Alibaba Cloud
MaxCompute

User Guide

Issue: 20180808

MORE THAN JusT cLoub | (- AlibabaCloud

Legal disclaimer

Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions of this
legal disclaimer before you read or use this document. If you have read or used this document, it

shall be deemed as your total acceptance of this legal disclaimer.

1. You shall download and obtain this document from the Alibaba Cloud website or other Alibaba
Cloud-authorized channels, and use this document for your own legal business activities only.
The content of this document is considered confidential information of Alibaba Cloud. You shall
strictly abide by the confidentiality obligations. No part of this document shall be disclosed or
provided to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted, or disseminat
ed by any organization, company, or individual in any form or by any means without the prior
written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades, adjustment
s, or other reasons. Alibaba Cloud reserves the right to modify the content of this document
without notice and the updated versions of this document will be occasionally released through
Alibaba Cloud-authorized channels. You shall pay attention to the version changes of this
document as they occur and download and obtain the most up-to-date version of this document
from Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud products and
services. Alibaba Cloud provides the document in the context that Alibaba Cloud products and
services are provided on an "as is", "with all faults" and "as available" basis. Alibaba Cloud
makes every effort to provide relevant operational guidance based on existing technologies
. However, Alibaba Cloud hereby makes a clear statement that it in no way guarantees the
accuracy, integrity, applicability, and reliability of the content of this document, either explicitly
or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial losses incurred
by any organizations, companies, or individuals arising from their download, use, or trust in
this document. Alibaba Cloud shall not, under any circumstances, bear responsibility for any
indirect, consequential, exemplary, incidental, special, or punitive damages, including lost
profits arising from the use or trust in this document, even if Alibaba Cloud has been notified of
the possibility of such a loss.

5. By law, all the content of the Alibaba Cloud website, including but not limited to works, products
, images, archives, information, materials, website architecture, website graphic layout, and
webpage design, are intellectual property of Alibaba Cloud and/or its affiliates. This intellectu

al property includes, but is not limited to, trademark rights, patent rights, copyrights, and trade

secrets. No part of the Alibaba Cloud website, product programs, or content shall be used,
modified, reproduced, publicly transmitted, changed, disseminated, distributed, or published
without the prior written consent of Alibaba Cloud and/or its affiliates. The names owned by
Alibaba Cloud shall not be used, published, or reproduced for marketing, advertising, promotion
, or other purposes without the prior written consent of Alibaba Cloud. The names owned by
Alibaba Cloud include, but are not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other
brands of Alibaba Cloud and/or its affiliates, which appear separately or in combination, as well
as the auxiliary signs and patterns of the preceding brands, or anything similar to the company
names, trade names, trademarks, product or service names, domain names, patterns, logos

, marks, signs, or special descriptions that third parties identify as Alibaba Cloud and/or its
affiliates).

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

MaxCompute User Guide / Legal disclaimer

Issue: 20180808 1

Generic conventions

Table -1: Style conventions

Style Description Example
This warning information indicates a
situation that will cause major system Danger:
changes, faults, physical injuries, and Resetting will result in the loss of user
other adverse results. configuration data.
This warning information indicates a
''''' situation that may cause major system | &% Warning:
changes, faults, physical injuries, and | Restarting will cause business
other adverse results. interruption. About 10 minutes are
required to restore business.
This indicates warning information,
supplementary instructions, and other Note:
content that the user must understand. | Take the necessary precautions to
save exported data containing sensitive
information.
This indicates supplemental instructio
ns, best practices, tips, and other Note:
content that is good to know for the You can use Ctrl + A to select all files.
user.
> Multi-level menu cascade. Settings > Network > Set network type
Bold It is used for buttons, menus, page Click OK.
names, and other Ul elements.
Couri er It is used for commands. Runthecd /d C./w ndows command
f ont to enter the Windows system folder.
Italics |[Itisused for parameters and variables. |bae 1 og list --instanceid
I nstance_I D
[] or [a]b] It indicates that it is a optional value, i pconfig[-all]|-t]
and only one item can be selected.
{} or{alb} |Itindicates that it is a required value, swich{stand | slave}
and only one item can be selected.

Contents

Legal disClaimer..........coiiiieiiiiiiciiirrs s s e s I
Generic CoONVENLIONS..........coiiieeiiiriecr e rr s s s s s s r e e e e nmn e rnnns I
1 Data upload and download..........ccccoeiriiircr s 1
1.1 Data upload and dOWNIOAA.............eoeiiiiiiiii i a e e e e e 1

1.2 Cloud migration Of data..........ccuuiiiiiii e 1

LR TN o] - T O PP PRSP PPPP 2

1.5 Import or export data using the Data Integration function...............cccccveeeennn, 5

1.6 TUNNEI SDK..oooeeeeiiiiieeee et e e e e aaae e e e e e s e s s snnstrraanereeaaaaaaaeaeeenn 9

T.8.1 SUMIMAIY ...ttt e st e e e et e e e e ee s 9

1.6.2 TabIETUNNEL ... e e e e e e e e as 10

1.6.3 UPIoadSESSION......uciiiiiiiiieee e 12

1.6.4 DOWNIOAASESSION.ttt 14

1.6.5 TunnelBUferedWIter...........cuviiiieeeeeeee e 15

1.7 Bulk data channel SDK eXample............oouiiiiiiiiiiiiiiiiie e e e e eeeeens 16

171 EXAMPIE. ...ttt e e e e e e e e 16

1.7.2 Example for uploading............uueeieiiiiiieiii e 16

1.7.3 Example for downloading...........coioiiiiiiiiiiiiiee e 18

1.7.7 Example for BufferedWriter uploading.............cooeiiiiiiiiiiiii e 20

1.9 Connection to data tunnel SErviCe. ... 21

2 CommoN COMMANS........ccceuiiiremnirireensrrrnmnserrnns s rennsssersmnssssnnnnsssenns 22
2.1 Overview of COMMON COMMEANAS........uuuiiiiiiiiiiiiieeeeeeiseeeeerbrrrer e reaaaeeeeeesaaannnnnrraneeeees 22

2.2 Project OPEratioNS........coiiuuiiiii ittt 22

2.3 Table OPerations...........eeiii ittt e e e et e e e e e s e e e e e e e e enneeeeaeaan 23

2.4 INSTANCE....ei ittt ettt e et e e s bt a e e e e e e b ae e e e e aae 27

2.6 FUNCLON OPEratioNS..........eiiiiiiiiiiiee ettt ee e e e e e e e e e e e e e e enneeeeeeseennreeeas 32

2.7 Other Operations...........eeiiiiiiiiie et e e e et e e e s eabee e e e e e e neeeeaeeann 33

B S T O | P 38
R Tt S T O S 10 19T o =T USROS 38

R 10 T s T 0 SR 39

3.4.2 Lifecycle of table..........oo i 39

3.4.3 VIEW OPEIratiONS.........eiiiiiiiiiii et e et e e e e e snbe e e e 40

3.4.4 Column/Partition Operation................oooiiiiiiiiiiiiiiec e 42

3.5 INSEIt OPEration........ooiii et e e e e et e e e e e e e nnees 45

3.5.2 MULTI INSERT ...ttt e e e e e e e eneeas 45

3.5.3 DYNAMIC PARTITION. ..ciiiiiiiiiiiee s iiiiie e et e e st e e s e e e s ennaee e e e e nnnneeee s 46

3.5.4 VALUES......ccooe ettt ettt e e et e e e bte e et e e e anne e e enneaens 48

3.6 SeleCt OPEratioN.........uuiuiiiiii i e e e e e e e e aaaaaaaaas 51

3.6.1 Introduction to the SELECT SyntaX.........ccccoiieiiiiiiiiniie e 51

3.6.2 SELECT SEQUENCE........uiiiiieeiiiiiie ettt e et e e e e s e e e e e enneeeeas 55

G TG0 T 1] o o |- U 56

3.6.4 UNION ALL/UNION [DISTINCT]...cieieiiieie e 58

3.6.6 SEMI JOIN. ...t e e et e e e e s e e e s e anreeeae s 59
3.6.10 Common table expression (CTE).......ccccuuiiiiiiiiiiiiee e 60

G 5 10 I T O SRS 61
RS |11 o Q@ o= = 4[] o SRR 61
3.9 SQL FeSIICHONS. ..cei ittt e et e e e e e e e e 61
3.10 BUIIN FUNCLON. ... e e e e e e e e e e e e e e e e s 63
3.10.1 Date FUNCHONS. ... 63
3.10.3 WINAOW FUNCHONS.uiiiiiiiiiiiiiee et 79

R Tt T I U TR 95
3.11.1 UDF SUMMAIY.... ittt e e e e e e e e e e e r e e e eeeaaaaeeeeas 95
3.11.2 JAVa UDFttt e e s e nraeeee s 97
3113 PYthon UDF ...t e e e e e e 108

B2 AP PENAIX.cettttiieeee e e e aaaaaaaeeeeeea————————————— 115
3.12.1 ESCAPE CharacCters.........c.uuiiiiiiiiiiii et eee e e e e 115
3.12.2 LIKE USAQE......euiiiiiiiiiiiiieee ettt e e e e e e e e e e e e 116
3.12.3 Regular EXPreSSION........cciii i ittt e e e e e e e e e e e e e e e e 116
3.12.4 ReSErVed WOIAS.uuuiiiiiiiiiiiiiie ettt e e e e e e s 119

4 MaPREAUCE......cc.uiiiiiirieeniiir i rrremssss s s s s s s s e s nm s s s e s e nnmnsssasessnnnnnns 120
g IS U0y 4= 1 SR 120
4.1.1 MAPREAUCE..... ... e e e e e e e e e e e e e e 120

4.1.2 Extended MapREAUCE............oovmiiiiicceei e eeaaans 123

4.1.3 Open-source MapREAUCE.c..uiiiiiiiiii e 123

4.2 FUNCtion INtrOdUCHION.ooiiiiiii et 128
4.2.1 COMMAN.......uuiiiiiiiiiiieiee e e e e e e e e e e e e e e e e e eaeaeeeeeeeaaaeannes 129

4.2.2 BasiC CONCEPHON....... ettt ettt e e e e e ee s 131

4.2.3 INput and OUIPUL......eiiii e 132
=T 1 o= P 132

o Y o Tor- | I 4 U o PRSPPI 132

4.3 Program EXamPIe.........ooi oot a e e e e e e 135
4.3.1 WordCount Sample..... ..ot 135

4.3.2 MapONIY SamMPIE...ceeiiiiiiiiiei et a e e e e e e 138

4.3.3 Multi-input @and OUEPUL......c.coiiiiiiee e e 140

4.3.4 Multi-task Sample........cooo i 144

4.3.5 Secondary Sort SamPIe.........ccooieiiiii e 147

4.3.6 RESOUICE SAmMPIE.......eoiiiiiiiiiiee ettt e e e e e e e eneneeee e 149

4.3.7 CoUNEr SAMPIE......uuiiiiiiiiiiiiiee et e e e e aaaea e 152

4.3.8 GreP SAMIPIE....uci i e e e e e e e e e aaaaaa 154

4.3.9 JOIN SAMPIE....oi it e et a e e e e e e 158
4.3.10 SIEEP SAMPIE....coeeeieeeeeee e ———————— 161
4.3.11 UNIQUE SAMPIE. .ttt e e st e e e s e e e e e s ntaee e e s e nnsreeeeeeans 162
4.3.12 SOIt SAMIPIE. .t e e a e 165
4,313 Partition........eeiiiiie e 168

4.3.14 PIpeline SamPIe.. ... ueiiiie ettt 169

4.4 Java SDK...... oo e 172

4.4.1 JaVva SDK...o e a e e e 172

4.5 MR RESIICHONS. ...t e e e s enbre e e e e e 178

5 Java SandboX.........ccciiiiiiiirr e 182
TS o PR 187
L0 g T T 5 RS 187

7 Handle-Unstructured-data...............ccmmeeniiiiiimmiscciniirrreieeeneeanns 203
7.1 ACCESS OSS Data......coeiiiiiiiiiiiiiiiiiei et 203

7.2 Visit Table Store Data..........ooceeiiiiii e 215

S €T - T o] o 222
. TRt S T T a4 =TS 222

8.2 FUNCLION OVEIVIEW.... ittt e et e e e e s e e e e e nnneeeas 225

8.3 SDK SUMIMAIY ...ci ittt e e e e e e aaeeeeesssaannnterrenreeeeeaaaaaeesseanaanns 229

8.4 Development and DebugQiNg.......ccceuiiiiiaiiiiiiiieee e e e e e 230

8.5 RESIICHON. ...t 238

G BT =T a1 0] = SR 238

881 SO P e a e 238

8.6.2 PAQERANK.......cco i ———————————————————— 242

8.6.3 KIMEANS. ...ciiiiii it et e e e e e e e e e e e e e et e e e e e aaaaeens 245

8.6.4 BiPartiteMatChiing............ooiiiiie e ———— 250

8.6.5 Strongly-connected COMPONENL............oeiiiiiiiiiieeiiiiiccieeeer e 253

8.6.6 Connected COMPONENT.........ooiiiiiie e e e 261

TSI A oY o To] (oo VRS Yo o 1] o TSRS 263

8.6.8 Linear REGIESSION......ccoicuuiiiiiiiiiiei e 266

8.6.9 Triangle COUNL........ et e e e e e enaeeea e 271

8.6.10 VerteX INPUL.......ooiicc e 273

8.6.11 Edge INPUL... et e e e e e e e as 280

8.7 Introductions of Aggregator MechanisSm.............ceeeiiiiiiiee i 286

L0 TS 7= o U] | 295
1S IR B =T 1= G O =Y PR STRRR 295

9.2 QUICK STt et e e et e e s e e e e e e e e e e 295

9.2.1 Add users and grant permisSSiONS.........ccoeviiiiiiiiiiiiiiiiiie e 295

9.2.2 Add users and grant permissions using ACL..........ccccccviiieiiiiiiiiiccee, 295

9.2.3 Project data proteCtion..........ccuuuviiiiiiiieeee e 296

9.3 User AUthentiCatioN........ ..o 296

9.4 User ManagemeEnt.........coeei i i e e e e e e e e e e e 298

9.5 ROIE MaNAGEMENT......cooiiiiiiiiie e 302

9.6 AUTNOMIZALION. ...t e et e e e e e e e e e neeeeeens 305

9.7 PermiSSiON CRECK..........uiiiiiiiiiiei e a e s 309

9.8 Security ConfigUration............ocuiiiiri i 310

9.9 Security Command LiSt...........uiiiiiiiiiiiii e 311

9.9.1 Security Configuration of a Project...........cccccoiiiiiiiii e 311

9.9.2 Permission Management of a Project
9.10 Resource share across project space...........
9.10.1 Resource Sharing across Projects B

ased on Package.......ccccccveeeeeeeeiinnnns

9.11 Column-leVel ACCESS CONIOL......coon et eenn

MaxCompute

User Guide / Contents

\

Issue: 20180808

1 Data upload and download

1.1 Data upload and download

This article provides a brief introduction about the upload and download process of the

MaxCompute system data, including service connection, SDKs, tools, and cloud data migration.

The DataHub and Tunnel offers the real-time data tunnel and the batch data tunnel respectively to

access the MaxCompute system.

Both DataHub and Tunnel provide their own SDKs. The SDKs and derivative data upload and

download tools can suffice your data upload and download requirements in various scenarios.

Data upload and download tools include: DataWorks, DTS, OGG plugin, Sqoop, Flume plugin,

Logstash plugin, Fluentd plugin, Kettle plugin, MaxCompute console.
Underlying data tunnels used by these tools include:
» DataHub tunnel tools

— OGG

— Flume
— LogStash
= Fluentd

e Tunnel tools

— DataWorks
— DTS

- Sqoop

— Kettle

= MaxCompute console

A wide range of data upload and download tools are applicable to most of the cloud data migration
scenarios. The following articles introduce the tools, Hadoop data migration, database data
synchronization, log collection, and other cloud migration scenarios. Refer to these articles when

you select the technical solutions.

1.2 Cloud migration of data

Data upload and data download tools of the MaxCompute platform are applicable for a wide range

of cloud data migration scenarios. This document introduces some typical scenarios.

Hadoop data migration
You can use Sqoop or DataWorks for Hadoop data migration.

+ Sqoop runs an MR job on the original Hadoop cluster for distributed data transmission to

MaxCompute and is highly efficient. For more information, see the Sqoop tool introduction.

+ DataWorks can be used with DataX for Hadoop data migration.
Database synchronization

To synchronize data of database to MaxCompute, select an appropriate tool based on the

database type and synchronization policy.

» For offline batch data synchronization, you can use DataWorks which supports a wide range of
database types, including MySQL, SQL Server, and PostgreSQL. For more information, see
Data synchronization introduction. For instance operation instructions, see Create a synchroniz
ation task.

» For real-time Oracle data synchronization, use OGG plug-in tools.

» For real-time RDS data synchronization, use DTS.
Log collection

For log collection, use Flume, Fluentd, and Logstash tools. For a sample scenario, see flume

collects web site log data to maxcompute and sea volume log data analysis and application.

1.3 Tools

The MaxCompute platform supports a wide range of tools. The source code for most tools can be
found on GitHub, the open-source community for data uploading and data downloading. Different
tools are applicable to different scenarios, and the tools are divided into two types. The two types
are Alibaba Cloud DTplus products and open-source products. This document provides a brief

description of these tools.
Alibaba Cloud DTplus products
+ Data Integration of DataWorks

Data Integration, or data synchronization, of DataWorks is a stable, efficient, and scalable
data synchronization platform provided by Alibaba Cloud. It is designed to provide full offline
and incremental real-time data synchronization, integration, and exchange services for the

heterogeneous data storage systems on Alibaba Cloud.

https://www.alibabacloud.com/help/doc-detail/47677.html
https://www.alibabacloud.com/help/doc-detail/47677.html
https://help.aliyun.com/document_detail/30269.html
https://help.aliyun.com/document_detail/30269.html
https://yq.aliyun.com/articles/66600
https://yq.aliyun.com/articles/66600
https://yq.aliyun.com/articles/61912

Data synchronization tasks support the following data types: MaxCompute, ApsaraDB for RDS
(MySQL, SQL Server, and PostgreSQL), Oracle, FTP, ADS (AnalyticDB), OSS, Memcache,
and DRDS. For more information, see Data synchronization introduction, and for usage

methods, see Create a data synchronization task.

MaxCompute Console

= For information about console installation and basic usage, see Client introduction.

— Based on the Batch data tunnel SDK, the client provides built-in Tunnel commands for data

uploading and data downloading. For more information, see Basic Tunnel command usage.

-

=] Note:

This is an open-source GitHub project.

DTS

Data Transmission (DTS) is a data service provided by Alibaba Cloud that supports
data exchanges between RDBMS, NoSQL, OLAP, and other data sources. It provides
data migration, real-time data subscription, real-time data synchronization, and other data

transmission features.

DTS supports data synchronization from ApsaraDB for RDS and MySQL instances to
MaxCompute tables. Currently, other data source types are not supported. For more

information, see Create a job to synchronize data from ApsaraDB for RDS to MaxCompute.

Open-source products

Sqoop

As a tool developed based on the Sqoop 1.4.6 community, Sqoop provides enhanced
MaxCompute support with the ability to import and export data from MySQL and other
relational databases to MaxCompute tables. Data in HDFS/Hive can also be imported to

MaxCompute tables. For more information, see MaxCompute Sqoop.

-

=] Note:

This is an open-source GitHub project.

Kettle

Kettle is an open-source ETL tool based on Java which can run on Windows, Unix, or Linux. It
provides graphic interfaces for you to easily define data transmission topology using drag-and-

drop components.

https://www.alibabacloud.com/help/doc-detail/47677.html
https://www.alibabacloud.com/help/doc-detail/30269.html
https://github.com/aliyun/aliyun-odps-console
https://www.alibabacloud.com/help/doc-detail/26592.html
https://www.alibabacloud.com/help/doc-detail/44547.html
https://github.com/aliyun/aliyun-maxcompute-data-collectors/wiki/odps-sqoop
https://github.com/aliyun/aliyun-maxcompute-data-collectors

Note:
This is an open-source GitHub project.

Flume

Apache Flume is a distributed and reliable system which can efficiently collect, aggregate, and
move massive volumes of log data from different data sources to a centralized data storage

system. It supports multiple Source and Sink plugins.

The DataHub Sink plug-in of Apache Flume allows you to upload log data to DataHub in real

time and archive the data in MaxCompute tables. For more information, see flume_plugin.

Note:

This is an open-source GitHub project.

Fluentd

Fluentd is an open-source software product used to collect logs, including application logs,
system logs, and access logs, from various sources. It allows you to select plugins to filter and
store log data to different data processors, including MySQL, Oracle, MongoDB, Hadoop, and

Treasure Data.

The DataHub plug-in of Fluentd allows you to upload data to DataHub in real time and archive

the data in MaxCompute tables.

LogStash

Logstash is an open-source log collection and processing framework. The logstash-output-
datahub plugin allows you to import data to DataHub. This tool can be easily configured to
collect and transmit data. When used together with MaxCompute/StreamCompute, it allows

you to easily create an all-in-one streaming data solution from data collection to analysis.

The DataHub plug-in of Logstash allows you to upload data to DataHub in real time and archive

the data in MaxCompute tables.

O0GG

The DataHub plug-in of OGG allows you to incrementally synchronize Oracle database data to

DataHub in real time and archive the data in MaxCompute tables.

Note:

This is an open-source GitHub project.

https://github.com/aliyun/aliyun-maxcompute-data-collectors?spm=a2c4g.11186623.2.15.oSXp9R
https://github.com/aliyun/aliyun-maxcompute-data-collectors/wiki/flume_plugin?spm=a2c4g.11186623.2.16.oSXp9R
https://github.com/aliyun/aliyun-maxcompute-data-collectors?spm=a2c4g.11186623.2.17.oSXp9R
https://github.com/aliyun/aliyun-maxcompute-data-collectors?spm=a2c4g.11186623.2.21.oSXp9R

1.5 Import or export data using the Data Integration function

You can use Data Integration function of DataWorks to create data synchronization tasks and

import and export MaxCompute data.
Prerequisites

Before importing or exporting data, make sure you have completed the preparatory operations.

See Prepare an Alibaba Cloud account and Purchase and create a project.

Add MaxCompute Data Source

Note:

* Only the project administrator can create a data source. Other roles can only view the data
source.

+ [f the data source you want to add is a current MaxCompute project, skip this operation
. After this project is created and appears as a Data Integration data source, this project is

added as a MaxCompute data source named odps_first by default.
Procedure

1. Log on to the DataWorks console as an administrator and click Enter Workspace in the
actions column of the relevant project in the Project List.

2. Click Data Integration in the top navigation bar to go to the Data Source page.

3. Click Add Data Source.

4. Enter relevant configurations in the data dialog box.

Configurations:

+ Data source nane: Contains letters, numbers, and underlines. It must begin with a letter
or an underline, and cannot exceed 60 characters.

+ Data source description: Provides a brief description of the data source, and cannot
exceed 80 characters.

« Data source type: Currently itis MySQL.

+ ODPS Endpoi nt : Read-only by default. The setting is automatically read from the system
configuration.

+ MaxConput e project name: Identifies the corresponding MaxCompute project.

https://www.alibabacloud.com/help/doc-detail/47677.html
https://workbench.data.aliyun.com/console?spm=a2c4g.11186623.2.7.bBZHDz

* Access | D: The Access ID associated with the account of the MaxCompute project
owner.
+ AccessKey: The AccessKey associated with the account of the MaxCompute project

owner, used in pairs with the Access ID.
5. Click Test Connectivity.

6. If the connectivity test is successful, click Save.

Note:

For the configuration of other data sources, see Data source configuration.
Use Data Integration to Import Data

Take importing MySQL data to MaxCompute as an example, you can configure a synchronization

task using Wizard Mode or Script Mode.
Configure a Synchronization Task in Wizard Mode

1. Create a Wizard Mode synchronization task.

2. Select the source.

Select the MySQL data source and the source table “mytest”. The data browsing area is

collapsed by default. Click Next.

3. Select the target.

The target must be a previously created MaxCompute table. You can also create a new table

by clicking Quick Table Creation.

Configurations:

« Partition information:You must specify every level of partition. When writing data to
a table with three levels of partitions, you must configure the last partition level, for example,
pt=20150101, type=1, biz=2. This item is unavailable for non-partitioned tables.

« Data clearing rules:

— Cl ear existing data before writing: Before data is imported to a table
or partition, all data in the table or partition is cleared, which is equivalent to “Insert

Overwrite”.

https://www.alibabacloud.com/help/doc-detail/60416.html

— Retain existing data before witing: Existing data is not cleared before new
data is imported. Each operation appends new data, which is equivalent to “Insert Into”.

4. Map the fields.

Select the mapping between fields. You must configure the field mapping relationships. The
Source Table Fields on the left correspond one to one with the Target Table Fields on the

right.

5. Control the tunnel.

Click Next to configure the maximum job rate and dirty data check rules.

Configurations:

* ©Maxi mum j ob r at e: Determines the highest rate possible for data synchronization jobs.
The actual rate of the job may vary with the network environment, database configuration,
and other factors.

+ Concurrent job count: For a single synchronization job, Concurrent job count *

Individual job transmission rate = Total job transmission rate.
When a maximum job rate is specified, how do you select the concurrent job count?

+ If your data source is an online business database, we recommend that you do not set a
large value for the concurrent job count to avoid interfering with the online database.
+ If you require a high data synchronization rate, we recommend that you select the highest

job rate and a large concurrent job count.

6. Preview and save.

After configuration, you can scroll up or down to view the task configurations. If no errors found,

click Save.

Run a synchronization task
Run a synchronization task directly

If system variable parameters are set in the synchronization task, the variable parameter

configuration window is displayed during task operation.

After saving the task, click Run to run the task immediately. You can also click Submit to
submit the synchronization task to the scheduling system of Data IDE. The scheduling system
automatically and periodically runs the task from the second day according to the configuration
attributes. For more information on scheduling configurations, see Scheduling configuration

description.
Configure a Synchronization Task in Script Mode

You can use the following script to configure synchronization tasks. Other configurations and job

operation are the same as Wizard Mode.

"type": "job",
"version": "1.0",
"configuration": {
"reader": {
"“plugin": "nysqgl",
"paraneter": {
"dat asource": "nysqgl",
"where": "",
"splitPk": "id",
"connection": |

"table": |
" person”

"dat asource": "nysqgl"

"connecti onTabl e": "person",
"colum": |
n i dll ,

"witer": {
"plugin": "odps",
"paraneter": {
"dat asource": "odps first",
"table": "al",
"truncate": true,
"partition": "pt=%${bdp.system bi zdate}",
"colum": [
"id",
"col 1"

"setting": {
"speed": {
n I,prsll . n 1" ,
"concurrent": "1"

https://www.alibabacloud.com/help/doc-detail//50130.html
https://www.alibabacloud.com/help/doc-detail//50130.html

Reference Documentation

» For the Reader configurations about different types of data soucrces, see Configure Reader

Plug-ins.

» For the Writer configurations about different types of data soucrces, see Configure Writer Plug-

ins.

1.6 Tunnel SDK
1.6.1 Summary

MaxCompute Tunnel is the data tunnel of MaxCompute. You can use Tunnel to upload data

to or download data from MaxCompute. Tunnel only supports table data uploading and data

downloading.

MaxCompute provides Data upload and download tools programmed based on the Tunnel SDK.

When using Maven, you can search for odps- sdk- cor e in the Maven database to find different

versions of Java SDK. The configuration is as follows:

<dependency>

<gr oupl d>com al i yun. odps</ gr oupl d>
<artifactld>odps-sdk-core</artifactld>
<ver si on>0. 24. 0- publ i c</ ver si on>

</ dependency>

This document describes the main interfaces of Tunnel SDK, which may vary with the SDK

version.

Main interface

Description

TableTunnel

The portal class interface to access the
MaxCompute Tunnel service. You can access
MaxCompute and its Tunnel using the Internet
or intranet of Alibaba Cloud. When you
download data with MaxCompute Tunnel using
intranet of Alibaba Cloud, no traffic fee is
incurred. The intranet address is only valid for
cloud products in the Hangzhou region.

TableTunnel.UploadSession

Indicates a session used to upload data to a
MaxCompute table.

https://www.alibabacloud.com/help/faq-list/49806.html
https://www.alibabacloud.com/help/faq-list/49806.html
https://www.alibabacloud.com/help/faq-list/49807.html
https://www.alibabacloud.com/help/faq-list/49807.html
http://search.maven.org/

Main interface Description

TableTunnel.DownloadSession Indicates a session used to download data
from a MaxCompute table.

Note:

¢ For more information about the SDK, see SDK Java Doc.

* For more information about service connections, see Access Domains and Data Centers.

1.6.2 TableTunnel

TableTunnel is an ingress class that accesses the MaxCompute Tunnel service. The TableTunne
I.UploadSession interface is a session that uploads data to the MaxCompute table. The
TableTunnel.DownloadSession interface is a session that downloads data to the MaxCompute

table.

This interface is defined as follows:

public class tabl etunnel {

publ i ¢ Downl oadSessi on creat eDownl oadSessi on(String project Name,
String tabl eNane);

publ i ¢ Downl oadSessi on cr eat eDownl oadSessi on(String project Name,
String tabl eName, PartitionSpec partitionSpec);

publ i ¢ Upl oadSessi on creat eUpl oadSessi on(String projectNanme, String
t abl eNane) ;

publ i ¢ Upl oadSessi on creat eUpl oadSessi on(String projectNanme, String
t abl eName, PartitionSpec partitionSpec);

publ i ¢ Downl oadSessi on get Downl oadSessi on(String projectNane, String
t abl eName, PartitionSpec partitionSpec, String id);

publ i ¢ Downl oadSessi on get Downl oadSessi on(String projectNane, String
tabl eNanme, String id);

publ i ¢ Upl oadSessi on get Upl oadSessi on(String projectNane, String
tabl eName, PartitionSpec partitionSpec, String id);

publ i ¢ Upl oadSessi on get Upl oadSessi on(String projectNanme, String
t abl eName, String id);

Description:

+ Life cycle: Starts from TableTunnel instance creation and ends with the completion of the
program.

» Provides the method for creating uploading and downloading objects.

» The process of uploading and downloading a table or partition is called as a session. A

session consists of one or more HTTP requests to the Tunnel RESTful API.

http://repo.aliyun.com/java-sdk-doc/

* The uploading session of TableTunnel is INSERT INTO semantics, which means that sessions
that upload the same table or partition do not affect each other. The upload of each session is
located in different directories.

* In an uploading session, each RecordWriter corresponds to an HTTP Request, identified by a
block id, corresponding to a file on the service side (The block id is the corresponding file name
).

* In a session, opening RecordWriter multiple times with the same block id results in overwritin
g. The data uploaded by the last RecordWriter calling close() is retained. This feature can be

used for retransmissions when block uploading fails.
The TableTunnel Interface implementation process is as follows:

1. RecordWriter.write() uploads data to a file in a temporary directory.

2. RecordWriter.close() moves the preceding file from the temporary directory to the data
directory.

3. Session.commit() moves all files in the corresponding data directory to directory where the
corresponding table resides, and updates the table meta. This means that data moving into the

table is visible to other MaxCompute tasks (such as SQL, MR).
The TableTunnel Interface restrictions are as follows:

* The range of block id is 0 to 20000. The data size uploaded by a single block is limited to 100
GB.

* The session timeout is 24 hours. If massive data results in the transmission time exceeding 24
hours, you must split them into multiple sessions.

+ The HTTP Request timeout for RecordWriter is 120 seconds. If there is no data flow through

the HTTP connection within 120 seconds, the service automatically closes the connection.

Note:

It should be noted that there is an 8 KB buffer for HTTP itself, so we cannot make sure that
there is data flow through an HTTP connection when you call RecordWriter.write() each time.
TunnelRecordWriter.flush() can forcibly flush data from the buffer.

» For the scenario that logs are written into MaxCompute, the RecordWriter can easily time out

because the data arrives unpredictably. At this time:

= We do not recommend that you open a RecordWriter for each piece of data(Because
each RecordWriter corresponds to a file, too many small files can seriously affect the
MaxCompute performance).

— We recommend that you can call a RecordWriter to write data in a batch when your code
cache data size exceeds 64 MB.

RecordReader timeout is 300 seconds.

1.6.3 UploadSession

The UploadSession interface is defined as follows:

public class Upl oadSessi on {
Upl oadSessi on(Configurati on conf, String projectName, String
t abl eNane,
String partitionSpec) throws Tunnel Excepti on;
Upl oadSessi on(Configurati on conf, String projectName, String
t abl eNane,
String partitionSpec, String uploadld) throws Tunnel Exce

pti on;

public void commt(Long[] bl ocks);

public Long[] getBl ockList();

public String getld();

publ i ¢ Tabl eSchema get Schena() ;

publ i c Upl oadSessi on. St at us get St atus();

public Record newRecord();

public RecordWiter openRecordWiter(long blockld);

public RecordWiter openRecordWiter(long blockld, boolean
conpr ess) ;

public RecordWiter openBufferedWiter();

public RecordWiter openBufferedWiter(bool ean conpress);

Upload objects:

Life cycle: Starts from the creation of the Upload instance and ends with the completion of the

upload process.

Create Upload instance: You can create an instance by Calling the Constructor or by using

TableTunnel.

= Request method: Synchronous.

— The server creates a session for this upload instance and generates a unique Uploadld for

the upload. Obtain this ID using the get | d on the client.
Upload data:

= Request method: Synchronous.

= Call the openRecor dWi t er method to generate a RecordWriter instance. The blockld

identifies the data to be uploaded and describes its location in the table within the value

range of [0,20000]. When data fails to be uploaded, you can reupload it based on the
blockld.

View upload:

= Request method: Synchronous.
= Call get St at us to obtain the current upload status.

— Call get Bl ockLi st to obtain the successfully uploaded blockld list. You can compare this

with the upload blockld list to find and reupload failed blocklds.
End upload:

= Request method: Synchronous.

— Callthe Cormit (Long[] bl ocks) method. The blocks list shows successfully

uploaded blocks. The server verifies this list.

= This function enhances data verification. If the provided block list does not match the block

list on the server, an error occurs.
= |f Commit fails, you can try again.

Seven kinds of status are described as follows:

+ UNKNOWN: The initial value when the server creates a session.
+ NORMAL: The upload object is created successfully.

* CLOSING: When the conpl et e method (end upload) is called, the server changes the
status to CLOSING.

» CLOSED: After completing upload (which means to move data to the directory where result

table is).
+ EXPIRED: The upload has timed out.
+ CRITICAL: Service error.

Note:

The blocklds in the same UploadSession must be unique. In a single UploadSession, when
you use a blockld to open RecordWriter, write a batch of data, call cl ose, and then call

Commit, you cannot use the same blockld to open another RecordWriter to write data.
The maximum size of a block is 100 GB, preferably more than 64 MB.

The life cycle of each session on the server is 24 hours.

+ When data is being uploaded, each 8 KB of data written by the Writer triggers a network action
. If no network actions are triggered within 120 seconds, the server closes the connection. In
this case, the Writer becomes unavailable and you must open a new one.

* We recommend that you use the openBufferedWriter interface to upload data. This interface
does not show blockld details and contains an internal data cache for automatic retry upon

failures. For more information, see the introductions and examples of TunnelBufferedWriter.

1.6.4 DownloadSession

This DownloadSession interface is defined as follows:

public class Downl oadSessi on {
Downl oadSessi on(Configuration conf, String projectName, String
t abl eNane,
String partitionSpec) throws Tunnel Excepti on
Downl oadSessi on(Confi guration conf, String projectNanme, String
t abl eNane,
String partitionSpec, String downl oadl d) throws Tunnel Exce
ption
public String getld()
public | ong get RecordCount ()
publ i c Tabl eSchena get Schema()
publ i ¢ Downl oadSessi on. St at us get St at us()
publ i ¢ Recor dReader openRecor dReader (|l ong start, |ong count)
publ i ¢ RecordReader openRecor dReader (|l ong start, |ong count,
bool ean conpr ess)

Download objects:

+ Life cycle: Starts from the creation of the Download instance and ends with the completion of

data download.

» Create Download instance: You can create an instance by Calling the Constructor or by using

TableTunnel.

— Request method: Synchronous.
— The server creates a session for this download instance and generates a unique

Downloadld for the download. Obtain this ID using the get | d on the client.

= This operation results in high costs. The server creates an index for the data files. In case of

a large amount of files, this may take a long time.

- At the same time, the server returns the total number of Records and starts multiple

concurrent downloads based on this value.

« Download data:

— Request method: Asynchronous.

= Call the openRecor dReader method to generate a RecordReader instance. “start”
identifies the start position of downloading this record which cannot be less than zero.

“count” specifies the number of records for this download which must be greater than zero.

* View download:

= Request method: Synchronous.
= Call get St at us to obtain the current download status.

» The four types of status are as follows:

— UNKNOWN: The initial value when the server creates a session.
— NORMAL: Create Download object succeeds.

— CLOSED: After downloading.

— EXPIRED: The download has timed out.

1.6.5 TunnelBufferedWriter

To complete the uploading process, follow these steps:

1. Divide the data.

2. Specify a block ID for each data block by calling the openRecordWiter (id).

3. Use one or more threads to upload the blocks. If a block fails to upload, you must re-upload all
blocks.

4. After uploading all blocks, provide the uploaded blockid list to the server for verification. This is

done by calling sessi on. commit([1,2,3,.]).

The connection time-out and other restrictions on server block management complicate
the upload process logic. Therefore, the SDK provides a more advanced RecordWriter—

TunnelBufferWriter interface to simplify the process.
This interface is defined as follows:

public class Tunnel BufferedWiter inplenents RecordWiter {

publ i c Tunnel Buf feredWiter (Tabl eTunnel . Upl oadSessi on sessi on
, ConpressQption option) throws | OExcepti on;

public | ong get Tot al Bytes();

public void setBufferSize(long bufferSize);

public void setRetryStrategy(RetryStrategy strategy);

public void wite(Record r) throws | CException;

public void close() throws | OExcepti on;

TunnelBufferedWriter objects:

+ Life cycle: Starts from RecordWriter creation and ends with the completion of data upload.

Create TunnelBufferedWriter instance: Call openBuf f er edW i t er interface of
UploadSession to create an instance.

Data upload: Call the Write interface. Data is first written to the local cache. After the cache

is full, the data is submitted to the server in batches to avoid connection time-out. Automatic
retries are supported if the upload fails.

End upload: Call the Close interface, and then call the Commit interface of UploadSession to
complete the upload process.

Buffer control: You can use the setBufferSize interface to modify the size of memory (bytes),
occupied by the buffer preferably greater than 64 MB to prevent the server from generating too
many small files, which may affect the performance. The default value is generally used for this
parameter without additional settings.

Retry policy setting: You have three retry avoidance policies to choose from:
EXPONENTIAL_BACKOFF, LINEAR_BACKOFF, and CONSTANT_BACKOFF. For example:
The following code segment sets the number of Write retries to 6. To avoid unnecessary
retries, each retry is performed only after exponentially ascending intervals of 4s, 8s, 16s, 32s,

64s, and 128s. This is the default configuration and generally cannot be changed.

RetryStrategy retry

= new RetryStrategy(6, 4, RetryStrategy.Backoff Strategy. EXPONENTI A
L_BACKOFF)
witer = (Tunnel BufferedWiter) upl oadSessi on. openBufferedWiter();
witer.setRetryStrategy(retry);

1.7 Bulk data channel SDK example

1.7.1 Example

MaxCompute provides two service addresses for you to choose from. The Tunnel service
address you select may directly affect your data upload efficiency and billing. For more
information, see Tunnel SDK overview.

We recommend that you use the TunnelBufferedWriter interface when uploading data. For
more information, see the sample codes in BufferedWriter.

Operations may vary based on SDK versions. This example is provided only for reference.

Note the differences for different versions.

1.7.2 Example for uploading

i mport java.io.l OException;

import java.util.Date;
i mport com al i yun. odps. Col um;
i mport com al i yun. odps. Gdps;

i mport com aliyun. odps. PartitionSpec;

i mport com al i yun. odps. Tabl eSchenms;

i mport com al i yun. odps. account . Account ;

i mport com al i yun. odps. account. Al i yunAccount ;

i nport com al i yun. odps. dat a. Recor d;

i mport com al i yun. odps. dat a. RecordWiter;

i mport com al i yun. odps. tunnel . Tabl eTunnel ;

i mport com al i yun. odps. tunnel . Tunnel Excepti on;

i mport com al i yun. odps. tunnel . Tabl eTunnel . Upl oadSessi on;
public class Upl oadSanpl e {

private static String accessld = "<your access id>";

private static String accessKey = "<your access Key>";

private static String odpsU |l = "http://service.odps. aliyun.
con api ";

private static String tunnel rl = "http://dt.cn-shanghai.

maxconput e. al i yun-i nc. cont';

/1 The tunnel URL nust be set if you need to
connect internal network, otherw se, the system uses public network as
default. The exanpl e shows the Tunnel Endpoint of classical network
in HuaDong 2, for other regions, see Access donmain and data centers.

private static String project = "<your project>";
private static String table = "<your table name>";
private static String partition = "<your partition spec>";

public static void main(String args[]) {
Account account = new AliyunAccount (accessl d,

accesskKey) ;
Qdps odps = new Qdps(account);
odps. set Endpoi nt (odpsUrl);
odps. set Def aul t Proj ect (proj ect);
try {
Tabl eTunnel tunnel = new Tabl eTunnel (odps);
tunnel . set Endpoi nt (tunnel Url); //set
tunnel Ur|

PartitionSpec partitionSpec = new PartitionS
pec(partition);
t unnel .

Upl oadSessi on upl oadSessi on
cr eat eUpl oadSessi on(proj ect,
table, partitionSpec);
Systemout. println("Session Status is :
+ upl oadSessi on. get St at us() .

toString());

0);

/[l After preparing data, open a Witer to
start witing data. The prepared data is witten to one bl ock.

/1 \When the data witten to individual

bl ocks is too small, the systemw |l produce a |arge nunber of
smal |l files, seriously degrading conmputing performance. W strongly
recomrend over 64 MB of data be witten each tinme (up to 100 GB of
data can be witten to the same bl ock).

/! You can use the average data vol ume and
record count to estimate the total value. For exanple: 64MB < Average
data size x Record count < 100GB.

RecordWiter recordWiter = upl oadSessi on.

Tabl eSchema schema = upl oadSessi on. get Schena

openRecordWiter (0);
Record record = upl oadSessi on. newRecord();
for (int i = 0; i < schema. getColums().size
() i+4) { ,
Col unmm col umm = schenma. get Col unm(i) ;
switch (col um. get Type()) {
case Bl G NT:
record.setBigint(i, 1L);

br eak;
Case Bool ean:
record. set Bool ean(i, true);
br eak;
case DATETI ME:
record. setDatetinme(i, new
Date()); o ek
reak;
case DOUBLE:
record. set Doubl e(i, 0.0);
br eak;
case STRI NG
record.setString(i, "sanple

br eak;
def aul t:
t hrow new Runti neException("

Unknown col um type:
+ col um.

get Type()) ;

}
for (int i =0; i < 10; i++) {
/!l Wites data to the server. Each 8
KB of data witten triggers a network transmn ssion.
/1 If no network transmi ssion occurs
for 120 seconds, the server closes the connection. At this tine, the
Witer becones unavail abl e and you nust wite data again.
recordWiter.wite(record);

recordWiter.close();
upl oadSessi on. comm t (new Long[]{OL});
System out. println("upl oad success!") ;
} catch (Tunnel Exception e) {
e. print StackTrace();
} catch (I OException e) {
e.printStackTrace();
}

}
Constructor:
PartitionSpec(String spec): Uses a string to construct this class of object.
Parameter descriptions:
spec: The partition definition string, such as pt="1’,ds="2".
In this program, the configuration must be as follows:

private static String partition = “pt=" XXX ,ds=" XXX ";

1.7.3 Example for downloading

i mport java.io.l OException;
i mport java.util.Date;
i mport com al i yun. odps. Col um;
i mport com al i yun. odps. Gdps;

i mport com aliyun. odps. PartitionSpec;

i mport com al i yun. odps. Tabl eSchema

i mport com al i yun. odps. account . Account ;

i mport com al i yun. odps. account. Al i yunAccount ;

i nport com al i yun. odps. dat a. Recor d

i mport com al i yun. odps. dat a. Recor dReader

i mport com al i yun. odps. tunnel . Tabl eTunnel ;

i mport com al i yun. odps. tunnel . Tabl eTunnel . Downl oadSessi on;
i mport com al i yun. odps. tunnel . Tunnel Excepti on;

public cl ass Downl oadSanpl e {

private static String accessld = "<your access id>";

private static String accessKey = "<your access Key>";

private static String odpsUl = "http://service.odps.aliyun
con api ";

private static String tunnel Url = "http://dt.cn-shanghai

maxconput e. al i yun-i nc. cont';

/1 The tunnel URL nust be set if you need to
connect internal network, otherw se, the system uses public network as
default. The exanpl e shows the Tunnel Endpoint of classical network

in HuaDong 2, for other regions, see Access donmain and data centers.

private static String project = "<your project>";
private static String table = "<your table name>";
private static String partition = "<your partition spec>";

public static void main(String args[]) {
Account account = new AliyunAccount (accessl d,
accesskKey) ;
Qdps odps = new Qdps(account);
odps. set Endpoi nt (odpsUrl);
odps. set Def aul t Proj ect (proj ect);
Tabl eTunnel tunnel = new Tabl eTunnel (odps);
tunnel . set Endpoi nt (tunnel Url);//set tunnel Ur
PartitionSpec partitionSpec = new PartitionSpec(
partition);
try {
Downl oadSessi on downl oadSessi on = tunnel .
cr eat eDownl oadSessi on(project, table,
partitionSpec);
Systemout. println("Session Status is :
+ downl oadSessi on. get St at us

().toString());
()
)

openRecor dReader (0,

| ong count = downl oadSessi on. get Recor dCount

System out . printl n("RecordCount is: + count

Recor dReader recordReader = downl oadSessi on.

count) ;
Record record;
while ((record = recordReader.read()) ! =
nul I') {
consunmeRecor d(record, downl oadSessi on
. get Schema());

recor dReader . cl ose();
} catch (Tunnel Exception e) {

e. print StackTrace();
} catch (I Oexception el) {

el. printStackTrace();

private static void consuneRecord(Record record, Tabl eSchema
schema) {

for (int i = 0; i < schema.getColums().size(); i++)

{
Col umm col umm = schenma. get Col unm(i) ;
String col Value = nul | ;
switch (columm. get Type()) {
case BI G NT: {
Long v = record. getBigint(i);
colvValue = v == null ? null : wv.
toString(); o ’
reak;
case BOOLEAN: {
Bool ean v = record. get Bool ean(i);
colvValue = v == null ? null : wv.
toString(); o y
reak;
case DATETI ME: {
Date v = record. getDatetine(i);
colvalue = v == null ? null : wv.
toString(); . y
r eak;
case DOUBLE: ({
Doubl e v = record. get Doubl e(i);
colvalue = v == null ? null : wv.
toString(); . y
r eak;
case STRING {
String v = record. getString(i);
colvValue = v == null ? null : wv.
toString(); o ’
reak;

def aul t:
t hrow new Runti meExcepti on(" Unknown
colum type:
+ col um. get Type());

Systemout. print(col Value == null ? "null"
col val ue) ;
if (i ' = schema.get Colums().size())
Systemout.print("\t");

Systemout. println();

In this example, data is directly printed using System.out.printin to facilitate testing. In actual use,

you can directly output the data to a text file.

1.7.7 Example for BufferedWriter uploading

/1 Initializes MaxConpute and Tunnel code

RecordWiter witer = null;

Tabl eTunnel . Upl oadSessi on upl oadSessi on = tunnel . cr eat eUpl oadSessi on(
proj ect Nane, tabl eNane);

try {
int i = 0;

/1 Generates Tunnel Buf feredWiter instance
witer = uploadSession. openBufferedWiter();
Record product = upl oadSessi on. newRecord();
for (String item: itens) {
product.set String("nane", item;
product.setBigint("id", i);
I/l Calls the Wite interface to wite data
witer.wite(product);
i += 1;
} finally {
if (witer ! = null) {

[/ C oses Tunnel Buf feredWiter
witer.close();

/1 Submits data via upl oadSession to end the upl oad process
upl oadSessi on. conmit () ;

1.9 Connection to data tunnel service

DataHub and Tunnel use different endpoints in different network environments. Depending on
the network environment, select the appropriate service address or endpoint, to connect to the
service. You must select the proper address or endpoint for your network or you are unable to
send requests to the service. At the same time, different network connections also have an impact

on your billing.

For detailed endpoints information for different network environments, see Access Domains and

Data Centers.

2 Common commands

2.1 Overview of Common commands

This module will show you in detail how to use the relevant commands through the client, to help

you quickly understand maxcompute.

The latest maxcompute service adjusts the usual commands, the new command style is more

closely used by hive, which is convenient for original hadoop/hive users.

MaxCompute offers many operations for projects, tables, resources, instances, and other objects.

You can perform operations on these objects via the console commands and SDK.

Note:

+ The Common commands introduced in this module are mainly targeted at the new version of

the console.
* If you want to learn how to install and configure clients, see Quick Start.

* For more information about the SDK, see maxcompute. SDK introduction.

2.2 Project Operations

Enter the project
Command format:
use <project_name>;
Action:

+ Enter the specified project. After entering the project, all objects in this project can be operated

by the user.

+ If the project does not exist or the current user is not in this project, an exception is returned.

Example:

odps: nmy_project>use ny _project; --ny _project is a project the user has
privilege to access.

Note:
The preceding examples uses the MaxCompute client. All MaxCompute command keywords,

project names, table names, column names are case insensitive.

After running the command, a user can access the objects of this project. In the following

example, assume that test_src exists in the project ‘my_project’. Run the following command:

odps: ny_project>select * fromtest_src;

MaxCompute automatically searches the table in my_project. If the table exists, it returns the data

of this table. If the table does not exist, an exception is thrown. To access the table test_src in

another project, such as ‘my_project?’, through the project ‘my_project’, you must first specify the

project name as follows:
odps: ny_project>select * frommy_project2.test _src;

The returned data is the data in my_project2, not the initial data of test_src in my_project.

MaxCompute does not support commands to create or delete projects. You can use the

MaxCompute console for additional configurations and operations as needed.

2.3 Table Operations

This article shows how to use the common commands to operate tables in the MaxCompute

client.

If you want to operate a table, you can use common commands in the client, and you can
also easily collect tables, apply permissions, and view patrtitions through the visible data table

management in DataWorks. For more information, see Table Details.
Create tables

Command format:

CREATE TABLE [I F NOT EXI STS] table_nane

[(col _nane data_type [COMMENT col comment], ...)]
[COMMENT t abl e_comment]
[PARTI TI ONED BY (col nane data_type [COWENT col conment], ...)]

[LI FECYCLE days]
[AS sel ect st at enent]

CREATE TABLE [I F NOT EXI STS] tabl e_name
LI KE exi sting_tabl e_nane

Action:

Create a table.

Note:

* The table name and column name are both case insensitive.

https://www.alibabacloud.com/help/doc-detail/30288.html

» A table name and column name obey the same naming conventions as follows: The name can
be up to 128 bytes in length and can contain letters, numbers, and underscores * .

* The comment content is the effective string, and it can be up to 1,024 bytes in length.

* [LIFECYCLE days] The parameter ‘days’ refers to the lifecycle time and must be a positive
integer. Unitis ‘day’.

» Suppose that the table ‘table_name’ is no-partition table. Calculated from the last updated
date, the data is still not modified after N (days) days, then MaxCompute automatically

recycles the table without user intervention (similar to ‘drop table’ operation).

+ Suppose that the table ‘table _name’ is a partition table. MaxCompute judges whether to
recycle the table according to LastDataModifiedTime of each partition. Unlike for non-
partitioned tables, a partitioned table is not dropped after the last partition is recycled. The *

lifecycle’ can only be set at the table level, but not at the partition level.

Example:

CREATE TABLE | F NOT EXI STS sal e_detail (

shop_nanme STRI NG,

customer _id STRI NG

total price DOUBLE)
PARTI TI ONED BY (sal e _date STRING region STRING; --Create a partition
tabl e sal e detail.

Drop Table
Statement format:
DROP TABLE [I F EXI STS] table name; -- Table nane to be del et ed.
Action:

* Delete a table.

+ If the option [IF EXISTS] is specified, regardless of whether the table exists or not, the return is
successful .If the option [IF EXISTS] is not specified, and the table does not exist, an exception

is returned.

Example:

DROP TABLE sale detail; -- |If the table exists, success returns.

DROP TABLE | F EXI STS sal e detail; -- No matter whether the table
sal e _detail exists or not, success returns.

Describe Table

Command Format:

DESC <t abl e_nane>; -- Table nane or view nane.
DESC ext ended <tabl e nane>; -- View the extended table infornmation.
Action:

Return the information of specified table, including:

» Owner: The owner of the table.

* Project: The project that table belongs to.

» CreateTime: The creation time of the table.

+ LastDDLTime: The last DDL operation.

» LastModifiedTime: The last time of table modification.

+ InternalTable: It indicates the object to be described is table and always shows YES.

+ Size: Storage size occupied by table data, usually the compression ratio is 5. The unit is Byte.
» Native Columns: non-partition column information, including column name, type, comment.

» Partition Columns: partition column information, including partition name, type, and comment.

+ Extended Info: The information of extended table, such as StorageHandler and Location.
Example:

odps @ pr oj ect _name>DESC sal e_detail; -- Describe a partition table.

| Owner: ALI YUN$odpsuser @l iyun.com | Project: test_project |
| Tabl eComrent: |

| CreateTime: 2014-01-01 17:32:13

| LastDDLTi me: 2014-01-01 17:57:38 |

| LastMbdifiedTime: 1970-01-01 08: 00: 00
| Internaltable: Yes | size: 0 |

| Native Colums: |

| Field | Type | Comment |

| shop_nanme | string | |

| custoner_id | string | |

| total price | double | |

| Partition Columms: |

| sale_date | string | |

| region | string | |

Note:

* The preceding example is executed using the MaxCompute client.
» If the table has no partition, the information of Partition Columns is not displayed.

+ To describe a view, the option ‘InternalTable’ cannot be displayed but the option ‘VirtualView
can be displayed and its value is always YES. Similarly, the option ‘Size’ can be replaced
by ViewText. For example: sel ect * from src. For more information about view, see

Create View.
View partition table
Command Format:

desc tabl e nane partition(pt_spec)

Action:
View the specific partition information of a partition table.
Example:

odps@ proj ect _nanme>desc neta. msecurity users partition (ds='20151010

| PartitionSize: 2109112 |

| CreateTine: 2015-10-10 08:48:48 |

| LastDDLTi me: 2015-10-10 08:48:48 |

| Last ModifiedTine: 2015-10-11 01:33: 35 |

XK

Show Tables/Show Tables like

Command Format:

SHOW TABLES;
SHOW TABLES |i ke 'chart';

Action:

+ SHOW TABLES : List all tables of current project.
+ SHOW TABLES like 'chart": Lists the tables on which the following table names of the current

project match 'chart' . Regular expressions are supported.

Example:

odps@ pr oj ect _name>show t abl es;
odps@ pr oj ect _name>show tables |ike 'ods_brand*';
ALl YUN$odps_user @l i yun. com t abl e_nane

Note:

* The preceding example is executed using the MaxCompute client.
* Alibaba Cloud is system prompt, indicating the Alibaba Cloud user.
* Odps_user@aliyun.com is the creator of the table in this example.

» Table name is the name of the table.
Show Partitions

Command format:

SHOW PARTI TIONS ; -- table name: Specify the table to be queried. If
the table does not exist or it is not a partition table, an exception
i s thrown.

Action:

List all partitions of a table.
Example:

odps @ pr oj ect _nanme>SHOW PARTI Tl ONS t abl e_nan®;
partition_col 1=col 1_val uel/ partition_col 2=col 2_val uel
partition_col 1=col 1_val ue2/ partition_col 2=col 2_val ue2

Note:

* The preceding example is executed using the MaxCompute client.
* Partition_col1 and partition_col2 are the partition columns of the table.
* Col1_value1, col2_value1, col1_value2, and col2_value2 are corresponding values of the

partition columns.

2.4 Instance

Show instances/Show P
The command format is as follows:

SHOW | NSTANCES [FROM st artdat e TO enddate] [nunber];
SHOW P [FROM st artdate TO enddate] [nunber];

SHOW | NSTANCES [-al I];
SHOWP [-all];

Action:
The information of instances created by current users is displayed.
Parameters information is as follows:

+ Startdat e, enddat e: returns the information about the instances during specified period
(from startdate to enddate). The following format must be met: yyyy-mm-dd, precision to the
day. Optional parameter, if not specified, returns the information of instances you submitted

within three days.

* Nunber : Specify the number of instance to be showed.In accordance with the time scheduling,
return N (number) instances nearest to the current time. If it is not specified, all instances that
meet the requirements are shown. In chronological order, the specified number of instances
most recently preceding the current time are returned. The information of all instances meeting

requirements is returned.

» -al | :Returns all instances performed under the current project. Note: The user executing the

command needs to have list permission for the project.

* The output items: Include StartTime (the time accurate to seconds), RunTime (s), Status (

including Waiting, Success, Failed, Running, Cancelled, and Suspended).

InstancelD and corresponding SQL are as following:

Start Time RunTime Status |Instancel D Query
2015-04-28 13:57:55 1s Success 20150428055754916grvd5vj 4 select * from
tab_pack priv limt 20;

Six kinds of instance status are possible:

* Running

» Success

+ Waiting

+ Failed, but the data of the target table have not been modified.
» Suspended

e Canceled

Note:

The commands from the preceding example run in MaxCompute client.

Instance status

The command format is as follows:

STATUS <instance_id>; -- instance_id: The unique identifier of an
instance, to specify which instance to be queri ed.

Action:

* Query the status of specified instance, such as Success, Failed, Running, and Cancelled.

+ If this instance is not created by current user, exception is returned.

Example:

odps @ $proj ect _nane>status 20131225123302267gk3ubk4y?2;
Success

Query the status of an instance which ID is 20131225123302267gk3u6k4y2, and the result is

Success.

Note:

The commands from the preceding example run in MaxCompute client.
Top instance
The command format is as follows:
TOP | NSTANCE;
Action:

The job information that is running in the current project is displayed, including ISNTANCEID,
Owner, Type, StartTime, Progress, Status, Priority, RuntimeUsage (CPU/MEM), TotalUsage (
CPU/MEM), QueueinglInfo (POS/LEN) and so on.

Example:

odps@ $pr oj ect _nanme>t op i nst ance;

Note:

The commands from the preceding example run in MaxCompute client (version 0.29.0 or later).

Delete an instance

The command format is as follows:

kill <instance id>; -- instance_id: The unique identifier of an
i nstance, which nmust be ID of an instance whose status is 'Running',
ot herwi se, an error is returned.

Action:
Stop specified instance. Instance status must be Running.
Example:
odps@ $proj ect _nane>ki |l 20131225123302267gk3ubk4y?2;

Stop the instance which ID is 20131225123302267gk3u6k4y2.

Note:

* The commands from the preceding example run in MaxCompute client.

+ This is an asynchronous process. It does not mean that the distributed task has stopped after
the system accepts the request and returns result. To check whether the instance is deleted,

use the st at us command.
Describe an instance

The command format is as folllows:

desc instance <instance id>; -- instance_id: The unique identifier of
an instance.

Action:

Get the job information according to instance ID, including SQL, owner, startime, endtime, status.

Example:

odps@ $proj ect _nane> desc i nstance 20150715103441522gondlqga2;
I D 20150715103441522gondlga2

Oaner ALI YUN$naoj i ng. nj @l i baba-i nc. com

StartTi me 2015-07-15 18: 34: 41

EndTi me 2015-07-15 18: 34: 42

St at us Ter i nat ed

consol e_sel ect _query_task 1436956481295 Success

Query select * fromn _test;

Query all the job information related to the instance which ID is 20150715103441522gond1gaZ2.

Note:

The commands from the preceding example run in MaxCompute client.
Wait instance
The command format is as follows:

wait <instance id> -- instance_id: The unique identifier of an
i nstance.

Action:

Get running task information, including logs according to instance ID, and logview link. You can

view task details by accessing logview link.

Example:

wait 20170925161122379g3571 dqp;

ID = 20170925161122379g357! dgp

Log vi ew

http://1 ogvi ew. odps. al i yun. conl | ogvi ew ?h=htt p://service. odps. ali yun.
com api &=al i an& =201709251611223799g3571 dgp&t oken=Whl zSGMWZGC5v MIZXMGT
Wk 5hUEl wYnlj b21VPSxPRFBTX09CTzox Mzl 5Mzgz MDAONTQMN] Ux LDE1MDcx OTEOMDYs ey
JTdG-0ZWLl bnQ A t 71 kFj dd vbi | 6WJvZHBzA JI YWQ XSwi RWZnZWNOI j oi Qksb3ci
LCISZXNvdXJj ZSI 6WJIhY3Meb2RweczogOnByb2pl Y3RzL2FsaWFuL2l uc3RhbmNI cy 8y MD
E3VDky NTE2MTEyM MBOAzNTdsZHFW | 19XSwi Vm\yc2l vbi | 61 Ei f Q==

Job Queueing. ..
Sunmmary:
resource cost: cpu 0.05 Core * Mn, nenory 0.05 GB * Mn
i nput s:
al i an. bank_data: 41187 (588232 byt es)
out put s:

alian.result_table: 8 (640 bytes)
Job run time: 2.000
Job run node: service job
Job run engi ne: execution engine
ML:
i nstance count: 1
run tinme: 1.000
i nstance time:
mn: 1.000, mex: 1.000, avg: 1.000
i nput records:
Tabl eScan_REL5213301: 41187 (min: 41187, nax: 41187,
avg: 41187

out put records:
StreanLi neWite REL5213305: 8 (min: 8, nax: 8, avg: 8)
R2 1:
i nstance count: 1
run tine: 2.000
i nstance tine:
mn: 2.000, max: 2.000, avg: 2.000
i nput records:
StreanLi neRead_REL5213306: 8 (min: 8, max: 8, avg: 8)
out put records:

Tabl eSi nk_REL5213309: 8 (min: 8, nax: 8, avg: 8)

2.6 Function Operations
This article shows how to use the common commands to operate functions in the MaxCompute

client.

You can also operate functions through the visualized online data development tools in

DataWorks.
Create a function

The command format is as follows:
CREATE FUNCTI ON AS USI NG ;

Parameters information:

« function_nane: UDF name, which is the name referenced in SQL.
+ package_to_cl ass : For Java UDF, this name is a fully qualified class name (from top-level
package name to UDF class name). This parameter must be in double quotation marks.

* resource_list:resources list used by UDF.

— The resource which contains UDF code must be included in the list.

— If the your code reads the resource file by distributed cache interface, this list also contains
the list of resource files read by the UDF.

= The resource list is composed of multiple resource names, separated by comma (,). The

resource list must be in double quotation marks.
Example:

Suppose that the Java UDF class org.alidata.odps.udf.examples.Lower is in my_lower.jar. Create

the UDF my_lower function as follows:

CREATE FUNCTI ON test | ower AS 'org.alidata. odps. udf.exanpl es. Lower'
USING 'ny_l ower.jar';

Note:

« Similarly to the resource files, UDF the same name can only be registered once.
» Generally UDF cannot overwrite system built-in functions. Only the project owner has right
to overwrite the built-in functions. If you use a UDF which overwrites the built-in function, the

warning is triggered in Summary after SQL execution.

Delete a function
The command format is as follows:
DROP FUNCTI ON ;
The example is as follows:
DROP FUNCTI ON test | ower;
List functions
The command format is as follows:

list functions; --View all user-defined functions in current project.
list functions -p ny_project; --View all user-defined functions in the
project 'my_project'.

2.7 Other Operations

ALIAS command

The ALIAS command is used to read different resources (data) using a fixed resource name in

MapReduce or UDF without modifying the code.
The command format is as follows:
ALl AS <al i as>=<real >;
Action:
Create alias for a resource.

examples:

ADD TABLE src_part PARTITION (ds
ADD TABLE src_part PARTITION (ds
ALI AS resNanme=res 20121208;
jar-resources resname-libjars work. jar-classpath./work. jar com
conmpany. MainClass args... ;//job 1

ALI AS resNanme=res 201212009;

jar-resources resnanme-libjars work. jar-classpath./work. jar com
company. MainClass args... ;//job 2

'20121208') as res_20121208;
'20121209') as res_20121209;

In the preceding example resource alias resName refers to different resource tables in two jobs.

Different data can be read without modifying the code.

Set

The command format is as follows:
set ["<KEY>=<VALUBE>"]
Actioin:

You can use the set command to set MaxCompute or a user-defined system variables that affects

the MaxCompute operation.
Currently, the system variables supported in MaxCompute are as follow:

--Set conmands supported by MaxConpute SQL and Mapreduce (new version

set odps. sql. allow fullscan = false/true --Set whether to allow a
full table scan on a partitioned table. True neans allow, and false
nmeans not al | ow.
set odps. stage. mapper. nmem = --Set the nenory size of each map
worker. Unit is Mand default value is 1024M
set odps. stage. reducer. nmem = -- --Set the nenory size of each
reduce worker. Unit is Mand default value is 1024M
set odps. stage. joiner. nmem = --Set the nmenory size of each join
worker. Unit is Mand default value is 1024M
set odps. stage. nem =
--Set the menory size of all workers in MaxConpute specified job
The priority is lower than preceding three ‘set key’. Unit is M and
no default val ue.
set odps. sqgl . mapper.split.size=256
-- Mdify the input data quantity of each map worker; that is the
size of input file burst.
-- Thus control the worker nunber of each map stage. Unit is M and
the default value is 256M
set odps. stage. reducer. num = --Modi fy the worker nunber of each
reduce stage and no default val ue.
set odps. stage. joiner. num= --Mdify the worker number of each
join stage and no default val ue.
set odps. stage. num = --Modify the worker concurrency of all stages
in MaxConmpute specified job. The priority is |ower than precedi ng
three ‘set key’ and no default val ue.
set odps. sql. type. system odps2 = true/false; --The default val ue
is false. You nust set true when there are new data types such as
TI NYI NT, SMALLI NT, | NT, FLOAT, VARCHAR, TIMESTAMP, and BI NARY in SQ
st at enent .

Show Flags
The command format is as follows:
show flags; --Display the paraneters set by the Set conmand.
Action:

Running the Use Pr oj ect command can clear the configurations set by the Set command.

SetProject
The command format is as follows:
setproject ["="];
Action:

* You can use set proj ect command to set project attributes.
+ If the value of < KEY >=< VALUE > is not specified, the current project attribute configuration is

displayed.

The detailed description of project attributes is shown as follows:

Attribute name Cunfigured | Attribute description Value range

permissions

odps. sql. allow. fullscan | ProjectOwner |item whether to allow full table True (permitted) /

scan false (prohibited)
odps.table.drop. All users Whether to report an error when | True (no error
ignorenonexistent deleting a table that does not reported)/false

exist. When the value is true, no
error is reported

odps.security.ip.whitelist | ProjectOwner | Specify an IP whitelist to access | IP list, separated
the project. bycomma.

odps.table.lifecycle ProjectOwner | Optional: the lifecycle clause is | optional/mandatory
optional when creating a table | /inherit
. If the user does not set the
lifecycle, the table is effective
permanently. Required: the
lifecycle clause is required.
Inherit: if the user does not
specify the lifecycle the lifecycle
is the value of odps.table.
lifecycle.value.

odps.table.lifecycle. ProjectOwner | Default lifecycle. 1 ~ 37231(default
value value)
odps.instance.remain. ProjectOwner | How long the instance informatio | 3—30

days n is retained.

