Alibaba Cloud
loT Platform

User Guide

Issue: 20190311

MORE THAN JusT cLoub | (- AlibabaCloud

Legal disclaimer

Alibaba Cloud reminds you to carefully read and fully understand the terms and
conditions of this legal disclaimer before you read or use this document. If you have
read or used this document, it shall be deemed as your total acceptance of this legal

disclaimer.

1. You shall download and obtain this document from the Alibaba Cloud website
or other Alibaba Cloud-authorized channels, and use this document for your
own legal business activities only. The content of this document is considered
confidential information of Alibaba Cloud. You shall strictly abide by the

confidentiality obligations. No part of this document shall be disclosed or provided
to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted,
or disseminated by any organization, company, or individual in any form or by any
means without the prior written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades
, adjustments, or other reasons. Alibaba Cloud reserves the right to modify
the content of this document without notice and the updated versions of this

document will be occasionally released through Alibaba Cloud-authorized
channels. You shall pay attention to the version changes of this document as they
occur and download and obtain the most up-to-date version of this document from
Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud
products and services. Alibaba Cloud provides the document in the context that
Alibaba Cloud products and services are provided on an "as is", "with all faults
" and "as available" basis. Alibaba Cloud makes every effort to provide relevant
operational guidance based on existing technologies. However, Alibaba Cloud
hereby makes a clear statement that it in no way guarantees the accuracy, integrity
, applicability, and reliability of the content of this document, either explicitly
or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial
losses incurred by any organizations, companies, or individuals arising from
their download, use, or trust in this document. Alibaba Cloud shall not, under any
circumstances, bear responsibility for any indirect, consequential, exemplary,

incidental, special, or punitive damages, including lost profits arising from the use

or trust in this document, even if Alibaba Cloud has been notified of the possibility
of such a loss.

5. By law, all the content of the Alibaba Cloud website, including but not limited to
works, products, images, archives, information, materials, website architecture,
website graphic layout, and webpage design, are intellectual property of Alibaba

Cloud and/or its affiliates. This intellectual property includes, but is not limited
to, trademark rights, patent rights, copyrights, and trade secrets. No part of the
Alibaba Cloud website, product programs, or content shall be used, modified

, reproduced, publicly transmitted, changed, disseminated, distributed, or
published without the prior written consent of Alibaba Cloud and/or its affiliates

. The names owned by Alibaba Cloud shall not be used, published, or reproduced
for marketing, advertising, promotion, or other purposes without the prior written
consent of Alibaba Cloud. The names owned by Alibaba Cloud include, but are
not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other brands of Alibaba
Cloud and/or its affiliates, which appear separately or in combination, as well as
the auxiliary signs and patterns of the preceding brands, or anything similar to
the company names, trade names, trademarks, product or service names, domain
names, patterns, logos, marks, signs, or special descriptions that third parties

identify as Alibaba Cloud and/or its affiliates).

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

IoT Platform User Guide / Legal disclaimer

Issue: 20190311 II1

Generic conventions

Table -1: Style conventions

Style Description Example
This warning information
indicates a situation that will Danger:
cause major system changes, Resetting will result in the loss of
faults, physical injuries, and other | user configuration data.
adverse results.
This warning information
indicates a situation that may . Warning:
cause major system changes, Restarting will cause business
faults, physical injuries, and other | interruption. About 10 minutes are
adverse results. required to restore business.
This indicates warning informatio
n, supplementary instructions, Notice:
and other content that the user Take the necessary precautions
must understand. to save exported data containing

sensitive information.

This indicates supplemental
instructions, best practices, tips, Note:
and other content that is good to | You can use Ctrl + A to select all
know for the user. files.

> Multi-level menu cascade. Settings > Network > Set network

type

Bold It is used for buttons, menus Click OK.
, page names, and other Ul
elements.

Courier |Itis used for commands. Runthe cd / d C :/ windows
font command to enter the Windows
system folder.

Italics |Itisused for parameters and bae log list --
variables. instanceid Instance_ID

[] or [a|b] |Itindicates that it is a optional ipconfig [-all|-t]
value, and only one item can be
selected.

Style

Description

Example

{} or {a|b}

It indicates that it is a required
value, and only one item can be
selected.

swich {stand | slave}

IoT Platform User Guide / Generic conventions

Issue: 20190311 II1

Contents

Legal diSClaimer......cc.cvuiiuiiuiiiiiiiiiiiieie e ceeeeeneeneeeneenns I
GeneriC CONVENTIONS.oviuuiiuiiuiiniiiiriirieiieeeeeereareaseaesenes I
1 Create products and devicCes.......ccccceeereneiniieiierencineeeeneennnns 1
1.1 Create a product (BasiC Edition)........ccuueerrieuiiriiuiiriiniiiiiiinieenireenneeennnes 1

1.2 Create a product (Pro Edition).......cccuueriuuirieniriiniriiniriiniriinieeenerenereneecnnnees 3

1.3 Create deVICES.....cuuuiiiuiiiniiiiiiiiieiiirteertueetuertaneseeeeseaastanesennsesnsssenssennns 6

1.3.1 Create multiple devices at @ time........cccceeeverrinriinireenireneeenneeennnnnns 7

1.3.2 Create @ deVICe.....ceeuuiiuuiiieniiiiiiiiiiiriiiiriiieeeiretae et et sennesannesennens 8

B 1 PR 9

1.4.1 OVETVIOW...uiiiuiiiiiiiiiiiiiiniiiiiinieeeetaieeetenesetansesesanseseesnsessesnsssesnnsesns 10

1.4.2 Define features........cvvevuueriiinniriiiieereiieeeeiieererenerereneeseenneeseennneenes 11

1.4.3 Import Thing Specification Language (TSL).......cccceeervrunerreennnennnne. 25

1.4.4 The TSL fOrmat......ccccvuueiriruueerieunerreeueeereeneeereneereeeneeeeensseesennssseens 26

1.5 DAta PATSING..ceuuiiinniiiniiiniiiiieriiietitrtue et etaaereaneseanseanserasersssssnssssnsssees 29

1.0 TOPICS . cuutiuniiniinirtieiieteeueeestasenesenesenseneesssnsssssssnssensssnssensssnsssnsssssssnssnns 39

1.6.1 What iS @ tOPIC?..ceuuiieiiiiiiiiiiriiiitiietie st et reneesennesennesenneees 40

1.6.2 Create a tOPIC CALEZOTY..c.uuiiuuiiiuniiinniriniiriinirtenertinireenerernreeneeeeneees 42

R TN 44

1.8 Gateways and SUD-AeVICeS........cccuuiriuiiiuiiiiiiiiiriiiriiirceeecee e eeaaeee 47

1.8.1 Gateways and SUD-deViCes........c.ceriiuuiriiuniiriieniriiiireeieeeeeneeeens 48

1.8.2 Sub-device channels..........ccceeriuiiiniiiiiiiiiiiiriiiiricreereeerceeseeeees 49

1.8.3 Sub-device management.........cc.ceceueiiiniiiiniiiiniiiiiiiiie e 51

1.9 Service SUDSCIIPION....ccuiiiiiiiiiiiiiiiiiieitieeetie et etaneeeraesennesenneseenssennes 53

1.9.1 What is Service Subscription?.........ccccoeevuuiiiiiiniiiiinniiiiieniiniinnnnene. 53

1.9.2 Development gUide.........coevuueiiriiuirriiuiiriiiiireenererniereeeneseeennenees 54

1.9.3 LIS cuuuiieniinniriineririereunerteneeerneeenneeeneesensesenssssnssssnsssenssssnsesenssssnns 62

1.10 DEVICE GIOUP..ccuuieuniriuniriuniriunietnertuerennertanertenerenneseenssssnsensssssnssssnssasnnss 63

2 RUIES...iuiiiiiiiiiiiiiiiin e e e 67
2.1 Data FOrwarding.........cueeiueiiiuiiiuiriniriiirenereeerenertneerennesennessansssnnsssnnses 67

2.1.1 OVEIVIEW.ceuuiiuniiiuiiiiuniiiiirtunertenrtenttenseraserssesnsesnsserssssnssssnssssnns 67

2.1.2 Create and configure a rule.........cccuceeiuiiiniiiiiiiiiiirieiirieerieeeeenenens 68

2.1.3 SQL Statements.ccceuiuiiieiiuiireiiniinreiiieiresiiseersessessnsessasssssssssnses 74

2.1.4 FUNCHONS...ccuuiiuiiiiiiiiiiiiiiiiiiiitinetinrein et een s eenserasesnssssnssssnnens 79

2.1.5 Data forwarding proCedure...........ccceuueeereennerreenneeeeenneereeeneeeeenneaees 82

2.1.6 Data format (Pro Edition).......cccueeueeinieiieiiiiieiieeeeeeneeneenceneenenneennns 83

2.1.7 RegIiONS AN ZOMNES.....ccuueriruirinnerinnerienerernereenereeneseenessenssensssenssssnnes 90

2.2 Data Forwarding EXamples........cccuueriiuiiiiiiiiiniiiiiiiiiiiriiiriieneeierenneeeeenennes 91

2.2.1 Forward data to another tOPiC........ceerieuueiriinniiriiiiiriiieireeieeeeenee. 91

2.2.2 Forward data to Table Store..........cccceevvuuiiiiiniiiiiniiiiiiniiiiincneenna. 92

2.2.3 Forward data to ApsaraDB for RDS........ccccucerriiueirirnncereenncerennnennens 95

2.2.4 Forward data to MesSage ServiCe.......ccceeevruuiriiunniieieniriienireeennnes 98

2.2.5 Forward data to Function Compute.........cccceeueiriuirinirinnirienirennnnns 104

3 Monitoring and Maintenance.......c...cccoceevencreniiiniinniinniennnen. 111
3.1 ONline debuUG....c..iiuniiiniiiiiiiiiiiiiet ettt e s e s eaee 111

3.1.1 Online debugging........cc.eeeviuuiiiimniiiiiiiiiiiiiereiee e eeeaees 111

3.1.2 Debug applications using virtual devices.........cccceceuerevniriencrennnnen. 112

3.2 DEVICE 10Z..uceuniiiniiiiiiiiiiiiiii ettt et st s eee st s ere s et s eaa s ee s enaes 115

3.3 FIrmware UPAate........cceurieueriiuriiniiinieieiereieeennereenereeneseenssennessensssnnsesens 138

3.4 Remote CONIGUIALION. ...cc..vrerunereiriieeretineeretnneerereneeeereneeeeenneseennssssesnsenees 144

4 General ProtoColS......ccviuieriniiuiiiiriiieieereeeereereeeneeesennns 151
4.1 OVETVICW..uituuiiiniiiineriuertenereueeenneseesessssssssssssnsssenssssssssssssssnsssssssssnnsssnnsses 151

4.2 Develop Core SDK....cc.ciiiuiiiiuiiiiiiiiiiiiiiiiiiirtie st senesenieseanesenaesennenes 155

4.3 Server SDK......couviiuiiiiiuiiiiiiiiiiiiiiiiii e s aa 162

4.3.1 Interfaces fOr UDP........ccccuuuerierunerrernnerreenneerereneereenneseeensssnnnnsnees 162

4.3.2 INterfaces fOr TCP......ccceuueirieuneireineeriieeereeniererenereeeneeseennsesennnnes 166

4.3.3 Server SDK......cccoiiiiuiiiiiiiiiiiiiiiiiiiiicic e 170

O RRPC .. aiiiiiiiiiiiiiiiiiiiiiiiitnitttetattessesasnsessssssnsessssssnses 173
5.1 What iS RRPC?...ciuuiiiiiriiuiriiniritieetnretnereenesesneeesnssensssssnssessssssnssssnsssennnns 173

5.2 System-defined tOPICS......ccuuvuuummmuuiiiiiiiiiiiiiiiiiiiiiiiii e 174

5.3 CUSLOM TOPICS. . tiuuiiinniiiiiiriiiiriiniritnirttretee ettt rtaeeteeetanestanesesnesennssssnesens 175

6 Device ShadOWS......ccueieiiiiiiiiiiiiiiiiiriiriicerereeeeereeeneenees 177
6.1 Device ShadOWS.......coiuuiiiiiiiiiiiiiiiiiiiir st cae s eaaee 177

6.2 Device Shadow JSON fOrmaAt......ccvvuveeuienieienieienieieieereneenereeneencesencencenes 178

6.3 Device shadow data Stream.........cocueevienirieniriiniiiieriiiiniiieeieereneeeneeeennens 181

7 Accounts and 10ZOMN.......cceeviuiiuiiiiiiiiniiiirenecreereeeeenrennenns 189
7.1 Log on to the console using the primary account............ccceeveeennireiennnnees 189

7.2 Resource Access Management (RAM).....cceeriuniiiunirinnirinniriinireenereenieeennnens 190

7.2.1 RAM and STS.....cooiiiuuiiiiiiiiiiiiiiniiiiiiiin et ctennis e eeeeanneees 190

7.2.2 CuStOm PeTrMiSSIONS....ccuuuiiiirriiiiiiiiiiiiiiiitiiretinereeraseeeaneeeeraness 193

7.2.3 API PeIrmiSSIONS....cvuuiiuniiiniiiiiniriiiirtiireeneretiieetneetasereseenssranesens 200

7.2.4 USE RAM USEIS...cuuiuuiiniiniiuiiiiiiiiiiiiiiiiiiiieiiitieieieenteneeseesteasemenneens 204

7.2.5 Advanced guide to STS....c..coiuuiriiuiiiiiriiiiiiiniiereiereee e eeaeeeaes 207

IoT Platform User Guide / Contents

VI Issue: 20190311

1 Create products and devices

This topic describes how to create and manage products and devices in the console.

1.1 Create a product (Basic Edition)

The first step when you start using IoT Platform is to create products. A product is a
collection of devices that typically have the same features. For example, a product can

refer to a product model and a device is then a specific device of the product model.
Context

IoT Platform supports two editions of products: Basic Edition and Pro Edition. This

article introduces how to create a Basic Edition product.
Procedure

1. Log on to the /oT Platform console.

2. In the left-side navigation pane, click Devices > Product, and then click Create

Product.

3. Select Basic Edition and click Next.

IoT Platform Products
Data Overview All(48) B
Create Product / Step 1: Select a version
Quick Start
Product List Refresh Create Product
- -
. . Pro Edition
Device I] Basic Edition ;‘7 (recommended)
Group Product Namy Created At Actions
Edge Management 2018-11-09
logtest 12:01:15
Rules
o . 2018-11-02
Applications DEHETS 15:07:49
Data Analysis
streamlLA I S R— . ?313%'121&02
Extended Services :

Documentation -10-
dmtest Pro Edition alchPgziwix Gateway 0 f?g;‘é &

http://iot.console.aliyun.com/

4. Enter required information and click OK.

Create Product / Step

2: Specify product details.

* Mode Type
o Device Gatewsa
+ Authenticate with 1D2:

fes s No

Eradict Necrrint
LR e D':El.- (il

f1i]
[
o

The parameters are described as follows:

Parameter

Description

Product Name

The name of the product that you want to create. The
product name must be unique within the account. For
example, you can enter the product model as the product
name. A product name is 4 to 30 characters in length, and
can contain English letters, digits and underscores.

Node Type

Options are Device and Gateway.

Device :Indicates that devices of this product cannot
be mounted with sub-devices. This kind of devices can
connect to IoT Platform directly or as sub-devices of
gateway devices.

Gateway :Indicates that devices of this product
connect to IoT Platform directly and can be mounted
with sub-devices . A gateway can manage sub-devices,
maintain topological relationships with sub-devices, and
synchronize topological relationships to IoT Platform.

For more information about gateway devices and sub-
devices, see Gateways and sub-devices.

Parameter Description

Product Descriptio | Describe the product information. You can enter up to 100
n characters.

Result

After the product is created successfully, you are automatically redirected to the

Products page. You can then view or edit the product information.

1.2 Create a product (Pro Edition)

The first step when you start using IoT Platform is to create products. A product is a
collection of devices that typically have the same features. For example, a product can

refer to a product model and a device is then a specific device of the product model.

Context

IoT Platform supports two editions of products: Basic Edition and Pro Edition. This

topic describes how to create Pro Edition products in the IoT Platform console.
Procedure
1. Log on to the IoT Platform console.

2. In the left-side navigation pane, click Devices > Product, and then click Create

Product.

3. Select Pro Edition and click Next.

Data Qverview All(48) Basic Edition(14) Pro Edition{34)
Quick Start
= . Create Preduct | Step 1: Select a version.
Device
- -
Product Nam " " Pro Edition Created At Actions
Group lI‘ Basic Edition ? {recommendad)
Edge Management 2018-11-09
¢ ° g 12:01:15
Rules
o o N 2018-11-02
Applications LT ETS 15:07-49
Data Analysis
2018-11-02
streamLA 2
Extended Services Edition Comparison Cancel m 14:36:26
Documentation _10-;
dmtest Pro Edition atchPaziw Gateway 0 2018-10-29

11:53:58

o 2018-10-15
dataparse Pro Edition a1KXUDEIRTI Device 0 11:20:38

http://iot.console.aliyun.com/

4. Enter all the required information and then click OK.

The parameters are as follows.

Parameter

Description

Product Name

The name of the product that you want to create. The
product name must be unique within the account. For
example, you can enter the product model as the product
name. A product name is 4 to 30 characters in length, and
can contain Chinese characters, English letters, digits, and
underscores. A Chinese character counts as two.

Node Type

- Device: Indicates that devices of this product cannot
be mounted with sub-devices. This kind of device can
connect to IoT Platform directly or as a sub-device of a
gateway device.

- Gateway: Indicates that devices of this product connect
to IoT Platform directly and can be mounted with
sub-devices . A gateway can manage sub-devices,
maintain topological relationships with sub-devices, and
synchronize topological relationships to IoT Platform.

For more information about gateway devices and sub-
devices, see Gateways and sub-devices.

Connect to
Gateway

Note:
This parameter
appears if the
node type is
Device.

Indicates whether or not devices of this product can be
connected to gateways as sub-devices.

- Yes: Devices of this product can be connected to a
gateway. If you select Yes here, you are required to select a
gateway connection protocol under Network Connection
and Data.

- No: Devices of this product cannot be connected to a
gateway. If you select No here, you are required to select a
network connection method under Network Connection
and Data.

Parameter

Description

Gateway
Connection
Protocol

Note:
This parameter
appears if you
select Yes for

Select a protocol for sub-device and gateway
communication.

- Custom: Indicates that you want to use another protocol
as the connection protocol for sub-device and gateway
communication.
- Modbus: Indicates that the communication protocol
between sub-devices and gateways is Modbus.
- OPC UA: Indicates that the communication protocol

This parameter
appears if you
select No for
Connect to
Gateway.

e between sub-devices and gateways is OPC UA.
Gateway . . .1 ..
- ZigBee: indicates that the communication protocol
between sub-devices and gateways is ZigBee.
- BLE: indicates that the communication protocol between
sub-devices and gateways is BLE.
Network Select a network connection method for the devices:
Connection . WiFi
Method . Cellular (2g/3g/4G)
_ - Ethernet
Note: . Other

Data Type

Select a format in which devices exchange data with IoT
Platform. Options are ICA Standard Data Format (Alink

JSON) and Do not parse/Custom.

- ICA Standard Data Format (Alink JSON): The standard
data format defined by IoT Platform for device and IoT
Platform communication.

- Do not parse/Custom: If you want to customize the
serial data format, select Do not parse/Custom. Custom
formatted data must be converted to Alink JSON script by
Data parsingso that your devices can communicate with the
IoT Platform.

n

Product Descriptio

Describe the product information. You can enter up to 100
characters.

After the product is created successfully, you are automatically redirected to the

Products page.

What's next

1. To configure features for a product (such as Notifications, TSL (Define Feature), and

Service Subscription), go to the product list, find the target product and then click its

corresponding View button.

2. Register devices on 10T Platform.

3. Develop your physical devices by referring to Developer Guide (Devices).

4. To publish a product, go to the product details page and click Publish.

IoT Platiorm s+ Product Details
test2 | Pro Edition |
Devices —
1TKWE4Qi3Mz Cop
Product atkWE4OI3M;
Device Infor on
Group
Product Information
Rules
Extended Services test2 Device o
Maintenance
’ Pro Edition Water Meter
Documentation
Disabled e Sho
Developing No

Tag Information

Product Tag:No tags, Add

10/21/2018, 20°45:34

JCA Standard Data Fermat (Alink JSON)

Note that before you publish a product, you must make sure that you have

configured all the correct information for the product, have completed debugging

the features, and have verified that it meets the criteria for being published.

When the product status is Published, you can view the product information but

cannot modify or delete the product.

Quick Start All(44
Devices

Product Product List

Device I |

Group —
Edge Management Product Name Product Version ProductKey Node Type Total Devices
Rules dataparse Pro Edition alKXUDEIRTI Device o]
Applications
Data Analysis 1008test3 Pro Edition a156886CYYw Device 0
Extended Services

1008test2 Pro Edition alYeweSbpVW Device o]

Documentation

To cancel the publishing of a product, click Cancel Publishing.

1.3 Create devices

Refresh Create Product

Created At Actions
2018-10-15
11:20:38

2018-10-08
19:29:45

2018-10-08
19:22:07

1.3.1 Create multiple devices at a time
A product is a collection of devices. After you create products, you can create specific
devices for the product models. You can create one device or multiple devices at a

time. This topic explains how to create multiple devices at a time.

Procedure

1. Log on to the IoT Platform console.

2. In the left-side navigation pane, click Devices > Device, and then click Batch Add.

3. Select a product that you have created. The devices to be created will be assigned

with the features of the selected product.

4. Select how the devices are to be named. Two methods:

- Auto Generate: You do not specify names for the devices that you want to create.
You only specify the number of devices, and the system automatically generates
names for the devices.

- Batch Upload: You specify a name for each device you want to create. Under
Upload File, click Download .csv Template to download the naming template.
Enter device names in the template table and save the file. Then, click Upload

File to upload the naming file.

Note:

- Device names must be 4-32 characters in length, and can contain English letters
, digits, hyphens, underscores, @ symbols, dots, and colons.

- Each device name must be unique in the product.

- A file can include up to 1,000 names.

- The size of the file cannot exceed 2 MB.

loT Platform Devices

Total Devices: « Activate Device = Online

Refresh
- 88 80 4

Quick Start
Devices
Product Device List Batch Management

Device

Group

Batch Add Devices

Device List . Batch Add

Rules

Maintenance

Documentation

testD307 * Bl wplead e Device « Online @D —
Upload File
testD306 Device «» Online @) —

FUMIZOMAGY7SmVDCOK4K o | Device « Offine @D gg’lfﬁ:ﬁ:w

5. Click OK to start batch device creation.

http://iot.console.aliyun.com/

6. After the devices are successfully created, click Download Device Certificate to

download the file containing the information of created devices.

Result

On the Batch Management tab page of Devices page, you can:

- Click View Details to view the detailed information of the devices.

- Click Download CSV to download the certificates of the devices.

1.3.2 Create a device

A product is a collection of devices. After you have created products, you can create

devices of the product models. You can create one device or multiple devices ata

time. This article introduces how to create a single device.

Procedure

1. Log on to the /oT Platform console.

2. In the left-side navigation pane, click Devices > Device, and then click Add Device

3. Select a product that you have created. The device to be created will be assigned

with the features of the selected product.

4. (Optional) Enter a name for the device. If you do not enter a device name for the

device, the system will automatically generate one for the device.

Note:

A DeviceName (device name) must be unique within a product. Itis used as a

device identifier when the device communicates with IoT Platform.

loT Plaiform

Quick Start
Devices
Product
Group
Rules
Maintenance

Documentation

Devices

Total Devices: » Activate Device = Online

Al 88 80 4

Device List Batch Management

Device List

Note: When the deviceName is left blank, Alibaba Cloud will
assign a GUID as the deviceName.

tesi0307 Device

tesi0306 Device

uMIZpMACY7SmVDCOK4K Cancel Device

« Online @D

« Online @D

« Offine @D

Refresh

0211412019,
22:15:50

5. Click OK to create the device.

After the device has been successfully created, the View Device Certificate box

is displayed. There, you can view and copy the device certificate information.

A device certificate is the authentication certificate of a device when the device

http://iot.console.aliyun.com/

is communicating with IoT Platform. It contains three key fields: ProductKey,

DeviceName, and DeviceSecret.

- ProductKey: The globally unique identifier issued by IoT Platform for a product.

- DeviceName: The identifier of a device. It must be unique within a product and

is used for device authentication and message communication.

- DeviceSecret: The secret key issued by IoT Platform for a device. It is used for

authentication encryption and must be used in pairs with the DeviceName.

YWiew Device Ceriificate

@ Device cerfificate is used to authenticate devices connecting to the
plaitform. Keep it in a safe place.

TEST Copy

drdkd kA

]
=]
s}
[1#]

6. On the device list page, find the device and click View. On the Device Details page,

you can view the information of this device.

On the Device Details page, click Test to text the network latency for the device.

10T Platform Devices » Device Details

TEST
Quick Start

test0306 View
Devices
Topic List Status Events nvoke Service Device Log
Product

Device
Device Information
Group
testD306 Productiey

Rules

Maintenance Device TEST Cop

Documentation

Inactive

03/08/2019, 10:27:36

Tag Information

Device Tag:No tags,Ad

China (Shanghai)

1.4 TSL

1.4.1 Overview
Thing Specification Language (TSL) is a data model that digitizes a physical entity and
constructs the entity data model in IoT Platform. In IoT Platform, a TSL model refers
to a set of product features. After you have defined features for a product, the system
automatically generates a TSL model of the product. A TSL model describes what a

product is, what the product can do, and what services the product can provide.

A TSL model is a file in JSON format. TSL files are the digitized expressions of physical
entities, such as sensors, vehicle-mounted devices, buildings and factories. A TSL file
describes an entity in three dimensions: property (what the entity is), service (what
the entity can do), and event (what event information the entity reports). Defining

these three dimensions is to define the product features.

Therefore, the feature types of a product are Properties, Services and Events. You can

define these three types of features in the console or by using APIs.

Feature type Description

Property Describes a running status of a device, such as the current
temperature read by the environmental monitoring equipment
. You can use GET and SET methods to send requests to get and
set device properties.

Service Indicates a feature or method of a device that can be used by a

user. You can set input parameters and output parameters for
a service. Compared with properties, services can implement
more complex business logic, for example, a specific task.

Event Indicates the notifications of a type of event occurred when a
device is running. Events typically indicate notifications that
require actions or attention, and they may contain multiple
output parameters. For example, events can be notifications
about the completion of tasks, system failures, or temperature
alerts. You can subscribe to events or push events to a message
receiving target.

Use TSL

1. In the IoT Platform console, Define features or Import Thing Specification Language (TSL).
2. Develop the SDK. See the documentations of Link Kit SDK for help information.

3. Connect the SDK to IoT Platform. Then, devices can report properties and events to

IoT Platform, and in IoT Platform, you can set properties and call device services.

https://www.alibabacloud.com/help/product/93051.htm

1.4.2 Define features
Defining features for products is to define Thing Specification Language (TSL),
including defining properties, services, and events. This article describes how to
define features in the IoT Platform console.

Procedure
1. Log on to the IoT Platform console.
2. In the left-side navigation pane, click Devices > Product.

3. On the Products page, find the product for which you want to define features and

click View.

4. Click Define Feature.

http://iot.console.aliyun.com/

. Add self-defined features. Click the Add Feature button corresponding to Self-
defined Feature to add custom features for the product. You can define properties,

services and events for the product.

loT Platform Products > Product Details

tesIProsduet] MIE06 | Pro Edition | m
Quick Start

a Cop i Sho 10 Manage
Devicas a

Device

Sl Self-Defined Feature

Import TSL View TSL m

Rules
Maintenance

Documentation

Propert.... intPropertyName intProperty int32 Value Range:0 ~ 100 Edit .
Edit

Propert... floatPropertyName floatProperty float Value Range:0 ~ 100 Delete

Propert doublePropertyName doubleProperty double Value Range:0 ~ 100 ‘f

Define a property. In the Add Self-defined Feature dialog box, select Properties

as the feature type. Enter information for the property and then clickOK.

¥ Feature Type

* Feature Mame

current

% [dentifier

Current

+ Data Type

int32

¥ Value Range:

=
H

[T

(=)

*
[#p]
D
L]

—

Read/Write Type:
i ReadWrite - Read-only

Description :

Mo

The parameters of properties are listed in the following table.

Parameter

Description

The function
name

Property name, for example, Power Consumption. Each
feature name must be unique in the product.

A feature name must start with a Chinese character, an English
letter, or a digit, can contain Chinese characters, English
letters, digits, dashes(-) and underscores (_), and cannot
exceed 30 characters in length.

Parameter

Description

Identifier

Identifies a property. It must be unique in the product. It is
the parameter -identifier in Alink JSON TSL, and is used
as the key when a device is reporting data of this property.
Specifically, IoT Platform uses this parameter to verify and
determine whether or not to receive the data. An identifier
can contain English letters, digits, and underscores (_),

and cannot exceed 50 characters in length. For example,
PowerConsumption.

Note:
An identifier cannot be any one of the following words: set,
get, post, time, and value, because they are system parameter
names.

Parameter

Description

Data Type

int32 :32-bit integer. If you select int32, you are required
to define the value range, step, and unit.

float : Float. If you select float, you are required to define
the value range, step, and unit.

double :Double float. If you select double, you are
required to define the value range, step, and unit.

enum : Enumeration. You must specify enumeration items
with values and descriptions. For example,1 indicates
heating mode and 2 indicates cooling mode.

bool :Boolean. You must specify the Boolean values.
Values include 0 and 1. For example, you can use 0 to
indicate disabled and 1 to indicate enabled.

text :Text string. You must specify the data length. The
maximum value is 2048 bytes.

date :Timestamp. A UTC timestamp in string type, in
milliseconds.

struct :AJSON structure. Define a JSON structure, and
add new JSON parameters. For example, you can define
that the color of a lamp is a structure composed of three
parameters: red, green, and blue. Structure nesting is not
supported.

array : Array. You must select a data type for the elements
in the array from int32, float, double, text and struct.
Make sure that the data type of elements in an array is the
same and that the length of the array does not exceed 128
elements.

Note:

When the gateway connection protocol is Modbus, you do not
set this parameter.

Step

The smallest granularity of changes of properties, events, and
input and output parameter values of services. If the data type
is int32, float, or double, step is required.

Unit

You can select None or a unit suitable.

Parameter Description
Read/Write - Read / Write :GET and SET methods are supported for
Type Read/Write requests.
- Read - only :Only GET is supported for Read-only
requests.
il

=] Note:

When the gateway connection protocol is Modbus, you do not

set this parameter.
Description Enter a description or remarks about the property. You can

enter up to 100 characters.

Parameter

Description

Extended
Information

When the gateway connection protocol is Modbus or OPC UA,
you can configure extended parameters.

- When the gateway connection protocol is Modbus,

configure the following parameters.

B Operation Type:

B Coil Status (read-only, 01)
M Coil Status (read and write, 01-read, 05-write)
B Coil Status (read and write, 01-read, OF-write)
B Discrete Input (read-only, 02)
B Holding Registers (read-only, 03)
B Holding Registers (read and write, 03-read, 06-write)
B Holding Registers (read and write, 03-read, 10-write)
B Input Registers (read-only, 04)

B Register Address: Enter a hexadecimal address beginning
with 0x. The range is 0x0 - OXFFFF. For example, OxFE.

B Original Data Type: Multiple data types are supported,
including int16, uint16, int32, uint32, int64, uint64, float,
double, string, bool, and customized data (raw data).

B Switch High Byte and Low Byte in Register: Swap the first
8 bits and the last 8 bits of the 16-bit data in the register.
Options:

B true
B false

B Switch Register Bits Sequence: Swap the bits of the
original 32-bit data. Options:
B true
B false

B Zoom Factor: The zoom factor is set to 1 by default. It can
be set to negative numbers, but cannot be set to 0.

B Collection Interval: The time interval of data collection. It

is in milliseconds and the value cannot be lower than 10.
B Data Report: The trigger of data report. It can be either
At Specific Time or Report Changes .
- When the gateway connection protocol is OPC UA, set a
node name. Each node name must be unique under the

property.

- Define a service. In the Add Self-defined Feature dialog box, select Services as

the feature type. Enter information for the service and then click OK.

Note:

When the gateway connection protocol is Modbus, you cannot define any

service for the product.

¥ Feature Type:

| Properties - Events |

¥ Feature Name:

switch

* |dentifier:
Switch

% [nvoke Method::
@) Asynchronous Synchronous

Input Parameters:

+ Add Parameter

Qutput Parameters:

+ Add Parameter

Description :

m Cancel

The parameters of services are as follows.

Parameter

Description

The function
name

Service name.

A feature name must start with an English letter, Chinese
character, or a number. It can contain English letters, Chinese
characters, digits, dashes (-), and underscores (_), and cannot
exceed 30 characters in length.

If you have selected a category with feature template when you
were creating the product, the system displays the standard
services from the standard feature library for you to choose.

Note:
When the gateway connection protocol is Modbus, you
cannot define custom services for the product.

Identifier

Identifies a service. It must be unique within the product.

The parameter -identifier in Alink JSON TSL. Itis used as
the key when this service is called. An identifier can contain
English letters, digits, and underscores (_), and cannot exceed
30 characters in length.

Note:
Identifiers of input parameters cannot be any one of the
following words: set, get, post, time, and value.

Invoke
Method

- Asynchrono us :For an asynchronous call, IoT Platform
returns the result directly after the request is sent, and does
not wait for a response from the device.

- Synchronou s :For asynchronous call, IoT Platform
waits for a response from the device. If no response is
received, the call times out.

Parameter Description

Input (Optional) Set input parameters for the service.
Parameters Click Add Parameter, and add an input parameter in the dialog
box that appears.

When the gateway connection protocol is OPC UA, you must
set the parameter index that is used to mark the order of the
parameters.

Note:

- Identifiers of input parameters cannot be any one of the
following words: set, get, post, time, and value.
- You can either use a property as an input parameter
or define an input parameter. For example, you can
specify the properties Sprinkling Interval and
Sprinkling Amount as the input parameters of the
Automatic Sprinkler service feature. Then, when
Automatic Sprinkler is called, the sprinkler automatically
starts irrigation according to the sprinkling interval and
amount.
- You can add up to 20 input parameters for a service.

