
Alibaba Cloud
IoT Platform

User Guide
Issue: 20190802

IoT Platform User Guide / Legal disclaimer

Legal disclaimer
Alibaba Cloud reminds you to carefully read and fully understand the terms and
conditions of this legal disclaimer before you read or use this document. If you have
read or used this document, it shall be deemed as your total acceptance of this legal
disclaimer.
1. You shall download and obtain this document from the Alibaba Cloud website

 or other Alibaba Cloud-authorized channels, and use this document for your
own legal business activities only. The content of this document is considered
 confidential information of Alibaba Cloud. You shall strictly abide by the
confidentiality obligations. No part of this document shall be disclosed or provided
 to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted,
or disseminated by any organization, company, or individual in any form or by any
means without the prior written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades
, adjustments, or other reasons. Alibaba Cloud reserves the right to modify
the content of this document without notice and the updated versions of this
 document will be occasionally released through Alibaba Cloud-authorized
channels. You shall pay attention to the version changes of this document as they
occur and download and obtain the most up-to-date version of this document from
Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud
products and services. Alibaba Cloud provides the document in the context that
 Alibaba Cloud products and services are provided on an "as is", "with all faults
" and "as available" basis. Alibaba Cloud makes every effort to provide relevant
 operational guidance based on existing technologies. However, Alibaba Cloud
hereby makes a clear statement that it in no way guarantees the accuracy, integrity
, applicability, and reliability of the content of this document, either explicitly
or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial
 losses incurred by any organizations, companies, or individuals arising from
their download, use, or trust in this document. Alibaba Cloud shall not, under any
 circumstances, bear responsibility for any indirect, consequential, exemplary,
incidental, special, or punitive damages, including lost profits arising from the use

Issue: 20190802 I

IoT Platform User Guide / Legal disclaimer

 or trust in this document, even if Alibaba Cloud has been notified of the possibility
 of such a loss.

5. By law, all the content of the Alibaba Cloud website, including but not limited to
works, products, images, archives, information, materials, website architecture,
website graphic layout, and webpage design, are intellectual property of Alibaba
 Cloud and/or its affiliates. This intellectual property includes, but is not limited
 to, trademark rights, patent rights, copyrights, and trade secrets. No part of the
 Alibaba Cloud website, product programs, or content shall be used, modified
, reproduced, publicly transmitted, changed, disseminated, distributed, or
published without the prior written consent of Alibaba Cloud and/or its affiliates
. The names owned by Alibaba Cloud shall not be used, published, or reproduced
for marketing, advertising, promotion, or other purposes without the prior written
 consent of Alibaba Cloud. The names owned by Alibaba Cloud include, but are
not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other brands of Alibaba
Cloud and/or its affiliates, which appear separately or in combination, as well as
 the auxiliary signs and patterns of the preceding brands, or anything similar to
the company names, trade names, trademarks, product or service names, domain
 names, patterns, logos, marks, signs, or special descriptions that third parties
identify as Alibaba Cloud and/or its affiliates).

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

II Issue: 20190802

IoT Platform User Guide / Legal disclaimer

Issue: 20190802 III

IoT Platform User Guide / Generic conventions

Generic conventions
Table -1: Style conventions
Style Description Example

This warning information
indicates a situation that will
cause major system changes,
faults, physical injuries, and other
 adverse results.

Danger:
Resetting will result in the loss of
user configuration data.

This warning information
indicates a situation that may
cause major system changes,
faults, physical injuries, and other
 adverse results.

Warning:
Restarting will cause business
interruption. About 10 minutes are
required to restore business.

This indicates warning informatio
n, supplementary instructions,
and other content that the user
must understand.

Notice:
Take the necessary precautions
to save exported data containing
sensitive information.

This indicates supplemental
instructions, best practices, tips,
and other content that is good to
know for the user.

Note:
You can use Ctrl + A to select all
files.

> Multi-level menu cascade. Settings > Network > Set network
type

Bold It is used for buttons, menus
, page names, and other UI
elements.

Click OK.

Courier
 font

It is used for commands. Run the cd / d C :/ windows
 command to enter the Windows

system folder.
Italics It is used for parameters and

variables.
bae log list --
instanceid Instance_ID

[] or [a|b] It indicates that it is a optional
value, and only one item can be
selected.

ipconfig [-all|-t]

Issue: 20190802 I

IoT Platform User Guide / Generic conventions

Style Description Example
{} or {a|b} It indicates that it is a required

value, and only one item can be
selected.

swich {stand | slave}

II Issue: 20190802

IoT Platform User Guide / Generic conventions

Issue: 20190802 III

IoT Platform User Guide / Contents

Contents
Legal disclaimer.. I
Generic conventions.. I
1 Create products and devices... 1

1.1 Create a product.. 1
1.2 Create devices... 4

1.2.1 Create multiple devices at a time.. 4
1.2.2 Create a device... 6
1.2.3 Manage devices.. 8

1.3 TSL.. 10
1.3.1 Overview.. 10
1.3.2 Define features... 11
1.3.3 Import Thing Specification Language (TSL)................................... 25
1.3.4 The TSL format...26

1.4 Data parsing.. 29
1.4.1 Data parsing... 29

1.5 Topics.. 41
1.5.1 What is a topic?.. 41
1.5.2 Create a topic category... 44

1.6 Tags... 46
1.7 Gateways and sub-devices.. 50

1.7.1 Gateways and sub-devices... 50
1.7.2 Sub-device management... 52

1.8 Service Subscription.. 52
1.8.1 What is service subscription?..53
1.8.2 Development guide for Java HTTP/2 SDK....................................... 54
1.8.3 Development guide for .NET HTTP/2 SDK...................................... 62
1.8.4 Limits... 70
1.8.5 Subscribe to device messages by using Message Service................. 71

1.9 Device group..74
1.10 Manage files... 772 Rules.. 80
2.1 Data Forwarding.. 80

2.1.1 Overview.. 80
2.1.2 Compare data forwarding solutions...81
2.1.3 Create and configure a rule...86
2.1.4 SQL statements... 94
2.1.5 Functions... 98
2.1.6 Data forwarding procedure... 102
2.1.7 Data format.. 103
2.1.8 Regions and zones.. 110

IV Issue: 20190802

IoT Platform User Guide / Contents
2.2 Data Forwarding Examples... 111

2.2.1 Forward data to another topic... 111
2.2.2 Forward data to Table Store...112
2.2.3 Forward data to ApsaraDB for RDS.. 116
2.2.4 Forward data to Message Service... 120
2.2.5 Forward data to Function Compute..1263 Monitoring and Maintenance...132

3.1 Real-time monitoring... 132
3.1.1 Real-time monitoring.. 132
3.1.2 Alerts and notifications... 138

3.2 Online debug... 141
3.2.1 Debug applications using Physical Devices.................................. 141
3.2.2 Debug applications using virtual devices..................................... 143

3.3 Device log.. 146
3.4 Firmware update.. 166
3.5 Remote configuration... 1734 Generic protocol SDK.. 180
4.1 Overview..180
4.2 Use the basic features.. 183
4.3 Use the advanced features.. 1955 RRPC.. 202
5.1 What is RRPC?... 202
5.2 System-defined topics...203
5.3 Custom topics.. 2046 Device shadows...206
6.1 Device Shadow overview.. 206
6.2 Device shadow JSON format... 208
6.3 Device shadow data stream.. 2127 Configure the NTP service... 220

8 Accounts and logon...222
8.1 Log on to the console using the primary account.................................... 222
8.2 Resource Access Management (RAM)..223

8.2.1 RAM and STS.. 223
8.2.2 Custom permissions..226
8.2.3 API permissions..233
8.2.4 Use RAM users..238
8.2.5 Advanced guide to STS.. 241

Issue: 20190802 V

IoT Platform User Guide / Contents

VI Issue: 20190802

IoT Platform User Guide / 1 Create products and devices

1 Create products and devices
This topic describes how to create and manage products and devices in the console.

1.1 Create a product
The first step when you start using IoT Platform is to create products. A product is a
collection of devices that typically have the same features. For example, a product can
refer to a product model and a device is then a specific device of the product model.

Context
This topic describes how to create products in the IoT Platform console.

Procedure
1. Log on to the IoT Platform console.
2. In the left-side navigation pane, click Devices > Product, and then click Create

Product.
3. Enter all the required information and then click OK.

The parameters are as follows.
Parameter Description
Product Name The name of the product that you want to create. The

product name must be unique within the account. For
example, you can enter the product model as the product
name. A product name is 4 to 30 characters in length, and
can contain Chinese characters, English letters, digits, and
underscores. A Chinese character counts as two characters.

Issue: 20190802 1

http://iot.console.aliyun.com/

IoT Platform User Guide / 1 Create products and devices

Parameter Description
Node Type • Device: Indicates that devices of this product cannot

be mounted with sub-devices. This kind of device can
connect to IoT Platform directly or as a sub-device of a
gateway device.

• Gateway: Indicates that devices of this product connect
to IoT Platform directly and can be mounted with
sub-devices . A gateway can manage sub-devices,
maintain topological relationships with sub-devices, and
synchronize topological relationships to IoT Platform.

For more information about gateway devices and sub-
devices, see Gateways and sub-devices.

Connect to
Gateway

Note:
This parameter
appears if the
node type is
Device.

Indicates whether or not devices of this product can be
connected to gateways as sub-devices.
• Yes: Devices of this product can be connected to a

gateway. If you select Yes here, you are required to select a
gateway connection protocol under Network Connection
and Data.

• No: Devices of this product cannot be connected to a
gateway. If you select No here, you are required to select a
network connection method under Network Connection
and Data.

Gateway
Connection
Protocol

Note:
This parameter
appears if you
select Yes for
Connect to
Gateway .

Select a protocol for sub-device and gateway
communication.
• Custom: Indicates that you want to use another protocol

 as the connection protocol for sub-device and gateway
communication.

• Modbus: Indicates that the communication protocol
between sub-devices and gateways is Modbus.

• OPC UA: Indicates that the communication protocol
between sub-devices and gateways is OPC UA.

• ZigBee: indicates that the communication protocol
between sub-devices and gateways is ZigBee.

• BLE: indicates that the communication protocol between
sub-devices and gateways is BLE.

2 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices

Parameter Description
Network
Connection
Method

Note:
This parameter
appears if you
select No for
Connect to
Gateway.

Select a network connection method for the devices:
• WiFi
• Cellular (2g/3g/4G)
• Ethernet
• Other

Data Type Select a format in which devices exchange data with IoT
Platform. Options are ICA Standard Data Format (Alink
JSON) and Do not parse/Custom.
• ICA Standard Data Format (Alink JSON): The standard

data format defined by IoT Platform for device and IoT
Platform communication.

• Do not parse/Custom: If you want to customize the
serial data format, select Do not parse/Custom. Custom
formatted data must be converted to Alink JSON script by
Data parsingso that your devices can communicate with
the IoT Platform.

Product Descriptio
n

Describe the product information. You can enter up to 100
characters.

After the product is created successfully, you are automatically redirected to the
Products page.

What's next
1. To configure features for a product (such as Notifications, TSL (Define Feature),

and Service Subscription), go to the product list, find the target product and then
click its corresponding View button.

2. Register devices on IoT Platform.
3. Develop your physical devices by referring to Developer Guide (Devices).

Issue: 20190802 3

IoT Platform User Guide / 1 Create products and devices

4. To publish a product, go to the product details page and click Publish.

Note that before you publish a product, you must make sure that you have
configured all the correct information for the product, have completed debugging
the features, and have verified that it meets the criteria for being published.
When the product status is Published, you can view the product information but
cannot modify or delete the product.

To cancel the publishing of a product, click Cancel Publishing.

1.2 Create devices
1.2.1 Create multiple devices at a time

A product is a collection of devices. After you create products, you can create specific
devices for the product models. You can create one device or multiple devices at a
time. This topic explains how to create multiple devices at a time.

Procedure

4 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices

1. Log on to the IoT Platform console.
2. In the left-side navigation pane, click Devices > Device, and then click Batch Add.
3. Select a product that you have created. The devices to be created will be assigned

with the features of the selected product.
4. Select how the devices are to be named. Two methods:

• Auto Generate: You do not specify names for the devices that you want to create.
You only specify the number of devices, and the system automatically generates
names for the devices.

• Batch Upload: You specify a name for each device you want to create. Under
Upload File, click Download .csv Template to download the naming template.
Enter device names in the template table and save the file. Then, click Upload
File to upload the naming file.

Note:
• Device names must be 4-32 characters in length, and can contain English letters

, digits, hyphens, underscores, @ symbols, dots, and colons.
• Each device name must be unique in the product.
• A file can include up to 1,000 names.
• The size of the file cannot exceed 2 MB.

5. Click OK to start batch device creation.
6. After the devices are successfully created, click Download Device Certificate to

download the file containing the information of created devices.
Result

On the Batch Management tab page of Devices page, you can:
• Click View Details to view the detailed information of the devices.

Issue: 20190802 5

http://iot.console.aliyun.com/

IoT Platform User Guide / 1 Create products and devices

• Click Download CSV to download the certificates of the devices.
1.2.2 Create a device

A product is a collection of devices. After you have created a product, you must
register devices under the product with IoT Platform. You can create devices
individually or create multiple devices at one time. This topic describes how to create
devices individually.

Procedure
1. Log on to the IoT Platform console.
2. In the left-side navigation pane, choose Devices > Device, and then click Add

Device.
3. In the Add Device dialog box, enter the device information and click OK.

Parameter Description
Product Select a product. The device to be created will be assigned the

features and properties of the selected product.
Note:

If the product is associated with another platform, make sure
that your account has sufficient activation codes to create the
device.

6 Issue: 20190802

http://iot.console.aliyun.com/

IoT Platform User Guide / 1 Create products and devices

Parameter Description
DeviceName Set the device name. If you left this parameter empty, the system

automatically generates a device name that contains numbers
and letters.
• The device name is unique within the product.
• The device name must be 4 to 32 characters in length and

can contain letters, numbers, and special characters. The
supported special characters are hyphens (-), underscores (_),
at signs (@), periods (.) , and colons (:).

Note name Set the alias. The alias must be 4 to 64 characters in length
and can contain Chinese characters, letters, numbers, and
 underscores (_). One Chinese character is counted as two
characters.

Result
After the device is created, the View Device Certificate dialog box appears
automatically. You can view and copy the device certificate information. A
device certificate is the authentication certificate of a device when the device
is communicating with IoT Platform. It contains three key fields: ProductKey,
DeviceName, and DeviceSecret.
Parameter Description
ProductKey The key of the product to which the device belongs. It is the

GUID that is issued by IoT Platform to the product.
DeviceName The unique identifier of the device within the product. A

device uses the DeviceName and the ProductKey as the device
 identifier to authenticate to and communicate with IoT
Platform.

DeviceSecret The device key issued by IoT Platform for device authentica
tion and encryption. It must be used in pairs with the
DeviceName.

You can also click View next to the newly created device on the Device List page. On
the Device Details page, click the Device Information tab to view device information.

Issue: 20190802 7

IoT Platform User Guide / 1 Create products and devices

What's next
Follow instructions in Device development documentation to develop the device SDK.

1.2.3 Manage devices
After you create a device in IoT Platform, you can manage or view device information
in the IoT Platform console.

Manage devices of an account
From the left-side navigation pane, choose Devices > Device. The Devices page
appears.

8 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices

Task Procedure
View devices under a
specific product

Select a product in the upper-left corner of the page.

Search for a device Enter a device name, note name, or device tag to search
 for a device. Fuzzy search is supported.

View detailed information
about a device

Click View next to the corresponding device.

Delete a device Click Delete next to the corresponding device.
Note:

After a device is deleted, the device certificate
becomes invalid and the data about this device in IoT
Platform is deleted.

View detailed information about a device
In the device list, click View next to the corresponding device. The Device Details
page appears.

Task Procedure
Activate the device The Inactive status indicates that the device is not

connected to IoT Platform. To develop the device and
activate the device, see Download device SDKs.

View device information View the basic information about the device, including
device certificate information, firmware information,
extended information, and tag information.

Issue: 20190802 9

http://gitlab.alibaba-inc.com/Apsaras64/pub/wikis/Linkkit_Iterations/V230/Devinfo_Report
http://gitlab.alibaba-inc.com/Apsaras64/pub/wikis/Linkkit_Iterations/V230/Devinfo_Report

IoT Platform User Guide / 1 Create products and devices

Task Procedure
View device data • On the Status tab page, view the latest values, data

records, and desired values of properties.
• On the Events tab page, view the records about

device reported events.
• On the Invoke Service tab page, view the service call

records.
View device log On the Device Log tab page, click Read Now to view

the device log information. The information include
device activities, upstream messages, downstream
messages, TSL data, and QoS=1 message contents. For
more information about device logs, see Device log.

1.3 TSL
1.3.1 Overview

Thing Specification Language (TSL) is a data model that digitizes a physical entity and
constructs the entity data model in IoT Platform. In IoT Platform, a TSL model refers
to a set of product features. After you have defined features for a product, the system
automatically generates a TSL model of the product. A TSL model describes what a
product is, what the product can do, and what services the product can provide.
A TSL model is a file in JSON format. TSL files are the digitized expressions of physical
 entities, such as sensors, vehicle-mounted devices, buildings and factories. A TSL file
 describes an entity in three dimensions: property (what the entity is), service (what
 the entity can do), and event (what event information the entity reports). Defining
these three dimensions is to define the product features.
Therefore, the feature types of a product are Properties, Services and Events. You can
define these three types of features in the console.
Feature type Description
Property Describes a running status of a device, such as the current

temperature read by the environmental monitoring equipment
. You can use GET and SET methods to send requests to get and
 set device properties.

10 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices

Feature type Description
Service Indicates a feature or method of a device that can be used by a

 user. You can set input parameters and output parameters for
 a service. Compared with properties, services can implement
more complex business logic, for example, a specific task.

Event Indicates the notifications of a type of event occurred when a
 device is running. Events typically indicate notifications that
 require actions or attention, and they may contain multiple
output parameters. For example, events can be notifications
about the completion of tasks, system failures, or temperature
alerts. You can subscribe to events or push events to a message
 receiving target.

Use TSL
1. In the IoT Platform console, Define features or Import Thing Specification

Language (TSL).
2. Develop the SDK. See the documentations of Link Kit SDK for help information.
3. Connect the SDK to IoT Platform. Then, devices can report properties and events to

 IoT Platform, and in IoT Platform, you can set properties and call device services.
1.3.2 Define features

Defining features for products is to define Thing Specification Language (TSL),
including defining properties, services, and events. This article describes how to
define features in the IoT Platform console.

Procedure
1. Log on to the IoT Platform console.
2. In the left-side navigation pane, click Devices > Product.
3. On the Products page, find the product for which you want to define features and

click View.
4. Click Define Feature.

Issue: 20190802 11

https://www.alibabacloud.com/help/product/93051.htm
http://iot.console.aliyun.com/

IoT Platform User Guide / 1 Create products and devices

5. Add self-defined features. Click the Add Feature button corresponding to Self-
defined Feature to add custom features for the product. You can define properties,
services and events for the product.

• Define a property. In the Add Self-defined Feature dialog box, select Properties
as the feature type. Enter information for the property and then clickOK.

12 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices

The parameters of properties are listed in the following table.
Parameter Description
The function
name Property name, for example, Power Consumption. Each

feature name must be unique in the product.
A feature name must start with a Chinese character, an English
 letter, or a digit, can contain Chinese characters, English
 letters, digits, dashes(-) and underscores (_), and cannot
exceed 30 characters in length.

Issue: 20190802 13

IoT Platform User Guide / 1 Create products and devices

Parameter Description
Identifier Identifies a property. It must be unique in the product. It is

the parameter identifier in Alink JSON TSL, and is used
as the key when a device is reporting data of this property.
Specifically, IoT Platform uses this parameter to verify and
determine whether or not to receive the data. An identifier
can contain English letters, digits, and underscores (_),
and cannot exceed 50 characters in length. For example,
PowerConsumption.

Note:
An identifier cannot be any one of the following words: set,
get, post, time, and value, because they are system parameter
names.

14 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices

Parameter Description
Data Type - int32 : 32-bit integer. If you select int32, you are required

to define the value range, step, and unit.
- float : Float. If you select float, you are required to define

the value range, step, and unit.
- double : Double float. If you select double, you are

required to define the value range, step, and unit.
- enum : Enumeration. You must specify enumeration items

with values and descriptions. For example,1 indicates
heating mode and 2 indicates cooling mode.

- bool : Boolean. You must specify the Boolean values.
Values include 0 and 1. For example, you can use 0 to
indicate disabled and 1 to indicate enabled.

- text : Text string. You must specify the data length. The
maximum value is 2048 bytes.

- date : Timestamp. A UTC timestamp in string type, in
milliseconds.

- struct : A JSON structure. Define a JSON structure, and
add new JSON parameters. For example, you can define
that the color of a lamp is a structure composed of three
parameters: red, green, and blue. Structure nesting is not
supported.

- array : Array. You must select a data type for the elements
in the array from int32, float, double, text and struct.
Make sure that the data type of elements in an array is the
same and that the length of the array does not exceed 128
elements.

Note:
When the gateway connection protocol is Modbus, you do not
set this parameter.

Step The smallest granularity of changes of properties, events, and
input and output parameter values of services. If the data type
is int32, float, or double, step is required.

Unit You can select None or a unit suitable.

Issue: 20190802 15

IoT Platform User Guide / 1 Create products and devices

Parameter Description
Read/Write
Type - Read / Write : GET and SET methods are supported for

Read/Write requests.
- Read - only : Only GET is supported for Read-only

requests.
Note:

When the gateway connection protocol is Modbus, you do not
set this parameter.

Description Enter a description or remarks about the property. You can
enter up to 100 characters.

16 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices

Parameter Description
Extended
Information When the gateway connection protocol is Modbus or OPC UA,

you can configure extended parameters.
- When the gateway connection protocol is Modbus,

configure the following parameters.
■ Operation Type:

■ Coil Status (read-only, 01)
■ Coil Status (read and write, 01-read, 05-write)
■ Coil Status (read and write, 01-read, 0F-write)
■ Discrete Input (read-only, 02)
■ Holding Registers (read-only, 03)
■ Holding Registers (read and write, 03-read, 06-write)
■ Holding Registers (read and write, 03-read, 10-write)
■ Input Registers (read-only, 04)

■ Register Address: Enter a hexadecimal address beginning
 with 0x. The range is 0x0 - 0xFFFF. For example, 0xFE.

■ Original Data Type: Multiple data types are supported,
including int16, uint16, int32, uint32, int64, uint64, float,
double, string, bool, and customized data (raw data).

■ Switch High Byte and Low Byte in Register: Swap the first
8 bits and the last 8 bits of the 16-bit data in the register.
Options:
■ true

■ false

■ Switch Register Bits Sequence: Swap the bits of the
original 32-bit data. Options:
■ true

■ false

■ Zoom Factor: The zoom factor is set to 1 by default. It can
be set to negative numbers, but cannot be set to 0.

■ Collection Interval: The time interval of data collection. It
 is in milliseconds and the value cannot be lower than 10.

■ Data Report: The trigger of data report. It can be either
At Specific Time or Report Changes .

- When the gateway connection protocol is OPC UA, set a
node name. Each node name must be unique under the
property.

Issue: 20190802 17

IoT Platform User Guide / 1 Create products and devices

• Define a service. In the Add Self-defined Feature dialog box, select Services as
the feature type. Enter information for the service and then click OK.

Note:

18 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices

When the gateway connection protocol is Modbus, you cannot define any
service for the product.

The parameters of services are as follows.

Issue: 20190802 19

IoT Platform User Guide / 1 Create products and devices

Parameter Description
The function
name Service name.

A feature name must start with an English letter, Chinese
character, or a number. It can contain English letters, Chinese
 characters, digits, dashes (-), and underscores (_), and cannot
exceed 30 characters in length.
If you have selected a category with feature template when you
 were creating the product, the system displays the standard
services from the standard feature library for you to choose.

Note:
When the gateway connection protocol is Modbus, you
cannot define custom services for the product.

Identifier Identifies a service. It must be unique within the product.
The parameter identifier in Alink JSON TSL. It is used as
the key when this service is called. An identifier can contain
English letters, digits, and underscores (_), and cannot exceed
30 characters in length.

Note:
Identifiers of input parameters cannot be any one of the
following words: set, get, post, time, and value.

Invoke
Method - Asynchrono us : For an asynchronous call, IoT Platform

returns the result directly after the request is sent, and does
not wait for a response from the device.

- Synchronou s : For a synchronous call, IoT Platform
waits for a response from the device. If no response is
received, the call times out.

20 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices

Parameter Description
Input
Parameters

(Optional) Set input parameters for the service.
Click Add Parameter, and add an input parameter in the dialog
box that appears.
When the gateway connection protocol is OPC UA, you must
set the parameter index that is used to mark the order of the
parameters.

Note:
- Identifiers of input parameters cannot be any one of the

following words: set, get, post, time, and value.
- You can either use a property as an input parameter

or define an input parameter. For example, you can
specify the properties Sprinkling Interval and
Sprinkling Amount as the input parameters of the
Automatic Sprinkler service feature. Then, when

Automatic Sprinkler is called, the sprinkler automatically
starts irrigation according to the sprinkling interval and
amount.

- You can add up to 20 input parameters for a service.
Output
Parameters

(Optional) Set output parameters for the service.
Click Add Parameter, and add an output parameter in the
dialog box that appears.
When the gateway connection protocol is OPC UA, you must
set the parameter index that is used to mark the order of the
parameters.

Note:
- Identifiers of input parameters cannot be any one of the

following words: set, get, post, time, and value.
- You can either use a property as an output parameter or

define an output parameter. For example, you can specify
the property SoilHumidi ty as an output parameter.
Then, when the service Automatic Sprinkler is called, IoT
Platform returns the data about soil humidity.

- You can add up to 20 output parameters for a service.

Issue: 20190802 21

IoT Platform User Guide / 1 Create products and devices

Parameter Description
Extended
Information

When the gateway connection protocol is OPC UA, set a node
name. Each node name must be unique under the service.

Description Enter a description or remarks about the service. You can
enter up to 100 characters.

• Define an event. In the Add Self-defined Feature dialog box, select Events as the
feature type. Enter information for the parameter and then click OK.

Note:

22 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices

When the gateway connection protocol is Modbus, you cannot define any event
for the product.

The parameters of events are as follows.
Parameter Description
The function
name Event name.

A feature name must start with a Chinese character, an English
 letter, or a digit, can contain Chinese characters, English
 letters, digits, dashes(-) and underscores (_), and cannot
exceed 30 characters in length.

Note:
When the gateway connection protocol is Modbus, you
cannot define events.

Issue: 20190802 23

IoT Platform User Guide / 1 Create products and devices

Parameter Description
Identifier Identifies an event. It must be unique in the product. It is the

parameter identifier in Alink JSON TSL, and is used as the
key when a device is reporting data of this event, for example,
ErrorCode.

Note:
Identifiers of input parameters cannot be any one of the
following words: set, get, post, time, and value.

Event Type - Info : Indicates general notifications reported by devices,
such as the completion of a specific task.

- Alert : Indicates alerts that are reported by devices when
unexpected or abnormal events occur. It has a high priority.
You can perform logic processing or analytics depending on
the event type.

- Error : Indicates errors that are reported by devices when
unexpected or abnormal events occur. It has a high priority.
You can perform logic processing or analytics depending on
the event type.

Output
Parameters

The output parameters of an event. Click Add Parameter, and
add an output parameter in the dialog box that appears. You
can either use a property as an output parameter or define an
output parameter. For example, you can specify the property
Voltage as an output parameter. Then, devices report errors

with the current voltage value for further fault diagnosis.
When the gateway connection protocol is OPC UA, you must
set the parameter index that is used to mark the order of the
parameters.

Note:
- Identifiers of input parameters cannot be any one of the

following words: set, get, post, time, and value.
- You can add up to 50 output parameters for an event.

Extended
Information

When the gateway collection protocol is OPC UA, set a node
name. Each node name must be unique under the event.

Description Enter a description or remarks about the event. You can enter
up to 100 characters.

24 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices

1.3.3 Import Thing Specification Language (TSL)
This article introduces how to import an existing TSL for a product.

Procedure
1. Log on to the IoT Platform console.
2. In the left-side navigation pane, click Devices > Product.
3. On the Products page, find the product for which you want to import TSL and click

View.
4. Click Define Feature > Import TSL.

Note:
• The previously defined features of the product will be overwritten, once you

have imported a new TSL for the product. Therefore, this function must be used
 with caution.

• You cannot import a TSL for a product whose gateway connection protocol is
defined as Modbus.

You can import TSL in two ways:
• Copy Product: Copy the TSL of another product. Select an existing product and

click OK to import the TSL of the selected product to this product.
If you want to modify some features, click Edit corresponding to the features on
the Define Feature tab page.

• Import TSL: Paste your self-defined TSL script into the edit box and click OK.
The size of the imported file cannot exceed 64 KB.

Issue: 20190802 25

http://iot.console.aliyun.com/

IoT Platform User Guide / 1 Create products and devices

1.3.4 The TSL format
The format of Thing Specification Language (TSL) is JSON. This article introduces the
JSON fields of TSL.
In the Define Feature tab of your target product, click View TSL.
The following section details each JSON field.
{
 " schema ":" TSL schema of a thing ",
 " link ":" System - level URI in the cloud , used to
invoke services and subscribe to events ",

 " profile ":{
 " productKey ":" Product ID ",
 },
 " properties ":[
 {
 " identifier ":" Identifies a property . It must
be unique under a product ",

 " name ":" Property name ",
 " accessMode ":" Read / write type of properties ,
including Read - Only and Read / Write ",

 " required ":" Determines whether a property
that is required in the standard category is also
required for a standard feature ",

 " dataType ":{
 " type ":" Data type : int (original), float (
original), double (original), text (original), date (UTC
 string in millisecon ds), bool (integer , 0 or 1),
enum (integer), struct (supports int , float , double ,
text , date , and bool), array (supports int , double ,
float , and text)",

 " specs ":{
 " min ":" Minimum value , available only
for the int , float , and double data types ",

 " max ":" Maximum value , available only
for the int , float , and double data types ",

 " unit ":" Property unit ",
 " unitName ":" Unit name ",
 " size ":" Array size , up to 128
elements , available only for the array data type ",

 " item ":{
 " type ":" Type of an array element "
 }
 }
 }
 }
],
 " events ":[
 {
 " identifier ":" Identifies an event that is
unique under a product , where " post " are property
events reported by default ",

 " name ":" Event name ",
 " desc ":" Event descriptio n ",
 " type ":" Event types , including info , alert ,
and error ",

 " required ":" Whether the event is required for
 a standard feature ",

 " outputData ":[

26 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices
 {
 " identifier ":" Uniquely identifies a
parameter ",

 " name ":" Parameter name ",
 " dataType ":{
 " type ":" Data type : int (original),
float (original), double (original), text (original),
date (UTC string in millisecon ds), bool (integer , 0
 or 1), enum (integer), struct (supports int , float ,
double , text , date , and bool), array (supports int ,
double , float , and text)",

 " specs ":{
 " min ":" Minimum value , available
only for the int , float , and double data types ",

 " max ":" Maximum value , available
only for the int , float , and double data types ",

 " unit ":" Property unit ",
 " unitName ":" Unit name ",
 " size ":" Array size , up to 128
elements , available only for the array data type ",

 " item ":{
 " type ":" Type of an array
element "

 }
 }
 }
 }
],
 " method ":" Name of the method to invoke the
 event , generated according to the identifier "

 }
],
 " services ":[
 {
 " identifier ":" Identifies a service that is
unique under a product (set and get are default
services generated according to the read / write type
of the property)",

 " name ":" Service name ",
 " desc ":" Service descriptio n ",
 " required ":" Whether the service is required
for a standard feature ",

 " inputData ":[
 {
 " identifier ":" Uniquely identifies an
input parameter ",

 " name ":" Name of an input parameter ",
 " dataType ":{
 " type ":" Data type : int (original),
float (original), double (original), text (original),
date (UTC string in millisecon ds), bool (integer , 0
 or 1), enum (integer), struct (supports int , float ,
double , text , date , and bool), array (supports int ,
double , float , and text)",

 " specs ":{
 " min ":" Minimum value , available
only for the int , float , and double data types ",

 " max ":" Maximum value , available
only for the int , float , and double data types ",

 " unit ":" Property unit ",
 " unitName ":" Unit name ",
 " size ":" Array size , up to 128
elements , available only for the array data type ",

 " item ":{

Issue: 20190802 27

IoT Platform User Guide / 1 Create products and devices
 " type ":" Type of an array
element "

 }
 }
 }
 }
],
 " outputData ":[
 {
 " identifier ":" Uniquely identifies an
output parameter ",

 " name ":" Name of an output parameter ",
 " dataType ":{
 " type ":" Data type : int (original),
float (original), double (original), text (original),
date (UTC string in millisecon ds), bool (integer , 0
 or 1), enum (integer), struct (supports int , float ,
double , text , date , and bool), array (supports int ,
double , float , and text)",

 " specs ":{
 " min ":" Minimum value , available
only for the int , float , and double data types ",

 " max ":" Maximum value , available
only for the int , float , and double data types ",

 " unit ":" Property unit ",
 " unitName ":" Unit name ",
 " size ":" Array size , up to 128
elements , available only for the array data type ",

 " item ":{
 " type ":" Type of an array
element , available only for the array data type "

 }
 }
 }
 }
],
 " method ":" Name of the method to invoke
the service , which is generated according to the
identifier "

 }
]
}

If the product is connected to a gateway as a sub-device and the connection protocol
is Modbus or OPC UA, you can view the TSL extension configuration.
{
" profile ": {
" productKey ": " Product ID ",
 },
" properties ": [
 {
" identifier ": " Identifies a property . It must be unique
 under a product ",

" operateTyp e ": "(coilStatus / inputStatu s / holdingReg ister /
inputRegis ter)",

" registerAd dress ": " Register address ",
" originalDa taType ": {
" type ": " Data type : int16 , uint16 , int32 , uint32 , int64
, uint64 , float , double , string , customized data (returns
 hex data according to big - endian)",

" specs ": {

28 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices
" registerCo unt ": " The number of registers , available
only for string and customized data ",

" swap16 ": " swap the first 8 bits and the last 8
 bits of the 16 bits of the register data (for
example , byte1byte2 -> byte2byte1 0). Available for all
 the other data types except string and customized
data ",

" reverseReg ister ": " Ex : Swap the bits of the original
 32 bits data (for example , byte1byte2 byte3byte4 ->
byte3byte4 byte1byte2 ”. Available for all the other data
 types except string and customized data "

 }
 },
" scaling ": " Scaling factor ",
" pollingTim e ": " Polling interval . The unit is ms ",
" trigger ": " The trigger of data report . Currently ,
two types of triggering methods are supported : 1 :
report at the specified time ; 2 : report when changes
 occurred "

 }
]
}

1.4 Data parsing
1.4.1 Data parsing

Devices with low configurations and limited resources or devices that have high
requirements for network traffic can send raw data to IoT Platform. This prevents
the devices from directly sending data to IoT Platform in Alink JSON format. You
must write a data parsing script in the IoT Platform console to parse upstream and
downstream data to be in standard Alink JSON format and the custom data format,
respectively.

About data parsing
When receiving raw data from a device, IoT Platform runs the parsing script to
convert the raw data to the Alink JSON data for business processing. When sending
data to the device, IoT Platform also runs the parsing script to convert the Alink JSON
data to the device custom formatted data.
Data parsing process:

Issue: 20190802 29

IoT Platform User Guide / 1 Create products and devices

For more information about sending data upstream and downstream, see "Devices
report properties or events" and "Call device services or set device properties" in
Communications over Alink protocol.

Script format
/**
 * Convert data in Alink JSON format to data format
that can be identified by the device . This feature
is called when IoT Platform sends data to a device
.

 * Input : jsonObj Object Required
 * Output : rawData byte [] Array Required
 *
 */
function protocolTo RawData (jsonObj) {

 return rawdata ;
}

/**
 * Convert the custom formatted data to Alink JSON
data . This function is called when a device reports
data to IoT Platform .

