
Alibaba Cloud
IoT Platform

Developer Guide (Devices)

Issue: 20190115

IoT Platform Developer Guide (Devices) / Legal disclaimer

Legal disclaimer

Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions of this

legal disclaimer before you read or use this document. If you have read or used this document, it

shall be deemed as your total acceptance of this legal disclaimer.

1. You shall download and obtain this document from the Alibaba Cloud website or other Alibaba

Cloud-authorized channels, and use this document for your own legal business activities only.

The content of this document is considered confidential information of Alibaba Cloud. You shall

 strictly abide by the confidentiality obligations. No part of this document shall be disclosed or

provided to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted, or disseminat

ed by any organization, company, or individual in any form or by any means without the prior

written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades, adjustment

s, or other reasons. Alibaba Cloud reserves the right to modify the content of this document

without notice and the updated versions of this document will be occasionally released through

 Alibaba Cloud-authorized channels. You shall pay attention to the version changes of this

document as they occur and download and obtain the most up-to-date version of this document

 from Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud products and

services. Alibaba Cloud provides the document in the context that Alibaba Cloud products and

 services are provided on an "as is", "with all faults" and "as available" basis. Alibaba Cloud

makes every effort to provide relevant operational guidance based on existing technologies

. However, Alibaba Cloud hereby makes a clear statement that it in no way guarantees the

accuracy, integrity, applicability, and reliability of the content of this document, either explicitly

or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial losses incurred

 by any organizations, companies, or individuals arising from their download, use, or trust in

this document. Alibaba Cloud shall not, under any circumstances, bear responsibility for any

 indirect, consequential, exemplary, incidental, special, or punitive damages, including lost

profits arising from the use or trust in this document, even if Alibaba Cloud has been notified of

the possibility of such a loss.

5. By law, all the content of the Alibaba Cloud website, including but not limited to works, products

, images, archives, information, materials, website architecture, website graphic layout, and

webpage design, are intellectual property of Alibaba Cloud and/or its affiliates. This intellectu

Issue: 20190115 I

IoT Platform Developer Guide (Devices) / Legal disclaimer

al property includes, but is not limited to, trademark rights, patent rights, copyrights, and trade

 secrets. No part of the Alibaba Cloud website, product programs, or content shall be used,

modified, reproduced, publicly transmitted, changed, disseminated, distributed, or published

 without the prior written consent of Alibaba Cloud and/or its affiliates. The names owned by

Alibaba Cloud shall not be used, published, or reproduced for marketing, advertising, promotion

, or other purposes without the prior written consent of Alibaba Cloud. The names owned by

Alibaba Cloud include, but are not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other

brands of Alibaba Cloud and/or its affiliates, which appear separately or in combination, as well

 as the auxiliary signs and patterns of the preceding brands, or anything similar to the company

 names, trade names, trademarks, product or service names, domain names, patterns, logos

, marks, signs, or special descriptions that third parties identify as Alibaba Cloud and/or its

affiliates).

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

II Issue: 20190115

IoT Platform Developer Guide (Devices) / Legal disclaimer

Issue: 20190115 III

IoT Platform Developer Guide (Devices) / Generic conventions

Generic conventions

Table -1: Style conventions

Style Description Example

This warning information indicates a
situation that will cause major system
changes, faults, physical injuries, and
other adverse results.

Danger:
Resetting will result in the loss of user
configuration data.

This warning information indicates a
situation that may cause major system
 changes, faults, physical injuries, and
other adverse results.

Warning:
Restarting will cause business
interruption. About 10 minutes are
required to restore business.

This indicates warning information,
supplementary instructions, and other
content that the user must understand.

Notice:
Take the necessary precautions to
save exported data containing sensitive
information.

This indicates supplemental instructio
ns, best practices, tips, and other
content that is good to know for the
user.

Note:
You can use Ctrl + A to select all files.

> Multi-level menu cascade. Settings > Network > Set network type

Bold It is used for buttons, menus, page
names, and other UI elements.

Click OK.

Courier

font

It is used for commands. Run the cd /d C:/windows command
to enter the Windows system folder.

Italics It is used for parameters and variables. bae log list --instanceid

 Instance_ID

[] or [a|b] It indicates that it is a optional value,
and only one item can be selected.

ipconfig [-all|-t]

{} or {a|b} It indicates that it is a required value,
and only one item can be selected.

swich {stand | slave}

Issue: 20190115 I

IoT Platform Developer Guide (Devices) / Contents

Contents

Legal disclaimer..I
Generic conventions.. I
1 Download device SDKs... 1
2 Authenticate devices .. 5

2.1 Authenticate devices ...6
2.2 Unique-certificate-per-device authentication.. 8
2.3 Unique-certificate-per-product authentication...9

3 Protocols for connecting devices.. 12
3.1 Establish MQTT connections over TCP...12
3.2 Establish MQTT over WebSocket connections..16
3.3 Establish communication over the CoAP protocol...18
3.4 Establish communication over the HTTPS protocol.. 25

4 Configure a TSL-based device..30
5 OTA Development...40
6 Error codes for sub-device development.. 46
7 Device shadows... 49

7.1 Device shadow JSON format...49
7.2 Device shadow data stream.. 52
7.3 Use device shadows.. 60

8 Java SDK...63
9 Develop devices based on Alink Protocol.......................................66

9.1 Alink protocol..66
9.2 Device identity registration...71
9.3 Add a topological relationship..75
9.4 Connect devices to IoT Platform... 83
9.5 Device properties, events, and services.. 86
9.6 Send configuration data to gateway devices... 98
9.7 Disable and delete devices..113
9.8 Device tags...116
9.9 TSL model.. 119
9.10 Firmware update.. 122
9.11 Remote configuration... 126
9.12 Common codes on devices... 130

II Issue: 20190115

IoT Platform Developer Guide (Devices) / 1 Download device SDKs

1 Download device SDKs

IoT Platform provides multiple device SDKs to help you develop your devices and quickly connect

them to the Cloud. As an alternative to SDKs, you can also use Alink protocol for development.

Prerequisites

Before developing devices, finish all console configurations, and obtain necessary informations

such as the device details and topic information. For more information, see the User Guide.

Device SDKs

Select a device SDK according to the protocol and the features that you require. We recommend

that you use C SDK as it provides more features.

Note:

If you have specific development requirements that cannot be met by the current SDKs, you can

develop according to the Alink protocol.

C SDK Java SDK Android

SDK

iOS SDK HTTP/2

SDK

General

protocol

MQTT √ √ √ √

CoAP √

HTTP/HTTPS √

HTTP/2 √

Other protocols √

Device certification:
unique-certificate-per-
device authentication

√ √ √ √ √ √

Device certification:
unique-certificate-per-
product authentication

√ √

OTA development √

Connecting sub
-devices to IoT
Platform

√

Device shadow √ √ √

Issue: 20190115 1

IoT Platform Developer Guide (Devices) / 1 Download device SDKs

C SDK Java SDK Android

SDK

iOS SDK HTTP/2

SDK

General

protocol

Device development
based on TSL

√ √

Remote configuration √

Supported platforms

Click here to view and query the platforms supported by Alibaba Cloud IoT Platform.

If the platform you want to use is not supported by IoT Platform, please open an issue on the

Github page.

Download SDKs

• C SDK

Version

number

Release

 date

Developmen

t

environmen

t

Download

 link

Updates

V2.2.1 2018/09
/03

GNU
make on
 64-bit
Linux

RELEASED_V
2.2.1

- Added supports for connecting devices to WiFi
 and using open-source applications to locally
control devices.

- Added supports for countdown routine before
devices go offline.

- Added supports for OTA using iTls to download
firmware files.

2 Issue: 20190115

https://certification.aliyun.com/open/#/certificationlist
https://github.com/aliyun/iotkit-embedded/issues
https://github.com/aliyun/iotkit-embedded/issues
https://linkkit-sdk-download.oss-cn-shanghai.aliyuncs.com/linkkit2.2.1.tar.gz
https://linkkit-sdk-download.oss-cn-shanghai.aliyuncs.com/linkkit2.2.1.tar.gz

IoT Platform Developer Guide (Devices) / 1 Download device SDKs

Version

number

Release

 date

Developmen

t

environmen

t

Download

 link

Updates

V2.1.0 2018/03
/31

GNU
make on
 64-bit
Linux

RELEASED_V
2_10_20180
331.zip

- Added support for CMake: You can use QT or
VS2017 on Linux or Windows to open a project
 and compile software in CMake compiling
method.

- Added support for TSL model definition on IoT
Platform: You can set FEATURE_CMP_ENABLED
 = y andFEATURE_DM_ENABLED = y to
define TSL models to provide API operations for
properties, events, and services.

- Added support for unique-certificate-per-
product: You can set FEATURE_SUPPORT_PROD
UCT_SECRET = y to enable unique-certificate-
per-product authentication and streamline the
production queuing process.

- Added support for iTLS: You can set
FEATURE_MQTT_DIRECT_NOTLS = y and
FEATURE_MQTT_DIRECT_NOITLS = n to
enable ID² encryption. You can use iTLS to
establish data connections to enhance security
and reduce memory consumption.

- Added support for remote configuration: You
can set FEATURE_SERVICE_OTA_ENABLED
= y and FEATURE_SERVICE_COTA_ENABLED
 = y to enable the cloud to push configuration
information to devices.

- Optimized sub-device management of gateways
: Added some features.

• Java SDK

Supported

protocol

Update history Download link

MQTT 2017-05-27: Added support for device
 authentication in the China (Shanghai
) region. Added the device shadow
demo on the Java client.

iotx-sdk-mqtt-java: The Java version
that supports MQTT is only a demo of
open-source library implementation. It
is used only for reference.

Instructions: See Java SDK.

Issue: 20190115 3

http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/iot-sdk-c/RELEASED_V2_10_20180331.7z
http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/iot-sdk-c/RELEASED_V2_10_20180331.7z
http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/iot-sdk-c/RELEASED_V2_10_20180331.7z
http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/iotx-sdk-java/iotx-sdk-mqtt-java-20170526.zip?spm=a2c4g.11186623.2.20.VMVBFk&file=iotx-sdk-mqtt-java-20170526.zip

IoT Platform Developer Guide (Devices) / 1 Download device SDKs

• iOS SDK

Download link:

- https://github.com/CocoaPods/Specs.git

- https://github.com/aliyun/aliyun-specs.git

Instructions:iOS SDK

• HTTP/2 SDK

Download link: iot-http2-sdk-demo.

• General protocol

Instructions: See General protocol.

• Other open-source libraries

Download link: https://github.com/mqtt/mqtt.github.io/wiki/libraries

4 Issue: 20190115

https://github.com/CocoaPods/Specs.git
https://github.com/aliyun/aliyun-specs.git
http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/java-http2-sdk-demo/iot-http2-sdk-demos.zip
https://github.com/mqtt/mqtt.github.io/wiki/libraries?spm=a2c4g.11186623.2.22.VMVBFk

IoT Platform Developer Guide (Devices) / 2 Authenticate devices

2 Authenticate devices

To secure devices, IoT Platform provides certificates for devices, including product certificates

(ProductKey and ProductSecret) and device certificates (DeviceName and DeviceSecret). A

device certificate is a unique identifier used to authenticate a device. Before a device connects

to IoT Hub through a protocol, the device reports the product certificate or the device certificate,

depending on the authentication method. The device can connect to IoT Platform only when

it passes authentication. IoT Platform supports various authentication methods to meet the

requirements of different environments.

IoT Platform supports the following authentication methods:

• Unique-certificate-per-device authentication: Each device has been installed with its own

unique device certificate.

• Unique-certificate-per-product authentication: All devices under a product have been installed

with the same product certificate.

• Sub-device authentication: This method can be applied to sub-devices that connect to IoT

Platform through the gateway.

These methods have their own advantages in terms of accessibility and security. You can choose

one according to the security requirements of the device and the actual production conditions. The

 following table shows the comparison among these methods.

Table 2-1: Comparison of authentication methods

Items Unique-certificat

e-per-device

authentication

Unique-certificat

e-per-product

authentication

Sub-device

authentication

Information written into
 the device

ProductKey,
DeviceName, and
DeviceSecret

ProductKey and
ProductSecret

ProductKey

Whether to enable
authentication in IoT
Platform

No. Enabled by default
.

Yes. You must enable
dynamic register.

Yes. You must enable
dynamic register.

Issue: 20190115 5

IoT Platform Developer Guide (Devices) / 2 Authenticate devices

Items Unique-certificat

e-per-device

authentication

Unique-certificat

e-per-product

authentication

Sub-device

authentication

DeviceName pre-
registration

Yes. You need to
make sure that the
specified DeviceName
 is unique under a
product.

Yes. You need to
make sure that the
specified DeviceName
 is unique under a
product.

Yes.

Certificate installation
requirement

Install a unique device
 certificate on every
device. The safety of
every device certificate
 must be guaranteed.

Install the same
product certificate
on all devices under
 a product. Make
sure that the product
 certificate is safely
kept.

Install the same
product certificate
into all sub-devices
. The security of the
 gateway must be
guaranteed.

Security High Medium Medium

Upper limit for
registrations

Yes. A product can
have a maximum of
500,000 devices.

Yes. A product can
have a maximum of
500,000 devices.

Yes. A maximum of
200 sub-devices can
be registered with one
 gateway.

Other external reliance None None Security of the
gateway.

2.1 Authenticate devices
To secure devices, IoT Platform provides certificates for devices, including product certificates

(ProductKey and ProductSecret) and device certificates (DeviceName and DeviceSecret). A

device certificate is a unique identifier used to authenticate a device. Before a device connects

to IoT Hub through a protocol, the device reports the product certificate or the device certificate,

depending on the authentication method. The device can connect to IoT Platform only when

it passes authentication. IoT Platform supports various authentication methods to meet the

requirements of different environments.

IoT Platform supports the following authentication methods:

• Unique-certificate-per-device authentication: Each device has been installed with its own

unique device certificate.

• Unique-certificate-per-product authentication: All devices under a product have been installed

with the same product certificate.

6 Issue: 20190115

IoT Platform Developer Guide (Devices) / 2 Authenticate devices

• Sub-device authentication: This method can be applied to sub-devices that connect to IoT

Platform through the gateway.

These methods have their own advantages in terms of accessibility and security. You can choose

one according to the security requirements of the device and the actual production conditions. The

 following table shows the comparison among these methods.

Table 2-2: Comparison of authentication methods

Item Unique-certificat

e-per-device

authentication

Unique-certificat

e-per-product

authentication

Sub-device

authentication

Information written into
 the device

ProductKey,
DeviceName, and
DeviceSecret

ProductKey and
ProductSecret

ProductKey

Whether to enable
authentication in IoT
Platform

No. Enabled by default
.

Yes. You must enable
dynamic register.

Yes. You must enable
dynamic register.

DeviceName pre-
registration

Yes. You need to
make sure that the
specified DeviceName
 is unique under a
product.

Yes. You need to
make sure that the
specified DeviceName
 is unique under a
product.

Yes.

Certificate installation
requirement

Install a unique device
 certificate on every
device. The safety of
every device certificate
 must be guaranteed.

Install the same
product certificate
on all devices under
 a product. Make
sure that the product
 certificate is safely
kept.

Install the same
product certificate
into all sub-devices
. The security of the
 gateway must be
guaranteed.

Security High Medium Medium

Upper limit for
registrations

Yes. A product can
have a maximum of
500,000 devices.

Yes. A product can
have a maximum of
500,000 devices.

Yes. A maximum of
1500 sub-devices can
be registered with one
 gateway.

Other external reliance None None Security of the
gateway.

Issue: 20190115 7

IoT Platform Developer Guide (Devices) / 2 Authenticate devices

2.2 Unique-certificate-per-device authentication
Using unique-certificate-per-device authentication method requires that each device has be

installed with a unique device certificate in advance. When you connect a device to IoT Platform,

IoT Platform authenticates the ProductKey, DeviceName, and DeviceSecret of the device. After

the authentication is passed, IoT Platform activates the device to enable data communication

between the device and IoT Platform.

Context

The unique-certificate-per-device authentication method is a secure authentication method. We

recommend that you use this authentication method.

Workflow of unique-certificate-per-device authentication:

Procedure

1. In the IoT Platform console, create a product. For more information, see Create a product in the

User Guide.

2. Register a device to the product you have created and obtain the device certificate.

3. Install the certificate to the device.

Follow these steps:

a) Download a device-side SDK.

8 Issue: 20190115

http://iot.console.aliyun.com/

IoT Platform Developer Guide (Devices) / 2 Authenticate devices

b) Configure the device-side SDK. In the device-side SDK, configure the device certificate

(ProductKey, DeviceName, and DeviceSecret).

c) Develop the device-side SDK based on your business needs, such as OTA development,

sub-device connection, TSL-based device feature development, and device shadows

development.

d) During the production process, install the developed device SDK to the device.

4. Power on and connect the device to IoT Platform. The device will initiate an authentication

request to IoT Platform using the unique-certificate-per-product method.

5. IoT Platform authenticates the device certificate. After the authentication is passed and the

connection with IoT Platform has been established, the device can communicate with IoT

Platform by publishing messages to topics and subscribing to topic messages.

2.3 Unique-certificate-per-product authentication
Using unique-certificate-per-product authentication method requires that devices of a product have

been installed with a same firmware in which a product certificate (ProductKey and ProductSecret)

has been installed. When a device initiates an activation request, IoT Platform authenticates

the product certificate of the device. After the authentication is passed, IoT Platform assigns the

corresponding DeviceSecret to the device.

Context

Note:

• This authentication method has risks of product certificate leakage because all devices of a

product are installed with the same firmware. On the Product Details page, you can disable

Dynamic Registration to reject authentication requests from new devices.

• The unique-certificate-per-product method is used to obtain the DeviceSecret of devices from

 IoT Platform. The DeviceSecret is only issued once. The device stores the DeviceSecret for

future use.

Workflow of unique-certificate-per-product authentication:

Issue: 20190115 9

IoT Platform Developer Guide (Devices) / 2 Authenticate devices

Procedure

1. In the IoT Platform console, create a product. For more information, see Create a product in the

User Guide.

2. On the Product Details page, enable Dynamic Registration. IoT Platform sends an SMS

verification code to confirm your identity.

Note:

If Dynamic Registration is not enabled when devices initiate activation requests, IoT Platform

rejects the activation requests. Activated devices are not affected.

3. Register a device. The status of a newly registered device is Inactive.

IoT Platform authenticates the DeviceName when a device initiates an activation request. We

recommend that you use an identifier that can be obtained directly from the device, such as the

 MAC address, IMEI or serial number, as the DeviceName.

4. Install the product certificate to the device.

Follow these steps:

a) Download a device-side SDK.

b) Configure the device-side SDK to use the unique-certificate-per-product authentication

method. In the device-side SDK, configure the product certificate (ProductKey and

ProductSecret).

c) Develop the device-side SDK based on your business needs, such as OTA development,

sub-device connection, TSL-based device feature development, and device shadows

development.

d) During the production process, install the developed device SDK to the device.

10 Issue: 20190115

http://iot.console.aliyun.com/

IoT Platform Developer Guide (Devices) / 2 Authenticate devices

5. Power on the device and connect the device to the network. The device sends an

authentication request to IoT Platform to perform unique-certificate-per-product authentication.

6. After the product certificate has been authenticated by IoT Platform, IoT Platform dynamically

assigns the corresponding DeviceSecret to the device. Then, the device has obtained its

device certificate (ProductKey, DeviceName, and DeviceSecret) and can connect to IoT

Platform. After the connection with IoT Platform has been successfully established, the device

can communicate with IoT Platform by publishing messages to topics and subscribing to topic

messages.

Note:

IoT Platform dynamically assigns DeviceSecret to devices only for the first activation of

devices. If you want to reinitialize a device, go to IoT Platform console to delete the device and

repeat the procedures to register and activate a device.

Issue: 20190115 11

IoT Platform Developer Guide (Devices) / 3 Protocols for connecting devices

3 Protocols for connecting devices

3.1 Establish MQTT connections over TCP
This topic describes how to establish MQTT connections over TCP by using two device

authentication methods: the MQTT client and the HTTPS protocol.

Note:

When you configure MQTT CONNECT packets:

• Do not use the same device certificate (ProductKey, DeviceName, and DeviceSecret) for

multiple physical devices for connection authentication. This is because when a new device

 initiates authentication to IoT Platform, a device that is already connected to IoT Platform

using the same device certificate will be brought offline. Later, the device which was brought

 offline will try to connect again, causing the newly connected device to be brought offline

instead.

• In MQTT connection mode, open-source SDKs automatically reconnect to IoT Platform after

they are brought offline. You can check the actions of devices by viewing the device logs.

Connect the MQTT client to IoT Platform using defined domain names

1. We recommend that you use the TLS protocol for encryption, because it provides better

security. Click here to download the TLS root certificate.

2. Connect devices to the server using the MQTT client. For connection methods, see Open-

source MQTT client references. For more information about the MQTT protocol, see http://mqtt

.org.