Output (Optional) Set output parameters for the service.
Parameters Click Add Parameter, and add an output parameter in the
dialog box that appears.

When the gateway connection protocol is OPC UA, you must
set the parameter index that is used to mark the order of the
parameters.

Note:

- Identifiers of input parameters cannot be any one of the
following words: set, get, post, time, and value.

- You can either use a property as an output parameter or
define an output parameter. For example, you can specify
the property SoilHumidi ty asan output parameter.
Then, when the service Automatic Sprinkler is called, IoT
Platform returns the data about soil humidity.

- You can add up to 20 output parameters for a service.

Extended When the gateway connection protocol is OPC UA, set a node
Information |name. Each node name must be unique under the service.

Parameter Description

Description Enter a description or remarks about the service. You can
enter up to 100 characters.

- Define an event. In the Add Self-defined Feature dialog box, select Events as the

feature type. Enter information for the parameter and then click OK.

Note:

for the product.

When the gateway connection protocol is Modbus, you cannot define any event

* Feature Mame
Alarm

+ |dentifier:
dentifier:

Alarm

* Event Type:
® Info) Alert) Error
Cutput Parameters

O
P

o
&

()] AMme-
p= L) =

L

[uh]

-

Fie]

Description :

The parameters of events are as follows
Parameter

Description
The function

Event name.
name

A feature name must start with a Chinese character, an English
letter, or a digit, can contain Chinese characters, English

letters, digits, dashes(-) and underscores (_), and cannot
exceed 30 characters in length.

[% Note:

When the gateway connection protocol is Modbus, you
cannot define events.

Parameter

Description

Identifier

Identifies an event. It must be unique in the product. It is the
parameter identifier in Alink JSON TSL, and is used as the
key when a device is reporting data of this event, for example,
ErrorCode.

Note:
Identifiers of input parameters cannot be any one of the
following words: set, get, post, time, and value.

Event Type

- Info :Indicates general notifications reported by devices,
such as the completion of a specific task.

- Alert :Indicates alerts that are reported by devices when
unexpected or abnormal events occur. It has a high priority.
You can perform logic processing or analytics depending on
the event type.

- Error :Indicates errors that are reported by devices when

unexpected or abnormal events occur. It has a high priority.
You can perform logic processing or analytics depending on
the event type.

Output
Parameters

The output parameters of an event. Click Add Parameter, and
add an output parameter in the dialog box that appears. You
can either use a property as an output parameter or define an
output parameter. For example, you can specify the property

Voltage asan output parameter. Then, devices report errors
with the current voltage value for further fault diagnosis.
When the gateway connection protocol is OPC UA, you must
set the parameter index that is used to mark the order of the
parameters.

Note:

- Identifiers of input parameters cannot be any one of the
following words: set, get, post, time, and value.

- You can add up to 20 output parameters for an event.

Extended
Information

When the gateway collection protocol is OPC UA, set a node
name. Each node name must be unique under the event.

Description

Enter a description or remarks about the event. You can enter
up to 100 characters.

1.4.3 Import Thing Specification Language (TSL)
This article introduces how to import an existing TSL for a product.
Procedure
1. Log on to the /oT Platform console.
2. In the left-side navigation pane, click Devices > Product.

3. On the Products page, find the product for which you want to import TSL and click

View.

4. Click Define Feature > Import TSL.

Note:

- The previously defined features of the product will be overwritten, once you
have imported a new TSL for the product. Therefore, this function must be used
with caution.

- You cannot import a TSL for a product whose gateway connection protocol is

defined as Modbus.

loT Platform Producis > Product Details

test00001 | Pro Edition
Data Overview m

ProduciKey : alelLpo2yCl Copy ProductSecret : === Show Total Devices:1 Manage
Quick Start

Product Informaticn Notificati
Standard Feature e Import TSL || View TSL
Device
Group Featurs FrrolEE Note: The features of the imported TSL will cover the previo Data Data Definition Actions
ype us features ype
Edge Management
Rules
Applications
Data Analysis
Extended Services
Documentation
Cancel
Self-Defined Feature
Fealue Feature Name dentifier e Data Definition Actions
ype ype

You can import TSL in two ways:

- Copy Product: Copy the TSL of another product. Select an existing product and
click OK to import the TSL of the selected product to this product.

If you want to modify some features, click Edit corresponding to the features on
the Define Feature tab page.
- Import TSL: Paste your self-defined TSL script into the edit box and click OK.

http://iot.console.aliyun.com/

1.4.4 The TSL format
The format of Thing Specification Language (TSL) is JSON. This article introduces the

JSON fields of TSL.
In the Define Feature tab of your target Pro Edition product, click View TSL.

The following section details each JSON field.

{
" schema ":" TSL schema of a thing ",
" link ":" System - level URI in the cloud , used to
invoke services and subscribe to events ",
" profile ":{
" productKey ":" Product ID ",
s
" properties ":[
" qdentifier ":" Identifies a property . It must
be unique under a product ",
" name ":" Property name ",
" accessMode ":" Read / write type of properties ,
including Read - Only and Read / Write ",
" required ":" Determines whether a property

that is required in the standard category is also
required for a standard feature ",
" dataType ":{

" type ":" Data type : 1dint (original), float (
original), double (original), text (original), date (UTC
string in millisecon ds), bool (integer , 0 or 1),
enum (integer), struct (supports int , float , double ,
text , date , and bool), array (supports int , double ,

float , and text)",

" specs ":{
" min ":" Minimum value , available only
for the int , float , and double data types ",
" max ":" Maximum value , available only
for the int , float , and double data types ",
" unit ":" Property unit ",
" unitName ":" Unit name ",
" size ":" Array size , up to 128
elements , available only for the array data type ",
" Htem ":{
" type ":" Type of an array element "
}
}
}
1,
" events ":[

" ddentifier ":" Identifies an event that is
unique under a product , where " post " are property
events reported by default ",

" name ":" Event name ",

" desc ":" Event descriptio n ",

" type ":" Event types , dincluding info , alert ,
and error ",

" required ":" Whether the event is required for

a standard feature ",
" outputData ":[

" ddentifier ":" Uniquely identifies a
parameter ",

" name ":" Parameter name ",

" dataType ":{

" type ":" Data type int (original),
float (original), double (original), text (original),
date (UTC string 1in millisecon ds), bool (integer , ©

or 1), enum (integer), struct (supports int , float ,
double , text , date , and bool), array (supports int ,
double , float , and text)",

" specs ":{

" min ":" Minimum value , available
only for the int , float , and double data types ",

" max ":" Maximum value , available
only for the int , float , and double data types ",

" unit ":" Property unit ",

" unitName ":" Unit name ",

" size ":" Array size , up to 128
elements , available only for the array data type ",
" Htem ":{

" type ":" Type of an array
element "
}
}
}
}
1,
" method ":" Name of the method to invoke the
event , generated according to the identifier "

1,
" services ":[

" ddentifier ":" Identifies a service that is
unique under a product (set and get are default
services generated according to the read / write type
of the property)",

" name ":" Service name ",

" desc ":" Service descriptio n ",

" required ":" Whether the service is required
for a standard feature ",

" dnputData ":[

{
" ddentifier ":" Uniquely identifies an
input parameter ",
" name ":" Name of an input parameter ",
" dataType ":{

" type ":" Data type int (original),
float (original), double (original), text (original),
date (UTC string in millisecon ds), bool (integer , 0

or 1), enum (integer), struct (supports int , float ,
double , text , date , and bool), array (supports int ,
double , float , and text)",

" specs ":{

" min ":" Minimum value , available
only for the int , float , and double data types ",

" max ":" Maximum value , available
only for the int , float , and double data types ",

" unit ":" Property unit ",

" unitName ":" Unit name ",

" size ":" Array size , up to 128
elements , available only for the array data type ",

" Htem ":{

" type ":" Type of an array
element "
}
}
}
}
1,
" outputData ":[
{
" Hddentifier ":" Uniquely identifies an
output parameter ",
" name ":" Name of an output parameter ",
" dataType ":{

" type ":" Data type int (original),
float (original), double (original), text (original),
date (UTC string 1in millisecon ds), bool (integer , ©

or 1), enum (integer), struct (supports int , float ,
double , text , date , and bool), array (supports int ,
double , float , and text)",

" specs ":{

" min ":" Minimum value , available
only for the int , float , and double data types ",

" max ":" Maximum value , available
only for the int , float , and double data types ",

" unit ":" Property unit ",

" unitName ":" Unit name ",

" size ":" Array size , up to 128
elements , available only for the array data type ",
" Htem ":{

" type ":" Type of an array
element , available only for the array data type "
}
}
}
}

1,

" method ":" Name of the method to invoke
the service , which is generated according to the
identifier

}
1
}

If the product is connected to a gateway as a sub-device and the connection protocol

is Modbus or OPC UA, you can view the TSL extension configuration.

{
" profile ": {
" productKey ": " Product ip ",
s
" properties ": [
" ddentifier ": " Identifies a property .
under a product ",
" operateTyp e ": "(coilStatus / 1inputStatu
inputRegis ter)",
" registerAd dress ": " Register address ",
" originalDa taType ": {
" type ": " Data type : 1intl6 , uintlée , i
, uinté4 , float , double , string ,
hex data according to big - endian)

" specs ": {

customized

It must be unique
s / holdingReg dister /
nt32 , uint32 , 1int64

data (returns

n
J

" registerCo unt ": " The number of registers , available
only for string and customized data ",

" swapl6e ": " swap the first 8 bits and the last 8
bits of the 16 bits of the register data (for
example , bytelbyte2 -> byte2bytel 0). Available for all

the other data types except string and customized

data ",

" reverseReg ister ": " Ex : Swap the bits of the original
32 bits data (for example , bytelbyte2 byte3byte4 ->

byte3byte4 bytelbyte2 ”. Available for all the other data

types except string and customized data "

)

" scaling ": " Scaling factor ",
" pollingTim e ": " Polling interval . The unit is ms ",
" trigger ": " The trigger of data report . Currently ,

two types of triggering methods are supported : 1 :

report at the specified time ; 2 : report when changes

occurred "
}
]

}

1.5 Data parsing
When you create a product on the IoT Platform console, if you select Do not parse/
Custom as the data type, you can write a script in the IoT Platform console to parse

the original data into Alink JSON format.
What is data parsing?

Data parsing is a method that allows devices with limited storage space or bandwidth
to avoid directly sending data to IoT Platform in Alink JSON format. Instead, devices
pass original data to the cloud, whereby a script is run to convert the data into Alink
JSON format. To allow devices to pass original data to the cloud, select Do not
parse / Custom asthe data type when creating the product, and then write a
JavaScript file to parse the data. IoT Platform provides an online editor for you to edit

and debug your data parsing script.

Data parsing process:

Cloud

[AlinkJSON

rawDataToProtocol T l protocolToRawData
H Data Parsing Engine
Upstream data: 100 100 Downstream data:
Device publishes messages using the topic: 010 010 Device subscribesto the topic:
fup_raw /down_raw

Using the data parsing script editor, you can:

- Edit your JavaScript data parsing file online.

- Save content as a draft, edit the draft, or delete it.

- Debug your script using analog data. You can enter upstream or downstream
analog data, and run the script to check whether it works.

- Perform static syntax check (JavaScript syntax).

- Submit a verified script to the running platform for device data parsing.
Edit a script online

On the product details page, click Data Parsing and then enter your data parsing

script in the edit box. Currently, only JavaScript is supported.

IoT Platform Products 2 Product Details

dataparse
Quick Start
alKXUDEIRT]

Devices
Pradic Product Informatio Notifications De
Device

Data Parsing

Group
® Edit data pa

i e B e
Edge status, clitk SUBMIT’ 0 pUBIish the script. The script FIE canno

matically be parsed as Alink JSON. You can conduct script simulations and debugging. Once the script has been running in stable
n szt

Management
e Edit Script
Applications
Data Analysis
Extended
Services

Documentation

st e s T — cen | Parsing Results "R

Analog Input Enter the dats and execute the simulatio

Simulation Type Upstreamed Device Data

Save Draft Submit

- Click Full Screen to view or edit a script in full screen. Click Exit Full Screen to exit

the full screen mode.

Edit Script

var COMMAND_REPORT =
var COMMAND_SET =
var ALINK_PROI

sontap[4
ar params = {}
ams o

en.getintlé(s);
uintBarray[7];
aataview.getFlost32(s);
params;

return jsonMas;

function protocolTcRawData(json) {
json[‘metnod’];

- Click Save Draft at the bottom of the page to save the content you have edited.

When you access the data parsing page next time, the system will prompt a

notification saying that you have a draft. You can then choose to Restore Edit or

Delete Draft.

- When saved, a draft script is not published to the running parsing platform, and

does not affect a currently published script.

- A new draft will overwrite any previously saved draft.

ducts > Product Details

dataparse [Fro zano m

Data Parsing

© After you have writen & data parsing script, a device that reports binary data will automaicaly calths script o parse the data o be reported o Alink JSON format. You can simulate, run, and debug the scrpt. After you have confimed that the
script runs properly, click Submit to publish it. The maximum size of a script file is 48 KB. For more information, see Docur

lete draft

’ The specified script you are viewing is an online operational version. This script was saved on 11/08/2018, 11:17:10 , drafts are not used for data parsing, you can select from drafis to

Edit Script Parsing Results

dv.setInt32(e i v

Analog Input Upstreamed Device Data

Save Draft

Verify the script using analog data

After the script is edited, you can enter analog data in the Analog Input box and click
Running. The system will call this script to parse the analog data and the parsed
result will be displayed in the Parsing Results box at the right side of the page. If

the script is not correct, the message Failed to Run will be displayed next to Parsing
Results, and an error message will be display in the box with information that you can

use to to correct the script.
Parse upstream analog data

Select Upstreamed Device Data asthesimulation type, enter the device's
binary data which is to be passed through, and click Running. The system will convert
the binary data to Alink JSON format, and the results are displayed in a box at the
right side of the page.

Products > Product Details

dataparse | =

otal Devices:0 Manage

Data Parsing

© After you have written a data parsing script, a device that reports binary data will automatically call this script to parse the data to be reported to Alink JSON format. You can simulate, run, and debug the script. After you have confirmed that the script
runs properly, click Submit to publish it. The maximum size of a script file is 48 KB. For more information, see Documentation

Parsing Resuits » Run is Success.

Edit Script s

av.seTuIntE(e, value); a
return [].slice.call(uintsarray);

int16(value) {
ay = new Uint8Array(2);
taView(uint8Array buffer, 8);

)5
11(uint8Array);

return []

int32(value) {

var uint8Array = new UintSArray(4);

= new DataView(uintsArray.buffer, 0);

.setlnt32(e, value); v

Simulation Type Upstreamed Device Data

Analog Input Enter the data and execute the s

i1 0x00002233441232013F200000)

Parse downstream analog data

Select Receive Device Data ,enter Alink JSON formatted data, and click
Running. The system will convert the ALink JSON data to binary data, and the results
are displayed in a box at the right side of the page.

Products > Product Details

dataparse | =

£ o s Shom

Data Pa

Data Parsing

© After you have written a data parsing script, a device that reports binary data will automatically call this script 1o parse the data to be reported to Alink JSON format. You can simulate, run, and debug the script. After you have confirmed that the script
runs properiy, click Submit to publish t. The maximum size of a script file is 48 KB. For more information, see Documentation

Edit Seript Parsing Results = Run is Su

"px2160003039214d

av.setuants(y, value);
return [].slice.call(uint8Array); -

int16(value) {
ray = new Uint8Array(2);
new DataView(uintBArray.buffer,);
av.setIntis(o, value);
return []. call(uint8Arrey);

- function bu
var uin = new UintBArray(4);
new DataView(uint8Array.buffer, 8);

var
av.setInt32(e, value);

Analog Input Enter the data and execute the s [1 mulation Type Received Device Data

"t 1} }

float": 123.452, "prop_intl6": 333, "

{ "metnod”: "thing.service.property.set”, "id": "12345", "version”: "1.8",

Submit the script

In order to guarantee that submitted scripts are correct and run properly, only scripts

that have passed parsing test can be submitted to the running platform. After a script

is submitted, the system will automatically use it to convert the upstream data and

downstream data of devices.

Products > Product Details

dataparse | #ro Edition @ The script has been submitied m

co S 0 Manage

Data Parsing

Data Parsing

© After you have written a data parsing script, a device that reports binary data will automatically call this script to parse mE data to be reported to Alink JSON format. You can simulate, run, and debug the script. After you have confirmed that the script
runs properly, click Submit to publish it. The maximum size of a script file is 48 KB. For more information, see Document;

Edit Seript Parsing Resuits

0010000393991 44014
lvar COMMAND_REPO
var COMMAND_SET
var ALTNK_PROP_REPORT_METHOD = 't
var ALTNK_PROP_SET_METHOD = 'thir

Analog Input Received Device Data

4 "method": "thing.service.property.set”, "id": "12345", "version": "1.6", "params": { "prop_float": 123.452, "prop_int16": 333, "prop_bool": 1} }

E] Note:

A script must successfully parse analog data at least once before you can submit it.

Development framework

Overview
The following two methods must be defined in a script:

protocolTo RawData :Convert Alink JSON format data to binary data.

rawDataToP rotocol :Convert binary data to Alink JSON format data.
Language
Currently, only JavaScript that meets ECMAScript 5.1 is supported.
Define the methods
Convert Alink JSON formatted data to binary data:

// Parses Alink JSON format data sent by the server
and converts it to binary data
function protocolTo RawData (jsonObj){
return rawdata ;

Parameter description: Input parameters (jsonObj) match with the Alink JSON
format data in the TSL of the product.

{
" method ": " thing . service . property . set ",
n -id n : n 12345 n .
" version ": "1 .0 ",
" params ": {
" prop_float ": 123 . 452 ,
" prop_intle ": 333 ,
" prop_bool ": 1
}

Returned parameter: A binary byte array. For example:
Ox01000030 39014d0142 fee76d

- Convert binary data to Alink JSON format data:

// Parses binary data sent by a device and converts
it to Alink JSON format data
function rawDataToP rotocol (rawData)({
return jsonObj

Parameter description: Input parameter (rawData) is a binary byte array, for

example,

0x00002233 441232013f aG0000

Returned parameters: Data matches with the Alink JSON format data in the TSL of

the product.
{

" method ": " thing . event . property . post ",

"oqd ": " 2241348 ",

" params ": {
" prop_float ": 1 . 25 ,
" prop_intle ": 4658 ,
" prop_bool ": 1

)
" version ": "1 . 0"

Script demo

1. Create a product and define features for the product.

a. Create a Pro Edition product and select Do

data type.

not parse / Custom asthe

b. Define features (such as properties, services, and events) for the product. In this

demo, the following three properties are defined:

Identifier Data type
prop_float float
prop_intl6 int32
prop_bool bool
2. Serial port protocol example.
Frame type ID prop_intl6 prop_bool prop_float
One byte. Request Two bytes. One byte. Four bytes.
sequence
0 - upstream; 1 b Property value |Property value |Property value
number.
- downstream. of prop_intl6. |of prop_bool. |of prop_float.

3. Copy the script demo codes.

Copy and paste the following demo codes into the script edit box:

var COMMAND_RE PORT = 0x00 ;
var COMMAND_SE T = 0x01 ;
var ALINK_PROP _REPORT_ME THOD = ' thing . event . property .
post '; // A standard ALink JSON formatted topic for
devices to upload property data to the cloud
var ALINK_PROP _SET_METHO D = ' thing . service . property .
set '; // A standard AL1ink JSON formatted topic for
the cloud to send property management commands to
devices .
/*
Sample data
Input parameters ->
Ox00002233 441232013f a00000
Output parameters ->
{" method ":" thing . event . property . post "," id ":" 2241348
n
b
" params ":{" prop_float ": 1 . 25 ," prop_intle ": 4658 ,"
prop_bool ": 1 },
" version ":" 1 . 0 "}
*/
function rawDataToP rotocol (bytes) {

var uint8Array = new Uint8Array (bytes . length);

for (var i = 0 3; i < bytes . length ; i ++) {
uint8Array [i] = bytes [i] & Oxff ;
}
var dataView = new DataView (uint8Array . buffer , 0);
var jsonMap = new Object ();

var fHead uint8Array [0]; // command
if (fHead = COMMAND_RE PORT) {
jsonMap [' method '] = ALINK_PROP _REPORT_ME THOD ; //
ALink JSON formatted topic for reporting properties

jsonMap [' version '] = ' 1 .0 '; // Protocol version
in ALink JSON format

jsonMap [' id '] = '' + dataView . getInt32 (1); // The

request ID value in ALink JSON format

var params = {};

params [' prop_intle '] = dataView . getIntle (5); //
The property of prop_intl6 of the product

params [' prop_bool '] = wuint8Array [7]1; // The

property of prop_bool
params [' prop_float '] = dataView . getFloat32 (8); //
The property of prop_float .

jsonMap [' params '] = params ; // Standard fields of
params in ALink JSON format
}
return jsonMap ;

}
/*
Sample data
Input parameters ->

{" method ":" thing . service . property . set "," +id ":" 1234
"," version ":" 1 . 0 "," params ":{" prop_float ": 123 . 452 , "

prop_intl6e ": 333 , " prop_bool ": 1 }}
Output parameters ->
0x01000030 39014d0142 fee76d

*/
function protocolTo RawData (json) {

var method = json [' method '];
var id = json [' id '];
var version = json [' version '];
var payloadArr ay = [];
if (method == ALINK_PROP _SET_METHO D) // Property

settings
{

var params = Jjson [' params '];

var prop_float params [' prop_float

var prop_intl6 params [' prop_intlé6

var prop_bool = params [' prop_bool '];

// Raw data connected according to the custom
protocol format

‘15
l];

payloadArr ay = payloadArr ay . concat (buffer_uin t8
(COMMAND_SE T)); // command field

payloadArr ay = payloadArr ay . concat (buffer_int 32
(parseInt (id))); // 1ID in ALink JSON format

payloadArr ay = payloadArr ay . concat (buffer_int 16
(prop_intl6)); // The value of property ' prop_intl6e '

payloadArr ay = payloadArr ay . concat (buffer_uin t8
(prop_bool)); // The value of property ' prop_bool '

payloadArr ay = payloadArr ay . concat (buffer_flo
at32 (prop_float)); // The value of property ' prop_float
1

}

return payloadArr ay ;
}

// The followings are the auxiliary functions

function buffer_uin t8 (value) {

buffer

var uint8Array = new Uint8Array (1);
var dv = new DataView (uint8Array
dv setUint8 (@ , value);

return

}

[]. slice . call (uint8Array);

function buffer_int 16 (value) {

buffer

var uint8Array = new Uint8Array (2);
var dv = new DataView (uint8Array
dv setIntle (© , value);

return []. slice . call (uint8Array);

}

function buffer_int 32 (value) {

buffer

var uint8Array = new Uint8Array (4);
var dv = new DataView (uint8Array
dv setInt32 (© , value);

return []. slice . call (uint8Array);

}

function buffer_flo at32 (value) {

buffer

var uint8Array = new Uint8Array (4);
var dv = new DataView (uint8Array
dv setFloat32 (0 , value);

return []. slice . call (uint8Array);

}

4. Verify the script using analog data

- Parse analog upstream data

Select

0x00002233 441232013f

0);

0);

0);

0);

Upstreamed Device Data and enter the following data:

anoeooo

click Running, and then view the outputs:

{

}

- Select

method ": " thing . event

id ": " 2241348 ",
params ": {
" prop_float ": 1
" prop_intle ": 4658
" prop_bool ": 1

)
version ": "1 ., 0 "

Received Device Data ,and enter the following data:

25

b

b

method ": " thing . service
id ": " 12345 ",
version ": " 1 . 0 ",
params ": {
" prop_float ": 123 452
" prop_intle ": 333 ,

" prop_bool ": 1

property

property

b

post ",

set ",

click Running, and then view the output:

0x01000030 39014d0142 fee76d

Appendix: Method for debugging scripts written in a local computer

Currently, IoT Platform Data Parsing does not support debugging on the running
platform. Therefore, we recommend that you directly paste the finished script into

the online editor and then test it. The following is example output of the test method.

// Test Demo
function Test ()

// 0x00123201 3fa00000
var rawdata_re port_prop = new Buffer ([
Ox00 , // Fixed command header , 0 indicates
reporting property
Ox00 , 0Ox22 , 0Ox33 , 0Ox44 , // Identify the request
sequence correspond 1ing to the ID fields .
Ox12 , 0Ox32 , // Two - byte value in intlé ,
correspond 1ing to the property of prop_intl6
Ox01 , // One - byte value in bool , correspond ing
to the property of prop_bool
ox3f , 0Oxa® , Ox00 , Ox00 // Four - byte value in
float , correspond -ng to the property of prop_float
1)

rawDataToP rotocol (rawdata_re port_prop);

var setString = new String ('{" method ":" thing . service
. property . set "," did ":" 12345 "," version ":" 1 . O "," params
":{" prop_float ": 123 . 452 , " prop_intl6e ": 333 , " prop_bool ": 1
)
protocolTo RawData (JSON . parse (setString));
Test ();
1.6 Topics

The cloud and devices communicate with each other in IoT Platform through topics.

The device reports messages to a specified topic and subscribes to messages from the

topic. IoT Platform sends commands to topics, and subscribes to specific topics to

obtain device information.

1.6.1 What s a topic?

Servers and devices communicate with each other in IoT Platform through topics.

Topics are associated with devices, and topic categories are associated with products.

What is a topic category?

To simplify authorization operations and facilitate communication between devices
and IoT Platform, topic categories were introduced. When you create a product, IoT
Platform will create a default topic category for the product. In addition, when you
create a device, the topic category will be automatically assigned to the device. You do

not need to authorize each individual device to publish or subscribe to a topic.

Figure 1-1: The process of automatically creating a topic

———— ADefine a to

- opic cateqan,
.-"H ’ gr‘u“-..
l‘" -'N_‘_
'_r' ~eel
S
‘_"‘\
Product ~
\\.
LY
LY
5
N
Z. assign the device information . .
—| devicel [===== tothe topic category bbbl Topic category : fproductKey/${deviceMame}fuser/update
o -
the ::=l topic 'r.-_‘
device?2 -l Topic : jproductkey/devicel fuser update I—
| Topic : /productiey/device2 fuserfupdate I_

When you create a product, IoT Platform automatically creates standard topic
categories for the product. You can view all topic categories of the product on the

Topic Categories tab page.
Description of topic categories:
- A topic category is a set of topics within the same product. For example, the topic
category /${ productKey }/${ deviceName }/ update isa collection of the

specific topics: /${ productKey }/ devicel / update and /${ productKey }/

device2 / update .

- The topic category must use a forward slash (/) to delimit the topic hierarchy.

Two of the category levels are reserved: ${ productKey } represents the product
identifier, and ${ deviceName } represents the device name.

- Each category level can only contain letters, numbers, and underscores (_). Topic
category levels cannot be left empty.

- Operations available for devices: Publish indicate that the device can publish
messages to a topic. Subscribe indicates that the device can subscribe to messages
of a topic.

- ToT Platform Basic supports customized topic categories. Customizing topic
categories allows for flexible communication to suit your business needs.
Customizing topic categories and modifying category level names is not supported

in IoT Platform Pro.

- The system-defined topic categories are pre-defined by IoT Platform Pro, do not
support customization, and do not begin with /${ productKey }. For example, in
IoT Platform Pro, topic categories provided for the Thing Special Language (TSL)
begin with / sys /, topic categories provided for firmware upgrades begin with /

ota /, and topic categories provided for device shadows begin with / shadow /.
What is a topic?

A topic category is used for topic definition rather than communication. A topic is

used for communication.

- Topics and topic categories use the same format. The difference is that in a topic
category, the ${ deviceName } isavariable, butin a topic it represents a specific
device name.

- A topic is automatically derived from the device name and the topic category of the
product. A topic contains a device name (deviceName), which can only be used
in Pub/Sub communication. For example, the topic /${ productKey }/ devicel

/ update is owned by the device with name devicel . Therefore, you can only
publish or subscribe to messages to this topic for the device with name devicel
, and cannot use it for device with name device2 to publish or subscribe to

messages.

- When you configure the rules engine, the topic that you configure can contain one

wildcard character.

Table 1-1: Wildcard characters in a topic

Wildcard character

Description

#

Must be the last character in the topic, and works as a

wildcard by matching all topics in the current tree and all

sub-trees of the topic hierarchy. For example, the topic /
productKey / devicel /# canrepresent/ productKey
/ devicel / update and productKey / devicel /

update / error .

Matches all topics in the current tree of the topic hierarchy.

For example, the topic / productKey /+/ update can

represent /${ productKey }/ devicel / update and /${
productKey }/ device2 / update .

1.6.2 Create a topic category

This article introduces how to create a topic category for a product. Topic categories

will be automatically assigned to devices of the product.

Procedure

1. Log on to the /oT Platform console.

2. In the left-side navigation pane, click Devices > Product

3. On the Products page, find the product for which you want to create a topic

category, and click View in the operation column.

4. On the Product Details page, click Topic Categories > Create Topic Category.

https://iot.console.aliyun.com

5. Define a topic category.

1oT Platform Products > Product Details

test1128 | Pro Edition Create Topic Categos
ok st (FroEdten] pc oo =

Produ a1jnoQasrGY Copy Total Devices:2 Manage
Devices

ro formation Topic C: e Topic Rule:
Device

Product Topic List Create Topic Categol
Rules Topic Category Description
Data Analysis ithor

IsysiaijhoQasrGY/${deviceNamel/thing/event Report Device Properties

Edge Management

IsysfaljhoQasrGY/B{deviceName}fthing/servic Set Device Properties

Applications
Extended Services IsysiatjhoQasrGY/S{deviceName}ithinglevent Report Device Events
Services _
IsysiaijhoQasrGY/${deviceNamel/thing/servic Description = Invoke Device Service
Maintenance
Bt i o fsysfaljhoQasrGY/§{deviceName}fthingidevic Report Device Tag

fatjhoQasrGY/${deviceName}/useniupdate

fa1jhoQasrGY/${deviceName}/user/updatelen

faljhoQasrGY/${deviceNamelfuseriget

Device Operation Authorizations: Indicates the operations that devices can
perform on the topics of this topic category. You can select from Publish,
Subscribe, and Publish and Subscribe.

Topic Category: Enter a custom topic category name according to the Topic

Rule on the page.
Description: Describes the topic category. You can leave this box empty.
6. Click OK.

Wildcard characters in topic categories

When you create topic categories, you can use wildcards. For more information about

wildcards, see What is a topic? Supported wildcards:

#: Includes the category level you enter and all lower levels in topics.

+: Includes only one category level in topics, and not lower levels.

O
|:| Note:
When you want to create topic categories with wildcards, note that:
Only topics with Device Operation Authorizat dons as Subscripti
on support wildcards.
can only be at the end of topics.

For topics with wildcard characters, you cannot click Publish to publish messages

on the Topic List tab page of devices.

1.7 Tags

A tag is a custom identifier you set for a product, a device, or a device group. You can

use tags to flexibly manage your products, devices and groups.

IoT often involves the management of a huge number of products and devices.

How to distinguish various products and devices, and how to achieve centralized
management become a challenge. Alibaba Cloud IoT Platform allows you to use tags
to address these issues. The use of tags allows the centralized management of your

various products, devices, and groups.

Therefore, we recommend that you create tags for your products, devices and device

groups. The structure of atagis key : value .

This article describes how to create product tags, device tags, and group tags in the

console.

Note:

Each product, device, or group can have up to 100 tags.
Product tags

Product tags typically describe the information that is common to all devices of a
product. For example, a tag can indicate a specific manufacturer, organization,
physical size, or operating system. After a product has been created, you can create

tags for it.
To create product tags in the console, follow these steps:

1. Log on to the /oT Platform console.

2. In the left-side navigation pane, click Devices > Product.
3. On the Products page, find the product for which you want to create tags and click

View.
4. Click Add under Tag Information.

5. In the dialog box, enter values for Tag Key and Tag Value , and then click

OK.
Parameter Description
Tag Key A tag key can contain English letters,

digits and dots (.), and cannot exceed 30
characters.

https://iot.console.aliyun.com/

Parameter Description

Tag Value A tag value can contain Chinese
characters, English letters, digits,
underscores (_), hyphens (-) and dots
(.), and cannot exceed 128 characters.
A Chinese character is counted as two

characters.
IoT Platform Products » Product Details
test1128 | Pro Edition
Quick Start ‘ m
) Productkey : a1noQasrGY Copy i otal Devices:2 Manage
Devices
Proouct Information ~ Topic Categories Define Feature Service Des Oniine D
Device
Product Informati
Group roduct Information m
Rules Product Name testi128 +Add Tag Created At 112972018, 16:34:37

Data Analysis

Product Version Pro Edition Product Tag Data Type ICA Standard Data Format (Alink JSON)

Edge Management Oy
Dynamic Registration Disabled

Applications
Gateway Connection

Status =« Developing Pratocol

Extended Services Custom

Services Product Description Cancel
Maintenance

Documentation
Tag Information

Product Tag:No tags|

Device tags

You can facilitate device management by creating unique tags for devices. For
example, you can use the device feature information as tags, such as PowerMeter :

room201 for the electricity meter of room 201.

Device tags always follow the devices. You can include tag information in the
messages reported to [oT Platform by devices. When you use the rules engine to
forward these messages to other Alibaba Cloud services, the tag information is also

forwarded to the targets.
To create device tags in the console, follow these steps:

1. Log on to the IoT Platform console.
2. In the left-side navigation pane, click Devices > Device.

3. On the Devices page, find the device for which you want to create tags, click View to

go to the Device Details page.
4. Click Add under Tag Information.

https://iot.console.aliyun.com/

5. In the dialog box, enter values for Tag Key and Tag Value ,and then click

OK.

Parameter Description

Tag Key A tag key can contain English letters
, digits, and dots (.), and can be 2-30
characters in length.

