
Alibaba Cloud
IoT Platform

User Guide

Issue: 20181113

IoT Platform User Guide / Legal disclaimer

Issue: 20181113 I

Legal disclaimer

Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions of this

legal disclaimer before you read or use this document. If you have read or used this document, it

shall be deemed as your total acceptance of this legal disclaimer.

1. You shall download and obtain this document from the Alibaba Cloud website or other Alibaba

Cloud-authorized channels, and use this document for your own legal business activities only.

The content of this document is considered confidential information of Alibaba Cloud. You shall

 strictly abide by the confidentiality obligations. No part of this document shall be disclosed or

provided to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted, or disseminat

ed by any organization, company, or individual in any form or by any means without the prior

written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades, adjustment

s, or other reasons. Alibaba Cloud reserves the right to modify the content of this document

without notice and the updated versions of this document will be occasionally released through

 Alibaba Cloud-authorized channels. You shall pay attention to the version changes of this

document as they occur and download and obtain the most up-to-date version of this document

 from Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud products and

services. Alibaba Cloud provides the document in the context that Alibaba Cloud products and

 services are provided on an "as is", "with all faults" and "as available" basis. Alibaba Cloud

makes every effort to provide relevant operational guidance based on existing technologies

. However, Alibaba Cloud hereby makes a clear statement that it in no way guarantees the

accuracy, integrity, applicability, and reliability of the content of this document, either explicitly

or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial losses incurred

 by any organizations, companies, or individuals arising from their download, use, or trust in

this document. Alibaba Cloud shall not, under any circumstances, bear responsibility for any

 indirect, consequential, exemplary, incidental, special, or punitive damages, including lost

profits arising from the use or trust in this document, even if Alibaba Cloud has been notified of

the possibility of such a loss.

5. By law, all the content of the Alibaba Cloud website, including but not limited to works, products

, images, archives, information, materials, website architecture, website graphic layout, and

webpage design, are intellectual property of Alibaba Cloud and/or its affiliates. This intellectu

al property includes, but is not limited to, trademark rights, patent rights, copyrights, and trade

IoT Platform User Guide / Legal disclaimer

II Issue: 20181113

 secrets. No part of the Alibaba Cloud website, product programs, or content shall be used,

modified, reproduced, publicly transmitted, changed, disseminated, distributed, or published

 without the prior written consent of Alibaba Cloud and/or its affiliates. The names owned by

Alibaba Cloud shall not be used, published, or reproduced for marketing, advertising, promotion

, or other purposes without the prior written consent of Alibaba Cloud. The names owned by

Alibaba Cloud include, but are not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other

brands of Alibaba Cloud and/or its affiliates, which appear separately or in combination, as well

 as the auxiliary signs and patterns of the preceding brands, or anything similar to the company

 names, trade names, trademarks, product or service names, domain names, patterns, logos

, marks, signs, or special descriptions that third parties identify as Alibaba Cloud and/or its

affiliates).

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

IoT Platform User Guide / Legal disclaimer

Issue: 20181113 III

IoT Platform User Guide / Generic conventions

Issue: 20181113 I

Generic conventions

Table -1: Style conventions

Style Description Example

This warning information indicates a
situation that will cause major system
changes, faults, physical injuries, and
other adverse results.

Danger:
Resetting will result in the loss of user
configuration data.

This warning information indicates a
situation that may cause major system
 changes, faults, physical injuries, and
other adverse results.

Warning:
Restarting will cause business
interruption. About 10 minutes are
required to restore business.

This indicates warning information,
supplementary instructions, and other
content that the user must understand.

Note:
Take the necessary precautions to
save exported data containing sensitive
information.

This indicates supplemental instructio
ns, best practices, tips, and other
content that is good to know for the
user.

Note:
You can use Ctrl + A to select all files.

> Multi-level menu cascade. Settings > Network > Set network type

Bold It is used for buttons, menus, page
names, and other UI elements.

Click OK.

Courier

font

It is used for commands. Run the cd /d C:/windows command
to enter the Windows system folder.

Italics It is used for parameters and variables. bae log list --instanceid

 Instance_ID

[] or [a|b] It indicates that it is a optional value,
and only one item can be selected.

ipconfig [-all|-t]

{} or {a|b} It indicates that it is a required value,
and only one item can be selected.

swich {stand | slave}

IoT Platform User Guide / Contents

II Issue: 20181113

Contents

Legal disclaimer..I
Generic conventions.. I
1 Accounts and logon...1

1.1 Log on to the console using the primary account..1
1.2 Resource Access Management (RAM)..2

1.2.1 RAM and STS...2
1.2.2 Custom permissions..4
1.2.3 API permissions.. 11
1.2.4 Use RAM users...14
1.2.5 Advanced guide to STS..17

2 Create products and devices..24
2.1 Create a product (Basic Edition)..24
2.2 Create a product (Pro Edition)...25
2.3 Create devices... 28

2.3.1 Create multiple devices at a time... 28
2.3.2 Create a device...29

2.4 TSL... 30
2.4.1 What is Thing Specification Language (TSL)?... 31
2.4.2 Define features using TSL.. 31
2.4.3 Import Thing Specification Language (TSL)... 39
2.4.4 The TSL format...40

2.5 Data parsing... 43
2.6 Virtual devices.. 53
2.7 Topics... 55

2.7.1 What is a topic?..55
2.7.2 System-defined topics...57
2.7.3 Create a topic category.. 59

2.8 Tags..61
2.9 Gateways and sub-devices..63

2.9.1 Gateways and sub-devices...63
2.9.2 Sub-device channels...64
2.9.3 Sub-device management.. 66

2.10 Service Subscription...68
2.10.1 What is Service Subscription?..68
2.10.2 Development guide... 68

2.11 Device group.. 73

3 Rules engine... 77
3.1 Overview...77
3.2 Create and configure a rule...78
3.3 SQL statements..81

IoT Platform User Guide / Contents

Issue: 20181113 III

3.4 Functions.. 85
3.5 Data forwarding route.. 87
3.6 Data format in topics..88
3.7 Regions and zones.. 93
3.8 Examples.. 93

3.8.1 Forward data to another topic.. 94
3.8.2 Forward data to Table Store...95
3.8.3 Forward data to RDS..98
3.8.4 Forward data to Function Compute..101

4 Extended services..107
4.1 Firmware update.. 107
4.2 Remote configuration... 110

5 Log service... 116

IoT Platform User Guide / Contents

IV Issue: 20181113

IoT Platform User Guide / 1 Accounts and logon

Issue: 20181113 1

1 Accounts and logon

This topic describes IoT Platform accounts and how to log on to the IoT Platform console.

1.1 Log on to the console using the primary account
The primary account has full operation permissions on all resources under this account, and

supports modifying account information.

Log on to the IoT Platform console using the primary account

You have full operation permissions on IoT Platform when logging on to the console using the

primary account.

1. Visit the Alibaba Cloud official website.

2. Click Console.

3. Log on to the console using your account and password.

Note:

To retrieve an account or password, click Forgot Username or Forgot Password on the

logon page to start the retrieval process.

4. Click Products in the console to display all products and services that are provided by Alibaba

Cloud.

5. Search for IoT Platform, and click IoT Platform in the result to enter the IoT Platform console.

Note:

If you have not activated the IoT Platform service, the IoT Platform console prompts you to

activate this service on the homepage. Click Activate Now to activate it quickly.

After entering the IoT Platform console, you can manage products, devices, and rules.

Create access control using the primary account

The primary account has full permissions, so the leakage of the primary account may cause

serious security risks. Therefore, do not disclose your account and password when you authorize

others to access your Alibaba Cloud resources. Instead, you should use Resource Access

Management (RAM) to create sub-accounts and assign the required access permissions to these

sub-accounts. All users except the primary account user or administrator access the resources

using sub-accounts. For more information about accessing IoT Platform using RAM users, seeUse

RAM users and Custom permissions.

https://www.alibabacloud.com

IoT Platform User Guide / 1 Accounts and logon

2 Issue: 20181113

1.2 Resource Access Management (RAM)
This chapter describes IoT Platform access control.

1.2.1 RAM and STS
Resource Access Management (RAM) and Security Token Service (STS) are access control

systems provided by Alibaba Cloud. For more information about RAM and STS, see RAM help

documentation.

RAM is used to control the permissions of accounts. By using RAM, you can create and manage

 RAM users. You can control what resources RAM users can access by granting different

permissions to them.

STS is a security token management system. It is used to manage the short-term permissions

granted to RAM users. You can use STS to grant permissions to temporary users.

Background

RAM and STS enable you to securely grant permissions to users without exposing your account

AccessKey. Once your account AccessKey is exposed, your resources will be exposed to major

security risks. Individuals who obtain your AccessKey can perform any operation on the resources

 under your account and steal personal information.

RAM is a mechanism used to control long-term permissions. After creating RAM users, you can

 grant them different permissions. AccessKeys of RAM users if exposed do not have the same

 risk as an account AccessKey being exposed. If the AccessKey of any RAM user is exposed,

information potentially exposed is limited. RAM users are valid for a long term.

Unlike RAM, which allows you to grant long-term permissions to users, STS enables you to

grant users temporary access. By calling the STS API, you can obtain temporary AccessKeys

and tokens. You can assign the temporary AccessKeys and tokens to RAM users so they can

access specific resources. Permissions obtained from STS are strictly restricted and have limited

validity. Therefore, even if information is unexpectedly exposed, your system will not be severely

compromised.

For details about how to use RAM and STS, see Cite LeftExamplesCite Right.

Concepts

Before you use RAM and STS, we recommend that you have a basic understanding of the

following concepts:

https://www.alibabacloud.com/help/product/28625.htm
https://www.alibabacloud.com/help/product/28625.htm

IoT Platform User Guide / 1 Accounts and logon

Issue: 20181113 3

• RAM user: A user that is created using the RAM console. During or after the creation of a RAM

 User, an AccessKey can be generated for the RAM user. After creating a RAM user, you

need to configure the password and grant permissions to it. Once this is completed the RAM

user can perform authorized operations. A RAM user can be considered a user with specific

operation permissions.

• Role: A virtual entity that represents a group of permissions. Roles do not have their own logon

 password or AccessKey. A RAM user can assume roles. When roles are assumed the RAM

user has the associated role privileges.

• Policy: A policy defines permissions. For example, a policy defines the permission of a RAM

user to read or write to specific resources.

• Resource: Cloud resources that are accessible to a RAM user, such as all Table Store

instances, a Table Store instance, or a table in a Table Store instance.

The relationship between RAM users and their roles is similar to the relationship between

individuals and their identities. For example, the roles of a person might be an employee at work

 and a father at home. A person plays different roles in different scenarios. When playing a

specific role, the person has the privileges of that role. A role itself is not an operational entity

. Only after the user has assumed this role is it a complete operational entity. A role can be

assumed by multiple users.

Examples

To prevent an account from being exposed to security risks if the account AccessKey is exposed

, an account administrator creates two RAM users. These RAM users are named A and B. An

 AccessKey is generated for each of them. A has the read permission, and B has the write

permission. The administrator can revoke the permissions from the RAM users at any time in the

RAM console.

Additional, individuals need to be granted temporary access to the API of IoT Platform. In this

case, the AccessKey of A must not be disclosed. Instead, the administrator needs to create a

role, C, and grant this role access to the API of IoT Platform. Note that C cannot be directly used

currently because there is no AccessKey for C, and C is only a virtual entity that owns access to

the IoT Platform API.

The administrator needs to call the AssumeRole API operation of STS to obtain temporary

security credentials that can be used to access the IoT Platform API. In the AssumeRole call, the

value of RoleArn must be the Alibaba Cloud resource name (ARN) of C. If the AssumeRole call is

 successful, STS will return a temporary AccessKeyId, AccessKeySecret, and SecurityToken as

IoT Platform User Guide / 1 Accounts and logon

4 Issue: 20181113

security credentials. The validity period of these credentials can be specified when AssumeRole is

 called. The account administrator can deliver these credentials to users who need access to the

API of the IoT Platform. This access to the API is temporary.

Why is it complicated to use RAM and STS?

The concepts and use of RAM and STS are complicated. This ensures account security and

flexible access control at the cost of service ease of use.

RAM users and roles are separated in order to keep the entity that performs operation separate

from the virtual entity that represents a group of permissions. If a user needs multiple permission

s, such as the read and the write permissions, but in fact the user only needs one permission at a

 time, you can create two roles. Grant the read permission and the write permission to these two

 roles, respectively. Then create a RAM user and assign both roles to the RAM user. When the

RAM user needs the read permission, assume the role that includes the read permission. When

the RAM user needs the write permission, assume the role that includes the write permission. This

 reduces the risk of a permission leak occurring in each operation. Additionally, you can assign

roles to other accounts and RAM users to grant them the permissions included in the roles. This

makes it easier for users to use the role permissions.

STS allows more flexible access control. For example, you can configure the validity period for

 credentials. However, if long-term credentials are required, you can only use RAM to manage

RAM users.

The following sections provide guidelines for using RAM and STS and examples for using them.

For more information about APIs provided by RAM and STS, see API Reference - RAM and API

Reference - STS.

1.2.2 Custom permissions
Permissions define the conditions in which the system allows or denies some specified actions on

target resources.

Permissions are defined in authorization policies. Custom permissions allow you to define certain

permissions by using custom authorization policies. In the Resource Access Management (RAM)

console, click Create Authorization Policy on the Policies page to customize an authorization

policy. Select a blank template when customizing an authorization policy.

An authorization policy is a JSON string that requires the following parameters:

https://www.alibabacloud.com/help/doc-detail/28672.htm
https://www.alibabacloud.com/help/doc-detail/28756.htm
https://www.alibabacloud.com/help/doc-detail/28756.htm

IoT Platform User Guide / 1 Accounts and logon

Issue: 20181113 5

• Action: Indicates the action that you want to authorize. IoT actions start with iot:. For more

information about actions and examples, see Define actions.

• Effect : Indicates the authorization type, which can be Allow or Deny.

• Resource : Because IoT Platform does not support resource authorization, enter an asterisk

* instead.

• Condition: Indicates the authentication condition. For more information, see Define

conditions.

Define actions

Action is an application programming interface (API) operation name. When creating an

authorization policy, use iot: as the prefix for each action, and separate multiple actions with

commas (,). You can also use an asterisk (*) as a wildcard character. For more information about

API name definitions that are used on IoT Platform, seeAPI permissions .

The following are some examples of action definitions.

• Define a single API operation.

"Action": "iot:CreateProduct"

• Define multiple API operations.

"Action": [
"iot:UpdateProduct",
"iot:QueryProduct"
]

• Define all read-only API operations.

{
"Version": "1",
"Statement": [
{
"Action": [
"rds:DescribeDBInstances",
"rds:DescribeDatabases",
"rds:DescribeAccounts",
"rds:DescribeDBInstanceNetInfo"
],
"Resource": "*",
"Effect": "Allow"
},
{
"Action": "ram:ListRoles",
"Effect": "Allow",
"Resource": "*"
},
{
"Action": [
"mns:ListTopic"

IoT Platform User Guide / 1 Accounts and logon

6 Issue: 20181113

],
"Resource": "*",
"Effect": "Allow"
},
{
"Action": [
"dhs:ListProject",
"dhs:ListTopic",
"dhs:GetTopic"
],
"Resource": "*",
"Effect": "Allow"
},
{
"Action": [
"ots:ListInstance",
"ots:ListTable",
"ots:DescribeTable"
],
"Resource": "*",
"Effect": "Allow"
},
{
"Action": [
"log:ListShards",
"log:ListLogStores",
"log:ListProject"
],
"Resource": "*",
"Effect": "Allow"
},
{
"Effect": "Allow",
"Action": [
"iot:Query*",
"iot:List*",
"iot:Get*",
"iot:BatchGet*"
],
"Resource": "*"
}
]
}

• Define all read-write API operations.

{
"Version": "1",
"Statement": [
{
"Action": [
"rds:DescribeDBInstances",
"rds:DescribeDatabases",
"rds:DescribeAccounts",
"rds:DescribeDBInstanceNetInfo"
],
"Resource": "*",
"Effect": "Allow"
},
{
"Action": "ram:ListRoles",
"Effect": "Allow",

IoT Platform User Guide / 1 Accounts and logon

Issue: 20181113 7

"Resource": "*"
},
{
"Action": [
"mns:ListTopic",
"mns:CreateQueue"
],
"Resource": "*",
"Effect": "Allow"
},
{
"Action": [
"dhs:ListProject",
"dhs:ListTopic",
"dhs:GetTopic"
],
"Resource": "*",
"Effect": "Allow"
},
{
"Action": [
"ots:ListInstance",
"ots:ListTable",
"ots:DescribeTable"
],
"Resource": "*",
"Effect": "Allow"
},
{
"Action": [
"log:ListShards",
"log:ListLogStores",
"log:ListProject"
],
"Resource": "*",
"Effect": "Allow"
},
{
"Effect": "Allow",
"Action": "iot:*",
"Resource": "*"
}
]
}

Define conditions

RAM authorization policies currently support multiple authentication conditions, such as the

access IP address restrictions, the Hypertext Transfer Protocol Secure (HTTPS)-based access

enabler, the multi-factor authentication (MFA)-based access enabler, and access time restrictions

. All API operations on IoT Platform support these authentication conditions.

Access control based on source IP addresses

This access control restricts source IP addresses that can access IoT Platform, and supports

filtering by Classless Inter-Domain Routing (CIDR) blocks. Typical scenarios are described as

follows:

IoT Platform User Guide / 1 Accounts and logon

8 Issue: 20181113

• Apply access control rules to a single IP address or CIDR blocks. For example, the

following code indicates that only access requests from IP address 10.101.168.111 or

10.101.169.111/24 are allowed.

{
"Statement": [
{
"Effect": "Allow",
"Action": "iot:*",
"Resource": "*",
"Condition": {
"IpAddress": {
"acs:SourceIp": [
"10.101.168.111",
"10.101.169.111/24"
]
}
}
}
],
"Version": "1"
}

• Apply access control rules to multiple IP addresses. For example, the following code indicates

that only access requests from IP addresses 10.101.168.111 and 10.101.169.111 are allowed.

{
"Statement": [
{
"Effect": "Allow",
"Action": "iot:*",
"Resource": "*",
"Condition": {
"IPaddress ":{
"acs:SourceIp": [
"10.101.168.111",
"10.101.169.111"
]
}
}
}
],
"Version": "1"
}

HTTPS-based access control

This access control allows you to enable or disable HTTPS-based access.

