
Alibaba Cloud
IoT Platform

Developer Guide (Devices)
Issue: 20190506

IoT Platform Developer Guide (Devices) / Legal disclaimer

Legal disclaimer
Alibaba Cloud reminds you to carefully read and fully understand the terms and
conditions of this legal disclaimer before you read or use this document. If you have
read or used this document, it shall be deemed as your total acceptance of this legal
disclaimer.
1. You shall download and obtain this document from the Alibaba Cloud website

 or other Alibaba Cloud-authorized channels, and use this document for your
own legal business activities only. The content of this document is considered
 confidential information of Alibaba Cloud. You shall strictly abide by the
confidentiality obligations. No part of this document shall be disclosed or provided
 to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted,
or disseminated by any organization, company, or individual in any form or by any
means without the prior written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades
, adjustments, or other reasons. Alibaba Cloud reserves the right to modify
the content of this document without notice and the updated versions of this
 document will be occasionally released through Alibaba Cloud-authorized
channels. You shall pay attention to the version changes of this document as they
occur and download and obtain the most up-to-date version of this document from
Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud
products and services. Alibaba Cloud provides the document in the context that
 Alibaba Cloud products and services are provided on an "as is", "with all faults
" and "as available" basis. Alibaba Cloud makes every effort to provide relevant
 operational guidance based on existing technologies. However, Alibaba Cloud
hereby makes a clear statement that it in no way guarantees the accuracy, integrity
, applicability, and reliability of the content of this document, either explicitly
or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial
 losses incurred by any organizations, companies, or individuals arising from
their download, use, or trust in this document. Alibaba Cloud shall not, under any
 circumstances, bear responsibility for any indirect, consequential, exemplary,
incidental, special, or punitive damages, including lost profits arising from the use

Issue: 20190506 I

IoT Platform Developer Guide (Devices) / Legal disclaimer

 or trust in this document, even if Alibaba Cloud has been notified of the possibility
 of such a loss.

5. By law, all the content of the Alibaba Cloud website, including but not limited to
works, products, images, archives, information, materials, website architecture,
website graphic layout, and webpage design, are intellectual property of Alibaba
 Cloud and/or its affiliates. This intellectual property includes, but is not limited
 to, trademark rights, patent rights, copyrights, and trade secrets. No part of the
 Alibaba Cloud website, product programs, or content shall be used, modified
, reproduced, publicly transmitted, changed, disseminated, distributed, or
published without the prior written consent of Alibaba Cloud and/or its affiliates
. The names owned by Alibaba Cloud shall not be used, published, or reproduced
for marketing, advertising, promotion, or other purposes without the prior written
 consent of Alibaba Cloud. The names owned by Alibaba Cloud include, but are
not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other brands of Alibaba
Cloud and/or its affiliates, which appear separately or in combination, as well as
 the auxiliary signs and patterns of the preceding brands, or anything similar to
the company names, trade names, trademarks, product or service names, domain
 names, patterns, logos, marks, signs, or special descriptions that third parties
identify as Alibaba Cloud and/or its affiliates).

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

II Issue: 20190506

IoT Platform Developer Guide (Devices) / Legal disclaimer

Issue: 20190506 III

IoT Platform Developer Guide (Devices) / Generic conventions

Generic conventions
Table -1: Style conventions
Style Description Example

This warning information
indicates a situation that will
cause major system changes,
faults, physical injuries, and other
 adverse results.

Danger:
Resetting will result in the loss of
user configuration data.

This warning information
indicates a situation that may
cause major system changes,
faults, physical injuries, and other
 adverse results.

Warning:
Restarting will cause business
interruption. About 10 minutes are
required to restore business.

This indicates warning informatio
n, supplementary instructions,
and other content that the user
must understand.

Notice:
Take the necessary precautions
to save exported data containing
sensitive information.

This indicates supplemental
instructions, best practices, tips,
and other content that is good to
know for the user.

Note:
You can use Ctrl + A to select all
files.

> Multi-level menu cascade. Settings > Network > Set network
type

Bold It is used for buttons, menus
, page names, and other UI
elements.

Click OK.

Courier
 font

It is used for commands. Run the cd / d C :/ windows
 command to enter the Windows

system folder.
Italics It is used for parameters and

variables.
bae log list --
instanceid Instance_ID

[] or [a|b] It indicates that it is a optional
value, and only one item can be
selected.

ipconfig [-all|-t]

Issue: 20190506 I

IoT Platform Developer Guide (Devices) / Generic conventions

Style Description Example
{} or {a|b} It indicates that it is a required

value, and only one item can be
selected.

swich {stand | slave}

II Issue: 20190506

IoT Platform Developer Guide (Devices) / Generic conventions

Issue: 20190506 III

IoT Platform Developer Guide (Devices) / Contents

Contents
Legal disclaimer.. I
Generic conventions.. I
1 Download device SDKs.. 1
2 Authenticate devices ..2

2.1 Authenticate devices ...3
2.2 Unique-certificate-per-device authentication.. 5
2.3 Unique-certificate-per-product authentication..63 Protocols for connecting devices... 10
3.1 MQTT standard.. 10
3.2 Establish MQTT connections over TCP..11
3.3 Establish MQTT connections over WebSocket... 16
3.4 CoAP standard... 19
3.5 Establish connections over CoAP..20
3.6 HTTP standard...27
3.7 Establish connections over HTTP... 274 OTA updates... 34

5 Error codes for sub-device development..............................39
6 Develop devices based on Alink Protocol............................. 42

6.1 Communications over Alink protocol... 42
6.2 Device identity registration.. 52
6.3 Add a topological relationship..55
6.4 Connect and disconnect sub-devices.. 63
6.5 Device properties, events, and services...68
6.6 Desired device property values...83
6.7 Send configuration data to gateway devices.. 87
6.8 Disable and delete devices..107
6.9 Device tags...110
6.10 TSL model.. 113
6.11 Firmware update.. 117
6.12 Remote configuration... 121
6.13 Common codes on devices..126

IV Issue: 20190506

IoT Platform Developer Guide (Devices) / 1 Download device SDKs

1 Download device SDKs
IoT Platform provides multiple device SDKs to help you develop your devices
and connect them to IoT Platform. If you want to develop your own SDK, see
Communications over Alink protocol for Alink data information.

Prerequisites
Before you develop a device SDK, you must complete all console configurations and
obtain all necessary information (such as the device certificate information and topic
information). For details, see the User Guide.

Use SDKs provided by IoT Platform
You can use an SDK provided by IoT Platform and configure the SDK according to
your business requirements and the protocol you want to use. For more information,
see Documents of Link Kit SDKs.

Develop an SDK based on the Alink protocol
If you have specific development requirements that cannot be met by the provided
SDKs, you can develop your own SDK. For Alink information, see Alink protocol.

Issue: 20190506 1

https://www.alibabacloud.com/help/product/93051.htm

IoT Platform Developer Guide (Devices) / 2 Authenticate devices

2 Authenticate devices
To secure devices, IoT Platform provides certificates for devices, including product
certificates (ProductKey and ProductSecret) and device certificates (DeviceName
and DeviceSecret). A device certificate is a unique identifier used to authenticate a
device. Before a device connects to IoT Hub through a protocol, the device reports
the product certificate or the device certificate, depending on the authentication
method. The device can connect to IoT Platform only when it passes authentication.
IoT Platform supports various authentication methods to meet the requirements of
different environments.
IoT Platform supports the following authentication methods:
• Unique-certificate-per-device authentication: Each device has been installed with

its own unique device certificate.
• Unique-certificate-per-product authentication: All devices under a product have

been installed with the same product certificate.
• Sub-device authentication: This method can be applied to sub-devices that connect

 to IoT Platform through the gateway.
These methods have their own advantages in terms of accessibility and security. You
 can choose one according to the security requirements of the device and the actual
 production conditions. The following table shows the comparison among these
methods.
Table 2-1: Comparison of authentication methods
Items Unique-certificat

e-per-device
authentication

Unique-certificat
e-per-product
authentication

Sub-device
authentication

Information
written into the
device

ProductKey,
DeviceName, and
DeviceSecret

ProductKey and
ProductSecret

ProductKey

Whether to enable
 authentication in
IoT Platform

No. Enabled by
default.

Yes. You must
enable dynamic
register.

Yes. You must
enable dynamic
register.

2 Issue: 20190506

IoT Platform Developer Guide (Devices) / 2 Authenticate devices

Items Unique-certificat
e-per-device
authentication

Unique-certificat
e-per-product
authentication

Sub-device
authentication

DeviceName pre-
registration

Yes. You need to
 make sure that
 the specified
DeviceName is
unique under a
product.

Yes. You need to
 make sure that
 the specified
DeviceName is
unique under a
product.

Yes.

Certificate installati
on requirement

Install a unique
device certificate
 on every device.
The safety of every
 device certificate
must be guaranteed
.

Install the same
product certificat
e on all devices
under a product.
Make sure that the
product certificate
is safely kept.

Install the same
product certificate
into all sub-devices
. The security of the
 gateway must be
guaranteed.

Security High Medium Medium
Upper limit for
registrations

Yes. A product can
have a maximum of
500,000 devices.

Yes. A product can
have a maximum of
500,000 devices.

Yes. A maximum of
200 sub-devices can
 be registered with
one gateway.

Other external
reliance

None None Security of the
gateway.

2.1 Authenticate devices
To secure devices, IoT Platform provides certificates for devices, including product
certificates (ProductKey and ProductSecret) and device certificates (DeviceName
and DeviceSecret). A device certificate is a unique identifier used to authenticate a
device. Before a device connects to IoT Hub through a protocol, the device reports
the product certificate or the device certificate, depending on the authentication
method. The device can connect to IoT Platform only when it passes authentication.
IoT Platform supports various authentication methods to meet the requirements of
different environments.
IoT Platform supports the following authentication methods:
• Unique-certificate-per-device authentication: Each device has been installed with

its own unique device certificate.

Issue: 20190506 3

IoT Platform Developer Guide (Devices) / 2 Authenticate devices

• Unique-certificate-per-product authentication: All devices under a product have
been installed with the same product certificate.

• Sub-device authentication: This method can be applied to sub-devices that connect
 to IoT Platform through the gateway.

These methods have their own advantages in terms of accessibility and security. You
 can choose one according to the security requirements of the device and the actual
 production conditions. The following table shows the comparison among these
methods.
Table 2-2: Comparison of authentication methods
Item Unique-certificat

e-per-device
authentication

Unique-certificat
e-per-product
authentication

Sub-device
authentication

Information
written into the
device

ProductKey,
DeviceName, and
DeviceSecret

ProductKey and
ProductSecret

ProductKey

Whether to enable
 authentication in
IoT Platform

No. Enabled by
default.

Yes. You must
enable dynamic
register.

Yes. You must
enable dynamic
register.

DeviceName pre-
registration

Yes. You need to
 make sure that
 the specified
DeviceName is
unique under a
product.

Yes. You need to
 make sure that
 the specified
DeviceName is
unique under a
product.

Yes.

Certificate installati
on requirement

Install a unique
device certificate
 on every device.
The safety of every
 device certificate
must be guaranteed
.

Install the same
product certificat
e on all devices
under a product.
Make sure that the
product certificate
is safely kept.

Install the same
product certificate
into all sub-devices
. The security of the
 gateway must be
guaranteed.

Security High Medium Medium
Upper limit for
registrations

Yes. A product can
have a maximum of
500,000 devices.

Yes. A product can
have a maximum of
500,000 devices.

Yes. A maximum of
 1500 sub-devices
can be registered
with one gateway.

4 Issue: 20190506

IoT Platform Developer Guide (Devices) / 2 Authenticate devices

Item Unique-certificat
e-per-device
authentication

Unique-certificat
e-per-product
authentication

Sub-device
authentication

Other external
reliance

None None Security of the
gateway.

2.2 Unique-certificate-per-device authentication
Using unique-certificate-per-device authentication method requires that each device
has be installed with a unique device certificate in advance. When you connect a
device to IoT Platform, IoT Platform authenticates the ProductKey, DeviceName, and
DeviceSecret of the device. After the authentication is passed, IoT Platform activates
the device to enable data communication between the device and IoT Platform.

Context
The unique-certificate-per-device authentication method is a secure authentication
method. We recommend that you use this authentication method.
Workflow of unique-certificate-per-device authentication:

Procedure
1. In the IoT Platform console, create a product. For more information, see Create a

product in the User Guide.

Issue: 20190506 5

http://iot.console.aliyun.com/

IoT Platform Developer Guide (Devices) / 2 Authenticate devices

2. Register a device to the product you have created and obtain the device certificate.

3. Install the certificate to the device.
Follow these steps:
a) Download a device-side SDK.
b) Configure the device-side SDK. In the device-side SDK, configure the device

certificate (ProductKey, DeviceName, and DeviceSecret).
c) Develop the device-side SDK based on your business needs, such as OTA

development, sub-device connection, TSL-based device feature development,
and device shadows development.

d) During the production process, install the developed device SDK to the device.
4. Power on and connect the device to IoT Platform. The device will initiate an

authentication request to IoT Platform using the unique-certificate-per-product
method.

5. IoT Platform authenticates the device certificate. After the authentication is
passed and the connection with IoT Platform has been established, the device can
communicate with IoT Platform by publishing messages to topics and subscribing
to topic messages.

2.3 Unique-certificate-per-product authentication
Using unique-certificate-per-product authentication method requires that devices
of a product have been installed with a same firmware in which a product certificate
(ProductKey and ProductSecret) has been installed. When a device initiates
an activation request, IoT Platform authenticates the product certificate of the

6 Issue: 20190506

IoT Platform Developer Guide (Devices) / 2 Authenticate devices

device. After the authentication is passed, IoT Platform assigns the corresponding
DeviceSecret to the device.

Context

Note:
• This authentication method has risks of product certificate leakage because all

devices of a product are installed with the same firmware. On the Product Details
page, you can disable Dynamic Registrati on to reject authentication
requests from new devices.

• The unique-certificate-per-product method is used to obtain the DeviceSecret of
devices from IoT Platform. The DeviceSecret is only issued once. The device stores
 the DeviceSecret for future use.

Workflow of unique-certificate-per-product authentication:

Procedure
1. In the IoT Platform console, create a product. For more information, see Create a

product in the User Guide.
2. On the Product Details page, enable Dynamic Registrati on . IoT Platform

sends an SMS verification code to confirm your identity.

Note:

Issue: 20190506 7

http://iot.console.aliyun.com/

IoT Platform Developer Guide (Devices) / 2 Authenticate devices

If Dynamic Registration is not enabled when devices initiate activation requests,
IoT Platform rejects the activation requests. Activated devices are not affected.

3. Register a device. The status of a newly registered device is Inactive .
IoT Platform authenticates the DeviceName when a device initiates an activation
 request. We recommend that you use an identifier that can be obtained directly
 from the device, such as the MAC address, IMEI or serial number, as the
DeviceName.

4. Install the product certificate to the device.
Follow these steps:
a) Download a device-side SDK.
b) Configure the device-side SDK to use the unique-certificate-per-product

authentication method. In the device-side SDK, configure the product certificate
(ProductKey and ProductSecret).

c) Develop the device-side SDK based on your business needs, such as OTA
development, sub-device connection, TSL-based device feature development,
and device shadows development.

d) During the production process, install the developed device SDK to the device.
5. Power on the device and connect the device to the network. The device sends an

authentication request to IoT Platform to perform unique-certificate-per-product
authentication.

6. After the product certificate has been authenticated by IoT Platform, IoT Platform
dynamically assigns the corresponding DeviceSecret to the device. Then,
the device has obtained its device certificate (ProductKey, DeviceName, and
DeviceSecret) and can connect to IoT Platform. After the connection with IoT

8 Issue: 20190506

IoT Platform Developer Guide (Devices) / 2 Authenticate devices

Platform has been successfully established, the device can communicate with IoT
Platform by publishing messages to topics and subscribing to topic messages.

Note:
IoT Platform dynamically assigns DeviceSecret to devices only for the first
activation of devices. If you want to reinitialize a device, go to IoT Platform
console to delete the device and repeat the procedures to register and activate a
device.

Issue: 20190506 9

IoT Platform Developer Guide (Devices) / 3 Protocols for connectingdevices

3 Protocols for connecting devices
3.1 MQTT standard
Supported versions

The Alibaba Cloud IoT Platform currently supports MQTT-based connections. Both
MQTT versions 3.1 and 3.1.1 are supported. For more information about these
protocols, see MQTT 3.1.1 and MQTT 3.1.

Comparisons between IoT Platform based MQTT and standard MQTT
• IoT Platform supports MQTT packets including PUB, SUB, PING, PONG, CONNECT,

DISCONNECT, and UNSUB.
• Supports cleanSession.
• Does not support will and retain msg.
• Does not support QoS 2.
• Supports the RRPC sychronization mode based on native MQTT topics. The server

can call the device and obtain a device response result at the same time.
Security levels

Supports secure connections over protocols such as TLS version 1, TLS version 1.1,
and TLS version 1.2.
• TCP channel plus encrypted chip (ID² hardware integration): High security.
• TCP channel plus symmetric encryption (uses the device private key for symmetric

 encryption): Medium security.
• TCP (the data is not encrypted): Low security.

Topic standards
After you have created a product, all devices under the product have access to the
following topic categories by default:
• /${productKey}/${deviceName}/update pub
• /${productKey}/${deviceName}/update/error pub
• /${productKey}/${deviceName}/get sub
• /sys/${productKey}/${deviceName}/thing/# pub&sub

10 Issue: 20190506

http://mqtt.org/
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html

IoT Platform Developer Guide (Devices) / 3 Protocols for connectingdevices
• /sys/${productKey}/${deviceName}/rrpc/# pub&sub
• /broadcast/${productKey}/# pub&sub
Each topic rule is a topic category. Topic categories are isolated based on devices.
Before a device sends a message, replace deviceName with the deviceName of your
own device. This prevents the topic from being sent to another device with the same
deviceName. The topics are as follows:
• pub: The permission to submit data to topics.
• sub: The permission to subscribe to topics.
• Topic categories with the following format: /${productKey}/${deviceName}/xxx:

Can be expanded or customized in the IoT Platform console
• Topic categories that begin with "/sys": The application protocol communication

 standards established by the system. User customization is disabled. The topic
should comply with the Alibaba Cloud Alink protocol.

• Topic categories with the following format: /sys/${productKey}/${deviceName}/
thing/xxx: The topic category is used by gateway and sub-devices. It is used in
gateway scenarios.

• Topic categories that begin with "/broadcast": Broadcast topics
• /sys/${productKey}/${deviceName}/rrpc/request/${messageId}: Used to synchroniz

e requests. The server dynamically generates a topic for the message ID. The
device can subscribe to topic categories with wildcard characters.

• /sys/${productKey}/${deviceName}/rrpc/request/+: After a message is received
, a pub message is sent to /sys/${productKey}/${deviceName}/rrpc/response/${
messageId}. The server sends a request and receives a response at the same time.

3.2 Establish MQTT connections over TCP
This topic describes how to establish MQTT connections over TCP by using two
methods: direct connection and connection after HTTPS verification.

Note:
When you configure MQTT CONNECT packets:
• Do not use the same device certificate (ProductKey, DeviceName, and DeviceSecr

et) for multiple physical devices for connection authentication. This is because
when a new device initiates authentication to IoT Platform, a device that is already

Issue: 20190506 11

IoT Platform Developer Guide (Devices) / 3 Protocols for connectingdevices
 connected to IoT Platform using the same device certificate will be brought
offline. Later, the device which was brought offline will try to connect again,
causing the newly connected device to be brought offline instead.

