
Alibaba Cloud
MaxCompute

User Guide

Issue: 20181120

MaxCompute User Guide / Legal disclaimer

Issue: 20181120 I

Legal disclaimer

Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions of this

legal disclaimer before you read or use this document. If you have read or used this document, it

shall be deemed as your total acceptance of this legal disclaimer.

1. You shall download and obtain this document from the Alibaba Cloud website or other Alibaba

Cloud-authorized channels, and use this document for your own legal business activities only.

The content of this document is considered confidential information of Alibaba Cloud. You shall

 strictly abide by the confidentiality obligations. No part of this document shall be disclosed or

provided to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted, or disseminat

ed by any organization, company, or individual in any form or by any means without the prior

written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades, adjustment

s, or other reasons. Alibaba Cloud reserves the right to modify the content of this document

without notice and the updated versions of this document will be occasionally released through

 Alibaba Cloud-authorized channels. You shall pay attention to the version changes of this

document as they occur and download and obtain the most up-to-date version of this document

 from Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud products and

services. Alibaba Cloud provides the document in the context that Alibaba Cloud products and

 services are provided on an "as is", "with all faults" and "as available" basis. Alibaba Cloud

makes every effort to provide relevant operational guidance based on existing technologies

. However, Alibaba Cloud hereby makes a clear statement that it in no way guarantees the

accuracy, integrity, applicability, and reliability of the content of this document, either explicitly

or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial losses incurred

 by any organizations, companies, or individuals arising from their download, use, or trust in

this document. Alibaba Cloud shall not, under any circumstances, bear responsibility for any

 indirect, consequential, exemplary, incidental, special, or punitive damages, including lost

profits arising from the use or trust in this document, even if Alibaba Cloud has been notified of

the possibility of such a loss.

5. By law, all the content of the Alibaba Cloud website, including but not limited to works, products

, images, archives, information, materials, website architecture, website graphic layout, and

webpage design, are intellectual property of Alibaba Cloud and/or its affiliates. This intellectu

al property includes, but is not limited to, trademark rights, patent rights, copyrights, and trade

MaxCompute User Guide / Legal disclaimer

II Issue: 20181120

 secrets. No part of the Alibaba Cloud website, product programs, or content shall be used,

modified, reproduced, publicly transmitted, changed, disseminated, distributed, or published

 without the prior written consent of Alibaba Cloud and/or its affiliates. The names owned by

Alibaba Cloud shall not be used, published, or reproduced for marketing, advertising, promotion

, or other purposes without the prior written consent of Alibaba Cloud. The names owned by

Alibaba Cloud include, but are not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other

brands of Alibaba Cloud and/or its affiliates, which appear separately or in combination, as well

 as the auxiliary signs and patterns of the preceding brands, or anything similar to the company

 names, trade names, trademarks, product or service names, domain names, patterns, logos

, marks, signs, or special descriptions that third parties identify as Alibaba Cloud and/or its

affiliates).

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

MaxCompute User Guide / Legal disclaimer

Issue: 20181120 III

MaxCompute User Guide / Generic conventions

Issue: 20181120 I

Generic conventions

Table -1: Style conventions

Style Description Example

This warning information indicates a
situation that will cause major system
changes, faults, physical injuries, and
other adverse results.

Danger:
Resetting will result in the loss of user
configuration data.

This warning information indicates a
situation that may cause major system
 changes, faults, physical injuries, and
other adverse results.

Warning:
Restarting will cause business
interruption. About 10 minutes are
required to restore business.

This indicates warning information,
supplementary instructions, and other
content that the user must understand.

Note:
Take the necessary precautions to
save exported data containing sensitive
information.

This indicates supplemental instructio
ns, best practices, tips, and other
content that is good to know for the
user.

Note:
You can use Ctrl + A to select all files.

> Multi-level menu cascade. Settings > Network > Set network type

Bold It is used for buttons, menus, page
names, and other UI elements.

Click OK.

Courier

font

It is used for commands. Run the cd /d C:/windows command
to enter the Windows system folder.

Italics It is used for parameters and variables. bae log list --instanceid

 Instance_ID

[] or [a|b] It indicates that it is a optional value,
and only one item can be selected.

ipconfig [-all|-t]

{} or {a|b} It indicates that it is a required value,
and only one item can be selected.

swich {stand | slave}

MaxCompute User Guide / Contents

II Issue: 20181120

Contents

Legal disclaimer..I
Generic conventions.. I
1 Definition... 1

1.1 Table...1
1.2 Data types.. 1
1.3 Lifecycle..6
1.4 Function.. 7
1.5 Task.. 7
1.6 Instance.. 8

2 Common commands..9
2.1 List of common commands..9
2.2 Project operations.. 10
2.3 Table operations...13
2.4 Instances.. 17
2.5 Resources...22
2.6 Functions.. 24
2.7 Set operation.. 26
2.8 Other operations...27

3 Data upload and download... 29
3.1 Data upload and download.. 29
3.2 Connection to data tunnel service... 29
3.3 Cloud data migration..30
3.4 Data upload and download tools... 30
3.5 Tunnel commands..33
3.6 Tunnel SDK.. 43

3.6.1 Summary... 43
3.6.2 TableTunnel.. 44
3.6.3 UploadSession.. 46
3.6.4 DownloadSession..48
3.6.5 TunnelBufferedWriter.. 49

3.7 Bulk data channel SDK example... 50
3.7.1 Example.. 50
3.7.2 Example for uploading.. 51
3.7.3 简单下载示例...53
3.7.4 Example for multi-thread uploading..55
3.7.5 Example for multi-thread downloading... 57
3.7.6 Example for BufferedWriter multi-thread uploading..60
3.7.7 Example for BufferedWriter uploading..61

3.8 Import or export data using the Data Integration...61
3.9 Real-time data tunnel of DataHub... 65

MaxCompute User Guide / Contents

Issue: 20181120 III

4 SQL.. 66
4.1 SQL summary.. 66
4.2 Operators..67
4.3 Type conversions... 71
4.4 DDL SQL..77

4.4.1 Table Operations...77
4.4.2 Lifecycle of table...83
4.4.3 Column/Partition operation..85
4.4.4 View operations.. 88

4.5 Insert Operation..89
4.5.1 INSERT OVERWRITE/INTO...89
4.5.2 MULTI INSERT... 91
4.5.3 DYNAMIC PARTITION... 92
4.5.4 VALUES.. 95

4.6 Lateral View..97
4.7 Select Operation...100

4.7.1 Introduction to the SELECT Syntax..100
4.7.2 SELECT Sequence...104
4.7.3 Subquery... 105
4.7.4 UNION ALL/UNION [DISTINCT]...107
4.7.5 JOIN operation..108
4.7.6 SEMI JOIN.. 110
4.7.7 MAPJOIN HINT...111
4.7.8 HAVING clause...112
4.7.9 Explain...112
4.7.10 Common table expression (CTE)... 115

4.8 Builtin functions.. 116
4.8.1 Date functions... 116
4.8.2 Mathematical functions... 134
4.8.3 Window functions..155
4.8.4 Aggregate functions.. 171
4.8.5 String functions... 179
4.8.6 Other functions..202

4.9 UDF.. 223
4.9.1 UDF Summary.. 223
4.9.2 Java UDF.. 225
4.9.3 Python UDF.. 237

4.10 Differences with other SQL syntax.. 244
4.11 SQL limits... 245

5 MapReduce..249
5.1 Program Example...249

5.1.1 WordCount samples..249
5.1.2 MapOnly samples... 252

MaxCompute User Guide / Contents

IV Issue: 20181120

5.1.3 Multi-input and Output.. 254
5.1.4 Multi-task samples.. 258
5.1.5 Secondary Sort samples...261
5.1.6 Resource samples.. 264
5.1.7 Counter samples...266
5.1.8 Grep samples..269
5.1.9 Join samples... 273
5.1.10 Sleep samples...276
5.1.11 Unique samples.. 277
5.1.12 Sort samples... 281
5.1.13 Partition samples...283
5.1.14 Pipeline samples...284

5.2 MR limits...287

6 Java Sandbox... 291
7 External table..296

7.1 Access OSS data...296
7.2 Unstructured data exported to OSS...308
7.3 Visit Table Store data.. 317

8 Security..324
8.1 Target users... 324
8.2 User authentication.. 324
8.3 User management..325
8.4 Role management.. 330
8.5 Authorization...332
8.6 Permission check... 336
8.7 Security configurations... 337
8.8 Data protection of projects...338
8.9 Security command list..341

8.9.1 Security configuration of a project.. 341
8.9.2 Manage permissions...342
8.9.3 Package-based resource sharing... 343

8.10 Resource share across project space... 343
8.10.1 Resource sharing across projects based on package.................................. 344
8.10.2 Package usage method.. 344

8.11 Column-level access control.. 348

9 Lightning... 354
9.1 Lightning overview..354
9.2 Activate Lightning service.. 356
9.3 Service pricing..356
9.4 Quick Start..357

9.4.1 Guide description.. 357
9.4.2 Prerequisites... 357
9.4.3 Prepare client tools for connection... 358

MaxCompute User Guide / Contents

Issue: 20181120 V

9.4.4 Access services and perform analysis... 358
9.5 Access domain name...359
9.6 Access services using JDBC interfaces... 360

9.6.1 JDBC driver...360
9.6.2 Configure JDBC connections..361
9.6.3 Access services using common tools...363

9.7 SQL reference.. 368
9.8 View tasks.. 369
9.9 Constraints and limitations...370
9.10 Lightning FAQs...371

10 MaxCompute Manager... 373

MaxCompute User Guide / Contents

VI Issue: 20181120

MaxCompute User Guide / 1 Definition

Issue: 20181120 1

1 Definition

1.1 Table
A table is the data storage unit in MaxCompute. A table is a two-dimensional data structure

composed of rows and columns. Each row represents a record, and each column represents a

field with the same data type. One record can contain one or more columns. The column name

and data type comprise the schema of a table.

The operating objects (input, output) of various computing tasks in MaxCompute are tables. You

can create a table, delete a table, and import data into a table.

Note:

The data management module from DataWorks allows you to create, organize, and modify data

lifecycles for MaxCompute tables and grant management permissions. For more information, see

data management overview.

MaxCompute v2.0 supports two types of tables: internal tables and external tables.The

MaxCompute2.0 version begins to support the external table.

• For internal tables, all data is stored in MaxCompute tables, and the columns in the table can

be any of the data types supported by MaxComputeData types.

• For external tables, data is not stored in MaxCompute. Instead, table data can be stored

in OSS or OTS. MaxCompute only records meta information of the table. You can use

MaxCompute’s external table to process unstructured data on OSS or Table Store, such as

video, audio, genetics, meteorological, and geographic information.

1.2 Data types

Basic data types

supported by MaxCompute2.0 are listed in the following table. Columns in a MaxCompute

table must be any of the listed types. New types include TINYINT, SMALLINT, INT, FLOAT,

VARCHAR, TIMESTAMP, and BINARY data type.The details are as follows:

Note:

At present, the Set commands supported by MaxCompute SQL and new version Mapreduce are

divided into two ways:

https://www.alibabacloud.com/help/doc-detail/30284.html
https://www.alibabacloud.com/product/oss
https://www.alibabacloud.com/product/ots

MaxCompute User Guide / 1 Definition

2 Issue: 20181120

• Session Level: To use the new data types (Tinyint, Smallint, Int, Float, Varchar, TIMESTAMP

BINARY), add a set statement before the table statement

set odps.sql.type.system.odps2=true;

And submit the execution together with the table statement.

• Project level: that is to support new types of project level open. The Owner of project can set

up project as required.

setproject odps.sql.type.system.odps2=true;

For a detailed description of setproject, please see:Other operations.

• When it comes to INT types, 32 bits are added to the set statement and converted to BIGINT,

64 bits, if not added.

• SDK 0.27.2-public version and above, Client 0.27.0 version and above support new data type.

Open new typeodps.sql.type.system.odps2of influence.

• Implicit type conversion rules change.

Possible compatibility issues: Some implicit type conversions under the new type system will

be disabled, including string - > bigint, string - datetime, double - > bigint, decimal - > double,

decimal - > bigint are all at risk of precision loss or error. This situation can be solved by cast

transformation.

• Support operations, built-in functions, UDF is not the same.

Some operations and built-in functions that take new types as parameters and return values

 are not available without opening new types, including UDF, which overloads new types as

parameters and return values. Possible compatibility issues: For example, UDF contains two

overloads: bigint and int. The old type must be the overload of bigint, while the new type may

be resolved to the overload of int.

• The type of constant will change.

A single shaping constant, such as 123, is bigint type under the old type, and int type under

 the new type. Possible compatibility issues: Type int leads to inconsistencies in function

prototypes invoked by subsequent operations, including new type tables generated after

dropping (i.e., writing to disk) that lead to changes in the behavior of peripheral tools and

subsequent jobs.

• The resolution of the bigint keyword is different.

MaxCompute User Guide / 1 Definition

Issue: 20181120 3

In the old type system, the int keyword is treated as bigint, while the new type system is

treated as real int. Possible compatibility issues: Type int leads to inconsistencies in function

 prototypes invoked by subsequent operations, including new type tables generated after

dropping (i.e., writing to disk) that lead to changes in the behavior of peripheral tools and

subsequent jobs.

For a detailed description of setproject, please see:Other operations

.

MR type tasks do not support new data types for the time being.

Type New Constant Description

TINYINT Yes 1Y，-127Y 8-bit signed integer,
range -128 to 127

SMALLINT Yes 32767S, -100S 16-bit signed integer,
range -32768 to 32767

INT Yes 1000,-15645787 (
Note2)

32 bit signed shaping,
the range is -231 to 231

- 1.

BIGINT No 100000000000L, -1L 64 bit signed shaping,
the range is -263 + 1 to
263 - 1.

FLOAT Yes None 32-bit binary floating
point

DOUBLE No 3.1415926 1E+7 64-bit binary floating
point

DECIMAL No 3.5BD， 99999999999
.9999999BD(Note1)

Decimal precision
number type, shaping
part range -1036 + 1 to
1036 - 1, decimal part
accurate to 10-18

VARCHAR Yes None (Note3) Variable-length
character type, n is the
 length, and the range
is 1 to 65535.

STRING No “abc”,’bcd’,”alibaba” ‘
inc’ (Note4)

A single string length
can be up to 8M

MaxCompute User Guide / 1 Definition

4 Issue: 20181120

Type New Constant Description

BINARY Yes None Binary data type, a
single string length
can be up to 8M

DATETIME No DATETIME ‘2017-11-
11 00:00:00’

Date-time type, range
 from December 31
, 999 to January 1
-9, 0000, exact to
milliseconds (note 5)

TIMESTAMP Yes TIMESTAMP ‘2017
-11-11 00:00:00.
123456789’

It depends on the time
 zone and ranges from
 January 1st 0000 to
December 31, 9999
23.59:59.999999999
, and is accurate to
nanosecond-level.

BOOLEAN No TRUE，FALSE True/False, Boolean
type

All data types in the preceding table can be NULL.

Note:

• NOTE 1:When insert is constant to decimal field, pay attention to the writing of constants. For

example,3.5BD in the definition of constants.

insert into test_tb(a) values (3.5BD);

The a field is decimal type.

• NOTE 2: For INT constant, if the range of INT is exceeded, INT is converted into BIGINT; if

the range of BIGINT is exceeded, it is converted into DOUBLE.

In MaxCompute versions earlier than 2.0, all INT types in SQL script are converted to BIGINT ,

for example:

create table a_bigint_table(a int); -- the int here is actually
treated as a bigint
select cast(id as int) from mytable; -- the int here is actually
treated as a bigint

To be compatible with earlier MaxCompute versions, MaxCompute 2.0 retains this conversion

 without setting odps.sql.type.system.odps2 as True. However, a warning is triggered when

MaxCompute User Guide / 1 Definition

Issue: 20181120 5

 INT is treated as BIGINT. In this case, we recommend that you change an Int to a Bigint to

avoid confusion.

• NOTE 3: VARCHAR constants can be expressed by STRING constants of implicit transforma

tion.

• NOTE 4: STRING constants support connections, for example, abc xyz is parsed as

abcxyz, and different parts can be written on different lines.

• NOTE 5: The time value displayed by the current query does not contain milliseconds.

The tunnel command specifies the time format through-dfp , and can be specified in

milliseconds, such astunnel upload -dfp 'yyyy-MM-dd HH:mm:ss.SSS' , for more

information about tunnel commands, refer toTunnel commands.

Complex data types

MaxCompute2.0 supports the complex data types listed in the following table.

Type Definition method Construction method

ARRAY array< int >;array< struct< a:int
, b:string >>

array(1, 2, 3); array(array(1, 2
); array(3, 4))

MAP map< string, string >;map<
smallint, array< string>>

map(“k1”, “v1”, “k2”, “v2”); map
(1S, array(‘a’, ‘b’), 2S, array(‘x
’, ‘y))

STRUCT struct< x:int, y:int>;struct<
field1:bigint, field2:array< int>,
field3:map< int, int>>

named_struct(‘x’, 1, ‘y’, 2);
named_struct(‘field1’, 100L, ‘
field2’, array(1, 2), ‘field3’, map
(1, 100, 2, 200)

Note:

At present, the Set commands supported by MaxCompute SQL and new version Mapreduce are

divided into two ways:

• Session Level: To use the new data types (Tinyint, Smallint, Int, Float, Varchar, TIMESTAMP

BINARY), add a set statement before the table statement

set odps.sql.type.system.odps2=true;

And submit the execution together with the table statement.

MaxCompute User Guide / 1 Definition

6 Issue: 20181120

• Project level: that is to support new types of project level open. The Owner of project can set

up project as required.

setproject odps.sql.type.system.odps2=true;

For a detailed description of setproject, please see:Other operations.

1.3 Lifecycle
The lifecycle of a MaxCompute table or partition is measured from the last update time. If the table

or partition remains unchanged after a specified time, MaxCompute automatically recycles it. The

specified time indicates the lifecycle.

• Lifecycle units: days, positive integers only.

• When a lifecycle is specified for a non-partition table, the lifecycle is counted from the last time

 the table data was modified (LastDataModifiedTime). If table data has not been changed,

MaxCompute recycles the table automatically without manual operation (similar to the drop

table operation).

• When a lifecycle is specified for a partition table, we will decide whether a partition should be

recycled according to each partition's LastDataModifiedTime. Unlike non-partition tables, a

partition table will not be deleted even if its last partition has been recycled.

Note:

Lifecycle scanning is started at a scheduled time every day, and entire partitions are scanned.

If the partition remains unchanged after its lifecycle, MaxCompute automatically recycles it.

When a lifecycle is specified for a partition table, MaxCompute determines whether to recycle

the partition based on its LastDataModifiedTime. Unlike non-partition tables, a partition table

cannot be deleted even when all its partitions have been recycled.

• You can set the lifecycle of tables, but not of partitions. The lifecycle of a table can be specified

 during table creation.

• If no lifecycle is specified, the table, or partition cannot be automatically recycled by

MaxCompute.

For more information on specifying or modifying lifecycles during table creation, and modifying a

table’s LastDataModifiedTime, see Table Operations.

MaxCompute User Guide / 1 Definition

Issue: 20181120 7

1.4 Function
MaxCompute provides SQL computing capabilities. In MaxCompute SQL, you can use the

system’s built-in functions to perform common computing and counting tasks. If the built-in

functions do not meet your requirements, you can use the Java programming interface provided

by MaxCompute to develop user-defined functions (UDFs).

UDFs can be divided into scalar valued functions, user-defined aggregate functions (UDAFs), and

user-defined tables functions (UDTFs).

After writing the code for a UDF, you must compile the code into a JAR package and upload this

package to MaxCompute. Then, you can register the UDF in MaxCompute.

Note:

UDFs are used in the same way as built-in functions, in that you specify the UDF name and input

relevant parameters in SQL.

For more information, see Function introduction.

1.5 Task
A task is the basic computing unit of MaxCompute. Computing tasks such as those involving SQL

, DML and MapReduce functions are completed using tasks.

For most user-submitted tasks, such as SQL DML statement , MapReduce, etc.MaxCompute

first analyzes them and then generates a task execution plan. The execution plan is composed of

multiple execution stages that are dependent on each other. An execution plan consists of multiple

stages with dependency links.

Currently, an execution plan can be logically viewed as a directed graph whose vertices represent

the stages and whose edges represent the dependency links of the stages. MaxCompute

executes each stage according to the dependencies in the graph (execution plan). A single stage

comprises multiple threads, also known as workers. These workers complete the computing in

this stage. Different workers in the same stage have exactly the same execution logic, but they

process different data. Computational tasks are executed directly in MaxCompute instances, for

example, Status Instance and Kill Instance.

For MaxCompute tasks that are not computational tasks, such as DDL statement in SQL, these

tasks can only read and modify the metadata information in MaxCompute. This means that no

execution plan can be analyzed and generated from the task.

MaxCompute User Guide / 1 Definition

8 Issue: 20181120

Note:

Not all the requests are converted into tasks in MaxCompute, for example, the operations of

Project, Resource, UDF and Instance can be completed without MaxCompute tasks.

1.6 Instance
In MaxCompute, most tasks are initiated in MaxCompute instances. MaxCompute instances can

be in one of two phases: Running and Terminated.

The status of the running phase is ‘Running’, while the status of the Terminated phase can be

‘Success’, ‘Failed’ or ‘Canceled’. You can query or change the status using the instance ID

assigned by MaxCompute. For example:

status <instance_id>; --View the status of a certain instance.
 kill <instance_id>; --Stop an instance and set its status
as ‘Canceled’.
 wait <instance_id>; --View the running logs of a certain
instance.

MaxCompute User Guide / 2 Common commands

Issue: 20181120 9

2 Common commands

2.1 List of common commands
This module explains how to use the relevant commands through the client to help you quickly

understand MaxCompute.

The latest MaxCompute service adjusts the usual commands, the new command style is more

closely used by hive, which is convenient for original hadoop/hive users.

MaxCompute offers many operations for projects, tables, resources, instances, and other objects.

You can perform operations on these objects using the console commands and SDK.

Note:

• The common commands introduced in this module are mainly targeted at latest version of

theClient .

• If you want to learn how to install and configure clients, see Install and configure a clientQuick

Start.

• For more information about the SDK, see MaxCompute SDK introductionMaxCompute SDK

introduction.

List of common commands

add alias alter

cost create

delete/drop desc/describe download/get

extended

flag/flags function functions

get

help history

instance/instances

jar/mapreduce

kill

lifecycle list

MaxCompute User Guide / 2 Common commands

10 Issue: 20181120

odpscmd

partition

q/quit

resource

set show sql stop/kill

tunnel

upload

wait who

Use limits

• When you perform resource operations, please note that the size of each resource file should

not exceed 500 M, and the total size of resources referenced by a single SQL or MapReduce

task should not exceed 2048M. For more restrictions, seeMR limits。

2.2 Project operations
Enter the project

Command format:

use <project_name>;

Action:

• Enter the specified project. After entering the project, all objects in this project can be operated

 by the user.

• If the project does not exist or the current user is not in this project, an exception is returned.

Example:

odps:my_project>use my_project; --my_project is a project the user has
 privilege to access.

Note:

The preceding examples uses the MaxCompute client. All MaxCompute command keywords,

project names, table names, column names are case insensitive.

MaxCompute User Guide / 2 Common commands

Issue: 20181120 11

After running the command, you can access the objects of this project. In the following example,

assume that test_src exists in the project ‘my_project’. Run the following command:

odps:my_project>select * from test_src;

MaxCompute automatically searches the table in my_project. If the table exists, it returns the data

of this table. If the table does not exist, an exception is thrown. To access the table test_src in

another project, such as ‘my_project2’, through the project ‘my_project’, you must first specify the

project name as follows:

odps:my_project>select * from my_project2.test_src;

The returned data is the data in my_project2, not the initial data of test_src in my_project.

MaxCompute does not support commands to create or delete projects. You can use the

MaxCompute console for additional configurations and operations as needed.

SetProject

Command format:

setproject [<KEY>=<VALUE>];

Action:

• Use setproject command to set project attributes.

The following example sets the method that allows a full table scan.

setproject odps.sql.allow.fullscan = true;

• If the value of <KEY>=<VALUE> is not specified, the current project attribute configuration is

displayed. Command format:

setproject; --Display the parameters set by the setproject command.

Parameters

Property name Configured

permission

Description Value range

odps.sql.allow.fullscan ProjectOwn
er

Determines whether to allow a full
table scan.

True (permitted) /
false (prohibited)

odps.table.drop.
ignorenonexistent

All users Whether to report an error when
deleting a table that does not exist

True (no error
reported)/false

MaxCompute User Guide / 2 Common commands

12 Issue: 20181120

Property name Configured

permission

Description Value range

. When the value is true, no error is
 reported.

odps.security.ip.whitelist ProjectOwn
er

Specify an IP whitelist to access
the project.

IP list separated
by commas (,)

odps.instance.remain.
days

ProjectOwn
er

Determines the duration of the
retention of the instance informatio
n.

[3- 30]

READ_TABLE
_MAX_ROW

ProjectOwn
er

The number of data entries
returned by running the Select
statement in the client.

[1-10000]

Examples for odps.security.ip.whitelist

MaxCompute supports a project level IP whitelist.

Note:

• If the IP whitelist is configured, only the IP (console IP or IP of exit where SDK is located) in

the whitelist can access this project.

• After setting the IP white list, wait for at least five minutes to let the changes take effect.

• For further assistance, open a ticket to contact Alibaba Cloud technical support team.

The following are the three formats for an IP list in the whitelist, which can appear in the same

command. Use commas (,) to separate these commands.

• IP address: For example, 101.132.236.134.

• Subnet mask: For example, 100.116.0.0/16.

• Network segment: For example, 101.132.236.134-101.132.236.144.

MaxCompute User Guide / 2 Common commands

Issue: 20181120 13

Example of the command line tool set the IP white list:

setproject odps.security.ip.whitelist=101.132.236.134,100.116.0.0/16,
101.132.236.134-101.132.236.144;

If no IP address is added in the whitelist, then the whitelist function is disabled.

setproject odps.security.ip.whitelist=;

2.3 Table operations
This article explains how to use the common commands to operate tables in the MaxCompute

client.

If you want to operate a table, you can use common commands in the client, and you can

also easily collect tables, apply permissions, and view partitions through the visible data table

management in DataWorks. For more information, see Table Details.

Create tables

Command format:

CREATE TABLE [IF NOT EXISTS] table_name
 [(col_name data_type [COMMENT col_comment], ...)]
 [COMMENT table_comment]
 [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
 [LIFECYCLE days]
 [As select_statement]
CREATE TABLE [IF NOT EXISTS] table_name
 LIKE existing_table_name

Action:

Create a table.

Note:

• Both the table name and column name are case insensitive and follow the same naming

conventions. The name can be up to 128 bytes in length and can contain letters, numbers,

and underscores (_).

• The comment content is an effective string, and it can be up to 1,024 bytes in length.

• [LIFECYCLE days]: The parameter ‘days’ refers to the time required to complete a ‘Table

Operation’ lifecycle. It must be a positive integer. The unit is ‘day’.

https://www.alibabacloud.com/help/doc-detail/30288.html

MaxCompute User Guide / 2 Common commands

14 Issue: 20181120

• Suppose that the ‘table_name’ is no-partition table. If calculated from the last updated date,

the data is still not modified after N (days), then MaxCompute automatically recycles the table

without user intervention (similar to ‘drop table’ operation).

• Suppose that the ‘table_name’ is a partition table. MaxCompute determines whether to recycle

 the table according to LastDataModifiedTime of each partition. Unlike non-partitioned tables,

a partitioned table is not deleted after all its partitions are reclaimed. The lifecycle can only be

created for tables and not for the specified partitions.

Example:

CREATE TABLE IF NOT EXISTS sale_detail(
 shop_name STRING,
 customer_id STRING,
 total_price DOUBLE)
PARTITIONED BY (sale_date STRING,region STRING); --Create a partition
table sale_detail.

Drop Table

Command format:

DROP TABLE [IF EXISTS] table_name; -- Table name to be deleted.

Action:

• Delete a table.

• If the option [IF EXISTS] is specified, regardless of whether the table exists or not, the return is

successful. If the option [IF EXISTS] is not specified, and the table does not exist, an exception

 is returned.

Example:

DROP TABLE sale_detail; -- If the table exists, success returns.
DROP TABLE IF EXISTS sale_detail; -- No matter whether the table
sale_detail exists or not, success returns.

Describe Table

Command format:

DESC <table_name>; -- Table name or view name.
DESC extended <table_name>; -- View the extended table information.

Action:

Return information of a specified table, includes:

• Owner: The owner of the table.

MaxCompute User Guide / 2 Common commands

Issue: 20181120 15

• Project: The project to which a table belongs.

• CreateTime: The creation time of the table.

• LastDDLTime: The last DDL operation.

• LastModifiedTime: The last time of table modification.

• InternalTable: Indicates the object to be described is table. The value is ‘YES’ by default.

• Size: Storage size occupied by table data, usually the compression ratio is 5. The unit is Byte.

• Native Columns: Non-partition column information, including column name, type, comment.

• Partition Columns: Partition column information, including partition name, type, and comment.

• Extended Info: The information of extended table, such as StorageHandler and Location.

Example:

odps@ project_name>DESC sale_detail; -- Describe a partition table.
+--
+
| Owner: ALIYUN$odpsuser@aliyun.com | Project: test_project |
| TableComment: |
+--
+
| CreateTime: 2014-01-01 17:32:13 |
| LastDDLTime: 2014-01-01 17:57:38 |
| LastModifiedTime: 1970-01-01 08:00:00 |
+--
+
| Internaltable: Yes | size: 0 |
+--
+
| Native Columns: |
+--
+
| Field | Type | Comment |
+--
+
shop_name	string	
customer_id	string	
total_price	double	
+--
+
| Partition Columns: |
+--
+
| sale_date | string | |
| region | string | |
+--
+

Note:

• The preceding example is executed using the MaxCompute client.

• If the table has no partition, the information of Partition Columns is not displayed.

MaxCompute User Guide / 2 Common commands

16 Issue: 20181120

• To describe a 'View', the option ‘InternalTable’ cannot be displayed but the option ‘VirtualView’

can be displayed and its value is ‘YES’ by default. Similarly, the 'Size' option is replaced by the

'View Text' option, which represents the definition of the view, for example: select * from

src. For more information, seeView operations.

View partition table

Command format:

desc table_name partition(pt_spec

Action:

View the specific partition information of a partition table.

Example:

odps@ project_name>desc meta.m_security_users partition (ds='20151010
');
+--
+
| PartitionSize: 2109112 |
+--
+
| CreateTime: 2015-10-10 08:48:48 |
| LastDDLTime: 2015-10-10 08:48:48 |
| LastModifiedTime: 2015-10-11 01:33:35 |
+--
+
OK

Show Tables/Show Tables like

Command format:

SHOW TABLES;
SHOW TABLES like 'chart';

Action:

• SHOW TABLES: List all tables of current project.

• SHOW TABLES like 'chart': Lists the tables on which the following table names of the current

project match the 'chart'. Regular expressions are supported.

Example:

odps@ project_name>show tables;
odps@ project_name>show tables like 'ods_brand*';
ALIYUN$odps_user@aliyun.com:table_name

MaxCompute User Guide / 2 Common commands

Issue: 20181120 17

......

Note:

• The preceding example is executed using the MaxCompute client.

• ALIYUN is a system prompt, indicating the you are an Alibaba Cloud user.

• In this example,odps_user@aliyun.com is the creator of the table in this example.

• In this example,table_name is the name of the table.

Show Partitions

Command format:

SHOW PARTITIONS ; -- table_name: Specify the table to be queried. If
the table does not exist or it is not a partition table, an exception
is thrown.

Action:

List all partitions of a table.

Example:

odps@ project_name>SHOW PARTITIONS table_name;
partition_col1=col1_value1/partition_col2=col2_value1
partition_col1=col1_value2/partition_col2=col2_value2
…

Note:

• The preceding example is executed using the MaxCompute client.

• Partition_col1 and partition_col2 are the partition columns of the table.

• Col1_value1, col2_value1, col1_value2, and col2_value2 are corresponding values of the

partition columns.

2.4 Instances
Show instances/Show P

Command format:

SHOW INSTANCES [FROM startdate TO enddate] [number];
SHOW P [FROM startdate TO enddate] [number];
SHOW INSTANCES [-all];
SHOW P [-all];

Action:

MaxCompute User Guide / 2 Common commands

18 Issue: 20181120

Displays the information about the instances created by the current users.

Parameters:

• startdate、enddate: Returns the instance information during the specified period (from

startdate to enddate) in the yyyy-mm-dd format and the unit is ‘day’. The parameters are

optional. If the parameters are not specified, instances submitted within three days are returned

by default.

• number: Specifies the number of instances to be displayed. Based on the scheduled time,

return N (number) instances nearest to the current time. If not specified, all instances that meet

the requirements are shown.

• -all: The information of all instances that meet requirements is returned. To execute the

command, you must have the 'list' permission for the project. This command can only return 50

records by default. You can -limit number to show more record. For example, use show p

 -all -limit 100 to show 100 instance records in the project.

• The output items: Include StartTime (the time accurate to seconds), RunTime (s) and Status (

including Waiting, Success, Failed, Running, Cancelled, and Suspended).

InstanceID and corresponding SQL are as follows:

StartTime RunTime Status InstanceID Query
2015-04-28 13:57:55 1s Success 20150428xxxxxxxxxxxxxxxxxx ALIYUN$xxxxx
@aliyun-inner.com select * from tab_pack_priv limit 20;
...
...

The probable status of an instance is as follows:

• Running

• Success

• Waiting

• Failed (job failed but data in the target table is modified)

• Suspended

• Canceled

Note:

The commands from the preceding example run in MaxCompute client.

MaxCompute User Guide / 2 Common commands

Issue: 20181120 19

 Status Instance

Command format:

status <instance_id>; -- instance_id: the unique identifier of an
instance, to specify which instance to be queried.

Action:

• Query the status of specified instance, such as Success, Failed, Running, and Cancelled.

• If this instance is not created by the current user, exception is returned.

Example:

odps@ $project_name>status 20131225123xxxxxxxxxxxxxxx;
Success

Query the status of an instance which ID is 20131225123xxxxxxxxxxxxxxx, and the result is

Success.

Note:

The commands from the preceding example run in MaxCompute client.

Top Instance

Command format:

 top instance;top instance -all;

Action:

Permission requirements: The user must be a project owner or administrator.

top instance: Displays the job information of the current account that is running in the project.

It is displayed, includesding ISNTANCEID , Owner, Type, StartTime, Progress, Status, Priority,

RuntimeUsage (CPU/MEM), TotalUsage (CPU/MEM), QueueingInfo (POS/LEN) and so on.

top instance-all : Returns all jobs that are currently being executed in the current project.

This command can only return 50 records by default. You can user -limit number to show

more record.

MaxCompute User Guide / 2 Common commands

20 Issue: 20181120

Example:

odps@ $project_name>top instance;

Note:

The commands from the preceding example run in MaxCompute client (version 0.29.0 or later).

 Kill Instance

Command format:

kill <instance_id>; -- instance_id: The unique identifier of an
instance, which must be ID of an instance whose status is 'Running',
otherwise, an error is returned.

Action:

Stop specified instance. The instance must be in the Running status.

Example:

odps@ $project_name>kill 20131225123xxxxxxxxxxxxxxx;

Stop the instance which ID is 20131225123xxxxxxxxxxxxxxx.

Note:

• The commands from the preceding example run in MaxCompute client.

• This is an asynchronous process. It does not mean that the distributed task has stopped after

the system accepts the request and returns the result. You can check whether the instance is

deleted by using the status command.

Desc Instance

Command format:

desc instance <instance_id>; -- instance_id: The unique identifier of
an instance.

Action:

Get the job information according to instance ID, including SQL, owner, startime, endtime, status.

Example:

odps@ $project_name> desc instance 20150715xxxxxxxxxxxxxxx;
ID 20150715xxxxxxxxxxxxxxx
Owner ALIYUN$XXXXXX@alibaba-inc.com

MaxCompute User Guide / 2 Common commands

Issue: 20181120 21

StartTime 2015-07-15 18:34:41
EndTime 2015-07-15 18:34:42
Status Terminated
console_select_query_task_1436956481295 Success
Query select * from mj_test;

Query all the job information related to the instance whose ID is 20150715xxxxxxxxxxxxxxx.

Note:

The commands from the preceding example run in MaxCompute client.

Wait instance

Command format:

wait <instance_id>; -- instance_id: The unique identifier of an
instance.

Action:

Get running task information, including logs based on the instance ID and a logview link. View task

 details by accessing the logview link.

Example:

wait 201709251611xxxxxxxxxxxxxx;
ID = 201709251611xxxxxxxxxxxxxx
Log view:
http://logview.odps.aliyun.com/logview/?h=http://service.odps.aliyun.
com/xxxxxxxxxx
Job Queueing...
Summary:
resource cost: cpu 0.05 Core * Min, memory 0.05 GB * Min
inputs:
 alian.bank_data: 41187 (588232 bytes)
outputs:
 alian.result_table: 8 (640 bytes)
Job run time: 2.000
Job run mode: service job
Job run engine: execution engine
M1:
 instance count: 1
 run time: 1.000
 instance time:
 min: 1.000, max: 1.000, avg: 1.000
 input records:
 TableScan_REL5213301: 41187 (min: 41187, max: 41187,
avg: 41187
)
 output records:
 StreamLineWrite_REL5213305: 8 (min: 8, max: 8, avg: 8)
R2_1:
 instance count: 1
 run time: 2.000
 instance time:
 min: 2.000, max: 2.000, avg: 2.000

MaxCompute User Guide / 2 Common commands

22 Issue: 20181120

 input records:
 StreamLineRead_REL5213306: 8 (min: 8, max: 8, avg: 8)
 output records:
 TableSink_REL5213309: 8 (min: 8, max: 8, avg: 8)

2.5 Resources
This article explains how to use common commands to operate resources in the MaxCompute

client.

You can also search and upload resources using the visualized online data development tools in

DataWorks. For more information, see Resource management.

Add a resource

Command format:

add file <local_file> [as alias] [comment 'cmt'][-f];
add archive <local_file> [as alias] [comment 'cmt'][-f];
add table <table_name> [partition <(spec)>] [as alias] [comment 'cmt']
[-f];
add jar <local_file.jar> [comment 'cmt'][-f];

Parameters

• file/archive/table/jar: Indicates the resource type. For more information, see

Resources.

• local_file: Indicates path of the local file, and uses this file name as the resource name.

Resource name also acts as a unique identifier of a resource.

• table_name: Indicates table name in MaxCompute. Currently, external tables cannot be

added into resource.

• [PARTITION (spec)]: When the resource to be added is a partition table, MaxCompute

only supports taking a partition as a resource, not the entire partition table.

• alias: Specifies a resource name. If this parameter is not specified, the file name is used as a

resource name by default. Jar and Python resources do not support this function.

• [comment ‘cmt’]: Adds a comment for the resource.

• [-f]: If a name is duplicated, this parameter can be added as a substitute to the original

resource. If this parameter is not specified and the duplicate resource name exists, the

operation fails.

Example

odps@ odps_public_dev>add table sale_detail partition (ds='20150602')
as sale.res comment 'sale detail on 20150602' -f;
OK: Resource 'sale.res' have been updated.

https://www.alibabacloud.com/help/doc-detail/56960.html

MaxCompute User Guide / 2 Common commands

Issue: 20181120 23

---Add a resource named sale.res in MaxCompute.

Note:

Each resource file size cannot exceed 500 MB. The resource size referenced by a single SQL or

MapReduce task cannot exceed 2048 MB. For more information about, see MR Restrictions.

Delete a resource

Command format:

DROP RESOURCE <resource_name>; --resource_name：a specified resource
name.

View the resource list

Command format:

LIST RESOURCES;

Action:

View all resources in the current project.

Example:

odps@ $project_name>list resources;
Resource Name Comment Last Modified Time Type
1234.txt 2014-02-27 07:07:56 file
mapred.jar 2014-02-27 07:07:57 jar

Download resources

Use the following command format to download resources:

GET RESOURCE <resource_name> <path>;

Action:

Download resources to your local device. The resource type must be file, jar, archive, or py.

Example:

odps@ $project_name>get resource odps-udf-examples.jar d:\;

MaxCompute User Guide / 2 Common commands

24 Issue: 20181120

OK

2.6 Functions
This article explains how to use common commands to operate functions in the MaxCompute

client.

You can also operate functions using the visualized online data development tools in DataWorks.

For more information, see Function Management.

Create a Function

Command format:

CREATE FUNCTION <function_name> AS <package_to_class> USING <
resource_list>;

Parameters

• function_name: An UDF name referenced in SQL.

• package_to_class: For Java UDF, this name is a fully qualified class name (from top-

level package name to UDF class name). This parameter must be in double quotation marks.

 And, for Python UDF, this name is a python script name. classname. For both Java UDF and

python script, use double quotation (““) marks to indicate this parameter. And for the name, use

quotation marks.

• resource_list: Provides resource list used by UDF.

▬ Resources that contain UDF code must be included in the list.

▬ If the code reads the resource file by the distributed cache interface, this list also contains

the list of resource files read by the UDF.

▬ The resource list is composed of multiple resource names, separated by a comma (,). The

resource list must be in double quotation (“”) marks.

▬ Specify the project in which the resource is located as follows: <project_name>/

resources/<resource_name>.

Example:

• Suppose a Java UDF class org.alidata.odps.udf.examples.Lower is in my_lower.jar, create

function my_lower as follows:

CREATE FUNCTION test_lower AS org.alidata.odps.udf.examples.Lower
USING my_lower.jar;

https://www.alibabacloud.com/help/doc-detail/30278.html

MaxCompute User Guide / 2 Common commands

Issue: 20181120 25

USING 'my_lower.jar';

• Suppose a Python UDF MyLower is used in project pyudf_test.py,create function my_lower as

follows:

 create function test_lower as 'pyudf_test.MyLower'
using 'test_project/resources/pyudf_test.py';

• Suppose a Java UDF class com.aliyun.odps.examples.udf.UDTFResource is in

udtfexample1.jar, and it depends on file resource file_resource.txt and table resource

table_resource1,create function test_udtf as follows:

create function test_udtf as com.aliyun.odps.examples.udf.UDTFResour
ce using 'udtfexample1.jar, file_resource.txt, table_resource1,
test_archive.zip';

Note:

• Similar to the resource files, the UDF duplicate name can be registered only once.

• Generally UDF cannot overwrite system built-in functions. Only the project owner has right to

 overwrite the built-in functions. If you are using a UDF which overwrites the built-in function,

the warning is triggered in Summary after SQL execution.

Drop a Function

Command format:

DROP FUNCTION <function_name>;

Example:

DROP FUNCTION test_lower;

List Functions

Command format:

list functions; --View all user-defined functions in current project.

MaxCompute User Guide / 2 Common commands

26 Issue: 20181120

list functions -p my_project; --View all user-defined functions in the
 project 'my_project'.

2.7 Set operation
This article shows you how to use the set command to set maxcompute or a user-defined system

variable, and how to clear the set command settings.

Set

Command Format:

Set <key> = <value>

Actioin:

You can use the set command to set MaxCompute or a user-defined system variables that affects

 the MaxCompute operation.

Currently, the system variables supported in MaxCompute are as follow:

--Set commands supported by MaxCompute SQL and Mapreduce (new version)
set odps.sql.allow.fullscan= --Set whether to allow a full table scan
 on a partitioned table. True means allow, and false means not allow.
set odps.stage.mapper.mem= --Set the memory size of each map worker
. Unit is M and default value is 1024M.
set odps.stage.reducer.mem= --Set the memory size for each reduce
worker in the unit of M. The default value is 1,024M.
set odps.stage.joiner.mem= --Set the memory size of each join worker
. Unit is M and default value is 1024M.
set odps.stage.mem = --Set the memory size of all workers in
MaxCompute specified job. The priority is lower than preceding three
set key. Unit is M and no default value.
set odps.stage.mapper.split.size= -- Modify the input data quantity
of each map worker; that is the size of input file burst. Thus control
 the worker number of each map stage. Unit is M and the default value
is 256M.
set odps.stage.reducer.num= --Modify the worker number of each
reduce stage and no default value.
set odps.stage.joiner.num= --Modify the worker number of each join
stage and no default value.
set odps.stage.num= --Modify the worker concurrency of all stages
 in MaxCompute specified job. The priority is lower than preceding
three set key and no default value.

MaxCompute User Guide / 2 Common commands

Issue: 20181120 27

set odps.sql.type.system.odps2= --The default value is false. You
must set true when there are new data types such as TINYINT, SMALLINT
, INT, FLOAT, VARCHAR, TIMESTAMP, and BINARY in SQL statement.

Show Flags

Command Format:

show flags; --Display the parameters set by the Set command.

Action:

Running the Use Project command can clear the configurations set by the Set command.

2.8 Other operations
Alias command

The ALIAS command reads different resources (data) using a fixed resource name in MapReduce

or UDF without modifying the code.

Command format:

ALIAS <alias>=<real>;

Action:

Create alias for a resource.

Example:

ADD TABLE src_part PARTITION (ds='20121208') AS res_20121208;
ADD TABLE src_part PARTITION (ds='20121209') AS res_20121209;
ALIAS resName=res_20121208;
jar -resources resName -libjars work.jar -classpath ./work.jar com.
company.MainClass args ... ;//job 1
ALIAS resName=res_20121209;
jar -resources resName -libjars work.jar -classpath ./work.jar com.
company.MainClass args ... ;//job 2

In the preceding example, resource alias resName refers to different resource tables in two jobs.

Different data can be read without modifying the code.

Cost SQL

Command format:

cost sql <SQL Sentence>;

Action:

MaxCompute User Guide / 2 Common commands

28 Issue: 20181120

Estimate an SQL measurement message, including the size of the input data, the number of

UDFs, and the SQL complexity level.

Note:

Use the following information for reference purpose only. Refrain from using it as an actual

charging standard.

Example:

odps@ $odps_project >cost sql select distinct project_name, user_name
 from meta.m_security_users distribute by project_name sort by
project_name;
ID = 20150715113033121xxxxxxxx
Input:65727592 Bytes
UDF:0
Complexity:1.0

MaxCompute User Guide / 3 Data upload and download

Issue: 20181120 29

3 Data upload and download

3.1 Data upload and download
This article provides a brief introduction about the upload and download process of the

MaxCompute system data, including service connection, SDKs, tools, and cloud data migration.

The DataHub and Tunnel offers the real-time data tunnel and the batch data tunnel respectively to

 access the MaxCompute system.

Both DataHub and Tunnel provide their own SDKs. The SDKs and derivative data upload and

download tools can suffice your data upload and download requirements in various scenarios.

Data upload and download tools include: DataWorks, DTS, OGG plugin, Sqoop, Flume plugin,

Logstash plugin, Fluentd plugin, Kettle plugin, MaxCompute console.

Underlying data tunnels used by these tools include:

• DataHub tunnel tools

▬ OGG

▬ Flume

▬ LogStash

▬ Fluentd

• Tunnel tools

▬ DataWorks

▬ DTS

▬ Sqoop

▬ Kettle

▬ MaxCompute console

A wide range of data upload and download tools are applicable to most of the cloud data migration

 scenarios. The subsequent articles introduce the tools, Hadoop data migration, database data

synchronization, log collection, and other cloud migration scenarios. We recommend that you refer

 to these articles when you select the technical solutions.

3.2 Connection to data tunnel service
Both DataHub and Tunnel use different endpoints in different network environments. Depending

on the network environment, select the appropriate service address or endpoint, to connect to the

MaxCompute User Guide / 3 Data upload and download

30 Issue: 20181120

service. Select the appropriate address or endpoint for your network to be able to send requests to

the service.

Note:

Different network connections may affect your Billing.

For detailed endpoints information for different network environments, see Endpoints and Data

Centers Access Domains and Data Centers.

3.3 Cloud data migration
Data upload and data download tools of the MaxCompute platform can be used for a wide range

of cloud data migration scenarios. This article introduces some typical scenarios.

Hadoop data migration

For Hadoop data migration, either use Sqoop or DataWorks.

• Sqoop runs an MR job on the original Hadoop cluster for the distributed data transmission to

MaxCompute and is highly efficient. For more information, see Sqoop tool introduction.

• DataWorks can be combined with DataX for Hadoop data migration.

Database synchronization

To synchronize the data of a database to MaxCompute, select an appropriate tool based on the

database type and synchronization rule.

• For offline batch data synchronization, use DataWorks. It supports a wide range of database

types, including MySQL, SQL Server, and PostgreSQL. For more information, see Data

synchronization introduction. For instance operation instructions, see Create a synchronization

 task.

• For real-time Oracle data synchronization, use OGG plug-in tools.

• For real-time RDS data synchronization, use DTS.

Log collection

For log collection, use Flume, Fluentd, and Logstash tools.

3.4 Data upload and download tools
The MaxCompute platform supports a wide range of data upload and download tools. The source

code for most of the tools can be found on GitHub, the open-source community to upload and

http://sqoop.apache.org/
https://www.alibabacloud.com/help/doc-detail/47677.html
https://www.alibabacloud.com/help/doc-detail/47677.html
https://www.alibabacloud.com/help/doc-detail/30269.htm
https://www.alibabacloud.com/help/doc-detail/30269.htm

MaxCompute User Guide / 3 Data upload and download

Issue: 20181120 31

download the data. You can select the tool according to the scenario. The tools are divided into

two types: Alibaba Cloud DTplus products and open-source products. This article helps you learn

more about these tools.

Alibaba Cloud DTplus products

• Data integration of DataWorks

Data Integration, or data synchronization, of DataWorks is a stable, efficient, and scalable

data synchronization platform provided by Alibaba Cloud. It is designed to provide full offline

 and incremental real-time data synchronization, integration, and exchange services for the

heterogeneous data storage systems on Alibaba Cloud.

Data synchronization tasks support the following data types: MaxCompute, RDS (MySQL, SQL

Server, and PostgreSQL), Oracle, FTP, AnalyticDB (ADS), OSS, Memcache, and DRDS. For

more information, see Data synchronization introduction, and for methods of use, see Create a

 data synchronization task.

• MaxCompute console

▬ For information about console installation and basic use, see Client introduction.

▬ Based on the Batch data tunnel SDK, the client provides built-in Tunnel commands for data

upload and download. For more information, see Basic Tunnel command usage.

Note:

This is an open-source aliyun-odps-console.

• DTS

Data Transmission (DTS) is a data service provided by Alibaba Cloud that supports data

exchanges between RDBMS, NoSQL, OLAP, and other data sources. It provides data

migration, real-time data subscription, real-time data synchronization, and other data

transmission features.

DTS supports data synchronization from ApsaraDB for RDS and MySQL instances to

MaxCompute tables. Currently, other data source types are not supported.

Open-source products

• Sqoop

As a tool developed based on the Sqoop 1.4.6 community, Sqoop provides enhanced

MaxCompute support with the ability to import and export data from MySQL and other

https://www.alibabacloud.com/help/doc-detail/47677.html
https://www.alibabacloud.com/help/doc-detail/30269.html
https://www.alibabacloud.com/help/doc-detail/30269.html
https://github.com/aliyun/aliyun-odps-console
https://www.alibabacloud.com/help/doc-detail/26592.html

MaxCompute User Guide / 3 Data upload and download

32 Issue: 20181120

relational databases to MaxCompute tables. Data in HDFS/Hive can also be imported to

MaxCompute tables.

Note:

This is an open-source aliyun-maxcompute-data-collectors.

• Kettle

Kettle is an open-source ETL tool based on Java which can run on Windows, Unix, or Linux. It

provides graphic interfaces for you to easily define data transmission topology using drag-and-

drop components.

Note:

This is an open-source aliyun-maxcompute-data-collectors.

• Flume

Apache Flume is a distributed and reliable system, which efficiently collects, aggregates, and

moves massive volumes of log data from different data sources to a centralized data storage

system. It supports multiple Source and Sink plugins.

The DataHub Sink plug-in of Apache Flume allows you to upload log data to DataHub in real

time and archive the data in the MaxCompute tables.

Note:

This is an open-source aliyun-maxcompute-data-collectors.

• Fluentd

Fluentd is an open-source software product that collects logs, including Application Logs,

System Logs, and Access Logs, from various sources. It allows you to select plug-ins to filter

and store log data to different data processors, including MySQL, Oracle, MongoDB, Hadoop,

and Treasure Data.

The DataHub plug-in of Fluentd allows you to upload data to DataHub in real time and archive

the data in MaxCompute tables.

• LogStash

Logstash is an open-source log collection and processing framework. The logstash-output-

datahub plugin allows you to import data to DataHub. This tool can be easily configured to

collect and transmit data. When used together with MaxCompute or StreamCompute, it allows

you to easily create an all-in-one streaming data solution right from data collection to analysis.

https://github.com/aliyun/aliyun-maxcompute-data-collectors
https://github.com/aliyun/aliyun-maxcompute-data-collectors?spm=a2c4g.11186623.2.15.oSXp9R
https://github.com/aliyun/aliyun-maxcompute-data-collectors?spm=a2c4g.11186623.2.17.oSXp9R

MaxCompute User Guide / 3 Data upload and download

Issue: 20181120 33

The DataHub plug-in of Logstash allows you to upload data to DataHub in real time and archive

 the data in MaxCompute tables.

• OGG

The DataHub plug-in of OGG allows you to incrementally synchronize the Oracle database

data to DataHub in real time and archive the data in MaxCompute tables.

Note:

This is an open-source aliyun-maxcompute-data-collectors.

3.5 Tunnel commands
Features

The Client provides Tunnel commands for you to use the functions of the original Dship tool.

Tunnel commands are mainly used to upload or download data.

• Upload: Supports file or directory (level-one) uploading. Data can only be uploaded to a

single table or table partition each time. For partitioned tables, the destination partition must be

specified.

tunnel upload log.txt test_project.test_table/p1="b1",p2="b2";
-- Uploads data in log.txt to the test_project project's test_table
table, partitions: p1="b1",p2="b2".
tunnel upload log.txt test_table --scan=only;
-- Uploads data from log.txt to the test_table table.--The scan
parameter indicates that the data in log.txt must be scanned to
determine if it complies with the test_table definitions.If it does
not, the system reports an error and the upload is stopped.

• Download: You can only download data to a single file. Only data in one table or partition

can be downloaded to one file each time. For partitioned tables, the source partition must be

specified.

tunnel download test_project.test_table/p1="b1",p2="b2" test_table.
txt;

https://github.com/aliyun/aliyun-maxcompute-data-collectors?spm=a2c4g.11186623.2.21.oSXp9R

MaxCompute User Guide / 3 Data upload and download

34 Issue: 20181120

-- Download data from the table to the test_table.txt file.

• Resume: If an error occurs because of network or the Tunnel service, you can resume

transmission of the file or directory after interruption. This command allows you to resume the

previous data upload operation, but does not support download operations.

tunnel resume;

• Show: Displays the history of the commands used.

tunnel show history -n 5;
-- Displays details for the last five data upload/download commands.
tunnel show log;
--Displays the log for the last data upload/download.

• Purge: Clears the session directory. Use this command to clear history for last three days.

tunnel purge 5;
--Clears logs from the previous five days.

Tunnel upload and download limits

Tunnel command does not support uploading and downloading data of the Array, Map, and Struct

 types.

Each session has a 24-hour life cycle on the server. It can be used within 24 hours after being

created, and can be shared among processes or threads. The block ID of each session must be

unique.

Use of Tunnel commands

Tunnel commands allows you to obtain help information using the Help sub-command on the

client. Each command and selection supports short command format.

odps@ project_name>tunnel help;
 Usage: tunnel <subcommand> [options] [args]
 Type 'tunnel help <subcommand>' for help on a specific subcommand.
Available subcommands:
 upload (u)
 download (d)
 resume (r)
 show (s)
 purge (p)
 help (h)
tunnel is a command for uploading data to / downloading data from
MaxCompute.

Parameters

• upload: Uploads the data to a MaxCompute table.

• download: Downloads the data from a MaxCompute table.

MaxCompute User Guide / 3 Data upload and download

Issue: 20181120 35

• resume: If data fails to be uploaded, use the Resume command to resume the upload from

where it was interrupted. Do not use this command for download operations. Each data upload

or download operation is called as a session. Run the Resume command and specify the

session ID to be resumed.

• show: Displays the history of the commands used.

• purge: Clears the session directory. Use this command to clear history for last three days.

• help: Provides 'help' information regarding questions related to Tunnel.

Upload

Import data of local files to MaxCompute tables in the append mode. The sub-commands are used

as follows:

odps@ project_name>tunnel help upload;
usage: tunnel upload [options] <path> <[project.]table[/partition]>
 upload data from local file
 -acp,-auto-create-partition <ARG> auto create target partition if not
 exists, default false
 -bs,-block-size <ARG> block size in MiB, default 100
 -c,-charset <ARG> specify file charset, default ignore.
 set ignore to download raw data
 -cp,-compress <ARG> compress, default true
 -dbr,-discard-bad-records <ARG> specify discard bad records
 action(true|false), default false
 -dfp,-date-format-pattern <ARG> specify date format pattern, default
 yyyy-MM-dd HH:mm:ss;
 -fd,-field-delimiter <ARG> specify field delimiter, support
 unicode, eg \u0001. default ","
 -h,-header <ARG> if local file should have table
 header, default false
 -mbr,-max-bad-records <ARG> max bad records, default 1000
 -ni,-null-indicator <ARG> specify null indicator string,
 default ""(empty string)
 -rd,-record-delimiter <ARG> specify record delimiter, support
 unicode, eg \u0001. default "\r\n
"
 -s,-scan <ARG> specify scan file
 action(true|false|only), default
true
 -sd,-session-dir <ARG> set session dir, default
 D:\software\odpscmd_public\
plugins\ds
 hip
 -ss,-strict-schema <ARG> specify strict schema mode. If false,
 extra data will be abandoned and
 insufficient field will be filled
 with null. Default true
 -te,-tunnel_endpoint <ARG> tunnel endpoint
 -threads <ARG> number of threads, default 1
 -tz,-time-zone <ARG> time zone, default local timezone:
 Asia/Shanghai
For example:

MaxCompute User Guide / 3 Data upload and download

36 Issue: 20181120

 tunnel upload log.txt test_project.test_table/p1="b1",p2="b2"

Parameters

• -acp: Determines if the operation automatically creates the destination partition if it does not

exist. This one is disabled by default.

• -bs: Specifies the size of each data block uploaded using Tunnel. Default value: 100MiB

(1MiB=1024*1024B) .

• -c: Specifies the local data file encoding. Default value: UTF-8. When not set, the encoding of

the downloaded source data is used by default.

• -cp: Determines whether the local file is compressed before being uploaded, reducing traffic

usage. It is enabled by default.

• -dbr: Determines whether to ignore corrupted data (including extra, missing columns or

mismatched column data types).

▬ If this value is true, all the data that does not satisfy table definitions is ignored.

▬ When the parameter is set to false, the system displays error messages in case of corrupted

 data, but the raw data in the destination table remains unaffected.

• -dfp: Specifies the format of DateTime data. Default value: yyyy-MM-dd HH:mm:ss. If you

want to specify the time format to the level of milliseconds, use tunnel upload -dfp '

yyyy-MM-dd HH:mm:ss.SSS', for more information, see Data types.

• -fd: Specifies the column delimiter of the local data file. The default value is comma (,).

• -h: Determines whether the data file contains the header. If it is set to true, Dship skips the

header and starts uploading from the next row.

• -mbr: By default, if more than 1,000 rows of corrupted data is uploaded, the upload is

terminated. This parameter allows you to adjust the tolerated volume of the corrupted data.

• -ni: Specifies the NULL data identifier. Default value: “ “(blank string).

• -rd: Specifies the row delimiter of the local data file. Default value: \r\n.

• -s: Determines whether to scan the local data file. Default value: false.

▬ If set to true, the system scans the data first, and then imports the data if the format is

correct.

▬ If set to false, the system imports the data directly without scanning.

▬ If the value is 'only', then only the local data is scanned. No data is imported after scanning.

• -sd: Sets the session directory.

• -te: Specifies the tunnel endpoint.

MaxCompute User Guide / 3 Data upload and download

Issue: 20181120 37

• -threads: Specifies the number of threads. Default value: 1.

• -tz: Specifies the time zone. The default value is the local time zone: Asia/Shanghai.

Example

• Create a destination table:

CREATE TABLE IF NOT EXISTS sale_detail(
 shop_name STRING,
 customer_id STRING,
 total_price DOUBLE)
PARTITIONED BY (sale_date STRING,region STRING);

• Add a partition:

alter table sale_detail add partition (sale_date='201312', region='
hangzhou');

• Prepare the data file data.txt with the following content:

shop9,97,100
shop10,10,200
shop11,11

The data of the third row of this file is not consistent with the definition in Table sale_detail. The

 three columns are defined by sale_detail, but this row only has two.

• Import data:

odps@ project_name>tunnel u d:\data.txt sale_detail/sale_date=201312
,region=hangzhou -s false
Upload session: 201506101639224880870a002ec60c
Start upload:d:\data.txt
Total bytes:41 Split input to 1 blocks
2015-06-10 16:39:22 upload block: '1'
ERROR: column mismatch -,expected 3 columns, 2 columns found, please
 check data or delimiter

Because data.txt contains corrupted data, data import fails. The system displays the session ID

 and error message.

• Verify data:

odps@ odpstest_ay52c_ay52> select * from sale_detail where sale_date
='201312';
ID = 20150610084135370gyvc61z5
+-----------+-------------+-------------+-----------+--------+
| shop_name | customer_id | total_price | sale_date | region |
+-----------+-------------+-------------+-----------+--------+
+-----------+-------------+-------------+-----------+--------+

The data import failed because of dirty data and hence the table is empty.

MaxCompute User Guide / 3 Data upload and download

38 Issue: 20181120

Show

Displays historical records. The sub-commands are used as follows:

odps@ project_name>tunnel help show;
usage: tunnel show history [options]
 show session information
 -n,-number <ARG> lines
For example:
 tunnel show history -n 5
 tunnel show log

Parameter

-n: Specifies the number of rows to be displayed.

Example

odps@ project_name>tunnel show history;
201506101639224880870a002ec60c failed 'u --config-file /D:/console
/conf/odps_config.ini --project odpstest_ay52c_ay52 --endpoint http
://service.odps.aliyun.com/api --id UlVxOHuthHV1QrI1 --key 2m4r3WvTZb
sNJjybVXj0InVke7UkvR d:\data.txt sale_detail/sale_date=201312,region=
hangzhou -s false'

Note:

With reference to the preceding example, 201506101639224880870a002ec60c is the session

ID of the failed data importing in the previous section.

Resume

Repairs and re-executes historical records (only valid for data uploads). The sub-commands are

used as follows:

odps@ project_name>tunnel help resume;
usage: tunnel resume [session_id] [-force]
 resume an upload session
 -f,-force force resume
For example:
 tunnel resume

Example

Modify the data.txt file as follows:

shop9,97,100
shop10,10,200

Re-upload the repaired data:

odps@ project_name>tunnel resume 201506101639224880870a002ec60c --
force;

MaxCompute User Guide / 3 Data upload and download

Issue: 20181120 39

start resume
201506101639224880870a002ec60c
Upload session: 201506101639224880870a002ec60c
Start upload:d:\data.txt
Resume 1 blocks
2015-06-10 16:46:42 upload block: '1'
2015-06-10 16:46:42 upload block complete, blockid=1
upload complete, average speed is 0 KB/s
OK

Note:

With reference to the preceding example, 201506101639224880870a002ec60c is session ID.

Verify data:

odps@ project_name>select * from sale_detail where sale_date='201312';
 ID = 20150610084801405g0a741z5
 +-----------+-------------+-------------+-----------+--------+
 | shop_name | customer_id | total_price | sale_date | region |
 +-----------+-------------+-------------+-----------+--------+
 | shop9 | 97 | 100.0 | 201312 | hangzhou |
 | shop10 | 10 | 200.0 | 201312 | hangzhou |
 +-----------+-------------+-------------+-----------+--------+

Download

The sub-commands are used as follows:

odps@ project_name>tunnel help download;
usage: tunnel download [options] <[project.]table[/partition]> <path>
 download data to local file
 -c,-charset <ARG> specify file charset, default ignore.
 set ignore to download raw data
 -ci,-columns-index <ARG> specify the columns index(starts from
 0) to download, use comma to split
each
 index
 -cn,-columns-name <ARG> specify the columns name to download,
 use comma to split each name
 -cp,-compress <ARG> compress, default true
 -dfp,-date-format-pattern <ARG> specify date format pattern, default
 yyyy-MM-dd HH:mm:ss
 -e,-exponential <ARG> When download double values, use
 exponential express if necessary.
 Otherwise at most 20 digits will be
 reserved. Default false
 -fd,-field-delimiter <ARG> specify field delimiter, support
 unicode, eg \u0001. default ","
 -h,-header <ARG> if local file should have table header,
 default false
 -limit <ARG> specify the number of records to
 download
 -ni,-null-indicator <ARG> specify null indicator string, default
 ""(empty string)
 -rd,-record-delimiter <ARG> specify record delimiter, support
 unicode, eg \u0001. default "\r\n"
 -sd,-session-dir <ARG> set session dir, default

MaxCompute User Guide / 3 Data upload and download

40 Issue: 20181120

 D:\software\odpscmd_public\plugins\
dshi
 p
 -te,-tunnel_endpoint <ARG> tunnel endpoint
 -threads <ARG> number of threads, default 1
 -tz,-time-zone <ARG> time zone, default local timezone:
 Asia/Shanghai
usage: tunnel download [options] instance://<[project/]instance_id> <
path>
 download instance result to local file
 -c,-charset <ARG> specify file charset, default ignore.
 set ignore to download raw data
 -ci,-columns-index <ARG> specify the columns index(starts from
 0) to download, use comma to split
each
 index
 -cn,-columns-name <ARG> specify the columns name to download,
 use comma to split each name
 -cp,-compress <ARG> compress, default true
 -dfp,-date-format-pattern <ARG> specify date format pattern, default
 yyyy-MM-dd HH:mm:ss
 -e,-exponential <ARG> When download double values, use
 exponential express if necessary.
 Otherwise at most 20 digits will be
 reserved. Default false
 -fd,-field-delimiter <ARG> specify field delimiter, support
 unicode, eg \u0001. default ","
 -h,-header <ARG> if local file should have table header,
 default false
 -limit <ARG> specify the number of records to
 download
 -ni,-null-indicator <ARG> specify null indicator string, default
 ""(empty string)
 -rd,-record-delimiter <ARG> specify record delimiter, support
 unicode, eg \u0001. default "\r\n"
 -sd,-session-dir <ARG> set session dir, default
 D:\software\odpscmd_public\plugins\
dshi
 p
 -te,-tunnel_endpoint <ARG> tunnel endpoint
 -threads <ARG> number of threads, default 1
 -tz,-time-zone <ARG> time zone, default local timezone:
 Asia/Shanghai
For example:
 tunnel download test_project.test_table/p1="b1",p2="b2" log.txt
 tunnel download instance://test_project/test_instance log.txt

Parameters

• -c: Specifies the local data file encoding. Default value: UTF-8.

• -ci: Specifies the column index (starts from 0) for downloading. Separate multiple entries with

commas (,).

• -cn: Specifies the names of the columns to download. Separate multiple entries with commas

(,).

• -cp, -compress: Determines whether the data is compressed before it is downloaded,

reducing traffic usage. It is enabled by default.

MaxCompute User Guide / 3 Data upload and download

Issue: 20181120 41

• -dfp: Specifies the format of DateTime data. Default value: yyyy-MM-dd HH:mm:ss.

• -e: When downloading Double type data, use this parameter to express the values as

exponential functions. Otherwise, a maximum of 20 digits can be retained.