 * Input : rawData byte [] Array Required
 * Output : jsonObj Object Required
 */
function rawDataToP rotocol (rawData) {

 return jsonObj ;

30 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices
}

Edit and verify scripts
Only JavaScript is supported to edit scripts. IoT Platform provides an online script
editor that allows you to edit and submit scripts, and simulate data parsing for testing
.
1. Log on to the IoT Platform console.
2. From the left-side navigation pane, choose Devices > Product.
3. Click Create Product to create a product and set the data type to Do not parse/

Custom. For more information, see Create a product.
4. On the Product Details page, click the Data Parsing tab. Edit your data parsing

script in the editor. Only JavaScript is supported. For more information, see
Example: Edit a script.

When you edit the script, you can perform the following operations:
• Click Full Screen to view or edit the script in full screen. Click Exit Full Screen to

exit the full screen.
• ClickSave Draft at the bottom of the page to save the content that you have

edited. The next time you access the Data Parsing page, you will be notified that
you have a draft. You can then choose to restore edit or delete draft.
- A saved draft script will not be published to the running platform and will not

 affect a published script.
- A new draft will overwrite any previously saved draft.

5. After you finish editing the script, you can enter analog data in the Analog Input
box. Click Run to test whether the script can be used to parse data correctly. For

Issue: 20190802 31

IoT Platform User Guide / 1 Create products and devices

more information about analog data and parsing results, see Verify a data parsing
script.

6. If you confirm that the script is correct and can parse data correctly, click Submit
to submit the script to the running platform. When data is exchanged between
IoT Platform and the device, the system will automatically call the corresponding
function in the script to convert data.

7. Perform a test by sending data to IoT Platform from a real device.
a. Register a device, and develop the device SDK
b. The device connects to IoT Platform and reports data to IoT Platform.
c. In the IoT Platform console, go to the Device Details page of the device. Click the

Status tab to view the device property data.

Example: Edit a script
The following describes the data parsing script format and content of a product. In
this example, the device data is in hexadecimal notation, and the product has three
properties: prop_float, prop_int16, and prop_bool.
1. Create a product and select Do not parse/Custom as the data type. Then, define the

following properties. For more information, see Define features.
Identifier Type Value range Read/write
prop_float float -100 to 100 Read/write
prop_int16 int32 -100 to 100 Read/write
prop_bool bool 0: Enabled. 1:

Disabled.
Read/write

32 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices

2. Define the communication protocol as follows:
Table 1-1: Upstream data request
Field Number of bytes
Frame type One
Request ID Four
prop_int16 Two
prop_bool One
prop_float Four

Table 1-2: Upstream data response
Field Number of bytes
Frame type One
Request ID Four
Result code One

Table 1-3: Property setting request
Field Number of bytes
Frame type One
Request ID Four
prop_int16 Two
prop_bool One
prop_float Four

Table 1-4: Property setting response
Field Number of bytes
Frame type One
Request ID Four
Result code One

Issue: 20190802 33

IoT Platform User Guide / 1 Create products and devices

3. Edit the script.
You must define the following methods in the script:
• protocolTo RawData : Convert Alink JSON formatted data to custom

formatted data.
• rawDataToP rotocol : Convert custom formatted data to Alink JSON

formatted data.
A script demo is as follows:
var COMMAND_RE PORT = 0x00 ; // Devices report property
var COMMAND_SE T = 0x01 ; // Set property
var COMMAND_RE PORT_REPLY = 0x02 ; // Respond to the
reported data
var COMMAND_SE T_REPLY = 0x03 ; // Respond to the
property setting request
var COMMAD_UNK OWN = 0xff ; // Other command
var ALINK_PROP _REPORT_ME THOD = ' thing . event . property
. post '; // This is a topic for devices to report
property data to IoT Platform .
var ALINK_PROP _SET_METHO D = ' thing . service . property .
set '; // This is a topic for for IoT Platform to
send property management commands to devices .
var ALINK_PROP _SET_REPLY _METHOD = ' thing . service .
property . set '; // This is a topic for devices to
report property setting results to IoT Platform .
/*
Sample data :
Upstream data
Input ->
 0x00000000 0100320100 000000
Output ->
 {" method ":" thing . event . property . post "," id ":" 1 ","
params ":{" prop_float ": 0 ," prop_int16 ": 50 ," prop_bool ": 1
}," version ":" 1 . 0 "}

Property setting response
Input ->
 0x03002233 44c8
Output ->
 {" code ":" 200 "," data ":{}," id ":" 2241348 "," version ":" 1
. 0 "}
*/
function rawDataToP rotocol (bytes) {
 var uint8Array = new Uint8Array (bytes . length);
 for (var i = 0 ; i < bytes . length ; i ++) {
 uint8Array [i] = bytes [i] & 0xff ;
 }
 var dataView = new DataView (uint8Array . buffer , 0);
 var jsonMap = new Object ();
 var fHead = uint8Array [0]; // command
 if (fHead == COMMAND_RE PORT) {
 jsonMap [' method '] = ALINK_PROP _REPORT_ME THOD ; //
The Alink JSON formatted data topic for reporting
properties
 jsonMap [' version '] = ' 1 . 0 '; // The fixed
protocol version field in the Alink JSON format

34 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices
 jsonMap [' id '] = '' + dataView . getInt32 (1); // The
 request ID in Alink JSON format
 var params = {};
 params [' prop_int16 '] = dataView . getInt16 (5); //
The value of prop_int16
 params [' prop_bool '] = uint8Array [7]; // The value
 of prop_bool
 params [' prop_float '] = dataView . getFloat32 (8); //
The value of prop_float
 jsonMap [' params '] = params ; // The value for
params in Alink JSON format
 } else if (fHead == COMMAND_SE T_REPLY) {
 jsonMap [' version '] = ' 1 . 0 '; // The fixed
protocol version field in the Alink JSON format
 jsonMap [' id '] = '' + dataView . getInt32 (1); // The
 request ID value in Alink JSON format
 jsonMap [' code '] = ''+ dataView . getUint8 (5);
 jsonMap [' data '] = {};
 }

 return jsonMap ;
}
/*
Sample data :
Property setting
Input ->
 {" method ":" thing . service . property . set "," id ":" 12345
"," version ":" 1 . 0 "," params ":{" prop_float ": 123 . 452 , "
prop_int16 ": 333 , " prop_bool ": 1 }}
Output ->
 0x01000030 39014d0142 f6e76d

Upstream data response
Input ->
 {" method ":" thing . event . property . post "," id ":" 12345
"," version ":" 1 . 0 "," code ": 200 ," data ":{}}
Output ->
 0x02000030 39c8
*/
function protocolTo RawData (json) {
 var method = json [' method '];
 var id = json [' id '];
 var version = json [' version '];
 var payloadArr ay = [];
 if (method == ALINK_PROP _SET_METHO D) // Set
properties
 {
 var params = json [' params '];
 var prop_float = params [' prop_float '];
 var prop_int16 = params [' prop_int16 '];
 var prop_bool = params [' prop_bool '];
 // Join raw data according to the custom
protocol format
 payloadArr ay = payloadArr ay . concat (buffer_uin t8
(COMMAND_SE T)); // The command field
 payloadArr ay = payloadArr ay . concat (buffer_int 32
(parseInt (id))); // The ID in Alink JSON format
 payloadArr ay = payloadArr ay . concat (buffer_int 16
(prop_int16)); // The value of prop_int16
 payloadArr ay = payloadArr ay . concat (buffer_uin t8
(prop_bool)); // The value of prop_bool
 payloadArr ay = payloadArr ay . concat (buffer_flo
at32 (prop_float)); // The value of prop_float

Issue: 20190802 35

IoT Platform User Guide / 1 Create products and devices
 } else if (method == ALINK_PROP _REPORT_ME THOD) { //
Response to device upstream data
 var id = json [' id '];
 payloadArr ay = payloadArr ay . concat (buffer_uin t8
(COMMAND_SE T)); // The command field
 payloadArr ay = payloadArr ay . concat (buffer_int 32
(parseInt (id))); // The ID in Alink JSON format
 payloadArr ay = payloadArr ay . concat (buffer_uin t8
(code));
 } else { // Other commands that will not be
processed
 var id = json [' id '];
 payloadArr ay = payloadArr ay . concat (buffer_uin t8
(COMMAND_SE T)); // The command field
 payloadArr ay = payloadArr ay . concat (buffer_int 32
(parseInt (id))); // The ID in Alink JSON format
 payloadArr ay = payloadArr ay . concat (buffer_uin t8
(code));
 }
 return payloadArr ay ;
}
// The following lists some auxiliary functions :
function buffer_uin t8 (value) {
 var uint8Array = new Uint8Array (1);
 var dv = new DataView (uint8Array . buffer , 0);
 dv . setUint8 (0 , value);
 return []. slice . call (uint8Array);
}
function buffer_int 16 (value) {
 var uint8Array = new Uint8Array (2);
 var dv = new DataView (uint8Array . buffer , 0);
 dv . setInt16 (0 , value);
 return []. slice . call (uint8Array);
}
function buffer_int 32 (value) {
 var uint8Array = new Uint8Array (4);
 var dv = new DataView (uint8Array . buffer , 0);
 dv . setInt32 (0 , value);
 return []. slice . call (uint8Array);
}
function buffer_flo at32 (value) {
 var uint8Array = new Uint8Array (4);
 var dv = new DataView (uint8Array . buffer , 0);
 dv . setFloat32 (0 , value);
 return []. slice . call (uint8Array);
}

Verify a data parsing script
After you edit a sample script, you can verify the correctness of the script. Enter
analog data in the Analog Input box, and click Run. The system will call this script to
parse the analog data. The parsed result will be displayed in the Parsing Results box
at the right side of the page.

36 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices

• Parse the device-reported property data
Select Upstreamed Device Data as the simulation type, enter the following
hexadecimal data, and then click Run.
0x00002233 441232013f a00000

The data parsing engine will convert the hexadecimal data to JSON data as defined
in the script. The result will be displayed in the Parsing Results area.
{
 " method ": " thing . event . property . post ",
 " id ": " 2241348 ",
 " params ": {
 " prop_float ": 1 . 25 ,
 " prop_int16 ": 4658 ,
 " prop_bool ": 1
 },
 " version ": " 1 . 0 ",
}

• Parse downstream data from IoT Platform to the device.
Select Received Device Data as the simulation type, enter the following JSON data,
and then click Run.
{
 " id ": " 12345 ",
 " version ": " 1 . 0 ",
 " code ": 200 ,
 " method ": " thing . event . property . post ",
 " data ": {}
}

The data parsing engine will convert the JSON data to the following hexadecimal
data.
0x02000030 39c8

• Parse the property setting data from IoT Platform to devices.
Select Received Device Data as the simulation type, enter the following
JSON data, and then click Run.
{
 " method ": " thing . service . property . set ",
 " id ": " 12345 ",
 " version ": " 1 . 0 ",
 " params ": {
 " prop_float ": 123 . 452 ,
 " prop_int16 ": 333 ,
 " prop_bool ": 1
 }

Issue: 20190802 37

IoT Platform User Guide / 1 Create products and devices
}

The data parsing engine converts JSON data to the following hexadecimal data.
0x01000030 39014d0142 f6e76d

• Parse property setting results returned by the device.
Select Upstreamed Device Data as the simulation type, enter the following
hexadecimal data, and then click Run.
0x03002233 44c8

The data parsing engine will convert the hexadecimal data to the following JSON
data.
{
 " code ": " 200 ",
 " data ": {}
 " id ": " 2241348 ",
 " version ": " 1 . 0 ",
}

If the script is incorrect, an error message is displayed in the Parsing Results area.
You must troubleshoot the error according to the error message and modify the script
code accordingly.

Debug a data parsing script in a local computer
IoT Platform Data Parsing does not support debugging on the running platform. We
recommend that you develop and debug the script locally and then paste the finished
script into the online editor. You may use the following debugging method.
// Test Demo

38 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices
function Test ()

{
 // 0x00123201 3fa00000
 var rawdata_re port_prop = new Buffer ([
 0x00 , // The fixed command header . A value of
0 indicates a property report message .

 0x00 , 0x22 , 0x33 , 0x44 , // The ID fields that
identify the request sequence .

 0x12 , 0x32 , // Two - byte value of prop_int16
 0x01 , // One - byte value of prop_bool
 0x3f , 0xa0 , 0x00 , 0x00 // Four - byte value of
prop_float

]);
 rawDataToP rotocol (rawdata_re port_prop);
 var setString = new String ('{" method ":" thing . service
. property . set "," id ":" 12345 "," version ":" 1 . 0 "," params
":{" prop_float ": 123 . 452 , " prop_int16 ": 333 , " prop_bool ": 1
}}');

 protocolTo RawData (JSON . parse (setString));
}
Test ();

Troubleshoot issues
After a device is connected to IoT Platform and reports data, the reported data can be
displayed in the IoT console if data parsing functions correctly. To view the data, go to
the Device Details page of the device and click the Status tab.
In some occasions, after the device reports data, no data is displayed on the page, as
shown in the following figure:

To view device logs: From the left-side navigation pane, choose Maintenance > Device
Log and select the corresponding product. On the Device Log page, click the TSL
Data Analysis tab. You can view the communication log between the device and IoT
Platform.
Use the following process to troubleshoot the issue:
1. View the reported data on the Device Log page. Each log entry records the

converted data and the original data.
Issue: 20190802 39

IoT Platform User Guide / 1 Create products and devices

2. Check the error codes according to the descriptions in Device log.
3. Troubleshoot the issue based on the error code, the script, and the reported data.
The following lists some errors:
• The data parsing script is not found.

As shown in the following figure, the error code is 6200. To check the description of
the error, see Device log. The error code of 6200 indicates that no script was found.
Check whether the data parsing script has been submitted in the console.

• Alink method does not exist.
The error code is 6450. This error code is described in Device log as follows: The
method parameter is not found in Alink data. This error occurs if the method
parameter is not found in the Alink data reported by the device or in the parsed
result of Do not parse/Custom data.

You can check the raw data, for example:
17 : 54 : 19 . 064 , A7B02C6064 6B4D2E8744 F7AA7C3D95 67 ,
upstream - error - bizType = OTHER_MESS AGE , params ={" params

40 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices
":{}}, result = code : 6450 , message : alink method not
exist ,...

In the log, the error message is alink method not exist . If this error
occurs, you must correct your script.

1.5 Topics
The cloud and devices communicate with each other in IoT Platform through topics.
The device reports messages to a specified topic and subscribes to messages from the
topic. IoT Platform sends commands to topics, and subscribes to specific topics to
obtain device information.

1.5.1 What is a topic?
A server and a device communicate with each other in IoT Platform through topics.
Topics are associated with devices, and topic categories are associated with products.
A topic category of a product is automatically applied to all devices under the product
to generate device-specific topics for message communication.

Topic category
To simplify authorization and facilitate communication between devices and
IoT Platform, topic categories were introduced. A topic category is a set of topics
within the same product. For example, topic category /${ YourProduc tKey }/

$ { YourDevice Name }/ user / update is a set that contains the following
two topics: /${ YourProduc tKey }/ device1 / user / update and /${
YourProduc tKey }/ device2 / user / update .

Issue: 20190802 41

IoT Platform User Guide / 1 Create products and devices

After a device is created, all topic categories of the product are automatically applied
to the device. You do not need to assign topics to each individual device.
Figure 1-1: Automatically create a topic

Descriptions for topic categories:
• A topic category uses a forward slash (/) to separate elements in different

hierarchical levels. A topic category contains the following fixed elements: ${
YourProduc tKey } indicates the product identifier; ${ YourDevice Name }

indicates the device name.
• Each element name can contain only letters, numbers, and underscores (_). An

element in each level cannot be left empty.
• A device can have Pub and Sub permissions to a topic. Pub indicates that the device

can publish messages to the topic. Sub indicates that the device can subscribe to
the topic.

Topic
A topic category is used for topic definition rather than communication. Only topics
can be used for communication.
• Topics use the same format as topic categories. The difference is that variable ${

YourDevice Name } in the topic category is replaced by a specific device name
in the topic.

• A topic is automatically derived from the topic category of the product based on
the corresponding device name. A topic contains the device name (DeviceName)
and can be used for data communication only by the specified device. For example,
topic /${ YourProduc tKey }/ device1 / user / update belongs to the

42 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices

device named device1. Only device1 can publish messages and subscribe to this
topic. Other devices cannot use this topic.

Supported wildcards
To use the rules engine data forwarding function to forward device data, you must
specify the source topic of the messages when writing an SQL statement. When you
specify a topic in setting a forwarding rule, you can use the following wildcards. One
element can contain only one wildcard.
Wildcard Description
Must be set as the last element in the topic. This wildcard

can match any element in the current level and sub-levels.
For example, in topic /${ YourProduc tKey }/ device1 /
user /#, wildcard # is added next to the / user element to

represent all elements after / user . This topic can represent
/${ YourProduc tKey }/ device1 / user / update and
/${ YourProduc tKey }/ device1 / user / update /
error .

+ Matches all elements in the current level. For example, in
topic /${ YourProduc tKey }/+/ user / update , the
device name element is replaced by wildcard + to represent
all devices under the product. This topic can represent /${
YourProduc tKey }/ device1 / user / update and /${
YourProduc tKey }/ device2 / user / update .

System topics and custom topics
IoT Platform supports the following types of topics:

Issue: 20190802 43

IoT Platform User Guide / 1 Create products and devices

Type Description
System topics The system-defined topics. System topics cannot be modified

and deleted. System topics include topics used by IoT Platform
 functions, such as TSL model-related functions and firmware
upgrade.
For example, topics related to TSL models generally start with/
sys /. Topics related to firmware upgrade start with / ota /.

Topics for the device shadow function start with / shadow /.

Note:
System topics are not completely displayed in the Topic
Categories list and the Topic List. For more information about
function-specific topics, see related function documentation.

Custom topics You can customize a topic category on the Topic Categories
tab page according to your business requirements. The
topic categories you have customized for the product will be
automatically applied to all devices under the product.

1.5.2 Create a topic category
This article introduces how to create a topic category for a product. Topic categories
will be automatically assigned to devices of the product.

Procedure
1. Log on to the IoT Platform console.
2. In the left-side navigation pane, click Devices > Product
3. On the Products page, find the product for which you want to create a topic

category, and click View in the operation column.
4. On the Product Details page, click Topic Categories > Create Topic Category.

44 Issue: 20190802

https://iot.console.aliyun.com

IoT Platform User Guide / 1 Create products and devices

5. Define a topic category.

• Device Operation Authorizations: Indicates the operations that devices can
perform on the topics of this topic category. You can select from Publish,
Subscribe, and Publish and Subscribe.

• Topic Category: Enter a custom topic category name according to the Topic

Rule on the page.
• Description: Describes the topic category. You can leave this box empty.

6. Click OK.
Wildcard characters in topic categories

When you create topic categories, you can use wildcards. For more information about
wildcards, see What is a topic? Supported wildcards:
• #: Includes the category level you enter and all lower levels in topics.

Issue: 20190802 45

IoT Platform User Guide / 1 Create products and devices

• +: Includes only one category level in topics, and not lower levels.

Note:
When you want to create topic categories with wildcards, note that:
• Only topics with Device Operation Authorizat ions as Subscripti

on support wildcards.
• # can only be at the end of topics.
• For topics with wildcard characters, you cannot click Publish to publish messages

on the Topic List tab page of devices.

1.6 Tags
A tag is a custom identifier you set for a product, a device, or a device group. You can
use tags to flexibly manage your products, devices and groups.
IoT often involves the management of a huge number of products and devices.
How to distinguish various products and devices, and how to achieve centralized
management become a challenge. Alibaba Cloud IoT Platform allows you to use tags
 to address these issues. The use of tags allows the centralized management of your
various products, devices, and groups.
Therefore, we recommend that you create tags for your products, devices and device
groups. The structure of a tag is key : value .
This article describes how to create product tags, device tags, and group tags in the
console.

Note:
Each product, device, or group can have up to 100 tags.

Product tags
Product tags typically describe the information that is common to all devices of a
 product. For example, a tag can indicate a specific manufacturer, organization,
physical size, or operating system. After a product has been created, you can create
tags for it.
To create product tags in the console, follow these steps:
1. Log on to the IoT Platform console.

46 Issue: 20190802

https://iot.console.aliyun.com/

IoT Platform User Guide / 1 Create products and devices

2. In the left-side navigation pane, click Devices > Product.
3. On the Products page, find the product for which you want to create tags and click

View.
4. Click Add under Tag Information.
5. In the dialog box, enter values for Tag Key and Tag Value , and then click

OK.
Parameter Description
Tag Key A tag key can contain English letters,

digits and dots (.), and cannot exceed 30
 characters.

Tag Value A tag value can contain Chinese
characters, English letters, digits,
underscores (_), hyphens (-), colons
 (:), and dots (.), and cannot exceed
128 characters. A Chinese character is
counted as two characters.

Device tags
You can facilitate device management by creating unique tags for devices. For
example, you can use the device feature information as tags, such as PowerMeter :

room201 for the electricity meter of room 201.
Device tags always follow the devices. You can include tag information in the
messages reported to IoT Platform by devices. When you use the rules engine to

Issue: 20190802 47

IoT Platform User Guide / 1 Create products and devices

forward these messages to other Alibaba Cloud services, the tag information is also
forwarded to the targets.
To create device tags in the console, follow these steps:
1. Log on to the IoT Platform console.
2. In the left-side navigation pane, click Devices > Device.
3. On the Devices page, find the device for which you want to create tags, click View to

go to the Device Details page.
4. Click Add under Tag Information.
5. In the dialog box, enter values for Tag Key and Tag Value , and then click

OK.
Parameter Description
Tag Key A tag key can contain English letters

, digits, and dots (.), and can be 2-30
characters in length.

Tag Value A tag value can contain Chinese
characters, English letters, digits,
underscores (_), hyphens (-), colons
 (:), and dots (.), and cannot exceed
128 characters. A Chinese character is
counted as 2 characters.

Group tags
You can manage devices across products by grouping your devices. A group tag
typically describe the general information of devices in the group and the sub-groups

48 Issue: 20190802

https://iot.console.aliyun.com/

IoT Platform User Guide / 1 Create products and devices

. For example, you can use region information as a group tag. After you have created a
 group, you can create tags for it.
To create group tags, follow these steps:
1. Log on to the IoT Platform console.
2. In the left-side navigation pane, click Devices > Group.
3. On the Group Management page, find the group for which you want to create tags

and click View.
4. Click Add under Tag Information.
5. In the dialog box, enter values for Tag Key and Tag Value , and then click

OK.
Parameter Description
Tag Key A tag key can contain English letters

, digits, and dots (.), and can be 2-30
characters in length.

Tag Value A tag value can contain Chinese
characters, English letters, digits,
underscores (_), hyphens (-), colons
 (:), and dots (.), and cannot exceed
128 characters. A Chinese character is
counted as 2 characters.

Manage tags in batch
In the console, you only can create, modify, and delete tags one by one. IoT Platform
provides APIs for managing tags in batch. In addition, IoT Platform provides APIs for

Issue: 20190802 49

https://iot.console.aliyun.com/

IoT Platform User Guide / 1 Create products and devices

 querying products, devices, and groups based on tags. For more information about
tag related APIs, see the documents in API reference.

1.7 Gateways and sub-devices
1.7.1 Gateways and sub-devices

IoT Platform allows devices to connect to it directly, or be mounted as sub-devices to
gateways that connect to IoT Platform.

Gateways and devices
When you create a product, you must select a node type for the devices of the
product. Currently, IoT Platform supports two node types, Device and Gateway .
• Device: Devices of this node type cannot be mounted with sub-devices, but can be

connected directly to the IoT Platform or be mounted as sub-devices to gateways.
• Gateway: Devices of this node type can connect to IoT Platform directly and can

 be mounted with sub-devices. Gateways are then used to manage sub-devices
, maintain topological relationships with sub-devices, and synchronize these
topological relationships to IoT Platform.

The topological relationship between a gateway and its sub-devices is shown in the
following figure:

50 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices

Connect gateways and sub-devices to IoT Platform
Once a gateway has been connected to IoT Platform, the gateway will synchroniz
e its topological relationships with its sub-devices to IoT Platform. A gateway
supports device authentication, message reporting, instruction receiving, and other
 communications with IoT Platform for all its sub-devices. That is, sub-devices are
managed by their corresponding gateway.
1. For more information about how to connect gateways to IoT Platform, see Link Kit

SDK.
2. You can connect sub-devices to IoT Platform using either of the following two

methods:
• The Unique-certificate-per-device authentication method. This method requires

you to install the device certificates (namely, the ProductKey, DeviceName, and
DeviceSecret) in the physical sub-devices, and then connect the sub-devices to
IoT Platform.

• The Unique-certificate-per-product authentication method. This method
requires you to enable Dynamic Registration on the product details page and
register devices in the IoT Platform console. Then, when a physical sub-device is
being connected, the gateway will initiate a connection request to IoT Platform
for the sub-device. IoT Platform then verifies the sub-device information. If

Issue: 20190802 51

https://www.alibabacloud.com/help/product/93051.htm
https://www.alibabacloud.com/help/product/93051.htm

IoT Platform User Guide / 1 Create products and devices

the verification passes, IoT Platform will assign the DeviceSecret to the sub-
device. The sub-device then receives all the required information (namely, the
ProductKey, DeviceName, and DeviceSecret) to successfully connect to IoT
Platform.

1.7.2 Sub-device management
You can add sub-devices to a gateway device, and send the TSL and the extended
service information of the sub-devices to the gateway.

Procedure
1. In the left-side navigation pane, click Devices > Device .
2. On the Devices page, find the gateway device for which you want to add sub-devices

and click View corresponding to it. You are directed to the Device Details page.
3. Click Sub-device Management > Add Sub-device.

4. Enter the information of the sub-device in the dialog box.
Parameter Description
Product Select the name of the product for which the sub-device

belongs.
Device Select the name of the device that you want to add as a sub-

device.
What's next

The topologiacal relationship between the gateway and the sub-device has been built
. On the details page of the sub-device, you can view the gateway device information.

1.8 Service Subscription
52 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices

1.8.1 What is service subscription?
A server can directly subscribe to messages under a product: device upstream
notifications, device status change notifications, notifications of sub-devices reported
by gateway devices, device lifecycle change notifications, and topological relationship
change notifications. After you configure the Service Subscription function, IoT
Platform forwards the subscribed messages from all devices under the product to
your server. Two subscription methods are supported. One is to forward data through
HTTP/2 channels to your servers and the other is to push message to your Message
Service instances.

Scenarios
Service Subscription is applicable to scenarios where only data receiving is involved.
The following conditions must also be met:
• The server must receive subscribed data from all devices under the product.
• Device data is transmitted at a rate of up to 5,000 messages per second.

HTTP/2-based message subscription
The new version of IoT Platform can push messages over HTTP/2 channels. After you
 configure HTTP/2-based message subscription for a product, IoT Platform will push
the subscribed messages of all devices under the product to your server through the
HTTP/2 channel.
Data forwarding workflow for HTTP/2-based subscription:

The server can receive messages directly from IoT Platform by connecting the HTTP
/2 SDK to IoT Platform. The HTTP/2 SDK provides identity authentication, topic
subscription, and message sending and message receiving capabilities.

Issue: 20190802 53

IoT Platform User Guide / 1 Create products and devices

• The HTTP/2 SDK on the server is used to transfer a large number of messages
between IoT Platform and the server.

• The HTTP/2 SDK on the device is used to transfer messages between devices and
IoT Platform.

Note:
Only Java and .NET SDKs are supported.

For information about how to configure HTTP/2 channels and configuration examples
, see:
• Limits
• Development guide for Java HTTP/2 SDK
• Development guide for .NET HTTP/2 SDK
For information about comparisons between service subscription-based and rules
engine-based data forwarding, see Compare data forwarding solutions.

Push messages to Message Service
IoT Platform pushes subscribed messages to Message Service. Your server applicatio
ns listen to queues in Message Service to receive device messages.
For more information about how to use Message Service to subscribe to device
messages, see Use Message Service to subscribe to device messages.

Note:
Message Service charges fees for receiving messages pushed by IoT Platform. For
more information about the billing and usage of Message Service, see Message
Service documentation .

1.8.2 Development guide for Java HTTP/2 SDK
This article introduces how to configure the service subscription, connect to the
HTTP/2 SDK, authenticate identity, and configure the message-receiving interface.
Specifically, this section details the development process of the service subscription.
Download the server side Java HTTP/2 SDK demo.

Configure service subscription
1. Log on to the IoT Platform console.
2. In the left-side navigation pane, click Devices > Product.

54 Issue: 20190802

https://www.alibabacloud.com/help/product/27412.htm
https://www.alibabacloud.com/help/product/27412.htm
http://aliyun-iot.oss-cn-hangzhou.aliyuncs.com/java-http2-sdk-demo/http2-server-side-demo.zip
https://iot.console.aliyun.com/product/region/cn-shanghai

IoT Platform User Guide / 1 Create products and devices

3. In the product list, find the product for which you want to configure the service
subscription and click View. You are directed to the Product Details page.

4. Click Service Subscription > Set Now.
5. Select the types of notifications that you want to push to the SDK.

• Device Upstream Notification: Indicates the messages of the topics to which devices
are allowed to publish messages. If this notification type is selected, the HTTP/2
SDK can receive messages reported by devices.
Devices report custom data and TSL data of properties, events, responses to
property setting requests, and responses to service calling requests.
For example, a product has three topic categories:
- /${ YourProduc tKey }/${ YourDevice Name }/ user / get , devices

can subscribe to messages.
- /${ YourProduc tKey }/${ YourDevice Name }/ user / update ,

devices can publish messages.
- / sys /${ YourProduc tKey }/${ YourDevice Name }/ thing / event

/ property / post , devices can publish messages.
Service Subscription can push messages of the topics /${ YourProduc tKey

}/${ YourDevice Name }/ user / update and / sys /${ YourProduc

tKey }/${ YourDevice Name }/ thing / event / property / post ,
to which devices can then publish messages. Additionally, the messages of /
sys /${ YourProduc tKey }/${ YourDevice Name }/ thing / event /

property / post are processed by the system before being pushed.
• Device Status Change Notification: Indicates the notifications that are sent when

the statuses of devices change, for example, notifications for when devices
Issue: 20190802 55

IoT Platform User Guide / 1 Create products and devices

go online or go offline. The topic / as / mqtt / status /${ YourProduc

tKey }/${ YourDevice Name } has device status change messages. After
this notification type is selected, the HTTP/2 SDK can receive the device status
change notifications.

• Sub-Device Data Report Detected by Gateway: Gateways can report the information of
sub-devices that are discovered locally. To use this feature, make sure that the
applications on the gateway support this feature.

• Device Topological Relation Changes: Includes notifications about creation and
removal of the topological relation between a gateway and its sub-devices.

• Device Changes Throughout Lifecycle: Includes notifications about device creation,
deletion, disabling, and enabling.

Note:
For messages of device properties, events, and services, Device Status Change
Notification, Sub-Device Data Report Detected by Gateway, Device Topological
Relation Changes, and Device Changes Throughout Lifecycle, the QoS is 0 by default.
For other Device Upstream Notification messages (except messages of device
properties, events, and services), you can set the OoS is 0 or 1 on your device SDK.

Connect to the SDK
Add the maven dependency to the project to connect to the SDK.
< dependency >
 < groupId > com . aliyun . openservic es </ groupId >
 < artifactId > iot - client - message </ artifactId >
 < version > 1 . 1 . 3 </ version >
</ dependency >

< dependency >
 < groupId > com . aliyun </ groupId >
 < artifactId > aliyun - java - sdk - core </ artifactId >
 < version > 3 . 7 . 1 </ version >
</ dependency >

Identity authentication
Use the AccessKey information of your account for identity authentication and to
build the connection between the SDK and IoT Platform.
Example:
// Your account accessKeyI D
 String accessKey = " xxxxxxxxxx xxxxx ";
 // Your account AccessKeyS ecret

56 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices
 String accessSecr et = " xxxxxxxxxx xxxxx ";
 // regionId
 String regionId = " cn - shanghai ";
 // Your account ID .
 String uid = " xxxxxxxxxx xx ";
 // endPoint : https ://${ uid }. iot - as - http2 .${
region }. aliyuncs . com

 String endPoint = " https ://" + uid + ". iot - as -
http2 ." + regionId + ". aliyuncs . com ";

 // Connection configurat ion
 Profile profile = Profile . getAccessK eyProfile (
endPoint , regionId , accessKey , accessSecr et);

 // Construct the client
 MessageCli ent client = MessageCli entFactory .
messageCli ent (profile);

 // Receive data
 client . connect (messageTok en -> {
 Message m = messageTok en . getMessage ();
 System . out . println (" receive message from " +
m);

 return MessageCal lback . Action . CommitSucc ess ;
 });

The value of accessKey is the AccessKeyID of your account, and the value of
accessSecr et is the AccessKeySecret corresponding to the AccessKeyID. Log on

to the Alibaba Cloud console, hover the mouse over your account image, and click
AccessKey to view your AccessKeyID and AccessKeySecret. You can also click Security
Settings to view your account ID.
The value of regionId is the region ID of your IoT Platform service.

Configure the message receiving interface
Once the connection is established, the server immediately pushes the subscribed
messages to the SDK. Therefore, when you are configuring the connection, you
also configure the message-receiving interface, which is used to receive the
messages for which callback has not been configured. We recommend that you call
setMessageListener to configure a callback before you connect the SDK to IoT
Platform.
Use the consume method of MessageCallback interface and call the setMessage

Listener () of messageCli ent to configure the message receiving interface.
The returned result of consume determines whether the SDK sends an ACK.
The method for configuring the message receiving interface is as follows:
MessageCal lback messageCal lback = new MessageCal lback ()

 {

Issue: 20190802 57

https://home.console.aliyun.com/new#/

IoT Platform User Guide / 1 Create products and devices
 @ Override
 public Action consume (MessageTok en messageTok en) {
 Message m = messageTok en . getMessage ();
 log . info (" receive : " + new String (messageTok en .
getMessage (). getPayload ()));

 return MessageCal lback . Action . CommitSucc ess ;
 }
};
messageCli ent . setMessage Listener ("/${ YourProduc tKey }/#",
messageCal lback);

The parameters are as follows:
• MessageTok en indicates the body of the returned message. Use MessageTok

en . getMessage () to get the message body. MessageTok en is required
when you send ACKs manually.
A message body example is as follows:
public class Message {
 // Message body
 private byte [] payload ;
 // Topic
 private String topic ;
 // Message ID
 private String messageId ;
 // QoS
 private int qos ;
}

• For more information, see Message body format .
• messageCli ent . setMessage Listener ("/${ YourProduc tKey }/#",

messageCal lback); is a method to specify topics for callbacks.
You can specify topics for callbacks, or you can use the generic callback.
- Callbacks with specified topics

Callbacks with specified topics have higher priority than the generic callback
. When a message matches with multiple topics, the callback with the topic
whose elements rank higher in the lexicographical order is called and only one
callback is performed.
When you are configuring a callback, you can specify the topics with wildcards,
for example, /${ YourProduc tKey }/${ YourDevice Name }/#.
Example:
messageCli ent . setMessage Listener ("/ alEddfaXXX X /
device1 /#", messageCal lback);

58 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices
// When the received message matches with the
specified topic , for example , "/ alEddfaXXX X / device1 /
update ", the callback with this topic is called .

- Generic callback
If you do not specify any topic for callbacks, the generic callback is called.
The method for configuring the generic callback is as follows:
messageCli ent . setMessage Listener (messageCal lback);

// If the received message does not match with any
 specified topics which are configured for callbacks
, the generic callback is called .

• Configure ACK reply
After a message with QOS>0 is consumed, an ACK must be sent as the reply. SDKs
 support sending ACKs as replies both automatically and manually. The default
setting is to reply with ACKs automatically. In this example, no ACK reply setting is
configured, so the system replies with ACKs automatically.
- Reply ACKs automatically: If the returned value of MessageCal lback .

consume is true , the SDK will reply an ACK automatically; If the returned
value is false or an exception occurs, the SDK will not reply with any ACK. If
no ACK is replied for the messages with QOS>0, the server will send the message
again.

