Alibaba Cloud
Object Storage Service

Best Practices

Issue: 20180807

MORE THAN JusT cLoub | (- AlibabaCloud

Legal disclaimer

Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions of this
legal disclaimer before you read or use this document. If you have read or used this document, it

shall be deemed as your total acceptance of this legal disclaimer.

1. You shall download and obtain this document from the Alibaba Cloud website or other Alibaba
Cloud-authorized channels, and use this document for your own legal business activities only.
The content of this document is considered confidential information of Alibaba Cloud. You shall
strictly abide by the confidentiality obligations. No part of this document shall be disclosed or
provided to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted, or disseminat
ed by any organization, company, or individual in any form or by any means without the prior
written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades, adjustment
s, or other reasons. Alibaba Cloud reserves the right to modify the content of this document
without notice and the updated versions of this document will be occasionally released through
Alibaba Cloud-authorized channels. You shall pay attention to the version changes of this
document as they occur and download and obtain the most up-to-date version of this document
from Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud products and
services. Alibaba Cloud provides the document in the context that Alibaba Cloud products and
services are provided on an "as is", "with all faults" and "as available" basis. Alibaba Cloud
makes every effort to provide relevant operational guidance based on existing technologies
. However, Alibaba Cloud hereby makes a clear statement that it in no way guarantees the
accuracy, integrity, applicability, and reliability of the content of this document, either explicitly
or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial losses incurred
by any organizations, companies, or individuals arising from their download, use, or trust in
this document. Alibaba Cloud shall not, under any circumstances, bear responsibility for any
indirect, consequential, exemplary, incidental, special, or punitive damages, including lost
profits arising from the use or trust in this document, even if Alibaba Cloud has been notified of
the possibility of such a loss.

5. By law, all the content of the Alibaba Cloud website, including but not limited to works, products
, images, archives, information, materials, website architecture, website graphic layout, and
webpage design, are intellectual property of Alibaba Cloud and/or its affiliates. This intellectu

al property includes, but is not limited to, trademark rights, patent rights, copyrights, and trade

secrets. No part of the Alibaba Cloud website, product programs, or content shall be used,
modified, reproduced, publicly transmitted, changed, disseminated, distributed, or published
without the prior written consent of Alibaba Cloud and/or its affiliates. The names owned by
Alibaba Cloud shall not be used, published, or reproduced for marketing, advertising, promotion
, or other purposes without the prior written consent of Alibaba Cloud. The names owned by
Alibaba Cloud include, but are not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other
brands of Alibaba Cloud and/or its affiliates, which appear separately or in combination, as well
as the auxiliary signs and patterns of the preceding brands, or anything similar to the company
names, trade names, trademarks, product or service names, domain names, patterns, logos

, marks, signs, or special descriptions that third parties identify as Alibaba Cloud and/or its
affiliates).

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

Object Storage Service Best Practices / Legal disclaimer

Issue: 20180807 1

Generic conventions

Table -1: Style conventions

Style Description Example
This warning information indicates a
situation that will cause major system Danger:
changes, faults, physical injuries, and Resetting will result in the loss of user
other adverse results. configuration data.
This warning information indicates a
''''' situation that may cause major system | &% Warning:
changes, faults, physical injuries, and | Restarting will cause business
other adverse results. interruption. About 10 minutes are
required to restore business.
This indicates warning information,
supplementary instructions, and other Note:
content that the user must understand. | Take the necessary precautions to
save exported data containing sensitive
information.
This indicates supplemental instructio
ns, best practices, tips, and other Note:
content that is good to know for the You can use Ctrl + A to select all files.
user.
> Multi-level menu cascade. Settings > Network > Set network type
Bold It is used for buttons, menus, page Click OK.
names, and other Ul elements.
Couri er It is used for commands. Runthecd /d C./w ndows command
f ont to enter the Windows system folder.
Italics |[Itisused for parameters and variables. |bae 1 og list --instanceid
I nstance_I D
[] or [a]b] It indicates that it is a optional value, i pconfig[-all]|-t]
and only one item can be selected.
{} or{alb} |Itindicates that it is a required value, swich{stand | slave}
and only one item can be selected.