• -fd: Specifies the column delimiter of the local data file. The default value is comma (,).

• -h: Determines whether the data file contains the header. If set to ‘true’, Dship skips the

header and starts downloading from the second row.

Note:

-h=true and threads>1 cannot be used together.

• -limit: Specifies the number of files to be downloaded.

• -ni: Specifies the NULL data identifier. Default value: “ “(blank string).

• -rd: Specifies the row delimiter of the local data file. Default value: \r\n.

• -sd: Sets the session directory.

• -te: Specifies the tunnel endpoint.

• -threads: Specifies the number of threads. Default value: 1.

• -tz: Specifies the time zone. The default value is the local time zone: Asia/Shanghai.

Example

Download data to the result.txt:

$./tunnel download sale_detail/sale_date=201312,region=hangzhou
result.txt;
 Download session: 201506101658245283870a002ed0b9
 Total records: 2
 2015-06-10 16:58:24 download records: 2
 2015-06-10 16:58:24 file size: 30 bytes
 OK

Verify the content of the result.txt:

shop9,97,100.0
shop10,10,200.0

Purge

Purge the session directory. By default, sessions for last three days are purged. The sub-

commands are used as follows:

odps@ project_name>tunnel help purge;
usage: tunnel purge [n]
 force session history to be purged.([n] days before,
default
 3 days)

MaxCompute User Guide / 3 Data upload and download

42 Issue: 20181120

For example:
 tunnel purge 5

Data types:

 Type Required

STRING String type data. The length cannot exceed 8MB.

BOOLEN Upload values only support true, false, 0, and 1. Only the values true or
false (not case-sensitive) are supported for downloading.

BIGINT Value range: [-9223372036854775807, 9223372036854775807].

DOUBLE • 16-bit valid.
• Uploads support expression in scientific notation.
• Supports only numerical expression for downloading.
• Max value: 1.7976931348623157E308.
• Min value: 4.9E-324.
• Positive infinity: Infinity.
• Negative infinity: -Infinity.

DATETIME By default, Datetime data supports the UTC+8 time zone for data
upload. Use the command to specify the format pattern for the date in
your data.

If you upload DATETIME type data, specify the time and date format. For more information about

specific formats, see SimpleDateFormat.

"yyyyMMddHHmmss": data format "20140209101000"
"yyyy-MM-dd HH:mm:ss" (default): data format "2014-02-09 10:10:00"
"MM/dd/yyyy": data format "09/01/2014"

Example

tunnel upload log.txt test_table -dfp "yyyy-MM-dd HH:mm:ss"

Null: All data types can be Null.

• By default, a blank string indicates a Null value.

MaxCompute User Guide / 3 Data upload and download

Issue: 20181120 43

• The parameter -null-indicator can be used in the command line to specify a Null string.

tunnel upload log.txt test_table -ni "NULL"

Character encoding: You can specify the character encoding of the file. Default value: UTF-8.

tunnel upload log.txt test_table -c "gbk"

Delimiter: The Tunnel commands support custom file delimiters. The row delimiter is ‘-record-

delimiter’, and the column delimiter is -field-delimiter.

Description:

• Row and column delimiters of multiple characters are supported.

• A column delimiter cannot contain a row delimiter.

• Only the follow escape character delimiters are supported in the command line: \r, \n, and \t.

Example

tunnel upload log.txt test_table -fd "||" -rd "\r\n"

3.6 Tunnel SDK

3.6.1 Summary
MaxCompute Tunnel is the data tunnel of MaxCompute. It helps in uploading and downloading

data to MaxCompute. However, Tunnel only supports table data upload and download.

Based on the Tunnel SDK, MaxCompute offers Data upload and download tools.

When using Maven, you can search for odps-sdk-core in the Maven database to find different

versions of Java SDK. The configuration is as follows: SDK (available in different versions).

<dependency>
 <groupId>com.aliyun.odps</groupId>
 <artifactId>odps-sdk-core</artifactId>
 <version>0.24.0-public</version>
</dependency>

This article describes the main interfaces of Tunnel SDK, which may differ according to the SDK

version. See SDK Java Doc.

Interface Description

TableTunnel The portal class interface to access the
MaxCompute Tunnel service. You can access
MaxCompute and its Tunnel using the Internet

http://search.maven.org/
http://repo.aliyun.com/java-sdk-doc/?spm=5176.doc34614.2.4.j5zSFu

MaxCompute User Guide / 3 Data upload and download

44 Issue: 20181120

Interface Description

 or intranet of Alibaba Cloud. No traffic fee is
 incurred when you use intranet to download
data through MaxCompute Tunnel. The intranet
 address is only valid for cloud products in the
Hangzhou region.

TableTunnel.UploadSession Indicates a process of uploading data to a
MaxCompute table.

TableTunnel.DownloadSession Indicates a process of downloading data from a
 MaxCompute table.

Note:

• For more information about the SDK, see SDK Java Doc.

• For more information about service connections, see Access Domains and Data Centers.

3.6.2 TableTunnel
TableTunnel is an ingress class that accesses the MaxCompute Tunnel service. The TableTunne

l.UploadSession interface is a session that uploads data to the MaxCompute table. The

TableTunnel.DownloadSession interface is a session that downloads data to the MaxCompute

table.

The TableTunnel interface is defined as follows:

public class TableTunnel {
 public DownloadSession createDownloadSession(String projectName,
String tableName);
 public DownloadSession createDownloadSession(String projectName,
String tableName, PartitionSpec partitionSpec);
 public UploadSession createUploadSession(String projectName, String
tableName);
 public UploadSession createUploadSession(String projectName, String
tableName, PartitionSpec partitionSpec);
 public DownloadSession getDownloadSession(String projectName, String
tableName, PartitionSpec partitionSpec, String id);
 public DownloadSession getDownloadSession(String projectName, String
tableName, String id);
 public UploadSession getUploadSession(String projectName, String
tableName, PartitionSpec partitionSpec, String id);
 public UploadSession getUploadSession(String projectName, String
tableName, String id);
 }

Parameters

http://repo.aliyun.com/java-sdk-doc/

MaxCompute User Guide / 3 Data upload and download

Issue: 20181120 45

• Lifecycle: It is the TableTunnel life cycle, begins with a TableTunnel instance creation and ends

 with the completion of the process.

• PublicClassTableTunnel: A method of creating uploading and downloading objects.

• Session: It is a process for uploading and downloading table or a partition. A session consists

of one or more HTTP Requests to the Tunnel RESTful API.

• Uploading session: The uploading session of TableTunnel is INSERT INTO semantics, which

 means that sessions that upload the same table or partition do not interfere with each other.

The upload of each session is located in different directories.

• Block ID: The corresponding file name. In an uploading session, each RecordWriter correspond

s to an HTTP Request, identified by a block ID and corresponds to a file on the service side.

• RecordWriter: In a session, opening RecordWriter multiple times with the same block ID results

 in overwriting. The data uploaded by the last RecordWriter calling close() is retained. This

feature can be used for retransmissions when block upload fails.

TableTunnel interface implementation process:

1. RecordWriter.write() uploads data to a file in a temporary directory.

2. RecordWriter.close() moves the preceding file from the temporary directory to the data

directory.

3. Session.commit() moves all files in the corresponding data directory to the directory where the

corresponding table is located, and updates the table meta. Precisely, the data that moves into

the table is visible to other MaxCompute tasks (including SQL and MR).

Limits:

• The range of block id is 0 to 20000. The data size uploaded by a single block is limited to 100

GB.

• The session timeout is 24 hours. Split the massive data into multiple sessions, if the transmissi

on time is supposed to exceed the threshold that is 24 hours.

• The HTTP Request timeout for RecordWriter is 120 seconds. If no data flows through the

HTTP connection is observed within 120 seconds, the service automatically closes the

connection.

Note:

By default, HTTP has a buffer of 8 KB. Therefore, it is difficult to determine the data flow

through an HTTP connection when you call RecordWriter.write() each time. Moreover,

TunnelRecordWriter.flush() can forcibly clear the data from the buffer.

MaxCompute User Guide / 3 Data upload and download

46 Issue: 20181120

• When logs are being written into MaxCompute, the RecordWriter can be easily timed out as the

flow of the data is unpredictable. Note:

▬ We do not recommend using a RecordWriter for all types of data. Because each RecordWrit

er corresponds to a file resulting into numerous small files, critically impacting MaxCompute

 performance.

▬ We recommend calling a RecordWriter to write data in a batch when your code cache data

size exceeds 64 MB.

• The threshold for RecordReader timeout is 300 seconds.

3.6.3 UploadSession
This paper introduces the UploadSession interface.

UploadSession interface defination

The UploadSession interface is defined as follows:

public class UploadSession {
 UploadSession(Configuration conf, String projectName, String
tableName,
 String partitionSpec) throws TunnelException;
 UploadSession(Configuration conf, String projectName, String
tableName,
 String partitionSpec, String uploadId) throws TunnelExce
ption;
 public void commit(Long[] blocks);
 public Long[] getBlockList();
 public String getId();
 public TableSchema getSchema();
 public UploadSession.Status getStatus();
 public Record newRecord();
 public RecordWriter openRecordWriter(long blockId);
 public RecordWriter openRecordWriter(long blockId, boolean
compress);
 public RecordWriter openBufferedWriter();
 public RecordWriter openBufferedWriter(boolean compress);
 }

Upload Objects description

• Life cycle: Begins with the creation of the Upload instance and ends with the completion of an

upload process.

• Create Upload instance: An instance can be created either by Calling the Constructor or using

the TableTunnel.

▬ Request mode: Synchronous.

▬ The server creates a session for this upload instance and a unique UploadId is

generated. Obtain this ID using the getId on the client.

MaxCompute User Guide / 3 Data upload and download

Issue: 20181120 47

• Upload data:

▬ Request mode: Synchronous.

▬ Call the openRecordWriter method to generate a RecordWriter instance. The blockId

identifies the data to be uploaded and indicates its location in the table within the value

range [0, 20000]. If the data upload fails, use BlockId to re-upload it.

• View upload:

▬ Request mode: Synchronous.

▬ Call getStatus to obtain the current upload status.

▬ Call getBlockList to obtain the successfully uploaded blockId list. Compare the

result with the upload blockId list to find and re-upload failed blockIds.

• End upload:

▬ Request mode: Synchronous.

▬ Call the commit (Long[] blocks) method. The blocks list shows successfully

uploaded blocks. The server verifies this list.

▬ This function enhances data verification. If the provided block list does not match the block

list on the server, an error occurs.

▬ If Commit fails, try again.

• Six kinds of status are described as follows:

1. UNKNOWN: The initial value when the server creates a session.

2. NORMAL: The upload object is created successfully.

3. CLOSING: The server changes the status to CLOSING when complete is called.

4. CLOSED: The upload is now complete. Precisely, moving the data to the directory where

the result table is located.

5. EXPIRED: The upload session is timed out.

6. CRITICAL: A service error has occurred.

Note:

• The blockIds in the same UploadSession must be unique. In a single UploadSession,

when you use a blockId to open RecordWriter, write a batch of data, call close, and

then call commit. Do not use the same blockID to open another RecordWriter to write

data.

• The maximum size of a block is 100 GB, preferably more than 64 MB.

MaxCompute User Guide / 3 Data upload and download

48 Issue: 20181120

• The threshold of each session on the server is 24 hours.

• When data is being uploaded, each 8 KB of data written by the Writer triggers a network action

. If no network actions are triggered within 120 seconds, the server closes the connection. In

this case, open a new connection when the Writer becomes unavailable.

• We recommend that you use the openBufferedWriter interface to upload data.

This interface does not show blockId details and contains an internal data cache for

automatic retry upon failures. For more information, see the introductions and examples of

TunnelBufferedWriter.

3.6.4 DownloadSession
This DownloadSession interface is defined as follows:

public class DownloadSession {
 DownloadSession(Configuration conf, String projectName, String
 tableName,
 String partitionSpec) throws TunnelException
 DownloadSession(Configuration conf, String projectName, String
 tableName,
 String partitionSpec, String downloadId) throws TunnelExce
ption
 public String getId()
 public long getRecordCount()
 public TableSchema getSchema()
 public DownloadSession.Status getStatus()
 public RecordReader openRecordReader(long start, long count)
 public RecordReader openRecordReader(long start, long count,
boolean compress)
 }

Parameters:

• Life cycle: Begins with the creation of the Download instance and ends with the completion of

a download process.

• Create Download instance: An instance can be created either by Calling the Constructor or

by using the TableTunnel.

▬ Request mode: Synchronous.

▬ The server creates a session for this download instance and a unique DownloadId is

generated. Obtain this ID using the getId on the client.

▬ This operation incurs high costs. The server creates an index for the data files. Large files

generally take longer time to download.

▬ Simultaneously, the server returns the total number of Records and starts multiple

concurrent downloads based on this value.

MaxCompute User Guide / 3 Data upload and download

Issue: 20181120 49

• Download data:

▬ Request mode: Asynchronous.

▬ Call the openRecordReader method to generate a RecordReader instance. “start”

identifies the start position of downloading this record, which cannot be less than zero.

“count” specifies the number of records for this download which must be greater than zero.

• View download:

▬ Request mode: Synchronous.

▬ Call getStatus to obtain the current download status.

• Following is the list of 4 states:

▬ UNKNOWN: The initial value when the server creates a session.

▬ NORMAL: The download object is successfully created.

▬ CLOSED: The download is now complete.

▬ EXPIRED: The download session is timed out.

3.6.5 TunnelBufferedWriter
To complete the uploading process, follow these steps:

1. Divide the data.

2. Specify a block ID for each data block by calling the openRecordWriter (id).

3. Use one or more threads to upload the blocks. Even if a single block upload fails, you must re-

upload all the blocks.

4. After uploading all blocks, provide the uploaded blockID list to the server for verification. Call

session.commit([1,2,3,…]) to complete this action.

The connection time-out and other limits on the server block manager complicate the upload

 process logic. So, to simplify the process, SDK provides an enhanced RecordWriter—

TunnelBufferWriter interface.

This interface is defined as follows:

public class TunnelBufferedWriter implements RecordWriter {
 public TunnelBufferedWriter(TableTunnel.UploadSession session
, CompressOption option) throws IOException;
 public long getTotalBytes();
 public void setBufferSize(long bufferSize);
 public void setRetryStrategy(RetryStrategy strategy);
 public void write(Record r) throws IOException;
 public void close() throws IOException;

MaxCompute User Guide / 3 Data upload and download

50 Issue: 20181120

 }

Parameters:

• Life cycle: Begins with a RecordWriter creation and ends with the completion of data upload.

• Create TunnelBufferedWriter instance: Call openBufferedWriter interface

ofUploadSession to create an instance.

• Data upload: Call the Write interface. Data is first written to the local cache. Once the cache

is full, the data is submitted to the server in batches to avoid connection time-out. Automatic

retries are supported if the upload fails.

• End upload: Call the close interface, and then call the Commit interface of UploadSession to

complete the upload process.

• Buffer control: Use the setBufferSize interface to modify the size of memory (bytes),

occupied by the buffer preferably greater than 64 MB(default) to prevent the server from

generating numerous small files that may critically impact the performance. The default value is

generally used for this parameter without additional settings.

• Retry policy setting: You have three retry avoidance policies to choose from:

EXPONENTIAL_BACKOFF, LINEAR_BACKOFF, and CONSTANT_BACKOFF. For example:

The following code segment sets the number of Write retries to 6. To avoid unnecessary

retries, each retry is performed only after exponentially ascending intervals of 4s, 8s, 16s, 32s,

64s, and 128s. This is the default configuration and generally cannot be changed.

RetryStrategy retry
 = new RetryStrategy(6, 4, RetryStrategy.BackoffStrategy.EXPONENTIA
L_BACKOFF)
writer = (TunnelBufferedWriter) uploadSession.openBufferedWriter();
writer.setRetryStrategy(retry);

3.7 Bulk data channel SDK example

3.7.1 Example
• MaxCompute provides two service addresses for you to choose from. If you select the

Tunnel service address, it may directly affect your data upload efficiency and billing. For more

information, see Tunnel SDK overview.

• We recommend that you use the TunnelBufferedWriter interface when uploading data. For

more information, see the sample codes in BufferedWriter.

• Operations may vary based on SDK versions. This example is provided only for your reference

. Consider variances between different versions before you proceed.

MaxCompute User Guide / 3 Data upload and download

Issue: 20181120 51

3.7.2 Example for uploading
import java.io.IOException;
 import java.util.Date;
 import com.aliyun.odps.Column;
 import com.aliyun.odps.Odps;
 import com.aliyun.odps.PartitionSpec;
 import com.aliyun.odps.TableSchema;
 import com.aliyun.odps.account.Account;
 import com.aliyun.odps.account.AliyunAccount;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.RecordWriter;
 import com.aliyun.odps.tunnel.TableTunnel;
 import com.aliyun.odps.tunnel.TunnelException;
 import com.aliyun.odps.tunnel.TableTunnel.UploadSession;
 public class UploadSample {
 private static String accessId = "<your access id>";
 private static String accessKey = "<your access Key>";
 private static String odpsUrl = "http://service.odps.aliyun.
com/api";
 private static String tunnelUrl = "http://dt.cn-shanghai.
maxcompute.aliyun-inc.com";
 //The tunnelURL must be set if you need to
connect internal network, otherwise, the system uses public network as
 default. The example shows the Tunnel Endpoint of classical network
in HuaDong 2, for other regions, see Access domain and data centers.
 private static String project = "<your project>";
 private static String table = "<your table name>";
 private static String partition = "<your partition spec>";
 public static void main(String args[]) {
 Account account = new AliyunAccount(accessId,
accessKey);
 Odps odps = new Odps(account);
 odps.setEndpoint(odpsUrl);
 odps.setDefaultProject(project);
 try {
 TableTunnel tunnel = new TableTunnel(odps);
 tunnel.setEndpoint(tunnelUrl); //set
tunnelUrl
 PartitionSpec partitionSpec = new PartitionS
pec(partition);
 UploadSession uploadSession = tunnel.
createUploadSession(project,
 table, partitionSpec);
 System.out.println("Session Status is : "
 + uploadSession.getStatus().
toString());
 TableSchema schema = uploadSession.getSchema
();
 // After preparing data, open a Writer to
start writing data. The prepared data is written to one block.
 // When the data written to individual
 blocks is too small, the system will produce a large number of
small files, seriously degrading computing performance. We strongly
 recommend over 64 MB of data be written each time (up to 100 GB of
data can be written to the same block).
 // You can use the average data volume and
record count to estimate the total value. For example: 64MB < Average
data size x Record count < 100GB.
 RecordWriter recordWriter = uploadSession.
openRecordWriter(0);
 Record record = uploadSession.newRecord();

MaxCompute User Guide / 3 Data upload and download

52 Issue: 20181120

 for (int i = 0; i < schema.getColumns().size
(); i++) {
 Column column = schema.getColumn(i);
 switch (column.getType()) {
 case BIGINT:
 record.setBigint(i, 1L);
 break;
 Case Boolean:
 record.setBoolean(i, true);
 break;
 case DATETIME:
 record.setDatetime(i, new
Date());
 break;
 case DOUBLE:
 record.setDouble(i, 0.0);
 break;
 case STRING:
 record.setString(i, "sample
");
 break;
 default:
 throw new RuntimeException("
Unknown column type: "
 + column.
getType());
 }
 }
 for (int i = 0; i < 10; i++) {
 // Writes data to the server. Each 8
 KB of data written triggers a network transmission.
 // If no network transmission occurs
 for 120 seconds, the server closes the connection. At this time, the
Writer becomes unavailable and you must write data again.
 recordWriter.write(record);
 }
 recordWriter.close();
 uploadSession.commit(new Long[]{0L});
 System.out.println("upload success!") ;
 } catch (TunnelException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }

Constructor:

PartitionSpec(String spec): Uses a string to construct this class of object.

Parameters

spec: The partition definition string, such as pt=’1’,ds=’2’.

MaxCompute User Guide / 3 Data upload and download

Issue: 20181120 53

In this program, the configuration must be as follows:

private static String partition = “pt=’XXX’,ds=’XXX’”;

3.7.3 简单下载示例
import java.io.IOException;
 import java.util.Date;
 import com.aliyun.odps.Column;
 import com.aliyun.odps.Odps;
 import com.aliyun.odps.PartitionSpec;
 import com.aliyun.odps.TableSchema;
 import com.aliyun.odps.account.Account;
 import com.aliyun.odps.account.AliyunAccount;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.RecordReader;
 import com.aliyun.odps.tunnel.TableTunnel;
 import com.aliyun.odps.tunnel.TableTunnel.DownloadSession;
 import com.aliyun.odps.tunnel.TunnelException;
 public class DownloadSample {
 private static String accessId = "<your access id>";
 private static String accessKey = "<your access Key>";
 private static String odpsUrl = "http://service.odps.aliyun.
com/api";
 private static String tunnelUrl = "http://dt.cn-shanghai.
maxcompute.aliyun-inc.com";
 //设置tunnelUrl，若需要走内网时必须设置，否则默认公
网。此处给的是华东2经典网络Tunnel Endpoint，其他region可以参考文档《访问域名和数
据中心》。
 private static String project = "<your project>";
 private static String table = "<your table name>";
 private static String partition = "<your partition spec>";
 public static void main(String args[]) {
 Account account = new AliyunAccount(accessId,
accessKey);
 Odps odps = new Odps(account);
 odps.setEndpoint(odpsUrl);
 odps.setDefaultProject(project);
 TableTunnel tunnel = new TableTunnel(odps);
 tunnel.setEndpoint(tunnelUrl);//tunnelUrl设置
 PartitionSpec partitionSpec = new PartitionSpec(
partition);
 try {
 DownloadSession downloadSession = tunnel.
createDownloadSession(project, table,
 partitionSpec);
 System.out.println("Session Status is : "
 + downloadSession.getStatus
().toString());
 long count = downloadSession.getRecordCount
();
 System.out.println("RecordCount is: " + count
);
 RecordReader recordReader = downloadSession.
openRecordReader(0,
 count);
 Record record;
 while ((record = recordReader.read()) != null
) {

MaxCompute User Guide / 3 Data upload and download

54 Issue: 20181120

 consumeRecord(record, downloadSession
.getSchema());
 }
 recordReader.close();
 } catch (TunnelException e) {
 e.printStackTrace();
 } catch (IOException e1) {
 e1.printStackTrace();
 }
 }
 private static void consumeRecord(Record record, TableSchema
schema) {
 for (int i = 0; i < schema.getColumns().size(); i++)
 {
 Column column = schema.getColumn(i);
 String colValue = null;
 switch (column.getType()) {
 case BIGINT: {
 Long v = record.getBigint(i);
 colValue = v == null ? null : v.
toString();
 break;
 }
 case BOOLEAN: {
 Boolean v = record.getBoolean(i);
 colValue = v == null ? null : v.
toString();
 break;
 }
 case DATETIME: {
 Date v = record.getDatetime(i);
 colValue = v == null ? null : v.
toString();
 break;
 }
 case DOUBLE: {
 Double v = record.getDouble(i);
 colValue = v == null ? null : v.
toString();
 break;
 }
 case STRING: {
 String v = record.getString(i);
 colValue = v == null ? null : v.
toString();
 break;
 }
 default:
 throw new RuntimeException("Unknown
column type: "
 + column.getType());
 }
 System.out.print(colValue == null ? "null" :
colValue);
 if (i != schema.getColumns().size())
 System.out.print("\t");
 }
 System.out.println();
 }

MaxCompute User Guide / 3 Data upload and download

Issue: 20181120 55

 }

本示例中，为了方便测试，数据通过System.out.println直接打印出来，在实际使用时，您可改写为

直接输出到文本文件。

3.7.4 Example for multi-thread uploading
import java.io.IOException;
 import java.util.ArrayList;
 import java.util.Date;
 import java.util.concurrent.Callable;
 import java.util.concurrent.ExecutorService;
 import java.util.concurrent.Executors;
 import com.aliyun.odps.Column;
 import com.aliyun.odps.Odps;
 import com.aliyun.odps.PartitionSpec;
 import com.aliyun.odps.TableSchema;
 import com.aliyun.odps.account.Account;
 import com.aliyun.odps.account.AliyunAccount;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.RecordWriter;
 import com.aliyun.odps.tunnel.TableTunnel;
 import com.aliyun.odps.tunnel.TunnelException;
 import com.aliyun.odps.tunnel.TableTunnel.UploadSession;
 class UploadThread implements Callable<Boolean> {
 private long id;
 private RecordWriter recordWriter;
 private Record record;
 private TableSchema tableSchema;
 public UploadThread(long id, RecordWriter recordWriter,
Record record,
 TableSchema tableSchema) {
 this.id = id;
 this.recordWriter = recordWriter;
 this.record = record;
 this.tableSchema = tableSchema;
 }
 @Override
 public Boolean call() {
 for (int i = 0; i < tableSchema.getColumns().size();
i++) {
 Column column = tableSchema.getColumn(i);
 switch (column.getType()) {
 Case bigint:
 record.setBigint(i, 1L);
 Break;
 Case Boolean:
 record.setBoolean(i, true);
 break;
 case DATETIME:
 record.setDatetime(i, new Date());
 break;
 case DOUBLE:
 record.setDouble(i, 0.0);
 break;
 case STRING:
 record.setString(i, "sample");
 break;
 default:

MaxCompute User Guide / 3 Data upload and download

56 Issue: 20181120

 throw new RuntimeException("Unknown
column type: "
 + column.getType());
 }
 }
 for (int i = 0; i < 10; i++) {
 try {
 recordWriter.write(record);
 } catch (IOException e) {
 recordWriter.close();
 e.printStackTrace();
 return false;
 }
 }
 recordWriter.close();
 return true;
 }
 }
 public class UploadThreadSample {
 private static String accessId = "<your access id>";
 private static String accessKey = "<your access Key>";
 private static String odpsUrl = "<http://service.odps.aliyun.
com/api>";
 private static String tunnelUrl = "<http://dt.cn-shanghai.
maxcompute.aliyun-inc.com>";
 //The tunnelURL must be set if you need to
connect internal network, otherwise, the system uses public network as
 default. The example shows the Tunnel Endpoint of classical network
in HuaDong 2, for other regions, see Access domain and data centers.
 private static String project = "<your project>";
 private static String table = "<your table name>";
 private static String partition = "<your partition spec>";
 private static int threadNum = 10;
 public static void main(String args[]) {
 Account account = new AliyunAccount(accessId,
accessKey);
 Odps odps = new Odps(account);
 odps.setEndpoint(odpsUrl);
 odps.setDefaultProject(project);
 try {
 TableTunnel tunnel = new TableTunnel(odps);
 tunnel.setEndpoint(tunnelUrl); //set
tunnelUrl
 PartitionSpec partitionSpec = new PartitionS
pec(partition);
 UploadSession uploadSession = tunnel.
createUploadSession(project,
 table, partitionSpec);
 System.out.println("Session Status is : "
 + uploadSession.getStatus().
toString());
 ExecutorService pool = Executors.newFixedTh
readPool(threadNum);
 ArrayList<Callable<Boolean>> callers = new
ArrayList<Callable<Boolean>>();
 for (int i = 0; i < threadNum; i++) {
 RecordWriter recordWriter =
uploadSession.openRecordWriter(i);
 Record record = uploadSession.
newRecord();
 callers.add(new UploadThread(i,
recordWriter, record,

MaxCompute User Guide / 3 Data upload and download

Issue: 20181120 57

 uploadSession.
getSchema()));
 }
 pool.invokeAll(callers);
 pool.shutdown();
 Long[] blockList = new Long[threadNum];
 for (int i = 0; i < threadNum; i++)
 blockList[i] = Long.valueOf(i);
 uploadSession.commit(blockList);
 System.out.println("upload success!") ;
 } catch (TunnelException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

The Tunnel Endpoint can be specified or left blank.

• If specified, the uploading data goes through the specified Endpoint.

• If not specified, the uploading data goes through public network.

3.7.5 Example for multi-thread downloading
import java.io.IOException;
 import java.util.ArrayList;
 import java.util.Date;
 import java.util.List;
 import java.util.concurrent.Callable;
 import java.util.concurrent.ExecutionException;
 import java.util.concurrent.ExecutorService;
 import java.util.concurrent.Executors;
 import java.util.concurrent.Future;
 import com.aliyun.odps.Column;
 import com.aliyun.odps.Odps;
 import com.aliyun.odps.PartitionSpec;
 import com.aliyun.odps.TableSchema;
 import com.aliyun.odps.account.Account;
 import com.aliyun.odps.account.AliyunAccount;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.RecordReader;
 import com.aliyun.odps.tunnel.TableTunnel;
 import com.aliyun.odps.tunnel.TableTunnel.DownloadSession;
 import com.aliyun.odps.tunnel.TunnelException;
 class DownloadThread implements Callable<Long> {
 private long id;
 private RecordReader recordReader;
 private TableSchema tableSchema;
 public DownloadThread(int id,
 RecordReader recordReader, TableSchema
tableSchema) {
 this.id = id;
 this.recordReader = recordReader;
 this.tableSchema = tableSchema;
 }
 @Override

MaxCompute User Guide / 3 Data upload and download

58 Issue: 20181120

 public Long call() {
 Long recordNum = 0L;
 try {
 Record record;
 while ((record = recordReader.read()) ! =
null) {
 recordNum++;
 System.out.print("Thread " + id + "\t
");
 consumeRecord(record, tableSchema);
 }
 recordReader.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 return recordNum;
 }
 private static void consumeRecord(Record record, TableSchema
schema) {
 for (int i = 0; i < schema.getColumns().size(); i++)
 {
 Column column = schema.getColumn(i);
 String colValue = null;
 switch (column.getType()) {
 case BIGINT: {
 Long v = record.getBigint(i);
 colValue = v == null ? null : v.
toString();
 Break;
 }
 case BOOLEAN: {
 Boolean v = record.getBoolean(i);
 colValue = v == null ? null : v.
toString();
 break;
 }
 case DATETIME: {
 Date v = record.getDatetime(i);
 colValue = v == null ? null : v.
toString();
 break;
 }
 case DOUBLE: {
 Double v = record.getDouble(i);
 colValue = v == null ? null : v.
toString();
 break;
 }
 case STRING: {
 String v = record.getString(i);
 colValue = v == null ? null : v.
toString();
 break;
 }
 Default:
 throw new RuntimeException("Unknown
column type: "
 + column.getType());
 }
 System.out.print(colValue == null ? "null" :
colValue);
 If (I! = schema.getColumns().size())

MaxCompute User Guide / 3 Data upload and download

Issue: 20181120 59

 System.out.print("\t");
 }
 System.out.println();
 }
 }
 public class DownloadThreadSample {
 private static String accessId = "<your access id>";
 private static String accessKey = "<your access Key>";
 private static String odpsUrl = "http://service.odps.aliyun.
com/api";
 private static String tunnelUrl = "http://dt.cn-shanghai.
maxcompute.aliyun-inc.com";
 //The tunnelURL must be set if you need to
connect internal network, otherwise, the system uses public network as
 default. The example shows the Tunnel Endpoint of classical network
in HuaDong 2, for other regions, see Access domain and data centers.
 private static String project = "<your project>";
 private static String table = "<your table name>";
 private static String partition = "<your partition spec>";
 private static int threadNum = 10;
 public static void main(String args[]) {
 Account account = new AliyunAccount(accessId,
accessKey);
 Odps odps = new Odps(account);
 odps.setEndpoint(odpsUrl);
 odps.setDefaultProject(project);
 TableTunnel tunnel = new TableTunnel(odps);
 tunnel.setEndpoint(tunnelUrl); //set tunnelUrl
 PartitionSpec partitionSpec = new PartitionSpec(
partition);
 DownloadSession downloadSession;
 try {
 downloadSession = tunnel.createDownloadSessio
n(project, table,
 partitionSpec);
 System.out.println("Session Status is : "
 + downloadSession.getStatus
().toString());
 long count = downloadSession.getRecordCount
();
 System.out.println("RecordCount is: " + count
);
 ExecutorService pool = Executors.newFixedTh
readPool(threadNum);
 ArrayList<Callable<Long>> callers = new
ArrayList<Callable<Long>>();
 long start = 0;
 long step = count / threadNum;
 for (int i = 0; i < threadNum - 1; i++) {
 RecordReader recordReader =
downloadSession.openRecordReader(
 step * i, step);
 callers.add(new DownloadThread(i,
recordReader, downloadSession.getSchema()));
 }
 RecordReader recordReader = downloadSession.
openRecordReader(step * (threadNum - 1), count
 - ((threadNum - 1) * step));
 callers.add(new DownloadThread(threadNum - 1
, recordReader, downloadSession.getSchema()));
 Long downloadNum = 0L;

MaxCompute User Guide / 3 Data upload and download

60 Issue: 20181120

 List<Future<Long>> recordNum = pool.invokeAll
(callers);
 for (Future<Long> num : recordNum)
 downloadNum += num.get();
 System.out.println("Record Count is: " +
downloadNum);
 pool.shutdown();
 } catch (TunnelException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 } catch (InterruptedException e) {
 e.printStackTrace();
 } catch (ExecutionException e) {
 e.printStackTrace();
 }
 }
 }

Note:

The Tunnel Endpoint can be specified or left blank.

• If specified, the downloading data goes through the specified Endpoint.

• If not specified, the downloading data goes through public network Endpoint.

3.7.6 Example for BufferedWriter multi-thread uploading
class UploadThread extends Thread {
 private UploadSession session;
 private static int RECORD_COUNT = 1200;
 public UploadThread(UploadSession session) {
 this.session = session;
 }
 @Override
 Public void run (){
 RecordWriter writer = up.openBufferedWriter();
 Record r = up.newRecord();
 for (int i = 0; i < RECORD_COUNT; i++) {
 r.setBigint(0, i);
 writer.write(r);
 }
 writer.close();
 }
};
public class Example {
 public static void main(String args[]) {
 // Initializes MaxCompute and Tunnel code
 TableTunnel.UploadSession uploadSession = tunnel.createUplo
adSession(projectName, tableName);
 UploadThread t1 = new UploadThread(up);
 UploadThread t2 = new UploadThread(up);
 t1.start();
 t2.start();
 t1.join();
 t2.join();
 uploadSession.commit();

MaxCompute User Guide / 3 Data upload and download

Issue: 20181120 61

 }

3.7.7 Example for BufferedWriter uploading
// Initializes MaxCompute and Tunnel code
RecordWriter writer = null;
TableTunnel.UploadSession uploadSession = tunnel.createUploadSession(
projectName, tableName);
try {
 int i = 0;
 // Generates TunnelBufferedWriter instance
 writer = uploadSession.openBufferedWriter();
 Record product = uploadSession.newRecord();
 for (String item : items) {
 product.setString("name", item);
 product.setBigint("id", i);
 // Calls the Write interface to write data
 writer.write(product);
 i += 1;

} finally {
 if (writer ! = null) {
 // Closes TunnelBufferedWriter
 writer.close();

// Submits data via uploadSession to end the upload process
uploadSession.commit();

3.8 Import or export data using the Data Integration
Use Data Integration function of DataWorks to create data synchronization tasks and import and

export MaxCompute data.

Prerequisites

Before importing or exporting data, complete the required operations first. For more information,

see Prepare an Alibaba Cloud account and Purchase and create a project.

Add MaxCompute data source

Note:

• Only the project administrator can create a data source. Other roles can only view the data

source.

• If the data source you want to add is a current MaxCompute project, skip this operation

. After this project is created and appears as a Data Integration data source, this project is

added as a MaxCompute data source named odps_first by default.

Procedure

https://www.alibabacloud.com/help/doc-detail/47677.html

MaxCompute User Guide / 3 Data upload and download

62 Issue: 20181120

1. Log on to the DataWorks console as an administrator and click Enter Workspace from the

Actions column of the relevant project in the Project List.

2. Select Data Integration from the upper navigation pane. Click Data Source from the left-side

navigation pane.

3. Click New Source.Select MaxCompute (ODPS) from the Large Data Storage section.

4. Enter required configurations in the data dialog box.

Parameters

• Name: Contains letters, numbers, and underscores (_). It must begin with a letter or an

underscore (_) , and cannot exceed 60 characters.

• Data source description: Provides a brief description of the data source, and cannot

exceed 80 characters.

• Data source type: Currently, it is ODPS.

• ODPS Endpoint: Read-only by default. The value is automatically read from the system

configuration.

• ODPS Item name: Name of the project, helps to identify the corresponding MaxCompute

project.

• Access ID: The Access ID associated with the account of the MaxCompute project owner.

• AccessKey: The AccessKey associated with the account of the MaxCompute project

owner, used in pairs with the Access ID.

5. (Optional). Click Test Connectivity to test the connectivity after entering all the required

information in the relevant fields.

6. If the connectivity test is successful, click Save.

Note:

For more information about the other data sources configurations, see data source configuration.

Import data through Data Integration

Take importing MySQL data to MaxCompute as an example, you can configure a synchronization

task using Wizard Mode or Script Mode.

Configure a synchronization task in Wizard mode

1. Create a Wizard Mode synchronization task.

2. Select the source.

https://workbench.data.aliyun.com/console?spm=a2c4g.11186623.2.7.bBZHDz
https://www.alibabacloud.com/help/doc-detail/60416.html

MaxCompute User Guide / 3 Data upload and download

Issue: 20181120 63

Select the MySQL data source and the source table “mytest”. The data browsing area is

collapsed by default. Click Next.

3. Select a Target.

The target must be a previously created MaxCompute table. You can also create a new table

by clicking Quick Table Creation.

Parameters

• Partition information: Specify every level of partition. When writing data to a table

with three levels of partitions, you must configure the last partition level, for example,

pt=20150101, type=1, biz=2. This item is unavailable for non-partitioned tables.

• Data clearing rules:

▬ Clear existing data before writing: Before data is imported to a table

or partition, all data in the table or partition is cleared, which is equivalent to Insert

Overwrite.

▬ Retain existing data before writing: Existing data is not cleared before new

data is imported. Each operation appends new data, which is equivalent to Insert Into.

4. Map the fields.

Select the mapping between fields. Configure the field mapping relationships. The Source

Table Fields on the left correspond one to one with the Target Table Fields on the right.

5. Control the channel.

Click Next to configure the maximum job rate and dirty data check rules.

Parameters

• Maximum job rate: Determines the highest rate possible for data synchronization jobs.

The actual rate of the job may vary with the network environment, database configuration,

and other factors.

• Concurrent job count: For a single synchronization job, Concurrent job count *

Individual job transmission rate = Total job transmission rate.

When a maximum job rate is specified, how do you select the concurrent job count?

• If your data source is an online business database, we recommend that you refrain from

 setting a large value for the concurrent job count to avoid interference with the online

database.

MaxCompute User Guide / 3 Data upload and download

64 Issue: 20181120

• If you require a high data synchronization rate, we recommend that you select the highest

job rate and a large concurrent job count.

6. Preview and store.

Make sure the configuration of the task is correct, and click Save.

Run a synchronization task

Run a synchronization task directly

If system variable parameters are set in the synchronization task, the variable parameter

configuration window is displayed during task operation.

After saving the task, click Run to run the task immediately. Click Submit and the synchronization

task will be submitted to the scheduling system of the DataWorks. The scheduling system

automatically and periodically runs the task from the second day according to the configuration

attributes. For more information on scheduling configurations, see Scheduling configuration

description.

Configure a synchronization task in Script mode

Use the following script to configure synchronization tasks. Other configurations and job operation

are the same as Wizard Mode.

{
 "type": "job",
 "version": "1.0",
 "configuration": {
 "reader": {
 "plugin": "mysql",
 "parameter": {
 "datasource": "mysql",
 "where": "",
 "splitPk": "id",
 "connection": [
 {
 "table": [
 "person"
],
 "datasource": "mysql"
 }
],
 "connectionTable": "person",
 "Column ":[
 "id",
 "name"
]
 }
 },
 "writer": {
 "plugin": "odps",
 "parameter": {

https://www.alibabacloud.com/help/doc-detail//50130.html
https://www.alibabacloud.com/help/doc-detail//50130.html

MaxCompute User Guide / 3 Data upload and download

Issue: 20181120 65

 "datasource": "odps_first",
 "table": "a1",
 "truncate": true,
 "partition": "pt=${bdp.system.bizdate}",
 "Column ":[
 "id",
 "col1"
]
 }
 },
 "Setting ":{
 "speed": {
 "mbps": "1",
 "concurrent": "1"
 }
 }
 }
}

References

• For the Reader configurations about different types of data sources, see Configure Reader

Plug-ins.

• For the Writer configurations about different types of data sources, see Configure Writer Plug-

ins.

3.9 Real-time data tunnel of DataHub
DataHub is a MaxCompute service designed to process streaming data. It allows you to subscribe

 to streaming data and publish the data. You can easily construct analysis programs and applicatio

ns based on streaming data.

https://www.alibabacloud.com/help/faq-list/49806.html
https://www.alibabacloud.com/help/faq-list/49806.html
https://www.alibabacloud.com/help/faq-list/49807.html
https://www.alibabacloud.com/help/faq-list/49807.html

MaxCompute User Guide / 4 SQL

66 Issue: 20181120

4 SQL

4.1 SQL summary
SQL summary

MaxCompute SQL is suitable for various scenarios. The massive data (GB, TB, or EB level) must

 be processed based on an offline batch calculation. It takes several seconds or even minutes

to schedule after a job is submitted. Therefore, MaxCompute SQL is preferred for services that

process tens of thousands of transactions per second.

The MaxCompute SQL syntax is similar to SQL and can be considered as a subset of standard

 SQL. However, the MaxCompute SQL must not be confused with a database. It does not have

database characteristics including transactions, primary key constraints, indexes, and so on. The

maximum size of SQL in MaxCompute is 3 MB.

Reserved words

MaxCompute SQL considers the keywords of SQL statement as reserved words. If you use

keywords for name tables, columns, or partitions, you must escape the keywords with the ``

symbol, otherwise an error is occurred. Reserved words are case insensitive and the most

common words used are as follows: (For a complete reserved word list, see MaxCompute SQL

Reserved Word).

% & && () * +
 - . / ; < <= <>
 = > >= ? ADD ALL ALTER
 AND AS ASC BETWEEN BIGINT BOOLEAN BY
 CASE CAST COLUMN COMMENT CREATE DESC DISTINCT
 DISTRIBUTE DOUBLE DROP ELSE FALSE FROM FULL
 GROUP IF IN INSERT INTO IS JOIN
 LEFT LIFECYCLE LIKE LIMIT MAPJOIN NOT NULL
 ON OR ORDER OUTER OVERWRITE PARTITION RENAME
 REPLACE RIGHT RLIKE SELECT SORT STRING TABLE
 THEN TOUCH TRUE UNION VIEW WHEN WHERE

Type conversion

MaxCompute SQL allows conversion between data types. The conversion methods include

explicit type conversion and implicit type conversion. For more information, see Type Conversion.

• Explicit conversions: Uses CAST to convert a value type.

MaxCompute User Guide / 4 SQL

Issue: 20181120 67

• Implicit conversions: MaxCompute automatically performs implicit conversions while running

 based on the context environment and conversion rules. Implicit conversion scope includes

various operators, built-in functions, and so on.

Partitioned table

MaxCompute SQL supports partitioned tables. Specify the partition as it simplifies the operation.

For example, improve SQL running efficiency, reduce the cost, and so on. For more information,

see Partition.

UNION ALL

To be involved in a UNION ALL operation, the data type of columns, column numbers, and column

 names must be consistent, otherwise an error occurs.

4.2 Operators
Relational operators

Operator Description

A=B If A or B is NULL, NULL is returned. If A is equal to B, TRUE is returned;
otherwise FALSE is returned.

A<>B If A or B is NULL, NULL is returned. If A is not equal to B, TRUE is returned;
otherwise FALSE is returned.

A<B If A or B is NULL, NULL is returned. If A is less than B, TRUE is returned;
otherwise FALSE is returned.

A<=B If A or B is NULL, NULL is returned. If A is not greater than B, TRUE is
returned; otherwise FALSE is returned.

A>B If A or B is NULL, NULL is returned. If A is greater than B, TRUE is returned;
otherwise FALSE is returned.

A>=B If A or B is NULL, NULL is returned; if A is not less than B, TRUE is returned
; otherwise, FALSE is returned.

A IS NULL If A is NULL, TRUE is returned; otherwise, FALSE is returned.

A IS NOT NULL If A is NULL, TRUE is returned; otherwise FALSE is returned.

A LIKE B If A or B is NULL, NULL is returned. If String A matches the SQL simple
regular B TRUE is returned; otherwise FALSE is returned. The (%)
character in B matches an arbitrary number of characters and the (_)
character in B matches any character in A. To match (%) or_'), use by the
escape characters '(%')' and (_').

‘aaa’ like‘a_’= TRUE

MaxCompute User Guide / 4 SQL

68 Issue: 20181120

Operator Description

‘aaa’ like‘a%’ = TRUE
‘aaa’ like‘aab’= FALSE
‘a%b’ like‘a\%b’= TRUE
‘axb’ like ‘a\%b’= FALSE

A RLIKE B A is a string, and B is a string constant regular expression. If any substring
 of A matches the Java regular expression B, TRUE is returned; otherwise
 FALSE is returned. If expression B is empty, report an error and exit. If
expression A or B is NULL, NULL is returned.

A IN B B is a set. If expression A is NULL, NULL is returned. If expression A
is in expression B, TRUE is returned; otherwise FALSE is returned. If
expression B has only one element NULL, that is, A IN (NULL), return NULL
. If expression B contains NULL element, take NULL as the type of other
elements in B set. B must be a constant and at least has one element; all
types must be consistent.

BETWEEN AND The expression is A [NOT] BETWEEN B AND C. Empty if A, B, or C is
empty. True if A is larger than or equal to B and less than or equal to C;
otherwise false is returned.

The common use:

select * from user where user_id = '0001';
select * from user where user_name <> 'maggie';
select * from user where age > ‘50’;
select * from user where birth_day >= '1980-01-01 00:00:00';
select * from user where is_female is null;
select * from user where is_female is not null;
select * from user where user_id in (0001,0010);
select * from user where user_name like 'M%';

The Double values in MaxCompute are different in precision. For this reason, we do not

recommend using the equal sign for comparison between two Double data. You can subtract two

 Double types, and then take the absolute value into consideration. When the absolute value is

small enough, the two double values are considered equal.

Example:

abs(0.9999999999 - 1.0000000000) < 0.000000001
 -- 0.9999999999 and 1.0000000000 have the precision of 10 decimal
digits, while 0.000000001 has the precision of 9 decimal digits.
 -- It is considered that 0.9999999999 is equal to 1.0000000000.

Note:

MaxCompute User Guide / 4 SQL

Issue: 20181120 69

• ABS is a built-in function provided by MaxCompute to take absolute value. For more

information, see ABS.

• In general, the Double type in MaxCompute can retain 14-bit decimal.

Arithmetic operators

Operator Description

A + B If expression A or B is NULL, NULL is returned; otherwise the result of A+B
is returned.

A – B If expression A or B is NULL, NULL is returned; otherwise the result of A – B
 is returned.

A * B If expression A or B is NULL, NULL is returned; otherwise result of A * B is
returned.

A / B If expression A or B is NULL, NULL is returned; otherwise the result of A / B
is returned. If Expression A and B are bigint types, the result is double type.

A % B If expression A or B is NULL, NULL is returned; otherwise the reminder result
 from dividing A by B is returned.

+A Result A is returned.

-A If expression A is NULL, NULL is returned; otherwise –A is returned.

The common use:

select age+10, age-10, age%10, -age, age*age, age/10 from user;

Note:

• You can only use String, Bigint, and Double to perform arithmetic operations. (Using Datetime

type and Boolean type is restricted.)

• Before you begin these operations, the type String is converted into Double by implicit type

conversion.

• If Bigint and Double both are involved in arithmetic operation, the type Bigint is converted into

Double by implicit type conversion.

• When A and B are Bigint types, the return result of A/B will be a Double type. For other

arithmetic operations, the return value is also a Bigint type.

MaxCompute User Guide / 4 SQL

70 Issue: 20181120

Bitwise operators

Operator Description

A & B Return the result of bitwise AND of A and B. For example: 1&2, return 0; 1&3,
return 1; Bitwise AND of NULL and other values, all return NULL. Expression A
and B must be Bigint.

A | B Return the result of bitwise OR of A and B. For example: 1|2, return3. 1|3, return 3
. Bitwise OR of NULL and other values, all return NULL. Expression A and B must
 be Bigint type.

Note:

Bitwise operator does not support implicit conversions, only supports the type Bigint.

Logical operators

 Operator Description
 A and B TRUE and TRUE=TRUE
 TRUE and FALSE=FALSE
 FALSE and TRUE=FALSE
 FALSE and NULL=FALSE
 NULL and FALSE=FALSE
 TRUE and NULL=NULL
 NULL and TRUE=NULL
 NULL and NULL=NULL
 A or B TRUE or TRUE=TRUE
 TRUE or FALSE=TRUE
 FALSE or TRUE=TRUE
 FALSE or NULL=NULL
 NULL or FALSE=NULL
 TRUE or NULL=TRUE
 NULL or TRUE=TRUE
 NULL or NULL=NULL
 NOT A If A is NULL, NULL is returned.
 If A is TRUE, FALSE is returned.
 If A is FALSE, TRUE is returned.

Note:

Only the type Boolean can be involved in logic operations and the implicit type conversion is not

supported.

MaxCompute User Guide / 4 SQL

Issue: 20181120 71

4.3 Type conversions
MaxCompute SQL allows conversion between data types. The two conversion methods are

explicit type conversion and implicit type conversion.

Explicit conversion

Explicit conversions use CAST to convert a value type to another. The following table lists the

types that can be explicitly converted in MaxCompute SQL.

From/To Bigint Double String Datetime Boolean Decimal

Bigint – Y Y N N Y

Double Y – Y N N Y

String Y Y – Y N Y

Datetime N N Y – N N

Boolean N N N N – N

Decimal Y Y Y N N -

Y means can be converted. N means cannot be converted. – means conversion is not required.

Example:

select cast(user_id as double) as new_id from user;
select cast('2015-10-01 00:00:00' as datetime) as new_date from user;

Note:

• To convert the Double type to the Bigint type, digits after the decimal point are dropped. For

example, cast(1.6 as bigint) = 1.

• To convert the String type that meets the Double format to the Bigint type, it is converted to

the Double type, and then to the Bigint type. The digits after the decimal point are dropped.

For example, cast(“1.6” as bigint) = 1.

• The String type that meets the Bigint format can be converted to the Double type, and must

keep one digit after the decimal point. For example, cast(“1” as double) = 1.0.

• Explicit conversions of unsupported types may return an exception.

• If a conversion fails during execution, the conversion is aborted with an exception.

• To convert the Datetime type, use the default format yyyy-mm-dd hh:mi:ss. For more

information, see Conversions between the String type and the Datetime type.

MaxCompute User Guide / 4 SQL

72 Issue: 20181120

• Some types cannot be explicitly converted, but can be converted using built-in SQL functions.

For example, the to_char function can be used to convert values of the Boolean type to

the String type. For more information, see TO_CHAR. The to_date function can be used to

convert values of the String type to the Datetime type. For more information, see TO_DATE.

• For more information, see CAST.

• If a DECIMAL value exceeds the value range, MSB overflow error or LSB overflow truncation

may occur for CAST STRING TO DECIMAL.

Implicit conversion and scope

Implicit type conversion is an automatic type conversion performed by MaxCompute according

to the usage context and type conversion rules. The following table lists the types that can be

implicitly converted using MaxCompute.

booleantinyint smallintint bigint float doubledecimalstring varchartimestampbinary

boolean
to

T F F F F F F F F F F F

tinyint to F T T T T T T T T T F F

smallint
to

F F T T T T T T T T F F

int to F F F T T T T T T T F F

bigint to F F F F T T T T T T F F

float to F F F F F T T T T T F F

double to F F F F F F T T T T F F

decimal
to

F F F F F F F T T T F F

string to F F F F F F T T T T F F

varchar
to

F F F F F F T T T T F F

timestamp
 to

F F F F F F F F T T T F

binary to F F F F F F F F F F F T

T means can be converted. F means cannot be converted.

Note:

MaxCompute User Guide / 4 SQL

Issue: 20181120 73

• The DECIMAL type and Datetime constant definition mode are added to MaxCompute2.0.

100BD indicates a DECIMAL, the value is 100. Datetime 2017-11-11 00:00:00 indicates a

constant of the Datetime type. The constant definition is convenient because it can be directly

used in values clauses and tables.

• In the earlier version of MaxCompute, values of the DOUBLE type can be implicitly converted

to the BIGINT type. Owing to some reasons, such conversions may lead to data loss, which is

not allowed by common database systems.

Common use:

select user_id+age+'12345',
 concat(user_name,user_id,age)
 from user;

Note:

• Implicit conversions of unsupported types may cause an error.

• If a conversion fails during execution, an exception occurs.

• MaxCompute automatically performs implicit conversions based on the context environment.

We recommend that you use CAST to perform an explicit conversion when the types do not

match.

• Implicit conversion rules are applicable to a specific range of scopes. In some scopes, only

some rules can take effect. For more information, see the scopes of implicit conversions.

• Implicit conversions under relational operators

Relational operators include equal to (=), not equal to (<>), less than (<), less than or equal to

 (<=), greater than (>), greater than or equal to (>=), IS NULL, IS NOT NULL, LIKE, RLIKE,

and IN. For the particularities, implicit conversion rules of LIKE, RLIKE, and IN are discussed

separately. The following descriptions do not contain these three special operators.

The following table describes implicit conversion rules when different types of data is involved

in relational operations.

From/To Bigint Double String Datetime Boolean Decimal

Bigint – Double Double N N Decimal

Double Double – Double N N Decimal

String Double Double – Datetime N Decimal

Datetime N N Datetime – N N

MaxCompute User Guide / 4 SQL

74 Issue: 20181120

From/To Bigint Double String Datetime Boolean Decimal

Boolean N N N N – N

Decimal Decimal Decimal Decimal N N -

Note:

• If two types cannot be implicitly converted, the relational operation is aborted by an error.

• For more information about the relational operators, see Relational Operators.

• Implicit conversions under special relational operators

Special relational operators include LIKE, RLIKE, and IN.

• The usage of LIKE and RLIKE is as follows:

source like pattern;
source rlike pattern;

The following illustrates the notes for LIKE and RLIKE in implicit conversions:

• The source and pattern parameters of LIKE and RLIKE can only be of the String type.

• Other types can neither be involved in the operations nor be implicitly converted to the

String type.

• The usage of IN is as follows:

key in (value1, value2, …)

Implicit conversion rules of IN:

• Data in the value column must be consistent.

• To compare keys and values, if Bigint, Double, and String types are compared, convert

 them to Double type. If the Datetime and String types are compared, convert them to

Datetime type. Conversions between other types are not allowed.

• Implicit conversions under arithmetic operators

Arithmetic operators include addition (+), subtraction (-), multiplication (*), division (/), modulo

(%), unary plus (+), and unary minus (-). Their implicit conversion rules are described as

follows:

• Only the String, Bigint, Double, and Decimal types can be involved in the operation.

• The String type are implicitly converted to the Double type before the operation.

MaxCompute User Guide / 4 SQL

Issue: 20181120 75

• When the Bigint and Double types are involved in the operation, the Bigint type is implicitly

converted to the Double type.

• The Datetime and Boolean types are not allowed in the arithmetic operation.

• Implicit conversions under logical operators

Logical operators include AND, OR, and NOT. Their implicit conversion rules are as follows:

• Only the Boolean type can be involved in the logical operation.

• Other types are not allowed in the logical operation, and cannot be implicitly converted to

other types.

Implicit conversions for Built-in functions

MaxCompute SQL provides numerous system functions. You can calculate one or multiple

columns of any row and output data of any type. Their implicit conversion rules are described as

follows:

• To call a function, if the data type of an input parameter is different from that defined in the

function, convert the data type of the input parameter to that defined in the function.

• Parameters of different built-in functions of MaxCompute SQL have different requirements on

implicit conversions. For more information, see Built-in Functions.

Implicit conversions under CASE WHEN

For more information about CASE WHEN, see CASE WHEN Expressions. Its implicit conversion

rules are listed as follows:

• If the types of the returned values are Bigint and Double, convert all to the Double type.

• If a String type exists in return types, convert all to the String type. If the conversion fails (such

as Boolean type conversion), an error is returned.

• Conversions between other types are not allowed.

Conversions between the String Type and Datetime Type

MaxCompute supports conversions between the String type and Datetime type. The conversion

format is yyyy-mm-dd hh:mi:ss.

Unit String (case-insensitive) Value range

Year yyyy 0001 - 9999

Month mm 01 - 12

Day dd 01 - 28,29,30,31

MaxCompute User Guide / 4 SQL

76 Issue: 20181120

Unit String (case-insensitive) Value range

Hour hh 00 - 23

Minute mi 00 - 59

Second ss 00 - 59

Note:

• In the value range of each unit, if the first digit is 0, it cannot be ignored. For example, 2014-1

-9 12:12:12 is an invalid Datetime format and it cannot be converted from the STRING type

to the Datetime type. It must be written as 2014-01-09 12:12:12.

• Only the String type that meets the preceding format requirements can be converted to

the Datetime type. For example, cast(“2013-12-31 02:34:34” as datetime)

converts2013-12-31 02:34:34 of the String type to the Datetime type. Similarly, when

the Datetime type is converted to the String type, the default conversion format is yyyy-mm-dd

hh:mi:ss.

For example, the following conversions return an exception:

cast("2013/12/31 02/34/34" as datetime)
cast("20131231023434" as datetime)
cast("2013-12-31 2:34:34" as datetime)

The threshold of dd depends on the actual days of a month. If the value exceeds the actual days

of the month, the conversion is aborted with an error.

Example:

cast("2013-02-29 12:12:12" as datetime) -- Returns an error because
February 29, 2013 does not exist.
cast("2013-11-31 12:12:12" as datetime) -- Returns an exception
because November 31, 2013 does not exist.

MaxCompute provides the TO_DATE function to convert the String type that does not meet the

Datetime format to the Datetime type. For more information, see TO_DATE.

MaxCompute User Guide / 4 SQL

Issue: 20181120 77

4.4 DDL SQL

4.4.1 Table Operations
Create tables

Statement format:

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name
[(col_name data_type [COMMENT col_comment], ...)]
[COMMENT table_comment]
[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
[STORED BY StorageHandler] -- Limited to external tables
[WITH SERDEPROPERTIES (Options)] -- Limited to external tables
[LOCATION OSSLocation];-- Limited to external tables
[LIFECYCLE days]
[As select_statement]
 CREATE TABLE [IF NOT EXISTS] table_name
 LIKE existing_table_name

Consider the following points:

• When a table is created, an error is returned if the same name table exists without specifying

the "if not exists" option. If the option is specified, no matter whether a same name table exists

 and even if the source table structure and the target table structure are inconsistent, all return

successfully. The Meta information of the existing table does not change.

• Both the table name and column name are case insensitive and cannot have special

characters. It must begin with a letter and can include a-z, A-Z, digits, and underscores (_). The

 name length cannot exceed 128 bytes.

• 1200 column definitions are allowed in a table.

• The data types support Bigint、Double、Boolean、Datetime、Decimal and String,

MaxCompute2.0 extends many data types.

Note:

Once data type such asTinyint、Smallint、 Int、 Float、Varchar or TIMESTAMP BINARY

is involved when running an SQL statement, set odps.sql.type.system.odps2=

true; must be added before the SQL statement. The set statement and SQL statement are

submitted simultaneously.

• Use Partitioned by to specify the partition and now Tinyint、Smallint、 Int、 Bigint、Varchar

and String are supported.

The partition value cannot have a double byte characters (for example, Chinese), and must

begin with an uppercase or a lowercase letter, followed by letter or a number. The name length

MaxCompute User Guide / 4 SQL

78 Issue: 20181120

 cannot exceed 128 bytes. Special characters can be used, which include space, colon (:),

underscore (_), dollar sign ($), pound sign (#), period (.), exclamation point (!), and ’@’. Other

characters such as (\t), (\n), (/), and so on are considered as undefined characters. When using

 partition fields in a partition table, to improve the processing efficiency, a full table scan is not

needed to add, update, and read the data in a partition.

• Currently, 60,000 partitions are allowed in a table, and the partition hierarchy cannot exceed 6

levels.

• The comment content is the effective string and its length must not exceed 1024 bytes

• Lifecycle indicates the lifecycle of the table, the unit is ‘days’. The statement create table like

does not copy the lifecycle attribute from source table

• For more information about external tables, see Access OSS.

For example:

Assume that the table sale_detail is created to store sale records. The table uses sale_date and

region as partition columns. Table creation statements are described as follows:

create table if not exists sale_detail(
(
shop_name string,
customer_id string,
total_price double)
)
partitioned by (sale_date string,region string);
 -- Create a partition table sale_detail.

The statementcreate table…as select ... can also be used to create a table. After

creating a table, the data is copied to the new table, such as:

create table sale_detail_ctas1 as
select * from sale_detail;

If the table sale_detail has data, the example mentioned preceding copies all data of sale_detail

into the table sale_detail_ctas1.

Note:

sale_detail is a partitioned table, while the table created by the statement create table … as

 select … does not copy the partition attribute. The partition column of source table becomes

a general column of object table. In other words, sale_detail_ctas1 is a non-partition table with 5

columns.

MaxCompute User Guide / 4 SQL

Issue: 20181120 79

In the statement create table … as select… if using a constant as a column value in Select

clause, it is suggested specify the column name, such as:

create table sale_detail_ctas2 as
 select shop_name,
 customer_id,
 total_price,
 '2013' as sale_date,
 'China' as region
 from sale_detail;

If the column name is not specified, the statement is as shown as follows:

create table sale_detail_ctas3 as
 select shop_name,
 customer_id,
 total_price,
 '2013',
 'China'
 from sale_detail;

Then the forth column and fifth column of the created table sale_detail_ctas3 become system

generated names, like _c3, _c4.

To let the destination table have the same structure as the source table, try to use create

table … like’ statement, such as:

create table sale_detail_like like sale_detail;

Now the table structure of sale_detail_like is exactly the same as sale_detail. Except

the life cycle, attributes including the column name, column comment, and table comment, of

the two tables are the same. But the data in sale_detail cannot be copied into the table

sale_detail_like.

View table information

Statement format:

desc <table_name>;
desc extended <table_name>; --View external table information.

For example:

• To view the info of the preceding table sale_detail, run the following statement:

desc sale_detail;

Return info:

odps@ $odps_project>desc sale_detail;

MaxCompute User Guide / 4 SQL

80 Issue: 20181120

+--
+
| Owner: ALIYUN$lili.ll@alibaba-inc.com | Project: $odps_project
 |
| TableComment:
 |
+--
+
| CreateTime: 2017-06-28 15:05:17
 |
| LastDDLTime: 2017-06-28 15:05:17
 |
| LastModifiedTime: 2017-06-28 15:05:17
 |
+--
+
| InternalTable: YES | Size: 0
 |
+--
+
| Native Columns:
 |
+--
+
| Field | Type | Label | Comment
 |
+--
+
| shop_name | string | |
 |
| customer_id | string | |
 |
| total_price | double | |
 |
+--
+
| Partition Columns:
 |
+--
+
| sale_date | string |
 |
| region | string |
 |
+--
+
OK

• To view the infomation of the preceding table sale_detail_like, run the following statement:

desc sale_detail_like

Return info:

odps@ $odps_project>desc sale_detail_like;
+--
+
| Owner: ALIYUN$lili.ll@alibaba-inc.com | Project: $odps_project
 |
| TableComment:
 |

MaxCompute User Guide / 4 SQL

Issue: 20181120 81

+--
+
| CreateTime: 2017-06-28 15:42:17
 |
| LastDDLTime: 2017-06-28 15:42:17
 |
| LastModifiedTime: 2017-06-28 15:42:17
 |
+--
+
| InternalTable: YES | Size: 0
 |
+--
+
| Native Columns:
 |
+--
+
| Field | Type | Label | Comment
 |
+--
+
| shop_name | string | |
 |
| customer_id | string | |
 |
| total_price | double | |
 |
+--
+
| Partition Columns:
 |
+--
+
| sale_date | string |
 |
| region | string |
 |
+--
+
OK

In preceding example, we can see that the attributes of sale_detail_like coincide with that of

sale_detail, except for the lifecycle. For more information, see Describe Table.

Check the information of sale_detail_ctas1, you can find that sale_date and region are only normal

 columns and not partitions of the table.

Drop a table

Statement format:

DROP TABLE [IF EXISTS] table_name;

Note:

MaxCompute User Guide / 4 SQL

82 Issue: 20181120

• If the option [if exists] is not specified and the table does not exist, exception returns. If this

option is specified, no matter whether the table exists or not, all return success.

• Data in OSS is not deleted when the external tables are deleted.

For example:

create table sale_detail_drop like sale_detail;
 drop table sale_detail_drop;
 --If the table exists, return success; otherwise, return exception
.
 drop table if exists sale_detail_drop2;
 --No matter whether the table sale_detail_drop2 exists or not, all
 return success.

Rename a table

Statement format:

ALTER TABLE table_name RENAME TO new_table_name;

Note:

• Rename operation is used to update the table name only and not the data in the table.

• If the new_table_name is duplicated an error may occur.

• If the table table_name does not exist, error may occur.

For example:

create table sale_detail_rename1 like sale_detail;
alter table sale_detail_rename1 rename to sale_detail_rename2;

Alter Table Comments

Command format:

ALTER TABLE table_name SET COMMENT 'tbl comment';

Note:

• The table table_name must exists.

• The comment length must not exceed 1024 bytes.

MaxCompute User Guide / 4 SQL

Issue: 20181120 83

For example:

alter table sale_detail set comment 'new comments for table sale_detai
l';

Use the command desc to view the comment modification in the table. For more information, see

Describe Table.

Alter Table LastDataModifiedTime

MaxCompute SQL supports touch operation to modify LastDataModifiedTime of a table. The

result is to modify LastDataModifiedTime of a table to be current time.

Statement format:

ALTER TABLE table_name TOUCH;

Note:

• If the table table_name does not exist, an error is returned.

• This operation changes the value of LastDataModifiedTime of a table and this is when

MaxCompute identifies change in the table data and then begins the corresponding lifecycle

calculation.

Empty data from a non-partitioned table

Empty the data in specified non-partition table, This command does not support partition table.

For the partition table, use ALTER TABLE table_name DROP PARTITION to clear the data in

partition.

Command format:

TRUNCATE TABLE table_name;

4.4.2 Lifecycle of table
Modify lifecycle of table

MaxCompute provides a function to manage data lifecycle so that user can release storage space

 and simplify the data recycle flow.

MaxCompute User Guide / 4 SQL

84 Issue: 20181120

Statement format:

ALTER TABLE table_name SET lifecycle days;

Note:

• The parameter ‘days’ refers to the time required to complete the lifecycle. It must be a positive

 integer and its unit is ‘day’.

• Suppose that the table ‘table_name’ is a no-partition table. Calculated from the last updated

 date, the data is still not modified after N (days) days, then MaxCompute automatically

recycles the table without user intervention (similar to ‘drop table’ operation).

• In MaxCompute, once the data in the table is modified, the LastDataModifiedTime is updated

. So MaxCompute judges whether to recycle this table based on the LastDataModifiedTime

setting and lifecycle.

• · Suppose the table ‘table_name’ is a partition table. MaxCompute determines whether to

recycle the table according to LastDataModifiedTime of each partition.

• · Unlike no-partition table, after the last partition of a partitioned table has been recycled, the

table is not deleted.

• · The lifecycle can be set for a table, not for the partition.

• · It can be specified while creating a table.

Example:

create table test_lifecycle(key string) lifecycle 100;
 -- Create a new table test_lifecycle and the lifecycle is 100 days.
 alter table test_lifecycle set lifecycle 50;
 -- Alter the lifecycle for the table test_lifecycle and set it to be
50 days.