For example, the following code indicates that only HTTPS-based access is allowed.

{
"Statement": [
{
"Effect": "Allow",
"Action": "iot:*",

IoT Platform User Guide / 1 Accounts and logon

Issue: 20181113 9

"Resource": "*",
"Condition": {
"Bool": {
"acs:SecureTransport": "true"
}
}
}
],
"Version": "1"
}

MFA-based access control

This access control allows you to enable or disable MFA-based access.

For example, the following code indicates that only MFA-based access is allowed.

{
"Statement": [
{
"Effect": "Allow",
"Action": "iot:*",
"Resource": "*",
"Condition": {
"Bool": {
"acs:MFAPresent ": "true"
}
}
}
],
"Version": "1"
}

Access time restrictions

This access control allows you to limit the access time of requests. Access requests earlier than

the specified time are allowed or rejected.

For example, the following code indicates that only access requests earlier than 00:00:00 Beijing

Time (UTC+8) on January 1, 2019 are allowed.

{
"Statement": [
{
"Effect": "Allow",
"Action": "iot:*",
"Resource": "*",
"Condition": {
"DateLessThan": {
"acs:CurrentTime": "2019-01-01T00:00:00+08:00"
}
}
}
],
"Version": "1"

IoT Platform User Guide / 1 Accounts and logon

10 Issue: 20181113

}

Typical scenarios

Based on these definitions of actions, resources, and conditions, authorization policies are

described in the following typical scenarios.

The following is an example of authorization policy that allows access.

Scenario: Assigns IoT Platform access permissions to the IP address 10.101.168.111/24, and only

 allows HTTPS-based access before 00:00:00 Beijing Time (UTC+8) on January 1, 2019.

{
"Statement": [
{
"Effect": "Allow",
"Action": "iot:*",
"Resource": "*",
"Condition": {
"IPaddress ":{
"acs:SourceIp": [
"10.101.168.111/24"
]
},
"DateLessThan": {
"acs:CurrentTime": "2019-01-01T00:00:00+08:00"
},
"Bool": {
"acs:SecureTransport": "true"
}
}
}
],
"Version": "1"
}

The following is an example of authorization policy to specify denied access.

Scenario: Rejects read requests from IP address 10.101.169.111.

{
"Statement": [
{
"Effect": "Deny",
"Action": [
"iot:Query*",
"iot:List*",
"iot:Get*",
"iot:BatchGet*"
],
"Resource": "*",
"Condition": {
"IpAddress": {
"acs:SourceIp": [
"10.101.169.111"
]
}
}

IoT Platform User Guide / 1 Accounts and logon

Issue: 20181113 11

}
],
"Version": "1"
}

After creating the authorization policy, apply this policy to the RAM users on the User

Management page in the RAM console. Authorized RAM users can perform the operations

defined in this policy. For more information about creating RAM users and granting permissions,

see Use RAM users.

1.2.3 API permissions
Each operation in the following table represents the value of Action that you specify when creating

authentication policies for RAM users.

Operation RAM action Resource Description

CreateProduct iot:CreateProduct * Create a product.

UpdateProduct iot:UpdateProduct * Modify the information of a
product.

QueryProduct iot:QueryProduct * Query the detailed informatio
n of a product.

QueryProductList iot:QueryProductList * Query the list of all products.

DeleteProduct iot:DeleteProduct * Delete a product.

RegisterDevice iot:RegisterDevice * Register a device.

QueryDevice iot:QueryDevice * Query the list of all devices of
 a specified product.

DeleteDevice Iot: DeleteDevice * Delete a device.

QueryPageByApplyId iot:QueryPageByApplyId * Query the information of
devices that are registered at
 a time.

BatchGetDeviceState iot:BatchGetDeviceState * Get the status of multiple
devices at a time.

BatchRegisterDeviceW
ithApplyId

iot:BatchRegisterDeviceW
ithApplyId

* Register multiple devices
simultaneously using a given
application ID.

BatchRegisterDevice iot:BatchRegisterDevice * Register devices at a time (
not specify device names).

IoT Platform User Guide / 1 Accounts and logon

12 Issue: 20181113

Operation RAM action Resource Description

QueryBatchRegisterDe
viceStatus

iot:QueryBatchRegisterDe
viceStatus

* Query the processing status
and result of device registrati
on of multiple devices.

BatchCheck
DeviceNames

iot:BatchCheck
DeviceNames

* Specify device names in
batch.

QueryDeviceStatistics iot:QueryDeviceStatistics * Query device statistics.

QueryDeviceEventData iot:QueryDeviceEventData * Query historical events of a
device.

QueryDeviceServiceDa
ta

iot:QueryDeviceServiceDa
ta

* Query historical servicing
records of a device.

SetDeviceProperty iot:SetDeviceProperty * Configure properties of a
device.

InvokeThingService iot:InvokeThingService * Invoke a service of a device.

QueryDevicePropertyS
tatus

iot:QueryDevicePropertyS
tatus

* Query the property informatio
n of a device.

QueryDeviceDetail iot:QueryDeviceDetail * Query details about a device.

DisableThing iot:DisableThing * Disable a device.

EnableThing iot:EnableThing * Enable a device that has
been disabled.

GetThingTopo iot:GetThingTopo * Query the topological
relationships of a device.

RemoveThingTopo iot:RemoveThingTopo * Delete the topological
relationships of a device.

NotifyAddThingTopo iot:NotifyAddThingTopo * Notify a gateway device to
add topological relationships
of the connected sub-devices
.

QueryDevicePropertyD
ata

iot:QueryDevicePropertyD
ata

* Query historical property
records of a device.

GetGatewayBySubDevic
e

iot:GetGateway
BySubDevice

* Query the gateway device
 information using the sub-
device information.

SaveDeviceProp iot:SaveDeviceProp * Create a tag for a device.

IoT Platform User Guide / 1 Accounts and logon

Issue: 20181113 13

Operation RAM action Resource Description

QueryDeviceProp iot:QueryDeviceProp * Query the tag lists of a
device.

DeleteDeviceProp iot:DeleteDeviceProp * Delete a tag of a device.

QueryAppDeviceList iot:QueryAppDeviceList * Query the list of devices that
 are bound with an specified
app.

StartRule iot:StartRule * Enable a rule.

StopRule iot:StopRule * Stop a rule.

ListRule iot:ListRule * Query the information of all
rules.

GetRule iot:GetRule * Query the details of a rule.

CreateRule iot:CreateRule * Create a rule.

UpdateRule iot:UpdateRule * Modify a rule.

DeleteRule iot:DeleteRule * Delete a rule.

CreateRuleAction iot:CreateRuleAction * Create a data forwarding
method for a rule.

UpdateRuleAction iot:UpdateRuleAction * Modify a data forwarding
method.

DeleteRuleAction iot:DeleteRuleAction * Delete a data forwarding
method.

GetRuleAction iot:GetRuleAction * Query the detailed informatio
n of data forwarding method

ListRuleActions iot:ListRuleActions * Query the list of data
forwarding methods in a rule.

Pub iot:Pub * Publish messages.

PubBroadcast iot:PubBroadcast * Publish messages to the
devices that have subscribed
 to a broadcast topic.

RRpc iot:RRpc * Send a request to a device
and retrieve a response from
 the device.

CreateProductTopic iot:CreateProductTopic * Create a topic category for a
product.

IoT Platform User Guide / 1 Accounts and logon

14 Issue: 20181113

Operation RAM action Resource Description

DeleteProductTopic iot:DeleteProductTopic * Delete a topic category.

QueryProductTopic iot:QueryProductTopic * Query information about all
topic categories of a product.

UpdateProductTopic iot:UpdateProductTopic * Modify a topic category.

CreateTopicRouteTable iot:CreateTopicRouteTable * Create message routing
relationships between topics.

DeleteTopicRouteTable iot:DeleteTopicRouteTable * Delete message routing
relationships.

QueryTopicReverseRou
teTable

iot:QueryTopic
ReverseRouteTable

* Query the source topic of a
target topic.

QueryTopicRouteTable iot:QueryTopicRouteTable * Query the target topics of a
source topic.

GetDeviceShadow iot:GetDeviceShadow * Query the shadow informatio
n of a device.

UpdateDeviceShadow iot:UpdateDeviceShadow * Modify the shadow informatio
n of a device.

1.2.4 Use RAM users
RAM users (sub-accounts) can log on to the IOT Platform console to manage IoT resources, and

use the corresponding AccessKeyId and AccessKeySecret to use IoT application programming

interface (API).

You need to create a RAM user first, and assign the permissions for accessing IoT Platform to this

RAM user by using authorization policies. For more information about customizing authorization

policies, see Custom permissions.

Create a RAM user

Skip this step if you already have a RAM user.

1. Log on to the RAM console.

2. In the left-side navigation pane, click Users.

3. Click Create User.

4. Enter user information, select Automatically generate an AccessKey for this user., and then

click OK.

https://ram.console.aliyun.com/

IoT Platform User Guide / 1 Accounts and logon

Issue: 20181113 15

Note:

The system prompts you to save the AccessKey after you click OK. You can download this

AccessKey only at this moment. You need to save this AccessKey and secure it immediately.

The system requires the AccessKey when the corresponding RAM user calls API operations.

5. Set the initial login password.

a. On the User Management page, click Manage of the created RAM user to enter the User

Details page.

b. Click Enable Console Logon.

c. Set an initial password for this RAM user, select On your next logon you must reset the

password., and then click OK.

6. Enable multi-factor authentication (MFA). (Optional)

On the User Details page, click Enable VMFA Device.

After you create the RAM user, the RAM user can log on to the official website and the IoT

Platform console by using the Resource Access Management (RAM) user logon link. To obtain

the RAM user logon link, go to the RAM Overview page in the RAM console.

However, the RAM user cannot access your Alibaba Cloud resources before you grant permission

s to the RAM user. Therefore, you need to assign permissions for accessing IoT Platform to this

RAM user.

Authorize the RAM user to access IoT Platform

In the RAM console, assign permissions to a RAM user on the User Management page, or

assign the same permissions to a group on the Group Management page. To assign permissions

to a RAM user, follow these steps:

1. Log on to the RAM console using the primary account.

2. In the left-side navigation pane, click Users.

3. Click Authorize next to the RAM user that you want to assign permissions to.

4. In the authorization dialog box, select the authorization policy that you want to apply to this

RAM user, click the right arrow in the middle of the page to move the selected authorization

policy to Selected Authorization Policy Name, and then click OK.

Note:

https://ram.console.aliyun.com/

IoT Platform User Guide / 1 Accounts and logon

16 Issue: 20181113

To assign custom permissions to the RAM user, you need to create an authorization policy

first. For more information about customizing an authorization policy, see Custom permissions.

The authorized RAM user can access the resources defined in the authorization policy, and

perform the specified operations.

Logon to the console using a RAM user

The primary account user can log on to the console from the official website. However, the RAM

user needs to log on to the console on the RAM User Logon page.

1. Obtain the link for logging on to the RAM User Logon page.

Log on to the RAM console using the primary account, view the RAM User Logon Link on the

RAM Overview page, and then send this logon link to the RAM user.

2. The RAM user accesses the RAM User Logon page, and logs on to the console using the

RAM user name and password.

Note:

The RAM user follows this logon format: RAM user name@company alias, such as

username@company-alias. The RAM user also needs to change the logon password after

logon for the first time.

IoT Platform User Guide / 1 Accounts and logon

Issue: 20181113 17

3. Click Console in the upper-right corner of the page to go to the Home page.

4. Click Products, and select IoT Platform to go to the IoT Platform console.

Then, the RAM user can perform authorized operations in the console.

1.2.5 Advanced guide to STS
Security Token Service (STS) enables more strict permission management than Resource Access

Management (RAM). Using STS to implement resource access control involves a complicated

authorization process. You can use STS to grant RAM users temporary permissions to access

resources.

RAM users and the permissions granted to RAM users have long-term validity. You need to

manually delete a RAM user or revoke permissions from RAM users. After the account informatio

n of a RAM user has been leaked, if you fail to timely delete this user or revoke related permission

s, your Alibaba Cloud resources and important information may be compromised. Therefore, we

recommend that you use STS to manage key permissions or permissions that do not require long-

term validity.

Figure 1-1: Process for granting temporary permissions to RAM users.

Step 1: Create a role

A role is a virtual entity that represents a virtual user with a group of permissions.

1. Log on to the RAM console.

2. Select Roles > Create Role to create a role.

3. Select User Role.

4. Use the default account information, and click Next.

5. Specify the role name and description, and click Create.

6. Click Close or Authorize.

https://ram.console.aliyun.com/

IoT Platform User Guide / 1 Accounts and logon

18 Issue: 20181113

If you have created the authorization policy that is to be granted to this role, click Authorize to

authorize this user.

If you have not created the authorization policy, click Close. You can create an authorization

policy for this role by clicking Policies.

Step 2: Create an authorization policy

An authorization policy defines the resource permissions that are to be granted to roles.

1. In the RAM console, click Policies > Create Authorization Policy .

2. Select the blank template.

3. Specify the authorization policy name and policy content, and click Create Authorization

Policy.

For more information about writing the policy content, click Authorization Policy Format.

Authorization policy example: Read-only permission of IoT resources.

{
"Version": "1",
"Statement": [
{
"Action": [
"rds:DescribeDBInstances",
"rds:DescribeDatabases",
"rds:DescribeAccounts",
"rds:DescribeDBInstanceNetInfo"
],
"Resource": "*",
"Effect": "Allow"
},
{
"Action": "ram:ListRoles",
"Effect": "Allow",
"Resource": "*"
},
{
"Action":[
"mns:ListTopic"
],
"Resource": "*",
"Effect": "Allow"
},
{
"Action": [
"dhs:ListProject",
"dhs:ListTopic",
"dhs:GetTopic"
],
"Resource": "*",
"Effect": "Allow"
},
{

https://ram.console.aliyun.com/

IoT Platform User Guide / 1 Accounts and logon

Issue: 20181113 19

"Action": [
"ots:ListInstance",
"ots:ListTable",
"ots:DescribeTable"
],
"Resource": "*",
"Effect": "Allow"
},
{
"Action":[
"log:ListShards",
"log:ListLogStores",
"log:ListProject"
],
"Resource": "*",
"Effect": "Allow"
},
{
"Effect": "Allow",
"Action": [
"iot:Query*",
"iot:List*",
"iot:Get*",
"iot:BatchGet*"
],
"Resource": "*"
}
]
}

Authorization policy example: Read-write permission of IoT resources.

{
"Version": "1",
"Statement": [
{
"Action": [
"rds:DescribeDBInstances",
"rds:DescribeDatabases",
"rds:DescribeAccounts",
"rds:DescribeDBInstanceNetInfo"
],
"Resource": "*",
"Effect": "Allow"
},
{
"Action": "ram:ListRoles",
"Effect": "Allow",
"Resource": "*"
},
{
"Action":[
"mns:ListTopic"
],
"Resource": "*",
"Effect": "Allow"
},
{
"Action": [
"dhs:ListProject",

IoT Platform User Guide / 1 Accounts and logon

20 Issue: 20181113

"dhs:ListTopic",
"dhs:GetTopic"
],
"Resource": "*",
"Effect": "Allow"
},
{
"Action": [
"ots:ListInstance",
"ots:ListTable",
"ots:DescribeTable"
],
"Resource": "*",
"Effect": "Allow"
},
{
"Action":[
"log:ListShards",
"log:ListLogStores",
"log:ListProject"
],
"Resource": "*",
"Effect": "Allow"
},
{
"Effect": "Allow",
"Action": "iot:*",
"Resource": "*"
}
]
}

After an authorization policy has been created, you can grant the permissions defined in this policy

 to roles.

Step 3: Authorize a role

A role can only have resource access permissions after it has been authorized.

1. In the RAM console, click Roles.

2. Select the role that you want to authorize, and click Authorize.

3. In the dialog box that appears, select the custom authorization policy that you want to apply to

the specified role, click the right arrow in the middle to move the specified authorization policy

to the Selected Authorization Policy Name list, and then click OK.

https://ram.console.aliyun.com/

IoT Platform User Guide / 1 Accounts and logon

Issue: 20181113 21

The role will have the permissions defined in the selected authorization policy after authorization is

complete. You can click Manage to go to the Role Details page, and view basic information about

this role and the permissions it has been granted.

Next, you need to grant a RAM user the permission to play this role.

Step 4: Grant a RAM user the permission to play the role

After authorization is complete, the role obtains the permissions that are defined in the authorizat

ion policy. However, the role is only a virtual user. You need a RAM user to play the role in order

to perform the operations allowed by the permissions. If all RAM users are allowed to play the role

, this causes security risks. You should only grant the permission to play this role to specified RAM

 users.

To grant a RAM user the permission to play this role, you need to create a custom authorization

policy where the Resource parameter of this policy is set to the ID of the role. You then authorize

the RAM user with this authorization policy.

1. In the RAM console, click Policies > Create Authorization Policy .

2. Select the blank template.

3. Specify the authorization policy name and policy content, and click Create Authorization

Policy.

https://ram.console.aliyun.com/

IoT Platform User Guide / 1 Accounts and logon

22 Issue: 20181113

Note:

In the policy content, set the Resource parameter to the Arn of the role. On the Roles

page, find the specified role, click Manage to go to the Role Details page, and then view the

Arn of the role .

Role authorization policy example:

{
"Version": "1",
"Statement": [
{
"Effect": "Allow",
"Action": "iot:QueryProduct",
"Resource": "Role Arn"
}
]
}

4. After the authorization policy has been created, go to the home page of the RAM console.

5. Click Users in the left-side navigation pane to enter RAM user management page.

6. Select the RAM user you want to authorize and click Authorize.

7. In the dialog box that appears, select the authorization policy that you have just created,

click the right arrow in the middle to move the specified authorization policy to the Selected

Authorization Policy Name list, and then click OK.

After authorization is complete, the RAM user obtains the permission to play this role. You can

then use STS to obtain the temporary identity credentials for accessing the resources.

Step 5: The RAM user obtains temporary identity credentials

Authorized RAM users can call the STS API operations or use the STS SDKs to obtain the

temporary identity credentials for role play. The temporary credentials include an AccessKeyId,

AccessKeySecret, and SecurityToken. For more information about the STS API and STS SDKs,

see API Reference (STS) and SDK Reference (STS).