Tag Value A tag value can contain Chinese
characters, English letters, digits,
underscores (_), hyphens (-) and dots
(.), and cannot exceed 128 characters
. A Chinese character is counted as 2
characters.

pi_sound
Data Overview
Product : SOUND_D1 View ProductKey : alvvipx2Usp Copy DeviceSecret : ™**** Show
Quick Start
Device Information Topic List Events nvoke Service Siatus Device Log
Product Add Device Tag
Device Information
Tam Product Name SOUNC Geographic LocationTag Region China East 2 (Shanghai)
Edge Management Node Type Device DeviceSecret =™ Show
Rules Current Status Inactive el Firmware Version
tag test
Applications Created At 11612 Last Online
Data Analysis L
Extended Services
Documentation Tag Information Gancel
Device Tag:No taggAdd
Group tags

You can manage devices across products by grouping your devices. A group tag
typically describe the general information of devices in the group and the sub-groups
. For example, you can use region information as a group tag. After you have created a

group, you can create tags for it.
To create group tags, follow these steps:

1. Log on to the /oT Platform console.

2. In the left-side navigation pane, click Devices > Group.

3. On the Group Management page, find the group for which you want to create tags

and click View.

4. Click Add under Tag Information.

https://iot.console.aliyun.com/

5. In the dialog box, enter values for Tag

Key and Tag Value ,and then click

OK.
Parameter Description
Tag Key A tag key can contain English letters
, digits, and dots (.), and can be 2-30
characters in length.
Tag Value A tag value can contain Chinese

characters, English letters, digits

, underscores (_) and hyphens (-),
and cannot exceed 128 characters.
A Chinese character is counted as 2
characters.

10T Platform
test11

Data Overview

Quick Start

Devices

Product

Device List

Device Group Information

Edge Management

Group Name test11
Total Devices: 1
Rules

10/24/2018, 17:47:57
Applications

Data Analysis betested

Exiended Services

Doctmentation Tag Information

Group Tag:No tags.

Manage tags in batch

ZOEIGF5aqcOthBtW Cop

Subgroups

Group Leve

1 1

Group ID ZOEIGF5aqcOthBtW Copy

£ 1 Online 1

In the console, you only can create, modify, and delete tags one by one. IoT Platform

provides APIs for managing tags in batch. In addition, IoT Platform provides APIs for

querying products, devices, and groups based on tags. For more information about

tag related APIs, see the documents in API reference.

1.8 Gateways and sub-devices

1.8.1 Gateways and sub-devices
IoT Platform allows devices to connect to it directly, or be mounted as sub-devices to

gateways that connect to IoT Platform.
Gateways and devices

When you create a product, you must select a node type for the devices of the

product. Currently, IoT Platform supports two node types, Device and Gateway .

- Device: Devices of this node type cannot be mounted with sub-devices, but can be
connected directly to the IoT Platform or be mounted as sub-devices to gateways.
- Gateway: Devices of this node type can connect to IoT Platform directly and can
be mounted with sub-devices. Gateways are then used to manage sub-devices
, maintain topological relationships with sub-devices, and synchronize these

topological relationships to IoT Platform.

The topological relationship between a gateway and its sub-devices is shown in the

following figure:

Device VEEEEEEESSEEN

Topological relationship

L 4

IoT Hub

Gateway 4

Connect gateways and sub-devices to loT Platform

Once a gateway has been connected to IoT Platform, the gateway will synchroniz
e its topological relationships with its sub-devices to IoT Platform. A gateway

supports device authentication, message reporting, instruction receiving, and other

communications with IoT Platform for all its sub-devices. That is, sub-devices are

managed by their corresponding gateway.

1. For more information about how to connect gateways to IoT Platform, see Link Kit

SDK.

2. You can connect sub-devices to IoT Platform using either of the following two

methods:

- The Unique-certificate-per-device authentication method. This method requires you
to install the device certificates (namely, the ProductKey, DeviceName, and
DeviceSecret) in the physical sub-devices, and then connect the sub-devices to
IoT Platform.

- The Unique-certificate-per-product authentication method. This method requires you to
enable Dynamic Registration on the product details page and register devices in
the IoT Platform console. Then, when a physical sub-device is being connected,
the gateway will initiate a connection request to IoT Platform for the sub-device.
IoT Platform then verifies the sub-device information. If the verification passes,
IoT Platform will assign the DeviceSecret to the sub-device. The sub-device then
receives all the required information (namely, the ProductKey, DeviceName, and

DeviceSecret) to successfully connect to IoT Platform.

1.8.2 Sub-device channels
You can create sub-device channels for Pro Edition gateway devices. Gateway devices
can then use the management channels to manage sub-devices. Currently, IoT
Platform supports three kinds of channels: Modbus protocol channels, OPC UA

protocol channels, and custom protocol channels.

1. In the left-side navigation pane, click Devices > Device.

2. On the Devices page, find the gateway device for which you want to create

channels, and click View next to it. You are directed to the Device Details page.

https://www.alibabacloud.com/help/product/93051.htm
https://www.alibabacloud.com/help/product/93051.htm

3. Click Sub-device Channels and then create sub-device management channels

according to your required protocol.

IoT Platform Device Details

test001_device
Data Overview
test001 View
Quick Start

Device Information Topic Li
Sub-device Channels

OPC UA Custom

ist Events Invoke Service Status Device Log Sub-device Management Sub-device Channels

Refresh Create Modbus Channel

Edge Management ‘ Search

Rules
Applications

Data Analysis
Extended Services

Document tation

- Modbus

In the Modbus tab, c

Transmission Mode Sub-devices Under Channel Actions

Total 0 ltems n 10

lick Create Modbus Channel and enter the required

information in the dialog box.

Parameter

Description-

Channel Name

The channel identifier. It must be unique in the gateway
device.

Transmission Supports RTU and TCP.

Mode

If you select RTU as the transmission mode, you must set the following

parameters:

Select Serial Port |For example, /dev/tty0 or /dev/ttyl.

Baud Rate Select a value from the drop-down list.

Data Bit Supports the following data bit values: 5, 6, 7, and 8.

Check Bit Supports no parity check, odd parity check, and even
parity check.

Stop Bit Support the following stop bit values: 1, 1.5, and 2.

If you select the transmission mode as TCP, you must set the following

parameters:

IP Address Enter an IP address in dot-decimal notation.

Parameter Description-

Port Number Enter an integer in the range of 0-65535.

- OPC UA

Click OPC UA > Create OCP UA Channel, and enter the required information in

the dialog box.
Parameter Description
Channel Name The channel name must be unique in the gateway device.
Connection For example, opc.tcp://localhost:4840
Address
User Name An optional parameter.
Password An optional parameter.
Function Call In seconds.
Timeout
- Custom

a. Click Custom > Create Customized Channel.
b. Enter a channel name in the dialog box.

c. Enter your customized configuration content.

Note:
The configuration content must be in JSON format. We recommend that you

prepare the JSON content in advance, and paste it in the box.

1.8.3 Sub-device management
You can add sub-devices to a gateway device and send the TSL and the extended

service information of the product (to which the sub-device belongs) to the gateway.
Prerequisites

- If the gateway connection protocol of a device is Modbus or OPC UA, before you
connect the device to a gateway, you must create a corresponding sub-device
channel for the gateway. For information about how to create sub-device channels
, see the documentation about sub-device channels.

- Products and devices created before September 4, 2018 can be added to gateways
as sub-devices. You can then build their topological relationships, but you cannot

use sub-device channels or other custom configurations.

Procedure
1. In the left-side navigation pane, click Devices > Device .

2. On the Devices page, find the gateway device for which you want to add sub-devices

and click View corresponding to it. You are directed to the Device Details page.

3. Click Sub-device Management > Add Sub-device.

IoT Platform Devices > Device Details

test001_device
Data Overview
test001 Vie
Quick Start

Device Information Topic List Events Invoke Service Status Device Log

Sub-device Management(0)

t Sub-device Channels

‘ Search ‘ Refresh Add Sub-device
Group —

EduciMapacement DeviceName Product N;pd: State/Enabled Last Online Actions

Rules

Applications

Data Analysis

Extended Services Total 0 Items n 10

Document tation

4. Enter the information of the sub-device in the dialog box.

Parameter Description

Product Select the name of the product for which the sub-device
belongs.

Device Select the name of the device that you want to add as a sub-
device.

If the gateway connection protocol of the sub-device is Modbus, the following
parameters are required.

Associated Select a channel for the sub-device from the sub-device
Channel channels that you have created.

Slave Station Enter an integer in the range of 1 - 247.

Number

If the gateway connection protocol of the sub-device is OPC UA, the following
parameters are required.

Associated Select a channel for the sub-device from the sub-device
Channel channels that you have created.
Node Path Enter a node path. For example, Objects/Devicel. In this

example, Objects is a fixed root node, and Devicel is the
name of the device node path. Use / to separate node names.

If the gateway connection protocol of the sub-device is a custom protocol, you can
set the following parameters.

Parameter Description
Associated Optional. Select a channel for the sub-device from the sub-
Channel device channels that you have created.

Custom Configurat
ion

If you have selected an associated channel, you must
customize the configuration. The custom configuration must
be in JSON format.

5. After you have added sub-devices to a gateway, go back to the details page of the

gateway device and click Send Configuration Data to assign the TSLs and extended

service information of the products (to which the sub-devices belong) and the

gateway connection configurations to the gateway.

Devices
IoT Platform

Data Overview

Quick Start

Devices

Product

Device List

Device

Group

Total Devices Activate Device Online

59 18 6

Batch Add

Node

Edge Management DeviceName Product . State/Enabled Last Online Actions

Rules

mqg_test1129_01 mg_test1129 Device Inactive —

Applications

Data Analysis

est00001 gatewaytest001 Gateway Inactive — I:I
Extended Services

6. On the details page of the sub-device, you can view the gateway device

information. Click Edit to modify the configuration information.

What's next

- If you want to develop your own devices and assign the configurations between the

gateway device and the sub-device to the device client, see Alink protocol.

1.9 Service Subscription

1.9.1 What is Service Subscription?

Service clients can directly subscribe to device upload and status messages of

products.

Currently, IoT Platform pushes messages through HTTP/2. After you configure the

service subscription, IoT Platform pushes messages to your service client through

HTTP/2. This means that you can use HTTP/2 SDKs to allow your enterprise server

to directly receive messages from IoT Platform. HTTP/2 SDKs provide identity
authentication, topic subscription, message sending and message receiving capabiliti
es, and can be used to enable communication between devices and IoT Hub.
Specifically, HTTP/2 SDKs allow you to transfer large numbers of messages between
IoT Platform and your enterprise server, and support communication between

devices and IoT Platform.

MQTT
Device 1
HTTP/2 Client Server
) MaTT
Device 2 loT Platform HTTP/2 SDK
Note:

If you are using an old version of IoT Platform and Message Service is being used to
transfer messages, you can upgrade your service subscription method to HTTP/2. If
you want to continue using Message Service as your message transferring service,
IoT Platform will push messages to Message Service, which means your clients must

listen to your queues in Message Service in order to receive messages.

1.9.2 Development guide
This article introduces how to configure the service subscription, connect to the

HTTP/2 SDK, authenticate identity, and configure the message-receiving interface.

Specifically, this section details the development process of the service subscription.

For more information, see SDK demo.

Configure service subscription

1. Log on to the /oT Platform console.

2. In the left-side navigation pane, click Devices > Product.

3. In the product list, find the product for which you want to configure the service
subscription and click View. You are directed to the Product Details page.

4. Click Service Subscription > Set Now.

http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/java-http2-sdk-demo/http2-server-side-demo.zip
https://iot.console.aliyun.com/product/region/cn-shanghai

. Select the types of notifications that you want to push to the SDK.

IoT Platform Products > Product Details

gatewaytest001 | Pro Edition Publish
Quick Start e

Productey : alpxmy8eD2G Copy

Devices

Device .
_ L Configure Service Subscription 5
Service Subscription User Guide E
Group

Rules

e Service Subscription

Data Analysis
Edge Management

Applications

Extended Services

Maintenance

Documentation

- Device Upstream Notification: Indicates the messages of the topics to which devices

are allowed to publish messages. If this notification type is selected, the HTTP/2

SDK can receive messages reported by devices.

Pro Edition devices report custom data and TSL data of properties, events,
responses to property setting requests, and responses to service calling requests

. Basic Edition devices only report custom data.
For example, a Pro Edition product has three topic categories:

- /${ YourProduc tKey }/${ YourDevice Name }/ user / get ,devices
can subscribe to messages.

- /${ YourProduc tKey }/${ YourDevice Name }/ user / update ,
devices can publish messages.

-/ sys /${ YourProduc tKey }/${ YourDevice Name }/ thing / event

/ property / post ,devices can publish messages.

Service Subscription can push messages of the topics /${ YourProduc tKey
}/${ YourDevice Name }/ user / update and/ sys /${ YourProduc
tKey 1}/${ YourDevice Name }/ thing / event / property / post ,

to which devices can then publish messages. Additionally, the messages of /
sys /${ YourProduc tKey }/${ YourDevice Name }/ thing / event /
property / post are processed by the system before being pushed.

- Device Status Change Notification: Indicates the notifications that are sent when
the statuses of devices change, for example, notifications for when devices

go online or go offline. The topic / as / mqtt / status /${ YourProduc

tKey }/${ YourDevice Name } has device status change messages. After

this notification type is selected, the HTTP/2 SDK can receive the device status
change notifications.

- Sub-Device Data Report Detected by Gateway: This is a specific notification type of Pro
Edition products. Gateways can report the information of sub-devices that are
discovered locally. To use this feature, make sure that the applications on the
gateway support this feature.

- Device Topological Relation Changes: This is a specific notification type of Pro Edition
products. It includes notifications about creation and removal of the topological
relation between a gateway and its sub-devices.

- Device Changes Throughout Lifecycle: This is a specific notification type of Pro
Edition products. It includes notifications about device creation, deletion,

disabling, and enabling.
Connect to the SDK
Add the maven dependency to the project to connect to the SDK.

< dependency >
< groupId > com . aliyun . openservic es </ groupIld >
< artifactId > iot - client - message </ artifactId >
< version > 1 . 1 . 3 </ version >

</ dependency >

< dependency >
< groupId > com . aliyun </ groupId >
< artifactId > aliyun - java - sdk - core </ artifactId >

< version > 3 . 7 . 1 </ version >
</ dependency >

Identity authentication

Use the AccessKey information of your account for identity authentication and to

build the connection between the SDK and IoT Platform.
Example:

// Your account accessKeyI D

String accessKey = " XXXXXXXXXX XXXXX ";

// Your account AccessKeyS ecret

String accessSecr et = " XXXXXXXXXX XXXXX "}

// regionId

String regionId = " cn - shanghai ";

// Your account ID .

String uid = " XXXXXXXXXX xx ";

// endPoint : https ://${ uid }. dot - as - http2 .${
region }. aliyuncs . com

String endPoint = " https ://" + wuid + ". dot - as -
http2 ." + regionId + ". aliyuncs . com ";

// Connection configurat don

Profile profile = Profile . getAccessKk eyProfile (
endPoint , regionId , accessKey , accessSecr et);

// Construct the client
MessageCli ent client = MessageCli entFactory .
messageCli ent (profile);

// Receive data
client . connect (messageTok en -> {
Message m = messageTok en . getMessage ();
System . out . println (" receive message from " +

return MessageCal 1lback . Action . CommitSucc ess ;

1)

The value of accessKey is the AccessKeyID of your account, and the value of
accessSecr et isthe AccessKeySecret corresponding to the AccessKeylID. Log
on to the Alibaba Cloud console, hover the mouse over your account image, and click

AccessKey to view your AccessKeyID and AccessKeySecret. You can also click Security

Settings to view your account ID.
The value of regionId isthe region ID of your IoT Platform service.
Configure the message receiving interface

Once the connection is established, the server immediately pushes the subscribed
messages to the SDK. Therefore, when you are configuring the connection, you
also configure the message-receiving interface, which is used to receive the
messages for which callback has not been configured. We recommend that you call
setMessagelistener to configure a callback before you connect the SDK to IoT

Platform.

Use the consume method of MessageCallback interface and call the setMessage

Listener () of messageCli ent to configure the message receiving interface.
The returned result of consume determines whether the SDK sends an ACK.
The method for configuring the message receiving interface is as follows:

MessageCal Tlback messageCal 1lback = new MessageCal 1lback ()
{
@ Override
public Action consume (MessageTok en messageTok en) {
Message m = messageTok en . getMessage ();
log . info (" receive : " + new String (messageTok en .
getMessage (). getPayload ()));
return MessageCal 1lback . Action . CommitSucc ess ;
}

}s

https://home.console.aliyun.com/new#/

messageCli ent . setMessage Listener ("/${ YourProduc tKey }/#",
messageCal 1lback);

The parameters are as follows:

MessageTok en indicates the body of the returned message. Use MessageTok
en . getMessage () togetthe message body. MessageTok en isrequired

when you send ACKs manually.
A message body example is as follows:

public class Message {
// Message body
private byte [] payload ;
// Topic
private String topic ;
// Message ID
private String messageld ;

// QoS
private int qos ;
+
- For more information, see Message body format .

messageCli ent . setMessage Listener ("/${ YourProduc tKey }/#",

messageCal lback); isa method to specify topics for callbacks.
You can specify topics for callbacks, or you can use the generic callback.
- Callbacks with specified topics

Callbacks with specified topics have higher priority than the generic callback
. When a message matches with multiple topics, the callback with the topic
whose elements rank higher in the lexicographical order is called and only one

callback is performed.

When you are configuring a callback, you can specify the topics with wildcards,

for example, /${ YourProduc tKey }/${ YourDevice Name }/#.
Example:

messageCli ent . setMessage Listener ("/ alEddfaxXxXX X /
devicel /#", messageCal lback);

// When the received message matches with the
specified topic , for example , "/ alEddfaXXX X / devicel /
update ", the callback with this topic is called .

Generic callback
If you do not specify any topic for callbacks, the generic callback is called.
The method for configuring the generic callback is as follows:

messageCli ent . setMessage Listener (messageCal 1lback);
/] If the received message does not match with any
specified topics which are configured for callbacks
, the generic callback s called .

- Configure ACK reply

After a message with QOS>0 is consumed, an ACK must be sent as the reply. SDKs

support sending ACKs as replies both automatically and manually. The default

setting is to reply with ACKs automatically. In this example, no ACK reply setting is

configured, so the system replies with ACKs automatically.

Reply ACKs automatically: If the returned value of MessageCal lback .
consume is true ,the SDK will reply an ACK automatically; If the returned

valueis false or an exception occurs, the SDK will not reply with any ACK. If

no ACK is replied for the messages with QOS>0, the server will send the message

again.

Reply ACKs manually: Use MessageCli ent . setManualA cks to configure

for replying ACKs manually.

Call MessageCli ent . ack () toreply ACKs manually, and the parameter
MessageTok en isrequired. You can obtain the value of MessageTok en

from the received message.
The method to manually reply ACKs is as follows:

messageCli ent . ack (messageTok en);

Message body format

- Device status notification:

{

" status ":" online | offline ",

" productKey ":" 1234556556 9 ",

" deviceName ":" deviceName 1234 ",

" time ":" 2018 - 08 - 31 15 : 32 : 28 . 205 ",

" utcTime ":" 2018 - 08 - 31TO7 : 32 : 28 . 2052 ",

" lastTime ":" 2018 - 08 - 31 15 : 32 : 28 . 195 ",

" utcLastTim e ":" 2018 - 08 - 31TO7 : 32 : 28 . 195Z ",

" clientIp ":" 123 . 123 . 123 . 123 "

}

Parameter Type Description

status String Device status: online or offline.

productKey String The unique identifier of the product to which
the device belongs.

deviceName String The name of the device.

time String The time when the notification is sent.

utcTime String The UTC time when the notification is sent.

lastTime String The time when the last communication
occurred before this status change.

utcLastTime String The UTC time when the last communication
occurred before this status change.

clientIp String The Internet IP address for the device.

Note:
We recommend that you maintain your device status according to the value of the
parameter lastTime.

- Device lifecycle change:

{
" action " : " create | delete | enable | disable ",
" HotId " : " 4z819VQHk6 VSLmmBIfrf 00107ee201 ",
" productKey " : " 1234556556 9 ",
" deviceName " : " deviceName 1234 ",
" deviceSecr et " : "M,
" messageCre ateTime ": 1510292739 881
}
Parameter Type Description
action String - create: Create devices.
- delete: Delete devices.
- enable: Enable devices.
- disable: Disable devices.
iotld String The unique identifier of the device within IoT
Platform.
productKey String The ProductKey of the product.
deviceName String The name of the device.

Parameter Type Description

deviceSecret |String The device secret. This parameter is included
only when the value of action is create.

messageCre Long The timestamp when the message is generated,

ateTime in milliseconds.

- Device topological relationship change:

{

" action " " add | remove | enable | disable ",

" gwIotId ": " 4z819VQHk6 VSLmmBIfrf 00107ee200 ",

" gwProductK ey ": " 1234556554 ",

" gwDeviceNa me ": " deviceName 1234 ",

" devices ": [

{

" qo0tId ": " 4z819VQHk6 VSLmmBJfrf 00107ee201 ",

" productKey ": " 1234556556 9 ",

" deviceName ": " deviceName 1234 "

}

1,

" messageCre ateTime ": 1510292739 881

Parameter Type Description

action String - add: Add topological relationships.
- remove: Delete topological relationships.
- enable: Enable topological relationships.
- disable: Disable topological relationships.

gwlotld String The unique identifier of the gateway device.

gwProductKey |String The ProductKey of the product to which the
gateway device belongs.

gwDeviceNa String The name of the gateway device.

me

devices Object The sub-devices whose topological relationship
with the gateway will be changed.

iotld String The unique identifier of the sub-device.

productKey String The ProductKey of the product to which the sub-
device belongs.

deviceName String The name of the sub-device.

messageCre Long The timestamp when the messages is generated,

ateTime in milliseconds.

- A gateway detects and reports sub-devices:

{
" gwIotId ":" 4z819VQHk6 VSLmmBIfrf 00107ee200 ",
" gwProductK ey ":" 1234556554 ",
" gwDeviceNa me ":" deviceName 1234 ",
" devices ":[
{
" GdotId ":" 4z819VQHk6 VSLmmBIfrf 00107ee201 ",
" productKey ":" 1234556556 9 ",
" deviceName ":" deviceName 1234 "
}
]
}
Parameter Type Description
gwlotld String The unique identifier of the gateway device.
gwProductKey |String The unique identifier of the gateway product.
gwDeviceNa String The name of the gateway device.
me
devices Object The sub-devices detected by the gateway.
iotld String The unique identifier of the sub-device.
productKey String The ProductKey of the product that the sub-
device belongs to.
deviceName String The name of the sub-device.

1.9.3 Limits

Service Subscription has the following limits.

Item Limit description

JDK version Only JDK 8 is supported.

Authentication Once the connection is established, an authentication request
timeout is sent immediately. If the authentication is not successful

within 15 seconds, the server will close the connection.

Receiving data
timeout

After the connection is established, the client sends ping
packets regularly to maintain the connection. You can set the
interval for sending ping packets on your clients. The default
value is 30 seconds. The maximum value is 60 seconds.

If no Ping packet or data is sent in 60 seconds, the server will
close the connection.

If the client has not received any pong packets in the specified
time period, the SDK will close the connection and then try to
connect again later. The default interval is 60 seconds.

Item

Limit description

Pushing message
timeout

The server pushes again 10 failed messages in bulk each time
. If the server does not receive an ACK from the client after 10
seconds, the message push times out.

Repush policy for
failed messages

The stacked messages (due to client being offline, slow
message consumption, or other reasons) are repushed every 60
seconds.

Message storage
time

Messages with QoS 0 are saved for one day, and messages with
QoS 1 are saved for seven days.

Number of SDK
instances

Each account can enable up to 64 SDK instances.

Message limit for
each tenant

The maximum number of messages sent each second for a
single tenant is 1,000 QPS. If your business requires more, you
can open a ticket and make a request.

1.10 Device group

IoT Platform supports device groups. You can assign devices from different products

to the same group. This article introduces how to create and manage device groups in

the IoT Platform console.

Procedure

1. Log on to the IoT Platform console.

2. Click Devices > Group.

3. On the group management page, click Create Group, enter group information, and

then click Save.

Note:

https://iot.console.aliyun.com/

You can create up to 1,000 groups (including parent groups and subgroups) .

IoT Platform Group Management

Quick Start

Devices Groups Refresh Create Group |
Product Search | Create Group
Device
Group Name o fted At Actions

Edge Management testl 8/2018, 19:05:26 ew Delete

Rules

Total 1 ltems Items per Page:| 15

Applications

The parameters are as follows:
- Parent Group: Select a group type.

- Group: Indicates that the group to be created is a parent group.

- Select an existing group: Specifies a group as the parent group and creates a
subgroup for it.
- Group Name: Enter a name for the group. A group name can be 4 to 30
characters in length and can include Chinese characters, English letters, digits
and underscores (_) . The group name must be unique among the groups for an

account, and cannot be modified once the group has been created.
- Group Description: Describes the group. Can be left empty.

4. On the Group Management page, click View to view the Group Details page of the

corresponding group.

5. (Optional) Add tags for the group. Tags can be used as group identifiers when you

manage your groups.
a) Click Add under Tag Information, and then enter keys and values of tags.

b) Click OK to create all the entered tags.

Note:

You can add up to 100 tags for a group.

10T Platform Group Management » Group Details
testl
Quick Start
D2Lp3VakCE9XZalu Copy
Lalz es0 Online Devices
E GroupInformation Devicelist Subgroups
Device
Group Group Informatis m
p Information
Edge Management Add Group Tag
Group Name testl Group ID 2Lp3VakC699XZalu Copy
Rules.
Applications Total Devices: 0 Online 0
Data Analysis Created At 09/18/2018, 19.05:26
Extended Services Fwen
Description —
Documentation OK

Tag Information

Group Tag:No tags

6. Click Device List > Add Device to Group. Select the devices that you want to add to
the group.

Note:

You can add up to 1,000 devices at a time. You can add up to 20,000 devices for a

group in total.

A device can be included in a maximum of 10 groups.

IeT Platform Group Management > Group Details

testl
Quick Start

Devices Tota

Product

Device

{sroup Device List Refresh Add Device to Group

Edge Management

e e
Rules = Inactve
Applications Devieeliame y StatefEnabled LastOnline Actions
sensor_envirhlon = Online)
Data Analysis
Extended Services et
LinkedgeGate = Offine
Documentation
television 101 o Inactive Total 0 Items Items per Page:| 10 v

There are two buttons at the upper-right corner of the Add Device to Group page:.
Click All to display all the devices.
Click You have selected to display the devices you have selected.

7. (Optional) Click Subgroups > Create Group to add a subgroup for the group.

Subgroups are used to manage devices in a more specific manner. For example

, you can create subgroups such as "SmartKitchen" and "SmartBedroom" for a

parent group "SmartHome", and then you can manage your kitchen devices and

bedroom devices separately. The procedure is as follows:

a) Select the parent group, enter a group name and description, and click Save.

IoT Platform

Quick Start

Group -
* Parent Group

Ireated At

0/16/2018, 16:33:06

Extended 0/16/2018, 163051
Services
Documentation otal 2 ltems tems per Page:| 15

b) On the Subgroups page of the parent group , click View to view the

corresponding Group Details page.
¢) Click Device List > Add Device to Group, and then add devices for the subgroup.

After creating the subgroup and adding devices for it, you can then manage it. You

can also create sub-subgroups within the subgroup.

Note:

- A group can include up to 100 subgroups.

- Only three layers of groups are supported: parent group>subgroup>sub-
subgroup.

- A group can only be a subgroup of one parent group.

- You can not change the relationships between a parent group and its subgroups
once they have been created. If you want to change the relationships, delete the
existing subgroups and create new ones.

- You cannot delete a group that has subgroups. You must delete all its subgroups

before deleting the parent group.

2 Rules

2.1 Data Forwarding

2.1.1 Overview

When your devices communicate using topics, you can use the rule engine and write
SQL expressions to process data in topics. You can also configure forwarding rules to
send the processed data to other Alibaba Cloud services. For example:
- You can forward the processed data to RDS, and Table Store for storage.
- You can forward the processed data to Function Compute for event-driven computing.
- You can forward the processed data to another topic to achieve M2M communicat
ion.

- You can forward the processed data to Message Service to ensure reliable use of data.

By using the rule engine, you will be provided with a complete range of services
including data collection, computing, and storage without purchasing a distributed

server deployment architecture.

Data Collzction Diata Forwarding Targets

RDE

m

Fulez Engine

=

collec data loT
é . N '} Process Forward =g

data data o

MNS

Note:

https://www.alibabacloud.com/product/apsaradb-for-rds-mysql
https://www.alibabacloud.com/product/table-store
https://www.alibabacloud.com/product/function-compute
https://www.aliyun.com/product/mns

When using the rule engine, you need to pay attention to the following points:

- The rule engine processes data based on topics. You can use the rule engine to
process device data only when devices are communicating with each other by
using topics.

- The rule engine processes the data in topics using SQL.

- SQL subqueries and the use of the LIKE operator are currently not supported.

- Some functions are supported. For example, you can use deviceName () to
obtain the name of the current device. For more information about the supported

functions, see Function list.

2.1.2 Create and configure a rule
Using the data forwarding feature of the rules engine, IoT Platform can forward
specified messages of topics to other IoT Platform topics and other Alibaba Cloud
services. This topic describes how to create and configure a rule. The process is to
create a rule, write a SQL statement for data processing, configure data forwarding

destinations, and configure a forwarding destination for error messages.
Procedure

1. In the left-side navigation pane of the IoT Platform console, click Rules.

2. On the Data Forwarding Rules tab, click Create Data Forwarding Rule.

3. Entera Rule Name ,selecta Data Type ,and then click OK.

10T Platform Rules

Data Overview

Quick Start Rules Create Rule

Devices Rule Name Create Rule Created At Status Actions

Edge Management

* Rule Name 12'5‘3"233 « Running lEmege Sy
Applications 1071
Data Type 8;2:%2 « Running Manage Stop
Data Analysis
JSON () Binary
. - /081 Manage S
Extended Services Rule Description: 12 ?Z ?2 . D:‘;?: tart
Document itation
08/20/20. Manage Start
18:09:13 olils Delete
08/17/20. Manage Start
16:40:00 o ldle Delete
- 06/28/20. Manage Start
JSON 01:23:31 o ldle Delete
. .
Parameter Description
Rule Name Enter a unique rule name, which is used to identify the rule. A

rule name can contain Chinese characters, English letters, digits
, underscores (_) and hyphens (-), and must be 1 - 30 characters
in length. A Chinese character counts as two characters.

Parameter Description

Data Type Select a data type for the data that this rule processes. Options:
JSON and Binary.

Note:

- The rules engine processes data based on topics. Therefore
, you must select the format of the data in the topic that you
want to process.

- If the data type is Binary, the rule cannot process data from

system-defined topics, and cannot forward data to Table
Store and RDS instances.

Rule descriptio | The description of the rule.
n

4. After the rule has been successfully created, you are directed to the Data
Forwarding Rule Details page. On this page, you must edit a SQL statement to
process data, configure data forwarding destinations, and configure a destination

for error messages.

test03

Process Data SQL Syntax

Data Forwarding

Forward Error Data

a) Click Write SQL, and then edit a SQL statement for data processing.

In the following example, the statements can retrieve the contents of the
deviceName field from the messages of the custom topics of all the devices

under product test0306.

Note:

You can use to_base64 (x) to convert binary data to a base64 string. Built-in

functions and conditions are also supported.

Write SGL

Rule Query Expression:

SELECT
FROM +useri#"
WHERE

o Field:

deviceMame() as deviceMame

@ Topic :

Custam

test0206

All equipment (+)
usen#

Condition: (optional)

The parameters to be configured are as follows. For more information, see SQL

statements and Functions.

Parameter Description

Rule Query The system will display the complete SQL statement here
Expression according to the values of Field , Topic ,and Condition .

Field Specify the message fields that this rule will retrieve from the
message contents. For example, if you enter deviceName ()
as deviceName ,the rule will retrieve the device names

from the messages.
For message content data, see Data Format.

Parameter

Description

Topic

Select the topics whose messages are to be processed by this
rule.
Topic types:

- Custom: The messages are from custom topics. Wildcards
+ and # are supported when you specify custom topics. To
learn how to use wildcards in topics, see Custom topics.

- System: Only when the data type is JSON are system topics
available. The messages are from system-defined topics,
including messages of reporting properties and events,
device lifecycle change, topological relationship change,
and gateways reporting sub-devices. For message contents,
see Data format.

- Device Status: Only when the data type is JSON can you
process device status messages, which are messages about
devices connecting to and disconnecting from IoT Platform.
For message contents, see Data format.

Condition

The condition for triggering the rule.

b) Click Add Operation next to Data Forwarding. Configure a destination to which

you want to forward the processed data. For more information about data

forwarding examples, see the documents in Examples.

Note:

A rule can have up to 10 data forwarding destinations.

Rules > Data Forwarding Rule Details

autotest1

Data Type-JSON
Rule Description:

Add Cperation
Process Data P

EeCCll Debugsal [wiite sl |

. Select Operation
Rule Query Expression:

SELECT * FROM "a1KIhZfT4LPlupdate” Publish to another Topic

Data Forwarding

Add Cperation

Data Destination Actions

Forward Error Data

Add Misoperation

Currently, if data forwarding fails due to exceptions in the target Alibaba

Cloud services, the rules engine retries three times: after one second, after

three seconds, and after ten seconds. If all the retries fail, the message will be
discarded. If you do not want to miss the forwarding failed messages, you can
proceed to the next step: Add Misoperation. You can then add a destination for
error messages.

¢) Click Add Misoperation next to Forward Error Data and then create an action to

forward error messages about data forwarding failures to a specified target.

Data Forwarding Add Operation

Data Destination Add Misoperation Actions

Select Operation

Publish to another Topic

Topic

Forward Error Data Add Misoperation

Data Destination FeE RHE I T Actions

Note:

- Error messages and device data cannot be forwarded to the same Alibaba
Cloud service. For example, you cannot configure Table Store as the
destination for both error messages and device data.
- Rules engine retries three times if data fails to be forwarded to the specified
destinations. If all the retries fail, an error message is forwarded according
to this configuration.
- If the error message fails to be forwarded, the rules engine does not retry
sending the message.
- Here, the term "error messages" refers only to messages that relate to errors
resulting from exceptions in the target Alibaba Cloud instance.
- You can add only one destination for error message forwarding.

