
Alibaba Cloud
MaxCompute

User Guide

Issue: 20180904

MaxCompute User Guide / Legal disclaimer

Issue: 20180904 I

Legal disclaimer

Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions of this

legal disclaimer before you read or use this document. If you have read or used this document, it

shall be deemed as your total acceptance of this legal disclaimer.

1. You shall download and obtain this document from the Alibaba Cloud website or other Alibaba

Cloud-authorized channels, and use this document for your own legal business activities only.

The content of this document is considered confidential information of Alibaba Cloud. You shall

 strictly abide by the confidentiality obligations. No part of this document shall be disclosed or

provided to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted, or disseminat

ed by any organization, company, or individual in any form or by any means without the prior

written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades, adjustment

s, or other reasons. Alibaba Cloud reserves the right to modify the content of this document

without notice and the updated versions of this document will be occasionally released through

 Alibaba Cloud-authorized channels. You shall pay attention to the version changes of this

document as they occur and download and obtain the most up-to-date version of this document

 from Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud products and

services. Alibaba Cloud provides the document in the context that Alibaba Cloud products and

 services are provided on an "as is", "with all faults" and "as available" basis. Alibaba Cloud

makes every effort to provide relevant operational guidance based on existing technologies

. However, Alibaba Cloud hereby makes a clear statement that it in no way guarantees the

accuracy, integrity, applicability, and reliability of the content of this document, either explicitly

or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial losses incurred

 by any organizations, companies, or individuals arising from their download, use, or trust in

this document. Alibaba Cloud shall not, under any circumstances, bear responsibility for any

 indirect, consequential, exemplary, incidental, special, or punitive damages, including lost

profits arising from the use or trust in this document, even if Alibaba Cloud has been notified of

the possibility of such a loss.

5. By law, all the content of the Alibaba Cloud website, including but not limited to works, products

, images, archives, information, materials, website architecture, website graphic layout, and

webpage design, are intellectual property of Alibaba Cloud and/or its affiliates. This intellectu

al property includes, but is not limited to, trademark rights, patent rights, copyrights, and trade

MaxCompute User Guide / Legal disclaimer

II Issue: 20180904

 secrets. No part of the Alibaba Cloud website, product programs, or content shall be used,

modified, reproduced, publicly transmitted, changed, disseminated, distributed, or published

 without the prior written consent of Alibaba Cloud and/or its affiliates. The names owned by

Alibaba Cloud shall not be used, published, or reproduced for marketing, advertising, promotion

, or other purposes without the prior written consent of Alibaba Cloud. The names owned by

Alibaba Cloud include, but are not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other

brands of Alibaba Cloud and/or its affiliates, which appear separately or in combination, as well

 as the auxiliary signs and patterns of the preceding brands, or anything similar to the company

 names, trade names, trademarks, product or service names, domain names, patterns, logos

, marks, signs, or special descriptions that third parties identify as Alibaba Cloud and/or its

affiliates).

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

MaxCompute User Guide / Legal disclaimer

Issue: 20180904 III

MaxCompute User Guide / Generic conventions

Issue: 20180904 I

Generic conventions

Table -1: Style conventions

Style Description Example

This warning information indicates a
situation that will cause major system
changes, faults, physical injuries, and
other adverse results.

Danger:
Resetting will result in the loss of user
configuration data.

This warning information indicates a
situation that may cause major system
 changes, faults, physical injuries, and
other adverse results.

Warning:
Restarting will cause business
interruption. About 10 minutes are
required to restore business.

This indicates warning information,
supplementary instructions, and other
content that the user must understand.

Note:
Take the necessary precautions to
save exported data containing sensitive
information.

This indicates supplemental instructio
ns, best practices, tips, and other
content that is good to know for the
user.

Note:
You can use Ctrl + A to select all files.

> Multi-level menu cascade. Settings > Network > Set network type

Bold It is used for buttons, menus, page
names, and other UI elements.

Click OK.

Courier

font

It is used for commands. Run the cd /d C:/windows command
to enter the Windows system folder.

Italics It is used for parameters and variables. bae log list --instanceid

 Instance_ID

[] or [a|b] It indicates that it is a optional value,
and only one item can be selected.

ipconfig [-all|-t]

{} or {a|b} It indicates that it is a required value,
and only one item can be selected.

swich {stand | slave}

MaxCompute User Guide / Contents

II Issue: 20180904

Contents

Legal disclaimer..I
Generic conventions.. I
1 Graph... 1

1.1 Summary.. 1
1.2 Function overview.. 4
1.3 SDK Summary..8
1.4 Development and debugging... 9
1.5 Limits.. 17
1.6 Examples.. 17

1.6.1 SSSP...17
1.6.2 PageRank..21
1.6.3 Kmeans... 24
1.6.4 BiPartiteMatchiing... 29
1.6.5 Strongly-connected component.. 32
1.6.6 Connected component..40
1.6.7 Topology Sorting...42
1.6.8 Linear Regression...45
1.6.9 Triangle Count.. 50
1.6.10 Vertex Input...52
1.6.11 Edge Input...59

1.7 Aggregator...65

2 SDK.. 74
2.1 Java SDK... 74
2.2 Python SDK..80
2.3 PyODPS DataFrame中使用pandas、scipy和scikit-learn... 96

3 Handle-Unstructured-data..100
3.1 国际站未发布，暂不翻译.. 100
3.2 Access OSS data...101
3.3 Unstructured data exported to OSS...113
3.4 Visit Table Store data.. 122
3.5 本文暂不上国际站... 128
3.6 本文无翻译..130

4 View Job Running Information... 135
4.1 Logview...135
4.2 Errors and warnings using the MaxCompute compiler.. 139

5 Security..142
5.1 Target users... 142
5.2 Quick Start..142

5.2.1 Use case: Add users and grant permissions..142

MaxCompute User Guide / Contents

Issue: 20180904 III

5.2.2 Use case: Add users and grant permissions using ACL................................ 142
5.2.3 Use case: Project data protection.. 143

5.3 User authentication.. 144
5.4 User management..145
5.5 Role management.. 149
5.6 Authorization...152
5.7 Permission check... 156
5.8 Security configurations... 157
5.9 Data protection of projects...158
5.10 Security command list..161

5.10.1 Security configuration of a project.. 161
5.10.2 Manage permissions...162
5.10.3 Package-based resource sharing... 163

5.11 用户及授权管理...163
5.12 Resource share across project space... 163

5.12.1 Resource sharing across projects based on package.................................. 164
5.12.2 Package usage method.. 164

5.13 Column-level access control.. 168

6 MaxCompute Butler..174
7 Lightning... 175

7.1 Lightning概述.. 175
7.2 开通Lightning服务...177
7.3 服务定价... 177
7.4 快速开始... 178

7.4.1 使用说明.. 178
7.4.2 前提条件.. 178
7.4.3 准备连接的客户端工具.. 178
7.4.4 连接服务并开展分析.. 178

7.5 访问域名... 179
7.6 通过JDBC连接服务... 180

7.6.1 JDBC驱动程序...180
7.6.2 配置JDBC连接...182
7.6.3 常见工具的连接... 183

7.7 SQL参考... 187
7.8 查看作业... 189
7.9 约束与限制..189
7.10 Lightning常见问题...190

8 Common commands..192
8.1 Overview of common commands...192
8.2 Project operations.. 192
8.3 Table operations...193
8.4 Instances.. 198
8.5 Resources...202

MaxCompute User Guide / Contents

IV Issue: 20180904

8.6 Functions.. 204
8.7 Other operations...206

9 Data upload and download... 211
9.1 Data upload and download.. 211
9.2 Cloud data migration..211
9.3 Data upload and download tools... 212
9.4 Tunnel commands..215
9.5 Import or export data using the Data Integration...224
9.6 Tunnel SDK.. 228

9.6.1 Summary... 228
9.6.2 TableTunnel.. 229
9.6.3 UploadSession.. 231
9.6.4 DownloadSession..233
9.6.5 TunnelBufferedWriter.. 234

9.7 Bulk data channel SDK example... 236
9.7.1 Example.. 236
9.7.2 Example for uploading.. 236
9.7.3 简单下载示例...238
9.7.4 Example for multi-thread uploading.. 240
9.7.5 Example for multi-thread downloading... 242
9.7.6 Example for BufferedWriter multi-thread uploading.. 245
9.7.7 Example for BufferedWriter uploading..246

9.8 Real-time data tunnel of DataHub... 246
9.9 Connection to data tunnel service... 246

10 SQL.. 248
10.1 Select Transform语法...248
10.2 DDL SQL.. 253

10.2.1 Table Operations...253
10.2.2 Lifecycle of table... 260
10.2.3 View operations...261
10.2.4 Column/Partition operation..262

10.3 Insert Operation..266
10.3.1 INSERT OVERWRITE/INTO...266
10.3.2 MULTI INSERT... 267
10.3.3 DYNAMIC PARTITION... 268
10.3.4 VALUES.. 271
10.3.5 Lateral View.. 273

10.4 SQL summary.. 276
10.5 Operators..277
10.6 Type conversions... 281
10.7 DDL SQL.. 287
10.8 Insert Operation..287
10.9 SELECT operation... 287

MaxCompute User Guide / Contents

Issue: 20180904 V

10.10 SQL limits... 287
10.11 Builtin Function...289

10.11.1 Date Functions..289
10.11.2 Mathematical Functions.. 307
10.11.3 Window Functions...328
10.11.4 String functions... 344
10.11.5 Aggregate function..367
10.11.6 Other functions..375

10.12 UDF.. 394
10.12.1 MaxCompute UDF中运行Scipy...394
10.12.2 Python UDF.. 396
10.12.3 UDF Summary.. 403
10.12.4 Java UDF.. 405

10.13 Appendix...417
10.13.1 Escape characters.. 417
10.13.2 LIKE usage... 418
10.13.3 Regular expression... 418
10.13.4 Reserved words.. 421
10.13.5 本文暂无翻译。... 421
10.13.6 Differences with other SQL syntax... 422

10.14 Select Operation...424
10.14.1 Introduction to the SELECT Syntax..424
10.14.2 SELECT Sequence... 428
10.14.3 Subquery... 429
10.14.4 UNION ALL/UNION [DISTINCT]...431
10.14.5 JOIN operation..432
10.14.6 SEMI JOIN.. 434
10.14.7 MAPJOIN HINT...434
10.14.8 HAVING clause...435
10.14.9 Explain...436
10.14.10 Common table expression (CTE)... 438

11 MapReduce..440
11.1 Java SDK... 440

11.1.1 Java SDK.. 440
11.1.2 Overview of compatible versions of the SDK... 446

11.2 MR limits...466
11.3 Summary.. 469

11.3.1 MapReduce... 469
11.3.2 Extended MapReduce...472
11.3.3 Open-source MapReduce... 473

11.4 Function Introduction..478
11.4.1 Commands.. 478
11.4.2 Basic concepts..480
11.4.3 Input and Output... 481

MaxCompute User Guide / Contents

VI Issue: 20180904

11.4.4 Resources... 481
11.4.5 Local run... 481

11.5 Program Example...484
11.5.1 Join samples... 484
11.5.2 Sleep samples...488
11.5.3 Unique samples.. 489
11.5.4 Sort samples... 492
11.5.5 Partition samples...495
11.5.6 Pipeline samples...496
11.5.7 WordCount samples..499
11.5.8 MapOnly samples... 502
11.5.9 Multi-input and Output.. 504
11.5.10 Multi-task samples.. 508
11.5.11 Secondary Sort samples...511
11.5.12 Resource samples.. 514
11.5.13 Counter samples...516
11.5.14 Grep samples..519

12 Java Sandbox... 524

MaxCompute User Guide / 1 Graph

Issue: 20180904 1

1 Graph

1.1 Summary
MaxCompute Graph is a processing framework designed for iterative graph computing.

MaxCompute Graph jobs use graphs to build models. Graphs are composed of vertices and

edges, which contain values.

MaxCompute Graph supports the following graph editing operations:

• Editing the value of Vertex or Edge.

• Add/delete Vertices.

• Add/delete Edges.

Note:

When editing a vertex and an edge, you must maintain their relationship.

This process outputs a final solution after performing iterative graph editing and evolution. Typical

applications include PageRank, SSSP algorithm, and Kmeans algorithm. Use Java SDK, an

interface provided by MaxCompute Graph to compile graph computing programs.

Graph Data structure

Graphs processed by MaxCompute Graph must be directed graphs consisting of vertices and

edges. As MaxCompute only provides a two-dimensional storage structure, you must resolve

graph data into two-dimensional tables and store them in MaxCompute.

During graph computing analysis, use custom GraphLoader to convert two-dimensional table data

to vertices and edges in the MaxCompute Graph engine. You can determine how to resolve graph

 data into two-dimensional tables based on your service scenarios. In the sample code, the table

formats correspond to different graph data structures.

The vertex structure can be described as < ID, Value, Halted, Edges >, which respectively

indicates the vertex ID (ID), value (Value), status (Halted, indicating whether an iteration is to be

 stopped), and edge set (Edges, indicating lists of all edges starting from the vertex). The edge

structure is described as < DestVertexID, Value >, which respectively indicates the destination

vertex (DestVertexID) and value (Value).

MaxCompute User Guide / 1 Graph

2 Issue: 20180904

For example, the preceding figure consists of the following vertices:

Vertex <ID, Value, Halted, Edges>

v0 <0, 0, false, [<1, 5 >, <2, 10 >] >

v1 <1, 5, false, [<2, 3>, <3, 2>, <5, 9>]>

v2 <2, 8, false, [<1, 2>, <5, 1 >]>

v3 <3, Long.MAX_VALUE, false, [<0, 7>, <5, 6>]>

v5 <5, Long.MAX_VALUE, false, [<3, 4 >]>

Graph program logic

Graph loading

The framework calls custom GraphLoader and resolves records of an input table to vertices or

edges.

Distributed architecture: The framework calls custom Partitioner to partition vertices and distribute

s them to corresponding Workers. (Default partitioning logic: Calculates the hash value of a vertex

ID and performs the modulo operation on the number of Workers.)

MaxCompute User Guide / 1 Graph

Issue: 20180904 3

For example, assume in the preceding figure that the number of Workers is 2. v0 and v2 are

allocated to Worker 0 because the result of the ID mod 2 is 0. v1, v3, and v5 are allocated to

Worker 1 as the result of the ID mod 2 is 1.

Iteration calculation

• An iteration is called a superstep. It traverses all vertices in the non-halted status (the

value of the halted is false) or all vertices that receive messages (a vertex in halted status is

automatically activated after receiving a message), and calls their compute (ComputeContext

context, Iterable messages) method.

• Follow these steps on your implemented compute (ComputeContext context, Iterable

messages) method:

▬ Process messages sent from the previous SuperStep to the current Vertex.

▬ Edit graph as needed:

■ Revise value of Vertex/Edge

■ Send messages to certain Vertices

■ Add/Delete Vertex or Edge

▬ Use Aggregator to collect information to update the global information.

▬ Set the current vertex to a halted or non-halted status.

▬ During iteration, the framework asynchronously sends messages to the corresponding

Worker and processes the messages in the next SuperStep without your intervention.

Iteration termination

MaxCompute User Guide / 1 Graph

4 Issue: 20180904

If any of the following conditions are met, iteration is terminated.

• All vertices are in the halted state (the value of Halted is true) and no new message is

generated.

• A maximum number of iterations is reached.

• The terminate method of an Aggregator returns true.

The pseudocode is as follows:

// 1. load
for each record in input_table {
 GraphLoader.load();

// 2. setup
WorkerComputer.setup();
for each aggr in aggregators {
 aggr.createStartupValue();

for each v in vertices {
 v.setup();

// 3. superstep
for (step = 0; step < max; step ++) {
 for each aggr in aggregators {
 aggr.createInitialValue();

 for each v in vertices {
 v.compute();

// 4. cleanup
for each v in vertices {
 v.cleanup();

WorkerComputer.cleanup();

1.2 Function overview

Running jobs

The MaxCompute console provides JAR commands to run MaxCompute Graph jobs. These

commands are used the same way as MapReduce JAR commands run.

This article introduces you to these commands.

Usage: jar [<GENERIC_OPTIONS>] <MAIN_CLASS> [ARGS]
 -conf <configuration_file> Specify an application
configuration file
 -classpath <local_file_list> classpaths used to run
mainClass
 -D <name>=<value> Property value pair, which is used
to run mainClass
 -local Run job in local mode

MaxCompute User Guide / 1 Graph

Issue: 20180904 5

 -resources <resource_name_list> file/table resources
used in graph, separated by command

< GENERIC_OPTIONS> can be the following parameters (all are optional):

• -conf < configuration file >: Specifies the JobConf configuration file.

• -classpath < local_file_list >: Indicates the class path for local implementation. It is mainly used

to specify the JAR package containing the main function.

The main function and Graph job are usually written in the same package, for example, in

the Single Source Shortest Path (SSSP) package. Therefore, the -resources and -classpath

 parameters in the sample code both contain the JAR package. The difference is that -

resources refers to the value of the Graph job and runs in a distributed environment, while -

classpath refers to the main function and runs locally. The specified JAR package path is also

a local file path. Package names are separated using system default file delimiters. Generally,

the delimiter is a semicolon (;) in a Windows system and a comma (,) in a Linux system.

• -D < prop_name > = < prop_value >: Specifies the Java attributes of < mainClass > for local

implementation. Multiple attributes can be defined.

• -local: Runs the Graph job in local mode, which is mainly used for program debugging.

• -resources <resource_name_list >: Indicates the resource statement used for Graph job

running. Generally, the name of the resource where the Graph job is located must be specified

in resource_name_list. If you read other MaxCompute resources in the Graph job, the resource

names must be added to resource_name_list. Resource names are separated by commas (,).

When resources are used across projects, PROJECT_NAME/resources/ must be prefixed. For

example, -resources otherproject/resources/resfile;.

In addition, run the main function of the Graph job to directly submit a job to MaxCompute, rather

than submitting a job through the MaxCompute console. The following section uses the PageRank

algorithm as an example:

public static void main(String[] args) throws Exception {
 if (args.length < 2)
 printUsage();
 Account account = new AliyunAccount(accessId, accessKey);
 Odps odps = new Odps(account);
 odps.setEndpoint(endPoint);
 odps.setDefaultProject(project);
 SessionState ss = SessionState.get();
 ss.setOdps(odps);
 ss.setLocalRun(false);
 String resource = "mapreduce-examples.jar";
 GraphJob job = new GraphJob();
 // Add the JAR file in use and other files to class cache resource,
corresponding to resources specified by -libjars in the JAR command
 job.addCacheResourcesToClassPath(resource);

MaxCompute User Guide / 1 Graph

6 Issue: 20180904

 job.setGraphLoaderClass(PageRankVertexReader.class);
 job.setVertexClass(PageRankVertex.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 // default max iteration is 30
 job.setMaxIteration(30);
 if (args.length >= 3)
 job.setMaxIteration(Integer.parseInt(args[2]));
 long startTime = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - startTime) / 1000.0
 + " seconds");

Input and output

You cannot customize input and output formats.

The following example shows how to define a job input. Multiple inputs are supported:

GraphJob job = new GraphJob();
job.addInput(TableInfo.builder().tableName(“tblname”).build()); //
Table as input
job.addInput(TableInfo.builder().tableName(“tblname”).partSpec("pt1=a/
pt2=b").build()); //Shard as input
//Read-only columns col2 and col0 of the input table. In the load()
method of GraphLoader, column col2 is obtained by record.get(0), and
the sequence is the same
job.addInput(TableInfo.builder().tableName(“tblname”).partSpec("pt1=a/
pt2=b").build(), new String[]{"col2", "col0"});

Note:

• For more information about the job input definition, see the description of the addInput()

method in a GraphJob. The framework reads records in the input table and transmits them to

custom GraphLoader to load data.

• Limits: Currently, shard filtering conditions are not supported. For more information , see

Application restrictions.

The following example shows how to define a job output. Multiple job outputs are supported. Each

output is marked by a label:

GraphJob job = new GraphJob();
//If the output table is a shard table, the last level of shards must
be provided
job.addOutput(TableInfo.builder().tableName("table_name").partSpec("
pt1=a/pt2=b").build());
// Parameter true indicates overwriting shards specified by tableinfo
, that is, the meaning of INSERT OVERWRITE. Parameter false indicates
the meaning of INSERT INTO

MaxCompute User Guide / 1 Graph

Issue: 20180904 7

job.addOutput(TableInfo.builder().tableName("table_name").partSpec("
pt1=a/pt2=b").lable("output1").build(), true);

Note:

• For more information about the job output definition, see the description of the addOutput()

method in GraphJob.

• When a Graph job runs, records can be written to an output table using the write() method

 of WorkerContext. Labels must be specified for multiple outputs, such as “output1” in the

preceding section.

• For more information, see Application restrictions.

Read resources

• Add resources to the graph program

In addition to JAR commands, you can use the following two methods of GraphJob to specify

resources read by Graph:

void addCacheResources(String resourceNames)
void addCacheResourcesToClassPath(String resourceNames)

• Use resources in the graph program

To read resources in the Graph program, follow these steps:

public byte[] readCacheFile(String resourceName) throws IOException;
 public Iterable<byte[]>
readCacheArchive(String resourceName) throws IOException;
 public Iterable<byte[]>
readCacheArchive(String resourceName, String relativePath)throws
IOException;
 public Iterable<WritableRecord>
readResourceTable(String resourceName);
public BufferedInputStream readCacheFileAsStream(String resourceName
) throws IOException;
public Iterable<BufferedInputStream> readCacheArchiveAsStream(String
 resourceName) throws IOException;
public Iterable<BufferedInputStream> readCacheArchiveAsStream(String
 resourceName, String relativePath) throws IOException;

Note:

• Resources are generally read using the setup() method of WorkerComputer, stored in

Worker Value, and obtained using the getWorkerValue() method.

• To reduce overall memory consumption, use the preceding stream APIs so that resources

can be read and processed simultaneously.

MaxCompute User Guide / 1 Graph

8 Issue: 20180904

• For more information , see Application restrictions.

1.3 SDK Summary

Maven users can search for odps-sdk-graph in the Maven database to get the required SDK

(available in different versions). The configuration information is as follows:

<dependency>
 <groupId>com.aliyun.odps</groupId>
 <artifactId>odps-sdk-graph</artifactId>
 <version>0.20.7</version>
</dependency>

Main interface Description

GraphJob GraphJob is inherited from JobConf and is used to define, submit, and
manage a MaxCompute Graph job.

Vertex A vertex is a node that is defined by the attributes including ID, value
, halted, and edges. A vertex is implemented by the setVertexClass
interface of GraphJob.

Edge Edge is the abstract of edges in a graph, including the attributes
destVertexId and value. Adjacent tables are used as the graph data
structure, and outbound edges of a vertex are stored in edges of the
vertex.

GraphLoader GraphLoader is used to load graphs. GraphLoader is implemented by
using the setGraphLoaderClass interface of GraphJob.

VertexResolver VertexResolver is used to customize the conflict processing logic to
 modify graph topology. The setLoadingVertexResolverClass and
setComputingVertexResolverClass interfaces of GraphJob provide the
 conflict processing logic for graph topology modification during graph
loading and iteration calculation.

Partitioner Partitioner is used to partition a graph so that the calculations can be
fragmented. Partitioner is implemented by using the setPartitionerClass
 interface of GraphJob. HashPartitioner is used by default, that is, the
hash value of a vertex ID is calculated and then a modulo operation is
performed for the number of Workers.

WorkerComputer WorkerComputer allows a Worker to run a custom logic during startup
 and exit. WorkerComputer is implemented by using the setWorkerC
omputerClass interface of a GraphJob.

Aggregator setAggregatorClass(Class …) defines one or multiple Aggregators.

Combiner setCombinerClass sets a Combiner.

http://search.maven.org/

MaxCompute User Guide / 1 Graph

Issue: 20180904 9

Main interface Description

Counters Indicates a counter. In job running logic, the WorkerContext interface
can be used to obtain counters and perform counting. The framework
automatically sums up the result.

WorkerContext Indicates the context object. It encapsulates functions provided by the
 framework, such as modifying a graph topology, sending a message,
writing a result, and reading a resource.

1.4 Development and debugging
MaxCompute does not provide Graph development plugins for users. However, you can develop

the MaxCompute Graph program based on Eclipse. The development process is as follows:

1. Compile Graph codes and perform basic tests using local debugging.

2. Perform cluster debugging and verify the result.

Example

This section uses the SSSP algorithm as an example to describe how to use Eclipse to develop

and debug a Graph program.

Procedure

1. Create a Java project, for example, graph_examples.

2. Add the JAR package in the lib directory of the MaxCompute client to Build Path of the Eclipse

project. The following figure shows a configured Eclipse project:

MaxCompute User Guide / 1 Graph

10 Issue: 20180904

3. Develop a MaxCompute Graph program.

In the actual development process, an example (such as SSSP) is often copied

and then modified. In this example, only the package path is changed to package

com.aliyun.odps.graph.example.

4. Compile and build the package.

In an Eclipse environment, right-click the source code directory (the src directory in the figure)

and select Export > Java > JAR file to generate a JAR package. Select the path for storing the

target JAR package, for example, D:\\odps\\clt\\odps-graph-example-sssp.jar.

5. Use the MaxCompute console to run SSSP. For more information about the related operations,

see Run Graph in “Quick start”.

Note:

For more information about the related development procedure, see Introduction on the Graph

development plug-in.

Local Debugging

MaxCompute Graph supports the local debugging mode. Use Eclipse to perform breakpoint

debugging.

Procedure

1. Download an odps-graph-local maven package.

https://www.alibabacloud.com/help/zh/doc-detail/27985.html
https://www.alibabacloud.com/help/zh/doc-detail/27985.html

MaxCompute User Guide / 1 Graph

Issue: 20180904 11

2. Select the Eclipse project, right-click the main program file (including the main function) of the

Graph job, and configure its running parameters (by selecting Run As > Run Configurations).

3. On the Arguments tab page, set Program arguments to 1 sssp_in sssp_out as the input

parameter of the main program.

4. On the Arguments tab page, set VM arguments to the following:

-Dodps.runner.mode=local
-Dodps.project.name=<project.name>
-Dodps.end.point=<end.point>
-Dodps.access.id=<access.id>
-Dodps.access.key=<access.key>

5. If MapReduce is in local mode (the value of odps.end.point is not specified), you must create

the sssp_in and sssp_out tables in the warehouse and add data for sssp_in. Input data is

listed as follows:

1,"2:2,3:1,4:4"
2,"1:2,3:2,4:1"
3,"1:1,2:2,5:1"
4,"1:4,2:1,5:1"

MaxCompute User Guide / 1 Graph

12 Issue: 20180904

5,"3:1,4:1"

For more information about the warehouse, see MapReduce local running.

6. Click Run.

Note:

Check the settings of conf/odps_config.ini in the MaxCompute client to set parameters. The

preceding parameters are commonly used. Other parameters are described as follows:

• odps.runner.mode: The parameter value is local. This parameter is required for the local

debugging function.

• odps.project.name: (Required). Specifies the current project.

• odps.end.point: (Optional). Specifies the address of the current MaxCompute service.

If this parameter is not specified, metadata of tables or resources is only read from the

warehouse, and an exception is thrown when the address does not exist. If this parameter

 is specified, data is read from the warehouse first, and then from remote MaxCompute if

the address does not exist.

• odps.access.id: Indicates the ID to connect to the MaxCompute service. This parameter is

valid only when odps.end.point is specified.

• odps.access.key: Indicates the key to connect to the MaxCompute service. This parameter

is valid only when odps.end.point is specified.

• odps.cache.resources: Specifies the resource list in use. This parameter has the same

effect as -resources of the JAR command.

• odps.local.warehouse: Specifies the local warehouse path. This parameter is set to ./

warehouse by default ,if not specified.

After SSSP debugging is implemented locally in Eclipse, the following information is output:

Counters: 3
 com.aliyun.odps.graph.local.COUNTER
 TASK_INPUT_BYTE=211
 TASK_INPUT_RECORD=5
 TASK_OUTPUT_BYTE=161
 TASK_OUTPUT_RECORD=5
 graph task finish

Note:

In the preceding example, the sssp_in and sssp_out tables must exist in the local warehouse.

For more information about the sssp_in and sssp_out tables, see Run Graph in “Quick start”.

https://help.aliyun.com/document_detail/27813.html

MaxCompute User Guide / 1 Graph

Issue: 20180904 13

Temporary directory of local job

A temporary directory is created in the Eclipse project directory when local debugging runs each

time, as shown in the following figure.

The temporary directory of a locally running Graph job contains the following directories and files:

• counters: Stores counting information about job running.

• inputs: Stores input data of the job. Data is preferentially obtained from the local warehouse.

If such data does not exist locally, the MaxCompute SDK reads data from the server (if

odps.end.point is set). An input reads only 10 data records by default. This threshold can be

modified in the -Dodps.mapred.local.record.limit parameter, of which the maximum

value is 10,000.

• outputs: Stores output data of the job. If the local warehouse has an output table, the result

data in the outputoverwrites the corresponding table in the local warehouse after job running is

 complete.

• resources: Stores resources used by the job. Similar to inputs, data is preferentially obtained

from the local warehouse. If such data does not exist locally, the data is read from the server

using MaxCompute SDK (when odps.end.point is set).

• job.xml: Indicates job configuration.

• superstep: Stores information about message persistence in each iteration.

Note:

If a detailed log must be output during local debugging, the following log4j configuration file must

be placed in the src directory: log4j.properties_odps_graph_cluster_debug.

Cluster Debugging

After local debugging, submit the job to a cluster for testing.

MaxCompute User Guide / 1 Graph

14 Issue: 20180904

Procedure

1. Configure the MaxCompute client.

2. Run the add jar /path/work.jar -f; command to update the JAR package.

3. Run a JAR command to run the job, and view the running log and result data.

Note:

For more information about how to run Graph in a cluster, see Run Graph in “Quick start”.

Performance Tuning

The following section describes common performance tuning methods on the MaxCompute Graph

 framework.

Job Parameter Configuration

GraphJob configurations that have an impact on performance include:

• setSplitSize(long): Indicates the split size of an input table. The unit is in MB. Its value must be

greater than 0, and the default value is 64.

• setNumWorkers(int): Specifies the number of Workers for a job. The value range is [1, 1000],

and the default value is –1. The number of Workers varies depending on the number of input

bytes of the job and split size.

• setWorkerCPU(int): Indicates CPU resources of the Map. A one-core CPU contains 100

resources. The value range is [50, 800], and the default value is 200.

• setWorkerMemory(int): Indicates memory resources of the Map. The unit is MB. The value

range is [256 MB, 12 GB], and the default value is 4,096 MB.

• setMaxIteration(int): Specifies the maximum number of iterations. The default value is –1. If the

 value is smaller than or equal to 0, the maximum number of iterations is not a condition for job

 termination.

• setJobPriority(int): Specifies the job priority. The value range is [0, 9], and the default value is 9

. A larger value indicates a smaller priority.

Additional actions that increase overall processing capabilities are as follows:

• You can use the setNumWorkers() method to increase the number of Workers.

• You can use the setSplitSize() method to reduce the split size and increase the speed for a job

 to load data.

• Increase the CPU or memory of Workers.

MaxCompute User Guide / 1 Graph

Issue: 20180904 15

• Set the maximum number of iterations. If applications do not have high requirements on result

precision, you can reduce the number of iterations to speed up the process.

The interfaces setNumWorkers and setSplitSize can be used together to speed up data

loading. Assume that setNumWorkers is workerNum and setSplitSize is splitSize, and the total

number of input bytes is inputSize. The number of splits is calculated using the formula: splitNum

= inputSize /splitSize. The relationship between workerNum and splitNum is as follows:

• If splitNum == workerNum, each Worker is responsible for loading one split.

• If splitNum > workerNum, each Worker is responsible for loading one or multiple splits.

• If splitNum < workerNum, each Worker is responsible for loading zero or one split.

Therefore, if the first two conditions are met, you can adjust workerNum and splitSize to enable

fast data loading. In the iteration phase, you only need to adjust workerNum.

If you set runtime partitioning to false, we recommend that you use setSplitSize to control the

number of Workers. Regarding the third condition, the number of vertices on some Worker may

be 0. You can use set odps.graph.split.size=<m>; set odps.graph.worker.num=<n>; before the

JAR command, which has the same effect as setNumWorkers and setSplitSize.

Another common performance problem is data skew. For example, on Counters, the number of

 vertices or edges processed by some Workers is much greater than that processed by other

Workers.

Data skew occurs usually when the number of vertices, edges, or messages corresponding to

 some keys is much greater than that corresponding to other keys. Such keys with the large

data volume are processed by a small number of Workers, resulting in a long run time of these

Workers.

To resolve this problem, we recommend the following steps:

• Use a combiner to locally aggregate messages of vertices corresponding to such keys to

reduce the number of sent messages.

• Improve the service logic.

Use a Combiner

Define a Combiner to reduce memory that stores messages and network data traffic volume

 and shortens the job execution time. For more information, see introduction to Combiner in

MaxCompute SDK.

Reduce the Data Input Volume

MaxCompute User Guide / 1 Graph

16 Issue: 20180904

When the data volume is large, reading data in a disk may extend the processing time. Therefore,

reducing the number of data bytes to be read can increase the overall throughput, thereby

improving job performance. You can use either of the following methods:

• Reduce the input data volume: For decision-making applications, results obtained from

processing subsets after data sampling only affect the result precision, instead of the overall

accuracy. Therefore, you can perform special data sampling and import the data to the input

table for processing.

• Avoid reading fields that are not used: The TableInfo class of the MaxCompute Graph

framework supports reading specific columns (transmitted using column name arrays),

rather than reading the entire table or table partition. This reduces the input data volume and

improves job performance.

Built-in JAR Packages

The following JAR packages are loaded to JVMs running the Graph program by default. You do

not have to upload these resources or carry these JAR packages when running -libjars on the

command line.

• commons-codec-1.3.jar

• commons-io-2.0.1.jar

• commons-lang-2.5.jar

• commons-logging-1.0.4.jar

• commons-logging-api-1.0.4.jar

• guava-14.0.jar

• json.jar

• log4j-1.2.15.jar

• slf4j-api-1.4.3.jar

• slf4j-log4j12-1.4.3.jar

• xmlenc-0.52.jar

Note:

In a classpath that runs a JVM, the preceding built-in JAR packages are placed before users’

JAR packages, which may result in a version conflict. For example, if your program uses a

function of a class in commons-codec-1.5.jar but this function is not in commons-codec-1.3.jar.

Check whether an implementation method exists in commons-codec-1.3.jar or wait for

MaxCompute to upgrade to a supported version.

MaxCompute User Guide / 1 Graph

Issue: 20180904 17

1.5 Limits

The limits of MaxCompute Graph are as follows:

• Each job can reference up to 256 resources. A table or an archive is considered as one unit (

that is, one resource).

• The total number of bytes of resources referenced by one job cannot exceed 512 MB. Each job

 can reference up to 512 MB of bytes of resources.

• The number of inputs of one job cannot exceed 1,024. and the number of input tables cannot

exceed 64. The number of outputs of one job cannot exceed 256.

• A label can be up to 256 characters in length and can contain letters, numbers, and special

 characters including underscores (_), pound signs (#), periods (.), and hyphens (-). Labels

specified for multiple outputs cannot be null or empty strings.

• Each job can have up to 64 custom counters. The group name and counter name can be up to

100 characters in length. The names cannot contain pound signs (#).

• The number of Workers of one job is calculated by the framework. The maximum number is 1,

000. If this threshold value is exceeded, an exception is thrown.

• One Worker occupies 200 resources of the CPU by default. The range is [50, 800].

• One Worker occupies 4096 MB of the memory by default. The range is [256 MB, 12 GB].

• A threshold for a Worker to read a resource repeatedly is 64.

• The split size can be set, however,as64 MB is the by default size.. The range is 0 < split_size

 <= (9223372036854775807 >> 20).

• In the MaxCompute Graph program, GraphLoader/Vertex/Aggregator running in a cluster is

restricted by the Java sandbox. (The main program of Graph jobs is not restricted.) For more

information about the restrictions, see Java sandbox.

1.6 Examples

1.6.1 SSSP
Dijkstra is a typical algorithm that calculates the Single Source Shortest Path (SSSP) in a directed

 graph.

For weighted directed graph G=(V,E), many paths are routed from source vertex s to sink vertex

 v. In these paths, the one that has the smallest edge weight sum is called the shortest distance

from s to v.

MaxCompute User Guide / 1 Graph

18 Issue: 20180904

The basic concept of the algorithm is as follows:

• Initialization: The distance from source vertex s to s itself is zero (d[s] = 0), and the distance

from another vertex u to s is infinite (d[u]=∞).

• Iteration: If an edge exists from u to v, the shortest distance from s to v is updated as: d[v] =

min(d[v], d[u] + weight(u, v)). The iteration ends until the distance from all vertices to s does

not change.

The basic concept shows that the algorithm is applicable to solutions using the MaxCompute

Graph program. Each vertex maintains the current shortest distance to the source vertex. If the

value changes, a message containing the new value and the edge weight is sent to the adjacent

 vertex. In the next iteration, the adjacent vertex updates the current shortest distance based on

the received message. The iteration ends when the current shortest distance of all vertices does

not change.

Sample Code

Code of SSSP is as follows:

import java.io.IOException;

import com.aliyun.odps.io.WritableRecord;
import com.aliyun.odps.graph.Combiner;
import com.aliyun.odps.graph.ComputeContext;
import com.aliyun.odps.graph.Edge;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.WorkerContext;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.data.TableInfo;

public class SSSP {

 public static final String START_VERTEX = "sssp.start.vertex.id";

 public static class SSSPVertex extends
 Vertex<LongWritable, LongWritable, LongWritable, LongWritable> {

 private static long startVertexId = -1;

 public SSSPVertex() {
 this.setValue(new LongWritable(Long.MAX_VALUE));

 public boolean isStartVertex(
 ComputeContext<LongWritable, LongWritable, LongWritable,
LongWritable> context) {
 if (startVertexId == -1) {
 String s = context.getConfiguration().get(START_VERTEX);
 startVertexId = Long.parseLong(s);

MaxCompute User Guide / 1 Graph

Issue: 20180904 19

 return getId().get() == startVertexId;

 @Override
 public void compute(
 ComputeContext<LongWritable, LongWritable, LongWritable,
LongWritable> context,
 Iterable<LongWritable> messages) throws IOException {
 long minDist = isStartVertex(context) ? 0 : Integer.MAX_VALUE;
 for (LongWritable msg : messages) {
 if (msg.get() < minDist) {
 minDist = msg.get();

 if (minDist < this.getValue().get()) {
 this.setValue(new LongWritable(minDist));
 if (hasEdges()) {
 for (Edge<LongWritable, LongWritable> e : this.getEdges()) {
 context.sendMessage(e.getDestVertexId(), new LongWritable(
minDist
 + e.getValue().get()));

 } else {
 voteToHalt();

 @Override
 public void cleanup(
 WorkerContext<LongWritable, LongWritable, LongWritable,
LongWritable> context)
 throws IOException {
 context.write(getId(), getValue());

 public static class MinLongCombiner extends
 Combiner<LongWritable, LongWritable> {

 @Override
 public void combine(LongWritable vertexId, LongWritable combinedMe
ssage,
 LongWritable messageToCombine) throws IOException {
 if (combinedMessage.get() > messageToCombine.get()) {
 combinedMessage.set(messageToCombine.get());

 public static class SSSPVertexReader extends
 GraphLoader<LongWritable, LongWritable, LongWritable, LongWritab
le> {

 @Override
 public void load(
 LongWritable recordNum,
 WritableRecord record,
 MutationContext<LongWritable, LongWritable, LongWritable,
LongWritable> context)

MaxCompute User Guide / 1 Graph

20 Issue: 20180904

 throws IOException {
 SSSPVertex vertex = new SSSPVertex();
 vertex.setId((LongWritable) record.get(0));
 String[] edges = record.get(1).toString().split(",");
 for (int i = 0; i < edges.length; i++) {
 String[] ss = edges[i].split(":");
 vertex.addEdge(new LongWritable(Long.parseLong(ss[0])),
 new LongWritable(Long.parseLong(ss[1])));

 context.addVertexRequest(vertex);

 public static void main(String[] args) throws IOException {
 if (args.length < 2) {
 System.out.println("Usage: <startnode> <input> <output>");
 System.exit(-1);

 GraphJob job = new GraphJob();
 job.setGraphLoaderClass(SSSPVertexReader.class);
 job.setVertexClass(SSSPVertex.class);
 job.setCombinerClass(MinLongCombiner.class);

 job.set(START_VERTEX, args[0]);
 job.addInput(TableInfo.builder().tableName(args[1]).build());
 job.addOutput(TableInfo.builder().tableName(args[2]).build());

 long startTime = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - startTime) / 1000.0 + "
seconds");

The source code of SSSP is described as follows:

• Row 19: Defines SSSPVertex, where:

▬ The vertex value indicates the current shortest distance from this vertex to source vertex

startVertexId.

▬ The compute() method uses the iteration formula d[v] = min(d[v], d[u] + weight(u, v)) to

update the vertex value.

▬ The cleanup() method writes the vertex and its shortest distance to the source vertex to the

result table.

• Row 58: If the vertex value does not change, voteToHalt() is called to notify the framework that

this vertex enters the halt status. The calculation ends when all vertices enter the halt state.

• Row 70: Defines MinLongCombiner and combines messages sent to the same vertex to

optimize performance and reduce memory usage.

MaxCompute User Guide / 1 Graph

Issue: 20180904 21

• Row 83: Defines the SSSPVertexReader class, loads a graph, and resolves each record in

the table into a vertex. The first column of the record is the vertex ID, and the second column

stores all edge sets starting from the vertex, such as 2:2, 3:1, 4:4.

• Row 106: Runs the main program (main function), defines GraphJob, and specifies the

implementation of Vertex/GraphLoader/Combiner, and the input and output tables.

1.6.2 PageRank
PageRank is a typical algorithm used to calculate the web page ranking. In the input directed

graph G, vertices indicate web pages. If a link exists between web pages A and B, an edge

connecting A and B exists.

The basic concept of the algorithm is as follows:

• Initialization: The vertex value indicates the rank value (of the double type) of PageRank. In the

 initial phase, the value of all vertices is 1/TotalNumVertices.

• Iteration formula: PageRank(i) = 0.15/TotalNumVertices + 0.85 x sum. Sum indicates the sum

of PageRank(j)/out_degree(j). (j indicates all vertices pointing to vertex i.)

The basic concept shows that the algorithm is applicable to solutions using the MaxCompute

Graph program. Each vertex j maintains the value of PageRank. PageRank(j)/out_degree(j) is

sent to the adjacent vertex (for voting) in each iteration. In the next iteration, each vertex recalculat

es the PageRank value using the iteration formula.

Sample Code

import java.io.IOException;

import org.apache.log4j.Logger;

import com.aliyun.odps.io.WritableRecord;
import com.aliyun.odps.graph.ComputeContext;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.WorkerContext;
import com.aliyun.odps.io.DoubleWritable;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.NullWritable;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.io.Text;
import com.aliyun.odps.io.Writable;

public class PageRank {

 private final static Logger LOG = Logger.getLogger(PageRank.class);

 public static class PageRankVertex extends

MaxCompute User Guide / 1 Graph

22 Issue: 20180904

 Vertex<Text, DoubleWritable, NullWritable, DoubleWritable> {

 @Override
 public void compute(
 ComputeContext<Text, DoubleWritable, NullWritable, DoubleWrit
able> context,
 Iterable<DoubleWritable> messages) throws IOException {
 if (context.getSuperstep() == 0) {
 setValue(new DoubleWritable(1.0 / context.getTotalNumVertices
()));
 } else if (context.getSuperstep() >= 1) {
 double sum = 0;
 for (DoubleWritable msg : messages) {
 sum += msg.get();

 DoubleWritable vertexValue = new DoubleWritable(
 (0.15f / context.getTotalNumVertices()) + 0.85f * sum);
 setValue(vertexValue);

 if (hasEdges()) {
 context.sendMessageToNeighbors(this, new DoubleWritable(
getValue()
 .get() / getEdges().size()));

 @Override
 public void cleanup(
 WorkerContext<Text, DoubleWritable, NullWritable, DoubleWrit
able> context)
 throws IOException {
 context.write(getId(), getValue());

 public static class PageRankVertexReader extends
 GraphLoader<Text, DoubleWritable, NullWritable, DoubleWritable>
 {

 @Override
 public void load(
 LongWritable recordNum,
 WritableRecord record,
 MutationContext<Text, DoubleWritable, NullWritable, DoubleWrit
able> context)
 throws IOException {
 PageRankVertex vertex = new PageRankVertex();
 vertex.setValue(new DoubleWritable(0));
 vertex.setId((Text) record.get(0));
 System.out.println(record.get(0));

 for (int i = 1; i < record.size(); i++) {
 Writable edge = record.get(i);
 System.out.println(edge.toString());
 if (!(edge.equals(NullWritable.get()))) {
 vertex.addEdge(new Text(edge.toString()), NullWritable.get
());

 LOG.info("vertex edgs size: "
 + (vertex.hasEdges() ? vertex.getEdges().size() : 0));
 context.addVertexRequest(vertex);

MaxCompute User Guide / 1 Graph

Issue: 20180904 23

 private static void printUsage() {
 System.out.println("Usage: <in> <out> [Max iterations (default 30
)]");
 System.exit(-1);

 public static void main(String[] args) throws IOException {
 if (args.length < 2)
 printUsage();

 GraphJob job = new GraphJob();

 job.setGraphLoaderClass(PageRankVertexReader.class);
 job.setVertexClass(PageRankVertex.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());

 // default max iteration is 30
 job.setMaxIteration(30);
 if (args.length >= 3)
 job.setMaxIteration(Integer.parseInt(args[2]));

 long startTime = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - startTime) / 1000.0 + "
seconds");

The source code of PageRank is described as follows:

• Row 23: Defines PageRankVertex, where:

▬ The vertex value indicates the current PageRank value of the vertex (web page).

▬ The compute() method uses the iteration formula PageRank(i) = 0.15/TotalNumVe

rtices + 0.85 x sum to update the vertex value.

▬ The cleanup() method writes the vertex and its PageRank value to the result table.

• Row 55: Defines the PageRankVertexReader class, loads a graph, and resolves each record in

 the table into a vertex. The first column of the record is the start vertex and other columns are

the destination vertices.

• Row 88: Runs the main program (main function), defines GraphJob, and specifies the

implementation of Vertex/GraphLoader, the maximum number of iterations (30 by default), and

 input and output tables.

MaxCompute User Guide / 1 Graph

24 Issue: 20180904

1.6.3 Kmeans
The Kmeans algorithm is a typical clustering algorithm.

It performs clustering by using k number of vertices in the space as the centers and grouping the

 vertices closest to them. The values of the clustering centers are successively updated through

iterations until the optimal clustering result is obtained.

To divide a sample set into k classes, the algorithm operates as follows:

1. Selects the initial centers of k classes.

2. Calculates the distance from any sample to the k centers in iteration i, and groups the sample

to the class of the nearest center.

3. Updates the center value of the class using the mean and other methods.

4. For all k clustering centers, if the value updated after iterations remains unchanged or is

smaller than a threshold, the iteration ends. Otherwise, the iteration continues.

Sample Code

Code for the K-means clustering algorithm is as follows:

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.log4j.Logger;

import com.aliyun.odps.io.WritableRecord;
import com.aliyun.odps.graph.Aggregator;
Import com. aliyun. ODPS. graph. computercontext;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.WorkerContext;
import com.aliyun.odps.io.DoubleWritable;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.NullWritable;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.io.Text;
import com.aliyun.odps.io.Tuple;
import com.aliyun.odps.io.Writable;

public class Kmeans {
 private final static Logger LOG = Logger.getLogger(Kmeans.class);

 public static class KmeansVertex extends
 Vertex<Text, Tuple, NullWritable, NullWritable> {

 @ Override
 public void compute(
 ComputeContext<Text, Tuple, NullWritable, NullWritable> context,
 Iterable<NullWritable> messages) throws IOException {
 context.aggregate(getValue());

MaxCompute User Guide / 1 Graph

Issue: 20180904 25

 }

 public static class KmeansVertexReader extends
 GraphLoader<Text, Tuple, NullWritable, NullWritable> {
 @Override
 public void load(LongWritable recordNum, WritableRecord record,
 MutationContext<Text, Tuple, NullWritable, NullWritable> context)
 throws IOException {
 KmeansVertex vertex = new KmeansVertex();
 vertex.setId(new Text(String.valueOf(recordNum.get())));
 vertex.setValue(new Tuple(record.getAll()));
 context.addVertexRequest(vertex);

 public static class KmeansAggrValue implements Writable {

 Tuple centers = new Tuple();
 Tuple sums = new Tuple();
 Tuple counts = new Tuple();

 @ Override
 public void write(DataOutput out) throws IOException {
 centers.write(out);
 sums.write(out);
 counts.write(out);

 @Override
 public void readFields(DataInput in) throws IOException {
 centers = new Tuple();
 centers.readFields(in);
 sums = new Tuple();
 sums.readFields(in);
 counts = new Tuple();
 counts.readFields(in);

 @Override
 public String toString() {
 return "centers " + centers.toString() + ", sums " + sums.
toString()
 + ", counts " + counts.toString();

public static class KmeansAggregator extends Aggregator<KmeansAggr
Value> {

 @SuppressWarnings("rawtypes")
 @Override
 public KmeansAggrValue createInitialValue(WorkerContext context)
 throws IOException {
 KmeansAggrValue aggrVal = null;
 if (context.getSuperstep() == 0) {
 aggrVal = new KmeansAggrValue();
 aggrVal.centers = new Tuple();
 aggrVal.sums = new Tuple();

MaxCompute User Guide / 1 Graph

26 Issue: 20180904

 aggrVal.counts = new Tuple();

 byte[] centers = context.readCacheFile("centers");
 String lines[] = new String(centers).split("\n");

for (int i = 0; i < lines.length; i++) {
 String[] ss = lines[i].split(",");
 Tuple center = new Tuple();
 Tuple sum = new Tuple();
 for (int j = 0; j < ss.length; ++j) {
 center.append(new DoubleWritable(Double.valueOf(ss[j].trim
())));
 sum.append(new DoubleWritable(0.0));

 LongWritable count = new LongWritable(0);
 aggrVal.sums.append(sum);
 aggrVal.counts.append(count);
 aggrVal.centers.append(center);

 } else {
 aggrVal = (KmeansAggrValue) context.getLastAggregatedValue(0);

 return aggrVal;

 @Override
 Public void aggregate (glasvalue, object item){
 int min = 0;
 double mindist = Double.MAX_VALUE;
 Tuple point = (Tuple) item;

for (int i = 0; i < value.centers.size(); i++) {
 Tuple center = (Tuple) value.centers.get(i);
 // use Euclidean Distance, no need to calculate sqrt
 double dist = 0.0d;
 for (int j = 0; j < center.size(); j++) {
 double v = ((DoubleWritable) point.get(j)).get()
 - ((DoubleWritable) center.get(j)).get();
 dist += v * v;

 if (dist < mindist) {
 mindist = dist;
 min = i;

 // update sum and count
 Tuple sum = (Tuple) value.sums.get(min);
 for (int i = 0; i < point.size(); i++) {
 DoubleWritable s = (DoubleWritable) sum.get(i);
 s.set(s.get() + ((DoubleWritable) point.get(i)).get());

 LongWritable count = (LongWritable) value.counts.get(min);
 count.set(count.get() + 1);

 @Override
 public void merge(KmeansAggrValue value, KmeansAggrValue partial)
 {
 for (int i = 0; i < value.sums.size(); i++) {
 Tuple sum = (Tuple) value.sums.get(i);

MaxCompute User Guide / 1 Graph

Issue: 20180904 27

 Tuple that = (Tuple) partial.sums.get(i);
 for (int j = 0; j < sum.size(); j++) {
 DoubleWritable s = (DoubleWritable) sum.get(j);
 s.set(s.get() + ((DoubleWritable) that.get(j)).get());

for (int i = 0; i < value.counts.size(); i++) {
 LongWritable count = (LongWritable) value.counts.get(i);
 count.set(count.get() + ((LongWritable) partial.counts.get(i
)).get());

 @SuppressWarnings("rawtypes")
 @Override
 public boolean terminate(WorkerContext context, KmeansAggrValue
value)
 throws IOException {

 // compute new centers
 Tuple newCenters = new Tuple(value.sums.size());
 for (int i = 0; i < value.sums.size(); i++) {
 Tuple sum = (Tuple) value.sums.get(i);
 Tuple newCenter = new Tuple(sum.size());
 LongWritable c = (LongWritable) value.counts.get(i);
 for (int j = 0; j < sum.size(); j++) {

 DoubleWritable s = (DoubleWritable) sum.get(j);
 double val = s.get() / c.get();
 newCenter.set(j, new DoubleWritable(val));

 // reset sum for next iteration
 s.set(0.0d);

 // reset count for next iteration
 c.set(0);
 newCenters.set(i, newCenter);

 // update centers
 Tuple oldCenters = value.centers;
 value.centers = newCenters;

 LOG.info("old centers: " + oldCenters + ", new centers: " +
newCenters);

 // compare new/old centers
 boolean converged = true;
 for (int i = 0; i < value.centers.size() && converged; i++) {
 Tuple oldCenter = (Tuple) oldCenters.get(i);
 Tuple newCenter = (Tuple) newCenters.get(i);
 double sum = 0.0d;
 for (int j = 0; j < newCenter.size(); j++) {
 double v = ((DoubleWritable) newCenter.get(j)).get()
 - ((DoubleWritable) oldCenter.get(j)).get();
 sum += v * v;

 double dist = Math.sqrt(sum);
 LOG.info("old center: " + oldCenter + ", new center: " +
newCenter
 + ", dist: " + dist);

MaxCompute User Guide / 1 Graph

28 Issue: 20180904

 // converge threshold for each center: 0.05
 converged = dist < 0.05d;

 if (converged || context.getSuperstep() == context.getMaxIter
ation() - 1) {
 // converged or reach max iteration, output centers
 for (int i = 0; i < value.centers.size(); i++) {
 context.write(((Tuple) value.centers.get(i)).toArray());

 // true means to terminate iteration
 return true;

 // false means to continue iteration
 return false;

 private static void printUsage() {
 System. out. println ("Usage: <in> <out> [Max iterations (default 30
)] ");
 System.exit(-1);

 public static void main(String[] args) throws IOException {
 if (args.length < 2)
 printUsage();

 GraphJob job = new GraphJob();

 job.setGraphLoaderClass(KmeansVertexReader.class);
 job.setRuntimePartitioning(false);
 job.setVertexClass(KmeansVertex.class);
 job.setAggregatorClass(KmeansAggregator.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());

 // default max iteration is 30
 job.setMaxIteration(30);
 if (args.length >= 3)
 job.setMaxIteration(Integer.parseInt(args[2]));

 long start = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - start) / 1000.0 + " seconds");

The source code of Kmeans is described as follows:

• Row 26: Defines KmeansVertex. The compute() method is simple. It calls the aggregate()

method of the context object and transmits the value of the current vertex (in Tuple type and

expressed by vector).

MaxCompute User Guide / 1 Graph

Issue: 20180904 29

• Row 38: Defines the KmeansVertexReader class, loads a graph, and resolves each record in

the table as a vertex. The vertex ID does not matter, and transmitted recordNum is used as the

 ID. The vertex value is the Tuple consisting of all columns of the record.

• Row 83: Defines KmeansAggregator. This class encapsulates the main logic of the Kmeans

algorithm, where:

▬ createInitialValue creates an initial value for each iteration (k-class center point). In first

iteration (superstep equals to 0), the value is the initial center point. Otherwise, the value is

the new center point when the last iteration ends.

▬ The aggregate() method calculates the distance from each vertex to centers of different

classes, classifies the vertex as the class of the nearest center, and updates sum and count

 of the class.

▬ The merge() method combines sums and counts collected by each Worker.

▬ The terminate() method calculates the new center point based on sum and count of each

 class. If the distance between the new and old center points is smaller than a threshold

value or the number of iterations reaches the upper limit, the iteration ends (false is returned

). The final center point is written to the result table.

• Row 236: Runs the main program (main function), defines GraphJob, and specifies the

implementation of Vertex/GraphLoader/Aggregator, the maximum number of iterations (30 by

default), and the input and output tables.

• Row 243: Specifies job.setRuntimePartitioning(false). For the Kmeans algorithm, vertices

do not have to be distributed during graph loading. If RuntimePartitioning is set to false, the

performance for graph loading is improved.

1.6.4 BiPartiteMatchiing
A Bipartite graph means all the graph vertices can be separated into 2 sets, and 2 vertices

corresponding to each Edge belong to the 2 sets respectively. For bipartite graph G, M is one

of its sub-graphs. If any two edges in the edge set of M are not attached to the same vertex, M

is called a matching. The bipartite graph matching is usually used for information matching in

scenarios with clear supply and demand relationships.

The basic concept of the algorithm is as follows:

• From the first vertex on the left, unmatched vertices are selected to search for the augmenting

path.

• If an unmatched vertex is found, the search is successful.

MaxCompute User Guide / 1 Graph

30 Issue: 20180904

• The path information is updated. If the number of matching edges is increased by 1, the search

 is stopped.

• If the augmenting path is not found, the search is no longer started from this vertex.

Sample Code

BiPartiteMatchiing The code of the algorithm is as follows:

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.util.Random;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.graph.ComputeContext;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.WorkerContext;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.NullWritable;
import com.aliyun.odps.io.Text;
import com.aliyun.odps.io.Writable;
import com.aliyun.odps.io.WritableRecord;
public class BipartiteMatching {
 private static final Text UNMATCHED = new Text("UNMATCHED");
 public static class TextPair implements Writable {
 public Text first;
 public Text second;
 public TextPair() {
 first = new Text();
 second = new Text();

 public TextPair(Text first, Text second) {
 this.first = new Text(first);
 this.second = new Text(second);

 @ Override
 public void write(DataOutput out) throws IOException {
 first.write(out);
 second.write(out);

 @ Override
 public void readFields(DataInput in) throws IOException {
 first = new Text();
 first.readFields(in);
 second = new Text();
 second.readFields(in);

 @ Override
 public String toString() {
 return first + ": " + second;

 public static class BipartiteMatchingVertexReader extends
 GraphLoader<Text, TextPair, NullWritable, Text> {
 @ Override
 public void load(LongWritable recordNum, WritableRecord record,
 MutationContext<Text, TextPair, NullWritable, Text> context)

MaxCompute User Guide / 1 Graph

Issue: 20180904 31

 throws IOException {
 BipartiteMatchingVertex vertex = new BipartiteMatchingVertex();
 vertex.setId((Text) record.get(0));
 vertex.setValue(new TextPair(UNMATCHED, (Text) record.get(1)));
 String[] adjs = record.get(2).toString().split(",");
 for (String adj : adjs) {
 vertex.addEdge(new Text(adj), null);

 context.addVertexRequest(vertex);

 public static class BipartiteMatchingVertex extends
 Vertex <Text, TextPair, NullWritable, Text> {
 private static final Text LEFT = new Text("LEFT");
 private static final Text RIGHT = new Text("RIGHT");
 private static Random rand = new Random();
 @ Override
 public void compute (
 ComputeContext<Text, TextPair, NullWritable, Text> context,
 Iterable messages) throws ioexception {
 if (isMatched()) {
 voteToHalt();
 return;

 switch ((int) context.getSuperstep() % 4) {
 case 0:
 if (isLeft()) {
 context.sendMessageToNeighbors(this, getId());

 break;
 case 1:
 if (isRight()) {
 Text luckyLeft = null;
 for (Text message : messages) {
 if (luckyLeft == null) {
 luckyLeft = new Text(message);
 } else {
 if (rand.nextInt(1) == 0) {
 luckyLeft.set(message);

 if (luckyLeft ! = null) {
 context.sendMessage(luckyLeft, getId());

 break;
 case 2:
 if (isLeft()) {
 Text luckyRight = null;
 for (Text msg : messages) {
 if (luckyRight == null) {
 luckyRight = new Text(msg);
 } else {
 if (rand.nextInt(1) == 0) {
 luckyRight.set(msg);

 if (luckyRight ! = null) {
 setMatchVertex(luckyRight);
 context.sendMessage(luckyRight, getId());

MaxCompute User Guide / 1 Graph

32 Issue: 20180904

 break;
 case 3:
 if (isRight()) {
 for (Text msg : messages) {
 setMatchVertex(msg);

 break;

 @ Override
 public void cleanup(
 WorkerContext<Text, TextPair, NullWritable, Text> context)
 throws IOException {
 context.write(getId(), getValue().first);

 private boolean isMatched() {
 return ! getValue().first.equals(UNMATCHED);

 private boolean isLeft() {
 return getValue().second.equals(LEFT);

 private boolean isRight() {
 return getValue().second.equals(RIGHT);

 private void setMatchVertex(Text matchVertex) {
 getValue().first.set(matchVertex);

 private static void printUsage() {
 System.err.println("BipartiteMatching <input> <output> [maxIterati
on]");

 public static void main(String[] args) throws IOException {
 if (args.length < 2) {
 printUsage();

 GraphJob job = new GraphJob();
 job.setGraphLoaderClass(BipartiteMatchingVertexReader.class);
 job.setVertexClass(BipartiteMatchingVertex.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 int maxIteration = 30;
 if (args.length > 2) {
 maxIteration = Integer.parseInt(args[2]);

 job.setMaxIteration(maxIteration);
 job.run();

1.6.5 Strongly-connected component
In a digraph, if by starting from any vertex it reaches every vertex in the graph through Edges, it is

called a strongly-connected graph. A strongly-connected subgraph with an extremely large vertex

MaxCompute User Guide / 1 Graph

Issue: 20180904 33

number is called a strongly-connected component. The algorithm is based on Parallel coloring

algorithm.

Each vertex contains the following components:

• colorID: Stores the color of vertex v during forward traversal. After a calculation ends, vertices

with the same colorID belong to one strongly connected component.

• transposeNeighbors: Stores the neighbor ID of vertex v in the transpose graph of the input

graph.

The algorithm contains the following four steps:

• Transpose graph generation: Contains two supersteps. Each vertex sends its ID to its neighbor

 with the corresponding outbound edge. In the next superstep, these IDs are stored as

transposeNeighbors values.

• Trim: Contains one superstep. Each vertex that has only one inbound or outbound edge sets

the colorID as its own ID and the status to inactive. Subsequent signals sent to the vertex are

ignored.

• Forward traversal: A vertex contains two sub-processes (supersteps): startup and sleep.

 In the startup phase, each vertex sets the colorID as its own ID and sends the ID to the

neighbor with the corresponding outbound edge. In the sleep phase, the vertex uses the

maximum colorID it received to update its own colorID, and transmits the colorID until the

colorID converges. When the colorID converges, the master process sets the global object to

backward traversal.

• Backward traversal: Contains two sub-processes: startup and sleep. In the startup phase,

a vertex whose ID is the same as the colorID transmits its ID to the neighbor vertex in the

transpose graph, and sets its status to inactive. Subsequent signals sent to the vertex can be

ignored. In each sleep step, each vertex receives signals matching its colorID, transmits the

colorID in the transpose graph, and then sets its status to inactive. If active vertices exist after

this step ends, the process reverts to the trim step.

Sample Code

The code for strongly connected components is as follows:

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.graph.Aggregator;
import com.aliyun.odps.graph.ComputeContext;
import com.aliyun.odps.graph.GraphJob;

http://ilpubs.stanford.edu:8090/1077/3/p535-salihoglu.pdf
http://ilpubs.stanford.edu:8090/1077/3/p535-salihoglu.pdf

MaxCompute User Guide / 1 Graph

34 Issue: 20180904

import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.WorkerContext;
import com.aliyun.odps.io.BooleanWritable;
import com.aliyun.odps.io.IntWritable;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.NullWritable;
import com.aliyun.odps.io.Tuple;
import com.aliyun.odps.io.Writable;
import com.aliyun.odps.io.WritableRecord;

 * Definition from Wikipedia:
 * In the mathematical theory of directed graphs, a graph is said
 * to be strongly connected if every vertex is reachable from every
 * other vertex. The strongly connected components of an arbitrary
 * directed graph form a partition into subgraphs that are themselves
 * Strictly connected.

 * Algorithms with four phases as follows.
 * 1. Transpose Graph Formation: Requires two supersteps. In the first
 * superstep, each vertex sends a message with its ID to all its
outgoing
 * neighbors, which in the second superstep are stored in transposeN
eighbors.

 * 2. Trimming: Takes one superstep. Every vertex with only in-coming
or
 * only outgoing edges (or neither) sets its colorID to its own ID and
 * becomes inactive. Messages subsequently sent to the vertex are
ignored.

 * 3. Forward-Traversal: There are two sub phases: Start and Rest. In
the
 * Start phase, each vertex sets its colorID to its own ID and
propagates
 * its ID to its outgoing neighbors. In the Rest phase, vertices
update
 * their own colorIDs with the minimum colorID they have seen, and
propagate
 * their colorIDs, if updated, until the colorIDs converge.
 * Set the phase to Backward-Traversal when the colorIDs converge.

 * 4. Backward-Traversal: We again break the phase into Start and Rest
.
 * In Start, every vertex whose ID equals its colorID propagates its
ID to
 * the vertices in transposeNeighbors and sets itself inactive.
Messages
 * subsequently sent to the vertex are ignored. In each of the Rest
phase supersteps,
 * each vertex receiving a message that matches its colorID: (1)
propagates
 * its colorID in the transpose graph; (2) sets itself inactive.
Messages
 * subsequently sent to the vertex are ignored. Set the phase back to
Trimming
 * if not all vertex are inactive.

 * http://ilpubs.stanford.edu:8090/1077/3/p535-salihoglu.pdf

public class StronglyConnectedComponents {

MaxCompute User Guide / 1 Graph

Issue: 20180904 35

 public final static int STAGE_TRANSPOSE_1 = 0;
 public final static int STAGE_TRANSPOSE_2 = 1;
 public final static int STAGE_TRIMMING = 2;
 public final static int STAGE_FW_START = 3;
 public final static int STAGE_FW_REST = 4;
 public final static int STAGE_BW_START = 5;
 public final static int STAGE_BW_REST = 6;

 * The value is composed of component id, incoming neighbors,
 * active status and updated status.

 public static class MyValue implements Writable {
 LongWritable sccID;// strongly connected component id
 Tuple inNeighbors; // transpose neighbors
 BooleanWritable active; // vertex is active or not
 BooleanWritable updated; // sccID is updated or not
 public MyValue() {
 this.sccID = new LongWritable(Long.MAX_VALUE);
 this.inNeighbors = new Tuple();
 this.active = new BooleanWritable(true);
 this.updated = new BooleanWritable(false);

 public void setSccID(LongWritable sccID) {
 this.sccID = sccID;

 public LongWritable getSccID() {
 return this.sccID;

 public void setInNeighbors(Tuple inNeighbors) {
 this.inNeighbors = inNeighbors;

 public Tuple getInNeighbors() {
 return this.inNeighbors;

 public void addInNeighbor(LongWritable neighbor) {
 this.inNeighbors.append(new LongWritable(neighbor.get()));

 public boolean isActive() {
 return this.active.get();

 public void setActive(boolean status) {
 this.active.set(status);

 public boolean isUpdated() {
 return this.updated.get();

 public void setUpdated(boolean update) {
 this.updated.set(update);

 @Override
 public void write(DataOutput out) throws IOException {
 this.sccID.write(out);
 this.inNeighbors.write(out);
 this.active.write(out);
 this.updated.write(out);

 @Override
 public void readFields(DataInput in) throws IOException {
 this.sccID.readFields(in);
 this.inNeighbors.readFields(in);
 this.active.readFields(in);
 this.updated.readFields(in);

MaxCompute User Guide / 1 Graph

36 Issue: 20180904

 @Override
 public String toString() {
 StringBuilder sb = new StringBuilder();
 sb.append("sccID: " + sccID.get());
 sb.append(" inNeighbores: " + inNeighbors.toDelimitedString
(','));
 sb.append(" active: " + active.get());
 sb.append(" updated: " + updated.get());
 return sb.toString();

 public static class SCCVertex extends
 Vertex <LongWritable, MyValue, NullWritable, LongWritable> {
 public SCCVertex() {
 this.setValue(new MyValue());

 @Override
 public void compute(
 ComputeContext < LongWritable, MyValue, NullWritable, LongWritable
> context,
 Iterable <LongWritable> msgs) throws IOException {
 // Messages sent to inactive vertex are ignored.
 if (! this.getValue().isActive()) {
 this.voteToHalt();
 return;

 int stage = ((SCCAggrValue)context.getLastAggregatedValue(0)).
getStage();
 switch (stage) {
 case STAGE_TRANSPOSE_1:
 context.sendMessageToNeighbors(this, this.getId());
 break;
 case STAGE_TRANSPOSE_2:
 for (LongWritable msg: msgs) {
 this.getValue().addInNeighbor(msg);

 case STAGE_TRIMMING:
 this.getValue().setSccID(getId());
 if (this.getValue().getInNeighbors().size() == 0 ||
 this.getNumEdges() == 0) {
 this.getValue().setActive(false);

 break;
 case STAGE_FW_START:
 this.getValue().setSccID(getId());
 context.sendMessageToNeighbors(this, this.getValue().getSccID
());
 break;
 case STAGE_FW_REST:
 long minSccID = Long.MAX_VALUE;
 for (LongWritable msg : msgs) {
 if (msg.get() < minSccID) {
 minSccID = msg.get();

 if (minSccID < this.getValue().getSccID().get()) {
 this.getValue().setSccID(new LongWritable(minSccID));
 context.sendMessageToNeighbors(this, this.getValue().
getSccID());
 this.getValue().setUpdated(true);
 } else {

MaxCompute User Guide / 1 Graph

Issue: 20180904 37

 this.getValue().setUpdated(false);

 break;
 case STAGE_BW_START:
 if (this.getId().equals(this.getValue().getSccID())) {
 for (Writable neighbor : this.getValue().getInNeighbors().
getAll()) {
 context.sendMessage((LongWritable)neighbor, this.getValue
().getSccID());

 this.getValue().setActive(false);

 break;
 case STAGE_BW_REST:
 this.getValue().setUpdated(false);
 for (LongWritable msg : msgs) {
 if (msg.equals(this.getValue().getSccID())) {
 for (Writable neighbor : this.getValue().getInNeighbors().
getAll()) {
 context.sendMessage((LongWritable)neighbor, this.
getValue().getSccID());

 this.getValue().setActive(false);
 this.getValue().setUpdated(true);
 break;

 break;

 context.aggregate(0, getValue());

 @Override
 public void cleanup(
 WorkerContext<LongWritable, MyValue, NullWritable, LongWritab
le> context)
 throws IOException {
 context.write(getId(), getValue().getSccID());

 * The SCCAggrValue maintains global stage and graph updated and
active status.
 * updated is true only if one vertex is updated.
 * active is true only if one vertex is active.

 public static class SCCAggrValue implements Writable {
 IntWritable stage = new IntWritable(STAGE_TRANSPOSE_1);
 BooleanWritable updated = new BooleanWritable(false);
 BooleanWritable active = new BooleanWritable(false);
 public void setStage(int stage) {
 this.stage.set(stage);

 public int getStage() {
 return this.stage.get();

 public void setUpdated(boolean updated) {
 this.updated.set(updated);

 public boolean getUpdated() {
 return this.updated.get();

 public void setActive(boolean active) {

MaxCompute User Guide / 1 Graph

38 Issue: 20180904

 this.active.set(active);

 public boolean getActive() {
 return this.active.get();

 @ Override
 public void write(DataOutput out) throws IOException {
 this.stage.write(out);
 this.updated.write(out);
 this.active.write(out);

 @ Override
 public void readFields(DataInput in) throws IOException {
 this.stage.readFields(in);
 this.updated.readFields(in);
 this.active.readFields(in);

 * The job of SCCAggregator is to schedule global stage in every
superstep.

 public static class SCCAggregator extends Aggregator<SCCAggrValue> {
 @SuppressWarnings("rawtypes")
 @ Override
 public SCCAggrValue createStartupValue(WorkerContext context)
throws IOException {
 return new SCCAggrValue();

 @SuppressWarnings("rawtypes")
 @ Override
 public SCCAggrValue createInitialValue(WorkerContext context)
 throws IOException {
 return (SCCAggrValue) context.getLastAggregatedValue(0);

 @ Override
 public void aggregate(SCCAggrValue value, Object item) throws
IOException {
 MyValue v = (MyValue)item;
 if ((value.getStage() == STAGE_FW_REST || value.getStage() ==
STAGE_BW_REST)
 && v.isUpdated()) {
 value.setUpdated(true);

 // only active vertex invoke aggregate()
 value.setActive(true);

 @ Override
 public void merge(SCCAggrValue value, SCCAggrValue partial)
 throws IOException {
 boolean updated = value.getUpdated() || partial.getUpdated();
 value.setUpdated(updated);
 boolean active = value.getActive() || partial.getActive();
 value.setActive(active);

 @SuppressWarnings("rawtypes")
 @ Override
 public boolean terminate(WorkerContext context, SCCAggrValue value
)
 throws IOException {
 // If all vertices is inactive, job is over.
 if (! value.getActive()) {

MaxCompute User Guide / 1 Graph

Issue: 20180904 39

 return true;

 // state machine
 switch (value.getStage()) {
 case STAGE_TRANSPOSE_1:
 value.setStage(STAGE_TRANSPOSE_2);
 break;
 case STAGE_TRANSPOSE_2:
 value.setStage(STAGE_TRIMMING);
 break;
 case STAGE_TRIMMING:
 value.setStage(STAGE_FW_START);
 break;
 case STAGE_FW_START:
 value.setStage(STAGE_FW_REST);
 break;
 case STAGE_FW_REST:
 if (value.getUpdated()) {
 value.setStage(STAGE_FW_REST);
 } else {
 value.setStage(STAGE_BW_START);

 break;
 case STAGE_BW_START:
 value.setStage(STAGE_BW_REST);
 break;
 case STAGE_BW_REST:
 if (value.getUpdated()) {
 value.setStage(STAGE_BW_REST);
 } else {
 value.setStage(STAGE_TRIMMING);

 break;

 value.setActive(false);
 value.setUpdated(false);
 return false;

 public static class SCCVertexReader extends
 GraphLoader<LongWritable, MyValue, NullWritable, LongWritable> {
 @ Override
 public void load(
 LongWritable recordNum,
 WritableRecord record,
 MutationContext<LongWritable, MyValue, NullWritable,
LongWritable> context)
 throws IOException {
 SCCVertex vertex = new SCCVertex();
 vertex.setId((LongWritable) record.get(0));
 String[] edges = record.get(1).toString().split(",");
 for (int i = 0; i < edges.length; i++) {
 try {
 long destID = Long.parseLong(edges[i]);
 vertex.addEdge(new LongWritable(destID), NullWritable.get
());
 } catch(NumberFormatException nfe) {
 System.err.println("Ignore " + nfe);

 context.addVertexRequest(vertex);

MaxCompute User Guide / 1 Graph

40 Issue: 20180904

 public static void main(String[] args) throws IOException {
 if (args.length < 2) {
 System.out.println("Usage: <input> <output>");
 System.exit(-1);

 GraphJob job = new GraphJob();
 job.setGraphLoaderClass(SCCVertexReader.class);
 job.setVertexClass(SCCVertex.class);
 job.setAggregatorClass(SCCAggregator.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 long startTime = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - startTime) / 1000.0 + "
seconds");

1.6.6 Connected component
If there is path between 2 vertices, it means the 2 vertices are connected. If any two vertices in

undirected graph G are connected, G is called a connected graph. Otherwise, G is called an

unconnected graph. A connected sub-graph with a large number of vertices is called a connected

component.

This algorithm calculates connected component members of each vertex, and outputs the

connected component of the vertex value that includes the smallest vertex ID. The smallest vertex

 ID is transmitted along edges to all vertices of the connected component.

Sample Code

Code for connecting components is as follows:

import java.io.IOException;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.graph.ComputeContext;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.WorkerContext;
import com.aliyun.odps.graph.examples.SSSP.MinLongCombiner;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.NullWritable;
import com.aliyun.odps.io.WritableRecord;

 * Compute the connected component membership of each vertex and
output
 * each vertex which's value containing the smallest id in the
connected
 * component containing that vertex.

 * Algorithm: propagate the smallest vertex id along the edges to all
 * vertices of a connected component.

MaxCompute User Guide / 1 Graph

Issue: 20180904 41

public class ConnectedComponents {
 public static class CCVertex extends
 Vertex<LongWritable, LongWritable, NullWritable, LongWritable> {
 @Override
 public void compute(
 ComputeContext<LongWritable, LongWritable, NullWritable,
LongWritable> context,
 Iterable<LongWritable> msgs) throws IOException {
 if (context.getSuperstep() == 0L) {
 this.setValue(getId());
 context.sendMessageToNeighbors(this, getValue());
 return;

 long minID = Long.MAX_VALUE;
 for (LongWritable id : msgs) {
 if (id.get() < minID) {
 minID = id.get();

 if (minID < this.getValue().get()) {
 this.setValue(new LongWritable(minID));
 context.sendMessageToNeighbors(this, getValue());
 } else {
 this.voteToHalt();

 * Output Table Description:

 * | Field | Type | Comment |

 * | v | bigint | vertex id |
 * | minID | bigint | smallest id in the connected component |

 @Override
 public void cleanup(
 WorkerContext<LongWritable, LongWritable, NullWritable, LongWritab
le> context)
 throws IOException {
 context.write(getId(), getValue());

 * Input Table Description:

 * | Field | Type | Comment |

 * | v | bigint | vertex id |
 * | es | string | comma separated target vertex id of outgoing
edges |

 * Example:
 * For graph:
 * 1 ----- 2

 * 3 ----- 4
 * Input table:

MaxCompute User Guide / 1 Graph

42 Issue: 20180904

 * | v | es |

 * | 1 | 2,3 |
 * | 2 | 1,4 |
 * | 3 | 1,4 |
 * | 4 | 2,3 |

 public static class CCVertexReader extends
 GraphLoader<LongWritable, LongWritable, NullWritable, LongWritable>
 {
 @Override
 public void load(
 LongWritable recordNum,
 WritableRecord record,
 MutationContext<LongWritable, LongWritable, NullWritable,
LongWritable> context)
 throws IOException {
 CCVertex vertex = new CCVertex();
 vertex.setId((LongWritable) record.get(0));
 String[] edges = record.get(1).toString().split(",");
 for (int i = 0; i < edges.length; i++) {
 long destID = Long.parseLong(edges[i]);
 vertex.addEdge(new LongWritable(destID), NullWritable.get());

 context.addVertexRequest(vertex);

 public static void main(String[] args) throws IOException {
 if (args.length < 2) {
 System.out.println("Usage: <input> <output>");
 System.exit(-1);

 GraphJob job = new GraphJob();
 job.setGraphLoaderClass(CCVertexReader.class);
 job.setVertexClass(CCVertex.class);
 job.setCombinerClass(MinLongCombiner.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 long startTime = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - startTime) / 1000.0 + "
seconds");

1.6.7 Topology Sorting
In directed edge (u,v), all vertex sequences satisfying u < v are called topological sequences.

Topological sorting is an algorithm used to calculate the topological sequence of a directed graph.

Specifically, the algorithm:

1. Find a vertex that does not have any inbound edge from the graph and outputs the vertex.

2. Delete the vertex and all outbound edges from the graph.

3. Repeat the preceding steps until all vertices are output.

MaxCompute User Guide / 1 Graph

Issue: 20180904 43

Sample Code

The code for the topology ordering algorithm is as follows:

import java.io.IOException;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.graph.Aggregator;
import com.aliyun.odps.graph.Combiner;
import com.aliyun.odps.graph.ComputeContext;
Import com. aliyun. ODPS. graph. graphjob;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.WorkerContext;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.NullWritable;
import com.aliyun.odps.io.BooleanWritable;
import com.aliyun.odps.io.WritableRecord;
public class TopologySort {
 private final static Log LOG = LogFactory.getLog(TopologySort.class
);
 public static class TopologySortVertex extends
 Vertex<LongWritable, LongWritable, NullWritable, LongWritable> {
 @Override
 public void compute(
 ComputeContext<LongWritable, LongWritable, NullWritable,
LongWritable> context,
 Iterable<LongWritable> messages) throws IOException {
 // in superstep 0, each vertex sends message whose value is 1 to
 its
 // neighbors
 if (context.getSuperstep() == 0) {
 if (hasEdges()) {
 context.sendMessageToNeighbors(this, new LongWritable(1L));

 } else if (context.getSuperstep() >= 1) {
 // compute each vertex's indegree
 long indegree = getValue().get();
 for (LongWritable msg : messages) {
 indegree += msg.get();

 setValue(new LongWritable(indegree));
 if (indegree == 0) {
 voteToHalt();
 if (hasEdges()) {
 context.sendMessageToNeighbors(this, new LongWritable(-1L
));

 context.write(new LongWritable(context.getSuperstep()),
getId());
 LOG.info("vertex: " + getId());

 context.aggregate(new LongWritable(indegree));

 public static class TopologySortVertexReader extends
 GraphLoader<LongWritable, LongWritable, NullWritable, LongWritable>
 {

MaxCompute User Guide / 1 Graph

44 Issue: 20180904

 @Override
 public void load(
 LongWritable recordNum,
 WritableRecord record,
 MutationContext<LongWritable, LongWritable, NullWritable,
LongWritable> context)
 throws IOException {
 TopologySortVertex vertex = new TopologySortVertex();
 vertex.setId((LongWritable) record.get(0));
 vertex.setValue(new LongWritable(0));
 String[] edges = record.get(1).toString().split(",");
 for (int i = 0; i < edges.length; i++) {
 long edge = Long.parseLong(edges[i]);
 if (edge >= 0) {
 vertex.addEdge(new LongWritable(Long.parseLong(edges[i])),
 NullWritable.get());

 LOG.info(record.toString());
 context.addVertexRequest(vertex);

 public static class LongSumCombiner extends
 Combiner<LongWritable, LongWritable> {
 @Override
 public void combine(LongWritable vertexId, LongWritable combinedMe
ssage,
 LongWritable messageToCombine) throws IOException {
 combinedMessage.set(combinedMessage.get() + messageToCombine.get
());

 public static class TopologySortAggregator extends
 Aggregator<BooleanWritable> {
 @SuppressWarnings("rawtypes")
 @Override
 public BooleanWritable createInitialValue(WorkerContext context)
 throws IOException {
 return new BooleanWritable(true);

 @Override
 public void aggregate(BooleanWritable value, Object item)
 throws IOException {
 boolean hasCycle = value.get();
 boolean inDegreeNotZero = ((LongWritable) item).get() == 0 ?
false : true;
 value.set(hasCycle && inDegreeNotZero);

 @Override
 public void merge(BooleanWritable value, BooleanWritable partial)
 throws IOException {
 value.set(value.get() && partial.get());

 @SuppressWarnings("rawtypes")
 @Override
 public boolean terminate(WorkerContext context, BooleanWritable
value)
 throws IOException {
 if (context.getSuperstep() == 0) {
 // since the initial aggregator value is true, and in
superstep we don't
 // do aggregate

MaxCompute User Guide / 1 Graph

Issue: 20180904 45

 return false;

 return value.get();

 public static void main(String[] args) throws IOException {
 if (args.length ! = 2) {
 System.out.println("Usage : <inputTable> <outputTable>");
 System.exit(-1);

 // The input table is in the format of
 // 0 1，2
 // 1 3
 // 2 3
 // 3 -1
 // The first column is vertexid, and the second column is the
 destination vertexid of the vertex edge. If the value is –1, the
vertex does not have any outbound edge
 // The output table is in the format of
 // 0 0
 // 1 1
 // 1 2
 // 2 3
 // The first column is the supstep value, in which the topological
 sequence is hidden. The second column is vertexid
 // TopologySortAggregator is used to determine if the graph has
loops
 // If the input graph has a loop, the iteration ends when the
indegree of vertices in the active state is not 0
 // You can use records in the input and output tables to determine
 if the graph has loops
 GraphJob job = new GraphJob();
 job.setGraphLoaderClass(TopologySortVertexReader.class);
 job.setVertexClass(TopologySortVertex.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 job.setCombinerClass(LongSumCombiner.class);
 job.setAggregatorClass(TopologySortAggregator.class);
 long startTime = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - startTime) / 1000.0 + "
seconds");

1.6.8 Linear Regression
In statistics, linear regression is a statistical analysis method used to determine the dependency

between two or more variables. Different from the classification algorithm that processes discrete

prediction,

the regression algorithm can predict the continuous value type. The linear regression algorithm

defines the loss function as the sum of the least square errors of the sample set. It minimizes the

loss function to calculate the weight vector.

A common solution is gradient descent that:

MaxCompute User Guide / 1 Graph

46 Issue: 20180904

1. Initialize the weight vector to give descent speed rate and iterations (or iteration convergence

condition).

2. Calculate the least square error for each sample.

3. Get the sum of the least square error, update the weight based on the descent speed rate.

4. Repeat iterations until convergence.

Sample Code

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.graph.Aggregator;
import com.aliyun.odps.graph.ComputeContext;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.WorkerContext;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.io.DoubleWritable;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.NullWritable;
import com.aliyun.odps.io.Tuple;
import com.aliyun.odps.io.Writable;
import com.aliyun.odps.io.WritableRecord;

 * LineRegression input: y,x1,x2,x3,......

public class LinearRegression {
 public static class GradientWritable implements Writable {
 Tuple lastTheta;
 Tuple currentTheta;
 Tuple tmpGradient;
 LongWritable count;
 DoubleWritable lost;
 @Override
 public void readFields(DataInput in) throws IOException {
 lastTheta = new Tuple();
 lastTheta.readFields(in);
 currentTheta = new Tuple();
 currentTheta.readFields(in);
 tmpGradient = new Tuple();
 tmpGradient.readFields(in);
 count = new LongWritable();
 count.readFields(in);
 /* update 1: add a variable to store lost at every iteration */
 lost = new DoubleWritable();
 lost.readFields(in);

 @Override
 public void write(DataOutput out) throws IOException {
 lastTheta.write(out);
 currentTheta.write(out);
 tmpGradient.write(out);
 count.write(out);
 lost.write(out);

MaxCompute User Guide / 1 Graph

Issue: 20180904 47

 public static class LinearRegressionVertex extends
 Vertex<LongWritable, Tuple, NullWritable, NullWritable> {
 @Override
 public void compute(
 ComputeContext<LongWritable, Tuple, NullWritable, NullWritable>
context,
 Iterable<NullWritable> messages) throws IOException {
 context.aggregate(getValue());

 public static class LinearRegressionVertexReader extends
 GraphLoader<LongWritable, Tuple, NullWritable, NullWritable> {
 @Override
 public void load(LongWritable recordNum, WritableRecord record,
 MutationContext<LongWritable, Tuple, NullWritable, NullWritable>
context)
 throws IOException {
 LinearRegressionVertex vertex = new LinearRegressionVertex();
 vertex.setId(recordNum);
 vertex.setValue(new Tuple(record.getAll()));
 context.addVertexRequest(vertex);

 public static class LinearRegressionAggregator extends
 Aggregator<GradientWritable> {
 @SuppressWarnings("rawtypes")
 @Override
 public GradientWritable createInitialValue(WorkerContext context)
 throws IOException {
 if (context.getSuperstep() == 0) {
 /* set initial value, all 0 */
 GradientWritable grad = new GradientWritable();
 grad.lastTheta = new Tuple();
 grad.currentTheta = new Tuple();
 grad.tmpGradient = new Tuple();
 grad.count = new LongWritable(1);
 grad.lost = new DoubleWritable(0.0);
 int n = (int) Long.parseLong(context.getConfiguration()
 .get("Dimension"));
 for (int i = 0; i < n; i++) {
 grad.lastTheta.append(new DoubleWritable(0));
 grad.currentTheta.append(new DoubleWritable(0));
 grad.tmpGradient.append(new DoubleWritable(0));

 return grad;
 } else
 return (GradientWritable) context.getLastAggregatedValue(0);

 public static double vecMul(Tuple value, Tuple theta) {
 /* perform this partial computing: y(i)−hθ(x(i)) for each sample
 */
 /* value denote a piece of sample and value(0) is y */
 double sum = 0.0;
 for (int j = 1; j < value.size(); j++)
 sum += Double.parseDouble(value.get(j).toString())
 * Double.parseDouble(theta.get(j).toString());
 Double tmp = Double.parseDouble(theta.get(0).toString()) + sum
 - Double.parseDouble(value.get(0).toString());
 return tmp;

 @Override
 public void aggregate(GradientWritable gradient, Object value)

MaxCompute User Guide / 1 Graph

48 Issue: 20180904

 throws IOException {

 * perform on each vertex--each sample i：set theta(j) for each
sample i
 * for each dimension

 double tmpVar = vecMul((Tuple) value, gradient.currentTheta);

 * update 2:local worker aggregate(), perform like merge() below
. This
 * means the variable gradient denotes the previous aggregated
value

 gradient.tmpGradient.set(0, new DoubleWritable(
 ((DoubleWritable) gradient.tmpGradient.get(0)).get() +
tmpVar));
 gradient.lost.set(Math.pow(tmpVar, 2));

 * calculate (y(i)−hθ(x(i))) x(i)(j) for each sample i for each
 * dimension j

 for (int j = 1; j < gradient.tmpGradient.size(); j++)
 gradient.tmpGradient.set(j, new DoubleWritable(
 ((DoubleWritable) gradient.tmpGradient.get(j)).get() +
tmpVar
 * Double.parseDouble(((Tuple) value).get(j).toString
())));

 @Override
 public void merge(GradientWritable gradient, GradientWritable
partial)
 throws IOException {
 /* perform SumAll on each dimension for all samples.
 Tuple master = (Tuple) gradient.tmpGradient;
 Tuple part = (Tuple) partial.tmpGradient;
 for (int j = 0; j < gradient.tmpGradient.size(); j++) {
 DoubleWritable s = (DoubleWritable) master.get(j);
 s.set(s.get() + ((DoubleWritable) part.get(j)).get());

 gradient.lost.set(gradient.lost.get() + partial.lost.get());

 @SuppressWarnings("rawtypes")
 @Override
 public boolean terminate(WorkerContext context, GradientWritable
gradient)
 throws IOException {

 * 1. calculate new theta 2. judge the diff between last step
and this
 * step, if smaller than the threshold, stop iteration

 gradient.lost = new DoubleWritable(gradient.lost.get()
 / (2 * context.getTotalNumVertices()));

 * we can calculate lost in order to make sure the algorithm is
running on
 * the right direction (for debug)

 System.out.println(gradient.count + " lost:" + gradient.lost);
 Tuple tmpGradient = gradient.tmpGradient;
 System.out.println("tmpGra" + tmpGradient);
 Tuple lastTheta = gradient.lastTheta;

MaxCompute User Guide / 1 Graph

Issue: 20180904 49

 Tuple tmpCurrentTheta = new Tuple(gradient.currentTheta.size());
 System.out.println(gradient.count + " terminate_start_last:" +
lastTheta);
 double alpha = 0.07; // learning rate
 // alpha =
 // Double.parseDouble(context.getConfiguration().get("Alpha"));
 /* perform theta(j) = theta(j)-alpha*tmpGradient */
 long M = context.getTotalNumVertices();

 * update 3: add (/M) on the code. The original code forget this
 step

 for (int j = 0; j < lastTheta.size(); j++) {
 tmpCurrentTheta
 .set(
 J,
 new DoubleWritable(Double.parseDouble(lastTheta.get(j)
 .toString())
 - alpha
 / M
 * Double.parseDouble(tmpGradient.get(j).toString
())));

 System.out.println(gradient.count + " terminate_start_current:"
 + tmpCurrentTheta);
 // judge if convergence is happening.
 double diff = 0.00d;
 for (int j = 0; j < gradient.currentTheta.size(); j++)
 diff += Math.pow(((DoubleWritable) tmpCurrentTheta.get(j)).get
()
 - ((DoubleWritable) lastTheta.get(j)).get(), 2);
 if (/*
 * Math.sqrt(diff) < 0.00000000005d ||
 */Long.parseLong(context.getConfiguration().get("Max_Iter_N
um")) == gradient.count
 .get()) {
 context.write(gradient.currentTheta.toArray());
 return true;

 gradient.lastTheta = tmpCurrentTheta;
 gradient.currentTheta = tmpCurrentTheta;
 gradient.count.set(gradient.count.get() + 1);
 int n = (int) Long.parseLong(context.getConfiguration().get("
Dimension"));

 * update 4: Important!!! Remember this step. Graph won't reset
the
 * initial value for global variables at the beginning of each
iteration

 for (int i = 0; i < n; i++) {
 gradient.tmpGradient.set(i, new DoubleWritable(0));

 return false;

 public static void main(String[] args) throws IOException {
 GraphJob job = new GraphJob();
 job.setGraphLoaderClass(LinearRegressionVertexReader.class);
 job.setRuntimePartitioning(false);
 job.setNumWorkers(3);
 job.setVertexClass(LinearRegressionVertex.class);

MaxCompute User Guide / 1 Graph

50 Issue: 20180904

 job.setAggregatorClass(LinearRegressionAggregator.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 job.setMaxIteration(Integer.parseInt(args[2])); // Numbers of
Iteration
 job.setInt("Max_Iter_Num", Integer.parseInt(args[2]));
 job.setInt("Dimension", Integer.parseInt(args[3])); // Dimension
 job.setFloat("Alpha", Float.parseFloat(args[4])); // Learning rate
 long start = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - start) / 1000.0 + " seconds");

1.6.9 Triangle Count
This algorithm is used to calculate the number of triangles passing through each vertex.

The algorithm is implemented using the following steps:

1. Each vertex sends its ID to all outbound neighbors.

2. Store inbound and outbound neighbors and sends them to the outbound neighbors.

3. Calculate the number of endpoint intersections for each Edge, get the sum, and output the

result to the table.

4. Get the sum of the output result in the table, divide it by 3, and get the number of triangles.

Sample code

Code for the triangle count algorithm are as follows:

import java.io.IOException;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.graph.ComputeContext;
import com.aliyun.odps.graph.Edge;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.WorkerContext;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.NullWritable;
import com.aliyun.odps.io.Tuple;
import com.aliyun.odps.io.Writable;
import com.aliyun.odps.io.WritableRecord;

 * Compute the number of triangles passing through each vertex.

 * The algorithm can be computed in three supersteps:
 * I. Each vertex sends a message with its ID to all its outgoing
 * neighbors.
 * II. The incoming neighbors and outgoing neighbors are stored and
 * send to outgoing neighbors.
 * III. For each edge compute the intersection of the sets at
destination
 * vertex and sum them, then output to table.

MaxCompute User Guide / 1 Graph

Issue: 20180904 51

 * The triangle count is the sum of output table and divide by three
since
 * each triangle is counted three times.

public class TriangleCount {
 public static class TCVertex extends
 Vertex<LongWritable, Tuple, NullWritable, Tuple> {
 @Override
 public void setup(
 WorkerContext<LongWritable, Tuple, NullWritable, Tuple>
context)
 throws IOException {
 // collect the outgoing neighbors
 Tuple t = new Tuple();
 if (this.hasEdges()) {
 for (Edge<LongWritable, NullWritable> edge : this.getEdges())
 {
 t.append(edge.getDestVertexId());
 }

 this.setValue(t);

 @Override
 public void compute(
 ComputeContext<LongWritable, Tuple, NullWritable, Tuple>
context,
 Iterable<Tuple> msgs) throws IOException {
 if (context.getSuperstep() == 0L) {
 // sends a message with its ID to all its outgoing neighbors
 Tuple t = new Tuple();
 t.append(getId());
 context.sendMessageToNeighbors(this, t);
 } else if (context.getSuperstep() == 1L) {
 // store the incoming neighbors
 for (Tuple msg : msgs) {
 for (Writable item : msg.getAll()) {
 if (! this.getValue().getAll().contains((LongWritable)item
)) {
 this.getValue().append((LongWritable)item);

 // send both incoming and outgoing neighbors to all outgoing
neighbors
 context.sendMessageToNeighbors(this, getValue());
 } else if (context.getSuperstep() == 2L) {
 // count the sum of intersection at each edge
 long count = 0;
 for (Tuple msg : msgs) {
 for (Writable id : msg.getAll()) {
 if (getValue().getAll().contains(id)) {
 count ++;

 // output to table
 context.write(getId(), new LongWritable(count));
 this.voteToHalt();

MaxCompute User Guide / 1 Graph

52 Issue: 20180904

 public static class TCVertexReader extends
 GraphLoader<LongWritable, Tuple, NullWritable, Tuple> {
 @Override
 public void load(
 LongWritable recordNum,
 WritableRecord record,
 MutationContext<LongWritable, Tuple, NullWritable, Tuple>
context)
 throws IOException {
 TCVertex vertex = new TCVertex();
 vertex.setId((LongWritable) record.get(0));
 String[] edges = record.get(1).toString().split(",");
 for (int i = 0; i < edges.length; i++) {
 try {
 long destID = Long.parseLong(edges[i]);
 vertex.addEdge(new LongWritable(destID), NullWritable.get
());
 } catch(NumberFormatException nfe) {
 System.err.println("Ignore " + nfe);

 context.addVertexRequest(vertex);

 public static void main(String[] args) throws IOException {
 if (args.length < 2) {
 System.out.println("Usage: <input> <output>");
 System.exit(-1);

 GraphJob job = new GraphJob();
 job.setGraphLoaderClass(TCVertexReader.class);
 job.setVertexClass(TCVertex.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 long startTime = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - startTime) / 1000.0 + "
seconds");

1.6.10 Vertex Input
Sample code

import java.io.IOException;
import com.aliyun.odps.conf.Configuration;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.graph.ComputeContext;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.VertexResolver;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.VertexChanges;
import com.aliyun.odps.graph.Edge;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.WritableComparable;

MaxCompute User Guide / 1 Graph

Issue: 20180904 53

import com.aliyun.odps.io.WritableRecord;

 * The following example describes how to compile a graph job program
to load data of different types. It mainly describes how GraphLoader
 * and VertexResolver are cooperated to build the graph.

 * A MaxCompute Graph job uses MaxCompute tables as the input. Assume
that a job has two tables as the input, one storing vertices and the
other storing edges.
 * The format of the table storing vertex information is as follows:

 * | VertexID | VertexValue |

 * | id0| 9|

 * | id1| 7|

 * | id2| 8|

 * The format of the table storing edge information is as follows:

 * | VertexID | DestVertexID| EdgeValue|

 * | id0| id1| 1|

 * | id0| id2| 2|

 * | id2| id1| 3|

 * The preceding two tables show that id0 has two outbound edges
 pointing to id1 and id2 respectively. id2 has an outbound edge
pointing to id1, and id1 has no outbound edges.