Note:

Alibaba Cloud does not provide technical support for third-party code.

3. Establish an MQTT connection.

Connection domain
name

${YourProductKey}.iot-as-mqtt. ${YourRegionId}.

aliyuncs.com:1883

Replace ${YourProductKey} with your ProductKey.
Replace ${YourRegionId} with the region ID of your device. For
information about regions and zones, see Regions and zones.

12 Issue: 20190115

http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/cert_pub/root.crt
https://github.com/mqtt/mqtt.github.io/wiki/libraries
https://github.com/mqtt/mqtt.github.io/wiki/libraries
http://mqtt.org/
http://mqtt.org/
https://www.alibabacloud.com/help/doc-detail/40654.htm

IoT Platform Developer Guide (Devices) / 3 Protocols for connecting devices

Variable header: Keep
 Alive

The Keep Alive parameter must be included in the CONNECT packet
. The allowed range of Keep Alive value is 30-1200 seconds. If the
 value of Keep Alive is not in this range, IoT Platform will reject the
 connection. We recommend that you set a value larger than 300
seconds. If the Internet connection is not stable, set a larger value.

Parameters in an
MQTT CONNECT
packet

mqttClientId: clientId+"|securemode=3,signmethod=
hmacsha1,timestamp=132323232|"
mqttUsername: deviceName+"&"+productKey
mqttPassword: sign_hmac(deviceSecret,content)

mqttPassword: Sort the parameters to be submitted to the server
alphabetically and then encrypt the parameters based on the
specified sign method.
The content value is a string that is built by sorting and concatenating
the ProductKey, DeviceName, timestamp (optional) and clientId in
alphabetical order, without any delimiters.

• clientId: The client ID is a device identifier. We recommend that
you use the MAC address or the serial number of the device as the
 client ID. The length of the client ID must be within 64 characters.

• timestamp: The 13-digit timestamp of the current time. This
parameter is optional.

• mqttClientId: Extended parameters are placed between vertical
bars (|).

• signmethod: The signature algorithm. Valid values: hmacmd5,
hmacsha1, and hmacsha256. Default value: hmacmd5.

• securemode: The current security mode. Value options: 2 (TLS
connection) and 3 (TCP connection).

Example:
Suppose that clientId=12345, deviceName=device,
productKey=pk, timestamp=789, signmethod=hmacsha1,

deviceSecret=secret. The MQTT CONNECT packet sent over
TCP is as follows:

mqttclientId=12345|securemode=3,signmethod=
hmacsha1,timestamp=789|
mqttUsername=device&pk
mqttPassword=hmacsha1("secret","clientId12
345deviceNamedeviceproductKeypktimestamp789").
toHexString(); //The toHexString() function
converts a binary string to a hexadecimal string
. The string is case-insensitive.

The encrypted password is as follows:

FAFD82A3D602B37FB0FA8B7892F24A477F851A14

Connect the MQTT client to IoT Platform through HTTPS

1. Authenticate the device.Issue: 20190115 13

IoT Platform Developer Guide (Devices) / 3 Protocols for connecting devices

Use HTTPS for device authentication. The authentication URL is https://iot-auth. ${

YourRegionId}.aliyuncs.com/auth/devicename. Replace ${YourRegionId} with

the region ID of your device. For more information about regions, see Regions and zones.

• Request parameters

Parameter Required Description

productKey Yes The unique identifier of the product. You can view it in the

IoT Platform console.

deviceName Yes The device name. You can view it in the IoT Platform

console.

sign Yes The signature. The format is hmacmd5(deviceSecret,

content). The content value is a string that is built by sorting

and concatenating of all the parameters (except version,

sign, resources, and signmethod) that need to be submitted

to the server in alphabetical order.

signmethod No The signature algorithm. Valid values: hmacmd5,

hmacsha1, and hmacsha256. Default value: hmacmd5.

clientId Yes The client ID. The length must be within 64 characters.

timestamp No Timestamp. Timestamp verification is not required.

resources No The resource that you want to obtain, such as MQTT. Use

commas (,) to separate multiple resource names.

• Response parameters

Parameter Required Description

iotId Yes The connection tag that is issued by the server. It is used to

specify a value for the user name for the MQTT CONNECT

packet.

iotToken Yes The token is valid for seven days. It is used as the

password for the MQTT CONNECT packet.

resources No The resource information. The extended information

includes the MQTT server address and CA certificate

information.

14 Issue: 20190115

https://www.alibabacloud.com/help/doc-detail/40654.htm

IoT Platform Developer Guide (Devices) / 3 Protocols for connecting devices

• Request example using x-www-form-urlencoded:

POST /auth/devicename HTTP/1.1
Host: iot-auth.cn-shanghai.aliyuncs.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 123
productKey=123&sign=123×tamp=123&version=default&clientId=123
&resouces=mqtt&deviceName=test
sign = hmac_md5(deviceSecret, clientId123deviceNametestprodu
ctKey123timestamp123)

• Response example:

HTTP/1.1 200 OK
Server: Tengine
Date: Wed, 29 Mar 2017 13:08:36 GMT
Content-Type: application/json;charset=utf-8
Connection: close
{
 "code" : 200,
 "data" : {
 "iotId" : "42Ze0mk3556498a1AlTP",
 "iotToken" : "0d7fdeb9dc1f4344a2cc0d45edcb0bcb",
 "resources" : {
 "mqtt" : {
 "host" : "xxx.iot-as-mqtt.cn-shanghai.aliyuncs.com
",
 "port" : 1883
 }
 }
 },
 "message" : "success"
}

2. Establish an MQTT connection.

a. Download the root.crt file of IoT Platform. We recommend that you use TLS 1.2.

b. Connect the device client to the Alibaba Cloud MQTT server using the returned MQTT host

address and port of device authentication.

c. Establish a connection over TLS. The device client authenticates the IoT Platform server by

CA certificates. The IoT Platform server authenticates the device client by the information

in the MQTT CONNECT packet. In the packet, username=iotId, password=iotToken,

clientId=custom device identifier (we recommend that you use the MAC address or the

device serial number as the device identifier).

If the iotId or iotToken is invalid, then the MQTT connection fails. The connect acknowledg

ment (ACK) flag you receive is 3.

The error codes are described as follows:

• 401: request auth error. This error code is returned when the signature is mismatched.

• 460: param error. Parameter error.

Issue: 20190115 15

http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/30539/cn_zh/1495715052139/root.crt

IoT Platform Developer Guide (Devices) / 3 Protocols for connecting devices

• 500: unknown error. Unknown error.

• 5001: meta device not found. The specified device does not exist.

• 6200: auth type mismatch. The authentication type is invalid.

MQTT Keep Alive

In a keep alive interval, the device must send at least one packet, including ping requests.

If IoT Platform does not receive any packets in a keep alive interval, the device is disconnected

from IoT Platform and needs to reconnect to the server.

The keep alive time must be in a range of 30 to 1200 seconds. We recommend that you set a

value larger than 300 seconds.

3.2 Establish MQTT over WebSocket connections
Context

IoT Platform supports MQTT over WebSocket. WebSocket is used to establish a connection. The

MQTT protocol is used to communicate over the WebSocket connection.

Using WebSocket has the following advantages:

• Allows browser-based applications to establish persistent connections to the server.

• Uses port 433, which allows messages to pass through most firewalls.

Procedure

1. Certificate preparation

The WebSocket protocol includes WebSocket and WebSocket Secure. Websocket and

WebSocket Secure are used for unencrypted and encrypted connections, respectively.

Transport Layser Security (TLS) is used in WebSocket Secure connections. Like a TLS

connection, a WebSocket Secure connection requires a root certificate.

2. Client selection

Java clients can directly use the Official client SDK by replacing the connect URL in the

SDK with a URL that is used by WebSocket. For clients that use other language versions or

connections without using the official SDK, see Open-source MQTT clients. Make sure that the

client supports WebSocket.

3. Connections

An MQTT over WebSocket connection has a different protocol and port number in the connect

URL from an MQTT over TCP connection. MQTT over WebSocket connections have the same

16 Issue: 20190115

http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/cert_pub/root.crt?spm=5176.doc30539.2.4.aalCo6&file=root.crt
http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/iotx-sdk-java/iotx-sdk-mqtt-java-20170526.zip?spm=5176.doc42648.2.18.7iyFfe&file=iotx-sdk-mqtt-java-20170526.zip
https://github.com/mqtt/mqtt.github.io/wiki/libraries?spm=5176.doc30539.2.5.aalCo6

IoT Platform Developer Guide (Devices) / 3 Protocols for connecting devices

 parameters as MQTT over TCP connections. The securemode parameter is set to 2 and 3 for

WebSocket Secure connections and WebSocket connections, respectively.

• Connect to the domain name of the China (Shanghai) region: ${productKey}.iot-as-mqtt.cn-

shanghai.aliyuncs.com:443

Replace ${productKey} with your product key.

• An MQTT Connect packet contains the following parameters:

mqttClientId: clientId+"|securemode=3,signmethod=hmacsha1,
timestamp=132323232|"
mqttUsername: deviceName+"&"+productKey
mqttPassword: sign_hmac(deviceSecret,content)sign. Sort the
content parameters in alphabetical order and sign them according
to the signing method.
content=Parameters sent to the server (productKey,deviceName,
timestamp,clientId). Sort these parameters in alphabetical order
and splice the parameters and parameter values.

Where,

- clientId: Specifies the client ID up to 64 characters. We recommend that you use a MAC

address or SN.

- timestamp: (Optional) Specifies the current time in milliseconds.

- mqttClientId: Parameters within || are extended parameters.

- signmethod: Specifies a signature algorithm.

- securemode: Specifies the secure mode. Values include 2 (WebSocket Secure) and 3 (

WebSocket).

The following are examples of MQTT Connect packets with predefined parameter values:

clientId=12345, deviceName=device, productKey=pk, timestamp=789,
signmethod=hmacsha1, deviceSecret=secret

• For a WebSocket connection:

- Connection domain

ws://pk.iot-as-mqtt.cn-shanghai.aliyuncs.com:443

- Connection parameters

mqttclientId=12345|securemode=3,signmethod=hmacsha1,timestamp=
789|
mqttUsername=device&pk

Issue: 20190115 17

IoT Platform Developer Guide (Devices) / 3 Protocols for connecting devices

mqttPasswrod=hmacsha1("secret","clientId12345deviceNamedevicep
roductKeypktimestamp789").toHexString();

• For a WebSocket Secure connection:

- Connection domain

wss://pk.iot-as-mqtt.cn-shanghai.aliyuncs.com:443

- Connection parameters

mqttclientId=12345|securemode=2,signmethod=hmacsha1,timestamp=
789|
mqttUsername=device&pk
mqttPasswrod=hmacsha1("secret","clientId12345deviceNamedevicep
roductKeypktimestamp789").toHexString();

3.3 Establish communication over the CoAP protocol
IoT Platform supports connections over CoAP. CoAP is suitable for resource-constrained, low-

power devices, such as NB-IoT devices. This topic describes how to connect devices to IoT

Platform over CoAP and two supported authentication methods, which are DTLS and symmetric

encryption.

CoAP-based connection procedure

The following figure shows the procedure for connecting NB-IoT devices to IoT Platform.

The procedure is as follows:

1. Integrate an Alibaba Cloud IoT Platform SDK into the NB-IoT module of device clients.

Specifically, in the IoT Platform console, you need to register products and devices, obtain

 the unique device certificates (that is, the ProductKey, DeviceName, and DeviceSecret

components), and then install the certificates to the devices.

2. Establish a connection over your target carriers' cellular networks for NB-IoT devices to

connect to IoT Platform. We recommend that you contact your local carrier to make sure that

the NB-IoT network is available in the region where your devices are located.

3. After the devices are connected to IoT Platform, a machine-to-machine (M2M) platform

manages the data traffic and fees incurred by the NB-IoT devices. The M2M platform is

operated by your specified carrier.

4. Over the CoAP/UDP protocol, devices send data to IoT Platform in real time. IoT Platform is a

secure service that can connect and manage data for hundreds of millions of NB-IoT devices.

Then, through Rules Engine of IoT Platform, the device data can be forwarded to other Alibaba

18 Issue: 20190115

IoT Platform Developer Guide (Devices) / 3 Protocols for connecting devices

Cloud product instances, such as big data products, ApsaraDB for RDS, Table Store, and other

 products.

5. Use the APIs and message pushing services provided by IoT Platform to forward data to

supported service instances and quickly integrate device assets and actual applications.

Establish DTLS connections

1. Connect to the CoAP server. The endpoint address is ${YourProductKey}.coap.cn-

shanghai.link.aliyuncs.com:${port}.

Note:

• ${YourProductKey}: Replace this variable with the ProductKey value of the device.

• ${port}: The port number. Set the port number to 5684 for DTLS connections.

2. Download the root certificate.

3. Authenticate the device. Call auth to authenticate the device and obtain the device token.

Token information is required when the device sends data to IoT Platform.

Request message:

POST /auth
Host: ${YourProductKey}.coap.cn-shanghai.link.aliyuncs.com
Port: 5684
Accept: application/json or application/cbor
Content-Format: application/json or application/cbor
payload: {"productKey":"ZG1EvTEa7NN","deviceName":"NlwaSPXsCp
TQuh8FxBGH","clientId":"mylight1000002","sign":"bccb3d2618afe74b3eab
12b94042f87b"}

Table 3-1: Parameter description

Parameter Description

Method The request method. The supported method is POST.

URL /auth.

Host The endpoint address. The endpoint format
is ${YourProductKey}.coap.cn-
shanghai.link.aliyuncs.com. Replace the variable
${YourProductKey} with the ProductKey value of the device.

Port Set the value to 5684.

Accept The encoding format of the data that is to be received by the device.
Currently, application/json and application/cbor are supported.

Content-Format The encoding format of the data that the device sends to IoT Platform
. Currently, application/json and application/cbor are supported.

Issue: 20190115 19

http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/cert_pub/root.crt?spm=5176.doc30539.2.1.1MRvV5&file=root.crt

IoT Platform Developer Guide (Devices) / 3 Protocols for connecting devices

Parameter Description

payload The device information for authentication, in JSON format. For more
information, see the following table payload parameters.

Table 3-2: payload parameters

Parameter Required Description

productKey Yes The unique identifier issued by IoT Platform to the
product. You can obtain this information on the device
details page in the IoT Platform console.

deviceName Yes The device name that you specified, or is generated by
 IoT Platform, when you registered the device. You can
obtain this information on the device details page in the
 IoT Platform console.

ackMode No The communication mode. Value options:

• 0: After receiving a request from the device client,
the server processes data and then returns the
result with an acknowledgment (ACK).

• 1: After receiving a request from the client, the
server immediately returns an ACK and then
starts to process data. After the data processing is
complete, the server returns the result.

The default value is 0.

sign Yes The signature.
The signature algorithm is hmacmd5(DeviceSecret,
content).
The value of content is a string that is built by sorting
and concatenating all the parameters (except version
, sign, resources, and signmethod) that need to
be submitted to the server in alphabetical order, without
any delimiters.

signmethod No The algorithm type. The supported types are hmacmd5
 and hmacsha1.

clientId Yes The device client ID, which can be any string up to 64
 characters in length. We recommend that you use
the MAC address or the SN code of the device as the
clientId.

timestamp No The timestamp. Currently, timestamp is not verified.

20 Issue: 20190115

IoT Platform Developer Guide (Devices) / 3 Protocols for connecting devices

Response example:

response: {"token":"f13102810756432e85dfd351eeb41c04"}

Table 3-3: Return codes

Code Message Payload Description

2.05 Content The token is
contained in
the payload if
the authentica
tion has
passed.

The request is successful.

4.00 Bad Request no payload The payload in the request is invalid.

4.01 Unauthorized no payload The request is unauthorized.

4.03 Forbidden no payload The request is forbidden.

4.04 Not Found no payload The requested path does not exist.

4.05 Method Not
Allowed

no payload The request method is not allowed.

4.06 Not Acceptable no payload The value of Accept parameter is not in a
supported format.

4.15 Unsupporte
d Content-
Format

no payload The value of Content-Format parameter is
 not in a supported format.

5.00 Internal Server
 Error

no payload The authentication request is timed out or
 an error occurred on the authentication
server.

4. The device sends data.

The device publishes data to a specified topic. In the IoT Platform console, on the Topic

Categories tab page of the product, you can create topic categories.

Currently, only topics with the permission to publish messages can be used for publishing

data, for example, /${YourProductKey}/${YourDeviceName}/pub. Specifically, if a

device name is device, and its product key is a1GFjLP3xxC, the device can send data through

the address a1GFjLP3xxC.coap.cn-shanghai.link.aliyuncs.com:5684/topic/

a1GFjLP3xxC/device/pub.

Issue: 20190115 21

IoT Platform Developer Guide (Devices) / 3 Protocols for connecting devices

Request message:

POST /topic/${topic}
Host: ${YourProductKey}.coap.cn-shanghai.link.aliyuncs.com
Port: 5684
Accept: application/json or application/cbor
Content-Format: application/json or application/cbor
payload: ${your_data}
CustomOptions: number:2088(token)

Table 3-4: Request parameters

Parameter Required Description

Method Yes The request method. The supported method is POST.

URL Yes /topic/${topic} Replace the variable ${topic}
with the device topic which will be used to publish data.

Host Yes The endpoint address. The format is
${YourProductKey}.coap.cn-

shanghai.link.aliyuncs.com. Replace
${YourProductKey} with the ProductKey value of
the device.

Port Yes Set the value to 5684.

Accept Yes The encoding format of the data that is to be received
by the device. Currently, application/json and applicatio
n/cbor are supported.

Content-Format Yes The encoding format of the data that the device
sends to IoT Platform. The server does not verify this
parameter. Currently, application/json and application/
cbor are supported.

CustomOptions Yes • Number: 2088.
• The value of token is the token information returned

after auth is called to authenticate the device.

Note:
Token information is required every time the device
sends data. If the token is lost or expires, initiate a
device authentication request again to obtain a new
token.

Use the symmetric encryption method

1. Connect to the CoAP server. The endpoint address is ${YourProductKey}.coap.cn-

shanghai.link.aliyuncs.com:${port}.

22 Issue: 20190115

IoT Platform Developer Guide (Devices) / 3 Protocols for connecting devices

Note:

• ${YourProductKey}: Replace it with the ProductKey value of the device.

• ${port}: The port number. Set the value to 5682.

2. Authenticate the device.

Request message:

POST /auth
Host: ${YourProductKey}.coap.cn-shanghai.link.aliyuncs.com
Port: 5682
Accept: application/json or application/cbor
Content-Format: application/json or application/cbor
payload: {"productKey":"a1NUjcVkHZS","deviceName":"ff1a11e7c0
8d4b3db2b1500d8e0e55","clientId":"a1NUjcVkHZS&ff1a11e7c08d4b3db2b1
500d8e0e55","sign":"F9FD53EE0CD010FCA40D14A9FEAB81E0", "seq":"10"}

For more information about parameters (except for Port parameter, where the port for this

method is 5682) and payload content, see Parameter description.

Response example:

{"random":"ad2b3a5eb51d64f7","seqOffset":1,"token":"MZ8m37hp01
w1SSqoDFzo0010500d00.ad2b"}

Table 3-5: Response parameters

Parameter Description

random The encryption key used for data communication.

seqOffset The authentication sequence offset.

token The returned token after the device is authenticated.

3. The device sends data.

Request message:

POST /topic/${topic}
Host: ${YourProductKey}.coap.cn-shanghai.link.aliyuncs.com
Port: 5682
Accept: application/json or application/cbor
Content-Format: application/json or application/cbor
payload: ${your_data}

Issue: 20190115 23

IoT Platform Developer Guide (Devices) / 3 Protocols for connecting devices

CustomOptions: number:2088(token), 2089(seq)

Table 3-6: Request parameters

Parameter Required Description

Method Yes The request method. The supported method
is POST.

URL Yes The format is /topic/${topic}. Replace
the variable ${topic} with the device topic
used by the device to publish data.

Host Yes The endpoint address. The format is ${
YourProductKey}.coap.cn-shanghai.

link.aliyuncs.com. Replace the variable
${YourProductKey} with the ProductKey
value.

Port Yes The port number. Set the value to 5682.

Accept Yes The encoding format of the data which is
 to be received by the device. Currently,
application/json and application/cbor are
supported.

Content-Format Yes The encoding format of the data which is sent
 by the device. Currently, application/json and
 application/cbor are supported.

payload Yes The encrypted data that is to be sent. Encrypt
 the data using the Advanced Encryption
Standard (AES) algorithm.

24 Issue: 20190115

IoT Platform Developer Guide (Devices) / 3 Protocols for connecting devices

Parameter Required Description

CustomOptions Yes The option value can be 2088 and 2089,
which are described as follows:

• 2088: Indicates the token. The value is
the token returned after the device is
authenticated.

