
Alibaba Cloud
ApsaraVideo for Media Processing

Developer Guide
Issue: 20190318

ApsaraVideo for Media Processing Developer Guide / Legal disclaimer

Legal disclaimer
Alibaba Cloud reminds you to carefully read and fully understand the terms and
conditions of this legal disclaimer before you read or use this document. If you have
read or used this document, it shall be deemed as your total acceptance of this legal
disclaimer.
1. You shall download and obtain this document from the Alibaba Cloud website

 or other Alibaba Cloud-authorized channels, and use this document for your
own legal business activities only. The content of this document is considered
 confidential information of Alibaba Cloud. You shall strictly abide by the
confidentiality obligations. No part of this document shall be disclosed or provided
 to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted,
or disseminated by any organization, company, or individual in any form or by any
means without the prior written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades
, adjustments, or other reasons. Alibaba Cloud reserves the right to modify
the content of this document without notice and the updated versions of this
 document will be occasionally released through Alibaba Cloud-authorized
channels. You shall pay attention to the version changes of this document as they
occur and download and obtain the most up-to-date version of this document from
Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud
products and services. Alibaba Cloud provides the document in the context that
 Alibaba Cloud products and services are provided on an "as is", "with all faults
" and "as available" basis. Alibaba Cloud makes every effort to provide relevant
 operational guidance based on existing technologies. However, Alibaba Cloud
hereby makes a clear statement that it in no way guarantees the accuracy, integrity
, applicability, and reliability of the content of this document, either explicitly
or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial
 losses incurred by any organizations, companies, or individuals arising from
their download, use, or trust in this document. Alibaba Cloud shall not, under any
 circumstances, bear responsibility for any indirect, consequential, exemplary,
incidental, special, or punitive damages, including lost profits arising from the use

Issue: 20190318 I

ApsaraVideo for Media Processing Developer Guide / Legal disclaimer

 or trust in this document, even if Alibaba Cloud has been notified of the possibility
 of such a loss.

5. By law, all the content of the Alibaba Cloud website, including but not limited to
works, products, images, archives, information, materials, website architecture,
website graphic layout, and webpage design, are intellectual property of Alibaba
 Cloud and/or its affiliates. This intellectual property includes, but is not limited
 to, trademark rights, patent rights, copyrights, and trade secrets. No part of the
 Alibaba Cloud website, product programs, or content shall be used, modified
, reproduced, publicly transmitted, changed, disseminated, distributed, or
published without the prior written consent of Alibaba Cloud and/or its affiliates
. The names owned by Alibaba Cloud shall not be used, published, or reproduced
for marketing, advertising, promotion, or other purposes without the prior written
 consent of Alibaba Cloud. The names owned by Alibaba Cloud include, but are
not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other brands of Alibaba
Cloud and/or its affiliates, which appear separately or in combination, as well as
 the auxiliary signs and patterns of the preceding brands, or anything similar to
the company names, trade names, trademarks, product or service names, domain
 names, patterns, logos, marks, signs, or special descriptions that third parties
identify as Alibaba Cloud and/or its affiliates).

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

II Issue: 20190318

ApsaraVideo for Media Processing Developer Guide / Legal disclaimer

Issue: 20190318 III

ApsaraVideo for Media Processing Developer Guide / Generic conventions

Generic conventions
Table -1: Style conventions
Style Description Example

This warning information
indicates a situation that will
cause major system changes,
faults, physical injuries, and other
 adverse results.

Danger:
Resetting will result in the loss of
user configuration data.

This warning information
indicates a situation that may
cause major system changes,
faults, physical injuries, and other
 adverse results.

Warning:
Restarting will cause business
interruption. About 10 minutes are
required to restore business.

This indicates warning informatio
n, supplementary instructions,
and other content that the user
must understand.

Notice:
Take the necessary precautions
to save exported data containing
sensitive information.

This indicates supplemental
instructions, best practices, tips,
and other content that is good to
know for the user.

Note:
You can use Ctrl + A to select all
files.

> Multi-level menu cascade. Settings > Network > Set network
type

Bold It is used for buttons, menus
, page names, and other UI
elements.

Click OK.

Courier
 font

It is used for commands. Run the cd / d C :/ windows
 command to enter the Windows

system folder.
Italics It is used for parameters and

variables.
bae log list --
instanceid Instance_ID

[] or [a|b] It indicates that it is a optional
value, and only one item can be
selected.

ipconfig [-all|-t]

Issue: 20190318 I

ApsaraVideo for Media Processing Developer Guide / Generic conventions

Style Description Example
{} or {a|b} It indicates that it is a required

value, and only one item can be
selected.

swich {stand | slave}

II Issue: 20190318

ApsaraVideo for Media Processing Developer Guide / Generic conventions

Issue: 20190318 III

ApsaraVideo for Media Processing Developer Guide / Contents

Contents
Legal disclaimer.. I
Generic conventions.. I
1 Concepts.. 1

1.1 Task and MPS queue..1
1.2 Transcoding template.. 3
1.3 Workflows and media.. 52 Developing process of workflows.. 8

3 Upload videos...9
3.1 Overview... 9
3.2 Set a subaccount and authorization.. 12
3.3 Set CORS..19
3.4 Request security token - Java sample code.. 214 Receive message notifications... 23
4.1 Overview..23
4.2 Receive notification through queues...26
4.3 Receive message through topic notification.. 305 Video encryption.. 31
5.1 HLS standard encryption... 316 Media library management... 35
6.1 Overview..35
6.2 Basic video attributes...36
6.3 Media details... 39
6.4 Tag management..42
6.5 Category management..44

IV Issue: 20190318

ApsaraVideo for Media Processing Developer Guide / 1 Concepts

1 Concepts
1.1 Task and MPS queue

This article introduces several basic concepts and relationships in MPS to help
developers better understand and use MPS.
Concept description:
• Task

A task in the MPS is an abstract concept which contains a variety of types of tasks:
transcoding tasks, screenshot tasks, and media information tasks.
One task contains three key pieces of information: input, output and parameters
. Input and output parameters are used to set the input file and the output file for
the completed task. These parameters are used to set the detailed configuration for
 executing the specific function.

• Parameters
- Template parameters

Due to the large number of tasks, it is rework to repeat each task submission
. Templates are a concept proposed to solve this problem. The essence of the
 template is a collection of commonly used parameters. This collection can
reduce the number of parameters that need to be specified when submitting the
task, thus simplifing the submission code.

- API parameters
To create a template for each different combination of parameters can result in a
 dramatic increase in the number of templates and make template management
 more complex. Therefore, parameters can be set not only in the template, but
also through the API.

- Covering order
The API parameter has a higher priority than the corresponding parameter in
the template and will cover the latter.
For example: the same video can be transcoded to output multiple resolutions
 (HD, SD), different definition formats (MP4), encoding standards (H. 264) and

Issue: 20190318 1

ApsaraVideo for Media Processing Developer Guide / 1 Concepts

 frame rate. The difference lies only in the rate and resolution. You can create
 a template with a default combination of parameters (MP4 + H. 264 +25FPS +
2Mbps +1280x720). When calling the API, if the API parameter is not set, the
task is executed according to the default parameters (2Mbps +1280x720); and if
the API parameter (4Mbps +1920x1080) is set, the task is executed according to
the API parameters instead (4Mbps +1920x1080).

• MPS queues
After the user submits a task through the API interface, the task queues in the MPS
queue first and then is executed in the order of priority and submission order.
The tasks in the MPS queueq can have multiple priorities (10 is the top priority, 1
is the lowest 1, 6 is the default). In case of the same priority , the taskes submitted
earlier are executed first. For tasks submitted at the same time, those with higher
priority are executed first.

• Task execution and completion
- Synchronous and asynchronous

Depending on the type of job, some jobs can be completed quickly, however,
most jobs cannot be completed instantly. There are two ways to execute jobs:
synchronous and asynchronous. Synchronous types (such as screenshot tasks
) return results immediately, while asynchronous types (such as transcoding
tasks) results in two kinds of queries: scheduled polling and message notificati
on.

- Regular polling
Each task is identified by a unique task ID, which is returned synchronously to
 the caller when the task is submitted, after which task results can be queried

2 Issue: 20190318

ApsaraVideo for Media Processing Developer Guide / 1 Concepts

 by the task ID. The disadvantage of this approach lies in the fact that it is not
executed in real time.
Notifications:
The MPS queue can be configured to send message notifications, you can get the
task results instantly when they are ready. The message notification contains
several important pieces of information: task ID, user data, and result.
■ Task ID

When you submit a task, record the task ID, and then compare it with the task
 ID of the message notification to know the result belongs to which task.

■ User data
When submitting a task, you can enter custom user data parameters (such as
commodity IDs) each time you execute. The custom user data parameters are
 then returned in the message notification without the need to record the task
 ID in the business system. Meanwhile, you can use custom user data, such as
commodity IDs, to associate the business system.