- Reply ACKs manually: Use MessageCli ent . setManualA cks to configure
for replying ACKs manually.
Call MessageCli ent . ack () to reply ACKs manually, and the parameter
MessageTok en is required. You can obtain the value of MessageTok en

from the received message.
The method to manually reply ACKs is as follows:
messageCli ent . ack (messageTok en);

Message body format
• Device status notification:

{
 " status ":" online | offline ",
 " productKey ":" 1234556556 9 ",
 " deviceName ":" deviceName 1234 ",
 " time ":" 2018 - 08 - 31 15 : 32 : 28 . 205 ",
 " utcTime ":" 2018 - 08 - 31T07 : 32 : 28 . 205Z ",
 " lastTime ":" 2018 - 08 - 31 15 : 32 : 28 . 195 ",

Issue: 20190802 59

IoT Platform User Guide / 1 Create products and devices
 " utcLastTim e ":" 2018 - 08 - 31T07 : 32 : 28 . 195Z ",
 " clientIp ":" 123 . 123 . 123 . 123 "
}

Parameter Type Description
status String Device status: online or offline.
productKey String The unique identifier of the product to which

the device belongs.
deviceName String The name of the device.
time String The time when the notification is sent.
utcTime String The UTC time when the notification is sent.
lastTime String The time when the last communication

occurred before this status change.
utcLastTime String The UTC time when the last communication

occurred before this status change.
clientIp String The Internet IP address for the device.

Note:
We recommend that you maintain your device status according to the value of the
parameter lastTime.

• Device lifecycle change:
{
" action " : " create | delete | enable | disable ",
" iotId " : " 4z819VQHk6 VSLmmBJfrf 00107ee201 ",
" productKey " : " 1234556556 9 ",
" deviceName " : " deviceName 1234 ",
" deviceSecr et " : "",
" messageCre ateTime ": 1510292739 881
}

Parameter Type Description
action String - create: Create devices.

- delete: Delete devices.
- enable: Enable devices.
- disable: Disable devices.

iotId String The unique identifier of the device within IoT
Platform.

productKey String The ProductKey of the product.
deviceName String The name of the device.

60 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices

Parameter Type Description
deviceSecret String The device secret. This parameter is included

only when the value of action is create.
messageCre
ateTime

Long The timestamp when the message is generated,
in milliseconds.

• Device topological relationship change:
{
" action " : " add | remove | enable | disable ",
" gwIotId ": " 4z819VQHk6 VSLmmBJfrf 00107ee200 ",
" gwProductK ey ": " 1234556554 ",
" gwDeviceNa me ": " deviceName 1234 ",
" devices ": [
{
" iotId ": " 4z819VQHk6 VSLmmBJfrf 00107ee201 ",
" productKey ": " 1234556556 9 ",
" deviceName ": " deviceName 1234 "
}
],
" messageCre ateTime ": 1510292739 881
}

Parameter Type Description
action String - add: Add topological relationships.

- remove: Delete topological relationships.
- enable: Enable topological relationships.
- disable: Disable topological relationships.

gwIotId String The unique identifier of the gateway device.
gwProductKey String The ProductKey of the product to which the

gateway device belongs.
gwDeviceNa
me

String The name of the gateway device.

devices Object The sub-devices whose topological relationship
with the gateway will be changed.

iotId String The unique identifier of the sub-device.
productKey String The ProductKey of the product to which the sub-

device belongs.
deviceName String The name of the sub-device.
messageCre
ateTime

Long The timestamp when the messages is generated,
in milliseconds.

Issue: 20190802 61

IoT Platform User Guide / 1 Create products and devices

• A gateway detects and reports sub-devices:
{
 " gwIotId ":" 4z819VQHk6 VSLmmBJfrf 00107ee200 ",
 " gwProductK ey ":" 1234556554 ",
 " gwDeviceNa me ":" deviceName 1234 ",
 " devices ":[
 {
 " iotId ":" 4z819VQHk6 VSLmmBJfrf 00107ee201 ",
 " productKey ":" 1234556556 9 ",
 " deviceName ":" deviceName 1234 "
 }
]
}

Parameter Type Description
gwIotId String The unique identifier of the gateway device.
gwProductKey String The unique identifier of the gateway product.
gwDeviceNa
me

String The name of the gateway device.

devices Object The sub-devices detected by the gateway.
iotId String The unique identifier of the sub-device.
productKey String The ProductKey of the product that the sub-

device belongs to.
deviceName String The name of the sub-device.

1.8.3 Development guide for .NET HTTP/2 SDK
This topic describes how to configure service subscription, connect a .NET SDK of the
HTTP/2 server to IoT Platform, perform identity authentication, and set the message
receiving interface.
The following process describes how to develop service subscription. Download the
server side .NET SDK demo.

Configure service subscription
1. Log on to the IoT Platform console .
2. From the left-side navigation pane, choose Devices > Product.
3. In the product list, locate the product for which you want to configure service

subscription and click View. The Product Details page appears.
4. Click Service Subscription > Set.

62 Issue: 20190802

https://iot-demos.oss-cn-shanghai.aliyuncs.com/h2/iot-http2-net-sdk-demo.zip
https://iot-demos.oss-cn-shanghai.aliyuncs.com/h2/iot-http2-net-sdk-demo.zip
https://iot.console.aliyun.com/product/region/cn-shanghai

IoT Platform User Guide / 1 Create products and devices

5. Select the types of notifications that you want to push.

• Device Upstream Notification: Indicates the messages in the topics to which devices
are allowed to publish messages. If this notification type is selected, the HTTP/2
SDK can receive messages reported by devices.
Devices can report both custom data and TSL data of properties, events,
responses to property settings, and responses to service callings .
For example, a product has three topic categories:
- /${ YourProduc tKey }/${ YourDevice Name }/ user / get , to

which devices can subscribe.
- /${ YourProduc tKey }/${ YourDevice Name }/ user / update , to

which devices can publish messages.
- / sys /${ YourProduc tKey }/${ YourDevice Name }/ thing / event

/ property / post , to which devices can publish messages.
Service subscription can push messages in the topics /${ YourProduc tKey

}/${ YourDevice Name }/ user / update and / sys /${ YourProduc

tKey }/${ YourDevice Name }/ thing / event / property / post , to
which devices can publish messages. Additionally, the messages in the topics /
sys /${ YourProduc tKey }/${ YourDevice Name }/ thing / event /

property / post are processed by the system.
• Device Status Change Notification: Indicates the notifications that are sent when

the statuses of devices change, for example, the device connection and device
disconnection notifications. The topic which is used to send device status
change notifications: / as / mqtt / status /${ YourProduc tKey }/${

Issue: 20190802 63

IoT Platform User Guide / 1 Create products and devices

YourDevice Name }. After this notification type is selected, the HTTP/2 SDK
can receive the device status change notifications.

• Sub-Device Data Report Detected by Gateway: A gateway can report the information
about sub-devices that are discovered locally. Make sure that the gateway has an
application that can discover and report sub-device information.

• Device Topological Relation Changes: It includes notifications about device
topological relation change.

• Device Changes Throughout Lifecycle: It includes notifications about device creation,
deletion, disabling, and enabling.

Note:
For messages of device properties, events, and services, Device Status Change
Notification, Sub-Device Data Report Detected by Gateway, Device Topological
Relation Changes, and Device Changes Throughout Lifecycle, the QoS is 0 by default.
For other Device Upstream Notification messages (except messages of device
properties, events, and services), you can set the OoS is 0 or 1 on your device SDK.

Connect the HTTP/2 SDK to IoT Platform
Add dependency package iotx-as-http2-net-sdk.dll to a project.

Authenticate identity
To use the service subscription feature, you must use the AccessKey information of
 your account for identity authentication and establish a connection between the
HTTP/2 SDK and IoT Platform.
Example:
// The AccessKey ID of your Alibaba Cloud account
string accessKey = " xxxxxxxxxx xxxxx ";

// The AccessKey Secret of your Alibaba Cloud account
string accessSecr et = " xxxxxxxxxx xxxxx ";

// The region ID of your IoT Platform service
string regionId = " cn - shanghai ";

// The UID of your Alibaba Cloud account
string uid = " xxxxxxxxxx xxxxx ";

// The domain name
string domain = ". aliyuncs . com ";

// The endpoint
string endpoint = " https ://" + uid + ". iot - as - http2 ." +
regionId + domain ;

// Configure connection parameters
Profile profile = new Profile ();
profile . AccessKey = accessKey ;
profile . AccessSecr et = accessSecr et ;

64 Issue: 20190802

https://iot-demos.oss-cn-shanghai.aliyuncs.com/h2/iotx-as-http2-net-sdk.dll

IoT Platform User Guide / 1 Create products and devices
profile . RegionId = regionId ;
profile . Domain = domain ;
profile . Url = endpoint ;

// Clear accumulate d messages
profile . CleanSessi on = true ;
profile . GetAccessK eyAuthPara ms ();

// Construct the client
IMessageCl ient client = new MessageCli ent (profile);

// Connect to the HTTP / 2 server to receive messages
client . DoConnecti on (new DefaultHtt p2MessageC allback ());

// Configure a specified topic for callback
client . SetMessage Listener ("/${ YourProduc tKey }/#", new
CustomHttp 2MessageCa llback ());

The value of accessKey is the AccessKey ID of your account, and the value of
accessSecr et is the AccessKey Secret corresponding to the AccessKey ID. Log on

to the Alibaba Cloud console, hover over your account avatar, and click AccessKey to
view your AccessKey ID and AccessKey Secret. You can also click Security Settings to
view your account ID.
The value of regionId is the region ID of your IoT Platform service.

Configure the message receiving interface
After the connection is established, IoT Platform immediately pushes the subscribed
 messages to the HTTP/2 SDK. Therefore, you must configure the message receiving
interface.
The message receiving interface is as follows:
public interface IHttp2Mess ageCallbac k

{
 ConsumeAct ion Consume (Http2Consu meMessage http2Consu
meMessage);

}

You must use the consume method of IHttp2MessageCallback to set the message
receiving interface.
Configure the message receiving interface as follows:
public class DefaultHtt p2MessageC allback : IHttp2Mess
ageCallbac k

 {
 public DefaultHtt p2MessageC allback ()
 {
 }

 public ConsumeAct ion Consume (Http2Consu meMessage
http2Consu meMessage)

 {

Issue: 20190802 65

https://home.console.aliyun.com/new#/

IoT Platform User Guide / 1 Create products and devices
 Console . WriteLine (" receive : " + http2Consu
meMessage . MessageId);

 // Automatica lly return an ACK
 return ConsumeAct ion . CommitSucc ess ;
 }
 }

The parameters are as follows:
• Http2Consu meMessage indicates the body of the returned message.

A message body contains the following information:
public class Http2Consu meMessage
{
 // The message body
 public byte [] Payload { get ; set ; }
 // The topic
 public string Topic { get ; set ; }
 // The message ID
 public string MessageId { get ; set ; }
 // QoS
 public int Qos { get ; set ; }
 // The connection parameter
 public Http2Conne ction Connection { get ; set ; }
}

• For more information, see Message body format .
• messageCli ent . setMessage Listener ("/${ YourProduc tKey }/#",

messageCal lback); is a method to configure a callback. In this example, a
topic is configured for the callback.
You can specify topics for callbacks, or you can use the generic callback.
- Topic-specific callbacks

A topic-specific callback has higher priority than the generic callback. When a
 message matches multiple topics, the callback with the topic whose elements
 rank higher in the lexicographical order is called and only one callback is
performed.
When you configure a callback, you can specify a topic with wildcards, for
example, /${ YourProduc tKey }/${ YourDevice Name }/#.
Example:
client . SetMessage Listener ("/ alEddfaXXX X / device1 /#",
messageCal lback);

66 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices
// When the received message matches the specified
topic , for example , "/ alEddfaXXX X / device1 / update ",
the callback with this topic is called .

- Generic callback
If you do not specify any topic for a callback, the generic callback is called.
Configure the generic callback as follows:
new DefaultHtt p2MessageC allback ()

• Configure ACK replies.
After a message with QoS>0 is consumed, an ACK must be sent as the reply. The
HTTP/2 SDK supports sending ACKs as replies both automatically and manually.
By default, ACKs are returned automatically. In this example, no ACK reply setting
is configured, so the system returns ACKs automatically.
- Return ACKs automatically: If the returned value of IHttp2Mess ageCallbac

k . consume is ConsumeAct ion . CommitSucc ess , the HTTP/2 SDK
will return an ACK automatically. If the returned value is ConsumeAct ion .

CommitFail ure or an exception occurs, the HTTP/2 SDK will not return any
ACK. If no ACK is returned for a message with QoS>0, IoT Platform will send the
message again.

- Return ACKs manually: Use ConsumeAct ion . CommitFail ure to
manually return an ACK.
Call the MessageCli ent . DoAck () method to return ACKs manually. The
method contains the following parameters: topic , messageId , and the
connection parameter. You can obtain these parameter values from the received
message.
Manually return an ACK as follows:
client . DoAck (connection , topic , messageId , delegate);

Message body format
• Device status notification:

{
 " status ":" online | offline ",
 " productKey ":" 1234556556 9 ",
 " deviceName ":" deviceName 1234 ",
 " time ":" 2018 - 08 - 31 15 : 32 : 28 . 205 ",
 " utcTime ":" 2018 - 08 - 31T07 : 32 : 28 . 205Z ",
 " lastTime ":" 2018 - 08 - 31 15 : 32 : 28 . 195 ",

Issue: 20190802 67

IoT Platform User Guide / 1 Create products and devices
 " utcLastTim e ":" 2018 - 08 - 31T07 : 32 : 28 . 195Z ",
 " clientIp ":" 123 . 123 . 123 . 123 "
}

Parameter Data type Description
status String The device status: online or offline.
productKey String The unique identifier of the product to which

the device belongs.
deviceName String The name of the device.
time String The time when the notification was sent.
utcTime String The UTC time when the notification was sent.
lastTime String The time when the last communication

occurred before this status change.
utcLastTime String The UTC time when the last communication

occurred before this status change.
clientIp String The public outbound IP address of the device.

Note:
We recommend that you maintain your device status according to the value of the
lastTime parameter.

• Device lifecycle change notification:
{
 " action " : " create | delete | enable | disable ",
 " iotId " : " 4z819VQHk6 VSLmmBJfrf 00107ee201 ",
 " productKey " : " 1234556556 9 ",
 " deviceName " : " deviceName 1234 ",
 " deviceSecr et " : "",
 " messageCre ateTime ": 1510292739 881
}

Parameter Data type Description
action String - create: Create a device.

- delete: Delete a device.
- enable: Enable a device.
- disable: Disable a device.

iotId String The unique identifier of the device in IoT
Platform.

productKey String The unique identifier of the product to which
the device belongs.

68 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices

Parameter Data type Description
deviceName String The name of the device.
deviceSecret String The device key. This parameter is included only

when the value of action is create.
messageCre
ateTime

Long The timestamp when the message was generated
, in milliseconds.

• Device topological relationship change notification:
{
 " action " : " add | remove | enable | disable ",
 " gwIotId ": " 4z819VQHk6 VSLmmBJfrf 00107ee200 ",
 " gwProductK ey ": " 1234556554 ",
 " gwDeviceNa me ": " deviceName 1234 ",
 " devices ": [
 {
 " iotId ": " 4z819VQHk6 VSLmmBJfrf 00107ee201 ",
 " productKey ": " 1234556556 9 ",
 " deviceName ": " deviceName 1234 "
 }
],
 " messageCre ateTime ": 1510292739 881
}

Parameter Data type Description
action String - add: Build topological relationships.

- remove: Delete topological relationships.
- enable: Enable topological relationships.
- disable: Disable topological relationships.

gwIotId String The unique identifier of the gateway device.
gwProductKey String The unique identifier of the product to which

the gateway device belongs.
gwDeviceNa
me

String The name of the gateway device.

devices Object The sub-devices whose topological relationships
 with the gateway will be changed.

iotId String The unique identifier of the sub-device.
productKey String The unique identifier of the product to which

the sub-device belongs.
deviceName String The name of the sub-device.
messageCre
ateTime

Long The timestamp when the message was generated
, in milliseconds.

Issue: 20190802 69

IoT Platform User Guide / 1 Create products and devices

• A gateway detects and reports sub-devices:
{
 " gwIotId ":" 4z819VQHk6 VSLmmBJfrf 00107ee200 ",
 " gwProductK ey ":" 1234556554 ",
 " gwDeviceNa me ":" deviceName 1234 ",
 " devices ":[
 {
 " iotId ":" 4z819VQHk6 VSLmmBJfrf 00107ee201 ",
 " productKey ":" 1234556556 9 ",
 " deviceName ":" deviceName 1234 "
 }
]
}

Parameter Data type Description
gwIotId String The unique identifier of the gateway device.
gwProductKey String The unique identifier of the product to which

the gateway device belongs.
gwDeviceNa
me

String The name of the gateway device.

devices Object The sub-devices discovered by the gateway.
iotId String The unique identifier of the sub-device.
productKey String The unique identifier of the product to which

the sub-device belongs.
deviceName String The name of the sub-device.

1.8.4 Limits
Service Subscription has the following limits.
Item Limit description
JDK version Only JDK 8 is supported.
Authentication
timeout

Once the connection is established, an authentication request
 is sent immediately. If the authentication is not successful
within 15 seconds, the server will close the connection.

70 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices

Item Limit description
Receiving data
timeout

After the connection is established, the client sends ping
packets regularly to maintain the connection. You can set the
interval for sending ping packets on your clients. The default
value is 30 seconds. The maximum value is 60 seconds.
If no Ping packet or data is sent in 60 seconds, the server will
close the connection.
If the client has not received any pong packets in the specified
time period, the SDK will close the connection and then try to
connect again later. The default interval is 60 seconds.

Pushing message
timeout

The server pushes again 10 failed messages in bulk each time
. If the server does not receive an ACK from the client after 10
seconds, the message push times out.

Repush policy for
failed messages

The stacked messages (due to client being offline, slow
message consumption, or other reasons) are repushed every 60
 seconds.

Message storage
time

Messages with QoS 0 are saved for one day, and messages with
QoS 1 are saved for seven days.

Number of SDK
instances

Each account can enable up to 64 SDK instances.

Message limit for
each tenant

The maximum number of messages sent each second for a
single tenant is 1,000 QPS. If your business requires more, you
can open a ticket and make a request.

1.8.5 Subscribe to device messages by using Message Service
IoT Platform allows cloud applications to receive device messages by listening to
queues in Message Service (MNS). This topic describes how to subscribe to device
messages by using Message Service.

Procedure

Issue: 20190802 71

IoT Platform User Guide / 1 Create products and devices

1. In the IoT Platform console, configure service subscription for a product. IoT
Platform can automatically forward messages to queues in Message Service.
a) From the left-side navigation pane, choose Devices > Product. On the Products

page, select a product, and click View in the Actions column.
b) Click the Service Subscription tab.
c) On the Service Subscription tab page, click Set corresponding to User Service

Client(Push MNS). Then in the dialog box that appears, select the types of
messages that you want to push to MNS.

After the subscription is complete, IoT Platform automatically creates a message
 queue in MNS . Details about the message queue are displayed on the Service
Subscription tab page.

72 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices

2. Receive device messages by listening to the message queue.
In this example, enter the following information to use the Java SDK of Message
Service.
For more information, see Message Service documentation.
• In the pom.xml file, add the following dependencies:

< dependency >
 < groupId > com . aliyun . mns </ groupId >
 < artifactId > aliyun - sdk - mns </ artifactId >
 < version > 1 . 1 . 8 </ version >
 < classifier > jar - with - dependenci es </ classifier >
</ dependency >

• When you configure message receiving, enter the following information:
CloudAccou nt account = new CloudAccou nt ($ AccessKeyI
d , $ AccessKeyS ecret , $ AccountEnd point);

- Replace $ AccessKeyI d and $ AccessKeyS ecret with your AccessKey
ID and AccessKey Secret values. These values are required for you to access
APIs. You can find these values in your profile by clicking the Alibaba Cloud
account avatar.

- Replace $ AccountEnd point with the actual endpoint value. You can
obtain this value from the Message Service console.

• Enter the logic for receiving device messages:
MNSClient client = account . getMNSClie nt ();
CloudQueue queue = client . getQueueRe f (" aliyun - iot -
a1xxxxxx8o 9 "); // Enter the name of the queue that
 has been automatica lly created

 while (true) {
 // Get messages
 Message popMsg = queue . popMessage (10); // The
timeout for long polling is 10 seconds

 if (popMsg ! = null) {
 System . out . println (" PopMessage Body : "+ popMsg
. getMessage BodyAsRawS tring ()); // Get raw messages

 queue . deleteMess age (popMsg . getReceipt Handle
()); // Delete messages from the queue

 } else {
 System . out . println (" Continuing ");

• Run the program to listen to the MNS queue.
3. Start a device and send a message from the device to IoT Platform.

To view the content of the reported message, see SDK reference.

Issue: 20190802 73

https://www.alibabacloud.com/help/product/27412.htm
https://www.alibabacloud.com/help/doc-detail/96624.htm

IoT Platform User Guide / 1 Create products and devices

4. Check if the cloud applications can listen to the subscribed messages. If they
successfully listen to the messages, they will receive messages like the following:
{
" messageid ":" ", // The message ID
" messagetyp e ":" upload ",
" topic ":"// The topic from which the message comes
" payload ": // Base64 - encoded data
" timestamp ": // The timestamp
}

Parameter Description
messageid Message ID generated by IoT Platform .
messagetype The message type.

• status: Indicates device status change notifications.
• upload: Indicates device upstream notifications.
• device_lifecycle: Indicates device lifecycle change

messages.
• topo_lifecycle: Indicates topological relationship change

notifications.
• topo_listfound: Indicates messages of sub-devices

reported by gateway devices.
topic The topic from which the message comes.
payload Base64-encoded data of message payload.
timestamp The timestamp in the format of Epoch.

1.9 Device group
IoT Platform supports device groups. You can assign devices from different products
to the same group. This article introduces how to create and manage device groups in
the IoT Platform console.

Procedure
1. Log on to the IoT Platform console.
2. Click Devices > Group.
3. On the group management page, click Create Group, enter group information, and

then click Save.

Note:

74 Issue: 20190802

https://iot.console.aliyun.com/

IoT Platform User Guide / 1 Create products and devices

You can create up to 1,000 groups (including parent groups and subgroups) .

The parameters are as follows:
• Parent Group: Select a group type.

- Group: Indicates that the group to be created is a parent group.
- Select an existing group: Specifies a group as the parent group and creates a

subgroup for it.
• Group Name: Enter a name for the group. A group name can be 4 to 30

characters in length and can include Chinese characters, English letters, digits
and underscores (_) . The group name must be unique among the groups for an
account, and cannot be modified once the group has been created.

• Group Description: Describes the group. Can be left empty.
4. On the Group Management page, click View to view the Group Details page of the

corresponding group.
5. (Optional) Add tags for the group. Tags can be used as group identifiers when you

manage your groups.
a) Click Add under Tag Information, and then enter keys and values of tags.
b) Click OK to create all the entered tags.

Note:

Issue: 20190802 75

IoT Platform User Guide / 1 Create products and devices

You can add up to 100 tags for a group.

6. Click Device List > Add Device to Group. Select the devices that you want to add to
the group.

Note:
• You can add up to 1,000 devices at a time. You can add up to 20,000 devices for a

 group in total.
• A device can be included in a maximum of 10 groups.

There are two buttons at the upper-right corner of the Add Device to Group page:.
• Click All to display all the devices.
• Click You have selected to display the devices you have selected.

7. (Optional) Click Subgroups > Create Group to add a subgroup for the group.
Subgroups are used to manage devices in a more specific manner. For example
, you can create subgroups such as "SmartKitchen" and "SmartBedroom" for a

76 Issue: 20190802

IoT Platform User Guide / 1 Create products and devices

parent group "SmartHome", and then you can manage your kitchen devices and
bedroom devices separately. The procedure is as follows:
a) Select the parent group, enter a group name and description, and click Save.

b) On the Subgroups page of the parent group , click View to view the
corresponding Group Details page.

c) Click Device List > Add Device to Group, and then add devices for the subgroup.
After creating the subgroup and adding devices for it, you can then manage it. You
can also create sub-subgroups within the subgroup.

Note:
• A group can include up to 100 subgroups.
• Only three layers of groups are supported: parent group>subgroup>sub-

subgroup.
• A group can only be a subgroup of one parent group.
• You can not change the relationships between a parent group and its subgroups

once they have been created. If you want to change the relationships, delete the
existing subgroups and create new ones.

• You cannot delete a group that has subgroups. You must delete all its subgroups
 before deleting the parent group.

1.10 Manage files
IoT Platform allows devices to upload files over HTTP/2 channels to the Alibaba Cloud
IoT Platform server for storage. After a file is uploaded, you can download and delete
the file in the IoT Platform console.

Prerequisites
Issue: 20190802 77

IoT Platform User Guide / 1 Create products and devices

• The device is connected to IoT Platform.
For more information about device SDK development, see Link Kit SDK
documentation.

• The HTTP/2 file upload function is compiled and configured on the device.
Procedure

1. Log on to the IoT Platform console.
2. In the left-side navigation pane, choose Devices > Device, and then click View next

to the corresponding device.

3. On the Device Details page, click the Manage Files tab.
On the Manage Files tab page, you can view the files that were uploaded by the
device through the HTTP/2 channel.

Note:

78 Issue: 20190802

https://www.alibabacloud.com/help/product/93051.htm
https://www.alibabacloud.com/help/product/93051.htm
http://iot.console.aliyun.com/

IoT Platform User Guide / 1 Create products and devices

The maximum file size that can be stored on the IoT Platform server for each
Alibaba Cloud account is 1 GB. The maximum number of files that can be stored
for each device is 1,000.

You can perform the following operations on an uploaded file:
Operation Description
Download Download the file to your local device.
Delete Delete the file.

In addition to file management in the console, you can also query or delete files by
calling the following cloud API operations: QueryDeviceFileList, QueryDeviceFile,
and DeleteDeviceFile.

Issue: 20190802 79

IoT Platform User Guide / 2 Rules

2 Rules
2.1 Data Forwarding
2.1.1 Overview

When your devices communicate using topics, you can use the rule engine and write
SQL expressions to process data in topics. You can also configure forwarding rules to
send the processed data to other Alibaba Cloud services. For example:
• You can forward the processed data to RDS, and Table Store for storage.
• You can forward the processed data to Function Compute for event-driven

computing.
• You can forward the processed data to another topic to achieve M2M communicat

ion.
• You can forward the processed data to Message Service to ensure reliable use of

data.
By using the rule engine, you will be provided with a complete range of services
including data collection, computing, and storage without purchasing a distributed
server deployment architecture.

80 Issue: 20190802

https://www.alibabacloud.com/product/apsaradb-for-rds-mysql
https://www.alibabacloud.com/product/table-store
https://www.alibabacloud.com/product/function-compute
https://www.aliyun.com/product/mns

IoT Platform User Guide / 2 Rules

Note:
When using the rule engine, you need to pay attention to the following points:
• The rule engine processes data based on topics. You can use the rule engine to

 process device data only when devices are communicating with each other by
using topics.

• The rule engine processes the data in topics using SQL.
• SQL subqueries and the use of the LIKE operator are currently not supported.
• Some functions are supported. For example, you can use deviceName () to

obtain the name of the current device. For more information about the supported
functions, see Function list.

2.1.2 Compare data forwarding solutions
In many scenarios, you must process the data that is reported by devices or use the
data for business applications. You can forward device data by either using the IoT
Platform service subscription or the rules engine data forwarding function. This topic
compares the various data forwarding solutions and application scenarios that are
supported by IoT Platform to help you select a forwarding solution that best suits
your needs.

Data forwarding solutions

Issue: 20190802 81

IoT Platform User Guide / 2 Rules

IoT Platform supports the following functions for data forwarding:
• Rules engine data forwarding: Provides basic data filtering and processing

capabilities. You can configure forwarding rules to filter and process device data
and then forward the data to other Alibaba Cloud services.

• Service subscription: Obtains device data directly from HTTP/2 clients. You can
quickly obtain device data without being filtered and processed. This function is
simple, easy to use, and efficient.

Compare rules engine data forwarding and service subscription
Forwarding
function

Scenarios Advantages and disadvanta
ges

Restrictions

Rules
engine data
forwarding

• Complex scenarios
• High-throughput

scenarios
Advantages:
• Full fledged.
• Allows you to modify

forwarding rules while
the rules are running.

• Supports data filtering
and processing.

• Allows you to forward
data to other Alibaba
Cloud services.
The following table "
Rules engine-based
 solutions" briefly
compares solutions that
 use the rules engine
for forwarding data to
different Alibaba Cloud
services.

Disadvantages:
• Complex to use.

Users must write
SQL expressions and
configure forwarding
rules.

See Limits
for data
forwarding.

82 Issue: 20190802

IoT Platform User Guide / 2 Rules

Forwarding
function

Scenarios Advantages and disadvanta
ges

Restrictions

Service
subscription • Scenarios that simply

involves data receiving.
• Scenarios that meet the

following requirements:
- IoT Platform receives

all device data.
- The device SDK is

 developed based
on the Java or .NET
language.

- The devices forwards
 data at a maximum
rate of 5,000 queries
per second (QPS).

Advantages:
• Easy to use.
Disadvantages:
• Lack of the filtering

capability.
• Limited language

support for the SDK.

See Limits
for service
subscription.

Table 2-1: Rules engine-based solutions
Forwarding
destination

Scenarios Advantages Disadvantages

Message
Service (MNS)

Device data requires complex or
refined processing.
Scenarios where the transmit
rate is slower than 1,000 QPS.

• Uses the
 HTTPS
protocol.

• Allows IoT
 Platform
to forward
data on the
 Internet
with high
performanc
e.

Provides
performance
slightly lower
 than MQ for
RocketMQ.

ApsaraDB for
RDS

Data storage scenarios. Writes data
 directly to
databases.

N/A

Table Store Data storage scenarios. Writes data
directly into
 Table Store
instances.

N/A

Issue: 20190802 83

IoT Platform User Guide / 2 Rules

Forwarding
destination

Scenarios Advantages Disadvantages

Function
Compute

Scenarios where the device
development process must be
simplified and device data must
be processed in a flexible way.

• Great
flexibilit
y in data
processing.

• Multiple
functions.

• Do not
require
deployment.

Higher costs.

Service subscription
Business servers can subscribe to all types of messages by using the SDK.
Restrictions Guidelines References
• Only the SDK in Java 8 or

 later and the .NET SDK
are supported.

• Service subscripti
on does not support
filtering messages. It
receives all subscribed
 messages from the
devices.

• The transmit rate is up
 to 1,000 QPS. If your
 business requires a
 higher QPS, open a
ticket and describe your
 requirements.

For more information
about service subscription
restrictions, see Limits.

• Scenarios where the
maximum transmit rate
 is no higher than 5,000
QPS.

• Make sure that you
are fully aware of any
 impacts of data loss
 and data delay on
your business. Protect
 important data in the
business layer.

• Service subscripti
on does not apply
to scenarios where
data filtering and fine
-grained processing
 are required. We
recommend that you
 use the rules engine
 data forwarding for
these scenarios.

• What is service
subscription

• Development guide for
the Java SDK

• Development guide for
the .NET SDK

• Best practices

84 Issue: 20190802

IoT Platform User Guide / 2 Rules

Forward data to Message Service
The rules engine enables IoT Platform to forward messages in specific topics to the
topics in Message Service. Message Service can then receive these messages by using
 the Message Service SDK. Message Service allows access from the public network
but it provides a lower performance than RocketMQ. We recommend that you use
Message Service for scenarios where the transmit rate is lower than 1,000 QPS.
Restrictions Guidelines References

When a message fails to
be forwarded by using the
 rules engine after making
 the maximum retries, the
 message will be dropped.
Message-oriented services
 may have delay issues.
Make sure that you are
fully aware of the impacts
 of data loss or delay on
your business.

• Create and configure a
rule

• Forward data to
Message Service

• Message Service
documentation

Forward data to Function Compute
The rules engine enables IoT Platform to forward messages in specific topics to
Function Compute. Developers can then further process the messages. Function
Compute does not require deployment, which simplifies business development.

Issue: 20190802 85

https://www.alibabacloud.com/help/product/27412.htm
https://www.alibabacloud.com/help/product/27412.htm

IoT Platform User Guide / 2 Rules

Restrictions Guidelines References
See Function Compute
limits. • Applicable to scenarios

 where users can
 customize data
processing or are
required to simplify
the development and
operation processes.

• When a message fails to
 be forwarded by using
 the rules engine after
making the maximum
retries, the message will
 be dropped. Make sure
that you are fully aware
 of any impacts of data
 loss or delay on your
business.

• Create and configure a
rule

• Forward data to
Function Compute

• Function Compute
documentation

2.1.3 Create and configure a rule
Using the data forwarding feature of the rules engine, IoT Platform can forward
specified messages of topics to other IoT Platform topics and other Alibaba Cloud
services. This topic describes how to create and configure a rule. The process is to
create a rule, write a SQL statement for data processing, configure data forwarding
destinations, and configure a forwarding destination for error messages.

Procedure
1. In the left-side navigation pane of the IoT Platform console, click Rules.
2. On the Data Forwarding Rules tab, click Create Data Forwarding Rule.

86 Issue: 20190802

https://www.alibabacloud.com/help/doc-detail/51907.htm
https://www.alibabacloud.com/help/doc-detail/51907.htm
https://www.alibabacloud.com/help/product/50980.htm
https://www.alibabacloud.com/help/product/50980.htm

IoT Platform User Guide / 2 Rules

3. Enter a Rule Name , select a Data Type , and then click OK.

Parameter Description
Rule Name Enter a unique rule name, which is used to identify the rule. A

rule name can contain Chinese characters, English letters, digits
, underscores (_) and hyphens (-), and must be 1 - 30 characters
in length. A Chinese character counts as two characters.

Data Type Select a data type for the data that this rule processes. Options:
JSON and Binary.

Note:
• The rules engine processes data based on topics. Therefore

, you must select the format of the data in the topic that you
want to process.

• If the data type is Binary, the rule cannot process data from
 system-defined topics, and cannot forward data to Table
Store or RDS instances.

Rule descriptio
n

The description of the rule.

4. After the rule has been successfully created, you are directed to the Data
Forwarding Rule Details page. On this page, you must edit a SQL statement to

Issue: 20190802 87

IoT Platform User Guide / 2 Rules

process data, configure data forwarding destinations, and configure a destination
for error messages.

a) Click Write SQL, and then edit a SQL statement for data processing.
In the following example, the statements can retrieve the contents of the
deviceName field from the messages of the custom topics of all the devices
under product test0306.

Note:

88 Issue: 20190802

IoT Platform User Guide / 2 Rules

You can use to_base64 (*) to convert binary data to a base64 string. Built-in
functions and conditions are also supported.

The parameters to be configured are as follows. For more information, see SQL
statements and Functions.
Parameter Description
Rule Query
Expression

The system will display the complete SQL statement here
according to the values of Field , Topic , and Condition .

Issue: 20190802 89

IoT Platform User Guide / 2 Rules

Parameter Description
Field Specify the message fields that this rule will retrieve from the

message contents. For example, if you enter deviceName ()

as deviceName , the rule will retrieve the device names
from the messages.
For message content data, see Data Format.

Topic Select the topics whose messages are to be processed by this
rule.
Topic types:
• Custom: The messages are from custom topics. Wildcards

+ and # are supported when you specify custom topics. To
learn how to use wildcards in topics, see Custom topics.

• System: Only when the data type is JSON, are system topics
available. The messages are from system-defined topics,
including messages of reporting properties and events,
device lifecycle change, topological relationship change,
and gateways reporting sub-devices. For message contents,
see Data format.

• Device Status: Only when the data type is JSON, can you
use a rule to process device status messages, which are
messages about devices connecting to and disconnecting
from IoT Platform. For message contents, see Data format.