Note:
Token information is required every time
the device sends data. If the token is lost
or expires, initiate a device authentication
request again to obtain a new token.

• 2089: Indicates the sequence. The value
 must be greater than the seqOffset
value that is returned after the device is
 authenticated, and must be a unique
random number. Encrypt the value with
AES.

Response message for option

number:2090 (IoT Platform
message ID)

After a message has been sent to IoT Platform, a status code and a message ID are returned.

3.4 Establish communication over the HTTPS protocol
IoT Platform supports HTTPS connections. It does not support HTTP connections.

Description

• The HTTPS server endpoint is https://iot-as-http.cn-shanghai.aliyuncs.com.

• Currently, only the region cn-shanghai supports HTTPS connections.

• Only the HTTPS protocol is supported.

• The standards for HTTPS topics are the same as the standards for MQTT topics in MQTT

standard. Devices send data to IoT Platform through https://iot-as-http.cn-shanghai

.aliyuncs.com/topic/${topic}. The value of ${topic} can be the same topic used in

MQTT communications. You cannot specify parameters in the format of ? query_String=

xxx.

• The size of data from devices is limited to 128 KB.

Issue: 20190115 25

IoT Platform Developer Guide (Devices) / 3 Protocols for connecting devices

Procedure

1. Connect to the HTTPS server.

The endpoint address: https://iot-as-http.cn-shanghai.aliyuncs.com

2. Authenticate the device to get the device token.

Device authentication request message example:

POST /auth HTTP/1.1
Host: iot-as-http.cn-shanghai.aliyuncs.com
Content-Type: application/json
body: {"version":"default","clientId":"mylight1000002","signmethod
":"hmacsha1","sign":"4870141D4067227128CBB4377906C3731CAC221C","
productKey":"ZG1EvTEa7NN","deviceName":"NlwaSPXsCpTQuh8FxBGH","
timestamp":"1501668289957"}

Table 3-7: Parameter description

Parameter Description

Method The request method. The supported method is POST.

URL /auth URL address. Only HTTPS is supported.

Host The endpoint address: iot-as-http.cn-
shanghai.aliyuncs.com

Content-Type The format of the data that the device sends to IoT Platform. Only
application/json is supported.

body The device information for authentication, in JSON format. For more
information, see the following table Parameters in body.

Table 3-8: Parameters in body

Parameter Required? Description

productKey Yes The unique identifier of the product to which the device
 belongs. You can obtain this information on the device
details page in the IoT Platform console.

deviceName Yes The device name. You can obtain this information on
the device details page in the IoT Platform console.

clientId Yes The device client ID. It can be any string up to 64
characters in length. We recommend that you use
either the MAC address or the SN code as the clientId.

timestamp No Timestamp. The request is valid within 15 minutes after
 the timestamp is created.

26 Issue: 20190115

IoT Platform Developer Guide (Devices) / 3 Protocols for connecting devices

Parameter Required? Description

sign Yes Signature.
The signature algorithm is in the format of hmacmd5(
DeviceSecret,content).
The value of content is a string that is built by sorting
and concatenating all the parameters (except version
, sign, and signmethod) that need to be submitted to
the server in alphabetical order, without any delimiters.
Signature example:
If clientId = 12345, deviceName = device
, productKey = pk, timestamp = 789,
signmethod = hmacsha1, and deviceSecret =
secret, then the signature algorithm is hmacsha1("
secret","clientId12345deviceNamedevicep

roductKeypktimestamp789").toHexString

();. In this example, binary data will be converted to
hexadecimal data.

signmethod No The algorithm type. The supported types are hmacmd5
and hmacsha1.
The default value is hmacmd5.

version No The version. If you leave this blank, the value is default.

Response example:

body:
{
 "code": 0, // the status code
 "message": "success", // the result message
 "info": {
 "token": "6944e5bfb92e4d4ea3918d1eda3942f6"
 }
}

Note:

• The returned token can be cached locally.

• Token information is required every time when the device reports data to IoT Platform. If the

 token is lost or expires, initiate a device authentication request again to obtain a new token

.

Issue: 20190115 27

IoT Platform Developer Guide (Devices) / 3 Protocols for connecting devices

Table 3-9: Error codes

Code Message Description

10000 common error Unknown error.

10001 param error A parameter exception occurred during the request.

20000 auth check error An error occurred while authenticating the device.

20004 update session
error

An error occurred while updating the session.

40000 request too many Too many requests. The throttling policy limits the
number of requests.

3. The device sends data to IoT Platform.

The device send data to the specified topic.

In the IoT Platform console, on the Topic Categories tab page of the product, you can create

topic categories.

For example, a topic category is /${YourProductKey}/${YourDeviceName}/pub. If

a device name is device123, and its product key is a1GFjLP3xxC, the device sends data

through https://iot-as-http.cn-shanghai.aliyuncs.com/topic/a1GFjLP3xxC/

device123/pub.

Request message format:

POST /topic/${topic} HTTP/1.1
Host: iot-as-http.cn-shanghai.aliyuncs.com
password:${token}
Content-Type: application/octet-stream
body: ${your_data}

Table 3-10: Parameter description

Parameter Description

Method The request method. The supported request method is POST.

URL /topic/${topic}. Replace ${topic} with the topic for receiving
device data. Only HTTPS is supported.

Host The endpoint address: iot-as-http.cn-
shanghai.aliyuncs.com

password This parameter is included in the request header. The value of this
parameter is the token returned when using the auth interface to
authenticate the device.

28 Issue: 20190115

IoT Platform Developer Guide (Devices) / 3 Protocols for connecting devices

Parameter Description

body The data content sent to ${topic}, which is in binary byte[] array format
 and encoded with UTF-8.

Response example:

body:
{
 "code": 0, // the status code
 "message": "success", // the result message
 "info": {
 "messageId": 892687627916247040,
 "Data": byte []/UTF-8 encoded data, and possibly empty
 }
}

Table 3-11: Error codes

Code Message Description

10000 common error Unknown error.

10001 param error A parameter exception occurred during the
request.

20001 token is expired The token is invalid. Call auth to
authenticate the device again to obtain a new
token.

20002 token is null The request header contains no token
information.

20003 check token error Failed to identify the device based on the
token. Call auth to authenticate the device
again and obtain a new token.

30001 publish message error An error occurred while publishing data.

40000 request too many Too many requests. The throttling policy limits
 the number of requests.

Issue: 20190115 29

IoT Platform Developer Guide (Devices) / 4 Configure a TSL-based device

4 Configure a TSL-based device

This topic describes how to configure a device based on a TSL model.

Note:

Only IoT Platform Pro supports this feature.

Prerequisites

Create a product, add a device, and define the TSL in the IoT Platform console. A TSL model

describes the properties, services, and events of a device, as shown in figure Figure 4-1: Create

devices.

Figure 4-1: Create devices

Establish a connection to IoT Platform

1. For more information about establishing an MQTT connection to connect a device and IoT

Platform, see Establish MQTT connections over TCP.

2. Call the linkkit_start operation in the device SDK to establish a connection to IoT Platform and

subscribe to topics.

When you use the device SDK, save a shadow for the device. A shadow is an abstraction of a

 device, which is used to retrieve the status information of the device. The interaction process

 between a device and IoT Platform is a synchronization process between the device and

shadow and between the shadow and IoT Platform.

Variable get_tsl_from_cloud is used to synchronize the TSL model from IoT Platform when the

device comes online.

• get_tsl_from_cloud = 0: Indicates that a TSL model has been pre-defined. TSL_STRING is

used as the standard TSL model.

The SDK copies the TSL model that is created in the console, uses the TSL model to define

 TSL_STRING in linkkit_sample.c, and then calls the linkkit_set_tsl operation to set the pre-

defined TSL model.

Note:

Use the C escape character correctly.

30 Issue: 20190115

IoT Platform Developer Guide (Devices) / 4 Configure a TSL-based device

• get_tsl_from_cloud = 1: Indicates that no TSL model has been pre-defined. The SDK must

dynamically retrieve the TSL model from IoT Platform.

Dynamically retrieving a TSL model consumes a large amount of memory and bandwidth.

The specific consumption depends on the complexity of the TSL model. A TSL model of 10

KB consumes about 20 KB of memory and 10 KB of bandwidth.

3. Use the linkkit_ops_t parameter to register the callback.

linkkit_start(8, get_tsl_from_cloud, linkkit_loglevel_debug, &
alinkops, linkkit_cloud_domain_sh, sample_ctx);
if (! get_tsl_from_cloud) {
 linkkit_set_tsl(TSL_STRING, strlen(TSL_STRING));
}

Function implementation:

typedef struct _linkkit_ops {
 int (*on_connect)(void *ctx);
 int (*on_disconnect)(void *ctx);
 int (*raw_data_arrived)(void *thing_id, void *data, int len, void
 *ctx);
 int (*thing_create)(void *thing_id, void *ctx);
 int (*thing_enable)(void *thing_id, void *ctx);
 int (*thing_disable)(void *thing_id, void *ctx);
#ifdef RRPC_ENABLED
 int (*thing_call_service)(void *thing_id, char *service, int
request_id, int rrpc, void *ctx);
#else
 int (*thing_call_service)(void *thing_id, char *service, int
request_id, void *ctx);
#endif /* RRPC_ENABLED */
 int (*thing_prop_changed)(void *thing_id, char *property, void *
ctx);
} linkkit_ops_t;
/**
* @brief start linkkit routines, and install callback funstions(
async type for cloud connecting).
*
* @param max_buffered_msg, specify max buffered message size.
* @param ops, callback function struct to be installed.
* @param get_tsl_from_cloud, config if device need to get tsl from
 cloud(! 0) or local(0), if local selected, must invoke linkkit_se
t_tsl to tell tsl to dm after start complete.
* @param log_level, config log level.
* @param user_context, user context pointer.
* @param domain_type, specify the could server domain.
*
* @return int, 0 when success, -1 when fail.
*/
int linkkit_start(int max_buffered_msg, int get_tsl_from_cloud
, linkkit_loglevel_t log_level, linkkit_ops_t *ops, linkkit_cl
oud_domain_type_t domain_type, void *user_context);
/**
* @brief install user tsl.
*

Issue: 20190115 31

IoT Platform Developer Guide (Devices) / 4 Configure a TSL-based device

* @param tsl, tsl string that contains json description for thing
object.
* @param tsl_len, tsl string length.
*
* @return pointer to thing object, NULL when fails.
*/
extern void* linkkit_set_tsl(const char* tsl, int tsl_len);

4. After you have connected the device to IoT Platform, log on to the IoT Platform console and

verify whether the device has come online.

Figure 4-2: Device comes online

Send property changes to IoT Platform

1. When the properties of a device change, the device automatically sends the changes to IoT

Platform by publishing to topic /sys/{productKey}/{deviceName}/thing/event/

property/post.

Request:

TOPIC: /sys/{productKey}/{deviceName}/thing/event/property/post
REPLY TOPIC: /sys/{productKey}/{deviceName}/thing/event/property/
post_reply
request
{
"id" : "123",
"version":"1.0",
"params" : {
"PowerSwitch" : 1
},
"method":"thing.event.property.post"
}
response
{
"id":"123",
"code":200,
"data":{}
}

2. The SDK calls the linkkit_set_value operation to modify the property of the shadow, and then

calls the linkkit_trigger_event operation to synchronize the shadow to IoT Platform.

Note:

The device will automatically send the current property of the shadow to IoT Platform.

Function:

linkkit_set_value(linkkit_method_set_property_value, sample->thing,
EVENT_PROPERTY_POST_IDENTIFIER, value, value_str); // set value

32 Issue: 20190115

IoT Platform Developer Guide (Devices) / 4 Configure a TSL-based device

return linkkit_trigger_event(sample->thing, EVENT_PROPERTY_POST_
IDENTIFIER, NULL); // update value to cloud

Function implementation:

/**
* @brief set value to property, event output, service output items.
* if identifier is struct type or service output type or event
output type, use '.' as delimeter like "identifier1.ientifier2"
* to point to specific item.
* value and value_str could not be NULL at the same time;
* if value and value_str both as not NULL, value shall be used and
value_str will be ignored.
* if value is NULL, value_str not NULL, value_str will be used.
* in brief, value will be used if not NULL, value_str will be used
only if value is NULL.
*
* @param method_set, specify set value type.
* @param thing_id, pointer to thing object, specify which thing to
set.
* @param identifier, property, event output, service output
identifier.
* @param value, value to set.(input int* if target value is int type
 or enum or bool, float* if float type,
* long long* if date type, char* if text type).
* @param value_str, value to set in string format if value is null.
*
* @return 0 when success, -1 when fail.
*/
extern int linkkit_set_value(linkkit_method_set_t method_set, const
void* thing_id, const char* identifier,
const void* value, const char* value_str);
/**
* @brief trigger a event to post to cloud.
*
* @param thing_id, pointer to thing object.
* @param event_identifier, event identifier to trigger.
* @param property_identifier, used when trigger event with method "
event.property.post", if set, post specified property, if NULL, post
 all.
*
* @return 0 when success, -1 when fail.
*/
extern int linkkit_trigger_event(const void* thing_id, const char*
event_identifier, const char* property_identifier);

Get a device property on IoT Platform

1. You can log on to the IoT Platform console and use topic /sys/{productKey}/{

deviceName}/thing/service/property/get to get a property of a device.

Request:

TOPIC: /sys/{productKey}/{deviceName}/thing/service/property/get
REPLY TOPIC: /sys/{productKey}/{deviceName}/thing/service/property/
get_reply
request
{

Issue: 20190115 33

IoT Platform Developer Guide (Devices) / 4 Configure a TSL-based device

"id" : "123",
"version":"1.0",
"params" : [
"powerSwitch"
],
"method":"thing.service.property.get"
}
response
{
"id":"123",
"code":200,
"data":{
"powerSwitch":0
}
}

2. When the device receives the GET command from IoT Platform, the SDK executes the

command to read the property value from the shadow and returns the value to IoT Platform.

Set a device property on IoT Platform

1. You can log on to the IoT Platform console and use topic /sys/{productKey}/{

deviceName}/thing/service/property/set to set a property of a device client.

Request:

TOPIC: /sys/{productKey}/{deviceName}/thing/service/property/set
REPLY TOPIC: /sys/{productKey}/{deviceName}/thing/service/property/
set_reply
payload:
{
"id" : "123",
"version":"1.0",
"params" : {
"PowerSwitch" : 0,
},
"method":"thing.service.property.set"
}
response
{
"id":"123",
"code":200,
"data":{}
}

2. The SDK registers the thing_prop_changed callback function in the linkkit_ops_t parameter

of the linkkit_start method to respond to the request sent from IoT Platform for setting device

properties.

3. The linkkit_get_value parameter in the callback function is used to get the device property of

the shadow, which is the same as the device property that is modified on IoT Platform.

4. After setting the new property value, you can implement the linkkit_answer_service function to

return the result to IoT Platform. You can choose whether to perform this task based on your

business needs.

34 Issue: 20190115

IoT Platform Developer Guide (Devices) / 4 Configure a TSL-based device

Function implementation:

static int thing_prop_changed(void* thing_id, char* property, void*
ctx)
{
char* value_str = NULL;
... ...
linkkit_get_value(linkkit_method_get_property_value, thing_id,
property, NULL, &value_str);
LINKKIT_PRINTF("#### property(%s) new value set: %s ####\n",
property, value_str);
}
/* do user's process logical here. */
linkkit_trigger_event(thing_id, EVENT_PROPERTY_POST_IDENTIFIER,
property);
return 0;
}

Callback function:

int (*thing_prop_changed)(void *thing_id, char *property, void *ctx);

Function implementation:

/**
* @brief get value from property, event output, service input/output
items.
* if identifier is struct type or service input/output type or event
output type, use '.' as delimeter like "identifier1.ientifier2"
* to point to specific item.
* value and value_str could not be NULL at the same time;
* if value and value_str both as not NULL, value shall be used and
value_str will be ignored.
* if value is NULL, value_str not NULL, value_str will be used.
* in brief, value will be used if not NULL, value_str will be used
only if value is NULL.
* @param method_get, specify get value type.
* @param thing_id, pointer to thing object, specify which thing to get
.
* @param identifier, property, event output, service input/output
identifier.
* @param value, value to get(input int* if target value is int type or
 enum or bool, float* if float type,
* long long* if date type, char* if text type).
* @param value_str, value to get in string format. DO NOT modify this
when function returns,
* user should copy to user's own buffer for further process.
* user should NOT free the memory.
*
* @return 0 when success, -1 when fail.
*/
extern int linkkit_get_value(linkkit_method_get_t method_get, const
void* thing_id, const char* identifier,

Issue: 20190115 35

IoT Platform Developer Guide (Devices) / 4 Configure a TSL-based device

void* value, char** value_str);

Function:

linkkit_set_value(linkkit_method_set_service_output_value, thing,
identifier, &sample->service_custom_output_contrastratio, NULL);
linkkit_answer_service(thing, service_identifier, request_id, 200);

Function implementation:

/**
* @brief set value to property, event output, service output items.
* if identifier is struct type or service output type or event output
type, use '.' as delimeter like "identifier1.ientifier2"
* to point to specific item.
* value and value_str could not be NULL at the same time;
* if value and value_str both as not NULL, value shall be used and
value_str will be ignored.
* if value is NULL, value_str not NULL, value_str will be used.
* in brief, value will be used if not NULL, value_str will be used
only if value is NULL.
*
* @param method_set, specify set value type.
* @param thing_id, pointer to thing object, specify which thing to set
.
* @param identifier, property, event output, service output identifier
.
* @param value, value to set.(input int* if target value is int type
or enum or bool, float* if float type,
* long long* if date type, char* if text type).
* @param value_str, value to set in string format if value is null.
*
* @return 0 when success, -1 when fail.
*/
extern int linkkit_set_value(linkkit_method_set_t method_set, const
void* thing_id, const char* identifier,
const void* value, const char* value_str);
/**
* @brief answer to a service when a service requested by cloud.
*
* @param thing_id, pointer to thing object.
* @param service_identifier, service identifier to answer, user should
 get this identifier from handle_dm_callback_fp_t type callback
* report that "dm_callback_type_service_requested" happened, use this
function to generate response to the service sender.
* @param response_id, id value in response payload. its value is from
 "dm_callback_type_service_requested" type callback function.
* use the same id as the request to send response as the same
communication session.
* @param code, code value in response payload. for example, 200 when
service is successfully executed, 400 when not successfully executed.
* @param rrpc, specify rrpc service call or not.
*
* @return 0 when success, -1 when fail.
*/

36 Issue: 20190115

IoT Platform Developer Guide (Devices) / 4 Configure a TSL-based device

extern int linkkit_answer_service(const void* thing_id, const char*
service_identifier, int response_id, int code);

IoT Platform requests a service from the device.

1. IoT Platform uses topic /sys/{productKey}/{deviceName}/thing/service/{dsl

.service.identifer} to invoke a service from the device. The service is defined in

dsl.service.identifer of the standard TSL model.

TOPIC: /sys/{productKey}/{deviceName}/thing/service/{dsl.service.
identifer}
REPLY TOPIC:
/sys/{productKey}/{deviceName}/thing/service/{dsl.service.identifer}
_reply
request
{
"id" : "123",
"version":"1.0",
"params" : {
"SprinkleTime" : 50,
"SprinkleVolume" : 600
},
"method":"thing.service.AutoSprinkle"
}
response
{
"id":"123",
"code":200,
"data":{}
}

2. The SDK registers the thing_call_service callback function in the linkkit_ops_t parameter of the

linkkit_start method, to send a response to the service request.

3. After setting the new property value, you must call the linkkit_answer_service function to send

a response to IoT Platform.

Function:

int (*thing_call_service)(void *thing_id, char *service, int
request_id, void *ctx);

Function implementation:

static int handle_service_custom(sample_context_t* sample, void*
thing, char* service_identifier, int request_id)
{
char identifier[128] = {0};
/*
* get iutput value.
*/
snprintf(identifier, sizeof(identifier), "%s.%s", service_identifier
, "SprinkleTime");
linkkit_get_value(linkkit_method_get_service_input_value, thing,
identifier, &sample->service_custom_input_transparency, NULL);

Issue: 20190115 37

IoT Platform Developer Guide (Devices) / 4 Configure a TSL-based device

/*
* set output value according to user's process result.
*/
snprintf(identifier, sizeof(identifier), "%s.%s", service_identifier
, "SprinkleVolume");
sample->service_custom_output_contrastratio = sample->service_cu
stom_input_transparency >= 0 ? sample->service_custom_input
_transparency : sample->service_custom_input_transparency * -1;
linkkit_set_value(linkkit_method_set_service_output_value, thing,
identifier, &sample->service_custom_output_contrastratio, NULL);
linkkit_answer_service(thing, service_identifier, request_id, 200);
return 0;
}

Send events to IoT Platform

1. A device subscribes to topic /sys/{productKey}/{deviceName}/thing/event/{

dsl.event.identifer}/post to send an event to IoT Platform. The event is defined in

dsl.event.identifer of the standard TSL model.