READ_TABLE ProjectOwner | The number of data entries 1~10000
_MAX_ROW returned by running the Select

statement in the client.

Take odps.security.ip.whitelist as an example:

MaxCompute supports IP whitelist of the project level.

Note:

+ With IP whitelist configured, only the IP (console IP or IP of exit where SDK is located) in the

whitelist can access this project.

+ After setting the IP white list, you need to wait five minutes before it takes effect.
You can type three formats for the IP list in the whitelist:

* IP address. For example, 101.132.236.134.
* Subnet mask. For example, 100.116.0.0/16.
* Network segment. For example, 101.132.236.134-101.132.236.144.

These three formats can appear in the same command and must be separated by commas (,).

For example the command line tool set the IP white list of methods:

setproject odps. security. ip. whitelist = 101.132.236.134, 100.116. 0.
0/ 16, 101. 132 . 236.134-101. 132. 236. 144;

If there is no IP address in whitelist, it means whitelist function is disabled.
setproject odps. security. ip. whitelist =;
SetProject
The command format is as follows:
setproject; --Display the paraneters set by the setproject command.
Cost SQL
The command format is as follows:
cost sgl <SQ. Sentence>;

Action:

Estimate an SQL measurement message, including the size of the input data, the number of

UDFs, and the SQL complexity level.

Note:

This information cannot be used as an actual charging standard, can be used only for reference.

Example:

odps@ $odps_proj ect >cost sqgl select distinct project_nanme, user_nane
fromnmeta. msecurity users distribute by project _nanme sort by
proj ect _narne;

I D = 20150715113033121gnsbj x| 1

I nput: 65727592 Bytes

UDF: O

Conplexity: 1.0

3 SQL

3.1 SQL Summary

MaxCompute SQL is suitable for Massive data (GB, TB, or EB level) must be processed based
on offline batch calculation. It takes several seconds or even minutes to schedule after you submit
a job, therefore MaxCompute SQL is most suitable for services which need to process tens of

thousands of transactions per second.

The syntax of MaxCompute SQL is similar to SQL. It can be considered as a subset of standard
SQL. But MaxCompute SQL is not equivalent to a database, which has no database characteri
stics in many aspects, such as transaction, primary key constraints, index, and so on. The

maximum size of SQL in MaxCompute is 2 MB.
Reserved Word

MaxCompute SQL considers the keywords of SQL statement as reserved words. These cannot be
used to name tables, columns, or partitions. If reserved words are used for naming purposes, an
error occurs. Reserved words are case insensitive. The reserved words in common use are shown

as follows, for the complete reserved word list, see MaxCompute SQL Reserved Word.

*

- L <<= <>
ADD ALL ALTER

AND AS ASC BETWEEN BI G NT BOOLEAN BY

CASE CAST COLUWMN COMVENT CREATE DESC DI STI NCT

DI STRI BUTE DOUBLE DROP ELSE FALSE FROM FULL

GROUP IF IN INSERT INTOIS JON

LEFT LI FECYCLE LIKE LIMT MAPJO N NOT NULL

ON OR ORDER QUTER OVERWRI TE PARTI TI ON RENAME

REPLACE RI GHT RLI KE SELECT SORT STRI NG TABLE

THEN TOUCH TRUE UNI ON VI EW WHEN WHERE

Type Conversion

MaxCompute SQL allows conversion between data types. The conversion methods include
explicit type conversion and implicit type conversion. For more information, see Type

Conversion.

» Explicit conversions: Uses CAST to convert a value type to another one.
* Implicit conversions: MaxCompute automatically performs implicit conversions during running
based on the context environment and conversion rules. Implicit conversion scope includes

various operators, built-in functions, and so on.

Partitioned Table

MaxCompute SQL supports partitioned table. Specifying the partition can bring lot of
conveniences to users. For example, improve SQL running efficiency, reduce the cost, etc. For

more information about partition, see Partition.
UNION ALL

To be involved in a UNION ALL operation, the data type of columns, column numbers and column

names must be consistent, otherwise an error occurs.
Select Transform

Select The transform function obviously simplifies the reference to the script code, supports
languages such as Java, Python, Shell, Perl, and so on, and is easy to write, it is suitable for the

implementation of adhoc function. For more information, see the select transform syntax.

Currently maxcompute's select transform is fully compatible with hive's syntax, functionality, and
behavior, includes input/output row Format and Reader/writer. Most of the scripts on hive can be

run directly, some scripts only need a slight change to run.

3.4 DDL SQL
3.4.2 Lifecycle of table

Modify lifecycle of table

MaxCompute provides the function to manage data lifecycle so that user can release storage

space and simplify data recycling flow.
Statement format:

ALTER TABLE tabl e nane SET |ifecycl e days;

Note:

]

+ The parameter ‘days’ refers to the lifecycle time and must be a positive integer. Unit is ‘day’.

» Suppose that the table ‘table_name’ is no-partition table. Calculated from the last updated
date, the data is still not modified after N (days) days, then MaxCompute automatically
recycles the table without user intervention (similar to ‘drop table’ operation).

* In MaxCompute, once the data in table is modified, the LastDataModifiedTime is updated.
So MaxCompute judges whether to recycle this table based on the setting of LastDataMo

difiedTime and lifecycle.

» Suppose that the table ‘table_name’ is a partition table. MaxCompute judges whether to

recycle the table according to LastDataModifiedTime of each partition.

+ Different from no-partition table, after the last partition of a partitioned table has been recycled

, the table is not deleted.
» The lifecycle can be set for a table not for a partition.

* It can be specified while creating a table.

Example:

create table test _lifecycle(key string) lifecycle 100;

-- Create a newtable test |lifecycle and the lifecycle is 100 days.
alter table test lifecycle set lifecycle 50;

-- Alter the lifecycle for the table test_lifecycle and set it to be
50 days.

Disable lifecycle of table

In some cases, the data in specified partitions do not need to be recycled by the lifecycle function
, for example, the data at the begining of the month, or the data during the Global Shopping Day

period,you can disable the lifecycle function for some specific partitions.
Statement format:

ALTER TABLE table name [partition_spec] ENABLE| DI SABLE LI FECYCLE;
An example is shown as follows.

ALTER TABLE trans PARTI TI ON(dt =' 20141111') DI SABLE LI FECYCLE;

3.4.3 View operations

Create view

Statement format:

CREATE [OR REPLACE] VIEW[IF NOT EX STS] vi ew_nane
[(col _name [COMMENT col _coment], ...)]
[COMVENT vi ew_conment |
[AS sel ect st at enent]

Note:

+ To create a view, you must have ‘read’ privilege on the table referenced by view.

* Views can only contain one valid ‘select’ statement.

» Other views can be referenced by a view, but this view cannot reference itself. Circular
reference is not supported.

» |tis not allowed writing data into a view, such as: using ‘insert into’ or ‘insert overwrite’ to
operate view.

+ After a view was created, maybe it is not able to be accessed if the referenced table is altered
, such as deleting referenced table. You must maintain corresponding relationship between

referenced tables and views.

+ If the option ‘if not exists’ is not specified and the view has already existed, using ‘create view
’ causes abnormality. [f this situation occurs, use ‘create or replace view’ to recreate a view.

After reconstruction, the privileges keep unchanged.
Example:

create view if not exists sale_detail _view
(store_nane, custoner_id, price, sale date, region)
comrent 'a view for table sale detail'

as select * fromsale detail;

Drop view
Statement format:

DROP VIEW [I F EXI STS] vi ew_nane;

Note:

If the view does not exist and the option [if exists] is not specified, error occurs.
Example:
DROP VI EW I F EXI STS sal e_detail _vi ew,
Rename view
Statement format:

ALTER VI EW vi ew_nane RENAME TO new Vi ew_narne;

Note:

If the same name view has already existed, error occurs.
Example:

create view if not exists sale detail view
(store _nane, custoner_id, price, sale date, region)

comment 'a view for table sale detail'
as select * fromsale_detail;
alter view sale detail view renane to narket;

3.4.4 Column/Partition operation
Add partition

Statement format:

ALTER TABLE TABLE NAME ADD [I F NOT EXI STS] PARTI TION partition_spec
partition_spec:(partition_coll = partition_col_valuel, partition_col2
= partiton_col value2, ...)

Note:

* Only creating partitions are supported and creating partition columns are not supported.

+ If the same name partition has already existed and the option [if not exists] is not specified,

return exception.

* Currently, the maximum number of partitions supported in a single table in MaxCompute is 60

,000.

* For tables that have multi-level partitions, to add a new partition, all partition values must be

specified.
Example:
add a new partition for the table ‘sale_detail’.

alter table sale detail add if not exists partition (sal e_date="201312
', region='"hangzhou');

-- Add partition successfully, to store the sale detail of hangzhou
region in Decenber of 2013.

alter table sale_detail add if not exists partition (sal e_date="201312
', region='"shanghai');

-- Add partition successfully, to store the sale detail of shangha
region in Decenmber of 2013.

alter table sale detail add if not exists partition(sal e_date=
20111011");

-- Only specify a partition sale_date, error occurs and return.

alter table sale detail add if not exists partition(regi on='shanghai
l).

-- Only specify a partition region, error occurs and return.

Drop partition

Delete the syntax format for the partition is as follows:

ALTER TABLE TABLE NAME DROP [IF EXI STS] PARTI TION partition_spec;

partition_spec:(partition_coll = partition_col _valuel, partition_col 2
= partiton_col value2, ...)

Note:

If the partition does not exist and the option [if exists] is not specified, then an error is indicated.

Example:

delete a partition from the table sale_detail.

alter table sale detail drop if exists partition(sal e _date='201312",
regi on=' hangzhou') ;
-- -Delete the sale details of Hangzhou in Decenber of 2013 successf ul
ly.

Add column

Statement format:

ALTER TABLE t abl e_name ADD COLUWNS (col nanel typel, col _nane2 type2
ca)

Note:

You cannot specify order for the new column. By default, the new column is located in the last

column.
Modify column name

Statement format:

ALTER TABLE tabl e nanme CHANGE COLUW ol d_col nane RENAME TO new col na
me;

Note:

* Column ‘old_col_name’ must be an existing column.

* There cannot be a column named ‘new_col_name’ in a table.
Alter Column/Partition Comment

Modify column/partition comment is as follows:

ALTER TABLE t abl e name CHANGE COLUWN col nane COMMENT comment string;

Note:

The maximum comment content is 1024 bytes.

Modify column names and column notes simultaneously
Statement format:
ALTER TABLE t abl e name CHANGE COLUWN ol d_col nane new col nane
col um_type COMVENT col urm_comrent ;
Note:

* Column ‘old_col_name’ must be an existing column.
» There cannot be a column named ‘new_col name’ in a table.

* The maximum comment content is 1024 bytes.
Modify LastDataModifiedTime of table/partition

MaxCompute MaxCompute SQL supports ‘touch’ operation to modify LastDataModifiedTime of a

partition. The result is to modify ‘LastDataModifiedTime’ of a partition to be current time.
Statement format:
ALTER TABLE t abl e_name TOUCH PARTI TI ON(partition_col = partition_
col _value', ...)
Note:

» If ‘table_name’ or ‘partition_col’ does not exist, return an error.
+ |If the specified partition_col_value does not exist, return an error.
* This operation changes the value of ‘LastDataModifiedTime’ in a table and now MaxCompute

considers the data of table or partition has changed and the lifecycle calculation begins again.

Modify partition value

MaxCompute SQL supports to change the partition value for corresponding partition value through

‘rename’ operation.
Statement format:

ALTER TABLE tabl e_name PARTITION (partition_coll = partition_

col _valuel, partition_col2 = partiton_col _value2, ...)
RENAME TO PARTI TION (partition_coll = partition_col newal uel,
partition_col2 = partiton_col _newal ue2, ...)

Note:

* The name of a partition column cannot be modified. Only the values in that column can be
altered.
* To modify values in one or more partitions among multi-level partitions, users must write

values for partitions at each level.

3.5 Insert Operation
3.5.2 MULTI INSERT

MaxCompute SQL supports inserting different result tables or partitions in a single SQL statement.
Statement format:

FROM f rom st at enent
| NSERT OVERWRI TE | |
val 1, partcol 2=val2 ...)]
sel ect _statenmentl [FROM from st at enent]
[NSERT OVERWRI TE | | NTO TABLE t abl enane2 [PARTI TI ON (partcol 1=
val 3, partcol 2=val4 ...)]
sel ect _statenent2 [FROM from st atenment]]

NTO TABLE t abl enanel [PARTI TI ON (partcol 1=

Note:

+ Generally, up to 256 ways of output can be written in a single SQL statement. Once exceeding
256 ways of output, syntax error occurs.

¢ In a multi insert statement:

= For a partitioned table, a target partition cannot appear for multiple times.
— For an unpartitioned table, this table cannot appear for multiple times.
» Different partitions within a partitioned table cannot have an Insert overwrite operation and an

Insert into operation at the same time; otherwise, an error is returned.
For an unpartitioned table, this table cannot appear for multiple times.

create table sale detail _rmulti |ike sale _detail
from sal e_det ai
insert overwite table sale detail _multi partition (sale_date
=' 2010', region='china")
sel ect shop_nane, customer _id, total price where
insert overwite table sale detail nulti partition (sale date
=' 2011', region='china")
sel ect shop _nane, custoner_id, total price where
-- Return result successfully. Insert the data of sal e_detai
into the 2010 sal es records and 2011 sal es records in China region.
from sal e_det ai
insert overwite table sale detail_multi partition (sale_date
=' 2010', region='china")
sel ect shop_nane, custoner _id, total price

insert overwite table sale detail _multi partition (sale_date
='2010', region='china')
sel ect shop_nane, customer_id, total price;
-- An error is thrown. The sane partition appears for multiple
tinmes.
from sal e_det ai
insert overwite table sale detail multi partition (sale_date
=' 2010', region='"china")
sel ect shop_nane, customer_id, total price
insert into table sale detail _nulti partition (sal e _date=
2011', region=' china')
sel ect shop_nane, customer _id, total price;
-- An error is throwmn. Different partitions within a partition
tabl e cannot have both an ‘insert overwite' operation and an ‘insert
into’ operation.

3.5.3 DYNAMIC PARTITION

To ‘insert overwrite’ into a partition table, you can specify the partition value in the statement. It
can also be realized in a more flexible way, to specify a partition column in a partition table but not
give the value. Correspondingly, the columns in Select clause are used to specify these partition

values.

Statement format:

insert overwite table tablenanme partition (partcoll, partcol2 ...)
sel ect _statenent from from statenent;

Note:

* In the ‘select_statement’ field, the following field provides the dynamic partition value for the
target table. If the target table only has a one-level dynamic partition, the last field value of
select_statement is the dynamic partition value of the target table.

» Currently, a single worker can only output up to 512 dynamic partitions in a distributed
environment, otherwise it leads to abnormality.

» Currently, any dynamic partition SQL cannot generate more than 2,000 dynamic partitions;
otherwise it causes abnormality.

* The value of dynamic partition cannot be NULL, and also does not support special characters

and Chinese, otherwise exception is thrown. The exception is as follows:

FAI LED: ODPS-0123031: Partition exception - invalid dynam c
partition val ue:
provi nce=xxx

+ |f the destination table has multiple-level partitions, it is allowed to specify parts of partitions
to be static partitions through ‘Insert’ statement, but the static partitions must be advanced

partitions.

A simple example to explain dynamic partition is as follows:

create table total _revenues (revenue bigint) partitioned by (region
string);
insert overwite table total _revenues partition(region)
sel ect total _price as revenue, region
fromsal e detail;
As preceding mentioned, user is unable to know which partitions are generated before running
SQL. Only after the Select statement running ends, user can confirm which partitions have been

generated through the value of ‘region’. This is why the partition is called Dynamic Partition.
Other Examples:

create table sale_detail _dypart |ike sale_detail; --Create target
t abl e.

--Example 1:

insert overwite table sale detail dypart partition (sale_date, region

sel ect shop_nane, custoner __id,total _price, sal e _date, region from
sal e _detail;
-- Return successfully.

* In‘sales_detail’ table, the value of the sale_date determines the sales_date partition value of
the target table, and the value of the region determines the region partition value of the target
table.

* In a dynamic partition, the correspondence between the select_statement field and

the dynamic partition of the target table is determined by the order of the fields. In this

example, if the Select statement is written as

sel ect shop_nane, custoner _id,total _price,region,sale_date from
sal e_detail;
the region value determines the sale_date partition value of the target table, and the value of

sale_date determines the region partition value of the target table.
--Example 2:

insert overwite table sale detail dypart partition (sal e date='2013
', region)

sel ect shop_nane, custoner _id,total _price,region from
sal e _detail;

-- Return successfully; nmultiple partitions; specify a secondary
partition.

--Example 3:

insert overwite table sale_detail _dypart partition (sal e_date='2013
', region)
sel ect shop_nane, custoner _id,total _price fromsale detail;
-- Return failure information. Wen inserting a dynam c partition
, the dynamic partition colunm nust appear in Select |ist.

--Example 4:

insert overwrite table sales partition (region='"china', sale date)
sel ect shop_nane, custoner _id,total _price,region fromsal e_detail;

-- Return failure information. User cannot specify the | owsubpart
ition only, but needs to insert advanced partition dynamcally.

When the old version of MaxCompute performs dynamic partitioning, if the partition column type
is not exactly the same as the column type in the corresponding select list, an error is reported.
MaxCompute 2.0 supports implicit conversion, an example is as follows:
create table parttable(a int, b double) partitioned by (p string);
insert into parttable partition(p) select key, value, current _ti

mest map() from src;
select * from parttable;

The result is as follows:

a b c

0 NULL 2017-01-23 22:30:47.130406621

0 NULL 2017-01-23 22:30:47.130406621
3.5.4 VALUES

In the test phase, you usually need to prepare some basic data for a small data table. You can

quickly write some test data to the test table by the | NSERT ... VALUES statement.

Note:

Currently, INSERT OVERWRITE does not support to insert columns. You can use INSERT INTO

instead.
Statement format:

I NSERT | NTO TABLE t abl enane
[PARTI TI ON (partcol 1=val 1, partcol 2=val 2 ...)][colnanel, col nane2...]

[VALUES (col 1_val ue, col 2_value,...),(col1 value,col 2 value,...),...]
Example 1::

drop table if exists srcp;
create table if not exists srcp (key string ,value bigint) partitioned

by (p string);
insert into table srcp partition (p="abc') values ('a,1),('b',2),('c
" 3);

After the preceding statements run successfully, the result of partition ‘abc’ is as follows:

| key | value | p |

a	1	abc
b	2	abc
¢	3	abc
When many columns are in the table, and you want to insert data into some of the columns , you

can use the insert list function as follows.
Example 2:

drop table if exists srcp;
create table if not exists srcp (key string ,value bigint) partitioned

by (p string);
insert into table srcp partition (p)(key,p) values ('d','20170101"), ('

e','20170101"),('f"','20170101");

After the preceding statements run successfully, the result of partition 20170101’ is as follows:

| key | value | p |

d] NULL	20170101	
e	NULL	20170101
f	NULL	20170101
For columns not specified in values, the default value is NULL. The insert list function is not

necessarily used with values, and can also be used with ‘Insert into...select...’.

The Insert...values method has a limitation: values must be constants. You can use the values
table function of MaxCompute to perform some simple operations on the inserted data. For more

information, see Example 3.
Example 3:

drop table if exists srcp;
create table if not exists srcp (key string ,value bigint) partitioned

by (p string);

insert into table srcp partition (p) select concat(a,b), length(a)+
| engt h(b),'20170102' fromvalues ('d' ,4),('e ,5),(' f',6) t(a,b);

The values (...), (...) t (a, b) are to define a table named t whose columns are a and b, data type
is (a string, b bigint), the data type of which is derived from the values list. In this way, with no
physical table prepared, it is possible to simulate a multi-row table with arbitrary data and perform

arbitrary calculations.

After the preceding statements run successfully, the result of partition 20170102’ is as follows:

| key | value | p |

| d4 | 2 | 20170102 |

| e5] 2| 20170102 |

| f6] 2| 20170102 |
Note:

» values only support constants and don’t support functions. Like ARRAY complex types,
MaxCompute cannot construct corresponding constants currently. You can modify the

statement into

insert into table srcp (p ='abc') select '"a' ,array('1', '2',
"3);.

which can achieve the same effect.
+ To write datetime or timestamp type through values, you must specify the type name in values

statement, for example:

insert into table srcp (p = abc') values (datetinme' 2017-11-11
00: 00: 00' , ti mestanp' 2017-11-11 00: 00: 00. 123456789') ;

In fact, the values is not only used in the Insert statement, any DML statement can also be used.
A special usage of values is as follows.
sel ect abs(-1), length('abc'), getdate();

As the preceding statement shows, select can be run without the from statement, if the expression
list of select does not use any upstream table data. The underlying implementation is selecting
from a anonymous values table in one row and zero columns. In this way, when you want to test

some functions, such as your UDF, etc., you do not need to manually create DUAL tables.

3.6 Select Operation

3.6.1 Introduction to the SELECT Syntax

The command format is as follows:

SELECT [ALL | DI STI NCT] sel ect _expr, sel ect_expr,

FROM t abl e_reference

[WHERE wher e_condi ti on]

[GROUP BY col _list]

[ORDER BY order_condi ti on]

[DI STRI BUTE BY distribute_condition [SORT BY sort_condition]]
[LIMT nunber]

Note the following when using a SELECT statement:

When using SELECT to read data from a table, you can specify the names of the columns to
be read, or use an asterisk (*) to represent all columns. A simple SELECT statement is shown

as follows:
select * fromsale_detail;

If you want to read only the shop_name column in sale_detail, use the following statement:
sel ect shop_nane from sal e_detail;

You can use where to specify filtering conditions. For example:
select * fromsale detail where shop_nane |ike 'hang% ;

When a Select statement is used, a maximum of 10,000 rows of results can be displayed. But if
the Select statement serves as a clause, all the results are returned to the upper-level query.

Full table scan is prohibited when you select a partitioned table.

For new projects created after January 10, 2018, 20:00 (UTC+8) full table scan is not allowed
for the partitioned table in the project by default When SQL runs. Partitions to be scanned
must be specified in partition conditions, reducing unnecessary SQL I/O, waste of computing
resources, and the unnecessary cost. Note: Using the Pay-As-You-Go billing method, the

amount of data input is one of the billing parameters.

If the table definitionist1(c1, c2) partitioned by(ds), running the following statement

in a new project is forbidden and an error may occur:

Select * fromtl where cl=1;

Select * fromtl where (ds='20180202" or c2=3);

Select * fromtl left outer join t2 on a.id =b.id and a.ds=b.ds and
b. ds=*20180101);

--When Join statenent is running, if the partition clipping
condition is placed in where clause, the partition clipping takes
effect. If you put it in on clause, the partition clipping of sub
table takes effect, and the main table perforns a full table scan.
If you perform a full table scan on the partitioned table, you can add a set statement set odps
.sqgl . al low. ful | scan=true; before the SQL statement that scans the entire table of the
partitioned table. The set statement must be submitted along with the SQL statement. Suppose
that the sales_detail table is a partitioned table. Submit the following simple query statements

at the same time for a full table scan:

set odps.sql.allow full scan=true;
select * fromsale detail;

If the entire project is required to allow full table scanning, the switch can be turned on or off by
itself (true/false), and the command is as follows:

set proj ect odps.sql.allow fullscan=true;
table reference supports nested subqueries, for example:

select * from (select region fromsale detail) t where region =
shanghai ' ;

The filter conditions supported by ‘where’ clause are shown as follows:

Filter conditions Description

>, <, = >= <= <> Relational operators

like, rlike The source and pattern parameters of like and rlike can only
be of the String type.

in, notin If a subquery is attached to the in or not in condition, only the
values of one column are returned for the subquery, and the
returned values cannot exceed 1,000 entries.

You can specify a partition scope in the where clause of a Select statement to scan specified

partitions of a table instead of the whole table. As follows:

SELECT sale_detail. * FROM sal e_detail WHERE sal e_detail.sal e_date
>= '2008' AND sale detail.sale date <= '2014"';

The where clause of MaxCompute SQL supports query by the between...and condition. The

preceding SQL statement can be rewritten as follows:

SELECT sale detail. * FROM sal e detail WHERE sal e detail.sale date
BETWEEN ' 2008' AND ' 2014';

di sti nct : If duplicated data rows exist, you can use the Distinct option before the field to
remove duplicates. In this case, only one value is returned. If you use the ALL option, or do not

specify this option, all duplicated values in the fields are returned.
If you use the Distinct option, only one row of record is returned, which is shown as follows:

sel ect distinct region fromsale_detail;

sel ect distinct region, sale date from sal e _detail;

-- Perfornms the Distinct option on nultiple colums. The Distinct
option has an effect on Select colum sets rather than a single

col um.

group by: Query by group. It is generally used together with an aggregate function. A Select

statement that contains an aggregate function follows these rules:

— The key using group by can be the name of a column in the input table.
— Alternatively, it can be an expression consisting of columns of the input table. The key
cannot be the alias of an output column of the Select statement.

— Rule i takes precedence over rule ii. If rules i and ii conflict, that is, if the key using group by

is a column or expression of the input table and an output column of Select, rule i prevails.
For example:

sel ect region fromsale_detail group by region;

-- Runs successfully with the name of a colum in the input table

directly used as the group by col um

sel ect sum(total price) fromsale detail group by region

-- Runs successfully with the table grouped by the region val ue and
returns the total sales of each group

Sel ect region, sum (total price) fromsale detail group by region;

-- Runs successfully with the table grouped by the region val ue and
returns the region value (unique in the group) and total sales of

each group

select region as r fromsale_detail group by r;

-- Runs with the alias of the Sel ect colum and returns an error
select 2 + total _price as r fromsale_detail group by 2 + total _pric
€,

-- Requires a conpl ete expression of the col um

Sel ect region, total price fromsale detail group by region;

-- Returns an error; all columms not using an aggregate function in

the Sel ect statenment nust exist in group by

sel ect region, total price fromsale detail group by region,

total price;

-- Runs successfully
These restrictions are imposed because group by operations come before Select operations
during SQL parsing. Therefore, group by statements can only accept the columns or

expressions of the input table as keys.

Note:

For more information about aggregate functions, see Aggregate Functions.

order by: Globally sorts all data based on certain columns. To sort records in descending order,
you can use the DESC keyword. For global sorting, order by must be used together with
limit. When order by is used for sorting, NULL is considered to be smaller than any other

value. This action is the same as that in MySQL but different from that in Oracle.

Unlike group by, order by must be followed by the alias of the Select column. If the Select
operation is performed on a column and the column alias is not specified, the column name is
used as the column alias.

select * fromsale_detail order by region;

-- Returns an error because order by is not used together with limt

select * fromsale detail order by region linmt 100;

select region as r fromsale_detail order by region limt 100;

-- Returns an error because ORDER BY is not followed by a colum

alias

select region as r fromsale_detail order by r limt 100;
The number in [linmt nunber] is aconstant to limit the number of output rows. If you
want to directly view the result of a Select statement without LIMIT from the screen output, you
can view a maximum of 10,000 rows. The upper limit of screen display varies with projects,

which can be controlled through the set pr oj ect console.

Distribute by: Performs hash-based sharding on data by values of certain columns. Aliases of

Select output columns must be used.

sel ect region fromsale detail distribute by region;

-- Runs successfully because the colum nanme is an alias
select region as r fromsale_detail distribute by region;

-- Returns an error because DI STRIBUTE BY is not followed by a
colum alias

select region as r fromsale detail distribute by r;

» Sort by: for partial ordering, ‘distribute by’ must be added in front of the statement. sort by is

used to partially sort the results of distribute by. Aliases of Select output columns must be used.

select region fromsale_detail distribute by region sort by region;
select region as r fromsale_detail sort by region;
-- Returns an error and exits because no distribute by exists.

« order by or group by cannot be used together with distribute by/sort] by. Aliases of SELECT

output columns must be used.

Note:

* The keys of order by/sort by/distribute by must be output columns (namely, column aliases) of
Select statements.
+ In MaxCompute SQL parsing, order by/sort by/distribute by come after Select operations.

Therefore, they can only accept the output columns of Select statements as keys.

3.6.2 SELECT Sequence

The actual logic execution sequence of SELECT statements written in compliance with the

preceding SELECT syntax is different from the standard writing sequence. See the following:

SELECT key, max(value) FROM src t WHERE val ue > 0 GROUP BY key HAVI NG

sum(val ue) > 100 ORDER BY key LIMT 100;
The actual logic execution sequence is FROM >WHERE- >GROUP BY- >HAVI NG- >SELECT- >
ORDER BY->LI M T. ORDER BY can only reference columns generated in the SELECT list
rather than accessing columns in the FROM source table. The HAVING operation can access
GROUP BY keys and aggregate functions. When the SELECT operation is performed, SELECT
can only access group keys and aggregate functions rather than columns in the FROM source
table if GROUP BY exists.The columns generated in the select list can only be referenced in by,

rather than accessing the columns in the source table of from.

To avoid confusion, MaxCompute allows users to write a query statement by the execution

sequence. For example, the preceding statement can be written as follows:

FROM src t WHERE val ue > 0 GROUP BY key HAVI NG sun(val ue) > 100 SELECT
key, max(val ue) ORDER BY key LIM T 100;

3.6.3 Subquery

Basic definition of a subquery

A normal SELECT operation reads data from several tables, for example, select col uim_1
, colum_2 ...fromtabl e name. However, the query object can be another SELECT

operation, which is shown as follows:

select * from (select shop_nane fromsale_detail) a;

Note:

The subquery must have an alias.

In a FROM clause, a subquery can be used as a table to perform JOIN operations with other

tables or subqueries, which is shown as follows:

create table shop as select * from sal e_detail

sel ect a.shop_name, a.custoner_id, a.total _price from

(select * fromshop) a join sale detail on a.shop_nane = sal e _detail
shop_nane;

IN SUBQUERY / NOT IN SUBQUERY
IN SUBQUERY is similar to LEFT SEMI JOIN.
For example:

SELECT * from mytabl el where id in (select id from nytabl e2);
-- is equivalent to
SELECT * from nytablel a LEFT SEM JO N nytable2 b on a.id=b.id;

Currently, MaxCompute supports both IN SUBQUERY and CORRELATED conditions.
For example:

SELECT * from nytabl el where id in (select id from nytable2 where
val ue = nytabl el. val ue);

“where val ue = nytabl el.value” in the subquery is a CORRELATED condition

MaxCompute of early versions reports errors for such expressions that reference source

tables both in subqueries and in outer queries. MaxCompute supports such expressions now.

In fact, such filtering conditions are part of the ON condition in SEMI JOIN.
NOT IN SUBQUERY is similar to LEFT ANTI JOIN. However, they have a significant difference.
For example:

SELECT * from mytabl el where id not in (select id from nytabl e2);
-- If none of the IDs in mytable2 are NULL, this statenment is
equi valent to

SELECT * from mytablel a LEFT ANTI JON nytable2 b on a.id=b.id

If mytable2 contains any column whose ID is NULL, the NOT IN expression is NULL, so that the
WHERE condition is invalid and no data is returned. This is different from LEFT ANTI JOIN.

MaxCompute 1.0 supports [NOT] IN SUBQUERY not serving as a JOIN condition, for example
, in a non-WHERE statement, or failure in conversion to a JOIN condition even in a WHERE

statement. MaxCompute 2.0 still supports this feature. However, [NOT] IN SUBQUERY cannot
be converted to SEMI JOIN, and a separate job must be started to run subqueries. Therefore, |

NOT] IN SUBQUERY does not support CORRELATED conditions.
For example:

SELECT * from mytabl el where id in (select id frommytabl e2) OR val ue
> 0;

As the WHERE clause includes OR, [NOT] IN SUBQUERY cannot be converted to SEMI JOIN. A

separate job must be started to run subqueries.
In addition, partition tables are specially processed:
SELECT * from sal es_detail where ds in (select dt from sal es_date);

If ds is a partition column, sel ect dt from sal es_dat e separately starts a job to run
subqueries, instead of converting to SEMI JOIN. After running, the results are compared with ds
one by one. If a ds value in sales_detail is not in the returned results, the partition is not read to

make sure that partition pruning is still valid.
EXISTS SUBQUERY/NOT EXISTS SUBQUERY

In an EXISTS SUBQUERY, when at least one data row exists in the subquery, TRUE is returned;
otherwise, FALSE is returned. NOT EXISTS subquery is on the contrary.

Currently, MaxCompute supports only subqueries including the correlated WHERE conditions.
EXISTS SUBQUERY/NOT EXISTS SUBQUERY is implemented by converting to LEFT SEMI
JOIN or LEFT ANTI JOIN.

For example:

SELECT * from myt abl el where exists (select * from nytable2 where id
= nytablel.id);

-- is equivalent to

Select * Frommytablel a left semi join nytable2 Bon A ID = B. ID

While

SELECT * from myt abl el where not exists (select * from nytabl e2 where
id = nytablel.id);

-- is equivalent to

SELECT * from nmytablel a LEFT ANTI JO N nytable2 b on a.id=b.id;

3.6.4 UNION ALL/UNION [DISTINCT]

The syntax format is as follows:

sel ect _statenment UNION ALL sel ect_statenent;
sel ect _statenment UNI ON [DI STI NCT] sel ect _st at enment;

*+ UNI ON ALL: Combines two or multiple data sets returned by a SELECT operation into one
data set. If the result contains duplicated rows, all rows meeting the conditions are returned,
and deduplication of duplicated rows is not implemented.

* UNI ON [DI STI NCT] : In this statement, DISTINCT can be ignored. It combines two or
multiple data sets returned by a SELECT operation into one data set. If the result contains

duplicated rows, deduplication is implemented.

UNION An example of the UNION ALL operation:

Sel ect * From sal e_detail where region = 'Hangzhou'
uni on all
select * fromsal e_detail where region = 'shanghai';

An example of the UNION operation:

SELECT * FROM srcl UNI ON SELECT * FROM src2;

--The execution effect is equivalent to

SELECT DI STI NCT * FROM (SELECT * FROM srcl UNION ALL SELECT * FROM
src2) t;

Note:

» The number, names, and types of queried columns corresponding to the UNION ALL/UNION

operation must be consistent. If the column names are inconsistent, use the column aliases.
* Generally, MaxCompute allows UNION ALL/UNION operations performed on a maximum of

256 tables. A syntax error is returned if the number of tables exceeds this limit.
The meaning of LIMIT following UNION:

If UNION is followed by CLUSTER BY, DISTRIBUTE BY, SORT BY, ORDER BY, or a LIMIT
clause, the clause has an effect on all the preceding UNION results rather than the last SELECT
statement of UNION. MaxCompute adopts this action in set odps. sql . t ype. system

odps2=t r ue; currently.

For example:

set odps.sql.type.system odps2=true;
SELECT expl ode(array(3, 1)) AS (a) UNION ALL SELECT expl ode(array(0, 4
, 2)) AS (a) ORDER BY a LIMT 3;

The returned results are as follows:

3.6.6 SEMI JOIN

MaxCompute supports SEMI JOIN. In SEMI JOIN, the right table does not appear in the result set
and is only used to filter data in the left table. Supported syntaxes include: LEFT SEMI JOIN and
LEFT ANTI JOIN.

LEFT SEMI JOIN

When a JOIN condition is valid, data in the left table is returned. That is, if the ID of a row in

mytable1 appears in all IDs in mytable2, this row is stored in the result set.

For example:
SELECT * from nmytablel a LEFT SEM JO N nytable2 b on a.id=b.id;

Only the data in mytable1 is returned if the ID of mytable1 appears in the ID of mytable2.

LEFT ANTI JOIN

When a JOIN condition is invalid, data in the left table is returned. That is, if the ID of a row in

mytable1 does not appear in any ID in mytable2, this row is stored in the result set.

For example:

SELECT * from mytablel a LEFT ANTI JO N nytable2 b on a.id=b.id;

Only the data in mytable1 is returned if the ID of mytable1 does not appear in the ID of mytable2.

3.6.10 Common table expression (CTE)

MaxCompute supports CTEs in standard SQL to improve the readability and execution efficiency

of SQL statements.

Syntax structure of CTE:

W TH
cte_nane AS

cte_query
[,cte_nane2 AS
cte _query?

-

» cte_nane refers to the CTE name, which must be unique in current WITH clause. The
cte_name identifier in any position of the query indicates the CTE.

+ cte_query is a SELECT statement, whose result set is used to populate the CTE.

Example:

| NSERT OVERWRI TE TABLE srcp PARTI TI ON (p='abc')
SELECT * FROM (
SELECT a. key, b.val ue
FROM (
SELECT * FROM src WHERE key IS NOT NULL) a
JAO N (
SELECT * FROM src2 WHERE value > 0) b
ON a. key = b. key
c
UNI ON ALL
SELECT * FROM (
SELECT a. key, b.val ue
FROM (
SELECT * FROM src WHERE key IS NOT NULL) a
LEFT OQUTER JA N (
SELECT * FROM src3 WHERE value > 0) b
ON a. key = b. key AND b. key I'S NOT NULL

) d;

A JOIN clause is written on both sides of UNION at the top layer, and same queries are formed on

the left table of JOIN. You must repeat this code if writing subqueries.

The preceding statement can be rewritten as follows using the CTE:

with
a as (select * fromsrc where key is not null),
b as (select * fromsrc2 where val ue>0),
c as (select * fromsrc3 where val ue>0),
d as (select a.key,b.value froma join b on a.key=b. key),
e as (select a.key,c.value froma left outer join ¢ on a. key=c. key

and c.key is not null)
insert overwite table srcp partition (p=" abc')
select * fromd union all select * from e;

After rewriting, the subquery corresponding to a can be rewritten only once, and reused
subsequently. The WITH clause in the CTE can specify multiple subqueries that can be
repeatedly used like variables in the entire statement. Besides being reused, subqueries do not

have to be repeatedly nested.

3.7 DDL SQL
3.8 Insert Operation
3.9 SQL restrictions

Some users may fail to notice specific restrictions and find the service has stopped. The

restrictions for MaxCompute SQL include the following:

Boundry name Maximum value/ Class Description

Restriction
Length of table 128 bytes Length limit Table names and column
name names cannot contain special

characters. They can contain
only English letters (a-z, A-Z),
numbers, and underscores (_),
and must start with a letter.

Annotation length | 1,024 bytes Length limit The annotation can contain valid
strings of up to 1,024 bytes.

Column definitions | 1,200 Quantity limit One table can contain 1,200
column definitions at most.

Boundry name Maximum value/ Class Description
Restriction

Partitions 60,000 Quantity limit One table can contain a
maximum of 60,000 partitions.

Partition levels of a |6 levels Quantity limit A table can contain a maximum

table of six levels of partition.

Statistical definition | 100 Quantity limit One table can contain a

s maximum of 100 statistical
definitions.

Statistical definition | 64,000 Length limit A statistical definition can

s contain a maximum of 64,000
bytes.

Screen display 10,000 rows Quantity limit The screen display of a SELECT
statement outputs a maximum
of 10,000 rows.

INSERT targets 256 Quantity limit A multiins operation can insert
a maximum of 256 targets at a
time.

UNION ALL 256 Quantity limit The UNION ALL operation can
be performed on a maximum of
256 tables.

MAPJOIN Eight small tables Quantity limit A MAPJOIN operation can be

performed on a maximum of
eight small tables.

MAPJOIN memory 512 MB Quantity limit The memory size of all small

restriction tables on which MAPJOIN
operation is performed cannot
exceed 512 MB.

Window functions | Five Quantity limit A SELECT statement can
contain a maximum of five
window functions.

ptinsubq 1,000 rows Quantity limit The results returned by PT IN
SUBQUERY cannot exceed 1,
000 rows.

SQL statement 2 MB Length limit The maximum length of an SQL

statement is 2 MB.

Boundry name Maximum value/ Class Description
Restriction

Number of 256 Quantity limit A where clause can use a

conditions for a maximum of 256 conditions.

where clause

Length of column |8 MB Quantity limit The maximum length of a cell in

records tables is 8 MB.

Number of 1,024 Quantity limit Specifies the maximum

parameters of an in number of parameters of an in

statement statement, for example, in (
1,2,3....,1024). An excess of
parameters of in(...) results in
compilation pressure. 1,024 is a
recommended value, not a limit
value.

jobconf.json 1 MB Length limit The size of ‘jobconf.json’ is 1 MB
. Including too many partitions in
a table may cause ‘jobconf.json’
to exceed 1 MB.

View Not writable Operation A view cannot be written or

restriction operated using an insert

statement.

Column data type | Not allowed Operation limit [The data type and position of a

column cannot be modified.

java udf function

Cannot be abstract or
static

Operation limit

A Java UDF cannot be abstract
or static.

A maximum of 10,
000 partitions can
be queried.

10,000

Quantity limit

A maximum of 10,000 partitions
can be queried.

Note:

The restrictions of MaxCompute SQL cannot be manually modified or configured.

3.10 Builtin Function
3.10.1 Date Functions

MaxCompute SQL provides the necessary functions to operate datetime types.

DATEADD

Function definition:

dateti ne dateadd(datetinme date, bigint delta, string datepart)

Usage:

Modify the value of date according to a specified unit ‘datepart’ and specified scope ‘delta’.

Parameter description:

dat e: Datetime type, value of date. If the input is string type, it is converted to ‘datetime’ type
by implicit conversion. If it is another type, an exception is indicated.

del t a: Bigint type, date scope to be modified. If the input is ‘string’ type or ‘double’ type, it is
converted to ‘bigint’ type by implicit conversion. If it is another data type, exception occurs. If
‘delta’ is greater than zero, do ‘add’ operation, otherwise do ‘minus’ operation.

dat epart : a String type constant. T his field value follows ‘string’ and ‘datetime’ type

conversion agreement, that is, ‘yyyy’ indicates year; ‘mm’ indicates month...

See Conversion between String type and Datetime type. In addition, the extensional date
format is also supported: year- ‘year’; month-‘month’ or ‘mon’; day-‘day’; hour-‘hour. If it is not

a constant or unsupported format or other data type, an exception is indicated.

Return Value:

Datetime type. If any inputis NULL, return NULL.

Note:

While increasing or decreasing ‘delta’ according to specified unit, it causes the carry or back
space for higher unit. Day, month, hour, minute, second are calculated by 10 hexadecimal, 12
hexadecimal, 24 hexadecimal, 60 hexadecimal, 60 hexadecimal respectively.

If the unit of ‘delta’ is month, the calculation rule is shown as follows:

if the month part of ‘datetime’ does not cause the spillover of day after adding ‘delta’, then

keep the day unchangeable, otherwise the day value is set to the last day of the result month.
The value of ‘datepart’ follows ‘string’ and ‘datetime’ type conversion agreement, that is, ‘yyyy’
indicates year; ‘mm’ indicates month...If no special description exists, related datetime built-in
functions all follow this agreement. And if no special instructions, the part of all datetime built-
in functions also supports extended date format: year- ‘year’; month-‘month’ or ‘mon’; day-‘day

"> hour-‘hour.

Examples:

if trans_date = 2005-02-28 00: 00: 00:
dateadd(trans_date, 1, 'dd') = 2005-03-01 00: 00: 00
-- Add one day. The result is beyond the |ast day in February. The
actual value is the first day of next nonth.
dateadd(trans_date, -1, 'dd') = 2005-02-27 00:00: 00
-- Mnus one day.
dateadd(trans_date, 20, 'mm) = 2006-10-28 00: 00: 00
-- Add 20 nonths. The nonth spillover is caused and the year is added
‘1.
If trans_date = 2005-02-28 00: 00: 00, dateadd(transdate, 1, 'm)
2005- 03- 28 00: 00: 00
If trans_date = 2005-01-29 00: 00: 00, dateadd(transdate, 1, 'm)
2005- 02- 28 00: 00: 00
-- No 29th is in Feb. of 2005. The date is intercepted to the |ast day
of current nonth.
If trans_date = 2005-03-30 00: 00: 00, dateadd(transdate, -1, 'nm) =
2005- 02- 28 00: 00: 00

Note:
Here the value of trans_date is only used as an example. This simple expression is often used to

present the datetime in this file.

In MaxCompute SQL, the datetime type has no direct constant representation, the following

usage is wrong:
sel ect dat eadd(2005-03-30 00: 00: 00, -1, 'mm) fromthbl 1;
If you must describe the datetime type constant, try the following methods:

sel ect dat eadd(cast ("2005-03-30 00: 00: 00" as datetinme), -1, "mm) from
tbl 1;

-- The String type constant is converted to datatine type by explicit
conver si on.

DATEDIFF
Function definition:
bi gint datediff(datetime datel, datetime date2, string datepart)
Usage:
Calculate the difference between two datetime date1 and date2 in specified time unit ‘datepart’.
Parameter description:

+ datet 1, dat e2: Datetime type, minuend, meiosis. If the input is ‘string’, it is converted to

‘datetime’ by implicit conversion. If it is another data type, an exception indicated.

+ dat epart: a String type constant. The extensional date format is supported. . If ‘datepart’

does not meet the specified format or is other data type, it causes an exception
Return Value:

Bigint type. Any input parameter is NULL, return NULL. If date1 is less than date2, then the

returned value may be negative.

Note:
The lower unit part is cut off according to ‘datepart’ in the calculation process and then calculate

the result.
The example is as follows:

If start = 2005-12-31 23:59:59, e
datedi ff(end, start, 'dd') =
datedi ff(end, start, 'nm) =
datedi ff(end, start, 'yyyy')
datedi ff(end, start, 'hh') =
datedi ff(end, start, 'm') =

0

d = 2006-01-01 00: 00: 00:

RPRRIRPRS
=

datedi ff(end, start, 'ss')

dat edi ff (' 2013-05-31 13: 00:
1800

dat edi ff('2013-05-31 13:00:00', '2013-05-31 12:30:00', 'm"') = 30

0', '2013-05-31 12:30:00', 'ss')

DATEPART
The command format is as follows:
bi gint datepart(datetinme date, string datepart)
Usage:
Extract the value of specified time unit 'datepart’ in ‘date’.
Parameter description : :
Return Value:

+ dat e: Datetime type. If the input is ‘string’ type, it is converted to ‘datetime’ type. If it is another

data type, an exception is indicated.

+ dat epart : String type constant. The extensional date format is supported. If ‘datepart’ does

not meet the specified format or is other data type, it causes exception.
Bigint type. If any input is NULL, return NULL.
The example is as follows:

datepart (' 2013-06-08 01:10:00', 'yyyy') = 2013

dat epart (' 2013-06-08 01:10: 00", 'mm) = 6
DATETRUNC
Function definition:
datetine datetrunc (datetinme date, string datepart)
Usage: :
Return the remained date value after the specified time unit ‘datepart’ has been intercepted.
Parameter description: :

+ dat e: Datetime type. If the input is ‘string’ type, it is converted to ‘datetime’ type. If it is another

data type, an exception indicated.

+ dat epart : String type constant. The extensional date format is supported. If ‘datepart’ does

not meet the specified format or is other data type, it causes an exception.
Return Value:
Datetime type. If any input is NULL, return NULL.

The example is as follows:

datetrunc(' 2011-12-07 16:28:46', 'yyyy') = 2011-01-01 00: 00: 00
datetrunc(' 2011-12-07 16:28:46', 'nonth') = 2011-12-01 00: 00: 00
datetrunc('2011-12-07 16:28:46', 'DD) = 2011-12-07 00: 00: 00

FROM_UNIXTIME
Function definition:
datetine fromuni xti ne(bigint unixtine)
Usage:
Convert the numeric UNIX time value ‘unixtime’ to datetime value.
Parameter description:

uni xt i me: Bigint type, number of seconds, UNIX format date time value. If the input is ‘string’,

‘double’, it is converted to ‘bigint’ type by implicit conversion.
Return Value:

Datetime type date value. If ‘unixtime’ is NULL, return NULL.

Examples:
from uni xtime(123456789) = 1973-11-30 05: 33: 09
GETDATE
Function definition:
dateti ne getdate()
Usage:
Get present system time. Use UTC+8 as MaxCompute standard time.
Return Value:

Datetime type, return present date and time.

Note:
In a MaxCompute SQL task (executed in a distributed manner), ‘getdate’ always returns a fixed
value. The return result is any time in MaxCompute SQL execution period and the precision of

time is accurate to seconds.
ISDATE
Function definition:
bool ean isdate(string date, string format)
Usage:

Judge whether a date string can be converted to a datetime value according to corresponding

format string. If the conversion is successful, return TRUE, otherwise return FALSE.
Parameter description:

» dat e: date value of String format. If the input is ‘bigint’, or ‘double’ or ‘datetime’, it is be
converted to ‘string’ type. If it is another data type, an exception reported.

» format: a String type constant. The extensional date format is not supported. If redundant
format strings appear in ‘format’, then get the datatime value corresponding to the first format
string, other strings are taken as separators. For example, isdate (‘1234-yyyy’, ‘yyyy-yyyy’)
returns ‘TRUE’.

Return Value:

Boolean type. If any parameter is NULL, return NULL.

LASTDAY

Function definition:
datetine | astday(dateti ne date)

Usage:

Get the last day in the same month of the date, intercepted to day and the ‘hh:mm:ss’ part is ‘00:

00:00'.
Parameter description:

dat e: Datetime type. If the input is ‘string’ type, it is converted to ‘datetime’ type. If it is another

data type, an exception is reported.
Return Value:
Datetime type. If the input is NULL, return NULL.
TO_DATE
Function definition:
datetine to _date(string date, string format)
Usage:
Convert a string ‘date’ to the datetime value according to a specified format.
Parameter description:

+ dat e: String type, date value to be converted. If the input is ‘bigint’, or ‘double’ or ‘datetime’, it
is converted to ‘string’ type by implicit conversion. If it is another data type or null, an exception
indicated.

» format: String type constant, date format. If it is not a constant or is other data type,
the exception is caused. The field ‘format’ does not support extensional format and other

characters are ignored as invalid characters in analysis process.

The parameter f or mat contains ‘yyyy’ at least; otherwise the expecion is caused. If redundant
format strings appear in f or mat , then get the datatime value corresponding to the first format

string, other strings are taken as separators. For example,to_date (‘' 1234-2234",

yyyy-yyyy’) returns “1234-01-01 00:00:00’.

Return Value:

Datetime type, the format is yyyy-mm-dd hh: mi: ss. If any input is NULL, return NULL.

Examples:

to_date(' Ali baba2010-12*03', ' Al i babayyyy-mtdd') = 2010-12-03 00: 00:
00

to_date(' 20080718', 'yyyynmdd') = 2008-07-18 00: 00: 00

to_date(' 200807182030' , ' yyyynmmddhhni ') =2008- 07- 18 20: 30: 00

to_date(' 2008718', 'yyyynmndd')

-- Format is not conpatible and exception is thrown.
to_date(' Ali baba2010-12*3', 'Ali babayyyy-nmmdd')

-- Format is not conpatible and exception is thrown.
to_date('2010-24-01', 'yyyy')

-- Format is not conpatible and exception is thrown.

TO_CHAR
Function definition:
string to _char(datetine date, string format)
Usage:
Convert the ‘date’ of datetime type to a string according to a specified format.
Parameter description:

+ dat e: Datetime type, the date value to be converted. If the input is ‘string’ type, it is converted

to ‘datetime’ type by implicit conversion. If it is another data type, an exception indicated.

» format: String type constant. Ifitis not a constant or is other data type, the exception is
caused. In format’, the date format part is replaced with the corresponding data and other

characters are output directly.
Return Value:
String type. Any input parameter is NULL, return NULL.

Examples:

to_char (' 2010-12-03 00: 00: 00", *'Alibabayyyy-mtdd') = 'Alibaba2010-12*
03'

to_char (' 2008-07-18 00: 00:00', 'yyyynmdd') = '20080718

to_char (' Ali baba2010-12*3"', 'Ali babayyyy-mmdd') -- Format is not
conmpati bl e and exception is thrown.

to_char('2010-24-01', 'yyyy') -- Format is not conpatible and
exception is thrown.

to_char('2008718', 'yyyymmdd') -- Format is not conpatible and
exception is thrown.

See TO_CHAR for conversion from other types to string type.

UNIX_TIMESTAMP
Function definition:
bi gint unix_tinmestanp(dateti ne date)
Usage:
Convert the date of Datetime type to UNIX format date of Bigint type.
Parameter description:

dat e: Datetime type date value. If the input is ‘string’ type, it is converted to ‘datetime’ type and

involved in calculation. If it is another type, an exception indicated.

Return Value:

Bigint type, it indicates UNIX format date value. If ‘date’ is NULL, return NULL.
WEEKDAY

Function definition:

bi gi nt weekday(dateti ne date)

Usage:

Return the nth day of present week corresponding to the date.

Parameter description:

dat e: Datetime type. If the input is ‘string’ type, it is converted to ‘datetime’ type and then involved

in operation. If it is another date type, an exception indicated.
Return Value:

Bigint type. If the input parameter is NULL, return NULL. Monday is regarded as the first day of a
week. Its returned value is 0. Days are in ascending order starting at 0. If the day is Sunday, then

return 6.
WEEKOFYEAR

Function definition:
bi gi nt weekof year (dateti me date)

Usage:

Return the nth week of a year which the date is included in. Monday is taken as the first day of a

week.

Note:
About whether this week belongs to this year, or the next year, it depends on which year (4 days

or more) most of the time of this week belongs to.
Parameter description:

dat e: Datetime type. If the input is ‘string’ type, it is converted to ‘datetime’ type and then involved

in operation. If it is another date type, an exception indicated.
Return Value:

Bigint type. If the input is NULL, return NULL.

Examples:

sel ect weekof year(to_date("20141229", "yyyymud")) from dual ;
Resul t:

| _cO |

| 1]
- Al t hough 20141229 bel ongs to 2014, nost of the dates of the week are
in 2015, therefore, the return result is 1, indicating that it is the
first week of 2015.
sel ect weekofyear (to_date("20141231", "yyyymmdd")) from dual :

-- Return 1.

sel ect weekofyear (to_date("20141229", "yyyymdd")) from dual ;:
-- Return 53.

New extended date functions

With the upgrade to MaxCompute 2.0, some new date functions are added to the product. If the
functions are used to design a new data type compatible with the Hive mode, you must add the

following two set statements before the SQL statement of the new functions:
set odps.sql.type.system odps2=true; --Enable the new type.
If you want to submit both at the same time, run the following statements:

set odps. sql.type.system odps2=true;
sel ect year('1970-01-01 12: 30:00')=1970 from dual ;

The new extended functions are described as follows.

YEAR
Function definition:
I NT year(string date)
Usage:
Returns the year of a date.
Parameter description:

dat e: String-type date value. The format must at least include ‘yyyy-mm-dd’ and cannot include

additional strings. Otherwise, null is returned.
Return Value:

Int type.

Examples:

year (' 1970- 01-01 12: 30: 00") =1970
year (' 1970- 01-01') =1970

year (' 70-01-01') =70

year (1970- 01- 01) =nul

year (' 1970/ 03/ 09') =nul

year (null) Returns an exception

QUARTER
Function definition:
I NT quarter(datetinme/tinmestanp/string date)
Usage:
Returns the quarter of a date, range: 1-4.
Parameter description:

dat e: Datetime, Timestamp, or String-type date value. The format must at least include ‘yyyy-mm-

dd’. Otherwise, null is returned.
Return Value:

Int type, null input returns null.
Examples:

quarter('1970-11-12 10:00:00')=4

quarter('1970-11-12')=4
MONTH

Function definition:

I NT nont h(string date)
Usage:
Returns the month of a date.
Parameter description:
dat e: String-type date value. Other value types return an exception.
Return Value:
Int type.
Examples:

nont h(' 2014-09-01') =9
mont h(' 20140901") =nul |

DAY
Function definition:
I NT day(string date)
Usage:
Returns the day of a date.
Parameter description:
dat e: String-type date value. Other value types return an exception.
Return Value:
Int type.
Examples:

day(' 2014-09-01') =1

day('20140901') =nul |
DAYOFMONTH
Function definition:
I NT dayof nont h(dat e)
Usage:
Returns the day of a date.
For example, after command i nt dayof mont h(2017- 10- 13) runs, 13 returns.
Parameter description:
dat e: String-type date value. Other value types return an exception.
Return Value:
Int type.
Examples:

dayof mont h(' 2014- 09-01') =1
dayof nont h(' 20140901") =nul |

HOUR
Function definition:
I NT hour (string date)
Usage:
Returns the hour of a date.
Parameter description:
dat e: String-type date value. Other value types return an exception.
Return Value:
Int type.
Examples:

hour (' 2014-09-01 12: 00: 00') =12
hour (' 12: 00: 00') =12

hour (' 20140901120000') =nul |

MINUTE
Function definition:
I NT minute(string date)
Usage:
Returns the minute of a date.
Parameter description:
dat e: String-type date value. Other value types return an exception.
Return Value:
Int type.
Examples:
m nut e(' 2014- 09-01 12: 30: 00') =30

m nut e(' 12: 30: 00") =30
m nut e(' 20140901120000') =nul |

SECOND
Function definition:
I NT second(string date)
Usage:
Returns the second of a date.
Parameter description:
dat e: String-type date value. Other value types return an exception.
Return Value:
Int type.
Examples:

second(' 2014- 09-01 12: 30: 45') =45
second("' 12: 30: 45') =45

second(' 20140901123045") =nul |
CURRENT_TIMESTAMP
Function definition:
ti mestanp current _timestanp()
Usage:
Returns the current timestamp as a Timestamp-type value. The value is not fixed.
Return Value:
Timestamp type.
Examples:

sel ect current tinestanp() fromdual;--Returns '2017-08-03 11:50: 30.
661"

ADD_MONTHS
Function definition:
string add_nonths(string startdate, int numont hs)
Usage:
Returns the date given by startdate plus the nummonths value.
Parameter description:

» startdat e: String-type value. The format must at least include the ‘yyyy-mm-dd’ date.

Otherwise, null is returned.

* num_nont hs: Int-type value.

Return Value:

A String-type date, in the format ‘yyyy-mm-dd’.
Examples:

Add_nont hs (' 2017-02-14', 3) = '2017-05- 14’
add_nont hs(' 17-2-14' , 3) =' 0017- 05- 14'
add_nont hs(' 2017-02- 14 21: 30: 00' , 3) =' 2017- 05- 14'

add_nont hs(' 20170214 , 3) =nul |

LAST_DAY
Function definition:
string last_day(string date)
Usage:
Returns the date of the last day of the month that contains the given date.
Parameter description:
dat e: String type, with the format ‘yyyy-MM-dd HH:mi:ss’ or ‘yyyy-MM-dd’.
Return Value:
A String-type date, in the format ‘yyyy-mm-dd’.
Examples:

| ast _day('2017-03-04')="2017-03- 31"
| ast _day('2017-07-04 11:40:00')="'2017-07- 31"
| ast _day('20170304') =nul |

NEXT_DAY

Function definition:
string next_day(string startdate, string week)
Usage:

Returns the first date larger than the specified startdate that matches the day of the week given by

the week parameter. It is the date of a specific day in the next week.
Parameter description:

» startdat e: String type, with the format ‘yyyy-MM-dd HH:mi:ss’ or ‘yyyy-MM-dd’.

+ week: String type, the first two or three letters of a day of the week, or the full name of the day

of the week. For example: Mo, TUE, or FRIDAY.
Return Value:
A String-type date, in the format ‘yyyy-mm-dd’.
Examples:

next _day(' 2017-08-01',' TU)='2017- 08- 08"
next _day(' 2017- 08-01 23:34:00',' TU)='2017- 08- 08'

Next day ('20170801 ', 'tu') = NULL

MONTHS_BETWEEN

Function definition:

doubl e nont hs_between(dateti me/ti mestanp/string datel, datetine/
ti mestanp/string date2)

Usage:
Returns the number of months between date1 and date2.
Parameter description:

+ dat el: Datetime, Timestamp, or String type, with the format ‘yyyy-MM-dd HH:mi:ss’ or ‘yyyy-
MM-dd'.

+ dat e2: Datetime, Timestamp, or String type, with the format ‘yyyy-MM-dd HH:mi:ss’ or ‘yyyy-
MM-dd’.

Return Value:

Double type.

+ When date1 is later than date2, the returned value is positive. When date2 is later than date1,
the returned value is negative.

* When date1 and date2 correspond to the last days of two months, the returned value is an

integer representing the number of months. Otherwise, the formula is (date1 - date2)/31.

Examples:

nont hs_bet ween(' 1997- 02- 28 10: 30: 00', ' 1996- 10-30')=3. 9495967741935485
nont hs_bet ween(' 1996- 10- 30", ' 1997-02-28 10: 30: 00")=-3.9495967741
935485

nmont hs_bet ween(' 1996- 09- 30", ' 1996-12-31')=-3.0

3.10.3 Window Functions

In MaxCompute SQL, window function can be used to analyze and process work flexibly. Window
function can only appear in ‘select’ clause. You are not allowed to use nested window function
and aggregate function in window function. It cannot be used with the same level aggregation

function together.
Currently, in a MaxCompute SQL statement, you can use up to five window functions.

Window Function Syntax:

wi ndow_func() over (partition by [col1,col2.]

[order by [col 1] asc| desc], col 2[asc|desc].]] w ndow ng_cl ause)

 partition by isused to specify open window columns. The rows of which partitioned
columns have the same values are considered in the same window. Currently, a window can
contain at most 100,000,000 rows data (exceeding 5,000,000 rows are not advised though) ;

otherwise, an error is reported at runtime.
» The clause or der by is used to specify how the data is ordered in a window.

* Inwi ndowi ng_cl ause part, you can use rows to specify window open way. Two ways are as

follows:

— Rows between x preceding|following and y preceding|following, which indicates the window

range is from rows x preceding /following to rows y preceding/following.

— Rows x preceding|following: the window range is from rows x preceding /following to present

row.

= ‘X', 'y’ must be an integer constant that is greater than or equal to 0 and corresponding value
range is 0~10000. If the value is 0, it indicates the present row. You can use rows method

to specify window range on condition that you have specified ‘order by’ clause.

Note:
Not all window functions can be specified window open way using rows. The window functions

support this usage include AVG, count, Max, min, StdDev, sum.
COUNT

Function definition:

Bi gint count([distinct] expr) over(partition by [coll, col2.]
[order by [col 1[asc|desc], col 2[asc|desc].]] [w ndow ng_cl ause])

Usage:
Calculate the total number of retrieved rows.
Parameter description:

» expr: any data type. When it is NULL, this row is not involved in count. If the ‘distinct’ keyword

is specified, it indicates taking the unique count value.
« partition by [coll, col2.]: Specify the columns to use window function.
« order by coll [asc|desc], col 2[asc]|desc]: if ‘order by’ clause is not specified,

return the count vale of ‘expr’ in current window. If ‘order by’ clause is specified, the return

result is ordered according to specified sequence and the value is a cumulative count value

from start row to current row in current window.
Return value:

Bigint type.

Note:

If the keyword ‘distinct’ has been specified, the ‘order by’ clause cannot be used.
Example:

Suppose that the table ‘test_src’ is existent and the column ‘user_id’ of bigint type exists in this

table.

sel ect user _id,
count (user_id) over (partition by user_id) as count
fromtest src;

| user_id | count |

WN PR R
PR WWww

-- the '‘order by’ clause is not specified, return the count val ue
of user _id in current w ndow.
sel ect user _id,
count (user _id) over (partition by user_id order by user_id) as
count
fromtest src;

| user_id | count |

| 1] 1| -- start row of the w ndow

| 1| 2] --two records exist fromstart rowto current row
Return 2.

| 1] 3]

| 2] 1]

| 31 1]

-- The ‘order by’ clause is specified and return a cunul ative
count value fromstart rowto current row in current w ndow.

AVG
Function definition:

avg([distinct] expr) over(partition by [coll, col2.]
[order by [col 1[asc|desc], col 2[asc|desc].]] [w ndow ng_cl ause])

Usage:

Calculate the average.
Parameter description:

« di stinct:if the keyword ‘distinct’ is specified, it indicates taking average of unique value.

» expr: Double type.

= |f the input is ‘string’ type or ‘bigint’ type, it is converted to ‘double’ type by implicit
conversion and involved in operation. If it is another data type, an exception indicated.

= If this value is NULL, this row is not involved in the calculation.
— If the data type is Boolean, it is not allowed to be involved in the calculation.

« partition by [coll, col2...]: specified columns to use window function.

+ order by col 1[asc| desc], col 2[asc| desc]: if ‘order by’ clause is not specified,
return the average of all values in current window. If ‘order by’ clause is specified, the return
result is ordered according to specified sequence and returns the cumulative average from the

start row to current row in current window.
Return value:

Double type.

Note:

If the keyword ‘distinct’ has been specified, the ‘order by’ clause cannot be used.
MAX

Function definition:

max([di stinct] expr) over(partition by [coll, col 2.]
[order by [col 1] asc| desc], col 2[asc|desc].]] [w ndow ng_cl ause])

Usage:
Calculate the maximum value.
Parameter description:

+ expr: Any types expect ‘Boolean’. If the value is NULL, this row is not involved in the
calculation. If the keyword ‘distinct’ is specified, it indicates taking the max value of unique
value.

« partition by [coll, col 2.]: specified columns to use window function.

« order by [col 1[asc| desc], col 2[asc]| desc: if ‘order by’ clause is not specified,

return the maximum value in current window. If ‘order by’ clause is specified, the return result

MIN

is ordered according to specified sequence and return the maximum value from start row to

current row in current window.
Return value:

the same type with ‘expr’.

Note:

If the keyword ‘distinct’ has been specified, the ‘order by’ clause cannot be used.

Function definition:

m n([distinct] expr) over(partition by [coll, col2.]
[order by [col 1] asc| desc], col 2[asc|desc].]] [w ndow ng_cl ause])

Usage:
Calculate the minimum value of the column.
Parameter description:

+ expr: Any types expect ‘Boolean’. If the value is NULL, this row is not involved in the
calculation. If the keyword ‘distinct’ is specified, it indicates taking the minimum value of a

unique value.
« partition by [coll, col2.]: specified columns to use window function.

« order by [col 1[asc| desc], col 2[asc| desc: if ‘order by’ clause is not specified,
return the minimum value in current window. If ‘order by’ clause is specified, the return result
is ordered according to specified sequence and return the minimum value from start row to

current row in current window.
Return value:

the same type with ‘expr’.

Note:

If the keyword ‘distinct’ has been specified, the ‘order by’ clause cannot be used.

MEDIAN

Function definition:

Doubl e nedi an(Doubl e nunber 1, nunber2...) over(partition by [coll, col2
1)

Deci mal mnedi an(Deci mal nunber 1, nunber2...) over(partition by [col1,
col 2.])

Usage:

Calculate the median.

Parameter description:

* nunber 1, nunmber 1..: 1 to 255 digits of a Double or Decimal type.

= When the input value is a String type or a Bigint type, the operation is performed after the
implicit conversion to a Double type, and other types throw exceptions.

== Return NULL when the input value is null.

= When the input value is a Double type, it will be converted to the Array of Double by default .

« partition by [coll, col2.]: specified columns to use window function.
Return value:
Double type.

STDDEV

Function definition:

Doubl e stddev([distinct] expr) over(partition by [coll, col2.]
[order by [col 1] asc| desc], col 2[asc|desc].]] [w ndow ng_cl ause])
Deci mal stddev([distinct] expr) over(partition by [coll, col2.]
[order by [col 1[asc| desc], col 2[asc|desc].]] [w ndow ng_cl ause])

Usage:

Calculation population standard deviation.
Parameter description:

» expr: Double type.