 * For data of this type, in GraphLoader::load(LongWritable, Record,
MutationContext),
 * MutationContext#addVertexRequest(Vertex) can be used to add
vertices to the graph, while
 * link MutationContext#addEdgeRequest(WritableComparable, Edge) can
be used to add edges to the graph. In
 * link VertexResolver#resolve(WritableComparable, Vertex, VertexChan
ges, boolean)
 * vertices and edges added in the load() method are combined to a
 vertex object, which is used as the return value and added to the
graph for calculation.

public class VertexInputFormat {
 private final static String EDGE_TABLE = "edge.table";

 * Resolve a record to vertices and edges. Each record indicates a
vertex or an edge according to its source.

 * Similar to com.aliyun.odps.mapreduce.Mapper#map,
 * enter a record to generate key-value pairs. The keys are vertex
IDs,
 * and the values are vertices or edges written based on the context
. These key-value pairs are summarized based on vertex IDs using
LoadingVertexResolver.

MaxCompute User Guide / 1 Graph

54 Issue: 20180904

 * Note: Vertices or edges added here are requests sent based on the
 record content, and are not used in calculation. Only
 * vertices or edges added using VertexResolver participate in
calculation.

 public static class VertexInputLoader extends
 GraphLoader<LongWritable, LongWritable, LongWritable, LongWritable>
 {
 private boolean isEdgeData;

 * Configure VertexInputLoader.

 * @param conf
 * Indicates the configuration parameters of a job, which are
configured in the main GraphJob or set on the console.
 * @param workerId
 * Indicates the serial number of the operating Worker, which
starts from 0 and can be used to build a unique vertex ID.
 * @param inputTableInfo
 * Indicates information about the input table load to the current
 Worker, which can be used to determine the type of currently input
data, that is, the record format.

 @Override
 public void setup(Configuration conf, int workerId, TableInfo
inputTableInfo) {
 isEdgeData = conf.get(EDGE_TABLE).equals(inputTableInfo.
getTableName());

 * Based on the record content, resolve corresponding edges and
send a request to add them to the graph.

 * @param recordNum
 * Indicates the record serial number, which starts from 1 and is
separately counted in each Worker.
 * @param record
 * Indicates the record in the input table. It contains three
columns, indicating the first vertex, last vertex, and edge weight.
 * @param context
 * Indicates the context, requesting to add resolved edges to the
graph.

 @Override
 public void load(
 LongWritable recordNum,
 WritableRecord record,
 MutationContext<LongWritable, LongWritable, LongWritable,
LongWritable> context)
 throws IOException {
 if (isEdgeData) {

 * Data is from the table that stores edge information.

 * 1. The first column indicates the first vertex ID.

 LongWritable sourceVertexID = (LongWritable) record.get(0);

 * 2. The second column indicates the last vertex ID.

 LongWritable destinationVertexID = (LongWritable) record.get(1
);

MaxCompute User Guide / 1 Graph

Issue: 20180904 55

 * 3. The third column indicates the edge weight.

 LongWritable edgeValue = (LongWritable) record.get(2);

 * 4. Create an edge that consists of the last vertex ID and
edge weight.

 Edge<LongWritable, LongWritable> edge = new Edge<LongWritable
, LongWritable>(
 destinationVertexID, edgeValue);

 * 5. Send a request to add an edge to the first vertex.

 context.addEdgeRequest(sourceVertexID, edge);

 * 6. If each record indicates a bidirectional edge, repeat
steps 4 and 5. Edge<LongWritable, LongWritable> edge2 = new
 * Edge<LongWritable, LongWritable>(sourceVertexID, edgeValue
);
 * context.addEdgeRequest(destinationVertexID, edge2);

 } else {

 * Data comes from the table that stores vertex information.

 * 1. The first column indicates the vertex ID.

 LongWritable vertexID = (LongWritable) record.get(0);

 * 2. The second column indicates the vertex value.

 LongWritable vertexValue = (LongWritable) record.get(1);

 * 3. Create a vertex that consists of the vertex ID and
vertex value.

 MyVertex vertex = new MyVertex();

 * 4. Initialize the vertex.

 vertex.setId(vertexID);
 vertex.setValue(vertexValue);

 * 5. Send a request to add a vertex.

 context.addVertexRequest(vertex);

 * Summarize key-value pairs generated using GraphLoader::load(
LongWritable, Record, MutationContext), which is similar to
 * reduce in com.aliyun.odps.mapreduce.Reducer. For the unique
vertex ID, all actions such as
 * adding/deleting vertices or edges on the ID is stored in
VertexChanges.

 * Note: Not only conflicting vertices or edges added by using the
load() method are called. (A conflict occurs when multiple same vertex
 objects or duplicate edges are added.)

MaxCompute User Guide / 1 Graph

56 Issue: 20180904

 * All IDs requested to be generated using the load() method are
called.

 public static class LoadingResolver extends
 VertexResolver<LongWritable, LongWritable, LongWritable, LongWritab
le> {

 * Process a request about adding/deleting vertices or edges for
an ID.

 * VertexChanges has four APIs, which correspond to the four APIs
of MutationContext:
 * VertexChanges::getAddedVertexList() corresponds to
 * MutationContext::addVertexRequest(Vertex).
 * In the load() method, if vertex objects with the same ID are
requested to be added, such vertex objects are collected to the return
 list.
 * VertexChanges::getAddedEdgeList() corresponds to
 * MutationContext::addEdgeRequest(WritableComparable, Edge)
 * If edge objects with the same first vertex ID are requested to
be added, such edge objects are collected to the return list.
 * VertexChanges::getRemovedVertexCount() corresponds to
 * MutationContext::removeVertexRequest(WritableComparable)
 * If vertices with the same ID are requested to be deleted, the
number of total deletion requests is returned.
 * VertexChanges#getRemovedEdgeList() corresponds to
 * MutationContext#removeEdgeRequest(WritableComparable,
WritableComparable)
 * If edge objects with the same first vertex ID are requested to
be deleted, such edge objects are collected to the return list.

 * By processing ID changes, you can state whether the ID
participates in calculation using the return value. If the returned
vertex is not null,
 * the ID participates in subsequent calculation. If the returned
vertex is null, the ID does not participate in subsequent calculation.

 * @param vertexId
 * Indicates the ID of the vertex requested to be added or first
vertex ID of the edge requested to be added.
 * @param vertex
 * Indicates an existing vertex object. Its value is always null
in the data loading phase.
 * @param vertexChanges
 * Indicates the set of vertices or edges requested to be added/
deleted on the ID.
 * @param hasMessages
 * Indicates whether the ID has any input message. Its value is
always false in the data loading phase.

 @Override
 public Vertex<LongWritable, LongWritable, LongWritable, LongWritab
le> resolve(
 LongWritable vertexId,
 Vertex<LongWritable, LongWritable, LongWritable, LongWritable
> vertex,
 VertexChanges<LongWritable, LongWritable, LongWritable,
LongWritable> vertexChanges,
 boolean hasMessages) throws IOException {

 * 1. Obtain the vertex object for calculation.

MaxCompute User Guide / 1 Graph

Issue: 20180904 57

 MyVertex computeVertex = null;
 if (vertexChanges.getAddedVertexList() == null
 || vertexChanges.getAddedVertexList().isEmpty()) {
 computeVertex = new MyVertex();
 computeVertex.setId(vertexId);
 } else {

 * Assume that each record indicates a unique vertex in the
table storing vertex information.

 computeVertex = (MyVertex) vertexChanges.getAddedVertexList().
get(0);

 * 2. Add the edge requested to be added to the vertex to the
vertex object. If data is duplicated, perform deduplication based on
the algorithm needs.

 if (vertexChanges.getAddedEdgeList() ! = null) {
 for (Edge<LongWritable, LongWritable> edge : vertexChanges
 .getAddedEdgeList()) {
 computeVertex.addEdge(edge.getDestVertexId(), edge.getValue
());

 * 3. Return the vertex object and add it to the final graph for
 calculation.

 return computeVertex;

 * Determine actions of the vertex that participates in calculation.

 public static class MyVertex extends
 Vertex<LongWritable, LongWritable, LongWritable, LongWritable> {

 * Write the vertex edge to the result table according to the
format of the input table. Ensure that the format and data of the
input and output tables are the same.

 * @param context
 * Indicates the context during running.
 * @param messages
 * Indicates the input message.

 @Override
 public void compute(
 ComputeContext<LongWritable, LongWritable, LongWritable,
LongWritable> context,
 Iterable<LongWritable> messages) throws IOException {

 * Write the vertex ID and value to the result table storing
vertices.

 context.write("vertex", getId(), getValue());

 * Write the vertex edge to the result table storing edges.

 if (hasEdges()) {

MaxCompute User Guide / 1 Graph

58 Issue: 20180904

 for (Edge<LongWritable, LongWritable> edge : getEdges()) {
 context.write("edge", getId(), edge.getDestVertexId(),
 edge.getValue());

 * Perform one round of iteration.

 voteToHalt();

 * @param args
 * @throws IOException

 public static void main(String[] args) throws IOException {
 if (args.length < 4) {
 throw new IOException(
 "Usage: VertexInputFormat <vertex input> <edge input> <vertex
output> <edge output>");

 * GraphJob is used to configure Graph jobs.

 GraphJob job = new GraphJob();

 * 1. Specify input graph data and the table storing edge data.

 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addInput(TableInfo.builder().tableName(args[1]).build());
 job.set(EDGE_TABLE, args[1]);

 * 2. Specify the data loading mode, resolve the record as edges.
Similar to the map, the generated key is the vertex ID, and the value
is the edge.

 job.setGraphLoaderClass(VertexInputLoader.class);

 * 3. Specify the data loading phase, and generate the vertex for
calculation. Similar to reduce, edges generated by map are combined
to a vertex.

 job.setLoadingVertexResolverClass(LoadingResolver.class);

 * 4. Specify actions of the vertex that participates in
calculation. The vertex.compute() method is used for each round of
iteration.

 job.setVertexClass(MyVertex.class);

 * 5. Specify the output table of the Graph job, and write the
calculation result to the result table.

 job.addOutput(TableInfo.builder().tableName(args[2]).label("vertex
").build());
 job.addOutput(TableInfo.builder().tableName(args[3]).label("edge
").build());

 * 6. Submit the job for execution.

 job.run();

MaxCompute User Guide / 1 Graph

Issue: 20180904 59

1.6.11 Edge Input
Sample Code

import java.io.IOException;
import com.aliyun.odps.conf.Configuration;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.graph.ComputeContext;
import com.aliyun.odps.graph.GraphJob;
import com.aliyun.odps.graph.GraphLoader;
import com.aliyun.odps.graph.Vertex;
import com.aliyun.odps.graph.VertexResolver;
import com.aliyun.odps.graph.MutationContext;
import com.aliyun.odps.graph.VertexChanges;
import com.aliyun.odps.graph.Edge;
import com.aliyun.odps.io.LongWritable;
import com.aliyun.odps.io.WritableComparable;
import com.aliyun.odps.io.WritableRecord;

 * The following example describes how to compile a graph job program
to load data of different types. It mainly describes how GraphLoader
 * and VertexResolver are cooperated to build the graph.

 * A MaxCompute Graph job uses MaxCompute tables as the input. Assume
that a job has two tables as the input, one storing vertices and the
other storing edges.
 * The format of the table storing vertex information is as follows:

 * | VertexID | VertexValue |

 * | id0| 9|

 * | id1| 7|

 * | id2| 8|

 * The format of the table storing edge information is as follows:

 * | VertexID | DestVertexID| EdgeValue|

 * | id0| id1| 1|

 * | id0| id2| 2|

 * | id2| id1| 3|

 * The preceding two tables show that id0 has two outbound edges
 pointing to id1 and id2 respectively. id2 has an outbound edge
pointing to id1, and id1 has no outbound edges.

 * For data of this type, in GraphLoader::load(LongWritable, Record,
MutationContext),
 * MutationContext#addVertexRequest(Vertex) can be used to add
vertices to the graph, while
 * link MutationContext#addEdgeRequest(WritableComparable, Edge) can
be used to add edges to the graph. In

MaxCompute User Guide / 1 Graph

60 Issue: 20180904

 * link VertexResolver#resolve(WritableComparable, Vertex, VertexChan
ges, boolean)
 * vertices and edges added in the load() method are combined to a
 vertex object, which is used as the return value and added to the
graph for calculation.

public class VertexInputFormat {
 private final static String EDGE_TABLE = "edge.table";

 * Resolve a record to vertices and edges. Each record indicates a
vertex or an edge according to its source.
 * Similar to com.aliyun.odps.mapreduce.Mapper#map,
 * enter a record to generate key-value pairs. The keys are vertex
IDs,
 * and the values are vertices or edges written based on the context
. These key-value pairs are summarized based on vertex IDs using
LoadingVertexResolver.

 * Note: Vertices or edges added here are requests sent based on the
 record content, and are not used for calculation. Only
 * vertices or edges added using VertexResolver participate in
calculation.

 public static class VertexInputLoader extends
 GraphLoader<LongWritable, LongWritable, LongWritable, LongWritable>
 {
 private boolean isEdgeData;

 * Configure VertexInputLoader.

 * @param conf
 * Indicates the configuration parameters of a job, which are
configured in the main GraphJob or set on the console.
 * @param workerId
 * Indicates the serial number of the operating Worker, which
starts from 0 and can be used to build a unique vertex ID.
 * @param inputTableInfo
 * Indicates information about the input table loaded to the
current Worker, which can be used to determine the type of currently
input data, that is, the record format.

 @ Override
 public void setup(Configuration conf, int workerId, TableInfo
inputTableInfo) {
 isEdgeData = conf.get(EDGE_TABLE).equals(inputTableInfo.
getTableName());

 * Based on the record content, resolve corresponding edges and
send a request to add them to the graph.

 * @param recordNum
 * Indicates the record serial number, which starts from 1 and is
separately counted in each Worker.
 * @param record
 * Indicates the record in the input table. It contains three
columns, indicating the first vertex, last vertex, and edge weight.
 * @param context
 * Indicates the context, requesting to add resolved edges to the
graph.

MaxCompute User Guide / 1 Graph

Issue: 20180904 61

 @Override
 public void load(
 LongWritable recordNum,
 WritableRecord record,
 MutationContext<LongWritable, LongWritable, LongWritable,
LongWritable> context)
 throws IOException {
 if (isEdgeData) {

 * Data comes from the table that stores edge information.

 * 1. The first column indicates the first vertex ID.

 LongWritable sourceVertexID = (LongWritable) record.get(0);

 * 2. The second column indicates the last vertex ID.

 LongWritable destinationVertexID = (LongWritable) record.get(1
);

 * 3. The third column indicates the edge weight.

 LongWritable edgeValue = (LongWritable) record.get(2);

 * 4. Create an edge that consists of the last vertex ID and
edge weight.

 Edge<LongWritable, LongWritable> edge = new Edge<LongWritable
, LongWritable>(
 destinationVertexID, edgeValue);

 * 5. Send a request to add an edge to the first vertex.

 context.addEdgeRequest(sourceVertexID, edge);

 * 6. If each record indicates a bidirectional edge, repeat
steps 4 and 5. Edge<LongWritable, LongWritable> edge2 = new
 * Edge<LongWritable, LongWritable>(sourceVertexID, edgeValue
);
 * context.addEdgeRequest(destinationVertexID, edge2);

 } else {

 * Data comes from the table that stores vertex information.

 * 1. The first column indicates the vertex ID.

 LongWritable vertexID = (LongWritable) record.get(0);

 * 2. The second column indicates the vertex value.

 LongWritable vertexValue = (LongWritable) record.get(1);

 * 3. Create a vertex that consists of the vertex ID and
vertex value.

 MyVertex vertex = new MyVertex();

 * 4. Initialize the vertex.

 vertex.setId(vertexID);
 vertex.setValue(vertexValue);

MaxCompute User Guide / 1 Graph

62 Issue: 20180904

 * 5. Send a request to add a vertex.

 context.addVertexRequest(vertex);

 * Summarize key-value pairs generated using GraphLoader::load(
LongWritable, Record, MutationContext), which is similar to
 * reduce in com.aliyun.odps.mapreduce.Reducer. For the unique
vertex ID, all actions such as
 * adding/deleting vertices or edges on the ID is stored in
VertexChanges.

 * Note: Not only conflicting vertices or edges added by using the
load() method are called. (A conflict occurs when multiple same vertex
 objects or duplicate edges are added.)
 * All IDs requested to be generated using the load() method are
called.

 public static class LoadingResolver extends
 VertexResolver<LongWritable, LongWritable, LongWritable, LongWritab
le> {

 * Process a request about adding/deleting vertices or edges for
an ID.

 * VertexChanges has four APIs, which correspond to the four APIs
of MutationContext:
 * VertexChanges::getAddedVertexList() corresponds to
 * MutationContext::addVertexRequest(Vertex).
 * In the load() method, if vertex objects with the same ID are
requested to be added, such vertex objects are collected to the return
 list.
 * VertexChanges::getAddedEdgeList() corresponds to
 * MutationContext::addEdgeRequest(WritableComparable, Edge)
 * If edge objects with the same first vertex ID are requested to
be added, such edge objects are collected to the return list.
 * VertexChanges::getRemovedVertexCount() corresponds to
 * MutationContext::removeVertexRequest(WritableComparable)
 * If vertices with the same ID are requested to be deleted, the
number of total deletion requests is returned.
 * VertexChanges#getRemovedEdgeList() corresponds to
 * MutationContext#removeEdgeRequest(WritableComparable,
WritableComparable)
 * If edge objects with the same first vertex ID are requested to
be deleted, such edge objects are collected to the return list.

 * By processing ID changes, you can state whether the ID
participates in calculation using the return value. If the returned
vertex is not null,
 * the ID participates in subsequent calculation. If the returned
vertex is null, the ID does not participate in subsequent calculation.

 * @param vertexId
 * Indicates the ID of the vertex requested to be added or first
vertex ID of the edge requested to be added.
 * @param vertex
 * Indicates an existing vertex object. Its value is always null
in the data loading phase.
 * @param vertexChanges

MaxCompute User Guide / 1 Graph

Issue: 20180904 63

 * Indicates the set of vertices or edges requested to be added/
deleted on the ID.
 * @param hasMessages
 * Indicates whether the ID has any input message. Its value is
always false in the data loading phase.

 @Override
 public Vertex<LongWritable, LongWritable, LongWritable, LongWritab
le> resolve(
 LongWritable vertexId,
 Vertex<LongWritable, LongWritable, LongWritable, LongWritable
> vertex,
 VertexChanges<LongWritable, LongWritable, LongWritable,
LongWritable> vertexChanges,
 boolean hasMessages) throws IOException {

 * 1. Obtain the vertex object to participate in calculation.

 MyVertex computeVertex = null;
 if (vertexChanges.getAddedVertexList() == null
 || vertexChanges.getAddedVertexList().isEmpty()) {
 computeVertex = new MyVertex();
 computeVertex.setId(vertexId);
 } else {

 * Assume that each record indicates a unique vertex in the
table storing vertex information.

 computeVertex = (MyVertex) vertexChanges.getAddedVertexList().
get(0);

 * 2. Add the edge requested to be added to the vertex to the
vertex object. If data may be duplicate, perform deduplication based
on the algorithm needs.

 if (vertexChanges.getAddedEdgeList() ! = null) {
 for (Edge<LongWritable, LongWritable> edge : vertexChanges
 .getAddedEdgeList()) {
 computeVertex.addEdge(edge.getDestVertexId(), edge.getValue
());

 * 3. Return the vertex object and add it to the final graph for
 calculation.

 return computeVertex;

 * Determine actions of the vertex that participates in calculation.

 public static class MyVertex extends
 Vertex<LongWritable, LongWritable, LongWritable, LongWritable> {

 * Write the vertex edge to the result table according to the
format of the input table. Ensure that the format and data of the
input and output tables are the same.

 * @param context

MaxCompute User Guide / 1 Graph

64 Issue: 20180904

 * Indicates the context during running.
 * @param messages
 * Indicates the input message.

 @Override
 public void compute(
 ComputeContext<LongWritable, LongWritable, LongWritable,
LongWritable> context,
 Iterable<LongWritable> messages) throws IOException {

 * Write the vertex ID and value to the result table storing
vertices.

 context.write("vertex", getId(), getValue());

 * Write the vertex edge to the result table storing edges.

 if (hasEdges()) {
 for (Edge<LongWritable, LongWritable> edge : getEdges()) {
 context.write("edge", getId(), edge.getDestVertexId(),
 edge.getValue());

 * Perform one round of iteration.

 voteToHalt();

 * @param args
 * @throws IOException

 public static void main(String[] args) throws IOException {
 If (ARGs. Length <4){
 throw new IOException(
 "Usage: VertexInputFormat <vertex input> <edge input> <vertex
output> <edge output>");

 * GraphJob is used to configure Graph jobs.

 GraphJob job = new GraphJob();

 * 1. Specify input graph data and the table storing edge data.

 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addInput(TableInfo.builder().tableName(args[1]).build());
 job.set(EDGE_TABLE, args[1]);

 * 2. Specify the data loading mode, resolve the record as edges.
Similar to the map, the generated key is the vertex ID, and the value
is the edge.

 job.setGraphLoaderClass(VertexInputLoader.class);

 * 3. Specify the data loading phase, and generate the vertex that
 participates in calculation. Similar to reduce, edges generated by
map are combined to a vertex.

 job.setLoadingVertexResolverClass(LoadingResolver.class);

MaxCompute User Guide / 1 Graph

Issue: 20180904 65

 * 4. Specify actions of the vertex that participates in
calculation. The vertex.compute() method is used for each round of
iteration.

 job.setVertexClass(MyVertex.class);

 * 5. Specify the output table of the Graph job, and write the
calculation result to the result table.

 job.addOutput(TableInfo.builder().tableName(args[2]).label("vertex
").build());
 job.addOutput(TableInfo.builder().tableName(args[3]).label("edge
").build());

 * 6. Submit the job for execution.

 job.run();

1.7 Aggregator
This article explains the implementation and related APIs of Aggregator and uses

KmeansClustering as an example to illustrate the use of Aggregator.

In MaxCompute Graph, Aggregator helps to collect and process global information. In

MaxCompute Graph, Aggregator is used to summarize and process global information.

Aggregator implementation

The logic of Aggregator is divided into the following two parts:

• One part is run on all Workers in distributed mode.

• The other part is only run on the Worker where AggregatorOwner is located in a single vertex

mode.

Operations run on all Workers include creating an initial value and partial aggregation. The partial

aggregation result is sent to the Worker where AggregatorOwner is located. The Worker then

aggregates partial aggregation objects sent by common Workers to obtain a global aggregation

result, and determines whether the iteration is ended or not. The global aggregation result is sent

to all Workers over the next round of supersteps for the next iteration, as shown in the following

figure.

MaxCompute User Guide / 1 Graph

66 Issue: 20180904

Aggregator APIs

Aggregator provides five APIs for user implementation. The following section describes the call

time and application of the five APIs.

• createStartupValue(context)

This API runs once on all Workers. It is called before all supersteps start, and is generally

used to initialize AggregatorValue. In the first superstep iteration (superstep equals 0), the

AggregatorValue object initialized by the API can be obtained by the call of WorkerContext.

getLastAggregatedValue() or ComputeContext.getLastAggregatedValue().

• createInitialValue(context)

This API is called once on all Workers when each superstep is initiated. It is used to initialize

 AggregatorValue for the current iteration. Generally, the result of the previous iteration is

obtained through WorkerContext.getLastAggregatedValue(), and partial initialization is run.

• aggregate(value, item)

This API runs on all Workers. It is triggered by an explicit call of ComputeContext#aggregate

(item), while the preceding two APIs are automatically called by the framework. This API is

used to run partial aggregation. The first parameter value indicates the result that the Worker

has aggregated in the current superstep. (The initial value is the object returned by createInit

ialValue). The second parameter is transmitted when the user code calls ComputeContext#

MaxCompute User Guide / 1 Graph

Issue: 20180904 67

aggregate(item). In this API, item is usually used to update value for aggregation. After all the

 aggregate operations are executed, the obtained value is the partial aggregation result of the

 Worker. Then, the result is sent by the framework to the Worker where AggregatorOwner is

located.

• merge(value, partial)

This API runs by the Worker where AggregatorOwner is located. It is used to merge partial

aggregation results of Workers to obtain the global aggregation object. Similar to aggregate,

value indicates aggregated results, while partial indicates objects to be aggregated. Partial is

used to update value.

For example, assume that three Workers w0, w1, and w2 exist with the partial aggregation

 results of p0, p1, and p2. If p1, p0, and p2 in sequence are sent to the Worker where the

AggregatorOwner is located, then the merge sequence will be as follows:

1. merge(p1, p0) runs first, and p1 and p0 are aggregated as p1’.

2. merge(p1’, p2) runs, and p1’ and p2 are aggregated as p1’’, which is the global aggregation

result in this superstep.

The preceding example shows that execution of the merge() operation is not required when

only one Worker exists. That is, merge() is not called.

• terminate(context, value)

After the Worker where AggregatorOwner is located runs merge(), the framework calls

terminate(context, value) to perform the final processing. The second parameter value

indicates the global aggregation result obtained by merge(). The global aggregation can be

 modified further in this method. After terminate() is run, the framework distributes global

aggregation objects to all Workers for the next superstep. A special feature of terminate()

is that if true is returned, iteration of the entire job ends. Otherwise, iteration continues. In

machine learning scenarios, it is usually determined that a job ends when true is returned after

convergence.

KmeansClustering example

The following section uses typical KmeansClustering as an example to describe how to use

Aggregator. The following section uses KmeansClustering as an example to describe how to use

the Aggregator.

Note:

MaxCompute User Guide / 1 Graph

68 Issue: 20180904

The complete code is provided in the Kmeans attachment. Here, the code is resolved in the

following sequence.

• GraphLoader section

GraphLoader: The GraphLoader part is used to load an input table and convert it to a vertex or

edge of a graph. Each row of data in the input table is a sample, a sample constructs a vertex,

and VertexValue is used to store samples.

Initially, a writable class KmeansValue is defined as the VertexValue type:

public static class KmeansValue implements Writable {
 DenseVector sample;
 public KmeansValue() {

 public KmeansValue(DenseVector v) {
 this.sample = v;

 @Override
 public void write(DataOutput out) throws IOException {
 wirteForDenseVector(out, sample);

 @Override
 public void readFields(DataInput in) throws IOException {
 sample = readFieldsForDenseVector(in);

KmeansValue: A DenseVector object is encapsulated in KmeansValue to store a

sample. The DenseVector type is from matrix-toolkits-java. wirteForDenseVector() and

readFieldsForDenseVector() are used for serialization and deserialization. For more

information, see the complete code in the Kmeans attachment.

The custom KmeansReader code is as follows:

public static class KmeansReader extends
 GraphLoader<LongWritable, KmeansValu
e, NullWritable, NullWritable> {
 @Override
 public void load(
 LongWritable recordNum,
 WritableRecord record,
 MutationContext<LongWritable, KmeansValue, NullWritable,
NullWritable> context)
 throws IOException {
 KmeansVertex v = new KmeansVertex();
 v.setId(recordNum);
 int n = record.size();
 DenseVector dv = new DenseVector(n);
 for (int i = 0; i < n; i++) {
 dv.set(i, ((DoubleWritable)record.get(i)).get());

 v.setValue(new KmeansValue(dv));
 context.addVertexRequest(v);

https://github.com/fommil/matrix-toolkits-java/

MaxCompute User Guide / 1 Graph

Issue: 20180904 69

In KmeansReader, a vertex is created when each row of data (a record) is read. recordNum

is used as the vertex ID, and the record content is converted to the DenseVector object and

encapsulated in VertexValue.

• Vertex

Custom KmeansVertex code:Regarding its logic, partial aggregation is performed for samples

maintained in each iteration. For more information about its logic, see implementation of

Aggregator in the following section:

public static class KmeansVertex extends
 Vertex<LongWritable, KmeansValue,
NullWritable, NullWritable> {
 @Override
 public void compute(
 ComputeContext<LongWritable, KmeansValue, NullWritable, NullWritab
le> context,
 Iterable<NullWritable> messages) throws IOException {
 context.aggregate(getValue());

• Aggregator

The main logic of entire Kmeans is centralized in Aggregator. Custom KmeansAggrValue is

used to maintain the content to be aggregated and distributed.

public static class KmeansAggrValue implements Writable {
 DenseMatrix centroids;
 DenseMatrix sums; // used to recalculate new centroids
 DenseVector counts; // used to recalculate new centroids
 @Override
 public void write(DataOutput out) throws IOException {
 wirteForDenseDenseMatrix(out, centroids);
 wirteForDenseDenseMatrix(out, sums);
 wirteForDenseVector(out, counts);

 @Override
 public void readFields(DataInput in) throws IOException {
 centroids = readFieldsForDenseMatrix(in);
 sums = readFieldsForDenseMatrix(in);
 counts = readFieldsForDenseVector(in);

Three objects are maintained in KmeansAggrValue. centroids indicates the existing K centers

. If the sample is m-dimensional, centroids is a matrix of K x m. sums is a matrix of the same

 size as centroids, and each element records the sum of a specific dimension of the sample

 closest to a specific center. For example, sums(i,j) indicates the sum of dimension j of the

sample closest to center i.

MaxCompute User Guide / 1 Graph

70 Issue: 20180904

counts is a K-dimensional vector, records the number of samples closest to each center. sums

 and counts are used together to calculate a new center, which is a main content of aggregatio

n.

The next is KmeansAggregator used for custom Aggregator implementation. The following

describes implementation in order of the preceding APIs.

1. Run createStartupValue(), see the following:

public static class KmeansAggregator extends Aggregator<KmeansAggr
Value> {
public KmeansAggrValue createStartupValue(WorkerContext context)
throws IOException {
KmeansAggrValue av = new KmeansAggrValue();
byte[] centers = context.readCacheFile("centers");
String lines[] = new String(centers).split("\n");
int rows = lines.length;
int cols = lines[0].split(",").length; // assumption rows >= 1
av.centroids = new DenseMatrix(rows, cols);
av.sums = new DenseMatrix(rows, cols);
av.sums.zero();
av.counts = new DenseVector(rows);
av.counts.zero();
for (int i = 0; i < lines.length; i++) {
 String[] ss = lines[i].split(",");
 for (int j = 0; j < ss.length; j++) {
 av.centroids.set(i, j, Double.valueOf(ss[j]));

return av;

In the preceding method, a KmeansAggrValue object is initialized, the initial center is read

from the resource file centers, and a value is granted to centroids. The initial values of sums

 and counts are 0.

2. Run createInitialValue(), see the following:

@Override
public void aggregate(KmeansAggrValue value, Object item)
 throws IOException {
DenseVector sample = ((KmeansValue)item).sample;
// find the nearest centroid
int min = findNearestCentroid(value.centroids, sample);
// update sum and count
for (int i = 0; i < sample.size(); i ++) {
 value.sums.add(min, i, sample.get(i));

value.counts.add(min, 1.0d);

In the createInitialValue() method, findNearestCentroid() is called to find the index of the

center that has the shortest Euclidean distance with the sample item. Then, each dimension

MaxCompute User Guide / 1 Graph

Issue: 20180904 71

 is added to sums, and the value of counts is plus 1. For more information about how to

implement findNearestCentroid(), see the Kmeans attachment.

The preceding three functions run on all Workers to implement partial aggregation. The following

describes global aggregation-related operations that run on the Worker where AggregatorOwner is

located.

1. Run merge:

@Override
public void merge(KmeansAggrValue value, KmeansAggrValue partial)
 throws IOException {
value.sums.add(partial.sums);
value.counts.add(partial.counts);

The implementation logic of merge is to add values of sums and counts aggregated by each

Worker .

2. Run terminate():

@Override
public boolean terminate(WorkerContext context, KmeansAggrValue
value)
 throws IOException {
 // Calculate the new means to be the centroids (original sums)
 DenseMatrix newCentriods = calculateNewCentroids(value.sums, value.
counts, value.centroids);
 // print old centroids and new centroids for debugging
 System.out.println("\nsuperstep: " + context.getSuperstep() +
 "\nold centriod:\n" + value.centroids + " new centriod:\n" +
newCentriods);
 boolean converged = isConverged(newCentriods, value.centroids, 0.
05d);
 System.out.println("superstep: " + context.getSuperstep() + "/"
 + (context.getMaxIteration() - 1) + " converged: " + converged
);
 if (converged || context.getSuperstep() == context.getMaxIteration
() - 1) {
 // converged or reach max iteration, output centriods
 for (int i = 0; i < newCentriods.numRows(); i++) {
 Writable[] centriod = new Writable[newCentriods.numColumns()];
 for (int j = 0; j < newCentriods.numColumns(); j++) {
 centriod[j] = new DoubleWritable(newCentriods.get(i, j));

 context.write(centriod);

 // true means to terminate iteration
 return true;

 // update centriods
 value.centroids.set(newCentriods);
 // false means to continue iteration

MaxCompute User Guide / 1 Graph

72 Issue: 20180904

 return false;

In terminate(), calculateNewCentroids() is called based on sums and counts to calculate

the average value and obtain the new center. Then, isConverged() is called based on the

Euclidean distance between the new and old centers to determine whether the center has been

 converged. If the number of convergences or iterations reaches the upper threshold, the new

center is output, and true is returned to end the iteration. Otherwise, the center is updated, and

false is returned to continue iteration. For more information about how to implement calculateN

ewCentroids() and isConverged(), see the attachment.

• main() method

The main() method is used to build GraphJob, perform related settings, and submit a job. The

code is as follows:

public static void main(String[] args) throws IOException {
 if (args.length < 2)
 printUsage();
 GraphJob job = new GraphJob();
 job.setGraphLoaderClass(KmeansReader.class);
 job.setRuntimePartitioning(false);
 job.setVertexClass(KmeansVertex.class);
 job.setAggregatorClass(KmeansAggregator.class);
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 // default max iteration is 30
 job.setMaxIteration(30);
 if (args.length >= 3)
 job.setMaxIteration(Integer.parseInt(args[2]));
 long start = System.currentTimeMillis();
 job.run();
 System.out.println("Job Finished in "
 + (System.currentTimeMillis() - start) / 1000.0 + " seconds");

Note:

If job.setRuntimePartitioning(false) is set to false, data loaded by each worker will not be

partitioned based on Partitioner. That is, who loads the data maintains it.

Conclusion

This article introduces the aggregator features in the MaxCompute graph, the API meaning, and

the kmeans Clustering example. To sum it up, Aggregator can be implemented as follows:

1. Each Worker runs createStartupValue during startup to create AggregatorValue.

2. Each Worker runs createInitialValue before each iteration initializes AggregatorValue in the

current round.

MaxCompute User Guide / 1 Graph

Issue: 20180904 73

3. In an iteration, each vertex uses context.aggregate() to run aggregate(), implementing partial

iteration in the Worker.

4. Each Worker sends the partial iteration result to the Worker where AggregatorOwner is located.

5. The Worker where AggregatorOwner is located runs merge several times to implement global

aggregation.

6. The Worker where AggregatorOwner is located runs terminate to process the global aggregatio

n result and determines whether to end the iteration.

Attachment

Kmeans

https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/cn/odps/0.0.90/assets/graph/Kmeans.gz

MaxCompute User Guide / 2 SDK

74 Issue: 20180904

2 SDK

2.1 Java SDK
This article introduces most commonly used MaxCompute core interfaces. For more information,

see SDK Java Doc.

Configure the new SDK version through maven management. The configuration information of

Maven is as follows: (The latest version can be searched for odps-sdk-core at any time at search.

maven.org.

<dependency>
 <groupId>com.aliyun.odps</groupId>
 <artifactId>odps-sdk-core</artifactId>
 <version>0.26.2-public</version>
</dependency>

The overall information of the SDK package provided by MaxCompute is shown in the following

table:

Package Name Description

odps-sdk-core The basic functions of MaxCompute, such as
 the operation of tables, Project, and Tunnel,
are all included in this package.

odps-sdk-commons Some Util packages.

odps-sdk-udf Main interface of UDF.

odps-sdk-mapred MapReduce Java SDK.

odps-sdk-graph Graph Java SDK, the keyword. used to search
is “odps-sdk-graph”.

AliyunAccount

AlibabaCloudAccount. The primary account created with Alibaba Cloud. It generally has an

 AccessKey that comprises of an AccessKeyId and an AccessKeySecret, used to initialize

MaxCompute.

MaxCompute

It is the entry of MaxCompute SDK. You can get set of all objects under the project shell by such

endpoint, including Projects, Tables, Resources, Functions, and Instances.

http://repo.aliyun.com/java-sdk-doc/
http://search.maven.org/?spm=5176.doc27991.2.1.BgYcC5
http://search.maven.org/?spm=5176.doc27991.2.1.BgYcC5

MaxCompute User Guide / 2 SDK

Issue: 20180904 75

Note:

MaxCompute was formerly called ODPS, so the portal class is still named as ODPS in the current

SDK version.

User can construct MaxCompute object by entering the AliyunAccount instance. The code

example is shown as follows:

 Account account = new AliyunAccount("my_access_id", "my_access_key
");
 Odps odps = new Odps(account);
 String odpsUrl = "<your odps endpoint>";
 odps.setEndpoint(odpsUrl);
 odps.setDefaultProject("my_project");
 for (Table t : odps.tables()) {

 }

Projects

It is the set of all projects in MaxCompute. The element of this set is Projects. The code example

is shown as follows:

 Account account = new AliyunAccount("my_access_id", "my_access_key
");
 Odps odps = new Odps(account);
 String odpsUrl = "<your odps endpoint>";
 odps.setEndpoint(odpsUrl);
 Project p = odps.projects().get("my_exists");
 p.reload();
 Map<String, String> properties = prj.getProperties();
 ...

Project

It refers to the description of project and corresponding project, and can be acquired from Projects

.

SQLTask

It refers to an interface to run and process SQL task. SQL can run directly through the interface

‘run’.(Note: only one SQL statement can be submitted at a time.)

The run interface returns the Instance instance and obtains the SQL running status and result

through Instance.

Example:

 import java.util.List;
 import com.aliyun.odps.Instance;
 mport com.aliyun.odps.Odps;

MaxCompute User Guide / 2 SDK

76 Issue: 20180904

 import com.aliyun.odps.OdpsException;
 import com.aliyun.odps.account.Account;
 import com.aliyun.odps.account.AliyunAccount;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.task.SQLTask;
 public class testSql {
 private static final String accessId = "";
 private static final String accessKey = "";
 private static final String endPoint = "http://service.odps.aliyun
.com/api";
 private static final String project = "";
 private static final String sql = "select category from iris;";
 public static void
 main(String[] args) {
 Account account = new AliyunAccount(accessId, accessKey);
 Odps odps = new Odps(account);
 odps.setEndpoint(endPoint);
 odps.setDefaultProject(project);
 Instance i;
 try {
 i = SQLTask.run(odps, sql);
 i.waitForSuccess();
 List<Record> records = SQLTask.getResult(i);
 for(Record r:records){
 System.out.println(r.get(0).toString());
 }
 } catch (OdpsException e) {
 e.printStackTrace();
 }
 }
 }

Note:

To create a table, use SQLTask interface instead of the interface Table. You must introduce the

statement of Table Operation into SQLTask.

Instances

This class refers to the set of all (instances) in MaxCompute and the element of this set is

Instance. The code example is shown as follows:

 Account account = new AliyunAccount("my_access_id", "my_access_key
");
 Odps odps = new Odps(account);
 String odpsUrl = "<your odps endpoint>";
 odps.setEndpoint(odpsUrl);
 odps.setDefaultProject("my_project");
 for (Instance i : odps.instances()) {

MaxCompute User Guide / 2 SDK

Issue: 20180904 77

 }

Instance

It refers to the description of instance and corresponding instance,and can be acquired from

Instances. The code example is as follows:

 Account account = new AliyunAccount("my_access_id", "my_access_key
");
 Odps odps = new Odps(account);
 String odpsUrl = "<your odps endpoint>";
 odps.setEndpoint(odpsUrl);
 Instance ins = odps.instances().get("instance id");
 Date startTime = instance.getStartTime();
 Date endTime = instance.getEndTime();
 ...
 Status instanceStatus = instance.getStatus();
 String instanceStatusStr = null;
 if (instanceStatus == Status.TERMINATED) {
 instanceStatusStr = TaskStatus.Status.SUCCESS.toString();
 Map<String, TaskStatus> taskStatus = instance.getTaskStatus();
 for (Entry<String, TaskStatus> status : taskStatus.entrySet()) {
 if (status.getValue().getStatus() ! = TaskStatus.Status.
SUCCESS) {
 instanceStatusStr = status.getValue().getStatus().toString
();
 break;
 }
 }
 } else {
 instanceStatusStr = instanceStatus.toString();
 }
 ...
 TaskSummary summary = instance.getTaskSummary("instance name");
 String s = summary.getSummaryText();

Tables

This class refers to the set of all tables in MaxCompute. The element of this set is Table. The code

example is shown as follows:

 Account account = new AliyunAccount("my_access_id", "my_access_key
");
 Odps odps = new Odps(account);
 String odpsUrl = "<your odps endpoint>";
 odps.setEndpoint(odpsUrl);
 odps.setDefaultProject("my_project");
 for (Table t : odps.tables()) {

MaxCompute User Guide / 2 SDK

78 Issue: 20180904

 }

Table

It refers to the description of table and corresponding table and can be acquired through Tables.

The code example is shown as follows:

 Account account = new AliyunAccount("my_access_id", "my_access_key
");
 Odps odps = new Odps(account);
 String odpsUrl = "<your odps endpoint>";
 odps.setEndpoint(odpsUrl);
 Table t = odps.tables().get("table name");
 t.reload();
 Partition part = t.getPartition(new PartitionSpec(tableSpec[1]));
 part.reload();
 ...

Resources

The class refers to the set of all resources in MaxCompute. The element of this set is Resource.

The code example is as follows:

 Account account = new AliyunAccount("my_access_id", "my_access_key
");
 Odps odps = new Odps(account);
 String odpsUrl = "<your odps endpoint>";
 odps.setEndpoint(odpsUrl);
 odps.setDefaultProject("my_project");
 for (Resource r : odps.resources()) {

 }

Resource

It refers to the resource description and the corresponding resource and can be acquired through

Resources. The code example is as follows:

 Account account = new AliyunAccount("my_access_id", "my_access_key
");
 Odps odps = new Odps(account);
 String odpsUrl = "<your odps endpoint>";
 odps.setEndpoint(odpsUrl);
 Resource r = odps.resources().get("resource name");
 r.reload();
 if (r.getType() == Resource.Type.TABLE) {
 TableResource tr = new TableResource(r);
 String tableSource = tr.getSourceTable().getProject() + "."
 + tr.getSourceTable().getName();
 if (tr.getSourceTablePartition() ! = null) {
 tableSource += " partition(" + tr.getSourceTablePartition().
toString()
 + ")";
 }

MaxCompute User Guide / 2 SDK

Issue: 20180904 79

 }

File resource creation example is as follows:

 String projectName = "my_porject";
 String source = "my_local_file.txt";
 File file = new File(source);
 InputStream is = new FileInputStream(file);
 FileResource resource = new FileResource();
 String name = file.getName();
 resource.setName(name);
 odps.resources().create(projectName, resource, is);

Table resource creation example is as follows:

 TableResource resource = new TableResource(tableName, tablePrj,
partitionSpec);
 //resource.setName(INVALID_USER_TABLE);
 resource.setName("table_resource_name");
 odps.resources().update(projectName, resource);

Functions

This class refers to the set of all functions in MaxCompute. The element of this set is Function. An

example is as follows:

 Account account = new AliyunAccount("my_access_id", "my_access_key
");
 Odps odps = new Odps(account);
 String odpsUrl = "<your odps endpoint>";
 odps.setEndpoint(odpsUrl);
 odps.setDefaultProject("my_project");
 for (Function f : odps.functions()) {

 }

Function

It refers to the function description and corresponding function and can be acquired through

Functions. The code example is as follows:

 Account account = new AliyunAccount("my_access_id", "my_access_key
");
 Odps odps = new Odps(account);
 String odpsUrl = "<your odps endpoint>";
 odps.setEndpoint(odpsUrl);
 Function f = odps.functions().get("function name");
 List<Resource> resources = f.getResources();

Function creation example:

 String resources = "xxx:xxx";
 String classType = "com.aliyun.odps.mapred.open.example.WordCount
";
 ArrayList<String> resourceList = new ArrayList<String>();

MaxCompute User Guide / 2 SDK

80 Issue: 20180904

 for (String r : resources.split(":")) {
 resourceList.add(r);
 }
 Function func = new Function();
 func.setName(name);
 func.setClassType(classType);
 func.setResources(resourceList);
 odps.functions().create(projectName, func);

2.2 Python SDK
PyODPS is the Python SDK of MaxCompute. It supports basic actions on MaxCompute objects

and the DataFrame framework for ease of data analysis on MaxCompute. For more information,

see the GitHub project and the PyODPS Documentation that describes all interfaces and classes.

• For more information about PyODPS, see the PyODPS community album.

• Developers are invited to participate in the ecological development of PyODPS. For more

information, see GitHub document.

• Developers can also submit the issue and merge request to accelerate PyODPS eco-growth.

For more information, see code.

• DingTalk technology exchange group: 11701793

Installation

PyODPS supports Python 2.6 and later versions. After installing PIP in the system, you only

need to run pip install pyodps. The related dependencies of PyODPS are automatically

installed.

Quick start

Log on using your Alibaba Cloud primary account to initialize a MaxCompute entry, as shown in

the following code:

from odps import ODPS
odps = ODPS('**your-access-id**', '**your-secret-access-key**', '**
your-default-project**',
 endpoint='**your-end-point**')

After completing initialization, you can operate tables, resources, and functions.

Project

A project is the basic unit of operation in MaxCompute, similar to a database.

Call get_project to obtain a project, as shown in the following code:

project = odps.get_project('my_project') # Obtain a project.

https://github.com/aliyun/aliyun-odps-python-sdk
http://pyodps.readthedocs.org/
https://yq.aliyun.com/album/19
http://pyodps.readthedocs.io/zh_CN/latest/?spm=a2c4e.11153959.blogcont138752.16.5bec51d32BpKgB
https://github.com/aliyun/aliyun-odps-python-sdk?spm=a2c4e.11153959.blogcont138752.17.5bec51d3IMNtLJ

MaxCompute User Guide / 2 SDK

Issue: 20180904 81

project = odps.get_project() # Obtain the default project.

Note:

• If parameters are not input, use the default project.

• You can call exist_project to check whether the project exists.

• A table is a data storage unit of MaxCompute.

Table action

Call list_tables to list all tables in the project, as shown in the following code:

for table in odps.list_tables():
 # Process each table

Call exist_table to check whether the table exists and call get_table to obtain the table.

>>> t = odps.get_table('dual')
>>> t.schema
odps.Schema {
 c_int_a bigint
 c_int_b bigint
 c_double_a double
 c_double_b double
 c_string_a string
 c_string_b string
 c_bool_a boolean
 c_bool_b boolean
 c_datetime_a datetime
 c_datetime_b datetime
}
>>> t.lifecycle
-1
>>> print(t.creation_time)
2014-05-15 14:58:43
>>> t.is_virtual_view
False
>>> t.size
1408
>>> t.schema.columns
[<column c_int_a, type bigint>,
 <column c_int_b, type bigint>,
 <column c_double_a, type double>,
 <column c_double_b, type double>,
 <column c_string_a, type string>,
 <column c_string_b, type string>,
 <column c_bool_a, type boolean>,
 <column c_bool_b, type boolean>,
 <column c_datetime_a, type datetime>,
 <column c_datetime_b, type datetime>]

Create schema for a table

Two initialization methods are as follows:

MaxCompute User Guide / 2 SDK

82 Issue: 20180904

• Initialize through table columns and optional partitions, as shown in the following code:

>>> from odps.models import Schema, Column, Partition
>>> columns = [Column(name='num', type='bigint', comment='the column
')]
>>> partitions = [Partition(name='pt', type='string', comment='the
partition')]
>>> schema = Schema(columns=columns, partitions=partitions)
>>> schema.columns
[<column num, type bigint>, <partition pt, type string>]

• Although it is easier to call Schema.from_lists for initialization, annotations of columns and

partitions cannot be set directly.

>>> schema = Schema.from_lists(['num'], ['bigint'], ['pt'], ['string
'])
>>> schema.columns
[<column num, type bigint>, <partition pt, type string>]

Create a table

Use a table schema to create a table, as shown in the following code:

>>> table = odps.create_table('my_new_table', schema)
>>> table = odps.create_table('my_new_table', schema, if_not_exists=
True) # Create a table only when no table exists.
>>> table = o.create_table('my_new_table', schema, lifecycle=7) # Set
the life cycle.

Use a field name field type string connected by commas (,) to create a table, as shown in the

following code:

>>> # Create a non-partition table.
>>> table = o.create_table('my_new_table', 'num bigint, num2 double',
if_not_exists=True)
>>> # To create a partition table, you can input (list of table fields
, list of partition fields).
>>> table = o.create_table('my_new_table', ('num bigint, num2 double',
 'pt string'), if_not_exists=True)

Without related settings, you can use only the BIGINT, DOUBLE, DECIMAL, STRING, DATETIME

, BOOLEAN, MAP, and ARRAY types when creating a table.

If your service is on a public cloud, or supports new data types such as TINYINT or STRUCT, you

can set options.sql.use_odps2_extension = True to enable the new types, as shown

in the following code:

>>> from odps import options
>>> options.sql.use_odps2_extension = True

MaxCompute User Guide / 2 SDK

Issue: 20180904 83

>>> table = o.create_table('my_new_table', 'cat smallint, content
struct<title:varchar(100), body string>')

Obtain table data

Table data can be obtained using three methods:

• Call head to obtain table data as follows (only the first 10,000 data records or fewer of each

table can be obtained):

>>> t = odps.get_table('dual')
>>> for record in t.head(3):
>>> print(record[0]) # Obtain the value at the zero position.
>>> print(record['c_double_a']) # Obtain a value through a field
.
>>> print(record[0: 3]) # Slice action
>>> print(record[0]) # Obtain values at multiple positions.
>>> print(record['c_int_a', 'c_double_a']) # Obtain values
through multiple fields.

• Run open_reader on a table to open a reader to read data. You can use the WITH

expression:

Use the with expression.
>>> with t.open_reader(partition='pt=test') as reader:
>>> count = reader.count
>>> for record in reader[5:10] # This action can be performed
 multiple times until a certain number (indicated by count) of
records are read. This statement can be transformed to parallel
action.
>>> # Process a record.
>>>
>>> # Do not use the with expression.
>>> reader = t.open_reader(partition='pt=test')
>>> count = reader.count
>>> for record in reader[5:10]
>>> # Process a record.

• Call the Tunnel API to read table data. The open_reader action is encapsulated in the Tunnel

API.

Write data

A table object can also perform the open_writer action to open the writer and write data, which

is similar to open_reader.

Example:

>>> # Use the with expression.
>>> with t.open_writer(partition='pt=test') as writer:
>>> writer.write(records) # Here, records can be any iteratable
records and are written to block 0 by default.
>>>
>>> with t.open_writer(partition='pt=test', blocks=[0, 1]) as writer:
 # Open two blocks at the same time

MaxCompute User Guide / 2 SDK

84 Issue: 20180904

>>> writer.write(0, gen_records(block=0))
>>> writer.write(1, gen_records(block=1)) # The two write
operations can be parallel in multiple threads. Each block is
independent.
>>>
>>> # Do not use the WITH expression.
>>> writer = t.open_writer(partition='pt=test', blocks=[0, 1])
>>> writer.write(0, gen_records(block=0))
>>> writer.write(1, gen_records(block=1))
>>> writer.close() # You must close the writer. Otherwise, the written
 data may be incomplete.

Similarly, writing data into the table is encapsulated in the Tunnel API. For more information, see

data upload and download channel.

Delete a table

Delete a table as shown in the following code:

>>> odps.delete_table('my_table_name', if_exists=True) # Delete a
table only when the table exists
>>> t.drop() # The drop function can be directly executed if a table
object exists.

Table partitioning

• Basic operations

Traverse all partitions of a table as shown in the following code:

>>> for partition in table.partitions:
>>> print(partition.name)
>>> for partition in table.iterate_partitions(spec='pt=test'):
>>> Traverse list partitions.

Check whether a partition exists as shown in the following code:

>>> table.exist_partition('pt=test,sub=2015')

Obtain the partition as shown in the following code:

>>> partition = table.get_partition('pt=test')
>>> print(partition.creation_time)
2015-11-18 22:22:27
>>> partition.size

MaxCompute User Guide / 2 SDK

Issue: 20180904 85

0

• Create a partition

>>> t.create_partition('pt=test', if_not_exists=True) # Create a
partition only when no partition exists.

• Delete a partition

>>> t.delete_partition('pt=test', if_exists=True) # Delete a
partition only when the partition exists.
>>> partition.drop() # Directly drop a partition if a partition
object exists.

SQL

PyODPS supports MaxCompute SQL query and can directly read the execution results.

• Run the SQL statements

>>> odps.execute_sql('select * from dual') # Run SQL in synchronous
mode. Blocking continues until SQL execution is completed.
>>> instance = odps.run_sql('select * from dual') # Run the SQL
statements in asynchronous mode.
>>> instance.wait_for_success() # Blocking continues until SQL
execution is completed.

• Read the SQL statement execution results

The instance that runs the SQL statements can directly perform the open_reader action. In

one scenario, the SQL statements return structured data, as follows:

>>> with odps.execute_sql('select * from dual').open_reader() as
reader:
>>> for record in reader:
>>> # Process each record.

In the second scenario, the actions that may be performed by SQL, such as desc, obtain the raw

SQL execution result through the reader.raw attribute, as follows:

>>> with odps.execute_sql('desc dual').open_reader() as reader:
>>> print(reader.raw)

Resources

Resources commonly apply to UDF and MapReduce on MaxCompute.

You can use list_resources to list all resources and use exist_resource to check whether

a resource exists. You can call delete_resource to delete resources or directly call the drop

 method for a resource object.

PyODPS mainly supports two resource types: file resources and table resources.

MaxCompute User Guide / 2 SDK

86 Issue: 20180904

• File resources

File resources include the basic file type, and py, jar, and archive.

Note:

In DataWorks, file resources in the py format must be uploaded as files. For more information,

see Python UDF.

Create a file resource

Create a file resource by specifying the resource name, file type, and a file-like object (or a

string object), as shown in the following example:

resource = odps.create_resource('test_file_resource', 'file',
file_obj=open('/to/path/file')) # Use a file-like object.
resource = odps.create_resource('test_py_resource', 'py', file_obj='
import this') # Use a string.

Read and modify a file resource

You can call the open method for a file resource or call open_resource at the MaxCompute

entry to open a file resource. The opened object is a file-like object. Similar to the open method

built in Python, file resources also support the open mode.

Example:

>>> with resource.open('r') as fp: # Open a resource in read mode.
>>> content = fp.read() # Read all content.
>>> fp.seek(0) # Return to the start of the resource.
>>> lines = fp.readlines() # Read multiple lines.
>>> fp.write('Hello World') # Error. Resources cannot be written
 in read mode.
>>>
>>> with odps.open_resource('test_file_resource', mode='r+') as fp:
 # Enable read/write mode.
>>> fp.read()
>>> fp.tell() # Current position
>>> fp.seek(10)
>>> fp.truncate() # Truncate the following content.
>>> fp.writelines(['Hello\n', 'World\n']) # Write multiple lines
.
>>> fp.write('Hello World')
>>> fp.flush() # Manual call submits the update to MaxCompute.

The following open modes are supported:

• r: Read mode. The file can be opened but cannot be written.

• w: Write mode. The file can be written but cannot be read. Note that file content is cleared

first if the file is opened in write mode.

• a: Append mode. Content can be added to the end of the file.

https://yq.aliyun.com/articles/300307

MaxCompute User Guide / 2 SDK

Issue: 20180904 87

• r+: Read/write mode. You can read and write any content.

• w+: Similar to r+, but file content is cleared first.

• a+: Similar to r+, but content can be added at the end of the file only during writing.

In PyODPS, file resources can be opened in a binary mode. For example, some compressed

files must be opened in binary mode. rb indicates opening a file in binary read mode, and r+b

 indicates opening a file in binary read/write mode.

• Table resources

Create a table resource

>>> odps.create_resource('test_table_resource', 'table', table_name
='my_table', partition='pt=test')

Update a table resource

>>> table_resource = odps.get_resource('test_table_resource')
>>> table_resource.update(partition='pt=test2', project_name='
my_project2')

DataFrame

PyODPS offers DataFrame API, which provides interfaces similar to pandas, but can fully utilize

computing capability of MaxCompute. For more information, see DataFrame.

The following is an example of DataFrame:

Note:

You must create a MaxCompute object before starting the following steps:

>>> o = ODPS('**your-access-id**', '**your-secret-access-key**',
 project='**your-project**', endpoint='**your-end-point
**'))

Here, movielens 100K is used as an example. Assume that three tables already exist, namely,

pyodps_ml_100k_movies (movie-related data), pyodps_ml_100k_users (user-related data),

and pyodps_ml_100k_ratings (rating-related data).

http://pyodps.readthedocs.io/zh_CN/latest/df.html

MaxCompute User Guide / 2 SDK

88 Issue: 20180904

You only need to input a Table object to create a DataFrame object. For example:

>>> from odps.df import DataFrame

>>> users = DataFrame(o.get_table('pyodps_ml_100k_users'))

View fields of DataFrame and the types of the fields through the dtypes attribute, as shown in the

following code:

>>> users.dtypes

You can use the head method to obtain the first N data records for data preview.

Example:

>>> users.head(10)

　 user_id age sex occupation zip_code

0 1 24 M technician 85711

1 2 53 F other 94043

2 3 23 M writer 32067

3 4 24 M technician 43537

4 5 33 F other 15213

5 6 42 M executive 98101

6 7 57 M administrator 91344

7 8 36 M administrator 05201

8 9 29 M student 01002

9 10 53 M lawyer 90703

You can add a filter on the fields to view selective fields only.

Example:

>>> users[['user_id', 'age']].head(5)

　 user_id age

0 1 24

1 2 53

2 3 23

MaxCompute User Guide / 2 SDK

Issue: 20180904 89

　 user_id age

3 4 24

4 5 33

You can also exclude several fields.

Example:

>>> users.exclude('zip_code', 'age').head(5)

　 user_id Sex Occupation

0 1 M Technician

1 2 F Other

2 3 M Writer

3 4 M Technician

4 5 F Other

If you want to exclude selective fields, and obtain new columns through computation use the code

 as shown in the following example:

For example, add the sex_bool attribute and set it to True if sex is Male. Otherwise, set it to False

.

Example:

>>> users.select(users.exclude('zip_code', 'sex'), sex_bool=users.sex
 == 'M').head(5)

　 user_id Age Occupation sex_bool

0 1 24 Technician True

1 2 53 Other False

2 3 23 Writer True

3 4 24 Technician True

4 5 33 Other False

Obtain the number of persons between 20 and 25 age group, as shown in the following code:

>>> users.age.between(20, 25).count().rename('count')

MaxCompute User Guide / 2 SDK

90 Issue: 20180904

943

Obtain the numbers of male and female users, as shown in the following code:

>>> users.groupby(users.sex).count()

　 Sex Count

0 Female 273

1 Male 670

To divide users by job, obtain the first 10 jobs that have the largest population, and sort the jobs in

 the descending order of population.

Example:

>>> df = users.groupby('occupation').agg(count=users['occupation'].
count())
>>> df.sort(df['count'], ascending=False)[:10]

　 Occupation Count

0 Student 196

1 Other 105

2 Educator 95

3 Administrator 79

4 Engineer 67

5 Programmer 66

6 Librarian 51

7 Writer 45

8 Executive 32

9 Scientist 31

DataFrame APIs provide the value_counts method to quickly achieve the same result. For

example:

>>> users.occupation.value_counts()[:10]

　 Occupation Count

0 Student 196

1 Other 105

MaxCompute User Guide / 2 SDK

Issue: 20180904 91

　 Occupation Count

2 Educator 95

3 Administrator 79

4 Engineer 67

5 Programmer 66

6 Librarian 51

7 Writer 45

8 Executive 32

9 Scientist 31

Show data in a more intuitive graph, as shown in the following code:

>>> %matplotlib inline

Use a horizontal bar chart to visualize data, as shown in the following code:

>>> users['occupation'].value_counts().plot(kind='barh', x='occupation
',
ylabel='prefession')

MaxCompute User Guide / 2 SDK

92 Issue: 20180904

Divide ages into 30 groups and view the histogram of age distribution, as shown in the following

code:

>>> users.age.hist(bins=30, title="Distribution of users' ages",
xlabel='age', ylabel='count of users')

Use JOIN to join the three tables and save the joined tables as a new table.

Example:

>>> movies = DataFrame(o.get_table('pyodps_ml_100k_movies'))
>>> ratings = DataFrame(o.get_table('pyodps_ml_100k_ratings'))
>>> o.delete_table('pyodps_ml_100k_lens', if_exists=True)
>>> lens = movies.join(ratings).join(users).persist('pyodps_ml_
100k_lens')
>>> lens.dtypes

odps.Schema {
 movie_id int64
 title string
 release_date string
 video_release_date string
 imdb_url string
 user_id int64
 rating int64
 unix_timestamp int64
 age int64
 sex string
 occupation string
 zip_code string
}

Divide the age groups between 0 and 80 into eight groups, as shown in the following code:

>>> labels = ['0-9', '10-19', '20-29', '30-39', '40-49', '50-59', '60-
69', '70-79']

MaxCompute User Guide / 2 SDK

Issue: 20180904 93

>>> cut_lens = lens[lens, lens.age.cut(range(0, 81, 10), right=False,
labels=labels).rename('age group')]

View the first 10 data records of a single age group in a group, as shown in the following code:

>>> cut_lens['age group', 'age'].distinct()[:10]

　 Age-group Age

0 0-9 7

1 10-19 10

2 10-19 11

3 10-19 13

4 10-19 14

5 10-19 15

6 10-19 16

7 10-19 17

8 10-19 18

9 10-19 19

View users’ total rating and average rating of each age group, as shown in the following code:

>>> cut_lens.groupby('age group').agg(cut_lens.rating.count().rename('
total rating'), cut_lens.rating.mean().rename('average rating'))

　 Age-group Average rating Total rating

0 0-9 3.767442 43

1 10-19 3.486126 8181

2 20-29 3.467333 39535

3 30-39 3.554444 25696

4 40-49 3.591772 15021

5 50-59 3.635800 8704

6 60-69 3.648875 2623

7 70-79 3.649746 197

MaxCompute User Guide / 2 SDK

94 Issue: 20180904

Configuration

PyODPS provides a series of configuration options, which can be obtained through odps.

options. The following lists configurable MaxCompute options:

• General configuration

Option Description Default value

end_point MaxCompute Endpoint. None

default_project Default Project. None

log_view_host LogView host name. None

log_view_hours LogView holding time (in
hours).

24

local_timezone Used time zone. True
indicates local time, and False
 indicates UTC. The time
zone of pytz can also be used
.

1

lifecycle Life cycles of all tables. None

temp_lifecycle Life cycles of the temporary
tables.

1

biz_id User ID. None

verbose Whether to print logs. False

verbose_log Log receiver. None

chunk_size Size of write buffer. 1496

retry_times Request retry times. 4

pool_connections Number of cached connection
s in the connection pool.

10

pool_maxsize Maximum capacity of the
connection pool.

10

connect_timeout Connection time-out. 5

read_timeout Read time-out. 120

completion_size Limit on the number of object
complete listing items.

10

notebook_repr_widget Use interactive graphs. True

MaxCompute User Guide / 2 SDK

Issue: 20180904 95

Option Description Default value

sql.settings MaxCompute SQL runs global
 hints.

None

sql.use_odps2_extension Enable MaxCompute 2.0
language extension.

False

• Data Upload/Download configuration

Option Description Default value

tunnel.endpoint Tunnel Endpoint. None

tunnel.use_instance_tunnel Use Instance Tunnel to obtain
 the execution result.

True

tunnel.limited_instance_tun
nel

Limit the number of results
obtained by Instance Tunnel.

True

tunnel.string_as_binary Use bytes instead of unicode
in the string type.

False

• DataFrame Configurations

Option Description Default value

interactive Whether in an interactive
environment.

Depend on the detection
value

df.analyze Whether to enable non
-MaxCompute built-in
functions.

True

df.optimize Whether to enable
DataFrame overall optimizati
on.

True

df.optimizes.pp Whether to enable
DataFrame predicate push
optimization.

True

df.optimizes.cp Whether to enable
DataFrame column tailoring
optimization.

True

df.optimizes.tunnel Whether to enable
DataFrame tunnel optimizati
on.

True

MaxCompute User Guide / 2 SDK

96 Issue: 20180904

Option Description Default value

df.quote Whether to use `` to mark
fields and table names at the
end of MaxCompute SQL.

True

df.libraries Third-party library (resource
 name) that is used for
DataFrame running.

None

• PyODPS ML Configurations

Option Description Default value

ml.xflow_project Default Xflow project name. algo_public

ml.use_model_transfer Whether to use ModelTrans
fer to obtain the model PMML.

True

ml.model_volume Volume name used when
ModelTransfer is used.

pyodps_volume

2.3 PyODPS DataFrame中使用pandas、scipy和scikit-learn
PyODPS DataFrame提供了类似pandas的接口来操作MaxCompute数据，同时也支持在本地使用

pandas和使用数据库来执行。

PyODPS DataFrame不仅支持类似pandas的map和apply方法，也提供了MapReduce API来扩展

pandas语法以适应大数据环境。

PyODPS的自定义函数是序列化到MaxCompute上执行，MaxCompute的Python环境仅包含numpy

第三方包。现在，MaxCompute在sprint 27及更高版本的isolation，可以实现在自定义函数中使用

pandas、scipy或scikit-learn等包含c代码的库。

说明：

PyODPS需要0.7.4及以上版本 。

上传第三方包

说明：

您只需上传一次第三方包，当MaxCompute资源有了这些包，可直接跳过此步。

现在主流的Python包都提供了whl包，提供了各平台包含二进制文件的包，因此找到可以在

MaxCompute上运行的包是第一步。

https://yq.aliyun.com/articles/591508

MaxCompute User Guide / 2 SDK

Issue: 20180904 97

其次，要想在MaxCompute上运行，需要包含所有的依赖包，这个是比较繁琐的。各个包的依赖情

况如下表所示。

包名 依赖

pandas numpy，python-dateutil，pytz，six

scipy numpy

scikit-learn numpy，scipy

说明：

其中numpy已包含，您只需上传python-dateutil、pytz、pandas、scipy、sklearn、six

包，pandas、scipy和scikit-learn即可使用。

您可进入python-dateutils找到python-dateutil-2.6.0.zip进行下载。

重命名为python-dateutil.zip，通过MaxCompute Console上传资源。

add archive python-dateutil.zip;

说明：

pytz和six的上传方式同上，分别找到 pytz-2017.2.zip和six-1.11.0.tar.gz进行下载和上传资源操

作。

对于pandas这种包含c的包，需要找到名字中包含cp27-cp27m-manylinux1_x86_64的whl包，这

样才能在MaxCompute上正确执行。因此，您需要找到pandas-0.20.2-cp27-cp27m-manylinux1

_x86_64.whl进行下载，然后把后缀改成zip，在MaxCompute Console中执行add archive

pandas.zip;进行上传。

其他包的操作同上，需下载资源如下表所示。

包名 文件名 上传资源名

python-dateutil python-dateutil-2.6.0.zip python-dateutil.zip

pytz pytz-2017.2.zip pytz.zip

six six-1.11.0.tar.gz six.tar.gz

http://mirrors.aliyun.com/pypi/simple/python-dateutil/
http://mirrors.aliyun.com/pypi/packages/95/8e/71125f3f24771f50e630b5a6fa9fd209a9f167dcbc3aad65a48cb3dd5694/python-dateutil-2.6.0.zip#md5=530f7b56e36fa42ada6c02a17b15660c
http://mirrors.aliyun.com/pypi/packages/a4/09/c47e57fc9c7062b4e83b075d418800d322caa87ec0ac21e6308bd3a2d519/pytz-2017.2.zip#md5=f89bde8a811c8a1a5bac17eaaa94383c
http://mirrors.aliyun.com/pypi/packages/16/d8/bc6316cf98419719bd59c91742194c111b6f2e85abac88e496adefaf7afe/six-1.11.0.tar.gz#md5=d12789f9baf7e9fb2524c0c64f1773f8
http://mirrors.aliyun.com/pypi/packages/44/39/e71009a0ebdbb6206b9fbde0367fc5cb5bb7fdb4521ae785ca7bd63d36aa/pandas-0.20.2-cp27-cp27m-manylinux1_x86_64.whl#md5=31a4d180048f72337d53cc7b87424568
http://mirrors.aliyun.com/pypi/packages/44/39/e71009a0ebdbb6206b9fbde0367fc5cb5bb7fdb4521ae785ca7bd63d36aa/pandas-0.20.2-cp27-cp27m-manylinux1_x86_64.whl#md5=31a4d180048f72337d53cc7b87424568
http://mirrors.aliyun.com/pypi/packages/95/8e/71125f3f24771f50e630b5a6fa9fd209a9f167dcbc3aad65a48cb3dd5694/python-dateutil-2.6.0.zip#md5=530f7b56e36fa42ada6c02a17b15660c
http://mirrors.aliyun.com/pypi/packages/a4/09/c47e57fc9c7062b4e83b075d418800d322caa87ec0ac21e6308bd3a2d519/pytz-2017.2.zip#md5=f89bde8a811c8a1a5bac17eaaa94383c
http://mirrors.aliyun.com/pypi/packages/16/d8/bc6316cf98419719bd59c91742194c111b6f2e85abac88e496adefaf7afe/six-1.11.0.tar.gz#md5=d12789f9baf7e9fb2524c0c64f1773f8

MaxCompute User Guide / 2 SDK

98 Issue: 20180904

包名 文件名 上传资源名

pandas pandas-0.20.2-cp27-cp27m-
manylinux1_x86_64.zip

pandas.zip

scipy scipy-0.19.0-cp27-cp27m-
manylinux1_x86_64.zip

scipy.zip

scikit-learn scikit_learn-0.18.1-cp27-
cp27m-manylinux1_x86_64.zip

sklearn.zip

说明：

您也可以使用PyODPS的资源上传接口来完成资源的上传，同样只需操作一遍。

编写代码验证

1. 写一个简单的函数，里面用到所有的库，最好是在函数中import这些第三方库。

def test(x):
 from sklearn import datasets, svm
 from scipy import misc
 import numpy as np

 iris = datasets.load_iris()
 assert iris.data.shape == (150, 4)
 assert np.array_equal(np.unique(iris.target), [0, 1, 2])

 clf = svm.LinearSVC()
 clf.fit(iris.data, iris.target)
 pred = clf.predict([[5.0, 3.6, 1.3, 0.25]])
 assert pred[0] == 0

 assert misc.face().shape is not None

 return x

说明：

上述代码只是示例，目标是用到上文所说的所有的包。

2. 写完函数后，写一个简单的map。

说明：

运行时要确保打开isolation，如果在project级别没有打开，也可在运行时打开一个可以设置全局

的选项。

from odps import options

http://mirrors.aliyun.com/pypi/packages/44/39/e71009a0ebdbb6206b9fbde0367fc5cb5bb7fdb4521ae785ca7bd63d36aa/pandas-0.20.2-cp27-cp27m-manylinux1_x86_64.whl#md5=31a4d180048f72337d53cc7b87424568
http://mirrors.aliyun.com/pypi/packages/44/39/e71009a0ebdbb6206b9fbde0367fc5cb5bb7fdb4521ae785ca7bd63d36aa/pandas-0.20.2-cp27-cp27m-manylinux1_x86_64.whl#md5=31a4d180048f72337d53cc7b87424568
http://mirrors.aliyun.com/pypi/packages/ae/94/28ca6f9311e2351bb68da41ff8c1bc8f82bb82791f2ecd34efa953e60576/scipy-0.19.0-cp27-cp27m-manylinux1_x86_64.whl#md5=0e49f7fc8d31c1c79f0a4d63b29e8a1f
http://mirrors.aliyun.com/pypi/packages/ae/94/28ca6f9311e2351bb68da41ff8c1bc8f82bb82791f2ecd34efa953e60576/scipy-0.19.0-cp27-cp27m-manylinux1_x86_64.whl#md5=0e49f7fc8d31c1c79f0a4d63b29e8a1f
http://mirrors.aliyun.com/pypi/packages/ca/dd/a18dba8ab879b13b43c3838a25887585a45101f4bffa398e1883e1e3d395/scikit_learn-0.18.1-cp27-cp27m-manylinux1_x86_64.whl#md5=b068bde57f00d285cc89eb0b8615fcae
http://mirrors.aliyun.com/pypi/packages/ca/dd/a18dba8ab879b13b43c3838a25887585a45101f4bffa398e1883e1e3d395/scikit_learn-0.18.1-cp27-cp27m-manylinux1_x86_64.whl#md5=b068bde57f00d285cc89eb0b8615fcae

MaxCompute User Guide / 2 SDK

Issue: 20180904 99

options.sql.settings = {'odps.isolation.session.enable': True}

您也可以在execute方法上指定本次执行打开isolation。

同样，您可以在全局通过options.df.libraries指定用到的包，也可以在execute时指定。这里需要

指定所有的包，包括依赖。

3. 调用定义的函数。

hints = {
 'odps.isolation.session.enable': True
}
libraries = ['python-dateutil.zip', 'pytz.zip', 'six.tar.gz', '
pandas.zip', 'scipy.zip', 'sklearn.zip']

iris = o.get_table('pyodps_iris').to_df()

print iris[:1].sepal_length.map(test).execute(hints=hints, libraries
=libraries)

总结

对于要用到的第三方库及其依赖，如果已经上传，可以直接编写代码，并指定用到的libraries即可。

否则，需要按照上述操作上传第三方库。

PyODPS相关资源

• 相关文档请参见PyODPS####。

• 相关代码请参见aliyun-odps-python-sdk。

http://pyodps.readthedocs.io/zh_CN/latest/
https://github.com/aliyun/aliyun-odps-python-sdk

MaxCompute User Guide / 3 Handle-Unstructured-data

100 Issue: 20180904

3 Handle-Unstructured-data

3.1 国际站未发布，暂不翻译

As the core computing component of the Big Data Platform in Alibaba Cloud, MaxCompute has a

 powerful computing capability to schedule a large number of nodes to perform parallel calculatio

ns, simultaneously distributing computing Failovers, retrial and so on. All these have a set of

effective processing management features.

MaxCompute SQL as the primary entry point for Distributed Data Processing for fast and easy

 processing/storage of EB The level of offline data provides strong support. As the big data

business continues to expand, new data usage scenarios continue to emerge.In this context

, MaxCompute, the computing framework is also evolving, and it mainly faces the powerful

computing capability of the data in the internal special format, just one step open to different

external data.

At this stage, MaxCompute SQL faces structured data stored in the internal MaxCompute table in

cfile format. And for MaxCompute,a variety of user data (including text and various unstructured

data) outside the table), you must first import the MaxCompute table through a variety of tools,

and then perform the calculation. The process of data import has more limits. For example, to

work with the data on OSS in MaxCompute, there are usually two ways:

• To download data from OSS using the oss sdk or other tools, the data is then imported into the

table through the MaxCompute tunnel.

• Write the UDF and call the oss sdk directly within the UDF to access the OSS data.

However, limits to both of these practices are as follows:

• The first type of transfer must be made outside of the MaxCompute system, if the ossvolume

 is too large, consider how concurrency can be accelerated, and you cannot fully utilize

MaxCompute'sability to calculate on a large scale.

• The second type typically needs to apply for UDF network access. Here, developers may face

a problem in controlling the number of job concurrency and splitting up the data.

This section describes the functionality of an External table and the support is designed to provide

 the ability to process data other than existing MaxCompute tables. In this framework, you can get

 MaxCompute from a simple pant statement. Create an External table to establish a connection

 between MaxCompute table and the external data source. This action provides access and

MaxCompute User Guide / 3 Handle-Unstructured-data

Issue: 20180904 101

output capabilities for a wide range of data. Creating good external tables can appear like normal

MaxCompute tables, also used (most scenarios) to fully utilize powerful computing capabilities of

MaxCompute SQL.

Here, a variety of data covers two dimensions:

A variety of data storage media: a plug-in framework can be used to connect to a wide variety of

data storage media, such as OSS, ots.

Diverse data formats: The MaxCompute table is the structured data, external tables cannot be

limited to the structured data.

• No structured data exists, such as images, audio, video files, raw bindings, and so on.

• Semi-structured data, such as CSV, TSV, and so on, implies a certain schema text file.

• Structured Data for a non-cfile, such as an orc/parquet file, or even hbase/OTS data.

Next, you'll find two simple examples to help you gain insight into the processing of unstructured

data. For more information, see accessing OSS,unstructured data, and accessing OTS unstructur

ed data.

3.2 Access OSS data
This article explains how to easily access OSS data on MaxCompute.

Authorization with STS mode

Authorize OSS data permission to MaxCompute account in advance, so that MaxCompute can

directly access OSS. You can authorize permissions in the following two ways:

• When the MaxCompute and OSS owner are the same account, you can directly log on

Alibaba Cloud account and click here to complete authorization.

• Custom authorization.

1. Firstly, you must authorize MaxCompute permission to access OSS in RAM. Log in to the

RAM Console (if maxcompute and OSS are not the same account number, authorized by

the OSS account) to create a role through role management in the console, role ming ru

aliyunodpsdefaultrole or aliyunodpsroleforotheruser.

2. Modify the policy content of role as follows:

--When the MaxCompute and OSS owner are the same account:
{
"Statement": [
{
 "Action": "sts:AssumeRole",
 "Effect": "Allow",

https://ram.console.aliyun.com/?spm=5176.100239.blogcont281191.24.uJg9dR#/role/authorize?request=%7B%22Requests%22:%20%7B%22request1%22:%20%7B%22RoleName%22:%20%22AliyunODPSDefaultRole%22,%20%22TemplateId%22:%20%22DefaultRole%22%7D%7D,%20%22ReturnUrl%22:%20%22https:%2F%2Fram.console.aliyun.com%2F%22,%20%22Service%22:%20%22ODPS%22%7D
https://partners-intl.aliyun.com/login-required#/ram
https://partners-intl.aliyun.com/login-required#/ram
https://partners-intl.aliyun.com/login-required#/ram

MaxCompute User Guide / 3 Handle-Unstructured-data

102 Issue: 20180904

 "Principal": {
 "Service": [
 "odps.aliyuncs.com"
]
 }
}
],
"Version": "1"
}
--When the MaxCompute and OSS owner are not the same account:
{
"Statement": [
{
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service ":[
 "MaxCompute's Owner account: id@odps.aliyuncs.com"
]
 }
}
],
"Version": "1"
}

3. Authorize the role necessary permissions AliyunODPSRolePolicy to access OSS.

{
"Version": "1",
"Statement": [
{
 "Action": [
 "Oss: listbuckets ",
 "Oss: GetObject ",
 "oss:ListObjects",
 "Oss: putobject ",
 "Oss: deleteobject ",
 "Oss: maid ",
 "Oss: listparts"
],
 "Resource": "*",
 "Effect": "Allow"
}
]
}
--You can customize other permissions.

4. Authorize the permission AliyunODPSRolePolicy to this role.

Read OSS Data with the euilt-in extractor

When accessing external data sources, use different custom extractors. You can also use

MaxCompute’s internal extractor to read conventionally-formatted data stored in OSS. You only

need to create an external table and use this table as the source table for query operations.

https://www.alibabacloud.com/product/oss

MaxCompute User Guide / 3 Handle-Unstructured-data

Issue: 20180904 103

In this example, assume that you have a CSV data file in OSS. The endpoint is oss-cn-

shanghai-internal.aliyuncs.com, the bucket is oss-odps-test, and the data file is

stored in /demo/vehicle.csv.

Create an external table

Use the following statements to create an external table:

CREATE EXTERNAL TABLE IF NOT EXISTS ambulance_data_csv_external
(
vehicleId int,
recordId int,
patientId int,
Calls int,
locationLatitute double,
locationLongtitue double,
recordTime string,
direction string
)
STORED BY 'com.aliyun.odps.CsvStorageHandler' -- (1)
WITH SERDEPROPERTIES (
 'odps.properties.rolearn'='acs:ram::xxxxx:role/aliyunodpsdefaultrole'
) -- (2)
LOCATION 'oss://oss-cn-shanghai-internal.aliyuncs.com/oss-odps-test/
Demo/'; -- (3)(4)

The preceding statements are described as follows:

• com.aliyun.odps.CsvStorageHandler is the built-in StorageHandler for processing

CSV-format files. It defines how CSV files are read and written. You only have to specify this

name. The relevant logic is implemented by the system.

• The information in odps.properties.rolearn comes from the Arn information of

AliyunODPSDefaultRole in RAM. You can get it through the role details in the RAM

console.

• Specify an OSS directory for LOCATION. By default, the system reads all files in this directory.

▬ We recommend using the domain name of the intranet to avoid incurring fees for the OSS

data-flow.

▬ We recommend that the region you store the OSS data is the same as the region you open

MaxCompute. Because MaxCompute can only be deployed in some regions, cross-regional

 data connectivity cannot be guaranteed.

▬ OSS connection format is oss://oss-cn-shanghai-internal.aliyuncs.com/

bucketname/directoryname/. You do not have to add a file name after the directory.

Some common errors are as follows:

http://oss-odps-test.oss-cn-shanghai-internal.aliyuncs.com/Demo/
 -- HTTP connection is not supported.

https://www.alibabacloud.com/product/oss
https://ram.console.aliyun.com/#/role/detailAliyunODPSDefaultRole/info

MaxCompute User Guide / 3 Handle-Unstructured-data

104 Issue: 20180904

https://oss-odps-test.oss-cn-shanghai-internal.aliyuncs.com/Demo/
 -- HTTPS connection is not supported.
oss://oss-odps-test.oss-cn-shanghai-internal.aliyuncs.com/Demo
 -- The connection address is incorrect.0
oss://oss://oss-cn-shanghai-internal.aliyuncs.com/oss-odps-test/
Demo/vehicle.csv -- You do not need to specify the file name.

• In the MaxCompute system, external tables only record the associated OSS directory. If you

DROP (delete) this table, the corresponding LOCATION data is not deleted.

If you want to view the created external table structure, run the following statement:

desc extended <table_name>;

In the returned information, “Extended Info” contains external tables information such as

StorageHandler and Location.

Access table data by using an external table

After creating an external table, you can use it as a normal table. Assume the data in /demo/

vehicle.csv is:

1,1,51,1,46.81006,-92.08174,9/14/2014 0:00,S
1,2,13,1,46.81006,-92.08174,9/14/2014 0:00,NE
1,3,48,1,46.81006,-92.08174,9/14/2014 0:00,NE
1,4,30,1,46.81006,-92.08174,9/14/2014 0:00,W
1,5,47,1,46.81006,-92.08174,9/14/2014 0:00,S
1,6,9,1,46.81006,-92.08174,9/14/2014 0:00,S
1,7,53,1,46.81006,-92.08174,9/14/2014 0:00,N
1,8,63,1,46.81006,-92.08174,9/14/2014 0:00,SW
1,9,4,1,46.81006,-92.08174,9/14/2014 0:00,NE
1,10,31,1,46.81006,-92.08174,9/14/2014 0:00,N

Run the following SQL statement:

select recordId, patientId, direction from ambulance_data_csv_external
 where patientId > 25;

Note:

Currently, external table can only be operated through MaxCompute SQL. MaxCompute

MapReduce cannot operate the external table.

This statement submits a job, scheduling the built-in CSV extractor to read and process data from

OSS. The result is as follows:

+------------+------------+-----------+
| recordId | patientId | direction |
+------------+------------+-----------+
1	51	S
3	48	NE
4	30	W

MaxCompute User Guide / 3 Handle-Unstructured-data

Issue: 20180904 105

5	47	S
7	53	N
8	63	SW
10	31	N
+------------+------------+-----------+

Read OSS data using a custom extractor

When OSS data is in a complex format, and the built-in extractor cannot meet your requirements,

you must use a custom extractor to read data from OSS files.

For example, assume you have a txt data file that is not in CSV format, and | is used as the

column delimiter between records. For example, the data in /demo/SampleData/CustomTxt/

AmbulanceData/vehicle.csv is:

1|1|51|1|46.81006|-92.08174|9/14/2014 0:00|S
1|2|13|1|46.81006|-92.08174|9/14/2014 0:00|NE
1|3|48|1|46.81006|-92.08174|9/14/2014 0:00|NE
1|4|30|1|46.81006|-92.08174|9/14/2014 0:00|W
1 | 5 | 47 | 1 | 46.81006 |-92.08174 | 9/14/2014 0: 00 | S
1|6|9|1|46.81006|-92.08174|9/14/2014 0:00|S
1|7|53|1|46.81006|-92.08174|9/14/2014 0:00|N
1|8|63|1|46.81006|-92.08174|9/14/2014 0:00|SW
1|9|4|1|46.81006|-92.08174|9/14/2014 0:00|NE
1|10|31|1|46.81006|-92.08174|9/14/2014 0:00|N

• Define an extractor

Write a common extractor and use delimiter as the parameter. This allows you to process all

text files with similar formats. Example::

/**
 * Text extractor that extract schemished records from formatted
plain-text (CSV, TSV etc .)
 **/
Public class textextractor extends extractor {
 Private inputstreamset inputs;
 Private string fig;
 Private dataattributes;
 Private bufferedreader currentreader;
 Private Boolean firstread = true;
 Public textextractor (){
 /Default ",", this can be overwritten if a specific impliter is
provided (via dataattributes)
 this.columndelimiter = ",";
 }
 // No particular usage for execution context in this example
 @Override
 public void setup(ExecutionContext ctx, InputStreamSet inputs,
DataAttributes attributes) {
 this.inputs = inputs; // inputs is an InputStreamSet, each call
to next() returns an InputStream. This InputStream can read all the
content in an OSS file.
 this.attributes = attributes;
 // check if "delimiter" attribute is supplied via SQL query

MaxCompute User Guide / 3 Handle-Unstructured-data

106 Issue: 20180904

 String columnDelimiter = this.attributes.getValueByKey("
delimiter"); //The delimiter parameter is supplied by a DDL
statement.
 if (columnDelimiter ! = NULL)
 {
 this.columnDelimiter = columnDelimiter;
 }
 // note: more properties can be inited from attributes if needed
 }
 @Override
 public Record extract() throws IOException {//extractor() calls
return one record, corresponding to one record in an external table.
 String line = readNextLine();
 if (line == null) {
 return null; // A return value of NULL indicates that this
table has no readable records.
 }
 return textLineToRecord(line); // textLineToRecord splits a row
 of data into multiple columns according to the delimiter.
 }
 @Override
 Public void close (){
 // No-op
 }
}

Clickhere for a complete implementation of textLineToRecord splitting data.

Define StorageHandler

A StorageHandler acts as a centralized portal for the custom external table logic.

package com.aliyun.odps.udf.example.text;
public class TextStorageHandler extends OdpsStorageHandler {
 @Override
 public Class<? extends Extractor> getExtractorClass() {
 return TextExtractor.class;
 }
 @Override
 public Class<? extends Outputer> getOutputerClass() {
 return TextOutputer.class;
 }
}

Compiling and packaging

Compile your custom code into a package and upload it to MaxCompute.

add jar odps-udf-example.jar;

• Create an external table

Similar to using the built-in extractor, first, you must create an external table. The difference is

that, when specifying the external table access data, use a custom StorageHandler.

Use the following statements to create an external table:

CREATE EXTERNAL TABLE IF NOT EXISTS ambulance_data_txt_external

https://github.com/aliyun/aliyun-odps-java-sdk/blob/master/odps-sdk-impl/odps-udf-example/src/main/java/com/aliyun/odps/udf/example/text/TextExtractor.java

MaxCompute User Guide / 3 Handle-Unstructured-data

Issue: 20180904 107

(
vehicleId int,
recordId int,
patientId int,
calls int,
locationLatitute double,
locationLongtitue double,
recordTime string,
direction string
)
STORED BY 'com.aliyun.odps.udf.example.text.TextStorageHandler' --
STORED BY specifies the custom StorageHandler class name.
 with SERDEPROPERTIES (
'delimiter'='\\|', -- SERDEPROPERITES can specify parameters, these
 parameters are passed through the DataAttributes to the Extractor
code.
'odps.properties.rolearn'='acs:ram::xxxxxxxxxxxxx:role/aliyunodps
defaultrole'
)
LOCATION 'oss://oss-cn-shanghai-internal.aliyuncs.com/oss-odps-test/
Demo/SampleData/CustomTxt/AmbulanceData/'
USING 'odps-udf-example.jar'; --You must also specify the Jar
package containing the class definition.

• Query an external table

Run the following SQL statement:

select recordId, patientId, direction from ambulance_data_txt_e
xternal where patientId > 25;

Read unstructured data by using a custom extractor

Previously, use the built-in extractor or a custom extractor to conveniently process CSV and other

 text data stored in OSS. Next, using audio data (.wav format files) as an example, the following

explains how to use a custom extractor to access and process non-text files in OSS.

Here, starting from the last SQL statement, we introduce the use of MaxCompute SQL as a

portal to process audio files stored in OSS.

Create the external table SQL as follows:

CREATE EXTERNAL TABLE IF NOT EXISTS speech_sentence_snr_external
(
sentence_snr double,
id string
)
STORED BY 'com.aliyun.odps.udf.example.speech.SpeechStorageHandler'
WITH SERDEPROPERTIES (
 'mlfFileName'='sm_random_5_utterance.text.label' ,
 'speechSampleRateInKHz' = '16'
)
LOCATION 'oss://oss-cn-shanghai-internal.aliyuncs.com/oss-odps-test/
dev/SpeechSentenceTest/'

MaxCompute User Guide / 3 Handle-Unstructured-data

108 Issue: 20180904

USING 'odps-udf-example.jar,sm_random_5_utterance.text.label';

As shown in the preceding example, create an external table. Then, use the schema of this table

to define the information that you want to extract from the audio file:

• The statement signal-to-noise ratio(SNR) in an audio file: sentence_snr.

• The name of the audio file: id.

After creating the external table, use a standard Select statement to perform a query. This

operation triggers the extractor to perform computation. When reading and processing OSS

data, in addition to simple deserialization on text files, you can use custom extractors to perform

more complex data processing and extraction logic. In this example, use the custom extractor

encapsulated in com.aliyun.odps.udf.example.speech.SpeechStorageHandler to

calculate the average SNR of valid statements in the audio file, and extract structured data for

SQL operations (WHERE sentence_snr > 10). Once completed, the operation returns all audio

files with an SNR that is greater than 10 and their corresponding SNR values.

Multiple WAV-format files are stored in the OSS address oss://oss-cn-hangzhou-zmf.

aliyuncs.com/oss-odps-test/dev/SpeechSentenceTest/. The MaxCompute framework

reads all the files stored here and performs file-level sharding, when needed. It automatically

allocates the file to multiple computing nodes for processing. On each computing node, the

extractor is responsible for processing the file set allocated to the node by InputStreamSet. The

special processing logic is similar to your single-host program. Your algorithm is implemented by

using the single host method according to its class.

Details about the SpeechSentenceSnrExtractor formulation logic are as follows:

First, read the parameters in the setup interface to perform initialization and import the audio

processing model (using resource introduction):

public SpeechSentenceSnrExtractor(){
 this.utteranceLabels = new HashMap<String, UtteranceLabel>();
 }
 @Override
 public void setup(ExecutionContext ctx, InputStreamSet inputs,
DataAttributes attributes){
 this.inputs = inputs;
 this.attributes = attributes;
 this.mlfFileName = this.attributes.getValueByKey(MLF_FILE_A
TTRIBUTE_KEY);
 String sampleRateInKHzStr = this.attributes.getValueByKey(
SPEECH_SAMPLE_RATE_KEY);
 this.sampleRateInKHz = Double.parseDouble(sampleRateInKHzStr);
 try {
 // read the speech model file from resource and load the model
into memory

MaxCompute User Guide / 3 Handle-Unstructured-data

Issue: 20180904 109

 BufferedInputStream inputStream = ctx.readResourceFileAsStream(
mlfFileName);
 loadMlfLabelsFromResource(inputStream);
 inputStream.close();
 } catch (IOException e) {
 throw new RuntimeException("reading model from mlf failed with
exception " + e.getMessage());
 }
 }

The extract() interface implements reading and processing logics of the voice file, computes the

signal-to-noise ratio (SNR) of the data based on the voice model, and fills Record with the result in

 the [snr, id] format.

The preceding example simplifies the implementation process and does not include the relevant

audio processing algorithm logic. See the example code provided by the MaxCompute SDK in the

open source community.

@Override
 public Record extract() throws IOException {
 SourceInputStream inputStream = inputs.next();
 if (inputStream == null){
 return null;
 }
 // process one wav file to extract one output record [snr, id]
 String fileName = inputStream.getFileName();
 fileName = fileName.substring(fileName.lastIndexOf('/') + 1);
 logger.info("Processing wav file " + fileName);
 String id = fileName.substring(0, fileName.lastIndexOf('.'));
 // read speech file into memory buffer
 long fileSize = inputStream.getFileSize();
 byte[] buffer = new byte[(int)fileSize];
 int readSize = inputStream.readToEnd(buffer);
 inputStream.close();
 // compute the avg sentence snr
 double snr = computeSnr(id, buffer, readSize);
 // construct output record [snr, id]
 Column[] outputColumns = this.attributes.getRecordColumns();
 ArrayRecord record = new ArrayRecord(outputColumns);
 record.setDouble(0, snr);
 record.setString(1, id);
 return record;
 }
 private void loadMlfLabelsFromResource(BufferedInputStream
fileInputStream)
 Throws IOException {
 // skipped here
 }
 // compute the snr of the speech sentence, assuming the input buffer
 contains the entire content of a wav file
 Private double computersnr (string ID, byte [] buffer, int
validbufferlen){
 // computing the snr value for the wav file (supplied as byte
buffer array), skipped here

https://github.com/aliyun/aliyun-odps-java-sdk/blob/master/odps-sdk-impl/odps-udf-example/src/main/java/com/aliyun/odps/udf/example/speech/SpeechSentenceSnrExtractor.java

MaxCompute User Guide / 3 Handle-Unstructured-data

110 Issue: 20180904

 }

Run the query:

select sentence_snr, id
 from speech_sentence_snr_external
where sentence_snr > 10.0;

Results:

--
| sentence_snr | id |
--
| 34.4703 | J310209090013_H02_K03_042 |
--
| 31.3905 | tsh148_seg_2_3013_3_6_48_80bd359827e24dd7_0 |
--
| 35.4774 | tsh148_seg_3013_1_31_11_9d7c87aef9f3e559_0 |
--
| 16.0462 | tsh148_seg_3013_2_29_49_f4cb0990a6b4060c_0 |
--
| 14.5568 | tsh_148_3013_5_13_47_3d5008d792408f81_0 |
--

By using the customized extractor, you can process multiple voice data files stored on OSS on

the SQL statement in a distributed way. Using a similar method, you can also use MaxCompute's

 large-scale computing power to easily process different types of unstructured data, including the

image and video.

Data partition

In earlier sections, an external table linked data is implemented through designated OSS Directory

on LOCATION. But while process, MaxCompute reads all data under Directory, including all files

 in sub-directory. For accumulated data directories along with time, because the data volume is

too huge, scan the entire directory may cause unnecessary extra I/O and data processing time.

Normally, the two solutions for this problem are as follows:

• Reducing the volume of access data: Plan data storage addresses and use multiple

EXTERNAL TABLE to scan data in different parts, so that each EXTERNALTABLE of

LOCATION points to a data subaggregate.

• Partition data: EXTERNAL TABLE is the same as internal table, it supports functions of

partition table, you are available to manage data systemization based on partition function.

It mainly introduces partition function of EXTERNAL TABLE in this section.

• Standard organization method and path format of partition data on OSS

MaxCompute User Guide / 3 Handle-Unstructured-data

Issue: 20180904 111

Unlike its internal tables, MaxCompute does not have the authority to manage data stored in

the external memory (such as OSS). As such, if you must use the partition table function on

your system, the storage path for data files on OSS needs to conform to a certain format. This

format is as follows.

partitionKey1=value1\partitionKey2=value2\...

Related examples are as follows

Assume that you save your daily LOG files on OSS and want to access part of the data when

processed with MaxCompute, based on the granularity of Day. Assuming that these LOG files

are CSV files (usage of complicated and customized format is similar), define the data by using

the following partitioned external table.

CREATE EXTERNAL TABLE log_table_external (
 click STRING,
 ip STRING,
 url STRING,
)
 PARTITIONED BY (
 year STRING,
 month STRING,
 Day string
)
 Stored by 'com. aliyun. ODPS. csvstoragehandler'
 WITH SERDEPROPERTIES (
 'odps.properties.rolearn'='acs:ram::xxxxx:role/aliyunodpsdefaultrol
e'
)
 LOCATION 'oss://oss-cn-hangzhou-zmf.aliyuncs.com/oss-odps-test/
log_data/';

The difference with the previous example is that when you define an external table, the external

 table is specified as a partition table through the PARTITIONED BY syntax, and the example is

 a three-tier partition table, the key for the partition is year, month, and day.

To get the partition like this to work effectively, comply with the preceding path format when

storing data on OSS. The following is an example of a valid path storage layout.

osscmd ls oss://oss-odps-test/log_data/
2017-01-14 08:03:35 128MB Standard oss://oss-odps-test/log_data/year
=2016/month=06/day=01/logfile
2017-01-14 08:04:12 127MB Standard oss://oss-odps-test/log_data/year
=2016/month=06/day=01/logfile. 1
2017-01-14 08:05:02 118MB Standard oss://oss-odps-test/log_data/year
=2016/month=06/day=02/logfile
2017-01-14 08:06:45 123MB Standard oss://oss-odps-test/log_data/year
=2016/month=07/day=10/logfile
2017-01-14 08:07:11 115MB Standard oss://oss-odps-test/log_data/year
=2016/month=08/day=08/logfile

MaxCompute User Guide / 3 Handle-Unstructured-data

112 Issue: 20180904

...

Note:

If you have uploaded the offline data to the OSS storage service with osscmd or other OSS

tools, then you can define the data path format.