Request:

TOPIC: /sys/{productKey}/{deviceName}/thing/event/{dsl.event.
identifer}/post
REPLY TOPIC: /sys/{productKey}/{deviceName}/thing/event/{dsl.event.
identifer}/post_reply
request
{
"id" : "123",
"version":"1.0",
"params" : {
"ErrorCode" : 0
},
"method":"thing.event.Error.post"
}
response:
{
"id" : "123",
"code":200,
"data" : {}
}

2. The SDK calls the linkkit_trigger_event method to send an event to IoT Platform.

Function:

static int post_event_error(sample_context_t* sample)
{
char event_output_identifier[64];
snprintf(event_output_identifier, sizeof(event_output_identifier),
 "%s.%s", EVENT_ERROR_IDENTIFIER, EVENT_ERROR_OUTPUT_INFO_IDENTIFIER
);
int errorCode = 0;
linkkit_set_value(linkkit_method_set_event_output_value,
sample->thing,
event_output_identifier,
&errorCode, NULL);

38 Issue: 20190115

IoT Platform Developer Guide (Devices) / 4 Configure a TSL-based device

return linkkit_trigger_event(sample->thing, EVENT_ERROR_IDENTIFIER,
NULL);
}

Function implementation:

/**
* @brief trigger a event to post to cloud.
*
* @param thing_id, pointer to thing object.
* @param event_identifier, event identifier to trigger.
* @param property_identifier, used when trigger event with method "
event.property.post", if set, post specified property, if NULL, post
all.
*
* @return 0 when success, -1 when fail.
*/
extern int linkkit_trigger_event(const void* thing_id, const char*
event_identifier, const char* property_identifier);

Issue: 20190115 39

IoT Platform Developer Guide (Devices) / 5 OTA Development

5 OTA Development

Update firmware

In this example, IoT Platform uses the MQTT protocol to update the firmware. Figure 5-1:

Firmware update shows the update process as follows:

Figure 5-1: Firmware update

Topics for firmware update

• The device publishes a message to this topic to report the firmware version to IoT Platform.

/ota/device/inform/${productKey}/${deviceName}

• The device subscribes to this topic to receive a notification of the firmware update from IoT

Platform.

/ota/device/upgrade/${productKey}/${deviceName}

• The device publishes a message to this topic to report the progress of the firmware update to

IoT Platform.

/ota/device/progress/${productKey}/${deviceName}

Note:

40 Issue: 20190115

IoT Platform Developer Guide (Devices) / 5 OTA Development

• The device does not periodically send the firmware version to IoT Platform. Instead, the device

 sends the firmware version to IoT Platform only when the device starts.

• You can view the firmware version to check if the OTA update is successful.

• After you have configured the firmware update for multiple devices in the console of an OTA

server, the update status of each device becomes Pending.

When the OTA system receives the update progress from the device, the update status of the

device changes to Updating.

• An offline device cannot receive any update notifications from the OTA server.

When the device comes online again, the device notifies the OTA server that it is online. When

 the server receives the online notification, the server determines whether the device requires

an update. If an update is required, the server sends an update notification to the device.

OTA code description

1. Install the firmware on a device, and start the device.

The initialization code for OTA is as follows:

h_ota = IOT_OTA_Init(PRODUCT_KEY, DEVICE_NAME, pclient);
if (NULL == h_ota) {
 rc = -1;
 printf("initialize OTA failed\n");
}

Note:

The MQTT connection (the obtained MQTT client handle pclient) is used to initialize the OTA

module.

The function is declared as follows:

/**
* @brief Initialize OTA module, and return handle.
* You must construct the MQTT client before you canll this interface
.
*
* @param [in] product_key: specify the product key.
* @param [in] device_name: specify the device name.
* @param [in] ch_signal: specify the signal channel.
*
* @retval 0 : Successful.
* @retval -1 : Failed.
* @see None.
*/
void *IOT_OTA_Init(const char *product_key, const char *device_name
, void *ch_signal);
/**

Issue: 20190115 41

IoT Platform Developer Guide (Devices) / 5 OTA Development

* @brief Report firmware version information to OTA server (optional
).
* NOTE: please
*
* @param [in] handle: specify the OTA module.
* @param [in] version: specify the firmware version in string format
.
*
* @retval 0 : Successful.
* @retval < 0 : Failed, the value is error code.
* @see None.
*/
int IOT_OTA_ReportVersion(void *handle, const char *version);

2. The device downloads the firmware from the received URL.

• IOT_OTA_IsFetching(): Identifies whether firmware is available for download.

• IOT_OTA_FetchYield(): Downloads a firmware package.

• IOT_OTA_IsFetchFinish(): Identifies whether the download has completed or not.

An example code is as follows:

// Identifies whether firmware is available for download.
if (IOT_OTA_IsFetching(h_ota)) {
 unsigned char buf_ota[OTA_BUF_LEN];
 uint32_t len, size_downloaded, size_file;
 do {
 //Iteratively downloads firmware.
 len = IOT_OTA_FetchYield(h_ota, buf_ota, OTA_BUF_LEN, 1);
 if (len > 0) {
 //Writes the firmware into the storage such as the flash.
 }
 } while (! IOT_OTA_IsFetchFinish(h_ota)); //Identifies whether the
 firmware download has completed or not.
}
exit: Ctrl ↩
/**
* @brief Check whether is on fetching state
*
* @param [in] handle: specify the OTA module.
*
* @retval 1 : Yes.
* @retval 0 : No.
* @see None.
*/
int IOT_OTA_IsFetching(void *handle);
/**
* @ Brief fetch firmware from remote server with specific timeout
value.
* NOTE: If you want to download more faster, the bigger 'buf' should
 be given.
*
* @param [in] handle: specify the OTA module.
* @param [out] buf: specify the space for storing firmware data.
* @param [in] buf_len: specify the length of 'buf' in bytes.
* @param [in] timeout_s: specify the timeout value in second.
*
* @retval < 0 : Error occur..
* @retval 0 : No any data be downloaded in 'timeout_s' timeout
period.

42 Issue: 20190115

IoT Platform Developer Guide (Devices) / 5 OTA Development

* @retval (0, len] : The length of data be downloaded in 'timeout_s
' timeout period in bytes.
* @see None.
*/
int IOT_OTA_FetchYield(void *handle, char *buf, uint32_t buf_len,
uint32_t timeout_s);
/**
* @brief Check whether is on end-of-fetch state.
*
* @param [in] handle: specify the OTA module.
*
* @retval 1 : Yes.
* @retval 0 : False.
* @see None.
*/
int IOT_OTA_IsFetchFinish(void *handle);

Note:

If you have insufficient device memory, you need to write the firmware into the system OTA

partition while downloading the firmware.

3. Call IOT_OTA_ReportProgress() to report the download status.

Example code:

if (percent - last_percent > 0) {
 IOT_OTA_ReportProgress(h_ota, percent, NULL);
}
IOT_MQTT_Yield(pclient, 100); //

You can upload the update progress to IoT Platform. The update progress (1% to 100%) is

displayed in real time in the progress column of the updating list in the console.

You can also upload the following error codes:

• -1: Failed to update the firmware.

• -2: Failed to download the firmware.

• -3: Failed to verify the firmware.

• -4: Failed to write the firmware into flash.

4. Call IOT_OTA_Ioctl() to identify whether the downloaded firmware is valid. If the firmware is

valid, the device will run with the new firmware at the next startup.

Example code:

int32_t firmware_valid;
IOT_OTA_Ioctl(h_ota, IOT_OTAG_CHECK_FIRMWARE, &firmware_valid, 4);
 if (0 == firmware_valid) {
 printf("The firmware is invalid\n");
} else {
 printf("The firmware is valid\n");

Issue: 20190115 43

IoT Platform Developer Guide (Devices) / 5 OTA Development

}

If the firmware is valid, modify the system boot parameters to make the hardware system run

with the new firmware at the next startup. The modification method varies by hardware system.

/**
* @brief Get OTA information specified by 'type'.
* By this interface, you can get information like state, size of
file, md5 of file, etc.
*
* @param [in] handle: handle of the specific OTA
* @param [in] type: specify what information you want, see detail '
IOT_OTA_CmdType_t'
* @param [out] buf: specify buffer for data exchange
* @param [in] buf_len: specify the length of 'buf' in byte.
* @return
@verbatim
NOTE:
1) When type is IOT_OTAG_FETCHED_SIZE, 'buf' should be pointer of
uint32_t, and 'buf_len' should be 4.
2) When type is IOT_OTAG_FILE_SIZE, 'buf' should be pointer of
uint32_t, and 'buf_len' should be 4.
3) When type is IOT_OTAG_MD5SUM, 'buf' should be a buffer, and '
buf_len' should be 33.
4) When type is IOT_OTAG_VERSION, 'buf' should be a buffer, and '
buf_len' should be OTA_VERSION_LEN_MAX.
5) When type is IOT_OTAG_CHECK_FIRMWARE, 'buf' should be pointer of
uint32_t, and 'buf_len' should be 4.
0, firmware is invalid; 1, firmware is valid.
@endverbatim
*
* @retval 0 : Successful.
* @retval < 0 : Failed, the value is error code.
* @see None.
*/
int IOT_OTA_Ioctl(void *handle, IOT_OTA_CmdType_t type, void *buf,
size_t buf_len);

5. Call IOT_OTA_Deinit to terminate a connection and release the memory.

/**
* @brief Deinitialize OTA module specified by the 'handle', and
release the related resource.
* You must call this operation to release resource if reboot is not
invoked after downloading.
*
* @param [in] handle: specify the OTA module.
*
* @retval 0 : Successful.
* @retval < 0 : Failed, the value is error code.
* @see None.
*/

44 Issue: 20190115

IoT Platform Developer Guide (Devices) / 5 OTA Development

int IOT_OTA_Deinit(void *handle);

6. After the device restarts, the device runs with the new firmware and reports the new firmware

version to IoT Platform. After the OTA module is initialized, call IOT_OTA_ReportVersion() to

report the current firmware version. The code is as follows:

if (0 ! = IOT_OTA_ReportVersion(h_ota, "version2.0")) {
 rc = -1;
 printf("report OTA version failed\n");
}

Issue: 20190115 45

IoT Platform Developer Guide (Devices) / 6 Error codes for sub-device
development

6 Error codes for sub-device development

This article describes errors that may occur during sub-device development.

Introduction

• When an IoT Platform service error occurs on a directly-connected device, the user client is

notified of the error when the TCP connection is closed.

• In the case that a communication error occurs on a sub-device connected to IoT Platform

through a gateway and the gateway is still physically connected to IoT Platform, the gateway

 must send an error message through the gateway connection to notify the user client of the

error.

Response format

When a communication error has occurred between a sub-device and IoT Platform, IoT Platform

sends an MQTT error message to the gateway through the gateway connection.

The format of the topic varies depending on the scenario. The JSON format of the message

content is as follows:

{
id: Message ID specified in the request parameters
code: Error code (the success code is 200)
message: Error message
}

Sub-device failed to go online

The error message is sent to topic /ext/session/{gw_productKey}/{gw_deviceName}/combine/

login_reply.

Table 6-1: Error codes

Code Message Description

460 request
parameter
error

Invalid parameter format, for example, invalid JSON format or
invalid authentication parameters.

429 too many
requests

Authentication requests have been denied. This error occurs
when a device initiates authentication requests to IoT Platform
too frequently or a sub-device has come online more than five
times in one minute.

46 Issue: 20190115

IoT Platform Developer Guide (Devices) / 6 Error codes for sub-device
development

Code Message Description

428 too many
subdevices
under gateway

The number of sub-devices connected to a gateway has
reached the maximum. Currently, up to 1500 sub-devices can
be connected to a gateway.

6401 topo relation
not exist

No topological relationship has been established between the
sub-device and the gateway.

6100 device not
found

The specified sub-device does not exist.

521 device deleted The sub-device has already been deleted.

522 device
forbidden

The specified sub-device has been disabled.

6287 invalid sign Authentication failed due to invalid username or password.

500 server error An exception occurs on IoT Platform.

Sub-device automatically goes offline

The error message is sent to topic /ext/session/{gw_productKey}/{gw_deviceName}/combine/

logout_reply.

Table 6-2: Error codes

Code Message Description

460 request
parameter error

Invalid parameter format, for example, invalid JSON
format or invalid parameters.

520 device no session The sub-device session does not exist, because the sub
-device has gone offline or has never been connected to
IoT Platform..

500 server error An exception occurs on IoT Platform.

Sub-device forced to go offline

The error message is sent to topic /ext/session/{gw_productKey}/{gw_deviceName}/combine/

logout_reply.

Issue: 20190115 47

IoT Platform Developer Guide (Devices) / 6 Error codes for sub-device
development

Table 6-3: Error codes

Code Message Description

427 device connect in
 elsewhere

Disconnection of current session. When another
device uses the same device certificate of ProductKey
, DeviceName, and DeviceSecret to connect to IoT
Platform, the current device is forced offline.

521 device deleted The device has been deleted.

522 device forbidden The device has been disabled.

Sub-device failed to send message

The error message is sent to topic /ext/error/{gw_productKey}/{gw_deviceName}.

Table 6-4: Error codes

Code Message Description

520 device session
error

Sub-device session error.

• The sub-device session does not exist. The sub-
device is not connected to IoT Platform or has gone
offline.

• The sub-device session exists, however, the session
is not established through the current gateway.

48 Issue: 20190115

IoT Platform Developer Guide (Devices) / 7 Device shadows

7 Device shadows

7.1 Device shadow JSON format
Format of the device shadow JSON file

The format is as follows:

{
"state": {
"desired": {
"attribute1": integer2,
"attribute2": "string2",
...
"attributeN": boolean2
},
"reported": {
"attribute1": integer1,
"attribute2": "string1",
...
"attributeN": boolean1
}
},
"metadata": {
"desired": {
"attribute1": {
"timestamp": timestamp
},
"attribute2": {
"timestamp": timestamp
},
...
"attributeN": {
"timestamp": timestamp
}
},
"reported": {
"attribute1": {
"timestamp": timestamp
},
"attribute2": {
"timestamp": timestamp
},
...
"attributeN": {
"timestamp": timestamp
}
}
},
"timestamp": timestamp,
"version": version
}

The JSON properties are described in Table 7-1: JSON property.

Issue: 20190115 49

IoT Platform Developer Guide (Devices) / 7 Device shadows

Table 7-1: JSON property

Property Description

desired The desired status of the device.
The application writes the desired property of the device, without
accessing the device.

reported The status that the device has reported. The device writes data to the
reported property to report its latest status.
The application obtains the status of the device by reading this property.

metadata The device shadow service automatically updates metadata according to
the updates in the device shadow JSON file.
State metadata in the device shadow JSON file contains the timestamp
of each property. The timestamp is represented as epoch time to obtain
exact update time.

timestamp The latest update time of the device shadow JSON file.

version When you request updating the version of the device shadow, the device
shadow checks whether the requested version is later than the current
version.
If the requested version is later than the current one, the device shadow
 updates to the requested version. If not, the device shadow rejects the
request.
The version number is increased according to the version update to
ensure the latest device shadow JSON file version.

Example of the device shadow JSON file:

{
"state" : {
"desired" : {
"color" : "RED",
"sequence" : ["RED", "GREEN", "BLUE"]
},
"reported" : {
"color" : "GREEN"
}
},
"metadata" : {
"desired" : {
"color" : {
"timestamp" : 1469564492
},
"sequence" : {
"timestamp" : 1469564492
}
},
"reported" : {
"color" : {
"timestamp" : 1469564492

50 Issue: 20190115

IoT Platform Developer Guide (Devices) / 7 Device shadows

}
}
},
"timestamp" : 1469564492,
"version" : 1
}

Empty properties

• The device shadow JSON file contains the desired property only when you have specified the

desired status. The following device shadow JSON file, which does not contain the desired

property, is also effective:

{
"state" : {
"reported" : {
"color" : "red",
}
},
"metadata" : {
"reported" : {
"color" : {
"timestamp" : 1469564492
}
}
},
"timestamp" : 1469564492,
"version" : 1
}

• The following device shadow JSON file, which does not contain the reported property, is also

effective:

{
"state" : {
"desired" : {
"color" : "red",
}
},
"metadata" : {
"desired" : {
"color" : {
"timestamp" : 1469564492
}
}
},
"timestamp" : 1469564492,
"version" : 1
}

Array

The device shadow JSON file can use an array, and must update this array as a whole when the

update is required.

Issue: 20190115 51

IoT Platform Developer Guide (Devices) / 7 Device shadows

• Initial status:

{
"reported" : { "colors" : ["RED", "GREEN", "BLUE"] }
}

• Update:

{
"reported" : { "colors" : ["RED"] }
}

• Final status:

{
"reported" : { "colors" : ["RED"] }
}

7.2 Device shadow data stream
IoT Platform predefines two topics for each device to enable data transmission. The predefined

topics have fixed formats.

• Topic: /shadow/update/${YourProductKey}/${YourDeviceName}

Devices and applications publish messages to this topic. When IoT Platform receives

messages from this topic, it will extract the status information in the messages and will update

the status to the device shadow.

• Topic: /shadow/get/${YourProductKey}/${YourDeviceName}

The device shadow updates the status to this topic, and the device subscribes to the messages

 from this topic.

Take a lightbulb device of a product bulb_1 as an example to introduce the communication among

devices, device shadows, and applications. In the following example, the ProductKey is 10000 and

 the DeviceName is lightbulb. The device publishes messages to and subscribes to messages of

the two custom topics using the method of QoS 1.

52 Issue: 20190115

IoT Platform Developer Guide (Devices) / 7 Device shadows

Device reports status automatically

The flow chart is shown in Figure 7-1: Device reports status automatically.

Figure 7-1: Device reports status automatically

1. When the lightbulb is online, the device uses topic /shadow/update/10000/lightbulb to

report the latest status to the device shadow.

Format of the JSON message:

{
"method": "update",
"state": {
"reported": {
"color": "red"
}
},
"version": 1
}

The JSON parameters are described in Table 7-2: Parameter description.

Table 7-2: Parameter description

Parameter Description

method The operation type when a device or application requests the device
shadow.
When you update the status, This parameter method is required and must
be set to update.

Issue: 20190115 53

IoT Platform Developer Guide (Devices) / 7 Device shadows

Parameter Description

state The status information that the device sends to the device shadow.
The reported field is required. The status information is synchronized to
the reported field of the device shadow.

version The version information contained in the request.
The device shadow only accepts the request and updates to the specified
version when the new version is later than the current version.

2. When the device shadow accepts the status reported by the device lightbulb, the JSON file of

device shadow is successfully updated.

{
"state" : {
"reported" : {
"color" : "red"
}
},
"metadata" : {
"reported" : {
"color" : {
"timestamp" : 1469564492
}
}
},
"timestamp" : 1469564492
"version" : 1
}

3. After the device shadow has been updated, it will return the result to the device (lightbulb) by

sending a message to the topic /shadow/get/10000/lightbulb.

• If the update is successful, the message is as follows:

{
"method":"reply",
"payload": {
"status":"success",
"version": 1
},
"timestamp": 1469564576
}

• If an error occurred during the update, the message is as follows:

{
"method":"reply",
"payload": {
"status":"error",
"content": {
"errorcode": "${errorcode}",
"errormessage": "${errormessage}"
}

54 Issue: 20190115

IoT Platform Developer Guide (Devices) / 7 Device shadows

},
"timestamp": 1469564576
}

Error codes are described in Table 7-3: Error codes.

Table 7-3: Error codes

errorCode errorMessage

400 Incorrect JSON file.

401 The method field is not found.

402 the state field is not found.

403 Invalid version field.

404 The reported field is not found.

405 The reported field is empty.

406 Invalid method field.

407 The JSON file is empty.

408 The reported field contains more than 128 attributes.

409 Version conflict.

500 Server exception.

Application changes device status

The flow chart is shown in Figure 7-2: Application changes device status.

Figure 7-2: Application changes device status

Issue: 20190115 55

IoT Platform Developer Guide (Devices) / 7 Device shadows

1. The application sends a command to the device shadow to change the status of the lightbulb.

The application sends a message to topic /shadow/update/10000/lightbulb/. The

message is as follows:

{
"method": "update",
"state": {
"desired": {
"color": "green"
}
},
"version": 2
}

2. The application sends an update request to update the device shadow JSON file. The device

shadow JSON file is changed to:

{
"state" : {
"reported" : {
"color" : "red"
},
"desired" : {
"color" : "green"
}
},
"metadata" : {
"reported" : {
"color" : {
"timestamp" : 1469564492
}
},
"desired" : {
"color" : {
"timestamp" : 1469564576
}
}
},
"timestamp" : 1469564576,
"version" : 2
}

3. After the update, the device shadow sends a message to the topic /shadow/get/10000/

lightbulb and returns the result of update to the device. The result message is created by

the device shadow.