Disable lifecycle of table

In some cases, the data in specified partitions do not need to be recycled by the lifecycle function

. For example, data in the beginning of the month, or the data during the Global Shopping Day

period. You can disable the lifecycle function using some specific partitions.

MaxCompute User Guide / 4 SQL

Issue: 20181120 85

Statement format:

ALTER TABLE table_name [partition_spec] ENABLE|DISABLE LIFECYCLE;

An example is shown as follows.

ALTER TABLE trans PARTITION(dt='20141111') DISABLE LIFECYCLE;

4.4.3 Column/Partition operation
Add partition

Statement format:

ALTER TABLE TABLE_NAME ADD [IF NOT EXISTS] PARTITION partition_spec
partition_spec:(partition_col1 = partition_col_value1, partition_col2
 = partiton_col_value2, ...)

Note:

• · Only ‘creating partitions’ are supported wherein, ‘creating partition columns’ are not

supported.

• · If the same name partition has already existed and the option [if not exists] is not specified,

an exception returns.

• · Currently, the maximum number of partitions supported in a single MaxCompute table is 60,

000.

• · For tables that have multi-level partitions, to add a new partition, all partition values must be

specified.

Example:

add a new partition for the table ‘sale_detail’.

alter table sale_detail add if not exists partition (sale_date='201312
', region='hangzhou');
-- Add partition successfully, to store the sale detail of hangzhou
region in December of 2013.
alter table sale_detail add if not exists partition (sale_date='201312
', region='shanghai');
-- Add partition successfully, to store the sale detail of shanghai
region in December of 2013.
alter table sale_detail add if not exists partition(sale_date='
20111011');
-- Only specify a partition sale_date, error occurs and return.
alter table sale_detail add if not exists partition(region='shanghai
');

MaxCompute User Guide / 4 SQL

86 Issue: 20181120

-- Only specify a partition region, error occurs and return.

Drop partition

Delete the syntax format for the partition is as follows:

ALTER TABLE TABLE_NAME DROP [IF EXISTS] PARTITION partition_spec;
partition_spec:(partition_col1 = partition_col_value1, partition_col2
 = partiton_col_value2, ...)

Note:

If the partition does not exist and the option [if exists] is not specified, then an error returns.

Example:

delete a partition from the table sale_detail.

alter table sale_detail drop if exists partition(sale_date='201312',
region='hangzhou');
-- -Delete the sale details of Hangzhou in December of 2013 successful
ly.

Add column

Statement format:

ALTER TABLE table_name ADD COLUMNS (col_name1 type1, col_name2 type2
...)

Note:

You cannot specify order for a new column. By default, a new column is placed in the last

column.

Modify column name

Statement format:

ALTER TABLE table_name CHANGE COLUMN old_col_name RENAME TO new_col_na
me;

Note:

• Column ‘old_col_name’ refers to an existing column.

• A column named ‘new_col_name’ cannot exist in the table.

MaxCompute User Guide / 4 SQL

Issue: 20181120 87

Alter Column/Partition Comment

Modify column/partition comment is as follows:

ALTER TABLE table_name CHANGE COLUMN col_name COMMENT comment_string;

Note:

The maximum comment content is 1024 bytes.

Modify column names and column notes simultaneously

Statement format:

ALTER TABLE table_name CHANGE COLUMN old_col_name new_col_name
column_type COMMENT column_comment;

Note:

• Column ‘old_col_name’ must be an existing column.

• A column named ‘new_col_name’ cannot exist in the table.

• The content of the comment cannot exceed 1024 bytes.

Modify LastDataModifiedTime of table/partition

MaxCompute MaxCompute SQL supports ‘touch’ operation to modify LastDataModifiedTime of a

partition. The result is to modify ‘LastDataModifiedTime’ of a partition to be current time.

Statement format:

ALTER TABLE table_name TOUCH PARTITION(partition_col='partition_
col_value', ...)

Note:

• If ‘table_name’ or ‘partition_col’ does not exist, an error returns.

• If the specified partition_col_value does not exist, an error returns.

• This operation changes the value of ‘LastDataModifiedTime’ in the table and now

MaxCompute determines whether the data of the table or partition has changed and the

lifecycle calculation begins again.

Modify partition value

MaxCompute SQL supports to change the partition value for corresponding partition value through

 ‘rename’ operation.

MaxCompute User Guide / 4 SQL

88 Issue: 20181120

Statement format:

ALTER TABLE table_name PARTITION (partition_col1 = partition_
col_value1, partition_col2 = partiton_col_value2, ...)
RENAME TO PARTITION (partition_col1 = partition_col_newvalue1,
partition_col2 = partiton_col_newvalue2, ...)

Note:

• The name of a partition column cannot be modified. Only the values in that column can be

altered.

• To modify values in one or more partitions among multi-level partitions, users must write

values for partitions at each level.

4.4.4 View operations
Create view

Statement format:

CREATE [OR REPLACE] VIEW [IF NOT EXISTS] view_name
 [(col_name [COMMENT col_comment], ...)]
 [COMMENT view_comment]
 [AS select_statement]

Note:

• To create a view, you must have ‘read’ privilege on the table referenced by view.

• Views can only contain one valid ‘select’ statement.

• Other views can be referenced by a view, but this view cannot reference itself. Circular

reference is not supported.

• Writing the data into a view is not allowed, such as, using ‘insert into’ or ‘insert overwrite’ to

operate view

• After a view was created,it may be inaccessable if the referenced table is altered, such

as deleting a referenced table. You must maintain corresponding relationship between

referenced tables and views.

• If the option ‘if not exists’ is not specified and the view has already existed, using ‘create view

’ causes abnormality. If this situation occurs, use ‘create or replace view’ to recreate a view.

After reconstruction, the privileges keep unchanged.

Example:

create view if not exists sale_detail_view

MaxCompute User Guide / 4 SQL

Issue: 20181120 89

(store_name, customer_id, price, sale_date, region)
comment 'a view for table sale_detail'
as select * from sale_detail;

Drop view

Statement format:

DROP VIEW [IF EXISTS] view_name;

Note:

If the view does not exist and the option [if exists] is not specified, error occurs.

Example:

DROP VIEW IF EXISTS sale_detail_view;

Rename view

Statement format:

ALTER VIEW view_name RENAME TO new_view_name;

Note:

If the same name view has already existed, error occurs.

Example:

create view if not exists sale_detail_view
 (store_name, customer_id, price, sale_date, region)
 comment 'a view for table sale_detail'
 as select * from sale_detail;
 alter view sale_detail_view rename to market;

4.5 Insert Operation

4.5.1 INSERT OVERWRITE/INTO
Function definition:

INSERT OVERWRITE|INTO TABLE tablename [PARTITION (partcol1=val1,
partcol2=val2 ...)] [(col1,col2 ...)]
select_statement
FROM from_statement;

Note:

MaxCompute User Guide / 4 SQL

90 Issue: 20181120

• Insert syntax of MaxCompute is different from MySQL or Oracle Insert syntax. The keyword

table must be added following insert overwrite|into, instead of using tablename

directly.

• When the target table for Insert is a partitioned table, expressions such as functions are not

allowed in [PARTITION (partcol1=val1, partcol2=val2 …)] .

• Currently, INSERT OVERWRITE does not support inserting columns. You can use INSERT

INTO instead.

Insert overwrite/into saves calculation results into a destination table.

The difference between insert into and insert overwrite is that insert into inserts

added data into the table or partition, while insert overwrite clears source data from the

table or partition before inserting the data in it.

Note:

The partition size in the MaxComputer partition table gets different data partition sizes when the

same partition is repeatedly INSERT OVERWRITEd with the value described. This is because

the file splitting logic changes when you select from the same partition on the same table and

insert overwrite back to the same partition on the same table, thus causing the size of the data to

change. But the total length of the data is constant around INSERT OVERWRITE, so users don't

have to worry about billing for storage.

While processing data through MaxCompute SQL, insert overwrite/into is the most

common statement. It can save the calculation result into a table, needed for the subsequent

calculation. For example, use the following statements to calculate the sale detail of different

regions from the table sale_detail:

create table sale_detail_insert like sale_detail;
alter table sale_detail_insert add partition(sale_date='2013', region
='china');
insert overwrite table sale_detail_insert partition (sale_date='2013
', region='china')
select shop_name, customer_id, total_price from sale_detail;

Note:

The correspondence between source table and destination table depends on the column

sequence in select clause, not the column name correspondence between the two tables. The

following statement is still valid:

insert overwrite table sale_detail_insert partition (sale_date='2013
', region='china')

MaxCompute User Guide / 4 SQL

Issue: 20181120 91

select customer_id, shop_name, total_price from sale_detail;
 -- When the sale_detail_insert table is created, the column
sequence is as below:
 -- shop_name string, customer_id string, total_price bigint
 -- When data is inserted from sale_detail to sale_detail_insert,
the insertion sequence of sale_detail is as below:
 -- customer_id, shop_name, total_price
 -- Inserts data in sale_detail.customer_id into sale_detai
l_insert.shop_name.
 -- Inserts data in sale_detail.shop_name into sale_detail_insert.
customer_id.

To insert data into a partition, the partition column cannot appear in the Select list.

insert overwrite table sale_detail_insert partition (sale_date='2013
', region='china')
 select shop_name, customer_id, total_price, sale_date, region
from sale_detail;
 -- Returns an error. The items sale_date and region are partition
 columns, which cannot appear in the INSERT statement of static
partitions.

Simultaneously, the value of the partition can only be a constant and expressions cannot appear.

The following statements are invalid:

insert overwrite table sale_detail_insert partition (sale_date=
datepart('2016-09-18 01:10:00', 'yyyy') , region='china')
 select shop_name, customer_id, total_price from sale_detail;

4.5.2 MULTI INSERT
MaxCompute SQL supports inserting different result tables or partitions in a single SQL statement.

Statement format:

FROM from_statement
 INSERT OVERWRITE | INTO TABLE tablename1 [PARTITION (partcol1=
val1, partcol2=val2 ...)]
 select_statement1 [FROM from_statement]
 [INSERT OVERWRITE | INTO TABLE tablename2 [PARTITION (partcol1=
val3, partcol2=val4 ...)]
 select_statement2 [FROM from_statement]]

Note:

• Generally, up to 256 ways of output can be written in a single SQL statement. A syntax error

occurs, if the output exceeds 256 ways.

• In a multi insert statement:

▬ For a partitioned table, a target partition cannot appear multiple times.

▬ For an unpartitioned table, this table cannot appear multiple times.

MaxCompute User Guide / 4 SQL

92 Issue: 20181120

• Different partitions within a partitioned table cannot have an Insert overwrite operation and an

Insert into operation at the same time; otherwise, an error is returned.

For an unpartitioned table, this table cannot appear multiple times.

create table sale_detail_multi like sale_detail;
 from sale_detail
 insert overwrite table sale_detail_multi partition (sale_date
='2010', region='china')
 select shop_name, customer_id, total_price where
 insert overwrite table sale_detail_multi partition (sale_date
='2011', region='china')
 select shop_name, customer_id, total_price where
 -- Return result successfully. Insert the data of sale_detail
into the 2010 sales records and 2011 sales records in China region.
 from sale_detail
 insert overwrite table sale_detail_multi partition (sale_date
='2010', region='china')
 select shop_name, customer_id, total_price
 insert overwrite table sale_detail_multi partition (sale_date
='2010', region='china')
 select shop_name, customer_id, total_price;
 -- An error is thrown. The same partition appears for multiple
times.
 from sale_detail
 insert overwrite table sale_detail_multi partition (sale_date
='2010', region='china')
 select shop_name, customer_id, total_price
 insert into table sale_detail_multi partition (sale_date='
2011', region='china')
 select shop_name, customer_id, total_price;
 -- An error is thrown. Different partitions within a partition
table cannot have both an ‘insert overwrite’ operation and an ‘insert
 into’ operation.

4.5.3 DYNAMIC PARTITION
To ‘insert overwrite’ into a partition table, specify the partition value in the statement. It can also

be realized in a more flexible way, to specify a partition column in a partition table but not give the

value. Correspondingly, the columns in Select clause are used to specify these partition values.

Statement format:

insert overwrite table tablename partition (partcol1, partcol2 ...)
select_statement from from_statement;

Note:

• In the ‘select_statement’ field, the following field provides a dynamic partition value for the

 target table. If the target table has only one-level dynamic partition, the last field value of

select_statement is the dynamic partition value of the target table.

MaxCompute User Guide / 4 SQL

Issue: 20181120 93

• Currently, a single worker can only output up to 512 dynamic partitions in a distributed

environment, otherwise it leads to abnormality.

• Currently, any dynamic partition SQL cannot generate more than 2,000 dynamic partitions;

otherwise it causes abnormality.

• The value of dynamic partition cannot be NULL, and also does not support special or Chinese

characters, otherwise an exception is thrown. The exception is as follows:

FAILED: ODPS-0123031:Partition exception - invalid dynamic
partition value:
 province=xxx

• If the destination table has multi-level partitions, it is allowed to specify parts of partitions to be

static partitions through ‘Insert’ statement, but the static partitions must be advanced partitions

.

A simple example to explain dynamic partition is as follows:

create table total_revenues (revenue bigint) partitioned by (region
string);
 insert overwrite table total_revenues partition(region)
 select total_price as revenue, region
 from sale_detail;

As mentioned in the preceding example, user is unable to know which partitions are generated

before running SQL. Only after the Select statement running ends, user can confirm which

partitions have been generated using ‘region’ as the value. This is why the partition is called as the

Dynamic Partition.

Other Examples:

create table sale_detail_dypart like sale_detail; --Create target
table.

--Example 1:

insert overwrite table sale_detail_dypart partition (sale_date, region
)
select shop_name,customer_id,total_price,sale_date,region from
sale_detail;
 -- Return successfully.

• In ‘sales_detail’ table, the value of the sale_date determines the sales_date partition value of

the target table, and the value of the region determines the region partition value of the target

table.

MaxCompute User Guide / 4 SQL

94 Issue: 20181120

• In a dynamic partition, the correspondence between the select_statement field and

the dynamic partition of the target table is determined by the order of the fields. In this

example, if the Select statement is written as the following:

select shop_name,customer_id,total_price,region,sale_date from
 sale_detail;

the region value determines the sale_date partition value of the target table, and the value of

sale_date determines the region partition value of the target table.

--Example 2:

insert overwrite table sale_detail_dypart partition (sale_date='2013
', region)
 select shop_name,customer_id,total_price,region from
sale_detail;
 -- Return successfully; multiple partitions; specify a secondary
partition.

--Example 3:

insert overwrite table sale_detail_dypart partition (sale_date='2013
', region)
 select shop_name,customer_id,total_price from sale_detail;
 -- Return failure information. When inserting a dynamic partition
, the dynamic partition column must appear in Select list.

--Example 4:

insert overwrite table sales partition (region='china', sale_date)
select shop_name,customer_id,total_price,region from sale_detail;
 -- Return failure information. User cannot specify the lowsubpart
ition only, but needs to insert advanced partition dynamically.

When the old version of MaxCompute performs dynamic partitioning, if the partition column type

is not exactly the same as the column type in the corresponding select list, an error is reported.

MaxCompute 2.0 supports implicit conversion, as shown in the following :

create table parttable(a int, b double) partitioned by (p string);
insert into parttable partition(p) select key, value, current_ti
mestmap() from src;
select * from parttable;

The result is as follows:

a b c

0 NULL 2017-01-23 22:30:47.130406621

0 NULL 2017-01-23 22:30:47.130406621

MaxCompute User Guide / 4 SQL

Issue: 20181120 95

4.5.4 VALUES
In the test phase, prepare some basic data for a small data table. You can quickly write some test

data to the test table by using the INSERT … VALUES statement.

Note:

Currently, INSERT OVERWRITE does not support insert columns, use INSERT INTO instead.

Statement format:

INSERT INTO TABLE tablename
[PARTITION (partcol1=val1, partcol2=val2 ...)][co1name1,colname2...]
[VALUES (col1_value,col2_value,...),(col1_value,col2_value,...),...]

Example 1::

drop table if exists srcp;
create table if not exists srcp (key string ,value bigint) partitioned
 by (p string);
insert into table srcp partition (p='abc') values ('a',1),('b',2),('c
',3);

After the preceding statements run successfully, the result of partition ‘abc’ is as follows:

| key | value | p |

a	1	abc
b	2	abc
c	3	abc

When many columns are in the table, and you want to insert data into some of the columns , use

the insert list function as follows.

Example 2:

drop table if exists srcp;
create table if not exists srcp (key string ,value bigint) partitioned
 by (p string);
insert into table srcp partition (p)(key,p) values ('d','20170101'),('
e','20170101'),('f','20170101');

After the preceding statements run successfully, the result of partition ‘20170101’ is as follows:

| key | value | p |

| d | NULL | 20170101 |
| e | NULL | 20170101 |

MaxCompute User Guide / 4 SQL

96 Issue: 20181120

| f | NULL | 20170101 |

For columns not specified in values, the default value is NULL. The insert list function is not

necessarily used with values, and can also be used with ‘Insert into…select…’.

The Insert…values method has a limitation: values must be constants. You can use the values

table function of MaxCompute to perform some simple operations on the inserted data. For more

information, see Example 3.

Example 3:

drop table if exists srcp;
create table if not exists srcp (key string ,value bigint) partitioned
 by (p string);
insert into table srcp partition (p) select concat(a,b), length(a)+
length(b),'20170102' from values ('d',4),('e',5),('f',6) t(a,b);

The values (…), (…) t (a, b) are to define a table named t whose columns are a and b, data type

 is (a string, b bigint), the data type of which is derived from the values list. In this way, with no

physical table prepared, it is possible to simulate a multi-row table with arbitrary data and perform

arbitrary calculations.

After the preceding statements run successfully, the result of partition ‘20170102’ is as follows:

| key | value | p |

d4	2	20170102
e5	2	20170102
f6	2	20170102

Note:

• Values only support constants and do not support functions including ARRAY complex types.

Currently, MaxCompute cannot construct corresponding constants. Modify the statement as

follows:

insert into table srcp (p ='abc') select 'a',array('1', '2',
 '3');.

which can provide the same effect.

• To write datetime or timestamp type through values, specify the type name in values

statement, for example:

insert into table srcp (p ='abc') values (datetime'2017-11-11

MaxCompute User Guide / 4 SQL

Issue: 20181120 97

 00:00:00',timestamp'2017-11-11 00:00:00.123456789');

In fact, the values is not only used in the Insert statement, any DML statement can also be used.

A special usage of values is as follows.

select abs(-1), length('abc'), getdate();

As the preceding statement shows, select can be run without the from statement, if the expression

 list of select does not use any upstream table data. The underlying implementation is selecting

from an anonymous values table in one row and zero columns. In this way, to test some functions

, such as your UDF, etc., you do not need to manually create DUAL tables.

4.6 Lateral View
Single Lateral View statement

Syntax:

lateralView: LATERAL VIEW [OUTER] udtf(expression) tableAlias AS
columnAlias (',' columnAlias) * fromClause: FROM baseTable (lateralVie
w)*

Notes:

• Lateral view is typically encapsulated with UDTF including split, explode, and so on.It can split

one row of data into multiple rows and then aggregate them.

• Lateral view first calls UDTF for each row of the original table, then split a row into one or more

rows.Finally,Lateral view aggregate the rows to generate a virtual table that supports alias.

• Lateral view outer: When the table function does not output any rows, the corresponding Input

rows remain in the Lateral View results, and all table function output lists are null.

Example:

Suppose we have a table called "pageAds" which has two columns of data.The first column is

"pageid string" and the second column is "adid_list", a comma-separated collection of AD IDs.

 string pageid Array<int> adid_list

“front_page” [1, 2, 3]

“contact_page” [3, 4, 5]

The requirement is to count the number of times all AD IDs have appeared. The implementation

process is as follows.

MaxCompute User Guide / 4 SQL

98 Issue: 20181120

1. Split the AD IDs as follows:

SELECT pageid, adid
 FROM pageAds LATERAL VIEW explode(adid_list) adTable AS adid;

The execution result is as follows:

string pageid int adid

“front_page” 1

“front_page” 2

“front_page” 3

“contact_page” 3

“contact_page” 4

“contact_page” 5

2. The statistics for the aggregation:

SELECT adid, count(1)
 FROM pageAds LATERAL VIEW explode(adid_list) adTable AS adid
GROUP BY adid;

Result:

int adid count(1)

1 1

2 1

3 2

4. 1

50 1

Multiple Lateral View statements

A from statement can be followed by multiple Lateral View statements, the subsequent Lateral

View statement can reference all the former tables and columns.

The following table is an example:

Array<int> col1 Array<string> col2

[1, 2] [“a”, “b”, “c”]

[3, 4] [“d”, “e”, “f”]

MaxCompute User Guide / 4 SQL

Issue: 20181120 99

• Execute a single statement:

SELECT myCol1, col2 FROM baseTable
 LATERAL VIEW explode(col1) myTable1 AS myCol1;

Result:

int mycol1 Array<string> col2

1 [“a”, “b”, “c”]

2 [“a”, “b”, “c”]

3 [d”, “e”, “f”]

4 [d”, “e”, “f”]

• Add a Lateral View statement as follows:

SELECT myCol1, myCol2 FROM baseTable
 LATERAL VIEW explode(col1) myTable1 AS myCol1
 LATERAL VIEW explode(col2) myTable2 AS myCol2;

Result is as follows:

int myCol1 string myCol2

1 “a”

1 “b”

1 “c”

2 “a”

2 “b”

2 “c”

3 “d”

3 “e”

3 “f”

4 “d”

4 “e”

4 “f”

MaxCompute User Guide / 4 SQL

100 Issue: 20181120

4.7 Select Operation

4.7.1 Introduction to the SELECT Syntax
Introduction to the SELECT Syntax

The command format is as follows:

SELECT [ALL | DISTINCT] select_expr, select_expr, ...
FROM table_reference
[WHERE where_condition]
[GROUP BY col_list]
[ORDER BY order_condition]
[DISTRIBUTE BY distribute_condition [SORT BY sort_condition]]
[LIMIT number]

Note:

• When using SELECT to read data from the table, specify the names of the columns to be

read, or use an asterisk (*) to represent all columns. A simple SELECT statement is shown as

follows:

select * from sale_detail;

To read only the shop_name column in sale_detail, use the following statement:

select shop_name from sale_detail;

Use where to specify filtering conditions. For example:

select * from sale_detail where shop_name like 'hang%';

When a Select statement is used, a maximum of 10,000 rows of results can be displayed. But if

the Select statement serves as a clause, all the results are returned to the upper-level query.

• Full table scan is prohibited when you select a partitioned table.

For new projects created after January 10, 2018, 20:00 (UTC+8) full table scan is not allowed

for the partitioned table in the project by default When SQL runs. Partitions to be scanned must

 be specified in partition conditions to reduce unnecessary SQL I/O, and computing resources,

and the unnecessary cost. Note: Using the Pay-As-You-Go billing method, the amount of data

input is one of the billing parameters.

If the table definition is t1(c1,c2) partitioned by(ds), running the following statement

in a new project is restricted and an error may occur:

Select * from t1 where c1=1;
Select * from t1 where (ds=‘20180202’ or c2=3);

MaxCompute User Guide / 4 SQL

Issue: 20181120 101

Select * from t1 left outer join t2 on a.id =b.id and a.ds=b.ds and
b.ds=‘20180101);
--When Join statement is running, if the partition clipping
condition is placed in where clause, the partition clipping takes
effect. If you put it in on clause, the partition clipping of sub
table takes effect, and the main table performs a full table scan.

If you perform a full table scan on a partitioned table, you can add a set statement set odps

.sql.allow.fullscan=true; before the SQL statement that scans the entire table of the

partitioned table. The set statement must be submitted along with the SQL statement. Suppose

that the sales_detail table is a partitioned table. Submit the following simple query statements

at the same time for a full table scan:

set odps.sql.allow.fullscan=true;
select * from sale_detail;

If the entire project is required to allow a full table scan, the switch can be turned on or off by

itself (true/false), and the command is as follows:

setproject odps.sql.allow.fullscan=true;

• table_reference supports nested subqueries, for example:

select * from (select region from sale_detail) t where region = '
shanghai';

• The filter conditions supported by ‘where’ clause are shown as follows:

Filter conditions Description

> 、 < 、 =、 >=、
<=、 <>

Relational operators

like、rlike The source and pattern parameters of like and rlike can only be of the
 String type.

in、not in If a subquery is attached to the in or not in condition, only the values
of one column are returned for the subquery, and the returned values
cannot exceed 1,000 entries.

MaxCompute User Guide / 4 SQL

102 Issue: 20181120

You can specify a partition scope in the where clause of a Select statement to scan specified

partitions of a table instead of a whole table, shown as follows:

SELECT sale_detail. * FROM sale_detail WHERE sale_detail.sale_date
 >= '2008' AND sale_detail.sale_date <= '2014';

The where clause of MaxCompute SQL supports query by the between…and condition. The

preceding SQL statement can be rewritten as follows:

SELECT sale_detail. * FROM sale_detail WHERE sale_detail.sale_date
BETWEEN '2008' AND '2014';

• distinct: If duplicated data rows exist, you can use the Distinct option before the field to

remove duplicates. In this case, only one value is returned. If you use the ALL option, or do not

specify this option, all duplicated values in the fields are returned.

If you use the Distinct option, only one row of record is returned, which is shown as follows:

select distinct region from sale_detail;
select distinct region, sale_date from sale_detail;
-- Performs the Distinct option on multiple columns. The Distinct
 option has an effect on Select column sets rather than a single
column.

• group by: Query by group. It is generally used together with an aggregate function. A Select

statement that contains an aggregate function follows these rules:

▬ The key using group by can be the name of a column in the input table.

▬ Alternatively, it can be an expression consisting of columns of the input table. The key

cannot be the alias of an output column of the Select statement.

▬ Rule i takes precedence over rule ii. If rules i and ii conflict, that is, if the key using group by

is a column or expression of the input table and an output column of Select, rule i prevails.

For example:

select region from sale_detail group by region;
-- Runs successfully with the name of a column in the input table
directly used as the group by column
select sum(total_price) from sale_detail group by region;
-- Runs successfully with the table grouped by the region value and
returns the total sales of each group
Select region, sum (total_price) from sale_detail group by region;
-- Runs successfully with the table grouped by the region value and
 returns the region value (unique in the group) and total sales of
each group
select region as r from sale_detail group by r;
 -- Runs with the alias of the Select column and returns an error
select 2 + total_price as r from sale_detail group by 2 + total_pric
e;
-- Requires a complete expression of the column

MaxCompute User Guide / 4 SQL

Issue: 20181120 103

Select region, total_price from sale_detail group by region;
-- Returns an error; all columns not using an aggregate function in
the Select statement must exist in group by
select region, total_price from sale_detail group by region,
total_price;
-- Runs successfully

These restrictions are imposed because group by operations come before Select operations

during SQL parsing. Therefore, group by statements can only accept the columns or

expressions of the input table as keys.

Note:

For more information, see Aggregate Functions.

• order by: Globally sorts all data based on certain columns. To sort records in descending order,

use the DESC keyword. For global sorting, order by must be used together with limit. When

order by is used for sorting, NULL is considered to be smaller than any other value. This action

is the same as that in MySQL but different from that in Oracle.

Unlike group by, order by must be followed by the alias of the Select column. If the Select

operation is performed on a column and the column alias is not specified, the column name is

used as the column alias.

select * from sale_detail order by region;
-- Returns an error because order by is not used together with limit
select * from sale_detail order by region limit 100;
select region as r from sale_detail order by region limit 100;
-- Returns an error because ORDER BY is not followed by a column
alias
select region as r from sale_detail order by r limit 100;

The number in [limit number] is a constant to limit the number of output rows. If you want

to directly view the result of a Select statement without LIMIT from the screen output, you can

view a maximum of 10,000 rows. The upper limit of screen display varies with projects, which

can be controlled through the setproject console.

• Distribute by: Performs hash-based sharding on data by values of certain columns. Aliases of

Select output columns must be used.

select region from sale_detail distribute by region;
-- Runs successfully because the column name is an alias
select region as r from sale_detail distribute by region;
-- Returns an error because DISTRIBUTE BY is not followed by a
column alias

MaxCompute User Guide / 4 SQL

104 Issue: 20181120

select region as r from sale_detail distribute by r;

• Sort by: for partial ordering, ‘distribute by’ must be added in front of the statement. sort by is

used to partially sort the results of distribute by. Aliases of Select output columns must be used.

select region from sale_detail distribute by region sort by region;
select region as r from sale_detail sort by region;
-- Returns an error and exits because no distribute by exists.

• order by or group by cannot be used together with distribute by/sort] by. Aliases of SELECT

output columns must be used.

Note:

• The keys of order by/sort by/distribute by must be output columns (namely, column aliases) of

 Select statements.

• In MaxCompute SQL parsing, order by/sort by/distribute by come after Select operations.

Therefore, they can only accept the output columns of Select statements as keys.

4.7.2 SELECT Sequence
The actual logic execution sequence of SELECT statements written in compliance with the

preceding SELECT syntax are different from the standard writing sequence. See the following

example:

SELECT key
 ,MAX(value)
FROM src t
WHERE value > 0
GROUP BY key
HAVING SUM(value) > 100
ORDER BY key
LIMIT 100
;

The actual logic execution sequence is FROM->WHERE->GROUP BY->HAVING->SELECT->

ORDER BY->LIMIT.

• ORDER BY can only reference columns generated in the SELECT list rather than accessing

columns in the FROM source table.

• The HAVING operation can access GROUP BY keys and aggregate functions. When the

 SELECT operation is performed, SELECT can only access group keys and aggregate

functions rather than columns in the FROM source table if GROUP BY exists.

• The columns generated in the select list can only be referenced in by, rather than accessing

the columns in the source table of from.

MaxCompute User Guide / 4 SQL

Issue: 20181120 105

To avoid confusion, MaxCompute allows users to write a query statement by the execution

sequence. For example, the preceding statement can be written as follows:

FROM src t
WHERE value > 0
GROUP BY key
HAVING SUM(value) > 100
SELECT key
 ,MAX(value)
ORDER BY key
LIMIT 100
;

example2：

SELECT shop_name
 ,total_price
 ,region
FROM sale_detail
WHERE total_price > 150
DISTRIBUTE BY region
SORT BY region
;

In fact, the order of logical execution isFROM->WHERE->SELECT->DISTRIBUTE BY->SORT BY.

4.7.3 Subquery
Basic definition of a subquery

A normal SELECT operation reads data from several tables, for example, select column_1

, column_2 … from table_name. However, the query object can be another SELECT

operation, which is shown as follows:

select * from (select shop_name from sale_detail) a;

Note:

The subquery must have an alias.

In a FROM clause, a subquery can be used as a table to perform JOIN operations with other

tables or subqueries, which is shown as follows:

create table shop as select * from sale_detail;
select a.shop_name, a.customer_id, a.total_price from
(select * from shop) a join sale_detail on a.shop_name = sale_detail.
shop_name;

IN SUBQUERY / NOT IN SUBQUERY

IN SUBQUERY is similar to LEFT SEMI JOIN.

MaxCompute User Guide / 4 SQL

106 Issue: 20181120

For example:

SELECT * from mytable1 where id in (select id from mytable2);
-- is equivalent to
SELECT * from mytable1 a LEFT SEMI JOIN mytable2 b on a.id=b.id;

Currently, MaxCompute supports both IN SUBQUERY and CORRELATED conditions.

For example:

SELECT * from mytable1 where id in (select id from mytable2 where
value = mytable1.value);

where value = mytable1.value in the subquery is a CORRELATED condition.

MaxCompute of early versions reports errors for such expressions that reference source tables

both in subqueries and in outer queries. MaxCompute supports such expressions now. In fact,

such filtering conditions are a part of the ON condition in SEMI JOIN.

NOT IN SUBQUERY is similar to LEFT ANTI JOIN. However, they have one significant difference

.

For example:

SELECT * from mytable1 where id not in (select id from mytable2);
-- If none of the IDs in mytable2 are NULL, this statement is
equivalent to
SELECT * from mytable1 a LEFT ANTI JOIN mytable2 b on a.id=b.id;

If mytable2 contains any column whose ID is NULL, the NOT IN expression is NULL, so that the

WHERE condition is invalid and no data is returned. This is different from LEFT ANTI JOIN.

MaxCompute 1.0 supports [NOT] IN SUBQUERY not serving as a JOIN condition, for example

, in a non-WHERE statement, or failure in conversion to a JOIN condition even in a WHERE

statement. MaxCompute 2.0 still supports this feature. However, [NOT] IN SUBQUERY cannot

 be converted to SEMI JOIN, and a separate job must be started to run subqueries. Therefore, [

NOT] IN SUBQUERY does not support CORRELATED conditions.

For example:

SELECT * from mytable1 where id in (select id from mytable2) OR value
 > 0;

As the WHERE clause includes OR, [NOT] IN SUBQUERY cannot be converted to SEMI JOIN. A

separate job must be started to run subqueries.

MaxCompute User Guide / 4 SQL

Issue: 20181120 107

In addition, partition tables are specially processed:

SELECT * from sales_detail where ds in (select dt from sales_date);

If ds is a partition column, select dt from sales_date separately starts a job to run

subqueries, instead of converting to SEMI JOIN. After running, the results are compared with ds

one by one. If a ds value in sales_detail is not in the returned results, the partition is not read to

make sure that partition pruning is still valid.

EXISTS SUBQUERY/NOT EXISTS SUBQUERY

In an EXISTS SUBQUERY, when at least one data row exists in the subquery, TRUE is returned;

otherwise, FALSE is returned. NOT EXISTS subquery is completely opposite of this.

Currently, MaxCompute supports only subqueries including the correlated WHERE conditions.

EXISTS SUBQUERY/NOT EXISTS SUBQUERY is implemented by converting to LEFT SEMI

JOIN or LEFT ANTI JOIN.

For example:

SELECT * from mytable1 where exists (select * from mytable2 where id
 = mytable1.id);
-- is equivalent to
Select * From mytable1 a left semi join mytable2 B on A. ID = B. ID;

While

SELECT * from mytable1 where not exists (select * from mytable2 where
id = mytable1.id);
-- is equivalent to
SELECT * from mytable1 a LEFT ANTI JOIN mytable2 b on a.id=b.id;

4.7.4 UNION ALL/UNION [DISTINCT]
The syntax format is as follows:

select_statement UNION ALL select_statement;
select_statement UNION [DISTINCT] select_statement;

• UNION ALL: Combines two or multiple data sets returned by a SELECT operation into one

data set. If the result contains duplicated rows, all rows that meet the conditions are returned,

and deduplication of duplicated rows is not applied.

• UNION [DISTINCT]: In this statement, DISTINCT can be ignored. It combines two or

multiple data sets returned by a SELECT operation into one data set. If the result contains

duplicated rows, deduplication is applied.

MaxCompute User Guide / 4 SQL

108 Issue: 20181120

Following is an example of the UNION ALL operation:

Select * From sale_detail where region = 'Hangzhou'
 union all
select * from sale_detail where region = 'shanghai';

Following is an example of the UNION operation:

SELECT * FROM src1 UNION SELECT * FROM src2;
--The execution effect is equivalent to
SELECT DISTINCT * FROM (SELECT * FROM src1 UNION ALL SELECT * FROM
src2) t;

Note:

• The number, names, and types of queried columns corresponding to the UNION ALL/UNION

operation must be consistent. If the column names are inconsistent, use the column aliases.

• Generally, MaxCompute allows UNION ALL/UNION operations performed on a maximum of

256 tables. A syntax error is returned if the number of tables exceeds this limit.

The meaning of LIMIT following UNION:

If UNION is followed by CLUSTER BY, DISTRIBUTE BY, SORT BY, ORDER BY, or a LIMIT

clause, the clause has an effect on all the preceding UNION results rather than the last SELECT

statement of UNION. Currently, MaxCompute adopts this action in set odps.sql.type.

system.odps2=true;.

For example:

set odps.sql.type.system.odps2=true;
SELECT explode(array(3, 1)) AS (a) UNION ALL SELECT explode(array(0, 4
, 2)) AS (a) ORDER BY a LIMIT 3;

The returned result is as follows:

| a |

| 0 |
| 1 |
| 2 |

4.7.5 JOIN operation
The JOIN operation of MaxCompute supports n-way join, but does not support Cartesian product,

that is, a link without the ON condition.

MaxCompute User Guide / 4 SQL

Issue: 20181120 109

Function definition:

join_table:
 table_reference join table_factor [join_condition]
 | table_reference {left outer|right outer|full outer|inner}
join table_reference join_condition
 table_reference:
 table_factor
 | join_table
 table_factor:
 tbl_name [alias]
 | table_subquery alias
 | (table_references)
 join_condition:
 on equality_expression (and equality_expression)*

Note:

equality_expression is an equality expression.

left join: Returns all records from the left table (shop) even if no matching row exists in the

right table (sale_detail).

select a.shop_name as ashop, b.shop_name as bshop from shop a
 left outer join sale_detail b on a.shop_name=b.shop_name;
 -- As the tables shop and sale_detail both have the shop_name
column, aliases must be used in the select clause for distinguishing.

RIGHT OUTER JOIN: indicates the right join. It returns all records from the right table even if no

matching record exists in the left table.

For example:

select a.shop_name as ashop, b.shop_name as bshop from shop a
 right outer join sale_detail b on a.shop_name=b.shop_name;

FULL OUTER JOIN: indicates the full join. It returns all records from both the left and the right

table.

For example:

select a.shop_name as ashop, b.shop_name as bshop from shop a
 full outer join sale_detail b on a.shop_name=b.shop_name;

If at least one matching record exists in the table, INNER JOIN returns the row. The keyword

INNER can be ignored.

select a.shop_name from shop a inner join sale_detail b on a.shop_name
=b.shop_name;

MaxCompute User Guide / 4 SQL

110 Issue: 20181120

select a.shop_name from shop a join sale_detail b on a.shop_name=b.
shop_name;

The join condition only allows equivalent conditions connected using and. Only MAPJOIN

supports non-equivalent join conditions or multiple conditions connected using or.

select a.* from shop a full outer join sale_detail b on a.shop_name=b.
shop_name
 full outer join sale_detail c on a.shop_name=c.shop_name;
 -- Supports n-way JOIN examples
select a.* from shop a join sale_detail b on a.shop_name ! = b.
shop_name;
 -- Returns an error because non-equivalent JOIN conditions are not
 supported

IMPLICIT JOIN, MaxCompute supports the following JOIN method:

SELECT * FROM table1, table2 WHERE table1.id = table2.id;
--The execution effect is equivalent to
SELECT * FROM table1 JOIN table2 ON table1.id = table2.id;

4.7.6 SEMI JOIN
MaxCompute supports SEMI JOIN. In SEMI JOIN, the right table does not appear in the result set

 and is only used to filter data in the left table. Supported syntaxes include: LEFT SEMI JOIN and

 LEFT ANTI JOIN.

LEFT SEMI JOIN

When a JOIN condition is valid, data in the left table is returned. That is, if the ID of a row in

mytable1 appears in all IDs in mytable2, this row is saved in the result set.

For example:

SELECT * from mytable1 a LEFT SEMI JOIN mytable2 b on a.id=b.id;

Only the data in mytable1 is returned if the ID of mytable1 appears in the ID of mytable2.

LEFT ANTI JOIN

When a JOIN condition is invalid, data in the left table is returned. That is, if the ID of a row in

mytable1 does not appear in any ID in mytable2, this row is stored in the result set.

For example:

SELECT * from mytable1 a LEFT ANTI JOIN mytable2 b on a.id=b.id;

Only the data in mytable1 is returned if the ID of mytable1 does not appear in the ID of mytable2.

MaxCompute User Guide / 4 SQL

Issue: 20181120 111

4.7.7 MAPJOIN HINT
MapJoin helps to join a large table with one or multiple small tables.It is faster than common Join

operations. A typical scenario of MapJoin, is as follows: When the data volume is small, SQL

loads all your specified small tables into the memory of the program performing the Join operation

to speed up JOIN execution.

Note:

When you use the MapJoin, note the following:

• The left table of ‘left outer join’ must be a big table.

• The right table of right outer join must be a big table.

• For INNER JOIN, both the left and right tables can be large tables.

• For FULL OUTER JOIN, MapJoin cannot be used.

• MapJoin supports small tables as subqueries.

• When MapJoin is used and a small table or subquery must be referenced, the alias must be

referenced.

• MapJoin supports non-equivalent JOIN conditions or multiple conditions connected using OR.

• Currently, MaxCompute allows a maximum of eight small tables to be specified in MapJoin.

Otherwise, a syntax error is returned.

• If MapJoin is used, the total memory occupied by all small tables cannot exceed 512 MB. Note

 that MaxCompute uses compressed storage, so the data size is sharply expanded after small

 tables are loaded into the memory. The limit of 512 MB refers to the size after small tables are

 loaded into the memory.

• When JOIN is performed on the multiple tables, the two leftmost tables cannot be tables for

MapJoin at the same time.

For example:

select /* + mapjoin(a) */
 a.shop_name,
 b.customer_id,
 b.total_price
 from shop a join sale_detail b
 on a.shop_name = b.shop_name;

MaxCompute SQL does not support complex JOIN conditions, such as non-equivalent expression

s and the OR logic, in the ON condition of common JOIN operations. However, MapJoin supports

such operations.

MaxCompute User Guide / 4 SQL

112 Issue: 20181120

For example:

select /*+ mapjoin(a) */
 a.total_price,
 b.total_price
 from shop a join sale_detail b
 on a.total_price < b.total_price or a.total_price + b.total_price
 < 500;

4.7.8 HAVING clause
HAVING clauses are used because the Where keyword of MaxCompute SQL cannot be used

together with aggregate functions.

Function definition:

SELECT column_name, aggregate_function(column_name)
FROM table_name
WHERE column_name operator value
GROUP BY column_name
HAVING aggregate_function(column_name) operator value

Example:

A table named Orders contains four fields: Customer, OrderPrice, Order_date, and Order_id. To

query customers whose OrderPrice is smaller than 2,000, The SQL statement is as follows:

SELECT Customer,SUM(OrderPrice) FROM Orders
GROUP BY Customer
HAVING SUM(OrderPrice)<2000

4.7.9 Explain
The Explain operation of MaxCompute SQL helps to display the description of the final execution

plan structure corresponding to a DML statement. The execution plan is the program used at the

final stage to run SQL semantics.

Function definition:

EXPLAIN <DML query>;

The execution result of ‘explain’ includes the following:

• The dependency structure of all the tasks corresponding to this DML statement.

• All task dependency structures in a task.

• All operator dependency structures in a task.

MaxCompute User Guide / 4 SQL

Issue: 20181120 113

For examples:

EXPLAIN
SELECT abs(a.key), b.value FROM src a JOIN src1 b ON a.value = b.value
;

The output result of Explain consists of the following parts:

• The dependency between jobs: job0 is root job, As the query requires one job (job0),

only one row of information is required.

• The dependency between tasks:

In Job job0:
root Tasks: M1_Stg1, M2_Stg1
J3_1_2_Stg1 depends on: M1_Stg1, M2_Stg1

Job0 contains three tasks, among which M1_Stg1 and M2_Stg1 are run first, followed by

J3_1_2_Stg1.

The naming rules of tasks are as follows:

• MaxCompute contains four types of tasks: MapTask, ReduceTask, JoinTask, and

LocalWork.

• The first letter of a task name represents the current task type. For example, M2Stg1 is a

MapTask.

• The number following the first letter represents the current task ID, which must be unique in

all tasks corresponding to the current query.

• The numbers separated by underscores (_) represent the direct dependencies of the current

 task. For example, J3_1_2_Stg1 indicates that the current task (whose ID is 3) depends on

two tasks whose IDs are 1 and 2.

• The third part is the operator structure in the task. The operator string describes the execution

semantics of a task:

In Task M1_Stg1:
 Data source: yudi_2.src # Data source describes the input content
of the current task
 TS: alias: a # TableScanOperator
 RS: order: + # ReduceSinkOperator
 keys:
 a.value
 values:
 a.key
 partitions:
 a.value
In Task J3_1_2_Stg1:
 JOIN: a INNER JOIN b # JoinOperator
 SEL: Abs(UDFToDouble(a._col0)), b._col5 # SelectOperator

MaxCompute User Guide / 4 SQL

114 Issue: 20181120

 FS: output: None # FileSinkOperator
In Task M2_Stg1:
 Data source: yudi_2.src1
 TS: alias: b
 RS: order: +
 keys:
 b.value
 values:
 b.value
 partitions:
 b.value

▬ Description of operators:

■ TableScanOperator: Describes the logic of FROM statement blocks in a Query

statement. The input table name (alias) is displayed in the EXPLAIN results.

■ SelectOperator: Describes the logic of SELECT statement blocks in a QUERY

statement. The columns to be passed to the next operator are displayed in the Explain

results, separated by commas (,).

■ If column references are to be passed, < alias >.< column_name > is displayed

■ If expression results are to be transmitted, they are displayed as functions, for

example, func1(arg1_1, arg1_2, func2(arg2_1, arg2_2)).

■ If constants are to be passed, the values are directly displayed.

■ FilterOperator: Describes the logic of WHERE statement blocks in a QUERY

statement. A WHERE condition expression is displayed in the Explain results, with the

display rules similar to those of SelectOperator.

■ JoinOperator: Describes the logic of JOIN statement blocks in a QUERY statement.

Both the tables to be joined and the JOIN method are displayed in the Explain results.

■ GroupByOperator: Describes the logic of aggregate operations. This structure is

displayed if an aggregate function is used in a QUERY statement. The aggregate

function content is displayed in the Explain results.

■ ReduceSinkOperator: Describes the logic of data distribution operations

between tasks. If the result of the current task is to be passed to another task,

ReduceSinkOperator must be used at the end of the current task to perform the data

distribution operation. The sorting method of output results, distributed keys, values, and

columns used to calculate the hash value are displayed in the Explain results.

■ FileSinkOperator: Describes the storage operation of final data. If Insert statement

blocks exist in the QUERY statement, the target table name is displayed in the Explain

results.

MaxCompute User Guide / 4 SQL

Issue: 20181120 115

■ LimitOperator: Describes the logic of Limit statement blocks in a QUERY statement.

The number of LIMIT is displayed in the Explain results.

■ MapjoinOperator: Similar to JoinOperator, it describes JOIN operations in large

tables.

Note:

If a QUERY statement is so complicated that Explain has too many results, API restrictions are

triggered, which leads to incomplete display of Explain results. In this case, you can split the

QUERY and perform the Explain operation on each part to understand the job structure.

4.7.10 Common table expression (CTE)
MaxCompute supports CTEs in standard SQL to improve the readability and execution efficiency

of SQL statements.

Syntax structure of CTE:

WITH
 cte_name AS

 cte_query

 [,cte_name2 AS

 cte_query2

 ,……]

• cte_name refers to the CTE name, which must be unique in current WITH clause. The

cte_name identifier in any position of the query indicates the CTE.

• cte_query is a SELECT statement, whose result set is used to populate the CTE.

Example:

INSERT OVERWRITE TABLE srcp PARTITION (p='abc')
SELECT * FROM (
 SELECT a.key, b.value
 FROM (
 SELECT * FROM src WHERE key IS NOT NULL) a
 JOIN (
 SELECT * FROM src2 WHERE value > 0) b
 ON a.key = b.key
) c
UNION ALL
SELECT * FROM (
 SELECT a.key, b.value
 FROM (
 SELECT * FROM src WHERE key IS NOT NULL) a
 LEFT OUTER JOIN (
 SELECT * FROM src3 WHERE value > 0) b

MaxCompute User Guide / 4 SQL

116 Issue: 20181120

 ON a.key = b.key AND b.key IS NOT NULL
)d;

A JOIN clause is written on both sides of UNION at the top layer, and same queries are formed on

 the left table of JOIN. You must repeat this code if writing subqueries.

The preceding statement can be rewritten as follows using the CTE:

with
 a as (select * from src where key is not null),
 b as (select * from src2 where value>0),
 c as (select * from src3 where value>0),
 d as (select a.key,b.value from a join b on a.key=b.key),
 e as (select a.key,c.value from a left outer join c on a.key=c.key
and c.key is not null)
insert overwrite table srcp partition (p='abc')
select * from d union all select * from e;

After rewriting, the subquery corresponding to "a" only need to be rewritten once, and then can

be reused subsequently. The WITH clause in the CTE specifies multiple subqueries that can be

repeatedly used like variables in the entire statement. Besides being reused, subqueries do not

have to be repeatedly nested.

4.8 Builtin functions

4.8.1 Date functions
This article explains various functions that MaxCompute SQL offers to operate datetime types.

DATEADD

Command format:

datetime dateadd(datetime date, bigint delta, string datepart)

Command description:

Modify the value of date according to a specified unit ‘datepart’ and specified scope ‘delta’.

Parameter description:

• date: Datetime type, value of date. If the input is string type, it is converted to ‘datetime’ type

by implicit conversion. If it is another type, an exception is indicated.

• delta: Bigint type, date scope to be modified. If the input is ‘string’ type or ‘double’ type, it is

converted to ‘bigint’ type by implicit conversion. If it is another data type, exception occurs. If

‘delta’ is greater than zero, do ‘add’ operation, otherwise do ‘minus’ operation.

MaxCompute User Guide / 4 SQL

Issue: 20181120 117

• datepart: a String type constant. This field value follows ‘string’ and ‘datetime’ type

conversion agreement, where, ‘yyyy’ indicates year; ‘mm’ indicates month.

See Conversion between String type and Datetime type. In addition, the extensional date

format is also supported: year- ‘year’; month-‘month’ or ‘mon’; day-‘day’; hour-‘hour. If it is not

a constant or unsupported format or other data type, an exception is indicated.

Return value:Datetime type. If any input is NULL, return NULL.

Note:

• While increasing or decreasing ‘delta’ according to specified unit, it causes the carry or back

space for higher unit. Day, month, hour, minute, second are calculated by 10 hexadecimal, 12

hexadecimal, 24 hexadecimal, 60 hexadecimal, 60 hexadecimal respectively.

• If the unit of ‘delta’ is month, the calculation rule is shown as follows:

If the month part of ‘datetime’ does not cause the spillover of day after adding ‘delta’, then do

not change the day, else the day value is set to the last day of the result month.

• The value of ‘datepart’ follows ‘string’ and ‘datetime’ type conversion agreement, that is, ‘

yyyy’ indicates year; ‘mm’ indicates month and so on. If no special description exists, related

datetime built-in functions follow this agreement. Moreover, if no special instructions, the part

of all datetime built-in functions supports extended date format: year- ‘year’; month-‘month’ or ‘

mon’; day-‘day’; hour-‘hour.

For example:

 if trans_date = 2005-02-28 00:00:00:
dateadd(trans_date, 1, 'dd') = 2005-03-01 00:00:00
-- Add one day. The result is beyond the last day in February. The
actual value is the first day of next month.
dateadd(trans_date, -1, 'dd') = 2005-02-27 00:00:00
-- Minus one day.
dateadd(trans_date, 20, 'mm') = 2006-10-28 00:00:00
-- Add 20 months. The month spillover is caused and the year is added
 ‘1’.
If trans_date = 2005-02-28 00:00:00, dateadd(transdate, 1, 'mm') =
2005-03-28 00:00:00
If trans_date = 2005-01-29 00:00:00, dateadd(transdate, 1, 'mm') =
2005-02-28 00:00:00
-- No 29th is in Feb. of 2005. The date is intercepted to the last day
 of current month.
 If trans_date = 2005-03-30 00:00:00, dateadd(transdate, -1, 'mm') =
2005-02-28 00:00:00

Note:

MaxCompute User Guide / 4 SQL

118 Issue: 20181120

Here the value of trans_date used only as an example. This simple expression is often used to

present the datetime in this file.

In MaxCompute SQL, the datetime type has no direct constant representation, the following usage

is wrong:

select dateadd(2005-03-30 00:00:00, -1, 'mm') from tbl1;

If you must describe the datetime type constant, try the following methods:

select dateadd(cast("2005-03-30 00:00:00" as datetime), -1, 'mm') from
 tbl1;
-- The String type constant is converted to datatime type by explicit
conversion.

DATEDIFF

Command format:

bigint datediff(datetime date1, datetime date2, string datepart)

Command description:

Calculate the difference between two datetime date1 and date2 in specified time unit ‘datepart’.

Parameter description:

• datet1, date2: Datetime type, minuend, meiosis. If the input is ‘string’, it is converted to

‘datetime’ by implicit conversion. If it is another data type, an exception indicated.

• datepart: a String type constant. The extensional date format is supported. If ‘datepart’ does

not meet the specified format or is other data type, an exception is indicated.

Return value:

Returns the Bigint type. Any input parameter is NULL, return NULL. If date1 is less than date2,

then the returned value may be negative.

Note:

The lower unit part is cut off according to ‘datepart’ in the calculation process and then calculate

the result.

For example:

If start = 2005-12-31 23:59:59, end = 2006-01-01 00:00:00:
 datediff(end, start, 'dd') = 1
 datediff(end, start, 'mm') = 1
 datediff(end, start, 'yyyy') = 1
 datediff(end, start, 'hh') = 1

MaxCompute User Guide / 4 SQL

Issue: 20181120 119

 datediff(end, start, 'mi') = 1
 datediff(end, start, 'ss') = 1
 datediff('2013-05-31 13:00:00', '2013-05-31 12:30:00', 'ss') =
1800
 datediff('2013-05-31 13:00:00', '2013-05-31 12:30:00', 'mi') = 30
If start = 19:33:23. 234, end = 19:33:23. 250 .Dates with milliseconds
 do not belong to the standard datetime style, and cannot be converted
 implicitly directly.Explicit conversion is required here:

datediff(to_date('2018-06-04 19:33:23.250', 'yyyy-MM-dd hh:mi:ss.ff3
'),to_date('2018-06-04 19:33:23.234', 'yyyy-MM-dd hh:mi:ss.ff3') , '
ff3') = 16

DATEPART

Command format:

bigint datepart(datetime date, string datepart)

Command format:

Extracts the value of the specified time unit ’datepart’ in ‘date’.

Parameter description:

Return value:

• date: Datetime type. If the input is ‘string’ type, it is converted to ‘datetime’ type. If it is another

data type, an exception is indicated.

• datepart: String type constant. The extensional date format is supported. If ‘datepart’ does

not meet the specified format or is other data type, an exception is indicated.

Returns the Bigint type. If any input is NULL, return NULL.

For example:

datepart('2013-06-08 01:10:00', 'yyyy') = 2013
datepart('2013-06-08 01:10:00', 'mm') = 6

DATETRUNC

Command format:

datetime datetrunc (datetime date, string datepart)

Usage:：

Return the remained date value after the specified time unit ‘datepart’ has been intercepted.

Parameter description:：

MaxCompute User Guide / 4 SQL

120 Issue: 20181120

• date: Datetime type. If the input is ‘string’ type, it is converted to ‘datetime’ type. If it is another

data type, an exception indicated.

• datepart: String type constant. The extensional date format is supported. If ‘datepart’ does

not meet the specified format or is other data type, an exception is indicated.

Return value:

Datetime type. If any input is NULL, return NULL.

For example:

datetrunc('2011-12-07 16:28:46', 'yyyy') = 2011-01-01 00:00:00
datetrunc('2011-12-07 16:28:46', 'month') = 2011-12-01 00:00:00
datetrunc('2011-12-07 16:28:46', 'DD') = 2011-12-07 00:00:00

GETDATE

Command format:

datetime getdate()

Command description:

Get present system time. Use UTC+8 as MaxCompute standard time.

Return value:

Datetime type, return present date and time.

Note:

In a MaxCompute SQL task (executed in a distributed manner), ‘getdate’ always returns a fixed

value. The return result is any time in MaxCompute SQL execution period and the precision of

time is accurate to seconds.

ISDATE

Command format:

boolean isdate(string date, string format)

Command description:

Determines whether a date string can be converted to a datetime value according to correspond

ing format string. If the conversion is successful, return TRUE, otherwise return FALSE.

Parameter description:

MaxCompute User Guide / 4 SQL

Issue: 20181120 121

• date: date value of String format. If the input is ‘bigint’, or ‘double’ or ‘datetime’, it is be

converted to ‘string’ type. If it is another data type, an exception is indicated.

• format: a String type constant. The extensional date format is not supported. If

redundant format strings appear in ‘format’, then get the datatime value corresponding to the

first format string, other strings are taken as separators. For example, isdate (‘1234-yyyy’,

‘yyyy-yyyy’) returns ‘TRUE’.

Return value:

Boolean type. If any parameter is NULL, return NULL.

LASTDAY

Command format:

datetime lastday(datetime date)

Command format:

Get the last day in the same month of the date, intercepted to day and the ‘hh:mm:ss’ part is ‘00:

00:00’.

Parameter description:

date: Datetime type. If the input is ‘string’ type, it is converted to ‘datetime’ type. If it is another

data type, an exception is reported.

Return value:

Datetime type. If the input is NULL, return NULL.

TO_DATE

Command format:

datetime to_date(string date, string format)

Command description:

Convert a string ‘date’ to the datetime value according to a specified format.

Parameter description:

• date: String type, date value to be converted. If the input is ‘bigint’, or ‘double’ or ‘datetime’, it

is converted to ‘string’ type by implicit conversion. If it is another data type or null, an exception

is indicated.

MaxCompute User Guide / 4 SQL

122 Issue: 20181120

• format: String type constant, date format. If it is not a constant or is other data type,

the exception is caused. The field ‘format’ does not support extensional format and other

characters are ignored as invalid characters in analysis process.

The parameter format contains ‘yyyy’ at least; otherwise the expecion is indicated. If

redundant format strings appear in format, then get the datatime value corresponding to the

first format string, other strings are taken as separators. For example, to_date (‘1234-

2234’, ‘yyyy-yyyy’) returns ‘1234-01-01 00:00:00’.

Format format: yyyy is a four-digit year, mm is a two-digit month, DD is a two-digit day, HH is a

24-hour system, MI is a two-digit minute, SS is a two-digit second, FF3 is a three-digit precision

 millisecond.

Return value:

Datetime type, the format is yyyy-mm-dd hh: mi: ss. If any input is NULL, return NULL.

For example:

to_date('Alibaba2010-12*03', 'Alibabayyyy-mm*dd') = 2010-12-03 00:00:
00
to_date('20080718', 'yyyymmdd') = 2008-07-18 00:00:00
to_date('200807182030','yyyymmddhhmi')=2008-07-18 20:30:00
to_date('2008718', 'yyyymmdd') = null
-- The format does not meet the requirements. An exception is thrown.
to_date('Alibaba2010-12*3', 'Alibabayyyy-mm*dd') = null
-- Format is not compatible and exception is thrown.
to_date('2010-24-01', 'yyyy') = null
-- Format is not compatible and exception is thrown.
to_date('20181030 15-13-12.345','yyyymmdd hh-mi-ss.ff3')=2018-10-30 15
:13:12

TO_CHAR

Command format:

string to_char(datetime date, string format)

Command description:

Convert the ‘date’ of datetime type to a string according to a specified format.

Parameter description:

• date: Datetime type, the date value to be converted. If the input is ‘string’ type, it is converted

to ‘datetime’ type by implicit conversion. If it is another data type, an exception indicated.

MaxCompute User Guide / 4 SQL

Issue: 20181120 123

• format: String type constant. If it is not a constant or is other data type, the exception is

indicated. In ‘format’, the date format part is replaced with the corresponding data and other

characters are output directly.

Return value:

Returns the String type. Any input parameter is NULL, return NULL.

For example:

to_char('2010-12-03 00:00:00', 'Alibabayyyy-mm*dd') = 'Alibaba2010-12*
03'
to_char('2008-07-18 00:00:00', 'yyyymmdd') = '20080718'
to_char('Alibaba2010-12*3', 'Alibabayyyy-mm*dd') -- Format is not
compatible and exception is thrown.
to_char('2010-24-01', 'yyyy') -- Format is not compatible and
exception is thrown.
to_char('2008718', 'yyyymmdd') -- Format is not compatible and
exception is thrown.

See TO_CHAR for conversion from other types to string type.

UNIX_TIMESTAMP

Command format:

bigint unix_timestamp(datetime date)

Command description:

Convert the date of Datetime type to UNIX format date of Bigint type.

Parameter description:

date: Datetime type date value. If the input is ‘string’ type, it is converted to ‘datetime’ type and

involved in calculation. If it is another type, an exception indicated.

Return value:

Bigint type, it indicates UNIX format date value. If ‘date’ is NULL, return NULL.

FROM_UNIXTIME

Command format:

datetime from_unixtime(bigint unixtime)

Command description:

Convert the numeric UNIX time value ‘unixtime’ to datetime value.

MaxCompute User Guide / 4 SQL

124 Issue: 20181120

Parameter description:

unixtime: Bigint type, number of seconds, UNIX format date time value. If the input is ‘string’,

‘double’, it is converted to ‘bigint’ type by implicit conversion.

Return value:

Datetime type date value. If ‘unixtime’ is NULL, return NULL.

For example:

from_unixtime(123456789) = 1973-11-30 05:33:09

WEEKDAY

Command format:

bigint weekday(datetime date)

Command description:

 Return the nth day of present week corresponding to the date.

Parameter description:

date: Datetime type. If the input is ‘string’ type, it is converted to ‘datetime’ type and then involved

in operation. If it is another date type, an exception indicated.

Return value:

Bigint type. If the input parameter is NULL, return NULL. Monday is the first day of a week and

the return value is 0. Days are in ascending order starting from 0. If the day is Sunday, then return

 is 6.

WEEKOFYEAR

Command format:

bigint weekofyear(datetime date)

Command description:

Return the nth week of a year which the date is included in. Monday is taken as the first day of a

week.

Note:

MaxCompute User Guide / 4 SQL

Issue: 20181120 125

Whether this week belongs to this year, or the next year, it depends on which year (4 days or

more) most of the time of this week belongs to.

Parameter description:

date: Datetime type. If the input is ‘string’ type, it is converted to ‘datetime’ type and then involved

in operation. If it is another date type, an exception is indicated.

Return value:

Bigint type. If the input is NULL, return NULL.

For example:

select weekofyear(to_date("20141229", "yyyymmdd")) from dual;
Result:
+------------+
| _c0 |
+------------+
| 1 |
+------------+
 -Although 20141229 belongs to 2014, most of the dates of the week are
 in 2015, therefore, the return result is 1, indicating that it is the
 first week of 2015.
 select weekofyear(to_date("20141231", "yyyymmdd")) from dual；
-- Return 1.
 select weekofyear(to_date("20141229", "yyyymmdd")) from dual；
-- Return 53.

Maxcomputerte2.0 New Extended Mathematical Functions

With the upgraded version of MaxCompute 2.0, some new date functions are added to the

product. If the functions are used to design a new data type compatible with the Hive mode, you

must add the following two set statements before the SQL statement of the new functions:

set odps.sql.type.system.odps2=true;--Enable the new type.

If you want to submit both at the same time, run the following statements:

set odps.sql.type.system.odps2=true;
select year('1970-01-01 12:30:00')=1970 from dual;

The new extended functions are described as follows.

MaxCompute User Guide / 4 SQL

126 Issue: 20181120

YEAR

Command format:

INT year(string date)

Note:

Before the SQL statement which uses the YEAR function, add set odps.sql.type.system.

odps2=true; to use the new data type function normally.

Command description:

Returns the year of a date.

Parameter description:

date: String-type date value. The format must at least include ‘yyyy-mm-dd’ and cannot include

additional strings. Otherwise, null is returned.

Return value:

INT type.

For example:

year('1970-01-01 12:30:00') = 1970
year('1970-01-01') = 1970
year('70-01-01') = 70
year(1970-01-01) = null
year('1970/03/09') = null
year(null) Returns an exception

QUARTER

Command format:

INT quarter(datetime/timestamp/string date)

Note:

Before the SQL statement which uses the QUARTER function,add set odps.sql.type.

system.odps2=true; to use the new data type function normally.

Command description:

Returns the quarter of a date, range: 1–4.

Parameter description:

MaxCompute User Guide / 4 SQL

Issue: 20181120 127

date: Datetime, Timestamp, or String-type date value. The format must at least include ‘yyyy-mm-

dd’. Otherwise, null is returned.

Return value:

Int type, null input returns null.

For example:

quarter('1970-11-12 10:00:00') = 4
quarter('1970-11-12') = 4

MONTH

Command format:

INT month(string date)

Note:

Before the SQL statement which uses the MONTH function, add set odps.sql.type.system

.odps2=true; to use the new data type function normally.

Command description:

Returns the month of a date.

Parameter description:

date: String-type date value. Other value types return an exception.

Return value:

INT type.

For example:

month('2014-09-01') = 9
month('20140901') = null

DAY

Command format:

INT day(string date)

Note:

MaxCompute User Guide / 4 SQL

128 Issue: 20181120

Before the SQL statement which uses the function, add set odps.sql.type.system.odps2

=true; to use the new data type function normally.

Command description:

Returns the day of a date.

Parameter description:

date: String-type date value. Other value types return an exception.

Return value:

INT type.

For example:

day('2014-09-01') = 1
day('20140901') = null

DAYOFMONTH

Command format:

INT dayofmonth(date)

Note:

Before the SQL statement which uses the DAYOFMONTH function, add set odps.sql.type.

system.odps2=true; to use the new data type function normally.

Command description:

Returns the day of a date.

For example, after command int dayofmonth(2017-10-13) runs, 13 returns.

Parameter description:

date: String-type date value. Other value types return an exception.

Return value:

INT type.

For example:

dayofmonth('2014-09-01') = 1

MaxCompute User Guide / 4 SQL

Issue: 20181120 129

dayofmonth('20140901') = null

HOUR

Command format:

INT hour(string date)

Note:

Before the SQL statement which uses the HOUR function, add set odps.sql.type.system.

odps2=true; to use the new data type function normally.

Command description:

Returns the hour of a date.

Parameter description:

date: String-type date value. Other value types return an exception.

Return value:

Int type.

For example:

hour('2014-09-01 12:00:00')=12
hour('12:00:00')=12
hour('20140901120000')=null

MINUTE

Command format:

INT minute(string date)

Note:

Before the SQL statement which uses the MINUTE function, add set odps.sql.type.

system.odps2=true; to use the new data type function normally.

Command description:

Returns the minute of a date.

Parameter description:

date: String-type date value. Other value types return an exception.

MaxCompute User Guide / 4 SQL

130 Issue: 20181120

Return value:

Int type.

For example:

minute('2014-09-01 12:30:00') = 30
minute('12:30:00') = 30
minute('20140901120000') = null

SECOND

Command format:

INT second(string date)

Note:

Before the SQL statement which uses the SECOND function, add set odps.sql.type.

system.odps2=true; to use the new data type function normally.

Command description:

Returns the second of a date.

Parameter description:

date: String-type date value. Other value types return an exception.

Return value:

INT type.

For example:

second('2014-09-01 12:30:45') = 45
second('12:30:45') = 45
second('20140901123045') = null

CURRENT_TIMESTAMP

Command format:

timestamp current_timestamp()

Note:

Before the SQL statement which uses the CURRENT_TIMESTAMP function, add set odps.

sql.type.system.odps2=true; to use the new data type function normally.

MaxCompute User Guide / 4 SQL

Issue: 20181120 131

Command description:

Returns the current timestamp as a Timestamp-type value. The value is not fixed.

Return value:

Timestamp type.

For example:

select current_timestamp() from dual;--Returns '2017-08-03 11:50:30.
661'

ADD_MONTHS

Command format:

string add_months(string startdate, int nummonths)

Note:

Before the SQL statement which uses the ADD_MONTHS function, add set odps.sql.type.

system.odps2=true; to use the new data type function normally.

Command description:

Returns the date given by startdate plus the nummonths value.

Parameter description:

• startdate: String-type value. The format must at least include the ‘yyyy-mm-dd’ date.

