
Alibaba Cloud
MaxCompute

User Guide

Issue: 20180808

MaxCompute User Guide / Legal disclaimer

Issue: 20180808 I

Legal disclaimer

Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions of this

legal disclaimer before you read or use this document. If you have read or used this document, it

shall be deemed as your total acceptance of this legal disclaimer.

1. You shall download and obtain this document from the Alibaba Cloud website or other Alibaba

Cloud-authorized channels, and use this document for your own legal business activities only.

The content of this document is considered confidential information of Alibaba Cloud. You shall

 strictly abide by the confidentiality obligations. No part of this document shall be disclosed or

provided to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted, or disseminat

ed by any organization, company, or individual in any form or by any means without the prior

written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades, adjustment

s, or other reasons. Alibaba Cloud reserves the right to modify the content of this document

without notice and the updated versions of this document will be occasionally released through

 Alibaba Cloud-authorized channels. You shall pay attention to the version changes of this

document as they occur and download and obtain the most up-to-date version of this document

 from Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud products and

services. Alibaba Cloud provides the document in the context that Alibaba Cloud products and

 services are provided on an "as is", "with all faults" and "as available" basis. Alibaba Cloud

makes every effort to provide relevant operational guidance based on existing technologies

. However, Alibaba Cloud hereby makes a clear statement that it in no way guarantees the

accuracy, integrity, applicability, and reliability of the content of this document, either explicitly

or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial losses incurred

 by any organizations, companies, or individuals arising from their download, use, or trust in

this document. Alibaba Cloud shall not, under any circumstances, bear responsibility for any

 indirect, consequential, exemplary, incidental, special, or punitive damages, including lost

profits arising from the use or trust in this document, even if Alibaba Cloud has been notified of

the possibility of such a loss.

5. By law, all the content of the Alibaba Cloud website, including but not limited to works, products

, images, archives, information, materials, website architecture, website graphic layout, and

webpage design, are intellectual property of Alibaba Cloud and/or its affiliates. This intellectu

al property includes, but is not limited to, trademark rights, patent rights, copyrights, and trade

MaxCompute User Guide / Legal disclaimer

II Issue: 20180808

 secrets. No part of the Alibaba Cloud website, product programs, or content shall be used,

modified, reproduced, publicly transmitted, changed, disseminated, distributed, or published

 without the prior written consent of Alibaba Cloud and/or its affiliates. The names owned by

Alibaba Cloud shall not be used, published, or reproduced for marketing, advertising, promotion

, or other purposes without the prior written consent of Alibaba Cloud. The names owned by

Alibaba Cloud include, but are not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other

brands of Alibaba Cloud and/or its affiliates, which appear separately or in combination, as well

 as the auxiliary signs and patterns of the preceding brands, or anything similar to the company

 names, trade names, trademarks, product or service names, domain names, patterns, logos

, marks, signs, or special descriptions that third parties identify as Alibaba Cloud and/or its

affiliates).

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

MaxCompute User Guide / Legal disclaimer

Issue: 20180808 III

MaxCompute User Guide / Generic conventions

Issue: 20180808 I

Generic conventions

Table -1: Style conventions

Style Description Example

This warning information indicates a
situation that will cause major system
changes, faults, physical injuries, and
other adverse results.

Danger:
Resetting will result in the loss of user
configuration data.

This warning information indicates a
situation that may cause major system
 changes, faults, physical injuries, and
other adverse results.

Warning:
Restarting will cause business
interruption. About 10 minutes are
required to restore business.

This indicates warning information,
supplementary instructions, and other
content that the user must understand.

Note:
Take the necessary precautions to
save exported data containing sensitive
information.

This indicates supplemental instructio
ns, best practices, tips, and other
content that is good to know for the
user.

Note:
You can use Ctrl + A to select all files.

> Multi-level menu cascade. Settings > Network > Set network type

Bold It is used for buttons, menus, page
names, and other UI elements.

Click OK.

Courier

font

It is used for commands. Run the cd /d C:/windows command
to enter the Windows system folder.

Italics It is used for parameters and variables. bae log list --instanceid

 Instance_ID

[] or [a|b] It indicates that it is a optional value,
and only one item can be selected.

ipconfig [-all|-t]

{} or {a|b} It indicates that it is a required value,
and only one item can be selected.

swich {stand | slave}

MaxCompute User Guide / Contents

II Issue: 20180808

Contents

Legal disclaimer..I
Generic conventions.. I
1 Data upload and download... 1

1.1 Data upload and download..1
1.2 Cloud migration of data... 1
1.3 Tools... 2
1.5 Import or export data using the Data Integration function... 5
1.6 Tunnel SDK..9

1.6.1 Summary... 9
1.6.2 TableTunnel.. 10
1.6.3 UploadSession.. 12
1.6.4 DownloadSession..14
1.6.5 TunnelBufferedWriter.. 15

1.7 Bulk data channel SDK example... 16
1.7.1 Example.. 16
1.7.2 Example for uploading.. 16
1.7.3 Example for downloading... 18
1.7.7 Example for BufferedWriter uploading..20

1.9 Connection to data tunnel service... 21

2 Common commands..22
2.1 Overview of Common commands..22
2.2 Project Operations..22
2.3 Table Operations..23
2.4 Instance.. 27
2.6 Function Operations... 32
2.7 Other Operations..33

3 SQL.. 38
3.1 SQL Summary..38
3.4 DDL SQL..39

3.4.2 Lifecycle of table...39
3.4.3 View operations.. 40
3.4.4 Column/Partition operation..42

3.5 Insert Operation..45
3.5.2 MULTI INSERT... 45
3.5.3 DYNAMIC PARTITION... 46
3.5.4 VALUES.. 48

3.6 Select Operation...51
3.6.1 Introduction to the SELECT Syntax..51
3.6.2 SELECT Sequence...55
3.6.3 Subquery... 56

MaxCompute User Guide / Contents

Issue: 20180808 III

3.6.4 UNION ALL/UNION [DISTINCT]...58
3.6.6 SEMI JOIN.. 59
3.6.10 Common table expression (CTE)... 60

3.7 DDL SQL..61
3.8 Insert Operation..61
3.9 SQL restrictions..61
3.10 Builtin Function...63

3.10.1 Date Functions..63
3.10.3 Window Functions...79

3.11 UDF.. 95
3.11.1 UDF Summary.. 95
3.11.2 Java UDF.. 97
3.11.3 Python UDF.. 108

3.12 Appendix...115
3.12.1 Escape Characters..115
3.12.2 Like Usage.. 116
3.12.3 Regular Expression...116
3.12.4 Reserved Words... 119

4 MapReduce..120
4.1 Summary.. 120

4.1.1 MapReduce... 120
4.1.2 Extended MapReduce...123
4.1.3 Open-source MapReduce... 123

4.2 Function Introduction..128
4.2.1 Command..129
4.2.2 Basic Conception.. 131
4.2.3 Input and Output...132
4.2.4 Resource... 132
4.2.5 Local run... 132

4.3 Program Example...135
4.3.1 WordCount Sample...135
4.3.2 MapOnly Sample...138
4.3.3 Multi-input and Output.. 140
4.3.4 Multi-task Sample..144
4.3.5 Secondary Sort Sample..147
4.3.6 Resource Sample..149
4.3.7 Counter Sample.. 152
4.3.8 Grep Sample...154
4.3.9 Join Sample.. 158
4.3.10 Sleep Sample..161
4.3.11 Unique Sample..162
4.3.12 Sort Sample.. 165
4.3.13 Partition... 168
4.3.14 Pipeline Sample.. 169

MaxCompute User Guide / Contents

IV Issue: 20180808

4.4 Java SDK... 172
4.4.1 Java SDK.. 172

4.5 MR Restrictions.. 178

5 Java Sandbox... 182
6 SDK.. 187

6.2 Python SDK..187

7 Handle-Unstructured-data..203
7.1 Access OSS Data.. 203
7.2 Visit Table Store Data..215

8 Graph... 222
8.1 Summary.. 222
8.2 Function overview.. 225
8.3 SDK Summary..229
8.4 Development and Debugging...230
8.5 Restriction...238
8.6 Examples.. 238

8.6.1 SSSP...238
8.6.2 PageRank..242
8.6.3 Kmeans... 245
8.6.4 BiPartiteMatchiing... 250
8.6.5 Strongly-connected component.. 253
8.6.6 Connected component..261
8.6.7 Topology Sorting...263
8.6.8 Linear Regression...266
8.6.9 Triangle Count.. 271
8.6.10 Vertex Input...273
8.6.11 Edge Input...280

8.7 Introductions of Aggregator Mechanism.. 286

9 Security..295
9.1 Target Users...295
9.2 Quick Start..295

9.2.1 Add users and grant permissions...295
9.2.2 Add users and grant permissions using ACL... 295
9.2.3 Project data protection..296

9.3 User Authentication.. 296
9.4 User Management..298
9.5 Role Management.. 302
9.6 Authorization...305
9.7 Permission Check.. 309
9.8 Security Configuration.. 310
9.9 Security Command List..311

9.9.1 Security Configuration of a Project...311

MaxCompute User Guide / Contents

Issue: 20180808 V

9.9.2 Permission Management of a Project...312
9.10 Resource share across project space... 313

9.10.1 Resource Sharing across Projects Based on Package................................ 313
9.11 Column-level Access Control... 314

MaxCompute User Guide / Contents

VI Issue: 20180808

MaxCompute User Guide / 1 Data upload and download

Issue: 20180808 1

1 Data upload and download

1.1 Data upload and download
This article provides a brief introduction about the upload and download process of the

MaxCompute system data, including service connection, SDKs, tools, and cloud data migration.

The DataHub and Tunnel offers the real-time data tunnel and the batch data tunnel respectively to

 access the MaxCompute system.

Both DataHub and Tunnel provide their own SDKs. The SDKs and derivative data upload and

download tools can suffice your data upload and download requirements in various scenarios.

Data upload and download tools include: DataWorks, DTS, OGG plugin, Sqoop, Flume plugin,

Logstash plugin, Fluentd plugin, Kettle plugin, MaxCompute console.

Underlying data tunnels used by these tools include:

• DataHub tunnel tools

▬ OGG

▬ Flume

▬ LogStash

▬ Fluentd

• Tunnel tools

▬ DataWorks

▬ DTS

▬ Sqoop

▬ Kettle

▬ MaxCompute console

A wide range of data upload and download tools are applicable to most of the cloud data migration

 scenarios. The following articles introduce the tools, Hadoop data migration, database data

synchronization, log collection, and other cloud migration scenarios. Refer to these articles when

you select the technical solutions.

1.2 Cloud migration of data
Data upload and data download tools of the MaxCompute platform are applicable for a wide range

of cloud data migration scenarios. This document introduces some typical scenarios.

MaxCompute User Guide / 1 Data upload and download

2 Issue: 20180808

Hadoop data migration

You can use Sqoop or DataWorks for Hadoop data migration.

• Sqoop runs an MR job on the original Hadoop cluster for distributed data transmission to

MaxCompute and is highly efficient. For more information, see the Sqoop tool introduction.

• DataWorks can be used with DataX for Hadoop data migration.

Database synchronization

To synchronize data of database to MaxCompute, select an appropriate tool based on the

database type and synchronization policy.

• For offline batch data synchronization, you can use DataWorks which supports a wide range of

database types, including MySQL, SQL Server, and PostgreSQL. For more information, see

Data synchronization introduction. For instance operation instructions, see Create a synchroniz

ation task.

• For real-time Oracle data synchronization, use OGG plug-in tools.

• For real-time RDS data synchronization, use DTS.

Log collection

For log collection, use Flume, Fluentd, and Logstash tools. For a sample scenario, see flume

collects web site log data to maxcompute and sea volume log data analysis and application.

1.3 Tools
The MaxCompute platform supports a wide range of tools. The source code for most tools can be

found on GitHub, the open-source community for data uploading and data downloading. Different

tools are applicable to different scenarios, and the tools are divided into two types. The two types

are Alibaba Cloud DTplus products and open-source products. This document provides a brief

description of these tools.

Alibaba Cloud DTplus products

• Data Integration of DataWorks

Data Integration, or data synchronization, of DataWorks is a stable, efficient, and scalable

data synchronization platform provided by Alibaba Cloud. It is designed to provide full offline

 and incremental real-time data synchronization, integration, and exchange services for the

heterogeneous data storage systems on Alibaba Cloud.

https://www.alibabacloud.com/help/doc-detail/47677.html
https://www.alibabacloud.com/help/doc-detail/47677.html
https://help.aliyun.com/document_detail/30269.html
https://help.aliyun.com/document_detail/30269.html
https://yq.aliyun.com/articles/66600
https://yq.aliyun.com/articles/66600
https://yq.aliyun.com/articles/61912

MaxCompute User Guide / 1 Data upload and download

Issue: 20180808 3

Data synchronization tasks support the following data types: MaxCompute, ApsaraDB for RDS

(MySQL, SQL Server, and PostgreSQL), Oracle, FTP, ADS (AnalyticDB), OSS, Memcache,

and DRDS. For more information, see Data synchronization introduction, and for usage

methods, see Create a data synchronization task.

• MaxCompute Console

▬ For information about console installation and basic usage, see Client introduction.

▬ Based on the Batch data tunnel SDK, the client provides built-in Tunnel commands for data

uploading and data downloading. For more information, see Basic Tunnel command usage.

Note:

This is an open-source GitHub project.

• DTS

Data Transmission (DTS) is a data service provided by Alibaba Cloud that supports

data exchanges between RDBMS, NoSQL, OLAP, and other data sources. It provides

data migration, real-time data subscription, real-time data synchronization, and other data

transmission features.

DTS supports data synchronization from ApsaraDB for RDS and MySQL instances to

MaxCompute tables. Currently, other data source types are not supported. For more

information, see Create a job to synchronize data from ApsaraDB for RDS to MaxCompute.

Open-source products

• Sqoop

As a tool developed based on the Sqoop 1.4.6 community, Sqoop provides enhanced

MaxCompute support with the ability to import and export data from MySQL and other

relational databases to MaxCompute tables. Data in HDFS/Hive can also be imported to

MaxCompute tables. For more information, see MaxCompute Sqoop.

Note:

This is an open-source GitHub project.

• Kettle

Kettle is an open-source ETL tool based on Java which can run on Windows, Unix, or Linux. It

provides graphic interfaces for you to easily define data transmission topology using drag-and-

drop components.

https://www.alibabacloud.com/help/doc-detail/47677.html
https://www.alibabacloud.com/help/doc-detail/30269.html
https://github.com/aliyun/aliyun-odps-console
https://www.alibabacloud.com/help/doc-detail/26592.html
https://www.alibabacloud.com/help/doc-detail/44547.html
https://github.com/aliyun/aliyun-maxcompute-data-collectors/wiki/odps-sqoop
https://github.com/aliyun/aliyun-maxcompute-data-collectors

MaxCompute User Guide / 1 Data upload and download

4 Issue: 20180808

Note:

This is an open-source GitHub project.

• Flume

Apache Flume is a distributed and reliable system which can efficiently collect, aggregate, and

 move massive volumes of log data from different data sources to a centralized data storage

system. It supports multiple Source and Sink plugins.

The DataHub Sink plug-in of Apache Flume allows you to upload log data to DataHub in real

time and archive the data in MaxCompute tables. For more information, see flume_plugin.

Note:

This is an open-source GitHub project.

• Fluentd

Fluentd is an open-source software product used to collect logs, including application logs,

system logs, and access logs, from various sources. It allows you to select plugins to filter and

 store log data to different data processors, including MySQL, Oracle, MongoDB, Hadoop, and

Treasure Data.

The DataHub plug-in of Fluentd allows you to upload data to DataHub in real time and archive

the data in MaxCompute tables.

• LogStash

Logstash is an open-source log collection and processing framework. The logstash-output-

datahub plugin allows you to import data to DataHub. This tool can be easily configured to

collect and transmit data. When used together with MaxCompute/StreamCompute, it allows

you to easily create an all-in-one streaming data solution from data collection to analysis.

The DataHub plug-in of Logstash allows you to upload data to DataHub in real time and archive

 the data in MaxCompute tables.

• OGG

The DataHub plug-in of OGG allows you to incrementally synchronize Oracle database data to

DataHub in real time and archive the data in MaxCompute tables.

Note:

This is an open-source GitHub project.

https://github.com/aliyun/aliyun-maxcompute-data-collectors?spm=a2c4g.11186623.2.15.oSXp9R
https://github.com/aliyun/aliyun-maxcompute-data-collectors/wiki/flume_plugin?spm=a2c4g.11186623.2.16.oSXp9R
https://github.com/aliyun/aliyun-maxcompute-data-collectors?spm=a2c4g.11186623.2.17.oSXp9R
https://github.com/aliyun/aliyun-maxcompute-data-collectors?spm=a2c4g.11186623.2.21.oSXp9R

MaxCompute User Guide / 1 Data upload and download

Issue: 20180808 5

1.5 Import or export data using the Data Integration function
You can use Data Integration function of DataWorks to create data synchronization tasks and

import and export MaxCompute data.

Prerequisites

Before importing or exporting data, make sure you have completed the preparatory operations.

See Prepare an Alibaba Cloud account and Purchase and create a project.

Add MaxCompute Data Source

Note:

• Only the project administrator can create a data source. Other roles can only view the data

source.

• If the data source you want to add is a current MaxCompute project, skip this operation

. After this project is created and appears as a Data Integration data source, this project is

added as a MaxCompute data source named odps_first by default.

Procedure

1. Log on to the DataWorks console as an administrator and click Enter Workspace in the

actions column of the relevant project in the Project List.

2. Click Data Integration in the top navigation bar to go to the Data Source page.

3. Click Add Data Source.

4. Enter relevant configurations in the data dialog box.

Configurations:

• Data source name: Contains letters, numbers, and underlines. It must begin with a letter

or an underline, and cannot exceed 60 characters.

• Data source description: Provides a brief description of the data source, and cannot

exceed 80 characters.

• Data source type: Currently it is MySQL.

• ODPS Endpoint: Read-only by default. The setting is automatically read from the system

configuration.

• MaxCompute project name: Identifies the corresponding MaxCompute project.

https://www.alibabacloud.com/help/doc-detail/47677.html
https://workbench.data.aliyun.com/console?spm=a2c4g.11186623.2.7.bBZHDz

MaxCompute User Guide / 1 Data upload and download

6 Issue: 20180808

• Access ID: The Access ID associated with the account of the MaxCompute project

owner.

• AccessKey: The AccessKey associated with the account of the MaxCompute project

owner, used in pairs with the Access ID.

5. Click Test Connectivity.

6. If the connectivity test is successful, click Save.

Note:

For the configuration of other data sources, see Data source configuration.

Use Data Integration to Import Data

Take importing MySQL data to MaxCompute as an example, you can configure a synchronization

task using Wizard Mode or Script Mode.

Configure a Synchronization Task in Wizard Mode

1. Create a Wizard Mode synchronization task.

2. Select the source.

Select the MySQL data source and the source table “mytest”. The data browsing area is

collapsed by default. Click Next.

3. Select the target.

The target must be a previously created MaxCompute table. You can also create a new table

by clicking Quick Table Creation.

Configurations:

• Partition information: You must specify every level of partition. When writing data to

a table with three levels of partitions, you must configure the last partition level, for example,

pt=20150101, type=1, biz=2. This item is unavailable for non-partitioned tables.

• Data clearing rules:

▬ Clear existing data before writing: Before data is imported to a table

or partition, all data in the table or partition is cleared, which is equivalent to “Insert

Overwrite”.

https://www.alibabacloud.com/help/doc-detail/60416.html

MaxCompute User Guide / 1 Data upload and download

Issue: 20180808 7

▬ Retain existing data before writing: Existing data is not cleared before new

data is imported. Each operation appends new data, which is equivalent to “Insert Into”.

4. Map the fields.

Select the mapping between fields. You must configure the field mapping relationships. The

Source Table Fields on the left correspond one to one with the Target Table Fields on the

right.

5. Control the tunnel.

Click Next to configure the maximum job rate and dirty data check rules.

Configurations:

• Maximum job rate: Determines the highest rate possible for data synchronization jobs.

The actual rate of the job may vary with the network environment, database configuration,

and other factors.

• Concurrent job count: For a single synchronization job, Concurrent job count *

Individual job transmission rate = Total job transmission rate.

When a maximum job rate is specified, how do you select the concurrent job count?

• If your data source is an online business database, we recommend that you do not set a

large value for the concurrent job count to avoid interfering with the online database.

• If you require a high data synchronization rate, we recommend that you select the highest

job rate and a large concurrent job count.

6. Preview and save.

After configuration, you can scroll up or down to view the task configurations. If no errors found,

click Save.

Run a synchronization task

Run a synchronization task directly

If system variable parameters are set in the synchronization task, the variable parameter

configuration window is displayed during task operation.

MaxCompute User Guide / 1 Data upload and download

8 Issue: 20180808

After saving the task, click Run to run the task immediately. You can also click Submit to

submit the synchronization task to the scheduling system of Data IDE. The scheduling system

automatically and periodically runs the task from the second day according to the configuration

attributes. For more information on scheduling configurations, see Scheduling configuration

description.

Configure a Synchronization Task in Script Mode

You can use the following script to configure synchronization tasks. Other configurations and job

operation are the same as Wizard Mode.

 "type": "job",
 "version": "1.0",
 "configuration": {
 "reader": {
 "plugin": "mysql",
 "parameter": {
 "datasource": "mysql",
 "where": "",
 "splitPk": "id",
 "connection": [

 "table": [
 "person"

 "datasource": "mysql"

 "connectionTable": "person",
 "column": [
 "id",
 "name"

 "writer": {
 "plugin": "odps",
 "parameter": {
 "datasource": "odps_first",
 "table": "a1",
 "truncate": true,
 "partition": "pt=${bdp.system.bizdate}",
 "column": [
 "id",
 "col1"

 "setting": {
 "speed": {
 "mbps": "1",
 "concurrent": "1"

https://www.alibabacloud.com/help/doc-detail//50130.html
https://www.alibabacloud.com/help/doc-detail//50130.html

MaxCompute User Guide / 1 Data upload and download

Issue: 20180808 9

Reference Documentation

• For the Reader configurations about different types of data soucrces, see Configure Reader

Plug-ins.

• For the Writer configurations about different types of data soucrces, see Configure Writer Plug-

ins.

1.6 Tunnel SDK

1.6.1 Summary
MaxCompute Tunnel is the data tunnel of MaxCompute. You can use Tunnel to upload data

to or download data from MaxCompute. Tunnel only supports table data uploading and data

downloading.

MaxCompute provides Data upload and download tools programmed based on the Tunnel SDK.

When using Maven, you can search for odps-sdk-core in the Maven database to find different

versions of Java SDK. The configuration is as follows:

<dependency>
 <groupId>com.aliyun.odps</groupId>
 <artifactId>odps-sdk-core</artifactId>
 <version>0.24.0-public</version>
 </dependency>

This document describes the main interfaces of Tunnel SDK, which may vary with the SDK

version.

Main interface Description

TableTunnel The portal class interface to access the
MaxCompute Tunnel service. You can access
 MaxCompute and its Tunnel using the Internet
 or intranet of Alibaba Cloud. When you
download data with MaxCompute Tunnel using
 intranet of Alibaba Cloud, no traffic fee is
incurred. The intranet address is only valid for
cloud products in the Hangzhou region.

TableTunnel.UploadSession Indicates a session used to upload data to a
MaxCompute table.

https://www.alibabacloud.com/help/faq-list/49806.html
https://www.alibabacloud.com/help/faq-list/49806.html
https://www.alibabacloud.com/help/faq-list/49807.html
https://www.alibabacloud.com/help/faq-list/49807.html
http://search.maven.org/

MaxCompute User Guide / 1 Data upload and download

10 Issue: 20180808

Main interface Description

TableTunnel.DownloadSession Indicates a session used to download data
from a MaxCompute table.

Note:

• For more information about the SDK, see SDK Java Doc.

• For more information about service connections, see Access Domains and Data Centers.

1.6.2 TableTunnel
TableTunnel is an ingress class that accesses the MaxCompute Tunnel service. The TableTunne

l.UploadSession interface is a session that uploads data to the MaxCompute table. The

TableTunnel.DownloadSession interface is a session that downloads data to the MaxCompute

table.

This interface is defined as follows:

public class tabletunnel {
 public DownloadSession createDownloadSession(String projectName,
String tableName);
 public DownloadSession createDownloadSession(String projectName,
String tableName, PartitionSpec partitionSpec);
 public UploadSession createUploadSession(String projectName, String
tableName);
 public UploadSession createUploadSession(String projectName, String
tableName, PartitionSpec partitionSpec);
 public DownloadSession getDownloadSession(String projectName, String
tableName, PartitionSpec partitionSpec, String id);
 public DownloadSession getDownloadSession(String projectName, String
tableName, String id);
 public UploadSession getUploadSession(String projectName, String
tableName, PartitionSpec partitionSpec, String id);
 public UploadSession getUploadSession(String projectName, String
tableName, String id);

Description:

• Life cycle: Starts from TableTunnel instance creation and ends with the completion of the

program.

• Provides the method for creating uploading and downloading objects.

• The process of uploading and downloading a table or partition is called as a session. A

session consists of one or more HTTP requests to the Tunnel RESTful API.

http://repo.aliyun.com/java-sdk-doc/

MaxCompute User Guide / 1 Data upload and download

Issue: 20180808 11

• The uploading session of TableTunnel is INSERT INTO semantics, which means that sessions

 that upload the same table or partition do not affect each other. The upload of each session is

located in different directories.

• In an uploading session, each RecordWriter corresponds to an HTTP Request, identified by a

block id, corresponding to a file on the service side (The block id is the corresponding file name

).

• In a session, opening RecordWriter multiple times with the same block id results in overwritin

g. The data uploaded by the last RecordWriter calling close() is retained. This feature can be

used for retransmissions when block uploading fails.

The TableTunnel Interface implementation process is as follows:

1. RecordWriter.write() uploads data to a file in a temporary directory.

2. RecordWriter.close() moves the preceding file from the temporary directory to the data

directory.

3. Session.commit() moves all files in the corresponding data directory to directory where the

corresponding table resides, and updates the table meta. This means that data moving into the

table is visible to other MaxCompute tasks (such as SQL, MR).

The TableTunnel Interface restrictions are as follows:

• The range of block id is 0 to 20000. The data size uploaded by a single block is limited to 100

GB.

• The session timeout is 24 hours. If massive data results in the transmission time exceeding 24

hours, you must split them into multiple sessions.

• The HTTP Request timeout for RecordWriter is 120 seconds. If there is no data flow through

the HTTP connection within 120 seconds, the service automatically closes the connection.

Note:

 It should be noted that there is an 8 KB buffer for HTTP itself, so we cannot make sure that

there is data flow through an HTTP connection when you call RecordWriter.write() each time.

TunnelRecordWriter.flush() can forcibly flush data from the buffer.

• For the scenario that logs are written into MaxCompute, the RecordWriter can easily time out

because the data arrives unpredictably. At this time:

MaxCompute User Guide / 1 Data upload and download

12 Issue: 20180808

▬ We do not recommend that you open a RecordWriter for each piece of data(Because

each RecordWriter corresponds to a file, too many small files can seriously affect the

MaxCompute performance).

▬ We recommend that you can call a RecordWriter to write data in a batch when your code

cache data size exceeds 64 MB.

• RecordReader timeout is 300 seconds.

1.6.3 UploadSession
The UploadSession interface is defined as follows:

public class UploadSession {
 UploadSession(Configuration conf, String projectName, String
tableName,
 String partitionSpec) throws TunnelException;
 UploadSession(Configuration conf, String projectName, String
tableName,
 String partitionSpec, String uploadId) throws TunnelExce
ption;
 public void commit(Long[] blocks);
 public Long[] getBlockList();
 public String getId();
 public TableSchema getSchema();
 public UploadSession.Status getStatus();
 public Record newRecord();
 public RecordWriter openRecordWriter(long blockId);
 public RecordWriter openRecordWriter(long blockId, boolean
compress);
 public RecordWriter openBufferedWriter();
 public RecordWriter openBufferedWriter(boolean compress);

Upload objects:

• Life cycle: Starts from the creation of the Upload instance and ends with the completion of the

upload process.

• Create Upload instance: You can create an instance by Calling the Constructor or by using

TableTunnel.

▬ Request method: Synchronous.

▬ The server creates a session for this upload instance and generates a unique UploadId for

the upload. Obtain this ID using the getId on the client.

• Upload data:

▬ Request method: Synchronous.

▬ Call the openRecordWriter method to generate a RecordWriter instance. The blockId

identifies the data to be uploaded and describes its location in the table within the value

MaxCompute User Guide / 1 Data upload and download

Issue: 20180808 13

range of [0,20000]. When data fails to be uploaded, you can reupload it based on the

blockId.

• View upload:

▬ Request method: Synchronous.

▬ Call getStatus to obtain the current upload status.

▬ Call getBlockList to obtain the successfully uploaded blockId list. You can compare this

with the upload blockId list to find and reupload failed blockIds.

• End upload:

▬ Request method: Synchronous.

▬ Call the Commit (Long[] blocks) method. The blocks list shows successfully

uploaded blocks. The server verifies this list.

▬ This function enhances data verification. If the provided block list does not match the block

list on the server, an error occurs.

▬ If Commit fails, you can try again.

• Seven kinds of status are described as follows:

• UNKNOWN: The initial value when the server creates a session.

• NORMAL: The upload object is created successfully.

• CLOSING: When the complete method (end upload) is called, the server changes the

status to CLOSING.

• CLOSED: After completing upload (which means to move data to the directory where result

table is).

• EXPIRED: The upload has timed out.

• CRITICAL: Service error.

Note:

• The blockIds in the same UploadSession must be unique. In a single UploadSession, when

you use a blockId to open RecordWriter, write a batch of data, call close, and then call

Commit, you cannot use the same blockId to open another RecordWriter to write data.

• The maximum size of a block is 100 GB, preferably more than 64 MB.

• The life cycle of each session on the server is 24 hours.

MaxCompute User Guide / 1 Data upload and download

14 Issue: 20180808

• When data is being uploaded, each 8 KB of data written by the Writer triggers a network action

. If no network actions are triggered within 120 seconds, the server closes the connection. In

this case, the Writer becomes unavailable and you must open a new one.

• We recommend that you use the openBufferedWriter interface to upload data. This interface

 does not show blockId details and contains an internal data cache for automatic retry upon

failures. For more information, see the introductions and examples of TunnelBufferedWriter.

1.6.4 DownloadSession
This DownloadSession interface is defined as follows:

public class DownloadSession {
 DownloadSession(Configuration conf, String projectName, String
 tableName,
 String partitionSpec) throws TunnelException
 DownloadSession(Configuration conf, String projectName, String
 tableName,
 String partitionSpec, String downloadId) throws TunnelExce
ption
 public String getId()
 public long getRecordCount()
 public TableSchema getSchema()
 public DownloadSession.Status getStatus()
 public RecordReader openRecordReader(long start, long count)
 public RecordReader openRecordReader(long start, long count,
boolean compress)

Download objects:

• Life cycle: Starts from the creation of the Download instance and ends with the completion of

data download.

• Create Download instance: You can create an instance by Calling the Constructor or by using

TableTunnel.

▬ Request method: Synchronous.

▬ The server creates a session for this download instance and generates a unique

DownloadId for the download. Obtain this ID using the getId on the client.

▬ This operation results in high costs. The server creates an index for the data files. In case of

 a large amount of files, this may take a long time.

▬ At the same time, the server returns the total number of Records and starts multiple

concurrent downloads based on this value.

• Download data:

▬ Request method: Asynchronous.

MaxCompute User Guide / 1 Data upload and download

Issue: 20180808 15

▬ Call the openRecordReader method to generate a RecordReader instance. “start”

identifies the start position of downloading this record which cannot be less than zero.

“count” specifies the number of records for this download which must be greater than zero.

• View download:

▬ Request method: Synchronous.

▬ Call getStatus to obtain the current download status.

• The four types of status are as follows:

▬ UNKNOWN: The initial value when the server creates a session.

▬ NORMAL: Create Download object succeeds.

▬ CLOSED: After downloading.

▬ EXPIRED: The download has timed out.

1.6.5 TunnelBufferedWriter
To complete the uploading process, follow these steps:

1. Divide the data.

2. Specify a block ID for each data block by calling the openRecordWriter (id).

3. Use one or more threads to upload the blocks. If a block fails to upload, you must re-upload all

blocks.

4. After uploading all blocks, provide the uploaded blockid list to the server for verification. This is

done by calling session.commit([1,2,3,…]).

The connection time-out and other restrictions on server block management complicate

the upload process logic. Therefore, the SDK provides a more advanced RecordWriter—

TunnelBufferWriter interface to simplify the process.

This interface is defined as follows:

public class TunnelBufferedWriter implements RecordWriter {
 public TunnelBufferedWriter(TableTunnel.UploadSession session
, CompressOption option) throws IOException;
 public long getTotalBytes();
 public void setBufferSize(long bufferSize);
 public void setRetryStrategy(RetryStrategy strategy);
 public void write(Record r) throws IOException;
 public void close() throws IOException;

TunnelBufferedWriter objects:

• Life cycle: Starts from RecordWriter creation and ends with the completion of data upload.

MaxCompute User Guide / 1 Data upload and download

16 Issue: 20180808

• Create TunnelBufferedWriter instance: Call openBufferedWriter interface of

UploadSession to create an instance.

• Data upload: Call the Write interface. Data is first written to the local cache. After the cache

is full, the data is submitted to the server in batches to avoid connection time-out. Automatic

retries are supported if the upload fails.

• End upload: Call the Close interface, and then call the Commit interface of UploadSession to

complete the upload process.

• Buffer control: You can use the setBufferSize interface to modify the size of memory (bytes),

occupied by the buffer preferably greater than 64 MB to prevent the server from generating too

many small files, which may affect the performance. The default value is generally used for this

 parameter without additional settings.

• Retry policy setting: You have three retry avoidance policies to choose from:

EXPONENTIAL_BACKOFF, LINEAR_BACKOFF, and CONSTANT_BACKOFF. For example:

The following code segment sets the number of Write retries to 6. To avoid unnecessary

retries, each retry is performed only after exponentially ascending intervals of 4s, 8s, 16s, 32s,

64s, and 128s. This is the default configuration and generally cannot be changed.

RetryStrategy retry
 = new RetryStrategy(6, 4, RetryStrategy.BackoffStrategy.EXPONENTIA
L_BACKOFF)
writer = (TunnelBufferedWriter) uploadSession.openBufferedWriter();
writer.setRetryStrategy(retry);

1.7 Bulk data channel SDK example

1.7.1 Example
• MaxCompute provides two service addresses for you to choose from. The Tunnel service

address you select may directly affect your data upload efficiency and billing. For more

information, see Tunnel SDK overview.

• We recommend that you use the TunnelBufferedWriter interface when uploading data. For

more information, see the sample codes in BufferedWriter.

• Operations may vary based on SDK versions. This example is provided only for reference.

Note the differences for different versions.

1.7.2 Example for uploading
import java.io.IOException;
 import java.util.Date;
 import com.aliyun.odps.Column;
 import com.aliyun.odps.Odps;

MaxCompute User Guide / 1 Data upload and download

Issue: 20180808 17

 import com.aliyun.odps.PartitionSpec;
 import com.aliyun.odps.TableSchema;
 import com.aliyun.odps.account.Account;
 import com.aliyun.odps.account.AliyunAccount;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.RecordWriter;
 import com.aliyun.odps.tunnel.TableTunnel;
 import com.aliyun.odps.tunnel.TunnelException;
 import com.aliyun.odps.tunnel.TableTunnel.UploadSession;
 public class UploadSample {
 private static String accessId = "<your access id>";
 private static String accessKey = "<your access Key>";
 private static String odpsUrl = "http://service.odps.aliyun.
com/api";
 private static String tunnelUrl = "http://dt.cn-shanghai.
maxcompute.aliyun-inc.com";
 //The tunnelURL must be set if you need to
connect internal network, otherwise, the system uses public network as
 default. The example shows the Tunnel Endpoint of classical network
in HuaDong 2, for other regions, see Access domain and data centers.
 private static String project = "<your project>";
 private static String table = "<your table name>";
 private static String partition = "<your partition spec>";
 public static void main(String args[]) {
 Account account = new AliyunAccount(accessId,
accessKey);
 Odps odps = new Odps(account);
 odps.setEndpoint(odpsUrl);
 odps.setDefaultProject(project);
 try {
 TableTunnel tunnel = new TableTunnel(odps);
 tunnel.setEndpoint(tunnelUrl); //set
tunnelUrl
 PartitionSpec partitionSpec = new PartitionS
pec(partition);
 UploadSession uploadSession = tunnel.
createUploadSession(project,
 table, partitionSpec);
 System.out.println("Session Status is : "
 + uploadSession.getStatus().
toString());
 TableSchema schema = uploadSession.getSchema
();
 // After preparing data, open a Writer to
start writing data. The prepared data is written to one block.
 // When the data written to individual
 blocks is too small, the system will produce a large number of
small files, seriously degrading computing performance. We strongly
 recommend over 64 MB of data be written each time (up to 100 GB of
data can be written to the same block).
 // You can use the average data volume and
record count to estimate the total value. For example: 64MB < Average
data size x Record count < 100GB.
 RecordWriter recordWriter = uploadSession.
openRecordWriter(0);
 Record record = uploadSession.newRecord();
 for (int i = 0; i < schema.getColumns().size
(); i++) {
 Column column = schema.getColumn(i);
 switch (column.getType()) {
 case BIGINT:
 record.setBigint(i, 1L);

MaxCompute User Guide / 1 Data upload and download

18 Issue: 20180808

 break;
 Case Boolean:
 record.setBoolean(i, true);
 break;
 case DATETIME:
 record.setDatetime(i, new
Date());
 break;
 case DOUBLE:
 record.setDouble(i, 0.0);
 break;
 case STRING:
 record.setString(i, "sample
");
 break;
 default:
 throw new RuntimeException("
Unknown column type: "
 + column.
getType());
 }
 }
 for (int i = 0; i < 10; i++) {
 // Writes data to the server. Each 8
 KB of data written triggers a network transmission.
 // If no network transmission occurs
 for 120 seconds, the server closes the connection. At this time, the
Writer becomes unavailable and you must write data again.
 recordWriter.write(record);
 }
 recordWriter.close();
 uploadSession.commit(new Long[]{0L});
 System.out.println("upload success!") ;
 } catch (TunnelException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }

Constructor:

PartitionSpec(String spec): Uses a string to construct this class of object.

Parameter descriptions:

spec: The partition definition string, such as pt=’1’,ds=’2’.

In this program, the configuration must be as follows:

private static String partition = “pt=’XXX’,ds=’XXX’”;

1.7.3 Example for downloading
import java.io.IOException;
 import java.util.Date;
 import com.aliyun.odps.Column;
 import com.aliyun.odps.Odps;

MaxCompute User Guide / 1 Data upload and download

Issue: 20180808 19

 import com.aliyun.odps.PartitionSpec;
 import com.aliyun.odps.TableSchema;
 import com.aliyun.odps.account.Account;
 import com.aliyun.odps.account.AliyunAccount;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.RecordReader;
 import com.aliyun.odps.tunnel.TableTunnel;
 import com.aliyun.odps.tunnel.TableTunnel.DownloadSession;
 import com.aliyun.odps.tunnel.TunnelException;
 public class DownloadSample {
 private static String accessId = "<your access id>";
 private static String accessKey = "<your access Key>";
 private static String odpsUrl = "http://service.odps.aliyun.
com/api";
 private static String tunnelUrl = "http://dt.cn-shanghai.
maxcompute.aliyun-inc.com";
 //The tunnelURL must be set if you need to
connect internal network, otherwise, the system uses public network as
 default. The example shows the Tunnel Endpoint of classical network
in HuaDong 2, for other regions, see Access domain and data centers.
 private static String project = "<your project>";
 private static String table = "<your table name>";
 private static String partition = "<your partition spec>";
 public static void main(String args[]) {
 Account account = new AliyunAccount(accessId,
accessKey);
 Odps odps = new Odps(account);
 odps.setEndpoint(odpsUrl);
 odps.setDefaultProject(project);
 TableTunnel tunnel = new TableTunnel(odps);
 tunnel.setEndpoint(tunnelUrl);//set tunnelUrl
 PartitionSpec partitionSpec = new PartitionSpec(
partition);
 try {
 DownloadSession downloadSession = tunnel.
createDownloadSession(project, table,
 partitionSpec);
 System.out.println("Session Status is : "
 + downloadSession.getStatus
().toString());
 long count = downloadSession.getRecordCount
();
 System.out.println("RecordCount is: " + count
);
 RecordReader recordReader = downloadSession.
openRecordReader(0,
 count);
 Record record;
 while ((record = recordReader.read()) ! =
null) {
 consumeRecord(record, downloadSession
.getSchema());

 recordReader.close();
 } catch (TunnelException e) {
 e.printStackTrace();
 } catch (IOException e1) {
 e1.printStackTrace();

 private static void consumeRecord(Record record, TableSchema
schema) {

MaxCompute User Guide / 1 Data upload and download

20 Issue: 20180808

 for (int i = 0; i < schema.getColumns().size(); i++)
 {
 Column column = schema.getColumn(i);
 String colValue = null;
 switch (column.getType()) {
 case BIGINT: {
 Long v = record.getBigint(i);
 colValue = v == null ? null : v.
toString();
 break;

 case BOOLEAN: {
 Boolean v = record.getBoolean(i);
 colValue = v == null ? null : v.
toString();
 break;

 case DATETIME: {
 Date v = record.getDatetime(i);
 colValue = v == null ? null : v.
toString();
 break;

 case DOUBLE: {
 Double v = record.getDouble(i);
 colValue = v == null ? null : v.
toString();
 break;

 case STRING: {
 String v = record.getString(i);
 colValue = v == null ? null : v.
toString();
 break;

 default:
 throw new RuntimeException("Unknown
column type: "
 + column.getType());

 System.out.print(colValue == null ? "null" :
colValue);
 if (i ! = schema.getColumns().size())
 System.out.print("\t");

 System.out.println();

In this example, data is directly printed using System.out.println to facilitate testing. In actual use,

you can directly output the data to a text file.

1.7.7 Example for BufferedWriter uploading
// Initializes MaxCompute and Tunnel code
RecordWriter writer = null;
TableTunnel.UploadSession uploadSession = tunnel.createUploadSession(
projectName, tableName);
try {
 int i = 0;

MaxCompute User Guide / 1 Data upload and download

Issue: 20180808 21

 // Generates TunnelBufferedWriter instance
 writer = uploadSession.openBufferedWriter();
 Record product = uploadSession.newRecord();
 for (String item : items) {
 product.setString("name", item);
 product.setBigint("id", i);
 // Calls the Write interface to write data
 writer.write(product);
 i += 1;

} finally {
 if (writer ! = null) {
 // Closes TunnelBufferedWriter
 writer.close();

// Submits data via uploadSession to end the upload process
uploadSession.commit();

1.9 Connection to data tunnel service
DataHub and Tunnel use different endpoints in different network environments. Depending on

the network environment, select the appropriate service address or endpoint, to connect to the

service. You must select the proper address or endpoint for your network or you are unable to

send requests to the service. At the same time, different network connections also have an impact

on your billing.

For detailed endpoints information for different network environments, see Access Domains and

Data Centers.

MaxCompute User Guide / 2 Common commands

22 Issue: 20180808

2 Common commands

2.1 Overview of Common commands
This module will show you in detail how to use the relevant commands through the client, to help

you quickly understand maxcompute.

The latest maxcompute service adjusts the usual commands, the new command style is more

closely used by hive, which is convenient for original hadoop/hive users.

MaxCompute offers many operations for projects, tables, resources, instances, and other objects.

You can perform operations on these objects via the console commands and SDK.

Note:

• The Common commands introduced in this module are mainly targeted at the new version of

the console.

• If you want to learn how to install and configure clients, see Quick Start.

• For more information about the SDK, see maxcompute. SDK introduction.

2.2 Project Operations
Enter the project

Command format:

use <project_name>;

Action:

• Enter the specified project. After entering the project, all objects in this project can be operated

 by the user.

• If the project does not exist or the current user is not in this project, an exception is returned.

Example:

odps:my_project>use my_project; --my_project is a project the user has
 privilege to access.

Note:

The preceding examples uses the MaxCompute client. All MaxCompute command keywords,

project names, table names, column names are case insensitive.

MaxCompute User Guide / 2 Common commands

Issue: 20180808 23

After running the command, a user can access the objects of this project. In the following

example, assume that test_src exists in the project ‘my_project’. Run the following command:

odps:my_project>select * from test_src;

MaxCompute automatically searches the table in my_project. If the table exists, it returns the data

of this table. If the table does not exist, an exception is thrown. To access the table test_src in

another project, such as ‘my_project2’, through the project ‘my_project’, you must first specify the

project name as follows:

odps:my_project>select * from my_project2.test_src;

The returned data is the data in my_project2, not the initial data of test_src in my_project.

MaxCompute does not support commands to create or delete projects. You can use the

MaxCompute console for additional configurations and operations as needed.

2.3 Table Operations
This article shows how to use the common commands to operate tables in the MaxCompute

client.

If you want to operate a table, you can use common commands in the client, and you can

also easily collect tables, apply permissions, and view partitions through the visible data table

management in DataWorks. For more information, see Table Details.

Create tables

Command format:

CREATE TABLE [IF NOT EXISTS] table_name
 [(col_name data_type [COMMENT col_comment], ...)]
 [COMMENT table_comment]
 [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
 [LIFECYCLE days]
 [AS select_statement]
CREATE TABLE [IF NOT EXISTS] table_name
 LIKE existing_table_name

Action:

Create a table.

Note:

• The table name and column name are both case insensitive.

https://www.alibabacloud.com/help/doc-detail/30288.html

MaxCompute User Guide / 2 Common commands

24 Issue: 20180808

• A table name and column name obey the same naming conventions as follows: The name can

 be up to 128 bytes in length and can contain letters, numbers, and underscores ‘_’.

• The comment content is the effective string, and it can be up to 1,024 bytes in length.

• [LIFECYCLE days] The parameter ‘days’ refers to the lifecycle time and must be a positive

integer. Unit is ‘day’.

• Suppose that the table ‘table_name’ is no-partition table. Calculated from the last updated

 date, the data is still not modified after N (days) days, then MaxCompute automatically

recycles the table without user intervention (similar to ‘drop table’ operation).

• Suppose that the table ‘table_name’ is a partition table. MaxCompute judges whether to

 recycle the table according to LastDataModifiedTime of each partition. Unlike for non-

partitioned tables, a partitioned table is not dropped after the last partition is recycled. The ‘

lifecycle’ can only be set at the table level, but not at the partition level.

Example:

CREATE TABLE IF NOT EXISTS sale_detail(
 shop_name STRING,
 customer_id STRING,
 total_price DOUBLE)
PARTITIONED BY (sale_date STRING,region STRING); --Create a partition
table sale_detail.

Drop Table

Statement format:

DROP TABLE [IF EXISTS] table_name; -- Table name to be deleted.

Action:

• Delete a table.

• If the option [IF EXISTS] is specified, regardless of whether the table exists or not, the return is

successful .If the option [IF EXISTS] is not specified, and the table does not exist, an exception

 is returned.

Example:

DROP TABLE sale_detail; -- If the table exists, success returns.

MaxCompute User Guide / 2 Common commands

Issue: 20180808 25

DROP TABLE IF EXISTS sale_detail; -- No matter whether the table
sale_detail exists or not, success returns.

Describe Table

Command Format:

DESC <table_name>; -- Table name or view name.
DESC extended <table_name>; -- View the extended table information.

Action:

Return the information of specified table, including:

• Owner: The owner of the table.

• Project: The project that table belongs to.

• CreateTime: The creation time of the table.

• LastDDLTime: The last DDL operation.

• LastModifiedTime: The last time of table modification.

• InternalTable: It indicates the object to be described is table and always shows YES.

• Size: Storage size occupied by table data, usually the compression ratio is 5. The unit is Byte.

• Native Columns: non-partition column information, including column name, type, comment.

• Partition Columns: partition column information, including partition name, type, and comment.

• Extended Info: The information of extended table, such as StorageHandler and Location.

Example:

odps@ project_name>DESC sale_detail; -- Describe a partition table.

| Owner: ALIYUN$odpsuser@aliyun.com | Project: test_project |
| TableComment: |

| CreateTime: 2014-01-01 17:32:13 |
| LastDDLTime: 2014-01-01 17:57:38 |
| LastModifiedTime: 1970-01-01 08:00:00 |

| Internaltable: Yes | size: 0 |

| Native Columns: |

| Field | Type | Comment |

shop_name	string	
customer_id	string	
total_price	double	

| Partition Columns: |

| sale_date | string | |

MaxCompute User Guide / 2 Common commands

26 Issue: 20180808

| region | string | |

Note:

• The preceding example is executed using the MaxCompute client.

• If the table has no partition, the information of Partition Columns is not displayed.

• To describe a view, the option ‘InternalTable’ cannot be displayed but the option ‘VirtualView’

can be displayed and its value is always YES. Similarly, the option ‘Size’ can be replaced

by ViewText. For example: select * from src. For more information about view, see

Create View.

View partition table

Command Format:

desc table_name partition(pt_spec)

Action:

View the specific partition information of a partition table.

Example:

odps@ project_name>desc meta.m_security_users partition (ds='20151010
');

| PartitionSize: 2109112 |

| CreateTime: 2015-10-10 08:48:48 |
| LastDDLTime: 2015-10-10 08:48:48 |
| LastModifiedTime: 2015-10-11 01:33:35 |

OK

Show Tables/Show Tables like

Command Format:

SHOW TABLES;
SHOW TABLES like 'chart';

Action:

• SHOW TABLES：List all tables of current project.

• SHOW TABLES like 'chart': Lists the tables on which the following table names of the current

project match 'chart' . Regular expressions are supported.

MaxCompute User Guide / 2 Common commands

Issue: 20180808 27

Example:

odps@ project_name>show tables;
odps@ project_name>show tables like 'ods_brand*';
ALIYUN$odps_user@aliyun.com:table_name

Note:

• The preceding example is executed using the MaxCompute client.

• Alibaba Cloud is system prompt, indicating the Alibaba Cloud user.

• Odps_user@aliyun.com is the creator of the table in this example.

• Table_name is the name of the table.

Show Partitions

Command format:

SHOW PARTITIONS ; -- table_name: Specify the table to be queried. If
the table does not exist or it is not a partition table, an exception
is thrown.

Action:

List all partitions of a table.

Example:

odps@ project_name>SHOW PARTITIONS table_name;
partition_col1=col1_value1/partition_col2=col2_value1
partition_col1=col1_value2/partition_col2=col2_value2
…

Note:

• The preceding example is executed using the MaxCompute client.

• Partition_col1 and partition_col2 are the partition columns of the table.

• Col1_value1, col2_value1, col1_value2, and col2_value2 are corresponding values of the

partition columns.

2.4 Instance
Show instances/Show P

The command format is as follows:

SHOW INSTANCES [FROM startdate TO enddate] [number];
SHOW P [FROM startdate TO enddate] [number];

MaxCompute User Guide / 2 Common commands

28 Issue: 20180808

SHOW INSTANCES [-all];
SHOW P [-all];

Action:

The information of instances created by current users is displayed.

Parameters information is as follows:

• Startdate, enddate: returns the information about the instances during specified period

(from startdate to enddate). The following format must be met: yyyy-mm-dd, precision to the

day. Optional parameter, if not specified, returns the information of instances you submitted

within three days.

• Number: Specify the number of instance to be showed.In accordance with the time scheduling,

return N (number) instances nearest to the current time. If it is not specified, all instances that

meet the requirements are shown. In chronological order, the specified number of instances

most recently preceding the current time are returned. The information of all instances meeting

requirements is returned.

• -all:Returns all instances performed under the current project. Note: The user executing the

command needs to have list permission for the project.

• The output items: Include StartTime (the time accurate to seconds), RunTime (s), Status (

including Waiting, Success, Failed, Running, Cancelled, and Suspended).

InstanceID and corresponding SQL are as following:

StartTime RunTime Status InstanceID Query
2015-04-28 13:57:55 1s Success 20150428055754916grvd5vj4 select * from
 tab_pack_priv limit 20;

Six kinds of instance status are possible:

• Running

• Success

• Waiting

• Failed, but the data of the target table have not been modified.

• Suspended

• Canceled

Note:

The commands from the preceding example run in MaxCompute client.

MaxCompute User Guide / 2 Common commands

Issue: 20180808 29

Instance status

The command format is as follows:

STATUS <instance_id>; -- instance_id: The unique identifier of an
instance, to specify which instance to be queried.

Action:

• Query the status of specified instance, such as Success, Failed, Running, and Cancelled.

• If this instance is not created by current user, exception is returned.

Example:

odps@ $project_name>status 20131225123302267gk3u6k4y2;
Success

Query the status of an instance which ID is 20131225123302267gk3u6k4y2, and the result is

Success.

Note:

The commands from the preceding example run in MaxCompute client.

Top instance

The command format is as follows:

TOP INSTANCE;

Action:

The job information that is running in the current project is displayed, including ISNTANCEID,

Owner, Type, StartTime, Progress, Status, Priority, RuntimeUsage (CPU/MEM), TotalUsage (

CPU/MEM), QueueingInfo (POS/LEN) and so on.

Example:

odps@ $project_name>top instance;

Note:

The commands from the preceding example run in MaxCompute client (version 0.29.0 or later).

MaxCompute User Guide / 2 Common commands

30 Issue: 20180808

Delete an instance

The command format is as follows:

kill <instance_id>; -- instance_id: The unique identifier of an
instance, which must be ID of an instance whose status is 'Running',
otherwise, an error is returned.

Action:

Stop specified instance. Instance status must be Running.

Example:

odps@ $project_name>kill 20131225123302267gk3u6k4y2;

Stop the instance which ID is 20131225123302267gk3u6k4y2.

Note:

• The commands from the preceding example run in MaxCompute client.

• This is an asynchronous process. It does not mean that the distributed task has stopped after

the system accepts the request and returns result. To check whether the instance is deleted,

use the status command.

Describe an instance

The command format is as folllows:

desc instance <instance_id>; -- instance_id: The unique identifier of
an instance.

Action:

Get the job information according to instance ID, including SQL, owner, startime, endtime, status.

Example:

odps@ $project_name> desc instance 20150715103441522gond1qa2;
ID 20150715103441522gond1qa2
Owner ALIYUN$maojing.mj@alibaba-inc.com
StartTime 2015-07-15 18:34:41
EndTime 2015-07-15 18:34:42
Status Terminated
console_select_query_task_1436956481295 Success
Query select * from mj_test;

Query all the job information related to the instance which ID is 20150715103441522gond1qa2.

MaxCompute User Guide / 2 Common commands

Issue: 20180808 31

Note:

The commands from the preceding example run in MaxCompute client.

Wait instance

The command format is as follows:

wait <instance_id>; -- instance_id: The unique identifier of an
instance.

Action:

Get running task information, including logs according to instance ID, and logview link. You can

view task details by accessing logview link.

Example:

wait 20170925161122379g357ldqp;
ID = 20170925161122379g357ldqp
Log view:
http://logview.odps.aliyun.com/logview/?h=http://service.odps.aliyun.
com/api&p=alian&i=20170925161122379g357ldqp&token=WnlzSGMwZG5vMUZxMGFT
Wk5hUElwYm1jb21VPSxPRFBTX09CTzoxMzI5MzgzMDA0NTQwNjUxLDE1MDcxOTE0MDYsey
JTdGF0ZW1lbnQiOlt7IkFjdGlvbiI6WyJvZHBzOlJlYWQiXSwiRWZmZWN0IjoiQWxsb3ci
LCJSZXNvdXJjZSI6WyJhY3M6b2RwczoqOnByb2plY3RzL2FsaWFuL2luc3RhbmNlcy8yMD
E3MDkyNTE2MTEyMjM3OWczNTdsZHFwIl19XSwiVmVyc2lvbiI6IjEifQ==
Job Queueing...
Summary:
resource cost: cpu 0.05 Core * Min, memory 0.05 GB * Min
inputs:
 alian.bank_data: 41187 (588232 bytes)
outputs:
 alian.result_table: 8 (640 bytes)
Job run time: 2.000
Job run mode: service job
Job run engine: execution engine
M1:
 instance count: 1
 run time: 1.000
 instance time:
 min: 1.000, max: 1.000, avg: 1.000
 input records:
 TableScan_REL5213301: 41187 (min: 41187, max: 41187,
avg: 41187

 output records:
 StreamLineWrite_REL5213305: 8 (min: 8, max: 8, avg: 8)
R2_1:
 instance count: 1
 run time: 2.000
 instance time:
 min: 2.000, max: 2.000, avg: 2.000
 input records:
 StreamLineRead_REL5213306: 8 (min: 8, max: 8, avg: 8)
 output records:

MaxCompute User Guide / 2 Common commands

32 Issue: 20180808

 TableSink_REL5213309: 8 (min: 8, max: 8, avg: 8)

2.6 Function Operations
This article shows how to use the common commands to operate functions in the MaxCompute

client.

You can also operate functions through the visualized online data development tools in

DataWorks.

Create a function

The command format is as follows:

CREATE FUNCTION AS USING ;

Parameters information:

• function_name: UDF name, which is the name referenced in SQL.

• package_to_class：For Java UDF, this name is a fully qualified class name (from top-level

package name to UDF class name). This parameter must be in double quotation marks.

• resource_list: resources list used by UDF.

▬ The resource which contains UDF code must be included in the list.

▬ If the your code reads the resource file by distributed cache interface, this list also contains

the list of resource files read by the UDF.

▬ The resource list is composed of multiple resource names, separated by comma (,). The

resource list must be in double quotation marks.

Example:

Suppose that the Java UDF class org.alidata.odps.udf.examples.Lower is in my_lower.jar. Create

the UDF my_lower function as follows:

CREATE FUNCTION test_lower AS 'org.alidata.odps.udf.examples.Lower'
USING 'my_lower.jar';

Note:

• Similarly to the resource files, UDF the same name can only be registered once.

• Generally UDF cannot overwrite system built-in functions. Only the project owner has right

to overwrite the built-in functions. If you use a UDF which overwrites the built-in function, the

warning is triggered in Summary after SQL execution.

MaxCompute User Guide / 2 Common commands

Issue: 20180808 33

Delete a function

The command format is as follows:

DROP FUNCTION ;

The example is as follows:

DROP FUNCTION test_lower;

List functions

The command format is as follows:

list functions; --View all user-defined functions in current project.
list functions -p my_project; --View all user-defined functions in the
 project 'my_project'.

2.7 Other Operations
ALIAS command

The ALIAS command is used to read different resources (data) using a fixed resource name in

MapReduce or UDF without modifying the code.

The command format is as follows:

ALIAS <alias>=<real>;

Action:

Create alias for a resource.

examples:

ADD TABLE src_part PARTITION (ds = '20121208') as res_20121208;
ADD TABLE src_part PARTITION (ds = '20121209') as res_20121209;
ALIAS resName=res_20121208;
jar-resources resname-libjars work. jar-classpath./work. jar com.
company. MainClass args... ;//job 1
ALIAS resName=res_20121209;
jar-resources resname-libjars work. jar-classpath./work. jar com.
company. MainClass args... ;//job 2

In the preceding example resource alias resName refers to different resource tables in two jobs.

Different data can be read without modifying the code.

MaxCompute User Guide / 2 Common commands

34 Issue: 20180808

Set

The command format is as follows:

set ["<KEY>=<VALUE>"]

Actioin:

You can use the set command to set MaxCompute or a user-defined system variables that affects

 the MaxCompute operation.

Currently, the system variables supported in MaxCompute are as follow:

--Set commands supported by MaxCompute SQL and Mapreduce (new version
):
set odps. sql. allow. fullscan = false/true --Set whether to allow a
 full table scan on a partitioned table. True means allow, and false
means not allow.
set odps. stage. mapper. mem = --Set the memory size of each map
worker. Unit is M and default value is 1024M.
set odps. stage. reducer. mem = -- --Set the memory size of each
reduce worker. Unit is M and default value is 1024M.
set odps. stage. joiner. mem = --Set the memory size of each join
worker. Unit is M and default value is 1024M.
set odps. stage. mem =
 --Set the memory size of all workers in MaxCompute specified job.
 The priority is lower than preceding three ‘set key’. Unit is M and
no default value.
set odps.sql.mapper.split.size=256
 -- Modify the input data quantity of each map worker; that is the
size of input file burst.
 -- Thus control the worker number of each map stage. Unit is M and
 the default value is 256M.
set odps. stage. reducer. num = --Modify the worker number of each
reduce stage and no default value.
set odps. stage. joiner. num = --Modify the worker number of each
join stage and no default value.
set odps. stage. num = --Modify the worker concurrency of all stages
 in MaxCompute specified job. The priority is lower than preceding
three ‘set key’ and no default value.
set odps. sql. type. system. odps2 = true/false; --The default value
 is false. You must set true when there are new data types such as
TINYINT, SMALLINT, INT, FLOAT, VARCHAR, TIMESTAMP, and BINARY in SQL
statement.

Show Flags

The command format is as follows:

show flags; --Display the parameters set by the Set command.

Action:

Running the Use Project command can clear the configurations set by the Set command.

MaxCompute User Guide / 2 Common commands

Issue: 20180808 35

SetProject

The command format is as follows:

setproject ["="];

Action:

• You can use setproject command to set project attributes.

• If the value of < KEY >=< VALUE > is not specified, the current project attribute configuration is

 displayed.

The detailed description of project attributes is shown as follows:

Attribute name Cunfigured

permissions

Attribute description Value range

odps. sql. allow. fullscan ProjectOwner item whether to allow full table
scan

True (permitted) /
false (prohibited)

odps.table.drop.
ignorenonexistent

All users Whether to report an error when
 deleting a table that does not
exist. When the value is true, no
error is reported

True (no error
reported)/false

odps.security.ip.whitelist ProjectOwner Specify an IP whitelist to access
 the project.

IP list, separated
bycomma.

odps.table.lifecycle ProjectOwner Optional: the lifecycle clause is
 optional when creating a table
. If the user does not set the
lifecycle, the table is effective
 permanently. Required: the
 lifecycle clause is required.
 Inherit: if the user does not
specify the lifecycle the lifecycle
 is the value of odps.table.
lifecycle.value.

optional/mandatory
/inherit

odps.table.lifecycle.
value

ProjectOwner Default lifecycle. 1 ~ 37231(default
value)

odps.instance.remain.
days

ProjectOwner How long the instance informatio
n is retained.

3–30

READ_TABLE
_MAX_ROW

ProjectOwner The number of data entries
returned by running the Select
statement in the client.

1 ~ 10000

MaxCompute User Guide / 2 Common commands

36 Issue: 20180808

Take odps.security.ip.whitelist as an example:

MaxCompute supports IP whitelist of the project level.

Note:

• With IP whitelist configured, only the IP (console IP or IP of exit where SDK is located) in the

whitelist can access this project.