{
"method":"control",
"payload": {
"status":"success",
"state": {
"reported": {
"color": "red"
},

56 Issue: 20190115

IoT Platform Developer Guide (Devices) / 7 Device shadows

"desired": {
"color": "green"
}
},
"metadata": {
"reported": {
"color": {
"timestamp": 1469564492
}
},
"desired" : {
"color" : {
"timestamp" : 1469564576
}
}
}
},
"version": 2,
"timestamp": 1469564576
}

4. When the device lightbulb is online and has subscribed to the topic /shadow/get/10000/

lightbulb, the device receives the message and changes its color to green according to the

desired field in the request file. After the device has updated the status, it will report the latest

status to the cloud.

{
method": "update",
"state": {
"reported": {
"color": "green"
}
},
"version": 3
}

If the timestamp shows that the command has expired, you give up the update.

5. After the latest status has been reported successfully, the device client sends a message to

the topic /shadow/update/10000/lightbulb to empty the property of desired field. The

message is as follows:

{
"method": "update",
"state": {
"desired":"null"
},
"version": 4
}

6. After the status has been reported, the device shadow is synchronously updated. The device

shadow JSON file is as follows:

{
"state" : {

Issue: 20190115 57

IoT Platform Developer Guide (Devices) / 7 Device shadows

"reported" : {
"color" : "green"
}
},
"metadata" : {
"reported" : {
"color" : {
"timestamp" : 1469564577
}
},
"desired" : {
"timestamp" : 1469564576
}
},
"version" : 4
}

Devices request for device shadows

The flow chart is shown in Figure 7-3: The device requests for device shadow.

Figure 7-3: The device requests for device shadow

1. The device lightbulb sends a message to the topic /shadow/update/10000/lightbulb

 and obtains the latest status saved in the device shadow. The message is as follows:

{
"method": "get"
}

2. When the device shadow receives above message, the device shadow sends a message to

the topic /shadow/get/10000/lightbulb. The message is as follows:

{
"method":"reply",
"payload": {
"status":"success",

58 Issue: 20190115

IoT Platform Developer Guide (Devices) / 7 Device shadows

"state": {
"reported": {
"color": "red"
},
"desired": {
"color": "green"
}
},
"metadata": {
"reported": {
"color": {
"timestamp": 1469564492
}
},
"desired": {
"color": {
"timestamp": 1469564492
}
}
}
},
"version": 2,
"timestamp": 1469564576
}

Devices delete device shadow attributes

The flow chart is shown in Figure 7-4: Delete device shadow attributes.

Figure 7-4: Delete device shadow attributes

The device lightbulb is to delete the specified attributes saved in the device shadow. The device

sends a JSON message to the topic /shadow/update/10000/lightbulb. See the message

in the following example.

To delete attributes, set the value of method to delete and set the values of the attributes to

null.

Issue: 20190115 59

IoT Platform Developer Guide (Devices) / 7 Device shadows

• Delete one attribute:

{
"method": "delete",
"state": {
"reported": {
"color": "null",
"temperature":"null"
}
},
"version": 1
}

• Delete all the attributes:

{
"method": "delete",
"state": {
"reported":"null"
},
"version": 1
}

7.3 Use device shadows
This topic describes the communication between devices, device shadows, and applications.

Context

A device shadow is the shadow that is built on IoT Platform based on a special topic for the

related device. This device synchronizes status to the cloud using this device shadow. The

cloud can quickly obtain the device status from the device shadow even when the device is not

connected to IoT Platform.

Procedure

1. The C SDK provides the IOT_Shadow_Construct function to create the device shadow.

The function is declared as follows:

/**
* @brief Construct the device shadow.
* This function is used to initialize the data structures, establish
 MQTT-based connections.
* and subscribe to the topic: "/shadow/get/${product_key}/${
device_name}".
*
* @param [in] pparam: The specific initial parameter.
* @retval NULL : The construction of the shadow failed.
* @retval NOT_NULL : The construction is successful.
* @see None.
*/

60 Issue: 20190115

IoT Platform Developer Guide (Devices) / 7 Device shadows

void *IOT_Shadow_Construct(iotx_shadow_para_pt pparam);

2. Use the IOT_Shadow_RegisterAttribute function to register the properties of the device

shadow.

The function is declared as follows:

/**
* @brief Create a data type registered to the server.
*
* @param [in] handle: The handle of the device shadow.
* @param [in] pattr: The parameter registered to the server.
* @retval SUCCESS_RETURN : Success.
* @retval other : See iotx_err_t.
* @see None.
*/
iotx_err_t IOT_Shadow_RegisterAttribute(void *handle, iotx_shado
w_attr_pt pattr);

3. You can use the IOT_Shadow_Pull function in the C SDK to synchronize device status to IoT

Platform whenever the device shadow starts.

The function is declared as follows:

/**
* @brief Synchronize device shadow data to the cloud.
* It is a synchronization function.
* @param [in] handle: The handle of the device shadow.
* @retval SUCCESS_RETURN : Success.
* @retval other : See iotx_err_t.
* @see None.
*/
iotx_err_t IOT_Shadow_Pull(void *handle);

4. When the device updates its status, you can use IOT_Shadow_PushFormat_Init,

IOT_Shadow_PushFormat_Add, and IOT_Shadow_PushFormat_Finalize in the C SDK to

update the device status, and use IOT_Shadow_Push in the C SDK to synchronize the status

to the cloud.

The function is declared as follows:

/**
* @brief Start processing the structure of the data type format.
*
* @param [in] handle: The handle of the device shadow.
* @param [out] pformat: The format structure of the device shadow.
* @param [in] buf: The buffer that stores the device shadow.
* @param [in] size: The maximum length of the device shadow
attribute.
* @retval SUCCESS_RETURN : Success.
* @retval other : See iotx_err_t.
* @see None.
*/
iotx_err_t IOT_Shadow_PushFormat_Init(

Issue: 20190115 61

IoT Platform Developer Guide (Devices) / 7 Device shadows

 void *handle,
 format_data_pt pformat,
 char *buf,
 uint16_t size);

/**
* @brief The format of the attribute name and value for the update.
*
* @param [in] handle: The handle of the device shadow.
* @param [in] pformat: The format structure of the device shadow.
* @param [in] pattr: The data type format created in the added
member attributes.
* @retval SUCCESS_RETURN : Success.
* @retval other : See iotx_err_t.
* @see None.
*/
iotx_err_t IOT_Shadow_PushFormat_Add(
 void *handle,
 format_data_pt pformat,
 iotx_shadow_attr_pt pattr);

/**
* @ Brief Complete processing the structure of the data type format.
*
* @param [in] handle: The handle of the device shadow.
* @ Param [in] pformat: The format structure of the device shadow.
* @retval SUCCESS_RETURN : Success.
* @retval other : See iotx_err_t.
* @see None.
*/
iotx_err_t IOT_Shadow_PushFormat_Finalize(void *handle, format_dat
a_pt pformat);

5. To disconnect the device from IoT Platform, use IOT_Shadow_DeleteAttribute and

IOT_Shadow_Destroy in the C SDK to delete all properties that have been created for this

device on IoT Platform, and release the device shadow.

The function is declared as follows:

/**
* @brief Deconstruct the specific device shadow.
*
* @param [in] handle: The handle of the device shadow.
* @retval SUCCESS_RETURN : Success.
* @retval other : See iotx_err_t.
* @see None.
*/
iotx_err_t IOT_Shadow_Destroy(void *handle);

62 Issue: 20190115

IoT Platform Developer Guide (Devices) / 8 Java SDK

8 Java SDK

This topic describes how to connect devices to Alibaba Cloud IoT Platform over the MQTT

protocol. The Java SDK is used as an example.

Prerequisites

In this demo, a Maven project is used. Install Maven first.

Context

This demo is not made for the Android operating system. If you are using Android, see open-

source library https://github.com/eclipse/paho.mqtt.android.

Procedure

1. Download the mqttClient SDK at iotx-sdk-mqtt-java.

2. Use IntelliJ IDEA or Eclipse to import the demo into a Maven project.

3. Log on to the Alibaba Cloud IoT Platform console, and select Devices. Click View next to the

device to obtain the ProductKey, DeviceName, and DeviceSecret.

4. Modify and run the SimpleClient4IOT.java configuration file.

a) Configure the parameters.

/** Obtain ProductKey, DeviceName, and DeviceSecret from the
console */
private static String productKey = "";
private static String deviceName = "";
private static String deviceSecret = "";
/** The topics used for testing */
private static String subTopic = "/"+productKey+"/"+deviceName+"/
get";
private static String pubTopic = "/"+productKey+"/"+deviceName+"/
pub";

b) Connect to MQTT server.

// The client device ID. It can be specified using either MAC
 address or device serial number. It cannot be empty and must
contain no more than 32 characters
String clientId = InetAddress.getLocalHost().getHostAddress();
// Authenticate the device
Map params = new HashMap();
params.put("productKey", productKey); // Specifies the product key
 that the user registered in the console
params.put("deviceName", deviceName); // Specifies the device name
 that the user registered in the console
params.put("clientId", clientId);
String t = System.currentTimeMillis()+"";
params.put("timestamp", t);

Issue: 20190115 63

https://github.com/eclipse/paho.mqtt.android
http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/iotx-sdk-java/iotx-sdk-mqtt-java-20170526.zip

IoT Platform Developer Guide (Devices) / 8 Java SDK

// Specifies the MQTT server. If using the TLS protocol, begin the
 URL with SSL. If using the TCP protocol, begin the URL with TCP
String targetServer = "ssl://"+productKey+".iot-as-mqtt.cn-
shanghai.aliyuncs.com:1883";
// Client ID format:
String mqttclientId = clientId + "|securemode=2,signmethod=
hmacsha1,timestamp="+t+"|"; // Specifies the custom device
identifier. Valid characters include letters and numbers. For more
 information, see Establish MQTT over TCP connections (https://
help.aliyun.com/document_detail/30539.html?spm=a2c4g. 11186623.6.
592. R3LqNT)
String mqttUsername = deviceName+"&"+productKey;// Specifies
username format
String mqttPassword = SignUtil.sign(params, deviceSecret, "
hmacsha1");// Signature
// Code excerpt for connecting over MQTT
MqttClient sampleClient = new MqttClient(url, mqttclientId,
persistence);
MqttConnectOptions connOpts = new MqttConnectOptions();
connOpts.setMqttVersion(4);// MQTT 3.1.1
connOpts.setSocketFactory(socketFactory);
// Configure automatic reconnection
connOpts.setAutomaticReconnect(true);
// If set to true, then all offline messages are cleared. These
messages include all QoS 1 or QoS 2 messages that are not received
connOpts.setCleanSession(false);
connOpts.setUserName(mqttUsername);
connOpts.setPassword(mqttPassword.toCharArray());
connOpts.setKeepAliveInterval(80);// Specifies the heartbeat
interval. We recommend that you set it to 60 seconds or longer
sampleClient.connect(connOpts);

c) Send data.

String content = "The content of the data to be sent. It can be in
 any format";
MqttMessage message = new MqttMessage(content.getBytes("utf-8"));
message.setQos(0);// Message QoS. 0: At most once. 1: At least
once
sampleClient.publish(topic, message);// Send data to a specified
topic

d) Receive data.

// Subscribe to a specified topic. When new data is sent to the
topic, the specified callback method is called.
sampleClient.subscribe(topic, new IMqttMessageListener() {
@Override
public void messageArrived(String topic, MqttMessage message)
throws Exception {
// After the device successfully subscribes to a topic, when new
data is sent to the topic, the specified callback method is called
.
// If you subscribe to the same topic again, only the initial
subscription takes effect.
}

64 Issue: 20190115

IoT Platform Developer Guide (Devices) / 8 Java SDK

});

Note:

For more information about MQTT connection parameters, see Establish MQTT

connections over TCP.

Issue: 20190115 65

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

9 Develop devices based on Alink Protocol

9.1 Alink protocol
This article describes how to encapsulate Alink protocol data and establish connections from

devices to IoT Platform using the Alink protocol.

The Alink protocol is a data exchange standard for IoT development that allows communication

between devices and IoT Platform. The protocol exchanges data that is formatted in Alink JSON.

The following sections introduce the device connection procedures and data pass through

processes (upstream and downstream) when using the Alink protocol.

Connect devices to IoT Platform

As shown in the following figure, devices can be connected to IoT Platform as directly connected

devices or sub-devices. The connection process involves the following key steps: authenticate the

 device, establish a connection, and report data.

Directly connected devices can be connected to IoT Platform by using the following methods:

• If #unique_34 is enabled, install the three key fields (ProductKey, DeviceName, and

DeviceSecret) to the physical device for authentication, connect the device to IoT Platform, and

report data to IoT Platform.

• If dynamic registration based on #unique_35 is enabled, install the product certificate

(ProductKey and ProductSecret) to the physical device for authentication, connect the device to

IoT Platform, and report data to IoT Platform.

The gateway starts the connection process for sub-devices. Sub-devices can be connected to IoT

Platform by using the following methods:

• If #unique_34 is enabled, install the ProductKey, DeviceName, and DeviceSecret to the

physical sub-device for authentication. The sub-device then sends these three key fields to

the gateway, and the gateway adds the topological relationship and sends the data of the sub-

device through the gateway connection channel.

• If dynamic registration is enabled, install the ProductKey to the physical sub-device for

authentication in advance. The sub-device sends the ProductKey and DeviceName to the

gateway, and the gateway forwards the ProductKey and DeviceName to IoT Platform. IoT

Platform then verifies the received DeviceName and sends a DeviceSecret to the sub-device

66 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

. The sub-device sends the obtained ProductKey, DeviceName, and DeviceSecret to the

gateway, and the gateway adds the topological relationship and sends data to IoT Platform

through the gateway connection channel.

Devices report properties or events

• Pass through data (the data type is Do not parse/Custom.)

1. The device reports binary data to IoT Platform using the topic for pass through data.

2. IoT Platform parses the received data using the data parsing script that you have submitted

on the IoT Platform console. The rawDataToProtocol method in the script is called to convert

 the binary data reported by the device to Alink JSON data

3. that is used for processing.

Issue: 20190115 67

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

If you have configured rules for data forwarding, the Alink JSON data will be forwarded to

the targets according to the rules.

4. IoT Platform parses the returned data to binary data using the data parsing script that you

have submitted on the IoT Platform console.

5. IoT Platform pushes the converted binary data to the device.

Note:

- The data forwarded by the rules engine is the data that has been parsed by the data

parsing script.

- When you configure data forwarding using the rules engine, to obtain the device properties

, use the topic: /sys/{productKey}/{deviceName}/thing/event/property/post.

- When you configure data forwarding using the rules engine, to obtain the device events,

use the topic: /sys/{productKey}/{deviceName}/thing/event/{tsl.event.identifier}/post.

• Non-pass through (Alink JSON) data

1. The device reports Alink JSON data to IoT Platform using the topic for non-pass through

data.

2. IoT Platform handles the received data.

68 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

If you have configured rules for data forwarding, the data will be forwarded to the targets

according to the rules.

3. IoT Platform returns the results to the device.

Note:

- When you configure data forwarding using the rules engine, to obtain the device properties

, use the topic: /sys/{productKey}/{deviceName}/thing/event/property/post.

- When you configure data forwarding using the rules engine, to obtain the device events,

use the topic: /sys/{productKey}/{deviceName}/thing/event/{tsl.event.identifier}/post.

Call device services or set device properties

• Call device services or set device properties asynchronously

1. The user sets a device property or calls a device service using the asynchronous call

method.

2. IoT Platform verifies the parameters.

3. IoT Platform uses the asynchronous call method to handle the request and return the

results. If the call is successful, a message ID, which is to be sent to the device, is included

in the response.

Issue: 20190115 69

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

If the data type is pass through (Do not parse/Custom), IoT Platform will call the protocolTo

RawData method in the data parsing script to convert the data before sending the data to

the device.

4. IoT Platform sends the data to the device, and the device handles the request

asynchronously.

- If the data is pass through (Do not parse/Custom) data, use the topic for pass through

data.

- If the data is non-pass through (Alink JSON) data, use the topic for non-pass through

data.

5. After the device has completed the requested operation, it will return the results.

- If the data type is pass through (Do not parse/Custom), IoT Platform will call the

rawDataToProtocol method in the data parsing script to convert the data returned by the

device.

- If you have configured rules for data forwarding, the data will be forwarded to the targets

according to the rules.

Note:

- When you configure data forwarding using the rules engine, use the topic: /sys/{productKey

}/{deviceName}/thing/downlink/reply/message to obtain the calling results.

- If the data type is pass through (Do not parse/Custom), the data forwarded by the rules

engine is the data that has been parsed by the data parsing script.

• Call device services and set device properties synchronously

70 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

1. The user calls a device service using the synchronous call method.

2. IoT Platform verifies the parameters.

If the data type is pass through (Do not parse/Custom), IoT Platform will call the protocolTo

RawData method in the data parsing script to convert the data before sending the data to

the device.

3. The synchronous call method is where IoT Platform calls the RRPC topic to send the

request data to the device, and waits for the device to return a result.

4. After the device has completed the requested operation, it will return the results. If a result is

not received within the timeout period, a timeout error will be returned.

If the data type is pass through (Do not parse/Custom), IoT Platform will call the

rawDataToProtocol method in the data parsing script to convert the data returned by the

device.

5. IoT Platform returns the results to the user.

9.2 Device identity registration
Before you connect a device to IoT Platform, you need to register the device identity to identify it

on IoT Platform.

The following methods are available for identity registration:

Issue: 20190115 71

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

• Unique certificate per device: Obtain the ProductKey, DeviceName, and DeviceSecret of a

device on IoT Platform and use them as the unique identifier. Install these three key fields on

 the firmware of the device. After the device is connected to IoT Platform, the device starts to

communicate with IoT Platform.

• Dynamic registration: You can perform dynamic registration based on unique-certificate-per-

product authentication for directly connected devices and perform dynamic registration for sub-

devices.

- To dynamically register a directly connected device based on unique-certificate-per-product

authentication, follow these steps:

1. In the IoT Platform console, pre-register the device and obtain the ProductKey and

ProductSecret. When you pre-register the device, use device information that can be

directly read from the device as the DeviceName, such as the MAC address or the serial

 number of the device.

2. Enable dynamic registration in the console.

3. Install the product certificate on the device firmware.

4. The device authenticates to IoT Platform. If the device passes authentication, IoT

Platform assigns a DeviceSecret to the device.

5. The device uses the ProductKey, DeviceName, and DeviceSecret to establish a

connection to IoT Platform.

- To dynamically register a sub-device, follow these steps:

1. In the IoT Platform console, pre-register a sub-device and obtain the ProductKey. When

you pre-register the sub-device, use device information that can be read directly from the

 sub-device as the DeviceName, such as the MAC address and SN.

2. Enable dynamic registration in the console.

3. Install the ProductKey on the firmware of the sub-device or on the gateway.

4. The gateway authenticates to IoT Platform on behalf of the sub-device.

Dynamically register a sub-device

Upstream

• Topic: /sys/{productKey}/{deviceName}/thing/sub/register

• Reply topic: /sys/{productKey}/{deviceName}/thing/sub/register_reply

Request message

{
 "id": "123",

72 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

 "version": "1.0",
 "params": [
 {
 "deviceName": "deviceName1234",
 "productKey": "1234556554"
 }
],
 "method": "thing.sub.register"
}

Response message

{
 "id": "123",
 "code": 200,
 "data": [
 {
 "iotId": "12344",
 "productKey": "1234556554",
 "deviceName": "deviceName1234",
 "deviceSecret": "xxxxxx"
 }
]
}

Parameter description

Parameter Type Description

id String Message ID. Reserve the
value of the parameter for
future use.

version String Protocol version. Currently, the
 value can only be 1.0.

params List Parameters used for dynamic
registration.

deviceName String Name of the sub-device.

productKey String ID of the product to which the
sub-device belongs.

iotId String Unique identifier of the sub-
device.

deviceSecret String DeviceSecret key.

method String Request method.

code Integer Result code.

Error messages

Issue: 20190115 73

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

Error code Error message Description

460 request parameter error The request parameters are
incorrect.

6402 topo relation cannot add by
self

A device cannot be added to
itself as a sub-device.

401 request auth error Signature verification has
failed.

Dynamically register a directly connected device based on unique-certificate-per-product

authentication

Directly connected devices send HTTP requests to perform dynamic register. Make sure that you

have enabled dynamic registration based on unique certificate per product in the console.

• URL template: https://iot-auth.cn-shanghai.aliyuncs.com/auth/register/

device

• HTTP method： POST

Request message

POST /auth/register/device HTTP/1.1
Host: iot-auth.cn-shanghai.aliyuncs.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 123
productKey=1234556554&deviceName=deviceName1234&random=567345&sign=
adfv123hdfdh&signMethod=HmacMD5

Response message

{
 "code": 200,
 "data": {
 "productKey": "1234556554",
 "deviceName": "deviceName1234",
 "deviceSecret": "adsfweafdsf"
 },
 "message": "success"
}

Parameter description

Parameter Type Description

productKey String ID of the product to which the
device belongs.

deviceName String Name of the device

random String Random number.