1.2 Transcoding template
Due to the many parameters of transcoding job, it is difficult to fill in the transcoding
job repeatedly each time, transcoding templates are the concepts proposed to solve

Issue: 20190318 3

ApsaraVideo for Media Processing Developer Guide / 1 Concepts

this problem, the essence is to combine some common parameters. Transcoding
templates are available in two types: Preset templates and Custom templates.
• Preset templates

Pre-provided to users based on the common combination of some parameters. For
more information, see Preset template details.
Preset templates include several subtypes:
- Preset static template

Can be used directly as transcoding template, including video transcoding,
audio transcoding, transfer package and other scenarios. For example, “MP4-
HD” and “MP3-128K”.

- NarrowBand HD template
Narrowband HD is a unique technology for media transcoding. In the same bit
rate, it can bring higher clarity so as to provide a better user experience at the
same cost.

- Preset smart template
The preset smart template automatically adjusts the transcoding parameters
according to the characteristics of the input file, resulting in lower bit rate at the
same resolution, thus reducing more cost.

Note:
When using the preset smart template, you first need to callSubmitAnalysisJob
interface (SubmitAnalysisJob). After the analysis task successfully
completes, you can call the Query Template Analysis Job interface
(QueryAnalysisJobList) to obtain a valid preset smart template corresponding
to the input file list. If the preset smart template specified in the submitted
transcoding task is in an invalid list, the transcoding task is invalid and will
return a failure.

• Custom templates
With a higher requirement, you can use a custom template to define your own
combination of transcoding parameters (audio, video, container, transcode, etc.).
Each custom template has a unique template ID.

4 Issue: 20190318

ApsaraVideo for Media Processing Developer Guide / 1 Concepts

1.3 Workflows and media
This article introduces several basic concepts and relationships for MPS to help
developers better understand and use media processing service.
Concept description:
• Media

Media includes one input video/audio media file and all the relevant output file,
such as transcoding/screenshots/media info/AI tags. Input files and media have a
one-to-one relationship and are uniquely identified by the Media ID.
Media Files
The Media Files is a collection of all media, with media being the smallest unit for
media files.

• Workflow
Workflow is a like a factory that automates the production of media, it is uniquely
identified by a MediaWorkflowId.

Note:
Media Workflow also refers to the workflow.

- Event
Each node in the workflow is called an activity. According to actual requiremen
ts, it can be run in parallel (for example, the task A, B, C) or in a serialized
manner (for example: the task A1, A2). In addition to the initial input activity

Issue: 20190318 5

ApsaraVideo for Media Processing Developer Guide / 1 Concepts

and the final release reporting activity, activities supports various types of tasks
, such as transcoding tasks and screenshot tasks.
■ Starting input activity

Configure the triggering path of the storage associated with the workflow,
and automatically trigger the task running whenever the video/audio multi-
media file is uploaded to the corresponding path.

■ Finishing post reporting activities
After the workflow finished running, it sends an implementation message
. The running result contains the absolute address of the media ID and the
multi-media file, so that the specific multi-media file can be run.

■ Task activity
All parameters supported by the task can be configured in the task activity.

- Matching rules
For example, the uploaded file is http :// bucket . oss - cn - hangzhou .

aliyuncs . com / A / B / C / test1 . flv , the result of the configured
triggering path are as follows:
Path Matching or not
http://bucket.oss-cn-hangzhou.aliyuncs.com
/A/B/C/

Yes

http://bucket.oss-cn-hangzhou.aliyuncs.com
/A/B/C2/

No

http://bucket.oss-cn-hangzhou.aliyuncs.com
/A/B/

Yes

http://bucket.oss-cn-hangzhou.aliyuncs.com
/A/B2/

No

http://bucket.oss-cn-hangzhou.aliyuncs.com
/A/

Yes

http://bucket.oss-cn-hangzhou.aliyuncs.com
/A2/B/C/

No

http://bucket.oss-cn-hangzhou.aliyuncs.com
/A/B/C/test

Yes

6 Issue: 20190318

http://bucket.oss-cn-hangzhou.aliyuncs.com/A/B/C/?spm=a2c4g.11186623.2.5.7bac67e3tFgvaJ
http://bucket.oss-cn-hangzhou.aliyuncs.com/A/B/C/?spm=a2c4g.11186623.2.5.7bac67e3tFgvaJ
http://bucket.oss-cn-hangzhou.aliyuncs.com/A/B/C2/?spm=a2c4g.11186623.2.6.7bac67e3tFgvaJ
http://bucket.oss-cn-hangzhou.aliyuncs.com/A/B/C2/?spm=a2c4g.11186623.2.6.7bac67e3tFgvaJ
http://bucket.oss-cn-hangzhou.aliyuncs.com/A/B/?spm=a2c4g.11186623.2.7.7bac67e3tFgvaJ
http://bucket.oss-cn-hangzhou.aliyuncs.com/A/B/?spm=a2c4g.11186623.2.7.7bac67e3tFgvaJ
http://bucket.oss-cn-hangzhou.aliyuncs.com/A/B2/?spm=a2c4g.11186623.2.8.7bac67e3tFgvaJ
http://bucket.oss-cn-hangzhou.aliyuncs.com/A/B2/?spm=a2c4g.11186623.2.8.7bac67e3tFgvaJ
http://bucket.oss-cn-hangzhou.aliyuncs.com/A/?spm=a2c4g.11186623.2.9.7bac67e3tFgvaJ
http://bucket.oss-cn-hangzhou.aliyuncs.com/A/?spm=a2c4g.11186623.2.9.7bac67e3tFgvaJ
http://bucket.oss-cn-hangzhou.aliyuncs.com/A2/B/C/?spm=a2c4g.11186623.2.10.7bac67e3tFgvaJ
http://bucket.oss-cn-hangzhou.aliyuncs.com/A2/B/C/?spm=a2c4g.11186623.2.10.7bac67e3tFgvaJ
http://bucket.oss-cn-hangzhou.aliyuncs.com/A/B/C/test?spm=a2c4g.11186623.2.11.7bac67e3tFgvaJ
http://bucket.oss-cn-hangzhou.aliyuncs.com/A/B/C/test?spm=a2c4g.11186623.2.11.7bac67e3tFgvaJ

ApsaraVideo for Media Processing Developer Guide / 1 Concepts

Path Matching or not
http://bucket.oss-cn-hangzhou.aliyuncs.com
/A/B/C/test2

No

- Extension matching rules
The automatic triggering system during uploading checks the file extension to
avoid generating ineffective data (such as pdf, word files and other files).

Note:
API manual triggering system does not check the extension.

The files does not have the extension (file does not include extension separator
 “.”), or the extension conforms to the following rules:
■ Video

3gp, asf, avi, dat, dv, flv, f4v, gif, m2t, m3u8, m4v, mj2, mjpeg, mkv, mov, mp4
, mpe, mpg, mpeg, mts, ogg, qt, rm, rmvb, swf, ts, vob, wmv and webm.

■ Audio
aac, ac3, acm, amr, ape, caf, flac, m4a, mp3, ra, wav, wma, aiff

- Workflow running
Each time you upload a matching multi-media file, it is triggered once. If the
 same multi-media file is uploaded for multiple times, multiple runnings are
triggered. Each running has a unique RunId identifier.
In addition to the automatic triggering system when uploading, the workflow
 targets stored multi-media files in storage and also provides a manual API
triggering system. Each call to the API triggers a running.

- User data
You can enter custom user data parameters (for example, commodity IDs)
each time you run. The custom user data parameters are then returned in the
message notification without the need to record the absolute path of the media
 ID or multi-media file in the business system. Meanwhile, you can use custom
user data, such as commodity IDs, to associate the business system.

Issue: 20190318 7

http://bucket.oss-cn-hangzhou.aliyuncs.com/A/B/C/test2?spm=a2c4g.11186623.2.12.7bac67e3tFgvaJ
http://bucket.oss-cn-hangzhou.aliyuncs.com/A/B/C/test2?spm=a2c4g.11186623.2.12.7bac67e3tFgvaJ

ApsaraVideo for Media Processing Developer Guide / 2 Developing process of workflows

2 Developing process of workflows
1. Set a workflow

Easy to use: By using the GUIs of the console, a cloud-based audio/video handling
process is constructed on demand.
Powerful functions: The screenshot taking, transcoding, narrowband HD analysis,
encapsulation, watermarking, and editing functions are supported.
For more information about console configuration, see Workflows.

2. Upload a media file
After a media file is uploaded to the input bucket and path specified by the
workflow, the workflow is automatically executed based on the specified process.

3. Wait for a message notification
Message notifications during the workflow execution. For example, the execution
startup and completion notifications, are received.

4. Play a video
After a workflow is executed, the playback URL after transcoding is obtained to
play a video using a player.

8 Issue: 20190318

ApsaraVideo for Media Processing Developer Guide / 3 Upload videos

3 Upload videos
3.1 Overview
Upload

Provides upload SDK, supports the web version (JavaScript) and mobile versions (
Android and iOS).
Uploads a video file using the console or a third-party tool.

Features
Provides user-friendly APIs. You only need to specify the location to store local and
OSS files.
Supports resumable upload, multi-file queue, ultra-large files, recovery from network
 anomalies, and security mechanisms.
A media workflow is automatically triggered.