= |f the input is ‘string’ or ‘bigint’ type, it is converted to ‘double’ type and involved in operation
. If it is another data type, an exception is indicated.
= |f the input value is ‘NULL’, this row is ignored.
— |f the keyword ‘distinct’ is specified, it indicates calculating the population standard deviation
of unique value.
« partition by [coll, col2..]: specified columns to use window function.
« order by col 1] asc| desc], col 2[asc| desc]: if ‘order by’ clause is not specified,

return the population standard deviation in current window. If ‘order by’ clause is specified, the

return result is ordered according to specified sequence and return the population standard

deviation from start row to current row in current window.
Return value:
When the input is ‘decimal’ type, return ‘decimal’; otherwise, return ‘double’.

Example:

sel ect wi ndow, seq, stddev_pop('1\01') over (partition by w ndow order
by seq) from dual;

Note:

+ If the keyword ‘distinct’ has been specified, the ‘order by’ clause cannot be used.

+ St ddev function also has an alias function named st ddev_pop, whose usage is the same as

st ddev.
STDDEV_SAMP

Function definition:

Doubl e stddev_sanp([distinct] expr) over(partition by [coll, col2.]
[order by [col 1] asc| desc], col 2[asc|desc].]] [w ndow ng_cl ause])
Deci mal stddev_samp([distinct] expr) over((partition by [col1,col2.]
[order by [col 1] asc| desc], col 2[asc|desc].]] [w ndow ng_cl ause])

Usage:

Calculate sample standard deviation.
Parameter description:

* Expr: Double type.

= If the input is ‘string’ or ‘bigint’ type, it is converted to ‘double’ type and involved in operation
. If it is another data type, an exception is indicated.
= If the input value is NULL, this row is ignored.
— |f the keyword ‘distinct’ is specified, it indicates calculating the sample standard deviation of
unique value.
« partition by [coll, col2..]: specified columns to use window function.
* Order by col 1[asc| desc], col 2[asc| desc]: if ‘order by’ clause is not specified,
return the sample standard deviation in current window. If ‘order by’ clause is specified, the
return result is ordered according to specified sequence and return the sample standard

deviation from start row to current row in current window.

Return value:

When the input is ‘decimal’ type, return ‘decimal’; otherwise, return ‘double’.

Note:

If the keyword ‘distinct’ has been specified, the ‘order by’ clause cannot be used.
SUM

Function definition:

sun([distinct] expr) over(partition by [coll, col 2.]
[order by [col 1[asc| desc], col 2[asc|desc].]] [w ndow ng_cl ause])

Usage:

Calculate the sum of elements.
Parameter description:

* Expr: Double type.

= |f the input is ‘string’ or ‘bigint’ type, it is converted to ‘double’ type and involved in operation

. If it is another data type, an exception is indicated.
= |f the input value is NULL, ignore this row.
— |If the keyword ‘distinct’ is specified, it indicates calculating the sum of unique value.
« Partition by [col1, col2..]: specified columns to use window function.
« Order by col 1[asc| desc], col 2[asc| desc]: if ‘order by’ clause is not specified,
return the sum in current window. If ‘order by’ clause is specified, the return result is ordered
according to specified sequence and return the sum from start row to current row in current

window.
Return value:

+ If the input parameter is ‘bigint’ type, return ‘bigint’ type.
» If the input parameter is ‘Decimal’ type, return ‘Decimal’ type.

+ If the input parameter is ‘double’ type or ‘string’ type, return ‘double’ type.

Note:

If the keyword ‘distinct’ has been specified, the ‘order by’ clause cannot be used.

DENSE_RANK

Function definition:

Bi gi nt dense_rank() over(partition by [coll, col2.]
order by [col 1[asc| desc], col 2[asc|desc].])

Usage:
Calculate dense rank. The data in the same row of col2 has the same rank.
Parameter description:

« partition by [coll, col2..]: specified columns to use window function.
« order by col 1[asc| desc], col 2[asc| desc] : specify the value which the rank is based

on.
Return value:

Bigint type.

Example:

Suppose that data in table ‘emp’ is as follows:

| empno | enanme | job | mgr | hiredate| sal| comm | deptno |
7369, SM TH, CLERK, 7902, 1980- 12- 17 00: 00: 00, 800, , 20

7499, ALLEN, SALESMAN, 7698, 1981- 02- 20 00: 00: 00, 1600, 300, 30
7521, WARD, SALESMAN, 7698, 1981-02-22 00: 00: 00, 1250, 500, 30
7566, JONES, MANACER, 7839, 1981- 04- 02 00: 00: 00, 2975, , 20

7654, MARTI N, SALESMAN, 7698, 1981- 09- 28 00: 00: 00, 1250, 1400, 30
7698, BLAKE, MANAGER, 7839, 1981- 05- 01 00: 00: 00, 2850, , 30

7782, CLARK, MANACER, 7839, 1981-06- 09 00: 00: 00, 2450, , 10

7788, SCOTT, ANALYST, 7566, 1987-04- 19 00: 00: 00, 3000, , 20

7839, KI NG, PRESI DENT, , 1981-11- 17 00: 00: 00, 5000, , 10

7844, TURNER, SALESMAN, 7698, 1981- 09- 08 00: 00: 00, 1500, 0, 30
7876, ADAMS, CLERK, 7788, 1987- 05- 23 00: 00: 00, 1100, , 20

7900, JAMES, CLERK, 7698, 1981-12- 03 00: 00: 00, 950, , 30

7902, FORD, ANALYST, 7566, 1981- 12- 03 00: 00: 00, 3000, , 20
7934, M LLER, CLERK, 7782, 1982-01- 23 00: 00: 00, 1300, , 10

7948, JACCKA, CLERK, 7782, 1981-04-12 00: 00: 00, 5000, , 10

7956, ELAN, CLERK, 7649, 1982-07- 20 00: 00: 00, 2450, , 10

7956, TEBAGE, CLERK, 7748, 1982-12- 30 00: 00: 00, 1300, , 10

Now, all employees need to be grouped by department, and each group must be sorted in

descending order according to SAL to obtain the serial number in own group.

SELECT dept no
, €ename
, sal
, DENSE_RANK() OVER (PARTI TI ON BY dept no ORDER BY sal DESC
) AS nuns--Deptno as a wi ndow colum, and sort in descendi ng order
according to sal.
FROM enp;

--The result is as foll ows:

deptno	enane	sal	nuns
10	JACCKA	5000.0	1
10	KING	5000.0	1

| 10 | CLARK | 2450.0 | 2

| 10 | WELAN | 2450.0 | 2

| 10 | TEBAGE | 1300.0 | 3 |
| 10 | MLLER | 1300.0 | 3

| 20 | SCOIT | 3000.0 | 1

| 20 | FORD | 3000.0 | 1 |

| 20 | JONES | 2975.0 | 2

| 20 | ADAMS | 1100.0 | 3

| 20| SMTH | 800.0 | 4 |

| 30 | BLAKE | 2850.0 | 1

| 30 | ALLEN | 1600.0 | 2

30	TURNER	1500.0	3
30	MARTIN	1250.0	4
30	WARD	1250.0	4

| 30 | JAMES | 950.0 | 5 |

RANK
Function definition:

Bi gint rank() over(partition by [coll, col2.]
order by [col 1[asc| desc], col 2[asc|desc].])

Usage:
Calculate the rank. The ranking of the same row data with col2 drops.
Parameter description:

« Partition by [col1, col2..]: specify columns to use window function.

* Order by col 1] asc| desc], col 2[asc| desc] : specify the value which the rank is based

on.
Return value:

Bigint type.

Example:

Suppose that data in table ‘emp’ is as follows:

| empno | ename | job | mgr | hiredate| sal| comm | deptno |
7369, SM TH, CLERK, 7902, 1980- 12- 17 00: 00: 00, 800, , 20

7499, ALLEN, SALESMAN, 7698, 1981- 02- 20 00: 00: 00, 1600, 300, 30
7521, WARD, SALESMAN, 7698, 1981- 02- 22 00: 00: 00, 1250, 500, 30
7566, JONES, MANACER, 7839, 1981- 04- 02 00: 00: 00, 2975, , 20

7654, MARTI N, SALESMAN, 7698, 1981- 09- 28 00: 00: 00, 1250, 1400, 30
7698, BLAKE, MANAGER, 7839, 1981- 05- 01 00: 00: 00, 2850, , 30

7782, CLARK, MANACER, 7839, 1981-06- 09 00: 00: 00, 2450, , 10

7788, SCOTT, ANALYST, 7566, 1987-04- 19 00: 00: 00, 3000, , 20

LAG

7839, KI NG PRESI DENT, , 1981-11-17 00: 00: 00, 5000, , 10

7844, TURNER, SALESMVAN, 7698, 1981- 09- 08 00: 00: 00, 1500, 0, 30
7876, ADAMS, CLERK, 7788, 1987- 05-23 00: 00: 00, 1100, , 20
7900, JAMES, CLERK, 7698, 1981-12-03 00: 00: 00, 950, , 30

7902, FORD, ANALYST, 7566, 1981-12-03 00: 00: 00, 3000, , 20
7934, M LLER, CLERK, 7782, 1982-01-23 00: 00: 00, 1300, , 10
7948, JACCKA, CLERK, 7782, 1981- 04-12 00: 00: 00, 5000, , 10
7956, VELAN, CLERK, 7649, 1982-07-20 00: 00: 00, 2450, , 10
7956, TEBAGE, CLERK, 7748, 1982-12- 30 00: 00: 00, 1300, , 10

Now, all employees need to be grouped by department, and each group must be sorted in

descending order according to SAL to obtain the serial number in own group.

SELECT dept no
, enane
, sal

, RANK() OVER (PARTI TI ON BY deptno ORDER BY sal

DESC) AS nuns

--Deptno as a wi ndow colum, and sort in descending order according to

sal .
FROM enp;

--The result is as foll ows:

| deptno | enane |

| 10 | JACCKA | 5000.0 |
| 10 | KING | 5000.0 |

| 10 | CLARK | 2450.0

| 10 | VELAN | 2450.0

| 10 | TEBAGE | 1300.0 |
| 10 | MLLER | 1300.0

| 20 | SCOTT | 3000.0

| 20 | FORD | 3000.0 |

| 20 | JONES | 2975.0

| 20 | ADAMB | 1100.0

| 20 | SMTH | 800.0 |

| 30 | BLAKE | 2850.0

| 30 | ALLEN | 1600.0

| 30 | TURNER | 1500.

| 30 | MARTIN | 1250.

| 30 | WARD | 1250.0

| 30 | JAMES | 950.0

Function definition:

| ag(expr , Bigint offset,

1
2 |

nuns |

1]

1]
3|
3

|
5|
5 |

1]
1]
3 |
4 |
5 |

3 |
4 |
|
|

default) over(partition by [coll, col 2.]
[order by [col 1] asc| desc], col 2[asc|desc].]])

The command description is as follows:

Take the value of nth row in front of current row in accordance with offset. If the current row

number is rn, take the value of the row which row number is rn-offset.

Parameter description:

* expr:any type.
« of f set: a Bigint type constant. If the input is String type or Double type, convert it to Bigint
type by implicit conversion. Offset > 0;

« def aul t : Define the default value while the specified range of ‘offset’ oversteps the boundary.

It is a constant and default is null.
« partition by [coll, col2..]: specify columns to use window function.

+ order by col 1[asc| desc], col 2[asc| desc] : specify the order method for return

result.
Return Value:
Returns the same with ‘expr’.
LEAD

The command format is as follows:

| ead(expr ,Bigint offset, default) over(partition by [col1l, col2.]
[order by [col 1] asc| desc], col 2[asc|desc].]])

The command description is as follows:

Take the value of nth row following current row in accordance with offset. If the current row

number is rn, take the value of the row which row number is rn+offset.
Parameter description:

* expr:any type.
« of f set: a Bigint type constant. If the input is String, Decimal or Double type, convert it to
Bigint type by implicit conversion. Offset > 0.

+ def aul t : Define the default value while the specified range of offset oversteps the boundary.

It is a constant.
« partition by [coll, col2..]: specify columns to use window function.

+ order by col 1] asc| desc], col 2[asc| desc] : specify the order method for return

result.
Return Value:
Returns the same with expr.

For example:

sel ect ¢_Double a,c_String b,c_int_a,lead(c_int_a,1l) over(partition by
c_Double a order by c_String b) from dual;

select c¢c_String_a,c_tine_b,c _Double a,lead(c_Double a,1l) over(
partition by c_String a order by c tine_b) from dual;

select c_String_in_fact_numc_String_a,c_int_a,lead(c_int_a) over(
partition by ¢ _String in fact numorder by c_String_a) from dual;

PERCENT_RANK
The command format is as follows:

Percent _rank () over (partition by [coll, col2...]
order by [col 1[asc| desc], col 2[asc|desc].])

The command description is as follows:
Calculate relative ranking of a certain row in a group of data.
Parameter description:

+ partition by [col1, col 2..]: specify columns to use window function.

+ order by col 1] asc| desc], col 2[asc| desc] : specify the value which the ranking is

based on.
Return Value:

Returns the Double type, value scope is [0, 1]. The calculation method of relative ranking is (r ank

-1)/ (nunber of rows -1).

Note:

The current limit of rows in a single window cannot exceed 10,000,000.
ROW_NUMBER

The command format is as follows:

row_nunber () over(partition by [col1l, col2.]
order by [col 1[asc| desc], col 2[asc]|desc].])

The command description is as follows:
This function is used to calculate the row number, beginning from 1.
Parameter description:

« partition by [coll, col2..]: specify columns to use window function.

+ order by col 1] asc| desc], col 2[asc| desc] : specify the order method for return

result.

Return Value:

Returns the Bigint type.
For example:
Suppose that data in table emp is as follows:

| empno | enanme | job | mgr | hiredate| sal| comm | deptno |
7369, SM TH, CLERK, 7902, 1980- 12- 17 00: 00: 00, 800, , 20

7499, ALLEN, SALESMAN, 7698, 1981-02- 20 00: 00: 00, 1600, 300, 30
7521, WARD, SALESMAN, 7698, 1981- 02-22 00: 00: 00, 1250, 500, 30
7566, Jones, Manager, fig-04-02 00:00: 00, 2975, 20

7654, MARTI N, SALESMAN, 7698, 1981- 09- 28 00: 00: 00, 1250, 1400, 30
7698, BLAKE, MANAGER, 7839, 1981- 05- 01 00: 00: 00, 2850, , 30

7782, CLARK, MANACER, 7839, 1981- 06- 09 00: 00: 00, 2450, , 10

7788, Scott, analyst, fig-04-19 00:00: 00, 3000, 20

7839, KI NG, PRESI DENT, , 1981-11- 17 00: 00: 00, 5000, , 10

7844, TURNER, SALESMAN, 7698, 1981- 09- 08 00: 00: 00, 1500, 0, 30
7876, ADAMS, CLERK, 7788, 1987- 05- 23 00: 00: 00, 1100, , 20

7900, JAMES, CLERK, 7698, 1981-12- 03 00: 00: 00, 950, , 30

7902, FORD, ANALYST, 7566, 1981- 12- 03 00: 00: 00, 3000, , 20
7934, M LLER, CLERK, 7782, 1982-01- 23 00: 00: 00, 1300, , 10

7948, JACCKA, CLERK, 7782, 1981- 04- 12 00: 00: 00, 5000, , 10

7956, ELAN, CLERK, 7649, 1982-07- 20 00: 00: 00, 2450, , 10

7956, tebage, clerk, maid-12-30 00:00: 00, 1300, 10

Now, all employees need to be grouped by department, and each group must be sorted in

descending order according to SAL to obtain the serial number in own group.

SELECT dept no

, enane

, Sal

, Row_nunber () over (partition by deptno order by Sal DESC
) as Nunms --Deptno as a wi ndow colum, and sort in descending order
according to sal.

FROM enp;

--The result is as foll ows:
deptno	enane	sal	nuns
10	JACCKA	5000.0	1
10	KING	5000.0	2
10	CLARK	2450.0	3
10	WELAN	2450.0	4
10	TEBAGE	1300.0	5
10	MLLER	1300.0	6
20	SCOIT	3000.0	1
20	FORD	3000.0	2
20	JONES	2975.0	3
20	ADAMS	1100.0	4
20	SMTH	800.0	5
30	BLAKE	2850.0	1
30	ALLEN	1600.0	2
30	TURNER	1500.0	
30			
I |

3
MARTIN | 1250.0 | 4 |
WARD | 1250.0 | 5 |

| 30 | JAMES | 950.0 | 6 |
CLUSTER_SAMPLE
The command format is as follows:

bool ean cluster_sanple([Bigint x, Bigint y])
-]

over(partition by [coll, col 2.)
The command description is as follows:
This function is used for Group sampling.

Parameter description:

* X: a Bigint type constant, x>=1. If you specify the parameter y, x indicates dividing a window
into x parts. Otherwise x indicates selecting x rows records in a window (if x rows are in this
window, return value is true). If x is NULL, return NULL.

+ y:aBigint type constant, y>=1, y<=x. It indicates selecting y parts records from x parts in a
window (that is to say, if y parts records exist, return value is true). If y is NULL, return NULL.

« partition by [coll, col 2]: specify columns to use window function.
Return Value:

Returns the Boolean type.

For example:

If two columns key and value are in the table test_tbl, key is grouping field. The corresponding

values of key have groupa and groupb, the field value indicates value of key. As follows:

| key | value |

groupa | -1.34764165478145
groupa | 0.740212609046718
groupa | 0.167537127858695
gr oupa 0.630314566185241 |
G oupA | 0.0112401388646925
groupa | 0.199165745875297
groupa | -0.320543343353587
groupa | -0.273930924365012

gr oupa -1.09209976687047
gr oupb -1.10847690938643
groupb | -0.725703978381499
gr oupb 1. 05064697475759
gr oupb 0. 135751224393789
groupb | 2.13313102040396
groupb | -1.11828960785008
gr oupb - 0. 849235511508911

I
I
I
I
I
I
|
groupa | 0.386177958942063 |
I
I
I
I
I
I
I
I
I

groupb | 1.27913806620453 |

groupb | -0.330817716670401 |
groupb | -0.300156896191195 |
groupb | 2.4704244205196 |

groupb | -1.28051882084434 |

To select 10% values from each group, the following MaxCompute SQL is suggested:

Sel ect key, Val ue
from(
Sel ect key, value, cluster_sanple (10, 1) over (partition by
key) as flag
fromtbl
) sub
where flag = true;

| Key | value |

| groupa | 0.167537127858695 |
| groupb | 0.135751224393789 |

NTILE

The command format is as follows:

BIGANT ntil e(BIG@ NT n) over(partition by [col1, col2.]
[order by [col 1] asc| desc], col 2[asc|desc].]] [w ndow ng_cl ause]))

The command description is as follows:

Used to cut grouped data into N slices in order and return the current slice value, if the slice is

uneven, the distribution of the first slice is increased by default.
Parameter description:

N: bigint data type.

Return Value:

Returns the bigint type.

The example is as follows:

Assume the data in the table EMP is as follows:

| Empno | enane | job | Mgr | hiredate | Sal | REM | deptno
7369, Smith, clerk, maid-12-17 00:00: 00, 800, 20

7499, Allen, sal esman, naid-02-20 00: 00: 00, 1600, 300, 30
7521, Ward, sal esman, maid-02-22 00:00: 00, 1250, 500, 30
7566, Jones, Manager, fig-04-02 00:00: 00, 2975, 20

7654 Martin, salesman, fig-09-28 00:00:00, fig, 30

7698, Bl ake, Manager, fig-05-01 00:00: 00, 2850, 30

7782, d ark, Manager, fig-06-09 00:00: 00, 2450, 10

7788, Scott, analyst, fig-04-19 00:00: 00, 3000, 20

00: 00: 00, King, President, 1991-11-17 5000, 7839, 10
7844, Turner, sal esman, fig-09-08 00:00: 00, 1500,0, 30

7876, Adans, clerk, maid-05-23 00:00: 00, 1100, 20
7900 James, clerk, nmaid-12-03 00: 00: 00, 950, 30
7902 Ford, analyst, fig-12-03 00:00: 00, 3000, 20
7934 MIler, clerk, fig-01-23 00:00:00, 1300, 10
7948, jaccka, clerk, fig-04-12 00:00: 00, 5000, 10
7956, welan, clerk, fig-07-20 00:00: 00, 2450, 10
7956, tebage, clerk, maid-12-30 00:00:00, 1300, 10

All employees now need to be divided into three groups according to Sal high to low cut, and get

the serial number of the employee's own group.

Sel ect deptno, enane, Sal, ntile (3) over (partition by depno order by
Sal DESC) as nt3 from EMP;
-- Execution results as follows

Deptno	enane	Sal	nt3
10	jaccka	5000.0	1
10	King	5000.0	1

| 10 | welan | 2450.0 | 2

| 10 | dark | 2450.0 | 2

| 10 | tebage | 1300.0 | 3 |
10 | MIler | 1300.0 | 3 |

| 20 | Scott | 3000.0 | 1

| 20 | Ford | 3000.0 | 1 |

| 20 | Jones | 2975.0 | 2 |
| 20 | Adans | 1100.0 | 2

| 20 | Smth | 800.0 | 3 |

| 30 | Blake | 2850.0 | 1

| 30 | Allen | 1600.0 | 1

30	Turner	1500.0	2
30	Martin	1250.0	2
30	ward	1250.0	3

| 30 | Janes | 950.0 | 3 |

3.11 UDF

3.11.1 UDF Summary

MaxCompute provides many built-in functions to meet the computing requests of a user and a
user can also create user-defined functions to meet different computing needs. A User Defined
Function (UDF) is similar to an ordinary Built-in Function. MaxCompute provides many built-in
functions to meet the computing requests of you and you can also create user-defined functions to

meet different computing needs. UDF is similar to an ordinary Built-in Function .

If you use Maven to search “odps-sdk-udf’ from Maven to get different versions of Java SDK. The

configuration information is shown as follows:

<dependency>
<gr oupl d>com al i yun. odps</ gr oupl d>
<artifactld>odps-sdk-udf</artifactld>
<ver si on>0. 20. 7- publ i c</ ver si on>

http://search.maven.org/
http://search.maven.org/

</ dependency>

In MaxCompute, you can expand two kinds of UDF:

UDF Class Description
UDF(User Defined Scalar User Defined Scalar Function. The relationship between input
Function) and output is a one-to-one relationship. Read a row data and

write an output value.

UDTF (User-defined table User-defined table valued functions are used in scenarios
valued function) where the calling of one function leads to multiple rows of data
being output. It is a unique user-defined function which can
return multiple fields, while UDF can only output a return value.

UDAF (User Defined User Defined Aggregation Function (UDAF), the relationship
Aggregation Function) between its input and output is one-to-many relationships. That
is to aggregate multiple input records to an output value. It can
be used with Group By clause together. For more information,
see Aggregation Functions.

Note:

+ UDF stands for the set of use-defined functions, including User Defined Scalar Function, User
Defined Aggregation Function and User Defined Table Valued Function. In a narrower sense,
it represents user User Defined Scalar Function. The document uses this term frequently and
the readers can judge the specific meaning according to the context .

+ If the system prompts that memory is not enough with an UDF involved in the SQL statement,

configure set odps. sql . udf.j oi ner.jvm nmenor y=xxxX; to solve it. The reason
is that the amount of data is too large and there is a data skew, so that the memory size

occupied by task exceeds the default memory size.

MaxCompute UDF supports cross-project sharing. A UDF in project_b can be used in project_a.
For more information about authorization, see Authorization in Security Guide documentation.

other_project:udf_in_other_project(arg0, arg1) as res from table_t;.
UDF Examples

Please see UDF Example in Quick Start Volume.

3.11.2 Java UDF
MaxCompute UDF includes three types: UDF, UDAF, and UDTF.

Parameter and return value type

The data types of UDF supported by MaxCompute SQL include: Basic types: bigint, double,
boolean, datetime, decimal, string, tinyint, smallint, int, float, varchar, binary, and timestamp.

Complex types: array, map, and struct.

» The use of some basic types such as tinyint, smallint, int, float, varchar, binary, and timestamp

by a Java UDF is as follows:

— UDTF get ‘signature’ by @Resolve annotation, for example, @Resol ve("smal | i nt - >
varchar (10)").

— UDF gets ‘signature’ by the reflection analysis ‘evaluate’. In this case, the MaxCompute built
-in type and the Java type comply with one-to-one mapping.

— UDAF does not yet support new basic types.

+ JAVA UDF uses three complex data types — ‘array’, ‘map’, and ‘struct’:

— UDTF specify ‘signature’ by @Resolve annotation, for example, @Resol ve("array<
string>, struct<al: bigint,bl:string>, string->map<string, bi gi nt>,
struct<bl:bigint>")Sinliterature, such as: @resolve ("array <string
>, struct <Al: bigint, bl: String> string-> Map <string, bigint>,
struct <Bl: bigint> ").

— UDF maps the input and output types by ‘signature’ of the evaluation method. In this case,
see the mapping between the MaxCompute type and the Java type. In the mapping, ‘array
’ corresponds to ‘java.util.List’; ‘map’ corresponds to ’java.util.Map’; and ‘struct’ corresponds

to ’com.aliyun.odps.data.Struct’.

— UDAF does not yet support.

Note:

* By ‘com.aliyun.odps.data.Struct’, the field name and field type cannot be seen in the
reflection; therefore, @Resolve annotation is needed. That is to say, if ‘struct’ is
needed in UDF, @Resolve annotation must be added to the UDF class. This annotation
only affects the reload of the parameter or returned values that include ‘com.aliyun.

odps.data.Struct’.

» Currently, only one @Resolve annotation can be provided in one class. Therefore, only

one reload of parameters or returned values that carry ‘struct’ is allowed in a UDF.

MaxCompute data types and Java data types correspond as follows:

MaxCompute Type Java Type

Tinyint java.lang.Byte

Smallint java.lang.Short

Int java.lang.Integer

Bigint java.lang.Long

Float java.lang.Float

Double java.lang.Double

Decimal java.math.BigDecimal

Boolean java.lang.Boolean

String java.lang.String

Varchar com.aliyun.odps.data.Varchar

Binary com.aliyun.odps.data.Binary

Datetime java.util.Date

Timestamp java.sql.Timestamp

Array java.util.List

Map java.util.Map

Struct com.aliyun.odps.data.Struct
Note:

* The corresponding data type in Java and the return value data type is the object. Make sure
that the first letter is uppercase.

+ The NULL value in SQL is represented by a NULL reference in Java; therefore, ‘Java primitive

type’ is not allowed because it cannot represent a NULL value in SQL.

* Here, Java type corresponding to the ‘array’ type is ‘list’.
UDF

To implement UDF, the class ‘com.aliyun.odps.udf.UDF’ must be inherited and the ‘evaluate’

method must be implemented. The ‘evaluate’ method must be non-static public method. The

parameter type and return value type of Evaluate method is considered as UDF signature in SQL
. This means that the user can implement multiple evaluate methods in UDF. To call UDF, the

framework matches correct evaluate method according to the parameter type called by UDF.

Classes with the same class name but different functional logic would better appear in different
jar packages. For example, UDF (UDAF/UDTF): udf1, udf2 correspond to the resources udf1.jar
and udf2.jar respectively, if both jars contain com.aliyun.UserFunction.class, when two udfs are
used in the same SQL statement , the system randomly loads one of the classes, it causes udf

execution behavior is inconsistent or even failed to compile.
UDF example:

package org. al i dat a. odps. udf . exanpl es;
i mport com al i yun. odps. udf . UDF;

public final class Lower extends UDF

{ public String evaluate(String s) {

if (s =null) { return null; }

return s.tolLowerCase(); }

You can achieve UDF initialization and end through voi d set up(Execut i onCont ext ct x)

andvoid close().

The use method of UDF is similar to built-in functions in MaxCompute SQL. For more information,

see Built-in Functions.
UDAF

To implement Java UDAF, you must inherit the class ‘com.aliyun.odps.udf.UDAF’ and the

following interfaces must be implemented:

public abstract class Aggregator inplenments ContextFunction {

@verride
public void setup(ExecutionContext ctx) throws UDFException {

@verride
public void close() throws UDFException {

* Creat aggregation Buffer
* @eturn Witable aggregati on buffer
abstract public Witable newBuffer();
* @aram buffer: aggregation buffer
* @aramargs: specified paraneter to call UDAF in SQ
* @hrows UDFException

abstract public void iterate(Witable buffer, Witable[] args)
t hrows UDFExcepti on;

generate final result

@ar am buf f er

@eturn final result of Object UDAF
@ hr ows UDFExcepti on

* X X ok

abstract public Witable ternminate(Witable buffer) throws
UDFExcept i on;
abstract public void nmerge(Witable buffer, Witable partial) throws
UDFExcept i on;
The three most important interfaces are ‘iterate’, ‘merge’ and ‘terminate’. The main logic of UDAF

relies on these three interfaces. In addition, user needs to realize defined Writable buffer.

Take ‘achieve average calculation’ as an example and next figure describes the realization logical

and computational procedure of this function in MaxCompute UDAF:

iterate(a)
3 r.count += 1;
r.sum += a;

o

Terminate:
r. sum/r. count

Merge (PartialResult pr)
r. count += pr.count; o 4.2
r.sum += pr.sum;

1 iterate(a)

> r.count += 1;
6 r.sum += a;

In the image displayed preceding, the input data is sliced according to certain size (For the
description of slicing, see MapReduce). The size of each slice is suitable for a worker completed

in appropriate time. This slice size needs to be configured by the user manually.
The calculation process of UDAF is divided into two stages:

* In the first stage, each worker counts the data quantity and total sum in a slice. You can take
the data quantity and total sum in each slice as an intermediate result.
» In the second stage, a worker gathers the information of each slice generated in the first stage.

In the final output, r.sum / r.count is the average of all input data.
The following is a UDAF encoding example to calculate average:

i mport java.i o. Datal nput;
i mport java.i o. DataCQut put;
i mport java.io.l OException;

i mport com aliyun. odps. i o. Doubl eWitabl e;
i mport com aliyun. odps.io. Witable;
i mport com al i yun. odps. udf . Aggr egat or;
i mport com al i yun. odps. udf . UDFExcepti on;
i mport com al i yun. odps. udf . annot ati on. Resol ve;
@resol ve("doubl e- >doubl e")
public class AggrAvg extends Aggregator ({
private static class AvgBuffer inplenments Witable {
private double sum = 0;
private |ong count = O;
@verride
public void wite(DataCQutput out) throws | OException {
out.witeDoubl e(sum;
out.writelLong(count);

@verride

public void readFiel ds(Datal nput in) throws | COException {
sum = i n. readDoubl e();
count = in.readLong();

private Doubl eWitable ret = new Doubl eWitabl e();
@verride
public Witable newBuffer() {

return new AvgBuffer();

@verride
public void iterate(Witable buffer, Witable[] args) throws
UDFExcepti on {
Doubl eWitable arg = (Doubl eWitable) args[O0];
AvgBuf fer buf = (AvgBuffer) buffer;
if (arg! =null) {
buf . count += 1;
buf . sum += arg. get();

@verride
public Witable term nate(Witable buffer) throws UDFException {
AvgBuf fer buf = (AvgBuffer) buffer;
if (buf.count == 0) {
ret.set(0);
} else {
ret.set(buf.sum/ buf.count);

return ret;

@verride
public void merge(Witable buffer, Witable partial) throws
UDFException {
AvgBuf fer buf = (AvgBuffer) buffer;
AvgBuffer p = (AvgBuffer) partial;
buf.sum += p. sum
buf.count += p.count;

Note:

* For Writable’s readFields function, because the partial writable object can be reused, the

same object readFields function is called multiple times. This function expects the entire

object to be reset each time it is called. If the object contains a collection, it needs to be

emptied.

* The use method of UDAF is similar to aggregation functions in MaxCompute SQL. For more

information, see Aggregation Functions.

» How to run UDTF is similar to UDF. For more information, see Java UDF Development.

UDTF

Java UDTF class needs to inherit the class ‘com.aliyun.odps.udf.UDTF’. This class has four

interfaces:

Interface Definition

Description

public void setup(ExecutionC
ontext ctx) throws UDFExcepti
on

The initialization method to call user-defined initialization
behavior before UDTF processes the input data. ‘Setup’ will be
called first and once for each worker.

public void process(Object|]
args) throws UDFException

The framework calls this method. Each record in SQL calls °
process’ once accordingly. The parameters of ‘process’ are the
specified UDTF input parameters in SQL. The input parameters
are passed in as Object[], and the results are output through
‘forward’ function. The user needs to call ‘forward’ in the °
process’ function by itself to determine the output data.

public void close() throws
UDFException

The termination method of UDTF. The framework calls this
method, and only once; that is, after processing the last record.

public void forward(Object ...o
) throws UDFException

The user calls the ‘forward’ method to output data. Each *
forward’ represents the output of a record, corresponding to the
column specified by UDTF 'as’ clause in SQL.

Next a UDTF program example is shown as follows:

package org. al i dat a. odps. udt f. exanpl es;
i mport com al i yun. odps. udf . UDTF;
i mport com al i yun. odps. udf . UDTFCol | ect or;
i mport com al i yun. odps. udf. annot ati on. Resol ve;
i mport com al i yun. odps. udf . UDFExcepti on;
[/ TODO define input and output types, e.g., "string,string->

string, bigint".

@resol ve("string, bigint->string,bigint")
public class MYUDTF extends UDTF {

@verride

public void process(Object[] args) throws UDFException {
String a = (String) args[0];
Long b = (Long) args[1];

for (String t:
b) ;

forward(t,

a.split("\\s+")) {

Note:
The preceding example is for reference only. How to run UDTF is similar to UDF. For more

information, see Java UDF Development.

In SQL you can use this UDTF as following example. Suppose that the register function name in

MaxCompute is ‘user_udtf.

sel ect user _udtf(col 0, coll) as (c0, cl) frommy_table;
Suppose the values of col0 and col1 in my_table are:

| colO | coll |

| AB| 1]

| CDJ| 2|

Then the ‘SELECT’ result is:

| cO | cl |

NN

o0 w>

UDTF Instructions for Use
In SQL, the common use method of UDTF is shown as follows:

sel ect user _udtf(col 0, coll) as (c0, cl) frommy_table;
sel ect user _udtf(col 0, coll, col2) as (c0O, cl) from
(select * fromny table distribute by key sort by key) t;
sel ect reduce_udtf(col0, coll, col2) as (c0O, cl) from
(select col0, coll, col2 from
(sel ect map_udtf (a0, al, a2, a3) as (col0, coll, col2)
fromny_ table) t1
distribute by col0 sort by colO, coll) t2;

But using UDTF has the following limitations:

» Other expressions are not allowed in the same SELECT clause:

sel ect val ue, user_udtf(key) as mycol

« UDTF cannot be nested.

sel ect user _udtfl(user_udtf2(key)) as nycol...

» It cannot be used with ‘group by / distribute by / sort by’ in the same SELECT clause.

sel ect user _udtf(key) as mycol ... group by mycol

Other UDTF Examples

In UDTF, you can read MaxCompute Resources. Next introduce how to read MaxCompute

resources by using UDF:

1. Write the UDF program and compile it successfully. Then export it as a jar package

(udtfexample1.jar).

package com al i yun. odps. exanpl es. udf;

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

j ava. i o. Buf f er edReader ;

java.io. | OExcepti on;

java.io. |l nputStream

java.i o. | nput St r eanReader ;
java.util.lterator;

com al i yun. odps. udf . Execut i onCont ext ;
com al i yun. odps. udf . UDFExcepti on;

com al i yun. odps. udf . UDTF;

com al i yun. odps. udf . annot ati on. Resol ve;

* project: exanple_project
* table: we_in2

* partitions: p2=1, pl=2

* colums: colc,colb

@Resol ve("string, string->string,bigint,string")

public class UDTFResource extends UDTF {

Executi onCont ext ct x;

| ong fil eResourceli neCount;

| ong t abl eResour celRecor dCount ;

| ong t abl eResour ce2Recor dCount ;

@verride

public void setup(ExecutionContext ctx) throws UDFException {
this.ctx = ctx;

try {

I nput Stream in = ctx.readResourceFi|l eAsStrean("fil e_resource.txt

"Buf feredReader br = new Buf f er edReader (new | nput St r eanReader (i n

) _
String line;
fil eResourcelLi neCount = O;
while ((line = br.readLine()) ! = null) {

fil eResourceLi neCount ++;

br.cl ose();

Iterator<Object[]> iterator = ctx.readResourceTabl e("tabl e reso
urcel").iterator();
t abl eResour celRecor dCount = O;
while (iterator.hasNext()) {
t abl eResour celRecor dCount ++;
iterator. next();

iterator = ctx.readResourceTabl e("tabl e_resource2").iterator();
t abl eResour ce2Recor dCount = O;
while (iterator.hasNext()) {

t abl eResour ce2Recor dCount ++;

iterator. next();

} catch (1 OException e) {
t hrow new UDFExcepti on(e);

@verride

public void process(Object[] args) throws UDFException {

String a = (String) args[0];

long b = args[1] == null ? 0 : ((String) args[1]).length();
forward(a, b, "fileResourcelLi neCount=" + fil eResourcelLineCount + "|
t abl eResour celRecor dCount ="

+ t abl eResour celRecordCount + "|tabl eResour ce2RecordCount =" +

t abl eResour ce2Recor dCount) ;

. Add resources in MaxCompute:

Add file file_resource.txt;

Add jar udtfexanplel.jar;

Add table table resourcel as tabl e resourcel;
Add table table resource2 as table resource2;

. Create UDTF (my_udtf) in MaxCompute:

create function np_udtf as com aliyun. odps. exanpl es. udf . UDTFResour ce
usi ng

"udtfexanplel.jar, file_resource.txt, table_resourcel, table_reso

urce?';

. Create the resource tabkes: table_resource1, table_resource2 and the physical table tmp1 in
MaxCompute. Insert corresponding data into the tables.

. Run this UDF:

select nmp_udtf("10","20") as (a, b, fileResourceLi neCount) fromtnpl
Return result:
| a| b | fileResourceLineCount |

| 10 | 2| fileResourceLineCount=3|tabl eResourcelRecor dCount =0|
t abl eResour ce2Recor dCount =0 |

| 20| 2 | fileresourcelinecount = 3 | tabl eResourcelRecordCount = 0
| tabl eResource2RecordCount = 0 |

UDTF Examples—Complex Data Types

The code in the following example defines a UDF with three overloads. The first overload uses
‘array’ as the parameter; the second uses ‘map’ as the parameter; and the third uses ‘struct’ as
the parameter. Since the third overload uses ‘struct’ as the parameter or returned value, the UDF
class must has the @Resolve annotation to specify the specific type of ‘struct’.

@resol ve("struct<a: bigint> string->string")

public class Udf Array extends UDF {

public String evaluate(List<String> vals, Long len) {
return val s. get(len.intValue());

public String eval uate(Map<String, String> map, String key) {
return map. get (key);

public String evaluate(Struct struct, String key) {
return struct.getFieldvalue("a") + key;

Users can pass in the complex data type in the UDF:

create function ny_index as 'Udf Array' using 'nyjar.jar';
select id, ny_index(array('red , "yellow, 'green'), colorOdinal) as
col or _nane from col ors;

Hive UDF Compatibility Example

MaxCompute 2.0 supports Hive-style UDFs. Some Hive UDFs and UDTFs can be used directly in

MaxCompute.

Note:
Currently, the compatible Hive version is 2.1.0, and the corresponding Hadoop version is 2.7.2.
UDFs that are developed in other versions of Hive/Hadoop may need to be recompiled using this

Hive/Hadoop version.
Example:

package com al i yun. odps. conpi |l er. hi ve;

i mport org. apache. hadoop. hi ve. gl . exec. UDFAr gunment Except i on;

i mport org. apache. hadoop. hi ve. gl . met adat a. Hi veExcepti on;

i mport org. apache. hadoop. hi ve. gl . udf. generi c. Generi cUDF;

i nport org. apache. hadoop. hi ve. serde2. obj ecti nspect or. Gbj ect | nspect or;
i mport org. apache. hadoop. hi ve. serde2. obj ecti nspect or. Gbj ect | nsp
ect or Factory;

i mport java.util.Arraylist;

i mport java.util.List;

i mport java.util.Qpojects;

public class Collect extends CenericUDF {

@verride

public Objectlnspector initialize(Objectlnspector[] objectlnspectors
) throws UDFArgunent Exception {
if (objectlnspectors.length == 0) {
throw new UDFAr gunent Exception("Col |l ect: input args should >= 1
")

for (int i = 1; i < objectlnspectors.length; i++) {
if (objectlnspectors[i] ! = objectlnspectors[0]) {
t hr ow new UDFAr gurment Exception("Col I ect: input oi should be
the same for all args");

return Qbjectl nspector Fact ory. get St andar dLi st Cbj ect | nspect or (
obj ect I nspectors[0]);

@verride
public Object eval uate(Deferredbject|[] deferredCbjects) throws
H veException {
Li st <Ooj ect > obj ectLi st = new ArrayLi st <>(def erredCbj ects. | ength);
for (DeferredObject deferredCbject : deferredObjects) {
obj ect Li st. add(def erredoj ect.get());

return objectList;

@verride
public String getDisplayString(String[] strings) {
return "Col |l ect";

Note:
For the use of Hive UDF, see:

* https://cwiki.apache.org/confluence/display/Hive/HivePlugins
» https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide+UDTF
* https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy

The UDF can pack any type and amount of parameters into array to output. Suppose that the

output jar package is named test.jar:

--Add resource

Add jar test.jar;

--Create function

CREATE FUNCTI ON hive _collect as 'com aliyun. odps. conpil er. hive. Col | ect
'using 'test.jar';

--Use function

set odps. sql. hive. conpati bl e=true;

sel ect hive_coll ect(4y, 5y, 6y) from dual ;

| _cO |

https://cwiki.apache.org/confluence/display/Hive/HivePlugins
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide+UDTF
https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy

| [4, 5, 6] |

Note:

The UDF can support all data types, including array, map, struct, and other complex types.
Note:

+ MaxCompute’s add jar command permanently creates a resource in the project, so you must

specify the jar when creating an UDF, but you cannot automatically add all jars to the classpath

* To use compatible Hive UDF, add set odps. sql . hi ve. conpat i bl e=t r ue; in front of
the SQL statement, and submit it with SQL statement.

* When using compatible Hive UDFs, you must pay attention to Java sandbox restrictions of

MaxCompute.

3.11.3 Python UDF

The Maxcompute UDF consists of UDF, UDAF, and UDTF functions, this article focuses on how to

implement these three functions through Python.
RESTRICTED ENVIRONMENT

The Python version of MaxCompute UDF is 2.7 and executes user code in sandbox mode; that is,

the code is executed in a restricted environment.

* Read and Write local files

» Promoter Process

» Start thread

* Use SOCKET to communicate

» Other system calls

Because of these restrictions, user-uploaded code must all be implemented by pure Python, and

the C extension module is disabled.

In addition, not all modules are available in the Python standard library, and modules that involve

these features are disabled. Description of available modules in the standard library:

* All modules implemented by pure Python are available.

» The following modules are available in C-implemented extended modules.

— array

= audioop

— binascii

- bisect

=— cmath

= codecs cn
= codecs_hk
= _codecs_is02022
— _codecs_jp
=— _codecs_kr
= codecs tw
= _collections
= cStringlO
— datetime

— _functools
== future_builtins
— _hashlib

= heapq

— jtertools

— _json

- |ocale

=— _|sprof

=— math

— _md5

= _multibytecodec
= operator

=— _random

- sha256

— shab12

— sha

— _struct

= strop

- time

— unicodedata
— _weakref
— cPickle
» Some modules have limited functionality. For example, the sandbox limits the degree to which
user code can write data to the standard output and the standard error output; that is, sys.

stdout/sys.stderr can write 20 KB at most; otherwise, the excessive characters will be ignored.
Third-party Libraries

Common third-party libraries are installed in the operating environment to supplement the

standard library. The supported third-party libraries also include: NumPy.

Note:
The use of third-party libraries is also subject to 'prohibit local’, 'network I/O', and other

restrictions. Therefore, APIs that have such functions are also prohibited in a third-party library.
Parameters and return value types
The parameters and return values are specified as follows:

@dps. udf . annot at e(si gnat ur e)

Maxcompute that is currently supported by the python UDF SQL data types include bigint, String
, double, Boolean, and datetime. The SQL statement must determine the parameter type and the
return value type for all functions before execution. So for Python, a dynamically-typed language,

you need to specify the function signature by adding a decorator to the UDF class.

The function signature is specified by a string. The syntax is as below:

Arg_type_ list "-> type_list
Arg type list: db list | "*" |''
Do list: [type list', "] Type
"bigint' | 'string’ | 'double' | 'boolean’ | 'datetinge'
+ The left side of the arrow indicates the type of the parameter and the right side indicates the
type of the returned value.
* Only the UDTF returned value can be multiple columns, while UDF and UDAF can only return

one column.

+ " represents varargs. By using varargs, UDF/UDTF/UDAF can match any type of parameter.

The legitimate signature example is as follows:

The ' bigint, double-> string' # paraneter is bigint, double, and the
return value is string

The ' bi gint, Boolean-> string, datetinme '# udtf paraneter is bigint,
Bool ean, the return value is string, datetine

"*-> String' # variable length parameter, input paraneter arbitrary,
return val ue string

The '-> doubl es' # paraneter is enpty and the return value is double

At the query semantic parsing stage, unqualified signatures will be checked out, and an error

is returned. The execution would then be banned. During execution, the UDF parameter will be
passed to the user as the type specified by the function signature. The type of the user returned
value must be consistent with the type specified by the function signature; otherwise, an error is

returned. MaxCompute The SQL data type corresponds to the Python type as follows:

ODPS SQL Bigint String Double Boolean Datetime
type

nt str float bool Int

Python Type

Note:

» Datetime type is passed to user code in the form of an int, with a value of epoch UTC Number
of milliseconds from time to date. The user can deal with ‘datetime’ type through the ‘datetime
" module in the Python standard library.

* NULL corresponds to NONE in Python.

In addition, the parameter of odps.udf.int(value], silent=True]) has been adjusted. Parameter *

silent’ is added. . When ‘silent’ is true, if the value cannot be converted into ‘int’, report no error

and return NONE.
UDF

Implementation of the python UDF is very simple, just need to define a new-style Class, and

implements the evaluate method. The example is as follows:

From ODPS. UDF inport quilate

@Qilate ("bigint, bigint-> bigint ")
Class nyplus (object):

Def evaluate (self, arg0O, argl):
If none in (arg0, argl):

Ret urn none
Return arg0 + argl

Note:

The Python UDF must specify the function signature through ‘annotate’.
UDAF

» class odps.udf.BaseUDAF: inherit this class to implement a Python UDAF.

+ BaseUDAF.new_buffer(): implement this method and return the median ‘buffer’ of the
aggregate function. Buffer must be mutable Object (such as list, dict), and the size of the buffer
should not increase with the amount of data, in the case of limit, Buffer The size after Marshal
should not exceed 2 MB.

+ BaseUDAF .iterate(buffer[, args, ...]): this method aggregates ‘args’ into the median ‘buffer’.

+ BaseUDAF.merge(buffer, pbuffer): this method aggregates two median buffers; that is,
aggregate ‘pbuffer merger’ into ‘buffer’. Merge into buffer.

+ BaseUDAF.terminate(buffer): this method converts the median ‘buffer’ into the MaxCompute

SQL basic types.

An example of an average value of UDAF is as follows:

@ At t enuat e (' doubl e-> Doubles ')
Cl ass Average (baseudag):

Def new buffer (Self):
Return [0, O]

Def iterate (self, buffer, nunber):
I f nunmber is not none:
Buf fer [0] + = Number
Buffer [1] + = 1

Def Merge (self, buffer, pbuffer):
Buf fer [0] + pbuf fer [0]
Buffer [1] + pbuffer [1]

Def term nate (self, buffer):
If buffer [1] = O:
Return 0.0
return 0.0
return buffer[0] / buffer[1]

UDTF

» class odps.udf.BaseUDTF: the basic class of Python UDTF. Users inherit this class and

implement methods such as process, close, etc.

» BaseUDTF.init(): the initialization method. If the inherited class implements this method, then
it must call the initialization method of the basic class ‘super(BaseUDTF, self).init()’ from the

beginning. .

The ‘init’ method will only be called once during the entire UDTF lifecycle; that is, before the
first record is processed. When the UDTF needs to save the internal state, all states can be
initialized in this method.

+ Baseudtf. Process ([ARGs,...]): This method by maxcompute The framework calls this method
. Each record in SQL calls ‘process’ once accordingly. The parameters of ‘process’ are the
specified UDTF input parameters in SQL.

» BaseUDTF.forward([args, ...]): the UDTF output method, which is called by user codes. Each
time ‘forward’ is called, a record is output. The parameters of ‘forward’ are the UDTF output
parameters specified in SQL.

+ BaseUDTF.close(): the termination method of UDTF. This method is called by the
MaxCompute SQL framework and only to be called once; that is, after processing the last

record.
Examples of udtf are:

Codi ng: UTF-8
Expl ode. py

From ODPS. UDF inport quilate
From ODPS. UDF inport baseudtf

@Attenuate ('string-> string ')
Cl ass expl ode (baseudtf):
"Qutput string comma-separated to nultiple records

Def process (self, ARG):
Props = Arg. Split (',")
For P in props:
sel f.forward(p)

Note:
Python A Python UDTF can also specify the parameter type or returned value type without
adding ‘annotate’. In this case, the function can match any input parameter in SQL. The returned
value type cannot be deduced, but all output parameters will be considered to be ‘string’ type. So

when ‘forward’ is called, all output values must be converted into ‘str’ type.

Reference Resources

Python UDF can reference resource files through the ‘odps.distcache’ module. Currently,

referencing file resources and table resources is supported.
+ odps.distcache.get_cache_file(resource_name)

— Returns the resource content for the specified name. resource_name: ‘str’ type, correspond
ing to the existing resource name in the current project. If the resource name is invalid or
has no responding resources, return an error.

= The return value is file-like object The caller is obliged to call the close method to release

the open resource file after this object has been used.
The example of using ‘get_cache_file’ is as follows:

@Attenuate ('bigint-> string ')
Cl ass di st cacheexanpl e (object):

Def _init _ (Self):

Cache file = Porter ')

v =1} |
For line in cache file:
Line = line. Strip ()
If not I|ine:
Cont i nue
K, V=1ine. Split ()
KV [int (k)] =V
Cache file.close ()
Self. KV = kV

Def evaluate (self, ARG):
Return self. KV. Get (ARG

* odps.distcache.get_cache_table(resource_name)

= Returns the contents of the specified resource table. resource_name: ‘str’ type, correspond
ing to the existing resource table name in the current project. If the resource name is invalid
or has no responding resources, return an error.

= Returned value: returned value is ‘generator’ type. The caller obtain the table content

through traversal. Each traversal has a record stored in the table in the form of a tuple.
The example of using ‘get_cache_table’ is as follows:

From ODPS. UDF inport quilate
From ODPS. distcache inmport fig

@Attenuate ('-> string ")
Class maid (object):
Def _ init _ (Self):
Self. Records = List ('udf _ test '))
Self. Counter =0

Self. Ln = Len (self. Records)

Def evaluate (Self):
if self.counter > self.In - 1:
Ret urn none
Ret = self. Records [self. Counter]
Sel f. Counter + =1
Return STR (RET)

3.12 Appendix

3.12.1 Escape Characters

In MaxCompute SQL, a string constant can be set off by single (‘) or double quotation marks (“).
The string set off by single quotation marks can contain double quotation marks or the string set
off by double quotation marks can contain single quotation marks. Otherwise, you must use an

escape character to indicate it.
The following expressions are acceptable:

“I'"'ma happy nmanong."
"I'\''ma happy manong.'

In MaxCompute SQL, \' is a kind of escape character used to express the special character in a
string or express its followed characters as characters themselves. To read a string constant, if ‘V’
is followed by three effective 8 hexadecimal digits and corresponding range is from 001 to 177,

the system converts it to corresponding characters according to an ASCII value.

The following table lists some special escape characters:

Escape Character

\b backspace

\t tab

\n newline

\r carriage-return

v single quotation mark
\’ double quotation marks
\\ Backslash

\; Semicolon

\Z control-Z

Escape Character

\O or \00 Terminator

select length('a\tb') from dual;

The result is 3, which indicates that three characters are in the string. The \t’ is considered as one

character. Other following characters are expressed as themselves.
select "a\ab',length('a\ab') from dual;

The result: ‘aab’, 3. \a’ is expressed as general ‘a’.

3.12.2 Like Usage

In LIKE matching, ‘%’ indicates matching any multiple characters. The ‘_’ indicates matching a
single character. To match ‘%’ or ‘*_’ itself, you must escape it. The \%’ matches the character ‘%’

and “_’ matches the character ‘_".

"abcd' like '"ab% -- true
"abcd' like "ab\% -- false
"ab%d' |like "ab\\%®% -- true
Note:

MaxCompute SQL only supports the UTF-8 character set. If the data is encoded in another

format, it is possible that the calculation result is not correct.

3.12.3 Regular Expression

The regular expressions in MaxCompute SQL use the PCRE standard, matched by characters.

The metacharacter to be supported is as follows:

Metacharacter Description
A Top of line (TOL)
$ End of line

Any character

Matches for zero or multiple times

+ Matches for once or multiple times
? Matches for zero time or once
? Matches modifier. When this character follows any other constraints (*,

+,? {n}, {n, {n, m},}, the match mode is non greedy. Non greedy mode

Metacharacter Description
matches strings as little as possible, while the default greedy mode
matches strings as more as possible.

A|B AorB

(abe)* Matches ‘abc’ for zero or multiple times

{n} or {m, n} Matching times

[ab] Matches any character in the brackets. In the example, it is to match a
orb.

[a-d] Matches any character in a, b, ¢, and d.

[fab] A indicats ‘non’, to match any character which is not a and b.

[::] See POSIX character group in next table.

\ Escape character

\n N is a digit from 1 to 9 and is backward referenced.

\d digits

\D Non-number

POSIX character group:

POSIX Character Description Range

Group

[[:alnum:]] letter and digit characters [a-zA-Z0-9]

[[:alpha:]] letter [a-zA-Z]

[[:ascii:]] ASCII character [\x00-\x7F]

[[:blank:]] Space character and tabs [M]

[[:entrl:]] Control character [\x00-\x1F\x7F]

[[:digit:]] Digit character [0-9]

[[:graph:]] Characters except white space [\X21-\x7E]
characters

[[:lower:]] Lowercase characters [a-Z]

[[:print:]] [:graph:] and white space [\x20-\x7E]
characters

[[:punct]] punctuation O IV#$%& () +,./:;<=>? @\ _

A~

POSIX Character Description Range
Group

[[:space:]] White space characters [M\rAn\v\f]
[[:upper]] Uppercase characters [A-Z]
[[:xdigit:]] hexadecimal character [A-Fa-f0-9]

Because the system uses a backslash () as an escape character, all “\” which appear in the
regular expression pattern perform two escapes. For example, the regular expression needs

to match the string “a+b”. The “+” is a special character in regular expressions and must be
expressed by escape. The expression in a regular engine is “a\+b”, because the system needs to

explain a layer of escape, the expression which can match this string is “a\\+b”.
Suppose that the table test_dual is:

select "a+b' rlike "a\\\+b' fromtest dual;

| _cl |

| true |

In extreme cases, to match the character “\’, because “\” is a special character in a regular
engine, it needs to be expressed by “\", while the system does an escape for it again, it is written

as “\".

select "a\\b', "a\\b' rlike "a\\\\b' fromtest dual;

| cO | _cl |

| a\b | true |

Note:
To write a\ \ b in MaxCompute SQL, and the output result is a\ b.

If TAB exists in a string, when the system reads these two characters \ t , they are already saved

as one character by the system. Therefore, in regular expression, it is a general character.

select "a\tb', "a\tb' rlike "a\tb' fromtest_dual;

| ab | true |

3.12.4 Reserved Words

This document shows all reserved words in MaxCompute SQL.

Note:

* These cannot be used to name a table, column, or partition; otherwise an error occurs.

* Reserved words are not case sensitive.

%& & () * +
- L <<= <>
ADD AFTER ALL
ALTER ANALYZE AND ARCHI VE ARRAY AS ASC
BEFORE BETWEEN BI G NT Bl NARY BLOB BOOLEAN BOTH DECI MAL
BUCKET BUCKETS BY CASCADE CASE CAST CFI LE
CHANGE CLUSTER CLUSTERED CLUSTERSTATUS COLLECTI ON COLUMN COLUMNS
COMMVENT COVPUTE CONCATENATE CONTI NUE CREATE CROSS CURRENT
CURSOR DATA DATABASE DATABASES DATE DATETI ME DBPROPERTI ES
DEFERRED DELETE DELI M TED DESC DESCRI BE DI RECTORY DI SABLE
DI STI NCT DI STRI BUTE DOUBLE DROP ELSE ENABLE END
ESCAPED EXCLUSI VE EXI STS EXPLAI N EXPORT EXTENDED EXTERNAL
FALSE FETCH FI ELDS FI LEFORVAT FI RST FLOAT FOLLOW NG
FORVAT FORMATTED FROM FULL FUNCTI ON FUNCTI ONS GRANT
GROUP HAVI NG HOLD DDLTI ME | DXPROPERTIES | F | MPORT | N
| NDEX | NDEXES | NPATH | NPUTDRI VER | NPUTFORMAT | NSERT | NT
| NTERSECT INTO IS | TEMS JO N KEYS LATERAL
LEFT LI FECYCLE LIKE LIMT LINES LOAD LOCAL
LOCATI ON LOCK LOCKS LONG MAP MAPJO N MATERI ALI ZED
M NUS MSCK NOT NO DROP NULL OF OFFLI NE
ON OPTI ON OR ORDER QUT QUTER QUTPUTDRI VER
QUTPUTFORVAT OVER OVERWRI TE PARTI TI ON PARTI TI ONED PARTI Tl ONP
ROPERTI ES PARTI TI ONS
PERCENT PLUS PRECEDI NG PRESERVE PROCEDURE PURGE RANGE
RCFI LE READ READONLY READS REBU LD RECORDREADER RECORDWRI TER
REDUCE REGEXP RENAME REPAI R REPLACE RESTRI CT REVCKE
Rl GHT RLI KE ROW ROAS SCHEMA SCHEMAS SELECT
SEM SEQUENCEFI LE SERDE SERDEPROPERTI ES SET SHARED SHOW
SHOW DATABASE SMALLI NT SORT SORTED SSL STATI STI CS STORED
STREAMTABLE STRI NG STRUCT TABLE TABLES TABLESAMPLE TBLPROPERTI ES
TEMPORARY TERM NATED TEXTFI LE THEN TI MESTAMP TI NYI NT TO
TOUCH TRANSFORM TRI GGER TRUE UNARCHI VE UNBOUNDED UNDO
UNI ON UNI ONTYPE UNI QUEJO N UNLOCK UNSI GNED UPDATE USE
USI NG UTC UTC TMESTAMP VI EW WHEN WHERE WHI LE DI V

4 MapReduce

4.1 Summary

4.1.1 MapReduce

MaxCompute provides three versions of MapReduce programming interface.

+ MaxCompute MapReduce : Native interface for MaxCompute, which is faster than other

interfaces. It is more convenient to develop a program without exposing file system.

*+ MR2 (Extended MapReduce): The extension to MaxCompute, which supports more complex
job scheduling logic. Map/Reduce is implemented in the same manner as the MaxCompute
native interface.

* Hadoop compatible version: highly compatible with Hadoop MapReduce , but not compatible

with MaxCompute native interface and MR2.

The above three versions are basically the same in the basic concepts, Job submission, input and
output, and resource, and the difference is the Java SDK. This document introduces the principle

of MapReduce. For more detailed description of MapReduce, see Hadoop MapReduce Course.

Note:

You are not yet able to read or write data from the external tables through MapReduce .
Scenarios

MapReduce was originally proposed by Google as a distributed data processing model and is now

widely applied in multiple business scenarios. The example is as follows:

» Search: web crawl, flip index, PageRank.

* Web access log analytics:

— Analize and mine the web access, shopping behavior characteristics to achieve personaliz
ed recommendation.
— Analyze user's access behavior.

+ Statistics and analysis for text:

= The Wordcount and TFIDF analysis of Mo Yan novels.
— Reference analysis and statistics of academic papers and patent documents.

— Wikipedia data analysis, etc.

http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html
https://help.aliyun.com/document_detail/27876.html
http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html

+ Massive Data Mining: unstructured data, spatial and temporal data, image data mining.
+ Machine Learning: supervised learning, unsupervised learning, classification algorithm such as
decision tree, SVM, etc.

* Natural Language Processing:

= Training and forecasting based on big data.
— Based on the corpus to construct the current matrix of words, frequent itemset data mining,
repeated document detection and so on.

+ Advertisement recommendations: user-click (CTR) and purchase behavior (CVR) forecasts.
Processing Process

The processing data process of MapReduce is divided into two stages: Map and Reduce . You
execute Map first, and then Reduce. The processing logic of Map and Reduce is defined by a
user, but must comply with the MapReduce framework protocol. The processing process is as

follows:

1. Before executing Map, the input data must be sliced, thatis, input data is divided into blocks
of equal size. Each block is processed as the input of a single Map Worker, so that multiple
Map Workers can work simultaneously.

2. After the slice is split, multiple Map Worker can work together. Each Map Worker performs
computing after reading the data and output the result to Reduce. Because Map Worker
outputs the data, it needs to specify a key for each output record. The value of this Key
determines which Reduce Worker the data is sent to. The relationship between key value
and Reduce Worker is an any-to-one relationship. Data with the same key is sent to the same
Reduce Worker, and a single Reduce Worker may receive data of multiple key values.

3. Before Reduce stage, MapReduce framework sorts the data according to their Key values, and
make sure data with same Key value is grouped together. If a user specifies Combiner, the
framework calls Combiner to aggregate the same key data. The user must define the logic of
Combiner. Compared to the classical MapReduce framework, the input parameter and output
parameter of Combiner must be consistent with Reduce in MaxCompute. This processing is
generally called Shuffle.

4. At Reduce stage, data with the same key is shuffled to the same Reduce Worker. A Reduce
Worker receives data from multiple Map Workers. Each Reduce Worker executes Reduce
operation for multiple records of the same key. Multiple records of the same key then become

a value through Reduce processing.

E] Note:

A brief introduction to the MapReduce framework is provided above. For more details, see

relevant documents.
The following example uses WordCount to explain the stages of MaxCompute MapReduce.

Assume there is a text named ‘a.txt’, where each row is indicted by a number, and the frequency
of appearance of each number needs to be counted. The number in the text is called ‘Word’
and the number appearance occurrence is called Count. To complete this function though

MaxCompute MapReduce, the following figure details the steps required:

Input data Map stage Shuffle Reduce Output
. stage data
Merge sort Assign Reduce
s
1ce
3 3 1 it
1 i f | 1 ;::ck:""’-:: 7] ""“-—-h,_‘__h"“--u_.___*
2] 7 1 __,_,..-—f“:’:"\-‘_ 3] i i Him 4 reducel }"‘ | '.F!
Sli:.;e? / l;:%
FA e z J_
1 | mapZ
m e Sy L _
- e Sl 2:3
Slice 3 : : ':;'J'] :}reduuej = =
1] 3z 1
o o W
I = I [1

Procedure:

1. First, text is sliced and the data in each slice is input into a single Map Worker.

2. Map processes the input. Once Map gets a number, it sets the Count as 1. Then, output <Word
, Count>queues. and take ‘Word’ as the Key of output data.

3. In the initial actions of Shuffle stage, the output of each Map Worker is sorted according to Key
value (value of Word). Then the Combine operation is executed after sorting to accumulate
the Count of same Key value (Word value) and constitute a new <Word, Count> queue. This
process is called combiner sorting.

4. In the later actions of Shuffle, data is transmitted to Reduce. Reduce Worker sorts the data
based on Key value again after receiving data.

5. At the time of processing data, each Reduce Worker adopts that same logic as that of

Combiner by accumulating Count with same Key value (Word value) to get the output

6. result.

Note:
Because data in MaxCompute are stored in tables, the input and output of MaxCompute
MapReduce can only be a table. User-defined output is not allowed and the corresponding file

system interface is not provided.

4.1.2 Extended MapReduce

The traditional MapReduce model requires that the data must be loaded to the distributed file
system (such as HDFS or MaxCompute table) after each round of MapReduce operation.
However, a general MapReduce application usually consists of multiple MapReduce jobs, and
each job output needs to be written to a disk. The following Map task is an example of a task
that was only to read data, prepared for subsequent Shuffle stage, but which actually resulted in

redundant 1/O operations.

The calculation scheduling logic of MaxCompute can support more complex programming
paradigm. In the preceding scenario, the next Reduce operation can be executed after Reduce
operation and inserting a Map operation is not necessary. In this way, MaxCompute provides an
extensional MapReduce model, that is, numerous Reduce operations can follow a Map operation,

such as Map>Reduce> Reduce.

Hadoop Chain Mappper/Reducer also supports analogous serial Map or Reduce operations, but

has major differences compared with the extensional MaxCompute (MR2) model.

The Hadoop Chain Mapper/Reducer is based on traditional MapReduce model, and can only add
one or multiple Mapper operations (it is not allowed to add Reducer operations) after the original
Mapper or Reducer. . The benefits of extended MapReduce include that user can reuse previous
business logic of Mapper and can split one Map stage or Reduce stage into multiple Mapper

stages. The underlying scheduling and I/O model are not changed essentially.

Compared with MaxCompute , MR2 is basically consistent in the way map/reduce functions are
written. The main difference is in performance. For more information, see Extended MapReduce

example.

4.1.3 Open-source MapReduce

MaxCompute offers a set of native MapReduce programming models and interfaces. The inputs
and outputs for these interfaces are MaxCompute tables, and data is organized for processing in

record format.

However, MaxCompute APlIs differ significantly from APIs for the Hadoop framework. Previously
, if you wanted to migrate your Hadoop MapReduce jobs to MaxCompute, you needed to first
rewrite the MapReduce code, compile, and debug the code using MaxCompute APls, compress
the final code into a JAR package, and finally upload the package to the MaxCompute platform.
This process is tedious and requires a lot of development and testing efforts. If you do not need
to modify or modify the original Hadoop MapReduce code partially, running it in MaxCompute

console is the best solution.

Now, the MaxCompute platform provides a plug-in that allows you to adapt Hadoop MapReduce
code to MaxCompute MapReduce specifications. MaxCompute offers a degree of flexibility
regarding binary-level compatibility for Hadoop MapReduce jobs. This means that, without
modifying the code, you can specify configurations to directly run original Hadoop MapReduce
JAR packages on MaxCompute. You can download the development plug-in to get started. This

plug-in is currently in the testing stage and does not support custom comparators or key types.

In the following example, a WordCount program is used to introduce the basic usage of the plug-

in.

Note:

* For more information on open-source compatibility, see Open-source SDK compatibility.

* For more information about the Hadoop MapReduce SDK, see the Official MapReduce

documentation.
Download the HadoopMR Plug-in

Click here to download the plug-in named hadoop2openmr-1.0.jar.

