
Alibaba Cloud
KeyManagementService

Best Practices
Issue: 20190902

KeyManagementService Best Practices / Legal disclaimer

Legal disclaimer
Alibaba Cloud reminds you to carefully read and fully understand the terms and
conditions of this legal disclaimer before you read or use this document. If you have
read or used this document, it shall be deemed as your total acceptance of this legal
disclaimer.
1. You shall download and obtain this document from the Alibaba Cloud website

 or other Alibaba Cloud-authorized channels, and use this document for your
own legal business activities only. The content of this document is considered
 confidential information of Alibaba Cloud. You shall strictly abide by the
confidentiality obligations. No part of this document shall be disclosed or provided
 to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted,
or disseminated by any organization, company, or individual in any form or by any
means without the prior written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades
, adjustments, or other reasons. Alibaba Cloud reserves the right to modify
the content of this document without notice and the updated versions of this
 document will be occasionally released through Alibaba Cloud-authorized
channels. You shall pay attention to the version changes of this document as they
occur and download and obtain the most up-to-date version of this document from
Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud
products and services. Alibaba Cloud provides the document in the context that
 Alibaba Cloud products and services are provided on an "as is", "with all faults
" and "as available" basis. Alibaba Cloud makes every effort to provide relevant
 operational guidance based on existing technologies. However, Alibaba Cloud
hereby makes a clear statement that it in no way guarantees the accuracy, integrity
, applicability, and reliability of the content of this document, either explicitly
or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial
 losses incurred by any organizations, companies, or individuals arising from
their download, use, or trust in this document. Alibaba Cloud shall not, under any
 circumstances, bear responsibility for any indirect, consequential, exemplary,
incidental, special, or punitive damages, including lost profits arising from the use

Issue: 20190902 I

KeyManagementService Best Practices / Legal disclaimer

 or trust in this document, even if Alibaba Cloud has been notified of the possibility
 of such a loss.

5. By law, all the content of the Alibaba Cloud website, including but not limited to
works, products, images, archives, information, materials, website architecture,
website graphic layout, and webpage design, are intellectual property of Alibaba
 Cloud and/or its affiliates. This intellectual property includes, but is not limited
 to, trademark rights, patent rights, copyrights, and trade secrets. No part of the
 Alibaba Cloud website, product programs, or content shall be used, modified
, reproduced, publicly transmitted, changed, disseminated, distributed, or
published without the prior written consent of Alibaba Cloud and/or its affiliates
. The names owned by Alibaba Cloud shall not be used, published, or reproduced
for marketing, advertising, promotion, or other purposes without the prior written
 consent of Alibaba Cloud. The names owned by Alibaba Cloud include, but are
not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other brands of Alibaba
Cloud and/or its affiliates, which appear separately or in combination, as well as
 the auxiliary signs and patterns of the preceding brands, or anything similar to
the company names, trade names, trademarks, product or service names, domain
 names, patterns, logos, marks, signs, or special descriptions that third parties
identify as Alibaba Cloud and/or its affiliates).

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

II Issue: 20190902

KeyManagementService Best Practices / Legal disclaimer

Issue: 20190902 III

KeyManagementService Best Practices / Generic conventions

Generic conventions
Table -1: Style conventions
Style Description Example

This warning information
indicates a situation that will
cause major system changes,
faults, physical injuries, and other
 adverse results.

Danger:
Resetting will result in the loss of
user configuration data.

This warning information
indicates a situation that may
cause major system changes,
faults, physical injuries, and other
 adverse results.

Warning:
Restarting will cause business
interruption. About 10 minutes are
required to restore business.

This indicates warning informatio
n, supplementary instructions,
and other content that the user
must understand.

Notice:
Take the necessary precautions
to save exported data containing
sensitive information.

This indicates supplemental
instructions, best practices, tips,
and other content that is good to
know for the user.

Note:
You can use Ctrl + A to select all
files.

> Multi-level menu cascade. Settings > Network > Set network
type

Bold It is used for buttons, menus
, page names, and other UI
elements.

Click OK.