Media workflow triggering.
After a multimedia file is uploaded to the input bucket and path specified by the
media workflow, the media workflow is automatically executed based on the specified
 process.
The following conditions must be met when an OSS file is uploaded to automatically
trigger a media workflow:
• Match the media workflow.

For more information about workflow triggering and matching rules, see Add media.
The workflow is in the Activated state.

• Match the file name extension.
Triggering requirement is that the file is a multi-media file, Media Files service
determines through the extension of a file. The file does not contain an extension

Issue: 20190318 9

ApsaraVideo for Media Processing Developer Guide / 3 Upload videos

(the file name does not contain the extension separator ".") or the extension meets
the following rules:
- Video

3gp, asf, avi, dat, dv, flv, f4v, gif, m2t, m3u8, m4v, mj2, mjpeg, mkv, mov, mp4,
mpe, mpg, mpeg, mts, ogg, qt, rm, rmvb, swf, ts, vob, wmv and webm.

- Audio
aac, ac3, acm, amr, ape, caf, flac, m4a, mp3, ra, wav, wma and aiff.

• Specify media attributes.
You can specify media attributes, including the title, tag, description, category,
cover URL, and custom data, to trigger a media workflow. For more information
about the attribute description, see “Request parameters” in Add Media.

Security
In normal cases, a video file is directly uploaded using a client. In this case, the
AccessKey must be securely stored on the client. Once being disclosed, the AccessKey
is exposed to high risk and hard to be replaced. We recommend that the client access
an application to obtain the AccessKey and use the Token provided by RAM.

Recommended process.

10 Issue: 20190318

https://www.alibabacloud.com/zh/product/ram?spm=a2796.7919406.1097650.dznavproductsf2.10096ecfs9GctW

ApsaraVideo for Media Processing Developer Guide / 3 Upload videos

1. Request the token.
Before each time a file is uploaded, you can use a video application (in App or
web mode) to access the application service of the business end. The application
service obtains a token from RAM and sends it back to the video application. This
ensures the security, implements identity verification and permission control, and
records your upload history.
Before using a token, Set a subaccount and permissions.
For more information, see Java sample code. (For more information about how to
use the token in other languages, see STS documentation).

2. Upload a file.
After integrating the upload SDK to the video application, you can upload files
using the obtained token. For more information, see Usage instruction.
• Web.

As JavaScript files are stored in an application or CDN domain and video files are
stored in an OSS domain, a cross-region request is involved when a JavaScript
file is uploaded. In this case, Set CORS.
JavaScript

• Mobile.
Android

iOS

Issue: 20190318 11

ApsaraVideo for Media Processing Developer Guide / 3 Upload videos

3.2 Set a subaccount and authorization
Perform the following steps to set sub-accounts and authorizations.
1. Create a subaccount.

a. Log on to the RAM console.
b. In the left-side navigation pane, click Identities > Users.
c. Click Create User.

d. InCreate user, create a subaccount which has the same permissions as the
primary account to access MPS.

Note:
12 Issue: 20190318

https://ram.console.aliyun.com/#/overview

ApsaraVideo for Media Processing Developer Guide / 3 Upload videos

Tick Programmatic Access.
e. Generate AccessKey for this account, copy and save the AccessKey for

subsequent access.

Issue: 20190318 13

ApsaraVideo for Media Processing Developer Guide / 3 Upload videos

2. Create a role.
a. In the left-side navigation pane, click RAM Roles.
b. Click Create RAM Role.

c. In Select type of trusted entity, select Alibaba Cloud Account.
In Select Trusted Alibaba Cloud Account, select Current Alibaba Cloud Account,
and click OK.

14 Issue: 20190318

ApsaraVideo for Media Processing Developer Guide / 3 Upload videos

Issue: 20190318 15

ApsaraVideo for Media Processing Developer Guide / 3 Upload videos

d. In RAM Roles, click the created role.

e. In Basic Information, copy ARN parameter acs:ram::example:role/mps.

3. Set the role authorization.
a. On the page of the created role, click Add Permissions.
b. Select policy.

Note:

16 Issue: 20190318

ApsaraVideo for Media Processing Developer Guide / 3 Upload videos

To adjust the STS permissions of the subaccount (for example, to modify, add,
or delete a permission), return to this step.

You can create a policy in Custom Policy and add this policy in editing policy
to grant the minimum permission required by the upload SDK. The full policy
content is as follows:
{
 " Statement ": [
 {
 " Action ": [
 " oss : PutObject ",
 " oss : AbortMulti partUpload ",
 " oss : ListMultip artUploads ",
 " oss : ListParts "
],
 " Effect ": " Allow ",
 " Resource ": [
 "*"
]
 }
],
 " Version ": " 1 "

Issue: 20190318 17

ApsaraVideo for Media Processing Developer Guide / 3 Upload videos
 }

4. Associate the subaccount with the role.
a. Log on to the RAM console, and click Permissions > Policies in the left-side

navigation pane.
b. Click Create Policy.

c. In Create Custom Policy, set Resource field to ARN parameter
acs:ram::example:role/mps.

d. In the left-side navigation pane, click Identities > Users.
e. Select the subaccount you have set, and click Add Permissions.
f. Enter the created test policy and teststspol icy is displayed.

18 Issue: 20190318

ApsaraVideo for Media Processing Developer Guide / 3 Upload videos

3.3 Set CORS
As JavaScript files and video files are stored in different regions, a cross-region
request is initiated when a JavaScript file is uploaded. In this case, cross-region
settings must be implemented on OSS. Otherwise, files cannot be uploaded using
JavaScript at the web end.
1. Open the CORS settings page of the input bucket.

Issue: 20190318 19

ApsaraVideo for Media Processing Developer Guide / 3 Upload videos

2. Add a rule.

• Source
Enter the name of the region in which JavaScript files are deployed. If access
through both HTTP and HTTPS is required, add them respectively.

• Method
Select GET, POST, PUT, HEAD.

• Allowed Header
Enter *.

• Expose Header

20 Issue: 20190318

ApsaraVideo for Media Processing Developer Guide / 3 Upload videos

Enter etag and x-oss-request-id in two lines.

3.4 Request security token - Java sample code
1. Reference the STS SDK in pom.xml.

< repositori es >
 < repository >
 < id > sonatype - nexus - staging </ id >
 < name > Sonatype Nexus Staging </ name >
 < url > https :// oss . sonatype . org / service / local /
staging / deploy / maven2 /</ url >
 < releases >
 < enabled > true </ enabled >
 </ releases >
 < snapshots >
 < enabled > true </ enabled >
 </ snapshots >
 </ repository >
 </ repositori es >
< dependenci es >
 < dependency >
 < groupId > com . aliyun </ groupId >
 < artifactId > aliyun - java - sdk - sts </ artifactId >
 < version > 2 . 1 . 6 </ version >
 </ dependency >
 < dependency >
 < groupId > com . aliyun </ groupId >
 < artifactId > aliyun - java - sdk - core </ artifactId >
 < version > 2 . 2 . 0 </ version >
 </ dependency >
</ dependenci es >

2. Code.
STS requires the role parameter roleArn . Log on to the RAM console, click Roles,
and then click a specific Role Name. The Arn parameter is displayed in the basic
information, for example, 1351140512 345678 : role / teststs .
• Main Function.

public static void main (String [] args) throws
Exception {

 IClientPro file profile = DefaultPro file . getProfile (
 " cn - hangzhou ",
 < accessKeyI d >,
 < accessKeyS ecret >);
 DefaultAcs Client client = new DefaultAcs Client (
profile);

 AssumeRole Response response = assumeRole (client , <
roleArn >);

 AssumeRole Response . Credential s credential s =
response . getCredent ials ();

 System . out . println (credential s . getAccessK eyId () +
 "\ n " +
 credential s . getAccessK eySecret () +
 "\ n " +

Issue: 20190318 21

https://ram.console.aliyun.com/#/overview

ApsaraVideo for Media Processing Developer Guide / 3 Upload videos
 credential s . getSecurit yToken () + "\
n " +

 credential s . getExpirat ion ());
}

• Function that generates the temporary AccessKey and token.
private static AssumeRole Response assumeRole (

 DefaultAcs Client client ,
 String roleArn)
 throws ClientExce ption {
 final AssumeRole Request request = new AssumeRole
Request ();

 request . setVersion (" 2015 - 04 - 01 ");
 request . setMethod (MethodType . POST);
 request . setProtoco l (ProtocolTy pe . HTTPS);
 request . setDuratio nSeconds (900L);
 request . setRoleArn (roleArn);
 request . setRoleSes sionName (" test - token ");
 return client . getAcsResp onse (request);
}

3. Token validity period.
The token generated in the sample code is valid for 900s, which can be adjusted as
required (ranging from 900s to 3600s).
You can use a generated token in the validity period, instead of repeatedly
generating new tokens. The following example shows how to check whether a
token needs to be generated again.
private static boolean isTimeExpi re (String expiration)
 {
 Date nowDate = new Date ();
 Date expireDate = javax . xml . bind . DatatypeCo nverter
. parseDateT ime (expiration). getTime ();
 if (expireDate . getTime () <= nowDate . getTime ()) {
 return true ;
 } else {
 return false ;
 }
}

22 Issue: 20190318

ApsaraVideo for Media Processing Developer Guide / 4 Receive message notifications

4 Receive message notifications
4.1 Overview
Message format

When media workflow execution starts or completes, a message is sent to the queue
or topic (notification) specified by MNS.