You need to specify the following parameters when using an STS API or SDK to obtain temporary

 identity credentials:

• RoleArn: The Arn of the role that the RAM user is to play.

• RoleSessionName: The name of the temporary credentials. This is a custom parameter.

https://www.alibabacloud.com/help/zh/doc-detail/28756.htm
https://www.alibabacloud.com/help/zh/doc-detail/28786.htm

IoT Platform User Guide / 1 Accounts and logon

Issue: 20181113 23

• Policy: The authorization policy. This parameter adds a restriction to the permissions of the role

. You can use this parameter to restrict the permissions of the token. If you do not specify this

parameter, a token possessing all permissions of the specified role is created.

• DurationSeconds: The validity period of the temporary credentials. This parameter is measured

 in seconds. The default value is 3,600 and the value ranges from 900 to 3,600.

• id and secret: The AccessKeyId and AccessKeySecret of the RAM user.

Examples of obtaining temporary identity credentials

API example: The RAM user calls the STS AssumeRole operation to obtain the temporary

identity credentials for role play.

https://sts.aliyuncs.com?Action=AssumeRole
&RoleArn=acs:ram::1234567890123456:role/iotstsrole
&RoleSessionName=iotreadonlyrole
&DurationSeconds=3600
&Policy=<url_encoded_policy>
&<Common request parameters>

SDK example: The RAM user obtains the temporary identity credentials through the Python CLI

interface for STS.

$python ./sts.py AssumeRole RoleArn=acs:ram::1234567890123456:role/
iotstsrole RoleSessionName=iotreadonlyrole Policy='{"Version":"1","
Statement":[{"Effect":"Allow","Action":"iot:*","Resource":"*"}]}'
DurationSeconds=3600 --id=id --secret=secret

After the request has been received, the temporary identity credentials that are required to play

the role are returned. The credentials include an AccessKeyId, AccessKeySecret, and SecurityTo

ken.

Step 6: The RAM user accesses the resources

After obtaining the temporary identity credentials, the RAM user can pass in the credentials in the

SDK requests to play the specified role.

Java SDK example: The RAM user passes in the AccessKeyId, AccessKeySecret, and SecurityTo

ken parameters that are contained in the temporary identity credentials in the request and creates

 the IAcsClient object.

IClientProfile profile = DefaultProfile.getProfile("cn-hangzhou",
AccessKeyId,AccessSecret);
RpcAcsRequest request.putQueryParameter("SecurityToken", Token);
IAcsClient client = new DefaultAcsClient(profile);
AcsResponse response = client.getAcsResponse(request);

IoT Platform User Guide / 2 Create products and devices

24 Issue: 20181113

2 Create products and devices

This topic describes how to create and manage products and devices in the console.

2.1 Create a product (Basic Edition)
The first step when you start using IoT Platform is to create products. A product is a collection of

devices that typically have the same features. For example, a product can refer to a product model

and a device is a specific device of the product model.

Context

IoT Platform supports two editions of products: Basic Edition and Pro Edition. This article

introduces how to create a Basic Edition product.

Procedure

1. Log on to the IoT Platform console.

2. In the left-side navigation pane, click Products, and then click Create Product.

3. In the dialog box that appears, select Basic Edition, enter a valid product name, choose a

node type, and then click OK.

Descriptions:

• Product Name: Enter a name for your product. The product name will act as a unique

identifier. For example, you can enter the product model as the product name.

• Node Type: Select either a device or gateway.

▬ Device: This type of device can be connected directly to the IoT Hub, or attached as a

sub-device to a gateway.

http://iot.console.aliyun.com/

IoT Platform User Guide / 2 Create products and devices

Issue: 20181113 25

▬ Gateway: A device that connects directly to the IoT Hub and can attach sub-devices. A

gateway can manage sub-devices, maintain the topological relationship with sub-devices

, and synchronize the topological relationship to the IoT Hub.

Result

After the product is created successfully, you are automatically redirected to the Products page.

You can then view or edit the product information.

2.2 Create a product (Pro Edition)
The first step in using IoT Platform is to create products. A product is a collection of devices that

typically have the same features. For example, a product can refer to a product model and a

device is then a specific device of the product model.

Context

IoT Platform supports two editions of products: Basic Edition and Pro Edition. This article

introduces how to create Pro Edition products in the IoT Platform console.

Procedure

1. Log on to the IoT Platform console.

2. In the left-side navigation pane, click Products and then click Create Product.

3. Select Pro Edition as the version, enter all the required information, and then click OK.

The parameters are described as follows:

http://iot.console.aliyun.com/

IoT Platform User Guide / 2 Create products and devices

26 Issue: 20181113

Parameter Description

Product Name The name of the product that you want to create. The product name
must be unique within the Alibaba Cloud account. For example, you
can enter the product model as the product name.

Node Type • Device: A device that cannot attach sub-devices. This type of
device can be connected directly to the IoT Hub, or attached as
sub-device to a gateway.

• Gateway: A device that connects directly to the IoT Hub. Sub-
devices can be attached to a gateway. A gateway can manage
sub-devices, maintain the topological relationship with sub-devices
, and synchronize the topological relationship to the cloud.

For more information about gateway devices and sub-devices, see
Gateways and sub-devices.

Device Type Select a standard template with predefined features. If you select
None, no standard template is created and you must manually define
features for the product.

Note:

Alibaba Cloud IoT Platform provides various templates with

predefined features. For example, the Electric Meter template

contains the following predefined features: power usage, voltage,

electric current, total power consumption and other standard

features. You can also customize the template by editing the

features or adding additional user-defined features.

Data Type The format of the uploaded or downloaded device data. You can
select either Alink JSON or Do not parse/Custom.

• Alink JSON: A data exchange protocol between devices and the
IoT Hub. It is provided in JSON format.

• Do not parse/Custom: If you want to customize the serial data
format, select Do not parse/Custom. You must then convert the
user-defined formatted data to Alink JSON script by using data
parsing function so that your devices can communicate with the
IoT Hub.

Connect to Gateway

Note:

Will this product connect to a gateway product as its sub-device?

• Yes: This product can be connect to a gateway.

IoT Platform User Guide / 2 Create products and devices

Issue: 20181113 27

Parameter Description

Required when the
node type is Device.

Select a protocol used for sub-device and gateway

communication.

• Modbus: Indicates the connection protocol for sub-device and

gateway communication is Modbus.

• OPC UA: Indicates the connection protocol for sub-device and

gateway communication is OPC UA.

• Custom: Indicates that you want to use another protocol as the

connection protocol for sub-device and gateway communication

.

• No: This product cannot be connect to a gateway.

Product Description Describe the product information.

4. Click OK.

After the product is created successfully, you are automatically redirected to the Products

page.

What's next

1. To configure a product's features (such as Notifications, TSL (Define Feature), and Service

Subscription), go to the product list, find the target product and then click its corresponding

View button

2. To learn more about configurations you can apply during device development, see Developer

Guide (Devices).

3. To publish a product, go to the product details page and click Publish.

Note that before you publish a product make sure that you have configured all the correct

information for the product, have completed debugging of it, and have verified that it meets the

criteria for being published.

When the product status is Published, you can view the product information but cannot modify

or delete the product.

IoT Platform User Guide / 2 Create products and devices

28 Issue: 20181113

To cancel the publishing of a product, click Cancel Publishing.

2.3 Create devices

2.3.1 Create multiple devices at a time
A product is a collection of devices. After you create products, you create specific devices of the

product models. You can create one device or multiple devices at a time. This article introduces

how to create multiple devices at a time.

Procedure

1. Log on to the IoT Platform console.

2. In the left-side navigation pane, click Devices > Batch Add.

3. Select a product that you have created. All the devices to be created will be assigned with the

features of the selected product.

4. Select one of the following methods for adding device names.

• Auto Generate: You do not need to specify names for the devices to be created. You only

specify the number of devices you want to create, and the system will generate a name for

each device.

• Batch Upload: You must specify names for the devices to be created. Click Download.csv

Template to download the naming template. Enter names for the devices in the template file

, and then click Upload File to upload the file.

http://iot.console.aliyun.com/

IoT Platform User Guide / 2 Create products and devices

Issue: 20181113 29

5. Click OK.

6. Click Download Device Certificate.

Result

After the devices are successfully created, on the Batch Management page, you can:

• Click View Details to view the detailed information of the devices.

• Click Download CSV to download the certificates of the devices.

2.3.2 Create a device
A product is a collection of devices. After you have created products, you can create devices

of the product models. You can create one device or a batch of devices at a time. This topic

introduces how to create a single device.

Procedure

1. Log on to the IoT Platform console.

2. In the left-side navigation pane, click Devices > Add Device.

3. Select a product that you have created. The device to be created will be assigned with the

features of the selected product.

4. (Optional) Enter a name for the device. If you do not enter a device name for the device, the

system will automatically generate one as the device identifier.

Note:

A DeviceName (device name) must be unique within a product. It is used as a device identifier

for communications with the IoT Hub.

http://iot.console.aliyun.com/

IoT Platform User Guide / 2 Create products and devices

30 Issue: 20181113

5. Click OK to create the device.

After the device has been successfully created, the View Device Certificate box is displayed.

There, you can view and copy the device certificate information. A device certificate is the

authentication certificate of a device when the device is communicating with IoT Platform. It

contains three key fields: ProductKey, DeviceName, and DeviceSecret.

• ProductKey: The globally unique identifier issued by IoT Platform for a product.

• DeviceName: The identifier of a device. It must be unique within a product and is used for

device authentication and message communication.

• DeviceSecret: The secret key issued by IoT Platform for a device. It is used for authentica

tion encryption and must be used in pairs with the DeviceName.

2.4 TSL

IoT Platform User Guide / 2 Create products and devices

Issue: 20181113 31

2.4.1 What is Thing Specification Language (TSL)?
Thing Specification Language (TSL) is a data model that digitizes a physical entity and constructs

the entity in the Cloud. On the IoT platform, a TSL model refers to a set of product features. After

the features have been defined for a product, the system automatically generates a TSL model of

the product. A TSL model describes what a product is, what the product can do, and what services

the product can provide.

A TSL model is a file in JSON format. TSL files are the digitized expressions of physical entities,

such as sensors, vehicle-mounted devices, buildings and factories. A TSL file describes an entity

in three dimensions: property (what the entity is), service (what the entity can do), and event (what

 event information the entity reports). Defining these three dimensions is to define the product

features.

The feature types of a product are Properties, Services and Events. You can define these three

types of features on the console.

Feature Type Description

Properties Describes the running status of a device, such as the current temperatur
e read by the environmental monitoring equipment. Properties support
GET and SET request methods. Application systems can send requests
 to retrieve and set properties.

Services Capabilities or methods of a device that are exposed and can be used
by an external requester. You can set the input and output parameters
. Compared with properties, services can use instructions to implement
more complex business logic, such as a specific task.

Events Events generated during operation. Events typically contain notifications
 that require action or attention, and they may contain multiple output
 parameters. For example, an event may be a notification about the
completion of a task, a system failure, or a temperature alert. You can
subscribe to or push events.

2.4.2 Define features using TSL
This article introduce how to define features in the IoT Platform console.

Procedure

1. Log on to the IoT Platform console.

2. In the left-side navigation pane, click Products, find the Pro Edition product for which you want

to add features, and then click View next to it.

3. Click Define Feature > Add.

http://iot.console.aliyun.com/

IoT Platform User Guide / 2 Create products and devices

32 Issue: 20181113

4. In the Add Feature dialog box, select Properties as the feature type.

IoT Platform User Guide / 2 Create products and devices

Issue: 20181113 33

The parameters of properties are listed in the following table.

Parameter Description

The function
name

The name of the property, for example, Power Consumption. Each feature
name under a product must be unique. If you have selected a feature
template during product creation, the system displays standard properties
from the standard feature library for you to choose.

Note:
If the gateway connection protocol is Modbus, standard properties are
not supported. Instead, you must define properties manually.

Identifier Identifies a property. It must be unique under a product. The properties
parameter is identifier in Alink JSON, and is used as the key when
a device is reporting the data of this property. Specifically, the cloud uses
this parameter to verify the identifier and determine whether to receive the
data. An identifier can contain letters, numbers, and underscores (_), for
example, Power_Consumption1.

Data Type • Int32: 32-bit integer. You must define the value range, resolution, and
unit.

• float: Float. You must define the value range, resolution, and unit.
• double: Double. You must define the value range, resolution, and unit.
• enum: Enumeration. You must specify enumeration items with values

 and descriptions. For example,1 indicates Heating mode and 2
indicates Cooling mode.

• bool: Boolean. You must specify the Boolean value. Values include 0
and 1. You can use 0 to indicate Disabled and 1 to indicate Enabled.

• text: Text string. You must specify the data length. The maximum value
 is 2048 bytes.

• data: Timestamp. A UTC timestamp in string type, in milliseconds.
• struct: A JSON target Define a JSON structure, and add new JSON

 parameters. For example, you can define that the color of a lamp
is a structure composed of three parameters: red, green, and blue.
Structure nesting is not supported.

• array: Array. You must select a data type for the elements in the array
from int32, float, double, and text. Make sure that the data type of
elements in an array is the same and that the length of the array does
not exceed 128 elements.

Note:

IoT Platform User Guide / 2 Create products and devices

34 Issue: 20181113

Parameter Description

If the gateway connection protocol is Modbus, you do not need to set this
parameter.

Read/Write Type • Read/Write: GET and SET methods are supported for Read/Write
requests.

• Read-only: Only GET is supported for Read-only requests.

Note:
If the gateway connection protocol is Modbus, you do not need to set this
parameter.

Description Enter a description or remarks about the feature.

Extended
Information

Note:
The gateway
connection
protocol is
Modbus.

• Operation Type: You can select an operation type from Input Status (
read-only), Coil Status (read and write), Holding Registers (read and
write), and Input Registers (read-only).

• Register Address: Enter a hexadecimal address beginning with 0x, for
example, 0xFE. The range is 0x0-0xFFFF.

• Original Data Type: Multiple data types are supported, including int16
, uint16, int32, uint32, int64, uint64, float, double, string, bool, and
customized data (raw data).

• Number of Registers: If the operation type is set to be Input Status
 (read-only) and Coil Status (read and write), the number range of
registers is 1-2,000. If the operation type is Holding Registers (read and
 write) and Input Registers (read-only), the number range of registers is
 1-125.

• Switch High Byte and Low Byte in Register: Swap the first 8 bits and
the last 8 bits of the 16-bit data in the register.

• Switch Register Bits Sequence: Swap the bits of the original 32-bit data
.

• Zoom Factor: The zoom factor is set to 1 by default. It can be set to
negative numbers, but cannot be set to 0.

• Collection Interval: The time interval of data collection. It is in millisecon
ds and the value cannot be lower than 10.

• Data Report: The trigger of data report. It can be either At Specific Time
 or Report Changes.

Extended
Information

Note:

Node Name: Each node name must be unique under the property

IoT Platform User Guide / 2 Create products and devices

Issue: 20181113 35

Parameter Description

The gateway
connection
protocol is OPC
UA.

5. In the Add Feature dialog box, select the feature type as Services.

The parameters of a service are as follows.

Parameter Description

The function
name

Service name. If you have selected a feature template during product
creation, the system displays standard services from the standard feature
library for you to choose.

IoT Platform User Guide / 2 Create products and devices

36 Issue: 20181113

Parameter Description

Note:
If the gateway connection protocol is Modbus, you cannot define custom
services for the product.

Identifier Identifies a service. It must be unique under a product. The service
parameter is identifier in Alink JSON, and is used as the key when
a device is reporting the data of this feature. The identifier can contain
letters, numbers, and underscores (_).

Invoke Method • Asynchronous: For an asynchronous call, the cloud returns the result
directly after the call is executed instead of waiting for responses from
the device.

• Synchronous: For a synchronous call, the cloud waits for the response
from the device. If no responses are received, the call times out.

Input Parameters (Optional) Set input parameters for the service.
Click Add Parameter, and add an input parameter in the dialog box that
appears. For more information about input parameters, see step 4.
If the gateway connection protocol is OPC UA, you must set the parameter
 index that is used to mark the order of the parameters.

Note:

• You can either use a property as an input parameter or define
an input parameter. For example, you can specify the properties
Sprinkling Interval and Sprinkling Amount as the input
parameters of the Automatic Sprinkler service feature. Then,
when Automatic Sprinkler is called, the sprinkler automatically starts
irrigation according to the sprinkling interval and amount.

• A service supports a maximum of 10 input parameters.

Output
Parameters

(Optional) Set output parameters for the service.
Click Add Parameter, and add an output parameter in the dialog box that
appears. For more information about input parameters, see step 4.
If the gateway connection protocol is OPC UA, you must set the parameter
 index that is used to mark the order of the parameters.

Note:

• You can either use a property as an output parameter or define an
output parameter. For example, you can specify the property Soil
Humidity as an output parameter. Then, when Automatic Sprinkler
is called, the cloud returns the data about soil humidity.

IoT Platform User Guide / 2 Create products and devices

Issue: 20181113 37

Parameter Description

• A service supports a maximum of 10 output parameters.

Description Enter a description or remarks about the service.

Extended
Information

Note:
The gateway
connection
protocol is OPC
UA.

Node Name: Each node name must be unique under the service.

6. In the Add Feature dialog box, select the feature type as Events.

IoT Platform User Guide / 2 Create products and devices

38 Issue: 20181113

The parameters of an event are as follows.

Parameter Description

The function
name

Enter an event name.

Note:
If the gateway connection protocol is Modbus, you cannot define events.

Identifier Identifies an event. It must be unique under a product. The event
parameter is identifier in Alink JSON, and is used as the key when
the device is reporting the data of this feature. For example, ErrorCode.

Event Type • Info: Indicates general notifications reported by the device, such as
the completion of a specific task.

IoT Platform User Guide / 2 Create products and devices

Issue: 20181113 39

Parameter Description

• Alert: Indicates alerts that are reported by the device when
unexpected or abnormal events occur. It has a high priority. You can
perform logic processing or analytics depending on the event type.

• Error: Indicates errors that are reported by the device when
unexpected or abnormal events occur. It has a high priority. You can
perform logic processing or analytics depending on the event type.