- Error message format:

ﬁ ruleName ":"",

n top-ic n 0 llll’

" productKey ":"",

" deviceName ":"",

" messageld ":"",

" base640rig 1inalPayloa d ":"",

" failures ":[

" actionType ":" OTS ",

" actionRegi on ":" cn - shanghai ",
" actionReso urce ":" tablel ",

" errorMessa ge ":""

I

{

" actionType ":" RDS ",

" actionRegi on ":" cn - shanghai ",
" actionReso wurce ":" dinstancel / tablel ",
" errorMessa ge ":""

}

]

}

Parameters in error messages:

Parameter Description

ruleName The name of the data forwarding rule.

topic The source topic of the message.

productKey The unique identifier of the product that the
device belongs to.

deviceName The device name.

messageld The message ID that is generated by IoT Platform

for this message.

base640riginalPayload

The original data that has been Base64 encoded .

failures Detailed messages about the failure. There may
be multiple error messages if the rule forwards
data to multiple destinations.

actionType The target Alibaba Cloud service to which data
fails to be forwarded.

actionRegion The region of the target Alibaba Cloud service.

actionResource The target resource.

ErrorMessage

Error message.

5. After you complete all the configurations, go back to the Data Forwarding Rules tab
of Rules page, and click Start corresponding to the rule to start this rule. Data will

then be forwarded following this rule.

Rules

Data Forwarding Rules

test03 JSON

JSON <zpan style="c

JSON </script> Cff:f‘ «ldie

You can also perform the following operations:

- Click View, and then modify the rule configurations on the Data Forwarding
Rule Details page.
- Click Delete to delete this rule.

Note:

Rules that are in a running state cannot be deleted.

- Click Stop to disable this rule.

2.1.3 SQL statements

You can write SQL statements to parse and process data when you create data
forwarding rules. Binary data will not be parsed, but directly passed through to

targets. This topic describes SQL statements.
SQL statements

JSON data can be mapped to a virtual table. Keys in a JSON data record correspond to
the column names. Values in a JSON data record correspond to the column values.
After being mapped to a virtual table, a JSON data record can be processed using SQL
. The following example demonstrates how to represent a data forwarding rule as a

SQL statement.

1. Therule is triggered when a message

W\ that belongs to the specified topicis
‘f;’ received and the conditions are met.
SELECT FROM “ ” WHERE

2. “fields” are used to specify message
content fields, convert the processed results
into JSON format, and output the datathat is

referenced by action.

For example , an environmen tal sensor that is
typically used for fire detection and collecting
temperatur e , humidity , and atmospheri c¢ pressure data
reports the following data

)

{

" temperatur e ": 25 . 1
" humidity ": 65

" pressure ": 101 . 5

" location ":" xxx , xxx "
}

Assume that you need to set an alarm that is

triggered when the temperatur e is higher than 38 °

C and the humid-ity is lower than 40 %, write the

following SQL statement as a rule

SELECT temperatur e as t , deviceName () as deviceName |,

location FROM / ProductA /+/ update WHERE temperatur e > 38
and humidity < 40

If the reported data meets the rule parameters , the
rule is triggered and the temperatur e data is

parsed to obtain the informatio n about temperatur e ,

device name , and location for further processing .

FROM clause

You can enter a topic in the FROM clause. You can enter a wildcard character + that
includes all topics on the current category level to match the topic whose device
messages need to be processed. When a message that matches the specified topic is

received, only the message payload that is in the JSON format can be parsed and then

processed by the SQL statement that you have defined. Invalid messages are ignored.

You can use the topic () function to reference a specific topic.

In this example, the "FROM /ProductA/+/update" clause +indicates that
only messages that match the /ProductA/+/update format are processed.
For more information about matching rules, see Topic.

SELECT statement
- JSON data

In the SELECT statement, you can use the result of parsing the payload of the
reported message that represents the keys and values in the JSON data. You can

also use built-in functions in the SQL statement, such as deviceName ().
You can combine * with functions. SQL subqueries are not supported.

The reported JSON data can be an array or nested JSON data. You can also use a
JSONPath expression to obtain values in the reported data record. For example,
forapayload { a :{ keyl : vl , key2 : v2 }},you can obtain the value
v2 by specifying a . key2 astheJSON path. When specifying variables
in SQL statements, note the difference between single quotation marks (') and
double quotation marks ("). Constants are enclosed with single quotation marks
("). Variables are enclosed with double quotation marks ("). Variables may also
be written without being enclosed by quotation marks. For example, a . key2

represents a constant whose valueis a . key2 .
For more information about built-in functions, see Functions.

In the statement " SELECT temperatur e as t,

deviceName () as deviceName , Tlocation " that is provided
in the previous example , temperatur e and location
are the fields in the reported message , and

deviceName () s a built - 1in function .

- Binary data

- Enter * to pass through binary data directly. You cannot add a function after x.
- You can use built-in functions. The to_base64 (*) function converts the
payload that is binary data to a base64 string. The deviceName () function

extracts the name information of a device.

Note:
Each SELECT statement can contain up to fifty fields.

WHERE clause
- JSON data

The WHERE clause is used as the condition for triggering the rule. SQL subqueries
are not supported. The fields that can be used in the WHERE clause are the

same as those that can be used in the SELECT statement. When a message of the
corresponding topic is received, the results obtained using the WHERE clause will
be used to determine whether a rule will be triggered. For more information about
conditional expressions, see the following table: Supported conditional expression

S.

In the previous example , " WHERE temperatur e > 38

and humidity < 40 " dndicates that the rule is
triggered when the temperatur e is higher than 38 °
C and the humid-ity is lower than 40 %.

- Binary data
If the reported message is composed of binary data, you can only use built-in

functions and conditional expressions in the WHERE clause. You cannot use the

fields in the payload of the reported message.
SQL results

The SQL result returned after the SQL statement is executed will be forwarded. If an
error occurs while parsing the payload of the reported message, the rule execution
fails. In the expression used for data forwarding, you must use ${ expression } to

specify the data that you want to forward.

In the previous example , when configurin g the data
forwarding action , you can use S${ t }, ${ deviceName }, and

${ loaction } to reference the SQL result . For example
, 1if you want to forward the SQL result to Table
Store , you can use ${ t }, ${ deviceName }, and ${ loaction
1.

Notes on arrays

Array expressions are enclosed with double quotation marks ("). Use $. to obtain a

JSONODbject. $. can be omitted. Use . to obtain a JSONArray.

If the device messageis {" a ":[{" v ": 0@ },{" v ": 1 },{" v ": 2 }]}, results

of different expressions are as follows:

- Theresultof" a [@ J"is {" v ": 0 }

- Theresultof"s. a [@ J"is{" v ": 0 }

- The resultof ".

a [o]J"is[{" v ": 0 }]

- Theresultof" a [1]. v "is 1

- Theresultof"s. a [1]. v "is 1

- Theresultof ".

a[17]. v ?"is[

=
—

Supported WHERE expressions

Operator Description Example

= Equal to color= ‘red’

<> Not equal to color <> ‘red’

AND Logic AND color= ‘red’ ANDsiren= °

on’

OR Logic OR color= ‘red’ ORsiren= ‘on

O Conditions that are enclosed color= ‘red’” AND (siren= °
with parentheses () are on’ OR isTest)
considered as a whole.

+ Addition 4+5

- Subtraction 5-4

/ Division 20/ 4

* Multiplication 5%4

% Return the remainder 20% 6

< Less than 5<6

<= Less than or equal to 5<=6

> Greater than 6>5

>= Greater than or equal to 6>=5

Function call For more information deviceld()

about supported functions,
seefunctions.

Attributes
expressed in the
JSON format

You can extract attributes
from the message payload
and express them in the JSON
format.

state.desired.color,a.b.c[0].d

CASE --- WHEN

CASE expression. Nested

CASE col WHEN 1 THEN ‘Y’

a specific character. When
you use a LIKE operator, you
can only use the % wildcard
character to represent a
character string.

-+ THEN --- ELSE |expressions are not supported. |WHEN 0 THEN ‘N’ ELSE
- END END as flag
IN Only listing is supported. For example, you can use
Subqueries are not supported. | WHERE aIN(1, 2, 3). However
, you cannot use WHERE a IN(
select xxx).
LIKE This operator is used to match | For example, you can use the

LIKE operator in WHERE c1
LIKE ‘%abc’ and WHERE cl
not LIKE ‘%def%’ .

2.1.4 Functions

The rules engine provides functions that allow you to handle data when writing a SQL

script.

Call functions

In SQL statement, you can use functions to get or handle data.

For example, in the following example, the functions: deviceName(), abs(number),

and topic(number) are used.

SELECT case
then ' Light
temperatur

and

Note:

e)
topic (2)=' 123 '

flag when 1 then ' Light On ' when 2
off ' else '' end flag , deviceName (), abs (
tmr FROM "/ topic /#" WHERE temperatur e > 10

When you use functions, note that constants are enclosed with apostrophes ().

Variables are not enclosed or are enclosed with quotation marks ("). For example, in

select “ a ”

al , “a’ a2, a

represents a constant a .

a3 , al isequivalentto a3 ,and a2

Function name

Description

abs(number)

Returns the absolute value of the number.

asin(number)

Returns the arcsine of the number.

Function name

Description

attribute(key) Returns the device tag that corresponds with the key. If a tag
with the specified key is not found, the returned value is null
. When you debug your SQL statements, because there is no
real device or tag, the returned value is null.

concat(stringl, Strings.

string2) Example: concat(field,” a’).

cos(number) Returns the cosine of the number.

cosh(number) Returns the hyperbolic cosine of the number.

crypto(field,String) Encrypts the value of the field.
The String parameter represents an algorithm. Available
algorithms include MD2, MD5, SHA1, SHA-256, SHA-384, and
SHA-512.

deviceName() Returns the name of the current device. When you debug

your SQL statements, because there is no real device, the
returned value is null.

endswith(input, suffix

)

Validates whether the input value ends with the suffix string.

exp(number) Returns a value raised to the power of a number.

floor(number) Rounds a number down, toward zero, to the nearest multiple
of significance. Returns an integer that is equal to or smaller
than the number.

log(n, m) Returns the logarithm of a number according to the base
that you have specified.
If you do not specify the value of m, log(n) is returned.

lower(string) Returns a lower-case string.

mod(n, m) Returns the remainder after a number has been divided by a

divisor.

nanvl(value, default)

Returns the value of a property.
If the value of the property is null, the function returns
default.

newuuid()

Returns a random UUID.

payload(textEncoding
)

Returns the string generated by encoding the message
payload that is sent by a device.

The default encoding is UTF-8, which means that payload()
and payload(‘utf-8’) will return the same result.

power(n,m)

Raises number n to power m.

Function name

Description

rand() Returns a random number greater than or equal to 0 and less
than 1.

replace(source Replaces a specific column.

, substring, Example: replace(field,” a’ ,” 1’).

replacement)

sin(n) Returns the sine of n.

sinh(n) Returns the hyperbolic sine of n.

tan(n) Returns the tangent of n.

tanh(n) Returns the hyperbolic tangent of n.

timestamp(format) Returns the formatted timestamp of the current system time

The value of format is optional. If you do not specify the
format, the 13-digit timestamp of the current system time
will be returned. Examples: timestamp() = 1543373798943,
timestamp('yyyy-MM-dd\'T\HH:mm:ss\'’Z\") = 2018-11-28T10:
56:387.

timestamp_utc(
format)

Returns the formatted UTC timestamp of the current system
time.

The value of format is optional. If you do not specify the
format, the 13-digit timestamp of the current system time
will be returned. Examples: timestamp_utc() = 1543373798
943, timestamp_utc('yyyy-MM-dd\'T\HH:mm:ss\'Z\"") = 2018-
11-28T02:56:38Z

topic(number)

Returns a segment of a topic.

For example, for topic /abcdef/ghi, if you use the function
topic(), “/abcdef/ghi” will be returned; If you use the
function topic(1), “abcdef” will be returned; If you use the
function topic(2), “ghi” will be returned.

upper(string)

Returns an upper-case string.

to_base64(*)

If the original payload data is binary data, you can call this
function to convert the binary data to a base64String data.

2.1.5 Data forwarding procedure
Data forwarding provided by the rules engine function can only process data that is
published to topics. This topic describes the procedure of data forwarding and the

formats of the data at different stages during data forwarding.
Custom topics

Data published to custom topics is forwarded transparently to the IoT Platform by
data forwarding. The structure of the data is not changed. The following figure shows

the data forwarding procedure:

Rules engine — Custom topics

Report data / e d \ Match with the rule v’ N Transmit the data
Il o

>

Temperature and _

humidity sensor loT Hub Rules engine Table Store

Device name : D39383
topic : "/{PK}/{DN}/data" topic : "/{PK}/{DN}/data" { | Device Time | Temperature | Humidity
payload payload: "deviceMame™:"D39383", name
.{ S . — . D39383 | 10:20 23 63
temperature”:23, temperature":23, e
"humidity":63 "humidity":63 "humidity":63
1 - .
i

The original payload data of the device Pass through the data Processed result

SELECT
deviceName(} as deviceName

Execute the SQL statements

System topics

Data published to system topics is in the Alink JSON format. During data forwarding,
the data is parsed according to the TSL and then processed by the SQL statements of a

rules engine. For more information about the data format, see Data format (Pro Edition).

The following figure shows the data forwarding procedure:

Rules engine — System topics

@ Report date Forward data DD Match with the rule [/ N Transmit therdata 4‘
(ol (0m]

>

Temperature and loT Hub TSL parse Rules engine Table Store
humidity sensor
Device name : D39383
topic : "fsys/{PK}/{DN}/thing/event/property/post’ topic : “/{PK}/{DN)/thing/event/property/post { Device | Time | Temperature | Humidity
payload: deviceName""D39383", "time""10:20", ——

payload: - name
{ N ["tel 26,
id": 1532334511944, Breean "humidity":73 D39383 | 10:20 23 73
params” 1
{

"temperature”: 26, Processed result

"humidity": 73

method": "thing event property post

1
I

The original payload data of the device

E] Note:

During data forwarding, parameter params in the payload is replaced by

Parse the data to be TSL Execute the SQL statements

parameter items after the data is parsed according to the TSL.

2.1.6 Data format (Pro Edition)
If you want to use rules engine to forward data, you need to write a SQL statement
to process data using message topics. Therefore, the format in which data is stored
in these topics must be able to be parsed by SQL statements. For IoT Platform Basic
edition topics, the data format is defined manually. For IoT Platform Pro edition
topics, the data format of custom topics is defined manually, and the data format of
system topics is pre-defined by the system. For scenarios where the data format is
pre-defined, data is strictly processed according to the format. This topic explains the

pre-defined data format of system defined topics.
Messages about device properties reported by devices

By using the following topic, you can obtain the device properties reported by devices

Topic: / sys /{ productKey }/{ deviceName }/ thing / event / property /

post

Data format:

" HdotId ":" 4z819VQHk6 VSLmmBIfrf 00107ee200 ",
" productKey ":" 1234556554 ",

" deviceName ":" deviceName 1234 ",

" gmtCreate ": 1510799670 074 ,

" deviceType ":" Ammeter ",

" Hdtems ":{
" Power ":{
" value ":" on ",
" time ": 1510799670 074
}
"’Position ol
" time ": 1510292697 470 ,
" value ":{
" latitude ": 39 . 9 ,
" longitude ": 116 . 38
}
}
}
}
Parameter descriptions:

Parameter Type Description

iotld String The unique identifier of the device.

productKey String The unique identifier of the product to
which the device belongs.

deviceName String The name of the device.

deviceType String The node type of the device.

items Object Device data.

Power String The property name. See the TSL
description of the product for all the
property names.

Position String The property name. See the TSL
description of the product for all the
property names.

value Defined in TSL Property values

time Long The time when the property is created. If

the device does not report the time, the
time when the property is generated on
the cloud will be used.

gmtCreate Long The time when the message is generated.

Messages about events reported by devices

By using the following topic, you can obtain event information reported by devices.

Topic: / sys /{ productKey }/{ deviceName }/ thing / event /{ tsl .

. identifier }/ post

event

Data format:

{
" qidentifier ":" BrokenInfo
" Name ": " Damage report ",
n type n 0 n -info n 5
" HdotId ":" 4z819VQHk6 VSLmmBIfrf 00107ee200 ",
" productKey ":" X5eCzh6fEH 7 ",
" deviceName ":" 5gJtxDVeGA kaEztpisjX ",
" gmtCreate ": 1510799670 074 ,
" value ":{
" Power ": " on
" Position ":{
" latitude ": c ,
" longitude ": 116 . 38
}
¥,
" time ": 1510799670 074
}
Parameter descriptions:
Parameter Type Description
iotld String The unique identifier of the device.
productKey String The unique identifier of the device
product.
deviceName String The name of the device.
type String Event type. See the TSL of the product for
details.
value Object Parameters of the event.
Power String The parameter name of the event.
Position String The parameter name of the event
time Long The time when the event is generated. If
the device does not report the time, the
time recorded on the cloud will be used.
gmtCreate Long The time when the message is generated.

Device lifecycle change messages

By using the following topic, you can obtain messages about device creation and

deletion, and about devices being enabled and disabled.

Topic: / sys /{ productKey }/{ deviceName }/ thing / lifecycle

Data format:

{

" action " : " create | delete | enable | disable ",

" HotId " : " 4z819VQHk6 VSLmmBIfrf 00107ee200 ",
" productKey " : " X5eCzh6fEH 7 ",

" deviceName " : " 5gJtxDVeGA kaEztpisjX ",

" deviceSecr et " : "M,

" messageCre ateTime ": 1510292739 881

Parameter descriptions:

Parameter Type Description

action String - create: Create devices.

- delete: Delete devices.

- enable: Enable devices.
- disable: Disable devices.

iotld String The unique identifier of the device.

productKey String The unique identifier of the product.

deviceName String The name of the device.

deviceSecret String The device secret. This parameter is only
included when the value of action is
create.

messageCre Integer The timestamp when the message is

ateTime generated, in milliseconds.

Device topological relationship update messages

By using the following topic, you can obtain messages about topological relationship

creation and removal between sub-devices and gateways.
Topic: / sys /{ productkKey }/{ deviceName }/ thing / topo / lifecycle

Data format:

{
" action " : " add | remove | enable | disable ",
" gwIotId ": " 4z819VQHk6 VSLmmBIfrf 00107ee200 ",
" gwProductK ey ": " 1234556554 ",
" gwDeviceNa me ": " deviceName 1234 ",
" devices ": [
{

" HdotId ": " 4z819VQHk6 VSLmmBJfrf 00107ee201 ",
" productKey ": " 1234556556 9 ",
" deviceName ": " deviceName 1234 "

}

15
" messageCre ateTime ": 1510292739 881

}

Parameter descriptions:

Parameter Type Description
action String - add: Add topological relationships.
- remove: Delete topological relationsh
ips.
- enable: Enable topological relationsh
ips.
- disable: Disable topological relationsh
ips.
gwlotld String The unique identifier of the gateway
device.
gwProductKey String The unique identifier of the gateway
product.
gwDeviceName String The name of the gateway device.
devices Object The sub-devices whose topological
relationship with the gateway will be
updated.
iotld String The unique identifier of the sub-device.
productKey String The unique identifier of the sub-device
product.
deviceName String The name of the sub-device.
messageCre Integer The timestamp when the message is
ateTime generated, in milliseconds.

Messages about detected sub-devices reported by gateways

In some cases, gateways can detect sub-devices and report their information. By

using the following topic, you can obtain the sub-device information reported by

gateways.

Topic: / sys /{ productkKey }/{ deviceName }/ thing / list / found

Data format:

{
" gwIotId ":" 4z819VQHk6 VSLmmBIfrf 00107ee200 ",
" gwProductK ey ":" 1234556554 ",
" gwDeviceNa me ":" deviceName 1234 ",

" devices ":[

{

" HdotId ":" 4z819VQHk6 VSLmmBIfrf 00107ee201 ",
" productKey ":" 1234556556 9 ",
" deviceName ":" deviceName 1234 "

Parameter descriptions:

Parameter Type Description

gwlotld String The unique identifier of the gateway
device.

gwProductKey String The unique identifier of the gateway
product.

gwDeviceName String The name of the gateway device.

devices Object The sub-devices that are detected by the
gateway.

iotld String The unique identifier of the sub-device.

productKey String The unique identifier of the sub-device
product.

deviceName String The name of the sub-device.

Devices return result data to the cloud

By using the following topic, you can obtain request execution results from devices
when you send operation requests to devices using an asynchronous method. If an
error occurs when sending the request, you will receive an error message from this
topic.

Topic: / sys /{ productKey }/{ deviceName }/ thing / downlink / reply /

message

Data format:

{
" gmtCreate ": 1510292739 881 ,
" HdotId ":" 4z819VQHk6 VSLmmBIfrf 00107ee200 ",
" productKey ":" 1234556554 ",
" deviceName ":" deviceName 1234 ",
" requestId ": 1234 |,
" code ": 200 ,
" message ":" success ",

" topic ":"/ sys / 1234556554 / deviceName 1234 / thing / service
/ property / set ",
" data ":{

}

}

Parameter descriptions

Parameter Type Description

gmtCreate Long The timestamp when the message is
generated.

iotld String The unique identifier of the device.

productKey String The unique identifier of the product.

deviceName String The name of the device.

requestld Long The request message ID.

code Integer The code for the result message.

message String The description of the result.

data Object The result data reported by the device.
For pass-through communication, the
result data will be converted by the
parsing script.

Response information:

Parameter Message Description

200 success The request is successful.

400 request error Internal service error.

460 request parameter |The request parameters are invalid.

error The device has failed input parameter

verification.

429 too many requests | Too many requests in a short time.

9200 device not activated |The device is not activated yet.

9201 device offline The device is offline now.

403 request forbidden |The request is prohibited because of an
overdue bill.

Messages about device status

By using the following topic, you can obtain the online and offline status of devices.

Topic: { productKey }/{ deviceName }/ mqtt / status

Data format:

{
" productKey ":" 1234556554 ",
" deviceName ":" deviceName 1234 ",
" gmtCreate ": 1510799670 074 ,
" deviceType ":" Ammeter ",
" HdotId ":" 4z819VQHk6 VSLmmBIfrf 00107ee200 ",
" action ":" online | offline ",
" status ":{
n Va-'.ue Il:ll l ll’
" time ": 1510292697 471
}
}

Parameter descriptions:

Parameter Type Description

iotld String The unique identifier of the device.

productKey String The unique identifier of the device
product.

deviceName String The name of the device.

status Object The status of the device.

Value String 1: online; 0: offline.

time Long The time when the device got online or
offline.

gmtCreate Long The time when the message is generated.

action String The action of device status change: go
online or go offline.

2.1.7 Regions and zones
Before you a create rule to send device data to other Alibaba Cloud products, make
sure that the target Alibaba Cloud products have been released in the region of the

device and support the format of your data.

Table 2-1: List of supported regions and zones

China (Singapore |[Japan (US (Silicon | Germany (
Shanghai) Tokyo) Valley) Frankfurt)

JSON |Binary JSON |BinaryJSON |[BinaryJSON |BinaryJSON |Binary
Table Store |+ - V - \ - N - N -

ApsaraDB
for RDS)

RDS (V

Service

Message v

Compute

Function v

2.2 Data Forwarding Examples

2.2.1 Forward data to another topic
You can forward the data that is processed based on SQL rules to another topic for

machine-to-machine (M2M) communication and other applications.

Prerequisites

Before configuring forwarding, follow the instructions in Create and configure a rule to

write a SQL script and filter the data.

Context

The following document describes how to forward data from Topicl to Topic2 based

on the rules engine settings:

Rule Engine

Devicel

N

Procedure

Id Y
> Topicl Topic2
loT Hub

W

Device2

1. Click Add Operation next to Data Forwarding. The Add Operation page appears.

Add Operation

LN

elect operation

Publish to another Topic

* Topic :

Custom Basic_Light_(... devicel/get

2. Complete the topic. SQL wvariables
can be used. Example: device0/get,

${targetDevice}/get.

1.Choose product
here.

Cancel

2. Follow the instructions on the page to configure the parameters.

- Select Operation: Select Publish to Another Topic.
- Topic: The topic to which the data is forwarded. You need to complete this topic
after selecting a product. You can use the ${} expression to quote the context

value. For example, ${ dn }/ get allows you to select the devicename from

the message. The suffix of this topic is get.

2.2.2 Forward data to Table Store

You can configure the rules engine to forward the processed data to Table Store.

Prerequisites
Before configuring forwarding, follow the instructions in Create and configure a rule to

write a SQL script to filter the data.

Procedure

1. Click Add Operation next to Data Forwarding to open the Add Operation page.
Select Save to Table Store .

Add Operation

Select operation:

Save to Table Store

This operation will insert the data toTable Store.For more

information,seeDocumentation

* Region:

* [nstance:
ShanghaiRegion Create Instance
+ Data Sheet:

shanghai_61034 Create Table

Q0

+ Primary Key:
pkl *Value:
+ Role:

AliyunlOTAccessingOTSRole Create RAM Role

2. Follow the instructions on the page to configure the parameters.

- Select Operation: Select Table Store.

- Region, Instance, and Table: Specify each of these fields for the table to which
you want to forward data.

- Primary Key Field: All tables in Table Store have primary key columns. After

you have selected the table to forward data, the console automatically reads the

primary key fields of this table. You need to configure the values of the primary
key fields.

- Role: Grant IoT Platform permission to write data to Table Store. First create a
role that includes permission to write data to Table Store and assign this role to

the rules engine. The rules engine can now write processed data to a table.

What's next

Example

The JSON data record {" device ":" bike "," product ":" xxx "," data2 ":
[{...}]1}is extracted using SQL. This JSON data record needs to be stored in Table
Store. The primary key columns in the destination table are device , product ,

and id
Configuration and effects:

1. Set the value of the primary key field “device” to ${ device } inthe console.
When a message arrives that triggers the forwarding rule, the value of the
device field in the JSON data record will be saved under the device column in the
destination table. The preceding configuration and effects resemble those for the

primary key field "product".

Note:
${} is an escape character. If you do not use this escape character, the constant
you specify as the value of the primary key field will be saved to the primary key
column.

2. The forwarding rule will automatically detect the auto-increment column. The
auto-increment column will be automatically assigned a unique value every time a
new record is inserted into the table. The values in this column cannot be edited.

3. IoT Platform can automatically parse values of the non-primary key fields included
in the JSON data record and create corresponding columns for the destination
table . In this example, two columns, datal and data2, will automatically be

created, and the corresponding values will be saved under each column.

Note:
Currently, only top-level JSON structure can be parsed. Parsing of nested JSON
structures is not supported. Therefore, in this example, the entire JSON object

with its nested structure will be saved under the data2 column. The nested JSON

structure will not be further parsed. No additional columns will be created to save

the nested elements.

2.2.3 Forward data to ApsaraDB for RDS

You can configure the rules engine to forward processed data to ApsaraDB for RDS

instances in VPCs.
Limits

- The ApsaraDB for RDS instances and your IoT Platform service must be in the same
region. For example, if your devices are in cn-shanghai region, the data can only
be forwarded to RDS instances in the cn-shanghai region.

- Only RDS instances in VPCs are supported.

- Only MySQL instances and SQL Server instances are supported.

- Databases in classic mode and master mode are supported.

- Binary data cannot be forwarded to ApsaraDB for RDS.
Preparations

- Follow the instructions in Create and configure a rule to create a rule and write a SQL
script for processing data.

- Create an ApsaraDB for RDS instance that is in the same region as your devices,

and then create a database and a data table.

Procedure
Click Add Operation next to Data Forwarding, and then select Save to RDS.

1.

Select Operation:
Save ta RDS

This operation will save the data fo _
ROS. Far more information, seeRDS

Far marg _
nformation, seeDocumentation
Special reminder: This operation is

only for ROS instances of proprietary

networks, and will add a record to
ccessto

your RDS whitelist for loT a
your database, do not delete.

Region :
China East 2

* ROS Instance:
rm-ufS07 3uacfvwd 8494

* Database
iottest

=
(4]

* ACcount

iottest Create
% Enter password:

¥ Table Mame:

st

¥ kKey

name

*Value :
| 2{deviceMame]

i}
|
4]

|
j -

=]
oA

Role
AliyunlOTAccessingROSRole

|.| [

Configure the following parameters as prompted:

Parameter Action

Select Operation Select Save to RDS.
Select the VPC RDS instance to which IoT Platform data is to

RDS Instance
be forwarded.

Parameter

Action

Database

Enter the name of the target database.

Note:
If your database is in the master mode, you need to
manually enter the database name.

Account

Enter the account of the RDS database. The account requires
the permissions to read and write data to the database.
Otherwise, rules engine cannot write data to the database.

Note:
After rules engine obtains the account, rules engine only
writes data that matches this rule to the database.

Password

Enter the password to log on to the database.

Table Name

Enter the name of the table that will store data from IoT
Platform. Rules engine will then write data to this database
table.

Key

Enter a field name of the database table. Rules engine will
then write data to this field.

Value

Enter a field of the message that you have defined in the data
processing SQL statement. This is the value of Key.

Note:

- Make sure that the data type of the Value field is the
same as that of the Key field. Otherwise, the data cannot
be written into the database.

- You can enter a variable, such as ${ deviceName },

to indicate that device names selected from the topic
messages are used as the value.

Role

Set the role that authorizes IoT Platform to write data to RDS
database table.

If you have not created such a role, click Create RAM Role
and create a role in the RAM console.

3. In the Rules page, click the Start button corresponding to the rule to start this rule.

4. Once the configuration is complete, the rules engine will add the following IP

addresses to the whitelist to connect to RDS. If one or more of the following IP

addresses are not listed, you need to manually add them to the whitelist of the RDS

instance:

- China (Shanghai): 100.104.123.0/24

- Singapore: 100.104.106.0/24

- US (Silicon Valley): 100.104.8.0/24

- US (Virginia): 100.104.133.64/26

- Germany (Frankfurt): 100.104.160.192/26
- Japan (Tokyo): 100.104.160.192/26

On the Security page of the RDS console, you can set and view the whitelist.

< -] rm-ufé8vbn10... (Ruming) | %Back to Instances Operation Guide Log on to DB Create Data Migration Task Restart Instance C Refresh =

Security Data Insurance

Whitelist Settings

Monitoring and Alarm... +Add a Whitelist Group

Modify Clear

Parameters Whitelist Settings Description

2.2.4 Forward data to Message Service
By using rules engine to forward data from IoT Platform to Message Service (MNS). The
message transmission performance between devices and servers is improved. The

advantages are described in the following section.
Data forwarding
- Devices send data to application servers

Devices send messages to IoT Platform, where the messages are processed with
rules engine and forwarded to specified MNS topics. The application server can

then call the relevant APIs of MNS to subscribe to topics for messages from devices

One advantage of this method is that using MNS to receive and store messages
prevents message packet loss during server downtime. Another advantage is that
MNS can process a massive amount of messages simultaneously, which means
services remain available even if the server has to process a number of concurrent

tasks.

https://www.alibabacloud.com/help/product/27412.htm

- Application servers send data to devices

The application server calls the relevant APIs of IoT Platform to publish messages
to IoT Platform, and devices subscribe to related topics for messages from the

server.

IoT Platform User Guide / 2 Rules

Publish messages

Subscribe to messages

Devices

Me:

100 Issue: 20190311

Procedure

1. Log on to the RAM console, and create a role with the permission to write messages

from IoT Platform into MNS.

Then, when you are configuring the data forwarding rule in IoT Platform, you can
apply this role to allow IoT Platform to write data into MNS. Without applying such

arole, IoT Platform cannot forward data to MNS.

For more information about roles, see RAM role management.

https://ram.console.aliyun.com/
https://www.alibabacloud.com/help/doc-detail/93691.htm

2. In the MNS console, create a topic that is to receive messages from IoT Platform.

a. Click Topics > Create Topic.

b. In the Create Topic dialog box, enter a name for the topic, and then click OK.

Create Topic

* Topic Name

Maximum Message Size (Byte

Enable Logging

c. On the Topic List page, find the topic and click Subscription List in the Actions
column.

d. On the Subscription List page, click Subscribe.

e. Create a subscriber for this topic. A subscriber is a server that subscribes to the

topic for messages from IoT Platform.

An MNS topic can have multiple subscribers.

Subscribe

® BACKOFF_RETRY DECAY_RETRY

SIMPLIFIED JSON XML

n Cancel

For more information, see the MNS documentations.
3. Go to the /oT Platform console and, on the Rules page, click Create Ruleand then
create a rule

4. Go back to the Rules page, find the newly created rule and click Manage on the
right.

https://mns.console.aliyun.com/
https://www.alibabacloud.com/help/product/27412.htm
https://iot.console.aliyun.com/rule/

5. On the Data Flow Details page, write the SQL statement that is used to process
and filter messages. For more information, see Create and configure a rule and SQL

Statements.

6. On the Data Flow Details page, click Add Operation next to Data

Forwarding.

Add Operation

Select operation:

Send to Message Service

information,seeDocumentation

+ Region:

- Theme:

e

mtsjobcallback

Role:

+*

AliyunIOTAccessingMNSRole

7. In the Add Operation dialog box, enter information of the MNS topic.

Parameter description:

Parameter Description

Select Select the Alibaba Cloud product which will be the data

Operation forwarding target. Here, select Send to Message Service.

Region Select the region where the MNS topic is.

Theme Select the MNS topic that is to receive data from IoT Platform.

Role The role with the permission that IoT Platform can write data
into MNS.

8. On the Rules page, click Start corresponding to this rule to run the rule.
Then, IoT Platform can forward messages of the specified IoT Platform topic to the

specified MNS topic.

2.2.5 Forward data to Function Compute

Rules engine can forward processed data from IoT Hub to Function Compute (FC).

Other Alibaba Cloud products,
such as RDS and OTS

Devices loT Platform Function Compute
Rules : Other cloud services, using
Engine Script RESTful API

Manage business script
Typical Workflow:
1. Devices send data to loT Hub. Advantages:
2. Rules engine in loT Hub filters data. 1. Serverless & largely reduced IT cost
3. Datais sent to FC to be processed according to 2. Flexible architecture through rules
prepared script. engine and FC

4. Data can then be processed according to other 3. Pay-as-you-go
FC features.

Procedure:

1. On the Function Compute console, create a service and function.

2. Create a rule to send data processed on IoT Platform to FC, and then enable the

rule.