Contents

Legal disClaimer..........coiiiieiiiiiiciiirrs s s e s I
Generic CoONVENLIONS..........coiiieeiiiriecr e rr s s s s s s r e e e e nmn e rnnns I
1 Application Server........ e e s e e e 1
1.1 Set up direct data transfer for mobile apPS......ccccoveviiciiiie e 1
1.2 PErmisSSiON CONTIOL......uuviiiiiiiiiee e e e e e e e e e e e e e s s e r e e aeees 11
1.3 Set up data callback for mobile apps..........oooiiii e 17
2 Direct upload to OSS from Web...........ooierrrre 24
2.1 Overview of direct transfer on Web client...............coooii 24
2.2 Direct transfer after adding a signature on the server...........cccccoooiiiii e, 25
2.3 Directly add a signature on the server, transfer the file, and set upload callback.......... 31
3 Bucket management...........ooooeeni s 37
3.1 CDN-based OSS acceleration...........ccccuviiiiiiiiiiiieeeee e 37
3.2 StOrage Class CONVEISION..........uuuiiiiiiiiieeeee e e e e ieeeece e e eeeeaaeeeees s s e ssanesrsaeearereeaaeaeeeeens 41
3.3 Cross-origin resource sharing (CORS).........ccoiiiiiiiiie e 43
34 ANBHIEECN. ... e ——————————————_ 52
3.5 Static Website hOSHING.........uuiiii 61
4 ACCESS CONLIOL.........o e r e s e e e nmn s 65
o B O Y= 1= U PPPT O 65
4.2 What is RAM and STS... ..ottt e e s rae e et e e e nnneeeenneas 65
4.3 Access a bucket without using the primary account.............ccccciiiiiii e, 68
4.4 Read/Write permission Separation................euuuuuiiiiiiiiiei e e 69
4.5 Bucket permission SeParation.......... ..ot 70
4.6 STS temporary access authorization..............ccccciiiiic e 72
4.7 FAQs about subaccount SEtNGS........cccooiiiiiiiiiiii e 82
5 Data SeCUritY......ccciiiieeci e s n e 84
5.1 Check data transmission integrity by using 64-bit CRC............ccooiiiiiiie 84
5.2 Protect data through client encryption.............oooii e 86
6 OSS resource monitoring and alarm service..........cccceeeceiiirnrennnnn. 91
7 OSS performance and scalability best practice..........ccccccunnniennnnes 93
8 OssDemo for Android..........cccccceiiiiimimeerciir e 96
8.1 OsSDEeMO iNtrodUCHION. ...t a e e 96
8.2 Use the setup application SErVEr..........ooo i 96
.3 UPIOAA @ il .o ———————— 98

8.4 IMAGE PrOCESSING. ... uueitteeiiiiiiiaaaa e e ettt et e eaaaa e e e e e s s s s e nneebaeeeeeeeaaaaaaaaesaaaaannnnnnneees 101

1 Application server

1.1 Set up direct data transfer for mobile apps

Background

In the era of mobile Internet, mobile apps upload more and more data every day. By handing off

their data storage issues to OSS, developers can focus more on their app logic.

This article describes how to set up an OSS-based direct data transfer service for a mobile app in

30 minutes. Direct data transfer is a service that allows a mobile app to directly connect to OSS for

data upload and download, while only sending the control traffic to the app server.

Advantages

Setting up an OSS-based direct data transfer service for a mobile app offers the following

advantages:

More secure upload/download method (temporary and flexible permission assignment and
authentication).

Low cost. Fewer app servers. The mobile app is directly connected to the cloud storage and
only the control traffic is sent to the app server.

High concurrency and support for a massive amount of users (OSS has massive bandwidth for
uploading and downloading use).

Elasticity (OSS's storage space can be expanded unlimitedly).

Convenience. You can easily connect to the MTS - video multiport adapter, Image Service,

CDN download acceleration, and other services.

The architecture diagram is as follows:

Details:

Android/iOS mobile app, which is the app installed on the end user's mobile phone

0SS, short for Alibaba Cloud Object Storage Service, which stores app-uploaded data (For
more information, see the OSS description on Alibaba Cloud website.

RAM/STS, which generates temporary access credentials

App server, which is the background service developed for the Android/iOS mobile app and
used to manage the tokens used for data uploading/downloading by the app and the metadata

of the app-uploaded data.

http://www.aliyun.com/product/oss

Steps:
1. Request for a temporary upload credential from the app server.