Condition The condition for triggering the rule.
b) Click Add Operation next to Data Forwarding. Configure a destination to which

you want to forward the processed data. For more information about data
forwarding examples, see the documents in Examples.

Note:

90 Issue: 20190802

IoT Platform User Guide / 2 Rules

A rule can have up to 10 data forwarding destinations.

Currently, if data forwarding fails due to exceptions in the target Alibaba
Cloud services, the rules engine retries three times: after one second, after
three seconds, and after ten seconds. If all the retries fail, the message will be
discarded. If you do not want to miss the forwarding failed messages, you can
proceed to the next step: Add Misoperation. You can then add a destination for
error messages.

c) Click Add Misoperation next to Forward Error Data and then create an action to
forward error messages about data forwarding failures to a specified target.

Note:
• Error messages and device data cannot be forwarded to the same Alibaba

 Cloud service. For example, you cannot configure Table Store as the
destination for both error messages and device data.

Issue: 20190802 91

IoT Platform User Guide / 2 Rules

• Rules engine retries three times if data fails to be forwarded to the specified
 destinations. If all the retries fail, an error message is forwarded according
to this configuration.

• If the error message fails to be forwarded, the rules engine does not retry
sending the message.

• Here, the term "error messages" refers only to messages that relate to errors
resulting from exceptions in the target Alibaba Cloud instance.

• You can add only one destination for error message forwarding.
• Error message format:

{
" ruleName ":"",
" topic ":"",
" productKey ":"",
" deviceName ":"",
" messageId ":"",
" base64Orig inalPayloa d ":"",
" failures ":[
{
" actionType ":" OTS ",
" actionRegi on ":" cn - shanghai ",
" actionReso urce ":" table1 ",
" errorMessa ge ":""
},
{
" actionType ":" RDS ",
" actionRegi on ":" cn - shanghai ",
" actionReso urce ":" instance1 / table1 ",
" errorMessa ge ":""
}
]

}

Parameters in error messages:
Parameter Description
ruleName The name of the data forwarding rule.
topic The source topic of the message.
productKey The unique identifier of the product that the

device belongs to.
deviceName The device name.
messageId The message ID that is generated by IoT Platform

for this message.
base64OriginalPayload The original data that has been Base64 encoded .

92 Issue: 20190802

IoT Platform User Guide / 2 Rules

Parameter Description
failures Detailed messages about the failure. There may

be multiple error messages if the rule forwards
data to multiple destinations.

actionType The target Alibaba Cloud service to which data
fails to be forwarded.

actionRegion The region of the target Alibaba Cloud service.
actionResource The target resource.
ErrorMessage Error message.

5. After you complete all the configurations, go back to the Data Forwarding Rules tab
of Rules page, and click Start corresponding to the rule to start this rule. Data will
then be forwarded following this rule.

You can also perform the following operations:
• Click View, and then modify the rule configurations on the Data Forwarding

Rule Details page.
• Click Delete to delete this rule.

Note:
Rules that are in a running state cannot be deleted.

• Click Stop to disable this rule.

Issue: 20190802 93

IoT Platform User Guide / 2 Rules

2.1.4 SQL statements
You can write SQL statements to parse and process data when you create data
forwarding rules. Binary data will not be parsed, but directly passed through to
targets. This topic describes SQL statements.

SQL statements
JSON data can be mapped to a virtual table. Keys in a JSON data record correspond to
 the column names. Values in a JSON data record correspond to the column values.
After being mapped to a virtual table, a JSON data record can be processed using SQL
. The following example demonstrates how to represent a data forwarding rule as a
SQL statement.

For example , an environmen tal sensor that is
typically used for fire detection and collecting
temperatur e , humidity , and atmospheri c pressure data ,
reports the following data :

{
" temperatur e ": 25 . 1
" humidity ": 65
" pressure ": 101 . 5
" location ":" xxx , xxx "
}
Assume that you need to set an alarm that is
triggered when the temperatur e is higher than 38 °
C and the humidity is lower than 40 %, write the
following SQL statement as a rule :
SELECT temperatur e as t , deviceName () as deviceName ,
location FROM / ProductA /+/ update WHERE temperatur e > 38
 and humidity < 40
If the reported data meets the rule parameters , the
 rule is triggered and the temperatur e data is

94 Issue: 20190802

IoT Platform User Guide / 2 Rules
parsed to obtain the informatio n about temperatur e ,
device name , and location for further processing .

FROM clause
You can enter a topic in the FROM clause. You can enter a wildcard character + that
includes all topics on the current category level to match the topic whose device
messages need to be processed. When a message that matches the specified topic is
received, only the message payload that is in the JSON format can be parsed and then
processed by the SQL statement that you have defined. Invalid messages are ignored.
You can use the topic () function to reference a specific topic.
In this example, the "FROM /ProductA/+/update" clause indicates that
 only messages that match the /ProductA/+/update format are processed.
 For more information about matching rules, see Topic.

SELECT statement
• JSON data

In the SELECT statement, you can use the result of parsing the payload of the
reported message that represents the keys and values in the JSON data. You can
also use built-in functions in the SQL statement, such as deviceName ().
You can combine * with functions. SQL subqueries are not supported.
The reported JSON data can be an array or nested JSON data. You can also use a
JSONPath expression to obtain values in the reported data record. For example,
for a payload { a :{ key1 : v1 , key2 : v2 }}, you can obtain the value
v2 by specifying a . key2 as the JSON path. When specifying variables

in SQL statements, note the difference between single quotation marks (') and
double quotation marks ("). Constants are enclosed with single quotation marks
('). Variables are enclosed with double quotation marks ("). Variables may also
be written without being enclosed by quotation marks. For example, a . key2

represents a constant whose value is a . key2 .
For more information about built-in functions, see Functions.
In the statement " SELECT temperatur e as t ,
deviceName () as deviceName , location " that is provided
 in the previous example , temperatur e and location

Issue: 20190802 95

IoT Platform User Guide / 2 Rules
 are the fields in the reported message , and
deviceName () is a built - in function .

• Binary data
- Enter * to pass through binary data directly. You cannot add a function after *.
- You can use built-in functions. The to_base64 (*) function converts the

payload that is binary data to a base64 string. The deviceName () function
extracts the name information of a device.

Note:
Each SELECT statement can contain up to fifty fields.

WHERE clause
• JSON data

The WHERE clause is used as the condition for triggering the rule. SQL subqueries
 are not supported. The fields that can be used in the WHERE clause are the
same as those that can be used in the SELECT statement. When a message of the
corresponding topic is received, the results obtained using the WHERE clause will
be used to determine whether a rule will be triggered. For more information about
conditional expressions, see the following table: Supported conditional expression
s.
In the previous example , " WHERE temperatur e > 38
 and humidity < 40 " indicates that the rule is
triggered when the temperatur e is higher than 38 °
C and the humidity is lower than 40 %.

• Binary data
If the reported message is composed of binary data, you can only use built-in
functions and conditional expressions in the WHERE clause. You cannot use the
fields in the payload of the reported message.

SQL results
The SQL result returned after the SQL statement is executed will be forwarded. If an
error occurs while parsing the payload of the reported message, the rule execution
fails. In the expression used for data forwarding, you must use ${ expression } to
specify the data that you want to forward.
In the previous example , when configurin g the data
forwarding action , you can use ${ t }, ${ deviceName }, and
 ${ loaction } to reference the SQL result . For example

96 Issue: 20190802

IoT Platform User Guide / 2 Rules
, if you want to forward the SQL result to Table
Store , you can use ${ t }, ${ deviceName }, and ${ loaction
}.

Notes on arrays
Array expressions are enclosed with double quotation marks ("). Use $. to obtain a
JSONObject. $. can be omitted. Use . to obtain a JSONArray.
If the device message is {" a ":[{" v ": 0 },{" v ": 1 },{" v ": 2 }]}, results
of different expressions are as follows:
• The result of " a [0]" is {" v ": 0 }

• The result of "$. a [0]" is {" v ": 0 }

• The result of ". a [0]" is [{" v ": 0 }]

• The result of " a [1]. v " is 1

• The result of "$. a [1]. v " is 1

• The result of ". a [1]. v " is [1]

Supported WHERE expressions
Operator Description Example
= Equal to color = ‘red’
<> Not equal to color <> ‘red’
AND Logic AND color = ‘red’ AND siren = ‘

on’
OR Logic OR color = ‘red’ OR siren = ‘on

’
() Conditions that are enclosed

 with parentheses () are
considered as a whole.

color = ‘red’ AND (siren = ‘
on’ OR isTest)

+ Addition 4 + 5
- Subtraction 5-4
/ Division 20 / 4
* Multiplication 5 * 4
% Return the remainder 20% 6
< Less than 5 < 6
<= Less than or equal to 5 <= 6

Issue: 20190802 97

IoT Platform User Guide / 2 Rules

> Greater than 6 > 5
>= Greater than or equal to 6 >= 5
Function call For more information

about supported functions,
seeFunctions.

deviceId()

Attributes
expressed in the
JSON format

You can extract attributes
from the message payload
and express them in the JSON
format.

state.desired.color,a.b.c[0].d

CASE … WHEN
 … THEN … ELSE
 … END

CASE expression. Nested
expressions are not supported.

CASE col WHEN 1 THEN ‘Y’
WHEN 0 THEN ‘N’ ELSE ‘’
END as flag

IN Only listing is supported.
Subqueries are not supported.

For example, you can use
WHERE a IN(1, 2, 3). However
, you cannot use WHERE a IN(
select xxx).

LIKE This operator is used to match
a specific character. When
you use a LIKE operator, you
can only use the % wildcard
character to represent a
character string.

For example, you can use the
 LIKE operator in WHERE c1
LIKE ‘%abc’ and WHERE c1
not LIKE ‘%def%’.

2.1.5 Functions
The rules engine provides functions that allow you to handle data when writing a SQL
script.

Call functions
In SQL statement, you can use functions to get or handle data.
For example, in the following example, the functions: deviceName(), abs(number),
and topic(number) are used.
SELECT case flag when 1 then ' Light On ' when 2
then ' Light Off ' else '' end flag ， deviceName (), abs (
temperatur e) tmr FROM "/ topic /#" WHERE temperatur e > 10
 and topic (2)=' 123 '

Note:
When you use functions, note that constants are enclosed with apostrophes (').
Variables are not enclosed or are enclosed with quotation marks ("). For example, in

98 Issue: 20190802

IoT Platform User Guide / 2 Rules

select “ a ” a1 , ‘ a ’ a2 , a a3 , a1 is equivalent to a3 , and a2

represents a constant a .
Function name Description
abs(number) Returns the absolute value of the number.
asin(number) Returns the arcsine of the number.
attribute(key) Returns the device tag that corresponds with the key. If a tag

with the specified key is not found, the returned value is null
. When you debug your SQL statements, because there is no
real device or tag, the returned value is null.

concat(string1,
string2) Strings.

Example: concat(field,’a’).
cos(number) Returns the cosine of the number.
cosh(number) Returns the hyperbolic cosine of the number.
crypto(field,String) Encrypts the value of the field.

The String parameter represents an algorithm. Available
algorithms include MD2, MD5, SHA1, SHA-256, SHA-384, and
 SHA-512.

deviceName() Returns the name of the current device. When you debug
your SQL statements, because there is no real device, the
returned value is null.

endswith(input, suffix
)

Validates whether the input value ends with the suffix string.

exp(number) Returns a value raised to the power of a number.
floor(number) Rounds a number down, toward zero, to the nearest multiple

 of significance. Returns an integer that is equal to or smaller
 than the number.

log(n, m) Returns the logarithm of a number according to the base
that you have specified.
If you do not specify the value of m, log(n) is returned.

lower(string) Returns a lower-case string.
mod(n, m) Returns the remainder after a number has been divided by a

 divisor.
Issue: 20190802 99

IoT Platform User Guide / 2 Rules

Function name Description
nanvl(value, default) Returns the value of a property.

If the value of the property is null, the function returns
default.

newuuid() Returns a random UUID.
payload(textEncoding
) Returns the string generated by encoding the message

payload that is sent by a device.
The default encoding is UTF-8, which means that payload()
and payload(‘utf-8’) will return the same result.

power(n,m) Raises number n to power m.
rand() Returns a random number greater than or equal to 0 and less

 than 1.
replace(source
, substring,
replacement)

Replaces a specific column.
Example: replace(field,’a’,’1’).

sin(n) Returns the sine of n.
sinh(n) Returns the hyperbolic sine of n.
tan(n) Returns the tangent of n.
tanh(n) Returns the hyperbolic tangent of n.
timestamp(format) Returns the formatted timestamp of the current system time

.
The value of format is optional. If you do not specify the
format, the 13-digit timestamp of the current system time
will be returned. Examples: timestamp() = 1543373798943,
timestamp('yyyy-MM-dd\'T\'HH:mm:ss\'Z\'') = 2018-11-28T10:
56:38Z.

100 Issue: 20190802

IoT Platform User Guide / 2 Rules

Function name Description
timestamp_utc(
format)

Returns the formatted UTC timestamp of the current system
time.
The value of format is optional. If you do not specify the
format, the 13-digit timestamp of the current system time
will be returned. Examples: timestamp_utc() = 1543373798
943，timestamp_utc('yyyy-MM-dd\'T\'HH:mm:ss\'Z\'') = 2018-
11-28T02:56:38Z

topic(number) Returns a segment of a topic.
For example, for topic /abcdef/ghi, if you use the function
 topic(), “ /abcdef/ghi” will be returned; If you use the
function topic(1), “ abcdef” will be returned; If you use the
function topic(2), “ghi” will be returned.

upper(string) Returns an upper-case string.
to_base64(*) If the original payload data is binary data, you can call this

function to convert the binary data to a base64String data.
substring(target, start
, end)

Returns the part of the target string between the start index
(included) and end index (not included).
The data type of the target must be String or Integer, and
Integer data will be parsed to String data.
Examples:
• substring('012345', 0) = "012345"
• substring('012345', 2) = "2345"
• substring('012345', 2.745) = "2345"
• substring(123, 2) = "3"
• substring('012345', -1) = "012345"
• substring(true, 1.2) error
• substring('012345', 1, 3) = "12"
• substring('012345', -50, 50) = "012345"
• substring('012345', 3, 1) = ""

Issue: 20190802 101

IoT Platform User Guide / 2 Rules

2.1.6 Data forwarding procedure
Data forwarding provided by the rules engine function can only process data that is
published to topics. This topic describes the procedure of data forwarding and the
formats of the data at different stages during data forwarding.

Custom topics
Data published to custom topics is forwarded transparently to the IoT Platform by
data forwarding. The structure of the data is not changed. The following figure shows
the data forwarding procedure:

System topics
Data published to system topics is in the Alink JSON format. During data forwarding,
the data is parsed according to the TSL and then processed by the SQL statements
of a rules engine. For more information about the data format, see Data format. The
following figure shows the data forwarding procedure:

102 Issue: 20190802

IoT Platform User Guide / 2 Rules

Note:
During data forwarding, parameter params in the payload is replaced by
parameter items after the data is parsed according to the TSL.

2.1.7 Data format
If you want to use rules engine to forward data, you need to write a SQL statement
to process data using message topics. Therefore, the format in which data is stored
in these topics must be able to be parsed by SQL statements. For IoT Platform Basic
edition topics, the data format is defined manually. For IoT Platform topics, the data
format of custom topics is defined manually, and the data format of system topics is
pre-defined by the system. For scenarios where the data format is pre-defined, data
is strictly processed according to the format. This topic explains the pre-defined data
format of system defined topics.

Messages about device properties reported by devices
By using the following topic, you can obtain the device properties reported by devices
.
Topic：/ sys /{ productKey }/{ deviceName }/ thing / event / property /

post

Data format:
{
 " iotId ":" 4z819VQHk6 VSLmmBJfrf 00107ee200 ",
 " productKey ":" 1234556554 ",
 " deviceName ":" deviceName 1234 ",
 " gmtCreate ": 1510799670 074 ,

Issue: 20190802 103

IoT Platform User Guide / 2 Rules
 " deviceType ":" Ammeter ",
 " items ":{
 " Power ":{
 " value ":" on ",
 " time ": 1510799670 074
 },
 " Position ":{
 " time ": 1510292697 470 ,
 " value ":{
 " latitude ": 39 . 9 ,
 " longitude ": 116 . 38
 }
 }
 }
}

Parameter descriptions:
Parameter Type Description
iotId String The unique identifier of the device.
productKey String The unique identifier of the product to

which the device belongs.
deviceName String The name of the device.
deviceType String The node type of the device.
items Object Device data.
Power String The property name. See the TSL

description of the product for all the
property names.

Position String The property name. See the TSL
description of the product for all the
property names.

value Defined in TSL Property values
time Long The time when the property is created. If

 the device does not report the time, the
time when the property is generated on
the cloud will be used.

gmtCreate Long The time when the message is generated.
Messages about events reported by devices

By using the following topic, you can obtain event information reported by devices.
Topic: / sys /{ productKey }/{ deviceName }/ thing / event /{ tsl . event

. identifier }/ post

104 Issue: 20190802

IoT Platform User Guide / 2 Rules

Data format:
{
 " identifier ":" BrokenInfo ",
 " Name ": " Damage rate report ",
 " type ":" info ",
 " iotId ":" 4z819VQHk6 VSLmmBJfrf 00107ee200 ",
 " productKey ":" X5eCzh6fEH 7 ",
 " deviceName ":" 5gJtxDVeGA kaEztpisjX ",
 " gmtCreate ": 1510799670 074 ,
 " value ":{
 " Power ": " on ",
 " Position ":{
 " latitude ": 39 . 9 ,
 " longitude ": 116 . 38
 }
 },
 " time ": 1510799670 074
}

Parameter descriptions:
Parameter Type Description
iotId String The unique identifier of the device.
productKey String The unique identifier of the device

product.
deviceName String The name of the device.
type String Event type. See the TSL of the product for

details.
value Object Parameters of the event.
Power String The parameter name of the event.
Position String The parameter name of the event
time Long The time when the event is generated. If

 the device does not report the time, the
time recorded on the cloud will be used.

gmtCreate Long The time when the message is generated.
Device lifecycle change messages

By using the following topic, you can obtain messages about device creation and
deletion, and about devices being enabled and disabled.
Topic: / sys /{ productKey }/{ deviceName }/ thing / lifecycle

Data format:
{

Issue: 20190802 105

IoT Platform User Guide / 2 Rules
" action " : " create | delete | enable | disable ",
" iotId " : " 4z819VQHk6 VSLmmBJfrf 00107ee200 ",
" productKey " : " X5eCzh6fEH 7 ",
" deviceName " : " 5gJtxDVeGA kaEztpisjX ",
" deviceSecr et " : "",
" messageCre ateTime ": 1510292739 881
}

Parameter descriptions:
Parameter Type Description
action String • create: Create devices.

• delete: Delete devices.
• enable: Enable devices.
• disable: Disable devices.

iotId String The unique identifier of the device.
productKey String The unique identifier of the product.
deviceName String The name of the device.
deviceSecret String The device secret. This parameter is only

 included when the value of action is
create.

messageCre
ateTime

Integer The timestamp when the message is
generated, in milliseconds.

Device topological relationship update messages
By using the following topic, you can obtain messages about topological relationship
creation and removal between sub-devices and gateways.
Topic: / sys /{ productKey }/{ deviceName }/ thing / topo / lifecycle

Data format:
{
" action " : " add | remove | enable | disable ",
" gwIotId ": " 4z819VQHk6 VSLmmBJfrf 00107ee200 ",
" gwProductK ey ": " 1234556554 ",
" gwDeviceNa me ": " deviceName 1234 ",
" devices ": [
 {
" iotId ": " 4z819VQHk6 VSLmmBJfrf 00107ee201 ",
" productKey ": " 1234556556 9 ",
" deviceName ": " deviceName 1234 "
 }
],

" messageCre ateTime ": 1510292739 881

106 Issue: 20190802

IoT Platform User Guide / 2 Rules
}

Parameter descriptions:
Parameter Type Description
action String • add: Add topological relationships.

• remove: Delete topological relationsh
ips.

• enable: Enable topological relationsh
ips.

• disable: Disable topological relationsh
ips.

gwIotId String The unique identifier of the gateway
device.

gwProductKey String The unique identifier of the gateway
product.

gwDeviceName String The name of the gateway device.
devices Object The sub-devices whose topological

relationship with the gateway will be
updated.

iotId String The unique identifier of the sub-device.
productKey String The unique identifier of the sub-device

product.
deviceName String The name of the sub-device.
messageCre
ateTime

Integer The timestamp when the message is
generated, in milliseconds.

Messages about detected sub-devices reported by gateways
In some cases, gateways can detect sub-devices and report their information. By
using the following topic, you can obtain the sub-device information reported by
gateways.
Topic: / sys /{ productKey }/{ deviceName }/ thing / list / found

Data format:
{
 " gwIotId ":" 4z819VQHk6 VSLmmBJfrf 00107ee200 ",
 " gwProductK ey ":" 1234556554 ",
 " gwDeviceNa me ":" deviceName 1234 ",
 " devices ":[
 {

Issue: 20190802 107

IoT Platform User Guide / 2 Rules
 " iotId ":" 4z819VQHk6 VSLmmBJfrf 00107ee201 ",
 " productKey ":" 1234556556 9 ",
 " deviceName ":" deviceName 1234 "
 }
]
}

Parameter descriptions:
Parameter Type Description
gwIotId String The unique identifier of the gateway

device.
gwProductKey String The unique identifier of the gateway

product.
gwDeviceName String The name of the gateway device.
devices Object The sub-devices that are detected by the

gateway.
iotId String The unique identifier of the sub-device.
productKey String The unique identifier of the sub-device

product.
deviceName String The name of the sub-device.

Devices return result data to the cloud
By using the following topic, you can obtain request execution results from devices
 when you send operation requests to devices using an asynchronous method. If an
error occurs when sending the request, you will receive an error message from this
topic.
Topic: / sys /{ productKey }/{ deviceName }/ thing / downlink / reply /

message

Data format:
{
 " gmtCreate ": 1510292739 881 ,
 " iotId ":" 4z819VQHk6 VSLmmBJfrf 00107ee200 ",
 " productKey ":" 1234556554 ",
 " deviceName ":" deviceName 1234 ",
 " requestId ": 1234 ,
 " code ": 200 ,
 " message ":" success ",
 " topic ":"/ sys / 1234556554 / deviceName 1234 / thing / service
/ property / set ",

 " data ":{

 }

108 Issue: 20190802

IoT Platform User Guide / 2 Rules
}

Parameter descriptions
Parameter Type Description
gmtCreate Long The timestamp when the message is

generated.
iotId String The unique identifier of the device.
productKey String The unique identifier of the product.
deviceName String The name of the device.
requestId Long The request message ID.
code Integer The code for the result message.
message String The description of the result.
data Object The result data reported by the device.

For pass-through communication, the
 result data will be converted by the
parsing script.

Response information:
Parameter Message Description
200 success The request is successful.
400 request error Internal service error.
460 request parameter

error
The request parameters are invalid.
The device has failed input parameter
verification.

429 too many requests Too many requests in a short time.
9200 device not activated The device is not activated yet.
9201 device offline The device is offline now.
403 request forbidden The request is prohibited because of an

overdue bill.
Messages about device status

By using the following topic, you can obtain the online and offline status of devices.
Topic: { productKey }/{ deviceName }/ mqtt / status

Issue: 20190802 109

IoT Platform User Guide / 2 Rules

Data format:
{
 " productKey ":" 1234556554 ",
 " deviceName ":" deviceName 1234 ",
 " gmtCreate ": 1510799670 074 ,
 " deviceType ":" Ammeter ",
 " iotId ":" 4z819VQHk6 VSLmmBJfrf 00107ee200 ",
 " action ":" online | offline ",
 " status ":{
 " value ":" 1 ",
 " time ": 1510292697 471
 }
}

Parameter descriptions:
Parameter Type Description
iotId String The unique identifier of the device.
productKey String The unique identifier of the device

product.
deviceName String The name of the device.
status Object The status of the device.
Value String 1: online; 0: offline.
time Long The time when the device got online or

offline.
gmtCreate Long The time when the message is generated.
action String The action of device status change: go

online or go offline.
2.1.8 Regions and zones

Before you a create rule to send device data to other Alibaba Cloud products, make
sure that the target Alibaba Cloud products have been released in the region of the
device and support the format of your data.
Table 2-2: List of supported regions and zones

China (
Shanghai)

Singapore Japan (
Tokyo)

US (Silicon
Valley)

Germany (
Frankfurt)

JSON Binary JSON Binary JSON Binary JSON Binary JSON Binary
Table Store √ - √ - √ - √ - √ -

110 Issue: 20190802

IoT Platform User Guide / 2 Rules

RDS (
ApsaraDB
for RDS)

√ - √ - √ - √ - √ -

Message
Service

√ √ √ √ √ √ √ √ √ √

Function
Compute

√ √ √ √ - - - - - -

2.2 Data Forwarding Examples
2.2.1 Forward data to another topic

You can forward the data that is processed based on SQL rules to another topic for
machine-to-machine (M2M) communication and other applications.

Prerequisites
Before configuring forwarding, follow the instructions in Create and configure a rule
to write a SQL script and filter the data.

Context
The following document describes how to forward data from Topic1 to Topic2 based
on the rules engine settings:

Procedure

Issue: 20190802 111

IoT Platform User Guide / 2 Rules

1. Click Add Operation next to Data Forwarding. The Add Operation page appears.

2. Follow the instructions on the page to configure the parameters.
• Select Operation: Select Publish to Another Topic.
• Topic: The topic to which the data is forwarded. You need to complete this topic

after selecting a product. You can use the ${} expression to quote the context
value. For example, ${ dn }/ get allows you to select the devicename from
the message. The suffix of this topic is get.

2.2.2 Forward data to Table Store
You can configure the rules engine data forwarding function to forward data to Table
Store.

Prerequisites
Before you configure forwarding, complete the following tasks:

112 Issue: 20190802

IoT Platform User Guide / 2 Rules

• In the IoT Platform console, create a forwarding rule and write SQL statements for
data processing.
For more information, see 设置数据流转规则.
In this example, the following SQL statement is defined:
SELECT deviceName as deviceName , items . PM25 . value as
 PM25 , items . WorkMode . value as WorkMode
FROM "/ sys / a1ktuxe ****/ aircleaner thing / event / property /
post " WHERE

• In the Table Store console, create instances and tables for data receiving and
storage.
For more information about Table Store, see Table Store documentation .

Procedure
1. On the Data Forwarding Rule Details page of the rule, click Add Operation in the

Data Forwarding section. In the Add Operation dialog box, select Save to Table
Store.

Note:

Issue: 20190802 113

https://partners-intl.aliyun.com/help/product/27278.htm

IoT Platform User Guide / 2 Rules

Binary data cannot be forwarded to Table Store.

2. Set parameters as prompted, and then clickOK.
Parameter Description
Select Operation Select Save to Table Store.
Region Select the region of the Table Store instance that receives

data.
Instance Select the Table Store instance that receives data.
Data Sheet Select the table that receives data..

114 Issue: 20190802

IoT Platform User Guide / 2 Rules

Parameter Description
Primary Key To set the value for a primary key of the table, you must use

the corresponding field value in the SELECT statement of the
forwarding rule. When data is forwarded, this value is saved
as the value of the primary key.

Note:
• You can set this parameter in the format of ${}. For

example, ${deviceName} indicates that the value of
the primary key is the value of DeviceName in the
message.

• If the primary key is an auto-increment column, you do
not need to specify the value for the primary key. Table
Store automatically generates a value for this primary
key column. Therefore, the value of an auto-increment
primary key is automatically set to AUTO_INCRE MENT
and cannot be modified.
For more information about auto-increment primary
keys, see Auto-increment function of the primary key
column .

Role Authorize IoT Platform to write data to Table Store.
You must create a role with Table Store write permissions in
the RAM console and assign the role to IoT Platform.

3. Return to the Data Forwarding Rules page, and click Start in the Actions column of
the corresponding rule.
After the rule is started, when a message is published to the topic that is defined
in the SQL statement, only the message data defined by the SELECT fields is
forwarded to the table in Table Store.

Issue: 20190802 115

https://www.alibabacloud.com/help/doc-detail/47745.htm
https://www.alibabacloud.com/help/doc-detail/47745.htm
https://ram.console.aliyun.com/roles

IoT Platform User Guide / 2 Rules

4. Simulate data push to test data flow.
a) In the left-side navigation pane of the IoT Platform console, choose Maintenance

> Online Debug.
b) Select the device for debugging, and use a Virtual Device to push analog data to

IoT Platform. For more information, see 虚拟设备调试.

c) After the data is pushed, go to the Data Editor page of the target table in the
Table Store console to check whether the specified data has been received.

2.2.3 Forward data to ApsaraDB for RDS
You can configure the rules engine to forward processed data to ApsaraDB for RDS
instances in VPCs.

Limits
• The ApsaraDB for RDS instances and your IoT Platform service must be in the same

 region. For example, if your devices are in cn-shanghai region, the data can only
be forwarded to RDS instances in the cn-shanghai region.

• Only RDS instances in VPCs are supported.

116 Issue: 20190802

IoT Platform User Guide / 2 Rules

• Only MySQL instances and SQL Server instances are supported.

Note:
MySQL 8.0 is not supported.

• Databases in classic mode and master mode are supported.
• Binary data cannot be forwarded to ApsaraDB for RDS.

Preparations
• Follow the instructions in Create and configure a rule to create a rule and write a

SQL script for processing data.
• Create an ApsaraDB for RDS instance that is in the same region as your devices,

and then create a database and a data table.

Issue: 20190802 117

IoT Platform User Guide / 2 Rules

Procedure
1. Click Add Operation next to Data Forwarding, and then select Save to RDS.

2. Configure the following parameters as prompted:
Parameter Action
Select Operation Select Save to RDS.
RDS Instance Select the VPC RDS instance to which IoT Platform data is to

be forwarded.

118 Issue: 20190802

IoT Platform User Guide / 2 Rules

Parameter Action
Database Enter the name of the target database.

Note:
If your database is in the master mode, you need to
manually enter the database name.

Account Enter the account of the RDS database. The account requires
the permissions to read and write data to the database.
Otherwise, rules engine cannot write data to the database.

Note:
After rules engine obtains the account, rules engine only
writes data that matches this rule to the database.

Password Enter the password to log on to the database.
Table Name Enter the name of the table that will store data from IoT

Platform. Rules engine will then write data to this database
table.

Key Enter a field name of the database table. Rules engine will
then write data to this field.

Value Enter a field of the message that you have defined in the data
processing SQL statement. This is the value of Key.

Note:
• Make sure that the data type of the Value field is the

same as that of the Key field. Otherwise, the data cannot
be written into the database.

• You can enter a variable, such as ${ deviceName },
to indicate that device names selected from the topic
messages are used as the value.

Role Set the role that authorizes IoT Platform to write data to RDS
database table.
If you have not created such a role, click Create RAM Role
and create a role in the RAM console.

3. In the Rules page, click the Start button corresponding to the rule to start this rule.
4. Once the configuration is complete, the rules engine will add the following IP

addresses to the whitelist to connect to RDS. If one or more of the following IP

Issue: 20190802 119

IoT Platform User Guide / 2 Rules

addresses are not listed, you need to manually add them to the whitelist of the RDS
instance:
• China (Shanghai): 100.104.123.0/24
• Singapore: 100.104.106.0/24
• US (Silicon Valley): 100.104.8.0/24
• US (Virginia): 100.104.133.64/26
• Germany (Frankfurt): 100.104.160.192/26
• Japan (Tokyo): 100.104.160.192/26
On the Security page of the RDS console, you can set and view the whitelist.

2.2.4 Forward data to Message Service
By using rules engine to forward data from IoT Platform to Message Service (MNS).
The message transmission performance between devices and servers is improved.
The advantages are described in the following section.

Data forwarding
• Devices send data to application servers

Devices send messages to IoT Platform, where the messages are processed with
rules engine and forwarded to specified MNS topics. The application server can
then call the relevant APIs of MNS to subscribe to topics for messages from devices
.
One advantage of this method is that using MNS to receive and store messages
prevents message packet loss during server downtime. Another advantage is that
 MNS can process a massive amount of messages simultaneously, which means
services remain available even if the server has to process a number of concurrent
 tasks.

120 Issue: 20190802

https://www.alibabacloud.com/help/product/27412.htm

IoT Platform User Guide / 2 Rules

• Application servers send data to devices
The application server calls the relevant APIs of IoT Platform to publish messages
 to IoT Platform, and devices subscribe to related topics for messages from the
server.

Issue: 20190802 121

IoT Platform User Guide / 2 Rules

122 Issue: 20190802

IoT Platform User Guide / 2 Rules

Procedure
1. Log on to the RAM console, and create a role with the permission to write messages

from IoT Platform into MNS.
Then, when you are configuring the data forwarding rule in IoT Platform, you can
apply this role to allow IoT Platform to write data into MNS. Without applying such
a role, IoT Platform cannot forward data to MNS.
For more information about roles, see RAM role management.

Issue: 20190802 123

https://ram.console.aliyun.com/
https://www.alibabacloud.com/help/doc-detail/93691.htm

IoT Platform User Guide / 2 Rules

2. In the MNS console, create a topic that is to receive messages from IoT Platform.
a. Click Topics > Create Topic.
b. In the Create Topic dialog box, enter a name for the topic, and then click OK.

c. On the Topic List page, find the topic and click Subscription List in the Actions
column.

d. On the Subscription List page, click Subscribe.
e. Create a subscriber for this topic. A subscriber is a server that subscribes to the

topic for messages from IoT Platform.
An MNS topic can have multiple subscribers.

For more information, see the MNS documentations.
3. Go to the IoT Platform console and, on the Rules page, click Create Ruleand then

create a rule
4. Go back to the Rules page, find the newly created rule and click Manage on the

right.

124 Issue: 20190802

https://mns.console.aliyun.com/
https://www.alibabacloud.com/help/product/27412.htm
https://iot.console.aliyun.com/rule/

IoT Platform User Guide / 2 Rules

5. On the Data Flow Details page, write the SQL statement that is used to process and
filter messages. For more information, see Create and configure a rule and SQL
statements.

6. On the Data Flow Details page, click Add Operation next to Data Forwarding.

7. In the Add Operation dialog box, enter information of the MNS topic.
Parameter description:
Parameter Description
Select
Operation

Select the Alibaba Cloud product which will be the data
forwarding target. Here, select Send to Message Service.

Issue: 20190802 125

IoT Platform User Guide / 2 Rules

Parameter Description
Region Select the region where the MNS topic is.
Theme Select the MNS topic that is to receive data from IoT Platform.
Role The role with the permission that IoT Platform can write data

into MNS.
8. On the Rules page, click Start corresponding to this rule to run the rule.

Then, IoT Platform can forward messages of the specified IoT Platform topic to the
 specified MNS topic.

2.2.5 Forward data to Function Compute
Rules engine can forward processed data from IoT Platform to Function Compute
(FC).

Procedure:
1. On the Function Compute console, create a service and function.
2. Create a rule to send data processed on IoT Platform to FC, and then enable the

rule.
3. Send a message to the topic that has rules engine configured.
4. View the function execution statistics on the Function Compute console, or check

whether the configuration result is correct based on specific business logic of the
function.

126 Issue: 20190802

IoT Platform User Guide / 2 Rules

Procedure
1. Log on to the Function Compute console. Create a service and function.

a. Create a service. Service Name is required. Configure other parameters as
required.

b. After you have created a service, create a function.

c. Select a function template. A blank template is used as an example.

Issue: 20190802 127

IoT Platform User Guide / 2 Rules

d. Set parameters for the function.
The function is configured to directly display data on the Function Compute
console.

In the proceeding parameters,
Service Name: Select the service created in 1.a.
Function Name: Specify the name of your function.
Runtime: Configure the running environment for the function, for example,
java8.
Code Configuration: Upload your code.
Function Handler: Configure the function entry called to run FC. Set it to com .

aliyun . fc . FcDemo :: handleRequ est .
Configure other parameters as required. For more information, see
configurations in Function Compute.

e. Verify whether the function runs as intended.
After you create a function, you can run it on the Function Compute console for
verification. FC will display information about function output and requests on
the Function Compute console.