Issue: 20190318 23

ApsaraVideo for Media Processing Developer Guide / 4 Receive message notifications

• Format definition
A message body is in JSON format. For details about the field names, types, and
descriptions, see Media workflow message in AddMedia.
The structure layers are defined as follows:
- Top layer

It is a JSON object. Definition:
{ Basic attribute of the current activity , object to

be executed by the workflow }
- Basic attribute of the current activity

It is a top-layer key value attribute, rather than an independent object. See the
following example. Definition:
Workflow execution ID, activity name, activity type, activity state, error
information.

- Details of the object to be executed by the

workflow

It is a JSON object. Definition:
{Workflow execution ID, media workflow ID, media workflow name, media ID,
input file, workflow execution type, activity object array , creation
time}.

- Activity object array

It is a JSON array, containing all activities executed to the current state. For
 example, a start message contains only the Start activity object, while a
completion message contains all activity objects. Definition:
[Activity object , activity object …]

- Activity object

It is a JSON object. Definition:
{Activity name, activity type, task ID, activity state, start time, end time, error
information}.

• Start
“Activity type” in activity basic attribute is “Start”.

24 Issue: 20190318

ApsaraVideo for Media Processing Developer Guide / 4 Receive message notifications

• Complete
“Activity type” in activity basic attribute is “Report”.

• Example:
{
 " RunId ": " 8f8aba5a62 ab4127ae2a dd18da20b0 f2 ",
 " Name ": " Act - 4 ",
 " Type ": " Report ",
 " State ": " Success ",
 " MediaWorkf lowExecuti on ": {
 " Name ": " Concurrent Success ",
 " RunId ": " 8f8aba5a62 ab4127ae2a dd18da20b0 f2 ",
 " Input ": {
 " InputFile ": {
 " Bucket ": " inputfirst ",
 " Location ": " oss - test ",
 " Object ": " mediaWorkf low / Concurrent Success
/ 01 . wmv "
 }
 },
 " State ": " Success ",
 " MediaId ": " 2be491ab4c b6499cd0be fe5fcf0cb6 70 ",
 " ActivityLi st ": [
 {
 " RunId ": " 8f8aba5a62 ab4127ae2a dd18da20b0 f2
",
 " Name ": " Act - 1 ",
 " Type ": " Start ",
 " State ": " Success ",
 " StartTime ": " 2016 - 03 - 15T02 : 53 : 41Z ",
 " EndTime ": " 2016 - 03 - 15T02 : 53 : 41Z "
 },
 {
 " RunId ": " 8f8aba5a62 ab4127ae2a dd18da20b0 f2
",
 " Name ": " Act - 2 ",
 " Type ": " Transcode ",
 " JobId ": " f34b6d1429 dd491faa7a 6c1c8f9052 85
",
 " State ": " Success ",
 " StartTime ": " 2016 - 03 - 15T02 : 53 : 43Z ",
 " EndTime ": " 2016 - 03 - 15T02 : 53 : 47Z "
 },
 {
 " RunId ": " 8f8aba5a62 ab4127ae2a dd18da20b0 f2
",
 " Name ": " Act - 3 ",
 " Type ": " Snapshot ",
 " JobId ": " c14150be33 304825a5d6 7cd5364c35 cb
",
 " State ": " Success ",
 " StartTime ": " 2016 - 03 - 15T02 : 53 : 44Z ",
 " EndTime ": " 2016 - 03 - 15T02 : 53 : 45Z "
 },
 {
 " RunId ": " 8f8aba5a62 ab4127ae2a dd18da20b0 f2
",
 " Name ": " Act - 4 ",
 " Type ": " Report ",
 " State ": " Success ",

Issue: 20190318 25

ApsaraVideo for Media Processing Developer Guide / 4 Receive message notifications
 " StartTime ": " 2016 - 03 - 15T02 : 53 : 49Z ",
 " EndTime ": " 2016 - 03 - 15T02 : 53 : 49Z "
 }
],
 " CreationTi me ": " 2016 - 03 - 15T02 : 53 : 39Z "
 }
 }

How to receive and resolve a message
• Queue

PHP sample code

• Topic (notification)
PHP sample code

4.2 Receive notification through queues
This section briefly introduces the requirements and installation instructions of MNS.
For more information, see the MNS documentation SDK download and Queue user
manual.
The example language is PHP. For more information about the usage instructions of
other languages, see the MNS documentation SDK user manual.

Environment requirements
PHP 5.5+

Installation
Download the MNS SDK for PHP SDK from Alibaba Cloud.
Download the MNS SDK for PHP SDK from Alibaba Cloud.
The example language is PHP. For more information about the usage instructions of
other languages, see SDK user manual.
Decompress the file to the project directory. The decompressed directory is php_sdk

。

26 Issue: 20190318

ApsaraVideo for Media Processing Developer Guide / 4 Receive message notifications

Sample code
• Reference the MNS SDK

require_on ce (dirname (__FILE__).'/ php_sdk / mns - autoloader
. php ');

• Initialize MNS
MNS configures an independent service domain name for each region of users. The
rule is https ://${ UserId }. mns . ${ Region }. aliyuncs . com . China
East 1 (Hangzhou) (cn-hangzhou)is used in the following example. You can also use
another region, for example, China North 2 (Beijing) (cn-beijing).
use AliyunMNS \ Client ;
 use AliyunMNS \ Exception \ MnsExcepti on ;

$ mns_client = new Client (' https ://'.$ user_id .'. mns . cn -
hangzhou . aliyuncs . com ',
 $ access_key _id , $ access_key _secret
);
 $ queue = $ mns_client -> getQueueRe f ($ queue_name);

• Receive a message
Each message received by MNS corresponds to a handle, which can be used later to
 operate the message (for example, delete the message).
In addition, MNS supports receiving messages in batches to improve the
performance. For more information, see MNS documentation BatchRecei
veMessage.
A timeout time can be specified when a message is received. (The timeout time
is set to 3s in the following example.) If no message exists in the queue, timeout
occurs and an exception is returned.
$ receipt_ha ndle = NULL ;
 $ message = null ;
 try
 {
 $ res = $ queue -> receiveMes sage (3);
 echo " ReceiveMes sage Succeed ! \ n ";
 $ message = $ res -> getMessage Body ();
 $ receipt_ha ndle = $ res -> getreceipt Handle ();
 }
 catch (MnsExcepti on $ e)
 {
 echo " ReceiveMes sage Failed : " . $ e . "\ n ";

Issue: 20190318 27

ApsaraVideo for Media Processing Developer Guide / 4 Receive message notifications
 }

• Delete a message
A message is not actively deleted from a queue. You must call DeleteMessage to
delete the message. Otherwise, the message is always in the queue, and you will
 receive the same message next time. In addition, DeleteMessage can be called
successfully only within the specified time after the message is received. For more
information, see MNS - DeleteMessage.
try
 {
 $ res = $ queue -> deleteMess age ($ receipt_ha ndle);
 echo " DeleteMess age Succeed ! \ n ";
 }
 catch (MnsExcepti on $ e)
 {
 echo " DeleteMess age Failed : " . $ e . "\ n ";
 }

• Analyze a message
The message body is a string while the content is a JSON object. After converting
the string to the object using json_decod e , you can analyze the JSON object
to obtain details of the message. The output file that triggers media workflow
execution is printed in the following example.
$ json_messa ge = json_decod e ($ message);
 $ input_file = $ json_messa ge ->{' MediaWorkf lowExecuti on
'}->{' Input '}->{' InputFile '};
 echo ' input_file location :'.$ input_file ->{' Location '}.
 ' bucket :'.$ input_file ->{' Bucket '}.
 ' object :'.$ input_file ->{' Object '}."\ n ";

• Obtain video output details
After obtaining details of a message, you can use the media library API to obtain
details of a video executed by a workflow. The output URL of the transcoding and
screenshot tasks is printed in the following example.
For more information about how to install and configure the SDK for PHP of the
media library, see Media Library SDK-PHP.
include_on ce ' aliyun - php - sdk - core / Config . php ';
 use Mts \ Request \ V20140618 as Mts ;

Initialize the client of the media library.
$ profile = DefaultPro file :: getProfile (' cn - hangzhou ',
 $ access_key _id ,
 $ access_key _secret);

28 Issue: 20190318

ApsaraVideo for Media Processing Developer Guide / 4 Receive message notifications
 $ mts_client = new DefaultAcs Client ($ profile);