• After setting the IP white list, you need to wait five minutes before it takes effect.

You can type three formats for the IP list in the whitelist:

• IP address. For example, 101.132.236.134.

• Subnet mask. For example, 100.116.0.0/16.

• Network segment. For example, 101.132.236.134-101.132.236.144.

These three formats can appear in the same command and must be separated by commas (,).

For example the command line tool set the IP white list of methods:

setproject odps. security. ip. whitelist = 101.132.236.134, 100.116.0.
0/16,101.132 .236.134-101.132.236.144;

If there is no IP address in whitelist, it means whitelist function is disabled.

setproject odps. security. ip. whitelist =;

SetProject

The command format is as follows:

setproject; --Display the parameters set by the setproject command.

Cost SQL

The command format is as follows:

cost sql <SQL Sentence>;

Action:

Estimate an SQL measurement message, including the size of the input data, the number of

UDFs, and the SQL complexity level.

Note:

This information cannot be used as an actual charging standard, can be used only for reference.

MaxCompute User Guide / 2 Common commands

Issue: 20180808 37

Example:

odps@ $odps_project >cost sql select distinct project_name, user_name
 from meta.m_security_users distribute by project_name sort by
project_name;
ID = 20150715113033121gmsbjxl1
Input: 65727592 Bytes
UDF:0
Complexity: 1.0

MaxCompute User Guide / 3 SQL

38 Issue: 20180808

3 SQL

3.1 SQL Summary
MaxCompute SQL is suitable for Massive data (GB, TB, or EB level) must be processed based

on offline batch calculation. It takes several seconds or even minutes to schedule after you submit

 a job, therefore MaxCompute SQL is most suitable for services which need to process tens of

thousands of transactions per second.

The syntax of MaxCompute SQL is similar to SQL. It can be considered as a subset of standard

 SQL. But MaxCompute SQL is not equivalent to a database, which has no database characteri

stics in many aspects, such as transaction, primary key constraints, index, and so on. The

maximum size of SQL in MaxCompute is 2 MB.

Reserved Word

MaxCompute SQL considers the keywords of SQL statement as reserved words. These cannot be

used to name tables, columns, or partitions. If reserved words are used for naming purposes, an

error occurs. Reserved words are case insensitive. The reserved words in common use are shown

as follows, for the complete reserved word list, see MaxCompute SQL Reserved Word.

*
 - . / ; < <= <>
 ADD ALL ALTER
 AND AS ASC BETWEEN BIGINT BOOLEAN BY
 CASE CAST COLUMN COMMENT CREATE DESC DISTINCT
 DISTRIBUTE DOUBLE DROP ELSE FALSE FROM FULL
 GROUP IF IN INSERT INTO IS JOIN
 LEFT LIFECYCLE LIKE LIMIT MAPJOIN NOT NULL
 ON OR ORDER OUTER OVERWRITE PARTITION RENAME
 REPLACE RIGHT RLIKE SELECT SORT STRING TABLE
 THEN TOUCH TRUE UNION VIEW WHEN WHERE

Type Conversion

MaxCompute SQL allows conversion between data types. The conversion methods include

explicit type conversion and implicit type conversion. For more information, see Type

Conversion.

• Explicit conversions: Uses CAST to convert a value type to another one.

• Implicit conversions: MaxCompute automatically performs implicit conversions during running

 based on the context environment and conversion rules. Implicit conversion scope includes

various operators, built-in functions, and so on.

MaxCompute User Guide / 3 SQL

Issue: 20180808 39

Partitioned Table

MaxCompute SQL supports partitioned table. Specifying the partition can bring lot of

conveniences to users. For example, improve SQL running efficiency, reduce the cost, etc. For

more information about partition, see Partition.

UNION ALL

To be involved in a UNION ALL operation, the data type of columns, column numbers and column

names must be consistent, otherwise an error occurs.

Select Transform

Select The transform function obviously simplifies the reference to the script code, supports

languages such as Java, Python, Shell, Perl, and so on, and is easy to write, it is suitable for the

implementation of adhoc function. For more information, see the select transform syntax.

Currently maxcompute's select transform is fully compatible with hive's syntax, functionality, and

behavior, includes input/output row Format and Reader/writer. Most of the scripts on hive can be

run directly, some scripts only need a slight change to run.

3.4 DDL SQL

3.4.2 Lifecycle of table
Modify lifecycle of table

MaxCompute provides the function to manage data lifecycle so that user can release storage

space and simplify data recycling flow.

Statement format:

ALTER TABLE table_name SET lifecycle days;

Note:

• The parameter ‘days’ refers to the lifecycle time and must be a positive integer. Unit is ‘day’.

• Suppose that the table ‘table_name’ is no-partition table. Calculated from the last updated

 date, the data is still not modified after N (days) days, then MaxCompute automatically

recycles the table without user intervention (similar to ‘drop table’ operation).

• In MaxCompute, once the data in table is modified, the LastDataModifiedTime is updated.

So MaxCompute judges whether to recycle this table based on the setting of LastDataMo

difiedTime and lifecycle.

MaxCompute User Guide / 3 SQL

40 Issue: 20180808

• Suppose that the table ‘table_name’ is a partition table. MaxCompute judges whether to

recycle the table according to LastDataModifiedTime of each partition.

• Different from no-partition table, after the last partition of a partitioned table has been recycled

, the table is not deleted.

• The lifecycle can be set for a table not for a partition.

• It can be specified while creating a table.

Example:

create table test_lifecycle(key string) lifecycle 100;
 -- Create a new table test_lifecycle and the lifecycle is 100 days.
 alter table test_lifecycle set lifecycle 50;
 -- Alter the lifecycle for the table test_lifecycle and set it to be
50 days.

Disable lifecycle of table

In some cases, the data in specified partitions do not need to be recycled by the lifecycle function

, for example, the data at the begining of the month, or the data during the Global Shopping Day

period,you can disable the lifecycle function for some specific partitions.

Statement format:

ALTER TABLE table_name [partition_spec] ENABLE|DISABLE LIFECYCLE;

An example is shown as follows.

ALTER TABLE trans PARTITION(dt='20141111') DISABLE LIFECYCLE;

3.4.3 View operations
Create view

Statement format:

CREATE [OR REPLACE] VIEW [IF NOT EXISTS] view_name
 [(col_name [COMMENT col_comment], ...)]
 [COMMENT view_comment]
 [AS select_statement]

Note:

• To create a view, you must have ‘read’ privilege on the table referenced by view.

• Views can only contain one valid ‘select’ statement.

MaxCompute User Guide / 3 SQL

Issue: 20180808 41

• Other views can be referenced by a view, but this view cannot reference itself. Circular

reference is not supported.

• It is not allowed writing data into a view, such as: using ‘insert into’ or ‘insert overwrite’ to

operate view.

• After a view was created, maybe it is not able to be accessed if the referenced table is altered

, such as deleting referenced table. You must maintain corresponding relationship between

referenced tables and views.

• If the option ‘if not exists’ is not specified and the view has already existed, using ‘create view

’ causes abnormality. If this situation occurs, use ‘create or replace view’ to recreate a view.

After reconstruction, the privileges keep unchanged.

Example:

create view if not exists sale_detail_view
(store_name, customer_id, price, sale_date, region)
comment 'a view for table sale_detail'
as select * from sale_detail;

Drop view

Statement format:

DROP VIEW [IF EXISTS] view_name;

Note:

If the view does not exist and the option [if exists] is not specified, error occurs.

Example:

DROP VIEW IF EXISTS sale_detail_view;

Rename view

Statement format:

ALTER VIEW view_name RENAME TO new_view_name;

Note:

If the same name view has already existed, error occurs.

Example:

create view if not exists sale_detail_view
 (store_name, customer_id, price, sale_date, region)

MaxCompute User Guide / 3 SQL

42 Issue: 20180808

 comment 'a view for table sale_detail'
 as select * from sale_detail;
 alter view sale_detail_view rename to market;

3.4.4 Column/Partition operation
Add partition

Statement format:

ALTER TABLE TABLE_NAME ADD [IF NOT EXISTS] PARTITION partition_spec
partition_spec:(partition_col1 = partition_col_value1, partition_col2
 = partiton_col_value2, ...)

Note:

• Only creating partitions are supported and creating partition columns are not supported.

• If the same name partition has already existed and the option [if not exists] is not specified,

return exception.

• Currently, the maximum number of partitions supported in a single table in MaxCompute is 60

,000.

• For tables that have multi-level partitions, to add a new partition, all partition values must be

specified.

Example:

add a new partition for the table ‘sale_detail’.

alter table sale_detail add if not exists partition (sale_date='201312
', region='hangzhou');
-- Add partition successfully, to store the sale detail of hangzhou
region in December of 2013.
alter table sale_detail add if not exists partition (sale_date='201312
', region='shanghai');
-- Add partition successfully, to store the sale detail of shanghai
region in December of 2013.
alter table sale_detail add if not exists partition(sale_date='
20111011');
-- Only specify a partition sale_date, error occurs and return.
alter table sale_detail add if not exists partition(region='shanghai
');
-- Only specify a partition region, error occurs and return.

Drop partition

Delete the syntax format for the partition is as follows:

ALTER TABLE TABLE_NAME DROP [IF EXISTS] PARTITION partition_spec;

MaxCompute User Guide / 3 SQL

Issue: 20180808 43

partition_spec:(partition_col1 = partition_col_value1, partition_col2
 = partiton_col_value2, ...)

Note:

If the partition does not exist and the option [if exists] is not specified, then an error is indicated.

Example:

delete a partition from the table sale_detail.

alter table sale_detail drop if exists partition(sale_date='201312',
region='hangzhou');
-- -Delete the sale details of Hangzhou in December of 2013 successful
ly.

Add column

Statement format:

ALTER TABLE table_name ADD COLUMNS (col_name1 type1, col_name2 type2
...)

Note:

You cannot specify order for the new column. By default, the new column is located in the last

column.

Modify column name

Statement format:

ALTER TABLE table_name CHANGE COLUMN old_col_name RENAME TO new_col_na
me;

Note:

• Column ‘old_col_name’ must be an existing column.

• There cannot be a column named ‘new_col_name’ in a table.

Alter Column/Partition Comment

Modify column/partition comment is as follows:

ALTER TABLE table_name CHANGE COLUMN col_name COMMENT comment_string;

Note:

The maximum comment content is 1024 bytes.

MaxCompute User Guide / 3 SQL

44 Issue: 20180808

Modify column names and column notes simultaneously

Statement format:

ALTER TABLE table_name CHANGE COLUMN old_col_name new_col_name
column_type COMMENT column_comment;

Note:

• Column ‘old_col_name’ must be an existing column.

• There cannot be a column named ‘new_col_name’ in a table.

• The maximum comment content is 1024 bytes.

Modify LastDataModifiedTime of table/partition

MaxCompute MaxCompute SQL supports ‘touch’ operation to modify LastDataModifiedTime of a

partition. The result is to modify ‘LastDataModifiedTime’ of a partition to be current time.

Statement format:

ALTER TABLE table_name TOUCH PARTITION(partition_col='partition_
col_value', ...)

Note:

• If ‘table_name’ or ‘partition_col’ does not exist, return an error.

• If the specified partition_col_value does not exist, return an error.

• This operation changes the value of ‘LastDataModifiedTime’ in a table and now MaxCompute

considers the data of table or partition has changed and the lifecycle calculation begins again.

Modify partition value

MaxCompute SQL supports to change the partition value for corresponding partition value through

 ‘rename’ operation.

Statement format:

ALTER TABLE table_name PARTITION (partition_col1 = partition_
col_value1, partition_col2 = partiton_col_value2, ...)
RENAME TO PARTITION (partition_col1 = partition_col_newvalue1,
partition_col2 = partiton_col_newvalue2, ...)

Note:

MaxCompute User Guide / 3 SQL

Issue: 20180808 45

• The name of a partition column cannot be modified. Only the values in that column can be

altered.

• To modify values in one or more partitions among multi-level partitions, users must write

values for partitions at each level.

3.5 Insert Operation

3.5.2 MULTI INSERT
MaxCompute SQL supports inserting different result tables or partitions in a single SQL statement.

Statement format:

FROM from_statement
 INSERT OVERWRITE | INTO TABLE tablename1 [PARTITION (partcol1=
val1, partcol2=val2 ...)]
 select_statement1 [FROM from_statement]
 [INSERT OVERWRITE | INTO TABLE tablename2 [PARTITION (partcol1=
val3, partcol2=val4 ...)]
 select_statement2 [FROM from_statement]]

Note:

• Generally, up to 256 ways of output can be written in a single SQL statement. Once exceeding

 256 ways of output, syntax error occurs.

• In a multi insert statement:

▬ For a partitioned table, a target partition cannot appear for multiple times.

▬ For an unpartitioned table, this table cannot appear for multiple times.

• Different partitions within a partitioned table cannot have an Insert overwrite operation and an

Insert into operation at the same time; otherwise, an error is returned.

For an unpartitioned table, this table cannot appear for multiple times.

create table sale_detail_multi like sale_detail;
 from sale_detail
 insert overwrite table sale_detail_multi partition (sale_date
='2010', region='china')
 select shop_name, customer_id, total_price where
 insert overwrite table sale_detail_multi partition (sale_date
='2011', region='china')
 select shop_name, customer_id, total_price where
 -- Return result successfully. Insert the data of sale_detail
into the 2010 sales records and 2011 sales records in China region.
 from sale_detail
 insert overwrite table sale_detail_multi partition (sale_date
='2010', region='china')
 select shop_name, customer_id, total_price

MaxCompute User Guide / 3 SQL

46 Issue: 20180808

 insert overwrite table sale_detail_multi partition (sale_date
='2010', region='china')
 select shop_name, customer_id, total_price;
 -- An error is thrown. The same partition appears for multiple
times.
 from sale_detail
 insert overwrite table sale_detail_multi partition (sale_date
='2010', region='china')
 select shop_name, customer_id, total_price
 insert into table sale_detail_multi partition (sale_date='
2011', region='china')
 select shop_name, customer_id, total_price;
 -- An error is thrown. Different partitions within a partition
table cannot have both an ‘insert overwrite’ operation and an ‘insert
 into’ operation.

3.5.3 DYNAMIC PARTITION
To ‘insert overwrite’ into a partition table, you can specify the partition value in the statement. It

can also be realized in a more flexible way, to specify a partition column in a partition table but not

 give the value. Correspondingly, the columns in Select clause are used to specify these partition

values.

Statement format:

insert overwrite table tablename partition (partcol1, partcol2 ...)
select_statement from from_statement;

Note:

• In the ‘select_statement’ field, the following field provides the dynamic partition value for the

 target table. If the target table only has a one-level dynamic partition, the last field value of

select_statement is the dynamic partition value of the target table.

• Currently, a single worker can only output up to 512 dynamic partitions in a distributed

environment, otherwise it leads to abnormality.

• Currently, any dynamic partition SQL cannot generate more than 2,000 dynamic partitions;

otherwise it causes abnormality.

• The value of dynamic partition cannot be NULL, and also does not support special characters

and Chinese, otherwise exception is thrown. The exception is as follows:

FAILED: ODPS-0123031:Partition exception - invalid dynamic
partition value:
 province=xxx

• If the destination table has multiple-level partitions, it is allowed to specify parts of partitions

 to be static partitions through ‘Insert’ statement, but the static partitions must be advanced

partitions.

MaxCompute User Guide / 3 SQL

Issue: 20180808 47

A simple example to explain dynamic partition is as follows:

create table total_revenues (revenue bigint) partitioned by (region
string);
 insert overwrite table total_revenues partition(region)
 select total_price as revenue, region
 from sale_detail;

As preceding mentioned, user is unable to know which partitions are generated before running

SQL. Only after the Select statement running ends, user can confirm which partitions have been

generated through the value of ‘region’. This is why the partition is called Dynamic Partition.

Other Examples:

create table sale_detail_dypart like sale_detail; --Create target
table.

--Example 1:

insert overwrite table sale_detail_dypart partition (sale_date, region
)
select shop_name,customer_id,total_price,sale_date,region from
sale_detail;
 -- Return successfully.

• In ‘sales_detail’ table, the value of the sale_date determines the sales_date partition value of

the target table, and the value of the region determines the region partition value of the target

table.

• In a dynamic partition, the correspondence between the select_statement field and

the dynamic partition of the target table is determined by the order of the fields. In this

example, if the Select statement is written as

select shop_name,customer_id,total_price,region,sale_date from
 sale_detail;

the region value determines the sale_date partition value of the target table, and the value of

sale_date determines the region partition value of the target table.

--Example 2:

insert overwrite table sale_detail_dypart partition (sale_date='2013
', region)
 select shop_name,customer_id,total_price,region from
sale_detail;

MaxCompute User Guide / 3 SQL

48 Issue: 20180808

 -- Return successfully; multiple partitions; specify a secondary
partition.

--Example 3:

insert overwrite table sale_detail_dypart partition (sale_date='2013
', region)
 select shop_name,customer_id,total_price from sale_detail;
 -- Return failure information. When inserting a dynamic partition
, the dynamic partition column must appear in Select list.

--Example 4:

insert overwrite table sales partition (region='china', sale_date)
select shop_name,customer_id,total_price,region from sale_detail;
 -- Return failure information. User cannot specify the lowsubpart
ition only, but needs to insert advanced partition dynamically.

When the old version of MaxCompute performs dynamic partitioning, if the partition column type

is not exactly the same as the column type in the corresponding select list, an error is reported.

MaxCompute 2.0 supports implicit conversion, an example is as follows:

create table parttable(a int, b double) partitioned by (p string);
insert into parttable partition(p) select key, value, current_ti
mestmap() from src;
select * from parttable;

The result is as follows:

a b c

0 NULL 2017-01-23 22:30:47.130406621

0 NULL 2017-01-23 22:30:47.130406621

3.5.4 VALUES
In the test phase, you usually need to prepare some basic data for a small data table. You can

quickly write some test data to the test table by the INSERT … VALUES statement.

Note:

Currently, INSERT OVERWRITE does not support to insert columns. You can use INSERT INTO

 instead.

Statement format:

INSERT INTO TABLE tablename
[PARTITION (partcol1=val1, partcol2=val2 ...)][co1name1,colname2...]

MaxCompute User Guide / 3 SQL

Issue: 20180808 49

[VALUES (col1_value,col2_value,...),(col1_value,col2_value,...),...]

Example 1::

drop table if exists srcp;
create table if not exists srcp (key string ,value bigint) partitioned
 by (p string);
insert into table srcp partition (p='abc') values ('a',1),('b',2),('c
',3);

After the preceding statements run successfully, the result of partition ‘abc’ is as follows:

| key | value | p |

a	1	abc
b	2	abc
c	3	abc

When many columns are in the table, and you want to insert data into some of the columns , you

can use the insert list function as follows.

Example 2:

drop table if exists srcp;
create table if not exists srcp (key string ,value bigint) partitioned
 by (p string);
insert into table srcp partition (p)(key,p) values ('d','20170101'),('
e','20170101'),('f','20170101');

After the preceding statements run successfully, the result of partition ‘20170101’ is as follows:

| key | value | p |

d	NULL	20170101
e	NULL	20170101
f	NULL	20170101

For columns not specified in values, the default value is NULL. The insert list function is not

necessarily used with values, and can also be used with ‘Insert into…select…’.

The Insert…values method has a limitation: values must be constants. You can use the values

table function of MaxCompute to perform some simple operations on the inserted data. For more

information, see Example 3.

Example 3:

drop table if exists srcp;
create table if not exists srcp (key string ,value bigint) partitioned
 by (p string);

MaxCompute User Guide / 3 SQL

50 Issue: 20180808

insert into table srcp partition (p) select concat(a,b), length(a)+
length(b),'20170102' from values ('d',4),('e',5),('f',6) t(a,b);

The values (…), (…) t (a, b) are to define a table named t whose columns are a and b, data type

 is (a string, b bigint), the data type of which is derived from the values list. In this way, with no

physical table prepared, it is possible to simulate a multi-row table with arbitrary data and perform

arbitrary calculations.

After the preceding statements run successfully, the result of partition ‘20170102’ is as follows:

| key | value | p |

d4	2	20170102
e5	2	20170102
f6	2	20170102

Note:

• values only support constants and don’t support functions. Like ARRAY complex types,

MaxCompute cannot construct corresponding constants currently. You can modify the

statement into

insert into table srcp (p ='abc') select 'a',array('1', '2',
 '3');.

which can achieve the same effect.

• To write datetime or timestamp type through values, you must specify the type name in values

statement, for example:

insert into table srcp (p ='abc') values (datetime'2017-11-11
 00:00:00',timestamp'2017-11-11 00:00:00.123456789');

In fact, the values is not only used in the Insert statement, any DML statement can also be used.

A special usage of values is as follows.

select abs(-1), length('abc'), getdate();

As the preceding statement shows, select can be run without the from statement, if the expression

 list of select does not use any upstream table data. The underlying implementation is selecting

from a anonymous values table in one row and zero columns. In this way, when you want to test

some functions, such as your UDF, etc., you do not need to manually create DUAL tables.

MaxCompute User Guide / 3 SQL

Issue: 20180808 51

3.6 Select Operation

3.6.1 Introduction to the SELECT Syntax
The command format is as follows:

SELECT [ALL | DISTINCT] select_expr, select_expr, ...
FROM table_reference
[WHERE where_condition]
[GROUP BY col_list]
[ORDER BY order_condition]
[DISTRIBUTE BY distribute_condition [SORT BY sort_condition]]
[LIMIT number]

Note the following when using a SELECT statement:

• When using SELECT to read data from a table, you can specify the names of the columns to

be read, or use an asterisk (*) to represent all columns. A simple SELECT statement is shown

as follows:

select * from sale_detail;

If you want to read only the shop_name column in sale_detail, use the following statement:

select shop_name from sale_detail;

You can use where to specify filtering conditions. For example:

select * from sale_detail where shop_name like 'hang%';

When a Select statement is used, a maximum of 10,000 rows of results can be displayed. But if

the Select statement serves as a clause, all the results are returned to the upper-level query.

• Full table scan is prohibited when you select a partitioned table.

For new projects created after January 10, 2018, 20:00 (UTC+8) full table scan is not allowed

 for the partitioned table in the project by default When SQL runs. Partitions to be scanned

must be specified in partition conditions, reducing unnecessary SQL I/O, waste of computing

 resources, and the unnecessary cost. Note: Using the Pay-As-You-Go billing method, the

amount of data input is one of the billing parameters.

If the table definition is t1(c1,c2) partitioned by(ds), running the following statement

in a new project is forbidden and an error may occur:

Select * from t1 where c1=1;
Select * from t1 where (ds=‘20180202’ or c2=3);
Select * from t1 left outer join t2 on a.id =b.id and a.ds=b.ds and
b.ds=‘20180101);

MaxCompute User Guide / 3 SQL

52 Issue: 20180808

--When Join statement is running, if the partition clipping
condition is placed in where clause, the partition clipping takes
effect. If you put it in on clause, the partition clipping of sub
table takes effect, and the main table performs a full table scan.

If you perform a full table scan on the partitioned table, you can add a set statement set odps

.sql.allow.fullscan=true; before the SQL statement that scans the entire table of the

partitioned table. The set statement must be submitted along with the SQL statement. Suppose

that the sales_detail table is a partitioned table. Submit the following simple query statements

at the same time for a full table scan:

set odps.sql.allow.fullscan=true;
select * from sale_detail;

If the entire project is required to allow full table scanning, the switch can be turned on or off by

itself (true/false), and the command is as follows:

setproject odps.sql.allow.fullscan=true;

• table_reference supports nested subqueries, for example:

select * from (select region from sale_detail) t where region = '
shanghai';

• The filter conditions supported by ‘where’ clause are shown as follows:

Filter conditions Description

> 、 < 、 =、 >=、 <=、 <> Relational operators

like、rlike The source and pattern parameters of like and rlike can only
be of the String type.

in、not in If a subquery is attached to the in or not in condition, only the
 values of one column are returned for the subquery, and the
returned values cannot exceed 1,000 entries.

MaxCompute User Guide / 3 SQL

Issue: 20180808 53

You can specify a partition scope in the where clause of a Select statement to scan specified

partitions of a table instead of the whole table. As follows:

SELECT sale_detail. * FROM sale_detail WHERE sale_detail.sale_date
 >= '2008' AND sale_detail.sale_date <= '2014';

The where clause of MaxCompute SQL supports query by the between…and condition. The

preceding SQL statement can be rewritten as follows:

SELECT sale_detail. * FROM sale_detail WHERE sale_detail.sale_date
BETWEEN '2008' AND '2014';

• distinct: If duplicated data rows exist, you can use the Distinct option before the field to

remove duplicates. In this case, only one value is returned. If you use the ALL option, or do not

specify this option, all duplicated values in the fields are returned.

If you use the Distinct option, only one row of record is returned, which is shown as follows:

select distinct region from sale_detail;
select distinct region, sale_date from sale_detail;
-- Performs the Distinct option on multiple columns. The Distinct
 option has an effect on Select column sets rather than a single
column.

• group by: Query by group. It is generally used together with an aggregate function. A Select

statement that contains an aggregate function follows these rules:

▬ The key using group by can be the name of a column in the input table.

▬ Alternatively, it can be an expression consisting of columns of the input table. The key

cannot be the alias of an output column of the Select statement.

▬ Rule i takes precedence over rule ii. If rules i and ii conflict, that is, if the key using group by

is a column or expression of the input table and an output column of Select, rule i prevails.

For example:

select region from sale_detail group by region;
-- Runs successfully with the name of a column in the input table
directly used as the group by column
select sum(total_price) from sale_detail group by region;
-- Runs successfully with the table grouped by the region value and
returns the total sales of each group
Select region, sum (total_price) from sale_detail group by region;
-- Runs successfully with the table grouped by the region value and
 returns the region value (unique in the group) and total sales of
each group
select region as r from sale_detail group by r;
 -- Runs with the alias of the Select column and returns an error
select 2 + total_price as r from sale_detail group by 2 + total_pric
e;
-- Requires a complete expression of the column

MaxCompute User Guide / 3 SQL

54 Issue: 20180808

Select region, total_price from sale_detail group by region;
-- Returns an error; all columns not using an aggregate function in
the Select statement must exist in group by
select region, total_price from sale_detail group by region,
total_price;
-- Runs successfully

These restrictions are imposed because group by operations come before Select operations

during SQL parsing. Therefore, group by statements can only accept the columns or

expressions of the input table as keys.

Note:

For more information about aggregate functions, see Aggregate Functions.

• order by: Globally sorts all data based on certain columns. To sort records in descending order,

you can use the DESC keyword. For global sorting, order by must be used together with

 limit. When order by is used for sorting, NULL is considered to be smaller than any other

value. This action is the same as that in MySQL but different from that in Oracle.

Unlike group by, order by must be followed by the alias of the Select column. If the Select

operation is performed on a column and the column alias is not specified, the column name is

used as the column alias.

select * from sale_detail order by region;
-- Returns an error because order by is not used together with limit
select * from sale_detail order by region limit 100;
select region as r from sale_detail order by region limit 100;
-- Returns an error because ORDER BY is not followed by a column
alias
select region as r from sale_detail order by r limit 100;

The number in [limit number] is a constant to limit the number of output rows. If you

want to directly view the result of a Select statement without LIMIT from the screen output, you

can view a maximum of 10,000 rows. The upper limit of screen display varies with projects,

which can be controlled through the setproject console.

• Distribute by: Performs hash-based sharding on data by values of certain columns. Aliases of

Select output columns must be used.

select region from sale_detail distribute by region;
-- Runs successfully because the column name is an alias
select region as r from sale_detail distribute by region;
-- Returns an error because DISTRIBUTE BY is not followed by a
column alias

MaxCompute User Guide / 3 SQL

Issue: 20180808 55

select region as r from sale_detail distribute by r;

• Sort by: for partial ordering, ‘distribute by’ must be added in front of the statement. sort by is

used to partially sort the results of distribute by. Aliases of Select output columns must be used.

select region from sale_detail distribute by region sort by region;
select region as r from sale_detail sort by region;
-- Returns an error and exits because no distribute by exists.

• order by or group by cannot be used together with distribute by/sort] by. Aliases of SELECT

output columns must be used.

Note:

• The keys of order by/sort by/distribute by must be output columns (namely, column aliases) of

 Select statements.

• In MaxCompute SQL parsing, order by/sort by/distribute by come after Select operations.

Therefore, they can only accept the output columns of Select statements as keys.

3.6.2 SELECT Sequence
The actual logic execution sequence of SELECT statements written in compliance with the

preceding SELECT syntax is different from the standard writing sequence. See the following:

SELECT key, max(value) FROM src t WHERE value > 0 GROUP BY key HAVING
sum(value) > 100 ORDER BY key LIMIT 100;

The actual logic execution sequence is FROM->WHERE->GROUP BY->HAVING->SELECT->

ORDER BY->LIMIT. ORDER BY can only reference columns generated in the SELECT list

rather than accessing columns in the FROM source table. The HAVING operation can access

GROUP BY keys and aggregate functions. When the SELECT operation is performed, SELECT

can only access group keys and aggregate functions rather than columns in the FROM source

table if GROUP BY exists.The columns generated in the select list can only be referenced in by,

rather than accessing the columns in the source table of from.

MaxCompute User Guide / 3 SQL

56 Issue: 20180808

To avoid confusion, MaxCompute allows users to write a query statement by the execution

sequence. For example, the preceding statement can be written as follows:

FROM src t WHERE value > 0 GROUP BY key HAVING sum(value) > 100 SELECT
 key, max(value) ORDER BY key LIMIT 100;

3.6.3 Subquery
Basic definition of a subquery

A normal SELECT operation reads data from several tables, for example, select column_1

, column_2 … from table_name. However, the query object can be another SELECT

operation, which is shown as follows:

select * from (select shop_name from sale_detail) a;

Note:

The subquery must have an alias.

In a FROM clause, a subquery can be used as a table to perform JOIN operations with other

tables or subqueries, which is shown as follows:

create table shop as select * from sale_detail;
select a.shop_name, a.customer_id, a.total_price from
(select * from shop) a join sale_detail on a.shop_name = sale_detail.
shop_name;

IN SUBQUERY / NOT IN SUBQUERY

IN SUBQUERY is similar to LEFT SEMI JOIN.

For example:

SELECT * from mytable1 where id in (select id from mytable2);
-- is equivalent to
SELECT * from mytable1 a LEFT SEMI JOIN mytable2 b on a.id=b.id;

Currently, MaxCompute supports both IN SUBQUERY and CORRELATED conditions.

For example:

SELECT * from mytable1 where id in (select id from mytable2 where
value = mytable1.value);

“where value = mytable1.value” in the subquery is a CORRELATED condition

. MaxCompute of early versions reports errors for such expressions that reference source

MaxCompute User Guide / 3 SQL

Issue: 20180808 57

tables both in subqueries and in outer queries. MaxCompute supports such expressions now.

In fact, such filtering conditions are part of the ON condition in SEMI JOIN.

NOT IN SUBQUERY is similar to LEFT ANTI JOIN. However, they have a significant difference.

For example:

SELECT * from mytable1 where id not in (select id from mytable2);
-- If none of the IDs in mytable2 are NULL, this statement is
equivalent to
SELECT * from mytable1 a LEFT ANTI JOIN mytable2 b on a.id=b.id;

If mytable2 contains any column whose ID is NULL, the NOT IN expression is NULL, so that the

WHERE condition is invalid and no data is returned. This is different from LEFT ANTI JOIN.

MaxCompute 1.0 supports [NOT] IN SUBQUERY not serving as a JOIN condition, for example

, in a non-WHERE statement, or failure in conversion to a JOIN condition even in a WHERE

statement. MaxCompute 2.0 still supports this feature. However, [NOT] IN SUBQUERY cannot

 be converted to SEMI JOIN, and a separate job must be started to run subqueries. Therefore, [

NOT] IN SUBQUERY does not support CORRELATED conditions.

For example:

SELECT * from mytable1 where id in (select id from mytable2) OR value
 > 0;

As the WHERE clause includes OR, [NOT] IN SUBQUERY cannot be converted to SEMI JOIN. A

separate job must be started to run subqueries.

In addition, partition tables are specially processed:

SELECT * from sales_detail where ds in (select dt from sales_date);

If ds is a partition column, select dt from sales_date separately starts a job to run

subqueries, instead of converting to SEMI JOIN. After running, the results are compared with ds

one by one. If a ds value in sales_detail is not in the returned results, the partition is not read to

make sure that partition pruning is still valid.

EXISTS SUBQUERY/NOT EXISTS SUBQUERY

In an EXISTS SUBQUERY, when at least one data row exists in the subquery, TRUE is returned;

otherwise, FALSE is returned. NOT EXISTS subquery is on the contrary.

MaxCompute User Guide / 3 SQL

58 Issue: 20180808

Currently, MaxCompute supports only subqueries including the correlated WHERE conditions.

EXISTS SUBQUERY/NOT EXISTS SUBQUERY is implemented by converting to LEFT SEMI

JOIN or LEFT ANTI JOIN.

For example:

SELECT * from mytable1 where exists (select * from mytable2 where id
 = mytable1.id);
-- is equivalent to
Select * From mytable1 a left semi join mytable2 B on A. ID = B. ID;

While

SELECT * from mytable1 where not exists (select * from mytable2 where
id = mytable1.id);
-- is equivalent to
SELECT * from mytable1 a LEFT ANTI JOIN mytable2 b on a.id=b.id;

3.6.4 UNION ALL/UNION [DISTINCT]
The syntax format is as follows:

select_statement UNION ALL select_statement;
select_statement UNION [DISTINCT] select_statement;

• UNION ALL: Combines two or multiple data sets returned by a SELECT operation into one

data set. If the result contains duplicated rows, all rows meeting the conditions are returned,

and deduplication of duplicated rows is not implemented.

• UNION [DISTINCT]: In this statement, DISTINCT can be ignored. It combines two or

multiple data sets returned by a SELECT operation into one data set. If the result contains

duplicated rows, deduplication is implemented.

UNION An example of the UNION ALL operation:

Select * From sale_detail where region = 'Hangzhou'
 union all
select * from sale_detail where region = 'shanghai';

An example of the UNION operation:

SELECT * FROM src1 UNION SELECT * FROM src2;
--The execution effect is equivalent to
SELECT DISTINCT * FROM (SELECT * FROM src1 UNION ALL SELECT * FROM
src2) t;

Note:

MaxCompute User Guide / 3 SQL

Issue: 20180808 59

• The number, names, and types of queried columns corresponding to the UNION ALL/UNION

operation must be consistent. If the column names are inconsistent, use the column aliases.

• Generally, MaxCompute allows UNION ALL/UNION operations performed on a maximum of

256 tables. A syntax error is returned if the number of tables exceeds this limit.

The meaning of LIMIT following UNION:

If UNION is followed by CLUSTER BY, DISTRIBUTE BY, SORT BY, ORDER BY, or a LIMIT

clause, the clause has an effect on all the preceding UNION results rather than the last SELECT

statement of UNION. MaxCompute adopts this action in set odps.sql.type.system.

odps2=true; currently.

For example:

set odps.sql.type.system.odps2=true;
SELECT explode(array(3, 1)) AS (a) UNION ALL SELECT explode(array(0, 4
, 2)) AS (a) ORDER BY a LIMIT 3;

The returned results are as follows:

| a |

| 0 |
| 1 |
| 2 |

3.6.6 SEMI JOIN
MaxCompute supports SEMI JOIN. In SEMI JOIN, the right table does not appear in the result set

 and is only used to filter data in the left table. Supported syntaxes include: LEFT SEMI JOIN and

 LEFT ANTI JOIN.

LEFT SEMI JOIN

When a JOIN condition is valid, data in the left table is returned. That is, if the ID of a row in

mytable1 appears in all IDs in mytable2, this row is stored in the result set.

For example:

SELECT * from mytable1 a LEFT SEMI JOIN mytable2 b on a.id=b.id;

Only the data in mytable1 is returned if the ID of mytable1 appears in the ID of mytable2.

MaxCompute User Guide / 3 SQL

60 Issue: 20180808

LEFT ANTI JOIN

When a JOIN condition is invalid, data in the left table is returned. That is, if the ID of a row in

mytable1 does not appear in any ID in mytable2, this row is stored in the result set.

For example:

SELECT * from mytable1 a LEFT ANTI JOIN mytable2 b on a.id=b.id;

Only the data in mytable1 is returned if the ID of mytable1 does not appear in the ID of mytable2.

3.6.10 Common table expression (CTE)
MaxCompute supports CTEs in standard SQL to improve the readability and execution efficiency

of SQL statements.

Syntax structure of CTE:

WITH
 cte_name AS

 cte_query

 [,cte_name2 AS

 cte_query2

 ,……]

• cte_name refers to the CTE name, which must be unique in current WITH clause. The

cte_name identifier in any position of the query indicates the CTE.

• cte_query is a SELECT statement, whose result set is used to populate the CTE.

Example:

INSERT OVERWRITE TABLE srcp PARTITION (p='abc')
SELECT * FROM (
 SELECT a.key, b.value
 FROM (
 SELECT * FROM src WHERE key IS NOT NULL) a
 JOIN (
 SELECT * FROM src2 WHERE value > 0) b
 ON a.key = b.key
) c
UNION ALL
SELECT * FROM (
 SELECT a.key, b.value
 FROM (
 SELECT * FROM src WHERE key IS NOT NULL) a
 LEFT OUTER JOIN (
 SELECT * FROM src3 WHERE value > 0) b
 ON a.key = b.key AND b.key IS NOT NULL

MaxCompute User Guide / 3 SQL

Issue: 20180808 61

)d;

A JOIN clause is written on both sides of UNION at the top layer, and same queries are formed on

 the left table of JOIN. You must repeat this code if writing subqueries.

The preceding statement can be rewritten as follows using the CTE:

with
 a as (select * from src where key is not null),
 b as (select * from src2 where value>0),
 c as (select * from src3 where value>0),
 d as (select a.key,b.value from a join b on a.key=b.key),
 e as (select a.key,c.value from a left outer join c on a.key=c.key
and c.key is not null)
insert overwrite table srcp partition (p='abc')
select * from d union all select * from e;

After rewriting, the subquery corresponding to a can be rewritten only once, and reused

subsequently. The WITH clause in the CTE can specify multiple subqueries that can be

repeatedly used like variables in the entire statement. Besides being reused, subqueries do not

have to be repeatedly nested.

3.7 DDL SQL

3.8 Insert Operation

3.9 SQL restrictions
Some users may fail to notice specific restrictions and find the service has stopped. The

restrictions for MaxCompute SQL include the following:

Boundry name Maximum value/

Restriction

Class Description

Length of table
name

128 bytes Length limit Table names and column
names cannot contain special
 characters. They can contain
only English letters (a-z, A-Z),
numbers, and underscores (_),
and must start with a letter.

Annotation length 1,024 bytes Length limit The annotation can contain valid
 strings of up to 1,024 bytes.

Column definitions 1,200 Quantity limit One table can contain 1,200
column definitions at most.

MaxCompute User Guide / 3 SQL

62 Issue: 20180808

Boundry name Maximum value/

Restriction

Class Description

Partitions 60,000 Quantity limit One table can contain a
maximum of 60,000 partitions.

Partition levels of a
 table

6 levels Quantity limit A table can contain a maximum
of six levels of partition.

Statistical definition
s

100 Quantity limit One table can contain a
maximum of 100 statistical
definitions.

Statistical definition
s

 64,000 Length limit A statistical definition can
contain a maximum of 64,000
bytes.

Screen display 10,000 rows Quantity limit The screen display of a SELECT
 statement outputs a maximum
of 10,000 rows.

INSERT targets 256 Quantity limit A multiins operation can insert
a maximum of 256 targets at a
time.

UNION ALL 256 Quantity limit The UNION ALL operation can
be performed on a maximum of
256 tables.

MAPJOIN 　 Eight small tables Quantity limit A MAPJOIN operation can be
 performed on a maximum of
eight small tables.

MAPJOIN memory
restriction

512 MB Quantity limit The memory size of all small
 tables on which MAPJOIN
operation is performed cannot
exceed 512 MB.

Window functions Five Quantity limit A SELECT statement can
contain a maximum of five
window functions.

ptinsubq 　 1,000 rows Quantity limit The results returned by PT IN
SUBQUERY cannot exceed 1,
000 rows.

SQL statement 2 MB Length limit The maximum length of an SQL
statement is 2 MB.

MaxCompute User Guide / 3 SQL

Issue: 20180808 63

Boundry name Maximum value/

Restriction

Class Description

Number of
conditions for a
where clause

256 Quantity limit A where clause can use a
maximum of 256 conditions.

Length of column
records

8 MB Quantity limit The maximum length of a cell in
tables is 8 MB.

Number of
parameters of an in
 statement

1,024 Quantity limit Specifies the maximum
number of parameters of an in
 statement, for example, in (
1,2,3….,1024). An excess of
parameters of in(…) results in
compilation pressure. 1,024 is a
 recommended value, not a limit
 value.

jobconf.json 1 MB Length limit The size of ‘jobconf.json’ is 1 MB
. Including too many partitions in
a table may cause ‘jobconf.json’
to exceed 1 MB.

View Not writable Operation
restriction

A view cannot be written or
 operated using an insert
statement.

Column data type Not allowed Operation limit The data type and position of a
column cannot be modified.

java udf function Cannot be abstract or
 static

Operation limit A Java UDF cannot be abstract
or static.

A maximum of 10,
000 partitions can
be queried.

10,000 Quantity limit A maximum of 10,000 partitions
can be queried.

Note:

The restrictions of MaxCompute SQL cannot be manually modified or configured.

3.10 Builtin Function

3.10.1 Date Functions
MaxCompute SQL provides the necessary functions to operate datetime types.

MaxCompute User Guide / 3 SQL

64 Issue: 20180808

DATEADD

Function definition:

datetime dateadd(datetime date, bigint delta, string datepart)

Usage:

Modify the value of date according to a specified unit ‘datepart’ and specified scope ‘delta’.

Parameter description:

• date: Datetime type, value of date. If the input is string type, it is converted to ‘datetime’ type

by implicit conversion. If it is another type, an exception is indicated.

• delta: Bigint type, date scope to be modified. If the input is ‘string’ type or ‘double’ type, it is

converted to ‘bigint’ type by implicit conversion. If it is another data type, exception occurs. If

‘delta’ is greater than zero, do ‘add’ operation, otherwise do ‘minus’ operation.

• datepart: a String type constant. T his field value follows ‘string’ and ‘datetime’ type

conversion agreement, that is, ‘yyyy’ indicates year; ‘mm’ indicates month…

See Conversion between String type and Datetime type. In addition, the extensional date

format is also supported: year- ‘year’; month-‘month’ or ‘mon’; day-‘day’; hour-‘hour. If it is not

a constant or unsupported format or other data type, an exception is indicated.

Return Value:

Datetime type. If any input is NULL, return NULL.

Note:

• While increasing or decreasing ‘delta’ according to specified unit, it causes the carry or back

space for higher unit. Day, month, hour, minute, second are calculated by 10 hexadecimal, 12

hexadecimal, 24 hexadecimal, 60 hexadecimal, 60 hexadecimal respectively.

• If the unit of ‘delta’ is month, the calculation rule is shown as follows:

if the month part of ‘datetime’ does not cause the spillover of day after adding ‘delta’, then

keep the day unchangeable, otherwise the day value is set to the last day of the result month.

• The value of ‘datepart’ follows ‘string’ and ‘datetime’ type conversion agreement, that is, ‘yyyy’

indicates year; ‘mm’ indicates month…If no special description exists, related datetime built-in

functions all follow this agreement. And if no special instructions, the part of all datetime built-

in functions also supports extended date format: year- ‘year’; month-‘month’ or ‘mon’; day-‘day

’; hour-‘hour.

MaxCompute User Guide / 3 SQL

Issue: 20180808 65

Examples:

 if trans_date = 2005-02-28 00:00:00:
dateadd(trans_date, 1, 'dd') = 2005-03-01 00:00:00
-- Add one day. The result is beyond the last day in February. The
actual value is the first day of next month.
dateadd(trans_date, -1, 'dd') = 2005-02-27 00:00:00
-- Minus one day.
dateadd(trans_date, 20, 'mm') = 2006-10-28 00:00:00
-- Add 20 months. The month spillover is caused and the year is added
 ‘1’.
If trans_date = 2005-02-28 00:00:00, dateadd(transdate, 1, 'mm') =
2005-03-28 00:00:00
If trans_date = 2005-01-29 00:00:00, dateadd(transdate, 1, 'mm') =
2005-02-28 00:00:00
-- No 29th is in Feb. of 2005. The date is intercepted to the last day
 of current month.
 If trans_date = 2005-03-30 00:00:00, dateadd(transdate, -1, 'mm') =
2005-02-28 00:00:00

Note:

Here the value of trans_date is only used as an example. This simple expression is often used to

present the datetime in this file.

In MaxCompute SQL, the datetime type has no direct constant representation, the following

usage is wrong:

select dateadd(2005-03-30 00:00:00, -1, 'mm') from tbl1;

If you must describe the datetime type constant, try the following methods:

select dateadd(cast("2005-03-30 00:00:00" as datetime), -1, 'mm') from
 tbl1;
-- The String type constant is converted to datatime type by explicit
conversion.

DATEDIFF

Function definition:

bigint datediff(datetime date1, datetime date2, string datepart)

Usage:

Calculate the difference between two datetime date1 and date2 in specified time unit ‘datepart’.

Parameter description:

• datet1, date2: Datetime type, minuend, meiosis. If the input is ‘string’, it is converted to

‘datetime’ by implicit conversion. If it is another data type, an exception indicated.

MaxCompute User Guide / 3 SQL

66 Issue: 20180808

• datepart: a String type constant. The extensional date format is supported. . If ‘datepart’

does not meet the specified format or is other data type, it causes an exception

Return Value:

Bigint type. Any input parameter is NULL, return NULL. If date1 is less than date2, then the

returned value may be negative.

Note:

The lower unit part is cut off according to ‘datepart’ in the calculation process and then calculate

the result.

The example is as follows:

If start = 2005-12-31 23:59:59, end = 2006-01-01 00:00:00:
 datediff(end, start, 'dd') = 1
 datediff(end, start, 'mm') = 1
 datediff(end, start, 'yyyy') = 1
 datediff(end, start, 'hh') = 1
 datediff(end, start, 'mi') = 1
 datediff(end, start, 'ss') = 1
 datediff('2013-05-31 13:00:00', '2013-05-31 12:30:00', 'ss') =
1800
 datediff('2013-05-31 13:00:00', '2013-05-31 12:30:00', 'mi') = 30

DATEPART

The command format is as follows:

bigint datepart(datetime date, string datepart)

Usage:

Extract the value of specified time unit ’datepart’ in ‘date’.

Parameter description：:

Return Value:

• date: Datetime type. If the input is ‘string’ type, it is converted to ‘datetime’ type. If it is another

data type, an exception is indicated.

• datepart: String type constant. The extensional date format is supported. If ‘datepart’ does

not meet the specified format or is other data type, it causes exception.

Bigint type. If any input is NULL, return NULL.

The example is as follows:

datepart('2013-06-08 01:10:00', 'yyyy') = 2013

MaxCompute User Guide / 3 SQL

Issue: 20180808 67

 datepart('2013-06-08 01:10:00', 'mm') = 6

DATETRUNC

Function definition:

datetime datetrunc (datetime date, string datepart)

Usage:：

Return the remained date value after the specified time unit ‘datepart’ has been intercepted.

Parameter description:：

• date: Datetime type. If the input is ‘string’ type, it is converted to ‘datetime’ type. If it is another

data type, an exception indicated.

• datepart: String type constant. The extensional date format is supported. If ‘datepart’ does

not meet the specified format or is other data type, it causes an exception.

Return Value:

Datetime type. If any input is NULL, return NULL.

The example is as follows:

datetrunc('2011-12-07 16:28:46', 'yyyy') = 2011-01-01 00:00:00
 datetrunc('2011-12-07 16:28:46', 'month') = 2011-12-01 00:00:00
 datetrunc('2011-12-07 16:28:46', 'DD') = 2011-12-07 00:00:00

FROM_UNIXTIME

Function definition:

datetime from_unixtime(bigint unixtime)

Usage:

Convert the numeric UNIX time value ‘unixtime’ to datetime value.

Parameter description:

unixtime: Bigint type, number of seconds, UNIX format date time value. If the input is ‘string’,

‘double’, it is converted to ‘bigint’ type by implicit conversion.

Return Value:

Datetime type date value. If ‘unixtime’ is NULL, return NULL.

MaxCompute User Guide / 3 SQL

68 Issue: 20180808

Examples:

from_unixtime(123456789) = 1973-11-30 05:33:09

GETDATE

Function definition:

datetime getdate()

Usage:

Get present system time. Use UTC+8 as MaxCompute standard time.

Return Value:

Datetime type, return present date and time.

Note:

In a MaxCompute SQL task (executed in a distributed manner), ‘getdate’ always returns a fixed

value. The return result is any time in MaxCompute SQL execution period and the precision of

time is accurate to seconds.

ISDATE

Function definition:

boolean isdate(string date, string format)

Usage:

Judge whether a date string can be converted to a datetime value according to corresponding

format string. If the conversion is successful, return TRUE, otherwise return FALSE.

Parameter description:

• date: date value of String format. If the input is ‘bigint’, or ‘double’ or ‘datetime’, it is be

converted to ‘string’ type. If it is another data type, an exception reported.

• format: a String type constant. The extensional date format is not supported. If redundant

format strings appear in ‘format’, then get the datatime value corresponding to the first format

string, other strings are taken as separators. For example, isdate (‘1234-yyyy’, ‘yyyy-yyyy’)

returns ‘TRUE’.

Return Value:

Boolean type. If any parameter is NULL, return NULL.

MaxCompute User Guide / 3 SQL

Issue: 20180808 69

LASTDAY

Function definition:

datetime lastday(datetime date)

Usage:

Get the last day in the same month of the date, intercepted to day and the ‘hh:mm:ss’ part is ‘00:

00:00’.

Parameter description:

date: Datetime type. If the input is ‘string’ type, it is converted to ‘datetime’ type. If it is another

data type, an exception is reported.

Return Value:

Datetime type. If the input is NULL, return NULL.

TO_DATE

Function definition:

datetime to_date(string date, string format)

Usage:

Convert a string ‘date’ to the datetime value according to a specified format.

Parameter description:

• date: String type, date value to be converted. If the input is ‘bigint’, or ‘double’ or ‘datetime’, it

is converted to ‘string’ type by implicit conversion. If it is another data type or null, an exception

indicated.

• format: String type constant, date format. If it is not a constant or is other data type,

the exception is caused. The field ‘format’ does not support extensional format and other

characters are ignored as invalid characters in analysis process.

The parameter format contains ‘yyyy’ at least; otherwise the expecion is caused. If redundant

format strings appear in format, then get the datatime value corresponding to the first format

string, other strings are taken as separators. For example, to_date (‘1234-2234’, ‘

yyyy-yyyy’) returns ‘1234-01-01 00:00:00’.

Return Value:

MaxCompute User Guide / 3 SQL

70 Issue: 20180808

Datetime type, the format is yyyy-mm-dd hh: mi: ss. If any input is NULL, return NULL.

Examples:

to_date('Alibaba2010-12*03', 'Alibabayyyy-mm*dd') = 2010-12-03 00:00:
00
to_date('20080718', 'yyyymmdd') = 2008-07-18 00:00:00
to_date('200807182030','yyyymmddhhmi')=2008-07-18 20:30:00
to_date('2008718', 'yyyymmdd')
-- Format is not compatible and exception is thrown.
to_date('Alibaba2010-12*3', 'Alibabayyyy-mm*dd')
-- Format is not compatible and exception is thrown.
to_date('2010-24-01', 'yyyy')
-- Format is not compatible and exception is thrown.

TO_CHAR

Function definition:

string to_char(datetime date, string format)

Usage:

Convert the ‘date’ of datetime type to a string according to a specified format.

Parameter description:

• date: Datetime type, the date value to be converted. If the input is ‘string’ type, it is converted

to ‘datetime’ type by implicit conversion. If it is another data type, an exception indicated.

• format: String type constant. If it is not a constant or is other data type, the exception is

caused. In ‘format’, the date format part is replaced with the corresponding data and other

characters are output directly.

Return Value:

String type. Any input parameter is NULL, return NULL.

Examples:

to_char('2010-12-03 00:00:00', 'Alibabayyyy-mm*dd') = 'Alibaba2010-12*
03'
 to_char('2008-07-18 00:00:00', 'yyyymmdd') = '20080718'
 to_char('Alibaba2010-12*3', 'Alibabayyyy-mm*dd') -- Format is not
compatible and exception is thrown.
 to_char('2010-24-01', 'yyyy') -- Format is not compatible and
exception is thrown.
 to_char('2008718', 'yyyymmdd') -- Format is not compatible and
exception is thrown.

See TO_CHAR for conversion from other types to string type.

MaxCompute User Guide / 3 SQL

Issue: 20180808 71

UNIX_TIMESTAMP

Function definition:

bigint unix_timestamp(datetime date)

Usage:

Convert the date of Datetime type to UNIX format date of Bigint type.

Parameter description:

date: Datetime type date value. If the input is ‘string’ type, it is converted to ‘datetime’ type and

involved in calculation. If it is another type, an exception indicated.

Return Value:

Bigint type, it indicates UNIX format date value. If ‘date’ is NULL, return NULL.

WEEKDAY

Function definition:

bigint weekday(datetime date)

Usage:

 Return the nth day of present week corresponding to the date.

Parameter description:

date: Datetime type. If the input is ‘string’ type, it is converted to ‘datetime’ type and then involved

in operation. If it is another date type, an exception indicated.

Return Value:

Bigint type. If the input parameter is NULL, return NULL. Monday is regarded as the first day of a

week. Its returned value is 0. Days are in ascending order starting at 0. If the day is Sunday, then

return 6.

WEEKOFYEAR

Function definition:

bigint weekofyear(datetime date)

Usage:

MaxCompute User Guide / 3 SQL

72 Issue: 20180808

Return the nth week of a year which the date is included in. Monday is taken as the first day of a

week.

Note:

About whether this week belongs to this year, or the next year, it depends on which year (4 days

or more) most of the time of this week belongs to.

Parameter description:

date: Datetime type. If the input is ‘string’ type, it is converted to ‘datetime’ type and then involved

in operation. If it is another date type, an exception indicated.

Return Value:

Bigint type. If the input is NULL, return NULL.

Examples:

select weekofyear(to_date("20141229", "yyyymmdd")) from dual;
Result:

| _c0 |

| 1 |

 -Although 20141229 belongs to 2014, most of the dates of the week are
 in 2015, therefore, the return result is 1, indicating that it is the
 first week of 2015.
 select weekofyear(to_date("20141231", "yyyymmdd")) from dual；
-- Return 1.
 select weekofyear(to_date("20141229", "yyyymmdd")) from dual；
-- Return 53.

New extended date functions

With the upgrade to MaxCompute 2.0, some new date functions are added to the product. If the

functions are used to design a new data type compatible with the Hive mode, you must add the

following two set statements before the SQL statement of the new functions:

set odps.sql.type.system.odps2=true;--Enable the new type.

If you want to submit both at the same time, run the following statements:

set odps.sql.type.system.odps2=true;
select year('1970-01-01 12:30:00')=1970 from dual;

The new extended functions are described as follows.

MaxCompute User Guide / 3 SQL

Issue: 20180808 73

YEAR

Function definition:

INT year(string date)

Usage:

Returns the year of a date.

Parameter description:

date: String-type date value. The format must at least include ‘yyyy-mm-dd’ and cannot include

additional strings. Otherwise, null is returned.

Return Value:

Int type.

Examples:

year('1970-01-01 12:30:00')=1970
year('1970-01-01')=1970
year('70-01-01')=70
year(1970-01-01)=null
year('1970/03/09')=null
year(null) Returns an exception

QUARTER

Function definition:

INT quarter(datetime/timestamp/string date)

Usage:

Returns the quarter of a date, range: 1–4.

Parameter description:

date: Datetime, Timestamp, or String-type date value. The format must at least include ‘yyyy-mm-

dd’. Otherwise, null is returned.

Return Value:

Int type, null input returns null.

Examples:

quarter('1970-11-12 10:00:00')=4

MaxCompute User Guide / 3 SQL

74 Issue: 20180808

quarter('1970-11-12')=4

MONTH

Function definition:

INT month(string date)

Usage:

Returns the month of a date.

Parameter description:

date: String-type date value. Other value types return an exception.

Return Value:

Int type.

Examples:

month('2014-09-01')=9
month('20140901')=null

DAY

Function definition:

INT day(string date)

Usage:

Returns the day of a date.

Parameter description:

date: String-type date value. Other value types return an exception.

Return Value:

Int type.

Examples:

day('2014-09-01')=1

MaxCompute User Guide / 3 SQL

Issue: 20180808 75

day('20140901')=null

DAYOFMONTH

Function definition:

INT dayofmonth(date)

Usage:

Returns the day of a date.

For example, after command int dayofmonth(2017-10-13) runs, 13 returns.

Parameter description:

date: String-type date value. Other value types return an exception.

Return Value:

Int type.

Examples:

dayofmonth('2014-09-01')=1
dayofmonth('20140901')=null

HOUR

Function definition:

INT hour(string date)

Usage:

Returns the hour of a date.

Parameter description:

date: String-type date value. Other value types return an exception.

Return Value:

Int type.

Examples:

hour('2014-09-01 12:00:00')=12
hour('12:00:00')=12

MaxCompute User Guide / 3 SQL

76 Issue: 20180808

hour('20140901120000')=null

MINUTE

Function definition:

INT minute(string date)

Usage:

Returns the minute of a date.

Parameter description:

date: String-type date value. Other value types return an exception.

Return Value:

Int type.

Examples:

minute('2014-09-01 12:30:00')=30
minute('12:30:00')=30
minute('20140901120000')=null

SECOND

Function definition:

INT second(string date)

Usage:

Returns the second of a date.

Parameter description:

date: String-type date value. Other value types return an exception.

Return Value:

Int type.

Examples:

second('2014-09-01 12:30:45')=45
second('12:30:45')=45

MaxCompute User Guide / 3 SQL

Issue: 20180808 77

second('20140901123045')=null

CURRENT_TIMESTAMP

Function definition:

timestamp current_timestamp()

Usage:

Returns the current timestamp as a Timestamp-type value. The value is not fixed.

Return Value:

Timestamp type.

Examples:

select current_timestamp() from dual;--Returns '2017-08-03 11:50:30.
661'

ADD_MONTHS

Function definition:

string add_months(string startdate, int nummonths)

Usage:

Returns the date given by startdate plus the nummonths value.

Parameter description:

• startdate: String-type value. The format must at least include the ‘yyyy-mm-dd’ date.

Otherwise, null is returned.

• num_months: Int-type value.

Return Value:

A String-type date, in the format ‘yyyy-mm-dd’.

Examples:

Add_months ('2017-02-14', 3) = '2017-05-14'
add_months('17-2-14',3)='0017-05-14'
add_months('2017-02-14 21:30:00',3)='2017-05-14'

MaxCompute User Guide / 3 SQL

78 Issue: 20180808

add_months('20170214',3)=null

LAST_DAY

Function definition:

string last_day(string date)

Usage:

Returns the date of the last day of the month that contains the given date.

Parameter description:

date: String type, with the format ‘yyyy-MM-dd HH:mi:ss’ or ‘yyyy-MM-dd’.

Return Value:

A String-type date, in the format ‘yyyy-mm-dd’.

Examples:

last_day('2017-03-04')='2017-03-31'
last_day('2017-07-04 11:40:00')='2017-07-31'
last_day('20170304')=null

NEXT_DAY

Function definition:

string next_day(string startdate, string week)

Usage:

Returns the first date larger than the specified startdate that matches the day of the week given by

 the week parameter. It is the date of a specific day in the next week.

Parameter description:

• startdate: String type, with the format ‘yyyy-MM-dd HH:mi:ss’ or ‘yyyy-MM-dd’.

• week: String type, the first two or three letters of a day of the week, or the full name of the day

of the week. For example: Mo, TUE, or FRIDAY.

Return Value:

A String-type date, in the format ‘yyyy-mm-dd’.

Examples:

next_day('2017-08-01','TU')='2017-08-08'
next_day('2017-08-01 23:34:00','TU')='2017-08-08'

MaxCompute User Guide / 3 SQL

Issue: 20180808 79

Next_day ('20170801 ', 'tu') = NULL

MONTHS_BETWEEN

Function definition:

double months_between(datetime/timestamp/string date1, datetime/
timestamp/string date2)

Usage:

Returns the number of months between date1 and date2.

Parameter description:

• date1: Datetime, Timestamp, or String type, with the format ‘yyyy-MM-dd HH:mi:ss’ or ‘yyyy-

MM-dd’.

• date2: Datetime, Timestamp, or String type, with the format ‘yyyy-MM-dd HH:mi:ss’ or ‘yyyy-

MM-dd’.

Return Value:

Double type.

• When date1 is later than date2, the returned value is positive. When date2 is later than date1,

the returned value is negative.

• When date1 and date2 correspond to the last days of two months, the returned value is an

integer representing the number of months. Otherwise, the formula is (date1 - date2)/31.

Examples:

months_between('1997-02-28 10:30:00', '1996-10-30')=3.9495967741935485
months_between('1996-10-30','1997-02-28 10:30:00')=-3.9495967741
935485
months_between('1996-09-30','1996-12-31')=-3.0

3.10.3 Window Functions
In MaxCompute SQL, window function can be used to analyze and process work flexibly. Window

 function can only appear in ‘select’ clause. You are not allowed to use nested window function

 and aggregate function in window function. It cannot be used with the same level aggregation

function together.

Currently, in a MaxCompute SQL statement, you can use up to five window functions.

Window Function Syntax:

window_func() over (partition by [col1,col2…]

MaxCompute User Guide / 3 SQL

80 Issue: 20180808

[order by [col1[asc|desc], col2[asc|desc]…]] windowing_clause)

• partition by is used to specify open window columns. The rows of which partitioned

columns have the same values are considered in the same window. Currently, a window can

contain at most 100,000,000 rows data (exceeding 5,000,000 rows are not advised though) ;

otherwise, an error is reported at runtime.

• The clause order by is used to specify how the data is ordered in a window.

• In windowing_clause part, you can use rows to specify window open way. Two ways are as

follows:

▬ Rows between x preceding|following and y preceding|following, which indicates the window

 range is from rows x preceding /following to rows y preceding/following.

▬ Rows x preceding|following: the window range is from rows x preceding /following to present

 row.

▬ ‘x’, ‘y’ must be an integer constant that is greater than or equal to 0 and corresponding value

 range is 0~10000. If the value is 0, it indicates the present row. You can use rows method

to specify window range on condition that you have specified ‘order by’ clause.

Note:

Not all window functions can be specified window open way using rows. The window functions

support this usage include AVG, count, Max, min, StdDev, sum.

COUNT

Function definition:

Bigint count([distinct] expr) over(partition by [col1, col2…]
 [order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:

Calculate the total number of retrieved rows.