128 Issue: 20190802

https://www.alibabacloud.com/help/product/50980.htm

IoT Platform User Guide / 2 Rules

2. Configure rules engine after the function successfully passes the verification.
3. Before you configure rules engine, follow the instructions in Create and configure a

rule to write a SQL script to process the data.

Note:
Data in JSON and binary formats can be forwarded to FC.

4. Click a rule name to go to the Rule Details page.

Issue: 20190802 129

IoT Platform User Guide / 2 Rules

5. Select Data Forwarding Add Operation. On the Add Operation page, configure
parameters:

• Select Operation: Select Function Compute.
• Region: Select the region that your need to forward data based on your business

requirements. If the region does not have any relevant resources, go to Function
Compute Console to create resources.

Note:

130 Issue: 20190802

IoT Platform User Guide / 2 Rules

Data forwarding to FC is supported in regions including China (Shanghai),
Singapore, and Japan (Tokyo).

• Service: Select a service based on your region. If there are no services available,
click Create Service.

• Function: Select a function based on your region. If there are no functions
available, click Create Function.

• Authorization: Specify the role granted IoT Platform the permission to operate
 functions. You need to create a role with permissions to operate functions
before you assign the role to rules engine.

6. Enable the rule. After you run the rule, IoT Platform sends the processed data to
FC based on the compiled SQL statements. The Function Compute console directly
displays the received data based on the defined function logic.

Verify the forwarding result
The Function Compute console collects monitored statistics about function execution
. Statistics are delayed for five minutes, after which you can view monitored statistics
about function execution on the dashboard.

Issue: 20190802 131

IoT Platform User Guide / 3 Monitoring and Maintenance

3 Monitoring and Maintenance
3.1 Real-time monitoring
3.1.1 Real-time monitoring

In the IoT Platform console, the Real-time Monitoring page displays the number
of online devices, the number of upstream and downstream messages, and the
number of messages that were forwarded by the rules engine. In addition, you can
set CloudMonitor alert rules to monitor the resource usage of your IoT Platform and
receive alerts.

Display data
To view real-time monitoring data, follow these steps:
1. Log on to the IoT Platform console.
2. In the left-side navigation pane, choose Maintenance > Real-time Monitoring.
3. Select the products and time range of the data to be viewed.

Table 3-1: Time range descriptions
Time range Description
1 Hour Displays the statistics of the last hour. Statistics are collected

every 1 minute.
1 Day Displays the statistics of the last 24 hours. Statistics are collected

 every 5 minutes.
132 Issue: 20190802

http://iot.console.aliyun.com/

IoT Platform User Guide / 3 Monitoring and Maintenance

Time range Description
1 Week Displays the statistics of the last seven days. Statistics are

collected every 15 minutes.

Note:
The abscissa values displayed on the Real-time Monitoring page do not represent
the collection cycle.

The following table describes the statistical data on the Real-time Monitoring page.
Data Description
Online Devices The number of devices that have established persistent

connections with IoT Platform.
The data is collected with delays. A displayed value is the
average value within a collection cycle. The data is displayed
 based on the protocol that is used to communicate with IoT
Platform.

Messages Sent to
IoT Platform The number of messages that the devices send to IoT Platform.

The data is collected with delays. A displayed value is the total
value within a collection cycle. The data is displayed based on
the protocol that is used to communicate with IoT Platform.

Messages Sent from
 IoT Platform The number of messages sent from IoT Platform to devices and

 servers.
The data is collected with delays. A displayed value is the total
value within a collection cycle. The data is displayed based on
the protocol that is used to communicate with IoT Platform.

Messages
Forwarded Through
 Rule Engine

The number of messages forwarded by the rules engine data
forwarding function.
The data is collected with delays. A displayed value is the total
value within a collection cycle. The data is displayed based on
the target cloud service to which the messages were forwarded
.

Issue: 20190802 133

IoT Platform User Guide / 3 Monitoring and Maintenance

Alarm Config.
On the Real-time Monitoring page, click Alarm Config.. The Create Alarm Rule page of
the CloudMonitor console appears. You can also directly access the Create Alarm Rule
 page to create an alert.
You can create threshold-triggered and event-triggered alert rules in the CloudMonit
or console.
• Create a threshold-triggered alert rule

IoT Platform allows you to use CloudMonitor to monitor IoT Platform by multiple
 metrics. These metrics include the number of real-time online devices using a
 specific communication protocol, the number of messages sent from devices
to IoT Platform, the number of messages sent from IoT Platform to devices, the
number of messages forwarded by the rules engine to other Alibaba Cloud service

134 Issue: 20190802

https://cloudmonitor.console.aliyun.com/#/alarmservice/product=&searchValue=&searchType=&searchProduct=
https://cloudmonitor.console.aliyun.com/#/alarmservice/product=&searchValue=&searchType=&searchProduct=

IoT Platform User Guide / 3 Monitoring and Maintenance

, the number of property report failures, the number of event report failures, the
number of service call failures, and the number of property setting failures.
On the Create Alarm Rule page, configure the parameters and then click Confirm.

Table 3-2: Alert rule parameters
Parameter Description
Product Select IoT Platform.
Resource Range Includes the following value options:

- All Resources: An alert is sent when any instance under
 your IoT Platform service meets the description of the
alert rule.

- Instance: An alert is sent only when the specified products
 meet the description of the alert rule.

Region This parameter is available only when you set Resource
Range to Instance. Select the region of the IoT Platform

instance monitored by this alert rule.

Issue: 20190802 135

IoT Platform User Guide / 3 Monitoring and Maintenance

Parameter Description
Instance Select an IoT Platform instance to be monitored and select

one or more products.
Alarm Rule Set the name of the alert rule.
Rule Description Set the description of the alert rule. It defines the condition

in which an alert is triggered. You must configure the
following items:
- Select a monitoring metric for the rule.
- Select a scan period for the rule. For example, if the scan

period is set to 60 minutes, scans are performed every 60
minutes.

- Set the triggering condition. For example, an alert is
triggered only if the number of devices exceeds 5,000 for
three consecutive scan periods.

Mute for Set the period of time before which the alert is sent again if
the exception persists after the alert is triggered.

Effective Period Set the time range when the alert rule is applied. CloudMonit
or applies the alert rule to monitor the specified metric only
during the specified effective period.

Notification
Method

Set notification parameters, such as the notification contacts
 and notification methods.

For more information about setting threshold-triggered alert rules, see Procedure.

136 Issue: 20190802

IoT Platform User Guide / 3 Monitoring and Maintenance

• Create an event-triggered alert rule
You can use an event-triggered alert rule to monitor the following IoT Platform
events:
- The upstream QPS of any device reaches the upper limit.
- The downstream QPS of any device reaches the upper limit.
- The number of connection requests per second for the current account reaches

the upper limit.
- The upstream QPS for the current account reaches the upper limit.
- The downstream QPS for the current account reaches the upper limit.
- The engines rule data forwarding QPS for the current account reaches the upper

 limit.
Go to the Alarm Rules page of the CloudMonitor console, and choose Event Alarm >
Create Event Alert.
The following figure shows how to create an event-triggered alert rule.

Table 3-3: Event-triggered alert rule parameters
Parameter Description
Alarm Rule Name Set the name of the alert rule.
Event Type Select System Event.
Product Type Select IoT Platform.
Event Type Select All types or Exception.
Event Level Select All Levels or select one or more specific event levels.

Issue: 20190802 137

https://cloudmonitor.console.aliyun.com/#/alarmservice/product=&searchValue=&searchType=&searchProduct=

IoT Platform User Guide / 3 Monitoring and Maintenance

Parameter Description
Event Name Select one or more events to be monitored.
Resource Range Select All Resources.
Alarm Type Set the alert contacts and notification methods.

For more information about setting event-triggered alert rules, see Create an event
alert rule in the CloudMonitor documentation.

3.1.2 Alerts and notifications
When the resource usage on IoT Platform reaches the value specified in an alert
rule, the corresponding alert is triggered. Alibaba Cloud then sends a notification to
the specified contact group. This topic describes the alerts and notifications of IoT
Platform.

Notifications for threshold alerts
When a threshold alert is triggered, the alert contact group receives a notification.
The notification includes information shown in the following figure:
Table 3-4: Notification content and descriptions
Field Description
IoT Platform
instance

The instance that triggers the alert. This field contains the
product key (ProductKey), instance ID (instanceId), and region
 ID (regionId).

Metric The metric is displayed as a code. It indicates the metric that
you selected when you set the Rule Description parameter.
In this example, the code "MessageCountForwarde
dThroughRuleEngine_MNS" represents the number of
messages forwarded by the rules engine. If the number of
messages exceeds the specified threshold during a time period
, an alert is triggered.
For more information about metrics and descriptions, see the
following table: Metric codes and descriptions.

Alert time The time when the alert is triggered.

138 Issue: 20190802

IoT Platform User Guide / 3 Monitoring and Maintenance

Field Description
Count The total number of messages, the number of forwarded

messages, or the number of connected devices counted for the
 specified metric.

Duration The time period during which an alert is triggered upon a
threshold violation.

Rule details The alert rule details that you have set in the CloudMonitor
console.

Table 3-5: Metric codes and descriptions
Code Description
MessageCountForwarde
dThroughRuleEngine_FC

The number of messages forwarded by the
rules engine to Function Compute.

MessageCountForwarde
dThroughRuleEngine_MNS

The number of messages forwarded by the
rules engine to Message Service.

MessageCountForwarde
dThroughRuleEngine_OTS

The number of messages forwarded by the
rules engine. It equals the number of times
that the rules engine forwards data to Table
Store.

MessageCountForwarde
dThroughRuleEngine_RDS

The number of messages forwarded by the
rules engine to ApsaraDB for RDS.

MessageCountForwarde
dThroughRuleEngine_REPUBLISH

The number of messages forwarded by the
rules engine from the current topic to other
topics.

MessageCountSentFrom
IoT_HTTP_2

The number of messages that are sent through
IoT Platform over HTTP/2.

MessageCountSentFromIoT_MQTT The number of messages that are sent through
IoT Platform over MQTT.

MessageCountSentToIoT_CoAP The number of messages that are sent through
IoT Platform over CoAP.

MessageCountSentToIoT_HTTP The number of messages that are sent to IoT
Platform over HTTP.

MessageCountSentToIoT_HTTP/2 The number of messages that are sent to IoT
Platform over HTTP/2.

MessageCountSentToIoT_MQTT The number of messages that are sent to IoT
Platform over MQTT.

Issue: 20190802 139

IoT Platform User Guide / 3 Monitoring and Maintenance

Code Description
OnlineDevicesCount_MQTT The number of devices that are connected to

IoT Platform over MQTT in real time.
DeviceEventReportError The number of event reporting failures.
DevicePropertyReportError The number of property reporting failures.
DevicePropertySettingError The number of property setting failures.
DeviceServiceCallError The number of service calling failures.

Notifications for event alerts
When an event alert is triggered, Alibaba Cloud sends a notification to the specified
contact group.
Table 3-6: Notification content and descriptions
Field Description
Event name The event name is displayed as a code. In this example, the

code "Device_Connect_QPM_Limit" represents the event of the
maximum connection requests sent per minute by a device
reaching the upper limit.
For more information about event codes and descriptions, see
the following table: Event codes and descriptions.

Object The resource that triggers the alert.
• resourceId: The resource ID. Format:

acs : iot :$ regionid :: instance /$ instanceId
/ product /$ productKey / device /$ deviceName

• Resource name: The instance ID. iot-public indicates that
this instance is a public instance.

• Group ID: The ID of the group that the device belongs to. If
 the device does not belong to any group, the field displays
an empty string.

Event level Currently, all events are WARN events.
Event time The time when the event occurs.
Event status Currently, all events are set to the Fail status. This status

 indicates that the request failed because the number of
connection requests sent per minute or messages sent per
second has reached the upper limit.

140 Issue: 20190802

IoT Platform User Guide / 3 Monitoring and Maintenance

Field Description
Details The information about the resource that triggers the alert.

The information is in the JSON format. This field contains
the region ID (regionId), instance ID (instanceId), product
key (ProductKey), and the device name (DeviceName). The
 ProductKey and DeviceName parameters appear in the
notification only when the number of connection requests sent
 per minute, messages sent per second, or messages received
per second by a device reaches the upper limit.

Table 3-7: Event codes and descriptions
Code Description
Device_Connect_QPM_Limit The number of connection requests sent per

minute by a device has reached the upper limit.
Device_Uplink_QPS_Limit The number of messages sent per second by a

device has reached the upper limit.
Device_Downlink_QPS_Limit The number of messages received per second by a

 device has reached the upper limit.
Account_Connect_QPS_Limit The number of connection requests sent per

second by the current account has reached the
upper limit.

Account_Uplink_QPS_Limit The number of messages sent per second by the
current account has reached the upper limit.

Account_Downlink_QPS_Limit The number of messages received per second by
the current account has reached the upper limit.

Account_RuleEngine_D
ataForward_QPS_Limit

The number of messages forwarded per second
 by the rules engine for the current account has
reached the upper limit.

3.2 Online debug
3.2.1 Debug applications using Physical Devices

After you complete the device configuration, you can use the online debugging
function in the IoT Platform console to test and debug the applications.

Procedure
1. Log on to the IoT Platform console and then, in the left-side navigation pane, click

Maintenance > Online Debug.
Issue: 20190802 141

IoT Platform User Guide / 3 Monitoring and Maintenance

2. On the Online Debugging page, select the device to be debugged.
After you select a device, you are automatically directed to the debugging page.

3. Select Debug Physical Device.
4. Select the feature that you want to test.

• If you select a property, you must select Set or Get as the operation method. .
• If you select an event, select Get as the operation method.

Note:
If you have not defined properties or events for the product, go to the Product
Details page to define features for the product.

142 Issue: 20190802

IoT Platform User Guide / 3 Monitoring and Maintenance

5. Dispatch the command.
• Set a property: Enter a property in the format of {" YourProper tyIdentifi

er ": Value }, and then click Dispatch Command. You can then see the
operation result from the device log.

• Get a property: Click Dispatch Command. Then, the latest property information
reported by the device is displayed in the box.

• Call a service: Enter an input parameter in the format of {" YourServic

eInputPara m ": Value }, and then click Dispatch Command. You can then
see the operation result from the Real-time Logs.

• Get an event: Click Dispatch Command. Then, the latest event information
reported by the device is displayed in the box.

3.2.2 Debug applications using virtual devices
IoT Platform provides virtual devices to help developers debug applications.

Context
A typical IoT development process is as follows: a device SDK is developed, the
devices report data to IoT Platform, and the developers use the data to develop
applications. However, this development process is time consuming. To resolve
this issue, IoT Platform provides virtual devices that simulate the physical devices
 connecting to IoT Platform and reporting defined properties and events. You can
then use the data reported by the virtual devices to debug your applications. After
the physical devices connect to IoT Platform, the corresponding virtual devices will
automatically become inactive.
Limits:
• The minimum time interval for pushing data is 1 second.
• The maximum number of messages that can be pushed at a specific interval is 1,

000.
• The maximum number of times you can use the Push method per day is 100.

Procedure
1. Log on to the IoT Platform console.
2. In the left-side navigation pane, choose Maintenance > Online Debug

Issue: 20190802 143

http://iot.console.aliyun.com/

IoT Platform User Guide / 3 Monitoring and Maintenance

3. On the Online Debugging page, select the device to be debugged.
After you select a device, you are automatically directed to the debugging page.

4. Choose Virtual Device > Start Virtual Device.

Note:
If the physical device is active or disabled, you cannot start the corresponding
virtual device.

144 Issue: 20190802

IoT Platform User Guide / 3 Monitoring and Maintenance

5. Set the content for the simulated push.
• If the device data type is Alink JSON, you can enter values of properties and

events.
For a property value, you can enter a value that complies with the data type
and the value range of the property, or you can enter the function random() to
generate a random value.
The following example shows the Properties page of a device, where the value
220 is entered for Voltage .

• If the device data type is Do not parse/Custom, you can enter a Base64 string.
The length of string cannot exceeds 4096 characters.

Issue: 20190802 145

IoT Platform User Guide / 3 Monitoring and Maintenance

6. Select a data push method.
• Push: Push the data immediately.
• Push Policy:

- At Specific Time: Push the data at your specified time.
- At Specific Interval: Push the data regularly at your specified time interval in

your specified time range. The unit of time interval is seconds.
Result

After the push operation is executed, the operation log is displayed on the Real-time
Logs tab page.
After the data is pushed, click View Data to view the device details page. On the Status
tab page, you can view property information that has been pushed, and on the Events
tab page you can view event information that has been pushed.

Note:
If you have set a Push Policy, the data will be pushed according to the policy.
After the data has been pushed, the operation log, property information, or event
information will be displayed on the corresponding page.

3.3 Device log
IoT Platform provides the log service function. You can query device log entries on
the Device Log page in the IoT Platform console. This topic describes the error codes
in the device log entries and the corresponding troubleshooting methods.

Query device log entries
Log entries can be divided into the following types:
• Device activity analysis
• Upstream analysis
• Downstream analysis
• TSL data analysis
To query device log entries, follow these steps:
1. Log on to the IoT Platform console.
2. In the left-side navigation pane, choose Maintenance > Device Log.

146 Issue: 20190802

https://iot.console.aliyun.com

IoT Platform User Guide / 3 Monitoring and Maintenance

3. Select a product, log type, set filters such as device name, and then click Search.
The following filters are available:
Filter Description
Device name Enter a device name. You can search the log entries of the

device with the specified name.
Keywords Enter keywords to search for the specified log entries.
Message ID Enter a message ID. A Message ID is a unique identifier

generated by IoT Platform for a message. You can query the
 forwarding status and content of a message based on its
message ID.

Status Select a status to search for specific log entries. Valid
options:
• All
• Successful
• Failed

Time range Select a time range.

Note:
Among all status codes of log entries, a value of 200 indicates that the request
is successful, and other values indicate that the request has failed. For more
information about the failed status codes, see the following sections.

Device activity analysis logs
Device activities can generate device connection and disconnection logs.

Issue: 20190802 147

IoT Platform User Guide / 3 Monitoring and Maintenance

Error code Description Cause Troubleshooting
400 A request

error occurs
.

This error may be caused
by one of the following:
• The device is

disconnected because
another device is
connected to IoT
Platform using the same
device certificate.
IoT Platform identifies
 a device based
only on the device
certificate informatio
n (productKey,
deviceName, and
deviceSecret).
Possible causes include:
- The same device

certificate is installed
 on multiple devices.

- The network or
power supply of the
 device is unstable
. The device is
reconnected to IoT
Platform immediatel
y after an abrupt
network outage or
power failure. In this
 case, IoT Platform
identifies the device
that is reconnected as
 a new device.

• The device has been
 deleted from IoT
Platform.

• The device has been
 disabled on IoT
Platform.

• Go to the corresponding
Device Details page
in the IoT Platform
console to view the time
next to activated At,
that is the activation
time. Then, determine
whether another device
uses the same device
certificate to connect to
IoT Platform based on
the activation time.

• In the Device List
section of the Devices
page, search for the
device to check whether
the device is deleted.

• In the IoT Platform
console, check whether
the status of the
corresponding device is
displayed as Disabled.

148 Issue: 20190802

IoT Platform User Guide / 3 Monitoring and Maintenance

Upstream and downstream analysis logs
• Upstream message logs are generated when any of the following occasions occurs:

a device publishes messages to topics, messages are forwarded to the rules engine
, and the rules engine data forwarding function forwards messages to other topics
or other Alibaba Cloud services.

• Downstream message logs are generated when messages are sent to devices from
the cloud.

Error code Description Cause Troubleshooting
1901 The message

 fails to be
 sent due
 to poor
network
conditions,
such as the
 congestion
 of the TCP
write buffer.

The data channel between
 the device and the server
is blocked. The block may
be due to the slow network
 transmission speeds, or
because the device cannot
handle any more messages
.

Check network conditions
 and device message
consumption capabilities.

1902 When the
message is
 transmitte
d over the
network, an
 exception
occurs.

The sending failure is
 caused by a network
exception.

Check network conditions.

1903 The format
of the topic
is invalid.

The format of the message
topic is invalid.

Check the topic format.

1904 IoT Platform
 receives
an invalid
 RRPC
response.

The RRPC response
received by IoT Platform
 does not have the
corresponding RRPC
request. This error may
occur if the request times
out.

Check the RRPC response
 from the device to
determine whether the
RRPC request has timed
out.

Issue: 20190802 149

IoT Platform User Guide / 3 Monitoring and Maintenance

Error code Description Cause Troubleshooting
1905 IoT Platform

 does not
 receive
any RRPC
 response
before the
 timeout
 timer
expires.

After IoT Platform sends a
RRPC request to the device
, IoT Platform does not
receive any RRPC response
 from the device before the
 timeout timer expires.

View the log entry on the
 device to check whether
the RRPC request received
 by the device has been
responded.

1950 When the
message is
 transmitte
d over the
 network,
a network
connection
 exception
occurs.

The sending failure is
 caused by a network
exception.

Check the network status.

1951 Unknown
 response
type.

The device sends an
unknown message to IoT
Platform.

Check the type of the
message that is sent by the
device. If you are using the
 Alibaba Cloud device SDK
, contact Customer Service
or submit a ticket.

9200 The device is
 inactive.

The device is not activated
 on IoT Platform. After a
new device is registered,
the device is activated only
 after it is connected to IoT
 Platform and reports data
to IoT Platform.

Check the status of the
device in the IoT Platform
console.

9201 The device is
 disconnect
ed.

The device is disconnected
 from IoT Platform.

Check the status of the
device in the IoT Platform
console.

150 Issue: 20190802

IoT Platform User Guide / 3 Monitoring and Maintenance

Error code Description Cause Troubleshooting
9236 Topic

authentica
tion fails.

The permission of the
 topic that is used to
publish or subscribe to
messages does not match.

Go to the Topic List tab
page of the device in the
IoT Platform console,
and make sure that
the topic permission is
correct. The topic used to
publish messages must
be granted the Publish
permission. The topic used
to subscribe to messages
must be granted the
Subscribe permission.

9324 A throttling
error occurs
.

The requests from the
device or the tenant are too
 many.

Reduce the frequency
of message sending, or
contact Customer Service.

9321 The
parameters
are invalid.

The input request
parameters are invalid.

Check the corresponding
 parameter settings as
prompted.

9320 The payload
is invalid.

The format of the payload
 sent by the device is
invalid.

Check whether the payload
 format is standard.

9331 An internal
error occurs
 with the
destinatio
n cloud
service.

An internal error occurs
 with the cloud service
for which the message is
destined.

Based on the error code
 in the log entry, go to
the official website of the
 corresponding cloud
service to troubleshoot the
 error or contact Customer
 Service.

9332 The cloud
 service
configurat
ion is invalid
.

You specify an invalid
 forwarding destinatio
n configuration when
you configure message
forwarding. As a result,
an error occurs when IoT
 Platform connects to the
destination cloud service.

View the data forwarding
 rule to check whether
the configuration of the
data destination is correct
 and whether the resource
 exists. Based on the error
 code in the log entry, go
 to the official website of
the corresponding cloud
service to troubleshoot the
 error.

Issue: 20190802 151

IoT Platform User Guide / 3 Monitoring and Maintenance

Error code Description Cause Troubleshooting
9333 A cloud

service
authorizat
ion error
occurs.

IoT Platform may be
 granted incorrect
permissions to access the
destination cloud service.

Check your Alibaba Cloud
RAM authorization policy.

9399 An unknown
 internal
server error
occurs.

IoT Platform has an
internal error.

Contact Customer Service
or submit a ticket.

TSL data analysis logs
TSL data analysis logs are generated for the following operations: property or event
 reporting, property setting, service calling, and responding to property or service
calls.
If the data format is Do not parse/Custom, in addition to the log content, the
hexadecimal raw data is also displayed.
Log format description
Parameter Description
id The ID of the Alink protocol message. This ID is used to

identify messages exchanged between the device and IoT
Platform.

params The request parameters.
code The returned result code.
method The request method.
type The message type. Valid values include upstream and

downstream.
scriptData The input and output parameters in the data parsing when the

data format is Do not parse/Custom.
downOriginalData The original downstream Alink JSON data that requires

parsing when the data format is Do not parse/Custom.
downTransf
ormedData

The downstream data after parsing when the data format is Do
 not parse/Custom.

upOriginalData The original upstream data that requires parsing when the
data format is Do not parse/Custom.

152 Issue: 20190802

IoT Platform User Guide / 3 Monitoring and Maintenance

Parameter Description
upTransfor
medData

The upstream Alink JSON data after parsing when the data
format is Do not parse/Custom.

Error codes about service call and property setting failures
When a service is called, IoT Platform checks whether the input parameters of the
service comply with the definition of the service in the TSL model.
Error code Description Cause Troubleshooting
9201 The device is

 disconnect
ed.

The device is disconnected
 from IoT Platform.

Check the device status in
the IoT Platform console.

9200 The device
 is not
activated.

The device is not activated
 on IoT Platform. A newly
 registered device must
report data to IoT Platform
 to be activated.

Check the device status in
the IoT Platform console.

6208 The device
 has been
disabled.

After a device is disabled
, you cannot set the
properties or call the
services.

Check the device status in
 the IoT Platform console
. If the device is disabled,
enable the device and then
 try the operation again.

6300 The method
 parameter
is not found
 when the
 system
verifies
the input
parameters
based on the
 TSL model.

The method parameter
, which is required by
 the Alink protocol, is
not found in the Alink (
standard) data reported by
 the device or in the parsed
 data of the custom (do not
parse) data reported by the
 device.

View the property
reporting log entry in the
 IoT Platform console and
 check the reported data
. You can also view the
log entry on the device to
check the reported data.

Issue: 20190802 153

IoT Platform User Guide / 3 Monitoring and Maintenance

Error code Description Cause Troubleshooting
6206 An error

 occurs
when IoT
 Platform
 queries
the service
definition.

The service is not found. Go to the corresponding
 Product Details page in
the IoT Platform console,
and view the TSL model.
Check whether the service
is defined in the TSL model
. If the service is defined
, verify that the input
parameters of the service
 are the same as those
defined in the TSL model.

6200 The script
 does not
exist.

If the data format of the
 device is Do not parse/
Custom, the script will
be used to parse the data
 when IoT Platform calls
 the service. This error
code is returned if you do
not define a parsing script.

Go to the corresponding
Product Details page in the
 IoT Platform console, and
check whether the parsing
script exists. If the parsing
 script exists, resubmit the
 script and then try the
operation again.

6201 The parsing
 result is
empty.

The parsing script runs
 correctly, but returns
 an empty result. For
example, the response
of rawDataToProtocol is
 null, or the response of
protocolToRawData is null
or empty.

Check the script content to
 identify the cause.

154 Issue: 20190802

IoT Platform User Guide / 3 Monitoring and Maintenance

Error code Description Cause Troubleshooting
6207 The data

format is
incorrect.

This error may occur when
 IoT Platform calls the
service synchronously or
 when the device reports
data.
When IoT Platform calls
the service synchronously,
possible causes include the
 following:
• The format of the data

returned by the device
is incorrect.

• The parsed data format
 is incorrect if the data
format is Do not parse/
Custom.

• The data format of the
service is incorrect.

To view the valid data
format required by
the service, see API
documentation and the
TSL model. To view the
corresponding Alink JSON
format, see Alink protocol
documentation.

Error codes about system exceptions
5159 An error

occurs when
 the system
obtains the
 property
information
from the TSL
 model.

5160 An error
occurs when
 the system
 obtains
the event
information
from the TSL
 model.

A system exception occurs. Submit a ticket in the
console.

Issue: 20190802 155

IoT Platform User Guide / 3 Monitoring and Maintenance

Error code Description Cause Troubleshooting
5161 An error

occurs when
 the system
 obtains
the service
information
from the TSL
 model.

6661 An error
occurs when
 the system
 queries
the tenant
information.

6205 An error
 occurs
when IoT
 Platform
 calls the
service.

Error codes about property and event report failures
When a device is reporting a property or an event, the property or the event will be
verified based on the TSL model of the device.
Error code Description Cause Troubleshooting
6106 The number

 of the
reported
properties
exceeds the
upper limit.

A device can report up to
200 properties at one time.

View the property
reporting log entry in the
 IoT Platform console and
 check the number of the
reported properties. You
can also view the log entry
 on the device to check the
 number of the reported
properties.

156 Issue: 20190802

IoT Platform User Guide / 3 Monitoring and Maintenance

Error code Description Cause Troubleshooting
6300 The method

 parameter
is not found
 when the
 system
verifies
the input
parameters
based on the
 TSL model.

The method parameter
, which is required by
 the Alink protocol, is
not found in the Alink (
standard) data reported by
 the device or in the parsed
 data of the custom (do not
parse) data reported by the
 device.

View the property
reporting log entry in the
 IoT Platform console and
 check the reported data
. You can also view the
log entry on the device to
check the reported data.

6320 The
property
informatio
n is not
found when
 the system
 verifies
the input
parameters
based on the
 TSL model.

The specified property is
not found in the TSL model
 of the device.

Go to the corresponding
Product Details page in the
 IoT Platform console, and
view the TSL model. Check
 whether the specified
property is defined in the
TSL model. If the property
 is not defined, define the
property.

6450 The method
 does not
exist in the
Alink JSON
 formatted
data.

The method parameter
is not found in the Alink
standard data reported by
the device or in the parsed
data of the custom (do not
parse) data reported by the
 device.

View the property
reporting log entry in the
IoT Platform console and
check whether the method
 parameter is included in
 the data reported by the
device. You can also view
local device logs.

Issue: 20190802 157

IoT Platform User Guide / 3 Monitoring and Maintenance

Error code Description Cause Troubleshooting
6207 The data

format is
incorrect.

This error may occur when
 IoT Platform calls the
service synchronously or
 when the device reports
data.
When the device reports
 data, the possible cause
 is that the Alink data
reported by the device or
 the returned data after
parsing is not in the JSON
format.

See Alink protocol
documentation to view the
valid data format, and then
report data accordingly.

Error codes about system exceptions
6452 A throttling

error occurs
.

Traffic throttling is
triggered because too
 many requests are
submitted.

Submit a ticket in the
console.

6760 The storage
quota of the
 tenant is
exceeded.

A system exception occurs. Submit a ticket in the
console.

Error codes about response failures to service calls and property settings
Error code Description Cause Troubleshooting
Common error codes
460 The

parameters
are invalid.

The request parameters
are invalid.

Submit a ticket in the
console.

500 An internal
system error
 occurs.

An unknown error occurs
in the system.

Submit a ticket in the
console.

400 A service
 request
error occurs
.

An unknown error occurs
 when IoT Platform calls
the service.

Submit a ticket in the
console.

158 Issue: 20190802

IoT Platform User Guide / 3 Monitoring and Maintenance

Error code Description Cause Troubleshooting
429 Too many

requests are
 submitted
 in a short
 period of
time.

Traffic throttling is
triggered because too
 many requests are
submitted in a short period
 of time.

Submit a ticket in the
console.

Error codes about system exceptions
6452 A throttling

error occurs
.

Traffic throttling is
triggered because too
many requests are
submitted.

Note:
This error code may
be returned if the data
format of the device is
Alink JSON.

Submit a ticket in the
console.

Common error codes about TSL models
When a service is being called or a device is reporting a property or an event, the
input parameters of the service, the property, or the event will be verified based on
the TSL model of the device.
Error code Description Cause Troubleshooting
6321 The

identifier of
the property
 is not found
 in the TSL
model.

A system exception occurs. Submit a ticket in the
console.

6317 The TSL
model is
incorrect.

A system exception occurs. Submit a ticket in the
console.

Issue: 20190802 159

IoT Platform User Guide / 3 Monitoring and Maintenance

Error code Description Cause Troubleshooting
6302 The

parameters
 are not
found.

When the system verifies
 the input parameters of
the service, the required
parameters are not found
in the request.

Go to the corresponding
Product Details page in the
 IoT Platform console, and
view the TSL model. Check
 the input parameters of
 the service in the TSL
model and make sure that
 you have passed in all
required parameters.

6306 The input
parameter
 does not
 comply
with the
integer data
 specificat
ions defined
 in the TSL
model.

When the system verifies
a parameter based on the
TSL model, the following
errors may occur:
• The data type of the

parameter is different
 from the data type
 defined in the TSL
model.

• The parameter value is
not in the range defined
in the TSL model.

Go to the corresponding
Product Details page in the
 IoT Platform console, and
 view the TSL model. Make
 sure that the data type of
 the input parameter is
the same as the data type
 defined in the TSL model
 and that the parameter
value is in the value range
defined in the TSL model.

6307 The input
parameter
 does not
comply with
 the 32-bit
 float data
 specificat
ions defined
 in the TSL
model.

When the system verifies
a parameter based on the
TSL model, the following
errors may occur:
• The data type of the

parameter is different
 from the data type
 defined in the TSL
model.

• The parameter value is
not in the range defined
in the TSL model.

Go to the corresponding
Product Details page in the
 IoT Platform console, and
 view the TSL model. Make
 sure that the data type of
 the input parameter is
the same as the data type
 defined in the TSL model
 and that the parameter
value is in the value range
defined in the TSL model.

160 Issue: 20190802

IoT Platform User Guide / 3 Monitoring and Maintenance

Error code Description Cause Troubleshooting
6322 The input

parameter
 does not
comply with
 the 64-bit
 float data
 specificat
ions defined
 in the TSL
model.

When the system verifies
a parameter based on the
TSL model, the following
errors may occur:
• The data type of the

parameter is different
 from the data type
 defined in the TSL
model.

• The parameter value is
not in the range defined
in the TSL model.

Go to the corresponding
Product Details page in the
 IoT Platform console, and
 view the TSL model. Make
 sure that the data type of
 the input parameter is
the same as the data type
 defined in the TSL model
 and that the parameter
value is in the value range
defined in the TSL model.

6308 The input
parameter
 does not
comply with
 the Boolean
 data
specificat
ions defined
 in the TSL
model.

When the system verifies
a parameter based on the
TSL model, the following
errors may occur:
• The data type of the

parameter is different
 from the data type
 defined in the TSL
model.

• The parameter value is
not in the range defined
in the TSL model.

Go to the corresponding
Product Details page in the
 IoT Platform console, and
 view the TSL model. Make
 sure that the data type of
 the input parameter is
the same as the data type
 defined in the TSL model
 and that the parameter
value is in the value range
defined in the TSL model.

6309 The input
parameter
 does not
 comply
with the
enum data
 specificat
ions defined
 in the TSL
model.

The data type of the
parameter is different
from the data type defined
in the TSL model.

Go to the corresponding
Product Details page in the
 IoT Platform console, and
 view the TSL model. Make
 sure that the data type of
 the input parameter is
the same as the data type
defined in the TSL model.

Issue: 20190802 161

IoT Platform User Guide / 3 Monitoring and Maintenance

Error code Description Cause Troubleshooting
6310 The input

parameter
 does not
comply with
 the text data
 specificat
ions defined
 in the TSL
model.

When the system verifies
a parameter based on the
TSL model, the following
errors may occur:
• The data type of the

parameter is different
 from the data type
 defined in the TSL
model.

• The length of the
parameter exceeds the
 upper limit defined in
the TSL model.

Go to the corresponding
Product Details page in the
 IoT Platform console, and
 view the TSL model. Make
 sure that the data type of
 the input parameter is
the same as the data type
 defined in the TSL model
 and that the parameter
length does not exceed the
 upper limit.

6311 The input
parameter
 does not
comply with
the date data
 specificat
ions defined
 in the TSL
model.

When the system verifies
a parameter based on the
TSL model, the following
errors may occur:
• The data type of the

parameter is different
 from the data type
 defined in the TSL
model.

• The input data is not a
UTC timestamp.

Go to the corresponding
Product Details page in the
 IoT Platform console, and
 view the TSL model. Make
 sure that the data type of
 the input parameter is
the same as the data type
defined in the TSL model
and that the input data is a
UTC timestamp.