Print the output URLs and basic information of all transcoding tasks.
If (strbmp ($ json_messa ge -> {' type '}, ' report ') = 0
){
 $ activities = $ json_messa ge ->{' MediaWorkf lowExecuti
on '}->{' ActivityLi st '};
 $ transcode_ job_ids = Array ();
 for ($ i = 0 ; $ i < count ($ audioStrea ms); $ i ++)
 {
 if (strcmp ($ activities [$ i]->{' Type '}, ' Transcode
') == 0) {
 $ transcode_ job_ids [] = $ activities [$ i]->{' JobId
'};
 }
 }
 $ request = new Mts \ QueryJobLi stRequest ();
 $ request -> setJobIds (join (',', $ transcode_ job_ids));
 $ request -> setRegionI d (' cn - hangzhou ');
 $ response = $ mts_client -> getAcsResp onse ($ request);
 for ($ i = 0 ; $ i < count ($ response ->{' JobList '}->{'
Job '}); $ i ++) {
 $ output = $ response ->{' JobList '}->{' Job '}[$ i]->{'
Output '};
 $ output_fil e = $ response ->{' JobList '}->{' Job '}[$ i
]->{' Output '}->{' OutputFile '};
 $ video_prop erties = $ response ->{' JobList '}->{' Job
'}[$ i]->{' Output '}->{' Properties '};
 echo ' URLs of the transcodin g output files
'.' http ://'.$ output_fil e ->{' Bucket '}.'.'.
 $ output_fil e ->{' Location '}.'. aliyuncs
. com /'.
 urldecode ($ output_fil e ->{' Object
'})."\ n ";
 echo ' basic informatio n of the transcodin
g output files '.$ video_prop erties ->{' Width '}.' x '.$
video_prop erties ->{' Height '}.
 ' duration :'.$ video_prop erties ->{'
Duration '}."\ n ";
 }
 }

Print the output URLs of all screenshot tasks.
if (strcmp ($ json_messa ge ->{' Type '}, ' Report ') == 0) {
 $ activities = $ json_messa ge ->{' MediaWorkf lowExecuti
on '}->{' ActivityLi st '};
 $ snapshot_j ob_ids = Array ();
 for ($ i = 0 ; $ i < count ($ audioStrea ms); $ i ++)
 {
 if (strcmp ($ activities [$ i]->{' Type '}, ' Snapshot
') == 0) {
 $ snapshot_j ob_ids [] = $ activities [$ i]->{' JobId
'};
 }
 }
 $ request = new Mts \ QuerySnaps hotJobList Request ();
 $ request -> setSnapsho tJobIds (join (',', $ snapshot_j
ob_ids));
 $ request -> setRegionI d (' cn - hangzhou ');
 $ response = $ mts_client -> getAcsResp onse ($ request);

Issue: 20190318 29

ApsaraVideo for Media Processing Developer Guide / 4 Receive message notifications
 for ($ i = 0 ; $ i < count ($ response ->{' SnapshotJo
bList '}->{' SnapshotJo b '}); $ i ++) {
 $ snapshot_c onfig = $ response ->{' SnapshotJo bList '}-
>{' SnapshotJo b '}[$ i]->{' SnapshotCo nfig '};
 $ output_fil e = $ response ->{' SnapshotJo bList '}->{'
SnapshotJo b '}[$ i]->{' SnapshotCo nfig '}->{' OutputFile '};
 echo ' URLs of the screenshot output files '.'
http ://'.$ output_fil e ->{' Bucket '}.'.'.
 $ output_fil e ->{' Location '}.'. aliyuncs
. com /'.
 urldecode ($ output_fil e ->{' Object
'})."\ n ";
 }
 }

4.3 Receive message through topic notification
MNS actively pushes message notifications by topic to users. You can conveniently
receive the messages if an HTTP service can be publicly accessed.

Basic structure
The basic structure of a video media repository notification is as follows:
• The outermost layer is the structure body of MNS.

For more information about the definition and format of MNS, see MNS - Notificati
on operations.

• The message body of MNS is the structure body of the media repository.
After receiving the message body , MNS further resolves the message of the
media repository. For more information about the resolution steps and sample
codes, see Receive a message in queue mode.

Security
The topic (notification) mode is convenient. However, as the HTTP service can be
publicly accessed, illegal calls and attacks must be prevented. For more informatio
n about how to identify whether a message is initiated by MNS, see the MNS
documentation Endpoint signature authentication.

30 Issue: 20190318

ApsaraVideo for Media Processing Developer Guide / 5 Video encryption

5 Video encryption
5.1 HLS standard encryption

Video encryption is a measure to protect the video content. Encrypting the video
content can effectively avoid video leaks and leeching problems, thus being widely
used in online education, finance and economics and other fields.

Note:
Alibaba Cloud currently supports encryption in two ways. One is private encryption,
and the other is HLS standard encryption. Using HLS standard encryption,
users must protect the encryption key. This document introduces HLS standard
encryption.

Complete encryption architecture

Terms
• Key Management Service (KMS)

A security management service, mainly responsible for the production, encryption
and deceyption of data key and other operations. Click here to activate KMS service.

• Data Key (DK), also called plaintext key
DK is plaintext data key used in data encryption.

Issue: 20190318 31

https://common-buy-intl.aliyun.com/?spm=a2796.105433.1204892.1.631e2a7e616pCe&commodityCode=kms_intl&accounttraceid=83ebc5a2-8fce-43b2-bf75-15ff169809d8#/open

ApsaraVideo for Media Processing Developer Guide / 5 Video encryption

• Enveloped Data Key (EDK), also called ciphertext key.
EDK is the ciphertext data key, encrypted by using envelope encryption technology
.

• Resource Access Management (RAM)
User identification management and resource access management service
provided by Alibaba Cloud. Click here to activate RAM service.

Procedure
1. Create HLS encryption workflow.

Note:
The console currently does not support creating HLS encryption workflow. You
can create HLS encryption workflow by using API. For more information about
demo, see Create HLS standard encryption workflow. After creating, the workflow
cannot be modified on the console, or the encryption setting goes invalid.

Key settings in workflow:
• Start activity node: InputFile :{" Bucket ":" bucketdemo ", " Location

":" oss - cn - hangzhou ", " ObjectPref ix ":" HLS - Encryption "}

This setting indicates the content creater uploads a video under this path oss
://bucketdemo/HLS-Encryption to Hangzhou, and encryption transcoding is
triggered automatically.

• Transcoding activity node: Encryption :{" Type ":" hls - aes - 128 ", "

KeyUri ":" https :// decrypt . demo . com "}

After transcoding operation is completed, the setting of KeyUri appears in m3u8
 file for player to use.
During play, the player carries EDK ciphertext key to request the address so as
to get DK plaintext key for play.

32 Issue: 20190318

https://buy-intl.aliyun.com/ram?spm=a2796.104927.1204861.1.41ba6559rYlVBZ#/loading

ApsaraVideo for Media Processing Developer Guide / 5 Video encryption

2. Upload video.
Either way to upload video can trigger encryption transcoding automatically.
• Upload the video to the created workflow by using the MPS console.
• Upload the video under the path oss://bucketdemo/HLS-Encryption by using

OSS uploading tool.
After transcoding is completed, the content of the m3u8 file is showned as follows.
EXTM3U
 # EXT - X - VERSION : 3
 # EXT - X - TARGETDURA TION : 5
 # EXT - X - MEDIA - SEQUENCE : 0
 # EXT - X - KEY : METHOD = AES - 128 , URI =" https :// decrypt
. demo . com ? Ciphertext = aabbccddee ff & MediaId = fbbf98691e
a44b7c82dd 75c5bc8b92 71 "
 # EXTINF : 4 . 127544 ,
 1502961168 3170 - 00001 . ts
 # EXT - X - ENDLIST

3. Play.
• Use the QueryMediaList interface to get playback address. For more

information, see QueryMediaList. Get the OSS address, replace the OSS domain
name with CDN domain name, and splice the parameter MtsHlsUriT oken

, which serves as the token to request the decryption key. The principle is as
follows.
During play, the player accesses the URI in the EXT-X-KEY tag in the m3u8 file to
 get decryption key. The URI is a decryption key interface built by the business
 side. Therefore, while requesting decryption, the player must carry some
authentication information recognized by the business side. MtsHlsUriToken
plays the role in a similar way. The business side issues a token to the player,
which carries the token when requesting the decryption key, and the business
side checks the validity of the token.

• The player carry the token to the business side for authentication service.
For example, the normal playback address is https :// vod . demo .

com / test . m3u8 . Splice and carry the parameter MtsHlsUriT oken

, the playback address is https :// vod . demo . com / test . m3u8 ?