Otherwise, null is returned.

• num_months: Int-type value.

Return value:

A String-type date, in the format ‘yyyy-mm-dd’.

For example:

Add_months ('2017-02-14', 3) = '2017-05-14'
add_months('17-2-14',3) = '0017-05-14'
add_months('2017-02-14 21:30:00',3) = '2017-05-14'

MaxCompute User Guide / 4 SQL

132 Issue: 20181120

add_months('20170214',3) = null

LAST_DAY

Command format:

string last_day(string date)

Note:

Before the SQL statement which uses the LAST_DAY function, add set odps.sql.type.

system.odps2=true; to use the new data type function normally.

Command description:

Returns the date of the last day of the month that contains the given date.

Parameter description:

date: String type, with the format ‘yyyy-MM-dd HH:mi:ss’ or ‘yyyy-MM-dd’.

Return value:

A String-type date, in the format ‘yyyy-mm-dd’.

For example:

last_day('2017-03-04') = '2017-03-31'
last_day('2017-07-04 11:40:00') = '2017-07-31'
last_day('20170304') = null

NEXT_DAY

Command format:

string next_day(string startdate, string week)

Note:

Before the SQL statement which uses the NEXT_DAY function, add set odps.sql.type.

system.odps2=true; to use the new data type function normally.

Command description:

Returns the first date larger than the specified startdate that matches the day of the week given by

 the week parameter. It is the date of a specific day in the next week.

Parameter description:

• startdate: String type, with the format ‘yyyy-MM-dd HH:mi:ss’ or ‘yyyy-MM-dd’.

MaxCompute User Guide / 4 SQL

Issue: 20181120 133

• week: String type, the first two or three letters of a day of the week, or the full name of the day

of the week. For example: Mo, TUE, or FRIDAY.

Return value:

A String-type date, in the format ‘yyyy-mm-dd’.

For example:

next_day('2017-08-01','TU') = '2017-08-08'
next_day('2017-08-01 23:34:00','TU') = '2017-08-08'
Next_day ('20170801 ', 'tu') = NULL

MONTHS_BETWEEN

Command format:

double months_between(datetime/timestamp/string date1, datetime/
timestamp/string date2)

Note:

Before the SQL statement which uses the MONTHS_BETWEEN function, add set odps.sql.

type.system.odps2=true; to use the new data type function normally.

Command description:

Returns the number of months between date1 and date2.

Parameter description:

• date1: Datetime, Timestamp, or String type, with the format ‘yyyy-MM-dd HH:mi:ss’ or ‘yyyy-

MM-dd’.

• date2: Datetime, Timestamp, or String type, with the format ‘yyyy-MM-dd HH:mi:ss’ or ‘yyyy-

MM-dd’.

Return Value:

Returns the Double type.

• When date1 is later than date2, the returned value is positive. When date2 is later than date1,

the returned value is negative.

• When date1 and date2 correspond to the last days of two months, the returned value is an

integer representing the number of months. Otherwise, the formula is (date1 - date2)/31.

MaxCompute User Guide / 4 SQL

134 Issue: 20181120

Examples:

months_between('1997-02-28 10:30:00', '1996-10-30') = 3.9495967741
935485
months_between('1996-10-30','1997-02-28 10:30:00') = -3.9495967741
935485
months_between('1996-09-30','1996-12-31') = -3.0

4.8.2 Mathematical functions
ABS

Function definition:

Double abs(Double number)
Bigint abs(Bigint number)
Decimal abs(Decimal number)

Usage:

Returns an absolute value.

Parameter description:

number: It is any number of Type Double, Bigint, or Decimal.

• If the input is Bigint and return Bigint.

• If the input is Double, return Double.

• If the input is Decimal, return Decimal.

If the input is String, it is converted to Double by implicit conversion. If the input is another type, an

 error occurs.

Return value:

The return result depends on the type of input parameter. Example, if the input is null, return null.

Note:

When the value of input Bigint type exceeds the maximum value of Bigint, return Double type. In

this case, the precision may be absent.

Example:

abs(null) = null
abs(-1) = 1
abs(-1.2) = 1.2
abs("-2") = 2.0

MaxCompute User Guide / 4 SQL

Issue: 20181120 135

abs(122320837456298376592387456923748) = 1.2232083745629837e32

The following is a completed ABS function example used in SQL. The use methods of other built-

in functions (except Window Function and Aggregation Function) are similar.

select abs(id) from tbl1;
-- Take the absolute value of the id field in tbl1.

ACOS

Function definition:

Double acos(Double number)
Decimal acos(Decimal number)

Usage:

Calculates the inverse cosine of a number.

Parameter description:

number: Double or Decima type, -1<=number <=1. If the input is String or Bigint, it is converted to

Double by implicit conversion. If the input is another type, an error occurs.

Return value:

Returns the Double or Decimal type, the value is between 0 to π. If number is null, return null.

Example:

acos("0.87") = 0.5155940062460905
acos(0) = 1.5707963267948966

ASIN

Function definition:

Double asin(Double number)
Decimal asin(Decimal number)

Usage:

Calculates the inverse sine function of number.

Parameter description:

number: Double or Decima type, -1<=number <=1. If the input is String or Bigint, it is converted to

Double by implicit conversion. If the input is another type, an error occurs.

Return value:

MaxCompute User Guide / 4 SQL

136 Issue: 20181120

Returns the Double or Decimal type, the value is between -π/2 to π/2. If the number is null, return

null.

Example:

asin(1) = 1.5707963267948966
asin(-1) = -1.5707963267948966

ATAN

Function definition:

Double atan(Double number)

Usage:

Calculates the back-cut function of number.

Parameter description:

Number: Double type, if the input is String or Bigint, it is converted to Double by implicit

conversion. If the input is another type, an error occurs.

Return value:

Returns the Double type, the value is between -π/2 to π/2. If the number is null, return null.

Example:

atan(1) = 0.7853981633974483
atan(-1) = -0.7853981633974483

CEIL

Function definition:

Bigint ceil(Double value)
Bigint ceil(Decimal value)

Usage:

This function returns the smallest integral value not less than the argument.

Parameter description:

value: Double or Decimal type, If the input is String or Bigint, it is converted to Double by implicit

conversion. If the input is another type, an error occurs.

Return value:

MaxCompute User Guide / 4 SQL

Issue: 20181120 137

Returns the Bigint type. If the number is null, return null.

Example:

ceil(1.1) = 2
ceil(-1.1) = -1

CONV

Function definition:

String conv(String input, Bigint from_base, Bigint to_base)

Usage:

Converts a number into a Hexadecimal number.

Parameter description:

• input: an integer to be converted, represented by String. Accept the implicit conversion of

Bigint and Double.

• from_base, to_base: Decimal value, the acceptable values can be 2, 8, 10 and 16. Accept

the implicit conversion of String and Double.

Return value:

Returns the String type. If the number is null, return null. The conversion process runs at a 64-bit

precision. An exception is thrown when overflow occurs. If the input is a negative value (begin with

 ‘-’), an exception is thrown. If the input value is a decimal, it is converted to an integer before hex

conversion. The decimal part is excluded.

Example:

conv('1100', 2, 10) = '12'
conv('1100', 2, 16) = 'c'
conv('ab', 16, 10) = '171'
conv('ab', 16, 16) = 'ab'

COS

Function definition:

Double cos(Double number)
Decimal cos(Decimal number)

Usage:

Input is the radian value.

MaxCompute User Guide / 4 SQL

138 Issue: 20181120

Parameter description:

number: Double or Decimal type. If the input is String, it is converted to Double by implicit

conversion. If the input is another type, an error occurs.

Return value:

Returns the Double or Decimal type. If the number is NULL, return NULL.

Example:

cos(3.1415926/2)=2.6794896585028633e-8
cos(3.1415926)=-0.9999999999999986

COSH

Function definition:

Double cosh(Double number)
Decimal cosh(Decimal number)

Usage:

It is the Hyperbolic cosine function

Parameter description:

number: Double or Decimal type. If the input is String, it is converted to Double by implicit

conversion. If the input is another type, an error occurs.

Return value:

Returns the Double or Decimal type. If the number is NULL, return NULL.

COT

Function definition:

Double cot(Double number)
Decimal cot(Decimal number)

Usage:

Inputs the radian value.

Parameter description:

number: Double or Decimal type. If the input is String or Bigint, it is converted to Double by

implicit conversion. If the input is another type, an error occurs.

MaxCompute User Guide / 4 SQL

Issue: 20181120 139

Return value:

Returns the Double or Decimal type. If the number is NULL, return NULL.

EXP

Function definition:

Double exp(Double number)
Decimal exp(Decimal number)

Usage:

It is the Exponential function.

Return value:

Returns the exponent value of number.

Parameter description:

number: Double or Decimal type. If the input is String or Bigint, it is converted to Double by

implicit conversion. If the input is another type, an error occurs.

Return value:

Returns the Double or Decimal type. If the number is NULL, return NULL.

FLOOR

Function definition:

Bigint floor(Double number)
Bigint floor(Decimal number)

Usage:

Returns the largest integral value not greater than the argument.

Parameter description:

number: Double or Decimal type. If the input is String or Bigint type, it is converted to Double by

implicit conversion. If the input is another type, an error occurs.

Return value:

Returns the Bigint type. If the input is null, return null.

Example:

floor(1.2)=1

MaxCompute User Guide / 4 SQL

140 Issue: 20181120

floor(1.9)=1
floor(0.1)=0
floor(-1.2)=-2
floor(-0.1)=-1
floor(0.0)=0
Floor (-0.0) = 0

LN

Function definition:

Double ln(Double number)
Decimal ln(Decimal number)

Usage:

Returns the natural logarithm of the number.

Parameter description:

number: Double or Decimal type.

• If the input is String or Bigint type, it is converted to Double by implicit conversion. If the input is

 another type, an error occurs.

• If the number is null, return null. If number is negative or 0, an exception is thrown.

Return value:

Returns the Double or Decimal type.

LOG

Function definition:

Double log(Double base, Double x)
Decimal log (decimal base, decimal X)

Usage:

 Returns the logarithm of x whose base number is base.

Parameter description:

• base: Double or Decimal type. If the input is String or Bigint, it is converted to Double by

implicit conversion. If the input is another type, an error occurs.

• x: Double or Decimal type. If the input is String or Bigint, it is converted to Double by implicit

conversion. If the input is another type, an error occurs.

Return value:

MaxCompute User Guide / 4 SQL

Issue: 20181120 141

Returns the logarithm value of Double or Decimal type.

• If base or x is null, return null.

• If one of base or x is negative or zero, it causes abnormality.

• If base is 1, it also causes abnormality.

POW

Function definition:

Double pow(Double x, Double y)
Decimal pow(Decimal x, Decimal y)

Usage:

Return x to the yth power, that is x^y.

Parameter description:

• X: Double or Decimal type. If the input is String or Bigint, it is converted to Double by implicit

conversion. If the input is another type, an error occurs.

• Y: Double or Decimal type. If the input is String or Bigint, it is converted to Double by implicit

conversion. If the input is another type, an error occurs.

Return value:

Returns the Double or Decimal type. If X or Y is null, return null.

RAND

Function definition:

Double rand(Bigint seed)

Usage:

Return a random number (that changes from row to row), Specifying the seed makes sure the

generated random number sequence is deterministic, Return value range is from 0 to 1.

Parameter description:

seed: Bigint type, random number seed, to determine starting values of the random number

sequence.

Return Value:

Returns the Double type.

MaxCompute User Guide / 4 SQL

142 Issue: 20181120

Example:

select rand() from dual;
select rand(1) from dual;

ROUND

Function definition:

Double round(Double number, [Bigint Decimal_places])
Decimal round(Decimal number, [Bigint Decimal_places])

Usage:

Four to five homes to the specific decimal point position.

Parameter description:

• number: Double or Decimal type. If the input is String or Bigint, it is converted to Double by

implicit conversion. If the input is another type, an error occurs.

• Decimal_place: A Bigint type constant, four to five homes to the decimal point position. If it is

other type, an exception is thrown. If you exclude it, it indicates four to five homes into a single

digit. The default value is zero

Return value:

Returns the Double or Decimal type. If number or Decimal_places is null, return null.

Note:

Decimal_places can be negative. The negative is counted from decimal point to the left.

Deletethe decimal part. If decimal_place is greater than the length of the integer part, return 0.

Example:

round(125.315) = 125.0
round(125.315, 0) = 125.0
Round (125.315, 1) = 125.3
round(125.315, 2) = 125.32
round(125.315, 3) = 125.315
round(-125.315, 2) = -125.32
round(123.345, -2) = 100.0
round(null) = null
round(123.345, 4) = 123.345

MaxCompute User Guide / 4 SQL

Issue: 20181120 143

round(123.345, -4) = 0.0

SIN

Function definition:

Double sin(Double number)
Decimal sin(Decimal number)

Usage:

Calculates the sine function of number, the input is the radian value.

Parameter description:

number: Double or Decimal type. If the input is String or Bigint, it is converted to Double by

implicit conversion. If the input is another type, an error occurs.

Return value:

Returns the Double or Decimal type. If the number is NULL, return NULL.

SINH

Function definition:

Double sinh(Double number)
Decimal sinh(Decimal number)

Usage:

Calculates the hyperbolic sine function of number.

Parameter description:

number: Double or Decimal type. If the input is String or Bigint, it is converted to Double by

implicit conversion. If the input is another type, an error occurs.

Return value:

Returns the Double or Decimal type. If the number is NULL, return NULL.

SQRT

Function definition:

Double sqrt(Double number)
Decimal sqrt(Decimal number)

Usage:

MaxCompute User Guide / 4 SQL

144 Issue: 20181120

Calculates the square root of number.

Parameter description:

number: Double or Decimal type, must be greater than zero, if it is less than zero, an exception

occur. If the input is String or Bigint, it is converted to Double by implicit conversion. If the input is

another type, an error occurs.

Return value:

Returns the Double or Decimal type. If the number is NULL, return NULL.

TAN

Function definition:

Double tan(Double number)
Decimal tan(Decimal number)

Usage:

Calculates the tangent function of the number, the input is the radian value.

Parameter description:

number: Double or Decimal type. If the input is String or Bigint, it is converted to Double by

implicit conversion. If the input is another type, an error occurs.

Return value:

Returns the Double or Decimal type. If the number is NULL, return NULL.

TANH

Function definition:

Double tanh(Double number)
Decimal tanh(Decimal number)

Usage:

Calculates the hyperbolic tangent function of number.

Parameter description:

number: Double or Decimal type. If the input is String or Bigint, it is converted to Double by

implicit conversion. If the input is another type, an error occurs.

Return value:

MaxCompute User Guide / 4 SQL

Issue: 20181120 145

Returns the Double or Decimal type. If the number is NULL, return NULL.

TRUNC

Function definition:

Double trunc(Double number[, Bigint Decimal_places])
Decimal trunc(Decimal number[, Bigint Decimal_places])

Usage:

This function is used to intercept the input number to a specified decimal point place.

Parameter description:

• number: Double or Decimal type. If the input is String or Bigint, it is converted to Double by

implicit conversion. If the input is another type, an error occurs.

• Decimal_places: a Bigint type constant, the decimal point place to intercept the number.

Other types are converted to Bigint. If this parameter is excluded, default to intercept to single

digit.

Return value:

Returns the Double or Decimal type. If the number or Decimal_places is NULL, return NULL.

Note:

• If the Double type is returned, the display of the returned result may not be as expected, such

as trunc(125.815, 1) (this problem exists in all the systems).

• The part to be truncated is supplemented by zero.

• Decimal_places can be negative. The negative is truncated from the decimal point to the

left and delete the decimal part. If Decimal_places are greater than the length of the integer,

return zero.

Example:

trunc(125.815) = 125.0
trunc(125.815, 0) =125.0
trunc(125.815, 1) = 125.80000000000001
trunc(125.815, 2) = 125.81
trunc(125.815, 3) = 125.815
trunc(-125.815, 2) = -125.81
trunc(125.815, -1) = 120.0
trunc(125.815, -2) = 100.0
trunc(125.815, -3) = 0.0
trunc(123.345, 4) = 123.345

MaxCompute User Guide / 4 SQL

146 Issue: 20181120

trunc(123.345, -4) = 0.0

Maxcomputerte2.0 New Extended Mathematical Functions

With the upgrade to MaxCompute 2.0, some mathematical functions have been added to the

product. If a new function uses a new data type, add the following set statement before using the

new functions SQL statement:

set odps.sql.type.system.odps2=true;

The new extended functions are described as follows.

LOG2

Function definition:

Double log2(Double number)
Double log2(Decimal number)

Note:

Before the SQL statement which uses the LOG2 function, add set odps.sql.type.system.

odps2=true; to use the new data type function normally.

Usage:

Returns the log base 2 of a specific number.

Parameter description:

number: Double or Decimal type.

Return Value:

Returns the Double type. If the input is zero or null, the returned value is null.

The example is as follows:

log2(null)=null
log2(0)=null
log2(8)=3.0

LOG10

Function definition:

Double log10(Double number)

MaxCompute User Guide / 4 SQL

Issue: 20181120 147

Double log10(Decimal number)

Note:

Before the SQL statement which uses the LOG10 function, add set odps.sql.type.system

.odps2=true; to use the new data type function normally.

Usage:

Returns the log base 10 of the specific number.

Parameter description:

number: Double or Decimal type.

Return Value:

Returns the Double type. If the input is zero or null, the returned value is null.

The example is as follows:

log10(null)=null
log10(0)=null
log10(8)=0.9030899869919435

BIN

Function definition:

String bin(Bigint number)

Note:

Before the SQL statement which uses the function, add set odps.sql.type.system.odps2

=true; to use the new data type function normally.

Usage:

Returns the binary code expression for the specific number.

Parameter description:

number: Bigint type.

Return value:

String type. If the input is zero, then zero is returned; if the input is null, null is returned.

Example:

bin(0)='0'

MaxCompute User Guide / 4 SQL

148 Issue: 20181120

bin(null)='null'
bin(12)='1100'

HEX

Function definition:

String hex(Bigint number)
String hex(String number)
String hex (binary number)

Note:

Before the SQL statement which uses the HEX function, add set odps.sql.type.system.

odps2=true; to use the new data type function normally.

Usage:

This function is used to converts integers or characters to hexadecimal format.

Parameter description:

number: If number is of the Bigint type, the hexadecimal format of the number is returned. If this

variable is a String type, the hexadecimal format of the string is returned.

Return value:

Returns the String type. If the input is zero, then zero is returned; if the input is null, an exception

is returned.

Example:

hex(0)=0
hex('abc')='616263'
hex(17)='11'
hex('17')='3137'
hex(null) results in an exception and returns failed.

Note:

If the input parameter is a Binary type, add set odps.sql.type.system.odps2=true;,

and submit it with SQL to use the new data type normally.

MaxCompute User Guide / 4 SQL

Issue: 20181120 149

UNHEX

Function definition:

BINARY unhex(String number)

Note:

Before the SQL statement which uses the UNHEX function, add set odps.sql.type.system

.odps2=true; to use the new data type function normally.

Usage:

Returns the string represented by a given hexadecimal string.

Parameter description:

number: A hexadecimal string.

Return value:

Returns the Binary type. If the input is zero, failed is returned. If the input is null, null is returned.

Example:

Unhex ('616263') = 'abc'
unhex(616263)='abc'

For a detailed description of setproject, please seeProject operations.

RADIANS

Function definition:

Double radians(Double number)

Note:

Before the SQL statement which uses the RADIANS function, add set odps.sql.type.

system.odps2=true; to use the new data type function normally.

Usage:

This function is used to converts degrees to radians.

Parameter description:

number: Double type.

Return value:

MaxCompute User Guide / 4 SQL

150 Issue: 20181120

Returns the Double type, if the input is null, null is returned.

Example:

radians(90)=1.5707963267948966
radians(0)=0.0
radians(null)=null

DEGREES

Function definition:

Double degrees(Double number)
Double degrees(Decimal number)

Note:

Before the SQL statement which uses the function, add set odps.sql.type.system.odps2

=true; to use the new data type function normally.

Usage:

This function is used to converts radians to degrees.

Parameter description:

number: Double or Decimal type.

Return value:

Returns Double data type. If the input is null, null is returned.

Example:

degrees(1.5707963267948966)=90.0
degrees(0)=0.0
Degrees (null) = NULL

SIGN

Function definition:

Double sign(Double number)
Double sign(Decimal number)

Note:

Before the SQL statement which uses the SIGN function, add set odps.sql.type.system.

odps2=true; to use the new data type function normally.

MaxCompute User Guide / 4 SQL

Issue: 20181120 151

Usage:

Applies the sign of the input data. 1.0 indicates a positive number and -1.0 indicates a negative

number. Otherwise, 0.0 is returned.

Parameter description:

number: Double or Decimal type.

Return value:

Returns Double data type. If the input is 0, 0.0 is returned. If the input is null, null is returned.

Example:

sign(-2.5)=-1.0
Sign (2.5) = 1.0
sign(0)=0.0
sign(null)=null

E

Function definition:

Double e()

Note:

Before the SQL statement which uses the E function, add set odps.sql.type.system.

odps2=true; to use the new data type function normally.

Usage:

This function is used to return the e value.

Return Value:

Returns the Double type.

MaxCompute User Guide / 4 SQL

152 Issue: 20181120

Example:

e()=2.718281828459045

PI

Function definition:

Double pi()

Note:

Before the SQL statement which uses the PI function, add set odps.sql.type.system.

odps2=true; to use the new data type function normally.

Usage:

This function is used to return the π value.

Return Value:

Returns the Double type.

Example:

pi()=3.141592653589793

FACTORIAL

Function definition:

Bigint factorial(Int number)

Note:

Before the SQL statement which uses the FACTORIAL function, add set odps.sql.type.

system.odps2=true; to use the new data type function normally.

Usage:

This function is used to return the factorial for the specific number.

Parameter description:

number: Int-type data, range: [0 –20].

Return value:

MaxCompute User Guide / 4 SQL

Issue: 20181120 153

Returns the Bigint type, if the input is zero, one is returned. If the input is null or outside the range [

0 –20], null is returned.

Example:

factorial(5)=120 --5! = 5*4*3*2*1 = 120

CBRT

Function definition:

Double cbrt(Double number)

Note:

Before the SQL statement which uses the CBRT function, add set odps.sql.type.system.

odps2=true; to use the new data type function normally.

Usage:

This function is used to return the cube root.

Parameter description:

number: Double type.

Return value:

Returns Double data type. If the input is null, null is returned.

Example:

cbrt(8)=2
cbrt(null)=null

SHIFTLEFT

Function definition:

Int shiftleft(Tinyint|Smallint|Int number1, Int number2)
Bigint shiftleft(Bigint number1, Int number2)

Note:

Before the SQL statement which uses the SHIFTLEFT function, add set odps.sql.type.

system.odps2=true; to use the new data type function normally.

Usage:

MaxCompute User Guide / 4 SQL

154 Issue: 20181120

Shifts to the left by a given number of places (<<).

Parameter description:

• number1: Tinyint|Smallint|Int|Bigint integer.

• number2: An Int integer.

Return value:

Returns the Int or Bingint type.

Example:

shiftleft(1,2)=4 --Shifts the binary value of 1 two places to the
left (1<<2,0001 shifted to 0100)
shiftleft(4,3)=32 --Shifts the binary value of 4 three places to the
left (4<<3,0100 shifted to 10,0000)

SHIFTRIGHT

Function definition:

Int shiftright(Tinyint|Smallint|Int number1, Int number2)
Bigint shiftright(Bigint number1, Int number2)

Note:

Before the SQL statement which uses the SHIFTRIGHT function, add set odps.sql.type.

system.odps2=true; to use the new data type function normally.

Usage:

This function is used for shifts right by a given number of places (>>).

Parameter description:

• number1: Tinyint|Smallint|Int|Bigint integer.

• number2: An Int integer.

Return value:

Returns the Int or Bigint type.

Example:

shiftright(4,2)=1 -- Shifts the binary value of 4 two places to the
right (4>>2,0100 shifted to 0001)

MaxCompute User Guide / 4 SQL

Issue: 20181120 155

shiftright(32,3)=4 -- Shifts the binary value of 32 three places to
the right (32>>3,100000 shifted to 0100)

SHIFTRIGHTUNSIGNED

The command format is as follows:

Int shiftrightunsigned(Tinyint|Smallint|Int number1, Int number2)
Bigint shiftrightunsigned(Bigint number1, Int number2)

Note:

Before the SQL statement which uses the SHIFTRIGHTUNSIGNED function, add set odps.

sql.type.system.odps2=true; to use the new data type function normally.

The command description is as follows:

This function is used for unsigned right shift by a given number of places (>>>).

Parameter description:

• number1: Tinyint|Smallint|Int|Bigint integer.

• number2: An Int integer.

Return value:

Returns the Int or Bigint type.

Example:

shiftrightunsigned(8,2)=2 -- Shifts the unsigned binary value of 8 two
 places to the right (8>>>2,1000 shifted to 0010)
shiftrightunsigned(-14,2)=1073741820 -- Shifts the unsigned binary
 value of -14 two places to the right (-14>>>2, 11111111 11111111
11111111 11110010 shifted to 00111111 11111111 11111111 11111100)

4.8.3 Window functions
In MaxCompute SQL, window functions help in analyzing and processing the workflow flexibly.

Window function can only appear in the ‘select’ clause. However using both the nested window

function and aggregate function in window function is not allowed. Also, it cannot be used at the

same level as that of the aggregation function together.

Currently, in a MaxCompute SQL statement, you can use five window functions.

Window function syntax:

window_func() over (partition by [col1,col2…]

MaxCompute User Guide / 4 SQL

156 Issue: 20181120

[order by [col1[asc|desc], col2[asc|desc]…]] windowing_clause)

• partition by specifies open window columns. The rows of which partitioned columns have

the same values are considered in the same window. Currently, a window can contain at most

100,000,000 rows data. We recommend that the rows must not exceed 5,000,000, otherwise,

an error is reported at runtime.

• The clause order by specifies how the data is ordered in a window.

• In windowing_clause part, use rows to specify window open way. The two methods are as

follows:

▬ Rows between x preceding|following and y preceding|following, which indicates the window

 range is from rows x preceding /following to rows y preceding/following.

▬ Rows x preceding|following: the window range is from rows x preceding /following to the

present row.

▬ ‘x’, ‘y’ must be an integer constant that is greater than or equal to 0 and corresponding value

 range is 0~10000. If the value is 0, it indicates the present row. Use the rows method to

specify window range on condition that you have specified ‘order by’ clause for.

Note:

Not all window functions can be specified window open way using rows. The window functions

support this usage include AVG, count, Max, min, StdDev, sum.

COUNT

Function definition:

Bigint count([distinct] expr) over(partition by [col1, col2…]
 [order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:

Calculates the total number of retrieved rows.

Parameter description:

• expr: Any data type. When it is NULL, this row is not counted. If the ‘distinct’ keyword is

specified, it indicates using the unique count value.

• partition by [col1, col2…]: Specifies the columns to use window function.

• order by col1 [asc|desc], col2[asc|desc]: If ‘order by’ clause is not specified,

return the count vale of ‘expr’ in the current window. If ‘order by’ clause is specified, the return

MaxCompute User Guide / 4 SQL

Issue: 20181120 157

result is ordered according to the specified sequence and the value is a cumulative count value

from start row to the current row in the current window.

Return value:

Bigint type.

Note:

If the keyword ‘distinct’ is specified, the ‘order by’ clause cannot be used.

Example:

Thethe table ‘test_src’ already exists and the column ‘user_id’ of bigint type exists in this table.

select user_id,
 count(user_id) over (partition by user_id) as count
 from test_src;

 | user_id | count |

 | 1 | 3 |
 | 1 | 3 |
 | 1 | 3 |
 | 2 | 1 |
 | 3 | 1 |

 -- the ‘order by’ clause is not specified, return the count value
of user_id in the current window.
 select user_id,
 count(user_id) over (partition by user_id order by user_id) as
 count
 from test_src;

 | user_id | count |

 | 1 | 1 | -- start row of the window
 | 1 | 2 | --two records exist from start row to current row.
Return 2.
 | 1 | 3 |
 | 2 | 1 |
 | 3 | 1 |

 -- The ‘order by’ clause is specified and return a cumulative
count value from start row to current row in the current window.

AVG

Function definition:

avg([distinct] expr) over(partition by [col1, col2…]
 [order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:

MaxCompute User Guide / 4 SQL

158 Issue: 20181120

Calculates the average.

Parameter description:

• distinct: if the keyword ‘distinct’ is specified, it indicates taking average of the unique value.

• expr: Double type.

▬ If the input is ‘string’ type or ‘bigint’ type, it is converted to ‘double’ type by implicit

conversion and involved in the operation. If it is another data type, an exception is thrown.

▬ If this value is NULL, then this row is not counted in the calculation.

▬ If the data type is Boolean, then this row is excluded from the calculation.

• partition by [col1, col2...]: Specified the olumns to use window function.

• order by col1[asc|desc], col2[asc|desc]: If ‘order by’ clause is not specified, return

the average of all values in the current window. If ‘order by’ clause is specified, the return result

is ordered according to the specified sequence and returns the cumulative average from start

row to current row in the current window.

Return value:

Double type.

Note:

If the keyword ‘distinct’ isn specified, the ‘order by’ clause cannot be used.

MAX

Function definition:

max([distinct] expr) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:

Calculates the maximum value.

Parameter description:

• expr: Any types expect ‘Boolean’. If the value is NULL, this row is not involved in the

calculation. If the keyword ‘distinct’ is specified, it indicates taking the max value of the unique

value.

• partition by [col1, col2…]: Specifies columns to use window function.

• order by [col1[asc|desc], col2[asc|desc: If ‘order by’ clause is not specified, return

the maximum value in the current window. If ‘order by’ clause is specified, the return result is

MaxCompute User Guide / 4 SQL

Issue: 20181120 159

ordered according to the specified sequence and return the maximum value from start row to

current row in the current window.

Return value:

Same as the ‘expr’ type..

Note:

If the keyword ‘distinct’ is specified, the ‘order by’ clause cannot be used.

MIN

Function definition:

min([distinct] expr) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:

Calculates the minimum value of the column.

Parameter description:

• exprAny types except ‘Boolean’. If the value is NULL, this row is not counted in the

calculation. If the keyword ‘distinct’ is specified, it indicates using the minimum value of a

unique value.

• partition by [col1, col2…]: Specifies columns to use window function.

• order by [col1[asc|desc], col2[asc|desc: If ‘order by’ clause is not specified, return

the minimum value in the current window. If ‘order by’ clause is specified, the return result is

ordered according to the specified sequence and return the minimum value from start row to

current row in the current window.

Return value:

the same type with ‘expr’.

Note:

If the keyword ‘distinct’ is specified, the ‘order by’ clause cannot be used.

MEDIAN

Function definition:

Double median(Double number1,number2...) over(partition by [col1, col2
…])

MaxCompute User Guide / 4 SQL

160 Issue: 20181120

Decimal median(Decimal number1,number2...) over(partition by [col1,
col2…])

Usage:

Calculates the median.

Parameter description:

• number1,number1…: 1 to 255 digits of a Double or Decimal type.

▬ When the input value is a String type or a Bigint type, the operation is performed after the

implicit conversion to a Double type, and other types throw exceptions.

▬ Return NULL when the input value is null.

▬ When the input value is a Double type, it converts to the Array of Double by default .

• partition by [col1, col2…]: Specifies columns to use window function.

Return value:

Double type.

STDDEV

Function definition:

Double stddev([distinct] expr) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])
Decimal stddev([distinct] expr) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:

Calculates population standard deviation.

Parameter description:

• expr: Double type.

▬ If the input is ‘string’ or ‘bigint’ type, it is converted to ‘double’ type and is counted in the

operation. If it is another data type, an exception is thrown.

▬ If the input value is ‘NULL’, this row is excluded.

▬ If the keyword ‘distinct’ is specified, it indicates calculating the population standard deviation

 of the unique value.

• partition by [col1, col2..]: Specifies columns to use window function.

• order by col1[asc|desc], col2[asc|desc]: If ‘order by’ clause is not specified, return

the population standard deviation in the current window. If ‘order by’ clause is specified, the

MaxCompute User Guide / 4 SQL

Issue: 20181120 161

return result is ordered according to the specified sequence and return the population standard

deviation from start row to current row in the current window.

Return value:

When the input is ‘decimal’ type, return ‘decimal’; otherwise, return ‘double’.

Example:

select window, seq, stddev_pop('1\01') over (partition by window order
 by seq) from dual;

Note:

• If the keyword ‘distinct’ is specified, the ‘order by’ clause cannot be used.

• Stddev_pop is an alias function of stddev function and its usage is the same as that of

stddev

STDDEV_SAMP

Function definition:

Double stddev_samp([distinct] expr) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])
Decimal stddev_samp([distinct] expr) over((partition by [col1,col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:

Calculate sample standard deviation.

Parameter description:

• Expr: Double type.

▬ If the input is ‘string’ or ‘bigint’ type, it is converted to ‘double’ type and counted in the

operation. If it is another data type, an exception is indicated.

▬ If the input value is NULL, this row is excluded.

▬ If the keyword ‘distinct’ is specified, it indicates calculating the sample standard deviation of

the unique value.

• partition by [col1, col2..]: Specifies columns to use window function.

• Order by col1[asc|desc], col2[asc|desc]: If ‘order by’ clause is not specified, return

the sample standard deviation in the current window. If ‘order by’ clause is specified, the return

result is ordered according to the specified sequence and return the sample standard deviation

from start row to current row in the current window.

MaxCompute User Guide / 4 SQL

162 Issue: 20181120

Return value:

When the input is ‘decimal’ type, return ‘decimal’; otherwise, return ‘double’.

Note:

If the keyword ‘distinct’ is specified, the ‘order by’ clause cannot be used.

SUM

Function definition:

sum([distinct] expr) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:

Calculates the sum of elements.

Parameter description:

• Expr: Double type.

▬ If the input is ‘string’ or ‘bigint’ type, it is converted to ‘double’ type and counted in the

operation. If it is another data type, an exception is indicated.

▬ If the input value is NULL, this row is excluded.

▬ If the keyword ‘distinct’ is specified, it indicates calculating the sum of the unique value.

• Partition by [col1, col2..]: Specifies columns to use window function.

• Order by col1[asc|desc], col2[asc|desc]: If ‘order by’ clause is not specified, return

the sum in the current window. If ‘order by’ clause is specified, the return result is ordered

according to the specified sequence and return the sum from start row to current row in the

current window.

Return value:

• If the input parameter is ‘bigint’ type, return ‘bigint’ type.

• If the input parameter is ‘Decimal’ type, return ‘Decimal’ type.

• If the input parameter is ‘double’ type or ‘string’ type, return ‘double’ type.

Note:

If the keyword ‘distinct’ is specified, the ‘order by’ clause cannot be used.

MaxCompute User Guide / 4 SQL

Issue: 20181120 163

DENSE_RANK

Function definition:

Bigint dense_rank() over(partition by [col1, col2…]
order by [col1[asc|desc], col2[asc|desc]…])

Usage:

Calculates the dense rank. The data in the same row of col2 has the same rank.

Parameter description:

• partition by [col1, col2..]: Specifies columns to use window function.

• order by col1[asc|desc], col2[asc|desc]: Specifies the value which the rank is

based on.

Return value:

Bigint type.

Example:

The data in table ‘emp’ is as follows:

| empno | ename | job | mgr | hiredate| sal| comm | deptno |
7369,SMITH,CLERK,7902,1980-12-17 00:00:00,800,,20
7499,ALLEN,SALESMAN,7698,1981-02-20 00:00:00,1600,300,30
7521,WARD,SALESMAN,7698,1981-02-22 00:00:00,1250,500,30
7566,JONES,MANAGER,7839,1981-04-02 00:00:00,2975,,20
7654,MARTIN,SALESMAN,7698,1981-09-28 00:00:00,1250,1400,30
7698,BLAKE,MANAGER,7839,1981-05-01 00:00:00,2850,,30
7782,CLARK,MANAGER,7839,1981-06-09 00:00:00,2450,,10
7788,SCOTT,ANALYST,7566,1987-04-19 00:00:00,3000,,20
7839,KING,PRESIDENT,,1981-11-17 00:00:00,5000,,10
7844,TURNER,SALESMAN,7698,1981-09-08 00:00:00,1500,0,30
7876,ADAMS,CLERK,7788,1987-05-23 00:00:00,1100,,20
7900,JAMES,CLERK,7698,1981-12-03 00:00:00,950,,30
7902,FORD,ANALYST,7566,1981-12-03 00:00:00,3000,,20
7934,MILLER,CLERK,7782,1982-01-23 00:00:00,1300,,10
7948,JACCKA,CLERK,7782,1981-04-12 00:00:00,5000,,10
7956,WELAN,CLERK,7649,1982-07-20 00:00:00,2450,,10
7956,TEBAGE,CLERK,7748,1982-12-30 00:00:00,1300,,10

Now, all employees need to be grouped by department, and each group must be sorted in

descending order according to SAL to obtain the serial number in own group.

SELECT deptno
 , ename
 , sal
 , DENSE_RANK() OVER (PARTITION BY deptno ORDER BY sal DESC
) AS nums--Deptno as a window column, and sort in descending order
according to sal.
 FROM emp;

MaxCompute User Guide / 4 SQL

164 Issue: 20181120

--The result is as follows:

| deptno | ename | sal | nums |

10	JACCKA	5000.0	1
10	KING	5000.0	1
10	CLARK	2450.0	2
10	WELAN	2450.0	2
10	TEBAGE	1300.0	3
10	MILLER	1300.0	3
20	SCOTT	3000.0	1
20	FORD	3000.0	1
20	JONES	2975.0	2
20	ADAMS	1100.0	3
20	SMITH	800.0	4
30	BLAKE	2850.0	1
30	ALLEN	1600.0	2
30	TURNER	1500.0	3
30	MARTIN	1250.0	4
30	WARD	1250.0	4
30	JAMES	950.0	5

RANK

Function definition:

Bigint rank() over(partition by [col1, col2…]
order by [col1[asc|desc], col2[asc|desc]…])

Usage:

Calculates the rank. The ranking of the same row data with col2 drops.

Parameter description:

• Partition by [col1, col2..]: Specifies columns to use window function.

• Order by col1[asc|desc], col2[asc|desc]: Specifies the value which the rank is

based on.

Return value:

Bigint type.

Example:

The data in table ‘emp’ is as follows:

| empno | ename | job | mgr | hiredate| sal| comm | deptno |
7369,SMITH,CLERK,7902,1980-12-17 00:00:00,800,,20
7499,ALLEN,SALESMAN,7698,1981-02-20 00:00:00,1600,300,30
7521,WARD,SALESMAN,7698,1981-02-22 00:00:00,1250,500,30
7566,JONES,MANAGER,7839,1981-04-02 00:00:00,2975,,20
7654,MARTIN,SALESMAN,7698,1981-09-28 00:00:00,1250,1400,30
7698,BLAKE,MANAGER,7839,1981-05-01 00:00:00,2850,,30
7782,CLARK,MANAGER,7839,1981-06-09 00:00:00,2450,,10
7788,SCOTT,ANALYST,7566,1987-04-19 00:00:00,3000,,20

MaxCompute User Guide / 4 SQL

Issue: 20181120 165

7839,KING,PRESIDENT,,1981-11-17 00:00:00,5000,,10
7844,TURNER,SALESMAN,7698,1981-09-08 00:00:00,1500,0,30
7876,ADAMS,CLERK,7788,1987-05-23 00:00:00,1100,,20
7900,JAMES,CLERK,7698,1981-12-03 00:00:00,950,,30
7902,FORD,ANALYST,7566,1981-12-03 00:00:00,3000,,20
7934,MILLER,CLERK,7782,1982-01-23 00:00:00,1300,,10
7948,JACCKA,CLERK,7782,1981-04-12 00:00:00,5000,,10
7956,WELAN,CLERK,7649,1982-07-20 00:00:00,2450,,10
7956,TEBAGE,CLERK,7748,1982-12-30 00:00:00,1300,,10

Now, all employees need to be grouped by department, and each group must be sorted in

descending order according to SAL to obtain the serial number in own group.

SELECT deptno
 , ename
 , sal
 , RANK() OVER (PARTITION BY deptno ORDER BY sal DESC) AS nums
--Deptno as a window column, and sort in descending order according to
 sal.
 FROM emp;
--The result is as follows:

| deptno | ename | sal | nums |

10	JACCKA	5000.0	1
10	KING	5000.0	1
10	CLARK	2450.0	3
10	WELAN	2450.0	3
10	TEBAGE	1300.0	5
10	MILLER	1300.0	5
20	SCOTT	3000.0	1
20	FORD	3000.0	1
20	JONES	2975.0	3
20	ADAMS	1100.0	4
20	SMITH	800.0	5
30	BLAKE	2850.0	1
30	ALLEN	1600.0	2
30	TURNER	1500.0	3
30	MARTIN	1250.0	4
30	WARD	1250.0	4
30	JAMES	950.0	6

LAG

Function definition:

lag(expr，Bigint offset, default) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]])

Command description:

Take the value of nth row in front of current row in accordance with offset. If the current row

number is rn, take the value of the row which row number is rn-offset.

Parameter description:

MaxCompute User Guide / 4 SQL

166 Issue: 20181120

• expr: Any type.

• offset: A Bigint type constant. If the input is String type or Double type, convert it to Bigint

type by implicit conversion. Offset > 0;

• default: Define the default value while the specified range of ‘offset’ crosses the limit. It is

constant and default is null.

• partition by [col1, col2..]: Specifies columns to use window function.

• order by col1[asc|desc], col2[asc|desc]: Specifies the order method for return

result.

Return Value:

Returns the same with ‘expr’.

LEAD

Command format:

lead(expr，Bigint offset, default) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]])

Command description:

Take the value of nth row following current row in accordance with offset. If the current row

number is rn, take the value of the row which row number is rn+offset.

Parameter description:

• expr: Any type.

• offset: A Bigint type constant. If the input is String, Decimal or Double type, convert it to

Bigint type by implicit conversion. Offset > 0.

• default: Define the default value while the specified range of offset crosses the limit. It is

constant.

• partition by [col1, col2..]: Specifies columns to use window function.

• order by col1[asc|desc], col2[asc|desc]: Specifies the order method for return

result.

Return Value:

Same as the ‘expr’ type.

Example:

select c_Double_a,c_String_b,c_int_a,lead(c_int_a,1) over(partition by
 c_Double_a order by c_String_b) from dual;

MaxCompute User Guide / 4 SQL

Issue: 20181120 167

select c_String_a,c_time_b,c_Double_a,lead(c_Double_a,1) over(
partition by c_String_a order by c_time_b) from dual;
select c_String_in_fact_num,c_String_a,c_int_a,lead(c_int_a) over(
partition by c_String_in_fact_num order by c_String_a) from dual;

PERCENT_RANK

Command format:

Percent_rank () over (partition by [col1, col2...]
order by [col1[asc|desc], col2[asc|desc]…])

Command description:

Calculate relative ranking of a certain row in a group of data.

Parameter description:

• partition by [col1, col2..]: Specifies columns to use window function.

• order by col1[asc|desc], col2[asc|desc]: Specifies the value based on the

ranking.

Return Value:

Returns the Double type, value scope is [0, 1]. The calculation method of relative ranking is (rank

-1)/(number of rows -1).

Note:

The current limit of rows in a single window cannot exceed 10,000,000.

ROW_NUMBER

Command format:

row_number() over(partition by [col1, col2…]
order by [col1[asc|desc], col2[asc|desc]…])

Command description:

Calculates the row number, beginning from 1.

Parameter description:

• partition by [col1, col2..]: Specifies columns to use window function.

• order by col1[asc|desc], col2[asc|desc]: Specifies the order method for return

result.

Return Value:

MaxCompute User Guide / 4 SQL

168 Issue: 20181120

Returns the Bigint type.

Example:

The data in table emp is as follows:

| empno | ename | job | mgr | hiredate| sal| comm | deptno |
7369,SMITH,CLERK,7902,1980-12-17 00:00:00,800,,20
7499,ALLEN,SALESMAN,7698,1981-02-20 00:00:00,1600,300,30
7521,WARD,SALESMAN,7698,1981-02-22 00:00:00,1250,500,30
7566, Jones, Manager, fig-04-02 00:00:00, 2975, 20
7654,MARTIN,SALESMAN,7698,1981-09-28 00:00:00,1250,1400,30
7698,BLAKE,MANAGER,7839,1981-05-01 00:00:00,2850,,30
7782,CLARK,MANAGER,7839,1981-06-09 00:00:00,2450,,10
7788, Scott, analyst, fig-04-19 00:00:00, 3000, 20
7839,KING,PRESIDENT,,1981-11-17 00:00:00,5000,,10
7844,TURNER,SALESMAN,7698,1981-09-08 00:00:00,1500,0,30
7876,ADAMS,CLERK,7788,1987-05-23 00:00:00,1100,,20
7900,JAMES,CLERK,7698,1981-12-03 00:00:00,950,,30
7902,FORD,ANALYST,7566,1981-12-03 00:00:00,3000,,20
7934,MILLER,CLERK,7782,1982-01-23 00:00:00,1300,,10
7948,JACCKA,CLERK,7782,1981-04-12 00:00:00,5000,,10
7956,WELAN,CLERK,7649,1982-07-20 00:00:00,2450,,10
7956, tebage, clerk, maid-12-30 00:00:00, 1300, 10

Now, all employees need to be grouped by department, and each group must be sorted in

descending order according to SAL to obtain the serial number in own group.

SELECT deptno
 , ename
 , Sal
 , Row_number () over (partition by deptno order by Sal DESC
) as Nums --Deptno as a window column, and sort in descending order
according to sal.
 FROM emp;
--The result is as follows:

| deptno | ename | sal | nums |

10	JACCKA	5000.0	1
10	KING	5000.0	2
10	CLARK	2450.0	3
10	WELAN	2450.0	4
10	TEBAGE	1300.0	5
10	MILLER	1300.0	6
20	SCOTT	3000.0	1
20	FORD	3000.0	2
20	JONES	2975.0	3
20	ADAMS	1100.0	4
20	SMITH	800.0	5
30	BLAKE	2850.0	1
30	ALLEN	1600.0	2
30	TURNER	1500.0	3
30	MARTIN	1250.0	4
30	WARD	1250.0	5

MaxCompute User Guide / 4 SQL

Issue: 20181120 169

| 30 | JAMES | 950.0 | 6 |

CLUSTER_SAMPLE

Command format:

boolean cluster_sample([Bigint x, Bigint y])
over(partition by [col1, col2..])

Command description:

Used for Group sampling.

Parameter description:

• x: A Bigint type constant, x>=1. If you specify the parameter y, x indicates dividing a window

into x parts. Otherwise x indicates selecting x rows records in a window (if x rows are in this

window, return true). If x is NULL, return NULL.

• y: A Bigint type constant, y>=1, y<=x. It indicates selecting y parts records from x parts in a

window (in other words, if y parts records exist, return value is true). If y is NULL, return NULL.

• partition by [col1, col2]: Specifies columns to use window function.

Return Value:

Returns the Boolean type.

Example:

If two columns key and value are in the table test_tbl, key is grouping field. The corresponding

values of key have groupa and groupb, the field value indicates value of key shown as follows:

 | key | value |

 | groupa | -1.34764165478145 |
 | groupa | 0.740212609046718 |
 | groupa | 0.167537127858695 |
 | groupa | 0.630314566185241 |
 | GroupA | 0.0112401388646925 |
 | groupa | 0.199165745875297 |
 | groupa | -0.320543343353587 |
 | groupa | -0.273930924365012 |
 | groupa | 0.386177958942063 |
 | groupa | -1.09209976687047 |
 | groupb | -1.10847690938643 |
 | groupb | -0.725703978381499 |
 | groupb | 1.05064697475759 |
 | groupb | 0.135751224393789 |
 | groupb | 2.13313102040396 |
 | groupb | -1.11828960785008 |
 | groupb | -0.849235511508911 |
 | groupb | 1.27913806620453 |

MaxCompute User Guide / 4 SQL

170 Issue: 20181120

 | groupb | -0.330817716670401 |
 | groupb | -0.300156896191195 |
 | groupb | 2.4704244205196 |
 | groupb | -1.28051882084434 |

To select 10% values from each group, the following MaxCompute SQL is recommended:

Select key, Value
 from (
 Select key, value, cluster_sample (10, 1) over (partition by
key) as flag
 from tbl
) sub
 where flag = true;

| Key | value |

| groupa | 0.167537127858695 |
| groupb | 0.135751224393789 |

NTILE

Command format:

BIGINT ntile(BIGINT n) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause]))

Command description:

Used to cut grouped data into N slices in order and return the current slice value, if the slice is

uneven, the distribution of the first slice is increased by default.

Parameter description:

N: bigint data type.

Return Value:

Returns the bigint type.

Example:

The data in the table EMP is as follows:

| Empno | ename | job | Mgr | hiredate | Sal | REM | deptno |
7369, Smith, clerk, maid-12-17 00:00:00, 800, 20
7499, Allen, salesman, maid-02-20 00:00:00, 1600,300, 30
7521, Ward, salesman, maid-02-22 00:00:00, 1250,500, 30
7566, Jones, Manager, fig-04-02 00:00:00, 2975, 20
7654 Martin, salesman, fig-09-28 00:00:00, fig, 30
7698, Blake, Manager, fig-05-01 00:00:00, 2850, 30
7782, Clark, Manager, fig-06-09 00:00:00, 2450, 10
7788, Scott, analyst, fig-04-19 00:00:00, 3000, 20
00:00:00, King, President, 1991-11-17 5000, 7839, 10
7844, Turner, salesman, fig-09-08 00:00:00, 1500,0, 30

MaxCompute User Guide / 4 SQL

Issue: 20181120 171

7876, Adams, clerk, maid-05-23 00:00:00, 1100, 20
7900 James, clerk, maid-12-03 00:00:00, 950, 30
7902 Ford, analyst, fig-12-03 00:00:00, 3000, 20
7934 Miller, clerk, fig-01-23 00:00:00, 1300, 10
7948, jaccka, clerk, fig-04-12 00:00:00, 5000, 10
7956, welan, clerk, fig-07-20 00:00:00, 2450, 10
7956, tebage, clerk, maid-12-30 00:00:00, 1300, 10

All employees now need to be divided into three groups according to Sal high to low cut, and get

the serial number of the employee's own group.

Select deptno, ename, Sal, ntile (3) over (partition by depno order by
 Sal DESC) as nt3 from EMP;
-- Execution results as follows

| Deptno | ename | Sal | nt3 |

10	jaccka	5000.0	1
10	King	5000.0	1
10	welan	2450.0	2
10	Clark	2450.0	2
10	tebage	1300.0	3
10	Miller	1300.0	3
20	Scott	3000.0	1
20	Ford	3000.0	1
20	Jones	2975.0	2
20	Adams	1100.0	2
20	Smith	800.0	3
30	Blake	2850.0	1
30	Allen	1600.0	1
30	Turner	1500.0	2
30	Martin	1250.0	2
30	ward	1250.0	3
30	James	950.0	3

4.8.4 Aggregate functions
The relation between the input and the output of aggregate functions is a many-to-one

relationship; that is, to aggregate multiple input records into an output record. Use it with the group

by clause in SQL.

COUNT

Function definition:

bigint count([distict|all] value)

Usage:

Counts the record numbers.

Parameter description:

MaxCompute User Guide / 4 SQL

172 Issue: 20181120

• distinct|all: Specifies whether to remove duplicate records while counting. The default all counts

 all records. If the field ‘distinct’ is specified, then a unique count value is used.

• value: Any type. If the value is NULL, the corresponding row is not counted. Count (*), returns

all rows.

Return Value:

Returns the Bigint type.

Example:

-- If the table tbla has the column col1 and the data type is Bigint.
+------+
| COL1 |
+------+
| 1 |
+------+
| 2 |
+------+
| NULL |
+------+
select count(*) from tbla; -- value is 3.
select count(col1) from tbla; -- value is 2

Use the aggregation function with the group by clause. Example, suppose that the table test_src

has two columns, key is a String type, and value is a Double type.

-- The data of test_src is shown as follows:
+-----+-------+
| key | value |
+-----+-------+
| a | 2.0 |
+-----+-------+
| a | 4.0 |
+-----+-------+
| b | 1.0 |
+-----+-------+
| b | 3.0 |
+-----+-------+
-- Now run following sentence and get the result:
select key, count(value) as count from test_src group by key;
+-----+-------+
| key | count |
+-----+-------+
| a | 2 |
+-----+-------+
| b | 2 |
+-----+-------+

MaxCompute User Guide / 4 SQL

Issue: 20181120 173

-- The aggregation function calculates the aggregate value that
has the same key value.The preceding rules apply to the following
aggregate functions also.

AVG

Function definition:

double avg(double value)
decimal avg(decimal value)

Usage:

Calculates the average value.

Parameter description:

value: Double or Decimal type. If the input is String or Bigint type, it is converted to Double type

 by implicit conversion. If it is another data type, an exception is thrown. If this value is NULL, a

corresponding row is not counted in the calculation. The input cannot be Boolean type.

Return value:

If the input is Decimal type, then return Decimal type. If it is the other valid types, then return

Double type.

Example:

-- If the table tbla has a column value and its data type is Bigint.
+-------+
| value |
+-------+
| 1 |
| 2 |
| NULL |
+-------+
-- the avg of this column is: (1+2)/2=1.5
select avg(value) as avg from tbla;
+------+
| avg |
+------+
| 1.5 |
+------+

MAX

Function definition:

max(value)

Usage:

Calculates the maximum value.

MaxCompute User Guide / 4 SQL

174 Issue: 20181120

Parameter description:

value: Any data type. If the column value is NULL, the corresponding row is not counted in the

operation. Values of the Boolean type are excluded from calculation.

Return value:

The return value is matchs the value type.

Example:

-- If the table tbla has a column clo1 and its data type is Bigint.
+------+
| col1 |
+------+
| 1 |
+------+
| 2 |
+------+
| NULL |
+------+
Select max (value) from tbla; -- return value is 2

MIN

Function definition:

MIN(value)

Usage:

Calculates the minimum value of the column.

Parameter description:

Any data type. If the column value is NULL, the corresponding row is not counted in the operation

. A Boolean type is excluded from the operation.

Example:

-- If the table tbla has a column value and its data type is Bigint.
+------+
| value|
+------+
| 1 |
+------+
| 2 |
+------+

+------+

MaxCompute User Guide / 4 SQL

Issue: 20181120 175

Select min (value) from tbla; -- return value is 1

MEDIAN

Function definition:

double median(double number)
decimal median(decimal number)

Usage:

Calculates the median.

Parameter description:

number: Double or Decimal type. If the input is String or Bigint type, it is converted to Double type

and is counted in the operation. If it is another data type, an exception is thrown.

Return value:

Returns the Double or Decimal type.

Example:

-- If the table tbla has a column value and its data type is Bigint.
+------+
| value|
+------+
| 1 |
+------+
| 2 |
+------+
| 3 |
+------+
| 4 |
+------+
| 5 |
+------+
select MEDIAN(value) from tbla; -- return value is 3.0

STDDEV

Function definition:

double stddev(double number)
decimal stddev(decimal number)

Usage:

Calculates a population standard deviation.

Parameter description:

MaxCompute User Guide / 4 SQL

176 Issue: 20181120

number: Double type or Decimal type. If the input is String or Bigint type, it is converted to Double

type and is counted in operation. If it is another data type, an exception is thrown.

Return value:

Returns a Double or Decimal type.

Example:

-- If the table tbla has a column value and its data type is Bigint.
+------+
| value|
+------+
| 1 |
+------+
| 2 |
+------+
| 3 |
+------+
| 4 |
+------+
| 5 |
+------+
select STDDEV(value) from tbla; -- return value is 1.4142135623730951

STDDEV_SAMP

Function definition:

double stddev_samp(double number)
decimal stddev_samp(decimal number)

Usage:

Calculates a sample standard deviation.

Parameter description:

number: Double type or Decimal type. If the input is String or Bigint type, it is converted to Double

type and is counted in operation. If it is another data type, an exception is thrown.

Return value:

Returns a Double or Decimal type.

Example:

-- If the table tbla has a column value and its data type is Bigint.
+------+
| value|
+------+
| 1 |
+------+
| 2 |

MaxCompute User Guide / 4 SQL

Issue: 20181120 177

+------+
| 3 |
+------+
| 4 |
+------+
| 5 |
+------+
select STDDEV_SAMP(value) from tbla; -- return value is 1.5811388300
841898

SUM

Function definition:

sum(value)

Usage:

Calculates the sum of elements.

Parameter description:

value: Double, Decimal, or Bigint type. If the input is String type, it is converted to Double type

and counted in operation. If the value in the column is NULL, this row is counted A Boolean type

excluded from this calculation.

Return value:

If the input parameter is Bigint type, return Bigint type. If the input parameter is Double type or

String type, return Double type.

Example:

-- If the table tbla has a column value and its data type is Bigint.
+------+
| value|
+------+
| 1 |
+------+
| 2 |
+------+
| NULL |
+------+
select sum(value) from tbla; -- return value is 3

WM_CONCAT

Function definition:

string wm_concat(string separator, string str)

Usage:

MaxCompute User Guide / 4 SQL

178 Issue: 20181120

Uses a specific separator to link the value in str.

Parameter description:

• · Separator: a String type constant. Constants of other types or non-constants can throw

exceptions.

• Str: String type. If the input is String type, it is converted to Double type and is counted in

operation. If it is another data type, an exception is thrown.

Return value:

Returns the String type.

Note:

For the sentence select wm_concat(',', name) from test_src;, if test_src is empty

set, this MaxCompute SQL sentence returns NULL.

COLLECT_LIST

Function definition:

ARRAY collect_list(col)

Usage:

Within a given group, the expression specified by col is used to aggregate the data into an array.

Parameter description:

col: A table column can be any data type.

Return value:

Returns the ARRAY type.

Note:

Please add set odps.sql.type.system.odps2=true; in front of the SQL statement that

uses this function, and submit it with SQL to use the new data type normally.

COLLECT_SET

Function definition:

ARRAY collect_set(col)

Usage:

MaxCompute User Guide / 4 SQL

Issue: 20181120 179

Within a given group, the expression specified by col is used to aggregate the data into an array of

 non-repeating elements.

Parameter description:

col: A table column can be any data type.

Return value:

Return ARRAY type.

Note:

Please add set odps.sql.type.system.odps2=true; in front of the SQL statement that

uses this function and submit it with SQL to use the new data type function normally.

4.8.5 String functions
CHAR_MATCHCOUNT

Command format:

bigint char_matchcount(string str1, string str2)

Usage:

Calculates the total number of times each character in str1 is duplicated in str2.

Parameter description:

• str1, str2: String type, must be effective UTF-8 strings. If invalid character is in matching

process, return a negative value.

• Return value: Bigint type, Any NULL input, return NULL.

Example:

char_matchcount('abd','aabc') = 2
-- Two strings 'a', 'b' in str1 appear in str2.

CHR

Command format:

string chr(bigint ascii)

Usage:

Convert the specified ASCII code ‘ascii’ into character.

MaxCompute User Guide / 4 SQL

180 Issue: 20181120

Parameter description:

• ascii: Bigint type ASCII value. If the input is ‘string’ or ‘double’, it is converted to ‘bigint’ by

implicit conversion. If the input is other types, an exception is thrown.

• Return value: String type. The parameter value range is [0,255]. An exception is thrown if

exceeding this range. If the input is NULL, return NULL.

CONCAT

Command format:

string concat(string a, string b...)

Usage:

The return value is a result of connecting all strings.

Parameter description:

• a, b… String type. If the input is Bigint, Double, Decimal or Datetime, it is converted to String by

 implicit conversion. If the input is other types, an exception is thrown.

• String: Return value: String type. If no parameter exists or a certain parameter is NULL, return

NULL.

Example:

concat('ab','c') = 'abc'
concat() = NULL
concat('a', null, 'b') = NULL

GET_JSON_OBJECT

Command format:

STRING GET_JSON_OBJECT(STRING json,STRING path)

Usage:

In a standard json string, the specified string is extracted according to the path.

Parameter description:

• json: String type, standard json format string.

• path: String type, describing the path in json, starting with a dollor sign ($). For a

description of the new implementation, see JsonPath.

▬ $: Root object

http://goessner.net/articles/JsonPath/index.html#e2

MaxCompute User Guide / 4 SQL

Issue: 20181120 181

▬ . : Child operator

▬ [] : Subscript operator for array

▬ * : Wildcard for []

• String: Returns string type.

Note:

• Return NULL if json is null or invalid json format.

• Return NULL if path is null or invalid (does not exist in json).

• If json is valid and path also exists, the corresponding string is returned.

Example:

+----+
json
+----+
{"store":
{"fruit":[{"weight":8,"type":"apple"},{"weight":9,"type":"pear"}],
"bicycle":{"price":19.95,"color":"red"}
},
"email":"amy@only_for_json_udf_test.net",
"owner":"amy"
}

Use the following query process to extract information in the JSON object:

odps> SELECT get_json_object(src_json.json, '$.owner') FROM src_json;
amy
odps> SELECT get_json_object(src_json.json, '$.store.fruit\[0]') FROM
src_json;
{"weight":8,"type":"apple"}
odps> SELECT get_json_object(src_json.json, '$.non_exist_key') FROM
src_json;
NULL

Example:

get_json_object('{"array":[["aaaa",1111],["bbbb",2222],["cccc",3333
]]}','$.array[1][1]')= "2222"
get_json_object('{"aaa":"bbb","ccc":{"ddd":"eee","fff":"ggg","hhh":["
h0","h1","h2"]},"iii":"jjj"}','$.ccc.hhh[*]') = "["h0","h1","h2"]"

MaxCompute User Guide / 4 SQL

182 Issue: 20181120

get_json_object('{"aaa":"bbb","ccc":{"ddd":"eee","fff":"ggg","hhh":["
h0","h1","h2"]},"iii":"jjj"}','$.ccc.hhh[1]') = "h1"

INSTR

Command format:

bigint instr(string str1, string str2[, bigint start_position[, bigint
 nth_appearance]])

Usage:

Calculates where substring str2 is located in str1.

Parameter description:

• str1: String type. If the input is Bigint, Double, Decimal or Datetime, it is converted to String by

implicit conversion. If the input is other types, an exception is thrown.

• str2: String type. If the input is Bigint, Double, Decimal or Datetime, it is converted to String by

implicit conversion. If the input is other types, an exception is thrown.

• start_position: Bigint type, for other types, an exception is thrown. It indicates from which

character of str1 a search must be started from and the default starting position is the first

character position 1. If it is less than 0, it causes abnormality.

• nth_appearance：bigint type, greater than 0, represents position of the second match of a

substring in the string. If the chain is of a different type or less than or equal to 0, an exception

is thrown.

• Return value: Bigint type.

Note:

• If str2 is not found in str1, return 0.-

• If any input parameter is null, return null

• If str2 is NULL and always can be matched successfully, instr (‘abc’, ‘’) returns 1.

Example:

instr('Tech on the net', 'e') = 2
instr('Tech on the net', 'e', 1, 1) = 2
instr('Tech on the net', 'e', 1, 2) = 11

MaxCompute User Guide / 4 SQL

Issue: 20181120 183

instr('Tech on the net', 'e', 1, 3) = 14

IS_ENCODING

Command format:

boolean is_encoding(string str, string from_encoding, string
to_encoding)

Usage:

Determine whether the input string ‘str’ can be changed into a character set ‘to_encoding’ from a

specified character set ‘from_encoding’. It can be used to Determine whether the input is garbled.

The common use is to set ‘from_encoding’ to be ‘utf-8’ and ‘to_encoding’ to be ‘gbk’.

Parameter description:

• str: String type, if the input is NULL, return NULL. The empty string can be assumed to be

belonged to any character set.

• from_encoding, to_encoding: String type, source, destination character sets. If the input is

NULL, return NULL.

• Return value: Boolean type. If ‘str’ can be converted successfully, return true, otherwise, return

 false.

Example:

is_encoding('test', 'utf-8', 'gbk') = true
is_encoding('test', 'utf-8', 'gbk') = true
-- These two traditional Chinese characters are in GBK stock in China.
is_encoding('test', 'utf-8', 'gb2312') = false
-- The grapheme inventory of ‘GB2312’ does not contain these two
Chinese characters.

KEYVALUE

Command format:

KEYVALUE(STRING srcStr,STRING split1,STRING split2, STRING key)
KEYVALUE(STRING srcStr,STRING key) //split1 = ";"，split2 = ":"

Usage:

split ‘srcStr’ into ‘key-value’ pairs by split1 and separate ‘key-value’ pairs by split2. Return the

value corresponding to key.

Parameter description:

• srcStr: Source string to be split.

MaxCompute User Guide / 4 SQL

184 Issue: 20181120

• key: Specified to return the nth string. After the source string is split by ‘split1’ and ‘split2’,

return the corresponding value according to the specification of the ‘key’ value.

• split1, split2: Strings used as delimiters by which ‘srcStr’ is split. If these two parameters are not

 specified in the expression, the default value of ‘split1’ is ’;’ and that of ‘split2’ is ’:’. If a string

that has been split by split1 and has multiple split2, the return result is not defined.

Return value:

• String type.

• If ‘split1’ or ‘split2’ is NULL, return NULL.

• If ‘scrStr’ and ‘key’ are NULL or in case of no matched ‘key’, return NULL.

• If multiple ‘key-value’ matches, return the value corresponding to the first matched key.

Example 1:

keyvalue('0:1\;1:2', 1) = '2'

Note:

The source string is "0:1\;1:2". As split1 and split2 are not specified, the default split1 is ";" and

split2 is ":".

After the split1 split, the key-value pair is 0:1\,1:2.

After split2 split, it becomes:

0 1/
1 2

Returns the value(2) of the key corresponding to 1.

Example 2:

keyvalue("\;decreaseStore:1\;xcard:1\;isB2C:1\;tf:21910\;cart:1\;
shipping:2\;pf:0\;market:shoes\;instPayAmount:0\;","\;",":","tf") = "
21910" value:21910.

Note:

MaxCompute User Guide / 4 SQL

Issue: 20181120 185

The source string is as follows:

“\;decreaseStore:1\;xcard:1\;isB2C:1\;tf:21910\;cart:1\;shipping:2\;
pf:0\;market:shoes\;instPayAmount:0\;”

The key-value pairs derived from the split after splitting according to the split1 '\;' are as follows:

decreaseStore:1，xcard:1，isB2C:1，tf:21910，cart:1，shipping:2，pf:0，
market:shoes，instPayAmount:0

After you split, follow the split2 ":", the results are as follows:

decreaseStore 1
 xcard 1
 isB2C 1
 tf 21910
 cart 1
 shipping 2
 pf 0
 market shoes
 instPayAmount 0

The value of the key parameter is "tf", the return value of the corresponding value parameter is

21910.

LENGTH

Command format:

bigint length(string str)

Usage:

Return the length of a string.

Parameter description:

• str: String type. If the input is Bigint，Double，Decimal or Datetime, it is converted to String by

implicit conversion. If the input is other types, an exception is thrown.

• Return value: Bigint type. If ‘str’ is NULL, return NULL. If ‘str’ is non UTF-8 coding format, return

 -1.

MaxCompute User Guide / 4 SQL

186 Issue: 20181120

Example:

length('hi! China') = 6

LENGTHB

Command format:

bigint lengthb(string str)

Usage:

Return the length of ‘str’ and its unit is byte.

Parameter description:

• str: String type. If the input is Bigint，Double，Decimal or Datetime, it is converted to String by

implicit conversion. If the input is other types, an exception is thrown.

• Return value: Bigint type. If ‘str’ is NULL, return NULL.

Example:

lengthb('hi! 中国') = 10

MD5

Command format:

string md5(string value)

Usage:

Calculate the md5 value of input string.