6312 The input
parameter
 does not
 comply
with the
struct data
 specificat
ions defined
 in the TSL
model.

When the system verifies
a parameter based on the
TSL model, the following
errors may occur:
• The data type of the

parameter is different
 from the data type
 defined in the TSL
model.

• The number of the
parameters contained
 in a struct is different
 from the number
defined in the TSL
model.

Go to the corresponding
Product Details page in the
 IoT Platform console, and
 view the TSL model. Make
 sure that the data type of
 the input parameter is
the same as the data type
defined in the TSL model
and that the number of the
 parameters contained in
a struct is the same as the
number defined in the TSL
 model.

162 Issue: 20190802

IoT Platform User Guide / 3 Monitoring and Maintenance

Error code Description Cause Troubleshooting
6304 The input

parameter
is not found
in the struct
 defined
in the TSL
model.

The input parameter is not
found in the struct defined
in the TSL model.

Go to the corresponding
Product Details page in the
 IoT Platform console, and
view the TSL model. Check
 the input parameters
with the TSL model for
inconsistencies.

6324 The input
parameter
 does not
 comply
with the
array data
 specificat
ions defined
 in the TSL
model.

When the system verifies
a parameter based on the
TSL model, the following
errors may occur:
• The elements in the

 passed-in array do
not match the array
definition in the TSL
model.

• The number of elements
 in the array exceeds
the maximum number
 defined in the TSL
model.

• Go to the corresponding
 Product Details page
 in the IoT Platform
console, and view the
 TSL model. Check
the definition of the
corresponding array for
inconsistencies.

• View the upstream
log entry in the IoT
Platform console to
check the number of
elements in the array
 data reported by the
device.

6328 The value
of the input
parameter is
 not an array
 data.

The value of the input
parameter is not an array
data.

Go to the corresponding
Product Details page in the
 IoT Platform console, and
 view the TSL model. Make
 sure that the data type of
 the input parameter is
array.

6325 The element
 type in
the array
data is not
supported
 by IoT
Platform.

The element type is not
 supported. Only the
following element types
can be included in an array
: int32, float, double, text,
and struct.

Make sure that the element
 type is supported by IoT
Platform.

Error codes about system exceptions

Issue: 20190802 163

IoT Platform User Guide / 3 Monitoring and Maintenance

Error code Description Cause Troubleshooting
6318 A system

exception
occurs when
 the system
 parses the
TSL model.

6329 An error
occurs when
 the system
 parses the
 array data
 specificat
ions in the
TSL model.

6323 The data
specificat
ions defined
 in the TSL
 model are
incorrectly
formatted.

6316 An error
occurs when
 the system
 parses the
parameters
 in the TSL
model.

6314 The data
 type in
the TSL
model is not
supported.

A system exception occurs. Submit a ticket in the
console.

164 Issue: 20190802

IoT Platform User Guide / 3 Monitoring and Maintenance

Error code Description Cause Troubleshooting
6301 An error

occurs when
 the system
verifies the
data format
of the input
parameters
based on the
 TSL model.

Error codes about data parsing scripts
26010 Traffic

throttling
is triggered
 because
too many
requests are
submitted.

Too many requests are
submitted in a short period
 of time.

Submit a ticket in the
console.

26001 The content
 of the
parsing
script is
empty.

The parsing script content
is not found.

Go to the corresponding
Product Details page in the
 IoT Platform console, and
 check your data parsing
 script. Make sure that
the script is saved and
submitted. The parsing
script cannot be a draft.

26002 An
exception
occurs when
 you run the
script.

The script runs correctly
, but the script content is
 incorrect. For example,
the script contains syntax
errors.

Log on to the IoT Platform
 console, use the same
parameters to run the
script for debugging, and
 then modify the script
accordingly. The console
only provides a basic script
 running environment. It
 does not verify the script
 details. We recommend
that you check your script
 carefully before you
submit it.

Issue: 20190802 165

IoT Platform User Guide / 3 Monitoring and Maintenance

Error code Description Cause Troubleshooting
26006 The

required
method is
not found in
the script.

The script runs correctly
, but the script content is
incorrect. The script must
 contain the protocolTo
RawData and rawDataToP
rotocol methods. If they
are not found, this error
will be reported.

Go to the corresponding
 Product Details page in
the IoT Platform console
, and make sure that
the protocolToRawData
and rawDataToProtocol
methods are defined in the
 script.

26007 The
returned
data format
 is incorrect
 after data
parsing.

The script runs correctly
, but the data format of
 the returned result is
incorrect. The script must
 contain the protocolTo
RawData and rawDataToP
rotocol methods. The
result data of protocolTo
RawData must be byte[]
array, and the result data
of rawDataToProtocol must
 be jsonObj (JSON object).
This error code is returned
 if the data format of the
returned result does not
match one of the defined
data formats. For example
, after a device reports data
, the result is returned to
the device. The returned
result will also be parsed
. If you have not defined
protocolToRawData in the
 script, the returned data
may be incorrect.

Check the script in the IoT
 Platform console. Enter
 the input parameters,
run the script, and check
 whether the data format
 of the returned result is
correct.

3.4 Firmware update
IoT Platform provides the firmware update function. To update firmware, you need to
configure your device to support OTA updates. Then, in the IoT Platform console, you
can upload a firmware file and push the firmware update file to devices. This topic
describes how to configure firmware updates and manage firmware file versions.

Prerequisites
166 Issue: 20190802

IoT Platform User Guide / 3 Monitoring and Maintenance

Before you use the firmware update function, make sure that you have developed your
device to support OTA updates.
• If you use device SDKs, see OTA updates.
• If you use AliOS Things, see OTA tutorial for AliOS Things.

Procedure
1. Log on to the IoT Platform console.
2. In the left-side navigation pane, click Maintenance > Firmware Update

Note:
To provide better services, IoT Platform now allows you to manage firmware
versions by product. When you use the new version of the firmware update
function for the first time, please associate the previously uploaded firmware files
with products manually. You can only associate a firmware file to one product.
After you associate the existing firmware files to products, you can add new
firmware files.

3. On the Firmware Update page, click New Firmware.

Note:
Each Alibaba Cloud account can have up to 500 firmware files.

Issue: 20190802 167

https://github.com/alibaba/AliOS-Things/wiki

IoT Platform User Guide / 3 Monitoring and Maintenance

4. In the Add Firmware dialog box, enter the firmware information and upload the
firmware file.

Table 3-8: Parameter description
Parameter Description
Firmware Name Enter a firmware name. The name must be 4 to 32 characters

 in length and can contain letters, numbers, Chinese
characters, and underscores (_). It cannot begin with an
underscore.

Firmware Version Enter a version for the firmware. The version must be 1 to
64 characters in length and can contain letters, numbers,
periods (.), hyphens (-), and underscores (_).

Product Select the product to which the firmware belongs.
Signature
Algorithm

Supported signature algorithms are MD5 and SHA256.

Upload Firmware Upload a firmware file. Only files in BIN, TAR, GZ, and Zip
 format are supported. The size of a firmware file cannot
exceed 1,000 MB.

5. (Optional) if your devices use chips with AliOS Things, you can use the secure
update function.
We recommend that you activate the secure update function to ensure the integrity
and confidentiality of the firmware. The secure update function requires device

168 Issue: 20190802

IoT Platform User Guide / 3 Monitoring and Maintenance

information for firmware verification and firmware signature verification. If you
use AliOS Things, see OTA tutorial for AliOS Things.
a) On the Firmware Update page, click Secure Update.
b) In the Secure Update dialog box, turn the button of the secure update function

to Activated for the products whose devices use AliOS Things.
When the secure update function is Activated, you can click the corresponding
Copy button to copy the key for device signature use.

6. In the firmware list, click the corresponding Validate Firmware button, and then
test the uploaded firmware file on one or more devices.

Note:
After the firmware file is uploaded to IoT Platform, you must test the firmware
file on one or more devices first. Only when you confirm that the devices have
been successfully updated can the firmware file be used for batch update. You can
launch multiple validations for a firmware.

Parameter Description
Pending Update
Version

The drop-down box displays the current firmware versions
of all devices of the product. Select one or more versions that
you want to update to the new version.
After you select the versions, the devices with these firmware
versions will be displayed when you click the drop-down
button of DeviceName.

DeviceName Select one or more devices to test the firmware file.

Note:
Issue: 20190802 169

https://github.com/alibaba/AliOS-Things/wiki

IoT Platform User Guide / 3 Monitoring and Maintenance

• Devices receive the firmware update notifications:
- If the devices that connect to IoT Platform through MQTT are online, they

will immediately receive the update notifications. If the devices are offline
, the system will push the update notifications to the devices when they go
online again.

- If the devices using other connection protocols (such as CoAP or HTTPS) are
online, they will immediately receive the update notifications. If the devices
are offline, they cannot receive the notifications.

• Provided that you perform a firmware validation operation, the firmware status
will change from Unverified to Verified. However, the status of the firmware
does not indicate that the test devices have been updated successfully. Click
Update Details to see the update result.

7. Click Batch Update, configure an update method, and then push update
notifications to devices.

Note:
Make sure that the firmware file has successfully passed the verification before
you perform a batch update.

Parameter Description
Pending Update
Version

The drop-down box displays the current firmware versions
of all devices of the product. Select one or more versions that
 you want to update to the new version.

170 Issue: 20190802

IoT Platform User Guide / 3 Monitoring and Maintenance

Parameter Description
Update Policy • Static Update: Only update activated devices that meet the

 specified criteria.
• Dynamic Update: All devices that meets the specified

 criteria receive an update notification. If you select
Dynamic Update, the system maintains the scope of
devices that need to be updated, including devices that
have reported the current versions and newly activated
devices.

Apply Update to • All Devices: All devices that belong to the product will be
updated.

• Selected Devices: If you select Selected Devices, Device
Range field will appear. You then need to select devices to
be updated. Only selected devices will be updated.

Note:
You can select multiple pending versions if you select to
update specified devices. The version that you previously
selected for update is selected by default. If you have
not specified any version, all versions are selected by
default.

Update Time Specify a time when the update performs.
• Update Now: Update immediately after the request is

submitted.
• Scheduled Update: Manually specify a time for the system

to push the update requests to devices. You can specify a
time in the range of five minutes to seven days later.

Note:
Scheduled Update is available only when the update
policy is Static Update.

If you specify a scheduled update time, in the Pending
tab page of Firmware Details, you can see the scheduled
update time.

Issue: 20190802 171

IoT Platform User Guide / 3 Monitoring and Maintenance

Parameter Description
Retry After Failed
Update

Configure that when the system retries to send update
request again if the update fails. Options:
• Do Not Retry
• Retry Immediately
• Retry in 10 Minutes
• Retry in 30 Minutes
• Retry in 1 hour
• Retry in 24 hours

Max. Retry Times Select how many times the system can retry. Options:
• 1
• 2
• 5

Result
Click Update Details to view the update status.
• Pending: This tab page lists the devices which are selected for update. Two types

of pending status are available: Pending (Device offline) and Pending (Scheduled
time: xxxx-xx-xx xx:xx:xx)
- If the device is offline and the update time is scheduled for a later time, the

status is shown as Pending (Scheduled time: xxxx-xx-xx xx:xx:xx).
- When it reaches the scheduled time, and the device is still offline, the status will

change to Pending (Device offline).
• Updating: This tab page lists the devices that have received the update notifications

 and have reported their update progresses to the console. If no update progress is
received from the device, the progress ratio is 0.

• Update Successful: This tab page lists the devices which have been successfully
updated.

• Update Failed: This tab page lists the devices that have failed the update and
provides the reasons. The following are some causes of update failures:
- The device has another update task in progress. After the device has finished the

 current update task, you can try to update it for this version again.
- During the updating progress, a firmware package download failure, firmware

 file extraction failure, verification failure, or other failures occurred. In these
cases, you can try updating again.

172 Issue: 20190802

IoT Platform User Guide / 3 Monitoring and Maintenance

Click Versions on the Firmware Update page and then select a product to view the
firmware used by the devices of the product.
• Version Distribution: Displays the percentages of firmware usages in the product.

Names and versions of the top five firmware are displayed, and other firmware are
grouped in Others.

• Versions and Devices: Displays all the firmware versions used by devices of the
product and the number of devices that use the versions.

• Device List: Displays all the devices of the product. You can select a firmware
version to view the devices that use this version.

3.5 Remote configuration
IoT Platform provides the remote configuration function, which allows device
configurations to update online when the device is in service.

Prerequisites
• You have activated the remote configuration function in the IoT Platform console.

If you have not activated this function, log on to the IoT Platform console and then,
in the left-side navigation pane, click Maintenance > Remote Config.. Then, click
Enable Service.

• You have configured your device SDK to support the remote configuration
function. Define FEATURE_SE RVICE_OTA_ ENABLED = y in the device
SDK. The SDK provides the linkkit_cota_init operation to initialize remote
configurations such as Config Over The Air (COTA).

Introduction to the remote configuration function
Developers often need to update device configurations, such as the system
parameters, network parameters, and security policies of devices. Generally, device
 configurations are updated using the firmware update function. However, firmware
 update requires more time for firmware version maintenance, and devices must
stop their services in order to install the update. To streamline the device configurat
ion update process, IoT Platform provides the remote configuration function. This
function enables you to complete configuration updates without service interruption.
With the remote configuration function, you can perform the following operations:
• Enable or disable remote configuration.

Issue: 20190802 173

IoT Platform User Guide / 3 Monitoring and Maintenance

• Edit configuration files and perform version management in the IoT Platform
console.

• Update the configuration information for all devices of a product at one time.
• Enable devices to send requests for configuration update from IoT Platform.
Remote configuration flow chart:

The processes involved in remote configuration include the ability to:
• Edit and save configuration files in the IoT Platform console.
• Push configuration updates to all devices of a product in the IoT Platform console.

Then, when the devices receive the update requests, they immediately update their
 configurations.

• Devices can also send requests for configuration updates from IoT Platform, and
then perform update when configuration information is received.

Use the remote configuration function
The remote configuration function is mainly designed for two scenarios, namely, you
want to push configuration updates to devices from IoT Platform, or you want to allow
 devices to send requests for configuration updates. The process of using the remote
configuration function varies based on different scenarios.
Scenario 1: Push configuration information to devices from IoT Platform.

174 Issue: 20190802

IoT Platform User Guide / 3 Monitoring and Maintenance

In the IoT Platform console, you can push device configuration updates to all devices
of a product.
1. Connect the devices to IoT Platform and configure the devices to subscribe to the

topic / sys /${ productKey }/${ deviceName }/ thing / config / push .
2. In the IoT Platform console, edit a configuration file.

a. In the left-side navigation pane, click Maintenance > Remote Config..
b. Select the product for which you want to use the remote configuration function,

and enable the function.

Note:
• Only if you enable the remote configuration function for the selected product

 can you edit a configuration template file for it.
• If the remote configuration function is not enabled, devices of the product

cannot be updated in this way.

Issue: 20190802 175

IoT Platform User Guide / 3 Monitoring and Maintenance

• A configuration template file that you edit here is used by all the devices of
 the product. Currently, you cannot push a configuration file to a specified
device.

c. Click Edit, and then edit a configuration template in the area of Configuration
Template.

Note:
• Remote configuration files are JSON files. IoT Platform does not have special

 requirements for the configuration content. The system only checks the
format of the data when you submit the configuration file. This is to prevent
errors that are caused by format errors.

176 Issue: 20190802

IoT Platform User Guide / 3 Monitoring and Maintenance

• The configuration file can be up to 64 KB. The file size is dynamically
displayed in the upper-right corner of the editing area. Configuration files
larger than 64 KB cannot be submitted.

d. After you have completed editing the configuration information, click Save to
generate the configuration file. The system then allows devices to send requests
for the configuration file.

3. Push the configuration file to devices. Click Batch Update and then IoT Platform
sends the configuration file to all the devices of the product.
After you click Batch Update, the system may initiate SMS authentication to verify
your account. If authentication is required, you need to first complete account
verification, and then the system sends the configuration file to the devices.

Note:
• Operation frequency limit: You can only perform a batch update once per hour.

Issue: 20190802 177

IoT Platform User Guide / 3 Monitoring and Maintenance

• If you want to stop pushing configuration updates, disable the remote
configuration function for the product. The system then stops pushing the
update file and will deny update requests from devices.

4. Devices automatically update the configuration after receiving the configuration
file from IoT Platform.

Configuration file management:
The latest five configuration files are saved in the console by default. After you edit
and save a new version of configuration file, the previous version is automatically
displayed in the configuration version record list. You can view the update time and
content of the displayed five versions.

Click View to view the configuration content of the version. Click Recover to This
Version, and the configuration content of this version will be displayed in the editing
box. You can edit the content and then save it as a new version.

178 Issue: 20190802

IoT Platform User Guide / 3 Monitoring and Maintenance

Scenario two: Devices send requests for configuration information.
If devices are configured to send requests for configuration information, you need to
enable the remote configuration function. To do so, follow these steps:
1. Configure the devices to subscribe to the topic / sys /${ productKey }/${

deviceName }/ thing / config / get_reply .
2. In the IoT Platform console, enable the remote configuration function and edit a

configuration file. For detailed steps, see the related procedures in Scenario 1.
3. Configure the devices to call the linkkit_invoke_cota_get_config operation to

trigger requests for remote configuration.
4. Configure the devices to send requests for the latest configuration updates through

the topic / sys /${ productKey }/${ deviceName }/ thing / config / get .
5. IoT Platform returns the latest configuration information to the devices after

receiving the requests.
6. The devices use the cota_callb ack function to process the configuration file

that is sent through the remote configuration function.

Issue: 20190802 179

IoT Platform User Guide / 4 Generic protocol SDK

4 Generic protocol SDK
4.1 Overview

Alibaba Cloud IoT Platform supports communication over MQTT, CoAP, or HTTP.
Other types of protocols, such as the fire protection agreement GB/T 26875.3-2011,
Modbus, and JT808, are not supported. In specific scenarios, some devices may not
be able to directly connect to IoT Platform. You must use the generic protocol SDK
to build a bridge for your devices or platforms with IoT Platform, so that they can
communicate with each other.

Architecture
The generic protocol SDK is a self-adaptive protocol framework. This SDK is used to
provide a bridge service for the bi-directional communication between IoT Platform
and your devices or platforms.
The following figure shows the architecture.

Scenarios
The generic protocol SDK can be applied to the following scenarios:

180 Issue: 20190802

IoT Platform User Guide / 4 Generic protocol SDK

• Your device cannot be directly connected to IoT Platform because of the network
or hardware restrictions.

• Your device supports only protocols that are not supported by IoT Platform.
• A connection is already established between the device and your server. You want

to connect the device to IoT Platform without modifying the device and protocol.
• The device is directly connected to your server. Additional logic processing is

required.
Features

The generic protocol SDK enables the bridge server to communicate with IoT
Platform.
Basic features:
• Allows you to manage configurations based on a configuration file.
• Allows you to manage device connections.
• Provides upstream communication capabilities.
• Provides downstream communication capabilities.
Advanced features:
• Allows you to manage configurations based on interfaces.
• Provides interfaces that can be called to report properties, events, and tags.

Terms
Term Description
device The device in a real IoT scenario that cannot directly

communicate with IoT Platform by using the protocols
supported by IoT Platform.

bridge server The server to which the device is connected. This server uses a
specific protocol to communicate with the device and uses the
generic protocol SDK to communicate with IoT Platform.

original protocol The specific protocol used between the device and the bridge
server. The generic protocol SDK does not involve the definition
and implementation of the original protocol.

original device
identifier

The unique identifier used by the device to communicate with
the bridge server over the original protocol. Among the generic
protocol SDK interface parameters, the originalIdentity
parameter specifies the identifier of the device's original identity.

Issue: 20190802 181

IoT Platform User Guide / 4 Generic protocol SDK

Term Description
device certificate The device certificate information obtained after you register

the device with IoT Platform. The information includes
ProductKey, DeviceName, and DeviceSecret. In a scenario that
uses the generic protocol, you do not need to install the device
certificate on the device. Instead, you must configure the generic
protocol SDK file: devices . conf . The bridge maps the
originalIdentity of the device to the device certificate.

bridge certificate The device certificate information returned after you register
the bridge device with IoT Platform. The information includes
ProductKey, DeviceName, and DeviceSecret. The bridge certificat
e uniquely identifies the bridge in IoT Platform.

Development and deployment
Create products and devices
Log on to the IoT Platform console and create products and devices. For more
information, see Create a product and Create a device or Create multiple devices at a
time.
Obtain the device certificate of the bridge. This certificate must be provided when you
 configure the generic protocol SDK.

Note:
Bridge is a virtual concept. You can use any device certificate as the certificate
information of the bridge.

Configure the generic protocol SDK
The generic protocol SDK supports only the Java language. Only JDK 1.8 and later
versions are supported.
For more information about how to configure the generic protocol SDK, see Use the
basic features.
Deploy the bridge service
You can deploy a developed bridge service on Alibaba Cloud in a scalable manner
by using Alibaba Cloud services such as ECS and SLB. You can also deploy the bridge
service in local environment to ensure secure communication.
The following figure shows the procedures of using ECS to deploy the bridge service:

182 Issue: 20190802

IoT Platform User Guide / 4 Generic protocol SDK

4.2 Use the basic features
Based on the generic protocol SDK, your device can connect to and communicate with
Alibaba Cloud IoT Platform by using the bridge service. This topic describes how to
configure the generic protocol SDK to implement basic capabilities, including device
connection and disconnection and message upstreaming and downstreaming.
See generic protocol SDK demo in GitHub.

Flow diagram
The following flow diagram shows the overall process for how to use the generic
protocol SDK to connect a device to IoT Platform.

Issue: 20190802 183

https://github.com/aliyun/alibabacloud-iot-bridge-core-demo

IoT Platform User Guide / 4 Generic protocol SDK

Import the SDK
Add the following dependency in your maven project to import the generic protocol
SDK.
< dependency >
 < groupId > com . aliyun . openservic es </ groupId >
 < artifactId > iot - as - bridge - sdk - core </ artifactId >
 < version > 2 . 0 . 0 </ version >
</ dependency >

Initialization
Initialize the SDK
You must create a BridgeBootstrap object and call the bootstrap method. After the
generic protocol SDK initialization is complete, the SDK reads the bridge information
and initiates a request for the bridge to connect to IoT Platform.
In addition to calling bootstrap, you can also register the DownlinkChannelHandler
callback with the generic protocol SDK to receive downstream messages from IoT
Platform.
Sample code:
BridgeBoot strap bridgeBoot strap = new BridgeBoot strap ();
bridgeBoot strap . bootstrap (new DownlinkCh annelHandl er () {

 @ Override
 public boolean pushToDevi ce (Session session , String
topic , byte [] payload) {

 // get message from cloud
 String content = new String (bytes);
 log . info (" Get DownLink message , session :{}, {},
 {}", session , topic , content);
 return true ;
 }

 @ Override
 public boolean broadcast (String topic , byte [] payload
) {

 return false ;
 }
});

Configure bridge information
By default, a bridge is configured based on a configuration file. By default, the
configuration file is read from applicatio n . conf under the default resource
file path of the Java project (generally src / main / resources /). The file is in the
format of HOCON (JSON superset). The generic protocol SDK uses typesafe.config
to parse the configuration file.

184 Issue: 20190802

https://github.com/lightbend/config/blob/master/HOCON.md

IoT Platform User Guide / 4 Generic protocol SDK

You can configure a bridge device either by specifying a bridge device or dynamically
registering a bridge device. This topic only describes how to specify a bridge device.
For more information about how to dynamically register a bridge device, see
Dynamically register a bridge device.
Table 4-1: Bridge configuration parameters
Parameter Required Description
productKey Yes The key of

the product
to which the
bridge device
belongs .

Issue: 20190802 185

IoT Platform User Guide / 4 Generic protocol SDK

Parameter Required Description
deviceName No The device

name of the
bridge device.
• You must

provide this
 parameter
 if you have
 registered
 the bridge
 device in
 advance
and want to
 configure
the device
 based on
the specified
 device
certificate
information.

• You do not
 need to
provide this
parameter if
you have not
 registered
 the bridge
 device in
advance and
 want to use
 the MAC
address of
 the bridge
 server as
the device
 name to
dynamicall
y register a
device with
IoT Platform
.

186 Issue: 20190802

IoT Platform User Guide / 4 Generic protocol SDK

Parameter Required Description
deviceSecret No The device

secret of the
bridge device.
• You must

provide this
 parameter
 if you have
 registered
 the bridge
 device in
 advance
and want to
 configure
the device
 based on
the specified
 device
certificate
information.

• You do not
 need to
provide this
 parameter
 if you
choose to
dynamicall
y register
the bridge
 device
rather than
 have the
 bridge
 device
registered in
 advance.

Issue: 20190802 187

IoT Platform User Guide / 4 Generic protocol SDK

Parameter Required Description
http2Endpoint Yes The endpoint

of the HTTP/2
gateway
service.
The bridge
device and
IoT Platform
establish a
persistent
connection
over the
HTTP/2
protocol. The
endpoint is in
the format of
${ productKey

}. iot - as

- http2 .${

RegionId }.

aliyuncs .

com : 443 .
Replace
${ProductKey}

with the
ProductKey of
the product
to which your
bridge device
belongs.
Replace
${RegionId}

with the ID
of the region
where your
service is
located.
For more
information
about regions,
see Regions
and zones.
For example, if
the ProductKey
of the bridge
device is
alabcabc123,
the region
is China
(Shanghai),
then the
HTTP/2
gateway service
endpoint is
alabcabc12

3 . iot - as

- http2 . cn

- shanghai

. aliyuncs .

com : 443 .

188 Issue: 20190802

https://www.alibabacloud.com/help/doc-detail/40654.htm
https://www.alibabacloud.com/help/doc-detail/40654.htm

IoT Platform User Guide / 4 Generic protocol SDK

Parameter Required Description
authEndpoint Yes The service

URL for device
authentication.
The device
authentication
service URL is
in the format
of https ://

iot - auth

.${ RegionId

}. aliyuncs

. com / auth

/ bridge .
Replace
${RegionId}

with the ID
of the region
where your
service is
located.
For more
information
about regions,
see Regions
and zones.
For example,
if the region
is China
(Shanghai),
then the device
authentication
service address
is https

:// iot -

auth . cn -

shanghai .

aliyuncs .

com / auth /

bridge .

Issue: 20190802 189

https://www.alibabacloud.com/help/doc-detail/40654.htm
https://www.alibabacloud.com/help/doc-detail/40654.htm

IoT Platform User Guide / 4 Generic protocol SDK

Parameter Required Description
popClientP
rofile

No This parameter
must be
provided if you
use the MAC
address of the
bridge server
to dynamically
register the
bridge device.
For more
information,
see
Dynamically
register a
bridge device.

Use the following format to configure the bridge device certificate:
Server endpoint
http2Endpo int = " https :// a1tN7OBmTc d . iot - as - http2 . cn
- shanghai . aliyuncs . com : 443 "
authEndpoi nt = " https :// iot - auth . cn - shanghai . aliyuncs .
com / auth / bridge "

Gateway device info , productKey & deviceName &
deviceSecr et
productKey = ${ bridge - ProductKey - in - Iot - Plaform }
deviceName = ${ bridge - DeviceName - in - Iot - Plaform }
deviceSecr et = ${ bridge - DeviceSecr et - in - Iot - Plaform }

Device authentication and connection
Configure device connection
The device connection interface in the generic protocol SDK:
/**
 * Device authentica tion
 * @ param newSession Device session informatio n , which
is returned in a downstream callback .

 * @ param originalId entity The original identity of
the device

 * @ return
 */

190 Issue: 20190802

IoT Platform User Guide / 4 Generic protocol SDK
public boolean doOnline (Session newSession , String
originalId entity);

When the device is connected to the bridge device, it must pass in a session. When
a downstream message is called back, the session is called back to the bridge device
. The session contains the original identifier field, so that the bridge device can
determine which device the message came from.
In addition, the session also has an optional channel field, which can be designed
 to store device connection information. For example, your bridge server is built
based on Netty. You can use this field to store the channel object corresponding to
the persistent connection of the device. When a message is sent from IoT Platform
, the bridge device can directly obtain the channel from the session for subsequent
 operations. The data type of the channel field is Object. The generic protocol SDK
 does not process data stored in the channel field. You can also store any device-
related information in the channel field according to the scenario.
Sample code for device connection:
UplinkChan nelHandler uplinkHand ler = new UplinkChan
nelHandler ();

// Create a session
Object channel = new Object ();
Session session = Session . newInstanc e (originalId entity ,
channel);

// Connect the device to the bridge
boolean success = uplinkHand ler . doOnline (session ,
originalId entity);
if (success) {

 // If the device is connected , the bridge device
accepts new communicat ion requests from the device .

} else {
 // If the device connection fails , the bridge device
 rejects subsequent communicat ion requests , such as
disconnect ion requests .

}

Map an original identifier to a device certificate
You must configure the mapping between the device certificate and the original
identifier of a device. By default, a configuration file is used to configure the mapping.
The configuration file is read from devices . conf under the default resource file
path of the Java project (generally src / main / resources /). The file is in the
format of HOCON (JSON superset). The generic protocol SDK uses typesafe.config
to parse the configuration file.

Issue: 20190802 191

https://github.com/lightbend/config/blob/master/HOCON.md

IoT Platform User Guide / 4 Generic protocol SDK

Use the following format to configure the device certificate information:
${ device - originalId entity } {
 prodyctKey : ${ device - ProductKey - in - Iot - Plaform }
 deviceName : ${ device - DeviceName - in - Iot - Platform }
 deviceSecr et : ${ device - DeviceScer et - in - Iot - Platform
}

}

Parameter Required Description
productKey Yes The key of the product to which the device

belongs.
deviceName Yes The device name.
deviceSecret Yes The device secret.

Device sends data to IoT Platform
The interface for data upstreaming in the generic protocol SDK:
/**
 * Send upstream messages from the device by
synchronou sly calling the interface

 * @ param originalId entity The original identifier of
the device

 * @ param protocolMs g The message to be sent ,
including the topic , payload , and QoS informatio n

 * @ param timeout The timeout period in seconds
 * @ return Indicates whether the message is sent
successful ly within the timeout period

 */
boolean doPublish (String originalId entity , ProtocolMe
ssage protocolMs g , int timeout);

/**
 * Send upstream messages from the device by
asynchrono usly calling the interface

 * @ param originalId entity The original identifier of
the device

 * @ param protocolMs g The message to be sent ,
including the topic , payload , and QoS informatio n

 * @ return After this interface is called , Completabl
eFuture is returned immediatel y . The caller can
further process this Future .

 */
Completabl eFuture < ProtocolMe ssage > doPublishA sync (String
 originalId entity ,

 ProtocolMe ssage
protocolMs g);

Sample code:
DeviceIden tity deviceIden tity =

 ConfigFact ory . getDeviceC onfigManag er (). getDeviceI
dentity (originalId entity);
ProtocolMe ssage protocolMe ssage = new ProtocolMe ssage ();
protocolMe ssage . setPayload (" Hello world ". getBytes ());
protocolMe ssage . setQos (0);

192 Issue: 20190802

IoT Platform User Guide / 4 Generic protocol SDK
protocolMe ssage . setTopic (String . format ("/% s /% s / update
",

 deviceIden tity . getProduct Key (), deviceIden tity .
getDeviceN ame ()));

// Synchronou s sending
int timeoutSec onds = 3 ;
boolean success = upLinkHand ler . doPublish (originalId
entity , protocolMe ssage , timeoutSec onds);

// Asynchrono us sending
upLinkHand ler . doPublishA sync (originalId entity ,
protocolMe ssage);

Bridge device pushes data to device
When the bridge device calls the bootstrap method, it registers
DownlinkChannelHandler with the generic protocol SDK. When the generic protocol
SDK receives a downstream message, it calls back the pushToDevice method in
DownlinkChannelHandler. You can edit the pushToDevice method to configure the
bridge device to process downstream messages.

Note:
Do not create a time-consuming logic in the pushToDevice method. Otherwise, the
thread that receives downstream messages will be blocked. Use the asynchronous
transmission if a time-consuming logic or I/O logic exists, for example, sending
downstream messages through a persistent connection to the devices.

Sample code:
private static ExecutorSe rvice executorSe rvice = new
ThreadPool Executor (

 Runtime . getRuntime (). availableP rocessors (),
 Runtime . getRuntime (). availableP rocessors () * 2 ,
 60 , TimeUnit . SECONDS ,
 new LinkedBloc kingQueue <>(1000),
 new ThreadFact oryBuilder (). setDaemon (true). setNameFor
mat (" bridge - downlink - handle -% d "). build (),

 new ThreadPool Executor . AbortPolic y ());
public static void main (String args []) {

 // Use applicatio n . conf & devices . conf by default
 bridgeBoot strap = new BridgeBoot strap ();
 bridgeBoot strap . bootstrap (new DownlinkCh annelHandl er
() {

 @ Override
 public boolean pushToDevi ce (Session session ,
String topic , byte [] payload) {

 // get message from cloud
 // get downlink message from cloud
 executorSe rvice . submit (() -> handleDown
LinkMessag e (session , topic , payload));

 return true ;
 }
 @ Override
 public boolean broadcast (String s , byte [] bytes)
 {

Issue: 20190802 193

IoT Platform User Guide / 4 Generic protocol SDK
 return false ;
 }
 });
}
private static void handleDown LinkMessag e (Session
session , String topic , byte [] payload) {

 String content = new String (payload);
 log . info (" Get DownLink message , session :{}, topic :
{}, content :{}", session , topic , content);
 Object channel = session . getChannel ();
 String originalId entity = session . getOrigina lIdentity
();

 // for example , you can send the message to device
 via channel , it depends on you specific server
implementa tion

}

Parameter Description
Session A session is transmitted by a device when the device is

connecting to the bridge device. A session can be used to
identify the device to which the downstream message is sent.

topic The topic of the downstream message.
payload The payload of a downstream message in binary format.

Device disconnection
A device is disconnected under the following situations:
• When the bridge device is disconnected from IoT Platform, all connected devices

are automatically disconnected from IoT Platform.
• The bridge device reports a disconnection request for a device to IoT Platform.
The interface for bridge device to report device disconnection in the generic protocol
 SDK:
/**
 * Report a disconnect ion request to IoT Platform for
 a device

 * @ param originalId entity The original identifier of
the device

 * @ return Indicates whether the message is sent
successful ly

 */

194 Issue: 20190802

IoT Platform User Guide / 4 Generic protocol SDK
boolean doOffline (String originalId entity);

Sample code:
upLinkHand ler . doOffline (originalId entity);

4.3 Use the advanced features
This topic describes how to use the advanced features of the generic protocol SDK.
The advanced features include customizing the configuration file path, configuring
dynamic bridge registration, calling the data reporting interfaces encapsulated in the
generic protocol SDK to report properties, events, and tags.

Customize configurations
By default, the configuration file of a bridge device and the mapping configuration
file of the device certificate are read from applicatio n . conf and devices

. conf , respectively, under a fixed path. The generic protocol SDK allows you to
customize configurations. Before you call bootstrap, call the ConfigFact ory .

init method to customize the path of a configuration file. You can also customize
an instance to implement the corresponding interface.
Sample code to customize configurations:
// Define config
// You can specify the location path of config files
// or you can create an instance and implement the
correspond ing interface

// Config . init () must be called before bridgeBoot strap .
bootstrap ()
ConfigFact ory . init (

 ConfigFact ory . getBridgeC onfigManag er (" applicatio n -
self - define . conf "),

 selfDefine DeviceConf igManager);
bridgeBoot strap . bootstrap ();

private static DeviceConf igManager selfDefine DeviceConf
igManager = new DeviceConf igManager () {

 @ Override
 public DeviceIden tity getDeviceI dentity (String
originalId entity) {

 // Suppose you dynamicall y get deviceInfo in
other ways

 return devicesMap . get (originalId entity);
 }

 @ Override
 public String getOrigina lIdentity (String productKey ,
String deviceName) {

 // you can ignore this
 return null ;
 }

Issue: 20190802 195

IoT Platform User Guide / 4 Generic protocol SDK
};

Dynamically register a bridge device
When you need to deploy a bridge application on a large number of servers, it is
cumbersome to specify different bridge devices for different bridge servers. You
can configure the bridge information file applicatio n . conf to dynamically
register bridge devices with IoT Platform. You must provide the productKey and
popClientP rofile parameters in the configuration file. The generic protocol

SDK will call the IoT Platform API and use the bridge servers' MAC codes as the device
names to register bridge devices.