Parameter description:

• expr: any data type. When it is NULL, this row is not involved in count. If the ‘distinct’ keyword

is specified, it indicates taking the unique count value.

• partition by [col1, col2…]: Specify the columns to use window function.

• order by col1 [asc|desc], col2[asc|desc]: if ‘order by’ clause is not specified,

 return the count vale of ‘expr’ in current window. If ‘order by’ clause is specified, the return

MaxCompute User Guide / 3 SQL

Issue: 20180808 81

result is ordered according to specified sequence and the value is a cumulative count value

from start row to current row in current window.

Return value:

Bigint type.

Note:

If the keyword ‘distinct’ has been specified, the ‘order by’ clause cannot be used.

Example:

Suppose that the table ‘test_src’ is existent and the column ‘user_id’ of bigint type exists in this

table.

select user_id,
 count(user_id) over (partition by user_id) as count
 from test_src;

 | user_id | count |

 | 1 | 3 |
 | 1 | 3 |
 | 1 | 3 |
 | 2 | 1 |
 | 3 | 1 |

 -- the ‘order by’ clause is not specified, return the count value
of user_id in current window.
 select user_id,
 count(user_id) over (partition by user_id order by user_id) as
 count
 from test_src;

 | user_id | count |

 | 1 | 1 | -- start row of the window
 | 1 | 2 | --two records exist from start row to current row.
Return 2.
 | 1 | 3 |
 | 2 | 1 |
 | 3 | 1 |

 -- The ‘order by’ clause is specified and return a cumulative
count value from start row to current row in current window.

AVG

Function definition:

avg([distinct] expr) over(partition by [col1, col2…]
 [order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:

MaxCompute User Guide / 3 SQL

82 Issue: 20180808

Calculate the average.

Parameter description:

• distinct: if the keyword ‘distinct’ is specified, it indicates taking average of unique value.

• expr: Double type.

▬ If the input is ‘string’ type or ‘bigint’ type, it is converted to ‘double’ type by implicit

conversion and involved in operation. If it is another data type, an exception indicated.

▬ If this value is NULL, this row is not involved in the calculation.

▬ If the data type is Boolean, it is not allowed to be involved in the calculation.

• partition by [col1, col2...]: specified columns to use window function.

• order by col1[asc|desc], col2[asc|desc]: if ‘order by’ clause is not specified,

return the average of all values in current window. If ‘order by’ clause is specified, the return

result is ordered according to specified sequence and returns the cumulative average from the

start row to current row in current window.

Return value:

Double type.

Note:

If the keyword ‘distinct’ has been specified, the ‘order by’ clause cannot be used.

MAX

Function definition:

max([distinct] expr) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:

Calculate the maximum value.

Parameter description:

• expr: Any types expect ‘Boolean’. If the value is NULL, this row is not involved in the

calculation. If the keyword ‘distinct’ is specified, it indicates taking the max value of unique

value.

• partition by [col1, col2…]: specified columns to use window function.

• order by [col1[asc|desc], col2[asc|desc: if ‘order by’ clause is not specified,

return the maximum value in current window. If ‘order by’ clause is specified, the return result

MaxCompute User Guide / 3 SQL

Issue: 20180808 83

is ordered according to specified sequence and return the maximum value from start row to

current row in current window.

Return value:

the same type with ‘expr’.

Note:

If the keyword ‘distinct’ has been specified, the ‘order by’ clause cannot be used.

MIN

Function definition:

min([distinct] expr) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:

Calculate the minimum value of the column.

Parameter description:

• expr: Any types expect ‘Boolean’. If the value is NULL, this row is not involved in the

calculation. If the keyword ‘distinct’ is specified, it indicates taking the minimum value of a

unique value.

• partition by [col1, col2…]: specified columns to use window function.

• order by [col1[asc|desc], col2[asc|desc: if ‘order by’ clause is not specified,

return the minimum value in current window. If ‘order by’ clause is specified, the return result

is ordered according to specified sequence and return the minimum value from start row to

current row in current window.

Return value:

the same type with ‘expr’.

Note:

If the keyword ‘distinct’ has been specified, the ‘order by’ clause cannot be used.

MEDIAN

Function definition:

Double median(Double number1,number2...) over(partition by [col1, col2
…])

MaxCompute User Guide / 3 SQL

84 Issue: 20180808

Decimal median(Decimal number1,number2...) over(partition by [col1,
col2…])

Usage:

Calculate the median.

Parameter description:

• number1,number1…: 1 to 255 digits of a Double or Decimal type.

▬ When the input value is a String type or a Bigint type, the operation is performed after the

implicit conversion to a Double type, and other types throw exceptions.

▬ Return NULL when the input value is null.

▬ When the input value is a Double type, it will be converted to the Array of Double by default .

• partition by [col1, col2…]: specified columns to use window function.

Return value:

Double type.

STDDEV

Function definition:

Double stddev([distinct] expr) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])
Decimal stddev([distinct] expr) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:

Calculation population standard deviation.

Parameter description:

• expr: Double type.

▬ If the input is ‘string’ or ‘bigint’ type, it is converted to ‘double’ type and involved in operation

. If it is another data type, an exception is indicated.

▬ If the input value is ‘NULL’, this row is ignored.

▬ If the keyword ‘distinct’ is specified, it indicates calculating the population standard deviation

 of unique value.

• partition by [col1, col2..]: specified columns to use window function.

• order by col1[asc|desc], col2[asc|desc]: if ‘order by’ clause is not specified,

return the population standard deviation in current window. If ‘order by’ clause is specified, the

MaxCompute User Guide / 3 SQL

Issue: 20180808 85

return result is ordered according to specified sequence and return the population standard

deviation from start row to current row in current window.

Return value:

When the input is ‘decimal’ type, return ‘decimal’; otherwise, return ‘double’.

Example:

select window, seq, stddev_pop('1\01') over (partition by window order
 by seq) from dual;

Note:

• If the keyword ‘distinct’ has been specified, the ‘order by’ clause cannot be used.

• Stddev function also has an alias function named stddev_pop, whose usage is the same as

stddev.

STDDEV_SAMP

Function definition:

Double stddev_samp([distinct] expr) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])
Decimal stddev_samp([distinct] expr) over((partition by [col1,col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:

Calculate sample standard deviation.

Parameter description:

• Expr: Double type.

▬ If the input is ‘string’ or ‘bigint’ type, it is converted to ‘double’ type and involved in operation

. If it is another data type, an exception is indicated.

▬ If the input value is NULL, this row is ignored.

▬ If the keyword ‘distinct’ is specified, it indicates calculating the sample standard deviation of

unique value.

• partition by [col1, col2..]: specified columns to use window function.

• Order by col1[asc|desc], col2[asc|desc]: if ‘order by’ clause is not specified,

return the sample standard deviation in current window. If ‘order by’ clause is specified, the

return result is ordered according to specified sequence and return the sample standard

deviation from start row to current row in current window.

MaxCompute User Guide / 3 SQL

86 Issue: 20180808

Return value:

When the input is ‘decimal’ type, return ‘decimal’; otherwise, return ‘double’.

Note:

If the keyword ‘distinct’ has been specified, the ‘order by’ clause cannot be used.

SUM

Function definition:

sum([distinct] expr) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:

Calculate the sum of elements.

Parameter description:

• Expr: Double type.

▬ If the input is ‘string’ or ‘bigint’ type, it is converted to ‘double’ type and involved in operation

. If it is another data type, an exception is indicated.

▬ If the input value is NULL, ignore this row.

▬ If the keyword ‘distinct’ is specified, it indicates calculating the sum of unique value.

• Partition by [col1, col2..]: specified columns to use window function.

• Order by col1[asc|desc], col2[asc|desc]: if ‘order by’ clause is not specified,

return the sum in current window. If ‘order by’ clause is specified, the return result is ordered

according to specified sequence and return the sum from start row to current row in current

window.

Return value:

• If the input parameter is ‘bigint’ type, return ‘bigint’ type.

• If the input parameter is ‘Decimal’ type, return ‘Decimal’ type.

• If the input parameter is ‘double’ type or ‘string’ type, return ‘double’ type.

Note:

If the keyword ‘distinct’ has been specified, the ‘order by’ clause cannot be used.

MaxCompute User Guide / 3 SQL

Issue: 20180808 87

DENSE_RANK

Function definition:

Bigint dense_rank() over(partition by [col1, col2…]
order by [col1[asc|desc], col2[asc|desc]…])

Usage:

Calculate dense rank. The data in the same row of col2 has the same rank.

Parameter description:

• partition by [col1, col2..]: specified columns to use window function.

• order by col1[asc|desc], col2[asc|desc]: specify the value which the rank is based

on.

Return value:

Bigint type.

Example:

Suppose that data in table ‘emp’ is as follows:

| empno | ename | job | mgr | hiredate| sal| comm | deptno |
7369,SMITH,CLERK,7902,1980-12-17 00:00:00,800,,20
7499,ALLEN,SALESMAN,7698,1981-02-20 00:00:00,1600,300,30
7521,WARD,SALESMAN,7698,1981-02-22 00:00:00,1250,500,30
7566,JONES,MANAGER,7839,1981-04-02 00:00:00,2975,,20
7654,MARTIN,SALESMAN,7698,1981-09-28 00:00:00,1250,1400,30
7698,BLAKE,MANAGER,7839,1981-05-01 00:00:00,2850,,30
7782,CLARK,MANAGER,7839,1981-06-09 00:00:00,2450,,10
7788,SCOTT,ANALYST,7566,1987-04-19 00:00:00,3000,,20
7839,KING,PRESIDENT,,1981-11-17 00:00:00,5000,,10
7844,TURNER,SALESMAN,7698,1981-09-08 00:00:00,1500,0,30
7876,ADAMS,CLERK,7788,1987-05-23 00:00:00,1100,,20
7900,JAMES,CLERK,7698,1981-12-03 00:00:00,950,,30
7902,FORD,ANALYST,7566,1981-12-03 00:00:00,3000,,20
7934,MILLER,CLERK,7782,1982-01-23 00:00:00,1300,,10
7948,JACCKA,CLERK,7782,1981-04-12 00:00:00,5000,,10
7956,WELAN,CLERK,7649,1982-07-20 00:00:00,2450,,10
7956,TEBAGE,CLERK,7748,1982-12-30 00:00:00,1300,,10

Now, all employees need to be grouped by department, and each group must be sorted in

descending order according to SAL to obtain the serial number in own group.

SELECT deptno
 , ename
 , sal
 , DENSE_RANK() OVER (PARTITION BY deptno ORDER BY sal DESC
) AS nums--Deptno as a window column, and sort in descending order
according to sal.
 FROM emp;

MaxCompute User Guide / 3 SQL

88 Issue: 20180808

--The result is as follows:

| deptno | ename | sal | nums |

10	JACCKA	5000.0	1
10	KING	5000.0	1
10	CLARK	2450.0	2
10	WELAN	2450.0	2
10	TEBAGE	1300.0	3
10	MILLER	1300.0	3
20	SCOTT	3000.0	1
20	FORD	3000.0	1
20	JONES	2975.0	2
20	ADAMS	1100.0	3
20	SMITH	800.0	4
30	BLAKE	2850.0	1
30	ALLEN	1600.0	2
30	TURNER	1500.0	3
30	MARTIN	1250.0	4
30	WARD	1250.0	4
30	JAMES	950.0	5

RANK

Function definition:

Bigint rank() over(partition by [col1, col2…]
order by [col1[asc|desc], col2[asc|desc]…])

Usage:

Calculate the rank. The ranking of the same row data with col2 drops.

Parameter description:

• Partition by [col1, col2..]: specify columns to use window function.

• Order by col1[asc|desc], col2[asc|desc]: specify the value which the rank is based

on.

Return value:

Bigint type.

Example:

Suppose that data in table ‘emp’ is as follows:

| empno | ename | job | mgr | hiredate| sal| comm | deptno |
7369,SMITH,CLERK,7902,1980-12-17 00:00:00,800,,20
7499,ALLEN,SALESMAN,7698,1981-02-20 00:00:00,1600,300,30
7521,WARD,SALESMAN,7698,1981-02-22 00:00:00,1250,500,30
7566,JONES,MANAGER,7839,1981-04-02 00:00:00,2975,,20
7654,MARTIN,SALESMAN,7698,1981-09-28 00:00:00,1250,1400,30
7698,BLAKE,MANAGER,7839,1981-05-01 00:00:00,2850,,30
7782,CLARK,MANAGER,7839,1981-06-09 00:00:00,2450,,10
7788,SCOTT,ANALYST,7566,1987-04-19 00:00:00,3000,,20

MaxCompute User Guide / 3 SQL

Issue: 20180808 89

7839,KING,PRESIDENT,,1981-11-17 00:00:00,5000,,10
7844,TURNER,SALESMAN,7698,1981-09-08 00:00:00,1500,0,30
7876,ADAMS,CLERK,7788,1987-05-23 00:00:00,1100,,20
7900,JAMES,CLERK,7698,1981-12-03 00:00:00,950,,30
7902,FORD,ANALYST,7566,1981-12-03 00:00:00,3000,,20
7934,MILLER,CLERK,7782,1982-01-23 00:00:00,1300,,10
7948,JACCKA,CLERK,7782,1981-04-12 00:00:00,5000,,10
7956,WELAN,CLERK,7649,1982-07-20 00:00:00,2450,,10
7956,TEBAGE,CLERK,7748,1982-12-30 00:00:00,1300,,10

Now, all employees need to be grouped by department, and each group must be sorted in

descending order according to SAL to obtain the serial number in own group.

SELECT deptno
 , ename
 , sal
 , RANK() OVER (PARTITION BY deptno ORDER BY sal DESC) AS nums
--Deptno as a window column, and sort in descending order according to
 sal.
 FROM emp;
--The result is as follows:

| deptno | ename | sal | nums |

10	JACCKA	5000.0	1
10	KING	5000.0	1
10	CLARK	2450.0	3
10	WELAN	2450.0	3
10	TEBAGE	1300.0	5
10	MILLER	1300.0	5
20	SCOTT	3000.0	1
20	FORD	3000.0	1
20	JONES	2975.0	3
20	ADAMS	1100.0	4
20	SMITH	800.0	5
30	BLAKE	2850.0	1
30	ALLEN	1600.0	2
30	TURNER	1500.0	3
30	MARTIN	1250.0	4
30	WARD	1250.0	4
30	JAMES	950.0	6

LAG

Function definition:

lag(expr，Bigint offset, default) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]])

The command description is as follows:

Take the value of nth row in front of current row in accordance with offset. If the current row

number is rn, take the value of the row which row number is rn-offset.

Parameter description:

MaxCompute User Guide / 3 SQL

90 Issue: 20180808

• expr: any type.

• offset: a Bigint type constant. If the input is String type or Double type, convert it to Bigint

type by implicit conversion. Offset > 0;

• default: Define the default value while the specified range of ‘offset’ oversteps the boundary.

It is a constant and default is null.

• partition by [col1, col2..]: specify columns to use window function.

• order by col1[asc|desc], col2[asc|desc]: specify the order method for return

result.

Return Value:

Returns the same with ‘expr’.

LEAD

The command format is as follows:

lead(expr，Bigint offset, default) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]])

The command description is as follows:

Take the value of nth row following current row in accordance with offset. If the current row

number is rn, take the value of the row which row number is rn+offset.

Parameter description:

• expr: any type.

• offset: a Bigint type constant. If the input is String, Decimal or Double type, convert it to

Bigint type by implicit conversion. Offset > 0.

• default: Define the default value while the specified range of offset oversteps the boundary.

It is a constant.

• partition by [col1, col2..]: specify columns to use window function.

• order by col1[asc|desc], col2[asc|desc]: specify the order method for return

result.

Return Value:

Returns the same with expr.

For example:

select c_Double_a,c_String_b,c_int_a,lead(c_int_a,1) over(partition by
 c_Double_a order by c_String_b) from dual;

MaxCompute User Guide / 3 SQL

Issue: 20180808 91

select c_String_a,c_time_b,c_Double_a,lead(c_Double_a,1) over(
partition by c_String_a order by c_time_b) from dual;
select c_String_in_fact_num,c_String_a,c_int_a,lead(c_int_a) over(
partition by c_String_in_fact_num order by c_String_a) from dual;

PERCENT_RANK

The command format is as follows:

Percent_rank () over (partition by [col1, col2...]
order by [col1[asc|desc], col2[asc|desc]…])

The command description is as follows:

Calculate relative ranking of a certain row in a group of data.

Parameter description:

• partition by [col1, col2..]: specify columns to use window function.

• order by col1[asc|desc], col2[asc|desc]: specify the value which the ranking is

based on.

Return Value:

Returns the Double type, value scope is [0, 1]. The calculation method of relative ranking is (rank

-1)/(number of rows -1).

Note:

The current limit of rows in a single window cannot exceed 10,000,000.

ROW_NUMBER

The command format is as follows:

row_number() over(partition by [col1, col2…]
order by [col1[asc|desc], col2[asc|desc]…])

The command description is as follows:

This function is used to calculate the row number, beginning from 1.

Parameter description:

• partition by [col1, col2..]: specify columns to use window function.

• order by col1[asc|desc], col2[asc|desc]: specify the order method for return

result.

Return Value:

MaxCompute User Guide / 3 SQL

92 Issue: 20180808

Returns the Bigint type.

For example:

Suppose that data in table emp is as follows:

| empno | ename | job | mgr | hiredate| sal| comm | deptno |
7369,SMITH,CLERK,7902,1980-12-17 00:00:00,800,,20
7499,ALLEN,SALESMAN,7698,1981-02-20 00:00:00,1600,300,30
7521,WARD,SALESMAN,7698,1981-02-22 00:00:00,1250,500,30
7566, Jones, Manager, fig-04-02 00:00:00, 2975, 20
7654,MARTIN,SALESMAN,7698,1981-09-28 00:00:00,1250,1400,30
7698,BLAKE,MANAGER,7839,1981-05-01 00:00:00,2850,,30
7782,CLARK,MANAGER,7839,1981-06-09 00:00:00,2450,,10
7788, Scott, analyst, fig-04-19 00:00:00, 3000, 20
7839,KING,PRESIDENT,,1981-11-17 00:00:00,5000,,10
7844,TURNER,SALESMAN,7698,1981-09-08 00:00:00,1500,0,30
7876,ADAMS,CLERK,7788,1987-05-23 00:00:00,1100,,20
7900,JAMES,CLERK,7698,1981-12-03 00:00:00,950,,30
7902,FORD,ANALYST,7566,1981-12-03 00:00:00,3000,,20
7934,MILLER,CLERK,7782,1982-01-23 00:00:00,1300,,10
7948,JACCKA,CLERK,7782,1981-04-12 00:00:00,5000,,10
7956,WELAN,CLERK,7649,1982-07-20 00:00:00,2450,,10
7956, tebage, clerk, maid-12-30 00:00:00, 1300, 10

Now, all employees need to be grouped by department, and each group must be sorted in

descending order according to SAL to obtain the serial number in own group.

SELECT deptno
 , ename
 , Sal
 , Row_number () over (partition by deptno order by Sal DESC
) as Nums --Deptno as a window column, and sort in descending order
according to sal.
 FROM emp;
--The result is as follows:

| deptno | ename | sal | nums |

10	JACCKA	5000.0	1
10	KING	5000.0	2
10	CLARK	2450.0	3
10	WELAN	2450.0	4
10	TEBAGE	1300.0	5
10	MILLER	1300.0	6
20	SCOTT	3000.0	1
20	FORD	3000.0	2
20	JONES	2975.0	3
20	ADAMS	1100.0	4
20	SMITH	800.0	5
30	BLAKE	2850.0	1
30	ALLEN	1600.0	2
30	TURNER	1500.0	3
30	MARTIN	1250.0	4
30	WARD	1250.0	5

MaxCompute User Guide / 3 SQL

Issue: 20180808 93

| 30 | JAMES | 950.0 | 6 |

CLUSTER_SAMPLE

The command format is as follows:

boolean cluster_sample([Bigint x, Bigint y])
over(partition by [col1, col2..])

The command description is as follows:

This function is used for Group sampling.

Parameter description:

• x: a Bigint type constant, x>=1. If you specify the parameter y, x indicates dividing a window

into x parts. Otherwise x indicates selecting x rows records in a window (if x rows are in this

window, return value is true). If x is NULL, return NULL.

• y: a Bigint type constant, y>=1, y<=x. It indicates selecting y parts records from x parts in a

window (that is to say, if y parts records exist, return value is true). If y is NULL, return NULL.

• partition by [col1, col2]: specify columns to use window function.

Return Value:

Returns the Boolean type.

For example:

If two columns key and value are in the table test_tbl, key is grouping field. The corresponding

values of key have groupa and groupb, the field value indicates value of key. As follows:

 | key | value |

 | groupa | -1.34764165478145 |
 | groupa | 0.740212609046718 |
 | groupa | 0.167537127858695 |
 | groupa | 0.630314566185241 |
 | GroupA | 0.0112401388646925 |
 | groupa | 0.199165745875297 |
 | groupa | -0.320543343353587 |
 | groupa | -0.273930924365012 |
 | groupa | 0.386177958942063 |
 | groupa | -1.09209976687047 |
 | groupb | -1.10847690938643 |
 | groupb | -0.725703978381499 |
 | groupb | 1.05064697475759 |
 | groupb | 0.135751224393789 |
 | groupb | 2.13313102040396 |
 | groupb | -1.11828960785008 |
 | groupb | -0.849235511508911 |
 | groupb | 1.27913806620453 |

MaxCompute User Guide / 3 SQL

94 Issue: 20180808

 | groupb | -0.330817716670401 |
 | groupb | -0.300156896191195 |
 | groupb | 2.4704244205196 |
 | groupb | -1.28051882084434 |

To select 10% values from each group, the following MaxCompute SQL is suggested:

Select key, Value
 from (
 Select key, value, cluster_sample (10, 1) over (partition by
key) as flag
 from tbl
) sub
 where flag = true;

| Key | value |

| groupa | 0.167537127858695 |
| groupb | 0.135751224393789 |

NTILE

The command format is as follows:

BIGINT ntile(BIGINT n) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause]))

The command description is as follows:

Used to cut grouped data into N slices in order and return the current slice value, if the slice is

uneven, the distribution of the first slice is increased by default.

Parameter description:

N: bigint data type.

Return Value:

Returns the bigint type.

The example is as follows:

Assume the data in the table EMP is as follows:

| Empno | ename | job | Mgr | hiredate | Sal | REM | deptno |
7369, Smith, clerk, maid-12-17 00:00:00, 800, 20
7499, Allen, salesman, maid-02-20 00:00:00, 1600,300, 30
7521, Ward, salesman, maid-02-22 00:00:00, 1250,500, 30
7566, Jones, Manager, fig-04-02 00:00:00, 2975, 20
7654 Martin, salesman, fig-09-28 00:00:00, fig, 30
7698, Blake, Manager, fig-05-01 00:00:00, 2850, 30
7782, Clark, Manager, fig-06-09 00:00:00, 2450, 10
7788, Scott, analyst, fig-04-19 00:00:00, 3000, 20
00:00:00, King, President, 1991-11-17 5000, 7839, 10
7844, Turner, salesman, fig-09-08 00:00:00, 1500,0, 30

MaxCompute User Guide / 3 SQL

Issue: 20180808 95

7876, Adams, clerk, maid-05-23 00:00:00, 1100, 20
7900 James, clerk, maid-12-03 00:00:00, 950, 30
7902 Ford, analyst, fig-12-03 00:00:00, 3000, 20
7934 Miller, clerk, fig-01-23 00:00:00, 1300, 10
7948, jaccka, clerk, fig-04-12 00:00:00, 5000, 10
7956, welan, clerk, fig-07-20 00:00:00, 2450, 10
7956, tebage, clerk, maid-12-30 00:00:00, 1300, 10

All employees now need to be divided into three groups according to Sal high to low cut, and get

the serial number of the employee's own group.

Select deptno, ename, Sal, ntile (3) over (partition by depno order by
 Sal DESC) as nt3 from EMP;
-- Execution results as follows

| Deptno | ename | Sal | nt3 |

10	jaccka	5000.0	1
10	King	5000.0	1
10	welan	2450.0	2
10	Clark	2450.0	2
10	tebage	1300.0	3
10	Miller	1300.0	3
20	Scott	3000.0	1
20	Ford	3000.0	1
20	Jones	2975.0	2
20	Adams	1100.0	2
20	Smith	800.0	3
30	Blake	2850.0	1
30	Allen	1600.0	1
30	Turner	1500.0	2
30	Martin	1250.0	2
30	ward	1250.0	3
30	James	950.0	3

3.11 UDF

3.11.1 UDF Summary
MaxCompute provides many built-in functions to meet the computing requests of a user and a

user can also create user-defined functions to meet different computing needs. A User Defined

Function (UDF) is similar to an ordinary Built-in Function. MaxCompute provides many built-in

functions to meet the computing requests of you and you can also create user-defined functions to

meet different computing needs. UDF is similar to an ordinary Built-in Function .

If you use Maven to search “odps-sdk-udf” from Maven to get different versions of Java SDK. The

configuration information is shown as follows:

<dependency>
 <groupId>com.aliyun.odps</groupId>
 <artifactId>odps-sdk-udf</artifactId>
 <version>0.20.7-public</version>

http://search.maven.org/
http://search.maven.org/

MaxCompute User Guide / 3 SQL

96 Issue: 20180808

</dependency>

In MaxCompute, you can expand two kinds of UDF:

UDF Class Description

 UDF(User Defined Scalar
Function)

User Defined Scalar Function. The relationship between input
 and output is a one-to-one relationship. Read a row data and
write an output value.

UDTF (User-defined table
valued function)

User-defined table valued functions are used in scenarios
where the calling of one function leads to multiple rows of data
 being output. It is a unique user-defined function which can
return multiple fields, while UDF can only output a return value.

UDAF（User Defined
Aggregation Function）

User Defined Aggregation Function (UDAF), the relationship
between its input and output is one-to-many relationships. That
is to aggregate multiple input records to an output value. It can
be used with Group By clause together. For more information,
see Aggregation Functions.

Note:

• UDF stands for the set of use-defined functions, including User Defined Scalar Function, User

Defined Aggregation Function and User Defined Table Valued Function. In a narrower sense,

it represents user User Defined Scalar Function. The document uses this term frequently and

the readers can judge the specific meaning according to the context .

• If the system prompts that memory is not enough with an UDF involved in the SQL statement,

 configure set odps.sql.udf.joiner.jvm.memory=xxxx; to solve it. The reason

is that the amount of data is too large and there is a data skew, so that the memory size

occupied by task exceeds the default memory size.

MaxCompute UDF supports cross-project sharing. A UDF in project_b can be used in project_a.

 For more information about authorization, see Authorization in Security Guide documentation.

other_project:udf_in_other_project(arg0, arg1) as res from table_t;。

UDF Examples

Please see UDF Example in Quick Start Volume.

MaxCompute User Guide / 3 SQL

Issue: 20180808 97

3.11.2 Java UDF
MaxCompute UDF includes three types: UDF, UDAF, and UDTF.

Parameter and return value type

The data types of UDF supported by MaxCompute SQL include: Basic types: bigint, double,

boolean, datetime, decimal, string, tinyint, smallint, int, float, varchar, binary, and timestamp.

Complex types: array, map, and struct.

• The use of some basic types such as tinyint, smallint, int, float, varchar, binary, and timestamp

by a Java UDF is as follows:

▬ UDTF get ‘signature’ by @Resolve annotation, for example, @Resolve("smallint->

varchar(10)").

▬ UDF gets ‘signature’ by the reflection analysis ‘evaluate’. In this case, the MaxCompute built

-in type and the Java type comply with one-to-one mapping.

▬ UDAF does not yet support new basic types.

• JAVA UDF uses three complex data types — ‘array’, ‘map’, and ‘struct’:

▬ UDTF specify ‘signature’ by @Resolve annotation, for example, @Resolve("array<

string>,struct<a1:bigint,b1:string>,string->map<string,bigint>,

struct<b1:bigint>")Sinliterature, such as: @ resolve ("array <string

>, struct <A1: bigint, b1: String>, string-> Map <string, bigint>,

struct <B1: bigint> ").

▬ UDF maps the input and output types by ‘signature’ of the evaluation method. In this case,

see the mapping between the MaxCompute type and the Java type. In the mapping, ‘array

’ corresponds to ‘java.util.List’; ‘map’ corresponds to ’java.util.Map’; and ‘struct’ corresponds

 to ’com.aliyun.odps.data.Struct’.

▬ UDAF does not yet support.

Note:

• By ‘com.aliyun.odps.data.Struct’, the field name and field type cannot be seen in the

 reflection; therefore, @Resolve annotation is needed. That is to say, if ‘struct’ is

needed in UDF, @Resolve annotation must be added to the UDF class. This annotation

 only affects the reload of the parameter or returned values that include ‘com.aliyun.

odps.data.Struct’.

MaxCompute User Guide / 3 SQL

98 Issue: 20180808

• Currently, only one @Resolve annotation can be provided in one class. Therefore, only

one reload of parameters or returned values that carry ‘struct’ is allowed in a UDF.

MaxCompute data types and Java data types correspond as follows:

MaxCompute Type Java Type

Tinyint java.lang.Byte

Smallint java.lang.Short

Int java.lang.Integer

Bigint java.lang.Long

Float java.lang.Float

Double java.lang.Double

Decimal java.math.BigDecimal

Boolean java.lang.Boolean

String java.lang.String

Varchar com.aliyun.odps.data.Varchar

Binary com.aliyun.odps.data.Binary

Datetime java.util.Date

Timestamp java.sql.Timestamp

Array java.util.List

Map java.util.Map

Struct com.aliyun.odps.data.Struct

Note:

• The corresponding data type in Java and the return value data type is the object. Make sure

that the first letter is uppercase.

• The NULL value in SQL is represented by a NULL reference in Java; therefore, ‘Java primitive

 type’ is not allowed because it cannot represent a NULL value in SQL.

• Here, Java type corresponding to the ‘array’ type is ‘list’.

UDF

To implement UDF, the class ‘com.aliyun.odps.udf.UDF’ must be inherited and the ‘evaluate’

method must be implemented. The ‘evaluate’ method must be non-static public method. The

MaxCompute User Guide / 3 SQL

Issue: 20180808 99

parameter type and return value type of Evaluate method is considered as UDF signature in SQL

. This means that the user can implement multiple evaluate methods in UDF. To call UDF, the

framework matches correct evaluate method according to the parameter type called by UDF.

Classes with the same class name but different functional logic would better appear in different

jar packages. For example, UDF (UDAF/UDTF): udf1, udf2 correspond to the resources udf1.jar

 and udf2.jar respectively, if both jars contain com.aliyun.UserFunction.class, when two udfs are

 used in the same SQL statement , the system randomly loads one of the classes, it causes udf

execution behavior is inconsistent or even failed to compile.

UDF example:

package org.alidata.odps.udf.examples;
import com.aliyun.odps.udf.UDF;

public final class Lower extends UDF
{ public String evaluate(String s) {
if (s == null) { return null; }
return s.toLowerCase(); }

You can achieve UDF initialization and end through void setup(ExecutionContext ctx)

and void close().

The use method of UDF is similar to built-in functions in MaxCompute SQL. For more information,

see Built-in Functions.

UDAF

To implement Java UDAF, you must inherit the class ‘com.aliyun.odps.udf.UDAF’ and the

following interfaces must be implemented:

public abstract class Aggregator implements ContextFunction {
 @Override
 public void setup(ExecutionContext ctx) throws UDFException {

 @Override
 public void close() throws UDFException {

 * Creat aggregation Buffer
 * @return Writable aggregation buffer

 abstract public Writable newBuffer();

 * @param buffer: aggregation buffer
 * @param args: specified parameter to call UDAF in SQL
 * @throws UDFException

 abstract public void iterate(Writable buffer, Writable[] args)
throws UDFException;

MaxCompute User Guide / 3 SQL

100 Issue: 20180808

 * generate final result
 * @param buffer
 * @return final result of Object UDAF
 * @throws UDFException

 abstract public Writable terminate(Writable buffer) throws
UDFException;
 abstract public void merge(Writable buffer, Writable partial) throws
 UDFException;

The three most important interfaces are ‘iterate’, ‘merge’ and ‘terminate’. The main logic of UDAF

relies on these three interfaces. In addition, user needs to realize defined Writable buffer.

Take ‘achieve average calculation’ as an example and next figure describes the realization logical

and computational procedure of this function in MaxCompute UDAF:

In the image displayed preceding, the input data is sliced according to certain size (For the

description of slicing, see MapReduce). The size of each slice is suitable for a worker completed

in appropriate time. This slice size needs to be configured by the user manually.

The calculation process of UDAF is divided into two stages:

• In the first stage, each worker counts the data quantity and total sum in a slice. You can take

the data quantity and total sum in each slice as an intermediate result.

• In the second stage, a worker gathers the information of each slice generated in the first stage.

 In the final output, r.sum / r.count is the average of all input data.

The following is a UDAF encoding example to calculate average:

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

MaxCompute User Guide / 3 SQL

Issue: 20180808 101

import com.aliyun.odps.io.DoubleWritable;
import com.aliyun.odps.io.Writable;
import com.aliyun.odps.udf.Aggregator;
import com.aliyun.odps.udf.UDFException;
import com.aliyun.odps.udf.annotation.Resolve;
@Resolve("double->double")
public class AggrAvg extends Aggregator {
 private static class AvgBuffer implements Writable {
 private double sum = 0;
 private long count = 0;
 @Override
 public void write(DataOutput out) throws IOException {
 out.writeDouble(sum);
 out.writeLong(count);

 @Override
 public void readFields(DataInput in) throws IOException {
 sum = in.readDouble();
 count = in.readLong();

 private DoubleWritable ret = new DoubleWritable();
 @Override
 public Writable newBuffer() {
 return new AvgBuffer();

 @Override
 public void iterate(Writable buffer, Writable[] args) throws
UDFException {
 DoubleWritable arg = (DoubleWritable) args[0];
 AvgBuffer buf = (AvgBuffer) buffer;
 if (arg ! = null) {
 buf.count += 1;
 buf.sum += arg.get();

 @Override
 public Writable terminate(Writable buffer) throws UDFException {
 AvgBuffer buf = (AvgBuffer) buffer;
 if (buf.count == 0) {
 ret.set(0);
 } else {
 ret.set(buf.sum / buf.count);

 return ret;

 @Override
 public void merge(Writable buffer, Writable partial) throws
UDFException {
 AvgBuffer buf = (AvgBuffer) buffer;
 AvgBuffer p = (AvgBuffer) partial;
 buf.sum += p.sum;
 buf.count += p.count;

Note:

• For Writable’s readFields function, because the partial writable object can be reused, the

 same object readFields function is called multiple times. This function expects the entire

MaxCompute User Guide / 3 SQL

102 Issue: 20180808

 object to be reset each time it is called. If the object contains a collection, it needs to be

emptied.

• The use method of UDAF is similar to aggregation functions in MaxCompute SQL. For more

information, see Aggregation Functions.

• How to run UDTF is similar to UDF. For more information, see Java UDF Development.

UDTF

Java UDTF class needs to inherit the class ‘com.aliyun.odps.udf.UDTF’. This class has four

interfaces:

Interface Definition Description

public void setup(ExecutionC
ontext ctx) throws UDFExcepti
on

The initialization method to call user-defined initialization
behavior before UDTF processes the input data. ‘Setup’ will be
called first and once for each worker.

public void process(Object[]
args) throws UDFException

The framework calls this method. Each record in SQL calls ‘
process’ once accordingly. The parameters of ‘process’ are the
specified UDTF input parameters in SQL. The input parameters
 are passed in as Object[], and the results are output through
 ‘forward’ function. The user needs to call ‘forward’ in the ‘
process’ function by itself to determine the output data.

public void close() throws
UDFException

The termination method of UDTF. The framework calls this
method, and only once; that is, after processing the last record.

public void forward(Object …o
) throws UDFException

The user calls the ‘forward’ method to output data. Each ‘
forward’ represents the output of a record, corresponding to the
column specified by UDTF 'as’ clause in SQL.

Next a UDTF program example is shown as follows:

package org.alidata.odps.udtf.examples;
 import com.aliyun.odps.udf.UDTF;
 import com.aliyun.odps.udf.UDTFCollector;
 import com.aliyun.odps.udf.annotation.Resolve;
 import com.aliyun.odps.udf.UDFException;
 // TODO define input and output types, e.g., "string,string->
string,bigint".
 @Resolve("string,bigint->string,bigint")
 public class MyUDTF extends UDTF {
 @Override
 public void process(Object[] args) throws UDFException {
 String a = (String) args[0];
 Long b = (Long) args[1];
 for (String t: a.split("\\s+")) {
 forward(t, b);

MaxCompute User Guide / 3 SQL

Issue: 20180808 103

Note:

The preceding example is for reference only. How to run UDTF is similar to UDF. For more

information, see Java UDF Development.

In SQL you can use this UDTF as following example. Suppose that the register function name in

MaxCompute is ‘user_udtf’.

select user_udtf(col0, col1) as (c0, c1) from my_table;

Suppose the values of col0 and col1 in my_table are:

| col0 | col1 |

| A B | 1 |
| C D | 2 |

Then the ‘SELECT’ result is:

| c0 | c1 |

A	1
B	1
C	2
D	2

UDTF Instructions for Use

In SQL, the common use method of UDTF is shown as follows:

select user_udtf(col0, col1) as (c0, c1) from my_table;
 select user_udtf(col0, col1, col2) as (c0, c1) from
 (select * from my_table distribute by key sort by key) t;
 select reduce_udtf(col0, col1, col2) as (c0, c1) from
 (select col0, col1, col2 from
 (select map_udtf(a0, a1, a2, a3) as (col0, col1, col2)
from my_table) t1
 distribute by col0 sort by col0, col1) t2;

But using UDTF has the following limitations:

MaxCompute User Guide / 3 SQL

104 Issue: 20180808

• Other expressions are not allowed in the same SELECT clause:

select value, user_udtf(key) as mycol ...

• UDTF cannot be nested.

select user_udtf1(user_udtf2(key)) as mycol...

• It cannot be used with ‘group by / distribute by / sort by’ in the same SELECT clause.

select user_udtf(key) as mycol ... group by mycol

Other UDTF Examples

In UDTF, you can read MaxCompute Resources. Next introduce how to read MaxCompute

resources by using UDF:

1. Write the UDF program and compile it successfully. Then export it as a jar package

(udtfexample1.jar).

package com.aliyun.odps.examples.udf;
 import java.io.BufferedReader;
 import java.io.IOException;
 import java.io.InputStream;
 import java.io.InputStreamReader;
 import java.util.Iterator;
 import com.aliyun.odps.udf.ExecutionContext;
 import com.aliyun.odps.udf.UDFException;
 import com.aliyun.odps.udf.UDTF;
 import com.aliyun.odps.udf.annotation.Resolve;

 * project: example_project
 * table: wc_in2
 * partitions: p2=1,p1=2
 * columns: colc,colb

 @Resolve("string,string->string,bigint,string")
 public class UDTFResource extends UDTF {
 ExecutionContext ctx;
 long fileResourceLineCount;
 long tableResource1RecordCount;
 long tableResource2RecordCount;
 @Override
 public void setup(ExecutionContext ctx) throws UDFException {
 this.ctx = ctx;
 try {
 InputStream in = ctx.readResourceFileAsStream("file_resource.txt
");
 BufferedReader br = new BufferedReader(new InputStreamReader(in
));
 String line;
 fileResourceLineCount = 0;
 while ((line = br.readLine()) ! = null) {
 fileResourceLineCount++;

 br.close();

MaxCompute User Guide / 3 SQL

Issue: 20180808 105

 Iterator<Object[]> iterator = ctx.readResourceTable("table_reso
urce1").iterator();
 tableResource1RecordCount = 0;
 while (iterator.hasNext()) {
 tableResource1RecordCount++;
 iterator.next();

 iterator = ctx.readResourceTable("table_resource2").iterator();
 tableResource2RecordCount = 0;
 while (iterator.hasNext()) {
 tableResource2RecordCount++;
 iterator.next();

 } catch (IOException e) {
 throw new UDFException(e);

@Override
public void process(Object[] args) throws UDFException {
 String a = (String) args[0];
 long b = args[1] == null ? 0 : ((String) args[1]).length();
 forward(a, b, "fileResourceLineCount=" + fileResourceLineCount + "|
tableResource1RecordCount="
 + tableResource1RecordCount + "|tableResource2RecordCount=" +
tableResource2RecordCount);

2. Add resources in MaxCompute:

Add file file_resource.txt;
Add jar udtfexample1.jar;
Add table table_resource1 as table_resource1;
Add table table_resource2 as table_resource2;

3. Create UDTF (my_udtf) in MaxCompute:

create function mp_udtf as com.aliyun.odps.examples.udf.UDTFResource
 using
'udtfexample1.jar, file_resource.txt, table_resource1, table_reso
urce2';

4. Create the resource tabkes: table_resource1, table_resource2 and the physical table tmp1 in

MaxCompute. Insert corresponding data into the tables.

5. Run this UDF:

select mp_udtf("10","20") as (a, b, fileResourceLineCount) from tmp1
;
Return result:

| a | b | fileResourceLineCount |

| 10 | 2 | fileResourceLineCount=3|tableResource1RecordCount=0|
tableResource2RecordCount=0 |

MaxCompute User Guide / 3 SQL

106 Issue: 20180808

| 10 | 2 | fileresourcelinecount = 3 | tableResource1RecordCount = 0
 | tableResource2RecordCount = 0 |

UDTF Examples—Complex Data Types

The code in the following example defines a UDF with three overloads. The first overload uses

‘array’ as the parameter; the second uses ‘map’ as the parameter; and the third uses ‘struct’ as

the parameter. Since the third overload uses ‘struct’ as the parameter or returned value, the UDF

class must has the @Resolve annotation to specify the specific type of ‘struct’.

@Resolve("struct<a:bigint>,string->string")
public class UdfArray extends UDF {
public String evaluate(List<String> vals, Long len) {
 return vals.get(len.intValue());

 public String evaluate(Map<String,String> map, String key) {
 return map.get(key);

 public String evaluate(Struct struct, String key) {
 return struct.getFieldValue("a") + key;

Users can pass in the complex data type in the UDF:

create function my_index as 'UdfArray' using 'myjar.jar';
select id, my_index(array('red', 'yellow', 'green'), colorOrdinal) as
color_name from colors;

Hive UDF Compatibility Example

MaxCompute 2.0 supports Hive-style UDFs. Some Hive UDFs and UDTFs can be used directly in

 MaxCompute.

Note:

Currently, the compatible Hive version is 2.1.0, and the corresponding Hadoop version is 2.7.2.

UDFs that are developed in other versions of Hive/Hadoop may need to be recompiled using this

Hive/Hadoop version.

Example:

package com.aliyun.odps.compiler.hive;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInsp
ectorFactory;
import java.util.ArrayList;
import java.util.List;
import java.util.Objects;
public class Collect extends GenericUDF {

MaxCompute User Guide / 3 SQL

Issue: 20180808 107

 @Override
 public ObjectInspector initialize(ObjectInspector[] objectInspectors
) throws UDFArgumentException {
 if (objectInspectors.length == 0) {
 throw new UDFArgumentException("Collect: input args should >= 1
");

 for (int i = 1; i < objectInspectors.length; i++) {
 if (objectInspectors[i] ! = objectInspectors[0]) {
 throw new UDFArgumentException("Collect: input oi should be
the same for all args");

 return ObjectInspectorFactory.getStandardListObjectInspector(
objectInspectors[0]);

 @Override
 public Object evaluate(DeferredObject[] deferredObjects) throws
HiveException {
 List<Object> objectList = new ArrayList<>(deferredObjects.length);
 for (DeferredObject deferredObject : deferredObjects) {
 objectList.add(deferredObject.get());

 return objectList;

 @Override
 public String getDisplayString(String[] strings) {
 return "Collect";

Note:

For the use of Hive UDF, see:

• https://cwiki.apache.org/confluence/display/Hive/HivePlugins

• https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide+UDTF

• https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy

The UDF can pack any type and amount of parameters into array to output. Suppose that the

output jar package is named test.jar:

--Add resource
Add jar test.jar;
--Create function
CREATE FUNCTION hive_collect as 'com.aliyun.odps.compiler.hive.Collect
' using 'test.jar';
--Use function
set odps.sql.hive.compatible=true;
select hive_collect(4y,5y,6y) from dual;

| _c0 |

https://cwiki.apache.org/confluence/display/Hive/HivePlugins
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide+UDTF
https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy

MaxCompute User Guide / 3 SQL

108 Issue: 20180808

| [4, 5, 6] |

Note:

The UDF can support all data types, including array, map, struct, and other complex types.

Note:

• MaxCompute’s add jar command permanently creates a resource in the project, so you must

specify the jar when creating an UDF, but you cannot automatically add all jars to the classpath

.

• To use compatible Hive UDF, add set odps.sql.hive.compatible=true; in front of

the SQL statement, and submit it with SQL statement.

• When using compatible Hive UDFs, you must pay attention to Java sandbox restrictions of

MaxCompute.

3.11.3 Python UDF
The Maxcompute UDF consists of UDF, UDAF, and UDTF functions, this article focuses on how to

 implement these three functions through Python.

RESTRICTED ENVIRONMENT

The Python version of MaxCompute UDF is 2.7 and executes user code in sandbox mode; that is,

the code is executed in a restricted environment.

• Read and Write local files

• Promoter Process

• Start thread

• Use SOCKET to communicate

• Other system calls

Because of these restrictions, user-uploaded code must all be implemented by pure Python, and

the C extension module is disabled.

In addition, not all modules are available in the Python standard library, and modules that involve

these features are disabled. Description of available modules in the standard library:

• All modules implemented by pure Python are available.

• The following modules are available in C-implemented extended modules.

▬ array

MaxCompute User Guide / 3 SQL

Issue: 20180808 109

▬ audioop

▬ binascii

▬ _bisect

▬ cmath

▬ _codecs_cn

▬ _codecs_hk

▬ _codecs_iso2022

▬ _codecs_jp

▬ _codecs_kr

▬ _codecs_tw

▬ _collections

▬ cStringIO

▬ datetime

▬ _functools

▬ future_builtins

▬ _hashlib

▬ _heapq

▬ itertools

▬ _json

▬ _locale

▬ _lsprof

▬ math

▬ _md5

▬ _multibytecodec

▬ operator

▬ _random

▬ _sha256

▬ _sha512

▬ _sha

▬ _struct

▬ strop

▬ time

MaxCompute User Guide / 3 SQL

110 Issue: 20180808

▬ unicodedata

▬ _weakref

▬ cPickle

• Some modules have limited functionality. For example, the sandbox limits the degree to which

 user code can write data to the standard output and the standard error output; that is, sys.

stdout/sys.stderr can write 20 KB at most; otherwise, the excessive characters will be ignored.

Third-party Libraries

Common third-party libraries are installed in the operating environment to supplement the

standard library. The supported third-party libraries also include: NumPy.

Note:

The use of third-party libraries is also subject to 'prohibit local', 'network I/O', and other

restrictions. Therefore, APIs that have such functions are also prohibited in a third-party library.

Parameters and return value types

The parameters and return values are specified as follows:

@odps.udf.annotate(signature)

Maxcompute that is currently supported by the python UDF SQL data types include bigint, String

, double, Boolean, and datetime. The SQL statement must determine the parameter type and the

return value type for all functions before execution. So for Python, a dynamically-typed language,

you need to specify the function signature by adding a decorator to the UDF class.

The function signature is specified by a string. The syntax is as below:

Arg_type_list "-> type_list
Arg_type_list: db_list | '*' |''
Db_list: [type_list', '] Type
'bigint' | 'string' | 'double' | 'boolean' | 'datetime'

• The left side of the arrow indicates the type of the parameter and the right side indicates the

type of the returned value.

• Only the UDTF returned value can be multiple columns, while UDF and UDAF can only return

one column.

• ‘*’ represents varargs. By using varargs, UDF/UDTF/UDAF can match any type of parameter.

MaxCompute User Guide / 3 SQL

Issue: 20180808 111

The legitimate signature example is as follows:

The 'bigint, double-> string' # parameter is bigint, double, and the
return value is string

The 'bigint, Boolean-> string, datetime '# udtf parameter is bigint,
Boolean, the return value is string, datetime

'*-> String' # variable length parameter, input parameter arbitrary,
return value string

The '-> doubles' # parameter is empty and the return value is double

At the query semantic parsing stage, unqualified signatures will be checked out, and an error

is returned. The execution would then be banned. During execution, the UDF parameter will be

passed to the user as the type specified by the function signature. The type of the user returned

value must be consistent with the type specified by the function signature; otherwise, an error is

returned. MaxCompute The SQL data type corresponds to the Python type as follows:

ODPS SQL

type

Bigint String Double Boolean Datetime

Python Type int str float bool Int

Note:

• Datetime type is passed to user code in the form of an int, with a value of epoch UTC Number

 of milliseconds from time to date. The user can deal with ‘datetime’ type through the ‘datetime

’ module in the Python standard library.

• NULL corresponds to NONE in Python.

In addition, the parameter of odps.udf.int(value[, silent=True]) has been adjusted. Parameter ‘

silent’ is added. . When ‘silent’ is true, if the value cannot be converted into ‘int’, report no error

and return NONE.

UDF

Implementation of the python UDF is very simple, just need to define a new-style Class, and

implements the evaluate method. The example is as follows:

From ODPS. UDF import quilate

@ Quilate ("bigint, bigint-> bigint ")
Class myplus (object):

 Def evaluate (self, arg0, arg1):
 If none in (arg0, arg1):

MaxCompute User Guide / 3 SQL

112 Issue: 20180808

 Return none
 Return arg0 + arg1

Note:

The Python UDF must specify the function signature through ‘annotate’.

UDAF

• class odps.udf.BaseUDAF: inherit this class to implement a Python UDAF.

• BaseUDAF.new_buffer(): implement this method and return the median ‘buffer’ of the

aggregate function. Buffer must be mutable Object (such as list, dict), and the size of the buffer

 should not increase with the amount of data, in the case of limit, Buffer The size after Marshal

should not exceed 2 MB.

• BaseUDAF.iterate(buffer[, args, ...]): this method aggregates ‘args’ into the median ‘buffer’.

• BaseUDAF.merge(buffer, pbuffer): this method aggregates two median buffers; that is,

aggregate ‘pbuffer merger’ into ‘buffer’. Merge into buffer.

• BaseUDAF.terminate(buffer): this method converts the median ‘buffer’ into the MaxCompute

SQL basic types.

An example of an average value of UDAF is as follows:

@ Attenuate ('double-> Doubles ')
Class Average (baseudag):

 Def new_buffer (Self):
 Return [0, 0]

 Def iterate (self, buffer, number):
 If number is not none:
 Buffer [0] + = Number
 Buffer [1] + = 1

 Def Merge (self, buffer, pbuffer):
 Buffer [0] + = pbuffer [0]
 Buffer [1] + = pbuffer [1]

 Def terminate (self, buffer):
 If buffer [1] = 0:
 Return 0.0
 return 0.0
return buffer[0] / buffer[1]

UDTF

• class odps.udf.BaseUDTF: the basic class of Python UDTF. Users inherit this class and

implement methods such as process, close, etc.

MaxCompute User Guide / 3 SQL

Issue: 20180808 113

• BaseUDTF.init(): the initialization method. If the inherited class implements this method, then

it must call the initialization method of the basic class ‘super(BaseUDTF, self).init()’ from the

beginning. .

The ‘init’ method will only be called once during the entire UDTF lifecycle; that is, before the

first record is processed. When the UDTF needs to save the internal state, all states can be

initialized in this method.

• Baseudtf. Process ([ARGs,...]): This method by maxcompute The framework calls this method

. Each record in SQL calls ‘process’ once accordingly. The parameters of ‘process’ are the

specified UDTF input parameters in SQL.

• BaseUDTF.forward([args, ...]): the UDTF output method, which is called by user codes. Each

 time ‘forward’ is called, a record is output. The parameters of ‘forward’ are the UDTF output

parameters specified in SQL.

• BaseUDTF.close(): the termination method of UDTF. This method is called by the

MaxCompute SQL framework and only to be called once; that is, after processing the last

record.

Examples of udtf are:

Coding: UTF-8
Explode. py

From ODPS. UDF import quilate
From ODPS. UDF import baseudtf

@ Attenuate ('string-> string ')
Class explode (baseudtf):
 "Output string comma-separated to multiple records

 Def process (self, ARG):
 Props = Arg. Split (',')
 For P in props:
 self.forward(p)

Note:

Python A Python UDTF can also specify the parameter type or returned value type without

adding ‘annotate’. In this case, the function can match any input parameter in SQL. The returned

value type cannot be deduced, but all output parameters will be considered to be ‘string’ type. So

when ‘forward’ is called, all output values must be converted into ‘str’ type.

MaxCompute User Guide / 3 SQL

114 Issue: 20180808

Reference Resources

Python UDF can reference resource files through the ‘odps.distcache’ module. Currently,

referencing file resources and table resources is supported.

• odps.distcache.get_cache_file(resource_name)

▬ Returns the resource content for the specified name. resource_name: ‘str’ type, correspond

ing to the existing resource name in the current project. If the resource name is invalid or

has no responding resources, return an error.

▬ The return value is file-like object The caller is obliged to call the close method to release

the open resource file after this object has been used.

The example of using ‘get_cache_file’ is as follows:

@ Attenuate ('bigint-> string ')
Class distcacheexample (object):

Def _ init _ (Self):
 Cache_file = Porter ')
 KV = {}
 For line in cache_file:
 Line = line. Strip ()
 If not line:
 Continue
 K, V = line. Split ()
 KV [int (k)] = V
 Cache_file.close ()
 Self. KV = kV

Def evaluate (self, ARG):
 Return self. KV. Get (ARG)

• odps.distcache.get_cache_table(resource_name)

▬ Returns the contents of the specified resource table. resource_name: ‘str’ type, correspond

ing to the existing resource table name in the current project. If the resource name is invalid

or has no responding resources, return an error.

▬ Returned value: returned value is ‘generator’ type. The caller obtain the table content

through traversal. Each traversal has a record stored in the table in the form of a tuple.

The example of using ‘get_cache_table’ is as follows:

From ODPS. UDF import quilate
From ODPS. distcache import fig

@ Attenuate ('-> string ')
Class maid (object):
 Def _ init _ (Self):
 Self. Records = List ('udf _ test '))
 Self. Counter = 0

MaxCompute User Guide / 3 SQL

Issue: 20180808 115

 Self. Ln = Len (self. Records)

 Def evaluate (Self):
 if self.counter > self.ln - 1:
 Return none
 Ret = self. Records [self. Counter]
 Self. Counter + = 1
 Return STR (RET)

3.12 Appendix

3.12.1 Escape Characters
In MaxCompute SQL, a string constant can be set off by single (‘) or double quotation marks (“).

The string set off by single quotation marks can contain double quotation marks or the string set

 off by double quotation marks can contain single quotation marks. Otherwise, you must use an

escape character to indicate it.

The following expressions are acceptable:

"I'm a happy manong."
'I\'m a happy manong.'

In MaxCompute SQL, ‘\’ is a kind of escape character used to express the special character in a

string or express its followed characters as characters themselves. To read a string constant, if ‘\’

is followed by three effective 8 hexadecimal digits and corresponding range is from 001 to 177,

the system converts it to corresponding characters according to an ASCII value.

The following table lists some special escape characters:

Escape Character

\b backspace

\t tab

\n newline

\r carriage-return

\’ single quotation mark

\” double quotation marks

\ \ Backslash

\; Semicolon

\Z control-Z

MaxCompute User Guide / 3 SQL

116 Issue: 20180808

Escape Character

\0 or \00 Terminator

select length('a\tb') from dual;

The result is 3, which indicates that three characters are in the string. The ‘\t’ is considered as one

character. Other following characters are expressed as themselves.

select 'a\ab',length('a\ab') from dual;

The result: ‘aab’, 3. ‘\a’ is expressed as general ‘a’.

3.12.2 Like Usage
In LIKE matching, ‘%’ indicates matching any multiple characters. The ‘_’ indicates matching a

single character. To match ‘%’ or ‘_’ itself, you must escape it. The ‘\%’ matches the character ‘%’

and ‘_’ matches the character ‘_’.

 'abcd' like 'ab%' -- true
 'abcd' like 'ab\%' -- false
 'ab%cd' like 'ab\\%%' -- true

Note:

MaxCompute SQL only supports the UTF-8 character set. If the data is encoded in another

format, it is possible that the calculation result is not correct.

3.12.3 Regular Expression
The regular expressions in MaxCompute SQL use the PCRE standard, matched by characters.

The metacharacter to be supported is as follows:

Metacharacter Description

^ Top of line (TOL)

$ End of line

. Any character

* Matches for zero or multiple times

+ Matches for once or multiple times

? Matches for zero time or once

? Matches modifier. When this character follows any other constraints (*,
+,? {n}, {n, {n, m},}, the match mode is non greedy. Non greedy mode

MaxCompute User Guide / 3 SQL

Issue: 20180808 117

Metacharacter Description

 matches strings as little as possible, while the default greedy mode
matches strings as more as possible.

A | B A or B

(abc)* Matches ‘abc’ for zero or multiple times

{n} or {m, n} Matching times

[ab] Matches any character in the brackets. In the example, it is to match a
or b.

[a-d] Matches any character in a, b, c, and d.

[^ab] ^ indicats ‘non’, to match any character which is not a and b.

[::] See POSIX character group in next table.

\ Escape character

\n N is a digit from 1 to 9 and is backward referenced.

\d digits

\ D Non-number

POSIX character group:

POSIX Character

Group

Description Range

[[:alnum:]] letter and digit characters [a-zA-Z0-9]

[[:alpha:]] letter [a-zA-Z]

[[:ascii:]] ASCII character [\x00-\x7F]

[[:blank:]] Space character and tabs [\t]

[[:cntrl:]] Control character [\x00-\x1F\x7F]

[[:digit:]] Digit character [0-9]

[[:graph:]] Characters except white space
characters

[\x21-\x7E]

[[:lower:]] Lowercase characters [a-z]

[[:print:]] [:graph:] and white space
characters

[\x20-\x7E]

[[:punct:]] punctuation [][!” [][!”#$%&’()*+,./:;<=>? @\^_
`{|}~-]

MaxCompute User Guide / 3 SQL

118 Issue: 20180808

POSIX Character

Group

Description Range

[[:space:]] White space characters [\t\r\n\v\f]

[[:upper:]] Uppercase characters [A-Z]

[[:xdigit:]] hexadecimal character [A-Fa-f0-9]

Because the system uses a backslash () as an escape character, all “\” which appear in the

regular expression pattern perform two escapes. For example, the regular expression needs

 to match the string “a+b”. The “+” is a special character in regular expressions and must be

expressed by escape. The expression in a regular engine is “a\+b”, because the system needs to

explain a layer of escape, the expression which can match this string is “a\\+b”.

Suppose that the table test_dual is:

select 'a+b' rlike 'a\\\+b' from test_dual;

| _c1 |

| true |

In extreme cases, to match the character “ \”, because “ \” is a special character in a regular

engine, it needs to be expressed by “\”, while the system does an escape for it again, it is written

as “\\”.

select 'a\\b', 'a\\b' rlike 'a\\\\b' from test_dual;

| _c0 | _c1 |

| a\b | true |

Note:

To write a\\b in MaxCompute SQL, and the output result is a\b.

If TAB exists in a string, when the system reads these two characters \t, they are already saved

as one character by the system. Therefore, in regular expression, it is a general character.

select 'a\tb', 'a\tb' rlike 'a\tb' from test_dual;

| _c0 | _c1 |

MaxCompute User Guide / 3 SQL

Issue: 20180808 119

| a b | true |

3.12.4 Reserved Words
This document shows all reserved words in MaxCompute SQL.

Note:

• These cannot be used to name a table, column, or partition; otherwise an error occurs.

• Reserved words are not case sensitive.

 % & && () * +
 - . / ; < <= <>
 ADD AFTER ALL
 ALTER ANALYZE AND ARCHIVE ARRAY AS ASC
 BEFORE BETWEEN BIGINT BINARY BLOB BOOLEAN BOTH DECIMAL
 BUCKET BUCKETS BY CASCADE CASE CAST CFILE
 CHANGE CLUSTER CLUSTERED CLUSTERSTATUS COLLECTION COLUMN COLUMNS
 COMMENT COMPUTE CONCATENATE CONTINUE CREATE CROSS CURRENT
 CURSOR DATA DATABASE DATABASES DATE DATETIME DBPROPERTIES
 DEFERRED DELETE DELIMITED DESC DESCRIBE DIRECTORY DISABLE
 DISTINCT DISTRIBUTE DOUBLE DROP ELSE ENABLE END
 ESCAPED EXCLUSIVE EXISTS EXPLAIN EXPORT EXTENDED EXTERNAL
 FALSE FETCH FIELDS FILEFORMAT FIRST FLOAT FOLLOWING
 FORMAT FORMATTED FROM FULL FUNCTION FUNCTIONS GRANT
 GROUP HAVING HOLD_DDLTIME IDXPROPERTIES IF IMPORT IN
 INDEX INDEXES INPATH INPUTDRIVER INPUTFORMAT INSERT INT
 INTERSECT INTO IS ITEMS JOIN KEYS LATERAL
 LEFT LIFECYCLE LIKE LIMIT LINES LOAD LOCAL
 LOCATION LOCK LOCKS LONG MAP MAPJOIN MATERIALIZED
 MINUS MSCK NOT NO_DROP NULL OF OFFLINE
 ON OPTION OR ORDER OUT OUTER OUTPUTDRIVER
 OUTPUTFORMAT OVER OVERWRITE PARTITION PARTITIONED PARTITIONP
ROPERTIES PARTITIONS
 PERCENT PLUS PRECEDING PRESERVE PROCEDURE PURGE RANGE
 RCFILE READ READONLY READS REBUILD RECORDREADER RECORDWRITER
 REDUCE REGEXP RENAME REPAIR REPLACE RESTRICT REVOKE
 RIGHT RLIKE ROW ROWS SCHEMA SCHEMAS SELECT
 SEMI SEQUENCEFILE SERDE SERDEPROPERTIES SET SHARED SHOW
 SHOW_DATABASE SMALLINT SORT SORTED SSL STATISTICS STORED
 STREAMTABLE STRING STRUCT TABLE TABLES TABLESAMPLE TBLPROPERTIES
 TEMPORARY TERMINATED TEXTFILE THEN TIMESTAMP TINYINT TO
 TOUCH TRANSFORM TRIGGER TRUE UNARCHIVE UNBOUNDED UNDO
 UNION UNIONTYPE UNIQUEJOIN UNLOCK UNSIGNED UPDATE USE
 USING UTC UTC_TMESTAMP VIEW WHEN WHERE WHILE DIV

MaxCompute User Guide / 4 MapReduce

120 Issue: 20180808

4 MapReduce

4.1 Summary

4.1.1 MapReduce
MaxCompute provides three versions of MapReduce programming interface.

• MaxCompute MapReduce：Native interface for MaxCompute, which is faster than other

interfaces. It is more convenient to develop a program without exposing file system.

