
Alibaba Cloud
MaxCompute

Best Practices

Issue: 20180803

MaxCompute Best Practices / Legal disclaimer

Issue: 20180803 I

Legal disclaimer

Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions of this

legal disclaimer before you read or use this document. If you have read or used this document, it

shall be deemed as your total acceptance of this legal disclaimer.

1. You shall download and obtain this document from the Alibaba Cloud website or other Alibaba

Cloud-authorized channels, and use this document for your own legal business activities only.

The content of this document is considered confidential information of Alibaba Cloud. You shall

 strictly abide by the confidentiality obligations. No part of this document shall be disclosed or

provided to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted, or disseminat

ed by any organization, company, or individual in any form or by any means without the prior

written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades, adjustment

s, or other reasons. Alibaba Cloud reserves the right to modify the content of this document

without notice and the updated versions of this document will be occasionally released through

 Alibaba Cloud-authorized channels. You shall pay attention to the version changes of this

document as they occur and download and obtain the most up-to-date version of this document

 from Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud products and

services. Alibaba Cloud provides the document in the context that Alibaba Cloud products and

 services are provided on an "as is", "with all faults" and "as available" basis. Alibaba Cloud

makes every effort to provide relevant operational guidance based on existing technologies

. However, Alibaba Cloud hereby makes a clear statement that it in no way guarantees the

accuracy, integrity, applicability, and reliability of the content of this document, either explicitly

or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial losses incurred

 by any organizations, companies, or individuals arising from their download, use, or trust in

this document. Alibaba Cloud shall not, under any circumstances, bear responsibility for any

 indirect, consequential, exemplary, incidental, special, or punitive damages, including lost

profits arising from the use or trust in this document, even if Alibaba Cloud has been notified of

the possibility of such a loss.

5. By law, all the content of the Alibaba Cloud website, including but not limited to works, products

, images, archives, information, materials, website architecture, website graphic layout, and

webpage design, are intellectual property of Alibaba Cloud and/or its affiliates. This intellectu

al property includes, but is not limited to, trademark rights, patent rights, copyrights, and trade

MaxCompute Best Practices / Legal disclaimer

II Issue: 20180803

 secrets. No part of the Alibaba Cloud website, product programs, or content shall be used,

modified, reproduced, publicly transmitted, changed, disseminated, distributed, or published

 without the prior written consent of Alibaba Cloud and/or its affiliates. The names owned by

Alibaba Cloud shall not be used, published, or reproduced for marketing, advertising, promotion

, or other purposes without the prior written consent of Alibaba Cloud. The names owned by

Alibaba Cloud include, but are not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other

brands of Alibaba Cloud and/or its affiliates, which appear separately or in combination, as well

 as the auxiliary signs and patterns of the preceding brands, or anything similar to the company

 names, trade names, trademarks, product or service names, domain names, patterns, logos

, marks, signs, or special descriptions that third parties identify as Alibaba Cloud and/or its

affiliates).

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

MaxCompute Best Practices / Legal disclaimer

Issue: 20180803 III

MaxCompute Best Practices / Generic conventions

Issue: 20180803 I

Generic conventions

Table -1: Style conventions

Style Description Example

This warning information indicates a
situation that will cause major system
changes, faults, physical injuries, and
other adverse results.

Danger:
Resetting will result in the loss of user
configuration data.

This warning information indicates a
situation that may cause major system
 changes, faults, physical injuries, and
other adverse results.

Warning:
Restarting will cause business
interruption. About 10 minutes are
required to restore business.

This indicates warning information,
supplementary instructions, and other
content that the user must understand.

Note:
Take the necessary precautions to
save exported data containing sensitive
information.

This indicates supplemental instructio
ns, best practices, tips, and other
content that is good to know for the
user.

Note:
You can use Ctrl + A to select all files.

> Multi-level menu cascade. Settings > Network > Set network type

Bold It is used for buttons, menus, page
names, and other UI elements.

Click OK.

Courier

font

It is used for commands. Run the cd /d C:/windows command
to enter the Windows system folder.

Italics It is used for parameters and variables. bae log list --instanceid

 Instance_ID

[] or [a|b] It indicates that it is a optional value,
and only one item can be selected.

ipconfig [-all|-t]

{} or {a|b} It indicates that it is a required value,
and only one item can be selected.

swich {stand | slave}

MaxCompute Best Practices / Contents

II Issue: 20180803

Contents

Legal disclaimer..I
Generic conventions.. I
1 SQL implements multiple rows of data into one...............................1
2 Group out the first n sections of each group of data....................... 3
3 Export SQL operation result... 4
4 Demo: Modify incompatible SQL..8
6 Optimize long tail computing..24
7 Reasonableness evaluation of partition pruning............................ 28
8 Learn to write SQL statements quickly..33
9 Basic differences with standard SQL and solutions...................... 36

MaxCompute Best Practices / 1 SQL implements multiple rows of data into
one

Issue: 20180803 1

1 SQL implements multiple rows of data into one

This article will show you how to use SQL to compress multiple data into one.

Scenario example

The following table data is used as an example:

class gender name

1 M LiLei

1 F HanMM

1 M Jim

2 F Kate

2 M Peter

Scenario 1

Depending on your needs, the common scenarios are as follows:

class names

1 LiLei,HanMM,Jim

2 Kate,Peter

Using a separator for string mosaic is similar to this, you can use the following statement:

SELECT class, wm_concat(',', name) FROM students GROUP BY class;

Scenario two

Another common requirement is as follows:

class cnt_m cnt_f

1 2 1

2 1 1

You can use the following statement for the need to change multiple columns like this:

SELECT
class
,SUM(CASE WHEN gender = 'M' THEN 1 ELSE 0 END) AS cnt_m
,SUM(CASE WHEN gender = 'F' THEN 1 ELSE 0 END) AS cnt_f
FROM students

MaxCompute Best Practices / 1 SQL implements multiple rows of data into
one

2 Issue: 20180803

GROUP BY class;

MaxCompute Best Practices / 2 Group out the first n sections of each group
of data

Issue: 20180803 3

2 Group out the first n sections of each group of
data

This article will show you how to group data, take out the first n sections of data for each data

group.

Sample Data

Current data, as shown in the following table:

empno ename job sal

7369 SMITH CLERK 800.0

7876 SMITH CLERK 1100.0

7900 JAMES CLERK 950.0

7934 MILLER CLERK 1300.0

7499 ALLEN SALESMAN 1600.0

7654 MARTIN SALESMAN 1250.0

7844 TURNER SALESMAN 1500.0

7521 WARD SALESMAN 1250.0

Implementation Method

You can achieve this in two ways:

• Take out the line number of each data and filter it with the where statement.

SELECT * FROM (
 SELECT empno
 , ename
 ,sal
 , job
 , ROW_NUMBER() OVER (PARTITION BY job ORDER BY sal) AS rn
 FROM emp
) tmp
WHERE rn < 10;

• Implement the Split Function using UDTF.

For more information, see the last example in this article. This example can more quickly

judge the current sequence number. In this example, it will not work if you have exceeded the

planned number of lines (for example, 10), and thus improve the efficiency of the calculation.

https://yq.aliyun.com/articles/67084

MaxCompute Best Practices / 3 Export SQL operation result

4 Issue: 20180803

3 Export SQL operation result

This article provides examples to illustrate how to download the MaxCompute SQL computing

results by using several methods.

Note:

The Java SDK is used as an example throughout this article.

You can use one of the following methods to export the SQL statement execution results:

• If the data volume is small, use SQL Task to list all query results.

• If you want to export the results of a specific table or partition, use Tunnel.

• If the SQL statements are complex, use Tunnel and SQL Task in combination.