Parameter description:

• value: String type. If the input value is of the Bigint, Double, Decimal or Datetime type, it is

implicitly converted to the String type before calculation. If the input value is of another type, an

exception is thrown. If the input is NULL, return NULL.

• Return value: String type.

MaxCompute User Guide / 4 SQL

Issue: 20181120 187

REGEXP_EXTRACT

Command format:

string regexp_extract(string source, string pattern[, bigint
occurrence])

Usage:

Split the string source according to pattern (regular expression rules), and return the characters of

 the occurrence(nth) group.

Parameter description:

• source: String type, a string to be searched.

• pattern: A string type constant. If pattern is a null string, an exception is thrown. If ‘group’ is not

specified in pattern, then also an exception is thrown.

• Occurrence: A bigint type constant, must be greater than 0 or equal to 0. If it is other type or

 less than 0, an exception is thrown. If not specified, the default value is 1, which indicates

returning the first group. If ‘occurrence’ is equal to 0, then return substrings that satisfy the

entire ‘pattern’.

• Return value: String type. Any input is NULL, return NULL.

Example:

regexp_extract('foothebar', 'foo(. *?)(bar)', 1) = the
regexp_extract('foothebar', 'foo(. *?)(bar)', 2) = bar
regexp_extract('foothebar', 'foo(. *?)(bar)', 0) = foothebar
regexp_extract('8d99d8', '8d(\\d+)d8') = 99
-- If regular SQL is submitted on MaxCompute, two "\" must be used as
the shift character.
regexp_extract('foothebar', 'foothebar')
-- The exception is thrown. ‘group’ is not specified in ‘pattern’.

REGEXP_INSTR

Function definition:

bigint regexp_instr(string source, string pattern[,
bigint start_position[, bigint nth_occurrence[, bigint return_option
]])

Usage:

Returns the start position/end position of the substring, which matches the pattern with the source

from start_position and nth_occurrence.. Any input parameter is null, return null.

Parameter description:

MaxCompute User Guide / 4 SQL

188 Issue: 20181120

• source: String type, to be searched.

• pattern: A string type constant. If ‘pattern’ is null, an exception is thrown.

• start_position: Bigint type constant, the start position of search. If it is not specified, default

value is 1. If it is other type or a value is less than or equal to 0, an exception is thrown.

• nth_occurrence: A bigint type constant. If not specified, the default value is 1. It appears at the

first position, when searched. If it is less than or equal to 0 or other type, an exception is thrown

.

• return_option: A bigint type constant. Its value is 0 or 1. If it is other type or an invalid value, an

 exception is thrown. 0 indicates returning the start position of the matched value. 1 indicates

returning the end position of the matched value.

• Return value: Bigint type, the start or end position of a matched substring in source specified by

 return_option.

Example:

regexp_instr("i love www.taobao.com", "o[[:alpha:]]{1}", 3, 2) = 14

REGEXP_REPLACE

Command format:

string regexp_replace(string source, string pattern, string replace_st
ring[, bigint occurrence])

Usage:

replace the substring in source which is matched ‘pattern’ for nth occurrence to be a specified

string ‘replace_string’ and then return.

Parameter description:

• source: String type, a string to be replaced.

• pattern: String type constant. The pattern to be matched. If it is null, an exception is thrown.

• replace_string: String type, the string after replacing matched pattern.

• occurrence: Bigint type constant, must be greater than or equal to 0. It indicates replacing nth

matching to be replace_string. If it is 0, it indicates all matched substrings have been replaced.

 If it is other type or less than 0, an exception is thrown. It can be 0 by default.

• Return value: String type. When referencing a group which is not existent, do not replace the

 string. Returns NULL when the source, pattern, occurrence parameter is entered as null,

MaxCompute User Guide / 4 SQL

Issue: 20181120 189

returns NULL, replace_string is null, but pattern will not match, if the replace_string is null and

the pattern is matched, returns the original string.

Note:

When the reference group does not exist, it is considered to be undefined.

Example:

regexp_replace("123.456.7890", "([[:digit:]]{3})\\.([[:digit:]]{3})\\.
([[:digit:]]{4})",
"(\\1)\\2-\\3", 0) = "(123)456-7890"
regexp_replace("abcd", "(.)", "\\1 ", 0) = "a b c d "
regexp_replace("abcd", "(.)", "\\1 ", 1) = "a bcd"
regexp_replace("abcd", "(.)", "\\2", 1) = "abcd"
-- Only a group is defined in pattern and the referenced second group
is not existent.
-- Please avoid this. The result to reference nonexistent group is not
 defined.
regexp_replace("abcd", "(. *)(.)$", "\\2", 0) = "d"
regexp_replace("abcd", "a", "\\1", 0) = "bcd"
-- No group definition is in pattern, so '\1' references a nonexistent
 group,
 -- Please avoid this. The result to reference nonexistent group is
not defined.

REGEXP_SUBSTR

Command format:

string regexp_substr(string source, string pattern[, bigint start_posi
tion[, bigint nth_occurrence]])

Usage:

Starting from start_position, find a substring in source which matches with a specified pattern for

the nth occurrence.

Parameter description:

• source: String type, string to be searched.

• pattern: A string type constant. The pattern to be matched. If it is null, an exception is thrown.

• start_position: A Bigint type constant, must be greater than 0. Other types or less than equal to

 0 throw exceptions. If not specified the default value is 1, which indicates a match begins with

 the first character of source. If not specified, default value is 1. It indicates a matching value

from the first character of source.

• nth_occurrence: a Bigint type constant, must be greater than 0. If not specified, the default

value is 1. It indicates the return substring of the first matched value. If not specified, the default

 value is 1. It indicates the return substring of the first matched value.

MaxCompute User Guide / 4 SQL

190 Issue: 20181120

• Return value: String type. Any input parameter is NULL, return NULL. If no matching record

exists, return NULL.

Example:

regexp_substr ("I love aliyun very much", "a[[:alpha:]]{5}") = "aliyun
"
regexp_substr('I have 2 apples and 100 bucks!', '[[:blank:]][[:alnum
:]]*', 1, 1) = " have"
regexp_substr('I have 2 apples and 100 bucks!', '[[:blank:]][[:alnum
:]]*', 1, 2) = "2"

REGEXP_COUNT

Command format:

bigint regexp_count(string source, string pattern[, bigint start_posi
tion])

Usage:

Counts the number of occurrences that a substring matches with a specified pattern, starting from

 start_position in source.

Parameter description:

• Source: String type, the string to be searched. If it is the other type, an exception is thrown.

• Pattern: String type constant, the pattern to be matched. If it is a null string or other data type,

an exception is thrown.

• start_position: Bigint type constant, must be greater than 0. If it is other data type or a value

 which is less than or equal to 0, an exception is thrown. If not specified, default value is 1,

which indicates a matched value from the first character of source.

• Return value: Bigint type. If matching does not exists, return 0. If any input parameter is null,

return null.

Example:

regexp_count('abababc', 'a.c') = 1

MaxCompute User Guide / 4 SQL

Issue: 20181120 191

regexp_count('abcde', '[[:alpha:]]{2}', 3) = 1

SPLIT_PART

Command format:

string split_part(string str, string separator, bigint start[, bigint
end])

Usage:

Split the string str according to the separator and return the substring from nth start part to nth end

 part.

Parameter description:

• str: String type, the string to be split. If it is Bigint, Double, Decimal or Datetime, it is converted

to a String in an implicit conversion. If it is other data type, an exception is thrown.

• separator: A string type constant, the separator used to split the string. It can be a character or

a string. If it is other data type, an exception is thrown.

• start: A bigint type constant, must be greater than 0. If it is not a constant or other data type, an

 exception is thrown. It indicates the start number of the return part (start from 1). If the end is

not specified, returns the part specified by ‘start’.

• ‘end’: A bigint type constant, must be greater than or equal to ‘start’, otherwise an exception is

thrown. It refers to the end number of the return part. If it is not a constant or is other data type,

then also an exception is thrown. It can be excluded as it indicates the last part.

Return value: String type. If any parameter is null, return null. If separator is an empty string,

return the source string str.

Note:

• If ‘delimiter’ does not exist in str, then specify ‘start’ as 1, and return the entire str. If the input

value is an empty string, the output value is an empty string.

• If the start value is greater than the number of parts after split, for example, the split produces

6 parts but the ‘start’ value is greater than 6, then returns an empty string.

Example:

split_part('a,b,c,d', ',', 1) = 'a'
split_part('a,b,c,d', ',', 1, 2) = 'a,b'

MaxCompute User Guide / 4 SQL

192 Issue: 20181120

split_part('a,b,c,d', ',', 10) = ''

SUBSTR

Command format:

string substr(string str, bigint start_position[, bigint length])

Usage:

Returns a substring of ‘str’ from start_position with the given length.

Parameter description:

• ‘str’: String type. If the input is Bigint, Double, Decimal or Datetime, it is converted to String in

an implicit conversion. If it is other data type, an exception is thrown.

• The start_position:Bigint type starts at 1. When start_position is negative, the starting position

 is counted backwards from the end of the string, the last character is -1, and the previous

number is -2,-3 and so on. Other types throw exceptions.

• length: Bigint type, must be greater than 0. If it is other type or less than 0, an exception is

thrown. This parameter indicates the length of a child string.

• Return value: String type. If the input is NULL, return NULL.

Note:

If the length is excluded, return the substring from start to end.

Example:

substr("abc", 2) = "bc"
substr("abc", 2, 1) = "b"
substr("abc",-2,2)="bc"
substr("abc",-3)="abc"

SUBSTRING

Command format:

string substring(string|binary str, int start_position[, int length])

Usage:

Returns the substring of ‘str’ from start_position with the given length.

Parameter description:

• str: String or Binary type, returns NULL or throws an exception for the other type

MaxCompute User Guide / 4 SQL

Issue: 20181120 193

• ‘start_position’: Int type, starting at 1. When start_position is negative, the starting position is

counted backwards from the end of the string, the last character is-1, and the previous number

is in turn-2,-3 and so on. Other types throw exceptions.

• length: Bigint type, must be greater than 0. If it is other type or less than 0, an exception is

thrown. This parameter indicates the length of the child string.

• Return value: String type. If the input is NULL, return NULL.

Note:

If the length is excluded, return the substring from start to end.

For example:

substring('abc', 2) = 'bc'
substring('abc', 2, 1) ='"b'
substring('abc',-2,2)='bc'
substring('abc',-3,2)='ab'
substring(BIN(2345),2,3)='001'

TOLOWER

Command format:

string tolower(string source)

Usage:

Input the lowercase string corresponding to the English string source.

Parameter description:

• Source: String type. If the input is Bigint, Double, Decimal or Datetime, it is converted to String

in an implicit conversion. If it is other data type, an exception is throwm.

• Return Value: String type. If the input is NULL, return NULL.

Example:

tolower("aBcd") = "abcd"
tolower("Haha Cd") = "haha cd"

TOUPPER

Command format:

string toupper(string source)

Usage:

MaxCompute User Guide / 4 SQL

194 Issue: 20181120

Output the uppercase string corresponding to the English string ‘source’.

Parameter description:

• Source: String type. If the input is Bigint, Double, Decimal or Datetime, it is converted to String

in an implicit conversion. If it is other data type, an exception is throwm.

• Return Value: String type. If the input is NULL, return NULL.

Example:

toupper("aBcd") = "ABCD"
toupper("HahaCd") = "HAHACD"

TO_CHAR

Command format:

string to_char(boolean value)
string to_char(bigint value)
string to_char(double value)
string to_char(decimal value)

Usage:

Convert Boolean type, Bigint type or Double type to corresponding String type.

Parameter description:

• Value: Boolean, Bigint or Double type is acceptable. If it is other data type, an exception is

thrown. For formatted output of the datetime type, see another function TO_CHAR that has the

 same name.

• Return value: String type. If the input is NULL, return NULL.

Example:

to_char(123) = '123'
to_char(true) = 'TRUE'
to_char(1.23) = '1.23'
to_char(null) = NULL

TRIM

Command format:

string trim(string str)

Usage:

Removes left space and right space for the input string str.

MaxCompute User Guide / 4 SQL

Issue: 20181120 195

Parameter description:

• ‘str’: String type. If the input is Bigint, Double, Decimal or Datetime, it is converted to String in

an implicit conversion. If it is other data type, an exception is throwm.

• Return value: String type. If the input is NULL, return NULL.

LTRIM

Command format:

string ltrim(string str)

Usage:

Removes the left space for the input string str.

Parameter description:

• ‘str’: String type. If the input is Bigint, Double, Decimal or Datetime, it is converted to String in

an implicit conversion. If it is other data type, an exception is throwm.

• Return value: String type. If the input is NULL, return NULL.

Example:

select ltrim(' abc ') from dual;
Returns:
+-----+
| _c0 |
+-----+
| abc |
+-----+

RTRIM

Command format:

string rtrim(string str)

Usage:

Removes the right space for the input string str.

Parameter description:

• ‘str’: String type. If the input is Bigint, Double, Decimal or Datetime, it is converted to String in

an implicit conversion. If it is other data type, an exception is throwm.

• Return value: String type. If the input is NULL, return NULL.

MaxCompute User Guide / 4 SQL

196 Issue: 20181120

Example:

select rtrim('a abc ') from dual;
Returns:
+-----+
| _c0 |
+-----+
| a abc |
+-----+

REVERSE

Command format:

STRING REVERSE(string str)

Usage:

Returns a reversed-order string.

Parameter description:

• str: String type. If the input is Bigint, Double, Decimal or Datetime, it is converted to String in an

 implicit conversion. If it is other data type, an exception is throwm.

• Return value: String type. If the input is NULL, return NULL.

Example:

select reverse('abcedfg') from dual;
Returns:
+-----+
| _c0 |
+-----+
| gfdecba |
+-----+

SPACE

Command format:

STRING SPACE(bigint n)

Usage:

A space string function that returns a string of length n.

Parameter description:

• n: Bigint type. The length cannot exceed 2 MB. If it is NULL, an exception is thrown.

• Return value: String type.

MaxCompute User Guide / 4 SQL

Issue: 20181120 197

Example:

select length(space(10)) from dual; ----Returns 10.
select space(400000000000) from dual; ----Error, the length exceeds 2
MB.

REPEAT

Command format:

STRING REPEAT(string str, bigint n)

Usage:

Returns the str string that is repeated for n times.

Parameter description:

• ‘str’: String type. If the input is Bigint, Double, Decimal or Datetime, it is converted to String in

an implicit conversion. If it is other data type, an exception is throwm.

• n: Bigint type. The length does not exceed 2 MB. If it is NULL, an exception is thrown.

• Return value: String type.

Example:

select repeat('abc',5) from lxw_dual;
Returns:abcabcabcabcabc

ASCII

Command format:

Bigint ASCII(string str)

Usage:

Returns the ascii of the first character of str.

Parameter description:

• str: String type. If the input is Bigint, Double, Decimal or Datetime, it is converted to String in an

 implicit conversion. If it is other data type, an exception is throwm.

• Return value: Bigint type.

Example:

select ascii('abcde') from dual;

MaxCompute User Guide / 4 SQL

198 Issue: 20181120

Returns:97

Maxcomputerte2.0 Extension function

With the upgrade to MaxCompute 2.0, some mathematical functions have been added to the

product. If a new function uses a new data type, you must add the following set statement before

using the new functions SQL statement:

set odps.sql.type.system.odps2=true;

Note:

Add set odps before the SQL statement that uses the functionset odps.sql.type.system.

odps2 = true;, and commit runs with SQL to use the new data type function normally.

The enhanced and extended string functions are described as follows.

CONCAT_WS

Command format:

string concat_ws(string SEP, string a, string b...)
string concat_ws(string SEP, array)

Note:

Add set odps before the SQL statement that uses the functionset odps.sql.type.system.

odps2 = true;, and commit runs with SQL to use the new data type function normally.

Usage:

Concatenates all strings in the parameters, connected by the specified delimiter.

Parameter description:

• SEP: String-type delimiter. If not specified, an exception is returned.

• a/b… String type. If Bigint, Decimal, Double or Datetime types are input, they are implicitly

converted to String type before calculation. If the input is another type, an exception is throwm.

Return value:

String type. If no parameters exist or any parameter is null, return null.

Example:

concat_ws(':','name','hanmeimei')='name:hanmeimei'

MaxCompute User Guide / 4 SQL

Issue: 20181120 199

concat_ws(':','avg',null,'34')=null

LPAD

Command format:

string lpad(string a, int len, string b)

Note:

Add set odps before the SQL statement that uses the functionset odps.sql.type.system.

odps2 = true;, and commit runs with SQL to use the new data type function normally.

Usage:

Uses string b to pad string a to the left to the place specified by len.

Parameter description:

• len: Int-type integer.

• a/b…: String type.

Return value:

String type. If len is smaller than the number of places in a, a is truncated from the left to obtain a

string with the number of places specified by len. If len is 0, return empty.

Example:

lpad('abcdefgh',10,'12')='12abcdefgh'
lpad('abcdefgh',5,'12')='abcde'
lpad('abcdefgh',0,'12') Returns a blank result

RPAD

Command format:

string rpad(string a, int len, string b)

Note:

Add set odps before the SQL statement that uses the functionset odps.sql.type.system.

odps2 = true;, and commit runs with SQL to use the new data type function normally.

Usage:

Uses string b to pad string a to the right to the place specified in len.

MaxCompute User Guide / 4 SQL

200 Issue: 20181120

Note:

You need to add the set odps statement before the SQL statement that uses the functionset

odps.sql.type.system.odps2 = true, otherwise the error is reported.

Parameter description:

• len: Int-type integer.

• a/b…: String type.

Return value:

String type. If len is smaller than the number of places in a, a is truncated from the left to obtain a

string with the number of places specified by len. If len is 0, return empty.

Example:

rpad('abcdefgh',10,'12')='abcdefgh12'
rpad('abcdefgh',5,'12')='abcde'
rpad('abcdefgh',0,'12') Returns a blank result

REPLACE

Command format:

string replace(string a, string OLD, string NEW)

Note:

Add set odps before the SQL statement that uses the functionset odps.sql.type.system.

odps2 = true;, and commit runs with SQL to use the new data type function normally.

Usage:

Uses string NEW to replace the portion of string a that completely matches string OLD and returns

 string a.

Parameter description:

The parameters are all String type.

Return value:

String type. If the input is null, return null.

Example:

replace('ababab','abab','12')='12ab'

MaxCompute User Guide / 4 SQL

Issue: 20181120 201

replace('ababab','cdf','123')='ababab'
replace('123abab456ab',null,'abab')=null

SOUNDEX

Command format:

string soundex(string a)

Note:

Add set odps before the SQL statement that uses the functionset odps.sql.type.system.

odps2 = true;, and commit runs with SQL to use the new data type function normally.

Usage:

Converts a normal string to a soundex string.

Parameter description: a is of type String.

Return value: String type. If the input value is NULL, return NULL.

Example:

soundex('hello')='H400'

SUBSTRING_INDEX

Command format:

string substring_index(string a, string SEP, int count))

Note:

Add set odps before the SQL statement that uses the functionset odps.sql.type.system.

odps2 = true; and commit runs with SQL to use the new data type function normally.

Usage:

Truncates string a to the portion in front of the delimiter specified by count. If count is positive, the

portion to the left of the delimiter is used. If count is negative, the portion to the right is used.

Parameter description: a/sep belong to the string type, and count belongs to the int type.

Return value:

String type. If the input is null, return null.

MaxCompute User Guide / 4 SQL

202 Issue: 20181120

Example:-

substring_index('https://help.aliyun.com', '.', 2)='https://help.
aliyun'
substring_index('https://help.aliyun.com', '.', -2)='aliyun.com'
substring_index('https://help.aliyun.com', null, 2)=null

4.8.6 Other functions
This article shows you how to use functions such as cast, decode, least, array, split, map, and so

on.

CAST

Function definition:

cast(expr as <type>)

Convert the result of expression to object type. For example, cast (‘1’ as bigint) is to convert string

 ‘1’ to bingint ‘1’. If the conversion is unsuccessful or the conversion is not supported, an exception

 occurs.

Note:

• cast (double as bigint) converts double type value to bigint type value.

• cast(string as bigint) converts a value of the string type into a value of the bigint type. If the

string is composed of numerals expressed in integer form, it is directly converted into a value

of the bigint type.

• If the string is composed of numerals expressed in the float or exponent form, it will be

converted into a value of the double type first and then into a value of the bigint type.

• cast(string as datetime) or cast(datetime as string) adopts the default format yyyy-mm-dd hh

:mi:ss.

COALESCE

Function definition:

coalesce(expr1, expr2, ...)

Usage:

Return the first value which is not NULL from the list. If all values in the list are NULL, return NULL

.

Parameter description:

MaxCompute User Guide / 4 SQL

Issue: 20181120 203

expr: value to be tested. All these values have the same data type or be NULL, otherwise an

expection occurs.

Return value:

Return value type is the same as parameter type.

Note:

There must be one parameter at least, otherwise an exception occurs.

DECODE

Function definition:

decode(expression, search, result[, search, result]...[, default])

Usage:

Implement the selection function of if-then-else branch.

Parameter description:

• expression: expression to be compared.

• search: A search string to be compared with the expression.

• result: the returned value when the values of search and expression match.

• default: it is optional. If all search items do not match the expression, return this default value. If

 it is not specified, return NULL.

Return Value:

• return matched search.

• If no matching record exists, return default.

• If default is not specified, return NULL.

Note:

• You must specify at least three parameters.

• All of the result types must be the same or NULL. Inconsistent data type causes an

exception. All of the search and expression types must be consistent, otherwise an

exception is reported.

• If the option search in decode has repeated record and has been matched, return the first

value.

MaxCompute User Guide / 4 SQL

204 Issue: 20181120

Example:

Select
decode(customer_id,
1, 'Taobao',
2, 'Alipay',
3, 'Aliyun',
Null, 'N/A',
'Others') as result
from sale_detail;

The decode function mentioned previously implements the function in following if-then-else

sentence:

if customer_id = 1 then
result := 'Taobao';
elsif customer_id = 2 then
result := 'Alipay';
elsif customer_id = 3 then
result := 'Aliyun';
...
else
result := 'Others';
end if;

Note:

• Calculating NULL= NULL by MaxCompute SQL, return NULL, while the values of NULL and

NULL are equal in decode function.

• In the preceding example, if the value of customer_id is NULL, decode function returns N/A

as a result.

GET_IDCARD_AGE

Function definition:

get_idcard_age(idcardno)

Usage:

Returns the current age based on the ID number which is the difference of the current year and

the year of birth identified in the ID.

Parameter description:

idcardno: String type, ID number of 15-digit or 18-digit. In the calculation, the validity of the ID is

checked according to the province code and the last digit, and Null is returned if the check fails.

Return Value:

MaxCompute User Guide / 4 SQL

Issue: 20181120 205

Returns the Bigint type. Input is Null, returns Null. Returns Null if the difference of the current year

and the year of birth is larger than 100.

GET_IDCARD_BIRTHDAY

Function definition:

get_idcard_birthday(idcardno)

Usage:

Returns date of birth based on the ID number.

Parameter description:

idcardno: String type, ID number of 15-digit or 18-digit. In the calculation, the validity of the ID is

checked according to the province code and the last digit, and Null is returned if the check fails.

Return Value:

Returns the Datetime type. Input is Null, returns Null.

GET_IDCARD_SEX

Function definition:

get_idcard_sex(idcardno)

Usage:

Returns the gender based on the ID number and the value is either M (male) or F (female).

Parameter description:

idcardno: String type, ID number of 15-digit or 18-digit. In the calculation, the validity of the ID is

checked according to the province code and the last digit, and Null is returned if the check fails.

Return Value:

Returns the String type. Input is Null, returns Null.

GREATEST

Function definition:

greatest(var1, var2, ...)

Usage:

Return the greatest input parameter.

MaxCompute User Guide / 4 SQL

206 Issue: 20181120

Parameter description:

var1/var2: Its type can be Bigint, Double, Decimal，Datetime or String type. If all values are NULL

, return NULL.

Return Value:

• The greatest value in input parameter. If the implicit conversion is not needed, return type is the

 same as input parameter type.

• NULL is the least value.

If the input parameter types are different,

• For Double, Bigint, Decimal and String type, convert them to be Double type.

• For String and Datetime, convert them to be Datetime type.

• Other implicit conversion is not allowed.

ORDINAL

Function definition:

ordinal(bigint nth, var1, var2, ...)

Usage:

Return the location value specified by ‘nth’ after the input variables are sorted by small to large.

Parameter description:

• nth: Bigint type, specify the location to return its value. If it is NULL, return NULL.

• var1/var2: Its type can be Bigint, Double, Datetime or String type.

Return Value:

• The value in nth bit. If the implicit conversion is not needed, return type is the same as input

parameter type.

• If implicit conversion is in input parameters,

▬ For Double, Bigint and String type, convert them to be Double type.

▬ For String and Datetime type, convert them to be Datetime type.

▬ Other implicit conversion is not allowed.

• NULL is the least value.

MaxCompute User Guide / 4 SQL

Issue: 20181120 207

Example:

ordinal(3, 1, 3, 2, 5, 2, 4, 6) = 2

LEAST

Function definition:

least(var1, var2, ...)

Usage:

return the least value in input parameter.

Parameter description:

var1/var2: Its type can be Bigint, Double, Decimal，Datetime or String type. If all values are NULL

, return NULL.

Return Value:

• The least value in input parameter; If the implicit conversion is not needed, return type is the

same as input parameter type.

• If implicit conversion is in input parameters,

▬ For Double, Bigint and String type, convert them to be Double type.

▬ For ‘string’ type and ‘datetime’ type, convert them to be ‘datetime’ type.

▬ Converts to Decimal type when Decimal type compares to Double, Bigint or String type.

▬ Other implicit conversion is not allowed.

• NULL is the least value.

MAX_PT

Function definition:

max_pt(table_full_name)

Usage:

For a partitioned table, this function returns the maximum value of the level-one partition of the

 partitioned table, which is sorted alphabetically, and there is a corresponding data file for the

partition.

Parameter description:

MaxCompute User Guide / 4 SQL

208 Issue: 20181120

table_full_name: String type, specifys the name of table, which must be with the name of project,

for example: prj.src). You must own read permission on this table.

Return Value:

Return value: Returns the value of the largest level-one partition.

Example:

Example: Suppose that ‘tbl’ is a partitioned table, all partitions of the table are as follows, and

there are data files:

pt =‘20120901’
pt =‘20120902’

In the following statement, the return value of max_pt is ‘20120902’, and the MaxCompute SQL

statement reads the data in the ‘20120902’ partition.

select * from tbl where pt=max_pt('myproject.tbl');

Note:

If a new partition is added by using alter table, but there is no data file in this partition, then this

partition is not returned.

UUID

Function definition:

string uuid()

Usage:

Return a random ID. Example: 29347a88-1e57-41ae-bb68-a9edbdd94212.

Note:

UUID returns a random global ID with a low probability of duplication.

SAMPLE

Function definition:

boolean sample(x, y, column_name)

Usage:

MaxCompute User Guide / 4 SQL

Issue: 20181120 209

sample all values of column_name according to the setting of x and y and filter out the rows which

 do not meet the sampling condition.

Parameter description:

• x, y: Bigint type, indicates hash to x portions, take yth portions. y can be ignored.

▬ If y is ignored, take the first portion. If y in parameter is ignored, then column_name is

ignored at the same time.

▬ x and y are Bigint constants and greater than 0. If it is other data type or less than or equal

 to 0, an exception is thrown. If y>, x exception is also thrown. If any input of x and y is

NULL, return NULL.

• column_name: the destination column to be sampled.

▬ column_name can be omitted, in which case, a random sample is taken according to the

values of x and y.

▬ It can be any data type and the column value can be NULL. Do not need implicit type

conversion.

▬ If column_name is the constant NULL, an exception is reported.

Return Value:

Boolean type.

Note:

To avoid data skew brought by NULL value, NULL values in column_name will be carried out a

 uniform hash in x portions. If column_name is not added, the output is not necessarily uniform

since the data size is smaller. So column_name is suggested to be added to get better output.

Example:

Suppose that the table tbla is existent and a column cola is in this table:

select * from tbla where sample (4, 1 , cola) = true;
-- The values are carried out Hash into 4 portions and take the first
portion.
select * from tbla where sample (4, 2) = true;

MaxCompute User Guide / 4 SQL

210 Issue: 20181120

-- The values do random Hash into 4 portions for each row of data and
take the second portion.

CASE WHEN EXPRESSION

MaxCompute provides two kinds of case when syntax formats, as follows:

case
when (_condition1) then result1
when (_condition2) then result2
...
else resultn
end
case
when (_condition1) then result1
when (_condition2) then result2
when (_condition3) then result3
...
else resultn
end

Case when expression can return different values according to the computing result of expression

 values flexibly.

The following sentences is used to get the region according to different shop_name:

select
case
when shop_name is null then 'default_region'
when shop_name like 'hang%' then 'zj_region'
end as region
From sale_detail;

Note:

• If the types of result include Bigint and Double, convert them to Double type and then return

the result.

• If the types of result include string type, convert them to be string type and then return the

result. If the conversion is unsuccessfully, the error is reported. (such as Boolean type).

• Expect these, the conversion between other types is not allowed.

If expression

Function definition:

if(testCondition, valueTrue, valueFalseOrNull)

Usage:

Judge if testCondition is true. If it is true, return valueTrue, otherwise return valueFalse or Null.

MaxCompute User Guide / 4 SQL

Issue: 20181120 211

Parameter description:

• testCondition: The expression to be judged. Boolean type.

• valueTrue: It returns when the expression testCondition is true.

• valueFalseOrNull: It returns when the expression testCondition is not true and also can be null.

Return Value:

The return type is the same as the valueTrue or valueFalseOrNul type.

Example:

select if(1=2,100,200) from dual;
--Returned results:
+ ------------ +
| _c0 |
+------------+
| 200 |
+------------+

SPLIT

Function definition:

split(str, pat)

Purpose: After the STR is split by Pat, the array is returned.

Parameter description:

• str: String type, specifies the string to be separated.

• pat: String type, specifies the delimiter, supports regular expressions.

Return Value:

array <string>

The result is the elements in str separated by pat.

Example:

select split("a,b,c",",") from dual;
Results:
+------+
| _c0 |
+------+
| [a, b, c] |
+------+

Note:

MaxCompute User Guide / 4 SQL

212 Issue: 20181120

Set commands supported by MaxCompute SQL and MapReduce for MaxCompute 2.0

• Once data type such as Tinyint、Smallint、 Int、 Float、Varchar or TIMESTAMP BINARY

is involved when running an SQL statement, set odps.sql.type.system.odps2=

true; must be added before the SQL statement. The set statement and SQL statement are

submitted simultaneously.

• Project level: that is, the project level is supported for new type opening. The project owner

can be set to project as needed, with the following commands:

set odps.sql.type.system.odps2=true;

STR_TO_MAP

Function declaration:

str_to_map(text [, delimiter1 [, delimiter2]])

Purpose: use ‘delimiter1’ to separate ‘text’ into K-V pairs, then use ‘delimiter2’ to separate each K-

V pair.

Parameter description

• text: String type, specifies the string to be separated.

• delimiter1: string type, separator that does not specify the default ','.

• delimiter1: string type, separator, default to '=' when not specified '.

Return value: map <string, string >. The elements are the K-V results of the separation of 'text' by

the strings 'delimiter1' and 'delimiter2'.

Example:

Select fig ('test1 & 1-test2 & 2 ','-','&');

Return result:

+------------+
| A |
+------------+

MaxCompute User Guide / 4 SQL

Issue: 20181120 213

| {Test1: 1, Test2: 2} |

EXPLODE

Function definition:

explode(var)

Usage:

Converts one row of data into a multi-row UDTF.

• If var is Array type, the array stored in the column is converted to multiple rows.

• If var is Map type, each key-value pair of the map stored in the column is converted to a row

with two columns, one column for the key and one for the value.

Parameter description:

var: array<T> type or map<K, V> type.

Return Value:

Rows after conversion are returned.

Note:

The following restrictions apply when using UDTF:

• One select can only have one UDTF and no other columns can appear.

• It cannot be used with group by, cluster by, distribute by, or sort by.

Example:

explode(array(null, 'a', 'b', 'c')) col

MAP

Function definition:

MAP map(K key1, V value1, K key2, V value2, ...)

Usage:

Uses the given key/value pairs to create a map.

Parameter description:

key/value

MaxCompute User Guide / 4 SQL

214 Issue: 20181120

• All key types are consistent, including those after implicit conversion, and must be basic.

• All value types are consistent, including those after implicit conversion, and can be of any type.

Return Value:

Returns the map type.

Example:

For example, the fields in t_table are(c1 bigint,c2 string,c3 string, c4 bigint ,c5 bigint), with the

following data

+------------+----+----+------------+------------+
| c1 | c2 | c3 | c4 | c5 |
+------------+----+----+------------+------------+
1000	k11	k21	86	15
1001	k12	k22	97	2
1002	k13	k23	99	1
+------------+----+----+------------+------------+

Execute SQL:

select map(c2,c4,c3,c5) from t_table;

The result is as follows:

+ ---- +
| _c0 |
+------+
| {k11:86, k21:15} |
| {k12:97, k22:2} |
| {k13:99, k23:1} |
+------+

MAP_KEYS

Function definition:

ARRAY map_keys(map<K, V>)

Usage:

Returns an array of all the keys in the map parameter.

Parameter description:

map：map type data.

Return value:

Returns the array type, enter null, and null.

MaxCompute User Guide / 4 SQL

Issue: 20181120 215

Example:

For example, the field of t_table_map is (c1 bigint,t_map map<string,bigint>), data

as follows

+------------+-------+
| C1 | t_map |
+ ------------ + ------- +
| 1000 | {k11:86, k21:15} |
| 1001 | {k12:97, k22:2} |
| 1002 | {k13:99, k23:1} |
+------------+-------+

Execute SQL:

select c1,map_keys(t_map) from t_table_map;

The result is as follows:

+------------+------+
| c1 | _c1 |
+------------+------+
1000	[k11, k21]
1001	[k12, k22]
1002	[k13, k23]
+------------+------+

MAP_VALUES

Function definition:

ARRAY map_values(map<K, V>)

Usage:

Returns an array of all the values in the map parameter.

Parameter description:

map: map-type data.

Return Value:

Returns the array type, enter null, and null.

Example:

select map_values(map('a',123,'b',456));
Results:

MaxCompute User Guide / 4 SQL

216 Issue: 20181120

[123, 456]

ARRAY

Function definition:

ARRAY array(value1,value2, ...)

Usage:

Creates an array using the given values.

Parameter description:

value: This parameter can be of any type, but all the values must be of the same type.

Return Value:

Returns the array type.

Example:

For example, the fields in t_table are (c1 bigint,c2 string,c3 string, c4 bigint ,c5 bigint), with the

following data

+------------+----+----+------------+------------+
| c1 | c2 | c3 | c4 | c5 |
+------------+----+----+------------+------------+
1000	k11	k21	86	15
1001	k12	k22	97	2
1002	k13	k23	99	1
+------------+----+----+------------+------------+

Execute SQL:

select array(c2,c4,c3,c5) from t_table;

Results:

+------+
| _c0 |
+------+
| [k11, 86, k21, 15] |
| [k12, 97, k22, 2] |
| [k13, 99, k23, 1] |
+ ---- +

SIZE

Function definition:

INT size(map)

MaxCompute User Guide / 4 SQL

Issue: 20181120 217

INT size(array)

Usage:

• size(map<K，V>) returns the number of K/V pairs in the given map.

• size(array<T>) returns the number of elements in the given array.

Parameter description:

• map<K, V>: Map-type data.

• array<T>: Array-type data.

Return Value:

Returns the Int type.

Example:

select size(map('a',123,'b',456)) from dual;--Returns 2
select size(map('a',123,'b',456,'c',789)) from dual;--Returns 3
select size(array('a','b')) from dual;--Returns 2
select size(array(123,456,789)) from dual;--Returns 3

ARRAY_CONTAINS

Function definition:

boolean array_contains(ARRAY<T> a,value v)

Usage:

Checks if the given array a contains v.

Parameter description:

• a: Array-type data.

• v: The given v must be of the same type as the data in the array.

Return Value:

Returns the Boolean type.

Example:

If the field of t_table_array is (c1 bigint, t_array array<string>), the data is as

follows:

+ ------------ + --------- +
| c1 | t_array |
+------------+---------+
| 1000 | [k11, 86, k21, 15] |

MaxCompute User Guide / 4 SQL

218 Issue: 20181120

| 1001 | [k12, 97, k22, 2] |
| 1002 | [k13, 99, k23, 1] |
+------------+---------+

Execute SQL:

select c1, array_contains(t_array,'1') from t_table_array;

Results:

+------------+------+
| c1 | _c1 |
+------------+------+
1000	false
1001	false
1002	true
+------------+------+

SORT_ARRAY

Function definition:

ARRAY sort_array(ARRAY<T>)

Usage:

This function used to sorts the given array.

Parameter description:

ARRAY<T>: Array-type data, the data in the array can be of any type.

Return Value:

Returns the array type.

Example:

select sort_array(array('a','c','f','b')),sort_array(array(4,5,7,2,5,8
)),sort_array(array('You','Me','He')) from dual;
Results:

MaxCompute User Guide / 4 SQL

Issue: 20181120 219

[a, b, c, f] [2, 4, 5, 5, 7, 8] [He, You, Me]

Execute SQL

Select sort_array (C1), sort_array (C2), sort_array (C3) from t_array;

Return result:

[a, b, c, f] [2, 4, 5, 5, 7, 8] [He, You, Me]

POSEXPLODE

Function definition:

posexplode(ARRAY<T>)

Usage:

Explodes the given array. Each value is given a row and each row has two columns corresponding

 to the subscript (starting from 0) and the array element.

Parameter description:

ARRAY: Array-type data, the data in the array can be of any type.

Return Value:

Returns the table generation function.

Example:

select posexplode(array('a','c','f','b')) from dual;
Results:
+------------+-----+
| pos | val |
+------------+-----+
0	a
1	c
2	f
3	b
+------------+-----+

STRUCT

Function definition:

STRUCT struct(value1,value2, ...)

Usage:

Creates a struct using the given value list.

MaxCompute User Guide / 4 SQL

220 Issue: 20181120

Parameter description:

value: Each value can be of any type.

Return Value:

Returns the STRUCT<col1:T1, col2:T2, ... > Type. field names are sequential: col1,

col2, …

Example:

select struct('a',123,'ture',56.90) from dual;
Results:
{col1:a, col2:123, col3:ture, col4:56.9}

NAMED_STRUCT

Function definition:

STRUCT named_struct(string name1, T1 value1, string name2, T2 value2
, ...)

Usage:

Creates a struct using the given name/value list.

Parameter description:

• value: Each value can be of any type.

• name: Specifies the name of a String-type field.

Return Value:

Returns the STRUCT<name1:T1, name2:T2, ... >type. The field names of the generated

struct are sequential: name1, name2, …

Example:

select named_struct('user_id',10001,'user_name','LiLei','married','F
','weight',63.50) from dual;
Results:
{user_id:10001, user_name:LiLei, married:F, weight:63.5}

INLINE

Command Format:

inline(array<struct<f1:T1, f2:T2, ... >>)

as shown in the following figure:

MaxCompute User Guide / 4 SQL

Issue: 20181120 221

Explodes the given struct array. Each element is given one row and each struct element

corresponds to one column in each row.

Parameter description:

STRUCT<f1:T1, f2:T2, ... >: The values in the array can be of any type.

Return Value:

Returns the table generation function.

Example:

If the field in Table t_table is (t_struct struct<user_id:bigint,user_name:string,

married:string,weight:double> <user_id: bigint,="" user_name:="" string,="" married:=""

weight:="" double="">), the table data is as follows:</user_id:>

+----------+
| T_struct |
+----------+
{user_id:10001, user_name:LiLei, married:F, weight:63.5}
{user_id:10001, user_name:LiLei, married:F, weight:63.5}
+----------+

Execute SQL:

select inline(array(t_struct)) from t_table;

Return result:

+------------+----+----+------------+------------+
| user_id | user_name | married | weight |
+------------+----+----+------------+------------+
| 10001 | LiLei | N | 63.5 |
| 10002 | HanMeiMei | Y | 43.5 |
+------------+-----------+---------+------------+

TRANS_ARRAY

Function definition:

trans_array (num_keys, separator, key1,key2,…,col1, col2,col3) as (
key1,key2,…,col1, col2)

Usage:

A UDTF that converts one row of data to multiple rows, and converts an array separated with fixed

-separator format in column into multiple rows.

Parameter description:

MaxCompute User Guide / 4 SQL

222 Issue: 20181120

• num_keys: Bigint type constant, must be larger than or equal to 0. It is used as the number of

columns to transpose key when converting to multiple rows.

• Key: Duplicate columns in multiple rows when converting one row to multiple rows.

• separator: String type constant. It is a separator used to split a string into multiple elements.

Exception is thrown when it is null.

• keys: As column of key when you transpose. It is specified by num_keys. If num_keys specifies

 that all columns are keys (that is, num_keys equals the number of all columns), only one row is

 returned.

• cols: An array to convert to rows. All columns after keys are considered as an array to be

transposed. String type. The stored contents are arrays of string format, such as “Hangzhou;

Beijing; shanghai”, they are arrays separated by “;”.

Return Value:

Transposed rows, new column names are specified by as. The type of column that is as key

 remains unchanged, and all other columns are String type. The number of rows to be split

depends on the array that has maximum number, no-value locales are complemented with NULL.

Note:

The following restrictions apply when using UDTF:

• All columns that are considered as keys must be placed front, and columns to be transposed

must be placed behind.

• One select can only have one UDTF and no other columns can appear.

• One select can only have one UDTF and no other columns can appear.

Example:

The data in the t_table table is as follows:

+----------+----------+------------+
| login_id | login_ip | login_time |
+----------+----------+------------+
wangwangA 192.168.0.1,192.168.0.2 20120101010000,20120102010000
| Wangwangb | 192.168.25.10, 192.168.67.22, 192,168.6. 3 | maid,
20120223080000 |

MaxCompute User Guide / 4 SQL

Issue: 20181120 223

+----------+----------+------------+

Execute SQL:

trans_array(1, ",", login_id, login_ip, login_time) as (login_id,
login_ip,login_time)

Results:

+----------+----------+------------+
| Login_id | login_ip | login_time |
+----------+----------+------------+
wangwangB	192.168.45.10	20120111010000
wangwangB	192.168.67.22	20120112010000
wangwangB	192.168.6.3	20120223080000
wangwangA	192.168.0.1	20120101010000
wangwangA	192.168.0.2	20120102010000
+----------+----------+------------+

If the table contains the following data:

Login_id LOGIN_IP LOGIN_TIME
wangwangA 192.168.0.1,192.168.0.2 20120101010000

NULL is complemented to the no-value locales in the array:

Login_id Login_ip Login_time
wangwangA 192.168.0.1 20120101010000
wangwangA 192.168.0.2 NULL

4.9 UDF

4.9.1 UDF Summary

MaxCompute provides many built-in functions to meet the computing requests of the users. A

User Defined Function (UDF) is similar to any other Built-in Function. Users can create user-

defined functions according to their computing requirements.

If you use Maven to search “odps-sdk-udf” from Maven to get different versions of Java SDK,the

configuration is as follows:

<dependency>
 <groupId>com.aliyun.odps</groupId>
 <artifactId>odps-sdk-udf</artifactId>
 <version>0.20.7-public</version>
</dependency>

In MaxCompute, you can expand two types of UDF:

http://search.maven.org/
http://search.maven.org/

MaxCompute User Guide / 4 SQL

224 Issue: 20181120

UDF Class Description

 UDF(User Defined Scalar
Function)

User Defined Scalar function. The relationship between input
and output is a one-to-one relationship. Read a row data and
write an output value.

UDTF (UserDefined Table
Valued Function)

User-defined table valued functions are used in scenarios
where the calling of one function leads to multiple rows of data
 being output. It is a unique user-defined function which can
return multiple fields, while UDFcan only output a return value.

UDAF（User Defined
Aggregation Function）

User Defined Aggregation Function (UDAF), the relationship
between its input and output is one-to-many relationships. That
is to aggregate multiple input records to an output value. It can
be used with a Group By clause.. For more information, see
Aggregation Functions.

Note:

• UDF stands for the set of user-defined functions, including User Defined Scalar Function, User

 Defined Aggregation Function and User Defined Table Valued Function. In a narrower sense,

it represents user User Defined Scalar Function. The document uses this term frequently and

the readers can judge the specific meaning according to the context .

• If the system prompts that memory is insufficient with an UDF involved in the SQL statement,

configure set odps.sql.udf.joiner.jvm.memory=xxxx; to resolve this issue. This is

because the data is huge and data skew also exists., This leads the memory size to occupythe

task, which exceeds the default memory size.

MaxCompute UDF supports cross-project sharing. A UDF in project_b can be used in project_a

. For more information, , see Authorization in Security Guide documentation. other_project:

udf_in_other_project(arg0, arg1) as res from table_t;。

UDF Examples

Please see UDF Example in Quick Start Volume.

MaxCompute User Guide / 4 SQL

Issue: 20181120 225

4.9.2 Java UDF
MaxCompute UDF includes three types: UDF, UDAF, and UDTF. This article focuses on how to

implement these three functions through Java.

Parameter and return value type

The data types of UDF supported by MaxCompute SQL include thebasic types: bigint, double

, boolean, datetime, decimal, string, tinyint, smallint, int, float, varchar, binary, and timestamp.

Complex types: array, map, and struct.

• The use of some basic types including tinyint, smallint, int, float, varchar, binary, and timestamp

through Java UDF is as follows:

▬ UDTF get ‘signature’ by @Resolve annotation, for example, @Resolve("smallint->

varchar(10)").

▬ UDF gets ‘signature’ by the reflection analysis ‘evaluate’. In this case, the MaxCompute built

-in type and the Java type comply with one-to-one mapping.

▬ UDAF gets the signature with the @Resolve annotation, and maxcompute2.0 supports the

use of new types in annotations, for example, @Resolve("smallint-> varchar (10

)").

• JAVA UDF uses three complex data types :‘array’, ‘map’, and ‘struct’:

▬ UDAFs and UDTFs specify signature by @Resolve annotation, for example, @Resolve("

array<string>,struct<a1:bigint,b1:string>,string->map<string,bigint

>,struct<b1:bigint>").

▬ The UDF maps the input and output types of the UDF through the signature of the evaluate

method, reference is made to the mapping of the maxcompute type to the Java type. In this

relationship, Array maps java.util.List, Map maps java.util.Map, and Struct maps com.aliyun.

odps.data.Struct.

▬ UDAF gets the signature with the @Resolve annotation, and MaxCompute2.0 supports the

use of new types in annotations, for example, @Resolve("smallint-> varchar (10

)").

Note:

• com.aliyun.odps.data.Struct does not see field name and field type from reflection, so it

must be complemented by @Resolve annotation. In other words, to use Struct in a UDF

MaxCompute User Guide / 4 SQL

226 Issue: 20181120

, add the @Resolve annotation to the UDF class. This annotation only affects overloads

of parameters or return values that contain com.aliyun.odps.data.Struct.

• Currently, only one @Resolve annotation can be provided on class. Therefore, only one

overload in a UDF with a struct parameter or return value can exist.

The following table lists the relations between MaxCompute and Java data types.

MaxCompute Type Java Type

Tinyint java.lang.Byte

Smallint java.lang.Short

Int java.lang.Integer

Bigint java.lang.Long

Float java.lang.Float

Double java.lang.Double

Decimal java.math.BigDecimal

Boolean java.lang.Boolean

String java.lang.String

Varchar com.aliyun.odps.data.Varchar

Binary com.aliyun.odps.data.Binary

Datetime java.util.Date

Timestamp java.sql.Timestamp

array java.util.List

Map java.util.Map

Struct com.aliyun.odps.data.Struct

Note:

• The corresponding data type in Java and the return value data type is the object. Make sure

that the first letter is uppercase.

• The NULL value in SQL is represented by a NULL reference in Java; therefore, ‘Java primitive

 type’ is not allowed because it cannot represent a NULL value in SQL.

• Here, Java type corresponding to the ‘array’ type is ‘list’.

MaxCompute User Guide / 4 SQL

Issue: 20181120 227

UDF

To implement UDF, the class ‘com.aliyun.odps.udf.UDF’ must be inherited and the ‘evaluate

’ method must be applied. The ‘evaluate’ method must be a non-static public method. The

parameter type and return value type of Evaluate method is considered as UDF signature in

SQL. It means that the user can implement multiple evaluate methods in UDF. To call UDF, the

 framework must match the correct evaluate method according to the parameter type called by

UDF.

Note：Classes with the same class name but different functional logic mustappear in different

jar packages. For example, UDF (UDAF/UDTF): udf1, udf2 correspond to the resources udf1.jar

and udf2.jar respectively, if both jars contain com.aliyun.UserFunction.class, when two udfs are

used in the same SQL statement, the system randomly loads one of the classes. This causes

inconsistency in the udf execution behavior or compilation failure.

UDF samples are as follows:

package org.alidata.odps.udf.examples;
 import com.aliyun.odps.udf.UDF;

public final class Lower extends UDF {
 Public String evaluate (string s){
 If (Stream = NULL){
 return null;
 }
 return s.toLowerCase();
 }
}

UDF is initialized and terminated through void setup(ExecutionContext ctx) and void

close().

The use method of UDF is similar to built-in functions in MaxCompute SQL. For more information,

see Built-in Functions.

Other UDF examples

In the following code, UDF with three overloads is defined. The first, second, and third overloads

use ARRAY, MAP, and STRUCT respectively as a parameter. Since the third overloads use a

struct as a parameter or return value, therefore, a @Resolve annotation must be placed on the

UDF class to specify the specific type of struct.

@Resolve ("struct, string-> string ")
public class UdfArray extends UDF {
 public String evaluate(List vals, Long len) {
 return vals.get(len.intValue());
 }

MaxCompute User Guide / 4 SQL

228 Issue: 20181120

 Public String evaluate (MAP map, string key){
 return map.get(key);
 }
 public String evaluate(Struct struct, String key) {
 return struct.getFieldValue("a") + key;
 }
}

The user can pass the complex type directly into the UDF:

create function my_index as 'UdfArray' using 'myjar.jar';
select id, my_index(array('red', 'yellow', 'green'), colorOrdinal) as
color_name from colors;

UDAF

To implement Java UDAF, inherit the class ‘com.aliyun.odps.udf.Aggregator’ and the following

interfaces must be applied:

public abstract class Aggregator implements ContextFunction {
 @Override
 public void setup(ExecutionContext ctx) throws UDFException {

 }
 @Override
 public void close() throws UDFException {
 }
 /**
 * Create an aggregate buffer
 * @return Writable - Aggregate buffer
 */
 abstract public Writable newBuffer();
 /**
 * @param buffer: aggregation buffer
 * @param args: specified parameter to call UDAF in SQL
 * @throws UDFException
 */
 abstract public void iterate(Writable buffer, Writable[] args)
throws UDFException;
 /**
 * generate final result
 * @param buffer
 * @return final result of Object UDAF
 * @throws UDFException
 */
 abstract public Writable terminate(Writable buffer) throws
UDFException;
 abstract public void merge(Writable buffer, Writable partial) throws
 UDFException;
}

The three most important interfaces are ‘iterate’, ‘merge’, and ‘terminate’. The main logic of UDAF

relies on these three interfaces. In addition, user must realize defined Writable buffer.

Take ‘achieve average calculation’ as an example and next figure describes the realization logical

and computational procedure of this function in MaxCompute UDAF:

MaxCompute User Guide / 4 SQL

Issue: 20181120 229

In the preceding figure , the input data is sliced according to a certain size.For more information

about slicing, see MapReduce). The size of each slice is suitable for a worker to complete in the

specified time. This slice size must be configured manually by the user.

The calculation process of UDAF is divided into two steps:

• In the first step, each worker counts the data quantity and total sum in a slice. You can consider

 the data quantity and total sum in each slice as an intermediate result.

• In the second step, a worker gathers the information of each slice generated in the first stage.

In the final output, r.sum / r.count is the average of all input data.

Use the following UDAF encoding example to calculate the average:

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import com.aliyun.odps.io.DoubleWritable;
import com.aliyun.odps.io.Writable;
import com.aliyun.odps.udf.Aggregator;
import com.aliyun.odps.udf.UDFException;
import com.aliyun.odps.udf.annotation.Resolve;
@Resolve("double->double")
public class AggrAvg extends Aggregator {
 private static class AvgBuffer implements Writable {
 private double sum = 0;
 private long count = 0;
 @Override
 public void write(DataOutput out) throws IOException {
 out.writeDouble(sum);
 out.writeLong(count);
 }
 @Override
 public void readFields(DataInput in) throws IOException {
 sum = in.readDouble();

MaxCompute User Guide / 4 SQL

230 Issue: 20181120

 count = in.readLong();
 }
 }
 private DoubleWritable ret = new DoubleWritable();
 @Override
 public Writable newBuffer() {
 return new AvgBuffer();
 }
 @Override
 public void iterate(Writable buffer, Writable[] args) throws
UDFException {
 DoubleWritable arg = (DoubleWritable) args[0];
 AvgBuffer buf = (AvgBuffer) buffer;
 if (arg ! = null) {
 buf.count += 1;
 buf.sum += arg.get();
 }
 }
 @Override
 public Writable terminate(Writable buffer) throws UDFException {
 AvgBuffer buf = (AvgBuffer) buffer;
 if (buf.count == 0) {
 ret.set(0);
 } else {
 ret.set(buf.sum / buf.count);
 }
 return ret;
 }
 @Override
 public void merge(Writable buffer, Writable partial) throws
UDFException {
 AvgBuffer buf = (AvgBuffer) buffer;
 AvgBuffer p = (AvgBuffer) partial;
 buf.sum += p.sum;
 buf.count += p.count;
 }
}

Note:

• For Writable’s readFields function, since the partial writable object can be reused, the same

object readFields function is called multiple times. This function expects the entire object to be

reset each time it is called. If the object contains a collection, it must be emptied.

• The use method of UDAF is similar to aggregation functions in MaxCompute SQL. For more

information, see Aggregation Functions.

• How to run UDTF is similar to UDF. For more information, see Java UDF Development.

UDTF

Java UDTF class must inherit the class ‘com.aliyun.odps.udf.UDTF’. This class has four

interfaces:

MaxCompute User Guide / 4 SQL

Issue: 20181120 231

Interface Definition Description

public void setup(ExecutionC
ontext ctx) throws UDFExcepti
on

The initialization method to call user-defined initialization
behavior before UDTF processes the input data. ‘Setup’ will be
called first and once for each worker.

public void process(Object[]
args) throws UDFException

The framework calls this method. Each record in SQL calls ‘
process’ once accordingly. The parameters of ‘process’ are the
specified UDTF input parameters in SQL. The input parameters
 are passed in as Object[], and the results are output through ‘
forward’ function. The user must call ‘forward’ in the ‘process’
function by itself to determine the output data.

public void close() throws
UDFException

The termination method of UDTF. The framework calls this
method, and only once; that is, after processing the last record.

public void forward(Object …o
) throws UDFException

The user calls the ‘forward’ method to output data. Each ‘
forward’ represents the output of a record, corresponding to the
column specified by UDTF 'as’ clause in SQL.

A UDTF program sample is as follows:

package org.alidata.odps.udtf.examples;
import com.aliyun.odps.udf.UDTF;
import com.aliyun.odps.udf.UDTFCollector;
import com.aliyun.odps.udf.annotation.Resolve;
import com.aliyun.odps.udf.UDFException;
// TODO define input and output types, e.g., "string,string->string,
bigint".
 @Resolve("string,bigint->string,bigint")
 public class MyUDTF extends UDTF {
 @Override
 public void process(Object[] args) throws UDFException {
 String a = (String) args[0];
 Long b = (Long) args[1];
 for (String t: a.split("\\s+")) {
 forward(t, b);
 }
 }
 }

Note:

The preceding example is for reference only. How to run UDTF is similar to using UDF. For more

information, see Java UDF Development.

MaxCompute User Guide / 4 SQL

232 Issue: 20181120

In SQL,use this UDTF as the following example. Suppose that the register function name in

MaxCompute is ‘user_udtf’.

select user_udtf(col0, col1) as (c0, c1) from my_table;

Suppose the values of col0 and col1 in my_table are:

+------+------+
| col0 | col1 |
+------+------+
| A B | 1 |
| C D | 2 |
+------+------+

Then the ‘SELECT’ result is:

+----+----+
| c0 | c1 |
+----+----+
A	1
B	1
C	2
D	2
+----+----+

Instructions

UDTFs are often used as following in SQL:

select user_udtf(col0, col1) as (c0, c1) from my_table;
select user_udtf(col0, col1, col2) as (c0, c1) from (select * from
my_table distribute by key sort by key) t;
select reduce_udtf(col0, col1, col2) as (c0, c1) from (select col0,
col1, col2 from (select map_udtf(a0, a1, a2, a3) as (col0, col1, col2
) from my_table) t1 distribute by col0 sort by col0, col1) t2;

But using UDTF has the following limits:

MaxCompute User Guide / 4 SQL

Issue: 20181120 233

• Other expressions are not allowed in the same SELECT clause:

select value, user_udtf(key) as mycol ...

• UDTF cannot be nested.

select user_udtf1(user_udtf2(key)) as mycol...

• It cannot be used with ‘group by / distribute by / sort by’ in the same SELECT clause.

select user_udtf(key) as mycol ... group by mycol

Other UDTF Examples

In UDTF, learn more aboutMaxCompute Resources. The following describes how to use UDTFs

to read MaxCompute resources:

1. Compile a UDTF program. Once the compilation is successful, export the Jar package

(udtfexample1.jar).

package com.aliyun.odps.examples.udf;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.Iterator;
import com.aliyun.odps.udf.ExecutionContext;
import com.aliyun.odps.udf.UDFException;
import com.aliyun.odps.udf.UDTF;
import com.aliyun.odps.udf.annotation.Resolve;
/**
 * project: example_project
 * table: wc_in2
 * partitions: p2=1,p1=2
 * columns: colc,colb
 */
@Resolve("string,string->string,bigint,string")
public class UDTFResource extends UDTF {
 ExecutionContext ctx;
 long fileResourceLineCount;
 long tableResource1RecordCount;
 long tableResource2RecordCount;
 @Override
 public void setup(ExecutionContext ctx) throws UDFException {
 this.ctx = ctx;
 try {
 InputStream in = ctx.readResourceFileAsStream("file_resource.txt
");
 BufferedReader br = new BufferedReader(new InputStreamReader(in
));
 String line;
 fileResourceLineCount = 0;
 while ((line = br.readLine()) ! = null) {
 fileResourceLineCount++;
 }
 br.close();

MaxCompute User Guide / 4 SQL

234 Issue: 20181120

 Iterator<Object[]> iterator = ctx.readResourceTable("table_reso
urce1").iterator();
 tableResource1RecordCount = 0;
 while (iterator.hasNext()) {
 tableResource1RecordCount++;
 iterator.next();
 }
 iterator = ctx.readResourceTable("table_resource2").iterator();
 tableResource2RecordCount = 0;
 while (iterator.hasNext()) {
 tableResource2RecordCount++;
 iterator.next();
 }
 } catch (IOException e) {
 throw new UDFException(e);
 }
}
 @Override
 public void process(Object[] args) throws UDFException {
 String a = (String) args[0];
 long b = args[1] == null ? 0 : ((String) args[1]).length();
 forward(a, b, "fileResourceLineCount=" + fileResourceLineCount
 + "|tableResource1RecordCount="
 + tableResource1RecordCount + "|tableResource2RecordCount=" +
tableResource2RecordCount);
 }
}

2. Add resources in MaxCompute:

Add file file_resource.txt;
Add jar udtfexample1.jar;
Add table table_resource1 as table_resource1;
Add table table_resource2 as table_resource2;

3. Create UDTF (my_udtf) in MaxCompute:

create function mp_udtf as com.aliyun.odps.examples.udf.UDTFResource
 using
'udtfexample1.jar, file_resource.txt, table_resource1, table_reso
urce2';

4. Create the resource tables: table_resource1, table_resource2 and the physical table tmp1 in

MaxCompute. Insert corresponding data into the tables.

5. Run this UDTF.

select mp_udtf("10","20") as (a, b, fileResourceLineCount) from tmp1
;
Return result:
+-------+------------+-------+
| a | b | fileResourceLineCount |
+-------+------------+-------+
| 10 | 2 | fileResourceLineCount=3|tableResource1RecordCount=0|
tableResource2RecordCount=0 |
| 10 | 2 | fileresourcelinecount = 3 | tableResource1RecordCount = 0
 | tableResource2RecordCount = 0 |

MaxCompute User Guide / 4 SQL

Issue: 20181120 235

+-------+------------+-------+

UDTF Examples—Complex Data Types

The code in the following example defines UDF with three overloads. The first overload uses

‘array’ as the parameter; the second uses ‘map’ as the parameter; and the third uses ‘struct’ as

the parameter. Since the third overload uses ‘struct’ as the parameter or returned value, the UDF

class must havethe @Resolve annotation to specify the specific type of ‘struct’.

@Resolve("struct<a:bigint>,string->string")
public class UdfArray extends UDF {
 public String evaluate(List<String> vals, Long len) {
 return vals.get(len.intValue());
 }
 public String evaluate(Map<String,String> map, String key) {
 return map.get(key);
 }
 public String evaluate(Struct struct, String key) {
 return struct.getFieldValue("a") + key;
 }
}

Users can pass in the complex data type in the UDF:

create function my_index as 'UdfArray' using 'myjar.jar';
select id, my_index(array('red', 'yellow', 'green'), colorOrdinal) as
color_name from colors;

Hive UDF Compatibility Example

MaxCompute 2.0 supports Hive-style UDFs. Some Hive UDFs and UDTFs can be used directly in

 MaxCompute.

Note:

Currently, the compatible Hive version is 2.1.0, and the corresponding Hadoop version is 2.7.2.

UDFs that are developed in other versions of Hive/Hadoop may need to be recompiled using this

Hive/Hadoop version.

Example:

package com.aliyun.odps.compiler.hive;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInsp
ectorFactory;
import java.util.ArrayList;
import java.util.List;
import java.util.Objects;
public class Collect extends GenericUDF {

MaxCompute User Guide / 4 SQL

236 Issue: 20181120

 @Override
 public ObjectInspector initialize(ObjectInspector[] objectInspectors
) throws UDFArgumentException {
 if (objectInspectors.length == 0) {
 throw new UDFArgumentException("Collect: input args should >= 1
");
 }
 for (int i = 1; i < objectInspectors.length; i++) {
 if (objectInspectors[i] ! = objectInspectors[0]) {
 throw new UDFArgumentException("Collect: input oi should be
the same for all args");
 }
 }
 return ObjectInspectorFactory.getStandardListObjectInspector(
objectInspectors[0]);
 }
 @Override
 public Object evaluate(DeferredObject[] deferredObjects) throws
HiveException {
 List<Object> objectList = new ArrayList<>(deferredObjects.length);
 for (DeferredObject deferredObject : deferredObjects) {
 objectList.add(deferredObject.get());
 }
 return objectList;
 }
 @Override
 public String getDisplayString(String[] strings) {
 return "Collect";
 }
}

Note:

For the use of Hive UDF, see:

• https://cwiki.apache.org/confluence/display/Hive/HivePlugins

• https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide+UDTF

• https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy

The UDF can pack any type and amount of parameters into array to output. Suppose that the

output jar package is named test.jar:

--Add resource
Add jar test.jar;
--Create function
CREATE FUNCTION hive_collect as 'com.aliyun.odps.compiler.hive.Collect
' using 'test.jar';
--Use function
set odps.sql.hive.compatible=true;
select hive_collect(4y,5y,6y) from dual;
+------+
| _c0 |
+------+
| [4, 5, 6] |

https://cwiki.apache.org/confluence/display/Hive/HivePlugins
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide+UDTF
https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy

MaxCompute User Guide / 4 SQL

Issue: 20181120 237

+------+

Note:

The UDF supports all data types, including array, map, struct, and other complex types.

Note:

• MaxCompute’s add jar command permanently creates a resource in the project, specify the jar

 when creating an UDF, but you cannot automatically add all jars to the classpath.

• To use compatible Hive UDF, add set odps.sql.hive.compatible=true; opposite the

SQL statement, and submit it with SQL statement.

• When using compatible Hive UDFs, you must pay attention to JAVA sandbox limits of

MaxCompute.

4.9.3 Python UDF
The MaxCompute UDF consists of UDF, UDAF, and UDTF functions. This article explains how to

implement these three functions through MaxCompute Python.

RESTRICTED ENVIRONMENT

The Python version of MaxCompute UDF is 2.7 and executes user code in sandbox mode; that is,

the code is executed in a restricted environment.

• Read and Write local files

• Promoter process

• Start thread

• Use SOCKET to communicate

• Other system calls

Because of these restrictions, user-uploaded code must be implemented throughj pure Python,

and the C extension module is disabled.

In addition, not all modules are available in the Python standard library, and modules that involve

these features are disabled. Description of available modules in the standard library are as

follows:

• All modules implemented by pure Python are available.

• The following modules are available in C-implemented extended modules.

▬ array

MaxCompute User Guide / 4 SQL

238 Issue: 20181120

▬ audioop

▬ binascii

▬ _bisect

▬ cmath

▬ _codecs_cn

▬ _codecs_hk

▬ _codecs_iso2022

▬ _codecs_jp

▬ _codecs_kr

▬ _codecs_tw

▬ _collections

▬ cStringIO

▬ datetime

▬ _functools

▬ future_builtins

▬ _hashlib

▬ _heapq

▬ itertools

▬ _json

▬ _locale

▬ _lsprof

▬ math

▬ _md5

▬ _multibytecodec

▬ operator

▬ _random

▬ _sha256

▬ _sha512

▬ _sha

▬ _struct

▬ strop

▬ time

MaxCompute User Guide / 4 SQL

Issue: 20181120 239

▬ unicodedat

▬ _weakref

▬ cPickle

• Some modules have limited functionalities. For example, the sandbox limits the degree to

which user code can write data to the standard output and the standard error output; that is,

sys.stdout/sys.stderr can write 20 KB at most; otherwise, the excessive characters will

be ignored.

Third-party Libraries

Common third-party libraries are installed in the operating environment to supplement the

standard library. The supported third-party libraries also include numpy.

Note:

The use of third-party libraries is also subject to 'prohibit local', 'network I/O', and other restrictions

. Therefore, APIs that have such functions are also prohibited in a third-party library.

Parameters and return value types

The parameters and return values are specified as follows:

@odps.udf.annotate(signature)

MaxCompute SQL data types that are currently supported by the Python UDF include bigint,

String, double, Boolean, and datetime. The SQL statement must determine the parameter type

and the return value type for all functions before execution. So for Python, a dynamically-typed

language, you must specify the function signature by adding a decorator to the UDF class.

The function signature is specified by a string. The syntax is as follows:

arg_type_list '->' type_list
 arg_type_list: type_list | '*' | ''
type_list: [type_list ','] type
'bigint' | 'string' | 'double' | 'boolean' | 'datetime'

• The left side of the arrow indicates the type of the parameter and the right side indicates the

type of the returned value.

• Only the UDTF returned value can be multiple columns, while UDF and UDAF can only return

one column.

• ‘*’ represents varargs. By using varargs, UDF/UDTF/UDAF can match any type of parameter.

MaxCompute User Guide / 4 SQL

240 Issue: 20181120

A valid signature example is as follows:

The 'bigint, double-> string' # parameter is bigint, double, and the
return value is string

The 'bigint, boolean-> string, datetime '# udtf parameter is bigint,
Boolean, the return value is string, datetime

'*->string' # variable length parameter, input parameter arbitrary,
return value string

The '-> doubles' # parameter is empty and the return value is double

At the query semantic parsing stage, unqualified signatures are removed, and an error is returned.