Courier
 font

It is used for commands. Run the cd / d C :/ windows
 command to enter the Windows

system folder.
Italics It is used for parameters and

variables.
bae log list --
instanceid Instance_ID

[] or [a|b] It indicates that it is a optional
value, and only one item can be
selected.

ipconfig [-all|-t]

Issue: 20190902 I

KeyManagementService Best Practices / Generic conventions

Style Description Example
{} or {a|b} It indicates that it is a required

value, and only one item can be
selected.

swich {stand | slave}

II Issue: 20190902

KeyManagementService Best Practices / Generic conventions

Issue: 20190902 III

KeyManagementService Best Practices / Contents

Contents
Legal disclaimer.. I
Generic conventions.. I
1 Use envelope encryption to encrypt and decrypt local data... 1
2 Use CMK encryption to encrypt and decrypt data online..... 8

IV Issue: 20190902

KeyManagementService Best Practices / 1 Use envelope encryption to encryptand decrypt local data

1 Use envelope encryption to encrypt and decrypt
local data

You must encrypt sensitive information in your IT assets that are deployed on
Alibaba Cloud. Envelope encryption allows you to use data keys generated by Key
Management Service (KMS) to encrypt large amounts of local data. You can call
the corresponding cryptographic operations of Key Management Service (KMS) to
generate a data key pair online and then use the data key pair to encrypt and decrypt
local data. This encryption mechanism is known as envelope encryption.

Scenarios
You can use envelope encryption in many scenarios, including but not limited to the
following:
• Encrypt business data files.
• Encrypt all data stored on local disks.
This topic describes how to use envelope encryption to encrypt and decrypt local
files.

How envelope encryption works
Use KMS to create a customer master key (CMK), use the CMK to generate a data key
pair, and then use the plaintext data key to encrypt local files. Envelope encryption is
suitable for encrypting large amounts of data. The following figure shows the entire
envelope encryption procedure.

Issue: 20190902 1

KeyManagementService Best Practices / 1 Use envelope encryption to encryptand decrypt local data
• Envelope encryption

Procedure:
1. Use the KMS console or call the CreateKey operation to create a CMK.
2. Call the GenerateDataKey operation of KMS to generate a data key pair. KMS

returns a data key pair: a plaintext data key and a ciphertext data key.
3. Use the plaintext data key to encrypt the local files, and then clear the plaintext

data key stored in Random Access Memory (RAM).
4. Store the ciphertext data key and encrypted data files on a storage device or

service.

2 Issue: 20190902

https://kms.console.aliyun.com/?spm=a2c4g.11186623.2.21.aa46717dmqOatF

KeyManagementService Best Practices / 1 Use envelope encryption to encryptand decrypt local data
• Envelope decryption

Procedure:
1. Retrieve the ciphertext data key from the local device or service.
2. Call the Decrypt operation of KMS to decrypt the ciphertext data key. A plaintext

 copy of the data key is returned.
3. Use the plaintext data key to decrypt the local files, and then clear the plaintext

data key stored in RAM.
Related API operations

You can call the following KMS API operations to encrypt and decrypt local data.
Operation Description
#unique_4 Creates a CMK.
#unique_5 Assigns an alias to a CMK.
#unique_6 Generates a data key, uses the specified

 CMK to encrypt the data key, and then
 returns a plaintext data key and a
ciphertext data key.

#unique_7 Decrypts data that is encrypted by
KMS, including the ciphertext data key
 generated by calling the GenerateDa
taKey operation. You do not need to
specify a CMK.

Issue: 20190902 3

KeyManagementService Best Practices / 1 Use envelope encryption to encryptand decrypt local data
Encrypt and decrypt a local file

• Envelope encryption
1. Create a CMK.

$ aliyun kms CreateKey
{
 " KeyMetadat a ": {
 " CreationDa te ": " 2019 - 04 - 08T07 : 45 : 54Z ",
 " Descriptio n ": "",
 " KeyId ": " 1234abcd - 12ab - 34cd - 56ef - 12345678 ****",
 " KeyState ": " Enabled ",
 " KeyUsage ": " ENCRYPT / DECRYPT ",
 " DeleteDate ": "",
 " Creator ": " 1111222233 33 ",
 " Arn ": " acs : kms : cn - hangzhou : 1111222233 33 : key /
1234abcd - 12ab - 34cd - 56ef - 12345678 ****",