• MR2 (Extended MapReduce): The extension to MaxCompute, which supports more complex

job scheduling logic. Map/Reduce is implemented in the same manner as the MaxCompute

native interface.

• Hadoop compatible version: highly compatible with Hadoop MapReduce , but not compatible

with MaxCompute native interface and MR2.

The above three versions are basically the same in the basic concepts, Job submission, input and

output, and resource, and the difference is the Java SDK. This document introduces the principle

of MapReduce. For more detailed description of MapReduce, see Hadoop MapReduce Course.

Note:

You are not yet able to read or write data from the external tables through MapReduce .

Scenarios

MapReduce was originally proposed by Google as a distributed data processing model and is now

widely applied in multiple business scenarios. The example is as follows:

• Search: web crawl, flip index, PageRank.

• Web access log analytics:

▬ Analize and mine the web access, shopping behavior characteristics to achieve personaliz

ed recommendation.

▬ Analyze user's access behavior.

• Statistics and analysis for text:

▬ The Wordcount and TFIDF analysis of Mo Yan novels.

▬ Reference analysis and statistics of academic papers and patent documents.

▬ Wikipedia data analysis, etc.

http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html
https://help.aliyun.com/document_detail/27876.html
http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 121

• Massive Data Mining: unstructured data, spatial and temporal data, image data mining.

• Machine Learning: supervised learning, unsupervised learning, classification algorithm such as

 decision tree, SVM, etc.

• Natural Language Processing:

▬ Training and forecasting based on big data.

▬ Based on the corpus to construct the current matrix of words, frequent itemset data mining,

repeated document detection and so on.

• Advertisement recommendations: user-click (CTR) and purchase behavior (CVR) forecasts.

Processing Process

The processing data process of MapReduce is divided into two stages: Map and Reduce . You

execute Map first, and then Reduce. The processing logic of Map and Reduce is defined by a

user, but must comply with the MapReduce framework protocol. The processing process is as

follows:

1. Before executing Map, the input data must be sliced, that is, input data is divided into blocks

of equal size. Each block is processed as the input of a single Map Worker, so that multiple

Map Workers can work simultaneously.

2. After the slice is split, multiple Map Worker can work together. Each Map Worker performs

 computing after reading the data and output the result to Reduce. Because Map Worker

 outputs the data, it needs to specify a key for each output record. The value of this Key

determines which Reduce Worker the data is sent to. The relationship between key value

and Reduce Worker is an any-to-one relationship. Data with the same key is sent to the same

Reduce Worker, and a single Reduce Worker may receive data of multiple key values.

3. Before Reduce stage, MapReduce framework sorts the data according to their Key values, and

make sure data with same Key value is grouped together. If a user specifies Combiner, the

framework calls Combiner to aggregate the same key data. The user must define the logic of

Combiner. Compared to the classical MapReduce framework, the input parameter and output

parameter of Combiner must be consistent with Reduce in MaxCompute. This processing is

generally called Shuffle.

4. At Reduce stage, data with the same key is shuffled to the same Reduce Worker. A Reduce

 Worker receives data from multiple Map Workers. Each Reduce Worker executes Reduce

operation for multiple records of the same key. Multiple records of the same key then become

a value through Reduce processing.

MaxCompute User Guide / 4 MapReduce

122 Issue: 20180808

Note:

A brief introduction to the MapReduce framework is provided above. For more details, see

relevant documents.

The following example uses WordCount to explain the stages of MaxCompute MapReduce.

Assume there is a text named ‘a.txt’, where each row is indicted by a number, and the frequency

of appearance of each number needs to be counted. The number in the text is called ‘Word’

and the number appearance occurrence is called Count. To complete this function though

MaxCompute MapReduce, the following figure details the steps required:

Procedure:

1. First, text is sliced and the data in each slice is input into a single Map Worker.

2. Map processes the input. Once Map gets a number, it sets the Count as 1. Then, output <Word

, Count>queues. and take ‘Word’ as the Key of output data.

3. In the initial actions of Shuffle stage, the output of each Map Worker is sorted according to Key

 value (value of Word). Then the Combine operation is executed after sorting to accumulate

the Count of same Key value (Word value) and constitute a new <Word, Count> queue. This

process is called combiner sorting.

4. In the later actions of Shuffle, data is transmitted to Reduce. Reduce Worker sorts the data

based on Key value again after receiving data.

5. At the time of processing data, each Reduce Worker adopts that same logic as that of

Combiner by accumulating Count with same Key value (Word value) to get the output

6. result.

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 123

Note:

Because data in MaxCompute are stored in tables, the input and output of MaxCompute

MapReduce can only be a table. User-defined output is not allowed and the corresponding file

system interface is not provided.

4.1.2 Extended MapReduce
The traditional MapReduce model requires that the data must be loaded to the distributed file

 system (such as HDFS or MaxCompute table) after each round of MapReduce operation.

However, a general MapReduce application usually consists of multiple MapReduce jobs, and

 each job output needs to be written to a disk. The following Map task is an example of a task

that was only to read data, prepared for subsequent Shuffle stage, but which actually resulted in

redundant I/O operations.

The calculation scheduling logic of MaxCompute can support more complex programming

paradigm. In the preceding scenario, the next Reduce operation can be executed after Reduce

operation and inserting a Map operation is not necessary. In this way, MaxCompute provides an

extensional MapReduce model, that is, numerous Reduce operations can follow a Map operation,

such as Map>Reduce> Reduce.

Hadoop Chain Mappper/Reducer also supports analogous serial Map or Reduce operations, but

has major differences compared with the extensional MaxCompute (MR2) model.

The Hadoop Chain Mapper/Reducer is based on traditional MapReduce model, and can only add

one or multiple Mapper operations (it is not allowed to add Reducer operations) after the original

Mapper or Reducer. . The benefits of extended MapReduce include that user can reuse previous

 business logic of Mapper and can split one Map stage or Reduce stage into multiple Mapper

stages. The underlying scheduling and I/O model are not changed essentially.

Compared with MaxCompute , MR2 is basically consistent in the way map/reduce functions are

written. The main difference is in performance. For more information, see Extended MapReduce

 example.

4.1.3 Open-source MapReduce
MaxCompute offers a set of native MapReduce programming models and interfaces. The inputs

and outputs for these interfaces are MaxCompute tables, and data is organized for processing in

record format.

MaxCompute User Guide / 4 MapReduce

124 Issue: 20180808

 However, MaxCompute APIs differ significantly from APIs for the Hadoop framework. Previously

, if you wanted to migrate your Hadoop MapReduce jobs to MaxCompute, you needed to first

rewrite the MapReduce code, compile, and debug the code using MaxCompute APIs, compress

the final code into a JAR package, and finally upload the package to the MaxCompute platform.

This process is tedious and requires a lot of development and testing efforts. If you do not need

 to modify or modify the original Hadoop MapReduce code partially, running it in MaxCompute

console is the best solution.

Now, the MaxCompute platform provides a plug-in that allows you to adapt Hadoop MapReduce

code to MaxCompute MapReduce specifications. MaxCompute offers a degree of flexibility

regarding binary-level compatibility for Hadoop MapReduce jobs. This means that, without

modifying the code, you can specify configurations to directly run original Hadoop MapReduce

JAR packages on MaxCompute. You can download the development plug-in to get started. This

plug-in is currently in the testing stage and does not support custom comparators or key types.

In the following example, a WordCount program is used to introduce the basic usage of the plug-

in.

Note:

• For more information on open-source compatibility, see Open-source SDK compatibility.

• For more information about the Hadoop MapReduce SDK, see the Official MapReduce

documentation.

Download the HadoopMR Plug-in

Click here to download the plug-in named hadoop2openmr-1.0.jar.

Note:

This Jar package contains the dependencies with Hadoop 2.7.2. Do not include Hadoop

dependencies in the Jar packages of your jobs to avoid version conflicts.

Prepare Jar package

Compile and export the WordCount JAR package named wordcount_test.jar. The WordCount

program source code is as follows:

package com.aliyun.odps.mapred.example.hadoop;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;

http://repo.aliyun.com/download/hadoop2openmr-1.0.jar
http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html
http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html
http://repo.aliyun.com/download/hadoop2openmr-1.0.jar

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 125

import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
import java.util.StringTokenizer;
public class WordCount {
 public static class TokenizerMapper
 extends Mapper<Object, Text, Text, IntWritable>{
 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();
 public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
 StringTokenizer itr = new StringTokenizer(value.toString
());
 while (itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 context.write(word, one);
 }

 public static class IntSumReducer
 extends Reducer<Text,IntWritable,Text,IntWritable> {
 private IntWritable result = new IntWritable();
 public void reduce(Text key, Iterable<IntWritable> values,
 Context context
) throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();

 result.set(sum);
 context.write(key, result);

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 Job job = Job.getInstance(conf, "word count");
 job.setJarByClass(WordCount.class);
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);

Prepare Test Data

1. Create input and output tables

create table if not exists wc_in(line string);
create table if not exists wc_out(key string, cnt bigint);

2. Run tunnel to import data to the input table.

MaxCompute User Guide / 4 MapReduce

126 Issue: 20180808

The data in the data.txt text file to be imported is as follows:

hello maxcompute
hello mapreduce

you can use the Tunnel command at the MaxCompute console to import data from data.txt to

wc_in.

tunnel upload data.txt wc_in;

Configure the Mapping Between the Table and the HDFS File Path

The configuration file is wordcount-table-res.conf.

 "file:/foo ":{
 "resolver":{
 "resolver": "com.aliyun.odps.mapred.hadoop2openmr.resolver.
TextFileResolver",
 "properties": {
 "text.resolver.columns.combine.enable": "true",
 "text.resolver.seperator": "\t"

 "tableInfos": [

 "tblName": "wc_in",
 "partSpec": {},
 "label": "__default__"

 "matchMode": "exact"

 "file:/bar": {
 "resolver": {
 "resolver": "com.aliyun.odps.mapred.hadoop2openmr.resolver.
BinaryFileResolver",
 "properties": {
 "binary.resolver.input.key.class" : "org.apache.hadoop.io.
Text",
 "binary.resolver.input.value.class" : "org.apache.hadoop.io.
LongWritable"

 "tableInfos": [

 "tblName": "wc_out",
 "partSpec": {},
 "label": "__default__"

 "matchMode": "fuzzy"

Configuration item descriptions:

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 127

The configuration is a JSON file that describes the mapping relationships between HDFS files and

 MaxCompute tables. Generally, you must configure both the input and output. One HDFS path

corresponds to one Resolver, tableInfos, and matchMode.

• resolver: specifies the method of processing file data. Currently, you can choose from two

built-in Resolvers: com.aliyun.odps.mapred.hadoop2openmr.resolver.TextFileResolver and

com.aliyun.odps.mapred.hadoop2openmr.resolver.BinaryFileResolver. In addition to specifying

the Resolver name, you must also configure some properties about data parsing for the

Resolver.

▬ TextFileResolver: regards an input or output as plain text if the data is of plain text type.

When configuring an input Resolver, you must configure such properties as text.resolver.

columns.combine.enable and text.resolver.seperator. When text.resolver.columns.combine

.enable is set to ‘true’, all the columns in the input table are combined into a single string

based on the delimiter specified by text.resolver.seperator. Otherwise, the first two columns

 in the input table are used as the key and value.

▬ BinaryFileResolver: converts binary data into a type that is supported by MaxCompute, for

 example, Bigint, Boolean, and Double. When configuring an output Resolver, you must

configure the properties binary.resolver.input.key.class and binary.resolver.input.value.class

, which define the key and value types of the intermediate result, respectively.

• tableInfos: specifies the MaxCompute table that corresponds to HDFS. Currently, only the

tblName parameter (table name) is configurable. The partSpec and label parameters must be

the same as the values set for the parameters in this example.

• matchMode: specifies the path matching mode. The ‘exact’ mode indicates exact matching,

and the ‘fuzzy’ mode indicates fuzzy matching. You can use a regular expression in ‘fuzzy’

mode to match the HDFS input path.

Job Submission

Use the MaxCompute command line tool odpscmd to submit jobs. For the installation and

configuration of MaxCompute command line tool, see the Console. In odpscmd, run the following

command:

jar -DODPS_HADOOPMR_TABLE_RES_CONF=./wordcount-table-res.conf -
classpath hadoop2openmr-1.0.jar,wordcount_test.jar com.aliyun.odps.
mapred.example.hadoop.WordCount /foo /bar;

Note:

MaxCompute User Guide / 4 MapReduce

128 Issue: 20180808

• wordcount-table-res.conf is a map with ‘/foo /bar’ configured.

• wordcount_test.jar is your Jar package of Hadoop MapReduce.

• com.aliyun.odps.mapred.example.hadoop.WordCount is the class name of job to be run.

• /foo /bar refers to the path on HDFS, which is mapped to wc_in and wc_out in the JSON

configuration file.

• With the mapping relation configured, you must manually import the Hadoop HDFS input file

 to wc_in for MR calculations by using data integration functions of DataX or DataWorks, and

manually export the result ‘wc_out’ to your HDFS output directory(/bar).

• In the preceding output, assume that hadoop2openmr-1.0.jar, wordcount_test.jar, and

wordcount-table-res.conf are stored in the current directory of odpscmd. If an error occurs, you

 must make the relevant changes when specifying the configuration and -classpath.

The running process is shown in the following figure:

After running the job, check the results table wc_out to verify that the job has been completed.

4.2 Function Introduction

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 129

4.2.1 Command
The MaxCompute console provides a JAR command to run MapReduce job. The detailed syntax

is shown as follows:

Usage:
jar [<GENERIC_OPTIONS>] <MAIN_CLASS> [ARGS];
 -conf <configuration_file> Specify an application configurat
ion file
 -resources <resource_name_list> file\table resources used in
mapper or reducer, seperate by comma
 -classpath <local_file_list> classpaths used to run mainClass
 -D <name>=<value> Property value pair, which will be used to
run mainClass
 -l Run job in local mode
For example:
 jar -conf /home/admin/myconf -resources a.txt,example.jar -
classpath ../lib/example.jar:./other_lib.jar -Djava.library.path=./
native -Xmx512M mycompany.WordCount -m 10 -r 10 in out;

 <GENERIC_OPTIONS> includes the following parameters (optional parameters):

• -conf < configuration file >: Specify an JobConf configuration file。

• -resources < resource_name_list >: Indicates the resource statement used in MapReduce

running time. Generally, the resource name in which Map/Reduce function is included must be

specified in ‘resource_name_list’.

Note:

If the user has read other MaxCompute resources in the Map/Reduce function, then these

resource names also need to be added in ‘source_name_list’.

Multiple resources are separated by commas. If you must use span project resources,

then add the prefix PROJECT/resources/, for example: -resources otherproject/

resources/resfile.

For more information about how to read the resource in the Map/Reduce function, see Use

Resource Example.

• -classpath < local_file_list >: the classpath used to specify the local JAR package of ‘main’

class (include relative paths and absolute paths).

Package names are separated using system default file delimiters. Generally, the delimiter is a

semicolon (;) in a Windows system and a comma (,) in a Linux system.

Note:

MaxCompute User Guide / 4 MapReduce

130 Issue: 20180808

In most cases, users generally write the main class and Map/Reduce function in a package,

such as WordCount Code Example. This means that, in the running period of the example

program, mapreduce-examples.jar appears in ‘-resources’ parameter and ‘-classpath’

parameter, however, ‘-resources’ references the Map/Reduce function, and runs in a

distributed environment, while ‘-classpath’ references ‘Main’ class, and runs locally. The

specified path of the JAR package is also a local path.

• -D < prop_name >=< prop_value > : Multiple Java properties of < mainClass > in local mode

can be defined.

• -l: run MapReduce job in local mode, mainly used for program debugging.

User can specify the configuration file ‘JobConf’ by option ‘-conf’. This file can modify the JobConf

 settings in the SDK.

An example of a configuration file ‘JobConf’ is as follows:

<configuration>
 <property>
 <name>import.filename</name>
 <value>resource.txt</value>
 </property>
 </configuration>

In the preceding example, the variable ‘import.filename’ is defined and its value is ‘resource.txt’.

User can get this variable value through the JobConf interface in the MapReduce program.

Alternatively, users can also get the value through the JobConf interface in the SDK. For a

detailed example, see Use Resource Example.

Example:

add jar data\mapreduce-examples.jar;
 jar -resources mapreduce-examples.jar -classpath mapreduce-
examples.jar
 org.alidata.odps.mr.examples.WordCount wc_in wc_out;
 add file data\src.txt;
 add jar data\mapreduce-examples.jar;
 jar -resources src.txt,mapreduce-examples.jar -classpath data\
mapreduce-examples.jar
 org.alidata.odps.mr.examples.WordCount wc_in wc_out;
 add file data\a.txt;
 add table wc_in as test_table;
 add jar data\work.jar;
 jar -conf odps-mapred.xml -resources a.txt,test_table,work.jar
 -classpath data\work.jar:otherlib.jar

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 131

 -D import.filename=resource.txt org.alidata.odps.mr.examples.
WordCount args;

4.2.2 Basic Conception
Map/Reduce

Map and Reduce support corresponding map/reduce method, setup method and cleanup method

. The setup method is called before the map/reduce method, and each worker only calls it only

once.

The cleanup method is called after the map/reduce method, and each worker calls it only once.

For a detailed example, see Program Examples.

Sort/Group

Some columns in output key records can be taken as sort columns, but user-defined comparator

is not supported. You can select several columns from sort columns as Group columns, but user-

defined Group comparator is not supported. Sort columns are used to sort your data while Group

columns are used for secondarySort.

For more information, see SecondarySort Example.

Partition

Supports setting the partition column and customized partitioner. Partition columns have a higher

priority than customized partitioners.

The partitioner is used to distribute the output data on Map terminal to different Reduce Workers

according to Hash logic.

Combiner

The Combiner function combines adjacent records in Shuffle stage. You can choose whether to

use Combiner according to different business logic.

Combiner helps optimize the MapReduce computing framework and the logic of Combiner is

generally similar to Reduce. After Map outputs the data, the framework performs a local combiner

 operation for the data which has the same key value on Map terminal.

For more information, see WordCount Code Examples.

MaxCompute User Guide / 4 MapReduce

132 Issue: 20180808

4.2.3 Input and Output
• Built-in data types include: BIGINT, DOUBLE, STRING, DATETIME, and BOOLEAN. User-

defined types (UDFs) are not supported.

• Multiple-table input is allowed, and the schema of input tables can be different. In Map function

, users can obtain corresponding Table information of the current record.

• The input can be null. View as an input is not supported.

• Reduce accepts multiple outputs and can output data to different tables or different partitions

 in the same table. The schema of different outputs can be different. Different outputs are

distinguished through the label and the default output does not need label. No output is not

allowed.

For more input and output examples, see Program Examples.

4.2.4 Resource
You can read MaxCompute resources in Map/Reduce. Any Worker of Map/Reduce can load

resources to memory for you to apply in code use.

For more information, see Use Resource Example.

4.2.5 Local run
Basic stages Introduction

Local run prerequisite: By setting –local parameter in jar command, user can simulate

MapReduce running process on the local to continue local debugging.

At local operation time: The client downloads required Meta information of input tables,

resources, and Meta information of output tables from MaxCompute, and saves them into a local

directory named ‘warehouse’.

After running the program: The calculation result is output into a file in ‘warehouse’. If the input

table and referenced resources have been downloaded in the local warehouse directory, the data

and files in ‘warehouse’ directory are referenced directly at next running time, and do not repeat

the downloading.

Differences between running locally and running distributed environments

In the local operation course, multiple Map and Reduce workers are still started to process data.

But these workers are not running concurrently and followed by serial running.

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 133

In addition, this simulation process and real distributed operation have the following differences:

• A restriction for row number of input table exists: now, up to 100 rows of data can be

downloaded.

• Usage of resource: in distributed environment, MaxCompute limits the size of referenced

resource. For more information, see Application Restriction. Note that in local running

environment, the resource size is no limitation.

• Security restriction: MaxCompute MapReduce and UDF program running in a distributed

environment are limited by Java Sandbox. Note that in local operations the restriction does not

exists.

Example

A local operation example is as follows:

 odps:my_project> jar -l com.aliyun.odps.mapred.example.WordCount
wc_in wc_out
 Summary:
 counters: 10
 map-reduce framework
 combine_input_groups=2
 combine_output_records=2
 map_input_bytes=4
 map_input_records=1
 map_output_records=2
 map_output_[wc_out]_bytes=0
 map_output_[wc_out]_records=0
 reduce_input_groups=2
 reduce_output_[wc_out]_bytes=8
 reduce_output_[wc_out]_records=2
 OK

For a detailed WordCount example, see WordCount Code Example.

If a user runs local debugging command for the first time, a path named ‘warehouse’ appears

in the current path after the command is executed successfully. The directory structure of

warehouse is as follows:

<warehouse>
 |____my_project(project directory)
 |____ <__tables__>
 | |__wc_in(table directory)
 | | |____ data(file)
 | | |
 | | |____ <__schema__> (file)
 | |__wc_out(table data directory)
 | |____ data(file)
 | |
 | |____ <__schema__> (file)
 |
 |____ <__resources__>
 |

MaxCompute User Guide / 4 MapReduce

134 Issue: 20180808

 |___table_resource_name (table resource)
 | |____<__ref__>
 |
 |___ file_resource_name (file resource)

• The same level directory of myproject indicates the project. ‘wcin’ and ‘wc_out’ indicate tables.

The table files read by user in JAR command is downloaded into this directory.

• The contents in <__schema__> indicate table Meta information. The format is defined as

follows:

 project=local_project_name
 table=local_table_name
 columns=col1_name:col1_type,col2_name:col2_type
 partitions=p1:STRING,p2:BIGINT

Columns and column types are separated by a colon ‘:’, and columns and columns are

separated by a comma ‘,’. In the front of <__schema__> file, the Project name and Table

name must be declared, such as project_name.table_name, and separated by comma

and column definition. project_name.table_name,col1_name:col1_type,col2_name

:col2_type,……

• The file ‘data; indicates table data. The column quantity and corresponding data must comply

with the definition in schema_, that is, extra columns and missing columns are not allowed.

The content of Cite Left_schema_ Cite Rightin wc_in is as follows:

my_project.wc_in,key:STRING,value:STRING

The content of ‘data’ is as follows:

0,2

The client downloads the Meta information of table and part of the data from MaxCompute,

and save them into the two preceding files. If you run this example again, the data in the

directory ‘wc_in’ is used directly and will not be downloaded again.

Note:

Note that the function to download data from MaxCompute is only supported in MapReduce

local operation mode. If the local debugging is executed in Eclipse development plug-in, the

data of MaxCompute cannot be downloaded to local.

https://www.alibabacloud.com/help/zh/doc-detail/27981.html

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 135

The content of Cite Left_schema_ Cite Right in wc_out is as follows:

my_project.wc_out,key:STRING,cnt:BIGINT

The content of ‘data’ is as follows:

 0,1
 2,1

The client downloads the Meta information of wc_out from MaxCompute and saves it to the

file Cite Left_schema_ Cite Right. The file ‘data’ is a result data file generated after local

operation.

Note:

• Users can also edit Cite Left_schema_ Cite Right file and ‘data’ and then place these two

files into the corresponding table directory.

• When running on the local, the client detects that the table directory already exists, and

does not download the information of this table from MaxCompute. The table directory on

the local can be a table that does not exist in MaxCompute.

4.3 Program Example

4.3.1 WordCount Sample
Preparation

1. Prepare the JAR package of the test program. Assume the package is named mapreduce-

examples.jar. The local storage path is data\resources.

• Create tables.

create table wc_in (key string, value string);
create table wc_out(key string, cnt bigint);

• Add resources.

add jar data\resources\mapreduce-examples.jar -f;

2. Prepare tables and resources for testing the wordCount operation.

MaxCompute User Guide / 4 MapReduce

136 Issue: 20180808

3. Run tunnel to import data.

tunnel upload data wc_in;

The data imported into the wc_in table is as follows:

hello,odps

Procedure

Run WordCount in odpscmd.

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.WordCount wc_in wc_out

Result

The job is successfully completed.

| key | cnt |

| hello | 1 |
| odps | 1 |

Sample Code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 import java.util.Iterator;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 public class WordCount {
 public static class TokenizerMapper extends MapperBase {
 private Record word;
 private Record one;
 @Override
 public void setup(TaskContext context) throws IOException {
 word = context.createMapOutputKeyRecord();
 one = context.createMapOutputValueRecord();
 one.set(new Object[] { 1L });
 System.out.println("TaskID:" + context.getTaskID().toString
());

 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 throws IOException {

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 137

 for (int i = 0; i < record.getColumnCount(); i++) {
 word.set(new Object[] { record.get(i).toString() });
 context.write(word, one);

 * A combiner class that combines map output by sum them.

 public static class SumCombiner extends ReducerBase {
 private Record count;
 @Override
 public void setup(TaskContext context) throws IOException {
 count = context.createMapOutputValueRecord();

 @Override
 public void reduce(Record key, Iterator<Record> values,
TaskContext context)
 throws IOException {
 long c = 0;
 while (values.hasNext()) {
 Record val = values.next();
 c += (Long) val.get(0);

 count.set(0, c);
 context.write(key, count);

 * A reducer class that just emits the sum of the input values.

 public static class SumReducer extends ReducerBase {
 private Record result = null;
 @Override
 public void setup(TaskContext context) throws IOException {
 result = context.createOutputRecord();

 @Override
 public void reduce(Record key, Iterator<Record> values,
TaskContext context)
 throws IOException {
 long count = 0;
 while (values.hasNext()) {
 Record val = values.next();
 count += (Long) val.get(0);

 result.set(0, key.get(0));
 result.set(1, count);
 context.write(result);

 public static void main(String[] args) throws Exception {
 if (args.length ! = 2) {
 System.err.println("Usage: WordCount <in_table> <out_table>");
 System.exit(2);

 JobConf job = new JobConf();
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(SumCombiner.class);
 job.setReducerClass(SumReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("word:string
"));

MaxCompute User Guide / 4 MapReduce

138 Issue: 20180808

 job.setMapOutputValueSchema(SchemaUtils.fromString("count:
bigint"));
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 JobClient.runJob(job);

4.3.2 MapOnly Sample
For MapOnly jobs, Map directly sends < Key, Value > pairs to tables on MaxCompute. You only

need to specify the output table but do not need to specify the Key/Value metadata to be output

by Map.

Preparation

1. Prepare the JAR package of the test program. Assume the package is named mapreduce-

examples.jar.

2. Prepare tables and resources for testing the MapOnly operation.

• Create tables.

create table wc_in (key string, value string);
create table wc_out(key string, cnt bigint);

• Add resources.

add jar data\resources\mapreduce-examples.jar -f;

3. Run tunnel to import data.

tunnel upload data wc_in;

The data imported into the wc_in table is as follows:

 hello,odps
 hello,odps

Procedure

Run MapOnly in odpscmd.

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 139

com.aliyun.odps.mapred.open.example.MapOnly wc_in wc_out map

Result

The output table ‘wc_out’ contains the following content:

| key | cnt |

| hello | 1 |
| hello | 1 |

Sample Code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.data.TableInfo;
 public class MapOnly {
 public static class MapperClass extends MapperBase {
 @Override
 public void setup(TaskContext context) throws IOException {
 boolean is = context.getJobConf().getBoolean("option.mapper.
setup", false);
 if (is) {
 Record result = context.createOutputRecord();
 result.set(0, "setup");
 result.set(1, 1L);
 context.write(result);
 }

 @Override
 public void map(long key, Record record, TaskContext context)
throws IOException {
 boolean is = context.getJobConf().getBoolean("option.mapper.
map", false);
 if (is) {
 Record result = context.createOutputRecord();
 result.set(0, record.get(0));
 result.set(1, 1L);
 context.write(result);

 @Override
 public void cleanup(TaskContext context) throws IOException {
 boolean is = context.getJobConf().getBoolean("option.mapper.
cleanup", false);
 if (is) {
 Record result = context.createOutputRecord();
 result.set(0, "cleanup");
 result.set(1, 1L);
 context.write(result);

MaxCompute User Guide / 4 MapReduce

140 Issue: 20180808

 public static void main(String[] args) throws Exception {
 if (args.length ! != 2 && args.length ! = 3) {
 System.err.println("Usage: OnlyMapper <in_table> <out_table> [
setup|map|cleanup]");
 System.exit(2);

 JobConf job = new JobConf();
 job.setMapperClass(MapperClass.class);
 job.setNumReduceTasks(0);
 Inpututils. addtable (tableinfo. builder (). tablename (ARGs [
0]). build (), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 if (args.length == 3) {
 String options = new String(args[2]);
 if (options.contains("setup")) {
 job.setBoolean("option.mapper.setup", true);

 if (options.contains("map")) {
 job.setBoolean("option.mapper.map", true);

 if (options.contains("cleanup")) {
 job.setBoolean("option.mapper.cleanup", true);

 JobClient.runJob(job);

4.3.3 Multi-input and Output
Preparation

1. Prepare the JAR package of the test program. Assume the package is named mapreduce-

examples.jar. The local storage path is data\resources.

2. Prepare tables and resources for testing the multi-table input and output operations.

• Create tables.

create table wc_in1(key string, value string);
create table wc_in2(key string, value string);
create table mr_multiinout_out1 (key string, cnt bigint);
create table mr_multiinout_out2 (key string, cnt bigint)
partitioned by (a string, b string);
alter table mr_multiinout_out2 add partition (a='1', b='1');
alter table mr_multiinout_out2 add partition (a='2', b='2');

• Add resources.

add jar data\resources\mapreduce-examples.jar -f;

3. Run tunnel to import data.

tunnel upload data1 wc_in1;

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 141

tunnel upload data2 wc_in2;

The data imported into the wc_in1 table is as follows:

 hello,odps

The data imported into the wc_in2 table is as follows:

 hello,world

Procedure

Run MultipleInOut in odpscmd.

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.MultipleInOut wc_in1,wc_in2
mr_multiinout_out1,mr_multiinout_out2|a=1/b=1|out1,mr_multiinout_out2|
a=2/b=2|out2;

Result

The content of ‘mr_multiinout_out1’ is as follows:

| key | cnt |

| default | 1 |

The content of ‘mr_multiinout_out2’ is as follows:

| key | cnt | a | b |

odps	1	1	1
world	1	1	1
out1	1	1	1
hello	2	2	2
out2	1	2	2

Sample Code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 import java.util.Iterator;
 import java.util.LinkedHashMap;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;

MaxCompute User Guide / 4 MapReduce

142 Issue: 20180808

 * Multi input & output example.

 public class MultipleInOut {
 public static class TokenizerMapper extends MapperBase {
 Record word;
 Record one;
 @Override
 public void setup(TaskContext context) throws IOException {
 word = context.createMapOutputKeyRecord();
 one = context.createMapOutputValueRecord();
 one.set(new Object[] { 1L });

 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 throws IOException {
 for (int i = 0; i < record.getColumnCount(); i++) {
 word.set(new Object[] { record.get(i).toString() });
 context.write(word, one);

 public static class SumReducer extends ReducerBase {
 private Record result;
 private Record result1;
 private Record result2;
 @Override
 public void setup(TaskContext context) throws IOException {
 result = context.createOutputRecord();
 result1 = context.createOutputRecord("out1");
 result2 = context.createOutputRecord("out2");

 @Override
 public void reduce(Record key, Iterator<Record> values,
TaskContext context)
 throws IOException {
 long count = 0;
 while (values.hasNext()) {
 Record val = values.next();
 count += (Long) val.get(0);

 long mod = count % 3;
 if (mod == 0) {
 result.set(0, key.get(0));
 result.set(1, count);
 //No label is specified. Default output is adopted.
 context.write(result);
 } else if (mod == 1) {
 result1.set(0, key.get(0));
 result1.set(1, count);
 context.write(result1, "out1");
 } else {
 result2.set(0, key.get(0));
 result2.set(1, count);
 context.write(result2, "out2");

 @Override
 public void cleanup(TaskContext context) throws IOException {
 Record result = context.createOutputRecord();
 result.set(0, "default");

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 143

 result.set(1, 1L);
 context.write(result);
 Record result1 = context.createOutputRecord("out1");
 result1.set(0, "out1");
 result1.set(1, 1L);
 context.write(result1, "out1");
 Record result2 = context.createOutputRecord("out2");
 result2.set(0, "out2");
 result2.set(1, 1L);
 context.write(result2, "out2");

 public static LinkedHashMap<String, String> convertPartSpecToMap
(
 String partSpec) {
 LinkedHashMap<String, String> map = new LinkedHashMap<String
, String>();
 if (partSpec ! = null && ! partSpec.trim().isEmpty()) {
 String[] parts = partSpec.split("/");
 for (String part : parts) {
 String[] ss = part.split("=");
 if (ss.length ! = 2) {
 throw new RuntimeException("ODPS-0730001: error part
spec format: "
 + partSpec);

 map.put(ss[0], ss[1]);

 return map;

 public static void main(String[] args) throws Exception {
 String[] inputs = null;
 String[] outputs = null;
 if (args.length == 2) {
 inputs = args[0].split(",");
 outputs = args[1].split(",");
 } else {
 System.err.println("MultipleInOut in... out...")
 System.exit(1);

 JobConf job = new JobConf();
 job.setMapperClass(TokenizerMapper.class);
 job.setReducerClass(SumReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("word:string
"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("count:
bigint"));
 //Parse the user input table strings.
 for (String in : inputs) {
 String[] ss = in.split("\\|");
 if (ss.length == 1) {
 InputUtils.addTable(TableInfo.builder().tableName(ss[0]).
build(), job);
 } else if (ss.length == 2) {
 LinkedHashMap<String, String> map = convertPartSpecToMap(
ss[1]);
 InputUtils.addTable(TableInfo.builder().tableName(ss[0]).
partSpec(map).build(), job);
 } else {
 System.err.println("Style of input: " + in + " is not
right");

MaxCompute User Guide / 4 MapReduce

144 Issue: 20180808

 System.exit(1);

 //Parse the user output table strings.
 for (String out : outputs) {
 String[] ss = out.split("\\|");
 if (ss.length == 1) {
 OutputUtils.addTable(TableInfo.builder().tableName(ss[0]).
build(), job);
 } else if (ss.length == 2) {
 LinkedHashMap<String, String> map = convertPartSpecToMap(ss[
1]);
 OutputUtils.addTable(TableInfo.builder().tableName(ss[0]).
partSpec(map).build(), job);
 } else if (ss.length == 3) {
 if (ss[1].isEmpty()) {
 LinkedHashMap<String, String> map = convertPartSpecToMap(
ss[2]);
 OutputUtils.addTable(TableInfo.builder().tableName(ss[0
]).partSpec(map).build(), job);
 } else {
 LinkedHashMap<String, String> map = convertPartSpecToMap(
ss[1]);
 OutputUtils.addTable(TableInfo.builder().tableName(ss[0
]).partSpec(map)
 .label(ss[2]).build(), job);

 } else {
 System.err.println("Style of output: " + out + " is not
right");
 System.exit(1);

 JobClient.runJob(job);

4.3.4 Multi-task Sample
Preparation

1. Prepare the JAR package of the test program. Assume the package is named mapreduce-

examples.jar. The local storage path is data\resources.

2. Prepare tables and resources for testing the MultiJobs operation.

• Create tables.

create table mr_empty (key string, value string);
create table mr_multijobs_out (value bigint);

• Add resources.

add table mr_multijobs_out as multijobs_res_table -f;

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 145

add jar data\resources\mapreduce-examples.jar -f;

Procedure

Run MultiJobs in odpscmd.

jar -resources mapreduce-examples.jar,multijobs_res_table -classpath
data\resources\mapreduce-examples.jar
 com.aliyun.odps.mapred.open.example.MultiJobs mr_multijobs_out;

Result

The output table ‘mr_multijobs_out’ contains the following content:

| value |

| 0 |

Sample Code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 import java.util.Iterator;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.RunningJob;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;

 * MultiJobs

 * Running multiple job

 public class MultiJobs {
 public static class InitMapper extends MapperBase {
 @Override
 public void setup(TaskContext context) throws IOException {
 Record record = context.createOutputRecord();
 long v = context.getJobConf().getLong("multijobs.value", 2);
 record.set(0, v);
 context.write(record);
 }

 public static class DecreaseMapper extends MapperBase {
 @Override
 public void cleanup(TaskContext context) throws IOException {
 //Obtain the variable values defined by the main function
from JobConf.
 long expect = context.getJobConf().getLong("multijobs.expect
.value", -1);
 long v = -1;
 int count = 0;

MaxCompute User Guide / 4 MapReduce

146 Issue: 20180808

 Iterator<Record> iter = context.readResourceTable("
multijobs_res_table");
 while (iter.hasNext()) {
 Record r = iter.next();
 v = (Long) r.get(0);
 if (expect ! = v) {
 throw new IOException("expect: " + expect + ", but: " +
v);

 count++;

 if (count ! = 1) {
 throw new IOException("res_table should have 1 record, but
: " + count);

 Record record = context.createOutputRecord();
 v--;
 record.set(0, v);
 context.write(record);
 context.getCounter("multijobs", "value").setValue(v);

 public static void main(String[] args) throws Exception {
 if (args.length ! = 1) {
 System.err.println("Usage: TestMultiJobs <table>");
 System.exit(1);

 String tbl = args[0];
 long iterCount = 2;
 System.err.println("Start to run init job.")
 JobConf initJob = new JobConf();
 initJob.setLong("multijobs.value", iterCount);
 initJob.setMapperClass(InitMapper.class);
 InputUtils.addTable(TableInfo.builder().tableName("mr_empty").
build(), initJob);
 OutputUtils.addTable(TableInfo.builder().tableName(tbl).build
(), initJob);
 initJob.setMapOutputKeySchema(SchemaUtils.fromString("key:
string"));
 initJob.setMapOutputValueSchema(SchemaUtils.fromString("value:
string"));
 initJob.setNumReduceTasks(0);
 JobClient.runJob(initJob);
 while (true) {
 System.err.println("Start to run iter job, count: " +
iterCount);
 JobConf decJob = new JobConf();
 decJob.setLong("multijobs.expect.value", iterCount);
 decJob.setMapperClass(DecreaseMapper.class);
 InputUtils.addTable(TableInfo.builder().tableName("mr_empty
").build(), decJob);
 OutputUtils.addTable(TableInfo.builder().tableName(tbl).
build(), decJob);
 decJob.setNumReduceTasks(0);
 RunningJob rJob = JobClient.runJob(decJob);
 iterCount--;
 if (rJob.getCounters().findCounter("multijobs", "value").
getValue() == 0) {
 break;

 if (iterCount ! = 0) {

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 147

 throw new IOException("Job failed.")

4.3.5 Secondary Sort Sample
Preparation

1. Prepare the JAR package of the test program. Assume the package is named “mapreduce-

examples.jar”. The local storage path is data\resources.

2. Prepare tables and resources for testing the SecondarySort operation.

• Create tables:

create table ss_in(key bigint, value bigint);
create table ss_out(key bigint, value bigint)

• Add resources:

add jar data\resources\mapreduce-examples.jar -f;

3. Import the data through tunnel command:

tunnel upload data ss_in;

The contents of data file imported into the table “ss_in” are as follows:

1,2
2,1
1,1
2,2

Procedure

Run SecondarySort on the odpscmd:

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.SecondarySort ss_in ss_out;

Result

The content in the output table “ss_out” are as follows:

| key | value |

1	1
1	2
2	1

MaxCompute User Guide / 4 MapReduce

148 Issue: 20180808

| 2 | 2 |

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 import java.util.Iterator;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.data.TableInfo;

 * This is an example ODPS Map/Reduce application. It reads the
input table that
 * must contain two integers per record. The output is sorted by
the first and
 * second number and grouped on the first number.

 public class SecondarySort {

 * Read two integers from each line and generate a key, value
pair as ((left,
 * right), right).

 public static class MapClass extends MapperBase {
 private Record key;
 private Record value;
 @Override
 public void setup(TaskContext context) throws IOException {
 key = context.createMapOutputKeyRecord();
 value = context.createMapOutputValueRecord();

 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 throws IOException {
 long left = 0;
 long right = 0;
 if (record.getColumnCount() > 0) {
 left = (Long) record.get(0);
 if (record.getColumnCount() > 1) {
 right = (Long) record.get(1);

 key.set(new Object[] { (Long) left, (Long) right });
 value.set(new Object[] { (Long) right });
 context.write(key, value);

 * A reducer class that just emits the sum of the input values.

 public static class ReduceClass extends ReducerBase {

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 149

 private Record result = null;
 @Override
 public void setup(TaskContext context) throws IOException {
 result = context.createOutputRecord();

 @Override
 public void reduce(Record key, Iterator<Record> values,
TaskContext context)
 throws IOException {
 result.set(0, key.get(0));
 while (values.hasNext()) {
 Record value = values.next();
 result.set(1, value.get(0));
 context.write(result);

 public static void main(String[] args) throws Exception {
 if (args.length ! = 2) {
 System.err.println("Usage: secondarysrot <in> <out>");
 System.exit(2);

 JobConf job = new JobConf();
 job.setMapperClass(MapClass.class);
 job.setReducerClass(ReduceClass.class);
 // set multiple columns to key
 // compare first and second parts of the pair
 job.setOutputKeySortColumns(new String[] { "i1", "i2" });
 // partition based on the first part of the pair
 job.setPartitionColumns(new String[] { "i1" });
 // grouping comparator based on the first part of the pair
 job.setOutputGroupingColumns(new String[] { "i1" });
 // the map output is LongPair, Long
 job.setMapOutputKeySchema(SchemaUtils.fromString("i1:bigint,i2
:bigint"));
 Job. Fig (schemeiutils. fromstring ("i2x: bigint "));
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 JobClient.runJob(job);
 System.exit(0);

4.3.6 Resource Sample
Preparation

1. Prepare the jar package of test program. Suppose that the package is named “mapreduce-

examples.jar”, The local storage path is data\resources.

2. Prepare the test table and resource.

MaxCompute User Guide / 4 MapReduce

150 Issue: 20180808

• Create the tables:

create table mr_upload_src(key bigint, value string);

• Add the resource:

add jar data\resources\mapreduce-examples.jar -f;
add file data\resources\import.txt -f;

• The contents of import.txt:

1000,odps

Procedure

Run Upload on the odpscmd:

jar -resources mapreduce-examples.jar,import.txt -classpath data\
resources\mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.Upload import.txt mr_upload_src;

Result

The content in the output table “mr_upload_src” is as follows:

| key | value |

| 1000 | odps |

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.BufferedInputStream;
 import java.io.FileNotFoundException;
 import java.io.IOException;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;

 * Upload

 * Import data from text file into table

 public class Upload {
 public static class UploadMapper extends MapperBase {
 @Override
 public void setup(TaskContext context) throws IOException {
 Record record = context.createOutputRecord();

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 151

 StringBuilder importdata = new StringBuilder();
 BufferedInputStream bufferedInput = null;
 try {
 byte[] buffer = new byte[1024];
 int bytesRead = 0;
 String filename = context.getJobConf().get("import.
filename");
 bufferedInput = context.readResourceFileAsStream(filename
);
 while ((bytesRead = bufferedInput.read(buffer)) ! = -1) {
 String chunk = new String(buffer, 0, bytesRead);
 importdata.append(chunk);

 String lines[] = importdata.toString().split("\n");
 for (int i = 0; i < lines.length; i++) {
 String[] ss = lines[i].split(",");
 record.set(0, Long.parseLong(ss[0].trim()));
 record.set(1, ss[1].trim());
 context.write(record);

 } catch (FileNotFoundException ex) {
 throw new IOException(ex);
 } catch (IOException ex) {
 throw new IOException(ex);
 } finally {

 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 throws IOException {

 public static void main(String[] args) throws Exception {
 if (args.length ! = 2) {
 System.err.println("Usage: Upload <import_txt> <out_table>");
 System.exit(2);

 JobConf job = new JobConf();
 job.setMapperClass(UploadMapper.class);
 job.set("import.filename", args[0]);
 job.setNumReduceTasks(0);
 job.setMapOutputKeySchema(SchemaUtils.fromString("key:bigint
"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("value:
string"));
 InputUtils.addTable(TableInfo.builder().tableName("mr_empty").
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 JobClient.runJob(job);

In fact, user has several methods to set up JobConf:

• Set it through JobConf interface in SDK. This example above is through this method and this

method is of the highest priority.

MaxCompute User Guide / 4 MapReduce

152 Issue: 20180808

• In jar command lines, specify new JobConf file through the parameter -conf. This method is of

the lowest priority.

4.3.7 Counter Sample
Preparation

1. Prepare the JAR package of the test program. Assume the package is named “mapreduce-

examples.jar”, The local storage path is data\resources.

2. Prepare the UserDefinedCounters test table and resource.

• Create tables:

create table wc_in (key string, value string);
create table wc_out(key string, cnt bigint);

• Add resources:

add jar data\resources\mapreduce-examples.jar -f;

3. Use the tunnel command to import the data:

tunnel upload data wc_in;

The contents of data file imported into the table “wc_in”:

hello,odps

Procedure

Execute UserDefinedCounters on the odpscmd:

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.UserDefinedCounters wc_in wc_out

Result

The output of Counters is as follows:

Counters: 3
com.aliyun.odps.mapred.open.example.UserDefinedCounters$MyCounter
MAP_TASKS=1
REDUCE_TASKS=1
TOTAL_TASKS=2

The content of output table “wc_out” is as follows:

| key | cnt |

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 153

| hello | 1 |
| odps | 1 |

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 import java.util.Iterator;
 import com.aliyun.odps.counter.Counter;
 import com.aliyun.odps.counter.Counters;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.mapred.RunningJob;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.data.TableInfo;

 * User Defined Counters

 public class UserDefinedCounters {
 enum MyCounter {
 TOTAL_TASKS, MAP_TASKS, REDUCE_TASKS

 public static class TokenizerMapper extends MapperBase {
 private Record word;
 private Record one;
 @Override
 public void setup(TaskContext context) throws IOException {
 super.setup(context);
 Counter map_tasks = context.getCounter(MyCounter.MAP_TASKS);
 Counter total_tasks = context.getCounter(MyCounter.
TOTAL_TASKS);
 map_tasks.increment(1);
 total_tasks.increment(1);
 word = context.createMapOutputKeyRecord();
 one = context.createMapOutputValueRecord();
 one.set(new Object[] { 1L });

 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 throws IOException {
 for (int i = 0; i < record.getColumnCount(); i++) {
 word.set(new Object[] { record.get(i).toString() });
 context.write(word, one);

 public static class SumReducer extends ReducerBase {
 private Record result = null;
 @Override
 public void setup(TaskContext context) throws IOException {
 result = context.createOutputRecord();
 Counter reduce_tasks = context.getCounter(MyCounter.
REDUCE_TASKS);

MaxCompute User Guide / 4 MapReduce

154 Issue: 20180808

 Counter maid = context. getcounter (mycounter);
 reduce_tasks.increment(1);
 total_tasks.increment(1);

 @Override
 public void reduce(Record key, Iterator<Record> values,
TaskContext context)
 throws IOException {
 long count = 0;
 while (values.hasNext()) {
 Record val = values.next();
 count += (Long) val.get(0);

 result.set(0, key.get(0));
 result.set(1, count);
 context.write(result);

 public static void main(String[] args) throws Exception {
 if (args.length ! = 2) {
 System.err
 .println("Usage: TestUserDefinedCounters <in_table> <
out_table>");
 System.exit(2);

 JobConf job = new JobConf();
 job.setMapperClass(TokenizerMapper.class);
 job.setReducerClass(SumReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("word:string
"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("count:
bigint"));
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 RunningJob rJob = JobClient.runJob(job);

 Counters counters = rJob.getCounters();
 long m = counters.findCounter(MyCounter.MAP_TASKS).getValue();
 long r = counters.findCounter(MyCounter.REDUCE_TASKS).getValue
();
 long total = counters.findCounter(MyCounter.TOTAL_TASKS).
getValue();
 System.exit(0);

4.3.8 Grep Sample
Preparation

1. Prepare the JAR package of the test program. Assume the package is named “mapreduce-

examples.jar”, and the local storage path is data\resources.

2. Prepare tables and resources for testing the Grep operation.

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 155

• Create tables:

create table mr_src(key string, value string);
create table mr_grep_tmp (key string, cnt bigint);
create table mr_grep_out (key bigint, value string);

• Add resources:

add jar data\resources\mapreduce-examples.jar -f;

3. Use the tunnel command to import the data:

tunnel upload data mr_src;

The contents of data file imported into the table “mr_src”:

 hello,odps
 hello,world

Procedure

Execute Grep on the odpscmd:

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.Grep mr_src mr_grep_tmp mr_grep_ou
t hello;

Result

The content of output table “mr_grep_out” is as follows:

| key | value |

| 2 | hello |

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 import java.util.Iterator;
 import java.util.regex.Matcher;
 import java.util.regex.Pattern;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.Mapper;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.mapred.RunningJob;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;

MaxCompute User Guide / 4 MapReduce

156 Issue: 20180808

 import com.aliyun.odps.mapred.utils.SchemaUtils;

 * Extracts matching regexs from input files and counts them.

 public class Grep {

 * RegexMapper

 public class RegexMapper extends MapperBase {
 private Pattern pattern;
 private int group;
 private Record word;
 private Record one;
 @Override
 public void setup(TaskContext context) throws IOException {
 JobConf job = (JobConf) context.getJobConf();
 pattern = Pattern.compile(job.get("mapred.mapper.regex"));
 group = job.getInt("mapred.mapper.regex.group", 0);
 word = context.createMapOutputKeyRecord();
 one = context.createMapOutputValueRecord();
 one.set(new Object[] { 1L });

 @Override
 public void map(long recordNum, Record record, TaskContext
context) throws IOException {
 for (int i = 0; i < record.getColumnCount(); ++i) {
 String text = record.get(i).toString();
 Matcher = pattern. matcher (text);
 while (matcher.find()) {
 word.set(new Object[] { matcher.group(group) });
 context.write(word, one);

 * LongSumReducer

 public class LongSumReducer extends ReducerBase {
 private Record result = null;
 @Override
 public void setup(TaskContext context) throws IOException {
 result = context.createOutputRecord();

 @Override
 public void reduce(Record key, Iterator<Record> values,
TaskContext context) throws IOException {
 long count = 0;
 while (values.hasNext()) {
 Record val = values.next();
 count += (Long) val.get(0);

 result.set(0, key.get(0));
 result.set(1, count);
 context.write(result);

 * A {@link Mapper} that swaps keys and values.

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 157

 public class InverseMapper extends MapperBase {
 private Record word;
 private Record count;
 @Override
 public void setup(TaskContext context) throws IOException {
 word = context.createMapOutputValueRecord();
 count = context.createMapOutputKeyRecord();

 * The inverse function. Input keys and values are swapped.

 @Override
 public void map(long recordNum, Record record, TaskContext
context) throws IOException {
 word.set(new Object[] { record.get(0).toString() });
 count.set(new Object[] { (Long) record.get(1) });
 context.write(count, word);

 * IdentityReducer

 public class IdentityReducer extends ReducerBase {
 private Record result = null;
 @Override
 public void setup(TaskContext context) throws IOException {
 result = context.createOutputRecord();

 /** Writes all keys and values directly to output.
 @Override
 public void reduce(Record key, Iterator<Record> values,
TaskContext context) throws IOException {
 result.set(0, key.get(0));
 while (values.hasNext()) {
 Record val = values.next();
 result.set(1, val.get(0));
 context.write(result);

 public static void main(String[] args) throws Exception {
 if (args.length < 4) {
 System.err.println("Grep <inDir> <tmpDir> <outDir> <regex> [<
group>]");
 System.exit(2);

 JobConf grepJob = new JobConf();
 grepJob.setMapperClass(RegexMapper.class);
 grepJob.setReducerClass(LongSumReducer.class);
 grepJob.setMapOutputKeySchema(SchemaUtils.fromString("word:
string"));
 grepJob.setMapOutputValueSchema(SchemaUtils.fromString("count:
bigint"));
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), grepJob);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), grepJob);
 grepJob.set("mapred.mapper.regex", args[3]);
 if (args.length == 5) {
 grepJob.set("mapred.mapper.regex.group", args[4]);

 @SuppressWarnings("unused")

MaxCompute User Guide / 4 MapReduce

158 Issue: 20180808

 RunningJob rjGrep = JobClient.runJob(grepJob);
 JobConf sortJob = new JobConf();
 sortJob.setMapperClass(InverseMapper.class);
 sortJob.setReducerClass(IdentityReducer.class);
 sortJob.setMapOutputKeySchema(SchemaUtils.fromString("count:
bigint"));
 sortJob.setMapOutputValueSchema(SchemaUtils.fromString("word:
string"));
 InputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), sortJob);
 OutputUtils.addTable(TableInfo.builder().tableName(args[2]).
build(), sortJob);
 sortJob.setNumReduceTasks(1); // write a single file
 sortJob.setOutputKeySortColumns(new String[] { "count" });
 @SuppressWarnings("unused")
 RunningJob rjSort = JobClient.runJob(sortJob);

4.3.9 Join Sample
MaxCompute MapReduce framework does not support JOIN, however, you can implement data

join in your Map/Reduce function.

Assume that table mr_join_src1(key bigint, value string) must be joined with mr_join_src2(key

 bigint, value string). The output table is mr_join_out (key bigint, value1 string, value2 string).

value1 is value in mr_join_src1 and value2 is value in mr_join_src2.

Preparation

1. Prepare the JAR package of the test program. Assume the package is named mapreduce-

examples.jar, and the local storage path is data\resources.

2. Prepare tables and resources for testing the JOIN operation.

• Create tables.

create table mr_Join_src1(key bigint, value string);
create table mr_Join_src2(key bigint, value string);
create table mr_Join_out(key bigint, value1 string, value2 string
);

• Add resources.

add jar data\resources\mapreduce-examples.jar -f;

3. Run tunnel to import data.

tunnel upload data1 mr_Join_src1;
tunnel upload data2 mr_Join_src2;

The data imported into the mr_join_src1 table is as follows:

 1,hello

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 159

 2,odps

The data imported into the mr_join_src2 table is as follows:

1,odps
3,hello
4,odps

Procedure

Run Join in odpscmd.

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.Join mr_Join_src1 mr_Join_src2
mr_Join_out;

Result

The output table mr_join_out contains the following content:

| key | value1 | value2 |

| 1 | hello | odps |

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 Import java. util. arraylist;
 import java.util.Iterator;
 import java.util.List;
 import org.apache.commons.logging.Log;
 import org.apache.commons.logging.LogFactory;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;

 * Join, mr_Join_src1/mr_Join_src2(key bigint, value string),
mr_Join_out(key
 * bigint, value1 string, value2 string)

 public class Join {
 public static final Log LOG = LogFactory.getLog(Join.class);
 public static class JoinMapper extends MapperBase {
 private Record mapkey;
 private Record mapvalue;
 private long tag;
 @Override
 public void setup(TaskContext context) throws IOException {

MaxCompute User Guide / 4 MapReduce

160 Issue: 20180808

 mapkey = context.createMapOutputKeyRecord();
 mapvalue = context.createMapOutputValueRecord();
 tag = context.getInputTableInfo().getLabel().equals("left
") ? 0 : 1;

 @Override
 public void map(long key, Record record, TaskContext context)
 throws IOException {
 mapkey.set(0, record.get(0));
 mapkey.set(1, tag);
 for (int i = 1; i < record.getColumnCount(); i++) {
 mapvalue.set(i - 1, record.get(i));

 context.write(mapkey, mapvalue);

 public static class JoinReducer extends ReducerBase {
 private Record result = null;
 @Override
 public void setup(TaskContext context) throws IOException {
 result = context.createOutputRecord();

 @Override
 public void reduce(Record key, Iterator<Record> values,
TaskContext context)
 throws IOException {
 long k = key.getBigint(0);
 List<Object[]> leftValues = new ArrayList<Object[]>();
 while (values.hasNext()) {
 Record value = values.next();
 long tag = (Long) key.get(1);
 if (tag == 0) {
 leftValues.add(value.toArray().clone());
 } else {
 for (Object[] leftValue : leftValues) {
 int index = 0;
 result.set(index++, k);
 for (int i = 0; i < leftValue.length; i++) {
 result.set(index++, leftValue[i]);

 for (int i = 0; i < value.getColumnCount(); i++) {
 result.set(index++, value.get(i));

 context.write(result);

 public static void main(String[] args) throws Exception {
 if (args.length ! = 3) {
 System.err.println("Usage: Join <input table1> <input table2
> <out>");
 System.exit(2);

 JobConf job = new JobConf();
 job.setMapperClass(JoinMapper.class);
 job.setReducerClass(JoinReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("key:bigint,
tag:bigint"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("value:
string"));

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 161

 job.setPartitionColumns(new String[]{"key"});
 job.setOutputKeySortColumns(new String[]{"key", "tag"});
 job.setOutputGroupingColumns(new String[]{"key"});
 job.setNumReduceTasks(1);
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
label("left").build(), job);
 InputUtils.addTable(TableInfo.builder().tableName(args[1]).
label("right").build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[2]).
build(), job);
 JobClient.runJob(job);

4.3.10 Sleep Sample
Preparation

1. Prepare the JAR package of the test program. Assume the package is named mapreduce-

examples.jar, and the local storage path is data\resources.

2. Prepare resources for testing the SleepJob operation.

Add jar data \ resources \ mapreduce-examples.jar-f;

Procedure

Run Sleep on the odpscmd, as follows:

 jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
 com.aliyun.odps.mapred.open.example.Sleep 10;
 jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
 com.aliyun.odps.mapred.open.example.Sleep 100;

Result

The job ran successfully. The run time of different sleep durations can be compared to determine

the effect.

Sample code

package com.aliyun.odps.mapred.open.example;
import java.io.IOException;
import com.aliyun.odps.mapred.JobClient;
Import com. aliyun. ODPS. mapred. mapperbase;
import com.aliyun.odps.mapred.conf.JobConf;
public class Sleep {
 private static final String SLEEP_SECS = "sleep.secs";
 public static class MapperClass extends MapperBase {
 @Override
 public void setup(TaskContext context) throws IOException {
 try {

MaxCompute User Guide / 4 MapReduce

162 Issue: 20180808

 Thread.sleep(context.getJobConf().getInt(SLEEP_SECS, 1) * 1000
);
 } catch (InterruptedException e) {
 throw new RuntimeException(e);
 }

 public static void main(String[] args) throws Exception {
 if (args.length ! = 1) {
 System.err.println("Usage: Sleep <sleep_secs>");
 System. Exit (-1);

 JobConf job = new JobConf();
 job.setMapperClass(MapperClass.class);
 job.setNumReduceTasks(0);
 job.setNumMapTasks(1);
 job.set(SLEEP_SECS, args[0]);
 JobClient.runJob(job);

4.3.11 Unique Sample
Preparation

1. Prepare the JAR package of the test program. Assume the package is named mapreduce-

examples.jar, The local storage path is data\resources.

2. Prepare tables and resources for testing the Unique operation.

• Create tables.

create table ss_in(key bigint, value bigint);
create table ss_out(key bigint, value bigint);

• Add resources.

add jar data\resources\mapreduce-examples.jar -f;

3. Use the tunnel command to import the data.

tunnel upload data ss_in;

The contents of data file imported into the table ss_in.

 1,1
 1,1
 2,2

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 163

 2,2

Procedure

Run Unique on the odpscmd, as follows:

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.Unique ss_in ss_out key;

Result

The content of output table ss_out is as follows:

| key | value |

| 1 | 1 |
| 2 | 2 |

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 Import java. util. iterator;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;

 * Unique Remove duplicate words

 public class Unique {
 public static class OutputSchemaMapper extends MapperBase {
 private Record key;
 private Record value;
 @Override
 public void setup(TaskContext context) throws IOException {
 key = context.createMapOutputKeyRecord();
 value = context.createMapOutputValueRecord();

 @ Override
 public void map(long recordNum, Record record, TaskContext
context)
 throws IOException {
 long left = 0;
 long right = 0;
 if (record.getColumnCount() > 0) {
 left = (Long) record.get(0);
 if (record.getColumnCount() > 1) {
 right = (Long) record.get(1);

MaxCompute User Guide / 4 MapReduce

164 Issue: 20180808

 key.set(new Object[] { (Long) left, (Long) right });
 value.set(new Object[] { (Long) left, (Long) right });
 context.write(key, value);

 public static class OutputSchemaReducer extends ReducerBase {
 private Record result = null;
 @Override
 public void setup(TaskContext context) throws IOException {
 result = context.createOutputRecord();

 @Override
 public void reduce(Record key, Iterator<Record> values,
TaskContext context)
 throws IOException {
 result.set(0, key.get(0));
 while (values.hasNext()) {
 Record value = values.next();
 result.set(1, value.get(1));

 context.write(result);

 public static void main(String[] args) throws Exception {
 if (args.length > 3 || args.length < 2) {
 System.err.println("Usage: unique <in> <out> [key|value|all
]");
 System.exit(2);

 String ops = "all";
 if (args.length == 3) {
 Ops = ARGs [2];

 // Key Unique
 if (ops.equals("key")) {
 JobConf job = new JobConf();
 job.setMapperClass(OutputSchemaMapper.class);
 job.setReducerClass(OutputSchemaReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("key:bigint
,value:bigint"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("key:
bigint,value:bigint"));
 job.setPartitionColumns(new String[] { "key" });
 job.setOutputKeySortColumns(new String[] { "key", "value
" });
 job.setOutputGroupingColumns(new String[] { "key" });
 job.set("tablename2", args[1]);
 job.setNumReduceTasks(1);
 job.setInt("table.counter", 0);
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 JobClient.runJob(job);

 // Key&Value Unique
 if (ops.equals("all")) {
 JobConf job = new JobConf();
 job.setMapperClass(OutputSchemaMapper.class);
 job.setReducerClass(OutputSchemaReducer.class);

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 165

 job.setMapOutputKeySchema(SchemaUtils.fromString("key:bigint
,value:bigint"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("key:
bigint,value:bigint"));
 job.setPartitionColumns(new String[] { "key" });
 job.setOutputKeySortColumns(new String[] { "key", "value
" });
 job.setOutputGroupingColumns(new String[] { "key", "value
" });
 Job. Set ("tablename2", argS [1]);
 job.setNumReduceTasks(1);
 job.setInt("table.counter", 0);
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 Jobclient. runjob (job);

 // Value Unique
 if (ops.equals("value")) {
 JobConf job = new JobConf();
 job.setMapperClass(OutputSchemaMapper.class);
 job.setReducerClass(OutputSchemaReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("key:bigint
,value:bigint"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("key:
bigint,value:bigint"));
 job.setPartitionColumns(new String[] { "value" });
 job.setOutputKeySortColumns(new String[] { "value" });
 job.setOutputGroupingColumns(new String[] { "value" });
 job.set("tablename2", args[1]);
 job.setNumReduceTasks(1);
 job.setInt("table.counter", 0);
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 JobClient.runJob(job);

4.3.12 Sort Sample
Preparation

1. Prepare the JAR package of the test program. Assume the package is named mapreduce-

examples.jar, and the local storage path is data\resources.