Note:
This Jar package contains the dependencies with Hadoop 2.7.2. Do not include Hadoop

dependencies in the Jar packages of your jobs to avoid version conflicts.
Prepare Jar package

Compile and export the WordCount JAR package named wordcount_test.jar. The WordCount

program source code is as follows:

package com al i yun. odps. mapr ed. exanpl e. hadoop;
i mport org. apache. hadoop. conf. Confi gurati on;

i nport org. apache. hadoop. fs. Pat h;

i nport org. apache. hadoop.io. | ntWitable;

i mport org. apache. hadoop. i o. Text;

http://repo.aliyun.com/download/hadoop2openmr-1.0.jar
http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html
http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html
http://repo.aliyun.com/download/hadoop2openmr-1.0.jar

i mport org. apache. hadoop. nmapr educe. Job;
i mport org. apache. hadoop. napr educe. Mapper;
i mport org. apache. hadoop. mapr educe. Reducer;
i mport org. apache. hadoop. mapr educe. | i b.input. Fil el nput For mat ;
i nport org. apache. hadoop. mapr educe. | i b. out put . Fi | eCut put For mat ;
i mport java.io.| OException;
import java.util.StringTokeni zer;
public class WrdCount ({
public static class Tokeni zer Mapper
ext ends Mapper<Cbj ect, Text, Text, IntWitabl e>{
private final static IntWitable one = new IntWitable(l);
private Text word = new Text();
public void nmap(Cbj ect key, Text val ue, Context context
) throws | OException, InterruptedException {
StringTokeni zer itr = new StringTokenizer(val ue.toString
()
while (itr.hasMoreTokens()) {
wor d. set (i tr.next Token());
context.wite(word, one);

public static class |IntSunReducer
ext ends Reducer<Text, I ntWitable, Text, I ntWitable> {
private IntWitable result = new IntWitable();
public void reduce(Text key, |terable<lntWitable> val ues,
Cont ext cont ext
) throws | OException, InterruptedException {
int sum= 0;
for (IntWitable val : values) {
sum += val . get ();

result.set(sum;
context.wite(key, result);

public static void nmain(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job. getlnstance(conf, "word count");
j ob. set Jar Byd ass(Wr dCount . cl ass) ;
j ob. set Mapper d ass(Tokeni zer Mapper. cl ass);
j ob. set Conbi ner d ass(| nt SunReducer. cl ass);
j ob. set Reducer d ass(I nt SunReducer. cl ass) ;
j ob. set Qut put Keyd ass(Text. cl ass) ;
j ob. set Qut put Val ued ass(IntWitabl e. cl ass);
Fi | el nput For mat . addl nput Pat h(j ob, new Path(args[0]))
Fi | eCut put For mat . set Qut put Pat h(j ob, new Pat h(args[1]
System exi t (j ob. wai t For Conpl etion(true) ? 0 : 1);

5);

Prepare Test Data

1. Create input and output tables

create table if not exists wec_in(line string);
create table if not exists wc_out(key string, cnt bigint);

2. Run tunnel to import data to the input table.

The data in the data.txt text file to be imported is as follows:

hel | o maxconput e
hel I o mapreduce
you can use the Tunnel command at the MaxCompute console to import data from data.txt to

wc_in.
tunnel upload data.txt wc_in;

Configure the Mapping Between the Table and the HDFS File Path

The configuration file is wordcount-table-res.conf.

"file:/foo ":{
"resol ver": {
"resolver": "com aliyun. odps. mapr ed. hadoop2opennr. resol ver.
Text Fi | eResol ver",
"properties": {
"text.resol ver. col ums. conbi ne. enabl e": "true",
"text.resol ver.seperator”: "\t"

"tabl el nfos": |

"t bl Nanme": "wc_in",

"part Spec": {},

"l abel": " default "
"mat chMbde": "exact"

"file:/bar": {
"resol ver": {
"resolver": "com aliyun. odps. mapr ed. hadoop2opennr . resol ver.
Bi naryFi | eResol ver",
"properties": {
"bi nary. resol ver.input.key.class" : "org.apache. hadoop. i o.
Text",
"bi nary. resol ver.input.val ue.class" : "org.apache. hadoop. i o.
LongWi t abl e"

"tabl el nfos": [

"t bl Name": "wc_out",
"part Spec": {},
"l abel": " default_ "

"mat chMbde": "fuzzy"

Configuration item descriptions:

The configuration is a JSON file that describes the mapping relationships between HDFS files and
MaxCompute tables. Generally, you must configure both the input and output. One HDFS path

corresponds to one Resolver, tablelnfos, and matchMode.

* resolver: specifies the method of processing file data. Currently, you can choose from two
built-in Resolvers: com.aliyun.odps.mapred.hadoop2openmr.resolver. TextFileResolver and
com.aliyun.odps.mapred.hadoop2openmr.resolver.BinaryFileResolver. In addition to specifying
the Resolver name, you must also configure some properties about data parsing for the

Resolver.

— TextFileResolver: regards an input or output as plain text if the data is of plain text type.
When configuring an input Resolver, you must configure such properties as text.resolver.
columns.combine.enable and text.resolver.seperator. When text.resolver.columns.combine
.enable is set to ‘true’, all the columns in the input table are combined into a single string
based on the delimiter specified by text.resolver.seperator. Otherwise, the first two columns

in the input table are used as the key and value.

— BinaryFileResolver: converts binary data into a type that is supported by MaxCompute, for
example, Bigint, Boolean, and Double. When configuring an output Resolver, you must
configure the properties binary.resolver.input.key.class and binary.resolver.input.value.class
, which define the key and value types of the intermediate result, respectively.

+ tablelnfos: specifies the MaxCompute table that corresponds to HDFS. Currently, only the
tbIName parameter (table name) is configurable. The partSpec and label parameters must be
the same as the values set for the parameters in this example.

+ matchMode: specifies the path matching mode. The ‘exact’ mode indicates exact matching,
and the ‘fuzzy’ mode indicates fuzzy matching. You can use a regular expression in ‘fuzzy’

mode to match the HDFS input path.
Job Submission

Use the MaxCompute command line tool odpscmd to submit jobs. For the installation and
configuration of MaxCompute command line tool, see the Console. In odpscmd, run the following

command:

j ar - DODPS HADOOPMR TABLE RES CONF=./wordcount-tabl e-res. conf -
cl asspat h hadoop2opennr-1.0.jar,wordcount _test.jar com aliyun. odps.
mapr ed. exanpl e. hadoop. Wr dCount /foo /bar;

Note:

» wordcount-table-res.conf is a map with ‘/foo /bar’ configured.

» wordcount_test.jar is your Jar package of Hadoop MapReduce.

» com.aliyun.odps.mapred.example.hadoop.WordCount is the class name of job to be run.

» [foo /bar refers to the path on HDFS, which is mapped to wc_in and wc_out in the JSON
configuration file.

+ With the mapping relation configured, you must manually import the Hadoop HDFS input file
to wec_in for MR calculations by using data integration functions of DataX or DataWorks, and
manually export the result ‘wc_out’ to your HDFS output directory(/bar).

* In the preceding output, assume that hadoop2openmr-1.0.jar, wordcount_test.jar, and
wordcount-table-res.conf are stored in the current directory of odpscmd. If an error occurs, you

must make the relevant changes when specifying the configuration and -classpath.

The running process is shown in the following figure:

B, 280 18 18 S28
ST | ER AT i

I fs LA KR el
ML Sl LT D] R kel

4.2 Function Introduction

4.2.1 Command

The MaxCompute console provides a JAR command to run MapReduce job. The detailed syntax
is shown as follows:
Usage:
jar [<GENERI C_OPTI ONS>] <MAI N CLASS> [ARGS] ;
-conf <configuration_file> Specify an application configurat
ion file
-resources <resource_nanme_list> file\table resources used in
mapper or reducer, seperate by conmm
-classpath <local _file_list> classpaths used to run mai nC ass
- D <nane>=<val ue> Property value pair, which will be used to
run mai nCl ass
-1 Run job in Iocal node
For exanpl e:
jar -conf /hone/adm n/ myconf -resources a.txt,exanple.jar -

classpath ../lib/exanple.jar:./other lib.jar -Djava.library. path=./
native -Xnx512M nyconpany. WrdCount -m 10 -r 10 in out;

<CGENERI C_OPTI ONS> includes the following parameters (optional parameters):

» -conf < configuration file >: Specify an JobConf configuration file.

* -resources < resource_name_list >: Indicates the resource statement used in MapReduce
running time. Generally, the resource name in which Map/Reduce function is included must be

specified in ‘resource_name_list'.

Note:

If the user has read other MaxCompute resources in the Map/Reduce function, then these

resource names also need to be added in ‘source_name_list'.

Multiple resources are separated by commas. If you must use span project resources,
then add the prefix PRQJECT/ r esour ces/ , for example: - r esour ces ot her pr oj ect/

resources/resfile.

For more information about how to read the resource in the Map/Reduce function, see Use

Resource Example.

+ -classpath < local_file_list >: the classpath used to specify the local JAR package of ‘main’

class (include relative paths and absolute paths).

Package names are separated using system default file delimiters. Generally, the delimiter is a

semicolon (;) in a Windows system and a comma (,) in a Linux system.

Note:

In most cases, users generally write the main class and Map/Reduce function in a package,
such as WordCount Code Example. This means that, in the running period of the example
program, mapreduce-examples.jar appears in ‘-resources’ parameter and ‘-classpath’
parameter, however, ‘-resources’ references the Map/Reduce function, and runs in a
distributed environment, while ‘-classpath’ references ‘Main’ class, and runs locally. The
specified path of the JAR package is also a local path.

* -D < prop_name >=< prop_value > : Multiple Java properties of < mainClass > in local mode

can be defined.

* -I: run MapReduce job in local mode, mainly used for program debugging.

User can specify the configuration file ‘JobConf by option ‘-conf’. This file can modify the JobConf

settings in the SDK.
An example of a configuration file ‘JobConf is as follows:

<confi guration>
<property>
<name>i nmport. fil enanme</ nane>
<val ue>r esource. t xt </ val ue>
</ property>
</ configuration>

In the preceding example, the variable ‘import.filename’ is defined and its value is ‘resource.txt’.

User can get this variable value through the JobConf interface in the MapReduce program.
Alternatively, users can also get the value through the JobConf interface in the SDK. For a

detailed example, see Use Resource Example.
Example:

add jar data\ mapr educe- exanpl es. j ar;
jar -resources mapreduce-exanpl es.jar -classpath mapreduce-
exanpl es. j ar
org. al i dat a. odps. nr. exanpl es. WrdCount wc_in wc_out;
add file data\src.txt;
add jar dat a\ mapr educe- exanpl es. j ar;
jar -resources src.txt, napreduce-exanples.jar -classpath data\
mapr educe- exanpl es. j ar
org. al i dat a. odps. nr. exanpl es. WrdCount wc_in wc_out;
add file data\a.txt;
add table wc_in as test_table;
add jar data\work.jar;
jar -conf odps-mapred.xm -resources a.txt,test_table, work.jar
-cl asspath data\work.jar:otherlib.jar

-Dinport.filename=resource.txt org.alidata.odps. nr.exanpl es.
Wor dCount ar gs;

4.2.2 Basic Conception

Map/Reduce

Map and Reduce support corresponding map/reduce method, setup method and cleanup method
. The setup method is called before the map/reduce method, and each worker only calls it only

once.

The cleanup method is called after the map/reduce method, and each worker calls it only once.
For a detailed example, see Program Examples.

Sort/Group

Some columns in output key records can be taken as sort columns, but user-defined comparator
is not supported. You can select several columns from sort columns as Group columns, but user-
defined Group comparator is not supported. Sort columns are used to sort your data while Group

columns are used for secondarySort.
For more information, see SecondarySort Example.
Partition

Supports setting the partition column and customized partitioner. Partition columns have a higher

priority than customized partitioners.

The partitioner is used to distribute the output data on Map terminal to different Reduce Workers

according to Hash logic.

Combiner

The Combiner function combines adjacent records in Shuffle stage. You can choose whether to

use Combiner according to different business logic.

Combiner helps optimize the MapReduce computing framework and the logic of Combiner is
generally similar to Reduce. After Map outputs the data, the framework performs a local combiner

operation for the data which has the same key value on Map terminal.

For more information, see WordCount Code Examples.

4.2.3 Input and Output

+ Built-in data types include: BIGINT, DOUBLE, STRING, DATETIME, and BOOLEAN. User-
defined types (UDFs) are not supported.

» Multiple-table input is allowed, and the schema of input tables can be different. In Map function
, users can obtain corresponding Table information of the current record.

* The input can be null. View as an input is not supported.

* Reduce accepts multiple outputs and can output data to different tables or different partitions
in the same table. The schema of different outputs can be different. Different outputs are
distinguished through the label and the default output does not need label. No output is not

allowed.

For more input and output examples, see Program Examples.

4.2.4 Resource

You can read MaxCompute resources in Map/Reduce. Any Worker of Map/Reduce can load

resources to memory for you to apply in code use.

For more information, see Use Resource Example.

4.2.5 Local run

Basic stages Introduction

Local run prerequisite: By setting —| ocal parameter in jar command, user can simulate

MapReduce running process on the local to continue local debugging.

At local operation time: The client downloads required Meta information of input tables,
resources, and Meta information of output tables from MaxCompute, and saves them into a local

directory named ‘warehouse’.

After running the program: The calculation result is output into a file in ‘warehouse’. If the input
table and referenced resources have been downloaded in the local warehouse directory, the data
and files in ‘warehouse’ directory are referenced directly at next running time, and do not repeat

the downloading.
Differences between running locally and running distributed environments

In the local operation course, multiple Map and Reduce workers are still started to process data.

But these workers are not running concurrently and followed by serial running.

In addition, this simulation process and real distributed operation have the following differences:

» A restriction for row number of input table exists: now, up to 100 rows of data can be

downloaded.

» Usage of resource: in distributed environment, MaxCompute limits the size of referenced
resource. For more information, see Application Restriction. Note that in local running

environment, the resource size is no limitation.

» Security restriction: MaxCompute MapReduce and UDF program running in a distributed
environment are limited by Java Sandbox. Note that in local operations the restriction does not

exists.
Example
A local operation example is as follows:

odps: nmy_project> jar -1 com aliyun. odps. mapred. exanpl e. Wr dCount
wc_in wc_out
Sunmmary:
counters: 10
map- r educe framewor k

conbi ne_i nput _groups=2
conbi ne_out put _records=2
map_i nput _byt es=4
map_i nput _records=1
map_out put _recor ds=2
map_out put _[wc_out] _bytes=0
map_out put _[wc_out] records=0
reduce_i nput _groups=2
reduce_out put _[wc_out] byt es=8
reduce_out put _[wc_out] records=2

X

For a detailed WordCount example, see WordCount Code Example.

If a user runs local debugging command for the first time, a path named ‘warehouse’ appears
in the current path after the command is executed successfully. The directory structure of

warehouse is as follows:

<war ehouse>
| ny_project(project directory)
< _tables__>
| __we_in(table directory)
| |____ data(file)
|

|

I

| | < schema__> (file)

| | _wc_out(table data directory)
| | data(file)

|

| | < schema__ > (file)

|

| _

<__resources__ >

| __ table resource_nane (table resource)
| | < ref_ >
|
| _

___file_resource _nane (file resource)

The same level directory of myproject indicates the project. ‘wcin’ and ‘wc_out’ indicate tables.
The table files read by user in JAR command is downloaded into this directory.
The contents in <__schema__ > indicate table Meta information. The format is defined as
follows:

proj ect =l ocal _proj ect _nane

t abl e=l ocal _t abl e_name

col umms=col 1_nane: col 1_type, col 2_nane: col 2_type

partitions=pl: STRI NG p2: Bl G NT
Columns and column types are separated by a colon ‘', and columns and columns are
separated by a comma ‘,’. In the front of < schema__ > file, the Project name and Table
name must be declared, such as pr oj ect _name. t abl e_nane, and separated by comma
and column definition. pr oj ect _nane. t abl e_nane, col 1_nane: col 1_t ype, col 2_nane
:col 2_type,
The file ‘data; indicates table data. The column quantity and corresponding data must comply

with the definition in schema _, that is, extra columns and missing columns are not allowed.
The content of Cite Left_schema_ Cite Rightin wc_in is as follows:

my_proj ect.wc_in, key: STRI NG val ue: STRI NG
The content of ‘data’ is as follows:

0,2

The client downloads the Meta information of table and part of the data from MaxCompute,
and save them into the two preceding files. If you run this example again, the data in the

directory ‘wc_in’ is used directly and will not be downloaded again.

Note:
Note that the function to download data from MaxCompute is only supported in MapReduce
local operation mode. If the local debugging is executed in Eclipse development plug-in, the

data of MaxCompute cannot be downloaded to local.

https://www.alibabacloud.com/help/zh/doc-detail/27981.html

The content of Cite Left_schema_ Cite Right in wc_out is as follows:
my_proj ect.wc_out, key: STRI NG cnt : Bl G NT
The content of ‘data’ is as follows:

0,1
2,1

The client downloads the Meta information of wc_out from MaxCompute and saves it to the
file Cite Left_schema_ Cite Right. The file ‘data’ is a result data file generated after local

operation.

Note:

» Users can also edit Cite Left schema_ Cite Right file and ‘data’ and then place these two
files into the corresponding table directory.

* When running on the local, the client detects that the table directory already exists, and
does not download the information of this table from MaxCompute. The table directory on

the local can be a table that does not exist in MaxCompute.

4.3 Program Example

4.3.1 WordCount Sample

Preparation

1. Prepare the JAR package of the test program. Assume the package is named mapreduce-

examples.jar. The local storage path is dat a\ r esour ces.
» Create tables.

create table we_in (key string, value string);
create table wc_out (key string, cnt bigint);

« Add resources.

add jar data\resources\ mapreduce-exanpl es.jar -f;

2. Prepare tables and resources for testing the wordCount operation.

3. Run tunnel to import data.
tunnel upload data wc_in;
The data imported into the wc_in table is as follows:
hel | o, odps
Procedure
Run WordCount in odpscmd.

jar -resources mapreduce-exanpl es.jar -classpath data\resources\
mapr educe- exanpl es. j ar
com al i yun. odps. napr ed. open. exanpl e. WrdCount wc_in wc_out

Result

The job is successfully completed.

| key | cnt |

| hello | 1|

| odps | 1|
Sample Code

package com al i yun. odps. mapr ed. open. exanpl e;
i mport java.io.| OException;
import java.util.lterator;
i mport com al i yun. odps. dat a. Recor d;
i mport com al i yun. odps. dat a. Tabl el nf o;
i mport com al i yun. odps. mapred. Jobd i ent;
i mport com al i yun. odps. mapr ed. Mapper Base;
i mport com al i yun. odps. mapr ed. Reducer Base;
i mport com al i yun. odps. mapr ed. TaskCont ext ;
i mport com al i yun. odps. mapr ed. conf. JobConf ;
i mport com aliyun. odps. mapred. utils.InputUtils;
i mport com aliyun. odps. mapred. utils. QutputUils;
i mport com aliyun. odps. mapred. utils. Schemaltil s;
public class WrdCount
public static class Tokeni zer Mapper extends Mapper Base {
private Record word;
private Record one;
@verride
public void setup(TaskContext context) throws | OException {
word = cont ext. creat eMapQut put KeyRecord() ;
one = cont ext. creat eMapQut put Val ueRecord() ;
one. set (new bject[] { 1L });
Systemout.println("TasklD:" + context.getTasklD().toString

0));
@verride

public void map(l ong recordNum Record record, TaskCont ext
cont ext)
t hrows | OException {

for (int i =0; i < record.getColumCount(); i++) {
wor d. set (new Cbject[] { record.get(i).toString() });
context.wite(word, one);

* A combi ner class that conbi nes map out put by sum them

public static class SumConbi ner extends ReducerBase {
private Record count;
@verride
public void setup(TaskContext context) throws | OException {
count = context.creat eMapQut put Val ueRecord();

@verride

public void reduce(Record key, Iterator<Record> val ues,
TaskCont ext cont ext)
throws | OException {
long ¢ = 0;
whi | e (val ues. hasNext ()) {
Record val = val ues. next();
¢ += (Long) val.get(0);

count.set (0, c);
context.wite(key, count);

* A reducer class that just enmits the sum of the input val ues.

public static class SunReducer extends ReducerBase {
private Record result = null
@verride
public void setup(TaskContext context) throws | OException {
result = context.createCQutputRecord();

@verride

public void reduce(Record key, |terator<Record> val ues,
TaskCont ext cont ext)
throws | OException {
| ong count = O;
whi I e (val ues. hasNext ()) {
Record val = val ues. next();
count += (Long) val.get(0);

result.set (0, key.get(0));
result.set (1, count);
context.wite(result);

public static void main(String[] args) throws Exception {
if (args.length ! = 2)
Systemerr.println("Usage: WrdCount <in_table> <out_table>");
System exit(2);

JobConf job = new JobConf ()

j ob. set Mapper O ass(Tokeni zer Mapper. cl ass);

j ob. set Conbi ner d ass(SunComnbi ner. cl ass) ;

j ob. set Reducer Cl ass(SunReducer. cl ass) ;

j ob. set MapQut put KeySchema(SchemaUtils. fronttring("word: string

"))

j ob. set MapCQut put Val ueSchema(SchemaUtils. fronttri ng("count:

bigint"));

I nput Uil s. addTabl e(Tabl el nfo. bui | der ().t abl eName(args[0]).
buil d(), job);

Qut put Uti | s. addTabl e(Tabl el nfo. bui | der (). tabl eNane(args[1]).
buil d(), job);

Jobd i ent. runJob(job);

4.3.2 MapOnly Sample

For MapOnly jobs, Map directly sends < Key, Value > pairs to tables on MaxCompute. You only
need to specify the output table but do not need to specify the Key/Value metadata to be output

by Map.
Preparation

1. Prepare the JAR package of the test program. Assume the package is named mapreduce-
examples.jar.

2. Prepare tables and resources for testing the MapOnly operation.
» Create tables.

create table wec_in (key string, value string);
create table wc_out (key string, cnt bigint);

« Add resources.

add jar data\resources\ mapreduce-exanpl es.jar -f;

3. Run tunnel to import data.
tunnel upl oad data wc_in;
The data imported into the wc_in table is as follows:

hel | o, odps
hel | o, odps

Procedure
Run MapOnly in odpscmd.

jar -resources mapreduce-exanpl es.jar -classpath data\resources\
mapr educe- exanpl es. j ar

com al i yun. odps. mapr ed. open. exanpl e. MapOnly wc_in wc_out map

Result

The output table ‘wc_out’ contains the following content:

| key | cnt |

| hello | 1]

| hello | 1 |
Sample Code

package com al i yun. odps. napr ed. open. exanpl e;
i mport java.io.| OException;
i mport com al i yun. odps. dat a. Recor d;
i mport com al i yun. odps. mapr ed. Jobd i ent;
i mport com al i yun. odps. mapr ed. Mapper Base;
i mport com al i yun. odps. mapr ed. conf. JobConf ;
i mport com aliyun. odps. mapred. utils. SchemalUils;
i mport com aliyun. odps. mapred. utils.InputUtils;
i nport com al i yun. odps. mapred. utils. QutputUtils;
i mport com al i yun. odps. dat a. Tabl el nf o;
public class MapOnly {
public static class MapperC ass extends MapperBase {
@verride
public void setup(TaskContext context) throws | OException {
bool ean is = context.getJobConf (). get Bool ean(" opti on. mapper.
setup", false);
if (is) {
Record result = context.createQutput Record();
result.set (0, "setup");
result.set (1, 1L);
context.wite(result);

}
@verride

public void map(l ong key, Record record, TaskContext context)
throws | OException {
bool ean i s = context.getJobConf (). get Bool ean("opti on. napper.
map", false);
if (is) {
Record result = context.createQutputRecord();
result.set(0, record.get(0));
result.set (1, 1L);
context.wite(result);

@verride
public void cl eanup(TaskCont ext context) throws | OException {
bool ean i s = context.getJobConf (). get Bool ean("opti on. napper.
cl eanup”, false);
if (is) {
Record result = context.createQutputRecord();
result.set (0, "cleanup");
result.set(1, 1L);
context.wite(result);

public static void main(String[] args) throws Exception {
if (args.length ! 1= 2 && args.length ! = 3) {
Systemerr.println("Usage: Onl yMapper <in_table> <out table> |
set up| map| cl eanup] ") ;
System exit(2);

JobConf job = new JobConf ();
j ob. set Mapper d ass(Mapper C ass. cl ass) ;
j ob. set NunReduceTasks(0);
Inpututils. addtable (tableinfo. builder (). tablename (ARG |
0]). build (), job);
Qut put Uti | s. addTabl e(Tabl el nfo. bui | der (). tabl eNane(args[1]).
buil d(), job);
if (args.length == 3) {
String options = new String(args[2]);
if (options.contains("setup")) {
j ob. set Bool ean(" opti on. mapper. setup”, true);

if (options.contains("map")) {
j ob. set Bool ean(" opti on. mapper. map", true);

if (options.contains("cleanup")) {
j ob. set Bool ean(" opti on. mapper. cl eanup", true);

Jobd i ent. runJob(j ob);

4.3.3 Multi-input and Output

Preparation
1. Prepare the JAR package of the test program. Assume the package is named mapreduce-

examples.jar. The | ocal storage path is data\resources.

2. Prepare tables and resources for testing the multi-table input and output operations.
* Create tables.

create table wc_inl(key string, value string);
create table wc_in2(key string, value string);
create table nr_multiinout_outl (key string, cnt bigint);
create table nr_multiinout _out2 (key string, cnt bigint)
partitioned by (a string, b string);

alter table nmr_nultiinout out2 add partition (a='1"', b=
alter table nmr_nmultiinout out2 add partition (a='2', b=

» Add resources.

add jar data\resources\ mapreduce-exanpl es.jar -f;

3. Run tunnel to import data.

tunnel upload datal wc_inil;

t unnel

upl oad data2 wc_in2

The data imported into the wc_in1 table is as follows:

hel | o, odps

The data imported into the wc_in2 table is as follows:

hel | o, worl d

Procedure

Run MultiplelnOut in odpscmd.

jar -resources mapreduce-exanpl es.jar -classpath data\resources\

mapr educe- exanpl es. j ar

com al i yun. odps. mapr ed. open. exanpl e. Mul ti pl el nQut wc_i nl, wc_i n2
nt_mul tiinout_outl, nr_multiinout_out2|a=1/b=1|outl, nr_multiinout

a=2/ b=2|

Result

out 2;

The content of ‘mr_multiinout_out1’ is as follows:

| key |

| defaul

cnt |

t] 1]

The content of ‘mr_multiinout_out?2’ is as follows:

| key |

| odps |
| world
| outl |
| hello
| out2 |

Sample Code

cnt | a| b |

11 1] 1]
| 1] 1] 1]
11 1] 1]
| 21 2] 2|
11 2] 2]

package com al i yun. odps. mapr ed. open. exanpl e;

i mport java.io.| OException;
import java.util.lterator;
i mport java.util.LinkedHashMap;

i mport com al i yun. odps.
i mport com al i yun. odps.
i mport com al i yun. odps.
i mport com al i yun. odps.
i mport com al i yun. odps.
i mport com al i yun. odps.
i mport com al i yun. odps.
i mport com al i yun. odps.
i mport com al i yun. odps.
i mport com al i yun. odps.

dat a. Recor d;
dat a. Tabl el nf o;

mapr ed.
mapr ed.
mapr ed.
mapr ed.
mapr ed.
mapr ed.
mapr ed.
mapr ed.

JobC i ent;

Mapper Base;
Reducer Base;
TaskCont ext ;
conf . JobConf ;
utils.InputUils;
utils. QutputUtils;
utils.SchemaUtil s;

_out 2|

* Multi input & output exanple.

public class MiltiplelnQut {
public static class Tokeni zer Mapper extends MapperBase {

Record wor d;

Record one;

@verride

public void setup(TaskContext context) throws | OException {
word = cont ext. creat eMapQut put KeyRecord();
one = cont ext. creat eMapQut put Val ueRecord() ;
one. set (new Cbject[] { 1L });

@verride
public void map(l ong recordNum Record record, TaskCont ext
cont ext)
throws | OException {
for (int i = 0; i < record.getColumCount(); i++) {
wor d. set (new Qbject[] { record.get(i).toString() });
context.wite(word, one);

public static class SunReducer extends ReducerBase {

private Record result;

private Record result1;

private Record result?2

@verride

public void setup(TaskContext context) throws | OException {
result = context.createCQutput Record();
resultl = context.createQutputRecord("outl");
result2 = context.createQut put Record("out2");

@verride
public void reduce(Record key, Iterator<Record> val ues,
TaskCont ext cont ext)
throws | OException {
| ong count = O;
whil e (val ues. hasNext ()) {
Record val = val ues. next();
count += (Long) val.get(0);

l ong nmod = count % 3;

if (mod == 0)
result.set(0, key.get(0));
result.set(1l, count);
/I No | abel is specified. Default output is adopted.
context.wite(result);

} else if (nod ==
resultl.set(0, key.get(0));
resultl.set(1l, count);
context.wite(resultl, "outl");

} else {
result2.set(0, key.get(0));
result2.set(1, count);
context.wite(result2, "out2");

@verride

public void cl eanup(TaskContext context) throws | OException {
Record result = context.createQut put Record();
result.set (0, "default");

result.set (1, 1L);

context.wite(result);

Record resultl = context.createQut put Record("out1");
resultl.set(0, "outl");

resultl.set(1, 1L);

context.wite(resultl, "outl");

Record result2 = context.createQutput Record("out2");
result2.set(0, "out2");

result2.set(1, 1L);

context.wite(result2, "out2");

public static LinkedHashMap<String, String> convert Part SpecToMap

String partSpec) {
Li nkedHashMap<String, String> map = new Li nkedHashMap<Stri ng
, String>();
if (partSpec ! = null && ! partSpec.trin().isEnpty()) {
String[] parts = partSpec.split("/");
for (String part : parts) {
String[] ss = part.split("=");
if (ss.length ! = 2) {
t hrow new Runti meException(" ODPS-0730001: error part
spec format: "
+ part Spec) ;

map. put (ss[0], ss[1]);

return map;

public static void main(String[] args) throws Exception {
String[] inputs = null
String[] outputs = null
if (args.length == 2)
inputs = args[O].split(",");
outputs = args[1].split(",");
} else {
Systemerr.printin("MultiplelnQut in... out...")

Systemexit(1);

JobConf job = new JobConf ()

j ob. set Mapper C ass(Tokeni zer Mapper. cl ass) ;

j ob. set Reducer Cl ass(SunReducer. cl ass) ;

j ob. set MapQut put KeySchema(SchemaUtils. frontString("word: string

"))
j ob. set MapCQut put Val ueSchema(SchemaUti |l s. fronttri ng("count:
bigint"));
[/ Parse the user input table strings.
for (String in : inputs) {
String[] ss = in.split("\\|");
if (ss.length == 1)
Input Utils. addTabl e(Tabl el nfo. bui |l der (). tabl eName(ss[0]).
buil d(), job);
} else if (ss.length == 2) {
Li nkedHashMap<String, String> map = convert Part SpecToMap(
ss[1]);
I nput Uil s. addTabl e(Tabl el nf o. bui | der ().t abl eNanme(ss[0]).
part Spec(map). build(), job);
} else {
Systemerr.println("Style of input: " +in + " is not
right");

Systemexit(1);

// Parse the user output table strings.
for (String out : outputs) {
String[] ss = out.split("\\[");
if (ss.length ==
Qut put Uti |l s. addTabl e(Tabl el nfo. bui | der ().t abl eNane(ss[0]).
buil d(), job);
} else if (ss.length == 2) {
Li nkedHashMap<String, String> nmap = convert Part SpecToMap(ss]

11);
Qut put Uti |l s. addTabl e(Tabl el nfo. bui | der ().t abl eNane(ss[0]).
part Spec(nmap). build(), job);
} else if (ss.length == 3) {
if (ss[1l].isEnmpty()) {
Li nkedHashMap<String, String> map = convert Part SpecToMap(
SSRANE
Qut put Uti |l s. addTabl e(Tabl el nf o. bui | der (). t abl eNane(ss[0
1) . part Spec(map). buil d(), job);
} else {
Li nkedHashMap<String, String> map = convert Part SpecToMap(
se(l)3
Qut put Uti |l s. addTabl e(Tabl el nf o. bui | der (). t abl eNane(ss[0
1) . part Spec(map)
.l abel (ss[2]).build(), job);

} else {
Systemerr.printin("Style of output: " + out + " is not
right");
Systemexit(1);

Jobd i ent.runJob(job);

4.3.4 Multi-task Sample

Preparation

1. Prepare the JAR package of the test program. Assume the package is named mapreduce-
examples.jar. The | ocal storage path is data\resources.

2. Prepare tables and resources for testing the MultiJobs operation.
» Create tables.

create table nr_enpty (key string, value string);
create table nr_multijobs out (value bigint);

» Add resources.

add table nmr_nultijobs out as nmultijobs res table -f;

add jar data\resources\ mapreduce-exanpl es.jar -f;

Procedure

Run MultiJobs in odpscmd.

jar -resources mapreduce-exanples.jar, multijobs res_table -classpath
dat a\ resour ces\ mapr educe- exanpl es. j ar
com al i yun. odps. mapr ed. open. exanpl e. Mul ti Jobs nr_rmul tijobs_out;

Result

The output table ‘mr_multijobs_out’ contains the following content:

| val ue |

| 0|
Sample Code

package com al i yun. odps. mapr ed. open. exanpl e;
i mport java.io.| OException;

import java.util.lterator;

i mport com al i yun. odps. dat a. Recor d;

i mport com al i yun. odps. dat a. Tabl el nf o;

i mport com al i yun. odps. mapred. Jobd i ent;

i mport com al i yun. odps. mapr ed. Mapper Base;

i mport com al i yun. odps. mapr ed. Runni ngJob;

i mport com al i yun. odps. mapr ed. TaskCont ext ;

i mport com al i yun. odps. mapr ed. conf. JobConf ;

i mport com aliyun. odps. mapred. utils.InputUtils;
i mport com aliyun. odps. mapred. utils. QutputUils;
i mport com aliyun. odps. mapred. utils. Schemaltils;

* Mul ti Jobs

* Running nmultiple job

public class MiltiJobs {
public static class |InitMpper extends MapperBase {

@verride

public void setup(TaskContext context) throws | OException {
Record record = context.createCQutput Record();
| ong v = context.getJobConf().getLong("nultijobs.value", 2);
record. set (0, v);
context.wite(record);

}
public static class DecreaseMapper extends MapperBase {
@verride

public void cl eanup(TaskCont ext context) throws | OException {
// Cbtain the variable val ues defined by the main function
from JobConf .
| ong expect = context.getJobConf().getLong("nultijobs.expect
.value", -1);
long v = -1;
int count = O;

Iterator<Record> iter = context.readResourceTabl e("
multijobs res table");
while (iter.hasNext()) {

Record r = iter.next();
v = (Long) r.get(0);
if (expect ! =v) {
throw new | CException("expect: " + expect + ", but: " +
V) ;
count ++;
if (count ! = 1) {

t hrow new | OException("res_table should have 1 record, but
" + count);

Record record = context.createQutput Record();

V--,

record. set (0, v);

context.wite(record);

cont ext.getCounter("nmultijobs", "value").setVal ue(v);

public static void main(String[] args) throws Exception {
if (args.length ! = 1)
Systemerr.println("Usage: TestMiltiJobs <table>");
Systemexit(1);

String tbl = args[O0];

| ong iterCount = 2;

Systemerr.println("Start to run init job.")

JobConf initJob = new JobConf ();

i nitJob. setLong("nultijobs.value", iterCount);

i ni tJob. set Mapper C ass(| nit Mapper. cl ass);

I nput Uti |l s. addTabl e(Tabl el nfo. bui | der ().t abl eName("nr_enpty").
bui I d(), initJob);

Qut put Uti |l s. addTabl e(Tabl el nfo. bui I der ().t abl eNane(tbl). build

(), initJob);

i ni tJob. set MapQut put KeySchema(Schemaltil s. fronstring("key:
string"));

i ni tJob. set MapQut put Val ueSchema(SchemaUtil s. fronttri ng("val ue:
string"));

i ni tJob. set NunReduceTasks(0);
Jobd i ent. runJob(initJob);
while (true) {

Systemerr.printin("Start to run iter job, count: " +
i terCount);

JobConf decJob = new JobConf ();

decJob. set Long("mul tij obs. expect.val ue", iterCount);

decJob. set Mapper Cl ass(Decr easeMapper. cl ass) ;

I nput Util s. addTabl e(Tabl el nfo. bui | der (). tabl eName("nmr_enpty
").build(), decJob);

Qut put Util s. addTabl e(Tabl el nfo. bui | der ().t abl eNane(tbl).
bui l d(), decJob);

decJob. set NunmReduceTasks(0);

Runni ngJob rJob = JobC i ent.runJob(decJob);

i terCount--;

if (rJob.getCounters().findCounter("multijobs", "value").
getVal ue() == 0) {

br eak;

if (iterCount ! = 0) {

throw new | CException("Job failed.")

4.3.5 Secondary Sort Sample
Preparation

1. Prepare the JAR package of the test program. Assume the package is named “mapreduce-

examples.jar”. The | ocal storage path is data\resources.

2. Prepare tables and resources for testing the SecondarySort operation.

« Create tables:

create table ss_in(key bigint, value bigint);
create table ss_out(key bigint, value bigint)

« Add resources:

add jar data\resources\ mapreduce-exanpl es.jar -f;

3. Import the data through tunnel command:
tunnel upload data ss_in;

The contents of data file imported into the table “ss_in” are as follows:

NN
NN

Procedure
Run SecondarySort on the odpscmd:

jar -resources mapreduce-exanpl es.jar -classpath data\resources\
mapr educe- exanpl es. j ar
com al i yun. odps. mapr ed. open. exanpl e. SecondarySort ss_in ss_out;

Result

The content in the output table “ss_out” are as follows:

| key | val ue |

| 2] 2|
Sample code

package com al i yun. odps. mapr ed. open. exanpl e;

i mport java.io.l OException;

i mport java.util.lterator;

i mport com al i yun. odps. dat a. Recor d;

i mport com al i yun. odps. mapred. Jobd i ent;

i mport com al i yun. odps. mapr ed. Mapper Base;

i mport com al i yun. odps. mapr ed. Reducer Base;

i mport com al i yun. odps. mapr ed. TaskCont ext ;

i mport com al i yun. odps. mapr ed. conf. JobConf ;

i nport com al i yun. odps. mapred. utils. SchemaUtil s;
i mport com aliyun. odps. mapred. utils.InputUtils;
i mport com aliyun. odps. mapred. utils. QutputUils;
i mport com al i yun. odps. dat a. Tabl el nf o;

* This is an exanpl e ODPS Map/ Reduce application. It reads the
i nput tabl e that

* must contain two integers per record. The output is sorted by
the first and

* second nunber and grouped on the first nunber.

public class SecondarySort {

* Read two integers fromeach |line and generate a key, val ue
pair as ((left,
* right), right).

public static class MapCl ass extends MapperBase {
private Record key;
private Record val ue;
@verride
public void setup(TaskContext context) throws | OException {
key = context.creat eMapQut put KeyRecord();
val ue = context. creat eMapCQut put Val ueRecord();

@verride
public void map(l ong recordNum Record record, TaskCont ext
cont ext)
throws | OException {
long left = 0;
long right = O;
if (record. get Col umCount () > 0) {
| eft = (Long) record. get(0);
if (record. get Col umCount () > 1) {
right = (Long) record.get(1);

key. set (new hject[] { (Long) left, (Long) right });

val ue. set (new Object[] { (Long) right });
context.wite(key, value);

* A reducer class that just emts the sumof the input val ues.

public static class ReduceC ass extends ReducerBase {

private Record result = null;

@verride

public void setup(TaskContext context) throws | OException {
result = context.createCQutputRecord();

@verride
public void reduce(Record key, |terator<Record> val ues,
TaskCont ext cont ext)
throws | OException {
result.set (0, key.get(0));
whi | e (val ues. hasNext ()) {
Record val ue = val ues. next ();
result.set(1, value.get(0));
context.wite(result);

public static void main(String[] args) throws Exception {
if (args.length ! = 2)
Systemerr.println("Usage: secondarysrot <in> <out>");
System exi t(2);

JobConf job = new JobConf ();

j ob. set Mapper d ass(Mapd ass. cl ass) ;

j ob. set Reducer Cl ass(Reduced ass. cl ass);

/1l set multiple colums to key

/'l conpare first and second parts of the pair

j ob. set Qut put KeySort Col uims(new String[] { "il1", "i2" });

/[l partition based on the first part of the pair

job.setPartitionColums(new String[] { "il" });

/'l grouping conparator based on the first part of the pair

j ob. set Qut put G oupi ngCol ums(new String[] { "i1" });

/1 the map output is LongPair, Long

j ob. set MapCQut put KeySchema(SchemaUtils.fronString("i 1l:bigint,i2
cbigint"));

Job. Fig (scheneiutils. fronmstring ("i2x: bigint "));

Input Uti |l s. addTabl e(Tabl el nf o. bui | der ().t abl eName(args[O0]).

bui 1d(), job);
Qut put Uti | s. addTabl e(Tabl el nf o. bui | der ().t abl eName(args[1]).
bui 1d(), job);

Jobd i ent.runJob(j ob);
System exit (0);

4.3.6 Resource Sample
Preparation

1. Prepare the jar package of test program. Suppose that the package is named “mapreduce-
examples.jar”, The | ocal storage path is data\resources.

2. Prepare the test table and resource.

» Create the tables:

create table nr_upl oad_src(key bigint, value string);

» Add the resource:

add jar data\resources\ mapreduce-exanpl es.jar -f;
add file data\resources\inport.txt -f;

» The contents of import.txt:
1000, odps
Procedure

Run Upload on the odpscmd:

jar -resources mapreduce-exanples.jar,inport.txt -classpath datal\
resour ces\ mapr educe-exanpl es. j ar
com al i yun. odps. mapr ed. open. exanpl e. Upl oad i nport.txt nmr_upl oad_src;

Result

The content in the output table “mr_upload_src” is as follows:

| key | val ue |

| 1000 | odps |
Sample code

package com al i yun. odps. mapr ed. open. exanpl e

i mport java.io.Bufferedl nput Stream

i mport java.io.Fil eNot FoundExcepti on;

i mport java.io.| OException;

i mport com al i yun. odps. dat a. Recor d;

i mport com al i yun. odps. dat a. Tabl el nf o;

i mport com al i yun. odps. mapr ed. Jobd i ent

i mport com al i yun. odps. mapr ed. Mapper Base;

i mport com al i yun. odps. mapr ed. TaskCont ext ;

i mport com al i yun. odps. mapr ed. conf. JobConf ;

i mport com aliyun. odps. mapred. utils.InputUtils;
i mport com aliyun. odps. mapred. utils. QutputUils;
i nport com al i yun. odps. mapred. utils. SchemaUtil s;

* Upl oad

* | nport data fromtext file into table

public class Upl oad {
public static class Upl oadMapper extends MapperBase {
@verride
public void setup(TaskContext context) throws | OException {
Record record = context. creat eQutput Record();

StringBuilder inportdata = new StringBuil der();
Buf f er edl nput St ream buf f eredl nput = nul | ;
try {

byte[] buffer new byt e[1024] ;

i nt bytesRead 0;

String fil enane = context.getJobConf (). get("i nport.

filename");
buf f eredl nput = cont ext.readResourceFil eAsStrean(fil enane
);
while ((bytesRead = bufferedlnput.read(buffer)) ! =-1) {
String chunk = new String(buffer, 0, bytesRead);
i mport dat a. append(chunk) ;
String lines[] = inportdata.toString().split("\n");
for (int i =0; i <lines.length; i++) {
String[] ss =lines[i].split(",");
record. set (0, Long.parseLong(ss[O0].trim()));
record.set (1, ss[1].trim));
context.wite(record);
} catch (Fil eNot FoundException ex) {
t hrow new | CExcepti on(ex);
} catch (1 OException ex) {
t hrow new | CExcepti on(ex);
} finally {
@verride
public void map(l ong recordNum Record record, TaskCont ext
cont ext)
throws | OException {
public static void main(String[] args) throws Exception {
if (args.length ! = 2)
Systemerr.println("Usage: Upload <inmport txt> <out table>");
System exit(2);
JobConf job = new JobConf ()
j ob. set Mapper d ass(Upl oadMvapper . cl ass);
job.set("inmport.filename", args[0]);
j ob. set NunReduceTasks(0);
j ob. set MapCQut put KeySchema(SchemaUtil s. frontri ng("key: bi gi nt
"))
j ob. set MapCQut put Val ueSchema(SchemaUti | s. frontri ng("val ue:
string"));
I nput Uil s.addTabl e(Tabl el nf o. bui | der ().t abl eNane("nr_enpty").
buil d(), job);
Qut put Util s. addTabl e(Tabl el nfo. bui | der ().t abl eNane(args[1]).
bui I d(), job);

Jobd i ent. runJob(j ob);

In fact, user has several methods to set up JobConf:

Set it through JobConf interface in SDK. This example above is through this method and this
method is of the highest priority.

* Injar command lines, specify new JobConf file through the parameter - conf . This method is of

the lowest priority.

4.3.7 Counter Sample
Preparation

1. Prepare the JAR package of the test program. Assume the package is named “mapreduce-

examples.jar”, The | ocal storage path is data\resources.

2. Prepare the UserDefinedCounters test table and resource.

» Create tables:

create table wec_in (key string, value string);
create table wc_out (key string, cnt bigint);

» Add resources:

add jar data\resources\ mapreduce-exanpl es.jar -f;

3. Use the tunnel command to import the data:
tunnel upload data wc_in;
The contents of data file imported into the table “wc_in”:
hel | o, odps
Procedure
Execute UserDefinedCounters on the odpscmd:

jar -resources mapreduce-exanpl es.jar -classpath data\resources\
mapr educe- exanpl es. j ar
com al i yun. odps. mapr ed. open. exanpl e. User Def i nedCounters wc_in wc_out

Result
The output of Counters is as follows:

Counters: 3

com al i yun. odps. mapr ed. open. exanpl e. User Def i nedCount er s$MyCount er
MAP_TASKS=1

REDUCE_TASKS=1

TOTAL_TASKS=2

The content of output table “wc_out” is as follows:

| key | cnt |

| hello |

1]

| odps | 1|

Sample code

package com al i yun. odps. mapr ed. open. exanpl e;

i mport
i mport
i mport
i mport
i nport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i nport
i mport

java.io.| OExcepti on;

java.util.lterator;

com al i yun. odps. count er. Count er;

com al i yun. odps. count er. Count er s;

com al i yun. odps. dat a. Recor d;

com al i yun. odps. mapr ed. Jobd i ent

com al i yun. odps. mapr ed. Mapper Base;

com al i yun. odps. mapr ed. Reducer Base;

com al i yun. odps. mapr ed. Runni ngJob;

com al i yun. odps. mapr ed. conf . JobConf ;

com al i yun. odps. mapred. utils. Schemaltil s;
com al i yun. odps. mapred. utils. I nputUils;
com al i yun. odps. mapred. utils. Qutput Util s;
com al i yun. odps. dat a. Tabl el nf o;

* User Defined Counters

public class UserDefinedCounters {
enum MyCount er {
TOTAL_TASKS, MAP_TASKS, REDUCE TASKS

publ
pr
pr

ic static class Tokeni zer Mapper extends Mapper Base {
i vate Record word;
i vate Record one;

@verride
public void setup(TaskContext context) throws | OException {

super. setup(cont ext);
Count er map_t asks = cont ext. get Count er (MyCount er . MAP_TASKS) ;
Counter total tasks = context.getCounter(M/Counter.

TOTAL_TASKS) ;

map_t asks. i ncrenment (1) ;

total tasks.increnent(1);

word = cont ext. creat eMapQut put KeyRecord() ;
one = context. creat eMapQut put Val ueRecord() ;
one. set (new bject[] { 1L });

@verride
public void map(l ong recordNum Record record, TaskCont ext
cont ext)
t hrows | OException {
for (int i = 0; i < record.getColumCount (); i++) {
wor d. set (new Cbject[] { record.get(i).toString() });
context.wite(word, one);
public static class SunmReducer extends ReducerBase {
private Record result = null;
@verride

public void setup(TaskContext context) throws | OException {

result = context.createQutputRecord();
Count er reduce_tasks = context. get Count er (MyCount er.

REDUCE_TASKS) ;

Counter maid = context. getcounter (nycounter);
reduce_t asks.increnment (1);
total tasks.increment(1);

@verride
public void reduce(Record key, Iterator<Record> val ues,
TaskCont ext cont ext)
throws | OException {
| ong count = O;
whi | e (val ues. hasNext ()) {
Record val = val ues. next();
count += (Long) val.get(0);

result.set (0, key.get(0));
result.set (1, count);
context.wite(result);

public static void main(String[] args) throws Exception {
if (args.length ! = 2)
Systemerr
.println("Usage: TestUserDefinedCounters <in_table> <
out table>");
System exi t(2);

JobConf job = new JobConf ();

j ob. set Mapper C ass(Tokeni zer Mapper. cl ass);

j ob. set Reducer Cl ass(SunReducer. cl ass) ;

j ob. set MapQut put KeySchema(SchemaUtils. frontString("word: string

"))

j ob. set MapCQut put Val ueSchema(SchemaUtils. fronBtri ng("count:
bigint"));

I nput Uti |l s. addTabl e(Tabl el nf o. bui | der ().t abl eName(args[0]).
buil d(), job);

Qut put Uti |l s. addTabl e(Tabl el nfo. bui | der ().t abl eNane(args[1]).
buil d(), job);

Runni ngJob rJob = Jobd ient.runJob(job);

Counters counters = rJob. get Counters();

| ong m = counters. findCount er (M/Count er. MAP_TASKS) . get Val ue() ;

long r = counters. findCount er (MyCount er. REDUCE_TASKS) . get Val ue
()

long total = counters.findCounter(M/Counter. TOTAL_TASKS) .
get Val ue();

System exit (0);

4.3.8 Grep Sample
Preparation

1. Prepare the JAR package of the test program. Assume the package is named “mapreduce-

examples.jar’, and the |ocal storage path is data\resources.

2. Prepare tables and resources for testing the Grep operation.

e Create tables:

create table nr_src(key string, value string);
create table nr_grep_tnp (key string, cnt bigint);
create table nr_grep_out (key bigint, value string);

» Add resources:

add jar data\resources\ mapreduce-exanpl es.jar -f;

3. Use the tunnel command to import the data:
tunnel upload data nr_src;
The contents of data file imported into the table “mr_src”:

hel | o, odps
hel | o, wor | d

Procedure
Execute Grep on the odpscmd:

jar -resources mapreduce-exanpl es.jar -classpath data\resources\

mapr educe- exanpl es. j ar

com al i yun. odps. mapr ed. open. exanple. Gep nr_src nr_grep_tnp nr_grep_ou
t hell o;

Result

The content of output table “mr_grep_out” is as follows:

| key | value |

| 2| hello |
Sample code

package com al i yun. odps. mapr ed. open. exanpl e;

i mport java.io.| OException;

import java.util.lterator;

i nport java.util.regex. Matcher;

i mport java.util.regex. Pattern;

i mport com al i yun. odps. dat a. Recor d;

i mport com al i yun. odps. dat a. Tabl el nf o;

i mport com al i yun. odps. mapred. Jobd i ent;

i mport com al i yun. odps. mapr ed. Mapper ;

i mport com al i yun. odps. mapr ed. Mapper Base;

i mport com al i yun. odps. mapr ed. Reducer Base;

i nport com al i yun. odps. mapr ed. Runni ngJob;

i mport com al i yun. odps. mapr ed. TaskCont ext ;

i mport com al i yun. odps. mapr ed. conf. JobConf ;

i mport com aliyun. odps. mapred. utils.InputUtils;
i mport com aliyun. odps. mapred. utils. QutputUils;

i mport com aliyun. odps. mapred. utils. Schemaltils;

* Extracts matching regexs frominput files and counts them

public class Gep {
* RegexMapper

public class RegexMapper extends MapperBase {

private Pattern pattern;

private int group

private Record word;

private Record one;

@verride

public void setup(TaskContext context) throws | OException {
JobConf job = (JobConf) context.getJobConf();
pattern = Pattern. conpil e(j ob. get (" mapred. mapper.regex"));
group = job.getlnt("mapred. mapper.regex.group", 0);
word = context. creat eMapCQut put KeyRecord() ;
one = cont ext. creat eMapQut put Val ueRecord() ;
one. set (new Object[] { 1L });

@verride

public void map(l ong recordNum Record record, TaskCont ext
context) throws | OException {
for (int i = 0; i < record.getCol umCount (); ++i) {
String text = record.get(i).toString();
Mat cher = pattern. matcher (text);
while (matcher.find()) {
wor d. set (new Qbject[] { matcher.group(group) });
context.wite(word, one);

* LongSunReducer

public class LongSunmReducer extends ReducerBase {
private Record result = null
@verride
public void setup(TaskContext context) throws | OException {
result = context.createQutputRecord();

@verride
public void reduce(Record key, Iterator<Record> val ues,
TaskCont ext context) throws | OException {
| ong count = O;
whi |l e (val ues. hasNext ()) {
Record val = val ues. next();
count += (Long) val.get(0);

result.set (0, key.get(0));

result.set (1, count);
context.wite(result);

* A{@ink Mapper} that swaps keys and val ues.

public class |nverseMapper extends MapperBase {
private Record word;
private Record count;
@verride
public void setup(TaskContext context) throws | OException {
word = cont ext. creat eMapQut put Val ueRecord() ;
count = context.creat eMapQut put KeyRecord();

* The inverse function. |Input keys and val ues are swapped.

@verride
public void map(l ong recordNum Record record, TaskCont ext
context) throws | OException {
wor d. set (new Cbject[] { record.get(0).toString() });
count.set(new hject[] { (Long) record.get(1) });
context.wite(count, word);

* | dentityReducer

public class |IdentityReducer extends ReducerBase {
private Record result = null
@verride
public void setup(TaskContext context) throws | OException {
result = context.createQutputRecord();

[** Wites all keys and values directly to output.
@verride
public void reduce(Record key, |terator<Record> val ues,
TaskCont ext context) throws | OException {
result.set (0, key.get(0));
whi | e (val ues. hasNext ()) {
Record val = val ues. next();
result.set(1, val.get(0));
context.wite(result);

public static void main(String[] args) throws Exception {
if (args.length < 4) {
Systemerr.printIn("Gep <inDir> <tnmpDi r> <outDi r> <regex> [<
group>]");
System exit(2);

JobConf grepJob = new JobConf ();

grepJob. set Mapper O ass(RegexMapper . cl ass) ;

gr epJob. set Reducer C ass(LongSunmReducer. cl ass);

gr epJob. set MapCQut put KeySchenma(SchemaUtils. fronttri ng("word:
string"));

gr epJob. set MapCQut put Val ueSchema(SchemaUti |l s. fronBtri ng("count:
bigint"));

I nput Uil s. addTabl e(Tabl el nfo. bui | der ().t abl eName(args[0]).
bui l d(), grepJob);

Qut put Uti |l s. addTabl e(Tabl el nfo. bui | der ().t abl eNane(args[1]).
buil d(), grepJob);

grepJob. set (" mapr ed. mapper.regex", args[3]);

if (args.length == 5) {

grepJob. set (" mapr ed. mapper. regex. group", args[4]);

@uppr ess\War ni ngs(" unused")

Runni ngJob rjGrep = Jobd ient.runJob(grepJob);

JobConf sortJob = new JobConf ();

sort Job. set Mapper d ass(| nver seMapper. cl ass) ;

sort Job. set Reducer Cl ass(| dentityReducer. cl ass);

sort Job. set MapCQut put KeySchema(SchemaUti |l s. fronStri ng(" count:
bigint"));

sort Job. set MapCQut put Val ueSchema(SchemaUti |l s. fronttri ng(" word:
string"));

I nput Uti |l s. addTabl e(Tabl el nfo. bui | der ().t abl eName(args[1]).
build(), sortJob);

Qut put Uti |l s. addTabl e(Tabl el nfo. bui | der ().t abl eNane(args[2]).
buil d(), sortJob);

sortJob. set NunReduceTasks(1); // wite a single file

sort Job. set Qut put KeySort Col uitms(new String[] { "count" });

@uppr essWar ni ngs(" unused")

Runni ngJob rj Sort = Jobd ient.runJob(sortJob);

4.3.9 Join Sample

MaxCompute MapReduce framework does not support JOIN, however, you can implement data

join in your Map/Reduce function.

Assume that table mr_join_src1(key bigint, value string) must be joined with mr_join_src2(key
bigint, value string). The output table is mr_join_out (key bigint, value1 string, value2 string).

value1 is value in mr_join_src1 and value2 is value in mr_join_src2.
Preparation

1. Prepare the JAR package of the test program. Assume the package is named mapreduce-
examples.jar, and the local storage path is dat a\ r esour ces.

2. Prepare tables and resources for testing the JOIN operation.

« Create tables.

create table nr_Join_srcl(key bigint, value string);
create table nr_Join_src2(key bigint, value string);
create table nr_Join_out(key bigint, valuel string, value2 string

)

» Add resources.

add jar data\resources\ mapreduce-exanpl es.jar -f;

3. Run tunnel to import data.

tunnel upload datal nr_Joi n_srcl;
tunnel upload data2 nr_Joi n_src2;

The data imported into the mr_join_src1 table is as follows:

1, hello

2, odps
The data imported into the mr_join_src2 table is as follows:

1, odps
3, hello
4, odps

Procedure
Run Join in odpscmd.

jar -resources mapreduce-exanpl es.jar -classpath data\resources\
mapr educe- exanpl es. j ar

com al i yun. odps. mapr ed. open. exanpl e. Join mr_Join_srcl nr_Join_src2
nr _Joi n_out;

Result

The output table mr_join_out contains the following content:

| key | valuel | val ue2

| 1| hello | odps |
Sample code

package com al i yun. odps. mapr ed. open. exanpl e

i mport java.io.| OException;

I mport java. util. arraylist;

import java.util.lterator;

i mport java.util.List;

i mport org. apache. commons. | oggi ng. Log;

i mport org. apache. commons. | oggi ng. LogFact ory;

i mport com al i yun. odps. dat a. Recor d;

i mport com al i yun. odps. dat a. Tabl el nf o;

i mport com al i yun. odps. mapred. Jobd i ent;

i mport com al i yun. odps. mapr ed. Mapper Base;

i mport com al i yun. odps. mapr ed. Reducer Base;

i nport com al i yun. odps. mapr ed. conf. JobConf ;

i mport com aliyun. odps. mapred. utils.InputUtils;
i mport com aliyun. odps. mapred. utils. QutputUtils;
i mport com aliyun. odps. mapred. utils. SchemalUtils;

* Join, nr_Join_srcl/nmr_Join_src2(key bigint, value string),
nr _Joi n_out (key
* bigint, valuel string, value2 string)

public class Join {
public static final Log LOG = LogFactory. get Log(Joi n. cl ass);
public static class Joi nMapper extends MapperBase {
private Record mapkey;
private Record mapval ue;
private |long tag;
@verride
public void setup(TaskContext context) throws | OException {

mapkey = cont ext. creat eMapQut put KeyRecord() ;

mapval ue = cont ext. creat eMapQut put Val ueRecord() ;

tag = context.getlnputTabl el nfo(). getLabel ().equal s("Ieft
"y 2 0: 1;

@verride
public void map(l ong key, Record record, TaskContext context)

throws | OException {

mapkey. set (0, record.get(0));

mapkey. set (1, tag);

for (int i =1; i < record.getColumCount (); i++) {
mapval ue. set (i - 1, record.get(i));

context.wite(mpkey, mapval ue);

public static class Joi nReducer extends ReducerBase {
private Record result = null
@verride
public void setup(TaskContext context) throws | OException {
result = context.createQutputRecord();

@verride

public void reduce(Record key, Iterator<Record> val ues,
TaskCont ext cont ext)
t hrows | OException {
long k = key. getBigint(0);
Li st<Onject[]> leftVal ues = new ArraylLi st<Qoject[]>();
whi | e (val ues. hasNext ()) {
Record val ue = val ues. next ();
long tag = (Long) key.get(1);

if (tag == 0)
| ef t Val ues. add(val ue.toArray().clone());
} else {

for (Object[] leftValue : |eftValues) {
int index = O;
resul t.set (i ndex++, K);
for (int i =0; i <leftValue.length; i++) {
result.set (i ndex++, leftValue[i]);

for (int i =0; i < value.getColumCount(); i++) {
resul t.set (i ndex++, value.get(i));

context.wite(result);

public static void main(String[] args) throws Exception {
if (args.length ! = 3)
Systemerr.println("Usage: Join <input tablel> <input table2
> <out>");
System exit(2);

JobConf job = new JobConf ()

j ob. set Mapper C ass(Joi nMapper. cl ass);

j ob. set Reducer Cl ass(Joi nReducer . cl ass) ;

j ob. set MapQut put KeySchema(SchemaUtils. frontri ng("key: bi gi nt,
tag: bigint"));

j ob. set MapQut put Val ueSchema(Schemaltil s. fronttri ng("val ue:
string"));

job.setPartitionColums(new String[]{"key"});

j ob. set Qut put KeySort Col uitms(new String[]{"key", "tag"});

j ob. set Qut put G oupi ngCol ums(new String[]{"key"});

j ob. set NunReduceTasks(1);

Input Utils. addTabl e(Tabl el nfo. bui | der (). tabl eNanme(args[0]).
| abel ("left").build(), job);

I nput Uti |l s. addTabl e(Tabl el nf o. bui | der ().t abl eName(args[1]).
| abel ("right").build(), job);

Qut put Util s. addTabl e(Tabl el nfo. bui | der ().t abl eNane(args[2]).
bui I d(), job);

Jobd i ent.runJob(j ob);

4.3.10 Sleep Sample

Preparation

1. Prepare the JAR package of the test program. Assume the package is named mapreduce-

examples.jar, and the local storage path is dat a\ r esour ces.

2. Prepare resources for testing the SleepJob operation.
Add jar data \ resources \ mapreduce-exanples.jar-f;
Procedure
Run Sleep on the odpscmd, as follows:

jar -resources mapreduce-exanpl es.jar -classpath data\resources\
mapr educe- exanpl es. j ar

com al i yun. odps. mapr ed. open. exanpl e. Sl eep 10;

jar -resources mapreduce-exanpl es.jar -classpath data\resources\
mapr educe- exanpl es. j ar

com al i yun. odps. mapr ed. open. exanpl e. Sl eep 100;

Result

The job ran successfully. The run time of different sleep durations can be compared to determine

the effect.

Sample code

package com al i yun. odps. mapr ed. open. exanpl e;
i mport java.io.| OException;
i mport com al i yun. odps. mapred. Jobd i ent;
I mport com aliyun. ODPS. mapred. mapperbase;
i mport com al i yun. odps. mapr ed. conf. JobConf ;
public class Sleep {
private static final String SLEEP_SECS = "sl eep. secs";
public static class MapperC ass extends MapperBase {
@verride
public void setup(TaskContext context) throws | OException {

try {

Thr ead. sl eep(cont ext. get JobConf (). get | nt (SLEEP_SECS, 1) * 1000
)
} catch (InterruptedException e) {
t hrow new Runti meException(e);

}

public static void main(String[] args) throws Exception {

if (args.length ! = 1)
Systemerr.println("Usage: Sleep <sleep_secs>");
System Exit (-1);

JobConf job = new JobConf ();

j ob. set Mapper d ass(Mapper C ass. cl ass) ;

j ob. set NunReduceTasks(0);

j ob. set NunmvapTasks(1);

j ob. set (SLEEP_SECS, args[0]);

Jobd i ent.runJob(j ob);

4.3.11 Unique Sample
Preparation

1. Prepare the JAR package of the test program. Assume the package is named mapreduce-

examples.jar, The local storage path is dat a\ r esour ces.

2. Prepare tables and resources for testing the Unique operation.
» Create tables.

create table ss_in(key bigint, value bigint);
create table ss_out (key bigint, value bigint);

» Add resources.

add jar data\resources\ mapreduce-exanpl es.jar -f;

3. Use the tunnel command to import the data.
tunnel upload data ss_in;

The contents of data file imported into the table ss_in.

N
N R

2,2
Procedure

Run Unique on the odpscmd, as follows:

jar -resources mapreduce-exanpl es.jar -classpath data\resources\
mapr educe- exanpl es. j ar
com al i yun. odps. mapr ed. open. exanpl e. Uni que ss_in ss_out key;

Result

The content of output table ss_out is as follows:

| key | val ue

1
21 2|
Sample code

package com al i yun. odps. mapr ed. open. exanpl e

i mport java.io.| OException;

Import java. util. iterator;

i mport com al i yun. odps. dat a. Recor d;

i mport com al i yun. odps. dat a. Tabl el nf o;

i mport com al i yun. odps. mapred. Jobd i ent;

i mport com al i yun. odps. mapr ed. Mapper Base;

i mport com al i yun. odps. mapr ed. Reducer Base;

i mport com al i yun. odps. mapr ed. TaskCont ext ;

i mport com al i yun. odps. mapr ed. conf. JobConf ;

i mport com aliyun. odps. mapred. utils.InputUtils;
i mport com aliyun. odps. mapred. utils. QutputUils;
i nport com al i yun. odps. mapred. utils. SchemaUtil s;

* Uni que Renpve duplicate words

public class Unique {
public static class QutputSchenaMapper extends MapperBase {

private Record key;

private Record val ue;

@verride

public void setup(TaskContext context) throws | OException {
key = context.creat eMapQut put KeyRecord();
val ue = context. creat eMapCQut put Val ueRecord();

@ Override
public void map(l ong recordNum Record record, TaskCont ext
cont ext)
throws | OException {
long left = 0;
long right = 0;
if (record. get Col umCount () > 0) {
| eft = (Long) record. get(0);
if (record. get Col umCount () > 1) {
right = (Long) record.get(1);

key. set (new hject[] { (Long) left, (Long) right });
val ue. set (new Object[] { (Long) left, (Long) right });
context.wite(key, value);

public static class QutputSchenaReducer extends ReducerBase {
private Record result = null
@verride
public void setup(TaskContext context) throws | OException {
result = context.createQutput Record();

@verride
public void reduce(Record key, |terator<Record> val ues,
TaskCont ext cont ext)
throws | OException {
result.set (0, key.get(0));
whi | e (val ues. hasNext ()) {
Record val ue = val ues. next ();
result.set (1, value.get(1));

context.wite(result);

public static void main(String[] args) throws Exception {
if (args.length > 3 || args.length < 2) {
Systemerr.println("Usage: unique <in> <out> [key]|val ue| al

System exit(2);

String ops = "all";
if (args.length == 3) {
Ops = ARGs [2];

/1l Key Uni que
if (ops.equals("key")) {

JobConf job = new JobConf ();

j ob. set Mapper O ass(Qut put SchemaMapper . cl ass) ;

j ob. set Reducer Cl ass(Qut put SchenaReducer. cl ass);

j ob. set MapQut put KeySchema(SchemaUti |l s. fronttri ng("key: bi gi nt
,value: bigint"));

j ob. set MapQut put Val ueSchema(Schemaltil s. fronStri ng("key:
bi gi nt, val ue: bigint"));

job.setPartitionColums(new String[] { "key" });

j ob. set Qut put KeySort Col ums(new String[] { "key", "val ue
" 1)

j ob. set Qut put G oupi ngCol utms(new String[] { "key" });

job. set("tabl enane2", args[1]);

j ob. set NunReduceTasks(1);

job.setlnt("table.counter", 0);

Input Util s. addTabl e(Tabl el nfo. bui | der ().t abl eNane(args[0]).
buil d(), job);

Qut put Uti |l s. addTabl e(Tabl el nf o. bui | der (). t abl eNane(args[1]).
buil d(), job);

Jobd i ent.runJob(job);

/'l Key&Val ue Uni que
if (ops.equals("all")) {
JobConf job = new JobConf ();
j ob. set Mapper O ass(Qut put SchemaMapper . cl ass) ;
j ob. set Reducer Cl ass(Qut put SchenaReducer . cl ass) ;

j ob. set MapQut put KeySchema(SchemaUtils. fronttri ng("key: bi gi nt
,val ue: bigint"));

j ob. set MapQut put Val ueSchema(SchemaUti |l s. fronStri ng("key:
bi gi nt, val ue: bigint"));

j ob.setPartitionColums(new String[] { "key" });

j ob. set Qut put KeySort Col uitmms(new String[] { "key", "val ue

")

j ob. set Qut put G oupi ngCol ums(new String[] { "key", "value
" 1)

Job. Set ("tablenanme2", argS [1]);

j ob. set NunReduceTasks(1);

job.setlnt("table.counter", 0);

I nput Uti |l s. addTabl e(Tabl el nf o. bui | der (). tabl eName(args[0]).
buil d(), job);

Qut put Util s. addTabl e(Tabl el nf o. bui | der ().t abl eName(args[1]).
buil d(), job);

Jobclient. runjob (job);

/1 Val ue Uni que
if (ops.equals("value")) {
JobConf job = new JobConf ();
j ob. set Mapper O ass(Qut put SchemaMapper . cl ass) ;
j ob. set Reducer Cl ass(Qut put SchenaReducer. cl ass);
j ob. set MapQut put KeySchema(SchemaUti |l s. fronttri ng("key: bi gi nt
,value: bigint"));
j ob. set MapQut put Val ueSchema(Schemaltils. fronStri ng("key:
bi gi nt, val ue: bigint"));
job.setPartitionColums(new String[] { "value" });
j ob. set Qut put KeySort Col ums(new String[] { "value" });
j ob. set Qut put G oupi ngCol ums(new String[] { "value" });
j ob. set ("tabl enane2", args[1]);
j ob. set NunReduceTasks(1);
job.setlnt("table.counter", 0);
I nput Uti | s. addTabl e(Tabl el nf 0. bUI | der ().t abl eName(args[0]).

buil d(), job);
Qut put Util s. addTabl e(Tabl el nf o. bui | der ().t abl eNane(args[1]).
bui l d(), job);

Jobd i ent. runJob(j ob);

4.3.12 Sort Sample

Preparation

1. Prepare the JAR package of the test program. Assume the package is named mapreduce-

examples.jar, and the local storage path is dat a\ r esour ces.