Output
Parameters

The output parameters of the event. Click Add Parameter. You can either
use a property as an output parameter or define an output parameter. For
example, you can specify the property Voltage as an output parameter.
Then, the device reports the error with the current voltage value for further
fault diagnosis.
If the gateway connection protocol is OPC UA, you must set the parameter
 index that is used to mark the order of the parameters.

Note:
An event supports a maximum of 10 output parameters.

Description Enter a description or remarks about the event.

Extended
Information

Note:
The gateway
connection
protocol is OPC
UA.

Node Name: Each node name must be unique under the event.

2.4.3 Import Thing Specification Language (TSL)
This article introduces how to import TSL for a product.

Procedure

1.

2. In the left-side navigation pane, click Products and then click View next to the product for

which you want to import a TSL.

3. Click Define Feature > Import TSL.

Note:

IoT Platform User Guide / 2 Create products and devices

40 Issue: 20181113

• After you have imported a new TSL for the product, any previously defined features of the

product will be overwritten. Exercise caution when using this function.

• You cannot import a TSL for a product whose gateway connection protocol is defined as

Modbus.

• Copy the TSL of another product

1. On the Copy Product page, select an existing product and click OK to import the TSL.

2. You can then click the Edit button of a defined feature for this product to modify.

• If you wrote the TSL by yourself, you can just click Import TSL and then paste the file into

the edit box.

2.4.4 The TSL format
The format of Thing Specification Language (TSL) is JSON. This article introduces the JSON

fields of TSL.

In the Define Feature tab of your target Pro Edition product, click View TSL.

The following section details each JSON field.

{
 "schema":"TSL schema of a thing",
 "link":"System-level URI in the cloud, used to invoke services and
 subscribe to events",
 "profile":{
 "productKey":" Product ID",
 },
 "properties":[
 {
 "identifier":"Identifies a property. It must be unique
under a product",
 "name":"Property name",
 "accessMode":"Read/write type of properties, including
Read-Only and Read/Write",
 "required":"Determines whether a property that is required
 in the standard category is also required for a standard feature",

IoT Platform User Guide / 2 Create products and devices

Issue: 20181113 41

 "dataType":{
 "type":"Data type: int (original), float (original),
double (original), text (original), date (UTC string in milliseconds
), bool (integer, 0 or 1), enum (integer), struct (supports int, float
, double, text, date, and bool), array (supports int, double, float,
and text)",
 "specs":{
 "min":"Minimum value, available only for the int,
float, and double data types",
 "max":"Maximum value, available only for the int,
float, and double data types",
 "unit":"Property unit",
 "unitName":"Unit name",
 "size":"Array size, up to 128 elements, available
only for the array data type",
 "item":{
 "type":"Type of an array element"
 }
 }
 }
 }
],
 "events":[
 {
 "identifier":"Identifies an event that is unique under a
product, where "post" are property events reported by default",
 "name":"Event name",
 "desc":"Event description",
 "type":"Event types, including info, alert, and error",
 "required":"Whether the event is required for a standard
feature",
 "outputData":[
 {
 "identifier":"Uniquely identifies a parameter",
 "name":"Parameter name",
 "dataType":{
 "type":"Data type: int (original), float
 (original), double (original), text (original), date (UTC string
in milliseconds), bool (integer, 0 or 1), enum (integer), struct (
supports int, float, double, text, date, and bool), array (supports
int, double, float, and text)",
 "specs":{
 "min":"Minimum value, available only for
the int, float, and double data types",
 "max":"Maximum value, available only for
the int, float, and double data types",
 "unit":"Property unit",
 "unitName":"Unit name",
 "size":"Array size, up to 128 elements,
available only for the array data type",
 "item":{
 "type":"Type of an array element"
 }
 }
 }
 }
],
 "method":"Name of the method to invoke the event,
generated according to the identifier"
 }
],
 "services":[

IoT Platform User Guide / 2 Create products and devices

42 Issue: 20181113

 {
 "identifier":"Identifies a service that is unique under a
product (set and get are default services generated according to the
read/write type of the property)",
 "name":"Service name",
 "desc":"Service description",
 "required":"Whether the service is required for a standard
 feature",
 "inputData":[
 {
 "identifier":"Uniquely identifies an input
parameter",
 "name":"Name of an input parameter",
 "dataType":{
 "type":"Data type: int (original), float
 (original), double (original), text (original), date (UTC string
in milliseconds), bool (integer, 0 or 1), enum (integer), struct (
supports int, float, double, text, date, and bool), array (supports
int, double, float, and text)",
 "specs":{
 "min":"Minimum value, available only for
the int, float, and double data types",
 "max":"Maximum value, available only for
the int, float, and double data types",
 "unit":"Property unit",
 "unitName":"Unit name",
 "size":"Array size, up to 128 elements,
available only for the array data type",
 "item":{
 "type":"Type of an array element"
 }
 }
 }
 }
],
 "outputData":[
 {
 "identifier":"Uniquely identifies an output
parameter",
 "name":"Name of an output parameter",
 "dataType":{
 "type":"Data type: int (original), float
 (original), double (original), text (original), date (UTC string
in milliseconds), bool (integer, 0 or 1), enum (integer), struct (
supports int, float, double, text, date, and bool), array (supports
int, double, float, and text)",
 "specs":{
 "min":"Minimum value, available only for
the int, float, and double data types",
 "max":"Maximum value, available only for
the int, float, and double data types",
 "unit":"Property unit",
 "unitName":"Unit name",
 "size":"Array size, up to 128 elements,
available only for the array data type",
 "item":{
 "type":"Type of an array element,
available only for the array data type"
 }
 }
 }
 }

IoT Platform User Guide / 2 Create products and devices

Issue: 20181113 43

],
 "method":"Name of the method to invoke the service, which
is generated according to the identifier"
 }
]
}

If the product is connected to a gateway as a sub-device and the connection protocol is Modbus or

 OPC UA, you can view the TSL extension configuration.

{
"profile": {
"productKey": "Product ID",
 },
"properties": [
 {
"identifier": "Identifies a property. It must be unique under a
product",
"operateType": "(coilStatus/inputStatus/holdingRegister/inputRegister
)",
"registerAddress": "Register address",
"originalDataType": {
"type": "Data type: int16, uint16, int32, uint32, int64, uint64, float
, double, string, customized data(returns hex data according to big-
endian)",
"specs": {
"registerCount": "The number of registers, available only for string
and customized data",
"swap16": "swap the first 8 bits and the last 8 bits of the 16 bits of
 the register data(for example, byte1byte2 -> byte2byte10). Available
for all the other data types except string and customized data",
"reverseRegister": "Ex: Swap the bits of the original 32 bits data (
for example, byte1byte2byte3byte4 ->byte3byte4byte1byte2”. Available
for all the other data types except string and customized data"
 }
 },
"scaling": "Scaling factor",
"pollingTime": "Polling interval. The unit is ms",
"trigger": "The trigger of data report. Currently, two types of
triggering methods are supported: 1: report at the specified time; 2:
report when changes occurred"
 }
]
}

2.5 Data parsing
When you create a product on the IoT Platform console, if you select Do not parse/Custom as

the data type, you can write a script in the IoT Platform console to parse the original data into Alink

JSON format.

What is data parsing?

Data parsing is a method that allows devices with limited storage space or bandwidth to avoid

directly sending data to IoT Platform in Alink JSON format. Instead, devices pass original data to

IoT Platform User Guide / 2 Create products and devices

44 Issue: 20181113

the cloud, whereby a script is run to convert the data into Alink JSON format. To allow devices to

pass original data to the cloud, select Do not parse/Custom as the data type when creating

the product, and then write a JavaScript file to parse the data. IoT Platform provides an online

editor for you to edit and debug your data parsing script.

Data parsing process:

Using the data parsing script editor, you can:

• Edit your JavaScript data parsing file online.

• Save content as a draft, edit the draft, or delete it.

• Debug your script using analog data. You can enter upstream or downstream analog data, and

 run the script to check whether it works.

• Perform static syntax check (JavaScript syntax).

• Submit a verified script to the running platform for device data parsing.

Edit a script online

On the product details page, click Data Parsing and then enter your data parsing script in the edit

box. Currently, only JavaScript is supported.

IoT Platform User Guide / 2 Create products and devices

Issue: 20181113 45

• Click Full Screen to view or edit a script in full screen. Click Exit Full Screen to exit the full

screen mode.

• Click Save Draft at the bottom of the page to save the content you have edited. When you

access the data parsing page next time, the system will prompt a notification saying that you

have a draft. You can then choose to Restore Edit or Delete Draft.

• When saved, a draft script is not published to the running parsing platform, and does not

affect a currently published script.

• A new draft will overwrite any previously saved draft.

IoT Platform User Guide / 2 Create products and devices

46 Issue: 20181113

Verify the script using analog data

After the script is edited, you can enter analog data in the Analog Input box and click Running.

The system will call this script to parse the analog data and the parsed result will be displayed

in the Parsing Results box at the right side of the page. If the script is not correct, the message

Failed to Run will be displayed next to Parsing Results, and an error message will be display in

the box with information that you can use to to correct the script.

Parse upstream analog data

Select Upstreamed Device Data as the simulation type, enter the device's binary data which

is to be passed through, and click Running. The system will convert the binary data to Alink JSON

format, and the results are displayed in a box at the right side of the page.

IoT Platform User Guide / 2 Create products and devices

Issue: 20181113 47

Parse downstream analog data

Select Receive Device Data, enter Alink JSON formatted data, and click Running. The

system will convert the ALink JSON data to binary data, and the results are displayed in a box at

the right side of the page.

Submit the script

In order to guarantee that submitted scripts are correct and run properly, only scripts that have

 passed parsing test can be submitted to the running platform. After a script is submitted, the

system will automatically use it to convert the upstream data and downstream data of devices.

Note:

IoT Platform User Guide / 2 Create products and devices

48 Issue: 20181113

A script must successfully parse analog data at least once before you can submit it.

Development framework

Overview

The following two methods must be defined in a script:

• protocolToRawData: Convert Alink JSON format data to binary data.

• rawDataToProtocol: Convert binary data to Alink JSON format data.

Language

Currently, only JavaScript that meets ECMAScript 5.1 is supported.

Define the methods

• Convert Alink JSON formatted data to binary data:

// Parses Alink JSON format data sent by the server and converts it
to binary data
function protocolToRawData(jsonObj){
 return rawdata;
}

Parameter description: Input parameters (jsonObj) match with the Alink JSON format data in

the TSL of the product.

{
 "method": "thing.service.property.set",
 "id": "12345",
 "version": "1.0",
 "params": {
 "prop_float": 123.452,
 "prop_int16": 333,
 "prop_bool": 1
 }
}

Returned parameter: A binary byte array. For example:

0x0100003039014d0142f6e76d

• Convert binary data to Alink JSON format data:

// Parses binary data sent by a device and converts it to Alink JSON
 format data
function rawDataToProtocol(rawData){
 return jsonObj;

IoT Platform User Guide / 2 Create products and devices

Issue: 20181113 49

}

Parameter description: Input parameter (rawData) is a binary byte array, for example,

0x00002233441232013fa00000

Returned parameters: Data matches with the Alink JSON format data in the TSL of the product.

{
 "method": "thing.event.property.post",
 "id": "2241348",
 "params": {
 "prop_float": 1.25,
 "prop_int16": 4658,
 "prop_bool": 1
 },
 "version": "1.0"
}

Script demo

1. Create a product and define features for the product.

a. Create a Pro Edition product and select Do not parse/Custom as the data type.

b. Define features (such as properties, services, and events) for the product. In this demo, the

following three properties are defined:

Identifier Data type

prop_float float

prop_int16 int32

prop_bool bool

2. Serial port protocol example.

Frame type ID prop_int16 prop_bool prop_float

One byte.

0 - upstream; 1 -

downstream.

Request

sequence

number.

Two bytes.

Property value of

 prop_int16.

One byte.

Property value of

 prop_bool.

Four bytes.

Property value of

 prop_float.

3. Copy the script demo codes.

Copy and paste the following demo codes into the script edit box:

var COMMAND_REPORT = 0x00;
var COMMAND_SET = 0x01;

IoT Platform User Guide / 2 Create products and devices

50 Issue: 20181113

var ALINK_PROP_REPORT_METHOD = 'thing.event.property.post'; //A
standard ALink JSON formatted topic for devices to upload property
data to the cloud.
var ALINK_PROP_SET_METHOD = 'thing.service.property.set'; //A
standard ALink JSON formatted topic for the cloud to send property
management commands to devices.
/*
Sample data:
Input parameters ->
 0x00002233441232013fa00000
Output parameters ->
 {"method":"thing.event.property.post","id":"2241348",
 "params":{"prop_float":1.25,"prop_int16":4658,"prop_bool":1},
 "version":"1.0"}
*/
function rawDataToProtocol(bytes) {
 var uint8Array = new Uint8Array(bytes.length);
 for (var i = 0; i < bytes.length; i++) {
 uint8Array[i] = bytes[i] & 0xff;
 }
 var dataView = new DataView(uint8Array.buffer, 0);
 var jsonMap = new Object();
 var fHead = uint8Array[0]; // command
 if (fHead == COMMAND_REPORT) {
 jsonMap['method'] = ALINK_PROP_REPORT_METHOD; //ALink JSON
formatted topic for reporting properties
 jsonMap['version'] = '1.0'; //Protocol version in ALink JSON
 format
 jsonMap['id'] = '' + dataView.getInt32(1); //The request ID
value in ALink JSON format
 var params = {};
 params['prop_int16'] = dataView.getInt16(5); //The property
of prop_int16 of the product
 params['prop_bool'] = uint8Array[7]; //The property of
prop_bool
 params['prop_float'] = dataView.getFloat32(8); //The
property of prop_float.
 jsonMap['params'] = params; //Standard fields of params in
ALink JSON format
 }
 return jsonMap;
}
/*
Sample data:
Input parameters ->
 {"method":"thing.service.property.set","id":"12345","version":"
1.0","params":{"prop_float":123.452, "prop_int16":333, "prop_bool":1
}}
Output parameters ->
 0x0100003039014d0142f6e76d
*/
function protocolToRawData(json) {
 var method = json['method'];
 var id = json['id'];
 var version = json['version'];
 var payloadArray = [];
 if (method == ALINK_PROP_SET_METHOD) // Property settings
 {
 var params = json['params'];
 var prop_float = params['prop_float'];
 var prop_int16 = params['prop_int16'];
 var prop_bool = params['prop_bool'];

IoT Platform User Guide / 2 Create products and devices

Issue: 20181113 51

 // Raw data connected according to the custom protocol
format
 payloadArray = payloadArray.concat(buffer_uint8(COMMAND_SET
)); // command field
 payloadArray = payloadArray.concat(buffer_int32(parseInt(id
))); // ID in ALink JSON format
 payloadArray = payloadArray.concat(buffer_int16(prop_int16
)); // The value of property 'prop_int16'
 payloadArray = payloadArray.concat(buffer_uint8(prop_bool
)); // The value of property 'prop_bool'
 payloadArray = payloadArray.concat(buffer_float32(prop_float
)); // The value of property 'prop_float'
 }
 return payloadArray;
}
// The followings are the auxiliary functions
function buffer_uint8(value) {
 var uint8Array = new Uint8Array(1);
 var dv = new DataView(uint8Array.buffer, 0);
 dv.setUint8(0, value);
 return [].slice.call(uint8Array);
}
function buffer_int16(value) {
 var uint8Array = new Uint8Array(2);
 var dv = new DataView(uint8Array.buffer, 0);
 dv.setInt16(0, value);
 return [].slice.call(uint8Array);
}
function buffer_int32(value) {
 var uint8Array = new Uint8Array(4);
 var dv = new DataView(uint8Array.buffer, 0);
 dv.setInt32(0, value);
 return [].slice.call(uint8Array);
}
function buffer_float32(value) {
 var uint8Array = new Uint8Array(4);
 var dv = new DataView(uint8Array.buffer, 0);
 dv.setFloat32(0, value);
 return [].slice.call(uint8Array);
}

4. Verify the script using analog data

• Parse analog upstream data

Select Upstreamed Device Data and enter the following data:

0x00002233441232013fa00000

click Running, and then view the outputs:

{
 "method": "thing.event.property.post",
 "id": "2241348",
 "params": {
 "prop_float": 1.25,
 "prop_int16": 4658,
 "prop_bool": 1
 },
 "version": "1.0"

IoT Platform User Guide / 2 Create products and devices

52 Issue: 20181113

}

• Select Received Device Data, and enter the following data:

{
 "method": "thing.service.property.set",
 "id": "12345",
 "version": "1.0",
 "params": {
 "prop_float": 123.452,
 "prop_int16": 333,
 "prop_bool": 1
 }
}

click Running, and then view the output:

0x0100003039014d0142f6e76d

Appendix: Method for debugging scripts written in a local computer

Currently, IoT Platform Data Parsing does not support debugging on the running platform.

Therefore, we recommend that you directly paste the finished script into the online editor and then

test it. The following is example output of the test method.

// Test Demo
function Test()
{
 //0x001232013fa00000
 var rawdata_report_prop = new Buffer([
 0x00, //Fixed command header, 0 indicates reporting property
 0x00, 0x22, 0x33, 0x44, // Identify the request sequence
corresponding to the ID fields.
 0x12, 0x32, //Two-byte value in int16, corresponding to the
property of prop_int16
 0x01, //One-byte value in bool, corresponding to the property
of prop_bool
 0x3f, 0xa0, 0x00, 0x00 //Four-byte value in float, correspond
ing to the property of prop_float
]);
 rawDataToProtocol(rawdata_report_prop);
 var setString = new String('{"method":"thing.service.property.
set","id":"12345","version":"1.0","params":{"prop_float":123.452, "
prop_int16":333, "prop_bool":1}}');
 protocolToRawData(JSON.parse(setString));
}

IoT Platform User Guide / 2 Create products and devices

Issue: 20181113 53

Test();

2.6 Virtual devices
IoT Platform provides virtual devices to help developers debug devices online. Currently, only Pro

Edition supports the online debugging feature.

The general development process of IoT is that, after a device client has been successfully

developed, the devices report data to the cloud and developers use the data to develop the

applications. Such a development process is often time consuming. In response, IoT Platform

 provides virtual devices that simulate physical devices connected with the cloud. The virtual

 devices report defined properties and handle events, and you can debug your applications

according to the data reported by the virtual devices. After the physical devices become active, the

 virtual devices will automatically become inactive.