You can introduce the partition information into MaxCompute by using the ALTER TABLE ADD

 PARTITIONDDL pant statement.

An example of the corresponding DDL statement is as follows.

ALTER TABLE log_table_external ADD PARTITION (year = '2016', month =
 '06', day = '01')
ALTER TABLE log_table_external ADD PARTITION (year = '2016', month =
 '06', day = '02')
ALTER TABLE log_table_external ADD PARTITION (year = '2016', month =
 '07', day = '10')
ALTER TABLE log_table_external ADD PARTITION (year = '2016', month =
 '08', day = '08')
...

Note:

These actions are the same as the standard MaxCompute internal table operation, and for

more information , seePartition. When the data is ready and the PARTITION information

has been imported into the system, the partitioning of the external table data on OSS can be

performed by means of an SQL statement.

Assuming that you only want to analyze how many different IPs are available in LOG on June

1, 2016, use the following command:

SELECT count(distinct(ip)) FROM log_table_external WHERE year = '
2016' AND month = '06' AND day = '01';

At this point, for log_table_external, the directory that corresponds to the external table will only

access the files under the log_data/year=2016/month=06/day=01 subdirectory (logfile

and logfile .1),By not performing a full scan of all the data in the entire log_data/ directory, a

 lot of useless I/O operations can be avoided.

Similarly, if you only want to analyze the data for the second half of 2016, bhnj muse the

following command:

SELECT count(distinct(ip)) FROM log_table_external
WHERE year = '2016' AND month > '06';

At this point, only access the second half of the LOG stored on OSS.

MaxCompute User Guide / 3 Handle-Unstructured-data

Issue: 20180904 113

• Customized path of partition data on OSS

If you have historical data stored on OSS but it is not stored using the partitionK

ey1=value1\partitionKey2=value2\... path format, you can still access it using

MaxCompute’s partition mode. MaxCompute also provides a way to import partitions through a

customized path.

Assume that only a simple partition value is on your data path (and no partition key

information). The following is an example of the data path storage layout.

osscmd ls oss://oss-odps-test/log_data_customized/
2017-01-14 08:03:35 128MB Standard oss://oss-odps-test/log_data_c
ustomized/2016/06/01/logfile
2017-01-14 08:04:12 127MB Standard oss://oss-odps-test/log_data_c
ustomized/2016/06/01/logfile. 1
2017-01-14 08:05:02 118MB Standard oss://oss-odps-test/log_data_c
ustomized/2016/06/02/logfile
2017-01-14 08:06:45 123MB Standard oss://oss-odps-test/log_data_c
ustomized/2016/07/10/logfile
2017-01-14 08:07:11 115MB Standard oss://oss-odps-test/log_data_c
ustomized/2016/08/08/logfile
...

The external table builder DDL can see the previous example and also specify the partition key in

the clause.

To bind different subdirectories to different partitions, use a command similar to the following

customized partition path.

ALTER TABLE log_table_external ADD PARTITION (year = '2016', month = '
06', day = '01')
LOCATION 'oss://oss-cn-hangzhou-zmf.aliyuncs.com/oss-odps-test/
log_data_customized/2016/06/01/';

When LOCATION information is added in ADD PARTITION to customize a partition data path.

Even if the data is not stored in the recommended format of partitionKey1=value1\

partitionKey2=value2\..., you can still access the partition data of the subdirectory.

3.3 Unstructured data exported to OSS
Accessing OSS unstructured data shows you how MaxCompute can be accessed and processed

by using external tables unstructured data stored in OSS, in fact, the unstructured framework of

MaxCompute also supports output of MaxCompute data directly to OSS via insert, MaxCompute

also associates OSS with external tables for data output.

Output Data to OSS is typically in two cases:

• The MaxCompute internal table is output to the External table that is associated with the OSS.

MaxCompute User Guide / 3 Handle-Unstructured-data

114 Issue: 20180904

• After MaxCompute processes the external tables, the result isoutput directly to the external

tables that are associated with the OSS.

Like accessing OSS data, MaxCompute supports output via built-in storagehandler and custom

storagehandler.

Output to OSS via built-in storagehandler

Using the built-in storagehandler in MaxCompute And can be very convenient to output data in

the agreed format to OSS for storage. You must create an external table that indicates the built-in

 storagehandler, it can be associated with this table, and the related logic is implemented by the

system.

Currently MaxCompute supports 2 built-in storagehandlers:

• com.aliyun.odps.CsvStorageHandler , Defines how to read and write CSV format data, data

format Conventions: Usea comma (,) as a column separator, line Break is \n.

• com.aliyun.odps.TsvStorageHandler, defines how to read and write CSV format data, data

format Conventions: \tis a column separator, line Break is \n.

• Create external TABLE

CREATE EXTERNAL TABLE [IF NOT EXISTS] <external_table>
(<column schemas>)
[PARTITIONED BY (partition column schemas)]
STORED BY '<StorageHandler>'
[WITH SERDEPROPERTIES ('odps.properties.rolearn'='${roleran}')]
LOCATION 'oss://${endpoint}/${bucket}/${userfilePath}/';

▬ STORED By, if the data file that is required to be exported to OSS is a TSV file, then built-in

com.aliyun.odps.TsvStorageHandler if the data file that is required to be exported to

OSS is a CSV file, a built-in com.aliyun.odps.CsvStorageHandler.

▬ WITH Serdeproperties, when the associated OSS permission uses custom authorization of

STS mode authorization, this parameter must bespecified 'odps.properties.rolearn 'property,

attribute value is Ram Information about the specific use of custom role arns in.

Note:

For more information about STS mode authorization, see accessing the unstructured data

of OSS.

MaxCompute User Guide / 3 Handle-Unstructured-data

Issue: 20180904 115

▬ Location that specifies the path to the file that corresponds to the OSS storage. If

the'odps.properties.rolearn'attribute is not set in WITH SERDEPROPERTIES and the

authorization is in plaintext AK, the LOCATIONis

Location
 'oss://${accessKeyId}:${accessKeySecret}@${endpoint}/${bucket
}/${userPath}/'

• Data output to OSS through insert operation on External table

When an external After table is associated with an OSS storage path, it is possible to do a

standard SQL insert override/insert on an external table, the into operation can both output

data to OSS.

INSERT OVERWRITE|INTO TABLE <external_tablename> [PARTITION (
partcol1=val1, partcol2=val2 ...)]
select_statement
FROM <from_tablename>
[WHERE where_condition];

▬ from_tablename: It can be both an internal table or an external table (including an

external table for the associated OSS or OTs).

▬ Insert will be specified according to External table 'stored' the format of 'storagehandler' (that

 is, TSV or CSV) is written to OSA.

When the insert operation is completed successfully, you can see that the corresponding

location on the OSS produces a series of files.

Example: External table the corresponding location is oss://oss-cn-hangzhou-zmf

.aliyuncs.com/oss-odps-test/tsv_output_folder/ Then, you can see the

generation of a series of files in the OSS corresponding path:

osscmd ls oss://oss-odps-test/tsv_output_folder/
2017-01-14 06:48:27 39.00B Standard oss://oss-odps-test/tsv_output
_folder/.odps/.meta
2017-01-14 06:48:12 4.80MB Standard oss://oss-odps-test/tsv_output
_folder/.odps/20170113224724561g9m6csz7/M1_0_0-0.tsv
2017-01-14 06:48:05 4.78MB Standard oss://oss-odps-test/tsv_output
_folder/.odps/20170113224724561g9m6csz7/M1_1_0-0.tsv
2017-01-14 06:47:48 4.79MB Standard oss://oss-odps-test/tsv_output
_folder/.odps/20170113224724561g9m6csz7/M1_2_0-0.tsv
...

You can see, through the oss-odps-test specified in the previous location, this OSS A 'was

generated under the maid folder under the bucket '.odps 'folder, which will have some '. tsv' file,

and '. meta 'file. Similar file structures are specific to MaxCompute's output to OSS:

MaxCompute User Guide / 3 Handle-Unstructured-data

116 Issue: 20180904

• USE insert into/Overwrite for an OSS address via MaxCompute The External table will

do the output operation, all data will be under the specified location '. the ODPS 'folder is

generated.

• The .meta file in the .odps folder is an extra macro data file written by MaxCompute to

record the valid data in the current folder. Typically, if the INSERT operation is successful,

all the data in the current folder is valid. The macro data only needs to be parsed when a job

 fails. For insert, even if the job fails in the middle or is killed. The overwrite operation will run

 one more success.

• If it is a partition table, A corresponding partition sub-directory is generated based on the

partition value specified by the insert statement under the fig folder and then the partition

sub-directory inside is '.odps 'folder. For example, test/tsv_output_folder/first

-level partition name = partition value/.odps/20170113224724561g9m

6csz7/M1_2_0-0.tsv.

For the TSV/CSV storagehandler processing built in by MaxCompute, the number of files

 generated is corresponding to the corresponding SQL Stage has the same degree of

concurrency.

If INSER OVERWITE ... Select... From ... ; The operation of the source data

table (FIG) There are 1000 mapper allocated on, and a total of 1000 TSV/CSV files will be

generated.

Output to OSS via custom storagehandler

In addition to using the built-in storagehandler to implement the output TSV/CSV common text

format on the OSS, the MaxCompute unstructured framework provides a general-purpose SDK

that supports external output of custom data format files.

As well as the built-in storagehandler, you need to "Create an External table" before "passing an

insert on an external table" The operation implements the output of data to OSS ". The difference

is that when creating an external table, stored by is a storagehandler that needs to be specified as

a custom.

Note:

The MaxCompute unstructured framework describes the processing of a variety of data storage

formats through an interface called storagehandler. Specifically, the storagehandler acts as a

Wrapper class, lets you specify a custom expractor (for Data Reading, parsing, processing, etc)

MaxCompute User Guide / 3 Handle-Unstructured-data

Issue: 20180904 117

And outputer (for data processing and output, etc). Custom storagehandler should inherit To

implement the interface and the interface.

Next we use custom Extractor access in accessing OSS unstructured data to show how

MaxComputer can customize StorageHandler Output the data to the TXT file of the OSS, with '|'

as the column separator, take '\ n' as a line break.

Note:

MaxCompute After the studio is configured with MaxCompute Java module, you can see the

corresponding sample code in examples. Or click here to see the complete code.

• Define outputer

Both output logic must implement the outputer interface:

package com.aliyun.odps.examples.unstructured.text;
import com.aliyun.odps.data.Record;
import com.aliyun.odps.io.OutputStreamSet;
import com.aliyun.odps.io.SinkOutputStream;
import com.aliyun.odps.udf.DataAttributes;
import com.aliyun.odps.udf.ExecutionContext;
import com.aliyun.odps.udf.Outputer;
import java.io.IOException;
public class TextOutputer extends Outputer {
 private SinkOutputStream outputStream;
 private DataAttributes attributes;
 private String delimiter;
 public TextOutputer (){
 // default delimiter, this can be overwritten if a delimiter
 is provided through the attributes.
 this.delimiter = "|";
 }
 @Override
 public void output(Record record) throws IOException {
 this.outputStream.write(recordToString(record).getBytes());
 }
 // no particular usage of execution context in this example
 @Override
 public void setup(ExecutionContext ctx, OutputStreamSet
outputStreamSet, DataAttributes attributes) throws IOException {
 this.outputStream = outputStreamSet.next();
 this.attributes = attributes;
 }
 @Override
 public void close() {
 // no-op
 }
 private String recordToString(Record record){
 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < record.getColumnCount(); i++)
 {
 if (null == record.get(i)){
 sb.append("NULL");
 }
 else{

https://github.com/aliyun/aliyun-odps-java-sdk/tree/master/odps-sdk-impl/odps-udf-example/src/main/java/com/aliyun/odps/udf/example/text

MaxCompute User Guide / 3 Handle-Unstructured-data

118 Issue: 20180904

 sb.append(record.get(i).toString());
 }
 if (i ! = record.getColumnCount() - 1){
 sb.append(this.delimiter);
 }
 }
 sb.append("\n");
 return sb.toString();
 }
}

There are three outputer interfaces: setup, Output and close, which are essentially Symmetric

With the extractor's three interfaces, setup, extract, and close. Where setup () and close () are

 called only once in an outputer. You can do initialization preparation work in setup, And you

 usually need to put setup () the three parameters passed in are saved as class variable for

ouputerd, Used in the output () or close () interface after convenience. The interface, close (), is

 used to sweep the end of the Code.

Typically, most of the data processing occurs in the output (record) interface. The MaxCompute

 system calls output (record) Once based on each input record processed by the current

outputer assignment). Assuming that when an output (record) call returns, the Code has

already consumed the record, So after the current output (record) returns, the system uses the

 memory used by the record for it, so when the information in record is used across multiple

output () function calls, the record for the current process needs to be invoked. clone () method

 to save the current record.

• Define Extractor

Exatrractor is used for Data Reading, parsing, processing, and so on, if the output tables

eventually do not need to be read by MaxCompute and so on, you do not need to define them.

package com.aliyun.odps.examples.unstructured.text;
import com.aliyun.odps.Column;
import com.aliyun.odps.data.ArrayRecord;
import com.aliyun.odps.data.Record;
import com.aliyun.odps.io.InputStreamSet;
import com.aliyun.odps.udf.DataAttributes;
import com.aliyun.odps.udf.ExecutionContext;
import com.aliyun.odps.udf.Extractor;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
/**
 Text extractor that extract schematized records from formatted
plain-text(csv, tsv etc.)
 **/
public class TextExtractor extends Extractor {
 private InputStreamSet inputs;
 private String columnDelimiter;
 private DataAttributes attributes;

MaxCompute User Guide / 3 Handle-Unstructured-data

Issue: 20180904 119

 private BufferedReader currentReader;
 private boolean firstRead = true;
 public TextExtractor() {
 // default to ",", this can be overwritten if a specific
delimiter is provided (via DataAttributes)
 this.columnDelimiter = ",";
 }
 // no particular usage for execution context in this example
 @Override
 public void setup(ExecutionContext ctx, InputStreamSet inputs,
DataAttributes attributes) {
 this.inputs = inputs;
 this.attributes = attributes;
 // check if "delimiter" attribute is supplied via SQL query
 String columnDelimiter = this.attributes.getValueByKey("
delimiter");
 if (columnDelimiter ! = null)
 {
 this.columnDelimiter = columnDelimiter;
 }
 System.out.println("TextExtractor using delimiter [" + this.
columnDelimiter + "].");
 // note: more properties can be inited from attributes if
needed
 }
 @Override
 public Record extract() throws IOException {
 String line = readNextLine();
 if (line == null) {
 return null;
 }
 return textLineToRecord(line);
 }
 @Override
 public void close(){
 // no-op
 }
 private Record textLineToRecord(String line) throws IllegalArg
umentException
 {
 Column[] outputColumns = this.attributes.getRecordColumns();
 ArrayRecord record = new ArrayRecord(outputColumns);
 if (this.attributes.getRecordColumns().length ! = 0){
 // string copies are needed, not the most efficient one
, but suffice as an example here
 String[] parts = line.split(columnDelimiter);
 int[] outputIndexes = this.attributes.getNeededIndexes
();
 if (outputIndexes == null){
 throw new IllegalArgumentException("No outputIndexes
 supplied.");
 }
 if (outputIndexes.length ! = outputColumns.length){
 throw new IllegalArgumentException("Mismatched
output schema: Expecting "
 + outputColumns.length + " columns but get "
 + parts.length);
 }
 int index = 0;
 for(int i = 0; i < parts.length; i++){
 // only parse data in columns indexed by output
indexes

MaxCompute User Guide / 3 Handle-Unstructured-data

120 Issue: 20180904

 if (index < outputIndexes.length && i == outputInde
xes[index]){
 switch (outputColumns[index].getType()) {
 case STRING:
 record.setString(index, parts[i]);
 break;
 case BIGINT:
 record.setBigint(index, Long.parseLong(
parts[i]));
 break;
 case BOOLEAN:
 record.setBoolean(index, Boolean.
parseBoolean(parts[i]));
 break;
 case DOUBLE:
 record.setDouble(index, Double.
parseDouble(parts[i]));
 break;
 case DATETIME:
 case DECIMAL:
 case ARRAY:
 case MAP:
 Default:
 throw new IllegalArgumentException("Type
 " + outputColumns[index].getType() + " not supported for now.");
 }
 index++;
 }
 }
 }
 return record;
 }
 /**
 * Read next line from underlying input streams.
 * @return The next line as String object. If all of the
contents of input
 * streams has been read, return null.
 */
 private String readNextLine() throws IOException {
 if (firstRead) {
 firstRead = false;
 // the first read, initialize things
 currentReader = moveToNextStream();
 if (currentReader == null) {
 // empty input stream set
 return null;
 }
 }
 while (currentReader ! = null) {
 String line = currentReader.readLine();
 if (line ! = null) {
 return line;
 }
 currentReader = moveToNextStream();
 }
 return null;
 }
 private BufferedReader moveToNextStream() throws IOException {
 InputStream stream = inputs.next();
 if (stream == null) {
 return null;
 } else {

MaxCompute User Guide / 3 Handle-Unstructured-data

Issue: 20180904 121

 return new BufferedReader(new InputStreamReader(stream
));
 }
 }
}

For more information, seeaccessing the OSS unstructured data documentation.

• Define StorageHandler

package com.aliyun.odps.examples.unstructured.text;
import com.aliyun.odps.udf.Extractor;
import com.aliyun.odps.udf.OdpsStorageHandler;
import com.aliyun.odps.udf.Outputer;
public class TextStorageHandler extends OdpsStorageHandler {
 @Override
 public Class<? extends Extractor> getExtractorClass() {
 return TextExtractor.class;
 }
 @Override
 public Class<? extends Outputer>getOutputerClass() {
 return TextOutputer.class;
 }
}

If the table does not need to be read, you do not need to specify an extractor interface.

• Compile and package

Package custom code compilation and act as a jar The resource is uploaded to MaxCompute.

If the jar package is named 'odps-TextStorageHandler.jar', upload to MaxCompute The

resource is as follows:

add jar odps-TextStorageHandler.jar;

• Creating External tables

Like using the built-in storagehandler, an External table needs to be created, the difference is

that this time you need to specify that the data is output to an external table, using a custom

storagehandler.

CREATE EXTERNAL TABLE IF NOT EXISTS output_data_txt_external
(
vehicleId int,
recordId int,
patientId int,
calls int,
locationLatitute double,
locationLongtitue double,
recordTime string,
direction string
)
STORED BY 'com.aliyun.odps.examples.unstructured.text.TextStorag
eHandler'
WITH SERDEPROPERTIES(
 'delimiter'='|'

MaxCompute User Guide / 3 Handle-Unstructured-data

122 Issue: 20180904

 [, 'ODPS. properties. rolearn' = '$ {roleran}'])
LOCATION 'oss://${endpoint}/${bucket}/${userfilePath}/'
USING 'odps-TextStorageHandler.jar';

Note:

If you need 'odps.properties.rolearn'property, for more information, see custom authorization

 for STs mode authorization toaccess the OSS unstructured data. If not, you can refer to one-

click authorization or use clear-text AK on top of location.

• Write unstructured files into External Table using INSERT

Creating external with custom storagehandler After table is associated with an OSS storage

path, it is possible to do a standard SQL insert override/insert on an external table The into

operation can both output data to OSS in the same manner as the built-in storagehandler:

INSERT OVERWRITE|INTO TABLE <external_tablename> [PARTITION (
partcol1=val1, partcol2=val2 ...)]
Select_statement
FROM <from_tablename>';
[WHERE where_condition];

When the insert operation is successful, it is the same as the built-in storagehandler, you can

see a series of files generated in the OSS corresponding location path '.odps 'folder.

3.4 Visit Table Store data
Table Store is a NoSQL database service that is built on Alibaba Cloud’s Apsara distributed file

system, enabling you to store and access massive volumes of structured data in real time. For

more information, see What is Table Store.

MaxCompute and Table Store are two independent big data computing and storage

services. Therefore, these two services must make sure that the network between them

is open. When MaxCompute’s public cloud service accesses data stored in Table Store,

we recommend that you use Table Store’s private network address, usually a host name

suffixed ‘ots-internal.aliyuncs.com’.For example, tablestore://odps-ots-dev.cn-shanghai.ots-

internal.aliyuncs.com.

This document introduces how to access OSS to import data from Table Store to the

MaxCompute computing environment. This allows seamless connections between multiple data

sources.

Both TableStore and MaxCompute have their own type systems. When you process Table Store

data in MaxCompute, the data type associations are as follows:

https://www.alibabacloud.com/help/doc-detail/27280.html

MaxCompute User Guide / 3 Handle-Unstructured-data

Issue: 20180904 123

MaxCompute Type TableStore Type

STRING STRING

BIGINT INTEGER

DOUBLE Double

BOOLEAN Boolean

BINARY BINARY

Authorization with STS mode

To access Table Store data, MaxCompute requires a secure authorization channel. To address

 this issue, MaxCompute integrates Alibaba Cloud Resource Access Management (RAM) and

Token Service (STS) to implement secure data access.

You can authorize permissions in the following two ways:

• When the MaxCompute and Table Store owner are the same account, you can directly log on

with the Alibaba Cloud account and click here to complete authorization.

• Custom authorization.

1. Firstly, you must grant Table Store access permission to MaxCompute in the RAM console.

Log on to the RAM console (if MaxCompute and Table Store are not the same account,

you must log on with the Table Store account to authorize), and create the role

AliyunODPSDefaultRole.

2. Set its policy content as follows:

--if MaxCompute and Table Store are same account
{
"Statement": [
{
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "odps.aliyuncs.com"
]
 }
}
],
"Version": "1"
}
--if MaxCompute and Table Store are not the same account
{
"Statement": [
{
 "Action": "sts:AssumeRole",
 "Effect": "Allow",

https://ram.console.aliyun.com/?spm=5176.100239.blogcont281191.24.uJg9dR#/role/authorize?request=%7B%22Requests%22:%20%7B%22request1%22:%20%7B%22RoleName%22:%20%22AliyunODPSDefaultRole%22,%20%22TemplateId%22:%20%22DefaultRole%22%7D%7D,%20%22ReturnUrl%22:%20%22https:%2F%2Fram.console.aliyun.com%2F%22,%20%22Service%22:%20%22ODPS%22%7D
https://partners-intl.aliyun.com/login-required#/ram

MaxCompute User Guide / 3 Handle-Unstructured-data

124 Issue: 20180904

 "Principal": {
 "Service": [
 "MaxCompute's Owner cloud account UID@odps.aliyuncs.com"
]
 }
}
],
"Version": "1"
}

Note:

In the upper-right corner, click the Avatar to open the Billing Management page, and check

the account UID.

MaxCompute User Guide / 3 Handle-Unstructured-data

Issue: 20180904 125

3. Edit this role’s authorization policy AliyunODPSRolePolicy:

{
"Version": "1",
"Statement": [
{
 "Action": [
 "ots:ListTable",
 "ots:DescribeTable",
 "ots:GetRow",
 "ots:PutRow",
 "ots:UpdateRow",
 "ots:DeleteRow",
 "ots:GetRange",
 "ots:BatchGetRow",
 "ots:BatchWriteRow",
 "ots:ComputeSplitPointsBySize"
],
 "Resource": "*",
 "Effect": "Allow"
}
]
}
--You can also customize other permissions

4. Grant the permission AliyunODPSRolePolicy to this role.

Create an external table

In MaxCompute, after creating an external table and introducing the Table Store table data

descriptions to the MaxCompute meta system, you can process Table Store data. The following

example demonstrates the concept and practice that used in MaxCompute’s Table Store access.

Use following statements to create an external table:

DROP TABLE IF EXISTS ots_table_external;
CREATE EXTERNAL TABLE IF NOT EXISTS ots_table_external
(
odps_orderkey bigint,
odps_orderdate string,
odps_custkey bigint,
odps_orderstatus string,
odps_totalprice double
)

MaxCompute User Guide / 3 Handle-Unstructured-data

126 Issue: 20180904

STORED BY 'com.aliyun.odps.TableStoreStorageHandler' -- (1)
WITH SERDEPROPERTIES (-- (2)
'tablestore.columns.mapping'=':o_orderkey,:o_orderdate,o_custkey,
o_orderstatus,o_totalprice', -- ①
'tablestore.table.name'='ots_tpch_orders' -- ②
'odps.properties.rolearn'='acs:ram::xxxxx:role/aliyunodpsdefaultrole'
 --③
)
LOCATION 'tablestore://odps-ots-dev.cn-shanghai.ots-internal.aliyuncs.
com'; -- （3）

The statement is as follows：

(1) com.aliyun.odps.TableStoreStorageHandler is a storagehandler built into MaxCompute that

 handles the Table Store data, which defines the interaction between MaxCompute and Table

Store, the correlation logic is implemented by MaxCompute.

(2) SERDEPROPERITES is an interface that provides Parameter options, and when you use,

thesetwo options must be specified of which one is the Table Store described below.columns.

mapping, tablestore.table.name and odps.properties.rolearn.

①tablestore.columns.mapping option: Required to describe the columns of the Table Store table

that MaxCompute is going to access, includes primary key and attribute columns.

• At the beginning of the column name, : indicates a Table Store primary key. In this example:

o_orderkey and :o_orderdate are primary key columns and all others are attribute

columns.

• Table Store supports up to 4 primary keys. Primary keys support the STRING, INTEGER, and

BINARY data types. The first primary key is the partition key.

• When specifying a mapping relationship, you must provide all the primary keys of the specified

 Table Store table, but you do not have to provide all attribute columns, only the attribute

columns you must access by using MaxCompute.

 ②tablestore.table.name：the name of the table store table that needs to be accessed. If you

 specify an incorrect Table Store table name (such as a table that does not exist), the system

reports an error. MaxCompute does not create a new Table Store table with the specified name.

③odps.properties.rolearn中的信息是RAM中AliyunODPSDefaultRole的Arn信息。 You can get it

through the details of the role in the RAM console.

(3) LOCATION clause: lets you specify specific information such as the table storeinstance

name, endpoint, and so on. Because you must specify the AccessKey the of OSS owner, to

avoid disclosing the AccessKey of your primary account, we recommend that you use RAM user

credentials.

MaxCompute User Guide / 3 Handle-Unstructured-data

Issue: 20180904 127

If you want to view the created external table structure, run the following statement:

desc extended <table_name>;

In the returned information, “Extended Info” contains external tables information such as

StorageHandler and Location.

Access table data by using an external table

After creating an external table, you can introduce Table Store data to the MaxCompute

ecosystem.There, you can use MaxCompute SQL syntax to access Table Store data as follows:

SELECT odps_orderkey, odps_orderdate, SUM(odps_totalprice) AS
sum_total
FROM ots_table_external
WHERE odps_orderkey > 5000 AND odps_orderkey < 7000 AND odps_orderdate
 >= '1996-05-03' AND odps_orderdate < '1997-05-01'
GROUP BY odps_orderkey, odps_orderdate
HAVING sum_total> 400000.0;

When using the MaxCompute SQL syntax, all of the accessed Table Store details are processed

 in MaxCompute. This includes column name selection. For example, the column names used in

 the preceding SQL statements (such as odps_orderkey and odps_totalprice) are not the original

 primary key names (o_orderkey) or attribute column names (o_totalprice) used in Table Store.

This is because mapping was already performed in the DDL statement used to create the external

 table. Certainly, you can retain the original Table Store primary key/column names when creating

 the external table.

If you perform multiple computations on a single data set, instead of remotely reading data

from Table Store each time, you can import all the necessary data to MaxCompute, to create a

MaxCompute (internal) table. For example:

CREATE TABLE internal_orders AS
SELECT odps_orderkey, odps_orderdate, odps_custkey, odps_totalprice
FROM ots_table_external
WHERE odps_orderkey > 5000 ;

Currently, internal_orders is a MaxCompute table, with all features of a MaxCompute internal table

, including an efficiently compressed column storage data format and complete internal macro

 data, and statistics information. Furthermore, because the data is stored in MaxCompute, the

access speed is faster than when accessing external Table Store data. This is especially suitable

for hotspot data that is frequently computed.

MaxCompute User Guide / 3 Handle-Unstructured-data

128 Issue: 20180904

Export MaxCompute Data to TableStore

Note:

MaxCompute does not directly create external Table Store tables.Therefore, before outputting

data to a Table Store table, you must make sure this table has already been created (or the

system reports an error).

In the preceding operations, the external table ots_table_external has been created to connect

MaxCompute with the Table Store table ots_tpch_orders, and data has been stored in the internal

MaxCompute table internal_orders. Now you can write the processed data from internal_orders

back to Table Store, perform the INSERT OVERWITE TABLE operation on the external table as

follows:

INSERT OVERWRITE TABLE ots_table_external
SELECT odps_orderkey, odps_orderdate, odps_custkey, CONCAT(odps_custk
ey, 'SHIPPED'), CEIL(odps_totalprice)
FROM internal_orders;

Because Table Store is a KV data NoSQL storage medium, the data output from MaxCompute

only affects the rows with the corresponding primary keys. In this example, the output only affects

 data in rows with corresponding dps_orderkey + odps_orderdate primary key values. In addition

, in the Table Store rows, only the attribute columns specified during external table (ots_table_

external) creation are updated. Data columns that do not appear in the external table are not

modified.

3.5 本文暂不上国际站
When creating an external table, location's access account to OSS supports incoming clear text

accesskeyid and accesskeysecret, but doing so has the risk of leak accounts. In some cases, this

risk is unacceptable, as a result, maxcompute provides a safer way to access OSS.

Maxcompute combines Access Control Service (RAM) with token service (STS) from Ali cloud) to

solve the security problem of the account. You can grant permissions in two ways:

• When the owner of maxcompute and OSS are the same account, A one-click authorization

operation can be performed directly on the ram console.

• Custom authorization.

1. The first thing you need to do is authorize maxcompute access to OSS in Ram. Create a

role, role name such as "or", and set the policy content:

-- When the owner of maxcompute and OSS are the same account

MaxCompute User Guide / 3 Handle-Unstructured-data

Issue: 20180904 129

"Statement ":[

"Action": "STS: apererole ",
"Effect": "allow ",
"Principal ":{
"Service ":[
"Maid"

}

"Version": "1"

-- When the owner of maxcompute and OSS are not the same account

"Statement ":[

"Action": "STS: apererole ",
"Effect": "allow ",
"Principal ":{
"Service ":[
"Maxcompute's owner cloud account page"

"Version": "1"

2. Grant the role the necessary permissions to access the OSS * . As follows:

Version: "1 ",
"Statement ":[

"Action ":[
 "Oss: listbuckets ",
 "Oss: GetObject ",
 "Oss: maid ",
 "Oss: putobject ",
 "Oss: deleteobject ",
 "Oss: maid ",
 "Oss: listparts"

"Resource ":"*",
"Effect": "allow"

-- Can Customize other Permissions

3. The permission box is then granted to the role.

Note:

After the authorization is complete, view the role details to obtain the ran information for role, you

need to specify this ran information for subsequent creation of the OSS External tables.

MaxCompute User Guide / 3 Handle-Unstructured-data

130 Issue: 20180904

3.6 本文无翻译
Accessing the OSS unstructured data shows you how to access the text stored on the OSS on

 maxcompute, audio, image, and other format data. This article introduces you to a variety of

popular open source data formats (ORC, parquet, sequencefile, rcfile, Avro, and textfile) how to

handle in maxcompute through unstructured frameworks.

The non-structural framework directly calls the implementation of the open source community to

parse the open source data format, and seamlessly with the maxcompute system.

Note:

Before processing the Open Source format data for OSS, it is necessary to authorize STS mode

for OSS.

Create External Table

The maxcompute unstructured data framework is associated with a variety of data through

external table, external of Open Source format data associated with OSS Table creates a table in

the following format:

Drop table [if exists] <externa'table>;
 Create external table [if not exists] <externa'
table>
 (<Column schemas>)
[Partitioning by (partition column Schemas)]
[Row format serde' <serde class> ']
Stored as <file format>
[With serdeproperties ('ODPS. properties. rolearn' = '$ {roleran }'
 [, 'Name2 '= 'value2',...]

Location 'oss: // $ {endpoint}/$ {bucket}/$ {userfilepath }/';

Note:

The syntax format is quite similar to hive's syntax, but the following issues need to be noted:

• The stored as keyword, which is not a stored by keyword for ordinary unstructured

appearances in this syntax format, this is now unique when reading Open Source compatible

data.

STORED As is followed by the name of the file format, such as Orc/parquet/rcfile/sequencefile

/textfile.

• The column schemas of the external tables must match the schema where the stored data is

stored on the specific OSs.

MaxCompute User Guide / 3 Handle-Unstructured-data

Issue: 20180904 131

• The row format serum option is not required, and is only available in a number of special

formats, for example, textfile needs to be used.

• With serdeproperties this parameter is required to specify ODPS when associated OSS

permissions are authorized using STS mode. properties. the rolearn property, whose attribute

value is the information for the ARN of the role that is specifically used in Ram.

If you do not use STS mode, you do not need to specify this property to pass in the clear text

accesskeyid and the accesskeysecret directly at location.

• Location if you associate OSS with clear AK, write as follows:

Location 'oss: // $ {accesskeyid }: $ {accesskeysecret} @ $ {
endpoint}/$ {bucket}/$ {userpath }/'

Example of parquet data associated with OSS

Assume that some parquet files are stored on an OSS path, and that each file is in parquet format,

the schema is stored in 16 columns (4 columns bigint, 4 columns double, and 8 columns string)

the data for the build table Div statement is as follows:

Create external table fig

 Rochelle orderkey bigint,
 Rochelle partkey bigint,
 Rochelle supplier bigint,
 Rochelle linenumber bigint,
 Rochelle quantity double,
 Maid double,
 Rochelle discount double,
 Rochelle tax double,
 Maid string,
 Maid string,
 Rochelle shipdate string,
 Rochelle Commission string,
 Maid string,
 Maid string,
 Rochelle shipmode string,
 _Comment string

Stored as parquet
Location 'oss: // $ {accesskeyid}: $ {accesskeysecret} @ fig /';

Example of textfile Data Partition Table associated with OSS

If the data is in a JSON format per line, it is stored as a textfile file on the OSS, at the same time,

the data is organized through multiple directories by OSS, where you can use maxcompute

partition tables and data associations, the building table DDL statement is as follows:

Create external table fig

 Rochelle orderkey bigint,

MaxCompute User Guide / 3 Handle-Unstructured-data

132 Issue: 20180904

 Rochelle partkey bigint,
 Rochelle supplier bigint,
 Rochelle linenumber bigint,
 Rochelle quantity double,
 Maid double,
 Rochelle discount double,
 Rochelle tax double,
 Maid string,
 Maid string,
 Rochelle shipdate string,
 Rochelle Commission string,
 Maid string,
 Maid string,
 Rochelle shipmode string,
 _Comment string

Partitioning by DS string)
Row format serde'org. Apache. hive. hcatalog. Data. jsonserde'
Stored as textfile
Location 'oss: // $ {accesskeyid}: $ {accesskeysecret} @ fig /';

If the sub-directory below the OSS table directory is Partition The name method is organized, and

the example is as follows:

OSS: // $ {accesskeyid}: $ {accesskeysecret} @ maid DS 20170102 /'
OSS: // $ {accesskeyid}: $ {accesskeysecret} @ maid DS 20170103 /'

You can use the following pant statement add Partition:

Alter table tpch_lineitem_textfile add partition (DS = "20170102 ");
Alter table tpch_lineitem_textfile add partition (DS = "20170103 ");

If the OSS partition directory is not organized in this way, or not in the table directory at all, the

example is as follows:

OSS: // $ {accesskeyid}: $ {accesskeysecret} @ fig /;
OSS: // $ {accesskeyid}: $ {accesskeysecret} @ fig /;

You can use the following pant statement add Partition:

Alter table maid add partition (DS = "20170102 ")
Location 'oss: // $ {accesskeyid}: $ {accesskeysecret} @ fig /';
Alter table maid add partition (DS = "20170103 ")
Location 'oss: // $ {accesskeyid}: $ {accesskeysecret} @ fig /';

Read and process open source format data for OSS

Compare the two external representations created in the previous article, you can see that for

different file types, simply modify the stored Format name after. In the following example, you will

focus only on processing the appearance (maid) corresponding to the parquet data above. If you

want to work with different file types, just specify parquet/ORC/textfile/rcfile/textfile as long as you

MaxCompute User Guide / 3 Handle-Unstructured-data

Issue: 20180904 133

want to create the appearance when the DDL is created, the statement that processes the data is

the same.

• Read and process open source data directly from OSS

After the data appearance has been created for association, you can do the same thing directly

to the appearance as the normal maxcompute Table, as follows:

Select maid,
L_linestatus,
SUM (l_extendedprice * (1-l_discount) AS sum_disc_price,
Agnes (Rochelle quantity) as avg_qty,
Count (*) as count_order
From fig
Where Rochelle shipdate <= '1998-09-02'
Group
L_returnflag,
L_linestatus;

The look and feel is used as a normal internal table, the difference is that the maxcompute

Internal Computing engine reads the corresponding parquet data directly from the OSS for

processing.

The external partition table for the associated textfile that was created in the previous article

because row was used Format + stored as, need to manually set flag (use stored only) As,

ODPS. SQL. hive. compatible default is true) and then read again, otherwise there will be an

error:

Select * from Maid limit 1;
Failed: Maid: User Defined Function exception-traceback:
Com. aliyun. ODPS. UDF. udfexception: Java. lang. classnotfo
undexception: COM. aliyun. ODPS. hive. wrapper. hivestoragehandlerwr
apper
-Hive compatible flag needs to be set manually
Set ODPS. SQL. hive. compatible = true;
Select * from Maid limit 1;

| L_orderkey | l_partkey | l_suppkey | l_linenumber | l_quantity |
l_extendedprice | l_discount | l_tax | l_returnflag | l_linestatus
 | l_shipdate | l_commitdate | l_receiptdate | l_shipinstruct |
l_shipmode | l_comment |

| 5640000001 | 174458698 | 9458733 | 1 | 14.0 | 23071.58 | 0.08 | 0.
06 | n | o take back return | Ship | cuses nag silly. quick |

Note:

Using the appearance directly, every time the data is read, I/O operations involving the

external OSS are required, and many of the high-performance optimizes the maxcompute

system itself for internal storage are not available, this will result in a loss of performance. So

MaxCompute User Guide / 3 Handle-Unstructured-data

134 Issue: 20180904

if it's a scenario where you need to calculate the data repeatedly and be more sensitive to

the efficiency of the calculations, the usage described below is recommended: The data is

imported into maxcompute before the calculation is done.

• Importing the open source data from OSS into maxcompute for Calculation

First, create an internal table library that is the same as the External table schema, the open

source data on the OSS is then imported into the maxcompute internal table, it is stored in the

maxcompute internal data storage format.

Create Table maid like;
Insert override table fig
Select * from Fig;

Next take the same action directly to the internal table:

Select maid,
 L_linestatus,
 SUM (l_extendedprice * (1-l_discount) AS sum_disc_price,
 Agnes (Rochelle quantity) as avg_qty,
 Count (*) as count_order
From fig
Where Rochelle shipdate <= '1998-09-02'
Group
 L_returnflag,
 L_linestatus;

By doing so, you can pilot the data into the maxcompute system for storage, computational

processing of the same data will be more efficient.

MaxCompute User Guide / 4 View Job Running Information

Issue: 20180904 135

4 View Job Running Information

4.1 Logview
Logview is a tool to view and debug tasks once the MaxCompute job is submitted.

Using Logview, you can see the following details about a job:

• The Run Status of the task.

• The operation result of the task.

• Details of the task and the progress of each step.

When the job is submitted to MaxCompute, a link to the Logview is generated. You can open the

 Logview link directly on the browser to view information about the job for each job. The Logview

page is valid for seven days.

Features

The following is a combination of a specific Logview web UI interface to introduce you to each

component.

A Logview home page is divided into two upper and lower sections:

• Instance information

• Task information

Instance info

On the Logview home page, the upper half is the MaxCompute instance that you submit to

generate SQL. A unique ID is generated after each SQL commit. Latency refers to the amount of

time it takes to run, and the latency of other pages is similar.

The following are the four states:

• Waiting: Indicates that the current job is being processed in MaxCompute and is not committed

 to Fuxi to run.

MaxCompute User Guide / 4 View Job Running Information

136 Issue: 20180904

• Waiting List: N indicates that the job was submitted to Fuxi and queued in Fuxi, is in the n-bit in

 the queue.

• Running: The Job runs in Fuxi.

• Terminated: The job has ended with no queue information.

Click the non-terminated status of a job to view detailed queue information.

Click status to view queue details:

• Sub status: The current sub-status information.

• Waitpos: The queuing location, where 0 indicates that it is running, and (-) indicates that it has

not yet arrived Fuxi.

• Queuing length: The total queue length in the Fuxi.

• Total priority: The priority granted by the job runtime after it has been judged by the system.

• SubStatus history: When clicked, you can view the detailed history of job execution. It contains

status codes, status descriptions, start time, duration, and so on. (Currently, some versions

have no historical information.)

Task information

In the Logview home page, the lower section is the task description followed by the result

description and other details.

Result:

You can view the result after a job executed, such as the results of a select SQL as shown in the

following figure:

MaxCompute User Guide / 4 View Job Running Information

Issue: 20180904 137

Detail:

After a job is executed, click detail to view the running status of the task.

• A MaxCompute task consists of one or more Fuxi jobs. For example, when your SQL task is

complex, MaxCompute goes to Fuxi and submit multiple Fuxi jobs.

• Each Fuxi job consists of one or more Fuxi tasks. Simple Map Reduce usually produces two

Fuxi tasks, namely Map and Reduce. You can view the two Fuxi task names as M1 and R2,

respectively. When SQL is complex, more than one Fuxi may generate Task as shown in the

preceding figure.

• Each task displays name of the task. For example, M1 is a map task, 4 In r54 means that it

relies on J4. Execution will not begin until the last execution is complete. Similarly, j4_1_2_3

indicates that join4 has to rely on M1, M2, M3 three tasks to start the operation completely.

MaxCompute User Guide / 4 View Job Running Information

138 Issue: 20180904

• I/O Records represents the number of records for the input and output of this task.

Click any Fuxi task to view the Fuxi instance content, as shown in the following figure:

Each Fuxi task consists of one or more Fuxi instances. When your input data levels are large

MaxCompute activates more nodes to process the data. Each node is a Fuxi instance. Double-

click the right-side column of the Fuxi task to view, or double-click the row to open the specific

Fuxi instance information.

Towards the lower-end of the page, Logview is grouped for different stages of instance. Select the

 failed column to view the wrong node.

In the stdout and stderr columns, you can view standard output and standard error messages

along with the information to be printed.

Troubleshooting through Logview

• Wrong tasks

When a task error occurs, a prompt message for the errors in the result on the Logview page

 pops up. Use the detail page Stderr for Fuxi instance to view information about a specific

instance error.

• Data skew

Slow operation is usually because of individual instances in all Fuxi instances of a certain Fuxi

task. Long Tail is caused by the uneven allocation of tasks within the same task. You can view

the run results in the summary tab after the task runs. The output of each task is as follows:

output records:

MaxCompute User Guide / 4 View Job Running Information

Issue: 20180904 139

R2_1_Stg1: 199998999 (min: 22552459, max: 177446540, avg: 99999499)

In the preceding figure, the large difference between min and max suggests that a data tilt has

 occurred at this stage. Meaning, if one word with high frequency appears, a tilt appears when

you join this word.

4.2 Errors and warnings using the MaxCompute compiler
The MaxCompute compiler is based on the next-generation SQL engine called MaxCompute2.0,

which dramatically enhances SQL. It makes the process of language compilation and the ability of

language expression easier. This article introduces you to the enhanced uses of the compiler.

Compiler ease of use improvements

To fully demonstrate the ease-of-use improvements of the MaxCompute compiler, it is

recommended that you use MaxCompute studio together.

First, install MaxCompute Studio by adding a MaxCompute project and creating a project, and

then creating a new MaxCompute. The script is as follows:

The following issues can be found in the preceding figure:

• There is an error with the wm_concat function in the First insert statement.

• When MaxCompute compares bigint and double data, it converts all data to double. This

 conversion from string to double, may cause error when SQL is executed. However,

MaxCompute warns you whether you want to trigger this operation.

Point the mouse cursor on an error or warning prompts you directly for a specific error or warning

message. If you do not modify the error and commit directly, it is blocked by MaxCompute studio,

as shown in the following figure:

MaxCompute User Guide / 4 View Job Running Information

140 Issue: 20180904

So, please follow the prompts to modify the errors and warnings as follows:

After the modification, submit the script again, and you can now run it smoothly.

You can also use MaxCompute studio to set all warnings as errors, as shown in the following

figure:

With the preceding settings, it is guaranteed that you won't accidentally miss out on any possible

errors.

It is recommended that you use MaxCompute studio before submitting any scripts The script is

 checked for static compilation, and it is strongly recommended that you set the warning as an

error. Modify all warnings before you submit the script to save time and resources. In addition,

when an error script is submitted, it is pushed to your calculation health score. This reduces the

MaxCompute User Guide / 4 View Job Running Information

Issue: 20180904 141

priority of the future tasks. Moreover, , future unmodified warnings also get incorporated into the

health system. This means use of MaxCompute compiler and studio can never be degraded.

In many scenarios,you may receive warnings stating that an implicit type conversion is unsafe.

However, if you need this conversion, eliminate the warnings by cast (xxx As); Use MaxCompute

or a compiler to resolve this problem.

MaxCompute User Guide / 5 Security

142 Issue: 20180904

5 Security

5.1 Target users
This article is intended for MaxCompute project owners, administrators, and users interested in

the MaxCompute multi-tenant data security system.

The MaxCompute multi-tenant data security system includes:

• User authentication.

• User and authorization management of projects.

• Sharing of resources across projects.

• Data protection of projects.

5.2 Quick Start

5.2.1 Use case: Add users and grant permissions
Description:

Jack is the project administrator of a project prj1. A new team member named Alice, who already

has an Alibaba Cloud account as alice@aliyun.com, applies to join the prj1project. Alice requests

the following permissions: view table lists, submit jobs, and create tables.

Solution:

As a project administrator, Jack performs the following procedure to add Alice as the user and

grant her permissions to view table lists, submit jobs, and create tables:

 use prj1;
 add user aliyun$alice@aliyun.com; --Add the user
 grant List, CreateTable, CreateInstance on project prj1 to user
 aliyun$alice@aliyun.com; --Authorize the user by using the GRANT
statement

5.2.2 Use case: Add users and grant permissions using ACL
Description:

Jack is the project administrator of a project prj1. The three new data auditors, Alice, Bob, and

Charlie, are added to the project team. They all need to apply for the following permissions: view

table lists, submit jobs, and read the table userprofile.

Solution:

MaxCompute User Guide / 5 Security

Issue: 20180904 143

As a project administrator, Jack can perform authorization by using the object-based ACL

Authorization.

Jack must perform the following procedure:

 use prj1;
 add user aliyun$alice@aliyun.com; --Add the user
 add user aliyun$bob@aliyun.com;
 add user aliyun$charlie@aliyun.com;
 create role tableviewer; --Create a role
 grant List, CreateInstance on project prj1 to role tableviewer; --
Grant permissions to the role
 grant Describe, Select on table userprofile to role tableviewer;
 grant tableviewer to aliyun$alice@aliyun.com; --Grant the
tableviewer role to the user
 grant tableviewer to aliyun$bob@aliyun.com;
 grant tableviewer to aliyun$charlie@aliyun.com;

5.2.3 Use case: Project data protection
Description:

Jack is the project administrator of a project prj1. The project involves a large volume of sensitive

 data including user IDs, shopping records along with the data mining algorithms with proprietary

intellectual property rights. Jack wants to protect the sensitive data and algorithms and allow only

 project users to access the data within the project. He also wants to make sure that data flows

within the project only.

Solution:

To protect the project data, Jack must perform these steps:

 use prj1;
 set ProjectProtection=true; --Enable the project data protection
mechanism

Once the project data protection is enabled, data within the project cannot be transferred out of

the project. All the data flows only within the project.

If users want to export data tables out of the project, an approval of the project administrator is

needed. Here, MaxCompute provides the TrustedProject configuration to support external data

export from the protected project. In this case, configure project prj2 as a trusted project of prj1

and enable data flow from prj1 to prj2 through the following command:

 use prj1;

https://www.alibabacloud.com/help/zh/doc-detail/27935.htm
https://www.alibabacloud.com/help/zh/doc-detail/27935.htm

MaxCompute User Guide / 5 Security

144 Issue: 20180904

 add trustedproject prj2;

5.3 User authentication

MaxCompute supports the Alibaba Cloud account system and the RAM account system.

Note:

MaxCompute recognizes the RAM account system but cannot recognize the RAM permission

system. As a user, you can add any of your RAM sub-accounts to a MaxCompute project.

However, MaxCompute skips the RAM permission definitions when it verifies the permissions of

the RAM sub-account.

By default, the MaxCompute project only recognizes the Alibaba Cloud account system. You can

view the account system supported by this project by running list accountproviders;.

Typically, only Alibaba Cloud accounts are displayed. To add the RAM account system, run the

add accountprovider ram; command. After the RAM account system is added, run list

 accountproviders; to make sure it has been successfully added to the supported account

systems.

Apply for an Alibaba Cloud account

If you do not have an Alibaba Cloud account, visit here to apply for one.

Note:

A valid email address is needed, when you apply for an Alibaba Cloud account. Because this

email address is used as the account name after registration. For example, Alice can use her

email address alice@aliyun.com to register an Alibaba Cloud account. Her account name will be

alice@aliyun.com after Alibaba Cloud account registration.

Apply for AccessKey

Click here to create or manage your AccessKey list after you register an Alibaba Cloud account.

An AccessKey consists of the AccessKeyID and AccessKeySecret. The AccessKeyID is used to

retrieve the AccessKey, and the AccessKeySecret is used to sign the computing messages. You

 must secure your AccessKey for further use. If you need to update an AccessKey, create a new

AccessKey and disable the existing one.

http://account.aliyun.com/
http://i.aliyun.com/access_key

MaxCompute User Guide / 5 Security

Issue: 20180904 145

Log on to MaxCompute with an Alibaba Cloud account

Configure the AccessKey in the configuration file conf/odps_config.ini before you use odpscmd to

log on. See the following example:

 project_name=myproject
 access_id=<Input the AccessKeyID here, excluding the angle brackets>
 access_key=<Input the AccessKey here, excluding the angle brackets>
 end_point=http://service.odps.aliyun-inc.com/api

Note:

To enable or disable an AccessKey on the Alibaba Cloud website, wait for at least 15 minutes

after the operation is complete.

5.4 User management
Any user, except the project owner, must be added to the MaxCompute project and granted the

corresponding permissions to manage data, jobs, resources, and functions in MaxCompute. This

article describes how a project owner can add, authorize, and remove other users, including RAM

sub-accounts to MaxCompute.

If you are a project owner, we recommend that you read this article carefully. If you are a typical

 user, we recommend that you submit an application to the project owner to be added to the

corresponding project. We recommend all users to read the subsequent sections.

All the operations mentioned in this article are executed on the console. For Linux, run ./bin/

odpscmd and for Windows, run ./bin/odpscmd.bat.

Add a user

In this example, the project owner, Alice, wants to authorize another user, therefore she must add

the user to the project first. Only a user who has been added to the project can be authorized.

The command to add a user is as follows:

add user

The <username> of an Alibaba Cloud account is a valid email address registered with Alibaba

Cloud, or a RAM sub-account of an Alibaba Cloud account that runs the command. For example:

add user ALIYUN$odps_test_user@aliyun.com;

MaxCompute User Guide / 5 Security

146 Issue: 20180904

add user RAM$ram_test_user;

Assume that the Alibaba Cloud account of Alice is alice@aliyun.com. When Alice runs these

statements, the following results are returned by running the list users; command:

RAM$alice@aliyun.com:ram_test_user
ALIYUN$odps_test_user@aliyun.com

This indicates that the Alibaba Cloud account odps_test_user@aliyun.com and the sub-account

ram_test_user created by Alice using RAM have been added to the project.

Add a RAM sub-account

The two ways to add a RAM sub-account are as follows:

• By using DataWorks, for more information, see Prepare a RAM account.

• By using MaxCompute client commands as described in this document.

Note:

• MaxCompute only allows a primary account to add its own RAM sub-accounts to a project.

RAM sub-accounts of other Alibaba Cloud accounts are not allowed. Therefore, you can

skip to specify the name of the primary account before the RAM sub-accounts when add

 user. MaxCompute determines by default that the account which runs the command is

the corresponding sub-account.

• MaxCompute only recognizes the RAM account system and does not recognize the RAM

 permission system. Users can add any of their RAM sub-accounts to a MaxCompute

project, but MaxCompute does not consider the permission limits in RAM when performing

permission verification of RAM sub-accounts.

By default, MaxCompute project only recognizes Alibaba Cloud account systems. To view the

supported account systems use the list accountproviders; command. Typically, only

the ALIYUN account is visible, for example:

odps@ ****>list accountproviders;
ALIYUN

Note:

Only the project owner has the permission to perform operations related to accountpro

viders.

https://www.alibabacloud.com/help/doc-detail/30264.htm

MaxCompute User Guide / 5 Security

Issue: 20180904 147

As shown in the preceding command, you can only see the ALIYUN account system. If you

want to add RAM accounts support, run the add accountprovider ram; as follows:

ram; as follows:

odps@ odps_pd_inter>add accountprovider ram;
OK

The user will still not be able to operate MaxCompute successfully. This is because, the user

must be granted certain permissions to operate MaxCompute within the permissive limits. For

more information, see Authorization.

User Authorization

Once the user is added, the project owner or project administrator must authorize the user. The

user can perform the operations only after obtaining the permissions.

MaxCompute provides ACL authorization, cross-project resource sharing, and project

resource protection. The following are two common scenarios, for more information, see ACL

Authorization.

Scenario 1

In the following scenario, Jack is the administrator of the project prj1. A new project team

member Alice (Alibaba Cloud account: alice@aliyun.com) applies to join the project prj1, and for

permission to view table lists, submit jobs, and create tables.

The admin or the project owner can run the following command on the client:

use prj1; --Open the project prj1
add user aliyun$alice@aliyun.com; --Add the user
grant List, CreateTable, CreateInstance on project prj1 to user aliyun
$alice@aliyun.com; --Authorize the user

Scenario 2

In the following scenario, assume Alibaba Cloud account user (bob@aliyun.com) has been added

to a project ($user_project_name), and must be granted permission to create tables, obtain table

information, and run functions.

The admin or the project owner can run the following command on the client:

grant CreateTable on PROJECT $user_project_name to USER ALIYUN$bob@
aliyun.com;
 --Grant CreateTable permission on project “$user_project_name” to
bob@aliyun.com
grant Describe on Table $user_table_name to USER ALIYUN$bob@aliyun.com
;
 --Grant Describe permission on table “$user_table_name” to bob@
aliyun.com

MaxCompute User Guide / 5 Security

148 Issue: 20180904

grant Execute on Function $user_function_name to USER ALIYUN$bob@
aliyun.com;
 --Grant Run permission on function "$user_function_name" to bob@
aliyun.com

Authorize RAM Sub-account

To check accounts support, run list accountproviders; command as follows:

odps@ ****>list accountproviders;
ALIYUN, RAM

In this project, RAM accounts are also supported. You can add a RAM sub-account to this project

and grant Describe permission on the tables. For example:

odps@ ****>add user ram$bob@aliyun.com:Alice;
OK: DisplayName=RAM$bob@aliyun.com:Alice
odps@ ****>grant Describe on table src to user ram$bob@aliyun.com:
Alice;
OK

After running these commands, Alice account, which is a RAM sub-account of

bob@aliyun.com , can logon to MaxCompute with the AccessKeyID and AccessKeySecret,

and run desc on the table src.

Note:

• For more information about how to create a RAM sub-account AccessKeyID and

AccessKeySecret, see RCreate a RAM user.

• For more information about how to add or remove users on MaxCompute, see the correspond

ing content of this article.

• For more information about authorizing a user, see Authorization.

Remove a User

When a user leaves the project team, Alice must remove the user from the project. Once removed

 from the project, the user no longer has any access permission to the project resources.

The command to remove a user from a project is as follows:

remove user

Note:

• A user removed from a project immediately loses an authority to access resources of the

project.

https://www.alibabacloud.com/help/doc-detail/28637.htm

MaxCompute User Guide / 5 Security

Issue: 20180904 149

• Revoke all the roles of the user, before removing a user whom the roles are assigned. For

more information about roles, see Role Management.

• After a user is removed, all ACL Authorization data related to the user is retained. After a user

is added to a project again, the ACL Authorization of this user is enabled again.

• MaxCompute does not support complete removal of a user and all permission data from a

project.

To remove corresponding users, Alice can run the following commands:

remove user ALIYUN$odps_test_user@aliyun.com;
remove user RAM$ram_test_user;

To make sure the users are removed, run the following command:

LIST USERS;

If those two accounts are no longer listed after running the command, it indicates that the

accounts have been removed from the project.

Remove a RAM Sub-account

Similarly, RAM sub-account can be removed by using the remove user command. For

example:

odps@ ****>revoke describe on table src from user ram$bob@aliyun.com:
Alice;
OK
-- Revoke Alice sub-account permissions
odps@ ****>remove user ram$bob@aliyun.com:Alice;
Confirm to "remove user ram$bob@aliyun.com:Alice;" (yes/no)? yes
OK
-- Remove sub-account

If you are the project owner, you can also remove the RAM account system from the current

project by remove accountprovider as follows:

odps@ ****>remove accountprovider ram;
Confirm to "remove accountprovider ram;" (yes/no)? yes
OK
odps@ ****>list accountproviders;
ALIYUN

5.5 Role management
A role is a defined set of access permissions. It assigns the same set of permissions to a group

of users. Role-based authorization greatly simplifies the authorization process and reduces the

authorization management cost. It must be used with priority.

MaxCompute User Guide / 5 Security

150 Issue: 20180904

When a project is created, an admin role is automatically created with a definite privilege

authorized to the role, including access to all objects within the project, management of users

and roles, and authorization to users and roles. In comparison to a project owner, the admin role

cannot assign admin permission to any user, set the project security configuration, or change the

authentication model for the project. Permissions of the admin role cannot be modified.

Role management related commands include the following:

 create role <rolename> --Create a role
 drop role <rolename> --Delete a role
 grant <rolename> to <username> --Grant a role to a user
 revoke <rolename> from <username> --Revoke a role from a user

Note:

• One role can be assigned to multiple users at the same time, and one user can be assigned

multiple roles.

• For more information about the mapping between the roles in DataWorks and in MaxCompute,

and the platform permissions of these roles, see the project member management module in

Project Management.

Create a role

To create a role, use the following command :

CREATE ROLE;

Example:

To create a role player, enter the following command on the client:

create role player;

Add a user to the role

To add a user to the role, use the following command:

GRANT <roleName> TO <full_username> ;

Example:

https://www.alibabacloud.com/help/doc-detail/47736.htm
https://www.alibabacloud.com/help/doc-detail/47736.htm

MaxCompute User Guide / 5 Security

Issue: 20180904 151

To assign user bob@aliyun.com the player role, enter the following command on the console:

grant player to bob@aliyun.com;

Authorize role

The authorization statement for the role is similar to the authorization for the user. For more

information, see User authorization.

Note:

After role authorization is complete, all users under this role have the same permissions.

Example:

Jack is the administrator of project prj1. Three new data auditors, Alice, Bob, and Charlie, are

added to the project team. They must apply for the following permissions: view the table lists,

submit the jobs, and read the table userprofile.

In this scenario, the project administrator can perform authorization by using the object-based ACL

Authorization.

The commands are as follows:

 use prj1;
 add user aliyun$alice@aliyun.com; --Add the user
 add user aliyun$alice@aliyun.com; --Add the user
 add user aliyun$charlie@aliyun.com;
 create role tableviewer; --Create a role
 grant List, CreateInstance on project prj1 to role tableviewer; --
Grant permissions to the role
 grant Describe, Select on table userprofile to role tableviewer;
 grant tableviewer to aliyun$alice@aliyun.com; --Grant the
tableviewer role to the user
 grant tableviewer to aliyun$bob@aliyun.com;
 grant tableviewer to aliyun$charlie@aliyun.com;

Revoke the role from the user

To revoke the role from the user, use the following command:

REVOKE <roleName> FROM <full_username>;

Example:

MaxCompute User Guide / 5 Security

152 Issue: 20180904

To remove the user bob@aliyun.com from the player role, use the following command on the

client:

revoke player from bob@aliyun.com;

Delete a Role

To delete a role, use the following command:

DROP ROLE <roleName>;

Example:

To delete the role of the player, use the following command:

drop role player;

Note:

When a role is deleted a role, MaxCompute checks whether other users are in this role. If yes,

this role cannot be deleted. The role can be successfully deleted only when all users in the role

are revoked from this role.

5.6 Authorization

Authorization allows a user to perform operations including read, write, and view on tables, tasks,

resources, and other objects of the MaxCompute. After the user is added, the project owner or

the project administrator must authorize the user. The user can perform operations only after

obtaining the permission.

MaxCompute provides Access Control List (ACL) authorization, cross-project resource sharing,

and project resource protection. Authorization typically includes three elements: subject, object,

and action. In MaxCompute, the subject refers to a user or a role and the object refers to various

types of objects in a project.

ACL authorization includes following MaxCompute objects: Project, Table, Function, Resource,

and Instance. Operations are related to specific object types, therefore different types of objects

support different types of actions.

MaxCompute projects support the following object types and actions:

MaxCompute User Guide / 5 Security

Issue: 20180904 153

Object Action Description

Project Read View project information (excluding any project objects),
such as the creation time.

Project Write Update project information (excluding any project objects
), such as comments.

Project List View the list of all types of objects in the project.

Project CreateTable Create a table in the project.

Project CreateInstance Create an instance in the project.

Project CreateFunction Create a function in the project.

Project CreateResource Create a resource in the project.

Project All Grant all of the preceding permissions.

Table Describe Read the metadata of the table.

Table Select Read the table data.

Table Alter Change the metadata of the table and add or delete a
partition.

Table Update Overwrite or add table data.

Table Drop Delete a table.

Table All Grant all the preceding permissions.

Function Read Read and run permissions.

Function Write Update.

Function Delete Delete.

Function Run Run.

Function All Grant all the preceding permissions.

Resource Read Read.

Resource Write Update.

Resource Delete Delete.

Resource All Grant all the preceding permissions.

Instance Read Read.

Instance Write Update.

Instance All Grant all the preceding permissions.

MaxCompute User Guide / 5 Security

154 Issue: 20180904

Note:

• The CreateTable action for the objects of Project type must work with the CreateInstance

permission for the Project object. The Select, Alter, Update, and Drop actions for the objects of

 Table type must work with the CreateInstance permission for the Project object.

• If the CreateInstance permission is not granted, the corresponding operations cannot be

performed even though the mentioned permissions are granted. This is related to the internal

implementation of MaxCompute. The Select permission for Table type objects must work with

 the CreateInstance permission. While performing cross-project operation, such as selecting

 the table of project B in the project A, you must have the project A CreateInstance and the

project B Table select permissions.

• After a user or role is added, you must grant permissions to the user or role. MaxCompute

authorization is an object-based authorization method. The permission data authorized by

ACL is considered as a type of sub-resource of the object. Authorization can be performed

 only if the object exists. When the object is deleted, the authorized permission data is

automatically deleted.

• SQL92 Authorization

MaxCompute supports authorization using the syntax similar to the GRANT and REVOKE

commands defined by SQL92. It grants or revokes permissions to/from the existing project

object through simple authorization statements. The authorization syntax is as follows:

 grant actions on object to subject
 revoke actions on object from subject
 actions ::= action_item1, action_item2, ...
 object ::= project project_name | table schema_name |
 instance inst_name | function func_name |
 resource res_name
 subject ::= user full_username | role role_name

Users familiar with GRANT and REVOKE commands defined by SQL92 or with Oracle

database security management can identify that the ACL authorization syntax of MaxCompute

does not support [WITH GRANT OPTION] authorization parameters. For example, when User

A authorizes User B to access an object, User B cannot grant the permission to User C. In this

scenario, all permissions can be granted by one of the following three roles:

• Project owner

• Project administrator

• Object creator

MaxCompute User Guide / 5 Security

Issue: 20180904 155

• Use example of ACL authorization

In the following scenario, the Alibaba Cloud account user alice@aliyun.com is a newly added

member to the project test_project_a, and Allen is a RAM-sub account added to bob@aliyun.

com. In test_project_a, they both must submit jobs, create tables, and view existing objects in

the project.

The project administrator performs the following authorization operations:

 use test_project; --Open the project
 add user aliyun$alice@aliyun.com; --Add the user
 add user aliyun$alice@aliyun.com; --Add the user
 create role worker; --Create a role
 grant worker TO aliyun$alice@aliyun.com; --Grant the role
 grant worker TO aliyun$bob@aliyun.com; --Grant the role
 grant CreateInstance, CreateResource, CreateFunction, CreateTabl
e, List ON PROJECT test_project TO ROLE worker; --Authorize the role

• Cross-project Table/Resource/Function sharing

Following the preceding example, aliyun$alice@aliyun.com and ram$bob@aliyun.com:Allen

have certain permissions in test_project_a. These two users must query table prj_b_test_table

in test_project_b, and use test_project_b. UDF prj_b_test_udf.

The project administrator performs the following authorization operations for test_project_b:

 use test_project_b; --Open the project
 add user aliyun$alice@aliyun.com; --Add the user
 add user ram$bob@aliyun.com:Allen; --Add th RAM sub-account
 create role prj_a_worker; --Create a role
 grant prj_a_worker TO aliyun$alice@aliyun.com; --Grant the role
 grant prj_a_worker TO ram$bob@aliyun.com:Alice; --Grant the role
 grant Describe , Select ON TABLE prj_b_test_table TO ROLE
prj_a_worker; --Authorize the role
 grant Read ON Function prj_b_test_udf TO ROLE prj_a_worker; --
Authorize the role
 grant Read ON Resource prj_b_test_udf_resource TO ROLE
prj_a_worker; --Authorize the role
--After authorization, the two users query table and use udf in
test_project_a as follows:
use test_project_a;
select test_project_b:prj_b_test_udf(arg0, arg1) as res from
test_project_b.prj_b_test_table;

Note:

MaxCompute User Guide / 5 Security

156 Issue: 20180904

If UDF is created in test_project_a, then only Resource authorization is required. Use the

following code:

create function function_name as 'com.aliyun.odps.compiler.udf.
PlaybackJsonShrinkUdf' using 'test_project_b/resources/odps-compiler-
playback.jar' -f;.

5.7 Permission check

MaxCompute provides the ability to view multiple permissions, including the permissions of certain

 users or roles, and authorization lists of specified objects.

MaxCompute uses the markup characters A, C, D, and G when showing the permissions of users

or roles. The meanings of these markup characters are as follows:

• A: Access allowed.

• D: Access denied.

• C: Access granted with conditions. It appears only in a policy authorization system.

• G: Access granted with conditions. Permission can be granted to objects.

An example of viewing permissions is as follows:

 odps@test_project> show grants for aliyun$odpstest1@aliyun.com;
 [roles]
 dev
 Authorization Type: ACL
 [role/dev]
 A projects/test_project/tables/t1: Select
 [user/odpstest1@aliyun.com]
 A projects/test_project: CreateTable | CreateInstance | CreateFunc
tion | List
 A projects/test_project/tables/t1: Describe | Select
 Authorization Type: Policy
 [role/dev]
 AC projects/test_project/tables/test_*: Describe
 DC projects/test_project/tables/alifinance_*: Select
 [user/odpstest1@aliyun.com]
 A projects/test_project: Create* | List
 AC projects/test_project/tables/alipay_*: Describe | Select
 Authorization Type: ObjectCreator
 AG projects/test_project/tables/t6: All
 AG projects/test_project/tables/t7: All

View permissions of a specified user

 show grants; --View permissions of the current user.
 show grants for <username>; --View access permissions of a
specified user. The operation can be executed by project owners and
administrators.

Example:

MaxCompute User Guide / 5 Security

Issue: 20180904 157

To view the user Alibaba Cloud account bob@aliyun.com permissions in the current project, run

the following command on the client:

show grants for ALIYUN$bob@aliyun.com;

To view RAM sub-account permissions:

show grants for RAM$account:sub-account;

Example:

show grants for RAM$bob@aliyun.com:Alice;

View permissions of a specified role:

describe role --View access permissions granted to a specified role

View the authorization list of a specified object:

show acl for [on type];--View the user and role authorization list of
 a specified object

Note:

When [on type <objectType>] is excluded, the default type is Table.

5.8 Security configurations
MaxCompute is a multi-tenant data processing platform. Distinct tenants have distinct data

security requirements. Therefore, MaxCompute provides project-level security configurations to

 comply with the unique requirements of individual tenants. Project owners can customize their

external account support and authentication models.

MaxCompute provides multiple methods of orthogonal authorization, including Access Control List

(ACL) authorization and implicit authorization. An object creator is automatically granted the object

access permission. Not all users need these security features. Users can properly configure the

project authentication model based on their service security requirements and usage patterns.

 show SecurityConfiguration
 --View the project security configuration.
 set CheckPermissionUsingACL=true/false
 --Enable/Disable the ACL authorization mechanism. The default
value is true.
 set ObjectCreatorHasAccessPermission=true/false
 --Enable/Disable automatic access permission granting to object
creators. The default value is true.
 set ObjectCreatorHasGrantPermission=true/false-* +

MaxCompute User Guide / 5 Security

158 Issue: 20180904

 --Enable/Disable automatic authorization permission granting to
object creators. The default value is true.
 set ProjectProtection=true/false
 --Enable/Disable project data protection to enable/disable
data transfer from the project.

Note:

You can also complete the security configuration of a project in a visualized technique using

DataWorks. For more information, see Project Management.

5.9 Data protection of projects

Background and motivation

Some companies (including financial institutions, military enterprises and so on) are extremely

sensitive to data security. Hence, to secure the data, additional security measures are taken, that

 include not allowing employees to carry USB storage devices or personal hard disks to work; or

most of the times the USB ports are disabled. Employees are not allowed to work from home. All

these measures are taken to secure the sensitive data.

As a MaxCompute Project Space Administrator, do you have similar security requirements, where

users are not allowed to move data out of the project space?

For example, when the owner of Project Space prj1 encounters this situation as shown in the

following figure, are you worried that user Alice will transfer the data that she can access to prm9,

only because she has access to prj2. prj2. and prj2?

https://www.alibabacloud.com/help/doc-detail/53040.htm

MaxCompute User Guide / 5 Security

Issue: 20180904 159

More specifically, assume that Alice has been granted access to myprj, which is the Select

permission for Table1, and then she is also granted create table permission by the administrator of

 prj2.

By these permissions, Alice is able to transfer the data to prm9 in any of the following ways:

• Submit SQL:

create table prj2.table2 as select * from myprj.table1;

• Write MapReduce to read myprj. Table1 and write to the scanner.

If the data in your project space is sensitive, you will be restricted to share data out of your project

. MaxCompute can resolve issues pertaining to data protection and the aforementioned operations

 as well.

Data protection feature

MaxCompute provides a project space protection feature that helps to resolve issues mentioned

earlier. As a user, set the project as follows:

 set projectProtection=true

MaxCompute User Guide / 5 Security

160 Issue: 20180904

 -- Set project protection rule: data can only flow and cannot
flow out

When project protection is set up, the data flow in your project space is controlled , "Data can only

 flow and cannot flow out ". That is, both of these actions will fail because they are against the

project protection rule.

By default, ProjectProtection cannot be set and its value is false.

Also, users authorized to access multiple projects can freely use cross-project data access

operations to share or transfer project data. If users are highly sensitive to project data security,

the administrator must define a ProjectProtection feature likewise.

Data outflow method after enabling data protection

After setting ProjectProtection in the user's project, the user may soon make requests such as

Alice applies to the user for exporting the data of a table out of the user’s project.

Moreover, user review confirms that this table does not contain sensitive data. In order not to

affect Alice's normal business requirements, MaxCompute provides two data export methods to

the user after setting ProjectProtection.

• Set TrustedProject

In case, the current project space is protected, and if you set the target space for the data

inflows to the trustedproject for the current space. Then, the data flow to the target project

space will not be considered a violation of the project protection rule. If multiple project spaces

 are set to trustedproject between two and one another, so these project spaces form a

trustedproject.

Group; the data can flow within the project group, but restricted to be shared out of the project

group.

Use the following command to manage the TrustedProject:

 list trustedprojects;
 -- View All trustedprojects in the current project
 add trustedproject <projectname>;
 -- Add a trustdproject to the current project
 remove trustedproject <projectname>;
 -- Remove a trustdproject from the current project

• Resource sharing and data protection

In MaxCompute, the package-based resource sharing feature and the project protection data

protection feature are orthogonal, but they are similar to each other in terms of functions.

MaxCompute User Guide / 5 Security

Issue: 20180904 161

MaxCompute rules give priority to resource sharing over data protection. Therefore,

if a data object allows access by users from other projects through resource sharing, the

ProjectProtection rules will not apply to this data object.

Best practices

To prevent data outflow from the project, after setting ProjectProtection=true, check the

following settings:

• Make sure the trustedproject is not added. If set, you must assess possible risks;

• Make sure that package data is not used for sharing. If set, make sure that no sensitive data

exists in the package.

5.10 Security command list

5.10.1 Security configuration of a project
Authentication configuration

Statement Description

show SecurityConfiguration View the security configuration of the project.

set CheckPermissionUsingACL=true/false Enable/Disable the ACL-based authorization.

set CheckPermissionUsingPolicy=true/false Enable/Disable the policy authorization.

set ObjectCreatorHasAccessPermission=true/
false

Grant/Revoke default access permissions to/
from object creators.

set ObjectCreatorHasGrantPermission=true/
false

Grant/Revoke default authorization permissions
 to/from object creators.

Data protection

Statement Description

set ProjectProtection=false Disable data protection.

list TrustedProjects View the list of trusted projects.

add TrustedProject <projectName> <
projectName>

Add a trusted project.

remove TrustedProject <projectName> Remove a trusted project.

MaxCompute User Guide / 5 Security

162 Issue: 20180904

5.10.2 Manage permissions
Manage users

Statement Description

list users View all users added to the project.

add user <username> <username> Add a user.

remove user <username> <username> Remove the user.

Manage roles

Statement Description

list roles View all created roles.

create role <rolename> <rolename> Create a role.

drop role <rolename> <rolename> Delete a role.

grant <rolelist> to <username> Assign one or multiple roles to the user.

revoke <rolelist> from <username> Revoke a role from the user.

ACL Authorization

Statement Description

grant <privList> on <objType> <objName
> to user <username>

Authorize a user.

grant <privList> on <objType> <objName
> to role <rolename>

Authorize a role.

revoke <privList> on <objType> <
objName> from user <username>

Revoke user authorization.

revoke <privList> on <objType> <
objName> from role <rolename>

Revoke role authorization.

Permission review

Statement Description

whoami View current user information.

show grants [for <username>] [on type <
objectType>]

View user role and permissions.

MaxCompute User Guide / 5 Security

Issue: 20180904 163

Statement Description

show acl for <objectName> [on type <
objectType>]

View specific object authorization information.

describe role <roleName> View role authorization information and role
assignments.

5.10.3 Package-based resource sharing

Share resources

Statement Description

Create package <pkgname> <pkgName> Create a package.

Delete package <pkgname> <pkgName> Delete a package.

add <objType> <objName> to package <
pkgName> [with privileges privs]

Add resources to be shared to a package.

remove <objType> <objName> from package
<pkgName>

Remove shared resources from a package.

allow prOject <prjName> to install package <
pkgName> [using label <num>]

Allow a project to use a user package.

disallow project <prjName> to install package
<pkgName>

Disallow a project from using a user package.

Use Resources

Statement Description:

Install package <pkgname> <pkgName> Install a package.

uninstall package <pkgName> Uninstall a package.

View a package

Statement Description:

show packages List all created and installed packages.

describe package <pkgName> View details of a package.

5.11 用户及授权管理

5.12 Resource share across project space

MaxCompute User Guide / 5 Security

164 Issue: 20180904

5.12.1 Resource sharing across projects based on package
Assume that you are the project owner or administrator (admin role) of a few projects. One of your

 primary accounts has multiple projects, wherein the project prj1 has some resources (including

tables, resources, and custom functions) that can be shared with other projects. However, adding

 users of other projects to prj1 and granting permissions to them one by one is complicated, and

adding the users who are irrelevant but are added to the prj1 project (if they exist) complicates the

 project management.

This section describes cross-project resource sharing.

If resources must be controlled by the user in a fine-grained manner, and the user who applies for

the control permission is a member of the business project team, we recommend using the Project

user and authorization management feature.

Package is used for sharing data and resources across projects. It solves the problem of cross-

project user authorization.

Use package to solve the following problems effectively:

If members of the Alifinance project want to access data in the Alipay project, the administrator

 of the Alipay project must perform tedious authentication operations: First, add users in the

Alifinance project to the Alipay project, and then perform general authentications on the newly

added users, respectively.

Actually, the administrator of the Alipay project does not want to authenticate and manage

all users in the Alifiance project. Instead, the administrator expects more efficient feature for

autonomous authentication controls over permissive objects.

After Package is used, the administrator of the Alipay project can perform packaging authorizat

ion on the objects to be used by the Alifinance project (that is, create a Package), and then permit

 the Alifinance project to install the Package. After the Alifinance project’s administrator installs

the Package, the administrator can determine whether to grant permissions of the Package to the

users of the Alifinance project as required.

5.12.2 Package usage method
The use of package involves two subjects: the package creator and the package user.

• The package creator provides the resources to be shared and the permissions to access it. It

also allows the package user to install and use it.

MaxCompute User Guide / 5 Security

Issue: 20180904 165

• The package user uses the package. After the package is published, the user can directly

access the resource across projects.

The following is a description of the operations involved with the package creator and package

user.

Package creator

• Create package

Create package;

Note:

• Only the project owner has the permission to create a package.

• The name of the package cannot exceed 128 characters.

• Add a resource to be shared to the package

 Add project_object to package package_name [with privileges] --
add objects to package
 Remove project_object from package package_name; -- remove
object from package
 project_object ::= table table_name |
 instance inst_name |
 function func_name |
 resource res_name
 privileges ::= action_item1, action_item2, ...

Note:

• Currently, supported types of objects exclude projects. Therefore, you cannot use a

package to create objects in other projects.

• The objects themselves and the permission to perform operations on them are added

to the package at the same time. When not passed (with privileges) even specifying an

action permission, the default is read-only, that is, read/describe/select. The object and its

permissions are treated as a whole and cannot be updated once added. If necessary, you

can only delete and re-add.

Use the following commands to perform various operations on the package:

MaxCompute User Guide / 5 Security

166 Issue: 20180904

• Allow other projects to use a package

allow project <prjName> to install package <pkgName> [using label <
num>]

• Revoke other projects’ permission to use a package

disallow project <prjName> to install package <pkgName>

• Drop a package

Delete package <pkgname>;

• View the list of packages already created and installed

Show packages;

• View package details

Describe package <pkgname>;

Package users

• Install package

Install package <pkgname>;

For package installation, the pkgName format is: <projectName>.<packageName>.

Note:

Only the project owner has permissions to perform this operation.

• Uninstalling package

Uninstall package <pkgname>;

For package installation, the pkgName format is: <projectName>.<packageName>.<

projectName>.<packageName>

• View a package

 Show packages;
 View the list of packages already created and installed
 Describe package <pkgname>;
 View details of package

• Client project grants access to package to other members of this project

MaxCompute User Guide / 5 Security

Issue: 20180904 167

The installed package is an independent type of MaxCompute object. To access resources in a

 package (resources shared with you by other projects), you must have the permission to read

package.

If you do not have the Read permission, you must apply to the project owner or admin for the

 permission. The project owner or admin can grant permissions through ACL authorization or

policy authorization.

For example, the following ACL authorization allows the cloud account user

odps_test@aliyun.com to access resources in the package:

 Use prm9;
 Install package maid;
 Grant read on package maid to user alien $ fig;

Example

Jack is the administrator of prj1. John is the administrator of prj2. To address some business

needs, Jack wants to share some resources of prj1 (such as datamining.jar and sampletable) to

John's prj2. If prj2 user Bob must access these resources, the prj2 administrator can self-authorize

 Bob through ACL administrator or policy authorization without Jack’s involvement.

Procedure:

1. Prj1 administrator Jack creates resources package in prj1.

 Use prj1;
 Create package datamicing; -- creating a package
 Add Resource dating. jar to package dating;-add resource to
package
 Add Table sampletable to package dating; -- adding table to
package
 Allow project prm9 to install package dating; -- sharing package
 to Project Space prm9

2. Prj2 administrator Bob installs a package in prj2.

 Use prm9;
 Install package; -- installs a package
 Describe package maid; -- view a list of resources in the
package

3. Bob self-authorizes the package.

 Use prm9;

MaxCompute User Guide / 5 Security

168 Issue: 20180904

 Grant read on package prj1.datamining to user alike $ --; --
authorization of Bob to use package via ACL

5.13 Column-level access control

Label-based security (LabelSecurity) is a required MaxCompute Access Control (MAC) policy at

the project space level. It allows project administrators to control the user access to column-level

sensitive data with improved flexibility.

Difference between MAC and DAC in MaxCompute

In MaxCompute, MAC is independent of Discretionary Access Control (DAC). Two examples are

provided to illustrate the differences between MAC and DAC.

To drive a vehicle, you must first have to apply and acquire a valid driver's license, similarly, a

user who wants to read data in a MaxCompute project must first apply for the SELECT permission

. The permission application is within the scope of DAC.

Because the country with a high accident rate, drunk driving is strictly restricted. To curb this

, all drivers are required to have a driver’s license and must not drink and drive. Likewise, in

MaxCompute, reading highly sensitive data is analogous to the law against drunk driving. The

read prohibition is within the scope of MAC.

Data sensitivity classification

LabelSecurity assigns security levels to data and the users who access the data. In the

government and financial sectors, data sensitivity is usually classified into four levels: 0 (Unclassifi

ed), 1 (Confidential), 2 (Sensitive), and 3 (Highly Sensitive). MaxCompute adopts such classifica

tion. Project owners must define standards for data sensitivity classification and access level

classification. The default access level of all users is 0, and the default sensitivity level of data is 0.

LabelSecurity supports data sensitivity classification at the column level. Administrators can set

sensitivity labels for all the columns of a table. A table may have columns of different sensitivity

levels.

Administrators can also set sensitivity labels for views. A view and its base table have independen

t sensitivity labels. The default sensitivity level of a new view is 0.

Default security policies of LabelSecurity

LabelSecurity applies the following default security policies to the data and users assigned with

sensitivity or security labels:

MaxCompute User Guide / 5 Security

Issue: 20180904 169

• No-ReadUp: A user is not allowed to read data with a sensitivity level higher than the user level

 unless the user is explicitly authorized.

• Trusted-User: A user is allowed to write data of all sensitivity levels. The default sensitivity level

 of new data is 0 (unclassified).

Note:

• In some traditional MAC systems, other complex security policies are applied to prohibit

unauthorized data distribution in a project. For example, the No-WriteDown policy prohibits

users from writing data with a sensitivity level not higher than the user level. By default,

MaxCompute does not support No-WriteDown, considering the costs involved in managing the

data sensitivity levels of project administrators. The effect of No-WriteDown can be attained

by modifying the project security settings (Set ObjectCreatorHasGrantPermission=

false).

• To prohibit data flowing among different projects, you can set the projects to the protected

state (ProjectProtection). With the setting, users can only access the data within their projects

. This prevents data transfer or data sharing outside the project.

By default, projects disable LabelSecurity. The project owners can enable it as required.

After LabelSecurity is enabled, the default security policies are executed. When a user accesses

 a data table, the user must have the SELECT permission and the access level required for

sensitive data reading. Compliance with LabelSecurity is a required but not the sufficient condition

 for passing CheckPermission.

LabelSecurity operations

• Enable or disable LabelSecurity

 Set LabelSecurity=true|false;
 -- Enables or disables LabelSecurity. The default value is false.
 -- LabelSecurity can be enabled or disabled only by the project
owner. Other operations can be performed by the project administra
tor.

• Set security labels for users

 SET LABEL <number> TO USER <username>;-- Value range of "number": [
0, 9]. This operation can be performed only by the project owner or
administrator.
 -Example:
 ADD USER aliyun$yunma@aliyun.com; --Adds a user with the default
security label 0.
 ADD USER ram$yunma@aliyun.com:Allen; --Adds user Allen, which is a
RAM subaccount of yunma@aliyun.com.

MaxCompute User Guide / 5 Security

170 Issue: 20180904

 SET LABEL 3 TO USER aliyun$yunma@aliyun.com;
 -- Sets the security label of yunma to 3 to allow this user to
access only the data with a sensitivity level not higher than 3.
 SET LABEL 1 TO USER ram$yunma@aliyun.com:Allen;
 -- Sets the security label of subaccount Allen to 1 to allow this
 user to access only the data with a sensitivity level not higher
than 1.

• Set sensitivity labels for data

 SET LABEL <number> TO TABLE tablename[(column_list)]; -- Value
range of "number": [0, 9]. This operation can be performed only by
the project owner or administrator.
 -Example:
 SET LABEL 1 TO TABLE t1; --Sets the sensitivity label of table t1
to 1.
 SET LABEL 2 TO TABLE t1(mobile, addr); --Sets the sensitivity
labels of the "mobile" and "addr" columns of table t1 to 2.
 SET LABEL 3 TO TABLE t1; --Sets the sensitivity label of table t1
to 3. The sensitivity labels of the "mobile" and "addr" columns are
 still 2.

Note:

The sensitivity labels explicitly set for the columns overwrite the sensitivity label set for the

table, without considering the label setting order and the sensitivity level.

• Explicitly authorize lower-level users to access specific data tables with a high sensitivit

y level

 --Grant permissions:
 GRANT LABEL <number> ON TABLE <tablename>[(column_list)] TO USER <
username> [WITH EXP <days>]; --The default validity period is 180
days.
 -- Revoke the permissions:
 REVOKE LABEL ON TABLE <tablename>[(column_list)] FROM USER <
username>;
 -- Clear the expired permissions:
 CLEAR EXPIRED GRANTS;
 -Example:
 GRANT LABEL 2 ON TABLE t1 TO USER ram$yunma@aliyun.com:Allen WITH
EXP 1; --Explicitly authorizes Allen to access the data of table t1
with a sensitivity level not higher than 2 for a period of 1 day.
 GRANT LABEL 3 ON TABLE t1(col1, col2) TO USER ram$yunma@aliyun.com
:Allen WITH EXP 1; --Explicitly authorizes Allen to access the data
 in col1 and col2 of table t1 with a sensitivity level not higher
than 3 for a period of 1 day.
 REVOKE LABEL ON TABLE t1 FROM USER ram$yunma@aliyun.com:Allen; --
Revokes the permission of Allen to access the sensitive data in
table t1.

Note:

Once the label-authorized permission of a user to access a table is revoked, the permission to

access the table fields of the same user is also revoked.

MaxCompute User Guide / 5 Security

Issue: 20180904 171

• List the sensitive data sets that a user can access

 SHOW LABEL [<level>] GRANTS [FOR USER <username>];
 --When [FOR USER <username>] is unspecified, the system lists
the sensitive data sets that the current user can access.
 --When <level> is unspecified, the system lists the permissions
 granted by all label levels.When <level> is specified, the system
lists only the permissions granted by a specific label level.

• List the users who can access a specific table containing sensitive data

 SHOW LABEL [<level>] GRANTS ON TABLE <tablename>;
 --Displays the label-authorized permissions on the specified
table.

• List the label-authorized permissions of a user at all levels to access a data table

 SHOW LABEL [<level>] GRANTS ON TABLE <tablename> FOR USER <username
>;
 --Displays the label-authorized permissions of the specified user
 to access the columns of a specific table.

• List the sensitivity levels of all the columns of a table

DESCRIBE <tablename>;

• Control the access level of a package installer regarding the sensitive resources of the

package

 ALLOW PROJECT <prjName> TO INSTALL PACKAGE <pkgName> [USING LABEL <
number>];
 --The package creator grants an access level to the package
installer regarding the sensitive resources of the package.

Note:

• When [USING LABEL <number>] is unspecified, the default access level is 0. The

package installer can only access non-sensitive data.

• When accessing to sensitive data across projects, the access level defined by this

command applies to all the users in the project of the package installer.

LabelSecurity use cases

• Prohibit all the users in a project except the project administrator from reading some

sensitive columns of a table

Description:

user_profile is a table with sensitive data in a project. It has 100 columns, five of which contain

sensitive data: id_card, credit_card, mobile, user_addr, and birthday. DAC grants all users

MaxCompute User Guide / 5 Security

172 Issue: 20180904

the SELECT permission on this table. The project owner wants to prohibit all the project users

except the project administrator from reading the sensitive columns of the table.

To achieve this purpose, the project owner can perform the following operations:

 set LabelSecurity=true;
 --Enables LabelSecurity.
 set label 2 to table user_profile(mobile, user_addr, birthday);
 --Sets the sensitivity level of the specified columns to 2.
 set label 3 to table user_profile(id_card, credit_card);
 --Sets the sensitivity level of the specified columns to 3.

Note:

After the preceding operations, non-administrator users cannot access the data in the five

columns. To access the sensitive data for business purposes, the user must be authorized by

the project owner or administrator.

Solution:

Alice is a member of the project. For official purposes, she wants to apply for access to the

data in the mobile column of table user_profile for a period of one week. To authorize Alice, the

project administrator can perform the following operation:

GRANT LABEL 2 ON TABLE user_profile TO USER ALIYUN$alice@aliyun.com
WITH EXP 7;

Note:

Mobile, user_addr, and birthday column contain data with a sensitivity level of 2. Birthday.

After authorization, Alice can access the data in these three columns. The authorization

causes the issue of excessive permission grants. This issue can be avoided if the project

administrator sets the sensitive columns properly.

• Prohibit the project users with access to sensitive data from copying and distributing

the sensitive data within the project without authorization

Description:

In the preceding use case, Alice is granted the access permission on the data with a sensitivity

level of 2 for official purposes. The project administrator worries that Alice may copy that data

from table user_profile to table user_profile_copy created by her and grants Bob the access

permission on user_profile_copy. The project administrator needs a method to restrict Alice's

actions.

Solution:

MaxCompute User Guide / 5 Security

Issue: 20180904 173

Considering security usability and management costs, LabelSecurity adopts the default security

policy that allows for WriteDown. Users can write data to the columns with a sensitivity level

not higher than the user level. MaxCompute cannot address the preceding requirement of

the project administrator. However, the project administrator can restrict the discretionary

authorization behavior of Alice by allowing her to only access the data she created, but

disallowing her to grant the data access permission to other users. The procedure is as follows:

 SET ObjectCreatorHasAccessPermission=true;
 --Allows the object creator to operate objects.
 SET ObjectCreatorHasGrantPermission=false;
 --Prohibits the object creator from granting the object access
permission to other users.

MaxCompute User Guide / 6 MaxCompute Butler

174 Issue: 20180904

6 MaxCompute Butler

When you start MaxCompute pre-payment, you will encounter one common problem: the account

 has purchased 150CU, however, many tasks that often use pre-paid projects still have to queue

 up for a long time. Administrators or operations personnel want to see specific tasks that have

 seized resources, so as to control the task properly, such as adjusting the scheduling time

according to the corresponding business priority of the task, important and minor tasks are out of

schedule.

The MaxCompute Butler is the solution to the problem of pre-payment computing resource

monitoring and management. Currently, MaxCompute Butler mainly provides three functions,

system status, resource group allocation, and task monitoring. See the DataWorks document

MaxCompute pre-payment resource monitoring tool-CU Butler for detailed instructions.

Note:

Maxcompute Butler's user guide:

• If you have purchased MaxCompute pre-paid CU resources and a quantity of 60cu or more

, you can only take complete advantage of computing resources and Butler when you have

sufficient CU.