• DataWorks allows you to conveniently run SQL statements and Synchronize data. It supports

regular scheduling and task dependency configuration.

• The open source tool DataX allows you to export data from your MaxCompute instance to the

target data source with ease. For more information, see DataX overview.

Use SQL Task to export data

SQL Task is an interface of MaxCompute that the SDK can call directly to run SQL statements

and return results conveniently.

SQLTask.getResult(i); returns a list which can be iterated cyclically to obtain the complete

SQL computing results. This method has a defect. For more information, see Other Operations

for the description of SetProject READ_TABLE_MAX_ROW.

Currently, you can adjust the maximum number of data records that the SELECT statement

returns to the client up to 10,000. If you run the SELECT statement on a client or use SQL Task,

the query results are appended with Limit N. Limit N does not apply to the CREATE TABLE XX AS

SELECT statement or in the case that the results are solidified in a specific table using INSERT

INTO/OVERWRITE TABLE.

Use Tunnel to export data

If the query results to be exported are the full content of a table or a partition, you can use Tunnel

to export the results. For more information, see Command line tool and Tunnel SDK which is

compiled based on SDK.

https://data.aliyun.com/product/ide?
https://www.alibabacloud.com/help/doc-detail/47677.htm
https://www.alibabacloud.com/help/doc-detail/28291.htm

MaxCompute Best Practices / 3 Export SQL operation result

Issue: 20180803 5

An example is provided to illustrate how to export data by using the Tunnel command line. You

can compile the Tunnel SDK only when data cannot be exported using some command lines. For

more information, see Batch data tunnel overview.

tunnel d wc_out c:\wc_out.dat;
2016-12-16 19:32:08 - new session: 201612161932082d3c9b0a012f68e7
total lines: 3
2016-12-16 19:32:08 - file [0]: [0, 3), c:\wc_out.dat
downloading 3 records into 1 file
2016-12-16 19:32:08 - file [0] start
2016-12-16 19:32:08 - file [0] OK. total: 21 bytes
download OK

Use SQL Task and Tunnel to export data

SQL Task cannot export more than 10,000 records, whereas Tunnel can. You can use them in

combination to export data.

The sample code is as follows:

private static final String accessId = "userAccessId";
private static final String accessKey = "userAccessKey";
private static final String endPoint = "http://service.odps.aliyun.com
/api";
private static final String project = "userProject";
private static final String sql = "userSQL";
private static final String table = "Tmp_" + UUID.randomUUID().
toString().replace("-", "_");//The name of the temporary table is a
random string.
private static final Odps odps = getOdps();
public static void main(String[] args) {
System.out.println(table);
runSql();
tunnel();
}
/*
* Download the results returned by SQL Task.
* */
private static void tunnel() {
TableTunnel tunnel = new TableTunnel(odps);
try {
DownloadSession downloadSession = tunnel.createDownloadSession(
project, table);
System.out.println("Session Status is : "
+ downloadSession.getStatus().toString());
long count = downloadSession.getRecordCount();
System.out.println("RecordCount is: " + count);
RecordReader recordReader = downloadSession.openRecordReader(0,
count);
Record record;
while ((record = recordReader.read()) ! = null) {
consumeRecord(record, downloadSession.getSchema());
}
recordReader.close();
} catch (TunnelException e) {

MaxCompute Best Practices / 3 Export SQL operation result

6 Issue: 20180803

e.printStackTrace();
} catch (IOException e1) {
e1.printStackTrace();
}
}
/*
* Save the data record.
* If the data volume is small, you can print and copy the data
directly. In reality, you can use Java.io to write the data to a
local file or a remote data storage.
* */
private static void consumeRecord(Record record, TableSchema schema) {
System.out.println(record.getString("username")+","+record.getBigint("
cnt"));
}
/*
* Run an SQL statement to save the query results to a temporary table
. The saved results can be downloaded using Tunnel.
* The lifecycle of the saved data is 1 day. The data does not occupy
much storage space even when an error occurs while you delete the data
.
* */
private static void runSql() {
Instance i;
StringBuilder sb = new StringBuilder("Create Table ").append(table)
.append(" lifecycle 1 as ").append(sql);
try {
System.out.println(sb.toString());
i = SQLTask.run(getOdps(), sb.toString());
i.waitForSuccess();
} catch (OdpsException e) {
e.printStackTrace();
}
}
/*
* Initialize the connection information of the MaxCompute (formerly
ODPS) instance.
* */
private static Odps getOdps() {
Account account = new AliyunAccount(accessId, accessKey);
Odps odps = new Odps(account);
odps.setEndpoint(endPoint);
odps.setDefaultProject(project);
return odps;
}

Use DataWorks to export data using synchronization

Using the preceding method, you can save the downloaded data. Other methods are required to

create the data and implement the scheduling dependency between data creation and storage.

DataWorks allows you to Configure a data synchronization task and configure Periodic running

 and Dependency among multiple tasks to complete the process from data creation to storage.

An example is provided to illustrate how to use Data IDE to run SQL statements and configure a

data synchronization task to create and export data.

Procedure

https://data.aliyun.com/product/ide?
https://www.alibabacloud.com/help/doc-detail/30269.htm
https://www.alibabacloud.com/help/doc-detail/50130.htm
https://www.alibabacloud.com/help/doc-detail/50130.htm
https://www.alibabacloud.com/help/doc-detail/50130.htm

MaxCompute Best Practices / 3 Export SQL operation result

Issue: 20180803 7

1. Create a workflow with an SQL node and a data synchronization node. Connect the two nodes

and configure an inter-node dependency, with the SQL node as the data production node and

the data synchronization node as the data export node.

2. Configure the SQL node.

Note:

Run an SQL statement to create a table before you configure synchronization. If no table

exists, the synchronization task cannot be configured.

3. Perform the following to configure the data synchronization task.

a. Select a Source.

b. Select a Target.

c. Map fields.

d. Control the tunnel.

e. Preview and Save.

4. After workflow scheduling is configured, save and submit the workflow. Click Test Run. If you

do not configure workflow scheduling, you can use the default scheduling configuration directly.

 View the running log on data synchronization as as in the following figure.

2016-12-17 23:43:46.394 [job-15598025] INFO JobContainer -
Task start time : 2016-12-17 23:43:34
Task end time : 2016-12-17 23:43:46
Total task time : 11s
Average data per task : 31.36 KB/s
Write speed : 1,668 rec/s
Read records : 16,689
Failed read-write attempts : 0

5. Run an SQL statement to view the data synchronization results.

MaxCompute Best Practices / 4 Demo: Modify incompatible SQL

8 Issue: 20180803

4 Demo: Modify incompatible SQL

The MaxCompute development team has completed the grayscale upgrade of MaxCompute 2.0

 recently. The new version fully embraces open source ecosystems, supports more languages

and functions, and enables faster operation. It also implements more rigorous syntax inspection,

 so that errors may be returned for some less rigorous syntax cases that can run normally in the

earlier editor.

To enable smooth grayscale upgrade of MaxCompute 2.0, the MaxCompute framework supports

rollback. If a task of MaxCompute 2.0 fails, it is executed in MaxCompute 1.0. The rollback

increases the E2E latency of the task. We recommend that you set set odps.sql.planner.

mode=lot; to manually disable the rollback function before submitting jobs, to avoid the impact

resulting from the changes made to the MaxCompute rollback policy.

The MaxCompute team notifies the owners of problematic tasks by email or DingTalk based on

the online rollback condition. Modify your SQL tasks immediately; otherwise, the tasks may fail.

Check the following errors against your tasks to avoid task failure in case of missed notifications.

The following lists the syntaxes for which MaxCompute 2.0 may return errors.

group.by.with.star

SELECT * … GROUP BY… syntax is problematic.