 " Origin ": " Aliyun_KMS ",
 " MaterialEx pireTime ": ""
 },
 " RequestId ": " 2a37b168 - 9fa0 - 4d71 - aba4 - 2077dd9e80 df
"

}

2. Assign an alias to the CMK.
Aliases are optional to CMKs. If a CMK does not have an alias, you can use its ID.
$ aliyun kms CreateAlia s -- AliasName alias / Apollo /
WorkKey -- KeyId 1234abcd - 12ab - 34cd - 56ef - 1234567890
ab

Note:
In this example, Apollo/WorkKey specifies the CMK in the Apollo project that
is used to encrypt data keys. The alias of the CMK is WorkKey. This means that
you can specify alias/Apollo/WorkKey to use the CMK WorkKey to encrypt a
data key.

3. Encrypt a local data file.
Sample code:
- CMK: The alias of the CMK is alias / Apollo / WorkKey .
- Plaintext data file: ./ data / sales . csv

- Ciphertext data file: ./ data / sales . csv . cipher

#! / usr / bin / env python
coding = utf - 8

import json
import base64

4 Issue: 20190902

KeyManagementService Best Practices / 1 Use envelope encryption to encryptand decrypt local data
from Crypto . Cipher import AES

from aliyunsdkc ore import client
from aliyunsdkk ms . request . v20160120 import
GenerateDa taKeyReque st

def KmsGenerat eDataKey (client , key_alias):
 request = GenerateDa taKeyReque st . GenerateDa
taKeyReque st ()

 request . set_accept _format (' JSON ')
 request . set_KeyId (key_alias)
 request . set_Number OfBytes (32)
 response = json . loads (client . do_action (request))

 datakey_en crypted = response [" Ciphertext Blob "]
 datakey_pl aintext = response [" Plaintext "]
 return (datakey_pl aintext , datakey_en crypted)

def ReadTextFi le (in_file):
 file = open (in_file , ' r ')
 content = file . read ()
 file . close ()
 return content

def WriteTextF ile (out_file , lines):
 file = open (out_file , ' w ')
 for ln in lines :
 file . write (ln)
 file . write ('\ n ')
 file . close ()

Out file format (text)
Line 1 : b64 encoded data key
Line 2 : b64 encoded IV
Line 3 : b64 encoded ciphertext
Line 4 : b64 encoded authentica tion tag
def LocalEncry pt (datakey_pl aintext , datakey_en crypted
, in_file , out_file):

 data_key_b inary = base64 . b64decode (datakey_pl aintext
)

 cipher = AES . new (data_key_b inary , AES . MODE_EAX)

 in_content = ReadTextFi le (in_file)
 ciphertext , tag = cipher . encrypt_an d_digest (
in_content)

 lines = [datakey_en crypted , base64 . b64encode (cipher .
nonce), base64 . b64encode (ciphertext), base64 . b64encode
(tag)];

 WriteTextF ile (out_file , lines)

clt = client . AcsClient (' Access - Key - Id ',' Access - Key
- Secret ',' Region - Id ')

key_alias = ' alias / Apollo / WorkKey '

in_file = './ data / sales . csv '
out_file = './ data / sales . csv . cipher '

Generate Data Key
datakey = KmsGenerat eDataKey (clt , key_alias)

Locally Encrypt the sales record

Issue: 20190902 5

KeyManagementService Best Practices / 1 Use envelope encryption to encryptand decrypt local data
LocalEncry pt (datakey [0], datakey [1], in_file ,
out_file)

• Envelope decryption
Decrypt a local file.
Sample code:
- Ciphertext data file: ./ data / sales . csv . cipher

- Plaintext data file: ./ data / decrypted_ sales . csv

#! / usr / bin / env python
coding = utf - 8

import json
import base64

from Crypto . Cipher import AES

from aliyunsdkc ore import client
from aliyunsdkk ms . request . v20160120 import DecryptReq
uest

def KmsDecrypt (client , ciphertext):
 request = DecryptReq uest . DecryptReq uest ()
 request . set_accept _format (' JSON ')
 request . set_Cipher textBlob (ciphertext)
 response = json . loads (clt . do_action (request))
 return response . get (" Plaintext ")