Procedure

1. Log on to the IoT Platform console.

2. In the left-side navigation pane, click Products and then click View next to the product that you

want to debug.

3. On the Product Details page, click Online Debugging.

4. Select the target device to be debugged.

5. Click Virtual Device > Start Virtual Device.

Note:

If the physical device is active or disabled, you will be unable to start the virtual device.

6. Set the content for the simulated push.

For example, you can set the Properties, indoor temperature to be 24 degrees Celsius.

http://iot.console.aliyun.com/

IoT Platform User Guide / 2 Create products and devices

54 Issue: 20181113

7. Select a push method.

• Push: Only push the data once.

• Push Policy:

▬ At Specific Time: Push the data at your specified time.

▬ At Specific Interval: Push the data regularly at your specified time interval in your

specified time range. The unit of time interval is in seconds.

You can click View Data to view the running status of the device.

If you no longer require a virtual device, click Stop Virtual Device to stop it.

Limits

• The minimum time interval for pushing data is 1 second.

• The maximum number of messages that can be pushed at a specific interval is 1,000.

• The maximum number of times you can use the Push method per day is 100.

IoT Platform User Guide / 2 Create products and devices

Issue: 20181113 55

2.7 Topics
The cloud and devices communicate with each other in IoT Platform through topics. The device

reports messages to a specified topic and subscribes to messages from the topic. IoT Platform

sends commands to topics, and subscribes to specific topics to obtain device information.

2.7.1 What is a topic?
Servers and devices communicate with each other in IoT Platform through topics. Topics are

associated with devices, and topic categories are associated with products.

What is a topic category?

To simplify authorization operations and facilitate communication between devices and IoT

Platform, topic categories were introduced. When you create a product, IoT Platform will create a

 default topic category for the product. In addition, when you create a device, the topic category

will be automatically assigned to the device. You do not need to authorize each individual device

to publish or subscribe to a topic.

Figure 2-1: The process of automatically creating a topic

When you create a product, IoT Platform automatically creates standard topic categories for the

product. You can view all topic categories of the product on the Communication page.

Description of topic categories:

• A topic category is a set of topics within the same product. For example, the topic category

/${productKey}/${deviceName}/update is a collection of the specific topics: /${

productKey}/device1/update and /${productKey}/device2/update.

IoT Platform User Guide / 2 Create products and devices

56 Issue: 20181113

• The topic category must use a forward slash (/) to delimit the topic hierarchy. Two of the

category levels are reserved: ${productKey} represents the product identifier, and ${

deviceName} represents the device name.

• Each category level can only contain letters, numbers, and underscores (_). Topic category

levels cannot be left empty.

• Operations available for devices: Publish indicate that the device can publish messages to a

topic. Subscribe indicates that the device can subscribe to messages of a topic.

• IoT Platform Basic supports customized topic categories. Customizing topic categories allows

 for flexible communication to suit your business needs. Customizing topic categories and

modifying category level names is not supported in IoT Platform Pro.

• The system-defined topic categories are pre-defined by IoT Platform Pro, do not support

customization, and do not begin with /${productKey}. For example, in IoT Platform Pro,

topic categories provided for the Thing Special Language (TSL) begin with /sys/, topic

categories provided for firmware upgrades begin with /ota/, and topic categories provided for

device shadows begin with /shadow/.

What is a topic?

A topic category is used for topic definition rather than communication. A topic is used for

communication.

• Topics and topic categories use the same format. The difference is that in a topic category, the

${deviceName} is a variable, but in a topic it represents a specific device name.

• A topic is automatically derived from the device name and the topic category of the product.

A topic contains a device name (deviceName), which can only be used in Pub/Sub

communication. For example, the topic /${productKey}/device1/update is owned by the

device with name device1 . Therefore, you can only publish or subscribe to messages to this

topic for the device with name device1, and cannot use it for device with name device2 to

publish or subscribe to messages.

• When you configure the rules engine, the topic that you configure can contain one wildcard

character.

Table 2-1: Wildcard characters in a topic

Wildcard character Description

Must be the last character in the topic, and works as a wildcard by
matching all topics in the current tree and all sub-trees of the topic

IoT Platform User Guide / 2 Create products and devices

Issue: 20181113 57

Wildcard character Description

hierarchy. For example, the topic /productKey/device1/# can
represent /productKey/device1/update and productKey/
device1/update/error.

+ Matches all topics in the current tree of the topic hierarchy. For
example, the topic /productKey/+/update can represent /
${productKey}/device1/update and /${productKey}/
device2/update.

2.7.2 System-defined topics
This document lists the system-defined topics.

Topic categories in IoT Platform Basic

IoT Platform Basic supports customized topic categories. IoT Platform automatically creates three

customized topic categories by default when you create a product. You can also create additional

customized topic categories.

• /${productKey}/${deviceName}/update: for devices to upload data. Permission

operation: Publish.

• /${productKey}/${deviceName}/update/error: for devices to report errors.

Permission operation: Publish.

• /${productKey}/${deviceName}/get: for the cloud to get device data. Permission

operation: Subscribe.

Topic categories in IoT Platform Pro

IoT Platform Pro provides default system-defined topics. Topic categories are not customizeable.

You can use the SDK, or use the system-defined topics associated with the Pub or Sub operations

 to enable two-way communication for device data between devices and the cloud.

The default topic category in IoT Pro has two categories: Alink and passthrough. The Alink topic

 category is used for device communication in the Alink JSON format. The passthrough topic

category is used for device communication in a pass-through/custom format.

Alink topic categories:

• /sys/${productKey}/${deviceName}/thing/event/property/post: for devices to

report properties. Permission operation: Publish.

• /sys/${productKey}/${deviceName}/thing/service/property/set: for devices to

set properties. Permission operation: Subscribe.

IoT Platform User Guide / 2 Create products and devices

58 Issue: 20181113

• /sys/${productKey}/${deviceName}/thing/event/{tsl.event.identifer}/

post: for devices to report events. Permission operation: Publish.

• /sys/${productKey}/${deviceName}/thing/service/{tsl.service.identifer

}: for devices to call services. Permission operation: Subscribe.

• /sys/${productKey}/${deviceName}/thing/deviceinfo/update: for devices to

report tags. Permission operation: Publish.

Passthrough topic categories:

• /sys/{ProductKey}/{deviceName}/thing/model/up_raw: uploaded passthrough data

for devices to report device properties, events, and other device data. Permission operation:

Publish.

• /sys/{ProductKey}/{deviceName}/thing/model/down_raw: downloaded

passthrough data for devices to get properties, set properties, and call services. Permission

operation: Subscribe.

Topic categories for device shadows

A device shadow provides the system-defined topic categories, which are mainly used by IoT

Platform Basic products to update shadows.

• /shadow/update/${productKey}/${deviceName}: for updating the device shadows.

Permission operation: Publish.

• /shadow/get/${productKey}/${deviceName}: for getting the device shadows.

Permission operation: Subscribe.

Topic categories for remote configuration

Remote configuration provides the system-defined topic categories, which are used for sending

configuration files to devices.

• /sys/${productKey}/${deviceName}/thing/config/push: for devices to receive the

configuration files from the cloud. Permission operation: Subscribe.

• /sys/${productKey}/${deviceName}/thing/config/get: for devices to request a

configuration update. Permission operation: Publish.

• /sys/${productKey}/${deviceName}/thing/config/get_reply: for devices to

request a configuration update, and receive the configuration files from the cloud. Permission

operation: Subscribe.

IoT Platform User Guide / 2 Create products and devices

Issue: 20181113 59

Topic categories for firmware upgrade

The firmware upgrade provides system-defined topic categories for devices to report firmware

versions and receive upgrade notifications.

• /ota/device/inform/${productKey}/${deviceName}: for devices to report firmware

versions to the cloud. Permission operation: Publish.

• /ota/device/upgrade/${productKey}/${deviceName}: for devices to receive

firmware upgrade notifications from the cloud. Permission operation: Subscribe.

• /ota/device/progress/${productKey}/${deviceName}: for devices to report the

progress of a firmware upgrade. Permission operation: Publish.

• /ota/device/request/${productKey}/${deviceName}: for devices to request a

firmware upgrade. Permission operation: Publish.

Topic categories for device broadcasts

System-defined topic categories are available for you to broadcast to devices. You can define

recipient devices.

/broadcast/${productKey}/+: for devices to receive broadcasts. Permission operation:

Subscribe. The wildcard character (+) can be used to define the recipient devices of the

broadcast.

Topic categories for Revert-RPC communication

The IoT Hub has integrated the synchronous communication mode based on the open-source

MQTT protocol. The server sends commands to devices to receive responses in real time. These

topic categories are as follows:

• /sys/${YourProductKey}/${YourDeviceName}/rrpc/response/${messageId}: for

devices to respond to Revert-RPC requests. Permission operation: Publish.

• /sys/${YourProductKey}/${YourDeviceName}/rrpc/request/+: for devices to

subscribe to Revert-RPC requests. Permission operation: Subscribe.

2.7.3 Create a topic category
This article introduces how to create a custom topic category for a product. Custom topic

categories will be automatically assigned to devices under the product.

Procedure

1. Log on to the IoT Platform console.

https://iot.console.aliyun.com

IoT Platform User Guide / 2 Create products and devices

60 Issue: 20181113

2. In the left navigation pane, click Products.

3. On the Product List page, find the product you want to create a topic category for, and click

View in the operation column.

4. On the Product Details page, click Notifications > Create Topic Category.

5. Define a topic category.

• Topic Category: Enter a topic category name according to the Topic Rule on the page.

• Device Operation Authorization: Indicates the operations that devices can perform on

the topics of this topic category. You can select from Publish, Subscribe, and Publish and

Subscribe.

• Description: Describes the topic category. You can leave this box empty.

6. Click OK.

IoT Platform User Guide / 2 Create products and devices

Issue: 20181113 61

Create a topic category with a wildcard character

IoT Platform supports custom topic categories with wildcard characters. When you configure a

topic subscription and you want to set topics with wildcard characters, you must first create topic

categories with wildcard characters. The procedures of creating a topic category with a wildcard

character is almost the same as that of creating a general topic category.

When you are creating a topic category with a wildcard character, pay attention to the following:

• You must firstly select Subscribe as the Device Operation Authorizations. Only

when the device operation authorization is set as Subscribe can you enter wildcard

characters in topic category name field.

• Topic Category: You can use wildcard characters # and + in the topic category name.

Note:

can only be located at the end of the topic category name.

For topics with wildcard characters, you cannot click Publish to publish messages on the Topic

List page of devices.

2.8 Tags
The IoT Platform tag is the user-defined identifier you set for a product or device. You can use

tags to flexibly manage your products and devices.

IoT often involves the management of a huge number of products and devices. How to distinguish

 various products and devices, and how to achieve centralized management become a challenge

. Alibaba Cloud IoT Platform provides tags to address this issue. You can set different tags for

your products and devices. The use of tags allows the centralized management of your various

products and devices.

Tags include product tags and device tags. The product tag is the template for the device tag.

After a product tag is created, newly created devices under the product will be automatically

assigned the product tag. You can also add device tags for each device individually. The structure

of the tag is key: value.

This document describes how to create a product tag and device tag.

IoT Platform User Guide / 2 Create products and devices

62 Issue: 20181113

Product tags

Product tags typically describe the information that is common to all devices under a product. For

 example, a tag can indicate a specific manufacturer, organization, physical size, and operating

system. You have to create a product before you can add a product tag.

To add a product tag, follow these steps:

1. Log on to the IoT Platform console.

2. On the Products page, find the product to which you want to add a tag, click View in the

Actions column, and then go to the Product Details page.

3. Click Edit in the Product Tags section.

4. In the Edit Tags dialog box, enter the Key and Value for the tag, and then click OK.

After a product tag is created, newly created devices under the product will be automatically

assigned the product tag.

Device tags

After a device is created under a product, the device will be automatically assigned the product

tag. However, the tag derived from a product only defines the information that is common to

all devices under the product. Depending on the device features, you can facilitate device

management by adding unique tags to the device. For example, for a smart meter in Room 201,

you can add a room:201 tag. You can manage device tags either in the console or using the

API.

To add a device tag in the console, follow these steps:

1. Log on to the IoT Platform console.

2. Click Devices.

https://iot.console.aliyun.com/
https://iot.console.aliyun.com/

IoT Platform User Guide / 2 Create products and devices

Issue: 20181113 63

3. On the Devices page, find the device that you want to add a tag, click View under the Actions

column, and then go to the Device Details page.

4. Click Edit in the Device Tags section.

5. In the Edit Tags dialog box, enter the Key and Value for the tag, and then click OK.

The device tag follows the device through the system. In addition, IoT Platform can send device

tags to other services in Alibaba Cloud based on the Rule Engine.

2.9 Gateways and sub-devices

2.9.1 Gateways and sub-devices
IoT Platform allows devices to connect to it directly. Devices can also be mounted as sub-devices

to a gateway that connects to IoT Platform.

Gateways and devices

When creating products and devices, you need to select a node type. IoT Platform currently

supports two node types, device and gateway.

• Device: refers to a device to which sub-devices cannot be mounted. Devices can connect

directly to the IoT Hub. Alternatively, devices can connect as sub-devices mounted to gateways

 that are connected to the IoT Hub.

• Gateway: refers to a device to which sub-devices can be mounted. A gateway connects

sub-devices to IoT Platform. Gateways can manage sub-devices, maintain their topological

relationships with sub-devices, and synchronize these topological relationships to the cloud.

IoT Platform User Guide / 2 Create products and devices

64 Issue: 20181113

Topological relationship between a gateway and its sub-devices

Figure 2-2: Device topological relationship

After creating products and devices, you can:

• Connect the gateway to IoT Platform and use the gateway to synchronize the topologial

relationship with the cloud. The gateway is then responsible for device authentication, message

uploading, instruction receiving and other communications with IoT Platform for all sub-devices.

Please refer to Developer Guide (Devices) and Connect sub-devices to IoT Platform for details.

• Configure the sub-device communication channels in the console, manage the topological

relationships and send the configuration details to the gateway. Please refer to Sub-device

channels and Sub-device management for details.

2.9.2 Sub-device channels
You can create sub-device channels for Pro Edition gateway devices. Gateway devices can then

use the management channels to manage sub-devices. Currently, IoT Platform supports three

kinds of channels: Modbus protocol channels, OPC UA protocol channels, and custom protocol

channels.

1. On the Devices page, find the gateway device for which you want to create channels, and click

View next to it.

IoT Platform User Guide / 2 Create products and devices

Issue: 20181113 65

2. Click Sub-device Channels and then create sub-device management channels according to

your required protocol.

• Modbus

In the Modbus tab, click Create Modbus Channel and enter the required information in the

dialog box.

Parameter Description

Channel Name The channel identifier. It must be unique under the gateway device.

Transmission Mode Supports RTU and TCP.

If you select RTU as the transmission mode, you must set the following parameters:

Select Serial Port For example, /dev/tty0 or /dev/tty1.

Baud Rate Select a value from the drop-down list.

Data Bit Supports the following data bit values: 5, 6, 7, and 8.

Check Bit Supports no parity check, odd parity check, and even parity check.

Stop Bit Support the following stop bit values: 1, 1.5, and 2.

If you select the transmission mode as TCP, you must set the following parameters:

IP address Enter an IP address in dot-decimal notation.

Port Number Enter an integer in the range of 0-65535.

• OPC UA

Click OPC UA > Create OCP UA Channel, and enter the required information in the dialog

box.

Parameter Description

Channel Name The channel name must be unique under the gateway device.

Connection Address For example, opc.tcp://localhost:4840

IoT Platform User Guide / 2 Create products and devices

66 Issue: 20181113

Parameter Description

User Name An optional parameter.

Password An optional parameter.

Function Call
Timeout

The unit is in seconds.

• Custom

1. Click Custom > Create Customized Channel.

2. Enter a channel name in the dialog box.

3. Enter your customized configuration content.

Note:

The configuration content must be in JSON format. We recommend that you prepare the

JSON content in advance, and paste it in the box.

2.9.3 Sub-device management
You can add a sub-device to a gateway device and assign the TSL and the extended information

of the product (to which the sub-device belongs) to the sub-device.

Prerequisites

• If the gateway connection protocol of a sub-device is Modbus or OPC UA, before you connect

 the sub-device to the gateway, you must create a corresponding sub-device channel for the

gateway. For more information about how to create sub-device channels, see the correspond

ing documentation about sub-device channels.

• Products and devices created before September 3, 2018, Beijing time, can be added to

gateways as sub-devices. However, you can only add their topological relationships,and not

channel configurations.

Procedure

1. On the Devices page, find the gateway device for which you want to add sub-devices and click

View next to it.

2. Click Sub-device Management > Add Sub-device.

IoT Platform User Guide / 2 Create products and devices

Issue: 20181113 67

3. Enter information of the sub-device in the dialog box.

Parameter Description

Product Select the name of the product that the sub-device belongs to.

Device Select the name of the device that you want to add as a sub-device.

If the gateway connection protocol of the sub-device is Modbus, set the following parameters.

Associated Channel Required. Select a channel that the sub-device uses from the created
 sub-device channels.

Slave Station Number Enter an integer in the range of 1-247.

If the gateway connection protocol of the sub-device is OPC UA, set the following parameters.

Associated Channel Required. Select a channel that the sub-device uses from the created
 sub-device channels.

Node Path Enter a node path. For example, Objects/Device1. In this example,
Objects is a fixed root node, and Device1 is the node name of the
device node path. Use / to separate node names.

If the gateway connection protocol of the sub-device is custom protocol, set the following
parameters.

Associated Channel Optional. Select a channel that the sub-device uses from the created
sub-device channels.

Custom Configuration If you have selected an associated channel, you must customize the
configuration. Only JSON format is supported.

4. On the details page of the sub-device, you can view the gateway device information. Click Edit

to modify the configuration information.

What's next

• You can refer to Alink protocol to develop your own devices and assign the configurations

between the gateway device and the sub-device to the device client.

IoT Platform User Guide / 2 Create products and devices

68 Issue: 20181113

2.10 Service Subscription

2.10.1 What is Service Subscription?
Service clients can directly subscribe to device upload and status messages of products.