MaxCompute User Guide / 7 Lightning

文档版本：20180904 175

7 Lightning

7.1 Lightning概述
MaxCompute Lightning是MaxCompute产品的交互式查询服务，支持以PostgreSQL协议及语法连

接访问Maxcompute项目，让您使用熟悉的工具以标准 SQL查询分析MaxCompute项目中的数据，

快速获取查询结果。

您可使用主流BI工具（如Tableau、帆软等）或SQL客户端轻松连接到MaxCompute项目，开展BI分

析或即席查询。或者利用MaxCompute Lightning的快速查询特性，将项目表数据封装成API对外服

务，无需数据迁移就能够支持更丰富的应用场景。

MaxCompute Lightning提供无服务器计算（Serverless）的服务方式，您无需管理任何基础设施，

只需为运行的查询付费。

关键特性

• 兼容PostgreSQL

MaxCompute Lightning提供兼容PostgreSQL协议的JDBC/ODBC接口，所有支持PostgreSQL数

据库的工具或应用使用默认驱动都可以轻松地连接到MaxCompute项目。您也可以使用更广泛的

PostgreSQL生态工具来分析MaxCompute的数据。

• 显著提升性能

针对MaxCompute表的快速查询进行了优化，特别是在小数据集、并发场景下有更好的性能表

现。从而能够支撑更丰富的应用场景，如固定报表、API开放等。

• 统一的权限管理

作为MaxCompute产品内的服务，通过MaxCompute Lightning连接到MaxCompute项目的访问

完全遵循Maxcompute项目的权限体系，在访问用户权限范围内安全地查询数据。

• 开箱即用，按查询付费

MaxCompute Lightning是在MaxCompute已有的计算资源之外提供的无服务器的计算服务，您

不需要设置、管理或运维MaxCompute Lightning资源，通过MaxCompute Lightning连接后即可

开展查询。

使用MaxCompute Lightning时，只需为每次查询所实际处理的数据量付费，不查询时不产生费

用。

MaxCompute User Guide / 7 Lightning

176 文档版本：20180904

系统结构

作为Maxcompute的交互式查询服务，MaxCompute Lightning提供了配套的接入访问域名地址(

Endpoint)，客户端工具及应用通过PostgreSQL驱动连接访问Lightning JDBC/ODBC接口服务，在

MaxCompute项目统一的权限体系下安全地访问项目数据。

通过该服务接口连接并提交的查询任务，都将使用MaxCompute Lightning的Serverless计算资源以

保障交互式查询的服务质量。

应用场景

• 即席查询（Ad Hoc）

利用MaxCompute Lightning面向小规模数据集（百GB规模内）查询性能优化的特性，使用者可

以直接对MaxCompute表开展低时延的查询操作，而不需要再把数据再导入到其它各种系统进行

加速（比如ADS、RDS），节约资源和管理成本。

场景特点：查询的数据对象自由不固定，逻辑相对复杂，期望快速获取查询结果并调整查询逻

辑，对查询时延的要求在几十秒内。使用者往往是掌握SQL技能的数据分析师，希望使用熟悉的

客户端工具来开展查询分析。

• Reporting报表分析

MaxCompute User Guide / 7 Lightning

文档版本：20180904 177

对MaxCompute项目中通过ETL加工汇总后的结果数据制作分析报表，提供给管理者和业务人员

定期查看。

场景特点：查询的数据对象通常为聚合后的结果数据， 数据量较小、查询逻辑固定且较简单。

时延要求低：秒级返回（例如大部分查询不超过5秒，不同查询根据其数据规模和查询复杂度有

较大差异）。

• 面向在线应用的消费场景

直接将MaxCompute项目中的数据封装成为restful api，支撑在线应用。

场景特点：利用MaxCompute Lightning作为加速查询引擎，结合阿里云Dataworks的######，

零开发、无运维地将MaxCompute的表数据开放为API服务。

7.2 开通Lightning服务
MaxCompute Lightning是MaxCompute提供的交互式查询服务，您需要先开通并创建MaxCompute

项目方可使用MaxCompute Lightning。

MaxCompute Lightning服务目前处于公测阶段，未对全网用户开放。如需使用，您可以通过我们

在#################申请公测期间的服务开通。

商业化后，默认为MaxCompute项目开通MaxCompute Lightning服务。

7.3 服务定价

说明：

• MaxCompute Lightning服务目前处于公测阶段，完全免费，公测结束后将正式商业化收费。

• 正式商业化后，使用Lightning服务时按每个查询所扫描的数据量付费（单价待商业化时发

布）。

使用MaxCompute Lightning，您只需为您运行的查询付费，根据执行查询过程中，实际扫描的

MaxCompute项目表的数据量计费。当不运行查询时，MaxCompute Lightning不收取任何费用。

由于MaxCompute Lightning的使用依赖于您开通创建的MaxCompute项目，因此您还需要关注

MaxCompute在数据存储、计算（按量后付费/按CU预付费）、外网下载等方面产生的费用。

计费详情请参见MaxCompute######。

http://page.aliyun.com/form/MaxCLightningPP/index.htm
https://www.alibabacloud.com/help/doc-detail/74873.htm

MaxCompute User Guide / 7 Lightning

178 文档版本：20180904

7.4 快速开始

7.4.1 使用说明
本教程将引导您使用主流的第三方工具连接MaxCompute Lightning服务，查看指定MaxCompute项

目下的数据表，进行BI分析。

7.4.2 前提条件
开通MaxCompute并创建项目

使用MaxCompute Lightning需要您已经有创建好的MaxCompute项目。

如果您还没有开通阿里云MaxCompute项目，请参见##MaxCompute进行开通并创建一个

MaxCompute项目。

创建表并导入数据

使用MaxCompute Lightning前需要您创建表并导入数据，详情请参见MaxCompute####。

获取云账号信息

使用MaxCompute Lightning前需要MaxCompute项目用户的Accesss ID及Access Key云账号信息。

您可登录阿里云官网，进入管理控制台用户信息管理页面进行查看。子账号如果没有查看权限，请

联系主账号管理员索取，同时确定该子账号有权限查看指定的数据表。

7.4.3 准备连接的客户端工具
MaxCompute Lightning兼容PostgreSQL接口，支持PostgreSQL数据库连接的客户端工具都可以用

于连接MaxCompute Lightning。

本教程中选择了大家熟悉的BI工具Tableau Desktop 进行示例，相关工具请到Tableau官网进行下

载。

其他常见客户端工具，如SQL Workbench/J、PSQL、帆软BI、MicroStrategy BI等都可以像连接

PostgreSQL数据库一样配置服务连接。

7.4.4 连接服务并开展分析
1. 连接服务器时选择PostgreSQL。

打开Tableau Desktop，选择连接 > 到服务器 > 更多 > PostgreSQL。

2. 填写服务连接及用户认证信息。

https://www.alibabacloud.com/help/doc-detail/58226.htm
https://www.alibabacloud.com/help/doc-detail/27808.htm
https://www.tableau.com/products/desktop

MaxCompute User Guide / 7 Lightning

文档版本：20180904 179

参数 说明

服务器 填写所在区域对应的MaxCompute Lightning EndPoint，如华东2区域
的Endpoint为：lightning.cn-shanghai.maxcompute.aliyun
.com

端口 443

数据库 MaxCompute项目名

身份验证 用户名和密码

用户名/密码 访问用户的Access Key ID/Access Key Secret

SSL连接 勾选需要SSL

3. 获取项目表信息，创建数据源/模型。

配置好联系信息并登录后，Tableau会加载所连接的MaxCompute项目下的表，使用者可以根据

需要选择对应的表创建模型和工作表。

选择特定数据的维度和指标，创建工作表。

至此，您已经使用Tableau工具成功连接MaxCompute Lightning服务，可以对连接到MaxCompute

项目内的数据进行BI分析。

说明：

为了获得更好的性能和体验，建议您使用Tableau支持的TDC文件方式对Lightning数据源进行连接

定制优化，详情请参见Tableau Desktop。

7.5 访问域名
MaxCompute Lightning提供了单独的域名访问地址（Endpoint），通过该地址您可以访问到阿里云

不同区域的MaxCompute Lightning服务。

MaxCompute Lightning在公共云的不同Region及网络环境下的服务连接对照表如下。

表 7-1: 外网网络下Region和服务连接对照表

Region 开服状态 外网Endpoint

华东2 公测中 lightning.cn-shanghai.maxcompute.aliyun.com

亚太东南1 公测中 lightning.ap-southeast-1.maxcompute.aliyun.com

其他区域 暂未开服 -

MaxCompute User Guide / 7 Lightning

180 文档版本：20180904

表 7-2: 经典网络下Region和服务连接对照表

Region 开服状态 经典网络Endpoint

华东2 公测中 lightning.cn-shanghai.maxcompute.aliyun-inc.com

亚太东南1 公测中 lightning.ap-southeast-1.maxcompute.aliyun-inc.
com

其他区域 暂未开服 -

表 7-3: VPC网络下Region和服务连接对照表

Region 开服状态 VPC网络Endpoint

华东2 公测中 lightning.cn-shanghai.maxcompute.aliyun-inc.com

亚太东南1 公测中 lightning.ap-southeast-1.maxcompute.aliyun-inc.
com

其他区域 暂未开服 -

7.6 通过JDBC连接服务
Maxcompute Lightning查询引擎基于PostgreSQL 8.2，当前仅支持对已有MaxCompute表进行

SELECT查询，更多详情请参见####及##。

如果您的MaxCompute项目还没有数据或需要对现有数据进行加工处理，请参见MaxCompute##，

通过MaxCompute###或DataWorks连接MaxCompute项目进行数据对象创建和加工处理。

7.6.1 JDBC驱动程序
MaxCompute提供完全兼容PostgreSQL消息协议的Java数据库连接（JDBC）接口，使用者可以通

过JDBC将SQL客户端工具连接到MaxCompute Lightning服务。

MaxCompute Lightning支持PostgeSQL官方驱动连接，同时也提供了为Lightning服务而优化的驱动

程序供选择。

1. 使用PostgeSQL官方提供的JDBC驱动程序。

说明：

很多客户端工具默认集成了PostgreSQL数据库的驱动，直接使用工具自带的驱动即可。如果未

集成，可从官网下载。以SQL Workbench/J客户端为例，创建连接时可选择PostgreSQL官方驱

动。

https://www.postgresql.org/docs/8.2/static/queries.html
https://www.postgresql.org/docs/8.2/static/functions.html
https://www.alibabacloud.com/help/product/27797.htm
https://www.alibabacloud.com/help/doc-detail/27971.htm
https://jdbc.postgresql.org/

MaxCompute User Guide / 7 Lightning

文档版本：20180904 181

2. 使用阿里云MaxCompute Lightning优化过的JDBC##，以获取更好的性能。

下载后的MaxCompute Lightning的JDBC驱动程序保存为MaxComputeLightningJDBC.jar文件。

以SQL Workbench/J客户端为例，在驱动管理菜单中，添加MaxCompute Lightning JDBC驱动

程序项。

在创建连接时，从Driver列表中选择刚才添加的MaxCompute Lightning JDBC驱动。

http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/89778/cn_zh/1535960228920/MaxComputeLightningJDBC.jar

MaxCompute User Guide / 7 Lightning

182 文档版本：20180904

7.6.2 配置JDBC连接
您需要获得您的MaxCompute项目JDBC URL，才能将SQL客户端工具连接到该项目。

JDBC URL命名方式如下：

jdbc:postgresql://endpoint:port/database

连接参数说明如下：

参数 取值 说明

endpoint 所在区域不同网络环境下的
Lightning访问域名

详情请参见####，例如通过外网访问上
海Region的服务使用lightning.cn-
shanghai.maxcompute.aliyun.com

port 443 -

database 填写MaxCompute的项目名称 -

user 访问用户的Access Key ID -

password 访问用户的Access Key Secret -　

ssl true MaxCompute Lightning服务端默认开启SSL
服务，客户端需要使用SSL进行连接。

prepareThreshold 0 可选。需要使用JDBC PrepareStatement功
能时， 建议设置prepareThreshold=0。

例如jdbc:postgresql://lightning.cn-shanghai.maxcompute.aliyun.com:443/

myproject

同时，设置user、password、SSL连接参数后进行连接。

您也可以将参数添加到JDBC URL来连接到MaxCompute项目，如下所示：

jdbc:postgresql://lightning.cn-shanghai.maxcompute.aliyun.com:443/
myproject?ssl=true& prepareThreshold=0&user=xxx&password=yyy

说明如下：

• lightning.cn-shanghai.maxcompute.aliyun.com是华东2区域的Endpoint。

• myproject是需要访问的MaxCompute项目名称。

• ssl=true是指定通过SSL方式连接。

• xxx是访问用户的Access Key ID。

• yyy是访问用户的Access Key Secret。

MaxCompute User Guide / 7 Lightning

文档版本：20180904 183

7.6.3 常见工具的连接
本文将为您介绍几款常见客户端工具的接入说明，除此之外，原则上支持PostgresSQL的工具都可

以通过Lightning来对接访问MaxCompute。

阿里云Quick BI

1. 登录Quick BI控制台，单击左侧导航栏中的数据源。

2. 单击数据源管理页面右上角的新建数据源。

3. 选择云数据库或自建数据源中的PostgeSQL数据库类型添加数据源。

4. 填写对话框中的MaxCompute Lightning的连接信息并测试连接连通状态。

参数 说明

数据库地址 MaxCompute Lightning对应区域的Endpoint，可使用公网访问的
Endpoint，也可以使用经典网络及VPC网络访问的Endpoint。

数据库 需要访问的MaxCompute项目的名称加?ssl=true，如上图中的
lightning?ssl=true。

Schema MaxCompute项目名称。

用户名/密码 用户的Access Key ID/Access Key Secret。

SQL Workbench/J

SQL Workbench/J是一款流行的免费、跨平台SQL查询分析工具，使用SQL Workbench/J可以通过

PostgreSQL驱动连接MaxCompute Lightning服务。

1. ##并安装SQL Workbench/J 。

2. 启动SQL Workbench/J，创建数据库连接。

选择PostgreSQL驱动，连接MaxCompute项目所对应的Lightning URL地址，同时输入访问用户

的用户名和密码，即Access Key ID和Access Key Secret。

http://www.sql-workbench.eu/downloads.html

MaxCompute User Guide / 7 Lightning

184 文档版本：20180904

您也可通过扩展属性（Extended Properities）设置ssl取值为true。

MaxCompute User Guide / 7 Lightning

文档版本：20180904 185

3. 连接后，在Workbench工作区查看MaxCompute项目的表数据、查询分析。

psql工具连接

psql是PostgreSQL的一个命令行交互式客户端工具，在本机安装PostgreSQL数据库将默认安装

psql客户端。

MaxCompute User Guide / 7 Lightning

186 文档版本：20180904

通过psql在命令行下可以连接MaxCompute Lightning，语法与连接PostgreSQL数据库一致。

psql -h <endpoint> -U <userid> -d <databasename> -p <port>

参数说明：

• <endpoint>：MaxCompute Lightning的Endpoint，详情请参见####。

• <userid>：访问用户Access Key ID。

• <databasename>：Maxcompute项目名。

• <port>：443

执行后，在psql密码提示符处，输入<userid>用户的密码，即访问用户的Access Key Secret。

示例如下：

说明：

psql默认优先通过ssl方式连接。

Tableau Desktop

使用BI工具，选择PostgreSQL数据源，配置连接。

配置连接时，需勾选需要SSL。

登录后，通过Tableau创建工作表进行可视化分析。

说明：

为了获得更好的性能和体验，建议您使用Tableau支持的TDC文件方式，对Lightning数据源进行连

接定制优化。具体操作如下：

MaxCompute User Guide / 7 Lightning

文档版本：20180904 187

1. 将如下xml内容保存为postgresql.tdc文件。

<?xml version='1.0' encoding='utf-8' ?>
<connection-customization class='postgres' enabled='true' version='
8.10'>
<vendor name='postgres'/>
<driver name='postgres'/>
<customizations>
<customization name='CAP_CREATE_TEMP_TABLES' value='no' />
<customization name='CAP_STORED_PROCEDURE_TEMP_TABLE_FROM_BUFFER'
value='no' />
<customization name='CAP_CONNECT_STORED_PROCEDURE' value='no' />
<customization name='CAP_SELECT_INTO' value='no' />
<customization name='CAP_SELECT_TOP_INTO' value='no' />
<customization name='CAP_ISOLATION_LEVEL_SERIALIZABLE' value='yes
' />
<customization name='CAP_SUPPRESS_DISCOVERY_QUERIES' value='yes' />
<customization name='CAP_SKIP_CONNECT_VALIDATION' value='yes' />
<customization name='SQL_TXN_CAPABLE' value='0' />
</customizations>
</connection-customization>

2. 将文件保存到\My Documents\My Tableau Repository\Datasources目录下。如果

是Tableau Server，Windows下请保存在C:\ProgramData\Tableau\Tableau Server

\data\tabsvc\vizqlserver\Datasources，Linux下请保存在/var/opt/tableau/

tableau_server/data/tabsvc/vizqlserver/Datasources/。

3. 重新打开Tableau，使用PostgreSQL数据源连接MaxCompute Lightning服务。关于tdc文件定制

数据源的更多内容，请参见Tableau######。

帆软Report

1. 打开帆软Report，选择服务器 > 定义数据库连接。

2. 添加JDBC连接。

参数说明如下：

参数 说明

数据库 Postgre

驱动器 帆软Report自带的org.postgresql.Driver

URL jdbc:postgresql://<MaxCompute Lightning Endpoint>:

443/<Project_Name>?ssl=true&prepareThreshold=0

例如：jdbc:postgresql://lightning.cn-shanghai.
maxcompute.aliyun.com:443/lightning_demo?ssl=true&

prepareThreshold=0

用户名/密码 访问用户的Access Key ID和Access Key Secret

7.7 SQL参考

https://onlinehelp.tableau.com/current/pro/desktop/en-us/odbc_customize.html#global_tdc

MaxCompute User Guide / 7 Lightning

188 文档版本：20180904

查询语法

MaxCompute Lightning查询引擎基于PostgreSQL 8.2，当前仅支持对已有MaxCompute表进行

SELECT查询，相关语法参见PostgreSQL####。

函数

MaxCompute Lightning查询引擎基于PostgreSQL 8.2提供内建函数，请参见 PostgreSQL####。

在PostgreSQL官方函数基础上，MaxCompute Lightning补充了以下内建函数。

• MAX_PT

命令格式

max_pt(table_full_name)

命令说明

对于分区的表，此函数返回该分区表的一级分区的最大值，按字母排序，且该分区下有对应的数

据文件。

参数说明

table_full_name：String类型，用于指定表名（必须携带project名称，例如prj.src），您必须对

此表有读权限。

返回值

返回最大的一级分区的值。

示例

假设tbl为分区表，对应分区如下，且都包含数据文件：

pt =‘20120901’
pt =‘20120902’

则以下语句中分区max_pt返回值为‘20120902’，MaxCompute SQL语句读出pt=‘20120902’分区

下的数据。

select * from tbl where pt=max_pt('myproject.tbl');

https://www.postgresql.org/docs/8.2/static/queries.html
https://www.postgresql.org/docs/8.2/static/functions.html

MaxCompute User Guide / 7 Lightning

文档版本：20180904 189

7.8 查看作业
查看运行中的查询

Lightning为用户提供了一个系统视图表stv_recents，通过查询该表能够获取当前用户正在执行中的

所有查询作业，查看这些作业的ID、用户、SQL语句、发起开始时间、运行时间、是否等待资源（t

为等待资源未执行，f为获取资源并执行中）等信息。

执行查询命令：

select * from stv_recents;

查询结果如下所示：

取消正在运行的查询

通过查询stv_recents获得运行中查询的信息，如果想要取消某个查询，可以执行下述语句：

select cancel('query_id');

其中的query_id，是运行中查询的query_id信息，示例如下：

7.9 约束与限制
DDL/DML的约束限制

MaxCompute Lightning目前不支持update、create、delete、insert操作，仅支持对MaxCompute表

进行select，后续版本将陆续开放相关能力。

MaxCompute User Guide / 7 Lightning

190 文档版本：20180904

查询约束限制

• 查询分区表时，扫描分区数的最大值为1024。

• 目前不支持创建和使用View。

• 目前不支持的数据类型：map、array、tinyint和timestamp（陆续支持中）。

• 每个查询中对单张表最大的数据扫描量为1TB。

• 提交的查询语句的长度不超过100KB。

• 查询超时时间为1小时。

UDF约束限制

• 当前不支持在Maxcompute Lightning使用MaxCompute创建的UDF。

• 当前不支持在Maxcompute Lightning中创建和使用PostgreSQL UDF（支持使用PostgreSQL内

建函数）。

Query并发约束

单个MaxCompute项目的MaxCompute Lightning查询并发数限制为20。

7.10 Lightning常见问题
• Q：还没有建表的情况下，可以用MaxCompute Lightning查什么数据？

A：您需要先通过DataWorks或odpscmd客户端工具，在MaxCompute项目中创建数据表，加载

数据。然后通过MaxCompute Lightning连接到该项目，此时便可查看到项目内的表，并对这些

表进行查询。

• Q：MaxCompute Lightning是否限制查询的数据量？查询多大规模的数据性能较好？

A：目前每次查询对单表的扫描数据量限制为1TB，数据量越小查询性能越好。

说明：

建议不要扫描超过100GB的表数据。超过100GB的表数据虽然仍可查询，但查询性能会随

数据规模增长逐渐下降。如果需要扫描量超过100GB的查询，建议您根据性能表现考虑使用

MaxCompute SQL。

• Q：使用BI工具，通过拖拽方式选择一张分区表进行分析时，提示报错：ERROR: AXF

Exception: specified partitions count in odps table: <project_na

me.table_name> is: xxx, exceeds the limitation of xxx, please add

stricter partition filter。

A：MaxCompute Lightning为保障查询性能，对分区表的分区数量进行了限制，一次查询所扫描

的单表最大分区数量不能超过1024。由于部分BI工具使用拖拽方式选择表直接进行分析，不能BI

https://www.postgresql.org/docs/8.2/static/functions.html

MaxCompute User Guide / 7 Lightning

文档版本：20180904 191

前端指定分区条件，导致请求扫描的分区数超限制、触发了Lightning限制而报错提示。建议先对

查询的数据表进行加工处理，处理为非分区表或分区小于1024的表再进行分析。

• Q：连接时提示创建数据连接失败: ERROR: SSL required。

A：MaxCompute Lightning要求SSL连接服务，需要客户端指定以SSL方式连接。如果使用客

户端工具，可以选择SSL连接选项。如果没有相关选项，可以在JDBC URL连接串中增加SSL参

数，需要替换为您项目所在region的endpoint、连接的项目名称，例如jdbc:postgresql://

lightning.cn-shanghai.maxcompute.aliyun.com:443/myproject?ssl=true。

• Q：使用Workbench/J客户端查询时提示Error:current transaction is aborted,

commands ignored until end of transaction block。

A：使用的客户端请勾选Autocommit选项。

MaxCompute User Guide / 8 Common commands

192 Issue: 20180904

8 Common commands

8.1 Overview of common commands
This module explains how to use the relevant commands through the client to help you quickly

understand MaxCompute.

The latest MaxCompute service adjusts the usual commands, the new command style is more

closely used by hive, which is convenient for original hadoop/hive users.

MaxCompute offers many operations for projects, tables, resources, instances, and other objects.

You can perform operations on these objects using the console commands and SDK.

Note:

• The common commands introduced in this module are mainly targeted at latest version of the

console.

• If you want to learn how to install and configure clients, see Quick Start.

• For more information about the SDK, see MaxCompute SDK introduction.

8.2 Project operations
Enter the project

Command format:

use <project_name>;

Action:

• Enter the specified project. After entering the project, all objects in this project can be operated

 by the user.

• If the project does not exist or the current user is not in this project, an exception is returned.

Example:

odps:my_project>use my_project; --my_project is a project the user has
 privilege to access.

Note:

The preceding examples uses the MaxCompute client. All MaxCompute command keywords,

project names, table names, column names are case insensitive.

MaxCompute User Guide / 8 Common commands

Issue: 20180904 193

After running the command, you can access the objects of this project. In the following example,

assume that test_src exists in the project ‘my_project’. Run the following command:

odps:my_project>select * from test_src;

MaxCompute automatically searches the table in my_project. If the table exists, it returns the data

of this table. If the table does not exist, an exception is thrown. To access the table test_src in

another project, such as ‘my_project2’, through the project ‘my_project’, you must first specify the

project name as follows:

odps:my_project>select * from my_project2.test_src;

The returned data is the data in my_project2, not the initial data of test_src in my_project.

MaxCompute does not support commands to create or delete projects. You can use the

MaxCompute console for additional configurations and operations as needed.

8.3 Table operations
This article explains how to use the common commands to operate tables in the MaxCompute

client.

If you want to operate a table, you can use common commands in the client, and you can

also easily collect tables, apply permissions, and view partitions through the visible data table

management in DataWorks. For more information, see Table Details.

Create tables

Command format:

CREATE TABLE [IF NOT EXISTS] table_name
 [(col_name data_type [COMMENT col_comment], ...)]
 [COMMENT table_comment]
 [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
 [LIFECYCLE days]
 [As select_statement]
CREATE TABLE [IF NOT EXISTS] table_name
 LIKE existing_table_name

Action:

Create a table.

Note:

https://www.alibabacloud.com/help/doc-detail/30288.html

MaxCompute User Guide / 8 Common commands

194 Issue: 20180904

• Both the table name and column name are case insensitive and follow the same naming

conventions. The name can be up to 128 bytes in length and can contain letters, numbers,

and underscores (_).

• The comment content is an effective string, and it can be up to 1,024 bytes in length.

• [LIFECYCLE days]: The parameter ‘days’ refers to the time required to complete a ‘Table

Operation’ lifecycle. It must be a positive integer. The unit is ‘day’.

• Suppose that the ‘table_name’ is no-partition table. If calculated from the last updated date,

the data is still not modified after N (days), then MaxCompute automatically recycles the table

without user intervention (similar to ‘drop table’ operation).

• Suppose that the ‘table_name’ is a partition table. MaxCompute determines whether to recycle

 the table according to LastDataModifiedTime of each partition. Unlike non-partitioned tables,

a partitioned table is not deleted after all its partitions are reclaimed. The lifecycle can only be

created for tables and not for the specified partitions.

Example:

CREATE TABLE IF NOT EXISTS sale_detail(
 shop_name STRING,
 customer_id STRING,
 total_price DOUBLE)
PARTITIONED BY (sale_date STRING,region STRING); --Create a partition
table sale_detail.

Drop Table

Command format:

DROP TABLE [IF EXISTS] table_name; -- Table name to be deleted.

Action:

• Delete a table.

• If the option [IF EXISTS] is specified, regardless of whether the table exists or not, the return is

successful. If the option [IF EXISTS] is not specified, and the table does not exist, an exception

 is returned.

Example:

DROP TABLE sale_detail; -- If the table exists, success returns.

MaxCompute User Guide / 8 Common commands

Issue: 20180904 195

DROP TABLE IF EXISTS sale_detail; -- No matter whether the table
sale_detail exists or not, success returns.

Describe Table

Command format:

DESC <table_name>; -- Table name or view name.
DESC extended <table_name>; -- View the extended table information.

Action:

Return information of a specified table, includes:

• Owner: The owner of the table.

• Project: The project to which a table belongs.

• CreateTime: The creation time of the table.

• LastDDLTime: The last DDL operation.

• LastModifiedTime: The last time of table modification.

• InternalTable: Indicates the object to be described is table. The value is ‘YES’ by default.

• Size: Storage size occupied by table data, usually the compression ratio is 5. The unit is Byte.

• Native Columns: Non-partition column information, including column name, type, comment.

• Partition Columns: Partition column information, including partition name, type, and comment.

• Extended Info: The information of extended table, such as StorageHandler and Location.

Example:

odps@ project_name>DESC sale_detail; -- Describe a partition table.
+--
+
| Owner: ALIYUN$odpsuser@aliyun.com | Project: test_project |
| TableComment: |
+--
+
| CreateTime: 2014-01-01 17:32:13 |
| LastDDLTime: 2014-01-01 17:57:38 |
| LastModifiedTime: 1970-01-01 08:00:00 |
+--
+
| Internaltable: Yes | size: 0 |
+--
+
| Native Columns: |
+--
+
| Field | Type | Comment |
+--
+
shop_name	string	
customer_id	string	
total_price	double	

MaxCompute User Guide / 8 Common commands

196 Issue: 20180904

+--
+
| Partition Columns: |
+--
+
| sale_date | string | |
| region | string | |
+--
+

Note:

• The preceding example is executed using the MaxCompute client.

• If the table has no partition, the information of Partition Columns is not displayed.

• To describe a 'View', the option ‘InternalTable’ cannot be displayed but the option ‘VirtualView’

can be displayed and its value is ‘YES’ by default. Similarly, the 'Size' option is replaced by the

'View Text' option, which represents the definition of the view, for example: select * from

src. For more information, seeView operations.

View partition table

Command format:

desc table_name partition(pt_spec

Action:

View the specific partition information of a partition table.

Example:

odps@ project_name>desc meta.m_security_users partition (ds='20151010
');
+--
+
| PartitionSize: 2109112 |
+--
+
| CreateTime: 2015-10-10 08:48:48 |
| LastDDLTime: 2015-10-10 08:48:48 |
| LastModifiedTime: 2015-10-11 01:33:35 |
+--
+
OK

Show Tables/Show Tables like

Command format:

SHOW TABLES;

MaxCompute User Guide / 8 Common commands

Issue: 20180904 197

SHOW TABLES like 'chart';

Action:

• SHOW TABLES: List all tables of current project.

• SHOW TABLES like 'chart': Lists the tables on which the following table names of the current

project match the 'chart'. Regular expressions are supported.

Example:

odps@ project_name>show tables;
odps@ project_name>show tables like 'ods_brand*';
ALIYUN$odps_user@aliyun.com:table_name
......

Note:

• The preceding example is executed using the MaxCompute client.

• ALIYUN is a system prompt, indicating the you are an Alibaba Cloud user.

• In this example,odps_user@aliyun.com is the creator of the table in this example.

• In this example,table_name is the name of the table.

Show Partitions

Command format:

SHOW PARTITIONS ; -- table_name: Specify the table to be queried. If
the table does not exist or it is not a partition table, an exception
is thrown.

Action:

List all partitions of a table.

Example:

odps@ project_name>SHOW PARTITIONS table_name;
partition_col1=col1_value1/partition_col2=col2_value1
partition_col1=col1_value2/partition_col2=col2_value2
…

Note:

• The preceding example is executed using the MaxCompute client.

• Partition_col1 and partition_col2 are the partition columns of the table.

MaxCompute User Guide / 8 Common commands

198 Issue: 20180904

• Col1_value1, col2_value1, col1_value2, and col2_value2 are corresponding values of the

partition columns.

8.4 Instances
Show instances/Show P

Command format:

SHOW INSTANCES [FROM startdate TO enddate] [number];
SHOW P [FROM startdate TO enddate] [number];
SHOW INSTANCES [-all];
SHOW P [-all];

Action:

Displays the information about the instances created by the current users.

Parameters:

• startdate、enddate: Returns the instance information during the specified period (from

startdate to enddate) in the yyyy-mm-dd format and the unit is ‘day’. The parameters are

optional. If the parameters are not specified, instances submitted within three days are returned

by default.

• number: Specifies the number of instances to be displayed. Based on the scheduled time,

return N (number) instances nearest to the current time. If not specified, all instances that meet

the requirements are shown.

• -all: The information of all instances that meet requirements is returned. To execute the

command, you must have the 'list' permission for the project. This command can only return 50

records by default. You can -limit number to show more record. For example, use show p

 -all -limit number 100 to show 100 instance records in the project.

• The output items: Include StartTime (the time accurate to seconds), RunTime (s) and Status (

including Waiting, Success, Failed, Running, Cancelled, and Suspended).

InstanceID and corresponding SQL are as follows:

StartTime RunTime Status InstanceID Query
2015-04-28 13:57:55 1s Success 20150428xxxxxxxxxxxxxxxxxx ALIYUN$xxxxx
@aliyun-inner.com select * from tab_pack_priv limit 20;
...
...

The probable status of an instance is as follows:

• Running

MaxCompute User Guide / 8 Common commands

Issue: 20180904 199

• Success

• Waiting

• Failed (job failed but data in the target table is modified)

• Suspended

• Canceled

Note:

The commands from the preceding example run in MaxCompute client.

 Status Instance

Command format:

status <instance_id>; -- instance_id: the unique identifier of an
instance, to specify which instance to be queried.

Action:

• Query the status of specified instance, such as Success, Failed, Running, and Cancelled.

• If this instance is not created by the current user, exception is returned.

Example:

odps@ $project_name>status 20131225123xxxxxxxxxxxxxxx;
Success

Query the status of an instance which ID is 20131225123xxxxxxxxxxxxxxx, and the result is

Success.

Note:

The commands from the preceding example run in MaxCompute client.

Top Instance

Command format:

 top instance;top instance -all;

Action:

Permission requirements: The user must be a project owner or administrator.

MaxCompute User Guide / 8 Common commands

200 Issue: 20180904

top instance: Displays the job information of the current account that is running in the project.

It is displayed, includesding ISNTANCEID , Owner, Type, StartTime, Progress, Status, Priority,

RuntimeUsage (CPU/MEM), TotalUsage (CPU/MEM), QueueingInfo (POS/LEN) and so on.

top instance-all : Returns all jobs that are currently being executed in the current project.

This command can only return 50 records by default. You can user -limit number to show

more record.

Example:

odps@ $project_name>top instance;

Note:

The commands from the preceding example run in MaxCompute client (version 0.29.0 or later).

 Kill Instance

Command format:

kill <instance_id>; -- instance_id: The unique identifier of an
instance, which must be ID of an instance whose status is 'Running',
otherwise, an error is returned.

Action:

Stop specified instance. The instance must be in the Running status.

Example:

odps@ $project_name>kill 20131225123xxxxxxxxxxxxxxx;

Stop the instance which ID is 20131225123xxxxxxxxxxxxxxx.

Note:

• The commands from the preceding example run in MaxCompute client.

• This is an asynchronous process. It does not mean that the distributed task has stopped after

the system accepts the request and returns the result. You can check whether the instance is

deleted by using the status command.

MaxCompute User Guide / 8 Common commands

Issue: 20180904 201

Desc Instance

Command format:

desc instance <instance_id>; -- instance_id: The unique identifier of
an instance.

Action:

Get the job information according to instance ID, including SQL, owner, startime, endtime, status.

Example:

odps@ $project_name> desc instance 20150715xxxxxxxxxxxxxxx;
ID 20150715xxxxxxxxxxxxxxx
Owner ALIYUN$XXXXXX@alibaba-inc.com
StartTime 2015-07-15 18:34:41
EndTime 2015-07-15 18:34:42
Status Terminated
console_select_query_task_1436956481295 Success
Query select * from mj_test;

Query all the job information related to the instance whose ID is 20150715xxxxxxxxxxxxxxx.

Note:

The commands from the preceding example run in MaxCompute client.

Wait instance

Command format:

wait <instance_id>; -- instance_id: The unique identifier of an
instance.

Action:

Get running task information, including logs based on the instance ID and a logview link. View task

 details by accessing the logview link.

Example:

wait 201709251611xxxxxxxxxxxxxx;
ID = 201709251611xxxxxxxxxxxxxx
Log view:
http://logview.odps.aliyun.com/logview/?h=http://service.odps.aliyun.
com/xxxxxxxxxx
Job Queueing...
Summary:
resource cost: cpu 0.05 Core * Min, memory 0.05 GB * Min
inputs:
 alian.bank_data: 41187 (588232 bytes)
outputs:
 alian.result_table: 8 (640 bytes)

MaxCompute User Guide / 8 Common commands

202 Issue: 20180904

Job run time: 2.000
Job run mode: service job
Job run engine: execution engine
M1:
 instance count: 1
 run time: 1.000
 instance time:
 min: 1.000, max: 1.000, avg: 1.000
 input records:
 TableScan_REL5213301: 41187 (min: 41187, max: 41187,
avg: 41187
)
 output records:
 StreamLineWrite_REL5213305: 8 (min: 8, max: 8, avg: 8)
R2_1:
 instance count: 1
 run time: 2.000
 instance time:
 min: 2.000, max: 2.000, avg: 2.000
 input records:
 StreamLineRead_REL5213306: 8 (min: 8, max: 8, avg: 8)
 output records:
 TableSink_REL5213309: 8 (min: 8, max: 8, avg: 8)

8.5 Resources
This article explains how to use common commands to operate resources in the MaxCompute

client.

You can also search and upload resources using the visualized online data development tools in

DataWorks. For more information, see Resource management.

Add a resource

Command format:

add file <local_file> [as alias] [comment 'cmt'][-f];
add archive <local_file> [as alias] [comment 'cmt'][-f];
add table <table_name> [partition <(spec)>] [as alias] [comment 'cmt']
[-f];
add jar <local_file.jar> [comment 'cmt'][-f];

Parameters

• file/archive/table/jar: Indicates the resource type. For more information, see

Resources.

• local_file: Indicates path of the local file, and uses this file name as the resource name.

Resource name also acts as a unique identifier of a resource.

• table_name: Indicates table name in MaxCompute. Currently, external tables cannot be

added into resource.

https://www.alibabacloud.com/help/doc-detail/56960.html

MaxCompute User Guide / 8 Common commands

Issue: 20180904 203

• [PARTITION (spec)]: When the resource to be added is a partition table, MaxCompute

only supports taking a partition as a resource, not the entire partition table.

• alias: Specifies a resource name. If this parameter is not specified, the file name is used as a

resource name by default. Jar and Python resources do not support this function.

• [comment ‘cmt’]: Adds a comment for the resource.

• [-f]: If a name is duplicated, this parameter can be added as a substitute to the original

resource. If this parameter is not specified and the duplicate resource name exists, the

operation fails.

Example

odps@ odps_public_dev>add table sale_detail partition (ds='20150602')
as sale.res comment 'sale detail on 20150602' -f;
OK: Resource 'sale.res' have been updated.
---Add a resource named sale.res in MaxCompute.

Note:

Each resource file size cannot exceed 500 MB. The resource size referenced by a single SQL or

MapReduce task cannot exceed 2048 MB. For more information about, see MR Restrictions.

Delete a resource

Command format:

DROP RESOURCE <resource_name>; --resource_name：a specified resource
name.

View the resource list

Command format:

LIST RESOURCES;

Action:

View all resources in the current project.

Example:

odps@ $project_name>list resources;
Resource Name Comment Last Modified Time Type
1234.txt 2014-02-27 07:07:56 file

MaxCompute User Guide / 8 Common commands

204 Issue: 20180904

mapred.jar 2014-02-27 07:07:57 jar

Download resources

Use the following command format to download resources:

GET RESOURCE <resource_name> <path>;

Action:

Download resources to your local device. The resource type must be file, jar, archive, or py.

Example:

odps@ $project_name>get resource odps-udf-examples.jar d:\;
OK

8.6 Functions
This article explains how to use common commands to operate functions in the MaxCompute

client.

You can also operate functions using the visualized online data development tools in DataWorks.

For more information, see Function Management.

Create a Function

Command format:

CREATE FUNCTION <function_name> AS <package_to_class> USING <
resource_list>;

Parameters

• function_name: An UDF name referenced in SQL.

• package_to_class: For Java UDF, this name is a fully qualified class name (from top-

level package name to UDF class name). This parameter must be in double quotation marks.

 And, for Python UDF, this name is a python script name. classname. For both Java UDF and

python script, use double quotation (““) marks to indicate this parameter. And for the name, use

quotation marks.

• resource_list: Provides resource list used by UDF.

▬ Resources that contain UDF code must be included in the list.

▬ If the code reads the resource file by the distributed cache interface, this list also contains

the list of resource files read by the UDF.

https://www.alibabacloud.com/help/doc-detail/30278.html

MaxCompute User Guide / 8 Common commands

Issue: 20180904 205

▬ The resource list is composed of multiple resource names, separated by a comma (,). The

resource list must be in double quotation (“”) marks.

▬ Specify the project in which the resource is located as follows: <project_name>/

resources/<resource_name>.

Example:

• Suppose a Java UDF class org.alidata.odps.udf.examples.Lower is in my_lower.jar, create

function my_lower as follows:

CREATE FUNCTION test_lower AS org.alidata.odps.udf.examples.Lower
USING my_lower.jar;
USING 'my_lower.jar';

• Suppose a Python UDF MyLower is used in project pyudf_test.py,create function my_lower as

follows:

 create function test_lower as 'pyudf_test.MyLower'
using 'test_project/resources/pyudf_test.py';

• Suppose a Java UDF class com.aliyun.odps.examples.udf.UDTFResource is in

udtfexample1.jar, and it depends on file resource file_resource.txt and table resource

table_resource1,create function test_udtf as follows:

create function test_udtf as com.aliyun.odps.examples.udf.UDTFResour
ce using 'udtfexample1.jar, file_resource.txt, table_resource1,
test_archive.zip';

Note:

• Similar to the resource files, the UDF duplicate name can be registered only once.

• Generally UDF cannot overwrite system built-in functions. Only the project owner has right to

 overwrite the built-in functions. If you are using a UDF which overwrites the built-in function,

the warning is triggered in Summary after SQL execution.

MaxCompute User Guide / 8 Common commands

206 Issue: 20180904

Drop a Function

Command format:

DROP FUNCTION <function_name>;

Example:

DROP FUNCTION test_lower;

List Functions

Command format:

list functions; --View all user-defined functions in current project.
list functions -p my_project; --View all user-defined functions in the
 project 'my_project'.

8.7 Other operations
Alias command

The ALIAS command reads different resources (data) using a fixed resource name in MapReduce

or UDF without modifying the code.

Command format:

ALIAS <alias>=<real>;

Action:

Create alias for a resource.

Example:

ADD TABLE src_part PARTITION (ds='20121208') AS res_20121208;
ADD TABLE src_part PARTITION (ds='20121209') AS res_20121209;
ALIAS resName=res_20121208;
jar -resources resName -libjars work.jar -classpath ./work.jar com.
company.MainClass args ... ;//job 1
ALIAS resName=res_20121209;
jar -resources resName -libjars work.jar -classpath ./work.jar com.
company.MainClass args ... ;//job 2

In the preceding example, resource alias resName refers to different resource tables in two jobs.

Different data can be read without modifying the code.

MaxCompute User Guide / 8 Common commands

Issue: 20180904 207

Set

Command format:

set [<KEY>=<VALUE>]

Action:

Use the set command to set MaxCompute or a user-defined system variables to bring

MaxCompute operations to effect.

Currently, the system variables supported in MaxCompute are as follows:

--Set commands supported by MaxCompute SQL and Mapreduce (new version)
set odps.sql.allow.fullscan= --Set whether to allow a full table scan
 on a partitioned table. True means allow, and false means not allow.
set odps.stage.mapper.mem= --Set the memory size of each map worker
. Unit is M and default value is 1024M.
set odps.stage.reducer.mem= --Set the memory size for each reduce
worker in the unit of M. The default value is 1,024M.
set odps.stage.joiner.mem= --Set the memory size of each join worker
. Unit is M and default value is 1024M.
set odps.stage.mem = --Set the memory size of all workers in
MaxCompute specified job. The priority is lower than preceding three
set key. Unit is M and no default value.
set odps.stage.mapper.split.size= -- Modify the input data quantity
of each map worker; that is the size of input file burst. Thus control
 the worker number of each map stage. Unit is M and the default value
is 256M.
set odps.stage.reducer.num= --Modify the worker number of each
reduce stage and no default value.
set odps.stage.joiner.num= --Modify the worker number of each join
stage and no default value.
set odps.stage.num= --Modify the worker concurrency of all stages
 in MaxCompute specified job. The priority is lower than preceding
three set key and no default value.
set odps.sql.type.system.odps2= --The default value is false. You
must set true when there are new data types such as TINYINT, SMALLINT
, INT, FLOAT, VARCHAR, TIMESTAMP, and BINARY in SQL statement.

Show flags

Command format:

show flags; --Display the parameters set by the Set command.

Action:

Running the Use Project command can clear the configurations set by the Set command.

MaxCompute User Guide / 8 Common commands

208 Issue: 20180904

SetProject

Command format:

setproject [<KEY>=<VALUE>];

Action:

• Use setproject command to set project attributes.

The following example sets the method that allows a full table scan.

setproject odps.sql.allow.fullscan = true;

• If the value of <KEY>=<VALUE> is not specified, the current project attribute configuration is

displayed. Command format:

setproject; --Display the parameters set by the setproject command.

Parameters

Property name Configured

permission

Description Value range

odps.sql.allow.fullscan ProjectOwn
er

Determines whether to allow a full
table scan.

True (permitted) /
false (prohibited)

odps.table.drop.
ignorenonexistent

All users Whether to report an error when
deleting a table that does not exist
. When the value is true, no error is
 reported.

True (no error
reported)/false

odps.security.ip.whitelist ProjectOwn
er

Specify an IP whitelist to access
the project.

IP list separated
by commas (,)

odps.table.lifecycle ProjectOwn
er

optional: when creating a table, the
 lifecycle substatement is optional
. If you do not set the lifecycle
, the table will be permanently
valid. mandatory: the lifecycle
substatement is required. inherit: if
 you do not set the lifecycle, odps
.table.lifecycle.value will be the
lifecycle of this table.

optional /required
/inherit

odps.table.lifecycle.value ProjectOwn
er

Default lifecycle. Default value [1-
37231]

MaxCompute User Guide / 8 Common commands

Issue: 20180904 209

Property name Configured

permission

Description Value range

odps.instance.remain.
days

ProjectOwn
er

Determines the duration of the
retention of the instance informatio
n.

[3- 30]

READ_TABLE
_MAX_ROW

ProjectOwn
er

The number of data entries
returned by running the Select
statement in the client.

[1-10000]

Take odps.security.ip.whitelist as an example

MaxCompute supports a project level IP whitelist.

Note:

• If the IP whitelist is configured, only the IP (console IP or IP of exit where SDK is located) in

the whitelist can access this project.

• After setting the IP white list, wait for at least five minutes to let the changes take effect.

• For further assistance, open a ticket to contact Alibaba Cloud technical support team.

The following are the three formats for an IP list in the whitelist, which can appear in the same

command. Use commas (,) to separate these commands.

• IP address: For example, 101.132.236.134.

• Subnet mask: For example, 100.116.0.0/16.

• Network segment: For example, 101.132.236.134-101.132.236.144.

Example of the command line tool set the IP white list:

setproject odps.security.ip.whitelist=101.132.236.134,100.116.0.0/16,
101.132.236.134-101.132.236.144;

If no IP address is added in the whitelist, then the whitelist function is disabled.

setproject odps.security.ip.whitelist=;

Cost SQL

Command format:

cost sql <SQL Sentence>;

Action:

MaxCompute User Guide / 8 Common commands

210 Issue: 20180904

Estimate an SQL measurement message, including the size of the input data, the number of

UDFs, and the SQL complexity level.

Note:

Use the following information for reference purpose only. Refrain from using it as an actual

charging standard.

Example:

odps@ $odps_project >cost sql select distinct project_name, user_name
 from meta.m_security_users distribute by project_name sort by
project_name;
ID = 20150715113033121xxxxxxxx
Input:65727592 Bytes
UDF:0
Complexity:1.0

MaxCompute User Guide / 9 Data upload and download

Issue: 20180904 211

9 Data upload and download

9.1 Data upload and download
This article provides a brief introduction about the upload and download process of the

MaxCompute system data, including service connection, SDKs, tools, and cloud data migration.

The DataHub and Tunnel offers the real-time data tunnel and the batch data tunnel respectively to

 access the MaxCompute system.

Both DataHub and Tunnel provide their own SDKs. The SDKs and derivative data upload and

download tools can suffice your data upload and download requirements in various scenarios.

Data upload and download tools include: DataWorks, DTS, OGG plugin, Sqoop, Flume plugin,

Logstash plugin, Fluentd plugin, Kettle plugin, MaxCompute console.

Underlying data tunnels used by these tools include:

• DataHub tunnel tools

▬ OGG

▬ Flume

▬ LogStash

▬ Fluentd

• Tunnel tools

▬ DataWorks

▬ DTS

▬ Sqoop

▬ Kettle

▬ MaxCompute console

A wide range of data upload and download tools are applicable to most of the cloud data migration

 scenarios. The subsequent articles introduce the tools, Hadoop data migration, database data

synchronization, log collection, and other cloud migration scenarios. We recommend that you refer

 to these articles when you select the technical solutions.

9.2 Cloud data migration
Data upload and data download tools of the MaxCompute platform can be used for a wide range

of cloud data migration scenarios. This article introduces some typical scenarios.

MaxCompute User Guide / 9 Data upload and download

212 Issue: 20180904

Hadoop data migration

For Hadoop data migration, either use Sqoop or DataWorks.

• Sqoop runs an MR job on the original Hadoop cluster for the distributed data transmission to

MaxCompute and is highly efficient. For more information, see Sqoop tool introduction.

• DataWorks can be combined with DataX for Hadoop data migration.

Database synchronization

To synchronize the data of a database to MaxCompute, select an appropriate tool based on the

database type and synchronization rule.

• For offline batch data synchronization, use DataWorks. It supports a wide range of database

types, including MySQL, SQL Server, and PostgreSQL. For more information, see Data

synchronization introduction. For instance operation instructions, see Create a synchronization

 task.

• For real-time Oracle data synchronization, use OGG plug-in tools.

• For real-time RDS data synchronization, use DTS.

Log collection

For log collection, use Flume, Fluentd, and Logstash tools.

9.3 Data upload and download tools
The MaxCompute platform supports a wide range of data upload and download tools. The source

code for most of the tools can be found on GitHub, the open-source community to upload and

download the data. You can select the tool according to the scenario. The tools are divided into

two types: Alibaba Cloud DTplus products and open-source products. This article helps you learn

more about these tools.

Alibaba Cloud DTplus products

• Data integration of DataWorks

Data Integration, or data synchronization, of DataWorks is a stable, efficient, and scalable

data synchronization platform provided by Alibaba Cloud. It is designed to provide full offline

 and incremental real-time data synchronization, integration, and exchange services for the

heterogeneous data storage systems on Alibaba Cloud.

Data synchronization tasks support the following data types: MaxCompute, RDS (MySQL, SQL

Server, and PostgreSQL), Oracle, FTP, AnalyticDB (ADS), OSS, Memcache, and DRDS. For

http://sqoop.apache.org/
https://www.alibabacloud.com/help/doc-detail/47677.html
https://www.alibabacloud.com/help/doc-detail/47677.html
https://www.alibabacloud.com/help/doc-detail/30269.htm
https://www.alibabacloud.com/help/doc-detail/30269.htm

MaxCompute User Guide / 9 Data upload and download

Issue: 20180904 213

more information, see Data synchronization introduction, and for methods of use, see Create a

 data synchronization task.

• MaxCompute console

▬ For information about console installation and basic use, see Client introduction.

▬ Based on the Batch data tunnel SDK, the client provides built-in Tunnel commands for data

upload and download. For more information, see Basic Tunnel command usage.

Note:

This is an open-source aliyun-odps-console.

• DTS

Data Transmission (DTS) is a data service provided by Alibaba Cloud that supports data

exchanges between RDBMS, NoSQL, OLAP, and other data sources. It provides data

migration, real-time data subscription, real-time data synchronization, and other data

transmission features.

DTS supports data synchronization from ApsaraDB for RDS and MySQL instances to

MaxCompute tables. Currently, other data source types are not supported.

Open-source products

• Sqoop

As a tool developed based on the Sqoop 1.4.6 community, Sqoop provides enhanced

MaxCompute support with the ability to import and export data from MySQL and other

relational databases to MaxCompute tables. Data in HDFS/Hive can also be imported to

MaxCompute tables.

Note:

This is an open-source aliyun-maxcompute-data-collectors.

• Kettle

Kettle is an open-source ETL tool based on Java which can run on Windows, Unix, or Linux. It

provides graphic interfaces for you to easily define data transmission topology using drag-and-

drop components.

Note:

This is an open-source aliyun-maxcompute-data-collectors.

https://www.alibabacloud.com/help/doc-detail/47677.html
https://www.alibabacloud.com/help/doc-detail/30269.html
https://www.alibabacloud.com/help/doc-detail/30269.html
https://github.com/aliyun/aliyun-odps-console
https://www.alibabacloud.com/help/doc-detail/26592.html
https://github.com/aliyun/aliyun-maxcompute-data-collectors
https://github.com/aliyun/aliyun-maxcompute-data-collectors?spm=a2c4g.11186623.2.15.oSXp9R

MaxCompute User Guide / 9 Data upload and download

214 Issue: 20180904

• Flume

Apache Flume is a distributed and reliable system, which efficiently collects, aggregates, and

moves massive volumes of log data from different data sources to a centralized data storage

system. It supports multiple Source and Sink plugins.

The DataHub Sink plug-in of Apache Flume allows you to upload log data to DataHub in real

time and archive the data in the MaxCompute tables.

Note:

This is an open-source aliyun-maxcompute-data-collectors.

• Fluentd

Fluentd is an open-source software product that collects logs, including Application Logs,

System Logs, and Access Logs, from various sources. It allows you to select plug-ins to filter

and store log data to different data processors, including MySQL, Oracle, MongoDB, Hadoop,

and Treasure Data.

The DataHub plug-in of Fluentd allows you to upload data to DataHub in real time and archive

the data in MaxCompute tables.

• LogStash

Logstash is an open-source log collection and processing framework. The logstash-output-

datahub plugin allows you to import data to DataHub. This tool can be easily configured to

collect and transmit data. When used together with MaxCompute or StreamCompute, it allows

you to easily create an all-in-one streaming data solution right from data collection to analysis.

The DataHub plug-in of Logstash allows you to upload data to DataHub in real time and archive

 the data in MaxCompute tables.

• OGG

The DataHub plug-in of OGG allows you to incrementally synchronize the Oracle database

data to DataHub in real time and archive the data in MaxCompute tables.

Note:

This is an open-source aliyun-maxcompute-data-collectors.

https://github.com/aliyun/aliyun-maxcompute-data-collectors?spm=a2c4g.11186623.2.17.oSXp9R
https://github.com/aliyun/aliyun-maxcompute-data-collectors?spm=a2c4g.11186623.2.21.oSXp9R

MaxCompute User Guide / 9 Data upload and download

Issue: 20180904 215

9.4 Tunnel commands
Features

The Client provides Tunnel commands for you to use the functions of the original Dship tool.

Tunnel commands are mainly used to upload or download data.

• Upload: Supports file or directory (level-one) uploading. Data can only be uploaded to a

single table or table partition each time. For partitioned tables, the destination partition must be

specified.

tunnel upload log.txt test_project.test_table/p1="b1",p2="b2";
-- Uploads data in log.txt to the test_project project's test_table
table, partitions: p1="b1",p2="b2".
tunnel upload log.txt test_table --scan=only;
-- Uploads data from log.txt to the test_table table.--The scan
parameter indicates that the data in log.txt must be scanned to
determine if it complies with the test_table definitions.If it does
not, the system reports an error and the upload is stopped.

• Download: You can only download data to a single file. Only data in one table or partition

can be downloaded to one file each time. For partitioned tables, the source partition must be

specified.

tunnel download test_project.test_table/p1="b1",p2="b2" test_table.
txt;
-- Download data from the table to the test_table.txt file.

• Resume: If an error occurs because of network or the Tunnel service, you can resume

transmission of the file or directory after interruption. This command allows you to resume the

previous data upload operation, but does not support download operations.

tunnel resume;

• Show: Displays the history of the commands used.

tunnel show history -n 5;
-- Displays details for the last five data upload/download commands.
tunnel show log;
--Displays the log for the last data upload/download.

• Purge: Clears the session directory. Use this command to clear history for last three days.

tunnel purge 5;
--Clears logs from the previous five days.

Tunnel upload and download limits

Tunnel command does not support uploading and downloading data of the Array, Map, and Struct

 types.

MaxCompute User Guide / 9 Data upload and download

216 Issue: 20180904

Each session has a 24-hour life cycle on the server. It can be used within 24 hours after being

created, and can be shared among processes or threads. The block ID of each session must be

unique.

Use of Tunnel commands

Tunnel commands allows you to obtain help information using the Help sub-command on the

client. Each command and selection supports short command format.

odps@ project_name>tunnel help;
 Usage: tunnel <subcommand> [options] [args]
 Type 'tunnel help <subcommand>' for help on a specific subcommand.
Available subcommands:
 upload (u)
 download (d)
 resume (r)
 show (s)
 purge (p)
 help (h)
tunnel is a command for uploading data to / downloading data from
MaxCompute.

Parameters

• upload: Uploads the data to a MaxCompute table.

• download: Downloads the data from a MaxCompute table.

• resume: If data fails to be uploaded, use the Resume command to resume the upload from

where it was interrupted. Do not use this command for download operations. Each data upload

or download operation is called as a session. Run the Resume command and specify the

session ID to be resumed.

• show: Displays the history of the commands used.

• purge: Clears the session directory. Use this command to clear history for last three days.

• help: Provides 'help' information regarding questions related to Tunnel.

Upload

Import data of local files to MaxCompute tables in the append mode. The sub-commands are used

as follows:

odps@ project_name>tunnel help upload;
usage: tunnel upload [options] <path> <[project.]table[/partition]>
 upload data from local file
 -acp,-auto-create-partition <ARG> auto create target partition if not
 exists, default false
 -bs,-block-size <ARG> block size in MiB, default 100
 -c,-charset <ARG> specify file charset, default ignore.
 set ignore to download raw data
 -cp,-compress <ARG> compress, default true

MaxCompute User Guide / 9 Data upload and download

Issue: 20180904 217

 -dbr,-discard-bad-records <ARG> specify discard bad records
 action(true|false), default false
 -dfp,-date-format-pattern <ARG> specify date format pattern, default
 yyyy-MM-dd HH:mm:ss;
 -fd,-field-delimiter <ARG> specify field delimiter, support
 unicode, eg \u0001. default ","
 -h,-header <ARG> if local file should have table
 header, default false
 -mbr,-max-bad-records <ARG> max bad records, default 1000
 -ni,-null-indicator <ARG> specify null indicator string,
 default ""(empty string)
 -rd,-record-delimiter <ARG> specify record delimiter, support
 unicode, eg \u0001. default "\r\n
"
 -s,-scan <ARG> specify scan file
 action(true|false|only), default
true
 -sd,-session-dir <ARG> set session dir, default
 D:\software\odpscmd_public\
plugins\ds
 hip
 -ss,-strict-schema <ARG> specify strict schema mode. If false,
 extra data will be abandoned and
 insufficient field will be filled
 with null. Default true
 -te,-tunnel_endpoint <ARG> tunnel endpoint
 -threads <ARG> number of threads, default 1
 -tz,-time-zone <ARG> time zone, default local timezone:
 Asia/Shanghai
For example:
 tunnel upload log.txt test_project.test_table/p1="b1",p2="b2"

Parameters

• -acp: Determines if the operation automatically creates the destination partition if it does not

exist. This one is disabled by default.

• -bs: Specifies the size of each data block uploaded using Tunnel. Default value: 100MiB

(1MiB=1024*1024B) .

• -c: Specifies the local data file encoding. Default value: UTF-8. When not set, the encoding of

the downloaded source data is used by default.

• -cp: Determines whether the local file is compressed before being uploaded, reducing traffic

usage. It is enabled by default.

• -dbr: Determines whether to ignore corrupted data (including extra, missing columns or

mismatched column data types).

▬ If this value is true, all the data that does not satisfy table definitions is ignored.

▬ When the parameter is set to false, the system displays error messages in case of corrupted

 data, but the raw data in the destination table remains unaffected.

MaxCompute User Guide / 9 Data upload and download

218 Issue: 20180904

• -dfp: Specifies the format of DateTime data. Default value: yyyy-MM-dd HH:mm:ss. If you

want to specify the time format to the level of milliseconds, use tunnel upload -dfp '

yyyy-MM-dd HH:mm:ss.SSS', for more information, see Data types.

• -fd: Specifies the column delimiter of the local data file. The default value is comma (,).

• -h: Determines whether the data file contains the header. If it is set to true, Dship skips the

header and starts uploading from the next row.

• -mbr: By default, if more than 1,000 rows of corrupted data is uploaded, the upload is

terminated. This parameter allows you to adjust the tolerated volume of the corrupted data.

• -ni: Specifies the NULL data identifier. Default value: “ “(blank string).

• -rd: Specifies the row delimiter of the local data file. Default value: \r\n.

• -s: Determines whether to scan the local data file. Default value: false.

▬ If set to true, the system scans the data first, and then imports the data if the format is

correct.

▬ If set to false, the system imports the data directly without scanning.

▬ If the value is 'only', then only the local data is scanned. No data is imported after scanning.

• -sd: Sets the session directory.

• -te: Specifies the tunnel endpoint.

• -threads: Specifies the number of threads. Default value: 1.

• -tz: Specifies the time zone. The default value is the local time zone: Asia/Shanghai.

Example

• Create a destination table:

CREATE TABLE IF NOT EXISTS sale_detail(
 shop_name STRING,
 customer_id STRING,
 total_price DOUBLE)
PARTITIONED BY (sale_date STRING,region STRING);

• Add a partition:

alter table sale_detail add partition (sale_date='201312', region='
hangzhou');

• Prepare the data file data.txt with the following content:

shop9,97,100
shop10,10,200

MaxCompute User Guide / 9 Data upload and download

Issue: 20180904 219

shop11,11

The data of the third row of this file is not consistent with the definition in Table sale_detail. The

 three columns are defined by sale_detail, but this row only has two.

• Import data:

odps@ project_name>tunnel u d:\data.txt sale_detail/sale_date=201312
,region=hangzhou -s false
Upload session: 201506101639224880870a002ec60c
Start upload:d:\data.txt
Total bytes:41 Split input to 1 blocks
2015-06-10 16:39:22 upload block: '1'
ERROR: column mismatch -,expected 3 columns, 2 columns found, please
 check data or delimiter

Because data.txt contains corrupted data, data import fails. The system displays the session ID

 and error message.

• Verify data:

odps@ odpstest_ay52c_ay52> select * from sale_detail where sale_date
='201312';
ID = 20150610084135370gyvc61z5
+-----------+-------------+-------------+-----------+--------+
| shop_name | customer_id | total_price | sale_date | region |
+-----------+-------------+-------------+-----------+--------+
+-----------+-------------+-------------+-----------+--------+

The data import failed because of dirty data and hence the table is empty.

Show

Displays historical records. The sub-commands are used as follows:

odps@ project_name>tunnel help show;
usage: tunnel show history [options]
 show session information
 -n,-number <ARG> lines
For example:
 tunnel show history -n 5
 tunnel show log

Parameter

-n: Specifies the number of rows to be displayed.

Example

odps@ project_name>tunnel show history;
201506101639224880870a002ec60c failed 'u --config-file /D:/console
/conf/odps_config.ini --project odpstest_ay52c_ay52 --endpoint http
://service.odps.aliyun.com/api --id UlVxOHuthHV1QrI1 --key 2m4r3WvTZb

MaxCompute User Guide / 9 Data upload and download

220 Issue: 20180904

sNJjybVXj0InVke7UkvR d:\data.txt sale_detail/sale_date=201312,region=
hangzhou -s false'

Note:

With reference to the preceding example, 201506101639224880870a002ec60c is the session

ID of the failed data importing in the previous section.

Resume

Repairs and re-executes historical records (only valid for data uploads). The sub-commands are

used as follows:

odps@ project_name>tunnel help resume;
usage: tunnel resume [session_id] [-force]
 resume an upload session
 -f,-force force resume
For example:
 tunnel resume

Example

Modify the data.txt file as follows:

shop9,97,100
shop10,10,200

Re-upload the repaired data:

odps@ project_name>tunnel resume 201506101639224880870a002ec60c --
force;
start resume
201506101639224880870a002ec60c
Upload session: 201506101639224880870a002ec60c
Start upload:d:\data.txt
Resume 1 blocks
2015-06-10 16:46:42 upload block: '1'
2015-06-10 16:46:42 upload block complete, blockid=1
upload complete, average speed is 0 KB/s
OK

Note:

With reference to the preceding example, 201506101639224880870a002ec60c is session ID.

Verify data:

odps@ project_name>select * from sale_detail where sale_date='201312';
 ID = 20150610084801405g0a741z5
 +-----------+-------------+-------------+-----------+--------+
 | shop_name | customer_id | total_price | sale_date | region |
 +-----------+-------------+-------------+-----------+--------+
 | shop9 | 97 | 100.0 | 201312 | hangzhou |
 | shop10 | 10 | 200.0 | 201312 | hangzhou |

MaxCompute User Guide / 9 Data upload and download

Issue: 20180904 221

 +-----------+-------------+-------------+-----------+--------+

Download

The sub-commands are used as follows:

odps@ project_name>tunnel help download;
usage: tunnel download [options] <[project.]table[/partition]> <path>
 download data to local file
 -c,-charset <ARG> specify file charset, default ignore.
 set ignore to download raw data
 -ci,-columns-index <ARG> specify the columns index(starts from
 0) to download, use comma to split
each
 index
 -cn,-columns-name <ARG> specify the columns name to download,
 use comma to split each name
 -cp,-compress <ARG> compress, default true
 -dfp,-date-format-pattern <ARG> specify date format pattern, default
 yyyy-MM-dd HH:mm:ss
 -e,-exponential <ARG> When download double values, use
 exponential express if necessary.
 Otherwise at most 20 digits will be
 reserved. Default false
 -fd,-field-delimiter <ARG> specify field delimiter, support
 unicode, eg \u0001. default ","
 -h,-header <ARG> if local file should have table header,
 default false
 -limit <ARG> specify the number of records to
 download
 -ni,-null-indicator <ARG> specify null indicator string, default
 ""(empty string)
 -rd,-record-delimiter <ARG> specify record delimiter, support
 unicode, eg \u0001. default "\r\n"
 -sd,-session-dir <ARG> set session dir, default
 D:\software\odpscmd_public\plugins\
dshi
 p
 -te,-tunnel_endpoint <ARG> tunnel endpoint
 -threads <ARG> number of threads, default 1
 -tz,-time-zone <ARG> time zone, default local timezone:
 Asia/Shanghai
usage: tunnel download [options] instance://<[project/]instance_id> <
path>
 download instance result to local file
 -c,-charset <ARG> specify file charset, default ignore.
 set ignore to download raw data
 -ci,-columns-index <ARG> specify the columns index(starts from
 0) to download, use comma to split
each
 index
 -cn,-columns-name <ARG> specify the columns name to download,
 use comma to split each name
 -cp,-compress <ARG> compress, default true
 -dfp,-date-format-pattern <ARG> specify date format pattern, default
 yyyy-MM-dd HH:mm:ss
 -e,-exponential <ARG> When download double values, use
 exponential express if necessary.
 Otherwise at most 20 digits will be
 reserved. Default false
 -fd,-field-delimiter <ARG> specify field delimiter, support

MaxCompute User Guide / 9 Data upload and download

222 Issue: 20180904

 unicode, eg \u0001. default ","
 -h,-header <ARG> if local file should have table header,
 default false
 -limit <ARG> specify the number of records to
 download
 -ni,-null-indicator <ARG> specify null indicator string, default
 ""(empty string)
 -rd,-record-delimiter <ARG> specify record delimiter, support
 unicode, eg \u0001. default "\r\n"
 -sd,-session-dir <ARG> set session dir, default
 D:\software\odpscmd_public\plugins\
dshi
 p
 -te,-tunnel_endpoint <ARG> tunnel endpoint
 -threads <ARG> number of threads, default 1
 -tz,-time-zone <ARG> time zone, default local timezone:
 Asia/Shanghai
For example:
 tunnel download test_project.test_table/p1="b1",p2="b2" log.txt
 tunnel download instance://test_project/test_instance log.txt

Parameters

• -c: Specifies the local data file encoding. Default value: UTF-8.

• -ci: Specifies the column index (starts from 0) for downloading. Separate multiple entries with

commas (,).

• -cn: Specifies the names of the columns to download. Separate multiple entries with commas

(,).

• -cp, -compress: Determines whether the data is compressed before it is downloaded,

reducing traffic usage. It is enabled by default.

• -dfp: Specifies the format of DateTime data. Default value: yyyy-MM-dd HH:mm:ss.

• -e: When downloading Double type data, use this parameter to express the values as

exponential functions. Otherwise, a maximum of 20 digits can be retained.

• -fd: Specifies the column delimiter of the local data file. The default value is comma (,).

• -h: Determines whether the data file contains the header. If set to ‘true’, Dship skips the

header and starts downloading from the second row.

Note:

-h=true and threads>1 cannot be used together.

• -limit: Specifies the number of files to be downloaded.

• -ni: Specifies the NULL data identifier. Default value: “ “(blank string).

• -rd: Specifies the row delimiter of the local data file. Default value: \r\n.

• -sd: Sets the session directory.

• -te: Specifies the tunnel endpoint.

MaxCompute User Guide / 9 Data upload and download

Issue: 20180904 223

• -threads: Specifies the number of threads. Default value: 1.

• -tz: Specifies the time zone. The default value is the local time zone: Asia/Shanghai.

Example

Download data to the result.txt:

$./tunnel download sale_detail/sale_date=201312,region=hangzhou
result.txt;
 Download session: 201506101658245283870a002ed0b9
 Total records: 2
 2015-06-10 16:58:24 download records: 2
 2015-06-10 16:58:24 file size: 30 bytes
 OK

Verify the content of the result.txt:

shop9,97,100.0
shop10,10,200.0

Purge

Purge the session directory. By default, sessions for last three days are purged. The sub-

commands are used as follows:

odps@ project_name>tunnel help purge;
usage: tunnel purge [n]
 force session history to be purged.([n] days before,
default
 3 days)
For example:
 tunnel purge 5

Data types:

 Type Required

STRING String type data. The length cannot exceed 8MB.

BOOLEN Upload values only support true, false, 0, and 1. Only the values true or
false (not case-sensitive) are supported for downloading.

BIGINT Value range: [-9223372036854775807, 9223372036854775807].

DOUBLE • 16-bit valid.
• Uploads support expression in scientific notation.
• Supports only numerical expression for downloading.
• Max value: 1.7976931348623157E308.
• Min value: 4.9E-324.
• Positive infinity: Infinity.

MaxCompute User Guide / 9 Data upload and download

224 Issue: 20180904

 Type Required

• Negative infinity: -Infinity.

DATETIME By default, Datetime data supports the UTC+8 time zone for data
upload. Use the command to specify the format pattern for the date in
your data.

If you upload DATETIME type data, specify the time and date format. For more information about

specific formats, see SimpleDateFormat.

"yyyyMMddHHmmss": data format "20140209101000"
"yyyy-MM-dd HH:mm:ss" (default): data format "2014-02-09 10:10:00"
"MM/dd/yyyy": data format "09/01/2014"

Example

tunnel upload log.txt test_table -dfp "yyyy-MM-dd HH:mm:ss"

Null: All data types can be Null.

• By default, a blank string indicates a Null value.

• The parameter -null-indicator can be used in the command line to specify a Null string.

tunnel upload log.txt test_table -ni "NULL"

Character encoding: You can specify the character encoding of the file. Default value: UTF-8.

tunnel upload log.txt test_table -c "gbk"

Delimiter: The Tunnel commands support custom file delimiters. The row delimiter is ‘-record-

delimiter’, and the column delimiter is -field-delimiter.

Description:

• Row and column delimiters of multiple characters are supported.

• A column delimiter cannot contain a row delimiter.

• Only the follow escape character delimiters are supported in the command line: \r, \n, and \t.

Example

tunnel upload log.txt test_table -fd "||" -rd "\r\n"

9.5 Import or export data using the Data Integration
Use Data Integration function of DataWorks to create data synchronization tasks and import and

export MaxCompute data.

https://www.alibabacloud.com/help/doc-detail/47677.html

MaxCompute User Guide / 9 Data upload and download

Issue: 20180904 225

Prerequisites

Before importing or exporting data, complete the required operations first. For more information,

see Prepare an Alibaba Cloud account and Purchase and create a project.

Add MaxCompute data source

Note:

• Only the project administrator can create a data source. Other roles can only view the data

source.

• If the data source you want to add is a current MaxCompute project, skip this operation

. After this project is created and appears as a Data Integration data source, this project is

added as a MaxCompute data source named odps_first by default.

Procedure

1. Log on to the DataWorks console as an administrator and click Enter Workspace from the

Actions column of the relevant project in the Project List.

2. Select Data Integration from the upper navigation pane. Click Data Source from the left-side

navigation pane.

3. Click New Source.Select MaxCompute (ODPS) from the Large Data Storage section.

4. Enter required configurations in the data dialog box.

Parameters

• Name: Contains letters, numbers, and underscores (_). It must begin with a letter or an

underscore (_) , and cannot exceed 60 characters.

• Data source description: Provides a brief description of the data source, and cannot

exceed 80 characters.

• Data source type: Currently, it is ODPS.

• ODPS Endpoint: Read-only by default. The value is automatically read from the system

configuration.

• ODPS Item name: Name of the project, helps to identify the corresponding MaxCompute

project.

• Access ID: The Access ID associated with the account of the MaxCompute project owner.

• AccessKey: The AccessKey associated with the account of the MaxCompute project

owner, used in pairs with the Access ID.

https://workbench.data.aliyun.com/console?spm=a2c4g.11186623.2.7.bBZHDz

MaxCompute User Guide / 9 Data upload and download

226 Issue: 20180904

5. (Optional). Click Test Connectivity to test the connectivity after entering all the required

information in the relevant fields.

6. If the connectivity test is successful, click Save.

Note:

For more information about the other data sources configurations, see data source configuration.

Import data through Data Integration

Take importing MySQL data to MaxCompute as an example, you can configure a synchronization

task using Wizard Mode or Script Mode.

Configure a synchronization task in Wizard mode

1. Create a Wizard Mode synchronization task.

2. Select the source.

Select the MySQL data source and the source table “mytest”. The data browsing area is

collapsed by default. Click Next.

3. Select a Target.

The target must be a previously created MaxCompute table. You can also create a new table

by clicking Quick Table Creation.

Parameters

• Partition information: Specify every level of partition. When writing data to a table

with three levels of partitions, you must configure the last partition level, for example,

pt=20150101, type=1, biz=2. This item is unavailable for non-partitioned tables.

• Data clearing rules:

▬ Clear existing data before writing: Before data is imported to a table

or partition, all data in the table or partition is cleared, which is equivalent to Insert

Overwrite.

▬ Retain existing data before writing: Existing data is not cleared before new

data is imported. Each operation appends new data, which is equivalent to Insert Into.

4. Map the fields.

Select the mapping between fields. Configure the field mapping relationships. The Source

Table Fields on the left correspond one to one with the Target Table Fields on the right.

5. Control the channel.

https://www.alibabacloud.com/help/doc-detail/60416.html

MaxCompute User Guide / 9 Data upload and download

Issue: 20180904 227

Click Next to configure the maximum job rate and dirty data check rules.

Parameters

• Maximum job rate: Determines the highest rate possible for data synchronization jobs.

The actual rate of the job may vary with the network environment, database configuration,

and other factors.

• Concurrent job count: For a single synchronization job, Concurrent job count *

Individual job transmission rate = Total job transmission rate.

When a maximum job rate is specified, how do you select the concurrent job count?

• If your data source is an online business database, we recommend that you refrain from

 setting a large value for the concurrent job count to avoid interference with the online

database.

• If you require a high data synchronization rate, we recommend that you select the highest

job rate and a large concurrent job count.

6. Preview and store.

Make sure the configuration of the task is correct, and click Save.

Run a synchronization task

Run a synchronization task directly

If system variable parameters are set in the synchronization task, the variable parameter

configuration window is displayed during task operation.

After saving the task, click Run to run the task immediately. Click Submit and the synchronization

task will be submitted to the scheduling system of the DataWorks. The scheduling system

automatically and periodically runs the task from the second day according to the configuration

attributes. For more information on scheduling configurations, see Scheduling configuration

description.

Configure a synchronization task in Script mode

Use the following script to configure synchronization tasks. Other configurations and job operation

are the same as Wizard Mode.

{
 "type": "job",
 "version": "1.0",
 "configuration": {
 "reader": {
 "plugin": "mysql",

https://www.alibabacloud.com/help/doc-detail//50130.html
https://www.alibabacloud.com/help/doc-detail//50130.html

MaxCompute User Guide / 9 Data upload and download

228 Issue: 20180904

 "parameter": {
 "datasource": "mysql",
 "where": "",
 "splitPk": "id",
 "connection": [
 {
 "table": [
 "person"
],
 "datasource": "mysql"
 }
],
 "connectionTable": "person",
 "Column ":[
 "id",
 "name"
]
 }
 },
 "writer": {
 "plugin": "odps",
 "parameter": {
 "datasource": "odps_first",
 "table": "a1",
 "truncate": true,
 "partition": "pt=${bdp.system.bizdate}",
 "Column ":[
 "id",
 "col1"
]
 }
 },
 "Setting ":{
 "speed": {
 "mbps": "1",
 "concurrent": "1"
 }
 }
 }
}

References

• For the Reader configurations about different types of data sources, see Configure Reader

Plug-ins.

• For the Writer configurations about different types of data sources, see Configure Writer Plug-

ins.

9.6 Tunnel SDK

9.6.1 Summary
MaxCompute Tunnel is the data tunnel of MaxCompute. It helps in uploading and downloading

data to MaxCompute. However, Tunnel only supports table data upload and download.

https://www.alibabacloud.com/help/faq-list/49806.html
https://www.alibabacloud.com/help/faq-list/49806.html
https://www.alibabacloud.com/help/faq-list/49807.html
https://www.alibabacloud.com/help/faq-list/49807.html

MaxCompute User Guide / 9 Data upload and download

Issue: 20180904 229

Based on the Tunnel SDK, MaxCompute offers Data upload and download tools.

When using Maven, you can search for odps-sdk-core in the Maven database to find different

versions of Java SDK. The configuration is as follows: SDK (available in different versions).

<dependency>
 <groupId>com.aliyun.odps</groupId>
 <artifactId>odps-sdk-core</artifactId>
 <version>0.24.0-public</version>
</dependency>

This article describes the main interfaces of Tunnel SDK, which may differ according to the SDK

version. See SDK Java Doc.

Interface Description

TableTunnel The portal class interface to access the
MaxCompute Tunnel service. You can access
MaxCompute and its Tunnel using the Internet
 or intranet of Alibaba Cloud. No traffic fee is
 incurred when you use intranet to download
data through MaxCompute Tunnel. The intranet
 address is only valid for cloud products in the
Hangzhou region.

TableTunnel.UploadSession Indicates a process of uploading data to a
MaxCompute table.

TableTunnel.DownloadSession Indicates a process of downloading data from a
 MaxCompute table.

Note:

• For more information about the SDK, see SDK Java Doc.

• For more information about service connections, see Access Domains and Data Centers.

9.6.2 TableTunnel
TableTunnel is an ingress class that accesses the MaxCompute Tunnel service. The TableTunne

l.UploadSession interface is a session that uploads data to the MaxCompute table. The

TableTunnel.DownloadSession interface is a session that downloads data to the MaxCompute

table.

The TableTunnel interface is defined as follows:

public class TableTunnel {

http://search.maven.org/
http://repo.aliyun.com/java-sdk-doc/?spm=5176.doc34614.2.4.j5zSFu
http://repo.aliyun.com/java-sdk-doc/

MaxCompute User Guide / 9 Data upload and download

230 Issue: 20180904

 public DownloadSession createDownloadSession(String projectName,
String tableName);
 public DownloadSession createDownloadSession(String projectName,
String tableName, PartitionSpec partitionSpec);
 public UploadSession createUploadSession(String projectName, String
tableName);
 public UploadSession createUploadSession(String projectName, String
tableName, PartitionSpec partitionSpec);
 public DownloadSession getDownloadSession(String projectName, String
tableName, PartitionSpec partitionSpec, String id);
 public DownloadSession getDownloadSession(String projectName, String
tableName, String id);
 public UploadSession getUploadSession(String projectName, String
tableName, PartitionSpec partitionSpec, String id);
 public UploadSession getUploadSession(String projectName, String
tableName, String id);
 }

Parameters

• Lifecycle: It is the TableTunnel life cycle, begins with a TableTunnel instance creation and ends

 with the completion of the process.

• PublicClassTableTunnel: A method of creating uploading and downloading objects.

• Session: It is a process for uploading and downloading table or a partition. A session consists

of one or more HTTP Requests to the Tunnel RESTful API.

• Uploading session: The uploading session of TableTunnel is INSERT INTO semantics, which

 means that sessions that upload the same table or partition do not interfere with each other.

The upload of each session is located in different directories.

• Block ID: The corresponding file name. In an uploading session, each RecordWriter correspond

s to an HTTP Request, identified by a block ID and corresponds to a file on the service side.

• RecordWriter: In a session, opening RecordWriter multiple times with the same block ID results

 in overwriting. The data uploaded by the last RecordWriter calling close() is retained. This

feature can be used for retransmissions when block upload fails.

TableTunnel interface implementation process:

1. RecordWriter.write() uploads data to a file in a temporary directory.

2. RecordWriter.close() moves the preceding file from the temporary directory to the data

directory.

3. Session.commit() moves all files in the corresponding data directory to the directory where the

corresponding table is located, and updates the table meta. Precisely, the data that moves into

the table is visible to other MaxCompute tasks (including SQL and MR).

Limits:

MaxCompute User Guide / 9 Data upload and download

Issue: 20180904 231

• The range of block id is 0 to 20000. The data size uploaded by a single block is limited to 100

GB.

• The session timeout is 24 hours. Split the massive data into multiple sessions, if the transmissi

on time is supposed to exceed the threshold that is 24 hours.

• The HTTP Request timeout for RecordWriter is 120 seconds. If no data flows through the

HTTP connection is observed within 120 seconds, the service automatically closes the

connection.

Note:

By default, HTTP has a buffer of 8 KB. Therefore, it is difficult to determine the data flow

through an HTTP connection when you call RecordWriter.write() each time. Moreover,

TunnelRecordWriter.flush() can forcibly clear the data from the buffer.

• When logs are being written into MaxCompute, the RecordWriter can be easily timed out as the

flow of the data is unpredictable. Note:

▬ We do not recommend using a RecordWriter for all types of data. Because each RecordWrit

er corresponds to a file resulting into numerous small files, critically impacting MaxCompute

 performance.

▬ We recommend calling a RecordWriter to write data in a batch when your code cache data

size exceeds 64 MB.

• The threshold for RecordReader timeout is 300 seconds.

9.6.3 UploadSession
The UploadSession interface is defined as follows:

public class UploadSession {
 UploadSession(Configuration conf, String projectName, String
tableName,
 String partitionSpec) throws TunnelException;
 UploadSession(Configuration conf, String projectName, String
tableName,
 String partitionSpec, String uploadId) throws TunnelExce
ption;
 public void commit(Long[] blocks);
 public Long[] getBlockList();
 public String getId();
 public TableSchema getSchema();
 public UploadSession.Status getStatus();
 public Record newRecord();
 public RecordWriter openRecordWriter(long blockId);
 public RecordWriter openRecordWriter(long blockId, boolean
compress);
 public RecordWriter openBufferedWriter();
 public RecordWriter openBufferedWriter(boolean compress);

MaxCompute User Guide / 9 Data upload and download

232 Issue: 20180904

 }

Upload Objects description:

• Life cycle: Begins with the creation of the Upload instance and ends with the completion of an

upload process.

• Create Upload instance: An instance can be created either by Calling the Constructor or using

the TableTunnel.

▬ Request mode: Synchronous.

▬ The server creates a session for this upload instance and a unique UploadId is generated.

Obtain this ID using the getId on the client.

• Upload data:

▬ Request mode: Synchronous.

▬ Call the openRecordWriter method to generate a RecordWriter instance. The blockId

identifies the data to be uploaded and indicates its location in the table within the value

range [0, 20000]. If the data upload fails, use BlockId to re-upload it.

• View upload:

▬ Request mode: Synchronous.

▬ Call getStatus to obtain the current upload status.

▬ Call getBlockList to obtain the successfully uploaded blockId list. Compare the result

with the upload blockId list to find and re-upload failed blockIds.

• End upload:

▬ Request mode: Synchronous.

▬ Call the commit (Long[] blocks) method. The blocks list shows successfully

uploaded blocks. The server verifies this list.

▬ This function enhances data verification. If the provided block list does not match the block

list on the server, an error occurs.

▬ If Commit fails, try again.

• Seven kinds of status are described as follows:

• UNKNOWN: The initial value when the server creates a session.

• NORMAL: The upload object is created successfully.

• CLOSING: The server changes the status to CLOSING when complete is called.

MaxCompute User Guide / 9 Data upload and download

Issue: 20180904 233

• CLOSED: The upload is now complete. Precisely, moving the data to the directory where

the result table is located.

• EXPIRED: The upload session is timed out.

• CRITICAL: A service error has occurred.

Note:

• The blockIds in the same UploadSession must be unique. In a single UploadSession, when

you use a blockId to open RecordWriter, write a batch of data, call close, and then call

commit. Do not use the same blockID to open another RecordWriter to write data.

• The maximum size of a block is 100 GB, preferably more than 64 MB.

• The threshold of each session on the server is 24 hours.

• When data is being uploaded, each 8 KB of data written by the Writer triggers a network action

. If no network actions are triggered within 120 seconds, the server closes the connection. In

this case, open a new connection when the Writer becomes unavailable.

• We recommend that you use the openBufferedWriter interface to upload data. This interface

 does not show blockId details and contains an internal data cache for automatic retry upon

failures. For more information, see the introductions and examples of TunnelBufferedWriter.

9.6.4 DownloadSession
This DownloadSession interface is defined as follows:

public class DownloadSession {
 DownloadSession(Configuration conf, String projectName, String
 tableName,
 String partitionSpec) throws TunnelException
 DownloadSession(Configuration conf, String projectName, String
 tableName,
 String partitionSpec, String downloadId) throws TunnelExce
ption
 public String getId()
 public long getRecordCount()
 public TableSchema getSchema()
 public DownloadSession.Status getStatus()
 public RecordReader openRecordReader(long start, long count)
 public RecordReader openRecordReader(long start, long count,
boolean compress)
 }

Parameters:

• Life cycle: Begins with the creation of the Download instance and ends with the completion of

a download process.

MaxCompute User Guide / 9 Data upload and download

234 Issue: 20180904

• Create Download instance: An instance can be created either by Calling the Constructor or

by using the TableTunnel.

▬ Request mode: Synchronous.

▬ The server creates a session for this download instance and a unique DownloadId is

generated. Obtain this ID using the getId on the client.

▬ This operation incurs high costs. The server creates an index for the data files. Large files

generally take longer time to download.

▬ Simultaneously, the server returns the total number of Records and starts multiple

concurrent downloads based on this value.

• Download data:

▬ Request mode: Asynchronous.

▬ Call the openRecordReader method to generate a RecordReader instance. “start”

identifies the start position of downloading this record, which cannot be less than zero.

“count” specifies the number of records for this download which must be greater than zero.

• View download:

▬ Request mode: Synchronous.

▬ Call getStatus to obtain the current download status.

• Following is the list of 4 states:

▬ UNKNOWN: The initial value when the server creates a session.

▬ NORMAL: The download object is successfully created.

▬ CLOSED: The download is now complete.

▬ EXPIRED: The download session is timed out.

9.6.5 TunnelBufferedWriter
To complete the uploading process, follow these steps:

1. Divide the data.

2. Specify a block ID for each data block by calling the openRecordWriter (id).

3. Use one or more threads to upload the blocks. Even if a single block upload fails, you must re-

upload all the blocks.

4. After uploading all blocks, provide the uploaded blockID list to the server for verification. Call

session.commit([1,2,3,…]) to complete this action.

MaxCompute User Guide / 9 Data upload and download

Issue: 20180904 235

The connection time-out and other limits on the server block manager complicate the upload

 process logic. So, to simplify the process, SDK provides an enhanced RecordWriter—

TunnelBufferWriter interface.

This interface is defined as follows:

public class TunnelBufferedWriter implements RecordWriter {
 public TunnelBufferedWriter(TableTunnel.UploadSession session
, CompressOption option) throws IOException;
 public long getTotalBytes();
 public void setBufferSize(long bufferSize);
 public void setRetryStrategy(RetryStrategy strategy);
 public void write(Record r) throws IOException;
 public void close() throws IOException;
 }

Parameters:

• Life cycle: Begins with a RecordWriter creation and ends with the completion of data upload.

• Create TunnelBufferedWriter instance: Call openBufferedWriter interface

ofUploadSession to create an instance.

• Data upload: Call the Write interface. Data is first written to the local cache. Once the cache

is full, the data is submitted to the server in batches to avoid connection time-out. Automatic

retries are supported if the upload fails.

• End upload: Call the close interface, and then call the Commit interface of UploadSession to

complete the upload process.

• Buffer control: Use the setBufferSize interface to modify the size of memory (bytes),

occupied by the buffer preferably greater than 64 MB to prevent the server from generating

numerous small files that may critically impact the performance. The default value is generally

used for this parameter without additional settings.

• Retry policy setting: You have three retry avoidance policies to choose from:

EXPONENTIAL_BACKOFF, LINEAR_BACKOFF, and CONSTANT_BACKOFF. For example:

The following code segment sets the number of Write retries to 6. To avoid unnecessary

retries, each retry is performed only after exponentially ascending intervals of 4s, 8s, 16s, 32s,

64s, and 128s. This is the default configuration and generally cannot be changed.

RetryStrategy retry
 = new RetryStrategy(6, 4, RetryStrategy.BackoffStrategy.EXPONENTIA
L_BACKOFF)
writer = (TunnelBufferedWriter) uploadSession.openBufferedWriter();

MaxCompute User Guide / 9 Data upload and download

236 Issue: 20180904

writer.setRetryStrategy(retry);

9.7 Bulk data channel SDK example

9.7.1 Example
• MaxCompute provides two service addresses for you to choose from. If you select the

Tunnel service address, it may directly affect your data upload efficiency and billing. For more

information, see Tunnel SDK overview.

• We recommend that you use the TunnelBufferedWriter interface when uploading data. For

more information, see the sample codes in BufferedWriter.

• Operations may vary based on SDK versions. This example is provided only for your reference

. Consider variances between different versions before you proceed.

9.7.2 Example for uploading
import java.io.IOException;
 import java.util.Date;
 import com.aliyun.odps.Column;
 import com.aliyun.odps.Odps;
 import com.aliyun.odps.PartitionSpec;
 import com.aliyun.odps.TableSchema;
 import com.aliyun.odps.account.Account;
 import com.aliyun.odps.account.AliyunAccount;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.RecordWriter;
 import com.aliyun.odps.tunnel.TableTunnel;
 import com.aliyun.odps.tunnel.TunnelException;
 import com.aliyun.odps.tunnel.TableTunnel.UploadSession;
 public class UploadSample {
 private static String accessId = "<your access id>";
 private static String accessKey = "<your access Key>";
 private static String odpsUrl = "http://service.odps.aliyun.
com/api";
 private static String tunnelUrl = "http://dt.cn-shanghai.
maxcompute.aliyun-inc.com";
 //The tunnelURL must be set if you need to
connect internal network, otherwise, the system uses public network as
 default. The example shows the Tunnel Endpoint of classical network
in HuaDong 2, for other regions, see Access domain and data centers.
 private static String project = "<your project>";
 private static String table = "<your table name>";
 private static String partition = "<your partition spec>";
 public static void main(String args[]) {
 Account account = new AliyunAccount(accessId,
accessKey);
 Odps odps = new Odps(account);
 odps.setEndpoint(odpsUrl);
 odps.setDefaultProject(project);
 try {
 TableTunnel tunnel = new TableTunnel(odps);
 tunnel.setEndpoint(tunnelUrl); //set
tunnelUrl

MaxCompute User Guide / 9 Data upload and download

Issue: 20180904 237

 PartitionSpec partitionSpec = new PartitionS
pec(partition);
 UploadSession uploadSession = tunnel.
createUploadSession(project,
 table, partitionSpec);
 System.out.println("Session Status is : "
 + uploadSession.getStatus().
toString());
 TableSchema schema = uploadSession.getSchema
();
 // After preparing data, open a Writer to
start writing data. The prepared data is written to one block.
 // When the data written to individual
 blocks is too small, the system will produce a large number of
small files, seriously degrading computing performance. We strongly
 recommend over 64 MB of data be written each time (up to 100 GB of
data can be written to the same block).
 // You can use the average data volume and
record count to estimate the total value. For example: 64MB < Average
data size x Record count < 100GB.
 RecordWriter recordWriter = uploadSession.
openRecordWriter(0);
 Record record = uploadSession.newRecord();
 for (int i = 0; i < schema.getColumns().size
(); i++) {
 Column column = schema.getColumn(i);
 switch (column.getType()) {
 case BIGINT:
 record.setBigint(i, 1L);
 break;
 Case Boolean:
 record.setBoolean(i, true);
 break;
 case DATETIME:
 record.setDatetime(i, new
Date());
 break;
 case DOUBLE:
 record.setDouble(i, 0.0);
 break;
 case STRING:
 record.setString(i, "sample
");
 break;
 default:
 throw new RuntimeException("
Unknown column type: "
 + column.
getType());
 }
 }
 for (int i = 0; i < 10; i++) {
 // Writes data to the server. Each 8
 KB of data written triggers a network transmission.
 // If no network transmission occurs
 for 120 seconds, the server closes the connection. At this time, the
Writer becomes unavailable and you must write data again.
 recordWriter.write(record);
 }
 recordWriter.close();
 uploadSession.commit(new Long[]{0L});
 System.out.println("upload success!") ;

MaxCompute User Guide / 9 Data upload and download

238 Issue: 20180904

 } catch (TunnelException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }

Constructor:

PartitionSpec(String spec): Uses a string to construct this class of object.

Parameters

spec: The partition definition string, such as pt=’1’,ds=’2’.

In this program, the configuration must be as follows:

private static String partition = “pt=’XXX’,ds=’XXX’”;

9.7.3 简单下载示例
import java.io.IOException;
 import java.util.Date;
 import com.aliyun.odps.Column;
 import com.aliyun.odps.Odps;
 import com.aliyun.odps.PartitionSpec;
 import com.aliyun.odps.TableSchema;
 import com.aliyun.odps.account.Account;
 import com.aliyun.odps.account.AliyunAccount;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.RecordReader;
 import com.aliyun.odps.tunnel.TableTunnel;
 import com.aliyun.odps.tunnel.TableTunnel.DownloadSession;
 import com.aliyun.odps.tunnel.TunnelException;
 public class DownloadSample {
 private static String accessId = "<your access id>";
 private static String accessKey = "<your access Key>";
 private static String odpsUrl = "http://service.odps.aliyun.
com/api";
 private static String tunnelUrl = "http://dt.cn-shanghai.
maxcompute.aliyun-inc.com";
 //设置tunnelUrl，若需要走内网时必须设置，否则默认公
网。此处给的是华东2经典网络Tunnel Endpoint，其他region可以参考文档《访问域名和数
据中心》。
 private static String project = "<your project>";
 private static String table = "<your table name>";
 private static String partition = "<your partition spec>";
 public static void main(String args[]) {
 Account account = new AliyunAccount(accessId,
accessKey);
 Odps odps = new Odps(account);
 odps.setEndpoint(odpsUrl);
 odps.setDefaultProject(project);
 TableTunnel tunnel = new TableTunnel(odps);
 tunnel.setEndpoint(tunnelUrl);//tunnelUrl设置
 PartitionSpec partitionSpec = new PartitionSpec(
partition);
 try {

MaxCompute User Guide / 9 Data upload and download

Issue: 20180904 239

 DownloadSession downloadSession = tunnel.
createDownloadSession(project, table,
 partitionSpec);
 System.out.println("Session Status is : "
 + downloadSession.getStatus
().toString());
 long count = downloadSession.getRecordCount
();
 System.out.println("RecordCount is: " + count
);
 RecordReader recordReader = downloadSession.
openRecordReader(0,
 count);
 Record record;
 while ((record = recordReader.read()) != null
) {
 consumeRecord(record, downloadSession
.getSchema());
 }
 recordReader.close();
 } catch (TunnelException e) {
 e.printStackTrace();
 } catch (IOException e1) {
 e1.printStackTrace();
 }
 }
 private static void consumeRecord(Record record, TableSchema
schema) {
 for (int i = 0; i < schema.getColumns().size(); i++)
 {
 Column column = schema.getColumn(i);
 String colValue = null;
 switch (column.getType()) {
 case BIGINT: {
 Long v = record.getBigint(i);
 colValue = v == null ? null : v.
toString();
 break;
 }
 case BOOLEAN: {
 Boolean v = record.getBoolean(i);
 colValue = v == null ? null : v.
toString();
 break;
 }
 case DATETIME: {
 Date v = record.getDatetime(i);
 colValue = v == null ? null : v.
toString();
 break;
 }
 case DOUBLE: {
 Double v = record.getDouble(i);
 colValue = v == null ? null : v.
toString();
 break;
 }
 case STRING: {
 String v = record.getString(i);
 colValue = v == null ? null : v.
toString();
 break;

MaxCompute User Guide / 9 Data upload and download

240 Issue: 20180904

 }
 default:
 throw new RuntimeException("Unknown
column type: "
 + column.getType());
 }
 System.out.print(colValue == null ? "null" :
colValue);
 if (i != schema.getColumns().size())
 System.out.print("\t");
 }
 System.out.println();
 }
 }

本示例中，为了方便测试，数据通过System.out.println直接打印出来，在实际使用时，您可改写为

直接输出到文本文件。

9.7.4 Example for multi-thread uploading
import java.io.IOException;
 import java.util.ArrayList;
 import java.util.Date;
 import java.util.concurrent.Callable;
 import java.util.concurrent.ExecutorService;
 import java.util.concurrent.Executors;
 import com.aliyun.odps.Column;
 import com.aliyun.odps.Odps;
 import com.aliyun.odps.PartitionSpec;
 import com.aliyun.odps.TableSchema;
 import com.aliyun.odps.account.Account;
 import com.aliyun.odps.account.AliyunAccount;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.RecordWriter;
 import com.aliyun.odps.tunnel.TableTunnel;
 import com.aliyun.odps.tunnel.TunnelException;
 import com.aliyun.odps.tunnel.TableTunnel.UploadSession;
 class UploadThread implements Callable<Boolean> {
 private long id;
 private RecordWriter recordWriter;
 private Record record;
 private TableSchema tableSchema;
 public UploadThread(long id, RecordWriter recordWriter,
Record record,
 TableSchema tableSchema) {
 this.id = id;
 this.recordWriter = recordWriter;
 this.record = record;
 this.tableSchema = tableSchema;
 }
 @Override
 public Boolean call() {
 for (int i = 0; i < tableSchema.getColumns().size();
i++) {
 Column column = tableSchema.getColumn(i);
 switch (column.getType()) {
 Case bigint:
 record.setBigint(i, 1L);
 Break;
 Case Boolean:

MaxCompute User Guide / 9 Data upload and download

Issue: 20180904 241

 record.setBoolean(i, true);
 break;
 case DATETIME:
 record.setDatetime(i, new Date());
 break;
 case DOUBLE:
 record.setDouble(i, 0.0);
 break;
 case STRING:
 record.setString(i, "sample");
 break;
 default:
 throw new RuntimeException("Unknown
column type: "
 + column.getType());
 }
 }
 for (int i = 0; i < 10; i++) {
 try {
 recordWriter.write(record);
 } catch (IOException e) {
 recordWriter.close();
 e.printStackTrace();
 return false;
 }
 }
 recordWriter.close();
 return true;
 }
 }
 public class UploadThreadSample {
 private static String accessId = "<your access id>";
 private static String accessKey = "<your access Key>";
 private static String odpsUrl = "<http://service.odps.aliyun.
com/api>";
 private static String tunnelUrl = "<http://dt.cn-shanghai.
maxcompute.aliyun-inc.com>";
 //The tunnelURL must be set if you need to
connect internal network, otherwise, the system uses public network as
 default. The example shows the Tunnel Endpoint of classical network
in HuaDong 2, for other regions, see Access domain and data centers.
 private static String project = "<your project>";
 private static String table = "<your table name>";
 private static String partition = "<your partition spec>";
 private static int threadNum = 10;
 public static void main(String args[]) {
 Account account = new AliyunAccount(accessId,
accessKey);
 Odps odps = new Odps(account);
 odps.setEndpoint(odpsUrl);
 odps.setDefaultProject(project);
 try {
 TableTunnel tunnel = new TableTunnel(odps);
 tunnel.setEndpoint(tunnelUrl); //set
tunnelUrl
 PartitionSpec partitionSpec = new PartitionS
pec(partition);
 UploadSession uploadSession = tunnel.
createUploadSession(project,
 table, partitionSpec);
 System.out.println("Session Status is : "

MaxCompute User Guide / 9 Data upload and download

242 Issue: 20180904

 + uploadSession.getStatus().
toString());
 ExecutorService pool = Executors.newFixedTh
readPool(threadNum);
 ArrayList<Callable<Boolean>> callers = new
ArrayList<Callable<Boolean>>();
 for (int i = 0; i < threadNum; i++) {
 RecordWriter recordWriter =
uploadSession.openRecordWriter(i);
 Record record = uploadSession.
newRecord();
 callers.add(new UploadThread(i,
recordWriter, record,
 uploadSession.
getSchema()));
 }
 pool.invokeAll(callers);
 pool.shutdown();
 Long[] blockList = new Long[threadNum];
 for (int i = 0; i < threadNum; i++)
 blockList[i] = Long.valueOf(i);
 uploadSession.commit(blockList);
 System.out.println("upload success!") ;
 } catch (TunnelException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

The Tunnel Endpoint can be specified or left blank.

• If specified, the uploading data goes through the specified Endpoint.

• If not specified, the uploading data goes through public network.

9.7.5 Example for multi-thread downloading
import java.io.IOException;
 import java.util.ArrayList;
 import java.util.Date;
 import java.util.List;
 import java.util.concurrent.Callable;
 import java.util.concurrent.ExecutionException;
 import java.util.concurrent.ExecutorService;
 import java.util.concurrent.Executors;
 import java.util.concurrent.Future;
 import com.aliyun.odps.Column;
 import com.aliyun.odps.Odps;
 import com.aliyun.odps.PartitionSpec;
 import com.aliyun.odps.TableSchema;
 import com.aliyun.odps.account.Account;
 import com.aliyun.odps.account.AliyunAccount;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.RecordReader;
 import com.aliyun.odps.tunnel.TableTunnel;
 import com.aliyun.odps.tunnel.TableTunnel.DownloadSession;

MaxCompute User Guide / 9 Data upload and download

Issue: 20180904 243

 import com.aliyun.odps.tunnel.TunnelException;
 class DownloadThread implements Callable<Long> {
 private long id;
 private RecordReader recordReader;
 private TableSchema tableSchema;
 public DownloadThread(int id,
 RecordReader recordReader, TableSchema
tableSchema) {
 this.id = id;
 this.recordReader = recordReader;
 this.tableSchema = tableSchema;
 }
 @Override
 public Long call() {
 Long recordNum = 0L;
 try {
 Record record;
 while ((record = recordReader.read()) ! =
null) {
 recordNum++;
 System.out.print("Thread " + id + "\t
");
 consumeRecord(record, tableSchema);
 }
 recordReader.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 return recordNum;
 }
 private static void consumeRecord(Record record, TableSchema
schema) {
 for (int i = 0; i < schema.getColumns().size(); i++)
 {
 Column column = schema.getColumn(i);
 String colValue = null;
 switch (column.getType()) {
 case BIGINT: {
 Long v = record.getBigint(i);
 colValue = v == null ? null : v.
toString();
 Break;
 }
 case BOOLEAN: {
 Boolean v = record.getBoolean(i);
 colValue = v == null ? null : v.
toString();
 break;
 }
 case DATETIME: {
 Date v = record.getDatetime(i);
 colValue = v == null ? null : v.
toString();
 break;
 }
 case DOUBLE: {
 Double v = record.getDouble(i);
 colValue = v == null ? null : v.
toString();
 break;
 }
 case STRING: {

MaxCompute User Guide / 9 Data upload and download

244 Issue: 20180904

 String v = record.getString(i);
 colValue = v == null ? null : v.
toString();
 break;
 }
 Default:
 throw new RuntimeException("Unknown
column type: "
 + column.getType());
 }
 System.out.print(colValue == null ? "null" :
colValue);
 If (I! = schema.getColumns().size())
 System.out.print("\t");
 }
 System.out.println();
 }
 }
 public class DownloadThreadSample {
 private static String accessId = "<your access id>";
 private static String accessKey = "<your access Key>";
 private static String odpsUrl = "http://service.odps.aliyun.
com/api";
 private static String tunnelUrl = "http://dt.cn-shanghai.
maxcompute.aliyun-inc.com";
 //The tunnelURL must be set if you need to
connect internal network, otherwise, the system uses public network as
 default. The example shows the Tunnel Endpoint of classical network
in HuaDong 2, for other regions, see Access domain and data centers.
 private static String project = "<your project>";
 private static String table = "<your table name>";
 private static String partition = "<your partition spec>";
 private static int threadNum = 10;
 public static void main(String args[]) {
 Account account = new AliyunAccount(accessId,
accessKey);
 Odps odps = new Odps(account);
 odps.setEndpoint(odpsUrl);
 odps.setDefaultProject(project);
 TableTunnel tunnel = new TableTunnel(odps);
 tunnel.setEndpoint(tunnelUrl); //set tunnelUrl
 PartitionSpec partitionSpec = new PartitionSpec(
partition);
 DownloadSession downloadSession;
 try {
 downloadSession = tunnel.createDownloadSessio
n(project, table,
 partitionSpec);
 System.out.println("Session Status is : "
 + downloadSession.getStatus
().toString());
 long count = downloadSession.getRecordCount
();
 System.out.println("RecordCount is: " + count
);
 ExecutorService pool = Executors.newFixedTh
readPool(threadNum);
 ArrayList<Callable<Long>> callers = new
ArrayList<Callable<Long>>();
 long start = 0;
 long step = count / threadNum;
 for (int i = 0; i < threadNum - 1; i++) {

MaxCompute User Guide / 9 Data upload and download

Issue: 20180904 245

 RecordReader recordReader =
downloadSession.openRecordReader(
 step * i, step);
 callers.add(new DownloadThread(i,
recordReader, downloadSession.getSchema()));
 }
 RecordReader recordReader = downloadSession.
openRecordReader(step * (threadNum - 1), count
 - ((threadNum - 1) * step));
 callers.add(new DownloadThread(threadNum - 1
, recordReader, downloadSession.getSchema()));
 Long downloadNum = 0L;
 List<Future<Long>> recordNum = pool.invokeAll
(callers);
 for (Future<Long> num : recordNum)
 downloadNum += num.get();
 System.out.println("Record Count is: " +
downloadNum);
 pool.shutdown();
 } catch (TunnelException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 } catch (InterruptedException e) {
 e.printStackTrace();
 } catch (ExecutionException e) {
 e.printStackTrace();
 }
 }
 }

Note:

The Tunnel Endpoint can be specified or left blank.