2. Prepare tables and resources for testing the SORT operation.

e Create tables.

create table ss_in(key bigint, value bigint);

create table ss_out (key bigint, value bigint);

« Add resources.

add jar data\resources\ mapreduce-exanpl es.jar -f;

3. Use the tunnel command to import the data.
tunnel upl oad data ss_in;

The contents of data file imported into the table ss_in:

WEN
(RGN

Procedure

Run Sort on the odpscmd, as follows:

jar -resources mapreduce-exanpl es.jar -classpath data\resources\
mapr educe- exanpl es. j ar
com al i yun. odps. mapr ed. open. exanpl e. Sort ss_in ss_out;

Result

The content of output table ss_out is as follows:

| key | val ue |

Sample code

package com al i yun. odps. mapr ed. open. exanpl e;

i mport java.io.| OException;

i mport java.util.Date;

i mport com al i yun. odps. dat a. Recor d;

i mport com al i yun. odps. dat a. Tabl el nf o;

i mport com al i yun. odps. mapred. Jobd i ent;

i mport com al i yun. odps. mapr ed. Mapper Base;

i mport com al i yun. odps. mapr ed. TaskCont ext ;

i mport com al i yun. odps. mapr ed. conf. JobConf ;

i mport com aliyun. odps. mapred. exanpl e. lib. ldentityReducer;
i mport com aliyun. odps. mapred. utils.InputUtils;

i mport com aliyun. odps. mapred. utils. QutputUils;
i mport com aliyun. odps. mapred. utils. Schemaltil s;

* This is the trivial map/reduce programthat does absol utely

not hi ng ot her
* than use the framework to fragnment and sort the input val ues.

public class Sort {

static int printUsage() {
Systemout. println("sort <input> <output>");
return -1,

* | nplements the identity function, mapping record' s first two
colums to
* out puts.

public static class |dentityMapper extends MapperBase {
private Record key;
private Record val ue;
@verride
public void setup(TaskContext context) throws | OException {
key = context.creat eMapQut put KeyRecord();
val ue = context. creat eMapCQut put Val ueRecord();

@verride
public void map(l ong recordNum Record record, TaskCont ext
cont ext)
throws | OException {
Key. set (new object [] {(long) record. get (0)});
val ue. set (new Qbject[] { (Long) record.get(1) });
context.wite(key, value);

* The main driver for sort program Invoke this nmethod to
subm t the
* map/ reduce j ob.

* @hrows | OException
* When there is comunication problens with the job tracker.

public static void main(String[] args) throws Exception {

JobConf jobConf = new JobConf();

j obConf . set Mapper Cl ass(1 dentityMapper. cl ass);

j obConf . set Reducer d ass(| dentityReducer. cl ass);

j obConf . set NunReduceTasks(1);

Jobconf. setmapout put keyschema schemautils scheneiutils.
fronstring ("key: bigint "));

j obConf . set MapQut put Val ueSchema(Schemaltils. fronStri ng("val ue:
bigint"));

Inpututils. addtable (tableinfo. builder (). tablename (ARG |
0]). build (), jobconf);

Qut put Util s. addTabl e(Tabl el nfo. bui | der ().t abl eNane(args[1]).
build(), jobConf);

Date starttime = new date ();

Systemout.println("Job started: " + startTine);

Jobd i ent. runJob(j obConf);

Date end_tinme = new Date();

Systemout.println("Job ended: " + end_tine);

Systemout. println("The job took "

+ (end_time.getTine() - startTinme.getTine()) / 1000 + "

seconds. ")

4.3.13 Partition

The following example takes Partition as input and output.
Example 1:

public static void main(String[] args) throws Exception {
JobConf job = new JobConf();

Li nkedHashMap<String, String> input = new Li nkedHashMap<Stri ng,
String>();

i nput. put("pt", "123456");

I nput Util s. addTabl e(Tabl el nfo. bui | der ().t abl eNane("i nput _table").
part Spec(i nput).build(), job);

Li nkedHashMap<Stri ng, String> output = new Li nkedHashMap<Stri ng,
String>();

out put. put ("ds", "654321");

Qut pututils. addtable (tableinfo. builder (). tablenane ("
output _table "). partspec (output). build (), job);

Jobd i ent.runJob(j ob);

Example 2:

package com al i yun. odps. mapr ed. open. exanpl e;

public static void main(String[] args) throws Exception {
if (args.length ! = 2)
Systemerr.println("Usage: WrdCount <in_table> <out_table

>")
System exi t(2);

JobConf job = new JobConf ();

j ob. set Mapper C ass(Tokeni zer Mapper. cl ass) ;

j ob. set Conbi ner d ass(SunConbi ner. cl ass) ;

j ob. set Reducer O ass(SunReducer. cl ass) ;

j ob. set MapCQut put KeySchema(SchemaUtil s. fronStri ng("word: string
"))

j ob. set MapCQut put Val ueSchema(SchemaUtils. frontri ng("count:
bigint"));

Account account = new AliyunAccount("nmy_access_id",
my_access_key");
Qdps odps = new Qdps(account);
odps. set Endpoi nt (" odps_endpoi nt _url");
odps. set Def aul t Proj ect ("ny_project");
Tabl e table = odps.tabl es().get(tbl nane);
Tabl el nf oBui | der buil der = Tabl el nfo. bui | der ().t abl eNanme(
t bl nane) ;
for (Partition p : table.getPartitions()) {
if (applicable(p)) {
Li nkedHashMap<Stri ng, String> partSpec = new Li nkedHashMap
<String, String>();
for (String key : p.getPartitionSpec().keys()) {
part Spec. put (key, p.getPartitionSpec().get(key));

I nput Utils.addTabl e(bui | der. part Spec(part Spec). build(),
conf);

Qut put Uti | s. addTabl e(Tabl el nfo. bui | der ().t abl eName(args[1]).
buil d(), job);
Jobclient. runjob (job);

Note:

+ The preceding example combines the MaxCompute SDK and MapReduce SDK to achieve a
MapReduce task.

* The code cannot be compiled and is only an example of main functions.

+ The Applicable function is user logic that determines whether the Partition can be used as the

input of MapReduce job.

4.3.14 Pipeline Sample

Preparation

1. Prepare the JAR package of the test program. Assume the package is named mapreduce-
examples.jar, and the local storage path is dat a\ r esour ces.

2. Prepare tables and resources for testing the the WordCountPipeline operation.
» Create tables:

create table wec_in (key string, value string);
create table wc_out (key string, cnt bigint);

« Add resources:

add jar data\resources\ mapreduce-exanpl es.jar -f;

3. Use the tunnel command to import the data:
tunnel upload data wc_in;
The contents of data file imported into the table wc_in, as follows:
hel | o, odps
Procedure
Run WordCountPipeline on the odpscmd, as follows:

jar -resources mapreduce-exanpl es.jar -classpath data\resources\
mapr educe- exanpl es. j ar

com al i yun. odps. mapr ed. open. exanpl e. Wr dCount Pi pel i ne wc_in wc_out;

Result

The content of output table wc_out is as follows:

key	cnt
hello	1
odps	1

Sample code

package com al i yun. odps. napr ed. open. exanpl e;
i mport java.io.| OException;
Import java. util. iterator;
i mport com al i yun. odps. Col um;
i mport com al i yun. odps. QdpsExcepti on;
i mport com al i yun. odps. QdpsType;
i mport com al i yun. odps. dat a. Recor d;
i mport com al i yun. odps. dat a. Tabl el nf o;
i nport com al i yun. odps. mapr ed. Job;
i mport com al i yun. odps. mapr ed. Mapper Base;
i mport com al i yun. odps. mapr ed. Reducer Base;
i mport com al i yun. odps. pi pel i ne. Pi pel i ne;
public class WrdCount Pi pel i neTest {
public static class Tokeni zer Mapper extends Mapper Base {
Record wor d;
Record one;
@verride
public void setup(TaskContext context) throws | OException {
word = cont ext. creat eMapQut put KeyRecord();
one = context. creat eMapQut put Val ueRecord() ;
one.setBigint(0, 1L);

@verride
public void map(l ong recordNum Record record, TaskCont ext
cont ext)
throws | OException {
for (int i =0; i < record.getColumCount(); i++) {
String[] words = record.get(i).toString().split("\\s+");
for (String w: words) {
word. set String(0, w;
context.wite(word, one);

public static class SunReducer extends ReducerBase {
private Record val ue;
@verride
public void setup(TaskContext context) throws | OException {
val ue = context. creat eQut put Val ueRecord();

@verride
public void reduce(Record key, |terator<Record> val ues,
TaskCont ext cont ext)
Throws i oexception {
Long Count = O;

whil e (val ues. hasNext ()) {
Record val = val ues. next();
count += (Long) val.get(0);

val ue. set (0, count);
context.wite(key, value);

public static class |dentityReducer extends ReducerBase {
private Record result;
@verride
public void setup(TaskContext context) throws | OException {
result = context.createQutputRecord();

@verride
public void reduce(Record key, Iterator<Record> val ues,
TaskCont ext cont ext)
t hrows | OException {
whi Il e (val ues. hasNext ()) {

result.set (0, key.get(0));
result.set(1, values.next().get(0));
context.wite(result);

public static void main(String[] args) throws OdpsException {
if (args.length ! = 2) {
Systemerr.println("Usage: WrdCount Pi peline <in_table> <
out table>");
System exit(2);

Job job = new Job();

* | n the process of constructing pipeline, if you do not
speci fy mapper's CQut put KeySort Col utms | Parti ti onCol umms | Qut put Grou
pi ngCol ums,

* the framework defaults to its QutputKey as the default
configuration for the three

3

Pi pel i ne pi peline = Pipeline.builder()
Addmapper (rmaid. C ass)
. set Qut put KeyScheng(
new Col um[] { new Col umm("word", OdpsType. STRI NG

) 1)
. set Qut put Val ueSchenma(
new Col um[] { new Col um("count", QdpsType. Bl G NT
) 1)
. set Qut put KeySort Col ums(new String[] { "word" })
.setPartitionColums(new String[] { "word" })
. set Qut put Groupi ngCol unmms(new String[] { "word" })
. addReducer (SunReducer. cl ass)
. set Qut put KeyScheng(
new Colum[] { new Col um("word", CdpsType. STRI NG
) 1)
. set Qut put Val ueSchema(
new Col um[] { new Col um("count", QdpsType. Bl G NT
)}

. addReducer (I denti tyReducer. cl ass) . creat ePi peline();
j ob. set Pi pel i ne(pi peline);
j ob. addl nput (Tabl el nf o. bui | der ().t abl eName(args[0]). build())
j ob. addQut put (Tabl el nf o. bui | der ().t abl eNarme(args[1]). bui |l d()
job.submt();

);

j ob. wai t For Conpl eti on() ;
System exit(job.isSuccessful () == true ? 0 : 1);

4.4 Java SDK

4.4.1 Java SDK

This section introduces common MapReduce interfaces.

The users who use Maven can search “odps-sdk-mapred” from Maven Library to get the required

Java SDK (available in different versions). The configuration is shows as follows:

<dependency>
<gr oupl d>com al i yun. odps</ gr oupl d>
<artifactld>odps-sdk-mapred</artifactld>
<ver si on>0. 20. 7- publ i c</ versi on>

</ dependency>

Interface Description

MapperBase The user-defined Map function is required to inherit from this class. It
processes the record object of the input table, processes the object into key
value and outputs the value to the Reduce stage, or outputs result record to
the result table without passing through the Reduce stage. Jobs that do not
pass through the Reduce stage, but directly outputs computation results, are
called Map-Only job.

ReducerBase Your customized Reduce function needs to inherit from the class. The set of
Values associated with a Key is reduced.

TaskContext It is one of the input parameters of multiple member functions in MapperBase
and ReducerBase. Contains contextual information about tasks.

JobClient It is used for submitting and managing jobs. The submission mode includes
blocking (synchronous) mode or non-blocking (asynchronous) mode.

RunningJob Indicates object in job running and used for tracing MapReduce job instance
during job running process.

JobConf Describes configuration of a MapReduce task. The JobConf object is
generally defined in main program (main function), then jobs are submitted
by JobClient to MaxCompute.

MapperBase

Main function interfaces are as follows.

http://search.maven.org/

Interface Description

void cleanup(TaskContext context) The Map method is called after the map stage
ends.

void map(long key, Record record, TaskContex | Map method, processes records of the input
t context) table.

void setup(TaskContext context) The Map method is called before the map
stage begins.

ReducerBase

Main function interfaces are as follows.

Interface Description

void cleanup(TaskContext context) The Reduce method is called after the reduce
stage ends.

void reduce(Record key, lterator<Record > reduce method, process record of input table.

values, TaskContext context)

void setup(TaskContext context) The Reduce method is called before the reduce
stage begins.

TaskContext

Main function interfaces are as follows.

Interface Description

Tablelnfo[] getOutputTablelnfo() Get output table information.

Record createOutputRecord() Create the record object of the default output
table.

Record createOutputRecord(String label) Create the record object of the output table with

provided label.

Record createMapOutputKeyRecord() Create the record object of Key output by Map.

Record createMapOutputValueRecord() Create the record object of Value output by
Map.

void write(Record record) It writes record to default output and is used for

writing output data by Reduce client, and can
be called on the Reduce client multiple times.

void write(Record record, String label) It writes record to the given label output and is
used for writing output data by Reduce client,

Interface

Description

and can be called on the Reduce client multiple
times.

void write(Record key, Record value)

Map writes record to intermediate result. It can
be called in Map function and called on the
Map client multiple times.

BufferedInputStream readResourceFileAsSt
ream(String resourceName)

Read file type resource.

Iterator<Record > readResourceTable(String
resourceName)

Read table type resource.

Counter getCounter(Enum<? > > name)

Get the Counter object with provided name.

Counter getCounter(String group, String name)

Get the Counter object with provided group
name and name.

void progress()

Report heartbeat information to the
MapReduce framework. It reports heartbeat
information to MapReduce framework. If a user
’'s method takes a long time to process, and no
framework is called in the process, this method
can be called to avoid task timeout. Timeout of
the framework is 600s by default.

Note:

MaxCompute TaskContext interface provides the progress function, however, this function is to

prevent the Worker being killed as it is running for long time and the framework considers it as

a timeout Worker. This interface is similar to sending heartbeat information to the framework,

but does not report the progress of the Worker. MaxCompute The default timeout schedule of

MaxCompute MapReduce Worker is 10 minutes (system default, not be controlled by user). If

the schedule exceeds 10 minutes and Worker is unable to send heartbeat information to the

framework (not to call progress interface), the framework is forced to stop this Worker and

MapReduce task fails and exits. We recommend you call the progress interface regularly in

Mapper/Reducer functions, to prevent being killed by the framework.

JobConf

Main function interfaces are as follows.

Interface

Description

void setResources(String resourceNames)

Declare resources this job uses. Declare
resources used in this job. Only the declared
resource can be read by TaskContext object
during Mapper/Reducer running process.

void setMapOutputKeySchema(Column[]
schema)

Set the Key attribute output from Mapper to
Reducer.

void setMapOutputValueSchema(Column(]
schema)

Set the Value attribute output from Mapper to
Reducer.

void setOutputKeySortColumns(String][] cols)

Set key sort columns output from Mapper to
Reducer.

void setOutputGroupingColumns(String]] cols)

Set Key grouping columns.

void setMapperClass(Class<? extends Mapper
> theClass)

Set Mapper function of the job.

void setPartitionColumns(String][] cols)

Set the partition column specified in the job.
The default is all columns of Key output by
Mapper.

void setReducerClass(Class<? extends
Reducer theClass)

Set Reducer of the job.

void setCombinerClass(Class<? extends
Reducer theClass)

Set combiner of the job, running on Map client
. Its function is similar to performing Reduce
operation on the identical local Key values by a
single Map.

void setSplitSize(long size)

Set the size of input slice. Unit: MB. The default
value is 640.

void setNumReduceTasks(int n)

Set the number of Reducer tasks. The default
is 1/4 of Mapper tasks.

void setMemoryForMapTask(int mem)

Set the memory size of single Worker in
Mapper task. Unit: MB. The default value is
2048.

void setMemoryForReduceTask(int mem)

Set the memory size of single Worker for
Reducer task. Unit: MB. The default value is
2048.

Note:

» Usually, GroupingColumns is included in KeySortColumns, while KeySortColumns and

PartitionColumns are included in Key.

* Inthe Map side, mappers’ output records are distributed to reducers according to the hash

values computed using PartitionColumns, and then sorted by KeySortColumns.

* In the Reduce side, after sorted by KeySortColumns, input records are grouped as input

groups of the reduce function sequentially, that is, records with the same GroupingColumns

values are treated as the same input group.

JobClient

Main function interfaces are as follows.

Interface

Description

static RunningJob runJob(JobConf job)

Return immediately after submitting a
MapReduce job in synchronous (blocking)
mode.

static RunningJob submitJob(JobConf job)

Return immediately after submitting a
MapReduce job in asynchronous (non-blocking
) mode.

RunningJob

Main function interfaces are as follows.

Interface

Description

String getinstancelD()

Get instance ID for checking run log and job
management.

boolean isComplete()

Check whether job is complete.

boolean isSuccessful()

Check whether job instance is successful.

void waitForCompletion()

Wait until job instance is complete. It is typically
is used for jobs submitted is asynchronous
mode.

JobStatus getJobStatus()

Check job instance status.

void killJob()

End the job.

Counters getCounters()

Get Counter information.

InputUtils

Main function interfaces are as follows.

Interface

Description

static void addTable(Tablelnfo table, JobConf
conf)

Add table to task input. It can be called multiple
times. The new added table is added to input
queue in an append manner.

static void setTables(Tablelnfo [] tables,
JobConf conf)

Add tables to task input.

OutputUtils

Main function interfaces are as follows.

Interface

Description

static void addTable(Tablelnfo table, JobConf
conf)

Add table to task output. It can be called
multiple times. Add the new added table to
output queue in an append manner.

static void setTables(Tablelnfo [] tables,
JobConf conf)

Add multiple tables to the task output.

Pipeline

Pipeline is the subject of MR2 . A Pipeline can be constructed by Pipeline.builder. Pipeline are as

follows:
public
public
colum [] keyschenm,
sortcol s,
Sort Order [] order,
Cl ass<? extends Partitioner> thed ass,
public
public
colum [] keyschens,
sortcol s,
Sort Order [] order,
Cl ass<? extends Partitioner> thed ass,
publ i c setout put keyschenma bui | der
public
public
public
public setpartitioncolums buil der
public
t hed ass)

Bui | der addMapper (Cl ass<? extends Mapper> mapper)
Bui | der addMapper (C ass<? ext ends Mapper> napper,
colum [] val ueschems,

string []

string [] partcols,

String[] groupCols)

Bui | der addReducer (Cl ass<? extends Reducer> reducer)
Bui | der addReducer (Cl ass<? extends Reducer> reducer,
colum [] val ueschemms,

string []

string [] partcols,

String[] groupCols)
(Colum [] keyschem)

set out put val ueschema bui |l der (Colunm [] val ueschenm)
set out put keysort col ums buil der (String [] sortcols)
set out put keysortorder builder (Sortorder [] order)

(String [] partcols)

Bui | der setPartitionerd ass(C ass<? extends Partitioner>

voi d set Qut put G oupi ngCol ums(String[] cols)

Example:

job job = new job ();
pi pel i ne pi peline = pipeline.

addmapper (Tokeni zer mapper.

bui |l der ()
cl ass)

set out put keyschema (
new colum [] {new colum ("word", OdpsType. string)})
set out put val ueschema (
new colum [] {new columm ("count", OdpsType. bigint)})
addr educer (Sunreducer. class)
set out put keyschema (
new colum [] {new colum ("count", OdpsType. bigint)})
set out put val ueschema (
new colum [] {new colum ("word", CGdpsType. string),
new colum ("count", COdpsType. bigint)})
addreducer (ldentityreducer. class). createPipeline ();
j ob. set pi peline (pipeline);
job. addinput (...)
j ob. addoutput (...)
job. submt ();

As shown in the preceding example, a user can construct a Map in the main class, and then
consecutively get MapReduce tasks of two Reduces. If you are familiar with the basic function of

MapReduce, then the use of MR2 is similar.

Note:

+ Specifically, we recommend that users can complete the configuration of MapReduce task by

JobConf,

+ as JobConf can get MapReduce task of single Reduce only after configuring Map.
Data Type

The data types supported in MapReduce include: BIGINT, STRING, DOUBLE, BOOLEAN, and

DATETIME. MaxCompute between MaxCompute data types and Java types are as follows:

MaxCompute SQL Type |Bigint String Double (Boolean |Datetime |Decimal

Java Type Long String Double Boolean [date BigDecime1l

4.5 MR Restrictions

In order to avoid that you have not paid attention to restrictions so that business stops after the

business starts , this article will summarize the MaxCompute MR restrictions to help you.

The restrictions of MaxCompute MapReduce are as follows:

Restricted |Value |[Type |Configuration |Default |Configu| Description

item item value |le?

Memory [256MB | Memory | odps.stage. 2048M |Yes Memory occupied by a
occupied , limit mapper(reducer | + single map instance or

by the 12GB]).mem and odps | 1024M reduce instance, including

instance .stage.mapper the framework memory (2

Restricted

item

Value

Type

Configuration

item

Default

value

Configu

le?

Description

(reducer).jvm.
mem

,048 MB by default) and
heap memory of the Java
virtual machine (JVM) (1,
024 MB by default).

Number of
resources

256

Number
limit

N/A

None.

No

The number of resources
referenced by a single
job cannot exceed 256.
The table and archive are
regarded as a unit.

Numbers of
inputs and
outputs

1024
and
256

Number
limit

N/A

None

No

The number of inputs of
one job cannot exceed
1024. (A partition of a

table is regarded as one
input. The number of input

tables cannot exceed 64
). The number of outputs
of one job cannot exceed
256.

Number of
counters

64

Number
limit

N/A

None.

No

The number of custom
counters in one job cannot
exceed 64. The group
name and counter name

of a counter must not
contain #. The overall
length of the group name
and the counter name of
a counter must be within
100.

map
instance

(1.
100000

]

Number
limit

odps.stage.
mapper.num

None

Yes

The number of map
instances of one job

is calculated by the
framework based on the
split size. If no input table
exists, you can set the
value directly in odps.
stage.mapper.num. The
final number ranges from
1 to 100,000.

Restricted

item

Value

Type

Configuration

item

Default

value

Configu

le?

Description

reduce
instance

2000]

Number
limit

odps.stage.
reducer.num

None

Yes

The number of reduce
instances of one job
is 1/4 of that of map
instances by default. The
reduce instance number
configured by the user
ranges from 0 to 2,000
. It may occur that the
data volume processed
by reduce is several times
that processed by map.
In this case, the reduce
phase gets slower and
can initiate at most 2000
instances.

Number of
retries

Number
limit

N/A

None

No

The maximum number of
retries allowed for a single
map instance or reduce
instance is 3. Some
exceptions that do not
allow retries may cause
task execution failures.

Local debug
mode

100

Number
limit

N/A

None

No

In local debug mode, the
number of map instances
is 2 by default and cannot
exceed 100. The number
of reduce instances is

1 by default and cannot
exceed 100. The number
of download records of
one input is 1 by default
and cannot exceed 100.

Number of
times of
reading a
resource
repeatedly

64

Number
limit

N/A

None

No

The number of times
that a map instance or
reduce instance reads
one resource repeatedly
cannot exceed 64 .

Restricted |Value |[Type |Configuration |Default [Configu| Description
item item value |le?
Resource 2G Length | N/A None |No The total length of a
length limit resource referenced by a
job cannot exceed 2 GB.
split size [1,) Length |odps.stage. 256M |Yes The framework splits
limit mapper.split.size the map based on the
configured split size, of
which the number of maps
is then determined.
Content 8 MB Length | N/A None |No The content in the
length of limit string column of the
the string MaxCompute table cannot
column exceed 8 MB.
Worker [1, Time odps.function. 600 Yes Timeout period for the
running 3600] [limit timeout worker when the map
timeout or reduce worker does
period not read or write data or
actively send heartbeat
data by using context.
progress(). The default
value is 600s.
The BIGINT | Data N/A None No When the MR task refers
supported . type to a table, an error occurs
field types | DOUBLEIimit if the table contains other
of table . types of fields.
referenced |STRING
by MR .
DATETIME

>

BOOLE/

5 Java Sandbox

Java sandbox related restrictions of MaxCompute MapReduce and UDF programs running in

distributed environments are as follows:

» Direct access to local files is not allowed. You can only access files by using interfaces

provided by MaxCompute MapReduce/Graph in the following way:

= Read resources specified by the ‘-resources’ option, including files, JAR packages, and

resource tables.

= QOutput log information through ‘System.out’ and ‘System.err’. You can view log information

by running the log command on the MaxCompute console.

» Direct access to the distributed file system is not allowed. You can only access table records by

using MaxCompute MapReduce/Graph.
* JNI call restrictions are not allowed.

» Creation of Java threads is not allowed. Initiation of sub-processes to run Linux commands is

not allowed.
* Network access, including obtaining local IP addresses, is not allowed.

» Java reflection is restricted. “suppressAccessChecks” permission is denied. A private attribute
or method cannot be set to accessible for obtaining private attributes or calling private

methods.
Specifically for the user code, “access denied” is thrown if you follow these steps:

Methods for accessing local files are as follows:

java.io.File:
publ i c bool ean delete ()
public void del eteOnExit ()
publ i c bool ean exi sts()
publ i c bool ean canRead()
public bool ean isFile()
publ i c bool ean isDi rectory()
publ i ¢ bool ean i sHi dden()
public long | astModified()
public long length ()
public String[] list()
public String[] list(FilenameFilter filter)
public File[] listFiles()
public File[] listFiles(FilenaneFilter filter)
public File[] listFiles(FileFilter filter)
publ i c bool ean canWite()
publ i c bool ean createNewril e()
public static File createTenpFile(String prefix, String suffix)

public static File createTenpFile(String prefix, String suffix,
File directory)

public bool ean nkdir ()

publ i c bool ean nkdirs ()

publ i ¢ bool ean renaneTo(Fil e dest)

publ i c bool ean setLast Modi fied(long tine)

publ i c bool ean set ReadOnl y()

java.io.RandomAccessFile:

RandomAccessFil e(String nane, String node)
RandomAccessFile(File file, String node)

java.io.FilelnputStream:

Fil el nput Strean(Fil eDescri ptor fdoj)
Fil el nput Strean(String nane)
FilelnputStreanm(File file)

java.io.FileOutputStream:

Fi | eQut put Streanm(Fi |l eDescri ptor fdQObj)
FileQutputStream(File file)

Fi | eQut put Stream(Stri ng nane)

Fi | eQut put Stream(String name, bool ean append)

java.lang.Class:
public ProtectionDonai n get Protecti onDonai n()
java.lang.ClassLoader:

Cl assLoader ()
Cl assLoader (Cl assLoader parent)

java. lang. Runtime:

public Process exec(String comrand)

public Process exec(String comrand, String envp[])
public Process exec(String cndarray[])

public Process exec(String cndarray[], String envp[])
public void exit(int status)

public static void runFinalizersOnExit (bool ean val ue)
public voi d addShut downHook(Thr ead hook)

publ i c bool ean renoveShut downHook(Thread hook)

public void load(String lib)

public void | oadLibrary(String |ib)

java.lang.System:

public static void exit(int status)

public static void runFinalizersOnExit (bool ean val ue)
public static void |oad(String fil enane)

public static void |oadLibrary(String |ibnane)
public static Properties getProperties()

public static void setProperties(Properties props)
public static String getProperty(String key) // Only sone keys are

allowed for file access.

public static String getProperty(String key,

String def) // Only

sonme keys are allowed for file access.

s)

public static String setProperty(String key, String val ue)

public static void setln(lnputStreamin)

public static void setQut(PrintStream out)

public static void setErr(PrintStreamerr)

public static synchroni zed void set SecurityManager (SecurityManager

List of keys allowed by System.getProperty is as follows:

java. version

j ava. vendor

java. vendor. url

java. class. version

0S. nane

0s. version

os. arch

file. separator

pat h. separat or

i ne. separator

java. specification. version
java. specification. vendor
java. specification. name

java. vm specification. version
java. vm specification. vendor
java. vm specification. nane
java. vm version

java. vm vendor

java. vm name

file. encoding

user.timezone

java. lang. Thread:

Thread ()

Thread(Runnabl e target)
Thread(String nane)

Thread(Runnabl e target, String nane)
Thread(ThreadGroup group, ...)

public final void checkAccess()

public void interrupt ()

public final void suspend ()

public final void resunme ()

public final void setPriority (int newPriority)
public final void setNanme(String nane)

public final void setDaenon(bool ean on)

public void final stop ()

public final synchronized void stop(Throwabl e obj)
public static int enunmerate(Thread tarray[])
public void set Cont ext C assLoader (O assLoader cl)

java. lang. ThreadGroup:

ThreadGroup (String name)

ThreadGroup (Threadgroup parent, String nane)

public final void checkAccess ()

public int enunmerate (Thread list [])

public int enumerate (Thread list [], bool ean recurse)
public int enunmerate (Threadgroup list [])

public int enunerate (Threadgroup list [], bool ean recurse)
public final ThreadG oup getParent ()

public final void setDaenon (bool ean daenon)

public final void setMaxPriority (int pri)

public final void suspend ()

public final void resume ()

public final void destroy ()

public final void interrupt ()

public void final stop ()

java. lang. reflect. AccessibleObiject:

public static void setAccessible (...)
public void setAccessible (...)

java.net. InetAddress:

public String get Host Nane ()
public static InetAddress[] getAl |l ByNanme(String host)
public static |InetAddress getlLocal Host ()

java.net.DatagramSocket:

public | net Address get Local Address()
java.net.Socket:

Socket (...)
java.net.ServerSocket:

Server Socket (...)

public Socket accept ()

protected final void inplAccept (Socket s)

public static synchronized void set Socket Factory(...)

public static synchronized void set Socket | npl Factory(. ..

java.net. DatagramSocket:

Dat agr anSocket (...)
public synchroni zed voi d recei ve(Dat agr anPacket p)

java.net.MulticastSocket:
Mul ti cast Socket (...)
java.net.URL:

URL(...)

public static synchronized void set URLStreantHand! er Factory(. ..

j ava. net . URLConnect i on
public static synchronized void set Cont ent Handl er Factory(...)
public static void setFileNameMap(Fil eNameMap nmap)

java.net.HttpURLConnection:

public static void setFol | owRedirect s(bool ean set)
j ava. net . URLC asslLoader
URLCl assLoader (.. .)

java.security.AccessControlContext:

publ i c AccessCont rol Cont ext (AccessCont r ol Cont ext acc, Domai nConb
i ner conbi ner)
publ i ¢ Domai nConbi ner get Domai nCombi ner ()

6 SDK

6.2 Python SDK

PyODPS is the Python SDK of MaxCompute. It supports basic actions on MaxCompute objects
and the DataFrame framework for ease of data analysis on MaxCompute. For more information,

see the GitHub project and the PyODPS Documentation that describes all interfaces and classes.

» For more information about PyODPS, see the PyODPS community album.

» Developers are welcome to participate in the ecological development of PyODPS. For more
information, see GitHub document.

* You are welcome to submit the issue and merge request to accelerate PyODPS eco-growth.

For more details, see code.

» DingTalk technology exchange group: 11701793
Installation

PyODPS supports Python 2.6 and later versions. After installing PIP in the system, you only
needtorunpip install pyodps. The related dependencies of PyODPS are automatically

installed.
Quick Start

Log on using your Alibaba Cloud primary account to initialize a MaxCompute entry, as shown in

the following code:

from odps i nport ODPS
odps = ODPS(' **your-access-id**', '**your-secret-access-key**' K6 '**
your - def aul t - proj ect **' |

endpoi nt =" **your - end- poi nt **")

After completing initialization, you can operate tables, resources, and functions.
Project

A project is the basic unit of operation in MaxCompute, which is similar to a database.

Call get _pr oj ect to obtain a project, as shown in the following code:

odps. get _project('ny_project') # Cbtain a project.
odps. get_project() # Ootain the default project.

pr oj ect
pr oj ect

Note:

https://github.com/aliyun/aliyun-odps-python-sdk
http://pyodps.readthedocs.org/
https://yq.aliyun.com/album/19
http://pyodps.readthedocs.io/zh_CN/latest/?spm=a2c4e.11153959.blogcont138752.16.5bec51d32BpKgB
https://github.com/aliyun/aliyun-odps-python-sdk?spm=a2c4e.11153959.blogcont138752.17.5bec51d3IMNtLJ

» |If parameters are not input, use the default project.
* You can call exi st _pr oj ect to check whether a project exists.

+ Atable is a data storage unit of MaxCompute.
Table Actions
Calll'i st _t abl es to list all tables in the project, as shown in the following code:

for table in odps.list_tables():
Process each table

Call exi st _t abl e to check whether the table exists and call get_table to obtain the table.

>>> t = odps.get table(' dual')
>>> t.schema
odps. Schema {
c int_a bi gi nt
c_int_b bigint
c_doubl e_a doubl e
c_doubl e b doubl e
c_string_a string
c_string_b string
c_bool _a bool ean
c_bool b bool ean
c_datetine_a datetine
c_datetine_b datetine

>>> t.lifecycle

-1

>>> print(t.creation_tinmne)

2014- 05- 15 14:58: 43

>>> t.is_virtual view

Fal se

>>> t.size

1408

>>> t.schema. col ums

[<colum c_int_a, type bigint>,
<colum c_int_b, type bigint>,
<colum c_doubl e_a, type doubl e>,
<colum c_doubl e_b, type doubl e>,
<colum c_string_a, type string>,
<colum c_string_b, type string>,
<colum c_bool a, type bool ean>,
<colum c_bool _b, type bool ean>,
<colum c_datetinme_a, type datetinme>,
<colum c_datetinme_b, type datetine>]

Create a table’s schema
Two initialization methods are provided:
+ Initialize through table columns and optional partitions, as shown in the following code:

>>> from odps. nodel s i nport Schenma, Columm, Partition
>>> colums = [Col um(nanme=' num , type='bigint', coment='the colum

)]

>>> partitions = [Partition(nanme='pt', type='string' , coment='the
partition')]

>>> schema = Schena(col utms=col ums, partitions=partitions)

>>> schema. col ums

[<col um num type bigint> <partition pt, type string>]

» Although it is easier to call Schema. f rom | i st s for initialization, annotations of columns and

partitions cannot be directly set.

>>> schema = Schema. fromlists(['num], ["bigint'], ['pt'], ['string
1)

>>> schemra. col ums

[<col um num type bigint> <partition pt, type string>]

Create a Table

You can use a table schema to create a table, as shown in the following code:

>>> table = odps.create_table(' ny_new table', schenmm)

>>> table = odps.create _table('ny_new table', schema, if_not_exists=
True) # Create a table only when no table exists.

>>> table = o.create_table(' nmy_new table', schema, |ifecycle=7) # Set
the life cycle.

You can use a field name field type string connected by commas to create a table, as shown in

the following code:

>>> # Create a non-partition table.

>>> table = o.create_table('nmy_new table', 'num bigint, nun2 double',

i f_not_exi sts=True)

>>> # To create a partition table, you can input (list of table fields
, list of partition fields).

>>> table = o.create_table(' my_new table', ('num bigint, nun2 double',
"pt string'), if_not_exists=True)

Without related settings, you can use only the BIGINT, DOUBLE, DECIMAL, STRING, DATETIME
, BOOLEAN, MAP, and ARRAY types when creating a table.

If your service is on the public cloud, or supports new data types such as TINYINT or STRUCT,
you can set opti ons. sqgl . use_odps2_extensi on = True to enable the new types, as

shown in the following code:

>>> from odps inport options

>>> options. sqgl.use_odps2_extension = True

>>> table = o.create_table(' my_new table', 'cat smallint, content
struct<title:varchar(100), body string>')

Obtain Table Data

Table data can be obtained using three methods:

» Call head to obtain table data as follows (only the first 10,000 data records or fewer of each

table can be obtained):

>>> t = odps.get_tabl e('dual")
>>> for record in t.head(3):

>>> print(record[0]) # Ootain the value at the zero position.
>>> print(record['c_double a']) # Obtain a value through a field
>>> print(record[0: 3]) # Slice action

>>> print(record[0]) # Obtain values at multiple positions.

>>> print(record['c_int_a', 'c_double_a']) # Obtain val ues

through multiple fields.

*+ Runopen_reader on atable to open a reader to read data. You can choose to use the WITH

expression:

Use the with expression.

>>> wWith t.open_reader(partition="pt=test') as reader:

>>> count = reader. count

>>> for record in reader[5:10] # This action can be perforned
multiple tinmes until a certain nunmber (indicated by count) of

records are read. This statenment can be transformed to parall el

action.

>>> # Process a record.

>>>

>>> # Do not use the with expression.

>>> reader = t.open_reader(partition='pt=test')

>>> count = reader.count

>>> for record in reader[5: 10]

>>> # Process a record.

« Call the Tunnel API to read table data. The open_r eader action is encapsulated in the Tunnel

API.
Write Data

A table object can also perform the open_wri t er action to open the writer and write data, which

is similar to open_r eader . For example:

>>> # Use the with expression.
>>> with t.open_witer(partition="pt=test') as witer:

>>> witer.wite(records) # Here, records can be any iteratable
records and are witten to bl ock O by default.
>>>

>>> with t.open_witer(partition="pt=test', blocks=[0, 1]) as witer:
Open two bl ocks at the same tine

>>> writer.wite(0, gen_records(bl ock=0))

>>> witer.wite(l, gen_records(block=1)) # The two wite
operations can be parallel in multiple threads. Each block is
i ndependent .

>>>

>>> # Do not use the WTH expression.

>>> witer = t.open_witer(partition="pt=test', blocks=[0, 1])
>>> witer.wite(0, gen_records(bl ock=0))

>>> witer.wite(l, gen_records(bl ock=1))

>>> writer.close() # You nmust close the witer. Gtherwise, the witten
data may be inconpl ete.

Similarly, writing data into the table is encapsulated in the Tunnel API. For more information, see

data upload and download channel.

Delete a Table

Delete a table as shown in the following code:

>>> odps.delete table(' my _table nane', if_exists=True) # Delete a
tabl e only when the table exists

>>> t.drop() # The drop function can be directly executed if a table
obj ect exi sts.

Table Partitioning

SQL

Basic operations
Traverse all partitions of a table, as shown in the following code:

>>> for partition in table.partitions:

>>> print(partition.nane)
>>> for partition in table.iterate partitions(spec='"pt=test'):
>>> Traverse list partitions.

Check whether a partition exists, as shown in the following code:
>>> tabl e.exist_partition('pt=test, sub=2015")
Obtain the partition, as shown in the following code:

>>> partition = table.get partition('pt=test')
>>> print(partition.creation_tinmne)

2015- 11- 18 22: 22: 27

>>> partition.size

0

Create a Partition

>>> t.create_partition('pt=test', if_not_exists=True) # Create a
partition only when no partition exists.

Delete a Partition

>>> t.delete partition('pt=test', if_exists=True) # Delete a
partition only when the partition exists.

>>> partition.drop() # Directly drop a partition if a partition
obj ect exists.

PyODPS supports MaxCompute SQL query and can directly read the execution result.

* Run the SQL statements

>>> odps. execute_sqgl ('select * fromdual') # Run SQL in synchronous
nmode. Bl ocking continues until SQ. execution is conpleted.

>>> jnstance = odps.run_sql ('select * fromdual') # Run the SQL
statenments in asynchronous node.

>>> jnstance.wait_for success() # Bl ocking continues until SQ
execution is conpl et ed.

* Read the SQL statement execution results

The instance that runs the SQL statements can directly perform the open_r eader action. One

scenario is that the SQL statements return structured data, as follows:

>>> W th odps. execute_sql ('select * fromdual').open_reader() as

r eader:
>>> for record in reader:
>>> # Process each record.

Another scenario is that actions that may be performed by SQL, such as desc, obtain the raw

SQL execution result through the r eader . r aw attribute, as follows:

>>> with odps. execute_sqgl (' desc dual').open_reader() as reader:
>>> print (reader.raw)

Resource
Resources commonly apply to UDF and MapReduce on MaxCompute.

Youcanuseli st _resources to list all resources and use exi st _r esour ce to check whether
a resource exists. You can call del et e_r esour ce to delete resources or directly call the dr op

method for a resource object.
PyODPS mainly supports two resource types: file resources and table resources.
* File Resources

File resources include the basic fi | e type, and py, j ar, and ar chi ve.

Note:
In DataWorks, file resources in the py format must be uploaded as files. For more information,

see Python UDF.

Create a File Resource
You can create a file resource by specifying the resource name, file type, and a file-like object

(or a string object), as shown in the following example:

resource = odps.create resource('test file_ resource', 'file',
file_obj=open('/to/path/file')) # Use a file-like object.

https://yq.aliyun.com/articles/300307

resource = odps.create resource('test_py resource', 'py', file_obj=
import this') # Use a string.
Read and Modify a File Resource
You can call the open method for a file resource or call open_r esour ce at the MaxCompute
entry to open a file resource. The opened object is a file-like object. Similar to the open

method built in Python, file resources also support the open mode. For example:

>>> with resource.open('r') as fp: # Open a resource in read node.

>>> content = fp.read() # Read all content.

>>> fp.seek(0) # Return to the start of the resource.

>>> lines = fp.readlines() # Read nultiple |ines.

>>> fp.wite('Hello Wrld') # Error. Resources cannot be witten
in read node.

>>>

>>> with odps.open_resource('test file resource', node='r+') as fp:
Enabl e read/wite node.

>>> fp.read()

>>> fp.tell() # Current position

>>> fp. seek(10)

>>> fp.truncate() # Truncate the follow ng content.

>>> fp.witelines(["'Hello\n', "Wrld\n']) # Wite nultiple lines
>>> fp.wite('Hello Wrld")

>>> fp.flush() # Manual call submits the update to MaxConpute.

The following open modes are supported:

* r: Read mode. The file can be opened but cannot be written.

+ w. Write mode. The file can be written but cannot be read. Note that file content is cleared
first if the file is opened in write mode.

* a: Append mode. Content can be added to the end of the file.

* r+: Read/write mode. You can read and write any content.

* wa: Similar to r +, but file content is cleared first.

» a+: Similar to r +, but content can be added to the end of the file only during writing.

In PyODPS, file resources can be opened in binary mode. For example, some compressed
files must be opened in binary mode. r b indicates opening a file in binary read mode, and r +b
indicates opening a file in binary read/write mode.

Table Resources

Create a Table Resource

>>> odps.create_resource('test_table resource', 'table', table_nane
='my_table', partition=' pt=test')

Update a Table Resource

>>> tabl e resource = odps.get _resource('test _table resource')
>>> tabl e_resource. update(partition=" pt=test2', project_nane=

my_project2')
DataFrame

PyODPS provides DataFrame API, which provides interfaces similar to pandas, but can fully

utilize computing capability of MaxCompute. For the complete DataFrame document, see

DataFrame.

The following is an example of DataFrame:

Note:

You must create a MaxCompute object before starting the following steps:

>>> 0 = ODPS(' **your-access-id**', '**your-secret-access-key**',
proj ect="**your-project**', endpoi nt="**your-end- poi nt
* %!))

Here, movielens 100K is used as an example. Assume that three tables already exist, which are
pyodps_m 100k _novi es (movie-related data), pyodps_m 100k _user s (user-related data),
and pyodps_m _100k_r at i ngs (rating-related data).

http://pyodps.readthedocs.io/zh_CN/latest/df.html
http://pyodps.readthedocs.io/zh_CN/latest/df.html

You only need to input a Table object to create a DataFrame object. For example:

>>> from odps. df inport DataFrane

>>> users = DataFranme(o.get _table(' pyodps_m 100k users'))

View fields of DataFrame and the types of the fields through the dtypes attribute, as shown in the

following code:
>>> users. dtypes
You can use the head method to obtain the first N data records for data preview. For example:

>>> users. head(10)

user_id age sex occupation zip_code
0 1 24 M technician 85711
1 2 53 F other 94043
2 3 23 M writer 32067
3 4 24 M technician 43537
4 5 33 F other 15213
5 6 42 M executive 98101
6 7 57 M administrator | 91344
7 8 36 M administrator | 05201
8 9 29 M student 01002
9 10 53 M lawyer 90703

You can add a filter on the fields if you do not want to view all of them. For example:

>>> users[['user_id, 'age']].head(5)

user_id age
0 1 24
1 2 53
2 3 23
3 4 24
4 5 33

You can also exclude several fields. For example:

>>> users. exclude(' zi p_code', 'age').head(5)

user_id sex occupation
0 1 M technician
1 2 F other
2 3 M writer
3 4 M technician
4 5 F other

When excluding some fields, you may want to obtain new columns through computation. For

example, add the sex_bool attribute and set it to True if sex is Male. Otherwise, set it to False.

For example:
>>> users. sel ect (users. exclude(' zi p_code', 'sex'), sex_bool =users. sex
== 'M). head(5)
user_id age occupation sex_bool

0 1 24 technician True
1 2 53 other False
2 3 23 writer True
3 4 24 technician True
4 5 33 other False

Obtain the number of persons at age of 20 to 25, as shown in the following code:

>>> users. age. bet ween(20, 25).count().renane('count')
943

Obtain the numbers of male and female users, as shown in the following code:

>>> users. groupby(users. sex).count ()

sex count

0 F 273

1 M 670

To divide users by job, obtain the first 10 jobs that have the largest population, and sort the jobs in
the descending order of population. An example is as follows:
>>> df = users. groupby(' occupation').agg(count=users[' occupation'].

count ())
>>> df .sort(df[' count'], ascendi ng=Fal se)[: 10]

occupation count
0 student 196
1 other 105
2 educator 95
3 administrator 79
4 engineer 67

programmer 66
6 librarian 51
7 writer 45
8 executive 32
9 scientist 31

DataFrame APIs provide the value_counts method to quickly achieve the same result. For

example:

>>> users. occupation. val ue_counts()[:10]

occupation count
0 student 196
1 other 105
2 educator 95
3 administrator 79
4 engineer 67
5 programmer 66
6 librarian 51
7 writer 45
8 executive 32
9 scientist 31

Show data in a more intuitive graph, as shown in the following code:
>>> Ogmatplotlib inline
Use a horizontal bar chart to visualize data, as shown in the following code:

>>> users['occupation'].value_counts().plot(kind="barh', x=" occupation

yi abel =' prefession')

doctar
homemaker
none

lawyer
salesman
retired
healthcare
entertainment
marketing
technician
artist
scientist
executive
writer
librarian
programmer
engineer
administrator
educator
other
student

prefession

o 50 100 150 200

Divide ages into 30 groups and view the histogram of age distribution, as shown in the following

code:

>>> users. age. hi st (bins=30, title="Distribution of users' ages",
x| abel =" age', yl abel = count of users')

100 | IDIEtr’ItilutICIﬂ r:i-f users’ ages

count of users

Use JOIN to join the three tables and save the joined tables as a new table. For example:

>>> novi es = Dat aFrane(o. get _tabl e(’' pyodps_m _100k_novi es'))
>>> ratings = DataFranme(o.get _table(' pyodps_m 100k _ratings'))
>>> 0. del ete tabl e(' pyodps_m 100k lens', if_exists=True)

>>> | ens = novies.join(ratings).join(users).persist(' pyodps_m _
100k _I ens")

>>> | ens. dt ypes

odps. Schema {

}

novie_id int64

title string

rel ease_date string
vi deo_rel ease_date string
i mdb_url string

user _id int64

rating int64

uni x_timestanp int64
age int64

sex string
occupation string

zi p_code string

Divide ages of 0 to 80 into eight groups, as shown in the following code:

>>> | abels = ['0-9', '10-19', '20-29', '30-39', '40-49', '50-59', '60-
69', '70-79']
>>> cut _|lens = lens[lens, |ens.age.cut(range(0, 81, 10), right=Fal se,

| abel s=I abel s).renanme(' age group')]

View the first 10 data records of a single age in a group, as shown in the following code:

>>> cut _|lens['age group', "age'].distinct()[:10]
Age group Age

0 0-9 7
1 10-19 10
2 10-19 11
3 10-19 13
4 10-19 14
5 10-19 15
6 10-19 16
7 10-19 17
8 10-19 18
9 10-19 19

View users’ total rating and average rating of each age group, as shown in the following code:

>>> cut _| ens. groupby(' age group').agg(cut_lens.rating.count().renanme("
total rating'), cut_lens.rating.nmean().renane(' average rating'))

Age group Average rating Total rating
0 0-9 3.767442 43
1 10-19 3.486126 8181
2 20-29 3.467333 39535
3 30-39 3.554444 25696
4 40-49 3.591772 15021
5 50-59 3.635800 8704
6 60-69 3.648875 2623
7 70-79 3.649746 197

Configuration

PyODPS provides a series of configuration options, which can be obtained through odps.

opt i ons. The following lists configurable MaxCompute options:

* General Configurations

Option Description Default value
end_point MaxCompute Endpoint None
default_project Default Project None
log_view_host LogView host name None
log_view_hours LogView holding time (hours) |24
local_timezone Used time zone. True 1

indicates local time, and False
indicates UTC. The time
zone of pytz can also be used

lifecycle Life cycles of all tables None

temp_lifecycle Life cycles of temporary 1
tables

biz_id User ID None

verbose Whether to print logs False

Option Description Default value
verbose_log Log receiver None
chunk_size Size of write buffer 1496
retry_times Request retry times 4
pool_connections Number of cached connection | 10
s in the connection pool
pool_maxsize Maximum capacity of the 10
connection pool
connect_timeout Connection time-out 5
read_timeout Read time-out 120
completion_size Limit on the number of object |10
complete listing items
notebook_repr_widget Use interactive graphs True
sql.settings MaxCompute SQL runs global [None
hints
sql.use_odps2_extension Enable MaxCompute 2.0 False

language extension

Data Upload/Download Configurations

Option Description Default value
tunnel.endpoint Tunnel Endpoint None
tunnel.use_instance_tunnel Use Instance Tunnel to obtain | True

the execution result
tunnel.limited_instance_tun Limit the number of results True
nel obtained by Instance Tunnel
tunnel.string_as_binary Use bytes instead of unicode |False

in the string type

DataFrame Configurations

Option Description Default value

interactive Whether in an interactive Depend on the detection
environment value

df.analyze Whether to enable non True

-MaxCompute built-in
functions

Option Description Default value

df.optimize Whether to enable True
DataFrame overall optimizati
on

df.optimizes.pp Whether to enable True
DataFrame predicate push
optimization

df.optimizes.cp Whether to enable True
DataFrame column tailoring
optimization

df.optimizes.tunnel Whether to enable True
DataFrame tunnel optimizati
on

df.quote Whether to use ** to mark True
fields and table names at the
end of MaxCompute SQL

df.libraries Third-party library (resource | None

name) that is used for
DataFrame running

PyODPS ML Configurations

Option Description Default value
ml.xflow_project Default Xflow project name algo_public
ml.use_model_transfer Whether to use ModelTrans | True

fer to obtain the model PMML

ml.model_volume

Volume name used when
ModelTransfer is used

pyodps_volume

7 Handle-Unstructured-data

7.1 Access OSS Data

The following section details how to access OSS data in MaxCompute.

Authorization with STS Mode

Authorize OSS data permission to MaxCompute account in advance, in order that MaxCompute

can directly access the OSS. You can authorize permissions in the following two ways:

* When the MaxCompute and OSS owner are the same account, you can directly log on
Alibaba Cloud account and click here to complete authorization.

* Custom authorization.

1. Firstly, you must authorize MaxCompute permission to access OSS in RAM. Log on to the
RAM console(if MaxCompute and OSS are not the same account, you must log on to OSS
account to authorize). Create a role through Role Management in the console whose name

likes AliyunODPSDefaultRole or AliyunODPSRoleForOtherUser.

2. Modify the policy content of role as follows:

--Wien the MaxConpute and OSS owner are the same account:

"Statenent": [

"Action": "sts:AssuneRol e",
"Effect": "Allow',
"Principal": {
"Service": |
"odps. al i yuncs. cont

"Version": "1"

--When the MaxConmpute and OSS owner are not the sane account:

"Statenent": |

"Action": "sts:AssuneRol e",
"Effect": "All ow',
"Principal": {
"Service": |
"MaxConput e' s Oamner account: id@dps. aliyuncs. conf

https://ram.console.aliyun.com/?spm=5176.100239.blogcont281191.24.uJg9dR#/role/authorize?request=%7B%22Requests%22:%20%7B%22request1%22:%20%7B%22RoleName%22:%20%22AliyunODPSDefaultRole%22,%20%22TemplateId%22:%20%22DefaultRole%22%7D%7D,%20%22ReturnUrl%22:%20%22https:%2F%2Fram.console.aliyun.com%2F%22,%20%22Service%22:%20%22ODPS%22%7D
https://www.alibabacloud.com/zh/product/ram
https://account.alibabacloud.com/login/login.html
https://account.alibabacloud.com/login/login.html
https://ram.console.aliyun.com/#/role/list

"Version": "1"

3. Authorize the role necessary permissions AliyunODPSRolePolicy to access OSS . For

example:

"Version": "1",
"Statenent": |
"Action": |
"oss: Li st Bucket s",
"o0ss: Cet (bj ect ",
"oss: Li st hj ects”,
"oss: Put Qbj ect ",
"o0ss: Del et e(bj ect ™,

"oss: Abort Mul ti part Upl oad",
"oss: ListParts”

"Resource ":"*",
"Effect": "Al Il ow'

--You can custom ze other perm ssions.

4. Authorize the permission AliyunODPSRolePolicy to this role.
Read OSS Data with Built-in Extractor

When accessing external data sources, you must use different custom extractors. You can also
use MaxCompute’s internal extractor to read conventionally-formatted data stored in OSS. You

only need to create an external table and use this table as the source table for query operations.

In this example, assume that you have a CSV data file in OSS. The endpoint is 0ss- cn-
shanghai -i nt ernal . al i yuncs. com the bucket is 0ss- odps-t est, and the data file is

stored in / deno/ vehi cl e. csv.
Create External table
Use the following statements to create an external table:

CREATE EXTERNAL TABLE | F NOT EXI STS anbul ance_dat a_csv_ext er nal

vehicleld int,

recordld int,

patientld int,

calls int,

Mai d doubl e,

| ocati onLongtitue doubl e,
recordTi me string,
direction string

STORED BY 'com al i yun. odps. CsvSt or ageHandl er* -- (1)
W TH SERDEPROPERTI ES (
"odps. properties.rolearn =" acs: ram: xxxxx:rol e/aliyunodpsdefaul trole’

https://www.alibabacloud.com/zh/product/oss
https://www.alibabacloud.com/zh/product/oss

) -- (2)
LOCATI ON ' oss: // oss-cn-shanghai -i nternal . al i yuncs. conf oss- odps-test/
Deno/*'; -- (3)(4)

The above statement is described below:

+ com al i yun. odps. CsvSt or ageHandl er is the built-in St or ageHandlI er for processing
CSV-format files. It defines how CSYV files are read and written. You only need to specify this
name. The relevant logic is implemented by the system.

* The information in odps. properti es. r ol ear n comes from the Ar n information of
Al i yunODPSDef aul t Rol e in RAM. You can get it through the role details in the RAM
console.

* You must specify an OSS directory for LOCATION. By default, the system reads all the files in
this directory.

— \We recommend you use the domain name of the intranet, to avoid incurring fees for the
OSS data-flow.

— \We recommend that the region you store the OSS data is the same as the region you open
MaxCompute. Because MaxCompute can only be deployed in some regions, cross-regional
data connectivity cannot be guaranteed.

= OSS connection format is 0ss: // <your - access-i d>: <your - secr et - key>@ss- xXx
-xxxx-internal.aliyuncs. conl <bucket name>/ <di r ect or ynanme>/ . You do not

have to add a file name after the directory. Some common errors are shown as follows:

http://oss-odps-test.oss-cn-shanghai -internal . aliyuncs. com Deno/
-- HTTP connection is not supported.
https://oss-odps-test. oss-cn-shanghai -internal . al i yuncs. com Deno/
-- HTTPS connection is not supported.
0ss:// oss-odps-test.oss-cn-shanghai -i nternal . aliyuncs. com Denp
-- The connection address is incorrect.
oss://oss://oss-cn-shanghai -i nternal . aliyuncs. conf oss-odps-test/
Deno/ vehicle.csv -- You do not need to specify the file nane.

* In the MaxCompute system, external tables only record the associated OSS directory. If you

DROP (delete) this table, the corresponding LOCATI ON data is not deleted.
For more information about external tables, see DDL statements.
If you want to view the created external table structure, run the following statement:

desc extended <tabl e_nane>;

In the returned information, Extended Info contains external tables information such as

StorageHandler and Location.

https://ram.console.aliyun.com/#/role/detailAliyunODPSDefaultRole/info

Query an External Table

After creating an external table, you can use it as a normal table. Assume the data in / deno/

vehi cl e. csv is:

51,1, 46. 81006, - 92. 08174, 9/ 14/ 2014

13, 1, 46. 81006, - 92. 08174, 9/ 14/ 2014

48, 1, 46. 81006, - 92. 08174, 9/ 14/ 2014

30, 1, 46. 81006, - 92. 08174, 9/ 14/ 2014

47,1, 46. 81006, - 92. 08174, 9/ 14/ 2014 0: 00, S
9,

5

6

4,

PRPRPRPRPRPPRE
POO~NOUNWNER

1, 46. 81006, - 92. 08174, 9/ 14/ 2014 0 00, S
3,1, 46. 81006, - 92. 08174, 9/ 14/ 2014 0: 00, N
3,1, 46. 81006, - 92. 08174, 9/ 14/ 2014 0: 00, SW

,4,1,46. 81006, - 92. 08174, 9/ 14/ 2014 0: 00, NE
0, 31, 1, 46. 81006, - 92. 08174, 9/ 14/ 2014 0: 00, N

Run the following SQL statement:

sel ect recordld, patientld, direction from anbul ance _data csv_ext ernal
where patientld > 25;

Note:
Currently, external table can only be operated through MaxCompute SQL. MaxCompute

MapReduce cannot operate the external table.

This statement submits a job, scheduling the built-in CSV extractor to read and process data from

OSS. The result is as follows:

| recordld | patientld | direction |

S |
NE |

I I
I I
| 30 | W
I | S

I | N

I I S I
0] 31| N|

RPoO~NOA~WE

Read OSS Data Using a Custom Extractor

When OSS data is in a complex format, and the built-in extractor cannot meet your requirements,

you must use a custom extractor to read data from OSS files.

For example, assume you have a TXT data file that is not in CSV format, and | is used as the
column delimiter between records. For example, the data in / deno/ Sanpl eDat a/ Cust omirxt /

Anbul anceDat a/ vehi cl e. csv is:

| 1] 51| 1| 46. 81006] - 92. 08174| 9/ 14/ 2014 0: 00| S
1| 2| 13| 1| 46. 81006 - 92. 08174| 9/ 14/ 2014 0: 00| NE

PRRRRRERRE

3| 48| 1| 46. 81006| - 92. 08174| 9/ 14/ 2014 0: 00| NE

4] 30| 1| 46. 81006| - 92. 08174| 9/ 14/ 2014 0: 00| W

| 5| 47 | 1| 46.81006 |-92.08174 | 9/14/2014 0: 00 | S
6| 9] 1| 46. 81006| - 92. 08174| 9/ 14/ 2014 0: 00| S

7| 53| 1| 46. 81006| - 92. 08174| 9/ 14/ 2014 0: 00| N

8| 63| 1| 46. 81006| - 92. 08174| 9/ 14/ 2014 0: 00| SW

9| 4| 1| 46. 81006| - 92. 08174| 9/ 14/ 2014 0: 00| NE

10| 31| 1| 46. 81006] - 92. 08174| 9/ 14/ 2014 0: 00| N

Define an Extractor

Write a common extractor, using the delimiter as the parameter. This allows you to process all

text files with similar formats. Examples are as follows:

* Text extractor that extract schematized records fromfornatted
pl ai n-text(csv, tsv etc.)

public class Text Extractor extends Extractor {

private | nputStreanBSet inputs;

private String columbDelimter;

private DataAttributes attributes;

private BufferedReader currentReader;

private bool ean firstRead = true;

public Text Extractor() {

[l default to ",", this can be overwitten if a specific

delimter is provided (via DataAttri butes)

this.columbDelimter = ",";

/1 no particular usage for execution context in this exanple
@verride
public void setup(ExecutionContext ctx, |nputStreantet inputs,
Dat aAttributes attributes) {
this.inputs = inputs; // inputs is an |InputStreantBet, each call
to next() returns an InputStream This |InputStreamcan read all the
content in an CSS file.
this.attributes = attri butes;
/1 check if "delimter" attribute is supplied via SQ query
String columDbDelimter = this.attributes.getVal ueByKey("
delimter"); //The delimter paranmeter is supplied by a DDL
st at enent .
if (columbDelimter ! = null)

this.columbDelimter = columbDelimter;
/'l note: nore properties can be inited fromattributes if needed

@verride
public Record extract() throws | OException {//extractor() calls
return one record, corresponding to one record in an external table.
String |ine = readNextLine();
if (line == null) {
return null; // Areturn value of NULL indicates that this
tabl e has no readabl e records.

return textLi neToRecord(line); // textLineToRecord splits a row
of data into nultiple colums according to the delimter.

@verride

public void close(){

/'l no-op

See here for a complete implementation of textLineToRecord splitting data.

Define StorageHandler

A StorageHandler acts as a centralized portal for custom external table logic.

package com al i yun. odps. udf . exanpl e. t ext ;
public class Text St orageHandl er extends QdpsStorageHandl er {
@verride
public C ass<? extends Extractor> getExtractord ass() {
return Text Extractor. cl ass;

@verride
public C ass<? extends Qutputer> getQutputerC ass() {

return Text Qutputer.cl ass;

Compiling and Packaging
Compile your custom code into a package and upload it to MaxCompute.

add jar odps-udf-exanple.jar;
Create External Table

Similar to using the built-in extractor, first, you must create an external table. The difference is

that, when specifying the external table access data, you must use a custom StorageHandler.
Use the following statements to create an external table:

CREATE EXTERNAL TABLE | F NOT EXI STS anmbul ance_dat a_t xt _ext er nal

vehicleld int,

recordld int,

patientld int,

calls int,

| ocationLatitute doubl e,
| ocati onLongtitue doubl e,
recordTi nme string,
direction string

STORED BY ' com al i yun. odps. udf . exanpl e. t ext . Text St or ageHandl er" --
STORED BY specifies the custom StorageHandl er cl ass name.
wi t h SERDEPROPERTI ES (
"delimter'="\\|", -- SERDEPROPERI TES can specify paranmeters, these
paraneters are passed through the DataAttributes to the Extractor
code.
"odps. properties.rolearn =" acs: ram : XXXXXXXXXXxxx: rol e/ al i yunodps
defaultrol e

LOCATI ON ' oss: // oss-cn-shanghai -i nternal . al i yuncs. conf oss- odps-t est/
Deno/ Sanpl eDat a/ Cust onirxt / Ambul anceDat a/ '

https://github.com/aliyun/aliyun-odps-java-sdk/blob/master/odps-sdk-impl/odps-udf-example/src/main/java/com/aliyun/odps/udf/example/text/TextExtractor.java

USI NG ' odps- udf -exanple.jar'; --You nmust al so specify the Jar
package containing the class definition.

* Query an External Table

Run the following SQL statement:

sel ect recordld, patientld, direction from anbul ance data txt e
xternal where patientld > 25;

Read Unstructured Data by Using a Custom Extractor

Previously, you can use the built-in extractor or a custom extractor to conveniently process CSV
and other text data stored in OSS. Next, using audio data (.wav format files) as an example, the

following shows how to use a custom extractor to access and process non-text files in OSS.

Here, starting from the last SQL statement, we introduce the use of MaxCompute SQL as a

portal to process audio files stored in OSS.

Create the External table SQL as follows:

CREATE EXTERNAL TABLE | F NOT EXI STS speech_sent ence_snr_ext er nal

sent ence_snr doubl e,
id string

STORED BY ' com al i yun. odps. udf . exanpl e. speech. SpeechSt or ageHandl er'
W TH SERDEPROPERTI ES (

"mfFileNanme' = smrandom5 utterance.text.|abel' |,

' speechSanpl eRat el nKHz' = ' 16’

LOCATI ON ' oss: // oss-cn-shanghai -i nternal . al i yuncs. conf oss- odps-test/
dev/ SpeechSent enceTest /"'
USI NG ' odps- udf - exanpl e. jar, smrandom 5 utterance.text.!|abel"';

As in the preceding example, you must create an external table. Then, use the schema of this

table to define the information that you want to extract from the audio file:

* The statement signal-to-noise ratio(SNR) in an audio file: sentence_snr.

* The name of the audio file: id.

After creating the external table, use a standard Select statement to perform a query. This
operation triggers the extractor to perform computation. When reading and processing OSS
data, in addition to simple deserialization on text files, you can use custom extractors to perform
more complex data processing and extraction logic. In this example, use the custom extractor
encapsulated in com al i yun. odps. udf . exanpl e. speech. SpeechSt or ageHandl er to

calculate the average SNR of valid statements in the audio file, and extract structured data for

SQL operations (WHERE sentence_snr > 10). Once completed, the operation returns all audio

files with an SNR that greater than 10 and their corresponding SNR values.