MtsHlsUriT oken = Token issued by the business side .
During playback, the player request https :// vod . demo . com / test

. m3u8 ? MtsHlsUriT oken = Token issued by the business

Issue: 20190318 33

ApsaraVideo for Media Processing Developer Guide / 5 Video encryption

 side to CDN of Alibaba Cloud, and the CDN of Alibaba Cloud dynamically
modifies the decryption URI in the m3u8 file. For example, the original https

:// decrypt . demo . com ? Ciphertext = aabbccddee ff & MediaId

= fbbf98691e a44b7c82dd 75c5bc8b92 71 is modified to https ://

decrypt . demo . com ? Ciphertext = aabbccddee ff & MediaId =

fbbf98691e a44b7c82dd 75c5bc8b92 71 & MtsHlsUriT oken = Token

issued by the business side .
Therefore, the final decryption URI which the player requests is https ://

decrypt . demo . com ? Ciphertext = aabbccddee ff & MediaId =

fbbf98691e a44b7c82dd 75c5bc8b92 71 & MtsHlsUriT oken = Token

 issued by the business side . This address carries the token
issued by the business side, which can be identified by the business side.

4. The business side need to do the following operations.
a. Build, issue and identify MtsHlsUriToken service.
b. Identify decryption token. One token is allowed to use only once.
c. Decrypt key: EDK, which is Ciphertext, calls decryption interface of the KMS

service for decryption. For more information, see Decrypt. After decryption, the
information can be cached to reduce network IO.

d. After decryption, you can get DK (the plaintext key) which needs base64decodd,
and return it to the player.

34 Issue: 20190318

ApsaraVideo for Media Processing Developer Guide / 6 Media library management

6 Media library management
6.1 Overview

You can access the media library by using the MPS SDK for Java, PHP, and Python.
You can also access the media library through HTTP/HTTPS. For more information,
see API reference.

Functions
Media workflow management: Allows you to add, delete, modify, query, activate, and
stop a media workflow.
Management of media workflow execution instances: Allows you to traverse and
query execution instances.
Media management: Allows you to add, delete, modify, query, search for a media
resource, maintain attributes (the title, tag, cover, and description) of a media set,
and set the publishing status of a media set.
Media category management: Allows you to add, delete, modify, and query a media
category.

Service scenarios
• Search for a media set

Search for a media set that meets search criteria in the media library.
You can use keywords to search for a media set. With logical disjunction, a media
set is displayed if and only if one or more of the title, tag, description, and category
 are matched. With logical conjunction, a media set is displayed if and only if all
specified attributes (the title, tag, description, and category) are matched.
In the search criteria, you can specify the creation time range to limit the search
 range. You can also set whether the return results are sorted by creation time in
ascending or descending order.
In addition, if many APIs are to be returned, you can have them displayed in pages.

Issue: 20190318 35

ApsaraVideo for Media Processing Developer Guide / 6 Media library management

• Maintain attributes of a media set
Each media set contains basic attributes of the title, tag, description, and category,
which can be set using APIs.
Basic attributes - Sample code - PHP

• Manage tags of a media set
Each tag is specific to a media set. No tag can be set for a media library globally.
However, you can use API for searching for media sets to query all media sets with
the same tags.
Manage tags - Sample code - PHP

Manage the category of a media set
The media library provides global category management. You can associate each
media set with a category and quickly retrieve a media set.
Manage categories - Sample code - PHP

Query details of a media set
A media set contains an input file and several output files (videos and screenshots).
You can query the detailed input and output information of a returned media set.
Input information includes the basic attributes (width, height, duration, size, bit rate
, and frame rate) and details (container encapsulation, video, audio, subtitle stream,
and detailed attributes of the encapsulation and stream) of a video.
Output information includes the basic attributes (width, height, duration, size, bit
rate, and frame rate), OSS URL of a video as well as the type (single-frame and batch)
and the OSS URL of a screenshot.
Media set details - Sample code -PHP

6.2 Basic video attributes
Overview

The following example describes how to query and update the basic information of a
media set. For more information about how to install and use the SDK, see Media library

SDK-PHP.

36 Issue: 20190318

ApsaraVideo for Media Processing Developer Guide / 6 Media library management

Query the basic information of a media set
You can use the media ID or OSS file URL to query a media set.
• Query a media set by media ID

For more information about the parameters, see API reference > Media APIs > Query

media sets by media IDs.
include_on ce ' aliyun - php - sdk - core / Config . php ';
use Mts \ Request \ V20140618 as Mts ;
$ accessKeyI D = ' test '; // eplace the value with your
AccessKeyI D
$ accessKeyS ecret = ' test '; // Replace the value with
your AccessKeyS ecret
$ profile = DefaultPro file :: getProfile (' cn - hangzhou ',
 $ accessKeyI D ,
 $ accessKeyS ecret);
$ client = new DefaultAcs Client ($ profile);

function queryMedia ById ($ client , $ mediaID)
{
 $ request = new Mts \ QueryMedia ListReques t ();
 $ request -> setAcceptF ormat (' JSON ');
 $ request -> setMediaId s ($ mediaID);
 $ response = $ client -> getAcsResp onse ($ request);
 return $ response ;
}
function printMedia ($ media)
{
 if (array_key_ exists (' Title ', $ media)) {
 print_r (' Title : '.$ media ->{' Title '}."\ n ");
 }
 if (array_key_ exists (' Descriptio n ', $ media)) {
 print_r (' Descriptio n : '.$ media ->{' Descriptio n
'}."\ n ");
 }
 if (array_key_ exists (' Tags ', $ media)) {
 print_r (' Tags : '.$ media ->{' Tags '}->{' Tag '}[0]."\
n ");
 }
 if (array_key_ exists (' CoverURL ', $ media)) {
 print_r (' CoverURL : '.$ media ->{' CoverURL '}."\ n ");
 }
 print_r (' Format : '.$ media ->{' Format '}."\ n ");
 print_r (' Resolution : '.$ media ->{' Width '}.' x '.$ media
->{' Height '}."\ n ");
 print_r (' FileSize : '.$ media ->{' Size '}."\ n ");
 print_r (' Bitrate : '.$ media ->{' Bitrate '}."\ n ");
 print_r (' FPS : '.$ media ->{' Fps '}."\ n ");
}
$ mediaID = ' test '; // Replace the value with your
desired media ID
$ medias = queryMedia ById ($ client , $ mediaID)->{' MediaList
'}->{' Media '};
for ($ i = 0 ; $ i < count ($ medias); $ i ++) {
 printMedia ($ medias [$ i]);

Issue: 20190318 37

ApsaraVideo for Media Processing Developer Guide / 6 Media library management
}

• Query a media set by an OSS file URL
For more information about the parameters, see API reference > Media APIs > Query

media sets by URLs.
function queryMedia ByURL ($ client , $ mediaURL)
{
 $ request = new Mts \ QueryMedia ListByURLR equest ();
 $ request -> setAcceptF ormat (' JSON ');
 $ request -> setFileURL s ($ mediaURL);
 $ response = $ client -> getAcsResp onse ($ request);
 return $ response ;
}
$ ossEndpoin t = ' http :// test . oss - cn - hangzhou . aliyuncs
. com /';
// An OSS object does not have to start with "/".
Replace the value with your OSS object
$ ossObject = ' test / test . mp4 ';
$ medias = queryMedia ByURL ($ client ,$ ossEndpoin t .
urlencode ($ ossObject))->{' MediaList '}->{' Media '};
for ($ i = 0 ; $ i < count ($ medias); $ i ++) {
 printMedia ($ medias [$ i]);
}

• Update attributes
You can update full attributes or a single attribute.
- Full attribute update

For more information about about the parameters, see API reference > Media APIs >

Update media set basic information.
Specify all fields when updating attributes. Fields not set are cleared.
function updateMedi aAllField ($ client , $ mediaID , $ title
, $ descriptio n , $ tags , $ coverURL)

{
 $ request = new Mts \ UpdateMedi aRequest ();
 $ request -> setAcceptF ormat (' JSON ');
 $ request -> setMediaId ($ mediaID);
 $ request -> setTitle ($ title);
 $ request -> setCateId (2663987);
 $ request -> setDescrip tion ($ descriptio n);
 $ request -> setTags ($ tags);
 $ request -> setCoverUR L ($ coverURL);
 $ response = $ client -> getAcsResp onse ($ request);
 return $ response ;
}
$ mediaID = ' test '; // Replace the value with your
desired media ID

$ media = updateMedi aAllField ($ client , $ mediaID ,

38 Issue: 20190318

ApsaraVideo for Media Processing Developer Guide / 6 Media library management
 ' title ', ' descriptio n ', ' tags ', '
coverURL ')->{' Media '};

- Single attribute update
You can use different APIs to conveniently update single fields without
modifying other fields.
The following section uses the “publishing state” as an example. For more
information about the parameters, see API reference > Media APIs > Update media

publishing state.
function updateMedi aPublishSt ate ($ client , $ mediaID , $
state)

{
 $ request = new Mts \ UpdateMedi aPublishSt ateRequest
();

 $ request -> setAcceptF ormat (' JSON ');
 $ request -> setMediaId ($ mediaID);
 $ request -> setPublish ($ state);
 $ response = $ client -> getAcsResp onse ($ request);
 return $ response ;
}
$ mediaID = ' test '; // Replace the value with your
desired media ID

// No result is returned from the API that updates
 the publishing state . Capture exceptions to check
whether execution succeeds
try {

 updateMedi aPublishSt ate ($ client , $ mediaID , " true
");

} catch (ClientExce ption $ e) {
 print_r (' ClientExce ption :'."\ n ");
 print_r ($ e);
} catch (ServerExce ption $ e) {
 print_r (' ServerExce ption :'."\ n ");
 print_r ($ e);
}

6.3 Media details
Overview

For more information about how to install and use the SDK, see Media library SDK-PHP.
A media set contains an input file and several output files. Besides basic information,
an input file contains detailed Media set information. You can query details about the
Videos and Screenshots in the output files.