2. Prepare tables and resources for testing the SORT operation.

• Create tables.

create table ss_in(key bigint, value bigint);

MaxCompute User Guide / 4 MapReduce

166 Issue: 20180808

create table ss_out(key bigint, value bigint);

• Add resources.

add jar data\resources\mapreduce-examples.jar -f;

3. Use the tunnel command to import the data.

tunnel upload data ss_in;

The contents of data file imported into the table ss_in:

 2,1
 1,1
 3,1

Procedure

Run Sort on the odpscmd, as follows:

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.Sort ss_in ss_out;

Result

The content of output table ss_out is as follows:

| key | value |

1	1
2	1
3	1

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 import java.util.Date;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.example.lib.IdentityReducer;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;

 * This is the trivial map/reduce program that does absolutely
nothing other
 * than use the framework to fragment and sort the input values.

 public class Sort {

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 167

 static int printUsage() {
 System.out.println("sort <input> <output>");
 return -1;

 * Implements the identity function, mapping record's first two
columns to
 * outputs.

 public static class IdentityMapper extends MapperBase {
 private Record key;
 private Record value;
 @Override
 public void setup(TaskContext context) throws IOException {
 key = context.createMapOutputKeyRecord();
 value = context.createMapOutputValueRecord();

 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 throws IOException {
 Key. set (new object [] {(long) record. get (0)});
 value.set(new Object[] { (Long) record.get(1) });
 context.write(key, value);

 * The main driver for sort program. Invoke this method to
submit the
 * map/reduce job.

 * @throws IOException
 * When there is communication problems with the job tracker.

 public static void main(String[] args) throws Exception {
 JobConf jobConf = new JobConf();
 jobConf.setMapperClass(IdentityMapper.class);
 jobConf.setReducerClass(IdentityReducer.class);
 jobConf.setNumReduceTasks(1);
 Jobconf. setmapoutputkeyschema schemautils schemeiutils.
fromstring ("key: bigint "));
 jobConf.setMapOutputValueSchema(SchemaUtils.fromString("value:
bigint"));
 Inpututils. addtable (tableinfo. builder (). tablename (ARGs [
0]). build (), jobconf);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), jobConf);
 Date starttime = new date ();
 System.out.println("Job started: " + startTime);
 JobClient.runJob(jobConf);
 Date end_time = new Date();
 System.out.println("Job ended: " + end_time);
 System.out.println("The job took "
 + (end_time.getTime() - startTime.getTime()) / 1000 + "
seconds.")

MaxCompute User Guide / 4 MapReduce

168 Issue: 20180808

4.3.13 Partition
The following example takes Partition as input and output.

Example 1:

 public static void main(String[] args) throws Exception {
 JobConf job = new JobConf();

 LinkedHashMap<String, String> input = new LinkedHashMap<String,
String>();
 input.put("pt", "123456");
 InputUtils.addTable(TableInfo.builder().tableName("input_table").
partSpec(input).build(), job);
 LinkedHashMap<String, String> output = new LinkedHashMap<String,
String>();
 output.put("ds", "654321");
 Outpututils. addtable (tableinfo. builder (). tablename ("
output_table "). partspec (output). build (), job);
 JobClient.runJob(job);

Example 2:

 package com.aliyun.odps.mapred.open.example;

 public static void main(String[] args) throws Exception {
 if (args.length ! = 2) {
 System.err.println("Usage: WordCount <in_table> <out_table
>");
 System.exit(2);

 JobConf job = new JobConf();
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(SumCombiner.class);
 job.setReducerClass(SumReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("word:string
"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("count:
bigint"));
 Account account = new AliyunAccount("my_access_id", "
my_access_key");
 Odps odps = new Odps(account);
 odps.setEndpoint("odps_endpoint_url");
 odps.setDefaultProject("my_project");
 Table table = odps.tables().get(tblname);
 TableInfoBuilder builder = TableInfo.builder().tableName(
tblname);
 for (Partition p : table.getPartitions()) {
 if (applicable(p)) {
 LinkedHashMap<String, String> partSpec = new LinkedHashMap
<String, String>();
 for (String key : p.getPartitionSpec().keys()) {
 partSpec.put(key, p.getPartitionSpec().get(key));

 InputUtils.addTable(builder.partSpec(partSpec).build(),
conf);

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 169

 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 Jobclient. runjob (job);

Note:

• The preceding example combines the MaxCompute SDK and MapReduce SDK to achieve a

MapReduce task.

• The code cannot be compiled and is only an example of main functions.

• The Applicable function is user logic that determines whether the Partition can be used as the

input of MapReduce job.

4.3.14 Pipeline Sample
Preparation

1. Prepare the JAR package of the test program. Assume the package is named mapreduce-

examples.jar, and the local storage path is data\resources.

2. Prepare tables and resources for testing the the WordCountPipeline operation.

• Create tables:

create table wc_in (key string, value string);
create table wc_out(key string, cnt bigint);

• Add resources:

add jar data\resources\mapreduce-examples.jar -f;

3. Use the tunnel command to import the data:

tunnel upload data wc_in;

The contents of data file imported into the table wc_in, as follows:

hello,odps

Procedure

Run WordCountPipeline on the odpscmd, as follows:

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar

MaxCompute User Guide / 4 MapReduce

170 Issue: 20180808

com.aliyun.odps.mapred.open.example.WordCountPipeline wc_in wc_out;

Result

The content of output table wc_out is as follows:

| key | cnt |

| hello | 1 |
| odps | 1 |

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 Import java. util. iterator;
 import com.aliyun.odps.Column;
 import com.aliyun.odps.OdpsException;
 import com.aliyun.odps.OdpsType;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.Job;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.pipeline.Pipeline;
 public class WordCountPipelineTest {
 public static class TokenizerMapper extends MapperBase {
 Record word;
 Record one;
 @Override
 public void setup(TaskContext context) throws IOException {
 word = context.createMapOutputKeyRecord();
 one = context.createMapOutputValueRecord();
 one.setBigint(0, 1L);

 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 throws IOException {
 for (int i = 0; i < record.getColumnCount(); i++) {
 String[] words = record.get(i).toString().split("\\s+");
 for (String w : words) {
 word.setString(0, w);
 context.write(word, one);

 public static class SumReducer extends ReducerBase {
 private Record value;
 @Override
 public void setup(TaskContext context) throws IOException {
 value = context.createOutputValueRecord();

 @Override
 public void reduce(Record key, Iterator<Record> values,
TaskContext context)
 Throws ioexception {
 Long Count = 0;

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 171

 while (values.hasNext()) {
 Record val = values.next();
 count += (Long) val.get(0);

 value.set(0, count);
 context.write(key, value);

 public static class IdentityReducer extends ReducerBase {
 private Record result;
 @Override
 public void setup(TaskContext context) throws IOException {
 result = context.createOutputRecord();

 @Override
 public void reduce(Record key, Iterator<Record> values,
TaskContext context)
 throws IOException {
 while (values.hasNext()) {
 result.set(0, key.get(0));
 result.set(1, values.next().get(0));
 context.write(result);

 public static void main(String[] args) throws OdpsException {
 if (args.length ! = 2) {
 System.err.println("Usage: WordCountPipeline <in_table> <
out_table>");
 System.exit(2);

 Job job = new Job();

 * In the process of constructing pipeline, if you do not
specify mapper's OutputKeySortColumns，PartitionColumns，OutputGrou
pingColumns,
 * the framework defaults to its OutputKey as the default
configuration for the three

 Pipeline pipeline = Pipeline.builder()
 . Addmapper (maid. Class)
 .setOutputKeySchema(
 new Column[] { new Column("word", OdpsType.STRING
) })
 .setOutputValueSchema(
 new Column[] { new Column("count", OdpsType.BIGINT
) })
 .setOutputKeySortColumns(new String[] { "word" })
 .setPartitionColumns(new String[] { "word" })
 .setOutputGroupingColumns(new String[] { "word" })
 .addReducer(SumReducer.class)
 .setOutputKeySchema(
 new Column[] { new Column("word", OdpsType.STRING
) })
 .setOutputValueSchema(
 new Column[] { new Column("count", OdpsType.BIGINT
)})
 .addReducer(IdentityReducer.class).createPipeline();
 job.setPipeline(pipeline);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 job.submit();

MaxCompute User Guide / 4 MapReduce

172 Issue: 20180808

 job.waitForCompletion();
 System.exit(job.isSuccessful() == true ? 0 : 1);

4.4 Java SDK

4.4.1 Java SDK
This section introduces common MapReduce interfaces.

The users who use Maven can search “odps-sdk-mapred” from Maven Library to get the required

Java SDK (available in different versions). The configuration is shows as follows:

<dependency>
 <groupId>com.aliyun.odps</groupId>
 <artifactId>odps-sdk-mapred</artifactId>
 <version>0.20.7-public</version>
</dependency>

Interface Description

MapperBase The user-defined Map function is required to inherit from this class. It
processes the record object of the input table, processes the object into key
value and outputs the value to the Reduce stage, or outputs result record to
the result table without passing through the Reduce stage. Jobs that do not
pass through the Reduce stage, but directly outputs computation results, are
 called Map-Only job.

ReducerBase Your customized Reduce function needs to inherit from the class. The set of
Values associated with a Key is reduced.

TaskContext It is one of the input parameters of multiple member functions in MapperBase
 and ReducerBase. Contains contextual information about tasks.

JobClient It is used for submitting and managing jobs. The submission mode includes
blocking (synchronous) mode or non-blocking (asynchronous) mode.

RunningJob Indicates object in job running and used for tracing MapReduce job instance
during job running process.

JobConf Describes configuration of a MapReduce task. The JobConf object is
generally defined in main program (main function), then jobs are submitted
by JobClient to MaxCompute.

MapperBase

Main function interfaces are as follows.

http://search.maven.org/

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 173

Interface Description

void cleanup(TaskContext context) The Map method is called after the map stage
ends.

void map(long key, Record record, TaskContex
t context)

Map method, processes records of the input
table.

void setup(TaskContext context) The Map method is called before the map
stage begins.

ReducerBase

Main function interfaces are as follows.

Interface Description

void cleanup(TaskContext context) The Reduce method is called after the reduce
stage ends.

void reduce(Record key, Iterator<Record >
values, TaskContext context)

reduce method, process record of input table.

void setup(TaskContext context) The Reduce method is called before the reduce
 stage begins.

TaskContext

Main function interfaces are as follows.

Interface Description

TableInfo[] getOutputTableInfo() Get output table information.

Record createOutputRecord() Create the record object of the default output
table.

Record createOutputRecord(String label) Create the record object of the output table with
 provided label.

Record createMapOutputKeyRecord() Create the record object of Key output by Map.

Record createMapOutputValueRecord() Create the record object of Value output by
Map.

void write(Record record) It writes record to default output and is used for
 writing output data by Reduce client, and can
be called on the Reduce client multiple times.

void write(Record record, String label) It writes record to the given label output and is
used for writing output data by Reduce client,

MaxCompute User Guide / 4 MapReduce

174 Issue: 20180808

Interface Description

and can be called on the Reduce client multiple
 times.

void write(Record key, Record value) Map writes record to intermediate result. It can
 be called in Map function and called on the
Map client multiple times.

BufferedInputStream readResourceFileAsSt
ream(String resourceName)

Read file type resource.

Iterator<Record > readResourceTable(String
resourceName)

Read table type resource.

Counter getCounter(Enum<? > > name) Get the Counter object with provided name.

Counter getCounter(String group, String name) Get the Counter object with provided group
name and name.

void progress() Report heartbeat information to the
MapReduce framework. It reports heartbeat
information to MapReduce framework. If a user
’s method takes a long time to process, and no
framework is called in the process, this method
can be called to avoid task timeout. Timeout of
 the framework is 600s by default.

Note:

MaxCompute TaskContext interface provides the progress function, however, this function is to

prevent the Worker being killed as it is running for long time and the framework considers it as

a timeout Worker. This interface is similar to sending heartbeat information to the framework,

but does not report the progress of the Worker. MaxCompute The default timeout schedule of

MaxCompute MapReduce Worker is 10 minutes (system default, not be controlled by user). If

the schedule exceeds 10 minutes and Worker is unable to send heartbeat information to the

framework (not to call progress interface), the framework is forced to stop this Worker and

MapReduce task fails and exits. We recommend you call the progress interface regularly in

Mapper/Reducer functions, to prevent being killed by the framework.

JobConf

Main function interfaces are as follows.

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 175

Interface Description

void setResources(String resourceNames) Declare resources this job uses. Declare
resources used in this job. Only the declared
resource can be read by TaskContext object
during Mapper/Reducer running process.

void setMapOutputKeySchema(Column[]
schema)

Set the Key attribute output from Mapper to
Reducer.

void setMapOutputValueSchema(Column[]
schema)

Set the Value attribute output from Mapper to
Reducer.

void setOutputKeySortColumns(String[] cols) Set key sort columns output from Mapper to
Reducer.

void setOutputGroupingColumns(String[] cols) Set Key grouping columns.

void setMapperClass(Class<? extends Mapper
 > theClass)

Set Mapper function of the job.

void setPartitionColumns(String[] cols) Set the partition column specified in the job.
 The default is all columns of Key output by
Mapper.

void setReducerClass(Class<? extends
Reducer theClass)

Set Reducer of the job.

void setCombinerClass(Class<? extends
Reducer theClass)

Set combiner of the job, running on Map client
. Its function is similar to performing Reduce
operation on the identical local Key values by a
 single Map.

void setSplitSize(long size) Set the size of input slice. Unit: MB. The default
 value is 640.

void setNumReduceTasks(int n) Set the number of Reducer tasks. The default
is 1/4 of Mapper tasks.

void setMemoryForMapTask(int mem) Set the memory size of single Worker in
Mapper task. Unit: MB. The default value is
2048.

void setMemoryForReduceTask(int mem) Set the memory size of single Worker for
Reducer task. Unit: MB. The default value is
2048.

Note:

MaxCompute User Guide / 4 MapReduce

176 Issue: 20180808

• Usually, GroupingColumns is included in KeySortColumns, while KeySortColumns and

PartitionColumns are included in Key.

• In the Map side, mappers’ output records are distributed to reducers according to the hash

values computed using PartitionColumns, and then sorted by KeySortColumns.

• In the Reduce side, after sorted by KeySortColumns, input records are grouped as input

groups of the reduce function sequentially, that is, records with the same GroupingColumns

values are treated as the same input group.

JobClient

Main function interfaces are as follows.

Interface Description

static RunningJob runJob(JobConf job) Return immediately after submitting a
MapReduce job in synchronous (blocking)
mode.

static RunningJob submitJob(JobConf job) Return immediately after submitting a
MapReduce job in asynchronous (non-blocking
) mode.

RunningJob

Main function interfaces are as follows.

Interface Description

String getInstanceID() Get instance ID for checking run log and job
management.

boolean isComplete() Check whether job is complete.

boolean isSuccessful() Check whether job instance is successful.

void waitForCompletion() Wait until job instance is complete. It is typically
 is used for jobs submitted is asynchronous
mode.

JobStatus getJobStatus() Check job instance status.

void killJob() End the job.

Counters getCounters() Get Counter information.

InputUtils

Main function interfaces are as follows.

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 177

Interface Description

static void addTable(TableInfo table, JobConf
conf)

Add table to task input. It can be called multiple
 times. The new added table is added to input
queue in an append manner.

static void setTables(TableInfo [] tables,
JobConf conf)

Add tables to task input.

OutputUtils

Main function interfaces are as follows.

Interface Description

static void addTable(TableInfo table, JobConf
conf)

Add table to task output. It can be called
multiple times. Add the new added table to
output queue in an append manner.

static void setTables(TableInfo [] tables,
JobConf conf)

Add multiple tables to the task output.

Pipeline

Pipeline is the subject of MR2 . A Pipeline can be constructed by Pipeline.builder. Pipeline are as

follows:

 public Builder addMapper(Class<? extends Mapper> mapper)
 public Builder addMapper(Class<? extends Mapper> mapper,
 column [] keyschema, column [] valueschema, string []
sortcols,
 SortOrder [] order, string [] partcols,
 Class<? extends Partitioner> theClass, String[] groupCols)
 public Builder addReducer(Class<? extends Reducer> reducer)
 public Builder addReducer(Class<? extends Reducer> reducer,
 column [] keyschema, column [] valueschema, string []
sortcols,
 SortOrder [] order, string [] partcols,
 Class<? extends Partitioner> theClass, String[] groupCols)
 public setoutputkeyschema builder (Column [] keyschema)
 public setoutputvalueschema builder (Column [] valueschema)
 public setoutputkeysortcolumns builder (String [] sortcols)
 public setoutputkeysortorder builder (Sortorder [] order)
 public setpartitioncolumns builder (String [] partcols)
 public Builder setPartitionerClass(Class<? extends Partitioner>
theClass)
 void setOutputGroupingColumns(String[] cols)

Example:

 job job = new job ();
 pipeline pipeline = pipeline. builder ()
 . addmapper (Tokenizermapper. class)

MaxCompute User Guide / 4 MapReduce

178 Issue: 20180808

 . setoutputkeyschema (
 new column [] {new column ("word", OdpsType. string)})
 . setoutputvalueschema (
 new column [] {new column ("count", OdpsType. bigint)})
 . addreducer (Sumreducer. class)
 . setoutputkeyschema (
 new column [] {new column ("count", OdpsType. bigint)})
 . setoutputvalueschema (
 new column [] {new column ("word", OdpsType. string),
 new column ("count", OdpsType. bigint)})
 . addreducer (Identityreducer. class). createPipeline ();
 job. setpipeline (pipeline);
 job. addinput (...)
 job. addoutput (...)
 job. submit ();

As shown in the preceding example, a user can construct a Map in the main class, and then

consecutively get MapReduce tasks of two Reduces. If you are familiar with the basic function of

MapReduce, then the use of MR2 is similar.

Note:

• Specifically, we recommend that users can complete the configuration of MapReduce task by

JobConf,

• as JobConf can get MapReduce task of single Reduce only after configuring Map.

Data Type

The data types supported in MapReduce include: BIGINT, STRING, DOUBLE, BOOLEAN, and

DATETIME. MaxCompute between MaxCompute data types and Java types are as follows:

MaxCompute SQL Type Bigint String Double Boolean Datetime Decimal

Java Type Long String Double Boolean date BigDecimal

4.5 MR Restrictions
In order to avoid that you have not paid attention to restrictions so that business stops after the

business starts , this article will summarize the MaxCompute MR restrictions to help you.

The restrictions of MaxCompute MapReduce are as follows:

Restricted

item

Value Type Configuration

item

Default

 value

Configurab

le?

Description

Memory
occupied
 by the
instance

[256MB
，
12GB]

Memory
 limit

odps.stage.
mapper(reducer
).mem and odps
.stage.mapper

2048M
＋
1024M

Yes Memory occupied by a
single map instance or
reduce instance, including
 the framework memory (2

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 179

Restricted

item

Value Type Configuration

item

Default

 value

Configurab

le?

Description

(reducer).jvm.
mem

,048 MB by default) and
heap memory of the Java
 virtual machine (JVM) (1,
024 MB by default).

Number of
resources

256 Number
 limit

N/A None. No The number of resources
 referenced by a single
job cannot exceed 256.
The table and archive are
regarded as a unit.

Numbers of
 inputs and
outputs

1024
 and
256

Number
 limit

N/A None No The number of inputs of
 one job cannot exceed
 1024. (A partition of a
table is regarded as one
input. The number of input
 tables cannot exceed 64
). The number of outputs
 of one job cannot exceed
 256.

Number of
counters

64 Number
 limit

N/A None. No The number of custom
counters in one job cannot
 exceed 64. The group
name and counter name
 of a counter must not
 contain #. The overall
length of the group name
 and the counter name of
 a counter must be within
100.

map
instance 　

[1，
100000
]

Number
 limit

odps.stage.
mapper.num

None Yes The number of map
instances of one job
 is calculated by the
framework based on the
split size. If no input table
 exists, you can set the
 value directly in odps.
stage.mapper.num. The
final number ranges from
1 to 100,000.

MaxCompute User Guide / 4 MapReduce

180 Issue: 20180808

Restricted

item

Value Type Configuration

item

Default

 value

Configurab

le?

Description

reduce
instance

[0，
2000]

Number
 limit

odps.stage.
reducer.num

None Yes The number of reduce
 instances of one job
 is 1/4 of that of map
instances by default. The
 reduce instance number
 configured by the user
 ranges from 0 to 2,000
. It may occur that the
data volume processed
by reduce is several times
 that processed by map.
 In this case, the reduce
 phase gets slower and
can initiate at most 2000
instances.

Number of
retries

3 Number
 limit

N/A None No The maximum number of
retries allowed for a single
 map instance or reduce
 instance is 3. Some
exceptions that do not
allow retries may cause
task execution failures.

Local debug
 mode

100 Number
 limit

N/A None No In local debug mode, the
number of map instances
is 2 by default and cannot
exceed 100. The number
 of reduce instances is
1 by default and cannot
exceed 100. The number
 of download records of
one input is 1 by default
and cannot exceed 100.

Number of
 times of
reading a
 resource
repeatedly

64 Number
 limit

N/A None No The number of times
that a map instance or
reduce instance reads
one resource repeatedly
cannot exceed 64 .

MaxCompute User Guide / 4 MapReduce

Issue: 20180808 181

Restricted

item

Value Type Configuration

item

Default

 value

Configurab

le?

Description

Resource
length

2G Length
 limit

N/A None No The total length of a
resource referenced by a
job cannot exceed 2 GB.

split size [1，) Length
 limit

odps.stage.
mapper.split.size

256M Yes The framework splits
the map based on the
configured split size, of
which the number of maps
 is then determined.

Content
length of
the string
column

8 MB Length
 limit

N/A None No The content in the
string column of the
MaxCompute table cannot
 exceed 8 MB.

Worker
running
timeout
period

［1，
3600］

Time
limit

odps.function.
timeout

600 Yes Timeout period for the
worker when the map
or reduce worker does
not read or write data or
 actively send heartbeat
 data by using context.
progress(). The default
value is 600s.

The
supported
field types
 of table
referenced
by MR

BIGINT
、
DOUBLE
、
STRING
、
DATETIME
、
BOOLEAN

Data
type
limit

N/A None No When the MR task refers
to a table, an error occurs
if the table contains other
types of fields.

MaxCompute User Guide / 5 Java Sandbox

182 Issue: 20180808

5 Java Sandbox

Java sandbox related restrictions of MaxCompute MapReduce and UDF programs running in

distributed environments are as follows:

• Direct access to local files is not allowed. You can only access files by using interfaces

provided by MaxCompute MapReduce/Graph in the following way:

▬ Read resources specified by the ‘-resources’ option, including files, JAR packages, and

resource tables.

▬ Output log information through ‘System.out’ and ‘System.err’. You can view log information

by running the log command on the MaxCompute console.

• Direct access to the distributed file system is not allowed. You can only access table records by

 using MaxCompute MapReduce/Graph.

• JNI call restrictions are not allowed.

• Creation of Java threads is not allowed. Initiation of sub-processes to run Linux commands is

not allowed.

• Network access, including obtaining local IP addresses, is not allowed.

• Java reflection is restricted. “suppressAccessChecks” permission is denied. A private attribute

 or method cannot be set to accessible for obtaining private attributes or calling private

methods.

Specifically for the user code, “access denied” is thrown if you follow these steps:

Methods for accessing local files are as follows:

java.io.File:

 public boolean delete ()
 public void deleteOnExit()
 public boolean exists()
 public boolean canRead()
 public boolean isFile()
 public boolean isDirectory()
 public boolean isHidden()
 public long lastModified()
 public long length ()
 public String[] list()
 public String[] list(FilenameFilter filter)
 public File[] listFiles()
 public File[] listFiles(FilenameFilter filter)
 public File[] listFiles(FileFilter filter)
 public boolean canWrite()
 public boolean createNewFile()
 public static File createTempFile(String prefix, String suffix)

MaxCompute User Guide / 5 Java Sandbox

Issue: 20180808 183

 public static File createTempFile(String prefix, String suffix,
File directory)
 public boolean mkdir ()
 public boolean mkdirs ()
 public boolean renameTo(File dest)
 public boolean setLastModified(long time)
 public boolean setReadOnly()

java.io.RandomAccessFile:

 RandomAccessFile(String name, String mode)
 RandomAccessFile(File file, String mode)

java.io.FileInputStream:

 FileInputStream(FileDescriptor fdObj)
 FileInputStream(String name)
 FileInputStream(File file)

java.io.FileOutputStream:

 FileOutputStream(FileDescriptor fdObj)
 FileOutputStream(File file)
 FileOutputStream(String name)
 FileOutputStream(String name, boolean append)

java.lang.Class:

public ProtectionDomain getProtectionDomain()

java.lang.ClassLoader:

 ClassLoader ()
 ClassLoader(ClassLoader parent)

java. lang. Runtime:

 public Process exec(String command)
 public Process exec(String command, String envp[])
 public Process exec(String cmdarray[])
 public Process exec(String cmdarray[], String envp[])
 public void exit(int status)
 public static void runFinalizersOnExit(boolean value)
 public void addShutdownHook(Thread hook)
 public boolean removeShutdownHook(Thread hook)
 public void load(String lib)
 public void loadLibrary(String lib)

java.lang.System:

 public static void exit(int status)
 public static void runFinalizersOnExit(boolean value)
 public static void load(String filename)
 public static void loadLibrary(String libname)
 public static Properties getProperties()

MaxCompute User Guide / 5 Java Sandbox

184 Issue: 20180808

 public static void setProperties(Properties props)
 public static String getProperty(String key) // Only some keys are
 allowed for file access.
 public static String getProperty(String key, String def) // Only
some keys are allowed for file access.
 public static String setProperty(String key, String value)
 public static void setIn(InputStream in)
 public static void setOut(PrintStream out)
 public static void setErr(PrintStream err)
 public static synchronized void setSecurityManager(SecurityManager
 s)

List of keys allowed by System.getProperty is as follows:

 java. version
 java. vendor
 java. vendor. url
 java. class. version
 os. name
 os. version
 os. arch
 file. separator
 path. separator
 line. separator
 java. specification. version
 java. specification. vendor
 java. specification. name
 java. vm. specification. version
 java. vm. specification. vendor
 java. vm. specification. name
 java. vm. version
 java. vm. vendor
 java. vm. name
 file. encoding
 user.timezone

java. lang. Thread:

 Thread ()
 Thread(Runnable target)
 Thread(String name)
 Thread(Runnable target, String name)
 Thread(ThreadGroup group, ...)
 public final void checkAccess()
 public void interrupt ()
 public final void suspend ()
 public final void resume ()
 public final void setPriority (int newPriority)
 public final void setName(String name)
 public final void setDaemon(boolean on)
 public void final stop ()
 public final synchronized void stop(Throwable obj)
 public static int enumerate(Thread tarray[])
 public void setContextClassLoader(ClassLoader cl)

java. lang. ThreadGroup:

 ThreadGroup (String name)
 ThreadGroup (Threadgroup parent, String name)

MaxCompute User Guide / 5 Java Sandbox

Issue: 20180808 185

 public final void checkAccess ()
 public int enumerate (Thread list [])
 public int enumerate (Thread list [], boolean recurse)
 public int enumerate (Threadgroup list [])
 public int enumerate (Threadgroup list [], boolean recurse)
 public final ThreadGroup getParent ()
 public final void setDaemon (boolean daemon)
 public final void setMaxPriority (int pri)
 public final void suspend ()
 public final void resume ()
 public final void destroy ()
 public final void interrupt ()
 public void final stop ()

java. lang. reflect. AccessibleObject:

 public static void setAccessible (...)
 public void setAccessible (...)

java.net. InetAddress:

 public String getHostName ()
 public static InetAddress[] getAllByName(String host)
 public static InetAddress getLocalHost()

java.net.DatagramSocket:

public InetAddress getLocalAddress()

java.net.Socket:

Socket(...)

java.net.ServerSocket:

 ServerSocket (...)
 public Socket accept ()
 protected final void implAccept (Socket s)
 public static synchronized void setSocketFactory(...)
 public static synchronized void setSocketImplFactory(...)

java.net. DatagramSocket:

 DatagramSocket (...)
 public synchronized void receive(DatagramPacket p)

java.net.MulticastSocket:

MulticastSocket(...)

java.net.URL:

 URL(...)
 public static synchronized void setURLStreamHandlerFactory(...)

MaxCompute User Guide / 5 Java Sandbox

186 Issue: 20180808

 java.net.URLConnection
 public static synchronized void setContentHandlerFactory(...)
 public static void setFileNameMap(FileNameMap map)

java.net.HttpURLConnection:

 public static void setFollowRedirects(boolean set)
 java.net.URLClassLoader
 URLClassLoader(...)

java.security.AccessControlContext:

 public AccessControlContext(AccessControlContext acc, DomainComb
iner combiner)
 public DomainCombiner getDomainCombiner()

MaxCompute User Guide / 6 SDK

Issue: 20180808 187

6 SDK

6.2 Python SDK
PyODPS is the Python SDK of MaxCompute. It supports basic actions on MaxCompute objects

and the DataFrame framework for ease of data analysis on MaxCompute. For more information,

see the GitHub project and the PyODPS Documentation that describes all interfaces and classes.

• For more information about PyODPS, see the PyODPS community album.

• Developers are welcome to participate in the ecological development of PyODPS. For more

information, see GitHub document.

• You are welcome to submit the issue and merge request to accelerate PyODPS eco-growth.

For more details, see code.

• DingTalk technology exchange group: 11701793

Installation

PyODPS supports Python 2.6 and later versions. After installing PIP in the system, you only

need to run pip install pyodps. The related dependencies of PyODPS are automatically

installed.

Quick Start

Log on using your Alibaba Cloud primary account to initialize a MaxCompute entry, as shown in

the following code:

from odps import ODPS
odps = ODPS('**your-access-id**', '**your-secret-access-key**', '**
your-default-project**',
 endpoint='**your-end-point**')

After completing initialization, you can operate tables, resources, and functions.

Project

A project is the basic unit of operation in MaxCompute, which is similar to a database.

Call get_project to obtain a project, as shown in the following code:

project = odps.get_project('my_project') # Obtain a project.
project = odps.get_project() # Obtain the default project.

Note:

https://github.com/aliyun/aliyun-odps-python-sdk
http://pyodps.readthedocs.org/
https://yq.aliyun.com/album/19
http://pyodps.readthedocs.io/zh_CN/latest/?spm=a2c4e.11153959.blogcont138752.16.5bec51d32BpKgB
https://github.com/aliyun/aliyun-odps-python-sdk?spm=a2c4e.11153959.blogcont138752.17.5bec51d3IMNtLJ

MaxCompute User Guide / 6 SDK

188 Issue: 20180808

• If parameters are not input, use the default project.

• You can call exist_project to check whether a project exists.

• A table is a data storage unit of MaxCompute.

Table Actions

Call list_tables to list all tables in the project, as shown in the following code:

for table in odps.list_tables():
 # Process each table

Call exist_table to check whether the table exists and call get_table to obtain the table.

>>> t = odps.get_table('dual')
>>> t.schema
odps.Schema {
 c_int_a bigint
 c_int_b bigint
 c_double_a double
 c_double_b double
 c_string_a string
 c_string_b string
 c_bool_a boolean
 c_bool_b boolean
 c_datetime_a datetime
 c_datetime_b datetime
}
>>> t.lifecycle
-1
>>> print(t.creation_time)
2014-05-15 14:58:43
>>> t.is_virtual_view
False
>>> t.size
1408
>>> t.schema.columns
[<column c_int_a, type bigint>,
 <column c_int_b, type bigint>,
 <column c_double_a, type double>,
 <column c_double_b, type double>,
 <column c_string_a, type string>,
 <column c_string_b, type string>,
 <column c_bool_a, type boolean>,
 <column c_bool_b, type boolean>,
 <column c_datetime_a, type datetime>,
 <column c_datetime_b, type datetime>]

Create a table’s schema

Two initialization methods are provided:

• Initialize through table columns and optional partitions, as shown in the following code:

>>> from odps.models import Schema, Column, Partition
>>> columns = [Column(name='num', type='bigint', comment='the column
')]

MaxCompute User Guide / 6 SDK

Issue: 20180808 189

>>> partitions = [Partition(name='pt', type='string', comment='the
partition')]
>>> schema = Schema(columns=columns, partitions=partitions)
>>> schema.columns
[<column num, type bigint>, <partition pt, type string>]

• Although it is easier to call Schema.from_lists for initialization, annotations of columns and

partitions cannot be directly set.

>>> schema = Schema.from_lists(['num'], ['bigint'], ['pt'], ['string
'])
>>> schema.columns
[<column num, type bigint>, <partition pt, type string>]

Create a Table

You can use a table schema to create a table, as shown in the following code:

>>> table = odps.create_table('my_new_table', schema)
>>> table = odps.create_table('my_new_table', schema, if_not_exists=
True) # Create a table only when no table exists.
>>> table = o.create_table('my_new_table', schema, lifecycle=7) # Set
the life cycle.

You can use a field name field type string connected by commas to create a table, as shown in

the following code:

>>> # Create a non-partition table.
>>> table = o.create_table('my_new_table', 'num bigint, num2 double',
if_not_exists=True)
>>> # To create a partition table, you can input (list of table fields
, list of partition fields).
>>> table = o.create_table('my_new_table', ('num bigint, num2 double',
 'pt string'), if_not_exists=True)

Without related settings, you can use only the BIGINT, DOUBLE, DECIMAL, STRING, DATETIME

, BOOLEAN, MAP, and ARRAY types when creating a table.

If your service is on the public cloud, or supports new data types such as TINYINT or STRUCT,

you can set options.sql.use_odps2_extension = True to enable the new types, as

shown in the following code:

>>> from odps import options
>>> options.sql.use_odps2_extension = True
>>> table = o.create_table('my_new_table', 'cat smallint, content
struct<title:varchar(100), body string>')

Obtain Table Data

Table data can be obtained using three methods:

MaxCompute User Guide / 6 SDK

190 Issue: 20180808

• Call head to obtain table data as follows (only the first 10,000 data records or fewer of each

table can be obtained):

>>> t = odps.get_table('dual')
>>> for record in t.head(3):
>>> print(record[0]) # Obtain the value at the zero position.
>>> print(record['c_double_a']) # Obtain a value through a field
.
>>> print(record[0: 3]) # Slice action
>>> print(record[0]) # Obtain values at multiple positions.
>>> print(record['c_int_a', 'c_double_a']) # Obtain values
through multiple fields.

• Run open_reader on a table to open a reader to read data. You can choose to use the WITH

expression:

Use the with expression.
>>> with t.open_reader(partition='pt=test') as reader:
>>> count = reader.count
>>> for record in reader[5:10] # This action can be performed
 multiple times until a certain number (indicated by count) of
records are read. This statement can be transformed to parallel
action.
>>> # Process a record.
>>>
>>> # Do not use the with expression.
>>> reader = t.open_reader(partition='pt=test')
>>> count = reader.count
>>> for record in reader[5:10]
>>> # Process a record.

• Call the Tunnel API to read table data. The open_reader action is encapsulated in the Tunnel

API.

Write Data

A table object can also perform the open_writer action to open the writer and write data, which

is similar to open_reader. For example:

>>> # Use the with expression.
>>> with t.open_writer(partition='pt=test') as writer:
>>> writer.write(records) # Here, records can be any iteratable
records and are written to block 0 by default.
>>>
>>> with t.open_writer(partition='pt=test', blocks=[0, 1]) as writer:
 # Open two blocks at the same time
>>> writer.write(0, gen_records(block=0))
>>> writer.write(1, gen_records(block=1)) # The two write
operations can be parallel in multiple threads. Each block is
independent.
>>>
>>> # Do not use the WITH expression.
>>> writer = t.open_writer(partition='pt=test', blocks=[0, 1])
>>> writer.write(0, gen_records(block=0))
>>> writer.write(1, gen_records(block=1))

MaxCompute User Guide / 6 SDK

Issue: 20180808 191

>>> writer.close() # You must close the writer. Otherwise, the written
 data may be incomplete.

Similarly, writing data into the table is encapsulated in the Tunnel API. For more information, see

data upload and download channel.

Delete a Table

Delete a table as shown in the following code:

>>> odps.delete_table('my_table_name', if_exists=True) # Delete a
table only when the table exists
>>> t.drop() # The drop function can be directly executed if a table
object exists.

Table Partitioning

• Basic operations

Traverse all partitions of a table, as shown in the following code:

>>> for partition in table.partitions:
>>> print(partition.name)
>>> for partition in table.iterate_partitions(spec='pt=test'):
>>> Traverse list partitions.

Check whether a partition exists, as shown in the following code:

>>> table.exist_partition('pt=test,sub=2015')

Obtain the partition, as shown in the following code:

>>> partition = table.get_partition('pt=test')
>>> print(partition.creation_time)
2015-11-18 22:22:27
>>> partition.size
0

• Create a Partition

>>> t.create_partition('pt=test', if_not_exists=True) # Create a
partition only when no partition exists.

• Delete a Partition

>>> t.delete_partition('pt=test', if_exists=True) # Delete a
partition only when the partition exists.
>>> partition.drop() # Directly drop a partition if a partition
object exists.

SQL

PyODPS supports MaxCompute SQL query and can directly read the execution result.

MaxCompute User Guide / 6 SDK

192 Issue: 20180808

• Run the SQL statements

>>> odps.execute_sql('select * from dual') # Run SQL in synchronous
mode. Blocking continues until SQL execution is completed.
>>> instance = odps.run_sql('select * from dual') # Run the SQL
statements in asynchronous mode.
>>> instance.wait_for_success() # Blocking continues until SQL
execution is completed.

• Read the SQL statement execution results

The instance that runs the SQL statements can directly perform the open_reader action. One

scenario is that the SQL statements return structured data, as follows:

>>> with odps.execute_sql('select * from dual').open_reader() as
reader:
>>> for record in reader:
>>> # Process each record.

Another scenario is that actions that may be performed by SQL, such as desc, obtain the raw

SQL execution result through the reader.raw attribute, as follows:

>>> with odps.execute_sql('desc dual').open_reader() as reader:
>>> print(reader.raw)

Resource

Resources commonly apply to UDF and MapReduce on MaxCompute.

You can use list_resources to list all resources and use exist_resource to check whether

a resource exists. You can call delete_resource to delete resources or directly call the drop

 method for a resource object.

PyODPS mainly supports two resource types: file resources and table resources.

• File Resources

File resources include the basic file type, and py, jar, and archive.

Note:

In DataWorks, file resources in the py format must be uploaded as files. For more information,

see Python UDF.

Create a File Resource

You can create a file resource by specifying the resource name, file type, and a file-like object

(or a string object), as shown in the following example:

resource = odps.create_resource('test_file_resource', 'file',
file_obj=open('/to/path/file')) # Use a file-like object.

https://yq.aliyun.com/articles/300307

MaxCompute User Guide / 6 SDK

Issue: 20180808 193

resource = odps.create_resource('test_py_resource', 'py', file_obj='
import this') # Use a string.

Read and Modify a File Resource

You can call the open method for a file resource or call open_resource at the MaxCompute

entry to open a file resource. The opened object is a file-like object. Similar to the open

 method built in Python, file resources also support the open mode. For example:

>>> with resource.open('r') as fp: # Open a resource in read mode.
>>> content = fp.read() # Read all content.
>>> fp.seek(0) # Return to the start of the resource.
>>> lines = fp.readlines() # Read multiple lines.
>>> fp.write('Hello World') # Error. Resources cannot be written
 in read mode.
>>>
>>> with odps.open_resource('test_file_resource', mode='r+') as fp:
 # Enable read/write mode.
>>> fp.read()
>>> fp.tell() # Current position
>>> fp.seek(10)
>>> fp.truncate() # Truncate the following content.
>>> fp.writelines(['Hello\n', 'World\n']) # Write multiple lines
.
>>> fp.write('Hello World')
>>> fp.flush() # Manual call submits the update to MaxCompute.

The following open modes are supported:

• r: Read mode. The file can be opened but cannot be written.

• w: Write mode. The file can be written but cannot be read. Note that file content is cleared

first if the file is opened in write mode.

• a: Append mode. Content can be added to the end of the file.

• r+: Read/write mode. You can read and write any content.

• w+: Similar to r+, but file content is cleared first.

• a+: Similar to r+, but content can be added to the end of the file only during writing.

In PyODPS, file resources can be opened in binary mode. For example, some compressed

files must be opened in binary mode. rb indicates opening a file in binary read mode, and r+b

 indicates opening a file in binary read/write mode.

• Table Resources

MaxCompute User Guide / 6 SDK

194 Issue: 20180808

Create a Table Resource

>>> odps.create_resource('test_table_resource', 'table', table_name
='my_table', partition='pt=test')

Update a Table Resource

>>> table_resource = odps.get_resource('test_table_resource')
>>> table_resource.update(partition='pt=test2', project_name='
my_project2')

DataFrame

PyODPS provides DataFrame API, which provides interfaces similar to pandas, but can fully

utilize computing capability of MaxCompute. For the complete DataFrame document, see

DataFrame.

The following is an example of DataFrame:

Note:

You must create a MaxCompute object before starting the following steps:

>>> o = ODPS('**your-access-id**', '**your-secret-access-key**',
 project='**your-project**', endpoint='**your-end-point
**'))

Here, movielens 100K is used as an example. Assume that three tables already exist, which are

pyodps_ml_100k_movies (movie-related data), pyodps_ml_100k_users (user-related data),

and pyodps_ml_100k_ratings (rating-related data).

http://pyodps.readthedocs.io/zh_CN/latest/df.html
http://pyodps.readthedocs.io/zh_CN/latest/df.html

MaxCompute User Guide / 6 SDK

Issue: 20180808 195

You only need to input a Table object to create a DataFrame object. For example:

>>> from odps.df import DataFrame

>>> users = DataFrame(o.get_table('pyodps_ml_100k_users'))

View fields of DataFrame and the types of the fields through the dtypes attribute, as shown in the

following code:

>>> users.dtypes

You can use the head method to obtain the first N data records for data preview. For example:

>>> users.head(10)

　 user_id age sex occupation zip_code

0 1 24 M technician 85711

1 2 53 F other 94043

2 3 23 M writer 32067

3 4 24 M technician 43537

4 5 33 F other 15213

5 6 42 M executive 98101

6 7 57 M administrator 91344

7 8 36 M administrator 05201

8 9 29 M student 01002

9 10 53 M lawyer 90703

You can add a filter on the fields if you do not want to view all of them. For example:

>>> users[['user_id', 'age']].head(5)

　 user_id age

0 1 24

1 2 53

2 3 23

3 4 24

4 5 33

MaxCompute User Guide / 6 SDK

196 Issue: 20180808

You can also exclude several fields. For example:

>>> users.exclude('zip_code', 'age').head(5)

　 user_id sex occupation

0 1 M technician

1 2 F other

2 3 M writer

3 4 M technician

4 5 F other

When excluding some fields, you may want to obtain new columns through computation. For

example, add the sex_bool attribute and set it to True if sex is Male. Otherwise, set it to False.

For example:

>>> users.select(users.exclude('zip_code', 'sex'), sex_bool=users.sex
 == 'M').head(5)

　 user_id age occupation sex_bool

0 1 24 technician True

1 2 53 other False

2 3 23 writer True

3 4 24 technician True

4 5 33 other False

Obtain the number of persons at age of 20 to 25, as shown in the following code:

>>> users.age.between(20, 25).count().rename('count')
943

Obtain the numbers of male and female users, as shown in the following code:

>>> users.groupby(users.sex).count()

　 sex count

0 F 273

1 M 670

MaxCompute User Guide / 6 SDK

Issue: 20180808 197

To divide users by job, obtain the first 10 jobs that have the largest population, and sort the jobs in

the descending order of population. An example is as follows:

>>> df = users.groupby('occupation').agg(count=users['occupation'].
count())
>>> df.sort(df['count'], ascending=False)[:10]

　 occupation count

0 student 196

1 other 105

2 educator 95

3 administrator 79

4 engineer 67

5 programmer 66

6 librarian 51

7 writer 45

8 executive 32

9 scientist 31

DataFrame APIs provide the value_counts method to quickly achieve the same result. For

example:

>>> users.occupation.value_counts()[:10]

　 occupation count

0 student 196

1 other 105

2 educator 95

3 administrator 79

4 engineer 67

5 programmer 66

6 librarian 51

7 writer 45

8 executive 32

9 scientist 31

MaxCompute User Guide / 6 SDK

198 Issue: 20180808

Show data in a more intuitive graph, as shown in the following code:

>>> %matplotlib inline

Use a horizontal bar chart to visualize data, as shown in the following code:

>>> users['occupation'].value_counts().plot(kind='barh', x='occupation
',
ylabel='prefession')

Divide ages into 30 groups and view the histogram of age distribution, as shown in the following

code:

>>> users.age.hist(bins=30, title="Distribution of users' ages",
xlabel='age', ylabel='count of users')

MaxCompute User Guide / 6 SDK

Issue: 20180808 199

Use JOIN to join the three tables and save the joined tables as a new table. For example:

>>> movies = DataFrame(o.get_table('pyodps_ml_100k_movies'))
>>> ratings = DataFrame(o.get_table('pyodps_ml_100k_ratings'))
>>> o.delete_table('pyodps_ml_100k_lens', if_exists=True)
>>> lens = movies.join(ratings).join(users).persist('pyodps_ml_
100k_lens')
>>> lens.dtypes

odps.Schema {
 movie_id int64
 title string
 release_date string
 video_release_date string
 imdb_url string
 user_id int64
 rating int64
 unix_timestamp int64
 age int64
 sex string
 occupation string
 zip_code string
}

Divide ages of 0 to 80 into eight groups, as shown in the following code:

>>> labels = ['0-9', '10-19', '20-29', '30-39', '40-49', '50-59', '60-
69', '70-79']
>>> cut_lens = lens[lens, lens.age.cut(range(0, 81, 10), right=False,
labels=labels).rename('age group')]

View the first 10 data records of a single age in a group, as shown in the following code:

>>> cut_lens['age group', 'age'].distinct()[:10]

　 Age group Age

0 0-9 7

1 10-19 10

2 10-19 11

3 10-19 13

4 10-19 14

5 10-19 15

6 10-19 16

7 10-19 17

8 10-19 18

9 10-19 19

MaxCompute User Guide / 6 SDK

200 Issue: 20180808

View users’ total rating and average rating of each age group, as shown in the following code:

>>> cut_lens.groupby('age group').agg(cut_lens.rating.count().rename('
total rating'), cut_lens.rating.mean().rename('average rating'))

　 Age group Average rating Total rating

0 0-9 3.767442 43

1 10-19 3.486126 8181

2 20-29 3.467333 39535

3 30-39 3.554444 25696

4 40-49 3.591772 15021

5 50-59 3.635800 8704

6 60-69 3.648875 2623

7 70-79 3.649746 197

Configuration

PyODPS provides a series of configuration options, which can be obtained through odps.

options. The following lists configurable MaxCompute options:

• General Configurations

Option Description Default value

end_point MaxCompute Endpoint None

default_project Default Project None

log_view_host LogView host name None

log_view_hours LogView holding time (hours) 24

local_timezone Used time zone. True
indicates local time, and False
 indicates UTC. The time
zone of pytz can also be used
.

1

lifecycle Life cycles of all tables None

temp_lifecycle Life cycles of temporary
tables

1

biz_id User ID None

verbose Whether to print logs False

MaxCompute User Guide / 6 SDK

Issue: 20180808 201

Option Description Default value

verbose_log Log receiver None

chunk_size Size of write buffer 1496

retry_times Request retry times 4

pool_connections Number of cached connection
s in the connection pool

10

pool_maxsize Maximum capacity of the
connection pool

10

connect_timeout Connection time-out 5

read_timeout Read time-out 120

completion_size Limit on the number of object
complete listing items

10

notebook_repr_widget Use interactive graphs True

sql.settings MaxCompute SQL runs global
 hints

None

sql.use_odps2_extension Enable MaxCompute 2.0
language extension

False

• Data Upload/Download Configurations

Option Description Default value

tunnel.endpoint Tunnel Endpoint None

tunnel.use_instance_tunnel Use Instance Tunnel to obtain
 the execution result

True

tunnel.limited_instance_tun
nel

Limit the number of results
obtained by Instance Tunnel

True

tunnel.string_as_binary Use bytes instead of unicode
in the string type

False

• DataFrame Configurations

Option Description Default value

interactive Whether in an interactive
environment

Depend on the detection
value

df.analyze Whether to enable non
-MaxCompute built-in
functions

True

MaxCompute User Guide / 6 SDK

202 Issue: 20180808

Option Description Default value

df.optimize Whether to enable
DataFrame overall optimizati
on

True

df.optimizes.pp Whether to enable
DataFrame predicate push
optimization

True

df.optimizes.cp Whether to enable
DataFrame column tailoring
optimization

True

df.optimizes.tunnel Whether to enable
DataFrame tunnel optimizati
on

True

df.quote Whether to use `` to mark
fields and table names at the
end of MaxCompute SQL

True

df.libraries Third-party library (resource
 name) that is used for
DataFrame running

None

• PyODPS ML Configurations

Option Description Default value

ml.xflow_project Default Xflow project name algo_public

ml.use_model_transfer Whether to use ModelTrans
fer to obtain the model PMML

True

ml.model_volume Volume name used when
ModelTransfer is used

pyodps_volume

MaxCompute User Guide / 7 Handle-Unstructured-data

Issue: 20180808 203

7 Handle-Unstructured-data

7.1 Access OSS Data
The following section details how to access OSS data in MaxCompute.

Authorization with STS Mode

Authorize OSS data permission to MaxCompute account in advance, in order that MaxCompute

can directly access the OSS. You can authorize permissions in the following two ways:

• When the MaxCompute and OSS owner are the same account, you can directly log on

Alibaba Cloud account and click here to complete authorization.

• Custom authorization.

1. Firstly, you must authorize MaxCompute permission to access OSS in RAM. Log on to the

RAM console(if MaxCompute and OSS are not the same account, you must log on to OSS

account to authorize). Create a role through Role Management in the console whose name

likes AliyunODPSDefaultRole or AliyunODPSRoleForOtherUser.

2. Modify the policy content of role as follows:

--When the MaxCompute and OSS owner are the same account:

"Statement": [

 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "odps.aliyuncs.com"

 }

"Version": "1"

--When the MaxCompute and OSS owner are not the same account:

"Statement": [

 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "MaxCompute's Owner account: id@odps.aliyuncs.com"

https://ram.console.aliyun.com/?spm=5176.100239.blogcont281191.24.uJg9dR#/role/authorize?request=%7B%22Requests%22:%20%7B%22request1%22:%20%7B%22RoleName%22:%20%22AliyunODPSDefaultRole%22,%20%22TemplateId%22:%20%22DefaultRole%22%7D%7D,%20%22ReturnUrl%22:%20%22https:%2F%2Fram.console.aliyun.com%2F%22,%20%22Service%22:%20%22ODPS%22%7D
https://www.alibabacloud.com/zh/product/ram
https://account.alibabacloud.com/login/login.html
https://account.alibabacloud.com/login/login.html
https://ram.console.aliyun.com/#/role/list

MaxCompute User Guide / 7 Handle-Unstructured-data

204 Issue: 20180808

"Version": "1"

3. Authorize the role necessary permissions AliyunODPSRolePolicy to access OSS . For

example:

"Version": "1",
"Statement": [

 "Action": [
 "oss:ListBuckets",
 "oss:GetObject",
 "oss:ListObjects",
 "oss:PutObject",
 "oss:DeleteObject",
 "oss:AbortMultipartUpload",
 "oss:ListParts"

 "Resource ":"*",
 "Effect": "Allow"

--You can customize other permissions.

4. Authorize the permission AliyunODPSRolePolicy to this role.

Read OSS Data with Built-in Extractor

When accessing external data sources, you must use different custom extractors. You can also

use MaxCompute’s internal extractor to read conventionally-formatted data stored in OSS. You

only need to create an external table and use this table as the source table for query operations.

In this example, assume that you have a CSV data file in OSS. The endpoint is oss-cn-

shanghai-internal.aliyuncs.com, the bucket is oss-odps-test, and the data file is

stored in /demo/vehicle.csv.

Create External table

Use the following statements to create an external table:

CREATE EXTERNAL TABLE IF NOT EXISTS ambulance_data_csv_external

vehicleId int,
recordId int,
patientId int,
calls int,
Maid double,
locationLongtitue double,
recordTime string,
direction string

STORED BY 'com.aliyun.odps.CsvStorageHandler' -- (1)
WITH SERDEPROPERTIES (
 'odps.properties.rolearn'='acs:ram::xxxxx:role/aliyunodpsdefaultrole'

https://www.alibabacloud.com/zh/product/oss
https://www.alibabacloud.com/zh/product/oss

MaxCompute User Guide / 7 Handle-Unstructured-data

Issue: 20180808 205

) -- (2)
LOCATION 'oss://oss-cn-shanghai-internal.aliyuncs.com/oss-odps-test/
Demo/'; -- (3)(4)

The above statement is described below:

• com.aliyun.odps.CsvStorageHandler is the built-in StorageHandler for processing

CSV-format files. It defines how CSV files are read and written. You only need to specify this

name. The relevant logic is implemented by the system.

• The information in odps.properties.rolearn comes from the Arn information of

AliyunODPSDefaultRole in RAM. You can get it through the role details in the RAM

console.

• You must specify an OSS directory for LOCATION. By default, the system reads all the files in

this directory.

▬ We recommend you use the domain name of the intranet, to avoid incurring fees for the

OSS data-flow.

▬ We recommend that the region you store the OSS data is the same as the region you open

MaxCompute. Because MaxCompute can only be deployed in some regions, cross-regional

 data connectivity cannot be guaranteed.

▬ OSS connection format is oss://<your-access-id>:<your-secret-key>@oss-xx

-xxxx-internal.aliyuncs.com/<bucketname>/<directoryname>/. You do not

have to add a file name after the directory. Some common errors are shown as follows:

http://oss-odps-test.oss-cn-shanghai-internal.aliyuncs.com/Demo/
 -- HTTP connection is not supported.
https://oss-odps-test.oss-cn-shanghai-internal.aliyuncs.com/Demo/
 -- HTTPS connection is not supported.
oss://oss-odps-test.oss-cn-shanghai-internal.aliyuncs.com/Demo
 -- The connection address is incorrect.
oss://oss://oss-cn-shanghai-internal.aliyuncs.com/oss-odps-test/
Demo/vehicle.csv -- You do not need to specify the file name.

• In the MaxCompute system, external tables only record the associated OSS directory. If you

DROP (delete) this table, the corresponding LOCATION data is not deleted.

For more information about external tables, see DDL statements.

If you want to view the created external table structure, run the following statement:

desc extended <table_name>;

In the returned information, Extended Info contains external tables information such as

StorageHandler and Location.

https://ram.console.aliyun.com/#/role/detailAliyunODPSDefaultRole/info

MaxCompute User Guide / 7 Handle-Unstructured-data

206 Issue: 20180808

Query an External Table

After creating an external table, you can use it as a normal table. Assume the data in /demo/

vehicle.csv is:

1,1,51,1,46.81006,-92.08174,9/14/2014 0:00,S
1,2,13,1,46.81006,-92.08174,9/14/2014 0:00,NE
1,3,48,1,46.81006,-92.08174,9/14/2014 0:00,NE
1,4,30,1,46.81006,-92.08174,9/14/2014 0:00,W
1,5,47,1,46.81006,-92.08174,9/14/2014 0:00,S
1,6,9,1,46.81006,-92.08174,9/14/2014 0:00,S
1,7,53,1,46.81006,-92.08174,9/14/2014 0:00,N
1,8,63,1,46.81006,-92.08174,9/14/2014 0:00,SW
1,9,4,1,46.81006,-92.08174,9/14/2014 0:00,NE
1,10,31,1,46.81006,-92.08174,9/14/2014 0:00,N

Run the following SQL statement:

select recordId, patientId, direction from ambulance_data_csv_external
 where patientId > 25;

Note:

Currently, external table can only be operated through MaxCompute SQL. MaxCompute

MapReduce cannot operate the external table.

This statement submits a job, scheduling the built-in CSV extractor to read and process data from

OSS. The result is as follows:

| recordId | patientId | direction |

1	51	S
3	48	NE
4	30	W
5	47	S
7	53	N
8	63	SW
10	31	N

Read OSS Data Using a Custom Extractor

When OSS data is in a complex format, and the built-in extractor cannot meet your requirements,

you must use a custom extractor to read data from OSS files.

For example, assume you have a TXT data file that is not in CSV format, and | is used as the

column delimiter between records. For example, the data in /demo/SampleData/CustomTxt/

AmbulanceData/vehicle.csv is:

1|1|51|1|46.81006|-92.08174|9/14/2014 0:00|S
1|2|13|1|46.81006|-92.08174|9/14/2014 0:00|NE

MaxCompute User Guide / 7 Handle-Unstructured-data

Issue: 20180808 207

1|3|48|1|46.81006|-92.08174|9/14/2014 0:00|NE
1|4|30|1|46.81006|-92.08174|9/14/2014 0:00|W
1 | 5 | 47 | 1 | 46.81006 |-92.08174 | 9/14/2014 0: 00 | S
1|6|9|1|46.81006|-92.08174|9/14/2014 0:00|S
1|7|53|1|46.81006|-92.08174|9/14/2014 0:00|N
1|8|63|1|46.81006|-92.08174|9/14/2014 0:00|SW
1|9|4|1|46.81006|-92.08174|9/14/2014 0:00|NE
1|10|31|1|46.81006|-92.08174|9/14/2014 0:00|N

• Define an Extractor

Write a common extractor, using the delimiter as the parameter. This allows you to process all

text files with similar formats. Examples are as follows:

 * Text extractor that extract schematized records from formatted
plain-text(csv, tsv etc.)

public class TextExtractor extends Extractor {
 private InputStreamSet inputs;
 private String columnDelimiter;
 private DataAttributes attributes;
 private BufferedReader currentReader;
 private boolean firstRead = true;
 public TextExtractor() {
 // default to ",", this can be overwritten if a specific
delimiter is provided (via DataAttributes)
 this.columnDelimiter = ",";

 // no particular usage for execution context in this example
 @Override
 public void setup(ExecutionContext ctx, InputStreamSet inputs,
DataAttributes attributes) {
 this.inputs = inputs; // inputs is an InputStreamSet, each call
to next() returns an InputStream. This InputStream can read all the
content in an OSS file.
 this.attributes = attributes;
 // check if "delimiter" attribute is supplied via SQL query
 String columnDelimiter = this.attributes.getValueByKey("
delimiter"); //The delimiter parameter is supplied by a DDL
statement.
 if (columnDelimiter ! = null)

 this.columnDelimiter = columnDelimiter;

 // note: more properties can be inited from attributes if needed

 @Override
 public Record extract() throws IOException {//extractor() calls
return one record, corresponding to one record in an external table.
 String line = readNextLine();
 if (line == null) {
 return null; // A return value of NULL indicates that this
table has no readable records.

 return textLineToRecord(line); // textLineToRecord splits a row
 of data into multiple columns according to the delimiter.

 @Override
 public void close(){

MaxCompute User Guide / 7 Handle-Unstructured-data

208 Issue: 20180808

 // no-op

See here for a complete implementation of textLineToRecord splitting data.

Define StorageHandler

A StorageHandler acts as a centralized portal for custom external table logic.

package com.aliyun.odps.udf.example.text;
public class TextStorageHandler extends OdpsStorageHandler {
 @Override
 public Class<? extends Extractor> getExtractorClass() {
 return TextExtractor.class;

 @Override
 public Class<? extends Outputer> getOutputerClass() {
 return TextOutputer.class;

Compiling and Packaging

Compile your custom code into a package and upload it to MaxCompute.

add jar odps-udf-example.jar;

• Create External Table

Similar to using the built-in extractor, first, you must create an external table. The difference is

that, when specifying the external table access data, you must use a custom StorageHandler.

Use the following statements to create an external table:

CREATE EXTERNAL TABLE IF NOT EXISTS ambulance_data_txt_external

vehicleId int,
recordId int,
patientId int,
calls int,
locationLatitute double,
locationLongtitue double,
recordTime string,
direction string

STORED BY 'com.aliyun.odps.udf.example.text.TextStorageHandler' --
STORED BY specifies the custom StorageHandler class name.
 with SERDEPROPERTIES (
'delimiter'='\\|', -- SERDEPROPERITES can specify parameters, these
 parameters are passed through the DataAttributes to the Extractor
code.
'odps.properties.rolearn'='acs:ram::xxxxxxxxxxxxx:role/aliyunodps
defaultrole'

LOCATION 'oss://oss-cn-shanghai-internal.aliyuncs.com/oss-odps-test/
Demo/SampleData/CustomTxt/AmbulanceData/'

https://github.com/aliyun/aliyun-odps-java-sdk/blob/master/odps-sdk-impl/odps-udf-example/src/main/java/com/aliyun/odps/udf/example/text/TextExtractor.java

MaxCompute User Guide / 7 Handle-Unstructured-data

Issue: 20180808 209

USING 'odps-udf-example.jar'; --You must also specify the Jar
package containing the class definition.

• Query an External Table

Run the following SQL statement:

select recordId, patientId, direction from ambulance_data_txt_e
xternal where patientId > 25;

Read Unstructured Data by Using a Custom Extractor

Previously, you can use the built-in extractor or a custom extractor to conveniently process CSV

and other text data stored in OSS. Next, using audio data (.wav format files) as an example, the

following shows how to use a custom extractor to access and process non-text files in OSS.

Here, starting from the last SQL statement, we introduce the use of MaxCompute SQL as a

portal to process audio files stored in OSS.

Create the External table SQL as follows:

CREATE EXTERNAL TABLE IF NOT EXISTS speech_sentence_snr_external

sentence_snr double,
id string

STORED BY 'com.aliyun.odps.udf.example.speech.SpeechStorageHandler'
WITH SERDEPROPERTIES (
 'mlfFileName'='sm_random_5_utterance.text.label' ,
 'speechSampleRateInKHz' = '16'

LOCATION 'oss://oss-cn-shanghai-internal.aliyuncs.com/oss-odps-test/
dev/SpeechSentenceTest/'
USING 'odps-udf-example.jar,sm_random_5_utterance.text.label';

As in the preceding example, you must create an external table. Then, use the schema of this

table to define the information that you want to extract from the audio file:

• The statement signal-to-noise ratio(SNR) in an audio file: sentence_snr.

• The name of the audio file: id.