The Android/iOS app cannot store AccessKeylD/AccessKeySecret directly, which may cause
the risk of information leakage. Therefore, the app must request a temporary upload credential
(a token) from the app server. The token is only valid for a certain period. For example, if a
token is set to be valid for 30 minutes (editable by the app server), then the Android/iOS app
can use this token to upload/download data to/from the OSS within the next 30 minutes. 30

minutes later, the app must request a new token to upload/download data.

2. The app server checks the validity of the preceding request and then returns a token to the app

3. After the phone receives this token, it can upload or download data from the OSS.

This article mainly describes the content in the red circle and blue circle of the following figure.

» The blue circle shows how the app server generates a token.

* The red circle shows how the Android/iOS app receives the token.
The results are:

You can scan the QR code to install the sample app, as shown in the following figure. This tool is

developed on Android. The app server in this document can also be used on iOS.

The interface for connecting the sample app to the OSS is shown in the following figure:

Note:
The address displayed in the app server is a sample address. You can deploy the app server on

your own by referring to the STS app server code at the end of the article.

» App server: the background app server corresponding to the mobile app.
» Upload bucket: the bucket to which the mobile app uploads data.

* Region: the region in which a bucket is uploaded.
Steps for using the sample app:

» Click Select Image and upload an object to the OSS.

* You can choose normal upload or resumable upload.

L
|:| Note:
Resumable upload is recommended in poor network environments. You can use Image
Service to scale down and add a watermark to the image to be uploaded. During initial use, do

not modify the server URL and bucket name.
Prerequisites for setting up direct data transfer service
Preparations for setting up direct data transfer service:

1. Activate the OSS service and create a bucket.

2. Activate the STS service.

a. Log on to the OSS console.
b. On the OSS Overview page, find the Basi ¢ Setti ngs area, and click Security Token,

as shown in the following figure.

c. Enter the Quick Security Token Configuration page.

il
|:| Note:

If RAM has not yet been activated, a prompt box to activate RAM appears. Click Activate
and perform real-name verification. After the verification is finished, the following page

appears. Click Start Authorization.

Quick Security Token Configuration

0SS (Object Storage Service) s security token must be conﬂgured./

d. The system performs authorization automatically. Be sure to save the parameters in the
three red boxes in the following figures. Click Save Access Key Information to close the

dialog box and complete STS activation.

https://oss.console.aliyun.com/

Object Storage Service Best Practices / 1 Application server

Create User Access Key

This is the only time a user's Access key can be downloaded. Save the Access key now.

.ation P...

@ Access key successfully created.

I Access Key Details ~
AccesskeyID : 1 AcresskeySecret : 2
LTAIVU16YSEUYTgI OkebPcDSFEIIOMADLUGZ gCyfyNRG

Save Acress Key Information

T

| Quick Security Token Configuration

0SS (Object Storage Service) s security token must be configured. Configuration complete.

This page will automatically generate the configurations to access the following: 0SS and to create an Access Key to generate the
following access token: 0SS -

Creat d Authorize Ac Role Vi
o A1 ang Aurmonze Aocess Rl Visw You can use STS SDK to call the AssumeRole interface to get 2

Create Role (Aliyun0SSTokenGeneratorRole) | security token to access OSS:

Create Authorization Policy Configured.

(Aliyun0SsSTokenGeneratorRolePolicy) Configured. STS SDK :

Configure Role Permissions

(Aliyun0SsSTokenGeneratorRolePolicy) Successful laua et ython AP Lot

_) AssurmeRole :
o Create and Authorize Sub-users View

Create Sub-user (Aliyun0S5TokenGeneratorliser) : 3

RoleAm:

Create Authorization Policy Configured.
(Aliyun0sSTokenGeneratorUserPolicy) Configured.

acs:ram::5204593714859318: rolefaliyunosstokengeneratomole

Configure Sub-user Permissions RoleSessionMame: external-username
(Aliyun0sSTokenGeneratorUserPolicy) Successful

DurationSeconds: 3600

o Create and Authorize Token Access Key Vie

‘Configured:
Mote: For security reasons, the

ArcesskeySacret will not be displayed again, If you
fiorget this password, vou must delete this Access Kay
and create a2 new one on the Access Key management
page.

rization Closa

4 Issue: 20180807

Object Storage Service

Best Practices / 1 Application server

window appears:

Products =

Notice Information

You already have an Access key.