3. Send a message to the topic that has rules engine configured.

4. View the function execution statistics on the Function Compute console, or check
whether the configuration result is correct based on specific business logic of the

function.

IoT Platform

User Guide / 2 Rules

Procedure

1. Log on to the Function Compute console. Create a service and function.

a. Create a service. Service

required.

Create Service

Name is required. Configure other parameters as

X
* Service Name
1. Only letters, numbers, underscores (), and hyphens (-) are allowed.
3. The name has to be between 1 to 128 characters in length.
Region China (shanghai)
intranet. The region cannot be changed after the service is created.
Description
Advanced Settings
-
g
i
13
o
. .
b. After you have created a service, create a function.
< China (shanghai) > test Delete Service Help. Monitoring
Overview Usage
RS +8a ‘ @ Usage data is updated hourly. For detailed usage report, go to Biling Center. X
Invocations (This Month) Resource Usage (This Month)
n
0.0 0 ees
Basic Configurations =
Service Name test Region China (shanghai)
Created Time ~ 06/28/2018, 09:58:33 Last Modified Time 06/28/2018, 09:58:33
Description
Advanced Configurations =
LogProject @ Logstore @
seniceRoe @
c. Select a function template. A blank template is used as an example.
< Create Function
Create Function Configure Triggers Configure Functon Settings Configure Functon pemissions Verty Configurations

Select Function Template

The rigger configurat

' code for your reference. You can select a template close to your scenario and modify i or you can start with a blank template

Select Al ~ | Searchtemplates Q search

Empty Function api-gateway-nodejs6

nodejss

 blank function. P

This template implements a backend service for API Gateway. It shows how to
configuration and build a complete function.

retum different content formats, such as HTML pages, JSON documents, and
images.

Select Select ViewDetais [U

flask-web
python2.7

get-object-meta
python2.7

Through this template demo, the user can create a serverless flask web project,

This template shows how to retrieve OSS object metadata. When an object with
and invoke the function via URL.

 specified prefix is uploaded to OSS, retrieve the object metadata and upioad it
10088,

Select ViewDetals [1] Select ViewDetals [

nza Next >

copy-oss-object-python27
python2.7

“This tempiate shows how to backup folders ffom a specified OSS bucket to
other destinations. This sample code shows how to backup to Qiniu cloud

Select ViewDetais [Y

get-oss-md5-python27
python2.7

This template shows how to calculate the MDS value of an OSS object. It uses.
the OSS streaming AP to read file to minimize the memory consumption.

Select View Details [4]

106

Issue: 20190311

d. Set parameters for the function.

The function is configured to directly display data on the Function Compute

console.

uuuuuuuuuuuuuuuuu

uuuuuuuuuu

In the proceeding parameters,
Service Name: Select the service created in 7.a.
Function Name: Specify the name of your function.

Runtime: Configure the running environment for the function, for example,

java8.
Code Configuration: Upload your code.

Function Handler: Configure the function entry called to run FC. Setitto com .

aliyun . fc . FcDemo :: handleRequ est .

Configure other parameters as required. For more information, see

configurations in Function Compute.
e. Verify whether the function runs as intended.
After you create a function, you can run it on the Function Compute console for

verification. FC will display information about function output and requests on

the Function Compute console.

https://www.alibabacloud.com/help/product/50980.htm

< Overview Code Triggers

R Code Management

Functions + &3 Event ®@

In-line Edit Import from 0SS (® Upload Zip File Upload Folder
& function_test
Select File
n
Upload a zip or jar file up o 5 MB. Use Tcli to upload larger file.CLI upload file.
Result
Tello world
Summary Logs

erbose] hello worid

2. Configure rules engine after the function successfully passes the verification.
3. Before you configure rules engine, follow the instructions in Create and configure a

rule to write a SQL script to process the data.

E] Note:

Data in JSON and binary formats can be forwarded to FC.

4. Click a rule name to go to the Rule Details page.

5. Select Data Forwarding Add Operation. On the Add Operation page, configure

parameters:

Add Operation X

Select operation:

Send to Function Compute

This operation will push the data toFunction ComputeFor more
information,seeDocumentation

+ Region:

* Service:
test_service

+ Function: Create Service
function_test

+ Authorization: Create Function
AliyunlOTAccessingFCRole

Create RAM Role

- Select Operation: Select Function Compute.

- Region: Select the region that your need to forward data based on your business
requirements. If the region does not have any relevant resources, go to Function

Compute Console to create resources.

@ Note:

Data forwarding to FC is supported in regions including China (Shanghai),
Singapore, and Japan (Tokyo).
Service: Select a service based on your region. If there are no services available,
click Create Service.
Function: Select a function based on your region. If there are no functions
available, click Create Function.
Authorization: Specify the role granted IoT Platform the permission to operate
functions. You need to create a role with permissions to operate functions
before you assign the role to rules engine.
6. Enable the rule. After you run the rule, IoT Hub sends the processed data to FC
based on the compiled SQL statements. The Function Compute console directly

displays the received data based on the defined function logic.
Verify the forwarding result

The Function Compute console collects monitored statistics about function execution
. Statistics are delayed for five minutes, after which you can view monitored statistics

about function execution on the dashboard.

CloudMonitor function_test [QRRCTITEES Create Alam Rule Documentation Go toFunctions Console £ Refresh
S mmerange:] 6h 120 idays 7days 20180628 09:21:44- 2018-06-28 10:21:44 | B
Dashboard Metric Category: TGO TUTRIINERYCICll Request Status Details
® Application Groups -
PP P Totallnvocations(times) a SF9Duration(millisecond) a
Host Monitoring Period: 60 Method: Value Period: 605 Method: Value
3 30
Event Monitoring
Custom Monitoring 2 B
Log Monitoring o
> New Site Monitor
= o o
¥ Cloud Service Monito... 10:09 10:10 o 10:08 100 0L
FunctionTotalInvocations FunctionAvgDuration
> Marms
FunctionErrors(times) a /7 MaxMemoryUsage(MB) a /7

Period: 60s Method: Value Period: 605 Method: Value

0

20

10

10:09 10:10 10:11 10:0 10:10 10:11

FunctionErrors MaxMemoryUsage

3 Monitoring and Maintenance

3.10nline debug
3.1.1 Online debugging

After you complete the device client configuration, you can use the online debugging

function in the IoT Platform console to test and debug the client.

Procedure

1. Log on to the IoT Platform console and then, in the left-side navigation pane, click

Maintenance > Online Debug.

2. On the Online Debugging page, select the device to be debugged.

After you select a device, you are automatically directed to the debugging page.

loT Platform Online Debugging

Quick Start
Devices

Product
Please select the product equipment to be debugged

Device
ed, you can switch from the option at the fop left of the page at any time

Group
test1123
Rules
Data Analysis
Edge Management
Applications

Exiended Services

Real-time Monitering

Device Log
Firmware Update
Remote Config.

Documentation

3. Select Debug Physical Device.

4. Select the feature that you want to test.

Note:

- If you select a property, you need to select an operation method from Set and
Get.

- If you select an event, select Get as the operation method.

IoT Platform Online Debugging
Quick Start Debug Device: | test1128 Bulb
Devices
Froduct Edit Equipment Real-time Logs + Device DetectedOniine Auto-Refresh Refresh
Group Type / Time Content
Rules []
o -
Data Analysis "ECO": "23fF
H
Edge Management
Applications
Extended Services
Maintenance
Real-time Monitoring
Online Debug
Device Log
Firmware Update
Remote Config.
Documentation

5. Dispatch the command.

- Set a property: Enter a property in the format of {" YourProper tyIdentifi
er ": Value },and then click Dispatch Command. You can then see the
operation result from the device log.
- Get a property: Click Dispatch Command. Then, the latest property information
reported by the device is displayed in the box.
- Call a service: Enter an input parameter in the format of {" YourServic
eInputPara m ": Value }, and then click Dispatch Command. You can then
see the operation result from the device log.

- Get an event: Click Dispatch Command. Then, the latest event information

reported by the device is displayed in the box.

3.1.2 Debug applications using virtual devices
IoT Platform provides virtual devices to help developers debug applications.

Currently, only IoT Platform Pro Edition supports the online debugging feature.
Context

A typical IoT development process is as follows: a device client is developed, the
devices report data to IoT Platform, and the developers use the data to develop
applications. However, this development process is time consuming. To resolve
this issue, IoT Platform provides virtual devices that simulate the physical devices
connecting to IoT Platform and reporting defined properties and events. You can

then use the data reported by the virtual devices to debug your applications. After

the physical devices connect to IoT Platform, the corresponding virtual devices will

automatically become inactive.

Limits:

- The minimum time interval for pushing data is 1 second.

- The maximum number of messages that can be pushed at a specific interval is 1,

000.

- The maximum number of times you can use the Push method per day is 100.

Procedure

1.
2.

Log on to the /oT Platform console.

In the left-side navigation pane, choose Maintenance > Online Debug

. On the Online Debugging page, select the device to be debugged.

After you select a device, you are automatically directed to the debugging page.

. Choose Virtual Device > Start Virtual Device.

Note:
If the physical device is active or disabled, you cannot start the corresponding

virtual device.

. Set the content for the simulated push.

Note:

- You can push properties and events. If you have not defined any properties or
events for this product, click Editing model, and then define properties and

events on the Define Feature page of the product.

http://iot.console.aliyun.com/

- For a property value, you can enter a value that complies with the data type

and the value range of the property, or you can enter the function random() to

generate a random value.

The following example shows the Properties page of a device, where the value 220

is entered for Voltage .

Online Debugging

Debug Device: = donotparse parsetest

Edit Equipment Real-time Logs « Davice DetectedOnline Auto-Refresh [Refrash

1 longitude
atitude
altitude

CoordinateSystem

View Data

6. Select a data push method.

- Push: Push the data immediately.
- Push Policy:

- At Specific Time: Push the data at your specified time.

- At Specific Interval: Push the data regularly at your specified time interval in

your specified time range. The unit of time interval is seconds.

Result

After the push operation is executed, the operation log is displayed on the Real-time
Logs tab page.

After the data is pushed, click View Data to view the device details page. On the Status

tab page, you can view property information that has been pushed, and on the Events

tab page you can view event information that has been pushed.

Note:

If you have set a Push Policy, the data will be pushed according to the policy.
After the data has been pushed, the operation log, property information, or event

information will be displayed on the corresponding page.

3.2 Device log

IoT Platform provides device logs that you can use to monitor your devices. On the
Device Log page of the IoT Platform console, you can search for specific device logs
to quickly troubleshoot any errors. This topic describes the device log querying

methods, log types, and reasons for errors found in logs.
Query device logs
Device logs can be of the following four types:

- Device activity analysis logs
- Upstream data analysis logs
- Downstream data analysis logs

- TSL data analysis logs

Note that Basic Edition products only support the following three types of logs: device
activity analysis logs, upstream data analysis logs, and downstream data analysis logs

. Pro Edition products support all four types of logs.

Query device logs:

1. In the left-side navigation pane of the IoT Platform console, click Maintenance >

Device Log.

2. Enter the target items to filter, such as product name, log type, device name, and

time range, and then click Search.

IoT Platform Device Log

s Prodct

Devices

Product

Device Log

Device

TSL Data Analysis | Upstream Analysis | Downstream Analysis | Message Query

Group

Filters for device logs:

Filter Description

DeviceName The device name, which is a unique identifier of a device in a
product. You can query logs of a device by using the device
name as the filter.

MessagelD The message ID, which is the unique identifier of a message
in IoT Platform. You can enter a message ID to search for the
corresponding message forwarding process.

Status The logs that display operation results. The value can be
either successful or failed. Options:

- All
- Successful
- Failed

Time range A specific time range you can specify for querying logs in

that period.
)
Note:

- In the following sections, curly braces {} in log content represent variables. In

actual log content, the real variable is displayed.

- Log content is in English.

When error logs are displayed, all errors (except for system errors)are

caused by improper operations or violations of product restrictions. Such errors

need to be rectified carefully.

Device activity analysis logs

Device activity analysis logs include logs of devices connecting to IoT Platform (

online) and logs of devices disconnecting from IoT Platform (offline).

Device activity analysis logs can be queried by device names and time ranges as

shown in the following figure:

loT Platform Device Log

Quick Start Product : 1220
Devices

Product
oduct Device Log

Device I R A
SL Data Analysis | Upstream A

Group

light1220 Custom 2018-12-19 18:11:5

Rules
Data Analysis
Edge Management
Applications
Extended Services 01/04/2019, 17:50:52
Maintenance
Real-ime Monitoring 01/04/2019, 09:38:34 Light1220

Online Debug

Firmware Updaie
Remote Config.

Documentation

Device connection failures

Message

Description

Kicked by the same device

Another device installed with the same
device certificate as this device has
connected to IoT Platform, and has
brought this device offline.

Connection reset by peer

The TCP connection has been reset by
the peer.

Connection occurs exception

A connection exception has occurred,
and the IoT Platform server has closed
the connection.

Device disconnect

The device sent a disconnection request.

Keepalive timeout

No package was received in a Keep Alive
interval, and the IoT Platform server has
closed the connection.

Message Description

gateway offline The gateway device of the sub-device is
offline.

Upstream data analysis logs

Upstream data analysis logs indicate logs of the following processes: devices sending
messages to topics, messages being forwarded to the rules engine, and the rules

engine forwarding the messages to a target topic or other Alibaba Cloud services.

You can query the upstream data analysis logs by device names, message IDs, status,

or time ranges, as shown in the following figure:

IoT Platform Device Log

Quick Start Product : 1220
Devices

Product
R Device Log

Device Actifivity Analysis SL Data Analysis Downstream Analysis
Group
TDay Resef

Rules
Data Analysis
Edge Management
Applications
Extended Services Total 1 lteme.
Maintenance

Real-time Monitoring

Online Debug

Device Log

Firmware Updale

Remate Config.

Documentation

Error log description

Note:
Error logs include the log content, error messages, and error message descriptions.
Content Error message Description
Device publish message to |Rate limit:{maxQps}, The device publishes
topic:{},QoS={},protocolMe |current qps:{} messages in a frequency
ssageld:{} that exceeds the upper
limit.
No authorization Not authorized.
System error A system error occurred.

Content

Error message

Description

Bad Request

A parameter error has
occurred. A parameter or
parameters such as topic
, payload, token, or option
for COAP communicat
ion, are incorrect or are
missing.

send message to
RuleEngine, topic:{}
protocolMessageld:{}

{eg, too many requests}

Other failure reasons, for
example, IoT Platform
sends too many requests to
the rules engine.

System error

A system error occurred.

Transmit data to DataHub,
project:{},topic:{},from IoT
topic:{}

DataHub Schema:{} is
invalid!

Data type mismatch.

DataHub IllegalArg
umentException:{}

Invalid DataHub
parameters.

Write record to DataHub
occurs error! errors:[code:

{},message:{j]

An error occurred when
data was written to
DataHub.

Datahub ServiceException

:1{}

DataHub service exception

System error

A system error occurred.

Transmit data to MNS,
queue:{},theme:{},from IoT

topic:{}

MNS IllegalArg
umentException:{}

Message Service
parameter exception.

MNS ServiceException:{}

Message Service exception.

MNS ClientException:{}

Message Service client
exception.

System error

A system error occurred.

Transmit data to MQ,topic:
{},from IoT topic:{}

MQ IllegalArgumentExcep
tion:{}

Message Queue parameter
exception.

MQ ClientException:{}

Message Queue client
exception.

System error

A system error occurred.

Content Error message Description
Transmit data to TableStore IllegalArg Table Store parameter
TableStore,instance:{}, umentException:{} exception.
tab%eName:{},from loT TableStore ServiceExc Table Store service
topic:{} . .
eption:{} exception.
TableStore ClientException | Table Store client
{3 exception.
System error A system error occurred.
Transmit data to RDS, RDS IllegalArgumentExcep | ApsaraDB for RDS
instance:{},databaseName |tion:{} parameter exception
J:[{},t'al.)leName:{},frOm IoT 1 rDS cannotGetc Failed to connect to
opic:i} onnectionException:{} ApsaraDB for RDS.
RDS SQLException:{} SQL statement for
ApsaraDB for RDS is
invalid.
System error A system error occurred.
Republish topic, from System error A system error occurred.
topic:{} to target topic:{}
RuleEngine receive Rate limit:{maxQps}, The frequency exceeds the
message from IoT topic:{} [current qps:{} upper limit.
System error A system error occurred.
Check payload, payload:{} |Payload is not json The payload is not in JSON
format.

Downstream data analysis logs

Downstream data analysis logs are logs about messages sent from IoT Platform to

devices.

You can filter logs by device names, message IDs, status, and time ranges, as shown in

the following figure.

1oT Platform Device Log

Quick Start Product : 1220
Devices

Product

oduct Device Log

Device

ce Aclitivity Analysis TSL Data Analysis

Group
Rules
Data Analysis
Edge Management

Applications

Real-time Monitoring
Online Debug
Device Log
Firmware Updaie
Remote Config.

Documentation

Error log description

-

Note:

Al 7Day

032019, 19:4721 1080792729929375745 Light1220

to topic:fsys/als

Total 1 ltems

The logs include the log contents, error messages, and error message descriptions.

Content

Error message

Description

Publish message to topic:
{},protocolMessageld:{}

No authorization

Not authorized.

Publish message to device,

QoS={}

IoT Hub cannot publish
messages

If the IoT Platform
server does not receive
PUBACK from the device
, it continues to send
messages. When the
number of messages
reaches 50, the throttling
policy is triggered.
Consequently, IoT
Platform cannot send new
messages to the device.

Device cannot receive
messages

The device client failed

to receive messages. This
error may be caused by
slow network transmissi
on speeds, or because

the device client cannot
handle any more messages

Rate limit:{maxQps},
current qps:{}

The frequency exceeds the
upper limit.

Content Error message Description

Publish RRPC message to | IoT hub cannot publish The device did not respond
device messages to the server, so the

server continued to send
messages until it reached
the frequency limit.
Consequently, the server
cannot send new messages

Response timeout The device has not
responded to the server
within the specified
timeout period.

System error A system error occurred.

Rrpc finished {e.g rrpcCode} Error messages such as
UNKNOW, TIMEOUT,
OFFLINE and HALFCONN
are displayed.

Publish offline message to |Device cannot receive The device cannot receive
device messages messages from IoT
Platform. The reason

may be that the network
condition is not stable, or
the device client cannot
handle any more messages

TSL data analysis logs

TSL data analysis logs include logs of devices reporting properties and events,

property settings, service callings, and the replies to property and service calls.

You can filter logs by device names and time ranges. If the device data type is Alink

JSON, the page is displayed as shown in the following figure.

loT Flatform Device Log

Quick Start Product : | TestBulb
Devices
5 .
ek Device Log
Device - A - N
Device Actitivity Analysis Upstream Analysis | Downstream Analysis | Message Query
Group
1Hour Sea Reset
Rules —
Data Analysis
Edge Management
01/10/2019, 18:04:51 device1 Downstream Cloud Data: {"method"-"thing.en 9200
Applications
_ - 01M0/2019, 18:04:41 device1 Downstream Cloud Data: {'method"-"thing.di.. 9200
Extended Services
Maintenance 01/10/2019, 18:03:47 devicel Data Reperted by Devices: {'iotld":"rUsUEK... 200
Real-time Monitoring
01/10/2019, 18:03:47 devicel Downstream Cloud Data: {iotld™"rUsUEKGIl
Online Debug
Device Log
Total 4 ltems. n

Firmware Update
Remote Config.

Documentation

If the device data type is Do not parse/Custom (passthrough), in addition to the log

content, the hexadecimal raw data are also displayed. as shown in the following

figure:
Device Log
evice Actlily Analysis —— e A S
. e R o ot _—
/0302018, 12020 logs Ciner: {'metnod"thing :
110802018, 12.01:56 logs Giher {'method" thing
Total 2 ltems n
Table 3-1: Log description
Parameter Description
id The message ID, which is the unique identifier of the message.
params The request parameters.
Code The result code.
method The request method.
type The type of message, which can be upstream or downstream.
scriptData When the data type is Do not parse/Custom, the original data
and parsed data are displayed.
downOriginalData |When the data type is Do not parse/Custom, the original

downstream data to be parsed is displayed.

Parameter Description

downTransf When the data type is Do not parse/Custom, the parsed

ormedData downstream data is displayed.

upOriginalData When the data type is Do not parse/Custom, the original
upstream data to be parsed is displayed.

upTransfor When the data type is Do not parse/Custom, the parsed

medData upstream data is displayed.

Error logs of service callings and property settings

When you call a service on the IoT Platform, the service parameters will be verified

according to the definitions of the service in the TSL of the product.

parameters.

Error code |Description |Cause Troubleshooting method
9201 The device is | When the device is offline, |Check the device status in
offline. this error is reported. the IoT Platform console.
9200 The device |The device has not been Check the status of the
is not activated. When a new device in the IoT Platform
activated yet | device connects to and console.
reports data to IoT
Platform, it is activated in
IoT Platform.
6208 The device |The device has been Check the status of the
has been disabled. You cannot device in the IoT Platform
disabled. call services of, or set console. If the device is
properties for, a disabled |disabled, enable the device
device. and then try the operation
again.
6300 The method |The specified identifier of |See the TSL of the product
parameter |service is not found in the | to which the device
is not found |TSL. belongs in the IoT Platform
when the console, and verify the
system is identifier of the service.
verifying the

Error code |Description |Cause Troubleshooting method
6206 Failed to The service is not found. See the TSL of the product
query the to which the device
definition of belongs, and check the
the service. definition of the service
. Make sure that the
definition of the service is
the same as that in the TSL
6200 Data parsing | If the data type of the Go to the product details
scriptis not |device is Do not parse/ page in the IoT Platform
found. Custom, when you call a console to verify whether
service, the data will be the parsing script has been
parsed by the script that submitted. If the parsing
you have defined. If you script is ready, resubmit it
have not defined a parsing |and then try the call again.
script for the product, this
error code is displayed.
6201 The parsing | The parsing script runs Check the script and
result is normally, but returns troubleshoot the cause.
empty. an empty result. For

example, the response

of rawDataToProtocol is
null, or the response of
protocolToRawData is null
or empty.

Error code |Description |Cause Troubleshooting method
6207 The data This error may occur For data format in
format is when devices report data | calling services, see AP/
incorrect. to IoT Platform or you documentations and the TSL

call services using the
synchronous method.
When you call services in
the synchronous method
, this error may be caused
because:

- The format of the data
returned by the device
is incorrect.

- The format of the
parsed result for Do not
parse/Custom data is
incorrect.

- The format of the input

parameters is incorrect.

of the product. For the data
format of Alink JSON, see
Alink protocol.

System exception codes

5159

Failed to
obtain the
property
information
from the TSL

5160

Failed to
obtain

the event
information
from the TSL

5161

Failed to
obtain

the event
information
from the TSL

A system exception
occurred.

Open a ticket in the
console and submit
information about the
error in the ticket for
further consultation.

Error code

Description

Cause

Troubleshooting method

6661

Failed to
query the
tenant
information.

6205

An error
occurred
when calling
the service.

Error logs for reporting properties and events

When a device is reporting a property or an event, the parameters of the property or

event that you input will be verified based on the TSL of the device.

passthrough data reported
by the device.

Error code |Description |Cause Troubleshooting method

6106 The A device can only report View the logs of property
number of [up to 200 properties at a reports and check the
properties |time. number of properties
reported of the device on the IoT
exceeds the Platform. Or, view the
upper limit. local logs for the property

number of the device.

6300 The method |The method parameter View the logs of property
parameter |, which is required by reports for the reported
is not found | the Alink protocol, is data on the IoT Platform.
when the not found in the Alink (Or, view the local logs for
system is standard) format data the reported data.
verifying the | reported by the device or
parameters. | in the parsed data of the

Error code |Description |Cause Troubleshooting method
6320 The The specified propertyis |On the product details
property not found in the TSL of the |page in the IoT Platform
information | device. console, view the TSL
is not found of the product to which
when the the device belongs to
system is determine whether the
verifying the specified property has
property already been defined. If
parameters. the property has not been
defined in the TSL, define
it.
6450 The method |The parameter of method |View the logs of device
parameter | is not found in the Alink property reporting
in Alink data | data reported by a device |and check whether the
is not found | or in the parsed result of |parameter of method has
Do not parse/Custom data. |been reported. Or you can
check the local device logs
for the information.
6207 The data This error occurs when For data format, see Alink
format is you call a service in the protocol documentations
incorrect. synchronous method or

devices report data to IoT
Platform.

When devices report data
to IoT Platform, this error
may occur because the
Alink data reported by
devices is not in JSON
format, or the parsed
result of Do not parse/
Custom is not in JSON
format.

System exceptions

6452

Traffic
limiting

Traffic throttling has been
triggered because too
many requests have been
submitted.

Open a ticket in the
console for troublesho
oting.

Error code |Description |Cause Troubleshooting method

6760 The storage |A system exception Open a ticket in the
quota of the [occurred. console and submit
tenant is information about the
exceeded. error in the ticket for

further consultation.

The reply messages of service callings and property settings

Error code

Description

Cause

Troubleshooting method

Common error codes

time period.

submitted.

460 Invalid The request parameters Open a ticket in the
parameters. |[are invalid. console for troublesho

oting.

500 A system An unknown exception Open a ticket in the
exception occurred in the system. console for troublesho
occurred. oting.

400 An error An unknown exception Open a ticket in the
occurred occurred when calling the |console for troublesho
when calling | service. oting.
the service.

429 Too many Traffic throttling has been |Open a ticket in the
requestsin | triggered because too console for troublesho
the specified | many requests have been |oting.

System exception codes

6452

Traffic
limiting

Traffic throttling has been
triggered because too
many requests have been
submitted.

Note:
If the data type of the
device is Do not parse/
Custom, you may receive
this error code. The
input parameters will be
verified again based on
the TSL of the device.

Open a ticket in the
console for troublesho
oting.

Common error codes about TSL

When a service of a device is being called or a device is reporting a property or an

event, the input parameters of the service, property, or event will be verified based on

the TSL of the device.
Error code |Description [Cause Troubleshooting method
6321 The A system exception Open a ticket in the
identifier of [occurred. console and submit
the property information about the
is not found error in the ticket for
in the TSL. further consultation.
6317 The TSL of | A system exception Open a ticket in the
the device |occurred. console and submit
product is information about the
incorrect. error in the ticket for
further consultation.
6302 Required When verifying the input | On the product details
parameters |parameters of the service |page in the IoT Platform
are not , the system does not find | console, view the TSL
found. one or more required of the product to which
parameters in the request. | the device belongs for
the required parameters.
Check the parameters in
the TSL and make sure
that you have input all the
required parameters.
6306 The input When the parameters are |On the product details
parameter |verified according to the |page in the IoT Platform
does not TSL, the following errors | console, view the TSL of
comply may be found: the product to which the
Yvith the . The data type of the device belongs, and make
integer data . . sure that the data type that
> . Input parameter 1s))
spec1ﬁca't10n different from the data | YY" have input 1? the same
defined in type defined in the TSL. as the data type in the TSL.
the TSL. .
- The input parameter
value is not in the range
defined in the TSL.

Error code |Description |[Cause Troubleshooting method
6307 The input When the parameters are |On the product details
parameter |verified according to the page in the IoT Platform
does not TSL, the following errors |console, view the TSL of
comply with | may be found: the product to which the
the 3.2-b1t . The data type of the device belongs, and make
floating . . sure that the data type that
int data iaput parameter is ou have input is the same
pomt[ﬁ a . different from the data | ¥ hed P defined i
speci ca.tlon type defined in the TSL. as the data type de ned in
defined in . The inout parameter the TSL, and the value is in
the TSL. 'p P . the value range defined in
value is not in the range the TSL
defined in the TSL.)
6322 The input When the parameters are | On the product details
parameter |verified according to the page in the IoT Platform
does not TSL, the following errors | console, view the TSL of
comply with [may be found: the product to which the
the 6‘4—b1t . The data type of the device belongs, and make
floating . . sure that the data type that
int data imput parameer is ou have input is the same
pomj[ﬁ a . different from the data | ¥’ hed P defined i
speci ca.tlon type defined in the TSL. as the data type de ned in
defined in . The input parameter the TSL and the value is in
the TSL. PUE P the value range defined in
value is not in the range the TSL
defined in the TSL. '
6308 The input When the parameters are |On the product details
parameter |verified according to the page in the IoT Platform
does not TSL, the following errors | console, view the TSL of
comply may be found: the product to which the
with the . The data type of the device belongs, and make
boolean data . . sure that the data type that
ificat imput parameer is ou have input is the same
.spe(cll ﬁca q different from the data | he d P i
%on efine type defined in the TSL. as the data type in the TSL.
in the TSL.

- The input parameter
value is not in the range
defined in the TSL.

Error code |Description |[Cause Troubleshooting method

6309 The input The data type of the input |On the product details
parameter parameter is different page in the IoT Platform
does not from the data type defined |console, view the TSL of
comply in the TSL. the product to which the
with the device belongs, and make
enum data sure that the data type that
specification you have input is the same
defined in as the data type defined in
the TSL. the TSL.

6310 The input When the parameters are |On the product details
parameter |verified according to the |page in the IoT Platform
does not TSL, the following errors | console, view the TSL of
comply with [may be found: the product to which the
the tgxt deolta . The data type of the device belongs, and make
specification . . sure that the data type that

] Input parameter 1s .]
defined in different from the data | YOU have input is the same
the TSL. type defined in the TSL. ?s the data type defined
. in the TSL and the data
- The length of the input
length does not exceed the
data exceeds the length limit
limit defined in the TSL.)

6311 The input When the parameters are |On the product details
parameter |verified according to the page in the IoT Platform
does not TSL, the following errors |console, view the TSL of
comply with [may be found: the product to which the
the d?te data | The data type of the device belongs, and make
specificat . . sure that the data type that
) input parameter is .)
%on defined different from the data | YOU have input is the san'le
in the TSL. type defined in the TSL. as the data type defined in

- The input data is not a
UTC timestamp.

the TSL.

Error code |Description |Cause Troubleshooting method
6312 The input When the parameters are |On the product details
parameter |verified according to the page in the IoT Platform
does not TSL, the following errors |console, view the TSL of
comply may be found: the product to which the
with the . The data type of the device belongs, and make
struct data . . sure that the data type that
. . Input parameter 1s)]
spec1ﬁca-t10n different from the data | YO have input 1? the same
defined in type defined in the TSL. as the data type in the TSL.
the TSL. - The number of the
struct data type
parameters that you
have input is different
from the number of
struct parameters
defined in TSL.
6304 The input When the parameters are |On the product details
parameter is | verified according to the |page in the IoT Platform
not found in | TSL, one or more input console, view the TSL of
the defined |struct parameters are not |the product to which the
struct found in the defined struct |device belongs, and make
parameters |parameters in the TSL. sure that the data type that
in the TSL. you have input is the same
as the data type in the TSL.
6324 The input When the parameters are | . Op the product details
parameter |verified according to the page in the IoT Platform
does not TSL, the following errors console, view the TSL
comply may be found: of the product to which
with the . The element data the device belongs, and
array dat% type that you input check the array type
spec1ﬁca.t10n is different from the parameters.
defined in element type defined in | - View the upstream logs
the TSL.

the TSL.

- The number of array
type parameters that
you have input exceeds

the limit of array type
parameters defined in
the TSL.

of the device, and check
the number of array
type elements in the
data reported by the
device.

Error code |Description |Cause Troubleshooting method
6328 The input When the parameters are |On the product details
parameter is | verified according to the |page in the IoT Platform
not an array | TSL, an input value of console, view the TSL of
type data. |array type parameter is not | the product to which the
of array type data. device belongs, check
the array type parameters
in the TSL, and then
check whether or not the
parameter that you have
input is of array type data.
6325 The element | This error is reported Make sure that the element
type of when the parameters type that you have input is
array type [that you input according |supported by IoT Platform.
data is not to the TSL are being
supported |verified. Currently, only
by IoT the following element
Platform. types of array type data are

supported: int32, float,
double, text, and struct.

System exception codes

6318 A system
exception
occurred
when
parsing the

TSL.

6329 Failed to
parse the
data of

the array
type data
specificat
ion in the
TSL when
verifying the
parameters.

6323 The
parameter
type of
the TSL is

incorrect.

A system exception
occurred.

Open a ticket in the
console and submit
information about the
error in the ticket for
further consultation.

Error code

Description

Cause

Troubleshooting method

6316

An error
occurred
when
parsing the
parameters
in the TSL.

6314

The data
type is not
supported.

6301

An error
occurred
when
verifying
the input
parameter
type
according to
the TSL.

Data parsing e

rrors

26010

Traffic
throttling
has been
triggered
because
too many
requests
have been
submitted.

Too many requests in the
specified time period.

Open a ticket in the
console for troublesho
oting.

26001

The content
of the
parsing
script is
empty.

The parsing script content
is not found.

On the product details
page in the IoT Platform
console, check your data
parsing script. Make sure
that the script has been
saved and submitted. A
draft script cannot be used
to parse data.

Error code |Description |Cause Troubleshooting method

26002 An The script runs properly |In the IoT Platform
exception , however, the script console, enter the same
occurred content is incorrect, for parameters and run
when example, there are syntax | the script to debug.
running the |mistakes in the script. The console only has
script. a basic script running

environment. Therefore,
it cannot precisely verify
the content of the script
. We recommend that
you inspect your script
carefully before you
submit it.

26006 The The script runs properly | On the product details
required , however, the script page in the IoT Platform
method is content is incorrect. console, check that
not found in | protocolToRawData and protocolToRawData and
the script. rawDataToProtocol are rawDataToProtocol have

required in a script. If they
are not found, this error
will be reported.

been defined.

result data of protocolTo
RawData must be byte(]
array, and the result data
of rawDataToProtocol
must be jsonObj (JSON
object). If the defined
result data types are not
these two types, this error
will be returned. After a
device reports data, the
execution result will be
returned to the device. The
returned result data also
will be parsed. If you have
not defined protocolTo
RawData in the script,

the returned data may be
incorrect.