The execution is then stopped. During execution, the UDF parameter will be passed to the

user as the type specified by the function signature. The type of the user returned value must

be consistent with the type specified by the function signature; otherwise, an error is returned.

MaxCompute SQL data type corresponds to the Python type as follows:

ODPS SQL

type

Bigint String Double Boolean Datetime

Python Type int str float bool int

Note:

• Datetime type is passed to user code in the form of an int, with a value of epoch UTC Number

 of milliseconds from time to date. The user can deal with ‘datetime’ type through the ‘datetime

’ module in the Python standard library.

• NULL corresponds to NONE in Python.

In addition, the parameter of odps.udf.int(value[, silent=True]) has been adjusted. Parameter ‘

silent’ is added. . When ‘silent’ is true, if the value cannot be converted into ‘int’, report no error

and return NONE.

UDF

Implementation of the Python UDF is very simple. You are required to define a new-style

 class, and implements the evaluate method. For example:

 from odps.udf import annotate

 @annotate("bigint,bigint->bigint")
class myplus (object):

 def evaluate (self, arg0, arg1):
 If none in (arg0, arg1):

MaxCompute User Guide / 4 SQL

Issue: 20181120 241

 return none
 return arg0 + arg1

Note:

A Python UDF must have its signature specified through annotate.

Since October 16, 2018, the use of Python UDF in the MaxCompute public cloud environment has

 been fully opened.

UDAF

• class odps.udf.BaseUDAF: Inherit this class to implement a Python UDAF.

• BaseUDAF.new_buffer(): Implement this method and return the median ‘buffer’ of the

aggregate function. Buffer must be mutable Object (such as list, dict), and the size of the buffer

 must not increase with the amount of data, in case of limit, Buffer size after Marshal must not

exceed 2 MB.

• BaseUDAF.iterate(buffer[, args, ...]): This method aggregates ‘args’ into the median ‘buffer’.

• BaseUDAF.merge(buffer, pbuffer): This method aggregates two median buffers; that is,

aggregate ‘pbuffer merger’ into ‘buffer’.

• BaseUDAF.terminate(buffer): This method converts the median ‘buffer’ into the MaxCompute

SQL basic types.

An example of an average value of UDAF is as follows:

@annotate('double->double')

class Average(BaseUDAF):

 def new_buffer(self):
 return [0, 0]

 def iterate(self, buffer, number):
 If number is not None:
 buffer[0] += number
 buffer[1] += 1

 def merge(self, buffer, pbuffer):
 buffer [0] + = pbuffer [0]
 buffer [1] + = pbuffer [1]

 def terminate (self, buffer):
 If buffer [1] = 0:
 return 0.0

MaxCompute User Guide / 4 SQL

242 Issue: 20181120

 return buffer[0] / buffer[1]

UDTF

• class odps.udf.BaseUDTF: The basic class of Python UDTF. Users inherit this class and

implement methods such as process, close, and so on.

• BaseUDTF.__init__(): The initialization method, the inheritance class, if you implement this

method, the base class's initialization method, super(BaseUDTF, self).__init__() must be

called in the beginning.

The init method can only be called once during the entire UDTF life cycle; that is, before

the first record is processed. When the UDTF must save the internal state, all states can be

initialized in this method.

• BaseUDTF. process ([args,...]): This is one of the MaxCompute methods. The framework calls

this method. Each record in SQL calls ‘process’ once accordingly. The parameters of ‘process’

are the specified UDTF input parameters in SQL.

• BaseUDTF.forward([args, ...]): The UDTF output method, which is called by user codes. Each

 time ‘forward’ is called, a record is output. The parameters of ‘forward’ are the UDTF output

parameters specified in SQL.

• BaseUDTF.close(): The termination method of UDTF. This method is called by the

MaxCompute SQL framework and only to be called once; that is, after processing the last

record.

Examples of UDTF are:

#coding:utf-8
explode. py

from odps.udf import annotate

from odps.udf import BaseUDTF

@annotate('string -> string')
class Explode(BaseUDTF):
 """Output string comma-separated to multiple records
 """

 def process(self, arg):
 props = arg.split(',')
 for p in props:

MaxCompute User Guide / 4 SQL

Issue: 20181120 243

 self.forward(p)

Note:

A Python UDTF can also specify the parameter type or returned value type without adding

‘annotate’. In this case, the function can match any input parameter in SQL. The returned value

type cannot be deduced, but all output parameters will be considered to be ‘String’ type. So when

‘forward’ is called, all output values must be converted into ‘str’ type.

Referring to resources

Python UDF can reference resource files through the ‘odps.distcache’ module. Currently,

referencing file resources and table resources are supported.

• odps.distcache.get_cache_file(resource_name)

▬ Returns the resource content for the specified name. resource_name: ‘str’ type, correspond

ing to the existing resource name in the current project. If the resource name is invalid or

has no responding resources, returns an error.

▬ The return value is file-like object the caller must call the close method to release the open

resource file after this object has been used.

The example of using ‘get_cache_file’ is as follows:

 @annotate('bigint->string')

class DistCacheExample(object):

 def __init__(self):
 cache_file = get_cache_file('test_distcache.txt')
 kv = {}
 for line in cache_file:
 line = line. strip ()
 If not line:
 continue
 k, v = line.split()
 kv[int(k)] = v
 cache_file.close ()
 self.kv = kv

def evaluate(self, arg):
 return self.kv.get(arg)

• odps.distcache.get_cache_table(resource_name):

▬ Returns the contents of the specified resource table. resource_name: ‘str’ type, correspond

ing to the existing resource table name in the current project. If the resource name is invalid

or has no responding resources, returns an error.

MaxCompute User Guide / 4 SQL

244 Issue: 20181120

▬ Returned value: Returned value is a ‘generator’ type. The caller obtains the table content

through traversal. Each traversal has a record stored in the table in the form of a tuple.

The example of using ‘get_cache_table’ is as follows:

 from odps.udf import annotate
from odps.distcache import get_cache_table

@ attenuate ('-> string ')
class DistCacheTableExample(object):
 def __init__(self):-
 self.records = list(get_cache_table('udf_test'))
 self.counter = 0
 self.ln = len(self.records)

 def evaluate(self):
 if self.counter > self.ln - 1:
 return None
 ret = self.records[self.counter]
 self.counter += 1
 return str(ret)

4.10 Differences with other SQL syntax
This article takes a SQL perspective. and introduces MaxCompute by comparing MaxCompute

SQL with Hive, MySQL, Oracle, SQL Server Unsupported pant, and DML syntax.

Pant syntax not supported by MaxCompute

Grammar MaxCompute Hive MySql Oracle SQL

Server

CREATE TABLE—
PRIMARY KEY

N N Y Y Y

CREATE TABLE—
NOT NULL

N N Y Y Y

Create Table-cluster N Y N Y Y

Create Table-External
 table

Y (supports
OSS and OTS
External tables)

Y N N N

Create Table-maid
table

N Y Y Y Y (with #
prefix)

Create Index N Y Y Y Y

Virtual Column N N (only 2
predefined)

N Y Y

MaxCompute User Guide / 4 SQL

Issue: 20181120 245

DML syntax not supported by MaxCompute

Grammar MaxCompute Hive MySQL Oracle SQL Server

Select-recurrent CTE N N N Y Y

Select-group by roll up N Y Y Y Y

Select-group by cube N Y N Y Y

Select-grouping set N Y N Y Y

Maid join Y Y N Y Y

Select-Fig N N N Y Y

Select-correlated
subquery

N Y Y Y Y

Set operator-Union (
distinct)

Y Y Y Y Y

Set operator-intersect N N N Y Y

Set operator-minus N N N Y Y (keyword)

Update... Where N Y Y Y Y

Update... Order by
limit

N N Y N Y

Delete... Where N Y Y Y Y

Delete... Order by limit N N Y N N

Analytic-reusable
windowing clause

N Y N N N

Analytic-range N Y N Y Y

4.11 SQL limits
Some users may fail to notice specific limits and find the service has stopped. The limits for

MaxCompute SQL include the following:

Boundary name Maximum value/

Limit

Class Description

Length of table
name

128 bytes Length limit Table names and column
names cannot contain special
 characters. It must start with
 a letter and can contain only

MaxCompute User Guide / 4 SQL

246 Issue: 20181120

Boundary name Maximum value/

Limit

Class Description

 English letters (a-z, A-Z),
numbers, and underscores (_).

Annotation length 1,024 bytes Length limit The annotation can contain valid
 strings for up to 1,024 bytes.

Column definitions 1,200 Quantity limit One table can contain a
maximum of 1,200 column
definitions.

Partitions 60,000 Quantity limit One table can contain a
maximum of 60,000 partitions.

Partition levels of a
 table

6 levels Quantity limit A table can contain a maximum
of six levels of partition.

Statistical definition
s

100 Quantity limit One table can contain a
maximum of 100 statistical
definitions.

Statistical definition
s

 64,000 Length limit A statistical definition can
contain a maximum of 64,000
bytes.

Screen display 10,000 rows Quantity limit The screen display of a SELECT
 statement outputs a maximum
of 10,000 rows.

INSERT targets 256 Quantity limit A multiins operation can insert
a maximum of 256 targets at a
time.

UNION ALL 256 Quantity limit The UNION ALL operation can
be performed on a maximum of
256 tables.

MAPJOIN 　 Eight small tables Quantity limit A MAPJOIN operation can be
 performed on a maximum of
eight small tables.

MAPJOIN memory
restriction

512 MB Quantity limit The memory size of all small
 tables on which MAPJOIN
operation is performed cannot
exceed 512 MB.

MaxCompute User Guide / 4 SQL

Issue: 20181120 247

Boundary name Maximum value/

Limit

Class Description

Window functions Five Quantity limit A SELECT statement can
contain a maximum of five
window functions.

ptinsubq 　 1,000 rows Quantity limit The results returned by PT IN
SUBQUERY cannot exceed 1,
000 rows.

SQL statement 2 MB Length limit The maximum length of an SQL
statement is 2 MB.

Number of
conditions for a
where clause

256 Quantity limit A where clause can use a
maximum of 256 conditions.

Length of column
records

8 MB Quantity limit The maximum length of a cell in
tables is 8 MB.

Number of
parameters of an in
 statement

1,024 Quantity limit Specifies the maximum
number of parameters of an in
 statement, for example, in (
1,2,3….,1024). An excess of
parameters of in(…) results in
compilation pressure. 1,024 is a
 recommended value, not a limit
 value.

jobconf.json 1 MB Length limit The size of ‘jobconf.json’ is 1 MB
. Including too many partitions in
a table may cause ‘jobconf.json’
to exceed 1 MB.

View Not writable Operation
restriction

A view cannot be written or
 operated using an insert
statement.

Column data type Not allowed Operation limit The data type and position of a
column cannot be modified.

java udf function Cannot be abstract or
 static

Operation limit A Java UDF cannot be abstract
or static.

A maximum of 10,
000 partitions can
be queried.

10,000 Quantity limit A maximum of 10,000 partitions
can be queried.

MaxCompute User Guide / 4 SQL

248 Issue: 20181120

Note:

The limits of MaxCompute SQL cannot be manually modified or configured.

MaxCompute User Guide / 5 MapReduce

Issue: 20181120 249

5 MapReduce

5.1 Program Example

5.1.1 WordCount samples
Prerequisites

1. Prepare a Jar package of the test program. Assume the package is named mapreduce-

examples.jar. The local storage path is data\resources.

• Create tables:

create table wc_in (key string, value string);
create table wc_out(key string, cnt bigint);

• Add resources:

add jar data\resources\mapreduce-examples.jar -f;

2. Prepare tables and resources for testing the WordCount operation.

3. Run tunnel to import data.

tunnel upload data wc_in;

The contents of data file imported into the table wc_in, as follows:

hello,odps

Procedure

Run WordCount in odpscmd.

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.WordCount wc_in wc_out

Expected output

The content of output table wc_out is as follows:

+------------+------------+
| key | cnt |
+------------+------------+
| hello | 1 |
| odps | 1 |

MaxCompute User Guide / 5 MapReduce

250 Issue: 20181120

+------------+------------+

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 Import java. util. iterator;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 public class WordCount {
 public static class TokenizerMapper extends MapperBase {
 private Record word;
 private Record one;
 @Override
 public void setup(TaskContext context) throws IOException{
 word = context.createMapOutputKeyRecord();
 one = context.createMapOutputValueRecord();
 one.set(new Object[] { 1L });
 System.out.println("TaskID:" + context.getTaskID().toString
());
 }
 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 throws IOException {
 for (int i = 0; i < record.getColumnCount(); i++) {
 word.set(new Object[] { record.get(i).toString() });
 context.write(word, one);
 }
 }
 }
 /**
 * A combiner class that combines map output by sum them.
 **/
 public static class SumCombiner extends ReducerBase {
 private Record count;
 @Override
 public void setup(TaskContext context) throws IOException{
 count = context.createMapOutputValueRecord();
 }
 // Assemblyer implements the same interface as reducer, you
can immediately reduce the output of the mapper for a reduce that is
performed locally on the mapper.
 @Override
 public void reduce(Record key,Iterator<Record>values,
TaskContext context)
 throws IOException {
 long c = 0;
 while(values.hasNext()) {
 Record val = values.next();
 c += (Long) val.get(0);
 }
 count.set(0, c);

MaxCompute User Guide / 5 MapReduce

Issue: 20181120 251

 context.write(key, count);
 }
 }
 /**
 * A reducer class that just emits the sum of the input values.
 **/
 public static class SumReducer extends ReducerBase {
 private Record result = null;
 @Override
 public void setup(TaskContext context) throws IOException{
 result = context.createOutputRecord();
 }
 @Override
 public void reduce(Record key,Iterator<Record>values,
TaskContext context)
 Throws ioexception {
 Long Count = 0;
 while(values.hasNext()) {
 Record val = values.next();
 count += (Long) val.get(0);
 }
 result.set(0, key.get(0));
 result.set(1, count);
 context.write(result);
 }
 }
 public static void main(String[] args) throws Exception {
 if (args.length ! = 2) {
 System.err.println("Usage: WordCount <in_table> <out_table
>");
 System.exit(2);
 }
 JobConf job = new JobConf();
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(SumCombiner.class);
 job.setReducerClass(SumReducer.class);
//The schema that sets the key and value of the mapper's intermediate
result, the mapper's intermediate output is also the form of a record.
 job.setMapOutputKeySchema(SchemaUtils.fromString("word:string
"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("count:
bigint"));
 //Set input and output table information
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 Jobclient. runjob (job);
 }

MaxCompute User Guide / 5 MapReduce

252 Issue: 20181120

 }

5.1.2 MapOnly samples
For MapOnly jobs, Map directly sends < Key, Value > pairs to tables on MaxCompute. You only

need to specify the output table. However, you can skip specifying the Key/Value metadata to be

output by Map.

Prerequisites

1. Prepare a JAR package of the test program. Assume the package is named mapreduce-

examples.jar,the local storage path is data\resources.

2. Prepare tables and resources for testing the MapOnly operation.

• Create tables:

create table wc_in (key string, value string);
create table wc_out(key string, cnt bigint);

• Add resources:

add jar data\resources\mapreduce-examples.jar -f;

3. Use the tunnel command to import the data:

tunnel upload data wc_in;

The contents of data file are imported into the “mr_src” table:

 hello,odps
 hello,odps

Procedure

Run MapOnly in odpscmd:

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.MapOnly wc_in wc_out map

Expected output

The content of output table wc_out is as follows:

+------------+------------+
| key | cnt |
+------------+------------+
| hello | 1 |
| hello | 1 |

MaxCompute User Guide / 5 MapReduce

Issue: 20181120 253

+------------+------------+

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.mapred.JobClient;
 Import com. aliyun. ODPS. mapred. mapperbase;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.data.TableInfo;
 public class MapOnly {
 public static class MapperClass extends MapperBase {
 @Override
 public void setup(TaskContext context) throws IOException{
 boolean is = context.getJobConf().getBoolean("option.mapper.
setup", false);
 // The Main function sets option.mapper.setup to true in
jobconf to execute the following logic.
 if (is) {
 Record result = context.createOutputRecord();
 result.set(0, "setup");
 result.set(1, 1L);
 context.write(result);
 }
 }
 @Override
 public void map(long key, Record record, TaskContext context)
throws IOException {
 boolean is = context.getJobConf().getBoolean("option.mapper.
map", false);
 //The Main function sets option.mapper.map to true in
jobconf to execute the following logic.
 if (is) {
 Record result = context.createOutputRecord();
 result.set(0, record.get(0));
 result.set(1, 1L);
 context.write(result);
 }
 }
 @Override
 public void cleanup(TaskContext context) throws IOException {
 boolean is = context.getJobConf().getBoolean("option.mapper.
cleanup", false);
 //The Main function sets option.mapper.cleanup to true in
jobconf to execute the following logic.
 if (is) {
 Record result = context.createOutputRecord();
 result.set(0, "cleanup");
 result.set(1, 1L);
 context.write(result);
 }
 }
 }
 public static void main(String[] args) throws Exception {
 if (args.length ! = 2 && args.length ! = 3) {
 System.err.println("Usage: OnlyMapper <in_table> <out_table>
 [setup|map|cleanup]");

MaxCompute User Guide / 5 MapReduce

254 Issue: 20181120

 System.exit(2);
 }
 JobConf job = new JobConf();
 job.setMapperClass(MapperClass.class);
 // For maponly jobs, the number of reducers must be explicitly
 set to 0
 job.setNumReduceTasks(0);
 //Set table information for Input Output
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 if (args.length == 3) {
 String options = new String(args[2]);
 //Jobconf can set custom key, value, and getJobConf can get
relevant settings in mapper through getJobConf of context.
 if (options.contains("setup")) {
 job.setBoolean("option.mapper.setup", true);
 }
 if (options.contains("map")) {
 job.setBoolean("option.mapper.map", true);
 }
 if (options.contains("cleanup")) {
 job.setBoolean("option.mapper.cleanup", true);
 }
 }
 Jobclient. runjob (job);
 }
 }

5.1.3 Multi-input and Output
Prerequisites

1. Prepare a Jar package of the test program. Assume the package is named mapreduce-

examples.jar, and the local storage path is The local storage path is data\

resources.

2. Prepare tables and resources for testing the multi-input and output operations.

• Create tables:

create table wc_in1(key string, value string);
create table wc_in2(key string, value string);
create table mr_multiinout_out1 (key string, cnt bigint);
create table mr_multiinout_out2 (key string, cnt bigint)
partitioned by (a string, b string);
alter table mr_multiinout_out2 add partition (a='1', b='1');
alter table mr_multiinout_out2 add partition (a='2', b='2');

• Add resources:

add jar data\resources\mapreduce-examples.jar -f;

3. Run tunnel to import data.

tunnel upload data1 wc_in1;

MaxCompute User Guide / 5 MapReduce

Issue: 20181120 255

tunnel upload data2 wc_in2;

The data imported into the wc_in1 table is as follows:

 hello,odps

The data imported into the wc_in2 table is as follows:

 hello,world

Procedure

Run MultipleInOut in odpscmd.

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.MultipleInOut wc_in1,wc_in2
mr_multiinout_out1,mr_multiinout_out2|a=1/b=1|out1,mr_multiinout_out2|
a=2/b=2|out2;

Expected output

The content of ‘mr_multiinout_out1’ is as follows:

+------------+------------+
| key | cnt |
+------------+------------+
| default | 1 |
+------------+------------+

The content of ‘mr_multiinout_out2’ is as follows:

+--------+------------+---+---+
| key | cnt | a | b |
+--------+------------+---+---+
odps	1	1	1
world	1	1	1
out1	1	1	1
hello	2	2	2
out2	1	2	2
+--------+------------+---+---+

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 Import java.util.iterator;
 import java.util.LinkedHashMap;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;

MaxCompute User Guide / 5 MapReduce

256 Issue: 20181120

 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 /**
 * Multi input & output example.
 **/
 public class MultipleInOut {
 public static class TokenizerMapper extends MapperBase {
 Record word;
 Record one;
 @Override
 public void setup(TaskContext context) throws IOException{
 word = context.createMapOutputKeyRecord();
 one = context.createMapOutputValueRecord();
 one.set(new Object[] { 1L });
 }
 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 Throws ioexception {
 for (int i = 0; i < record.getColumnCount(); i++) {
 word.set(new Object[] { record.get(i).toString() });
 context.write(word, one);
 }
 }
 }
 public static class SumReducer extends ReducerBase {
 private Record result;
 private Record result1;
 private Record result2;
 @Override
 public void setup(TaskContext context) throws IOException{
 // For different outputs you need to create different
records, which are distinguished by label
 result = context.createOutputRecord();
 result1 = context.createOutputRecord("out1");
 result2 = context.createOutputRecord("out2");
 }
 @Override
 public void reduce(Record key,Iterator<Record>values,
TaskContext context)
 Throws ioexception {
 Long Count = 0;
 while(values.hasNext()) {
 Record val = values.next();
 count += (Long) val.get(0);
 }
 long mod = count % 3;
 if (mod == 0) {
 result.set(0, key.get(0));
 result.set(1, count);
 //No label is specified. Default output is adopted.
 context.write(result);
 } else if (mod == 1) {
 result1.set(0, key.get(0));
 result1.set(1, count);
 context.write(result1, "out1");
 } else {
 result2.set(0, key.get(0));
 result2.set(1, count);
 context.write(result2, "out2");
 }
 }

MaxCompute User Guide / 5 MapReduce

Issue: 20181120 257

 @Override
 public void cleanup(TaskContext context) throws IOException {
 Record result = context.createOutputRecord();
 result.set(0, "default");
 result.set(1, 1L);
 context.write(result);
 Record result1 = context.createOutputRecord("out1");
 result1.set(0, "out1");
 result1.set(1, 1L);
 context.write(result1, "out1");
 Record result2 = context.createOutputRecord("out2");
 result2.set(0, "out2");
 result2.set(1, 1L);
 context.write(result2, "out2");
 }
 }
 // Convert the partition string such as "ds = 1/pt = 2" into map
 form
 public static LinkedHashMap<String, String> convertPartSpecToMap
(
 String partSpec) {
 LinkedHashMap<String, String> map = new LinkedHashMap<String,
String>();
 if (partSpec ! = null && ! partSpec.trim().isEmpty()) {
 String[] parts = partSpec.split("/");
 for (String part : parts) {
 String[] ss = part.split("=");
 if (ss.length ! = 2) {
 throw new RuntimeException("ODPS-0730001: error part
spec format: "
 + partSpec);
 }
 map.put(ss[0], ss[1]);
 }
 }
 return map;
 }
 public static void main(String[] args) throws Exception {
 String[] inputs = null;
 String[] outputs = null;
 if (args.length == 2) {
 inputs = args[0].split(",");
 outputs = args[1].split(",");
 } else {
 System.err.println("MultipleInOut in... out...") ;
 System.exit(1);
 }
 JobConf job = new JobConf();
 job.setMapperClass(TokenizerMapper.class);
 job.setReducerClass(SumReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("word:string
"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("count:
bigint"));
 //Parse the user input table strings.
 for (String in : inputs) {
 String[] ss = in.split("\\|");
 if (ss.length == 1) {
 InputUtils.addTable(TableInfo.builder().tableName(ss[0]).
build(), job);
 } else if (ss.length == 2) {

MaxCompute User Guide / 5 MapReduce

258 Issue: 20181120

 LinkedHashMap<String, String> map = convertPartSpecToMap(
ss[1]);
 InputUtils.addTable(TableInfo.builder().tableName(ss[0]).
partSpec(map).build(), job);
 } else {
 System.err.println("Style of input: " + in + " is not
right");
 System.exit(1);
 }
 }
 //Parse the user output table strings.
 for (String out : outputs) {
 String[] ss = out.split("\\|");
 if (ss.length == 1) {
 OutputUtils.addTable(TableInfo.builder().tableName(ss[0]).
build(), job);
 } else if (ss.length == 2) {
 LinkedHashMap<String, String> map = convertPartSpecToMap(
ss[1]);
 OutputUtils.addTable(TableInfo.builder().tableName(ss[0]).
partSpec(map).build(), job);
 } else if (ss.length == 3) {
 if (ss[1].isEmpty()) {
 LinkedHashMap<String, String> map = convertPartSpecToMap
(ss[2]);
 OutputUtils.addTable(TableInfo.builder().tableName(ss[0
]).partSpec(map).build(), job);
 } else {
 LinkedHashMap<String, String> map = convertPartSpecToMap
(ss[1]);
 OutputUtils.addTable(TableInfo.builder().tableName(ss[0
]).partSpec(map)
 .label(ss[2]).build(), job);
 }
 } else {
 System.err.println("Style of output: " + out + " is not
right");
 System.exit(1);
 }
 }
 Jobclient. runjob (job);
 }
 }

5.1.4 Multi-task samples
Prerequisites

1. Prepare the Jar package of the test program. Assume the package is named mapreduce-

examples.jar, and the local storage path is data\resources.

2. Prepare tables and resources for testing the MultiJobs operation.

• Create tables:

create table mr_empty (key string, value string);

MaxCompute User Guide / 5 MapReduce

Issue: 20181120 259

create table mr_multijobs_out (value bigint);

• Add resources:

add table mr_multijobs_out as multijobs_res_table -f;
Add jar data \ resources \ mapreduce-examples.jar-f;

Procedure

Run MultiJobs in odpscmd.

jar -resources mapreduce-examples.jar,multijobs_res_table -classpath
data\resources\mapreduce-examples.jar
 com.aliyun.odps.mapred.open.example.MultiJobs mr_multijobs_out;

Expected output

The output table ‘mr_multijobs_out’ is as follows:

+------------+
| value |
+------------+
| 0 |
+------------+

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 import java.util.Iterator;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.RunningJob;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 /**
 * MultiJobs
 *
 * Running multiple job
 *
 **/
 public class MultiJobs {
 public static class InitMapper extends MapperBase {
 @Override
 public void setup(TaskContext context) throws IOException{
 Record record = context.createOutputRecord();
 long v = context.getJobConf().getLong("multijobs.value", 2);
 record.set(0, v);
 context.write(record);
 }
 }
 public static class DecreaseMapper extends MapperBase {
 @Override

MaxCompute User Guide / 5 MapReduce

260 Issue: 20181120

 public void cleanup(TaskContext context) throws IOException {
 //Obtain the variable values defined by the main function
from JobConf.
 long expect = context.getJobConf().getLong("multijobs.expect
.value", -1);
 long v = -1;
 int count = 0;
 // Read the data in the resource table, which is the output
table of the previous job
 Iterator<Record> iter = context.readResourceTable("
multijobs_res_table");
 while (iter.hasNext()) {
 Record r = iter.next();
 v = (Long) r.get(0);
 if (expect ! = v) {
 throw new IOException("expect: " + expect + ", but: " +
v);
 }
 count++;
 }
 if (count ! = 1) {
 throw new IOException("res_table should have 1 record, but
: " + count);
 }
 Record record = context.createOutputRecord();
 v--;
 record.set(0, v);
 context.write(record);
 // Sets counter, which can be obtained in the main function
after the job has completed successfully
 context.getCounter("multijobs", "value").setValue(v);
 }
 }
 public static void main(String[] args) throws Exception {
 if (args.length ! = 1) {
 System.err.println("Usage: TestMultiJobs <table>");
 System.exit(1);
 }
 String tbl = args[0];
 long iterCount = 2;
 System.err.println("Start to run init job.") ;
 JobConf initJob = new JobConf();
 initJob.setLong("multijobs.value", iterCount);
 initJob.setMapperClass(InitMapper.class);
 InputUtils.addTable(TableInfo.builder().tableName("mr_empty").
build(), initJob);
 OutputUtils.addTable(TableInfo.builder().tableName(tbl).build
(), initJob);
 initJob.setMapOutputKeySchema(SchemaUtils.fromString("key:
string"));
 initJob.setMapOutputValueSchema(SchemaUtils.fromString("value:
string"));
 // Maponly job needs to explicitly set reducer number to 0
 initJob.setNumReduceTasks(0);
 JobClient.runJob(initJob);
 while (true) {
 System.err.println("Start to run iter job, count: " +
iterCount);
 JobConf decJob = new JobConf();
 decJob.setLong("multijobs.expect.value", iterCount);
 decJob.setMapperClass(DecreaseMapper.class);

MaxCompute User Guide / 5 MapReduce

Issue: 20181120 261

 InputUtils.addTable(TableInfo.builder().tableName("mr_empty
").build(), decJob);
 OutputUtils.addTable(TableInfo.builder().tableName(tbl).
build(), decJob);
 // Maponly job needs to explicitly set reducer number to 0
 decJob.setNumReduceTasks(0);
 RunningJob rJob = JobClient.runJob(decJob);
 iterCount--;
 // Exit the loop if the number of iterations has been
reached
 if (rJob.getCounters().findCounter("multijobs", "value").
getValue() == 0) {
 break;
 }
 }
 if (iterCount ! = 0) {
 throw new IOException("Job failed.") ;
 }
 }
 }

5.1.5 Secondary Sort samples
Prerequisites

1. Prepare a JAR package of the test program. Assume the package is named “mapreduce-

examples.jar”. The local storage path is data\resources.

2. Prepare tables and resources for testing the SecondarySort operation.

• Create tables:

create table ss_in(key bigint, value bigint);
create table ss_out(key bigint, value bigint)

• Add resources:

add jar data\resources\mapreduce-examples.jar -f;

3. Import the data through tunnel command:

tunnel upload data ss_in;

The contents of data file imported into the table “ss_in” are as follows:

1,2
2,1
1,1

MaxCompute User Guide / 5 MapReduce

262 Issue: 20181120

2,2

Procedure

Run SecondarySort on the odpscmd:

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.SecondarySort ss_in ss_out;

Expected output

The contents in the output table “ss_out” are as follows:

| key | value |

1	1
1	2
2	1
2	2

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 import java.util.Iterator;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.data.TableInfo;

 * This is an example ODPS Map/Reduce application. It reads the
input table that
 * must contain two integers per record. The output is sorted by
the first and
 * second number and grouped on the first number.

 public class SecondarySort {

 * Read two integers from each line and generate a key, value
pair as ((left,
 * right), right).

 public static class MapClass extends MapperBase {
 private Record key;
 private Record value;
 @Override
 public void setup(TaskContext context) throws IOException {
 key = context.createMapOutputKeyRecord();
 value = context.createMapOutputValueRecord();

MaxCompute User Guide / 5 MapReduce

Issue: 20181120 263

 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 throws IOException {
 long left = 0;
 long right = 0;
 if (record.getColumnCount() > 0) {
 left = (Long) record.get(0);
 if (record.getColumnCount() > 1) {
 right = (Long) record.get(1);

 key.set(new Object[] { (Long) left, (Long) right });
 value.set(new Object[] { (Long) right });
 context.write(key, value);

 * A reducer class that just emits the sum of the input values.

 public static class ReduceClass extends ReducerBase {
 private Record result = null;
 @Override
 public void setup(TaskContext context) throws IOException {
 result = context.createOutputRecord();

 @Override
 public void reduce(Record key, Iterator<Record> values,
TaskContext context)
 throws IOException {
 result.set(0, key.get(0));
 while (values.hasNext()) {
 Record value = values.next();
 result.set(1, value.get(0));
 context.write(result);

 public static void main(String[] args) throws Exception {
 if (args.length ! = 2) {
 System.err.println("Usage: secondarysrot <in> <out>");
 System.exit(2);

 JobConf job = new JobConf();
 job.setMapperClass(MapClass.class);
 job.setReducerClass(ReduceClass.class);
 // set multiple columns to key
 // compare first and second parts of the pair
 job.setOutputKeySortColumns(new String[] { "i1", "i2" });
 // partition based on the first part of the pair
 job.setPartitionColumns(new String[] { "i1" });
 // grouping comparator based on the first part of the pair
 job.setOutputGroupingColumns(new String[] { "i1" });
 // the map output is LongPair, Long
 job.setMapOutputKeySchema(SchemaUtils.fromString("i1:bigint,i2
:bigint"));
 Job. Fig (schemeiutils. fromstring ("i2x: bigint "));
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);

MaxCompute User Guide / 5 MapReduce

264 Issue: 20181120

 JobClient.runJob(job);
 System.exit(0);

5.1.6 Resource samples
Prerequisites

1. Prepare a Jar package of the test program. Assume the package is named mapreduce-

examples.jar, and the local storage path is data\resources.

2. Prepare the test table and the resource.

• Create the tables:

create table mr_upload_src(key bigint, value string);

• Add the resource:

add jar data\resources\mapreduce-examples.jar -f;
add file data\resources\import.txt -f;

• The contents of import.txt:

1000,odps

Procedure

Run Upload on the odpscmd:

jar -resources mapreduce-examples.jar,import.txt -classpath data\
resources\mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.Upload import.txt mr_upload_src;

Expected output

The content in the output table “mr_upload_src” is as follows:

+------------+------------+
| key | value |
+------------+------------+
| 1000 | odps |
+------------+------------+

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.BufferedInputStream;
 import java.io.FileNotFoundException;
 import java.io.IOException;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.TableInfo;

MaxCompute User Guide / 5 MapReduce

Issue: 20181120 265

 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 /**
 * Upload
 *
 * Import data from text file into table
 *
 **/
 public class Upload {
 public static class UploadMapper extends MapperBase {
 @Override
 public void setup(TaskContext context) throws IOException{
 Record record = context.createOutputRecord();
 StringBuilder importdata = new StringBuilder();
 BufferedInputStream bufferedInput = null;
 try {
 byte[] buffer = new byte[1024];
 int bytesRead = 0;
 String filename = context.getJobConf().get("import.
filename");
 bufferedInput = context.readResourceFileAsStream(filename
);
 while ((bytesRead = bufferedInput.read(buffer)) ! = -1) {
 String chunk = new String(buffer, 0, bytesRead);
 importdata.append(chunk);
 }
 String lines[] = importdata.toString().split("\n");
 for (int i = 0; i < lines.length; i++) {
 String[] ss = lines[i].split(",");
 record.set(0, Long.parseLong(ss[0].trim()));
 record.set(1, ss[1].trim());
 context.write(record);
 }
 } catch (FileNotFoundException ex) {
 throw new IOException(ex);
 } catch (IOException ex) {
 throw new IOException(ex);
 } finally {
 }
 }
 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 Throws ioexception {
 }
 }
 public static void main(String[] args) throws Exception {
 if (args.length ! = 2) {
 System.err.println("Usage: Upload <import_txt> <out_table
>");
 System.exit(2);
 }
 JobConf job = new JobConf();
 job.setMapperClass(UploadMapper.class);
 // Set the Resource Name, which can be obtained from jobconf
in the map
 job.set("import.filename", args[0]);

MaxCompute User Guide / 5 MapReduce

266 Issue: 20181120

 // Maponly job needs to explicitly set reducer number to 0
 job.setNumReduceTasks(0);
 job.setMapOutputKeySchema(SchemaUtils.fromString("key:bigint
"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("value:
string"));
 InputUtils.addTable(TableInfo.builder().tableName("mr_empty").
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 Jobclient. runjob (job);
 }
 }

A user can set up JobConf through the following methods:

• T Use JobConf interface in SDK. This method is used is the preceding example. Moreover, this

 is the most recommended method and is given the highest priority.

• In jar command lines, specify new JobConf file through the parameter -conf. This method is of

the lowest priority.

5.1.7 Counter samples
Prerequisites

1. Prepare the Jar package of the test program. Assume the package is named mapreduce-

examples.jar, and the local storage path is data\resources.

2. Prepare the UserDefinedCounters test table and resource.

• Create tables:

create table wc_in (key string, value string);

MaxCompute User Guide / 5 MapReduce

Issue: 20181120 267

create table wc_out(key string, cnt bigint);

• Add resources:

add jar data\resources\mapreduce-examples.jar -f;

3. Use the tunnel command to import the data:

tunnel upload data wc_in;

The data imported into the wc_in the table wc_in, is as follows:

hello,odps

Procedure

Execute UserDefinedCounters on the odpscmd:

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.UserDefinedCounters wc_in wc_out

Expected output

The output of Counters is as follows:

Counters: 3
com.aliyun.odps.mapred.open.example.UserDefinedCounters$MyCounter
MAP_TASKS=1
REDUCE_TASKS=1
TOTAL_TASKS=2

The content of output table “wc_out” is as follows:

+------------+------------+
| key | cnt |
+------------+------------+
| hello | 1 |
| odps | 1 |
+------------+------------+

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 import java.util.Iterator;
 import com.aliyun.odps.counter.Counter;
 import com.aliyun.odps.counter.Counters;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.mapred.RunningJob;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.SchemaUtils;

MaxCompute User Guide / 5 MapReduce

268 Issue: 20181120

 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.data.TableInfo;
 /**
 *
 * User Defined Counters
 *
 **/
 public class UserDefinedCounters {
 enum MyCounter {
 TOTAL_TASKS, MAP_TASKS, REDUCE_TASKS
 }
 public static class TokenizerMapper extends MapperBase {
 private Record word;
 private Record one;
 @Override
 public void setup(TaskContext context) throws IOException{
 super.setup(context);
 Counter map_tasks = context.getCounter(MyCounter.MAP_TASKS);
 Counter total_tasks = context.getCounter(MyCounter.
TOTAL_TASKS);
 map_tasks.increment(1);
 total_tasks.increment(1);
 word = context.createMapOutputKeyRecord();
 one = context.createMapOutputValueRecord();
 one.set(new Object[] { 1L });
 }
 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 Throws ioexception {
 for (int i = 0; i < record.getColumnCount(); i++) {
 word.set(new Object[] { record.get(i).toString() });
 context.write(word, one);
 }
 }
 }
 public static class SumReducer extends ReducerBase {
 private Record result = null;
 @Override
 public void setup(TaskContext context) throws IOException{
 result = context.createOutputRecord();
 Counter reduce_tasks = context.getCounter(MyCounter.
REDUCE_TASKS);
 Counter maid = context. getcounter (mycounter);
 reduce_tasks.increment(1);
 total_tasks.increment(1);
 }
 @Override
 public void reduce(Record key,Iterator<Record>values,
TaskContext context)
 Throws ioexception {
 Long Count = 0;
 while(values.hasNext()) {
 Record val = values.next();
 count += (Long) val.get(0);
 }
 result.set(0, key.get(0));
 result.set(1, count);
 context.write(result);
 }
 }

MaxCompute User Guide / 5 MapReduce

Issue: 20181120 269

 public static void main(String[] args) throws Exception {
 if (args.length ! = 2) {
 System.err
 .println("Usage: TestUserDefinedCounters <in_table> <
out_table>");
 System.exit(2);
 }
 JobConf job = new JobConf();
 job.setMapperClass(TokenizerMapper.class);
 job.setReducerClass(SumReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("word:string
"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("count:
bigint"));
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 RunningJob rJob = JobClient.runJob(job);
 // After the job has completed successfully, you can get the
value of the custom counter inside the job
 Counters counters = rJob.getCounters();
 long m = counters.findCounter(MyCounter.MAP_TASKS).getValue();
 long r = counters.findCounter(MyCounter.REDUCE_TASKS).getValue
();
 long total = counters.findCounter(MyCounter.TOTAL_TASKS).
getValue();
 System.exit(0);
 }
 }

5.1.8 Grep samples
Prerequisites

1. Prepare the Jar package of the test program. Assume the package is named mapreduce-

examples.jar, and the local storage path is and the local storage path is data\

resources.

2. Prepare tables and resources for testing the Grep operation.

• Create tables:

create table mr_src(key string, value string);
create table mr_grep_tmp (key string, cnt bigint);

MaxCompute User Guide / 5 MapReduce

270 Issue: 20181120

create table mr_grep_out (key bigint, value string);

• Add resources:

add jar data\resources\mapreduce-examples.jar -f;

3. Use the tunnel command to import the data:

tunnel upload data mr_src;

The contents of data file imported into the table “mr_src”:

 hello,odps
 hello,world

Procedure

Execute Grep on the odpscmd:

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.Grep mr_src mr_grep_tmp mr_grep_ou
t hello;

Expected output

The content of output table “mr_grep_out” is as follows:

+------------+------------+
| key | value |
+------------+------------+
| 2 | hello |
+------------+------------+

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 import java.util.Iterator;
 import java.util.regex.Matcher;
 import java.util.regex.Pattern;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.Mapper;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.mapred.RunningJob;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 /**
 *
 * Extracts matching regexs from input files and counts them.
 *

MaxCompute User Guide / 5 MapReduce

Issue: 20181120 271

 **/
 public class Grep {
 /**
 * RegexMapper
 **/
 public class RegexMapper extends MapperBase {
 private Pattern pattern;
 private int group;
 private Record word;
 private Record one;
 @Override
 public void setup(TaskContext context) throws IOException{
 JobConf job = (JobConf) context.getJobConf();
 pattern = Pattern.compile(job.get("mapred.mapper.regex"));
 group = job.getInt("mapred.mapper.regex.group", 0);
 word = context.createMapOutputKeyRecord();
 one = context.createMapOutputValueRecord();
 one.set(new Object[] { 1L });
 }
 @Override
 public void map(long recordNum, Record record, TaskContext
context) throws IOException {
 for (int i = 0; i < record.getColumnCount(); ++i) {
 String text = record.get(i).toString();
 Matcher = pattern. matcher (text);
 while (matcher.find()) {
 word.set(new Object[] { matcher.group(group) });
 context.write(word, one);
 }
 }
 }
 }
 /**
 * LongSumReducer
 **/
 public class LongSumReducer extends ReducerBase {
 private Record result = null;
 @Override
 public void setup(TaskContext context) throws IOException{
 result = context.createOutputRecord();
 }
 @Override
 public void reduce(Record key, Iterator<Record> values,
TaskContext context) throws IOException {
 Long Count = 0;
 while(values.hasNext()) {
 Record val = values.next();
 count += (Long) val.get(0);
 }
 result.set(0, key.get(0));-
 result.set(1, count);
 context.write(result);
 }
 }
 /**
 * A {@link Mapper} that swaps keys and values.
 **/
 public class InverseMapper extends MapperBase {
 private Record word;
 private Record count;
 @Override
 public void setup(TaskContext context) throws IOException{

MaxCompute User Guide / 5 MapReduce

272 Issue: 20181120

 word = context.createMapOutputValueRecord();
 count = context.createMapOutputKeyRecord();
 }
 /**
 * The inverse function. Input keys and values are swapped.
 **/
 @Override
 public void map(long recordNum, Record record, TaskContext
context) throws IOException {
 word.set(new Object[] { record.get(0).toString() });
 count.set(new Object[] { (Long) record.get(1) });
 context.write(count, word);
 }
 }
 /**
 * IdentityReducer
 **/
 public class IdentityReducer extends ReducerBase {
 private Record result = null;
 @Override
 public void setup(TaskContext context) throws IOException{
 result = context.createOutputRecord();
 }
 /** Writes all keys and values directly to output. **/
 @Override
 public void reduce(Record key, Iterator<Record> values,
TaskContext context) throws IOException {
 result.set(0, key.get(0));
 while(values.hasNext()) {
 Record val = values.next();
 result.set(1, val.get(0));
 context.write(result);
 }
 }
 }
 public static void main(String[] args) throws Exception {
 if (args.length < 4) {
 System.err.println("Grep <inDir> <tmpDir> <outDir> <regex>
 [<group>]");
 System.exit(2);
 }
 JobConf grepJob = new JobConf();
 grepJob.setMapperClass(RegexMapper.class);
 grepJob.setReducerClass(LongSumReducer.class);
 grepJob.setMapOutputKeySchema(SchemaUtils.fromString("word:
string"));
 grepJob.setMapOutputValueSchema(SchemaUtils.fromString("count:
bigint"));
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), grepJob);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), grepJob);
 // Set the regular expression for grepjob's grep
 grepJob.set("mapred.mapper.regex", args[3]);
 if (args.length == 5) {
 grepJob.set("mapred.mapper.regex.group", args[4]);
 }
 @SuppressWarnings("unused")
 RunningJob rjGrep = JobClient.runJob(grepJob);
 // Grepjob output as input to sortjob
 JobConf sortJob = new JobConf();
 sortJob.setMapperClass(InverseMapper.class);

MaxCompute User Guide / 5 MapReduce

Issue: 20181120 273

 sortJob.setReducerClass(IdentityReducer.class);
 sortJob.setMapOutputKeySchema(SchemaUtils.fromString("count:
bigint"));
 sortJob.setMapOutputValueSchema(SchemaUtils.fromString("word:
string"));-
 InputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), sortJob);
 OutputUtils.addTable(TableInfo.builder().tableName(args[2]).
build(), sortJob);
 sortJob.setNumReduceTasks(1); // write a single file
 sortJob.setOutputKeySortColumns(new String[] { "count" });
 @SuppressWarnings("unused")
 RunningJob rjSort = JobClient.runJob(sortJob);
 }
 }

5.1.9 Join samples
The MaxCompute MapReduce framework does not support join logic on its own. Therefore, you

have to apply join samples of the data in your own map/reduce function which requires you to do

some extra work.

Suppose,to join two tables (Key bigint, value string) and (key bigint, value string), the output table

 is chain bigint (value1 string, value2 string), where value1 and value2 are the values of the

scanner.

Prerequisites

1. Prepare the jar package for the test program, assuming the name is maid and the local storage

 path is data \ resources.

2. Prepare tables and resources for testing the Join operation.

• Create tables:

create table mr_Join_src1(key bigint, value string);
create table mr_Join_src2(key bigint, value string);
create table mr_Join_out(key bigint, value1 string,value2 string);

• Add resources:

add jar data\resources\mapreduce-examples.jar -f;

3. Run tunnel to import the data:

tunnel upload data1 mr_Join_src1;
tunnel upload data2 mr_Join_src2;

Import the contents of the maid data as follows:

 1, hello

MaxCompute User Guide / 5 MapReduce

274 Issue: 20181120

 2, ODPS

Import the contents of the maid data as follows:

1, ODPS
3,hello
4, ODPS

Procedure

Join in odpscmd as follows:-

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.Join mr_Join_src1 mr_Join_src2
mr_Join_out;

Expected output

After the job is completed successfully, the contents of the table maid are output, as follows:

+------------+------------+------------+
| key | value1 | value2 |
+------------+------------+------------+
| 1 | hello | odps |
+------------+------------+------------+

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 Import java. util. arraylist;
 import java.util.Iterator;
 import java.util.List;
 import org.apache.commons.logging.Log;
 import org.apache.commons.logging.LogFactory;
 Import com. aliyun. ODPS. Data. record;-
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 /**
 * Join, mr_Join_src1/mr_Join_src2(key bigint, value string),
mr_Join_out(key
 * bigint, value1 string, value2 string)
 *
 */
 public class Join {
 public static final Log LOG = LogFactory.getLog(Join.class);
 public static class JoinMapper extends MapperBase {
 private Record mapkey;
 private Record mapvalue;
 private long tag;
 @Override

MaxCompute User Guide / 5 MapReduce

Issue: 20181120 275

 public void setup(TaskContext context) throws IOException{
 mapkey = context.createMapOutputKeyRecord();
 mapvalue = context.createMapOutputValueRecord();
 tag = context.getInputTableInfo().getLabel().equals("left
") ? 0: 1;
 }
 @Override
 public void map(long key,Record record, TaskContext context)
 Throws ioexception {
 mapkey.set(0,record.get(0));
 mapkey.set(1,tag);
 for (int i = 1; i< record.getColumnCount();i++) {
 mapvalue.set(i -1, record.get(i));
 }
 context.write(mapkey,mapvalue);
 }
 }
 public static class JoinReducer extends ReducerBase {
 private Record result = null;
 @Override
 public void setup(TaskContext context) throws IOException{
 result = context.createOutputRecord();
 }
 // Reduce function all records for each input will be the same
 key
 @Override
 public void reduce(Record key,Iterator<Record>values,
TaskContext context)
 Throws ioexception {
 long k = key.getBigint(0);
 List<Object[]> leftValues = new ArrayList<Object[]>();
 // Is a key + tag combination because it is set up, this
ensures that record data in the left table is in front of the input
record for the reduce function.
 while(values.hasNext()) {
 Record value = values.next();
 long tag = (Long)key.get(1);
 // The data for the left table is first cached into memory
 if (tag == 0) {
 leftValues.add(value.toArray().clone());
 }else {
 // The data that touches the right table is output by a
join with all the data on the left table, the data for the left table
is all in memory.
// This implementation is just a functional display with relatively
low performance and is not recommended for practical production.
 for (Object[] leftValue :leftValues) {
 int index = 0;
 result.set(index++,k);
 for (int i = 0;i<leftValue.length;i++) {
 result.set(index++,leftValue[i]);
 }
 for (int i = 0;i< value.getColumnCount();i++) {
 result.set(index++,value.get(i));
 }
 context.write(result);
 }
 }
 }
 }
 }
 public static void main(String[] args) throws Exception {

MaxCompute User Guide / 5 MapReduce

276 Issue: 20181120

 if (args.length ! = 3) {
 System.err.println("Usage: Join <input table1> <input table2
> <out>");
 System.exit(2);
 }
 JobConf job = new JobConf();
 job.setMapperClass(JoinMapper.class);
 job.setReducerClass(JoinReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("key:bigint,
tag:bigint"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("value:
string"));
 job.setPartitionColumns(new String[]{"key"});
 job.setOutputKeySortColumns(new String[]{"key", "tag"});
 job.setOutputGroupingColumns(new String[]{"key"});
 job.setNumReduceTasks(1);
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
label("left").build(), job);
 InputUtils.addTable(TableInfo.builder().tableName(args[1]).
label("right").build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[2]).
build(), job);
 Jobclient. runjob (job);
 }
 }

5.1.10 Sleep samples
Prerequisites

1. Prepare the Jar package of the test program. Assume the package is named mapreduce-

examples.jar, and the local storage path is data\resources.

2. Prepare resources for testing the SleepJob operation.

Add jar data \ resources \ mapreduce-examples.jar-f;

Procedure

Run Sleep on the odpscmd is as follows:

 jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
 com.aliyun.odps.mapred.open.example.Sleep 10;
 jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
 com.aliyun.odps.mapred.open.example.Sleep 100;

Expected output

The job runs successfully. The run time of different sleep durations can be compared to determine

 the effect.

Sample code

package com.aliyun.odps.mapred.open.example;

MaxCompute User Guide / 5 MapReduce

Issue: 20181120 277

import java.io.IOException;
import com.aliyun.odps.mapred.JobClient;
Import com.aliyun.odps.mapred.mapperbase;
import com.aliyun.odps.mapred.conf.JobConf;
public class Sleep {
 private static final String SLEEP_SECS = "sleep.secs";
 public static class MapperClass extends MapperBase {
 // Because the data is not entered, the map function is not
executed, and the related logic can only be written in setup
 @Override
 public void setup(TaskContext context) throws IOException {
 try {
 // Get the number of sleep seconds set in jobconf to sleep
 Thread.sleep(context.getJobConf().getInt(SLEEP_SECS, 1) * 1000
);
 } catch (InterruptedException e) {
 throw new RuntimeException(e);
 }
 }
 }
 public static void main(String[] args) throws Exception {
 if (args.length ! = 1) {
 System.err.println("Usage: Sleep <sleep_secs>");
 System.exit(-1);
 }
 JobConf job = new JobConf();
 job.setMapperClass(MapperClass.class);
 // This instance is also a maponly, so you need to set the
reductor number to 0.
 job.setNumReduceTasks(0);
 // Because there is no input table, the number of mapper needs to
be specified explicitly by the user
 job.setNumMapTasks(1);
 job.set(SLEEP_SECS, args[0]);
 JobClient.runJob(job);
 }
}

5.1.11 Unique samples
Prerequisites

1. Prepare the JAR package of the test program. Assume the package is named mapreduce-

examples.jar, and the local storage path is data\resources.

2. Prepare tables and resources for testing the Unique operation.

• Create tables:

create table ss_in(key bigint, value bigint);

MaxCompute User Guide / 5 MapReduce

278 Issue: 20181120

create table ss_out(key bigint, value bigint);

• Add resources:

add jar data\resources\mapreduce-examples.jar -f;

3. Use the tunnel command to import the data.

tunnel upload data ss_in;

The contents of data file are imported into the table ss_in.

 1,1
 1,1
 2,2
 2,2

Procedure

Run Unique on the odpscmd, as follows:

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.Unique ss_in ss_out key;

Expected output

The content of output table ss_out is as follows:

+------------+------------+
| key | value |
+------------+------------+
| 1 | 1 |
| 2 | 2 |
+------------+------------+

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 Import java. util. iterator;
 Import com. aliyun. ODPS. Data. record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 /**
 * Unique Remove duplicate words
 *
 **/
 public class Unique {
 public static class OutputSchemaMapper extends MapperBase {

MaxCompute User Guide / 5 MapReduce

Issue: 20181120 279

 private Record key;
 private Record value;
 @Override
 public void setup(TaskContext context) throws IOException{
 key = context.createMapOutputKeyRecord();
 value = context.createMapOutputValueRecord();
 }
 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 Throws ioexception {
 long left = 0;
 long right = 0;
 if (record.getColumnCount() > 0) {
 left = (Long) record.get(0);
 if (record.getColumnCount() > 1) {
 right = (Long) record.get(1);
 }
 key.set(new Object[] { (Long) left, (Long) right });
 value.set(new Object[] { (Long) left, (Long) right });
 context.write(key, value);
 }
 }
 }
 public static class OutputSchemaReducer extends ReducerBase {
 private Record result = null;
 @Override
 public void setup(TaskContext context) throws IOException{
 result = context.createOutputRecord();
 }
 @Override
 public void reduce(Record key,Iterator<Record>values,
TaskContext context)
 Throws ioexception {
 result.set(0, key.get(0));
 while(values.hasNext()) {
 Record value = values.next();
 result.set(1, value.get(1));
 }
 context.write(result);
 }
 }
 public static void main(String[] args) throws Exception {
 if (args.length > 3 || args.length < 2) {
 System.err.println("Usage: unique <in> <out> [key|value|all
]");
 System.exit(2);
 }
 String ops = "all";
 if (args.length == 3) {
 Ops = ARGs [2];
 }
 // Reduce input grouping is determined by the settings of the
scanner, this parameter if it is not set
 /Default is mapoutputkeyschema
 // Key Unique
 if (ops.equals("key")) {
 JobConf job = new JobConf();
 job.setMapperClass(OutputSchemaMapper.class);
 job.setReducerClass(OutputSchemaReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("key:bigint
,value:bigint"));

MaxCompute User Guide / 5 MapReduce

280 Issue: 20181120

 job.setMapOutputValueSchema(SchemaUtils.fromString("key:
bigint,value:bigint"));
 job.setPartitionColumns(new String[] { "key" });
 job.setOutputKeySortColumns(new String[] { "key", "value
" });
 job.setOutputGroupingColumns(new String[] { "key" });
 job.set("tablename2", args[1]);
 job.setNumReduceTasks(1);
 job.setInt("table.counter", 0);
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 Jobclient. runjob (job);
 }
 // Key&Value Unique
 if (ops.equals("all")) {
 JobConf job = new JobConf();
 job.setMapperClass(OutputSchemaMapper.class);
 job.setReducerClass(OutputSchemaReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("key:bigint
,value:bigint"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("key:
bigint,value:bigint"));
 job.setPartitionColumns(new String[] { "key" });
 job.setOutputKeySortColumns(new String[] { "key", "value
" });
 job.setOutputGroupingColumns(new String[] { "key", "value
" });
 Job. Set ("tablename2", argS [1]);
 job.setNumReduceTasks(1);
 job.setInt("table.counter", 0);
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 Jobclient. runjob (job);
 }
 // Value Unique
 if (ops.equals("value")) {
 JobConf job = new JobConf();
 job.setMapperClass(OutputSchemaMapper.class);
 job.setReducerClass(OutputSchemaReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("key:bigint
,value:bigint"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("key:
bigint,value:bigint"));
 job.setPartitionColumns(new String[] { "value" });
 job.setOutputKeySortColumns(new String[] { "value" });
 job.setOutputGroupingColumns(new String[] { "value" });
 job.set("tablename2", args[1]);-
 job.setNumReduceTasks(1);
 job.setInt("table.counter", 0);
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 Jobclient. runjob (job);
 }
 }

MaxCompute User Guide / 5 MapReduce

Issue: 20181120 281

 }

5.1.12 Sort samples
Prerequisites

1. Prepare the Jar package of the test program. Assume the package is named mapreduce-

examples.jar, and the local storage path is data\resources.

2. Prepare tables and resources for testing the SORT operation.

• Create tables:

create table ss_in(key bigint, value bigint);
create table ss_out(key bigint, value bigint);

• Add resources:

add jar data\resources\mapreduce-examples.jar -f;

3. Use the tunnel command to import the data.

tunnel upload data ss_in;

The contents of data file in the table ss_in are as follows:

 2,1
 1,1
 3,1

Procedure

Run Sort on the odpscmd, as follows:

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.Sort ss_in ss_out;

Expected output

The content of the output table ss_out is as follows:

+------------+------------+
| key | value |
+------------+------------+
1	1
2	1
3	1
+------------+------------+

Sample code

 package com.aliyun.odps.mapred.open.example;

MaxCompute User Guide / 5 MapReduce

282 Issue: 20181120

 import java.io.IOException;
 import java.util.Date;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.example.lib.IdentityReducer;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 /**
 * This is the trivial map/reduce program that does absolutely
nothing other
 * than use the framework to fragment and sort the input values.
 *
 **/
 public class Sort {
 static int printUsage() {
 System.out.println("sort <input> <output>");
 return -1;
 }
 /**
 * Implements the identity function, mapping record's first two
columns to
 * outputs.
 **/
 public static class IdentityMapper extends MapperBase {
 private Record key;
 private Record value;
 @Override
 public void setup(TaskContext context) throws IOException{
 key = context.createMapOutputKeyRecord();
 value = context.createMapOutputValueRecord();
 }
 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 Throws IOException {
 Key.set (new object [] {(long) record.get (0)});
 value.set(new Object[] { (Long) record.get(1) });
 context.write(key, value);
 }
 }
 /**
 * The main driver for sort program. Invoke this method to
submit the
 * map/reduce job.
 *
 * @throws IOException
 * When there is communication problems with the job tracker.
 **/
 public static void main(String[] args) throws Exception {
 JobConf jobConf = new JobConf();
 jobConf.setMapperClass(IdentityMapper.class);
 jobConf.setReducerClass(IdentityReducer.class);
 // For global order, the number of reducers is set to 1, all
the data will be concentrated on a reducer.
 // Can be used only for small volumes of data, which need to
be considered in other ways, such as terasort.
 jobConf.setNumReduceTasks(1);

MaxCompute User Guide / 5 MapReduce

Issue: 20181120 283

 Jobconf.setmapoutputkeyschema schemautils schemeiutils.
fromstring ("key: bigint "));
 jobConf.setMapOutputValueSchema(SchemaUtils.fromString("value:
bigint"));
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), jobConf);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), jobConf);
 Date starttime = new date ();
 System.out.println("Job started: " + startTime);
 JobClient.runJob(jobConf);
 Date end_time = new Date();
 System.out.println("Job ended: " + end_time);
 System.out.println("The job took "
 + (end_time.getTime() - startTime.getTime()) / 1000 + "
seconds.") ;
 }
 }

5.1.13 Partition samples
The following example takes Partition as input and output.

Example 1:

 public static void main(String[] args) throws Exception {
 JobConf job = new JobConf();

 LinkedHashMap<String, String> input = new LinkedHashMap<String,
String>();
 input.put("pt", "123456");
 InputUtils.addTable(TableInfo.builder().tableName("input_table").
partSpec(input).build(), job);
 LinkedHashMap<String, String> output = new LinkedHashMap<String,
String>();
 output.put("ds", "654321");
 Outpututils. addtable (tableinfo. builder (). tablename ("
output_table "). partspec (output). build (), job);
 JobClient.runJob(job);

Example 2:

 package com.aliyun.odps.mapred.open.example;

 public static void main(String[] args) throws Exception {
 if (args.length ! = 2) {
 System.err.println("Usage: WordCount <in_table> <out_table
>");
 System.exit(2);

 JobConf job = new JobConf();
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(SumCombiner.class);
 job.setReducerClass(SumReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("word:string
"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("count:
bigint"));

MaxCompute User Guide / 5 MapReduce

284 Issue: 20181120

 Account account = new AliyunAccount("my_access_id", "
my_access_key");
 Odps odps = new Odps(account);
 odps.setEndpoint("odps_endpoint_url");
 odps.setDefaultProject("my_project");
 Table table = odps.tables().get(tblname);
 TableInfoBuilder builder = TableInfo.builder().tableName(
tblname);
 for (Partition p : table.getPartitions()) {
 if (applicable(p)) {
 LinkedHashMap<String, String> partSpec = new LinkedHashMap
<String, String>();
 for (String key : p.getPartitionSpec().keys()) {
 partSpec.put(key, p.getPartitionSpec().get(key));

 InputUtils.addTable(builder.partSpec(partSpec).build(),
conf);

 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 Jobclient. runjob (job);

Note:

• The preceding example combines the MaxCompute SDK and MapReduce SDK to achieve a

MapReduce task.

• The code cannot be compiled and is only an example of main functions.

• The Applicable function is user logic that determines whether the Partition can be used as the

input of MapReduce job.

5.1.14 Pipeline samples
Prerequisites

1. Prepare the Jar package of the test program. Assume the package is named mapreduce-

examples.jar, and the local storage path is data\resources.

2. Prepare tables and resources for testing the the WordCountPipeline operation.

• Create tables:

create table wc_in (key string, value string);

MaxCompute User Guide / 5 MapReduce

Issue: 20181120 285

create table wc_out(key string, cnt bigint);

• Add resources:

add jar data\resources\mapreduce-examples.jar -f;

3. Use the tunnel command to import the data:

tunnel upload data wc_in;

The data imported into the wc_in the table wc_in is as follows:

hello,odps

Procedure

Run WordCountPipeline on the odpscmd, as follows:

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.WordCountPipeline wc_in wc_out;

Expected output

The content of output table wc_out is as follows:

+------------+------------+
| key | cnt |
+------------+------------+
| hello | 1 |
| odps | 1 |
+------------+------------+

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 Import java. util. iterator;
 import com.aliyun.odps.Column;
 import com.aliyun.odps.OdpsException;
 import com.aliyun.odps.OdpsType;
 Import com. aliyun. ODPS. Data. record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.Job;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.pipeline.Pipeline;
 public class WordCountPipelineTest {
 public static class TokenizerMapper extends MapperBase {
 Record word;
 Record one;
 @Override
 public void setup(TaskContext context) throws IOException{
 word = context.createMapOutputKeyRecord();
 one = context.createMapOutputValueRecord();
 one.setBigint(0, 1L);
 }

MaxCompute User Guide / 5 MapReduce

286 Issue: 20181120

 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 Throws ioexception {
 for (int i = 0; i < record.getColumnCount(); i++) {
 String[] words = record.get(i).toString().split("\\s+");
 for (String w : words) {
 word.setString(0, w);
 context.write(word, one);
 }
 }
 }
 }
 public static class SumReducer extends ReducerBase {
 private Record value;
 @Override
 public void setup(TaskContext context) throws IOException{
 value = context.createOutputValueRecord();
 }
 @Override
 public void reduce(Record key,Iterator<Record>values,
TaskContext context)
 Throws ioexception {
 Long Count = 0;
 while(values.hasNext()) {
 Record val = values.next();
 count += (Long) val.get(0);
 }
 value.set(0, count);
 context.write(key, value);
 }
 }
 public static class IdentityReducer extends ReducerBase {
 private Record result;
 @Override
 public void setup(TaskContext context) throws IOException{
 result = context.createOutputRecord();
 }
 @Override
 public void reduce(Record key,Iterator<Record>values,
TaskContext context)
 Throws ioexception {
 while (values.hasNext()) {
 result.set(0, key.get(0));
 result.set(1, values.next().get(0));
 context.write(result);
 }
 }
 }
 public static void main(String[] args) throws OdpsException {
 if (args.length ! = 2) {
 System.err.println("Usage: WordCountPipeline <in_table> <
out_table>");
 System.exit(2);
 }
 Job job = new Job();
 /***
 * In the process of constructing pipeline, if you do not
specify mapper's OutputKeySortColumns，PartitionColumns，OutputGrou
pingColumns,
 * the framework defaults to its OutputKey as the default
configuration for the three

MaxCompute User Guide / 5 MapReduce

Issue: 20181120 287

 ***/
 Pipeline pipeline = Pipeline.builder()
 . Addmapper (maid. Class)
 .setOutputKeySchema(
 new Column[] { new Column("word", OdpsType.STRING
) })
 .setOutputValueSchema(
 new Column[] { new Column("count", OdpsType.BIGINT
) })
 .setOutputKeySortColumns(new String[] { "word" })
 .setPartitionColumns(new String[] { "word" })
 .setOutputGroupingColumns(new String[] { "word" })
 .addReducer(SumReducer.class)
 .setOutputKeySchema(
 new Column[] { new Column("word", OdpsType.STRING
) })
 .setOutputValueSchema(
 new Column[] { new Column("count", OdpsType.BIGINT
)})
 .addReducer(IdentityReducer.class).createPipeline();
 // Set pipeline to jobconf and jobconf if you need to set the
assemblyer
 job.setPipeline(pipeline);
 //Set table information for Input Output
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 // Job submit and wait for end
 job.submit();
 job.waitForCompletion();
 System.exit(job.isSuccessful() == true ? 0 : 1);
 }
 }

5.2 MR limits
In order to avoid that you have not paid attention to restrictions so that business stops after the

business starts , this article will summarize the MaxCompute MR restrictions to help you.

The restrictions of MaxCompute MapReduce are as follows:

Restricted

item

Value Type Configuration

item

Default

 value

Configurab

le?

Description

Memory
occupied
 by the
instance

[256MB
，
12GB]

Memory
 limit

odps.stage.
mapper(reducer
).mem and odps
.stage.mapper
(reducer).jvm.
mem

2048M
＋
1024M

Yes Memory occupied by a
single map instance or
reduce instance, including
 the framework memory (2
,048 MB by default) and
heap memory of the Java
 virtual machine (JVM) (1,
024 MB by default).

Number of
resources

256 Number
 limit

N/A None. No The number of resources
 referenced by a single

MaxCompute User Guide / 5 MapReduce

288 Issue: 20181120

Restricted

item

Value Type Configuration

item

Default

 value

Configurab

le?

Description

job cannot exceed 256.
The table and archive are
regarded as a unit.

Numbers of
 inputs and
outputs

1024
 and
256

Number
 limit

N/A None No The number of inputs of
 one job cannot exceed
 1024. (A partition of a
table is regarded as one
input. The number of input
 tables cannot exceed 64
). The number of outputs
 of one job cannot exceed
 256.

Number of
counters

64 Number
 limit

N/A None. No The number of custom
counters in one job cannot
 exceed 64. The group
name and counter name
 of a counter must not
 contain #. The overall
length of the group name
 and the counter name of
 a counter must be within
100.

map
instance 　

[1，
100000
]

Number
 limit

odps.stage.
mapper.num

None Yes The number of map
instances of one job
 is calculated by the
framework based on the
split size. If no input table
 exists, you can set the
 value directly in odps.
stage.mapper.num. The
final number ranges from
1 to 100,000.

reduce
instance

[0，
2000]

Number
 limit

odps.stage.
reducer.num

None Yes The number of reduce
 instances of one job
 is 1/4 of that of map
instances by default. The
 reduce instance number
 configured by the user
 ranges from 0 to 2,000

MaxCompute User Guide / 5 MapReduce

Issue: 20181120 289

Restricted

item

Value Type Configuration

item

Default

 value

Configurab

le?

Description

. It may occur that the
data volume processed
by reduce is several times
 that processed by map.
 In this case, the reduce
 phase gets slower and
can initiate at most 2000
instances.