• In MQTT connection mode, open-source SDKs automatically reconnect to IoT
Platform after they are brought offline. You can check the actions of devices by
viewing the device logs.

Direct MQTT client connection
1. We recommend that you use the TLS protocol for encryption, because it provides

better security. Click here to download the TLS root certificate.
2. Connect devices to the server using the MQTT client. For connection methods, see

Open-source MQTT client references. For more information about the MQTT protocol,
see http://mqtt.org.

Note:
Alibaba Cloud does not provide technical support for third-party code.

3. Establish an MQTT connection.
Connection
domain name

${ YourProduc tKey }. iot - as - mqtt . ${
YourRegion Id }. aliyuncs . com : 1883

Replace ${YourProductKey} with your ProductKey.
Replace ${YourRegionId} with the region ID of your device.
For information about regions and zones, see Regions and
zones.

12 Issue: 20190506

http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/cert_pub/root.crt
https://github.com/mqtt/mqtt.github.io/wiki/libraries
https://github.com/mqtt/mqtt.github.io/wiki/libraries
http://mqtt.org/
https://www.alibabacloud.com/help/doc-detail/40654.htm
https://www.alibabacloud.com/help/doc-detail/40654.htm

IoT Platform Developer Guide (Devices) / 3 Protocols for connectingdevices
Variable header:
Keep Alive

The Keep Alive parameter must be included in the CONNECT
 packet. The allowed range of Keep Alive value is 30-1200
seconds. If the value of Keep Alive is not in this range, IoT
 Platform will reject the connection. We recommend that
 you set a value larger than 300 seconds. If the Internet
connection is not stable, set a larger value.

Parameters in an
MQTT CONNECT
packet

mqttClient Id : clientId +"| securemode = 3 ,
signmethod = hmacsha1 , timestamp = 132323232 |"
mqttUserna me : deviceName +"&"+ productKey
mqttPasswo rd : sign_hmac (deviceSecr et ,
content)

mqttPasswo rd : Sort the parameters to be submitted to
the server alphabetically and then encrypt the parameters
based on the specified sign method.
The content value is a string that is built by sorting and
concatenating the ProductKey, DeviceName, timestamp
(optional) and clientId in alphabetical order, without any
delimiters.
• clientId: The client ID is a device identifier. We

recommend that you use the MAC address or the serial
number of the device as the client ID. The length of the
client ID must be within 64 characters.

• timestamp: The 13-digit timestamp of the current time.
This parameter is optional.

• mqttClientId: Extended parameters are placed between
vertical bars (|).

• signmethod: The signature algorithm. Valid values:
hmacmd5, hmacsha1, and hmacsha256. Default value:
hmacmd5.

• securemode: The current security mode. Value options: 2 (
TLS connection) and 3 (TCP connection).

Example:
Suppose that clientId = 12345 , deviceName =
device , productKey = pk , timestamp = 789 ,
signmethod = hmacsha1 , deviceSecr et = secret .

The MQTT CONNECT packet sent over TCP is as follows:
mqttclient Id = 12345 | securemode = 3 ,
signmethod = hmacsha1 , timestamp = 789 |
mqttUserna me = device & pk
mqttPasswo rd = hmacsha1 (" secret ","
clientId12 345deviceN amedevicep roductKeyp
ktimestamp 789 "). toHexStrin g (); // The
 toHexStrin g () function converts a
 binary string to a hexadecima l
string . The string is case - insensitiv
e .

The encrypted password is as follows:
FAFD82A3D6 02B37FB0FA 8B7892F24A 477F851A14

MQTT client connection after HTTPS verification
1. Authenticate the device.

Issue: 20190506 13

IoT Platform Developer Guide (Devices) / 3 Protocols for connectingdevices
Use HTTPS for device authentication. The authentication URL is https :// iot

- auth . ${ YourRegion Id }. aliyuncs . com / auth / devicename .
Replace ${YourRegionId} with the region ID of your device. For more information
about regions, see Regions and zones.
• Request parameters

Parameter Required Description
productKey Yes The unique identifier of the product. You can view it

in the IoT Platform console.
deviceName Yes The device name. You can view it in the IoT

Platform console.
sign Yes The signature. The format is

hmacmd5(deviceSecret, content). The content
value is a string that is built by sorting and
concatenating of all the parameters (except version,
sign, resources, and signmethod) that need to be
submitted to the server in alphabetical order.

signmethod No The signature algorithm. Valid values: hmacmd5,
hmacsha1, and hmacsha256. Default value:
hmacmd5.

clientId Yes The client ID. The length must be within 64
characters.

timestamp No Timestamp. Timestamp verification is not required.
resources No The resource that you want to obtain, such as

MQTT. Use commas (,) to separate multiple resource
names.

• Response parameters
Parameter Required Description
iotId Yes The connection tag that is issued by the server. It

is used to specify a value for the user name for the
MQTT CONNECT packet.

14 Issue: 20190506

https://www.alibabacloud.com/help/doc-detail/40654.htm

IoT Platform Developer Guide (Devices) / 3 Protocols for connectingdevices
Parameter Required Description
iotToken Yes The token is valid for seven days. It is used as the

password for the MQTT CONNECT packet.
resources No The resource information. The extended

information includes the MQTT server address and
CA certificate information.

• Request example using x-www-form-urlencoded:
POST / auth / devicename HTTP / 1 . 1
Host : iot - auth . cn - shanghai . aliyuncs . com
Content - Type : applicatio n / x - www - form - urlencoded
Content - Length : 123
productKey = 123 & sign = 123 & timestamp = 123 & version =
default & clientId = 123 & resouces = mqtt & deviceName = test
sign = hmac_md5 (deviceSecr et , clientId12 3deviceNam
etestprodu ctKey123ti mestamp123)

• Response example:
HTTP / 1 . 1 200 OK
Server : Tengine
Date : Wed , 29 Mar 2017 13 : 08 : 36 GMT
Content - Type : applicatio n / json ; charset = utf - 8
Connection : close

{
 " code " : 200 ,
 " data " : {
 " iotId " : " 42Ze0mk355 6498a1AlTP ",
 " iotToken " : " 0d7fdeb9dc 1f4344a2cc 0d45edcb0b cb ",
 " resources " : {
 " mqtt " : {
 " host " : " xxx . iot - as - mqtt . cn - shanghai
. aliyuncs . com ",

 " port " : 1883
 }
 }
 },
 " message " : " success "
}

2. Establish an MQTT connection.
a. Download the root.crt file of IoT Platform. We recommend that you use TLS 1.2.
b. Connect the device client to the Alibaba Cloud MQTT server using the returned

MQTT host address and port of device authentication.
c. Establish a connection over TLS. The device client authenticates the IoT

Platform server by CA certificates. The IoT Platform server authenticates the
device client by the information in the MQTT CONNECT packet. In the packet,
username=iotId, password=iotToken, clientId=custom device identifier (we

Issue: 20190506 15

http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/30539/cn_zh/1495715052139/root.crt

IoT Platform Developer Guide (Devices) / 3 Protocols for connectingdevices
recommend that you use the MAC address or the device serial number as the
device identifier).
If the iotId or iotToken is invalid, then the MQTT connection fails. The connect
acknowledgment (ACK) flag you receive is 3.
The error codes are described as follows:
• 401: request auth error. This error code is returned when the signature is

mismatched.
• 460: param error. Parameter error.
• 500: unknown error. Unknown error.
• 5001: meta device not found. The specified device does not exist.
• 6200: auth type mismatch. The authentication type is invalid.

MQTT Keep Alive
In a keep alive interval, the device must send at least one packet, including ping
requests.
If IoT Platform does not receive any packets in a keep alive interval, the device is
disconnected from IoT Platform and needs to reconnect to the server.
The keep alive time must be in a range of 30 to 1200 seconds. We recommend that you
 set a value larger than 300 seconds.

3.3 Establish MQTT connections over WebSocket
IoT Platform supports MQTT over WebSocket. You can first use the WebSocket
protocol to establish a connection, and then use the MQTT protocol to communicate
on the WebSocket channel.

Context
Using WebSocket has the following advantages:
• Allows browser-based applications to establish persistent connections to the

server.
• Uses port 433, which allows messages to pass through most firewalls.

Procedure

16 Issue: 20190506

IoT Platform Developer Guide (Devices) / 3 Protocols for connectingdevices
1. Certificate preparation

The WebSocket protocol includes WebSocket and WebSocket Secure. Websocket
and WebSocket Secure are used for unencrypted and encrypted connections,
respectively. Transport Layser Security (TLS) is used in WebSocket Secure
connections. Like a TLS connection, a WebSocket Secure connection requires a root

 certificate.
2. Client selection

IoT Platform provides Java MQTT SDK. You can directly use this client SDK by
replacing the connect URL with a URL that is used by WebSocket. For clients that
use other language versions or connections without using the official SDK, see Open

-source MQTT clients. Make sure that the client supports WebSocket.
3. Connections

An MQTT over WebSocket connection has a different protocol and port number
in the connect URL from an MQTT over TCP connection. MQTT over WebSocket
 connections have the same parameters as MQTT over TCP connections. The
securemode parameter is set to 2 and 3 for WebSocket Secure connections and
WebSocket connections, respectively.
• Connection domain for Shanghai region: ${YourProductKey}.iot-as-mqtt.cn-

shanghai.aliyuncs.com:443
Replace ${YourProductKey} with your ProductKey.

• Variable header: Keep Alive
The Keep Alive parameter must be included in the CONNECT packet. The
allowed range of Keep Alive value is 30-1200 seconds. If the value of Keep Alive
is not in this range, IoT Platform will reject the connection. We recommend that
 you set a value larger than 300 seconds. If the Internet connection is not stable,
set a larger value.
In a keep alive interval, the device must send at least one packet, including ping
requests.
If IoT Platform does not receive any packets in a keep alive interval, the device is
 disconnected from IoT Platform and needs to reconnect to the server.

• An MQTT Connect packet contains the following parameters:

Issue: 20190506 17

http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/cert_pub/root.crt?spm=5176.doc30539.2.4.aalCo6&file=root.crt
http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/cert_pub/root.crt?spm=5176.doc30539.2.4.aalCo6&file=root.crt
http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/iotx-sdk-java/iotx-sdk-mqtt-java-20170526.zip?spm=5176.doc42648.2.18.7iyFfe&file=iotx-sdk-mqtt-java-20170526.zip
https://github.com/mqtt/mqtt.github.io/wiki/libraries?spm=5176.doc30539.2.5.aalCo6
https://github.com/mqtt/mqtt.github.io/wiki/libraries?spm=5176.doc30539.2.5.aalCo6

IoT Platform Developer Guide (Devices) / 3 Protocols for connectingdevices
mqttClient Id : clientId +"| securemode = 3 , signmethod =
hmacsha1 , timestamp = 132323232 |"
mqttUserna me : deviceName +"&"+ productKey
mqttPasswo rd : sign_hmac (deviceSecr et , content).
Sort and concatenat e the input parameters in
alphabetic al order and then encrypt the parameters
 using the specified sign method .
The value of content is a string that is built
 by sorting and concatenat ing the parameters sent
 to the server (productKey , deviceName , timestamp ,
and clientId).

Where,
- clientId: Specifies the client ID up to 64 characters. We recommend that you

use the MAC address or SN code.
- timestamp: (Optional) Specifies the current time in milliseconds.
- mqttClientId: Parameters within || are extended parameters.
- signmethod: Specifies a signature algorithm.
- securemode: Specifies the secure mode. Values include 2 (WebSocket Secure)

and 3 (WebSocket).
The following are examples of MQTT Connect packets. Suppose the parameter
values are:
clientId = 12345 , deviceName = device , productKey = pk ,
timestamp = 789 , signmethod = hmacsha1 , deviceSecr et = secret

• For a WebSocket connection:
- Connection domain

ws :// pk . iot - as - mqtt . cn - shanghai . aliyuncs . com :
443

- Connection parameters

mqttclient Id = 12345 | securemode = 3 , signmethod =
hmacsha1 , timestamp = 789 |
mqttUserna me = device & pk

18 Issue: 20190506

IoT Platform Developer Guide (Devices) / 3 Protocols for connectingdevices
mqttPasswr od = hmacsha1 (" secret "," clientId12
345deviceN amedevicep roductKeyp ktimestamp 789 ").
toHexStrin g ();

• For a WebSocket Secure connection:
- Connection domain

wss :// pk . iot - as - mqtt . cn - shanghai . aliyuncs . com
: 443

- Connection parameters

mqttclient Id = 12345 | securemode = 2 , signmethod =
hmacsha1 , timestamp = 789 |
mqttUserna me = device & pk
mqttPasswr od = hmacsha1 (" secret "," clientId12
345deviceN amedevicep roductKeyp ktimestamp 789 ").
toHexStrin g ();

3.4 CoAP standard
Protocol version

IoT Platform supports the Constrained Application Protocol (CoAP) [RFC7252]. For
more information, see RFC 7252.

Channel security
IoT Platform uses Datagram Transport Layer Security (DTLS) V1.2 to secure channels.
For more information, see DTLS v1.2.

Open-source client reference
For more information, see http://coap.technology/impls.html.

Note:
If you use third-party code, Alibaba Cloud does not provide technical support.

Alibaba Cloud CoAP agreement
• Do not use a question mark (?) to set a parameter.
• Resource discovery is not supported.
• Only the User Datagram Protocol (UDP) is supported, and DTLS must be used.
• Follow the Uniform Resource Identifier (URI) standard, and keep CoAP URI

resources consistent with Message Queuing Telemetry Transport (MQTT)-based
topics. For more information, see MQTT standard.

Issue: 20190506 19

http://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc6347
http://coap.technology/impls.html
https://www.alibabacloud.com/help/doc-detail/30540.htm

IoT Platform Developer Guide (Devices) / 3 Protocols for connectingdevices

3.5 Establish connections over CoAP
IoT Platform supports connections over CoAP. CoAP is suitable for resource-
constrained, low-power devices, such as NB-IoT devices. This topic describes how
to connect devices to IoT Platform over CoAP and two supported authentication
methods, which are DTLS and symmetric encryption.

Use the symmetric encryption method
1. Connect to the CoAP server. The endpoint address is ${ YourProduc tKey }.

coap . cn - shanghai . link . aliyuncs . com :${ port }.
Note:
• ${ YourProduc tKey }: Replace it with the ProductKey value of the device.
• ${ port }: The port number. Set the value to 5682.

2. Authenticate the device.
Request message:
POST / auth
Host : ${ YourProduc tKey }. coap . cn - shanghai . link .
aliyuncs . com
Port : 5682
Accept : applicatio n / json or applicatio n / cbor
Content - Format : applicatio n / json or applicatio n /
cbor
payload : {" productKey ":" a1NUjcVkHZ S "," deviceName ":"
ff1a11e7c0 8d4b3db2b1 500d8e0e55 "," clientId ":" a1NUjcVkHZ
S & ff1a11e7c0 8d4b3db2b1 500d8e0e55 "," sign ":" F9FD53EE0C
D010FCA40D 14A9FEAB81 E0 ", " seq ":" 10 "}

Table 3-1: Parameter description
Parameter Description
Method The request method. The supported method is POST.
URL /auth.
Host The endpoint address. The format

is ${YourProductKey}.coap.cn-
shanghai.link.aliyuncs.com. Replace ${YourProductKey}
with the ProductKey value of the device.

Port The port number. Set the value to 5682.

20 Issue: 20190506

IoT Platform Developer Guide (Devices) / 3 Protocols for connectingdevices
Parameter Description
Accept The encoding format of the data that is to be received by the

device. Currently, application/json and application/cbor are
supported.

Content-Format The encoding format of the data that the device sends to IoT
 Platform. Currently, application/json and application/cbor
are supported.

payload The device information for authentication, in JSON format.
For more information, see the following table payload
parameters.

Table 3-2: payload parameters
Parameter Required Description
productKey Yes The unique identifier issued by IoT Platform to

 the product. You can obtain this information
on the device details page in the IoT Platform
console.

deviceName Yes The device name that you specified, or is
generated by IoT Platform, when you registered
 the device. You can obtain this information
on the device details page in the IoT Platform
console.

ackMode No The communication mode. Options:
• 0 : After receiving a request from the

device, the server processes data and then
returns the result with an acknowledgment
(ACK).

• 1 : After receiving a request from the
device, the server immediately returns an
ACK and then starts to process data. After
the data processing is complete, the server
returns the result.

The default value is 0.

Issue: 20190506 21

IoT Platform Developer Guide (Devices) / 3 Protocols for connectingdevices
Parameter Required Description
sign Yes Signature.

The signature algorithm is hmacmd5 (
DeviceSecr et , content).

The value of content is a string that is built
by sorting and concatenating all the parameters
(except version , sign , resources , and
signmethod) that need to be submitted to

the server in alphabetical order, without any
delimiters.
Signature calculation example:
sign = hmac_md5 (deviceSecr et ,
clientId12 3deviceNam etestprodu
ctKey123se q123timest amp1524448
722000)

signmethod No The algorithm type. The supported types are
hmacmd5 and hmacsha1.

clientId Yes The device identifier, which can be any string up
 to 64 characters in length. We recommend that
 you use the MAC address or the SN code of the
device as the clientId.

timestamp No The timestamp. Currently, timestamp is not
verified.

Response example:
{" random ":" ad2b3a5eb5 1d64f7 "," seqOffset ": 1 ," token ":"
MZ8m37hp01 w1SSqoDFzo 0010500d00 . ad2b "}

Table 3-3: Response parameters
Parameter Description
random The encryption key used for data communication.
seqOffset The authentication sequence offset.
token The returned token after the device is authenticated.

3. The device sends data.
Request message:
POST / topic /${ topic }
Host : ${ YourProduc tKey }. coap . cn - shanghai . link .
aliyuncs . com

22 Issue: 20190506

IoT Platform Developer Guide (Devices) / 3 Protocols for connectingdevices
Port : 5682
Accept : applicatio n / json or applicatio n / cbor
Content - Format : applicatio n / json or applicatio n /
cbor
payload : ${ your_data }
CustomOpti ons : number : 2088 (token), 2089 (seq)

Table 3-4: Request parameters
Parameter Required Description
Method Yes The request method. The supported

request method is POST.
URL Yes The format is / topic /${ topic }.

Replace the variable ${topic} with
the device topic used by the device to
publish data.

Host Yes The endpoint address. The format
is ${ YourProduc tKey }. coap
. cn - shanghai . link .
aliyuncs . com . Replace the

variable ${YourProductKey} with the
ProductKey value.

Port Yes The port number. Set the value to 5682.
Accept Yes The encoding format of the data

which is to be received by the device
. Currently, application/json and
application/cbor are supported.

Content-Format Yes The encoding format of the data
which is sent by the device. Currently,
application/json and application/cbor
are supported.

payload Yes The encrypted data that is to be sent.
Encrypt the data using the Advanced
Encryption Standard (AES) algorithm.

Issue: 20190506 23

IoT Platform Developer Guide (Devices) / 3 Protocols for connectingdevices
Parameter Required Description
CustomOptions Yes The option value can be 2088 and 2089,

which are described as follows:
• 2088: Indicates the token. The value

is the token returned after the device
is authenticated.

Note:
Token information is required every
time the device sends data. If the
token is lost or expires, initiate a
device authentication request again
to obtain a new token.

• 2089: Indicates the sequence. The
 value must be greater than the
seqOffset value that is returned after
 the device is authenticated, and
must be a unique random number.
Encrypt the value with AES.

Response message for option
number : 2090 (IoT Platform
 message ID)

After a message has been sent to IoT Platform, a status code and a message ID are
returned.