Error code |Description |Cause Troubleshooting method
26007 The The script runs properly |Inspect the script in the
returned , but the returned result IoT Platform console.
data typeis | datatype isincorrect. Enter the input parameters
incorrect Check the definitions of , run the script, and verify
after data protocolToRawData and whether the result data
parsing. rawDataToProtocol. The type is correct.

Query message content

Click Message Query and then query the payload contents that are sent by devices.

Search for payload contents by message IDs. Currently, only messages with QoS 1 can

be queried.

You can select to display the original data or the Base64-encoded data.

IoT Platform Device Log
Quick Start Product : | TestBulb
Devices

FErH Device Log

peviee Device Actitivity Analysis TSL Data Analysis Upstream Analysis Downstream Analysis I:l
Group

Data Analysis Basef4-encoded Data

Rules

Edge Management
Applications
Extended Services
Maintenance
Real-time Monitoring
Online Debug
Device Log
Firmware Updaie
Remote Config

Documentation

3.3 Firmware update

IoT Platform provides the firmware update function. To update firmware, you need
to configure your device client to support OTA updates. Then, in the IoT Platform
console, you can upload a firmware file and push the firmware update file to devices.
This topic describes how to configure firmware updates and manage firmware file

versions.

Prerequisites
Before you use the firmware update function, make sure that you have developed your

device client to support OTA updates.

- If you use device SDKs, see OTA updates.
- If you use AliOS Things, see OTA tutorial for AliOS Things.

Procedure
1. Log on to the IoT Platform console.

2. In the left-side navigation pane, click Maintenance > Firmware Update

Note:
To provide better services, IoT Platform now allows you to manage firmware
versions by product. As such, when you use the new version of the firmware
update function for the first time, you need to associate your previously uploaded
firmware files with your products manually. You can only associate a firmware file
to one product. After you associate your existing firmware files to products, you

can add new firmware files.

https://github.com/alibaba/AliOS-Things/wiki

3. On the Firmware Update page, click New Firmware.

Note:

Each Alibaba Cloud account can have up to 100 firmware files.

4. In the Add Firmware dialog box, enter the firmware information and upload the

firmware file.

1aT Platform Firmware Update
A mwat
Quick Start Firmware List ersions -
Devices o
@ Firmware Update has been upgraded. The fir & automatically bound based on the previous firmware update data. For more
Product information. contact Allbaba Cloud technicals
Device
Group Firmware List Secure Update
Rules Al 7] test0306
Firmware Name Created At Status L Actions
Real-time Mo. £
Online Debug Validate Firmware
Device Log testD308 1 0310712019, 18:36:02 Unverified MD5 Update Datails
Remote Config.
Documentation
Table 3-2: Parameter description
. .
Parameter Description
Firmware Name Enter a firmware name. The name must be 4 to 32 characters

in length and can contain letters, numbers, Chinese
characters, and underscores (_). It cannot begin with an
underscore.

Firmware Version |Enter a version for the firmware. The version must be 1 to
64 characters in length and can contain letters, numbers,
periods (.), hyphens (-), and underscores (_).

Product Select the product to which the firmware belongs.
Signature Supported signature algorithms are MD5 and SHA256.
Algorithm

Upload Firmware | Upload a firmware file. Only files in BIN, TAR, GZ, and Zip
format are supported. The size of a firmware file cannot
exceed 10 MB.

5. (Optional) if your devices use chips with AliOS Things, you can use the secure

update function.

We recommend that you activate the secure update function to ensure the integrity

and confidentiality of the firmware. The secure update function requires device

information for firmware verification and firmware signature verification. If you

use AliOS Things, see OTA tutorial for AliOS Things.

a) On the Firmware Update page, click Secure Update.

b) In the Secure Update dialog box, turn the button of the secure update function

to Activated for the products whose devices use AliOS Things.

When the secure update function is Activated, you can click the corresponding

Copy button to copy the key for device signature use.

. In the firmware list, click the corresponding Validate Firmware button, and then

verify whether the uploaded firmware file is available.

Note:
After the firmware file is uploaded to IoT Platform, you need to test whether the
firmware file is available on one or more devices. Only when you confirm that
the test devices have been successfully updated can the firmware file be used for

batch update. You can launch validations for a firmware to occur multiple times.

loT Platform Firmware Update
Quick Start Firmware List
Devices
Product @ E;rpﬂwﬁr__irﬁnpartj‘aﬂl: q::[k;iler‘v\‘l‘.g:gggdglgumgfgrv.‘are wversion information of each oroduct is collected. The firmware and products are automatically bound based on the previous firmware update data. For
ere Validate Firmware
Group Firmware List - Secure Update New Firmware
Rules All
Maintenance ~ ~ E—
R — Firmware Name Fir * ::‘::I ng Update Version reated At Status Slgﬂé. i Actions
Online Debug - :
Device Log yinna_testGJOEI_ 10 ' -:n'a?:;.'\- 204/2018, 22:37:34 ;/evﬁad D5
Firmware Upﬂ
Remote Config S
Documentation testGJ3 10— S 712512018, 15:34:50 .Jm-erﬁad MD5
Parameter Description
Pending Update The drop-down box displays the current firmware versions
Version of all devices of the product. Select one or more versions that
you want to update to the new version.
After you select the versions, the devices with these firmware
versions will be displayed when you click the drop-down
button of DeviceName.
DeviceName Select one or more devices to test the firmware file.

Note:

https://github.com/alibaba/AliOS-Things/wiki

Devices receive the firmware update notifications:

- If the devices that connect to IoT Platform through MQTT are online, they
will immediately receive the update notifications. If the devices are offline
, the system will push the update notifications to the devices when they go
online again.

- If the devices using other connection protocols (such as CoAP or HTTPS) are
online, they will immediately receive the update notifications. If the devices
are offline, they cannot receive the notifications.

Provided that you perform a firmware validation operation, the firmware status

will change from Unverified to Verified. However, the status of the firmware

does not indicate that the test devices have been updated successfully or that

the firmware file is available. Click Update Details to see the update result.

7. Click Batch Update, configure an update method, and then push update

notifications to devices.

Note:
Make sure that the firmware file has successfully passed the verification before

you perform a batch update.

loT Platform Firmware Update
Quick Start e list .
Devices
Product [] arcrp:,‘ﬁcgr*%%gt: qiiéﬁ?&ﬁfﬁgd&%ﬂ'}:m & automatically bound based on the previous firmware update data. For
Device
Group Firmware List Secure Update New Firmware
Rules G
Maintenance ~ ~ - - Firmuw. .
Realime Mo Firmware Name Fir reated At Status Signa Actions
Online Debug
Device Log yinna_testGJONE S 14 20442018, 22:37:34 :/enied D5
Firmware Upd.
Remote Config. o e Validate Firmware
Documentation tesiGJ3 10 e 112572018, 15:34:50 Unverifieg MDS Update Details
— ‘;'B\IC
tesiGJ2 10 - 712572018, 15:12:02 — 1DS j;
Parameter Description
Pending Update The drop-down box displays the current firmware versions
Version of all devices of the product. Select one or more versions that
you want to update to the new version.

Parameter

Description

Update Policy

- Static Update: Only update activated devices that meet the
specified criteria.

- Dynamic Update: All devices that meets the specified
criteria receive an update notification. If you select
Dynamic Update, the system maintains the scope of
devices that need to be updated, including devices that
have reported the current versions and newly activated
devices.

Update Region

- All Devices: All devices that belong to the product will be
updated.

- Directional Upgrade: If you select Directional Upgrade,
Device Range field will appear. You then need to select
devices to be updated. Only selected devices will be
updated.

Note:
You can select multiple pending versions if you select to
update specified devices. The version that you previously
selected for update is selected by default. If you have
not specified any version, all versions are selected by
default.

Update Time

Specify a time when the update performs.

- Update Now: Update immediately after the request is
submitted.

- Scheduled Update: Manually specify a time for the system
to push the update requests to devices. You can specify a
time in the range of five minutes to seven days later.

Note:
Scheduled Update is available only when the update
policy is Static Update.
If you specify a scheduled update time, in the Pending
tab page of Firmware Details, you can see the scheduled

update time.

Parameter Description

Retry After Failed |Configure that when the system retries to send update
Update request again if the update fails. Options:

- Do Not Retry

- Retry Immediately
- Retry in 10 Minutes
- Retry in 30 Minutes
- Retry in 1 hour

- Retry in 24 hours

Max. Retry Times |Select how many times the system can retry. Options:
-1
- 2
-5

Result
Click Update Details to view the update status.

- Pending: This tab page lists the devices which are selected for update. Two types
of pending status are available: Pending (Device offline) and Pending (Scheduled

time: XXXX-XX-XX XX:XX:XX)

- If the device is offline and the update time is scheduled for a later time, the
status is shown as Pending (Scheduled time: xxxx-XX-XX XX:XX:XX).
- When it reaches the scheduled time, and the device is still offline, the status will
change to Pending (Device offline).
- Updating: This tab page lists the devices that have received the update notifications
and have reported their update progresses to the console. If no update progress is
received from the device, the progress ratio is 0.
- Update Successful: This tab page lists the devices which have been successfully
updated.
- Update Failed: This tab page lists the devices that have failed the update and

provides the reasons. The following are some causes of update failures:

- The device has another update task in progress. After the device has finished the
current update task, you can try to update it for this version again.

- During the updating progress, a firmware package download failure, firmware
file extraction failure, verification failure, or other failures occurred. In these

cases, you can try updating again.

Click Versions on the Firmware Update page and then select a product to view the

firmware used by the devices of the product.

- Version Distribution: Displays the percentages of firmware usages in the product.
Names and versions of the top five firmware are displayed, and other firmware are
grouped in Others.

- Versions and Devices: Displays all the firmware versions used by devices of the
product and the number of devices that use the versions.

- Device List: Displays all the devices of the product. You can select a firmware

version to view the devices that use this version.

3.4 Remote configuration

IoT Platform provides the remote configuration function, which allows device

configurations to update online when the device is in service.
Prerequisites

- You have activated the remote configuration function in the IoT Platform console.
If you have not activated this function, log on to the IoT Platform console and then,
in the left-side navigation pane, click Maintenance > Remote Config.. Then, click
Enable Service.

- You have configured your device SDK to support the remote configuration
function. Define FEATURE_SE RVICE_OTA_ ENABLED = vy inthe device
SDK. The SDK provides the 1inkkit_cota_init operation to initialize remote

configurations such as Config Over The Air (COTA).
Introduction to the remote configuration function

Developers often need to update device configurations, such as the system
parameters, network parameters, and security policies of devices. Generally, device
configurations are updated using the firmware update function. However, firmware
update requires more time for firmware version maintenance, and devices must
stop their services in order to install the update. To streamline the device configurat
ion update process, IoT Platform provides the remote configuration function. This

function enables you to complete configuration updates without service interruption.
With the remote configuration function, you can perform the following operations:

- Enable or disable remote configuration.

Edit configuration files and perform version management in the IoT Platform

console.
Update the configuration information for all devices of a product at one time.

Enable devices to send requests for configuration update from IoT Platform.

Remote configuration flow chart:

aa

User

1. The device subscribes to the topic of push configuration.
2. The user edits a configuration fileinthe loT Platformconsole. |

> h {fsys/S{productkey}/3{deviceNamel}/thing/config/push}

3. The user pushes the configuration information.
> 3.1 loT Platform pushes the configuration to the device.

L 4

{fsys/5{productkey}/S{deviceName}/thingfconfig/push}

4 The device subscribes to the topic of reply configuration.

{fsys/S{productkey}/S{deviceName}/thing/config/get_reply}

5. The device triggers a request for the latest configuration.

{fsys/S{productkey}/S{deviceName}/thing/config/get}

5.1 loTPlatform returns the latest configuration to the device.

________________________________ »
{fsys/S{productkey}/S{deviceName}/thing/config/get_reply}

The processes involved in remote configuration include the ability to:

Edit and save configuration files in the IoT Platform console.

Push configuration updates to all devices of a product in the IoT Platform console.
Then, when the devices receive the update requests, they immediately update their
configurations.

Devices can also send requests for configuration updates from IoT Platform, and

then perform update when configuration information is received.
Use the remote configuration function

The remote configuration function is mainly designed for two scenarios, namely, you
want to push configuration updates to devices from IoT Platform, or you want to allow
devices to send requests for configuration updates. The process of using the remote

configuration function varies based on different scenarios.

Scenario 1: Push configuration information to devices from IoT Platform.

In the IoT Platform console, you can push device configuration updates to all devices

of a product.
1. Connect the devices to IoT Platform and configure the devices to subscribe to the
topic / sys /${ productKey }/${ deviceName }/ thing / config / push .
2. In the IoT Platform console, edit a configuration file.
a. In the left-side navigation pane, click Maintenance > Remote Config..

b. Select the product for which you want to use the remote configuration function,

and enable the function.

loT Platform Remote Configuration
Quick Start Product :|| test1128
Devices
Rules) .

Remote Configuration Remote configuration has :se"ena\:leD
Data Analysis

@ IoT Platform supports remote update to the device configuration files in JSON format. You can edit the configuration template below to remoiely cunﬂuura Ihe system parameters and network

Zdge Management parameters of a device and remotely manage and maintain multiple devices by updating the device configuration files. For more information, see
Applications

Configure Template

Real-ime Monitoring
Online Debug
Device Log

Firmware Update

Remote Config

Documentation Y

ETll| Batch Update

Configuration version record

E] Note:

Only if you enable the remote configuration function for the selected product
can you edit a configuration template file for it.
If the remote configuration function is not enabled, devices of the product

cannot be updated in this way.

A configuration template file that you edit here is used by all the devices of
the product. Currently, you cannot push a configuration file to a specified
device.

c. Click Edit, and then edit a configuration template in the area of Configuration

Template.

IoT Platform Remote Configuration
Quick Start Product : | lesi1125
Devices
Rules
Remote Configuration Remote configuration has beenenable

Data Analysis
@ IoT Platiorm supporis remate update to the device configuration files in JSON format. You can edit the configuration template below to remotely cunﬂuure Ihe sysiem parameters and network |

Edge Management parameters of a device and remotely manage and maintain multiple devices by updating the device configuration files. For more information, se
Applications
Configure Template
Exiended Services
[T -
Maintenance ‘tempratture”: 5@

=
Real-time Monitoring
Online Debug
Device Log
Firmware Update
Remote Config.

Documentation

E] Note:

Remote configuration files are JSON files. IoT Platform does not have special
requirements for the configuration content. The system only checks the
format of the data when you submit the configuration file. This is to prevent

errors that are caused by format errors.

The configuration file can be up to 64 KB. The file size is dynamically
displayed in the upper-right corner of the editing area. Configuration files
larger than 64 KB cannot be submitted.

d. After you have completed editing the configuration information, click Save to

generate the configuration file. The system then allows devices to send requests

for the configuration file.

loT Platform Remote Configuration
Quick Start Product : | fest1128

Devices

Rules

Remote Configuration Remote configuration has beenenable @)
Data Analysis

@ IoT Platform supports remote update to the device configuration files in JSON format. You can edit the configuration template below to remotely configure the system parameters and network

Edge Management parameters of a device and remotely manage and maintain multiple devices by updating the device configuration files. For more information, seeDocumentation
Appiications
Configure Template Submitted A112/28/2018, 15:25 Si KB (Size Limit64KI
T S Are you sure you want to submit this
configuration? This configuration will be
Maintenance 2 "tempratture”: 5@ automatically updated to all devices under this
El I product after you submit this configuration.
Real-ime Menitoring

Onling Debug m Cance!

Device Log
Firmware Upaats
Remote Config

Documentation

3. Push the configuration file to devices. Click Batch Update and then IoT Platform

sends the configuration file to all the devices of the product.

After you click Batch Update, the system may initiate SMS authentication to verify
your account. If authentication is required, you need to first complete account

verification, and then the system sends the configuration file to the devices.

loT Platform Remote Configuration
Quick Start Product : | test1128

Devices

Rules

Remote Configuration Remote configuratien has beenenable @)
Data Analysis

@ loT Platform supports remote update to the device cnnﬂ'guranorl\. ﬁ\le.r.dm JSDE fon'r:‘:ati YuLLcaD edit the cignﬂgL‘iraﬁz‘n tan:'\p\ata below to remotely configure the system parameters and network
[rimEnin mailtinia, Amsin s B meebine S i ranfinetinn Flne

Edge Management parameters of a device and remotely manage and ‘or more information, seeDocumentation
= Are you sure you want to perform a remote
RIS Configure Template Submitied A01/08/2019, 17:3 configuration update to all the devices under this File Size KB (Size Limit64K
Submitted AD1/08/2019, 17:3 o e Size 1KB (Siz
Extended Services product?
i e Note' Al d

Maintenance 3 SRR

Real-time Monitoring

Online Debug

Device Log

Firmware Update
Remote Config.

Documentation

Edit Baich Update

il
|:| Note:

Operation frequency limit: You can only perform a batch update once per hour.

If you want to stop pushing configuration updates, disable the remote
configuration function for the product. The system then stops pushing the
update file and will deny update requests from devices.

4. Devices automatically update the configuration after receiving the configuration

file from IoT Platform.
Configuration file management:

The latest five configuration files are saved in the console by default. After you edit
and save a new version of configuration file, the previous version is automatically
displayed in the configuration version record list. You can view the update time and

content of the displayed five versions.

Remote Configuration

test001

Remote Configuration Remote configuration has beenenable

@ |oT Platform supports remote update to the device configuration files in JSON format. You can edit the configuration template be\ow 10 remote\y configure the system parameters and network parameters of a
device and remotely manage and maintain multiple devices by updating the device configuration files. For more information, seeD ental

Configure Template

{
}

@ Toedit the configuration file, click the "Edit" button below

Edit Batch Update

Seria Version Updated At Actions

01 11/20/2018, 22:20:29

Click View to view the configuration content of the version. Click Recover to This
Version, and the configuration content of this version will be displayed in the editing

box. You can edit the content and then save it as a new version.

Remote Configuration

test001 v

Remote Configuration Remote configuration has beenenable (@)
Version11/20/2018, 22:33:10

@ |oT Platform supports remote update remotely configure the system and network ofa
device and remotely manage and mai & sethetConfig": "oooonoc’ 1gntation

Configure Template Submitied At11/40 File Size1KB (Size Limit64KB)
I 7
"setletConfig": "xxoco0x”

}

Cancel

@ To eait the configuration file, click the "Edit” button below.

Edit Batch Update

Serial Version Updated At Actions

01 11/20/2018, 22:20:29

Scenario two: Devices send requests for configuration information.

If devices are configured to send requests for configuration information, you need to

enable the remote configuration function. To do so, follow these steps:

1. Configure the devices to subscribe to the topic / sys /${ productKey }/${
deviceName }/ thing / config / get_reply .

2. In the IoT Platform console, enable the remote configuration function and edit a
configuration file. For detailed steps, see the related procedures in Scenario 1.

3. Configure the devices to call the 1inkkit_invoke_cota_get_config operation to
trigger requests for remote configuration.

4. Configure the devices to send requests for the latest configuration updates through
the topic / sys /${ productKey }/${ deviceName }/ thing / config / get .

5. IoT Platform returns the latest configuration information to the devices after
receiving the requests.

6. The devices use the cota_callb ack function to process the configuration file

that is sent through the remote configuration function.

4 General protocols

4.1 Overview

The Alibaba Cloud IoT Platform already supports MQTT, CoAP, HTTP and other
common protocols, yet fire protection agreement GB/T 26875.3-2011, Modbus and
JT808 is not supported, and in some specialized cases, devices may not be able to
connect to IoT Platform. At this point, you need to use general protocol SDK to quickly
build a bridge between your devices and platform to Alibaba Cloud IoT Platform,

allowing two-way data communication.
General protocol SDK

The general protocol SDK is a protocol self-adaptive framework, using for high-
efficiency bi-directional communication between your devices or platform to IoT

Platform. The SDK architecture is shown below:

IoT Platform User Guide / 4 General protocols

Devices

Connect and B

r L 15 i
L C | :
i | :
)j\ i Device Connection
CJ O >l L ayer I
""""" | General i
' Protocol
I Server SDK

General protocol provides two SDKs: Core SDK and Server SDK.
- General protocol core SDK

Core SDK abstracts abilities like session and configuration management. It acts

like a net bridge between devices and IoT Platform and communicates with the

152 Issue: 20190311

Platform in representation of devices. This greatly simplifies the development of

IoT Platform. Its main features include:

- provides non-persistent session management capabilities.

- provides configuration management capabilities based on configuration files.
- provides connection management capabilities.

- provides upstream communication capability.

- provides downstream communication capabilities.

- supports device authentication.

If your devices are already connected to the internet and you want to build a bridge

between IoT Platform and your devices or existing platform, choose core SDK.

- General protocol server SDK

Server SDK provides device connection service on the basis of core SDK function.

Its main features include:

- supports any protocol that is based on TCP/UDP.

- supports TLS/SSL encryption for transmission.

- supports horizontal expansion of the capacity of device connection.

- provides Netty-based communication service.

- provides automated and customizable device connection and management

capability.

If you want to build the connection service from scratch, choose server SDK which

provides socket for communication.
Development and deployment
Create products and devices in IoT console

Create products and devices in console. See Create a product (Pro Edition) for more

information. Acquire the ProductKey, DeviceName and DeviceSecret of the net bridge

device you've just created.

Note:
Net bridge is a virtual concept, and you can use the information of any device as

device information of the net bridge.

SDK dependency

General protocol SDKs are currently only available in Java, and supports JDK 1.8 and

later versions. Maven dependencies:

<! -- Core SDK -—->
< dependency >
< groupId > com . aliyun . openservic es </ groupIld >
< artifactId > iot - as - bridge - sdk - core </ artifactId >
< version > 1 . 0 . 0 </ version >
</ dependency >
<! -- Server SDK -->
< dependency >
< groupId > com . aliyun . openservic es </ groupId >
< artifactId > iot - as - bridge - sdk - server </ artifactId >

< version > 1 . 0 . 0 </ version >
</ dependency >

Develop SDK

#unique_79and Server SDK briefly introduces the development process. For detailed

implementation, refer to javadoc.
Deployment

The completed bridge connection service can be deployed on Alibaba Cloud

using services like £CS and SLB, or deployed in local environment to guarantee

communication security.

The whole process (if using Alibaba Cloud ECS to deploy) is shown below:

Create Net Bridge Products Develop b

Obtain Productkey, DeviceName = Configure
and Devicesecret DeviceName

4.2 Develop Core SDK

You can integrate the IoT Platform bridge service with existing connection services
or platforms that use the general protocol core SDK to allow devices or servers to

quickly access Alibaba Cloud IoT Platform.
Prerequisites

For information about the concepts, functions, and Maven dependencies of the

general protocol core SDK, see Overview.
Configuration management

The general protocol core SDK uses file-based configuration management by default.
For information about customized configurations, see Custom components > Configuration

management. The general protocol core SDK supports:

- Java Properties, JSON, and HOCON formats.
- Structured configuration to simplify maintenance.

- The override of file configurations with Java system properties, such as java -

Dmyapp.foo.bar=10.

- Configuration file separation and nested references.
Table 4-1: application.conf

Net bridge is a virtual concept. You can use the productKey , deviceName ,and

deviceSecr et ofany device as the information of the net bridge.

Parameter Required Description
productKey Yes The product ID of the net bridge product.
deviceName No The device name of the net bridge device. The

default value is the ECS instance MAC address.

deviceSecr No The device secret of the net bridge device.
et

https://github.com/lightbend/config/blob/master/HOCON.md

Parameter

Required

Description

http2Endpo

int

Yes

HTTP/2 gateway service address.

The address format is ${UID}.iot-as-http2.
S${RegionId}.aliyuncs.com:443.

where:

- ${UID} indicates your account ID. To view
your account ID, log on to the Alibaba Cloud
console, hover your mouse over your account
image, and click Security Settings. You are then
directed to the Account Management page that
displays your account ID.

- ${RegionId} indicates the region ID where
your service is located. For example, if the
region is Shanghai, the HTTP/2 gateway service
addressis 123456789 . iot - as - http2 .

cn - shanghai . aliyuncs . com : 443 .

For information about RegionlId expressions,

see Regions and zones.

authEndpoi
nt

Yes

Device authentication service address

Device authentication service address: https://

jot-auth. S${RegionId}.aliyuncs.com/auth/

bridge.

${RegionId} indicates the region ID where your

service is located. For example, if the region

is Shanghai, the device authentication service

addressis https :// dot - auth . cn -
shanghai . aliyuncs . com / auth / bridge

For information about Regionld expressions, see

Regions and zones.

popClientP
rofile

Yes

Call APIs to configure the client. For details, see
the API client configuration.

Table 4-2: API client configuration

Parameter Required Description
accessKey Yes The access key of the API caller.
accessSecret Yes The secret key of the API caller.

https://www.alibabacloud.com/help/doc-detail/40654.htm
https://www.alibabacloud.com/help/doc-detail/40654.htm
https://www.alibabacloud.com/help/doc-detail/40654.htm

Parameter Required Description

name Yes The region name of the API.

region Yes The region ID of the API.

product Yes The name of the product. Setitto Iot ifnot
specified.

endpoint Yes The endpoint of the API.

Endpoint structure: jot.

S{RegionId}.aliyuncs.com.

${RegionId} indicates the region ID of your

service. For example, If the region is Shanghai,

the endpointis iot . cn - shanghai
aliyuncs . com .

For information about Regionld expressions, see

Regions and zones.

devices.conf

Configure the ProductKey, DeviceName, and DeviceSecret of the device. For

information about customizing configuration files, see Custom components >

Configuration management.

XXXX // Original identifier s of the device

" productKey ": " 123 ",
deviceName : "",
deviceSecr et : ""

}
Interfaces
Initialization

com . aliyun . jot . as . bridge . core . BridgeBoot strap initializes
the communication between the device and Alibaba Cloud IoT Platform. After the

BridgeBootstrap instance is created, the Basic configurations component of the gateway
will be initialized. For information about customizing configurations, see Custom

components > Configuration management.
Complete the initialization using one of the following interfaces:

bootstrap ():initialization without downstream messaging.

https://www.alibabacloud.com/help/doc-detail/40654.htm
https://www.alibabacloud.com/help/doc-detail/40654.htm

bootstrap (DownlinkCh annelHandl er handler):initialize using

DownlinkCh annelHandl er specified by the developer.

Sample code:

BridgeBoot strap bootstrap = new BridgeBoot strap ();
// Do not implement downstream messaging
bootstrap . bootstrap ();

Connect devices to IoT Platform

Only devices that are online can establish a connection with or send connection

requests to IoT Platform. There are two methods that can enable devices to get online

: local session initialization and device authentication.
1. Session initialization

The general protocol SDK provides non-persistent local session management. See

Custom components > Session management for information on customization.

Interfaces for creating new instances:

com . aliyun . dot . as . bridge . core . model . Session
newInstanc e (String originalld entity , Object channel)
com . aliyun . dot . as . bridge . core . model . Session
newInstanc e (String originalld entity , Object channel
int heartBeatI nterval)

com . aliyun . dot . as . bridge . core . model . Session
newInstanc e (String originalld entity , Object channel

int heartBeatI nterval , -1nt heartBeatP robes)

originalld entity indicatesthe unique device identifier and has the
same function as SN in the original protocol. channel isthe communication
channel between devices and bridge service, and has the same function as a
channel in Netty. heartBeatI nterval and heartBeatP robes are used for
heartbeat monitoring. The unit of heartBeatInterval is seconds. heartBeatProbes
indicates the maximum number of undetected heartbeats that is allowed. If this
number is exceeded, a heartbeat timeout event will be sent. To handle a timeout
event, register com . aliyun . iot . as . bridge . core . session

SessionlLis tener .

2. Authenticate devices

After the initialization of local device session, use com . aliyun . iot . as
bridge . core . handler . UplinkChan nelHandler . doOnline (
Session newSession , String originalld entity , String ...
credential s) tocomplete local device authentication and Alibaba Cloud
IoT Platform online authentication. The device will then either be allowed to
communicate or will be disconnected according to the authentication result. SDK
provides online authentication for 10T Platform. By default, local authentication

is disabled. If you need to set up local authentication, see Customized components >

Connection authentication.

Sample code:

UplinkChan nelHandler uplinkHand 1ler = new UplinkChan

nelHandler ();

Session session = session . newinstanc e (device , Channel
)5

boolean success = uplinkHand Tler . doOnline (session ,

originalld entity);
if (success) {

// Successful 1y got online , and will accept
communicat don requests .
} else {

// Failed to get online , and will reject
communicat don requests and disconnect (if connected).

}

Device Offline

When a device disconnects or detects that it needs to disconnect, a device offline

operation must be initiated. Use com . aliyun . ot . as . bridge . core .
handler . UplinkChan nelHandler . doOffline (String originalld

entity) to bring a device offline.
Sample code:

UplinkChan nelHandler uplinkHand 1ler = new UplinkChan
nelHandler ();
Uplinkhand T1ler . dooffline (originalid entity);

Report Data

Youcanuse com . aliyun . iot . as . bridge . core . handler .
UplinkChan nelHandler to reportdatato Alibaba Cloud IoT Platform. Data

reporting involves three key steps: identify the device that is going to report data,

locate the corresponding session for this device, and report data to IoT Platform. Use

the following interfaces to report data.

Note:

Make sure that the data report has been managed and security issues have been
handled.

Completabl eFuture doPublishA sync (String originalld entity

, String topic , byte [] payload , 1int qos):send data
asynchronously and return immediately. You can then obtain the sending result
using future.

Completabl eFuture doPublishA sync (String originalld entity

, ProtocolMe ssage protocolMs g):send dataasynchronously and
return immediately. You can then obtain the sending result using future.

boolean doPublish (String originalld entity , ProtocolMe

ssage protocolMs g , int timeout):send data asynchronously and
wait for the response.

boolean doPublish (String originalld entity , String

topic , byte [] payload , 1int qos , 1int timeout):send data

asynchronously and wait for the response.

Sample code:

UplinkChan nelHandler uplinkHand Tler = new UplinkChan
nelHandler ();
Devicelden tity identity = ConfigFact ory . getDeviceC
onfigManag er (). getDevivic elIdentity (device);
if (didentity == null) {
// Devices are not mapped with those registered on
IoT Platform , and messages are dropped
return ;
}
Session session = SessionMan agerFactor y . getInstanc e ().
getSession (device);
if (session == null) {
// The device is not online . You can either get
the device online or drop messages . Make sure devices
are online before reporting data to IoT Platform .
+
boolean success = uplinkHand 1ler . doPublish (session , topic

, payload , 0 , 10);
if (success) {
// Data is successful 1y reported to Alibaba Cloud
IoT Platform .
} else {
// Failed to report data to IoT Platform

Downstream Messaging

The general protocol SDK provides com . aliyun . ot . as . bridge . core
handler . DownlinkCh annelHandl er asthe downstream data distribution

processor. It supports unicast and broadcast (if the message sent from the cloud does

not include specific device information).
Sample code:

public class SampleDown TlinkHandle r implements DownlinkCh
annelHandl er {
@ Override
public boolean pushToDevi ce (Session session , String
topic , byte [] payload) {
// Process messages pushed to the device

@ Override
public boolean broadcast (String topic , byte [] payload
) |

}

// Process broadcast

Custom components

You can customize the device connection authentication, session management, and
configuration management components. You must complete the initialization and

substitution of those components before calling BridgeBootstrap intialization.
Connection authentication

To customize the device connection authentication, implement com . aliyun
iot . as . bridge . core . auth . AuthProvid er and then, before
initializing BridgeBootstrapcall, call com . aliyun . jot . as . bridge . core
auth . AuthProvid erFactory . init (AuthProvid er customized
Provider) to replace the original authentication component with the customized

component.
Session management

To customize the session management, implement com . aliyun . dot . as
bridge . core . session . SessionMan ager and then, before initializing
BridgeBootstrapcall, call com . aliyun . jot . as . bridge . core

session . SessionMan agerFactor y . init (SessionMan ager <? >

customized SessionMan ager) toreplace the original session management

component with the customized component.
Configuration management

To customize the configuration management, implement com . aliyun . djot .
as . bridge . core . config . DeviceConf -digManager and com . aliyun
iot . as . bridge . config . BridgeConf digManager .Then, before
initializing BridgeBootstrapcall, call com . aliyun . jot . as . bridge . core
config . ConfigFact ory . init (BridgeConf -igManager bcm ,
DeviceConf dgManager dcm) toreplace the original configuration management
component with the customized component. If the parameters are left empty, the

general protocol SDK default values will be used.

4.3 Server SDK

4.3.1 Interfaces for UDP

You can build an access service which uses UDP transmission protocol and bridge it
to Alibaba Cloud IoT Platform using the interfaces of the general protocol SDK for
UDP.

Bootstrap

com.aliyun.iot.as.bridge.server.BridgeServerBootstrap is the bootstrap class for
booting socket server and bridge service. After a new BridgeServerBootstrap is

created, components based on configuration files will be initialized.
Example:

BridgeServ erBootstra p bootstrap = new BridgeServ
erBootstra p (new UdpDecoder Factory () {
@ Override
public MessageToM essageDeco der newInstanc e () {
// Return decoder

}
}, new UdpEncoder Factory () {
@ Override
public MessageToM essageEnco der <?> newInstanc e () {
// Return encoder

}, new UdpBasedPr otocolAdap torHandler Factory () {

@ Override
public Customized UdpBasedPr otocolHand Tler newInstanc e () {
// Return protocol adapter

1)

try {
bootstrap . start ();

} catch (BootExcept <don | ConfigExce ption e) {
// Process boot exception
+

Instantiation of UDP type BridgeServerBootstrap

- com.aliyun.iot.as.bridge.server.channel.factory.UdpDecoderFactory: Create a
new decoder instance using the factory method to decode upload data. Thread is
secure. Can be null.

- com.aliyun.iot.as.bridge.server.channel.factory.UdpEncoderFactory: Create a new
encoder instance using the factory method to encode downstream data to adapt to
UDP protocol. Thread is secure. Can be null.