74 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

Parameter Type Description

sign String Signature.

signMethod String Signing method. The
supported methods are
hmacmd5, hmacsha1, and
hmacsha256.

code Integer Result code.

deviceSecret String DeviceSecret key.

Sign the parameters

All parameters reported to IoT Platform will be signed except sign and signMethod. Sort the

signing parameters in alphabetical order, and splice the parameters and values without any

splicing symbols.

Then, sign the parameters by using the algorithm specified by signMethod.

Example:

sign = hmac_sha1(productSecret, deviceNamedeviceName1234produc
tKey1234556554random123)

9.3 Add a topological relationship
After a sub-device has registered with IoT Platform, the gateway reports the topological

relationship of Gateways and sub-devices to IoT Platform before the sub-device connects to IoT

Platform.

IoT Platform verifies the identity and the topological relationship during connection. If the verificati

on is successful, IoT Platform establishes a logical connection with the sub-device and associates

the logical connection with the physical connection of the gateway. The sub-device uses the same

 protocols as a directly connected device for data upload and download. Gateway information is

not required to be included in the protocols.

After you delete the topological relationship of the sub-device from IoT Platform, the sub-device

can no longer connect to IoT Platform through the gateway. IoT Platform will fail the authentication

 because the topological relationship does not exist.

Add topological relationships of sub-devices

Upstream

• Topic: /sys/{productKey}/{deviceName}/thing/topo/add

Issue: 20190115 75

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

• Reply topic: sys/{productKey}/{deviceName}/thing/topo/add_reply

Request data format when using the Alink protocol

{
 "id": "123",
 "version": "1.0",
 "params": [
 {
 "deviceName": "deviceName1234",
 "productKey": "1234556554",
 "sign": "xxxxxx",
 "signmethod": "hmacSha1",
 "timestamp": "1524448722000",
 "clientId": "xxxxxx"
 }
],
 "method": "thing.topo.add"
}

Response data format when using the Alink protocol

{
 "id": "123",
 "code": 200,
 "data": {}
}

Parameter description

Parameter Type Description

id String Message ID. Reserve the
parameter value for future use.

version String Protocol version. Currently, the
 value can only be 1.0.

params List Input parameters of the
request.

deviceName String Device name. The value is the
name of the sub-device.

productKey String Product ID. The value is the
ID of the product to which the
sub-device belongs.

sign String Signature.

signmethod String Signing method. The
supported methods are
hmacSha1, hmacSha256,
hmacMd5, and Sha256.

timestamp String Timestamp.

76 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

Parameter Type Description

clientId String Identifier of a sub-device. This
 parameter is optional and
may have the same value as
ProductKey or DeviceName.

code Integer Result code. A value of 200
 indicates the request is
successful.

Signature algorithm

Notice:

IoT Platform supports common signature algorithms.

Sort all the parameters (except for sign and signMethod) that will be submitted to the server in

lexicographical order, and then connect the parameters and values in turn (no connect symbols).

Sign the signing parameters by using the algorithm specified by the signing method.

For example, in the following request, sort the parameters in params in alphabetic order and then

sign the parameters.

sign= hmac_md5(deviceSecret, clientId123deviceNametestproductKey123ti
mestamp1524448722000)

Error messages

Error code Error message Description

460 request parameter error The request parameters are incorrect
.

6402 topo relation cannot add by self A device cannot be added to itself as
 a sub-device.

401 request auth error Signature verification has failed.

Delete topological relationships of sub-devices

A gateway can publish a message to this topic to request IoT Platform to delete the topological

relationship between the gateway and a sub-device.

Upstream

• Topic: /sys/{productKey}/{deviceName}/thing/topo/delete

• Reply topic: /sys/{productKey}/{deviceName}/thing/topo/delete_reply

Issue: 20190115 77

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

Request data format when using the Alink protocol

{
 "id": "123",
 "version": "1.0",
 "params": [
 {
 "deviceName": "deviceName1234",
 "productKey": "1234556554"
 }
],
 "method": "thing.topo.delete"
}

Response data format when using the Alink protocol

{
 "id": "123",
 "code": 200,
 "data": {}
}

Parameter description

Parameter Type Description

id String Message ID. Reserve the
parameter value for future use.

version String Protocol version. Currently, the
 value can only be 1.0.

params List Request parameters.

deviceName String Device name. The value is the
name of the sub-device.

productKey String Product ID. The value is the
ID of the product to which the
sub-device belongs.

method String Request method.

code Integer Result code. A value of 200
 indicates the request is
successful.

Error messages

Error code Error message Description

460 request parameter error The request parameters are incorrect
.

6100 device not found The device does not exist.

78 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

Obtain topological relationships of sub-devices

Upstream

• Topic: /sys/{productKey}/{deviceName}/thing/topo/get

• Reply topic: /sys/{productKey}/{deviceName}/thing/topo/get_reply

A gateway can publish a message to this topic to obtain the topological relationships between the

gateway and its connected sub-devices.

Request data format when using the Alink protocol

{
 "id": "123",
 "version": "1.0",
 "params": {},
 "method": "thing.topo.get"
}

Response data format when using the Alink protocol

{
 "id": "123",
 "code": 200,
 "data": [
 {
 "deviceName": "deviceName1234",
 "productKey": "1234556554"
 }
]
}

Parameter description

Parameter Type Description

id String Message ID. Reserve the
value of the parameter for
future use.

version String Protocol version. Currently, the
 value can only be 1.0.

params Object Request parameters. This can
be left empty.

method String Request method.

deviceName String Name of the sub-device.

productKey String Product ID of the sub-device.

Issue: 20190115 79

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

Parameter Type Description

code Integer Result code. A value of 200
 indicates the request is
successful.

Error messages

Error code Error message Description

460 request parameter error The request parameters are incorrect
.

Report new sub-devices

Upstream

• Topic: /sys/{productKey}/{deviceName}/thing/list/found

• Reply topic: /sys/{productKey}/{deviceName}/thing/list/found_reply

In some scenarios, the gateway can discover new sub-devices. The gateway reports informatio

n of a new sub-device to IoT Platform. IoT Platform forwards the sub-device information to third

-party applications, and the third-party applications choose the sub-devices to connect to the

gateway.

Request data format when using the Alink protocol

{
 "id": "123",
 "version": "1.0",
 "params": [
 {
 "deviceName": "deviceName1234",
 "productKey": "1234556554"
 }
],
 "method": "thing.list.found"
}

Response data format when using the Alink protocol

{
 "id": "123",
 "code": 200,
 "data":{}
}

Parameter description

80 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

Parameter Type Description

id String Message ID. Reserve the
value of the parameter for
future use.

version String Protocol version. Currently, the
 value can only be 1.0.

params Object Request parameters. This
parameter can be left empty.

method String Request method.

deviceName String Name of the sub-device.

productKey String Product ID of the sub-device.

code Integer Result code. A value of 200
 indicates the request is
successful.

Error messages

Error code Error message Description

460 request parameter error The request parameters are incorrect
.

6250 product not found The specified product to which the
sub-device belongs does not exist.

6280 devicename not meet specs The name of the sub-device is
invalid. The device name must be
 4 to 32 characters in length and
can contain letters, digits, hyphens
 (-), underscores (_), at signs (@),
periods (.), and colons (:).

Notify the gateway to add topological relationships of the connected sub-devices

Downstream

• Topic: /sys/{productKey}/{deviceName}/thing/topo/add/notify

• Reply topic: /sys/{productKey}/{deviceName}/thing/topo/add/notify_reply

IoT Platform publishes a message to this topic to notify a gateway to add topological relationships

of the connected sub-devices. You can use this topic together with the topic that reports new

sub-devices to IoT Platform. IoT Platform can subscribe to a data exchange topic to receive the

Issue: 20190115 81

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

response from the gateway. The data exchange topic is /{productKey}/{deviceName}/

thing/downlink/reply/message.

Request data format when using the Alink protocol

{
 "id": "123",
 "version": "1.0",
 "params": [
 {
 "deviceName": "deviceName1234",
 "productKey": "1234556554"
 }
],
 "method": "thing.topo.add.notify"
}

Response data format when using the Alink protocol

{
 "id": "123",
 "code": 200,
 "data": {}
}

Parameter description

Parameter Type Description

id String Message ID. Reserve the
value of the parameter for
future use.

version String Protocol version. Currently, the
 value can only be 1.0.

params Object Request parameters. This
parameter can be left empty.

method String Request method.

deviceName String Name of the sub-device.

productKey String Product ID of the sub-device.

code Integer Result code. A value of 200
 indicates the request is
successful.

82 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

9.4 Connect devices to IoT Platform
Make sure that a directly connected device has been registered with IoT Platform before

connecting to IoT Platform.

Make sure that a sub-device has been registered with IoT Platform before connecting to IoT

Platform. In addition, you also need to make sure that the topological relationship with the gateway

 has been added to the gateway. IoT Platform will verify the identity of the sub-device according to

 the topological relationship to identify whether the sub-device can use the gateway connection.

Connect sub-devices to IoT Platform

Upstream

• Topic: /ext/session/{productKey}/{deviceName}/combine/login

• Reply topic: /ext/session/{productKey}/{deviceName}/combine/login_reply

Request message

{
 "id": "123",
 "params": {
 "productKey": "123",
 "deviceName": "test",
 "clientId": "123",
 "timestamp": "123",
 "signMethod": "hmacmd5",
 "sign": "xxxxxx",
 "cleanSession": "true"
 }
}

Response message

{
 "id":"123",
 "code":200,
 "message":"success"
 "data":""
}

Parameter description

Parameter Type Description

id String Message ID. Reserve the
value of the parameter for
future use.

params Object Request parameters.

deviceName String Name of the sub-device.

Issue: 20190115 83

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

Parameter Type Description

productKey String ID of the product to which the
sub-device belongs.

sign String Signature of a sub-device.
Sub-devices use the same
signature rules as the gateway.

signmethod String Sign method. The supported
 methods are hmacSha1,
hmacSha256, hmacMd5, and
Sha256.

timestamp String Timestamp.

clientId String Identifier of a device client.
This parameter can have the
same value as the ProductKey
or DeviceName parameter.

cleanSession String A value of true indicates that
 when the device is offline,
messages sent based on QoS
=1 method will be cleared.

code Integer Result code. A value of 200
indicates that the request is
successful.

message String Result message.

data String Additional information in the
response, in JSON format.

Notice:

A gateway can accommodate a maximum of 200 concurrent online sub-devices. When the

maximum number is reached, the gateway rejects any connection requests.

Sign the parameters

Sort all the parameters (except sign and signmethod) to be submitted to the server in

alphabetical order, and then splice the parameters and values in turn (without splice symbols).

Then, sign the parameters by using the algorithm specified by signMethod.

84 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

Example:

sign= hmac_md5(deviceSecret, cleanSessiontrueclientId123deviceNametes
tproductKey123timestamp123)

Error messages

Error code Error message Description

460 request parameter error The request parameters are incorrect
.

429 rate limit, too many subDeviceOnline
msg in one minute

The authentication requests from
the device are throttled because the
device requests authentication to IoT
Platform too frequently.

428 too many subdevices under gateway Too many sub-devices connect to the
 gateway at the same time.

6401 topo relation not exist The topological relationship between
the gateway and the sub-device does
 not exist.

6100 device not found The sub-device does not exist.

521 device deleted The sub-device has been deleted.

522 device forbidden The sub-device has been disabled.

6287 invalid sign The password or signature of the sub
-device is incorrect.

Disconnect sub-devices from IoT Platform

Upstream

• Topic: /ext/session/{productKey}/{deviceName}/combine/logout

• Reply topic: /ext/session/{productKey}/{deviceName}/combine/logout_reply

Request message

{
 "id": 123,
 "params": {
 "productKey": "xxxxx",
 "deviceName": "xxxxx"
 }
}

Response message

{
 "id": "123",

Issue: 20190115 85

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

 "code": 200,
 "message": "success",
 "data": ""
}

Parameter description

Parameter Type Description

id String Message ID. Reserve the
parameter for future use.

params Object Request parameters.

deviceName String Name of the sub-device.

productKey String ID of the product to which the
sub-device belongs.

code Integer Result code. A value of 200
indicates that the request is
successful.

message String Result code.

data String Additional information in the
response, in JSON format.

Error messages

Error code Error message Description

460 request parameter error The request parameters are incorrect
.

520 device no session The sub-device session does not
exist.

For information about sub-device connections, see Connect sub-devices to IoT Platform. For

information about error codes, see Error codes.

9.5 Device properties, events, and services
If you have defined TSL mode for a product, the devices of this product can separately report data

of the properties, events, and services that you have defined. For the data format of TSL, see The

TSL format. This topic describes how data is reported based on the TSL.

IoT Platform supports two data types: ICA Standard Data Format (Alink JSON) and Do not parse/

Custom. When you are creating a product, you are required to select a data type for devices of

this product. We recommend that you select the Alink JSON type.

86 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

• ICA Standard Data Format (Alink JSON): Devices generate data in the standard format defined

 by IoT Platform, and then report the data to IoT Platform. For the data format, see the request

examples and response examples in this topic.

• Do not parse/Custom: Devices report raw data, such as binary data, to IoT Platform, and then

IoT Platform parses the raw data to be standard data using the parsing script that you have

submitted in the console. For how to edit a data parsing script, see Data parsing.

Devices report properties

Report data (Do not parse/Custom)

• Request topic: /sys/{productKey}/{deviceName}/thing/model/up_raw

• Response topic: /sys/{productKey}/{deviceName}/thing/model/up_raw_reply

Report Data (Alink JSON)

• Request topic: /sys/{productKey}/{deviceName}/thing/event/property/post

• Response topic: /sys/{productKey}/{deviceName}/thing/event/property/post_reply

You can configure Rules Engine to forward the received property data to another Alibaba Cloud

product instance. The following figure is an example of rule action configuration.

Request message

{
 "id": "123",

Issue: 20190115 87

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

 "version": "1.0",
 "params": {
 "Power": {
 "value": "on",
 "time": 1524448722000
 },
 "WF": {
 "value": 23.6,
 "time": 1524448722000
 }
 },
 "method": "thing.event.property.post"
}

Response message

{
 "id": "123",
 "code": 200,
 "data": {}
}

Table 9-1: Request parameters

Parameter Type Description

id String Message ID.

version String Protocol version. Currently, the
 value is 1.0.

params Object Request parameters. In the
request example above, the
device reports two properties
: Power and WF. Property
information includes time (
the time when the property is
reported) and value (the value
of the property).

time Long The time when the property is
reported.

value Object The value of the property.

method String Request method.

Table 9-2: Response parameters

Parameter Type Description

id String Message ID.

88 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

Parameter Type Description

code Integer Result code. See Common
codes on devices.

data String Data returned when the
request is successful.

Error messages

Error code Error message Description

460 request parameter error The request parameters are incorrect
.

6106 map size must less than 200 The number of reported properties
exceeds the maximum limit. Up to
200 properties can be reported at a
time.

6313 tsl service not available The TSL verification service is not
available.
IoT Platform verifies all the received
properties according to the TSLs
of products. This error is reported
when a system exception occurs.
For TSL definition, see What is Thing
Specification Language (TSL)?.

Note:
If the TSL verification service
is available, but some reported
properties do not match with any
properties defined in the TSL,
IoT Platform ignores the invalid
properties. If all the reported
properties do not match with any
properties defined in the TSL, IoT
Platform ignores them all. In this
case, the response will still indicate
that the verification is successful.

Set device properties

Push data to devices (Do not parse/Custom)

• Request topic: /sys/{productKey}/{deviceName}/thing/model/down_raw

Issue: 20190115 89

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

• Response topic: /sys/{productKey}/{deviceName}/thing/model/down_raw_reply

Push data to devices (Alink JSON)

• Request topic: /sys/{productKey}/{deviceName}/thing/service/property/set

• Response topic: /sys/{productKey}/{deviceName}/thing/service/property/set_reply

You can get property setting results from the topic of data exchange: /sys/{productKey}/{

deviceName}/thing/downlink/reply/message. You can configure Rules Engine to forward

property setting results to another Alibaba Cloud product instance. The following figure is an

example of rule action configuration.

Request message

{
 "id": "123",
 "version": "1.0",
 "params": {
 "temperature": "30.5"
 },
 "method": "thing.service.property.set"
}

Response message

{
 "id": "123",
 "code": 200,
 "data": {}

90 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

}

Table 9-3: Request Parameters

Parameter Type Description

id String Message ID.

version String Protocol version. Currently, the
 value is 1.0.

params Object Property parameters. In the
request example above, the
property to be set is

{ "temperature": "30.
5" }

.

method String Request method.

Table 9-4: Response parameters

Parameter Type Description

id String Message ID.

code Integer Result code. See Common
codes on devices.

data String Data returned when the
request is successful.

Devices report events

Report data (Do not parse/Custom)

• Request topic: /sys/{productKey}/{deviceName}/thing/model/up_raw

• Response topic: /sys/{productKey}/{deviceName}/thing/model/up_raw_reply

Report Data (Alink JSON)

• Request topic: /sys/{productKey}/{deviceName}/thing/event/{tsl.event.identifier}/post

• Response topic: /sys/{productKey}/{deviceName}/thing/event/{tsl.event.identifier}/post_reply

You can configure Rules Engine to forward the received event data to another Alibaba Cloud

product instance. The following figure is an example of rule action configuration.

Issue: 20190115 91

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

Request message

{
 "id": "123",
 "version": "1.0",
 "params": {
 "value": {
 "Power": "on",
 "WF": "2"
 },
 "time": 1524448722000
 },
 "method": "thing.event.{tsl.event.identifier}.post"
}

Response message

{
 "id": "123",
 "code": 200,
 "data": {}
}

Table 9-5: Request Parameters

Parameter Type Description

id String Message ID.

92 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

Parameter Type Description

version String Protocol version. Currently, the
 value is 1.0.

params List Parameters of the reported
events.

value Object The event information. In the
request example above, the
events are

{
 "Power": "on",
 "WF": "2"
 }

time Long The UTC timestamp when the
event occurs.

method String Request method.

Table 9-6: Response parameters

Parameter Type Description

id String Message ID.

code Integer Result code. See Common
codes on devices.

data String Data returned when the
request is successful.

Examples

For example, an event alarm has been defined in the TSL of a product:

{
 "schema": "https://iot-tsl.oss-cn-shanghai.aliyuncs.com/schema.json
",
 "link": "/sys/${productKey}/airCondition/thing/",
 "profile": {
 "productKey": "al123456789",
 "deviceName": "airCondition"
 },
 "events": [
 {
 "identifier": "alarm",
 "name": "alarm",
 "desc": "Fan alarm",
 "type": "alert",
 "required": true,
 "outputData": [
 {

Issue: 20190115 93

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

 "identifier": "errorCode",
 "name": "ErrorCode",
 "dataType": {
 "type": "text",
 "specs": {
 "length": "255"
 }
 }
 }
],
 "method": "thing.event.alarm.post"
 }
]
}

The device reports this event:

{
 "id": "123",
 "version": "1.0",
 "params": {
 "value": {
 "errorCode": "error"
 },
 "time": 1524448722000
 },
 "method": "thing.event.alarm.post"
}

Note:

• tsl.event.identifier indicates the event identifier in the TSL. For TSL template, see

What is Thing Specification Language (TSL)?.

• IoT Platform verifies all the events reported by devices according to the TSLs of products.

If the reported event does not match with any events defined in the TSL, an error code is

returned.

Call device services

• Push data to devices (Do not parse/Custom)

- Request topic: /sys/{productKey}/{deviceName}/thing/model/down_raw

- Response topic: /sys/{productKey}/{deviceName}/thing/model/down_raw_reply

• Push data to devices (Alink JSON)

- Request topic: /sys/{productKey}/{deviceName}/thing/service/{tsl.service.identifier}

- Response topic: /sys/{productKey}/{deviceName}/thing/service/{tsl.service.identifier}_reply

Services can be called in two methods: synchronous method and asynchronous method. When

you define a service, you are required to select a method for the service.

94 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

• Synchronous method: IoT Platform uses the Revert-RPC method to push requests to devices.

For the operation process of Revert-RPC method, see What is RRPC.

• Asynchronous method: IoT Platform pushes requests to devices in an asynchronous manner,

and the devices also return operation results in an asynchronous manner,

Only when asynchronous method is selected for a service, does IoT Platform subscribe to the

response topic. You can get the operation results from the topic of data exchange: /sys/{

productKey}/{deviceName}/thing/downlink/reply/message.

You can configure Rules Engine to forward service calling results returned by devices to

another Alibaba Cloud product instance. The following figure is an example of rule action

configuration.