After creating the external table, use a standard Select statement to perform a query. This

operation triggers the extractor to perform computation. When reading and processing OSS

data, in addition to simple deserialization on text files, you can use custom extractors to perform

more complex data processing and extraction logic. In this example, use the custom extractor

encapsulated in com.aliyun.odps.udf.example.speech.SpeechStorageHandler to

calculate the average SNR of valid statements in the audio file, and extract structured data for

MaxCompute User Guide / 7 Handle-Unstructured-data

210 Issue: 20180808

SQL operations (WHERE sentence_snr > 10). Once completed, the operation returns all audio

files with an SNR that greater than 10 and their corresponding SNR values.

Multiple WAV-format files are stored at the OSS address oss://oss-cn-hangzhou-zmf

.aliyuncs.com/oss-odps-test/dev/SpeechSentenceTest/. The MaxCompute

framework reads all the files at this address and, when necessary, performs file-level sharding.

It automatically allocates the file to multiple computing nodes for processing. On each

computing node, the extractor is responsible for processing the file set allocated to the node

by InputStreamSet. The special processing logic is similar to your single-host program. Your

algorithm is implemented by using the single host method according to its class.

Details about the SpeechSentenceSnrExtractor formulation logic are as follows:

First, read the parameters in the setup interface to perform initialization and import the audio

processing model (using resource introduction):

public SpeechSentenceSnrExtractor(){
 this.utteranceLabels = new HashMap<String, UtteranceLabel>();

 @Override
 public void setup(ExecutionContext ctx, InputStreamSet inputs,
DataAttributes attributes){
 this.inputs = inputs;
 this.attributes = attributes;
 this.mlfFileName = this.attributes.getValueByKey(MLF_FILE_A
TTRIBUTE_KEY);
 String sampleRateInKHzStr = this.attributes.getValueByKey(
SPEECH_SAMPLE_RATE_KEY);
 this.sampleRateInKHz = Double.parseDouble(sampleRateInKHzStr);
 try {
 // read the speech model file from resource and load the model
into memory
 BufferedInputStream inputStream = ctx.readResourceFileAsStream(
mlfFileName);
 loadMlfLabelsFromResource(inputStream);
 inputStream.close();
 } catch (IOException e) {
 throw new RuntimeException("reading model from mlf failed with
exception " + e.getMessage());

In the Extractor() interface, the specific read and processing logic is implemented on the audio

files. The SNR of the read data is calculated based on the audio model and results are written to a

 record in [snr , id] format.

MaxCompute User Guide / 7 Handle-Unstructured-data

Issue: 20180808 211

The preceding example simplifies the implementation process and does not include the relevant

audio processing algorithm logic. see the example code provided by the MaxCompute SDK in the

open source community.

@ Override
 public Record extract() throws IOException {
 SourceInputStream inputStream = inputs.next();
 if (inputStream == null){
 return null;

 // process one wav file to extract one output record [snr, id]
 String fileName = inputStream.getFileName();
 fileName = fileName.substring(fileName.lastIndexOf('/') + 1);
 logger.info("Processing wav file " + fileName);
 String id = fileName.substring(0, fileName.lastIndexOf('.'));
 // read speech file into memory buffer
 long fileSize = inputStream.getFileSize();
 byte[] buffer = new byte[(int)fileSize];
 int readSize = inputStream.readToEnd(buffer);
 inputStream.close();
 // compute the avg sentence snr
 double snr = computeSnr(id, buffer, readSize);
 // construct output record [snr, id]
 Column[] outputColumns = this.attributes.getRecordColumns();
 ArrayRecord record = new ArrayRecord(outputColumns);
 record.setDouble(0, snr);
 record.setString(1, id);
 return record;

 private void loadMlfLabelsFromResource(BufferedInputStream
fileInputStream)
 throws IOException {
 // skipped here

 // compute the snr of the speech sentence, assuming the input buffer
 contains the entire content of a wav file
 Private double computersnr (string ID, byte [] buffer, int
validbufferlen){
 // computing the snr value for the wav file (supplied as byte
buffer array), skipped here

Run the query:

select sentence_snr, id
 from speech_sentence_snr_external
where sentence_snr > 10.0;

Results:

| sentence_snr | id |

| 34.4703 | J310209090013_H02_K03_042 |

| 31.3905 | tsh148_seg_2_3013_3_6_48_80bd359827e24dd7_0 |

| 35.4774 | tsh148_seg_3013_1_31_11_9d7c87aef9f3e559_0 |

https://github.com/aliyun/aliyun-odps-java-sdk/blob/master/odps-sdk-impl/odps-udf-example/src/main/java/com/aliyun/odps/udf/example/speech/SpeechSentenceSnrExtractor.java

MaxCompute User Guide / 7 Handle-Unstructured-data

212 Issue: 20180808

| 16.0462 | tsh148_seg_3013_2_29_49_f4cb0990a6b4060c_0 |

| 14.5568 | tsh_148_3013_5_13_47_3d5008d792408f81_0 |

By using the customized extractor, you can process multiple voice data files stored on OSS on

the SQL statement in a distributed way. Using a similar method, you can also use MaxCompute's

large-scale computing power to easily process different types of unstructured data, such as image

 and video.

Data partition

In earlier sections, an external table linked data is implemented through designated OSS Directory

on LOCATION. But while process, MaxCompute reads all data under Directory, including all files

 in sub-directory. For accumulated data directories along with time, because the data volume

is too big, scan the entire directory may cause unnecessary extra IO and data processing time.

Normally, there are 2 solutions for this problem.

• Reduce access data volume: You are responsible for planning data storage address, and

considering using multiple numbers of EXTERNAL TABLE to scan data in different parts,

making each LOCATION of EXTERNAL TABLE point to a data subaggegate.

• Partition data: EXTERNAL TABLE is the same as internal table, it supports functions of

partition table, you are available to manage data systemization based on partition function.

It mainly introduces partition function of EXTERNAL TABLE in this section.

• Standard Organization Method and Path Format of Partition Data on OSS

Unlike its internal tables, MaxCompute does not have the authority to manage data stored

in external memory (such as OSS). As such, if you must use the partition table function on

your system, the storage path for data files on OSS needs to conform to a certain format. This

format is as follows.

partitionKey1=value1\partitionKey2=value2\...

Related examples are as follows

Assume that you save your daily LOG files on OSS and want to access part of the data when

processed with MaxCompute, based on the granularity of Day. Assuming that these LOG files

are CSV files (usage of complicated and customized format is similar), you can define data

using the following partitioned external table.

CREATE EXTERNAL TABLE log_table_external (
 click STRING,
 ip STRING,

MaxCompute User Guide / 7 Handle-Unstructured-data

Issue: 20180808 213

 url STRING,

 PARTITIONED BY (
 year STRING,
 month STRING,
 Day string

 Stored by 'com. aliyun. ODPS. csvstoragehandler'
 WITH SERDEPROPERTIES (
 'odps.properties.rolearn'='acs:ram::xxxxx:role/aliyunodpsdefaultrol
e'

 LOCATION 'oss://oss-cn-hangzhou-zmf.aliyuncs.com/oss-odps-test/
log_data/';

In contrast to the external table example provided in the previous section, in the aforementi

oned three-tier partition example, when you define EXTERNAL TABLE, you specify the

external table as a partition table using the syntax of PARTITION BY. The partition keys are

year, month, and day.

In order for a partition like this to work effectively, you must comply with the aforementioned

path format when storing data on OSS. The following is an example of a valid path storage

layout.

osscmd ls oss://oss-odps-test/log_data/
2017-01-14 08:03:35 128MB Standard oss://oss-odps-test/log_data/year
=2016/month=06/day=01/logfile
2017-01-14 08:04:12 127MB Standard oss://oss-odps-test/log_data/year
=2016/month=06/day=01/logfile. 1
2017-01-14 08:05:02 118MB Standard oss://oss-odps-test/log_data/year
=2016/month=06/day=02/logfile
2017-01-14 08:06:45 123MB Standard oss://oss-odps-test/log_data/year
=2016/month=07/day=10/logfile
2017-01-14 08:07:11 115 MB standard OSS: // OSS-ODPS-test/log_data/
year = 2016/month = 08/day = 08/logfile

Note:

If you have prepared the offline data, that is, if you have uploaded the offline data to the OSS

storage service with osscmd or other OSS tools, you then define the data path format.

On this premise, partition information is imported to MaxCompute through the ALTER TABLE

ADD PARTITION statement.

An example of the corresponding DDL statement is as follows.

ALTER TABLE log_table_external ADD PARTITION (year = '2016', month =
 '06', day = '01')
ALTER TABLE log_table_external ADD PARTITION (year = '2016', month =
 '06', day = '02')
ALTER TABLE log_table_external ADD PARTITION (year = '2016', month =
 '07', day = '10')

MaxCompute User Guide / 7 Handle-Unstructured-data

214 Issue: 20180808

ALTER TABLE log_table_external ADD PARTITION (year = '2016', month =
 '08', day = '08')

Note:

These operations are similar to the standard MaxCompute inner table operations, and you

can see documentation if you are unfamiliar with the partition tables concept. When the data is

ready and the PARTITION information has been imported into the system, the partitioning of

the external table data on OSS can be performed by means of an SQL statement.

Assuming that you only want to analyze how many different IPs there are in LOG on June 1,

2016, the following command can be used:

SELECT count(distinct(ip)) FROM log_table_external WHERE year = '
2016' AND month = '06' AND day = '01';

At this point, for log_table_external, the directory that corresponds to the external table will only

access the files under the log_data/year=2016/month=06/day=01 subdirectory (logfile

and logfile .1). By not performing a full scan of all the data in the entire log_data/ directory,

a lot of useless I/O operations can be avoided.

Similarly, if you only want to analyze the data for the second half of 2016, you can use the

following command:

SELECT count(distinct(ip)) FROM log_table_external
WHERE year = '2016' AND month > '06';

At this point, only access the second half of the LOG stored on OSS.

• Customized Path of Partition Data on OSS

If you have historical data stored on OSS but it is not stored using the partitionK

ey1=value1\partitionKey2=value2\... path format, you can still access it using

MaxCompute’s partition mode. MaxCompute also provides a way to import partitions through a

customized path.

Assume that only a simple partition value is on your data path (and no partition key

information). The following is an example of the data path storage layout.

osscmd ls oss://oss-odps-test/log_data_customized/
2017-01-14 08:03:35 128MB Standard oss://oss-odps-test/log_data_c
ustomized/2016/06/01/logfile
2017-01-14 08:04:12 127MB Standard oss://oss-odps-test/log_data_c
ustomized/2016/06/01/logfile. 1
2017-01-14 08:05:02 118MB Standard oss://oss-odps-test/log_data_c
ustomized/2016/06/02/logfile
2017-01-14 08:06:45 123MB Standard oss://oss-odps-test/log_data_c
ustomized/2016/07/10/logfile

MaxCompute User Guide / 7 Handle-Unstructured-data

Issue: 20180808 215

2017-01-14 08:07:11 115MB Standard oss://oss-odps-test/log_data_c
ustomized/2016/08/08/logfile

The external table builder DDL can see the previous example and also specify the partition key in

the clause.

To bind different subdirectories to different partitions, you can do so by using a command similar

to the following customized partition path.

ALTER TABLE log_table_external ADD PARTITION (year = '2016', month = '
06', day = '01')
LOCATION 'oss://oss-cn-hangzhou-zmf.aliyuncs.com/oss-odps-test/
log_data_customized/2016/06/01/';

When LOCATION information is added in ADD PARTITION to customize a partition data

path. Even if the data is not stored in the recommended format of partitionKey1=value1\

partitionKey2=value2\..., you can still access the partition data of the subdirectory.

7.2 Visit Table Store Data

Table Store is a NoSQL database service that built on Alibaba Cloud’s Apsara distributed file

system, enabling you to store and access massive volumes of structured data in real time. For

more information about , see What is Table Store.

MaxCompute and Table Store are two independent big data computing and storage

services. Therefore, these two services must ensure that the network between them is

open. When MaxCompute’s public cloud service accesses data stored in Table Store, we

recommend that you use Table Store’s private network address, usually a host name

suffixed ‘ots-internal.aliyuncs.com’, for example tablestore://odps-ots-dev.cn-shanghai.ots-

internal.aliyuncs.com.

This document introduces how to import data from Table Store to the MaxCompute computing

environment. This allows seamless connections between multiple data sources.

Both Table Store and MaxCompute have their own data type systems. When you process Table

Store data in MaxCompute, the data type associations are as follow:

MaxCompute Type TableStore Type

STRING STRING

BIGINT INTEGER

DOUBLE Double

BOOLEAN BOOLEAN

https://www.alibabacloud.com/help/zh/doc-detail/27280.html

MaxCompute User Guide / 7 Handle-Unstructured-data

216 Issue: 20180808

MaxCompute Type TableStore Type

BINARY BINARY

Authorization with STS Mode

To access Table Store data, MaxCompute requires a secure authorization channel. To address

 this issue, MaxCompute integrates Alibaba Cloud Resource Access Management (RAM) and

Token Service (STS) to implement secure data access.

You can authorize permissions in the following two ways:

• When the MaxCompute and Table Store owner are the same account, you can directly log on

with the Alibaba Cloud account and click here to complete authorization.

• Custom authorization.

1. Firstly, you must grant Table Store access permission to MaxCompute in the RAM console.

Log on to the (if MaxCompute and Table Store are not the same account, you must log on

with the Table Store account to authorize), and create the role AliyunODPSDefaultRole.

2. Set its policy content as follows:

-- When the MaxCompute and Table Store owner are the same account
:

"Statement": [

 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "odps.aliyuncs.com"

 }

"Version": "1"

-- When the MaxCompute and Table Store owner are not the same
account:

"Statement": [

 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "MaxCompute's Owner account UID@odps.aliyuncs.com"

https://ram.console.aliyun.com/?spm=5176.100239.blogcont281191.24.uJg9dR#/role/authorize?request=%7B%22Requests%22:%20%7B%22request1%22:%20%7B%22RoleName%22:%20%22AliyunODPSDefaultRole%22,%20%22TemplateId%22:%20%22DefaultRole%22%7D%7D,%20%22ReturnUrl%22:%20%22https:%2F%2Fram.console.aliyun.com%2F%22,%20%22Service%22:%20%22ODPS%22%7D

MaxCompute User Guide / 7 Handle-Unstructured-data

Issue: 20180808 217

"Version": "1"

Note:

On the upper-right corner, click the avatar to open the Billing Management page, and then

check the account UID.

3. Edit this role’s authorization policy AliyunODPSRolePolicy:

"Version": "1",

MaxCompute User Guide / 7 Handle-Unstructured-data

218 Issue: 20180808

"Statement": [

 "Action": [
 "ots:ListTable",
 "ots:DescribeTable",
 "ots:GetRow",
 "ots:PutRow",
 "ots:UpdateRow",
 "ots:DeleteRow",
 "ots:GetRange",
 "ots:BatchGetRow",
 "ots:BatchWriteRow",
 "ots:ComputeSplitPointsBySize"

 "Resource": "*",
 "Effect": "Allow"

-- You can also customize other permissions.

4. Grant the permission AliyunODPSRolePolicy to this role.

Create External Table

In MaxCompute, after creating an external table and introducing the Table Store table data

descriptions to the MaxCompute meta system, you can process Table Store data. The following

example demonstrates the concept and practice that used in MaxCompute’s Table Store access.

Use following statements to create an external table:

DROP TABLE IF EXISTS ots_table_external;
CREATE EXTERNAL TABLE IF NOT EXISTS ots_table_external

odps_orderkey bigint,
Maid string,
odps_custkey bigint,
odps_orderstatus string,
odps_totalprice double

STORED BY 'com.aliyun.odps.TableStoreStorageHandler' -- (1)
WITH SERDEPROPERTIES (-- (2)
'tablestore.columns.mapping'=':o_orderkey,:o_orderdate,o_custkey,
o_orderstatus,o_totalprice', -- (3)
'tablestore.table.name'='ots_tpch_orders' -- (4)
'odps.properties.rolearn'='acs:ram::xxxxx:role/aliyunodpsdefaultrole'

LOCATION 'tablestore://odps-ots-dev.cn-shanghai.ots-internal.aliyuncs.
com'; -- (5)

The statement is described below:

• com.aliyun.odps.TableStoreStorageHandler is MaxCompute’s built-in StorageHandler for

processing Table Store data. It defines the interaction between MaxCompute and Table Store.

The relevant logic is implemented by MaxCompute.

MaxCompute User Guide / 7 Handle-Unstructured-data

Issue: 20180808 219

• SERDEPROPERITES is an interface that provides parameter options. When using

TableStoreStorageHandler, two options must be specified, tablestore.columns.mapping and

tablestore.table.name.

▬ tablestore.columns.mapping option: A required parameter used to describe columns in the

Table Store tables accessed by MaxCompute, including primary key and attribute columns.

■ At the beginning of the column name, : ndicates a Table Store primary key. In this

example :o_orderkey and :o_orderdate are primary key columns and all others are

attribute columns.

■ Table Store supports up to 4 primary keys. Primary keys support the STRING, INTEGER

, and BINARY data types. The first primary key is the partition key.

■ When specifying a mapping relationship, you must provide all the primary keys of the

specified Table Store table, but you do not have to provide all attribute columns, only the

 attribute columns you must access by using MaxCompute.

▬ tablestore.table.name: The name of the Table Store table to access. If you specify an

incorrect Table Store table name (such as a table that does not exist), the system reports

an error. MaxCompute does not create a new Table Store table with the specified name.

▬ The information in odps.properties.rolearn comes from the Arn information of

AliyunODPSDefaultRole in RAM. You can get it through the details of the role in the RAM

console.

• The LOCATION clause is used to specify specific Table Store information, including the

AccessKey of OSS owner, the instance name and endpoint. Because you must specify the

AccessKey the of OSS owner, to avoid disclosing the AccessKey of your primary account, we

recommend that you use RAM user credentials.

If you want to view the created external table structure, run the following statement:

desc extended <table_name>;

In the returned information, “Extended Info” contains external tables information such as

StorageHandler and Location.

Access Table Data by Using an External Table

After creating an external table, you can introduce Table Store data to the MaxCompute

ecosystem. There, you can use MaxCompute SQL syntax to access Table Store data as follows:

SELECT odps_orderkey, odps_orderdate, SUM(odps_totalprice) AS
sum_total

MaxCompute User Guide / 7 Handle-Unstructured-data

220 Issue: 20180808

FROM ots_table_external
WHERE odps_orderkey > 5000 AND odps_orderkey < 7000 AND odps_orderdate
 >= '1996-05-03' AND odps_orderdate < '1997-05-01'
GROUP BY odps_orderkey, odps_orderdate
HAVING sum_total> 400000.0;

When using the MaxCompute SQL syntax, all of the accessed Table Store details are processed

in MaxCompute. This includes column name selection. For example, the column names used in

 the preceding SQL statements (such as odps_orderkey and odps_totalprice) are not the original

 primary key names (o_orderkey) or attribute column names (o_totalprice) used in Table Store.

This is because mapping was already performed in the DDL statement used to create the external

 table. Certainly, you can retain the original Table Store primary key and column names when

creating the external table.

If you perform multiple computations on a single data set, instead of remotely reading data

from Table Store each time, you can import all the necessary data to MaxCompute, to create a

MaxCompute (internal) table. For example:

CREATE TABLE internal_orders AS
SELECT odps_orderkey, odps_orderdate, odps_custkey, odps_totalprice
FROM ots_table_external
WHERE odps_orderkey > 5000 ;

Currently, internal_orders is a MaxCompute table, with all features of a MaxCompute internal table

, including an efficiently compressed column storage data format and complete internal macro

data, and statistics information. Furthermore, because the data is stored in MaxCompute, the

access speed is faster than when accessing external Table Store data. This is especially suitable

for hotspot data that is frequently computed.

Export MaxCompute Data to TableStore

Note:

MaxCompute does not directly create external Table Store tables. Therefore, before outputting

data to a Table Store table, you must make sure this table has already been created (or the

system reports an error).

In the preceding operations, the external table ots_table_external has been created to connect

MaxCompute with the Table Store table ots_tpch_orders, and data has been stored in the internal

MaxCompute table internal_orders. Now you can write the processed data from internal_orders

back to Table Store, perform the INSERT OVERWITE TABLE operation on the external table as

follows:

INSERT OVERWRITE TABLE ots_table_external

MaxCompute User Guide / 7 Handle-Unstructured-data

Issue: 20180808 221

SELECT odps_orderkey, odps_orderdate, odps_custkey, CONCAT(odps_custk
ey, 'SHIPPED'), CEIL(odps_totalprice)
FROM internal_orders;

Because Table Store is a KV data NoSQL storage medium, the data output from MaxCompute

only affects the rows with the corresponding primary keys. In this example, the output only

affects data in rows with corresponding dps_orderkey + odps_orderdate primary key values.

 In addition, in the Table Store rows, only the attribute columns specified during external table

(ots_table_external) creation are updated. Data columns that do not appear in the external table

are not modified. For more details, see MaxCompute access to OTS data.

https://yq.aliyun.com/articles/69314

MaxCompute User Guide / 8 Graph

222 Issue: 20180808

8 Graph

8.1 Summary
MaxCompute Graph is a processing framework designed for iterative graph computing.

MaxCompute Graph jobs use graphs to build models. Graphs are composed of vertices and

edges. Vertices and edges contain values.

MaxCompute Graph supports the following graph editing operations:

• Editing the value of Vertex or Edge.

• Adding/deleting Vertex.

• Adding/deleting Edge.

Note:

When editing a vertex and an edge, you must maintain their relationship.

This process outputs a final solution after performing iterative graph editing and evolution. Typical

applications include PageRank, SSSP algorithm, and Kmeans algorithm. You can use Java SDK,

an interface provided by MaxCompute Graph, to compile graph computing programs.

Graph Data Structure

Graphs processed by MaxCompute Graph must be directed graphs consisting of vertices and

edges. As MaxCompute only provides a two-dimensional storage structure, you must resolve

graph data into two-dimensional tables and store them in MaxCompute.

During graph computing analysis, use custom GraphLoader to convert two-dimensional table

data to vertices and edges in the MaxCompute Graph engine. You can determine how to resolve

 graph data into two-dimensional tables based on your service scenarios. In the sample code, the

table formats correspond to different graph data structures.

The vertex structure can be described as < ID, Value, Halted, Edges >, which respectively indicate

 the vertex ID (ID), value (Value), status (Halted, indicating whether an iteration is to be stopped

), and edge set (Edges, indicating lists of all edges starting from the vertex). The edge structure

can be described as < DestVertexID, Value >, which respectively indicate the destination vertex (

DestVertexID) and value (Value).

MaxCompute User Guide / 8 Graph

Issue: 20180808 223

For example, the preceding figure consists of the following vertices.

Vertex <ID, Value, Halted, Edges>

v0 <0, 0, false, [<1, 5 >, <2, 10 >] >

v1 <1, 5, false, [<2, 3>, <3, 2>, <5, 9>]>

v2 <2, 8, false, [<1, 2>, <5, 1 >]>

v3 <3, Long.MAX_VALUE, false, [<0, 7>, <5, 6>]>

v5 <5, Long.MAX_VALUE, false, [<3, 4 >]>

Graph program logic

Graph loading

Graph loading: The framework calls custom GraphLoader and resolves records of an input table to

 vertices or edges.

Distributed architecture: The framework calls custom Partitioner to partition vertices and distribute

s them to corresponding Workers. (Default partitioning logic: Calculate the hash value of a vertex

ID and perform the modulo operation on the number of Workers.)

MaxCompute User Guide / 8 Graph

224 Issue: 20180808

For example, assume in the preceding figure that the number of Workers is 2. v0 and v2 are

allocated to Worker 0 because the result of the ID mod 2 is 0. v1, v3, and v5 are allocated to

Worker 1 because the result of the ID mod 2 is 1.

Iteration calculation

• An iteration is called a superstep. It traverses all vertices in the non-halted status (the value of

Halted is false) or all vertices that receive messages (a vertex in halted status is automatically

woken up after receiving a message), and calls their compute (ComputeContext context,

Iterable messages) method.

• You can follow these steps on your implemented compute (ComputeContext context, Iterable

messages) method:

▬ Process Messages sent from previous SuperStep to current Vertex.

▬ Edit graph as needed:

■ Revise value of Vertex/Edge.

■ Send Messages to certain Vertices.

■ Add/delete Vertex or Edge.

▬ Use Aggregator to collect information to global information.

▬ Set the current vertex to the halted or non-halted status.

▬ During iteration, the framework asynchronously sends messages to the corresponding

Worker and processes the messages in the next superstep without your intervention.

Iteration termination (only if any of the following conditions is met)

MaxCompute User Guide / 8 Graph

Issue: 20180808 225

If any of the following conditions is met, iteration becomes terminate.

• All vertices are in the halted status (the value of Halted is true) and no new message is

generated.

• The maximum number of iterations is reached.

• The terminate() method of an Aggregator returns true.

The pseudocode is described as follows.

// 1. load
for each record in input_table {
 GraphLoader.load();

// 2. setup
WorkerComputer.setup();
for each aggr in aggregators {
 aggr.createStartupValue();

for each v in vertices {
 v.setup();

// 3. superstep
for (step = 0; step < max; step ++) {
 for each aggr in aggregators {
 aggr.createInitialValue();

 for each v in vertices {
 v.compute();

// 4. cleanup
for each v in vertices {
 v.cleanup();

WorkerComputer.cleanup();

8.2 Function overview

Running job

The MaxCompute console provides JAR commands to run MaxCompute Graph jobs. These

command are used in the same way as to run MapReduce JAR commands.

This document introduces these commands.

Usage: jar [<GENERIC_OPTIONS>] <MAIN_CLASS> [ARGS]
 -conf <configuration_file> Specify an application
configuration file
 -classpath <local_file_list> classpaths used to run
mainClass
 -D <name>=<value> Property value pair, which is used
to run mainClass
 -local Run job in local mode

MaxCompute User Guide / 8 Graph

226 Issue: 20180808

 -resources <resource_name_list> file/table resources
used in graph, separated by command

< GENERIC_OPTIONS> can be the following parameters (all are optional):

• -conf < configuration file >: Specifies the JobConf configuration file.

• -classpath < local_file_list >: Indicates the class path for local implementation. It is mainly used

to specify the JAR package containing the main function.

The main function and Graph job are usually written in the same package, for example, in

the Single Source Shortest Path (SSSP) package. Therefore, the -resources and -classpath

 parameters in the sample code both contain the JAR package.The difference is that -

resources references the value of the Graph job and runs in a distributed environment, while

 -classpath references the main function and runs locally. The specified JAR package path

 is also a local file path. Package names are separated using system default file delimiters.

Generally, the delimiter is a semicolon (;) in a Windows system and a comma (,) in a Linux

system.

• -D < prop_name > = < prop_value >: Specifies the Java attributes of < mainClass > for local

implementation. Multiple attributes can be defined.

• -local: Runs the Graph job in local mode, which is mainly used for program debugging.

• -resources <resource_name_list >: Indicates the resource statement used for Graph job

running. Generally, the name of the resource where the Graph job is located must be specified

in resource_name_list. If you read other MaxCompute resources in the Graph job, the

resource names must be added to resource_name_list. Resource names are separated by

commas. When resources are used across projects, PROJECT_NAME/resources/ must be

prefixed, for example, -resources otherproject/resources/resfile;.

In addition, you can run the main function of the Graph job to directly submit the job to

MaxCompute, rather than submitting the job through the MaxCompute console. The following

section uses the PageRank algorithm as an example:

public static void main(String[] args) throws Exception {
 if (args.length < 2)
 printUsage();
 Account account = new AliyunAccount(accessId, accessKey);
 Odps odps = new Odps(account);
 odps.setEndpoint(endPoint);
 odps.setDefaultProject(project);
 SessionState ss = SessionState.get();
 ss.setOdps(odps);
 ss.setLocalRun(false);
 String resource = "mapreduce-examples.jar";
 GraphJob job = new GraphJob();

MaxCompute User Guide / 8 Graph

Issue: 20180808 227

 // Add the JAR file in use and other files to class cache resource,
corresponding to resources specified by -libjars in the JAR command
 job.addCacheResourcesToClassPath(resource);
 job.setGraphLoaderClass(PageRankVertexReader.class);
 job.setVertexClass(PageRankVertex.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 // default max iteration is 30
 job.setMaxIteration(30);
 if (args.length >= 3)
 job.setMaxIteration(Integer.parseInt(args[2]));
 long startTime = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - startTime) / 1000.0
 + " seconds");

Input and output

MaxCompute Graph jobs must be input and output using tables.You cannot customize input and

output formats.

The following example shows how to define a job input. Multiple inputs are supported:

GraphJob job = new GraphJob();
job.addInput(TableInfo.builder().tableName(“tblname”).build()); //
Table as input
job.addInput(TableInfo.builder().tableName(“tblname”).partSpec("pt1=a/
pt2=b").build()); //Shard as input
//Read-only columns col2 and col0 of the input table. In the load()
method of GraphLoader, column col2 is obtained by record.get(0), and
the sequence is the same
job.addInput(TableInfo.builder().tableName(“tblname”).partSpec("pt1=a/
pt2=b").build(), new String[]{"col2", "col0"});

Note:

• For more information about the job input definition, see the description of the addInput()

method in GraphJob. The framework reads records in the input table and transmits them to

custom GraphLoader to load data.

• Restrictions: Currently, shard filtering conditions are not supported. For more information

about restrictions on applications, see Application restrictions.

The following example shows how to define a job output. Multiple job outputs are supported. Each

output is marked using a label:

GraphJob job = new GraphJob();
//If the output table is a shard table, the last level of shards must
be provided
job.addOutput(TableInfo.builder().tableName("table_name").partSpec("
pt1=a/pt2=b").build());

MaxCompute User Guide / 8 Graph

228 Issue: 20180808

// Parameter true indicates overwriting shards specified by tableinfo
, that is, the meaning of INSERT OVERWRITE. Parameter false indicates
the meaning of INSERT INTO
job.addOutput(TableInfo.builder().tableName("table_name").partSpec("
pt1=a/pt2=b").lable("output1").build(), true);

Note:

• For more information about the job output definition, see the description of the addOutput()

method in GraphJob.

• When a Graph job runs, records can be written to an output table using the write() method

 of WorkerContext. Labels must be specified for multiple outputs, such as “output1” in the

preceding section.

• For more restrictions on applications, see Application restrictions.

Read resources

• Add resources to the graph program

In addition to JAR commands, you can use the following two methods of GraphJob to specify

resources read by Graph:

void addCacheResources(String resourceNames)
void addCacheResourcesToClassPath(String resourceNames)

• Use resources in graph program

To read resources in the Graph program, follow these steps:

public byte[] readCacheFile(String resourceName) throws IOException;
 public Iterable<byte[]>
readCacheArchive(String resourceName) throws IOException;
 public Iterable<byte[]>
readCacheArchive(String resourceName, String relativePath)throws
IOException;
 public Iterable<WritableRecord>
readResourceTable(String resourceName);
public BufferedInputStream readCacheFileAsStream(String resourceName
) throws IOException;
public Iterable<BufferedInputStream> readCacheArchiveAsStream(String
 resourceName) throws IOException;
public Iterable<BufferedInputStream> readCacheArchiveAsStream(String
 resourceName, String relativePath) throws IOException;

Note:

• Resources are generally read using the setup() method of WorkerComputer, stored in

Worker Value, and obtained using the getWorkerValue() method.

MaxCompute User Guide / 8 Graph

Issue: 20180808 229

• To reduce overall memory consumption, use the preceding stream APIs so that resources

can be read and processed simultaneously.

• For more information about restrictions on applications, see Application restrictions.

8.3 SDK Summary

Maven users can search for odps-sdk-graph in the Maven database to get the required SDK

(available in different versions). The configuration information is as follows:

<dependency>
 <groupId>com.aliyun.odps</groupId>
 <artifactId>odps-sdk-graph</artifactId>
 <version>0.20.7</version>
</dependency>

Main interface Description

GraphJob GraphJob is inherited from JobConf and is used to define, submit, and
manage a MaxCompute Graph job.

Vertex A vertex is a node that is defined by the ID, value, halted, and edges
attributes. A vertex is implemented by the setVertexClass interface of
GraphJob.

Edge Edge is the abstract of edges in a graph, including the attributes
destVertexId and value. Adjacency tables are used as the graph data
 structure, and outbound edges of a vertex are stored in edges of the
vertex.

GraphLoader GraphLoader is used to load graphs. GraphLoader is implemented by
using the setGraphLoaderClass interface of GraphJob.

VertexResolver VertexResolver is used to customize the conflict processing logic for
graph topology modification. The setLoadingVertexResolverClass and
 setComputingVertexResolverClass interfaces of GraphJob provide the
 conflict processing logic for graph topology modification during graph
loading and iteration calculation.

Partitioner Partitioner is used to partition a graph so that the calculation can be
fragmented. Partitioner is implemented by using the setPartitionerClass
 interface of GraphJob. HashPartitioner is used by default, that is, the
hash value of a vertex ID is calculated and then a modulo operation is
performed for the number of Workers.

WorkerComputer WorkerComputer allows a Worker to run custom logic during startup
 and exit. WorkerComputer is implemented by using the setWorkerC
omputerClass interface of GraphJob.

http://search.maven.org/

MaxCompute User Guide / 8 Graph

230 Issue: 20180808

Main interface Description

Aggregator setAggregatorClass(Class …) defines one or multiple Aggregators.

Combiner setCombinerClass sets a Combiner.

Counters Indicates the counter. In job running logic, the WorkerContext interface
 can be used to obtain Counters and perform counting. The framework
automatically sums results.

WorkerContext Indicates the context object. It encapsulates functions provided by the
 framework, such as modifying a graph topology, sending a message,
writing a result, and reading a resource.

8.4 Development and Debugging
MaxCompute does not provide Graph development plug-ins for users. However, you can develop

the MaxCompute Graph program based on Eclipse. The development process is as follows:

1. Compile Graph codes and perform basic tests using local debugging.

2. Perform cluster debugging and verify the result.

Example

This section uses the SSSP algorithm as an example to describe how to use Eclipse to develop

and debug a Graph program.

Procedure

1. Create a Java project, for example, graph_examples.

2. Add the JAR package in the lib directory of the MaxCompute client to Build Path of the Eclipse

project. The following figure shows a configured Eclipse project:

MaxCompute User Guide / 8 Graph

Issue: 20180808 231

3. Develop the MaxCompute Graph program.

In the actual development process, an example (such as SSSP) is often copied

and then modified. In this example, only the package path is changed to package

com.aliyun.odps.graph.example.

4. Compile and build the package.

In an Eclipse environment, right-click the source code directory (the src directory in the figure)

and select Export > Java > JAR file to generate a JAR package. Select the path for storing the

target JAR package, for example, D:\\odps\\clt\\odps-graph-example-sssp.jar.

5. Use the MaxCompute console to run SSSP. For more information about the related operations,

see Run Graph in “Quick start”.

Note:

For more information about the related development procedure, see Introduction on the Graph

development plug-in.

Local Debugging

MaxCompute Graph supports the local debugging mode. You can use Eclipse to perform

breakpoint debugging.

Procedure

1. Download an odps-graph-local maven package.

https://www.alibabacloud.com/help/zh/doc-detail/27985.html
https://www.alibabacloud.com/help/zh/doc-detail/27985.html

MaxCompute User Guide / 8 Graph

232 Issue: 20180808

2. Select the Eclipse project, right-click the main program file (including the main function) of the

 Graph job, and configure its running parameters (by selecting Run As > Run Configurations

…).

3. On the Arguments tab page, set Program arguments to 1 sssp_in sssp_out as the input

parameter of the main program.

4. On the Arguments tab page, set VM arguments to the following:

-Dodps.runner.mode=local
-Dodps.project.name=<project.name>
-Dodps.end.point=<end.point>
-Dodps.access.id=<access.id>
-Dodps.access.key=<access.key>

5. If MapReduce is in local mode (the value of odps.end.point is not specified), you must create

the sssp_in and sssp_out tables in the warehouse and add data for sssp_in. Input data is

listed as follows.

1,"2:2,3:1,4:4"
2,"1:2,3:2,4:1"
3,"1:1,2:2,5:1"
4,"1:4,2:1,5:1"

MaxCompute User Guide / 8 Graph

Issue: 20180808 233

5,"3:1,4:1"

For more information about the warehouse, see MapReduce local running.

6. Click Run.

Note:

Check the settings of conf/odps_config.ini in the MaxCompute client to set parameters. The

preceding parameters are commonly used. Other parameters are described as follows:

• odps.runner.mode: The parameter value is local. This parameter is required for the local

debugging function.

• odps.project.name: Specifies the current project, which is required.

• odps.end.point: Specifies the address of the current MaxCompute service, which is optional

. If this parameter is not specified, metadata of tables or resources is only read from the

warehouse, and an exception is thrown when the address does not exist. If this parameter

 is specified, data is read from the warehouse first, and then from remote MaxCompute

when the address does not exist.

• odps.access.id: Indicates the ID to connect to the MaxCompute service. This parameter is

valid only when odps.end.point is specified.

• odps.access.key: Indicates the key to connect to the MaxCompute service. This parameter

is valid only when odps.end.point is specified.

• odps.cache.resources: Specifies the resource list in use. This parameter has the same

effect as -resources of the JAR command.

• odps.local.warehouse: Specifies the local warehouse path. This parameter is set to ./

warehouse by default if not specified.

After SSSP debugging is implemented locally in Eclipse, the following information is output:

Counters: 3
 com.aliyun.odps.graph.local.COUNTER
 TASK_INPUT_BYTE=211
 TASK_INPUT_RECORD=5
 TASK_OUTPUT_BYTE=161
 TASK_OUTPUT_RECORD=5
 graph task finish

Note:

In the preceding example, the sssp_in and sssp_out tables must exist in the local warehouse.

For more information about the sssp_in and sssp_out tables, see Run Graph in “Quick start”.

https://help.aliyun.com/document_detail/27813.html

MaxCompute User Guide / 8 Graph

234 Issue: 20180808

Temporary Directory of Local Job

A temporary directory is created in the Eclipse project directory when local debugging runs each

time, as shown in the following figure.

The temporary directory of a locally running Graph job contains the following directories and files:

• counters: Stores counting information about job running.

• inputs: Stores input data of the job. Data is preferentially obtained from the local warehouse.

If such data does not exist locally, the MaxCompute SDK reads data from the server (if

odps.end.point is set). An input reads only 10 data records by default. This threshold can be

modified in the -Dodps.mapred.local.record.limit parameter, of which the maximum

value is 10,000.

• outputs: Stores output data of the job. If the local warehouse has an output table, result data in

outputs overwrites the corresponding table in the local warehouse after job running is complete

.

• resources: Stores resources used by the job. Similar to inputs, data is preferentially obtained

from the local warehouse. If such data does not exist locally, the data is read from the server

using MaxCompute SDK (when odps.end.point is set).

• job.xml: Indicates job configuration.

• superstep: Stores information about message persistence in each iteration.

Note:

If a detailed log must be output during local debugging, the following log4j configuration file must

be placed in the src directory: log4j.properties_odps_graph_cluster_debug.

Cluster Debugging

After local debugging, you can submit the job to a cluster for testing.

MaxCompute User Guide / 8 Graph

Issue: 20180808 235

The procedure is as follows:

1. Configure the MaxCompute client.

2. Run the add jar /path/work.jar -f; command to update the JAR package.

3. Run the JAR command to run the job, and view the running log and result data.

Note:

For more information about how to run Graph in a cluster, see Run Graph in “Quick start”.

Performance Tuning

The following section describes common performance tuning methods on the MaxCompute Graph

 framework.

Job Parameter Configuration

GraphJob configurations that have an impact on performance include:

• setSplitSize(long): Indicates the split size of an input table. The unit is in MB. Its value must be

greater than 0, and the default value is 64.

• setNumWorkers(int): Specifies the number of Workers for a job. The value range is [1, 1000],

and the default value is –1. The number of Workers varies depending on the number of input

bytes of the job and split size.

• setWorkerCPU(int): Indicates CPU resources of the Map. A one-core CPU contains 100

resources. The value range is [50, 800], and the default value is 200.

• setWorkerMemory(int): Indicates memory resources of the Map. The unit is in MB. The value

range is [256 MB, 12 GB], and the default value is 4,096 MB.

• setMaxIteration(int): Specifies the maximum number of iterations. The default value is –1. If the

 value is smaller than or equal to 0, the maximum number of iterations is not a condition for job

 termination.

• setJobPriority(int): Specifies the job priority. The value range is [0, 9], and the default value is 9

. A larger value indicates a smaller priority.

Additional actions that increase overall processing capabilities are as follows:

• You can use the setNumWorkers() method to increase the number of Workers.

• You can use the setSplitSize() method to reduce the split size and increase the speed for a job

 to load data.

• Increase the CPU or memory of Workers.

MaxCompute User Guide / 8 Graph

236 Issue: 20180808

• Set the maximum number of iterations. If applications do not have high requirements on result

precision, you can reduce the number of iterations for faster processing.

The interfaces setNumWorkers and setSplitSize can be used together to speed up data loading.

 Assume that setNumWorkers is workerNum and setSplitSize is splitSize, and the total number

of input bytes is inputSize. The number of splits is calculated using the formula: splitNum =

inputSize /splitSize. The relationship between workerNum and splitNum is as follows:

• If splitNum == workerNum, each Worker is responsible for loading one split.

• If splitNum > workerNum, each Worker is responsible for loading one or multiple splits.

• If splitNum < workerNum, each Worker is responsible for loading zero or one split.

Therefore, if the first two conditions are met, you can adjust workerNum and splitSize to enable

fast data loading. In the iteration phase, you only need to adjust workerNum.

If you set runtime partitioning to false, we recommend that you use setSplitSize to control the

number of Workers. Regarding the third condition, the number of vertices on some Worker may

be 0. You can use set odps.graph.split.size=<m>; set odps.graph.worker.num=<n>; before the

JAR command, which has the same effect as setNumWorkers and setSplitSize.

Another common performance problem is data skew. For example, on Counters, the number of

 vertices or edges processed by some Workers is much greater than that processed by other

Workers.

Data skew occurs usually when the number of vertices, edges, or messages corresponding to

some keys is much greater than that corresponding to other keys. Such keys with the large data

 volume are processed by a small number of Workers, resulting in long running time of these

Workers.

To resolve this problem, we recommend the following steps:

• Use a combiner to locally aggregate messages of vertices corresponding to such keys to

reduce the number of sent messages.

• Improve the service logic.

Use a Combiner

You can define a Combiner to reduce the memory that stores messages and network data traffic

volume, shortening the job execution time. For more information, see introduction to Combiner in

MaxCompute SDK.

Reduce the Data Input Volume

MaxCompute User Guide / 8 Graph

Issue: 20180808 237

When the data volume is large, reading data in a disk may extend the processing time. Therefore,

reducing the number of data bytes to be read can increase the overall throughput, thereby

improving job performance. You can use either of the following methods:

• Reduce the input data volume: For decision-making applications, results obtained from

processing subsets after data sampling only affect the result precision, instead of the overall

accuracy. Therefore, you can perform special data sampling and import the data to the input

table for processing.

• Avoid reading fields that are not used: The TableInfo class of the MaxCompute Graph

framework supports reading specific columns (transmitted using column name arrays),

rather than reading the entire table or table partition. This reduces the input data volume and

improves job performance.

Built-in JAR Packages

The following JAR packages are loaded to JVMs running the Graph program by default. You do

not have to upload these resources or carry these JAR packages when running -libjars on the

command line.

• commons-codec-1.3.jar

• commons-io-2.0.1.jar

• commons-lang-2.5.jar

• commons-logging-1.0.4.jar

• commons-logging-api-1.0.4.jar

• guava-14.0.jar

• json.jar

• log4j-1.2.15.jar

• slf4j-api-1.4.3.jar

• slf4j-log4j12-1.4.3.jar

• xmlenc-0.52.jar

Note:

In a classpath that runs a JVM, the preceding built-in JAR packages are placed before users’

JAR packages, which may result in a version conflict. For example, if your program uses a

function of a class in commons-codec-1.5.jar but this function is not in commons-codec-1.3.jar,

you must check whether an implementation method exists in commons-codec-1.3.jar or wait for

MaxCompute to upgrade to a supported version.

MaxCompute User Guide / 8 Graph

238 Issue: 20180808

8.5 Restriction

The restrictions of MaxCompute Graph are as follows:

• Each job can reference up to 256 resources. A table or an archive is considered as one unit (

that is, one resource）.

• The total number of bytes of resources referenced by one job cannot exceed 512 MB. Each job

 can reference up to 512 MB of bytes of resources.

• The number of inputs of one job cannot exceed 1,024. (The number of input tables cannot

exceed 64). The number of outputs of one job cannot exceed 256.

• Label conventions are as follows: A label can be up to 256 characters in length and can contain

 letters, numbers, underscores ‘_’, pound signs ‘#’, periods ‘.’, and hyphens ‘-‘. Labels specified

for multiple outputs cannot be null or empty strings.

• Each job can have up to 64 custom counters. The group name and counter name can be up to

100 characters in length. The names cannot contain pound signs ‘#’.

• The number of Workers of one job is calculated by the framework. The maximum number is 1,

000. If this threshold value is exceeded, an exception is thrown.

• One Worker occupies 200 resources of the CPU by default. The range is [50, 800].

• One Worker occupies 4096 MB of the memory by default. The range is [256 MB, 12 GB].

• The number of times for repeatedly reading a resource by one Worker cannot exceed 64.

• The split size is 64 MB by default, which can be set. The range is 0 < split_size <= (

9223372036854775807 >> 20).

• In the MaxCompute Graph program, GraphLoader/Vertex/Aggregator running in a cluster is

restricted by the Java sandbox. (The main program of Graph jobs is not restricted.) For more

information about the restrictions, see Java sandbox.

8.6 Examples

8.6.1 SSSP
Dijkstra is a typical algorithm that calculates the Single Source Shortest Path (SSSP) in a directed

 graph.

For weighted directed graph G=(V,E), many paths are routed from source vertex s to sink vertex

 v. In these paths, the one that has the smallest edge weight sum is called the shortest distance

from s to v.

MaxCompute User Guide / 8 Graph

Issue: 20180808 239

The basic concept of the algorithm is as follows:

• Initialization: The distance from source vertex s to s itself is zero (d[s] = 0), and the distance

from another vertex u to s is infinite (d[u]=∞).

• Iteration: If an edge exists from u to v, the shortest distance from s to v is updated as: d[v] =

min(d[v], d[u] + weight(u, v)). The iteration ends until the distance from all vertices to s does

not change.

The basic concept shows that the algorithm is applicable to solutions using the MaxCompute

Graph program. Each vertex maintains the current shortest distance to the source vertex. If the

value changes, a message containing the new value and the edge weight is sent to the adjacent

 vertex. In the next iteration, the adjacent vertex updates the current shortest distance based on

the received message. The iteration ends when the current shortest distance of all vertices does

not change.

Sample Code

Code of SSSP is as follows:

import java.io.IOException;

import com.aliyun.odps.io.WritableRecord;
import com.aliyun.odps.graph.Combiner;
import com.aliyun.odps.graph.ComputeContext;
import com.aliyun.odps.graph.Edge;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.WorkerContext;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.data.TableInfo;

public class SSSP {

 public static final String START_VERTEX = "sssp.start.vertex.id";

 public static class SSSPVertex extends
 Vertex<LongWritable, LongWritable, LongWritable, LongWritable> {

 private static long startVertexId = -1;

 public SSSPVertex() {
 this.setValue(new LongWritable(Long.MAX_VALUE));

 public boolean isStartVertex(
 ComputeContext<LongWritable, LongWritable, LongWritable,
LongWritable> context) {
 if (startVertexId == -1) {
 String s = context.getConfiguration().get(START_VERTEX);
 startVertexId = Long.parseLong(s);

MaxCompute User Guide / 8 Graph

240 Issue: 20180808

 return getId().get() == startVertexId;

 @Override
 public void compute(
 ComputeContext<LongWritable, LongWritable, LongWritable,
LongWritable> context,
 Iterable<LongWritable> messages) throws IOException {
 long minDist = isStartVertex(context) ? 0 : Integer.MAX_VALUE;
 for (LongWritable msg : messages) {
 if (msg.get() < minDist) {
 minDist = msg.get();

 if (minDist < this.getValue().get()) {
 this.setValue(new LongWritable(minDist));
 if (hasEdges()) {
 for (Edge<LongWritable, LongWritable> e : this.getEdges()) {
 context.sendMessage(e.getDestVertexId(), new LongWritable(
minDist
 + e.getValue().get()));

 } else {
 voteToHalt();

 @Override
 public void cleanup(
 WorkerContext<LongWritable, LongWritable, LongWritable,
LongWritable> context)
 throws IOException {
 context.write(getId(), getValue());

 public static class MinLongCombiner extends
 Combiner<LongWritable, LongWritable> {

 @Override
 public void combine(LongWritable vertexId, LongWritable combinedMe
ssage,
 LongWritable messageToCombine) throws IOException {
 if (combinedMessage.get() > messageToCombine.get()) {
 combinedMessage.set(messageToCombine.get());

 public static class SSSPVertexReader extends
 GraphLoader<LongWritable, LongWritable, LongWritable, LongWritab
le> {

 @Override
 public void load(
 LongWritable recordNum,
 WritableRecord record,
 MutationContext<LongWritable, LongWritable, LongWritable,
LongWritable> context)

MaxCompute User Guide / 8 Graph

Issue: 20180808 241

 throws IOException {
 SSSPVertex vertex = new SSSPVertex();
 vertex.setId((LongWritable) record.get(0));
 String[] edges = record.get(1).toString().split(",");
 for (int i = 0; i < edges.length; i++) {
 String[] ss = edges[i].split(":");
 vertex.addEdge(new LongWritable(Long.parseLong(ss[0])),
 new LongWritable(Long.parseLong(ss[1])));

 context.addVertexRequest(vertex);

 public static void main(String[] args) throws IOException {
 if (args.length < 2) {
 System.out.println("Usage: <startnode> <input> <output>");
 System.exit(-1);

 GraphJob job = new GraphJob();
 job.setGraphLoaderClass(SSSPVertexReader.class);
 job.setVertexClass(SSSPVertex.class);
 job.setCombinerClass(MinLongCombiner.class);

 job.set(START_VERTEX, args[0]);
 job.addInput(TableInfo.builder().tableName(args[1]).build());
 job.addOutput(TableInfo.builder().tableName(args[2]).build());

 long startTime = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - startTime) / 1000.0 + "
seconds");

The source code of SSSP is described as follows:

• Row 19: Defines SSSPVertex, where:

▬ The vertex value indicates the current shortest distance from this vertex to source vertex

startVertexId.

▬ The compute() method uses the iteration formula d[v] = min(d[v], d[u] + weight(u, v)) to

update the vertex value.

▬ The cleanup() method writes the vertex and its shortest distance to the source vertex to the

result table.

• Row 58: If the vertex value does not change, voteToHalt() is called to notify the framework that

this vertex enters the halt status. The calculation ends when all vertices enter the halt state.

• Row 70: Defines MinLongCombiner and combines messages sent to the same vertex to

optimize performance and reduce memory usage.

MaxCompute User Guide / 8 Graph

242 Issue: 20180808

• Row 83: Defines the SSSPVertexReader class, loads a graph, and resolves each record in

the table into a vertex. The first column of the record is the vertex ID, and the second column

stores all edge sets starting from the vertex, such as 2:2, 3:1, 4:4.

• Row 106: Runs the main program (main function), defines GraphJob, and specifies the

implementation of Vertex/GraphLoader/Combiner, and the input and output tables.

8.6.2 PageRank
PageRank is a typical algorithm used to calculate the web page ranking. In the input directed

graph G, vertices indicate web pages. If a link exists between web pages A and B, an edge

connecting A and B exists.

The basic concept of the algorithm is as follows:

• Initialization: The vertex value indicates the rank value (of the double type) of PageRank. In the

 initial phase, the value of all vertices is 1/TotalNumVertices.

• Iteration formula: PageRank(i) = 0.15/TotalNumVertices + 0.85 x sum. Sum indicates the sum

of PageRank(j)/out_degree(j). (j indicates all vertices pointing to vertex i.)

The basic concept shows that the algorithm is applicable to solutions using the MaxCompute

Graph program. Each vertex j maintains the value of PageRank. PageRank(j)/out_degree(j) is

sent to the adjacent vertex (for voting) in each iteration. In the next iteration, each vertex recalculat

es the PageRank value using the iteration formula.

Sample Code

import java.io.IOException;

import org.apache.log4j.Logger;

import com.aliyun.odps.io.WritableRecord;
import com.aliyun.odps.graph.ComputeContext;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.WorkerContext;
import com.aliyun.odps.io.DoubleWritable;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.NullWritable;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.io.Text;
import com.aliyun.odps.io.Writable;

public class PageRank {

 private final static Logger LOG = Logger.getLogger(PageRank.class);

 public static class PageRankVertex extends

MaxCompute User Guide / 8 Graph

Issue: 20180808 243

 Vertex<Text, DoubleWritable, NullWritable, DoubleWritable> {

 @Override
 public void compute(
 ComputeContext<Text, DoubleWritable, NullWritable, DoubleWrit
able> context,
 Iterable<DoubleWritable> messages) throws IOException {
 if (context.getSuperstep() == 0) {
 setValue(new DoubleWritable(1.0 / context.getTotalNumVertices
()));
 } else if (context.getSuperstep() >= 1) {
 double sum = 0;
 for (DoubleWritable msg : messages) {
 sum += msg.get();

 DoubleWritable vertexValue = new DoubleWritable(
 (0.15f / context.getTotalNumVertices()) + 0.85f * sum);
 setValue(vertexValue);

 if (hasEdges()) {
 context.sendMessageToNeighbors(this, new DoubleWritable(
getValue()
 .get() / getEdges().size()));

 @Override
 public void cleanup(
 WorkerContext<Text, DoubleWritable, NullWritable, DoubleWrit
able> context)
 throws IOException {
 context.write(getId(), getValue());

 public static class PageRankVertexReader extends
 GraphLoader<Text, DoubleWritable, NullWritable, DoubleWritable>
 {

 @Override
 public void load(
 LongWritable recordNum,
 WritableRecord record,
 MutationContext<Text, DoubleWritable, NullWritable, DoubleWrit
able> context)
 throws IOException {
 PageRankVertex vertex = new PageRankVertex();
 vertex.setValue(new DoubleWritable(0));
 vertex.setId((Text) record.get(0));
 System.out.println(record.get(0));

 for (int i = 1; i < record.size(); i++) {
 Writable edge = record.get(i);
 System.out.println(edge.toString());
 if (!(edge.equals(NullWritable.get()))) {
 vertex.addEdge(new Text(edge.toString()), NullWritable.get
());

 LOG.info("vertex edgs size: "
 + (vertex.hasEdges() ? vertex.getEdges().size() : 0));
 context.addVertexRequest(vertex);

MaxCompute User Guide / 8 Graph

244 Issue: 20180808

 private static void printUsage() {
 System.out.println("Usage: <in> <out> [Max iterations (default 30
)]");
 System.exit(-1);

 public static void main(String[] args) throws IOException {
 if (args.length < 2)
 printUsage();

 GraphJob job = new GraphJob();

 job.setGraphLoaderClass(PageRankVertexReader.class);
 job.setVertexClass(PageRankVertex.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());

 // default max iteration is 30
 job.setMaxIteration(30);
 if (args.length >= 3)
 job.setMaxIteration(Integer.parseInt(args[2]));

 long startTime = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - startTime) / 1000.0 + "
seconds");

The source code of PageRank is described as follows:

• Row 23: Defines PageRankVertex, where:

▬ The vertex value indicates the current PageRank value of the vertex (web page).

▬ The compute() method uses the iteration formula PageRank(i) = 0.15/TotalNumVe

rtices + 0.85 x sum to update the vertex value.

▬ The cleanup() method writes the vertex and its PageRank value to the result table.

• Row 55: Defines the PageRankVertexReader class, loads a graph, and resolves each record in

 the table into a vertex. The first column of the record is the start vertex and other columns are

the destination vertices.

• Row 88: Runs the main program (main function), defines GraphJob, and specifies the

implementation of Vertex/GraphLoader, the maximum number of iterations (30 by default), and

 input and output tables.

MaxCompute User Guide / 8 Graph

Issue: 20180808 245

8.6.3 Kmeans
The Kmeans algorithm is a typical clustering algorithm.

It performs clustering by using k number of vertices in the space as the centers and grouping the

 vertices closest to them. The values of the clustering centers are successively updated through

iterations until the optimal clustering result is obtained.

To divide a sample set into k classes, the algorithm operates as follows:

1. Selects the initial centers of k classes.

2. Calculates the distance from any sample to the k centers in iteration i, and groups the sample

to the class of the nearest center.

3. Updates the center value of the class using the mean and other methods.

4. For all k clustering centers, if the value updated after iterations remains unchanged or is

smaller than a threshold, the iteration ends. Otherwise, the iteration continues.

Sample Code

Code for the K-means clustering algorithm is as follows:

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.log4j.Logger;

import com.aliyun.odps.io.WritableRecord;
import com.aliyun.odps.graph.Aggregator;
Import com. aliyun. ODPS. graph. computercontext;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.WorkerContext;
import com.aliyun.odps.io.DoubleWritable;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.NullWritable;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.io.Text;
import com.aliyun.odps.io.Tuple;
import com.aliyun.odps.io.Writable;

public class Kmeans {
 private final static Logger LOG = Logger.getLogger(Kmeans.class);

 public static class KmeansVertex extends
 Vertex<Text, Tuple, NullWritable, NullWritable> {

 @ Override
 public void compute(
 ComputeContext<Text, Tuple, NullWritable, NullWritable> context,
 Iterable<NullWritable> messages) throws IOException {
 context.aggregate(getValue());

MaxCompute User Guide / 8 Graph

246 Issue: 20180808

 }

 public static class KmeansVertexReader extends
 GraphLoader<Text, Tuple, NullWritable, NullWritable> {
 @Override
 public void load(LongWritable recordNum, WritableRecord record,
 MutationContext<Text, Tuple, NullWritable, NullWritable> context)
 throws IOException {
 KmeansVertex vertex = new KmeansVertex();
 vertex.setId(new Text(String.valueOf(recordNum.get())));
 vertex.setValue(new Tuple(record.getAll()));
 context.addVertexRequest(vertex);

 public static class KmeansAggrValue implements Writable {

 Tuple centers = new Tuple();
 Tuple sums = new Tuple();
 Tuple counts = new Tuple();

 @ Override
 public void write(DataOutput out) throws IOException {
 centers.write(out);
 sums.write(out);
 counts.write(out);

 @Override
 public void readFields(DataInput in) throws IOException {
 centers = new Tuple();
 centers.readFields(in);
 sums = new Tuple();
 sums.readFields(in);
 counts = new Tuple();
 counts.readFields(in);

 @Override
 public String toString() {
 return "centers " + centers.toString() + ", sums " + sums.
toString()
 + ", counts " + counts.toString();

public static class KmeansAggregator extends Aggregator<KmeansAggr
Value> {

 @SuppressWarnings("rawtypes")
 @Override
 public KmeansAggrValue createInitialValue(WorkerContext context)
 throws IOException {
 KmeansAggrValue aggrVal = null;
 if (context.getSuperstep() == 0) {
 aggrVal = new KmeansAggrValue();
 aggrVal.centers = new Tuple();
 aggrVal.sums = new Tuple();

MaxCompute User Guide / 8 Graph

Issue: 20180808 247

 aggrVal.counts = new Tuple();

 byte[] centers = context.readCacheFile("centers");
 String lines[] = new String(centers).split("\n");

for (int i = 0; i < lines.length; i++) {
 String[] ss = lines[i].split(",");
 Tuple center = new Tuple();
 Tuple sum = new Tuple();
 for (int j = 0; j < ss.length; ++j) {
 center.append(new DoubleWritable(Double.valueOf(ss[j].trim
())));
 sum.append(new DoubleWritable(0.0));

 LongWritable count = new LongWritable(0);
 aggrVal.sums.append(sum);
 aggrVal.counts.append(count);
 aggrVal.centers.append(center);

 } else {
 aggrVal = (KmeansAggrValue) context.getLastAggregatedValue(0);

 return aggrVal;

 @Override
 Public void aggregate (glasvalue, object item){
 int min = 0;
 double mindist = Double.MAX_VALUE;
 Tuple point = (Tuple) item;

for (int i = 0; i < value.centers.size(); i++) {
 Tuple center = (Tuple) value.centers.get(i);
 // use Euclidean Distance, no need to calculate sqrt
 double dist = 0.0d;
 for (int j = 0; j < center.size(); j++) {
 double v = ((DoubleWritable) point.get(j)).get()
 - ((DoubleWritable) center.get(j)).get();
 dist += v * v;

 if (dist < mindist) {
 mindist = dist;
 min = i;

 // update sum and count
 Tuple sum = (Tuple) value.sums.get(min);
 for (int i = 0; i < point.size(); i++) {
 DoubleWritable s = (DoubleWritable) sum.get(i);
 s.set(s.get() + ((DoubleWritable) point.get(i)).get());

 LongWritable count = (LongWritable) value.counts.get(min);
 count.set(count.get() + 1);

 @Override
 public void merge(KmeansAggrValue value, KmeansAggrValue partial)
 {
 for (int i = 0; i < value.sums.size(); i++) {
 Tuple sum = (Tuple) value.sums.get(i);

MaxCompute User Guide / 8 Graph

248 Issue: 20180808

 Tuple that = (Tuple) partial.sums.get(i);
 for (int j = 0; j < sum.size(); j++) {
 DoubleWritable s = (DoubleWritable) sum.get(j);
 s.set(s.get() + ((DoubleWritable) that.get(j)).get());

for (int i = 0; i < value.counts.size(); i++) {
 LongWritable count = (LongWritable) value.counts.get(i);
 count.set(count.get() + ((LongWritable) partial.counts.get(i
)).get());

 @SuppressWarnings("rawtypes")
 @Override
 public boolean terminate(WorkerContext context, KmeansAggrValue
value)
 throws IOException {

 // compute new centers
 Tuple newCenters = new Tuple(value.sums.size());
 for (int i = 0; i < value.sums.size(); i++) {
 Tuple sum = (Tuple) value.sums.get(i);
 Tuple newCenter = new Tuple(sum.size());
 LongWritable c = (LongWritable) value.counts.get(i);
 for (int j = 0; j < sum.size(); j++) {

 DoubleWritable s = (DoubleWritable) sum.get(j);
 double val = s.get() / c.get();
 newCenter.set(j, new DoubleWritable(val));

 // reset sum for next iteration
 s.set(0.0d);

 // reset count for next iteration
 c.set(0);
 newCenters.set(i, newCenter);

 // update centers
 Tuple oldCenters = value.centers;
 value.centers = newCenters;

 LOG.info("old centers: " + oldCenters + ", new centers: " +
newCenters);

 // compare new/old centers
 boolean converged = true;
 for (int i = 0; i < value.centers.size() && converged; i++) {
 Tuple oldCenter = (Tuple) oldCenters.get(i);
 Tuple newCenter = (Tuple) newCenters.get(i);
 double sum = 0.0d;
 for (int j = 0; j < newCenter.size(); j++) {
 double v = ((DoubleWritable) newCenter.get(j)).get()
 - ((DoubleWritable) oldCenter.get(j)).get();
 sum += v * v;

 double dist = Math.sqrt(sum);
 LOG.info("old center: " + oldCenter + ", new center: " +
newCenter
 + ", dist: " + dist);

MaxCompute User Guide / 8 Graph

Issue: 20180808 249

 // converge threshold for each center: 0.05
 converged = dist < 0.05d;

 if (converged || context.getSuperstep() == context.getMaxIter
ation() - 1) {
 // converged or reach max iteration, output centers
 for (int i = 0; i < value.centers.size(); i++) {
 context.write(((Tuple) value.centers.get(i)).toArray());

 // true means to terminate iteration
 return true;

 // false means to continue iteration
 return false;

 private static void printUsage() {
 System. out. println ("Usage: <in> <out> [Max iterations (default 30
)] ");
 System.exit(-1);

 public static void main(String[] args) throws IOException {
 if (args.length < 2)
 printUsage();

 GraphJob job = new GraphJob();

 job.setGraphLoaderClass(KmeansVertexReader.class);
 job.setRuntimePartitioning(false);
 job.setVertexClass(KmeansVertex.class);
 job.setAggregatorClass(KmeansAggregator.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());

 // default max iteration is 30
 job.setMaxIteration(30);
 if (args.length >= 3)
 job.setMaxIteration(Integer.parseInt(args[2]));

 long start = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - start) / 1000.0 + " seconds");

The source code of Kmeans is described as follows:

• Row 26: Defines KmeansVertex. The compute() method is simple. It calls the aggregate()

method of the context object and transmits the value of the current vertex (in Tuple type and

expressed by vector).

