productKey}/{deviceName}

The device publishes a message to this topic to report the current firmware version to loT

Platform.

Request message

"id"r 1,
"parans":
"version":

}
}

"1.0.1"

Parameter description

Parameter Type Description

id String Message ID.
version String Version information of the
firmware.

Push firmware information
Downstream
» Topic: /ota/device/upgrade/{productKey}/{deviceName}

loT Platform publishes messages to this topic to push firmware information. The devices

subscribe to this topic to obtain the firmware information.

Request message

{
"code": "1000",

"data": {

"size": 432945,

"version": "2.0.0",

"url": "https://iotx-ota-pre.oss-cn-shanghai. aliyuncs. com nopoll _0
.4.4. tar. gz?Expi res=1502955804&0SSAccessKey | d=XXXXXXIXKIXIXXAKKX
&Si gnat ur e=Xf gJu7P6DWAej st KIgXJEHOgAKUYBD&securi t y-t oken=CAl SuQl1g6
Ft 5B2yf Sj | pK6MGsyN1JIx5j o6mvnf Bgl | PTvl vt 5D50Tz 21 Ht | f 3NpAusdsvO3nWk T7v4f
| gFy Tl NVAEVYZJ OPKGr GRODz DbDasun¥Zs Jbo4f 92 FMBqEaXPS2M/ Vf J9%2BzLr f Oceu
sbFbpj zJ6xaCAGKypQL2i NY2BY2Fr 692 F5g9dc9FcQSkLOB8Zr FsKx Bl t dUROFbI KP%
2BpKWSKuGf LC1dy s Qc O1WEPAKY2Bkk MyH8Ui ¢3h%2Boy%@2BgJt 8H2PpHhd9NhXuV2Wvz n2
92Fdt JO TknxR7ARasaBghel c4zqA%2FPPI WAKvkXba7al 0001f V4j N5JXQF AUSKLOBt R
j of HAWioj Nz BJAAPPYSSy3Rvr 7nbef Qr rybY1l LOGI Zy%2BVi 02VSZDxshl 5Z3McK
ARWt 06 MAWIABA2TTXXO 40BOxuq¥2B3JGoABXC54TA 07%R2F1WTLTsCUgzzel i XVOK
8Cf NOkf TucMEHk e Ye CdFk P2 Fk ADh XAnr nGf 5a4FbnmKMQph2cKsr 8y 8Uf W.C6I z
vJsC XTnbJBMeuW gqo5z1 ynSlpnvgf %2FON3hVc6%@2BEel kOxf | 2t ycsUpbL2
FoaGk6BAF8hWSWYUXsv59d5Uk%8D" ,

"md5": "93230c3bde425a9d7984a594ac55eale”,

"sign": "93230c3bde425a9d7984a594ac55eale”,

"si gnMet hod": " MI5"

} 1
"id": 1507707025,

"message": "success"
}
Parameter description
Parameter Type Description
id String Message ID.
message String Result information.
version String Version information of the
firmware.
size Long Firmware size in bytes.

Parameter Type Description

url String OSS address of the firmware.

sign String Firmware signature.

signMethod String Signing method. Currently, the
supported methods are MD5
and sha256.

md5 String This parameter is reserved.

This parameter is used to be
compatible with old device
information. When the signing
method is MD5, loT Platform
will assign values to both the
sign and md5 parameters.

Report update progress

Upstream

» Topic: /ota/device/progress/{productKey}/{deviceName}

A device subscribes to this topic to report the firmware update progress.

Request message

n | du : l,
"parans": {
n st epII : n - lll ,
"desc": "Firmnare update has failed. No firmvare information is
avail able."
}
}
Parameter description
Parameter Type Description
id String Message ID.

Parameter Type Description
step String Firmware update progress information.
Value range:
+ Avalue from 1 to 100 indicates the progress
percentage.
* Avalue of -1 indicates the firmware update
has failed.
* A value of -2 indicates that the firmware
download has failed.
* A value of -3 indicates that firmware
verification has failed.
* A value of -4 indicates that the firmware
installation has failed.
desc String Description of the current step. If an exception
occurs, this parameter displays an error
message.

Request firmware information from loT Platform

» Topic: /ota/device/request/{productKey}/{deviceName}

Request message

"id'r 1,
"paranms": {
"version": "1.0.1"

}
}
Parameter description
Parameter Type Description
id String Message ID.
version String Version information of the

firmware.