Request message

{
 "id": "123",
 "version": "1.0",
 "params": {
 "Power": "on",
 "WF": "2"
 },
 "method": "thing.service.{tsl.service.identifier}"
}

Response message

{

Issue: 20190115 95

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

 "id": "123",
 "code": 200,
 "data": {}
}

Table 9-7: Request Parameters

Parameter Type Description

id String Message ID.

version String Protocol version. Currently, the
 value is 1.0.

params Map Parameters used to call a
service, including the identifier
and value of the service. As in
the example above:

{
 "Power": "on",
 "WF": "2"
 }

method String Request method.

Table 9-8: Response parameters

Parameter Type Description

id String Message ID.

code Integer Result code. See Common
codes on devices.

data String Data returned when the
request is successful.
The value of data is
determined by the TSL of the
 product. If the device does
 not return any information
about the service, the value
of data is empty. If the device
 returns service information,
the returned data value will
strictly follow the definition of
the service in the TSL.

Examples

96 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

For example, a service SetWeight has been defined in the TSL of the product:

{
 "schema": "https://iotx-tsl.oss-ap-southeast-1.aliyuncs.com/schema.
json",
 "profile": {
 "productKey": "testProduct01"
 },
 "services": [
 {
 "outputData": [
 {
 "identifier": "OldWeight",
 "dataType": {
 "specs": {
 "unit": "kg",
 "min": "0",
 "max": "200",
 "step": "1"
 },
 "type": "double"
 },
 "name": "OldWeight"
 },
 {
 "identifier": "CollectTime",
 "dataType": {
 "specs": {
 "length": "2048"
 },
 "type": "text"
 },
 "name": "CollectTime"
 }
],
 "identifier": "SetWeight",
 "inputData": [
 {
 "identifier": "NewWeight",
 "dataType": {
 "specs": {
 "unit": "kg",
 "min": "0",
 "max": "200",
 "step": "1"
 },
 "type": "double"
 },
 "name": "NewWeight"
 }
],
 "method": "thing.service.SetWeight",
 "name": "SetWeight",
 "required": false,
 "callType": "async"
 }
]
}

Request message for calling the service:

{

Issue: 20190115 97

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

 "method": "thing.service.SetWeight",
 "id": "105917531",
 "params": {
 "NewWeight": 100.8
 },
 "version": "1.0.0"
}

Response message

{
 "id": "105917531",
 "code": 200,
 "data": {
 "CollectTime": "1536228947682",
 "OldWeight": 100.101
 }
}

Note:

tsl.service.identifier indicates the identifier of the service in TSL. For how to define

TSL, see What is Thing Specification Language (TSL)?.

9.6 Send configuration data to gateway devices
Send extended configuration information of the TSL model and sub-device connection channel

configuration that you configured on the cloud to the gateway device.

• Topic: /sys/{productKey}/{deviceName}/thing/model/config/push

Request message

{
 "id": 123,
 "version": "1.0",
 "method": "thing.model.config.push",
 "data": {
 "digest":"",
 "digestMethod":"",
 "url": ""
 }
}

Parameter description

Parameter Type Description

id String The message ID.

version String The protocol version number.
Default value: 1.0.

98 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

Parameter Type Description

method String The method is thing.model.
config.push.

data Object Data

digest String The signature that is used to
verify the integrity of the data
obtained from url.

digestMethod String The signature method. The
default method is sha256.

url String The data url that you get from
OSS.

Response message

{
 "id":123,
 "code":200,
 "message":"success",
 "data":{
 "digest":"",
 "digestMethod":"",
 "url":""
 }
}

url data

{
 "modelList": [
 {
 "profile": {
 "productKey": "test01"
 },
 "services": [
 {
 "outputData": "",
 "identifier": "AngleSelfAdaption",
 "inputData": [
 {
 "identifier": "test01",
 "index": 0
 }
],
 "displayName": "test01"
 }
],
 "properties": [
 {
 "identifier": "identifier",
 "displayName": "test02"
 },
 {
 "identifier": "identifier_01",

Issue: 20190115 99

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

 "displayName": "identifier_01"
 }
],
 "events": [
 {
 "outputData": [
 {
 "identifier": "test01",
 "index": 0
 }
],
 "identifier": "event1",
 "displayName": "abc"
 }
]
 },
 {
 "profile": {
 "productKey": "test02"
 },
 "properties": [
 {
 "originalDataType": {
 "specs": {
 "registerCount": 1,
 "reverseRegister": 0,
 "swap16": 0
 },
 "type": "bool"
 },
 "identifier": "test01",
 "registerAddress": "0x03",
 "scaling": 1,
 "operateType": "inputStatus",
 "pollingTime": 1000,
 "trigger": 1
 },
 {
 "originalDataType": {
 "specs": {
 "registerCount": 1,
 "reverseRegister": 0,
 "swap16": 0
 },
 "type": "bool"
 },
 "identifier": "test02",
 "registerAddress": "0x05",
 "scaling": 1,
 "operateType": "coilStatus",
 "pollingTime": 1000,
 "trigger": 2
 }
]
 }
],
 "serverList": [
 {
 "baudRate": 1200,
 "protocol": "RTU",
 "byteSize": 8,
 "stopBits": 2,
 "parity": 1,
 "name": "modbus01",

100 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

 "serialPort": "0",
 "serverId": "D73251B4277742"
 },
 {
 "protocol": "TCP",
 "port": 8000,
 "ip": "192.168.0.1",
 "name": "modbus02",
 "serverId": "586CB066D6A34"
 },
 {
 "password": "XIJTginONohPEUAyZxLB7Q==",
 "secPolicy": "Basic128Rsa15",
 "name": "server_01",
 "secMode": "Sign",
 "userName": "123",
 "serverId": "55A9D276A7ED470",
 "url": "tcp:00",
 "timeout": 10
 },
 {
 "password": "hAaX5s13gwX2JwyvUkOAfQ==",
 "name": "service_09",
 "secMode": "None",
 "userName": "1234",
 "serverId": "44895C63E3FF401",
 "url": "tcp:00",
 "timeout": 10
 }
],
 "deviceList": [
 {
 "deviceConfig": {
 "displayNamePath": "123",
 "serverId": "44895C63E3FF4013924CEF31519ABE7B"
 },
 "productKey": "test01",
 "deviceName": "test_02"
 },
 {
 "deviceConfig": {
 "displayNamePath": "1",
 "serverId": "55A9D276A7ED47"
 },
 "productKey": "test01",
 "deviceName": "test_03"
 },
 {
 "deviceConfig": {
 "slaveId": 1,
 "serverId": "D73251B4277742D"
 },
 "productKey": "test02",
 "deviceName": "test01"
 },
 {
 "deviceConfig": {
 "slaveId": 2,
 "serverId": "586CB066D6A34E"
 },
 "productKey": "test02",
 "deviceName": "test02"
 }
],

Issue: 20190115 101

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

 "tslList": [
 {
 "schema": "https://iotx-tsl.oss-ap-southeast-1.aliyuncs.com/
schema.json",
 "profile": {
 "productKey": "test02"
 },
 "services": [
 {
 "outputData": [],
 "identifier": "set",
 "inputData": [
 {
 "identifier": "test02",
 "dataType": {
 "specs": {
 "unit": "mm",
 "min": "0",
 "max": "1"
 },
 "type": "int"
 },
 "name": "FeatureTest02"
 }
],
 "method": "thing.service.property.set",
 "name": "set",
 "required": true,
 "callType": "async",
 "desc": "Set properties"
 },
 {
 "outputData": [
 {
 "identifier": "test01",
 "dataType": {
 "specs": {
 "unit": "m",
 "min": "0",
 "max": "1"
 },
 "type": "int"
 },
 "name": "FeatureTest01"
 },
 {
 "identifier": "test02",
 "dataType": {
 "specs": {
 "unit": "mm",
 "min": "0",
 "max": "1"
 },
 "type": "int"
 },
 "name": "FeatureTest02"
 }
],
 "identifier": "get",
 "inputData": [
 "test01",
 "test02"
],
 "method": "thing.service.property.get",

102 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

 "name": "get",
 "required": true,
 "callType": "async",
 "desc": "Get properties"
 }
],
 "properties": [
 {
 "identifier": "test01",
 "dataType": {
 "specs": {
 "unit": "m",
 "min": "0",
 "max": "1"
 },
 "type": "int"
 },
 "name": "FeatureTest01",
 "accessMode": "r",
 "required": false
 },
 {
 "identifier": "test02",
 "dataType": {
 "specs": {
 "unit": "mm",
 "min": "0",
 "max": "1"
 },
 "type": "int"
 },
 "name": "FeatureTest02",
 "accessMode": "rw",
 "required": false
 }
],
 "events": [
 {
 "outputData": [
 {
 "identifier": "test01",
 "dataType": {
 "specs": {
 "unit": "m",
 "min": "0",
 "max": "1"
 },
 "type": "int"
 },
 "name": "FeatureTest01"
 },
 {
 "identifier": "test02",
 "dataType": {
 "specs": {
 "unit": "mm",
 "min": "0",
 "max": "1"
 },
 "type": "int"
 },
 "name": "FeatureTest02"
 }
],

Issue: 20190115 103

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

 "identifier": "post",
 "method": "thing.event.property.post",
 "name": "post",
 "type": "info",
 "required": true,
 "desc": "Report properties"
 }
]
 },
 {
 "schema": "https://iotx-tsl.oss-ap-southeast-1.aliyuncs.com/
schema.json",
 "profile": {
 "productKey": "test01"
 },
 "services": [
 {
 "outputData": [],
 "identifier": "set",
 "inputData": [
 {
 "identifier": "identifier",
 "dataType": {
 "specs": {
 "length": "2048"
 },
 "type": "text"
 },
 "name": "7614"
 },
 {
 "identifier": "identifier_01",
 "dataType": {
 "specs": {
 "length": "2048"
 },
 "type": "text"
 },
 "name": "FeatureTest01"
 }
],
 "method": "thing.service.property.set",
 "name": "set",
 "required": true,
 "callType": "async",
 "desc": "Set properties",
 },
 {
 "outputData": [
 {
 "identifier": "identifier",
 "dataType": {
 "specs": {
 "length": "2048"
 },
 "type": "text"
 },
 "name": "7614"
 },
 {
 "identifier": "identifier_01",
 "dataType": {
 "specs": {
 "length": "2048"

104 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

 },
 "type": "text"
 },
 "name": "FeatureTest01"
 }
],
 "identifier": "get",
 "inputData": [
 "identifier",
 "identifier_01"
],
 "method": "thing.service.property.get",
 "name": "get",
 "required": true,
 "callType": "async",
 "desc": "Get properties",
 },
 {
 "outputData": [],
 "identifier": "AngleSelfAdaption",
 "inputData": [
 {
 "identifier": "test01",
 "dataType": {
 "specs": {
 "min": "1",
 "max": "10",
 "step": "1"
 },
 "type": "int"
 },
 "name": "Parameter1",
 }
],
 "method": "thing.service.AngleSelfAdaption",
 "name": "adaptive angle calibration",
 "required": false,
 "callType": "async"
 }
],
 "properties": [
 {
 "identifier": "identifier",
 "dataType": {
 "specs": {
 "length": "2048"
 },
 "type": "text"
 },
 "name": "7614",
 "accessMode": "rw",
 "required": true
 },
 {
 "identifier": "identifier_01",
 "dataType": {
 "specs": {
 "length": "2048"
 },
 "type": "text"
 },
 "name": "FeatureTest01",
 "accessMode": "rw",
 "required": false

Issue: 20190115 105

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

 }
],
 "events": [
 {
 "outputData": [
 {
 "identifier": "identifier",
 "dataType": {
 "specs": {
 "length": "2048"
 },
 "type": "text"
 },
 "name": "7614"
 },
 {
 "identifier": "identifier_01",
 "dataType": {
 "specs": {
 "length": "2048"
 },
 "type": "text"
 },
 "name": "FeatureTest01"
 }
],
 "identifier": "post",
 "method": "thing.event.property.post",
 "name": "post",
 "type": "info",
 "required": true,
 "desc": "Report properties."
 },
 {
 "outputData": [
 {
 "identifier": "test01",
 "dataType": {
 "specs": {
 "min": "1",
 "max": "20",
 "step": "1"
 },
 "type": "int"
 },
 "name": "ParameterTest1"
 }
],
 "identifier": "event1",
 "method": "thing.event.event1.post",
 "name": "event1",
 "type": "info",
 "required": false
 }
]
 }
]
}

Parameter description

106 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

Parameter Type Description

modelList Object The extended product information of all sub-
devices that are mounted to the gateway.

serverList Object The sub-device channels of the gateway.

deviceList Object The connection configurations of all sub-
devices that are mounted to the gateway.

tslList Object The TSL of all sub-devices that are mounted to
 the gateway.

modelList description

Currently, the communication protocols Modbus and OPC UA are supported, but the extended

information of the two protocols are different.

• Modbus

{
 "profile": {
 "productKey": "test02"
 },
 "properties": [
 {
 "originalDataType": {
 "specs": {
 "registerCount": 1,
 "reverseRegister": 0,
 "swap16": 0
 },
 "type": "bool"
 },
 "identifier": "test01",
 "registerAddress": "0x03",
 "scaling": 1,
 "operateType": "inputStatus",
 "pollingTime": 1000,
 "trigger": 1
 },
 {
 "originalDataType": {
 "specs": {
 "registerCount": 1,
 "reverseRegister": 0,
 "swap16": 0
 },
 "type": "bool"
 },
 "identifier": "test02",
 "registerAddress": "0x05",
 "scaling": 1,
 "operateType": "coilStatus",
 "pollingTime": 1000,
 "trigger": 2
 }
]

Issue: 20190115 107

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

}

Parameter description

Parameter Type Description

identifier String The identifier of a property, event, or service.

operateType String The operation type. Supported values include:

- coilStatus
- inputStatus
- holdingRegister
- inputRegister

registerAddress String The register address.

originalDataType Object The original data type.

type String Supported values include:
int16, uint16, int32, uint32, int64, uint64, float
, double, string, and customized data.

specs Object The description.

registerCount Integer The number of data in the register.

swap16 Integer Swaps the first 8 bits and the last 8 bits of the
16-bit data in the register. 0: false; 1: true.

reverseRegister Integer Swaps the bits of the original 32-bit data. 0:
false; 1: true.

scaling Integer The zoom factor.

pollingTime Integer The collection interval.

trigger Integer The data report method. 1: report at a specific
 time; 2: report when changes are detected.

• OPC UA

{
 "profile": {
 "productKey": "test01"
 },
 "services": [
 {
 "outputData": "",
 "identifier": "AngleSelfAdaption",
 "inputData": [
 {
 "identifier": "test01",
 "index": 0
 }
],
 "displayName": "test01"

108 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

 }
],
 "properties": [
 {
 "identifier": "identifier",
 "displayName": "test02"
 },
 {
 "identifier": "identifier_01",
 "displayName": "identifier_01"
 }
],
 "events": [
 {
 "outputData": [
 {
 "identifier": "test01",
 "index": 0
 }
],
 "identifier": "event1",
 "displayName": "abc"
 }
]
}

Parameter description

Parameter Type Description

services Object The service.

properties The object. The property.

The events. Object The event.

outputData Object The output parameter, such as event
reporting data and returned result of a service
 call.

identifier String The identifier.

inputData Object The input parameter.

index Integer The index information.

displayName String The name that is displayed.

serverList description

Two protocols (Modbus and OPC UA) are supported for channels.

• Modbus protocol

[
 {
 "baudRate": 1200,
 "protocol": "RTU",
 "byteSize": 8,
 "stopBits": 2,

Issue: 20190115 109

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

 "parity": 1,
 "name": "modbus01",
 "serialPort": "0",
 "serverId": "D73251B4277742"
 },
 {
 "protocol": "TCP",
 "port": 8000,
 "ip": "192.168.0.1",
 "name": "modbus02",
 "serverId": "586CB066D6A34"
 }
]

Parameter Type Description

protocol String The protocol type. It can be TCP or RTU.

port Integer The port number.

ip String The IP address.

name String The channel name.

serverId String The channel ID.

baudRate Integer The baud rate.

byteSize Integer The number of bytes.

stopBits Integer The stop bit.

parity Integer The parity bit. Supported values include:

- E: Even parity check.
- O: Odd parity check.
- N: No parity check.

serialPort String The serial port number.

• OPC UA protocol

{
 "password": "XIJTginONohPEUAyZxLB7Q==",
 "secPolicy": "Basic128Rsa15",
 "name": "server_01",
 "secMode": "Sign",
 "userName": "123",
 "serverId": "55A9D276A7ED470",
 "url": "tcp:00",
 "timeout": 10
}

Parameter description

110 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

Parameter Type Description

password String The password that has been encrypted by the
 AES encryption algorithm. For information
about password encryption for OPC UA, see
the information at the end of this table.

secPolicy String The encryption policy. Supported options
include None, Basic128Rsa15, and Basic256.

secMode String The encryption mode. Supported options
include None, Sign, and SignAndEncrypt.

name String The server name.

userName String The user name.

serverId String The server ID.

url String The server connection address.

timeout Integer The timeout value.

Password encryption method for OPC UA

Use the AES encryption algorithm and 128-bit (16-byte) grouping. The default mode is CBC

and the default padding is PKCS5Padding. Use deviceSecret of the device as the secret. The

encrypted result is encoded in Base64.

Code example:

private static String instance = "AES/CBC/PKCS5Padding";

 private static String algorithm = "AES";

 private static String charsetName = "utf-8";
 /**
 * Encryption algorithm
 *
 * @param data (Data to be encrypted)
 * @param deviceSecret (The deviceSecret of the device)
 * @return
 */
 public static String aesEncrypt(String data, String deviceSecret
) {
 try {
 Cipher cipher = Cipher.getInstance(instance);
 byte[] raw = deviceSecret.getBytes();
 SecretKeySpec key = new SecretKeySpec(raw, algorithm);
 IvParameterSpec ivParameter = new IvParameterSpec(
deviceSecret.substring(0, 16).getBytes());
 cipher.init(Cipher.ENCRYPT_MODE, key, ivParameter);
 byte[] encrypted = cipher.doFinal(data.getBytes(
charsetName));

 return new BASE64Encoder().encode(encrypted);

Issue: 20190115 111

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

 } catch (Exception e) {
 e.printStackTrace();
 }

 return null;
 }

 public static String aesDecrypt(String data, String deviceSecret
) {
 try {
 byte[] raw = deviceSecret.getBytes(charsetName);
 byte[] encrypted1 = new BASE64Decoder().decodeBuffer(
data);
 SecretKeySpec key = new SecretKeySpec(raw, algorithm);
 Cipher cipher = Cipher.getInstance(instance);
 IvParameterSpec ivParameter = new IvParameterSpec(
deviceSecret.substring(0, 16).getBytes());
 cipher.init(Cipher.DECRYPT_MODE, key, ivParameter);
 byte[] originalBytes = cipher.doFinal(encrypted1);
 String originalString = new String(originalBytes,
charsetName);
 return originalString;
 } catch (Exception ex) {
 ex.printStackTrace();
 }

 return null;
 }

 public static void main(String[] args) throws Exception {
 String text = "test123";
 String secret = "testTNmjyWHQzniA8wEkTNmjyWHQtest";
 String data = null;
 data = aesEncrypt(text, secret);
 System.out.println(data);
 System.out.println(aesDecrypt(data, secret));
 }

deviceList description

• Modbus protocol

{
 "deviceConfig": {
 "slaveId": 1,
 "serverId": "D73251B4277742D"
 },
 "productKey": "test02",
 "deviceName": "test01"
}

Parameter description

Parameter Type Description

deviceConfig Object The device information.

slaveId Integer The slave station ID.

serverId String The channel ID.

112 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

Parameter Type Description

productKey String The product ID.

deviceName String The name of the device.

• OPC UA protocol

{
 "deviceConfig": {
 "displayNamePath": "123",
 "serverId": "44895C63E3FF4013924CEF31519ABE7B"
 },
 "productKey": "test01",
 "deviceName": "test_02"
}

Parameter description

Parameter Type Description

deviceConfig Object The device connection configuration
information.

productKey String The product ID.

deviceName String The name of the device.

displayNamePath String The name that is displayed.

serverId String The associated channel ID.

9.7 Disable and delete devices
Gateways can disable and delete their sub-devices.

Disable devices

Downstream

• Topic: /sys/{productKey}/{deviceName}/thing/disable

• Reply topic: /sys/{productKey}/{deviceName}/thing/disable_reply

This topic disables a device connection. IoT Platform publishes messages to this topic asynchrono

usly, and the devices subscribe to this topic. Gateways can subscribe to this topic to disable the

corresponding sub-devices.

Request message

{
 "id": "123",
 "version": "1.0",
 "params": {},

Issue: 20190115 113

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

 "method": "thing.disable"

Response message

{
 "id": "123",
 "code": 200,
 "data": {}
}

Parameter description

Parameter Type Description

id String Message ID.

version String Protocol version. Currently, the
 value is 1.0.

params Object Request parameters. Leave
empty.

method String Request method.

code Integer Results information. For more
information, seeCommon
codes on devices

Enable devices

Downstream

• Topic: /sys/{productKey}/{deviceName}/thing/enable

• Reply topic: /sys/{productKey}/{deviceName}/thing/enable_reply

This topic enables a device connection. IoT Platform publishes messages to this topic asynchrono

usly, and the devices subscribe to this topic. Gateways can subscribe to this topic to enable the

corresponding sub-devices.