MaxCompute User Guide / 8 Graph

250 Issue: 20180808

• Row 38: Defines the KmeansVertexReader class, loads a graph, and resolves each record in

the table as a vertex. The vertex ID does not matter, and transmitted recordNum is used as the

 ID. The vertex value is the Tuple consisting of all columns of the record.

• Row 83: Defines KmeansAggregator. This class encapsulates the main logic of the Kmeans

algorithm, where:

▬ createInitialValue creates an initial value for each iteration (k-class center point). In first

iteration (superstep equals to 0), the value is the initial center point. Otherwise, the value is

the new center point when the last iteration ends.

▬ The aggregate() method calculates the distance from each vertex to centers of different

classes, classifies the vertex as the class of the nearest center, and updates sum and count

 of the class.

▬ The merge() method combines sums and counts collected by each Worker.

▬ The terminate() method calculates the new center point based on sum and count of each

 class. If the distance between the new and old center points is smaller than a threshold

value or the number of iterations reaches the upper limit, the iteration ends (false is returned

). The final center point is written to the result table.

• Row 236: Runs the main program (main function), defines GraphJob, and specifies the

implementation of Vertex/GraphLoader/Aggregator, the maximum number of iterations (30 by

default), and the input and output tables.

• Row 243: Specifies job.setRuntimePartitioning(false). For the Kmeans algorithm, vertices

do not have to be distributed during graph loading. If RuntimePartitioning is set to false, the

performance for graph loading is improved.

8.6.4 BiPartiteMatchiing
A Bipartite graph means all the graph vertices can be separated into 2 sets, and 2 vertices

corresponding to each Edge belong to the 2 sets respectively. For bipartite graph G, M is one

of its sub-graphs. If any two edges in the edge set of M are not attached to the same vertex, M

is called a matching. The bipartite graph matching is usually used for information matching in

scenarios with clear supply and demand relationships.

The basic concept of the algorithm is as follows:

• From the first vertex on the left, unmatched vertices are selected to search for the augmenting

path.

• If an unmatched vertex is found, the search is successful.

MaxCompute User Guide / 8 Graph

Issue: 20180808 251

• The path information is updated. If the number of matching edges is increased by 1, the search

 is stopped.

• If the augmenting path is not found, the search is no longer started from this vertex.

Sample Code

BiPartiteMatchiing The code of the algorithm is as follows:

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.util.Random;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.graph.ComputeContext;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.WorkerContext;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.NullWritable;
import com.aliyun.odps.io.Text;
import com.aliyun.odps.io.Writable;
import com.aliyun.odps.io.WritableRecord;
public class BipartiteMatching {
 private static final Text UNMATCHED = new Text("UNMATCHED");
 public static class TextPair implements Writable {
 public Text first;
 public Text second;
 public TextPair() {
 first = new Text();
 second = new Text();

 public TextPair(Text first, Text second) {
 this.first = new Text(first);
 this.second = new Text(second);

 @ Override
 public void write(DataOutput out) throws IOException {
 first.write(out);
 second.write(out);

 @ Override
 public void readFields(DataInput in) throws IOException {
 first = new Text();
 first.readFields(in);
 second = new Text();
 second.readFields(in);

 @ Override
 public String toString() {
 return first + ": " + second;

 public static class BipartiteMatchingVertexReader extends
 GraphLoader<Text, TextPair, NullWritable, Text> {
 @ Override
 public void load(LongWritable recordNum, WritableRecord record,
 MutationContext<Text, TextPair, NullWritable, Text> context)

MaxCompute User Guide / 8 Graph

252 Issue: 20180808

 throws IOException {
 BipartiteMatchingVertex vertex = new BipartiteMatchingVertex();
 vertex.setId((Text) record.get(0));
 vertex.setValue(new TextPair(UNMATCHED, (Text) record.get(1)));
 String[] adjs = record.get(2).toString().split(",");
 for (String adj : adjs) {
 vertex.addEdge(new Text(adj), null);

 context.addVertexRequest(vertex);

 public static class BipartiteMatchingVertex extends
 Vertex <Text, TextPair, NullWritable, Text> {
 private static final Text LEFT = new Text("LEFT");
 private static final Text RIGHT = new Text("RIGHT");
 private static Random rand = new Random();
 @ Override
 public void compute (
 ComputeContext<Text, TextPair, NullWritable, Text> context,
 Iterable messages) throws ioexception {
 if (isMatched()) {
 voteToHalt();
 return;

 switch ((int) context.getSuperstep() % 4) {
 case 0:
 if (isLeft()) {
 context.sendMessageToNeighbors(this, getId());

 break;
 case 1:
 if (isRight()) {
 Text luckyLeft = null;
 for (Text message : messages) {
 if (luckyLeft == null) {
 luckyLeft = new Text(message);
 } else {
 if (rand.nextInt(1) == 0) {
 luckyLeft.set(message);

 if (luckyLeft ! = null) {
 context.sendMessage(luckyLeft, getId());

 break;
 case 2:
 if (isLeft()) {
 Text luckyRight = null;
 for (Text msg : messages) {
 if (luckyRight == null) {
 luckyRight = new Text(msg);
 } else {
 if (rand.nextInt(1) == 0) {
 luckyRight.set(msg);

 if (luckyRight ! = null) {
 setMatchVertex(luckyRight);
 context.sendMessage(luckyRight, getId());

MaxCompute User Guide / 8 Graph

Issue: 20180808 253

 break;
 case 3:
 if (isRight()) {
 for (Text msg : messages) {
 setMatchVertex(msg);

 break;

 @ Override
 public void cleanup(
 WorkerContext<Text, TextPair, NullWritable, Text> context)
 throws IOException {
 context.write(getId(), getValue().first);

 private boolean isMatched() {
 return ! getValue().first.equals(UNMATCHED);

 private boolean isLeft() {
 return getValue().second.equals(LEFT);

 private boolean isRight() {
 return getValue().second.equals(RIGHT);

 private void setMatchVertex(Text matchVertex) {
 getValue().first.set(matchVertex);

 private static void printUsage() {
 System.err.println("BipartiteMatching <input> <output> [maxIterati
on]");

 public static void main(String[] args) throws IOException {
 if (args.length < 2) {
 printUsage();

 GraphJob job = new GraphJob();
 job.setGraphLoaderClass(BipartiteMatchingVertexReader.class);
 job.setVertexClass(BipartiteMatchingVertex.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 int maxIteration = 30;
 if (args.length > 2) {
 maxIteration = Integer.parseInt(args[2]);

 job.setMaxIteration(maxIteration);
 job.run();

8.6.5 Strongly-connected component
In a digraph, if by starting from any vertex it reaches every vertex in the graph through Edges, it is

called a strongly-connected graph. A strongly-connected subgraph with an extremely large vertex

MaxCompute User Guide / 8 Graph

254 Issue: 20180808

number is called a strongly-connected component. The algorithm is based on Parallel coloring

algorithm.

Each vertex contains the following components:

• colorID: Stores the color of vertex v during forward traversal. After a calculation ends, vertices

with the same colorID belong to one strongly connected component.

• transposeNeighbors: Stores the neighbor ID of vertex v in the transpose graph of the input

graph.

The algorithm contains the following four steps:

• Transpose graph generation: Contains two supersteps. Each vertex sends its ID to its neighbor

 with the corresponding outbound edge. In the next superstep, these IDs are stored as

transposeNeighbors values.

• Trim: Contains one superstep. Each vertex that has only one inbound or outbound edge sets

the colorID as its own ID and the status to inactive. Subsequent signals sent to the vertex are

ignored.

• Forward traversal: A vertex contains two sub-processes (supersteps): startup and sleep.

 In the startup phase, each vertex sets the colorID as its own ID and sends the ID to the

neighbor with the corresponding outbound edge. In the sleep phase, the vertex uses the

maximum colorID it received to update its own colorID, and transmits the colorID until the

colorID converges. When the colorID converges, the master process sets the global object to

backward traversal.

• Backward traversal: Contains two sub-processes: startup and sleep. In the startup phase,

a vertex whose ID is the same as the colorID transmits its ID to the neighbor vertex in the

transpose graph, and sets its status to inactive. Subsequent signals sent to the vertex can be

ignored. In each sleep step, each vertex receives signals matching its colorID, transmits the

colorID in the transpose graph, and then sets its status to inactive. If active vertices exist after

this step ends, the process reverts to the trim step.

Sample Code

The code for strongly connected components is as follows:

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.graph.Aggregator;
import com.aliyun.odps.graph.ComputeContext;
import com.aliyun.odps.graph.GraphJob;

http://ilpubs.stanford.edu:8090/1077/3/p535-salihoglu.pdf
http://ilpubs.stanford.edu:8090/1077/3/p535-salihoglu.pdf

MaxCompute User Guide / 8 Graph

Issue: 20180808 255

import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.WorkerContext;
import com.aliyun.odps.io.BooleanWritable;
import com.aliyun.odps.io.IntWritable;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.NullWritable;
import com.aliyun.odps.io.Tuple;
import com.aliyun.odps.io.Writable;
import com.aliyun.odps.io.WritableRecord;

 * Definition from Wikipedia:
 * In the mathematical theory of directed graphs, a graph is said
 * to be strongly connected if every vertex is reachable from every
 * other vertex. The strongly connected components of an arbitrary
 * directed graph form a partition into subgraphs that are themselves
 * Strictly connected.

 * Algorithms with four phases as follows.
 * 1. Transpose Graph Formation: Requires two supersteps. In the first
 * superstep, each vertex sends a message with its ID to all its
outgoing
 * neighbors, which in the second superstep are stored in transposeN
eighbors.

 * 2. Trimming: Takes one superstep. Every vertex with only in-coming
or
 * only outgoing edges (or neither) sets its colorID to its own ID and
 * becomes inactive. Messages subsequently sent to the vertex are
ignored.

 * 3. Forward-Traversal: There are two sub phases: Start and Rest. In
the
 * Start phase, each vertex sets its colorID to its own ID and
propagates
 * its ID to its outgoing neighbors. In the Rest phase, vertices
update
 * their own colorIDs with the minimum colorID they have seen, and
propagate
 * their colorIDs, if updated, until the colorIDs converge.
 * Set the phase to Backward-Traversal when the colorIDs converge.

 * 4. Backward-Traversal: We again break the phase into Start and Rest
.
 * In Start, every vertex whose ID equals its colorID propagates its
ID to
 * the vertices in transposeNeighbors and sets itself inactive.
Messages
 * subsequently sent to the vertex are ignored. In each of the Rest
phase supersteps,
 * each vertex receiving a message that matches its colorID: (1)
propagates
 * its colorID in the transpose graph; (2) sets itself inactive.
Messages
 * subsequently sent to the vertex are ignored. Set the phase back to
Trimming
 * if not all vertex are inactive.

 * http://ilpubs.stanford.edu:8090/1077/3/p535-salihoglu.pdf

public class StronglyConnectedComponents {

MaxCompute User Guide / 8 Graph

256 Issue: 20180808

 public final static int STAGE_TRANSPOSE_1 = 0;
 public final static int STAGE_TRANSPOSE_2 = 1;
 public final static int STAGE_TRIMMING = 2;
 public final static int STAGE_FW_START = 3;
 public final static int STAGE_FW_REST = 4;
 public final static int STAGE_BW_START = 5;
 public final static int STAGE_BW_REST = 6;

 * The value is composed of component id, incoming neighbors,
 * active status and updated status.

 public static class MyValue implements Writable {
 LongWritable sccID;// strongly connected component id
 Tuple inNeighbors; // transpose neighbors
 BooleanWritable active; // vertex is active or not
 BooleanWritable updated; // sccID is updated or not
 public MyValue() {
 this.sccID = new LongWritable(Long.MAX_VALUE);
 this.inNeighbors = new Tuple();
 this.active = new BooleanWritable(true);
 this.updated = new BooleanWritable(false);

 public void setSccID(LongWritable sccID) {
 this.sccID = sccID;

 public LongWritable getSccID() {
 return this.sccID;

 public void setInNeighbors(Tuple inNeighbors) {
 this.inNeighbors = inNeighbors;

 public Tuple getInNeighbors() {
 return this.inNeighbors;

 public void addInNeighbor(LongWritable neighbor) {
 this.inNeighbors.append(new LongWritable(neighbor.get()));

 public boolean isActive() {
 return this.active.get();

 public void setActive(boolean status) {
 this.active.set(status);

 public boolean isUpdated() {
 return this.updated.get();

 public void setUpdated(boolean update) {
 this.updated.set(update);

 @Override
 public void write(DataOutput out) throws IOException {
 this.sccID.write(out);
 this.inNeighbors.write(out);
 this.active.write(out);
 this.updated.write(out);

 @Override
 public void readFields(DataInput in) throws IOException {
 this.sccID.readFields(in);
 this.inNeighbors.readFields(in);
 this.active.readFields(in);
 this.updated.readFields(in);

MaxCompute User Guide / 8 Graph

Issue: 20180808 257

 @Override
 public String toString() {
 StringBuilder sb = new StringBuilder();
 sb.append("sccID: " + sccID.get());
 sb.append(" inNeighbores: " + inNeighbors.toDelimitedString
(','));
 sb.append(" active: " + active.get());
 sb.append(" updated: " + updated.get());
 return sb.toString();

 public static class SCCVertex extends
 Vertex <LongWritable, MyValue, NullWritable, LongWritable> {
 public SCCVertex() {
 this.setValue(new MyValue());

 @Override
 public void compute(
 ComputeContext < LongWritable, MyValue, NullWritable, LongWritable
> context,
 Iterable <LongWritable> msgs) throws IOException {
 // Messages sent to inactive vertex are ignored.
 if (! this.getValue().isActive()) {
 this.voteToHalt();
 return;

 int stage = ((SCCAggrValue)context.getLastAggregatedValue(0)).
getStage();
 switch (stage) {
 case STAGE_TRANSPOSE_1:
 context.sendMessageToNeighbors(this, this.getId());
 break;
 case STAGE_TRANSPOSE_2:
 for (LongWritable msg: msgs) {
 this.getValue().addInNeighbor(msg);

 case STAGE_TRIMMING:
 this.getValue().setSccID(getId());
 if (this.getValue().getInNeighbors().size() == 0 ||
 this.getNumEdges() == 0) {
 this.getValue().setActive(false);

 break;
 case STAGE_FW_START:
 this.getValue().setSccID(getId());
 context.sendMessageToNeighbors(this, this.getValue().getSccID
());
 break;
 case STAGE_FW_REST:
 long minSccID = Long.MAX_VALUE;
 for (LongWritable msg : msgs) {
 if (msg.get() < minSccID) {
 minSccID = msg.get();

 if (minSccID < this.getValue().getSccID().get()) {
 this.getValue().setSccID(new LongWritable(minSccID));
 context.sendMessageToNeighbors(this, this.getValue().
getSccID());
 this.getValue().setUpdated(true);
 } else {

MaxCompute User Guide / 8 Graph

258 Issue: 20180808

 this.getValue().setUpdated(false);

 break;
 case STAGE_BW_START:
 if (this.getId().equals(this.getValue().getSccID())) {
 for (Writable neighbor : this.getValue().getInNeighbors().
getAll()) {
 context.sendMessage((LongWritable)neighbor, this.getValue
().getSccID());

 this.getValue().setActive(false);

 break;
 case STAGE_BW_REST:
 this.getValue().setUpdated(false);
 for (LongWritable msg : msgs) {
 if (msg.equals(this.getValue().getSccID())) {
 for (Writable neighbor : this.getValue().getInNeighbors().
getAll()) {
 context.sendMessage((LongWritable)neighbor, this.
getValue().getSccID());

 this.getValue().setActive(false);
 this.getValue().setUpdated(true);
 break;

 break;

 context.aggregate(0, getValue());

 @Override
 public void cleanup(
 WorkerContext<LongWritable, MyValue, NullWritable, LongWritab
le> context)
 throws IOException {
 context.write(getId(), getValue().getSccID());

 * The SCCAggrValue maintains global stage and graph updated and
active status.
 * updated is true only if one vertex is updated.
 * active is true only if one vertex is active.

 public static class SCCAggrValue implements Writable {
 IntWritable stage = new IntWritable(STAGE_TRANSPOSE_1);
 BooleanWritable updated = new BooleanWritable(false);
 BooleanWritable active = new BooleanWritable(false);
 public void setStage(int stage) {
 this.stage.set(stage);

 public int getStage() {
 return this.stage.get();

 public void setUpdated(boolean updated) {
 this.updated.set(updated);

 public boolean getUpdated() {
 return this.updated.get();

 public void setActive(boolean active) {

MaxCompute User Guide / 8 Graph

Issue: 20180808 259

 this.active.set(active);

 public boolean getActive() {
 return this.active.get();

 @ Override
 public void write(DataOutput out) throws IOException {
 this.stage.write(out);
 this.updated.write(out);
 this.active.write(out);

 @ Override
 public void readFields(DataInput in) throws IOException {
 this.stage.readFields(in);
 this.updated.readFields(in);
 this.active.readFields(in);

 * The job of SCCAggregator is to schedule global stage in every
superstep.

 public static class SCCAggregator extends Aggregator<SCCAggrValue> {
 @SuppressWarnings("rawtypes")
 @ Override
 public SCCAggrValue createStartupValue(WorkerContext context)
throws IOException {
 return new SCCAggrValue();

 @SuppressWarnings("rawtypes")
 @ Override
 public SCCAggrValue createInitialValue(WorkerContext context)
 throws IOException {
 return (SCCAggrValue) context.getLastAggregatedValue(0);

 @ Override
 public void aggregate(SCCAggrValue value, Object item) throws
IOException {
 MyValue v = (MyValue)item;
 if ((value.getStage() == STAGE_FW_REST || value.getStage() ==
STAGE_BW_REST)
 && v.isUpdated()) {
 value.setUpdated(true);

 // only active vertex invoke aggregate()
 value.setActive(true);

 @ Override
 public void merge(SCCAggrValue value, SCCAggrValue partial)
 throws IOException {
 boolean updated = value.getUpdated() || partial.getUpdated();
 value.setUpdated(updated);
 boolean active = value.getActive() || partial.getActive();
 value.setActive(active);

 @SuppressWarnings("rawtypes")
 @ Override
 public boolean terminate(WorkerContext context, SCCAggrValue value
)
 throws IOException {
 // If all vertices is inactive, job is over.
 if (! value.getActive()) {

MaxCompute User Guide / 8 Graph

260 Issue: 20180808

 return true;

 // state machine
 switch (value.getStage()) {
 case STAGE_TRANSPOSE_1:
 value.setStage(STAGE_TRANSPOSE_2);
 break;
 case STAGE_TRANSPOSE_2:
 value.setStage(STAGE_TRIMMING);
 break;
 case STAGE_TRIMMING:
 value.setStage(STAGE_FW_START);
 break;
 case STAGE_FW_START:
 value.setStage(STAGE_FW_REST);
 break;
 case STAGE_FW_REST:
 if (value.getUpdated()) {
 value.setStage(STAGE_FW_REST);
 } else {
 value.setStage(STAGE_BW_START);

 break;
 case STAGE_BW_START:
 value.setStage(STAGE_BW_REST);
 break;
 case STAGE_BW_REST:
 if (value.getUpdated()) {
 value.setStage(STAGE_BW_REST);
 } else {
 value.setStage(STAGE_TRIMMING);

 break;

 value.setActive(false);
 value.setUpdated(false);
 return false;

 public static class SCCVertexReader extends
 GraphLoader<LongWritable, MyValue, NullWritable, LongWritable> {
 @ Override
 public void load(
 LongWritable recordNum,
 WritableRecord record,
 MutationContext<LongWritable, MyValue, NullWritable,
LongWritable> context)
 throws IOException {
 SCCVertex vertex = new SCCVertex();
 vertex.setId((LongWritable) record.get(0));
 String[] edges = record.get(1).toString().split(",");
 for (int i = 0; i < edges.length; i++) {
 try {
 long destID = Long.parseLong(edges[i]);
 vertex.addEdge(new LongWritable(destID), NullWritable.get
());
 } catch(NumberFormatException nfe) {
 System.err.println("Ignore " + nfe);

 context.addVertexRequest(vertex);

MaxCompute User Guide / 8 Graph

Issue: 20180808 261

 public static void main(String[] args) throws IOException {
 if (args.length < 2) {
 System.out.println("Usage: <input> <output>");
 System.exit(-1);

 GraphJob job = new GraphJob();
 job.setGraphLoaderClass(SCCVertexReader.class);
 job.setVertexClass(SCCVertex.class);
 job.setAggregatorClass(SCCAggregator.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 long startTime = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - startTime) / 1000.0 + "
seconds");

8.6.6 Connected component
If there is path between 2 vertices, it means the 2 vertices are connected. If any two vertices in

undirected graph G are connected, G is called a connected graph. Otherwise, G is called an

unconnected graph. A connected sub-graph with a large number of vertices is called a connected

component.

This algorithm calculates connected component members of each vertex, and outputs the

connected component of the vertex value that includes the smallest vertex ID. The smallest vertex

 ID is transmitted along edges to all vertices of the connected component.

Sample Code

Code for connecting components is as follows:

import java.io.IOException;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.graph.ComputeContext;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.WorkerContext;
import com.aliyun.odps.graph.examples.SSSP.MinLongCombiner;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.NullWritable;
import com.aliyun.odps.io.WritableRecord;

 * Compute the connected component membership of each vertex and
output
 * each vertex which's value containing the smallest id in the
connected
 * component containing that vertex.

 * Algorithm: propagate the smallest vertex id along the edges to all
 * vertices of a connected component.

MaxCompute User Guide / 8 Graph

262 Issue: 20180808

public class ConnectedComponents {
 public static class CCVertex extends
 Vertex<LongWritable, LongWritable, NullWritable, LongWritable> {
 @Override
 public void compute(
 ComputeContext<LongWritable, LongWritable, NullWritable,
LongWritable> context,
 Iterable<LongWritable> msgs) throws IOException {
 if (context.getSuperstep() == 0L) {
 this.setValue(getId());
 context.sendMessageToNeighbors(this, getValue());
 return;

 long minID = Long.MAX_VALUE;
 for (LongWritable id : msgs) {
 if (id.get() < minID) {
 minID = id.get();

 if (minID < this.getValue().get()) {
 this.setValue(new LongWritable(minID));
 context.sendMessageToNeighbors(this, getValue());
 } else {
 this.voteToHalt();

 * Output Table Description:

 * | Field | Type | Comment |

 * | v | bigint | vertex id |
 * | minID | bigint | smallest id in the connected component |

 @Override
 public void cleanup(
 WorkerContext<LongWritable, LongWritable, NullWritable, LongWritab
le> context)
 throws IOException {
 context.write(getId(), getValue());

 * Input Table Description:

 * | Field | Type | Comment |

 * | v | bigint | vertex id |
 * | es | string | comma separated target vertex id of outgoing
edges |

 * Example:
 * For graph:
 * 1 ----- 2

 * 3 ----- 4
 * Input table:

MaxCompute User Guide / 8 Graph

Issue: 20180808 263

 * | v | es |

 * | 1 | 2,3 |
 * | 2 | 1,4 |
 * | 3 | 1,4 |
 * | 4 | 2,3 |

 public static class CCVertexReader extends
 GraphLoader<LongWritable, LongWritable, NullWritable, LongWritable>
 {
 @Override
 public void load(
 LongWritable recordNum,
 WritableRecord record,
 MutationContext<LongWritable, LongWritable, NullWritable,
LongWritable> context)
 throws IOException {
 CCVertex vertex = new CCVertex();
 vertex.setId((LongWritable) record.get(0));
 String[] edges = record.get(1).toString().split(",");
 for (int i = 0; i < edges.length; i++) {
 long destID = Long.parseLong(edges[i]);
 vertex.addEdge(new LongWritable(destID), NullWritable.get());

 context.addVertexRequest(vertex);

 public static void main(String[] args) throws IOException {
 if (args.length < 2) {
 System.out.println("Usage: <input> <output>");
 System.exit(-1);

 GraphJob job = new GraphJob();
 job.setGraphLoaderClass(CCVertexReader.class);
 job.setVertexClass(CCVertex.class);
 job.setCombinerClass(MinLongCombiner.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 long startTime = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - startTime) / 1000.0 + "
seconds");

8.6.7 Topology Sorting
In directed edge (u,v), all vertex sequences satisfying u < v are called topological sequences.

Topological sorting is an algorithm used to calculate the topological sequence of a directed graph.

Specifically, the algorithm:

1. Find a vertex that does not have any inbound edge from the graph and outputs the vertex.

2. Delete the vertex and all outbound edges from the graph.

3. Repeat the preceding steps until all vertices are output.

MaxCompute User Guide / 8 Graph

264 Issue: 20180808

Sample Code

The code for the topology ordering algorithm is as follows:

import java.io.IOException;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.graph.Aggregator;
import com.aliyun.odps.graph.Combiner;
import com.aliyun.odps.graph.ComputeContext;
Import com. aliyun. ODPS. graph. graphjob;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.WorkerContext;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.NullWritable;
import com.aliyun.odps.io.BooleanWritable;
import com.aliyun.odps.io.WritableRecord;
public class TopologySort {
 private final static Log LOG = LogFactory.getLog(TopologySort.class
);
 public static class TopologySortVertex extends
 Vertex<LongWritable, LongWritable, NullWritable, LongWritable> {
 @Override
 public void compute(
 ComputeContext<LongWritable, LongWritable, NullWritable,
LongWritable> context,
 Iterable<LongWritable> messages) throws IOException {
 // in superstep 0, each vertex sends message whose value is 1 to
 its
 // neighbors
 if (context.getSuperstep() == 0) {
 if (hasEdges()) {
 context.sendMessageToNeighbors(this, new LongWritable(1L));

 } else if (context.getSuperstep() >= 1) {
 // compute each vertex's indegree
 long indegree = getValue().get();
 for (LongWritable msg : messages) {
 indegree += msg.get();

 setValue(new LongWritable(indegree));
 if (indegree == 0) {
 voteToHalt();
 if (hasEdges()) {
 context.sendMessageToNeighbors(this, new LongWritable(-1L
));

 context.write(new LongWritable(context.getSuperstep()),
getId());
 LOG.info("vertex: " + getId());

 context.aggregate(new LongWritable(indegree));

 public static class TopologySortVertexReader extends
 GraphLoader<LongWritable, LongWritable, NullWritable, LongWritable>
 {

MaxCompute User Guide / 8 Graph

Issue: 20180808 265

 @Override
 public void load(
 LongWritable recordNum,
 WritableRecord record,
 MutationContext<LongWritable, LongWritable, NullWritable,
LongWritable> context)
 throws IOException {
 TopologySortVertex vertex = new TopologySortVertex();
 vertex.setId((LongWritable) record.get(0));
 vertex.setValue(new LongWritable(0));
 String[] edges = record.get(1).toString().split(",");
 for (int i = 0; i < edges.length; i++) {
 long edge = Long.parseLong(edges[i]);
 if (edge >= 0) {
 vertex.addEdge(new LongWritable(Long.parseLong(edges[i])),
 NullWritable.get());

 LOG.info(record.toString());
 context.addVertexRequest(vertex);

 public static class LongSumCombiner extends
 Combiner<LongWritable, LongWritable> {
 @Override
 public void combine(LongWritable vertexId, LongWritable combinedMe
ssage,
 LongWritable messageToCombine) throws IOException {
 combinedMessage.set(combinedMessage.get() + messageToCombine.get
());

 public static class TopologySortAggregator extends
 Aggregator<BooleanWritable> {
 @SuppressWarnings("rawtypes")
 @Override
 public BooleanWritable createInitialValue(WorkerContext context)
 throws IOException {
 return new BooleanWritable(true);

 @Override
 public void aggregate(BooleanWritable value, Object item)
 throws IOException {
 boolean hasCycle = value.get();
 boolean inDegreeNotZero = ((LongWritable) item).get() == 0 ?
false : true;
 value.set(hasCycle && inDegreeNotZero);

 @Override
 public void merge(BooleanWritable value, BooleanWritable partial)
 throws IOException {
 value.set(value.get() && partial.get());

 @SuppressWarnings("rawtypes")
 @Override
 public boolean terminate(WorkerContext context, BooleanWritable
value)
 throws IOException {
 if (context.getSuperstep() == 0) {
 // since the initial aggregator value is true, and in
superstep we don't
 // do aggregate

MaxCompute User Guide / 8 Graph

266 Issue: 20180808

 return false;

 return value.get();

 public static void main(String[] args) throws IOException {
 if (args.length ! = 2) {
 System.out.println("Usage : <inputTable> <outputTable>");
 System.exit(-1);

 // The input table is in the format of
 // 0 1，2
 // 1 3
 // 2 3
 // 3 -1
 // The first column is vertexid, and the second column is the
 destination vertexid of the vertex edge. If the value is –1, the
vertex does not have any outbound edge
 // The output table is in the format of
 // 0 0
 // 1 1
 // 1 2
 // 2 3
 // The first column is the supstep value, in which the topological
 sequence is hidden. The second column is vertexid
 // TopologySortAggregator is used to determine if the graph has
loops
 // If the input graph has a loop, the iteration ends when the
indegree of vertices in the active state is not 0
 // You can use records in the input and output tables to determine
 if the graph has loops
 GraphJob job = new GraphJob();
 job.setGraphLoaderClass(TopologySortVertexReader.class);
 job.setVertexClass(TopologySortVertex.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 job.setCombinerClass(LongSumCombiner.class);
 job.setAggregatorClass(TopologySortAggregator.class);
 long startTime = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - startTime) / 1000.0 + "
seconds");

8.6.8 Linear Regression
In statistics, linear regression is a statistical analysis method used to determine the dependency

between two or more variables. Different from the classification algorithm that processes discrete

prediction,

the regression algorithm can predict the continuous value type. The linear regression algorithm

defines the loss function as the sum of the least square errors of the sample set. It minimizes the

loss function to calculate the weight vector.

A common solution is gradient descent that:

MaxCompute User Guide / 8 Graph

Issue: 20180808 267

1. Initialize the weight vector to give descent speed rate and iterations (or iteration convergence

condition).

2. Calculate the least square error for each sample.

3. Get the sum of the least square error, update the weight based on the descent speed rate.

4. Repeat iterations until convergence.

Sample Code

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.graph.Aggregator;
import com.aliyun.odps.graph.ComputeContext;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.WorkerContext;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.io.DoubleWritable;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.NullWritable;
import com.aliyun.odps.io.Tuple;
import com.aliyun.odps.io.Writable;
import com.aliyun.odps.io.WritableRecord;

 * LineRegression input: y,x1,x2,x3,......

public class LinearRegression {
 public static class GradientWritable implements Writable {
 Tuple lastTheta;
 Tuple currentTheta;
 Tuple tmpGradient;
 LongWritable count;
 DoubleWritable lost;
 @Override
 public void readFields(DataInput in) throws IOException {
 lastTheta = new Tuple();
 lastTheta.readFields(in);
 currentTheta = new Tuple();
 currentTheta.readFields(in);
 tmpGradient = new Tuple();
 tmpGradient.readFields(in);
 count = new LongWritable();
 count.readFields(in);
 /* update 1: add a variable to store lost at every iteration */
 lost = new DoubleWritable();
 lost.readFields(in);

 @Override
 public void write(DataOutput out) throws IOException {
 lastTheta.write(out);
 currentTheta.write(out);
 tmpGradient.write(out);
 count.write(out);
 lost.write(out);

MaxCompute User Guide / 8 Graph

268 Issue: 20180808

 public static class LinearRegressionVertex extends
 Vertex<LongWritable, Tuple, NullWritable, NullWritable> {
 @Override
 public void compute(
 ComputeContext<LongWritable, Tuple, NullWritable, NullWritable>
context,
 Iterable<NullWritable> messages) throws IOException {
 context.aggregate(getValue());

 public static class LinearRegressionVertexReader extends
 GraphLoader<LongWritable, Tuple, NullWritable, NullWritable> {
 @Override
 public void load(LongWritable recordNum, WritableRecord record,
 MutationContext<LongWritable, Tuple, NullWritable, NullWritable>
context)
 throws IOException {
 LinearRegressionVertex vertex = new LinearRegressionVertex();
 vertex.setId(recordNum);
 vertex.setValue(new Tuple(record.getAll()));
 context.addVertexRequest(vertex);

 public static class LinearRegressionAggregator extends
 Aggregator<GradientWritable> {
 @SuppressWarnings("rawtypes")
 @Override
 public GradientWritable createInitialValue(WorkerContext context)
 throws IOException {
 if (context.getSuperstep() == 0) {
 /* set initial value, all 0 */
 GradientWritable grad = new GradientWritable();
 grad.lastTheta = new Tuple();
 grad.currentTheta = new Tuple();
 grad.tmpGradient = new Tuple();
 grad.count = new LongWritable(1);
 grad.lost = new DoubleWritable(0.0);
 int n = (int) Long.parseLong(context.getConfiguration()
 .get("Dimension"));
 for (int i = 0; i < n; i++) {
 grad.lastTheta.append(new DoubleWritable(0));
 grad.currentTheta.append(new DoubleWritable(0));
 grad.tmpGradient.append(new DoubleWritable(0));

 return grad;
 } else
 return (GradientWritable) context.getLastAggregatedValue(0);

 public static double vecMul(Tuple value, Tuple theta) {
 /* perform this partial computing: y(i)−hθ(x(i)) for each sample
 */
 /* value denote a piece of sample and value(0) is y */
 double sum = 0.0;
 for (int j = 1; j < value.size(); j++)
 sum += Double.parseDouble(value.get(j).toString())
 * Double.parseDouble(theta.get(j).toString());
 Double tmp = Double.parseDouble(theta.get(0).toString()) + sum
 - Double.parseDouble(value.get(0).toString());
 return tmp;

 @Override
 public void aggregate(GradientWritable gradient, Object value)

MaxCompute User Guide / 8 Graph

Issue: 20180808 269

 throws IOException {

 * perform on each vertex--each sample i：set theta(j) for each
sample i
 * for each dimension

 double tmpVar = vecMul((Tuple) value, gradient.currentTheta);

 * update 2:local worker aggregate(), perform like merge() below
. This
 * means the variable gradient denotes the previous aggregated
value

 gradient.tmpGradient.set(0, new DoubleWritable(
 ((DoubleWritable) gradient.tmpGradient.get(0)).get() +
tmpVar));
 gradient.lost.set(Math.pow(tmpVar, 2));

 * calculate (y(i)−hθ(x(i))) x(i)(j) for each sample i for each
 * dimension j

 for (int j = 1; j < gradient.tmpGradient.size(); j++)
 gradient.tmpGradient.set(j, new DoubleWritable(
 ((DoubleWritable) gradient.tmpGradient.get(j)).get() +
tmpVar
 * Double.parseDouble(((Tuple) value).get(j).toString
())));

 @Override
 public void merge(GradientWritable gradient, GradientWritable
partial)
 throws IOException {
 /* perform SumAll on each dimension for all samples.
 Tuple master = (Tuple) gradient.tmpGradient;
 Tuple part = (Tuple) partial.tmpGradient;
 for (int j = 0; j < gradient.tmpGradient.size(); j++) {
 DoubleWritable s = (DoubleWritable) master.get(j);
 s.set(s.get() + ((DoubleWritable) part.get(j)).get());

 gradient.lost.set(gradient.lost.get() + partial.lost.get());

 @SuppressWarnings("rawtypes")
 @Override
 public boolean terminate(WorkerContext context, GradientWritable
gradient)
 throws IOException {

 * 1. calculate new theta 2. judge the diff between last step
and this
 * step, if smaller than the threshold, stop iteration

 gradient.lost = new DoubleWritable(gradient.lost.get()
 / (2 * context.getTotalNumVertices()));

 * we can calculate lost in order to make sure the algorithm is
running on
 * the right direction (for debug)

 System.out.println(gradient.count + " lost:" + gradient.lost);
 Tuple tmpGradient = gradient.tmpGradient;
 System.out.println("tmpGra" + tmpGradient);
 Tuple lastTheta = gradient.lastTheta;

MaxCompute User Guide / 8 Graph

270 Issue: 20180808

 Tuple tmpCurrentTheta = new Tuple(gradient.currentTheta.size());
 System.out.println(gradient.count + " terminate_start_last:" +
lastTheta);
 double alpha = 0.07; // learning rate
 // alpha =
 // Double.parseDouble(context.getConfiguration().get("Alpha"));
 /* perform theta(j) = theta(j)-alpha*tmpGradient */
 long M = context.getTotalNumVertices();

 * update 3: add (/M) on the code. The original code forget this
 step

 for (int j = 0; j < lastTheta.size(); j++) {
 tmpCurrentTheta
 .set(
 J,
 new DoubleWritable(Double.parseDouble(lastTheta.get(j)
 .toString())
 - alpha
 / M
 * Double.parseDouble(tmpGradient.get(j).toString
())));

 System.out.println(gradient.count + " terminate_start_current:"
 + tmpCurrentTheta);
 // judge if convergence is happening.
 double diff = 0.00d;
 for (int j = 0; j < gradient.currentTheta.size(); j++)
 diff += Math.pow(((DoubleWritable) tmpCurrentTheta.get(j)).get
()
 - ((DoubleWritable) lastTheta.get(j)).get(), 2);
 if (/*
 * Math.sqrt(diff) < 0.00000000005d ||
 */Long.parseLong(context.getConfiguration().get("Max_Iter_N
um")) == gradient.count
 .get()) {
 context.write(gradient.currentTheta.toArray());
 return true;

 gradient.lastTheta = tmpCurrentTheta;
 gradient.currentTheta = tmpCurrentTheta;
 gradient.count.set(gradient.count.get() + 1);
 int n = (int) Long.parseLong(context.getConfiguration().get("
Dimension"));

 * update 4: Important!!! Remember this step. Graph won't reset
the
 * initial value for global variables at the beginning of each
iteration

 for (int i = 0; i < n; i++) {
 gradient.tmpGradient.set(i, new DoubleWritable(0));

 return false;

 public static void main(String[] args) throws IOException {
 GraphJob job = new GraphJob();
 job.setGraphLoaderClass(LinearRegressionVertexReader.class);
 job.setRuntimePartitioning(false);
 job.setNumWorkers(3);
 job.setVertexClass(LinearRegressionVertex.class);

MaxCompute User Guide / 8 Graph

Issue: 20180808 271

 job.setAggregatorClass(LinearRegressionAggregator.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 job.setMaxIteration(Integer.parseInt(args[2])); // Numbers of
Iteration
 job.setInt("Max_Iter_Num", Integer.parseInt(args[2]));
 job.setInt("Dimension", Integer.parseInt(args[3])); // Dimension
 job.setFloat("Alpha", Float.parseFloat(args[4])); // Learning rate
 long start = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - start) / 1000.0 + " seconds");

8.6.9 Triangle Count
This algorithm is used to calculate the number of triangles passing through each vertex.

The algorithm is implemented using the following steps:

1. Each vertex sends its ID to all outbound neighbors.

2. Store inbound and outbound neighbors and sends them to the outbound neighbors.

3. Calculate the number of endpoint intersections for each Edge, get the sum, and output the

result to the table.

4. Get the sum of the output result in the table, divide it by 3, and get the number of triangles.

Sample code

Code for the triangle count algorithm are as follows:

import java.io.IOException;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.graph.ComputeContext;
import com.aliyun.odps.graph.Edge;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.WorkerContext;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.NullWritable;
import com.aliyun.odps.io.Tuple;
import com.aliyun.odps.io.Writable;
import com.aliyun.odps.io.WritableRecord;

 * Compute the number of triangles passing through each vertex.

 * The algorithm can be computed in three supersteps:
 * I. Each vertex sends a message with its ID to all its outgoing
 * neighbors.
 * II. The incoming neighbors and outgoing neighbors are stored and
 * send to outgoing neighbors.
 * III. For each edge compute the intersection of the sets at
destination
 * vertex and sum them, then output to table.

MaxCompute User Guide / 8 Graph

272 Issue: 20180808

 * The triangle count is the sum of output table and divide by three
since
 * each triangle is counted three times.

public class TriangleCount {
 public static class TCVertex extends
 Vertex<LongWritable, Tuple, NullWritable, Tuple> {
 @Override
 public void setup(
 WorkerContext<LongWritable, Tuple, NullWritable, Tuple>
context)
 throws IOException {
 // collect the outgoing neighbors
 Tuple t = new Tuple();
 if (this.hasEdges()) {
 for (Edge<LongWritable, NullWritable> edge : this.getEdges())
 {
 t.append(edge.getDestVertexId());
 }

 this.setValue(t);

 @Override
 public void compute(
 ComputeContext<LongWritable, Tuple, NullWritable, Tuple>
context,
 Iterable<Tuple> msgs) throws IOException {
 if (context.getSuperstep() == 0L) {
 // sends a message with its ID to all its outgoing neighbors
 Tuple t = new Tuple();
 t.append(getId());
 context.sendMessageToNeighbors(this, t);
 } else if (context.getSuperstep() == 1L) {
 // store the incoming neighbors
 for (Tuple msg : msgs) {
 for (Writable item : msg.getAll()) {
 if (! this.getValue().getAll().contains((LongWritable)item
)) {
 this.getValue().append((LongWritable)item);

 // send both incoming and outgoing neighbors to all outgoing
neighbors
 context.sendMessageToNeighbors(this, getValue());
 } else if (context.getSuperstep() == 2L) {
 // count the sum of intersection at each edge
 long count = 0;
 for (Tuple msg : msgs) {
 for (Writable id : msg.getAll()) {
 if (getValue().getAll().contains(id)) {
 count ++;

 // output to table
 context.write(getId(), new LongWritable(count));
 this.voteToHalt();

MaxCompute User Guide / 8 Graph

Issue: 20180808 273

 public static class TCVertexReader extends
 GraphLoader<LongWritable, Tuple, NullWritable, Tuple> {
 @Override
 public void load(
 LongWritable recordNum,
 WritableRecord record,
 MutationContext<LongWritable, Tuple, NullWritable, Tuple>
context)
 throws IOException {
 TCVertex vertex = new TCVertex();
 vertex.setId((LongWritable) record.get(0));
 String[] edges = record.get(1).toString().split(",");
 for (int i = 0; i < edges.length; i++) {
 try {
 long destID = Long.parseLong(edges[i]);
 vertex.addEdge(new LongWritable(destID), NullWritable.get
());
 } catch(NumberFormatException nfe) {
 System.err.println("Ignore " + nfe);

 context.addVertexRequest(vertex);

 public static void main(String[] args) throws IOException {
 if (args.length < 2) {
 System.out.println("Usage: <input> <output>");
 System.exit(-1);

 GraphJob job = new GraphJob();
 job.setGraphLoaderClass(TCVertexReader.class);
 job.setVertexClass(TCVertex.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 long startTime = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - startTime) / 1000.0 + "
seconds");

8.6.10 Vertex Input
Sample code

import java.io.IOException;
import com.aliyun.odps.conf.Configuration;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.graph.ComputeContext;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.VertexResolver;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.VertexChanges;
import com.aliyun.odps.graph.Edge;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.WritableComparable;

MaxCompute User Guide / 8 Graph

274 Issue: 20180808

import com.aliyun.odps.io.WritableRecord;

 * The following example describes how to compile a graph job program
to load data of different types. It mainly describes how GraphLoader
 * and VertexResolver are cooperated to build the graph.

 * A MaxCompute Graph job uses MaxCompute tables as the input. Assume
that a job has two tables as the input, one storing vertices and the
other storing edges.
 * The format of the table storing vertex information is as follows:

 * | VertexID | VertexValue |

 * | id0| 9|

 * | id1| 7|

 * | id2| 8|

 * The format of the table storing edge information is as follows:

 * | VertexID | DestVertexID| EdgeValue|

 * | id0| id1| 1|

 * | id0| id2| 2|

 * | id2| id1| 3|

 * The preceding two tables show that id0 has two outbound edges
 pointing to id1 and id2 respectively. id2 has an outbound edge
pointing to id1, and id1 has no outbound edges.

 * For data of this type, in GraphLoader::load(LongWritable, Record,
MutationContext),
 * MutationContext#addVertexRequest(Vertex) can be used to add
vertices to the graph, while
 * link MutationContext#addEdgeRequest(WritableComparable, Edge) can
be used to add edges to the graph. In
 * link VertexResolver#resolve(WritableComparable, Vertex, VertexChan
ges, boolean)
 * vertices and edges added in the load() method are combined to a
 vertex object, which is used as the return value and added to the
graph for calculation.

public class VertexInputFormat {
 private final static String EDGE_TABLE = "edge.table";

 * Resolve a record to vertices and edges. Each record indicates a
vertex or an edge according to its source.

 * Similar to com.aliyun.odps.mapreduce.Mapper#map,
 * enter a record to generate key-value pairs. The keys are vertex
IDs,
 * and the values are vertices or edges written based on the context
. These key-value pairs are summarized based on vertex IDs using
LoadingVertexResolver.

MaxCompute User Guide / 8 Graph

Issue: 20180808 275

 * Note: Vertices or edges added here are requests sent based on the
 record content, and are not used in calculation. Only
 * vertices or edges added using VertexResolver participate in
calculation.

 public static class VertexInputLoader extends
 GraphLoader<LongWritable, LongWritable, LongWritable, LongWritable>
 {
 private boolean isEdgeData;

 * Configure VertexInputLoader.

 * @param conf
 * Indicates the configuration parameters of a job, which are
configured in the main GraphJob or set on the console.
 * @param workerId
 * Indicates the serial number of the operating Worker, which
starts from 0 and can be used to build a unique vertex ID.
 * @param inputTableInfo
 * Indicates information about the input table load to the current
 Worker, which can be used to determine the type of currently input
data, that is, the record format.

 @Override
 public void setup(Configuration conf, int workerId, TableInfo
inputTableInfo) {
 isEdgeData = conf.get(EDGE_TABLE).equals(inputTableInfo.
getTableName());

 * Based on the record content, resolve corresponding edges and
send a request to add them to the graph.

 * @param recordNum
 * Indicates the record serial number, which starts from 1 and is
separately counted in each Worker.
 * @param record
 * Indicates the record in the input table. It contains three
columns, indicating the first vertex, last vertex, and edge weight.
 * @param context
 * Indicates the context, requesting to add resolved edges to the
graph.

 @Override
 public void load(
 LongWritable recordNum,
 WritableRecord record,
 MutationContext<LongWritable, LongWritable, LongWritable,
LongWritable> context)
 throws IOException {
 if (isEdgeData) {

 * Data is from the table that stores edge information.

 * 1. The first column indicates the first vertex ID.

 LongWritable sourceVertexID = (LongWritable) record.get(0);

 * 2. The second column indicates the last vertex ID.

 LongWritable destinationVertexID = (LongWritable) record.get(1
);

MaxCompute User Guide / 8 Graph

276 Issue: 20180808

 * 3. The third column indicates the edge weight.

 LongWritable edgeValue = (LongWritable) record.get(2);

 * 4. Create an edge that consists of the last vertex ID and
edge weight.

 Edge<LongWritable, LongWritable> edge = new Edge<LongWritable
, LongWritable>(
 destinationVertexID, edgeValue);

 * 5. Send a request to add an edge to the first vertex.

 context.addEdgeRequest(sourceVertexID, edge);

 * 6. If each record indicates a bidirectional edge, repeat
steps 4 and 5. Edge<LongWritable, LongWritable> edge2 = new
 * Edge<LongWritable, LongWritable>(sourceVertexID, edgeValue
);
 * context.addEdgeRequest(destinationVertexID, edge2);

 } else {

 * Data comes from the table that stores vertex information.

 * 1. The first column indicates the vertex ID.

 LongWritable vertexID = (LongWritable) record.get(0);

 * 2. The second column indicates the vertex value.

 LongWritable vertexValue = (LongWritable) record.get(1);

 * 3. Create a vertex that consists of the vertex ID and
vertex value.

 MyVertex vertex = new MyVertex();

 * 4. Initialize the vertex.

 vertex.setId(vertexID);
 vertex.setValue(vertexValue);

 * 5. Send a request to add a vertex.

 context.addVertexRequest(vertex);

 * Summarize key-value pairs generated using GraphLoader::load(
LongWritable, Record, MutationContext), which is similar to
 * reduce in com.aliyun.odps.mapreduce.Reducer. For the unique
vertex ID, all actions such as
 * adding/deleting vertices or edges on the ID is stored in
VertexChanges.

 * Note: Not only conflicting vertices or edges added by using the
load() method are called. (A conflict occurs when multiple same vertex
 objects or duplicate edges are added.)

MaxCompute User Guide / 8 Graph

Issue: 20180808 277

 * All IDs requested to be generated using the load() method are
called.

 public static class LoadingResolver extends
 VertexResolver<LongWritable, LongWritable, LongWritable, LongWritab
le> {

 * Process a request about adding/deleting vertices or edges for
an ID.

 * VertexChanges has four APIs, which correspond to the four APIs
of MutationContext:
 * VertexChanges::getAddedVertexList() corresponds to
 * MutationContext::addVertexRequest(Vertex).
 * In the load() method, if vertex objects with the same ID are
requested to be added, such vertex objects are collected to the return
 list.
 * VertexChanges::getAddedEdgeList() corresponds to
 * MutationContext::addEdgeRequest(WritableComparable, Edge)
 * If edge objects with the same first vertex ID are requested to
be added, such edge objects are collected to the return list.
 * VertexChanges::getRemovedVertexCount() corresponds to
 * MutationContext::removeVertexRequest(WritableComparable)
 * If vertices with the same ID are requested to be deleted, the
number of total deletion requests is returned.
 * VertexChanges#getRemovedEdgeList() corresponds to
 * MutationContext#removeEdgeRequest(WritableComparable,
WritableComparable)
 * If edge objects with the same first vertex ID are requested to
be deleted, such edge objects are collected to the return list.

 * By processing ID changes, you can state whether the ID
participates in calculation using the return value. If the returned
vertex is not null,
 * the ID participates in subsequent calculation. If the returned
vertex is null, the ID does not participate in subsequent calculation.

 * @param vertexId
 * Indicates the ID of the vertex requested to be added or first
vertex ID of the edge requested to be added.
 * @param vertex
 * Indicates an existing vertex object. Its value is always null
in the data loading phase.
 * @param vertexChanges
 * Indicates the set of vertices or edges requested to be added/
deleted on the ID.
 * @param hasMessages
 * Indicates whether the ID has any input message. Its value is
always false in the data loading phase.

 @Override
 public Vertex<LongWritable, LongWritable, LongWritable, LongWritab
le> resolve(
 LongWritable vertexId,
 Vertex<LongWritable, LongWritable, LongWritable, LongWritable
> vertex,
 VertexChanges<LongWritable, LongWritable, LongWritable,
LongWritable> vertexChanges,
 boolean hasMessages) throws IOException {

 * 1. Obtain the vertex object for calculation.

MaxCompute User Guide / 8 Graph

278 Issue: 20180808

 MyVertex computeVertex = null;
 if (vertexChanges.getAddedVertexList() == null
 || vertexChanges.getAddedVertexList().isEmpty()) {
 computeVertex = new MyVertex();
 computeVertex.setId(vertexId);
 } else {

 * Assume that each record indicates a unique vertex in the
table storing vertex information.

 computeVertex = (MyVertex) vertexChanges.getAddedVertexList().
get(0);

 * 2. Add the edge requested to be added to the vertex to the
vertex object. If data is duplicated, perform deduplication based on
the algorithm needs.

 if (vertexChanges.getAddedEdgeList() ! = null) {
 for (Edge<LongWritable, LongWritable> edge : vertexChanges
 .getAddedEdgeList()) {
 computeVertex.addEdge(edge.getDestVertexId(), edge.getValue
());

 * 3. Return the vertex object and add it to the final graph for
 calculation.

 return computeVertex;

 * Determine actions of the vertex that participates in calculation.

 public static class MyVertex extends
 Vertex<LongWritable, LongWritable, LongWritable, LongWritable> {

 * Write the vertex edge to the result table according to the
format of the input table. Ensure that the format and data of the
input and output tables are the same.

 * @param context
 * Indicates the context during running.
 * @param messages
 * Indicates the input message.

 @Override
 public void compute(
 ComputeContext<LongWritable, LongWritable, LongWritable,
LongWritable> context,
 Iterable<LongWritable> messages) throws IOException {

 * Write the vertex ID and value to the result table storing
vertices.

 context.write("vertex", getId(), getValue());

 * Write the vertex edge to the result table storing edges.

 if (hasEdges()) {

MaxCompute User Guide / 8 Graph

Issue: 20180808 279

 for (Edge<LongWritable, LongWritable> edge : getEdges()) {
 context.write("edge", getId(), edge.getDestVertexId(),
 edge.getValue());

 * Perform one round of iteration.

 voteToHalt();

 * @param args
 * @throws IOException

 public static void main(String[] args) throws IOException {
 if (args.length < 4) {
 throw new IOException(
 "Usage: VertexInputFormat <vertex input> <edge input> <vertex
output> <edge output>");

 * GraphJob is used to configure Graph jobs.

 GraphJob job = new GraphJob();

 * 1. Specify input graph data and the table storing edge data.

 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addInput(TableInfo.builder().tableName(args[1]).build());
 job.set(EDGE_TABLE, args[1]);

 * 2. Specify the data loading mode, resolve the record as edges.
Similar to the map, the generated key is the vertex ID, and the value
is the edge.

 job.setGraphLoaderClass(VertexInputLoader.class);

 * 3. Specify the data loading phase, and generate the vertex for
calculation. Similar to reduce, edges generated by map are combined
to a vertex.

 job.setLoadingVertexResolverClass(LoadingResolver.class);

 * 4. Specify actions of the vertex that participates in
calculation. The vertex.compute() method is used for each round of
iteration.

 job.setVertexClass(MyVertex.class);

 * 5. Specify the output table of the Graph job, and write the
calculation result to the result table.

 job.addOutput(TableInfo.builder().tableName(args[2]).label("vertex
").build());
 job.addOutput(TableInfo.builder().tableName(args[3]).label("edge
").build());

 * 6. Submit the job for execution.

 job.run();

MaxCompute User Guide / 8 Graph

280 Issue: 20180808

8.6.11 Edge Input
Sample Code

import java.io.IOException;
import com.aliyun.odps.conf.Configuration;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.graph.ComputeContext;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.VertexResolver;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.VertexChanges;
import com.aliyun.odps.graph.Edge;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.WritableComparable;
import com.aliyun.odps.io.WritableRecord;

 * The following example describes how to compile a graph job program
to load data of different types. It mainly describes how GraphLoader
 * and VertexResolver are cooperated to build the graph.

 * A MaxCompute Graph job uses MaxCompute tables as the input. Assume
that a job has two tables as the input, one storing vertices and the
other storing edges.
 * The format of the table storing vertex information is as follows:

 * | VertexID | VertexValue |

 * | id0| 9|

 * | id1| 7|

 * | id2| 8|

 * The format of the table storing edge information is as follows:

 * | VertexID | DestVertexID| EdgeValue|

 * | id0| id1| 1|

 * | id0| id2| 2|

 * | id2| id1| 3|

 * The preceding two tables show that id0 has two outbound edges
 pointing to id1 and id2 respectively. id2 has an outbound edge
pointing to id1, and id1 has no outbound edges.

 * For data of this type, in GraphLoader::load(LongWritable, Record,
MutationContext),
 * MutationContext#addVertexRequest(Vertex) can be used to add
vertices to the graph, while
 * link MutationContext#addEdgeRequest(WritableComparable, Edge) can
be used to add edges to the graph. In

MaxCompute User Guide / 8 Graph

Issue: 20180808 281

 * link VertexResolver#resolve(WritableComparable, Vertex, VertexChan
ges, boolean)
 * vertices and edges added in the load() method are combined to a
 vertex object, which is used as the return value and added to the
graph for calculation.

public class VertexInputFormat {
 private final static String EDGE_TABLE = "edge.table";

 * Resolve a record to vertices and edges. Each record indicates a
vertex or an edge according to its source.
 * Similar to com.aliyun.odps.mapreduce.Mapper#map,
 * enter a record to generate key-value pairs. The keys are vertex
IDs,
 * and the values are vertices or edges written based on the context
. These key-value pairs are summarized based on vertex IDs using
LoadingVertexResolver.

 * Note: Vertices or edges added here are requests sent based on the
 record content, and are not used for calculation. Only
 * vertices or edges added using VertexResolver participate in
calculation.

 public static class VertexInputLoader extends
 GraphLoader<LongWritable, LongWritable, LongWritable, LongWritable>
 {
 private boolean isEdgeData;

 * Configure VertexInputLoader.

 * @param conf
 * Indicates the configuration parameters of a job, which are
configured in the main GraphJob or set on the console.
 * @param workerId
 * Indicates the serial number of the operating Worker, which
starts from 0 and can be used to build a unique vertex ID.
 * @param inputTableInfo
 * Indicates information about the input table loaded to the
current Worker, which can be used to determine the type of currently
input data, that is, the record format.

 @ Override
 public void setup(Configuration conf, int workerId, TableInfo
inputTableInfo) {
 isEdgeData = conf.get(EDGE_TABLE).equals(inputTableInfo.
getTableName());

 * Based on the record content, resolve corresponding edges and
send a request to add them to the graph.

 * @param recordNum
 * Indicates the record serial number, which starts from 1 and is
separately counted in each Worker.
 * @param record
 * Indicates the record in the input table. It contains three
columns, indicating the first vertex, last vertex, and edge weight.
 * @param context
 * Indicates the context, requesting to add resolved edges to the
graph.

MaxCompute User Guide / 8 Graph

282 Issue: 20180808

 @Override
 public void load(
 LongWritable recordNum,
 WritableRecord record,
 MutationContext<LongWritable, LongWritable, LongWritable,
LongWritable> context)
 throws IOException {
 if (isEdgeData) {

 * Data comes from the table that stores edge information.

 * 1. The first column indicates the first vertex ID.

 LongWritable sourceVertexID = (LongWritable) record.get(0);

 * 2. The second column indicates the last vertex ID.

 LongWritable destinationVertexID = (LongWritable) record.get(1
);

 * 3. The third column indicates the edge weight.

 LongWritable edgeValue = (LongWritable) record.get(2);

 * 4. Create an edge that consists of the last vertex ID and
edge weight.

 Edge<LongWritable, LongWritable> edge = new Edge<LongWritable
, LongWritable>(
 destinationVertexID, edgeValue);

 * 5. Send a request to add an edge to the first vertex.

 context.addEdgeRequest(sourceVertexID, edge);

 * 6. If each record indicates a bidirectional edge, repeat
steps 4 and 5. Edge<LongWritable, LongWritable> edge2 = new
 * Edge<LongWritable, LongWritable>(sourceVertexID, edgeValue
);
 * context.addEdgeRequest(destinationVertexID, edge2);

 } else {

 * Data comes from the table that stores vertex information.

 * 1. The first column indicates the vertex ID.

 LongWritable vertexID = (LongWritable) record.get(0);

 * 2. The second column indicates the vertex value.

 LongWritable vertexValue = (LongWritable) record.get(1);

 * 3. Create a vertex that consists of the vertex ID and
vertex value.

 MyVertex vertex = new MyVertex();

 * 4. Initialize the vertex.

 vertex.setId(vertexID);
 vertex.setValue(vertexValue);

MaxCompute User Guide / 8 Graph

Issue: 20180808 283

 * 5. Send a request to add a vertex.

 context.addVertexRequest(vertex);

 * Summarize key-value pairs generated using GraphLoader::load(
LongWritable, Record, MutationContext), which is similar to
 * reduce in com.aliyun.odps.mapreduce.Reducer. For the unique
vertex ID, all actions such as
 * adding/deleting vertices or edges on the ID is stored in
VertexChanges.

 * Note: Not only conflicting vertices or edges added by using the
load() method are called. (A conflict occurs when multiple same vertex
 objects or duplicate edges are added.)
 * All IDs requested to be generated using the load() method are
called.

 public static class LoadingResolver extends
 VertexResolver<LongWritable, LongWritable, LongWritable, LongWritab
le> {

 * Process a request about adding/deleting vertices or edges for
an ID.

 * VertexChanges has four APIs, which correspond to the four APIs
of MutationContext:
 * VertexChanges::getAddedVertexList() corresponds to
 * MutationContext::addVertexRequest(Vertex).
 * In the load() method, if vertex objects with the same ID are
requested to be added, such vertex objects are collected to the return
 list.
 * VertexChanges::getAddedEdgeList() corresponds to
 * MutationContext::addEdgeRequest(WritableComparable, Edge)
 * If edge objects with the same first vertex ID are requested to
be added, such edge objects are collected to the return list.
 * VertexChanges::getRemovedVertexCount() corresponds to
 * MutationContext::removeVertexRequest(WritableComparable)
 * If vertices with the same ID are requested to be deleted, the
number of total deletion requests is returned.
 * VertexChanges#getRemovedEdgeList() corresponds to
 * MutationContext#removeEdgeRequest(WritableComparable,
WritableComparable)
 * If edge objects with the same first vertex ID are requested to
be deleted, such edge objects are collected to the return list.

 * By processing ID changes, you can state whether the ID
participates in calculation using the return value. If the returned
vertex is not null,
 * the ID participates in subsequent calculation. If the returned
vertex is null, the ID does not participate in subsequent calculation.

 * @param vertexId
 * Indicates the ID of the vertex requested to be added or first
vertex ID of the edge requested to be added.
 * @param vertex
 * Indicates an existing vertex object. Its value is always null
in the data loading phase.
 * @param vertexChanges

MaxCompute User Guide / 8 Graph

284 Issue: 20180808

 * Indicates the set of vertices or edges requested to be added/
deleted on the ID.
 * @param hasMessages
 * Indicates whether the ID has any input message. Its value is
always false in the data loading phase.