• If specified, the downloading data goes through the specified Endpoint.

• If not specified, the downloading data goes through public network Endpoint.

9.7.6 Example for BufferedWriter multi-thread uploading
class UploadThread extends Thread {
 private UploadSession session;
 private static int RECORD_COUNT = 1200;
 public UploadThread(UploadSession session) {
 this.session = session;
 }
 @Override
 Public void run (){
 RecordWriter writer = up.openBufferedWriter();
 Record r = up.newRecord();
 for (int i = 0; i < RECORD_COUNT; i++) {
 r.setBigint(0, i);
 writer.write(r);
 }
 writer.close();
 }
};
public class Example {

MaxCompute User Guide / 9 Data upload and download

246 Issue: 20180904

 public static void main(String args[]) {
 // Initializes MaxCompute and Tunnel code
 TableTunnel.UploadSession uploadSession = tunnel.createUplo
adSession(projectName, tableName);
 UploadThread t1 = new UploadThread(up);
 UploadThread t2 = new UploadThread(up);
 t1.start();
 t2.start();
 t1.join();
 t2.join();
 uploadSession.commit();
 }

9.7.7 Example for BufferedWriter uploading
// Initializes MaxCompute and Tunnel code
RecordWriter writer = null;
TableTunnel.UploadSession uploadSession = tunnel.createUploadSession(
projectName, tableName);
try {
 int i = 0;
 // Generates TunnelBufferedWriter instance
 writer = uploadSession.openBufferedWriter();
 Record product = uploadSession.newRecord();
 for (String item : items) {
 product.setString("name", item);
 product.setBigint("id", i);
 // Calls the Write interface to write data
 writer.write(product);
 i += 1;

} finally {
 if (writer ! = null) {
 // Closes TunnelBufferedWriter
 writer.close();

// Submits data via uploadSession to end the upload process
uploadSession.commit();

9.8 Real-time data tunnel of DataHub
DataHub is a MaxCompute service designed to process streaming data. It allows you to subscribe

 to streaming data and publish the data. You can easily construct analysis programs and applicatio

ns based on streaming data.

9.9 Connection to data tunnel service
Both DataHub and Tunnel use different endpoints in different network environments. Depending

on the network environment, select the appropriate service address or endpoint, to connect to the

service. Select the appropriate address or endpoint for your network to be able to send requests to

the service.

MaxCompute User Guide / 9 Data upload and download

Issue: 20180904 247

Note:

Different network connections may affect your Billing.

For detailed endpoints information for different network environments, see Endpoints and Data

Centers Access Domains and Data Centers.

MaxCompute User Guide / 10 SQL

248 Issue: 20180904

10 SQL

10.1 Select Transform语法
Select Transform功能允许您指定启动一个子进程，将输入数据按照一定的格式通过stdin输入子进

程，并且通过parse子进程的stdout输出，来获取输出数据。适用于实现MaxCompute SQL没有的功

能又不想写UDF的场景。

命令格式如下所示：

SELECT TRANSFORM(arg1, arg2 ...)
(ROW FORMAT DELIMITED (FIELDS TERMINATED BY field_delimiter (ESCAPED
BY character_escape)?)?
(LINES SEPARATED BY line_separator)?
(NULL DEFINED AS null_value)?)?
USING 'unix_command_line'
(RESOURCES 'res_name' （',' 'res_name'）*)?
(AS col1, col2 ...)?
(ROW FORMAT DELIMITED (FIELDS TERMINATED BY field_delimiter (ESCAPED
BY character_escape)?)?
(LINES SEPARATED BY line_separator)? (NULL DEFINED AS null_value)?)?

说明如下：

• SELECT TRANSFORM关键字可以用MAP关键字或者REDUCE关键字来替换，无论使用哪个关键字

语义是完全一样的。为了使语法更清晰，推荐您使用SELECT TRANSFORM。

• arg1,arg2...是transform的参数，其格式和select子句的item类似。默认的格式下，参数的各

个表达式的结果会在隐式转换成string后，用\t拼起来，输入到子进程中（此格式可以进行配置，

详情请参见下文对ROW FORMAT的说明）。

• Using指定要启动的子进程的命令。

说明：

• 大多数的MaxCompute SQL命令Using子句指定的是资源（Resources），但此处是为了和

Hive的语法兼容。

• Using中的格式和Shell的语法非常类似，但并非真的启动Shell来执行，而是直接根据命令的

内容来创建了子进程，所以很多Shell的功能不能用，比如输入输出重定向，管道，循环等。

若有需要，Shell本身也可以作为子进程命令来使用。

• RESOURCES子句允许指定子进程能够访问的资源，支持以下两种方式指定资源。

• 支持使用resources子句：如using 'sh foo.sh bar.txt' Resources 'foo.sh','

bar.txt'。

MaxCompute User Guide / 10 SQL

Issue: 20180904 249

• 支持在SQL语句前使用set odps.sql.session.resources=foo.sh,bar.txt;来

指定。注意这种配置是全局的，意味着整个SQL中所有的select transform都可以访问这个

setting配置的资源。

• ROW FORMAT子句允许自定义输入输出的格式。

语法中有两个row format子句，第一个子句指定输入的格式，第二个指定输出的格式。 默认情况

下使用\t来作为列的分隔符，\n作为行的分隔符，Null使用\N（注意是两个字符，反斜杠字符和字

符N）来表示。

说明：

• field_delimiter，character_escape和line_separator只接受一个字符，如果指定的是字符

串，则以第一个字符为准。

• Hive指定格式的各种语法，如inputRecordReader、outputRecordReader、Serde

等，MaxCompute也都支持，不过需要打开Hive兼容模式才能用，即在SQL语句前加set语句

set odps.sql.hive.compatible=true；，详情请参见Hive###。

• 若使用Hive的inputRecordReader、outputRecordReader等自定义类，可能会降低执行性

能。

• AS子句指定输出列。

▬ 输出列可以不指定类型，默认为String类型，如as(col1, col2)。也可以指定类型，如as(col1:

bigint, col2:boolean)。

▬ 由于输出实际是parse子进程stdout获取的，如果指定的类型不是String，系统会隐式调用

Cast函数，而Cast有可能出现runtime exception。

▬ 输出列类型不支持部分指定部分不指定，如as(col1, col2:bigint)。

▬ as可以省略，此时默认stdou的输出中第一个\t之前的字段为key，后面的部分全部为value，

相当于as(key, value)。

调用Shell脚本示例

假设通过Shell脚本生成50行数据，值是从1到50，对应data字段输出：

SELECT TRANSFORM(script) USING 'sh' AS (data) FROM (SELECT 'for i in
 `seq 1 50`; do echo $i; done' AS script) t;

直接将Shell命令作为transform数据输入。

select transform不仅仅是语言支持的扩展，一些简单的功能，如awk、python、perl、shell都支持

直接在命令里面写脚本，不需要写脚本文件，上传资源等，开发过程更简单，如上述示例所示。当

然，功能复杂的可以上传脚本文件来执行，如下文将介绍的python示例。

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Transform#LanguageManualTransform-TRANSFORMExamples

MaxCompute User Guide / 10 SQL

250 Issue: 20180904

调用Python脚本示例

准备好Python文件，假设脚本文件名为myplus.py，如下所示：

#!/usr/bin/env python
import sys
line = sys.stdin.readline()
while line:token = line.split('\t')
if (token[0] == '\\N') or (token[1] == '\\N'):print '\\N'
else:
print int(token[0]) + int(token[1])
line = sys.stdin.readline()

将该Python脚本文件添加为MaxCompute资源（Resource）：

add py ./myplus.py -f;

您也可通过DataWorks控制台进行新增资源操作。

接下来使用select transform语法调用资源。

Create table testdata(c1 bigint,c2 bigint);--创建测试表
insert into Table testdata values (1,4),(2,5),(3,6);--测试表中插入测试数
据
--接下来执行select transform如下：
SELECT TRANSFORM (testdata.c1, testdata.c2) USING 'python myplus.py'
resources 'myplus.py' AS (result bigint) FROM testdata;
-- 或者
set odps.sql.session.resources=myplus.py;
SELECT TRANSFORM (testdata.c1, testdata.c2) USING 'python myplus.py'
AS (result bigint) FROM testdata;

执行结果如下：

+-----+
| cnt |
+-----+
| 5 |
| 7 |
| 9 |
+-----+

Python脚本无需依赖MaxCompute的Python框架，也没有格式要求。

也支持直接将py命令作为transform数据输入，如Shell的例子也可以用py命令实现：

SELECT TRANSFORM('for i in xrange(1, 50): print i;') USING 'python'
AS (data);

调用Java脚本示例

与前面调用Python脚本类似，编辑好Java文件导出Jar包，再通过add file方式将Jar包加为

MaxCompute资源，然后select transform调用。

MaxCompute User Guide / 10 SQL

Issue: 20180904 251

准备好Jar文件，假设脚本文件名为Sum.jar，Java代码如下所示：

package com.aliyun.odps.test;
import java.util.Scanner;
public class Sum {
 public static void main(String[] args) {
 Scanner sc = new Scanner(System.in);
 while (sc.hasNext()) {
 String s = sc.nextLine();
 String[] tokens = s.split("\t");
 if (tokens.length < 2) {
 throw new RuntimeException("illegal input");
 }
 if (tokens[0].equals("\\N") || tokens[1].equals("\\N")) {
 System.out.println("\\N");
 }
 System.out.println(Long.parseLong(tokens[0]) + Long.parseLong(
tokens[1]));
 }
 }
}

将Jar文件添加为MaxCompute的Resource。

add jar ./Sum.jar -f;

接下来使用select transform语法调用资源。

Create table testdata(c1 bigint,c2 bigint);--创建测试表
insert into Table testdata values (1,4),(2,5),(3,6);--测试表中插入测试数
据
--接下来执行select transform如下：
SELECT TRANSFORM(testdata.c1, testdata.c2) USING 'java -cp Sum.jar com
.aliyun.odps.test.Sum' resources 'Sum.jar' from testdata;
--或者
set odps.sql.session.resources=Sum.jar;
SELECT TRANSFORM(testdata.c1, testdata.c2) USING 'java -cp Sum.jar com
.aliyun.odps.test.Sum' FROM testdata;

执行结果如下所示：

+-----+
| cnt |
+-----+
| 5 |
| 7 |
| 9 |
+-----+

很多Java的utility可以直接拿来运行。

说明：

MaxCompute User Guide / 10 SQL

252 Issue: 20180904

Java和Python虽然有现成的udtf框架，但是用select transform编写更简单，并且不需要额外依赖，

也没有格式要求，甚至可以实现离线脚本拿来直接就用（Java和Python离线脚本的实际路径，可

以从JAVA_HOME和PYTHON_HOME环境变量中得到）。

调用其他脚本语言

select transform不仅仅支持上述语言扩展，还支持其它的常用unix命令或脚本解释器，如awk、perl

等。

以调用awk，把第二列原样输出为例，如下所示：

SELECT TRANSFORM(*) USING "awk '//{print $2}'" as (data) from testdata
;

perl示例如下：

SELECT TRANSFORM (testdata.c1, testdata.c2) USING "perl -e 'while($
input = <STDIN>){print $input;}'" FROM testdata;

说明：

目前由于MaxCompute计算集群上没有PHP和Ruby，所以不支持调用这两种脚本，后期系统会努

力改进争取能支持PHP和Ruby。

串联使用示例

select transform还可以串联使用，如使用distribute by和sort by对输入数据做预处理。

SELECT TRANSFORM(key, value) USING 'cmd2' from
(
 SELECT TRANSFORM(*) USINg 'cmd1' from
 (
 SELECt * FROM data distribute by col2 sort by col1
) t distribute by key sort by value
) t2;

或者用map、reduce的关键字，可能更符合某些用户的认知习惯（如前文说明，无论使用哪个关键

字，语义完全一样）。

@a := select * from data distribute by col2 sort by col1;
@b := map * using 'cmd1' distribute by col1 sort by col2 from @a;
reduce * using 'cmd2' from @b;

Select Transform性能介绍

性能上，Select Transform与UDTF在不同场景效果也不同。经过多种场景对比测试，数据量较小

时，大多数场景下Select Transform有优势，而数据量大时UDTF有优势。

由于transform的开发更加简便，所以Select Transform更适合做adhoc的数据分析。

MaxCompute User Guide / 10 SQL

Issue: 20180904 253

UDTF的优势

• UDTF的输出结果和输入参数是有类型的，而Transform的子进程基于stdin/stdout传输数据，所

有数据都当做string处理，因此transform多了一步类型转换。

• Transform数据传输依赖于操作系统的管道，而目前管道的buffer仅有4KB，且不能设置，

transform读空/写满pipe会导致进程被挂起。

• UDTF的常量参数可以不用传输，而Transform没办法利用这个优化。

Select Transform的优势

• 子进程和父进程是两个进程，而UDTF是单线程的，如果计算占比比较高，数据吞吐量比较小，

可以利用服务器的多核特性。

• 数据的传输通过更底层的系统调用来读写，效率比Java高。

• Select Transform支持的某些工具，如awk，是natvie代码实现的，和Java相比，理论上会有性

能优势。

10.2 DDL SQL

10.2.1 Table Operations
Create tables

Statement format:

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name
[(col_name data_type [COMMENT col_comment], ...)]
[COMMENT table_comment]
[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
[STORED BY StorageHandler] -- Limited to external tables
[WITH SERDEPROPERTIES (Options)] -- Limited to external tables
[LOCATION OSSLocation];-- Limited to external tables
[LIFECYCLE days]
[As select_statement]
 CREATE TABLE [IF NOT EXISTS] table_name
 LIKE existing_table_name

Consider the following points:

• When a table is created, an error is returned if the same name table exists without specifying

the "if not exists" option. If the option is specified, no matter whether a same name table exists

 and even if the source table structure and the target table structure are inconsistent, all return

successfully. The Meta information of the existing table does not change.

• Both the table name and column name are case insensitive and cannot have special

characters. It must begin with a letter and can include a-z, A-Z, digits, and underscores (_). The

 name length cannot exceed 128 bytes.

MaxCompute User Guide / 10 SQL

254 Issue: 20180904

• 1200 column definitions are allowed in a table.

• The data types support Bigint、Double、Boolean、Datetime、Decimal and String,

MaxCompute2.0 extends many data types.

Note:

Once data type such asTinyint、Smallint、 Int、 Float、Varchar or TIMESTAMP BINARY

is involved when running an SQL statement, set odps.sql.type.system.odps2=

true; must be added before the SQL statement. The set statement and SQL statement are

submitted simultaneously.

• Use Partitioned by to specify the partition and now Tinyint、Smallint、 Int、 Bigint、Varchar

and String are supported.

The partition value cannot have a double byte characters (for example, Chinese), and must

begin with an uppercase or a lowercase letter, followed by letter or a number. The name length

 cannot exceed 128 bytes. Special characters can be used, which include space, colon (:),

underscore (_), dollar sign ($), pound sign (#), period (.), exclamation point (!), and ’@’. Other

characters such as (\t), (\n), (/), and so on are considered as undefined characters. When using

 partition fields in a partition table, to improve the processing efficiency, a full table scan is not

needed to add, update, and read the data in a partition.

• Currently, 60,000 partitions are allowed in a table, and the partition hierarchy cannot exceed 6

levels.

• The comment content is the effective string and its length must not exceed 1024 bytes

• Lifecycle indicates the lifecycle of the table, the unit is ‘days’. The statement create table like

does not copy the lifecycle attribute from source table

• For more information about external tables, see Access OSS.

For example:

Assume that the table sale_detail is created to store sale records. The table uses sale_date and

region as partition columns. Table creation statements are described as follows:

create table if not exists sale_detail(
(
shop_name string,
customer_id string,
total_price double)
)
partitioned by (sale_date string,region string);

MaxCompute User Guide / 10 SQL

Issue: 20180904 255

 -- Create a partition table sale_detail.

The statementcreate table…as select ... can also be used to create a table. After

creating a table, the data is copied to the new table, such as:

create table sale_detail_ctas1 as
select * from sale_detail;

If the table sale_detail has data, the example mentioned preceding copies all data of sale_detail

into the table sale_detail_ctas1.

Note:

sale_detail is a partitioned table, while the table created by the statement create table … as

 select … does not copy the partition attribute. The partition column of source table becomes

a general column of object table. In other words, sale_detail_ctas1 is a non-partition table with 5

columns.

In the statement create table … as select… if using a constant as a column value in Select

clause, it is suggested specify the column name, such as:

create table sale_detail_ctas2 as
 select shop_name,
 customer_id,
 total_price,
 '2013' as sale_date,
 'China' as region
 from sale_detail;

If the column name is not specified, the statement is as shown as follows:

create table sale_detail_ctas3 as
 select shop_name,
 customer_id,
 total_price,
 '2013',
 'China'
 from sale_detail;

Then the forth column and fifth column of the created table sale_detail_ctas3 become system

generated names, like _c3, _c4.

MaxCompute User Guide / 10 SQL

256 Issue: 20180904

To let the destination table have the same structure as the source table, try to use create

table … like’ statement, such as:

create table sale_detail_like like sale_detail;

Now the table structure of sale_detail_like is exactly the same as sale_detail. Except

the life cycle, attributes including the column name, column comment, and table comment, of

the two tables are the same. But the data in sale_detail cannot be copied into the table

sale_detail_like.

View table information

Statement format:

desc <table_name>;
desc extended <table_name>; --View external table information.

For example:

• To view the info of the preceding table sale_detail, run the following statement:

desc sale_detail;

Return info:

odps@ $odps_project>desc sale_detail;
+--
+
| Owner: ALIYUN$lili.ll@alibaba-inc.com | Project: $odps_project
 |
| TableComment:
 |
+--
+
| CreateTime: 2017-06-28 15:05:17
 |
| LastDDLTime: 2017-06-28 15:05:17
 |
| LastModifiedTime: 2017-06-28 15:05:17
 |
+--
+
| InternalTable: YES | Size: 0
 |
+--
+
| Native Columns:
 |
+--
+
| Field | Type | Label | Comment
 |
+--
+

MaxCompute User Guide / 10 SQL

Issue: 20180904 257

| shop_name | string | |
 |
| customer_id | string | |
 |
| total_price | double | |
 |
+--
+
| Partition Columns:
 |
+--
+
| sale_date | string |
 |
| region | string |
 |
+--
+
OK

• To view the infomation of the preceding table sale_detail_like, run the following statement:

desc sale_detail_like

Return info:

odps@ $odps_project>desc sale_detail_like;
+--
+
| Owner: ALIYUN$lili.ll@alibaba-inc.com | Project: $odps_project
 |
| TableComment:
 |
+--
+
| CreateTime: 2017-06-28 15:42:17
 |
| LastDDLTime: 2017-06-28 15:42:17
 |
| LastModifiedTime: 2017-06-28 15:42:17
 |
+--
+
| InternalTable: YES | Size: 0
 |
+--
+
| Native Columns:
 |
+--
+
| Field | Type | Label | Comment
 |
+--
+
| shop_name | string | |
 |
| customer_id | string | |
 |
| total_price | double | |
 |

MaxCompute User Guide / 10 SQL

258 Issue: 20180904

+--
+
| Partition Columns:
 |
+--
+
| sale_date | string |
 |
| region | string |
 |
+--
+
OK

In preceding example, we can see that the attributes of sale_detail_like coincide with that of

sale_detail, except for the lifecycle. For more information, see Describe Table.

Check the information of sale_detail_ctas1, you can find that sale_date and region are only normal

 columns and not partitions of the table.

Drop a table

Statement format:

DROP TABLE [IF EXISTS] table_name;

Note:

• If the option [if exists] is not specified and the table does not exist, exception returns. If this

option is specified, no matter whether the table exists or not, all return success.

• Data in OSS is not deleted when the external tables are deleted.

For example:

create table sale_detail_drop like sale_detail;
 drop table sale_detail_drop;
 --If the table exists, return success; otherwise, return exception
.
 drop table if exists sale_detail_drop2;
 --No matter whether the table sale_detail_drop2 exists or not, all
 return success.

Rename a table

Statement format:

ALTER TABLE table_name RENAME TO new_table_name;

Note:

MaxCompute User Guide / 10 SQL

Issue: 20180904 259

• Rename operation is used to update the table name only and not the data in the table.

• If the new_table_name is duplicated an error may occur.

• If the table table_name does not exist, error may occur.

For example:

create table sale_detail_rename1 like sale_detail;
alter table sale_detail_rename1 rename to sale_detail_rename2;

Alter Table Comments

Command format:

ALTER TABLE table_name SET COMMENT 'tbl comment';

Note:

• The table table_name must exists.

• The comment length must not exceed 1024 bytes.

For example:

alter table sale_detail set comment 'new comments for table sale_detai
l';

Use the command desc to view the comment modification in the table. For more information, see

Describe Table.

Alter Table LastDataModifiedTime

MaxCompute SQL supports touch operation to modify LastDataModifiedTime of a table. The

result is to modify LastDataModifiedTime of a table to be current time.

Statement format:

ALTER TABLE table_name TOUCH;

Note:

• If the table table_name does not exist, an error is returned.

• This operation changes the value of LastDataModifiedTime of a table and this is when

MaxCompute identifies change in the table data and then begins the corresponding lifecycle

calculation.

MaxCompute User Guide / 10 SQL

260 Issue: 20180904

Empty data from a non-partitioned table

Empty the data in specified non-partition table, This command does not support partition table.

For the partition table, use ALTER TABLE table_name DROP PARTITION to clear the data in

partition.

Command format:

TRUNCATE TABLE table_name;

10.2.2 Lifecycle of table
Modify lifecycle of table

MaxCompute provides a function to manage data lifecycle so that user can release storage space

 and simplify the data recycle flow.

Statement format:

ALTER TABLE table_name SET lifecycle days;

Note:

• The parameter ‘days’ refers to the time required to complete the lifecycle. It must be a positive

 integer and its unit is ‘day’.

• Suppose that the table ‘table_name’ is a no-partition table. Calculated from the last updated

 date, the data is still not modified after N (days) days, then MaxCompute automatically

recycles the table without user intervention (similar to ‘drop table’ operation).

• In MaxCompute, once the data in the table is modified, the LastDataModifiedTime is updated

. So MaxCompute judges whether to recycle this table based on the LastDataModifiedTime

setting and lifecycle.

• · Suppose the table ‘table_name’ is a partition table. MaxCompute determines whether to

recycle the table according to LastDataModifiedTime of each partition.

• · Unlike no-partition table, after the last partition of a partitioned table has been recycled, the

table is not deleted.

• · The lifecycle can be set for a table, not for the partition.

• · It can be specified while creating a table.

Example:

create table test_lifecycle(key string) lifecycle 100;
 -- Create a new table test_lifecycle and the lifecycle is 100 days.

MaxCompute User Guide / 10 SQL

Issue: 20180904 261

 alter table test_lifecycle set lifecycle 50;
 -- Alter the lifecycle for the table test_lifecycle and set it to be
50 days.

Disable lifecycle of table

In some cases, the data in specified partitions do not need to be recycled by the lifecycle function

. For example, data in the beginning of the month, or the data during the Global Shopping Day

period. You can disable the lifecycle function using some specific partitions.

Statement format:

ALTER TABLE table_name [partition_spec] ENABLE|DISABLE LIFECYCLE;

An example is shown as follows.

ALTER TABLE trans PARTITION(dt='20141111') DISABLE LIFECYCLE;

10.2.3 View operations
Create view

Statement format:

CREATE [OR REPLACE] VIEW [IF NOT EXISTS] view_name
 [(col_name [COMMENT col_comment], ...)]
 [COMMENT view_comment]
 [AS select_statement]

Note:

• To create a view, you must have ‘read’ privilege on the table referenced by view.

• Views can only contain one valid ‘select’ statement.

• Other views can be referenced by a view, but this view cannot reference itself. Circular

reference is not supported.

• Writing the data into a view is not allowed, such as, using ‘insert into’ or ‘insert overwrite’ to

operate view

• After a view was created,it may be inaccessable if the referenced table is altered, such

as deleting a referenced table. You must maintain corresponding relationship between

referenced tables and views.

• If the option ‘if not exists’ is not specified and the view has already existed, using ‘create view

’ causes abnormality. If this situation occurs, use ‘create or replace view’ to recreate a view.

After reconstruction, the privileges keep unchanged.

MaxCompute User Guide / 10 SQL

262 Issue: 20180904

Example:

create view if not exists sale_detail_view
(store_name, customer_id, price, sale_date, region)
comment 'a view for table sale_detail'
as select * from sale_detail;

Drop view

Statement format:

DROP VIEW [IF EXISTS] view_name;

Note:

If the view does not exist and the option [if exists] is not specified, error occurs.

Example:

DROP VIEW IF EXISTS sale_detail_view;

Rename view

Statement format:

ALTER VIEW view_name RENAME TO new_view_name;

Note:

If the same name view has already existed, error occurs.

Example:

create view if not exists sale_detail_view
 (store_name, customer_id, price, sale_date, region)
 comment 'a view for table sale_detail'
 as select * from sale_detail;
 alter view sale_detail_view rename to market;

10.2.4 Column/Partition operation
Add partition

Statement format:

ALTER TABLE TABLE_NAME ADD [IF NOT EXISTS] PARTITION partition_spec
partition_spec:(partition_col1 = partition_col_value1, partition_col2
 = partiton_col_value2, ...)

Note:

MaxCompute User Guide / 10 SQL

Issue: 20180904 263

• · Only ‘creating partitions’ are supported wherein, ‘creating partition columns’ are not

supported.

• · If the same name partition has already existed and the option [if not exists] is not specified,

an exception returns.

• · Currently, the maximum number of partitions supported in a single MaxCompute table is 60,

000.

• · For tables that have multi-level partitions, to add a new partition, all partition values must be

specified.

Example:

add a new partition for the table ‘sale_detail’.

alter table sale_detail add if not exists partition (sale_date='201312
', region='hangzhou');
-- Add partition successfully, to store the sale detail of hangzhou
region in December of 2013.
alter table sale_detail add if not exists partition (sale_date='201312
', region='shanghai');
-- Add partition successfully, to store the sale detail of shanghai
region in December of 2013.
alter table sale_detail add if not exists partition(sale_date='
20111011');
-- Only specify a partition sale_date, error occurs and return.
alter table sale_detail add if not exists partition(region='shanghai
');
-- Only specify a partition region, error occurs and return.

Drop partition

Delete the syntax format for the partition is as follows:

ALTER TABLE TABLE_NAME DROP [IF EXISTS] PARTITION partition_spec;
partition_spec:(partition_col1 = partition_col_value1, partition_col2
 = partiton_col_value2, ...)

Note:

If the partition does not exist and the option [if exists] is not specified, then an error returns.

Example:

delete a partition from the table sale_detail.

alter table sale_detail drop if exists partition(sale_date='201312',
region='hangzhou');

MaxCompute User Guide / 10 SQL

264 Issue: 20180904

-- -Delete the sale details of Hangzhou in December of 2013 successful
ly.

Add column

Statement format:

ALTER TABLE table_name ADD COLUMNS (col_name1 type1, col_name2 type2
...)

Note:

You cannot specify order for a new column. By default, a new column is placed in the last

column.

Modify column name

Statement format:

ALTER TABLE table_name CHANGE COLUMN old_col_name RENAME TO new_col_na
me;

Note:

• Column ‘old_col_name’ refers to an existing column.

• A column named ‘new_col_name’ cannot exist in the table.

Alter Column/Partition Comment

Modify column/partition comment is as follows:

ALTER TABLE table_name CHANGE COLUMN col_name COMMENT comment_string;

Note:

The maximum comment content is 1024 bytes.

Modify column names and column notes simultaneously

Statement format:

ALTER TABLE table_name CHANGE COLUMN old_col_name new_col_name
column_type COMMENT column_comment;

Note:

• Column ‘old_col_name’ must be an existing column.

• A column named ‘new_col_name’ cannot exist in the table.

MaxCompute User Guide / 10 SQL

Issue: 20180904 265

• The content of the comment cannot exceed 1024 bytes.

Modify LastDataModifiedTime of table/partition

MaxCompute MaxCompute SQL supports ‘touch’ operation to modify LastDataModifiedTime of a

partition. The result is to modify ‘LastDataModifiedTime’ of a partition to be current time.

Statement format:

ALTER TABLE table_name TOUCH PARTITION(partition_col='partition_
col_value', ...)

Note:

• If ‘table_name’ or ‘partition_col’ does not exist, an error returns.

• If the specified partition_col_value does not exist, an error returns.

• This operation changes the value of ‘LastDataModifiedTime’ in the table and now

MaxCompute determines whether the data of the table or partition has changed and the

lifecycle calculation begins again.

Modify partition value

MaxCompute SQL supports to change the partition value for corresponding partition value through

 ‘rename’ operation.

Statement format:

ALTER TABLE table_name PARTITION (partition_col1 = partition_
col_value1, partition_col2 = partiton_col_value2, ...)
RENAME TO PARTITION (partition_col1 = partition_col_newvalue1,
partition_col2 = partiton_col_newvalue2, ...)

Note:

• The name of a partition column cannot be modified. Only the values in that column can be

altered.

• To modify values in one or more partitions among multi-level partitions, users must write

values for partitions at each level.

MaxCompute User Guide / 10 SQL

266 Issue: 20180904

10.3 Insert Operation

10.3.1 INSERT OVERWRITE/INTO
Function definition:

INSERT OVERWRITE|INTO TABLE tablename [PARTITION (partcol1=val1,
partcol2=val2 ...)] [(col1,col2 ...)]
select_statement
FROM from_statement;

Note:

• Insert syntax of MaxCompute is different from MySQL or Oracle Insert syntax. The keyword

table must be added following insert overwrite|into, instead of using tablename

directly.

• When the target table for Insert is a partitioned table, expressions such as functions are not

allowed in [PARTITION (partcol1=val1, partcol2=val2 …)] .

• Currently, INSERT OVERWRITE does not support inserting columns. You can use INSERT

INTO instead.

Insert overwrite/into saves calculation results into a destination table.

The difference between insert into and insert overwrite is that insert into inserts

added data into the table or partition, while insert overwrite clears source data from the

table or partition before inserting the data in it.

While processing data through MaxCompute SQL, insert overwrite/into is the most

common statement. It can save the calculation result into a table, needed for the subsequent

calculation. For example, use the following statements to calculate the sale detail of different

regions from the table sale_detail:

create table sale_detail_insert like sale_detail;
alter table sale_detail_insert add partition(sale_date='2013', region
='china');
insert overwrite table sale_detail_insert partition (sale_date='2013
', region='china')
select shop_name, customer_id, total_price from sale_detail;

Note:

MaxCompute User Guide / 10 SQL

Issue: 20180904 267

The correspondence between source table and destination table depends on the column

sequence in select clause, not the column name correspondence between the two tables. The

following statement is still valid:

insert overwrite table sale_detail_insert partition (sale_date='2013
', region='china')
select customer_id, shop_name, total_price from sale_detail;
 -- When the sale_detail_insert table is created, the column
sequence is as below:
 -- shop_name string, customer_id string, total_price bigint
 -- When data is inserted from sale_detail to sale_detail_insert,
the insertion sequence of sale_detail is as below:
 -- customer_id, shop_name, total_price
 -- Inserts data in sale_detail.customer_id into sale_detai
l_insert.shop_name.
 -- Inserts data in sale_detail.shop_name into sale_detail_insert.
customer_id.

To insert data into a partition, the partition column cannot appear in the Select list.

insert overwrite table sale_detail_insert partition (sale_date='2013
', region='china')
 select shop_name, customer_id, total_price, sale_date, region
from sale_detail;
 -- Returns an error. The items sale_date and region are partition
 columns, which cannot appear in the INSERT statement of static
partitions.

Simultaneously, the value of the partition can only be a constant and expressions cannot appear.

The following statements are invalid:

insert overwrite table sale_detail_insert partition (sale_date=
datepart('2016-09-18 01:10:00', 'yyyy') , region='china')
 select shop_name, customer_id, total_price from sale_detail;

10.3.2 MULTI INSERT
MaxCompute SQL supports inserting different result tables or partitions in a single SQL statement.

Statement format:

FROM from_statement
 INSERT OVERWRITE | INTO TABLE tablename1 [PARTITION (partcol1=
val1, partcol2=val2 ...)]
 select_statement1 [FROM from_statement]
 [INSERT OVERWRITE | INTO TABLE tablename2 [PARTITION (partcol1=
val3, partcol2=val4 ...)]
 select_statement2 [FROM from_statement]]

Note:

MaxCompute User Guide / 10 SQL

268 Issue: 20180904

• Generally, up to 256 ways of output can be written in a single SQL statement. A syntax error

occurs, if the output exceeds 256 ways.

• In a multi insert statement:

▬ For a partitioned table, a target partition cannot appear multiple times.

▬ For an unpartitioned table, this table cannot appear multiple times.

• Different partitions within a partitioned table cannot have an Insert overwrite operation and an

Insert into operation at the same time; otherwise, an error is returned.

For an unpartitioned table, this table cannot appear multiple times.

create table sale_detail_multi like sale_detail;
 from sale_detail
 insert overwrite table sale_detail_multi partition (sale_date
='2010', region='china')
 select shop_name, customer_id, total_price where
 insert overwrite table sale_detail_multi partition (sale_date
='2011', region='china')
 select shop_name, customer_id, total_price where
 -- Return result successfully. Insert the data of sale_detail
into the 2010 sales records and 2011 sales records in China region.
 from sale_detail
 insert overwrite table sale_detail_multi partition (sale_date
='2010', region='china')
 select shop_name, customer_id, total_price
 insert overwrite table sale_detail_multi partition (sale_date
='2010', region='china')
 select shop_name, customer_id, total_price;
 -- An error is thrown. The same partition appears for multiple
times.
 from sale_detail
 insert overwrite table sale_detail_multi partition (sale_date
='2010', region='china')
 select shop_name, customer_id, total_price
 insert into table sale_detail_multi partition (sale_date='
2011', region='china')
 select shop_name, customer_id, total_price;
 -- An error is thrown. Different partitions within a partition
table cannot have both an ‘insert overwrite’ operation and an ‘insert
 into’ operation.

10.3.3 DYNAMIC PARTITION
To ‘insert overwrite’ into a partition table, specify the partition value in the statement. It can also

be realized in a more flexible way, to specify a partition column in a partition table but not give the

value. Correspondingly, the columns in Select clause are used to specify these partition values.

MaxCompute User Guide / 10 SQL

Issue: 20180904 269

Statement format:

insert overwrite table tablename partition (partcol1, partcol2 ...)
select_statement from from_statement;

Note:

• In the ‘select_statement’ field, the following field provides a dynamic partition value for the

 target table. If the target table has only one-level dynamic partition, the last field value of

select_statement is the dynamic partition value of the target table.

• Currently, a single worker can only output up to 512 dynamic partitions in a distributed

environment, otherwise it leads to abnormality.

• Currently, any dynamic partition SQL cannot generate more than 2,000 dynamic partitions;

otherwise it causes abnormality.

• The value of dynamic partition cannot be NULL, and also does not support special or Chinese

characters, otherwise an exception is thrown. The exception is as follows:

FAILED: ODPS-0123031:Partition exception - invalid dynamic
partition value:
 province=xxx

• If the destination table has multi-level partitions, it is allowed to specify parts of partitions to be

static partitions through ‘Insert’ statement, but the static partitions must be advanced partitions

.

A simple example to explain dynamic partition is as follows:

create table total_revenues (revenue bigint) partitioned by (region
string);
 insert overwrite table total_revenues partition(region)
 select total_price as revenue, region
 from sale_detail;

As mentioned in the preceding example, user is unable to know which partitions are generated

before running SQL. Only after the Select statement running ends, user can confirm which

partitions have been generated using ‘region’ as the value. This is why the partition is called as the

Dynamic Partition.

MaxCompute User Guide / 10 SQL

270 Issue: 20180904

Other Examples:

create table sale_detail_dypart like sale_detail; --Create target
table.

--Example 1:

insert overwrite table sale_detail_dypart partition (sale_date, region
)
select shop_name,customer_id,total_price,sale_date,region from
sale_detail;
 -- Return successfully.

• In ‘sales_detail’ table, the value of the sale_date determines the sales_date partition value of

the target table, and the value of the region determines the region partition value of the target

table.

• In a dynamic partition, the correspondence between the select_statement field and

the dynamic partition of the target table is determined by the order of the fields. In this

example, if the Select statement is written as the following:

select shop_name,customer_id,total_price,region,sale_date from
 sale_detail;

the region value determines the sale_date partition value of the target table, and the value of

sale_date determines the region partition value of the target table.

--Example 2:

insert overwrite table sale_detail_dypart partition (sale_date='2013
', region)
 select shop_name,customer_id,total_price,region from
sale_detail;
 -- Return successfully; multiple partitions; specify a secondary
partition.

--Example 3:

insert overwrite table sale_detail_dypart partition (sale_date='2013
', region)
 select shop_name,customer_id,total_price from sale_detail;
 -- Return failure information. When inserting a dynamic partition
, the dynamic partition column must appear in Select list.

--Example 4:

insert overwrite table sales partition (region='china', sale_date)
select shop_name,customer_id,total_price,region from sale_detail;

MaxCompute User Guide / 10 SQL

Issue: 20180904 271

 -- Return failure information. User cannot specify the lowsubpart
ition only, but needs to insert advanced partition dynamically.

When the old version of MaxCompute performs dynamic partitioning, if the partition column type

is not exactly the same as the column type in the corresponding select list, an error is reported.

MaxCompute 2.0 supports implicit conversion, as shown in the following :

create table parttable(a int, b double) partitioned by (p string);
insert into parttable partition(p) select key, value, current_ti
mestmap() from src;
select * from parttable;

The result is as follows:

a b c

0 NULL 2017-01-23 22:30:47.130406621

0 NULL 2017-01-23 22:30:47.130406621

10.3.4 VALUES
In the test phase, prepare some basic data for a small data table. You can quickly write some test

data to the test table by using the INSERT … VALUES statement.

Note:

Currently, INSERT OVERWRITE does not support insert columns, use INSERT INTO instead.

Statement format:

INSERT INTO TABLE tablename
[PARTITION (partcol1=val1, partcol2=val2 ...)][co1name1,colname2...]
[VALUES (col1_value,col2_value,...),(col1_value,col2_value,...),...]

Example 1::

drop table if exists srcp;
create table if not exists srcp (key string ,value bigint) partitioned
 by (p string);
insert into table srcp partition (p='abc') values ('a',1),('b',2),('c
',3);

After the preceding statements run successfully, the result of partition ‘abc’ is as follows:

| key | value | p |

| a | 1 | abc |
| b | 2 | abc |

MaxCompute User Guide / 10 SQL

272 Issue: 20180904

| c | 3 | abc |

When many columns are in the table, and you want to insert data into some of the columns , use

the insert list function as follows.

Example 2:

drop table if exists srcp;
create table if not exists srcp (key string ,value bigint) partitioned
 by (p string);
insert into table srcp partition (p)(key,p) values ('d','20170101'),('
e','20170101'),('f','20170101');

After the preceding statements run successfully, the result of partition ‘20170101’ is as follows:

| key | value | p |

d	NULL	20170101
e	NULL	20170101
f	NULL	20170101

For columns not specified in values, the default value is NULL. The insert list function is not

necessarily used with values, and can also be used with ‘Insert into…select…’.

The Insert…values method has a limitation: values must be constants. You can use the values

table function of MaxCompute to perform some simple operations on the inserted data. For more

information, see Example 3.

Example 3:

drop table if exists srcp;
create table if not exists srcp (key string ,value bigint) partitioned
 by (p string);
insert into table srcp partition (p) select concat(a,b), length(a)+
length(b),'20170102' from values ('d',4),('e',5),('f',6) t(a,b);

The values (…), (…) t (a, b) are to define a table named t whose columns are a and b, data type

 is (a string, b bigint), the data type of which is derived from the values list. In this way, with no

physical table prepared, it is possible to simulate a multi-row table with arbitrary data and perform

arbitrary calculations.

After the preceding statements run successfully, the result of partition ‘20170102’ is as follows:

| key | value | p |

| d4 | 2 | 20170102 |
| e5 | 2 | 20170102 |

MaxCompute User Guide / 10 SQL

Issue: 20180904 273

| f6 | 2 | 20170102 |

Note:

• Values only support constants and do not support functions including ARRAY complex types.

Currently, MaxCompute cannot construct corresponding constants. Modify the statement as

follows:

insert into table srcp (p ='abc') select 'a',array('1', '2',
 '3');.

which can provide the same effect.

• To write datetime or timestamp type through values, specify the type name in values

statement, for example:

insert into table srcp (p ='abc') values (datetime'2017-11-11
 00:00:00',timestamp'2017-11-11 00:00:00.123456789');

In fact, the values is not only used in the Insert statement, any DML statement can also be used.

A special usage of values is as follows.

select abs(-1), length('abc'), getdate();

As the preceding statement shows, select can be run without the from statement, if the expression

 list of select does not use any upstream table data. The underlying implementation is selecting

from an anonymous values table in one row and zero columns. In this way, to test some functions

, such as your UDF, etc., you do not need to manually create DUAL tables.

10.3.5 Lateral View
Single Lateral View statement

Syntax:

lateralView: LATERAL VIEW [OUTER] udtf(expression) tableAlias AS
columnAlias (',' columnAlias) * fromClause: FROM baseTable (lateralVie
w)*

Notes:

• Lateral view is typically encapsulated with UDTF including split, explode, and so on.It can split

one row of data into multiple rows and then aggregate them.

• Lateral view first calls UDTF for each row of the original table, then split a row into one or more

rows.Finally,Lateral view aggregate the rows to generate a virtual table that supports alias.

MaxCompute User Guide / 10 SQL

274 Issue: 20180904

• Lateral view outer: When the table function does not output any rows, the corresponding Input

rows remain in the Lateral View results, and all table function output lists are null.

Example:

Suppose we have a table called "pageAds" which has two columns of data.The first column is

"pageid string" and the second column is "adid_list", a comma-separated collection of AD IDs.

 string pageid Array<int> adid_list

“front_page” [1, 2, 3]

“contact_page” [3, 4, 5]

The requirement is to count the number of times all AD IDs have appeared. The implementation

process is as follows.

1. Split the AD IDs as follows:

SELECT pageid, adid
 FROM pageAds LATERAL VIEW explode(adid_list) adTable AS adid;

The execution result is as follows:

string pageid int adid

“front_page” 1

“front_page” 2

“front_page” 3

“contact_page” 3

“contact_page” 4

“contact_page” 5

2. The statistics for the aggregation:

SELECT adid, count(1)
 FROM pageAds LATERAL VIEW explode(adid_list) adTable AS adid
GROUP BY adid;

Result:

int adid count(1)

1 1

2 1

MaxCompute User Guide / 10 SQL

Issue: 20180904 275

int adid count(1)

3 2

4. 1

50 1

Multiple Lateral View statements

A from statement can be followed by multiple Lateral View statements, the subsequent Lateral

View statement can reference all the former tables and columns.

The following table is an example:

Array<int> col1 Array<string> col2

[1, 2] [“a”, “b”, “c”]

[3, 4] [“d”, “e”, “f”]

• Execute a single statement:

SELECT myCol1, col2 FROM baseTable
 LATERAL VIEW explode(col1) myTable1 AS myCol1;

Result:

int mycol1 Array<string> col2

1 [“a”, “b”, “c”]

2 [“a”, “b”, “c”]

3 [d”, “e”, “f”]

4 [d”, “e”, “f”]

• Add a Lateral View statement as follows:

SELECT myCol1, myCol2 FROM baseTable
 LATERAL VIEW explode(col1) myTable1 AS myCol1
 LATERAL VIEW explode(col2) myTable2 AS myCol2;

Result is as follows:

int myCol1 string myCol2

1 “a”

1 “b”

1 “c”

MaxCompute User Guide / 10 SQL

276 Issue: 20180904

int myCol1 string myCol2

2 “a”

2 “b”

2 “c”

3 “d”

3 “e”

3 “f”

4 “d”

4 “e”

4 “f”

10.4 SQL summary
MaxCompute SQL is suitable for various scenarios. The massive data (GB, TB, or EB level) must

 be processed based on an offline batch calculation. It takes several seconds or even minutes

to schedule after a job is submitted. Therefore, MaxCompute SQL is preferred for services that

process tens of thousands of transactions per second.

The MaxCompute SQL syntax is similar to SQL and can be considered as a subset of standard

 SQL. However, the MaxCompute SQL must not be confused with a database. It does not have

database characteristics including transactions, primary key constraints, indexes, and so on. The

maximum size of SQL in MaxCompute is 3 MB.

Reserved words

MaxCompute SQL considers the keywords of SQL statement as reserved words. If you use

keywords for name tables, columns, or partitions, you must escape the keywords with the ``

symbol, otherwise an error is occurred. Reserved words are case insensitive and the most

common words used are as follows: (For a complete reserved word list, see MaxCompute SQL

Reserved Word.)

% & && () * +
 - . / ; < <= <>
 = > >= ? ADD ALL ALTER
 AND AS ASC BETWEEN BIGINT BOOLEAN BY
 CASE CAST COLUMN COMMENT CREATE DESC DISTINCT
 DISTRIBUTE DOUBLE DROP ELSE FALSE FROM FULL
 GROUP IF IN INSERT INTO IS JOIN
 LEFT LIFECYCLE LIKE LIMIT MAPJOIN NOT NULL
 ON OR ORDER OUTER OVERWRITE PARTITION RENAME
 REPLACE RIGHT RLIKE SELECT SORT STRING TABLE

MaxCompute User Guide / 10 SQL

Issue: 20180904 277

 THEN TOUCH TRUE UNION VIEW WHEN WHERE

Type conversion

MaxCompute SQL allows conversion between data types. The conversion methods include

explicit type conversion and implicit type conversion. For more information, see Type

Conversion.

• Explicit conversions: Uses CAST to convert a value type.

• Implicit conversions: MaxCompute automatically performs implicit conversions while running

 based on the context environment and conversion rules. Implicit conversion scope includes

various operators, built-in functions, and so on.

Partitioned table

MaxCompute SQL supports partitioned tables. Specify the partition as it simplifies the operation.

For example, improve SQL running efficiency, reduce the cost, and so on. For more information,

see Partition.

UNION ALL

To be involved in a UNION ALL operation, the data type of columns, column numbers, and column

 names must be consistent, otherwise an error occurs.

10.5 Operators
Relational operators

Operator Description

A=B If A or B is NULL, NULL is returned. If A is equal to B, TRUE is returned;
otherwise FALSE is returned.

A<>B If A or B is NULL, NULL is returned. If A is not equal to B, TRUE is returned;
otherwise FALSE is returned.

A<B If A or B is NULL, NULL is returned. If A is less than B, TRUE is returned;
otherwise FALSE is returned.

A<=B If A or B is NULL, NULL is returned. If A is not greater than B, TRUE is
returned; otherwise FALSE is returned.

A>B If A or B is NULL, NULL is returned. If A is greater than B, TRUE is returned;
otherwise FALSE is returned.

A>=B If A or B is NULL, NULL is returned; if A is not less than B, TRUE is returned
; otherwise, FALSE is returned.

MaxCompute User Guide / 10 SQL

278 Issue: 20180904

Operator Description

A IS NULL If A is NULL, TRUE is returned; otherwise, FALSE is returned.

A IS NOT NULL If A is NULL, TRUE is returned; otherwise FALSE is returned.

A LIKE B If A or B is NULL, NULL is returned. If String A matches the SQL simple
regular B TRUE is returned; otherwise FALSE is returned. The (%)
character in B matches an arbitrary number of characters and the (_)
character in B matches any character in A. To match (%) or_'), use by the
escape characters '(%')' and (_').

‘aaa’ like‘a_’= TRUE
‘aaa’ like‘a%’ = TRUE
‘aaa’ like‘aab’= FALSE
‘a%b’ like‘a\%b’= TRUE
‘axb’ like ‘a\%b’= FALSE

A RLIKE B A is a string, and B is a string constant regular expression. If any substring
 of A matches the Java regular expression B, TRUE is returned; otherwise
 FALSE is returned. If expression B is empty, report an error and exit. If
expression A or B is NULL, NULL is returned.

A IN B B is a set. If expression A is NULL, NULL is returned. If expression A
is in expression B, TRUE is returned; otherwise FALSE is returned. If
expression B has only one element NULL, that is, A IN (NULL), return NULL
. If expression B contains NULL element, take NULL as the type of other
elements in B set. B must be a constant and at least has one element; all
types must be consistent.

BETWEEN AND The expression is A [NOT] BETWEEN B AND C. Empty if A, B, or C is
empty. True if A is larger than or equal to B and less than or equal to C;
otherwise false is returned.

The common use:

select * from user where user_id = '0001';
select * from user where user_name <> 'maggie';
select * from user where age > ‘50’;
select * from user where birth_day >= '1980-01-01 00:00:00';
select * from user where is_female is null;
select * from user where is_female is not null;
select * from user where user_id in (0001,0010);
select * from user where user_name like 'M%';

The Double values in MaxCompute are different in precision. For this reason, we do not

recommend using the equal sign for comparison between two Double data. You can subtract two

 Double types, and then take the absolute value into consideration. When the absolute value is

small enough, the two double values are considered equal.

MaxCompute User Guide / 10 SQL

Issue: 20180904 279

Example:

abs(0.9999999999 - 1.0000000000) < 0.000000001
 -- 0.9999999999 and 1.0000000000 have the precision of 10 decimal
digits, while 0.000000001 has the precision of 9 decimal digits.
 -- It is considered that 0.9999999999 is equal to 1.0000000000.

Note:

• ABS is a built-in function provided by MaxCompute to take absolute value. For more

information, see ABS.

• In general, the Double type in MaxCompute can retain 14-bit decimal.

Arithmetic operators

Operator Description

A + B If expression A or B is NULL, NULL is returned; otherwise the result of A+B
is returned.

A – B If expression A or B is NULL, NULL is returned; otherwise the result of A – B
 is returned.

A * B If expression A or B is NULL, NULL is returned; otherwise result of A * B is
returned.

A / B If expression A or B is NULL, NULL is returned; otherwise the result of A / B
is returned. If Expression A and B are bigint types, the result is double type.

A % B If expression A or B is NULL, NULL is returned; otherwise the reminder result
 from dividing A by B is returned.

+A Result A is returned.

-A If expression A is NULL, NULL is returned; otherwise –A is returned.

The common use:

select age+10, age-10, age%10, -age, age*age, age/10 from user;

Note:

• You can only use String, Bigint, and Double to perform arithmetic operations. (Using Datetime

type and Boolean type is restricted.)

• Before you begin these operations, the type String is converted into Double by implicit type

conversion.

MaxCompute User Guide / 10 SQL

280 Issue: 20180904

• If Bigint and Double both are involved in arithmetic operation, the type Bigint is converted into

Double by implicit type conversion.

• When A and B are Bigint types, the return result of A/B will be a Double type. For other

arithmetic operations, the return value is also a Bigint type.

Bitwise operators

Operator Description

A & B Return the result of bitwise AND of A and B. For example: 1&2, return 0; 1&3,
return 1; Bitwise AND of NULL and other values, all return NULL. Expression A
and B must be Bigint.

A | B Return the result of bitwise OR of A and B. For example: 1|2, return3. 1|3, return 3
. Bitwise OR of NULL and other values, all return NULL. Expression A and B must
 be Bigint type.

Note:

Bitwise operator does not support implicit conversions, only supports the type Bigint.

Logical operators

 Operator Description
 A and B TRUE and TRUE=TRUE
 TRUE and FALSE=FALSE
 FALSE and TRUE=FALSE
 FALSE and NULL=FALSE
 NULL and FALSE=FALSE
 TRUE and NULL=NULL
 NULL and TRUE=NULL
 NULL and NULL=NULL
 A or B TRUE or TRUE=TRUE
 TRUE or FALSE=TRUE
 FALSE or TRUE=TRUE
 FALSE or NULL=NULL
 NULL or FALSE=NULL
 TRUE or NULL=TRUE
 NULL or TRUE=TRUE
 NULL or NULL=NULL
 NOT A If A is NULL, NULL is returned.
 If A is TRUE, FALSE is returned.
 If A is FALSE, TRUE is returned.

Note:

Only the type Boolean can be involved in logic operations and the implicit type conversion is not

supported.

MaxCompute User Guide / 10 SQL

Issue: 20180904 281

10.6 Type conversions
MaxCompute SQL allows conversion between data types. The two conversion methods are

explicit type conversion and implicit type conversion.

Explicit conversion

Explicit conversions use CAST to convert a value type to another. The following table lists the

types that can be explicitly converted in MaxCompute SQL.

From/To Bigint Double String Datetime Boolean Decimal

Bigint – Y Y N N Y

Double Y – Y N N Y

String Y Y – Y N Y

Datetime N N Y – N N

Boolean N N N N – N

Decimal Y Y Y N N -

Y means can be converted. N means cannot be converted. – means conversion is not required.

Example:

select cast(user_id as double) as new_id from user;
select cast('2015-10-01 00:00:00' as datetime) as new_date from user;

Note:

• To convert the Double type to the Bigint type, digits after the decimal point are dropped. For

example, cast(1.6 as bigint) = 1.

• To convert the String type that meets the Double format to the Bigint type, it is converted to

the Double type, and then to the Bigint type. The digits after the decimal point are dropped.

For example, cast(“1.6” as bigint) = 1.

• The String type that meets the Bigint format can be converted to the Double type, and must

keep one digit after the decimal point. For example, cast(“1” as double) = 1.0.

• Explicit conversions of unsupported types may return an exception.

• If a conversion fails during execution, the conversion is aborted with an exception.

• To convert the Datetime type, use the default format yyyy-mm-dd hh:mi:ss. For more

information, see Conversions between the String type and the Datetime type.

MaxCompute User Guide / 10 SQL

282 Issue: 20180904

• Some types cannot be explicitly converted, but can be converted using built-in SQL functions.

For example, the to_char function can be used to convert values of the Boolean type to

the String type. For more information, see TO_CHAR. The to_date function can be used to

convert values of the String type to the Datetime type. For more information, see TO_DATE.

• For more information, see CAST.

• If a DECIMAL value exceeds the value range, MSB overflow error or LSB overflow truncation

may occur for CAST STRING TO DECIMAL.

Implicit conversion and scope

Implicit type conversion is an automatic type conversion performed by MaxCompute according

to the usage context and type conversion rules. The following table lists the types that can be

implicitly converted using MaxCompute.

booleantinyint smallintint bigint float doubledecimalstring varchartimestampbinary

boolean
to

T F F F F F F F F F F F

tinyint to F T T T T T T T T T F F

smallint
to

F F T T T T T T T T F F

int to F F F T T T T T T T F F

bigint to F F F F T T T T T T F F

float to F F F F F T T T T T F F

double to F F F F F F T T T T F F

decimal
to

F F F F F F F T T T F F

string to F F F F F F T T T T F F

varchar
to

F F F F F F T T T T F F

timestamp
 to

F F F F F F F F T T T F

binary to F F F F F F F F F F F T

T means can be converted. F means cannot be converted.

Note:

MaxCompute User Guide / 10 SQL

Issue: 20180904 283

• The DECIMAL type and Datetime constant definition mode are added to MaxCompute2.0.

100BD indicates a DECIMAL, the value is 100. Datetime 2017-11-11 00:00:00 indicates a

constant of the Datetime type. The constant definition is convenient because it can be directly

used in values clauses and tables.

• In the earlier version of MaxCompute, values of the DOUBLE type can be implicitly converted

to the BIGINT type. Owing to some reasons, such conversions may lead to data loss, which is

not allowed by common database systems.

Common use:

select user_id+age+'12345',
 concat(user_name,user_id,age)
 from user;

Note:

• Implicit conversions of unsupported types may cause an error.

• If a conversion fails during execution, an exception occurs.

• MaxCompute automatically performs implicit conversions based on the context environment.

We recommend that you use CAST to perform an explicit conversion when the types do not

match.

• Implicit conversion rules are applicable to a specific range of scopes. In some scopes, only

some rules can take effect. For more information, see the scopes of implicit conversions.

• Implicit conversions under relational operators

Relational operators include equal to (=), not equal to (<>), less than (<), less than or equal to

 (<=), greater than (>), greater than or equal to (>=), IS NULL, IS NOT NULL, LIKE, RLIKE,

and IN. For the particularities, implicit conversion rules of LIKE, RLIKE, and IN are discussed

separately. The following descriptions do not contain these three special operators.

The following table describes implicit conversion rules when different types of data is involved

in relational operations.

From/To Bigint Double String Datetime Boolean Decimal

Bigint – Double Double N N Decimal

Double Double – Double N N Decimal

String Double Double – Datetime N Decimal

Datetime N N Datetime – N N

MaxCompute User Guide / 10 SQL

284 Issue: 20180904

From/To Bigint Double String Datetime Boolean Decimal

Boolean N N N N – N

Decimal Decimal Decimal Decimal N N -

Note:

• If two types cannot be implicitly converted, the relational operation is aborted by an error.

• For more information about the relational operators, see Relational Operators.

• Implicit conversions under special relational operators

Special relational operators include LIKE, RLIKE, and IN.

• The usage of LIKE and RLIKE is as follows:

source like pattern;
source rlike pattern;

The following illustrates the notes for LIKE and RLIKE in implicit conversions:

• The source and pattern parameters of LIKE and RLIKE can only be of the String type.

• Other types can neither be involved in the operations nor be implicitly converted to the

String type.

• The usage of IN is as follows:

key in (value1, value2, …)

Implicit conversion rules of IN:

• Data in the value column must be consistent.

• To compare keys and values, if Bigint, Double, and String types are compared, convert

 them to Double type. If the Datetime and String types are compared, convert them to

Datetime type. Conversions between other types are not allowed.

• Implicit conversions under arithmetic operators

Arithmetic operators include addition (+), subtraction (-), multiplication (*), division (/), modulo

(%), unary plus (+), and unary minus (-). Their implicit conversion rules are described as

follows:

• Only the String, Bigint, Double, and Decimal types can be involved in the operation.

• The String type are implicitly converted to the Double type before the operation.

MaxCompute User Guide / 10 SQL

Issue: 20180904 285

• When the Bigint and Double types are involved in the operation, the Bigint type is implicitly

converted to the Double type.

• The Datetime and Boolean types are not allowed in the arithmetic operation.

• Implicit conversions under logical operators

Logical operators include AND, OR, and NOT. Their implicit conversion rules are as follows:

• Only the Boolean type can be involved in the logical operation.

• Other types are not allowed in the logical operation, and cannot be implicitly converted to

other types.

Implicit conversions for Built-in functions

MaxCompute SQL provides numerous system functions. You can calculate one or multiple

columns of any row and output data of any type. Their implicit conversion rules are described as

follows:

• To call a function, if the data type of an input parameter is different from that defined in the

function, convert the data type of the input parameter to that defined in the function.

• Parameters of different built-in functions of MaxCompute SQL have different requirements on

implicit conversions. For more information, see Built-in Functions.

Implicit conversions under CASE WHEN

For more information about CASE WHEN, see CASE WHEN Expressions. Its implicit conversion

rules are listed as follows:

• If the types of the returned values are Bigint and Double, convert all to the Double type.

• If a String type exists in return types, convert all to the String type. If the conversion fails (such

as Boolean type conversion), an error is returned.

• Conversions between other types are not allowed.

Conversions between the String Type and Datetime Type

MaxCompute supports conversions between the String type and Datetime type. The conversion

format is yyyy-mm-dd hh:mi:ss.

Unit String (case-insensitive) Value range

Year yyyy 0001 - 9999

Month mm 01 - 12

Day dd 01 - 28,29,30,31

MaxCompute User Guide / 10 SQL

286 Issue: 20180904

Unit String (case-insensitive) Value range

Hour hh 00 - 23

Minute mi 00 - 59

Second ss 00 - 59

Note:

• In the value range of each unit, if the first digit is 0, it cannot be ignored. For example, 2014-1

-9 12:12:12 is an invalid Datetime format and it cannot be converted from the STRING type

to the Datetime type. It must be written as 2014-01-09 12:12:12.

• Only the String type that meets the preceding format requirements can be converted to

the Datetime type. For example, cast(“2013-12-31 02:34:34” as datetime)

converts2013-12-31 02:34:34 of the String type to the Datetime type. Similarly, when

the Datetime type is converted to the String type, the default conversion format is yyyy-mm-dd

hh:mi:ss.

For example, the following conversions return an exception:

cast("2013/12/31 02/34/34" as datetime)
cast("20131231023434" as datetime)
cast("2013-12-31 2:34:34" as datetime)

The threshold of dd depends on the actual days of a month. If the value exceeds the actual days

of the month, the conversion is aborted with an error.

Example:

cast("2013-02-29 12:12:12" as datetime) -- Returns an error because
February 29, 2013 does not exist.
cast("2013-11-31 12:12:12" as datetime) -- Returns an exception
because November 31, 2013 does not exist.

MaxCompute provides the TO_DATE function to convert the String type that does not meet the

Datetime format to the Datetime type. For more information, see TO_DATE.

MaxCompute User Guide / 10 SQL

Issue: 20180904 287

10.7 DDL SQL

10.8 Insert Operation

10.9 SELECT operation

10.10 SQL limits
Some users may fail to notice specific limits and find the service has stopped. The limits for

MaxCompute SQL include the following:

Boundary name Maximum value/

Limit

Class Description

Length of table
name

128 bytes Length limit Table names and column
names cannot contain special
 characters. It must start with
 a letter and can contain only
 English letters (a-z, A-Z),
numbers, and underscores (_).

Annotation length 1,024 bytes Length limit The annotation can contain valid
 strings for up to 1,024 bytes.

Column definitions 1,200 Quantity limit One table can contain a
maximum of 1,200 column
definitions.

Partitions 60,000 Quantity limit One table can contain a
maximum of 60,000 partitions.

Partition levels of a
 table

6 levels Quantity limit A table can contain a maximum
of six levels of partition.

Statistical definition
s

100 Quantity limit One table can contain a
maximum of 100 statistical
definitions.

Statistical definition
s

 64,000 Length limit A statistical definition can
contain a maximum of 64,000
bytes.

Screen display 10,000 rows Quantity limit The screen display of a SELECT
 statement outputs a maximum
of 10,000 rows.

INSERT targets 256 Quantity limit A multiins operation can insert
a maximum of 256 targets at a
time.

MaxCompute User Guide / 10 SQL

288 Issue: 20180904

Boundary name Maximum value/

Limit

Class Description

UNION ALL 256 Quantity limit The UNION ALL operation can
be performed on a maximum of
256 tables.

MAPJOIN 　 Eight small tables Quantity limit A MAPJOIN operation can be
 performed on a maximum of
eight small tables.

MAPJOIN memory
restriction

512 MB Quantity limit The memory size of all small
 tables on which MAPJOIN
operation is performed cannot
exceed 512 MB.

Window functions Five Quantity limit A SELECT statement can
contain a maximum of five
window functions.

ptinsubq 　 1,000 rows Quantity limit The results returned by PT IN
SUBQUERY cannot exceed 1,
000 rows.

SQL statement 2 MB Length limit The maximum length of an SQL
statement is 2 MB.

Number of
conditions for a
where clause

256 Quantity limit A where clause can use a
maximum of 256 conditions.

Length of column
records

8 MB Quantity limit The maximum length of a cell in
tables is 8 MB.

Number of
parameters of an in
 statement

1,024 Quantity limit Specifies the maximum
number of parameters of an in
 statement, for example, in (
1,2,3….,1024). An excess of
parameters of in(…) results in
compilation pressure. 1,024 is a
 recommended value, not a limit
 value.

jobconf.json 1 MB Length limit The size of ‘jobconf.json’ is 1 MB
. Including too many partitions in
a table may cause ‘jobconf.json’
to exceed 1 MB.

MaxCompute User Guide / 10 SQL

Issue: 20180904 289

Boundary name Maximum value/

Limit

Class Description

View Not writable Operation
restriction

A view cannot be written or
 operated using an insert
statement.

Column data type Not allowed Operation limit The data type and position of a
column cannot be modified.

java udf function Cannot be abstract or
 static

Operation limit A Java UDF cannot be abstract
or static.

A maximum of 10,
000 partitions can
be queried.

10,000 Quantity limit A maximum of 10,000 partitions
can be queried.

Note:

The limits of MaxCompute SQL cannot be manually modified or configured.

10.11 Builtin Function

10.11.1 Date Functions
This article explains various functions that MaxCompute SQL offers to operate datetime types.

DATEADD

Command format:

datetime dateadd(datetime date, bigint delta, string datepart)

Command description:

Modify the value of date according to a specified unit ‘datepart’ and specified scope ‘delta’.

Parameter description:

• date: Datetime type, value of date. If the input is string type, it is converted to ‘datetime’ type

by implicit conversion. If it is another type, an exception is indicated.

• delta: Bigint type, date scope to be modified. If the input is ‘string’ type or ‘double’ type, it is

converted to ‘bigint’ type by implicit conversion. If it is another data type, exception occurs. If

‘delta’ is greater than zero, do ‘add’ operation, otherwise do ‘minus’ operation.

• datepart: a String type constant. This field value follows ‘string’ and ‘datetime’ type

conversion agreement, where, ‘yyyy’ indicates year; ‘mm’ indicates month.

MaxCompute User Guide / 10 SQL

290 Issue: 20180904

See Conversion between String type and Datetime type. In addition, the extensional date

format is also supported: year- ‘year’; month-‘month’ or ‘mon’; day-‘day’; hour-‘hour. If it is not

a constant or unsupported format or other data type, an exception is indicated.

Return value:

Datetime type. If any input is NULL, return NULL.

Note:

• While increasing or decreasing ‘delta’ according to specified unit, it causes the carry or back

space for higher unit. Day, month, hour, minute, second are calculated by 10 hexadecimal, 12

hexadecimal, 24 hexadecimal, 60 hexadecimal, 60 hexadecimal respectively.

• If the unit of ‘delta’ is month, the calculation rule is shown as follows:

If the month part of ‘datetime’ does not cause the spillover of day after adding ‘delta’, then do

not change the day, else the day value is set to the last day of the result month.

• The value of ‘datepart’ follows ‘string’ and ‘datetime’ type conversion agreement, that is, ‘

yyyy’ indicates year; ‘mm’ indicates month and so on. If no special description exists, related

datetime built-in functions follow this agreement. Moreover, if no special instructions, the part

of all datetime built-in functions supports extended date format: year- ‘year’; month-‘month’ or ‘

mon’; day-‘day’; hour-‘hour.

For example:

 if trans_date = 2005-02-28 00:00:00:
dateadd(trans_date, 1, 'dd') = 2005-03-01 00:00:00
-- Add one day. The result is beyond the last day in February. The
actual value is the first day of next month.
dateadd(trans_date, -1, 'dd') = 2005-02-27 00:00:00
-- Minus one day.
dateadd(trans_date, 20, 'mm') = 2006-10-28 00:00:00
-- Add 20 months. The month spillover is caused and the year is added
 ‘1’.
If trans_date = 2005-02-28 00:00:00, dateadd(transdate, 1, 'mm') =
2005-03-28 00:00:00
If trans_date = 2005-01-29 00:00:00, dateadd(transdate, 1, 'mm') =
2005-02-28 00:00:00
-- No 29th is in Feb. of 2005. The date is intercepted to the last day
 of current month.
 If trans_date = 2005-03-30 00:00:00, dateadd(transdate, -1, 'mm') =
2005-02-28 00:00:00

Note:

MaxCompute User Guide / 10 SQL

Issue: 20180904 291

Here the value of trans_date used only as an example. This simple expression is often used to

present the datetime in this file.

In MaxCompute SQL, the datetime type has no direct constant representation, the following usage

is wrong:

select dateadd(2005-03-30 00:00:00, -1, 'mm') from tbl1;

If you must describe the datetime type constant, try the following methods:

select dateadd(cast("2005-03-30 00:00:00" as datetime), -1, 'mm') from
 tbl1;
-- The String type constant is converted to datatime type by explicit
conversion.

DATEDIFF

Command format:

bigint datediff(datetime date1, datetime date2, string datepart)

Command description:

Calculate the difference between two datetime date1 and date2 in specified time unit ‘datepart’.

Parameter description:

• datet1, date2: Datetime type, minuend, meiosis. If the input is ‘string’, it is converted to

‘datetime’ by implicit conversion. If it is another data type, an exception indicated.

• datepart: a String type constant. The extensional date format is supported. If ‘datepart’ does

not meet the specified format or is other data type, an exception is indicated.

Return value:

Returns the Bigint type. Any input parameter is NULL, return NULL. If date1 is less than date2,

then the returned value may be negative.

Note:

The lower unit part is cut off according to ‘datepart’ in the calculation process and then calculate

the result.

For example:

If start = 2005-12-31 23:59:59, end = 2006-01-01 00:00:00:
 datediff(end, start, 'dd') = 1
 datediff(end, start, 'mm') = 1
 datediff(end, start, 'yyyy') = 1
 datediff(end, start, 'hh') = 1

MaxCompute User Guide / 10 SQL

292 Issue: 20180904

 datediff(end, start, 'mi') = 1
 datediff(end, start, 'ss') = 1
 datediff('2013-05-31 13:00:00', '2013-05-31 12:30:00', 'ss') =
1800
 datediff('2013-05-31 13:00:00', '2013-05-31 12:30:00', 'mi') = 30
If start = 19:33:23. 234, end = 19:33:23. 250 .Dates with milliseconds
 do not belong to the standard datetime style, and cannot be converted
 implicitly directly.Explicit conversion is required here:

datediff(to_date('2018-06-04 19:33:23.250', 'yyyy-MM-dd hh:mi:ss.ff3
'),to_date('2018-06-04 19:33:23.234', 'yyyy-MM-dd hh:mi:ss.ff3') , '
ff3') = 16

DATEPART

Command format:

bigint datepart(datetime date, string datepart)

Command format:

Extracts the value of the specified time unit ’datepart’ in ‘date’.

Parameter description:

Return value:

• date: Datetime type. If the input is ‘string’ type, it is converted to ‘datetime’ type. If it is another

data type, an exception is indicated.

• datepart: String type constant. The extensional date format is supported. If ‘datepart’ does

not meet the specified format or is other data type, an exception is indicated.

Returns the Bigint type. If any input is NULL, return NULL.

For example:

datepart('2013-06-08 01:10:00', 'yyyy') = 2013
datepart('2013-06-08 01:10:00', 'mm') = 6

DATETRUNC

Command format:

datetime datetrunc (datetime date, string datepart)

Usage:：

Return the remained date value after the specified time unit ‘datepart’ has been intercepted.

Parameter description:：

MaxCompute User Guide / 10 SQL

Issue: 20180904 293

• date: Datetime type. If the input is ‘string’ type, it is converted to ‘datetime’ type. If it is another

data type, an exception indicated.

• datepart: String type constant. The extensional date format is supported. If ‘datepart’ does

not meet the specified format or is other data type, an exception is indicated.

Return value:

Datetime type. If any input is NULL, return NULL.

For example:

datetrunc('2011-12-07 16:28:46', 'yyyy') = 2011-01-01 00:00:00
datetrunc('2011-12-07 16:28:46', 'month') = 2011-12-01 00:00:00
datetrunc('2011-12-07 16:28:46', 'DD') = 2011-12-07 00:00:00

FROM_UNIXTIME

Command format:

datetime from_unixtime(bigint unixtime)

Command description:

Convert the numeric UNIX time value ‘unixtime’ to datetime value.

Parameter description:

unixtime: Bigint type, number of seconds, UNIX format date time value. If the input is ‘string’,

‘double’, it is converted to ‘bigint’ type by implicit conversion.

Return value:

Datetime type date value. If ‘unixtime’ is NULL, return NULL.

For example:

from_unixtime(123456789) = 1973-11-30 05:33:09

GETDATE

Command format:

datetime getdate()

Command description:

Get present system time. Use UTC+8 as MaxCompute standard time.

Return value:

MaxCompute User Guide / 10 SQL

294 Issue: 20180904

Datetime type, return present date and time.

Note:

In a MaxCompute SQL task (executed in a distributed manner), ‘getdate’ always returns a fixed

value. The return result is any time in MaxCompute SQL execution period and the precision of

time is accurate to seconds.

ISDATE

Command format:

boolean isdate(string date, string format)

Command description:

Determines whether a date string can be converted to a datetime value according to correspond

ing format string. If the conversion is successful, return TRUE, otherwise return FALSE.

Parameter description:

• date: date value of String format. If the input is ‘bigint’, or ‘double’ or ‘datetime’, it is be

converted to ‘string’ type. If it is another data type, an exception is indicated.

• format: a String type constant. The extensional date format is not supported. If

redundant format strings appear in ‘format’, then get the datatime value corresponding to the

first format string, other strings are taken as separators. For example, isdate (‘1234-yyyy’,

‘yyyy-yyyy’) returns ‘TRUE’.

Return value:

Boolean type. If any parameter is NULL, return NULL.

LASTDAY

Command format:

datetime lastday(datetime date)

Command format:

Get the last day in the same month of the date, intercepted to day and the ‘hh:mm:ss’ part is ‘00:

00:00’.

Parameter description:

MaxCompute User Guide / 10 SQL

Issue: 20180904 295

date: Datetime type. If the input is ‘string’ type, it is converted to ‘datetime’ type. If it is another

data type, an exception is reported.

Return value:

Datetime type. If the input is NULL, return NULL.

TO_DATE

Command format:

datetime to_date(string date, string format)

Command description:

Convert a string ‘date’ to the datetime value according to a specified format.

Parameter description:

• date: String type, date value to be converted. If the input is ‘bigint’, or ‘double’ or ‘datetime’, it

is converted to ‘string’ type by implicit conversion. If it is another data type or null, an exception

is indicated.

• format: String type constant, date format. If it is not a constant or is other data type,

the exception is caused. The field ‘format’ does not support extensional format and other

characters are ignored as invalid characters in analysis process.

The parameter format contains ‘yyyy’ at least; otherwise the expecion is indicated. If

redundant format strings appear in format, then get the datatime value corresponding to the

first format string, other strings are taken as separators. For example, to_date (‘1234-

2234’, ‘yyyy-yyyy’) returns ‘1234-01-01 00:00:00’.

Return value:

Datetime type, the format is yyyy-mm-dd hh: mi: ss. If any input is NULL, return NULL.

For example:

to_date('Alibaba2010-12*03', 'Alibabayyyy-mm*dd') = 2010-12-03 00:00:
00
to_date('20080718', 'yyyymmdd') = 2008-07-18 00:00:00
to_date('200807182030','yyyymmddhhmi')=2008-07-18 20:30:00
to_date('2008718', 'yyyymmdd')
-- The format does not meet the requirements. An exception is thrown.
to_date('Alibaba2010-12*3', 'Alibabayyyy-mm*dd')
-- Format is not compatible and exception is thrown.
to_date('2010-24-01', 'yyyy')

MaxCompute User Guide / 10 SQL

296 Issue: 20180904

-- Format is not compatible and exception is thrown.

TO_CHAR

Command format:

string to_char(datetime date, string format)

Command description:

Convert the ‘date’ of datetime type to a string according to a specified format.

Parameter description:

• date: Datetime type, the date value to be converted. If the input is ‘string’ type, it is converted

to ‘datetime’ type by implicit conversion. If it is another data type, an exception indicated.

• format: String type constant. If it is not a constant or is other data type, the exception is

indicated. In ‘format’, the date format part is replaced with the corresponding data and other

characters are output directly.

Return value:

Returns the String type. Any input parameter is NULL, return NULL.

For example:

to_char('2010-12-03 00:00:00', 'Alibabayyyy-mm*dd') = 'Alibaba2010-12*
03'
to_char('2008-07-18 00:00:00', 'yyyymmdd') = '20080718'
to_char('Alibaba2010-12*3', 'Alibabayyyy-mm*dd') -- Format is not
compatible and exception is thrown.
to_char('2010-24-01', 'yyyy') -- Format is not compatible and
exception is thrown.
to_char('2008718', 'yyyymmdd') -- Format is not compatible and
exception is thrown.

See TO_CHAR for conversion from other types to string type.

UNIX_TIMESTAMP

Command format:

bigint unix_timestamp(datetime date)

Command description:

Convert the date of Datetime type to UNIX format date of Bigint type.

Parameter description:

MaxCompute User Guide / 10 SQL

Issue: 20180904 297

date: Datetime type date value. If the input is ‘string’ type, it is converted to ‘datetime’ type and

involved in calculation. If it is another type, an exception indicated.

Return value:

Bigint type, it indicates UNIX format date value. If ‘date’ is NULL, return NULL.

WEEKDAY

Command format:

bigint weekday(datetime date)

Command description:

 Return the nth day of present week corresponding to the date.

Parameter description:

date: Datetime type. If the input is ‘string’ type, it is converted to ‘datetime’ type and then involved

in operation. If it is another date type, an exception indicated.

Return value:

Bigint type. If the input parameter is NULL, return NULL. Monday is the first day of a week and

the return value is 0. Days are in ascending order starting from 0. If the day is Sunday, then return

 is 6.

WEEKOFYEAR

Command format:

bigint weekofyear(datetime date)

Command description:

Return the nth week of a year which the date is included in. Monday is taken as the first day of a

week.

Note:

Whether this week belongs to this year, or the next year, it depends on which year (4 days or

more) most of the time of this week belongs to.

Parameter description:

date: Datetime type. If the input is ‘string’ type, it is converted to ‘datetime’ type and then involved

in operation. If it is another date type, an exception is indicated.

MaxCompute User Guide / 10 SQL

298 Issue: 20180904

Return value:

Bigint type. If the input is NULL, return NULL.

For example:

select weekofyear(to_date("20141229", "yyyymmdd")) from dual;
Result:
+------------+
| _c0 |
+------------+
| 1 |
+------------+
 -Although 20141229 belongs to 2014, most of the dates of the week are
 in 2015, therefore, the return result is 1, indicating that it is the
 first week of 2015.
 select weekofyear(to_date("20141231", "yyyymmdd")) from dual；
-- Return 1.
 select weekofyear(to_date("20141229", "yyyymmdd")) from dual；
-- Return 53.

Maxcomputerte2.0 New Extended Mathematical Functions

With the upgraded version of MaxCompute 2.0, some new date functions are added to the

product. If the functions are used to design a new data type compatible with the Hive mode, you

must add the following two set statements before the SQL statement of the new functions:

set odps.sql.type.system.odps2=true;--Enable the new type.

If you want to submit both at the same time, run the following statements:

set odps.sql.type.system.odps2=true;
select year('1970-01-01 12:30:00')=1970 from dual;

The new extended functions are described as follows.

YEAR

Command format:

INT year(string date)

Note:

Before the SQL statement which uses the YEAR function, add set odps.sql.type.system.

odps2=true; to use the new data type function normally.

Command description:

Returns the year of a date.

MaxCompute User Guide / 10 SQL

Issue: 20180904 299

Parameter description:

date: String-type date value. The format must at least include ‘yyyy-mm-dd’ and cannot include

additional strings. Otherwise, null is returned.

Return value:

INT type.

For example:

year('1970-01-01 12:30:00') = 1970
year('1970-01-01') = 1970
year('70-01-01') = 70
year(1970-01-01) = null
year('1970/03/09') = null
year(null) Returns an exception

QUARTER

Command format:

INT quarter(datetime/timestamp/string date)

Note:

Before the SQL statement which uses the QUARTER function,add set odps.sql.type.

system.odps2=true; to use the new data type function normally.

Command description:

Returns the quarter of a date, range: 1–4.

Parameter description:

date: Datetime, Timestamp, or String-type date value. The format must at least include ‘yyyy-mm-

dd’. Otherwise, null is returned.

Return value:

Int type, null input returns null.

For example:

quarter('1970-11-12 10:00:00') = 4

MaxCompute User Guide / 10 SQL

300 Issue: 20180904

quarter('1970-11-12') = 4

MONTH

Command format:

INT month(string date)

Note:

Before the SQL statement which uses the MONTH function, add set odps.sql.type.system

.odps2=true; to use the new data type function normally.

Command description:

Returns the month of a date.

Parameter description:

date: String-type date value. Other value types return an exception.

Return value:

INT type.

For example:

month('2014-09-01') = 9
month('20140901') = null

DAY

Command format:

INT day(string date)

Note:

Before the SQL statement which uses the function, add set odps.sql.type.system.odps2

=true; to use the new data type function normally.

Command description:

Returns the day of a date.

Parameter description:

date: String-type date value. Other value types return an exception.

Return value:

MaxCompute User Guide / 10 SQL

Issue: 20180904 301

INT type.

For example:

day('2014-09-01') = 1
day('20140901') = null

DAYOFMONTH

Command format:

INT dayofmonth(date)

Note:

Before the SQL statement which uses the DAYOFMONTH function, add set odps.sql.type.

system.odps2=true; to use the new data type function normally.

Command description:

Returns the day of a date.

For example, after command int dayofmonth(2017-10-13) runs, 13 returns.

Parameter description:

date: String-type date value. Other value types return an exception.

Return value:

INT type.

For example:

dayofmonth('2014-09-01') = 1
dayofmonth('20140901') = null

HOUR

Command format:

INT hour(string date)

Note:

Before the SQL statement which uses the HOUR function, add set odps.sql.type.system.

odps2=true; to use the new data type function normally.

Command description:

MaxCompute User Guide / 10 SQL

302 Issue: 20180904

Returns the hour of a date.

Parameter description:

date: String-type date value. Other value types return an exception.

Return value:

Int type.

For example:

hour('2014-09-01 12:00:00')=12
hour('12:00:00')=12
hour('20140901120000')=null

MINUTE

Command format:

INT minute(string date)

Note:

Before the SQL statement which uses the MINUTE function, add set odps.sql.type.

system.odps2=true; to use the new data type function normally.

Command description:

Returns the minute of a date.

Parameter description:

date: String-type date value. Other value types return an exception.

Return value:

Int type.

For example:

minute('2014-09-01 12:30:00') = 30
minute('12:30:00') = 30

MaxCompute User Guide / 10 SQL

Issue: 20180904 303

minute('20140901120000') = null

SECOND

Command format:

INT second(string date)

Note:

Before the SQL statement which uses the SECOND function, add set odps.sql.type.

system.odps2=true; to use the new data type function normally.

Command description:

Returns the second of a date.

Parameter description:

date: String-type date value. Other value types return an exception.

Return value:

INT type.

For example:

second('2014-09-01 12:30:45') = 45
second('12:30:45') = 45
second('20140901123045') = null

CURRENT_TIMESTAMP

Command format:

timestamp current_timestamp()

Note:

Before the SQL statement which uses the CURRENT_TIMESTAMP function, add set odps.

sql.type.system.odps2=true; to use the new data type function normally.

Command description:

Returns the current timestamp as a Timestamp-type value. The value is not fixed.

Return value:

Timestamp type.

MaxCompute User Guide / 10 SQL

304 Issue: 20180904

For example:

select current_timestamp() from dual;--Returns '2017-08-03 11:50:30.
661'

ADD_MONTHS

Command format:

string add_months(string startdate, int nummonths)

Note:

Before the SQL statement which uses the ADD_MONTHS function, add set odps.sql.type.

system.odps2=true; to use the new data type function normally.

Command description:

Returns the date given by startdate plus the nummonths value.

Parameter description:

• startdate: String-type value. The format must at least include the ‘yyyy-mm-dd’ date.

Otherwise, null is returned.

• num_months: Int-type value.

Return value:

A String-type date, in the format ‘yyyy-mm-dd’.

For example:

Add_months ('2017-02-14', 3) = '2017-05-14'
add_months('17-2-14',3) = '0017-05-14'
add_months('2017-02-14 21:30:00',3) = '2017-05-14'
add_months('20170214',3) = null

LAST_DAY

Command format:

string last_day(string date)

Note:

Before the SQL statement which uses the LAST_DAY function, add set odps.sql.type.

system.odps2=true; to use the new data type function normally.

Command description:

MaxCompute User Guide / 10 SQL

Issue: 20180904 305

Returns the date of the last day of the month that contains the given date.

Parameter description:

date: String type, with the format ‘yyyy-MM-dd HH:mi:ss’ or ‘yyyy-MM-dd’.

Return value:

A String-type date, in the format ‘yyyy-mm-dd’.

For example:

last_day('2017-03-04') = '2017-03-31'
last_day('2017-07-04 11:40:00') = '2017-07-31'
last_day('20170304') = null

NEXT_DAY

Command format:

string next_day(string startdate, string week)

Note:

Before the SQL statement which uses the NEXT_DAY function, add set odps.sql.type.

system.odps2=true; to use the new data type function normally.

Command description:

Returns the first date larger than the specified startdate that matches the day of the week given by

 the week parameter. It is the date of a specific day in the next week.

Parameter description:

• startdate: String type, with the format ‘yyyy-MM-dd HH:mi:ss’ or ‘yyyy-MM-dd’.

• week: String type, the first two or three letters of a day of the week, or the full name of the day

of the week. For example: Mo, TUE, or FRIDAY.

Return value:

A String-type date, in the format ‘yyyy-mm-dd’.

For example:

next_day('2017-08-01','TU') = '2017-08-08'
next_day('2017-08-01 23:34:00','TU') = '2017-08-08'

MaxCompute User Guide / 10 SQL

306 Issue: 20180904

Next_day ('20170801 ', 'tu') = NULL

MONTHS_BETWEEN

Command format:

double months_between(datetime/timestamp/string date1, datetime/
timestamp/string date2)

Note:

Before the SQL statement which uses the MONTHS_BETWEEN function, add set odps.sql.

type.system.odps2=true; to use the new data type function normally.

Command description:

Returns the number of months between date1 and date2.

Parameter description:

• date1: Datetime, Timestamp, or String type, with the format ‘yyyy-MM-dd HH:mi:ss’ or ‘yyyy-

MM-dd’.

• date2: Datetime, Timestamp, or String type, with the format ‘yyyy-MM-dd HH:mi:ss’ or ‘yyyy-

MM-dd’.

Return Value:

Returns the Double type.

• When date1 is later than date2, the returned value is positive. When date2 is later than date1,

the returned value is negative.

• When date1 and date2 correspond to the last days of two months, the returned value is an

integer representing the number of months. Otherwise, the formula is (date1 - date2)/31.

Examples:

months_between('1997-02-28 10:30:00', '1996-10-30') = 3.9495967741
935485
months_between('1996-10-30','1997-02-28 10:30:00') = -3.9495967741
935485

MaxCompute User Guide / 10 SQL

Issue: 20180904 307

months_between('1996-09-30','1996-12-31') = -3.0

10.11.2 Mathematical Functions
ABS

Function definition:

Double abs(Double number)
Bigint abs(Bigint number)
Decimal abs(Decimal number)

Usage:

Returns an absolute value.

Parameter description:

number: It is any number of Type Double, Bigint, or Decimal.

• If the input is Bigint and return Bigint.

• If the input is Double, return Double.

• If the input is Decimal, return Decimal.

If the input is String, it is converted to Double by implicit conversion. If the input is another type, an

 error occurs.

Return value:

The return result depends on the type of input parameter. Example, if the input is null, return null.

Note:

When the value of input Bigint type exceeds the maximum value of Bigint, return Double type. In

this case, the precision may be absent.

Example:

abs(null) = null
abs(-1) = 1
abs(-1.2) = 1.2
abs("-2") = 2.0
abs(122320837456298376592387456923748) = 1.2232083745629837e32

The following is a completed ABS function example used in SQL. The use methods of other built-

in functions (except Window Function and Aggregation Function) are similar.

select abs(id) from tbl1;

MaxCompute User Guide / 10 SQL

308 Issue: 20180904

-- Take the absolute value of the id field in tbl1.

ACOS

Function definition:

Double acos(Double number)
Decimal acos(Decimal number)

Usage:

Calculates the inverse cosine of a number.

Parameter description:

number: Double or Decima type, -1<=number <=1. If the input is String or Bigint, it is converted to

Double by implicit conversion. If the input is another type, an error occurs.

Return value:

Returns the Double or Decimal type, the value is between 0 to π. If number is null, return null.

Example:

acos("0.87") = 0.5155940062460905
acos(0) = 1.5707963267948966

ASIN

Function definition:

Double asin(Double number)
Decimal asin(Decimal number)

Usage:

Calculates the inverse sine function of number.

Parameter description:

number: Double or Decima type, -1<=number <=1. If the input is String or Bigint, it is converted to

Double by implicit conversion. If the input is another type, an error occurs.

Return value:

Returns the Double or Decimal type, the value is between -π/2 to π/2. If the number is null, return

null.

Example:

asin(1) = 1.5707963267948966

MaxCompute User Guide / 10 SQL

Issue: 20180904 309

asin(-1) = -1.5707963267948966

ATAN

Function definition:

Double atan(Double number)

Usage:

Calculates the back-cut function of number.

Parameter description:

Number: Double type, if the input is String or Bigint, it is converted to Double by implicit

conversion. If the input is another type, an error occurs.

Return value:

Returns the Double type, the value is between -π/2 to π/2. If the number is null, return null.

Example:

atan(1) = 0.7853981633974483
atan(-1) = -0.7853981633974483

CEIL

Function definition:

Bigint ceil(Double value)
Bigint ceil(Decimal value)

Usage:

This function returns the smallest integral value not less than the argument.

Parameter description:

value: Double or Decimal type, If the input is String or Bigint, it is converted to Double by implicit

conversion. If the input is another type, an error occurs.

Return value:

Returns the Bigint type. If the number is null, return null.

Example:

ceil(1.1) = 2

MaxCompute User Guide / 10 SQL

310 Issue: 20180904

ceil(-1.1) = -1

CONV

Function definition:

String conv(String input, Bigint from_base, Bigint to_base)

Usage:

Converts a number into a Hexadecimal number.

Parameter description:

• input: an integer to be converted, represented by String. Accept the implicit conversion of

Bigint and Double.

• from_base, to_base: Decimal value, the acceptable values can be 2, 8, 10 and 16. Accept

the implicit conversion of String and Double.

Return value:

Returns the String type. If the number is null, return null. The conversion process runs at a 64-bit

precision. An exception is thrown when overflow occurs. If the input is a negative value (begin with

 ‘-’), an exception is thrown. If the input value is a decimal, it is converted to an integer before hex

conversion. The decimal part is excluded.

Example:

conv('1100', 2, 10) = '12'
conv('1100', 2, 16) = 'c'
conv('ab', 16, 10) = '171'
conv('ab', 16, 16) = 'ab'

COS

Function definition:

Double cos(Double number)
Decimal cos(Decimal number)

Usage:

Input is the radian value.

Parameter description:

number: Double or Decimal type. If the input is String, it is converted to Double by implicit

conversion. If the input is another type, an error occurs.

MaxCompute User Guide / 10 SQL

Issue: 20180904 311

Return value:

Returns the Double or Decimal type. If the number is NULL, return NULL.

Example:

cos(3.1415926/2)=2.6794896585028633e-8
cos(3.1415926)=-0.9999999999999986

COSH

Function definition:

Double cosh(Double number)
Decimal cosh(Decimal number)

Usage:

It is the Hyperbolic cosine function

Parameter description:

number: Double or Decimal type. If the input is String, it is converted to Double by implicit

conversion. If the input is another type, an error occurs.

Return value:

Returns the Double or Decimal type. If the number is NULL, return NULL.

COT

Function definition:

Double cot(Double number)
Decimal cot(Decimal number)

Usage:

Inputs the radian value.

Parameter description:

number: Double or Decimal type. If the input is String or Bigint, it is converted to Double by

implicit conversion. If the input is another type, an error occurs.

Return value:

Returns the Double or Decimal type. If the number is NULL, return NULL.

MaxCompute User Guide / 10 SQL

312 Issue: 20180904

EXP

Function definition:

Double exp(Double number)
Decimal exp(Decimal number)

Usage:

It is the Exponential function.

Return value:

Returns the exponent value of number.

Parameter description:

number: Double or Decimal type. If the input is String or Bigint, it is converted to Double by

implicit conversion. If the input is another type, an error occurs.

Return value:

Returns the Double or Decimal type. If the number is NULL, return NULL.

FLOOR

Function definition:

Bigint floor(Double number)
Bigint floor(Decimal number)

Usage:

Returns the largest integral value not greater than the argument.

Parameter description:

number: Double or Decimal type. If the input is String or Bigint type, it is converted to Double by

implicit conversion. If the input is another type, an error occurs.

Return value:

Returns the Bigint type. If the input is null, return null.

Example:

floor(1.2)=1
floor(1.9)=1
floor(0.1)=0
floor(-1.2)=-2
floor(-0.1)=-1
floor(0.0)=0

MaxCompute User Guide / 10 SQL

Issue: 20180904 313

Floor (-0.0) = 0

LN

Function definition:

Double ln(Double number)
Decimal ln(Decimal number)

Usage:

Returns the natural logarithm of the number.

Parameter description:

number: Double or Decimal type.

• If the input is String or Bigint type, it is converted to Double by implicit conversion. If the input is

 another type, an error occurs.

• If the number is null, return null. If number is negative or 0, an exception is thrown.

Return value:

Returns the Double or Decimal type.

LOG

Function definition:

Double log(Double base, Double x)
Decimal log (decimal base, decimal X)

Usage:

 Returns the logarithm of x whose base number is base.

Parameter description:

• base: Double or Decimal type. If the input is String or Bigint, it is converted to Double by

implicit conversion. If the input is another type, an error occurs.

• x: Double or Decimal type. If the input is String or Bigint, it is converted to Double by implicit

conversion. If the input is another type, an error occurs.

Return value:

Returns the logarithm value of Double or Decimal type.

• If base or x is null, return null.

• If one of base or x is negative or zero, it causes abnormality.

MaxCompute User Guide / 10 SQL

314 Issue: 20180904

• If base is 1, it also causes abnormality.

POW

Function definition:

Double pow(Double x, Double y)
Decimal pow(Decimal x, Decimal y)

Usage:

Return x to the yth power, that is x^y.

Parameter description:

• X: Double or Decimal type. If the input is String or Bigint, it is converted to Double by implicit

conversion. If the input is another type, an error occurs.

• Y: Double or Decimal type. If the input is String or Bigint, it is converted to Double by implicit

conversion. If the input is another type, an error occurs.

Return value:

Returns the Double or Decimal type. If X or Y is null, return null.

RAND

Function definition:

Double rand(Bigint seed)

Usage:

Return a random number (that changes from row to row), Specifying the seed makes sure the

generated random number sequence is deterministic, Return value range is from 0 to 1.

Parameter description:

seed: Bigint type, random number seed, to determine starting values of the random number

sequence.

Return Value:

Returns the Double type.

Example:

select rand() from dual;

MaxCompute User Guide / 10 SQL

Issue: 20180904 315

select rand(1) from dual;

ROUND

Function definition:

Double round(Double number, [Bigint Decimal_places])
Decimal round(Decimal number, [Bigint Decimal_places])

Usage:

Four to five homes to the specific decimal point position.

Parameter description:

• number: Double or Decimal type. If the input is String or Bigint, it is converted to Double by

implicit conversion. If the input is another type, an error occurs.

• Decimal_place: A Bigint type constant, four to five homes to the decimal point position. If it is

other type, an exception is thrown. If you exclude it, it indicates four to five homes into a single

digit. The default value is zero

Return value:

Returns the Double or Decimal type. If number or Decimal_places is null, return null.

Note:

Decimal_places can be negative. The negative is counted from decimal point to the left.

Deletethe decimal part. If decimal_place is greater than the length of the integer part, return 0.

Example:

round(125.315) = 125.0
round(125.315, 0) = 125.0
Round (125.315, 1) = 125.3
round(125.315, 2) = 125.32
round(125.315, 3) = 125.315
round(-125.315, 2) = -125.32
round(123.345, -2) = 100.0
round(null) = null
round(123.345, 4) = 123.345
round(123.345, -4) = 0.0

SIN

Function definition:

Double sin(Double number)

MaxCompute User Guide / 10 SQL

316 Issue: 20180904

Decimal sin(Decimal number)

Usage:

Calculates the sine function of number, the input is the radian value.

Parameter description:

number: Double or Decimal type. If the input is String or Bigint, it is converted to Double by

implicit conversion. If the input is another type, an error occurs.

Return value:

Returns the Double or Decimal type. If the number is NULL, return NULL.

SINH

Function definition:

Double sinh(Double number)
Decimal sinh(Decimal number)

Usage:

Calculates the hyperbolic sine function of number.

Parameter description:

number: Double or Decimal type. If the input is String or Bigint, it is converted to Double by

implicit conversion. If the input is another type, an error occurs.

Return value:

Returns the Double or Decimal type. If the number is NULL, return NULL.

SQRT

Function definition:

Double sqrt(Double number)
Decimal sqrt(Decimal number)

Usage:

Calculates the square root of number.

Parameter description:

MaxCompute User Guide / 10 SQL

Issue: 20180904 317

number: Double or Decimal type, must be greater than zero, if it is less than zero, an exception

occur. If the input is String or Bigint, it is converted to Double by implicit conversion. If the input is

another type, an error occurs.