Multiple WAV-format files are stored at the OSS address oss: // 0ss- cn- hangzhou- znf

.al i yuncs. conl oss- odps-test/dev/ SpeechSent enceTest /. The MaxCompute
framework reads all the files at this address and, when necessary, performs file-level sharding.
It automatically allocates the file to multiple computing nodes for processing. On each
computing node, the extractor is responsible for processing the file set allocated to the node
by InputStreamSet. The special processing logic is similar to your single-host program. Your

algorithm is implemented by using the single host method according to its class.
Details about the SpeechSent enceSnr Ext r act or formulation logic are as follows:

First, read the parameters in the set up interface to perform initialization and import the audio

processing model (using resource introduction):

publ i c SpeechSent enceSnr Extractor () {
this.utteranceLabel s = new HashMap<String, UterancelLabel >();

@verride
public void setup(ExecutionContext ctx, |nputStreanBet inputs,
Dat aAttributes attributes){
this.inputs = inputs;
this.attributes = attributes;
this.mMfFileName = this.attributes. getVal ueByKey(M.F_FILE_A
TTRI BUTE_KEY) ;
String sanpl eRatel nKHzStr = this.attributes. getVal ueByKey(
SPEECH SAMPLE RATE_KEY) ;
thi s. sanpl eRat el nKHz = Doubl e. par seDoubl e(sanpl eRat el nKHzSt r) ;
try {
[/l read the speech nodel file fromresource and | oad the nodel
i nto menory
Buf f er edl nput St ream i nput St ream = ct x. r eadResour ceFi | eAsSt r ean(
m f Fi | eNane) ;
| oadM f Label sFronResour ce(i nput Stream ;
i nput Stream cl ose();
} catch (1 Oexception e) {
throw new Runti meException("readi ng nodel frommf failed with
exception " + e.get Message());

In the Extractor() interface, the specific read and processing logic is implemented on the audio
files. The SNR of the read data is calculated based on the audio model and results are written to a

record in [snr, id] format.

The preceding example simplifies the implementation process and does not include the relevant
audio processing algorithm logic. see the example code provided by the MaxCompute SDK in the

open source community.

@ Override
public Record extract() throws | OException {
Sour cel nput Stream i nput Stream = i nputs. next () ;
if (inputStream == null){
return null;

[l process one wav file to extract one output record [snr, id]
String fileNanme = inputStream get Fi | eNane();

fileName = fil eNane. substring(fil eNanme.lastlndexOr('/') + 1);
| ogger.info("Processing wav file " + fil eNane);

String id = fil eNane. substring(0, fileName.lastlndexO('."));
/'l read speech file into menory buffer

long fileSize = inputStreamgetFileSi ze();

byte[] buffer = new byte[(int)fileSize];

int readSi ze = inputStreamreadToEnd(buffer);

i nput Stream cl ose();

/!l conpute the avg sentence snr

doubl e snr = conputeSnr(id, buffer, readSize);

/1l construct output record [snr, id]

Col umm[] out put Col ums = this.attributes. get RecordCol utms() ;
ArrayRecord record = new ArrayRecord(out put Col ums);

record. set Doubl e(0, snr);

record.setString(l, id);

return record,

private void | oadM f Label sFronResour ce(Buf f er edl nput St r eam
filel nput Stream
throws | OException {
/'l skipped here

[/l conpute the snr of the speech sentence, assum ng the input buffer
contains the entire content of a wav file

Private doubl e conputersnr (string ID, byte [] buffer, int
val i dbufferlen){

/1 conputing the snr value for the wav file (supplied as byte
buffer array), skipped here

Run the query:

sel ect sentence_snr, id
from speech_sent ence_snr _ext er nal
where sentence _snr > 10.0;

Results:

| sentence snr | id |

| 34.4703 | J310209090013_H02_KO03_042 |

| 31.3905 | tsh148_seg_2_ 3013_3_6_48_80bd359827e24dd7_0 |
| 35.4774 | tsh148_seg_3013_1_31_11_9d7c87aef 9f 3e559_0 |

https://github.com/aliyun/aliyun-odps-java-sdk/blob/master/odps-sdk-impl/odps-udf-example/src/main/java/com/aliyun/odps/udf/example/speech/SpeechSentenceSnrExtractor.java

| 16.0462 | tsh148_seg 3013 2 29 49 f4cb0990a6b4060c_0O |
| 14.5568 | tsh_148 3013 5 13 47 3d5008d792408f81 0 |

By using the customized extractor, you can process multiple voice data files stored on OSS on
the SQL statement in a distributed way. Using a similar method, you can also use MaxCompute's
large-scale computing power to easily process different types of unstructured data, such as image

and video.
Data partition

In earlier sections, an external table linked data is implemented through designated OSS Directory
on LOCATION. But while process, MaxCompute reads all data under Directory, including all files
in sub-directory. For accumulated data directories along with time, because the data volume
is too big, scan the entire directory may cause unnecessary extra IO and data processing time.

Normally, there are 2 solutions for this problem.

* Reduce access data volume: You are responsible for planning data storage address, and
considering using multiple numbers of EXTERNAL TABLE to scan data in different parts,
making each LOCATION of EXTERNAL TABLE point to a data subaggegate.

» Partition data: EXTERNAL TABLE is the same as internal table, it supports functions of

partition table, you are available to manage data systemization based on partition function.
It mainly introduces partition function of EXTERNAL TABLE in this section.
» Standard Organization Method and Path Format of Partition Data on OSS

Unlike its internal tables, MaxCompute does not have the authority to manage data stored
in external memory (such as OSS). As such, if you must use the partition table function on
your system, the storage path for data files on OSS needs to conform to a certain format. This

format is as follows.
partitionKeyl=val uel\partiti onKey2=val ue2\...

Related examples are as follows
Assume that you save your daily LOG files on OSS and want to access part of the data when
processed with MaxCompute, based on the granularity of Day. Assuming that these LOG files
are CSV files (usage of complicated and customized format is similar), you can define data
using the following partitioned external table.

CREATE EXTERNAL TABLE | og_t abl e_external (

click STRI NG
i p STRI NG

url STRI NG

PARTI TI ONED BY (
year STRI NG
mont h STRI NG,
Day string

Stored by 'com aliyun. ODPS. csvstoragehandl er'
W TH SERDEPROPERTI ES (
"odps. properties.rolearn' =" acs: ram : xxxxx: rol e/ al i yunodpsdef aul trol
eI

LOCATI ON ' oss:// oss-cn- hangzhou-znf. al i yuncs. com oss- odps-test/
| og_datal/';
In contrast to the external table example provided in the previous section, in the aforementi
oned three-tier partition example, when you define EXTERNAL TABLE, you specify the
external table as a partition table using the syntax of PARTITION BY. The partition keys are

year, month, and day.

In order for a partition like this to work effectively, you must comply with the aforementioned
path format when storing data on OSS. The following is an example of a valid path storage

layout.

osscnd |'s oss://oss-odps-test/| og data/

2017-01-14 08:03:35 128MB Standard oss://oss-odps-test/| og_datal/year
=2016/ nont h=06/ day=01/1 ogfil e

2017-01-14 08:04:12 127MB Standard oss://oss-odps-test/| og_dat al/ year
=2016/ nont h=06/ day=01/1 ogfile. 1

2017-01-14 08:05:02 118MB Standard oss://oss-odps-test/| og_datal/year
=2016/ nont h=06/ day=02/ | ogfi | e

2017-01-14 08:06:45 123MB Standard oss://oss-odps-test/| og_datal/year
=2016/ nont h=07/ day=10/| ogfi |l e

2017-01-14 08:07:11 115 MB standard OSS: // OSS-ODPS-test/| og_dat a/
year = 2016/ nonth = 08/ day = 08/l ogfile

Note:
If you have prepared the offline data, that is, if you have uploaded the offline data to the OSS

storage service with osscmd or other OSS tools, you then define the data path format.

On this premise, partition information is imported to MaxCompute through the ALTER TABLE
ADD PARTI Tl ON statement.

An example of the corresponding DDL statement is as follows.

ALTER TABLE | og_t abl e_external ADD PARTI TI ON (year
'06', day = '01")

'2016', nonth

ALTER TABLE | og_t abl e_external ADD PARTI TION (year = '2016', nonth =
'06', day = '02")
ALTER TABLE | og_t abl e_external ADD PARTI TION (year = '2016', nonth =

'07', day = '10')

ALTER TABLE | og_tabl e_external ADD PARTI TION (year = '2016', nonth =
'08', day = '08")

Note:
These operations are similar to the standard MaxCompute inner table operations, and you
can see documentation if you are unfamiliar with the partition tables concept. When the data is
ready and the PARTITION information has been imported into the system, the partitioning of

the external table data on OSS can be performed by means of an SQL statement.

Assuming that you only want to analyze how many different IPs there are in LOG on June 1,

2016, the following command can be used:

SELECT count (distinct(ip)) FROM | og tabl e _external WHERE year ="'
2016' AND nmonth = '06' AND day = '01';
At this point, for log_table external, the directory that corresponds to the external table will only
access the files under the | og_dat a/ year =2016/ nont h=06/ day=01 subdirectory (logfile
and logfile .1). By not performing a full scan of all the data in the entire log_data/ directory,

a lot of useless 1/0 operations can be avoided.

Similarly, if you only want to analyze the data for the second half of 2016, you can use the
following command:
SELECT count (distinct(ip)) FROM | og tabl e external
WHERE year = '2016' AND nonth > '06';
At this point, only access the second half of the LOG stored on OSS.
Customized Path of Partition Data on OSS

If you have historical data stored on OSS but it is not stored usingthe partiti onK
eyl=val uel\ partiti onKey2=val ue2\ ... path format, you can still access it using
MaxCompute’s partition mode. MaxCompute also provides a way to import partitions through a

customized path.

Assume that only a simple partition value is on your data path (and no partition key

information). The following is an example of the data path storage layout.

osscnd |'s oss://oss-odps-test/|og _data custon zed/

2017-01-14 08:03:35 128MB Standard oss://oss-odps-test/log data c
ust om zed/ 2016/ 06/ 01/l ogfil e

2017-01-14 08:04:12 127MB Standard oss://oss-odps-test/log _data c
ust om zed/ 2016/ 06/ 01/1 ogfile. 1

2017-01-14 08:05:02 118MB Standard oss://oss-odps-test/log_data c
ust om zed/ 2016/ 06/ 02/ | ogfil e

2017-01-14 08:06:45 123MB Standard oss://oss-odps-test/|log_data_c
ust om zed/ 2016/ 07/ 10/l ogfil e

2017-01-14 08:07:11 115MB Standard oss://oss-odps-test/log_data c
ust onmi zed/ 2016/ 08/ 08/ | ogfi l e
The external table builder DDL can see the previous example and also specify the partition key in

the clause.

To bind different subdirectories to different partitions, you can do so by using a command similar

to the following customized partition path.

ALTER TABLE | og_t abl e_external ADD PARTI TION (year = '2016', nonth ="'
06', day = '01')
LOCATI ON ' oss: // o0ss-cn-hangzhou-znf . al i yuncs. conif oss- odps-test/
| og_data custoni zed/ 2016/ 06/ 01/ " ;
When LOCATION information is added in ADD PARTITION to customize a partition data
path. Even if the data is not stored in the recommended format of parti ti onKeyl=val uel\

partiti onKey2=val ue2\. .., you can still access the partition data of the subdirectory.

7.2 Visit Table Store Data

Table Store is a NoSQL database service that built on Alibaba Cloud’s Apsara distributed file
system, enabling you to store and access massive volumes of structured data in real time. For

more information about , see What is Table Store.

MaxCompute and Table Store are two independent big data computing and storage
services. Therefore, these two services must ensure that the network between them is
open. When MaxCompute’s public cloud service accesses data stored in Table Store, we
recommend that you use Table Store’s private network address, usually a host name
suffixed ‘ots-internal.aliyuncs.com’, for example tablestore://odps-ots-dev.cn-shanghai.ots-

internal.aliyuncs.com.

This document introduces how to import data from Table Store to the MaxCompute computing

environment. This allows seamless connections between multiple data sources.

Both Table Store and MaxCompute have their own data type systems. When you process Table

Store data in MaxCompute, the data type associations are as follow:

MaxCompute Type TableStore Type
STRING STRING

BIGINT INTEGER
DOUBLE Double
BOOLEAN BOOLEAN

https://www.alibabacloud.com/help/zh/doc-detail/27280.html

MaxCompute Type TableStore Type

BINARY BINARY

Authorization with STS Mode

To access Table Store data, MaxCompute requires a secure authorization channel. To address
this issue, MaxCompute integrates Alibaba Cloud Resource Access Management (RAM) and

Token Service (STS) to implement secure data access.
You can authorize permissions in the following two ways:

* When the MaxCompute and Table Store owner are the same account, you can directly log on

with the Alibaba Cloud account and click here to complete authorization.

» Custom authorization.

1. Firstly, you must grant Table Store access permission to MaxCompute in the RAM console.

Log on to the (if MaxCompute and Table Store are not the same account, you must log on
with the Table Store account to authorize), and create the role AliyunODPSDefaultRole.

2. Set its policy content as follows:

-- Wen the MaxConpute and Table Store owner are the same account

"Statenent": [

"Action": "sts:AssuneRol e",
"Effect": "All ow',
"Principal": {
"Service": [
"odps. al i yuncs. cont

"Version": "1"

-- Wien the MaxConpute and Tabl e Store owner are not the sane
account:

"Statenent": [

"Action": "sts:AssuneRol e",
"Effect": "Alow',
"Principal": {
"Service": [
"MaxConput e' s Owner account Ul D@dps. al i yuncs. conf

https://ram.console.aliyun.com/?spm=5176.100239.blogcont281191.24.uJg9dR#/role/authorize?request=%7B%22Requests%22:%20%7B%22request1%22:%20%7B%22RoleName%22:%20%22AliyunODPSDefaultRole%22,%20%22TemplateId%22:%20%22DefaultRole%22%7D%7D,%20%22ReturnUrl%22:%20%22https:%2F%2Fram.console.aliyun.com%2F%22,%20%22Service%22:%20%22ODPS%22%7D

"Version": "1"

@ Note:

On the upper-right corner, click the avatar to open the Billing Management page, and then

check the account UID.

e

Biling Management ... English @

= o &

User Info Security SettinGecurity Console

)

accesskeys

Sign out

Security Settings

r \ Login Account : ali****@service.aliyun.com Change ()
N Account ID ; 530 ST SR §

Registration Time : 1

N

Change Avatar

3. Edit this role’s authorization policy AliyunODPSRolePolicy:

"Version": "1",

"Statenent": [

"Action": |
"ots: ListTabl e",
"ot s: Descri beTabl e",
"ot s: Get Row',
"ot s: Put Row',
"ot s: Updat eRow',
"ot s: Del et eRow',
"ot s: Get Range",
"ot s: Bat chGet Row",
"ots: BatchWiteRow',
"ot s: Conmput eSpl i t Poi nt sBySi ze"

"Resource": "*",
"Effect": "Al Il ow'

-- You can al so customi ze ot her perm ssions.

4. Grant the permission AliyunODPSRolePolicy to this role.
Create External Table

In MaxCompute, after creating an external table and introducing the Table Store table data
descriptions to the MaxCompute meta system, you can process Table Store data. The following

example demonstrates the concept and practice that used in MaxCompute’s Table Store access.
Use following statements to create an external table:

DROP TABLE I F EXI STS ots _table external;
CREATE EXTERNAL TABLE | F NOT EXI STS ots_tabl e_ext ernal

odps_order key bigint,
Mai d string,

odps_cust key bi gi nt,
odps_orderstatus string,
odps_total price double

STORED BY ' com al i yun. odps. Tabl eSt or eSt or ageHandl er' -- (1)

W TH SERDEPROPERTIES (-- (2)

"tabl est ore. col ums. mappi ng' =" : o_orderkey, : o_orderdate, o_cust key,
o _orderstatus,o totalprice', -- (3)

"tabl estore.tabl e. nane' ="' ots_tpch_orders' -- (4)

"odps. properties.rolearn' =" acs: ram : xxxxx: rol e/ aliyunodpsdefaul trole'

LOCATI ON 't abl estore: // odps- ot s-dev. cn-shanghai . ot s-i nternal . al i yuncs.
com; -- (5)

The statement is described below:

+ com.aliyun.odps.TableStoreStorageHandler is MaxCompute’s built-in StorageHandler for
processing Table Store data. It defines the interaction between MaxCompute and Table Store.

The relevant logic is implemented by MaxCompute.

+ SERDEPROPERITES is an interface that provides parameter options. When using
TableStoreStorageHandler, two options must be specified, tablestore.columns.mapping and

tablestore.table.name.

- tablestore.columns.mapping option: A required parameter used to describe columns in the

Table Store tables accessed by MaxCompute, including primary key and attribute columns.

m At the beginning of the column name, : ndicates a Table Store primary key. In this
example : o_or der key and : o_or der dat e are primary key columns and all others are
attribute columns.

m Table Store supports up to 4 primary keys. Primary keys support the STRING, INTEGER
, and BINARY data types. The first primary key is the partition key.

m When specifying a mapping relationship, you must provide all the primary keys of the
specified Table Store table, but you do not have to provide all attribute columns, only the
attribute columns you must access by using MaxCompute.

— tablestore.table.name: The name of the Table Store table to access. If you specify an
incorrect Table Store table name (such as a table that does not exist), the system reports
an error. MaxCompute does not create a new Table Store table with the specified name.

= The information in odps.properties.rolearn comes from the Arn information of
AliyunODPSDefaultRole in RAM. You can get it through the details of the role in the RAM
console.

» The LOCATION clause is used to specify specific Table Store information, including the

AccessKey of OSS owner, the instance name and endpoint. Because you must specify the

AccessKey the of OSS owner, to avoid disclosing the AccessKey of your primary account, we

recommend that you use RAM user credentials.
If you want to view the created external table structure, run the following statement:
desc extended <tabl e nanme>;

In the returned information, “Extended Info” contains external tables information such as

StorageHandler and Location.
Access Table Data by Using an External Table

After creating an external table, you can introduce Table Store data to the MaxCompute

ecosystem. There, you can use MaxCompute SQL syntax to access Table Store data as follows:

SELECT odps_orderkey, odps_orderdate, SUM odps total price) AS
sum t ot al

FROM ot s_t abl e_ext er nal
WHERE odps_orderkey > 5000 AND odps_orderkey < 7000 AND odps_orderdate
>= '1996- 05-03' AND odps_orderdate < '1997-05-01'

GROUP BY odps_orderkey, odps_orderdate

HAVI NG sum t ot al > 400000. 0;
When using the MaxCompute SQL syntax, all of the accessed Table Store details are processed
in MaxCompute. This includes column name selection. For example, the column names used in
the preceding SQL statements (such as odps_orderkey and odps_totalprice) are not the original
primary key names (o_orderkey) or attribute column names (o_totalprice) used in Table Store.
This is because mapping was already performed in the DDL statement used to create the external

table. Certainly, you can retain the original Table Store primary key and column names when

creating the external table.

If you perform multiple computations on a single data set, instead of remotely reading data
from Table Store each time, you can import all the necessary data to MaxCompute, to create a

MaxCompute (internal) table. For example:

CREATE TABLE internal orders AS

SELECT odps_orderkey, odps_orderdate, odps _custkey, odps_ totalprice

FROM ot s_t abl e _ext ernal

WHERE odps_order key > 5000 ;
Currently, internal_orders is a MaxCompute table, with all features of a MaxCompute internal table
, including an efficiently compressed column storage data format and complete internal macro
data, and statistics information. Furthermore, because the data is stored in MaxCompute, the
access speed is faster than when accessing external Table Store data. This is especially suitable

for hotspot data that is frequently computed.

Export MaxCompute Data to TableStore

Note:
MaxCompute does not directly create external Table Store tables. Therefore, before outputting
data to a Table Store table, you must make sure this table has already been created (or the

system reports an error).

In the preceding operations, the external table ots_table_external has been created to connect
MaxCompute with the Table Store table ots_tpch_orders, and data has been stored in the internal
MaxCompute table internal_orders. Now you can write the processed data from internal_orders
back to Table Store, perform the INSERT OVERWITE TABLE operation on the external table as

follows:

| NSERT OVERWRI TE TABLE ots_tabl e _external

SELECT odps_orderkey, odps_orderdate, odps_custkey, CONCAT(odps_custk
ey, 'SHI PPED), CElL(odps_totalprice)

FROM i nt er nal _orders;
Because Table Store is a KV data NoSQL storage medium, the data output from MaxCompute
only affects the rows with the corresponding primary keys. In this example, the output only
affects data in rows with corresponding dps_orderkey + odps_orderdate primary key values.
In addition, in the Table Store rows, only the attribute columns specified during external table

(ots_table_external) creation are updated. Data columns that do not appear in the external table

are not modified. For more details, see MaxCompute access to OTS data.

https://yq.aliyun.com/articles/69314

8 Graph

8.1 Summary

MaxCompute Graph is a processing framework designed for iterative graph computing.
MaxCompute Graph jobs use graphs to build models. Graphs are composed of vertices and

edges. Vertices and edges contain values.
MaxCompute Graph supports the following graph editing operations:

» Editing the value of Vertex or Edge.
» Adding/deleting Vertex.
+ Adding/deleting Edge.

Note:

When editing a vertex and an edge, you must maintain their relationship.

This process outputs a final solution after performing iterative graph editing and evolution. Typical
applications include PageRank, SSSP algorithm, and Kmeans algorithm. You can use Java SDK,

an interface provided by MaxCompute Graph, to compile graph computing programs.
Graph Data Structure

Graphs processed by MaxCompute Graph must be directed graphs consisting of vertices and
edges. As MaxCompute only provides a two-dimensional storage structure, you must resolve

graph data into two-dimensional tables and store them in MaxCompute.

During graph computing analysis, use custom GraphLoader to convert two-dimensional table
data to vertices and edges in the MaxCompute Graph engine. You can determine how to resolve
graph data into two-dimensional tables based on your service scenarios. In the sample code, the

table formats correspond to different graph data structures.

The vertex structure can be described as < ID, Value, Halted, Edges >, which respectively indicate
the vertex ID (ID), value (Value), status (Halted, indicating whether an iteration is to be stopped
), and edge set (Edges, indicating lists of all edges starting from the vertex). The edge structure
can be described as < DestVertexID, Value >, which respectively indicate the destination vertex (

DestVertexID) and value (Value).

2 5
fﬁw (m
. /@“%\)
@F‘-a2 3 4 |6
L1 Tz

For example, the preceding figure consists of the following vertices.

Vertex <ID, Value, Halted, Edges>

v0 <0, 0, false, [<1,5>,<2,10>]>

v1 <1, 5, false, [<2, 3>, <3, 2>, <5, 9>]>

v2 <2, 8, false, [<1, 2>, <5, 1 >]>

v3 <3, Long.MAX_VALUE, false, [<0, 7>, <5, 6>]>
v5 <5, Long.MAX_VALUE, false, [<3, 4 > |>

Graph program logic
Graph loading

Graph loading: The framework calls custom GraphLoader and resolves records of an input table to

vertices or edges.

Distributed architecture: The framework calls custom Partitioner to partition vertices and distribute
s them to corresponding Workers. (Default partitioning logic: Calculate the hash value of a vertex

ID and perform the modulo operation on the number of Workers.)

For example, assume in the preceding figure that the number of Workers is 2. vO and v2 are
allocated to Worker 0 because the result of the ID mod 2 is 0. v1, v3, and v5 are allocated to

Worker 1 because the result of the ID mod 2 is 1.
Iteration calculation

» Aniteration is called a superstep. It traverses all vertices in the non-halted status (the value of
Halted is false) or all vertices that receive messages (a vertex in halted status is automatically
woken up after receiving a message), and calls their compute (ComputeContext context,
Iterable messages) method.

* You can follow these steps on your implemented compute (ComputeContext context, Iterable

messages) method:

— Process Messages sent from previous SuperStep to current Vertex.

- Edit graph as needed:

m Revise value of Vertex/Edge.
m Send Messages to certain Vertices.
m Add/delete Vertex or Edge.
— Use Aggregator to collect information to global information.
— Set the current vertex to the halted or non-halted status.
= During iteration, the framework asynchronously sends messages to the corresponding

Worker and processes the messages in the next superstep without your intervention.

Iteration termination (only if any of the following conditions is met)

If any of the following conditions is met, iteration becomes terminate.

» All vertices are in the halted status (the value of Halted is true) and no new message is
generated.
* The maximum number of iterations is reached.

» The terminate() method of an Aggregator returns true.
The pseudocode is described as follows.

// 1. |oad
for each record in input_table {
GraphLoader. | oad();

/[l 2. setup

Wor ker Conput er . set up() ;

for each aggr in aggregators {
aggr . createStartupVal ue();

for each v in vertices {
v.setup();

/1l 3. superstep
for (step = 0; step < max; step ++) {
for each aggr in aggregators {
aggr.createlnitial Val ue();

for each v in vertices {
v. comput e();

Il 4. cleanup
for each v in vertices {
v. cl eanup();

Wor ker Conmput er. cl eanup() ;

8.2 Function overview

Running job

The MaxCompute console provides JAR commands to run MaxCompute Graph jobs. These

command are used in the same way as to run MapReduce JAR commands.
This document introduces these commands.

Usage: jar [<GENERI C_OPTI ONS>] <MAI N_CLASS> [ARGS]

-conf <configuration_file> Specify an application
configuration file

-classpath <local file |ist> classpaths used to run
mai nCl ass

- D <nane>=<val ue> Property value pair, which is used
to run mai nd ass

-local Run job in I ocal node

-resources <resource_nanme_list> file/table resources
used i n graph, separated by conmand

< GENERIC_OPTIONS> can be the following parameters (all are optional):

+ -conf < configuration file >: Specifies the JobConf configuration file.

» -classpath < local_file_list >: Indicates the class path for local implementation. It is mainly used

to specify the JAR package containing the main function.

The main function and Graph job are usually written in the same package, for example, in
the Single Source Shortest Path (SSSP) package. Therefore, the -resources and -classpath
parameters in the sample code both contain the JAR package.The difference is that -
resources references the value of the Graph job and runs in a distributed environment, while
-classpath references the main function and runs locally. The specified JAR package path
is also a local file path. Package names are separated using system default file delimiters.
Generally, the delimiter is a semicolon (;) in a Windows system and a comma (,) in a Linux
system.

+ -D < prop_name > = < prop_value >: Specifies the Java attributes of < mainClass > for local
implementation. Multiple attributes can be defined.

* -local: Runs the Graph job in local mode, which is mainly used for program debugging.

+ -resources <resource_name_list >: Indicates the resource statement used for Graph job
running. Generally, the name of the resource where the Graph job is located must be specified
in resource_name_list. If you read other MaxCompute resources in the Graph job, the
resource names must be added to resource_name_list. Resource names are separated by
commas. When resources are used across projects, PROJECT _NAME/resources/ must be

prefixed, for example, - r esour ces ot herproj ect/resources/resfile;.

In addition, you can run the main function of the Graph job to directly submit the job to
MaxCompute, rather than submitting the job through the MaxCompute console. The following

section uses the PageRank algorithm as an example:

public static void main(String[] args) throws Exception {
if (args.length < 2)
print Usage();
Account account = new AliyunAccount (accessld, accessKey);
Qdps odps = new Qdps(account);
odps. set Endpoi nt (endPoi nt) ;
odps. set Def aul t Proj ect (proj ect);
SessionState ss = SessionState. get();
ss. set Odps(odps) ;
ss. set Local Run(fal se);
String resource = "mapreduce-exanples.jar";
GraphJob job = new GraphJob();

/] Add the JARfile in use and other files to cl ass cache resource,
corresponding to resources specified by -libjars in the JAR conmand
j ob. addCacheResour cesToCl assPat h(r esource) ;
j ob. set GraphLoader O ass(PageRankVert exReader. cl ass);
j ob. set Vert exd ass(PageRankVert ex. cl ass);
j ob. addl nput (Tabl el nf o. bui | der ().t abl eNanme(args[0]). build
j ob. addQut put (Tabl el nf o. bui | der ().t abl eNanme(ar gs[1]) . bui
/] default max iteration is 30
j ob. set Maxl teration(30);
if (args.length >= 3)
j ob. set Maxl teration(lnteger.parselnt(args[2]));
long startTime = SystemcurrentTimeM I 1is();
job.run();
Systemout. println("Job Finished in "
+ (SystemcurrentTineMIlis() - startTinme) / 1000.0
+ " seconds");

)
0));

Input and output

MaxCompute Graph jobs must be input and output using tables.You cannot customize input and

output formats.

The following example shows how to define a job input. Multiple inputs are supported:

G aphJob job = new GraphJob();

j ob. addl nput (Tabl el nf o. bui | der () . tabl eNanme(“t bl name”) . build()); //
Tabl e as i nput

j ob. addl nput (Tabl el nfo. bui | der () .t abl eNane(“t bl nane”) . part Spec(" pt 1=a/
pt2=b").build()); //Shard as input

/I Read-only colums col 2 and col0 of the input table. In the |oad()
nmet hod of G aphLoader, columm col 2 is obtained by record.get(0), and

t he sequence is the same

j ob. addl nput (Tabl el nf o. bui | der ().t abl eNane(“t bl nanme”) . part Spec(" pt 1=a/
pt 2=b").buil d(), new String[]{"col2", "col0"});

Note:

» For more information about the job input definition, see the description of the addinput()
method in GraphJob. The framework reads records in the input table and transmits them to
custom GraphLoader to load data.

* Restrictions: Currently, shard filtering conditions are not supported. For more information

about restrictions on applications, see Application restrictions.

The following example shows how to define a job output. Multiple job outputs are supported. Each

output is marked using a label:

GraphJob job = new GraphJob();

//1f the output table is a shard table, the |ast |evel of shards nust
be provided

j ob. addQut put (Tabl el nf 0. bui | der (). t abl eNane("t abl e_nane") . part Spec("
pt 1=a/ pt 2=b") . bui 1 d()) ;

/1 Parameter true indicates overwiting shards specified by tableinfo
, that is, the neaning of I NSERT OVERWRI TE. Paraneter fal se indicates
t he meani ng of | NSERT | NTO

j ob. addQut put (Tabl el nf 0. bui | der (). t abl eNane("t abl e_nane") . part Spec("
pt 1=a/ pt 2=b") .| abl e("out put 1") . bui 1 d(), true);

Note:

* For more information about the job output definition, see the description of the addOutput()
method in GraphJob.

* When a Graph job runs, records can be written to an output table using the write() method
of WorkerContext. Labels must be specified for multiple outputs, such as “output1” in the
preceding section.

* For more restrictions on applications, see Application restrictions.
Read resources
+ Add resources to the graph program

In addition to JAR commands, you can use the following two methods of GraphJob to specify

resources read by Graph:

voi d addCacheResour ces(String resourceNanes)
voi d addCacheResour cesToC assPat h(Stri ng resourceNanes)

+ Use resources in graph program
To read resources in the Graph program, follow these steps:

public byte[] readCacheFile(String resourceNane) throws | OException;
public Iterabl e<byte[]>
readCacheArchi ve(String resourceNane) throws | OExcepti on;
public Iterabl e<byte[]>
readCacheAr chive(String resourceNanme, String relativePath)throws
| CExcepti on;
public Iterabl e<Witabl eRecord>
r eadResour ceTabl e(Stri ng resour ceNane) ;
publ i ¢ Bufferedl nput Stream readCacheFi | eAsStreanm(String resourceNane
) throws | OExcepti on;
public Iterabl e<Bufferedl nput Streanr readCacheArchi veAsStrean(String
resour ceNanme) throws | CException;
public Iterabl e<Bufferedl nput St ream> readCacheAr chi veAsStrean(String
resourceNane, String relativePath) throws | OException;

Note:

» Resources are generally read using the setup() method of WorkerComputer, stored in

Worker Value, and obtained using the getWorkerValue() method.

* To reduce overall memory consumption, use the preceding stream APIs so that resources

can be read and processed simultaneously.

* For more information about restrictions on applications, see Application restrictions.

8.3 SDK Summary

Maven users can search for odps-sdk-graph in the Maven database to get the required SDK

(available in different versions). The configuration information is as follows:

<dependency>
<gr oupl d>com al i yun. odps</ gr oupl d>
<artifactld>odps-sdk-graph</artifactl|d>
<ver si on>0. 20. 7</ ver si on>

</ dependency>

Main interface Description

GraphJob GraphdJob is inherited from JobConf and is used to define, submit, and
manage a MaxCompute Graph job.

Vertex A vertex is a node that is defined by the ID, value, halted, and edges
attributes. A vertex is implemented by the setVertexClass interface of
Graphdob.

Edge Edge is the abstract of edges in a graph, including the attributes

destVertexld and value. Adjacency tables are used as the graph data
structure, and outbound edges of a vertex are stored in edges of the
vertex.

GraphLoader GraphLoader is used to load graphs. GraphLoader is implemented by
using the setGraphLoaderClass interface of GraphJob.

VertexResolver VertexResolver is used to customize the conflict processing logic for
graph topology modification. The setLoadingVertexResolverClass and
setComputingVertexResolverClass interfaces of GraphJob provide the
conflict processing logic for graph topology modification during graph
loading and iteration calculation.

Partitioner Partitioner is used to partition a graph so that the calculation can be
fragmented. Partitioner is implemented by using the setPartitionerClass
interface of GraphJob. HashPartitioner is used by default, that is, the
hash value of a vertex ID is calculated and then a modulo operation is
performed for the number of Workers.

WorkerComputer WorkerComputer allows a Worker to run custom logic during startup
and exit. WorkerComputer is implemented by using the setWorkerC
omputerClass interface of GraphJob.

http://search.maven.org/

Main interface Description

Aggregator setAggregatorClass(Class ...) defines one or multiple Aggregators.
Combiner setCombinerClass sets a Combiner.
Counters Indicates the counter. In job running logic, the WorkerContext interface

can be used to obtain Counters and perform counting. The framework
automatically sums results.

WorkerContext Indicates the context object. It encapsulates functions provided by the
framework, such as modifying a graph topology, sending a message,
writing a result, and reading a resource.

8.4 Development and Debugging

MaxCompute does not provide Graph development plug-ins for users. However, you can develop

the MaxCompute Graph program based on Eclipse. The development process is as follows:

1. Compile Graph codes and perform basic tests using local debugging.

2. Perform cluster debugging and verify the result.
Example

This section uses the SSSP algorithm as an example to describe how to use Eclipse to develop

and debug a Graph program.
Procedure

1. Create a Java project, for example, graph_examples.
2. Add the JAR package in the lib directory of the MaxCompute client to Build Path of the Eclipse

project. The following figure shows a configured Eclipse project:

8 Packa,

= i graphssamples Java Bulld Fath
= & Resouroe =
. ::mmmmmmph Buildars L Source | S Projects m Lbeaeies | 4 Ordar and
w [F] SEEPjava Java Buid Path JARs and class fokders on the build pahe
w i, IRE Sysitm Libeary [favasE 1 & hava Code Snde 5 o liyun-opemisrices-odnjar - Cadmcnl A
= i Referenoed Ubranes ¥ Jawa Compiler # = commonm-ci-1.2ja - Dhodprcinig
W = allun-openservices-odpsjar | w va Edior & (= commom-codec-1ajar - Doden RN P ST
¥ = commons-ch-L2 jar Bawador Location § = commam-compeei-LAjar - [
& = commons-codec Léjar Project References & = commaonm-io-201dar - Dedpck] (5 Mvades WAL [n.g. g e samplt-uilsegides o Bl rmworkspacsmyprejesida
= commons-Compeess: Lajar Run/Deug Setings # = commonm-lang- .50 - Do Jawadc: location path hitpyyodos alitaba dnccomydospradood ps_grachyapls E
W = commons-o-20.Ljar % Task Reposhory & = common-lgging1.1.1jar - Bied
= commaors-lang.25jar Task Tags & = hmpchern-a1.2jar - Dvadarinenglb E
s = commons-hogging 111 jar s Validation & = hepocre-1.2jar - Dovedpriinib | O e in anghive
W S hepdient 412 jar Wik et B scindar - Dedenieinib
W = hfpcore-41.2 jar & = demje - Bndposni
Mo jvacwyar & - iar - Doadaiicinfb
i = pdomjar # = fonjar - Dhedprcinid
i = [ne-20jar = b 1215 e - Sadpaeini®
i = json jar = o mapreducs-apijar - Docdeniein il
i = lopdl L1215 far 1] Source stk (Nofs)
i = mapreduce-apdjar) Javados location: bipoden
i = mapreduce-examphes far i Native Ebrary locaion: (Noms)
i = mapreduce-testjar Sy Acewns ub: (NS Feilon) i, |:
i = odpscomolejar # = mapreduce-sxamples jar - Dhodp
3 5 opencer-2:3jar 5 5 mapreduce-bistjae - Bodprcinid T e e O
] ¥
i ¥
graph_seamples
3. Develop the MaxCompute Graph program.
In the actual development process, an example (such as SSSP) is often copied
and then modified. In this example, only the package path is changed to package
com.aliyun.odps.graph.example.
4. Compile and build the package.

In an Eclipse environment, right-click the source code directory (the src directory in the figure)
and select Export > Java > JAR file to generate a JAR package. Select the path for storing the
target JAR package, for example, D: \ \ odps\\ cl t\\ odps- gr aph- exanpl e- sssp. j ar.

Use the MaxCompute console to run SSSP. For more information about the related operations,

see Run Graph in “Quick start”.

@ Note:

For more information about the related development procedure, see Introduction on the Graph

development plug-in.
Local Debugging

MaxCompute Graph supports the local debugging mode. You can use Eclipse to perform

breakpoint debugging.
Procedure

1. Download an odps-graph-local maven package.

https://www.alibabacloud.com/help/zh/doc-detail/27985.html
https://www.alibabacloud.com/help/zh/doc-detail/27985.html

2. Select the Eclipse project, right-click the main program file (including the main function) of the
Graph job, and configure its running parameters (by selecting Run As > Run Configurations
).

3. On the Arguments tab page, set Program argumentsto 1 sssp_in sssp_out as the input

parameter of the main program.

4. On the Arguments tab page, set VM arguments to the following:

- Dodps. runner . node=I ocal

- Dodps. proj ect . nane=<pr oj ect . nane>
- Dodps. end. poi nt =<end. poi nt >

- Dodps. access. i d=<access. i d>

- Dodps. access. key=<access. key>

(2 Run Configuratio

Create, manage, and run configurations

Run a Java application

5 [.
FEXl B ® Name: SSSP
type filter text

7] s55P
7] TestPartitioner

© Main [t9= Arguments . = JRE| % Classpath T:';y Source | B Environment| = Common
Program arguments:

— 1 sssp_in sssp_out -
7] TestResource p- P-

7] TestResource (1)

7] TestSetClass

71 TestSetClass (1)
7] TestSetClass (2) VM arguments:

7] testuserdefinedconfig -Dodps.project.name=tbdw -

1] testuserdefinedcounter -Dodps.runner.mode=local

=

7] TestVertexCompute
7] TestVertexid
7] TestVertexSetup £

71 TestWorkerld
7] testwriterecord @ Default: ${workspace_loc:odps_graph}

Working directory:

7] TopMNGraph ® Other:
7] VertexInputFormat
IUnit File System... Variables...

IUnit Plug-in Test

] | i 3
Apply

Filter matched 2% of 33 items l

@

5. If MapReduce is in local mode (the value of odps.end.point is not specified), you must create
the sssp_in and sssp_out tables in the warehouse and add data for sssp_in. Input data is

listed as follows.

S

5"3:1,4:1"

For more information about the warehouse, see MapReduce local running.

6. Click Run.

Note:
Check the settings of conf/odps_config.ini in the MaxCompute client to set parameters. The

preceding parameters are commonly used. Other parameters are described as follows:

* odps.runner.mode: The parameter value is local. This parameter is required for the local
debugging function.

» odps.project.name: Specifies the current project, which is required.

» odps.end.point: Specifies the address of the current MaxCompute service, which is optional
. If this parameter is not specified, metadata of tables or resources is only read from the
warehouse, and an exception is thrown when the address does not exist. If this parameter

is specified, data is read from the warehouse first, and then from remote MaxCompute
when the address does not exist.

* odps.access.id: Indicates the ID to connect to the MaxCompute service. This parameter is
valid only when odps.end.point is specified.

» odps.access.key: Indicates the key to connect to the MaxCompute service. This parameter
is valid only when odps.end.point is specified.

» odps.cache.resources: Specifies the resource list in use. This parameter has the same
effect as -resources of the JAR command.

» odps.local.warehouse: Specifies the local warehouse path. This parameter is set to ./

warehouse by default if not specified.
After SSSP debugging is implemented locally in Eclipse, the following information is output:

Counters: 3
com al i yun. odps. graph. | ocal . COUNTER
TASK | NPUT_BYTE=211
TASK_| NPUT_RECCORD=5
TASK_OUTPUT_BYTE=161
TASK_OUTPUT_RECORD=5
graph task finish

Note:
In the preceding example, the sssp_in and sssp_out tables must exist in the local warehouse.

For more information about the sssp_in and sssp_out tables, see Run Graph in “Quick start”.

https://help.aliyun.com/document_detail/27813.html

Temporary Directory of Local Job

A temporary directory is created in the Eclipse project directory when local debugging runs each

time, as shown in the following figure.

4 = graph_20130816154834_240 5772

- = counters
4 [= inputs

= zhemin_testl.sssp_in
4 [outputs

= _default__
4 [= resources

centers

- = superSteps

[= job.xml

The temporary directory of a locally running Graph job contains the following directories and files:

» counters: Stores counting information about job running.

+ inputs: Stores input data of the job. Data is preferentially obtained from the local warehouse.
If such data does not exist locally, the MaxCompute SDK reads data from the server (if
odps.end.point is set). An input reads only 10 data records by default. This threshold can be
modified in the - Dodps. mapred. | ocal . record. | i m t parameter, of which the maximum
value is 10,000.

» outputs: Stores output data of the job. If the local warehouse has an output table, result data in

outputs overwrites the corresponding table in the local warehouse after job running is complete

» resources: Stores resources used by the job. Similar to inputs, data is preferentially obtained
from the local warehouse. If such data does not exist locally, the data is read from the server

using MaxCompute SDK (when odps.end.point is set).
* job.xml: Indicates job configuration.

» superstep: Stores information about message persistence in each iteration.

il
|:| Note:
If a detailed log must be output during local debugging, the following log4j configuration file must

be placed in the src directory: | og4j . properti es_odps_graph_cl ust er _debug.
Cluster Debugging

After local debugging, you can submit the job to a cluster for testing.

The procedure is as follows:

1. Configure the MaxCompute client.
2. Runthe add jar /path/work.jar -f; command to update the JAR package.

3. Run the JAR command to run the job, and view the running log and result data.

Note:

For more information about how to run Graph in a cluster, see Run Graph in “Quick start”.
Performance Tuning

The following section describes common performance tuning methods on the MaxCompute Graph

framework.
Job Parameter Configuration
GraphJob configurations that have an impact on performance include:

+ setSplitSize(long): Indicates the split size of an input table. The unit is in MB. Its value must be
greater than 0, and the default value is 64.

+ setNumWorkers(int): Specifies the number of Workers for a job. The value range is [1, 1000],
and the default value is —1. The number of Workers varies depending on the number of input
bytes of the job and split size.

+ setWorkerCPU(int): Indicates CPU resources of the Map. A one-core CPU contains 100
resources. The value range is [50, 800], and the default value is 200.

+ setWorkerMemory(int): Indicates memory resources of the Map. The unit is in MB. The value
range is [256 MB, 12 GB], and the default value is 4,096 MB.

+ setMaxlteration(int): Specifies the maximum number of iterations. The default value is —1. If the
value is smaller than or equal to 0, the maximum number of iterations is not a condition for job

termination.

+ setJobPriority(int): Specifies the job priority. The value range is [0, 9], and the default value is 9

. A larger value indicates a smaller priority.
Additional actions that increase overall processing capabilities are as follows:

* You can use the setNumWorkers() method to increase the number of Workers.

* You can use the setSplitSize() method to reduce the split size and increase the speed for a job

to load data.

* Increase the CPU or memory of Workers.

+ Set the maximum number of iterations. If applications do not have high requirements on result

precision, you can reduce the number of iterations for faster processing.

The interfaces setNumWorkers and setSplitSize can be used together to speed up data loading.
Assume that setNumWorkers is workerNum and setSplitSize is splitSize, and the total number
of input bytes is inputSize. The number of splits is calculated using the formula: splitNum =

inputSize /splitSize. The relationship between workerNum and splitNum is as follows:

+ If splitNum == workerNum, each Worker is responsible for loading one split.
» If splitNum > workerNum, each Worker is responsible for loading one or multiple splits.

+ If splitNum < workerNum, each Worker is responsible for loading zero or one split.

Therefore, if the first two conditions are met, you can adjust workerNum and splitSize to enable

fast data loading. In the iteration phase, you only need to adjust workerNum.

If you set runtime partitioning to false, we recommend that you use setSplitSize to control the
number of Workers. Regarding the third condition, the number of vertices on some Worker may
be 0. You can use set odps.graph.split.size=<m>; set odps.graph.worker.num=<n>; before the

JAR command, which has the same effect as setNumWorkers and setSplitSize.

Another common performance problem is data skew. For example, on Counters, the number of
vertices or edges processed by some Workers is much greater than that processed by other

Workers.

Data skew occurs usually when the number of vertices, edges, or messages corresponding to
some keys is much greater than that corresponding to other keys. Such keys with the large data
volume are processed by a small number of Workers, resulting in long running time of these

Workers.
To resolve this problem, we recommend the following steps:

+ Use a combiner to locally aggregate messages of vertices corresponding to such keys to

reduce the number of sent messages.

* Improve the service logic.
Use a Combiner

You can define a Combiner to reduce the memory that stores messages and network data traffic
volume, shortening the job execution time. For more information, see introduction to Combiner in

MaxCompute SDK.

Reduce the Data Input Volume

When the data volume is large, reading data in a disk may extend the processing time. Therefore,
reducing the number of data bytes to be read can increase the overall throughput, thereby

improving job performance. You can use either of the following methods:

* Reduce the input data volume: For decision-making applications, results obtained from
processing subsets after data sampling only affect the result precision, instead of the overall
accuracy. Therefore, you can perform special data sampling and import the data to the input
table for processing.

» Avoid reading fields that are not used: The Tablelnfo class of the MaxCompute Graph
framework supports reading specific columns (transmitted using column name arrays),
rather than reading the entire table or table partition. This reduces the input data volume and

improves job performance.
Built-in JAR Packages

The following JAR packages are loaded to JVMs running the Graph program by default. You do
not have to upload these resources or carry these JAR packages when running -libjars on the

command line.

* commons-codec-1.3.jar

+ commons-io-2.0.1.jar

* commons-lang-2.5.jar

* commons-logging-1.0.4.jar

+ commons-logging-api-1.0.4.jar
* guava-14.0.jar

* json.jar

* log4j-1.2.15.jar
 slf4j-api-1.4.3.jar

* slf4j-log4j12-1.4.3.jar

+ xmlenc-0.52 jar

Note:
In a classpath that runs a JVM, the preceding built-in JAR packages are placed before users’
JAR packages, which may result in a version conflict. For example, if your program uses a
function of a class in commons-codec-1.5.jar but this function is not in commons-codec-1.3 jar,
you must check whether an implementation method exists in commons-codec-1.3.jar or wait for

MaxCompute to upgrade to a supported version.

8.5 Restriction

The restrictions of MaxCompute Graph are as follows:

+ Each job can reference up to 256 resources. A table or an archive is considered as one unit (
that is, one resource) .

» The total number of bytes of resources referenced by one job cannot exceed 512 MB. Each job
can reference up to 512 MB of bytes of resources.

» The number of inputs of one job cannot exceed 1,024. (The number of input tables cannot
exceed 64). The number of outputs of one job cannot exceed 256.

» Label conventions are as follows: A label can be up to 256 characters in length and can contain
letters, numbers, underscores ‘_’, pound signs ‘#, periods ‘.’, and hyphens ‘-‘. Labels specified
for multiple outputs cannot be null or empty strings.

+ Each job can have up to 64 custom counters. The group name and counter name can be up to
100 characters in length. The names cannot contain pound signs ‘#.

* The number of Workers of one job is calculated by the framework. The maximum number is 1,
000. If this threshold value is exceeded, an exception is thrown.

* One Worker occupies 200 resources of the CPU by default. The range is [50, 800].

» One Worker occupies 4096 MB of the memory by default. The range is [256 MB, 12 GB].

» The number of times for repeatedly reading a resource by one Worker cannot exceed 64.

* The split size is 64 MB by default, which can be set. The range is 0 < split_size <= (
9223372036854775807 >> 20).

* In the MaxCompute Graph program, GraphLoader/Vertex/Aggregator running in a cluster is
restricted by the Java sandbox. (The main program of Graph jobs is not restricted.) For more

information about the restrictions, see Java sandbox.

8.6 Examples

8.6.1 SSSP

Dijkstra is a typical algorithm that calculates the Single Source Shortest Path (SSSP) in a directed
graph.

For weighted directed graph G=(V,E), many paths are routed from source vertex s to sink vertex
v. In these paths, the one that has the smallest edge weight sum is called the shortest distance

from s to v.

The basic concept of the algorithm is as follows:

+ |Initialization: The distance from source vertex s to s itself is zero (d[s] = 0), and the distance

from another vertex u to s is infinite (d[u]=<).

+ Iteration: If an edge exists from u to v, the shortest distance from s to v is updated as: d[v] =
min(d[v], d[u] + weight(u, v)). The iteration ends until the distance from all vertices to s does

not change.

The basic concept shows that the algorithm is applicable to solutions using the MaxCompute

Graph program. Each vertex maintains the current shortest distance to the source vertex. If the
value changes, a message containing the new value and the edge weight is sent to the adjacent
vertex. In the next iteration, the adjacent vertex updates the current shortest distance based on
the received message. The iteration ends when the current shortest distance of all vertices does

not change.
Sample Code

Code of SSSP is as follows:

i mport java.io.| OException;

i mport com aliyun. odps.io.Witabl eRecord;

i mport com al i yun. odps. graph. Conbi ner;

i mport com al i yun. odps. gr aph. Conput eCont ext ;
i mport com al i yun. odps. graph. Edge;

i mport com al i yun. odps. graph. G aphJob;

i mport com al i yun. odps. graph. G aphLoader;

i mport com al i yun. odps. graph. Mut ati onCont ext ;
i nport com al i yun. odps. graph. Vert ex;

i mport com al i yun. odps. graph. Wr ker Cont ext ;
i mport com aliyun. odps.io.LongWitabl e;

i mport com al i yun. odps. dat a. Tabl el nf o;

public class SSSP {
public static final String START VERTEX = "sssp.start.vertex.id";

public static class SSSPVertex extends
Vert ex<LongWitable, LongWitable, LongWitable, LongWitable> {

private static long startVertexld = -1;

public SSSPVertex() {
this. setVal ue(new LongWitabl e(Long. MAX VALUE)) ;

public bool ean isStart Vertex(
Conput eCont ext <LongW i tabl e, LongWitable, LongWitabl e,
LongWit abl e> context) {
if (startVertexld == -1) {
String s = context.getConfiguration().get(START_VERTEX);
startVertexld = Long. parseLong(s);

return getld().get() == startVertexld;

@verride
public void comput e(
Conput eCont ext <LongW i tabl e, LongWitable, LongWitable,
LongWi t abl e> cont ext,
I'terabl e<LongWitabl e> nessages) throws | CException {
long mnDist = isStartVertex(context) ? 0 : Integer. MAX VALUE
for (LongWitable nmsg : messages) {
if (neg.get() < mnbDist) {
m nDi st = neg. get ();

if (mnD st <this.getValue().get()) {
this. setVal ue(new LongWitable(m nDi st));
i f (hasEdges()) {

for (Edge<LongWitable, LongWitable> e : this.getEdges()) {
cont ext . sendMessage(e. get Dest Vertexl d(), new LongWit abl e(
m nDi st
+ e.getValue().get()));
} else {

voteToHal t () ;

@verride
public void cl eanup(
Wor ker Cont ext <LongW i tabl e, LongWitable, LongWitable,
LongWi t abl e> cont ext)
t hrows | OException {
context.wite(getld(), getValue());

public static class M nLongConmbi ner extends
Combi ner<LongWitable, LongWitable> {

@verride
public void combi ne(LongWitable vertexld, LongWitable conbi nedMe
ssage,
LongWit abl e messageToConbi ne) throws | OException {
i f (conbi nedMessage. get() > nmessageToConbi ne.get()) {
conbi nedMessage. set (nessageToConbi ne. get ());

public static class SSSPVertexReader extends
GraphLoader <LongWitabl e, LongWitable, LongWitable, LongWitab
le> {

@verride
public void | oad(
LongWit abl e recor dNum
Wit abl eRecord record,
Mut at i onCont ext <LongW i tabl e, LongWitable, LongWitable,
LongWi t abl e> cont ext)

throws | OException {
SSSPVertex vertex = new SSSPVertex();
vertex.setld((LongWitable) record.get(0));
String[] edges = record.get(1).toString().split(",");
for (int i =0; i < edges.length; i++) {
String[] ss = edges[i].split(":");
vert ex. addEdge(new LongWi t abl e(Long. par seLong(ss[0])),
new LongWi t abl e(Long. parseLong(ss[1])));

cont ext . addVert exRequest (vert ex) ;

public static void main(String[] args) throws | OException {
if (args.length < 2) {
Systemout. println("Usage: <startnode> <i nput> <out put>");
Systemexit(-1);

GraphJob job = new GraphJob();

j ob. set GraphLoader O ass(SSSPVer t exReader . cl ass);
j ob. set Vert exC ass(SSSPVert ex. cl ass) ;

j ob. set Conbi ner d ass(M nLongConbi ner. cl ass);

j ob. set (START_VERTEX, args[O0]);
j ob. addl nput (Tabl el nf o. bui | der ().t abl eName(args[1]). build())
Id()

j ob. addQut put (Tabl el nf o. bui | der (). t abl eNane(args[2]) . bui) ;

long startTime = SystemcurrentTineM I 1is();
job.run();
Systemout.println("Job Finished in "

+ (SystemcurrentTimreMIlis() - startTine) / 1000.0 + "
seconds") ;

The source code of SSSP is described as follows:
 Row 19: Defines SSSPVertex, where:

— The vertex value indicates the current shortest distance from this vertex to source vertex
startVertexld.
= The compute() method uses the iteration formula d[v] = min(d[v], d[u] + weight(u, v)) to
update the vertex value.
— The cleanup() method writes the vertex and its shortest distance to the source vertex to the
result table.
* Row 58: If the vertex value does not change, voteToHalt() is called to notify the framework that
this vertex enters the halt status. The calculation ends when all vertices enter the halt state.
* Row 70: Defines MinLongCombiner and combines messages sent to the same vertex to

optimize performance and reduce memory usage.

* Row 83: Defines the SSSPVertexReader class, loads a graph, and resolves each record in
the table into a vertex. The first column of the record is the vertex ID, and the second column
stores all edge sets starting from the vertex, such as 2:2, 3:1, 4:4.

* Row 106: Runs the main program (main function), defines GraphJob, and specifies the

implementation of Vertex/GraphLoader/Combiner, and the input and output tables.

8.6.2 PageRank

PageRank is a typical algorithm used to calculate the web page ranking. In the input directed
graph G, vertices indicate web pages. If a link exists between web pages A and B, an edge

connecting A and B exists.
The basic concept of the algorithm is as follows:

+ Initialization: The vertex value indicates the rank value (of the double type) of PageRank. In the
initial phase, the value of all vertices is 1/TotalNumVertices.
* lteration formula: PageRank(i) = 0.15/TotalNumVertices + 0.85 x sum. Sum indicates the sum

of PageRank(j)/out_degree(j). (j indicates all vertices pointing to vertex i.)

The basic concept shows that the algorithm is applicable to solutions using the MaxCompute
Graph program. Each vertex j maintains the value of PageRank. PageRank(j)/out_degree(j) is
sent to the adjacent vertex (for voting) in each iteration. In the next iteration, each vertex recalculat

es the PageRank value using the iteration formula.
Sample Code

i mport java.io.| OException;
i mport org.apache. | og4j . Logger;

i mport com aliyun. odps.io. Witabl eRecord,;

i mport com al i yun. odps. graph. Conput eCont ext ;
i mport com al i yun. odps. graph. G aphJob;

i mport com al i yun. odps. graph. G aphLoader ;

i mport com al i yun. odps. graph. Mut ati onCont ext ;
i mport com al i yun. odps. graph. Vert ex;

i mport com al i yun. odps. gr aph. Wr ker Cont ext ;
i mport com aliyun. odps. i o. Doubl eWitabl e;

i nport com aliyun. odps.io.LongWitabl e;

i mport com aliyun.odps.io.NullWitable;

i mport com al i yun. odps. dat a. Tabl el nf o;

i mport com aliyun. odps.io. Text;

i mport com aliyun. odps.io.Witable;

public class PageRank {
private final static Logger LOG = Logger. get Logger (PageRank. cl ass) ;

public static class PageRankVertex extends

Vert ex<Text, DoubleWitable, Null Witable, DoubleWitable> {

@verride
public void conmput e(
Comput eCont ext <Text, DoubleWitable, Null Witable, DoubleWit
abl e> cont ext,
I t er abl e<Doubl eWit abl e> nessages) throws | OException {
i f (context.getSuperstep() ==
set Val ue(new Doubl eWitabl e(1.0 / context.getTotal NunVertices
()));
el se if (context.getSuperstep() >= 1) {
doubl e sum = 0O;
for (DoubleWitable nsg : messages) {
sum += nsg. get () ;

Doubl eWitabl e vertexVal ue = new Doubl eWit abl e(
(0.15f / context.getTotal NunVertices()) + 0.85f * sum;
set Val ue(vertexVal ue);

i f (hasEdges()) {
cont ext . sendMessageToNei ghbors(this, new Doubl eWitabl e(
get Val ue()
.get() / getEdges().size()));

@verride
public void cl eanup(
Wor ker Cont ext <Text, Doubl eWitable, Null Witable, DoubleWit
abl e> cont ext)
throws | OException {
context.wite(getld(), getValue());

public static class PageRankVert exReader extends
G aphLoader <Text, Doubl eWitable, NullWitable, DoubleWitable>

@verride
public void | oad(
LongWitabl e recor dNum
Wit abl eRecord record,
Mut at i onCont ext <Text, Doubl eWitable, Null Witable, DoubleWit
abl e> cont ext)
throws | OException {
PageRankVertex vertex = new PageRankVertex();
vert ex. set Val ue(new Doubl eWitabl e(0));
vertex.setld((Text) record.get(0));
Systemout.println(record.get(0));

for (int i =1; i < record.size(); i++) {
Witable edge = record. get(i);
System out. println(edge.toString());
if (!'(edge.equal s(Null Witable.get()))) {
vert ex. addEdge(new Text (edge.toString()), NullWitable. get
()
LOG i nfo("vertex edgs size:

+ (vertex. haskEdges() ? vertex.getEdges().size() : 0));
cont ext . addVert exRequest (vert ex);

private static void printUsage() {
Systemout. println("Usage: <in> <out> [Max iterations (default 30
)1,
Systemexit(-1);

public static void main(String[] args) throws | OException {
if (args.length < 2)
pri nt Usage() ;

GraphJob job = new GraphJob();

j ob. set GraphLoader C ass(PageRankVert exReader . cl ass) ;

j ob. set Vert exd ass(PageRankVert ex. cl ass) ;

j ob. addl nput (Tabl el nf 0. bui | der ().t abl eName(args[0]). build());
j ob. addQut put (Tabl el nf o. bui | der (). tabl eNanme(args[1]). build());

/1 default max iteration is 30
j ob. set Maxl terati on(30);
if (args.length >= 3)
job. set Maxl teration(lnteger.parselnt(args[2]));

long startTime = SystemcurrentTimeM I 1is();
job.run();
Systemout.println("Job Finished in "
+ (SystemcurrentTimreMIlis() - startTine) / 1000.0 + "
seconds") ;

The source code of PageRank is described as follows:

Row 23: Defines PageRankVertex, where:

— The vertex value indicates the current PageRank value of the vertex (web page).

= The compute() method uses the iteration formula PageRank(i) = 0. 15/ Tot al NunVe
rtices + 0.85 x sumto update the vertex value.

= The cleanup() method writes the vertex and its PageRank value to the result table.

Row 55: Defines the PageRankVertexReader class, loads a graph, and resolves each record in

the table into a vertex. The first column of the record is the start vertex and other columns are

the destination vertices.

Row 88: Runs the main program (main function), defines GraphJob, and specifies the

implementation of Vertex/GraphLoader, the maximum number of iterations (30 by default), and

input and output tables.

8.6.3 Kmeans

The Kmeans algorithm is a typical clustering algorithm.

It performs clustering by using k number of vertices in the space as the centers and grouping the

vertices closest to them. The values of the clustering centers are successively updated through

iterations until the optimal clustering result is obtained.

To divide a sample set into k classes, the algorithm operates as follows:

1. Selects the initial centers of k classes.

2. Calculates the distance from any sample to the k centers in iteration i, and groups the sample

to the class of the nearest center.

3. Updates the center value of the class using the mean and other methods.

4. For all k clustering centers, if the value updated after iterations remains unchanged or is

smaller than a threshold, the iteration ends. Otherwise, the iteration continues.

Sample Code

Code for the K-means clustering algorithm is as follows:

i mport java.i o. Datal nput;
i mport java.i o. Dat aCut put;
i mport java.io.l OException;

i mport org.apache. | og4j . Logger;

i mport com aliyun. odps.io.Witabl eRecord;
i mport com al i yun. odps. gr aph. Aggr egat or ;

I mport com aliyun.
i mport com aliyun
i mport com aliyun
i mport comaliyun
i mport com aliyun
i mport com aliyun
i mport comaliyun
i nport com aliyun.
i mport com aliyun
i mport com aliyun
i mport com aliyun
i mport comaliyun
i mport com aliyun

odps
odps
odps

public class Kneans {
private final static Logger LOG = Logger. get Logger (Knmeans. cl ass);

CODPS. graph. conput ercont ext ;
odps.
odps.
odps.
odps.
odps.
odps.
odps.
odps.
odps.

gr aph. GraphJob;

gr aph. GraphLoader ;
gr aph. Mut ati onCont ext ;
gr aph. Vert ex;

gr aph. Wor ker Cont ext ;
i 0. Doubl eWitabl e;

i 0. LongWitabl e;
io.Null Witabl e;

dat a. Tabl el nf o;

. i 0. Text;

.1 0. Tupl e;
.io.Witabl e;

public static class KneansVertex extends
Vert ex<Text, Tupl e,

@ Override

Nul | Witable, NullWitable> {

public void comput e(
Conput eCont ext <Text, Tuple, Null Witable, NullWitable> context,
I'terabl e<Nul | Witabl e> nessages) throws | OException {

cont ext . aggr egat e(get Val ue());

public static class KneansVertexReader extends
GraphLoader <Text, Tuple, Null Witable, NullWitable> {
@verride
public void | oad(LongWitable recordNum WitableRecord record,
Mut at i onCont ext <Text, Tuple, Null Witable, Null Witable> context)
t hrows | OException {
KmeansVertex vertex = new KneansVertex();
vertex. setld(new Text (String.val ue (recordNumget())));
vertex. set Val ue(new Tupl e(record. getAll()));
cont ext . addVert exRequest (vert ex);

public static class KneansAggrVal ue inplenments Witable {

Tupl e centers = new Tupl e();
Tupl e suns = new Tupl e();
Tupl e counts = new Tupl e();

@ Override

public void wite(DataCQutput out) throws | OException {
centers.wite(out);
suns. wite(out);
counts.wite(out);

@verride
public void readFiel ds(Datal nput in) throws | COException {
centers = new Tuple();
centers.readFi el ds(in);
sunms = new Tupl e();
suns. readFi el ds(in);
counts = new Tupl e();
counts. readFi el ds(in);

@verride
public String toString() {
return "centers " + centers.toString() + ", suns " + suns.
toString()
+ ", counts " + counts.toString();

public static class KmeansAggregat or extends Aggregat or <KmeansAggr
Val ue> {

@uppr essVar ni ngs("rawt ypes")

@verride

publ i c KmeansAggr Val ue createlnitial Val ue(Wr ker Cont ext cont ext)
throws | OException {

KmeansAggr Val ue aggrVal = null;
i f (context.getSuperstep() == 0) {
aggr Val = new KneansAggr Val ue();

aggr Val . centers = new Tupl e();
aggr Val . suns = new Tupl e();

aggr Val . count s new Tupl e();
byte[] centers = context.readCacheFile("centers");
String lines[] = new String(centers).split("\n");

(int i =0; i <lines.length; i++) {
String[] ss = lines[i].split(",");
Tupl e center = new Tupl e();
Tupl e sum = new Tupl e();
for (int j =0; j <ss.length; ++j) {
cent er. append(new Doubl eWit abl e(Doubl e. val ueOf (ss[j].trim

())));
sum append(new Doubl eWitabl e(0.0));

LongWitabl e count = new LongWitabl e(0);
aggr Val . suns. append(sum ;
aggr Val . count s. append(count) ;
aggr Val . cent ers. append(center);

} else {

aggr Val = (KnmeansAggr Val ue) cont ext. get Last Aggr egat edVal ue(0) ;
return aggrVval ;
@verride

Public void aggregate (gl asvalue, object item){
int mn = O;
doubl e mi ndi st = Doubl e. MAX VALUE
Tupl e point = (Tuple) item

(int i =0; i < value.centers.size(); i++) {

Tupl e center = (Tuple) value.centers.get(i);

/'l use Euclidean Distance, no need to calcul ate sqrt

doubl e dist = 0.0d;

for (int j 0;] < center.size(); j+t) {
doubl e v ((Doubl eWitable) point.get(j)).

- ((Doubl eWitable) center.get(j)).get

dist += v * v;

= get ()
):

(

if (dist < nindist) {
m ndi st = dist;
mn=i;

/! update sum and count

Tupl e sum = (Tupl e) val ue. suns. get (mn);

for (int i =0; i < point.size(); i++) {
Doubl eWitable s = (Doubl eWitable) sumget(i);
s.set(s.get() + ((DoubleWitable) point.get(i)).get());

LongWitable count = (LongWitable) val ue.counts.get(mn);
count.set(count.get() + 1);

@verride

public void merge(KmeansAggr Val ue val ue, KmeansAggr Val ue parti al)

{

for (int i =0; i < value.suns.size(); i++) {
Tupl e sum = (Tupl e) val ue. suns. get (i);

Tupl e that (Tup

for (int j 0; j
Doubl eWitable s
s.set(s.get() +

(int i =0; i < value.

LongWit abl e count

count.set(count.get() + ((LongWitable) partial.