In the earlier version of MaxCompute, select * from group by key is supported even

when the columns that match * are not included in the GROUP BY key. Compatible with Hive,

MaxCompute 2.0 prohibits this syntax unless the GROUP BY list is a column in all source tables.

 For example:

Scenario 1: The GROUP BY key does not include all columns.

MaxCompute Best Practices / 4 Demo: Modify incompatible SQL

Issue: 20180803 9

Incorrect syntax:

SELECT * FROM t GROUP BY key;

Error message:

FAILED: ODPS-0130071:[1,8] Semantic analysis exception - column
reference t.value should appear in GROUP BY key

Correct syntax:

SELECT DISTINCT key FROM t;

Scenario 2: The GROUP BY key includes all columns.

Syntax that is not recommended:

SELECT * FROM t GROUP BY key, value; -- t has columns key and value

Though MaxCompute 2.0 does not return an error, we recommend that you modify the syntax as

follows:

SELECT DISTINCT key, value FROM t;

bad.escape

The escape sequence is incorrect.

According to the MaxCompute documentation, in string literal, every ASCII character ranging

from 0 to 127 must be written in the format of a backslash followed by three octal numbers. For

example, 0 is written as \001, and 1 is written as \002. Currently, \01 and \0001 are considered

as \001.

It may bring confusions to new users. For example, “\000” + “1” cannot written as “\0001”. For

users who migrate data from other systems to MaxCompute, incorrect data may be generated.

Note:

An error may be returned if numbers are appended to \0 00, for example, \0001 - \0009 or

 \00001.

MaxCompute 2.0 solves this problem. The script owner must correct the sequence, for example:

MaxCompute Best Practices / 4 Demo: Modify incompatible SQL

10 Issue: 20180803

Incorrect syntax:

SELECT split(key, "\01"), value like "\0001" FROM t;

Error message:

FAILED: ODPS-0130161:[1,19] Parse exception - unexpected escape
sequence: 01
ODPS-0130161:[1,38] Parse exception - unexpected escape sequence: 0001

Correct syntax:

SELECT split(key, "\001"), value like "\001" FROM t;

column.repeated.in.creation

Duplicate column names are detected during execution of the CREATE TABLE statement.

MaxCompute 2.0 returns an error when duplicate column names are detected when the CREATE

TABLE statement is executed. For example:

Incorrect syntax:

CREATE TABLE t (a BIGINT, b BIGINT, a BIGINT);

Error message:

FAILED: ODPS-0130071:[1,37] Semantic analysis exception - column
repeated in creation: a

Correct syntax:

CREATE TABLE t (a BIGINT, b BIGINT);

string.join.double

The data on both sides of the equal sign of a Join condition belongs to the String and

Double types.

In the old version of MaxCompute, the String and Double type data is converted to the Bigint type

at the cost of precision. 1.1 = “1” in a Join condition is considered as equal. Compatible with Hive

, MaxCompute 2.0 converts the String and Double type data to the Double type.

MaxCompute Best Practices / 4 Demo: Modify incompatible SQL

Issue: 20180803 11

Syntax that is not recommended:

SELECT * FROM t1 JOIN t2 ON t1.double_value = t2.string_value;

Warning:

WARNING:[1,48] implicit conversion from STRING to DOUBLE, potential
data loss, use CAST function to suppress

Recommended correction:

select * from t1 join t2 on t.double_value = cast(t2.string_value as
double);

You can also convert the data as needed.

window.ref.prev.window.alias

Window functions reference other aliases in the select list of the same level.

For example:

With rn absent from t1, the incorrect syntax is as follows:

SELECT row_number() OVER (PARTITION BY c1 ORDER BY c1) rn,
row_number() OVER (PARTITION by c1 ORDER BY rn) rn2
FROM t1;

Error message:

FAILED: ODPS-0130071:[2,45] Semantic analysis exception - column rn
cannot be resolved

Correct syntax:

SELECT row_number() OVER (PARTITION BY c1 ORDER BY rn) rn2
FROM

SELECT c1, row_number() OVER (PARTITION BY c1 ORDER BY c1) rn
FROM t1
) tmp;

select.invalid.token.after.star

Select * is followed by an alias.

The select list allows the use of * to select all the columns of a table, but * cannot be followed by

 any alias even if the expanded * has only one column. The new editor returns errors for similar

syntaxes. For example:

MaxCompute Best Practices / 4 Demo: Modify incompatible SQL

12 Issue: 20180803

Incorrect syntax:

select * as alias from dual;

Error message:

FAILED: ODPS-0130161:[1,10] Parse exception - invalid token 'as'

Correct syntax:

select * from dual;

agg.having.ref.prev.agg.alias

The select list is preceded by an aggregate function alias when HAVING exists. For

example:

Incorrect syntax:

SELECT count(c1) cnt,
sum(c1) / cnt avg
FROM t1
GROUP BY c2
HAVING cnt > 1;

Error message:

FAILED: ODPS-0130071:[2,11] Semantic analysis exception - column cnt
cannot be resolved
ODPS-0130071:[2,11] Semantic analysis exception - column reference cnt
 should appear in GROUP BY key

s and cnt do not exist in source table t1, but MaxCompute of the old version does not return an

 error because HAVING exists. In MaxCompute 2.0, the prompt “column cannot be resolved”

appears and an error is returned.

Correct syntax:

SELECT cnt, s, s/cnt avg
FROM

SELECT count(c1) cnt,
sum(c1) s
FROM t1
GROUP BY c2
HAVING count(c1) > 1

MaxCompute Best Practices / 4 Demo: Modify incompatible SQL

Issue: 20180803 13

) tmp;

order.by.no.limit

ORDER BY is not followed by the LIMIT statement.

By default, MaxCompute requires that ORDER BY be followed by the LIMIT statement to limit

 the number of data records. Because ORDER BY is used for full data sorting, the execution

performance is low without the LIMIT statement. For example:

Incorrect syntax:

select * from (select *
from (select cast(login_user_cnt as int) as uv, '3' as shuzi
from test_login_cnt where type = 'device' and type_name = 'mobile') v
order by v.uv desc) v
order by v.shuzi limit 20;

Error message:

FAILED: ODPS-0130071:[4,1] Semantic analysis exception - ORDER BY must
 be used with a LIMIT clause

Correct syntax:

Add the LIMIT statement to the subquery “order by v.uv desc”.

In MaxCompute 1.0, the view inspection is not strict. For example, a view is created in a project

which does not require LIMIT statement check (odps.sql.validate.orderby.limit=false).

CREATE VIEW dual_view AS SELECT id FROM dual ORDER BY id;

When you run the following statement to access the view:

SELECT * FROM dual_view;

MaxCompute 1.0 does not return an error, whereas MaxCompute 2.0 returns the following error:

FAILED: ODPS-0130071:[1,15] Semantic analysis exception - while
resolving view xdj.xdj_view_limit - ORDER BY must be used with a LIMIT
 clause

generated.column.name.multi.window

Automatically generated aliases are used.

In the earlier version of MaxCompute, an alias is auto generated for every expression of the

SELECT statement. The alias is displayed on the console. However, the earlier version does not

MaxCompute Best Practices / 4 Demo: Modify incompatible SQL

14 Issue: 20180803

 guarantee that the alias generation rule is correct or remains unchanged. Therefore, we do not

recommend that you use auto generated aliases.

In MaxCompute 2.0, a warning is given for use of auto generated aliases, but due to breadth of

involvement such use is not prohibited for the moment.