def ReadTextFi le (in_file):
 file = open (in_file , ' r ')
 lines = []
 for ln in file :
 lines . append (ln)
 file . close ()
 return lines

def WriteTextF ile (out_file , content):
 file = open (out_file , ' w ')
 file . write (content)
 file . close ()

def LocalDecry pt (datakey , iv , ciphertext , tag ,
out_file):
 cipher = AES . new (datakey , AES . MODE_EAX , iv)
 data = cipher . decrypt_an d_verify (ciphertext , tag).
decode (' utf - 8 ')
 WriteTextF ile (out_file , data)

clt = client . AcsClient (' Access - Key - Id ',' Access - Key -
Secret ',' Region - Id ')

in_file = './ data / sales . csv . cipher '
out_file = './ data / decrypted_ sales . csv '

Read encrypted file
in_lines = ReadTextFi le (in_file)

Decrypt data key

6 Issue: 20190902

KeyManagementService Best Practices / 1 Use envelope encryption to encryptand decrypt local data
datakey = KmsDecrypt (clt , in_lines [0])

Locally decrypt the sales record
LocalDecry pt (
 base64 . b64decode (datakey),
 base64 . b64decode (in_lines [1]), # IV
 base64 . b64decode (in_lines [2]), # Ciphertext
 base64 . b64decode (in_lines [3]), # Authentica tion tag
 out_file
)

Issue: 20190902 7

KeyManagementService Best Practices / 2 Use CMK encryption to encrypt anddecrypt data online

2 Use CMK encryption to encrypt and decrypt data
online

You must encrypt sensitive information in your IT assets that are deployed on Alibaba
Cloud. You can call cryptographic operations of Key Management Service (KMS) to
encrypt or decrypt data less than 6 KB online.

Scenarios
You can use CMK encryption in many scenarios, including but not limited to the
following:
• Encrypt configuration files.
• Encrypt private keys of SSL certificates.
This topic describes how to call the KMS API to encrypt and decrypt private keys of
SSL certificates online.

How CMK encryption works
User data is transmitted to the KMS server through an encrypted connection. The
KMS server encrypts or decrypts the data, and then returns the data to the user
through the encrypted connection. The following figure shows the entire procedure.

Procedure:

8 Issue: 20190902

KeyManagementService Best Practices / 2 Use CMK encryption to encrypt anddecrypt data online
1. Use the KMS console or call the CreateKey operation to create a customer master

key (CMK). For more information, see Create a CMK.
2. Call the Encrypt operation of KMS to encrypt the private key of an SSL certificate. A

ciphertext copy of the private key is returned. For more information, see Encrypt a
private key.

3. Install the SSL certificate and ciphertext private key on your cloud server.
4. When the cloud server needs to create an encrypted connection, it calls the

Decrypt operation of KMS to decrypt the ciphertext private key. For more
information, see Decrypt a private key.

Related API operations
You can call the following API operations to encrypt and decrypt data.
Operation Description
#unique_4 Creates a CMK.
#unique_5 Assigns an alias to a CMK.
#unique_9 Encrypts data with a specified CMK.
#unique_7 Decrypts data that is encrypted by KMS.

You do not need to specify a CMK.
Encrypt and decrypt the private key of an SSL certificate

1. Call the CreateKey operation to create a CMK.
$ aliyun kms CreateKey
{
 " KeyMetadat a ": {
 " CreationDa te ": " 2019 - 04 - 08T07 : 45 : 54Z ",
 " Descriptio n ": "",
 " KeyId ": " 1234abcd - 12ab - 34cd - 56ef - 12345678 ****",
 " KeyState ": " Enabled ",
 " KeyUsage ": " ENCRYPT / DECRYPT ",
 " DeleteDate ": "",
 " Creator ": " 1111222233 33 ",
 " Arn ": " acs : kms : cn - hangzhou : 1111222233 33 : key /
1234abcd - 12ab - 34cd - 56ef - 12345678 ****",
 " Origin ": " Aliyun_KMS ",
 " MaterialEx pireTime ": ""
 },
 " RequestId ": " 2a37b168 - 9fa0 - 4d71 - aba4 - 2077dd9e80 df "

Issue: 20190902 9

https://kms.console.aliyun.com/?spm=a2c4g.11186623.2.21.aa46717dmqOatF

KeyManagementService Best Practices / 2 Use CMK encryption to encrypt anddecrypt data online
}