Note:
• To dynamically register bridge devices, you only need to modify the bridge

configuration file. The call code is the same as Use the basic features.
• If the bridge information is already specified in the bridge configuration file,

no device is created. The generic protocol SDK calls the IoT Platform API and
uses the bridge server's MAC code as the device name to register a bridge device
only if the following conditions are met: The deviceName and deviceSecr

et parameters are left empty in the configuration file; all parameters in
popClientp rofile are specified. If a device is already registered using the

current MAC code, the device is directly used as the bridge device.
• If a bridge is configured by using this method, we recommend that you do not

perform debugging on a local client by using the configurations for the production
environment. Each time the program is debugged on a local client, the generic
protocol SDK uses the MAC code of the client to register a bridge device, and
associates all devices in the device configuration file devices . conf with
the bridge. We recommend that you use dedicated devices for testing to perform
debugging to avoid interference with the production environment.

Table 4-2: Configuration parameters
Parameter Required Description
productKey Yes The ProductKey of the product to which the

bridge device belongs.

196 Issue: 20190802

IoT Platform User Guide / 4 Generic protocol SDK

Parameter Required Description
http2Endpoint Yes The endpoint of the HTTP/2 gateway service.

The bridge device and IoT Platform establish a
persistent connection over the HTTP/2 protocol.
The endpoint is in the format of ${ productKey

}. iot - as - http2 .${ RegionId }.

aliyuncs . com : 443 .
Replace ${productKey} with the ProductKey of
the product to which your bridge device belongs.
Replace ${RegionId} with the ID of the
region where your service is located. For more
information about regions, see Regions and zones
.
For example, if the ProductKey of the bridge
device is alabcabc123, the region is China
(Shanghai), then the HTTP/2 gateway service
endpoint is alabcabc12 3 . iot - as -

http2 . cn - shanghai . aliyuncs . com :

443 .
authEndpoint Yes The service URL for device authentication. The

device authentication service URL is in the format
of https :// iot - auth .${ RegionId }.

aliyuncs . com / auth / bridge .
Replace ${RegionId} with the ID of the
region where your service is located. For more
information about regions, see Regions and zones
.
For example, if the region is China (Shanghai),
then the device authentication service address
is https :// iot - auth . cn - shanghai .

aliyuncs . com / auth / bridge .

Issue: 20190802 197

https://www.alibabacloud.com/help/doc-detail/40654.htm
https://www.alibabacloud.com/help/doc-detail/40654.htm
https://www.alibabacloud.com/help/doc-detail/40654.htm
https://www.alibabacloud.com/help/doc-detail/40654.htm

IoT Platform User Guide / 4 Generic protocol SDK

Parameter Required Description
popClientP
rofile

Yes After this parameter is configured, the generic
protocol SDK calls the IoT Platform API to
automatically register bridge devices.
For more information, see the following table:
Parameters in popClientProfile.

Table 4-3: Parameters in popClientProfile
Parameter Required Description
accessKey Yes The AccessKey ID of your Alibaba Cloud account.

Log on to the Alibaba Cloud console and click
 your account avatar to go to the Account
Management page. You can create or view the
AccessKey information.

accessSecret Yes The AccessKey Secret of your Alibaba Cloud
account.

name Yes The IoT Platform service region to which the
bridge device connects. This parameter indicates
the region to which the product identified by
productKey belongs.

For more information about regions, see Regions
and zones.

region Yes The ID of the IoT Platform service region to
which the bridge device connects. This parameter
indicates the region to which the product
identified by productKey belongs.
This parameter is expressed in the same way as
the name parameter.

product Yes The product name. Set the value to Iot.

198 Issue: 20190802

https://www.alibabacloud.com/help/doc-detail/40654.htm
https://www.alibabacloud.com/help/doc-detail/40654.htm

IoT Platform User Guide / 4 Generic protocol SDK

Parameter Required Description
endpoint Yes The endpoint of the API. The endpoint is in the

format of iot . ${ RegionId }. aliyuncs .
com .

Replace ${RegionId} with the ID of the
region where your service is located. For more
information about regions, see Regions and zones
.
For example, If the region is China (Shanghai), the
endpoint is iot . cn - shanghai . aliyuncs

. com .

Sample code to dynamically register bridge devices:
Server endpoint
http2Endpo int = " https ://${ YourProduc tKey }. iot - as - http2
. cn - shanghai . aliyuncs . com : 443 "
authEndpoi nt = " https :// iot - auth . cn - shanghai . aliyuncs .
com / auth / bridge "

Gateway device info
You can also specify productKey only , and dynamic
register deviceName & deviceSecr et in runtime
productKey = ${ YourProduc tKey }

If you dynamic register gateway device using your
mac address , you have to specify ' popClientP rofile '

otherwise you can ignore it
popClientP rofile = {

 accessKey = ${ YourAliyun AccessKey }
 accessSecr et = ${ YourAliyun AccessSecr et }
 name = cn - shanghai
 region = cn - shanghai
 product = Iot
 endpoint = iot . cn - shanghai . aliyuncs . com
}

Call interfaces to report TSL data
To facilitate use and reduce your encapsulation operations, the generic protocol SDK
encapsulates data reporting interfaces. They are reportProperty, fireEvent, and
updateDeviceTag. The device can use these interfaces to report properties, report
events, and update device tags.
Prerequisites and usage guidelines:

Issue: 20190802 199

https://www.alibabacloud.com/help/doc-detail/40654.htm
https://www.alibabacloud.com/help/doc-detail/40654.htm

IoT Platform User Guide / 4 Generic protocol SDK

• Before you call reportProperty and fireEvent to report properties and events,
log on to the IoT Platform console and go to the Product Details page of the
corresponding product. Then, click the Define Feature tab and define properties
and events. For more information, see Define features.

• If the tag that is specified in updateDeviceTag already exists, the tag value is
updated. If the tag does not exist, the tag is automatically created. To check the call
result, you can log on to the IoT Platform console and go to the Device Details page
of the corresponding device.

Sample code:
TslUplinkH andler tslUplinkH andler = new TslUplinkH andler
();

// report property
// Property ' testProp ' is defined in IoT Platform Web
Console
String requestId = String . valueOf (random . nextInt (1000));
tslUplinkH andler . reportProp erty (requestId , originalId
entity , " testProp ", random . nextInt (100));

// fire event
// Event ' testEvent ' is defined in IoT Platform Web
Console
requestId = String . valueOf (random . nextInt (1000));
HashMap < String , Object > params = new HashMap < String ,
Object >();
params . put (" testEventP aram ", 123);
tslUplinkH andler . fireEvent (originalId entity , " testEvent ",
ThingEvent Types . INFO , params);

// update device tag
//' testDevice Tag ' is a tag key defined in IoT
Platform Web Console
requestId = String . valueOf (random . nextInt (1000));
tslUplinkH andler . updateDevi ceTag (requestId , originalId
entity , " testDevice Tag ", String . valueOf (random . nextInt (
1000)));

The parameters in this example are described as follows:
Parameter Description
requestId The request ID.
originalIdentity The original identifier of the device.
testProp The identifier of the property. For this example, make

sure that you have defined a property with the identifier
as testProp in the IoT Platform console. This sample code
indicates to report the value of property testProp.

200 Issue: 20190802

http://iot.console.aliyun.com/

IoT Platform User Guide / 4 Generic protocol SDK

Parameter Description
random.nextInt(100) The property value to be reported. The value range of the

property value is also defined in the IoT Platform console.
In this example, use random . nextInt (100) to
indicate a random number less than 100.

testEvent The identifier of the event. For this example, make sure that
 you have defined an event with the identifier as testEvent
in the IoT Platform console. This sample code indicates to
report event testEvent.

ThingEventTypes.INFO The event type. ThingEvent Types specifies the event
type. A value of INFO indicates that the event type is Info.
For this example, make sure that you have selected Info as
the event type when you defined event testEvent in the IoT
Platform console.

params The output parameters of the event. The identifier, data
type, and value range of output parameters are also defined
 in the IoT Platform console. In this example, the identifier
of the output parameter is testEventParam, and the value is
 123.

testDeviceTag The key of the tag. The data type is String. In this example,
the key is testDeviceTag. Set the key of the tag as instructed
based on your requirements. For more information, see
Device tags.

String.valueOf(random
.nextInt(1000))

The value of the tag. The data type is String. In this
example, String . valueOf (random . nextInt (
1000)) indicates a random number less than 1000.

Set the value of the tag as instructed based on your
requirements. For more information, see Device tags.

Issue: 20190802 201

IoT Platform User Guide / 5 RRPC

5 RRPC
5.1 What is RRPC?

Because the Message Queuing Telemetry Transport (MQTT) protocol uses a publish/
subscribe-based asynchronous communication method, this protocol is not suitable
for scenarios where the server need to synchronously send requests to devices and
receive responses from the devices. In response to the issue, IoT Platform enables
synchronous request and response communication without the need to modify the
MQTT protocol. To do so, the server calls the IoT Platform API.

Terminology
• RRPC: RRPC is short for Revert-RPC. RPC (Remote Procedure Call) uses a form of

client‒server interaction, and allows you to execute a procedure in a remote place
without knowing the details for the remote interaction. RRPC allows you to send a
request to a specified device and receive a response from the device.

• RRPC request message: The message that is sent to a device from the cloud.
• RRPC response message: The response message that is sent to the cloud from a

device.
• RRPC message ID: A unique message ID that is generated by IoT Platform for each

RRPC request.
• RRPC subscription topic: A topic that a device subscribes to for RRPC messages.

The topic includes a wildcard (+).
Message communication using RRPC

1. When IoT Platform receives an API call from the server, it sends an RRPC request
 message to the device. The message body is any input data, and the topic is the
topic defined by IoT Platform, which includes the unique RRPC message ID.

2. After the device receives the request message, it returns an RRPC response
message to the cloud according to the defined topic format, and including the
RRPC message ID. IoT Platform extracts the message ID from the topic, matches
the ID with the ID of the request, and then sends the response to the server.

202 Issue: 20190802

IoT Platform User Guide / 5 RRPC

3. If the device is offline when the call is performed, IoT Platform returns an error
message to the server indicating that the device is offline. If the device does not
send any response message within the timeout period (eight seconds), IoT Platform
 then returns a timeout error to the server.

Topic format
Topics are implemented in different formats for different methods.
• For information about system topics, see System-defined topics.
• For information about custom topics, see Custom topics.

5.2 System-defined topics
With RRPC method, you can establish communications between devices and IoT
Platform by using system-defined topics. These topics include the ProductKey and
DeviceName of the devices.

System-defined topics
The formats of system-defined topics that are used in RRPC calls are as follows:
• RRPC request topic: /sys/${YourProductKey}/${YourDeviceName}/rrpc/request/${

messageId}
• RRPC response topic: /sys/${YourProductKey}/${YourDeviceName}/rrpc/response/

${messageId}
• RRPC subscription topic: /sys/${YourProductKey}/${YourDeviceName}/rrpc/

request/+
In the topic formats, ${YourProductKey} and ${YourDeviceName} are device
information used to identify a device, and ${messageId} is the RRPC message ID
issued by IoT Platform.

Use RRPC
1. Call RRpc API

Call the RRpc API and input your device information into the SDK. For API calling
method, see RRpc.
The following example uses Java SDK to show the calling method:
RRpcReques t request = new RRpcReques t ();
request . setProduct Key (" testProduc tKey ");
request . setDeviceN ame (" testDevice Name ");

Issue: 20190802 203

IoT Platform User Guide / 5 RRPC
request . setRequest Base64Byte (Base64 . getEncoder ().
encodeToSt ring (" hello world "));
request . setTimeout (3000);
RRpcRespon se response = client . getAcsResp onse (request
);

2. The device returns the response.
When the device receives the RRPC request message, it returns a RRPC response
message based on the request topic format.
The device extracts the message ID from the request topic, /sys/${YourProduc
tKey}/${YourDeviceName}/rrpc/request/${messageId}, generates a corresponding
response, and then sends a response message to IoT Platform.

5.3 Custom topics
RRPC supports calling custom topics so that devices can communicate with the cloud.
A communication topic contains the entire custom topic.

Topic formats
The format of a topic for RRPC is as follows:
• Request topic: /ext/rrpc/${messageId}/${topic}
• Reply topic: /ext/rrpc/${messageId}/${topic}
• Subscription topic: /ext/rrpc/+/${topic}
In the preceding formats, ${messageId} indicates the message ID generated by IoT
Platform, and ${topic} indicates the topic you created.

RRPC connection
1. Connect the device to the cloud SDK.

Call the RRPC API to connect your device to the cloud SDK. For more information
about the call method, see RRPC.
The following example uses the Java SDK for the call method:
RRpcReques t request = new RRpcReques t ();
request . setProduct Key (" testProduc tKey ");
request . setDeviceN ame (" testDevice Name ");
request . setRequest Base64Byte (Base64 . getEncoder ().
encodeToSt ring (" hello world "));
request . setTopic ("/ testProduc tKey / testDevice Name / get
");// If you want to use your custom topic , enter
the custom topic .
request . setTimeout (3000);

204 Issue: 20190802

IoT Platform User Guide / 5 RRPC
RRpcRespon se response = client . getAcsResp onse (request
);

To use a custom topic, make sure that your Java SDK (aliyun-java-sdk-iot) version is
 6.0.0 or later.
< dependency >
 < groupId > com . aliyun </ groupId >
 < artifactId > aliyun - java - sdk - iot </ artifactId >
 < version > 6 . 0 . 0 </ version >
</ dependency >

2. Connect the device to the cloud.
If you want the cloud to send RRPC call requests to the device using a custom
topic, when you configure the MQTT communication protocol you must add the
parameter ext=1 into clientId. For more information, see Establish MQTT over TCP
 connections.
For example, the original clientId that the device sends is as follows:
mqttClient Id : clientId +"| securemode = 3 , signmethod =
hmacsha1 , timestamp = 132323232 |"

After ext=1 is added to the clientId, the clientId that the device sends is as follows:
mqttClient Id : clientId +"| securemode = 3 , signmethod =
hmacsha1 , timestamp = 132323232 , ext = 1 |"

Note:
If you use RRPC to establish communication between your devices and the cloud,
and you use a custom topic, make sure that:
• The topic variable in the message that is sent from the cloud is not empty.
• The parameter ext=1 is added into clientId.

3. Return the reply topic.
The request topic can be used as the reply topic because the format of the reply
topic is the same as that of the request topic, and the messageId is not extracted.

Issue: 20190802 205

https://www.alibabacloud.com/help/doc-detail/73742.htm
https://www.alibabacloud.com/help/doc-detail/73742.htm

IoT Platform User Guide / 6 Device shadows

6 Device shadows
6.1 Device Shadow overview

IoT Platform provides the Device Shadow function to cache property information for
a device. If the device is online, the device can directly receive commands from IoT
Platform. If the device is offline, the device can actively request for cached commands
from IoT Platform after it comes online again.
A device shadow is a JSON file that is used to store the reported status and desired
status information for a device.
Each device has only one shadow. A device can obtain and set the shadow over MQTT
 for status synchronization. The synchronization is bi-directional, either from the
shadow to the device or from the device to the shadow.

Scenarios
• Scenario 1: In an unstable network, a device frequently disconnects from and

reconnects to IoT Platform.
The device frequently disconnects from and reconnects to IoT Platform due to
network instability. When an application that interacts with the device requests
 the current device status, the device is offline, which leads to a request failure.
When the device is reconnected, the application fails to initiate another device
status request.
The Device Shadow function can synchronize with the device to update and store
 the latest device status information in the device shadow. The application can
obtain the current device status information from the device shadow despite of the
 connection status.

206 Issue: 20190802

IoT Platform User Guide / 6 Device shadows

• Scenario 2: Multiple applications simultaneously request the device status
information.
In a stable network, a device must respond to each status request from multiple
applications, even if the responses are the same. The device may be overloaded
with the requests.
By using the Device Shadow function, the device only needs to synchronize status
 information to the device shadow that is stored in IoT Platform. Applications can
request the latest device status information from the device shadow instead of the
target device. In this way, applications are decoupled from the device.

• Scenario 3: Device disconnection
- In an unstable network, a device frequently disconnects from and reconnects to

IoT Platform. When an application sends a control command to the device, the
device is offline and the command fails to be dispatched to the device.
■ Quality of Service 1 or 2 (QoS 1 or 2) may solve this issue. However, we

recommend that you do not use this method. This method increases the
workload of the server.

■ By using the Device Shadow function, IoT Platform stores the control
commands from the application to the device shadow. Each command is
stored with the timestamp when the command was received. After the device
 is reconnected to IoT Platform, the device obtains these commands and
checks the timestamp of each command to determine whether to run the
command.

- A device goes offline and fails to receive commands from the application. When
the device is reconnected, the device runs only the valid commands by checking
the timestamp of each command that is pulled from the device shadow.

View and update a device shadow
You can view and update the shadow of a device in the IoT Platform console.
Procedure:
1. Log on to the IoT Platform console .
2. From the left-side navigation pane, choose Devices > Device.
3. Click View next to the corresponding device. The Device Details page appears.

Issue: 20190802 207

http://iot.console.aliyun.com/

IoT Platform User Guide / 6 Device shadows

4. Click the Device Shadow tab.
You can view the shadow that contains the latest information that is reported by
the device.

5. Click Update Shadow, and enter the desired status information in the "desired"
section.
For more information about the shadow file format, see Device shadow JSON
format.
The device obtains the desired status information by subscribing to a specific topic
. When the device is online, IoT Platform pushes the desired value to the device in
real time.
When the device is offline, the device's shadow caches the desired status
information. After the device comes online again, it actively pulls the latest desired
 status information from IoT Platform.

Related API operations
Obtain a device shadow: GetDeviceShadow
Update a device shadow: UpdateDeviceShadow

6.2 Device shadow JSON format
Format of the device shadow JSON file

The format is as follows:

{
" state ": {

208 Issue: 20190802

IoT Platform User Guide / 6 Device shadows
" desired ": {
" attribute1 ": integer2 ,
" attribute2 ": " string2 ",
...
" attributeN ": boolean2
},
" reported ": {
" attribute1 ": integer1 ,
" attribute2 ": " string1 ",
...
" attributeN ": boolean1
}
},
" metadata ": {
" desired ": {
" attribute1 ": {
" timestamp ": timestamp
},
" attribute2 ": {
" timestamp ": timestamp
},
...
" attributeN ": {
" timestamp ": timestamp
}
},
" reported ": {
" attribute1 ": {
" timestamp ": timestamp
},
" attribute2 ": {
" timestamp ": timestamp
},
...
" attributeN ": {
" timestamp ": timestamp
}
}
},
" timestamp ": timestamp ,
" version ": version
}

The JSON properties are described in Table 6-1: JSON property.
Table 6-1: JSON property
Property Description
desired The desired status of the device.

The application writes the desired property of the device,
without accessing the device.

Issue: 20190802 209

IoT Platform User Guide / 6 Device shadows

Property Description
reported The status that the device has reported. The device writes data to

the reported property to report its latest status.
The application obtains the status of the device by reading this
property.

metadata The device shadow service automatically updates metadata
according to the updates in the device shadow JSON file.
State metadata in the device shadow JSON file contains the
timestamp of each property. The timestamp is represented as
epoch time to obtain exact update time.

timestamp The latest update time of the device shadow JSON file.
version When you request updating the version of the device shadow,

the device shadow checks whether the requested version is later
than the current version.
If the requested version is later than the current one, the device
 shadow updates to the requested version. If not, the device
shadow rejects the request.
The version number is increased according to the version
update to ensure the latest device shadow JSON file version.

Example of the device shadow JSON file:

{
" state " : {
" desired " : {
" color " : " RED ",
" sequence " : [" RED ", " GREEN ", " BLUE "]
},
" reported " : {
" color " : " GREEN "
}
},
" metadata " : {
" desired " : {
" color " : {
" timestamp " : 1469564492
},
" sequence " : {
" timestamp " : 1469564492
}
},
" reported " : {
" color " : {
" timestamp " : 1469564492

210 Issue: 20190802

IoT Platform User Guide / 6 Device shadows
}
}
},
" timestamp " : 1469564492 ,
" version " : 1
}

Empty properties
• The device shadow JSON file contains the desired property only when you have

specified the desired status. The following device shadow JSON file, which does not
contain the desired property, is also effective:

{
" state " : {
" reported " : {
" color " : " red ",
}
},
" metadata " : {
" reported " : {
" color " : {
" timestamp " : 1469564492
}
}
},
" timestamp " : 1469564492 ,
" version " : 1
}

• The following device shadow JSON file, which does not contain the reported
property, is also effective:

{
" state " : {
" desired " : {
" color " : " red ",
}
},
" metadata " : {
" desired " : {
" color " : {
" timestamp " : 1469564492
}
}
},
" timestamp " : 1469564492 ,
" version " : 1
}

Array
The device shadow JSON file can use an array, and must update this array as a whole
when the update is required.

Issue: 20190802 211

IoT Platform User Guide / 6 Device shadows

• Initial status:

{
" reported " : { " colors " : [" RED ", " GREEN ", " BLUE "] }
}

• Update:

{
" reported " : { " colors " : [" RED "] }
}

• Final status:

{
" reported " : { " colors " : [" RED "] }
}

6.3 Device shadow data stream
IoT Platform predefines two topics for each device to enable data transmission. The
predefined topics have fixed formats.
• Topic: /shadow/update/${YourProductKey}/${YourDeviceName}

Devices and applications publish messages to this topic. When IoT Platform
receives messages from this topic, it will extract the status information in the
messages and will update the status to the device shadow.

• Topic: /shadow/get/${YourProductKey}/${YourDeviceName}
The device shadow updates the status to this topic, and the device subscribes to the
 messages from this topic.

Take a lightbulb device of a product bulb_1 as an example to introduce the
communication among devices, device shadows, and applications. In the following
example, the ProductKey is aliDeEf**** and the DeviceName is lightbulb. The device
publishes messages to and subscribes to messages of the two custom topics using the
method of QoS 1.

212 Issue: 20190802

IoT Platform User Guide / 6 Device shadows

Device reports status automatically
The flow chart is shown in Figure 6-1: Device reports status automatically.
Figure 6-1: Device reports status automatically

1. When the lightbulb is online, the device uses topic / shadow / update / aliDeEf

****/ lightbulb to report the latest status to the device shadow.
Format of the JSON message:

{
" method ": " update ",
" state ": {
" reported ": {
" color ": " red "
}
},
" version ": 1
}

The JSON parameters are described in Table 6-2: Parameter description.
Table 6-2: Parameter description
Parameter Description
method The operation type when a device or application requests the

device shadow.
When you update the status, This parameter method is
required and must be set to update .

state The status information that the device sends to the device
shadow.
The reported field is required. The status information is
synchronized to the reported field of the device shadow.

version The version information contained in the request.
The device shadow only accepts the request and updates to the
specified version when the new version is later than the current
version.

Issue: 20190802 213

IoT Platform User Guide / 6 Device shadows

2. When the device shadow accepts the status reported by the device lightbulb, the
JSON file of device shadow is successfully updated.

{
" state " : {
" reported " : {
" color " : " red "
}
},
" metadata " : {
" reported " : {
" color " : {
" timestamp " : 1469564492
}
}
},
" timestamp " : 1469564492
" version " : 1
}

3. After the device shadow has been updated, it will return the result to the device
(lightbulb) by sending a message to the topic / shadow / get / aliDeEf ****/

lightbulb .
• If the update is successful, the message is as follows:

{
" method ":" reply ",
" payload ": {
" status ":" success ",
" version ": 1
},
" timestamp ": 1469564576
}

• If an error occurred during the update, the message is as follows:

{
" method ":" reply ",
" payload ": {
" status ":" error ",
" content ": {
" errorcode ": "${ errorcode }",
" errormessa ge ": "${ errormessa ge }"
}
},
" timestamp ": 1469564576

214 Issue: 20190802

IoT Platform User Guide / 6 Device shadows
}

Error codes are described in Table 6-3: Error codes.
Table 6-3: Error codes
errorCode errorMessage
400 Incorrect JSON file.
401 The method field is not found.
402 the state field is not found.
403 Invalid version field.
404 The reported field is not found.
405 The reported field is empty.
406 Invalid method field.
407 The JSON file is empty.
408 The reported field contains more than 128 attributes.
409 Version conflict.
500 Server exception.

Application changes device status
The flow chart is shown in Figure 6-2: Application changes device status.
Figure 6-2: Application changes device status

1. The application sends a command to the device shadow to change the status of the
lightbulb.
The application sends a message to topic / shadow / update / aliDeEf ****/

lightbulb /. The message is as follows:

{
" method ": " update ",
" state ": {
" desired ": {
" color ": " green "
}
},
" version ": 2

Issue: 20190802 215

IoT Platform User Guide / 6 Device shadows
}

2. The application sends an update request to update the device shadow JSON file.
The device shadow JSON file is changed to:

{
" state " : {
" reported " : {
" color " : " red "
},
" desired " : {
" color " : " green "
}
},
" metadata " : {
" reported " : {
" color " : {
" timestamp " : 1469564492
}
},
" desired " : {
" color " : {
" timestamp " : 1469564576
}
}
},
" timestamp " : 1469564576 ,
" version " : 2
}

3. After the update, the device shadow sends a message to the topic / shadow / get

/ aliDeEf ****/ lightbulb and returns the result of update to the device. The
result message is created by the device shadow.

{
" method ":" control ",
" payload ": {
" status ":" success ",
" state ": {
" reported ": {
" color ": " red "
},
" desired ": {
" color ": " green "
}
},
" metadata ": {
" reported ": {
" color ": {
" timestamp ": 1469564492
}
},
" desired " : {
" color " : {
" timestamp " : 1469564576
}
}
}

216 Issue: 20190802

IoT Platform User Guide / 6 Device shadows
},
" version ": 2 ,
" timestamp ": 1469564576
}

4. When the device lightbulb is online and has subscribed to the topic / shadow /

get / aliDeEf ****/ lightbulb , the device receives the message and changes
its color to green according to the desired field in the request file. After the
device has updated the status, it will report the latest status to the cloud.
{
method ": " update ",
" state ": {
" reported ": {
" color ": " green "
}
},
" version ": 3
}

If the timestamp shows that the command has expired, you give up the update.
5. After the latest status has been reported successfully, the device sends a message

to the topic / shadow / update / aliDeEf ****/ lightbulb to empty the
property of desired field. The message is as follows:

{
" method ": " update ",
" state ": {
" desired ":" null "
},
" version ": 4
}

6. After the status has been reported, the device shadow is synchronously updated.
The device shadow JSON file is as follows:

{
" state " : {
" reported " : {
" color " : " green "
}
},
" metadata " : {
" reported " : {
" color " : {
" timestamp " : 1469564577
}
},
" desired " : {
" timestamp " : 1469564576
}
},
" version " : 4

Issue: 20190802 217

IoT Platform User Guide / 6 Device shadows
}

Devices request for device shadows
The flow chart is shown in Figure 6-3: The device requests for device shadow.
Figure 6-3: The device requests for device shadow

1. The device lightbulb sends a message to the topic / shadow / update / aliDeEf

****/ lightbulb and obtains the latest status saved in the device shadow. The
message is as follows:

{
" method ": " get "
}

2. When the device shadow receives above message, the device shadow sends
a message to the topic / shadow / get / aliDeEf ****/ lightbulb . The
message is as follows:

{
" method ":" reply ",
" payload ": {
" status ":" success ",
" state ": {
" reported ": {
" color ": " red "
},
" desired ": {
" color ": " green "
}
},
" metadata ": {
" reported ": {
" color ": {
" timestamp ": 1469564492
}
},
" desired ": {
" color ": {
" timestamp ": 1469564492
}
}
}
},
" version ": 2 ,
" timestamp ": 1469564576

218 Issue: 20190802

IoT Platform User Guide / 6 Device shadows
}

Devices delete device shadow attributes
The flow chart is shown in Figure 6-4: Delete device shadow attributes.
Figure 6-4: Delete device shadow attributes

The device lightbulb is to delete the specified attributes saved in the device shadow.
The device sends a JSON message to the topic / shadow / update / aliDeEf ****/

lightbulb . See the message in the following example.
To delete attributes, set the value of method to delete and set the values of the
attributes to null .
• Delete one attribute:

{
" method ": " delete ",
" state ": {
" reported ": {
" color ": " null ",
" temperatur e ":" null "
}
},
" version ": 1
}

• Delete all the attributes:

{
" method ": " delete ",
" state ": {
" reported ":" null "
},
" version ": 1
}

Issue: 20190802 219

IoT Platform User Guide / 7 Configure the NTP service

7 Configure the NTP service
IoT Platform provides the NTP service to resolve the following issues on embedded
devices: limited resources, no NTP service available in the system, and inaccurate
timestamp.

How NTP works
Based on the NTP protocol, IoT Platform acts as the NTP server. A device sends a
 message of a specific topic to IoT Platform with the sending time in the message
payload. IoT Platform adds the message receiving time and response sending time to
the payload of the response packet. After the device receives the response, the device
records its local time when it receives the response. All these four time will be used to
 calculate the time difference between the device and IoT Platform to obtain the exact
 current time on the device.

Note:
The NTP service can be used for time calibration only after the device is connected to
IoT Platform.
An embedded device, which does not have an accurate time after it is powered,
cannot pass the certificate verification during the TLS connection establishment
process. If it does not connect to IoT Platform, this issue cannot be resolved by the
NTP service of IoT Platform.

NTP service procedure
Request topic: / ext / ntp /${ YourProduc tKey }/${ YourDevice Name }/

request

Response topic: / ext / ntp /${ YourProduc tKey }/${ YourDevice Name }/

response

Note:
ProductKey and DeviceName are part of the device certificate, which can be obtained
from the IoT Platform console.

1. The device subscribes to the topic: / ext / ntp /${ YourProduc tKey }/${

YourDevice Name }/ response .
220 Issue: 20190802

IoT Platform User Guide / 7 Configure the NTP service

2. The device publishes a QoS 0 message with the current timestamp of the device in
the payload to the topic / ext / ntp /${ YourProduc tKey }/${ YourDevice

Name }/ request . For example:
{
 " deviceSend Time ":" 100 "
}

Note:
The data type of the timestamp, which supports Long and String.
Only QoS 0 messages are supported for this feature.

3. The device receives a response from the NTP server. The payload includes the
following information:
{
 " deviceSend Time ":" 100 ",
 " serverRecv Time ":" 1010 ",
 " serverSend Time ":" 1015 ",
}

4. The device calculates the current exact Unix time.
The time when the device receives the message from the server is recorded as $
{devicerecvtime}, and the exact time on the device is: ($ { Serverrecv time } +

$ { serversend time } + $ { devicerecv time }-$ { devicesend time

})/ 2

Example
In this example, the device time is 100, the server time is 1000, the network delay is 10
, and the time spent before the server sends a response for a received request is 5.

Device time Server time
deviceSend 100 (deviceSendTime) 1000
serverReceive 110 1010（serverRecvTime）
serverSend 115 1015（serverSendTime）
deviceReceive 125（deviceRecvTime） 1025

The device calculates the current exact Unix time as (1010 + 1015 + 125 - 100)/2 = 1025.
The current server time is 1015. If the device directly uses the timestamp returned
from the server, the device will have a time error due to the network delay.

Issue: 20190802 221

IoT Platform User Guide / 8 Accounts and logon

8 Accounts and logon
This topic describes IoT Platform accounts and how to log on to the IoT Platform
console.

8.1 Log on to the console using the primary account
The primary account has full operation permissions on all resources under this
account, and supports modifying account information.

Log on to the IoT Platform console using the primary account
You have full operation permissions on IoT Platform when logging on to the console
using the primary account.
1. Visit the Alibaba Cloud official website.
2. Click Console.
3. Log on to the console using your account and password.

Note:
To retrieve an account or password, click Forgot Username or Forgot Password on
the logon page to start the retrieval process.

4. Click Products in the console to display all products and services that are provided
by Alibaba Cloud.

5. Search for IoT Platform, and click IoT Platform in the result to enter the IoT
Platform console.

Note:
If you have not activated the IoT Platform service, the IoT Platform console prompts
you to activate this service on the homepage. Click Activate Now to activate it quickly.

After entering the IoT Platform console, you can manage products, devices, and rules.
Create access control using the primary account

The primary account has full permissions, so the leakage of the primary account may
cause serious security risks. Therefore, do not disclose your account and password
when you authorize others to access your Alibaba Cloud resources. Instead, you
should use Resource Access Management (RAM) to create sub-accounts and assign

222 Issue: 20190802

https://www.alibabacloud.com

IoT Platform User Guide / 8 Accounts and logon

the required access permissions to these sub-accounts. All users except the primary
account user or administrator access the resources using sub-accounts. For more
information about accessing IoT Platform using RAM users, seeUse RAM users and
Custom permissions.

8.2 Resource Access Management (RAM)
This chapter describes IoT Platform access control.

8.2.1 RAM and STS
Resource Access Management (RAM) and Security Token Service (STS) are access
control systems provided by Alibaba Cloud. For more information about RAM and
STS, see RAM help documentation.
RAM is used to control the permissions of accounts. By using RAM, you can create
 and manage RAM users. You can control what resources RAM users can access by
granting different permissions to them.
STS is a security token management system. It is used to manage the short-term
 permissions granted to RAM users. You can use STS to grant permissions to
temporary users.

Background
RAM and STS enable you to securely grant permissions to users without exposing
your account AccessKey. Once your account AccessKey is exposed, your resources
will be exposed to major security risks. Individuals who obtain your AccessKey can
 perform any operation on the resources under your account and steal personal
information.
RAM is a mechanism used to control long-term permissions. After creating RAM
users, you can grant them different permissions. AccessKeys of RAM users if exposed
do not have the same risk as an account AccessKey being exposed. If the AccessKey of
 any RAM user is exposed, information potentially exposed is limited. RAM users are
valid for a long term.
Unlike RAM, which allows you to grant long-term permissions to users, STS enables
 you to grant users temporary access. By calling the STS API, you can obtain
temporary AccessKeys and tokens. You can assign the temporary AccessKeys and
tokens to RAM users so they can access specific resources. Permissions obtained from

Issue: 20190802 223

https://www.alibabacloud.com/help/product/28625.htm

IoT Platform User Guide / 8 Accounts and logon

 STS are strictly restricted and have limited validity. Therefore, even if information is
unexpectedly exposed, your system will not be severely compromised.
For details about how to use RAM and STS, see Examples.

Concepts
Before you use RAM and STS, we recommend that you have a basic understanding of
the following concepts:
• RAM user: A user that is created using the RAM console. During or after the

creation of a RAM User, an AccessKey can be generated for the RAM user. After
creating a RAM user, you need to configure the password and grant permissions to
it. Once this is completed the RAM user can perform authorized operations. A RAM
 user can be considered a user with specific operation permissions.

• Role: A virtual entity that represents a group of permissions. Roles do not have
their own logon password or AccessKey. A RAM user can assume roles. When roles
are assumed the RAM user has the associated role privileges.

• Policy: A policy defines permissions. For example, a policy defines the permission
of a RAM user to read or write to specific resources.

• Resource: Cloud resources that are accessible to a RAM user, such as all Table
Store instances, a Table Store instance, or a table in a Table Store instance.

The relationship between RAM users and their roles is similar to the relationship
between individuals and their identities. For example, the roles of a person might be
an employee at work and a father at home. A person plays different roles in different
 scenarios. When playing a specific role, the person has the privileges of that role. A
role itself is not an operational entity. Only after the user has assumed this role is it a
complete operational entity. A role can be assumed by multiple users.