In some cases, known changes are made to the alias generation rules in the different versions of

 MaxCompute. Some online jobs depend on the auto generated aliases. Queries may fail when

MaxCompute performs version upgrade or rollback. If you have such problems, modify queries

and explicitly specify the alias of the column of interest. For example:

Not recommended syntax:

SELECT _c0 FROM (SELECT count(*) FROM dual) t;

Recommended correction:

SELECT c FROM (SELECT count(*) c FROM dual) t;

non.boolean.filter

Non-Boolean filter conditions are used.

MaxCompute prohibits the implicit conversion between the Boolean type and other data types

. However, the earlier version of MaxCompute allows the use of Bigint type filter conditions in

some cases. MaxCompute 2.0 prohibits the use of Bigint type filter conditions. If your scripts have

 Bigint type filter conditions, modify them promptly. For example:

Incorrect syntax:

select id, count(*) from dual group by id having id;

Error message:

FAILED: ODPS-0130071:[1,50] Semantic analysis exception - expect a
BOOLEAN expression

Correct syntax:

select id, count(*) from dual group by id having id <> 0;

post.select.ambiguous

The GROUP BY, CLUSTER BY, DISTRIBUTE BY, and SORT BY statements reference

columns with conflicting names.

MaxCompute Best Practices / 4 Demo: Modify incompatible SQL

Issue: 20180803 15

In the old version of MaxCompute, by default, the system selects the last column of the select list

as the operation object. MaxCompute 2.0 reports an error in this case. Make relevant modification

 timely. For example:

Incorrect syntax:

select a, b as a from t order by a limit 10;

Error message:

FAILED: ODPS-0130071:[1,34] Semantic analysis exception - a is
ambiguous, can be both t.a or null.a

Correct syntax:

select a as c, b as a from t order by a limit 10;

The pushed change covers the statements with conflicting column names but the same syntax.

Although there is no ambiguity, an error is often returned for these statements and a warning is

triggered. We recommend that you make relevant modification.

duplicated.partition.column

Partitions with the same name are specified in a query.

In the earlier version of MaxCompute, no error is returned when two partition keys with the same

 name are specified. The latter partition key overwrites the former one. It causes confusion.

MaxCompute 2.0 returns an error in this case.

Incorrect syntax:

insert overwrite table partition (ds = '1', ds = '2'）select ...

In fact, ds = ‘1’ is ignored during execution.

MaxCompute Best Practices / 4 Demo: Modify incompatible SQL

16 Issue: 20180803

Correct syntax:

insert overwrite table partition (ds = '2'）select ...

Incorrect syntax:

create table t (a bigint, ds string) partitioned by (ds string);

Correct syntax:

create table t (a bigint) partitioned by (ds string);

order.by.col.ambiguous

The ORDER BY clause references the duplicate aliases in the select list.

Incorrect syntax:

SELECT id, id
FROM dual
ORDER BY id;

Correct syntax:

SELECT id, id id2
FROM dual
ORDER BY id;

Remove the duplicate aliases before the ORDER BY clause can reference them.

in.subquery.without.result

colx does not exist in the source table if colx in subquery does not return any results.

Incorrect syntax:

SELECT * FROM dual
WHERE not_exist_col IN (SELECT id FROM dual LIMIT 0);

Error message:

FAILED: ODPS-0130071:[2,7] Semantic analysis exception - column
not_exist_col cannot be resolved

ctas.if.not.exists

The syntax of the target table is incorrect.

MaxCompute Best Practices / 4 Demo: Modify incompatible SQL

Issue: 20180803 17

If the target table exists, the earlier version of MaxCompute does not check the syntax, whereas

MaxCompute 2.0 does. Many errors may return in this case, for example:

Incorrect syntax:

CREATE TABLE IF NOT EXISTS dual
AS
SELECT * FROM not_exist_table;

Error message:

FAILED: ODPS-0130131:[1,50] Table not found - table meta_dev.
not_exist_table cannot be resolved

worker.restart.instance.timeout

In the earlier version of MaxCompute, every time a UDF outputs a record, a write operation is

triggered on the distributed file system, and a heartbeat packet is sent to Fuxi. If the UDF does not

 output any records for 10 minutes, the following error is reported:

FAILED: ODPS-0123144: Fuxi job failed - WorkerRestart errCode:252,
errMsg:kInstanceMonitorTimeout, usually caused by bad udf performance.

The runtime framework of MaxCompute 2.0 supports vectoring. It processes multiple rows of a

column at a time to improve the execution efficiency. Vectoring may cause the normal statements

 to time out in the case that a heartbeat packet is not sent to Fuxi within the specified time while

 multiple records are processed at a time. The interval between two output records does not

exceed 10 minutes.

If a time-out error occurs, we recommend that you first check the UDF performance. It takes

several seconds to process each record. If the UDF performance cannot be optimized, as a

workaround, you can set the value of “batch row” manually. The default value is 1024.

set odps.sql.executionengine.batch.rowcount=16;

divide.nan.or.overflow

The old version of MaxCompute does not support division constant folding.

In the old version of MaxCompute, the physical execution plan for a statement is as follows:

EXPLAIN
Select if (false, 0/0, 1.0)
FROM dual;
In Task M1_Stg1:
 Data source: meta_dev.dual

MaxCompute Best Practices / 4 Demo: Modify incompatible SQL

18 Issue: 20180803

 TS: alias: dual
 SEL: If(False, Divide(UDFToDouble(0), UDFToDouble(0)), 1.0)
 FS: output: None

The IF and Divide functions are retained. During execution, the first parameter of IF is set to “false

”, and the expression of the second parameter Divide is not evaluated. Division by zero is normal.

MaxCompute 2.0 supports division constant folding. An error is returned. For example:

Incorrect syntax:

SELECT IF(FALSE, 0/0, 1.0)
FROM dual;

Error message:

FAILED: ODPS-0130071:[1,19] Semantic analysis exception - encounter
 runtime exception while evaluating function /, detailed message:
DIVIDE func result NaN, two params are 0.000000 and 0.000000

An overflow error may occur besides nan. For example:

Incorrect syntax:

SELECT IF(FALSE, 1/0, 1.0)
FROM dual;

Error message:

FAILED: ODPS-0130071:[1,19] Semantic analysis exception - encounter
 runtime exception while evaluating function /, detailed message:
DIVIDE func result overflow, two params are 1.000000 and 0.000000

Correct syntax:

We recommend that you remove /0 and use valid constants.

A similar problem occurs in the constant folding of CASE WHEN, such as CASE WHEN TRUE

THEN 0 ELSE 0/0. During constant folding in MaxCompute 2.0, all subexpressions are evaluated

, causing incorrect division by zero.

CASE WHEN may involve more complex optimization scenarios, for example:

SELECT CASE WHEN key = 0 THEN 0 ELSE 1/key END
FROM (
SELECT 0 AS key FROM src
UNION ALL

MaxCompute Best Practices / 4 Demo: Modify incompatible SQL

Issue: 20180803 19

SELECT key FROM src) r;

The optimizer pushes down the division operation to subqueries. A similar conversion is as follows

:

M (
SELECT CASE WHEN 0 = 0 THEN 0 ELSE 1/0 END c1 FROM src
UNION ALL
SELECT CASE WHEN key = 0 THEN 0 ELSE 1/key END c1 FROM src) r;

Error message:

FAILED: ODPS-0130071:[0,0] Semantic analysis exception - physical plan
 generation failed: java.lang.ArithmeticException: DIVIDE func result
overflow, two params are 1.000000 and 0.000000

An error is returned for the constant folding of the first clause of UNION ALL. We recommend that

 you transfer CASE WHEN in SQL to subqueries and eliminate useless CASE WHEN statements

and /0.