Currently, IoT Platform pushes messages through HTTP/2. After you configure the service

subscription, IoT Platform pushes messages to your service client through HTTP/2. This means

 that you can use HTTP/2 SDKs to allow your enterprise server to directly receive messages

from IoT Platform. HTTP/2 SDKs provide identity authentication, topic subscription, message

sending and message receiving capabilities, and can be used to enable communication between

devices and IoT Hub. Specifically, HTTP/2 SDKs allow you to transfer large numbers of messages

 between IoT Platform and your enterprise server, and support communication between devices

and IoT Platform.

Note:

If you are using an old version of IoT Platform and Message Service is being used to transfer

messages, you can upgrade your service subscription method to HTTP/2. If you want to continue

using Message Service as your message transferring service, IoT Platform will push messages

to Message Service, which means your clients must listen to your queues in Message Service in

order to receive messages.

2.10.2 Development guide
This article introduces how to configure service subscription, connect to HTTP/2 SDK,

authenticate identity, and configure the message-receiving interface.

Configure service subscription

1. Log on to the IoT Platform console.

https://iot.console.aliyun.com/product/region/cn-shanghai

IoT Platform User Guide / 2 Create products and devices

Issue: 20181113 69

2. In the left-side navigation pane, click Products.

3. In the product list, find the product for which you want to configure service subscription and

click View. You are directed to the Product Details page.

4. Click Service Subscription > Set Now.

5. Select the types of notifications that you want to push to the SDK. There are two types: Device

Upstream Notification and Device Status Change Notification.

• Device Upstream Notification: Indicates the messages of topics to which devices are

allowed to publish messages. If it is selected, the HTTP/2 SDK can receive the messages

reported by devices.

For example, a Pro Edition product has three topic categories:

• /${YourProductKey}/${YourDeviceName}/user/get , devices can subscribe to

messages.

• /${YourProductKey}/${YourDeviceName}/user/update, devices can publish

messages.

• /sys/${YourProductKey}/${YourDeviceName}/thing/event/property/

post, devices can publish messages.

Service Subscription can push messages of the topics /${YourProductKey}/${

YourDeviceName}/user/update and /sys/${YourProductKey}/${YourDevice

Name}/thing/event/property/post, to which devices can publish messages. In

addition, the messages of /sys/${YourProductKey}/${YourDeviceName}/thing/

event/property/post are processed by the system before being pushed.

• Device Status Change Notification: Indicates the notifications that are sent when the

statuses of devices change. For example, the notifications on devices going online or going

offline. The topic /as/mqtt/status/${YourProductKey}/${YourDeviceName} has

IoT Platform User Guide / 2 Create products and devices

70 Issue: 20181113

device status change messages. After this notification type is selected, the HTTP/2 SDK

can receive the device status change notifications.

Connect to the SDK

Add maven dependency to the project to connect to the SDK.

<dependency>
 <groupId>com.aliyun.openservices</groupId>
 <artifactId>iot-client-message</artifactId>
 <version>1.1.2</version>
</dependency>

<dependency>
 <groupId>com.aliyun</groupId>
 <artifactId>aliyun-java-sdk-core</artifactId>
 <version>3.7.1</version>
</dependency>

Identity authentication

Use the AccessKey information of your Alibaba Cloud account for identity authentication and to

build the connection between the SDK and IoT Platform.

See the following example:

String accessKey = "xxxxxxxxxxxxxxxxx";
String accessSecret = "xxxxxxxxxxxxxxx";
String uid = "xxxxxxxxxxxxxxxxx";
String region = "cn-shanghai";
String endPoint = "https://${uid}.iot-as-http2.${region}.aliyuncs.com:
443"
Profile profile = new Profile(endPoint, region, accessKey, accessSecr
et);
MessageClient client = MessageClientFactory.messageClient(profile);
client.connect(messageToken -> {
 Message m = messageToken.getMessage();
 System.out.println("receive message from " + m);
 return MessageCallback.Action.CommitSuccess;
});

The value of accessKey is the AccessKeyID of your Alibaba Cloud account, and the value of

accessSecret is the AccessKeySecret corresponding to the AccessKeyID. Log on to the

Alibaba Cloud console, move the pointer to your account image, and click AccessKey to view

your AccessKey ID and AccessKey Secret; click Security Settings to view your account ID.

The value of region is the region ID of your IoT Platform service.

Configure the message receiving interface

Once the connection is established, the server immediately pushes the subscribed messages

to the SDK. Therefore, when you are configuring the connection, you configure the message-

https://home.console.aliyun.com/new#/
https://home.console.aliyun.com/new#/

IoT Platform User Guide / 2 Create products and devices

Issue: 20181113 71

receiving interface, which is used to receive the messages for which callback has not been

configured. We recommend that you call setMessageListener to configure callback before you

connect the SDK to IoT Platform.

Use the consume method of MessageCallback interface and call the setMessageListener

() of messageClient to configure the message receiving interface.

The returned result of consume determines whether the SDK sends an ACK.

The method of message receiving interface configuration is as follows:

MessageCallback messageCallback = new MessageCallback() {
 @Override
 public boolean consume(MessageToken messageToken) {
 Message m = messageToken.getMessage();
 log.info("receive : " + new String(messageToken.getMessage().
getPayload()));
 return true;
 }
};
messageClient.setMessageListener("/${YourProductKey}/#",messageCal
lback);

The parameters are introduced as follows:

• MessageToken indicates the body of the returned message. Use MessageToken.

getMessage() to get the message body. MessageToken is required when you reply to ACKs

manually.

A message body contains the following:

public class Message {
 // Message body
 private byte[] payload;
 // Topic
 private String topic;
 // Message ID
 private String messageId;
 // QoS
 private int qos;
}

• For more information about message body, see message parameters .

• messageClient.setMessageListener("/${YourProductKey}/#",messageCal

lback); is a method to specify topics for callbacks.

You can specify topics for callbacks, or you can use the generic callback.

▬ Callbacks with specified topics

IoT Platform User Guide / 2 Create products and devices

72 Issue: 20181113

Callbacks with specified topics have higher priority than the generic callback. When a

message matches with multiple topics, the callback with the topic whose elements ranks

higher in the dictionary order is called and only one callback is performed.

When you are configuring a callback, you can specify the topics with wildcards, for example,

/${YourProductKey}/${YourDeviceName}/#.

Example:

messageClient.setMessageListener("/alEddfaXXXX/device1/#",
messageCallback);
//When the received message matches with the specified topic, for
 example, "/alEddfaXXXX/device1/update", the callback with this
topic is called.

▬ Generic callback

If you do not specify any topic for callbacks, generic callback is called.

The method to configure the generic callback:

messageClient.setMessageListener(messageCallback);
//When the received message does not match with any specified
topics which are configured for callbacks, the generic callback is
 called.

• Configure ACK reply

After a message with QOS>0 is consumed, an ACK must be sent in reply. SDKs support

sending ACKs as replies both automatically and manually. The default setting is to reply with

ACKs automatically. In this example, no ACK reply setting is configured, so the system replies

ACKs automatically.

▬ Reply ACKs automatically: If the returned value of MessageCallback.consume is true

, the SDK will reply an ACK automatically; If the returned value is false or an exception

occurs, the SDK will not reply any ACK. If no ACK is replied for the messages with QOS>0,

the server will send the message again.

▬ Reply ACKs manually: Use MessageClient.setManualAcksto configure for replying

ACKs manually.

Call MessageClient.ack() to reply ACKs manually, and the parameter MessageToken

 is required. You can obtain the value of MessageToken from the received message.

IoT Platform User Guide / 2 Create products and devices

Issue: 20181113 73

The method to manually reply ACKs is as follows:

messageClient.ack(messageToken);

Demo

Click SDK demo to download the demo.

2.11 Device group
IoT Platform supports device groups. You can assign devices from different products to the same

group. This article introduces how to create and manage device groups on the IoT Platform

console.

Procedure

1. Log on to the IoT Platform console.

2. Click Devices > Group.

3. On the group management page, click Create Group, enter group information, and then click

Save.

Note:

You can create up to 1,000 groups (including parent groups and subgroups) .

The parameters are as follows:

• Parent Group: Select a group type.

▬ Group: Indicates that the group to be created is a parent group.

▬ Select an existing group: Specifies a group as the parent group and creates a subgroup

for it.

http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/java-http2-sdk-demo/http2-server-side-demo.zip
https://iot.console.aliyun.com/

IoT Platform User Guide / 2 Create products and devices

74 Issue: 20181113

• Group Name: Enter a name for the group. A group name can be 4 to 30 characters in

length and can include Chinese characters, English letters, digits and underscores (_) . The

group name must be unique among the groups for an account, and cannot be modified once

the group has been created.

• Group Description: Describes the group. Can be left empty.

4. On the Group Management page, click View to view the Group Details page of the

corresponding group.

5. (Optional) Add tags for the group. Tags can be used as group identifiers when you manage

your groups.

a) Click Add under Tag Information, and then enter keys and values of tags.

b) Click OK to create all the entered tags.

Note:

You can add up to 100 tags for a group.

6. Click Device List > Add Device to Group. Select the devices that you want to add to the

group.

Note:

• You can add up to 200 devices at a time. You can add up to 20,000 devices for a group in

total.

• A device can be included in a maximum of 10 groups.

IoT Platform User Guide / 2 Create products and devices

Issue: 20181113 75

There are two buttons at the upper-right corner of the Add Device to Group page.

• Click All to display all the devices.

• Click You have selected to display the devices you have selected.

7. (Optional) Click Subgroups > Create Group to add a subgroup for the group.

Subgroups are used to manage devices in a more specific manner. For example, you

can create subgroups such as "SmartKitchen" and "SmartBedroom" for a parent group "

SmartHome", and then you can manage your kitchen devices and bedroom devices separately

. The procedure is as follows:

a) Select the parent group, enter a group name and description, and click Save.

b) On the Subgroups page of the parent group , click View to view the corresponding Group

Details page.

c) Click Device List > Add Device to Group, and then add devices for the subgroup.

After creating the subgroup and adding devices for it, you can then manage it. You can also

create sub-subgroups within the subgroup.

IoT Platform User Guide / 2 Create products and devices

76 Issue: 20181113

Note:

• A group can include up to 100 subgroups.

• Only three layers of groups are supported: parent group>subgroup>sub-subgroup.

• A group can only be a subgroup of one parent group.

• You can not change the relationships between a parent group and its subgroups once they

 have been created. If you want to change the relationships, delete the existing subgroups

and create new ones.

• You cannot delete a group that has subgroups. You must delete all its subgroups before

deleting the parent group.

IoT Platform User Guide / 3 Rules engine

Issue: 20181113 77

3 Rules engine

3.1 Overview

When your devices communicate using topics, you can use the rule engine and write SQL

expressions to process data in topics. You can also configure forwarding rules to send the

processed data to other Alibaba Cloud services. For example:

• You can forward the processed data to RDS, and Table Store for storage.

• You can forward the processed data to Function Compute for event-driven computing.

• You can forward the processed data to another topic to achieve M2M communication.

• You can forward the processed data to Message Service to ensure reliable use of data.

By using the rule engine, you will be provided with a complete range of services including data

collection, computing, and storage without purchasing a distributed server deployment architecture

.

Note:

https://www.alibabacloud.com/product/apsaradb-for-rds-mysql
https://www.alibabacloud.com/product/table-store
https://www.alibabacloud.com/product/function-compute
https://www.aliyun.com/product/mns

IoT Platform User Guide / 3 Rules engine

78 Issue: 20181113

When using the rule engine, you need to pay attention to the following points:

• The rule engine processes data based on topics. You can use the rule engine to process

device data only when devices are communicating with each other by using topics.

• The rule engine processes the data in topics using SQL.

• SQL subqueries and the use of the LIKE operator are currently not supported.

• Some functions are supported. For example, you can use deviceName() to obtain the name

of the current device. For more information about the supported functions, see Function list.

3.2 Create and configure a rule
This topic describes how to create and configure a rule.

Procedure

1. On the Rules page of the IoT Platform console, click Create Rule.

2. Specify a Rule Name and select a Data Type.

• Rule Name: Enter a unique rule name. Rule names are used to identify rules.

• Data Type: JSON and binary formats are supported. The rules engine processes data

based on topics. Therefore, you must select the format of the data in the topic that you want

 to process.

3. Locate the rule you have created and click Manage. On the Rule Details page, configure the

rule.

IoT Platform User Guide / 3 Rules engine

Issue: 20181113 79

a) Click Write SQL, and then write a SQL statement as the detailed rule for data processing.

Note:

You can use to_base64(*) to convert binary data to a base64 string. Built-in functions

and conditions are also supported.

For example, the following SQL statement can be used to extract the deviceName field

 from the custom topic category, which ends with the level labeled data, of the product

Basic_Light_001.

IoT Platform User Guide / 3 Rules engine

80 Issue: 20181113

• Rule Query Expression: You must define the Field,Topic, and Condition. The

system will then automatically generate a complete rule query expression.

• Field: The message content field. For example, deviceName() as deviceName.

• Topic: Select a topic whose messages are to be processed.

▬ Custom: Indicates that it is a custom topic. After you select a product, you can enter a

 custom topic.

▬ sys: Indicates that it is a system-defined topic. If you select sys, you must select a

product, a device, and a system-defined topic.

In this example, the custom topic category of the product Basic_Light_001 is set.

• Condition: The condition by which the rule is triggered.

For more information about how to write SQL statements, see SQL statementsand

Functions.

b) Click Add Operation next to Data Forwarding. Select the Alibaba Cloud service to which

you want to forward the processed data, and follow the instructions on the page to configure

the parameters.

For more information about data forwarding examples, see Examples.

4. Go back to the Rules page and click Start. Data will then be forwarded following this rule.

IoT Platform User Guide / 3 Rules engine

Issue: 20181113 81

You can also perform the following operations:

• Click Manage to modify the settings of this rule.

• Click Delete to delete this rule. Rules that are in a running status cannot be deleted.

• Click Stop to disable this rule.

3.3 SQL statements
When using the rules engine, if your data is in JSON format, you can write SQL statements to

parse the data and process the parsing result. The rules engine does not parse binary data, but

passes binary data through directly. This section describes SQL statements.

SQL statements

JSON data can be mapped to a virtual table. Keys in a JSON data record correspond to the

 column names, and values in a JSON data record correspond to the column values. Once

mapped to a virtual table, a JSON data record can be processed using SQL. The following section

 provides an example of abstracting a rule from the rules engine into a SQL statement.

For example, an environmental sensor (typically used for fire
detection and collecting temperature, humidity, and atmospheric
pressure data) reports the following data:

IoT Platform User Guide / 3 Rules engine

82 Issue: 20181113

{
"temperature":25.1
"humidity":65
"pressure":101.5
"location":"xxx,xxx"
}
If you want to set an alarm to trigger when the temperature is higher
 than 38 degrees Celsius and the humidity is less than 40% RH, write
 the following SQL statement as a rule: SELECT temperature as t,
deviceName() as deviceName, location FROM /ProductA/+/update WHERE
temperature > 38 and humidity < 40
Then, if the reported data meets the rule parameters, the rule is
triggered and the temperature, device name, and location in the data
record are parsed for further processing.

FROM

To use the FROM statement, you must specify topic wildcards after FROM that are used to match

the rule against topics that contain the messages to be processed. This means that when a

message that belongs to the specified topics arrives, only the message payload that is in JSON

format can be parsed and then processed by the SQL statement that you have defined. If the

message format is invalid, the message will be ignored. You can usetopic() to reference a

specific topic.

In this example, the "FROM /ProductA/+/update" statement indicates
 that only messages that match /ProductA/+/update are processed. For
 more information about how messages match topics, see Topic.

SELECT

• JSON data

In the SELECT statement, you can specify the parsed result of the payload of the reported

message, which represents the keys and values in the JSON data. You can also use built-in

functions in SQL statement, such as deviceName(). SQL subqueries are not supported.

The reported JSON data can be an array or nested JSON data. You can also use a JSONPath

expression to obtain the key values in the reported data record. For example, for a payload {a

:{key1:v1, key2:v2}}, you can obtain the value of v2 by specifying a.key2 as the JSON

path. When specifying variables in SQL statements, note the difference between using single

quotes (') and double quotes ("). Single quotes (') enclose constants. Double quotes (") enclose

variables. Variables may also be written without being enclosed by quotes. For example, if you

use single quotes (') around a variable such as 'a.key2', a.key2 will be taken as a constant.

For more information about built-in functions, see Functions.

In the statement "SELECT temperature as t, deviceName() as
deviceName, location" that is provided in the previous example,

IoT Platform User Guide / 3 Rules engine

Issue: 20181113 83

temperature and location are the fields in the reported message, and
 deviceName() is a built-in function.

• Binary data

▬ Enter * to pass binary data through directly.

▬ Use the function to_base64(*) to convert binary data of the original payload to a base64

string. Built-in functions and conditions, such as deviceName(), are supported for

extracting the required information.

WHERE

• JSON data

The WHERE clause is used as the condition for triggering the rule. SQL subqueries are not

supported. The fields that can be used in the WHERE clause are the same as those that can

 be used in the SELECT statement. When a message of the corresponding topic is received,

the result obtained using the WHERE clause will be used to determine whether a rule will be

triggered. For more information about WHERE expressions, see the following table: Supported

 WHERE expressions.

In the previous example, "WHERE temperature > 38 and humidity < 40"
indicates that the rule is triggered when the temperature is higher
than 38 degrees Celsius and the humidity is less than 40% RH.

• Binary data

If the reported message is composed of binary data, you can only use built-in functions and

WHERE expressions in the WHERE clause. You cannot use the fields in the payload of the

reported message.

SQL results

The SQL result returned after the SQL statement is executed will be forwarded. If an error occurs

while parsing the payload of the reported message, the rule execution fails. In the expression used

for data forwarding, you must use ${expression} to specify the data you want to forward.

For the previous example, when configuring the data forwarding action
, you can use ${t}, ${deviceName}, and ${loaction} to reference the

IoT Platform User Guide / 3 Rules engine

84 Issue: 20181113

 SQL result. For example, if you want to forward the SQL result to
Table Store, you can use ${t}, ${deviceName}, and ${loaction}.

Notes about using arrays

Use double quotes (") when referencing arrays in SQL statements. For example, if a message is

｛a:[{v:1},{v:2},{v:3}]｝, the SELECT statement isselect "$.a[0]" data1,".a[1].

v" data2,".a[2]" data3, which indicates data1={v:1}, data2=2, and data3=[{v:3}].