Number of
retries

3 Number
 limit

N/A None No The maximum number of
retries allowed for a single
 map instance or reduce
 instance is 3. Some
exceptions that do not
allow retries may cause
task execution failures.

Local debug
 mode

100 Number
 limit

N/A None No In local debug mode, the
number of map instances
is 2 by default and cannot
exceed 100. The number
 of reduce instances is
1 by default and cannot
exceed 100. The number
 of download records of
one input is 1 by default
and cannot exceed 100.

Number of
 times of
reading a
 resource
repeatedly

64 Number
 limit

N/A None No The number of times
that a map instance or
reduce instance reads
one resource repeatedly
cannot exceed 64 .

Resource
length

2G Length
 limit

N/A None No The total length of a
resource referenced by a
job cannot exceed 2 GB.

split size [1，) Length
 limit

odps.stage.
mapper.split.size

256M Yes The framework splits
the map based on the
configured split size, of
which the number of maps
 is then determined.

MaxCompute User Guide / 5 MapReduce

290 Issue: 20181120

Restricted

item

Value Type Configuration

item

Default

 value

Configurab

le?

Description

Content
length of
the string
column

8 MB Length
 limit

N/A None No The content in the
string column of the
MaxCompute table cannot
 exceed 8 MB.

Worker
running
timeout
period

［1，
3600］

Time
limit

odps.function.
timeout

600 Yes Timeout period for the
worker when the map
or reduce worker does
not read or write data or
 actively send heartbeat
 data by using context.
progress(). The default
value is 600s.

The
supported
field types
 of table
referenced
by MR

BIGINT
、
DOUBLE
、
STRING
、
DATETIME
、
BOOLEAN

Data
type
limit

N/A None No When the MR task refers
to a table, an error occurs
if the table contains other
types of fields.

Read data
from OSS

Feature
 limit

N/A None No Not supported

MaxCompute
 2.0 new
types

Feature
 limit

N/A None No Not supported

MaxCompute User Guide / 6 Java Sandbox

Issue: 20181120 291

6 Java Sandbox

MaxCompute, MapReduce and UDF are limited by the Java sandbox when running in the

distributed environment. However, the main program of MapReduce jobs, such as MR Main, is not

restricted. The specific limits are as follows.

• Direct access to local files is not allowed. You can only access files by using interfaces

provided by MaxCompute MapReduce/Graph.

▬ Read resources specified by the resources option, including files, Jar packages, and

resource tables.

▬ Output log information through System.out and System.err. You can view log information by

running the Log command on the MaxCompute console.

• Direct access to the distributed file system is not allowed. You can only access table records by

 using MaxCompute MapReduce/Graph.

• JNI call restrictions are not allowed.

• Creation of Java threads is not allowed. Initiation of sub-processes to run Linux commands is

not allowed.

• Network access, including obtaining local IP addresses, is not allowed.

• Java reflection is restricted: suppressAccessChecks permission is denied. A private attribute or

 method cannot be set to accessible for obtaining private attributes or calling private methods.

Specifically for the user code, access denied is thrown if you follow these steps.

• java.io.File

public boolean delete()
public void deleteOnExit()
public boolean exists()
public boolean canRead()
public boolean isFile()
public boolean isDirectory()
public boolean isHidden()
public long lastModified()
public long length()
public String[] list()
public String[] list(FilenameFilter filter)
public File[] listFiles()
public File[] listFiles(FilenameFilter filter)
public File[] listFiles(FileFilter filter)
public boolean canWrite()
public boolean createNewFile()
public static File createTempFile(String prefix, String suffix)
public static File createTempFile(String prefix, String suffix,File
directory)
public boolean mkdir()
public boolean mkdirs()

MaxCompute User Guide / 6 Java Sandbox

292 Issue: 20181120

public boolean renameTo(File dest)
public boolean setLastModified(long time)
public boolean setReadOnly()

• java.io.RandomAccessFile

RandomAccessFile(String name, String mode)
RandomAccessFile(File file, String mode)

• java.io.FileInputStream

FileInputStream(FileDescriptor fdObj)
FileInputStream(String name)
FileInputStream(File file)

• java.io.FileOutputStream

FileOutputStream(FileDescriptor fdObj)
FileOutputStream(File file)
FileOutputStream(String name)
FileOutputStream(String name, boolean append)

• java.lang.Class

public ProtectionDomain getProtectionDomain()

• java.lang.ClassLoader

ClassLoader()
ClassLoader(ClassLoader parent)

• java.lang.Runtime

public Process exec(String command)
public Process exec(String command, String envp[])
public Process exec(String cmdarray[])
public Process exec(String cmdarray[], String envp[])
public void exit(int status)
public static void runFinalizersOnExit(boolean value)
public void addShutdownHook(Thread hook)
public boolean removeShutdownHook(Thread hook)
public void load(String lib)
public void loadLibrary(String lib)

• java.lang.System

public static void exit(int status)
public static void runFinalizersOnExit(boolean value)
public static void load(String filename)
public static void loadLibrary(String libname)
public static Properties getProperties()
public static void setProperties(Properties props)
public static String getProperty(String key) //Only some keys are
allowed for file access.
public static String getProperty(String key, String def) // Only
some keys are allowed for file access.
public static String setProperty(String key, String value)
public static void setIn(InputStream in)

MaxCompute User Guide / 6 Java Sandbox

Issue: 20181120 293

public static void setOut(PrintStream out)
public static void setErr(PrintStream err)
public static synchronized void setSecurityManager(SecurityManager s
)

List of keys allowed by System.getProperty is as follows:

java.version
java.vendor
java.vendor.url
java.class.version
os.name
os.version
os.arch
file.separator
path.separator
line.separator
java.specification.version
java.specification.vendor
java.specification.name
java.vm.specification.version
java.vm.specification.vendor
java.vm.specification.name
java.vm.version
java.vm.vendor
java.vm.name
file.encoding
user.timezone

• java.lang.Thread

Thread()
Thread(Runnable target)
Thread(String name)
Thread(Runnable target, String name)
Thread(ThreadGroup group, ...)
public final void checkAccess()
public void interrupt()
public final void suspend()
public final void resume()
public final void setPriority (int newPriority)
public final void setName(String name)
public final void setDaemon(boolean on)
public final void stop()
public final synchronized void stop(Throwable obj)
public static int enumerate(Thread tarray[])
public void setContextClassLoader(ClassLoader cl)

• java.lang.ThreadGroup

ThreadGroup(String name)
ThreadGroup(ThreadGroup parent, String name)
public final void checkAccess()
public int enumerate(Thread list[])
public int enumerate(Thread list[], boolean recurse)
public int enumerate(ThreadGroup list[])
public int enumerate(ThreadGroup list[], boolean recurse)
public final ThreadGroup getParent()
public final void setDaemon(boolean daemon)
public final void setMaxPriority(int pri)

MaxCompute User Guide / 6 Java Sandbox

294 Issue: 20181120

public final void suspend()
public final void resume()
public final void destroy()
public final void interrupt()
public final void stop()

• java.lang.reflect.AccessibleObject

public static void setAccessible(...)
public void setAccessible(...)

• java.net.InetAddress

public String getHostName()
public static InetAddress[] getAllByName(String host)
public static InetAddress getLocalHost()

• java.net.DatagramSocket

public InetAddress getLocalAddress()

• java.net.Socket

Socket(...)

• java.net.ServerSocket

ServerSocket(...)
public Socket accept()
protected final void implAccept(Socket s)
public static synchronized void setSocketFactory(...)
public static synchronized void setSocketImplFactory(...)

• java.net.DatagramSocket

DatagramSocket(...)
public synchronized void receive(DatagramPacket p)

• java.net.MulticastSocket

MulticastSocket(...)

• java.net.URL

URL(...)
public static synchronized void setURLStreamHandlerFactory(...)
java.net.URLConnection
public static synchronized void setContentHandlerFactory(...)
public static void setFileNameMap(FileNameMap map)

• java.net.HttpURLConnection

public static void setFollowRedirects(boolean set)
java.net.URLClassLoader

MaxCompute User Guide / 6 Java Sandbox

Issue: 20181120 295

URLClassLoader(...)

• java.security.AccessControlContext

public AccessControlContext(AccessControlContext acc, DomainCombiner
 combiner)
public DomainCombiner getDomainCombiner()

MaxCompute User Guide / 7 External table

296 Issue: 20181120

7 External table

7.1 Access OSS data
This article explains how to easily access OSS data on MaxCompute.

Authorization with STS mode

Authorize OSS data permission to MaxCompute account in advance, so that MaxCompute can

directly access OSS. You can authorize permissions in the following two ways:

• When the MaxCompute and OSS owner are the same account, you can directly log on

Alibaba Cloud account and click here to complete authorization.

• Custom authorization.

1. Firstly, authorize MaxCompute permission to access OSS in RAM. Log in to the RAM

Console (if maxcompute and OSS are not the same account number, authorized by the

OSS account) to create a role through role management in the console, role ming ru

aliyunodpsdefaultrole or aliyunodpsroleforotheruser.

2. Modify the policy content of role as follows:

--When the MaxCompute and OSS owner are the same account:
{
"Statement": [
{
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "odps.aliyuncs.com"
]
 }
}
],
"Version": "1"
}
--When the MaxCompute and OSS owner are not the same account:
{
"Statement": [
{
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service ":[
 "MaxCompute's Owner account: id@odps.aliyuncs.com"
]
 }
}
],
"Version": "1"

https://ram.console.aliyun.com/?spm=5176.100239.blogcont281191.24.uJg9dR#/role/authorize?request=%7B%22Requests%22:%20%7B%22request1%22:%20%7B%22RoleName%22:%20%22AliyunODPSDefaultRole%22,%20%22TemplateId%22:%20%22DefaultRole%22%7D%7D,%20%22ReturnUrl%22:%20%22https:%2F%2Fram.console.aliyun.com%2F%22,%20%22Service%22:%20%22ODPS%22%7D
https://www.alibabacloud.com/zh/product/ram
https://account.alibabacloud.com/login/login.html
https://account.alibabacloud.com/login/login.html
https://ram.console.aliyun.com/#/role/list

MaxCompute User Guide / 7 External table

Issue: 20181120 297

}

3. Authorize the role necessary permissions AliyunODPSRolePolicy to access OSS.

{
"Version": "1",
"Statement": [
{
 "Action": [
 "Oss: listbuckets ",
 "Oss: GetObject ",
 "oss:ListObjects",
 "Oss: putobject ",
 "Oss: deleteobject ",
 "Oss: maid ",
 "Oss: listparts"
],
 "Resource": "*",
 "Effect": "Allow"
}
]
}
--You can customize other permissions.

4. Authorize the permission AliyunODPSRolePolicy to this role.

Read OSS Data with the euilt-in extractor

When accessing external data sources, use different custom extractors. You can also use

MaxCompute’s internal extractor to read conventionally-formatted data stored in OSS. You only

need to create an external table and use this table as the source table for query operations.

In this example, assume that you have a CSV data file in OSS. The endpoint is oss-cn-

shanghai-internal.aliyuncs.com, the bucket is oss-odps-test, and the data file is

stored in /demo/vehicle.csv.

Create an external table

Use the following statements to create an external table:

CREATE EXTERNAL TABLE IF NOT EXISTS ambulance_data_csv_external
(
vehicleId int,
recordId int,
patientId int,
Calls int,
locationLatitute double,
locationLongtitue double,
recordTime string,
direction string
)
STORED BY 'com.aliyun.odps.CsvStorageHandler' -- (1)
WITH SERDEPROPERTIES (
 'odps.properties.rolearn'='acs:ram::xxxxx:role/aliyunodpsdefaultrole'
) -- (2)

https://www.alibabacloud.com/product/oss
https://www.alibabacloud.com/product/oss

MaxCompute User Guide / 7 External table

298 Issue: 20181120

LOCATION 'oss://oss-cn-shanghai-internal.aliyuncs.com/oss-odps-test/
Demo/'; -- (3)(4)

The preceding statements are described as follows:

• com.aliyun.odps.CsvStorageHandler is the built-in StorageHandler for processing

CSV-format files. It defines how CSV files are read and written. You only have to specify this

name. The relevant logic is implemented by the system.

• The information in odps.properties.rolearn comes from the Arn information of

AliyunODPSDefaultRole in RAM. You can get it through the role details in the RAM

console.

• Specify an OSS directory for LOCATION. By default, the system reads all files in this directory.

▬ We recommend using the domain name of the intranet to avoid incurring fees for the OSS

data-flow.

▬ We recommend that the region you store the OSS data is the same as the region you open

MaxCompute. Because MaxCompute can only be deployed in some regions, cross-regional

 data connectivity cannot be guaranteed.

▬ OSS connection format is oss://oss-cn-shanghai-internal.aliyuncs.com/

bucketname/directoryname/. You do not have to add a file name after the directory.

Some common errors are as follows:

http://oss-odps-test.oss-cn-shanghai-internal.aliyuncs.com/Demo/
 -- HTTP connection is not supported.
https://oss-odps-test.oss-cn-shanghai-internal.aliyuncs.com/Demo/
 -- HTTPS connection is not supported.
oss://oss-odps-test.oss-cn-shanghai-internal.aliyuncs.com/Demo
 -- The connection address is incorrect.0
oss://oss://oss-cn-shanghai-internal.aliyuncs.com/oss-odps-test/
Demo/vehicle.csv -- You do not need to specify the file name.

• In the MaxCompute system, external tables only record the associated OSS directory. If you

DROP (delete) this table, the corresponding LOCATION data is not deleted.

If you want to view the created external table structure, run the following statement:

desc extended <table_name>;

In the returned information, “Extended Info” contains external tables information such as

StorageHandler and Location.

https://ram.console.aliyun.com/#/role/detailAliyunODPSDefaultRole/info

MaxCompute User Guide / 7 External table

Issue: 20181120 299

Access table data by using an external table

After creating an external table, you can use it as a normal table. Assume the data in /demo/

vehicle.csv is:

1,1,51,1,46.81006,-92.08174,9/14/2014 0:00,S
1,2,13,1,46.81006,-92.08174,9/14/2014 0:00,NE
1,3,48,1,46.81006,-92.08174,9/14/2014 0:00,NE
1,4,30,1,46.81006,-92.08174,9/14/2014 0:00,W
1,5,47,1,46.81006,-92.08174,9/14/2014 0:00,S
1,6,9,1,46.81006,-92.08174,9/14/2014 0:00,S
1,7,53,1,46.81006,-92.08174,9/14/2014 0:00,N
1,8,63,1,46.81006,-92.08174,9/14/2014 0:00,SW
1,9,4,1,46.81006,-92.08174,9/14/2014 0:00,NE
1,10,31,1,46.81006,-92.08174,9/14/2014 0:00,N

Run the following SQL statement:

select recordId, patientId, direction from ambulance_data_csv_external
 where patientId > 25;

Note:

Currently, external table can only be operated through MaxCompute SQL. MaxCompute

MapReduce cannot operate the external table.

This statement submits a job, scheduling the built-in CSV extractor to read and process data from

OSS. The result is as follows:

+------------+------------+-----------+
| recordId | patientId | direction |
+------------+------------+-----------+
1	51	S
3	48	NE
4	30	W
5	47	S
7	53	N
8	63	SW
10	31	N
+------------+------------+-----------+

Read OSS data using a custom extractor

When OSS data is in a complex format, and the built-in extractor cannot meet your requirements,

you must use a custom extractor to read data from OSS files.

For example, assume you have a txt data file that is not in CSV format, and | is used as the

column delimiter between records. For example, the data in /demo/SampleData/CustomTxt/

AmbulanceData/vehicle.csv is:

1|1|51|1|46.81006|-92.08174|9/14/2014 0:00|S

MaxCompute User Guide / 7 External table

300 Issue: 20181120

1|2|13|1|46.81006|-92.08174|9/14/2014 0:00|NE
1|3|48|1|46.81006|-92.08174|9/14/2014 0:00|NE
1|4|30|1|46.81006|-92.08174|9/14/2014 0:00|W
1 | 5 | 47 | 1 | 46.81006 |-92.08174 | 9/14/2014 0: 00 | S
1|6|9|1|46.81006|-92.08174|9/14/2014 0:00|S
1|7|53|1|46.81006|-92.08174|9/14/2014 0:00|N
1|8|63|1|46.81006|-92.08174|9/14/2014 0:00|SW
1|9|4|1|46.81006|-92.08174|9/14/2014 0:00|NE
1|10|31|1|46.81006|-92.08174|9/14/2014 0:00|N

• Define an extractor

Write a common extractor and use delimiter as the parameter. This allows you to process all

text files with similar formats. Example::

/**
 * Text extractor that extract schemished records from formatted
plain-text (CSV, TSV etc .)
 **/
Public class textextractor extends extractor {
 Private inputstreamset inputs;
 Private string fig;
 Private dataattributes;
 Private bufferedreader currentreader;
 Private Boolean firstread = true;
 Public textextractor (){
 /Default ",", this can be overwritten if a specific impliter is
provided (via dataattributes)
 this.columndelimiter = ",";
 }
 // No particular usage for execution context in this example
 @Override
 public void setup(ExecutionContext ctx, InputStreamSet inputs,
DataAttributes attributes) {
 this.inputs = inputs; // inputs is an InputStreamSet, each call
to next() returns an InputStream. This InputStream can read all the
content in an OSS file.
 this.attributes = attributes;
 // check if "delimiter" attribute is supplied via SQL query
 String columnDelimiter = this.attributes.getValueByKey("
delimiter"); //The delimiter parameter is supplied by a DDL
statement.
 if (columnDelimiter ! = NULL)
 {
 this.columnDelimiter = columnDelimiter;
 }
 // note: more properties can be inited from attributes if needed
 }
 @Override
 public Record extract() throws IOException {//extractor() calls
return one record, corresponding to one record in an external table.
 String line = readNextLine();
 if (line == null) {
 return null; // A return value of NULL indicates that this
table has no readable records.
 }
 return textLineToRecord(line); // textLineToRecord splits a row
 of data into multiple columns according to the delimiter.
 }
 @Override

MaxCompute User Guide / 7 External table

Issue: 20181120 301

 Public void close (){
 // No-op
 }
}

Clickhere for a complete implementation of textLineToRecord splitting data.

Define StorageHandler

A StorageHandler acts as a centralized portal for the custom external table logic.

package com.aliyun.odps.udf.example.text;
public class TextStorageHandler extends OdpsStorageHandler {
 @Override
 public Class<? extends Extractor> getExtractorClass() {
 return TextExtractor.class;
 }
 @Override
 public Class<? extends Outputer> getOutputerClass() {
 return TextOutputer.class;
 }
}

Compiling and packaging

Compile your custom code into a package and upload it to MaxCompute.

add jar odps-udf-example.jar;

• Create an external table

Similar to using the built-in extractor, first, you must create an external table. The difference is

that, when specifying the external table access data, use a custom StorageHandler.

Use the following statements to create an external table:

CREATE EXTERNAL TABLE IF NOT EXISTS ambulance_data_txt_external
(
vehicleId int,
recordId int,
patientId int,
calls int,
locationLatitute double,
locationLongtitue double,
recordTime string,
direction string
)
STORED BY 'com.aliyun.odps.udf.example.text.TextStorageHandler' --
STORED BY specifies the custom StorageHandler class name.
 with SERDEPROPERTIES (
'delimiter'='\\|', -- SERDEPROPERITES can specify parameters, these
 parameters are passed through the DataAttributes to the Extractor
code.
'odps.properties.rolearn'='acs:ram::xxxxxxxxxxxxx:role/aliyunodps
defaultrole'
)
LOCATION 'oss://oss-cn-shanghai-internal.aliyuncs.com/oss-odps-test/
Demo/SampleData/CustomTxt/AmbulanceData/'

https://github.com/aliyun/aliyun-odps-java-sdk/blob/master/odps-sdk-impl/odps-udf-example/src/main/java/com/aliyun/odps/udf/example/text/TextExtractor.java

MaxCompute User Guide / 7 External table

302 Issue: 20181120

USING 'odps-udf-example.jar'; --You must also specify the Jar
package containing the class definition.

• Query an external table

Run the following SQL statement:

select recordId, patientId, direction from ambulance_data_txt_e
xternal where patientId > 25;

Read unstructured data by using a custom extractor

Previously, use the built-in extractor or a custom extractor to conveniently process CSV and other

 text data stored in OSS. Next, using audio data (.wav format files) as an example, the following

explains how to use a custom extractor to access and process non-text files in OSS.

Here, starting from the last SQL statement, we introduce the use of MaxCompute SQL as a

portal to process audio files stored in OSS.

Create the external table SQL as follows:

CREATE EXTERNAL TABLE IF NOT EXISTS speech_sentence_snr_external
(
sentence_snr double,
id string
)
STORED BY 'com.aliyun.odps.udf.example.speech.SpeechStorageHandler'
WITH SERDEPROPERTIES (
 'mlfFileName'='sm_random_5_utterance.text.label' ,
 'speechSampleRateInKHz' = '16'
)
LOCATION 'oss://oss-cn-shanghai-internal.aliyuncs.com/oss-odps-test/
dev/SpeechSentenceTest/'
USING 'odps-udf-example.jar,sm_random_5_utterance.text.label';

As shown in the preceding example, create an external table. Then, use the schema of this table

to define the information that you want to extract from the audio file:

• The statement signal-to-noise ratio(SNR) in an audio file: sentence_snr.

• The name of the audio file: id.

After creating the external table, use a standard Select statement to perform a query. This

operation triggers the extractor to perform computation. When reading and processing OSS

data, in addition to simple deserialization on text files, you can use custom extractors to perform

more complex data processing and extraction logic. In this example, use the custom extractor

encapsulated in com.aliyun.odps.udf.example.speech.SpeechStorageHandler to

calculate the average SNR of valid statements in the audio file, and extract structured data for

MaxCompute User Guide / 7 External table

Issue: 20181120 303

SQL operations (WHERE sentence_snr > 10). Once completed, the operation returns all audio

files with an SNR that is greater than 10 and their corresponding SNR values.

Multiple WAV-format files are stored in the OSS address oss://oss-cn-hangzhou-zmf.

aliyuncs.com/oss-odps-test/dev/SpeechSentenceTest/. The MaxCompute framework

reads all the files stored here and performs file-level sharding, when needed. It automatically

allocates the file to multiple computing nodes for processing. On each computing node, the

extractor is responsible for processing the file set allocated to the node by InputStreamSet. The

special processing logic is similar to your single-host program. Your algorithm is implemented by

using the single host method according to its class.

Details about the SpeechSentenceSnrExtractor formulation logic are as follows:

First, read the parameters in the setup interface to perform initialization and import the audio

processing model (using resource introduction):

public SpeechSentenceSnrExtractor(){
 this.utteranceLabels = new HashMap<String, UtteranceLabel>();
 }
 @Override
 public void setup(ExecutionContext ctx, InputStreamSet inputs,
DataAttributes attributes){
 this.inputs = inputs;
 this.attributes = attributes;
 this.mlfFileName = this.attributes.getValueByKey(MLF_FILE_A
TTRIBUTE_KEY);
 String sampleRateInKHzStr = this.attributes.getValueByKey(
SPEECH_SAMPLE_RATE_KEY);
 this.sampleRateInKHz = Double.parseDouble(sampleRateInKHzStr);
 try {
 // read the speech model file from resource and load the model
into memory
 BufferedInputStream inputStream = ctx.readResourceFileAsStream(
mlfFileName);
 loadMlfLabelsFromResource(inputStream);
 inputStream.close();
 } catch (IOException e) {
 throw new RuntimeException("reading model from mlf failed with
exception " + e.getMessage());
 }
 }

The extract() interface implements reading and processing logics of the voice file, computes the

signal-to-noise ratio (SNR) of the data based on the voice model, and fills Record with the result in

 the [snr, id] format.

MaxCompute User Guide / 7 External table

304 Issue: 20181120

The preceding example simplifies the implementation process and does not include the relevant

audio processing algorithm logic. See the example code provided by the MaxCompute SDK in the

open source community.

@Override
 public Record extract() throws IOException {
 SourceInputStream inputStream = inputs.next();
 if (inputStream == null){
 return null;
 }
 // process one wav file to extract one output record [snr, id]
 String fileName = inputStream.getFileName();
 fileName = fileName.substring(fileName.lastIndexOf('/') + 1);
 logger.info("Processing wav file " + fileName);
 String id = fileName.substring(0, fileName.lastIndexOf('.'));
 // read speech file into memory buffer
 long fileSize = inputStream.getFileSize();
 byte[] buffer = new byte[(int)fileSize];
 int readSize = inputStream.readToEnd(buffer);
 inputStream.close();
 // compute the avg sentence snr
 double snr = computeSnr(id, buffer, readSize);
 // construct output record [snr, id]
 Column[] outputColumns = this.attributes.getRecordColumns();
 ArrayRecord record = new ArrayRecord(outputColumns);
 record.setDouble(0, snr);
 record.setString(1, id);
 return record;
 }
 private void loadMlfLabelsFromResource(BufferedInputStream
fileInputStream)
 Throws IOException {
 // skipped here
 }
 // compute the snr of the speech sentence, assuming the input buffer
 contains the entire content of a wav file
 Private double computersnr (string ID, byte [] buffer, int
validbufferlen){
 // computing the snr value for the wav file (supplied as byte
buffer array), skipped here
 }

Run the query:

select sentence_snr, id
 from speech_sentence_snr_external
where sentence_snr > 10.0;

Results:

--
| sentence_snr | id |
--
| 34.4703 | J310209090013_H02_K03_042 |
--
| 31.3905 | tsh148_seg_2_3013_3_6_48_80bd359827e24dd7_0 |
--
| 35.4774 | tsh148_seg_3013_1_31_11_9d7c87aef9f3e559_0 |

https://github.com/aliyun/aliyun-odps-java-sdk/blob/master/odps-sdk-impl/odps-udf-example/src/main/java/com/aliyun/odps/udf/example/speech/SpeechSentenceSnrExtractor.java

MaxCompute User Guide / 7 External table

Issue: 20181120 305

--
| 16.0462 | tsh148_seg_3013_2_29_49_f4cb0990a6b4060c_0 |
--
| 14.5568 | tsh_148_3013_5_13_47_3d5008d792408f81_0 |
--

By using the customized extractor, you can process multiple voice data files stored on OSS on

the SQL statement in a distributed way. Using a similar method, you can also use MaxCompute's

 large-scale computing power to easily process different types of unstructured data, including the

image and video.

Data partition

In earlier sections, an external table linked data is implemented through designated OSS Directory

on LOCATION. But while process, MaxCompute reads all data under Directory, including all files

 in sub-directory. For accumulated data directories along with time, because the data volume is

too huge, scan the entire directory may cause unnecessary extra I/O and data processing time.

Normally, the two solutions for this problem are as follows:

• Reducing the volume of access data: Plan data storage addresses and use multiple

EXTERNAL TABLE to scan data in different parts, so that each EXTERNALTABLE of

LOCATION points to a data subaggregate.

• Partition data: EXTERNAL TABLE is the same as internal table, it supports functions of

partition table, you are available to manage data systemization based on partition function.

It mainly introduces partition function of EXTERNAL TABLE in this section.

• Standard organization method and path format of partition data on OSS

Unlike its internal tables, MaxCompute does not have the authority to manage data stored in

the external memory (such as OSS). As such, if you must use the partition table function on

your system, the storage path for data files on OSS needs to conform to a certain format. This

format is as follows.

partitionKey1=value1\partitionKey2=value2\...

Related examples are as follows

Assume that you save your daily LOG files on OSS and want to access part of the data when

processed with MaxCompute, based on the granularity of Day. Assuming that these LOG files

are CSV files (usage of complicated and customized format is similar), define the data by using

the following partitioned external table.

CREATE EXTERNAL TABLE log_table_external (
 click STRING,

MaxCompute User Guide / 7 External table

306 Issue: 20181120

 ip STRING,
 url STRING,
)
 PARTITIONED BY (
 year STRING,
 month STRING,
 Day string
)
 Stored by 'com. aliyun. ODPS. csvstoragehandler'
 WITH SERDEPROPERTIES (
 'odps.properties.rolearn'='acs:ram::xxxxx:role/aliyunodpsdefaultrol
e'
)
 LOCATION 'oss://oss-cn-hangzhou-zmf.aliyuncs.com/oss-odps-test/
log_data/';

The difference with the previous example is that when you define an external table, the external

 table is specified as a partition table through the PARTITIONED BY syntax, and the example is

 a three-tier partition table, the key for the partition is year, month, and day.

To get the partition like this to work effectively, comply with the preceding path format when

storing data on OSS. The following is an example of a valid path storage layout.

osscmd ls oss://oss-odps-test/log_data/
2017-01-14 08:03:35 128MB Standard oss://oss-odps-test/log_data/year
=2016/month=06/day=01/logfile
2017-01-14 08:04:12 127MB Standard oss://oss-odps-test/log_data/year
=2016/month=06/day=01/logfile. 1
2017-01-14 08:05:02 118MB Standard oss://oss-odps-test/log_data/year
=2016/month=06/day=02/logfile
2017-01-14 08:06:45 123MB Standard oss://oss-odps-test/log_data/year
=2016/month=07/day=10/logfile
2017-01-14 08:07:11 115MB Standard oss://oss-odps-test/log_data/year
=2016/month=08/day=08/logfile
...

Note:

If you have uploaded the offline data to the OSS storage service with osscmd or other OSS

tools, then you can define the data path format.

You can introduce the partition information into MaxCompute by using the ALTER TABLE ADD

 PARTITIONDDL pant statement.

An example of the corresponding DDL statement is as follows.

ALTER TABLE log_table_external ADD PARTITION (year = '2016', month =
 '06', day = '01')
ALTER TABLE log_table_external ADD PARTITION (year = '2016', month =
 '06', day = '02')
ALTER TABLE log_table_external ADD PARTITION (year = '2016', month =
 '07', day = '10')
ALTER TABLE log_table_external ADD PARTITION (year = '2016', month =
 '08', day = '08')

MaxCompute User Guide / 7 External table

Issue: 20181120 307

...

Note:

These actions are the same as the standard MaxCompute internal table operation, and for

more information , seePartition. When the data is ready and the PARTITION information

has been imported into the system, the partitioning of the external table data on OSS can be

performed by means of an SQL statement.

Assuming that you only want to analyze how many different IPs are available in LOG on June

1, 2016, use the following command:

SELECT count(distinct(ip)) FROM log_table_external WHERE year = '
2016' AND month = '06' AND day = '01';

At this point, for log_table_external, the directory that corresponds to the external table will only

access the files under the log_data/year=2016/month=06/day=01 subdirectory (logfile

and logfile .1),By not performing a full scan of all the data in the entire log_data/ directory, a

 lot of useless I/O operations can be avoided.

Similarly, if you only want to analyze the data for the second half of 2016, bhnj muse the

following command:

SELECT count(distinct(ip)) FROM log_table_external
WHERE year = '2016' AND month > '06';

At this point, only access the second half of the LOG stored on OSS.

• Customized path of partition data on OSS

If you have historical data stored on OSS but it is not stored using the partitionK

ey1=value1\partitionKey2=value2\... path format, you can still access it using

MaxCompute’s partition mode. MaxCompute also provides a way to import partitions through a

customized path.

Assume that only a simple partition value is on your data path (and no partition key

information). The following is an example of the data path storage layout.

osscmd ls oss://oss-odps-test/log_data_customized/
2017-01-14 08:03:35 128MB Standard oss://oss-odps-test/log_data_c
ustomized/2016/06/01/logfile
2017-01-14 08:04:12 127MB Standard oss://oss-odps-test/log_data_c
ustomized/2016/06/01/logfile. 1
2017-01-14 08:05:02 118MB Standard oss://oss-odps-test/log_data_c
ustomized/2016/06/02/logfile
2017-01-14 08:06:45 123MB Standard oss://oss-odps-test/log_data_c
ustomized/2016/07/10/logfile

MaxCompute User Guide / 7 External table

308 Issue: 20181120

2017-01-14 08:07:11 115MB Standard oss://oss-odps-test/log_data_c
ustomized/2016/08/08/logfile
...

The external table builder DDL can see the previous example and also specify the partition key in

the clause.

To bind different subdirectories to different partitions, use a command similar to the following

customized partition path.

ALTER TABLE log_table_external ADD PARTITION (year = '2016', month = '
06', day = '01')
LOCATION 'oss://oss-cn-hangzhou-zmf.aliyuncs.com/oss-odps-test/
log_data_customized/2016/06/01/';

When LOCATION information is added in ADD PARTITION to customize a partition data path.

Even if the data is not stored in the recommended format of partitionKey1=value1\

partitionKey2=value2\..., you can still access the partition data of the subdirectory.

7.2 Unstructured data exported to OSS
Accessing OSS unstructured data shows you how MaxCompute can be accessed and processed

by using external tables unstructured data stored in OSS, in fact, the unstructured framework of

MaxCompute also supports output of MaxCompute data directly to OSS via insert, MaxCompute

also associates OSS with external tables for data output.

Output Data to OSS is typically in two cases:

• The MaxCompute internal table is output to the External table that is associated with the OSS.

• After MaxCompute processes the external tables, the result isoutput directly to the external

tables that are associated with the OSS.

Like accessing OSS data, MaxCompute supports output via built-in storagehandler and custom

storagehandler.

Output to OSS via built-in storagehandler

Using the built-in storagehandler in MaxCompute And can be very convenient to output data in

the agreed format to OSS for storage. You must create an external table that indicates the built-in

 storagehandler, it can be associated with this table, and the related logic is implemented by the

system.

Currently MaxCompute supports 2 built-in storagehandlers:

MaxCompute User Guide / 7 External table

Issue: 20181120 309

• com.aliyun.odps.CsvStorageHandler , Defines how to read and write CSV format data, data

format Conventions: Usea comma (,) as a column separator, line Break is \n.

• com.aliyun.odps.TsvStorageHandler, defines how to read and write CSV format data, data

format Conventions: \tis a column separator, line Break is \n.

• Create external TABLE

CREATE EXTERNAL TABLE [IF NOT EXISTS] <external_table>
(<column schemas>)
[PARTITIONED BY (partition column schemas)]
STORED BY '<StorageHandler>'
[WITH SERDEPROPERTIES ('odps.properties.rolearn'='${roleran}')]
LOCATION 'oss://${endpoint}/${bucket}/${userfilePath}/';

▬ STORED By, if the data file that is required to be exported to OSS is a TSV file, then built-in

com.aliyun.odps.TsvStorageHandler if the data file that is required to be exported to

OSS is a CSV file, a built-in com.aliyun.odps.CsvStorageHandler.

▬ WITH Serdeproperties, when the associated OSS permission uses custom authorization of

STS mode authorization, this parameter must bespecified 'odps.properties.rolearn 'property,

attribute value is Ram Information about the specific use of custom role arns in.

Note:

For more information about STS mode authorization, see accessing the unstructured data

of OSS.

▬ Location that specifies the path to the file that corresponds to the OSS storage. If

the'odps.properties.rolearn'attribute is not set in WITH SERDEPROPERTIES and the

authorization is in plaintext AK, the LOCATIONis

Location
 'oss://${accessKeyId}:${accessKeySecret}@${endpoint}/${bucket
}/${userPath}/'

• Data output to OSS through insert operation on External table

Note:

The size of a single file from insert to OSS can not exceed 5G.

When an external After table is associated with an OSS storage path, it is possible to do a

standard SQL insert override/insert on an external table, the into operation can both output

data to OSS.

INSERT OVERWRITE|INTO TABLE <external_tablename> [PARTITION (
partcol1=val1, partcol2=val2 ...)]

MaxCompute User Guide / 7 External table

310 Issue: 20181120

select_statement
FROM <from_tablename>
[WHERE where_condition];

▬ from_tablename: It can be both an internal table or an external table (including an

external table for the associated OSS or OTs).

▬ Insert will be specified according to External table 'stored' the format of 'storagehandler' (that

 is, TSV or CSV) is written to OSA.

When the insert operation is completed successfully, you can see that the corresponding

location on the OSS produces a series of files.

Example: External table the corresponding location is oss://oss-cn-hangzhou-zmf

.aliyuncs.com/oss-odps-test/tsv_output_folder/ Then, you can see the

generation of a series of files in the OSS corresponding path:

osscmd ls oss://oss-odps-test/tsv_output_folder/
2017-01-14 06:48:27 39.00B Standard oss://oss-odps-test/tsv_output
_folder/.odps/.meta
2017-01-14 06:48:12 4.80MB Standard oss://oss-odps-test/tsv_output
_folder/.odps/20170113224724561g9m6csz7/M1_0_0-0.tsv
2017-01-14 06:48:05 4.78MB Standard oss://oss-odps-test/tsv_output
_folder/.odps/20170113224724561g9m6csz7/M1_1_0-0.tsv
2017-01-14 06:47:48 4.79MB Standard oss://oss-odps-test/tsv_output
_folder/.odps/20170113224724561g9m6csz7/M1_2_0-0.tsv
...

You can see, through the oss-odps-test specified in the previous location, this OSS A 'was

generated under the maid folder under the bucket '.odps 'folder, which will have some '. tsv' file,

and '. meta 'file. Similar file structures are specific to MaxCompute's output to OSS:

• USE insert into/Overwrite for an OSS address via MaxCompute The External table will

do the output operation, all data will be under the specified location '. the ODPS 'folder is

generated.

• The .meta file in the .odps folder is an extra macro data file written by MaxCompute to

record the valid data in the current folder. Typically, if the INSERT operation is successful,

all the data in the current folder is valid. The macro data only needs to be parsed when a job

 fails. For insert, even if the job fails in the middle or is killed. The overwrite operation will run

 one more success.

• If it is a partition table, A corresponding partition sub-directory is generated based on the

partition value specified by the insert statement under the fig folder and then the partition

sub-directory inside is '.odps 'folder. For example, test/tsv_output_folder/first

MaxCompute User Guide / 7 External table

Issue: 20181120 311

-level partition name = partition value/.odps/20170113224724561g9m

6csz7/M1_2_0-0.tsv.

For the TSV/CSV storagehandler processing built in by MaxCompute, the number of files

 generated is corresponding to the corresponding SQL Stage has the same degree of

concurrency.

If INSER OVERWITE ... Select... From ... ; The operation of the source data

table (FIG) There are 1000 mapper allocated on, and a total of 1000 TSV/CSV files will be

generated.

Output to OSS via custom storagehandler

In addition to using the built-in storagehandler to implement the output TSV/CSV common text

format on the OSS, the MaxCompute unstructured framework provides a general-purpose SDK

that supports external output of custom data format files.

As well as the built-in storagehandler, you need to "Create an External table" before "passing an

insert on an external table" The operation implements the output of data to OSS ". The difference

is that when creating an external table, stored by is a storagehandler that needs to be specified as

a custom.

Note:

The MaxCompute unstructured framework describes the processing of a variety of data storage

formats through an interface called storagehandler. Specifically, the storagehandler acts as a

Wrapper class, lets you specify a custom expractor (for Data Reading, parsing, processing, etc)

And outputer (for data processing and output, etc). Custom storagehandler should inherit To

implement the interface and the interface.

Next we use custom Extractor access in accessing OSS unstructured data to show how

MaxComputer can customize StorageHandler Output the data to the TXT file of the OSS, with '|'

as the column separator, take '\ n' as a line break.

Note:

MaxCompute After the studio is configured with MaxCompute Java module, you can see the

corresponding sample code in examples. Or click here to see the complete code.

• Define outputer

https://github.com/aliyun/aliyun-odps-java-sdk/tree/master/odps-sdk-impl/odps-udf-example/src/main/java/com/aliyun/odps/udf/example/text

MaxCompute User Guide / 7 External table

312 Issue: 20181120

Both output logic must implement the outputer interface:

package com.aliyun.odps.examples.unstructured.text;
import com.aliyun.odps.data.Record;
import com.aliyun.odps.io.OutputStreamSet;
import com.aliyun.odps.io.SinkOutputStream;
import com.aliyun.odps.udf.DataAttributes;
import com.aliyun.odps.udf.ExecutionContext;
import com.aliyun.odps.udf.Outputer;
import java.io.IOException;
public class TextOutputer extends Outputer {
 private SinkOutputStream outputStream;
 private DataAttributes attributes;
 private String delimiter;
 public TextOutputer (){
 // default delimiter, this can be overwritten if a delimiter
 is provided through the attributes.
 this.delimiter = "|";
 }
 @Override
 public void output(Record record) throws IOException {
 this.outputStream.write(recordToString(record).getBytes());
 }
 // no particular usage of execution context in this example
 @Override
 public void setup(ExecutionContext ctx, OutputStreamSet
outputStreamSet, DataAttributes attributes) throws IOException {
 this.outputStream = outputStreamSet.next();
 this.attributes = attributes;
 }
 @Override
 public void close() {
 // no-op
 }
 private String recordToString(Record record){
 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < record.getColumnCount(); i++)
 {
 if (null == record.get(i)){
 sb.append("NULL");
 }
 else{
 sb.append(record.get(i).toString());
 }
 if (i ! = record.getColumnCount() - 1){
 sb.append(this.delimiter);
 }
 }
 sb.append("\n");
 return sb.toString();
 }
}

There are three outputer interfaces: setup, Output and close, which are essentially Symmetric

With the extractor's three interfaces, setup, extract, and close. Where setup () and close () are

 called only once in an outputer. You can do initialization preparation work in setup, And you

 usually need to put setup () the three parameters passed in are saved as class variable for

MaxCompute User Guide / 7 External table

Issue: 20181120 313

ouputerd, Used in the output () or close () interface after convenience. The interface, close (), is

 used to sweep the end of the Code.

Typically, most of the data processing occurs in the output (record) interface. The MaxCompute

 system calls output (record) Once based on each input record processed by the current

outputer assignment). Assuming that when an output (record) call returns, the Code has

already consumed the record, So after the current output (record) returns, the system uses the

 memory used by the record for it, so when the information in record is used across multiple

output () function calls, the record for the current process needs to be invoked. clone () method

 to save the current record.

• Define Extractor

Exatrractor is used for Data Reading, parsing, processing, and so on, if the output tables

eventually do not need to be read by MaxCompute and so on, you do not need to define them.

package com.aliyun.odps.examples.unstructured.text;
import com.aliyun.odps.Column;
import com.aliyun.odps.data.ArrayRecord;
import com.aliyun.odps.data.Record;
import com.aliyun.odps.io.InputStreamSet;
import com.aliyun.odps.udf.DataAttributes;
import com.aliyun.odps.udf.ExecutionContext;
import com.aliyun.odps.udf.Extractor;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
/**
 Text extractor that extract schematized records from formatted
plain-text(csv, tsv etc.)
 **/
public class TextExtractor extends Extractor {
 private InputStreamSet inputs;
 private String columnDelimiter;
 private DataAttributes attributes;
 private BufferedReader currentReader;
 private boolean firstRead = true;
 public TextExtractor() {
 // default to ",", this can be overwritten if a specific
delimiter is provided (via DataAttributes)
 this.columnDelimiter = ",";
 }
 // no particular usage for execution context in this example
 @Override
 public void setup(ExecutionContext ctx, InputStreamSet inputs,
DataAttributes attributes) {
 this.inputs = inputs;
 this.attributes = attributes;
 // check if "delimiter" attribute is supplied via SQL query
 String columnDelimiter = this.attributes.getValueByKey("
delimiter");
 if (columnDelimiter ! = null)
 {

MaxCompute User Guide / 7 External table

314 Issue: 20181120

 this.columnDelimiter = columnDelimiter;
 }
 System.out.println("TextExtractor using delimiter [" + this.
columnDelimiter + "].");
 // note: more properties can be inited from attributes if
needed
 }
 @Override
 public Record extract() throws IOException {
 String line = readNextLine();
 if (line == null) {
 return null;
 }
 return textLineToRecord(line);
 }
 @Override
 public void close(){
 // no-op
 }
 private Record textLineToRecord(String line) throws IllegalArg
umentException
 {
 Column[] outputColumns = this.attributes.getRecordColumns();
 ArrayRecord record = new ArrayRecord(outputColumns);
 if (this.attributes.getRecordColumns().length ! = 0){
 // string copies are needed, not the most efficient one
, but suffice as an example here
 String[] parts = line.split(columnDelimiter);
 int[] outputIndexes = this.attributes.getNeededIndexes
();
 if (outputIndexes == null){
 throw new IllegalArgumentException("No outputIndexes
 supplied.");
 }
 if (outputIndexes.length ! = outputColumns.length){
 throw new IllegalArgumentException("Mismatched
output schema: Expecting "
 + outputColumns.length + " columns but get "
 + parts.length);
 }
 int index = 0;
 for(int i = 0; i < parts.length; i++){
 // only parse data in columns indexed by output
indexes
 if (index < outputIndexes.length && i == outputInde
xes[index]){
 switch (outputColumns[index].getType()) {
 case STRING:
 record.setString(index, parts[i]);
 break;
 case BIGINT:
 record.setBigint(index, Long.parseLong(
parts[i]));
 break;
 case BOOLEAN:
 record.setBoolean(index, Boolean.
parseBoolean(parts[i]));
 break;
 case DOUBLE:
 record.setDouble(index, Double.
parseDouble(parts[i]));
 break;

MaxCompute User Guide / 7 External table

Issue: 20181120 315

 case DATETIME:
 case DECIMAL:
 case ARRAY:
 case MAP:
 Default:
 throw new IllegalArgumentException("Type
 " + outputColumns[index].getType() + " not supported for now.");
 }
 index++;
 }
 }
 }
 return record;
 }
 /**
 * Read next line from underlying input streams.
 * @return The next line as String object. If all of the
contents of input
 * streams has been read, return null.
 */
 private String readNextLine() throws IOException {
 if (firstRead) {
 firstRead = false;
 // the first read, initialize things
 currentReader = moveToNextStream();
 if (currentReader == null) {
 // empty input stream set
 return null;
 }
 }
 while (currentReader ! = null) {
 String line = currentReader.readLine();
 if (line ! = null) {
 return line;
 }
 currentReader = moveToNextStream();
 }
 return null;
 }
 private BufferedReader moveToNextStream() throws IOException {
 InputStream stream = inputs.next();
 if (stream == null) {
 return null;
 } else {
 return new BufferedReader(new InputStreamReader(stream
));
 }
 }
}

For more information, seeaccessing the OSS unstructured data documentation.

• Define StorageHandler

package com.aliyun.odps.examples.unstructured.text;
import com.aliyun.odps.udf.Extractor;
import com.aliyun.odps.udf.OdpsStorageHandler;
import com.aliyun.odps.udf.Outputer;
public class TextStorageHandler extends OdpsStorageHandler {
 @Override
 public Class<? extends Extractor> getExtractorClass() {

MaxCompute User Guide / 7 External table

316 Issue: 20181120

 return TextExtractor.class;
 }
 @Override
 public Class<? extends Outputer>getOutputerClass() {
 return TextOutputer.class;
 }
}

If the table does not need to be read, you do not need to specify an extractor interface.

• Compile and package

Package custom code compilation and act as a jar The resource is uploaded to MaxCompute.

If the jar package is named 'odps-TextStorageHandler.jar', upload to MaxCompute The

resource is as follows:

add jar odps-TextStorageHandler.jar;

• Creating External tables

Like using the built-in storagehandler, an External table needs to be created, the difference is

that this time you need to specify that the data is output to an external table, using a custom

storagehandler.

CREATE EXTERNAL TABLE IF NOT EXISTS output_data_txt_external
(
vehicleId int,
recordId int,
patientId int,
calls int,
locationLatitute double,
locationLongtitue double,
recordTime string,
direction string
)
STORED BY 'com.aliyun.odps.examples.unstructured.text.TextStorag
eHandler'
WITH SERDEPROPERTIES(
 'delimiter'='|'
 [, 'ODPS. properties. rolearn' = '$ {roleran}'])
LOCATION 'oss://${endpoint}/${bucket}/${userfilePath}/'
USING 'odps-TextStorageHandler.jar';

Note:

If you need 'odps.properties.rolearn'property, for more information, see custom authorization

 for STs mode authorization toaccess the OSS unstructured data. If not, you can refer to one-

click authorization or use clear-text AK on top of location.

• Write unstructured files into External Table using INSERT

MaxCompute User Guide / 7 External table

Issue: 20181120 317

Creating external with custom storagehandler After table is associated with an OSS storage

path, it is possible to do a standard SQL insert override/insert on an external table The into

operation can both output data to OSS in the same manner as the built-in storagehandler:

INSERT OVERWRITE|INTO TABLE <external_tablename> [PARTITION (
partcol1=val1, partcol2=val2 ...)]
Select_statement
FROM <from_tablename>';
[WHERE where_condition];

When the insert operation is successful, it is the same as the built-in storagehandler, you can

see a series of files generated in the OSS corresponding location path '.odps 'folder.

7.3 Visit Table Store data
Table Store is a NoSQL database service that is built on Alibaba Cloud’s Apsara distributed file

system, enabling you to store and access massive volumes of structured data in real time. For

more information, see What is Table Store.

MaxCompute and Table Store are two independent big data computing and storage

services. Therefore, these two services must make sure that the network between them

is open. When MaxCompute’s public cloud service accesses data stored in Table Store,

we recommend that you use Table Store’s private network address, usually a host name

suffixed ‘ots-internal.aliyuncs.com’.For example, tablestore://odps-ots-dev.cn-shanghai.ots-

internal.aliyuncs.com.

This document introduces how to access OSS to import data from Table Store to the

MaxCompute computing environment. This allows seamless connections between multiple data

sources.

Both TableStore and MaxCompute have their own type systems. When you process Table Store

data in MaxCompute, the data type associations are as follows:

MaxCompute Type TableStore Type

STRING STRING

BIGINT INTEGER

DOUBLE Double

BOOLEAN Boolean

BINARY BINARY

https://www.alibabacloud.com/help/doc-detail/27280.html

MaxCompute User Guide / 7 External table

318 Issue: 20181120

Authorization with STS mode

To access Table Store data, MaxCompute requires a secure authorization channel. To address

 this issue, MaxCompute integrates Alibaba Cloud Resource Access Management (RAM) and

Token Service (STS) to implement secure data access.

You can authorize permissions in the following two ways:

• When the MaxCompute and Table Store owner are the same account, you can directly log on

with the Alibaba Cloud account and click here to complete authorization.

• Custom authorization.

1. Firstly, you must grant Table Store access permission to MaxCompute in the RAM console.

Log on to the RAM console (if MaxCompute and Table Store are not the same account, log

on with the Table Store account to authorize), and create the role AliyunODPSDefaultRole.

2. Set its policy content as follows:

--if MaxCompute and Table Store are same account
{
"Statement": [
{
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "odps.aliyuncs.com"
]
 }
}
],
"Version": "1"
}
--if MaxCompute and Table Store are not the same account
{
"Statement": [
{
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "MaxCompute's Owner cloud account UID@odps.aliyuncs.com"
]
 }
}
],
"Version": "1"
}

Note:

https://ram.console.aliyun.com/?spm=5176.100239.blogcont281191.24.uJg9dR#/role/authorize?request=%7B%22Requests%22:%20%7B%22request1%22:%20%7B%22RoleName%22:%20%22AliyunODPSDefaultRole%22,%20%22TemplateId%22:%20%22DefaultRole%22%7D%7D,%20%22ReturnUrl%22:%20%22https:%2F%2Fram.console.aliyun.com%2F%22,%20%22Service%22:%20%22ODPS%22%7D
https://account.alibabacloud.com/login/login.html

MaxCompute User Guide / 7 External table

Issue: 20181120 319

In the upper-right corner, click the Avatar to open the Billing Management page, and check

the account UID.

3. Edit this role’s authorization policy AliyunODPSRolePolicy:

{
"Version": "1",
"Statement": [
{
 "Action": [
 "ots:ListTable",
 "ots:DescribeTable",

MaxCompute User Guide / 7 External table

320 Issue: 20181120

 "ots:GetRow",
 "ots:PutRow",
 "ots:UpdateRow",
 "ots:DeleteRow",
 "ots:GetRange",
 "ots:BatchGetRow",
 "ots:BatchWriteRow",
 "ots:ComputeSplitPointsBySize"
],
 "Resource": "*",
 "Effect": "Allow"
}
]
}
--You can also customize other permissions

4. Grant the permission AliyunODPSRolePolicy to this role.

Create an external table

In MaxCompute, after creating an external table and introducing the Table Store table data

descriptions to the MaxCompute meta system, you can process Table Store data. The following

example demonstrates the concept and practice that used in MaxCompute’s Table Store access.

Use following statements to create an external table:

DROP TABLE IF EXISTS ots_table_external;
CREATE EXTERNAL TABLE IF NOT EXISTS ots_table_external
(
odps_orderkey bigint,
odps_orderdate string,
odps_custkey bigint,
odps_orderstatus string,
odps_totalprice double
)
STORED BY 'com.aliyun.odps.TableStoreStorageHandler' -- (1)
WITH SERDEPROPERTIES (-- (2)
'tablestore.columns.mapping'=':o_orderkey,:o_orderdate,o_custkey,
o_orderstatus,o_totalprice', -- ①
'tablestore.table.name'='ots_tpch_orders' -- ②
'odps.properties.rolearn'='acs:ram::xxxxx:role/aliyunodpsdefaultrole'
 --③
)
LOCATION 'tablestore://odps-ots-dev.cn-shanghai.ots-internal.aliyuncs.
com'; -- （3）

The statement is as follows：

(1) com.aliyun.odps.TableStoreStorageHandler is a storagehandler built into MaxCompute that

 handles the Table Store data, which defines the interaction between MaxCompute and Table

Store, the correlation logic is implemented by MaxCompute.

MaxCompute User Guide / 7 External table

Issue: 20181120 321

(2) SERDEPROPERITES is an interface that provides Parameter options, and when you use,

thesetwo options must be specified of which one is the Table Store described below.columns.

mapping, tablestore.table.name and odps.properties.rolearn.

①tablestore.columns.mapping option: Required to describe the columns of the Table Store table

that MaxCompute is going to access, includes primary key and attribute columns.

• At the beginning of the column name, : indicates a Table Store primary key. In this example:

o_orderkey and :o_orderdate are primary key columns and all others are attribute

columns.

• Table Store supports up to 4 primary keys. Primary keys support the STRING, INTEGER, and

BINARY data types. The first primary key is the partition key.

• When specifying a mapping relationship, you must provide all the primary keys of the specified

 Table Store table, but you do not have to provide all attribute columns, only the attribute

columns you must access by using MaxCompute.

 ②tablestore.table.name：the name of the table store table that needs to be accessed. If you

 specify an incorrect Table Store table name (such as a table that does not exist), the system

reports an error. MaxCompute does not create a new Table Store table with the specified name.

③odps.properties.rolearn中的信息是RAM中AliyunODPSDefaultRole的Arn信息。 You can get it

through the details of the role in the RAM console.

(3) LOCATION clause: lets you specify specific information such as the table storeinstance

name, endpoint, and so on. Because you must specify the AccessKey the of OSS owner, to

avoid disclosing the AccessKey of your primary account, we recommend that you use RAM user

credentials.

If you want to view the created external table structure, run the following statement:

desc extended <table_name>;

In the returned information, “Extended Info” contains external tables information such as

StorageHandler and Location.

Access table data by using an external table

After creating an external table, you can introduce Table Store data to the MaxCompute

ecosystem.There, you can use MaxCompute SQL syntax to access Table Store data as follows:

SELECT odps_orderkey, odps_orderdate, SUM(odps_totalprice) AS
sum_total
FROM ots_table_external

MaxCompute User Guide / 7 External table

322 Issue: 20181120

WHERE odps_orderkey > 5000 AND odps_orderkey < 7000 AND odps_orderdate
 >= '1996-05-03' AND odps_orderdate < '1997-05-01'
GROUP BY odps_orderkey, odps_orderdate
HAVING sum_total> 400000.0;

When using the MaxCompute SQL syntax, all of the accessed Table Store details are processed

 in MaxCompute. This includes column name selection. For example, the column names used in

 the preceding SQL statements (such as odps_orderkey and odps_totalprice) are not the original

 primary key names (o_orderkey) or attribute column names (o_totalprice) used in Table Store.

This is because mapping was already performed in the DDL statement used to create the external

 table. Certainly, you can retain the original Table Store primary key/column names when creating

 the external table.

If you perform multiple computations on a single data set, instead of remotely reading data

from Table Store each time, you can import all the necessary data to MaxCompute, to create a

MaxCompute (internal) table. For example:

CREATE TABLE internal_orders AS
SELECT odps_orderkey, odps_orderdate, odps_custkey, odps_totalprice
FROM ots_table_external
WHERE odps_orderkey > 5000 ;

Currently, internal_orders is a MaxCompute table, with all features of a MaxCompute internal table

, including an efficiently compressed column storage data format and complete internal macro

 data, and statistics information. Furthermore, because the data is stored in MaxCompute, the

access speed is faster than when accessing external Table Store data. This is especially suitable

for hotspot data that is frequently computed.

Export MaxCompute Data to TableStore

Note:

MaxCompute does not directly create external Table Store tables.Therefore, before outputting

data to a Table Store table, you must make sure this table has already been created (or the

system reports an error).

In the preceding operations, the external table ots_table_external has been created to connect

MaxCompute with the Table Store table ots_tpch_orders, and data has been stored in the internal

MaxCompute table internal_orders. Now you can write the processed data from internal_orders

back to Table Store, perform the INSERT OVERWITE TABLE operation on the external table as

follows:

INSERT OVERWRITE TABLE ots_table_external

MaxCompute User Guide / 7 External table

Issue: 20181120 323

SELECT odps_orderkey, odps_orderdate, odps_custkey, CONCAT(odps_custk
ey, 'SHIPPED'), CEIL(odps_totalprice)
FROM internal_orders;

Because Table Store is a KV data NoSQL storage medium, the data output from MaxCompute

only affects the rows with the corresponding primary keys. In this example, the output only affects

 data in rows with corresponding dps_orderkey + odps_orderdate primary key values. In addition

, in the Table Store rows, only the attribute columns specified during external table (ots_table_

external) creation are updated. Data columns that do not appear in the external table are not

modified.

Note:

• Writing data from MaxCompute to OTS should not exceed 4MB at a time, otherwise the user

will have to remove the large data and write it again. Mistakes may occur at this time.

ODPS-0010000:System internal error - Output to TableStore failed
with exception:
TableStore BatchWrite request id XXXXX failed with error code
OTSParameterInvalid and message:The total data size of BatchWrite
Row request exceeds the limit

• When you write data in bulk, please be careful not to repeat it, otherwise it may cause errors.

ErrorCode: OTSParameterInvalid, ErrorMessage: The input parameter
is invalid

MaxCompute User Guide / 8 Security

324 Issue: 20181120

8 Security

8.1 Target users
This article is intended for MaxCompute project owners, administrators, and users interested in

the MaxCompute multi-tenant data security system.

The MaxCompute multi-tenant data security system includes:

• User authentication.

• User and authorization management of projects.

• Sharing of resources across projects.

• Data protection of projects.

8.2 User authentication

MaxCompute supports the Alibaba Cloud account system and the RAM account system.

Note:

MaxCompute recognizes the RAM account system but cannot recognize the RAM permission

system. As a user, you can add any of your RAM sub-accounts to a MaxCompute project.

However, MaxCompute skips the RAM permission definitions when it verifies the permissions of

the RAM sub-account.

By default, the MaxCompute project only recognizes the Alibaba Cloud account system. You can

view the account system supported by this project by running list accountproviders;.

Typically, only Alibaba Cloud accounts are displayed. To add the RAM account system, run the

add accountprovider ram; command. After the RAM account system is added, run list

 accountproviders; to make sure it has been successfully added to the supported account

systems.

Apply for an Alibaba Cloud account

If you do not have an Alibaba Cloud account, visit here to apply for one.

Note:

A valid email address is needed, when you apply for an Alibaba Cloud account. Because this

email address is used as the account name after registration. For example, Alice can use her

http://account.aliyun.com/

MaxCompute User Guide / 8 Security

Issue: 20181120 325

email address alice@aliyun.com to register an Alibaba Cloud account. Her account name will be

alice@aliyun.com after Alibaba Cloud account registration.

Apply for AccessKey

Click here to create or manage your AccessKey list after you register an Alibaba Cloud account.

An AccessKey consists of the AccessKeyID and AccessKeySecret. The AccessKeyID is used to

retrieve the AccessKey, and the AccessKeySecret is used to sign the computing messages. You

 must secure your AccessKey for further use. If you need to update an AccessKey, create a new

AccessKey and disable the existing one.

Log on to MaxCompute with an Alibaba Cloud account

Configure the AccessKey in the configuration file conf/odps_config.ini before you use odpscmd to

log on. See the following example:

 project_name=myproject
 access_id=<Input the AccessKeyID here, excluding the angle brackets>
 access_key=<Input the AccessKey here, excluding the angle brackets>
 end_point=http://service.odps.aliyun-inc.com/api

Note:

To enable or disable an AccessKey on the Alibaba Cloud website, wait for at least 15 minutes

after the operation is complete.

8.3 User management
Any user, except the project owner, must be added to the MaxCompute project and granted the

corresponding permissions to manage data, jobs, resources, and functions in MaxCompute. This

article describes how a project owner can add, authorize, and remove other users, including RAM

sub-accounts to MaxCompute.

If you are a project owner, we recommend that you read this article carefully. If you are a typical

 user, we recommend that you submit an application to the project owner to be added to the

corresponding project. We recommend all users to read the subsequent sections.

All the operations mentioned in this article are executed on the console. For Linux, run ./bin/

odpscmd and for Windows, run ./bin/odpscmd.bat.

Add a user

In this example, the project owner, Alice, wants to authorize another user, therefore she must add

the user to the project first. Only a user who has been added to the project can be authorized.

http://i.aliyun.com/access_key

MaxCompute User Guide / 8 Security

326 Issue: 20181120

The command to add a user is as follows:

add user

The <username> of an Alibaba Cloud account is a valid email address registered with Alibaba

Cloud, or a RAM sub-account of an Alibaba Cloud account that runs the command. For example:

add user ALIYUN$odps_test_user@aliyun.com;
add user RAM$ram_test_user;

Assume that the Alibaba Cloud account of Alice is alice@aliyun.com. When Alice runs these

statements, the following results are returned by running the list users; command:

RAM$alice@aliyun.com:ram_test_user
ALIYUN$odps_test_user@aliyun.com

This indicates that the Alibaba Cloud account odps_test_user@aliyun.com and the sub-account

ram_test_user created by Alice using RAM have been added to the project.

Add a RAM sub-account

The two ways to add a RAM sub-account are as follows:

• By using DataWorks, for more information, see Prepare a RAM account.

• By using MaxCompute client commands as described in this document.

Note:

• MaxCompute only allows a primary account to add its own RAM sub-accounts to a project.

RAM sub-accounts of other Alibaba Cloud accounts are not allowed. Therefore, you can

skip to specify the name of the primary account before the RAM sub-accounts when add

 user. MaxCompute determines by default that the account which runs the command is

the corresponding sub-account.

• MaxCompute only recognizes the RAM account system and does not recognize the RAM

 permission system. Users can add any of their RAM sub-accounts to a MaxCompute

project, but MaxCompute does not consider the permission limits in RAM when performing

permission verification of RAM sub-accounts.

By default, MaxCompute project only recognizes Alibaba Cloud account systems. To view the

supported account systems use the list accountproviders; command. Typically, only

the ALIYUN account is visible, for example:

odps@ ****>list accountproviders;

https://www.alibabacloud.com/help/doc-detail/30264.htm

MaxCompute User Guide / 8 Security

Issue: 20181120 327

ALIYUN

Note:

Only the project owner has the permission to perform operations related to accountpro

viders.

As shown in the preceding command, you can only see the ALIYUN account system. If you

want to add RAM accounts support, run the add accountprovider ram; as follows:

ram; as follows:

odps@ odps_pd_inter>add accountprovider ram;
OK

The user will still not be able to operate MaxCompute successfully. This is because, the user

must be granted certain permissions to operate MaxCompute within the permissive limits. For

more information, see Authorization.

User Authorization

Once the user is added, the project owner or project administrator must authorize the user. The

user can perform the operations only after obtaining the permissions.

MaxCompute provides ACL authorization, cross-project resource sharing, and project

resource protection. The following are two common scenarios, for more information, see ACL

Authorization.

Scenario 1

In the following scenario, Jack is the administrator of the project prj1. A new project team

member Alice (Alibaba Cloud account: alice@aliyun.com) applies to join the project prj1, and for

permission to view table lists, submit jobs, and create tables.

The admin or the project owner can run the following command on the client:

use prj1; --Open the project prj1
add user aliyun$alice@aliyun.com; --Add the user
grant List, CreateTable, CreateInstance on project prj1 to user aliyun
$alice@aliyun.com; --Authorize the user

Scenario 2

In the following scenario, assume Alibaba Cloud account user (bob@aliyun.com) has been added

to a project ($user_project_name), and must be granted permission to create tables, obtain table

information, and run functions.

MaxCompute User Guide / 8 Security

328 Issue: 20181120

The admin or the project owner can run the following command on the client:

grant CreateTable on PROJECT $user_project_name to USER ALIYUN$bob@
aliyun.com;
 --Grant CreateTable permission on project “$user_project_name” to
bob@aliyun.com
grant Describe on Table $user_table_name to USER ALIYUN$bob@aliyun.com
;
 --Grant Describe permission on table “$user_table_name” to bob@
aliyun.com
grant Execute on Function $user_function_name to USER ALIYUN$bob@
aliyun.com;
 --Grant Run permission on function "$user_function_name" to bob@
aliyun.com

Authorize RAM Sub-account

To check accounts support, run list accountproviders; command as follows:

odps@ ****>list accountproviders;
ALIYUN, RAM

In this project, RAM accounts are also supported. You can add a RAM sub-account to this project

and grant Describe permission on the tables. For example:

odps@ ****>add user ram$bob@aliyun.com:Alice;
OK: DisplayName=RAM$bob@aliyun.com:Alice
odps@ ****>grant Describe on table src to user ram$bob@aliyun.com:
Alice;
OK

After running these commands, Alice account, which is a RAM sub-account of

bob@aliyun.com , can logon to MaxCompute with the AccessKeyID and AccessKeySecret,

and run desc on the table src.

Note:

• For more information about how to create a RAM sub-account AccessKeyID and

AccessKeySecret, see RCreate a RAM user.

• For more information about how to add or remove users on MaxCompute, see the correspond

ing content of this article.

• For more information about authorizing a user, see Authorization.

Remove a User

When a user leaves the project team, Alice must remove the user from the project. Once removed

 from the project, the user no longer has any access permission to the project resources.

https://www.alibabacloud.com/help/doc-detail/28637.htm

MaxCompute User Guide / 8 Security

Issue: 20181120 329

The command to remove a user from a project is as follows:

remove user

Note:

• A user removed from a project immediately loses an authority to access resources of the

project.

• Revoke all the roles of the user, before removing a user whom the roles are assigned. For

more information about roles, see Role Management.

• After a user is removed, all ACL Authorization data related to the user is retained. After a user

is added to a project again, the ACL Authorization of this user is enabled again.

• MaxCompute does not support complete removal of a user and all permission data from a

project.

To remove corresponding users, Alice can run the following commands:

remove user ALIYUN$odps_test_user@aliyun.com;
remove user RAM$ram_test_user;

To make sure the users are removed, run the following command:

LIST USERS;

If those two accounts are no longer listed after running the command, it indicates that the

accounts have been removed from the project.

Remove a RAM Sub-account

Similarly, RAM sub-account can be removed by using the remove user command. For

example:

odps@ ****>revoke describe on table src from user ram$bob@aliyun.com:
Alice;
OK
-- Revoke Alice sub-account permissions
odps@ ****>remove user ram$bob@aliyun.com:Alice;
Confirm to "remove user ram$bob@aliyun.com:Alice;" (yes/no)? yes
OK
-- Remove sub-account

If you are the project owner, you can also remove the RAM account system from the current

project by remove accountprovider as follows:

odps@ ****>remove accountprovider ram;
Confirm to "remove accountprovider ram;" (yes/no)? yes
OK

MaxCompute User Guide / 8 Security

330 Issue: 20181120

odps@ ****>list accountproviders;
ALIYUN

8.4 Role management
A role is a defined set of access permissions. It assigns the same set of permissions to a group

of users. Role-based authorization greatly simplifies the authorization process and reduces the

authorization management cost. It must be used with priority.