Request message

{
 "id": "123",
 "version": "1.0",
 "params": {},
 "method": "thing.enable"
}

Response message

{
 "id": "123",
 "code": 200,

114 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

 "data": {}
}

Parameter description

Parameter Type Description

id String Message ID.

version String Protocol version. Currently, the
 value is 1.0.

params Object Request parameters. Leave
empty.

method String Request method.

code Integer Result code. For more
information, see the common
codes.

Delete devices

Downstream

• Topic: /sys/{productKey}/{deviceName}/thing/delete

• Reply topic: /sys/{productKey}/{deviceName}/thing/delete_reply

This topic deletes a device connection. IoT Platform publishes messages to this topic asynchrono

usly, and the devices subscribe to this topic. Gateways can subscribe to this topic to delete the

corresponding sub-devices.

Request message

{
 "id": "123",
 "version": "1.0",
 "params": {},
 "method": "thing.delete"
}

Response message

{
 "id": "123",
 "code": 200,
 "data": {}
}

Parameter description

Issue: 20190115 115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

Parameter Type Description

id String Message ID.

version String Protocol version. Currently, the
 value is 1.0.

params Object Request parameters. Leave
empty.

method String Request method.

code String Result code. For more
information, see the common
codes.

9.8 Device tags
Some static extended device information, such as vendor model and device model, can be saved

as device tags.

Report tags

Upstream

• Topic: /sys/{productKey}/{deviceName}/thing/deviceinfo/update

• Reply topic: /sys/{productKey}/{deviceName}/thing/deviceinfo/update_reply

Request message

{
 "id": "123",
 "version": "1.0",
 "params": [
 {
 "attrKey": "Temperature",
 "attrValue": "36.8"
 }
],
 "method": "thing.deviceinfo.update"
}

Response message

{
 "id": "123",
 "code": 200,
 "data": {}
}

Parameter description

116 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

Parameter Type Description

id String Message ID. Reserve the
value of the parameter for
future use.

version String Protocol version. Currently, the
 value can only be 1.0.

params Object Request parameters.
This parameter can contain a
maximum of 200 items.

method String Request method.

attrKey String Tag name.

• Length: Up to 100 bytes.
• Valid characters: Lowercase

 letters a to z, uppercase
letters A to Z, digits 0 to 9,
and underscores (_).

• The tag name must start
 with an English letter or
underscore (_).

attrValue String Tag value.

code Integer Result code. A value of 200
 indicates the request is
successful.

Error codes

Error code Error message Description

460 request parameter error The request parameters are incorrect
.

6100 device not found The device does not exist.

Delete tags

Upstream

• Topic: /sys/{productKey}/{deviceName}/thing/deviceinfo/delete

• Reply topic: /sys/{productKey}/{deviceName}/thing/deviceinfo/delete_reply

Request message

{

Issue: 20190115 117

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

 "id": "123",
 "version": "1.0",
 "params": [
 {
 "attrKey": "Temperature"
 }
],
 "method": "thing.deviceinfo.delete"
}

Response message

{
 "id": "123",
 "code": 200,
 "data": {}
}

Parameter description

Parameter Type Description

id String Message ID. Reserve the
value of the parameter for
future use.

version String Protocol version. Currently, the
 value can only be 1.0.

params Object Request parameters.

method String Request method.

attrKey String Tag name.

• Length: Up to 100 bytes.
• Valid characters: Lowercase

 letters a to z, uppercase
letters A to Z, digits 0 to 9,
and underscores (_).

• The tag name must start
 with an English letter or
underscore (_).

attrValue String Tag value.

code Integer Result code. A value of 200
 indicates the request is
successful.

Error messages

118 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

Error code Error message Description

460 request parameter error The request parameters are incorrect
.

6100 device not found The device does not exist.

9.9 TSL model
A device can publish requests to this topic to obtain the Device TSL model from IoT Platform.

• Topic：/sys/{productKey}/{deviceName}/thing/dsltemplate/get

• Reply topic：/sys/{productKey}/{deviceName}/thing/dsltemplate/get_reply

The Allink data format of a request

{
 "id": "123",
 "version": "1.0",
 "params": {},
 "method": "thing.dsltemplate.get"
}

The Allink data format of a response

{
 "id": "123",
 "code": 200,
 "data": {
 "schema": "https://iot-tsl.oss-cn-shanghai.aliyuncs.com/schema.
json",
 "link": "/sys/1234556554/airCondition/thing/",
 "profile": {
 "productKey": "1234556554",
 "deviceName": "airCondition"
 },
 "properties": [
 {
 "identifier": "fan_array_property",
 "name": "Fan array property",
 "accessMode": "r",
 "required": true,
 "dataType": {
 "type": "array",
 "specs": {
 "size": "128",
 "item": {
 "type": "int"
 }
 }
 }
 }
],
 "events": [
 {
 "identifier": "alarm",
 "name": "alarm",

Issue: 20190115 119

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

 "desc": "Fan alert",
 "type": "alert",
 "required": true,
 "outputData": [
 {
 "identifier": "errorCode",
 "name": "Error code",
 "dataType": {
 "type": "text",
 "specs": {
 "length": "255"
 }
 }
 }
],
 "method": "thing.event.alarm.post"
 }
],
 "services": [
 {
 "identifier": "timeReset",
 "name": "timeReset",
 "desc": "Time calibration",
 "inputData": [
 {
 "identifier": "timeZone",
 "name": "Time zone",
 "dataType": {
 "type": "text",
 "specs": {
 "length": "512"
 }
 }
 }
],
 "outputData": [
 {
 "identifier": "curTime",
 "name": "Current time",
 "dataType": {
 "type": "date",
 "specs": {}
 }
 }
],
 "method": "thing.service.timeReset"
 },
 {
 "identifier": "set",
 "name": "set",
 "required": true,
 "desc": "Set properties",
 "method": "thing.service.property.set",
 "inputData": [
 {
 "identifier": "fan_int_property",
 "name": "Integer property of the fan",
 "accessMode": "rw",
 "required": true,
 "dataType": {
 "type": "int",
 "specs": {
 "min": "0",
 "max": "100",

120 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

 "unit": "g/ml",
 "unitName": "Millilitter"
 }
 }
 }
],
 "outputData": []
 },
 {
 "identifier": "get",
 "name": "get",
 "required": true,
 "desc": "Get properties",
 "method": "thing.service.property.get",
 "inputData": [
 "array_property",
 "fan_int_property",
 "batch_enum_attr_id",
 "fan_float_property",
 "fan_double_property",
 "fan_text_property",
 "Maid ",
 "batch_boolean_attr_id",
 "fan_struct_property"
],
 "outputData": [
 {
 "identifier": "fan_array_property",
 "name": "Fan array property",
 "accessMode": "r",
 "required": true,
 "dataType": {
 "type": "array",
 "specs": {
 "size": "128",
 "item": {
 "type": "int"
 }
 }
 }
 }
]
 }
]
 }
}

Parameter descriptions:

Parameter Type Description

id String Message ID. Reserve the
parameter value for future use.

version String Protocol version. Currently, the
 value is 1.0.

params Object Leave this parameter empty.

method String Request method.

Issue: 20190115 121

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

Parameter Type Description

productKey String ProductKey. In the example,
the ProductKey is 1234556554
.

deviceName String Device name. In the example
, the device name is airConditi
on.

data Object TSL model of the device. For
more information, seeWhat is
Thing Specification Language
(TSL)?

Error codes

Error code Error message Description

460 request parameter error The request parameters are incorrect
.

6321 tsl: device not exist in product The device does not exist.

9.10 Firmware update
For information about the firmware update, see Develop OTA features and Firmware update.

Report the firmware version

Upstream

• Topic: /ota/device/inform/{productKey}/{deviceName}

The device publishes a message to this topic to report the current firmware version to IoT

Platform.

Request message

{
 "id": 1,
 "params": {
 "version": "1.0.1"
 }
}

Parameter description

122 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

Parameter Type Description

id String Message ID.

version String Version information of the
firmware.

Push firmware information

Downstream

• Topic: /ota/device/upgrade/{productKey}/{deviceName}

IoT Platform publishes messages to this topic to push firmware information. The devices

subscribe to this topic to obtain the firmware information.

Request message

{
 "code": "1000",
 "data": {
 "size": 432945,
 "version": "2.0.0",
 "url": "https://iotx-ota-pre.oss-cn-shanghai.aliyuncs.com/nopoll_0
.4.4.tar.gz?Expires=1502955804&OSSAccessKeyId=XXXXXXXXXXXXXXXXXXXX
&Signature=XfgJu7P6DWWejstKJgXJEH0qAKU%3D&security-token=CAISuQJ1q6
Ft5B2yfSjIpK6MGsyN1Jx5jo6mVnfBglIPTvlvt5D50Tz2IHtIf3NpAusdsv03nWxT7v4f
lqFyTINVAEvYZJOPKGrGR0DzDbDasumZsJbo4f%2FMQBqEaXPS2MvVfJ%2BzLrf0ceu
sbFbpjzJ6xaCAGxypQ12iN%2B%2Fr6%2F5gdc9FcQSkL0B8ZrFsKxBltdUROFbIKP%
2BpKWSKuGfLC1dysQcO1wEP4K%2BkkMqH8Uic3h%2Boy%2BgJt8H2PpHhd9NhXuV2WMzn2
%2FdtJOiTknxR7ARasaBqhelc4zqA%2FPPlWgAKvkXba7aIoo01fV4jN5JXQfAU8KLO8tR
jofHWmojNzBJAAPpYSSy3Rvr7m5efQrrybY1lLO6iZy%2BVio2VSZDxshI5Z3McK
ARWct06MWV9ABA2TTXXOi40BOxuq%2B3JGoABXC54TOlo7%2F1wTLTsCUqzzeIiXVOK
8CfNOkfTucMGHkeYeCdFkm%2FkADhXAnrnGf5a4FbmKMQph2cKsr8y8UfWLC6Iz
vJsClXTnbJBMeuWIqo5zIynS1pm7gf%2F9N3hVc6%2BEeIk0xfl2tycsUpbL2
FoaGk6BAF8hWSWYUXsv59d5Uk%3D",
 "md5": "93230c3bde425a9d7984a594ac55ea1e",
 "sign": "93230c3bde425a9d7984a594ac55ea1e",
 "signMethod": "Md5"
 },
 "id": 1507707025,
 "message": "success"
}

Parameter description

Parameter Type Description

id String Message ID.

message String Result information.

version String Version information of the
firmware.

size Long Firmware size in bytes.

Issue: 20190115 123

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

Parameter Type Description

url String OSS address of the firmware.

sign String Firmware signature.

signMethod String Signing method. Currently, the
 supported methods are MD5
and sha256.

md5 String This parameter is reserved.
This parameter is used to be
 compatible with old device
information. When the signing
 method is MD5, IoT Platform
will assign values to both the
sign and md5 parameters.

Report update progress

Upstream

• Topic: /ota/device/progress/{productKey}/{deviceName}

A device subscribes to this topic to report the firmware update progress.

Request message

{
 "id": 1,
 "params": {
 "step": "-1",
 "desc": "Firmware update has failed. No firmware information is
available."
 }
}

Parameter description

Parameter Type Description

id String Message ID.

124 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

Parameter Type Description

step String Firmware update progress information.
Value range:

• A value from 1 to 100 indicates the progress
 percentage.

• A value of -1 indicates the firmware update
has failed.

• A value of -2 indicates that the firmware
download has failed.

• A value of -3 indicates that firmware
verification has failed.

• A value of -4 indicates that the firmware
installation has failed.

desc String Description of the current step. If an exception
 occurs, this parameter displays an error
message.

Request firmware information from IoT Platform

• Topic: /ota/device/request/{productKey}/{deviceName}

Request message

{
 "id": 1,
 "params": {
 "version": "1.0.1"
 }
}

Parameter description

Parameter Type Description

id String Message ID.

version String Version information of the
firmware.

Issue: 20190115 125

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

9.11 Remote configuration
This article introduces Topics and Alink JSON format requests and responses for remote

conficuration. For how to use remote configuration, see Remote configuration in User Guide.

Device requests configuration information from IoT Platform

Upstream

• Topic: /sys/{productKey}/{deviceName}/thing/config/get

• Reply topic: /sys/{productKey}/{deviceName}/thing/config/get_reply

Request message

{
 "id": 123,
 "version": "1.0",
 "params": {
 "configScope": "product",
 "getType": "file"
 },
 "method": "thing.config.get"
}

Response message

{
 "id": "123",
 "version": "1.0",
 "code": 200,
 "data": {
 "configId": "123dagdah",
 "configSize": 1234565,
 "sign": "123214adfadgadg",
 "signMethod": "Sha256",
 "url": "https://iotx-config.oss-cn-shanghai.aliyuncs.com/nopoll_0
.4.4.tar.gz?Expires=1502955804&OSSAccessKeyId=XXXXXXXXXXXXXXXXXXXX
&Signature=XfgJu7P6DWWejstKJgXJEH0qAKU%3D&security-token=CAISuQJ1q6
Ft5B2yfSjIpK6MGsyN1Jx5jo6mVnfBglIPTvlvt5D50Tz2IHtIf3NpAusdsv03nWxT7v4f
lqFyTINVAEvYZJOPKGrGR0DzDbDasumZsJbo4f%2FMQBqEaXPS2MvVfJ%2BzLrf0ceu
sbFbpjzJ6xaCAGxypQ12iN%2B%2Fr6%2F5gdc9FcQSkL0B8ZrFsKxBltdUROFbIKP%
2BpKWSKuGfLC1dysQcO1wEP4K%2BkkMqH8Uic3h%2Boy%2BgJt8H2PpHhd9NhXuV2WMzn2
%2FdtJOiTknxR7ARasaBqhelc4zqA%2FPPlWgAKvkXba7aIoo01fV4jN5JXQfAU8KLO8tR
jofHWmojNzBJAAPpYSSy3Rvr7m5efQrrybY1lLO6iZy%2BVio2VSZDxshI5Z3McK
ARWct06MWV9ABA2TTXXOi40BOxuq%2B3JGoABXC54TOlo7%2F1wTLTsCUqzzeIiXVOK
8CfNOkfTucMGHkeYeCdFkm%2FkADhXAnrnGf5a4FbmKMQph2cKsr8y8UfWLC6Iz
vJsClXTnbJBMeuWIqo5zIynS1pm7gf%2F9N3hVc6%2BEeIk0xfl2tycsUpbL2
FoaGk6BAF8hWSWYUXsv59d5Uk%3D",
 "getType": "file"
 }
}

Parameter description

126 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

Parameter Type Description

id String Message ID.

version String Protocol version. Currently, the
 value is 1.0.

configScope String Configuration scope. Currently
, IoT Platform supports only
product dimension configurat
ion. Value: product.

getType String Desired file type of the
configuration. Currently, the
supported type is file. Set the
value to file.

configId String ID of the configuration.

configSize Long Size of the configuration file, in
 bytes.

sign String Signature value.

signMethod String Signing method. The
supported signing method is
Sha256.

url String The OSS address where the
configuration file is stored.

code Integer Result code. A value of 200
 indicates that the operation
 is successful, and other
status codes indicate that the
operation has failed.

Error codes

Error code Error message Description

6713 thing config function is not available Remote configuration feature of the
 product has been disabled. On the
 Remote Configuration page of the
IoT Platform console, enable remote
configuration for the product .

6710 no data Not found any configured data.

Issue: 20190115 127

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

Push configurations in the IoT Platform console to devices.

Downstream

• Topic: /sys/{productKey}/{deviceName}/thing/config/push

• Reply topic: /sys/{productKey}/{deviceName}/thing/config/push_reply

Devices subscribe to this configuration push topic for configurations that is pushed by IoT

Platform. After you have edited and submitted a configuration file in the IoT Platform console,

IoT Platform pushes the configuration to the devices in an asynchronous method. IoT Platform

subscribes to a data exchange topic for the result of asynchronous calls. The data exchange topic

is /{productKey}/{deviceName}/thing/downlink/reply/message.

You can use Rules Engine to forward the results returned by the devices to another Alibaba Cloud

product. The following figure shows an example of rule action configuration.

Request message:

{
 "id": "123",
 "version": "1.0",
 "params": {
 "configId": "123dagdah",
 "configSize": 1234565,
 "sign": "123214adfadgadg",
 "signMethod": "Sha256",
 "url": "https://iotx-config.oss-cn-shanghai.aliyuncs.com/nopoll_0
.4.4.tar.gz?Expires=1502955804&OSSAccessKeyId=XXXXXXXXXXXXXXXXXXXX
&Signature=XfgJu7P6DWWejstKJgXJEH0qAKU%3D&security-token=CAISuQJ1q6

128 Issue: 20190115

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

Ft5B2yfSjIpK6MGsyN1Jx5jo6mVnfBglIPTvlvt5D50Tz2IHtIf3NpAusdsv03nWxT7v4f
lqFyTINVAEvYZJOPKGrGR0DzDbDasumZsJbo4f%2FMQBqEaXPS2MvVfJ%2BzLrf0ceu
sbFbpjzJ6xaCAGxypQ12iN%2B%2Fr6%2F5gdc9FcQSkL0B8ZrFsKxBltdUROFbIKP%
2BpKWSKuGfLC1dysQcO1wEP4K%2BkkMqH8Uic3h%2Boy%2BgJt8H2PpHhd9NhXuV2WMzn2
%2FdtJOiTknxR7ARasaBqhelc4zqA%2FPPlWgAKvkXba7aIoo01fV4jN5JXQfAU8KLO8tR
jofHWmojNzBJAAPpYSSy3Rvr7m5efQrrybY1lLO6iZy%2BVio2VSZDxshI5Z3McK
ARWct06MWV9ABA2TTXXOi40BOxuq%2B3JGoABXC54TOlo7%2F1wTLTsCUqzzeIiXVOK
8CfNOkfTucMGHkeYeCdFkm%2FkADhXAnrnGf5a4FbmKMQph2cKsr8y8UfWLC6Iz
vJsClXTnbJBMeuWIqo5zIynS1pm7gf%2F9N3hVc6%2BEeIk0xfl2tycsUpbL2
FoaGk6BAF8hWSWYUXsv59d5Uk%3D",
 "getType": "file"
 },
 "method": "thing.config.push"
}

Response message

{
 "id": "123",
 "code": 200,
 "data": {}
}

Parameter description

Parameter Type Description

id String Message ID.

version String Protocol version. Currently, the
 value is 1.0.

configScope String Configuration scope. Currently
, IoT Platform supports only
product dimension configurat
ion. Value: product.

getType String Desired file type of the
configuration. Currently, the
supported type is file. Set the
value to file.

configId String ID of the configuration.

configSize Long Size of the configuration file, in
 bytes.

sign String Signature value.

signMethod String Signing method. The
supported signing method is
Sha256.

url String The OSS address where the
configuration file is stored.

Issue: 20190115 129

IoT Platform Developer Guide (Devices) / 9 Develop devices based on Alink
Protocol

Parameter Type Description

code Integer Result code. For more
information, see Common
codes on devices.

9.12 Common codes on devices
Common codes on devices indicate the results that are returned to IoT Platform in response to

requests from IoT Platform.

Result code Message Description

200 success The request is successful.

400 request error Internal service error.

460 request parameter error The request parameters are invalid.
The device has failed input parameter
 verification.

429 too many requests The system is busy. This code can be
 used when the device is too busy to
process the request.

100000-110000 Device-specific error messages Devices use numbers from 100000
to 110000 to indicate device-specific
error messages.

130 Issue: 20190115

	Contents
	Legal disclaimer
	Generic conventions
	1 Download device SDKs
	2 Authenticate devices
	2.1 Authenticate devices
	2.2 Unique-certificate-per-device authentication
	2.3 Unique-certificate-per-product authentication

	3 Protocols for connecting devices
	3.1 Establish MQTT connections over TCP
	3.2 Establish MQTT over WebSocket connections
	3.3 Establish communication over the CoAP protocol
	3.4 Establish communication over the HTTPS protocol

	4 Configure a TSL-based device
	5 OTA Development
	6 Error codes for sub-device development
	7 Device shadows
	7.1 Device shadow JSON format
	7.2 Device shadow data stream
	7.3 Use device shadows

	8 Java SDK
	9 Develop devices based on Alink Protocol
	9.1 Alink protocol
	9.2 Device identity registration
	9.3 Add a topological relationship
	9.4 Connect devices to IoT Platform
	9.5 Device properties, events, and services
	9.6 Send configuration data to gateway devices
	9.7 Disable and delete devices
	9.8 Device tags
	9.9 TSL model
	9.10 Firmware update
	9.11 Remote configuration
	9.12 Common codes on devices