Establish DTLS connections
1. Connect to the CoAP server. The endpoint address is ${ YourProduc tKey }.

coap . cn - shanghai . link . aliyuncs . com :${ port }.
Note:
• ${YourProductKey}: Replace it with the ProductKey value of the device.
• ${port}: The port number. Set the port number to 5684 for DTLS connections.

2. Download the root certificate.
3. Authenticate the device. Call auth to authenticate the device and obtain the device

token. Token information is required when the device sends data to IoT Platform.
Request message:
POST / auth

24 Issue: 20190506

http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/cert_pub/root.crt?spm=5176.doc30539.2.1.1MRvV5&file=root.crt

IoT Platform Developer Guide (Devices) / 3 Protocols for connectingdevices
Host : ${ YourProduc tKey }. coap . cn - shanghai . link .
aliyuncs . com
Port : 5684
Accept : applicatio n / json or applicatio n / cbor
Content - Format : applicatio n / json or applicatio n /
cbor
payload : {" productKey ":" ZG1EvTEa7N N "," deviceName ":"
NlwaSPXsCp TQuh8FxBGH "," clientId ":" mylight100 0002 "," sign
":" bccb3d2618 afe74b3eab 12b94042f8 7b "}

For more information about parameters (except for Port parameter, where the
port for this method is 5684) and payload content, see Parameter description.
Response example:
response : {" token ":" f131028107 56432e85df d351eeb41c 04 "}

Table 3-5: Return codes
Code Message Payload Description
2.05 Content The token

is contained
 in the
payload if the
 authentica
tion has
passed.

The request is successful.

4.00 Bad Request no payload The payload in the request is invalid.
4.01 Unauthoriz

ed
no payload The request is unauthorized.

4.03 Forbidden no payload The request is forbidden.
4.04 Not Found no payload The requested path does not exist.
4.05 Method Not

Allowed
no payload The request method is not allowed.

4.06 Not
Acceptable

no payload The value of Accept parameter is not
 in a supported format.

4.15 Unsupporte
d Content-
Format

no payload The value of Content-Format
parameter is not in a supported
format.

5.00 Internal
Server Error

no payload The authentication request is timed
 out or an error occurred on the
authentication server.

Issue: 20190506 25

IoT Platform Developer Guide (Devices) / 3 Protocols for connectingdevices
4. The device sends data.

The device publishes data to a specified topic.
In the IoT Platform console, on the Topic Categories tab page of the product, you
can create topic categories.
Currently, only topics with the permission to publish messages can be used
for publishing data, for example, /${ YourProduc tKey }/${ YourDevice

Name }/ pub . Specifically, if a device name is device, and its product key is
a1GFjLP3xxC, the device can send data through the address a1GFjLP3xx C

. coap . cn - shanghai . link . aliyuncs . com : 5684 / topic /

a1GFjLP3xx C / device / pub .
Request message:
POST / topic /${ topic }
Host : ${ YourProduc tKey }. coap . cn - shanghai . link .
aliyuncs . com
Port : 5684
Accept : applicatio n / json or applicatio n / cbor
Content - Format : applicatio n / json or applicatio n /
cbor
payload : ${ your_data }
CustomOpti ons : number : 2088 (token)

Table 3-6: Request parameters
Parameter Required Description
Method Yes The request method. The supported request

method is POST.
URL Yes / topic /${ topic } Replace the variable ${

topic } with the device topic which will be
used to publish data.

Host Yes The endpoint address. The format
is ${YourProductKey}.coap.cn-
shanghai.link.aliyuncs.com. Replace
${YourProductKey} with the ProductKey value
of the device.

Port Yes Set the value to 5684.
Accept Yes The encoding format of the data that is to be

received by the device. Currently, application/
json and application/cbor are supported.

26 Issue: 20190506

IoT Platform Developer Guide (Devices) / 3 Protocols for connectingdevices
Parameter Required Description
Content-
Format

Yes The encoding format of the data that the device
 sends to IoT Platform. Currently, application/
json and application/cbor are supported.

CustomOpti
ons

Yes • Number: 2088.
• The value of token is the token information

returned after auth is called to authenticate
the device.

Note:
Token information is required every time
the device sends data. If the token is lost
or expires, initiate a device authentication
request again to obtain a new token.

3.6 HTTP standard
HTTP protocol versions

• Supports Hypertext Transfer Protocol (HTTP) version 1.0. For more information,
see RFC 1945

• Supports HTTP version 1.1. For more information, see RFC 2616

Channel security
Uses Hypertext Transfer Protocol Secure (HTTPS) to guarantee channel security.
• Does not support passing parameters with question marks (?).
• Resource discovery is currently not supported.
• Only HTTPS is supported.
• The URI standard, the HTTP URI resources, and the MQTT topic must be

consistent. See MQTT standard.

3.7 Establish connections over HTTP
IoT Platform supports HTTP connections, and only the HTTPS protocol is supported.
This topic describes how to connect devices to IoT Platform over HTTP.

Restrictions
• HTTP communications are applicable to simple data report scenarios.

Issue: 20190506 27

https://tools.ietf.org/html/rfc1945
https://tools.ietf.org/html/rfc2616
https://www.alibabacloud.com/help/doc-detail/30540.htm

IoT Platform Developer Guide (Devices) / 3 Protocols for connectingdevices
• The HTTP server endpoint is https :// iot - as - http . cn - shanghai .

aliyuncs . com .
• Only the China (Shanghai) region supports HTTP communication.
• Only the HTTPS protocol is supported.
• The standards for HTTPS-based topics are the same as the standards for MQTT-

based topics in MQTT standards. Devices connect to IoT Platform over HTTP
and send data to IoT Platform by using https :// iot - as - http . cn -

shanghai . aliyuncs . com / topic /${ topic }. The value of ${ topic

} can be the same topics used for MQTT communications. You cannot specify
parameters in the format of ? query_Stri ng = xxx .

• The size of data from devices is limited to 128 KB.
• Only POST method is supported.
• The value of Content - Type in the HTTP header of an authentication request

must be applicatio n / json .
• The value of Content - Type in the HTTP header of an upstream data request

must be applicatio n / octet - stream .
• The token returned for the device authentication will expire after a certain period

of time. Currently, the token is valid for seven days. Make sure that you understand
 any negative impact that token expiration will have on your business.

Procedure
The communication process includes performing device authentication to obtain a
device token and using the obtained token for data reporting.
1. Authenticate the device to obtain the device token.

Endpoint: https :// iot - as - http . cn - shanghai . aliyuncs . com

Authentication request:
POST / auth HTTP / 1 . 1
Host : iot - as - http . cn - shanghai . aliyuncs . com
Content - Type applicatio n / json
body : {" version ":" default "," clientId ":" mylight100 0002
"," signmethod ":" hmacsha1 "," sign ":" 4870141D40 67227128CB
B4377906C3 731CAC221C "," productKey ":" ZG1EvTEa7N N ","

28 Issue: 20190506

IoT Platform Developer Guide (Devices) / 3 Protocols for connectingdevices
deviceName ":" NlwaSPXsCp TQuh8FxBGH "," timestamp ":" 1501668289
957 "}

Table 3-7: Parameters
Parameter Description
Method The request method. The supported method is POST.
URL The URL of the /auth request. Only HTTPS is supported.
Host The endpoint: iot-as-http.cn-shanghai.aliyuncs.com.
Content-Type The encoding format of the upstream data that the device

sends to IoT Platform. Only application/json is supported.
If another encoding format is used, a parameter error is
returned.

body The device information for authentication, in JSON format.
For more information, see the following table Fields in body.

Table 3-8: Fields in body
Field Required? Description
productKey Yes The unique identifier of the product to which

 the device belongs. You can obtain this
information from the Device Details page of the
IoT platform console.

deviceName Yes The device name. You can obtain this informatio
n from the Device Details page of the IoT
platform console.

clientId Yes The client ID, a string of up to 64 characters. We
recommend that you use the MAC address or SN
 code as the client ID.

timestamp No The timestamp. A request is valid within 15
minutes after the timestamp is created. The
timestamp is in the format of numbers. The
value is the number of milliseconds that have
elapsed since 00:00, January 1, 1970 (GMT).

Issue: 20190506 29

IoT Platform Developer Guide (Devices) / 3 Protocols for connectingdevices
Field Required? Description
sign Yes The signature value.

The signature algorithm is in the format of
hmacmd5 (deviceSecr et , content).

The value of content is a string that contains
all the parameters to be reported to IoT
Platform except version , sign , and
signmethod . These parameters are sorted

in alphabetical order and spliced without any
separators.
Signature example:
If clientId = 12345 , deviceName = device

, productKey = pk , timestamp = 789 ,
signmethod = hmacsha1 , and deviceSecr
et = secret , then the signature algorithm

is hmacsha1 (" secret "," clientId12
345deviceN amedevicep roductKeyp
ktimestamp 789 "). toHexStrin g ();. In

this example, binary data will be converted to a
case-insensitive hexadecimal string.

signmethod No The algorithm type. The type can be hmacmd5
or hmacsha1.
If you do not specify this parameter, the default
value is hmacmd5.

version No The version number. If you do not specify this
parameter, the value is "default".

Sample response:
body :
{
 " code ": 0 ,// The status code
 " message ": " success ", // The message
 " Info ": {
 " token ": " 6944e5bfb9 2e4d4ea391 8d1eda3942 f6 "
 }
}

Note:
• Cache the returned token value locally.

30 Issue: 20190506

IoT Platform Developer Guide (Devices) / 3 Protocols for connectingdevices
• Token information is required each time when the device reports data to IoT

Platform. If the token expires, you must re-authenticate the device to obtain a
new token.

Table 3-9: Error codes
Code Message Description
10000 common error Unknown error.
10001 param error A parameter error occurred.
20000 auth check error An error occurred while authenticating

 the device.
20004 update session error An error occurred while updating the

session.
40000 request too many Too many requests. The throttling

policy limits the number of requests.
2. Send data to IoT Platform.

The device sends data to a specific topic.
To send data to a custom topic, you must create a topic category on the Topic
Categories tab page of the corresponding product in the IoT Platform console. For
more information, see Create a topic category.
For example, a topic category is /${ YourProduc tKey }/${ YourDevice

Name }/ user / pub . If the device name is device123, and its ProductKey is
a1GFjLPXXXX, the device can send data through https :// iot - as - http .

cn - shanghai . aliyuncs . com / topic / a1GFjLPXXX X / device123 /

user / pub .
Upstream data request:
POST / topic /${ topic } HTTP / 1 . 1
Host : iot - as - http . cn - shanghai . aliyuncs . com
password :${ token }
Content - Type : applicatio n / octet - stream
body : ${ your_data }

Table 3-10: Parameter description
Parameter Description
Method The request method. The supported method is POST.

Issue: 20190506 31

IoT Platform Developer Guide (Devices) / 3 Protocols for connectingdevices
Parameter Description
URL / topic /${ topic }. Replace ${ topic } with the topic to

which data is sent. Only HTTPS is supported.
Host The endpoint: iot-as-http.cn-shanghai.aliyuncs.com.
password This parameter is included in the request header. The value

of this parameter is the token returned after calling auth to
authenticate the device.

Content-Type The encoding format of the upstream data that the device
sends to IoT Platform. Only application/octet-stream is
supported. If another encoding format is used, a parameter
error is returned.

body The data content sent to the target topic.
Sample response:
body :
{
 " code ": 0 , // The status code
 " message ": " success ", // The message
 " Info ": {
 " messageId ": 8926876279 16247040 ,
 }
}

Table 3-11: Error codes
Code Message Description
10000 common error Unknown error.
10001 param error A parameter error occurred.
20001 token is expired The token has expired. You must call

auth to re-authenticate the device and
obtain a new token.

20002 token is null The request header does not contain
any token information.

20003 check token error An error occurred while obtaining
identity information according to
the token. You must call auth to re-
authenticate the device and obtain a
new token.

30001 publish message
error

An error occurred while reporting data.

32 Issue: 20190506

IoT Platform Developer Guide (Devices) / 3 Protocols for connectingdevices
Code Message Description
40000 request too many Too many requests. The throttling

policy limits the number of requests.

Issue: 20190506 33

IoT Platform Developer Guide (Devices) / 4 OTA updates

4 OTA updates
Devices in IoT Platform support Over-The-Air (OTA) updates. This topic introduces
the process of OTA updates, the topics used in OTA updates, and the data formats.

OTA update process
The process of a firmware OTA update over MQTT protocol is shown as the following
figure:

Topics for firmware update:

34 Issue: 20190506

IoT Platform Developer Guide (Devices) / 4 OTA updates

• Devices publish messages to the following topic to report firmware versions to IoT
Platform.
/ ota / device / inform /${ YourProduc tKey }/${ YourDevice Name }

• Devices subscribe to the following topic to receive notifications of firmware
updates from IoT Platform.
/ ota / device / upgrade /${ YourProduc tKey }/${ YourDevice Name
}

• Devices publish messages to the following topic to report the progress of firmware
updates to IoT Platform.
/ ota / device / progress /${ YourProduc tKey }/${ YourDevice Name
}

Note:
• Devices do not periodically send firmware versions to IoT Platform. Instead, they

send their firmware versions to IoT Platform only when they start.
• Even if you have triggered firmware updates for devices in the console, this does

not mean that the devices have updated successfully.
The IoT Platform firmware update system receives update progress reports from
the devices when they are updating, (that is, when the update status of the devices
 are Updating).

• You can view the device firmware version to check whether the OTA update is
successful.

• An offline device cannot receive any update notifications from the OTA server.
When the device connects to IoT Platform again, the device notifies the OTA server
 that it is online. After the server receives the notification, it determines whether
 the device requires an update. If an update is required, the server sends the
update message to the device.

Data format of messages
For OTA development and code examples, see the documentations in Link Kit SDK.

Issue: 20190506 35

https://www.alibabacloud.com/help/product/93051.htm

IoT Platform Developer Guide (Devices) / 4 OTA updates

1. When devices connects to the OTA service, they report their firmware versions.
The topic for devices to report firmware versions over MQTT protocol is / ota /

device / inform /${ YourProduc tKey }/${ YourDevice Name }. Message
example:

{
 " id ": 1 ,
 " params ": {
 " version ": " 1 . 0 . 0 "
 }
}

• id : The message ID.
• version : The current firmware version of the device.

2. In the IoT Platform console, upload the firmware update file, verify the file using
some devices, and then trigger firmware updates for all the devices of a product.
For more information, see Firmware update.

3. When you trigger a batch update in the console, devices of the product will receive
the URL of the firmware file.
Devices subscribe to the topic / ota / device / upgrade /${ YourProduc

tKey }/${ YourDevice Name } to receive update messages. Then, when you
initiate firmware update requests to devices, the devices receive the URL of the
firmware file from this topic. A message example is as follows:

{
 " code ": " 1000 ",
 " data ": {
 " size ": 432945 ,
 " version ": " 2 . 0 . 0 ",
 " url ": " https :// iotx - ota - pre . oss - cn - shanghai
. aliyuncs . com / nopoll_0 . 4 . 4 . tar . gz ? Expires =
1502955804 & OSSAccessK eyId = XXXXXXXXXX XXXXXXXXXX & Signature
= XfgJu7P6DW WejstKJgXJ EH0qAKU % 3D & security - token
= CAISuQJ1q6 Ft5B2yfSjI pK6MGsyN1J x5jo6mVnfB glIPTvlvt5
D50Tz2IHtI f3NpAusdsv 03nWxT7v4f lqFyTINVAE vYZJOPKGrG
R0DzDbDasu mZsJbo4f % 2FMQBqEaXP S2MvVfJ % 2BzLrf0ceu
sbFbpjzJ6x aCAGxypQ12 iN % 2B % 2Fr6 % 2F5gdc9FcQ SkL0B8ZrFs
KxBltdUROF bIKP % 2BpKWSKuGf LC1dysQcO1 wEP4K % 2BkkMqH8Ui c3h
% 2Boy % 2BgJt8H2Pp Hhd9NhXuV2 WMzn2 % 2FdtJOiTkn xR7ARasaBq
helc4zqA % 2FPPlWgAKv kXba7aIoo0 1fV4jN5JXQ fAU8KLO8tR
jofHWmojNz BJAAPpYSSy 3Rvr7m5efQ rrybY1lLO6 iZy % 2BVio2VSZD
xshI5Z3McK ARWct06MWV 9ABA2TTXXO i40BOxuq % 2B3JGoABXC 54TOlo7
% 2F1wTLTsCU qzzeIiXVOK 8CfNOkfTuc MGHkeYeCdF km % 2FkADhXAnr
nGf5a4FbmK MQph2cKsr8 y8UfWLC6Iz vJsClXTnbJ BMeuWIqo5z
IynS1pm7gf % 2F9N3hVc6 % 2BEeIk0xfl 2tycsUpbL2 FoaGk6BAF8
hWSWYUXsv5 9d5Uk % 3D ",
 " md5 ": " 93230c3bde 425a9d7984 a594ac55ea 1e "

36 Issue: 20190506

IoT Platform Developer Guide (Devices) / 4 OTA updates
 },
 " id ": 1507707025 ,
 " message ": " success "
}

• size : The size of the file.
• md5 : The firmware content encrypted by MD5, which is a 32-bit hex string.
• url : The URL of the firmware file. The URL is available for 24 hours. The

devices must download the firmware file within 24 hours after the URL is
generated.

• version : The firmware version.
4. Devices download the firmware from the URL over HTTPS protocol.

Note:
The firmware URL will be released within 24 hours.

During the firmware downloading process, the devices report progress to IoT
Platform using the topic / ota / device / progress /${ YourProduc tKey }/

${ YourDevice Name }. Message example:

{
 " id ": 1
 " params ": {
 " step ":" 1 ",
 " desc ":" xxxxxxxx "
 }
}

• id : The message ID.
• step :

- [1, 100]: Values in this range indicate the download progress ratio.
- -1: Failed to update.
- -2: Failed to download the firmware.
- -3: The device authentication failed.
- -4: Failed to install the firmware.

• desc : Description of the update progress. If an error occurs, the error
message is displayed in this parameter.

5. After devices have been updated, they report the new firmware version using this
topic / ota / device / inform /${ YourProduc tKey }/${ YourDevice

Issue: 20190506 37

IoT Platform Developer Guide (Devices) / 4 OTA updates

Name }. If the reported version is the same as the version defined in the firmware
update file, then the update is successful.

Note:
The reported version is the only identifier that can determine whether the update
is successful. Even if the reported progress is 100%, if the device does not report
the new firmware version to IoT Platform, then the update has failed.

Errors
• Signature error. If the firmware URL received by the device is incomplete or the

URL content has been manually modified, the following error occurs:

• Failed to download the firmware file. The firmware file URL is expired. The URL is
only available for 24 hours after its generation.

38 Issue: 20190506

IoT Platform Developer Guide (Devices) / 5 Error codes for sub-device development

5 Error codes for sub-device development
This article describes errors that may occur during sub-device development.

Introduction
• When an IoT Platform service error occurs on a directly-connected device, the

device is notified of the error when the TCP connection is closed.
• In the case that a communication error occurs on a sub-device connected to IoT

 Platform through a gateway and the gateway is still physically connected to IoT
Platform, the gateway must send an error message through the gateway connection
 to notify the sub-device of the error.

Response format
When a communication error has occurred between a sub-device and IoT Platform
, IoT Platform sends an MQTT error message to the gateway through the gateway
connection.
The format of the topic varies depending on the scenario. The JSON format of the
message content is as follows:

{
id : Message ID specified in the request parameters
code : Error code (the success code is 200)
message : Error message

}

Sub-device failed to go online
The error message is sent to topic / ext / session /{ gw_product Key }/{

gw_deviceN ame }/ combine / login_repl y .
Table 5-1: Error codes
Code Message Description
460 request

parameter
error

Invalid parameter format, for example, invalid JSON
format or invalid authentication parameters.