)).get());

@uppr essWar ni ngs("
@verride

publ i c bool ean tern nat e(Wrker Cont ext cont ext,

val ue)
throws | OException

e) partial.suns.get(i);

< sumsize(); j++) {

= (Doubl eWitable) sumget(j);
((Doubl eWwitable) that.get(j)).get());

counts.size(); i++) {
= (LongWitabl e) val ue.counts.get(i);
counts. get (i

rawt ypes")

KrmeansAggr Val ue

{

/1l conpute new centers

Tupl e newCent ers
for (int i 0; i

n
<

ew Tupl e(val ue. suns. si ze());
val ue. suns. si ze(); i++) {

Tupl e sum = (Tupl e) val ue. suns. get (i);

:.(
J
Doubl eWitable s

doubl e val s.g
newCent er. set (j ,

Tupl e newCent er
LongWitable c
for (int j 0;

/] reset sum for
s.set (0.0d);

/'l reset count for
c.set(0);
newCent ers. set (i,

/] update centers
Tupl e ol dCenters
val ue. centers

Y

LOG info("old center
newCent ers) ;

/] conpare new old c
bool ean conver ged
for (int i 0; i
Tupl e ol dCent er
Tupl e newCent er
doubl e sum = 0.0
for (int j
doubl e v

((

sum += v

eI A

;
(Ebu
le

0;
(
ub
V;

>('glll

doubl e di st Mat h
LOG info("old cent
newCent er

+ ", dist: +

new Tupl e(sum si ze());
LongWitabl e) val ue.counts.get(i);
< sumsize(); j++) {

= (Doubl eWitable) sumget(j);
et() / c.get();
new Doubl eWitabl e(val));

next iteration

next iteration

newCent er) ;

al ue. centers;

newCent er s;

S: + ol dCenters + ", new centers: +

enters

true;

val ue. centers. size() && converged
(Tupl e) ol dCenters.get(i);
(Tuple) newCent ers. get (i);

i++) {

"< newCenter. size(); j+t) {
bl eWwitable) newCenter.get(j)).get()
Witable) oldCenter.get(j)).get();

.sqrt(sum;

er: " + oldCenter + ", +

new center:

dist);

/'l converge threshold for each center: 0.05
converged = dist < 0.05d;

if (converged || context.getSuperstep() == context.getMaxlter
ation() - 1)
/'l converged or reach max iteration, output centers
for (int i =0; i < value.centers.size(); i++) {

context.wite(((Tuple) value.centers.get(i)).toArray());

// true neans to termnate iteration
return true;

/] false neans to continue iteration
return fal se;

private static void printUsage() {
System out. println ("Usage: <in> <out> [Max iterations (default 30
)1 ")
Systemexit(-1);

public static void main(String[] args) throws | OException {
if (args.length < 2)
print Usage() ;

GraphJob job = new GraphJob();

j ob. set GraphLoader C ass(KneansVert exReader . cl ass) ;

j ob. set Runti mePartitioning(false);

j ob. set Vert exd ass(KneansVert ex. cl ass);

j ob. set Aggr egat or O ass(KnmeansAggr egat or . cl ass) ;

j ob. addl nput (Tabl el nf o. bui | der ().t abl eNanme(args[0]).build());

j ob. addQut put (Tabl el nf o. bui | der (). tabl eName(args[1]). build());

// default max iteration is 30

j ob. set Maxl terati on(30);

if (args.length >= 3)
job.setMaxlteration(lnteger.parselnt(args[2]));

long start = SystemcurrentTimeM I 1is();
job.run();
Systemout.println("Job Finished in "
+ (SystemcurrentTimeMIlis() - start) / 1000.0 + " seconds");

The source code of Kmeans is described as follows:

* Row 26: Defines KmeansVertex. The compute() method is simple. It calls the aggregate()
method of the context object and transmits the value of the current vertex (in Tuple type and

expressed by vector).

* Row 38: Defines the KmeansVertexReader class, loads a graph, and resolves each record in
the table as a vertex. The vertex ID does not matter, and transmitted recordNum is used as the
ID. The vertex value is the Tuple consisting of all columns of the record.

+ Row 83: Defines KmeansAggregator. This class encapsulates the main logic of the Kmeans

algorithm, where:

— createlnitialValue creates an initial value for each iteration (k-class center point). In first
iteration (superstep equals to 0), the value is the initial center point. Otherwise, the value is
the new center point when the last iteration ends.

— The aggregate() method calculates the distance from each vertex to centers of different
classes, classifies the vertex as the class of the nearest center, and updates sum and count
of the class.

— The merge() method combines sums and counts collected by each Worker.

— The terminate() method calculates the new center point based on sum and count of each
class. If the distance between the new and old center points is smaller than a threshold
value or the number of iterations reaches the upper limit, the iteration ends (false is returned
). The final center point is written to the result table.

* Row 236: Runs the main program (main function), defines GraphJob, and specifies the
implementation of Vertex/GraphLoader/Aggregator, the maximum number of iterations (30 by
default), and the input and output tables.

* Row 243: Specifies job.setRuntimePartitioning(false). For the Kmeans algorithm, vertices
do not have to be distributed during graph loading. If RuntimePartitioning is set to false, the

performance for graph loading is improved.

8.6.4 BiPartiteMatchiing

A Bipartite graph means all the graph vertices can be separated into 2 sets, and 2 vertices
corresponding to each Edge belong to the 2 sets respectively. For bipartite graph G, M is one
of its sub-graphs. If any two edges in the edge set of M are not attached to the same vertex, M
is called a matching. The bipartite graph matching is usually used for information matching in

scenarios with clear supply and demand relationships.
The basic concept of the algorithm is as follows:

» From the first vertex on the left, unmatched vertices are selected to search for the augmenting

path.

« [f an unmatched vertex is found, the search is successful.

» The path information is updated. If the number of matching edges is increased by 1, the search

is stopped.

+ If the augmenting path is not found, the search is no longer started from this vertex.
Sample Code
BiPartiteMatchiing The code of the algorithm is as follows:

i mport java.i o. Datal nput;
i mport java.i o. DataCQut put;
i mport java.io.| OException;
i mport java.util.Random
i mport com al i yun. odps. dat a. Tabl el nf o;
i mport com al i yun. odps. gr aph. Conput eCont ext ;
i mport com al i yun. odps. graph. G aphJob;
i mport com al i yun. odps. graph. Mut ati onCont ext ;
i mport com al i yun. odps. gr aph. Wr ker Cont ext ;
i mport com al i yun. odps. graph. Vert ex;
i mport com al i yun. odps. graph. G aphLoader
i mport com aliyun. odps.io.LongWitable;
i mport com aliyun.odps.io.NullWitable;
i mport com aliyun. odps.io. Text;
i mport com aliyun. odps.io.Witable;
i mport com aliyun. odps.io. Witabl eRecord,;
public class BipartitehMatching {
private static final Text UNMATCHED = new Text (" UNVATCHED") ;
public static class TextPair inplenents Witable {

public Text first;

public Text second;

public TextPair() {

first = new Text();
second = new Text ();

public TextPair(Text first, Text second) {
this.first = new Text(first);
this.second = new Text (second);

@ Override

public void wite(DataCQutput out) throws | OException {
first.wite(out);
second. wite(out);

@ Override
public void readFi el ds(Datal nput in) throws | CException {
first = new Text();
first.readFields(in);
second = new Text();
second. readFi el ds(in);

@ Override
public String toString() {
return first + ": " + second;

public static class BipartiteMatchi ngVert exReader extends
GraphLoader <Text, TextPair, Null Witable, Text> {
@ Override
public void | oad(LongWitable recordNum WitableRecord record,
Mut at i onCont ext <Text, TextPair, Null Witable, Text> context)

throws | OException {
Bi partiteMatchi ngVertex vertex = new Bi partiteMatchingVertex();
vertex.setld((Text) record.get(0));
vert ex. set Val ue(new Text Pai r (UNMATCHED, (Text) record.get(1)));
String[] adjs = record.get(2).toString().split(",");
for (String adj : adjs) {

vert ex. addEdge(new Text (adj), null);

cont ext . addVert exRequest (vert ex) ;

public static class BipartiteMtchi ngVertex extends
Vertex <Text, TextPair, Null Witable, Text> {
private static final Text LEFT = new Text ("LEFT");
private static final Text RI GHT = new Text ("Rl GHT");
private static Random rand = new Randomn()
@ Override
public void compute (
Conput eCont ext <Text, TextPair, Null Witable, Text> context,
Iterabl e nessages) throws ioexception {
if (iswvatched()) {
voteToHal t () ;
return;

switch ((int) context.getSuperstep() %4) {
case 0O:
if (isLeft()) {
cont ext . sendMessageToNei ghbors(this, getld());

br eak;
case 1:
if (isRight()) {
Text luckyLeft = null
for (Text nessage : nessages) {
if (luckyLeft == null) {
| uckyLeft = new Text (nessage);
} else {
if (rand.nextint(1) == 0) {
| uckyLeft . set (nmessage);

if (luckyLeft ' = null) {
cont ext . sendMessage(l uckyLeft, getld());

br eak;
case 2:
if (isLeft()) {
Text luckyRight = null;
for (Text nsg : messages) {
if (luckyRight == null) {
| uckyRi ght = new Text (nmsg);
} else {
if (rand.nextint(1l) == 0) {
| uckyRi ght . set (nsg);

if (luckyRight ' = null) {
set Mat chVert ex(| uckyRi ght);
cont ext . sendMessage(| uckyRi ght, getld());

br eak;
case 3:
if (isRight()) {
for (Text nsg : messages) {
set Mat chVert ex(nsg) ;

br eak;

@ Override
public void cl eanup(
Wor ker Cont ext <Text, TextPair, Null Witable, Text> context)
throws | OException {
context.wite(getld(), getValue().first);

private bool ean i sMatched() {
return ! getValue().first.equal s(UNVATCHED) ;

private bool ean isLeft() {
return getVal ue().second. equal s(LEFT);

private bool ean isRight() {
return getVal ue(). second. equal s(RI GHT) ;

private void set MatchVertex(Text matchVertex) {
get Val ue() .first.set (matchVertex);

private static void printUsage() ({
Systemerr.println("BipartiteMatching <i nput> <out put> [nmaxlterati

on]");

public static void main(String[] args) throws | OException {
if (args.length < 2) {
print Usage() ;

G aphJob job = new GraphJob();
j ob. set GraphLoader C ass(Bi partiteMat chi ngVert exReader. cl ass);
j ob. set Vert exd ass(Bi partiteMatchi ngVertex. cl ass);
j ob. addl nput (Tabl el nf 0. bui | der ().t abl eName(args[0]). build());
j ob. addQut put (Tabl el nf o. bui | der (). tabl eNanme(args[1]). build());
int maxlteration = 30;
if (args.length > 2) {

maxlteration = | nteger. parselnt(args[2]);

j ob. set Maxl terati on(maxlteration);
job.run();

8.6.5 Strongly-connected component

In a digraph, if by starting from any vertex it reaches every vertex in the graph through Edges, it is

called a strongly-connected graph. A strongly-connected subgraph with an extremely large vertex

number is called a strongly-connected component. The algorithm is based on Parallel coloring

algorithm.
Each vertex contains the following components:

+ colorID: Stores the color of vertex v during forward traversal. After a calculation ends, vertices
with the same colorID belong to one strongly connected component.
+ transposeNeighbors: Stores the neighbor ID of vertex v in the transpose graph of the input

graph.
The algorithm contains the following four steps:

+ Transpose graph generation: Contains two supersteps. Each vertex sends its ID to its neighbor
with the corresponding outbound edge. In the next superstep, these IDs are stored as
transposeNeighbors values.

» Trim: Contains one superstep. Each vertex that has only one inbound or outbound edge sets
the colorID as its own ID and the status to inactive. Subsequent signals sent to the vertex are
ignored.

» Forward traversal: A vertex contains two sub-processes (supersteps): startup and sleep.

In the startup phase, each vertex sets the colorID as its own ID and sends the ID to the
neighbor with the corresponding outbound edge. In the sleep phase, the vertex uses the
maximum colorlD it received to update its own colorID, and transmits the colorID until the
colorID converges. When the colorID converges, the master process sets the global object to
backward traversal.

+ Backward traversal: Contains two sub-processes: startup and sleep. In the startup phase,

a vertex whose ID is the same as the colorID transmits its ID to the neighbor vertex in the
transpose graph, and sets its status to inactive. Subsequent signals sent to the vertex can be
ignored. In each sleep step, each vertex receives signals matching its colorID, transmits the
colorID in the transpose graph, and then sets its status to inactive. If active vertices exist after

this step ends, the process reverts to the trim step.
Sample Code
The code for strongly connected components is as follows:

i mport java.i o. Datal nput;

i mport java.i o. DataQut put;

i mport java.io.l OException;

i mport com al i yun. odps. dat a. Tabl el nf o;

i mport com al i yun. odps. gr aph. Aggr egat or ;

i mport com al i yun. odps. graph. Conput eCont ext ;
i mport com al i yun. odps. graph. G aphJob;

http://ilpubs.stanford.edu:8090/1077/3/p535-salihoglu.pdf
http://ilpubs.stanford.edu:8090/1077/3/p535-salihoglu.pdf

i mport com al i yun. odps. graph. G aphLoader ;

i mport com al i yun. odps. graph. Mut ati onCont ext ;
i mport com al i yun. odps. graph. Vert ex;

i mport com al i yun. odps. graph. Wr ker Cont ext ;

i mport com aliyun. odps. i 0. Bool eanWi t abl e;

[
i mport com aliyun.odps.io.lntWitable;

i mport com aliyun. odps.io.LongWitabl e;

i mport com aliyun.odps.io.NullWitable;

i mport com aliyun. odps.i o. Tupl e;

i mport com aliyun. odps.io. Witable;

i mport com aliyun. odps.io.Witabl eRecord;

* Definition from WKki pedi a:

* |n the mathematical theory of directed graphs, a graph is said

* to be strongly connected if every vertex is reachable from every

* other vertex. The strongly connected conponents of an arbitrary

* directed graph forma partition into subgraphs that are thensel ves

* Strictly connected.

* Algorithns with four phases as foll ows.

* 1. Transpose Graph Formation: Requires two supersteps. In the first
superstep, each vertex sends a nmessage with its IDto all its

out goi ng

* nei ghbors, which in the second superstep are stored in transposeN
ei ghbors.

* 2. Trinmng: Takes one superstep. Every vertex with only in-coning
or
* only outgoing edges (or neither) sets its coloriIDto its own ID and
* becones inactive. Messages subsequently sent to the vertex are
i gnor ed.

* 3. Forward-Traversal: There are two sub phases: Start and Rest. In
t he

* Start phase, each vertex sets its coloriIDto its own ID and
pr opagat es

* its IDto its outgoing neighbors. In the Rest phase, vertices
updat e

* their own colorIDs with the mnimumcolorlD they have seen, and
pr opagat e

* their colorlDs, if updated, until the colorlDs converge.

* Set the phase to Backward- Traversal when the col orl Ds converge.

* 4. Backward-Traversal: W again break the phase into Start and Rest

* |n Start, every vertex whose ID equals its colorlD propagates its
IDto

* the vertices in transposeNei ghbors and sets itself inactive.
Messages

* subsequently sent to the vertex are ignored. In each of the Rest
phase supersteps,

* each vertex receiving a nessage that matches its colorID: (1)
pr opagat es

* its colorID in the transpose graph; (2) sets itself inactive.
Messages

* subsequently sent to the vertex are ignored. Set the phase back to
Tri nmi ng

* if not all vertex are inactive.

* http://il pubs. stanford. edu: 8090/ 1077/ 3/ p535-sal i hogl u. pdf

public class Strongl yConnect edConponents {

public final static int STAGE TRANSPCSE 1 = 0
public final static int STAGE TRANSPOSE 2 = 1
public final static int STAGE_ TRIMM NG = 2;
public final static int STAGE FWSTART = 3;
public final static int STAGE FWREST = 4;
public final static int STAGE BW START = 5;
public final static int STAGE BWREST = 6;

* The val ue is conposed of conponent id, incom ng nei ghbors,
* active status and updated status.

public static class MyValue inplenments Witable {
LongWitable scclD;// strongly connected conponent id
Tupl e i nNei ghbors; // transpose nei ghbors
Bool eanWitable active; // vertex is active or not
Bool eanWitabl e updated; // scclD is updated or not
public MyVal ue() {
this.scclD = new LongWi t abl e(Long. MAX_VALUE)
thi s.inNei ghbors = new Tupl e();
this.active = new Bool eanWitabl e(true);
t hi s. updat ed = new Bool eanW it abl e(fal se);

public void setSccl D(LongWitable scclD) {
this.scclD = sccl D

public LongWitable getScclD() {
return this.scclD

public void setlnNei ghbors(Tupl e i nNei ghbors) {
thi s. i nNei ghbors = inNei ghbors;

public Tupl e getlnNei ghbors() {
return this.inNeighbors;

public void addl nNei ghbor (LongW it abl e nei ghbor) {
thi s. i nNei ghbors. append(new LongW it abl e(nei ghbor.get()));

publ i c bool ean isActive() {
return this.active.get();

public void setActive(bool ean status) {
this.active.set(status);

public bool ean i sUpdated() {
return this.updated. get();

public void set Updat ed(bool ean update) {
thi s. updat ed. set (updat e) ;

@verride

public void wite(DataQutput out) throws | OException {
this.scclD.wite(out);

this.inNei ghbors.wite(out);

this.active.wite(out);

this.updated. wite(out);

@verride
public void readFiel ds(Datal nput in) throws | CException {

this.scclD.readFi el ds(in);

thi s. i nNei ghbors. readFi el ds(in);
this.active.readFields(in);

thi s. updat ed. readFi el ds(i n);

@verride

public String toString() {

StringBuil der sb = new StringBuilder();

sb. append("scclD: " + scclD.get());

sb. append(" inNei ghbores: " + inNeighbors.toDelinitedString
(" ')
sb. append(" active: " + active.get());
sb. append(" updated: " + updated.get());
return sh.toString();

public static class SCCVertex extends
Vertex <LongWitable, MyValue, Null Witable, LongWitable> {
public SCCVertex() {
this. setVal ue(new MyVal ue());

@verride
public void conmput e(
Conput eCont ext < LongWitable, MyValue, Null Witable, LongWitable
> cont ext,
Iterable <LongWitable> nsgs) throws | OException {
/] Messages sent to inactive vertex are ignored.
if (! this.getValue().isActive()) {
this.voteToHalt();
return,

int stage = ((SCCAggr Val ue) cont ext. get Last Aggr egat edVal ue(0)).
get St age() ;

switch (stage) {
case STAGE TRANSPOSE_1:

cont ext . sendMessageToNei ghbors(this, this.getld());

br eak;
case STAGE_TRANSPOSE 2:

for (LongWitable nmsg: nsgs) {

t hi s. get Val ue() . addl nNei ghbor (nsg) ;

case STAGE TRI MM NG
t hi s. get Val ue().set Sccl D(getld());
if (this.getValue().getlnNeighbors().size() == 0 ||
t hi s. get NunEdges() == 0) {
this. getVal ue().setActive(fal se);

br eak;
case STAGE_FW START:
this. getVal ue().setScclD(getld());
cont ext . sendMessageToNei ghbors(thi s, this.getValue().getScclD
()
br eak;
case STAGE FW REST:
| ong m nSccl D = Long. MAX_VALUE;
for (LongWitable nsg : nsgs) {
if (msg.get() < mnScclD) {
m nSccl D = nsg. get();

if (mMnScclD < this.getValue().getScclD().get()) {
thi s. get Val ue() . set Sccl D(new LongW i tabl e(m nSccl D)) ;
cont ext . sendMessageToNei ghbors(this, this.getValue().
get Sccl D());
t hi s. get Val ue() . set Updat ed(true);
} else {

thi s. get Val ue() . set Updat ed(f al se) ;

br eak;
case STAGE BW START:
if (this.getld().equals(this.getValue().getScclD())) {
for (Witable neighbor : this.getValue().getlnNeighbors().

getAll () { _ _ ,
cont ext . sendMessage((LongW it abl e) nei ghbor, this. getVal ue
().getScclX));

this. getVal ue().setActive(false);

br eak;
case STAGE BW REST:
t hi s. get Val ue() . set Updat ed(f al se);
for (LongWitable nmsg : nsgs) {
if (nmsg.equal s(this.getValue().getScclD())) {
for (Witable neighbor : this.getValue().getlnNeighbors().
getAl1 () { | | |
cont ext . sendMessage((LongW i t abl e) nei ghbor, this.
get Val ue() . get Sccl D());
t hi s. get Val ue() . set Active(fal se);

this. getVal ue() . set Updat ed(true);
br eak;

br eak;
cont ext . aggregat e(0, getValue());
@verride

public void cl eanup(
Wor ker Cont ext <LongWitabl e, MyValue, NullWitable, LongWitab
| e> cont ext)
throws | OException {
context.wite(getld(), getValue().getScclD));

* The SCCAggr Val ue mai ntai ns gl obal stage and graph updated and
active status.

* updated is true only if one vertex is updated.

* active is true only if one vertex is active.

public static class SCCAggrVal ue inplenments Witable {
IntWitable stage = new I nt Wit abl e(STAGE_TRANSPCSE 1);
Bool eanWi t abl e updated = new Bool eanWi t abl e(f al se);
Bool eanWitabl e active = new Bool eanW it abl e(fal se);
public void setStage(int stage) {
this. stage. set(stage);

public int getStage() {
return this.stage.get();

public void set Updat ed(bool ean updat ed) {
t hi s. updat ed. set (updat ed) ;

publ i c bool ean get Updated() {
return this.updated. get();

public void setActive(bool ean active) {

this.active.set(active);

publ i c bool ean get Active() {
return this.active.get();

@ Override

public void wite(DataCQutput out) throws | OException {
this.stage.wite(out);
this.updated. wite(out);
this.active.wite(out);

@ Override

public void readFi el ds(Datal nput in) throws | COException {
this. stage. readFi el ds(i n);
thi s. updat ed. readFi el ds(i n);
this.active.readFi el ds(in);

* The job of SCCAggregator is to schedule gl obal stage in every
super st ep.

public static class SCCAggregator extends Aggregat or <SCCAggr Val ue> {
@uppr ess\Var ni ngs("rawt ypes")
@ Override
publ i c SCCAggr Val ue createStartupVal ue(Wr ker Cont ext cont ext)
throws | OException {
return new SCCAggr Val ue() ;

@uppr essWar ni ngs("rawt ypes")
@ Override
publ i c SCCAggr Val ue createl nitial Val ue(Wr ker Cont ext cont ext)
throws | OException {
return (SCCAggrVal ue) context. getLast Aggr egat edVal ue(0);

@ Override
public voi d aggregat e(SCCAggr Val ue val ue, Object item throws
| CException {
MyVal ue v = (MyVal ue)item
if ((value.getStage() == STAGE_FWREST || val ue. getStage() ==
STAGE_BW REST)
&& v.isUpdated()) {
val ue. set Updat ed(t rue);

/1l only active vertex invoke aggregate()
val ue. set Acti ve(true);

@ Override
public void merge(SCCAggr Val ue val ue, SCCAggrVal ue partial)
t hrows | OException {

bool ean updated = val ue. getUpdated() || partial.getUpdated();
val ue. set Updat ed(updat ed) ;
bool ean active = value.getActive() || partial.getActive();

val ue. set Acti ve(active);

@uppr ess\Varni ngs("rawt ypes")
@ Override
publi c bool ean term nate(Wr ker Cont ext context, SCCAggrVal ue val ue

throws | OException {
[/ 1f all vertices is inactive, job is over.
if (! value.getActive()) {

return true;

/] state machi ne
switch (val ue. getStage()) {
case STAGE_TRANSPOSE 1:
val ue. set St age(STAGE_TRANSPCSE 2) ;
br eak;
case STAGE TRANSPOSE 2:
val ue. set St age(STAGE_TRI MM NG) ;
br eak;
case STAGE TRI MM NG
val ue. set St age(STAGE_FW START) ;
br eak;
case STAGE FW START:
val ue. set St age(STAGE_FW REST) ;
br eak;
case STAGE FW REST:
if (value.getUpdated()) {
val ue. set St age(STAGE_FW REST) ;
} else {
val ue. set St age(STAGE_BW START) ;

br eak;
case STAGE BW START:
val ue. set St age(STAGE_BW REST) ;
br eak;
case STAGE BW REST:
i f (value.getUpdated()) {
val ue. set St age(STAGE_BW REST) ;
} else {
val ue. set St age(STAGE_TRI MM NG) ;

br eak;

val ue. set Acti ve(fal se);
val ue. set Updat ed(f al se) ;
return fal se;

public static class SCCVertexReader extends
GraphLoader <LongWitabl e, MyValue, Null Witable, LongWitable> {
@ Override
public void | oad(
LongWitabl e recor dNum
Wit abl eRecord record,
Mut at i onCont ext <LongW i tabl e, MyVal ue, NullWitabl e,
LongWit abl e> cont ext)
throws | OException {
SCCVertex vertex = new SCCVertex();
vertex.setld((LongWitable) record. get(0));
String[] edges = record.get(1).toString().split(",");
for (int i =0; i < edges.length; i++) {
try {
| ong dest|I D = Long. parseLong(edges[i]);
vertex. addEdge(new LongWitabl e(destI D), Null Witable.get
()
} cat ch(Number For mat Excepti on nfe) {
Systemerr.println("lgnore " + nfe);

cont ext . addVer t exRequest (vert ex);

public static void main(String[] args) throws | OException {
if (args.length < 2) {
System out. println("Usage: <input> <output>");
Systemexit(-1);

GraphJob job = new GraphJob();

j ob. set GraphLoader C ass(SCCVert exReader . cl ass) ;

j ob. set Vert exC ass(SCCVert ex. cl ass) ;

j ob. set Aggr egat or Gl ass(SCCAggr egat or . cl ass) ;

j ob. addl nput (Tabl el nf 0. bui | der ().t abl eName(args[0]). build());

j ob. addQut put (Tabl el nf o. bui | der (). tabl eNanme(args[1]). build());

long startTinme = SystemcurrentTineMI1is();

job.run();

Systemout.println("Job Finished in"

+ (SystemcurrentTineMIlis() - startTine) / 1000.0 + "

seconds") ;

8.6.6 Connected component
If there is path between 2 vertices, it means the 2 vertices are connected. If any two vertices in
undirected graph G are connected, G is called a connected graph. Otherwise, G is called an
unconnected graph. A connected sub-graph with a large number of vertices is called a connected

component.

This algorithm calculates connected component members of each vertex, and outputs the
connected component of the vertex value that includes the smallest vertex ID. The smallest vertex

ID is transmitted along edges to all vertices of the connected component.
Sample Code

Code for connecting components is as follows:

i nport java.io.| OException;

i mport com al i yun. odps. dat a. Tabl el nf o;

i mport com al i yun. odps. gr aph. Conput eCont ext ;
i mport com al i yun. odps. graph. G aphJob;

i mport com al i yun. odps. graph. G aphLoader;

i mport com al i yun. odps. graph. Mut ati onCont ext ;
i nport com al i yun. odps. graph. Vert ex;

i mport com al i yun. odps. graph. Wr ker Cont ext ;

i nport com al i yun. odps. gr aph. exanpl es. SSSP. M nLongConbi ner ;
i mport com aliyun. odps.io.LongWitable;

i mport com aliyun. odps.io.Null Witabl e;

i mport com aliyun. odps.io. Witabl eRecord,;

* Conpute the connected conponent nenbership of each vertex and
out put

* each vertex which's value containing the smallest id in the
connect ed

* component containing that vertex.

* Algorithm propagate the snallest vertex id along the edges to all
* vertices of a connected conponent.

public class Connect edConponents {
public static class CCVertex extends
Vert ex<LongWitable, LongWitable, NullWitable, LongWitable> {
@verride
public void comput e(
Conput eCont ext <LongW i tabl e, LongWitable, NullWitable,
LongWi t abl e> cont ext,
I'terabl e<LongWitabl e> nsgs) throws | OException {
i f (context.getSuperstep() == 0L) {
this.setValue(getld());
cont ext . sendMessageToNei ghbors(this, getValue());
return;

long m nl D = Long. MAX_VALUE;

for (LongWitable id : msgs) {

if (id.get() < mnlD {
mnlD=id. get();

if (mnlD < this.getValue().get()) {

t hi s. set Val ue(new LongWitable(mnlD));

cont ext . sendMessageToNei ghbors(this, getValue());
} else {

this.voteToHalt();

* Qut put Tabl e Descripti on:

* | Field | Type | Comment |

*

| v | bigint | vertex id
| mniD]| bigint | smallest id in the connected conmponent |

*

@verride
public void cl eanup(
Wor ker Cont ext <LongW i tabl e, LongWitable, NullWitable, LongWitab
| e> cont ext)
t hrows | OException {
context.wite(getld(), getValue());

* | nput Table Description:
* | Field | Type | Comment |
*|1 v | bigint | vertex id

* | es | string | comma separated target vertex id of outgoing
edges |

Exanpl e:

* %

| nput table:

wWwhphow

EOE
APWNBRE

public static class CCVertexReader extends
GraphLoader <LongWitabl e, LongWitable, NullWitable, LongWitable>

{
@verride
public void | oad(
LongWitabl e recor dNum
Wit abl eRecord record,
Mut at i onCont ext <LongW i tabl e, LongWitable, NullWitable,
LongWi t abl e> cont ext)
t hrows | OException {
CCVertex vertex = new CCVertex();
vertex.setld((LongWitable) record.get(0));
String[] edges = record.get(1).toString().split(",");
for (int i =0; i < edges.length; i++) {
| ong dest|I D = Long. parseLong(edges[i]);
vert ex. addEdge(new LongWitabl e(destI D), Null Witable.get());

cont ext . addVer t exRequest (vertex);

public static void main(String[] args) throws | OException {

if (args.length < 2) {

System out . println("Usage: <input> <output>");
Systemexit(-1);

G aphJob job = new GraphJob();
j ob. set GraphLoader Cl ass(CCVert exReader . cl ass);
j ob. set Vert exd ass(CCVert ex. cl ass);
j ob. set Conbi ner O ass(M nLongConbi ner. cl ass);
j ob. addl nput (Tabl el nf o. bui | der ().t abl eNanme(args[0]) . buil d(
j ob. addQut put (Tabl el nf o. bui | der () . t abl eNanme(args[1]).build
long startTime = SystemcurrentTimeM I 1is();
job.run();
Systemout.println("Job Finished in "
+ (SystemcurrentTimneMIlis() - startTine) / 1000.0 + "
seconds") ;

)
0));

8.6.7 Topology Sorting
In directed edge (u,v), all vertex sequences satisfying u < v are called topological sequences.

Topological sorting is an algorithm used to calculate the topological sequence of a directed graph.
Specifically, the algorithm:

1. Find a vertex that does not have any inbound edge from the graph and outputs the vertex.
2. Delete the vertex and all outbound edges from the graph.

3. Repeat the preceding steps until all vertices are output.

Sample Code

The code for the topology ordering algorithm is as follows:

i mport java.io.| OException;

i mport org. apache. conmons. | oggi ng. Log;

i mport org. apache. commns. | oggi ng. LogFact ory;
i mport com al i yun. odps. dat a. Tabl el nf o;

i mport com al i yun. odps. gr aph. Aggr egat or ;

i mport com al i yun. odps. graph. Conbi ner;

i mport com al i yun. odps. graph. Conput eCont ext ;
I mport com aliyun. ODPS. graph. graphjob;

i mport com al i yun. odps. graph. G aphLoader ;

i mport com al i yun. odps. graph. Mut ati onCont ext ;
i mport com al i yun. odps. graph. Vert ex;

i mport com al i yun. odps. graph. Wr ker Cont ext ;

i mport com aliyun. odps.io.LongWitable;

i mport com aliyun. odps.io.NullWitable;

i mport com aliyun. odps. i o. Bool eanWit abl e;

i mport com aliyun. odps.io.Witabl eRecord;
public class Topol ogySort {

private final static Log LOG = LogFactory. get Log(Topol ogySort. cl ass
) .

public static class Topol ogySort Vertex extends

Vert ex<LongWitable, LongWitable, NullWitable, LongWitable> {
@verride
public void conput e(
Conput eCont ext <LongW it abl e, LongWitable, NullWitable,

LongWi t abl e> cont ext,
I'terabl e<LongWitabl e> nessages) throws | OCException {

/1 in superstep 0, each vertex sends nmessage whose value is 1 to
its
/1 nei ghbors
i f (context.getSuperstep() == 0) {
i f (hasEdges()) {
cont ext . sendMessageToNei ghbors(this, new LongWitable(1L));
} else if (context.getSuperstep() >= 1) {
/| conpute each vertex's indegree
| ong i ndegree = getVal ue().get();
for (LongWitable nsg : nessages) {
i ndegree += nsg. get();
set Val ue(new LongWi t abl e(i ndegree));
if (indegree == 0) {
voteToHal t () ;
i f (hasEdges()) {
cont ext . sendMessageToNei ghbors(this, new LongWitabl e(-1L
));
context.wite(new LongWitabl e(cont ext.get Superstep()),
getld());

LOG i nfo("vertex: + getld());

cont ext . aggr egat e(new LongW it abl e(i ndegree));

public static class Topol ogySort Vert exReader extends
GraphLoader<LongWitabl e, LongWitable, Null Witable,

{

LongWit abl e>

@verride
public void | oad(
LongWit abl e recor dNum
Wit abl eRecord record,
Mut at i onCont ext <LongW i tabl e, LongWitable, NullWitable,
LongWi t abl e> cont ext)
throws | OException {
Topol ogySort Vertex vertex = new Topol ogySort Vertex();
vertex.setld((LongWitable) record.get(0));
vert ex. set Val ue(new LongWitabl e(0));
String[] edges = record.get(1).toString().split(",");
for (int i =0; i < edges.length; i++) {
| ong edge = Long. parseLong(edges[i]);
if (edge >= 0) {
vert ex. addEdge(new LongWi t abl e(Long. parseLong(edges[i])),
Nul | Witable.get());

LOG info(record.toString());
cont ext . addVer t exRequest (vert ex) ;

public static class LongSunConbi ner extends
Combi ner<LongWitable, LongWitable> {
@verride
public void combi ne(LongWitable vertexld, LongWitable conbinedMe
ssage,
LongWit abl e messageToConbi ne) throws | OException {
conmbi nedMessage. set (conbi nedMessage. get () + nmessageToConbi ne. get

0));

public static class Topol ogySort Aggr egat or ext ends
Aggr egat or <Bool eanW i t abl e> {
@uppr ess\War ni ngs("rawt ypes")
@verride
publ i c Bool eanWitable createlnitial Val ue(Wr ker Cont ext cont ext)
throws | OException {
return new Bool eanWitabl e(true);

@verride
public void aggregat e(Bool eanWitable value, hject item
throws | OException {
bool ean hasCycl e = val ue. get();
bool ean i nDegreeNot Zero = ((LongWitable) item.get() == 0 ?
false : true;
val ue. set (hasCycl e && i nDegr eeNot Zer o) ;

@verride
public void nerge(Bool eanWitable val ue, Bool eanWitable partial)
throws | OException {
val ue. set (val ue. get() && partial.get());

@uppr essVar ni ngs("rawt ypes")
@verride
publ i c bool ean term nate(Wrker Cont ext context, Bool eanWitable
val ue)
t hrows | OException {
i f (context.getSuperstep() == 0) {
/1l since the initial aggregator value is true, and in
superstep we don't
/1 do aggregate

return fal se;

return val ue. get();

public static void main(String[] args) throws | OException {
if (args.length ! = 2) {
System out. println("Usage : <inputTabl e> <out put Tabl e>");
Systemexit(-1);

/1l The input table is in the format of
/Il 01,62

I/ 13

I/ 23

I/ 3 -1

/1 The first colum is vertexid, and the second columm is the
destination vertexid of the vertex edge. If the value is -1, the
vertex does not have any out bound edge

// The output table is in the format of
/Il 00
/111
I/ 12
Il 2 3

/1l The first columm is the supstep value, in which the topologica
sequence i s hidden. The second colum is vertexid

/| Topol ogySort Aggregator is used to determine if the graph has
| oops

/1 If the input graph has a loop, the iteration ends when the
i ndegree of vertices in the active state is not O

/1l You can use records in the input and output tables to deterni ne
if the graph has | oops

G aphJob job = new GraphJob();

j ob. set GraphLoader d ass(Topol ogySort Vert exReader . cl ass);

j ob. set Vert exd ass(Topol ogySort Vert ex. cl ass) ;

j ob. addl nput (Tabl el nf 0. bui | der ().t abl eName(args[0]). build());

j ob. addQut put (Tabl el nf o. bui | der (). tabl eNanme(args[1]). build());

j ob. set Conbi ner ass(LongSumConbi ner . cl ass);

j ob. set Aggr egat or G ass(Topol ogySort Aggr egat or. cl ass) ;

long startTime = SystemcurrentTineM I 1is();

job.run();

Systemout.println("Job Finished in "

+ (SystemcurrentTimreMIlis() - startTine) / 1000.0 + "

seconds");

8.6.8 Linear Regression
In statistics, linear regression is a statistical analysis method used to determine the dependency
between two or more variables. Different from the classification algorithm that processes discrete

prediction,

the regression algorithm can predict the continuous value type. The linear regression algorithm
defines the loss function as the sum of the least square errors of the sample set. It minimizes the

loss function to calculate the weight vector.

A common solution is gradient descent that:

1. Initialize the weight vector to give descent speed rate and iterations (or iteration convergence
condition).

2. Calculate the least square error for each sample.

3. Get the sum of the least square error, update the weight based on the descent speed rate.

4. Repeat iterations until convergence.
Sample Code

i mport java.i o. Datal nput;

i mport java.i o. DataQut put;

i mport java.io.| OException;

i mport com al i yun. odps. dat a. Tabl el nf o;

i mport com al i yun. odps. gr aph. Aggr egat or ;

i mport com al i yun. odps. graph. Conput eCont ext ;
i nport com al i yun. odps. graph. G aphJob;

i mport com al i yun. odps. graph. Mut ati onCont ext ;
i mport com al i yun. odps. graph. Wr ker Cont ext ;
i mport com al i yun. odps. graph. Vert ex;

i mport com al i yun. odps. graph. G aphLoader;

i mport com aliyun. odps. i o. Doubl eWitabl e;

i mport com aliyun. odps.io.LongWitable;

i mport com aliyun.odps.io.NullWitable;

i nport com al i yun. odps. i o. Tupl e;

i mport com aliyun. odps.io.Witable;

i mport com aliyun. odps.io. Witabl eRecord,;

* LineRegression input: y,x1,x2,x3,......

public class LinearRegression {
public static class G adientWitable inplenents Witable {

Tupl e | ast Thet a;

Tupl e current Thet a;

Tupl e tmpG adi ent;

LongWi t abl e count;

Doubl eWitabl e | ost;

@verride

public void readFiel ds(Datal nput in) throws | CException {
| ast Theta = new Tupl e();
| ast Thet a. readFi el ds(i n);
current Theta = new Tupl e();
current Thet a. readFi el ds(i n);
tmpG adi ent = new Tupl e();
t mpGradi ent . readFi el ds(in);
count = new LongWitabl e();
count . readFi el ds(in);
/* update 1: add a variable to store lost at every iteration */
| ost = new Doubl eWitabl e();
| ost.readFiel ds(in);

@verride
public void wite(DataCQutput out) throws | OException {
| ast Theta. wite(out);
current Theta. wite(out);
tmpGradi ent. write(out);
count.wite(out);
lost.wite(out);

public static class LinearRegressi onVertex extends
Vertex<LongWitable, Tuple, Null Witable, NullWitable> {

@verride

public void conmput e(

Comput eCont ext <LongW i tabl e, Tuple, NullWitable, NullWitable>

cont ext,
Iterabl e<Nul | Witabl e> nessages) throws | CException {
cont ext . aggr egat e(get Val ue());

public static class LinearRegressi onVertexReader extends
GraphLoader <LongWitable, Tuple, Null Witable, NullWitable> {
@verride
public void | oad(LongWitable recordNum WitableRecord record,
Mut at i onCont ext <LongW i tabl e, Tuple, Null Witable, NullWitable>
cont ext)
throws | OException {
Li near Regr essi onVertex vertex = new Li near Regressi onVertex();
vertex. setld(recordNunj;
vert ex. set Val ue(new Tupl e(record. getAl()));
cont ext . addVer t exRequest (vert ex);

public static class LinearRegressi onAggregat or extends
Aggr egat or <G adi ent Wit abl e> {
@uppr ess\War ni ngs("r awt ypes")
@verride
public G adientWitable createlnitial Val ue(Wrker Cont ext cont ext)
throws | OException {
i f (context.getSuperstep() == 0) {
/[* set initial value, all 0 */
G adientWitable grad = new G adi ent Witabl e();
grad. | ast Theta = new Tupl e();
grad. current Theta = new Tupl e();
grad. tnpG adi ent = new Tupl e();
grad. count = new LongWitable(1l);
grad. | ost = new Doubl eWitabl e(0.0);
int n = (int) Long.parseLong(context.getConfiguration()
.get ("Di mensi on"));
for (int i =0; i <n; i++)
grad. | ast Thet a. append(new Doubl eWitabl e(0));
grad. current Thet a. append(new Doubl eWi tabl e(0));
grad. t npG adi ent . append(new Doubl eWitable(0));

return grad;
} else
return (GadientWitable) context.getlLastAggregat edVal ue(0);

public static double vecMul (Tupl e val ue, Tuple theta) {
[* performthis partial conputing: y(i)-hexx(i)) for each sanple
*/
/* val ue denote a piece of sanple and value(0) is y */
doubl e sum = 0. 0;
for (int j =1; j < value.size(); j++)
sum += Doubl e. par seDoubl e(val ue.get(j).toString
* Doubl e. parseDoubl e(theta.get(j).toString(
Doubl e tmp = Doubl e. par seDoubl e(t het a. get (0) .t oSt
- Doubl e. par seDoubl e(val ue. get (0).toString());
return tnp;

@verride
public void aggregate(G adientWitable gradient, Object val ue)

()
));
rin

g()) + sum

throws | OException {

* performon each vertex--each sanple i :set theta(j) for each
sanmpl e i
* for each di mension

doubl e tnpVar = vecMil ((Tupl e) val ue, gradient.currentTheta);

* update 2:1ocal worker aggregate(), performlike nerge() bel ow
Thi s
* means the variabl e gradi ent denotes the previ ous aggregated
val ue

gradi ent.tnmpG adi ent. set (0, new Doubl eWitabl e(
((Doubl eWitable) gradient.tnmpG adient.get(0)).get() +

tmpVvar)) ;
gradi ent .| ost.set (Mat h. pow(t mpVar, 2));

* calculate (y(i)-hex(i))) x(i)(j) for each sanple i for each
* di mensi on j

for (int j =1; j < gradient.tnpG adient.size(); j++)
gradi ent. tnpG adi ent. set(j, new Doubl eWitabl e(
((Doubl eWitable) gradient.tnpG adient.get(j)).get() +

t mpVar
* Doubl e. par seDoubl e(((Tupl e) value).get(j).toString
())));
@verride
public void nmerge(G adientWitable gradient, GadientWitable
partial)

throws | OException {

[* perform SumAll on each dinension for all sanples.

Tupl e master = (Tuple) gradient.tnmpG adient;

Tupl e part = (Tuple) partial.tnmpG adient;

for (int j =0; j < gradient.tnpGadient.size(); j++) {
Doubl eWitable s = (Doubl eWitable) master.get(j);
s.set(s.get() + ((DoubleWitable) part.get(j)).get());

gradient.lost.set(gradient.lost.get() + partial.lost.get());

@uppr essWar ni ngs("rawt ypes")
@verride
publ i c bool ean terni nate(Wrker Context context, G adientWitable
gr adi ent)
throws | OException {

* 1. calculate new theta 2. judge the diff between |ast step
and this
* step, if smaller than the threshold, stop iteration

gradi ent.l ost = new Doubl eWitabl e(gradient.|ost.get()
/ (2 * context.getTotal NunVertices()));

* we can calculate lost in order to make sure the algorithmis
runni ng on
* the right direction (for debug)

System out . println(gradi ent.count + | ost:'
Tupl e tmpGradi ent = gradi ent. tnpG adi ent;
Systemout.println("tnmpGa" + tnpG adient);
Tupl e | ast Theta = gradi ent. | ast Thet a;

+ gradient.lost);

Tupl e tmpCurrent Theta = new Tupl e(gradi ent. current Thet a. si ze());
Systemout. println(gradient.count + " termnate_start _last:" +

| ast Thet a) ;

doubl e alpha = 0.07; // learning rate

/1 al pha =

/1 Doubl e. par seDoubl e(cont ext . get Confi gurati on().get("Al pha"));
[* performtheta(j) = theta(j)-al pha*t npG adi ent */

| ong M = cont ext. get Total NunVertices();

* update 3: add (/M on the code. The original code forget this

step
for (int j =0; j < lastTheta.size(); j++) {
t mpCurr ent Thet a
. set(
J,
new Doubl eWi t abl e(Doubl e. par seDoubl e(l ast Thet a. get (j)
.toString())
- al pha
I M
* Doubl e. par seDoubl e(t mpGradi ent. get(j).toString
())));
System out. println(gradient.count + " term nate_start_current:"”
+ tnpCurrent Thet a) ;
/1 judge if convergence is happening.
doubl e di ff = 0.00d;
for (int j =0; j < gradient.currentTheta.size(); j++)
diff += Math. pow ((Doubl eWitable) tnpCurrent Theta.get(j)).get
0)
- ((Doubl eWitable) lastTheta.get(j)).get(), 2);
if (/*
* Math.sqrt(diff) < 0.00000000005d |
*/ Long. par seLong(cont ext . get Confi guration().get("Max_lter_N
um')) == gradi ent. count
-get()) { _
context.wite(gradient.current Theta.toArray());
return true;
gradi ent.l ast Theta = tnpCurrent Thet a;
gradi ent.current Theta = t npCurrent Thet a;
gradi ent . count . set (gradi ent.count.get() + 1);
int n = (int) Long.parseLong(context.getConfiguration().get("
D nensi on"));
* update 4: Inportant!!! Remenber this step. Graph won't reset
t he
* initial value for global variables at the begi nning of each
iteration

for (int i =0; i <n; i++) {
gradi ent.tnpG adi ent.set(i, new Doubl eWitable(0));

return fal se;

public static void main(String[] args) throws | OException {
G aphJob job = new GraphJob();
j ob. set GraphLoader Cl ass(Li near Regr essi onVert exReader . cl ass);
j ob. set Runti nmePartitioning(false);
j ob. set Num\r ker s(3) ;
j ob. set Vert exd ass(Li near Regr essi onVert ex. cl ass);

j ob. set Aggr egat or O ass(Li near Regr essi onAggr egat or . cl ass) ;

j ob. addl nput (Tabl el nf o. bui | der ().t abl eNanme(args[0]). build());

j ob. addQut put (Tabl el nf 0. bui | der (). tabl eNanme(args[1]). build());

j ob. set Maxl teration(lnteger.parselnt(args[2])); // Nunbers of
Iteration

job.setlnt("Max_Iter_ Nuni, Integer.parselnt(args[2]));

job.setlnt("Di mension", |Integer.parselnt(args[3])); // D nmension

j ob. set Fl oat (" Al pha", Float.parseFl oat(args[4]));

long start = SystemcurrentTimeMI1is();

job.run();

Systemout. println("Job Finished in

+ (SystemcurrentTimeMIlis() - start) / 1000.0 + " seconds");

8.6.9 Triangle Count

This algorithm is used to calculate the number of triangles passing through each vertex.

The algorithm is implemented using the following steps:

1

2,
3.

4,

Sampl

. Each vertex sends its ID to all outbound neighbors.
Store inbound and outbound neighbors and sends them to the outbound neighbors.

Calculate the number of endpoint intersections for each Edge, get the sum, and output the

result to the table.

Get the sum of the output result in the table, divide it by 3, and get the number of triangles.

e code

Code for the triangle count algorithm are as follows:

i mport java.io.l OException;

i mport com al i yun. odps. dat a. Tabl el nf o;

i mport com al i yun. odps. graph. Conput eCont ext ;
i mport com al i yun. odps. graph. Edge;

i mport com al i yun. odps. graph. G aphJob;

i mport com al i yun. odps. graph. G aphLoader;

i mport com al i yun. odps. graph. Mut ati onCont ext ;
i mport com al i yun. odps. graph. Vert ex;

i mport com al i yun. odps. gr aph. Wr ker Cont ext ;
i mport com aliyun. odps.io.LongWitable;

i mport com aliyun. odps.io.Null Witabl e;

i mport com aliyun. odps.i o. Tupl e;

i mport com aliyun. odps.io.Witable;

i mport com aliyun. odps.io.Witabl eRecord;

* Conpute the nunber of triangles passing through each vertex.

The al gorithm can be conmputed in three supersteps:
|. Each vertex sends a nessage with its IDto all its outgoing
nei ghbors.

Il. The inconing neighbors and out goi ng nei ghbors are stored and
send to outgoi ng nei ghbors.

I1l. For each edge conpute the intersection of the sets at
destination

* vertex and sumthem then output to table.

* % Ok %k X X

/! Learning rate

* The triangle count is the sum of output table and divide by three
si nce
* each triangle is counted three tines.

public class Triangl eCount {
public static class TCVertex extends
Vert ex<LongWitable, Tuple, NullWitable, Tuple> {
@verride
public void setup(
Wor ker Cont ext <LongW i tabl e, Tuple, NullWitable, Tuple>
cont ext)
throws | OException {
/] collect the outgoing neighbors
Tuple t = new Tupl e();
if (this.hasEdges()) {
for (Edge<LongWitable, NullWitable> edge : this.getEdges())

t. append(edge. get Dest Vertexl d());

this. setVal ue(t);

@verride
public void conpute(
Conput eCont ext <LongW i tabl e, Tuple, Null Witable, Tuple>
cont ext,
I'terabl e<Tupl e> nsgs) throws | OException {
i f (context.getSuperstep() == 0L) {
/'l sends a nessage with its IDto all its outgoing neighbors
Tuple t = new Tupl e();
t.append(getld());
cont ext . sendMessageToNei ghbors(this, t);
} else if (context.getSuperstep() == 1L) {
/1 store the inconing neighbors
for (Tuple nsg : msgs) {
for (Witable item: nsg.getAll()) {
if (! this.getValue().getAll().contains((LongWitable)item

)) A
this. getVal ue(). append((LongWitable)iten);
/'l send both incom ng and outgoi ng neighbors to all outgoing
nei ghbor s
cont ext . sendMessageToNei ghbors(this, getValue());
} else if (context.getSuperstep() == 2L) {

/1 count the sum of intersection at each edge
| ong count = O;
for (Tuple nmsg : nsgs) {
for (Witable id : nsg.getAl()) {
if (getValue().getAll().contains(id)) {
count ++;

/] output to table
context.wite(getld(), new LongWitabl e(count));
this.voteToHalt();

public static class TCVertexReader extends

GraphLoader <LongWi t abl e,

Tuple, NullWitable, Tuple> {

@verride
public void | oad(

LongWitabl e recor dNum
Wit abl eRecord record,

Mut at i onCont ext <LongW i table, Tuple, NullWitable, Tuple>

cont ext)
t hrows | OException {

0));

TCVertex vertex =
vertex. setl d((LongWitabl e)
String[] edges =
for

new TCVertex();
record. get (0));
record.get(1).toString().split(",");
(int < edges.length; i++) {
try {

| ong destl D = Long. par seLong(edges][i]

);
vert ex. addedge(new LongWit abl e(destI D), Null Witable.get

i = 0; i

} cat ch(Nunber For mat Excepti on nfe) {
Systemerr.println("lgnore " + nfe);

cont ext . addVert exRequest (vertex);

public static void main(String[] args) throws | OException {
if (args.length < 2) {

System out . printl n("Usage:
Systemexit(-1);

<i nput > <out put >");

GraphJob job = new GraphJob();
j ob. set GraphLoader Cl ass(TCVert exReader . cl ass);
j ob. set Vert exd ass(TCVert ex. cl ass) ;

j ob. addl nput (Tabl el nfo. bui | der ().t abl eNanme(args[0]). build
j ob. addQut put (Tabl el nf 0. bui | der (). t abl eNane(args[1]). bui
long startTinme =

()
d());

SystemcurrentTimeM I 1is();

job.run();
Systemout. println("Job Finished in "

+ (SystemcurrentTineMIlis() - startTine) / 1000.0 + "

seconds");

8.6.10 Vertex Input

Sample code

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

java.io.| OExcepti on;
com al i yun. odps. conf . Confi gurati on
com al i yun. odps. dat a. Tabl el nf o;

com al i yun. odps. gr aph. Conput eCont ext ;
com al i yun. odps. graph. G- aphJob;

com al i yun. odps. graph. G aphLoader;
com al i yun. odps. graph. Vert ex;

com al i yun
com al i yun
com al i yun
com al i yun
com al i yun
com al i yun

odps.
odps.

gr aph. Vert exResol ver;
gr aph. Mut at i onCont ext ;
odps. gr aph. Vert exChanges;
odps. gr aph. Edge;

odps.io. LongWitabl e;
odps.i o. Wit abl eConpar abl e;

i mport com aliyun. odps.io.Witabl eRecord;

* The foll owi ng exanpl e describes how to conpile a graph job program
to load data of different types. It mainly describes how G aphLoader
* and VertexResol ver are cooperated to build the graph.

* A MaxConmput e Graph job uses MaxConpute tables as the input. Assune
that a job has two tables as the input, one storing vertices and the
ot her storing edges.

* The format of the table storing vertex information is as foll ows:

* | VertexID | VertexVal ue |

* | ido] 9|
* | idi] 7|
* | id2| 8§

* The format of the table storing edge information is as foll ows:
* | VertexlD | DestVertexl Dl EdgeVal ue|

* | ido| idl] 1]

* | ido| id2| 2|

* | id2| idl] 3|

* The preceding two tables show that idO has two outbound edges
pointing to idl and id2 respectively. id2 has an out bound edge
pointing to idl, and idl has no outbound edges.

* For data of this type, in G aphLoader::|oad(LongWitable, Record,
Mut at i onCont ext),

* Mut at i onCont ext #addVer t exRequest (Vertex) can be used to add
vertices to the graph, while

* |ink MiutationCont ext#addEdgeRequest (Wi t abl eConpar abl e, Edge) can
be used to add edges to the graph. In

* link VertexResol ver#resol ve(Witabl eConparabl e, Vertex, VertexChan
ges, bool ean)

* vertices and edges added in the | oad() nmethod are conbined to a
vertex object, which is used as the return value and added to the
graph for cal cul ati on.

public class Vertexl nput Format {
private final static String EDGE TABLE = "edge.tabl e";

* Resolve a record to vertices and edges. Each record indicates a
vertex or an edge according to its source.

* Simlar to comaliyun. odps. mapreduce. Mapper #map
* enter a record to generate key-value pairs. The keys are vertex
| Ds,
* and the values are vertices or edges witten based on the context
These key-value pairs are summari zed based on vertex |Ds using
Loadi ngVert exResol ver.

* Note: Vertices or edges added here are requests sent based on the
record content, and are not used in calculation. Only
* vertices or edges added using VertexResol ver participate in
cal cul ati on.

public static class Vertexlnput Loader extends
G aphLoader <LongWitabl e, LongWitable, LongWitable, LongWitable>
{

private bool ean i sEdgeDat a;
* Configure VertexlnputLoader.

* @ar am conf

* | ndicates the configuration paraneters of a job, which are
configured in the main G aphJob or set on the console.

* @aram workerld

* | ndicates the serial nunmber of the operating Wrker, which
starts fromO and can be used to build a uni que vertex |ID

* @aram i nput Tabl el nfo

* | ndicates informati on about the input table load to the current
Wor ker, which can be used to deternmine the type of currently input
data, that is, the record format.

@verride
public void setup(Configuration conf, int workerld, Tablelnfo
i nput Tabl el nfo) {
i sEdgeDat a = conf . get (EDGE_TABLE) . equal s(i nput Tabl el nf o.
get Tabl eNane()) ;

*

Based on the record content, resolve correspondi ng edges and
send a request to add themto the graph.

* @aram recor dNum

* |Indicates the record serial nunber, which starts from1 and is
separately counted in each Wrker

* @aramrecord

* | ndicates the record in the input table. It contains three
colums, indicating the first vertex, last vertex, and edge weight.

* @ar am cont ext

* | ndicates the context, requesting to add resol ved edges to the
gr aph.

@verride

public void | oad(
LongWitabl e recor dNum
Wit abl eRecord record,
Mut at i onCont ext <LongW i tabl e, LongWitable, LongWitable,

LongWi t abl e> cont ext)
t hrows | OException {
if (isEdgeData) {

* Data is fromthe table that stores edge infornation.

* 1. The first colum indicates the first vertex |D.
LongWitabl e sourceVertexI D = (LongWitable) record. get(0);

* 2. The second colum indicates the |last vertex ID.

LongWitabl e destinationVertexID = (LongWitable) record.get(1

* 3. The third columm indicates the edge wei ght.
LongWit abl e edgeVal ue = (LongWitable) record. get(2);

* 4., Create an edge that consists of the |ast vertex |ID and
edge wei ght.

Edge<LongWitabl e, LongWitabl e> edge = new Edge<LongWit abl e
, LongWi tabl e>(
desti nati onVertexl D, edgeVal ue);
* 5. Send a request to add an edge to the first vertex.
cont ext . addEdgeRequest (sourceVert exl D, edge);
* 6. If each record indicates a bidirectional edge, repeat
steps 4 and 5. Edge<LongWitabl e, LongWitabl e> edge2 = new
* Edge<LongWitabl e, LongWitable>(sourceVertexlD, edgeVal ue
)
* cont ext . addEdgeRequest (desti nati onVertexl D, edge?);
} else {
* Data comes fromthe table that stores vertex information.
* 1. The first colum indicates the vertex ID
LongWitable vertexI D = (LongWitable) record. get(0);
* 2. The second colum indicates the vertex val ue.

LongWitabl e vertexValue = (LongWitable) record. get(1);

* 3. Create a vertex that consists of the vertex |ID and
vertex val ue.

MyVertex vertex = new MyVertex();
* 4, Initialize the vertex.

vertex. setld(vertexlD);
vertex. set Val ue(vertexVal ue);

* 5. Send a request to add a vertex.

cont ext . addVert exRequest (vert ex);

* Summari ze key-val ue pairs generated using G aphLoader: : | oad(
LongWitabl e, Record, MiutationContext), which is simlar to

* reduce in comaliyun. odps. mapreduce. Reducer. For the unique
vertex ID, all actions such as

* addi ng/del eting vertices or edges on the IDis stored in
Ver t exChanges.

* Note: Not only conflicting vertices or edges added by using the
| oad() method are called. (A conflict occurs when multiple same vertex
obj ects or duplicate edges are added.)

* All IDs requested to be generated using the | oad() nethod are
cal | ed.

public static class Loadi ngResol ver extends
Vert exResol ver<LongWitable, LongWitable, LongWitable, LongWitab
le> {

* Process a request about adding/deleting vertices or edges for
an | D.

* VertexChanges has four APls, which correspond to the four APIs
of Mut ati onCont ext :

* VertexChanges: : get AddedVert exLi st() corresponds to

* Mut at i onCont ext : : addVert exRequest (Vert ex).

* In the load() nmethod, if vertex objects with the same ID are
requested to be added, such vertex objects are collected to the return

list.

* Vert exChanges: : get AddedEdgelLi st () corresponds to

* Mut ati onCont ext : : addEdgeRequest (Wi t abl eConpar abl e, Edge)

* | f edge objects with the same first vertex ID are requested to
be added, such edge objects are collected to the return |ist.

* Vert exChanges: : get RenbvedVert exCount () corresponds to

* Mut ati onCont ext::renoveVert exRequest (Wit abl eConpar abl e)

* |f vertices with the same ID are requested to be deleted, the
nunber of total deletion requests is returned.

* Vert exChanges#get RenobvedEdgelLi st () corresponds to

* Mut at i onCont ext #r enoveEdgeRequest (Wi t abl eConpar abl e,
W it abl eConpar abl e)

* |f edge objects with the sane first vertex ID are requested to
be del eted, such edge objects are collected to the return |ist.

* By processing |ID changes, you can state whether the ID
participates in calculation using the return value. |If the returned
vertex is not null

* the ID participates in subsequent calculation. If the returned
vertex is null, the ID does not participate in subsequent cal cul ation.

* @aramvertexld

* | ndicates the ID of the vertex requested to be added or first
vertex I D of the edge requested to be added.

* @aram vert ex

* | ndicates an existing vertex object. Its value is always nul
in the data | oadi ng phase.

* @aram vert exChanges

* Indicates the set of vertices or edges requested to be added/
del eted on the ID.

* @ar am hasMessages

* | ndi cates whether the ID has any input nessage. Its value is
al ways false in the data | oadi ng phase.

@verride
public Vertex<LongWitable, LongWitable, LongWitable, LongWitab

| e> resol ve(

LongWitabl e vertexld,

Vert ex<LongWitable, LongWitable, LongWitable, LongWitable
> vertex,

Vert exChanges<LongWitabl e, LongWitable, LongWitable,
LongWi t abl e> vert exChanges,

bool ean hasMessages) throws | OCException {

* 1. Cbtain the vertex object for cal cul ation.

MyVert ex conputeVertex = null
i f (vertexChanges. get AddedVertexList() == nul
| | vertexChanges. get AddedVertexList().isEmpty()) {
comput eVertex = new MyVertex();
comput eVertex. setld(vertexld);
} else {

* Assune that each record indicates a unique vertex in the
table storing vertex information.

comput eVertex = (MyVertex) vertexChanges. get AddedVertexLi st ().
get (0);

* 2. Add the edge requested to be added to the vertex to the
vertex object. If data is duplicated, performdeduplication based on
the al gorithm needs.

i f (vertexChanges. get AddedEdgeList() ! = null) {
for (Edge<LongWitable, LongWitable> edge : vertexChanges
. get AddedEdgeList()) {
comput eVer t ex. addEdge(edge. get Dest Vert exl d(), edge. get Val ue
0));

* 3. Return the vertex object and add it to the final graph for
cal cul ation

return conputeVert ex;

* Determne actions of the vertex that participates in calculation.

public static class MyVertex extends
Vert ex<LongWitable, LongWitable, LongWitable, LongWitable> {

* Wite the vertex edge to the result table according to the
format of the input table. Ensure that the format and data of the
i nput and out put tables are the sane.

* @ar am cont ext

* I ndicates the context during running.
* @ar am nmessages

* | ndicates the input nessage.

@verride

public void conpute(

Conput eCont ext <LongW it abl e, LongWitable, LongWitable,
LongWi t abl e> cont ext,

I terabl e<LongWit abl e> nessages) throws | OException {

* Wite the vertex ID and value to the result table storing
vertices.

context.wite("vertex", getld(), getValue());
* Wite the vertex edge to the result table storing edges.

i f (hasEdges()) {

for (Edge<LongWitable, LongWitable> edge : get Edges())
context.wite("edge", getld(), edge.getDest Vertexl d(
edge. get Val ue());

{
),

* Performone round of iteration.

vot eToHal t () ;

* @param ar gs
* @hrows | OException

public static void main(String[] args) throws | OException {
if (args.length < 4) {
t hrow new | OExcepti on(
"Usage: Vertexlnput Format <vertex input> <edge input> <vertex
out put > <edge out put>");

* GraphJob is used to configure G aph jobs.
GraphJob job = new GraphJob();
* 1. Specify input graph data and the table storing edge data.
j ob. addl nput (Tabl el nfo. bui | der ().t abl eNane(args[0]). build());
j ob. addl nput (Tabl el nf o. bui | der ().t abl eName(args[1]).build());
j ob. set (EDGE_TABLE, args[1]);

* 2. Specify the data | oadi ng node, resolve the record as edges.
Simlar to the map, the generated key is the vertex ID, and the val ue
is the edge.

j ob. set GraphLoader C ass(Vert exl nput Loader. cl ass) ;

* 3. Specify the data | oadi ng phase, and generate the vertex for
calculation. Simlar to reduce, edges generated by map are conbi ned
to a vertex.

j ob. set Loadi ngVert exResol ver Cl ass(Loadi ngResol ver. cl ass) ;

* 4. Specify actions of the vertex that participates in
cal cul ation. The vertex.conpute() method is used for each round of
iteration.

j ob. set Vert exd ass(MyVertex. cl ass);

* 5. Specify the output table of the Graph job, and wite the
calculation result to the result table.

j ob. addQut put (Tabl el nf o. bui | der ().t abl eNane(args[2]). | abel ("vertex
").build());
j ob. addQut put (Tabl el nf o. bui | der (). t abl eNane(args[3]). | abel ("edge
").build());
* 6. Submit the job for execution.

job.run();

8.6.11 Edge Input

Sample Code

i mport java.io.l OException;

i mport com al i yun. odps. conf. Confi guration;

i mport com al i yun. odps. dat a. Tabl el nf o;

i mport com al i yun. odps. gr aph. Conput eCont ext ;
i mport com al i yun. odps. graph. G aphJob;

i mport com al i yun. odps. graph. G aphLoader

i mport com al i yun. odps. graph. Vert ex;

i mport com al i yun. odps. graph. Vert exResol ver;
i mport com al i yun. odps. graph. Mut ati onCont ext ;
i mport com al i yun. odps. graph. Vert exChanges;

i mport com al i yun. odps. graph. Edge;

i mport com aliyun. odps.io.LongWitable;

i mport com aliyun. odps.io.Witabl eConparabl e;
i mport com aliyun. odps.io. Witabl eRecord,;

* The foll owi ng exanpl e descri bes how to conpile a graph job program
to load data of different types. It mainly describes how G aphLoader
* and VertexResol ver are cooperated to build the graph.

* A MaxConmpute Graph job uses MaxConpute tables as the input. Assune
that a job has two tables as the input, one storing vertices and the
ot her storing edges.

* The format of the table storing vertex information is as foll ows:

* | VertexID | VertexVal ue

* | ido| 9
* | id1 7]
* | id2| 8

* The format of the table storing edge information is as foll ows:
* | Vertex|l D | DestVertexl Dl EdgeVal ue|
* | ido| id1] 1]
* | idO|] id2| 2]
* | id2| idl] 3|

* The preceding two tables show that id0O has two outbound edges
pointing to idl and id2 respectively. id2 has an out bound edge
pointing to idl, and idl has no outbound edges.

* For data of this type, in GaphLoader::|oad(LongWitable, Record,
Mut at i onCont ext),

* Mut ati onCont ext #addVer t exRequest (Vertex) can be used to add
vertices to the graph, while

* |link MitationCont ext#addEdgeRequest (Wit abl eConpar abl e, Edge) can
be used to add edges to the graph. In

* link VertexResol ver#resol ve(Witabl eConparabl e, Vertex, VertexChan
ges, bool ean)

* vertices and edges added in the | oad() nethod are conbined to a
vertex object, which is used as the return val ue and added to the
graph for cal cul ati on.

public class Vertexl nput Format {
private final static String EDGE _TABLE = "edge.table";

* Resolve a record to vertices and edges. Each record indicates a
vertex or an edge according to its source.
* Simlar to com aliyun. odps. mapr educe. Mapper #map
* enter a record to generate key-value pairs. The keys are vertex
| Ds,
* and the values are vertices or edges witten based on the context
These key-val ue pairs are summari zed based on vertex |Ds using
Loadi ngVert exResol ver.

* Note: Vertices or edges added here are requests sent based on the
record content, and are not used for calculation. Only
* vertices or edges added using VertexResol ver participate in
cal cul ati on.

public static class Vertexlnput Loader extends
GraphLoader <LongWitabl e, LongWitable, LongWitable, LongWitable>
{

private bool ean i sEdgeDat a;
* Configure VertexlnputLoader.

* @ar am conf

* | ndicates the configuration paraneters of a job, which are
configured in the main G aphJob or set on the console.

* @aram wor kerld

* | ndicates the serial nunber of the operating Wrker, which
starts fromO and can be used to build a unique vertex ID

* @aram i nput Tabl el nfo

* | ndicates informati on about the input table |oaded to the
current Wbrker, which can be used to determne the type of currently
i nput data, that is, the record format.