Examples
To prevent an account from being exposed to security risks if the account AccessKey
 is exposed, an account administrator creates two RAM users. These RAM users
are named A and B. An AccessKey is generated for each of them. A has the read
 permission, and B has the write permission. The administrator can revoke the
permissions from the RAM users at any time in the RAM console.
Additional, individuals need to be granted temporary access to the API of IoT
Platform. In this case, the AccessKey of A must not be disclosed. Instead, the

224 Issue: 20190802

IoT Platform User Guide / 8 Accounts and logon

administrator needs to create a role, C, and grant this role access to the API of IoT
Platform. Note that C cannot be directly used currently because there is no AccessKey
for C, and C is only a virtual entity that owns access to the IoT Platform API.
The administrator needs to call the AssumeRole API operation of STS to obtain
temporary security credentials that can be used to access the IoT Platform API.
In the AssumeRole call, the value of RoleArn must be the Alibaba Cloud resource
name (ARN) of C. If the AssumeRole call is successful, STS will return a temporary
 AccessKeyId, AccessKeySecret, and SecurityToken as security credentials. The
validity period of these credentials can be specified when AssumeRole is called. The
 account administrator can deliver these credentials to users who need access to the
API of the IoT Platform. This access to the API is temporary.

Why is it complicated to use RAM and STS?
The concepts and use of RAM and STS are complicated. This ensures account security
 and flexible access control at the cost of service ease of use.
RAM users and roles are separated in order to keep the entity that performs operation
 separate from the virtual entity that represents a group of permissions. If a user
needs multiple permissions, such as the read and the write permissions, but in fact
the user only needs one permission at a time, you can create two roles. Grant the read
 permission and the write permission to these two roles, respectively. Then create
 a RAM user and assign both roles to the RAM user. When the RAM user needs the
read permission, assume the role that includes the read permission. When the RAM
user needs the write permission, assume the role that includes the write permission.
This reduces the risk of a permission leak occurring in each operation. Additionally,
you can assign roles to other accounts and RAM users to grant them the permissions
included in the roles. This makes it easier for users to use the role permissions.
STS allows more flexible access control. For example, you can configure the validity
period for credentials. However, if long-term credentials are required, you can only
use RAM to manage RAM users.
The following sections provide guidelines for using RAM and STS and examples for
using them. For more information about APIs provided by RAM and STS, see API
Reference - RAM and API Reference - STS.

Issue: 20190802 225

https://www.alibabacloud.com/help/doc-detail/28672.htm
https://www.alibabacloud.com/help/doc-detail/28672.htm
https://www.alibabacloud.com/help/doc-detail/28756.htm

IoT Platform User Guide / 8 Accounts and logon

8.2.2 Custom permissions
Permissions define the conditions in which the system allows or denies some
specified actions on target resources.
Permissions are defined in authorization policies. Custom permissions allow you to
define certain permissions by using custom authorization policies. In the Resource
Access Management (RAM) console, click Create Authorization Policy on the Policies
page to customize an authorization policy. Select a blank template when customizing
an authorization policy.
An authorization policy is a JSON string that requires the following parameters:
• Action : Indicates the action that you want to authorize. IoT actions start with

iot:. For more information about actions and examples, see Define actions.
• Effect : Indicates the authorization type, which can be Allow or Deny .
• Resource : Because IoT Platform does not support resource authorization, enter

an asterisk * instead.
• Condition : Indicates the authentication condition. For more information, see

Define conditions.
Define actions

Action is an application programming interface (API) operation name. When
creating an authorization policy, use iot: as the prefix for each action, and separate
multiple actions with commas (,). You can also use an asterisk (*) as a wildcard
character. For more information about API name definitions that are used on IoT
Platform, seeAPI permissions .
The following are some examples of action definitions.
• Define a single API operation.

" Action ": " iot : CreateProd uct "

• Define multiple API operations.
" Action ": [
" iot : UpdateProd uct ",
" iot : QueryProdu ct "
]

• Define all read-only API operations.
{
 " Version ": " 1 ",

226 Issue: 20190802

IoT Platform User Guide / 8 Accounts and logon
 " Statement ": [
 {
 " Action ": [
 " iot : Query *",
 " iot : List *",
 " iot : Get *",
 " iot : BatchGet *",
 " iot : Check *"
],
 " Resource ": "*",
 " Effect ": " Allow "
 },
 {
 " Action ": [
 " rds : DescribeDB Instances ",
 " rds : DescribeDa tabases ",
 " rds : DescribeAc counts ",
 " rds : DescribeDB InstanceNe tInfo "
],
 " Resource ": "*",
 " Effect ": " Allow "
 },
 {
 " Action ": " ram : ListRoles ",
 " Resource ": "*",
 " Effect ": " Allow "
 },
 {
 " Action ": [
 " mns : ListTopic ",
 " mns : GetTopicRe f "
],
 " Resource ": "*",
 " Effect ": " Allow "
 },
 {
 " Action ": [
 " ots : ListInstan ce ",
 " ots : GetInstanc e ",
 " ots : ListTable ",
 " ots : DescribeTa ble "
],
 " Resource ": "*",
 " Effect ": " Allow "
 },
 {
 " Action ": [
 " fc : ListServic es ",
 " fc : GetService ",
 " fc : GetFunctio n ",
 " fc : ListFuncti ons "
],
 " Resource ": "*",
 " Effect ": " Allow "
 },
 {
 " Action ": [
 " log : ListShards ",
 " log : ListLogSto res ",
 " log : ListProjec t "
],
 " Resource ": "*",
 " Effect ": " Allow "
 },

Issue: 20190802 227

IoT Platform User Guide / 8 Accounts and logon
 {
 " Action ": [
 " cms : QueryMetri cList "
],
 " Resource ": "*",
 " Effect ": " Allow "
 }
]
}

• Define all read-write API operations.
{
 " Version ": " 1 ",
 " Statement ": [
 {
 " Action ": " iot :*",
 " Resource ": "*",
 " Effect ": " Allow "
 },
 {
 " Action ": [
 " rds : DescribeDB Instances ",
 " rds : DescribeDa tabases ",
 " rds : DescribeAc counts ",
 " rds : DescribeDB InstanceNe tInfo ",
 " rds : ModifySecu rityIps "
],
 " Resource ": "*",
 " Effect ": " Allow "
 },
 {
 " Action ": " ram : ListRoles ",
 " Resource ": "*",
 " Effect ": " Allow "
 },
 {
 " Action ": [
 " mns : ListTopic ",
 " mns : GetTopicRe f "
],
 " Resource ": "*",
 " Effect ": " Allow "
 },
 {
 " Action ": [
 " ots : ListInstan ce ",
 " ots : ListTable ",
 " ots : DescribeTa ble ",
 " ots : GetInstanc e "
],
 " Resource ": "*",
 " Effect ": " Allow "
 },
 {
 " Action ": [
 " fc : ListServic es ",
 " fc : GetService ",
 " fc : GetFunctio n ",
 " fc : ListFuncti ons "
],
 " Resource ": "*",
 " Effect ": " Allow "

228 Issue: 20190802

IoT Platform User Guide / 8 Accounts and logon
 },
 {
 " Action ": [
 " log : ListShards ",
 " log : ListLogSto res ",
 " log : ListProjec t "
],
 " Resource ": "*",
 " Effect ": " Allow "
 },
 {
 " Action ": " ram : PassRole ",
 " Resource ": "*",
 " Effect ": " Allow ",
 " Condition ": {
 " StringEqua ls ": {
 " acs : Service ": " iot . aliyuncs . com "
 }
 }
 },
 {
 " Action ": [
 " cms : QueryMetri cList "
],
 " Resource ": "*",
 " Effect ": " Allow "
 }
]
}

Define conditions
RAM authorization policies currently support multiple authentication conditions,
such as the access IP address restrictions, the Hypertext Transfer Protocol Secure (
HTTPS)-based access enabler, the multi-factor authentication (MFA)-based access
 enabler, and access time restrictions. All API operations on IoT Platform support
these authentication conditions.
Access control based on source IP addresses
This access control restricts source IP addresses that can access IoT Platform, and
supports filtering by Classless Inter-Domain Routing (CIDR) blocks. Typical scenarios
 are described as follows:
• Apply access control rules to a single IP address or CIDR blocks. For example, the

following code indicates that only access requests from IP address 10.101.168.111
or 10.101.169.111/24 are allowed.
{
" Statement ": [
{
" Effect ": " Allow ",
" Action ": " iot :*",
" Resource ": "*",
" Condition ": {

Issue: 20190802 229

IoT Platform User Guide / 8 Accounts and logon
" IpAddress ": {
" acs : SourceIp ": [
" 10 . 101 . 168 . 111 ",
" 10 . 101 . 169 . 111 / 24 "
]
}
}
}
],
" Version ": " 1 "
}

• Apply access control rules to multiple IP addresses. For example, the following
code indicates that only access requests from IP addresses 10.101.168.111 and
10.101.169.111 are allowed.
{
" Statement ": [
{
" Effect ": " Allow ",
" Action ": " iot :*",
" Resource ": "*",
" Condition ": {
" IPaddress ":{
" acs : SourceIp ": [
" 10 . 101 . 168 . 111 ",
" 10 . 101 . 169 . 111 "
]
}
}
}
],
" Version ": " 1 "
}

HTTPS-based access control
This access control allows you to enable or disable HTTPS-based access.
For example, the following code indicates that only HTTPS-based access is allowed.
{
" Statement ": [
{
" Effect ": " Allow ",
" Action ": " iot :*",
" Resource ": "*",
" Condition ": {
" Bool ": {
" acs : SecureTran sport ": " true "
}
}
}
],
" Version ": " 1 "
}

MFA-based access control
230 Issue: 20190802

IoT Platform User Guide / 8 Accounts and logon

This access control allows you to enable or disable MFA-based access.
For example, the following code indicates that only MFA-based access is allowed.
{
" Statement ": [
{
" Effect ": " Allow ",
" Action ": " iot :*",
" Resource ": "*",
" Condition ": {
" Bool ": {
" acs : MFAPresent ": " true "
}
}
}
],
" Version ": " 1 "
}

Access time restrictions
This access control allows you to limit the access time of requests. Access requests
earlier than the specified time are allowed or rejected.
For example, the following code indicates that only access requests earlier than 00:00:
00 Beijing Time (UTC+8) on January 1, 2019 are allowed.
{
" Statement ": [
{
" Effect ": " Allow ",
" Action ": " iot :*",
" Resource ": "*",
" Condition ": {
" DateLessTh an ": {
" acs : CurrentTim e ": " 2019 - 01 - 01T00 : 00 : 00 + 08 : 00 "
}
}
}
],
" Version ": " 1 "
}

Typical scenarios
Based on these definitions of actions, resources, and conditions, authorization
policies are described in the following typical scenarios.
The following is an example of authorization policy that allows access.

Issue: 20190802 231

IoT Platform User Guide / 8 Accounts and logon

Scenario: Assigns IoT Platform access permissions to the IP address 10.101.168.111
/24, and only allows HTTPS-based access before 00:00:00 Beijing Time (UTC+8) on
January 1, 2019.
{
" Statement ": [
{
" Effect ": " Allow ",
" Action ": " iot :*",
" Resource ": "*",
" Condition ": {
" IPaddress ":{
" acs : SourceIp ": [
" 10 . 101 . 168 . 111 / 24 "
]
},
" DateLessTh an ": {
" acs : CurrentTim e ": " 2019 - 01 - 01T00 : 00 : 00 + 08 : 00 "
},
" Bool ": {
" acs : SecureTran sport ": " true "
}
}
}
],
" Version ": " 1 "
}

The following is an example of authorization policy to specify denied access.
Scenario: Rejects read requests from IP address 10.101.169.111.
{
" Statement ": [
{
" Effect ": " Deny ",
" Action ": [
" iot : Query *",
" iot : List *",
" iot : Get *",
" iot : BatchGet *"
],
" Resource ": "*",
" Condition ": {
" IpAddress ": {
" acs : SourceIp ": [
" 10 . 101 . 169 . 111 "
]
}
}
}
],
" Version ": " 1 "
}

After creating the authorization policy, apply this policy to the RAM users on the
User Management page in the RAM console. Authorized RAM users can perform the

232 Issue: 20190802

IoT Platform User Guide / 8 Accounts and logon

operations defined in this policy. For more information about creating RAM users and
granting permissions, see Use RAM users.

8.2.3 API permissions
Each operation in the following table represents the value of Action that you
specify when creating authentication policies for RAM users.
For more information about creating authentication policies for RAM users,
seeCustom permissions.
Operations RAM action Resource Description
CreateProduct iot:CreateProduct * Create a product.
UpdateProduct iot:UpdateProduct * Update product

information
QueryProduct iot:QueryProduct * Query the detailed

information of a product.
QueryProductList iot:QueryProductList * Query all the products.
DeleteProduct iot:DeleteProduct * Delete a product.
CreateProductTags iot:CreateProductTags * Create product tags.
UpdateProductTags iot:UpdateProductTags * Update product tags.
DeleteProductTags iot:DeleteProductTags * Delete product tags.
ListProductTags iot:ListProductTags * Query tags of a product.
ListProductByTags iot:ListProductByTags * Query products by tags.
RegisterDevice iot:RegisterDevice * Register a device.
QueryDevice iot:QueryDevice * Query all the devices of a

specified product.
DeleteDevice iot:DeleteDevice * Delete a device.
QueryPageByApplyId iot:QueryPageB

yApplyId
* Query the informatio

n of devices that are
registered at a time.

BatchGetDeviceState iot:BatchGetDe
viceState

* Query the status of
multiple devices at a time
.

BatchRegis
terDeviceW
ithApplyId

iot:BatchRegis
terDeviceWithApplyId

* Register multiple devices
 simultaneously using a
given application ID.

Issue: 20190802 233

IoT Platform User Guide / 8 Accounts and logon

Operations RAM action Resource Description
BatchRegisterDevice iot:BatchRegis

terDevice
* Register multiple devices

 at a time (not specify
device names).

QueryBatch
RegisterDeviceStatus

iot:QueryBatch
RegisterDeviceStatus

* Query the processing
 status and result of
device registration of
multiple devices.

BatchCheck
DeviceNames

iot:BatchCheck
DeviceNames

* Specify device names in
batch.

QueryDeviceStatistic
s

iot:QueryDevic
eStatistics

* Query device statistics.

QueryDevic
eEventData

iot:QueryDevic
eEventData

* Query the historical
records of a device event.

QueryDevic
eServiceData

iot:QueryDevic
eServiceData

* Query the historical
 records of a device
service.

SetDeviceProperty iot:SetDeviceProperty * Set properties for a
specified device.

SetDevicesProperty iot:SetDevicesProperty * Set properties for
multiple devices.

InvokeThingService iot:InvokeThingService * Invoke a service on a
device.

InvokeThingsService iot:InvokeThin
gsService

* Invoke a service on
multiple devices.

QueryDevic
ePropertyStatus

iot:QueryDevic
ePropertyStatus

* Query the property
snapshots of a device.

QueryDeviceDetail iot:QueryDeviceDetail * Query the detailed
information of a device.

DisableThing iot:DisableThing * Disable a device.
EnableThing iot:EnableThing * Enable a device that has

been disabled.
GetThingTopo iot:GetThingTopo * Query the topological

relationships of a device.
RemoveThingTopo iot:RemoveThingTopo * Delete the topological

relationships of a device.

234 Issue: 20190802

IoT Platform User Guide / 8 Accounts and logon

Operations RAM action Resource Description
NotifyAddThingTopo iot:NotifyAddT

hingTopo
* Notify a gateway device

 to add topological
relationships with
specified sub-devices.

QueryDevic
ePropertyData

iot:QueryDevic
ePropertyData

* Query the historical
 records of a device
property.

QueryDevic
ePropertiesData

iot:QueryDevic
ePropertiesData

* Query the historical
 records of device
properties.

GetGateway
BySubDevice

iot:GetGateway
BySubDevice

* Query the gateway device
 information using the
sub-device information.

SaveDeviceProp iot:SaveDeviceProp * Create tags for a device.
QueryDeviceProp iot:QueryDeviceProp * Query all the tags of a

device.
DeleteDeviceProp iot:DeleteDeviceProp * Delete a tag of a device.
QueryDeviceByTags iot:QueryDeviceByTags * Query devices by tags.
CreateDeviceGroup iot:CreateDeviceGroup * Create a device group.
UpdateDeviceGroup iot:UpdateDeviceGroup * Update the information

of a device group.
DeleteDeviceGroup iot:DeleteDeviceGroup * Delete a device group.
BatchAddDe
viceGroupRelations

iot:BatchAddDe
viceGroupRelations

* Add devices to a group.

BatchDelet
eDeviceGro
upRelations

iot:BatchDelet
eDeviceGroupRelations

* Delete devices from a
group.

QueryDevic
eGroupInfo

iot:QueryDevic
eGroupInfo

* Query the detailed
information of a group.

QueryDevic
eGroupList

iot:QueryDevic
eGroupList

* Query all the device
groups.

SetDeviceGroupTags iot:SetDeviceG
roupTags

* Create, update, or delete
tags of a group.

QueryDevic
eGroupTagList

iot:QueryDevic
eGroupTagList

* Query all the tags of a
group.

Issue: 20190802 235

IoT Platform User Guide / 8 Accounts and logon

Operations RAM action Resource Description
QueryDevic
eGroupByDevice

iot:QueryDevic
eGroupByDevice

* Query the groups that a
specified device is in.

QueryDevic
eListByDeviceGroup

iot:QueryDevic
eListByDeviceGroup

* Query devices in a device
 group.

QuerySuper
DeviceGroup

iot:QuerySuper
DeviceGroup

* Query the parent group
of a device group.

QueryDevic
eGroupByTags

iot:QueryDevic
eGroupByTags

* Query device groups by
tags.

StartRule iot:StartRule * Enable a rule.
StopRule iot:StopRule * Stop a rule.
ListRule iot:ListRule * Query all the rules.
GetRule iot:GetRule * Query the details of a rule

.
CreateRule iot:CreateRule * Create a rule.
UpdateRule iot:UpdateRule * Update the information

of a rule.
DeleteRule iot:DeleteRule * Delete a rule.
CreateRuleAction iot:CreateRuleAction * Create a data forwarding

method for a rule.
UpdateRuleAction iot:UpdateRuleAction * Update a data forwarding

 method.
DeleteRuleAction iot:DeleteRuleAction * Delete a data forwarding

method.
GetRuleAction iot:GetRuleAction * Query the detailed

information of a data
forwarding method.

ListRuleActions iot:ListRuleActions * Query all the data
forwarding methods in a
rule.

Pub iot:Pub * Publish a message.
PubBroadcast iot:PubBroadcast * Publish a message to

the devices that have
subscribed to a broadcast
 topic.

236 Issue: 20190802

IoT Platform User Guide / 8 Accounts and logon

Operations RAM action Resource Description
RRpc iot:RRpc * Send a message to a

device and receive a
response from the device.

CreateProductTopic iot:CreateProductTopic * Create a topic category
for a product.

DeleteProductTopic iot:DeleteProductTopic * Delete a topic category.
QueryProductTopic iot:QueryProductTopic * Query all the topic

categories of a product.
UpdateProductTopic iot:UpdateProd

uctTopic
* Update a topic category.

CreateTopi
cRouteTable

iot:CreateTopi
cRouteTable

* Create message routing
 relationships between
topics.

DeleteTopi
cRouteTable

iot:DeleteTopi
cRouteTable

* Delete message routing
 relationships between
topics.

QueryTopic
ReverseRouteTable

iot:QueryTopic
ReverseRouteTable

* Query the source topic of
a target topic.

QueryTopic
RouteTable

iot:QueryTopic
RouteTable

* Query the target topics of
 a source topic.

GetDeviceShadow iot:GetDeviceShadow * Query the shadow
information of a device.

UpdateDeviceShadow iot:UpdateDevi
ceShadow

* Update the shadow
information of a device.

SetDeviceD
esiredProperty

iot:SetDeviceD
esiredProperty

* Set desired property
values for a device.

QueryDevic
eDesiredProperty

iot:QueryDevic
eDesiredProperty

* Query the desired
property values of a
specified device.

BatchUpdat
eDeviceNickname

iot:BatchUpdat
eDeviceNickname

* Update nicknames for
multiple devices.

QueryDeviceFileList iot:QueryDeviceFileList * Query the files that a
 specified device has
uploaded to IoT Platform.

Issue: 20190802 237

IoT Platform User Guide / 8 Accounts and logon

Operations RAM action Resource Description
QueryDeviceFile iot:QueryDeviceFile * Query a specified file that

 a specified device has
uploaded to IoT Platform.

DeleteDeviceFile iot:DeleteDeviceFile * Delete a specified file that
 a specified device has
uploaded to IoT Platform.

8.2.4 Use RAM users
RAM users (sub-accounts) can log on to the IOT Platform console to manage IoT
resources, and use the corresponding AccessKeyId and AccessKeySecret to use IoT
application programming interface (API).
You need to create a RAM user first, and assign the permissions for accessing IoT
Platform to this RAM user by using authorization policies. For more information
about customizing authorization policies, see Custom permissions.

Create a RAM user
Skip this step if you already have a RAM user.
1. Log on to the RAM console.
2. In the left-side navigation pane, click Users.
3. Click Create User.
4. Enter user information, select Automatically generate an AccessKey for this user.,

and then click OK.

Note:
The system prompts you to save the AccessKey after you click OK. You can
download this AccessKey only at this moment. You need to save this AccessKey
and secure it immediately. The system requires the AccessKey when the
corresponding RAM user calls API operations.

5. Set the initial login password.
a. On the User Management page, click Manage of the created RAM user to enter

the User Details page.
b. Click Enable Console Logon.
c. Set an initial password for this RAM user, select On your next logon you must

reset the password., and then click OK.
238 Issue: 20190802

https://ram.console.aliyun.com/

IoT Platform User Guide / 8 Accounts and logon

6. Enable multi-factor authentication (MFA). (Optional)
On the User Details page, click Enable VMFA Device.

After you create the RAM user, the RAM user can log on to the official website and the
IoT Platform console by using the Resource Access Management (RAM) user logon
link. To obtain the RAM user logon link, go to the RAM Overview page in the RAM
console.
However, the RAM user cannot access your Alibaba Cloud resources before you
grant permissions to the RAM user. Therefore, you need to assign permissions for
accessing IoT Platform to this RAM user.

Authorize the RAM user to access IoT Platform
In the RAM console, assign permissions to a RAM user on the User Management page,
or assign the same permissions to a group on the Group Management page. To assign
permissions to a RAM user, follow these steps:
1. Log on to the RAM console using the primary account.
2. In the left-side navigation pane, click Users.
3. Click Authorize next to the RAM user that you want to assign permissions to.
4. In the authorization dialog box, select the authorization policy that you want to

apply to this RAM user, click the right arrow in the middle of the page to move the
selected authorization policy to Selected Authorization Policy Name, and then click
OK.

Note:

Issue: 20190802 239

https://ram.console.aliyun.com/

IoT Platform User Guide / 8 Accounts and logon

To assign custom permissions to the RAM user, you need to create an
authorization policy first. For more information about customizing an
authorization policy, see Custom permissions.

The authorized RAM user can access the resources defined in the authorization policy
, and perform the specified operations.

Logon to the console using a RAM user
The primary account user can log on to the console from the official website.
However, the RAM user needs to log on to the console on the RAM User Logon page.
1. Obtain the link for logging on to the RAM User Logon page.

Log on to the RAM console using the primary account, view the RAM User Logon
Link on the RAM Overview page, and then send this logon link to the RAM user.

2. The RAM user accesses the RAM User Logon page, and logs on to the console using
the RAM user name and password.

Note:
The RAM user follows this logon format: RAM user name@company alias, such
as username@company-alias. The RAM user also needs to change the logon
password after logon for the first time.

240 Issue: 20190802

IoT Platform User Guide / 8 Accounts and logon

3. Click Console in the upper-right corner of the page to go to the Home page.
4. Click Products, and select IoT Platform to go to the IoT Platform console.
Then, the RAM user can perform authorized operations in the console.

8.2.5 Advanced guide to STS
Security Token Service (STS) enables more strict permission management than
Resource Access Management (RAM). Using STS to implement resource access
control involves a complicated authorization process.You can use STS to grant RAM
users temporary permissions to access resources.
RAM users and the permissions granted to RAM users have long-term validity. You
 need to manually delete a RAM user or revoke permissions from RAM users. After
the account information of a RAM user has been leaked, if you fail to timely delete
this user or revoke related permissions, your Alibaba Cloud resources and important
 information may be compromised. Therefore, we recommend that you use STS to
manage key permissions or permissions that do not require long-term validity.
Figure 8-1: Process for granting temporary permissions to RAM users.

Step 1: Create a role
A role is a virtual entity that represents a virtual user with a group of permissions.
1. Log on to the RAM console.
2. Select Roles > Create Role to create a role.
3. Select User Role.
4. Use the default account information, and click Next.
5. Specify the role name and description, and click Create.

Issue: 20190802 241

https://ram.console.aliyun.com/

IoT Platform User Guide / 8 Accounts and logon

6. Click Close or Authorize.
If you have created the authorization policy that is to be granted to this role,
clickAuthorize to authorize this user.
If you have not created the authorization policy, click Close. You can create an
authorization policy for this role by clicking Policies.

Step 2: Create an authorization policy
An authorization policy defines the resource permissions that are to be granted to
roles.
1. In the RAM console, click Policies > Create Authorization Policy .
2. Select the blank template.
3. Specify the authorization policy name and policy content, and click Create

Authorization Policy.
For more information about writing the policy content, click Authorization Policy
Format.
Authorization policy example:Read-only permission of IoT resources.

{
" Version ": " 1 ",
" Statement ": [
{
" Action ": [
" rds : DescribeDB Instances ",
" rds : DescribeDa tabases ",
" rds : DescribeAc counts ",
" rds : DescribeDB InstanceNe tInfo "
],
" Resource ": "*",
" Effect ": " Allow "
},
{
" Action ": " ram : ListRoles ",
" Effect ": " Allow ",
" Resource ": "*"
},
{
" Action ":[
" mns : ListTopic "
],
" Resource ": "*",
" Effect ": " Allow "
},
{
" Action ": [
" dhs : ListProjec t ",
" dhs : ListTopic ",
" dhs : GetTopic "
],

242 Issue: 20190802

https://ram.console.aliyun.com/

IoT Platform User Guide / 8 Accounts and logon
" Resource ": "*",
" Effect ": " Allow "
},
{
" Action ": [
" ots : ListInstan ce ",
" ots : ListTable ",
" ots : DescribeTa ble "
],
" Resource ": "*",
" Effect ": " Allow "
},
{
" Action ":[
" log : ListShards ",
" log : ListLogSto res ",
" log : ListProjec t "
],
" Resource ": "*",
" Effect ": " Allow "
},
{
" Effect ": " Allow ",
" Action ": [
" iot : Query *",
" iot : List *",
" iot : Get *",
" iot : BatchGet *"
],
" Resource ": "*"
}
]
}

Authorization policy example:Read-write permission of IoT resources.

{
" Version ": " 1 ",
" Statement ": [
{
" Action ": [
" rds : DescribeDB Instances ",
" rds : DescribeDa tabases ",
" rds : DescribeAc counts ",
" rds : DescribeDB InstanceNe tInfo "
],
" Resource ": "*",
" Effect ": " Allow "
},
{
" Action ": " ram : ListRoles ",
" Effect ": " Allow ",
" Resource ": "*"
},
{
" Action ":[
" mns : ListTopic "
],
" Resource ": "*",
" Effect ": " Allow "
},
{

Issue: 20190802 243

IoT Platform User Guide / 8 Accounts and logon
" Action ": [
" dhs : ListProjec t ",
" dhs : ListTopic ",
" dhs : GetTopic "
],
" Resource ": "*",
" Effect ": " Allow "
},
{
" Action ": [
" ots : ListInstan ce ",
" ots : ListTable ",
" ots : DescribeTa ble "
],
" Resource ": "*",
" Effect ": " Allow "
},
{
" Action ":[
" log : ListShards ",
" log : ListLogSto res ",
" log : ListProjec t "
],
" Resource ": "*",
" Effect ": " Allow "
},
{
" Effect ": " Allow ",
" Action ": " iot :*",
" Resource ": "*"
}
]
}

After an authorization policy has been created, you can grant the permissions defined
 in this policy to roles.

Step 3: Authorize a role
A role can only have resource access permissions after it has been authorized.
1. In the RAM console, click Roles.
2. Select the role that you want to authorize, and click Authorize.
3. In the dialog box that appears, select the custom authorization policy that you

want to apply to the specified role, click the right arrow in the middle to move the

244 Issue: 20190802

https://ram.console.aliyun.com/

IoT Platform User Guide / 8 Accounts and logon

specified authorization policy to the Selected Authorization Policy Name list, and
then click OK.

The role will have the permissions defined in the selected authorization policy after
authorization is complete. You can click Manage to go to the Role Details page, and
view basic information about this role and the permissions it has been granted.
Next, you need to grant a RAM user the permission to play this role.

Step 4: Grant a RAM user the permission to play the role
After authorization is complete, the role obtains the permissions that are defined in
 the authorization policy. However, the role is only a virtual user. You need a RAM
user to play the role in order to perform the operations allowed by the permissions. If
 all RAM users are allowed to play the role, this causes security risks. You should only
grant the permission to play this role to specified RAM users.
To grant a RAM user the permission to play this role, you need to create a custom
authorization policy where the Resource parameter of this policy is set to the ID of
the role. You then authorize the RAM user with this authorization policy.
1. In the RAM console, click Policies > Create Authorization Policy .
2. Select the blank template.

Issue: 20190802 245

https://ram.console.aliyun.com/

IoT Platform User Guide / 8 Accounts and logon

3. Specify the authorization policy name and policy content, and click Create
Authorization Policy.

Note:
In the policy content, set the Resource parameter to the Arn of the role. On the
Roles page, find the specified role, click Manage to go to the Role Details page, and
then view the Arn of the role .

Role authorization policy example:

{
" Version ": " 1 ",
" Statement ": [
{
" Effect ": " Allow ",
" Action ": " iot : QueryProdu ct ",
" Resource ": " Role Arn "
}
]
}

4. After the authorization policy has been created, go to the home page of the RAM
console.

5. Click Users in the left-side navigation pane to enter RAM user management page.
6. Select the RAM user you want to authorize and click Authorize.
7. In the dialog box that appears, select the authorization policy that you have just

created, click the right arrow in the middle to move the specified authorization
policy to the Selected Authorization Policy Name list, and then click OK.

After authorization is complete, the RAM user obtains the permission to play this role
. You can then use STS to obtain the temporary identity credentials for accessing the
resources.

Step 5: The RAM user obtains temporary identity credentials
Authorized RAM users can call the STS API operations or use the STS SDKs to obtain
the temporary identity credentials for role play. The temporary credentials include an
AccessKeyId, AccessKeySecret, and SecurityToken. For more information about the
STS API and STS SDKs, see API Reference (STS)and SDK Reference (STS).
You need to specify the following parameters when using an STS API or SDK to obtain
temporary identity credentials:
• RoleArn: The Arn of the role that the RAM user is to play.

246 Issue: 20190802

https://www.alibabacloud.com/help/doc-detail/28756.htm
https://www.alibabacloud.com/help/doc-detail/28786.htm

IoT Platform User Guide / 8 Accounts and logon

• RoleSessionName: The name of the temporary credentials. This is a custom
parameter.

• Policy: The authorization policy. This parameter adds a restriction to the
permissions of the role. You can use this parameter to restrict the permissions of
the token. If you do not specify this parameter, a token possessing all permissions
of the specified role is created.

• DurationSeconds: The validity period of the temporary credentials. This parameter
 is measured in seconds. The default value is 3,600 and the value ranges from 900 to
 3,600.

• id and secret: The AccessKeyId and AccessKeySecret of the RAM user.
Examples of obtaining temporary identity credentials
API example: The RAM user calls the STS AssumeRole operation to obtain the
temporary identity credentials for role play.

https :// sts . aliyuncs . com ? Action = AssumeRole
& RoleArn = acs : ram :: 1234567890 123456 : role / iotstsrole
& RoleSessio nName = iotreadonl yrole
& DurationSe conds = 3600
& Policy =< url_encode d_policy >
&< Common request parameters >

SDK example: The RAM user obtains the temporary identity credentials through the
Python CLI interface for STS.
$ python ./ sts . py AssumeRole RoleArn = acs : ram ::
1234567890 123456 : role / iotstsrole RoleSessio nName =
iotreadonl yrole Policy ='{" Version ":" 1 "," Statement ":

[{" Effect ":" Allow "," Action ":" iot :*"," Resource ":"*"}]}'
DurationSe conds = 3600 -- id = id -- secret = secret

After the request has been received, the temporary identity credentials that are
required to play the role are returned. The credentials include an AccessKeyId,
AccessKeySecret, and SecurityToken.

Step 6: The RAM user accesses the resources
After obtaining the temporary identity credentials, the RAM user can pass in the
credentials in the SDK requests to play the specified role.

Issue: 20190802 247

IoT Platform User Guide / 8 Accounts and logon

Java SDK example: The RAM user passes in the AccessKeyId, AccessKeySecret, and
SecurityToken parameters that are contained in the temporary identity credentials in
the request and creates the IAcsClient object.
IClientPro file profile = DefaultPro file . getProfile (" cn -
hangzhou ", AccessKeyI d , AccessSecr et);
RpcAcsRequ est request . putQueryPa rameter (" SecurityTo ken
", Token);
IAcsClient client = new DefaultAcs Client (profile);
AcsRespons e response = client . getAcsResp onse (request);

248 Issue: 20190802

	Contents
	Legal disclaimer
	Generic conventions
	1 Create products and devices
	1.1 Create a product
	1.2 Create devices
	1.2.1 Create multiple devices at a time
	1.2.2 Create a device
	1.2.3 Manage devices

	1.3 TSL
	1.3.1 Overview
	1.3.2 Define features
	1.3.3 Import Thing Specification Language (TSL)
	1.3.4 The TSL format

	1.4 Data parsing
	1.4.1 Data parsing

	1.5 Topics
	1.5.1 What is a topic?
	1.5.2 Create a topic category

	1.6 Tags
	1.7 Gateways and sub-devices
	1.7.1 Gateways and sub-devices
	1.7.2 Sub-device management

	1.8 Service Subscription
	1.8.1 What is service subscription?
	1.8.2 Development guide for Java HTTP/2 SDK
	1.8.3 Development guide for .NET HTTP/2 SDK
	1.8.4 Limits
	1.8.5 Subscribe to device messages by using Message Service

	1.9 Device group
	1.10 Manage files

	2 Rules
	2.1 Data Forwarding
	2.1.1 Overview
	2.1.2 Compare data forwarding solutions
	2.1.3 Create and configure a rule
	2.1.4 SQL statements
	2.1.5 Functions
	2.1.6 Data forwarding procedure
	2.1.7 Data format
	2.1.8 Regions and zones

	2.2 Data Forwarding Examples
	2.2.1 Forward data to another topic
	2.2.2 Forward data to Table Store
	2.2.3 Forward data to ApsaraDB for RDS
	2.2.4 Forward data to Message Service
	2.2.5 Forward data to Function Compute

	3 Monitoring and Maintenance
	3.1 Real-time monitoring
	3.1.1 Real-time monitoring
	3.1.2 Alerts and notifications

	3.2 Online debug
	3.2.1 Debug applications using Physical Devices
	3.2.2 Debug applications using virtual devices

	3.3 Device log
	3.4 Firmware update
	3.5 Remote configuration

	4 Generic protocol SDK
	4.1 Overview
	4.2 Use the basic features
	4.3 Use the advanced features

	5 RRPC
	5.1 What is RRPC?
	5.2 System-defined topics
	5.3 Custom topics

	6 Device shadows
	6.1 Device Shadow overview
	6.2 Device shadow JSON format
	6.3 Device shadow data stream

	7 Configure the NTP service
	8 Accounts and logon
	8.1 Log on to the console using the primary account
	8.2 Resource Access Management (RAM)
	8.2.1 RAM and STS
	8.2.2 Custom permissions
	8.2.3 API permissions
	8.2.4 Use RAM users
	8.2.5 Advanced guide to STS