Issue: 20190506 39

IoT Platform Developer Guide (Devices) / 5 Error codes for sub-device development
Code Message Description
429 too many

requests
Authentication requests have been denied. This error
occurs when a device initiates authentication requests
to IoT Platform too frequently or a sub-device has come
 online more than five times in one minute.

428 too many
subdevices
 under
gateway

The number of sub-devices connected to a gateway
has reached the maximum. Currently, up to 1500 sub-
devices can be connected to a gateway.

6401 topo relation
 not exist

No topological relationship has been established
between the sub-device and the gateway.

6100 device not
found

The specified sub-device does not exist.

521 device
deleted

The sub-device has already been deleted.

522 device
forbidden

The specified sub-device has been disabled.

6287 invalid sign Authentication failed due to invalid username or
password.

500 server error An exception occurs on IoT Platform.
Sub-device automatically goes offline

The error message is sent to topic / ext / session /{ gw_product Key }/{

gw_deviceN ame }/ combine / logout_rep ly .
Table 5-2: Error codes
Code Message Description
460 request

parameter
error

Invalid parameter format, for example, invalid
JSON format or invalid parameters.

520 device no
session

The sub-device session does not exist, because
the sub-device has gone offline or has never been
connected to IoT Platform..

500 server error An exception occurs on IoT Platform.

40 Issue: 20190506

IoT Platform Developer Guide (Devices) / 5 Error codes for sub-device development
Sub-device forced to go offline

The error message is sent to topic / ext / error /{ gw_product Key }/{

gw_deviceN ame }.
Table 5-3: Error codes
Code Message Description
427 device connect

in elsewhere
Disconnection of current session. When another
 device uses the same device certificate of
ProductKey, DeviceName, and DeviceSecret to
 connect to IoT Platform, the current device is
forced offline.

521 device deleted The device has been deleted.
522 device

forbidden
The device has been disabled.

6401 topo relation
not exist

The topological relationship between the sub-
device and the gateway has been deleted.

Sub-device failed to send message
The error message is sent to topic /ext/error/{gw_productKey}/{gw_deviceName}.
Table 5-4: Error codes
Code Message Description
520 device session

error
Sub-device session error.
• The sub-device session does not exist. The sub

-device is not connected to IoT Platform or has
gone offline.

• The sub-device session exists, however, the
session is not established through the current
gateway.

Issue: 20190506 41

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol

6 Develop devices based on Alink Protocol
6.1 Communications over Alink protocol

IoT Platform provides device SDKs for you to configure devices. These device SDKs
already encapsulate protocols for data exchange between devices and IoT Platform.
You can use these SDKs to develop your devices. If these SDKs do not meet your
business requirements, you can develop your own SDK with an Alink communication
channel by yourself.
For SDKs provided by IoT Platform, see Device SDKs.
The Alink protocol is a data exchange standard for IoT development that allows
communication between devices and IoT Platform. The protocol exchanges data that
is formatted in Alink JSON.
The following sections describe the device connection procedures and data
communication processes (upstream and downstream) when using the Alink protocol
.

Connect devices to IoT Platform
As shown in the following figure, devices can be connected to IoT Platform as directly
 connected devices or sub-devices. The connection process involves the following key
 steps: authenticate the device, establish a connection, and the device reports data to
IoT Platform.
Directly connected devices can be connected to IoT Platform by using the following
methods:
• If Unique-certificate-per-device authentication is enabled, install the device certificate

(ProductKey, DeviceName, and DeviceSecret) to the physical device for
authentication, connect the device to IoT Platform, and then report data to IoT
Platform.

• If dynamic registration based on Unique-certificate-per-product authentication is enabled,
install the product certificate (ProductKey and ProductSecret) to the physical
device for authentication, connect the device to IoT Platform, and then report data
to IoT Platform.

42 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Sub-devices connect to IoT Platform through their gateways. Sub-devices can be
connected to IoT Platform by using the following methods:
• If Unique-certificate-per-device authentication is enabled, install the ProductKey,

DeviceName, and DeviceSecret to the physical sub-device for authentication. The
sub-device then sends its certificate information to the gateway, and then the
gateway builds the topological relationship.The sub-device data are sent to IoT
Platform through the gateway communication channel.

• If dynamic registration is enabled, install the ProductKey to the physical sub-
device for authentication in advance. The sub-device sends the ProductKey and
DeviceName to the gateway, and then the gateway forwards the ProductKey and
DeviceName to IoT Platform. IoT Platform then verifies the received DeviceName
and sends the DeviceSecret to the sub-device. The sub-device sends its certificate (
ProductKey, DeviceName, and DeviceSecret) to the gateway for building topologica
l relationship. The sub-device data are sent to IoT Platform through the gateway
communication channel.

Issue: 20190506 43

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Devices report properties or events

• Pass-through (Do not parse/Custom) data

1. The device reports raw data to IoT Platform using the topic for passing through
data.

2. IoT Platform parses the received data using the data parsing script that you have
submitted in the IoT Platform console. The rawDataToP rotocol method in
the script is called to convert the raw data reported by the device to Alink JSON
data.

3. IoT Platform uses the Alink JSON data for further processes.

Note:
If you have configured rules for data forwarding, the Alink JSON data will be
forwarded to the targets according to the rules.
- The data forwarded by the rules engine are the data that have been parsed by

 the data parsing script.
44 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
- When you configure SQL statements for rules, to obtain the device

properties, specify the data topic to be / sys /{ productKey }/{

deviceName }/ thing / event / property / post .
- When you configure SQL statements for rules, to obtain the device events,

specify the data topic to be / sys /{ productKey }/{ deviceName }/

thing / event /{ tsl . event . identifier }/ post .
4. IoT Platform calls the protocolTo RawData method in the data parsing

script to convert the result data to the data format of the device.
5. IoT Platform pushes the converted data to the device.
6. You can query the device property data using the API QueryDevicePropertyData and

query the device event data using the API QueryDeviceEventData.

Issue: 20190506 45

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
• Non-pass through (Alink JSON) data

1. The device reports Alink JSON data to IoT Platform using the topic for non-pass
through data.

2. IoT Platform handles the received data.

Note:
If you have configured rules for data forwarding, the data will be forwarded to
the targets according to the rules.
- When you configure SQL statements for rules, to obtain the device

properties, specify the data topic to be / sys /{ productKey }/{

deviceName }/ thing / event / property / post .

46 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
- When you configure SQL statements for rules, to obtain the device events,

specify the data topic to be / sys /{ productKey }/{ deviceName }/

thing / event /{ tsl . event . identifier }/ post .
3. IoT Platform returns the results to the device.
4. You can query the device property data using the API QueryDevicePropertyData and

query the device event data using the API QueryDeviceEventData.
Call device services or set device properties

• Call device services or set device properties asynchronously

1. Set a device property or call a device service using the asynchronous method.

Note:
- Call the API SetDeviceProperty to set a property asynchronously.

Issue: 20190506 47

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
- Call the API InvokeThingService to call a service asynchronously (if you select

Asynchronous as the method when you define the service, this service is
called in the asynchronous method).

2. IoT Platform verifies the parameters.
3. IoT Platform uses the asynchronous method to handle the request and return

the results. If the call is successful, the message ID is included in the response.

Note:
If the data type is pass-through (Do not parse/Custom), IoT Platform will call
the protocolTo RawData method in the data parsing script to convert the
data before sending the data to the device.

4. IoT Platform sends the data to the device, and then the device handles the
request asynchronously.

Note:
- If the data is pass-through (Do not parse/Custom) data, the topic for pass-

through data is used.
- If the data is non-pass through (Alink JSON) data, the topic for non-pass

through data is used.
5. After the device has completed the requested operation, it returns the results to

IoT Platform.
6. IoT Platform receives the results, and

- If the data type is pass-through (Do not parse/Custom), IoT Platform will call
the rawDataToP rotocol method in the data parsing script to convert the
data returned by the device.

- If you have configured rules for data forwarding, IoT Platform rules engine
will forward the data to the targets according to the rules.
■ When you configure SQL statements for rules, to obtain the results of

service processing, specify the data topic as / sys /{ productKey }/{

deviceName }/ thing / downlink / reply / message .
■ If the data type is pass-through (Do not parse/Custom), the data forwarded

 by the rules engine is the data that has been parsed by the data parsing
script.

48 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
• Call services using the synchronous method.

1. Call the API InvokeThingService to call a service synchronously (if you select
Synchronous as the method when you define the service, this service is called in
the synchronous method).

2. IoT Platform verifies the parameters.
3. The synchronous call method is where IoT Platform calls the RRPC topic to send

the request data to the device, and waits for the device to return a result.

Note:

Issue: 20190506 49

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
If the data type of the device is Do not parse/Custom, IoT Platform will call the
protocolTo RawData method in the data parsing script to convert the data

before sending the data to the device.
4. After the device has completed the requested operation, it returns the results to

IoT Platform. If IoT Platform does not receive a result within the timeout period
, it will send a timeout error to you.

5. IoT Platform returns the results to you.

Note:
If the data type of the device is Do not parse/Custom, IoT Platform will call the
rawDataToP rotocol method in the data parsing script to convert the data

returned by the device, and then will send the results to you.
Build topological relationships between gateways and sub-devices.

1. After a sub-device has been connected to a gateway, the gateway sends a message
using the topic for adding topological relationship messages to notify IoT Platform

50 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
 to build topological relationship between the gateway and the sub-device. IoT
Platform handles the request and then returns a result.

2. Also, a gateway can send a message using the topic for deleting topological
relationship messages to notify IoT Platform to remove a sub-device from the
gateway.

3. Call the API GetThingTopo to query topological relationships of devices.
4. If you use the rules engine to forward device messages to another Alibaba Cloud

service, and you receive device messages from that service, the process of building
a topological relationship is as the following.
a. The gateway device reports the information of the sub-device that has been

detected to IoT Platform.
b. IoT Platform receives the message and then forwards the message to the data

forwarding target that you have specified when you were configuring the rule.
c. You obtain the sub-device information from the data forwarding target service

and then determine whether or not to build the topological relationship. Call the
API NotifyAddThingTopo to send a request for building topological relationship to
IoT Platform.

d. IoT Platform receives the request from NotifyAddThingTopo, and then pushes the
request to the gateway.

e. The gateway receives the request and builds the topological relationship with
the sub-device.

Note:
• Gateways use the topic / sys /{ productKey }/{ deviceName }/ thing / topo

/ add to build topological relationships with sub-devices.
• Gateways use the topic / sys /{ productKey }/{ deviceName }/ thing / topo

/ delete to delete topological relationships with sub-devices.
• Gateways use the topic / sys /{ productKey }/{ deviceName }/ thing / topo

/ get to query the topological relationships with sub-devices.
• Gateways use the topic / sys /{ productKey }/{ deviceName }/ thing / list

/ found to report information of sub-devices.
• Gateways use the topic / sys /{ productKey }/{ deviceName }/ thing / topo

/ add / notify to initiate requests for building topological relationships.
Issue: 20190506 51

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol

6.2 Device identity registration
Before you connect a device to IoT Platform, you need to register the device identity
to identify it on IoT Platform.
The following methods are available for identity registration:
• Unique certificate per device: Obtain the ProductKey, DeviceName, and DeviceSecr

et of a device on IoT Platform and use them as the unique identifier. Install these
three key fields on the firmware of the device. After the device is connected to IoT
Platform, the device starts to communicate with IoT Platform.

• Dynamic registration: You can perform dynamic registration based on unique-
certificate-per-product authentication for directly connected devices and perform
dynamic registration for sub-devices.
- To dynamically register a directly connected device based on unique-certificate-

per-product authentication, follow these steps:
1. In the IoT Platform console, pre-register the device and obtain the

ProductKey and ProductSecret. When you pre-register the device, use device
 information that can be directly read from the device as the DeviceName,
such as the MAC address or the serial number of the device.

2. Enable dynamic registration in the console.
3. Install the product certificate on the device firmware.
4. The device authenticates to IoT Platform. If the device passes authentication,

IoT Platform assigns a DeviceSecret to the device.
5. The device uses the ProductKey, DeviceName, and DeviceSecret to establish a

 connection to IoT Platform.
- To dynamically register a sub-device, follow these steps:

1. In the IoT Platform console, pre-register a sub-device and obtain the
ProductKey. When you pre-register the sub-device, use device information
that can be read directly from the sub-device as the DeviceName, such as the
MAC address and SN.

2. Enable dynamic registration in the console.
3. Install the ProductKey on the firmware of the sub-device or on the gateway.
4. The gateway authenticates to IoT Platform on behalf of the sub-device.

52 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Dynamically register a sub-device

Upstream
• Request topic: / sys /{ productKey }/{ deviceName }/ thing / sub /

register

• Reply topic: / sys /{ productKey }/{ deviceName }/ thing / sub /

register_r eply

Request message
{
 " id ": " 123 ",
 " version ": " 1 . 0 ",
 " params ": [
 {
 " deviceName ": " deviceName 1234 ",
 " productKey ": " 1234556554 "
 }
]
}

Response message
{
 " id ": " 123 ",
 " code ": 200 ,
 " data ": [
 {
 " iotId ": " 12344 ",
 " productKey ": " 1234556554 ",
 " deviceName ": " deviceName 1234 ",
 " deviceSecr et ": " xxxxxx "
 }
]
}

Parameter description
Parameter Type Description
id String Message ID. You need to define IDs for

upstream messages using numbers, and
 the message IDs must be unique within
the device.

version String Protocol version. Currently, the value can
 only be 1.0.

params List Parameters used for dynamic registrati
on.

deviceName String Name of the sub-device.
Issue: 20190506 53

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Parameter Type Description
productKey String ID of the product to which the sub-device

 belongs.
iotId String Unique identifier of the sub-device.
deviceSecret String DeviceSecret key.
code Integer Result code.

Error messages
Error code Error message Description
460 request parameter error The request parameters

are incorrect.
6402 topo relation cannot add

by self
A device cannot be added
to itself as a sub-device.

401 request auth error Signature verification has
failed.

Dynamically register a directly connected device based on unique-certificate-per-product
authentication

Directly connected devices send HTTP requests to perform dynamic register. Make
 sure that you have enabled dynamic registration based on unique certificate per
product in the console.
• URL template: https :// iot - auth . cn - shanghai . aliyuncs . com /

auth / register / device

• HTTP method： POST
Request message
POST / auth / register / device HTTP / 1 . 1
Host : iot - auth . cn - shanghai . aliyuncs . com
Content - Type : applicatio n / x - www - form - urlencoded
Content - Length : 123
productKey = 1234556554 & deviceName = deviceName 1234 & random =
567345 & sign = adfv123hdf dh & signMethod = HmacMD5

Response message
{
 " code ": 200 ,
 " data ": {
 " productKey ": " 1234556554 ",
 " deviceName ": " deviceName 1234 ",

54 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
 " deviceSecr et ": " adsfweafds f "
 },
 " message ": " success "
}

Parameter description
Parameter Type Description
productKey String ID of the product to which the device

belongs.
deviceName String Name of the device
random String Random number.
sign String Signature.
signMethod String Signing method. The supported

methods are hmacmd5, hmacsha1, and
hmacsha256.

code Integer Result code.
deviceSecret String DeviceSecret key.

Sign the parameters
All parameters reported to IoT Platform will be signed except sign and
signMethod . Sort the signing parameters in alphabetical order, and splice the

parameters and values without any splicing symbols.
Then, sign the parameters by using the algorithm specified by signMethod .
Example:
sign = hmac_sha1 (productSec ret , deviceName deviceName
1234produc tKey123455 6554random 123)

6.3 Add a topological relationship
After a sub-device has registered with IoT Platform, the gateway reports the
topological relationship of Gateways and sub-devices to IoT Platform before the sub-
device connects to IoT Platform.
IoT Platform verifies the identity and the topological relationship during connection.
If the verification is successful, IoT Platform establishes a logical connection with the
 sub-device and associates the logical connection with the physical connection of the
 gateway. The sub-device uses the same protocols as a directly connected device for

Issue: 20190506 55

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
data upload and download. Gateway information is not required to be included in the
 protocols.
After you delete the topological relationship of the sub-device from IoT Platform, the
 sub-device can no longer connect to IoT Platform through the gateway. IoT Platform
will fail the authentication because the topological relationship does not exist.

Add topological relationships of sub-devices
Upstream
• Request topic: / sys /{ productKey }/{ deviceName }/ thing / topo / add

• Reply topic: sys /{ productKey }/{ deviceName }/ thing / topo /

add_reply

Request data format when using the Alink protocol
{
 " id ": " 123 ",
 " version ": " 1 . 0 ",
 " params ": [
 {
 " deviceName ": " deviceName 1234 ",
 " productKey ": " 1234556554 ",
 " sign ": " xxxxxx ",
 " signmethod ": " hmacSha1 ",
 " timestamp ": " 1524448722 000 ",
 " clientId ": " xxxxxx "
 }
]
}

Response data format when using the Alink protocol
{
 " id ": " 123 ",
 " code ": 200 ,
 " data ": {}
}

Parameter description
Parameter Type Description
id String Message ID. You need to define IDs for

upstream messages using numbers, and
 the message IDs must be unique within
the device.

version String Protocol version. Currently, the value can
 only be 1.0.

56 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Parameter Type Description
params List Input parameters of the request.
deviceName String Device name. The value is the name of

the sub-device.
productKey String Product ID. The value is the ID of the

product to which the sub-device belongs.
sign String Signature.

Signature algorithm:
Sort all the parameters (except for
sign and signMethod) that

will be submitted to the server in
lexicographical order, and then connect
the parameters and values in turn (no
connect symbols).
Sign the signing parameters by using
the algorithm specified by the signing
method.
For example, in the following request,
sort the parameters in params in
alphabetic order and then sign the
parameters.
sign = hmac_md5 (deviceSecr
et , clientId12 3deviceNam
etestprodu ctKey123ti
mestamp152 4448722000)

signmethod String Signing method. The supported methods
 are hmacSha1, hmacSha256, hmacMd5,
and Sha256.

timestamp String Timestamp.
clientId String Identifier of a sub-device. This parameter

 is optional and may have the same value
as ProductKey or DeviceName.

code Integer Result code. A value of 200 indicates the
request is successful.

Error messages
Error code Error message Description
460 request parameter error The request parameters are

incorrect.
Issue: 20190506 57

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Error code Error message Description
6402 topo relation cannot add by self A device cannot be added to

itself as a sub-device.
401 request auth error Signature verification has failed.

Delete topological relationships of sub-devices
A gateway can publish a message to this topic to request IoT Platform to delete the
topological relationship between the gateway and a sub-device.
Upstream
• Request topic: / sys /{ productKey }/{ deviceName }/ thing / topo /

delete

• Reply topic: / sys /{ productKey }/{ deviceName }/ thing / topo /

delete_rep ly

Request data format when using the Alink protocol
{
 " id ": " 123 ",
 " version ": " 1 . 0 ",
 " params ": [
 {
 " deviceName ": " deviceName 1234 ",
 " productKey ": " 1234556554 "
 }
]
}

Response data format when using the Alink protocol
{
 " id ": " 123 ",
 " code ": 200 ,
 " data ": {}
}

Parameter description
Parameter Type Description
id String Message ID. You need to define IDs for

upstream messages using numbers, and
 the message IDs must be unique within
the device.

version String Protocol version. Currently, the value can
 only be 1.0.