@ Override
public void setup(Configuration conf, int workerld, Tablelnfo
i nput Tabl el nfo) {
i sEdgeDat a = conf. get (EDGE_TABLE) . equal s(i nput Tabl el nf o.
get Tabl eNane()) ;

* Based on the record content, resolve correspondi ng edges and
send a request to add themto the graph.

@ar am r ecor dNum
I ndi cates the record serial nunber, which starts from1l and is
separately counted in each Wrker.

* @aramrecord

* | ndicates the record in the input table. It contains three
colums, indicating the first vertex, last vertex, and edge weight.

* @aram cont ext

* | ndicates the context, requesting to add resol ved edges to the
gr aph.

* X

@verride
public void | oad(
LongWit abl e recor dNum
Wit abl eRecord record,
Mut at i onCont ext <LongW it abl e, LongWitable, LongWitabl e,
LongWi t abl e> cont ext)
throws | OException {
if (isEdgeData) ({
* Data comes fromthe table that stores edge information
* 1. The first columm indicates the first vertex ID.
LongWitabl e sourceVertexI D = (LongWitable) record. get(0);
* 2. The second colum indicates the |last vertex |ID.

LongWitabl e destinationVertexl D = (LongWitable) record.get(1

* 3. The third colum indicates the edge wei ght.
LongWitabl e edgeVal ue = (LongWitable) record.get(2);

* 4., Create an edge that consists of the |last vertex |ID and
edge wei ght.

Edge<LongWitabl e, LongWitabl e> edge = new Edge<LongWit abl e
, LongWit abl e>(
destinati onVertexl D, edgeVal ue);
* 5. Send a request to add an edge to the first vertex.
cont ext . addEdgeRequest (sourceVert exl D, edge);
* 6. If each record indicates a bidirectional edge, repeat
steps 4 and 5. Edge<LongWitable, LongWitable> edge2 = new
* Edge<LongWitabl e, LongWitable>(sourceVertexlD, edgeVal ue
)
* cont ext . addEdgeRequest (desti nati onVertexl D, edge2);
} else {
* Data comes fromthe table that stores vertex information.
* 1. The first colum indicates the vertex ID
LongWitable vertexlD = (LongWitable) record. get(0);
* 2. The second colum indicates the vertex val ue.

LongWitabl e vertexValue = (LongWitable) record. get(1);

* 3. Create a vertex that consists of the vertex | D and
vertex val ue.

MyVertex vertex = new MyVertex();
* 4, Initialize the vertex.

vertex.setld(vertexlD);
vert ex. set Val ue(vert exVal ue) ;

* 5. Send a request to add a vertex.

cont ext . addVert exRequest (vert ex) ;

* Summari ze key-val ue pairs generated using G aphLoader: : | oad(
LongWitable, Record, MitationContext), which is sinmlar to

* reduce in com aliyun.odps. mapreduce. Reducer. For the unique
vertex ID, all actions such as

* addi ng/del eting vertices or edges on the IDis stored in
Ver t exChanges.

* Note: Not only conflicting vertices or edges added by using the
| oad() method are called. (A conflict occurs when nmultiple same vertex
obj ects or duplicate edges are added.)

* All IDs requested to be generated using the | oad() method are
cal | ed.

public static class Loadi ngResol ver extends
Vert exResol ver<LongWitabl e, LongWitable, LongWitable, LongWitab
le> {

* Process a request about addi ng/deleting vertices or edges for
an | D

* VertexChanges has four APls, which correspond to the four APIs
of Mut ati onCont ext :

* VertexChanges: : get AddedVert exLi st() corresponds to

* Mut at i onCont ext : : addVert exRequest (Vert ex).

* |n the load() nmethod, if vertex objects with the same ID are
requested to be added, such vertex objects are collected to the return

list.

* Vert exChanges: : get AddedEdgelLi st () corresponds to

* Mut at i onCont ext : : addEdgeRequest (Wi t abl eConpar abl e, Edge)

* | f edge objects with the sane first vertex ID are requested to
be added, such edge objects are collected to the return |ist.

* VertexChanges: : get RenbvedVert exCount () corresponds to

* Mut ati onCont ext: : renmoveVert exRequest (Wi t abl eConpar abl e)

* | f vertices with the sane ID are requested to be deleted, the
nunber of total deletion requests is returned.

* Vert exChanges#get RenovedEdgelLi st () corresponds to

* Mut at i onCont ext #r enoveEdgeRequest (Wi t abl eConpar abl e,
Wit abl eConpar abl e)

* |f edge objects with the same first vertex ID are requested to
be del eted, such edge objects are collected to the return list.

* By processing | D changes, you can state whether the ID
participates in calculation using the return value. If the returned
vertex i s not null

* the ID participates in subsequent calculation. If the returned
vertex is null, the ID does not participate in subsequent cal cul ation.

@ar am vertexld
Indicates the ID of the vertex requested to be added or first
vertex | D of the edge requested to be added.

* @aram vert ex

* | ndicates an existing vertex object. Its value is always nul
in the data | oadi ng phase.

* @aram vert exChanges

* X

* | ndicates the set of vertices or edges requested to be added/
del eted on the ID

* @aram hasMessages

* | ndi cates whether the ID has any input nessage. Its value is
al ways false in the data | oadi ng phase.

@verride
public Vertex<LongWitable, LongWitable, LongWitable, LongWitab
| e> resol ve(
LongWitable vertexld,
Vert ex<LongWitabl e, LongWitable, LongWitable, LongWitable
> vertex,
Ver t exChanges<LongW i tabl e, LongWitable, LongWitable,
LongWi t abl e> vert exChanges,
bool ean hasMessages) throws | OException {

* 1. Obtain the vertex object to participate in calculation.

MyVert ex conputeVertex = null
i f (vertexChanges. get AddedVert exLi st () == nul
| | vertexChanges. get AddedVertexList().isEmty()) {
comput eVertex = new MyVertex();
conput eVertex. setld(vertexld);
} else {

* Assune that each record indicates a unique vertex in the
table storing vertex information.

comput eVertex = (MyVertex) vertexChanges. get AddedVertexList().
get (0);

* 2. Add the edge requested to be added to the vertex to the
vertex object. If data may be duplicate, perform deduplication based
on the al gorithm needs.

i f (vertexChanges. get AddedEdgeList() ! = null) {
for (Edge<LongWitable, LongWitable> edge : vertexChanges
. get AddedEdgelLi st ()) {
comput eVer t ex. addEdge(edge. get Dest Vert exl d(), edge. get Val ue
()

* 3. Return the vertex object and add it to the final graph for
cal cul ation

return conputeVert ex;

* Determ ne actions of the vertex that participates in calculation.
public static class M/Vertex extends
Vert ex<LongWitable, LongWitable, LongWitable, LongWitable> {
* Wite the vertex edge to the result table according to the
format of the input table. Ensure that the format and data of the
i nput and out put tables are the sane.

* @aram cont ext

* | ndi cates the context during running.
* @ar am nmessages
* | ndi cates the input nessage.

@verride
public void comput e(
Conput eCont ext <LongW i tabl e, LongWitable, LongWitable,
LongWi t abl e> cont ext,
It er abl e<LongW it abl e> nmessages) throws | OException {

* Wite the vertex ID and value to the result table storing
vertices.

context.wite("vertex", getld(), getValue());
* Wite the vertex edge to the result table storing edges.
i f (hasEdges()) {

for (Edge<LongWitable, LongWitable> edge : get Edges(

))
context.wite("edge", getld(), edge.getDestVertexld()
edge. get Val ue()) ;

{

* Performone round of iteration.

vot eToHal t () ;

* @aram ar gs
* @hrows | OException

public static void main(String[] args) throws | OException {
If (ARGs. Length <4){
throw new | CExcepti on(
"Usage: Vertexlnput Format <vertex input> <edge input> <vertex
out put > <edge out put>");

* raphJob is used to configure Graph jobs.
GraphJob job = new GraphJob();
* 1. Specify input graph data and the table storing edge data.
j ob. addl nput (Tabl el nf o. bui | der().tabl eNanme(args[0]). build());
j ob. addl nput (Tabl el nf o. bui | der () .tabl eName(args[1]).build());
j ob. set (EDGE_TABLE, args[1]);

* 2. Specify the data | oadi ng node, resolve the record as edges.
Simlar to the map, the generated key is the vertex ID, and the val ue
is the edge.

j ob. set GraphLoader C ass(Vert exl nput Loader. cl ass);

* 3. Specify the data | oadi ng phase, and generate the vertex that

participates in calculation. Sinilar to reduce, edges generated by

map are conbined to a vertex.

j ob. set Loadi ngVert exResol ver C ass(Loadi ngResol ver. cl ass);

* 4. Specify actions of the vertex that participates in
cal culation. The vertex.conpute() nethod is used for each round of
iteration.
j ob. set Vert exd ass(My/Vert ex. cl ass);

* 5. Specify the output table of the Graph job, and wite the
calculation result to the result table.

j ob. addQut put (Tabl el nf o. bui | der ().t abl eNane(args[2]). | abel ("vertex

").build());
j ob. addQut put (Tabl el nf o. bui | der (). t abl eNane(args[3]). | abel ("edge
").build());

* 6. Submt the job for execution.

job.run();

8.7 Introductions of Aggregator Mechanism

This document describes the implementation and related APIs of Aggregator and uses

KmeansClustering as an example to illustrate the usage of Aggregator.

In MaxCompute Graph, Aggregator helps collect and process global information. In MaxCompute

Graph, Aggregator is used to summarize and process global information.
Aggregator Implementation
The logic of Aggregator is divided into two parts.

* One partis run on all Workers in distributed mode,
» and the other part is only run on the Worker where AggregatorOwner is located in single vertex

mode.

Operations run on all Workers include creating an initial value and partial aggregation.The partial
aggregation result is sent to the Worker where AggregatorOwner is located. The Worker where
AggregatorOwner is located aggregates partial aggregation objects sent by common Workers
to obtain a global aggregation result, and determines whether the iteration ends. The global
aggregation result is sent to all Workers over the next round of supersteps for the next iteration,

as shown in the following figure.

f Worker ~ (aggregator owner)

- ¥ LY
A S
__.-"': ", .
N \
v v AN
., . v
v v ",
p p Ak p
v
v v
Worker £
Worker 1 Worker 2
Aggregator APls

Aggregator provides five APIs for user implementation. The following section describes the call

time and application of the five APlIs.

createStartupValue(context)

This APl is run once on all Workers. It is called before all supersteps start, and is generally
used to initialize AggregatorValue. AggregatorValue. In the first superstep iteration (superstep
equals 0), the AggregatorValue object initialized by the API can be obtained by the call of
WorkerContext.getLastAggregatedValue() or ComputeContext.getLastAggregatedValue().

createlnitialValue(context)

This APl is called once on all Workers when each superstep starts.It is used to initialize
AggregatorValue for the current iteration. Generally, the result of the previous iteration is

obtained through WorkerContext.getLastAggregatedValue(), and partial initialization is run.

aggregate(value, item)

This APl is run on all Workers. It is triggered by an explicit call of ComputeContext#aggregate
(item), while the preceding two APIs are automatically called by the framework. This APl is
used to run partial aggregation. The first parameter value indicates the result that the Worker
has aggregated in the current superstep. (The initial value is the object returned by createlnit

ialValue). The second parameter is transmitted when the user code calls ComputeContext#

aggregate(item). In this API, item is usually used to update value for aggregation. After all the
aggregate operations are run, the obtained value is the partial aggregation result of the Worker

. Then, the result is sent by the framework to the Worker where AggregatorOwner is located.

* merge(value, partial)

This APl is run by the Worker where AggregatorOwner is located. It is used to merge partial
aggregation results of Workers to obtain the global aggregation object. Similar to aggregate,
value indicates aggregated results, while partial indicates objects to be aggregated. Partial is

used to update value.

For example assume that three Workers w0, w1, and w2 exist with the partial aggregatio
n results of p0, p1, and p2. If p1, p0, and p2 in sequence are sent to the Worker where

AggregatorOwner is located in, the merge sequence is as follows:

1. merge(p1, p0) is run first, and p1 and p0 are aggregated as p1’.
2. merge(p1’, p2) is run, and p1’ and p2 are aggregated as p1”, which is the global aggregatio

n result in this superstep.

The preceding example shows that execution of the merge() method is not required when only

one Worker exists. That is, merge() is not called.

+ terminate(context, value)

After the Worker where AggregatorOwner is located runs merge(), the framework calls
terminate(context, value) to perform the final processing. The second parameter value
indicates the global aggregation result obtained by merge(). The global aggregation can be
modified further in this method. After terminate() is run, the framework distributes global
aggregation objects to all Workers for the next superstep. A special feature of terminate() is
that if true is returned, iteration of the entire job ends. Otherwise, iteration is continued. In
machine learning scenarios, it is usually determined that a job ends when true is returned after

convergence.
KmeansClustering example

The following section uses typical KmeansClustering as an example to describe how to use
Aggregator. The following section uses KmeansClustering as an example to describe how to use

Aggregator.

Note:

The complete code is provided in the attachment. Here, the code is resolved in the following

sequence.
* GraphLoader Section

GraphLoader The GraphLoader part is used to load an input table and convert it to a vertex or
edge of a graph. Each row of data in the input table is a sample, a sample constructs a vertex,

and VertexValue is used to store samples.

First, a writable class KmeansValue is defined as the VertexValue type:

public static class KmeansVal ue inplenments Witable {
DenseVect or sanpl e;
publ i c KmeansVal ue() {

publ i ¢ KrmeansVal ue(DenseVector v) {
this.sanmple = v;

@verride
public void wite(DataCutput out) throws | OException {

wi rt eFor DenseVect or (out, sanpl e);

@verride
public void readFiel ds(Datal nput in) throws | OException {

sanpl e = readFi el dsFor DenseVect or (i n);

KmeansValue A DenseVector object is encapsulated in KmeansValue to store a
sample. The DenseVector type is from matrix-toolkits-java. wirteForDenseVector() and
readFieldsForDenseVector() are used for serialization and deserialization. For more

information, see the complete code in the attachment.
The custom KmeansReader code is as follows:

public static class KnmeansReader extends
GraphLoader <LongW it abl e, KneansVal u
e, NullWitable, NullWitable> {
@verride
public void | oad(
LongWitabl e recor dNum
Wit abl eRecord record,
Mut at i onCont ext <LongW it abl e, KmeansVal ue, Nul | Wit abl e,
Nul | Wit abl e> cont ext)
t hrows | OException {
KmeansVertex v = new KnmeansVertex();
v.setld(recordNun;
int n = record.size();
DenseVect or dv = new DenseVect or (n);
for (int i =0; i <n; i++) {
dv.set (i, ((DoubleWitable)record.get(i)).get());

v. set Val ue(new KneansVal ue(dv));
cont ext . addVert exRequest (V) ;

https://github.com/fommil/matrix-toolkits-java/

In KmeansReader, a vertex is created when each row of data (a record) is read. recordNum
is used as the vertex ID, and the record content is converted to the DenseVector object and
encapsulated in VertexValue.

* Vertex

The custom KmeansVertex code is as follows. Regarding its logic, Partial aggregation is
run for samples maintained in each iteration. For more information about its logic, see

implementation of Aggregator in the following section.

public static class KnmeansVertex extends
Vert ex<LongWi t abl e, KneansVal ue,

Nul l Witable, Null Witable> {

@verride

public void comput e(

Comput eCont ext <LongW i t abl e, KmeansVal ue, Nul |l Witable, Null Witab
| e> cont ext,

I'terabl e<Nul | Witabl e> nessages) throws | OException {

cont ext . aggr egat e(get Val ue()) ;

+ Aggregator

The main logic of entire Kmeans is centralized in Aggregator. Custom KmeansAggrValue is

used to maintain the content to be aggregated and distributed.

public static class KmeansAggrVal ue i npl enents Witable {

DenseMat ri x centroi ds;
DenseMatri x suns; // used to recal cul ate new centroids
DenseVector counts; // used to recal cul ate new centroids
@verride
public void wite(DataCQutput out) throws | OException {

wi rt eFor DenseDenseMat ri x(out, centroids);

wi rt eFor DenseDenseMat ri x(out, suns);

wi rt eFor DenseVect or (out, counts);

@verride

public void readFiel ds(Datal nput in) throws | OException {
centroids = readFi el dsFor DenseMat ri x(i n);
sunms = readFi el dsFor DenseMatri x(in);
counts = readFi el dsFor DenseVect or (i n);

Three objects are maintained in KmeansAggrValue. centroids indicates the existing K centers
. If the sample is m-dimensional, centroids is a matrix of K x m. sums is a matrix of the same
size as centroids, and each element records the sum of a specific dimension of the sample
closest to a specific center. For example, sums(i,j) indicates the sum of dimension j of the

sample closest to center i.

counts is a K-dimensional vector, recording the number of samples closest to each center.
sums and counts are used together to calculate a new center, which is a main content of

aggregation.

The next is KmeansAggregator used for custom Aggregator implementation. The following

describes implementation in order of the preceding APls.
1. Run createStartupValue().

public static class KmeansAggregat or extends Aggregat or <KmeansAggr
Val ue> {
publ i ¢ KneansAggr Val ue createSt artupVal ue(Wr ker Cont ext cont ext)
throws | OException {
KnmeansAggr Val ue av = new KneansAggr Val ue() ;
byte[] centers = context.readCacheFile("centers");
String lines[] = new String(centers).split("\n");
int rows = |ines.!length;
int cols = lines[0].split(",").length; // assunption rows >= 1
av. centroi ds = new DenseMatri x(rows, cols);
av.sums = new DenseMatri x(rows, cols);
av. suns. zero();
av. counts = new DenseVect or(rows);
av. counts. zero();
for (int i =0; i <lines.length; i++) {

String[] ss = lines[i].split(",");

for (int j =0; j < ss.length; j++)

av.centroids.set (i, j, Double.valueCX(ss[j]));

return av;

In the preceding method, a KmeansAggrValue object is initialized, the initial center is read
from the resource file centers, and a value is granted to centroids. The initial values of
sums and counts are 0.

2. Run createlnitialValue().

@verride
public voi d aggregat e(KneansAggr Val ue val ue, Cbject item

t hrows | OException {
DenseVect or sanple = ((KnmeansVal ue)iten).sanpl e;
/[l find the nearest centroid
int min = findNearestCentroid(val ue.centroids, sanple);
/! update sum and count
for (int i =0; i < sample.size(); i ++) {
val ue. suns. add(nmin, i, sanple.get(i));

val ue. counts. add(nin, 1.0d);

In the createlnitialValue() method, findNearestCentroid() is called to find the index of

the center that has the shortest Euclidean distance with the sample item. Then, each

dimension is added to sums, and the value of counts is plus 1.(For more information about

how to implement findNearestCentroid(), see the attachment.)

The preceding three functions are run on all Workers to implement partial aggregation.
The following describes global aggregation-related operations run on the Worker where

AggregatorOwner is located.

1. Run merge:

@verride

public void nerge(KnmeansAggr Val ue val ue, KneansAggr Val ue partial)
t hrows | OException {

val ue. suns. add(parti al . suns);

val ue. counts. add(partial . counts);

The implementation logic of merge is that values of sums and counts aggregated by each

Worker are added together.

2. Run terminate():

@verride
publ i c bool ean terni nat e(Wrker Cont ext cont ext, KmeansAggr Val ue
val ue)
throws | OException {
/] Calculate the new neans to be the centroids (original suns)
DenseMat ri x newCentri ods = cal cul at eNewCent roi ds(val ue. suns, val ue
counts, val ue.centroids);
/1 print old centroids and new centroids for debuggi ng
Systemout. println("\nsuperstep: " + context.getSuperstep() +
“\nold centriod:\n" + value.centroids + " new centriod:\n" +
newCentri ods) ;
bool ean converged = i sConver ged(newCentri ods, val ue.centroids, O.
05d) ;
Systemout. println("superstep: " + context.getSuperstep() + "/"
+ (context.getMaxlteration() - 1) + " converged: " + converged
) .

i f (converged || context.getSuperstep() == context.getMaxlteration
() -
/'l converged or reach max iteration, output centriods
for (int i =0; i < newCentriods.numRows(); i++) {
Witable[] centriod = new Witabl e[newCentri ods. nunmCol utms()];
for (int j =0; j < newCentriods. numCol ums(); j++) {
centriod[j] = new Doubl eWitabl e(newCentriods.get(i, j));

context.write(centriod);

/] true neans to termnate iteration
return true;

/] update centri ods
val ue. centroi ds. set (newCentri ods) ;
/] false means to continue iteration

return fal se;

In terminate(), calculateNewCentroids() is called based on sums and counts to calculate

the average value and obtain the new center. Then, isConverged() is called based on the
Euclidean distance between the new and old centers to determine whether the center has
been converged. If the number of convergences or iterations reaches the upper threshold, the
new center is output, and true is returned to end the iteration. Otherwise, the center is updated
,and false is returned to continue iteration. For more information about how to implement

calculateNewCentroids() and isConverged(), see the attachment.
* main() method

The main() method is used to build GraphJob, perform related settings, and submit a job. The

code is as follows:

public static void main(String[] args) throws | OException {
if (args.length < 2)
print Usage() ;
GraphJob job = new GraphJob();
j ob. set GraphLoader Cl ass(KnmeansReader . cl ass) ;
job.setRuntimePartitioning(false);
j ob. set Vert exd ass(KnmeansVert ex. cl ass) ;
j ob. set Aggr egat or O ass(KneansAggr egat or. cl ass);
j ob. addl nput (Tabl el nf o. bui | der ().t abl eName(args[0]). build
j ob. addQut put (Tabl el nf o. bui | der (). t abl eNane(args[1]). bui |
/] default max iteration is 30
j ob. set Maxl teration(30);
if (args.length >= 3)
job. set Maxlteration(lnteger. parselnt(args[2]));
long start = SystemcurrentTimeM I 1is();
job.run();
Systemout. println("Job Finished in
+ (SystemcurrentTinreMIlis() - start) / 1000.0 + " seconds");

)
0));

Note:
If job.setRuntimePartitioning(false) is set to false, data loaded by Workers is not partitioned
based on Partitioner. Data is maintained by the Worker that loads the data.The data loaded is
no longer repartitioning Based on the partition, that is, who loads the data and who maintains
it.
Conclusion

This document introduces the aggregator mechanism in the MaxCompute graph, the API
meaning, and the kmeans Clustering example. In general, Aggregator can be implemented as

follows:

1. Each Worker runs createStartupValue during startup to create AggregatorValue.

2. Each Worker runs createlnitialValue before each iteration starts to initialize AggregatorValue in
the current round.

3. In an iteration, each vertex uses context.aggregate() to run aggregate(), implementing partial
iteration in the Worker.

4. Each Worker sends the partial iteration result to the Worker where AggregatorOwner is located.

5. The Worker where AggregatorOwner is located runs merge several times to implement global
aggregation.

6. The Worker where AggregatorOwner is located runs terminate to process the global aggregatio

n result and determines whether to end the iteration.
Attachment

Kmeans

https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/cn/odps/0.0.90/assets/graph/Kmeans.gz

9 Security

9.1 Target Users

This article is intended for MaxCompute project owners, administrators, and users interested in

the MaxCompute multi-tenant data security system.
The MaxCompute multi-tenant data security system includes:

» User authentication;

» User and authorization management of projects;

Sharing of resources across projects;

» Data protection of projects.

9.2 Quick Start

9.2.1 Add users and grant permissions

In the following scenario, Jack is the project administrator of a project called prj1. A new team
member named Alice, who already has the Alibaba Cloud account alice@aliyun.com), applies
to join the prj1project. Alice requests the following permissions: view table lists, submit jobs, and

create tables.
The following procedure is performed by Jack, the project administrator:

use prjl;
add user aliyun$alice@liyun.com --Add the user
grant List, CreateTable, Createlnstance on project prjl to user
al i yun$al i ce@l i yun.com --Authorize the user by using the GRANT
st at enent

9.2.2 Add users and grant permissions using ACL

In the following scenario, Jack is the project administrator of a project called prj1. In the scenario,
three new data auditors, Alice, Bob, and Charlie, are added to the project team. They need to all

apply for the following permissions: view table lists, submit jobs, and read the table userprofile.

In this scenario, the project administrator can perform authorization by using the object-based ACL

Authorization .
The following procedure is performed by Jack, the project administrator:

use prjl;
add user aliyun$alice@liyun.com --Add the user

https://www.alibabacloud.com/help/zh/doc-detail/27935.htm
https://www.alibabacloud.com/help/zh/doc-detail/27935.htm

add user aliyun$bob@liyun.com

add user aliyun$charlie@liyun.com

create role tableviewer; --Create a role

grant List, Createlnstance on project prjl to role tableviewer; --
Grant perm ssions to the role

grant Describe, Select on table userprofile to role tableviewer;

grant tabl eviewer to aliyun$alice@liyun.com --Gant the
tabl eviewer role to the user

grant tabl eviewer to aliyun$bob@liyun.com

grant tabl eviewer to aliyun$charlie@liyun.com

9.2.3 Project data protection

In the following scenario, Jack is the project administrator of a project called prj1. The project
involves a large volume of sensitive data including user IDs, shopping records, and data mining
algorithms with proprietary intellectual property rights. Jack wants to properly protect the sensitive
data and algorithms and restrict project users to only have access to data within the project. Jack
wants to make sure that data can only flow within the project. Many data mining algorithms with
proprietary intellectual property right are included in the project. Jack hopes that these sensitive
data and algorithms can be properly protected and only accessible to users within the project, and

that data flow in the project only, and not out of the project.

To protect the project data, Jack must follow these steps:

use prjl;
set ProjectProtection=true; --Enable the project data protection
mechani sm

Once the project data protection is enabled, data within the project cannot be transferred out of

the project. All data flows only within the project.

There may be scenarios where users want to export data tables out of the project under the
approval of the project administrator. In such cases, MaxCompute provides the TrustedProject
configuration to support external data export from the protected project. In this type of scenario, to
configure project prj2 as a trusted project of prj1 and to enable data flow from prj1 to prj2, perform

the following command:

use prjl;
add trustedproject prj2;

9.3 User Authentication

MaxCompute supports the Alibaba Cloud account system and the RAM account system .

Note:

MaxCompute can recognize the RAM account system but cannot recognize the RAM permission
system. Users can add any of their RAM sub-accounts to a project of MaxCompute. However,
MaxCompute skips the RAM permission definitions when it verifies the permissions of the RAM

sub-account.

By default, the MaxCompute project only recognizes the Alibaba Cloud account system. You can

view the account system supported by this project by running | i st account provi ders; .

Typically, only Alibaba Cloud accounts are displayed. To add the RAM account system, run the
add account provi der ram command. After the RAM account system is added, you can

runlist accountproviders; tomake sure it has been successfully added to the supported

account systems.
Apply for an Alibaba Cloud Account

If you do not have an Alibaba Cloud account, visit here to apply for one.

Note:
You need a valid email address when you apply for an Alibaba Cloud account. The email
address is then used as the account name after registration. For example, Alice can use her
email address alice@aliyun.com to register an Alibaba Cloud account. Her account name is

alice@aliyun.com after Alibaba Cloud account registration.

Apply for AccessKey
Click here to create or manage your AccessKey list after you register an Alibaba Cloud account.

An AccessKey consists of the AccessKeyID and AccessKeySecret. The AccessKeylD is used
to retrieve the AccessKey, and the AccessKeySecret is used to sign the computing messages.
You must secure your AccessKey from disclosure. When an AccessKey needs updated, you can

create a new AccessKey and disable the existing AccessKey.
Log on to MaxCompute with an Alibaba Cloud Account

You must configure the AccessKey in the configuration file conf/odps_config.ini before you use

odpscmd to log on. The following is an example:
proj ect _name=nypr oj ect

access_i d=<lnput the AccessKeylD here, excluding the angle brackets>
access_key=<Input the AccessKey here, excluding the angle brackets>

http://account.aliyun.com/
http://i.aliyun.com/access_key

end_poi nt=http://service.odps. aliyun-inc.coni api

Note:
To enable or disable an AccessKey on the Alibaba Cloud website, it takes 15 minutes after the

operation is completed.

9.4 User Management

Any user, except the project owner, must be added to the MaxCompute project and granted the
corresponding permissions to manage data, jobs, resources, and functions in MaxCompute. This
article describes how a project owner can add, authorize, and remove other users, including RAM

sub-accounts, to MaxCompute.

If you are a project owner, we recommend that you read this article carefully. If you are a typical
user, we recommend that you submit an application to the project owner to be added to the

corresponding project. We recommend all users to read the subsequent sections.

All the operations mentioned in this article are executed on the console. If the OS is Linux, run

./ bi n/ odpscnd. If the OS is Windows, run . / bi n/ odpscnd. bat .
Add a User

In the following scenario, the project owner, Alice, wants to authorize another user, therefore she
must add the user to the project first. Only a user who has been added to the project can be

authorized.

The command to add a user is as follows:
add user

The <username> of an Alibaba Cloud account is a valid email address registered on the official

page, or a RAM sub-account of an Alibaba Cloud account that runs the command. For example:

add user ALI YUN$odps_test _user @l iyun. com
add user RAMBram test_user;

Assume that the Alibaba Cloud account of Alice is alice@aliyun.com. When Alice runs these

statements, the following results are returned by running the | i st users; command:

RAMBal i ce@l i yun. com ram test user
ALl YUN$odps_t est _user @l i yun. com

This indicates that the Alibaba Cloud account odps_test user@aliyun.com and the sub-account

ram_test_user created by Alice using RAM have been added to the project.

Add a RAM Sub-account
The two ways to add a RAM sub-account are as following:

» By using DataWorks, for more information, see Prepare a RAM account.

* By using MaxCompute client commands as described in this document.

Note:

* MaxCompute only allows a primary account to add its own RAM sub-accounts to a project.
RAM sub-accounts of other Alibaba Cloud accounts are not allowed. Therefore, you do not
need to specify the name of the primary account before the RAM sub-accounts when add

user . MaxCompute determines by default that the account which runs the command is
the corresponding sub-account.

+ MaxCompute only recognizes the RAM account system and does not recognize the RAM
permission system. Users can add any of their RAM sub-accounts to a MaxCompute
project, but MaxCompute does not consider the permission limits in RAM when performing

permission verification of RAM sub-accounts.

By default, MaxCompute project only recognizes Alibaba Cloud account systems. To view the
supported account systems use the | i st account provi ders; command. Typically, only

the ALIYUN account is visible, for example:

odps@****>| i st account provi ders;
ALI YUN

Note:
Only the project owner has permission to perform operations related to account

provi ders.

As shown in the preceding figure, you can only see the ALI YUN account system. If you want to

add RAM accounts support, you can run the add account provi der ram as follows:

odps@ odps_pd_i nt er >add account provi der ram
(04

After added successfully, the user still cannot operate MaxCompute. The user must be
granted certain permissions to operate MaxCompute within the limits of permissions. For more

information, see Authorization.

https://www.alibabacloud.com/help/zh/doc-detail/30264.htm

User Authorization

After the user has been added, the project owner or project administrator must authorize the user.

The user can perform the operations only after obtaining the permissions.

MaxCompute provides ACL authorization, cross-project resource sharing, and project
resource protection. The following are two common scenarios, for more information, see ACL

Authorization.

Scenario 1
In the following scenario, Jack is the administrator of the project prj1. A new project team
member Alice (Alibaba Cloud account: alice@aliyun.com) applies to join the project prj1, and for
permission to view table lists, submit jobs, and create tables.
The admin or the owner of the project can run the following command on the client:
use prjl; --Open the project prjl

add user aliyun$alice@liyun.com --Add the user

grant List, CreateTable, Createlnstance on project prjl to user aliyun

$alice@liyun.com --Authorize the user
Scenario 2
In the following scenario, assume Alibaba Cloud account user (bob@aliyun.com) has been added
to a project ($user_project_name), and must be granted permission to create tables, obtain table
information, and run functions.

The admin or the owner of the project can run the following command on the client:

grant CreateTabl e on PRQJECT $user_project_name to USER ALl YUN$bob@
al i yun. com
--Gant CreateTabl e perm ssion on project “$user project nane” to

bob@l i yun. com
grant Describe on Table $user _table nane to USER ALI YUN$Sbob@l i yun. com

--Gant Describe permission on table “$user_table_nane” to bob@
al i yun. com
grant Execute on Function $user_function_name to USER ALI YUNSbob@
al i yun. com

--Grant Run perm ssion on function "$user _function_nanme" to bob@
al i yun. com

Authorize RAM Sub-account
To check accounts support, run | i st account provi ders; command as follows:

odps@****>| i st account providers;

ALl YUN, RAM

In this project, RAM accounts are also supported. You can add a RAM sub-account to this project

and grant Descr i be permission on the tables. For example:

odps@ ****>add user ranfbob@liyun.com Alice;

OK: Di spl ayNane=RAMBbob@l i yun. com Al i ce

odps@****>grant Describe on table src to user rantbob@liyun.com
Alice;

(04

After running these commands, Al i ce and bob@l i yun. comRAM sub-account, can logon to
MaxCompute with their own AccessKeylD and AccessKeySecret, and run desc on the table

Src.

Note:

* For more information about how to create a RAM sub-account AccessKeyl D and

AccessKeySecr et, see Create a RAM user.

* For more information about how to add or remove users on MaxCompute, see the correspond

ing content of this article.

* For more information about authorizing a user, see Authorization.
Remove a User

When a user leaves the project team, Alice must remove the user from the project. Once a user is

removed from the project, the user no longer has any access permission to the project resources

The command to remove a user from a project is as follows:

renove user

Note:

+ A user removed from a project immediately loses any authority to access resources of the
project.

+ Before removing a user who has been assigned roles, those roles must be revoked. For more
information about roles, see Role Management.

« After a user is removed, all ACL Authorization data related to the user is retained. After a

user is added to a project again, the ACL Authorization of this user is enabled again.

https://www.alibabacloud.com/help/zh/doc-detail/28637.htm

+ MaxCompute does not support complete removal of a user and all the permission data from a

project.
Alice To remove corresponding users, Alice can run the following two commands:

renmove user ALl YUNSodps_t est_user @l i yun. com
renmove user RAMBram test user;

To make sure the users are removed, run the following command:
LI ST USERS;

If those two accounts are no longer listed after running the command, it indicates that the

accounts have been removed from the project.
Remove a RAM Sub-account

Similarly, RAM sub-account can be removed by using the r embve user command. sub-account
For example:

odps@ ****>r evoke describe on table src fromuser ranBbob@liyun.com
Alice;

(016

-- Revoke Alice sub-account perm ssions

odps@****>renpve user ranBbob@liyun.com Alice;

Confirmto "renove user ranmbbob@liyun.comAlice;" (yes/no)? yes

(04

-- Renpbve sub-account

If you are the project owner, you can also remove the RAM account system from the current
project by renove account provi der as follows:

odps@ ****>r enbve account provi der ram

Confirmto "renmpove account provider ram" (yes/no)? yes

(016

odps@****>| i st account provi ders;
ALI YUN

9.5 Role Management

A role is a defined set of access permissions. It can be used to assign the same set of permission
s to a group of users. Role-based authorization can greatly simplify the authorization process and
reduce the authorization management cost. Role-based authorization can be used with priority

when user authorization is performed. Role-based authorization can greatly simplify the authorizat
ion procedure and reduce authorization management costs. When a user must be authorized, the

owner should consider whether it would be better to use a role to authorize them.

When a project is created, an admin role is automatically created with a defined set of privileges
authorized to the role. These privileges include access to all objects within the project,
management, and authorization of users and roles. In comparison to a project In comparison to a
project owner, the admin role cannot assign admin permission to any user, set the project security
configuration, or change the authentication model for the project. Permissions of the admin role

cannot be modified.

Role management commands are as follows:

create role <rolenane> --Create a role

drop role <rolenane> --Delete a role

grant <rol ename> to <usernanme> --Grant a role to a user
revoke <rol enane> from <user nanme> --Revoke a role from a user

Note:

* One role can be assigned to multiple users at the same time, and one user can also belong to

multiple roles.

* For more information about the mapping between the roles in DataWorks and in MaxCompute,
and the platform permissions of these roles, see the project member management module in

Project Management.
Create a Role
Use the following command format to create a role:
CREATE ROLE;
For example,
assume the role player must be created. Enter the following command on the client:
create role player;
Add a User to Role
To add a user to the role, use the following command format to add a user to the role:
GRANT <r ol eNane> TO <ful |l _usernane> ;

For example,

https://www.alibabacloud.com/help/zh/doc-detail/47736.htm
https://www.alibabacloud.com/help/zh/doc-detail/47736.htm

assume the user bob@aliyun.com must be added to the player role, enter the following command

on the console:
grant player to bob@liyun.com

Authorize Role

The authorization statement for the role is similar to the authorization for the user. For more

information, see User authorization.

Note:

After role authorization is complete, all users under this role have the same permissions.
For example,

suppose Jack is the administrator of project prj1. Three new data auditors, Alice, Bob, and Charlie
, are added to the project team. They must apply for the following permissions: view the table

lists, submit the jobs, and read the table userprofile.

In this scenario, the project administrator can perform authorization by using the object-based ACL

Authorization.

The procedure is as follows:

use prj1;

add user aliyun$alice@liyun.com --Add the user

add user aliyun$bob@l i yun. com

add user aliyun$charlie@liyun.com

create role tableviewer; --Create a role

grant List, Createlnstance on project prjl to role tableviewer; --
Grant perm ssions to the role

grant Describe, Select on table userprofile to role tableviewer;

grant tabl eviewer to aliyun$alice@liyun.com --Gant the
tabl eviewer role to the user

grant tabl eviewer to aliyun$bob@liyun.com

grant tabl eviewer to aliyun$charlie@liyun.com

Revoke the Role from a User

To revoke the role from a user, use the following command format to revoke the role from a user:
REVOKE <r ol eNane> FROM <ful | _user nane>;

For example,

assume the user bob@aliyun.com must be removed from the player role. Enter the following

command on the client:
revoke player from bob@liyun.com
Delete a Role
To delete a role, use the following command format to delete a role:
DROP RCLE <r ol eNane>;

For example,
assume the role player must be deleted:

drop role player;

Note:
When you delete a role, MaxCompute checks whether other users are in this role. If yes, this
role cannot be deleted. The role can be successfully deleted only when all users in the role are
revoked from this role. If there are such users, this role cannot be removed. Removing a role

succeeds only if all of its users are already revoked from it.

9.6 Authorization

After a user is added, the project owner or the project administrator must authorize the user.
The user can perform operations only after obtaining permission. Authorization allows a user to
perform operations including read, write, and view on tables, tasks, resources, and other objects

of the MaxCompute.

MaxCompute provides access control list (ACL) authorization, cross-project resource sharing,
and project resource protection. Authorization typically includes three elements: subject, object,
and action. In MaxCompute, the subject refers to a user or a role and the object refers to various

types of objects in a project.

ACL authorization includes following MaxCompute objects: Project, Table, Function, Resource,
and /nstance. Operations are related to specific object types, therefore different types of objects

support different types of actions.

MaxCompute projects support the following object types and actions.

Object Action Description

Project Read View project information (excluding any project objects),
such as the creation time.

Project Write Update project information (excluding any project objects
), such as comments.

Project List View the list of all types of objects in the project.

Project CreateTable Create a table in the project.

Project Createlnstance Create an instance in the project.

Project CreateFunction Create a function in the project.

Project CreateResource | Create a resource in the project.

Project All Grant all of the preceding permissions.

Table Describe Read the metadata of the table.

Table Select Read the table data.

Table Alter Change the metadata of the table and add or delete a
partition.

Table Update Overwrite or add table data.

Table Drop Delete a table.

Table All Grant all the preceding permissions.

Function Read Read and run permissions.

Function Write Update.

Function Delete Delete

Function Run Run.

Function All Grant all the preceding permissions.

Resource Read Read.

Resource Write Update.

Resource Delete Delete.

Resource All Grant all the preceding permissions.

Instance Read Read.

Instance Write Update.

Instance All Grant all the preceding permissions.

Note:

The CreateTable action for the objects of Project type must work with the Createlnstance
permission for the Project object. The Select, Alter, Update, and Drop actions for the objects of
Table type must work with the Createlnstance permission for the Project object.

If the Createlnstance permission is not granted, the corresponding operations cannot be
performed even though the mentioned permissions are granted. This is related to the internal
implementation of MaxCompute. The Select permission for Table type objects must work with
the Createlnstance permission. While performing cross-project operation, such as selecting
the table of project B in the project A, you must have the project A Createlnstance and the
project B Table select permissions .

After a user or role is added, you must grant permissions to the user or role. MaxCompute
authorization is an object-based authorization method. The permission data authorized by
the access control list (ACL) is considered as a type of sub-resource of the object. Authorizat
ion can be performed only when the object exists. When the object is deleted, the authorized

permission data is automatically deleted.
SQL92 Authorization

MaxCompute supports authorization using the syntax similar to the GRANT and REVOKE
commands defined by SQL92. It grants or revokes permissions to/from the existing project

object through simple authorization statements. The authorization syntax is as follows:

grant actions on object to subject

revoke actions on object from subject

actions ::= action_itenl, action_itenR2, ...

object ::= project project _nane | table schema_nane |

i nstance inst_nane | function func_nane |
resource res_name

subject ::= user full _usernane | role role_nane
Users familiar with the GRANT and REVOKE commands defined by SQL92 or with Oracle
database security management can find that the ACL authorization syntax of MaxCompute
does not support [WITH GRANT OPTION] authorization parameters. For example, when User
A authorizes User B to access an object, User B cannot grant the permission to User C. In

this scenario, all permissions must be granted by one of the following three roles:

* Project owner
* Project administrator

* Object creator

Use Example of ACL Authorization

In the following scenario, the Alibaba Cloud account user alice@aliyun.com is a newly added
member to the project test_project_a, and Allen is a RAM-sub account added to bob@aliyun.
com. In test_project_a, they both must submit jobs, create tables, and view existing objects in

the project.

The following authorization operations procedure is performed by the project administrator:

use test_project; --Open the project

add user aliyun$alice@liyun.com --Add the user

add user aliyun$alice@liyun.com --Add the user

create role worker; --Create a role

grant worker TO aliyun$alice@liyun.com --Gant the role

grant worker TO aliyun$bob@liyun.com --Gant the role

grant Createl nstance, CreateResource, CreateFunction, CreateTabl
e, List ON PRQIECT test project TO ROLE worker; --Authorize the role

Cross-project Table/Resource/Function Sharing

Following the preceding example, aliyun$alice@aliyun.com and ram$bob@aliyun.com:Allen
have certain permissions in test_project_a. These two users must query table prj_b_test table

in test_project_b, and use test_project_b. UDF prj_b_test_udf.

The following authorization operations procedure is performed by the administrator

test_project_b:

use test_project_b; --Open the project
add user aliyun$alice@liyun.com --Add the user
add user rantbob@liyun.com Allen; --Add th RAM sub-account
create role prj_a worker; --Create a role
grant prj_a worker TO aliyun$alice@liyun.com --Gant the role
grant prj_a worker TO rantbob@liyun.comAice; --Gant the role
grant Describe , Select ON TABLE prj_b test table TO ROLE
prj_a worker; --Authorize the role
grant Read ON Function prj_b test _udf TO RCLE prj_a_worker; --
Aut hori ze the role
grant Read ON Resource prj_b test udf resource TO ROLE
prj_a worker; --Authorize the role
--After authorization, the two users query table and use udf in
test _project_a as foll ows:
use test _project_a;
sel ect test _project b:prj b test udf(arg0, argl) as res from
test _project_b.prj_b_test_table;

Note:

If UDF is created in test_project_a, only Resource authorization is required. Write as the

following:

create function function_nane as 'com aliyun. odps. conpi |l er. udf.
Pl aybackJsonShri nkUdf' using 'test project _b/resources/odps-conpiler-
pl ayback.jar' -f;.

9.7 Permission Check

MaxCompute provide the ability to view multiple permissions, including the permissions of certain

users or roles, and authorization lists of specified objects.

MaxCompute uses the markup characters A, C, D, and G when showing the permissions of users

or roles. The meanings of these markup characters are as follows:

* A: Access allowed.
* D: Access denied.
» C: Access granted with conditions. It appears only in a policy authorization system.

* G: Access granted with conditions. Permission can be granted to objects.
An example of viewing permissions is as follows:

odps@est _project> show grants for aliyun$odpstestil@liyun.com

[rol es]

dev

Aut hori zation Type: ACL

[rol e/ dev]

A projects/test_project/tables/tl: Select

[user/ odpstest 1@l iyun. coni

A projects/test_project: CreateTable | Createlnstance | CreateFunc
tion | List

A projects/test_project/tables/t1l: Describe | Select

Aut hori zati on Type: Policy

[rol el dev]

AC projects/test project/tables/test *:. Describe

DC projects/test_project/tables/alifinance_*: Sel ect

[user/ odpstest 1@l iyun. coni

A projects/test_project: Create* | List

AC projects/test_project/tables/alipay_*: Describe | Select

Aut hori zation Type: ObjectCreator

AG projects/test_project/tables/t6: Al

AG projects/test _project/tables/t7: Al

View the Permissions of a Specified User

show grants; --View perni ssions of the current user.

show grants for <username>; --View access perm ssions of a
speci fied user. The operation can be executed by project owners and
adm ni strators.

For example:

to view the user Alibaba Cloud account bob@aliyun.com permissions in the current project, run

the following command on the client:
show grants for ALl YUN$bob@l i yun. com
View RAM sub-account permissions:
show grants for RAMbaccount: sub-account;
For example:
show grants for RAMBbob@l i yun. com Ali ce;
View the Permissions of a Specified Role
describe role --View access perm ssions granted to a specified role
View the Authorization List of a Specified Object

show acl for [on type];--View the user and role authorization |ist of
a specified object

Note:
When [on type <object Type>] is omitted, the default type is Table.

9.8 Security Configuration

MaxCompute is a multi-tenant data processing platform. Distinct tenants have distinct data
security requirements. Therefore, MaxCompute provides project-level security configurations to
comply with the unique requirements of individual tenants. Project owners can customize their

external account support and authentication models.

MaxCompute provides multiple methods of orthogonal authorization, including access control list
(ACL) authorization and implicit authorization. Note: An object creator is automatically granted
the object access permission. Not all users need these security features. Users can properly
configure the project authentication model based on their service security requirements and usage

patterns.

show SecurityConfiguration
--View the project security configuration.
set CheckPer m ssi onUsi ngACL=true/f al se
-- Enabl e/ Di sabl e the ACL authorizati on nechanism The default
val ue is true.
set bj ect Creat or HasAccessPerm ssi on=true/fal se
-- Enabl e/ Di sabl e automati c access permi ssion granting to object
creators. The default value is true.

set bj ect Creat or HasGr ant Per i ssi on=true/ f al se
-- Enabl e/ Di sabl e autonmati c authorizati on perm ssion granting to

obj ect creators.

The default value is true.
set ProjectProtection=true/false

--Enabl e/ Di sabl e project data protection to enabl e/ di sabl e

data transfer fromthe project.

Note:

You can also complete the security configuration of a project in a visualized technique using

DataWorks. For more information, see Project Management.

9.9 Security Command List

Authentication Configuration

9.9.1 Security Configuration of a Project

Statements

Description

show SecurityConfiguration

View the security configuration of the project.

set CheckPermissionUsingACL=true/false

Enable/Disable the ACL-based authorization.

set CheckPermissionUsingPolicy=true/false

Enable/Disable the policy authorization.

set ObjectCreatorHasAccessPermission=true/
false

Grant/Revoke default access permissions to/
from object creators.

set ObjectCreatorHasGrantPermission=true/
false

Grant/Revoke default authorization permissions
to/from object creators.

Data Protection

Statement

Description

set ProjectProtection=false

Disable data protection.

list TrustedProjects

View the list of trusted projects.

add TrustedProject <projectName> <
pr oj ect Nane>

Add a trusted project.

remove TrustedProject <pr oj ect Nanme>

Remove a trusted project.

https://www.alibabacloud.com/help/zh/doc-detail/53040.htm

9.9.2 Permission Management of a Project

User Management

Statement

Description

list users

View all users added to the project.

add user <username> <user name>

Add a user.

remove user <username> <user nane>

Remove a user.

Role Management

Statement

Description

list roles

View all created roles.

create role <rolename> <r ol ename>

Create a role.

drop role <rolename> <r ol enamnme>

Delete a role.

grant <r ol el i st > to <user nane>

Assign one or multiple roles to a user.

revoke <r ol el i st > from <user nane>

Revoke the role from a user.

ACL Authorization

Statement

Description

grant <pri vLi st > on <obj Type> <obj Nane
> to user <user nane>

Authorize a user.

grant <pri vLi st > on <obj Type> <obj Nane
> to role <r ol ename>

Authorize a role.

revoke <pri vLi st > on <obj Type> <
obj Nane> from user <user nane>

Revoke user authorization.

revoke <pri vLi st > on <obj Type> <
obj Nane> from role <r ol enane>

Revoke role authorization.

Permission Review

Statement

Description

whoami

View current user information.

show grants [for <user nane>] [on type <
obj ect Type>]

View user permissions and role.

Statement Description

show acl for <obj ect Nane> [on type < View specific object authorization information.
obj ect Type>]

describe role <r ol eNane> View role authorization information and role
assignments.

9.10 Resource share across project space

9.10.1 Resource Sharing across Projects Based on Package

Assume that you are the owner or administrator (admin role) of some projects. One of your
primary accounts has multiple projects, wherein the prj1 project has some resources (including
tables, resources, and custom functions) that can be shared with other projects. However, adding
users of other projects to prj1 and granting permissions to them one by one is complicated, and
adding of users who are irrelevant but are added to the prj1 project (if they exist) complicates the

project management.
This section describes cross-project resource sharing.

If resources need to be controlled by a user in fine-grained manner, and the user who applies for
the control permission is a member of the business project team, we recommend that you use the

Project user and authorization management feature.

Package is used for sharing data and resources across projects. It solves the problem of cross-

project user authorization.
Without Package the following problem cannot be effectively solved.

If members of the Alifinance project want to access data in the Alipay project, the administrator
of the Alipay project must perform tedious authentication operations on them: first, add users in
the Alifinance project to the Alipay project, and then perform general authentications on the newly

added users, respectively.

Actually, the administrator of the Alipay project does not want to authenticate and manage
all users in the Alifiance project. Instead, the administrator expects more efficient feature for

autonomous authentication controls over permissive objects.

After Package is used, the administrator of the Alipay project can perform packaging authorizat
ion on the objects to be used by the Alifinance project (that is, create a Package), and then permit

the Alifinance project to install the Package. After the Alifinance project’s administrator installs

the Package, the administrator can determine whether to grant permissions of the Package to the

users of the Alifinance project as required.

9.11 Column-level Access Control

Label-based security (LabelSecurity) is a required access control (MAC) policy at the project
space level. It allows project administrators to control the user access to column-level sensitive

data with improved flexibility.
Differences between MAC and DAC in MaxCompute

In MaxCompute, MAC is independent of discretionary access control (DAC). Two examples are

provided to illustrate the differences between MAC and DAC.

A user who wants to read data in a MaxCompute project must first apply for the SELECT
permission, similar to the person who wants to drive in a country must first apply for a driver’s

license. The permission application is within the scope of DAC.

Because the country has a high traffic accident rate, it adds a statute against drunk driving.
All drivers are required to have a driver’s license and consume no alcohol before driving. In
MaxCompute, prohibition against reading of highly sensitive data is analogous to the statute

against drunk driving. The read prohibition is within the scope of MAC.
Data Sensitivity Classification

LabelSecurity assigns security levels to data and the users who access the data. In the
government and financial sectors, data sensitivity is usually classified into four levels: 0 (Unclassifi
ed), 1 (Confidential), 2 (Sensitive), and 3 (Highly Sensitive). MaxCompute adopts such classifica
tion. Project owners must define standards for data sensitivity classification and access level

classification. The default access level of all users is 0, and the default sensitivity level of data is 0.

LabelSecurity supports data sensitivity classification at the column level. Administrators can set
sensitivity labels for all the columns of a table. A table may have columns of different sensitivity

levels.

Administrators can also set sensitivity labels for views. A view and its base table have independen

t sensitivity labels. The default sensitivity level of a new view is 0.
Default Security Policies of LabelSecurity

LabelSecurity applies the following default security policies to the data and users assigned with

sensitivity or security labels:

* No-ReadUp: A user is not allowed to read data with a sensitivity level higher than the user level
unless the user is explicitly authorized.
» Trusted-User: A user is allowed to write data of all sensitivity levels. The default sensitivity level

of new data is 0 (unclassified).

Note:

* In some traditional MAC systems, other complex security policies are applied to prohibit
unauthorized data distribution in a project. For example, the No-WriteDown policy prohibits
users from writing data with a sensitivity level not higher than the user level. By default,
MaxCompute does not support No-WriteDown, considering the costs arising from the
management of data sensitivity levels by project administrators. The effect of No-WriteDown
can be attained by modifying the project security settings (Set Obj ect Cr eat or HasG an
t Per mi ssi on=f al se).

» To prohibit data flowing among different projects, you can set the projects to the protected
state (ProjectProtection). With the setting, users can only access the data within their projects

. This prevents data transfer beyond the project.
By default, projects disable LabelSecurity. The project owners can enable it as required.

After LabelSecurity is enabled, the default security policies are executed. When a user accesses
a data table, the user must have the SELECT permission and the access level required for
sensitive data reading. Compliance with LabelSecurity is a required but not the sufficient condition

for passing CheckPermission.
LabelSecurity Operations

» Enable or Disable LabelSecurity

Set Label Security=true|fal se;
-- Enabl es or disables Label Security. The default value is false.
-- Label Security can be enabl ed or disabled only by the project
owner. Other operations can be performed by the project administra
tor.

+ Set Security Labels for Users

SET LABEL <nunber> TO USER <user nane>; -- Val ue range of "nunber": |
0, 9]. This operation can be performed only by the project owner or
adm ni strat or.

- Exanpl e:

ADD USER al i yun$yunma@l i yun. cony --Adds a user with the default
security | abel 0.

ADD USER ransyunma@l i yun. com Al |l en; --Adds user Allen, which is a
RAM subaccount of yunma@liyun.com

SET LABEL 3 TO USER al i yun$yunma@l i yun. com

-- Sets the security label of yunma to 3 to allow this user to
access only the data with a sensitivity level not higher than 3.
SET LABEL 1 TO USER ranyunma@l i yun. com Al | en;

-- Sets the security |abel of subaccount Allen to 1 to allow this
user to access only the data with a sensitivity |evel not higher
than 1.

+ Set Sensitivity Labels for Data

SET LABEL <number> TO TABLE t abl enane[(colum_list)]; -- Value
range of "nunber": [0, 9]. This operation can be perfornmed only by
t he project owner or administrator.

- Exanpl e:

SET LABEL 1 TO TABLE t1; --Sets the sensitivity |abel of table t1l
to 1.

SET LABEL 2 TO TABLE t1(nobile, addr); --Sets the sensitivity

| abel s of the "nmobile" and "addr" colums of table t1 to 2.

SET LABEL 3 TO TABLE t1; --Sets the sensitivity |abel of table t1l
to 3. The sensitivity labels of the "nobile" and "addr" colums are
still 2.

Note:

The sensitivity labels explicitly set for the columns overwrites the sensitivity label set for the
table, without consideration for the label setting order and the sensitivity level.
+ Explicitly Authorize Lower-level Users to Access Specific Data Tables with a High

Sensitivity Level

--Grant perni ssions:

GRANT LABEL <nunber> ON TABLE <t abl ename>[(colum_list)] TO USER <
usernane> [WTH EXP <days>]; --The default validity period is 180
days.

-- Revoke the pernissions:

REVOKE LABEL ON TABLE <t abl enane>[(col um_Ilist)] FROM USER <
user nane>;

-- Clear the expired perm ssions:

CLEAR EXPI RED GRANTS;

- Exanpl e:

GRANT LABEL 2 ON TABLE t1 TO USER ransyunma@l i yun.com Al l en WTH
EXP 1; --Explicitly authorizes Allen to access the data of table t1l
with a sensitivity |evel not higher than 2 for a period of 1 day.

GRANT LABEL 3 ON TABLE t1(col 1, col2) TO USER ranyunna@l i yun.com
:Allen WTH EXP 1; --Explicitly authorizes Allen to access the data

in coll and col2 of table t1 with a sensitivity |level not higher
than 3 for a period of 1 day.

REVOKE LABEL ON TABLE t1 FROM USER ranyunma@l i yun. com Al | en; - -
Revokes the permi ssion of Allen to access the sensitive data in
table t1.

Note:

After the label-authorized permission of a user to access a table is revoked, this user’s

permission to access the table fields is also revoked.

« List the Sensitive Data Sets that a User Can Access

SHOW LABEL [<l evel >] CGRANTS [FOR USER <user nanme>] ;
--When [FOR USER <usernane>] is unspecified, the systemlists
the sensitive data sets that the current user can access.
--When <l evel > is unspecified, the systemlists the perm ssions
granted by all |abel |evels.Wen <level> is specified, the system
lists only the perm ssions granted by a specific | abel |evel.

+ List the Users Who Can Access a Specific Table Containing Sensitive Data

SHOW LABEL [<l evel >] GRANTS ON TABLE <t abl enanme>;
--Di splays the | abel -aut horized perm ssions on the specified
tabl e.

» List the Label-authorized Permissions of a User at All Levels to Access a Data Table

SHOW LABEL [<l evel >] GRANTS ON TABLE <t abl ename> FOR USER <user name

>
--Di splays the | abel -aut horized perm ssions of the specified user
to access the colums of a specific table.

+ List the Sensitivity Levels of All the Columns of a Table

DESCRI BE <t abl enane>;

» Control the Access Level of a Package Installer Regarding the Sensitive Resources of

the Package

ALLOW PRQIECT <prj Nanme> TO | NSTALL PACKAGE <pkgName> [USI NG LABEL <
nunber >] ;

--The package creator grants an access |level to the package
installer regarding the sensitive resources of the package.

Note:

« When [USI NG LABEL <nunber >] is unspecified, the default access level is 0. The
package installer can only access non-sensitive data.
* When accessing to sensitive data across projects, the access level defined by this

command applies to all the users in the project of the package installer.
LabelSecurity Use Cases

* Prohibit All the Users in a Project Except the Project Administrator from Reading Some

Sensitive Columns of a Table

Scenario description: user_profile is a table with sensitive data in a project. It has 100 columns
, five of which contain sensitive data: id_card, credit_card, mobile, user_addr, and birthday.

DAC grants all users the SELECT permission on this table. The project owner wants to prohibit

all the project users except the project administrator from reading the sensitive columns of the

table.

To achieve this purpose, the project owner can perform the following operations:

set Label Security=true;
- - Enabl es Label Security.
set |label 2 to table user _profile(nobile, user_addr, birthday);
--Sets the sensitivity |l evel of the specified colums to 2.
set label 3 to table user _profile(id _card, credit_card);
--Sets the sensitivity |level of the specified colums to 3.

Note:
After the preceding operations, non-administrator users cannot access the data in the five

columns. If a user needs to access the sensitive data for business purposes, the user must be

authorized by the project owner or administrator.

Alice is a member of the project. For business purposes, she wants to apply for access to the
data in the mobile column of table user_profile for a period of one week. To authorize Alice,

the project administrator can perform the following operation:

GRANT LABEL 2 ON TABLE user _profile TO USER ALI YUN$al i ce@l i yun. com
W TH EXP 7,

Note:
Mobile, user_addr, and birthday column contain data with a sensitivity level of 2. Birthday.
After authorization, Alice can access the data in these three columns. The authorization
causes the issue of excessive permission granting. This issue can be avoided if the project
administrator sets the column sensitivity properly.
* Prohibit the Project Users with Access to Sensitive Data from Copying and Distributing

the Sensitive Data within the Project without Authorization

In the preceding use case, Alice is granted the access permission on the data with a sensitivit
y level of 2 for business purposes. The project administrator worries that Alice may copy that
data from table user_profile to table user_profile_copy created by her and grants Bob the
access permission on user_profile_copy. The project administrator needs a method to prohibit

such behavior on Alice.
Considering security usability and management costs, LabelSecurity adopts the default security

policy that allows for WriteDown. Users can write data to the columns with a sensitivity level

not higher than the user level. MaxCompute cannot address the preceding requirement of

the project administrator. However, the project administrator can restrict the discretionary
authorization behavior of Alice by allowing her to only access the data she created, but

disallowing her to grant the data access permission to other users. The procedure is as

follows:

SET bj ect Cr eat or HasAccessPer m ssi on=t r ue;
--Allows the object creator to operate objects.
SET bj ect Cr eat or HasG ant Per nmi ssi on=f al se;

--Prohibits the object creator fromgranting the object access
perm ssion to other users.

	Contents
	​Legal​ ​disclaimer​
	​Generic​ ​convention​​s​
	1 ​Data​ ​upload​ ​and​ ​download​
	1.1 ​Data​ ​upload​ ​and​ ​download​
	1.2 ​Cloud​ ​migration​ ​of​ ​data​
	1.3 ​Tools​
	1.5 ​Import​ ​or​ ​export​ ​data​ ​using​ ​the​ ​Data​ ​Integratio​​n​ ​function​
	1.6 ​Tunnel​ ​SDK​
	1.6.1 ​Summary​
	1.6.2 ​TableTunne​​l​
	1.6.3 ​UploadSess​​ion​
	1.6.4 ​DownloadSe​​ssion​
	1.6.5 ​TunnelBuff​​eredWriter​

	1.7 ​Bulk​ ​data​ ​channel​ ​SDK​ ​example​
	1.7.1 ​Example​
	1.7.2 ​Example​ ​for​ ​uploading​
	1.7.3 ​Example​ ​for​ ​downloadin​​g​
	1.7.7 ​Example​ ​for​ ​BufferedWr​​iter​ ​uploading​

	1.9 ​Connection​ ​to​ ​data​ ​tunnel​ ​service​

	2 ​Common​ ​commands​
	2.1 ​Overview​ ​of​ ​Common​ ​commands​
	2.2 ​Project​ ​Operations​
	2.3 ​Table​ ​Operations​
	2.4 ​Instance​
	2.6 ​Function​ ​Operations​
	2.7 ​Other​ ​Operations​

	3 ​SQL​
	3.1 ​SQL​ ​Summary​
	3.4 ​DDL​ ​SQL​
	3.4.2 ​Lifecycle​ ​of​ ​table​
	3.4.3 ​View​ ​operations​
	3.4.4 ​Column​/​Partition​ ​operation​

	3.5 ​Insert​ ​Operation​
	3.5.2 ​MULTI​ ​INSERT​
	3.5.3 ​DYNAMIC​ ​PARTITION​
	3.5.4 ​VALUES​

	3.6 ​Select​ ​Operation​
	3.6.1 ​Introducti​​on​ ​to​ ​the​ ​SELECT​ ​Syntax​
	3.6.2 ​SELECT​ ​Sequence​
	3.6.3 ​Subquery​
	3.6.4 ​UNION​ ​ALL​/​UNION​ [​DISTINCT​]
	3.6.6 ​SEMI​ ​JOIN​
	3.6.10 ​Common​ ​table​ ​expression​ (​CTE​)

	3.7 ​DDL​ ​SQL​
	3.8 ​Insert​ ​Operation​
	3.9 ​SQL​ ​restrictio​​ns​
	3.10 ​Builtin​ ​Function​
	3.10.1 ​Date​ ​Functions​
	3.10.3 ​Window​ ​Functions​

	3.11 ​UDF​
	3.11.1 ​UDF​ ​Summary​
	3.11.2 ​Java​ ​UDF​
	3.11.3 ​Python​ ​UDF​

	3.12 ​Appendix​
	3.12.1 ​Escape​ ​Characters​
	3.12.2 ​Like​ ​Usage​
	3.12.3 ​Regular​ ​Expression​
	3.12.4 ​Reserved​ ​Words​

	4 ​MapReduce​
	4.1 ​Summary​
	4.1.1 ​MapReduce​
	4.1.2 ​Extended​ ​MapReduce​
	4.1.3 ​Open​-​source​ ​MapReduce​

	4.2 ​Function​ ​Introducti​​on​
	4.2.1 ​Command​
	4.2.2 ​Basic​ ​Conception​
	4.2.3 ​Input​ ​and​ ​Output​
	4.2.4 ​Resource​
	4.2.5 ​Local​ ​run​

	4.3 ​Program​ ​Example​
	4.3.1 ​WordCount​ ​Sample​
	4.3.2 ​MapOnly​ ​Sample​
	4.3.3 ​Multi​-​input​ ​and​ ​Output​
	4.3.4 ​Multi​-​task​ ​Sample​
	4.3.5 ​Secondary​ ​Sort​ ​Sample​
	4.3.6 ​Resource​ ​Sample​
	4.3.7 ​Counter​ ​Sample​
	4.3.8 ​Grep​ ​Sample​
	4.3.9 ​Join​ ​Sample​
	4.3.10 ​Sleep​ ​Sample​
	4.3.11 ​Unique​ ​Sample​
	4.3.12 ​Sort​ ​Sample​
	4.3.13 ​Partition​
	4.3.14 ​Pipeline​ ​Sample​

	4.4 ​Java​ ​SDK​
	4.4.1 ​Java​ ​SDK​

	4.5 ​MR​ ​Restrictio​​ns​

	5 ​Java​ ​Sandbox​
	6 ​SDK​
	6.2 ​Python​ ​SDK​

	7 ​Handle​-​Unstructur​​ed​-​data​
	7.1 ​Access​ ​OSS​ ​Data​
	7.2 ​Visit​ ​Table​ ​Store​ ​Data​

	8 ​Graph​
	8.1 ​Summary​
	8.2 ​Function​ ​overview​
	8.3 ​SDK​ ​Summary​
	8.4 ​Developmen​​t​ ​and​ ​Debugging​
	8.5 ​Restrictio​​n​
	8.6 ​Examples​
	8.6.1 ​SSSP​
	8.6.2 ​PageRank​
	8.6.3 ​Kmeans​
	8.6.4 ​BiPartiteM​​atchiing​
	8.6.5 ​Strongly​-​connected​ ​component​
	8.6.6 ​Connected​ ​component​
	8.6.7 ​Topology​ ​Sorting​
	8.6.8 ​Linear​ ​Regression​
	8.6.9 ​Triangle​ ​Count​
	8.6.10 ​Vertex​ ​Input​
	8.6.11 ​Edge​ ​Input​

	8.7 ​Introducti​​ons​ ​of​ ​Aggregator​ ​Mechanism​

	9 ​Security​
	9.1 ​Target​ ​Users​
	9.2 ​Quick​ ​Start​
	9.2.1 ​Add​ ​users​ ​and​ ​grant​ ​permission​​s​
	9.2.2 ​Add​ ​users​ ​and​ ​grant​ ​permission​​s​ ​using​ ​ACL​
	9.2.3 ​Project​ ​data​ ​protection​

	9.3 ​User​ ​Authentica​​tion​
	9.4 ​User​ ​Management​
	9.5 ​Role​ ​Management​
	9.6 ​Authorizat​​ion​
	9.7 ​Permission​ ​Check​
	9.8 ​Security​ ​Configurat​​ion​
	9.9 ​Security​ ​Command​ ​List​
	9.9.1 ​Security​ ​Configurat​​ion​ ​of​ ​a​ ​Project​
	9.9.2 ​Permission​ ​Management​ ​of​ ​a​ ​Project​

	9.10 ​Resource​ ​share​ ​across​ ​project​ ​space​
	9.10.1 ​Resource​ ​Sharing​ ​across​ ​Projects​ ​Based​ ​on​ ​Package​

	9.11 ​Column​-​level​ ​Access​ ​Control​