When a project is created, an admin role is automatically created with a definite privilege

authorized to the role, including access to all objects within the project, management of users

and roles, and authorization to users and roles. In comparison to a project owner, the admin role

cannot assign admin permission to any user, set the project security configuration, or change the

authentication model for the project. Permissions of the admin role cannot be modified.

Role management related commands include the following:

 create role <rolename> --Create a role
 drop role <rolename> --Delete a role
 grant <rolename> to <username> --Grant a role to a user
 revoke <rolename> from <username> --Revoke a role from a user

Note:

• One role can be assigned to multiple users at the same time, and one user can be assigned

multiple roles.

• For more information about the mapping between the roles in DataWorks and in MaxCompute,

and the platform permissions of these roles, see the project member management module in

Project Management.

Create a role

To create a role, use the following command :

CREATE ROLE;

Example:

To create a role player, enter the following command on the client:

create role player;

Note:

https://www.alibabacloud.com/help/doc-detail/47736.htm
https://www.alibabacloud.com/help/doc-detail/47736.htm

MaxCompute User Guide / 8 Security

Issue: 20181120 331

The role permissions you create can view the specified user permissions through Permission

check.

Add a user to the role

To add a user to the role, use the following command:

GRANT <roleName> TO <full_username> ;

Example:

To assign user bob@aliyun.com the player role, enter the following command on the console:

grant player to bob@aliyun.com;

Authorize role

The authorization statement for the role is similar to the authorization for the user. For more

information, see User authorization.

Note:

After role authorization is complete, all users under this role have the same permissions.

Example:

Jack is the administrator of project prj1. Three new data auditors, Alice, Bob, and Charlie, are

added to the project team. They must apply for the following permissions: view the table lists,

submit the jobs, and read the table userprofile.

In this scenario, the project administrator can perform authorization by using the object-based ACL

Authorization.

The commands are as follows:

 use prj1;
 add user aliyun$alice@aliyun.com; --Add the user
 add user aliyun$alice@aliyun.com; --Add the user
 add user aliyun$charlie@aliyun.com;
 create role tableviewer; --Create a role
 grant List, CreateInstance on project prj1 to role tableviewer; --
Grant permissions to the role
 grant Describe, Select on table userprofile to role tableviewer;
 grant tableviewer to aliyun$alice@aliyun.com; --Grant the
tableviewer role to the user
 grant tableviewer to aliyun$bob@aliyun.com;

MaxCompute User Guide / 8 Security

332 Issue: 20181120

 grant tableviewer to aliyun$charlie@aliyun.com;

Revoke the role from the user

To revoke the role from the user, use the following command:

REVOKE <roleName> FROM <full_username>;

Example:

To remove the user bob@aliyun.com from the player role, use the following command on the

client:

revoke player from bob@aliyun.com;

Delete a Role

To delete a role, use the following command:

DROP ROLE <roleName>;

Example:

To delete the role of the player, use the following command:

drop role player;

Note:

When a role is deleted a role, MaxCompute checks whether other users are in this role. If yes,

this role cannot be deleted. The role can be successfully deleted only when all users in the role

are revoked from this role.

8.5 Authorization

Authorization allows a user to perform operations including read, write, and view on tables, tasks,

resources, and other objects of the MaxCompute. After the user is added, the project owner or

the project administrator must authorize the user. The user can perform operations only after

obtaining the permission.

MaxCompute provides Access Control List (ACL) authorization, cross-project resource sharing,

and project resource protection. Authorization typically includes three elements: subject, object,

and action. In MaxCompute, the subject refers to a user or a role and the object refers to various

types of objects in a project.

MaxCompute User Guide / 8 Security

Issue: 20181120 333

ACL authorization includes following MaxCompute objects: Project, Table, Function, Resource,

and Instance. Operations are related to specific object types, therefore different types of objects

support different types of actions.

MaxCompute projects support the following object types and actions:

Object Action Description

Project Read View project information (excluding any project objects),
such as the creation time.

Project Write Update project information (excluding any project objects
), such as comments.

Project List View the list of all types of objects in the project.

Project CreateTable Create a table in the project.

Project CreateInstance Create an instance in the project.

Project CreateFunction Create a function in the project.

Project CreateResource Create a resource in the project.

Project All Grant all of the preceding permissions.

Table Describe Read the metadata of the table.

Table Select Read the table data.

Table Alter Change the metadata of the table and add or delete a
partition.

Table Update Overwrite or add table data.

Table Drop Delete a table.

Table All Grant all the preceding permissions.

Function Read Read and run permissions.

Function Write Update.

Function Delete Delete.

Function Run Run.

Function All Grant all the preceding permissions.

Resource Read Read.

Resource Write Update.

Resource Delete Delete.

Resource All Grant all the preceding permissions.

MaxCompute User Guide / 8 Security

334 Issue: 20181120

Object Action Description

Instance Read Read.

Instance Write Update.

Instance All Grant all the preceding permissions.

Note:

• The CreateTable action for the objects of Project type must work with the CreateInstance

permission for the Project object. The Select, Alter, Update, and Drop actions for the objects of

 Table type must work with the CreateInstance permission for the Project object.

• If the CreateInstance permission is not granted, the corresponding operations cannot be

performed even though the mentioned permissions are granted. This is related to the internal

implementation of MaxCompute. The Select permission for Table type objects must work with

 the CreateInstance permission. While performing cross-project operation, such as selecting

 the table of project B in the project A, you must have the project A CreateInstance and the

project B Table select permissions.

• After a user or role is added, you must grant permissions to the user or role. MaxCompute

authorization is an object-based authorization method. The permission data authorized by

ACL is considered as a type of sub-resource of the object. Authorization can be performed

 only if the object exists. When the object is deleted, the authorized permission data is

automatically deleted.

• SQL92 Authorization

MaxCompute supports authorization using the syntax similar to the GRANT and REVOKE

commands defined by SQL92. It grants or revokes permissions to/from the existing project

object through simple authorization statements. The authorization syntax is as follows:

 grant actions on object to subject
 revoke actions on object from subject
 actions ::= action_item1, action_item2, ...
 object ::= project project_name | table schema_name |
 instance inst_name | function func_name |
 resource res_name
 subject ::= user full_username | role role_name

Users familiar with GRANT and REVOKE commands defined by SQL92 or with Oracle

database security management can identify that the ACL authorization syntax of MaxCompute

does not support [WITH GRANT OPTION] authorization parameters. For example, when User

MaxCompute User Guide / 8 Security

Issue: 20181120 335

A authorizes User B to access an object, User B cannot grant the permission to User C. In this

scenario, all permissions can be granted by one of the following three roles:

• Project owner

• Project administrator

• Object creator

• Use example of ACL authorization

In the following scenario, the Alibaba Cloud account user alice@aliyun.com is a newly added

member to the project test_project_a, and Allen is a RAM-sub account added to bob@aliyun.

com. In test_project_a, they both must submit jobs, create tables, and view existing objects in

the project.

The project administrator performs the following authorization operations:

 use test_project; --Open the project
 add user aliyun$alice@aliyun.com; --Add the user
 add user aliyun$alice@aliyun.com; --Add the user
 create role worker; --Create a role
 grant worker TO aliyun$alice@aliyun.com; --Grant the role
 grant worker TO aliyun$bob@aliyun.com; --Grant the role
 grant CreateInstance, CreateResource, CreateFunction, CreateTabl
e, List ON PROJECT test_project TO ROLE worker; --Authorize the role

• Cross-project Table/Resource/Function sharing

Following the preceding example, aliyun$alice@aliyun.com and ram$bob@aliyun.com:Allen

have certain permissions in test_project_a. These two users must query table prj_b_test_table

in test_project_b, and use test_project_b. UDF prj_b_test_udf.

The project administrator performs the following authorization operations for test_project_b:

 use test_project_b; --Open the project
 add user aliyun$alice@aliyun.com; --Add the user
 add user ram$bob@aliyun.com:Allen; --Add th RAM sub-account
 create role prj_a_worker; --Create a role
 grant prj_a_worker TO aliyun$alice@aliyun.com; --Grant the role
 grant prj_a_worker TO ram$bob@aliyun.com:Alice; --Grant the role
 grant Describe , Select ON TABLE prj_b_test_table TO ROLE
prj_a_worker; --Authorize the role
 grant Read ON Function prj_b_test_udf TO ROLE prj_a_worker; --
Authorize the role
 grant Read ON Resource prj_b_test_udf_resource TO ROLE
prj_a_worker; --Authorize the role
--After authorization, the two users query table and use udf in
test_project_a as follows:
use test_project_a;

MaxCompute User Guide / 8 Security

336 Issue: 20181120

select test_project_b:prj_b_test_udf(arg0, arg1) as res from
test_project_b.prj_b_test_table;

Note:

If UDF is created in test_project_a, then only Resource authorization is required. Use the

following code:

create function function_name as 'com.aliyun.odps.compiler.udf.
PlaybackJsonShrinkUdf' using 'test_project_b/resources/odps-compiler-
playback.jar' -f;.

8.6 Permission check

MaxCompute provides the ability to view multiple permissions, including the permissions of certain

 users or roles, and authorization lists of specified objects.

MaxCompute uses the markup characters A, C, D, and G when showing the permissions of users

or roles. The meanings of these markup characters are as follows:

• A: Access allowed.

• D: Access denied.

• C: Access granted with conditions. It appears only in a policy authorization system.

• G: Access granted with conditions. Permission can be granted to objects.

An example of viewing permissions is as follows:

 odps@test_project> show grants for aliyun$odpstest1@aliyun.com;
 [roles]
 dev
 Authorization Type: ACL
 [role/dev]
 A projects/test_project/tables/t1: Select
 [user/odpstest1@aliyun.com]
 A projects/test_project: CreateTable | CreateInstance | CreateFunc
tion | List
 A projects/test_project/tables/t1: Describe | Select
 Authorization Type: Policy
 [role/dev]
 AC projects/test_project/tables/test_*: Describe
 DC projects/test_project/tables/alifinance_*: Select
 [user/odpstest1@aliyun.com]
 A projects/test_project: Create* | List
 AC projects/test_project/tables/alipay_*: Describe | Select
 Authorization Type: ObjectCreator
 AG projects/test_project/tables/t6: All
 AG projects/test_project/tables/t7: All

Note:

MaxCompute User Guide / 8 Security

Issue: 20181120 337

Currently, desc role only displays ACL information of project and table authorization types, while

ACL of other objects (function, resource, instance, job) does not support display.

View permissions of a specified user

 show grants; --View permissions of the current user.
 show grants for <username>; --View access permissions of a
specified user. The operation can be executed by project owners and
administrators.

Example:

To view the user Alibaba Cloud account bob@aliyun.com permissions in the current project, run

the following command on the client:

show grants for ALIYUN$bob@aliyun.com;

To view RAM sub-account permissions:

show grants for RAM$account:sub-account;

Example:

show grants for RAM$bob@aliyun.com:Alice;

View permissions of a specified role:

describe role --View access permissions granted to a specified role

Note:

In the public cloud environment, description role currently only displays ACL information of the

object authorization type of project and table, while ACL information of other objects (such as

function, resource, instance, job) is not displayed.

View the authorization list of a specified object:

show acl for [on type];--View the user and role authorization list of
 a specified object

Note:

When [on type <objectType>] is excluded, the default type is Table.

8.7 Security configurations
MaxCompute is a multi-tenant data processing platform. Distinct tenants have distinct data

security requirements. Therefore, MaxCompute provides project-level security configurations to

MaxCompute User Guide / 8 Security

338 Issue: 20181120

 comply with the unique requirements of individual tenants. Project owners can customize their

external account support and authentication models.

MaxCompute provides multiple methods of orthogonal authorization, including Access Control List

(ACL) authorization and implicit authorization. An object creator is automatically granted the object

access permission. Not all users need these security features. Users can properly configure the

project authentication model based on their service security requirements and usage patterns.

 show SecurityConfiguration
 --View the project security configuration.
 set CheckPermissionUsingACL=true/false
 --Enable/Disable the ACL authorization mechanism. The default
value is true.
 set ObjectCreatorHasAccessPermission=true/false
 --Enable/Disable automatic access permission granting to object
creators. The default value is true.
 set ObjectCreatorHasGrantPermission=true/false-* +
 --Enable/Disable automatic authorization permission granting to
object creators. The default value is true.
 set ProjectProtection=true/false
 --Enable/Disable project data protection to enable/disable
data transfer from the project.

Note:

You can also complete the security configuration of a project in a visualized technique using

DataWorks. For more information, see Project Management.

8.8 Data protection of projects

Background and motivation

Some companies (including financial institutions, military enterprises and so on) are extremely

sensitive to data security. Hence, to secure the data, additional security measures are taken, that

 include not allowing employees to carry USB storage devices or personal hard disks to work; or

most of the times the USB ports are disabled. Employees are not allowed to work from home. All

these measures are taken to secure the sensitive data.

As a MaxCompute Project Space Administrator, do you have similar security requirements, where

users are not allowed to move data out of the project space?

For example, when the owner of Project Space prj1 encounters this situation as shown in the

following figure, are you worried that user Alice will transfer the data that she can access to prm9,

only because she has access to prj2. prj2. and prj2?

https://www.alibabacloud.com/help/doc-detail/53040.htm

MaxCompute User Guide / 8 Security

Issue: 20181120 339

More specifically, assume that Alice has been granted access to myprj, which is the Select

permission for Table1, and then she is also granted create table permission by the administrator of

 prj2.

By these permissions, Alice is able to transfer the data to prm9 in any of the following ways:

• Submit SQL:

create table prj2.table2 as select * from myprj.table1;

• Write MapReduce to read myprj. Table1 and write to the scanner.

If the data in your project space is sensitive, you will be restricted to share data out of your project

. MaxCompute can resolve issues pertaining to data protection and the aforementioned operations

 as well.

Data protection feature

MaxCompute provides a project space protection feature that helps to resolve issues mentioned

earlier. As a user, set the project as follows:

 set projectProtection=true

MaxCompute User Guide / 8 Security

340 Issue: 20181120

 -- Set project protection rule: data can only flow and cannot
flow out

When project protection is set up, the data flow in your project space is controlled , "Data can only

 flow and cannot flow out ". That is, both of these actions will fail because they are against the

project protection rule.

By default, ProjectProtection cannot be set and its value is false.

Also, users authorized to access multiple projects can freely use cross-project data access

operations to share or transfer project data. If users are highly sensitive to project data security,

the administrator must define a ProjectProtection feature likewise.

Data outflow method after enabling data protection

After setting ProjectProtection in the user's project, the user may soon make requests such as

Alice applies to the user for exporting the data of a table out of the user’s project.

Moreover, user review confirms that this table does not contain sensitive data. In order not to

affect Alice's normal business requirements, MaxCompute provides two data export methods to

the user after setting ProjectProtection.

• Set TrustedProject

In case, the current project space is protected, and if you set the target space for the data

inflows to the trustedproject for the current space. Then, the data flow to the target project

space will not be considered a violation of the project protection rule. If multiple project spaces

 are set to trustedproject between two and one another, so these project spaces form a

trustedproject.

Group; the data can flow within the project group, but restricted to be shared out of the project

group.

Use the following command to manage the TrustedProject:

 list trustedprojects;
 -- View All trustedprojects in the current project
 add trustedproject <projectname>;
 -- Add a trustdproject to the current project
 remove trustedproject <projectname>;
 -- Remove a trustdproject from the current project

• Resource sharing and data protection

In MaxCompute, the package-based resource sharing feature and the project protection data

protection feature are orthogonal, but they are similar to each other in terms of functions.

MaxCompute User Guide / 8 Security

Issue: 20181120 341

MaxCompute rules give priority to resource sharing over data protection. Therefore,

if a data object allows access by users from other projects through resource sharing, the

ProjectProtection rules will not apply to this data object.

Best practices

To prevent data outflow from the project, after setting ProjectProtection=true, check the

following settings:

• Make sure the trustedproject is not added. If set, you must assess possible risks;

• Make sure that package data is not used for sharing. If set, make sure that no sensitive data

exists in the package.

8.9 Security command list

8.9.1 Security configuration of a project
Authentication configuration

Statement Description

show SecurityConfiguration View the security configuration of the project.

set CheckPermissionUsingACL=true/false Enable/Disable the ACL-based authorization.

set CheckPermissionUsingPolicy=true/false Enable/Disable the policy authorization.

set ObjectCreatorHasAccessPermission=true/
false

Grant/Revoke default access permissions to/
from object creators.

set ObjectCreatorHasGrantPermission=true/
false

Grant/Revoke default authorization permissions
 to/from object creators.

Data protection

Statement Description

set ProjectProtection=false Disable data protection.

list TrustedProjects View the list of trusted projects.

add TrustedProject <projectName> <
projectName>

Add a trusted project.

remove TrustedProject <projectName> Remove a trusted project.

MaxCompute User Guide / 8 Security

342 Issue: 20181120

8.9.2 Manage permissions
Manage users

Statement Description

list users View all users added to the project.

add user <username> <username> Add a user.

remove user <username> <username> Remove the user.

Manage roles

Statement Description

list roles View all created roles.

create role <rolename> <rolename> Create a role.

drop role <rolename> <rolename> Delete a role.

grant <rolelist> to <username> Assign one or multiple roles to the user.

revoke <rolelist> from <username> Revoke a role from the user.

ACL Authorization

Statement Description

grant <privList> on <objType> <objName
> to user <username>

Authorize a user.

grant <privList> on <objType> <objName
> to role <rolename>

Authorize a role.

revoke <privList> on <objType> <
objName> from user <username>

Revoke user authorization.

revoke <privList> on <objType> <
objName> from role <rolename>

Revoke role authorization.

Permission review

Statement Description

whoami View current user information.

show grants [for <username>] [on type <
objectType>]

View user role and permissions.

MaxCompute User Guide / 8 Security

Issue: 20181120 343

Statement Description

show acl for <objectName> [on type <
objectType>]

View specific object authorization information.

describe role <roleName> View role authorization information and role
assignments.

8.9.3 Package-based resource sharing

Share resources

Statement Description

Create package <pkgname> <pkgName> Create a package.

Delete package <pkgname> <pkgName> Delete a package.

add <objType> <objName> to package <
pkgName> [with privileges privs]

Add resources to be shared to a package.

remove <objType> <objName> from package
<pkgName>

Remove shared resources from a package.

allow prOject <prjName> to install package <
pkgName> [using label <num>]

Allow a project to use a user package.

disallow project <prjName> to install package
<pkgName>

Disallow a project from using a user package.

Use Resources

Statement Description:

Install package <pkgname> <pkgName> Install a package.

uninstall package <pkgName> Uninstall a package.

View a package

Statement Description:

show packages List all created and installed packages.

describe package <pkgName> View details of a package.

8.10 Resource share across project space

MaxCompute User Guide / 8 Security

344 Issue: 20181120

8.10.1 Resource sharing across projects based on package
Assume that you are the project owner or administrator (admin role) of a few projects. One of your

 primary accounts has multiple projects, wherein the project prj1 has some resources (including

tables, resources, and custom functions) that can be shared with other projects. However, adding

 users of other projects to prj1 and granting permissions to them one by one is complicated, and

adding the users who are irrelevant but are added to the prj1 project (if they exist) complicates the

 project management.

This section describes cross-project resource sharing.

If resources must be controlled by the user in a fine-grained manner, and the user who applies for

the control permission is a member of the business project team, we recommend using the Project

user and authorization management feature.

Package is used for sharing data and resources across projects. It solves the problem of cross-

project user authorization.

Use package to solve the following problems effectively:

If members of the Alifinance project want to access data in the Alipay project, the administrator

 of the Alipay project must perform tedious authentication operations: First, add users in the

Alifinance project to the Alipay project, and then perform general authentications on the newly

added users, respectively.

Actually, the administrator of the Alipay project does not want to authenticate and manage

all users in the Alifiance project. Instead, the administrator expects more efficient feature for

autonomous authentication controls over permissive objects.

After Package is used, the administrator of the Alipay project can perform packaging authorizat

ion on the objects to be used by the Alifinance project (that is, create a Package), and then permit

 the Alifinance project to install the Package. After the Alifinance project’s administrator installs

the Package, the administrator can determine whether to grant permissions of the Package to the

users of the Alifinance project as required.

8.10.2 Package usage method
Package usage method

The use of package involves two subjects: the package creator and the package user.

MaxCompute User Guide / 8 Security

Issue: 20181120 345

• The package creator provides the resources to be shared and the permissions to access it. It

also allows the package user to install and use it.

• The package user uses the package. After the package is published, the user can directly

access the resource across projects.

The following is a description of the operations involved with the package creator and package

user.

Package creator

• Create package

Create package;

Note:

• Only the project owner has the permission to create a package.

• The name of the package cannot exceed 128 characters.

• Add a resource to be shared to the package

 Add project_object to package package_name [with privileges] --
add objects to package
 Remove project_object from package package_name; -- remove
object from package
 project_object ::= table table_name |
 instance inst_name |
 function func_name |
 resource res_name
 privileges ::= action_item1, action_item2, ...

Note:

• Currently, supported types of objects exclude projects. Therefore, you cannot use a

package to create objects in other projects.

• The objects themselves and the permission to perform operations on them are added

to the package at the same time. When not passed (with privileges) even specifying an

action permission, the default is read-only, that is, read/describe/select. The object and its

permissions are treated as a whole and cannot be updated once added. If necessary, you

can only delete and re-add.

• When an object is added to a package, it is not packaged as a snapshot, so subsequent

object data changes, and access to the object through package authorization is also the

current data of the object.

MaxCompute User Guide / 8 Security

346 Issue: 20181120

Use the following commands to perform various operations on the package:

• Allow other projects to use a package

allow project <prjName> to install package <pkgName> [using label <
num>]

• Revoke other projects’ permission to use a package

disallow project <prjName> to install package <pkgName>

• Drop a package

Delete package <pkgname>;

• View the list of packages already created and installed

Show packages;

• View package details

Describe package <pkgname>;

Package users

• Install package

Install package <pkgname>;

For package installation, the pkgName format is: <projectName>.<packageName>.

Note:

Only the project owner has permissions to perform this operation.

• Uninstalling package

Uninstall package <pkgname>;

For package installation, the pkgName format is: <projectName>.<packageName>.<

projectName>.<packageName>

• View a package

 Show packages;
 View the list of packages already created and installed
 Describe package <pkgname>;
 View details of package

• Client project grants access to package to other members or role of this project

MaxCompute User Guide / 8 Security

Issue: 20181120 347

The installed package is an independent type of MaxCompute object. To access resources in a

 package (resources shared with you by other projects), you must have the permission to read

package.

If you do not have the Read permission, you must apply to the project owner or admin for the

 permission. The project owner or admin can grant permissions through ACL authorization or

policy authorization.

Authorize package to user or role:

grant actions on package <pkgName> to user <username>;
grant actions on package <pkgName> to role <role_name>;

Note:

After authorization, user has access to the object in that package only in this project.

For example, the following ACL authorization allows the cloud account user

odps_test@aliyun.com to access resources in the package:

 use prj2;
 install package prj1.testpkg;
 grant read on package prj1.testpackage to user aliyun$odps_test@
aliyun.com;

]

Or allow all members of role role_dev to access resources in package:

use prj2;
 install package prj1.testpkg;
 grant read on package prj1.testpackage to role role_dev;

Example

Jack is the administrator of prj1. John is the administrator of prj2. To address some business

needs, Jack wants to share some resources of prj1 (such as datamining.jar and sampletable) to

John's prj2. If prj2 user Bob must access these resources, the prj2 administrator can self-authorize

 Bob through ACL administrator or policy authorization without Jack’s involvement.

Procedure:

1. Prj1 administrator Jack creates resources package in prj1.

 Use prj1;
 Create package datamicing; -- creating a package
 Add Resource dating. jar to package dating;-add resource to
package

MaxCompute User Guide / 8 Security

348 Issue: 20181120

 Add Table sampletable to package dating; -- adding table to
package
 Allow project prm9 to install package dating; -- sharing package
 to Project Space prm9

2. Prj2 administrator Bob installs a package in prj2.

 use prj2;
 install package prj1.datamining; -- installs a package
 describe package prj1.datamining; -- view a list of resources in
 the package

3. Bob self-authorizes the package.

 use prj2;
 grant Read on package prj1.datamining to user aliyun$bob@aliyun.
com; -- authorization of Bob to use package via ACL

8.11 Column-level access control

Label-based security (LabelSecurity) is a required MaxCompute Access Control (MAC) policy at

the project space level. It allows project administrators to control the user access to column-level

sensitive data with improved flexibility.

Difference between MAC and DAC in MaxCompute

In MaxCompute, MAC is independent of Discretionary Access Control (DAC). Two examples are

provided to illustrate the differences between MAC and DAC.

To drive a vehicle, you must first have to apply and acquire a valid driver's license, similarly, a

user who wants to read data in a MaxCompute project must first apply for the SELECT permission

. The permission application is within the scope of DAC.

Because the country with a high accident rate, drunk driving is strictly restricted. To curb this

, all drivers are required to have a driver’s license and must not drink and drive. Likewise, in

MaxCompute, reading highly sensitive data is analogous to the law against drunk driving. The

read prohibition is within the scope of MAC.

Data sensitivity classification

LabelSecurity assigns security levels to data and the users who access the data. In the

government and financial sectors, data sensitivity is usually classified into four levels: 0 (Unclassifi

ed), 1 (Confidential), 2 (Sensitive), and 3 (Highly Sensitive). MaxCompute adopts such classifica

tion. Project owners must define standards for data sensitivity classification and access level

classification. The default access level of all users is 0, and the default sensitivity level of data is 0.

MaxCompute User Guide / 8 Security

Issue: 20181120 349

LabelSecurity supports data sensitivity classification at the column level. Administrators can set

sensitivity labels for all the columns of a table. A table may have columns of different sensitivity

levels.

Administrators can also set sensitivity labels for views. A view and its base table have independen

t sensitivity labels. The default sensitivity level of a new view is 0.

Default security policies of LabelSecurity

LabelSecurity applies the following default security policies to the data and users assigned with

sensitivity or security labels:

• No-ReadUp: A user is not allowed to read data with a sensitivity level higher than the user level

 unless the user is explicitly authorized.

• Trusted-User: A user is allowed to write data of all sensitivity levels. The default sensitivity level

 of new data is 0 (unclassified).

Note:

• In some traditional MAC systems, other complex security policies are applied to prohibit

unauthorized data distribution in a project. For example, the No-WriteDown policy prohibits

users from writing data with a sensitivity level not higher than the user level. By default,

MaxCompute does not support No-WriteDown, considering the costs involved in managing the

data sensitivity levels of project administrators. The effect of No-WriteDown can be attained

by modifying the project security settings (Set ObjectCreatorHasGrantPermission=

false).

• To prohibit data flowing among different projects, you can set the projects to the protected

state (ProjectProtection). With the setting, users can only access the data within their projects

. This prevents data transfer or data sharing outside the project.

By default, projects disable LabelSecurity. The project owners can enable it as required.

After LabelSecurity is enabled, the default security policies are executed. When a user accesses

 a data table, the user must have the SELECT permission and the access level required for

sensitive data reading. Compliance with LabelSecurity is a required but not the sufficient condition

 for passing CheckPermission.

MaxCompute User Guide / 8 Security

350 Issue: 20181120

LabelSecurity operations

• Enable or disable LabelSecurity

 Set LabelSecurity=true|false;
 -- Enables or disables LabelSecurity. The default value is false.
 -- LabelSecurity can be enabled or disabled only by the project
owner. Other operations can be performed by the project administra
tor.

• Set security labels for users

 SET LABEL <number> TO USER <username>;-- Value range of "number": [
0, 9]. This operation can be performed only by the project owner or
administrator.
 -Example:
 ADD USER aliyun$yunma@aliyun.com; --Adds a user with the default
security label 0.
 ADD USER ram$yunma@aliyun.com:Allen; --Adds user Allen, which is a
RAM subaccount of yunma@aliyun.com.
 SET LABEL 3 TO USER aliyun$yunma@aliyun.com;
 -- Sets the security label of yunma to 3 to allow this user to
access only the data with a sensitivity level not higher than 3.
 SET LABEL 1 TO USER ram$yunma@aliyun.com:Allen;
 -- Sets the security label of subaccount Allen to 1 to allow this
 user to access only the data with a sensitivity level not higher
than 1.

• Set sensitivity labels for data

 SET LABEL <number> TO TABLE tablename[(column_list)]; -- Value
range of "number": [0, 9]. This operation can be performed only by
the project owner or administrator.
 -Example:
 SET LABEL 1 TO TABLE t1; --Sets the sensitivity label of table t1
to 1.
 SET LABEL 2 TO TABLE t1(mobile, addr); --Sets the sensitivity
labels of the "mobile" and "addr" columns of table t1 to 2.
 SET LABEL 3 TO TABLE t1; --Sets the sensitivity label of table t1
to 3. The sensitivity labels of the "mobile" and "addr" columns are
 still 2.

Note:

The sensitivity labels explicitly set for the columns overwrite the sensitivity label set for the

table, without considering the label setting order and the sensitivity level.

• Explicitly authorize lower-level users to access specific data tables with a high sensitivit

y level

 --Grant permissions:
 GRANT LABEL <number> ON TABLE <tablename>[(column_list)] TO USER <
username> [WITH EXP <days>]; --The default validity period is 180
days.
 -- Revoke the permissions:
 REVOKE LABEL ON TABLE <tablename>[(column_list)] FROM USER <
username>;

MaxCompute User Guide / 8 Security

Issue: 20181120 351

 -- Clear the expired permissions:
 CLEAR EXPIRED GRANTS;
 -Example:
 GRANT LABEL 2 ON TABLE t1 TO USER ram$yunma@aliyun.com:Allen WITH
EXP 1; --Explicitly authorizes Allen to access the data of table t1
with a sensitivity level not higher than 2 for a period of 1 day.
 GRANT LABEL 3 ON TABLE t1(col1, col2) TO USER ram$yunma@aliyun.com
:Allen WITH EXP 1; --Explicitly authorizes Allen to access the data
 in col1 and col2 of table t1 with a sensitivity level not higher
than 3 for a period of 1 day.
 REVOKE LABEL ON TABLE t1 FROM USER ram$yunma@aliyun.com:Allen; --
Revokes the permission of Allen to access the sensitive data in
table t1.

Note:

Once the label-authorized permission of a user to access a table is revoked, the permission to

access the table fields of the same user is also revoked.

• List the sensitive data sets that a user can access

 SHOW LABEL [<level>] GRANTS [FOR USER <username>];
 --When [FOR USER <username>] is unspecified, the system lists
the sensitive data sets that the current user can access.
 --When <level> is unspecified, the system lists the permissions
 granted by all label levels.When <level> is specified, the system
lists only the permissions granted by a specific label level.

• List the users who can access a specific table containing sensitive data

 SHOW LABEL [<level>] GRANTS ON TABLE <tablename>;
 --Displays the label-authorized permissions on the specified
table.

• List the label-authorized permissions of a user at all levels to access a data table

 SHOW LABEL [<level>] GRANTS ON TABLE <tablename> FOR USER <username
>;
 --Displays the label-authorized permissions of the specified user
 to access the columns of a specific table.

• List the sensitivity levels of all the columns of a table

DESCRIBE <tablename>;

• Control the access level of a package installer regarding the sensitive resources of the

package

 ALLOW PROJECT <prjName> TO INSTALL PACKAGE <pkgName> [USING LABEL <
number>];
 --The package creator grants an access level to the package
installer regarding the sensitive resources of the package.

Note:

MaxCompute User Guide / 8 Security

352 Issue: 20181120

• When [USING LABEL <number>] is unspecified, the default access level is 0. The

package installer can only access non-sensitive data.

• When accessing to sensitive data across projects, the access level defined by this

command applies to all the users in the project of the package installer.

LabelSecurity use cases

• Prohibit all the users in a project except the project administrator from reading some

sensitive columns of a table

Description:

user_profile is a table with sensitive data in a project. It has 100 columns, five of which contain

sensitive data: id_card, credit_card, mobile, user_addr, and birthday. DAC grants all users

the SELECT permission on this table. The project owner wants to prohibit all the project users

except the project administrator from reading the sensitive columns of the table.

To achieve this purpose, the project owner can perform the following operations:

 set LabelSecurity=true;
 --Enables LabelSecurity.
 set label 2 to table user_profile(mobile, user_addr, birthday);
 --Sets the sensitivity level of the specified columns to 2.
 set label 3 to table user_profile(id_card, credit_card);
 --Sets the sensitivity level of the specified columns to 3.

Note:

After the preceding operations, non-administrator users cannot access the data in the five

columns. To access the sensitive data for business purposes, the user must be authorized by

the project owner or administrator.

Solution:

Alice is a member of the project. For official purposes, she wants to apply for access to the

data in the mobile column of table user_profile for a period of one week. To authorize Alice, the

project administrator can perform the following operation:

GRANT LABEL 2 ON TABLE user_profile TO USER ALIYUN$alice@aliyun.com
WITH EXP 7;

Note:

Mobile, user_addr, and birthday column contain data with a sensitivity level of 2. Birthday.

After authorization, Alice can access the data in these three columns. The authorization

MaxCompute User Guide / 8 Security

Issue: 20181120 353

causes the issue of excessive permission grants. This issue can be avoided if the project

administrator sets the sensitive columns properly.

• Prohibit the project users with access to sensitive data from copying and distributing

the sensitive data within the project without authorization

Description:

In the preceding use case, Alice is granted the access permission on the data with a sensitivity

level of 2 for official purposes. The project administrator worries that Alice may copy that data

from table user_profile to table user_profile_copy created by her and grants Bob the access

permission on user_profile_copy. The project administrator needs a method to restrict Alice's

actions.

Solution:

Considering security usability and management costs, LabelSecurity adopts the default security

policy that allows for WriteDown. Users can write data to the columns with a sensitivity level

not higher than the user level. MaxCompute cannot address the preceding requirement of

the project administrator. However, the project administrator can restrict the discretionary

authorization behavior of Alice by allowing her to only access the data she created, but

disallowing her to grant the data access permission to other users. The procedure is as follows:

 SET ObjectCreatorHasAccessPermission=true;
 --Allows the object creator to operate objects.
 SET ObjectCreatorHasGrantPermission=false;
 --Prohibits the object creator from granting the object access
permission to other users.

MaxCompute User Guide / 9 Lightning

354 Issue: 20181120

9 Lightning

9.1 Lightning overview
MaxCompute Lightning provides interactive query services for MaxCompute, and supports easy

connection to MaxCompute projects based on the PostgreSQL protocol and syntax. This service

allows you to quickly query and analyze MaxCompute project data using standard SQL and

commonly used tools.

You can use major BI tools, such as Tablueu and FineReport, to easily connect to MaxCompute

 projects, and perform BI analysis or ad hoc queries. The quick query feature in MaxCompute

Lightning allows you to provide services by encapsulating project table data in APIs, supporting

diverse application scenarios without data migration.

MaxCompute Lightning offers serverless computing services. No infrastructure is required and you

 pay only for queries.

Key features

• Compatibility with the PostgreSQL protocol

MaxCompute Lightning provides Java Database Connectivity (JDBC) or Open Database

Connectivity (ODBC) interfaces that are compatible with the PostgreSQL protocol. Tools

or applications based on PostgreSQL databases can easily be connected to MaxCompute

projects using default drivers. The easy connection enables diverse PostgreSQL tools to be

used for analyzing MaxCompute project data.

• Improved performance

Quick query for MaxCompute tables is optimized, especially for small datasets and high query

 concurrency, supporting diverse application scenarios, such as regular reports and service

APIs.

• Unified permissions management

MaxCompute Lightning is a product designed for MaxCompute products and provides

access to MaxCompute projects. This service shares the same access control system with

MaxCompute projects. This ensures that users can only query data that they are authorized to

access.

• Out-of-the-box feature and pay by queries

MaxCompute User Guide / 9 Lightning

Issue: 20181120 355

MaxCompute Lightning provides serverless computing services based on existing

MaxCompute computing resources. To perform queries, you only need to establish connection

s to MaxCompute projects using MaxCompute Lightning.

You do not need to configure, manage, or maintain MaxCompute Lightning resources. When

 using MaxCompute Lightning, you only incur costs for the data amount processed for each

query.

System architecture

MaxCompute Lightning provides a method of connecting endpoints, clients, or applications to

JDBC or ODBC interfaces using PostgreSQL drivers. This enables secure data access within the

unified access control system for MaxCompute projects.

Query tasks, connected and submitted by JDBC or ODBC interfaces, use serverless computing

resources of MaxCompute Lightning to ensure query service quality.

Scenarios

• Ad hoc query

The query for small datasets (less than 100 GB) is optimized to allow you to easily query

MaxCompute tables with low latency. You do not need to import the MaxCompute data into

MaxCompute User Guide / 9 Lightning

356 Issue: 20181120

the AnalyticDB (ADS), Relational Database Service (RDS), or other systems, which reduces

required resources and administration costs.

This scenario has the following characteristics: flexible data objects for queries, complicated

logic, quick query, easy adjustment of query logic, and low latency query requirements within

one minute. Users are often data analysts who master SQL skills and want to use familiar client

 tools for query analysis.

• Reporting and analysis

Analysis reports are generated based on the MaxCompute project data consolidated in the

Extract-Transform-Load (ETL) process. The reports are provided to managers and business

users for regular checks.

This scenario has the following characteristics: The queried data objects are usually the

aggregated data. The queried data objects are included in small datasets. Queries are based

on fixed and simple query logic. The scenario has low latency requirements. Latency for most

 queries is within 5 seconds. The query latency period varies greatly depending on the data

volume and query complexity.

• Online application

MaxCompute project data can be encapsulated in RESTful APIs to support online applications.

In this scenario, MaxCompute Lightning serves as an accelerated query engine to provide

MaxCompute table data as API services with the least amount of manual intervention. This is

enabled by integrating data service components of Alibaba Cloud DataWorks.

9.2 Activate Lightning service
MaxCompute Lightning provides interactive query services for MaxCompute, using MaxCompute

Lightning requires that MaxCompute has been activated and a project has been created.

MaxCompute Lightning service is currently in beta and is not open to users on the entire network.

The MaxCompute Lightning service is activated by default for MaxCompute projects after the beta

 ends.

9.3 Service pricing

Note:

• The MaxCompute Lightning service is currently in the beta phase and is available for free.

MaxCompute User Guide / 9 Lightning

Issue: 20181120 357

• The service will incur fees (the actual unit price is yet to be determined) after the beta ends,

and you will only pay for the data amount scanned by each query.

You only pay for queries you run when using MaxCompute Lightning. Billing is based on

MaxCompute project table data amount scanned by queries. You will not incur any fees when no

queries are performed.

MaxCompute Lightning is dependent on the MaxCompute projects you created. Therefore, you

need to pay attention to the costs incurred by MaxCompute data storage, computation (pay-as-

you-go or subscription based on CU costs), and external network downloads.

For more information, see MaxCompute billing.

9.4 Quick Start

9.4.1 Guide description
This topic describes how to access MaxCompute Lightning services with major third-party tools,

including how to view tables of a specified MaxCompute project, and how to perform BI analysis.

9.4.2 Prerequisites
Activate MaxCompute and create a project

Using MaxCompute Lightning requires that MaxCompute has been activated and a project has

been created.

If you have not activated MaxCompute, activate the service first. For more information, see

Activate MaxCompute. Then, create a MaxCompute project.

Create a table and import data

Tables have been created in the project and data has been loaded. For more information, see

MaxCompute Quick Start.

Obtain account information

The access ID and access key for the MaxCompute project have been obtained.

You can log on to the Alibaba Cloud website, and click Console to view the AccessKey page.

Contact the owner of the primary account if your RAM user is not granted permission to view

AccessKey. You also need to ensure your RAM user is granted permission to view project tables.

https://www.alibabacloud.com/help/doc-detail/74873.htm
https://www.alibabacloud.com/help/doc-detail/58226.htm
https://www.alibabacloud.com/help/doc-detail/58226.htm
https://www.alibabacloud.com/help/doc-detail/27808.htm
https://www.alibabacloud.com/help/doc-detail/27808.htm

MaxCompute User Guide / 9 Lightning

358 Issue: 20181120

9.4.3 Prepare client tools for connection
MaxCompute Lightning is compatible with PostgreSQL interfaces and is accessible to client tools

that are connected to PostgreSQL databases.

Tableau Desktop BI tools are used in this tutorial. Download related tools from the Tableau official

website.

Other commonly used client tools, such as SQL Workbench/J, PSQL, FineReport BI, and

MicroStrategy BI tools, can be connected to MaxCompute Lightning in the same way as to

PostgreSQL databases.

9.4.4 Access services and perform analysis
1. Select PostgreSQL when establishing a connection to a server.

Start Tableau Desktop. In the left-side navigation pane, select Connection > To Servers >

More > PostgreSQL.

2. Enter service connection and user authentication information.

Parameter Description

Server Enter the MaxCompute Lightning endpoint of a specified region
in the Server field. For example, enter the value lightning.cn
-shanghai.maxcompute.aliyun.com as the endpoint for the
China East 2 region.

Port 443

Database MaxCompute project name

ID Verification User name and password

Username/Password User Access Key ID/Access Key Secret

SSL connection Select the SSL connection check box.

3. Obtain project table information and create a data source or model.

After you configure the contact information and log on to the Tableau Desktop, this software

 loads tables of the connected MaxCompute project. You can choose tables to create data

models and charts as required.

The following figure shows an example of a chart created based on required dimensions and

measures.

Now you have gained access to MaxCompute Lightning using Tableau Desktop. You can perform

BI analysis on the data of the connected MaxCompute projects.

https://www.tableau.com/products/desktop

MaxCompute User Guide / 9 Lightning

Issue: 20181120 359

Note:

For better performance, it is recommended that you customize the connection to the Lightning

data source using the TDC file supported by Tableau. For more information, see Tableau

Desktop.

9.5 Access domain name
MaxCompute Lightning provides region-specific endpoints that allow you to access MaxCompute

Lightning services in the corresponding regions.

The following tables describe the MaxCompute Lightning service connection status in different

regions and public cloud network environments.

Table 9-1: Service connection status in different regions with external network

Region Service status External network endpoint

China East 1 Beta lightning.cn-hangzhou.maxcompute.aliyun.com

China East 2 Beta lightning.cn-shanghai.maxcompute.aliyun.com

China North 2 Beta lightning.cn-beijing.maxcompute.aliyun.com

Asia Pacific SE 1 Beta lightning.ap-southeast-1.maxcompute.aliyun.com

Other regions Not activated -

Table 9-2: Service connection status in different regions with classic network

Region Service status Classic network endpoint

China East 1 Beta lightning.cn-hangzhou.maxcompute.aliyun-inc.com

China East 2 Beta lightning.cn-shanghai.maxcompute.aliyun-inc.com

China North 2 Beta lightning.cn-beijing.maxcompute.aliyun-inc.com

Asia Pacific SE 1 Beta lightning.ap-southeast-1.maxcompute.aliyun-inc.
com

Other regions Not activated -

Table 9-3: Service connection status in different regions with VPC network

Region Service status VPC endpoint

China East 1 Beta lightning.cn-hangzhou.maxcompute.aliyun-inc.com

MaxCompute User Guide / 9 Lightning

360 Issue: 20181120

Region Service status VPC endpoint

China East 2 Beta lightning.cn-shanghai.maxcompute.aliyun-inc.com

China North 2 Beta lightning.cn-beijing.maxcompute.aliyun-inc.com

Asia Pacific SE 1 Beta lightning.ap-southeast-1.maxcompute.aliyun-inc.
com

Other regions Not activated -

9.6 Access services using JDBC interfaces
The MaxCompute Lightning query engine is based on PostgreSQL 8.2 and currently only supports

SELECT queries for existing MaxCompute tables. For more information about the query syntax

 and functions.

If no data has been added to MaxCompute projects or existing data needs to be processed, see

the MaxCompute help document. You can use the MaxCompute client or DataWorks to access

MaxCompute projects for creating and processing data objects.

9.6.1 JDBC driver
MaxCompute provides JDBC interfaces that are fully compatible with the PostgreSQL protocol.

Users can connect SQL client tools to the MaxCompute Lightning service using JDBC interfaces.

MaxCompute Lightning can be accessed using JDBC drivers from the PostgreSQL official website

 or other drivers optimized for MaxCompute Lightning.

1. JDBC drivers from the PostgreSQL official website.

Note:

Many client tools already have PostgreSQL database drivers built in, you can use the built-in

drivers. If it is not integrated, you can download required drivers from the PostgreSQL official

website. Take the SQL Workbench/J client as an example. You can choose the PostgreSQL

official drivers when creating a connection.

2. JDBC drivers optimized by Alibaba Cloud MaxCompute Lightning

https://www.postgresql.org/docs/8.2/static/queries.html
https://www.postgresql.org/docs/8.2/static/queries.html
https://www.postgresql.org/docs/8.2/static/functions.html
https://www.alibabacloud.com/help/product/27797.htm
https://www.alibabacloud.com/help/doc-detail/27971.htm
https://jdbc.postgresql.org/
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/89778/cn_zh/1535960228920/MaxComputeLightningJDBC.jar

MaxCompute User Guide / 9 Lightning

Issue: 20181120 361

The downloaded MaxCompute Lightning JDBC driver is saved as a

MaxComputeLightningJDBC.jar file. Take the SQL Workbench/J client as an example. In the

Driver Management menu, add the MaxCompute Lightning JDBC driver entry.

When you create a connection, select the MaxCompute Lightning JDBC driver that you just

added from the Driver list.

9.6.2 Configure JDBC connections
To connect SQL client tools to MaxCompute projects, you must have JDBC URLs for the

MaxCompute projects.

MaxCompute User Guide / 9 Lightning

362 Issue: 20181120

The following shows the format of a JDBC URL:

jdbc:postgresql://endpoint:port/database

The following table describes the connection parameters:

Parameter Value Description

endpoint Access domain name of
MaxCompute Lightning in the
region

For more information, see Access domain
name. For example, accessing the
Shanghai Region service through the
external network using lightning.cn-
shanghai.maxcompute.aliyun.com

port 443 -

database Name of a MaxCompute
project

-

User Access Key ID of the user -

password Access Key Secret of the user -　

ssl true MaxCompute Lightning servers are enabled
 with SSL protection by default, and you
must use SSL connections.

prepareThreshold 0 Optional. When using the JDBC
PrepareStatement function, it is
recommended to set prepareThreshold
=0.

For example, jdbc:postgresql://lightning.cn-shanghai.maxcompute.aliyun.com:

443/myproject

You must specify the user, password, and SSL connection parameters before establishing a

connection to MaxCompute projects.

You can also add parameters to the JDBC URL to connect to MaxCompute projects. For example:

jdbc:postgresql://lightning.cn-shanghai.maxcompute.aliyun.com:443/
myproject? ssl=true& prepareThreshold=0&user=xxx&password=yyy

Note:

• lightning.cn-shanghai.maxcompute.aliyun.com: The endpoint of the China East 2 region.

• Myproject: The name of the MaxCompute project you want to access.

• SSL=true: The application of SSL connections.

MaxCompute User Guide / 9 Lightning

Issue: 20181120 363

• xxx: Access Key ID of the user.

• yyy: Access Key Secret of the user.

9.6.3 Access services using common tools
The following sections use major client tools, such as SQL Workbench/J, PSQL, and Tableau BI

tools, as examples to describe how to access MaxCompute Lightning. Other commonly used tools

 can be connected to MaxCompute Lightning in the same way as to PostgreSQL databases.

Alibaba Cloud Quick BI

1. Log on Quick BI console, click Data source in the left-side navigation pane.

2. On the data source management page, click the Create data source in the upper-right corner.

3. Select PostgreSQL in the cloud database or external data source, and add a data source.

4. In the dialog box that appears, enter the connection information for MaxCompute Lightning.

Then, test the connection.

Parameter Description

Database address Enter the endpoint for the region of MaxCompute Lightning. You can
 enter the endpoint for a public network, classic network, or VPC
network.

Database Enter the name of the to-be-accessed MaxCompute project followed
by ? ssl=true, for example, lightning? ssl=true in the
previous figure.

Schema MaxCompute project name

User name/Password User Access Key ID/Access Key Secret.

SQL Workbench/J

SQL Workbench/J is a widely used free and cross-platform SQL query tool. This tool can be

connected to MaxCompute Lightning using the PostgreSQL driver.

1. Download and install SQL Workbench/J.

2. Start SQL Workbench/J. 1, establish a database connection.

Select the PostgreSQL driver, connect SQL Workbench/J to the MaxCompute Lightning URL of

 a project. You must enter the Access Key ID and Access Key Secret of the user.

http://www.sql-workbench.eu/downloads.html

MaxCompute User Guide / 9 Lightning

364 Issue: 20181120

Alternatively, you can click Extended Properties and set ssl to true in the displayed dialog box.

MaxCompute User Guide / 9 Lightning

Issue: 20181120 365

3. After SQL Workbench/J is connected to MaxCompute Lightning, you can view, query, and

analyze the table data in the SQL Workbench/J workspace.

psql

The psql is a PostgreSQL interactive terminal that enables you to perform queries using

commands. The clients of psql are installed by default when PostgreSQL databases are installed

in a local PC.

MaxCompute User Guide / 9 Lightning

366 Issue: 20181120

You can connect psql to MaxCompute Lightning using psql commands. The syntax for the

connection is the same as that for the connection to the PostgreSQL database.

psql -h <endpoint> -U <userid> -d <databasename> -p <port>

Parameter description:

• <endpoint>: The endpoint of MaxCompute Lightning. For more information, see Access

domain name.

• <userid>: Access Key ID.

• <databasename>: MaxCompute project name.

• <port>: 443

After the command is executed, enter the <userid> password (Access Key Secret) in the

command prompt.

Example:

Note:

SSL connections are preferred for psql by default.

Tableau Desktop

Start BI tools, select the PostgreSQL data source, and configure the connection.

When you configure the connection, select the SSL Connection check box.

After logging on to Tableau Desktop, you can create charts for visual analysis.

MaxCompute User Guide / 9 Lightning

Issue: 20181120 367

Note:

For better performance, it is recommended that you customize the connection to the Lightning

data source using the TDC file supported by Tableau. Procedure:

1. Save the following xml content as a postgresql.tdc file.

<?xml version='1.0' encoding='utf-8' ?>
<connection-customization class='postgres' enabled='true' version='
8.10'>
<vendor name='postgres'/>
<driver name='postgres'/>
<customizations>
<customization name='CAP_CREATE_TEMP_TABLES' value='no' />
<customization name='CAP_STORED_PROCEDURE_TEMP_TABLE_FROM_BUFFER'
value='no' />
<customization name='CAP_CONNECT_STORED_PROCEDURE' value='no' />
<customization name='CAP_SELECT_INTO' value='no' />
<customization name='CAP_SELECT_TOP_INTO' value='no' />
<customization name='CAP_ISOLATION_LEVEL_SERIALIZABLE' value='yes
' />
<customization name='CAP_SUPPRESS_DISCOVERY_QUERIES' value='yes' />
<customization name='CAP_SKIP_CONNECT_VALIDATION' value='yes' />
<customization name='CAP_ODBC_TRANSACTIONS_SUPPRESS_EXPLICIT_COMMIT
' value='yes' />
<customization name='CAP_ODBC_TRANSACTIONS_SUPPRESS_AUTO_COMMIT'
value='yes' />
<customization name='CAP_ODBC_REBIND_SKIP_UNBIND' value='yes' />
<customization name='CAP_FAST_METADATA' value='no' />
<customization name='CAP_ODBC_METADATA_SUPPRESS_SELECT_STAR' value
='yes' />
<customization name='CAP_ODBC_METADATA_SUPPRESS_EXECUTED_QUERY'
value='yes' />
<customization name='CAP_ODBC_UNBIND_AUTO' value='yes' />
<customization name='SQL_TXN_CAPABLE' value='0' />
<customization name='CAP_ODBC_CURSOR_FORWARD_ONLY' value='yes' />
<customization name='CAP_ODBC_TRANSACTIONS_COMMIT_INVALIDATES
_PREPARED_QUERY' value='yes' />
</customizations>
</connection-customization>

2. Save the file to the \My Documents\My Tableau Repository\Datasources directory.

If it is Tableau Server, save it in C:\ProgramData\Tableau\Tableau Server\data\

tabsvc\vizqlserver\Datasources under Windows, and save it in /var/opt/tableau

/tableau_server/data/tabsvc/vizqlserver/Datasources/ under Linux. .

3. Reopen Tableau and use the PostgreSQL data source to connect to the MaxCompute

Lightning service. For more information about custom data sources for tdc files, see official

Tableau documentation.

FineReport

1. Start FineReport, and select Server > Define database connection.

https://onlinehelp.tableau.com/current/pro/desktop/en-us/odbc_customize.html#global_tdc
https://onlinehelp.tableau.com/current/pro/desktop/en-us/odbc_customize.html#global_tdc

MaxCompute User Guide / 9 Lightning

368 Issue: 20181120

2. Add a JDBC connection.

The configurations are described as follows:

Parameter Description

Database Postgre

Driver org.postgresql.Driver that is integrated in FineReport

URL jdbc:postgresql://<MaxCompute Lightning Endpoint

>:443/<Project_Name>? ssl=true&prepareThr

eshold=0

For example, jdbc:postgresql://lightning.cn-shanghai.
maxcompute.aliyun.com:443/lightning_demo? ssl=true&

amp;prepareThreshold=0

User name/Password User Access Key ID and Access Key Secret

9.7 SQL reference
Query syntax

The MaxCompute Lightning query engine is based on PostgreSQL 8.2 and currently only supports

SELECT queries for existing MaxCompute tables. For more information about the query syntax,

see PostgreSQL documentation.

Function

The MaxCompute Lightning query engine is based on PostgreSQL 8.2 supports builtin funtion, for

more information, see PostgreSQL documentation.

Based on the official PostgreSQL function, MaxCompute Lightning adds the following builtin

functions.

• MAX_PT

Command format

max_pt(table_full_name)

Command description

For partitioned tables, this function returns the maximum value of the level-one partition of the

partitioned table, sorted alphabetically, and there is a corresponding data file under the partition

.

Parameter description

https://www.postgresql.org/docs/8.2/static/queries.html
https://www.postgresql.org/docs/8.2/static/functions.html

MaxCompute User Guide / 9 Lightning

Issue: 20181120 369

table_full_name: String type, used to specify the table name (must carry the project name, such

 as prj.src), you must have read access to this table.

Return value

Returns the value of the largest level-one partition.

Example

Suppose tbl is a partition table, the corresponding partition is as follows, and both contain data

files:

pt =‘20120901’
pt =‘20120902’

Then the partition max_pt returns the value of '20120902' in the following statement, and the

MaxCompute SQL statement reads the data under the pt=‘20120902’ partition.

select * from tbl where pt=max_pt('myproject.tbl');

9.8 View tasks
View running queries

MaxCompute Lightning provides a system view stv_recents. By querying the view, you can view

 all query tasks that the current user is running, and the related information, including query

ID, user name, query SQL statement, start time, duration, and waiting resources. Note: The "

t" indicates that a query task has not been executed yet and is waiting for resources. The "f"

indicates that the resources are being acquired and that the query task is being executed.

Run the following query command.

select * from stv_recents;

The following figure shows a command output example.

MaxCompute User Guide / 9 Lightning

370 Issue: 20181120

Cancel running queries

You can obtain information on running queries by querying the stv_recents table. To cancel a

running query, execute the following query command.

select cancel('query_id');

In parentheses is the query_id of a running query.

9.9 Constraints and limitations
DDL/DML constraints and limitations

MaxCompute Lightning only supports Select queries for MaxCompute tables and does not support

 UPDATE, CREATE, DELETE, and INSERT operations on MaxCompute tables.

Query constraints and limitations

• A maximum number of 1,024 scanned partitions can be queried when you query partitioned

tables.

• Currently, views cannot be created or used.

• Currently, MAP、ARRAY、TINYINT、BINARY、TIMESTAMP and DECIMAL with accuracy

data types are not supported.

• A maximum of 1 TB data can be scanned for a table in each query.

• The size of the submitted query statement cannot exceed 100 KB.

MaxCompute User Guide / 9 Lightning

Issue: 20181120 371

• The query timeout period is one hour.

UDF constraints and limitations

• User-defined functions (UDF) created using MaxCompute cannot be used in MaxCompute

Lightning.

• PostgreSQL user-defined functions cannot be created or used in MaxCompute Lightning.

• MaxCompute built-in functions are not supported at this time.

Query concurrency constraints

A maximum of 20 concurrent queries for a MaxCompute project is supported by MaxCompute

Lightning.

9.10 Lightning FAQs
• Q: How can I query data using MaxCompute Lightning when I have not created any tables?

A: You need to use the DataWorks or odpscmd client tool to create tables for a MaxCompute

project and then upload the data. You can access the project using MaxCompute Lightning and

 query the tables in the project.

• Q: What are the limits on the amount of data that I can query? What is the limit to the amount of

queried data MaxCompute Lightning can process and still show excellent performance?

A: Currently, a maximum of 1 TB data can be scanned for a table in each query. Of course,

less of queried data will provide better query performance.

Note:

We recommend that the table data to be scanned does not exceed 100 GB. Query

performance gradually decreases with the increase of data volume. If the queried data

exceeds 100 GB, MaxCompute SQL is recommended for better performance.

• Q: What should I do if I receive the following error message when using BI tools to drag a

partitioned table for analysis: ERROR: AXF Exception: specified partitions

count in odps table: <project_name.table_name> is: xxx, exceeds the

limitation of xxx, please add stricter partition filter.

A: MaxCompute Lightning limits the number of partitions for a partitioned table to ensure the

query performs efficiently. A maximum of 1,024 partitions can be scanned for a table in each

query. With some BI tools, you can select tables for analysis using the drag-and-drop method

. In this way, you are not able to specify partition settings before the analysis. This may cause

https://www.postgresql.org/docs/8.2/static/functions.html

MaxCompute User Guide / 9 Lightning

372 Issue: 20181120

the number of partitions to be scanned to exceed the limit, triggering the report of an error from

 MaxCompute Lightning. We recommend that you process the to-be-queried tables before the

 analysis. You can either convert partitioned tables into non-partitioned tables or reduce the

number of partitions to a value lower than 1,024.

• Q: Why is ERROR: SSL required displayed during the connection to MaxCompute

Lightning?

A: MaxCompute Lightning requires SSL connections and therefore users must use SSL

connections. If you use a client tool, you can select the SSL connection check box. If SSL

connections cannot be selected in the client tool, you can add the SSL parameter to the JDBC

URL. In the JDBC URL, you must enter the endpoint of the region where your project belongs

and the name of the connected project, for example, jdbc:postgresql://lightning.cn-

shanghai.maxcompute.aliyun.com:443/myproject? ssl=true.

• Q: What should I do when I receive the following error message during a query using the SQL

Workbench/J client: Error:current transaction is aborted,commands ignored

until end of transaction block.

A: Select the Autocommit check box in the client.

MaxCompute User Guide / 10 MaxCompute Manager

Issue: 20181120 373

10 MaxCompute Manager

When you start MaxCompute pre-payment, you will encounter one common problem: you have

purchased 150 CUs, however, many of your tasks in pre-paid projects may still have to queue up

 for a long time. Administrators or operations want to know which tasks have occupied resources

, so as to control their tasks properly, such as adjusting the scheduling time according to the

corresponding business priority of tasks.

MaxCompute Manager provides pre-payment computing resource monitoring and management.

Currently, MaxCompute Manager mainly provides three functions: system status monitoring,

resource group allocation, and task monitoring. See the DataWorks document MaxCompute

Manager for detailed instructions.

Note:

MaxCompute Manager prerequisite:

• You should already have purchased MaxCompute pre-paid CU resources and a quantity

 of 60 CUs or more. You can only take complete advantage of computing resources and

MaxCompute Manager when you have sufficient CUs.

https://www.alibabacloud.com/help/doc-detail/73648.htm
https://www.alibabacloud.com/help/doc-detail/73648.htm

	Contents
	​Legal​ ​disclaimer​
	​Generic​ ​convention​​s​
	1 ​Definition​
	1.1 ​Table​
	1.2 ​Data​ ​types​
	1.3 ​Lifecycle​
	1.4 ​Function​
	1.5 ​Task​
	1.6 ​Instance​

	2 ​Common​ ​commands​
	2.1 ​List​ ​of​ ​common​ ​commands​
	2.2 ​Project​ ​operations​
	2.3 ​Table​ ​operations​
	2.4 ​Instances​
	2.5 ​Resources​
	2.6 ​Functions​
	2.7 ​Set​ ​operation​
	2.8 ​Other​ ​operations​

	3 ​Data​ ​upload​ ​and​ ​download​
	3.1 ​Data​ ​upload​ ​and​ ​download​
	3.2 ​Connection​ ​to​ ​data​ ​tunnel​ ​service​
	3.3 ​Cloud​ ​data​ ​migration​
	3.4 ​Data​ ​upload​ ​and​ ​download​ ​tools​
	3.5 ​Tunnel​ ​commands​
	3.6 ​Tunnel​ ​SDK​
	3.6.1 ​Summary​
	3.6.2 ​TableTunne​​l​
	3.6.3 ​UploadSess​​ion​
	3.6.4 ​DownloadSe​​ssion​
	3.6.5 ​TunnelBuff​​eredWriter​

	3.7 ​Bulk​ ​data​ ​channel​ ​SDK​ ​example​
	3.7.1 ​Example​
	3.7.2 ​Example​ ​for​ ​uploading​
	3.7.3 简单下载示例
	3.7.4 ​Example​ ​for​ ​multi​-​thread​ ​uploading​
	3.7.5 ​Example​ ​for​ ​multi​-​thread​ ​downloadin​​g​
	3.7.6 ​Example​ ​for​ ​BufferedWr​​iter​ ​multi​-​thread​ ​uploading​
	3.7.7 ​Example​ ​for​ ​BufferedWr​​iter​ ​uploading​

	3.8 ​Import​ ​or​ ​export​ ​data​ ​using​ ​the​ ​Data​ ​Integratio​​n​
	3.9 ​Real​-​time​ ​data​ ​tunnel​ ​of​ ​DataHub​

	4 ​SQL​
	4.1 ​SQL​ ​summary​
	4.2 ​Operators​
	4.3 ​Type​ ​conversion​​s​
	4.4 ​DDL​ ​SQL​
	4.4.1 ​Table​ ​Operations​
	4.4.2 ​Lifecycle​ ​of​ ​table​
	4.4.3 ​Column​/​Partition​ ​operation​
	4.4.4 ​View​ ​operations​

	4.5 ​Insert​ ​Operation​
	4.5.1 ​INSERT​ ​OVERWRITE​/​INTO​
	4.5.2 ​MULTI​ ​INSERT​
	4.5.3 ​DYNAMIC​ ​PARTITION​
	4.5.4 ​VALUES​

	4.6 ​Lateral​ ​View​
	4.7 ​Select​ ​Operation​
	4.7.1 ​Introducti​​on​ ​to​ ​the​ ​SELECT​ ​Syntax​
	4.7.2 ​SELECT​ ​Sequence​
	4.7.3 ​Subquery​
	4.7.4 ​UNION​ ​ALL​/​UNION​ [​DISTINCT​]
	4.7.5 ​JOIN​ ​operation​
	4.7.6 ​SEMI​ ​JOIN​
	4.7.7 ​MAPJOIN​ ​HINT​
	4.7.8 ​HAVING​ ​clause​
	4.7.9 ​Explain​
	4.7.10 ​Common​ ​table​ ​expression​ (​CTE​)

	4.8 ​Builtin​ ​functions​
	4.8.1 ​Date​ ​functions​
	4.8.2 ​Mathematic​​al​ ​functions​
	4.8.3 ​Window​ ​functions​
	4.8.4 ​Aggregate​ ​functions​
	4.8.5 ​String​ ​functions​
	4.8.6 ​Other​ ​functions​

	4.9 ​UDF​
	4.9.1 ​UDF​ ​Summary​
	4.9.2 ​Java​ ​UDF​
	4.9.3 ​Python​ ​UDF​

	4.10 ​Difference​​s​ ​with​ ​other​ ​SQL​ ​syntax​
	4.11 ​SQL​ ​limits​

	5 ​MapReduce​
	5.1 ​Program​ ​Example​
	5.1.1 ​WordCount​ ​samples​
	5.1.2 ​MapOnly​ ​samples​
	5.1.3 ​Multi​-​input​ ​and​ ​Output​
	5.1.4 ​Multi​-​task​ ​samples​
	5.1.5 ​Secondary​ ​Sort​ ​samples​
	5.1.6 ​Resource​ ​samples​
	5.1.7 ​Counter​ ​samples​
	5.1.8 ​Grep​ ​samples​
	5.1.9 ​Join​ ​samples​
	5.1.10 ​Sleep​ ​samples​
	5.1.11 ​Unique​ ​samples​
	5.1.12 ​Sort​ ​samples​
	5.1.13 ​Partition​ ​samples​
	5.1.14 ​Pipeline​ ​samples​

	5.2 ​MR​ ​limits​

	6 ​Java​ ​Sandbox​
	7 ​External​ ​table​
	7.1 ​Access​ ​OSS​ ​data​
	7.2 ​Unstructur​​ed​ ​data​ ​exported​ ​to​ ​OSS​
	7.3 ​Visit​ ​Table​ ​Store​ ​data​

	8 ​Security​
	8.1 ​Target​ ​users​
	8.2 ​User​ ​authentica​​tion​
	8.3 ​User​ ​management​
	8.4 ​Role​ ​management​
	8.5 ​Authorizat​​ion​
	8.6 ​Permission​ ​check​
	8.7 ​Security​ ​configurat​​ions​
	8.8 ​Data​ ​protection​ ​of​ ​projects​
	8.9 ​Security​ ​command​ ​list​
	8.9.1 ​Security​ ​configurat​​ion​ ​of​ ​a​ ​project​
	8.9.2 ​Manage​ ​permission​​s​
	8.9.3 ​Package​-​based​ ​resource​ ​sharing​

	8.10 ​Resource​ ​share​ ​across​ ​project​ ​space​
	8.10.1 ​Resource​ ​sharing​ ​across​ ​projects​ ​based​ ​on​ ​package​
	8.10.2 ​Package​ ​usage​ ​method​

	8.11 ​Column​-​level​ ​access​ ​control​

	9 ​Lightning​
	9.1 ​Lightning​ ​overview​
	9.2 ​Activate​ ​Lightning​ ​service​
	9.3 ​Service​ ​pricing​
	9.4 ​Quick​ ​Start​
	9.4.1 ​Guide​ ​descriptio​​n​
	9.4.2 ​Prerequisi​​tes​
	9.4.3 ​Prepare​ ​client​ ​tools​ ​for​ ​connection​
	9.4.4 ​Access​ ​services​ ​and​ ​perform​ ​analysis​

	9.5 ​Access​ ​domain​ ​name​
	9.6 ​Access​ ​services​ ​using​ ​JDBC​ ​interfaces​
	9.6.1 ​JDBC​ ​driver​
	9.6.2 ​Configure​ ​JDBC​ ​connection​​s​
	9.6.3 ​Access​ ​services​ ​using​ ​common​ ​tools​

	9.7 ​SQL​ ​reference​
	9.8 ​View​ ​tasks​
	9.9 ​Constraint​​s​ ​and​ ​limitation​​s​
	9.10 ​Lightning​ ​FAQs​

	10 ​MaxCompute​ ​Manager​