58 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Parameter Type Description
params List Request parameters.
deviceName String Device name. The value is the name of

the sub-device.
productKey String Product ID. The value is the ID of the

product to which the sub-device belongs.
code Integer Result code. A value of 200 indicates the

request is successful.
Error messages
Error code Error message Description
460 request parameter error The request parameters are

incorrect.
6100 device not found The device does not exist.

Obtain topological relationships of sub-devices
Upstream
• Request topic: / sys /{ productKey }/{ deviceName }/ thing / topo / get

• Reply topic: / sys /{ productKey }/{ deviceName }/ thing / topo /

get_reply

A gateway can publish a message to this topic to obtain the topological relationships
between the gateway and its connected sub-devices.
Request data format when using the Alink protocol
{
 " id ": " 123 ",
 " version ": " 1 . 0 ",
 " params ": {}
}

Response data format when using the Alink protocol
{
 " id ": " 123 ",
 " code ": 200 ,
 " data ": [
 {
 " deviceName ": " deviceName 1234 ",
 " productKey ": " 1234556554 "
 }
]

Issue: 20190506 59

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
}

Parameter description
Parameter Type Description
id String Message ID. You need to define IDs for

upstream messages using numbers, and
 the message IDs must be unique within
the device.

version String Protocol version. Currently, the value can
 only be 1.0.

params Object Request parameters. This can be left
empty.

deviceName String Name of the sub-device.
productKey String Product ID of the sub-device.
code Integer Result code. A value of 200 indicates the

request is successful.
Error messages
Error code Error message Description
460 request parameter error The request parameters are

incorrect.
Report new sub-devices

Upstream
• Request topic: / sys /{ productKey }/{ deviceName }/ thing / list /

found

• Reply topic: / sys /{ productKey }/{ deviceName }/ thing / list /

found_repl y

In some scenarios, the gateway can discover new sub-devices. The gateway reports
 information of a new sub-device to IoT Platform. IoT Platform forwards the sub-
device information to third-party applications, and the third-party applications
choose the sub-devices to connect to the gateway.
Request data format when using the Alink protocol
{
 " id ": " 123 ",

60 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
 " version ": " 1 . 0 ",
 " params ": [
 {
 " deviceName ": " deviceName 1234 ",
 " productKey ": " 1234556554 "
 }
]
}

Response data format when using the Alink protocol
{
 " id ": " 123 ",
 " code ": 200 ,
 " data ":{}
}

Parameter description
Parameter Type Description
id String Message ID. You need to define IDs for

upstream messages using numbers, and
 the message IDs must be unique within
the device.

version String Protocol version. Currently, the value can
 only be 1.0.

params Object Request parameters. This parameter can
be left empty.

deviceName String Name of the sub-device.
productKey String Product ID of the sub-device.
code Integer Result code. A value of 200 indicates the

request is successful.
Error messages
Error code Error message Description
460 request parameter error The request parameters are

incorrect.
6250 product not found The specified product to which

the sub-device belongs does not
exist.

Issue: 20190506 61

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Error code Error message Description
6280 devicename not meet specs The name of the sub-device is

invalid. The device name must
 be 4 to 32 characters in length
and can contain letters, digits,
hyphens (-), underscores (_), at
signs (@), periods (.), and colons
 (:).

Notify the gateway to add topological relationships of the connected sub-devices
Downstream
• Rquest topic: / sys /{ productKey }/{ deviceName }/ thing / topo / add /

notify

• Reply topic: / sys /{ productKey }/{ deviceName }/ thing / topo / add /

notify_rep ly

IoT Platform publishes a message to this topic to notify a gateway to add topological
relationships of the connected sub-devices. You can use this topic together with the
topic that reports new sub-devices to IoT Platform. IoT Platform can subscribe to
a data exchange topic to receive the response from the gateway. The data exchange
topic is /{ productKey }/{ deviceName }/ thing / downlink / reply /

message .
Request data format when using the Alink protocol
{
 " id ": " 123 ",
 " version ": " 1 . 0 ",
 " params ": [
 {
 " deviceName ": " deviceName 1234 ",
 " productKey ": " 1234556554 "
 }
],
 " method ": " thing . topo . add . notify "
}

Response data format when using the Alink protocol
{
 " id ": " 123 ",
 " code ": 200 ,
 " data ": {}

62 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
}

Parameter description
Parameter Type Description
id String Message ID. IoT Platform generates IDs

for downstream messages.
version String Protocol version. Currently, the value can

 only be 1.0.
params Object Request parameters. This parameter can

be left empty.
method String Request method. The value is thing .

topo . add . notify .
deviceName String Name of the sub-device.
productKey String Product ID of the sub-device.
code Integer Result code. A value of 200 indicates the

request is successful.

6.4 Connect and disconnect sub-devices
Register devices with IoT Platform, assign the devices to a gateway device as
sub-devices, and then connect these sub-devices to IoT Platform using the
communication channel of the gateway device. When a sub-device is connecting to
IoT Platform, IoT Platform verifies the identity of the sub-device according to the
topological relationship between the gateway and the sub-device to identify whether
the sub-device can use the channel of the gateway.

Note:
For messages about sub-device connection and disconnection, the QoS is 0.

Connect a sub-device to IoT Platform

Note:
A gateway device can have up to 1500 sub-devices connected to IoT Platform. When
the maximum number is reached, IoT Platform will deny new connection requests
from sub-devices of the gateway.

Upstream

Issue: 20190506 63

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
• Request topic: / ext / session /${ productKey }/${ deviceName }/ combine

/ login

• Response topic: / ext / session /${ productKey }/${ deviceName }/

combine / login_repl y

Note:
Because sub-devices use channels of gateways to communicate with IoT Platform,
these topics are topics of gateway devices. Replace the variables ${productKey} and
${deviceName} in the topics with the corresponding information of the gateway
device.

Request message
{
 " id ": " 123 ",
 " params ": {
 " productKey ": " 123 ",
 " deviceName ": " test ",
 " clientId ": " 123 ",
 " timestamp ": " 123 ",
 " signMethod ": " hmacmd5 ",
 " sign ": " xxxxxx ",
 " cleanSessi on ": " true "
 }
}

Note:
In the request message, the values of parameters productKey and deviceName

are the corresponding information of the sub-device.
Response message:
{
 " id ":" 123 ",
 " code ": 200 ,
 " message ":" success "
 " data ":""
}

Request Parameters
Parameter Type Description
id String Message ID. You need to define IDs for upstream

 messages using numbers, and the message IDs
must be unique within the device.

params Object Request parameters.
64 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Parameter Type Description
deviceName String Name of the sub-device.
productKey String The unique identifier of the product to which the

device belongs.
sign String Signature of the sub-device. Sub-devices use the

same signature rules as gateways.
Sign algorithm:
1. Sort all the parameters (except sign and

signMethod and cleanSessi on) to be
submitted to the server in alphabetical order,
and then concatenate the parameters and
values in turn (without any delimiters).

2. Then, sign the parameters by using the
algorithm specified by signMethod and the
DeviceSecret of the sub-device.

Example:
sign = hmac_md5 (deviceSecr et ,
clientId12 3deviceNam etestprodu
ctKey123ti mestamp123)

signMethod String Sign method. The supported methods are
hmacSha1, hmacSha256, hmacMd5, and Sha256.

timestamp String Timestamp.
clientId String The device identifier. The value of this parameter

can be the value of ProductKey and DeviceName.
cleanSession String • A value of true indicates that when the sub-

device is offline, messages sent based on QoS=1
 method will be cleared.

• A value of false indicates that when the sub-
device is offline, messages sent based on QoS=1
 method will not be cleared.

Response parameters
Parameter Type Description
id String The message ID.
code Integer Result code. A value of 200 indicates that the

request is successful.
message String Result message.

Issue: 20190506 65

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Parameter Type Description
data Object Additional information in the response, in JSON

format.
Error messages
Error code Error message Description
460 request parameter error The request parameters are

incorrect.
429 rate limit, too many subDeviceO

nline msg in one minute
The authentication requests
 from the device are limited
because the device requested
authentication to IoT Platform
too frequently.

428 too many subdevices under
gateway

The number of sub-devices
connected to IoT Platform has
reached the upper limit.

6401 topo relation not exist The topological relationship
between the gateway and the sub
-device does not exist.

6100 device not found The sub-device does not exist.
521 device deleted The sub-device has been deleted

.
522 device forbidden The sub-device has been

disabled.
6287 invalid sign The password or signature of the

 sub-device is incorrect.
Disconnect a sub-device from IoT Platform

Upstream
• Request topic: / ext / session /{ productKey }/{ deviceName }/ combine /

logout

• Response topic: / ext / session /{ productKey }/{ deviceName }/ combine

/ logout_rep ly

Note:

66 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Because sub-devices use channels of gateways to communicate with IoT Platform,
these topics are topics of gateway devices. Replace the variables ${productKey} and
${deviceName} in the topics with the corresponding information of the gateway
device.

Request message:
{
 " id ": 123 ,
 " params ": {
 " productKey ": " xxxxx ",
 " deviceName ": " xxxxx "
 }
}

Note:
In the request message, the values of parameters productKey and deviceName

are the corresponding information of the sub-device.
Response message:
{
 " id ": " 123 ",
 " code ": 200 ,
 " message ": " success ",
 " data ": ""
}

Request Parameters
Parameter Type Description
id String The message ID. You need

to define IDs for upstream
 messages using numbers
, and the message IDs
must be unique within the
 device.

params Object Request parameters.
deviceName String Name of the sub-device.
productKey String The unique identifier of

the product to which the
device belongs.

Response parameters

Issue: 20190506 67

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Parameter Type Description
id String The message ID.
code Integer Result code. A value of 200 indicates that the

request is successful.
message String Result message.
data Object Additional information in the response, in JSON

format.
Error messages
Error code Error message Description
460 request parameter error The request parameters are

incorrect.
520 device no session The sub-device session does not

exist.
For more information about sub-device connections, see Device identity registration. For
more information about error codes, see Error codes.

6.5 Device properties, events, and services
If you have defined the TSL for a product, the devices of this product can separately
report data regarding the properties, events, and services that you have defined. For
information about the data format of TSL, see Data format . This topic describes how
data is reported based on the TSL.
When you create a product, you must select a data type for devices of the product. IoT
Platform supports two data types: ICA Standard Data Format (Alink JSON) and Do not
parse/Custom. We recommend that you select Alink JSON, because it is the standard
data format of IoT Platform.
• ICA Standard Data Format (Alink JSON): Devices generate data in the standard

 format defined by IoT Platform, and then report the data to IoT Platform. The
following sections provide examples of Alink JSON data format.

• Do not parse/Custom: Devices report raw data, such as binary data, to IoT
Platform, and then IoT Platform parses the raw data to be standard data using the
parsing script that you have submitted in the console. Data generated by IoT Platform

68 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
is in Alink JSON format, and before sending the data to devices, IoT Platform will
parse the data to the format that the devices support.

Devices report properties
Report data (Do not parse/Custom)
• Request topic: / sys /{ productKey }/{ deviceName }/ thing / model /

up_raw

• Response topic: / sys /{ productKey }/{ deviceName }/ thing / model /

up_raw_rep ly

The raw data of a request message:

Note:
In raw data, the request method thing.event.property.post must be included.
0x02000000 7b00

Response message from IoT Platform:
{
 " id ":" 123 ",
 " code ": 200 ,
 " method ":" thing . event . property . post "
 " data ":{}
}

Report Data (Alink JSON)
• Request topic: / sys /{ productKey }/{ deviceName }/ thing / event /

property / post

• Response topic: / sys /{ productKey }/{ deviceName }/ thing / event /

property / post_reply

Request message:
{

Issue: 20190506 69

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
 " id ": " 123 ",
 " version ": " 1 . 0 ",
 " params ": {
 " Power ": {
 " value ": " on ",
 " time ": 1524448722 000
 },
 " WF ": {
 " value ": 23 . 6 ,
 " time ": 1524448722 000
 }
 }
}

Table 6-1: Request Parameters
Parameter Type Description
id String The message ID. You need to define IDs

 for upstream messages using numbers
, and the message IDs must be unique
within the device.

version String The protocol version. Currently, the
value is 1.0.

params Object The request parameters. In the preceding
 request example, the device reports
two properties: Power and WF. Property
 information includes time (the time
when the property is reported) and value
 (the value of the property).

time Long The time when the property is reported.
value Object The value of the property.

Response message:
{
 " id ": " 123 ",
 " code ": 200 ,
 " data ": {}
}

Table 6-2: Response parameters
Parameter Type Description
id String The message ID.
code Integer The result code. See Common codes on

devices.
70 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Parameter Type Description
data String The data that is returned when the

request is successful.
Table 6-3: Error codes
Error code Error message Description
460 request parameter error The request parameters are incorrect.
6106 map size must less than

200
The number of reported properties
exceeds the maximum limit. Up to 200
properties can be reported at a time.

6313 tsl service not available The TSL verification service is not
available.
IoT Platform verifies all the received
 properties according to the TSLs of
products.
If the TSL verification service is available
, but some reported properties do not
match with any properties defined in the
 TSL, IoT Platform ignores the invalid
properties. If all the reported properties
do not match with any properties defined
 in the TSL, IoT Platform ignores them
 all. In this case, the response will still
indicate that the verification is successful
.
This error is reported when a system
exception occurs.

You can use the Rules engine to forward property information reported by devices to
other supported Alibaba Cloud services. For more information about topics and data
formats, see Messages about device properties reported by devices.

Set device properties
Push data to devices (Do not parse/Custom)
• Request topic: / sys /{ productKey }/{ deviceName }/ thing / model /

down_raw

• Response topic: / sys /{ productKey }/{ deviceName }/ thing / model /

down_raw_r eply

Issue: 20190506 71

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Push data to devices (Alink JSON)
• Request topic: / sys /{ productKey }/{ deviceName }/ thing / service /

property / set

• Response topic: / sys /{ productKey }/{ deviceName }/ thing / service /

property / set_reply

Request message:
{
 " id ": " 123 ",
 " version ": " 1 . 0 ",
 " params ": {
 " temperatur e ": " 30 . 5 "
 },
 " method ": " thing . service . property . set "
}

Table 6-4: Request Parameters
Parameter Type Description
id String The message ID. IoT Platform generates

IDs for downstream messages.
version String The protocol version. Currently, the

value is 1.0.
params Object The property parameters. In the

preceding request example, the property
to be set is
{ " temperatur e ": " 30 . 5 " }

method String Request method. The value is thing .
service . property . set .

Response message:
{
 " id ": " 123 ",
 " code ": 200 ,
 " data ": {}
}

Table 6-5: Response parameters
Parameter Type Description
id String The message ID.

72 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Parameter Type Description
code Integer The result code. See Common codes on

devices.
data String The data that is returned when the

request is successful.
You can use the Rules engine to forward the property setting results from devices to
other supported Alibaba Cloud services. For message topics and data formats, see
Devices return result data to the cloud.

Devices report events
Report data (Do not parse/Custom)
• Request topic: / sys /{ productKey }/{ deviceName }/ thing / model /

up_raw

• Response topic: / sys /{ productKey }/{ deviceName }/ thing / model /

up_raw_rep ly

The raw data of a request message:

Note:
In raw data, the request method thing.event.{tsl.event.identifier}.post

must be included. tsl . event . identifier indicates the event identifier in the
TSL.
0xff000000 7b00

Response message from IoT Platform:
{
 " id ":" 123 ",
 " code ": 200 ,
 " method ":" thing . event .{ tsl . event . identifier }. post "
 " data ":{}
}

Report Data (Alink JSON)
• Request topic: / sys /{ productKey }/{ deviceName }/ thing / event /{

tsl . event . identifier }/ post

• Response topic: / sys /{ productKey }/{ deviceName }/ thing / event /{

tsl . event . identifier }/ post_reply

Issue: 20190506 73

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Request message:
{
 " id ": " 123 ",
 " version ": " 1 . 0 ",
 " params ": {
 " value ": {
 " Power ": " on ",
 " WF ": " 2 "
 },
 " time ": 1524448722 000
 }
}

Table 6-6: Request Parameters
Parameter Type Description
id String The message ID. You need to define IDs

 for upstream messages using numbers
, and the message IDs must be unique
within the device.

version String The protocol version. Currently, the
value is 1.0.

params List The parameters of the reported events.
value Object The event information. In the preceding

request example, the events are:
{
 " Power ": " on ",
 " WF ": " 2 "
 }

time Long The UTC timestamp when the event
occurs.

Response message:
{
 " id ": " 123 ",
 " code ": 200 ,
 " data ": {}
}

Table 6-7: Response parameters
Parameter Type Description
id String The message ID.

74 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Parameter Type Description
code Integer The result code. See Common codes on

devices.
Note:

IoT Platform verifies all the events
reported by devices according to the
TSLs of products. If the reported event
does not match with any events defined
in the TSL, an error code is returned.

data String The data that is returned when the
request is successful.

Examples
For example, an event alarm has been defined in the TSL of a product:
{
 " schema ": " https :// iot - tsl . oss - cn - shanghai . aliyuncs .
com / schema . json ",

 " link ": "/ sys /${ productKey }/ airConditi on / thing /",
 " profile ": {
 " productKey ": " al12345678 9 ",
 " deviceName ": " airConditi on "
 },
 " events ": [
 {
 " identifier ": " alarm ",
 " name ": " alarm ",
 " desc ": " Fan alarm ",
 " type ": " alert ",
 " required ": true ,
 " outputData ": [
 {
 " identifier ": " errorCode ",
 " name ": " ErrorCode ",
 " dataType ": {
 " type ": " text ",
 " specs ": {
 " length ": " 255 "
 }
 }
 }
],
 " method ": " thing . event . alarm . post "
 }
]
}

Request message of reporting an event:
{
 " id ": " 123 ",
 " version ": " 1 . 0 ",

Issue: 20190506 75

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
 " params ": {
 " value ": {
 " errorCode ": " error "
 },
 " time ": 1524448722 000
 }
}

You can use the Rules engine to forward event information reported by devices to
other supported Alibaba Cloud services. For more information about topics and data
formats, see Messages about events reported by devices

Call device services
Push data to devices (Do not parse/Custom)
• Request topic: / sys /{ productKey }/{ deviceName }/ thing / model /

down_raw

• Response topic: / sys /{ productKey }/{ deviceName }/ thing / model /

down_raw_r eply

Push data to devices (Alink JSON)
• Request topic: / sys /{ productKey }/{ deviceName }/ thing / service /{

tsl . service . identifier }

• Response topic: / sys /{ productKey }/{ deviceName }/ thing / service /{

tsl . service . identifier } _reply

Service calling methods
Supports synchronous calls and asynchronous calls. When you define a service, you are
required to select a method for the service.
• Synchronous method: IoT Platform uses the RRPC method to push requests to

devices. For information about the RRPC method, see What is RRPC.
• Asynchronous method: IoT Platform pushes requests to devices in an

asynchronous manner, and the devices return operation results in an
asynchronous manner.
Only when asynchronous method is selected for a service does IoT Platform
subscribe to the response topic. You can use the Rules engine to forward the results
of asynchronous calls returned by devices to other supported Alibaba Cloud
services. For more information about topics and data formats, see Devices return

result data to the cloud.
76 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Request message:
{
 " id ": " 123 ",
 " version ": " 1 . 0 ",
 " params ": {
 " Power ": " on ",
 " WF ": " 2 "
 },
 " method ": " thing . service .{ tsl . service . identifier }"
}

Table 6-8: Request Parameters
Parameter Type Description
id String The message ID. IoT Platform generates

IDs for downstream messages.
version String The protocol version. Currently, the

value is 1.0.
params Map The parameters used to call a service,

including the identifier and value of the
service. Example:
{
 " Power ": " on ",
 " WF ": " 2 "
 }

method String Request method.
Note:

tsl . service . identifier
indicates the identifier of the service
in TSL. For information about how to
define a TSL, see Overview.