SELECT c1 END
FROM (
SELECT 0 c1 END FROM src
UNION ALL
SELECT CASE WHEN key = 0 THEN 0 ELSE 1/key END) r;

small.table.exceeds.mem.limit

The earlier version of MaxCompute supports Multi-way Join optimization. Multiple JOIN

statements with the same Join key are merged for execution in the same Fuxi task, such as

J4_1_2_3_Stg1 in the following example.

EXPLAIN
SELECT t1.
FROM t1 JOIN t2 ON t1.c1 = t2.c1
JOIN t3 ON t1.c1 = t3.c1;

The earlier version of MaxCompute has the following physical execution plan:

In Job job0:
root Tasks: M1_Stg1, M2_Stg1, M3_Stg1
J4_1_2_3_Stg1 depends on: M1_Stg1, M2_Stg1, M3_Stg1

In Task M1_Stg1:
 Data source: meta_dev.t1

In Task M2_Stg1:
 Data source: meta_dev.t2

MaxCompute Best Practices / 4 Demo: Modify incompatible SQL

20 Issue: 20180803

In Task M3_Stg1:
 Data source: meta_dev.t3

In Task J4_1_2_3_Stg1:
 JOIN: t1 INNER JOIN unknown INNER JOIN unknown
 SEL: t1._col0, t1._col1, t1._col2
 FS: output: None

The earlier version of MaxCompute still keeps the physical execution plan when MapJoin Hints

are added, and gives priority to applications in Multi-way Join optimization. It may ignore the user

-specified MapJoin Hint.

EXPLAIN
SELECT /*+mapjoin(t1)*/ t1.
FROM t1 JOIN t2 ON t1.c1 = t2.c1
JOIN t3 ON t1.c1 = t3.c1;

The physical execution plan of the earlier version of MaxCompute is the same as the preceding

one.

The optimizer of MaxCompute 2.0 gives priority to the user-specified MapJoin Hint. In the

preceding example, if the value of t1 is relatively higher, the following error is returned:

FAILED: ODPS-0010000:System internal error - SQL Runtime Internal
 Error: Hash Join Cursor HashJoin_REL… small table exceeds, memory
 limit(MB) 640, fixed memory used …, variable memory used …

We recommend that you remove the MapJoin Hint if MapJoin is not your expected behavior.

sigkill.oom

Like small.table.exceeds.mem.limit, if you specify a MapJoin Hint and your small tables are of a

 relatively larger size, in the earlier version of MaxCompute, multiple JOIN statements may be

 optimized by Multi-way Join and can be successfully executed. However, in MaxCompute 2.0,

some users may set odps.sql.mapjoin.memory.max to prevent small tables from exceeding the

size limit. Each MaxCompute worker has a fixed memory limit. If small tables are of a large size,

MaxCompute workers may be killed because the memory limit exceeds. The error is similar to the

 following:

Fuxi job failed - WorkerRestart errCode:9,errMsg:SigKill(OOM), usually
 caused by OOM(outof memory).

We recommend that you remove MapJoin Hint and use Multi-way Join.

MaxCompute Best Practices / 4 Demo: Modify incompatible SQL

Issue: 20180803 21

wm_concat.first.argument.const

According to the Aggregate function document, the first parameter of WM_CONCAT must

be a constant. The old version of MaxCompute does not have strict check standards. For

example, when the source table has no data, no error is returned even if the first parameter of

WM_CONCAT is ColumnReference.

Function declaration:
string wm_concat(string separator, string str)
Parameter description:
Separator: String-type constant. Constants of other types or non-
constants can cause exceptions.

MaxCompute 2.0 checks the validity of parameters during the planning phase. An error is returned

 if the first parameter of WM_CONCAT is not a constant. For example:

Incorrect syntax:

SELECT wm_concat(value, ',') FROM src GROUP BY value;

Error message:

FAILED: ODPS-0130071:[0,0] Semantic analysis
 exception - physical plan generation failed:
 com.aliyun.odps.lot.cbo.validator.AggregateCallValidator
$AggregateCallValidationException: Invalid argument type - The first
 argument of WM_CONCAT must be constant string.

pt.implicit.convertion.failed

srcpt is a partition table with two partitions:

CREATE TABLE srcpt(key STRING, value STRING) PARTITIONED BY (pt STRING
);
ALTER TABLE srcpt ADD PARTITION (pt='pt1');
ALTER TABLE srcpt ADD PARTITION (pt='pt2');

For the preceding SQL statements, the constants of the IN INT type in the pt columns of the String

 type are converted to the Double type for comparison. Even if odps.sql.udf.strict.mode is set to “

true” in the project, the old version of MaxCompute does not return an error and it filters out all pt

columns, whereas in MaxCompute 2.0, an error is returned. For example:

SP_76/DNODPS1898901/EN-US_TP_11999.dita

MaxCompute Best Practices / 4 Demo: Modify incompatible SQL

22 Issue: 20180803

Incorrect syntax:

SELECT key FROM srcpt WHERE pt IN (1, 2);

Error message:

FAILED: ODPS-0130071:[0,0] Semantic analysis exception - physical
plan generation failed: java.lang.NumberFormatException: ODPS-0123091
:Illegal type cast - In function cast, value 'pt1' cannot be casted
from String to Double.

We recommend that you avoid comparing String type partition columns and INT-type constants

and convert INT-type constants to the String type.

having.use.select.alias

SQL specifies that the GROUP BY+HAVING clause precedes the SELECT clause. Therefore,

the column alias generated by the SELECT clause cannot be used in the HAVING clause. For

example:

Incorrect syntax:

SELECT id id2 FROM DUAL GROUP BY id HAVING id2 > 0;

Error message:

FAILED: ODPS-0130071:[1,44] Semantic analysis exception - column id2
 cannot be resolvedODPS-0130071:[1,44] Semantic analysis exception -
column reference id2 should appear in GROUP BY key

id2 is the column alias generated by the SELECT clause and cannot be used in the HAVING

clause.

dynamic.pt.to.static

In MaxCompute 2.0, dynamic partitions may be converted to static ones by the optimizer. For

example:

INSERT OVERWRITE TABLE srcpt PARTITION(pt) SELECT id, 'pt1' FROM dual;

is converted to:

INSERT OVERWRITE TABLE srcpt PARTITION(pt='pt1') SELECT id FROM dual;

If the specified partition value is invalid (for example, ‘${bizdate}’ is used), MaxCompute 2.0

returns an error during syntax check. For more information, see MaxCompute partition value

definition.

SP_76/DNODPS1898901/EN-US_TP_11990.dita
SP_76/DNODPS1898901/EN-US_TP_11990.dita

MaxCompute Best Practices / 4 Demo: Modify incompatible SQL

Issue: 20180803 23

Incorrect syntax:

INSERT OVERWRITE TABLE srcpt PARTITION(pt) SELECT id, '${bizdate}'
FROM dual LIMIT 0;

Error message:

FAILED: ODPS-0130071:[1,24] Semantic analysis exception - wrong
columns count 2 in data source, requires 3 columns (includes dynamic
partitions if any)

In the earlier version of MaxCompute, with LIMIT 0, no results are returned by the SQL statements

, and no dynamic partitions are created. In this case, no error is returned.

lot.not.in.subquery

Processing of the null value of In subquery.

In the standard SQL IN operation, if the value list contains a null value, the returned value may be

 “null” or “true”, but cannot be “false”. For example, 1 in (null, 1, 2, 3) is “true”, whereas 1 in (null,

2, 3) is “null”, and null in (null, 1, 2, 3) is “null”. Likewise, for the NOT IN operation, if the value list

 contains a null value, the returned value may be “false” or “null”, but cannot be “true”.