Input
include_on ce ' aliyun - php - sdk - core / Config . php ';

 use Mts \ Request \ V20140618 as Mts ;

Issue: 20190318 39

ApsaraVideo for Media Processing Developer Guide / 6 Media library management
 $ accessKeyI D = ' test '; // eplace the value with your
AccessKeyI D

 $ accessKeyS ecret = ' test '; // Replace the value with
your AccessKeyS ecret

 $ profile = DefaultPro file :: getProfile (' cn - hangzhou ',
 $ accessKeyI D ,
 $ accessKeyS ecret);
 $ client = new DefaultAcs Client ($ profile);

function queryMedia ($ client , $ mediaID)
{
 $ request = new Mts \ QueryMedia ListReques t ();
 $ request -> setAcceptF ormat (' JSON ');
 $ request -> setMediaId s ($ mediaID);
 $ request -> setInclude MediaInfo (" true ");
 $ response = $ client -> getAcsResp onse ($ request);
 return $ response ;
}
function printMedia Info ($ mediaInfo)

{
 print_r (' Number of Streams : '.$ mediaInfo ->{' Format '}-
>{' NumStreams '}."\ n ");
 if (array_key_ exists (' Streams ', $ mediaInfo) &&
 array_key_ exists (' AudioStrea mList ', $ mediaInfo ->{'
Streams '}) &&

 array_key_ exists (' AudioStrea m ', $ mediaInfo ->{'
Streams '}->{' AudioStrea mList '})) {

 $ audioStrea ms = $ mediaInfo ->{' Streams '}->{'
AudioStrea mList '}->{' AudioStrea m '};

 print_r (' Audio Streams :'."\ n ");
 for ($ i = 0 ; $ i < count ($ audioStrea ms); $ i ++)
 {
 print_r ("\ t [".$ i ."]"."\ n ");
 print_r ("\ t \ tCodecName : ".$ audioStrea ms [$ i]-
>{' CodecName '}."\ n ");
 print_r ("\ t \ tChannels : ".$ audioStrea ms [$ i]->{'
Channels '}."\ n ");

 print_r ("\ t \ tSamplerat e : ".$ audioStrea ms [$ i
]->{' Samplerate '}."\ n ");

 print_r ("\ t \ tDuration : ".$ audioStrea ms [$ i]->{'
Duration '}."\ n ");

 print_r ("\ t \ tBitrate : ".$ audioStrea ms [$ i]->{'
Bitrate '}."\ n ");

 }
 }
 if (array_key_ exists (' Streams ', $ mediaInfo) &&
 array_key_ exists (' VideoStrea mList ', $ mediaInfo ->{'
Streams '}) &&

 array_key_ exists (' VideoStrea m ', $ mediaInfo ->{'
Streams '}->{' VideoStrea mList '})) {

 $ videoStrea ms = $ mediaInfo ->{' Streams '}->{'
VideoStrea mList '}->{' VideoStrea m '};

 print_r (' Video Streams :'."\ n ");
 for ($ i = 0 ; $ i < count ($ videoStrea ms); $ i ++)
 {
 print_r ("\ t [".$ i ."]"."\ n ");
 print_r ("\ t \ tCodecName : ".$ videoStrea ms [$ i]-
>{' CodecName '}."\ n ");
 print_r ("\ t \ tProfile : ".$ videoStrea ms [$ i]->{'
Profile '}."\ n ");

 print_r ("\ t \ tDuration : ".$ videoStrea ms [$ i]->{'
Duration '}."\ n ");

40 Issue: 20190318

ApsaraVideo for Media Processing Developer Guide / 6 Media library management
 print_r ("\ t \ tPixFmt : ".$ videoStrea ms [$ i]->{'
PixFmt '}."\ n ");

 print_r ("\ t \ tFps : ".$ videoStrea ms [$ i]->{' Fps
'}."\ n ");

 print_r ("\ t \ tBitrate : ".$ videoStrea ms [$ i]->{'
Bitrate '}."\ n ");

 print_r ("\ t \ tResolutio n : ".$ videoStrea ms [$ i
]->{' Width '}.' x '.$ videoStrea ms [$ i]->{' Height '}."\ n ");

 }
 }
}
$ mediaID = ' test '; // Replace the value with your
desired media ID

$ medias = queryMedia ($ client , $ mediaID)->{' MediaList '}->{'
Media '};
for ($ i = 0 ; $ i < count ($ medias); $ i ++) {

 printMedia Info ($ medias [$ i]->{' MediaInfo '});
}

Output
• Videos

function queryMedia ($ client , $ mediaID)
{
 $ request = new Mts \ QueryMedia ListReques t ();
 $ request -> setAcceptF ormat (' JSON ');
 $ request -> setMediaId s ($ mediaID);
 $ request -> setInclude PlayList (" true ");
 $ response = $ client -> getAcsResp onse ($ request);
 return $ response ;
}
function printOutpu tVideos ($ videos)
{
 print_r (' Number of Output Video : '. count ($ videos
)."\ n ");
 for ($ i = 0 ; $ i < count ($ videos); $ i ++) {
 print_r ("\ t [".$ i ."]"."\ n ");
 print_r ("\ t \ tMediaWork flowName : ".$ videos [$ i]-
>{' MediaWorkf lowName '}."\ n ");
 print_r ("\ t \ tActivityN ame : ".$ videos [$ i]->{'
ActivityNa me '}."\ n ");
 print_r ("\ t \ tFormat : ".$ videos [$ i]->{' Format
'}."\ n ");
 print_r ("\ t \ tDuration : ".$ videos [$ i]->{' Duration
'}."\ n ");
 print_r ("\ t \ tFps : ".$ videos [$ i]->{' Fps '}."\ n
");
 print_r ("\ t \ tBitrate : ".$ videos [$ i]->{' Bitrate
'}."\ n ");
 print_r ("\ t \ tSize : ".$ videos [$ i]->{' Size '}."\ n
");
 print_r ("\ t \ tResolutio n : ".$ videos [$ i]->{' Width
'}.' x '.$ videos [$ i]->{' Height '}."\ n ");
 print_r ("\ t \ tURL : ".$ videos [$ i]->{' File '}->{'
URL '}."\ n ");
 }
}
$ mediaID = ' test '; // Replace the value with your
desired media ID
$ medias = queryMedia ($ client , $ mediaID)->{' MediaList '}->{'
Media '};

Issue: 20190318 41

ApsaraVideo for Media Processing Developer Guide / 6 Media library management
for ($ i = 0 ; $ i < count ($ medias); $ i ++) {
 printOutpu tVideos ($ medias [$ i]->{' PlayList '}->{' Play
'});
}

• Screenshots
function queryMedia ($ client , $ mediaID)
{
 $ request = new Mts \ QueryMedia ListReques t ();
 $ request -> setAcceptF ormat (' JSON ');
 $ request -> setMediaId s ($ mediaID);
 $ request -> setInclude SnapshotLi st (" true ");
 $ response = $ client -> getAcsResp onse ($ request);
 return $ response ;
}
function printOutpu tSnapshots ($ snapshots)
{
 print_r (' Number of Output Snapshot : '. count ($
snapshots)."\ n ");
 for ($ i = 0 ; $ i < count ($ snapshots); $ i ++) {
 print_r ("\ t [".$ i ."]"."\ n ");
 print_r ("\ t \ tMediaWork flowName : ".$ snapshots [$ i
]->{' MediaWorkf lowName '}."\ n ");
 print_r ("\ t \ tActivityN ame : ".$ snapshots [$ i]->{'
ActivityNa me '}."\ n ");
 print_r ("\ t \ tType : ".$ snapshots [$ i]->{' Type '}."\
n ");
 print_r ("\ t \ tCount : ".$ snapshots [$ i]->{' Count
'}."\ n ");
 print_r ("\ t \ tURL : ".$ snapshots [$ i]->{' File '}->{'
URL '}."\ n ");
 }
}
$ mediaID = ' test '; // Replace the value with your
desired media ID
$ medias = queryMedia ($ client , $ mediaID)->{' MediaList '}->{'
Media '};
for ($ i = 0 ; $ i < count ($ medias); $ i ++) {
 printOutpu tSnapshots ($ medias [$ i]->{' SnapshotLi st '}-
>{' Snapshot '});
}

6.4 Tag management
Overview

For more information about how to install and use the SDK, see Media library SDK-PHP.
The media repository does not provide global tag management and setting. Tags of
each media set are independent. You can search for APIs of a media set to query all
media sets that have the same tags.
The tag-related APIs support addition and deletion of a single tag. You can use
UpdateMedia to set multiple tags at a time.