Response message:
{
 " id ": " 123 ",
 " code ": 200 ,
 " data ": {}

Issue: 20190506 77

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
}

Table 6-9: Response parameters
Parameter Type Description
id String The message ID.
code Integer The result code. See Common codes on

devices.
data String The data that is returned when the

request is successful.
The value of data is determined by the
TSL of the product. If the device does not
 return any information about the service
, the value of data is empty. If the device
returns service information, the returned
 data value will strictly comply with the
definition of the service in the TSL.

Examples
For example, the service SetWeight has been defined in the TSL of the product as
follows:
{
 " schema ": " https :// iotx - tsl . oss - ap - southeast - 1 .
aliyuncs . com / schema . json ",

 " profile ": {
 " productKey ": " testProduc t01 "
 },
 " services ": [
 {
 " outputData ": [
 {
 " identifier ": " OldWeight ",
 " dataType ": {
 " specs ": {
 " unit ": " kg ",
 " min ": " 0 ",
 " max ": " 200 ",
 " step ": " 1 "
 },
 " type ": " double "
 },
 " name ": " OldWeight "
 },
 {
 " identifier ": " CollectTim e ",
 " dataType ": {
 " specs ": {
 " length ": " 2048 "
 },
 " type ": " text "

78 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
 },
 " name ": " CollectTim e "
 }
],
 " identifier ": " SetWeight ",
 " inputData ": [
 {
 " identifier ": " NewWeight ",
 " dataType ": {
 " specs ": {
 " unit ": " kg ",
 " min ": " 0 ",
 " max ": " 200 ",
 " step ": " 1 "
 },
 " type ": " double "
 },
 " name ": " NewWeight "
 }
],
 " method ": " thing . service . SetWeight ",
 " name ": " SetWeight ",
 " required ": false ,
 " callType ": " async "
 }
]
}

Request message of a service call:
{
 " method ": " thing . service . SetWeight ",
 " id ": " 105917531 ",
 " params ": {
 " NewWeight ": 100 . 8
 },
 " version ": " 1 . 0 . 0 "
}

Response message:
{
 " id ": " 105917531 ",
 " code ": 200 ,
 " data ": {
 " CollectTim e ": " 1536228947 682 ",
 " OldWeight ": 100 . 101
 }
}

Gateway devices report data
A gateway device can report properties and events of itself and properties and events
of its sub-devices to IoT Platform.

Note:
• A gateway can report up to 200 properties and 20 events at one time.

Issue: 20190506 79

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
• A gateway can report up to 20 properties and events of sub-devices.

Report data (Do not parse/Custom)
• Request topic: / sys /{ productKey }/{ deviceName }/ thing / model /

up_raw

• Response topic: / sys /{ productKey }/{ deviceName }/ thing / model /

up_raw_rep ly

The raw data of a request message:

Note:
In raw data, the request method thing.event.property.pack.post must be
included.
0xff000000 7b00

Response message from IoT Platform:
{
 " id ": " 123 ",
 " code ": 200 ,
 " method ": " thing . event . property . pack . post ",
 " data ": {}
}

Report data (Alink JSON)
• Request topic: / sys /{ productKey }/{ deviceName }/ thing / event /

property / pack / post

• Response topic: / sys /{ productKey }/{ deviceName }/ thing / event /

property / pack / post_reply

Request message:
{
 " id ": " 123 ",
 " version ": " 1 . 0 ",
 " params ": {
 " properties ": {
 " Power ": {
 " value ": " on ",
 " time ": 1524448722 000
 },
 " WF ": {
 " value ": { },
 " time ": 1524448722 000
 }
 },
 " events ": {

80 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
 " alarmEvent 1 ": {
 " value ": {
 " param1 ": " on ",
 " param2 ": " 2 "
 },
 " time ": 1524448722 000
 },
 " alertEvent 2 ": {
 " value ": {
 " param1 ": " on ",
 " param2 ": " 2 "
 },
 " time ": 1524448722 000
 }
 },
 " subDevices ": [
 {
 " identity ": {
 " productKey ": "",
 " deviceName ": ""
 },
 " properties ": {
 " Power ": {
 " value ": " on ",
 " time ": 1524448722 000
 },
 " WF ": {
 " value ": { },
 " time ": 1524448722 000
 }
 },
 " events ": {
 " alarmEvent 1 ": {
 " value ": {
 " param1 ": " on ",
 " param2 ": " 2 "
 },
 " time ": 1524448722 000
 },
 " alertEvent 2 ": {
 " value ": {
 " param1 ": " on ",
 " param2 ": " 2 "
 },
 " time ": 1524448722 000
 }
 }
 }
]
 }
}

Table 6-10: Request Parameters
Parameter Type Description
id String The message ID. You need to define IDs

 for upstream messages using numbers
, and the message IDs must be unique
within the device.

Issue: 20190506 81

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Parameter Type Description
version String The protocol version. Currently, the

value is 1.0.
params Object The request parameters.
properties Object The information about a property,

including property identifier, value and
time when the property was generated.

events Object The information about an event,
including event identifier, value and time
 when the event was generated.

subDevices Object The sub-device information.
productKey String The ProductKey of a sub-device.
deviceName String The name of a sub-device.

Response message:
{
 " id ": " 123 ",
 " code ": 200 ,
 " data ": {}
}

Table 6-11: Response parameters
Parameter Type Description
id String The message ID.
code Integer Result code. A value of 200 indicates that

the request is successful.
Note:

IoT Platform then verifies the devices,
topological relationships, and property
and event definitions in the TSL. If any
one of the verifications fails, the data
report also fails.

data Object The data that is returned when the
request is successful.

82 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol

6.6 Desired device property values
After you set a desired property value for a device in IoT Platform, the property
value is updated in real time if the device is online. If the device is offline, the desired
value is cached in IoT Platform. When the device comes online again, it will obtain
the desired value and update the property value. This topic describes the message
formats related to desired property values.

Obtain desired property values
Upstream data in Alink JSON format
A device requests the desired property values from IoT Platform.
• Request topic: / sys /{ productKey }/{ deviceName }/ thing / property /

desired / get

• Response topic: / sys /{ productKey }/{ deviceName }/ thing / property /

desired / get_reply

Request format
{
 " id " : " 123 ",
 " version ": " 1 . 0 ",
 " params " : [
 " power ",
 " temperatur e "
]
}

Response format
{
 " id ":" 123 ",
 " code ": 200 ,
 " data ":{
 " power ": {
 " value ": " on ",
 " version ": 2
 }
 }
}

Table 6-12: Request parameters
Parameter Type Description
id String The message ID. Define the message ID to be a

string of numbers, and be unique in the device.
Issue: 20190506 83

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Parameter Type Description
version String The protocol version. Currently, the value can

only be 1.0.
params List The identifier list of properties of which you want

to obtain the desired values.
In this example, the following property identifiers
 are listed:
[
 " power ",
 " temperatur e "
]

Table 6-13: Response parameters
Parameter Type Description
id String The message ID.
code Integer The result code. For more information, see the

common codes on the device.
data Object The desired value information that is returned.

In this example, the desired value information
about property "power" is returned. The
information includes the value and version
of the property.
{
 " power ": {
 " value ": " on ",
 " version ": 2
 }
}

Note:
If no desired value is set for a property in IoT
Platform or the desired value has been cleared,
the returned data will not contain the identifier
of this property. In this example, the property
"temperature" does not have a desired value,
therefore, the returned data does not contain
this property identifier.

For more information about the parameters in
data, see the following table Parameters in data.

84 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Table 6-14: Parameters in data
Parameter Type Description
key String The identifier of the property, such as "power" in

this example.
value Object The desired value.
version Integer The current version of the desired value.

Note:
When you set the desired property value for the
first time, this value is 0. After the first desired
value is set, the version automatically changes
to 1. Then, the version increases by 1 every time
you set the desired value.

Clear desired property values
Upstream data in Alink JSON format
Requests to clear the desired property values that are cached in IoT Platform.
• Request topic: / sys /{ productKey }/{ deviceName }/ thing / property /

desired / delete

• Response topic: / sys /{ productKey }/{ deviceName }/ thing / property /

desired / delete_rep ly

Request format
{
 " id " : " 123 ",
 " version ": " 1 . 0 ",
 " params " : [{
 " power ": {
 " version ": 1
 },
 " temperatur e ": {
 }
 }
}

Response format
{
 " id ":" 123 ",
 " code ": 200 ,
 " data ":{
 }

Issue: 20190506 85

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
}

Table 6-15: Request parameters
Parameter Type Description
id String The message ID. Define the message ID to be a

string of numbers, and be unique in the device.
version String The protocol version. Currently, the value can

only be 1.0.
params List The list of the properties of which you want to

clear the desired values. A property is identified
by the identifier and version . For example:
{
 " power ": {
 " version ": 1
 },
 " temperatur e ": { }
}

For more information about params, see the
following table Parameters in params.

Table 6-16: Parameters in params
Parameter Type Description
key String The identifier of the property. In this example

, the following property identifiers are listed:
power and temperature.

86 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Parameter Type Description
version Integer The current version of the desired value.

Note:
• You can obtain the value of the version

parameter from topic / sys /{ productKey
}/{ deviceName }/ thing / property /
desired / get .

• If you set version to 2, IoT Platform clears
the desired value only if the current version is
2. If the current version of the desired value
is 3 in IoT Platform, this clear request will be
ignored.

• If you are not sure about the current version,
do not specify this parameter in the request.
When there is no version in the request,
IoT Platform does not verify the version, but
clears the desired value directly.

Table 6-17: Response parameters
Parameter Type Description
id String The message ID.
code Integer The result code. For more information, see the

common codes on the device.
data String The returned data.

6.7 Send configuration data to gateway devices
Send extended configuration information of the TSL model and sub-device
connection channel configuration that you configured on the cloud to the gateway
device.

Send configuration data
Request topic: / sys /{ productKey }/{ deviceName }/ thing / model / config

/ push

Request message
{

Issue: 20190506 87

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
 " id ": 123 ,
 " version ": " 1 . 0 ",
 " method ": " thing . model . config . push ",
 " data ": {
 " digest ":"",
 " digestMeth od ":"",
 " url ": ""
 }
}

Parameter description
Parameter Type Description
id String The message ID. IoT

 Platform generates
 a message ID for a
downstream message.

version String The protocol version
number. Default value: 1.0.

method String The method is thing .
model . config . push
.

data Object Data
digest String The signature that is used

 to verify the integrity of
the data obtained from url.

digestMethod String The signature method. The
 default method is sha256.

url String The URL where the
configuration data is
stored.

Data from the URL:
{
 " modelList ": [
 {
 " profile ": {
 " productKey ": " a1ZlGQv ****"
 },
 " services ": [
 {
 " outputData ": "",
 " identifier ": " AngleSelfA daption ",
 " inputData ": [
 {
 " identifier ": " test01 ",
 " index ": 0
 }

88 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
],
 " displayNam e ": " test01 "
 }
],
 " properties ": [
 {
 " identifier ": " identifier ",
 " displayNam e ": " test02 "
 },
 {
 " identifier ": " identifier _01 ",
 " displayNam e ": " identifier _01 "
 }
],
 " events ": [
 {
 " outputData ": [
 {
 " identifier ": " test01 ",
 " index ": 0
 }
],
 " identifier ": " event1 ",
 " displayNam e ": " abc "
 }
]
 },
 {
 " profile ": {
 " productKey ": " a1ZlGQv ****"
 },
 " properties ": [
 {
 " originalDa taType ": {
 " specs ": {
 " registerCo unt ": 1 ,
 " reverseReg ister ": 0 ,
 " swap16 ": 0
 },
 " type ": " bool "
 },
 " identifier ": " test01 ",
 " registerAd dress ": " 0x03 ",
 " scaling ": 1 ,
 " operateTyp e ": " inputStatu s ",
 " pollingTim e ": 1000 ,
 " trigger ": 1
 },
 {
 " originalDa taType ": {
 " specs ": {
 " registerCo unt ": 1 ,
 " reverseReg ister ": 0 ,
 " swap16 ": 0
 },
 " type ": " bool "
 },
 " identifier ": " test02 ",
 " registerAd dress ": " 0x05 ",
 " scaling ": 1 ,
 " operateTyp e ": " coilStatus ",
 " pollingTim e ": 1000 ,
 " trigger ": 2
 }

Issue: 20190506 89

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
]
 },
 {
 " profile ": {
 " productKey ": " a1ZlGQv ****"
 },
 " properties ": [
 {
 " identifier ": " test_02 ",
 " customize ": {
 " test_02 ": 123
 }
 },
 {
 " identifier ": " test_01 ",
 " customize ": {
 " test01 ": 1
 }
 }
]
 }
],
 " serverList ": [
 {
 " baudRate ": 1200 ,
 " protocol ": " RTU ",
 " byteSize ": 8 ,
 " stopBits ": 2 ,
 " parity ": 1 ,
 " name ": " modbus01 ",
 " serialPort ": " 0 ",
 " serverId ": " D73251B427 ****"
 },
 {
 " protocol ": " TCP ",
 " port ": 8000 ,
 " ip ": " 192 . 168 . 0 . 1 ",
 " name ": " modbus02 ",
 " serverId ": " 586CB066D ****"
 },
 {
 " password ": " XIJTginONo hPEUAyZ ****==",
 " secPolicy ": " Basic128Rs a15 ",
 " name ": " server_01 ",
 " secMode ": " Sign ",
 " userName ": " 123 ",
 " serverId ": " 55A9D276A7 E ****",
 " url ": " tcp : 00 ",
 " timeout ": 10
 },
 {
 " password ": " hAaX5s13gw X2JwyvUk ****==",
 " name ": " service_09 ",
 " secMode ": " None ",
 " userName ": " 1234 ",
 " serverId ": " 44895C63E3 F ****",
 " url ": " tcp : 00 ",
 " timeout ": 10
 }
],
 " deviceList ": [
 {
 " deviceConf ig ": {
 " displayNam ePath ": " 123 ",

90 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
 " serverId ": " 44895C63E3 FF4013924C EF31519A ****"
 },
 " productKey ": " a1ZlGQv ****",
 " deviceName ": " test_02 "
 },
 {
 " deviceConf ig ": {
 " displayNam ePath ": " 1 ",
 " serverId ": " 55A9D276A7 ****"
 },
 " productKey ": " a1ZlGQv ****",
 " deviceName ": " test_03 "
 },
 {
 " deviceConf ig ": {
 " slaveId ": 1 ,
 " serverId ": " D73251B427 7 ****"
 },
 " productKey ": " a1ZlGQv ****",
 " deviceName ": " test01 "
 },
 {
 " deviceConf ig ": {
 " slaveId ": 2 ,
 " serverId ": " 586CB066D6 ****"
 },
 " productKey ": " a1ZlGQv ****",
 " deviceName ": " test02 "
 }
],
 " tslList ": [
 {
 " schema ": " https :// iotx - tsl . oss - ap - southeast - 1 .
aliyuncs . com / schema . json ",

 " profile ": {
 " productKey ": " a1ZlGQv ****"
 },
 " services ": [
 {
 " outputData ": [],
 " identifier ": " set ",
 " inputData ": [
 {
 " identifier ": " test02 ",
 " dataType ": {
 " specs ": {
 " unit ": " mm ",
 " min ": " 0 ",
 " max ": " 1 "
 },
 " type ": " int "
 },
 " name ": " test02 "
 }
],
 " method ": " thing . service . property . set ",
 " name ": " set ",
 " required ": true ,
 " callType ": " async ",
 " desc ": " set property "
 },
 {
 " outputData ": [
 {

Issue: 20190506 91

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
 " identifier ": " test01 ",
 " dataType ": {
 " specs ": {
 " unit ": " m ",
 " min ": " 0 ",
 " max ": " 1 "
 },
 " type ": " int "
 },
 " name ": " test01 "
 },
 {
 " identifier ": " test02 ",
 " dataType ": {
 " specs ": {
 " unit ": " mm ",
 " min ": " 0 ",
 " max ": " 1 "
 },
 " type ": " int "
 },
 " name ": " test02 "
 }
],
 " identifier ": " get ",
 " inputData ": [
 " test01 ",
 " test02 "
],
 " method ": " thing . service . property . get ",
 " name ": " get ",
 " required ": true ,
 " callType ": " async ",
 " desc ": " get property "
 }
],
 " properties ": [
 {
 " identifier ": " test01 ",
 " dataType ": {
 " specs ": {
 " unit ": " m ",
 " min ": " 0 ",
 " max ": " 1 "
 },
 " type ": " int "
 },
 " name ": " test01 ",
 " accessMode ": " r ",
 " required ": false
 },
 {
 " identifier ": " test02 ",
 " dataType ": {
 " specs ": {
 " unit ": " mm ",
 " min ": " 0 ",
 " max ": " 1 "
 },
 " type ": " int "
 },
 " name ": " test02 ",
 " accessMode ": " rw ",
 " required ": false

92 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
 }
],
 " events ": [
 {
 " outputData ": [
 {
 " identifier ": " test01 ",
 " dataType ": {
 " specs ": {
 " unit ": " m ",
 " min ": " 0 ",
 " max ": " 1 "
 },
 " type ": " int "
 },
 " name ": " test01 "
 },
 {
 " identifier ": " test02 ",
 " dataType ": {
 " specs ": {
 " unit ": " mm ",
 " min ": " 0 ",
 " max ": " 1 "
 },
 " type ": " int "
 },
 " name ": " test02 "
 }
],
 " identifier ": " post ",
 " method ": " thing . event . property . post ",
 " name ": " post ",
 " type ": " info ",
 " required ": true ,
 " desc ": " report property "
 }
]
 },
 {
 " schema ": " https :// iotx - tsl . oss - ap - southeast - 1 .
aliyuncs . com / schema . json ",

 " profile ": {
 " productKey ": " a1ZlGQv ****"
 },
 " services ": [
 {
 " outputData ": [],
 " identifier ": " set ",
 " inputData ": [
 {
 " identifier ": " identifier ",
 " dataType ": {
 " specs ": {
 " length ": " 2048 "
 },
 " type ": " text "
 },
 " name ": " 7614 "
 },
 {
 " identifier ": " identifier _01 ",
 " dataType ": {
 " specs ": {

Issue: 20190506 93

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
 " length ": " 2048 "
 },
 " type ": " text "
 },
 " name ": " test1 "
 }
],
 " method ": " thing . service . property . set ",
 " name ": " set ",
 " required ": true ,
 " callType ": " async ",
 " desc ": " set property "
 },
 {
 " outputData ": [
 {
 " identifier ": " identifier ",
 " dataType ": {
 " specs ": {
 " length ": " 2048 "
 },
 " type ": " text "
 },
 " name ": " 7614 "
 },
 {
 " identifier ": " identifier _01 ",
 " dataType ": {
 " specs ": {
 " length ": " 2048 "
 },
 " type ": " text "
 },
 " name ": " test1 "
 }
],
 " identifier ": " get ",
 " inputData ": [
 " identifier ",
 " identifier _01 "
],
 " method ": " thing . service . property . get ",
 " name ": " get ",
 " required ": true ,
 " callType ": " async ",
 " desc ": " get property "
 },
 {
 " outputData ": [],
 " identifier ": " AngleSelfA daption ",
 " inputData ": [
 {
 " identifier ": " test01 ",
 " dataType ": {
 " specs ": {
 " min ": " 1 ",
 " max ": " 10 ",
 " step ": " 1 "
 },
 " type ": " int "
 },
 " name ": " param1 "
 }
],