 @Override
 public Vertex<LongWritable, LongWritable, LongWritable, LongWritab
le> resolve(
 LongWritable vertexId,
 Vertex<LongWritable, LongWritable, LongWritable, LongWritable
> vertex,
 VertexChanges<LongWritable, LongWritable, LongWritable,
LongWritable> vertexChanges,
 boolean hasMessages) throws IOException {

 * 1. Obtain the vertex object to participate in calculation.

 MyVertex computeVertex = null;
 if (vertexChanges.getAddedVertexList() == null
 || vertexChanges.getAddedVertexList().isEmpty()) {
 computeVertex = new MyVertex();
 computeVertex.setId(vertexId);
 } else {

 * Assume that each record indicates a unique vertex in the
table storing vertex information.

 computeVertex = (MyVertex) vertexChanges.getAddedVertexList().
get(0);

 * 2. Add the edge requested to be added to the vertex to the
vertex object. If data may be duplicate, perform deduplication based
on the algorithm needs.

 if (vertexChanges.getAddedEdgeList() ! = null) {
 for (Edge<LongWritable, LongWritable> edge : vertexChanges
 .getAddedEdgeList()) {
 computeVertex.addEdge(edge.getDestVertexId(), edge.getValue
());

 * 3. Return the vertex object and add it to the final graph for
 calculation.

 return computeVertex;

 * Determine actions of the vertex that participates in calculation.

 public static class MyVertex extends
 Vertex<LongWritable, LongWritable, LongWritable, LongWritable> {

 * Write the vertex edge to the result table according to the
format of the input table. Ensure that the format and data of the
input and output tables are the same.

 * @param context

MaxCompute User Guide / 8 Graph

Issue: 20180808 285

 * Indicates the context during running.
 * @param messages
 * Indicates the input message.

 @Override
 public void compute(
 ComputeContext<LongWritable, LongWritable, LongWritable,
LongWritable> context,
 Iterable<LongWritable> messages) throws IOException {

 * Write the vertex ID and value to the result table storing
vertices.

 context.write("vertex", getId(), getValue());

 * Write the vertex edge to the result table storing edges.

 if (hasEdges()) {
 for (Edge<LongWritable, LongWritable> edge : getEdges()) {
 context.write("edge", getId(), edge.getDestVertexId(),
 edge.getValue());

 * Perform one round of iteration.

 voteToHalt();

 * @param args
 * @throws IOException

 public static void main(String[] args) throws IOException {
 If (ARGs. Length <4){
 throw new IOException(
 "Usage: VertexInputFormat <vertex input> <edge input> <vertex
output> <edge output>");

 * GraphJob is used to configure Graph jobs.

 GraphJob job = new GraphJob();

 * 1. Specify input graph data and the table storing edge data.

 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addInput(TableInfo.builder().tableName(args[1]).build());
 job.set(EDGE_TABLE, args[1]);

 * 2. Specify the data loading mode, resolve the record as edges.
Similar to the map, the generated key is the vertex ID, and the value
is the edge.

 job.setGraphLoaderClass(VertexInputLoader.class);

 * 3. Specify the data loading phase, and generate the vertex that
 participates in calculation. Similar to reduce, edges generated by
map are combined to a vertex.

 job.setLoadingVertexResolverClass(LoadingResolver.class);

MaxCompute User Guide / 8 Graph

286 Issue: 20180808

 * 4. Specify actions of the vertex that participates in
calculation. The vertex.compute() method is used for each round of
iteration.

 job.setVertexClass(MyVertex.class);

 * 5. Specify the output table of the Graph job, and write the
calculation result to the result table.

 job.addOutput(TableInfo.builder().tableName(args[2]).label("vertex
").build());
 job.addOutput(TableInfo.builder().tableName(args[3]).label("edge
").build());

 * 6. Submit the job for execution.

 job.run();

8.7 Introductions of Aggregator Mechanism
This document describes the implementation and related APIs of Aggregator and uses

KmeansClustering as an example to illustrate the usage of Aggregator.

In MaxCompute Graph, Aggregator helps collect and process global information. In MaxCompute

Graph, Aggregator is used to summarize and process global information.

Aggregator Implementation

The logic of Aggregator is divided into two parts.

• One part is run on all Workers in distributed mode,

• and the other part is only run on the Worker where AggregatorOwner is located in single vertex

 mode.

Operations run on all Workers include creating an initial value and partial aggregation.The partial

aggregation result is sent to the Worker where AggregatorOwner is located. The Worker where

AggregatorOwner is located aggregates partial aggregation objects sent by common Workers

to obtain a global aggregation result, and determines whether the iteration ends. The global

aggregation result is sent to all Workers over the next round of supersteps for the next iteration,

as shown in the following figure.

MaxCompute User Guide / 8 Graph

Issue: 20180808 287

Aggregator APIs

Aggregator provides five APIs for user implementation. The following section describes the call

time and application of the five APIs.

• createStartupValue(context)

This API is run once on all Workers. It is called before all supersteps start, and is generally

used to initialize AggregatorValue. AggregatorValue. In the first superstep iteration (superstep

 equals 0), the AggregatorValue object initialized by the API can be obtained by the call of

WorkerContext.getLastAggregatedValue() or ComputeContext.getLastAggregatedValue().

• createInitialValue(context)

This API is called once on all Workers when each superstep starts.It is used to initialize

AggregatorValue for the current iteration. Generally, the result of the previous iteration is

obtained through WorkerContext.getLastAggregatedValue(), and partial initialization is run.

• aggregate(value, item)

This API is run on all Workers. It is triggered by an explicit call of ComputeContext#aggregate

(item), while the preceding two APIs are automatically called by the framework. This API is

used to run partial aggregation. The first parameter value indicates the result that the Worker

has aggregated in the current superstep. (The initial value is the object returned by createInit

ialValue). The second parameter is transmitted when the user code calls ComputeContext#

MaxCompute User Guide / 8 Graph

288 Issue: 20180808

aggregate(item). In this API, item is usually used to update value for aggregation. After all the

aggregate operations are run, the obtained value is the partial aggregation result of the Worker

. Then, the result is sent by the framework to the Worker where AggregatorOwner is located.

• merge(value, partial)

This API is run by the Worker where AggregatorOwner is located. It is used to merge partial

aggregation results of Workers to obtain the global aggregation object. Similar to aggregate,

value indicates aggregated results, while partial indicates objects to be aggregated. Partial is

used to update value.

For example assume that three Workers w0, w1, and w2 exist with the partial aggregatio

n results of p0, p1, and p2. If p1, p0, and p2 in sequence are sent to the Worker where

AggregatorOwner is located in, the merge sequence is as follows:

1. merge(p1, p0) is run first, and p1 and p0 are aggregated as p1’.

2. merge(p1’, p2) is run, and p1’ and p2 are aggregated as p1’’, which is the global aggregatio

n result in this superstep.

The preceding example shows that execution of the merge() method is not required when only

one Worker exists. That is, merge() is not called.

• terminate(context, value)

After the Worker where AggregatorOwner is located runs merge(), the framework calls

terminate(context, value) to perform the final processing. The second parameter value

indicates the global aggregation result obtained by merge(). The global aggregation can be

 modified further in this method. After terminate() is run, the framework distributes global

aggregation objects to all Workers for the next superstep. A special feature of terminate() is

 that if true is returned, iteration of the entire job ends. Otherwise, iteration is continued. In

machine learning scenarios, it is usually determined that a job ends when true is returned after

convergence.

KmeansClustering example

The following section uses typical KmeansClustering as an example to describe how to use

Aggregator. The following section uses KmeansClustering as an example to describe how to use

Aggregator.

Note:

MaxCompute User Guide / 8 Graph

Issue: 20180808 289

The complete code is provided in the attachment. Here, the code is resolved in the following

sequence.

• GraphLoader Section

GraphLoader The GraphLoader part is used to load an input table and convert it to a vertex or

edge of a graph. Each row of data in the input table is a sample, a sample constructs a vertex,

and VertexValue is used to store samples.

First, a writable class KmeansValue is defined as the VertexValue type:

public static class KmeansValue implements Writable {
 DenseVector sample;
 public KmeansValue() {

 public KmeansValue(DenseVector v) {
 this.sample = v;

 @Override
 public void write(DataOutput out) throws IOException {
 wirteForDenseVector(out, sample);

 @Override
 public void readFields(DataInput in) throws IOException {
 sample = readFieldsForDenseVector(in);

KmeansValue A DenseVector object is encapsulated in KmeansValue to store a

sample. The DenseVector type is from matrix-toolkits-java. wirteForDenseVector() and

readFieldsForDenseVector() are used for serialization and deserialization. For more

information, see the complete code in the attachment.

The custom KmeansReader code is as follows:

public static class KmeansReader extends
 GraphLoader<LongWritable, KmeansValu
e, NullWritable, NullWritable> {
 @Override
 public void load(
 LongWritable recordNum,
 WritableRecord record,
 MutationContext<LongWritable, KmeansValue, NullWritable,
NullWritable> context)
 throws IOException {
 KmeansVertex v = new KmeansVertex();
 v.setId(recordNum);
 int n = record.size();
 DenseVector dv = new DenseVector(n);
 for (int i = 0; i < n; i++) {
 dv.set(i, ((DoubleWritable)record.get(i)).get());

 v.setValue(new KmeansValue(dv));
 context.addVertexRequest(v);

https://github.com/fommil/matrix-toolkits-java/

MaxCompute User Guide / 8 Graph

290 Issue: 20180808

In KmeansReader, a vertex is created when each row of data (a record) is read. recordNum

is used as the vertex ID, and the record content is converted to the DenseVector object and

encapsulated in VertexValue.

• Vertex

The custom KmeansVertex code is as follows. Regarding its logic, Partial aggregation is

run for samples maintained in each iteration. For more information about its logic, see

implementation of Aggregator in the following section.

public static class KmeansVertex extends
 Vertex<LongWritable, KmeansValue,
NullWritable, NullWritable> {
 @Override
 public void compute(
 ComputeContext<LongWritable, KmeansValue, NullWritable, NullWritab
le> context,
 Iterable<NullWritable> messages) throws IOException {
 context.aggregate(getValue());

• Aggregator

The main logic of entire Kmeans is centralized in Aggregator. Custom KmeansAggrValue is

used to maintain the content to be aggregated and distributed.

public static class KmeansAggrValue implements Writable {
 DenseMatrix centroids;
 DenseMatrix sums; // used to recalculate new centroids
 DenseVector counts; // used to recalculate new centroids
 @Override
 public void write(DataOutput out) throws IOException {
 wirteForDenseDenseMatrix(out, centroids);
 wirteForDenseDenseMatrix(out, sums);
 wirteForDenseVector(out, counts);

 @Override
 public void readFields(DataInput in) throws IOException {
 centroids = readFieldsForDenseMatrix(in);
 sums = readFieldsForDenseMatrix(in);
 counts = readFieldsForDenseVector(in);

Three objects are maintained in KmeansAggrValue. centroids indicates the existing K centers

. If the sample is m-dimensional, centroids is a matrix of K x m. sums is a matrix of the same

 size as centroids, and each element records the sum of a specific dimension of the sample

 closest to a specific center. For example, sums(i,j) indicates the sum of dimension j of the

sample closest to center i.

MaxCompute User Guide / 8 Graph

Issue: 20180808 291

counts is a K-dimensional vector, recording the number of samples closest to each center.

 sums and counts are used together to calculate a new center, which is a main content of

aggregation.

The next is KmeansAggregator used for custom Aggregator implementation. The following

describes implementation in order of the preceding APIs.

1. Run createStartupValue().

public static class KmeansAggregator extends Aggregator<KmeansAggr
Value> {
public KmeansAggrValue createStartupValue(WorkerContext context)
throws IOException {
KmeansAggrValue av = new KmeansAggrValue();
byte[] centers = context.readCacheFile("centers");
String lines[] = new String(centers).split("\n");
int rows = lines.length;
int cols = lines[0].split(",").length; // assumption rows >= 1
av.centroids = new DenseMatrix(rows, cols);
av.sums = new DenseMatrix(rows, cols);
av.sums.zero();
av.counts = new DenseVector(rows);
av.counts.zero();
for (int i = 0; i < lines.length; i++) {
 String[] ss = lines[i].split(",");
 for (int j = 0; j < ss.length; j++) {
 av.centroids.set(i, j, Double.valueOf(ss[j]));

return av;

In the preceding method, a KmeansAggrValue object is initialized, the initial center is read

 from the resource file centers, and a value is granted to centroids. The initial values of

sums and counts are 0.

2. Run createInitialValue().

@Override
public void aggregate(KmeansAggrValue value, Object item)
 throws IOException {
DenseVector sample = ((KmeansValue)item).sample;
// find the nearest centroid
int min = findNearestCentroid(value.centroids, sample);
// update sum and count
for (int i = 0; i < sample.size(); i ++) {
 value.sums.add(min, i, sample.get(i));

value.counts.add(min, 1.0d);

In the createInitialValue() method, findNearestCentroid() is called to find the index of

the center that has the shortest Euclidean distance with the sample item. Then, each

MaxCompute User Guide / 8 Graph

292 Issue: 20180808

dimension is added to sums, and the value of counts is plus 1.(For more information about

how to implement findNearestCentroid(), see the attachment.)

The preceding three functions are run on all Workers to implement partial aggregation.

The following describes global aggregation-related operations run on the Worker where

AggregatorOwner is located.

1. Run merge:

@Override
public void merge(KmeansAggrValue value, KmeansAggrValue partial)
 throws IOException {
value.sums.add(partial.sums);
value.counts.add(partial.counts);

The implementation logic of merge is that values of sums and counts aggregated by each

Worker are added together.

2. Run terminate():

@Override
public boolean terminate(WorkerContext context, KmeansAggrValue
value)
 throws IOException {
 // Calculate the new means to be the centroids (original sums)
 DenseMatrix newCentriods = calculateNewCentroids(value.sums, value.
counts, value.centroids);
 // print old centroids and new centroids for debugging
 System.out.println("\nsuperstep: " + context.getSuperstep() +
 "\nold centriod:\n" + value.centroids + " new centriod:\n" +
newCentriods);
 boolean converged = isConverged(newCentriods, value.centroids, 0.
05d);
 System.out.println("superstep: " + context.getSuperstep() + "/"
 + (context.getMaxIteration() - 1) + " converged: " + converged
);
 if (converged || context.getSuperstep() == context.getMaxIteration
() - 1) {
 // converged or reach max iteration, output centriods
 for (int i = 0; i < newCentriods.numRows(); i++) {
 Writable[] centriod = new Writable[newCentriods.numColumns()];
 for (int j = 0; j < newCentriods.numColumns(); j++) {
 centriod[j] = new DoubleWritable(newCentriods.get(i, j));

 context.write(centriod);

 // true means to terminate iteration
 return true;

 // update centriods
 value.centroids.set(newCentriods);
 // false means to continue iteration

MaxCompute User Guide / 8 Graph

Issue: 20180808 293

 return false;

In terminate(), calculateNewCentroids() is called based on sums and counts to calculate

the average value and obtain the new center. Then, isConverged() is called based on the

Euclidean distance between the new and old centers to determine whether the center has

been converged. If the number of convergences or iterations reaches the upper threshold, the

new center is output, and true is returned to end the iteration. Otherwise, the center is updated

, and false is returned to continue iteration. For more information about how to implement

calculateNewCentroids() and isConverged(), see the attachment.

• main() method

The main() method is used to build GraphJob, perform related settings, and submit a job. The

code is as follows:

public static void main(String[] args) throws IOException {
 if (args.length < 2)
 printUsage();
 GraphJob job = new GraphJob();
 job.setGraphLoaderClass(KmeansReader.class);
 job.setRuntimePartitioning(false);
 job.setVertexClass(KmeansVertex.class);
 job.setAggregatorClass(KmeansAggregator.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 // default max iteration is 30
 job.setMaxIteration(30);
 if (args.length >= 3)
 job.setMaxIteration(Integer.parseInt(args[2]));
 long start = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - start) / 1000.0 + " seconds");

Note:

If job.setRuntimePartitioning(false) is set to false, data loaded by Workers is not partitioned

based on Partitioner. Data is maintained by the Worker that loads the data.The data loaded is

no longer repartitioning Based on the partition, that is, who loads the data and who maintains

it.

Conclusion

This document introduces the aggregator mechanism in the MaxCompute graph, the API

meaning, and the kmeans Clustering example. In general, Aggregator can be implemented as

follows:

1. Each Worker runs createStartupValue during startup to create AggregatorValue.

MaxCompute User Guide / 8 Graph

294 Issue: 20180808

2. Each Worker runs createInitialValue before each iteration starts to initialize AggregatorValue in

 the current round.

3. In an iteration, each vertex uses context.aggregate() to run aggregate(), implementing partial

iteration in the Worker.

4. Each Worker sends the partial iteration result to the Worker where AggregatorOwner is located.

5. The Worker where AggregatorOwner is located runs merge several times to implement global

aggregation.

6. The Worker where AggregatorOwner is located runs terminate to process the global aggregatio

n result and determines whether to end the iteration.

Attachment

Kmeans

https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/cn/odps/0.0.90/assets/graph/Kmeans.gz

MaxCompute User Guide / 9 Security

Issue: 20180808 295

9 Security

9.1 Target Users
This article is intended for MaxCompute project owners, administrators, and users interested in

the MaxCompute multi-tenant data security system.

The MaxCompute multi-tenant data security system includes:

• User authentication;

• User and authorization management of projects;

• Sharing of resources across projects;

• Data protection of projects.

9.2 Quick Start

9.2.1 Add users and grant permissions
In the following scenario, Jack is the project administrator of a project called prj1. A new team

member named Alice, who already has the Alibaba Cloud account alice@aliyun.com), applies

to join the prj1project. Alice requests the following permissions: view table lists, submit jobs, and

create tables.

The following procedure is performed by Jack, the project administrator:

 use prj1;
 add user aliyun$alice@aliyun.com; --Add the user
 grant List, CreateTable, CreateInstance on project prj1 to user
 aliyun$alice@aliyun.com; --Authorize the user by using the GRANT
statement

9.2.2 Add users and grant permissions using ACL
In the following scenario, Jack is the project administrator of a project called prj1. In the scenario,

three new data auditors, Alice, Bob, and Charlie, are added to the project team. They need to all

apply for the following permissions: view table lists, submit jobs, and read the table userprofile.

In this scenario, the project administrator can perform authorization by using the object-based ACL

 Authorization .

The following procedure is performed by Jack, the project administrator:

 use prj1;
 add user aliyun$alice@aliyun.com; --Add the user

https://www.alibabacloud.com/help/zh/doc-detail/27935.htm
https://www.alibabacloud.com/help/zh/doc-detail/27935.htm

MaxCompute User Guide / 9 Security

296 Issue: 20180808

 add user aliyun$bob@aliyun.com;
 add user aliyun$charlie@aliyun.com;
 create role tableviewer; --Create a role
 grant List, CreateInstance on project prj1 to role tableviewer; --
Grant permissions to the role
 grant Describe, Select on table userprofile to role tableviewer;
 grant tableviewer to aliyun$alice@aliyun.com; --Grant the
tableviewer role to the user
 grant tableviewer to aliyun$bob@aliyun.com;
 grant tableviewer to aliyun$charlie@aliyun.com;

9.2.3 Project data protection
In the following scenario, Jack is the project administrator of a project called prj1. The project

involves a large volume of sensitive data including user IDs, shopping records, and data mining

algorithms with proprietary intellectual property rights. Jack wants to properly protect the sensitive

 data and algorithms and restrict project users to only have access to data within the project. Jack

 wants to make sure that data can only flow within the project. Many data mining algorithms with

proprietary intellectual property right are included in the project. Jack hopes that these sensitive

data and algorithms can be properly protected and only accessible to users within the project, and

that data flow in the project only, and not out of the project.

To protect the project data, Jack must follow these steps:

 use prj1;
 set ProjectProtection=true; --Enable the project data protection
mechanism

Once the project data protection is enabled, data within the project cannot be transferred out of

the project. All data flows only within the project.

There may be scenarios where users want to export data tables out of the project under the

approval of the project administrator. In such cases, MaxCompute provides the TrustedProject

configuration to support external data export from the protected project. In this type of scenario, to

configure project prj2 as a trusted project of prj1 and to enable data flow from prj1 to prj2, perform

the following command:

 use prj1;
 add trustedproject prj2;

9.3 User Authentication

MaxCompute supports the Alibaba Cloud account system and the RAM account system .

Note:

MaxCompute User Guide / 9 Security

Issue: 20180808 297

MaxCompute can recognize the RAM account system but cannot recognize the RAM permission

system. Users can add any of their RAM sub-accounts to a project of MaxCompute. However,

MaxCompute skips the RAM permission definitions when it verifies the permissions of the RAM

sub-account.

By default, the MaxCompute project only recognizes the Alibaba Cloud account system. You can

view the account system supported by this project by running list accountproviders;.

Typically, only Alibaba Cloud accounts are displayed. To add the RAM account system, run the

add accountprovider ram;command. After the RAM account system is added, you can

run list accountproviders; to make sure it has been successfully added to the supported

account systems.

Apply for an Alibaba Cloud Account

If you do not have an Alibaba Cloud account, visit here to apply for one.

Note:

You need a valid email address when you apply for an Alibaba Cloud account. The email

address is then used as the account name after registration. For example, Alice can use her

email address alice@aliyun.com to register an Alibaba Cloud account. Her account name is

alice@aliyun.com after Alibaba Cloud account registration.

Apply for AccessKey

Click here to create or manage your AccessKey list after you register an Alibaba Cloud account.

An AccessKey consists of the AccessKeyID and AccessKeySecret. The AccessKeyID is used

to retrieve the AccessKey, and the AccessKeySecret is used to sign the computing messages.

You must secure your AccessKey from disclosure. When an AccessKey needs updated, you can

create a new AccessKey and disable the existing AccessKey.

Log on to MaxCompute with an Alibaba Cloud Account

You must configure the AccessKey in the configuration file conf/odps_config.ini before you use

odpscmd to log on. The following is an example:

 project_name=myproject
 access_id=<Input the AccessKeyID here, excluding the angle brackets>
 access_key=<Input the AccessKey here, excluding the angle brackets>

http://account.aliyun.com/
http://i.aliyun.com/access_key

MaxCompute User Guide / 9 Security

298 Issue: 20180808

 end_point=http://service.odps.aliyun-inc.com/api

Note:

To enable or disable an AccessKey on the Alibaba Cloud website, it takes 15 minutes after the

operation is completed.

9.4 User Management

Any user, except the project owner, must be added to the MaxCompute project and granted the

corresponding permissions to manage data, jobs, resources, and functions in MaxCompute. This

article describes how a project owner can add, authorize, and remove other users, including RAM

 sub-accounts, to MaxCompute.

If you are a project owner, we recommend that you read this article carefully. If you are a typical

 user, we recommend that you submit an application to the project owner to be added to the

corresponding project. We recommend all users to read the subsequent sections.

All the operations mentioned in this article are executed on the console. If the OS is Linux, run

./bin/odpscmd. If the OS is Windows, run ./bin/odpscmd.bat.

Add a User

In the following scenario, the project owner, Alice, wants to authorize another user, therefore she

must add the user to the project first. Only a user who has been added to the project can be

authorized.

The command to add a user is as follows:

add user

The <username> of an Alibaba Cloud account is a valid email address registered on the official

page, or a RAM sub-account of an Alibaba Cloud account that runs the command. For example:

add user ALIYUN$odps_test_user@aliyun.com;
add user RAM$ram_test_user;

Assume that the Alibaba Cloud account of Alice is alice@aliyun.com. When Alice runs these

statements, the following results are returned by running the list users; command:

RAM$alice@aliyun.com:ram_test_user
ALIYUN$odps_test_user@aliyun.com

This indicates that the Alibaba Cloud account odps_test_user@aliyun.com and the sub-account

ram_test_user created by Alice using RAM have been added to the project.

MaxCompute User Guide / 9 Security

Issue: 20180808 299

Add a RAM Sub-account

The two ways to add a RAM sub-account are as following:

• By using DataWorks, for more information, see Prepare a RAM account.

• By using MaxCompute client commands as described in this document.

Note:

• MaxCompute only allows a primary account to add its own RAM sub-accounts to a project.

RAM sub-accounts of other Alibaba Cloud accounts are not allowed. Therefore, you do not

need to specify the name of the primary account before the RAM sub-accounts when add

 user. MaxCompute determines by default that the account which runs the command is

the corresponding sub-account.

• MaxCompute only recognizes the RAM account system and does not recognize the RAM

 permission system. Users can add any of their RAM sub-accounts to a MaxCompute

project, but MaxCompute does not consider the permission limits in RAM when performing

 permission verification of RAM sub-accounts.

By default, MaxCompute project only recognizes Alibaba Cloud account systems. To view the

supported account systems use the list accountproviders; command. Typically, only

the ALIYUN account is visible, for example:

odps@ ****>list accountproviders;
ALIYUN

Note:

Only the project owner has permission to perform operations related to account

providers.

As shown in the preceding figure, you can only see the ALIYUN account system. If you want to

add RAM accounts support, you can run the add accountprovider ram; as follows:

odps@ odps_pd_inter>add accountprovider ram;
OK

After added successfully, the user still cannot operate MaxCompute. The user must be

granted certain permissions to operate MaxCompute within the limits of permissions. For more

information, see Authorization.

https://www.alibabacloud.com/help/zh/doc-detail/30264.htm

MaxCompute User Guide / 9 Security

300 Issue: 20180808

User Authorization

After the user has been added, the project owner or project administrator must authorize the user.

The user can perform the operations only after obtaining the permissions.

MaxCompute provides ACL authorization, cross-project resource sharing, and project

resource protection. The following are two common scenarios, for more information, see ACL

Authorization.

Scenario 1

In the following scenario, Jack is the administrator of the project prj1. A new project team

member Alice (Alibaba Cloud account: alice@aliyun.com) applies to join the project prj1, and for

permission to view table lists, submit jobs, and create tables.

The admin or the owner of the project can run the following command on the client:

 use prj1; --Open the project prj1
add user aliyun$alice@aliyun.com; --Add the user
grant List, CreateTable, CreateInstance on project prj1 to user aliyun
$alice@aliyun.com; --Authorize the user

Scenario 2

In the following scenario, assume Alibaba Cloud account user (bob@aliyun.com) has been added

to a project ($user_project_name), and must be granted permission to create tables, obtain table

information, and run functions.

The admin or the owner of the project can run the following command on the client:

grant CreateTable on PROJECT $user_project_name to USER ALIYUN$bob@
aliyun.com;
 --Grant CreateTable permission on project “$user_project_name” to
bob@aliyun.com
grant Describe on Table $user_table_name to USER ALIYUN$bob@aliyun.com
;
 --Grant Describe permission on table “$user_table_name” to bob@
aliyun.com
grant Execute on Function $user_function_name to USER ALIYUN$bob@
aliyun.com;
 --Grant Run permission on function "$user_function_name" to bob@
aliyun.com

Authorize RAM Sub-account

To check accounts support, run list accountproviders; command as follows:

odps@ ****>list accountproviders;

MaxCompute User Guide / 9 Security

Issue: 20180808 301

ALIYUN, RAM

In this project, RAM accounts are also supported. You can add a RAM sub-account to this project

and grant Describe permission on the tables. For example:

odps@ ****>add user ram$bob@aliyun.com:Alice;
OK: DisplayName=RAM$bob@aliyun.com:Alice
odps@ ****>grant Describe on table src to user ram$bob@aliyun.com:
Alice;
OK

After running these commands, Alice and bob@aliyun.com RAM sub-account, can logon to

MaxCompute with their own AccessKeyID and AccessKeySecret, and run desc on the table

src.

Note:

• For more information about how to create a RAM sub-account AccessKeyID and

AccessKeySecret, see Create a RAM user.

• For more information about how to add or remove users on MaxCompute, see the correspond

ing content of this article.

• For more information about authorizing a user, see Authorization.

Remove a User

When a user leaves the project team, Alice must remove the user from the project. Once a user is

 removed from the project, the user no longer has any access permission to the project resources

.

The command to remove a user from a project is as follows:

remove user

Note:

• A user removed from a project immediately loses any authority to access resources of the

project.

• Before removing a user who has been assigned roles, those roles must be revoked. For more

information about roles, see Role Management.

• After a user is removed, all ACL Authorization data related to the user is retained. After a

user is added to a project again, the ACL Authorization of this user is enabled again.

https://www.alibabacloud.com/help/zh/doc-detail/28637.htm

MaxCompute User Guide / 9 Security

302 Issue: 20180808

• MaxCompute does not support complete removal of a user and all the permission data from a

 project.

Alice To remove corresponding users, Alice can run the following two commands:

remove user ALIYUN$odps_test_user@aliyun.com;
remove user RAM$ram_test_user;

To make sure the users are removed, run the following command:

LIST USERS;

If those two accounts are no longer listed after running the command, it indicates that the

accounts have been removed from the project.

Remove a RAM Sub-account

Similarly, RAM sub-account can be removed by using the remove user command. sub-account

For example:

odps@ ****>revoke describe on table src from user ram$bob@aliyun.com:
Alice;
OK
-- Revoke Alice sub-account permissions
odps@ ****>remove user ram$bob@aliyun.com:Alice;
Confirm to "remove user ram$bob@aliyun.com:Alice;" (yes/no)? yes
OK
-- Remove sub-account

If you are the project owner, you can also remove the RAM account system from the current

project by remove accountprovider as follows:

odps@ ****>remove accountprovider ram;
Confirm to "remove accountprovider ram;" (yes/no)? yes
OK
odps@ ****>list accountproviders;
ALIYUN

9.5 Role Management

A role is a defined set of access permissions. It can be used to assign the same set of permission

s to a group of users. Role-based authorization can greatly simplify the authorization process and

 reduce the authorization management cost. Role-based authorization can be used with priority

when user authorization is performed. Role-based authorization can greatly simplify the authorizat

ion procedure and reduce authorization management costs. When a user must be authorized, the

owner should consider whether it would be better to use a role to authorize them.

MaxCompute User Guide / 9 Security

Issue: 20180808 303

When a project is created, an admin role is automatically created with a defined set of privileges

 authorized to the role. These privileges include access to all objects within the project,

management, and authorization of users and roles. In comparison to a project In comparison to a

 project owner, the admin role cannot assign admin permission to any user, set the project security

 configuration, or change the authentication model for the project. Permissions of the admin role

cannot be modified.

Role management commands are as follows:

 create role <rolename> --Create a role
 drop role <rolename> --Delete a role
 grant <rolename> to <username> --Grant a role to a user
 revoke <rolename> from <username> --Revoke a role from a user

Note:

• One role can be assigned to multiple users at the same time, and one user can also belong to

 multiple roles.

• For more information about the mapping between the roles in DataWorks and in MaxCompute,

and the platform permissions of these roles, see the project member management module in

Project Management.

Create a Role

Use the following command format to create a role:

CREATE ROLE;

For example,

assume the role player must be created. Enter the following command on the client:

create role player;

Add a User to Role

To add a user to the role, use the following command format to add a user to the role:

GRANT <roleName> TO <full_username> ;

For example,

https://www.alibabacloud.com/help/zh/doc-detail/47736.htm
https://www.alibabacloud.com/help/zh/doc-detail/47736.htm

MaxCompute User Guide / 9 Security

304 Issue: 20180808

assume the user bob@aliyun.com must be added to the player role, enter the following command

on the console:

grant player to bob@aliyun.com;

Authorize Role

The authorization statement for the role is similar to the authorization for the user. For more

information, see User authorization.

Note:

After role authorization is complete, all users under this role have the same permissions.

For example,

suppose Jack is the administrator of project prj1. Three new data auditors, Alice, Bob, and Charlie

, are added to the project team. They must apply for the following permissions: view the table

lists, submit the jobs, and read the table userprofile.

In this scenario, the project administrator can perform authorization by using the object-based ACL

Authorization.

The procedure is as follows:

 use prj1;
 add user aliyun$alice@aliyun.com; --Add the user
 add user aliyun$bob@aliyun.com;
 add user aliyun$charlie@aliyun.com;
 create role tableviewer; --Create a role
 grant List, CreateInstance on project prj1 to role tableviewer; --
Grant permissions to the role
 grant Describe, Select on table userprofile to role tableviewer;
 grant tableviewer to aliyun$alice@aliyun.com; --Grant the
tableviewer role to the user
 grant tableviewer to aliyun$bob@aliyun.com;
 grant tableviewer to aliyun$charlie@aliyun.com;

Revoke the Role from a User

To revoke the role from a user, use the following command format to revoke the role from a user:

REVOKE <roleName> FROM <full_username>;

For example,

MaxCompute User Guide / 9 Security

Issue: 20180808 305

assume the user bob@aliyun.com must be removed from the player role. Enter the following

command on the client:

revoke player from bob@aliyun.com;

Delete a Role

To delete a role, use the following command format to delete a role:

DROP ROLE <roleName>;

For example,

assume the role player must be deleted:

drop role player;

Note:

When you delete a role, MaxCompute checks whether other users are in this role. If yes, this

role cannot be deleted. The role can be successfully deleted only when all users in the role are

revoked from this role. If there are such users, this role cannot be removed. Removing a role

succeeds only if all of its users are already revoked from it.

9.6 Authorization

After a user is added, the project owner or the project administrator must authorize the user.

The user can perform operations only after obtaining permission. Authorization allows a user to

perform operations including read, write, and view on tables, tasks, resources, and other objects

of the MaxCompute.

MaxCompute provides access control list (ACL) authorization, cross-project resource sharing,

and project resource protection. Authorization typically includes three elements: subject, object,

and action. In MaxCompute, the subject refers to a user or a role and the object refers to various

types of objects in a project.

ACL authorization includes following MaxCompute objects: Project, Table, Function, Resource,

and Instance. Operations are related to specific object types, therefore different types of objects

support different types of actions.

MaxCompute projects support the following object types and actions.

MaxCompute User Guide / 9 Security

306 Issue: 20180808

Object Action Description

Project Read View project information (excluding any project objects),
such as the creation time.

Project Write Update project information (excluding any project objects
), such as comments.

Project List View the list of all types of objects in the project.

Project CreateTable Create a table in the project.

Project CreateInstance Create an instance in the project.

Project CreateFunction Create a function in the project.

Project CreateResource Create a resource in the project.

Project All Grant all of the preceding permissions.

Table Describe Read the metadata of the table.

Table Select Read the table data.

Table Alter Change the metadata of the table and add or delete a
partition.

Table Update Overwrite or add table data.

Table Drop Delete a table.

Table All Grant all the preceding permissions.

Function Read Read and run permissions.

Function Write Update.

Function Delete Delete

Function Run Run.

Function All Grant all the preceding permissions.

Resource Read Read.

Resource Write Update.

Resource Delete Delete.

Resource All Grant all the preceding permissions.

Instance Read Read.

Instance Write Update.

Instance All Grant all the preceding permissions.

MaxCompute User Guide / 9 Security

Issue: 20180808 307

Note:

• The CreateTable action for the objects of Project type must work with the CreateInstance

permission for the Project object. The Select, Alter, Update, and Drop actions for the objects of

 Table type must work with the CreateInstance permission for the Project object.

• If the CreateInstance permission is not granted, the corresponding operations cannot be

performed even though the mentioned permissions are granted. This is related to the internal

implementation of MaxCompute. The Select permission for Table type objects must work with

 the CreateInstance permission. While performing cross-project operation, such as selecting

 the table of project B in the project A, you must have the project A CreateInstance and the

project B Table select permissions .

• After a user or role is added, you must grant permissions to the user or role. MaxCompute

authorization is an object-based authorization method. The permission data authorized by

the access control list (ACL) is considered as a type of sub-resource of the object. Authorizat

ion can be performed only when the object exists. When the object is deleted, the authorized

permission data is automatically deleted.

• SQL92 Authorization

MaxCompute supports authorization using the syntax similar to the GRANT and REVOKE

commands defined by SQL92. It grants or revokes permissions to/from the existing project

object through simple authorization statements. The authorization syntax is as follows:

 grant actions on object to subject
 revoke actions on object from subject
 actions ::= action_item1, action_item2, ...
 object ::= project project_name | table schema_name |
 instance inst_name | function func_name |
 resource res_name
 subject ::= user full_username | role role_name

Users familiar with the GRANT and REVOKE commands defined by SQL92 or with Oracle

database security management can find that the ACL authorization syntax of MaxCompute

does not support [WITH GRANT OPTION] authorization parameters. For example, when User

A authorizes User B to access an object, User B cannot grant the permission to User C. In

this scenario, all permissions must be granted by one of the following three roles:

• Project owner

• Project administrator

• Object creator

MaxCompute User Guide / 9 Security

308 Issue: 20180808

• Use Example of ACL Authorization

In the following scenario, the Alibaba Cloud account user alice@aliyun.com is a newly added

member to the project test_project_a, and Allen is a RAM-sub account added to bob@aliyun.

com. In test_project_a, they both must submit jobs, create tables, and view existing objects in

the project.

The following authorization operations procedure is performed by the project administrator:

 use test_project; --Open the project
 add user aliyun$alice@aliyun.com; --Add the user
 add user aliyun$alice@aliyun.com; --Add the user
 create role worker; --Create a role
 grant worker TO aliyun$alice@aliyun.com; --Grant the role
 grant worker TO aliyun$bob@aliyun.com; --Grant the role
 grant CreateInstance, CreateResource, CreateFunction, CreateTabl
e, List ON PROJECT test_project TO ROLE worker; --Authorize the role

• Cross-project Table/Resource/Function Sharing

Following the preceding example, aliyun$alice@aliyun.com and ram$bob@aliyun.com:Allen

have certain permissions in test_project_a. These two users must query table prj_b_test_table

in test_project_b, and use test_project_b. UDF prj_b_test_udf.

The following authorization operations procedure is performed by the administrator

test_project_b:

 use test_project_b; --Open the project
 add user aliyun$alice@aliyun.com; --Add the user
 add user ram$bob@aliyun.com:Allen; --Add th RAM sub-account
 create role prj_a_worker; --Create a role
 grant prj_a_worker TO aliyun$alice@aliyun.com; --Grant the role
 grant prj_a_worker TO ram$bob@aliyun.com:Alice; --Grant the role
 grant Describe , Select ON TABLE prj_b_test_table TO ROLE
prj_a_worker; --Authorize the role
 grant Read ON Function prj_b_test_udf TO ROLE prj_a_worker; --
Authorize the role
 grant Read ON Resource prj_b_test_udf_resource TO ROLE
prj_a_worker; --Authorize the role
--After authorization, the two users query table and use udf in
test_project_a as follows:
use test_project_a;
select test_project_b:prj_b_test_udf(arg0, arg1) as res from
test_project_b.prj_b_test_table;

Note:

MaxCompute User Guide / 9 Security

Issue: 20180808 309

If UDF is created in test_project_a, only Resource authorization is required. Write as the

following:

create function function_name as 'com.aliyun.odps.compiler.udf.
PlaybackJsonShrinkUdf' using 'test_project_b/resources/odps-compiler-
playback.jar' -f;.

9.7 Permission Check

MaxCompute provide the ability to view multiple permissions, including the permissions of certain

users or roles, and authorization lists of specified objects.

MaxCompute uses the markup characters A, C, D, and G when showing the permissions of users

or roles. The meanings of these markup characters are as follows:

• A: Access allowed.

• D: Access denied.

• C: Access granted with conditions. It appears only in a policy authorization system.

• G: Access granted with conditions. Permission can be granted to objects.

An example of viewing permissions is as follows:

 odps@test_project> show grants for aliyun$odpstest1@aliyun.com;
 [roles]
 dev
 Authorization Type: ACL
 [role/dev]
 A projects/test_project/tables/t1: Select
 [user/odpstest1@aliyun.com]
 A projects/test_project: CreateTable | CreateInstance | CreateFunc
tion | List
 A projects/test_project/tables/t1: Describe | Select
 Authorization Type: Policy
 [role/dev]
 AC projects/test_project/tables/test_*: Describe
 DC projects/test_project/tables/alifinance_*: Select
 [user/odpstest1@aliyun.com]
 A projects/test_project: Create* | List
 AC projects/test_project/tables/alipay_*: Describe | Select
 Authorization Type: ObjectCreator
 AG projects/test_project/tables/t6: All
 AG projects/test_project/tables/t7: All

View the Permissions of a Specified User

 show grants; --View permissions of the current user.
 show grants for <username>; --View access permissions of a
specified user. The operation can be executed by project owners and
administrators.

For example:

MaxCompute User Guide / 9 Security

310 Issue: 20180808

to view the user Alibaba Cloud account bob@aliyun.com permissions in the current project, run

the following command on the client:

show grants for ALIYUN$bob@aliyun.com;

View RAM sub-account permissions:

show grants for RAM$account:sub-account;

For example:

show grants for RAM$bob@aliyun.com:Alice;

View the Permissions of a Specified Role

describe role --View access permissions granted to a specified role

View the Authorization List of a Specified Object

show acl for [on type];--View the user and role authorization list of
 a specified object

Note:

When [on type <objectType>] is omitted, the default type is Table.

9.8 Security Configuration

MaxCompute is a multi-tenant data processing platform. Distinct tenants have distinct data

security requirements. Therefore, MaxCompute provides project-level security configurations to

 comply with the unique requirements of individual tenants. Project owners can customize their

external account support and authentication models.

MaxCompute provides multiple methods of orthogonal authorization, including access control list

(ACL) authorization and implicit authorization. Note: An object creator is automatically granted

the object access permission. Not all users need these security features. Users can properly

configure the project authentication model based on their service security requirements and usage

patterns.

 show SecurityConfiguration
 --View the project security configuration.
 set CheckPermissionUsingACL=true/false
 --Enable/Disable the ACL authorization mechanism. The default
value is true.
 set ObjectCreatorHasAccessPermission=true/false
 --Enable/Disable automatic access permission granting to object
creators. The default value is true.

MaxCompute User Guide / 9 Security

Issue: 20180808 311

 set ObjectCreatorHasGrantPermission=true/false
 --Enable/Disable automatic authorization permission granting to
object creators. The default value is true.
 set ProjectProtection=true/false
 --Enable/Disable project data protection to enable/disable
data transfer from the project.

Note:

You can also complete the security configuration of a project in a visualized technique using

DataWorks. For more information, see Project Management.

9.9 Security Command List

9.9.1 Security Configuration of a Project
Authentication Configuration

Statements Description

show SecurityConfiguration View the security configuration of the project.

set CheckPermissionUsingACL=true/false Enable/Disable the ACL-based authorization.

set CheckPermissionUsingPolicy=true/false Enable/Disable the policy authorization.

set ObjectCreatorHasAccessPermission=true/
false

Grant/Revoke default access permissions to/
from object creators.

set ObjectCreatorHasGrantPermission=true/
false

Grant/Revoke default authorization permissions
 to/from object creators.

Data Protection

Statement Description

set ProjectProtection=false Disable data protection.

list TrustedProjects View the list of trusted projects.

add TrustedProject <projectName> <
projectName>

Add a trusted project.

remove TrustedProject <projectName> Remove a trusted project.

https://www.alibabacloud.com/help/zh/doc-detail/53040.htm

MaxCompute User Guide / 9 Security

312 Issue: 20180808

9.9.2 Permission Management of a Project
User Management

Statement Description

list users View all users added to the project.

add user <username> <username> Add a user.

remove user <username> <username> Remove a user.

Role Management

Statement Description

list roles View all created roles.

create role <rolename> <rolename> Create a role.

drop role <rolename> <rolename> Delete a role.

grant <rolelist> to <username> Assign one or multiple roles to a user.

revoke <rolelist> from <username> Revoke the role from a user.

ACL Authorization

Statement Description

grant <privList> on <objType> <objName
> to user <username>

Authorize a user.

grant <privList> on <objType> <objName
> to role <rolename>

Authorize a role.

revoke <privList> on <objType> <
objName> from user <username>

Revoke user authorization.

revoke <privList> on <objType> <
objName> from role <rolename>

Revoke role authorization.

Permission Review

Statement Description

whoami View current user information.

show grants [for <username>] [on type <
objectType>]

View user permissions and role.

MaxCompute User Guide / 9 Security

Issue: 20180808 313

Statement Description

show acl for <objectName> [on type <
objectType>]

View specific object authorization information.

describe role <roleName> View role authorization information and role
assignments.

9.10 Resource share across project space

9.10.1 Resource Sharing across Projects Based on Package
Assume that you are the owner or administrator (admin role) of some projects. One of your

primary accounts has multiple projects, wherein the prj1 project has some resources (including

tables, resources, and custom functions) that can be shared with other projects. However, adding

 users of other projects to prj1 and granting permissions to them one by one is complicated, and

adding of users who are irrelevant but are added to the prj1 project (if they exist) complicates the

project management.

This section describes cross-project resource sharing.

If resources need to be controlled by a user in fine-grained manner, and the user who applies for

the control permission is a member of the business project team, we recommend that you use the

Project user and authorization management feature.

Package is used for sharing data and resources across projects. It solves the problem of cross-

project user authorization.

Without Package the following problem cannot be effectively solved.

If members of the Alifinance project want to access data in the Alipay project, the administrator

of the Alipay project must perform tedious authentication operations on them: first, add users in

the Alifinance project to the Alipay project, and then perform general authentications on the newly

added users, respectively.

Actually, the administrator of the Alipay project does not want to authenticate and manage

all users in the Alifiance project. Instead, the administrator expects more efficient feature for

autonomous authentication controls over permissive objects.

After Package is used, the administrator of the Alipay project can perform packaging authorizat

ion on the objects to be used by the Alifinance project (that is, create a Package), and then permit

 the Alifinance project to install the Package. After the Alifinance project’s administrator installs

MaxCompute User Guide / 9 Security

314 Issue: 20180808

the Package, the administrator can determine whether to grant permissions of the Package to the

users of the Alifinance project as required.

9.11 Column-level Access Control

Label-based security (LabelSecurity) is a required access control (MAC) policy at the project

space level. It allows project administrators to control the user access to column-level sensitive

data with improved flexibility.

Differences between MAC and DAC in MaxCompute

In MaxCompute, MAC is independent of discretionary access control (DAC). Two examples are

provided to illustrate the differences between MAC and DAC.

A user who wants to read data in a MaxCompute project must first apply for the SELECT

permission, similar to the person who wants to drive in a country must first apply for a driver’s

license. The permission application is within the scope of DAC.

Because the country has a high traffic accident rate, it adds a statute against drunk driving.

All drivers are required to have a driver’s license and consume no alcohol before driving. In

MaxCompute, prohibition against reading of highly sensitive data is analogous to the statute

against drunk driving. The read prohibition is within the scope of MAC.

Data Sensitivity Classification

LabelSecurity assigns security levels to data and the users who access the data. In the

government and financial sectors, data sensitivity is usually classified into four levels: 0 (Unclassifi

ed), 1 (Confidential), 2 (Sensitive), and 3 (Highly Sensitive). MaxCompute adopts such classifica

tion. Project owners must define standards for data sensitivity classification and access level

classification. The default access level of all users is 0, and the default sensitivity level of data is 0.

LabelSecurity supports data sensitivity classification at the column level. Administrators can set

sensitivity labels for all the columns of a table. A table may have columns of different sensitivity

levels.

Administrators can also set sensitivity labels for views. A view and its base table have independen

t sensitivity labels. The default sensitivity level of a new view is 0.

Default Security Policies of LabelSecurity

LabelSecurity applies the following default security policies to the data and users assigned with

sensitivity or security labels:

MaxCompute User Guide / 9 Security

Issue: 20180808 315

• No-ReadUp: A user is not allowed to read data with a sensitivity level higher than the user level

 unless the user is explicitly authorized.

• Trusted-User: A user is allowed to write data of all sensitivity levels. The default sensitivity level

 of new data is 0 (unclassified).

Note:

• In some traditional MAC systems, other complex security policies are applied to prohibit

unauthorized data distribution in a project. For example, the No-WriteDown policy prohibits

users from writing data with a sensitivity level not higher than the user level. By default,

MaxCompute does not support No-WriteDown, considering the costs arising from the

management of data sensitivity levels by project administrators. The effect of No-WriteDown

can be attained by modifying the project security settings (Set ObjectCreatorHasGran

tPermission=false).

• To prohibit data flowing among different projects, you can set the projects to the protected

state (ProjectProtection). With the setting, users can only access the data within their projects

. This prevents data transfer beyond the project.

By default, projects disable LabelSecurity. The project owners can enable it as required.

After LabelSecurity is enabled, the default security policies are executed. When a user accesses

 a data table, the user must have the SELECT permission and the access level required for

sensitive data reading. Compliance with LabelSecurity is a required but not the sufficient condition

 for passing CheckPermission.

LabelSecurity Operations

• Enable or Disable LabelSecurity

 Set LabelSecurity=true|false;
 -- Enables or disables LabelSecurity. The default value is false.
 -- LabelSecurity can be enabled or disabled only by the project
owner. Other operations can be performed by the project administra
tor.

• Set Security Labels for Users

 SET LABEL <number> TO USER <username>;-- Value range of "number": [
0, 9]. This operation can be performed only by the project owner or
administrator.
 -Example:
 ADD USER aliyun$yunma@aliyun.com; --Adds a user with the default
security label 0.
 ADD USER ram$yunma@aliyun.com:Allen; --Adds user Allen, which is a
RAM subaccount of yunma@aliyun.com.

MaxCompute User Guide / 9 Security

316 Issue: 20180808

 SET LABEL 3 TO USER aliyun$yunma@aliyun.com;
 -- Sets the security label of yunma to 3 to allow this user to
access only the data with a sensitivity level not higher than 3.
 SET LABEL 1 TO USER ram$yunma@aliyun.com:Allen;
 -- Sets the security label of subaccount Allen to 1 to allow this
 user to access only the data with a sensitivity level not higher
than 1.

• Set Sensitivity Labels for Data

 SET LABEL <number> TO TABLE tablename[(column_list)]; -- Value
range of "number": [0, 9]. This operation can be performed only by
the project owner or administrator.
 -Example:
 SET LABEL 1 TO TABLE t1; --Sets the sensitivity label of table t1
to 1.
 SET LABEL 2 TO TABLE t1(mobile, addr); --Sets the sensitivity
labels of the "mobile" and "addr" columns of table t1 to 2.
 SET LABEL 3 TO TABLE t1; --Sets the sensitivity label of table t1
to 3. The sensitivity labels of the "mobile" and "addr" columns are
 still 2.

Note:

The sensitivity labels explicitly set for the columns overwrites the sensitivity label set for the

table, without consideration for the label setting order and the sensitivity level.

• Explicitly Authorize Lower-level Users to Access Specific Data Tables with a High

Sensitivity Level

 --Grant permissions:
 GRANT LABEL <number> ON TABLE <tablename>[(column_list)] TO USER <
username> [WITH EXP <days>]; --The default validity period is 180
days.
 -- Revoke the permissions:
 REVOKE LABEL ON TABLE <tablename>[(column_list)] FROM USER <
username>;
 -- Clear the expired permissions:
 CLEAR EXPIRED GRANTS;
 -Example:
 GRANT LABEL 2 ON TABLE t1 TO USER ram$yunma@aliyun.com:Allen WITH
EXP 1; --Explicitly authorizes Allen to access the data of table t1
with a sensitivity level not higher than 2 for a period of 1 day.
 GRANT LABEL 3 ON TABLE t1(col1, col2) TO USER ram$yunma@aliyun.com
:Allen WITH EXP 1; --Explicitly authorizes Allen to access the data
 in col1 and col2 of table t1 with a sensitivity level not higher
than 3 for a period of 1 day.
 REVOKE LABEL ON TABLE t1 FROM USER ram$yunma@aliyun.com:Allen; --
Revokes the permission of Allen to access the sensitive data in
table t1.

Note:

After the label-authorized permission of a user to access a table is revoked, this user’s

permission to access the table fields is also revoked.

MaxCompute User Guide / 9 Security

Issue: 20180808 317

• List the Sensitive Data Sets that a User Can Access

 SHOW LABEL [<level>] GRANTS [FOR USER <username>];
 --When [FOR USER <username>] is unspecified, the system lists
the sensitive data sets that the current user can access.
 --When <level> is unspecified, the system lists the permissions
 granted by all label levels.When <level> is specified, the system
lists only the permissions granted by a specific label level.

• List the Users Who Can Access a Specific Table Containing Sensitive Data

 SHOW LABEL [<level>] GRANTS ON TABLE <tablename>;
 --Displays the label-authorized permissions on the specified
table.

• List the Label-authorized Permissions of a User at All Levels to Access a Data Table

 SHOW LABEL [<level>] GRANTS ON TABLE <tablename> FOR USER <username
>;
 --Displays the label-authorized permissions of the specified user
 to access the columns of a specific table.

• List the Sensitivity Levels of All the Columns of a Table

DESCRIBE <tablename>;

• Control the Access Level of a Package Installer Regarding the Sensitive Resources of

the Package

 ALLOW PROJECT <prjName> TO INSTALL PACKAGE <pkgName> [USING LABEL <
number>];
 --The package creator grants an access level to the package
installer regarding the sensitive resources of the package.

Note:

• When [USING LABEL <number>] is unspecified, the default access level is 0. The

package installer can only access non-sensitive data.

• When accessing to sensitive data across projects, the access level defined by this

command applies to all the users in the project of the package installer.

LabelSecurity Use Cases

• Prohibit All the Users in a Project Except the Project Administrator from Reading Some

Sensitive Columns of a Table

Scenario description: user_profile is a table with sensitive data in a project. It has 100 columns

, five of which contain sensitive data: id_card, credit_card, mobile, user_addr, and birthday.

DAC grants all users the SELECT permission on this table. The project owner wants to prohibit

MaxCompute User Guide / 9 Security

318 Issue: 20180808

 all the project users except the project administrator from reading the sensitive columns of the

 table.

To achieve this purpose, the project owner can perform the following operations:

 set LabelSecurity=true;
 --Enables LabelSecurity.
 set label 2 to table user_profile(mobile, user_addr, birthday);
 --Sets the sensitivity level of the specified columns to 2.
 set label 3 to table user_profile(id_card, credit_card);
 --Sets the sensitivity level of the specified columns to 3.

Note:

After the preceding operations, non-administrator users cannot access the data in the five

columns. If a user needs to access the sensitive data for business purposes, the user must be

authorized by the project owner or administrator.

Alice is a member of the project. For business purposes, she wants to apply for access to the

data in the mobile column of table user_profile for a period of one week. To authorize Alice,

the project administrator can perform the following operation:

GRANT LABEL 2 ON TABLE user_profile TO USER ALIYUN$alice@aliyun.com
WITH EXP 7;

Note:

Mobile, user_addr, and birthday column contain data with a sensitivity level of 2. Birthday.

After authorization, Alice can access the data in these three columns. The authorization

causes the issue of excessive permission granting. This issue can be avoided if the project

administrator sets the column sensitivity properly.

• Prohibit the Project Users with Access to Sensitive Data from Copying and Distributing

the Sensitive Data within the Project without Authorization

In the preceding use case, Alice is granted the access permission on the data with a sensitivit

y level of 2 for business purposes. The project administrator worries that Alice may copy that

 data from table user_profile to table user_profile_copy created by her and grants Bob the

access permission on user_profile_copy. The project administrator needs a method to prohibit

 such behavior on Alice.

Considering security usability and management costs, LabelSecurity adopts the default security

policy that allows for WriteDown. Users can write data to the columns with a sensitivity level

not higher than the user level. MaxCompute cannot address the preceding requirement of

MaxCompute User Guide / 9 Security

Issue: 20180808 319

the project administrator. However, the project administrator can restrict the discretionary

authorization behavior of Alice by allowing her to only access the data she created, but

disallowing her to grant the data access permission to other users. The procedure is as

follows:

 SET ObjectCreatorHasAccessPermission=true;
 --Allows the object creator to operate objects.
 SET ObjectCreatorHasGrantPermission=false;
 --Prohibits the object creator from granting the object access
permission to other users.

	Contents
	​Legal​ ​disclaimer​
	​Generic​ ​convention​​s​
	1 ​Data​ ​upload​ ​and​ ​download​
	1.1 ​Data​ ​upload​ ​and​ ​download​
	1.2 ​Cloud​ ​migration​ ​of​ ​data​
	1.3 ​Tools​
	1.5 ​Import​ ​or​ ​export​ ​data​ ​using​ ​the​ ​Data​ ​Integratio​​n​ ​function​
	1.6 ​Tunnel​ ​SDK​
	1.6.1 ​Summary​
	1.6.2 ​TableTunne​​l​
	1.6.3 ​UploadSess​​ion​
	1.6.4 ​DownloadSe​​ssion​
	1.6.5 ​TunnelBuff​​eredWriter​

	1.7 ​Bulk​ ​data​ ​channel​ ​SDK​ ​example​
	1.7.1 ​Example​
	1.7.2 ​Example​ ​for​ ​uploading​
	1.7.3 ​Example​ ​for​ ​downloadin​​g​
	1.7.7 ​Example​ ​for​ ​BufferedWr​​iter​ ​uploading​

	1.9 ​Connection​ ​to​ ​data​ ​tunnel​ ​service​

	2 ​Common​ ​commands​
	2.1 ​Overview​ ​of​ ​Common​ ​commands​
	2.2 ​Project​ ​Operations​
	2.3 ​Table​ ​Operations​
	2.4 ​Instance​
	2.6 ​Function​ ​Operations​
	2.7 ​Other​ ​Operations​

	3 ​SQL​
	3.1 ​SQL​ ​Summary​
	3.4 ​DDL​ ​SQL​
	3.4.2 ​Lifecycle​ ​of​ ​table​
	3.4.3 ​View​ ​operations​
	3.4.4 ​Column​/​Partition​ ​operation​

	3.5 ​Insert​ ​Operation​
	3.5.2 ​MULTI​ ​INSERT​
	3.5.3 ​DYNAMIC​ ​PARTITION​
	3.5.4 ​VALUES​

	3.6 ​Select​ ​Operation​
	3.6.1 ​Introducti​​on​ ​to​ ​the​ ​SELECT​ ​Syntax​
	3.6.2 ​SELECT​ ​Sequence​
	3.6.3 ​Subquery​
	3.6.4 ​UNION​ ​ALL​/​UNION​ [​DISTINCT​]
	3.6.6 ​SEMI​ ​JOIN​
	3.6.10 ​Common​ ​table​ ​expression​ (​CTE​)

	3.7 ​DDL​ ​SQL​
	3.8 ​Insert​ ​Operation​
	3.9 ​SQL​ ​restrictio​​ns​
	3.10 ​Builtin​ ​Function​
	3.10.1 ​Date​ ​Functions​
	3.10.3 ​Window​ ​Functions​

	3.11 ​UDF​
	3.11.1 ​UDF​ ​Summary​
	3.11.2 ​Java​ ​UDF​
	3.11.3 ​Python​ ​UDF​

	3.12 ​Appendix​
	3.12.1 ​Escape​ ​Characters​
	3.12.2 ​Like​ ​Usage​
	3.12.3 ​Regular​ ​Expression​
	3.12.4 ​Reserved​ ​Words​

	4 ​MapReduce​
	4.1 ​Summary​
	4.1.1 ​MapReduce​
	4.1.2 ​Extended​ ​MapReduce​
	4.1.3 ​Open​-​source​ ​MapReduce​

	4.2 ​Function​ ​Introducti​​on​
	4.2.1 ​Command​
	4.2.2 ​Basic​ ​Conception​
	4.2.3 ​Input​ ​and​ ​Output​
	4.2.4 ​Resource​
	4.2.5 ​Local​ ​run​

	4.3 ​Program​ ​Example​
	4.3.1 ​WordCount​ ​Sample​
	4.3.2 ​MapOnly​ ​Sample​
	4.3.3 ​Multi​-​input​ ​and​ ​Output​
	4.3.4 ​Multi​-​task​ ​Sample​
	4.3.5 ​Secondary​ ​Sort​ ​Sample​
	4.3.6 ​Resource​ ​Sample​
	4.3.7 ​Counter​ ​Sample​
	4.3.8 ​Grep​ ​Sample​
	4.3.9 ​Join​ ​Sample​
	4.3.10 ​Sleep​ ​Sample​
	4.3.11 ​Unique​ ​Sample​
	4.3.12 ​Sort​ ​Sample​
	4.3.13 ​Partition​
	4.3.14 ​Pipeline​ ​Sample​

	4.4 ​Java​ ​SDK​
	4.4.1 ​Java​ ​SDK​

	4.5 ​MR​ ​Restrictio​​ns​

	5 ​Java​ ​Sandbox​
	6 ​SDK​
	6.2 ​Python​ ​SDK​

	7 ​Handle​-​Unstructur​​ed​-​data​
	7.1 ​Access​ ​OSS​ ​Data​
	7.2 ​Visit​ ​Table​ ​Store​ ​Data​

	8 ​Graph​
	8.1 ​Summary​
	8.2 ​Function​ ​overview​
	8.3 ​SDK​ ​Summary​
	8.4 ​Developmen​​t​ ​and​ ​Debugging​
	8.5 ​Restrictio​​n​
	8.6 ​Examples​
	8.6.1 ​SSSP​
	8.6.2 ​PageRank​
	8.6.3 ​Kmeans​
	8.6.4 ​BiPartiteM​​atchiing​
	8.6.5 ​Strongly​-​connected​ ​component​
	8.6.6 ​Connected​ ​component​
	8.6.7 ​Topology​ ​Sorting​
	8.6.8 ​Linear​ ​Regression​
	8.6.9 ​Triangle​ ​Count​
	8.6.10 ​Vertex​ ​Input​
	8.6.11 ​Edge​ ​Input​

	8.7 ​Introducti​​ons​ ​of​ ​Aggregator​ ​Mechanism​

	9 ​Security​
	9.1 ​Target​ ​Users​
	9.2 ​Quick​ ​Start​
	9.2.1 ​Add​ ​users​ ​and​ ​grant​ ​permission​​s​
	9.2.2 ​Add​ ​users​ ​and​ ​grant​ ​permission​​s​ ​using​ ​ACL​
	9.2.3 ​Project​ ​data​ ​protection​

	9.3 ​User​ ​Authentica​​tion​
	9.4 ​User​ ​Management​
	9.5 ​Role​ ​Management​
	9.6 ​Authorizat​​ion​
	9.7 ​Permission​ ​Check​
	9.8 ​Security​ ​Configurat​​ion​
	9.9 ​Security​ ​Command​ ​List​
	9.9.1 ​Security​ ​Configurat​​ion​ ​of​ ​a​ ​Project​
	9.9.2 ​Permission​ ​Management​ ​of​ ​a​ ​Project​

	9.10 ​Resource​ ​share​ ​across​ ​project​ ​space​
	9.10.1 ​Resource​ ​Sharing​ ​across​ ​Projects​ ​Based​ ​on​ ​Package​

	9.11 ​Column​-​level​ ​Access​ ​Control​