Supported WHERE expressions

Operator Description Example

= Equal to color = ‘red’

<> Not equal to color <> ‘red’

AND Logic AND color = ‘red’ AND siren = ‘on’

OR Logic OR color = ‘red’ OR siren = ‘on’

() Parentheses enclose the conditions
that will be evaluated as a whole.

color = ‘red’ AND (siren = ‘on’ OR
isTest)

+ Addition 4 + 5

- Subtraction 5-4

/ Division 20 / 4

* Multiplication 5 * 4

% Return the remainder 20% 6

< Less than 5 < 6

<= Less than or equal to 5 <= 6

> Greater than 6 > 5

>= Greater than or equal to 6 >= 5

Function call For more information about
supported functions, seeFunctions.

deviceId()

Attributes
expressed in the
JSON format

You can extract attributes from the
message payload and express them
 in the JSON format.

state.desired.color,a.b.c[0].d

CASE … WHEN …
THEN … ELSE …
END

CASE expression CASE col WHEN 1 THEN ‘Y’ WHEN
 0 THEN ‘N’ ELSE ‘’ END as flag

IoT Platform User Guide / 3 Rules engine

Issue: 20181113 85

IN Only listing is supported.
Subqueries are not supported.

For example, you can use WHERE
a IN(1, 2, 3). However, you cannot
use WHERE a IN(select xxx).

LIKE The LIKE operator is used to search
for a specified pattern. When you
use a LIKE operator, you can only
use the %wildcard character to
represent a string of any characters.

For example, you can use the LIKE
 operator as in WHERE c1 LIKE ‘%
abc’ and WHERE c1 not LIKE ‘%def
%’.

3.4 Functions
The rules engine provides functions that allow you to handle data when writing a SQL script.

Call functions

You can call functions to get or handle data.

For example, in the following example, the functions: deviceName(), abs(number), and topic(

number) are used.

SELECT case flag when 1 then 'Light On' when 2 then 'Light Off' else
 '' end flag，deviceName(),abs(temperature) tmr FROM "/topic/#" WHERE
temperature>10 and topic(2)='123'

Note:

Exercise caution when you call functions. Constants are enclosed with apostrophes ('). Variables

are not enclosed or are enclosed with quotation marks ("). For example, in select “a” a1, ‘

a’ a2, a a3, a1 and a3represent a variable, and a2 represents constant a.

Function Description

abs(number) Returns the absolute value of a number.

asin(number) Returns the asin of a number.

attribute(key) Returns the device tag value that corresponds with the key. If no such
 device tag key exists, the returned result is empty.

concat(string1, string2) Concatenates two strings.
Example: concat(field,’a’).

cos(number) Returns the cosine of a number.

cosh(number) Returns the hyperbolic cosine of a number.

crypto(field,String) Encrypts the value of a field.
The String parameter represents an algorithm. Available algorithms
include MD2, MD5, SHA1, SHA-256, SHA-384, and SHA-512.

IoT Platform User Guide / 3 Rules engine

86 Issue: 20181113

deviceName() Returns the name of the current device. When you debug your SQL
statements, because no real device is connected, the returned result
is empty.

endswith(input, suffix) Validates whether the input string ends with the suffix string.

exp(number) Returns a specific value raised to the power of a number.

floor(number) Rounds a number down, toward zero, to the nearest multiple of
significance. Returns an integer that is equal.

log(n, m) Returns the logarithm of a number to the base that you have specified
.
If you do not specify m, log(n) is returned.

lower(string) Returns a lower-case string.

mod(n, m) Returns the remainder after a number has been divided by a divisor.

nanvl(value, default) Returns the value of a property.
If the value of the property is null, the function returns default.

newuuid() Returns a random UUID.

payload(textEncoding) Returns the payload of encoding the text in the message sent by a
device.
The default encoding is UTF-8, which means that payload() and
payload(‘utf-8’) will return the same result.

power(n,m) Raises number n to power m.

rand() Returns a random number greater than or equal to 0 and less than 1.

replace(source, substring
, replacement)

Replaces a specific column.
Example: replace(field,’a’,’1’).

sin(n) Returns the sine of n.

sinh(n) Returns the hyperbolic sine of n.

tan(n) Returns the tangent of n.

tanh(n) Returns the hyperbolic tangent of n.

timestamp(format) Returns the current system time.
The format parameter is optional. If you do not enter a value for
 format, the real-time system timestamp in milliseconds will be
returned. For example, timestamp() = 1540483200000，timestamp('
yyyy-MM-dd HH:mm:ss.SSS')=2018-10-26 00:00:00.000.

topic(number) Returns a segment of a topic.
For example, for topic /abcdef/ghi, function topic () returns “ /abcdef/
ghi”. Function topic (1) returns “abcdef”. Function topic(2) returns “ghi
”.

IoT Platform User Guide / 3 Rules engine

Issue: 20181113 87

upper(string) Returns an upper-case string.

to_base64(*) If the original payload data is binary data, you can call this function to
convert the binary data to a base64 string.

3.5 Data forwarding route
The rule engine only can process device data that is sent to topics. The data forwarding route is

different for Basic Edition and Pro Edition devices.

Data forwarding route of Basic Edition devices

The device data of Basic Edition devices passes unaltered to IoT Hub. An example of a data

forwarding route is shown in the following figure.

Data forwarding route of Pro Edition devices

When you create a Pro Edition product, you are required to select the data type as either Do not

parse/Custom (indicating binary data) or Alink JSON.

• Do not parse/Custom: The rule engine does not parse binary data and the data passes to the

targets. The data forwarding route is the same as that of Basic Edition devices.

• Alink JSON: Data is first parsed to be Thing Specification Language (TSL), and then the rule

engine executes the SQL statements for the parsed data.

IoT Platform User Guide / 3 Rules engine

88 Issue: 20181113

3.6 Data format in topics
Using rules engine, you need to write SQL statement to process data stored in topics. In what

format data is stored in these topics is therefore important for writing the SQL statement. For IoT

Platform Basic topics, data format is defined by yourself. For IoT Platform Pro topics, some are

customized and some are pre-defined. For those whose data format is pre-defined, you should

process data strictly accord to the format. This article explains the pre-defined data format.

Report device properties

Get device property from this topic.

Topic：/sys/{productKey}/{deviceName}/thing/event/property/post

Data format:

{
"iotId":"4z819VQHk6VSLmmBJfrf00107ee200",
"productKey": "1234556554",
"deviceName": "deviceName1234",
"gmtCreate":1510799670074,
"deviceType":"Ammeter",
"items"：{
"Power": {
"value": "on",
"time": 1510799670074
},
"Position":{
"time":1510292697470,
"value":{
"latitude":39.90,
"longitude":116.38
}
}
}

IoT Platform User Guide / 3 Rules engine

Issue: 20181113 89

}

Parameter description:

Parameter Type Description

iotId String The unique identifier of the device within IoT
Platform

productKey String The unique identifier of the product

deviceName String The name of the device

deviceType String The type of the device

items Object Device Data

Power String A property name. Refer to TSL for all this
product's property names.

Position String A property name. Refer to TSL for all this
product's property names.

value Defined in TSL Property values

time Long Property generated time. Use Cloud end time if
not reported by device.

gmtCreate Long The time when message data starts to flow

Report device event

Get device event from this topic.

Topic：/sys/{productKey}/{deviceName}/thing/event/{tsl.event.identifier}/

post

Data format:

{
"identifier":"BrokenInfo",
"Name": "Damage rate report ",
"type":"info",
"iotId":"4z819VQHk6VSLmmBJfrf00107ee200",
"productKey":"X5eCzh6fEH7",
"deviceName":"5gJtxDVeGAkaEztpisjX",
"gmtCreate":1510799670074,
"value":{
"Power": "on",
"Position":{
"latitude":39.90,
"longitude":116.38
}
},
"time":1510799670074

IoT Platform User Guide / 3 Rules engine

90 Issue: 20181113

}

Parameter description:

Parameter Type Description

iotId String The unique identifier of the device within IoT
Platform

productKey String The unique identifier of the product

deviceName String The name of the device

type String Event type. Refer to TSL for details.

value Object Parameters for the event

Power String A parameter name for the event

Position String A parameter name for the event

time Long Use Cloud end time if not reported by device.

gmtCreate Long The time when message data starts to flow

Gateway discovers sub-devices

In some cases, the gateway can discover sub-devices and report their information. The sub-

devices' information is reported using this topic.

Topic：/sys/{productKey}/{deviceName}/thing/list/found

Data format:

{
"gwIotId":"4z819VQHk6VSLmmBJfrf00107ee200",
"gwProductKey":"1234556554",
"gwDeviceName":"deviceName1234",
"devices":[{
"productKey":"12345565569",
"deviceName": "deviceName1234",
"iotId":"4z819VQHk6VSLmmBJfrf00107ee201"
}]
}

Parameter description:

Parameter Type Description

gwIotId String The unique identifier of the gateway device
within the Platform

gwProductKey String The unique identifier of the gateway product

IoT Platform User Guide / 3 Rules engine

Issue: 20181113 91

Parameter Type Description

gwDeviceName String The name of the gateway device

iotId String The unique identifier of the sub-device within
IoT Platform

productKey String The unique identifier of the sub-device product

deviceName String The name of the sub-device

Instruction execution result

Obtain the device's instruction execution result from this topic when instructions were sent

asynchronously from the Cloud. If an error occurs when sending the instructions, you can get error

 message from this topic.

Topic：/sys/{productKey}/{deviceName}/thing/downlink/reply/message

Data format:

{
"gmtCreate": 1510292739881,
"iotId": "4z819VQHk6VSLmmBJfrf00107ee200",
"productKey": "1234556554",
"deviceName": "deviceName1234",
"requestId": 1234,
"code": 200,
"message": "success",
"topic": "/sys/1234556554/deviceName1234/thing/service/property/set",
"data": {}
}

Parameter description:

Parameter Type Description

gmtCreate Long UTC timestamp

iotId String The unique identifier of the device within IoT
Platform

productKey String The product key.

deviceName String The name of the device

RequestId Long The identifier of message between Alibaba
Cloud and devices

code Integer The code for result message

message String The description of the result

IoT Platform User Guide / 3 Rules engine

92 Issue: 20181113

Parameter Type Description

data Object The result reported by the device. For
passthrough communication, this result should
be converted by script.

Response messages

Parameter Type Description

200 success The request is successful.

400 request error Internal service error occurs when executing the
 instructions.

460 request parameter
error

Request parameter error. Verification of input
parameter failed.

429 too many requests Too many requests in a short time.

9200 device not actived The device is not activated yet.

9201 device offline The device is offline now.

403 request forbidden The request is prohibited because of an overdue
 bill.

Online offline status

Obtain the online and offline status of devices from this topic.

Topic: {productKey}/{deviceName}/mqtt/status

Data format:

{
"productKey": "1234556554",
"deviceName": "deviceName1234",
"gmtCreate":1510799670074,
"deviceType":"Ammeter",
"iotId":"4z819VQHk6VSLmmBJfrf00107ee200",
"action":"online",
"status"{
"value": "14",
"time":1510292697471
}
}

Parameter description:

IoT Platform User Guide / 3 Rules engine

Issue: 20181113 93

Parameter Type Description

iotId String The unique identifier of the device within IoT
Platform

productKey String The unique identifier of the product

deviceName String The name of the device

status Object The status of the device

value String 1 represents online and 0 offline.

time Long The time when the device got online or offline

gmtCreate Long The time when the message starts to flow

action String online or offline

3.7 Regions and zones
Before you a create rule to send device data to other Alibaba Cloud products, make sure that the

target Alibaba Cloud products have been released in the region of the device and support the

format of your data.

Table 3-1: List of supported regions and zones

China (
Shanghai)

Singapore Japan (Tokyo) US (Silicon
Valley)

Germany (
Frankfurt)

JSON Binary JSON Binary JSON Binary JSON Binary JSON Binary

Table Store √ - √ - √ - √ - √ -

RDS (
ApsaraDB for
RDS)

√ - √ - √ - √ - √ -

Message
Service

√ √ √ √ √ √ √ √ √ √

Function
Compute

√ √ √ √ - - - - - -

3.8 Examples

IoT Platform User Guide / 3 Rules engine

94 Issue: 20181113

3.8.1 Forward data to another topic
You can forward the data that is processed based on SQL rules to another topic for machine-to-

machine (M2M) communication and other applications.

Prerequisites

Before configuring forwarding, follow the instructions in Create and configure a rule to write a SQL

script and filter the data.

Context

The following document describes how to forward data from Topic1 to Topic2 based on the rules

engine settings:

Procedure

1. Click Add Operation next to Data Forwarding. The Add Operation page appears.

IoT Platform User Guide / 3 Rules engine

Issue: 20181113 95

2. Follow the instructions on the page to configure the parameters.

• Select Operation: Select Publish to Another Topic.

• Topic: The topic to which the data is forwarded. You need to complete this topic after

selecting a product. You can use the ${} expression to quote the context value. For

example, ${dn}/get allows you to select the devicename from the message. The suffix of

this topic is get.

3.8.2 Forward data to Table Store
You can configure the rules engine to forward the processed data to Table Store.

Prerequisites

Before configuring forwarding, follow the instructions in Create and configure a rule to write a SQL

script to filter the data.

Procedure

1. Click Add Operation next to Data Forwarding to open the Add Operation page. Select Save

to Table Store .

IoT Platform User Guide / 3 Rules engine

96 Issue: 20181113

2. Follow the instructions on the page to configure the parameters.

• Select Operation: Select Table Store.

• Region, Instance, and Table: Specify each of these fields for the table to which you want to

forward data.

• Primary Key Field: All tables in Table Store have primary key columns. After you have

selected the table to forward data, the console automatically reads the primary key fields of

this table. You need to configure the values of the primary key fields.

IoT Platform User Guide / 3 Rules engine

Issue: 20181113 97

• Role: Grant IoT Platform permission to write data to Table Store. First create a role that

includes permission to write data to Table Store and assign this role to the rules engine. The

 rules engine can now write processed data to a table.

What's next

Example

The JSON data record {"device":"bike","product":"xxx","data2":[{...}]} is

extracted using SQL. This JSON data record needs to be stored in Table Store. The primary key

columns in the destination table are device, product, and id .

Configuration and effects:

1. Set the value of the primary key field “device” to ${device} in the console. When a message

arrives that triggers the forwarding rule, the value of the device field in the JSON data record

will be saved under the device column in the destination table. The preceding configuration and

effects resemble those for the primary key field "product".

Note:

${} is an escape character. If you do not use this escape character, the constant you specify

as the value of the primary key field will be saved to the primary key column.

2. The forwarding rule will automatically detect the auto-increment column. The auto-increment

column will be automatically assigned a unique value every time a new record is inserted into

the table. The values in this column cannot be edited.

3. IoT Platform can automatically parse values of the non-primary key fields included in the JSON

data record and create corresponding columns for the destination table . In this example, two

columns, data1 and data2, will automatically be created, and the corresponding values will be

saved under each column.

Note:

Currently, only top-level JSON structure can be parsed. Parsing of nested JSON structures is

not supported. Therefore, in this example, the entire JSON object with its nested structure will

be saved under the data2 column. The nested JSON structure will not be further parsed. No

additional columns will be created to save the nested elements.

IoT Platform User Guide / 3 Rules engine

98 Issue: 20181113

3.8.3 Forward data to RDS
You can configure rules engine to forward processed data to RDS instances in VPCs.

Restrictions

• Data can be forwarded only from IoT Platform to RDS within the same region but cannot be

forwarded from IoT Platform to RDS in a different region. For example, for an IoT Platform on

China East 2, data can only be forwarded to a RDS in China East 2.

• Only forwarding to RDS instances in VPCs is supported.

• Only MySQL instances are supported.

• Supports forwarding to databases in classic and master modes.

Preparation

Before you configure a forwarding rule, you need to follow the instructions in Create and configure

a rule to write a SQL script and process the data.

Procedure

1. Click Add Operation next to Data Forwarding to open the Add Operation dialog box. Select

Save to RDS

IoT Platform User Guide / 3 Rules engine

Issue: 20181113 99

IoT Platform User Guide / 3 Rules engine

100 Issue: 20181113

2. Configure the following parameters as prompted:

• Select Operation: Save to RDS.

• VPC Instance, MySQL Database: Select the VPC instance and MySQL database in the

current region based on your business requirements.

Note:

If your database is in the master mode, you need to manually enter the database name.

• Account, Password: Enter the account and password to log on to the database. This

account should have the permissions to read and write data to the database. Otherwise,

rules engine cannot write data to RDS.

Note:

After rules engine obtains the account, rules engine only writes data that matches the rule

to the database.

• Table Name: Enter the name of the table that has been built in the database. Rules engine

writes the data to the database table.

• Field: Enter the field name of the database. Rules engine writes the processed data to the

field.

• Value: Enter the value of the field for the database table. You can use the escape character

$. The format is ${key}, indicating that the value of key selected from the topic is used as

the input value.

For example, if the SQL statement for rules engine is SELECT key FROM mytopic, and

RDS has a table that includes a String type field with the value tem.

on IoT Platform, enter tem into Filed, and ${key} (the JSON field selected from rules

engine) intoValue.

Note:

• Make sure that the value is set in the correct format: ${}. Otherwise, a constant is

written to the table.

• Make sure that the data type of the field is consistent with its value. Otherwise, the data

cannot be stored in the database.

IoT Platform User Guide / 3 Rules engine

Issue: 20181113 101

3. Once the configuration is complete, rules engine will add the following IP addresses to the

whitelist to connect to RDS. If the following IP addresses are not listed, manually add them to

the whitelist:

• China East 2: 100.104.123.0/24

• Asia Pacific SE 1 (Singapore): 100.104.106.0/24

• US West 1 (Silicon Valley): 100.104.8.0/24

• EU Central 1 (Frankfurt): 100.104.160.192/26

• Asia Pacific NE 1 (Tokyo): 100.104.160.192/26

The whitelist (example) for the RDS console is as follows:

3.8.4 Forward data to Function Compute
Rules engine can forward processed data from IoT Hub to Function Compute (FC).

Procedure:

IoT Platform User Guide / 3 Rules engine

102 Issue: 20181113

1. On the Function Compute console, create a service and function.

2. Create a rule to send data processed on IoT Platform to FC, and then enable the rule.

3. Send a message to the topic that has rules engine configured.

4. View the function execution statistics on the Function Compute console, or check whether the

configuration result is correct based on specific business logic of the function.