94 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
 " method ": " thing . service . AngleSelfA daption ",
 " name ": " angleadjus t ",
 " required ": false ,
 " callType ": " async "
 }
],
 " properties ": [
 {
 " identifier ": " identifier ",
 " dataType ": {
 " specs ": {
 " length ": " 2048 "
 },
 " type ": " text "
 },
 " name ": " 7614 ",
 " accessMode ": " rw ",
 " required ": true
 },
 {
 " identifier ": " identifier _01 ",
 " dataType ": {
 " specs ": {
 " length ": " 2048 "
 },
 " type ": " text "
 },
 " name ": " test1 ",
 " accessMode ": " rw ",
 " required ": false
 }
],
 " events ": [
 {
 " outputData ": [
 {
 " identifier ": " identifier ",
 " dataType ": {
 " specs ": {
 " length ": " 2048 "
 },
 " type ": " text "
 },
 " name ": " 7614 "
 },
 {
 " identifier ": " identifier _01 ",
 " dataType ": {
 " specs ": {
 " length ": " 2048 "
 },
 " type ": " text "
 },
 " name ": " test1 "
 }
],
 " identifier ": " post ",
 " method ": " thing . event . property . post ",
 " name ": " post ",
 " type ": " info ",
 " required ": true ,
 " desc ": " report property "
 },
 {

Issue: 20190506 95

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
 " outputData ": [
 {
 " identifier ": " test01 ",
 " dataType ": {
 " specs ": {
 " min ": " 1 ",
 " max ": " 20 ",
 " step ": " 1 "
 },
 " type ": " int "
 },
 " name ": " param1 "
 }
],
 " identifier ": " event1 ",
 " method ": " thing . event . event1 . post ",
 " name ": " event1 ",
 " type ": " info ",
 " required ": false
 }
]
 },
 {
 " schema ": " https :// iotx - tsl . oss - ap - southeast - 1 .
aliyuncs . com / schema . json ",

 " profile ": {
 " productKey ": " a1ZlGQv ****"
 },
 " services ": [
 {
 " outputData ": [],
 " identifier ": " set ",
 " inputData ": [
 {
 " identifier ": " test_01 ",
 " dataType ": {
 " specs ": {
 " min ": " 1 ",
 " max ": " 100 ",
 " step ": " 1 "
 },
 " type ": " int "
 },
 " name ": " param1 "
 },
 {
 " identifier ": " test_02 ",
 " dataType ": {
 " specs ": {
 " min ": " 1 ",
 " max ": " 100 ",
 " step ": " 10 "
 },
 " type ": " double "
 },
 " name ": " param2 "
 }
],
 " method ": " thing . service . property . set ",
 " name ": " set ",
 " required ": true ,
 " callType ": " async ",
 " desc ": " set property "
 },

96 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
 {
 " outputData ": [
 {
 " identifier ": " test_01 ",
 " dataType ": {
 " specs ": {
 " min ": " 1 ",
 " max ": " 100 ",
 " step ": " 1 "
 },
 " type ": " int "
 },
 " name ": " param1 "
 },
 {
 " identifier ": " test_02 ",
 " dataType ": {
 " specs ": {
 " min ": " 1 ",
 " max ": " 100 ",
 " step ": " 10 "
 },
 " type ": " double "
 },
 " name ": " param2 "
 }
],
 " identifier ": " get ",
 " inputData ": [
 " test_01 ",
 " test_02 "
],
 " method ": " thing . service . property . get ",
 " name ": " get ",
 " required ": true ,
 " callType ": " async ",
 " desc ": " get property "
 }
],
 " properties ": [
 {
 " identifier ": " test_01 ",
 " dataType ": {
 " specs ": {
 " min ": " 1 ",
 " max ": " 100 ",
 " step ": " 1 "
 },
 " type ": " int "
 },
 " name ": " param1 ",
 " accessMode ": " rw ",
 " required ": false
 },
 {
 " identifier ": " test_02 ",
 " dataType ": {
 " specs ": {
 " min ": " 1 ",
 " max ": " 100 ",
 " step ": " 10 "
 },
 " type ": " double "
 },

Issue: 20190506 97

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
 " name ": " param2 ",
 " accessMode ": " rw ",
 " required ": false
 }
],
 " events ": [
 {
 " outputData ": [
 {
 " identifier ": " test_01 ",
 " dataType ": {
 " specs ": {
 " min ": " 1 ",
 " max ": " 100 ",
 " step ": " 1 "
 },
 " type ": " int "
 },
 " name ": " param1 "
 },
 {
 " identifier ": " test_02 ",
 " dataType ": {
 " specs ": {
 " min ": " 1 ",
 " max ": " 100 ",
 " step ": " 10 "
 },
 " type ": " double "
 },
 " name ": " param2 "
 }
],
 " identifier ": " post ",
 " method ": " thing . event . property . post ",
 " name ": " post ",
 " type ": " info ",
 " required ": true ,
 " desc ": " report property "
 }
]
 }
]
}

Parameters in the data:
Parameter Type Description
modelList Object The extended product information of

all sub-devices that are mounted to the
gateway. For more information, see the
following section modelList description.

serverList Object The sub-device channels of the gateway.
For more information, see the following
section serverList description.

98 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Parameter Type Description
deviceList Object The connection configurations of all sub-

devices that are mounted to the gateway.
For more information, see the following
section deviceList description.

tslList Object The TSL of all sub-devices that are
mounted to the gateway.

modelList description
Currently, the communication protocols Modbus and OPC UA, and custom protocol
are supported. The extended information are different when using different protocols
.
• When the protocol is Modbus, the extended product information of sub-devices is

as the following:
{
 " profile ": {
 " productKey ": " a1ZlGQv ****"
 },
 " properties ": [
 {
 " originalDa taType ": {
 " specs ": {
 " registerCo unt ": 1 ,
 " reverseReg ister ": 0 ,
 " swap16 ": 0
 },
 " type ": " bool "
 },
 " identifier ": " test01 ",
 " registerAd dress ": " 0x03 ",
 " scaling ": 1 ,
 " operateTyp e ": " inputStatu s ",
 " pollingTim e ": 1000 ,
 " trigger ": 1
 },
 {
 " originalDa taType ": {
 " specs ": {
 " registerCo unt ": 1 ,
 " reverseReg ister ": 0 ,
 " swap16 ": 0
 },
 " type ": " bool "
 },
 " identifier ": " test02 ",
 " registerAd dress ": " 0x05 ",
 " scaling ": 1 ,
 " operateTyp e ": " coilStatus ",
 " pollingTim e ": 1000 ,
 " trigger ": 2
 }
]

Issue: 20190506 99

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
}

Parameter description
Parameter Type Description
identifier String The identifier of a property, event, or

service.
operateType String The operation type. Supported values

include:
- coilStatus
- inputStatus
- holdingRegister
- inputRegister

registerAddress String The register address.
originalDataType Object The original data type.
type String Supported values include:

int16, uint16, int32, uint32, int64, uint64
, float, double, string, and customized
data.

specs Object The description.
registerCount Integer The number of data in the register.
swap16 Integer Swaps the first 8 bits and the last 8 bits

of the 16-bit data in the register.
- 0: false
- 1: true

reverseRegister Integer Swaps the bits of the original 32-bit
data.
- 0: false
- 1: true

scaling Integer The zoom factor.
pollingTime Integer The data collection interval.
trigger Integer The data report method.

- 1: report at a specific time
- 2: report when changes are detected

100 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
• When the protocol is OPC UA, the extended product information of sub-devices is

as the following:
{
 " profile ": {
 " productKey ": " a1ZlGQv ****"
 },
 " services ": [
 {
 " outputData ": "",
 " identifier ": " AngleSelfA daption ",
 " inputData ": [
 {
 " identifier ": " test01 ",
 " index ": 0
 }
],
 " displayNam e ": " test01 "
 }
],
 " properties ": [
 {
 " identifier ": " identifier ",
 " displayNam e ": " test02 "
 },
 {
 " identifier ": " identifier _01 ",
 " displayNam e ": " identifier _01 "
 }
],
 " events ": [
 {
 " outputData ": [
 {
 " identifier ": " test01 ",
 " index ": 0
 }
],
 " identifier ": " event1 ",
 " displayNam e ": " abc "
 }
]
}

Parameter description
Parameter Type Description
services Object The service.
properties The object. The property.
The events. Object The event.
outputData Object The output parameter, such as event

reporting data and returned result of a
service call.

identifier String The identifier.
Issue: 20190506 101

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Parameter Type Description
inputData Object The input parameter.
index Integer The index information.
displayName String The name that is displayed.

• When the protocol is a custom protocol, the extended product information of sub-
devices is as the following:
{
 " profile ": {
 " productKey ": " a1ZlGQv ****"
 },
 " properties ": [
 {
 " identifier ": " test_02 ",
 " customize ": {
 " test_02 ": 123
 }
 },
 {
 " identifier ": " test_01 ",
 " customize ": {
 " test01 ": 1
 }
 }
]
}

Parameter description
Parameter Type Description
productKey String The ProductKey of the product, which is the

unique identifier issued by IoT Platform to the
product.

properties Object Information of properties.
identifier String Identifier of a property.
customize Object Extended information of a property, which is

the extended information you added when you
were defining the property.

serverList description
Two protocols (Modbus and OPC UA) are supported for sub-device channels.
• When the protocol is Modbus, sub-device channel data is as the following:

[
 {
 " baudRate ": 1200 ,

102 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
 " protocol ": " RTU ",
 " byteSize ": 8 ,
 " stopBits ": 2 ,
 " parity ": 1 ,
 " name ": " modbus01 ",
 " serialPort ": " 0 ",
 " serverId ": " D73251B427 ****"
 },
 {
 " protocol ": " TCP ",
 " port ": 8000 ,
 " ip ": " 192 . 168 . 0 . 1 ",
 " name ": " modbus02 ",
 " serverId ": " 586CB066D ****"
 }
]

Parameter Type Description
protocol String The protocol type. It can be TCP or RTU.
port Integer The port number.
ip String The IP address.
name String The channel name.
serverId String The channel ID.
baudRate Integer The baud rate.
byteSize Integer The number of bytes.
stopBits Integer The stop bit.
parity Integer The parity bit. Supported values

include:
- E: Even parity check.
- O: Odd parity check.
- N: No parity check.

serialPort String The serial port number.
• When the protocol is OPC UA, sub-device channel data is as the following:

{
 " password ": " XIJTginONo hPEUAyZx ****==",
 " secPolicy ": " Basic128Rs a15 ",
 " name ": " server_01 ",
 " secMode ": " Sign ",
 " userName ": " 123 ",
 " serverId ": " 55A9D276A7 E ****",
 " url ": " tcp : 00 ",
 " timeout ": 10

Issue: 20190506 103

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
}

Parameter description
Parameter Type Description
password String The password that has been encrypted

 by the AES encryption algorithm. For
information about password encryption
 for OPC UA, see the information at the
end of this table.

secPolicy String The encryption policy. Supported
options include None, Basic128Rsa15,
and Basic256.

secMode String The encryption mode. Supported
 options include None, Sign, and
SignAndEncrypt.

name String The name of a sub-device channel.
userName String The user name.
serverId String The ID of a sub-device channel.
url String The server connection address.
timeout Integer The timeout value.

Password encryption method for OPC UA
Use the AES encryption algorithm and 128-bit (16-byte) grouping. The default
mode is CBC and the default padding is PKCS5Padding. Use deviceSecret of the
device as the secret. The encrypted result is encoded in Base64.
Code example:
private static String instance = " AES / CBC / PKCS5Paddi
ng ";

 private static String algorithm = " AES ";

 private static String charsetNam e = " utf - 8 ";
 /**
 * Encryption algorithm
 *
 * @ param data (Data to be encrypted)
 * @ param deviceSecr et (The deviceSecr et of the
device)
 * @ return
 */
 public static String aesEncrypt (String data , String
 deviceSecr et) {
 try {

104 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
 Cipher cipher = Cipher . getInstanc e (instance
);
 byte [] raw = deviceSecr et . getBytes ();
 SecretKeyS pec key = new SecretKeyS pec (raw
, algorithm);
 IvParamete rSpec ivParamete r = new IvParamete
rSpec (deviceSecr et . substring (0 , 16). getBytes ());
 cipher . init (Cipher . ENCRYPT_MO DE , key ,
ivParamete r);
 byte [] encrypted = cipher . doFinal (data .
getBytes (charsetNam e));

 return new BASE64Enco der (). encode (encrypted
);
 } catch (Exception e) {
 e . printStack Trace ();
 }

 return null ;
 }

 public static String aesDecrypt (String data , String
 deviceSecr et) {
 try {
 byte [] raw = deviceSecr et . getBytes (
charsetNam e);
 byte [] encrypted1 = new BASE64Deco der ().
decodeBuff er (data);
 SecretKeyS pec key = new SecretKeyS pec (raw
, algorithm);
 Cipher cipher = Cipher . getInstanc e (instance
);
 IvParamete rSpec ivParamete r = new IvParamete
rSpec (deviceSecr et . substring (0 , 16). getBytes ());
 cipher . init (Cipher . DECRYPT_MO DE , key ,
ivParamete r);
 byte [] originalBy tes = cipher . doFinal (
encrypted1);
 String originalSt ring = new String (
originalBy tes , charsetNam e);
 return originalSt ring ;
 } catch (Exception ex) {
 ex . printStack Trace ();
 }

 return null ;
 }

 public static void main (String [] args) throws
Exception {
 String text = " test123 ";
 String secret = " testTNmjyW HQzniA8wEk TNmjyWHQte st
";
 String data = null ;
 data = aesEncrypt (text , secret);
 System . out . println (data);
 System . out . println (aesDecrypt (data , secret));

Issue: 20190506 105

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
 }

deviceList description
• When the protocol is Modbus, the connection configuration data of sub-devices is

as the following:
{
 " deviceConf ig ": {
 " slaveId ": 1 ,
 " serverId ": " D73251B427 7742D "
 },
 " productKey ": " test02 ",
 " deviceName ": " test01 "
}

Parameter description
Parameter Type Description
deviceConfig Object The device information.
slaveId Integer The slave station ID.
serverId String The channel ID.
productKey String The ProductKey of the sub-device.
deviceName String The name of the sub-device.

• When the protocol is OPC UA, the connection configuration data of sub-devices is
as the following:
{
 " deviceConf ig ": {
 " displayNam ePath ": " 123 ",
 " serverId ": " 44895C63E3 FF4013924C EF31519ABE 7B "
 },
 " productKey ": " test01 ",
 " deviceName ": " test_02 "
}

Parameter description
Parameter Type Description
deviceConfig Object The device connection configuration

information.
productKey String The ProductKey of the sub-device.
deviceName String The name of the sub-device.
displayNamePath String The customized name of the channel.
serverId String The associated channel ID.

106 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol

6.8 Disable and delete devices
Gateways can disable and delete their sub-devices.

Disable devices
Downstream
• Request topic: / sys /{ productKey }/{ deviceName }/ thing / disable

• Reply topic: / sys /{ productKey }/{ deviceName }/ thing / disable_re

ply

This topic disables a device connection. IoT Platform publishes messages to this topic
 asynchronously, and the devices subscribe to this topic. Gateways can subscribe to
this topic to disable the corresponding sub-devices.
Request message
{
 " id ": " 123 ",
 " version ": " 1 . 0 ",
 " params ": {},
 " method ": " thing . disable "

Response message
{
 " id ": " 123 ",
 " code ": 200 ,
 " data ": {}
}

Parameter description
Parameter Type Description
id String Message ID. IoT Platform

 generates IDs for
downstream messages.

version String Protocol version. Currently
, the value is 1.0.

params Object Request parameters. Leave
 empty.

method String Request method.

Issue: 20190506 107

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Parameter Type Description
code Integer Results information.

For more information,
seeCommon codes on devices

Enable devices
Downstream
• Request Topic: / sys /{ productKey }/{ deviceName }/ thing / enable

• Reply topic: / sys /{ productKey }/{ deviceName }/ thing / enable_rep

ly

This topic enables a device connection. IoT Platform publishes messages to this topic
 asynchronously, and the devices subscribe to this topic. Gateways can subscribe to
this topic to enable the corresponding sub-devices.
Request message
{
 " id ": " 123 ",
 " version ": " 1 . 0 ",
 " params ": {},
 " method ": " thing . enable "
}

Response message
{
 " id ": " 123 ",
 " code ": 200 ,
 " data ": {}
}

Parameter description
Parameter Type Description
id String Message ID. IoT Platform

 generates IDs for
downstream messages.

version String Protocol version. Currently
, the value is 1.0.

params Object Request parameters. Leave
 empty.

method String Request method.
108 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Parameter Type Description
code Integer Result code. For more

 information, see the
common codes.

Delete devices
Downstream
• Request topic: / sys /{ productKey }/{ deviceName }/ thing / delete

• Reply topic: / sys /{ productKey }/{ deviceName }/ thing / delete_rep

ly

This topic deletes a device connection. IoT Platform publishes messages to this topic
 asynchronously, and the devices subscribe to this topic. Gateways can subscribe to
this topic to delete the corresponding sub-devices.
Request message
{
 " id ": " 123 ",
 " version ": " 1 . 0 ",
 " params ": {},
 " method ": " thing . delete "
}

Response message
{
 " id ": " 123 ",
 " code ": 200 ,
 " data ": {}
}

Parameter description
Parameter Type Description
id String Message ID. IoT Platform

 generates IDs for
downstream messages.

version String Protocol version. Currently
, the value is 1.0.

params Object Request parameters. Leave
 empty.

method String Request method.

Issue: 20190506 109

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Parameter Type Description
code String Result code. For more

 information, see the
common codes.

6.9 Device tags
Some static extended device information, such as vendor model and device model,
can be saved as device tags.

Report tags
Upstream
• Request topic: / sys /{ productKey }/{ deviceName }/ thing / deviceinfo

/ update

• Reply topic: / sys /{ productKey }/{ deviceName }/ thing / deviceinfo /

update_rep ly

Request message
{
 " id ": " 123 ",
 " version ": " 1 . 0 ",
 " params ": [
 {
 " attrKey ": " Temperatur e ",
 " attrValue ": " 36 . 8 "
 }
]
}

Response message
{
 " id ": " 123 ",
 " code ": 200 ,
 " data ": {}
}

Parameter description

110 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Parameter Type Description
id String Message ID. You need to

define IDs for upstream
messages using numbers
, and the message IDs
must be unique within the
 device.

version String Protocol version. Currently
, the value can only be 1.0.

params Object Request parameters.
This parameter can
contain a maximum of 200
 items.

attrKey String Tag name.
• Length: Up to 100 bytes.
• Valid characters:

Lowercase letters a to
z, uppercase letters A
to Z, digits 0 to 9, and
underscores (_).

• The tag name must start
 with an English letter or
 underscore (_).

attrValue String Tag value.
code Integer Result code. A value of 200

 indicates the request is
successful.

Error codes
Error code Error message Description
460 request parameter error The request parameters are

incorrect.
6100 device not found The device does not exist.

Delete tags
Upstream

Issue: 20190506 111

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
• Request topic: / sys /{ productKey }/{ deviceName }/ thing / deviceinfo

/ delete

• Reply topic: / sys /{ productKey }/{ deviceName }/ thing / deviceinfo /

delete_rep ly

Request message
{
 " id ": " 123 ",
 " version ": " 1 . 0 ",
 " params ": [
 {
 " attrKey ": " Temperatur e "
 }
]
}

Response message
{
 " id ": " 123 ",
 " code ": 200 ,
 " data ": {}
}

Parameter description
Parameter Type Description
id String Message ID. You need to

define IDs for upstream
messages using numbers
, and the message IDs
must be unique within the
 device.

version String Protocol version. Currently
, the value can only be 1.0.

params Object Request parameters.