MaxCompute 2.0 performs processing with a standard behavior. If you receive a notification on

this problem, check your queries to determine whether the subqueries in the IN operation have a

null value and whether the related behavior meets your expectation. If not, make relevant changes

. For example:

select * from t where c not in (select accepted from c_list);

Ignore this problem if “accepted” does not have null values. If a null value exists, c not in (select

accepted from c_list) returns the value “true” in the earlier version, but returns a null value in the

new version.

Correct syntax:

select * from t where c not in (select accepted from c_list where
accepted is not null)

MaxCompute Best Practices / 6 Optimize long tail computing

24 Issue: 20180803

6 Optimize long tail computing

Long tail is a common and difficult problem in distributed computing. The workload of each node

is different when data is distributed unevenly. The whole task does not end until the work on the

slowest node is complete.

To address this problem, you can distribute a piece of task to multiple workers for execution,

rather than designate a worker to run the heaviest task. This article describes how to address

typical cases of long tail.

JOIN long tail

Cause

When the key of a JOIN statement has a large amount of data, a long tail occurs.

Solution

You can solve the problem in three steps:

• Verify that one or both of the tables are not small tables. If one table is large and the other

small, you can use the MAPJOIN statement to cache the small table. For the syntax and

relevant description, see SELECT operation. If the job is a MapReduce job, you can use the

resource table function to cache the small table.

• If both tables are relatively large, reduce duplicated data as much as possible.

• If the problem persists, consider service optimization to avoid the calculation of Cartesian

product on the two keys with a large data volume.

Group By long tail

Cause

When a key of the Group By statement has a large amount of computations, a long tail occurs.

Solution

You can solve the problem in either of the following ways:

SP_76/DNODPS1898901/EN-US_TP_11992.dita

MaxCompute Best Practices / 6 Optimize long tail computing

Issue: 20180803 25

• Rewrite the SQL statement and add random numbers to split the long key. For example:

Select Key,Count(*) As Cnt From TableName Group By Key;

Provided that the Combiner is skipped, data is shuffled from the M node to the R node. Then

, the R node performs the COUNT operation. The execution plan is M > R. If you want to

redistribute work to the key with the long tail, modify the statement as follows:

-- Assume that the key with the long tail is KEY001.
SELECT a.Key
 , SUM(a.Cnt) AS Cnt
FROM (
 SELECT Key
 , COUNT(*) AS Cnt
FROM TableName
GROUP BY Key,
 CASE
 WHEN Key = 'KEY001' THEN Hash(Random()) % 50
 ELSE 0
 END
) a
GROUP BY a.Key;

The execution plan is changed to M > R > R. The execution lengthens, but the consumed time

may reduce because the long-tail key is processed in two steps.

Note:

If you use the preceding method to add an R execution step for solving a long tail problem that

 is not serious, the consumed time may increase.

• Set system parameters as follows:

set odps.sql.groupby.skewindata=true。

Parameter setting is a universal optimization method, but the results are not satisfying because

 this method does not consider specific services. You can rewrite the SQL statement in a more

efficient manner based on the actual data.

Distinct long tail

When a long tail occurs in a Distinct statement, the key splitting method does not apply. You can

consider other methods.

Solution

--Original SQL statement, with the null UID skipped
SELECT COUNT(uid) AS Pv

MaxCompute Best Practices / 6 Optimize long tail computing

26 Issue: 20180803

 , COUNT(DISTINCT uid) AS Uv
FROM UserLog;

Rewrite the statement as follows:

SELECT SUM(PV) AS Pv
 , COUNT(*) AS UV
FROM (
 SELECT COUNT(*) AS Pv
 , uid
 FROM UserLog
 GROUP BY uid
) a;

The Distinct statement is rewritten to a Count statement to relieve the computing pressure on

a single Reducer. This solution also enables Group By statement optimization and Combiner

execution, greatly improving the performance.

Long tail of a dynamic partition

Cause

• To sort the data of small files, the dynamic partition function starts a Reduce task in the final

stage of execution. A long tail occurs when the data written by the dynamic partition function is

 skewed.

• Misuse of the dynamic partition function often results in long tails.

Solution

If the target partition for data write is determined, you can specify this partition during the Insert

operation, instead of using the dynamic partition function.

Remove long tails using the Combiner

For MapReduce jobs, it is a common practice to use the Combiner to remove long tails. This

practice has been mentioned in the WordCount example. The Combiner can reduce the volume

of data shuffle from the Mapper to the Reducer, thus sufficiently reduce the overhead of network

transfer. The optimization is automatically done for MaxCompute SQL statements.

Note:

The Combiner only supports optimization for Map. You must make sure that the results of

Combiner execution are the same. For example, in WordCount, the results are the same for two

 (KEY,1)s and one (KEY,2). For example, in average value calculation, (KEY,1) and (KEY,2)

cannot be directly merged into (KEY,1.5) in the Combiner.

MaxCompute Best Practices / 6 Optimize long tail computing

Issue: 20180803 27

Remove long tails using system optimization

In addition to the Local Combiner, you can use the optimization method provided by MaxCompute

 to remove long tails. For example, the following content (+N backups) is logged during the task

running process:

M1_Stg1_job0:0/521/521[100%] M2_Stg1_job0:0/1/1[100%] J9_1_2_Stg5_job0
:0/523/523[100%] J3_1_2_Stg1_job0:0/523/523[100%] R6_3_9_Stg2_job0:1/
1046/1047[100%]
M1_Stg1_job0:0/521/521[100%] M2_Stg1_job0:0/1/1[100%] J9_1_2_Stg5_job0
:0/523/523[100%] J3_1_2_Stg1_job0:0/523/523[100%] R6_3_9_Stg2_job0:1/
1046/1047[100%]
M1_Stg1_job0:0/521/521[100%] M2_Stg1_job0:0/1/1[100%] J9_1_2_Stg5_job0
:0/523/523[100%] J3_1_2_Stg1_job0:0/523/523[100%] R6_3_9_Stg2_job0:1/
1046/1047(+1 backups)[100%]
M1_Stg1_job0:0/521/521[100%] M2_Stg1_job0:0/1/1[100%] J9_1_2_Stg5_job0
:0/523/523[100%] J3_1_2_Stg1_job0:0/523/523[100%] R6_3_9_Stg2_job0:1/
1046/1047(+1 backups)[100%]

There total number of Reducers is 1,047, of which 1,046 are complete. The last one is incomplete

. After the system identifies this condition, it starts a new Reducer to run the same data. Then, the

 system takes the data of the Reducer which completes first and combines the data to the result

set.

Remove long tails using service optimization

The preceding optimization methods cannot solve all problems. You can analyze your services to

find a better solution.

• A large amount of noisy data may exist in reality. For example, you want to check the behavior

 data in the access record of each user by visitor ID. You must remove crawler data first, even

though crawlers become increasingly difficult to identify; otherwise, the crawler data may easily

cause a long tail during the calculation process. A similar case is when you associate data by a

 specific ID, you must check whether the field for association is null.

• Special services exist. For example, ISV operation records differ greatly from common user

records in terms of data volume and behavior. You can use a special method to analyze and

handle the ISV operation records for major accounts independently.

• When data distribution is uneven, do not use a constant field as the Distribute by field for full

sorting.

MaxCompute Best Practices / 7 Reasonableness evaluation of partition
pruning

28 Issue: 20180803

7 Reasonableness evaluation of partition pruning

Background and purposes

Partition tables of MaxCompute refer to the partition spaces specified during table creation. This

refers certain fields in the table as partition columns. When using data, if you mention the name

of the partition you want to access, you can only read data from the corresponding partition. This

eliminates need to scan the whole table, helping improve processing efficiency and reduce costs.