Return value:

Returns the Double or Decimal type. If the number is NULL, return NULL.

TAN

Function definition:

Double tan(Double number)
Decimal tan(Decimal number)

Usage:

Calculates the tangent function of the number, the input is the radian value.

Parameter description:

number: Double or Decimal type. If the input is String or Bigint, it is converted to Double by

implicit conversion. If the input is another type, an error occurs.

Return value:

Returns the Double or Decimal type. If the number is NULL, return NULL.

TANH

Function definition:

Double tanh(Double number)
Decimal tanh(Decimal number)

Usage:

Calculates the hyperbolic tangent function of number.

Parameter description:

number: Double or Decimal type. If the input is String or Bigint, it is converted to Double by

implicit conversion. If the input is another type, an error occurs.

Return value:

Returns the Double or Decimal type. If the number is NULL, return NULL.

MaxCompute User Guide / 10 SQL

318 Issue: 20180904

TRUNC

Function definition:

Double trunc(Double number[, Bigint Decimal_places])
Decimal trunc(Decimal number[, Bigint Decimal_places])

Usage:

This function is used to intercept the input number to a specified decimal point place.

Parameter description:

• number: Double or Decimal type. If the input is String or Bigint, it is converted to Double by

implicit conversion. If the input is another type, an error occurs.

• Decimal_places: a Bigint type constant, the decimal point place to intercept the number.

Other types are converted to Bigint. If this parameter is excluded, default to intercept to single

digit.

Return value:

Returns the Double or Decimal type. If the number or Decimal_places is NULL, return NULL.

Note:

• If the Double type is returned, the display of the returned result may not be as expected, such

as trunc(125.815, 1) (this problem exists in all the systems).

• The part to be truncated is supplemented by zero.

• Decimal_places can be negative. The negative is truncated from the decimal point to the

left and delete the decimal part. If Decimal_places are greater than the length of the integer,

return zero.

Example:

trunc(125.815) = 125.0
trunc(125.815, 0) =125.0
trunc(125.815, 1) = 125.80000000000001
trunc(125.815, 2) = 125.81
trunc(125.815, 3) = 125.815
trunc(-125.815, 2) = -125.81
trunc(125.815, -1) = 120.0
trunc(125.815, -2) = 100.0
trunc(125.815, -3) = 0.0
trunc(123.345, 4) = 123.345

MaxCompute User Guide / 10 SQL

Issue: 20180904 319

trunc(123.345, -4) = 0.0

Maxcomputerte2.0 New Extended Mathematical Functions

With the upgrade to MaxCompute 2.0, some mathematical functions have been added to the

product. If a new function uses a new data type, add the following set statement before using the

new functions SQL statement:

set odps.sql.type.system.odps2=true;

The new extended functions are described as follows.

LOG2

Function definition:

Double log2(Double number)
Double log2(Decimal number)

Note:

Before the SQL statement which uses the LOG2 function, add set odps.sql.type.system.

odps2=true; to use the new data type function normally.

Usage:

Returns the log base 2 of a specific number.

Parameter description:

number: Double or Decimal type.

Return Value:

Returns the Double type. If the input is zero or null, the returned value is null.

The example is as follows:

log2(null)=null
log2(0)=null
log2(8)=3.0

LOG10

Function definition:

Double log10(Double number)

MaxCompute User Guide / 10 SQL

320 Issue: 20180904

Double log10(Decimal number)

Note:

Before the SQL statement which uses the LOG10 function, add set odps.sql.type.system

.odps2=true; to use the new data type function normally.

Usage:

Returns the log base 10 of the specific number.

Parameter description:

number: Double or Decimal type.

Return Value:

Returns the Double type. If the input is zero or null, the returned value is null.

The example is as follows:

log10(null)=null
log10(0)=null
log10(8)=0.9030899869919435

BIN

Function definition:

String bin(Bigint number)

Note:

Before the SQL statement which uses the function, add set odps.sql.type.system.odps2

=true; to use the new data type function normally.

Usage:

Returns the binary code expression for the specific number.

Parameter description:

number: Bigint type.

Return value:

String type. If the input is zero, then zero is returned; if the input is null, null is returned.

Example:

bin(0)='0'

MaxCompute User Guide / 10 SQL

Issue: 20180904 321

bin(null)='null'
bin(12)='1100'

HEX

Function definition:

String hex(Bigint number)
String hex(String number)
String hex (binary number)

Note:

Before the SQL statement which uses the HEX function, add set odps.sql.type.system.

odps2=true; to use the new data type function normally.

Usage:

This function is used to converts integers or characters to hexadecimal format.

Parameter description:

number: If number is of the Bigint type, the hexadecimal format of the number is returned. If this

variable is a String type, the hexadecimal format of the string is returned.

Return value:

Returns the String type. If the input is zero, then zero is returned; if the input is null, an exception

is returned.

Example:

hex(0)=0
hex('abc')='616263'
hex(17)='11'
hex('17')='3137'
hex(null) results in an exception and returns failed.

Note:

If the input parameter is a Binary type, add set odps.sql.type.system.odps2=true;,

and submit it with SQL to use the new data type normally.

MaxCompute User Guide / 10 SQL

322 Issue: 20180904

UNHEX

Function definition:

BINARY unhex(String number)

Note:

Before the SQL statement which uses the UNHEX function, add set odps.sql.type.system

.odps2=true; to use the new data type function normally.

Usage:

Returns the string represented by a given hexadecimal string.

Parameter description:

number: A hexadecimal string.

Return value:

Returns the Binary type. If the input is zero, failed is returned. If the input is null, null is returned.

Example:

Unhex ('616263') = 'abc'
unhex(616263)='abc'

RADIANS

Function definition:

Double radians(Double number)

Note:

Before the SQL statement which uses the RADIANS function, add set odps.sql.type.

system.odps2=true; to use the new data type function normally.

Usage:

This function is used to converts degrees to radians.

Parameter description:

number: Double type.

Return value:

Returns the Double type, if the input is null, null is returned.

MaxCompute User Guide / 10 SQL

Issue: 20180904 323

Example:

radians(90)=1.5707963267948966
radians(0)=0.0
radians(null)=null

DEGREES

Function definition:

Double degrees(Double number)
Double degrees(Decimal number)

Note:

Before the SQL statement which uses the function, add set odps.sql.type.system.odps2

=true; to use the new data type function normally.

Usage:

This function is used to converts radians to degrees.

Parameter description:

number: Double or Decimal type.

Return value:

Returns Double data type. If the input is null, null is returned.

Example:

degrees(1.5707963267948966)=90.0
degrees(0)=0.0
Degrees (null) = NULL

SIGN

Function definition:

Double sign(Double number)
Double sign(Decimal number)

Note:

Before the SQL statement which uses the SIGN function, add set odps.sql.type.system.

odps2=true; to use the new data type function normally.

Usage:

MaxCompute User Guide / 10 SQL

324 Issue: 20180904

Applies the sign of the input data. 1.0 indicates a positive number and -1.0 indicates a negative

number. Otherwise, 0.0 is returned.

Parameter description:

number: Double or Decimal type.

Return value:

Returns Double data type. If the input is 0, 0.0 is returned. If the input is null, null is returned.

Example:

sign(-2.5)=-1.0
Sign (2.5) = 1.0
sign(0)=0.0
sign(null)=null

E

Function definition:

Double e()

Note:

Before the SQL statement which uses the E function, add set odps.sql.type.system.

odps2=true; to use the new data type function normally.

Usage:

This function is used to return the e value.

Return Value:

Returns the Double type.

Example:

e()=2.718281828459045

PI

Function definition:

Double pi()

Note:

MaxCompute User Guide / 10 SQL

Issue: 20180904 325

Before the SQL statement which uses the PI function, add set odps.sql.type.system.

odps2=true; to use the new data type function normally.

Usage:

This function is used to return the π value.

Return Value:

Returns the Double type.

Example:

pi()=3.141592653589793

FACTORIAL

Function definition:

Bigint factorial(Int number)

Note:

Before the SQL statement which uses the FACTORIAL function, add set odps.sql.type.

system.odps2=true; to use the new data type function normally.

Usage:

This function is used to return the factorial for the specific number.

Parameter description:

number: Int-type data, range: [0 –20].

Return value:

Returns the Bigint type, if the input is zero, one is returned. If the input is null or outside the range [

0 –20], null is returned.

MaxCompute User Guide / 10 SQL

326 Issue: 20180904

Example:

factorial(5)=120 --5! = 5*4*3*2*1 = 120

CBRT

Function definition:

Double cbrt(Double number)

Note:

Before the SQL statement which uses the CBRT function, add set odps.sql.type.system.

odps2=true; to use the new data type function normally.

Usage:

This function is used to return the cube root.

Parameter description:

number: Double type.

Return value:

Returns Double data type. If the input is null, null is returned.

Example:

cbrt(8)=2
cbrt(null)=null

SHIFTLEFT

Function definition:

Int shiftleft(Tinyint|Smallint|Int number1, Int number2)
Bigint shiftleft(Bigint number1, Int number2)

Note:

Before the SQL statement which uses the SHIFTLEFT function, add set odps.sql.type.

system.odps2=true; to use the new data type function normally.

Usage:

Shifts to the left by a given number of places (<<).

Parameter description:

MaxCompute User Guide / 10 SQL

Issue: 20180904 327

• number1: Tinyint|Smallint|Int|Bigint integer.

• number2: An Int integer.

Return value:

Returns the Int or Bingint type.

Example:

shiftleft(1,2)=4 --Shifts the binary value of 1 two places to the
left (1<<2,0001 shifted to 0100)
shiftleft(4,3)=32 --Shifts the binary value of 4 three places to the
left (4<<3,0100 shifted to 10,0000)

SHIFTRIGHT

Function definition:

Int shiftright(Tinyint|Smallint|Int number1, Int number2)
Bigint shiftright(Bigint number1, Int number2)

Note:

Before the SQL statement which uses the SHIFTRIGHT function, add set odps.sql.type.

system.odps2=true; to use the new data type function normally.

Usage:

This function is used for shifts right by a given number of places (>>).

Parameter description:

• number1: Tinyint|Smallint|Int|Bigint integer.

• number2: An Int integer.

Return value:

Returns the Int or Bigint type.

Example:

shiftright(4,2)=1 -- Shifts the binary value of 4 two places to the
right (4>>2,0100 shifted to 0001)
shiftright(32,3)=4 -- Shifts the binary value of 32 three places to
the right (32>>3,100000 shifted to 0100)

SHIFTRIGHTUNSIGNED

The command format is as follows:

Int shiftrightunsigned(Tinyint|Smallint|Int number1, Int number2)

MaxCompute User Guide / 10 SQL

328 Issue: 20180904

Bigint shiftrightunsigned(Bigint number1, Int number2)

Note:

Before the SQL statement which uses the SHIFTRIGHTUNSIGNED function, add set odps.

sql.type.system.odps2=true; to use the new data type function normally.

The command description is as follows:

This function is used for unsigned right shift by a given number of places (>>>).

Parameter description:

• number1: Tinyint|Smallint|Int|Bigint integer.

• number2: An Int integer.

Return value:

Returns the Int or Bigint type.

Example:

shiftrightunsigned(8,2)=2 -- Shifts the unsigned binary value of 8 two
 places to the right (8>>>2,1000 shifted to 0010)
shiftrightunsigned(-14,2)=1073741820 -- Shifts the unsigned binary
 value of -14 two places to the right (-14>>>2, 11111111 11111111
11111111 11110010 shifted to 00111111 11111111 11111111 11111100)

10.11.3 Window Functions
In MaxCompute SQL, window functions help in analyzing and processing the workflow flexibly.

Window function can only appear in the ‘select’ clause. However using both the nested window

function and aggregate function in window function is not allowed. Also, it cannot be used at the

same level as that of the aggregation function together.

Currently, in a MaxCompute SQL statement, you can use five window functions.

Window function syntax:

window_func() over (partition by [col1,col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] windowing_clause)

• partition by specifies open window columns. The rows of which partitioned columns have

the same values are considered in the same window. Currently, a window can contain at most

100,000,000 rows data. We recommend that the rows must not exceed 5,000,000, otherwise,

an error is reported at runtime.

• The clause order by specifies how the data is ordered in a window.

MaxCompute User Guide / 10 SQL

Issue: 20180904 329

• In windowing_clause part, use rows to specify window open way. The two methods are as

follows:

▬ Rows between x preceding|following and y preceding|following, which indicates the window

 range is from rows x preceding /following to rows y preceding/following.

▬ Rows x preceding|following: the window range is from rows x preceding /following to the

present row.

▬ ‘x’, ‘y’ must be an integer constant that is greater than or equal to 0 and corresponding value

 range is 0~10000. If the value is 0, it indicates the present row. Use the rows method to

specify window range on condition that you have specified ‘order by’ clause for.

Note:

Not all window functions can be specified window open way using rows. The window functions

support this usage include AVG, count, Max, min, StdDev, sum.

COUNT

Function definition:

Bigint count([distinct] expr) over(partition by [col1, col2…]
 [order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:

Calculates the total number of retrieved rows.

Parameter description:

• expr: Any data type. When it is NULL, this row is not counted. If the ‘distinct’ keyword is

specified, it indicates using the unique count value.

• partition by [col1, col2…]: Specifies the columns to use window function.

• order by col1 [asc|desc], col2[asc|desc]: If ‘order by’ clause is not specified,

return the count vale of ‘expr’ in the current window. If ‘order by’ clause is specified, the return

result is ordered according to the specified sequence and the value is a cumulative count value

from start row to the current row in the current window.

Return value:

Bigint type.

Note:

If the keyword ‘distinct’ is specified, the ‘order by’ clause cannot be used.

MaxCompute User Guide / 10 SQL

330 Issue: 20180904

Example:

Thethe table ‘test_src’ already exists and the column ‘user_id’ of bigint type exists in this table.

select user_id,
 count(user_id) over (partition by user_id) as count
 from test_src;

 | user_id | count |

 | 1 | 3 |
 | 1 | 3 |
 | 1 | 3 |
 | 2 | 1 |
 | 3 | 1 |

 -- the ‘order by’ clause is not specified, return the count value
of user_id in the current window.
 select user_id,
 count(user_id) over (partition by user_id order by user_id) as
 count
 from test_src;

 | user_id | count |

 | 1 | 1 | -- start row of the window
 | 1 | 2 | --two records exist from start row to current row.
Return 2.
 | 1 | 3 |
 | 2 | 1 |
 | 3 | 1 |

 -- The ‘order by’ clause is specified and return a cumulative
count value from start row to current row in the current window.

AVG

Function definition:

avg([distinct] expr) over(partition by [col1, col2…]
 [order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:

Calculates the average.

Parameter description:

• distinct: if the keyword ‘distinct’ is specified, it indicates taking average of the unique value.

• expr: Double type.

▬ If the input is ‘string’ type or ‘bigint’ type, it is converted to ‘double’ type by implicit

conversion and involved in the operation. If it is another data type, an exception is thrown.

▬ If this value is NULL, then this row is not counted in the calculation.

MaxCompute User Guide / 10 SQL

Issue: 20180904 331

▬ If the data type is Boolean, then this row is excluded from the calculation.

• partition by [col1, col2...]: Specified the olumns to use window function.

• order by col1[asc|desc], col2[asc|desc]: If ‘order by’ clause is not specified, return

the average of all values in the current window. If ‘order by’ clause is specified, the return result

is ordered according to the specified sequence and returns the cumulative average from start

row to current row in the current window.

Return value:

Double type.

Note:

If the keyword ‘distinct’ isn specified, the ‘order by’ clause cannot be used.

MAX

Function definition:

max([distinct] expr) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:

Calculates the maximum value.

Parameter description:

• expr: Any types expect ‘Boolean’. If the value is NULL, this row is not involved in the

calculation. If the keyword ‘distinct’ is specified, it indicates taking the max value of the unique

value.

• partition by [col1, col2…]: Specifies columns to use window function.

• order by [col1[asc|desc], col2[asc|desc: If ‘order by’ clause is not specified, return

the maximum value in the current window. If ‘order by’ clause is specified, the return result is

ordered according to the specified sequence and return the maximum value from start row to

current row in the current window.

Return value:

Same as the ‘expr’ type..

Note:

If the keyword ‘distinct’ is specified, the ‘order by’ clause cannot be used.

MaxCompute User Guide / 10 SQL

332 Issue: 20180904

MIN

Function definition:

min([distinct] expr) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:

Calculates the minimum value of the column.

Parameter description:

• exprAny types except ‘Boolean’. If the value is NULL, this row is not counted in the

calculation. If the keyword ‘distinct’ is specified, it indicates using the minimum value of a

unique value.

• partition by [col1, col2…]: Specifies columns to use window function.

• order by [col1[asc|desc], col2[asc|desc: If ‘order by’ clause is not specified, return

the minimum value in the current window. If ‘order by’ clause is specified, the return result is

ordered according to the specified sequence and return the minimum value from start row to

current row in the current window.

Return value:

the same type with ‘expr’.

Note:

If the keyword ‘distinct’ is specified, the ‘order by’ clause cannot be used.

MEDIAN

Function definition:

Double median(Double number1,number2...) over(partition by [col1, col2
…])
Decimal median(Decimal number1,number2...) over(partition by [col1,
col2…])

Usage:

Calculates the median.

Parameter description:

• number1,number1…: 1 to 255 digits of a Double or Decimal type.

MaxCompute User Guide / 10 SQL

Issue: 20180904 333

▬ When the input value is a String type or a Bigint type, the operation is performed after the

implicit conversion to a Double type, and other types throw exceptions.

▬ Return NULL when the input value is null.

▬ When the input value is a Double type, it converts to the Array of Double by default .

• partition by [col1, col2…]: Specifies columns to use window function.

Return value:

Double type.

STDDEV

Function definition:

Double stddev([distinct] expr) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])
Decimal stddev([distinct] expr) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:

Calculates population standard deviation.

Parameter description:

• expr: Double type.

▬ If the input is ‘string’ or ‘bigint’ type, it is converted to ‘double’ type and is counted in the

operation. If it is another data type, an exception is thrown.

▬ If the input value is ‘NULL’, this row is excluded.

▬ If the keyword ‘distinct’ is specified, it indicates calculating the population standard deviation

 of the unique value.

• partition by [col1, col2..]: Specifies columns to use window function.

• order by col1[asc|desc], col2[asc|desc]: If ‘order by’ clause is not specified, return

the population standard deviation in the current window. If ‘order by’ clause is specified, the

return result is ordered according to the specified sequence and return the population standard

deviation from start row to current row in the current window.

Return value:

When the input is ‘decimal’ type, return ‘decimal’; otherwise, return ‘double’.

MaxCompute User Guide / 10 SQL

334 Issue: 20180904

Example:

select window, seq, stddev_pop('1\01') over (partition by window order
 by seq) from dual;

Note:

• If the keyword ‘distinct’ is specified, the ‘order by’ clause cannot be used.

• Stddev_pop is an alias function of stddev function and its usage is the same as that of

stddev

STDDEV_SAMP

Function definition:

Double stddev_samp([distinct] expr) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])
Decimal stddev_samp([distinct] expr) over((partition by [col1,col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:

Calculate sample standard deviation.

Parameter description:

• Expr: Double type.

▬ If the input is ‘string’ or ‘bigint’ type, it is converted to ‘double’ type and counted in the

operation. If it is another data type, an exception is indicated.

▬ If the input value is NULL, this row is excluded.

▬ If the keyword ‘distinct’ is specified, it indicates calculating the sample standard deviation of

the unique value.

• partition by [col1, col2..]: Specifies columns to use window function.

• Order by col1[asc|desc], col2[asc|desc]: If ‘order by’ clause is not specified, return

the sample standard deviation in the current window. If ‘order by’ clause is specified, the return

result is ordered according to the specified sequence and return the sample standard deviation

from start row to current row in the current window.

Return value:

When the input is ‘decimal’ type, return ‘decimal’; otherwise, return ‘double’.

Note:

MaxCompute User Guide / 10 SQL

Issue: 20180904 335

If the keyword ‘distinct’ is specified, the ‘order by’ clause cannot be used.

SUM

Function definition:

sum([distinct] expr) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause])

Usage:

Calculates the sum of elements.

Parameter description:

• Expr: Double type.

▬ If the input is ‘string’ or ‘bigint’ type, it is converted to ‘double’ type and counted in the

operation. If it is another data type, an exception is indicated.

▬ If the input value is NULL, this row is excluded.

▬ If the keyword ‘distinct’ is specified, it indicates calculating the sum of the unique value.

• Partition by [col1, col2..]: Specifies columns to use window function.

• Order by col1[asc|desc], col2[asc|desc]: If ‘order by’ clause is not specified, return

the sum in the current window. If ‘order by’ clause is specified, the return result is ordered

according to the specified sequence and return the sum from start row to current row in the

current window.

Return value:

• If the input parameter is ‘bigint’ type, return ‘bigint’ type.

• If the input parameter is ‘Decimal’ type, return ‘Decimal’ type.

• If the input parameter is ‘double’ type or ‘string’ type, return ‘double’ type.

Note:

If the keyword ‘distinct’ is specified, the ‘order by’ clause cannot be used.

DENSE_RANK

Function definition:

Bigint dense_rank() over(partition by [col1, col2…]
order by [col1[asc|desc], col2[asc|desc]…])

Usage:

MaxCompute User Guide / 10 SQL

336 Issue: 20180904

Calculates the dense rank. The data in the same row of col2 has the same rank.

Parameter description:

• partition by [col1, col2..]: Specifies columns to use window function.

• order by col1[asc|desc], col2[asc|desc]: Specifies the value which the rank is

based on.

Return value:

Bigint type.

Example:

The data in table ‘emp’ is as follows:

| empno | ename | job | mgr | hiredate| sal| comm | deptno |
7369,SMITH,CLERK,7902,1980-12-17 00:00:00,800,,20
7499,ALLEN,SALESMAN,7698,1981-02-20 00:00:00,1600,300,30
7521,WARD,SALESMAN,7698,1981-02-22 00:00:00,1250,500,30
7566,JONES,MANAGER,7839,1981-04-02 00:00:00,2975,,20
7654,MARTIN,SALESMAN,7698,1981-09-28 00:00:00,1250,1400,30
7698,BLAKE,MANAGER,7839,1981-05-01 00:00:00,2850,,30
7782,CLARK,MANAGER,7839,1981-06-09 00:00:00,2450,,10
7788,SCOTT,ANALYST,7566,1987-04-19 00:00:00,3000,,20
7839,KING,PRESIDENT,,1981-11-17 00:00:00,5000,,10
7844,TURNER,SALESMAN,7698,1981-09-08 00:00:00,1500,0,30
7876,ADAMS,CLERK,7788,1987-05-23 00:00:00,1100,,20
7900,JAMES,CLERK,7698,1981-12-03 00:00:00,950,,30
7902,FORD,ANALYST,7566,1981-12-03 00:00:00,3000,,20
7934,MILLER,CLERK,7782,1982-01-23 00:00:00,1300,,10
7948,JACCKA,CLERK,7782,1981-04-12 00:00:00,5000,,10
7956,WELAN,CLERK,7649,1982-07-20 00:00:00,2450,,10
7956,TEBAGE,CLERK,7748,1982-12-30 00:00:00,1300,,10

Now, all employees need to be grouped by department, and each group must be sorted in

descending order according to SAL to obtain the serial number in own group.

SELECT deptno
 , ename
 , sal
 , DENSE_RANK() OVER (PARTITION BY deptno ORDER BY sal DESC
) AS nums--Deptno as a window column, and sort in descending order
according to sal.
 FROM emp;
--The result is as follows:

| deptno | ename | sal | nums |

10	JACCKA	5000.0	1
10	KING	5000.0	1
10	CLARK	2450.0	2
10	WELAN	2450.0	2
10	TEBAGE	1300.0	3
10	MILLER	1300.0	3
20	SCOTT	3000.0	1

MaxCompute User Guide / 10 SQL

Issue: 20180904 337

20	FORD	3000.0	1
20	JONES	2975.0	2
20	ADAMS	1100.0	3
20	SMITH	800.0	4
30	BLAKE	2850.0	1
30	ALLEN	1600.0	2
30	TURNER	1500.0	3
30	MARTIN	1250.0	4
30	WARD	1250.0	4
30	JAMES	950.0	5

RANK

Function definition:

Bigint rank() over(partition by [col1, col2…]
order by [col1[asc|desc], col2[asc|desc]…])

Usage:

Calculates the rank. The ranking of the same row data with col2 drops.

Parameter description:

• Partition by [col1, col2..]: Specifies columns to use window function.

• Order by col1[asc|desc], col2[asc|desc]: Specifies the value which the rank is

based on.

Return value:

Bigint type.

Example:

The data in table ‘emp’ is as follows:

| empno | ename | job | mgr | hiredate| sal| comm | deptno |
7369,SMITH,CLERK,7902,1980-12-17 00:00:00,800,,20
7499,ALLEN,SALESMAN,7698,1981-02-20 00:00:00,1600,300,30
7521,WARD,SALESMAN,7698,1981-02-22 00:00:00,1250,500,30
7566,JONES,MANAGER,7839,1981-04-02 00:00:00,2975,,20
7654,MARTIN,SALESMAN,7698,1981-09-28 00:00:00,1250,1400,30
7698,BLAKE,MANAGER,7839,1981-05-01 00:00:00,2850,,30
7782,CLARK,MANAGER,7839,1981-06-09 00:00:00,2450,,10
7788,SCOTT,ANALYST,7566,1987-04-19 00:00:00,3000,,20
7839,KING,PRESIDENT,,1981-11-17 00:00:00,5000,,10
7844,TURNER,SALESMAN,7698,1981-09-08 00:00:00,1500,0,30
7876,ADAMS,CLERK,7788,1987-05-23 00:00:00,1100,,20
7900,JAMES,CLERK,7698,1981-12-03 00:00:00,950,,30
7902,FORD,ANALYST,7566,1981-12-03 00:00:00,3000,,20
7934,MILLER,CLERK,7782,1982-01-23 00:00:00,1300,,10
7948,JACCKA,CLERK,7782,1981-04-12 00:00:00,5000,,10
7956,WELAN,CLERK,7649,1982-07-20 00:00:00,2450,,10

MaxCompute User Guide / 10 SQL

338 Issue: 20180904

7956,TEBAGE,CLERK,7748,1982-12-30 00:00:00,1300,,10

Now, all employees need to be grouped by department, and each group must be sorted in

descending order according to SAL to obtain the serial number in own group.

SELECT deptno
 , ename
 , sal
 , RANK() OVER (PARTITION BY deptno ORDER BY sal DESC) AS nums
--Deptno as a window column, and sort in descending order according to
 sal.
 FROM emp;
--The result is as follows:

| deptno | ename | sal | nums |

10	JACCKA	5000.0	1
10	KING	5000.0	1
10	CLARK	2450.0	3
10	WELAN	2450.0	3
10	TEBAGE	1300.0	5
10	MILLER	1300.0	5
20	SCOTT	3000.0	1
20	FORD	3000.0	1
20	JONES	2975.0	3
20	ADAMS	1100.0	4
20	SMITH	800.0	5
30	BLAKE	2850.0	1
30	ALLEN	1600.0	2
30	TURNER	1500.0	3
30	MARTIN	1250.0	4
30	WARD	1250.0	4
30	JAMES	950.0	6

LAG

Function definition:

lag(expr，Bigint offset, default) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]])

Command description:

Take the value of nth row in front of current row in accordance with offset. If the current row

number is rn, take the value of the row which row number is rn-offset.

Parameter description:

• expr: Any type.

• offset: A Bigint type constant. If the input is String type or Double type, convert it to Bigint

type by implicit conversion. Offset > 0;

• default: Define the default value while the specified range of ‘offset’ crosses the limit. It is

constant and default is null.

MaxCompute User Guide / 10 SQL

Issue: 20180904 339

• partition by [col1, col2..]: Specifies columns to use window function.

• order by col1[asc|desc], col2[asc|desc]: Specifies the order method for return

result.

Return Value:

Returns the same with ‘expr’.

LEAD

Command format:

lead(expr，Bigint offset, default) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]])

Command description:

Take the value of nth row following current row in accordance with offset. If the current row

number is rn, take the value of the row which row number is rn+offset.

Parameter description:

• expr: Any type.

• offset: A Bigint type constant. If the input is String, Decimal or Double type, convert it to

Bigint type by implicit conversion. Offset > 0.

• default: Define the default value while the specified range of offset crosses the limit. It is

constant.

• partition by [col1, col2..]: Specifies columns to use window function.

• order by col1[asc|desc], col2[asc|desc]: Specifies the order method for return

result.

Return Value:

Same as the ‘expr’ type.

Example:

select c_Double_a,c_String_b,c_int_a,lead(c_int_a,1) over(partition by
 c_Double_a order by c_String_b) from dual;
select c_String_a,c_time_b,c_Double_a,lead(c_Double_a,1) over(
partition by c_String_a order by c_time_b) from dual;

MaxCompute User Guide / 10 SQL

340 Issue: 20180904

select c_String_in_fact_num,c_String_a,c_int_a,lead(c_int_a) over(
partition by c_String_in_fact_num order by c_String_a) from dual;

PERCENT_RANK

Command format:

Percent_rank () over (partition by [col1, col2...]
order by [col1[asc|desc], col2[asc|desc]…])

Command description:

Calculate relative ranking of a certain row in a group of data.

Parameter description:

• partition by [col1, col2..]: Specifies columns to use window function.

• order by col1[asc|desc], col2[asc|desc]: Specifies the value based on the

ranking.

Return Value:

Returns the Double type, value scope is [0, 1]. The calculation method of relative ranking is (rank

-1)/(number of rows -1).

Note:

The current limit of rows in a single window cannot exceed 10,000,000.

ROW_NUMBER

Command format:

row_number() over(partition by [col1, col2…]
order by [col1[asc|desc], col2[asc|desc]…])

Command description:

Calculates the row number, beginning from 1.

Parameter description:

• partition by [col1, col2..]: Specifies columns to use window function.

• order by col1[asc|desc], col2[asc|desc]: Specifies the order method for return

result.

Return Value:

Returns the Bigint type.

MaxCompute User Guide / 10 SQL

Issue: 20180904 341

Example:

The data in table emp is as follows:

| empno | ename | job | mgr | hiredate| sal| comm | deptno |
7369,SMITH,CLERK,7902,1980-12-17 00:00:00,800,,20
7499,ALLEN,SALESMAN,7698,1981-02-20 00:00:00,1600,300,30
7521,WARD,SALESMAN,7698,1981-02-22 00:00:00,1250,500,30
7566, Jones, Manager, fig-04-02 00:00:00, 2975, 20
7654,MARTIN,SALESMAN,7698,1981-09-28 00:00:00,1250,1400,30
7698,BLAKE,MANAGER,7839,1981-05-01 00:00:00,2850,,30
7782,CLARK,MANAGER,7839,1981-06-09 00:00:00,2450,,10
7788, Scott, analyst, fig-04-19 00:00:00, 3000, 20
7839,KING,PRESIDENT,,1981-11-17 00:00:00,5000,,10
7844,TURNER,SALESMAN,7698,1981-09-08 00:00:00,1500,0,30
7876,ADAMS,CLERK,7788,1987-05-23 00:00:00,1100,,20
7900,JAMES,CLERK,7698,1981-12-03 00:00:00,950,,30
7902,FORD,ANALYST,7566,1981-12-03 00:00:00,3000,,20
7934,MILLER,CLERK,7782,1982-01-23 00:00:00,1300,,10
7948,JACCKA,CLERK,7782,1981-04-12 00:00:00,5000,,10
7956,WELAN,CLERK,7649,1982-07-20 00:00:00,2450,,10
7956, tebage, clerk, maid-12-30 00:00:00, 1300, 10

Now, all employees need to be grouped by department, and each group must be sorted in

descending order according to SAL to obtain the serial number in own group.

SELECT deptno
 , ename
 , Sal
 , Row_number () over (partition by deptno order by Sal DESC
) as Nums --Deptno as a window column, and sort in descending order
according to sal.
 FROM emp;
--The result is as follows:

| deptno | ename | sal | nums |

10	JACCKA	5000.0	1
10	KING	5000.0	2
10	CLARK	2450.0	3
10	WELAN	2450.0	4
10	TEBAGE	1300.0	5
10	MILLER	1300.0	6
20	SCOTT	3000.0	1
20	FORD	3000.0	2
20	JONES	2975.0	3
20	ADAMS	1100.0	4
20	SMITH	800.0	5
30	BLAKE	2850.0	1
30	ALLEN	1600.0	2
30	TURNER	1500.0	3
30	MARTIN	1250.0	4
30	WARD	1250.0	5

MaxCompute User Guide / 10 SQL

342 Issue: 20180904

| 30 | JAMES | 950.0 | 6 |

CLUSTER_SAMPLE

Command format:

boolean cluster_sample([Bigint x, Bigint y])
over(partition by [col1, col2..])

Command description:

Used for Group sampling.

Parameter description:

• x: A Bigint type constant, x>=1. If you specify the parameter y, x indicates dividing a window

into x parts. Otherwise x indicates selecting x rows records in a window (if x rows are in this

window, return true). If x is NULL, return NULL.

• y: A Bigint type constant, y>=1, y<=x. It indicates selecting y parts records from x parts in a

window (in other words, if y parts records exist, return value is true). If y is NULL, return NULL.

• partition by [col1, col2]: Specifies columns to use window function.

Return Value:

Returns the Boolean type.

Example:

If two columns key and value are in the table test_tbl, key is grouping field. The corresponding

values of key have groupa and groupb, the field value indicates value of key shown as follows:

 | key | value |

 | groupa | -1.34764165478145 |
 | groupa | 0.740212609046718 |
 | groupa | 0.167537127858695 |
 | groupa | 0.630314566185241 |
 | GroupA | 0.0112401388646925 |
 | groupa | 0.199165745875297 |
 | groupa | -0.320543343353587 |
 | groupa | -0.273930924365012 |
 | groupa | 0.386177958942063 |
 | groupa | -1.09209976687047 |
 | groupb | -1.10847690938643 |
 | groupb | -0.725703978381499 |
 | groupb | 1.05064697475759 |
 | groupb | 0.135751224393789 |
 | groupb | 2.13313102040396 |
 | groupb | -1.11828960785008 |
 | groupb | -0.849235511508911 |
 | groupb | 1.27913806620453 |

MaxCompute User Guide / 10 SQL

Issue: 20180904 343

 | groupb | -0.330817716670401 |
 | groupb | -0.300156896191195 |
 | groupb | 2.4704244205196 |
 | groupb | -1.28051882084434 |

To select 10% values from each group, the following MaxCompute SQL is recommended:

Select key, Value
 from (
 Select key, value, cluster_sample (10, 1) over (partition by
key) as flag
 from tbl
) sub
 where flag = true;

| Key | value |

| groupa | 0.167537127858695 |
| groupb | 0.135751224393789 |

NTILE

Command format:

BIGINT ntile(BIGINT n) over(partition by [col1, col2…]
[order by [col1[asc|desc], col2[asc|desc]…]] [windowing_clause]))

Command description:

Used to cut grouped data into N slices in order and return the current slice value, if the slice is

uneven, the distribution of the first slice is increased by default.

Parameter description:

N: bigint data type.

Return Value:

Returns the bigint type.

Example:

The data in the table EMP is as follows:

| Empno | ename | job | Mgr | hiredate | Sal | REM | deptno |
7369, Smith, clerk, maid-12-17 00:00:00, 800, 20
7499, Allen, salesman, maid-02-20 00:00:00, 1600,300, 30
7521, Ward, salesman, maid-02-22 00:00:00, 1250,500, 30
7566, Jones, Manager, fig-04-02 00:00:00, 2975, 20
7654 Martin, salesman, fig-09-28 00:00:00, fig, 30
7698, Blake, Manager, fig-05-01 00:00:00, 2850, 30
7782, Clark, Manager, fig-06-09 00:00:00, 2450, 10
7788, Scott, analyst, fig-04-19 00:00:00, 3000, 20
00:00:00, King, President, 1991-11-17 5000, 7839, 10
7844, Turner, salesman, fig-09-08 00:00:00, 1500,0, 30

MaxCompute User Guide / 10 SQL

344 Issue: 20180904

7876, Adams, clerk, maid-05-23 00:00:00, 1100, 20
7900 James, clerk, maid-12-03 00:00:00, 950, 30
7902 Ford, analyst, fig-12-03 00:00:00, 3000, 20
7934 Miller, clerk, fig-01-23 00:00:00, 1300, 10
7948, jaccka, clerk, fig-04-12 00:00:00, 5000, 10
7956, welan, clerk, fig-07-20 00:00:00, 2450, 10
7956, tebage, clerk, maid-12-30 00:00:00, 1300, 10

All employees now need to be divided into three groups according to Sal high to low cut, and get

the serial number of the employee's own group.

Select deptno, ename, Sal, ntile (3) over (partition by depno order by
 Sal DESC) as nt3 from EMP;
-- Execution results as follows

| Deptno | ename | Sal | nt3 |

10	jaccka	5000.0	1
10	King	5000.0	1
10	welan	2450.0	2
10	Clark	2450.0	2
10	tebage	1300.0	3
10	Miller	1300.0	3
20	Scott	3000.0	1
20	Ford	3000.0	1
20	Jones	2975.0	2
20	Adams	1100.0	2
20	Smith	800.0	3
30	Blake	2850.0	1
30	Allen	1600.0	1
30	Turner	1500.0	2
30	Martin	1250.0	2
30	ward	1250.0	3
30	James	950.0	3

10.11.4 String functions
CHAR_MATCHCOUNT

Command format:

bigint char_matchcount(string str1, string str2)

Usage:

Calculates the total number of times each character in str1 is duplicated in str2.

Parameter description:

• str1, str2: String type, must be effective UTF-8 strings. If invalid character is in matching

process, return a negative value.

• Return value: Bigint type, Any NULL input, return NULL.

MaxCompute User Guide / 10 SQL

Issue: 20180904 345

Example:

char_matchcount('abd','aabc') = 2
-- Two strings 'a', 'b' in str1 appear in str2.

CHR

Command format:

string chr(bigint ascii)

Usage:

Convert the specified ASCII code ‘ascii’ into character.

Parameter description:

• ascii: Bigint type ASCII value. If the input is ‘string’ or ‘double’, it is converted to ‘bigint’ by

implicit conversion. If the input is other types, an exception is thrown.

• Return value: String type. The parameter value range is [0,255]. An exception is thrown if

exceeding this range. If the input is NULL, return NULL.

CONCAT

Command format:

string concat(string a, string b...)

Usage:

The return value is a result of connecting all strings.

Parameter description:

• a, b… String type. If the input is Bigint, Double, Decimal or Datetime, it is converted to String by

 implicit conversion. If the input is other types, an exception is thrown.

• String: Return value: String type. If no parameter exists or a certain parameter is NULL, return

NULL.

Example:

concat('ab','c') = 'abc'
concat() = NULL

MaxCompute User Guide / 10 SQL

346 Issue: 20180904

concat('a', null, 'b') = NULL

GET_JSON_OBJECT

Command format:

STRING GET_JSON_OBJECT(STRING json,STRING path)

Usage:

In a standard json string, the specified string is extracted according to the path.

Parameter description:

• json: String type, standard json format string.

• path: String type, describing the path in json, starting with a dollor sign ($). For a

description of the JsonPath in the new implementation, see: jsonpath, $ for the root node, (.)

Represents child, [number] represents the subscript of an array, for an array, the format is key

[sub1] [sub2] [sub3]..., [*] Returns the entire array, * escape is not supported.

• String: Returns string type.

Note:

• Return NULL if json is null or invalid json format.

• Return NULL if path is null or invalid (does not exist in json).

• If json is valid and path also exists, the corresponding string is returned.

Example:

+----+
json
+----+
{"store":
{"fruit":[{"weight":8,"type":"apple"},{"weight":9,"type":"pear"}],
"bicycle":{"price":19.95,"color":"red"}
},
"email":"amy@only_for_json_udf_test.net",
"owner":"amy"
}

Use the following query process to extract information in the JSON object:

odps> SELECT get_json_object(src_json.json, '$.owner') FROM src_json;
amy
odps> SELECT get_json_object(src_json.json, '$.store.fruit\[0]') FROM
src_json;
{"weight":8,"type":"apple"}
odps> SELECT get_json_object(src_json.json, '$.non_exist_key') FROM
src_json;

http://goessner.net/articles/JsonPath/index.html#e2

MaxCompute User Guide / 10 SQL

Issue: 20180904 347

NULL

Example:

get_json_object('{"array":[["aaaa",1111],["bbbb",2222],["cccc",3333
]]}','$.array[1][1]')= "2222"
get_json_object('{"aaa":"bbb","ccc":{"ddd":"eee","fff":"ggg","hhh":["
h0","h1","h2"]},"iii":"jjj"}','$.ccc.hhh[*]') = "["h0","h1","h2"]"
get_json_object('{"aaa":"bbb","ccc":{"ddd":"eee","fff":"ggg","hhh":["
h0","h1","h2"]},"iii":"jjj"}','$.ccc.hhh[1]') = "h1"

INSTR

Command format:

bigint instr(string str1, string str2[, bigint start_position[, bigint
 nth_appearance]])

Usage:

Calculates where substring str2 is located in str1.

Parameter description:

• str1: String type. If the input is Bigint, Double, Decimal or Datetime, it is converted to String by

implicit conversion. If the input is other types, an exception is thrown.

• str2: String type. If the input is Bigint, Double, Decimal or Datetime, it is converted to String by

implicit conversion. If the input is other types, an exception is thrown.

• start_position: Bigint type, for other types, an exception is thrown. It indicates from which

character of str1 a search must be started from and the default starting position is the first

character position 1. If it is less than 0, it causes abnormality.

• nth_appearance：bigint type, greater than 0, represents position of the second match of a

substring in the string. If the chain is of a different type or less than or equal to 0, an exception

is thrown.

• Return value: Bigint type.

Note:

• If str2 is not found in str1, return 0.-

• If any input parameter is null, return null

• If str2 is NULL and always can be matched successfully, instr (‘abc’, ‘’) returns 1.

Example:

instr('Tech on the net', 'e') = 2

MaxCompute User Guide / 10 SQL

348 Issue: 20180904

instr('Tech on the net', 'e', 1, 1) = 2
instr('Tech on the net', 'e', 1, 2) = 11
instr('Tech on the net', 'e', 1, 3) = 14

IS_ENCODING

Command format:

boolean is_encoding(string str, string from_encoding, string
to_encoding)

Usage:

Determine whether the input string ‘str’ can be changed into a character set ‘to_encoding’ from a

specified character set ‘from_encoding’. It can be used to Determine whether the input is garbled.

The common use is to set ‘from_encoding’ to be ‘utf-8’ and ‘to_encoding’ to be ‘gbk’.

Parameter description:

• str: String type, if the input is NULL, return NULL. The empty string can be assumed to be

belonged to any character set.

• from_encoding, to_encoding: String type, source, destination character sets. If the input is

NULL, return NULL.

• Return value: Boolean type. If ‘str’ can be converted successfully, return true, otherwise, return

 false.

Example:

is_encoding('test', 'utf-8', 'gbk') = true
is_encoding('test', 'utf-8', 'gbk') = true
-- These two traditional Chinese characters are in GBK stock in China.
is_encoding('test', 'utf-8', 'gb2312') = false
-- The grapheme inventory of ‘GB2312’ does not contain these two
Chinese characters.

KEYVALUE

Command format:

KEYVALUE(STRING srcStr,STRING split1,STRING split2, STRING key)
KEYVALUE(STRING srcStr,STRING key) //split1 = ";"，split2 = ":"

Usage:

split ‘srcStr’ into ‘key-value’ pairs by split1 and separate ‘key-value’ pairs by split2. Return the

value corresponding to key.

Parameter description:

MaxCompute User Guide / 10 SQL

Issue: 20180904 349

• srcStr: Source string to be split.

• key: Specified to return the nth string. After the source string is split by ‘split1’ and ‘split2’,

return the corresponding value according to the specification of the ‘key’ value.

• split1, split2: Strings used as delimiters by which ‘srcStr’ is split. If these two parameters are not

 specified in the expression, the default value of ‘split1’ is ’;’ and that of ‘split2’ is ’:’. If a string

that has been split by split1 and has multiple split2, the return result is not defined.

Return value:

• String type.

• If ‘split1’ or ‘split2’ is NULL, return NULL.

• If ‘scrStr’ and ‘key’ are NULL or in case of no matched ‘key’, return NULL.

• If multiple ‘key-value’ matches, return the value corresponding to the first matched key.

Example 1:

keyvalue('0:1\;1:2', 1) = '2'

Note:

The source string is "0:1\;1:2". As split1 and split2 are not specified, the default split1 is ";" and

split2 is ":".

After the split1 split, the key-value pair is 0:1\,1:2.

After split2 split, it becomes:

0 1/
1 2

Returns the value(2) of the key corresponding to 1.

Example 2:

keyvalue("\;decreaseStore:1\;xcard:1\;isB2C:1\;tf:21910\;cart:1\;
shipping:2\;pf:0\;market:shoes\;instPayAmount:0\;","\;",":","tf") = "
21910" value:21910.

Note:

MaxCompute User Guide / 10 SQL

350 Issue: 20180904

The source string is as follows:

“\;decreaseStore:1\;xcard:1\;isB2C:1\;tf:21910\;cart:1\;shipping:2\;
pf:0\;market:shoes\;instPayAmount:0\;”

The key-value pairs derived from the split after splitting according to the split1 '\;' are as follows:

decreaseStore:1，xcard:1，isB2C:1，tf:21910，cart:1，shipping:2，pf:0，
market:shoes，instPayAmount:0

After you split, follow the split2 ":", the results are as follows:

decreaseStore 1
 xcard 1
 isB2C 1
 tf 21910
 cart 1
 shipping 2
 pf 0
 market shoes
 instPayAmount 0

The value of the key parameter is "tf", the return value of the corresponding value parameter is

21910.

LENGTH

Command format:

bigint length(string str)

Usage:

Return the length of a string.

Parameter description:

• str: String type. If the input is Bigint，Double，Decimal or Datetime, it is converted to String by

implicit conversion. If the input is other types, an exception is thrown.

• Return value: Bigint type. If ‘str’ is NULL, return NULL. If ‘str’ is non UTF-8 coding format, return

 -1.

MaxCompute User Guide / 10 SQL

Issue: 20180904 351

Example:

length('hi! China') = 6

LENGTHB

Command format:

bigint lengthb(string str)

Usage:

Return the length of ‘str’ and its unit is byte.

Parameter description:

• str: String type. If the input is Bigint，Double，Decimal or Datetime, it is converted to String by

implicit conversion. If the input is other types, an exception is thrown.

• Return value: Bigint type. If ‘str’ is NULL, return NULL.

Example:

lengthb('hi! 中国') = 10

MD5

Command format:

string md5(string value)

Usage:

Calculate the md5 value of input string.

Parameter description:

• value: String type. If the input value is of the Bigint, Double, Decimal or Datetime type, it is

implicitly converted to the String type before calculation. If the input value is of another type, an

exception is thrown. If the input is NULL, return NULL.

• Return value: String type.

MaxCompute User Guide / 10 SQL

352 Issue: 20180904

REGEXP_EXTRACT

Command format:

string regexp_extract(string source, string pattern[, bigint
occurrence])

Usage:

Split the string source according to pattern (regular expression rules), and return the characters of

 the occurrence(nth) group.

Parameter description:

• source: String type, a string to be searched.

• pattern: A string type constant. If pattern is a null string, an exception is thrown. If ‘group’ is not

specified in pattern, then also an exception is thrown.

• Occurrence: A bigint type constant, must be greater than 0 or equal to 0. If it is other type or

 less than 0, an exception is thrown. If not specified, the default value is 1, which indicates

returning the first group. If ‘occurrence’ is equal to 0, then return substrings that satisfy the

entire ‘pattern’.

• Return value: String type. Any input is NULL, return NULL.

Example:

regexp_extract('foothebar', 'foo(. *?)(bar)', 1) = the
regexp_extract('foothebar', 'foo(. *?)(bar)', 2) = bar
regexp_extract('foothebar', 'foo(. *?)(bar)', 0) = foothebar
regexp_extract('8d99d8', '8d(\\d+)d8') = 99
-- If regular SQL is submitted on MaxCompute, two "\" must be used as
the shift character.
regexp_extract('foothebar', 'foothebar')
-- The exception is thrown. ‘group’ is not specified in ‘pattern’.

REGEXP_INSTR

Function definition:

bigint regexp_instr(string source, string pattern[,
bigint start_position[, bigint nth_occurrence[, bigint return_option
]])

Usage:

Returns the start position/end position of the substring, which matches the pattern with the source

from start_position and nth_occurrence.. Any input parameter is null, return null.

Parameter description:

MaxCompute User Guide / 10 SQL

Issue: 20180904 353

• source: String type, to be searched.

• pattern: A string type constant. If ‘pattern’ is null, an exception is thrown.

• start_position: Bigint type constant, the start position of search. If it is not specified, default

value is 1. If it is other type or a value is less than or equal to 0, an exception is thrown.

• nth_occurrence: A bigint type constant. If not specified, the default value is 1. It appears at the

first position, when searched. If it is less than or equal to 0 or other type, an exception is thrown

.

• return_option: A bigint type constant. Its value is 0 or 1. If it is other type or an invalid value, an

 exception is thrown. 0 indicates returning the start position of the matched value. 1 indicates

returning the end position of the matched value.

• Return value: Bigint type, the start or end position of a matched substring in source specified by

 return_option.

Example:

regexp_instr("i love www.taobao.com", "o[[:alpha:]]{1}", 3, 2) = 14

REGEXP_REPLACE

Command format:

string regexp_replace(string source, string pattern, string replace_st
ring[, bigint occurrence])

Usage:

replace the substring in source which is matched ‘pattern’ for nth occurrence to be a specified

string ‘replace_string’ and then return.

Parameter description:

• source: String type, a string to be replaced.

• pattern: String type constant. The pattern to be matched. If it is null, an exception is thrown.

• replace_string: String type, the string after replacing matched pattern.

• occurrence: Bigint type constant, must be greater than or equal to 0. It indicates replacing nth

matching to be replace_string. If it is 0, it indicates all matched substrings have been replaced.

 If it is other type or less than 0, an exception is thrown. It can be 0 by default.

• Return value: String type. When referencing a group which is not existent, do not replace the

 string. Returns NULL when the source, pattern, occurrence parameter is entered as null,

MaxCompute User Guide / 10 SQL

354 Issue: 20180904

returns NULL, replace_string is null, but pattern will not match, if the replace_string is null and

the pattern is matched, returns the original string.

Note:

When the reference group does not exist, it is considered to be undefined.

Example:

regexp_replace("123.456.7890", "([[:digit:]]{3})\\.([[:digit:]]{3})\\.
([[:digit:]]{4})",
"(\\1)\\2-\\3", 0) = "(123)456-7890"
regexp_replace("abcd", "(.)", "\\1 ", 0) = "a b c d "
regexp_replace("abcd", "(.)", "\\1 ", 1) = "a bcd"
regexp_replace("abcd", "(.)", "\\2", 1) = "abcd"
-- Only a group is defined in pattern and the referenced second group
is not existent.
-- Please avoid this. The result to reference nonexistent group is not
 defined.
regexp_replace("abcd", "(. *)(.)$", "\\2", 0) = "d"
regexp_replace("abcd", "a", "\\1", 0) = "bcd"
-- No group definition is in pattern, so '\1' references a nonexistent
 group,
 -- Please avoid this. The result to reference nonexistent group is
not defined.

REGEXP_SUBSTR

Command format:

string regexp_substr(string source, string pattern[, bigint start_posi
tion[, bigint nth_occurrence]])

Usage:

Starting from start_position, find a substring in source which matches with a specified pattern for

the nth occurrence.

Parameter description:

• source: String type, string to be searched.

• pattern: A string type constant. The pattern to be matched. If it is null, an exception is thrown.

• start_position: A Bigint type constant, must be greater than 0. Other types or less than equal to

 0 throw exceptions. If not specified the default value is 1, which indicates a match begins with

 the first character of source. If not specified, default value is 1. It indicates a matching value

from the first character of source.

• nth_occurrence: a Bigint type constant, must be greater than 0. If not specified, the default

value is 1. It indicates the return substring of the first matched value. If not specified, the default

 value is 1. It indicates the return substring of the first matched value.

MaxCompute User Guide / 10 SQL

Issue: 20180904 355

• Return value: String type. Any input parameter is NULL, return NULL. If no matching record

exists, return NULL.

Example:

regexp_substr ("I love aliyun very much", "a[[:alpha:]]{5}") = "aliyun
"
regexp_substr('I have 2 apples and 100 bucks!', '[[:blank:]][[:alnum
:]]*', 1, 1) = " have"
regexp_substr('I have 2 apples and 100 bucks!', '[[:blank:]][[:alnum
:]]*', 1, 2) = "2"

REGEXP_COUNT

Command format:

bigint regexp_count(string source, string pattern[, bigint start_posi
tion])

Usage:

Counts the number of occurrences that a substring matches with a specified pattern, starting from

 start_position in source.

Parameter description:

• Source: String type, the string to be searched. If it is the other type, an exception is thrown.

• Pattern: String type constant, the pattern to be matched. If it is a null string or other data type,

an exception is thrown.

• start_position: Bigint type constant, must be greater than 0. If it is other data type or a value

 which is less than or equal to 0, an exception is thrown. If not specified, default value is 1,

which indicates a matched value from the first character of source.

• Return value: Bigint type. If matching does not exists, return 0. If any input parameter is null,

return null.

Example:

regexp_count('abababc', 'a.c') = 1

MaxCompute User Guide / 10 SQL

356 Issue: 20180904

regexp_count('abcde', '[[:alpha:]]{2}', 3) = 1

SPLIT_PART

Command format:

string split_part(string str, string separator, bigint start[, bigint
end])

Usage:

Split the string str according to the separator and return the substring from nth start part to nth end

 part.

Parameter description:

• str: String type, the string to be split. If it is Bigint, Double, Decimal or Datetime, it is converted

to a String in an implicit conversion. If it is other data type, an exception is thrown.

• separator: A string type constant, the separator used to split the string. It can be a character or

a string. If it is other data type, an exception is thrown.

• start: A bigint type constant, must be greater than 0. If it is not a constant or other data type, an

 exception is thrown. It indicates the start number of the return part (start from 1). If the end is

not specified, returns the part specified by ‘start’.

• ‘end’: A bigint type constant, must be greater than or equal to ‘start’, otherwise an exception is

thrown. It refers to the end number of the return part. If it is not a constant or is other data type,

then also an exception is thrown. It can be excluded as it indicates the last part.

Return value: String type. If any parameter is null, return null. If separator is an empty string,

return the source string str.

Note:

• If ‘delimiter’ does not exist in str, then specify ‘start’ as 1, and return the entire str. If the input

value is an empty string, the output value is an empty string.

• If the start value is greater than the number of parts after split, for example, the split produces

6 parts but the ‘start’ value is greater than 6, then returns an empty string.

Example:

split_part('a,b,c,d', ',', 1) = 'a'
split_part('a,b,c,d', ',', 1, 2) = 'a,b'

MaxCompute User Guide / 10 SQL

Issue: 20180904 357

split_part('a,b,c,d', ',', 10) = ''

SUBSTR

Command format:

string substr(string str, bigint start_position[, bigint length])

Usage:

Returns a substring of ‘str’ from start_position with the given length.

Parameter description:

• ‘str’: String type. If the input is Bigint, Double, Decimal or Datetime, it is converted to String in

an implicit conversion. If it is other data type, an exception is thrown.

• The start_position:Bigint type starts at 1. When start_position is negative, the starting position

 is counted backwards from the end of the string, the last character is -1, and the previous

number is -2,-3 and so on. Other types throw exceptions.

• length: Bigint type, must be greater than 0. If it is other type or less than 0, an exception is

thrown. This parameter indicates the length of a child string.

• Return value: String type. If the input is NULL, return NULL.

Note:

If the length is excluded, return the substring from start to end.

Example:

substr("abc", 2) = "bc"
substr("abc", 2, 1) = "b"
substr("abc",-2,2)="bc"
substr("abc",-3)="abc"

SUBSTRING

Command format:

string substring(string|binary str, int start_position[, int length])

Usage:

Returns the substring of ‘str’ from start_position with the given length.

Parameter description:

• str: String or Binary type, returns NULL or throws an exception for the other type

MaxCompute User Guide / 10 SQL

358 Issue: 20180904

• ‘start_position’: Int type, starting at 1. When start_position is negative, the starting position is

counted backwards from the end of the string, the last character is-1, and the previous number

is in turn-2,-3 and so on. Other types throw exceptions.

• length: Bigint type, must be greater than 0. If it is other type or less than 0, an exception is

thrown. This parameter indicates the length of the child string.

• Return value: String type. If the input is NULL, return NULL.

Note:

If the length is excluded, return the substring from start to end.

For example:

substring('abc', 2) = 'bc'
substring('abc', 2, 1) ='"b'
substring('abc',-2,2)='bc'
substring('abc',-3,2)='ab'
substring(BIN(2345),2,3)='001'

TOLOWER

Command format:

string tolower(string source)

Usage:

Input the lowercase string corresponding to the English string source.

Parameter description:

• Source: String type. If the input is Bigint, Double, Decimal or Datetime, it is converted to String

in an implicit conversion. If it is other data type, an exception is throwm.

• Return Value: String type. If the input is NULL, return NULL.

Example:

tolower("aBcd") = "abcd"
tolower("Haha Cd") = "haha cd"

TOUPPER

Command format:

string toupper(string source)

Usage:

MaxCompute User Guide / 10 SQL

Issue: 20180904 359

Output the uppercase string corresponding to the English string ‘source’.

Parameter description:

• Source: String type. If the input is Bigint, Double, Decimal or Datetime, it is converted to String

in an implicit conversion. If it is other data type, an exception is throwm.

• Return Value: String type. If the input is NULL, return NULL.

Example:

toupper("aBcd") = "ABCD"
toupper("HahaCd") = "HAHACD"

TO_CHAR

Command format:

string to_char(boolean value)
string to_char(bigint value)
string to_char(double value)
string to_char(decimal value)

Usage:

Convert Boolean type, Bigint type or Double type to corresponding String type.

Parameter description:

• Value: Boolean, Bigint or Double type is acceptable. If it is other data type, an exception is

thrown. For formatted output of the datetime type, see another function TO_CHAR that has the

 same name.

• Return value: String type. If the input is NULL, return NULL.

Example:

to_char(123) = '123'
to_char(true) = 'TRUE'
to_char(1.23) = '1.23'
to_char(null) = NULL

TRIM

Command format:

string trim(string str)

Usage:

Removes left space and right space for the input string str.

MaxCompute User Guide / 10 SQL

360 Issue: 20180904

Parameter description:

• ‘str’: String type. If the input is Bigint, Double, Decimal or Datetime, it is converted to String in

an implicit conversion. If it is other data type, an exception is throwm.

• Return value: String type. If the input is NULL, return NULL.

LTRIM

Command format:

string ltrim(string str)

Usage:

Removes the left space for the input string str.

Parameter description:

• ‘str’: String type. If the input is Bigint, Double, Decimal or Datetime, it is converted to String in

an implicit conversion. If it is other data type, an exception is throwm.

• Return value: String type. If the input is NULL, return NULL.

Example:

select ltrim(' abc ') from dual;
Returns:
+-----+
| _c0 |
+-----+
| abc |
+-----+

RTRIM

Command format:

string rtrim(string str)

Usage:

Removes the right space for the input string str.

Parameter description:

• ‘str’: String type. If the input is Bigint, Double, Decimal or Datetime, it is converted to String in

an implicit conversion. If it is other data type, an exception is throwm.

• Return value: String type. If the input is NULL, return NULL.

MaxCompute User Guide / 10 SQL

Issue: 20180904 361

Example:

select rtrim('a abc ') from dual;
Returns:
+-----+
| _c0 |
+-----+
| a abc |
+-----+

REVERSE

Command format:

STRING REVERSE(string str)

Usage:

Returns a reversed-order string.

Parameter description:

• str: String type. If the input is Bigint, Double, Decimal or Datetime, it is converted to String in an

 implicit conversion. If it is other data type, an exception is throwm.

• Return value: String type. If the input is NULL, return NULL.

Example:

select reverse('abcedfg') from dual;
Returns:
+-----+
| _c0 |
+-----+
| gfdecba |
+-----+

SPACE

Command format:

STRING SPACE(bigint n)

Usage:

A space string function that returns a string of length n.

Parameter description:

• n: Bigint type. The length cannot exceed 2 MB. If it is NULL, an exception is thrown.

• Return value: String type.

MaxCompute User Guide / 10 SQL

362 Issue: 20180904

Example:

select length(space(10)) from dual; ----Returns 10.
select space(400000000000) from dual; ----Error, the length exceeds 2
MB.

REPEAT

Command format:

STRING REPEAT(string str, bigint n)

Usage:

Returns the str string that is repeated for n times.

Parameter description:

• ‘str’: String type. If the input is Bigint, Double, Decimal or Datetime, it is converted to String in

an implicit conversion. If it is other data type, an exception is throwm.

• n: Bigint type. The length does not exceed 2 MB. If it is NULL, an exception is thrown.

• Return value: String type.

Example:

select repeat('abc',5) from lxw_dual;
Returns:abcabcabcabcabc

ASCII

Command format:

Bigint ASCII(string str)

Usage:

Returns the ascii of the first character of str.

Parameter description:

• str: String type. If the input is Bigint, Double, Decimal or Datetime, it is converted to String in an

 implicit conversion. If it is other data type, an exception is throwm.

• Return value: Bigint type.

Example:

select ascii('abcde') from dual;

MaxCompute User Guide / 10 SQL

Issue: 20180904 363

Returns:97

Maxcomputerte2.0 Extension function

With the upgrade to MaxCompute 2.0, some mathematical functions have been added to the

product. If a new function uses a new data type, you must add the following set statement before

using the new functions SQL statement:

set odps.sql.type.system.odps2=true;

Note:

Add set odps before the SQL statement that uses the functionset odps.sql.type.system.

odps2 = true;, and commit runs with SQL to use the new data type function normally.

The enhanced and extended string functions are described as follows.

CONCAT_WS

Command format:

string concat_ws(string SEP, string a, string b...)
string concat_ws(string SEP, array)

Note:

Add set odps before the SQL statement that uses the functionset odps.sql.type.system.

odps2 = true;, and commit runs with SQL to use the new data type function normally.

Usage:

Concatenates all strings in the parameters, connected by the specified delimiter.

Parameter description:

• SEP: String-type delimiter. If not specified, an exception is returned.

• a/b… String type. If Bigint, Decimal, Double or Datetime types are input, they are implicitly

converted to String type before calculation. If the input is another type, an exception is throwm.

Return value:

String type. If no parameters exist or any parameter is null, return null.

Example:

concat_ws(':','name','hanmeimei')='name:hanmeimei'

MaxCompute User Guide / 10 SQL

364 Issue: 20180904

concat_ws(':','avg',null,'34')=null

LPAD

Command format:

string lpad(string a, int len, string b)

Note:

Add set odps before the SQL statement that uses the functionset odps.sql.type.system.

odps2 = true;, and commit runs with SQL to use the new data type function normally.

Usage:

Uses string b to pad string a to the left to the place specified by len.

Parameter description:

• len: Int-type integer.

• a/b…: String type.

Return value:

String type. If len is smaller than the number of places in a, a is truncated from the left to obtain a

string with the number of places specified by len. If len is 0, return empty.

Example:

lpad('abcdefgh',10,'12')='12abcdefgh'
lpad('abcdefgh',5,'12')='abcde'
lpad('abcdefgh',0,'12') Returns a blank result

RPAD

Command format:

string rpad(string a, int len, string b)

Note:

Add set odps before the SQL statement that uses the functionset odps.sql.type.system.

odps2 = true;, and commit runs with SQL to use the new data type function normally.

Usage:

Uses string b to pad string a to the right to the place specified in len.

MaxCompute User Guide / 10 SQL

Issue: 20180904 365

Note:

You need to add the set odps statement before the SQL statement that uses the functionset

odps.sql.type.system.odps2 = true, otherwise the error is reported.

Parameter description:

• len: Int-type integer.

• a/b…: String type.

Return value:

String type. If len is smaller than the number of places in a, a is truncated from the left to obtain a

string with the number of places specified by len. If len is 0, return empty.

Example:

rpad('abcdefgh',10,'12')='abcdefgh12'
rpad('abcdefgh',5,'12')='abcde'
rpad('abcdefgh',0,'12') Returns a blank result

REPLACE

Command format:

string replace(string a, string OLD, string NEW)

Note:

Add set odps before the SQL statement that uses the functionset odps.sql.type.system.

odps2 = true;, and commit runs with SQL to use the new data type function normally.

Usage:

Uses string NEW to replace the portion of string a that completely matches string OLD and returns

 string a.

Parameter description:

The parameters are all String type.

Return value:

String type. If the input is null, return null.

Example:

replace('ababab','abab','12')='12ab'

MaxCompute User Guide / 10 SQL

366 Issue: 20180904

replace('ababab','cdf','123')='ababab'
replace('123abab456ab',null,'abab')=null

SOUNDEX

Command format:

string soundex(string a)

Note:

Add set odps before the SQL statement that uses the functionset odps.sql.type.system.

odps2 = true;, and commit runs with SQL to use the new data type function normally.

Usage:

Converts a normal string to a soundex string.

Parameter description: a is of type String.

Return value: String type. If the input value is NULL, return NULL.

Example:

soundex('hello')='H400'

SUBSTRING_INDEX

Command format:

string substring_index(string a, string SEP, int count))

Note:

Add set odps before the SQL statement that uses the functionset odps.sql.type.system.

odps2 = true; and commit runs with SQL to use the new data type function normally.

Usage:

Truncates string a to the portion in front of the delimiter specified by count. If count is positive, the

portion to the left of the delimiter is used. If count is negative, the portion to the right is used.

Parameter description: a/sep belong to the string type, and count belongs to the int type.

Return value:

String type. If the input is null, return null.

MaxCompute User Guide / 10 SQL

Issue: 20180904 367

Example:-

substring_index('https://help.aliyun.com', '.', 2)='https://help.
aliyun'
substring_index('https://help.aliyun.com', '.', -2)='aliyun.com'
substring_index('https://help.aliyun.com', null, 2)=null

10.11.5 Aggregate function
The relation between the input and the output of aggregate functions is a many-to-one

relationship; that is, to aggregate multiple input records into an output record. Use it with the group

by clause in SQL.

COUNT

Function definition:

bigint count([distict|all] value)

Usage:

Counts the record numbers.

Parameter description:

• distinct|all: Specifies whether to remove duplicate records while counting. The default all counts

 all records. If the field ‘distinct’ is specified, then a unique count value is used.

• value: Any type. If the value is NULL, the corresponding row is not counted. Count (*), returns

all rows.

Return Value:

Returns the Bigint type.

Example:

-- If the table tbla has the column col1 and the data type is Bigint.
+------+
| COL1 |
+------+
| 1 |
+------+
| 2 |
+------+
| NULL |
+------+
select count(*) from tbla; -- value is 3.

MaxCompute User Guide / 10 SQL

368 Issue: 20180904

select count(col1) from tbla; -- value is 2

Use the aggregation function with the group by clause. Example, suppose that the table test_src

has two columns, key is a String type, and value is a Double type.

-- The data of test_src is shown as follows:
+-----+-------+
| key | value |
+-----+-------+
| a | 2.0 |
+-----+-------+
| a | 4.0 |
+-----+-------+
| b | 1.0 |
+-----+-------+
| b | 3.0 |
+-----+-------+
-- Now run following sentence and get the result:
select key, count(value) as count from test_src group by key;
+-----+-------+
| key | count |
+-----+-------+
| a | 2 |
+-----+-------+
| b | 2 |
+-----+-------+
-- The aggregation function calculates the aggregate value that
has the same key value.The preceding rules apply to the following
aggregate functions also.

AVG

Function definition:

double avg(double value)
decimal avg(decimal value)

Usage:

Calculates the average value.

Parameter description:

value: Double or Decimal type. If the input is String or Bigint type, it is converted to Double type

 by implicit conversion. If it is another data type, an exception is thrown. If this value is NULL, a

corresponding row is not counted in the calculation. The input cannot be Boolean type.

Return value:

If the input is Decimal type, then return Decimal type. If it is the other valid types, then return

Double type.

MaxCompute User Guide / 10 SQL

Issue: 20180904 369

Example:

-- If the table tbla has a column value and its data type is Bigint.
+-------+
| value |
+-------+
| 1 |
| 2 |
| NULL |
+-------+
-- the avg of this column is: (1+2)/2=1.5
select avg(value) as avg from tbla;
+------+
| avg |
+------+
| 1.5 |
+------+

MAX

Function definition:

max(value)

Usage:

Calculates the maximum value.

Parameter description:

value: Any data type. If the column value is NULL, the corresponding row is not counted in the

operation. Values of the Boolean type are excluded from calculation.

Return value:

The return value is matchs the value type.

Example:

-- If the table tbla has a column clo1 and its data type is Bigint.
+------+
| col1 |
+------+
| 1 |
+------+
| 2 |
+------+
| NULL |
+------+

MaxCompute User Guide / 10 SQL

370 Issue: 20180904

Select max (value) from tbla; -- return value is 2

MIN

Function definition:

MIN(value)

Usage:

Calculates the minimum value of the column.

Parameter description:

Any data type. If the column value is NULL, the corresponding row is not counted in the operation

. A Boolean type is excluded from the operation.

Example:

-- If the table tbla has a column value and its data type is Bigint.
+------+
| value|
+------+
| 1 |
+------+
| 2 |
+------+

+------+
Select min (value) from tbla; -- return value is 1

MEDIAN

Function definition:

double median(double number)
decimal median(decimal number)

Usage:

Calculates the median.

Parameter description:

number: Double or Decimal type. If the input is String or Bigint type, it is converted to Double type

and is counted in the operation. If it is another data type, an exception is thrown.

Return value:

Returns the Double or Decimal type.

MaxCompute User Guide / 10 SQL

Issue: 20180904 371

Example:

-- If the table tbla has a column value and its data type is Bigint.
+------+
| value|
+------+
| 1 |
+------+
| 2 |
+------+
| 3 |
+------+
| 4 |
+------+
| 5 |
+------+
select MEDIAN(value) from tbla; -- return value is 3.0

STDDEV

Function definition:

double stddev(double number)
decimal stddev(decimal number)

Usage:

Calculates a population standard deviation.

Parameter description:

number: Double type or Decimal type. If the input is String or Bigint type, it is converted to Double

type and is counted in operation. If it is another data type, an exception is thrown.

Return value:

Returns a Double or Decimal type.

Example:

-- If the table tbla has a column value and its data type is Bigint.
+------+
| value|
+------+
| 1 |
+------+
| 2 |
+------+
| 3 |
+------+
| 4 |
+------+
| 5 |
+------+

MaxCompute User Guide / 10 SQL

372 Issue: 20180904

select STDDEV(value) from tbla; -- return value is 1.4142135623730951

STDDEV_SAMP

Function definition:

double stddev_samp(double number)
decimal stddev_samp(decimal number)

Usage:

Calculates a sample standard deviation.

Parameter description:

number: Double type or Decimal type. If the input is String or Bigint type, it is converted to Double

type and is counted in operation. If it is another data type, an exception is thrown.

Return value:

Returns a Double or Decimal type.

Example:

-- If the table tbla has a column value and its data type is Bigint.
+------+
| value|
+------+
| 1 |
+------+
| 2 |
+------+
| 3 |
+------+
| 4 |
+------+
| 5 |
+------+
select STDDEV_SAMP(value) from tbla; -- return value is 1.5811388300
841898

SUM

Function definition:

sum(value)

Usage:

Calculates the sum of elements.

Parameter description:

MaxCompute User Guide / 10 SQL

Issue: 20180904 373

value: Double, Decimal, or Bigint type. If the input is String type, it is converted to Double type

and counted in operation. If the value in the column is NULL, this row is counted A Boolean type

excluded from this calculation.

Return value:

If the input parameter is Bigint type, return Bigint type. If the input parameter is Double type or

String type, return Double type.

Example:

-- If the table tbla has a column value and its data type is Bigint.
+------+
| value|
+------+
| 1 |
+------+
| 2 |
+------+
| NULL |
+------+
select sum(value) from tbla; -- return value is 3

WM_CONCAT

Function definition:

string wm_concat(string separator, string str)

Usage:

Uses a specific separator to link the value in str.

Parameter description:

• · Separator: a String type constant. Constants of other types or non-constants can throw

exceptions.

• Str: String type. If the input is String type, it is converted to Double type and is counted in

operation. If it is another data type, an exception is thrown.

Return value:

Returns the String type.

Note:

For the sentence select wm_concat(',', name) from test_src;, if test_src is empty

set, this MaxCompute SQL sentence returns NULL.

MaxCompute User Guide / 10 SQL

374 Issue: 20180904

COLLECT_LIST

Function definition:

ARRAY collect_list(col)

Usage:

Within a given group, the expression specified by col is used to aggregate the data into an array.

Parameter description:

col: A table column can be any data type.

Return value:

Returns the ARRAY type.

Note:

Please add set odps.sql.type.system.odps2=true; in front of the SQL statement that

uses this function, and submit it with SQL to use the new data type normally.

COLLECT_SET

Function definition:

ARRAY collect_set(col)

Usage:

Within a given group, the expression specified by col is used to aggregate the data into an array of

 non-repeating elements.

Parameter description:

col: A table column can be any data type.

Return value:

Return ARRAY type.

Note:

Please add set odps.sql.type.system.odps2=true; in front of the SQL statement that

uses this function and submit it with SQL to use the new data type function normally.

MaxCompute User Guide / 10 SQL

Issue: 20180904 375

10.11.6 Other functions
CAST

Command format:

cast(expr as <type>)

Usage:

Converts the result of expression to object type. For example, cast (‘1’ as bigint) converts string ‘1’

to bigint ‘1’. If the conversion is unsuccessful or not supported, an exception is thrown.

Note:

• cast (double as bigint): Converts double type value to bigint type value.

• cast (string as bigint): While the string is converted to ‘bigint’ type, if the digits indicated by ‘

int’ exist in this string, it is converted to ‘bigint’ type directly. If the digits indicated by ‘float’ or ‘

exponent’ exist in this string, firstly they are converted to ‘double’ type and then converted to ‘

bigint’ type.

• For cast (string as datetime) or cast (datetime as string), it adopts the default datetime format

yyyy-mm-dd hh: mi: ss.

COALESCE

Command format:

coalesce(expr1, expr2, ...)

Usage:

Returns the first value which is not NULL from the list. If all values in the list are NULL, return

NULL.

Parameter description:

expr: Value to be tested. All these values have the same data type or be NULL, otherwise an

exception is thrown.

Return value:

Returns value type is the same as parameter type.

Note:

At least one parameter must exist, otherwise an exception is thrown.

MaxCompute User Guide / 10 SQL

376 Issue: 20180904

DECODE

Command format:

decode(expression, search, result[, search, result]...[, default])

Usage:

Implements the selection function of if-then-else branch.

Parameter description:

• expression: An expression to be compared.

• search: The search string; which is compared with the expression.

• result: Return value when the values of search and expression match.

• default: Optional. If all search items do not match the expression, return this default value. If it

is not specified, return NULL.

Return value:

• Returns a matched search.

• If no matched record exists, return default.

• If default is not specified, return NULL.

Note:

1. Specify at least three parameters.

2. All of the result types must be the same or NULL. Inconsistent data type throws an

exception. All of the ‘search’ and ‘expression’ types must be consistent, otherwise an

exception is thrown.

3. If the option ‘search’ in ‘decode’ has duplicate or matched records, return the first value.

Example:

Select
decode(customer_id,
1, 'Taobao',
2, 'Alipay',
3, 'Aliyun',
Null, 'N/A',
'Others') as result
from sale_detail;

The decode function mentioned earlier implements the function in following if-then-else sentence:

if customer_id = 1 then

MaxCompute User Guide / 10 SQL

Issue: 20180904 377

result := 'Taobao';
elsif customer_id = 2 then
result := 'Alipay';
elsif customer_id = 3 then
result := 'Aliyun';
...
else
result := 'Others';
end if;

Note:

• Calculating NULL= NULL by MaxCompute SQL, return NULL, while the values of NULL and

NULL are equal in a decode function.

• In the preceding example, if the value of customer_id is NULL, decode function returns N/A.

GET_IDCARD_AGE

Command format:

get_idcard_age(idcardno)

Usage:

Returns the current age according to the ID information. The number is the difference of the

current year and the birth year identified in the ID.

Parameter description:

idcardno: String type, ID number of 15-digit or 8-digit. While calculating, the validity of the ID is

checked according to the province code and the last digit, and Null returns if the check fails.

Return value:

Returns the Bigint type. Input is Null, returns Null. Returns Null if the difference of the current year

and the birth year is greater than 100.

GET_IDCARD_BIRTHDAY

Command format:

get_idcard_birthday(idcardno)

Usage:

Returns date of birth according to the ID information.

Parameter description:

MaxCompute User Guide / 10 SQL

378 Issue: 20180904

idcardno: String type, ID number of 15-digit or 18-digit. While calculating, the validity of the ID is

checked according to the province code and the last digit, and Null is returned if the check fails.

Return value:

Returns the Datetime type. Input is Null, returns Null.

GET_IDCARD_SEX

Command format:

get_idcard_sex(idcardno)

Usage:

Returns the gender according to the ID information. The value is either M (male) or F (female)

Parameter description:

idcardno: String type, ID number of 15-digit or 18-digit. While calculating, the validity of the ID is

checked according to the province code and the last digit, and Null is returned if the check fails.

Return value:

Returns the String type. Input is Null, returns Null.

GREATEST

Command format:

greatest(var1, var2, ...)

Usage:

Returns the greatest input parameter.

Parameter description:

var1/var2: Its type can be Bigint, Double, Decimal, Datetime, or String type. If all values are NULL

, return NULL.

Return value:

• The greatest value in the input parameter. If the implicit conversion is not needed, return type is

 the same as input parameter type.

• NULL is the least value.

If the input parameter types are different,

MaxCompute User Guide / 10 SQL

Issue: 20180904 379

• for Double, Bigint, Decimal and String type, convert them into Double type.

• for String and Datetime, convert them into Datetime type.

• other implicit conversions are not allowed.

ORDINAL

Command format:

ordinal(bigint nth, var1, var2, ...)

Usage:

Returns the location value specified by ‘nth’ after the input variables are sorted by small to large.

Parameter description:

• nth: Bigint type, specify the location to return its value. If it is NULL, return NULL.

• var1/var2: Its type can be Bigint, Double, Datetime, or String type.

Return value:

• The value in nth bit. If the implicit conversion is not needed, return type is the same as input

parameter type.

• If implicit conversion is in input parameters,

▬ For Double, Bigint and String type, convert them into Double type.

▬ For String and Datetime type, convert them into Datetime type.

▬ Other implicit conversions are not allowed.

• NULL is the least value.

Example:

ordinal(3, 1, 3, 2, 5, 2, 4, 6) = 2

LEAST

Command format:

least(var1, var2, ...)

Usage:

Returns the least value in the input parameter.

Parameter description:

MaxCompute User Guide / 10 SQL

380 Issue: 20180904

var1/var2: Its type can be Bigint, Double, Decimal, Datetime, or String type. If all values are NULL

, return NULL.

Return value:

• The least value in the input parameter. If the implicit conversion is not needed, return type is

the same as input parameter type.

• If implicit conversion is in input parameters:

▬ For Double, Bigint and String type, convert them into Double type.

▬ For String and Datetime type, convert them into Datetime type.

▬ Convert to Decimal type when Decimal type compares to Double, Bigint or String type.

▬ Other implicit conversions are not allowed.

• NULL is the least value.

MAX_PT

Command prompt:

max_pt(table_full_name)

Usage:

For a partitioned table, this function returns the maximum value of the level-one partition of the

 partitioned table, which is sorted alphabetically, and a corresponding data file exists for the

partition.

Parameter description:

table_full_name: String type, specifies the name of table. To use this funtion, specify the name of

project, for example: prj.src. You must have read permission on this table.

Return value:

Returns the value of the largest level-one partition.

Example:

Example: Suppose that ‘tbl’ is a partitioned table, all partitions of the table with data files are as

follows:

pt =‘20120901’

MaxCompute User Guide / 10 SQL

Issue: 20180904 381

pt =‘20120902’

In the following statement, the return value of max_pt is ‘20120902’, and the MaxCompute SQL

statement reads the data in the ‘20120902’ partition.

select * from tbl where pt=max_pt('myproject.tbl');

Note:

If you only add a new partition using alter table, but no data file is in this partition, the partition will

 not return.

UUID

Command format:

string uuid()

Usage:

Returns a random ID. For example: 29347a88-1e57-41ae-bb68-a9edbdd94212.

Note:

Returns a random global ID with a low probability of duplication.

SAMPLE

Command format:

boolean sample(x, y, column_name)

Usage:

Samples all values of column_name according to the setting of x and y and filter out the rows

which do not meet the sampling conditions.

Parameter description:

• x, y: Bigint type, indicates hash to x portions, take yth portions. y can be ignored.

▬ If y is ignored, take the first portion. If y in the parameter is ignored, then column_name is

ignored at the same time.

▬ x and y are Bigint constants and greater than 0. If it is other data type or less than or equal

 to 0, an exception is thrown. If y>, x exception is thrown. If any input of x and y is NULL,

return NULL.

MaxCompute User Guide / 10 SQL

382 Issue: 20180904

• column_name: The destination column to be sampled.

▬ column_name can be excluded, in this case, a random sample is taken according to the

values of x and y.

▬ It can be any data type and the column value can be NULL. Implicit type conversion is not

needed.

▬ If column_name is the constant NULL, an exception is thrown.

Return value:

Returns the Boolean type.

Note:

To avoid data skew caused by NULL value, the NULL values in column_name are perform

 a uniform hash operations in x portions. If ‘column_name’ is not added, the output will not

necessarily be uniform, since the data size is small. We recommend to add a ‘column_name’ for

better output.

Example:

Suppose that the table 'tbla' already exists and a column 'cola' is in this table:

select * from tbla where sample (4, 1 , cola) = true;
-- The values are carried out Hash into 4 portions and take the first
portion.
select * from tbla where sample (4, 2) = true;
-- The values do random Hash into 4 portions for each row of data and
take the second portion.

CASE WHEN Expression

The following are the two case types that MaxCompute offers:

case value
when (_condition1) then result1
when (_condition2) then result2
...
else resultn
end
case
when (_condition1) then result1
when (_condition2) then result2
when (_condition3) then result3
...
else resultn

MaxCompute User Guide / 10 SQL

Issue: 20180904 383

end

‘case when’ expression can return different values according to the computing result of expression

 values.

The following sentences are used to get the region according to different shop_name:

select
case
when shop_name is null then 'default_region'
when shop_name like 'hang%' then 'zj_region'
end as region
from sale_detail;

Note:

• If the types of result include bigint and double, convert them to double type and then return the

 result.

• If the types of result include string type, convert them into string type and then return the result

. If the conversion is unsuccessful, the error is thrown, for example, boolean type.

The conversion between other types is not allowed.

IF Expression

Command format:

if(testCondition, valueTrue, valueFalseOrNull)

Usage:

Determine if testCondition is true. If it is true, return valueTrue, otherwise return valueFalse or Null

.

Parameter description:

• testCondition: The expression to be Determined. Boolean type.

• valueTrue: It returns when the expression testCondition is true.

• valueFalseOrNull: It returns when the expression testCondition is not true and can also be null.

Return value:

The return type is the same as the valueTrue or valueFalseOrNul type.

Example:

select if(1=2,100,200) from dual;
Return Value:

MaxCompute User Guide / 10 SQL

384 Issue: 20180904

+------------+
| _c0 |
+------------+
| 200 |
+------------+

New extended other functions

SPLIT

Command format:

split(str, pat)

Usage:

Separates 'str' using 'pat'.

Parameter description:

• str: String type, specifies the string to be separated.

• pat: String type, specifies the delimiter and supports regular expressions.

Return value:

array <string >, the result is the elements in 'str' separated by 'pat'.

Example:

select split("a,b,c",",") from dual;
Result:
+------+
| _c0 |
+------+
| [a, b, c] |
+------+

Note:

Add set odps.sql.type.system.odps2=true;, opposite the SQL statement that uses this

function, and submit it with SQL to use the new data type normally.

EXPLODE

Command format:

explode(var)

Usage:

Converts one row of data into a multi-row UDTF.

MaxCompute User Guide / 10 SQL

Issue: 20180904 385

• If var is Array type, the array stored in the column is converted to multiple rows.

• If var is Map type, each key-value pair of the map stored in the column is converted to a row

with two columns, one column for the key and the other for the value.

Parameter description:

var: array<T> type or map<K, V> type.

Return value:

Rows after conversion are returned.

Note:

The following limits apply when UDTF is used:

• One select can only have one UDTF and no other columns can appear.

• It cannot be used with group by, cluster by, distribute by, or sort by.

Example:

explode(array(null, 'a', 'b', 'c')) col

Note:

Add set odps.sql.type.system.odps2=true;, opposite the SQL statement that uses this

function, and submit it with SQL to use the new data type normally.

MAP

Command format:

MAP map(K key1, V value1, K key2, V value2, ...)

Usage:

Uses the given key or value pairs to create a map.

Parameter description:

key/value

• All key types must be the same basic type.

• Any value types can be used, but all value types must be consistent.

Return value:

MaxCompute User Guide / 10 SQL

386 Issue: 20180904

Returns the map<K：V> type.

Example:

select map('a',123,'b',456) from dual;

Result:

{a:123, b:456}

Note:

Add set odps.sql.type.system.odps2=true;, opposite the SQL statement that uses this

function, and submit it with SQL to use the new data type normally.

MAP_KEYS

Command format:

ARRAY map_keys(map<K, V>)

Usage:

Returns an array of all the keys in the map parameter.

Parameter description:

map<K, V>: Map-type data.

Return Value:

Returns the array<K> type. If the input is null, null is returned.

Example:

select map_keys(map('a',123,'b',456)) from dual;
Result:
[a, b]

Note:

Add set odps.sql.type.system.odps2=true;, opposite the SQL statement that uses this

function, and submit it with SQL to use the new data type normally.

MaxCompute User Guide / 10 SQL

Issue: 20180904 387

MAP_VALUES

Command format:

ARRAY map_values(map<K, V>)

Usage:

Returns an array of all the values in the map parameter.

Parameter description:

map<K, V>: Map-type data.

Return Value:

Returns the array<V> type. If the input is null, null is returned.

Example:

select map_values(map('a',123,'b',456));
Result:
[123, 456]

Note:

Add set odps.sql.type.system.odps2=true;, opposite the SQL statement that uses this

function, and submit it with SQL to use the new data type normally.

ARRAY

Command format:

ARRAY array(value1,value2, ...)

Usage:

Creates an array using the given values.

Parameter description:

value: This parameter can be of any type, but all the values must be of the same type.

Return value:

Returns the Array type.

MaxCompute User Guide / 10 SQL

388 Issue: 20180904

Example:

select array(123,456,789) from dual;

Result:

[123, 456, 789]

Note:

Add set odps.sql.type.system.odps2=true;, opposite the SQL statement that uses this

function, and submit it with SQL to use the new data type normally.

SIZE

Command format:

INT size(map)
INT size(array)

Usage:

• size(map<K，V>) returns the number of K/V pairs in the given map.

• size(array<T>) returns the number of elements in the given array.

Parameter description:

• map<K, V>: Map-type data.

• array<T>: Array-type data.

Return value:

Returns the Int type.

Example:

select size(map('a',123,'b',456)) from dual;--Returns 2
select size(map('a',123,'b',456,'c',789)) from dual;--Returns 3
select size(array('a','b')) from dual;--Returns 2
select size(array(123,456,789)) from dual;--Returns 3

Note:

Add set odps.sql.type.system.odps2=true;, opposite the SQL statement that uses this

function, and submit it with SQL to use the new data type normally.

MaxCompute User Guide / 10 SQL

Issue: 20180904 389

ARRAY_CONTAINS

Command format:

boolean array_contains(ARRAY<T> a,value v)

Usage:

Checks if the given array a contains v.

Parameter description:

• a: Array-type data.

• v: The given v must be of the same type as the data in the array.

Return value:

Returns the Boolean type.

Example:

select array_contains(array('a','b'), 'a') from dual; --Returns true
select array_contains(array(456,789),123) from dual; -- Returns false

Note:

Add set odps.sql.type.system.odps2=true;, opposite the SQL statement that uses this

function, and submit it with SQL to use the new data type normally.

SORT_ARRAY

Command format:

ARRAY sort_array(ARRAY<T>)

Usage:

Sorts the given array.

Parameter description:

ARRAY<T>: Array-type data, the data in the array can be of any type.

Return value:

Returns the array type.

MaxCompute User Guide / 10 SQL

390 Issue: 20180904

Example:

select sort_array(array('a','c','f','b')),sort_array(array(4,5,7,2,5,8
)),sort_array(array('You','Me','He')) from dual;
Result:
[a, b, c, f] [2, 4, 5, 5, 7, 8] [He, You, Me]

Note:

Add set odps.sql.type.system.odps2=true;, opposite the SQL statement that uses this

function, and submit it with SQL to use the new data type normally.

POSEXPLODE

Command format:

posexplode(ARRAY<T>)

Usage:

Explodes the given array. Each value is given a row and each row has two columns corresponding

 to the subscript (starting from 0) and the array element.

Parameter description:

ARRAY<T>: Array-type data, the data in the array can be of any type.

Return value:

Functions generated by the table are returned.

Example:

select posexplode(array('a','c','f','b')) from dual;
Result:
+------------+-----+
| pos | val |
+------------+-----+
0	a
1	c
2	f
3	b
+------------+-----+

Note:

Add set odps.sql.type.system.odps2=true;, opposite the SQL statement that uses this

function, and submit it with SQL to use the new data type normally.

MaxCompute User Guide / 10 SQL

Issue: 20180904 391

STRUCT

Function definition:

STRUCT struct(value1,value2, ...)

Usage:

Creates a struct using the given value list.

Parameter description:

value: Each value can be of any type.

Return value:

Returns the STRUCT<col1:T1, col2:T2, ... >Type. Field names are sequential: col1, col2,

…

Example:

select struct('a',123,'ture',56.90) from dual;
Result:
{col1:a, col2:123, col3:ture, col4:56.9}

Note:

Add set odps.sql.type.system.odps2=true;, opposite the SQL statement that uses this

function, and submit it with SQL to use the new data type normally.

NAMED_STRUCT

Function definition:

STRUCT named_struct(string name1, T1 value1, string name2, T2 value2
, ...)

Usage:

Creates a struct using the given name/value list.

Parameter description:

• value: A value can be of any type.

• name: Specifies the name of a String-type field.

Return value:

MaxCompute User Guide / 10 SQL

392 Issue: 20180904

Returns the STRUCT<name1:T1, name2:T2, ... >type. The field names of the generated

struct are sequential: name1, name2, …

Example:

select named_struct('user_id',10001,'user_name','LiLei','married','F
','weight',63.50) from dual;
Result:
{user_id:10001, user_name:LiLei, married:F, weight:63.5}

Note:

Add set odps.sql.type.system.odps2=true;, opposite the SQL statement that uses this

function, and submit it with SQL to use the new data type normally.

INLINE

Command format:

inline(array<struct<f1:T1, f2:T2, ... >>)

Usage:

Explodes the given struct array. Each element is given one row and each struct element

corresponds to one column in each row.

Parameter description:

STRUCT<f1:T1, f2:T2, ... >: The values in the array can be of any type.

Return value:

Returns the table generation function.

Example:

select inline(array(named_struct('user_id',10001,'user_name','LiLei','
married','F','weight',63.50))) from dual;
Result:
+------------+-----------+---------+------------+
| user_id | user_name | married | weight |
+------------+-----------+---------+------------+
| 10001 | LiLei | F | 63.5 |
+------------+-----------+---------+------------+

Note:

Add set odps.sql.type.system.odps2=true;, opposite the SQL statement that uses this

function, and submit it with SQL to use the new data type normally.

MaxCompute User Guide / 10 SQL

Issue: 20180904 393

TRANS_ARRAY

Command format:

trans_array (num_keys, separator, key1,key2,…,col1, col2,col3) as (
key1,key2,…,col1, col2)

Usage:

A UDTF that converts a single row of data into multiple rows, and converts an array separated by

a fixed-separator format in a column into multiple rows.

Parameter description:

1. num_keys: Bigint type constant, must be greater than or equal to 0. It is used as a number of

columns to transpose key when converting into multiple rows.

2. Key: Duplicate columns in multiple rows when converting one row into multiple rows.

3. separator: String type constant, a separator is used to split a string into multiple elements.

Exception is thrown when it is null.

4. keys: As column of key when you transpose. It is specified by num_keys. If num_keys specifies

 that all columns are keys (that is, num_keys equals the number of all columns), only one row is

 returned.

5. cols: An array to convert columns into rows. All columns after keys are considered as an

array to be transposed. String type. The stored contents are arrays of string format, such as “

Hangzhou; Beijing; Shanghai” and these arrays are separated by a semicolon “;”.

Return value:

Transposed rows, new column names are specified by as. The type of key column remains

unchanged, and all other columns are String type. The number of rows to be split depends on the

array that has a maximum number, no-value locales are complemented with NULL.

Note:

The following limits apply when UDTF is used:

• All columns that are considered as keys are placed in the front, and columns to be transposed

 are placed behind.

• One select can only have one UDTF and no other columns can appear.

• One select can only have one UDTF and no other columns can appear.

Example:

MaxCompute User Guide / 10 SQL

394 Issue: 20180904

The table contains the following data:

Login_id LOGIN_IP LOGIN_TIME
wangwangA 192.168.0.1,192.168.0.2 20120101010000,20120102010000

Use the trans_array function:

trans_array(1, ",", login_id, login_ip, login_time) as (login_id,
login_ip,login_time)

Result:

Login_id Login_ip Login_time
wangwangA 192.168.0.1 20120101010000
wangwangA 192.168.0.2 20120102010000

If the table contains the following data:

Login_id LOGIN_IP LOGIN_TIME
wangwangA 192.168.0.1,192.168.0.2 20120101010000

NULL is complemented to the no-value locales in the array:

Login_id Login_ip Login_time
wangwangA 192.168.0.1 20120101010000
wangwangA 192.168.0.2 NULL

10.12 UDF

10.12.1 MaxCompute UDF中运行Scipy
新版MaxCompute Isolation Session支持Python UDF。也就是说，Python UDF中已经可以运行二

进制包。本文将为您介绍如何在MaxCompute UDF中运行Scipy。

下载Scipy包并上传资源

1. 从PyPI或其他镜像下载Scipy包。

您需要下载后缀为cp27-cp27m-manylinux1_x86_64.whl的包，其他的包会无法加载，包括名为

cp27-cp27mu的包，如下图中仅红框中的包可以直接使用。

MaxCompute User Guide / 10 SQL

Issue: 20180904 395

2. 下载后将文件名更改为scipy.zip，在MaxCompute Console中执行下述语句。

add archive scipy.zip;

此时scipy.zip即被创建为MaxCompute Archive资源。

说明：

不建议您使用其他类型的资源，因为在执行时，MaxCompute会自动解压Archive类型的资源，

从而省去手动解压的步骤。

从非Whl包生成Whl包

如果列出的包中包含Whl，则可以直接上传并跳过此步骤。如果列出的包不包含whl（例如仅有图中

的scipy-0.19.0.zip），则需要在Linux环境中手动编译并打包为whl。打包前，需要确保下列命令返

回cp27m而不是cp27mu。

python -c "import pip; print pip.pep425tags.get_abi_tag()"

如果返回值为cp27mu，您需要使用--enable-unicode=no选项编译一个可用的Python 2.7，再使用

编译得到的Python。如果返回值正确，通常可以在该环境下使用pythonsetup.pybdist_wheel完成。

打包完成后，上传生成的whl包。

编写和创建UDF

1. 您需要编写一个UDF支持计算psi。

from odps.udf import annotate
from odps.distcache import get_cache_archive

def include_package_path(res_name):
 import os, sys
 archive_files = get_cache_archive(res_name)
 dir_names = sorted([os.path.dirname(os.path.normpath(f.name))
for f in archive_files
 if '.dist_info' not in f.name], key=lambda v
: len(v))

MaxCompute User Guide / 10 SQL

396 Issue: 20180904

 sys.path.append(os.path.dirname(dir_names[0]))

@annotate("double->double")
class MyPsi(object):
 def __init__(self):
 include_package_path('scipy.zip')

 def evaluate(self, arg0):
 from scipy.special import psi
 return float(psi(arg0))

get_cache_archive返回一个包含包中所有文件的文件对象。先取出所有的文件名，此后获得最

短的路径作为包的路径，并加入sys.path。此后，便可以正常import scipy这个包。

说明：

因为MaxCompute会在执行前通过原有的沙箱检查UDF的输入/输出，因而

include_package_path和import在函数外调用会报错。

2. 编写完成后，将代码保存为my_psi.py，并在MaxCompute Console中执行addpymy_psi.py

;。

3. 在MaxCompute Console中执行下述命令创建函数。

create function my_psi as my_psi.MyPsi using my_psi.py,scipy.zip;

说明：

在创建函数时，不要忘记加上之前上传的包，例如上面的scipy.zip。

执行

创建UDF后，即可在MaxCompute Console中执行查询语句（暂不支持pypy，因此需禁用pypy）。

set odps.pypy.enabled=false;
set odps.isolation.session.enable = true;
select my_psi(sepal_length) from iris;

其他

如果包依赖了其他Python包，需要一同上传并同时加入到UDF依赖中。

使用0.7.4以上的PyODPS DataFrame可以简化使用二进制包的UDF的编写，无需手动调用

include_package_path。

10.12.2 Python UDF
The MaxCompute UDF consists of UDF, UDAF, and UDTF functions. This article explains how to

implement these three functions through Python.

Currently, the international terminal version of MaxCompute does not support Python UDFs.

MaxCompute User Guide / 10 SQL

Issue: 20180904 397

RESTRICTED ENVIRONMENT

The Python version of MaxCompute UDF is 2.7 and executes user code in sandbox mode; that is,

the code is executed in a restricted environment.

• Read and Write local files

• Promoter process

• Start thread

• Use SOCKET to communicate

• Other system calls

Because of these restrictions, user-uploaded code must be implemented throughj pure Python,

and the C extension module is disabled.

In addition, not all modules are available in the Python standard library, and modules that involve

these features are disabled. Description of available modules in the standard library are as

follows:

• All modules implemented by pure Python are available.