112 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Parameter Type Description
attrKey String Tag name.

• Length: Up to 100 bytes.
• Valid characters:

Lowercase letters a to
z, uppercase letters A
to Z, digits 0 to 9, and
underscores (_).

• The tag name must start
 with an English letter or
 underscore (_).

attrValue String Tag value.
code Integer Result code. A value of 200

 indicates the request is
successful.

Error messages
Error code Error message Description
460 request parameter error The request parameters are

incorrect.
6100 device not found The device does not exist.

6.10 TSL model
A device can publish requests to the request topic to obtain the Device TSL model from
IoT Platform.
• Request topic：/ sys /{ productKey }/{ deviceName }/ thing / dsltemplat

e / get

• Reply topic：/ sys /{ productKey }/{ deviceName }/ thing / dsltemplat e

/ get_reply

The Allink data format of a request
{
 " id ": " 123 ",
 " version ": " 1 . 0 ",
 " params ": {}

Issue: 20190506 113

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
}

The Allink data format of a response
{
 " id ": " 123 ",
 " code ": 200 ,
 " data ": {
 " schema ": " https :// iot - tsl . oss - cn - shanghai . aliyuncs
. com / schema . json ",

 " link ": "/ sys / 1234556554 / airConditi on / thing /",
 " profile ": {
 " productKey ": " 1234556554 ",
 " deviceName ": " airConditi on "
 },
 " properties ": [
 {
 " identifier ": " fan_array_ property ",
 " name ": " Fan array property ",
 " accessMode ": " r ",
 " required ": true ,
 " dataType ": {
 " type ": " array ",
 " specs ": {
 " size ": " 128 ",
 " item ": {
 " type ": " int "
 }
 }
 }
 }
],
 " events ": [
 {
 " identifier ": " alarm ",
 " name ": " alarm ",
 " desc ": " Fan alert ",
 " type ": " alert ",
 " required ": true ,
 " outputData ": [
 {
 " identifier ": " errorCode ",
 " name ": " Error code ",
 " dataType ": {
 " type ": " text ",
 " specs ": {
 " length ": " 255 "
 }
 }
 }
],
 " method ": " thing . event . alarm . post "
 }
],
 " services ": [
 {
 " identifier ": " timeReset ",
 " name ": " timeReset ",
 " desc ": " Time calibratio n ",
 " inputData ": [
 {
 " identifier ": " timeZone ",
 " name ": " Time zone ",

114 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
 " dataType ": {
 " type ": " text ",
 " specs ": {
 " length ": " 512 "
 }
 }
 }
],
 " outputData ": [
 {
 " identifier ": " curTime ",
 " name ": " Current time ",
 " dataType ": {
 " type ": " date ",
 " specs ": {}
 }
 }
],
 " method ": " thing . service . timeReset "
 },
 {
 " identifier ": " set ",
 " name ": " set ",
 " required ": true ,
 " desc ": " Set properties ",
 " method ": " thing . service . property . set ",
 " inputData ": [
 {
 " identifier ": " fan_int_pr operty ",
 " name ": " Integer property of the fan ",
 " accessMode ": " rw ",
 " required ": true ,
 " dataType ": {
 " type ": " int ",
 " specs ": {
 " min ": " 0 ",
 " max ": " 100 ",
 " unit ": " g / ml ",
 " unitName ": " Millilitte r "
 }
 }
 }
],
 " outputData ": []
 },
 {
 " identifier ": " get ",
 " name ": " get ",
 " required ": true ,
 " desc ": " Get properties ",
 " method ": " thing . service . property . get ",
 " inputData ": [
 " array_prop erty ",
 " fan_int_pr operty ",
 " batch_enum _attr_id ",
 " fan_float_ property ",
 " fan_double _property ",
 " fan_text_p roperty ",
 " Maid ",
 " batch_bool ean_attr_i d ",
 " fan_struct _property "
],
 " outputData ": [
 {

Issue: 20190506 115

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
 " identifier ": " fan_array_ property ",
 " name ": " Fan array property ",
 " accessMode ": " r ",
 " required ": true ,
 " dataType ": {
 " type ": " array ",
 " specs ": {
 " size ": " 128 ",
 " item ": {
 " type ": " int "
 }
 }
 }
 }
]
 }
]
 }
}

Parameter descriptions:
Parameter Type Description
id String Message ID. You need to

define IDs for upstream
messages using numbers
, and the message IDs
must be unique within the
 device.

version String Protocol version. Currently
, the value is 1.0.

params Object Leave this parameter
empty.

productKey String ProductKey. In the
example, the ProductKey is
 1234556554.

deviceName String Device name. In the
example, the device name
is airCondition.

data Object TSL model of the device.
For more information,
seeOverview

Error codes

116 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Error code Error message Description
460 request parameter error The request parameters are

incorrect.
6321 tsl: device not exist in product The device does not exist.

6.11 Firmware update
For information about the firmware update, see Develop OTA features and Firmware

update.
Report the firmware version

Upstream
• Request topic: / ota / device / inform /{ productKey }/{ deviceName }

The device publishes a message to this topic to report the current firmware version
 to IoT Platform.

Request message
{
 " id ": 1 ,
 " params ": {
 " version ": " 1 . 0 . 1 "
 }
}

Parameter description
Parameter Type Description
id String Message ID. You need to

define IDs for upstream
messages using numbers
, and the message IDs
must be unique within the
 device.

version String Version information of the
 firmware.

Push firmware information
Downstream

Issue: 20190506 117

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
• Request topic: / ota / device / upgrade /{ productKey }/{ deviceName }

IoT Platform publishes messages to this topic to push firmware information. The
devices subscribe to this topic to obtain the firmware information.

Request message
{
 " code ": " 1000 ",
 " data ": {
 " size ": 432945 ,
 " version ": " 2 . 0 . 0 ",
 " url ": " https :// iotx - ota - pre . oss - cn - shanghai .
aliyuncs . com / nopoll_0 . 4 . 4 . tar . gz ? Expires = 1502955804
& OSSAccessK eyId = XXXXXXXXXX XXXXXXXXXX & Signature = XfgJu7P6DW
WejstKJgXJ EH0qAKU % 3D & security - token = CAISuQJ1q6 Ft5B2yfSjI
pK6MGsyN1J x5jo6mVnfB glIPTvlvt5 D50Tz2IHtI f3NpAusdsv
03nWxT7v4f lqFyTINVAE vYZJOPKGrG R0DzDbDasu mZsJbo4f %
2FMQBqEaXP S2MvVfJ % 2BzLrf0ceu sbFbpjzJ6x aCAGxypQ12 iN % 2B
% 2Fr6 % 2F5gdc9FcQ SkL0B8ZrFs KxBltdUROF bIKP % 2BpKWSKuGf
LC1dysQcO1 wEP4K % 2BkkMqH8Ui c3h % 2Boy % 2BgJt8H2Pp Hhd9NhXuV2
WMzn2 % 2FdtJOiTkn xR7ARasaBq helc4zqA % 2FPPlWgAKv kXba7aIoo0
1fV4jN5JXQ fAU8KLO8tR jofHWmojNz BJAAPpYSSy 3Rvr7m5efQ
rrybY1lLO6 iZy % 2BVio2VSZD xshI5Z3McK ARWct06MWV 9ABA2TTXXO
i40BOxuq % 2B3JGoABXC 54TOlo7 % 2F1wTLTsCU qzzeIiXVOK 8CfNOkfTuc
MGHkeYeCdF km % 2FkADhXAnr nGf5a4FbmK MQph2cKsr8 y8UfWLC6Iz
vJsClXTnbJ BMeuWIqo5z IynS1pm7gf % 2F9N3hVc6 % 2BEeIk0xfl
2tycsUpbL2 FoaGk6BAF8 hWSWYUXsv5 9d5Uk % 3D ",

 " md5 ": " 93230c3bde 425a9d7984 a594ac55ea 1e ",
 " sign ": " 93230c3bde 425a9d7984 a594ac55ea 1e ",
 " signMethod ": " Md5 "
 },
 " id ": 1507707025 ,
 " message ": " success "
}

Parameter description
Parameter Type Description
id String Message ID. IoT Platform

 generates IDs for
downstream messages.

message String Result information.
version String Version information of the

 firmware.
size Long Firmware size in bytes.
url String OSS address of the

firmware.
sign String Firmware signature.

118 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Parameter Type Description
signMethod String Signing method. Currently

, the supported methods
are MD5 and sha256.

md5 String This parameter is reserved
. This parameter is used
to be compatible with old
device information. When
the signing method is MD5
, IoT Platform will assign
values to both the sign and
md5 parameters.

Report update progress
Upstream
• Request topic: / ota / device / progress /{ productKey }/{ deviceName }

A device subscribes to this topic to report the firmware update progress.
Request message
{
 " id ": 1 ,
 " params ": {
 " step ": "- 1 ",
 " desc ": " Firmware update has failed . No firmware
informatio n is available ."

 }
}

Parameter description
Parameter Type Description
id String Message ID. You need to define IDs for

upstream messages using numbers, and
 the message IDs must be unique within
the device.

Issue: 20190506 119

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Parameter Type Description
step String Firmware update progress information.

Value range:
• A value from 1 to 100 indicates the

progress percentage.
• A value of -1 indicates the firmware

update has failed.
• A value of -2 indicates that the

firmware download has failed.
• A value of -3 indicates that firmware

verification has failed.
• A value of -4 indicates that the

firmware installation has failed.
desc String Description of the current step. If

an exception occurs, this parameter
displays an error message.

Request firmware information from IoT Platform
• Request topic: / ota / device / request /{ productKey }/{ deviceName }

Request message
{
 " id ": 1 ,
 " params ": {
 " version ": " 1 . 0 . 1 "
 }
}

Parameter description
Parameter Type Description
id String Message ID. You need to

define IDs for upstream
messages using numbers
, and the message IDs
must be unique within the
 device.

version String Version information of the
 firmware.

120 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol

6.12 Remote configuration
This article introduces Topics and Alink JSON format requests and responses for
remote conficuration. For how to use remote configuration, see Remote configuration in
User Guide.

Device requests configuration information from IoT Platform
Upstream
• Request topic: / sys /{ productKey }/{ deviceName }/ thing / config /

get

• Reply topic: / sys /{ productKey }/{ deviceName }/ thing / config /

get_reply

Request message
{
 " id ": 123 ,
 " version ": " 1 . 0 ",
 " params ": {
 " configScop e ": " product ",
 " getType ": " file "
 }
}

Response message
{
 " id ": " 123 ",
 " version ": " 1 . 0 ",
 " code ": 200 ,
 " data ": {
 " configId ": " 123dagdah ",
 " configSize ": 1234565 ,
 " sign ": " 123214adfa dgadg ",
 " signMethod ": " Sha256 ",
 " url ": " https :// iotx - config . oss - cn - shanghai .
aliyuncs . com / nopoll_0 . 4 . 4 . tar . gz ? Expires = 1502955804
& OSSAccessK eyId = XXXXXXXXXX XXXXXXXXXX & Signature = XfgJu7P6DW
WejstKJgXJ EH0qAKU % 3D & security - token = CAISuQJ1q6 Ft5B2yfSjI
pK6MGsyN1J x5jo6mVnfB glIPTvlvt5 D50Tz2IHtI f3NpAusdsv
03nWxT7v4f lqFyTINVAE vYZJOPKGrG R0DzDbDasu mZsJbo4f %
2FMQBqEaXP S2MvVfJ % 2BzLrf0ceu sbFbpjzJ6x aCAGxypQ12 iN % 2B
% 2Fr6 % 2F5gdc9FcQ SkL0B8ZrFs KxBltdUROF bIKP % 2BpKWSKuGf
LC1dysQcO1 wEP4K % 2BkkMqH8Ui c3h % 2Boy % 2BgJt8H2Pp Hhd9NhXuV2
WMzn2 % 2FdtJOiTkn xR7ARasaBq helc4zqA % 2FPPlWgAKv kXba7aIoo0
1fV4jN5JXQ fAU8KLO8tR jofHWmojNz BJAAPpYSSy 3Rvr7m5efQ
rrybY1lLO6 iZy % 2BVio2VSZD xshI5Z3McK ARWct06MWV 9ABA2TTXXO
i40BOxuq % 2B3JGoABXC 54TOlo7 % 2F1wTLTsCU qzzeIiXVOK 8CfNOkfTuc
MGHkeYeCdF km % 2FkADhXAnr nGf5a4FbmK MQph2cKsr8 y8UfWLC6Iz
vJsClXTnbJ BMeuWIqo5z IynS1pm7gf % 2F9N3hVc6 % 2BEeIk0xfl
2tycsUpbL2 FoaGk6BAF8 hWSWYUXsv5 9d5Uk % 3D ",

 " getType ": " file "

Issue: 20190506 121

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
 }
}

Parameter description
Parameter Type Description
id String Message ID. You need to

define IDs for upstream
messages using numbers
, and the message IDs
must be unique within the
 device.

version String Protocol version. Currently
, the value is 1.0.

configScope String Configuration scope.
Currently, IoT Platform
 supports only product
dimension configuration.
Value: product.

getType String Desired file type of the
configuration. Currently,
the supported type is file.
Set the value to file.

configId String ID of the configuration.
configSize Long Size of the configuration

file, in bytes.
sign String Signature value.
signMethod String Signing method. The

supported signing method
is Sha256.

url String The OSS address where the
 configuration file is stored
.

code Integer Result code. A value of
 200 indicates that the
operation is successful,
and other status codes
indicate that the operation
 has failed.

Error codes
122 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
Error code Error message Description
6713 thing config function is not

available
Remote configuration feature of
 the product has been disabled
. On the Remote Configuration
page of the IoT Platform console
, enable remote configuration
for the product .

6710 no data Not found any configured data.
Push configurations in the IoT Platform console to devices.

Downstream
• Request topic: / sys /{ productKey }/{ deviceName }/ thing / config /

push

• Reply topic: / sys /{ productKey }/{ deviceName }/ thing / config /

push_reply

Devices subscribe to this configuration push topic for configurations that is pushed
by IoT Platform. After you have edited and submitted a configuration file in the
IoT Platform console, IoT Platform pushes the configuration to the devices in an
asynchronous method. IoT Platform subscribes to a data exchange topic for the result
of asynchronous calls. The data exchange topic is /{ productKey }/{ deviceName

}/ thing / downlink / reply / message .
You can use Rules Engine to forward the results returned by the devices to another
Alibaba Cloud product. The following figure shows an example of rule action
configuration.

Issue: 20190506 123

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol

Request message:
{
 " id ": " 123 ",
 " version ": " 1 . 0 ",
 " params ": {
 " configId ": " 123dagdah ",
 " configSize ": 1234565 ,
 " sign ": " 123214adfa dgadg ",
 " signMethod ": " Sha256 ",
 " url ": " https :// iotx - config . oss - cn - shanghai .
aliyuncs . com / nopoll_0 . 4 . 4 . tar . gz ? Expires = 1502955804
& OSSAccessK eyId = XXXXXXXXXX XXXXXXXXXX & Signature = XfgJu7P6DW
WejstKJgXJ EH0qAKU % 3D & security - token = CAISuQJ1q6 Ft5B2yfSjI
pK6MGsyN1J x5jo6mVnfB glIPTvlvt5 D50Tz2IHtI f3NpAusdsv
03nWxT7v4f lqFyTINVAE vYZJOPKGrG R0DzDbDasu mZsJbo4f %
2FMQBqEaXP S2MvVfJ % 2BzLrf0ceu sbFbpjzJ6x aCAGxypQ12 iN % 2B
% 2Fr6 % 2F5gdc9FcQ SkL0B8ZrFs KxBltdUROF bIKP % 2BpKWSKuGf
LC1dysQcO1 wEP4K % 2BkkMqH8Ui c3h % 2Boy % 2BgJt8H2Pp Hhd9NhXuV2
WMzn2 % 2FdtJOiTkn xR7ARasaBq helc4zqA % 2FPPlWgAKv kXba7aIoo0
1fV4jN5JXQ fAU8KLO8tR jofHWmojNz BJAAPpYSSy 3Rvr7m5efQ
rrybY1lLO6 iZy % 2BVio2VSZD xshI5Z3McK ARWct06MWV 9ABA2TTXXO
i40BOxuq % 2B3JGoABXC 54TOlo7 % 2F1wTLTsCU qzzeIiXVOK 8CfNOkfTuc
MGHkeYeCdF km % 2FkADhXAnr nGf5a4FbmK MQph2cKsr8 y8UfWLC6Iz
vJsClXTnbJ BMeuWIqo5z IynS1pm7gf % 2F9N3hVc6 % 2BEeIk0xfl
2tycsUpbL2 FoaGk6BAF8 hWSWYUXsv5 9d5Uk % 3D ",

 " getType ": " file "
 },
 " method ": " thing . config . push "
}

Response message
{

124 Issue: 20190506

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol
 " id ": " 123 ",
 " code ": 200 ,
 " data ": {}
}

Parameter description
Parameter Type Description
id String Message ID. IoT Platform

 generates IDs for
downstream messages.

version String Protocol version. Currently
, the value is 1.0.

configScope String Configuration scope.
Currently, IoT Platform
 supports only product
dimension configuration.
Value: product.

getType String Desired file type of the
configuration. Currently,
the supported type is file.
Set the value to file.

configId String ID of the configuration.
configSize Long Size of the configuration

file, in bytes.
sign String Signature value.
signMethod String Signing method. The

supported signing method
is Sha256.

url String The OSS address where the
 configuration file is stored
.

method String Request method. The value
is thing.config.push.

code Integer Result code. For more
information, see Common
codes on devices.

Issue: 20190506 125

IoT Platform Developer Guide (Devices) / 6 Develop devices based onAlink Protocol

6.13 Common codes on devices
Common codes on devices indicate the results that are returned to IoT Platform in
response to requests from IoT Platform.
Result code Message Description
200 success The request is successful.
400 request error Internal service error.
460 request parameter error The request parameters are

invalid. The device has failed
input parameter verification.

429 too many requests The system is busy. This code
can be used when the device is
too busy to process the request.

100000-110000 Device-specific error messages Devices use numbers from
100000 to 110000 to indicate
device-specific error messages.

126 Issue: 20190506

	Contents
	Legal disclaimer
	Generic conventions
	1 Download device SDKs
	2 Authenticate devices
	2.1 Authenticate devices
	2.2 Unique-certificate-per-device authentication
	2.3 Unique-certificate-per-product authentication

	3 Protocols for connecting devices
	3.1 MQTT standard
	3.2 Establish MQTT connections over TCP
	3.3 Establish MQTT connections over WebSocket
	3.4 CoAP standard
	3.5 Establish connections over CoAP
	3.6 HTTP standard
	3.7 Establish connections over HTTP

	4 OTA updates
	5 Error codes for sub-device development
	6 Develop devices based on Alink Protocol
	6.1 Communications over Alink protocol
	6.2 Device identity registration
	6.3 Add a topological relationship
	6.4 Connect and disconnect sub-devices
	6.5 Device properties, events, and services
	6.6 Desired device property values
	6.7 Send configuration data to gateway devices
	6.8 Disable and delete devices
	6.9 Device tags
	6.10 TSL model
	6.11 Firmware update
	6.12 Remote configuration
	6.13 Common codes on devices