- com.aliyun.iot.as.bridge.server.channel.factory.UdpBasedProtocolAdap
torHandlerFactory: Create a new protocol adapter instance using the factory
method to adapt decoded data so they can be uploaded to the cloud. Thread is

secure. Cannot be null.
Start socket server

After the creation of BridgeServerBootstrap, call com.aliyun.iot.as.bridge.server.

BridgeServerBootstrap.start() to start the socket server.
Protocol decoding

The component for protocol decoding derives from

io.netty.handler.codec.MessageToMessageDecoder<I>. Refer to MessageToMessageDeco

der Documentation for details.
Example:

public class SampleDeco der extends MessageToM essageDeco
der < DatagramPa cket > {

@ Override
protected void decode (ChannelHan dlerContex t ctx ,
DatagramPa cket in , List < Object > out) throws Exception

// The decoding protocol
- }
Protocol encoding
The component for protocol encoding derives from

io.netty.handler.codec.MessageToMessageEncoder<I>. Refer to MessageToMessageEnco

der Documentation for details.

http://netty.io/4.1/api/index.html?io/netty/handler/codec/MessageToMessageDecoder.html
http://netty.io/4.1/api/index.html?io/netty/handler/codec/MessageToMessageDecoder.html
http://netty.io/4.1/api/index.html?io/netty/handler/codec/MessageToMessageEncoder.html
http://netty.io/4.1/api/index.html?io/netty/handler/codec/MessageToMessageEncoder.html

Example:

public class SampleEnco der extends MessageToM essageEnco
der < T >{
@ Override
protected void encode (ChannelHan dlerContex t ctx , T
msg , ByteBuf out) throws Exception {
// Protocol encoding

}
}

Protocol adapter

To reduce cost and improve the efficiency of development, the general protocol server
SDK provides protocol adapters with extensible and customizable basic capability
class com.aliyun.iot.as.bridge.server.channel.CustomizedUdpBasedProtocolHand
ler. It encapsulates details to access Alibaba Cloud IoT Platform, so you can focus on

other business. The protocol adapter derives from this class.
Device Online

Only online devices can establish a connection with or send connection requests to
IoT Platform. There are two steps for devices to get online: local session initialization

and device authentication.
1. Session Initialization

Refer to Core SDK develop > Device Online > Session Initialization for details.

2. Device Authentication

After local session initialization, call doOnline(Session newSession, String
originalldentity, String... credentials) or doOnline(String originalldentity, String
... credentials) to complete local device authentication and Alibaba Cloud IoT
Platform online authentication. The device can communicate with IoT Platform if
authentication succeeds, and will be disconnect from IoT Platform if authentica

tion fails.

Example:

Session session Session . newInstanc e (device , channel

)5
boolean success
if (success) {
// Successful 1y got online , and will accept
communicat don requests .
} else {
// Failed to get online , and will reject
communicat don requests and disconnect (if connected).

doOnline (session , originalld entity);

}

Device Offline

When the device is disconnected or detects that it needs to be disconnected, the
device offline action should be initiated. Using server SDK, devices will automatically
get offline when they are disconnected, so you can focus on other tasks. Call doOffline

(Session session) to bring devices offline.
Report Data

The protocol adapter needs to use override channelRead(ChannelHandlerContext ctx
, Object msg). It is the entrance for all devices to report data. Object msg is the data

output from the decoder.

There are three steps for data reporting: identify the device that is going to report
data, find the corresponding session for this device, and then report data to IoT

Platform. Use the following interfaces to report data:

- CompletableFuture doPublishAsync(String originalldentity, String topic, byte[]
payload, int qos): send data asynchronously and return immediately. Developers
obtain the sending result using future.

- CompletableFuture doPublishAsync(String originalldentity, ProtocolMessage
protocolMsg): send data asynchronously and return immediately. Developers
obtain the sending result using future.

- boolean doPublish(String originalldentity, ProtocolMessage protocolMsg, int
timeout): send data asynchronously and wait for the response.

- boolean doPublish(String originalldentity, String topic, byte[] payload, int qos, int

timeout): send data asynchronously and wait for the response.

Example:
DeviceIden tity identity = ConfigFact ory . getDeviceC
onfigManag er (). getDevivic elIdentity (device);
if (didentity == null) {

// Devices are not mapped with those registered on
IoT Platform . Messages are dropped .

return ;
}
Session session = SessionMan agerFactor y . getInstanc e ().
getSession (device);
if (session == null) {
// The device is not online . Please get online or
drop messages . Make sure devices are online before

reporting data to IoT Platform .

boolean success = doPublish (session , topic , payload , 0 ,
10)
if (success) {

// Data is successful 1y reported to Alibaba Cloud
ToT Platform .
} else {

// Failed to report data to IoT Platform

Downstream Messaging

Not supported yet.

4.3.2 Interfaces for TCP

You can build an access service which uses TCP transmission protocol and bridge it to

Alibaba Cloud IoT Platform using the interfaces of the general protocol SDK for TCP.
Bootstrap

com.aliyun.iot.as.bridge.server.BridgeServerBootstrap is the bootstrap class for
booting socket server and bridge service. After a new BridgeServerBootstrap is

created, components based on configuration files will be initialized.
Example:

BridgeServ erBootstra p bootstrap = new BridgeServ
erBootstra p (new TcpDecoder Factory () {
@ Override
public ByteToMess ageDecoder newInstanc e () {
// Return decoder

}, new TcpEncoder Factory () {
@ Override
public MessageToB yteEncoder <? > newInstanc e () {
// Return encoder
}
}, new TcpBasedPr otocolAdap torHandler Factory () {
@ Override
public Customized TcpBasedPr otocolHand Tler newInstanc e

0O {
// Return protocol adapter
}

}, new DefaultDow nlinkChann elHandler ());
try |
bootstrap . start ();
} catch (BootExcept don | ConfigExce ption e) {
// Process boot exception

}

Instantiation of TCP type BridgeServerBootstrap

- com.aliyun.iot.as.bridge.server.channel.factory.TcpDecoderFactory: Create a new
decoder instance using factory method to decode upload data. Thread is secure.

Can be null.

- com.aliyun.iot.as.bridge.server.channel.factory.TcpEncoderFactory: Create a new
encoder instance using factory method to encode downstream data to adapt to TCP

protocol. Thread is secure. Can be null.

- com.aliyun.iot.as.bridge.server.channel.factory.TcpBasedProtocolAdaptorHandler
Factory: Create a new protocol adapter instance using factory method to adapt
decoded data so they can be uploaded to the cloud. Thread is secure. Cannot be
null.

- com.aliyun.iot.as.bridge.core.handler.DownlinkChannelHandler: Distributor for
downstream data. Supports unicast and broadcast. Unicast forwards data directly
to the device by default. Broadcast settings must be customized by developers. Can

be null. Null indicates that downstream data is not allowed.
Start socket server

After the creation of BridgeServerBootstrap, call com.aliyun.iot.as.bridge.server.

BridgeServerBootstrap.start() to start the socket server.
Protocol decoding

The component for protocol decoding derives from
io.netty.handler.codec.ByteToMessageDecoder. Refer to ByteToMessageDecoder

Documentation for details.
Example:

public class SampleDeco der extends ByteToMess ageDecoder

{
@ Override
protected void decode (ChannelHan dlerContex t ctx ,
ByteBuf in , List < Object > out) throws Exception {
// The decoding protocol
}

}

Protocol encoding

The component for protocol encoding derives from
io.netty.handler.codec.MessageToByteEncoder<I>. Refer to MessageToByteEncoder

Documentation for details.
Example:

public class SampleEnco der extends MessageToB yteEncoder <
String >{
@ Override
protected void encode (ChannelHan dlerContex t ctx ,
String msg , ByteBuf out) throws Exception {

http://netty.io/4.1/api/io/netty/handler/codec/ByteToMessageDecoder.html
http://netty.io/4.1/api/io/netty/handler/codec/ByteToMessageDecoder.html
http://netty.io/4.1/api/io/netty/handler/codec/MessageToByteEncoder.html
http://netty.io/4.1/api/io/netty/handler/codec/MessageToByteEncoder.html

// Protocol encoding

}
}
Protocol adapter

To reduce cost and improve the efficiency of development, the general protocol server
SDK provides protocol adapters with extensible and customizable basic capability
class com.aliyun.iot.as.bridge.server.channel.CustomizedTcpBasedProtocolHand
ler. It encapsulates details to access Alibaba Cloud IoT Platform, so you can focus on

protocol related business. The protocol adapter derives from this class.
Device Online

Only online devices can establish a connection with or send connection requests to
IoT Platform. There are two steps for devices to get online: local session initialization

and device authentication.
1. Session Initialization

Refer to Core SDK develop > Device Online > Session Initialization
2. Device Authentication

After local session initialization, call doOnline(ChannelHandlerContext ctx,
Session newSession, String originalldentity, String... credentials) to complete local
device authentication and Alibaba Cloud IoT Platform online authentication. The
device can communicate with IoT Platform if authentication succeeds, and will be

disconnect from IoT Platform if authentication fails.

Example:

Session session Session . newInstanc e (device , channel

)5

boolean success

if (success) {
// Successful 1y got online , and will accept

communicat don requests .

} else {
// Failed to get online , will reject communicat

jon requests and disconnect (if connected).

}

doOnline (session , originalld entity);

Device Offline

When the device is disconnected or detects that it needs to be disconnected, the
device offline action should be initiated. Using server SDK, devices will automatically
get offline when they are disconnected, so you can focus on other tasks. Call doOffline

(Session session) to bring devices offline.

Report Data

The protocol adapter needs to use override channelRead(ChannelHandlerContext ctx
, Object msg). It is the entrance for all devices to report data. Object msg is the data

output from the decoder.

There are three steps for data reporting: identify the device that is going to report
data, find the corresponding session for this device, and then report data to IoT

Platform. Use the following interfaces to report data:

- CompletableFuture doPublishAsync(Session session, String topic, byte[] payload,
int qos): send data asynchronously and return immediately. Developers obtain the
sending result using future.

- CompletableFuture doPublishAsync(Session session, ProtocolMessage protocolMs
g): send data asynchronously and return immediately. Developers obtain the
sending result using future.

- boolean doPublish(Session session, ProtocolMessage protocolMsg, int timeout):
send data asynchronously and wait for the response.

- boolean doPublish(Session session, String topic, byte[] payload, int qos, int

timeout): send data asynchronously and wait for the response.

Example:
Devicelden tity identity = ConfigFact ory . getDeviceC
onfigManag er (). getDevivic eIdentity (device);
if (didentity == null) {
// Devices are not mapped with those registered on
IoT Platform . Messages are dropped .
return ;
}
Session session = SessionMan agerFactor y . getInstanc e ().
getSession (device);
if (session == null) {
// The device is not online . Please get online or
drop messages . Make sure devices are online before

reporting data to IoT Platform .

boolean success = doPublish (session , topic , payload , 0 ,
10)
if (success) {

// Data is successful 1y reported to Alibaba Cloud
IoT Platform .
} else {

// Failed to report data to IoT Platform

Downstream Messaging

Refer to Core SDK development > Downstream Messaging for details.

The SDK provides com.aliyun.iot.as.bridge.core.handler.DefaultDownlinkChann
elHandler as the downstream data distributor. It supports unicast and broadcast.
Unicast forwards data from the cloud directly to the device by default, and broadcast
requires developers to customize specific implementations. Customization can be

realized by deriving subclass.
Example:

import io . netty . channel . Channel ;
import Io . netty . Channel . channelfut wure ;

public class SampleDown 1linkChanne T1Handler implements
DownlinkCh annelHandl er {
@ Override
public boolean pushToDevi ce (Session session , String
topic , byte [] payload) {
// Obtain communicat don channel from device ' s
correspond 1ing session .

Channel channel = (Channel) session . getChannel ().
get ();
’ if (channel ! = null && channel . isWritable ()) {
String body = new String (payload , StandardCh

arsets . UTF_8);

// Send downstream data to devices

ChannelFut wure future = channel . pipeline ().
writeAndFl wush (body);

future . addListene r (ChannelFut wurelListene r .
FIRE_EXCEP TION_ON_FA TILURE);

return true ;

}

return false ;

}

@ Override
public boolean broadcast (String topic , byte [] payload
) {

}

throw new RuntimeExc eption (" not implemente d ");

4.3.3 Server SDK

You can use the general protocol server SDK to quickly build a bridge service that

connects your existing devices or services to Alibaba Cloud IoT Platform.
Prerequisites

Refer to Overview for concepts, functions and Maven dependencies of the general

protocol server SDK.

Configuration Management

The general protocol server SDK uses file-based configuration management by

default. Add the socketServer parameter in application.conf, and set the socket server

related parameters listed in the following table. For customized configuration, refer

to Custom Components > Configuration Management .

Parameter Description Required
address The connection listening No
address. Supports network
names like eth1, and IPv4
addresses with 10.30 prefix.
backlog The number of backlogs for TCP |No
connection.
ports: Connection listening port. The |No
default port is 9123. You can
specify multiple ports.
listenType The type of socket server. Can No
be udp or tcp .The default
valueis tcp . Case insensitive.
broadcastE Whether UDP broadcasts No
nabled are supported. Used when
listenType is udp .The
default value is true.
unsecured Whether unencrypted TCP No
connection is supported. Used
when listenType is tcp.
keyPassword The certificate store password. |No
Used when listenType is tcp.
Note:
Effective when keyPassword,
keyStoreFile, and keyStoreType
are all configured. Otherwise,
keyPassword does not need to
be configured.
keyStoreFile The file address of the certificat |No
e store. Used when listenType is
tep.

Parameter Description Required

keyStoreType |The type of certificate store. No
Used when listenType is tcp.

Interfaces

The following two articles assume that you have a basic understanding of Netty-

based development. Refer to Netty Documentation for more details on Netty-based

development.

- Interfaces for TCP

- Interfaces for UDP

Custom Components

Besides file-based configuration, you can also set your own customized configurat

ions.

If you want to customize configurations, implement com.aliyun.iot.as.bridge.server
.config.BridgeServerConfigManager first and call com.aliyun.iot.as.bridge.server.
config.ServerConfigFactory.init(BridgeServerConfigManager bcm) to replace default
configuration management components with customized ones, and then initialize

these components. Then, connect the net bridge products to the Internet.

https://netty.io/wiki/user-guide-for-4.x.html

5 RRPC

5.1 What is RRPC?

Because the Message Queuing Telemetry Transport (MQTT) protocol uses a publish/
subscribe-based asynchronous communication method, this protocol is not suitable
for scenarios where the server need to synchronously send requests to devices and
receive responses from the devices. In response to the issue, IoT Platform enables
synchronous request and response communication without the need to modify the

MQTT protocol. To do so, the server calls the IoT Platform API.
Terminology

- RRPC: The remote synchronous process call.

- RRPC request message: The message that is sent to a device from the cloud.

- RRPC response message: The response message that is sent to the cloud from a
device.

- RRPC message ID: A unique message ID that is generated by IoT Platform for each
RRPC request.

- RRPC subscription topic: A topic that a device subscribes to for RRPC messages.

The topic includes a wildcard (+).

Message communication using RRPC

1. When IoT Platform receives an API call from the server, it sends an RRPC request
message to the device. The message body is any input data, and the topic is the
topic defined by IoT Platform, which includes the unique RRPC message ID.

2. After the device receives the request message, it returns an RRPC response
message to the cloud according to the defined topic format, and including the
RRPC message ID. 10T Platform extracts the message ID from the topic, matches
the ID with the ID of the request, and then sends the response to the server.

3. If the device is offline when the call is performed, IoT Platform returns an error
message to the server indicating that the device is offline. If the device does not
send any response message within the timeout period, IoT Platform then returns a

timeout error to the server.

Topic format
Topics are implemented in different formats for different methods.

- For information about system topics, see System-defined topics.

- For information about custom topics, see Custom topics.

5.2 System-defined topics
With RRPC method, you can establish communications between devices and IoT

Platform by using system-defined topics. These topics include the ProductKey and

DeviceName of the devices.
System-defined topics
The formats of system-defined topics that are used in RRPC calls are as follows:

- RRPC request topic: /sys/${YourProductKey}/${YourDeviceName}/rrpc/request/${
messageld}

- RRPC response topic: /sys/${YourProductKey}/${YourDeviceName}/rrpc/response/
${messageld}

- RRPC subscription topic: /sys/${YourProductKey}/${YourDeviceName}/rrpc/

request/+

In the topic formats, ${YourProductKey} and ${YourDeviceName} are device
information used to identify a device, and ${messageld} is the RRPC message ID

issued by IoT Platform.
Use RRPC
1. Call RRpc API

Call the RRpc API and input your device information into the SDK. For API calling
method, see RRpc.

The following example uses Java SDK to show the calling method:

RRpcReques t request = new RRpcReques t ();
request . setProduct Key (" testProduc tKey ");

request . setDeviceN ame (" testDevice Name ");

request . setRequest Base64Byte (Base64 . getEncoder ().
encodeToSt ring (" hello world "));

request . setTimeout (3000);

RRpcRespon se response = client . getAcsResp onse (request

)

2. The device returns the response.

When the device receives the RRPC request message, it returns a RRPC response

message based on the request topic format.

The device extracts the message ID from the request topic, /sys/${YourProduc
tKey}/${YourDeviceName}/rrpc/request/${messageld}, generates a corresponding

response, and then sends a response message to IoT Platform.

5.3 Custom topics

RRPC supports calling custom topics so that devices can communicate with the cloud.

A communication topic contains the entire custom topic.
Topic formats
The format of a topic for RRPC is as follows:

- Request topic: /ext/rrpc/${messageld}/${topic}
- Reply topic: /ext/rrpc/${messageld}/${topic}
- Subscription topic: /ext/rrpc/+/${topic}

In the preceding formats, ${messageld} indicates the message ID generated by IoT

Platform, and ${topic} indicates the topic you created.
RRPC connection
1. Connect the device to the cloud SDK.

Call the RRPC API to connect your device to the cloud SDK. For more information

about the call method, see RRPC.
The following example uses the Java SDK for the call method:

RRpcReques t request = new RRpcReques t ();

request . setProduct Key (" testProduc tKey ");

request . setDeviceN ame (" testDevice Name ");

request . setRequest Base64Byte (Base64 . getEncoder ().
encodeToSt ring (" hello world "));

request . setTopic ("/ testProduc tKey / testDevice Name / get
"y;// If you want to use your custom topic , enter
the custom topic .

request . setTimeout (3000);

RRpcRespon se response = client . getAcsResp onse (request

)

To use a custom topic, make sure that your Java SDK (aliyun-java-sdk-iot) version is

6.0.0 or later.

< dependency >
< groupId > com . aliyun </ groupId >
< artifactId > aliyun - java - sdk - dot </ artifactId >
< version > 6 . 0 . 0 </ version >

</ dependency >

2. Connect the device to the cloud.
If you want the cloud to send RRPC call requests to the device using a custom
topic, when you configure the MQTT communication protocol you must add the

parameter ext=1 into clientId. For more information, see Establish MQTT over TCP

connections.

For example, the original clientld that the device sends is as follows:

mgttClient Id : <clientId +"| securemode = 3 , signmethod =
hmacshal , timestamp = 132323232 |"

After ext=1 is added to the clientId, the clientId that the device sends is as follows:

mgttClient Id : <clientId +"| securemode = 3 , signmethod =
hmacshal , timestamp = 132323232 , ext = 1 |"

Note:
If you use RRPC to establish communication between your devices and the cloud,

and you use a custom topic, make sure that:

- The topic variable in the message that is sent from the cloud is not empty.
- The parameter ext=1 is added into clientId.

3. Return the reply topic.

The request topic can be used as the reply topic because the format of the reply

topic is the same as that of the request topic, and the messageld is not extracted.

https://www.alibabacloud.com/help/doc-detail/73742.htm
https://www.alibabacloud.com/help/doc-detail/73742.htm

6 Device shadows

6.1 Device shadows

A device shadow is a JSON file that is used to store the reported status and the desired

status of the device.

- Each device only has one device shadow. The device gets and sets the device
shadow based on Message Queuing Telemetry Transport (MQTT). Therefore, the
device shadow status and the device status can synchronize.

- The application uses the SDK of 10T Platform to get and set the device shadow
. Then, the application can obtain the latest device status from and deliver the

desired status to the target device by using the device shadow.
Scenario 1

A device frequently disconnects from and reconnects to IoT Platform. This is caused
by unstable network conditions. The application cannot obtain the device status
when requesting the status from an offline device, and fails to send another device

status request when the device is reconnected.

The device shadow can synchronize with the device to update and store the latest
device status. Therefore, the application can obtain the current device status from the

device shadow of an offline or online device.
Scenario 2

A device has to respond to each status request when multiple applications request the
status of this device in stable network conditions. Even if the responses are the same,

the device may be overloaded when processing these requests.

On IoT Platform, the device synchronizes the status to the device shadow only.
Applications can request the latest device status from the device shadow, instead of

the target device. Therefore, applications are decoupled from the device.

Scenario 3

- A device frequently disconnects from and reconnects to IoT Platform. This is

caused by unstable network conditions. A device that is in offline status cannot

receive application commands.

- Quality of Service 1 or 2 (QoS 1 or 2) may solve this issue. However, we do not
recommend that you use this method. This method increases the workload of
the service.

- On IoT Platform, the device shadow stores the control commands that contain
the timestamps when the application sends these commands. The device
obtains these commands and checks their timestamps to determine whether to

execute the commands when the device has reconnected to IoT Platform.

- A device in offline status cannot receive the commands from the application. When

the connection has recovered, the device executes valid commands by checking

the timestamps of the device shadow commands.

6.2 Device shadow JSON format

Format

of the device shadow JSON file

The format is as follows:

{

" state ": {

" desired ": {

" attributel ": dnteger2 ,
" attribute2 ": " string2 ",
" attributeN ": boolean2

I

" reported ": {

" attributel ": dntegerl ,
" attribute2 ": " stringl ",
" attributeN ": booleanl

+

s

" metadata ": {

" desired ": {

" attributel ": {

" timestamp ": timestamp

J
attribute2 ": {
timestamp ": timestamp

b

attributeN ": {
timestamp ": timestamp

¥y

" reported ":

{

" attributel ":

" timestamp ":

1,

" attribute2 ":

" timestamp ":

3,

" attributeN ":

" timestamp ":

}
}
¥y

" timestamp ":
" version ":

}

{

timestamp

{

timestamp

{

timestamp

timestamp ,

version

The JSON properties are described in Table 6-1: JSON property.

Table 6-1: JSON property

Property

Description

desired

The desired status of the device.
The application writes the desired property of the device,
without accessing the device.

reported

The status that the device has reported. The device writes data to
the reported property to report its latest status.
The application obtains the status of the device by reading this

property.

metadata

The device shadow service automatically updates metadata
according to the updates in the device shadow JSON file.

State metadata in the device shadow JSON file contains the
timestamp of each property. The timestamp is represented as
epoch time to obtain exact update time.

timestamp

The latest update time of the device shadow JSON file.

version

When you request updating the version of the device shadow,
the device shadow checks whether the requested version is later
than the current version.

If the requested version is later than the current one, the device
shadow updates to the requested version. If not, the device
shadow rejects the request.

The version number is increased according to the version
update to ensure the latest device shadow JSON file version.

Example of the device shadow JSON file:

" state " : {

" desired " : {

" color " : " RED ",

" sequence " : [" RED ", " GREEN ", " BLUE "]

)
" reported " : {
" color " : " GREEN "

" metadata " : {

" desired " : {

" color " : {

" timestamp " : 1469564492
I

" sequence " : {

" timestamp " : 1469564492

" reported " : {

" color " : {

" timestamp " : 1469564492

}

+

I

" timestamp " : 1469564492 ,
" version " : 1

}
Empty properties

- The device shadow JSON file contains the desired property only when you have
specified the desired status. The following device shadow JSON file, which does not

contain the desired property, is also effective:

{

" state " : {

" reported " : {

" color " : " red ",

+

s

" metadata " : {

" reported " : {

" color " : {

" timestamp " : 1469564492
}

}

1,

" timestamp " : 1469564492 ,
" version " : 1

}

- The following device shadow JSON file, which does not contain the reported

property, is also effective:

" state " : {

" desired "
" color "

}

1,

" metadata "
" desired "
" color "

" timestamp "

}
by
1,

" timestamp "

" version "

}

Array

n red n ,

{

1469564492

1469564492

1

The device shadow JSON file can use an array, and must update this array as a whole

when the update is required.

- Initial status:

{

" reported "

- Update:

{

" reported "

- Final status:

{

" reported "

}

6.3 Device shadow data stream

{ " colors "

{ " colors "

{ " colors "

[u RED n, " GREEN u’ " BLUE "] }
[u RED ll] }
[n RED u] }

IoT Platform predefines two topics for each device to enable data transmission. The

predefined topics have fixed formats.

- Topic: /shadow/update/s{YourProductKey}/s{YourDeviceName}

Devices and applications publish messages to this topic. When IoT Platform

receives messages from this topic, it will extract the status information in the

messages and will update the status to the device shadow.

- Topic: /shadow/get/${YourProductKey}/${YourDeviceName}

The device shadow updates the status to this topic, and the device subscribes to the

messages from this topic.

Take a lightbulb device of a product bulb_1 as an example to introduce the
communication among devices, device shadows, and applications. In the following
example, the ProductKey is 10000 and the DeviceName is lightbulb. The device
publishes messages to and subscribes to messages of the two custom topics using the
method of QoS 1.

Device reports status automatically

The flow chart is shown in Figure 6-1: Device reports status automatically.

Figure 6-1: Device reports status automatically

1. When the lightbulb is online, the device uses topic / shadow / update / 10000 /

lightbulb to report the latest status to the device shadow.

Format of the JSON message:

{

" method ": " update ",
" state ": {

" reported ": {

" color ": " red "

}

1,

" version ": 1

}

The JSON parameters are described in Table 6-2: Parameter description.

Table 6-2: Parameter description

Parameter Description

method The operation type when a device or application requests the
device shadow.
When you update the status, This parameter method is

required and must be setto update .

Parameter

Description

state The status information that the device sends to the device
shadow.
The reported field is required. The status information is
synchronized to the reported field of the device shadow.
version The version information contained in the request.

The device shadow only accepts the request and updates to the
specified version when the new version is later than the current
version.

2. When the device shadow accepts the status reported by the device lightbulb, the

JSON file of device shadow is successfully updated.

{

" state "

" reported " {

" color " red "

}

Ty

" metadata " : {

" reported " : {

" color " : {

" timestamp " : 1469564492
}

}

1,

" timestamp " : 1469564492
" version " : 1

}

3. After the device shadow has been updated, it will return the result to the device

(lightbulb) by sending a message to the topic / shadow / get / 10000 /

lightbulb .

- If the update is successful, the message is as follows:

{

" method ":" reply ",

" payload ": {

" status ":" success ",

" version ": 1

I

" timestamp ": 1469564576
+

- If an error occurred during the update, the message is as follows:

{
" method ":" reply ",
" payload ": {

" status ":" error ",

" content ": {

" errorcode ": "${ errorcode }",

" errormessa ge ": "${ errormessa ge }"
}

1,

" timestamp ": 1469564576

}

Error codes are described in Table 6-3: Error codes.

Table 6-3: Error codes

errorCode errorMessage

400 Incorrect JSON file.

401 The method field is not found.
402 the state field is not found.

403 Invalid version field.

404 The reported field is not found.
405 The reported field is empty.
406 Invalid method field.

407 The JSON file is empty.

408 The reported field contains more than 128 attributes.
409 Version conflict.

500 Server exception.

Application changes device status

The flow chart is shown in Figure 6-2: Application changes device status.

Figure 6-2: Application changes device status

1. The application sends a command to the device shadow to change the status of the
lightbulb.

The application sends a message to topic / shadow / update / 10000 /

lightbulb /. The message is as follows:

{
" method ": " update ",

" state ": {

" desired ": {

" color ": " green "
}

1,

" version ": 2

}

2. The application sends an update request to update the device shadow JSON file.
The device shadow JSON file is changed to:

" state " : {
" reported " : {
" color "™ : " red "

"’desired "o {
" color " : " green "

1,

" metadata " : {

" reported " : {

" color " : {

" timestamp " : 1469564492

b
" desired " : {
" color " {
" timestamp " : 1469564576

s
" timestamp " : 1469564576 ,
" version " : 2

}

3. After the update, the device shadow sends a message to the topic / shadow / get
/ 10000 / lightbulb and returns the result of update to the device. The result

message is created by the device shadow.

{

" method ":" control ",
" payload ": {

" status ":" success ",
" state ": {

" reported ": {

" color ": " red "

s

" desired ": {

" color ": " green "

ks

Ty

" metadata ": {

" reported ": {

" color ": {

" timestamp ": 1469564492
}

1,

" desired " : {

" color " : {

" timestamp " : 1469564576
}

}

}

¥,

" version ": 2 ,

" timestamp ": 1469564576
}

4. When the device lightbulb is online and has subscribed to the topic / shadow /
get / 10000 / lightbulb , the device receives the message and changes its
color to green according to the desired field in the request file. After the device

has updated the status, it will report the latest status to the cloud.

{
method ": " update ",
" state ": {
" reported ": {
" color ": " green "
+
s
" version ": 3
+

If the timestamp shows that the command has expired, you give up the update.

5. After the latest status has been reported successfully, the device client sends a

message to the topic / shadow / update / 10000 / lightbulb toempty the

property of desired field. The message is as follows:

{

" method ": " update ",
" state ": {

" desired ":" null "

Ty

" version ": 4

}

6. After the status has been reported, the device shadow is synchronously updated.
The device shadow JSON file is as follows:

{

" state " : {

" reported " : {

" color " : " green "
+

s

" metadata " : {

" reported " : {

" color " : {

" timestamp " : 1469564577
}

{

" desired "

" timestamp "
}

¥,

}

1469564576

version "

Devices request for device shadows

The flow chart is shown in Figure 6-3: The device requests for device shadow.

Figure 6-3: The device requests for device shadow

1. The device lightbulb sends a message to the topic / shadow / update / 10000 /
lightbulb and obtains the latest status saved in the device shadow. The message

is as follows:

" method ":

}

n get n

2. When the device shadow receives above message, the device shadow sends a
message to the topic / shadow / get / 10000 / lightbulb .The message is as

follows:

method ":"

nod ™ Eeply ",
pay loa 8

status ":"

state ": {
reported ":
color ": "

)
desired ":
color ": "

)

metadata ":
reported ":
color ": {
timestamp ":

desired ":
color ": {
timestamp ":

Ty
" version ":

" timestamp ":

{

Success 5

{

red "

{

green "

.

1469564492

1469564492

2,
1469564576

}

Devices delete device shadow attributes

The flow chart is shown in Figure 6-4: Delete device shadow attributes.

Figure 6-4: Delete device shadow attributes

The device lightbulb is to delete the specified attributes saved in the device shadow.
The device sends a JSON message to the topic / shadow / update / 10000 /

lightbulb . See the message in the following example.

To delete attributes, set the value of method to delete and setthe values of the

attributesto null .

- Delete one attribute:

{

" method ": " delete ",

" state ": {

" reported ": {

" color ": " null ",

" temperatur e ":" null "
+

I

" version ": 1

+

- Delete all the attributes:

{

" method ": " delete ",
" state ": {

" reported ":" null "
Ty

" version ": 1

7 Accounts and logon

This topic describes IoT Platform accounts and how to log on to the IoT Platform

console.

7.1 Log on to the console using the primary account

The primary account has full operation permissions on all resources under this

account, and supports modifying account information.
Log on to the loT Platform console using the primary account

You have full operation permissions on IoT Platform when logging on to the console

using the primary account.

1. Visit the Alibaba Cloud official website.
2. Click Console.

3. Log on to the console using your account and password.

Note:
To retrieve an account or password, click Forgot Username or Forgot Password on
the logon page to start the retrieval process.
4. Click Products in the console to display all products and services that are provided
by Alibaba Cloud.
5. Search for IoT Platform, and click IoT Platform in the result to enter the IoT

Platform console.

Note:
If you have not activated the IoT Platform service, the IoT Platform console prompts

you to activate this service on the homepage. Click Activate Now to activate it quickly.
After entering the IoT Platform console, you can manage products, devices, and rules.
Create access control using the primary account

The primary account has full permissions, so the leakage of the primary account may
cause serious security risks. Therefore, do not disclose your account and password
when you authorize others to access your Alibaba Cloud resources. Instead, you

should use Resource Access Management (RAM) to create sub-accounts and assign

https://www.alibabacloud.com

the required access permissions to these sub-accounts. All users except the primary
account user or administrator access the resources using sub-accounts. For more
information about accessing IoT Platform using RAM users, seeUse RAM users and

Custom permissions.

7.2 Resource Access Management (RAM)

This chapter describes IoT Platform access control.

7.2.1 RAM and STS

Resource Access Management (RAM) and Security Token Service (STS) are access
control systems provided by Alibaba Cloud. For more information about RAM and

STS, see RAM help documentation.

RAM is used to control the permissions of accounts. By using RAM, you can create
and manage RAM users. You can control what resources RAM users can access by

granting different permissions to them.

STS is a security token management system. It is used to manage the short-term
permissions granted to RAM users. You can use STS to grant permissions to

temporary users.
Background

RAM and STS enable you to securely grant permissions to users without exposing
your account AccessKey. Once your account AccessKey is exposed, your resources
will be exposed to major security risks. Individuals who obtain your AccessKey can
perform any operation on the resources under your account and steal personal

information.

RAM is a mechanism used to control long-term permissions. After creating RAM
users, you can grant them different permissions. AccessKeys of RAM users if exposed
do not have the same risk as an account AccessKey being exposed. If the AccessKey of
any RAM user is exposed, information potentially exposed is limited. RAM users are

valid for a long term.

Unlike RAM, which allows you to grant long-term permissions to users, STS enables
you to grant users temporary access. By calling the STS API, you can obtain
temporary AccessKeys and tokens. You can assign the temporary AccessKeys and

tokens to RAM users so they can access specific resources. Permissions obtained from

https://www.alibabacloud.com/help/product/28625.htm

STS are strictly restricted and have limited validity. Therefore, even if information is

unexpectedly exposed, your system will not be severely compromised.