Partition pruning is to specify the filtering conditions for partition columns so that only part of

partition data in the table is read during SQL execution. This prevents data errors and resource

waste caused by full table scan. Partition pruning seems simple, but actually partition failure often

occurs. This article uses examples to introduce how to solve common problems.

Problem examples

The following figure shows the partitions of the test table test_part_cut.

Run the following SQL code:

select count(*)
from test_part_cut
where ds= bi_week_dim('20150102');

--bi_week_dim is a user defined function. The return format is (year,
sequential number of the week).
--If the date is normal, the system checks whether the date belongs
to weeks of the input year when taking Thursday as the start day of a
 week. For example, if 20140101 is input, 2013,52 is returned because
 January 1, 2014 is Wednesday and considered as the last week of 2013.
 If 20150101 is input, 2015,1 is returned.
--If 20151231 is input, because December 31, 2015 is Thursday and is
in the same week as January 1, 2016, 2016,1 is returned.

The returned result of bi_week_dim(‘20150102’) is 2015,1 and does not conform to the partition

values of the test_part_cut table. Generally, we think that the preceding SQL statements do not

read any partition, but, actually, the SQL statements read all partitions in the test_part_cut

table. The following figure shows the LogView:

SP_76/DNODPS1892969/EN-US_TP_11922.dita

MaxCompute Best Practices / 7 Reasonableness evaluation of partition
pruning

Issue: 20180803 29

In the preceding figure, the SQL statements read all partitions in the test_part_cut table when

executed.

The preceding example shows that though easy-to-use, partition pruning often fails. Therefore,

this article focuses on the following aspects:

• Verify whether partition pruning in SQL statements takes effect.

• Know common scenarios that cause failed partition pruning.

Verify whether partition pruning takes effect

You can run the explain command and view SQL execution plans to check whether partition

pruning in the SQL statements takes effect.

• Effect of failed partition pruning

explain
select seller_id
from xxxxx_trd_slr_ord_1d
where ds=rand();

The red box in the preceding figure shows that all the 1,344 partitions of the xxxxx_trd_

slr_ord_1d table are read.

• Effect of successful partition pruning

explain
select seller_id
from xxxxx_trd_slr_ord_1d

MaxCompute Best Practices / 7 Reasonableness evaluation of partition
pruning

30 Issue: 20180803

where ds='20150801';

The red box in the preceding figure shows that only the 20150801 partition of the xxxxx_trd_

slr_ord_1d table is read.

Analysis on scenarios of failed partition pruning

Partition pruning sometimes fails when custom functions or part of system functions are used

, and may also fail in the Where clause when the Join clause for joining is used. These two

scenarios are explained in the following examples.

Failed partition pruning caused by custom functions

If partition pruning conditions contain custom functions, partition pruning fails. However, some

 system functions may also cause partition pruning to fail. Therefore, considering the limit on

partition values, you must run the explain command to view the SQL statement execution plans

and verify that partition pruning has taken effect when unusual functions are used.

explain
select ...
from xxxxx_base2_brd_ind_cw
where ds = concat(SPLIT_PART(bi_week_dim(' ${bdp.system.bizdate}'),
 ',', 1), SPLIT_PART(bi_week_dim(' ${bdp.system.bizdate}'), ',', 2))

In the preceding SQL statements, the custom functions used in partition pruning trigger full table

scan.

Failed partition pruning caused by the Join clause

In SQL statements, when you use the Join clause for joining, if partition pruning conditions are

placed in the on clause, the partition pruning takes effect. If the conditions are placed in the Where

 clause, the partition pruning takes effect for the primary table, and does not apply to the foreign

table. The three Join clauses are described as follows.

• Left Outer Join

MaxCompute Best Practices / 7 Reasonableness evaluation of partition
pruning

Issue: 20180803 31

▬ Place all partition pruning conditions in the on clause

explain
select a.seller_id
 ,a.pay_ord_pbt_1d_001
from xxxxx_trd_slr_ord_1d a
left outer join
 xxxxx_seller b
on a.seller_id=b.user_id
and a.ds='20150801'
and b.ds='20150801';

As shown in the preceding figure, the left table is under full table scan, and only partition

pruning for the right table takes effect.

▬ Place partition pruning conditions in the where clause

explain
select a.seller_id
 ,a.pay_ord_pbt_1d_001
from xxxxx_trd_slr_ord_1d a
left outer join
 xxxxx_seller b
on a.seller_id=b.user_id
where a.ds='20150801'

MaxCompute Best Practices / 7 Reasonableness evaluation of partition
pruning

32 Issue: 20180803

and b.ds='20150801';

As shown in the preceding figure, partition pruning for both the two tables takes effect.

• Right Outer Join

Similar to Left Outer Join, if partition pruning conditions are in the on clause, the conditions

take effect only for the left table of Right Outer Join. If conditions are in the where clause, the

conditions take effect for both the two tables.

• Full Outer Join

Partition pruning conditions take effect only in the where clause, and fail in the on clause.

Impact and consideration

• Partition pruning failure has serious results, which can be hardly discovered by users.

Therefore, we recommend that you check for failed partition pruning when submitting the code.

• More efforts are needed to solve the problem that custom functions cannot be used for partition

 pruning.

MaxCompute Best Practices / 8 Learn to write SQL statements quickly

Issue: 20180803 33

8 Learn to write SQL statements quickly

Using practical examples, this document introduces MaxCompute SQL and helps you understand

how to write SQL statements and what is the difference between MaxCompute SQL and standard

SQL. Read this article with MaxCompute SQL basic documentation for better understanding.

Prepare a dataset

In the example the Emp/Dept table is used as the dataset. For your convenience, we provide

related MaxCompute table creation statements and data files (emp table data files and dept table

data files). You can create tables on the MaxCompute projects and upload data.

The DDL statements for creating an Emp table are as follows:

CREATE TABLE IF NOT EXISTS emp (
 EMPNO string,
 ENAME string ,
 JOB string ,
 MGR bigint ,
 HIREDATE datetime ,
 SAL double ,
 COMM double ,
 DEPTNO bigint);

The DDL statements for creating a Dept table are as follows:

CREATE TABLE IF NOT EXISTS dept (
 DEPTNO bigint ,
 DNAME string,
 LOC string);

SQL operation

Notes for SQL beginners

• If you use Group by, the Select part must be either group items or aggregate functions.

• Order by must be followed by Limit n.

• The Select expression does not support subqueries. You can rewrite the code to the Join

clause to use subqueries.

• The Join clause does not support Cartesian projects and usage of MapJoin.

• Union all must use the format of subqueries.

• The In/Not in statement can correspond to only one column of subquery, and the number of

rows of the returned results cannot exceed 1,000. Otherwise, rewrite the statements using Join.

Compile SQL programs to solve problems

http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/51009/cn_zh/1489374509403/emp%E6%95%B0%E6%8D%AE.txt
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/51009/cn_zh/1488265664915/dept%E8%A1%A8%E6%95%B0%E6%8D%AE%E6%96%87%E4%BB%B6.txt
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/51009/cn_zh/1488265664915/dept%E8%A1%A8%E6%95%B0%E6%8D%AE%E6%96%87%E4%BB%B6.txt

MaxCompute Best Practices / 8 Learn to write SQL statements quickly

34 Issue: 20180803

Example 1: List all departments that have at least one employee.

To avoid the sixth point in Notes for SQL beginners caused by large data volumes, you must

use the Join clause for rewriting. For example:

SELECT d.
FROM dept d
JOIN (
 SELECT the DISTINCT deptno AS no
 FROM emp
) e
on d. deptno = e. no;

Example 2: List all employees who have higher salaries than Smith.