Procedure

1. Log on to the Function Compute console. Create a service and function.

a. Create a service. Service Name is required. Configure other parameters as required.

b. After you have created a service, create a function.

c. Select a function template. A blank template is used as an example.

IoT Platform User Guide / 3 Rules engine

Issue: 20181113 103

d. Set parameters for the function.

The function is configured to directly display data on the Function Compute console.

In the proceeding parameters,

Service Name: Select the service created in 1.a.

Function Name: Specify the name of your function.

Runtime: Configure the running environment for the function, for example, java8.

Code Configuration: Upload your code.

Function Handler: Configure the function entry called to run FC. Set it to com.aliyun.fc.

FcDemo::handleRequest.

Configure other parameters as required. For more information, see configurations in

Function Compute.

https://www.alibabacloud.com/help/product/50980.htm
https://www.alibabacloud.com/help/product/50980.htm

IoT Platform User Guide / 3 Rules engine

104 Issue: 20181113

e. Verify whether the function runs as intended.

After you create a function, you can run it on the Function Compute console for verification

. FC will display information about function output and requests on the Function Compute

console.

2. Configure rules engine after the function successfully passes the verification.

3. Before you configure rules engine, follow the instructions in Create and configure a rule to write

a SQL script to process the data.

Note:

Data in JSON and binary formats can be forwarded to FC.

4. Click a rule name to go to the Rule Details page.

5. Select Data Forwarding Add Operation. On the Add Operation page, configure parameters:

IoT Platform User Guide / 3 Rules engine

Issue: 20181113 105

• Select Operation: Select Function Compute.

• Region: Select the region that your need to forward data based on your business

requirements. If the region does not have any relevant resources, go to Function Compute

Console to create resources.

Note:

Data forwarding to FC is only supported in China East 2.

• Service: Select a service based on your region. If there are no services available, click

Create Service.

• Function: Select a function based on your region. If there are no functions available, click

Create Function.

IoT Platform User Guide / 3 Rules engine

106 Issue: 20181113

• Authorization: Specify the role granted IoT Platform the permission to operate functions.

You need to create a role with permissions to operate functions before you assign the role

to rules engine.

6. Enable the rule. After you run the rule, IoT Hub sends the processed data to FC based on the

compiled SQL statements. The Function Compute console directly displays the received data

based on the defined function logic.

Verify the forwarding result

The Function Compute console collects monitored statistics about function execution. Statistics

 are delayed for five minutes, after which you can view monitored statistics about function

execution on the dashboard.

IoT Platform User Guide / 4 Extended services

Issue: 20181113 107

4 Extended services

4.1 Firmware update
This topic describes how to use the firmware update service in the IoT Platform console.

Currently, the firmware update service is only available in the China (Shanghai) region.

Prerequisites

• Make sure that you have enabled the firmware update service. If you have not enabled the

service, log on to the IoT Platform console, select Extended Services, and click Enable

Service under Firmware update.

• By default, the device SDK has enabled the firmware update service.

Context

The firmware update process includes the following tasks:

1. Add a firmware.

2. Validate a firmware.

3. Batch update.

4. Update another firmware.

Follow these steps to update a firmware:

Procedure

1. Log on to the IoT Platform console.

2. Select the China (Shanghai) region.

3. Add a firmware.

a) Select My Services > Firmware update.

b) Click New Firmware on the Update Firmware page, as shown in figure Figure 4-1: Add a

firmware..

IoT Platform User Guide / 4 Extended services

108 Issue: 20181113

Figure 4-1: Add a firmware.

c) Set firmware parameters.

• The firmware file name can only contain Chinese characters, English letters, numbers,

and underscores (_) and must be 1 to 32 characters in length.

• The size of each firmware file must be no larger than 10 MB.

• You can upload up to 100 firmware files.

Note:

The 100 firmware files also include firmware files that have been uploaded and then

deleted.

4. Validate the firmware.

IoT Platform User Guide / 4 Extended services

Issue: 20181113 109

After you have added the firmware, you must test the firmware on a small number of devices

to check whether the firmware runs correctly. If the firmware runs correctly, you can then push

the firmware to all devices.

Select a firmware from the firmware list, and click Validate Firmware.

• The system then sends a firmware update notification to all devices connected through

Message Queuing Telemetry Transport (MQTT). Only online devices will receive the update

notification. For offline devices, the system will resend an update notification to these

devices when they come online.

Connections established by using other protocols, such as CoAP and HTTPS, are transient

 connections. Devices using transient connections cannot receive the firmware update

notification when they are offline.

• Firmware verification is to test the firmware on a number of devices. You can validate a

firmware multiple times.

• Once you have verified a firmware, the status of the firmware is set to verified, regardless of

 the update results on the devices.

• The system records all update operations on the devices after the firmware verification

process. The system determines that the update process has started only after a device

has received the update notification and updated the update progress to the system. The

system then changes the update status to Upgrading. After the update process begins, you

can view the update progress on the firmware details page.

5. After you have verified and confirmed that the firmware can run correctly, you can then update

the firmware on all devcies. Select the firmware from the firmware list, and click Batch Update.

Batch update is to push the firmware update notification to a large number of devices.

• You cannot use a firmware that has not been verified to perform a batch update.

• An update is progressive, from the reception of the update notification to the completion of

the update. The devices automatically send update information to the OTA system to update

 their update progress.

• During a batch update, a device may fail to update its firmware if it has not finished the last

update task.

• If an update error occurs on a device during the update process, the device sends a

notification to the OTA system. The system then sets the update status to Completed

IoT Platform User Guide / 4 Extended services

110 Issue: 20181113

and determines that the device has failed to update the firmware. update errors include

downloading failure, verification failure, and extraction failure.

• You can view information about batch upgrades on the firmware details page. The update

failure list shows brief information about the cause of the update failures.

When creating a batch update task, if you specify a firmware version that has already been

specified in another batch update task for the same product, the system displays a message

indicating that an update task conflict has occurred.

For example, you have added firmware versions B and C to the IoT Platform console. You

want to update a device with firmware version A for a product. You have also created a batch

 update task to update the firmware from version A to B. If you try to create another batch

update task to update the firmware from version A to C, an update task conflict occurs in the

console.

6. If a device failed an update task, you can use the update operation records to re-initiate the

update task.

4.2 Remote configuration
Prerequisite

• Make sure that you have enabled Remote Configuration. If you have not enabled this service,

log on to the IoT Platform console, select Extended Services, and click Enable Service

under Remote Configuration.

• By default, the device SDK has enabled Remote Configuration. You need to define

FEATURE_SERVICE_OTA_ENABLED = y in the device SDK. The SDK provides the

linkkit_cota_init operation to initialize remote configurations such as Config Over The Air

(COTA).

Introduction to Remote Configuration

In many scenarios, developers need to update the device configuration, such as the system

parameters, network parameters, and security policies of the devices. Usually, a firmware update

 is used to complete device configuration update. However, this approach requires more work for

firmware version maintenance, and the device must stop running in order to install the update. To

 fix these issues, IoT Platform provides the Remote Configuration service. This service enables

you to complete configuration updates without the need for device restart or service interruption.

With the Remote Configuration service, you can perform the following operations:

IoT Platform User Guide / 4 Extended services

Issue: 20181113 111

• Enable or disable Remote Configuration.

• Edit configuration files online and perform version management.

• Update the configuration information of multiple devices.

• Enable the device to send configuration update requests.

Remote Configuration flow chart:

Remote Configuration consists of the following parts:

• A user edits and saves configuration in the IoT Platform console.

• The user then pushes configuration updates to multiple devices that then update their local

configuration file after receiving these updates.

• The device can also send configuration update requests to IoT Platform and perform updates.

Enable Remote Configuration

Two scenarios are involved when you enable Remote Configuration. One scenario is that IoT

Platform sends configuration updates to the device. The other scenario is that the device sends

queries about configuration information. The steps to enable Remote Configuration vary based on

 different scenarios.

Scenario one

If devices receive configuration information from the IoT platform, use the following steps to

enable Remote Configuration.

IoT Platform User Guide / 4 Extended services

112 Issue: 20181113

1. When the device is online, configure the device to subscribe to topic (/sys/${productKey}/${

deviceName}/thing/config/push) that pushes configuration information.

2. Enable Remote Configuration in the IoT Platform console.

a. Log on to the IoT Platform console, and select Extended Services.

b. Click Remote Configuration to enter the detail page, and click Enable Service.

c. Select a product and click to enable Remote Configuration.

Note:

• You must enable Remote Configuration to edit configuration information.

• You can also disable Remote Configuration here.

d. In the editing area, click Edit to edit configuration information. You can also copy

configuration information to the editing area. The product configuration template is

applicable to all devices under this product. Currently, you cannot update the configuration

of individual devices.

IoT Platform User Guide / 4 Extended services

Issue: 20181113 113

• Remote Configuration supports JSON files. IoT Platform does not have requirements

for the configuration content. The system only checks the format of the data when you

submit the configuration file. This prevents configuration errors that are caused by format

 errors.

• The configuration file can be up to 64 KB in size. The file size is dynamically displayed in

the upper-right corner of the editing area. Configuration files larger than 64 KB cannot be

 submitted.

e. After you have finished editing the configuration information, click Update to create the

configuration file. This allows devices to send requests to update configuration information.

f. After the configuration file has been submitted, IoT Platform does not push updates to

devices immediately. You must click Batch Update so that the system pushes the updated

configuration file to all devices.

IoT Platform User Guide / 4 Extended services

114 Issue: 20181113

Note:

• You can only perform batch update once in an hour. Do not perform batch updates

frequently.

• If you want to stop pushing configuration updates, you need to disable Remote

Configuration. The system then stops pushing all updates and denies update requests

from devices.

g. You can view configuration change history.

Remote Configuration saves the latest five configuration changes by default. After you

have submitted a configuration change, the latest configuration is displayed in the version

records. You can then view the configuration information and time of update, providing high

traceability of records.

IoT Platform User Guide / 4 Extended services

Issue: 20181113 115

Click View to view the configuration information of the specified version. Click Restore to

This Version to copy the configuration information into the editing area so that you can edit

and update the configuration.

3. The device automatically updates the configuration after receiving the configuration updates

from IoT Platform.

Scenario two

If devices need to send queries about configuration information, use the following steps to enable

Remote Configuration.

1. Configure the device to subscribe to topic (/sys/${productKey}/${deviceName}/thing/config/

get_reply).

2. Enable Remote Configuration in the IoT Platform console. For more information, see 2.

3. The device call the linkkit_invoke_cota_get_config operation to trigger the request for

remote configuration.

4. The device sends queries about the latest configuration updates through topic (/sys/${

productKey}/${deviceName}/thing/config/get).

5. IoT Platform returns the latest configuration information to the device after receiving the queries

.

6. The device use the cota_callback callback to process the configuration file that is sent

through Remote Configuration.

IoT Platform User Guide / 5 Log service

116 Issue: 20181113

5 Log service

This topic describes three types of logs and log details in Log Service.

Usage

There are three types of logs:

• Device behavior analytics

• Upstream analytics

• Downstream analytics

This following table describes the methods for using IoT Platform to filter logs.

Filter method Description

DeviceName Specifies the device name. It is the unique

identifier of a device for a product. You can

filter logs by deviceName.

MessageId Specifies the message ID. It is the unique

identifier of a message on IoT Platform. You

can use the messageId to track the entire

process of message forwarding.

Status A log entry has two statuses: success and

failure.

Time range Filters logs based on the time range specified.

Note:

• {} indicates variables. The system will display logs based on the actual running.

• Logs are in English only.

• When logs about failures are displayed, all errors except system error are caused by

improper use or violations of product restrictions. Troubleshoot these errors carefully..

Device behavior analytics

Device behavior analytics includes the analytics of the online and offline logs for a device.

You can filter logs by DeviceName and time range, as shown in the following figure.

IoT Platform User Guide / 5 Log service

Issue: 20181113 117

Device connection failure causes

Detail Description

Kicked by
the same
device

Another device used the same combination of ProductKey, DeviceName, and
ProductKey to come online, and the current device is forced offline.

Connection
 reset by
peer

 TCP connection is reset by peer.

Connection
 occurs
exception

 Connection exception. IoT server disconnected itself.

Device
disconnect

 Device sent MQTT disconnection request.

Keepalive
timeout

 Keepalive timeout. IoT server disconnected.

Upstream analytics

Upstream analytics indicates the analytics of the following processes: A device sends messages

to a topic; the topic forwards the messages to rules engine; rules engine forwards the messages

to a cloud service.

You can filter logs by DeviceName, MessageId, status, and time range, as shown in the following

figure.

IoT Platform User Guide / 5 Log service

118 Issue: 20181113

Upstream analytics (English and Chinese)

Note:

Upstream analytics includes the context, failure of causes, and cause descriptions.

Context Cause of failure Cause description

Rate limit:{maxQps},current
qps:{}

Restriction violations

No authorization No authorization

Device publish message to
 topic:{},QoS={},protocolMe
ssageId:{}

System error System error

{eg，too many requests} Causes of connection failure
, for example, too many
requests for query.

send message to RuleEngine
，topic:{} protocolMessageId:{}

System error System error

DataHub Schema:{} is invalid! Data type mismatch

DataHub IllegalArg
umentException:{}

Parameter exception

Write record to DataHub
occurs error! errors:[code:{},
message:{}]

An error that occurs when data
 is written to DataHub

Datahub ServiceException:{} DataHub exception

Transmit data to DataHub,
project:{},topic:{},from IoT topic
:{}

System error System errors

Transmit data to MNS,queue:
{},theme:{},from IoT topic:{}

MNS IllegalArgumentException
:{}

 MNS parameter exception

IoT Platform User Guide / 5 Log service

Issue: 20181113 119

Message Service (MNS)
ServiceException:{}

MNS service exception

MNS ClientException:{} MNS client exception

System error System error

MQ IllegalArgumentException
:{}

MQ parameter exception

MQ ClientException:{} Message Queue (MQ) client
exception

Transmit data to MQ,topic:{},
from IoT topic:{}

System error System error

TableStore IllegalArg
umentException:{}

Table Store parameter
exception

TableStore ServiceException:{} Table Store exception

TableStore ClientException:{} Table Store client exception

Transmit data to TableStore,
instance:{},tableName:{},from
IoT topic:{}

System error System error

RDS IllegalArgumentException
:{}

RDS parameter exception

RDS CannotGetConnectionE
xception:{}

RDS failure of connecting to
IoT Hub

RDS SQLException:{} RDS SQL statement exception

Transmit data to RDS,
instance:{},databaseName:{},
tableName:{},from IoT topic:{}

System error System error

Republish topic, from topic:{} to
 target topic:{}

System error System error

Rate limit:{maxQps},current
qps:{}

Restriction violationsRuleEngine receive message
from IoT topic:{}

System error System error

Check payload, payload:{} Payload is not json Illegal JSON format of Payload

Downstream analytics

Downstream analytics are the logs about messages sent from IoT Hub to your device.

You can filter logs by DeviceName, MessageId, execution status, and time range, as shown in the

following figure.

IoT Platform User Guide / 5 Log service

120 Issue: 20181113

Downstream analytics

Note:

Downstream analytics includes the context, causes of failure, and cause descriptions.

Context Cause of failure Cause description

Publish message to topic:{},
protocolMessageId:{}

No authorization No authorization

IoT hub cannot publish
messages

The server keeps sending
messages until QPS reaches
 the threshold of 50, because
 it does not receive puback
packets from the device.

Device cannot receive
messages

The device fails to receive
messages or the server fails to
 send messages possibly due
to the slow network transmissi
on speed, or because the
server QPS has reached its
limit.

Publish message to device,
QoS={}

Rate limit:{maxQps},current
qps:{}

Restriction violations

Publish RRPC message to
device

IoT Hub cannot publish
messages

The device does not respond
 to the server, but the server
 keeps sending messages
until its QPS reaches its limit.
Consequently, the server fails
to send new messages.

IoT Platform User Guide / 5 Log service

Issue: 20181113 121

Response timeout Response timeout

System error System error

RRPC finished {e.g rrpcCode} Printed RRPCCode such
as UNKNOW, TIMEOUT,
OFFLINE and HALFCONN.

Publish offline message to
device

Device cannot receive
messages

The device fails to receive
messages or the server fails to
 send messages possibly due
to the slow network transmissi
on speed, or because the
server QPS has reached its
limit.

	Contents
	Legal disclaimer
	Generic conventions
	1 Accounts and logon
	1.1 Log on to the console using the primary account
	1.2 Resource Access Management (RAM)
	1.2.1 RAM and STS
	1.2.2 Custom permissions
	1.2.3 API permissions
	1.2.4 Use RAM users
	1.2.5 Advanced guide to STS

	2 Create products and devices
	2.1 Create a product (Basic Edition)
	2.2 Create a product (Pro Edition)
	2.3 Create devices
	2.3.1 Create multiple devices at a time
	2.3.2 Create a device

	2.4 TSL
	2.4.1 What is Thing Specification Language (TSL)?
	2.4.2 Define features using TSL
	2.4.3 Import Thing Specification Language (TSL)
	2.4.4 The TSL format

	2.5 Data parsing
	2.6 Virtual devices
	2.7 Topics
	2.7.1 What is a topic?
	2.7.2 System-defined topics
	2.7.3 Create a topic category

	2.8 Tags
	2.9 Gateways and sub-devices
	2.9.1 Gateways and sub-devices
	2.9.2 Sub-device channels
	2.9.3 Sub-device management

	2.10 Service Subscription
	2.10.1 What is Service Subscription?
	2.10.2 Development guide

	2.11 Device group

	3 Rules engine
	3.1 Overview
	3.2 Create and configure a rule
	3.3 SQL statements
	3.4 Functions
	3.5 Data forwarding route
	3.6 Data format in topics
	3.7 Regions and zones
	3.8 Examples
	3.8.1 Forward data to another topic
	3.8.2 Forward data to Table Store
	3.8.3 Forward data to RDS
	3.8.4 Forward data to Function Compute

	4 Extended services
	4.1 Firmware update
	4.2 Remote configuration

	5 Log service