• The following modules are available in C-implemented extended modules.

▬ array

▬ audioop

▬ binascii

▬ _bisect

▬ cmath

▬ _codecs_cn

▬ _codecs_hk

▬ _codecs_iso2022

▬ _codecs_jp

▬ _codecs_kr

▬ _codecs_tw

▬ _collections

▬ cStringIO

▬ datetime

▬ _functools

▬ future_builtins

MaxCompute User Guide / 10 SQL

398 Issue: 20180904

▬ _hashlib

▬ _heapq

▬ itertools

▬ _json

▬ _locale

▬ _lsprof

▬ math

▬ _md5

▬ _multibytecodec

▬ operator

▬ _random

▬ _sha256

▬ _sha512

▬ _sha

▬ _struct

▬ strop

▬ time

▬ unicodedat

▬ _weakref

▬ cPickle

• Some modules have limited functionalities. For example, the sandbox limits the degree to

which user code can write data to the standard output and the standard error output; that is,

sys.stdout/sys.stderr can write 20 KB at most; otherwise, the excessive characters will

be ignored.

Third-party Libraries

Common third-party libraries are installed in the operating environment to supplement the

standard library. The supported third-party libraries also include numpy.

Note:

The use of third-party libraries is also subject to 'prohibit local', 'network I/O', and other

restrictions. Therefore, APIs that have such functions are also prohibited in a third-party library.

MaxCompute User Guide / 10 SQL

Issue: 20180904 399

Parameters and return value types

The parameters and return values are specified as follows:

@odps.udf.annotate(signature)

MaxCompute SQL data types that are currently supported by the Python UDF include bigint,

String, double, Boolean, and datetime. The SQL statement must determine the parameter type

and the return value type for all functions before execution. So for Python, a dynamically-typed

language, you must specify the function signature by adding a decorator to the UDF class.

The function signature is specified by a string. The syntax is as follows:

arg_type_list '->' type_list
 arg_type_list: type_list | '*' | ''
type_list: [type_list ','] type
'bigint' | 'string' | 'double' | 'boolean' | 'datetime'

• The left side of the arrow indicates the type of the parameter and the right side indicates the

type of the returned value.

• Only the UDTF returned value can be multiple columns, while UDF and UDAF can only return

one column.

• ‘*’ represents varargs. By using varargs, UDF/UDTF/UDAF can match any type of parameter.

A valid signature example is as follows:

The 'bigint, double-> string' # parameter is bigint, double, and the
return value is string

The 'bigint, boolean-> string, datetime '# udtf parameter is bigint,
Boolean, the return value is string, datetime

'*->string' # variable length parameter, input parameter arbitrary,
return value string

The '-> doubles' # parameter is empty and the return value is double

At the query semantic parsing stage, unqualified signatures are removed, and an error is returned.

The execution is then stopped. During execution, the UDF parameter will be passed to the

user as the type specified by the function signature. The type of the user returned value must

be consistent with the type specified by the function signature; otherwise, an error is returned.

MaxCompute SQL data type corresponds to the Python type as follows:

ODPS SQL

type

Bigint String Double Boolean Datetime

Python Type int str float bool int

MaxCompute User Guide / 10 SQL

400 Issue: 20180904

Note:

• Datetime type is passed to user code in the form of an int, with a value of epoch UTC Number

 of milliseconds from time to date. The user can deal with ‘datetime’ type through the ‘datetime

’ module in the Python standard library.

• NULL corresponds to NONE in Python.

In addition, the parameter of odps.udf.int(value[, silent=True]) has been adjusted. Parameter ‘

silent’ is added. . When ‘silent’ is true, if the value cannot be converted into ‘int’, report no error

and return NONE.

UDF

Implementation of the Python UDF is very simple. You are required to define a new-style

 class, and implements the evaluate method. For example:

 from odps.udf import annotate

 @annotate("bigint,bigint->bigint")
class myplus (object):

 def evaluate (self, arg0, arg1):
 If none in (arg0, arg1):
 return none
 return arg0 + arg1

Note:

A Python UDF must have its signature specified through annotate.

UDAF

• class odps.udf.BaseUDAF: Inherit this class to implement a Python UDAF.

• BaseUDAF.new_buffer(): Implement this method and return the median ‘buffer’ of the

aggregate function. Buffer must be mutable Object (such as list, dict), and the size of the buffer

 must not increase with the amount of data, in case of limit, Buffer size after Marshal must not

exceed 2 MB.

• BaseUDAF.iterate(buffer[, args, ...]): This method aggregates ‘args’ into the median ‘buffer’.

• BaseUDAF.merge(buffer, pbuffer): This method aggregates two median buffers; that is,

aggregate ‘pbuffer merger’ into ‘buffer’.

• BaseUDAF.terminate(buffer): This method converts the median ‘buffer’ into the MaxCompute

SQL basic types.

MaxCompute User Guide / 10 SQL

Issue: 20180904 401

An example of an average value of UDAF is as follows:

@annotate('double->double')

class Average(BaseUDAF):

 def new_buffer(self):
 return [0, 0]

 def iterate(self, buffer, number):
 If number is not None:
 buffer[0] += number
 buffer[1] += 1

 def merge(self, buffer, pbuffer):
 buffer [0] + = pbuffer [0]
 buffer [1] + = pbuffer [1]

 def terminate (self, buffer):
 If buffer [1] = 0:
 return 0.0
 return buffer[0] / buffer[1]

UDTF

• class odps.udf.BaseUDTF: The basic class of Python UDTF. Users inherit this class and

implement methods such as process, close, and so on.

• BaseUDTF.__init__(): The initialization method, the inheritance class, if you implement this

method, the base class's initialization method, super(BaseUDTF, self).__init__() must be

called in the beginning.

The init method can only be called once during the entire UDTF life cycle; that is, before

the first record is processed. When the UDTF must save the internal state, all states can be

initialized in this method.

• BaseUDTF. process ([args,...]): This is one of the MaxCompute methods. The framework calls

this method. Each record in SQL calls ‘process’ once accordingly. The parameters of ‘process’

are the specified UDTF input parameters in SQL.

• BaseUDTF.forward([args, ...]): The UDTF output method, which is called by user codes. Each

 time ‘forward’ is called, a record is output. The parameters of ‘forward’ are the UDTF output

parameters specified in SQL.

• BaseUDTF.close(): The termination method of UDTF. This method is called by the

MaxCompute SQL framework and only to be called once; that is, after processing the last

record.

Examples of UDTF are:

#coding:utf-8

MaxCompute User Guide / 10 SQL

402 Issue: 20180904

explode. py

from odps.udf import annotate

from odps.udf import BaseUDTF

@annotate('string -> string')
class Explode(BaseUDTF):
 """Output string comma-separated to multiple records
 """

 def process(self, arg):
 props = arg.split(',')
 for p in props:
 self.forward(p)

Note:

A Python UDTF can also specify the parameter type or returned value type without adding

‘annotate’. In this case, the function can match any input parameter in SQL. The returned value

type cannot be deduced, but all output parameters will be considered to be ‘String’ type. So when

‘forward’ is called, all output values must be converted into ‘str’ type.

Referring to resources

Python UDF can reference resource files through the ‘odps.distcache’ module. Currently,

referencing file resources and table resources are supported.

• odps.distcache.get_cache_file(resource_name)

▬ Returns the resource content for the specified name. resource_name: ‘str’ type, correspond

ing to the existing resource name in the current project. If the resource name is invalid or

has no responding resources, returns an error.

▬ The return value is file-like object the caller must call the close method to release the open

resource file after this object has been used.

The example of using ‘get_cache_file’ is as follows:

 @annotate('bigint->string')

class DistCacheExample(object):

 def __init__(self):
 cache_file = get_cache_file('test_distcache.txt')
 kv = {}
 for line in cache_file:
 line = line. strip ()
 If not line:
 continue

MaxCompute User Guide / 10 SQL

Issue: 20180904 403

 k, v = line.split()
 kv[int(k)] = v
 cache_file.close ()
 self.kv = kv

def evaluate(self, arg):
 return self.kv.get(arg)

• odps.distcache.get_cache_table(resource_name):

▬ Returns the contents of the specified resource table. resource_name: ‘str’ type, correspond

ing to the existing resource table name in the current project. If the resource name is invalid

or has no responding resources, returns an error.

▬ Returned value: Returned value is a ‘generator’ type. The caller obtains the table content

through traversal. Each traversal has a record stored in the table in the form of a tuple.

The example of using ‘get_cache_table’ is as follows:

 from odps.udf import annotate
from odps.distcache import get_cache_table

@ attenuate ('-> string ')
class DistCacheTableExample(object):
 def __init__(self):-
 self.records = list(get_cache_table('udf_test'))
 self.counter = 0
 self.ln = len(self.records)

 def evaluate(self):
 if self.counter > self.ln - 1:
 return None
 ret = self.records[self.counter]
 self.counter += 1
 return str(ret)

10.12.3 UDF Summary

MaxCompute provides many built-in functions to meet the computing requests of the users. A

User Defined Function (UDF) is similar to any other Built-in Function. Users can create user-

defined functions according to their computing requirements.

If you use Maven to search “odps-sdk-udf” from Maven to get different versions of Java SDK,the

configuration is as follows:

<dependency>
 <groupId>com.aliyun.odps</groupId>
 <artifactId>odps-sdk-udf</artifactId>
 <version>0.20.7-public</version>
</dependency>

In MaxCompute, you can expand two types of UDF:

http://search.maven.org/
http://search.maven.org/

MaxCompute User Guide / 10 SQL

404 Issue: 20180904

UDF Class Description

 UDF(User Defined Scalar
Function)

User Defined Scalar function. The relationship between input
and output is a one-to-one relationship. Read a row data and
write an output value.

UDTF (UserDefined Table
Valued Function)

User-defined table valued functions are used in scenarios
where the calling of one function leads to multiple rows of data
 being output. It is a unique user-defined function which can
return multiple fields, while UDFcan only output a return value.

UDAF（User Defined
Aggregation Function）

User Defined Aggregation Function (UDAF), the relationship
between its input and output is one-to-many relationships. That
is to aggregate multiple input records to an output value. It can
be used with a Group By clause.. For more information, see
Aggregation Functions.

Note:

• UDF stands for the set of user-defined functions, including User Defined Scalar Function, User

 Defined Aggregation Function and User Defined Table Valued Function. In a narrower sense,

it represents user User Defined Scalar Function. The document uses this term frequently and

the readers can judge the specific meaning according to the context .

• If the system prompts that memory is insufficient with an UDF involved in the SQL statement,

configure set odps.sql.udf.joiner.jvm.memory=xxxx; to resolve this issue. This is

because the data is huge and data skew also exists., This leads the memory size to occupythe

task, which exceeds the default memory size.

MaxCompute UDF supports cross-project sharing. A UDF in project_b can be used in project_a

. For more information, , see Authorization in Security Guide documentation. other_project:

udf_in_other_project(arg0, arg1) as res from table_t;。

UDF Examples

Please see UDF Example in Quick Start Volume.

MaxCompute User Guide / 10 SQL

Issue: 20180904 405

10.12.4 Java UDF
MaxCompute UDF includes three types: UDF, UDAF, and UDTF. This article focuses on how to

implement these three functions through Java.

Parameter and return value type

The data types of UDF supported by MaxCompute SQL include thebasic types: bigint, double

, boolean, datetime, decimal, string, tinyint, smallint, int, float, varchar, binary, and timestamp.

Complex types: array, map, and struct.

• The use of some basic types including tinyint, smallint, int, float, varchar, binary, and timestamp

through Java UDF is as follows:

▬ UDTF get ‘signature’ by @Resolve annotation, for example, @Resolve("smallint->

varchar(10)").

▬ UDF gets ‘signature’ by the reflection analysis ‘evaluate’. In this case, the MaxCompute built

-in type and the Java type comply with one-to-one mapping.

▬ UDAF gets the signature with the @Resolve annotation, and maxcompute2.0 supports the

use of new types in annotations, for example, @Resolve("smallint-> varchar (10

)").

• JAVA UDF uses three complex data types :‘array’, ‘map’, and ‘struct’:

▬ UDAFs and UDTFs specify signature by @Resolve annotation, for example, @Resolve("

array<string>,struct<a1:bigint,b1:string>,string->map<string,bigint

>,struct<b1:bigint>").

▬ The UDF maps the input and output types of the UDF through the signature of the evaluate

method, reference is made to the mapping of the maxcompute type to the Java type. In this

relationship, Array maps java.util.List, Map maps java.util.Map, and Struct maps com.aliyun.

odps.data.Struct.

▬ UDAF gets the signature with the @Resolve annotation, and MaxCompute2.0 supports the

use of new types in annotations, for example, @Resolve("smallint-> varchar (10

)").

Note:

• com.aliyun.odps.data.Struct does not see field name and field type from reflection, so it

must be complemented by @Resolve annotation. In other words, to use Struct in a UDF

MaxCompute User Guide / 10 SQL

406 Issue: 20180904

, add the @Resolve annotation to the UDF class. This annotation only affects overloads

of parameters or return values that contain com.aliyun.odps.data.Struct.

• Currently, only one @Resolve annotation can be provided on class. Therefore, only one

overload in a UDF with a struct parameter or return value can exist.

The following table lists the relations between MaxCompute and Java data types.

MaxCompute Type Java Type

Tinyint java.lang.Byte

Smallint java.lang.Short

Int java.lang.Integer

Bigint java.lang.Long

Float java.lang.Float

Double java.lang.Double

Decimal java.math.BigDecimal

Boolean java.lang.Boolean

String java.lang.String

Varchar com.aliyun.odps.data.Varchar

Binary com.aliyun.odps.data.Binary

Datetime java.util.Date

Timestamp java.sql.Timestamp

array java.util.List

Map java.util.Map

Struct com.aliyun.odps.data.Struct

Note:

• The corresponding data type in Java and the return value data type is the object. Make sure

that the first letter is uppercase.

• The NULL value in SQL is represented by a NULL reference in Java; therefore, ‘Java primitive

 type’ is not allowed because it cannot represent a NULL value in SQL.

• Here, Java type corresponding to the ‘array’ type is ‘list’.

MaxCompute User Guide / 10 SQL

Issue: 20180904 407

UDF

To implement UDF, the class ‘com.aliyun.odps.udf.UDF’ must be inherited and the ‘evaluate

’ method must be applied. The ‘evaluate’ method must be a non-static public method. The

parameter type and return value type of Evaluate method is considered as UDF signature in

SQL. It means that the user can implement multiple evaluate methods in UDF. To call UDF, the

 framework must match the correct evaluate method according to the parameter type called by

UDF.

Note：Classes with the same class name but different functional logic mustappear in different

jar packages. For example, UDF (UDAF/UDTF): udf1, udf2 correspond to the resources udf1.jar

and udf2.jar respectively, if both jars contain com.aliyun.UserFunction.class, when two udfs are

used in the same SQL statement, the system randomly loads one of the classes. This causes

inconsistency in the udf execution behavior or compilation failure.

UDF samples are as follows:

package org.alidata.odps.udf.examples;
 import com.aliyun.odps.udf.UDF;

public final class Lower extends UDF {
 Public String evaluate (string s){
 If (Stream = NULL){
 return null;
 }
 return s.toLowerCase();
 }
}

UDF is initialized and terminated through void setup(ExecutionContext ctx) and void

close().

The use method of UDF is similar to built-in functions in MaxCompute SQL. For more information,

see Built-in Functions.

Other UDF examples

In the following code, UDF with three overloads is defined. The first, second, and third overloads

use ARRAY, MAP, and STRUCT respectively as a parameter. Since the third overloads use a

struct as a parameter or return value, therefore, a @Resolve annotation must be placed on the

UDF class to specify the specific type of struct.

@Resolve ("struct, string-> string ")
public class UdfArray extends UDF {
 public String evaluate(List vals, Long len) {
 return vals.get(len.intValue());
 }

MaxCompute User Guide / 10 SQL

408 Issue: 20180904

 Public String evaluate (MAP map, string key){
 return map.get(key);
 }
 public String evaluate(Struct struct, String key) {
 return struct.getFieldValue("a") + key;
 }
}

The user can pass the complex type directly into the UDF:

create function my_index as 'UdfArray' using 'myjar.jar';
select id, my_index(array('red', 'yellow', 'green'), colorOrdinal) as
color_name from colors;

UDAF

To implement Java UDAF, inherit the class ‘com.aliyun.odps.udf.Aggregator’ and the following

interfaces must be applied:

public abstract class Aggregator implements ContextFunction {
 @Override
 public void setup(ExecutionContext ctx) throws UDFException {

 }
 @Override
 public void close() throws UDFException {
 }
 /**
 * Create an aggregate buffer
 * @return Writable - Aggregate buffer
 */
 abstract public Writable newBuffer();
 /**
 * @param buffer: aggregation buffer
 * @param args: specified parameter to call UDAF in SQL
 * @throws UDFException
 */
 abstract public void iterate(Writable buffer, Writable[] args)
throws UDFException;
 /**
 * generate final result
 * @param buffer
 * @return final result of Object UDAF
 * @throws UDFException
 */
 abstract public Writable terminate(Writable buffer) throws
UDFException;
 abstract public void merge(Writable buffer, Writable partial) throws
 UDFException;
}

The three most important interfaces are ‘iterate’, ‘merge’, and ‘terminate’. The main logic of UDAF

relies on these three interfaces. In addition, user must realize defined Writable buffer.

Take ‘achieve average calculation’ as an example and next figure describes the realization logical

and computational procedure of this function in MaxCompute UDAF:

MaxCompute User Guide / 10 SQL

Issue: 20180904 409

In the preceding figure , the input data is sliced according to a certain size.For more information

about slicing, see MapReduce). The size of each slice is suitable for a worker to complete in the

specified time. This slice size must be configured manually by the user.

The calculation process of UDAF is divided into two steps:

• In the first step, each worker counts the data quantity and total sum in a slice. You can consider

 the data quantity and total sum in each slice as an intermediate result.

• In the second step, a worker gathers the information of each slice generated in the first stage.

In the final output, r.sum / r.count is the average of all input data.

Use the following UDAF encoding example to calculate the average:

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import com.aliyun.odps.io.DoubleWritable;
import com.aliyun.odps.io.Writable;
import com.aliyun.odps.udf.Aggregator;
import com.aliyun.odps.udf.UDFException;
import com.aliyun.odps.udf.annotation.Resolve;
@Resolve("double->double")
public class AggrAvg extends Aggregator {
 private static class AvgBuffer implements Writable {
 private double sum = 0;
 private long count = 0;
 @Override
 public void write(DataOutput out) throws IOException {
 out.writeDouble(sum);
 out.writeLong(count);
 }
 @Override
 public void readFields(DataInput in) throws IOException {
 sum = in.readDouble();

MaxCompute User Guide / 10 SQL

410 Issue: 20180904

 count = in.readLong();
 }
 }
 private DoubleWritable ret = new DoubleWritable();
 @Override
 public Writable newBuffer() {
 return new AvgBuffer();
 }
 @Override
 public void iterate(Writable buffer, Writable[] args) throws
UDFException {
 DoubleWritable arg = (DoubleWritable) args[0];
 AvgBuffer buf = (AvgBuffer) buffer;
 if (arg ! = null) {
 buf.count += 1;
 buf.sum += arg.get();
 }
 }
 @Override
 public Writable terminate(Writable buffer) throws UDFException {
 AvgBuffer buf = (AvgBuffer) buffer;
 if (buf.count == 0) {
 ret.set(0);
 } else {
 ret.set(buf.sum / buf.count);
 }
 return ret;
 }
 @Override
 public void merge(Writable buffer, Writable partial) throws
UDFException {
 AvgBuffer buf = (AvgBuffer) buffer;
 AvgBuffer p = (AvgBuffer) partial;
 buf.sum += p.sum;
 buf.count += p.count;
 }
}

Note:

• For Writable’s readFields function, since the partial writable object can be reused, the same

object readFields function is called multiple times. This function expects the entire object to be

reset each time it is called. If the object contains a collection, it must be emptied.

• The use method of UDAF is similar to aggregation functions in MaxCompute SQL. For more

information, see Aggregation Functions.

• How to run UDTF is similar to UDF. For more information, see Java UDF Development.

UDTF

Java UDTF class must inherit the class ‘com.aliyun.odps.udf.UDTF’. This class has four

interfaces:

MaxCompute User Guide / 10 SQL

Issue: 20180904 411

Interface Definition Description

public void setup(ExecutionC
ontext ctx) throws UDFExcepti
on

The initialization method to call user-defined initialization
behavior before UDTF processes the input data. ‘Setup’ will be
called first and once for each worker.

public void process(Object[]
args) throws UDFException

The framework calls this method. Each record in SQL calls ‘
process’ once accordingly. The parameters of ‘process’ are the
specified UDTF input parameters in SQL. The input parameters
 are passed in as Object[], and the results are output through ‘
forward’ function. The user must call ‘forward’ in the ‘process’
function by itself to determine the output data.

public void close() throws
UDFException

The termination method of UDTF. The framework calls this
method, and only once; that is, after processing the last record.

public void forward(Object …o
) throws UDFException

The user calls the ‘forward’ method to output data. Each ‘
forward’ represents the output of a record, corresponding to the
column specified by UDTF 'as’ clause in SQL.

A UDTF program sample is as follows:

package org.alidata.odps.udtf.examples;
import com.aliyun.odps.udf.UDTF;
import com.aliyun.odps.udf.UDTFCollector;
import com.aliyun.odps.udf.annotation.Resolve;
import com.aliyun.odps.udf.UDFException;
// TODO define input and output types, e.g., "string,string->string,
bigint".
 @Resolve("string,bigint->string,bigint")
 public class MyUDTF extends UDTF {
 @Override
 public void process(Object[] args) throws UDFException {
 String a = (String) args[0];
 Long b = (Long) args[1];
 for (String t: a.split("\\s+")) {
 forward(t, b);
 }
 }
 }

Note:

The preceding example is for reference only. How to run UDTF is similar to using UDF. For more

information, see Java UDF Development.

MaxCompute User Guide / 10 SQL

412 Issue: 20180904

In SQL,use this UDTF as the following example. Suppose that the register function name in

MaxCompute is ‘user_udtf’.

select user_udtf(col0, col1) as (c0, c1) from my_table;

Suppose the values of col0 and col1 in my_table are:

+------+------+
| col0 | col1 |
+------+------+
| A B | 1 |
| C D | 2 |
+------+------+

Then the ‘SELECT’ result is:

+----+----+
| c0 | c1 |
+----+----+
A	1
B	1
C	2
D	2
+----+----+

Instructions

UDTFs are often used as following in SQL:

select user_udtf(col0, col1) as (c0, c1) from my_table;
select user_udtf(col0, col1, col2) as (c0, c1) from (select * from
my_table distribute by key sort by key) t;
select reduce_udtf(col0, col1, col2) as (c0, c1) from (select col0,
col1, col2 from (select map_udtf(a0, a1, a2, a3) as (col0, col1, col2
) from my_table) t1 distribute by col0 sort by col0, col1) t2;

But using UDTF has the following limits:

MaxCompute User Guide / 10 SQL

Issue: 20180904 413

• Other expressions are not allowed in the same SELECT clause:

select value, user_udtf(key) as mycol ...

• UDTF cannot be nested.

select user_udtf1(user_udtf2(key)) as mycol...

• It cannot be used with ‘group by / distribute by / sort by’ in the same SELECT clause.

select user_udtf(key) as mycol ... group by mycol

Other UDTF Examples

In UDTF, learn more aboutMaxCompute Resources. The following describes how to use UDTFs

to read MaxCompute resources:

1. Compile a UDTF program. Once the compilation is successful, export the Jar package

(udtfexample1.jar).

package com.aliyun.odps.examples.udf;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.Iterator;
import com.aliyun.odps.udf.ExecutionContext;
import com.aliyun.odps.udf.UDFException;
import com.aliyun.odps.udf.UDTF;
import com.aliyun.odps.udf.annotation.Resolve;
/**
 * project: example_project
 * table: wc_in2
 * partitions: p2=1,p1=2
 * columns: colc,colb
 */
@Resolve("string,string->string,bigint,string")
public class UDTFResource extends UDTF {
 ExecutionContext ctx;
 long fileResourceLineCount;
 long tableResource1RecordCount;
 long tableResource2RecordCount;
 @Override
 public void setup(ExecutionContext ctx) throws UDFException {
 this.ctx = ctx;
 try {
 InputStream in = ctx.readResourceFileAsStream("file_resource.txt
");
 BufferedReader br = new BufferedReader(new InputStreamReader(in
));
 String line;
 fileResourceLineCount = 0;
 while ((line = br.readLine()) ! = null) {
 fileResourceLineCount++;
 }
 br.close();

MaxCompute User Guide / 10 SQL

414 Issue: 20180904

 Iterator<Object[]> iterator = ctx.readResourceTable("table_reso
urce1").iterator();
 tableResource1RecordCount = 0;
 while (iterator.hasNext()) {
 tableResource1RecordCount++;
 iterator.next();
 }
 iterator = ctx.readResourceTable("table_resource2").iterator();
 tableResource2RecordCount = 0;
 while (iterator.hasNext()) {
 tableResource2RecordCount++;
 iterator.next();
 }
 } catch (IOException e) {
 throw new UDFException(e);
 }
}
 @Override
 public void process(Object[] args) throws UDFException {
 String a = (String) args[0];
 long b = args[1] == null ? 0 : ((String) args[1]).length();
 forward(a, b, "fileResourceLineCount=" + fileResourceLineCount
 + "|tableResource1RecordCount="
 + tableResource1RecordCount + "|tableResource2RecordCount=" +
tableResource2RecordCount);
 }
}

2. Add resources in MaxCompute:

Add file file_resource.txt;
Add jar udtfexample1.jar;
Add table table_resource1 as table_resource1;
Add table table_resource2 as table_resource2;

3. Create UDTF (my_udtf) in MaxCompute:

create function mp_udtf as com.aliyun.odps.examples.udf.UDTFResource
 using
'udtfexample1.jar, file_resource.txt, table_resource1, table_reso
urce2';

4. Create the resource tables: table_resource1, table_resource2 and the physical table tmp1 in

MaxCompute. Insert corresponding data into the tables.

5. Run this UDTF.

select mp_udtf("10","20") as (a, b, fileResourceLineCount) from tmp1
;
Return result:
+-------+------------+-------+
| a | b | fileResourceLineCount |
+-------+------------+-------+
| 10 | 2 | fileResourceLineCount=3|tableResource1RecordCount=0|
tableResource2RecordCount=0 |
| 10 | 2 | fileresourcelinecount = 3 | tableResource1RecordCount = 0
 | tableResource2RecordCount = 0 |

MaxCompute User Guide / 10 SQL

Issue: 20180904 415

+-------+------------+-------+

UDTF Examples—Complex Data Types

The code in the following example defines UDF with three overloads. The first overload uses

‘array’ as the parameter; the second uses ‘map’ as the parameter; and the third uses ‘struct’ as

the parameter. Since the third overload uses ‘struct’ as the parameter or returned value, the UDF

class must havethe @Resolve annotation to specify the specific type of ‘struct’.

@Resolve("struct<a:bigint>,string->string")
public class UdfArray extends UDF {
 public String evaluate(List<String> vals, Long len) {
 return vals.get(len.intValue());
 }
 public String evaluate(Map<String,String> map, String key) {
 return map.get(key);
 }
 public String evaluate(Struct struct, String key) {
 return struct.getFieldValue("a") + key;
 }
}

Users can pass in the complex data type in the UDF:

create function my_index as 'UdfArray' using 'myjar.jar';
select id, my_index(array('red', 'yellow', 'green'), colorOrdinal) as
color_name from colors;

Hive UDF Compatibility Example

MaxCompute 2.0 supports Hive-style UDFs. Some Hive UDFs and UDTFs can be used directly in

 MaxCompute.

Note:

Currently, the compatible Hive version is 2.1.0, and the corresponding Hadoop version is 2.7.2.

UDFs that are developed in other versions of Hive/Hadoop may need to be recompiled using this

Hive/Hadoop version.

Example:

package com.aliyun.odps.compiler.hive;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInsp
ectorFactory;
import java.util.ArrayList;
import java.util.List;
import java.util.Objects;
public class Collect extends GenericUDF {

MaxCompute User Guide / 10 SQL

416 Issue: 20180904

 @Override
 public ObjectInspector initialize(ObjectInspector[] objectInspectors
) throws UDFArgumentException {
 if (objectInspectors.length == 0) {
 throw new UDFArgumentException("Collect: input args should >= 1
");
 }
 for (int i = 1; i < objectInspectors.length; i++) {
 if (objectInspectors[i] ! = objectInspectors[0]) {
 throw new UDFArgumentException("Collect: input oi should be
the same for all args");
 }
 }
 return ObjectInspectorFactory.getStandardListObjectInspector(
objectInspectors[0]);
 }
 @Override
 public Object evaluate(DeferredObject[] deferredObjects) throws
HiveException {
 List<Object> objectList = new ArrayList<>(deferredObjects.length);
 for (DeferredObject deferredObject : deferredObjects) {
 objectList.add(deferredObject.get());
 }
 return objectList;
 }
 @Override
 public String getDisplayString(String[] strings) {
 return "Collect";
 }
}

Note:

For the use of Hive UDF, see:

• https://cwiki.apache.org/confluence/display/Hive/HivePlugins

• https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide+UDTF

• https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy

The UDF can pack any type and amount of parameters into array to output. Suppose that the

output jar package is named test.jar:

--Add resource
Add jar test.jar;
--Create function
CREATE FUNCTION hive_collect as 'com.aliyun.odps.compiler.hive.Collect
' using 'test.jar';
--Use function
set odps.sql.hive.compatible=true;
select hive_collect(4y,5y,6y) from dual;
+------+
| _c0 |
+------+
| [4, 5, 6] |

https://cwiki.apache.org/confluence/display/Hive/HivePlugins
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide+UDTF
https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy

MaxCompute User Guide / 10 SQL

Issue: 20180904 417

+------+

Note:

The UDF supports all data types, including array, map, struct, and other complex types.

Note:

• MaxCompute’s add jar command permanently creates a resource in the project, specify the jar

 when creating an UDF, but you cannot automatically add all jars to the classpath.

• To use compatible Hive UDF, add set odps.sql.hive.compatible=true; opposite the

SQL statement, and submit it with SQL statement.

• When using compatible Hive UDFs, you must pay attention to JAVA sandbox limits of

MaxCompute.

10.13 Appendix

10.13.1 Escape characters
In MaxCompute SQL, a string constant can be set off by single (‘) or double quotation marks (“).

The string set off by single quotation marks can contain double quotation marks or the string set

 off by double quotation marks can contain single quotation marks. Otherwise, you must use an

escape character to indicate it.

The following expressions are acceptable:

"I'm a happy manong."
'I\'m a happy manong.'

In MaxCompute SQL, ‘\’ is a kind of escape character used to express the special character in a

string or express its followed characters as characters themselves. To read a string constant, if ‘\’

is followed by three effective 8 hexadecimal digits and corresponding range is from 001 to 177,

the system converts it to corresponding characters according to an ASCII value.

The following table lists some special escape characters:

Escape Character

\b backspace

\t tab

\n newline

\r carriage-return

MaxCompute User Guide / 10 SQL

418 Issue: 20180904

Escape Character

\’ single quotation mark

\” double quotation marks

\ \ Backslash

\; Semicolon

\Z control-Z

\0 or \00 Terminator

select length('a\tb') from dual;

The result is 3, which indicates that three characters are in the string. The ‘\t’ is considered as one

character. Other following characters are expressed as themselves.

select 'a\ab',length('a\ab') from dual;

The result: ‘aab’, 3. ‘\a’ is expressed as general ‘a’.

10.13.2 LIKE usage
In LIKE matching, ‘%’ indicates matching any multiple characters. The ‘_’ indicates matching a

single character. To match ‘%’ or ‘_’ itself, you must escape it. The ‘\%’ matches the character ‘%’

and ‘_’ matches the character ‘_’.

 'abcd' like 'ab%' -- true
 'abcd' like 'ab\%' -- false
 'ab%cd' like 'ab\\%%' -- true

Note:

MaxCompute SQL only supports the UTF-8 character set. If the data is encoded in another

format, it is possible that the calculation result is not correct.

10.13.3 Regular expression
The regular expressions in MaxCompute SQL use the PCRE standard, matched by characters.

The meta character to be supported is as follows:

Metacharacter Description

^ Top of line (TOL)

$ End of line

MaxCompute User Guide / 10 SQL

Issue: 20180904 419

Metacharacter Description

. Any character

* Matches for zero or multiple times

+ Matches for once or multiple times

? Matches for zero time or once

? Matches modifier. When this character follows any other constraints (*,
+,? {n}, {n, {n, m},}, the match mode is non greedy. Non greedy mode
 matches strings as little as possible, while the default greedy mode
matches strings as more as possible.

A | B A or B

(abc)* Matches ‘abc’ for zero or multiple times

{n} or {m, n} Matching times

[ab] Matches any character in the brackets. In the example, it is to match a
or b.

[a-d] Matches any character in a, b, c, and d.

[^ab] ^ indicats ‘non’, to match any character which is not a and b.

[::] See POSIX character group in next table.

\ Escape character

\n N is a digit from 1 to 9 and is backward referenced.

\d digits

\ D Non-number

POSIX character group:

POSIX Character

Group

Description Range

[[:alnum:]] letter and digit characters [a-zA-Z0-9]

[[:alpha:]] letter [a-zA-Z]

[[:ascii:]] ASCII character [\x00-\x7F]

[[:blank:]] Space character and tabs [\t]

[[:cntrl:]] Control character [\x00-\x1F\x7F]

[[:digit:]] Digit character [0-9]

MaxCompute User Guide / 10 SQL

420 Issue: 20180904

POSIX Character

Group

Description Range

[[:graph:]] Characters except white space
characters

[\x21-\x7E]

[[:lower:]] Lowercase characters [a-z]

[[:print:]] [:graph:] and white space
characters

[\x20-\x7E]

[[:punct:]] punctuation [][!” [][!”#$%&’()*+,./:;<=>? @\^_
`{|}~-]

[[:space:]] White space characters [\t\r\n\v\f]

[[:upper:]] Uppercase characters [A-Z]

[[:xdigit:]] hexadecimal character [A-Fa-f0-9]

Because the system uses a backslash () as an escape character, all “\” which appear in the

regular expression pattern perform two escapes. For example, the regular expression needs

 to match the string “a+b”. The “+” is a special character in regular expressions and must be

expressed by escape. The expression in a regular engine is “a\+b”, because the system needs to

explain a layer of escape, the expression which can match this string is “a\\+b”.

Suppose that the table test_dual is:

select 'a+b' rlike 'a\\\+b' from test_dual;

| _c1 |

| true |

In extreme cases, to match the character “ \”, because “ \” is a special character in a regular

engine, it needs to be expressed by “\”, while the system does an escape for it again, it is written

as “\\”.

select 'a\\b', 'a\\b' rlike 'a\\\\b' from test_dual;

| _c0 | _c1 |

| a\b | true |

Note:

To write a\\b in MaxCompute SQL, and the output result is a\b.

MaxCompute User Guide / 10 SQL

Issue: 20180904 421

If TAB exists in a string, when the system reads these two characters \t, they are already saved

as one character by the system. Therefore, in regular expression, it is a general character.

select 'a\tb', 'a\tb' rlike 'a\tb' from test_dual;| _c0 | _c1 |

| a b | true |

10.13.4 Reserved words
This document shows all reserved words in MaxCompute SQL.

Note:

• These cannot be used to name a table, column, or partition; otherwise an error occurs.

• Reserved words are not case sensitive.

 % & && () * +
 - . / ; < <= <>
 ADD AFTER ALL
 ALTER ANALYZE AND ARCHIVE ARRAY AS ASC
 BEFORE BETWEEN BIGINT BINARY BLOB BOOLEAN BOTH DECIMAL
 BUCKET BUCKETS BY CASCADE CASE CAST CFILE
 CHANGE CLUSTER CLUSTERED CLUSTERSTATUS COLLECTION COLUMN COLUMNS
 COMMENT COMPUTE CONCATENATE CONTINUE CREATE CROSS CURRENT
 CURSOR DATA DATABASE DATABASES DATE DATETIME DBPROPERTIES
 DEFERRED DELETE DELIMITED DESC DESCRIBE DIRECTORY DISABLE
 DISTINCT DISTRIBUTE DOUBLE DROP ELSE ENABLE END
 ESCAPED EXCLUSIVE EXISTS EXPLAIN EXPORT EXTENDED EXTERNAL
 FALSE FETCH FIELDS FILEFORMAT FIRST FLOAT FOLLOWING
 FORMAT FORMATTED FROM FULL FUNCTION FUNCTIONS GRANT
 GROUP HAVING HOLD_DDLTIME IDXPROPERTIES IF IMPORT IN
 INDEX INDEXES INPATH INPUTDRIVER INPUTFORMAT INSERT INT
 INTERSECT INTO IS ITEMS JOIN KEYS LATERAL
 LEFT LIFECYCLE LIKE LIMIT LINES LOAD LOCAL
 LOCATION LOCK LOCKS LONG MAP MAPJOIN MATERIALIZED
 MINUS MSCK NOT NO_DROP NULL OF OFFLINE
 ON OPTION OR ORDER OUT OUTER OUTPUTDRIVER
 OUTPUTFORMAT OVER OVERWRITE PARTITION PARTITIONED PARTITIONP
ROPERTIES PARTITIONS
 PERCENT PLUS PRECEDING PRESERVE PROCEDURE PURGE RANGE
 RCFILE READ READONLY READS REBUILD RECORDREADER RECORDWRITER
 REDUCE REGEXP RENAME REPAIR REPLACE RESTRICT REVOKE
 RIGHT RLIKE ROW ROWS SCHEMA SCHEMAS SELECT
 SEMI SEQUENCEFILE SERDE SERDEPROPERTIES SET SHARED SHOW
 SHOW_DATABASE SMALLINT SORT SORTED SSL STATISTICS STORED
 STREAMTABLE STRING STRUCT TABLE TABLES TABLESAMPLE TBLPROPERTIES
 TEMPORARY TERMINATED TEXTFILE THEN TIMESTAMP TINYINT TO
 TOUCH TRANSFORM TRIGGER TRUE UNARCHIVE UNBOUNDED UNDO
 UNION UNIONTYPE UNIQUEJOIN UNLOCK UNSIGNED UPDATE USE
 USING UTC UTC_TMESTAMP VIEW WHEN WHERE WHILE DIV

10.13.5 本文暂无翻译。
The data type mapping table for MaxCompute and hive is as follows:

MaxCompute User Guide / 10 SQL

422 Issue: 20180904

Hive Data Type MaxCompute Data Type

BOOLEAN Boolean

TINYINT Tinyint

SMALLINT Smallint

INT Int

BIGINT Bigint

FLOAT Float

DOUBLE Double

Decimal Decimal

String String

Varchar Varchar

Char String

BINARY Binary

Timestamp Timestamp

Date Datetime

ARRAY Array

Map <key, value> MAP

STRUCT STRUCT

Union This feature is not supported.

10.13.6 Differences with other SQL syntax
This article takes a SQL perspective. and introduces MaxCompute by comparing MaxCompute

SQL with Hive, MySQL, Oracle, SQL Server Unsupported pant, and DML syntax.

Pant syntax not supported by MaxCompute

Grammar MaxCompute Hive MySql Oracle SQL

Server

CREATE TABLE—
PRIMARY KEY

N N Y Y Y

CREATE TABLE—
NOT NULL

N N Y Y Y

Create Table-cluster N Y N Y Y

MaxCompute User Guide / 10 SQL

Issue: 20180904 423

Grammar MaxCompute Hive MySql Oracle SQL

Server

Create Table-External
 table

Y (supports
OSS and OTS
External tables)

Y N N N

Create Table-maid
table

N Y Y Y Y (with #
prefix)

Create Index N Y Y Y Y

Virtual Column N N (only 2
predefined)

N Y Y

DML syntax not supported by MaxCompute

Grammar MaxCompute Hive MySQL Oracle SQL Server

Select-recurrent CTE N N N Y Y

Select-group by roll up N Y Y Y Y

Select-group by cube N Y N Y Y

Select-grouping set N Y N Y Y

Maid join Y Y N Y Y

Select-Fig N N N Y Y

Select-correlated
subquery

N Y Y Y Y

Set operator-Union (
distinct)

Y Y Y Y Y

Set operator-intersect N N N Y Y

Set operator-minus N N N Y Y (keyword)

Update... Where N Y Y Y Y

Update... Order by
limit

N N Y N Y

Delete... Where N Y Y Y Y

Delete... Order by limit N N Y N N

Analytic-reusable
windowing clause

N Y N N N

Analytic-range N Y N Y Y

MaxCompute User Guide / 10 SQL

424 Issue: 20180904

10.14 Select Operation

10.14.1 Introduction to the SELECT Syntax
The command format is as follows:

SELECT [ALL | DISTINCT] select_expr, select_expr, ...
FROM table_reference
[WHERE where_condition]
[GROUP BY col_list]
[ORDER BY order_condition]
[DISTRIBUTE BY distribute_condition [SORT BY sort_condition]]
[LIMIT number]

Note:

• When using SELECT to read data from the table, specify the names of the columns to be

read, or use an asterisk (*) to represent all columns. A simple SELECT statement is shown as

follows:

select * from sale_detail;

To read only the shop_name column in sale_detail, use the following statement:

select shop_name from sale_detail;

Use where to specify filtering conditions. For example:

select * from sale_detail where shop_name like 'hang%';

When a Select statement is used, a maximum of 10,000 rows of results can be displayed. But if

the Select statement serves as a clause, all the results are returned to the upper-level query.

• Full table scan is prohibited when you select a partitioned table.

For new projects created after January 10, 2018, 20:00 (UTC+8) full table scan is not allowed

for the partitioned table in the project by default When SQL runs. Partitions to be scanned must

 be specified in partition conditions to reduce unnecessary SQL I/O, and computing resources,

and the unnecessary cost. Note: Using the Pay-As-You-Go billing method, the amount of data

input is one of the billing parameters.

If the table definition is t1(c1,c2) partitioned by(ds), running the following statement

in a new project is restricted and an error may occur:

Select * from t1 where c1=1;
Select * from t1 where (ds=‘20180202’ or c2=3);
Select * from t1 left outer join t2 on a.id =b.id and a.ds=b.ds and
b.ds=‘20180101);

MaxCompute User Guide / 10 SQL

Issue: 20180904 425

--When Join statement is running, if the partition clipping
condition is placed in where clause, the partition clipping takes
effect. If you put it in on clause, the partition clipping of sub
table takes effect, and the main table performs a full table scan.

If you perform a full table scan on a partitioned table, you can add a set statement set odps

.sql.allow.fullscan=true; before the SQL statement that scans the entire table of the

partitioned table. The set statement must be submitted along with the SQL statement. Suppose

that the sales_detail table is a partitioned table. Submit the following simple query statements

at the same time for a full table scan:

set odps.sql.allow.fullscan=true;
select * from sale_detail;

If the entire project is required to allow a full table scan, the switch can be turned on or off by

itself (true/false), and the command is as follows:

setproject odps.sql.allow.fullscan=true;

• table_reference supports nested subqueries, for example:

select * from (select region from sale_detail) t where region = '
shanghai';

• The filter conditions supported by ‘where’ clause are shown as follows:

Filter conditions Description

> 、 < 、 =、 >=、
<=、 <>

Relational operators

like、rlike The source and pattern parameters of like and rlike can only be of the
 String type.

in、not in If a subquery is attached to the in or not in condition, only the values
of one column are returned for the subquery, and the returned values
cannot exceed 1,000 entries.

MaxCompute User Guide / 10 SQL

426 Issue: 20180904

You can specify a partition scope in the where clause of a Select statement to scan specified

partitions of a table instead of a whole table, shown as follows:

SELECT sale_detail. * FROM sale_detail WHERE sale_detail.sale_date
 >= '2008' AND sale_detail.sale_date <= '2014';

The where clause of MaxCompute SQL supports query by the between…and condition. The

preceding SQL statement can be rewritten as follows:

SELECT sale_detail. * FROM sale_detail WHERE sale_detail.sale_date
BETWEEN '2008' AND '2014';

• distinct: If duplicated data rows exist, you can use the Distinct option before the field to

remove duplicates. In this case, only one value is returned. If you use the ALL option, or do not

specify this option, all duplicated values in the fields are returned.

If you use the Distinct option, only one row of record is returned, which is shown as follows:

select distinct region from sale_detail;
select distinct region, sale_date from sale_detail;
-- Performs the Distinct option on multiple columns. The Distinct
 option has an effect on Select column sets rather than a single
column.

• group by: Query by group. It is generally used together with an aggregate function. A Select

statement that contains an aggregate function follows these rules:

▬ The key using group by can be the name of a column in the input table.

▬ Alternatively, it can be an expression consisting of columns of the input table. The key

cannot be the alias of an output column of the Select statement.

▬ Rule i takes precedence over rule ii. If rules i and ii conflict, that is, if the key using group by

is a column or expression of the input table and an output column of Select, rule i prevails.

For example:

select region from sale_detail group by region;
-- Runs successfully with the name of a column in the input table
directly used as the group by column
select sum(total_price) from sale_detail group by region;
-- Runs successfully with the table grouped by the region value and
returns the total sales of each group
Select region, sum (total_price) from sale_detail group by region;
-- Runs successfully with the table grouped by the region value and
 returns the region value (unique in the group) and total sales of
each group
select region as r from sale_detail group by r;
 -- Runs with the alias of the Select column and returns an error
select 2 + total_price as r from sale_detail group by 2 + total_pric
e;
-- Requires a complete expression of the column

MaxCompute User Guide / 10 SQL

Issue: 20180904 427

Select region, total_price from sale_detail group by region;
-- Returns an error; all columns not using an aggregate function in
the Select statement must exist in group by
select region, total_price from sale_detail group by region,
total_price;
-- Runs successfully

These restrictions are imposed because group by operations come before Select operations

during SQL parsing. Therefore, group by statements can only accept the columns or

expressions of the input table as keys.

Note:

For more information, see Aggregate Functions.

• order by: Globally sorts all data based on certain columns. To sort records in descending order,

use the DESC keyword. For global sorting, order by must be used together with limit. When

order by is used for sorting, NULL is considered to be smaller than any other value. This action

is the same as that in MySQL but different from that in Oracle.

Unlike group by, order by must be followed by the alias of the Select column. If the Select

operation is performed on a column and the column alias is not specified, the column name is

used as the column alias.

select * from sale_detail order by region;
-- Returns an error because order by is not used together with limit
select * from sale_detail order by region limit 100;
select region as r from sale_detail order by region limit 100;
-- Returns an error because ORDER BY is not followed by a column
alias
select region as r from sale_detail order by r limit 100;

The number in [limit number] is a constant to limit the number of output rows. If you want

to directly view the result of a Select statement without LIMIT from the screen output, you can

view a maximum of 10,000 rows. The upper limit of screen display varies with projects, which

can be controlled through the setproject console.

• Distribute by: Performs hash-based sharding on data by values of certain columns. Aliases of

Select output columns must be used.

select region from sale_detail distribute by region;
-- Runs successfully because the column name is an alias
select region as r from sale_detail distribute by region;
-- Returns an error because DISTRIBUTE BY is not followed by a
column alias

MaxCompute User Guide / 10 SQL

428 Issue: 20180904

select region as r from sale_detail distribute by r;

• Sort by: for partial ordering, ‘distribute by’ must be added in front of the statement. sort by is

used to partially sort the results of distribute by. Aliases of Select output columns must be used.

select region from sale_detail distribute by region sort by region;
select region as r from sale_detail sort by region;
-- Returns an error and exits because no distribute by exists.

• order by or group by cannot be used together with distribute by/sort] by. Aliases of SELECT

output columns must be used.

Note:

• The keys of order by/sort by/distribute by must be output columns (namely, column aliases) of

 Select statements.

• In MaxCompute SQL parsing, order by/sort by/distribute by come after Select operations.

Therefore, they can only accept the output columns of Select statements as keys.

10.14.2 SELECT Sequence
The actual logic execution sequence of SELECT statements written in compliance with the

preceding SELECT syntax are different from the standard writing sequence. See the following

example:

SELECT key, max(value) FROM src t WHERE value > 0 GROUP BY key HAVING
sum(value) > 100 ORDER BY key LIMIT 100;

The actual logic execution sequence is FROM->WHERE->GROUP BY->HAVING->SELECT->

ORDER BY->LIMIT. ORDER BY can only reference columns generated in the SELECT list

rather than accessing columns in the FROM source table. The HAVING operation can access

GROUP BY keys and aggregate functions. When the SELECT operation is performed, SELECT

can only access group keys and aggregate functions rather than columns in the FROM source

table if GROUP BY exists.The columns generated in the select list can only be referenced in by,

rather than accessing the columns in the source table of from.

MaxCompute User Guide / 10 SQL

Issue: 20180904 429

To avoid confusion, MaxCompute allows users to write a query statement by the execution

sequence. For example, the preceding statement can be written as follows:

FROM src t WHERE value > 0 GROUP BY key HAVING sum(value) > 100 SELECT
 key, max(value) ORDER BY key LIMIT 100;

10.14.3 Subquery
Basic definition of a subquery

A normal SELECT operation reads data from several tables, for example, select column_1

, column_2 … from table_name. However, the query object can be another SELECT

operation, which is shown as follows:

select * from (select shop_name from sale_detail) a;

Note:

The subquery must have an alias.

In a FROM clause, a subquery can be used as a table to perform JOIN operations with other

tables or subqueries, which is shown as follows:

create table shop as select * from sale_detail;
select a.shop_name, a.customer_id, a.total_price from
(select * from shop) a join sale_detail on a.shop_name = sale_detail.
shop_name;

IN SUBQUERY / NOT IN SUBQUERY

IN SUBQUERY is similar to LEFT SEMI JOIN.

For example:

SELECT * from mytable1 where id in (select id from mytable2);
-- is equivalent to
SELECT * from mytable1 a LEFT SEMI JOIN mytable2 b on a.id=b.id;

Currently, MaxCompute supports both IN SUBQUERY and CORRELATED conditions.

For example:

SELECT * from mytable1 where id in (select id from mytable2 where
value = mytable1.value);

where value = mytable1.value in the subquery is a CORRELATED condition.

MaxCompute of early versions reports errors for such expressions that reference source tables

MaxCompute User Guide / 10 SQL

430 Issue: 20180904

both in subqueries and in outer queries. MaxCompute supports such expressions now. In fact,

such filtering conditions are a part of the ON condition in SEMI JOIN.

NOT IN SUBQUERY is similar to LEFT ANTI JOIN. However, they have one significant difference

.

For example:

SELECT * from mytable1 where id not in (select id from mytable2);
-- If none of the IDs in mytable2 are NULL, this statement is
equivalent to
SELECT * from mytable1 a LEFT ANTI JOIN mytable2 b on a.id=b.id;

If mytable2 contains any column whose ID is NULL, the NOT IN expression is NULL, so that the

WHERE condition is invalid and no data is returned. This is different from LEFT ANTI JOIN.

MaxCompute 1.0 supports [NOT] IN SUBQUERY not serving as a JOIN condition, for example

, in a non-WHERE statement, or failure in conversion to a JOIN condition even in a WHERE

statement. MaxCompute 2.0 still supports this feature. However, [NOT] IN SUBQUERY cannot

 be converted to SEMI JOIN, and a separate job must be started to run subqueries. Therefore, [

NOT] IN SUBQUERY does not support CORRELATED conditions.

For example:

SELECT * from mytable1 where id in (select id from mytable2) OR value
 > 0;

As the WHERE clause includes OR, [NOT] IN SUBQUERY cannot be converted to SEMI JOIN. A

separate job must be started to run subqueries.

In addition, partition tables are specially processed:

SELECT * from sales_detail where ds in (select dt from sales_date);

If ds is a partition column, select dt from sales_date separately starts a job to run

subqueries, instead of converting to SEMI JOIN. After running, the results are compared with ds

one by one. If a ds value in sales_detail is not in the returned results, the partition is not read to

make sure that partition pruning is still valid.

EXISTS SUBQUERY/NOT EXISTS SUBQUERY

In an EXISTS SUBQUERY, when at least one data row exists in the subquery, TRUE is returned;

otherwise, FALSE is returned. NOT EXISTS subquery is completely opposite of this.

MaxCompute User Guide / 10 SQL

Issue: 20180904 431

Currently, MaxCompute supports only subqueries including the correlated WHERE conditions.

EXISTS SUBQUERY/NOT EXISTS SUBQUERY is implemented by converting to LEFT SEMI

JOIN or LEFT ANTI JOIN.

For example:

SELECT * from mytable1 where exists (select * from mytable2 where id
 = mytable1.id);
-- is equivalent to
Select * From mytable1 a left semi join mytable2 B on A. ID = B. ID;

While

SELECT * from mytable1 where not exists (select * from mytable2 where
id = mytable1.id);
-- is equivalent to
SELECT * from mytable1 a LEFT ANTI JOIN mytable2 b on a.id=b.id;

10.14.4 UNION ALL/UNION [DISTINCT]
The syntax format is as follows:

select_statement UNION ALL select_statement;
select_statement UNION [DISTINCT] select_statement;

• UNION ALL: Combines two or multiple data sets returned by a SELECT operation into one

data set. If the result contains duplicated rows, all rows that meet the conditions are returned,

and deduplication of duplicated rows is not applied.

• UNION [DISTINCT]: In this statement, DISTINCT can be ignored. It combines two or

multiple data sets returned by a SELECT operation into one data set. If the result contains

duplicated rows, deduplication is applied.

Following is an example of the UNION ALL operation:

Select * From sale_detail where region = 'Hangzhou'
 union all
select * from sale_detail where region = 'shanghai';

Following is an example of the UNION operation:

SELECT * FROM src1 UNION SELECT * FROM src2;
--The execution effect is equivalent to
SELECT DISTINCT * FROM (SELECT * FROM src1 UNION ALL SELECT * FROM
src2) t;

Note:

MaxCompute User Guide / 10 SQL

432 Issue: 20180904

• The number, names, and types of queried columns corresponding to the UNION ALL/UNION

operation must be consistent. If the column names are inconsistent, use the column aliases.

• Generally, MaxCompute allows UNION ALL/UNION operations performed on a maximum of

256 tables. A syntax error is returned if the number of tables exceeds this limit.

The meaning of LIMIT following UNION:

If UNION is followed by CLUSTER BY, DISTRIBUTE BY, SORT BY, ORDER BY, or a LIMIT

clause, the clause has an effect on all the preceding UNION results rather than the last SELECT

statement of UNION. Currently, MaxCompute adopts this action in set odps.sql.type.

system.odps2=true;.

For example:

set odps.sql.type.system.odps2=true;
SELECT explode(array(3, 1)) AS (a) UNION ALL SELECT explode(array(0, 4
, 2)) AS (a) ORDER BY a LIMIT 3;

The returned result is as follows:

| a |

| 0 |
| 1 |
| 2 |

10.14.5 JOIN operation
The JOIN operation of MaxCompute supports n-way join, but does not support Cartesian product,

that is, a link without the ON condition.

Function definition:

join_table:
 table_reference join table_factor [join_condition]
 | table_reference {left outer|right outer|full outer|inner}
join table_reference join_condition
 table_reference:
 table_factor
 | join_table
 table_factor:
 tbl_name [alias]
 | table_subquery alias
 | (table_references)
 join_condition:
 on equality_expression (and equality_expression)*

Note:

MaxCompute User Guide / 10 SQL

Issue: 20180904 433

equality_expression is an equality expression.

left join: Returns all records from the left table (shop) even if no matching row exists in the

right table (sale_detail).

select a.shop_name as ashop, b.shop_name as bshop from shop a
 left outer join sale_detail b on a.shop_name=b.shop_name;
 -- As the tables shop and sale_detail both have the shop_name
column, aliases must be used in the select clause for distinguishing.

RIGHT OUTER JOIN: indicates the right join. It returns all records from the right table even if no

matching record exists in the left table.

For example:

select a.shop_name as ashop, b.shop_name as bshop from shop a
 right outer join sale_detail b on a.shop_name=b.shop_name;

FULL OUTER JOIN: indicates the full join. It returns all records from both the left and the right

table.

For example:

select a.shop_name as ashop, b.shop_name as bshop from shop a
 full outer join sale_detail b on a.shop_name=b.shop_name;

If at least one matching record exists in the table, INNER JOIN returns the row. The keyword

INNER can be ignored.

select a.shop_name from shop a inner join sale_detail b on a.shop_name
=b.shop_name;
select a.shop_name from shop a join sale_detail b on a.shop_name=b.
shop_name;

The join condition only allows equivalent conditions connected using and. Only MAPJOIN

supports non-equivalent join conditions or multiple conditions connected using or.

select a.* from shop a full outer join sale_detail b on a.shop_name=b.
shop_name
 full outer join sale_detail c on a.shop_name=c.shop_name;
 -- Supports n-way JOIN examples
select a.* from shop a join sale_detail b on a.shop_name ! = b.
shop_name;
 -- Returns an error because non-equivalent JOIN conditions are not
 supported

IMPLICIT JOIN, MaxCompute supports the following JOIN method:

SELECT * FROM table1, table2 WHERE table1.id = table2.id;
--The execution effect is equivalent to

MaxCompute User Guide / 10 SQL

434 Issue: 20180904

SELECT * FROM table1 JOIN table2 ON table1.id = table2.id;

10.14.6 SEMI JOIN
MaxCompute supports SEMI JOIN. In SEMI JOIN, the right table does not appear in the result set

 and is only used to filter data in the left table. Supported syntaxes include: LEFT SEMI JOIN and

 LEFT ANTI JOIN.

LEFT SEMI JOIN

When a JOIN condition is valid, data in the left table is returned. That is, if the ID of a row in

mytable1 appears in all IDs in mytable2, this row is saved in the result set.

For example:

SELECT * from mytable1 a LEFT SEMI JOIN mytable2 b on a.id=b.id;

Only the data in mytable1 is returned if the ID of mytable1 appears in the ID of mytable2.

LEFT ANTI JOIN

When a JOIN condition is invalid, data in the left table is returned. That is, if the ID of a row in

mytable1 does not appear in any ID in mytable2, this row is stored in the result set.

For example:

SELECT * from mytable1 a LEFT ANTI JOIN mytable2 b on a.id=b.id;

Only the data in mytable1 is returned if the ID of mytable1 does not appear in the ID of mytable2.

10.14.7 MAPJOIN HINT
MapJoin helps to join a large table with one or multiple small tables.It is faster than common Join

operations. A typical scenario of MapJoin, is as follows: When the data volume is small, SQL

loads all your specified small tables into the memory of the program performing the Join operation

to speed up JOIN execution.

Note:

When you use the MapJoin, note the following:

• The left table of ‘left outer join’ must be a big table.

• The right table of right outer join must be a big table.

• For INNER JOIN, both the left and right tables can be large tables.

• For FULL OUTER JOIN, MapJoin cannot be used.

MaxCompute User Guide / 10 SQL

Issue: 20180904 435

• MapJoin supports small tables as subqueries.

• When MapJoin is used and a small table or subquery must be referenced, the alias must be

referenced.

• MapJoin supports non-equivalent JOIN conditions or multiple conditions connected using OR.

• Currently, MaxCompute allows a maximum of eight small tables to be specified in MapJoin.

Otherwise, a syntax error is returned.

• If MapJoin is used, the total memory occupied by all small tables cannot exceed 512 MB. Note

 that MaxCompute uses compressed storage, so the data size is sharply expanded after small

 tables are loaded into the memory. The limit of 512 MB refers to the size after small tables are

 loaded into the memory.

• When JOIN is performed on the multiple tables, the two leftmost tables cannot be tables for

MapJoin at the same time.

For example:

select /* + mapjoin(a) */
 a.shop_name,
 b.customer_id,
 b.total_price
 from shop a join sale_detail b
 on a.shop_name = b.shop_name;

MaxCompute SQL does not support complex JOIN conditions, such as non-equivalent expression

s and the OR logic, in the ON condition of common JOIN operations. However, MapJoin supports

such operations.

For example:

select /*+ mapjoin(a) */
 a.total_price,
 b.total_price
 from shop a join sale_detail b
 on a.total_price < b.total_price or a.total_price + b.total_price
 < 500;

10.14.8 HAVING clause
HAVING clauses are used because the Where keyword of MaxCompute SQL cannot be used

together with aggregate functions.

Function definition:

SELECT column_name, aggregate_function(column_name)
FROM table_name
WHERE column_name operator value
GROUP BY column_name

MaxCompute User Guide / 10 SQL

436 Issue: 20180904

HAVING aggregate_function(column_name) operator value

Example:

A table named Orders contains four fields: Customer, OrderPrice, Order_date, and Order_id. To

query customers whose OrderPrice is smaller than 2,000, The SQL statement is as follows:

SELECT Customer,SUM(OrderPrice) FROM Orders
GROUP BY Customer
HAVING SUM(OrderPrice)<2000

10.14.9 Explain
The Explain operation of MaxCompute SQL helps to display the description of the final execution

plan structure corresponding to a DML statement. The execution plan is the program used at the

final stage to run SQL semantics.

Function definition:

EXPLAIN <DML query>;

The execution result of ‘explain’ includes the following:

• The dependency structure of all the tasks corresponding to this DML statement.

• All task dependency structures in a task.

• All operator dependency structures in a task.

For examples:

EXPLAIN
SELECT abs(a.key), b.value FROM src a JOIN src1 b ON a.value = b.value
;

The output result of Explain consists of the following parts:

• The dependency between jobs: job0 is root job, As the query requires one job (job0),

only one row of information is required.

• The dependency between tasks:

In Job job0:
root Tasks: M1_Stg1, M2_Stg1
J3_1_2_Stg1 depends on: M1_Stg1, M2_Stg1

Job0 contains three tasks, among which M1_Stg1 and M2_Stg1 are run first, followed by

J3_1_2_Stg1.

The naming rules of tasks are as follows:

MaxCompute User Guide / 10 SQL

Issue: 20180904 437

• MaxCompute contains four types of tasks: MapTask, ReduceTask, JoinTask, and

LocalWork.

• The first letter of a task name represents the current task type. For example, M2Stg1 is a

MapTask.

• The number following the first letter represents the current task ID, which must be unique in

all tasks corresponding to the current query.

• The numbers separated by underscores (_) represent the direct dependencies of the current

 task. For example, J3_1_2_Stg1 indicates that the current task (whose ID is 3) depends on

two tasks whose IDs are 1 and 2.

• The third part is the operator structure in the task. The operator string describes the execution

semantics of a task:

In Task M1_Stg1:
 Data source: yudi_2.src # Data source describes the input content
of the current task
 TS: alias: a # TableScanOperator
 RS: order: + # ReduceSinkOperator
 keys:
 a.value
 values:
 a.key
 partitions:
 a.value
In Task J3_1_2_Stg1:
 JOIN: a INNER JOIN b # JoinOperator
 SEL: Abs(UDFToDouble(a._col0)), b._col5 # SelectOperator
 FS: output: None # FileSinkOperator
In Task M2_Stg1:
 Data source: yudi_2.src1
 TS: alias: b
 RS: order: +
 keys:
 b.value
 values:
 b.value
 partitions:
 b.value

▬ Description of operators:

■ TableScanOperator: Describes the logic of FROM statement blocks in a Query

statement. The input table name (alias) is displayed in the EXPLAIN results.

■ SelectOperator: Describes the logic of SELECT statement blocks in a QUERY

statement. The columns to be passed to the next operator are displayed in the Explain

results, separated by commas (,).

■ If column references are to be passed, < alias >.< column_name > is displayed

MaxCompute User Guide / 10 SQL

438 Issue: 20180904

■ If expression results are to be transmitted, they are displayed as functions, for

example, func1(arg1_1, arg1_2, func2(arg2_1, arg2_2)).

■ If constants are to be passed, the values are directly displayed.

■ FilterOperator: Describes the logic of WHERE statement blocks in a QUERY

statement. A WHERE condition expression is displayed in the Explain results, with the

display rules similar to those of SelectOperator.

■ JoinOperator: Describes the logic of JOIN statement blocks in a QUERY statement.

Both the tables to be joined and the JOIN method are displayed in the Explain results.

■ GroupByOperator: Describes the logic of aggregate operations. This structure is

displayed if an aggregate function is used in a QUERY statement. The aggregate

function content is displayed in the Explain results.

■ ReduceSinkOperator: Describes the logic of data distribution operations

between tasks. If the result of the current task is to be passed to another task,

ReduceSinkOperator must be used at the end of the current task to perform the data

distribution operation. The sorting method of output results, distributed keys, values, and

columns used to calculate the hash value are displayed in the Explain results.

■ FileSinkOperator: Describes the storage operation of final data. If Insert statement

blocks exist in the QUERY statement, the target table name is displayed in the Explain

results.

■ LimitOperator: Describes the logic of Limit statement blocks in a QUERY statement.

The number of LIMIT is displayed in the Explain results.

■ MapjoinOperator: Similar to JoinOperator, it describes JOIN operations in large

tables.

Note:

If a QUERY statement is so complicated that Explain has too many results, API restrictions are

triggered, which leads to incomplete display of Explain results. In this case, you can split the

QUERY and perform the Explain operation on each part to understand the job structure.

10.14.10 Common table expression (CTE)
MaxCompute supports CTEs in standard SQL to improve the readability and execution efficiency

of SQL statements.

Syntax structure of CTE:

WITH

MaxCompute User Guide / 10 SQL

Issue: 20180904 439

 cte_name AS

 cte_query

 [,cte_name2 AS

 cte_query2

 ,……]

• cte_name refers to the CTE name, which must be unique in current WITH clause. The

cte_name identifier in any position of the query indicates the CTE.

• cte_query is a SELECT statement, whose result set is used to populate the CTE.

Example:

INSERT OVERWRITE TABLE srcp PARTITION (p='abc')
SELECT * FROM (
 SELECT a.key, b.value
 FROM (
 SELECT * FROM src WHERE key IS NOT NULL) a
 JOIN (
 SELECT * FROM src2 WHERE value > 0) b
 ON a.key = b.key
) c
UNION ALL
SELECT * FROM (
 SELECT a.key, b.value
 FROM (
 SELECT * FROM src WHERE key IS NOT NULL) a
 LEFT OUTER JOIN (
 SELECT * FROM src3 WHERE value > 0) b
 ON a.key = b.key AND b.key IS NOT NULL
)d;

A JOIN clause is written on both sides of UNION at the top layer, and same queries are formed on

 the left table of JOIN. You must repeat this code if writing subqueries.

The preceding statement can be rewritten as follows using the CTE:

with
 a as (select * from src where key is not null),
 b as (select * from src2 where value>0),
 c as (select * from src3 where value>0),
 d as (select a.key,b.value from a join b on a.key=b.key),
 e as (select a.key,c.value from a left outer join c on a.key=c.key
and c.key is not null)
insert overwrite table srcp partition (p='abc')
select * from d union all select * from e;

After rewriting, the subquery corresponding to "a" only need to be rewritten once, and then can

be reused subsequently. The WITH clause in the CTE specifies multiple subqueries that can be

repeatedly used like variables in the entire statement. Besides being reused, subqueries do not

have to be repeatedly nested.

MaxCompute User Guide / 11 MapReduce

440 Issue: 20180904

11 MapReduce

11.1 Java SDK

11.1.1 Java SDK
This article introduces common MapReduce interfaces.

If you are using Maven, you can search “odps-sdk-mapred” from Maven Library to get the

required Java SDK (available in different versions). The configuration is as follows:

<dependency>
 <groupId>com.aliyun.odps</groupId>
 <artifactId>odps-sdk-mapred</artifactId>
 <version>0.20.7-public</version>
</dependency>

Interface Description

MapperBase The user-defined Map function is required to inherit from this class. It
processes the record object of the input table, processes the object into key
value and outputs the value to the Reduce stage, or outputs result record to
the result table without passing through the Reduce stage. Jobs that do not
pass through the Reduce stage, but directly outputs computation results are
called Map-Only job.

ReducerBase Your customized Reduce function must inherit from this class. The set of
Values associated with a Key is reduced.

TaskContext It is one of the input parameters of multiple member functions in MapperBase
 and ReducerBase. Contains contextual information about tasks.

JobClient It is used for submitting and managing jobs. The submission mode includes
blocking (synchronous) mode or non-blocking (asynchronous) mode.

RunningJob Indicates object in job running and used for tracing MapReduce job instance
during the job running process.

JobConf Describes configuration of a MapReduce task. The JobConf object is
 generally defined in the main program (main function), then jobs are
submitted by JobClient to MaxCompute.

MapperBase

Main function interfaces are as follows.

http://search.maven.org/

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 441

Interface Description

void cleanup(TaskContext context) The Map method is called after the map stage
ends.

void map(long key, Record record, TaskContex
t context)

The Map method processes records of the
input table.

void setup(TaskContext context) The Map method is called before the map
stage begins.

ReducerBase

Main function interfaces are as follows.

Interface Description

void cleanup(TaskContext context) The Reduce method is called after the reduce
stage ends.

void reduce(Record key, Iterator<Record >
values, TaskContext context)

The Reduce method processes input table
records.

void setup(TaskContext context) The Reduce method is called before the reduce
 stage begins.

TaskContext

Main function interfaces are as follows.

Interface Description

TableInfo[] getOutputTableInfo() Gets output table information.

Record createOutputRecord() Creates the record object of the default output
table.

Record createOutputRecord(String label) Creates the record object of the output table
with a specified label.

Record createMapOutputKeyRecord() Creates the record object of Key output by Map
.

Record createMapOutputValueRecord() Creates the record object of Value output by
Map.

void write(Record record) Writes record to default output and is used for
writing output data by Reduce client, and can
be called on the Reduce client multiple times.

MaxCompute User Guide / 11 MapReduce

442 Issue: 20180904

Interface Description

void write(Record record, String label) Writes record to the given label output and is
used for writing output data by Reduce client,
and can be called on the Reduce client multiple
 times.

void write(Record key, Record value) Map writes record for an intermediate result. It
 can be called in Map function and called on
the Map client multiple times.

BufferedInputStream readResourceFileAsSt
ream(String resourceName)

Reads file type resource.

Iterator<Record > readResourceTable(String
resourceName)

Reads table type resource.

Counter getCounter(Enum<? > > name) Gets the Counter object with the specified
name.

Counter getCounter(String group, String name) Gets the Counter object with specified name
and the group name.

void progress() Reports heartbeat information to the
MapReduce framework. If a user’s method
takes a long time to process, and no framework
 is called in the process, this method can be
called to avoid task timeout. Timeout of the
framework is 600s by default.

Note:

MaxCompute TaskContext interface provides the progress function, however, this function

is to prevent the Worker from being terminated as it runs for long time and the framework

considers it as a timeout Worker. This interface is similar to sending heartbeat information to

the framework, but does not report the progress of the Worker. The default timeout schedule of

MaxCompute MapReduce Worker is 10 minutes (system default, cannot be controlled by the

user). If the schedule exceeds 10 minutes and Worker is unable to send heartbeat information

to the framework (not to call progress interface), the framework is forced to stop this Worker

and MapReduce task fails and exits. We recommend calling the progress interface regularly in

Mapper/Reducer functions to prevent the worker from being terminated by the framework.

JobConf

Main function interfaces are as follows:

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 443

Interface Description

void setResources(String resourceNames) Declares resources used in this job. Only the
declared resource can be read by TaskContext
object during Mapper/Reducer running process
.

void setMapOutputKeySchema(Column[]
schema)

Sets the Key attribute output from Mapper to
Reducer.

void setMapOutputValueSchema(Column[]
schema)

Sets the Value attribute output from Mapper to
Reducer.

void setOutputKeySortColumns(String[] cols) Sets key sort columns output from Mapper to
Reducer.

void setOutputGroupingColumns(String[] cols) Sets Key grouping columns.

void setMapperClass(Class<? extends Mapper
 > theClass)

Sets Mapper function of the job.

void setPartitionColumns(String[] cols) Sets the partition column specified in the job
. The default is all columns of Key output by
Mapper.

void setReducerClass(Class<? extends
Reducer theClass)

Sets Reducer of the job.

void setCombinerClass(Class<? extends
Reducer theClass)

Sets combiner of the job, running on Map client
. Its function is similar to performing Reduce
operation on the identical local Key values by a
 single Map.

void setSplitSize(long size) Sets the size of input slice. Unit: MB. The
default value is 640.

void setNumReduceTasks(int n) Sets the number of Reducer tasks. The default
is 1/4 of Mapper tasks.

void setMemoryForMapTask(int mem) Sets the memory size of single Worker in the
 Mapper task. Unit: MB. The default value is
2048.

void setMemoryForReduceTask(int mem) Sets the memory size of single Worker for
Reducer task. Unit: MB. The default value is
2048.

Note:

MaxCompute User Guide / 11 MapReduce

444 Issue: 20180904

• Usually, GroupingColumns are included in KeySortColumns, while KeySortColumns and

PartitionColumns are included in the Key.

• In the Map side, mappers’ output records are distributed to reducers according to the hash

values computed using PartitionColumns, and then sorted by KeySortColumns.

• In the Reduce side, after being sorted by KeySortColumns, input records are grouped as

 input groups of the reduce function sequentially. In other words , records with the same

GroupingColumns values are treated as the same input group.

JobClient

Main function interfaces are as follows:

Interface Description

static RunningJob runJob(JobConf job) Returns immediately after submitting a
MapReduce job in a synchronous (blocking)
mode.

static RunningJob submitJob(JobConf job) Returns immediately after submitting a
MapReduce job in an asynchronous (non-
blocking) mode.

RunningJob

Main function interfaces are as follows.

Interface Description

String getInstanceID() Gets an instance ID for checking run log and
job management.

boolean isComplete() Checks whether job is complete.

boolean isSuccessful() Checks whether job instance is successful.

void waitForCompletion() Waits until job instance is complete. It is
typically iused for jobs submitted is asynchrono
us mode.

JobStatus getJobStatus() Checks job instance status.

void killJob() Ends the job.

Counters getCounters() Gets Counter information.

InputUtils

Main function interfaces are as follows:

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 445

Interface Description

static void addTable(TableInfo table, JobConf
conf)

Adds table to the task input. It can be called
multiple times. The new added table is added
to input queue in an append mode.

static void setTables(TableInfo [] tables,
JobConf conf)

Adds tables to the task input.

OutputUtils

Main function interfaces are as follows:

Interface Description

static void addTable(TableInfo table, JobConf
conf)

Adds table to the task output. It can be called
multiple times. Also, adds the new added table
to output queue in an append mode.

static void setTables(TableInfo [] tables,
JobConf conf)

Adds multiple tables to the task output.

Pipeline

Pipeline is the subject of MR2 . It can be constructed by Pipeline.builder. Pipelines are as

follows:

 public Builder addMapper(Class<? extends Mapper> mapper)
 public Builder addMapper(Class<? extends Mapper> mapper,
 column [] keyschema, column [] valueschema, string []
sortcols,
 SortOrder [] order, string [] partcols,
 Class<? extends Partitioner> theClass, String[] groupCols)
 public Builder addReducer(Class<? extends Reducer> reducer)
 public Builder addReducer(Class<? extends Reducer> reducer,
 column [] keyschema, column [] valueschema, string []
sortcols,
 SortOrder [] order, string [] partcols,
 Class<? extends Partitioner> theClass, String[] groupCols)
 public setoutputkeyschema builder (Column [] keyschema)
 public setoutputvalueschema builder (Column [] valueschema)
 public setoutputkeysortcolumns builder (String [] sortcols)
 public setoutputkeysortorder builder (Sortorder [] order)
 public setpartitioncolumns builder (String [] partcols)
 public Builder setPartitionerClass(Class<? extends Partitioner>
theClass)
 void setOutputGroupingColumns(String[] cols)

Example:

 job job = new job ();
 pipeline pipeline = pipeline. builder ()
 . addmapper (Tokenizermapper. class)

MaxCompute User Guide / 11 MapReduce

446 Issue: 20180904

 . setoutputkeyschema (
 new column [] {new column ("word", OdpsType. string)})
 . setoutputvalueschema (
 new column [] {new column ("count", OdpsType. bigint)})
 . addreducer (Sumreducer. class)
 . setoutputkeyschema (
 new column [] {new column ("count", OdpsType. bigint)})
 . setoutputvalueschema (
 new column [] {new column ("word", OdpsType. string),
 new column ("count", OdpsType. bigint)})
 . addreducer (Identityreducer. class). createPipeline ();
 job. setpipeline (pipeline);
 job. addinput (...)
 job. addoutput (...)
 job. submit ();

As shown in the preceding example, a user can construct a Map in the main class, and then

consecutively get MapReduce tasks of two Reduces. If you are familiar with the basic functions of

MapReduce, then you can use MR2 as well, as the functions are similar.

Note:

• Specifically, we recommend that users must complete the configuration of MapReduce task by

 JobConf,

• as JobConf can get MapReduce task of single Reduce only after configuring Map.

Data Type

The data types supported in MapReduce include: BIGINT, STRING, DOUBLE, BOOLEAN, and

DATETIME. MaxCompute between MaxCompute data types and Java types are as follows:

MaxCompute SQL Type Bigint String Double Boolean Datetime Decimal

Java Type Long String Double Boolean date BigDecimal

11.1.2 Overview of compatible versions of the SDK
A detailed list of maxcompute compatible versions of mapreduce compatibility with hadoop

mapreduce, as shown in the following table:

Type Interface Is it

compatible

?

Mapper void map(KEYIN key, VALUEIN value, org.
apache.hadoop.mapreduce.Mapper.Context
 context)

Yes

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 447

Type Interface Is it

compatible

?

Mapper void run(org.apache.hadoop.mapreduce.
Mapper.Context context)

Yes

Mapper void setup(org.apache.hadoop.mapreduce.
Mapper.Context context)

Yes

Reducer Void cleanup (Org. Apache. hadoop.
mapreduce. reducer. Context Context)

Yes

Reducer void reduce(KEYIN key, VALUEIN value,
org.apache.hadoop.mapreduce.Reducer.
Context context)

Yes

Reducer void run(org.apache.hadoop.mapreduce.
Reducer.Context context)

Yes

Reducer void setup(org.apache.hadoop.mapreduce.
Reducer.Context context)

Yes

Partitioner int getPartition(KEY key, VALUE value, int
numPartitions)

Yes

Mapcontext (inheritance) InputSplit getInputSplit() No, throw
exception

ReduceContext nextKey() Yes

ReduceContext getValues() Yes

TaskInputOutputContext getCurrentKey() Yes

TaskInputOutputContext getCurrentValue() Yes

TaskInputOutputContext getOutputCommitter() No, throw
exception

TaskInputOutputContext nextKeyValue() Yes

TaskInputOutputContext write(KEYOUT key, VALUEOUT value) Yes

TaskAttemptContext getCounter(Enum < > counterName) Yes

TaskAttemptContext getCounter(String groupName, String
counterName)

Yes

TaskAttemptContext setStatus(String msg) Empty
implementa
tion

MaxCompute User Guide / 11 MapReduce

448 Issue: 20180904

Type Interface Is it

compatible

?

TaskAttemptContext getStatus() Empty
implementa
tion

TaskAttemptContext getTaskAttemptID() No, throw
exception

TaskAttemptContext getProgress() No, throw
exception

TaskAttemptContext progress() Yes

Job addArchiveToClassPath(Path archive) No

Job addCacheArchive(URI uri) No

Job addCacheFile(URI uri) No

Job addFileToClassPath(Path file) No

Job cleanupProgress() No

Job createSymlink() No, throw
exception

Job failTask(TaskAttemptID taskId) No

Job getCompletionPollInterval(Configuration
conf)

Empty
implementa
tion

Job getCounters() Yes

Job getFinishTime() Yes

Job getHistoryUrl() Yes

Job getInstance() Yes

Job getInstance(Cluster ignored) Yes

Job getInstance(Cluster ignored, Configuration
conf)

Yes

Job getInstance(Configuration conf) Yes

Job getInstance(Configuration conf, String
jobName)

Empty
implementa
tion

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 449

Type Interface Is it

compatible

?

Job getInstance(JobStatus status, Configuration
 conf)

No, throw
exception

Job getJobFile() No, throw
exception

Job getJobName() Empty
implementa
tion

Job getJobState() No, throw
exception

Job getPriority() No, throw
exception

Job getProgressPollInterval(Configuration conf) Empty
implementa
tion

Job getReservationId() No, throw
exception

Job getSchedulingInfo() No, throw
exception

Job getStartTime() Yes

Job getStatus() No, throw
exception

Job getTaskCompletionEvents(int startFrom) No, throw
exception

Job getTaskCompletionEvents(int startFrom, int
 numEvents)

No, throw
exception

Job getTaskDiagnostics(TaskAttemptID taskid) No, throw
exception

Job getTaskOutputFilter(Configuration conf) No, throw
exception

Job getTaskReports(TaskType type) No, throw
exception

Job getTrackingURL() Yes

MaxCompute User Guide / 11 MapReduce

450 Issue: 20180904

Type Interface Is it

compatible

?

Job isComplete() Yes

Job isRetired() No, throw
exception

Job isSuccessful() Yes

Job isUber() Empty
implementa
tion

Job killJob() Yes

Job killTask(TaskAttemptID taskId) No

Job mapProgress() Yes

Job monitorAndPrintJob() Yes

Job reduceProgress() Yes

Job setCacheArchives(URI[] archives) No, throw
exception

Job setCacheFiles(URI[] files) No, throw
exception

Job setCancelDelegationTokenUponJo
bCompletion(boolean value)

No, throw
exception

Job setCombinerClass(Class<? extends
Reducer> cls)

Yes

Job setCombinerKeyGroupingComparatorClass(
Class<? extends RawComparator> cls)

Yes

Job setGroupingComparatorClass(Class<?
extends RawComparator> cls)

Yes

Job setInputFormatClass(Class<? extends
InputFormat> cls)

Empty
implementa
tion

Job setJar(String jar) Yes

Job setJarByClass(Class<? > cls) Yes

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 451

Type Interface Is it

compatible

?

Job setJobName(String name) Empty
implementa
tion

Job setJobSetupCleanupNeeded(boolean
needed)

Empty
implementa
tion

Job setMapOutputKeyClass(Class<? > theClass
)

Yes

Job setMapOutputValueClass(Class<? >
theClass)

Yes

Job setMapperClass(Class<? extends Mapper>
cls)

Yes

Job setMapSpeculativeExecution(boolean
speculativeExecution)

Empty
implementa
tion

Job setMaxMapAttempts(int n) Empty
implementa
tion

Job setMaxReduceAttempts(int n) Empty
implementa
tion

Job setNumReduceTasks(int tasks) Yes

Job setOutputFormatClass(Class<? extends
OutputFormat> cls)

No, throw
exception

Job setOutputKeyClass(Class<? > theClass) Yes

Job setOutputValueClass(Class<? > theClass) Yes

Job setPartitionerClass(Class<? extends
Partitioner> cls)

Yes

Job setPriority(JobPriority priority) No, throw
exception

Job setProfileEnabled(boolean newValue) Empty
implementa
tion

MaxCompute User Guide / 11 MapReduce

452 Issue: 20180904

Type Interface Is it

compatible

?

Job setProfileParams(String value) Empty
implementa
tion

Job setProfileTaskRange(boolean isMap, String
 newValue)

Empty
implementa
tion

Job setReducerClass(Class<? extends Reducer
> cls)

Yes

Job setReduceSpeculativeExecution(boolean
speculativeExecution)

Empty
implementa
tion

Job setReservationId(ReservationId reservatio
nId)

No, throw
exception

Job setSortComparatorClass(Class<? extends
RawComparator> cls)

No, throw
exception

Job setSpeculativeExecution(boolean speculativ
eExecution)

Yes

Job setTaskOutputFilter(Configuration conf, org.
apache.hadoop.mapreduce.Job.TaskStatus
Filter newValue)

No, throw
exception

Job setupProgress() No, throw
exception

Job setUser(String user) Empty
implementa
tion

Job setWorkingDirectory(Path dir) Empty
implementa
tion

Job submit() Yes

Job toString() No, throw
exception

Job waitForCompletion(boolean verbose) Yes.

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 453

Type Interface Is it

compatible

?

Task Execution & Environment mapreduce.map.java.opts Empty
implementa
tion

Task Execution & Environment mapreduce.reduce.java.opts Empty
implementa
tion

Task Execution & Environment mapreduce.map.memory.mb Empty
implementa
tion

Task Execution & Environment mapreduce.reduce.memory.mb Empty
implementa
tion

Task Execution & Environment mapreduce.task.io.sort.mb Empty
implementa
tion

Task Execution & Environment mapreduce.map.sort.spill.percent Empty
implementa
tion

Task Execution & Environment mapreduce.task.io.soft.factor Empty
implementa
tion

Task Execution & Environment mapreduce.reduce.merge.inmem.thresholds Empty
implementa
tion

Task Execution & Environment mapreduce.reduce.shuffle.merge.percent Empty
implementa
tion

Task Execution & Environment mapreduce.reduce.shuffle.input.buffer.
percent

Empty
implementa
tion

Task Execution & Environment mapreduce.reduce.input.buffer.percent Empty
implementa
tion

MaxCompute User Guide / 11 MapReduce

454 Issue: 20180904

Type Interface Is it

compatible

?

Task Execution & Environment mapreduce.job.id Empty
implementa
tion

Task Execution & Environment mapreduce.job.jar Empty
implementa
tion

Task Execution & Environment mapreduce.job.local.dir Empty
implementa
tion

Task Execution & Environment mapreduce.task.id Empty
implementa
tion

Task Execution & Environment mapreduce.task.attempt.id Empty
implementa
tion

Task Execution & Environment mapreduce.task.is.map Empty
implementa
tion

Task Execution & Environment mapreduce.task.partition Empty
implementa
tion

Task Execution & Environment mapreduce.map.input.file Empty
implementa
tion

Task Execution & Environment mapreduce.map.input.start Empty
implementa
tion

Task Execution & Environment mapreduce.map.input.length Empty
implementa
tion

Task Execution & Environment mapreduce.task.output.dir Empty
implementa
tion

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 455

Type Interface Is it

compatible

?

JobClient cancelDelegationToken(Token <Delegation
TokenIdentifier> token)

No, throw
exception

JobClient close() Empty
implementa
tion

JobClient displayTasks(JobID jobId, String type,
String state)

No, throw
exception

JobClient getAllJobs() No, throw
exception

JobClient getCleanupTaskReports(JobID jobId) No, throw
exception

JobClient getClusterStatus() No, throw
exception

JobClient getClusterStatus(boolean detailed) No, throw
exception

JobClient getDefaultMaps() No, throw
exception

JobClient getDefaultReduces() No, throw
exception

JobClient getDelegationToken(Text renewer) No, throw
exception

JobClient getFs() No, throw
exception

JobClient getJob(JobID jobid) No, throw
exception

JobClient getJob(String jobid) No, throw
exception

JobClient getJobsFromQueue(String queueName) No, throw
exception

JobClient getMapTaskReports(JobID jobId) No, throw
exception

JobClient getMapTaskReports(String jobId) No, throw
exception

MaxCompute User Guide / 11 MapReduce

456 Issue: 20180904

Type Interface Is it

compatible

?

JobClient getQueueAclsForCurrentUser() No, throw
exception

JobClient getQueueInfo(String queueName) No, throw
exception

JobClient getQueues() No, throw
exception

JobClient getReduceTaskReports(JobID jobId) No, throw
exception

JobClient getReduceTaskReports(String jobId) No, throw
exception

JobClient getSetupTaskReports(JobID jobId) No, throw
exception

JobClient getStagingAreaDir() No, throw
exception

JobClient getSystemDir() No, throw
exception

JobClient getTaskOutputFilter() No, throw
exception

JobClient getTaskOutputFilter(JobConf job) No, throw
exception

JobClient init(JobConf conf) No, throw
exception

JobClient isJobDirValid(Path jobDirPath, FileSystem
fs)

No, throw
exception

JobClient jobsToComplete() No, throw
exception

JobClient monitorAndPrintJob(JobConf conf,
RunningJob job)

No, throw
exception

JobClient renewDelegationToken(Token<Delegation
TokenIdentifier> token)

No, throw
exception

JobClient run(String[] argv) No, throw
exception

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 457

Type Interface Is it

compatible

?

JobClient runJob(JobConf job) Yes

JobClient setTaskOutputFilter(JobClient.TaskStatus
Filter newValue)

No, throw
exception

JobClient setTaskOutputFilter(JobConf job, JobClient.
TaskStatusFilter newValue)

No, throw
exception

JobClient submitJob(JobConf job) Yes

JobClient submitJob(String jobFile) No, throw
exception

JobConf deleteLocalFiles() No, throw
exception

Jobconf deleteLocalFiles(String subdir) No, throw
exception

Jobconf normalizeMemoryConfigValue(long val) Empty
implementa
tion

Jobconf setCombinerClass(Class<? extends
Reducer> theClass)

Yes

Jobconf setCompressMapOutput(boolean compress
)

Empty
implementa
tion

Jobconf setInputFormat(Class<? extends
InputFormat> theClass)

No, throw
exception

JobConf setJar(String jar) No, throw
exception

JobConf setJarByClass(Class cls) No, throw
exception

JobConf setJobEndNotificationURI(String uri) No, throw
exception

JobConf setJobName(String name) Empty
implementa
tion

JobConf setJobPriority(JobPriority prio) No, throw
exception

MaxCompute User Guide / 11 MapReduce

458 Issue: 20180904

Type Interface Is it

compatible

?

JobConf setKeepFailedTaskFiles(boolean keep) No, throw
exception

JobConf setKeepTaskFilesPattern(String pattern) No, throw
exception

JobConf setKeyFieldComparatorOptions(String
keySpec)

No, throw
exception

JobConf setKeyFieldPartitionerOptions(String
keySpec)

No, throw
exception

JobConf setMapDebugScript(String mDbgScript) Empty
implementa
tion

JobConf setMapOutputCompressorClass(Class<?
extends CompressionCodec> codecClass)

Empty
implementa
tion

JobConf setMapOutputKeyClass(Class<? > theClass
)

Yes

JobConf setMapOutputValueClass(Class<? >
theClass)

Yes

JobConf setMapperClass(Class<? extends Mapper>
theClass)

Yes

JobConf setMapRunnerClass(Class<? extends
MapRunnable> theClass)

No, throw
exception

JobConf setMapSpeculativeExecution(boolean
speculativeExecution)

Empty
implementa
tion

JobConf setMaxMapAttempts(int n) Empty
implementa
tion

JobConf setMaxMapTaskFailuresPercent(int percent
)

Empty
implementa
tion

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 459

Type Interface Is it

compatible

?

JobConf setMaxPhysicalMemoryForTask(long mem) Empty
implementa
tion

JobConf setMaxReduceAttempts(int n) Empty
implementa
tion

JobConf setMaxReduceTaskFailuresPercent(int
percent)

Empty
implementa
tion

JobConf setMaxTaskFailuresPerTracker(int
noFailures)

Empty
implementa
tion

JobConf setMaxVirtualMemoryForTask(long vmem) Empty
implementa
tion

JobConf setMemoryForMapTask(long mem) Yes

JobConf setMemoryForReduceTask(long mem) Yes

JobConf setNumMapTasks(int n) Yes

JobConf setNumReduceTasks(int n) Yes

JobConf setNumTasksToExecutePerJvm(int
numTasks)

Empty
implementa
tion

JobConf setOutputCommitter(Class<? extends
OutputCommitter> theClass)

No, throw
exception

JobConf setOutputFormat(Class<? extends
OutputFormat> theClass)

Empty
implementa
tion

JobConf setOutputKeyClass(Class<? > theClass) Yes

JobConf setOutputKeyComparatorClass(Class<?
extends RawComparator> theClass)

No, throw
exception

JobConf setOutputValueClass(Class<? > theClass) Yes

JobConf setOutputValueGroupingComparator(Class
<? extends RawComparator> theClass)

No, throw
exception

MaxCompute User Guide / 11 MapReduce

460 Issue: 20180904

Type Interface Is it

compatible

?

JobConf setPartitionerClass(Class<? extends
Partitioner> theClass)

Yes

JobConf setProfileEnabled(boolean newValue) Empty
implementa
tion

JobConf setProfileParams(String value) Empty
implementa
tion

JobConf setProfileTaskRange(boolean isMap, String
 newValue)

Empty
implementa
tion

JobConf setQueueName(String queueName) No, throw
exception

JobConf setReduceDebugScript(String rDbgScript) Empty
implementa
tion

JobConf setReducerClass(Class<? extends Reducer
> theClass)

Yes

JobConf setReduceSpeculativeExecution(boolean
speculativeExecution)

Empty
implementa
tion

JobConf setSessionId(String sessionId) Empty
implementa
tion

JobConf setSpeculativeExecution(boolean speculativ
eExecution)

No, throw
exception

JobConf setUseNewMapper(boolean flag) Yes

JobConf setUseNewReducer(boolean flag) Yes

JobConf setUser(String user) Empty
implementa
tion

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 461

Type Interface Is it

compatible

?

JobConf setWorkingDirectory(Path dir) Empty
implementa
tion

FileInputFormat Not involved No, throw
exception

TextInputFormat Not involved Yes

InputSplit mapred.min.split.size. No, throw
exception

FileSplit map.input.file No, throw
exception

RecordWriter Not involved No, throw
exception

RecordReader Not involved No, throw
exception

OutputFormat Not involved No, throw
exception

OutputCommitter abortJob(JobContext jobContext, int status) No, throw
exception

OutputCommitter abortJob(JobContext context, JobStatus.
State runState)

No, throw
exception

OutputCommitter abortTask(TaskAttemptContext taskContex
t)

No, throw
exception

OutputCommitter abortTask(TaskAttemptContext taskContex
t)

No, throw
exception

OutputCommitter cleanupJob(JobContext jobContext) No, throw
exception

OutputCommitter cleanupJob(JobContext context) No, throw
exception

OutputCommitter commitJob(JobContext jobContext) No, throw
exception

OutputCommitter commitJob(JobContext context) No, throw
exception

MaxCompute User Guide / 11 MapReduce

462 Issue: 20180904

Type Interface Is it

compatible

?

OutputCommitter commitTask(TaskAttemptContext
taskContext)

No, throw
exception

OutputCommitter needsTaskCommit(TaskAttemptContext
taskContext)

No, throw
exception

OutputCommitter needsTaskCommit(TaskAttemptContext
taskContext)

No, throw
exception

OutputCommitter setupJob(JobContext jobContext) No, throw
exception

OutputCommitter setupJob(JobContext jobContext) No, throw
exception

OutputCommitter setupTask(TaskAttemptContext taskContex
t)

No, throw
exception

OutputCommitter setupTask(TaskAttemptContext taskContex
t)

No, throw
exception

Counter getDisplayName() Yes

Counter getName() Yes

Counter getValue() Yes

Counter increment(long incr) Yes

Counter setValue(long value) Yes

Counter setDisplayName(String displayName) Yes

DistributedCache CACHE_ARCHIVES No, throw
exception

DistributedCache CACHE_ARCHIVES_SIZES No, throw
exception

DistributedCache CACHE_ARCHIVES_TIMESTAMPS No, throw
exception

Distributed cache CACHE_FILES No, throw
exception

DistributedCache CACHE_FILES_SIZES No, throw
exception

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 463

Type Interface Is it

compatible

?

DistributedCache CACHE_FILES_TIMESTAMPS No, throw
exception

DistributedCache CACHE_LOCALARCHIVES No, throw
exception

DistributedCache CACHE_LOCALFILES No, throw
exception

DistributedCache CACHE_SYMLINK No, throw
exception

DistributedCache addArchiveToClassPath(Path archive,
Configuration conf)

No, throw
exception

DistributedCache addArchiveToClassPath(Path archive,
Configuration conf, FileSystem fs)

No, throw
exception

DistributedCache addCacheArchive(URI uri, Configuration
conf)

No, throw
exception

DistributedCache addCacheFile(URI uri, Configuration conf) No, throw
exception

DistributedCache addFileToClassPath(Path file, Configuration
 conf)

No, throw
exception

DistributedCache addFileToClassPath(Path file, Configuration
 conf, FileSystem fs)

No, throw
exception

DistributedCache addLocalArchives(Configuration conf, String
 str)

No, throw
exception

DistributedCache addLocalFiles(Configuration conf, String str) No, throw
exception

DistributedCache checkURIs(URI[] uriFiles, URI[] uriArchives) No, throw
exception

DistributedCache createAllSymlink(Configuration conf, File
jobCacheDir, File workDir)

No, throw
exception

DistributedCache createSymlink(Configuration conf) No, throw
exception

DistributedCache getArchiveClassPaths(Configuration conf) No, throw
exception

MaxCompute User Guide / 11 MapReduce

464 Issue: 20180904

Type Interface Is it

compatible

?

DistributedCache getArchiveTimestamps(Configuration conf) No, throw
exception

DistributedCache getCacheArchives(Configuration conf) No, throw
exception

DistributedCache getCacheFiles(Configuration conf) No, throw
exception

DistributedCache getFileClassPaths(Configuration conf) No, throw
exception

DistributedCache getFileStatus(Configuration conf, URI cache
)

No, throw
exception

DistributedCache getFileTimestamps(Configuration conf) No, throw
exception

DistributedCache getLocalCacheArchives(Configuration conf) No, throw
exception

DistributedCache getLocalCacheFiles(Configuration conf) No, throw
exception

DistributedCache getSymlink(Configuration conf) No, throw
exception

DistributedCache getTimestamp(Configuration conf, URI
cache)

No, throw
exception

DistributedCache setArchiveTimestamps(Configuration conf,
String timestamps)

No, throw
exception

DistributedCache setCacheArchives(URI[] archives,
Configuration conf)

No, throw
exception

DistributedCache setCacheFiles(URI[] files, Configuration
conf)

No, throw
exception

DistributedCache setFileTimestamps(Configuration conf,
String timestamps)

No, throw
exception

DistributedCache setLocalArchives(Configuration conf, String
 str)

No, throw
exception

DistributedCache setLocalFiles(Configuration conf, String str) No, throw
exception

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 465

Type Interface Is it

compatible

?