9.11 Remote configuration

This article introduces Topics and Alink JSON format requests and responses for remote

conficuration. For how to use remote configuration, see Remote configuration in User Guide.
Device requests configuration information from loT Platform
Upstream

» Topic: /sys/{productKey}/{deviceName}/thing/config/get
* Reply topic: /sys/{productKey}/{deviceName}/thing/config/get_reply

Request message

"id": 123,
"version": "1.0",
"parans": {
"configScope": "product",
"get Type": "file"
"met hod": "thing.config.get"
}

Response message

“id': "123",
"version": "1.0",
"code": 200,
"data":
"configld": "123dagdah",
"configSize": 1234565,
"sign": "123214adf adgadg”,
"si gnMet hod": " Sha256",
“url": "https://iotx-config.oss-cn-shanghai.aliyuncs.com nopoll _0
.4.4. tar.gz?Expi res=1502955804&0SSAccessKey | d=XXXXKKIXHKXXKX
&Si gnat ur e=Xf gJu7P6DWAj st KIgXJEHOgQAKUYBD&securi t y-t oken=CAl SuQl1g6
Ft 5B2yf Sj | pK6MGsyNL1JIx5j o6mvnf Bgl | PTvl vt 5D50Tz2I Ht | f 3NpAusdsv03nWk T7v 4f
| gFy Tl NVAEV YZJOPKGr GRODz DbDasun¥ZsJbo4f %2 FMBgEaXPS2Ms Vi J¥2BzLr f Oceu
sbFbpj zJ6xaCAGKypQL2i NY2BY2Fr 692 F59dc9Fc QSkLO0B8Zr FsKxBl t dUROFbI KP%
2BpKWBKUGF LC1dy s Qc OLWEP4KY@2Bkk MyH8 Ui c3h%2Boy %2BgJt 8H2PpHhd9NhXuV2Wwiz n2
92Fdt JO TknxR7ARasaBqghel c4zqA%2FPPI WAKvkXba7al 0001f V4j N5JXQF AUSKLOBt R
j of HAWfroj Nz BJAAPPYSSy3Rvr 7bef Qr r ybY1l LOGI Zy%2BVi 02VSZDxshl 5Z3McK
ARWt 06 MAWIABA2TTXXO 40BOxuq¥2B3JGoABXC54TA 07%R2F1WTLTsCUgzzel i XVOK
8Cf NOkf TucMaHk e Ye CdFk mP2 Fk ADhXANnr nGf 5a4FbnKMQph2cKsr 8y 8Uf W.C6I z
vJsCd XTnbJBMeuW go5zI ynSlpnigf %2F9N3hVc6%@2BEel kOxf | 2t ycsUpbL2
FoaGk6BAF8hWSWYUXsv59d5Uk98D" ,
"get Type": "file"

}

Parameter description

Parameter

Type

Description

id

String

Message ID.

version

String

Protocol version. Currently, the
value is 1.0.

configScope

String

Configuration scope. Currently
, loT Platform supports only
product dimension configurat
ion. Value: product.

getType

String

Desired file type of the
configuration. Currently, the
supported type is file. Set the
value to file.

configld

String

ID of the configuration.

configSize

Long

Size of the configuration file, in
bytes.

sign

String

Signature value.

signMethod

String

Signing method. The
supported signing method is
Sha256.

url

String

The OSS address where the
configuration file is stored.

code

Integer

Result code. A value of 200
indicates that the operation
is successful, and other
status codes indicate that the
operation has failed.

Error codes

Error code

Error message

Description

6713

thing config function is not available

Remote configuration feature of the
product has been disabled. On the
Remote Configuration page of the
loT Platform console, enable remote
configuration for the product .

6710

no data

Not found any configured data.

Push configurations in the loT Platform console to devices.
Downstream
» Topic: /sys/{productKey}/{deviceName}/thing/config/push
* Reply topic: /sys/{productKey}/{deviceName}/thing/config/push_reply

Devices subscribe to this configuration push topic for configurations that is pushed by loT
Platform. After you have edited and submitted a configuration file in the loT Platform console,

IoT Platform pushes the configuration to the devices in an asynchronous method. loT Platform
subscribes to a data exchange topic for the result of asynchronous calls. The data exchange topic

is/ { pr oduct Key}/ {devi ceNane}/t hi ng/ downl i nk/ r epl y/ message.
You can use Rules Engine to forward the results returned by the devices to another Alibaba Cloud

product. The following figure shows an example of rule action configuration.