This example is a typical scenario of MapJoin, as shown in the following code:

SELECT /*+ MapJoin(a) */ e.empno
 , e. ename
 , e. sal
FROM emp E
JOIN (
 SELECT MAX(sal) AS sal
 FROM 'emp'
 WHERE `ENAME` = 'SMITH'
) a
ON e. sal> a. sal;

Example 3: List the name and the immediate superior’s name of all employees.

Use non-equi join, as shown in the following code:

SELECT a. ename
 , b. ename
FROM emp A
LEFT OUTER JOIN emp b
ON b. empno = a. mgr;

Example 4: List all jobs of which salaries are higher than 1500 yuan.

Use Having, as shown in the following code:

SELECT emp. 'JOB'
 , MIN(emp.sal) AS sal
FROM 'emp'
GROUP BY emp. 'JOB'
HAVING MIN(emp.sal) > 1500;

Example 5: List the number of employees of each department, and their average salary and

 average service year.

MaxCompute Best Practices / 8 Learn to write SQL statements quickly

Issue: 20180803 35

You can use many built-in functions for time processing, as shown in the following code:

SELECT COUNT(empno) AS cnt_emp
 , ROUND(AVG(sal), 2) AS avg_sal
 , ROUND(AVG(datediff(getdate(), hiredate, 'dd')), 2) AS avg_hire
FROM 'emp'
GROUP BY 'DEPTNO';

Example 6: List the names of first three employees who have the highest salaries and their

ranks (Top n is frequently used).

The SQL statements are as follows:

SELECT *
FROM (
 SELECT deptno
 , ename
 , sal
 , ROW_NUMBER() OVER (PARTITION BY deptno ORDER BY sal DESC) AS
nums
 FROM emp
) emp1
WHERE emp1.nums < 4;

Example 7: Use the SQL program to list the number of employees and the ratio of clerks of each

department.

The SQL statements are as follows:

SELECT deptno
 , COUNT(empno) AS cnt
 , ROUND(SUM(CASE
 WHEN job = 'CLERK' THEN 1
 ELSE 0
 END) / COUNT(empno), 2) AS rate
FROM `EMP`
GROUP BY deptno;

MaxCompute Best Practices / 9 Basic differences with standard SQL and
solutions

36 Issue: 20180803

9 Basic differences with standard SQL and
solutions

This article describes problems that occur frequently when users who are familiar with the

relational database SQL use MaxCompute SQL. For specific MaxCompute SQL syntax, see

SQL Overview.

Basic differences of MaxCompute SQL

Use cases

• Transactions are not supported. (The commit and rollback actions are not supported. We

 recommend using the codes that have idempotence and support re-running. We also

recommend using Insert Overwrite, instead of Insert Into, to write data.)

• Indexes and primary and foreign key constraints are not supported.

• Auto increment fields and default values are not supported. If the default value exists, assign

the value when writing the data.

Table partitions

• A table supports 60,000 partitions.

• The number of input partitions during a query cannot exceed 10,000. Otherwise, an error is

returned. If the partitions are list partitions and the query performs filtering based only on list

partitions, an error may be returned if the total number of partitions exceeds 10,000.

• The number of output partitions in a query cannot exceed 2048.

Precision

• The Double type has precision. Therefore, we do not recommend that you directly join two

Double fields using an equal sign (=). We recommend deducting one number from the other,

and consider the two numbers as the same if their difference is smaller than a preset value, for

example, abs(a1- a2) < 0.000000001.

• Currently, MaxCompute SQL supports the high-precision type Decimal. If you have higher

precision requirements, you can store the data as the string type and use UDF to implement

such calculation.

Data type conversion

• If two different field types need to be joined, to prevent unexpected errors, we recommend first

converting the types before joining them. This also helps code maintenance.

https://help.aliyun.com/document_detail/43152.html
https://help.aliyun.com/document_detail/44226.html

MaxCompute Best Practices / 9 Basic differences with standard SQL and
solutions

Issue: 20180803 37

• For implicit conversions of dates and strings, to input a string to a function that requires

entering a date, you can convert between the string and date according to the yyyy-mm-dd

hh:mm:ss format. For other formats, see Date functions > TO_DATE.

DDL difference and solutions

Table structure

• The partition column name cannot be changed. Only the value corresponding to the partition

column can be changed. For the specific differences between partition columns and partitions,

see FAQs.

• You can add columns but cannot delete columns and modify the data type of columns. For

more information, see SQL FAQs. If you must delete columns or modify the column data types,

see Modify the structure of MaxCompute tables for the most secure procedure.

DML difference and solutions

INSERT

• The most intuitive syntax difference is that Insert into/overwrite is followed by the keyword

Table.

• Currently, only syntax of Insert Into/Overwrite Table TableName Select supports batch data

 insert. Syntax of Insert Into/Overwrite Table TableName Values(xxx) does not support the

 batch data insert. To write a single record of data, see Insert a single record of data using

MaxCompute SQL.

UPDATE/DELETE

• Currently, the Update/Delete statements are not supported. If you want to perform the update

and delete actions, see Update and delete data.

SELECT

• The number of input tables cannot exceed 16.

• The Select field in the Group by query is either the group field of Group By or the aggregate

 function to be used. From the logic perspective, if a non-group column and Group By Key

have multiple records of data, the data cannot be displayed without the aggregate function.

• MaxCompute does not support Group by cube (group by with rollup). However, you can use

the union clause to simulate Group by cube, for example, select k1, null, sum(v)

from t group by k1 union all select k1, k2, sum(v) from t group by k1

, k2;.

https://help.aliyun.com/document_detail/40278.html
https://help.aliyun.com/document_detail/40292.html
https://help.aliyun.com/document_detail/40275.html
https://help.aliyun.com/document_detail/44309.html

MaxCompute Best Practices / 9 Basic differences with standard SQL and
solutions

38 Issue: 20180803

Subquery

Subqueries must have aliases. We recommend that all queries have aliases.

IN/NOT IN

• The data volume in the subquery following In/Not In and Exist/Not Exist cannot exceed 1000.

To solve the problem, see this article. If the uniqueness of the results returned by the subquery

is guaranteed in the business aspect, you can consider removing Distinct to improve the query

performance.

10,000 results returned by MaxCompute SQL

• MaxCompute limits the number of data records returned by the separately executed Select

clause. For the specific configurations, see Other operations. The maximum data number is

set to 10,000. If the number of data records to be queried is large, see this article to obtain all

data while using the Tunnel Command.

MAPJOIN

• The Join clause does not support Cartesian products. The Join clause must use the on clause

to set the joining conditions. If you want to create broadcast tables for small tables, you must

use MapJoin Hint. For more information, see this article.

ORDER BY

• Order By must be followed by Limit n. If you want to sort a large number of data records,

or even sort the full table, you can set N to a large number. However, use this method

with caution. Because the system does not have advantages of distributed systems, the

performance may be affected. For more information, see Sort the queried data in MaxCompute

.

UNION ALL

• The data types, quantities, and names of all columns involved in the UNION ALL calculation

must be consistent. Otherwise, an exception is returned.

• The UNION ALL query must be nested by a subquery.

https://help.aliyun.com/document_detail/40282.html
https://help.aliyun.com/document_detail/40333.html
https://help.aliyun.com/document_detail/40268.html
https://help.aliyun.com/document_detail/40302.html
https://help.aliyun.com/document_detail/40302.html

	Contents
	Legal disclaimer
	Generic conventions
	1 SQL implements multiple rows of data into one
	2 Group out the first n sections of each group of data
	3 Export SQL operation result
	4 Demo: Modify incompatible SQL
	6 Optimize long tail computing
	7 Reasonableness evaluation of partition pruning
	8 Learn to write SQL statements quickly
	9 Basic differences with standard SQL and solutions