IsolationRunner Not involved No, throw
exception

Profiling Not involved Empty
implementa
tion

Debugging Not involved Empty
implementa
tion

Data Compression Not involved Yes

Skipping Bad Records Not involved No, throw
exception

Job Authorization mapred.acls.enabled No, throw
exception

Job Authorization mapreduce.job.acl-view-job No, throw
exception

Job Authorization mapreduce.job.acl-modify-job No, throw
exception

Job Authorization mapreduce.cluster.administrators No, throw
exception

Job Authorization mapred.queue.queue-name.acl-administer-
jobs

No, throw
exception

MultipleInputs Not involved No, throw
exception

Multi{anchor:_GoBack}pleOutputs Not involved Yes

org.apache.hadoop.mapreduce.lib.db Not involved No, throw
exception

org.apache.hadoop.mapreduce.
security

Not involved No, throw
exception

org.apache.hadoop.mapreduce.lib.
jobcontrol

Not involved No, throw
exception

org.apache.hadoop.mapreduce.lib.
chain

Not involved No, throw
exception

MaxCompute User Guide / 11 MapReduce

466 Issue: 20180904

Type Interface Is it

compatible

?

org.apache.hadoop.mapreduce.lib.db Not involved No, throw
exception

11.2 MR limits
In order to avoid that you have not paid attention to restrictions so that business stops after the

business starts , this article will summarize the MaxCompute MR restrictions to help you.

The restrictions of MaxCompute MapReduce are as follows:

Restricted

item

Value Type Configuration

item

Default

 value

Configurab

le?

Description

Memory
occupied
 by the
instance

[256MB
，
12GB]

Memory
 limit

odps.stage.
mapper(reducer
).mem and odps
.stage.mapper
(reducer).jvm.
mem

2048M
＋
1024M

Yes Memory occupied by a
single map instance or
reduce instance, including
 the framework memory (2
,048 MB by default) and
heap memory of the Java
 virtual machine (JVM) (1,
024 MB by default).

Number of
resources

256 Number
 limit

N/A None. No The number of resources
 referenced by a single
job cannot exceed 256.
The table and archive are
regarded as a unit.

Numbers of
 inputs and
outputs

1024
 and
256

Number
 limit

N/A None No The number of inputs of
 one job cannot exceed
 1024. (A partition of a
table is regarded as one
input. The number of input
 tables cannot exceed 64
). The number of outputs
 of one job cannot exceed
 256.

Number of
counters

64 Number
 limit

N/A None. No The number of custom
counters in one job cannot
 exceed 64. The group
name and counter name

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 467

Restricted

item

Value Type Configuration

item

Default

 value

Configurab

le?

Description

 of a counter must not
 contain #. The overall
length of the group name
 and the counter name of
 a counter must be within
100.

map
instance 　

[1，
100000
]

Number
 limit

odps.stage.
mapper.num

None Yes The number of map
instances of one job
 is calculated by the
framework based on the
split size. If no input table
 exists, you can set the
 value directly in odps.
stage.mapper.num. The
final number ranges from
1 to 100,000.

reduce
instance

[0，
2000]

Number
 limit

odps.stage.
reducer.num

None Yes The number of reduce
 instances of one job
 is 1/4 of that of map
instances by default. The
 reduce instance number
 configured by the user
 ranges from 0 to 2,000
. It may occur that the
data volume processed
by reduce is several times
 that processed by map.
 In this case, the reduce
 phase gets slower and
can initiate at most 2000
instances.

Number of
retries

3 Number
 limit

N/A None No The maximum number of
retries allowed for a single
 map instance or reduce
 instance is 3. Some
exceptions that do not
allow retries may cause
task execution failures.

MaxCompute User Guide / 11 MapReduce

468 Issue: 20180904

Restricted

item

Value Type Configuration

item

Default

 value

Configurab

le?

Description

Local debug
 mode

100 Number
 limit

N/A None No In local debug mode, the
number of map instances
is 2 by default and cannot
exceed 100. The number
 of reduce instances is
1 by default and cannot
exceed 100. The number
 of download records of
one input is 1 by default
and cannot exceed 100.

Number of
 times of
reading a
 resource
repeatedly

64 Number
 limit

N/A None No The number of times
that a map instance or
reduce instance reads
one resource repeatedly
cannot exceed 64 .

Resource
length

2G Length
 limit

N/A None No The total length of a
resource referenced by a
job cannot exceed 2 GB.

split size [1，) Length
 limit

odps.stage.
mapper.split.size

256M Yes The framework splits
the map based on the
configured split size, of
which the number of maps
 is then determined.

Content
length of
the string
column

8 MB Length
 limit

N/A None No The content in the
string column of the
MaxCompute table cannot
 exceed 8 MB.

Worker
running
timeout
period

［1，
3600］

Time
limit

odps.function.
timeout

600 Yes Timeout period for the
worker when the map
or reduce worker does
not read or write data or
 actively send heartbeat
 data by using context.
progress(). The default
value is 600s.

The
supported
field types

BIGINT
、
DOUBLE

Data
type
limit

N/A None No When the MR task refers
to a table, an error occurs

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 469

Restricted

item

Value Type Configuration

item

Default

 value

Configurab

le?

Description

 of table
referenced
by MR

、
STRING
、
DATETIME
、
BOOLEAN

if the table contains other
types of fields.

11.3 Summary

11.3.1 MapReduce
MaxCompute provides three versions of MapReduce programming interface:

• MaxCompute MapReduce: Native interface for MaxCompute, which is faster than other

interfaces. It is more convenient to develop a program without exposing file system.

• MR2 (Extended MapReduce): The extension to MaxCompute, which supports more complex

job scheduling logic. MapReduce is implemented in the same way as the MaxCompute native

interface.

• Hadoop compatible version: Highly compatible with Hadoop MapReduce , but not compatible

with MaxCompute native interface and MR2.

The preceding three versions are basically the same in the Basic concepts, Job submission, Input

and output, and Resource, and the only difference is the Java SDK. This article introduces the

principle of MapReduce. For more detailed description of MapReduce, see Hadoop MapReduce

Course.

Note:

You are not yet able to read or write data from the external tables through MapReduce.

Scenarios

MapReduce was originally proposed by Google as a distributed data processing model and is now

widely applied in multiple business scenarios. The following are the examples:

• Search: web crawl, flip index, PageRank.

• Web access log analytics:

http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html
https://help.aliyun.com/document_detail/27876.html
http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html
http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html

MaxCompute User Guide / 11 MapReduce

470 Issue: 20180904

▬ Analyze and mine the web access, shopping behavior characteristics to achieve personaliz

ed recommendation.

▬ Analyze user's access behavior.

• Statistics and analysis for the text:

▬ The Wordcount and TFIDF analysis of Mo Yan novels.

▬ Reference analysis and statistics of academic papers and patent documents.

▬ Wikipedia data analysis, and so on.

• Massive Data Mining: Unstructured data, spatial and temporal data, image data mining.

• Machine Learning: Supervised learning, unsupervised learning, classification algorithm such as

 decision tree, SVM, and so on..

• Natural Language Processing:

▬ Training and forecasting based on big data.

▬ Based on the corpus to construct the current matrix of words, frequent itemset data mining,

repeated document detection and so on.

• Advertisement recommendations: User-click (CTR) and purchase behavior (CVR) forecasts.

Processing data process

The processing data process of MapReduce is divided into two stages: Map and Reduce. Map

must be executed first, and then Reduce. The processing logic of Map and Reduce is defined by

the user, but must comply with the MapReduce framework protocol. The process is as follows:

1. Before executing Map, the input data must be sliced, that is, input data is divided into blocks of

equal size. Each block is processed as the input of a single Map Worker, so that multiple Map

Workers can work simultaneously.

2. After the slice is split, multiple Map Worker can work together. Each Map Worker performs

 computing after reading the data and output the result to Reduce. Because Map Worker

outputs the data, it must specify a key for each output record. The value of this Key determines

 which Reduce Worker the data has been sent to. The relationship between key value and

 Reduce Worker is an any-to-one relationship. Data with the same key is sent to the same

Reduce Worker, and a single Reduce Worker may receive data of multiple key values.

3. Before Reduce stage, MapReduce framework sorts the data according to their Key values, and

make sure data with same Key value is grouped together. If a user specifies Combiner, the

framework calls Combiner to aggregate the same key data. The user must define the logic of

Combiner. Compared to the classical MapReduce framework, the input parameter and output

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 471

parameter of Combiner must be consistent with the Reduce in MaxCompute. This processing is

generally called as Shuffle.

4. At Reduce stage, data with the same key is shuffled to the same Reduce Worker. A Reduce

 Worker receives data from multiple Map Workers. Each Reduce Worker executes Reduce

operation for multiple records of the same key. Then these multiple records become a value

through Reduce processing.

Note:

A brief introduction to the MapReduce framework is mentioned in the preceding process. For

more information, see relevant documents.

The following example uses WordCount to explain the stages of MaxCompute MapReduce.

Assumethat a text named ‘a.txt’, where each row is indicated by a number, and the frequency

of appearance of each number must be counted. The number in the text is called as‘Word’

and the number appearance occurrence is called as 'Count'. To complete this function through

MaxCompute MapReduce, the following figure illustrates the required steps:

Procedure:

1. First, text is sliced and the data in each slice is entered into a single Map Worker.

2. Map processes the input. Once Map gets a number, it sets the Count as 1. Then, output <Word

, Count>queues sequence is followed. Take ‘Word’ as the Key of output data.

3. In the initial actions of Shuffle stage, the output of each Map Worker is sorted according to

Key value (value of Word). The Combine operation is executed after sorting to accumulate

MaxCompute User Guide / 11 MapReduce

472 Issue: 20180904

the Count of same Key value (Word value) and constitute a new <Word, Count> queue. This

process is called as the combiner sorting.

4. In the later actions of Shuffle, data is transmitted to Reduce. Reduce Worker sorts the data

based on the Key value again after receiving the data.

5. At the time of processing data, each Reduce Worker adopts that same logic as that of a

Combiner by accumulating Count with the same Key value (Word value) to get the output.

6. Result.

Note:

Because the data in MaxCompute is stored in tables, the input and output of MaxCompute

MapReduce can only be a table. User-defined output is not allowed and the corresponding file

system interface is not provided.

11.3.2 Extended MapReduce
The traditional MapReduce model requires that the data must be loaded to the distributed file

 system (such as HDFS or MaxCompute table) after each round of MapReduce operation.

However, a general MapReduce application usually consists of multiple MapReduce jobs, and

each job output must be written to the disk. The following Map task is an example of a task used

 only to read the data, prepared for the subsequent Shuffle stage, but which actually results in

redundant I/O operations.

The calculation scheduling logic of MaxCompute supports more complex programming paradigm.

In the preceding scenario, the next Reduce operation can be executed after the Reduce operation

and inserting a Map operation is not necessary. In this way, MaxCompute provides an extensiona

l MapReduce model, that is, numerous Reduce operations can follow a Map operation, such as

Map>Reduce> Reduce.

Hadoop Chain Mapper/Reducer also supports analogous serial Map or Reduce operations, but

has major differences compared with the extensional MaxCompute (MR2) model.

The Hadoop Chain Mapper/Reducer is based on the traditional MapReduce model, and can only

 add one or multiple Mapper operations (it is not allowed to add Reducer operations) after the

original Mapper or Reducer. The benefits of extended MapReduce are, a user can reuse previous

 business logic of Mapper and can split one Map stage or Reduce stage into multiple Mapper

stages. The underlying scheduling and I/O model are not changed essentially.

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 473

Compared with MaxCompute , MR2 is basically consistent in a way Map/Reduce functions

are written. The main difference is in the performance. For more information, see Extended

MapReduce example.

11.3.3 Open-source MapReduce
MaxCompute offers a set of native MapReduce programming models and interfaces. The inputs

 and outputs for these interfaces are MaxCompute tables, and the data is organized to be

processed in the record format.

However, MaxCompute APIs differ significantly from APIs for the Hadoop framework. Previously

, to migrate your Hadoop MapReduce jobs to MaxCompute, firstly, you were needed to rewrite

the MapReduce code, compile, and debug the code using MaxCompute APIs, compress the final

 code into a JAR package, and finally upload the package to the MaxCompute platform. This

process is tedious and requires a lot of development and testing efforts. If you are not required to

 modify the original Hadoop MapReduce code partially, running it in MaxCompute console is the

best solution.

Now, the MaxCompute platform provides a plug-in that allows you to adapt Hadoop MapReduce

code to MaxCompute MapReduce specifications. MaxCompute offers a degree of flexibility

regarding binary-level compatibility for Hadoop MapReduce jobs. It means that, without modifying

the code, you can specify configurations to directly run original Hadoop MapReduce Jar packages

on MaxCompute. Download the development plug-in to get started. This plug-in is currently in the

testing stage, therefore, does not support custom comparators or key types.

In the following example, a WordCount program is used to introduce the basic usage of the plug-in

.

Download the HadoopMR Plug-in

Click here to download the plug-in named hadoop2openmr-1.0.jar.

Note:

This Jar package contains the dependencies with Hadoop 2.7.2. Do not include Hadoop

dependencies in the Jar packages of your jobs to avoid version conflicts.

http://repo.aliyun.com/download/hadoop2openmr-1.0.jar
http://repo.aliyun.com/download/hadoop2openmr-1.0.jar

MaxCompute User Guide / 11 MapReduce

474 Issue: 20180904

Prepare a Jar package

Compile and export the WordCount JAR package named wordcount_test.jar. The WordCount

program source code is as follows:

package com.aliyun.odps.mapred.example.hadoop;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
import java.util.StringTokenizer;
public class WordCount {
 public static class TokenizerMapper
 extends Mapper<Object, Text, Text, IntWritable>{
 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();
 public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
 StringTokenizer itr = new StringTokenizer(value.toString
());
 while (itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 context.write(word, one);
 }
 }
 }
 public static class IntSumReducer
 extends Reducer<Text,IntWritable,Text,IntWritable> {
 private IntWritable result = new IntWritable();
 public void reduce(Text key, Iterable<IntWritable> values,
 Context context
) throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 result.set(sum);
 context.write(key, result);
 }
 }
 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 Job job = Job.getInstance(conf, "word count");
 job.setJarByClass(WordCount.class);
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 475

}

Prepare the test data

1. Create input and output tables.

create table if not exists wc_in(line string);
create table if not exists wc_out(key string, cnt bigint);

2. Run Tunnel to import data to the input table.

The data in the data.txt file to be imported is as follows:

hello maxcompute
hello mapreduce

Use the Tunnel command on the MaxCompute console to import data from data.txt to wc_in.

tunnel upload data.txt wc_in;

Configure the mapping between the table and the HDFS file path

The configuration file is wordcount-table-res.conf:

{
 "file:/foo": {
 "resolver": {
 "resolver": "com.aliyun.odps.mapred.hadoop2openmr.resolver.
TextFileResolver",
 "properties": {
 "text.resolver.columns.combine.enable": "true",
 "text.resolver.seperator": "\t"
 }
 },
 "tableInfos": [
 {
 "tblName": "wc_in",
 "partSpec": {},
 "label": "__default__"
 }
],
 "matchMode": "exact"
 },
 "file:/bar": {
 "resolver": {
 "resolver": "com.aliyun.odps.mapred.hadoop2openmr.resolver.
BinaryFileResolver",
 "properties": {
 "binary.resolver.input.key.class" : "org.apache.hadoop.io.
Text",
 "binary.resolver.input.value.class" : "org.apache.hadoop.io.
LongWritable"
 }
 },
 "tableInfos": [
 {
 "tblName": "wc_out",
 "partSpec": {},

MaxCompute User Guide / 11 MapReduce

476 Issue: 20180904

 "label": "__default__"
 }
],
 "matchMode": "fuzzy"
 }
}

Parameters

The configuration is a JSON file that describes the mapping relationships between HDFS files and

 the MaxCompute tables. Generally, you must configure both the input and output. One HDFS

path corresponds to one Resolver, tableInfos, and matchMode.

• resolver: Specifies the method of processing file data. Currently, you can choose from two

built-in Resolvers: com.aliyun.odps.mapred.hadoop2openmr.resolver.TextFileResolver

and com.aliyun.odps.mapred.hadoop2openmr.resolver.BinaryFileResolver. In addition to

specifying the Resolver name, configure some properties about data parsing for the Resolver.

▬ TextFileResolver: Regards an input or output as plain text if the data is of plain text type.

When configuring an input Resolver, configure such properties as text.resolver.columns.

combine.enable and text.resolver.seperator. When text.resolver.columns.combine.enable is

 set to true, all the columns in the input table are combined into a single string based on the

 delimiter specified by text.resolver.seperator. Otherwise, the first two columns in the input

table are used as the key and value.

▬ BinaryFileResolver: Converts binary data into a type that is supported by MaxCompute, for

example, Bigint, Boolean, and Double. When configuring an output Resolver, configure the

properties binary.resolver.input.key.class and binary.resolver.input.value.class, which define

 the key and value types of the intermediate result, respectively.

• tableInfos: Specifies the MaxCompute table that corresponds to HDFS. Currently, only the

tblName parameter (table name) is configurable. The partSpec and label parameters must be

the same as the values set for the parameters in this example.

• matchMode: Specifies the path matching mode. The exact mode indicates exact matching, and

 the fuzzy mode indicates fuzzy matching. Use a regular expression in fuzzy mode to match the

 HDFS input path.

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 477

Job Submission

Use the MaxCompute command line tool odpscmd to submit jobs. For the installation and

configuration of MaxCompute command line tool, see the Console. In odpscmd, run the following

command:

jar -DODPS_HADOOPMR_TABLE_RES_CONF=./wordcount-table-res.conf -
classpath hadoop2openmr-1.0.jar,wordcount_test.jar com.aliyun.odps.
mapred.example.hadoop.WordCount /foo/bar;

Note:

• wordcount-table-res.conf is a map with /foo/bar configured.

• wordcount_test.jar is your Jar package of Hadoop MapReduce.

• com.aliyun.odps.mapred.example.hadoop.WordCount is the class name of job to be run.

• /foo/bar refers to the path on HDFS, which is mapped to wc_in and wc_out in the JSON

configuration file.

• With the mapping relation configured, manually import the Hadoop HDFS input file to wc_in

for MR calculations by using data integration functions of DataX or DataWorks, and manually

export the result wc_out to your HDFS output directory(/bar).

• In the preceding output, assume that hadoop2openmr-1.0.jar, wordcount_test.jar, and

wordcount-table-res.conf are stored in the current directory of odpscmd. If an error occurs,

make the relevant changes when specifying the configuration and -classpath.

The running process is as follows:

After running the job, check the results table wc_out to verify whether a job is complete:

MaxCompute User Guide / 11 MapReduce

478 Issue: 20180904

11.4 Function Introduction

11.4.1 Commands
The MaxCompute console provides a JAR command to run MapReduce job. The detailed syntax

is shown as follows:

Usage:
jar [<GENERIC_OPTIONS>] <MAIN_CLASS> [ARGS];
 -conf <configuration_file> Specify an application configurat
ion file
 -resources <resource_name_list> file\table resources used in
mapper or reducer, seperate by comma
 -classpath <local_file_list> classpaths used to run mainClass
 -D <name>=<value> Property value pair, which will be used to
run mainClass
 -l Run job in local mode
For example:
 jar -conf /home/admin/myconf -resources a.txt,example.jar -
classpath ../lib/example.jar:./other_lib.jar -Djava.library.path=./
native -Xmx512M mycompany.WordCount -m 10 -r 10 in out;

 <GENERIC_OPTIONS> includes the following parameters (optional parameters):

• -conf < configuration file >: Specify an JobConf configuration file。

• -resources < resource_name_list >: Indicates the resource statement used in MapReduce

running time. Generally, the resource name in which Map/Reduce function is included must be

specified in ‘resource_name_list’.

Note:

If the user has read other MaxCompute resources in the Map/Reduce function, then these

resource names also must be added in ‘source_name_list’.

Multiple resources are separated by commas (,). If you must use span project resources,

then add the prefix PROJECT/resources/, for example: -resources otherproject/

resources/resfile.

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 479

For more information about how to read the resource in the Map/Reduce function, see Use

Resource Example.

• -classpath < local_file_list >: the classpath used to specify the local JAR package of ‘main’

class (include relative paths and absolute paths).

Package names are separated using system default file delimiters. Generally, the delimiter is a

semicolon (;) in a Windows system and a comma (,) in a Linux system.

Note:

In most cases, users generally write the main class and Map/Reduce function in a package,

such as WordCount Code Example. This means that, in the running period of the example

program, mapreduce-examples.jar appears in ‘-resources’ parameter and ‘-classpath’

parameter, however, ‘-resources’ references the Map/Reduce function, and runs in a

distributed environment, while ‘-classpath’ references ‘Main’ class, and runs locally. The

specified path of the JAR package is also a local path.

• -D < prop_name >=< prop_value > : Multiple Java properties of < mainClass > in a local mode

 can be defined.

• -l: run MapReduce job in local mode, mainly used for program debugging.

User can specify the configuration file ‘JobConf’ by option ‘-conf’. This file can modify the JobConf

 settings in the SDK.

An example of a configuration file ‘JobConf’ is as follows:

<configuration>
 <property>
 <name>import.filename</name>
 <value>resource.txt</value>
 </property>
 </configuration>

In the preceding example, the variable ‘import.filename’ is defined and its value is ‘resource.txt’.

User can get this variable value through the JobConf interface in the MapReduce program.

Alternatively, users can also get the value through the JobConf interface in the SDK. For a

detailed example, see Use Resource Example.

Example:

add jar data\mapreduce-examples.jar;
 jar -resources mapreduce-examples.jar -classpath mapreduce-
examples.jar
 org.alidata.odps.mr.examples.WordCount wc_in wc_out;
 add file data\src.txt;

MaxCompute User Guide / 11 MapReduce

480 Issue: 20180904

 add jar data\mapreduce-examples.jar;
 jar -resources src.txt,mapreduce-examples.jar -classpath data\
mapreduce-examples.jar
 org.alidata.odps.mr.examples.WordCount wc_in wc_out;
 add file data\a.txt;
 add table wc_in as test_table;
 add jar data\work.jar;
 jar -conf odps-mapred.xml -resources a.txt,test_table,work.jar
 -classpath data\work.jar:otherlib.jar
 -D import.filename=resource.txt org.alidata.odps.mr.examples.
WordCount args;

11.4.2 Basic concepts
Map/Reduce

Map and Reduce support corresponding Map/Reduce methods, setup methods, and cleanup

methods. The setup method is called before the Map/Reduce method, and each worker calls it

only once.

The cleanup method is called after the map/reduce method, and each worker calls it only once.

For a detailed example, see Program examples.

Sort/Group

Some columns in output key records can be taken as sort columns, but user-defined comparator

is not supported. You can select several columns from the sort column as Group columns, but the

 user-defined Group comparator is not supported. Sort columns are used to sort your data while

Group columns are used for a Secondary Sort.

For more information, see SecondarySort Example.

Partition

Supports setting the partition column and customized partitioner. Partition columns have a higher

priority than customized partitioners.

According to Hash logic, the partitioner distributes the output data on the Map terminal to different

Reduce Workers.

Combiner

Combines adjacent records in the Shuffle stage. You can choose whether to use Combiner

according to different business logic.

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 481

Combiner helps to optimize the MapReduce computing framework and the logic of Combiner is

generally similar to Reduce. After Map outputs the data, the framework performs a local combiner

operation for the data which has the same key value on the Map terminal.

For more information, see WordCount code examples.

11.4.3 Input and Output
• Built-in data types include: BIGINT, DOUBLE, STRING, DATETIME, and BOOLEAN. User-

defined types (UDFs) are not supported.

• Multiple-table input is allowed, and the schema of input tables can be different. In a Map

function, users can obtain corresponding Table information of the current record.

• The input can be null. View as an input is not supported.

• Reduce accepts multiple outputs and can output data to different tables or different partitions

 in the same table. The schema of different outputs can be different. Different outputs are

distinguished through the label however, the default output does not need any label. An output

cannot be empty.

For more input and output examples, see Program Examples.

11.4.4 Resources
You can learn more about MaxCompute resources in the Map/Reduce section. Any Worker of

Map/Reduce can load resources to the memory for you to apply the code for further use.

For more information, see Use resource example.

11.4.5 Local run
Basic stages introduction

Local run prerequisite: By setting –local parameter in the jar command, user can simulate

MapReduce running process on the local to initiate local debugging.

At local operation time: The client downloads required meta information of input tables,

resources, and meta information of output tables from MaxCompute, and saves them into a local

directory named ‘warehouse’.

After running the program: The calculation result is output into a file in the ‘warehouse’. If the

input table and referenced resources have been downloaded in the local warehouse directory, the

MaxCompute User Guide / 11 MapReduce

482 Issue: 20180904

data and files in ‘warehouse’ directory are referenced directly during the next run time, and the

downloading process does not need to be repeated.

Difference between running locally and running distributed environments

In the local operation course, multiple Map and Reduce workers are yet to start data processing.

But these workers do not run concurrently and run serially.

The distinguishing points between the simulation process and real distributed operation are as

follows:

• A limit on the row number of input table exists. Currently, up to 100 rows of data can be

downloaded.

• Usage of resources: In a distributed environment, MaxCompute limits the size of the referenced

resource. For more information, see Application Restriction. Note that in the local running

environment, the resource size has no limits.

• Security limits: MaxCompute, MapReduce, and UDF program running in a distributed

environment are limited by Java Sandbox. Note that in local operations this limit is not

applicable.

Example:

A local operation example is as follows:

 odps:my_project> jar -l com.aliyun.odps.mapred.example.WordCount
wc_in wc_out
 Summary:
 counters: 10
 map-reduce framework
 combine_input_groups=2
 combine_output_records=2
 map_input_bytes=4
 map_input_records=1
 map_output_records=2
 map_output_[wc_out]_bytes=0
 map_output_[wc_out]_records=0
 reduce_input_groups=2
 reduce_output_[wc_out]_bytes=8
 reduce_output_[wc_out]_records=2
 OK

For a detailed WordCount example, see WordCount Code example.

If a user runs local debugging command for the first time, a path named ‘warehouse’ appears in

the current path after the command is executed successfully. The directory structure of warehouse

is as follows:

<warehouse>

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 483

 |____my_project(project directory)
 |____ <__tables__>
 | |__wc_in(table directory)
 | | |____ data(file)
 | | |
 | | |____ <__schema__> (file)
 | |__wc_out(table data directory)
 | |____ data(file)
 | |
 | |____ <__schema__> (file)
 |
 |____ <__resources__>
 |
 |___table_resource_name (table resource)
 | |____<__ref__>
 |
 |___ file_resource_name (file resource)

• The same level directory of myproject indicates the project. ‘wcin’ and ‘wc_out’ indicate tables.

The table files read by user in JAR command is downloaded into this directory.

• The contents in <__schema__> indicate table meta information. The format is defined as

follows:

 project=local_project_name
 table=local_table_name
 columns=col1_name:col1_type,col2_name:col2_type
 partitions=p1:STRING,p2:BIGINT

Columns and column types are separated by colons (:), and columns are separated by

commas (,). Corresponding to <__schema__> file, the Project name and Table name must

be declared, such as project_name.table_name, and separated by a comma (,) and

column definition. project_name.table_name,col1_name:col1_type,col2_name:

col2_type,……

• The file ‘data; indicates the table data. The column quantity and corresponding data must

comply with the definition in schema_. Moreover, extra columns and missing columns are not

allowed.

The content of Cite Left_schema_ Cite Rightin wc_in is as follows:

my_project.wc_in,key:STRING,value:STRING

The content of ‘data’ is as follows:

0,2

The client downloads the meta information of table and part of the data from MaxCompute, and

save them into the two preceding files. If you run this example again, the data in the directory

‘wc_in’ is used directly and will not be downloaded again.

MaxCompute User Guide / 11 MapReduce

484 Issue: 20180904

Note:

The function to download the data from MaxCompute is only supported in MapReduce local

operation mode. If the local debugging is executed in Eclipse development plug-in, the data of

MaxCompute cannot be downloaded to local.

The content of Cite Left_schema_ Cite Right in wc_out is as follows:

my_project.wc_out,key:STRING,cnt:BIGINT

The content of ‘data’ is as follows:

 0,1
 2,1

The client downloads the meta information of wc_out from MaxCompute and saves it to the

file Cite Left_schema_ Cite Right. The file ‘data’ is a result data file generated after the local

operation.

Note:

• Users can also edit Cite Left_schema_ Cite Right file and ‘data’ and then place these two

files into the corresponding table directory.

• When running on the local, the client can detect the table directory already exists, and does

 not download the information of this table from MaxCompute. The table directory on the

local can be a table that does not exist in MaxCompute.

11.5 Program Example

11.5.1 Join samples
The MaxCompute MapReduce framework does not support join logic on its own. Therefore, you

have to apply join samples of the data in your own map/reduce function which requires you to do

some extra work.

Suppose,to join two tables (Key bigint, value string) and (key bigint, value string), the output table

 is chain bigint (value1 string, value2 string), where value1 and value2 are the values of the

scanner.

https://www.alibabacloud.com/help/zh/doc-detail/27981.html

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 485

Prerequisites

1. Prepare the jar package for the test program, assuming the name is maid and the local storage

 path is data \ resources.

2. Prepare tables and resources for testing the Join operation.

• Create tables:

create table mr_Join_src1(key bigint, value string);
create table mr_Join_src2(key bigint, value string);
create table mr_Join_out(key bigint, value1 string,value2 string);

• Add resources:

add jar data\resources\mapreduce-examples.jar -f;

3. Run tunnel to import the data:

tunnel upload data1 mr_Join_src1;
tunnel upload data2 mr_Join_src2;

Import the contents of the maid data as follows:

 1, hello
 2, ODPS

Import the contents of the maid data as follows:

1, ODPS
3,hello
4, ODPS

Procedure

Join in odpscmd as follows:-

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.Join mr_Join_src1 mr_Join_src2
mr_Join_out;

Expected output

After the job is completed successfully, the contents of the table maid are output, as follows:

+------------+------------+------------+
| key | value1 | value2 |
+------------+------------+------------+
| 1 | hello | odps |

MaxCompute User Guide / 11 MapReduce

486 Issue: 20180904

+------------+------------+------------+

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 Import java. util. arraylist;
 import java.util.Iterator;
 import java.util.List;
 import org.apache.commons.logging.Log;
 import org.apache.commons.logging.LogFactory;
 Import com. aliyun. ODPS. Data. record;-
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 /**
 * Join, mr_Join_src1/mr_Join_src2(key bigint, value string),
mr_Join_out(key
 * bigint, value1 string, value2 string)
 *
 */
 public class Join {
 public static final Log LOG = LogFactory.getLog(Join.class);
 public static class JoinMapper extends MapperBase {
 private Record mapkey;
 private Record mapvalue;
 private long tag;
 @Override
 public void setup(TaskContext context) throws IOException{
 mapkey = context.createMapOutputKeyRecord();
 mapvalue = context.createMapOutputValueRecord();
 tag = context.getInputTableInfo().getLabel().equals("left
") ? 0: 1;
 }
 @Override
 public void map(long key,Record record, TaskContext context)
 Throws ioexception {
 mapkey.set(0,record.get(0));
 mapkey.set(1,tag);
 for (int i = 1; i< record.getColumnCount();i++) {
 mapvalue.set(i -1, record.get(i));
 }
 context.write(mapkey,mapvalue);
 }
 }
 public static class JoinReducer extends ReducerBase {
 private Record result = null;
 @Override
 public void setup(TaskContext context) throws IOException{
 result = context.createOutputRecord();
 }
 // Reduce function all records for each input will be the same
 key
 @Override
 public void reduce(Record key,Iterator<Record>values,
TaskContext context)

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 487

 Throws ioexception {
 long k = key.getBigint(0);
 List<Object[]> leftValues = new ArrayList<Object[]>();
 // Is a key + tag combination because it is set up, this
ensures that record data in the left table is in front of the input
record for the reduce function.
 while(values.hasNext()) {
 Record value = values.next();
 long tag = (Long)key.get(1);
 // The data for the left table is first cached into memory
 if (tag == 0) {
 leftValues.add(value.toArray().clone());
 }else {
 // The data that touches the right table is output by a
join with all the data on the left table, the data for the left table
is all in memory.
// This implementation is just a functional display with relatively
low performance and is not recommended for practical production.
 for (Object[] leftValue :leftValues) {
 int index = 0;
 result.set(index++,k);
 for (int i = 0;i<leftValue.length;i++) {
 result.set(index++,leftValue[i]);
 }
 for (int i = 0;i< value.getColumnCount();i++) {
 result.set(index++,value.get(i));
 }
 context.write(result);
 }
 }
 }
 }
 }
 public static void main(String[] args) throws Exception {
 if (args.length ! = 3) {
 System.err.println("Usage: Join <input table1> <input table2
> <out>");
 System.exit(2);
 }
 JobConf job = new JobConf();
 job.setMapperClass(JoinMapper.class);
 job.setReducerClass(JoinReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("key:bigint,
tag:bigint"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("value:
string"));
 job.setPartitionColumns(new String[]{"key"});
 job.setOutputKeySortColumns(new String[]{"key", "tag"});
 job.setOutputGroupingColumns(new String[]{"key"});
 job.setNumReduceTasks(1);
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
label("left").build(), job);
 InputUtils.addTable(TableInfo.builder().tableName(args[1]).
label("right").build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[2]).
build(), job);
 Jobclient. runjob (job);
 }

MaxCompute User Guide / 11 MapReduce

488 Issue: 20180904

 }

11.5.2 Sleep samples
Prerequisites

1. Prepare the Jar package of the test program. Assume the package is named mapreduce-

examples.jar, and the local storage path is data\resources.

2. Prepare resources for testing the SleepJob operation.

Add jar data \ resources \ mapreduce-examples.jar-f;

Procedure

Run Sleep on the odpscmd is as follows:

 jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
 com.aliyun.odps.mapred.open.example.Sleep 10;
 jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
 com.aliyun.odps.mapred.open.example.Sleep 100;

Expected output

The job runs successfully. The run time of different sleep durations can be compared to determine

 the effect.

Sample code

package com.aliyun.odps.mapred.open.example;
import java.io.IOException;
import com.aliyun.odps.mapred.JobClient;
Import com.aliyun.odps.mapred.mapperbase;
import com.aliyun.odps.mapred.conf.JobConf;
public class Sleep {
 private static final String SLEEP_SECS = "sleep.secs";
 public static class MapperClass extends MapperBase {
 // Because the data is not entered, the map function is not
executed, and the related logic can only be written in setup
 @Override
 public void setup(TaskContext context) throws IOException {
 try {
 // Get the number of sleep seconds set in jobconf to sleep
 Thread.sleep(context.getJobConf().getInt(SLEEP_SECS, 1) * 1000
);
 } catch (InterruptedException e) {
 throw new RuntimeException(e);
 }
 }
 }
 public static void main(String[] args) throws Exception {
 if (args.length ! = 1) {
 System.err.println("Usage: Sleep <sleep_secs>");
 System.exit(-1);

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 489

 }
 JobConf job = new JobConf();
 job.setMapperClass(MapperClass.class);
 // This instance is also a maponly, so you need to set the
reductor number to 0.
 job.setNumReduceTasks(0);
 // Because there is no input table, the number of mapper needs to
be specified explicitly by the user
 job.setNumMapTasks(1);
 job.set(SLEEP_SECS, args[0]);
 JobClient.runJob(job);
 }
}

11.5.3 Unique samples
Prerequisites

1. Prepare the JAR package of the test program. Assume the package is named mapreduce-

examples.jar, and the local storage path is data\resources.

2. Prepare tables and resources for testing the Unique operation.

• Create tables:

create table ss_in(key bigint, value bigint);
create table ss_out(key bigint, value bigint);

• Add resources:

add jar data\resources\mapreduce-examples.jar -f;

3. Use the tunnel command to import the data.

tunnel upload data ss_in;

The contents of data file are imported into the table ss_in.

 1,1
 1,1
 2,2
 2,2

Procedure

Run Unique on the odpscmd, as follows:

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar

MaxCompute User Guide / 11 MapReduce

490 Issue: 20180904

com.aliyun.odps.mapred.open.example.Unique ss_in ss_out key;

Expected output

The content of output table ss_out is as follows:

+------------+------------+
| key | value |
+------------+------------+
| 1 | 1 |
| 2 | 2 |
+------------+------------+

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 Import java. util. iterator;
 Import com. aliyun. ODPS. Data. record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 /**
 * Unique Remove duplicate words
 *
 **/
 public class Unique {
 public static class OutputSchemaMapper extends MapperBase {
 private Record key;
 private Record value;
 @Override
 public void setup(TaskContext context) throws IOException{
 key = context.createMapOutputKeyRecord();
 value = context.createMapOutputValueRecord();
 }
 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 Throws ioexception {
 long left = 0;
 long right = 0;
 if (record.getColumnCount() > 0) {
 left = (Long) record.get(0);
 if (record.getColumnCount() > 1) {
 right = (Long) record.get(1);
 }
 key.set(new Object[] { (Long) left, (Long) right });
 value.set(new Object[] { (Long) left, (Long) right });
 context.write(key, value);
 }
 }
 }
 public static class OutputSchemaReducer extends ReducerBase {
 private Record result = null;

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 491

 @Override
 public void setup(TaskContext context) throws IOException{
 result = context.createOutputRecord();
 }
 @Override
 public void reduce(Record key,Iterator<Record>values,
TaskContext context)
 Throws ioexception {
 result.set(0, key.get(0));
 while(values.hasNext()) {
 Record value = values.next();
 result.set(1, value.get(1));
 }
 context.write(result);
 }
 }
 public static void main(String[] args) throws Exception {
 if (args.length > 3 || args.length < 2) {
 System.err.println("Usage: unique <in> <out> [key|value|all
]");
 System.exit(2);
 }
 String ops = "all";
 if (args.length == 3) {
 Ops = ARGs [2];
 }
 // Reduce input grouping is determined by the settings of the
scanner, this parameter if it is not set
 /Default is mapoutputkeyschema
 // Key Unique
 if (ops.equals("key")) {
 JobConf job = new JobConf();
 job.setMapperClass(OutputSchemaMapper.class);
 job.setReducerClass(OutputSchemaReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("key:bigint
,value:bigint"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("key:
bigint,value:bigint"));
 job.setPartitionColumns(new String[] { "key" });
 job.setOutputKeySortColumns(new String[] { "key", "value
" });
 job.setOutputGroupingColumns(new String[] { "key" });
 job.set("tablename2", args[1]);
 job.setNumReduceTasks(1);
 job.setInt("table.counter", 0);
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 Jobclient. runjob (job);
 }
 // Key&Value Unique
 if (ops.equals("all")) {
 JobConf job = new JobConf();
 job.setMapperClass(OutputSchemaMapper.class);
 job.setReducerClass(OutputSchemaReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("key:bigint
,value:bigint"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("key:
bigint,value:bigint"));
 job.setPartitionColumns(new String[] { "key" });

MaxCompute User Guide / 11 MapReduce

492 Issue: 20180904

 job.setOutputKeySortColumns(new String[] { "key", "value
" });
 job.setOutputGroupingColumns(new String[] { "key", "value
" });
 Job. Set ("tablename2", argS [1]);
 job.setNumReduceTasks(1);
 job.setInt("table.counter", 0);
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 Jobclient. runjob (job);
 }
 // Value Unique
 if (ops.equals("value")) {
 JobConf job = new JobConf();
 job.setMapperClass(OutputSchemaMapper.class);
 job.setReducerClass(OutputSchemaReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("key:bigint
,value:bigint"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("key:
bigint,value:bigint"));
 job.setPartitionColumns(new String[] { "value" });
 job.setOutputKeySortColumns(new String[] { "value" });
 job.setOutputGroupingColumns(new String[] { "value" });
 job.set("tablename2", args[1]);-
 job.setNumReduceTasks(1);
 job.setInt("table.counter", 0);
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 Jobclient. runjob (job);
 }
 }
 }

11.5.4 Sort samples
Prerequisites

1. Prepare the Jar package of the test program. Assume the package is named mapreduce-

examples.jar, and the local storage path is data\resources.

2. Prepare tables and resources for testing the SORT operation.

• Create tables:

create table ss_in(key bigint, value bigint);

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 493

create table ss_out(key bigint, value bigint);

• Add resources:

add jar data\resources\mapreduce-examples.jar -f;

3. Use the tunnel command to import the data.

tunnel upload data ss_in;

The contents of data file in the table ss_in are as follows:

 2,1
 1,1
 3,1

Procedure

Run Sort on the odpscmd, as follows:

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.Sort ss_in ss_out;

Expected output

The content of the output table ss_out is as follows:

+------------+------------+
| key | value |
+------------+------------+
| 1 | 1 |
| 2 | 1 |
| 3 | 1 |
+------------+------------+

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 import java.util.Date;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.example.lib.IdentityReducer;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 /**
 * This is the trivial map/reduce program that does absolutely
nothing other
 * than use the framework to fragment and sort the input values.
 *
 **/

MaxCompute User Guide / 11 MapReduce

494 Issue: 20180904

 public class Sort {
 static int printUsage() {
 System.out.println("sort <input> <output>");
 return -1;
 }
 /**
 * Implements the identity function, mapping record's first two
columns to
 * outputs.
 **/
 public static class IdentityMapper extends MapperBase {
 private Record key;
 private Record value;
 @Override
 public void setup(TaskContext context) throws IOException{
 key = context.createMapOutputKeyRecord();
 value = context.createMapOutputValueRecord();
 }
 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 Throws IOException {
 Key.set (new object [] {(long) record.get (0)});
 value.set(new Object[] { (Long) record.get(1) });
 context.write(key, value);
 }
 }
 /**
 * The main driver for sort program. Invoke this method to
submit the
 * map/reduce job.
 *
 * @throws IOException
 * When there is communication problems with the job tracker.
 **/
 public static void main(String[] args) throws Exception {
 JobConf jobConf = new JobConf();
 jobConf.setMapperClass(IdentityMapper.class);
 jobConf.setReducerClass(IdentityReducer.class);
 // For global order, the number of reducers is set to 1, all
the data will be concentrated on a reducer.
 // Can be used only for small volumes of data, which need to
be considered in other ways, such as terasort.
 jobConf.setNumReduceTasks(1);
 Jobconf.setmapoutputkeyschema schemautils schemeiutils.
fromstring ("key: bigint "));
 jobConf.setMapOutputValueSchema(SchemaUtils.fromString("value:
bigint"));
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), jobConf);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), jobConf);
 Date starttime = new date ();
 System.out.println("Job started: " + startTime);
 JobClient.runJob(jobConf);
 Date end_time = new Date();
 System.out.println("Job ended: " + end_time);
 System.out.println("The job took "
 + (end_time.getTime() - startTime.getTime()) / 1000 + "
seconds.") ;
 }

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 495

 }

11.5.5 Partition samples
The following example takes Partition as input and output.

Example 1:

 public static void main(String[] args) throws Exception {
 JobConf job = new JobConf();

 LinkedHashMap<String, String> input = new LinkedHashMap<String,
String>();
 input.put("pt", "123456");
 InputUtils.addTable(TableInfo.builder().tableName("input_table").
partSpec(input).build(), job);
 LinkedHashMap<String, String> output = new LinkedHashMap<String,
String>();
 output.put("ds", "654321");
 Outpututils. addtable (tableinfo. builder (). tablename ("
output_table "). partspec (output). build (), job);
 JobClient.runJob(job);

Example 2:

 package com.aliyun.odps.mapred.open.example;

 public static void main(String[] args) throws Exception {
 if (args.length ! = 2) {
 System.err.println("Usage: WordCount <in_table> <out_table
>");
 System.exit(2);

 JobConf job = new JobConf();
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(SumCombiner.class);
 job.setReducerClass(SumReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("word:string
"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("count:
bigint"));
 Account account = new AliyunAccount("my_access_id", "
my_access_key");
 Odps odps = new Odps(account);
 odps.setEndpoint("odps_endpoint_url");
 odps.setDefaultProject("my_project");
 Table table = odps.tables().get(tblname);
 TableInfoBuilder builder = TableInfo.builder().tableName(
tblname);
 for (Partition p : table.getPartitions()) {
 if (applicable(p)) {
 LinkedHashMap<String, String> partSpec = new LinkedHashMap
<String, String>();
 for (String key : p.getPartitionSpec().keys()) {
 partSpec.put(key, p.getPartitionSpec().get(key));

 InputUtils.addTable(builder.partSpec(partSpec).build(),
conf);

MaxCompute User Guide / 11 MapReduce

496 Issue: 20180904

 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 Jobclient. runjob (job);

Note:

• The preceding example combines the MaxCompute SDK and MapReduce SDK to achieve a

MapReduce task.

• The code cannot be compiled and is only an example of main functions.

• The Applicable function is user logic that determines whether the Partition can be used as the

input of MapReduce job.

11.5.6 Pipeline samples
Prerequisites

1. Prepare the Jar package of the test program. Assume the package is named mapreduce-

examples.jar, and the local storage path is data\resources.

2. Prepare tables and resources for testing the the WordCountPipeline operation.

• Create tables:

create table wc_in (key string, value string);
create table wc_out(key string, cnt bigint);

• Add resources:

add jar data\resources\mapreduce-examples.jar -f;

3. Use the tunnel command to import the data:

tunnel upload data wc_in;

The data imported into the wc_in the table wc_in is as follows:

hello,odps

Procedure

Run WordCountPipeline on the odpscmd, as follows:

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 497

com.aliyun.odps.mapred.open.example.WordCountPipeline wc_in wc_out;

Expected output

The content of output table wc_out is as follows:

+------------+------------+
| key | cnt |
+------------+------------+
| hello | 1 |
| odps | 1 |
+------------+------------+

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 Import java. util. iterator;
 import com.aliyun.odps.Column;
 import com.aliyun.odps.OdpsException;
 import com.aliyun.odps.OdpsType;
 Import com. aliyun. ODPS. Data. record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.Job;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.pipeline.Pipeline;
 public class WordCountPipelineTest {
 public static class TokenizerMapper extends MapperBase {
 Record word;
 Record one;
 @Override
 public void setup(TaskContext context) throws IOException{
 word = context.createMapOutputKeyRecord();
 one = context.createMapOutputValueRecord();
 one.setBigint(0, 1L);
 }
 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 Throws ioexception {
 for (int i = 0; i < record.getColumnCount(); i++) {
 String[] words = record.get(i).toString().split("\\s+");
 for (String w : words) {
 word.setString(0, w);
 context.write(word, one);
 }
 }
 }
 }
 public static class SumReducer extends ReducerBase {
 private Record value;
 @Override
 public void setup(TaskContext context) throws IOException{
 value = context.createOutputValueRecord();
 }
 @Override
 public void reduce(Record key,Iterator<Record>values,
TaskContext context)
 Throws ioexception {

MaxCompute User Guide / 11 MapReduce

498 Issue: 20180904

 Long Count = 0;
 while(values.hasNext()) {
 Record val = values.next();
 count += (Long) val.get(0);
 }
 value.set(0, count);
 context.write(key, value);
 }
 }
 public static class IdentityReducer extends ReducerBase {
 private Record result;
 @Override
 public void setup(TaskContext context) throws IOException{
 result = context.createOutputRecord();
 }
 @Override
 public void reduce(Record key,Iterator<Record>values,
TaskContext context)
 Throws ioexception {
 while (values.hasNext()) {
 result.set(0, key.get(0));
 result.set(1, values.next().get(0));
 context.write(result);
 }
 }
 }
 public static void main(String[] args) throws OdpsException {
 if (args.length ! = 2) {
 System.err.println("Usage: WordCountPipeline <in_table> <
out_table>");
 System.exit(2);
 }
 Job job = new Job();
 /***
 * In the process of constructing pipeline, if you do not
specify mapper's OutputKeySortColumns，PartitionColumns，OutputGrou
pingColumns,
 * the framework defaults to its OutputKey as the default
configuration for the three
 ***/
 Pipeline pipeline = Pipeline.builder()
 . Addmapper (maid. Class)
 .setOutputKeySchema(
 new Column[] { new Column("word", OdpsType.STRING
) })
 .setOutputValueSchema(
 new Column[] { new Column("count", OdpsType.BIGINT
) })
 .setOutputKeySortColumns(new String[] { "word" })
 .setPartitionColumns(new String[] { "word" })
 .setOutputGroupingColumns(new String[] { "word" })
 .addReducer(SumReducer.class)
 .setOutputKeySchema(
 new Column[] { new Column("word", OdpsType.STRING
) })
 .setOutputValueSchema(
 new Column[] { new Column("count", OdpsType.BIGINT
)})
 .addReducer(IdentityReducer.class).createPipeline();
 // Set pipeline to jobconf and jobconf if you need to set the
assemblyer
 job.setPipeline(pipeline);

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 499

 //Set table information for Input Output
 job.addInput(TableInfo.builder().tableName(args[0]).build());
 job.addOutput(TableInfo.builder().tableName(args[1]).build());
 // Job submit and wait for end
 job.submit();
 job.waitForCompletion();
 System.exit(job.isSuccessful() == true ? 0 : 1);
 }
 }

11.5.7 WordCount samples
Prerequisites

1. Prepare a Jar package of the test program. Assume the package is named mapreduce-

examples.jar. The local storage path is data\resources.

• Create tables:

create table wc_in (key string, value string);
create table wc_out(key string, cnt bigint);

• Add resources:

add jar data\resources\mapreduce-examples.jar -f;

2. Prepare tables and resources for testing the WordCount operation.

3. Run tunnel to import data.

tunnel upload data wc_in;

The contents of data file imported into the table wc_in, as follows:

hello,odps

Procedure

Run WordCount in odpscmd.

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.WordCount wc_in wc_out

Expected output

The content of output table wc_out is as follows:

+------------+------------+
| key | cnt |
+------------+------------+
| hello | 1 |
| odps | 1 |

MaxCompute User Guide / 11 MapReduce

500 Issue: 20180904

+------------+------------+

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 Import java. util. iterator;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 public class WordCount {
 public static class TokenizerMapper extends MapperBase {
 private Record word;
 private Record one;
 @Override
 public void setup(TaskContext context) throws IOException{
 word = context.createMapOutputKeyRecord();
 one = context.createMapOutputValueRecord();
 one.set(new Object[] { 1L });
 System.out.println("TaskID:" + context.getTaskID().toString
());
 }
 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 throws IOException {
 for (int i = 0; i < record.getColumnCount(); i++) {
 word.set(new Object[] { record.get(i).toString() });
 context.write(word, one);
 }
 }
 }
 /**
 * A combiner class that combines map output by sum them.
 **/
 public static class SumCombiner extends ReducerBase {
 private Record count;
 @Override
 public void setup(TaskContext context) throws IOException{
 count = context.createMapOutputValueRecord();
 }
 // Assemblyer implements the same interface as reducer, you
can immediately reduce the output of the mapper for a reduce that is
performed locally on the mapper.
 @Override
 public void reduce(Record key,Iterator<Record>values,
TaskContext context)
 throws IOException {
 long c = 0;
 while(values.hasNext()) {
 Record val = values.next();
 c += (Long) val.get(0);
 }
 count.set(0, c);

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 501

 context.write(key, count);
 }
 }
 /**
 * A reducer class that just emits the sum of the input values.
 **/
 public static class SumReducer extends ReducerBase {
 private Record result = null;
 @Override
 public void setup(TaskContext context) throws IOException{
 result = context.createOutputRecord();
 }
 @Override
 public void reduce(Record key,Iterator<Record>values,
TaskContext context)
 Throws ioexception {
 Long Count = 0;
 while(values.hasNext()) {
 Record val = values.next();
 count += (Long) val.get(0);
 }
 result.set(0, key.get(0));
 result.set(1, count);
 context.write(result);
 }
 }
 public static void main(String[] args) throws Exception {
 if (args.length ! = 2) {
 System.err.println("Usage: WordCount <in_table> <out_table
>");
 System.exit(2);
 }
 JobConf job = new JobConf();
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(SumCombiner.class);
 job.setReducerClass(SumReducer.class);
//The schema that sets the key and value of the mapper's intermediate
result, the mapper's intermediate output is also the form of a record.
 job.setMapOutputKeySchema(SchemaUtils.fromString("word:string
"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("count:
bigint"));
 //Set input and output table information
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 Jobclient. runjob (job);
 }

MaxCompute User Guide / 11 MapReduce

502 Issue: 20180904

 }

11.5.8 MapOnly samples
For MapOnly jobs, Map directly sends < Key, Value > pairs to tables on MaxCompute. You only

need to specify the output table. However, you can skip specifying the Key/Value metadata to be

output by Map.

Prerequisites

1. Prepare a JAR package of the test program. Assume the package is named mapreduce-

examples.jar,the local storage path is data\resources.

2. Prepare tables and resources for testing the MapOnly operation.

• Create tables:

create table wc_in (key string, value string);
create table wc_out(key string, cnt bigint);

• Add resources:

add jar data\resources\mapreduce-examples.jar -f;

3. Use the tunnel command to import the data:

tunnel upload data wc_in;

The contents of data file are imported into the “mr_src” table:

 hello,odps
 hello,odps

Procedure

Run MapOnly in odpscmd:

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.MapOnly wc_in wc_out map

Expected output

The content of output table wc_out is as follows:

+------------+------------+
| key | cnt |
+------------+------------+
| hello | 1 |
| hello | 1 |

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 503

+------------+------------+

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.mapred.JobClient;
 Import com. aliyun. ODPS. mapred. mapperbase;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.data.TableInfo;
 public class MapOnly {
 public static class MapperClass extends MapperBase {
 @Override
 public void setup(TaskContext context) throws IOException{
 boolean is = context.getJobConf().getBoolean("option.mapper.
setup", false);
 // The Main function sets option.mapper.setup to true in
jobconf to execute the following logic.
 if (is) {
 Record result = context.createOutputRecord();
 result.set(0, "setup");
 result.set(1, 1L);
 context.write(result);
 }
 }
 @Override
 public void map(long key, Record record, TaskContext context)
throws IOException {
 boolean is = context.getJobConf().getBoolean("option.mapper.
map", false);
 //The Main function sets option.mapper.map to true in
jobconf to execute the following logic.
 if (is) {
 Record result = context.createOutputRecord();
 result.set(0, record.get(0));
 result.set(1, 1L);
 context.write(result);
 }
 }
 @Override
 public void cleanup(TaskContext context) throws IOException {
 boolean is = context.getJobConf().getBoolean("option.mapper.
cleanup", false);
 //The Main function sets option.mapper.cleanup to true in
jobconf to execute the following logic.
 if (is) {
 Record result = context.createOutputRecord();
 result.set(0, "cleanup");
 result.set(1, 1L);
 context.write(result);
 }
 }
 }
 public static void main(String[] args) throws Exception {
 if (args.length ! = 2 && args.length ! = 3) {
 System.err.println("Usage: OnlyMapper <in_table> <out_table>
 [setup|map|cleanup]");

MaxCompute User Guide / 11 MapReduce

504 Issue: 20180904

 System.exit(2);
 }
 JobConf job = new JobConf();
 job.setMapperClass(MapperClass.class);
 // For maponly jobs, the number of reducers must be explicitly
 set to 0
 job.setNumReduceTasks(0);
 //Set table information for Input Output
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 if (args.length == 3) {
 String options = new String(args[2]);
 //Jobconf can set custom key, value, and getJobConf can get
relevant settings in mapper through getJobConf of context.
 if (options.contains("setup")) {
 job.setBoolean("option.mapper.setup", true);
 }
 if (options.contains("map")) {
 job.setBoolean("option.mapper.map", true);
 }
 if (options.contains("cleanup")) {
 job.setBoolean("option.mapper.cleanup", true);
 }
 }
 Jobclient. runjob (job);
 }
 }

11.5.9 Multi-input and Output
Prerequisites

1. Prepare a Jar package of the test program. Assume the package is named mapreduce-

examples.jar, and the local storage path is The local storage path is data\

resources.

2. Prepare tables and resources for testing the multi-input and output operations.

• Create tables:

create table wc_in1(key string, value string);
create table wc_in2(key string, value string);
create table mr_multiinout_out1 (key string, cnt bigint);
create table mr_multiinout_out2 (key string, cnt bigint)
partitioned by (a string, b string);
alter table mr_multiinout_out2 add partition (a='1', b='1');
alter table mr_multiinout_out2 add partition (a='2', b='2');

• Add resources:

add jar data\resources\mapreduce-examples.jar -f;

3. Run tunnel to import data.

tunnel upload data1 wc_in1;

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 505

tunnel upload data2 wc_in2;

The data imported into the wc_in1 table is as follows:

 hello,odps

The data imported into the wc_in2 table is as follows:

 hello,world

Procedure

Run MultipleInOut in odpscmd.

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.MultipleInOut wc_in1,wc_in2
mr_multiinout_out1,mr_multiinout_out2|a=1/b=1|out1,mr_multiinout_out2|
a=2/b=2|out2;

Expected output

The content of ‘mr_multiinout_out1’ is as follows:

+------------+------------+
| key | cnt |
+------------+------------+
| default | 1 |
+------------+------------+

The content of ‘mr_multiinout_out2’ is as follows:

+--------+------------+---+---+
| key | cnt | a | b |
+--------+------------+---+---+
| odps | 1 | 1 | 1 |
| world | 1 | 1 | 1 |
| out1 | 1 | 1 | 1 |
| hello | 2 | 2 | 2 |
| out2 | 1 | 2 | 2 |
+--------+------------+---+---+

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 Import java.util.iterator;
 import java.util.LinkedHashMap;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;

MaxCompute User Guide / 11 MapReduce

506 Issue: 20180904

 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 /**
 * Multi input & output example.
 **/
 public class MultipleInOut {
 public static class TokenizerMapper extends MapperBase {
 Record word;
 Record one;
 @Override
 public void setup(TaskContext context) throws IOException{
 word = context.createMapOutputKeyRecord();
 one = context.createMapOutputValueRecord();
 one.set(new Object[] { 1L });
 }
 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 Throws ioexception {
 for (int i = 0; i < record.getColumnCount(); i++) {
 word.set(new Object[] { record.get(i).toString() });
 context.write(word, one);
 }
 }
 }
 public static class SumReducer extends ReducerBase {
 private Record result;
 private Record result1;
 private Record result2;
 @Override
 public void setup(TaskContext context) throws IOException{
 // For different outputs you need to create different
records, which are distinguished by label
 result = context.createOutputRecord();
 result1 = context.createOutputRecord("out1");
 result2 = context.createOutputRecord("out2");
 }
 @Override
 public void reduce(Record key,Iterator<Record>values,
TaskContext context)
 Throws ioexception {
 Long Count = 0;
 while(values.hasNext()) {
 Record val = values.next();
 count += (Long) val.get(0);
 }
 long mod = count % 3;
 if (mod == 0) {
 result.set(0, key.get(0));
 result.set(1, count);
 //No label is specified. Default output is adopted.
 context.write(result);
 } else if (mod == 1) {
 result1.set(0, key.get(0));
 result1.set(1, count);
 context.write(result1, "out1");
 } else {
 result2.set(0, key.get(0));
 result2.set(1, count);
 context.write(result2, "out2");
 }
 }

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 507

 @Override
 public void cleanup(TaskContext context) throws IOException {
 Record result = context.createOutputRecord();
 result.set(0, "default");
 result.set(1, 1L);
 context.write(result);
 Record result1 = context.createOutputRecord("out1");
 result1.set(0, "out1");
 result1.set(1, 1L);
 context.write(result1, "out1");
 Record result2 = context.createOutputRecord("out2");
 result2.set(0, "out2");
 result2.set(1, 1L);
 context.write(result2, "out2");
 }
 }
 // Convert the partition string such as "ds = 1/pt = 2" into map
 form
 public static LinkedHashMap<String, String> convertPartSpecToMap
(
 String partSpec) {
 LinkedHashMap<String, String> map = new LinkedHashMap<String,
String>();
 if (partSpec ! = null && ! partSpec.trim().isEmpty()) {
 String[] parts = partSpec.split("/");
 for (String part : parts) {
 String[] ss = part.split("=");
 if (ss.length ! = 2) {
 throw new RuntimeException("ODPS-0730001: error part
spec format: "
 + partSpec);
 }
 map.put(ss[0], ss[1]);
 }
 }
 return map;
 }
 public static void main(String[] args) throws Exception {
 String[] inputs = null;
 String[] outputs = null;
 if (args.length == 2) {
 inputs = args[0].split(",");
 outputs = args[1].split(",");
 } else {
 System.err.println("MultipleInOut in... out...") ;
 System.exit(1);
 }
 JobConf job = new JobConf();
 job.setMapperClass(TokenizerMapper.class);
 job.setReducerClass(SumReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("word:string
"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("count:
bigint"));
 //Parse the user input table strings.
 for (String in : inputs) {
 String[] ss = in.split("\\|");
 if (ss.length == 1) {
 InputUtils.addTable(TableInfo.builder().tableName(ss[0]).
build(), job);
 } else if (ss.length == 2) {

MaxCompute User Guide / 11 MapReduce

508 Issue: 20180904

 LinkedHashMap<String, String> map = convertPartSpecToMap(
ss[1]);
 InputUtils.addTable(TableInfo.builder().tableName(ss[0]).
partSpec(map).build(), job);
 } else {
 System.err.println("Style of input: " + in + " is not
right");
 System.exit(1);
 }
 }
 //Parse the user output table strings.
 for (String out : outputs) {
 String[] ss = out.split("\\|");
 if (ss.length == 1) {
 OutputUtils.addTable(TableInfo.builder().tableName(ss[0]).
build(), job);
 } else if (ss.length == 2) {
 LinkedHashMap<String, String> map = convertPartSpecToMap(
ss[1]);
 OutputUtils.addTable(TableInfo.builder().tableName(ss[0]).
partSpec(map).build(), job);
 } else if (ss.length == 3) {
 if (ss[1].isEmpty()) {
 LinkedHashMap<String, String> map = convertPartSpecToMap
(ss[2]);
 OutputUtils.addTable(TableInfo.builder().tableName(ss[0
]).partSpec(map).build(), job);
 } else {
 LinkedHashMap<String, String> map = convertPartSpecToMap
(ss[1]);
 OutputUtils.addTable(TableInfo.builder().tableName(ss[0
]).partSpec(map)
 .label(ss[2]).build(), job);
 }
 } else {
 System.err.println("Style of output: " + out + " is not
right");
 System.exit(1);
 }
 }
 Jobclient. runjob (job);
 }
 }

11.5.10 Multi-task samples
Prerequisites

1. Prepare the Jar package of the test program. Assume the package is named mapreduce-

examples.jar, and the local storage path is data\resources.

2. Prepare tables and resources for testing the MultiJobs operation.

• Create tables:

create table mr_empty (key string, value string);

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 509

create table mr_multijobs_out (value bigint);

• Add resources:

add table mr_multijobs_out as multijobs_res_table -f;
Add jar data \ resources \ mapreduce-examples.jar-f;

Procedure

Run MultiJobs in odpscmd.

jar -resources mapreduce-examples.jar,multijobs_res_table -classpath
data\resources\mapreduce-examples.jar
 com.aliyun.odps.mapred.open.example.MultiJobs mr_multijobs_out;

Expected output

The output table ‘mr_multijobs_out’ is as follows:

+------------+
| value |
+------------+
| 0 |
+------------+

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 import java.util.Iterator;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.RunningJob;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 /**
 * MultiJobs
 *
 * Running multiple job
 *
 **/
 public class MultiJobs {
 public static class InitMapper extends MapperBase {
 @Override
 public void setup(TaskContext context) throws IOException{
 Record record = context.createOutputRecord();
 long v = context.getJobConf().getLong("multijobs.value", 2);
 record.set(0, v);
 context.write(record);
 }
 }
 public static class DecreaseMapper extends MapperBase {
 @Override

MaxCompute User Guide / 11 MapReduce

510 Issue: 20180904

 public void cleanup(TaskContext context) throws IOException {
 //Obtain the variable values defined by the main function
from JobConf.
 long expect = context.getJobConf().getLong("multijobs.expect
.value", -1);
 long v = -1;
 int count = 0;
 // Read the data in the resource table, which is the output
table of the previous job
 Iterator<Record> iter = context.readResourceTable("
multijobs_res_table");
 while (iter.hasNext()) {
 Record r = iter.next();
 v = (Long) r.get(0);
 if (expect ! = v) {
 throw new IOException("expect: " + expect + ", but: " +
v);
 }
 count++;
 }
 if (count ! = 1) {
 throw new IOException("res_table should have 1 record, but
: " + count);
 }
 Record record = context.createOutputRecord();
 v--;
 record.set(0, v);
 context.write(record);
 // Sets counter, which can be obtained in the main function
after the job has completed successfully
 context.getCounter("multijobs", "value").setValue(v);
 }
 }
 public static void main(String[] args) throws Exception {
 if (args.length ! = 1) {
 System.err.println("Usage: TestMultiJobs <table>");
 System.exit(1);
 }
 String tbl = args[0];
 long iterCount = 2;
 System.err.println("Start to run init job.") ;
 JobConf initJob = new JobConf();
 initJob.setLong("multijobs.value", iterCount);
 initJob.setMapperClass(InitMapper.class);
 InputUtils.addTable(TableInfo.builder().tableName("mr_empty").
build(), initJob);
 OutputUtils.addTable(TableInfo.builder().tableName(tbl).build
(), initJob);
 initJob.setMapOutputKeySchema(SchemaUtils.fromString("key:
string"));
 initJob.setMapOutputValueSchema(SchemaUtils.fromString("value:
string"));
 // Maponly job needs to explicitly set reducer number to 0
 initJob.setNumReduceTasks(0);
 JobClient.runJob(initJob);
 while (true) {
 System.err.println("Start to run iter job, count: " +
iterCount);
 JobConf decJob = new JobConf();
 decJob.setLong("multijobs.expect.value", iterCount);
 decJob.setMapperClass(DecreaseMapper.class);

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 511

 InputUtils.addTable(TableInfo.builder().tableName("mr_empty
").build(), decJob);
 OutputUtils.addTable(TableInfo.builder().tableName(tbl).
build(), decJob);
 // Maponly job needs to explicitly set reducer number to 0
 decJob.setNumReduceTasks(0);
 RunningJob rJob = JobClient.runJob(decJob);
 iterCount--;
 // Exit the loop if the number of iterations has been
reached
 if (rJob.getCounters().findCounter("multijobs", "value").
getValue() == 0) {
 break;
 }
 }
 if (iterCount ! = 0) {
 throw new IOException("Job failed.") ;
 }
 }
 }

11.5.11 Secondary Sort samples
Prerequisites

1. Prepare a JAR package of the test program. Assume the package is named “mapreduce-

examples.jar”. The local storage path is data\resources.

2. Prepare tables and resources for testing the SecondarySort operation.

• Create tables:

create table ss_in(key bigint, value bigint);
create table ss_out(key bigint, value bigint)

• Add resources:

add jar data\resources\mapreduce-examples.jar -f;

3. Import the data through tunnel command:

tunnel upload data ss_in;

The contents of data file imported into the table “ss_in” are as follows:

1,2
2,1
1,1

MaxCompute User Guide / 11 MapReduce

512 Issue: 20180904

2,2

Procedure

Run SecondarySort on the odpscmd:

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.SecondarySort ss_in ss_out;

Expected output

The contents in the output table “ss_out” are as follows:

| key | value |

| 1 | 1 |
| 1 | 2 |
| 2 | 1 |
| 2 | 2 |

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 import java.util.Iterator;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.data.TableInfo;

 * This is an example ODPS Map/Reduce application. It reads the
input table that
 * must contain two integers per record. The output is sorted by
the first and
 * second number and grouped on the first number.

 public class SecondarySort {

 * Read two integers from each line and generate a key, value
pair as ((left,
 * right), right).

 public static class MapClass extends MapperBase {
 private Record key;
 private Record value;
 @Override
 public void setup(TaskContext context) throws IOException {
 key = context.createMapOutputKeyRecord();
 value = context.createMapOutputValueRecord();

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 513

 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 throws IOException {
 long left = 0;
 long right = 0;
 if (record.getColumnCount() > 0) {
 left = (Long) record.get(0);
 if (record.getColumnCount() > 1) {
 right = (Long) record.get(1);

 key.set(new Object[] { (Long) left, (Long) right });
 value.set(new Object[] { (Long) right });
 context.write(key, value);

 * A reducer class that just emits the sum of the input values.

 public static class ReduceClass extends ReducerBase {
 private Record result = null;
 @Override
 public void setup(TaskContext context) throws IOException {
 result = context.createOutputRecord();

 @Override
 public void reduce(Record key, Iterator<Record> values,
TaskContext context)
 throws IOException {
 result.set(0, key.get(0));
 while (values.hasNext()) {
 Record value = values.next();
 result.set(1, value.get(0));
 context.write(result);

 public static void main(String[] args) throws Exception {
 if (args.length ! = 2) {
 System.err.println("Usage: secondarysrot <in> <out>");
 System.exit(2);

 JobConf job = new JobConf();
 job.setMapperClass(MapClass.class);
 job.setReducerClass(ReduceClass.class);
 // set multiple columns to key
 // compare first and second parts of the pair
 job.setOutputKeySortColumns(new String[] { "i1", "i2" });
 // partition based on the first part of the pair
 job.setPartitionColumns(new String[] { "i1" });
 // grouping comparator based on the first part of the pair
 job.setOutputGroupingColumns(new String[] { "i1" });
 // the map output is LongPair, Long
 job.setMapOutputKeySchema(SchemaUtils.fromString("i1:bigint,i2
:bigint"));
 Job. Fig (schemeiutils. fromstring ("i2x: bigint "));
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);

MaxCompute User Guide / 11 MapReduce

514 Issue: 20180904

 JobClient.runJob(job);
 System.exit(0);

11.5.12 Resource samples
Prerequisites

1. Prepare a Jar package of the test program. Assume the package is named mapreduce-

examples.jar, and the local storage path is data\resources.

2. Prepare the test table and the resource.

• Create the tables:

create table mr_upload_src(key bigint, value string);

• Add the resource:

add jar data\resources\mapreduce-examples.jar -f;
add file data\resources\import.txt -f;

• The contents of import.txt:

1000,odps

Procedure

Run Upload on the odpscmd:

jar -resources mapreduce-examples.jar,import.txt -classpath data\
resources\mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.Upload import.txt mr_upload_src;

Expected output

The content in the output table “mr_upload_src” is as follows:

+------------+------------+
| key | value |
+------------+------------+
| 1000 | odps |
+------------+------------+

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.BufferedInputStream;
 import java.io.FileNotFoundException;
 import java.io.IOException;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.TableInfo;

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 515

 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 /**
 * Upload
 *
 * Import data from text file into table
 *
 **/
 public class Upload {
 public static class UploadMapper extends MapperBase {
 @Override
 public void setup(TaskContext context) throws IOException{
 Record record = context.createOutputRecord();
 StringBuilder importdata = new StringBuilder();
 BufferedInputStream bufferedInput = null;
 try {
 byte[] buffer = new byte[1024];
 int bytesRead = 0;
 String filename = context.getJobConf().get("import.
filename");
 bufferedInput = context.readResourceFileAsStream(filename
);
 while ((bytesRead = bufferedInput.read(buffer)) ! = -1) {
 String chunk = new String(buffer, 0, bytesRead);
 importdata.append(chunk);
 }
 String lines[] = importdata.toString().split("\n");
 for (int i = 0; i < lines.length; i++) {
 String[] ss = lines[i].split(",");
 record.set(0, Long.parseLong(ss[0].trim()));
 record.set(1, ss[1].trim());
 context.write(record);
 }
 } catch (FileNotFoundException ex) {
 throw new IOException(ex);
 } catch (IOException ex) {
 throw new IOException(ex);
 } finally {
 }
 }
 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 Throws ioexception {
 }
 }
 public static void main(String[] args) throws Exception {
 if (args.length ! = 2) {
 System.err.println("Usage: Upload <import_txt> <out_table
>");
 System.exit(2);
 }
 JobConf job = new JobConf();
 job.setMapperClass(UploadMapper.class);
 // Set the Resource Name, which can be obtained from jobconf
in the map
 job.set("import.filename", args[0]);

MaxCompute User Guide / 11 MapReduce

516 Issue: 20180904

 // Maponly job needs to explicitly set reducer number to 0
 job.setNumReduceTasks(0);
 job.setMapOutputKeySchema(SchemaUtils.fromString("key:bigint
"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("value:
string"));
 InputUtils.addTable(TableInfo.builder().tableName("mr_empty").
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 Jobclient. runjob (job);
 }
 }

A user can set up JobConf through the following methods:

• T Use JobConf interface in SDK. This method is used is the preceding example. Moreover, this

 is the most recommended method and is given the highest priority.

• In jar command lines, specify new JobConf file through the parameter -conf. This method is of

the lowest priority.

11.5.13 Counter samples
Prerequisites

1. Prepare the Jar package of the test program. Assume the package is named mapreduce-

examples.jar, and the local storage path is data\resources.

2. Prepare the UserDefinedCounters test table and resource.

• Create tables:

create table wc_in (key string, value string);

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 517

create table wc_out(key string, cnt bigint);

• Add resources:

add jar data\resources\mapreduce-examples.jar -f;

3. Use the tunnel command to import the data:

tunnel upload data wc_in;

The data imported into the wc_in the table wc_in, is as follows:

hello,odps

Procedure

Execute UserDefinedCounters on the odpscmd:

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.UserDefinedCounters wc_in wc_out

Expected output

The output of Counters is as follows:

Counters: 3
com.aliyun.odps.mapred.open.example.UserDefinedCounters$MyCounter
MAP_TASKS=1
REDUCE_TASKS=1
TOTAL_TASKS=2

The content of output table “wc_out” is as follows:

+------------+------------+
| key | cnt |
+------------+------------+
| hello | 1 |
| odps | 1 |
+------------+------------+

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 import java.util.Iterator;
 import com.aliyun.odps.counter.Counter;
 import com.aliyun.odps.counter.Counters;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.mapred.RunningJob;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.SchemaUtils;

MaxCompute User Guide / 11 MapReduce

518 Issue: 20180904

 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.data.TableInfo;
 /**
 *
 * User Defined Counters
 *
 **/
 public class UserDefinedCounters {
 enum MyCounter {
 TOTAL_TASKS, MAP_TASKS, REDUCE_TASKS
 }
 public static class TokenizerMapper extends MapperBase {
 private Record word;
 private Record one;
 @Override
 public void setup(TaskContext context) throws IOException{
 super.setup(context);
 Counter map_tasks = context.getCounter(MyCounter.MAP_TASKS);
 Counter total_tasks = context.getCounter(MyCounter.
TOTAL_TASKS);
 map_tasks.increment(1);
 total_tasks.increment(1);
 word = context.createMapOutputKeyRecord();
 one = context.createMapOutputValueRecord();
 one.set(new Object[] { 1L });
 }
 @Override
 public void map(long recordNum, Record record, TaskContext
context)
 Throws ioexception {
 for (int i = 0; i < record.getColumnCount(); i++) {
 word.set(new Object[] { record.get(i).toString() });
 context.write(word, one);
 }
 }
 }
 public static class SumReducer extends ReducerBase {
 private Record result = null;
 @Override
 public void setup(TaskContext context) throws IOException{
 result = context.createOutputRecord();
 Counter reduce_tasks = context.getCounter(MyCounter.
REDUCE_TASKS);
 Counter maid = context. getcounter (mycounter);
 reduce_tasks.increment(1);
 total_tasks.increment(1);
 }
 @Override
 public void reduce(Record key,Iterator<Record>values,
TaskContext context)
 Throws ioexception {
 Long Count = 0;
 while(values.hasNext()) {
 Record val = values.next();
 count += (Long) val.get(0);
 }
 result.set(0, key.get(0));
 result.set(1, count);
 context.write(result);
 }
 }

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 519

 public static void main(String[] args) throws Exception {
 if (args.length ! = 2) {
 System.err
 .println("Usage: TestUserDefinedCounters <in_table> <
out_table>");
 System.exit(2);
 }
 JobConf job = new JobConf();
 job.setMapperClass(TokenizerMapper.class);
 job.setReducerClass(SumReducer.class);
 job.setMapOutputKeySchema(SchemaUtils.fromString("word:string
"));
 job.setMapOutputValueSchema(SchemaUtils.fromString("count:
bigint"));
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), job);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), job);
 RunningJob rJob = JobClient.runJob(job);
 // After the job has completed successfully, you can get the
value of the custom counter inside the job
 Counters counters = rJob.getCounters();
 long m = counters.findCounter(MyCounter.MAP_TASKS).getValue();
 long r = counters.findCounter(MyCounter.REDUCE_TASKS).getValue
();
 long total = counters.findCounter(MyCounter.TOTAL_TASKS).
getValue();
 System.exit(0);
 }
 }

11.5.14 Grep samples
Prerequisites

1. Prepare the Jar package of the test program. Assume the package is named mapreduce-

examples.jar, and the local storage path is and the local storage path is data\

resources.

2. Prepare tables and resources for testing the Grep operation.

• Create tables:

create table mr_src(key string, value string);
create table mr_grep_tmp (key string, cnt bigint);

MaxCompute User Guide / 11 MapReduce

520 Issue: 20180904

create table mr_grep_out (key bigint, value string);

• Add resources:

add jar data\resources\mapreduce-examples.jar -f;

3. Use the tunnel command to import the data:

tunnel upload data mr_src;

The contents of data file imported into the table “mr_src”:

 hello,odps
 hello,world

Procedure

Execute Grep on the odpscmd:

jar -resources mapreduce-examples.jar -classpath data\resources\
mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.Grep mr_src mr_grep_tmp mr_grep_ou
t hello;

Expected output

The content of output table “mr_grep_out” is as follows:

+------------+------------+
| key | value |
+------------+------------+
| 2 | hello |
+------------+------------+

Sample code

 package com.aliyun.odps.mapred.open.example;
 import java.io.IOException;
 import java.util.Iterator;
 import java.util.regex.Matcher;
 import java.util.regex.Pattern;
 import com.aliyun.odps.data.Record;
 import com.aliyun.odps.data.TableInfo;
 import com.aliyun.odps.mapred.JobClient;
 import com.aliyun.odps.mapred.Mapper;
 import com.aliyun.odps.mapred.MapperBase;
 import com.aliyun.odps.mapred.ReducerBase;
 import com.aliyun.odps.mapred.RunningJob;
 import com.aliyun.odps.mapred.TaskContext;
 import com.aliyun.odps.mapred.conf.JobConf;
 import com.aliyun.odps.mapred.utils.InputUtils;
 import com.aliyun.odps.mapred.utils.OutputUtils;
 import com.aliyun.odps.mapred.utils.SchemaUtils;
 /**
 *
 * Extracts matching regexs from input files and counts them.
 *

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 521

 **/
 public class Grep {
 /**
 * RegexMapper
 **/
 public class RegexMapper extends MapperBase {
 private Pattern pattern;
 private int group;
 private Record word;
 private Record one;
 @Override
 public void setup(TaskContext context) throws IOException{
 JobConf job = (JobConf) context.getJobConf();
 pattern = Pattern.compile(job.get("mapred.mapper.regex"));
 group = job.getInt("mapred.mapper.regex.group", 0);
 word = context.createMapOutputKeyRecord();
 one = context.createMapOutputValueRecord();
 one.set(new Object[] { 1L });
 }
 @Override
 public void map(long recordNum, Record record, TaskContext
context) throws IOException {
 for (int i = 0; i < record.getColumnCount(); ++i) {
 String text = record.get(i).toString();
 Matcher = pattern. matcher (text);
 while (matcher.find()) {
 word.set(new Object[] { matcher.group(group) });
 context.write(word, one);
 }
 }
 }
 }
 /**
 * LongSumReducer
 **/
 public class LongSumReducer extends ReducerBase {
 private Record result = null;
 @Override
 public void setup(TaskContext context) throws IOException{
 result = context.createOutputRecord();
 }
 @Override
 public void reduce(Record key, Iterator<Record> values,
TaskContext context) throws IOException {
 Long Count = 0;
 while(values.hasNext()) {
 Record val = values.next();
 count += (Long) val.get(0);
 }
 result.set(0, key.get(0));-
 result.set(1, count);
 context.write(result);
 }
 }
 /**
 * A {@link Mapper} that swaps keys and values.
 **/
 public class InverseMapper extends MapperBase {
 private Record word;
 private Record count;
 @Override
 public void setup(TaskContext context) throws IOException{

MaxCompute User Guide / 11 MapReduce

522 Issue: 20180904

 word = context.createMapOutputValueRecord();
 count = context.createMapOutputKeyRecord();
 }
 /**
 * The inverse function. Input keys and values are swapped.
 **/
 @Override
 public void map(long recordNum, Record record, TaskContext
context) throws IOException {
 word.set(new Object[] { record.get(0).toString() });
 count.set(new Object[] { (Long) record.get(1) });
 context.write(count, word);
 }
 }
 /**
 * IdentityReducer
 **/
 public class IdentityReducer extends ReducerBase {
 private Record result = null;
 @Override
 public void setup(TaskContext context) throws IOException{
 result = context.createOutputRecord();
 }
 /** Writes all keys and values directly to output. **/
 @Override
 public void reduce(Record key, Iterator<Record> values,
TaskContext context) throws IOException {
 result.set(0, key.get(0));
 while(values.hasNext()) {
 Record val = values.next();
 result.set(1, val.get(0));
 context.write(result);
 }
 }
 }
 public static void main(String[] args) throws Exception {
 if (args.length < 4) {
 System.err.println("Grep <inDir> <tmpDir> <outDir> <regex>
 [<group>]");
 System.exit(2);
 }
 JobConf grepJob = new JobConf();
 grepJob.setMapperClass(RegexMapper.class);
 grepJob.setReducerClass(LongSumReducer.class);
 grepJob.setMapOutputKeySchema(SchemaUtils.fromString("word:
string"));
 grepJob.setMapOutputValueSchema(SchemaUtils.fromString("count:
bigint"));
 InputUtils.addTable(TableInfo.builder().tableName(args[0]).
build(), grepJob);
 OutputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), grepJob);
 // Set the regular expression for grepjob's grep
 grepJob.set("mapred.mapper.regex", args[3]);
 if (args.length == 5) {
 grepJob.set("mapred.mapper.regex.group", args[4]);
 }
 @SuppressWarnings("unused")
 RunningJob rjGrep = JobClient.runJob(grepJob);
 // Grepjob output as input to sortjob
 JobConf sortJob = new JobConf();
 sortJob.setMapperClass(InverseMapper.class);

MaxCompute User Guide / 11 MapReduce

Issue: 20180904 523

 sortJob.setReducerClass(IdentityReducer.class);
 sortJob.setMapOutputKeySchema(SchemaUtils.fromString("count:
bigint"));
 sortJob.setMapOutputValueSchema(SchemaUtils.fromString("word:
string"));-
 InputUtils.addTable(TableInfo.builder().tableName(args[1]).
build(), sortJob);
 OutputUtils.addTable(TableInfo.builder().tableName(args[2]).
build(), sortJob);
 sortJob.setNumReduceTasks(1); // write a single file
 sortJob.setOutputKeySortColumns(new String[] { "count" });
 @SuppressWarnings("unused")
 RunningJob rjSort = JobClient.runJob(sortJob);
 }
 }

MaxCompute User Guide / 12 Java Sandbox

524 Issue: 20180904

12 Java Sandbox

MaxCompute, MapReduce and UDF are limited by the Java sandbox when running in the

distributed environment. However, the main program of MapReduce jobs, such as MR Main, is not

restricted. The specific limits are as follows.

• Direct access to local files is not allowed. You can only access files by using interfaces

provided by MaxCompute MapReduce/Graph.

▬ Read resources specified by the resources option, including files, Jar packages, and

resource tables.

▬ Output log information through System.out and System.err. You can view log information by

running the Log command on the MaxCompute console.

• Direct access to the distributed file system is not allowed. You can only access table records by

 using MaxCompute MapReduce/Graph.

• JNI call restrictions are not allowed.

• Creation of Java threads is not allowed. Initiation of sub-processes to run Linux commands is

not allowed.

• Network access, including obtaining local IP addresses, is not allowed.

• Java reflection is restricted: suppressAccessChecks permission is denied. A private attribute or

 method cannot be set to accessible for obtaining private attributes or calling private methods.

Specifically for the user code, access denied is thrown if you follow these steps.

• java.io.File

public boolean delete()
public void deleteOnExit()
public boolean exists()
public boolean canRead()
public boolean isFile()
public boolean isDirectory()
public boolean isHidden()
public long lastModified()
public long length()
public String[] list()
public String[] list(FilenameFilter filter)
public File[] listFiles()
public File[] listFiles(FilenameFilter filter)
public File[] listFiles(FileFilter filter)
public boolean canWrite()
public boolean createNewFile()
public static File createTempFile(String prefix, String suffix)
public static File createTempFile(String prefix, String suffix,File
directory)
public boolean mkdir()
public boolean mkdirs()

MaxCompute User Guide / 12 Java Sandbox

Issue: 20180904 525

public boolean renameTo(File dest)
public boolean setLastModified(long time)
public boolean setReadOnly()

• java.io.RandomAccessFile

RandomAccessFile(String name, String mode)
RandomAccessFile(File file, String mode)

• java.io.FileInputStream

FileInputStream(FileDescriptor fdObj)
FileInputStream(String name)
FileInputStream(File file)

• java.io.FileOutputStream

FileOutputStream(FileDescriptor fdObj)
FileOutputStream(File file)
FileOutputStream(String name)
FileOutputStream(String name, boolean append)

• java.lang.Class

public ProtectionDomain getProtectionDomain()

• java.lang.ClassLoader

ClassLoader()
ClassLoader(ClassLoader parent)

• java.lang.Runtime

public Process exec(String command)
public Process exec(String command, String envp[])
public Process exec(String cmdarray[])
public Process exec(String cmdarray[], String envp[])
public void exit(int status)
public static void runFinalizersOnExit(boolean value)
public void addShutdownHook(Thread hook)
public boolean removeShutdownHook(Thread hook)
public void load(String lib)
public void loadLibrary(String lib)

• java.lang.System

public static void exit(int status)
public static void runFinalizersOnExit(boolean value)
public static void load(String filename)
public static void loadLibrary(String libname)
public static Properties getProperties()
public static void setProperties(Properties props)
public static String getProperty(String key) //Only some keys are
allowed for file access.
public static String getProperty(String key, String def) // Only
some keys are allowed for file access.
public static String setProperty(String key, String value)
public static void setIn(InputStream in)

MaxCompute User Guide / 12 Java Sandbox

526 Issue: 20180904

public static void setOut(PrintStream out)
public static void setErr(PrintStream err)
public static synchronized void setSecurityManager(SecurityManager s
)

List of keys allowed by System.getProperty is as follows:

java.version
java.vendor
java.vendor.url
java.class.version
os.name
os.version
os.arch
file.separator
path.separator
line.separator
java.specification.version
java.specification.vendor
java.specification.name
java.vm.specification.version
java.vm.specification.vendor
java.vm.specification.name
java.vm.version
java.vm.vendor
java.vm.name
file.encoding
user.timezone

• java.lang.Thread

Thread()
Thread(Runnable target)
Thread(String name)
Thread(Runnable target, String name)
Thread(ThreadGroup group, ...)
public final void checkAccess()
public void interrupt()
public final void suspend()
public final void resume()
public final void setPriority (int newPriority)
public final void setName(String name)
public final void setDaemon(boolean on)
public final void stop()
public final synchronized void stop(Throwable obj)
public static int enumerate(Thread tarray[])
public void setContextClassLoader(ClassLoader cl)

• java.lang.ThreadGroup

ThreadGroup(String name)
ThreadGroup(ThreadGroup parent, String name)
public final void checkAccess()
public int enumerate(Thread list[])
public int enumerate(Thread list[], boolean recurse)
public int enumerate(ThreadGroup list[])
public int enumerate(ThreadGroup list[], boolean recurse)
public final ThreadGroup getParent()
public final void setDaemon(boolean daemon)
public final void setMaxPriority(int pri)

MaxCompute User Guide / 12 Java Sandbox

Issue: 20180904 527

public final void suspend()
public final void resume()
public final void destroy()
public final void interrupt()
public final void stop()

• java.lang.reflect.AccessibleObject

public static void setAccessible(...)
public void setAccessible(...)

• java.net.InetAddress

public String getHostName()
public static InetAddress[] getAllByName(String host)
public static InetAddress getLocalHost()

• java.net.DatagramSocket

public InetAddress getLocalAddress()

• java.net.Socket

Socket(...)

• java.net.ServerSocket

ServerSocket(...)
public Socket accept()
protected final void implAccept(Socket s)
public static synchronized void setSocketFactory(...)
public static synchronized void setSocketImplFactory(...)

• java.net.DatagramSocket

DatagramSocket(...)
public synchronized void receive(DatagramPacket p)

• java.net.MulticastSocket

MulticastSocket(...)

• java.net.URL

URL(...)
public static synchronized void setURLStreamHandlerFactory(...)
java.net.URLConnection
public static synchronized void setContentHandlerFactory(...)
public static void setFileNameMap(FileNameMap map)

• java.net.HttpURLConnection

public static void setFollowRedirects(boolean set)
java.net.URLClassLoader

MaxCompute User Guide / 12 Java Sandbox

528 Issue: 20180904

URLClassLoader(...)

• java.security.AccessControlContext

public AccessControlContext(AccessControlContext acc, DomainCombiner
 combiner)
public DomainCombiner getDomainCombiner()

	Contents
	​Legal​ ​disclaimer​
	​Generic​ ​convention​​s​
	1 ​Graph​
	1.1 ​Summary​
	1.2 ​Function​ ​overview​
	1.3 ​SDK​ ​Summary​
	1.4 ​Developmen​​t​ ​and​ ​debugging​
	1.5 ​Limits​
	1.6 ​Examples​
	1.6.1 ​SSSP​
	1.6.2 ​PageRank​
	1.6.3 ​Kmeans​
	1.6.4 ​BiPartiteM​​atchiing​
	1.6.5 ​Strongly​-​connected​ ​component​
	1.6.6 ​Connected​ ​component​
	1.6.7 ​Topology​ ​Sorting​
	1.6.8 ​Linear​ ​Regression​
	1.6.9 ​Triangle​ ​Count​
	1.6.10 ​Vertex​ ​Input​
	1.6.11 ​Edge​ ​Input​

	1.7 ​Aggregator​

	2 ​SDK​
	2.1 ​Java​ ​SDK​
	2.2 ​Python​ ​SDK​
	2.3 ​PyODPS​ ​DataFrame​中使用​pandas​、​scipy​和​scikit​-​learn​

	3 ​Handle​-​Unstructur​​ed​-​data​
	3.1 国际站未发布，暂不翻译
	3.2 ​Access​ ​OSS​ ​data​
	3.3 ​Unstructur​​ed​ ​data​ ​exported​ ​to​ ​OSS​
	3.4 ​Visit​ ​Table​ ​Store​ ​data​
	3.5 本文暂不上国际站
	3.6 本文无翻译

	4 ​View​ ​Job​ ​Running​ ​Informatio​​n​
	4.1 ​Logview​
	4.2 ​Errors​ ​and​ ​warnings​ ​using​ ​the​ ​MaxCompute​ ​compiler​

	5 ​Security​
	5.1 ​Target​ ​users​
	5.2 ​Quick​ ​Start​
	5.2.1 ​Use​ ​case​: ​Add​ ​users​ ​and​ ​grant​ ​permission​​s​
	5.2.2 ​Use​ ​case​: ​Add​ ​users​ ​and​ ​grant​ ​permission​​s​ ​using​ ​ACL​
	5.2.3 ​Use​ ​case​: ​Project​ ​data​ ​protection​

	5.3 ​User​ ​authentica​​tion​
	5.4 ​User​ ​management​
	5.5 ​Role​ ​management​
	5.6 ​Authorizat​​ion​
	5.7 ​Permission​ ​check​
	5.8 ​Security​ ​configurat​​ions​
	5.9 ​Data​ ​protection​ ​of​ ​projects​
	5.10 ​Security​ ​command​ ​list​
	5.10.1 ​Security​ ​configurat​​ion​ ​of​ ​a​ ​project​
	5.10.2 ​Manage​ ​permission​​s​
	5.10.3 ​Package​-​based​ ​resource​ ​sharing​

	5.11 用户及授权管理
	5.12 ​Resource​ ​share​ ​across​ ​project​ ​space​
	5.12.1 ​Resource​ ​sharing​ ​across​ ​projects​ ​based​ ​on​ ​package​
	5.12.2 ​Package​ ​usage​ ​method​

	5.13 ​Column​-​level​ ​access​ ​control​

	6 ​MaxCompute​ ​Butler​
	7 ​Lightning​
	7.1 ​Lightning​概述
	7.2 开通​Lightning​服务
	7.3 服务定价
	7.4 快速开始
	7.4.1 使用说明
	7.4.2 前提条件
	7.4.3 准备连接的客户端工具
	7.4.4 连接服务并开展分析

	7.5 访问域名
	7.6 通过​JDBC​连接服务
	7.6.1 ​JDBC​驱动程序
	7.6.2 配置​JDBC​连接
	7.6.3 常见工具的连接

	7.7 ​SQL​参考
	7.8 查看作业
	7.9 约束与限制
	7.10 ​Lightning​常见问题

	8 ​Common​ ​commands​
	8.1 ​Overview​ ​of​ ​common​ ​commands​
	8.2 ​Project​ ​operations​
	8.3 ​Table​ ​operations​
	8.4 ​Instances​
	8.5 ​Resources​
	8.6 ​Functions​
	8.7 ​Other​ ​operations​

	9 ​Data​ ​upload​ ​and​ ​download​
	9.1 ​Data​ ​upload​ ​and​ ​download​
	9.2 ​Cloud​ ​data​ ​migration​
	9.3 ​Data​ ​upload​ ​and​ ​download​ ​tools​
	9.4 ​Tunnel​ ​commands​
	9.5 ​Import​ ​or​ ​export​ ​data​ ​using​ ​the​ ​Data​ ​Integratio​​n​
	9.6 ​Tunnel​ ​SDK​
	9.6.1 ​Summary​
	9.6.2 ​TableTunne​​l​
	9.6.3 ​UploadSess​​ion​
	9.6.4 ​DownloadSe​​ssion​
	9.6.5 ​TunnelBuff​​eredWriter​

	9.7 ​Bulk​ ​data​ ​channel​ ​SDK​ ​example​
	9.7.1 ​Example​
	9.7.2 ​Example​ ​for​ ​uploading​
	9.7.3 简单下载示例
	9.7.4 ​Example​ ​for​ ​multi​-​thread​ ​uploading​
	9.7.5 ​Example​ ​for​ ​multi​-​thread​ ​downloadin​​g​
	9.7.6 ​Example​ ​for​ ​BufferedWr​​iter​ ​multi​-​thread​ ​uploading​
	9.7.7 ​Example​ ​for​ ​BufferedWr​​iter​ ​uploading​

	9.8 ​Real​-​time​ ​data​ ​tunnel​ ​of​ ​DataHub​
	9.9 ​Connection​ ​to​ ​data​ ​tunnel​ ​service​

	10 ​SQL​
	10.1 ​Select​ ​Transform​语法
	10.2 ​DDL​ ​SQL​
	10.2.1 ​Table​ ​Operations​
	10.2.2 ​Lifecycle​ ​of​ ​table​
	10.2.3 ​View​ ​operations​
	10.2.4 ​Column​/​Partition​ ​operation​

	10.3 ​Insert​ ​Operation​
	10.3.1 ​INSERT​ ​OVERWRITE​/​INTO​
	10.3.2 ​MULTI​ ​INSERT​
	10.3.3 ​DYNAMIC​ ​PARTITION​
	10.3.4 ​VALUES​
	10.3.5 ​Lateral​ ​View​

	10.4 ​SQL​ ​summary​
	10.5 ​Operators​
	10.6 ​Type​ ​conversion​​s​
	10.7 ​DDL​ ​SQL​
	10.8 ​Insert​ ​Operation​
	10.9 ​SELECT​ ​operation​
	10.10 ​SQL​ ​limits​
	10.11 ​Builtin​ ​Function​
	10.11.1 ​Date​ ​Functions​
	10.11.2 ​Mathematic​​al​ ​Functions​
	10.11.3 ​Window​ ​Functions​
	10.11.4 ​String​ ​functions​
	10.11.5 ​Aggregate​ ​function​
	10.11.6 ​Other​ ​functions​

	10.12 ​UDF​
	10.12.1 ​MaxCompute​ ​UDF​中运行​Scipy​
	10.12.2 ​Python​ ​UDF​
	10.12.3 ​UDF​ ​Summary​
	10.12.4 ​Java​ ​UDF​

	10.13 ​Appendix​
	10.13.1 ​Escape​ ​characters​
	10.13.2 ​LIKE​ ​usage​
	10.13.3 ​Regular​ ​expression​
	10.13.4 ​Reserved​ ​words​
	10.13.5 本文暂无翻译。
	10.13.6 ​Difference​​s​ ​with​ ​other​ ​SQL​ ​syntax​

	10.14 ​Select​ ​Operation​
	10.14.1 ​Introducti​​on​ ​to​ ​the​ ​SELECT​ ​Syntax​
	10.14.2 ​SELECT​ ​Sequence​
	10.14.3 ​Subquery​
	10.14.4 ​UNION​ ​ALL​/​UNION​ [​DISTINCT​]
	10.14.5 ​JOIN​ ​operation​
	10.14.6 ​SEMI​ ​JOIN​
	10.14.7 ​MAPJOIN​ ​HINT​
	10.14.8 ​HAVING​ ​clause​
	10.14.9 ​Explain​
	10.14.10 ​Common​ ​table​ ​expression​ (​CTE​)

	11 ​MapReduce​
	11.1 ​Java​ ​SDK​
	11.1.1 ​Java​ ​SDK​
	11.1.2 ​Overview​ ​of​ ​compatible​ ​versions​ ​of​ ​the​ ​SDK​

	11.2 ​MR​ ​limits​
	11.3 ​Summary​
	11.3.1 ​MapReduce​
	11.3.2 ​Extended​ ​MapReduce​
	11.3.3 ​Open​-​source​ ​MapReduce​

	11.4 ​Function​ ​Introducti​​on​
	11.4.1 ​Commands​
	11.4.2 ​Basic​ ​concepts​
	11.4.3 ​Input​ ​and​ ​Output​
	11.4.4 ​Resources​
	11.4.5 ​Local​ ​run​

	11.5 ​Program​ ​Example​
	11.5.1 ​Join​ ​samples​
	11.5.2 ​Sleep​ ​samples​
	11.5.3 ​Unique​ ​samples​
	11.5.4 ​Sort​ ​samples​
	11.5.5 ​Partition​ ​samples​
	11.5.6 ​Pipeline​ ​samples​
	11.5.7 ​WordCount​ ​samples​
	11.5.8 ​MapOnly​ ​samples​
	11.5.9 ​Multi​-​input​ ​and​ ​Output​
	11.5.10 ​Multi​-​task​ ​samples​
	11.5.11 ​Secondary​ ​Sort​ ​samples​
	11.5.12 ​Resource​ ​samples​
	11.5.13 ​Counter​ ​samples​
	11.5.14 ​Grep​ ​samples​

	12 ​Java​ ​Sandbox​