Write SQL

¥ Rule Cuery Expression:

SELECT deviceMame() as deviceMams FROM “fsys/a15IBHMuUT J/stre:

* Field

deviceName() as deviceName

¥ Topic

-

SYS streamLA sireamLAD0D fthing/dow._.
Condition:

fihingfevent/propertyfpost

« fthing/downlinkireply/message}

Bl .
fthingflifecycle
f L o 3 AR L~

Request message:

"id": "123",
"version": "1.0",
"parans":
"configld": "123dagdah”,
"configSize": 1234565,
"sign": "123214adf adgadg",
"si gnMet hod": " Sha256",
"url": "https://iotx-config.oss-cn-shanghai.aliyuncs.com nopoll _0
.4. 4. tar. gz?Expi res=1502955804&0SSAccessKey | d=XXXXIKXKXKX
&Si gnat ur e=Xf gJu7P6DWAj st KIgXJEHOgQAKUYBD&securi t y-t oken=CAl SuQl1g6

Ft 5B2yf Sj | pK6MSsyNLIx5j o6mivnf Bgl | PTvl vt 5D50Tz21 Ht | f 3NpAusdsvO3nW T7v4f
| gFy Tl NVAEVYZJ OPKG GRODz DbDasun¥sJbo4f %2 FMBgEaXPS2My Vf J9%@2BzLr f Oceu
sbFbpj zJ6xaCAGypQL2i NV2BY2Fr 6%2F5gdc9FcQSkLOB8Zr FsKx Bl t dUROCFbI KP%
2BpKWEKuG LC1dy s Qc OLWEPAKY2Bkk MyH8 Ui c3h%@2Boy %2BgJt 8 H2 PpHhd9NhXuV2Wiz n2
%2Fdt JO TknxR7ARasaBghel c4zqAY2FPPI WJAKvkXba7al 0001f V4] N5JXQF AUSKLOBt R
j of HAWfroj Nz BJAAPPYSSy3Rvr 7bef Qr r ybY1l LOGi Zy%2BVi 02VSZDxshl 5Z3McK

ARVt 06 MAWIABA2TTXXA 40BOxuq¥@2B3JGoABXC54TA 07%R2FIWTLTsCUgzzel i XVOK
8Cf NOkf Tuc MaHk e Ye CdFk 2 Fk ADhXAnr nGf 5a4FbnKMQph2cKsr 8y 8Uf W.C6I z

vJsC XTnbJBMeuW go5z1 ynSlpnvgf %2F9N3hVc6%2BEel kOxf | 2t ycsUpbL2

FoaGk6BAFShWBWYUXsv59d5Uk¥BD",

"get Type": "file"

"met hod”: "t hi ng. confi g. push"

}

Response message

"id": "123",
"code": 200,
"data": {}

Parameter description

Parameter Type Description

id String Message ID.

version String Protocol version. Currently, the
value is 1.0.

configScope String Configuration scope. Currently
, loT Platform supports only
product dimension configurat
ion. Value: product.

getType String Desired file type of the
configuration. Currently, the
supported type is file. Set the
value to file.

configld String ID of the configuration.

configSize Long Size of the configuration file, in
bytes.

sign String Signature value.

signMethod String Signing method. The
supported signing method is
Sha256.

url String The OSS address where the

configuration file is stored.

Parameter

Type

Description

code

Integer

Result code. For more
information, see Common
codes on devices.

9.12 Common codes on devices

Common codes on devices indicate the results that are returned to loT Platform in response to

requests from loT Platform.

Result code Message Description

200 success The request is successful.

400 request error Internal service error.

460 request parameter error The request parameters are invalid.
The device has failed input parameter
verification.

429 too many requests The system is busy. This code can be

used when the device is too busy to
process the request.

100000-110000

Device-specific error messages

Devices use numbers from 100000
to 110000 to indicate device-specific
error messages.

	Contents
	Legal disclaimer
	Generic conventions
	1 Download device SDKs
	2 Authenticate devices
	2.1 Authenticate devices
	2.2 Unique-certificate-per-device authentication
	2.3 Unique-certificate-per-product authentication

	3 Protocols for connecting devices
	3.1 Establish MQTT connections over TCP
	3.2 Establish MQTT over WebSocket connections
	3.3 Establish communication over the CoAP protocol
	3.4 Establish communication over the HTTPS protocol

	4 Configure a TSL-based device
	5 OTA Development
	6 Error codes for sub-device development
	7 Device shadows
	7.1 Device shadow JSON format
	7.2 Device shadow data stream
	7.3 Use device shadows

	8 Java SDK
	9 Develop devices based on Alink Protocol
	9.1 Alink protocol
	9.2 Device identity registration
	9.3 Add a topological relationship
	9.4 Connect devices to IoT Platform
	9.5 Device properties, events, and services
	9.6 Send configuration data to gateway devices
	9.7 Disable and delete devices
	9.8 Device tags
	9.9 TSL model
	9.10 Firmware update
	9.11 Remote configuration
	9.12 Common codes on devices