For details about how to use RAM and STS, see Examples.
Concepts

Before you use RAM and STS, we recommend that you have a basic understanding of

the following concepts:

- RAM user: A user that is created using the RAM console. During or after the
creation of a RAM User, an AccessKey can be generated for the RAM user. After
creating a RAM user, you need to configure the password and grant permissions to
it. Once this is completed the RAM user can perform authorized operations. A RAM
user can be considered a user with specific operation permissions.

- Role: A virtual entity that represents a group of permissions. Roles do not have
their own logon password or AccessKey. A RAM user can assume roles. When roles
are assumed the RAM user has the associated role privileges.

- Policy: A policy defines permissions. For example, a policy defines the permission
of a RAM user to read or write to specific resources.

- Resource: Cloud resources that are accessible to a RAM user, such as all Table

Store instances, a Table Store instance, or a table in a Table Store instance.

The relationship between RAM users and their roles is similar to the relationship
between individuals and their identities. For example, the roles of a person might be
an employee at work and a father at home. A person plays different roles in different
scenarios. When playing a specific role, the person has the privileges of that role. A
role itself is not an operational entity. Only after the user has assumed this role is ita

complete operational entity. A role can be assumed by multiple users.
Examples

To prevent an account from being exposed to security risks if the account AccessKey
is exposed, an account administrator creates two RAM users. These RAM users

are named A and B. An AccessKey is generated for each of them. A has the read
permission, and B has the write permission. The administrator can revoke the

permissions from the RAM users at any time in the RAM console.

Additional, individuals need to be granted temporary access to the API of IoT

Platform. In this case, the AccessKey of A must not be disclosed. Instead, the

administrator needs to create a role, C, and grant this role access to the API of IoT
Platform. Note that C cannot be directly used currently because there is no AccessKey

for C, and C is only a virtual entity that owns access to the IoT Platform API.

The administrator needs to call the AssumeRole API operation of STS to obtain
temporary security credentials that can be used to access the IoT Platform API.

In the AssumeRole call, the value of RoleArn must be the Alibaba Cloud resource
name (ARN) of C. If the AssumeRole call is successful, STS will return a temporary
AccessKeyld, AccessKeySecret, and SecurityToken as security credentials. The
validity period of these credentials can be specified when AssumeRole is called. The
account administrator can deliver these credentials to users who need access to the

API of the IoT Platform. This access to the API is temporary.
Why is it complicated to use RAM and STS?

The concepts and use of RAM and STS are complicated. This ensures account security

and flexible access control at the cost of service ease of use.

RAM users and roles are separated in order to keep the entity that performs operation
separate from the virtual entity that represents a group of permissions. If a user
needs multiple permissions, such as the read and the write permissions, but in fact
the user only needs one permission at a time, you can create two roles. Grant the read
permission and the write permission to these two roles, respectively. Then create

a RAM user and assign both roles to the RAM user. When the RAM user needs the
read permission, assume the role that includes the read permission. When the RAM
user needs the write permission, assume the role that includes the write permission.
This reduces the risk of a permission leak occurring in each operation. Additionally,
you can assign roles to other accounts and RAM users to grant them the permissions

included in the roles. This makes it easier for users to use the role permissions.

STS allows more flexible access control. For example, you can configure the validity
period for credentials. However, if long-term credentials are required, you can only

use RAM to manage RAM users.

The following sections provide guidelines for using RAM and STS and examples for
using them. For more information about APIs provided by RAM and STS, see AP/
Reference - RAM and API Reference - STS.

https://www.alibabacloud.com/help/doc-detail/28672.htm
https://www.alibabacloud.com/help/doc-detail/28672.htm
https://www.alibabacloud.com/help/doc-detail/28756.htm

7.2.2 Custom permissions
Permissions define the conditions in which the system allows or denies some

specified actions on target resources.

Permissions are defined in authorization policies. Custom permissions allow you to
define certain permissions by using custom authorization policies. In the Resource
Access Management (RAM) console, click Create Authorization Policy on the Policies
page to customize an authorization policy. Select a blank template when customizing

an authorization policy.
An authorization policy is a JSON string that requires the following parameters:
Action :Indicates the action that you want to authorize. IoT actions start with
iot:. For more information about actions and examples, see Define actions.

Effect :Indicates the authorization type, which can be Allow or Deny .

Resource :Because IoT Platform does not support resource authorization, enter

an asterisk * instead.
Condition :Indicates the authentication condition. For more information, see
Define conditions.

Define actions

Action is an application programming interface (API) operation name. When
creating an authorization policy, use iot: as the prefix for each action, and separate

multiple actions with commas (,). You can also use an asterisk (*) as a wildcard
character. For more information about API name definitions that are used on IoT

Platform, seeAPI permissions .
The following are some examples of action definitions.
- Define a single API operation.
" Action ": " dot : CreateProd wuct "
- Define multiple API operations.
" Action ": [

" ot : UpdateProd wuct ",
" jot : QueryProdu «ct "

]

- Define all read-only API operations.

{

" Version ": " 1 ",

" Statement ": [

{

I

oz

Action ": [

" Hdot : Query *",

" qot : List ",

" ot : Get *",

" jot : BatchGet x",
" ot : Check %"

Resource ": "x",
Effect ": " Allow "
Action ": [

" rds : DescribeDB Instances ",

" rds : DescribeDa tabases ",

" rds : DescribeAc counts ",

" rds : DescribeDB InstanceNe tInfo

Resource ": "x'",

Effect ": " Allow "

Action ": " ram : ListRoles ",
Resource ": "x'",

Effect ": " Allow "

Action ": [

" mns : ListTopic ",
" mns : GetTopicRe f "

Resource ": "x'",
Effect ": " Allow "
Action ": [

" ots : ListInstan ce ",
" ots : GetInstanc e ",
" ots : ListTable ",

" ots : DescribeTa ble "

Resource ": "x",
Effect ": " Allow "
Action ": [

" fc : ListServic es ",
" fc : GetService ",

" fc : GetFunctio n ",
" fc : ListFuncti ons "

Resource ": "x",
Effect ": " Allow "
Action ": [

" log : ListShards ",
" log : ListLogSto res ",
" log : ListProjec t "

Resource ": "x",
Effect ": " Allow "

" Action ": [
" cms : QueryMetri
]
”,Resource R S
" Effect ": " Allow "

}
]
}

cList "

- Define all read-write API operations.

Instances ",
tabases ",
counts ",
InstanceNe
rityIps "

tInfo

ListRoles ",

b

-F n

n
ce ",

)

ble ",
ell

{
" Version ": " 1",
" Statement ": [
{
" Action ": " dot :«",
" Resource ": "x",
" Effect ": " Allow "
s
{
" Action ": [
" rds : DescribeDB
" rds DescribeDa
" rds DescribeAc
" rds DescribeDB
" rds ModifySecu
]
”’Resource Mo Mk
" Effect ": " Allow "
Ty
{
" Action ": " ram
" Resource ": "x",
" Effect ": " Allow "
s
{
" Action ": [
" mns ListTopic "
" mns GetTopicRe
]
”’Resource R
" Effect ": " Allow "
s
{
" Action ": [
" ots ListInstan
" ots ListTable "
" ots DescribeTa
" ots GetInstanc
]
”’Resource Mo Mk
" Effect ": " Allow "
1,
{
" Action ": [
" fc : ListServic
" fc : GetService "
" fc : GetFunctio
" fc ListFuncti
1,

" Resource ": "x",
" Effect ": " Allow "

%,
" Action ": [
" log : ListShards ",
" log : ListLogSto res ",

" log : ListProjec t "
1,

" Resource ": "x",
" Effect ": " Allow "
I
{
" Action ": " ram : PassRole ",
" Resource ": "x",
" Effect ": " Allow ",
" Condition ": {
" StringEqua 1s ": {
" acs : Service ": " dot . aliyuncs . com "
}
}
3,
{
" Action ": [
" cms : QueryMetri cList "
1’Resource We Wl
" Effect ": " Allow "
}

]
}

Define conditions

RAM authorization policies currently support multiple authentication conditions,
such as the access IP address restrictions, the Hypertext Transfer Protocol Secure (
HTTPS)-based access enabler, the multi-factor authentication (MFA)-based access
enabler, and access time restrictions. All API operations on IoT Platform support

these authentication conditions.
Access control based on source IP addresses

This access control restricts source IP addresses that can access IoT Platform, and
supports filtering by Classless Inter-Domain Routing (CIDR) blocks. Typical scenarios

are described as follows:

- Apply access control rules to a single IP address or CIDR blocks. For example, the
following code indicates that only access requests from IP address 10.101.168.111
or 10.101.169.111/24 are allowed.

{

" Statement ": [

{

" Effect ": " Allow ",
" Action ": " dot :x",
" Resource ": "x",

" Condition ": {

" IpAddress ": {

" acs : SourcelIp ": [

" 10 . 101 . 168 . 111 ",
"10 . 101 . 169 . 111 / 24 "

",Version e m1 "

- Apply access control rules to multiple IP addresses. For example, the following
code indicates that only access requests from IP addresses 10.101.168.111 and
10.101.169.111 are allowed.

{

" Statement ": [

{

" Effect ": " Allow ",

" Action ": " dot :x",

" Resource ": "x",

" Condition ": {

" TPaddress ":{

" acs : Sourcelp ": [
"10 . 101 . 168 . 111 ",
"160 . 101 . 169 . 111 "
]

+

ks

}

1,

" Version ": " 1"

}

HTTPS-based access control
This access control allows you to enable or disable HTTPS-based access.

For example, the following code indicates that only HTTPS-based access is allowed.

{
" Statement ": [

" Effect ": " Allow ",
" Action ": " dot :x",

" Resource ": "x'",

" Condition ": {

" Bool ": {

" acs : SecureTran sport ": " true "
}

}

}

1,

" Version ": " 1"

}

MFA-based access control

This access control allows you to enable or disable MFA-based access.

For example, the following code indicates that only MFA-based access is allowed.

{

" Statement ": [

{

" Effect ": " Allow ",
" Action ": " dot :%",
" Resource ": "x",

" Condition ": {

" Bool ": {

" acs : MFAPresent ": " true "
ks

+

}

1,

" Version ": " 1 "

k

Access time restrictions

This access control allows you to limit the access time of requests. Access requests

earlier than the specified time are allowed or rejected.

For example, the following code indicates that only access requests earlier than 00:00:

00 Beijing Time (UTC+8) on January 1, 2019 are allowed.

{

" Statement ": [

{

" Effect ": " Allow ",
" Action ": " dot :x",
" Resource ": "x",

" Condition ": {

" DatelLessTh an ": {
" acs : CurrentTim e ": " 2019 - 01 - Q1TOO : GO : OO + 08 : 0O "
+

+

ks

1,

" Version ": " 1 "

h

Typical scenarios

Based on these definitions of actions, resources, and conditions, authorization

policies are described in the following typical scenarios.

The following is an example of authorization policy that allows access.

Scenario: Assigns IoT Platform access permissions to the IP address 10.101.168.111
/24, and only allows HTTPS-based access before 00:00:00 Beijing Time (UTC+8) on
January 1, 2019.

{

" Statement ": [

{

" Effect ": " Allow ",

" Action ": " dot %",

" Resource ": "x",

" Condition ": {

" IPaddress ":{

" acs : SourceIp ": [

"10 . 101 . 168 . 111 / 24 "
]

1,

" DatelLessTh an ": {

" acs : CurrentTim e ": " 2019 - 01 - O1TOO : OO : OO + 08 : O "
s,

" Bool ": {

" acs : SecureTran sport ": " true "
+

}

+

1,

" Version ": " 1 "

+

The following is an example of authorization policy to specify denied access.

Scenario: Rejects read requests from IP address 10.101.169.111.

{

" Statement ": [

{

" Effect ": " Deny ",
" Action ": [

" dot : Query *",

" dot : List %",

" ot : Get *",

" ot : BatchGet x*"
1,

" Resource ": "x",

" Condition ": {

" IpAddress ": {

" acs : SourceIp ": [
"10 . 101 . 169 . 111 "
]

+

+

}

1,

" Version ": " 1"

+

After creating the authorization policy, apply this policy to the RAM users on the

User Management page in the RAM console. Authorized RAM users can perform the

operations defined in this policy. For more information about creating RAM users and

granting permissions, see Use RAM users.

7.2.3 API permissions

Each operation in the following table represents the value of Action thatyou

specify when creating authentication policies for RAM users.

For more information about creating authentication policies for RAM users,

seeCustom permissions.

Operations RAM action Resource | Description
CreateProduct iot:CreateProduct * Create a product.
UpdateProduct iot:UpdateProduct * Update product
information
QueryProduct iot:QueryProduct * Query the detailed
information of a product.
QueryProductList iot:QueryProductList |* Query all the products.
DeleteProduct iot:DeleteProduct * Delete a product.
CreateProductTags iot:CreateProductTags |* Create product tags.
UpdateProductTags |iot:UpdateProductTags |* Update product tags.
DeleteProductTags iot:DeleteProductTags |* Delete product tags.
ListProductTags iot:ListProductTags * Query tags of a product.
ListProductByTags iot:ListProductByTags |* Query products by tags.
RegisterDevice iot:RegisterDevice * Register a device.
QueryDevice iot:QueryDevice * Query all the devices of a
specified product.
DeleteDevice iot:DeleteDevice * Delete a device.
QueryPageByApplyld |iot:QueryPageB * Query the informatio
yApplyld n of devices that are
registered at a time.
BatchGetDeviceState |iot:BatchGetDe * Query the status of
viceState multiple devices at a time
BatchRegis iot:BatchRegis * Register multiple devices
terDeviceW terDeviceWithApplyld simultaneously using a
ithApplyld given application ID.

Operations

RAM action

Resource

Description

BatchRegisterDevice |iot:BatchRegis * Register multiple devices
terDevice at a time (not specify
device names).
QueryBatch iot:QueryBatch * Query the processing
RegisterDeviceStatus | RegisterDeviceStatus status and result of
device registration of
multiple devices.
BatchCheck iot:BatchCheck * Specify device names in
DeviceNames DeviceNames batch.
QueryDeviceStatistic |iot:QueryDevic * Query device statistics.
S eStatistics
QueryDevic iot:QueryDevic * Query the historical
eEventData eEventData records of a device event.
QueryDevic iot:QueryDevic * Query the historical
eServiceData eServiceData records of a device
service.
SetDeviceProperty iot:SetDeviceProperty |* Set properties for a
specified device.
SetDevicesProperty |iot:SetDevicesProperty |* Set properties for
multiple devices.
InvokeThingService |iot:InvokeThingService |* Invoke a service on a
device.
InvokeThingsService |iot:InvokeThin * Invoke a service on
gsService multiple devices.
QueryDevic iot:QueryDevic * Query the property
ePropertyStatus ePropertyStatus snapshots of a device.
QueryDeviceDetail iot:QueryDeviceDetail |* Query the detailed
information of a device.
DisableThing iot:DisableThing * Disable a device.
EnableThing iot:EnableThing * Enable a device that has
been disabled.
GetThingTopo iot:GetThingTopo * Query the topological
relationships of a device.
RemoveThingTopo iot:RemoveThingTopo |* Delete the topological

relationships of a device.

Operations RAM action Resource| Description
NotifyAddThingTopo |iot:NotifyAddT * Notify a gateway device
hingTopo to add topological
relationships with
specified sub-devices.
QueryDevic iot:QueryDevic * Query the historical
ePropertyData ePropertyData records of a device
property.
QueryDevic iot:QueryDevic * Query the historical
ePropertiesData ePropertiesData records of device
properties.
GetGateway iot:GetGateway * Query the gateway device
BySubDevice BySubDevice information using the
sub-device information.
SaveDeviceProp iot:SaveDeviceProp * Create tags for a device.
QueryDeviceProp iot:QueryDeviceProp * Query all the tags of a
device.
DeleteDeviceProp iot:DeleteDeviceProp |* Delete a tag of a device.
QueryDeviceByTags |iot:QueryDeviceByTags |* Query devices by tags.
CreateDeviceGroup |iot:CreateDeviceGroup |* Create a device group.
UpdateDeviceGroup |iot:UpdateDeviceGroup |* Update the information
of a device group.
DeleteDeviceGroup |iot:DeleteDeviceGroup |* Delete a device group.
BatchAddDe iot:BatchAddDe * Add devices to a group.
viceGroupRelations |viceGroupRelations
BatchDelet iot:BatchDelet * Delete devices from a
eDeviceGro eDeviceGroupRelations group.
upRelations
QueryDevic iot:QueryDevic * Query the detailed
eGroupInfo eGroupInfo information of a group.
QueryDevic iot:QueryDevic * Query all the device
eGroupList eGroupList groups.
SetDeviceGroupTags |iot:SetDeviceG * Create, update, or delete
roupTags tags of a group.
QueryDevic iot:QueryDevic * Query all the tags of a
eGroupTaglList eGroupTaglList group.

Operations RAM action Resource | Description

QueryDevic iot:QueryDevic * Query the groups that a

eGroupByDevice eGroupByDevice specified device is in.

QueryDevic iot:QueryDevic * Query devices in a device

eListByDeviceGroup |eListByDeviceGroup group.

QuerySuper iot:QuerySuper * Query the parent group

DeviceGroup DeviceGroup of a device group.

QueryDevic iot:QueryDevic * Query device groups by

eGroupByTags eGroupByTags tags.

StartRule iot:StartRule * Enable a rule.

StopRule iot:StopRule * Stop a rule.

ListRule iot:ListRule * Query all the rules.

etRule iot:GetRule uery the details of a rule

GetRul iot:GetRul * Query the details of a rul

CreateRule iot:CreateRule * Create a rule.

UpdateRule iot:UpdateRule * Update the information
of arule.

DeleteRule iot:DeleteRule * Delete a rule.

CreateRuleAction iot:CreateRuleAction |* Create a data forwarding
method for a rule.

UpdateRuleAction iot:UpdateRuleAction |* Update a data forwarding

method.

DeleteRuleAction iot:DeleteRuleAction * Delete a data forwarding
method.

GetRuleAction iot:GetRuleAction * Query the detailed
information of a data
forwarding method.

ListRuleActions iot:ListRuleActions * Query all the data
forwarding methods in a
rule.

Pub iot:Pub * Publish a message.

PubBroadcast iot:PubBroadcast * Publish a message to

the devices that have
subscribed to a broadcast
topic.

Operations RAM action Resource| Description

RRpc iot:RRpc * Send a message to a
device and receive a
response from the device.

CreateProductTopic |iot:CreateProductTopic |* Create a topic category
for a product.

DeleteProductTopic |iot:DeleteProductTopic |* Delete a topic category.

QueryProductTopic |iot:QueryProductTopic |* Query all the topic
categories of a product.

UpdateProductTopic |iot:UpdateProd * Update a topic category.

uctTopic

CreateTopi iot:CreateTopi * Create message routing

cRouteTable cRouteTable relationships between
topics.

DeleteTopi iot:DeleteTopi * Delete message routing

cRouteTable cRouteTable relationships between
topics.

QueryTopic iot:QueryTopic * Query the source topic of

ReverseRouteTable |ReverseRouteTable a target topic.

QueryTopic iot:QueryTopic * Query the target topics of

RouteTable RouteTable a source topic.

GetDeviceShadow iot:GetDeviceShadow | * Query the shadow
information of a device.

UpdateDeviceShadow |iot:UpdateDevi * Update the shadow

ceShadow information of a device.

7.2.4 Use RAM users

RAM users (sub-accounts) can log on to the IOT Platform console to manage IoT

resources, and use the corresponding AccessKeyld and AccessKeySecret to use IoT

application programming interface (API).

You need to create a RAM user first, and assign the permissions for accessing IoT

Platform to this RAM user by using authorization policies. For more information

about customizing authorization policies, see Custom permissions.

Create a RAM user

Skip this step if you already have a RAM user.

Log on to the RAM console.

In the left-side navigation pane, click Users.

Click Create User.

b=

Enter user information, select Automatically generate an AccessKey for this user.,
and then click OK.

Note:
The system prompts you to save the AccessKey after you click OK. You can
download this AccessKey only at this moment. You need to save this AccessKey
and secure it immediately. The system requires the AccessKey when the

corresponding RAM user calls API operations.

5. Set the initial login password.

a. On the User Management page, click Manage of the created RAM user to enter
the User Details page.

b. Click Enable Console Logon.

c. Set an initial password for this RAM user, select On your next logon you must
reset the password., and then click OK.

6. Enable multi-factor authentication (MFA). (Optional)
On the User Details page, click Enable VMFA Device.

After you create the RAM user, the RAM user can log on to the official website and the
IoT Platform console by using the Resource Access Management (RAM) user logon
link. To obtain the RAM user logon link, go to the RAM Overview page in the RAM

console.

However, the RAM user cannot access your Alibaba Cloud resources before you
grant permissions to the RAM user. Therefore, you need to assign permissions for

accessing IoT Platform to this RAM user.
Authorize the RAM user to access loT Platform

In the RAM console, assign permissions to a RAM user on the User Management page,
or assign the same permissions to a group on the Group Management page. To assign
permissions to a RAM user, follow these steps:

1. Log on to the RAM console using the primary account.

2. In the left-side navigation pane, click Users.

https://ram.console.aliyun.com/
https://ram.console.aliyun.com/

3. Click Authorize next to the RAM user that you want to assign permissions to.

4. In the authorization dialog box, select the authorization policy that you want to
apply to this RAM user, click the right arrow in the middle of the page to move the
selected authorization policy to Selected Authorization Policy Name, and then click
OK.

@ Note:

To assign custom permissions to the RAM user, you need to create an
authorization policy first. For more information about customizing an

authorization policy, see Custom permissions.

Edit User-Level Authorization

Members added to this group have all the permissions of this group. A member cannot be added to the same group more than

Available Authorization Policy Names Type Selected Authorization Policy Name Type
iot Q
AliyunIOTFullAccess System
b2
AliyunDyiotFullAccess System

AliyunDyiotReadOnlyAccess

Provides read-only...

AdministratorAccess System

The authorized RAM user can access the resources defined in the authorization policy

, and perform the specified operations.
Logon to the console using a RAM user

The primary account user can log on to the console from the official website.

However, the RAM user needs to log on to the console on the RAM User Logon page.
1. Obtain the link for logging on to the RAM User Logon page.

Log on to the RAM console using the primary account, view the RAM User Logon

Link on the RAM Overview page, and then send this logon link to the RAM user.

2. The RAM user accesses the RAM User Logon page, and logs on to the console using

the RAM user name and password.

o

Note:

The RAM user follows this logon format: RAM user name@company alias, such
as username@company-alias. The RAM user also needs to change the logon
password after logon for the first time.

3. Click Console in the upper-right corner of the page to go to the Home page.

4. Click Products, and select IoT Platform to go to the IoT Platform console.

Then, the RAM user can perform authorized operations in the console.

7.2.5 Advanced guide to STS

Security Token Service (STS) enables more strict permission management than
Resource Access Management (RAM). Using STS to implement resource access
control involves a complicated authorization process. You can use STS to grant RAM

users temporary permissions to access resources.

RAM users and the permissions granted to RAM users have long-term validity. You
need to manually delete a RAM user or revoke permissions from RAM users. After
the account information of a RAM user has been leaked, if you fail to timely delete
this user or revoke related permissions, your Alibaba Cloud resources and important
information may be compromised. Therefore, we recommend that you use STS to

manage key permissions or permissions that do not require long-term validity.

Figure 7-1: Process for granting temporary permissions to RAM users.

Create a role —_ Create an authorization

Step 1: Create arole

A role is a virtual entity that represents a virtual user with a group of permissions.

Log on to the RAM console.

Select Roles > Create Role to create a role.

Select User Role.

Use the default account information, and click Next.

Specify the role name and description, and click Create.

A N

Click Close or Authorize.

If you have created the authorization policy that is to be granted to this role, click

Authorize to authorize this user.

If you have not created the authorization policy, click Close. You can create an

authorization policy for this role by clicking Policies.
Step 2: Create an authorization policy

An authorization policy defines the resource permissions that are to be granted to
roles.

1. In the RAM console, click Policies > Create Authorization Policy .

2. Select the blank template.

3. Specify the authorization policy name and policy content, and click Create

Authorization Policy.

For more information about writing the policy content, click Authorization Policy

Format.

Authorization policy example: Read-only permission of IoT resources.

{

" Version ": " 1 ",
" Statement ": [

{

" Action ": [

" rds : DescribeDB Instances ",

" rds : DescribeDa tabases ",

" rds : DescribeAc counts ",

" rds : DescribeDB InstanceNe tInfo "

],

" Resource ": "x",

" Effect ": " Allow "

b

{

" Action ": " ram : ListRoles ",
" Effect ": " Allow ",

" Resource ": "x"

I

{

" Action ":[

" mns : ListTopic "

https://ram.console.aliyun.com/
https://ram.console.aliyun.com/

" Resource ": "x",
" Effect ": " Allow "

¥

" Action ": [

" dhs : ListProjec t ",
" dhs : ListTopic ",

" dhs : GetTopic "

1,

" Resource ": "x",

" Effect ": " Allow "
I

{

" Action ": [

" ots : ListInstan ce ",
" ots : ListTable ",

" ots : DescribeTa ble "

l,Resource AR

" Effect ": " Allow "
I

{

" Action ":[

" log : ListShards ",
" log : ListLogSto res ",
" log : ListProjec t "

%’Resource g gl

" Effect ": " Allow "
¥

{

" Effect ": " Allow ",
" Action ": [

" jot : Query x",

" dot : List ",

" dot : Get *",

" ot : BatchGet "

b
" Resource ": "x"

Authorization policy example: Read-write permission of IoT resources.

" Version ": " 1 ",
" Statement ": [

" Action ": [

" rds : DescribeDB Instances ",

" rds : DescribeDa tabases ",

" rds : DescribeAc counts ",

" rds : DescribeDB InstanceNe tInfo "

],

" Resource ": "x",

" Effect ": " Allow "
I

{

" Action ": " ram : ListRoles ",
" Effect ": " Allow ",

" Resource ": "x"

I

{

" Action ":[

" mns : ListTopic "

1

"’Resource g Wl

" Effect ": " Allow "

I

" Action ": [

" dhs : ListProjec t ",
" dhs : ListTopic ",

" dhs : GetTopic "

%’Resource ook,

" Effect ": " Allow "
Ty

{

" Action ": [

" ots : ListInstan ce ",
" ots : ListTable ",
" ots : DescribeTa ble "

%’Resource AR

" Effect ": " Allow "
I

{

" Action ":[

" log : ListShards ",
" log : ListLogSto res ",
" log : ListProjec t "

A,Resource R

" Effect ": " Allow "
¥

{

" Effect ": " Allow ",
" Action ": " dot :x",
" Resource ": "x"

After an authorization policy has been created, you can grant the permissions defined

in this policy to roles.
Step 3: Authorize arole
A role can only have resource access permissions after it has been authorized.

1. In the RAM console, click Roles.
2. Select the role that you want to authorize, and click Authorize.

3. In the dialog box that appears, select the custom authorization policy that you

want to apply to the specified role, click the right arrow in the middle to move the

https://ram.console.aliyun.com/

specified authorization policy to the Selected Authorization Policy Name list, and
then click OK.

Edit User-Level Authorization

Available Authorization Policy Names Type Selected Authorization Policy Name Type
iot Q
AliyunIOTFullAccess System
?
AliyunDyiotFullAccess System
AliyunDyiotReadOnlyAccess System
Provides read-only...
AdministratorAccess System

The role will have the permissions defined in the selected authorization policy after
authorization is complete. You can click Manage to go to the Role Details page, and

view basic information about this role and the permissions it has been granted.
Next, you need to grant a RAM user the permission to play this role.
Step 4: Grant a RAM user the permission to play the role

After authorization is complete, the role obtains the permissions that are defined in
the authorization policy. However, the role is only a virtual user. You need a RAM
user to play the role in order to perform the operations allowed by the permissions. If
all RAM users are allowed to play the role, this causes security risks. You should only

grant the permission to play this role to specified RAM users.

To grant a RAM user the permission to play this role, you need to create a custom
authorization policy where the Resource parameter of this policy is set to the ID of

the role. You then authorize the RAM user with this authorization policy.

1. In the RAM console, click Policies > Create Authorization Policy .

2. Select the blank template.

https://ram.console.aliyun.com/

3. Specify the authorization policy name and policy content, and click Create

Authorization Policy.

Note:
In the policy content, set the Resource parameter to the Arn of the role. On
the Roles page, find the specified role, click Manage to go to the Role Details page,

and then view the Arn of the role .

Role authorization policy example:

{

" Version ": " 1 ",

" Statement ": [

{

" Effect ": " Allow ",

" Action ": " dot : QueryProdu ct ",
" Resource ": " Role Arn "

}

]

}

4. After the authorization policy has been created, go to the home page of the RAM
console.

5. Click Users in the left-side navigation pane to enter RAM user management page.

6. Select the RAM user you want to authorize and click Authorize.

7. In the dialog box that appears, select the authorization policy that you have just
created, click the right arrow in the middle to move the specified authorization

policy to the Selected Authorization Policy Name list, and then click OK.

After authorization is complete, the RAM user obtains the permission to play this role
. You can then use STS to obtain the temporary identity credentials for accessing the

resources.
Step 5: The RAM user obtains temporary identity credentials

Authorized RAM users can call the STS API operations or use the STS SDKs to obtain
the temporary identity credentials for role play. The temporary credentials include an
AccessKeyld, AccessKeySecret, and SecurityToken. For more information about the

STS API and STS SDKs, see API Reference (STS) and SDK Reference (STS).

You need to specify the following parameters when using an STS API or SDK to obtain

temporary identity credentials:

- RoleArn: The Arn of the role that the RAM user is to play.

https://www.alibabacloud.com/help/zh/doc-detail/28756.htm
https://www.alibabacloud.com/help/zh/doc-detail/28786.htm

- RoleSessionName: The name of the temporary credentials. This is a custom
parameter.

- Policy: The authorization policy. This parameter adds a restriction to the
permissions of the role. You can use this parameter to restrict the permissions of
the token. If you do not specify this parameter, a token possessing all permissions
of the specified role is created.

- DurationSeconds: The validity period of the temporary credentials. This parameter
is measured in seconds. The default value is 3,600 and the value ranges from 900 to
3,600.

- id and secret: The AccessKeyld and AccessKeySecret of the RAM user.

Examples of obtaining temporary identity credentials

API example: The RAM user calls the STS AssumeRole operation to obtain the

temporary identity credentials for role play.

https :// sts . aliyuncs . com ? Action = AssumeRole
& RoleArn = acs : ram :: 1234567890 123456 : role / iotstsrole
& RoleSessio nName = iotreadonl yrole
& DurationSe conds = 3600
& Policy =< url_encode d_policy >
&< Common request parameters >

SDK example: The RAM user obtains the temporary identity credentials through the
Python CLI interface for STS.

$ python ./ sts . py AssumeRole RoleArn = acs : ram ::
1234567890 123456 : role / diotstsrole RoleSessio nName =

jotreadonl yrole Policy ='{" Version ":" 1 "," Statement ":
[{" Effect ":" Allow "," Action ":" dot :+"," Resource ":"x"}]}'
DurationSe conds = 3600 -- id = id -- secret = secret

After the request has been received, the temporary identity credentials that are
required to play the role are returned. The credentials include an AccessKeyld,

AccessKeySecret, and SecurityToken.
Step 6: The RAM user accesses the resources

After obtaining the temporary identity credentials, the RAM user can pass in the

credentials in the SDK requests to play the specified role.

Java SDK example: The RAM user passes in the AccessKeyld, AccessKeySecret, and
SecurityToken parameters that are contained in the temporary identity credentials in

the request and creates the IAcsClient object.

IClientPro file profile = DefaultPro file . getProfile (" cn -
hangzhou ", AccessKeyl d , AccessSecr et);

RpcAcsRequ est request . putQueryPa rameter (" SecurityTo ken
", Token);

IAcsClient client = new DefaultAcs Client (profile);
AcsRespons e response = client . getAcsResp onse (request);

	Contents
	Legal disclaimer
	Generic conventions
	1 Create products and devices
	1.1 Create a product (Basic Edition)
	1.2 Create a product (Pro Edition)
	1.3 Create devices
	1.3.1 Create multiple devices at a time
	1.3.2 Create a device

	1.4 TSL
	1.4.1 Overview
	1.4.2 Define features
	1.4.3 Import Thing Specification Language (TSL)
	1.4.4 The TSL format

	1.5 Data parsing
	1.6 Topics
	1.6.1 What is a topic?
	1.6.2 Create a topic category

	1.7 Tags
	1.8 Gateways and sub-devices
	1.8.1 Gateways and sub-devices
	1.8.2 Sub-device channels
	1.8.3 Sub-device management

	1.9 Service Subscription
	1.9.1 What is Service Subscription?
	1.9.2 Development guide
	1.9.3 Limits

	1.10 Device group

	2 Rules
	2.1 Data Forwarding
	2.1.1 Overview
	2.1.2 Create and configure a rule
	2.1.3 SQL statements
	2.1.4 Functions
	2.1.5 Data forwarding procedure
	2.1.6 Data format (Pro Edition)
	2.1.7 Regions and zones

	2.2 Data Forwarding Examples
	2.2.1 Forward data to another topic
	2.2.2 Forward data to Table Store
	2.2.3 Forward data to ApsaraDB for RDS
	2.2.4 Forward data to Message Service
	2.2.5 Forward data to Function Compute

	3 Monitoring and Maintenance
	3.1 Online debug
	3.1.1 Online debugging
	3.1.2 Debug applications using virtual devices

	3.2 Device log
	3.3 Firmware update
	3.4 Remote configuration

	4 General protocols
	4.1 Overview
	4.2 Develop Core SDK
	4.3 Server SDK
	4.3.1 Interfaces for UDP
	4.3.2 Interfaces for TCP
	4.3.3 Server SDK

	5 RRPC
	5.1 What is RRPC?
	5.2 System-defined topics
	5.3 Custom topics

	6 Device shadows
	6.1 Device shadows
	6.2 Device shadow JSON format
	6.3 Device shadow data stream

	7 Accounts and logon
	7.1 Log on to the console using the primary account
	7.2 Resource Access Management (RAM)
	7.2.1 RAM and STS
	7.2.2 Custom permissions
	7.2.3 API permissions
	7.2.4 Use RAM users
	7.2.5 Advanced guide to STS