42 Issue: 20190318

ApsaraVideo for Media Processing Developer Guide / 6 Media library management

Add a tag
For more information about the parameters, see API reference > Media APIs > Add a media

tag.
include_on ce ' aliyun - php - sdk - core / Config . php ';

 use Mts \ Request \ V20140618 as Mts ;
 $ accessKeyI D = ' test '; // eplace the value with your
AccessKeyI D

 $ accessKeyS ecret = ' test '; // Replace the value with
your AccessKeyS ecret

 $ profile = DefaultPro file :: getProfile (' cn - hangzhou ',
 $ accessKeyI D ,
 $ accessKeyS ecret);
 $ client = new DefaultAcs Client ($ profile);

function addMediaTa g ($ client , $ mediaID , $ tag)
 {
 $ request = new Mts \ AddMediaTa gRequest ();
 $ request -> setAcceptF ormat (' JSON ');
 $ request -> setMediaId ($ mediaID);
 $ request -> setTag ($ tag);
 $ response = $ client -> getAcsResp onse ($ request);
 return $ response ;
 }
 $ mediaID = ' test '; // Replace the value with your
desired media ID

 // No result is returned from the API . Capture
exceptions to check whether execution succeeds

 try {
 addMediaTa g ($ client , $ mediaID , " testtag ");
 } catch (ClientExce ption $ e) {
 print_r (' ClientExce ption :'."\ n ");
 print_r ($ e);
 } catch (ServerExce ption $ e) {
 print_r (' ServerExce ption :'."\ n ");
 print_r ($ e);
 }

Delete a tag
For more information about the parameters, see API reference > Media APIs > Delete a

media tag.
function deleteMedi aTag ($ client , $ mediaID , $ tag)

 {
 $ request = new Mts \ DeleteMedi aTagReques t ();
 $ request -> setAcceptF ormat (' JSON ');
 $ request -> setMediaId ($ mediaID);
 $ request -> setTag ($ tag);
 $ response = $ client -> getAcsResp onse ($ request);
 return $ response ;
 }
 $ mediaID = ' test '; // Replace the value with your
desired media ID

 // No result is returned from the API . Capture
exceptions to check whether execution succeeds

 try {

Issue: 20190318 43

ApsaraVideo for Media Processing Developer Guide / 6 Media library management
 deleteMedi aTag ($ client , $ mediaID , " testtag ");
 } catch (ClientExce ption $ e) {
 print_r (' ClientExce ption :'."\ n ");
 print_r ($ e);
 } catch (ServerExce ption $ e) {
 print_r (' ServerExce ption :'."\ n ");
 print_r ($ e);
 }

6.5 Category management
Overview

For more information about how to install and use the SDK, see Media library SDK-PHP.
You can add, delete, modify, and query a category. In addition, pay attention to the
following logic:
• Deleting a category does not automatically clear the category ID of an associated

media set.
• The result returned from the category query API can be displayed in the tree

structure or list structure. A nested JSON object is returned in the tree structure
, while a plane array is returned in the list structure. You can select a structure
based on the actual scenario.

Add a category
For more information about the parameters, see API reference > Media category APIs > Add

a category.
include_on ce ' aliyun - php - sdk - core / Config . php ';

 use Mts \ Request \ V20140618 as Mts ;
 $ accessKeyI D = ' test '; // eplace the value with your
AccessKeyI D

 $ accessKeyS ecret = ' test '; // Replace the value with
your AccessKeyS ecret

 $ profile = DefaultPro file :: getProfile (' cn - hangzhou ',
 $ accessKeyI D ,
 $ accessKeyS ecret);
 $ client = new DefaultAcs Client ($ profile);

function addCategor y ($ client , $ parentId , $ categoryNa me)
 {
 $ request = new Mts \ AddCategor yRequest ();
 $ request -> setAcceptF ormat (' JSON ');
 $ request -> setParentI d ($ parentId);
 $ request -> setCateNam e ($ categoryNa me);
 $ response = $ client -> getAcsResp onse ($ request);
 return $ response ;
 }
 $ category = addCategor y ($ client , null , ' testroot ')->{'
Category '};

44 Issue: 20190318

ApsaraVideo for Media Processing Developer Guide / 6 Media library management
 print_r (' Level : '.$ category ->{' Level '}.
 "\ tParentId : ".$ category ->{' ParentId '}.
 "\ tCateId : ".$ category ->{' CateId '}.
 "\ tCateName : ".$ category ->{' CateName '}."\ n ");

Update a category
For more information about the parameters, see API reference > Media category APIs >

Update a category name.
function updateCate gory ($ client , $ categoryId , $ categoryNa
me)

 {
 $ request = new Mts \ UpdateCate goryNameRe quest ();
 $ request -> setAcceptF ormat (' JSON ');
 $ request -> setCateId ($ categoryId);
 $ request -> setCateNam e ($ categoryNa me);
 $ response = $ client -> getAcsResp onse ($ request);
 return $ response ;
 }
 try {
 updateCate gory ($ client , 12345678 , ' updatetest root
'); // Replace the value with your category ID

 } catch (ClientExce ption $ e) {
 print_r (' ClientExce ption :'."\ n ");
 print_r ($ e);
 } catch (ServerExce ption $ e) {
 print_r (' ServerExce ption :'."\ n ");
 print_r ($ e);
 }

Delete a category
For more information about the parameters, see API reference > Media category APIs >

Delete a category.
function deleteCate gory ($ client , $ categoryId)

 {
 $ request = new Mts \ DeleteCate goryReques t ();
 $ request -> setAcceptF ormat (' JSON ');
 $ request -> setCateId ($ categoryId);
 $ response = $ client -> getAcsResp onse ($ request);
 return $ response ;
 }
 try {
 deleteCate gory ($ client , 12345678); // Replace the
value with your category ID

 } catch (ClientExce ption $ e) {
 print_r (' ClientExce ption :'."\ n ");
 print_r ($ e);
 } catch (ServerExce ption $ e) {
 print_r (' ServerExce ption :'."\ n ");
 print_r ($ e);

Issue: 20190318 45

ApsaraVideo for Media Processing Developer Guide / 6 Media library management
 }

Query a category
• Tree structure

For more information about the parameters, see API reference > Media category APIs >

Retrieve a category tree .
function queryCateg oryTree ($ client)
 {
 $ request = new Mts \ CategoryTr eeRequest ();
 $ request -> setAcceptF ormat (' JSON ');
 $ response = $ client -> getAcsResp onse ($ request);
 return $ response ;
 }
 function printCateg oryTree ($ categoryTr ee)
 {
 foreach ($ categoryTr ee as $ category) {
 for ($ i = 0 ; $ i < $ category ->{' Level '}; $ i
++) {
 print_r ("--");
 }
 print_r (' Level : '.$ category ->{' Level '}.
 "\ tParentId : ".$ category ->{' ParentId '}.
 "\ tCateId : ".$ category ->{' CateId '}.
 "\ tCateName : ".$ category ->{' CateName '}."\
n ");
 if (array_key_ exists (' SubcateLis t ', $ category
)) {
 printCateg oryTree ($ category ->{' SubcateLis t
'});
 }
 }
 }
 $ categoryTr ee = queryCateg oryTree ($ client)->{'
CategoryTr ee '};
 printCateg oryTree (json_decod e ($ categoryTr ee));

• List structure
For more information about the parameters, see API reference > Media category APIs >

Retrieve a category list.
 function queryCateg oryList ($ client)
 {
 $ request = new Mts \ ListAllCat egoryReque st ();
 $ request -> setAcceptF ormat (' JSON ');
 $ response = $ client -> getAcsResp onse ($ request);
 return $ response ;
 }
 $ categoryLi st = queryCateg oryList ($ client)->{'
CategoryLi st '}->{' Category '};
 for ($ i = 0 ; $ i < count ($ categoryLi st); $ i ++) {
 print_r (' Level : '.$ categoryLi st [$ i]->{' Level '}.
 "\ tParentId : ".$ categoryLi st [$ i]->{'
ParentId '}.
 "\ tCateId : ".$ categoryLi st [$ i]->{' CateId
'}.

46 Issue: 20190318

ApsaraVideo for Media Processing Developer Guide / 6 Media library management
 "\ tCateName : ".$ categoryLi st [$ i]->{'
CateName ' }."\ n ");
 }

Issue: 20190318 47

	Contents
	Legal disclaimer
	Generic conventions
	1 Concepts
	1.1 Task and MPS queue
	1.2 Transcoding template
	1.3 Workflows and media

	2 Developing process of workflows
	3 Upload videos
	3.1 Overview
	3.2 Set a subaccount and authorization
	3.3 Set CORS
	3.4 Request security token - Java sample code

	4 Receive message notifications
	4.1 Overview
	4.2 Receive notification through queues
	4.3 Receive message through topic notification

	5 Video encryption
	5.1 HLS standard encryption

	6 Media library management
	6.1 Overview
	6.2 Basic video attributes
	6.3 Media details
	6.4 Tag management
	6.5 Category management