2. Assign an alias to the CMK.
Aliases are optional to CMKs. If a CMK does not have an alias, you can use its ID.
$ aliyun kms CreateAlia s -- AliasName alias / Apollo /
WorkKey -- KeyId 1234abcd - 12ab - 34cd - 56ef - 12345678 ****

Note:
In this example, Apollo / WorkKey specifies the CMK in the Apollo project that
is used to encrypt the private key. The alias of the CMK is WorkKey. This means
that you can specify alias / Apollo / WorkKey to use the CMK WorkKey to
encrypt a private key.

3. Call the Encrypt operation to encrypt the private key. KMS then encrypts the
private key.
Sample code:
• CMK: The alias of the CMK is alias / Apollo / WorkKey .
• Plaintext private key: ./ certs / key . pem

• Ciphertext private key: ./ certs / key . pem . cipher

#! / usr / bin / env python
coding = utf - 8

import json

from aliyunsdkc ore import client
from aliyunsdkk ms . request . v20160120 import EncryptReq
uest
from aliyunsdkk ms . request . v20160120 import DecryptReq
uest

def KmsEncrypt (client , plaintext , key_alias):
 request = EncryptReq uest . EncryptReq uest ()
 request . set_accept _format (' JSON ')
 request . set_KeyId (key_alias)
 request . set_Plaint ext (plaintext)
 response = json . loads (clt . do_action (request))
 return response . get (" Ciphertext Blob ")

def ReadTextFi le (in_file):
 file = open (in_file , ' r ')
 content = file . read ()
 file . close ()
 return content

def WriteTextF ile (out_file , content):
 file = open (out_file , ' w ')
 file . write (content)
 file . close ()

10 Issue: 20190902

KeyManagementService Best Practices / 2 Use CMK encryption to encrypt anddecrypt data online
clt = client . AcsClient ('< Access - Key - Id >',' Access - Key
- Secret ','< Region - Id >')

key_alias = ' alias / Apollo / WorkKey '

in_file = './ certs / key . pem '
out_file = './ certs / key . pem . cipher '

Read private key file in text mode
in_content = ReadTextFi le (in_file)

Encrypt
ciphertext = KmsEncrypt (clt , in_content , key_alias)

Write encrypted key file in text mode
WriteTextF ile (out_file , ciphertext)

4. Call the Decrypt operation to decrypt the ciphertext private key. KMS then
decrypts the private key that you have installed on your cloud server.
Sample code:
• Ciphertext private key: ./ certs / key . pem . cipher

• Plaintext private key: ./ certs / decrypted_ key . pem

#! / usr / bin / env python
coding = utf - 8

import json

from aliyunsdkc ore import client
from aliyunsdkk ms . request . v20160120 import EncryptReq
uest
from aliyunsdkk ms . request . v20160120 import DecryptReq
uest

def KmsDecrypt (client , ciphertext):
 request = DecryptReq uest . DecryptReq uest ()
 request . set_accept _format (' JSON ')
 request . set_Cipher textBlob (ciphertext)
 response = json . loads (clt . do_action (request))
 return response . get (" Plaintext ")

def ReadTextFi le (in_file):
 file = open (in_file , ' r ')
 content = file . read ()
 file . close ()
 return content

def WriteTextF ile (out_file , content):
 file = open (out_file , ' w ')
 file . write (content)
 file . close ()

clt = client . AcsClient ('< Access - Key - Id >',' Access - Key
- Secret ','< Region - Id >')

in_file = './ certs / key . pem . cipher '
out_file = './ certs / decrypted_ key . pem '

Read encrypted key file in text mode

Issue: 20190902 11

KeyManagementService Best Practices / 2 Use CMK encryption to encrypt anddecrypt data online
in_content = ReadTextFi le (in_file)

Decrypt
ciphertext = KmsDecrypt (clt , in_content)

Write Decrypted key file in text mode
WriteTextF ile (out_file , ciphertext)

12 Issue: 20190902

	Contents
	Legal disclaimer
	Generic conventions
	1 Use envelope encryption to encrypt and decrypt local data
	2 Use CMK encryption to encrypt and decrypt data online