If you want to use a new Access key, go to RAM Console = Users = Management [corresp
onding sub-user] = Ussar detail = Create Accesskey.

If you have already created an AccessKeyld/AccessKessKeySecret, the following prompt

(=]
[«
o0

1
=]

Click View, as shown in the following figure.

o Create and Authorize Access Role View

Create Role (Aliyun0SSTokenGeneratorfola)

Create Authorization Policy Configured.
(Aliyun05STokenGenerztorRolePolicy) Configured.
Configure Role Permissions

(Aliyun05STokenGeneratorRolaPolicy) Successiul

o Create and Authorize Sub-users View

Create Sub-user (Aliyun0OSSTokenGeneratoriser)

Create Authorization Policy Configured.
(Aliyun0SSTokenGeneratorllserPolicy) Configured.
Configure Sub-user Permissions

(Aliyun0SSTokenGeneratortserPolicy) Succassful

%eate and Authorize Token Access Key \-'ieD

Configured:

Note: For security reasons, the

AccesskeySacret will not be displayed again. If you
forget this password, you must delete this Access Key
and create 2 new one on the Access Key management
page.

Accesskey ID : You have already created an Accesskey.

! Youcan use STS SDK to call the AssumeRole in

| security token to access 0SS:

You can use STS SDK to call the AssumsRols interface to get &

security token to access 0SS:

STS SDK :

Java .net Python PHP MNode.js

AssumeRole :
RoleAm:
acs:ram::5204593714859318:role/aliyunosstokengeneratormola
RoleSessionMame: external-username

DurationSeconds: 3600

Click Create Access Key, as shown in the following figure.

Issue: 20180807

Object Storage Service

Best Practices / 1 Application server

User Details
I Basic Information
User Authorization P...

User Name Aliyun0SSTokenGeneratorlser
User Groups

Description -

I Web Console Logon Management @

Edit Basic Information ~
Display Name Created At 2017-11-27 11:55:21
Enable Console Logon ~

On your next logon you must reset the

You must activate MFA@ Close Last Logon Time: password. Close
I MFA Device ~
= Ty Introduction Enabling Status Actions
VMFA Device Application calculates a 6-digit verification code using the TOTP standard algorithm. Mot Enabled Enable VMFA Device
I e Ry ~
AccessKey ID Created At Actions
LTAIGBKmBLXjoe2p 2017-11-27 11:55:22 Diszble Delets

Record parameters 1, 2, and 3, as shown in the following figure.

Create User Access Key

ation P...

I Access Key Details

AccesskKeylID : 1
LTAIVU16YSBUYTQI

This is the only time a user's Access key can be downloaded. Save the Access key now.

@ Access key successfully created.

AccessKeySecret :
OkebPcDSFBIOMADLUGZgCyfyNRG

Save Access Key Information

—

Issue: 20180807

Quick Security Token Configuration

055 (Object Storage Service) s security token must be configured. @ Configuration complete.

You can use STS SDK to call the AssumeRole interface to st a
Create Role (Aliyun0SSTokenGeneratorRaole) security token to access 05S:
Create Authorization Policy Configured.

(Aliyun0SSTokenGeneratorRolaPolicy)

Configure Role Permissions

- d at on ode.is
{ Aliyun0SSTokenGeneratorRolePolicy) Successiu : d : ¥ Rl L
e Create and Authorize Sub-users View i S
Create Sub-user (AliyunOSSTokenGeneratoriser) 3
RoleAm:

Create Authorization Policy)
acs:ram;::5204593714859318:role/aliyunosstokengsnsratormola

{ AliyunOSSTokenGeneratorlserPolicy)

Configure Sub-user Permissions : RoleSessionMame: external-username
:
(Aliyun0SSTokenGeneratorlserPolicy) SuCcessi
DurationSeconds: 3600

o
I
(
T
T
T
“
T
D

Configured:
Mote: For security reasons, the

AccesskeySecret will not be displayed again. If you
forget this password, you must delete this Access Key

= eate S o the Access Key Emel
and create a new one on the Access Key management m Close
page.

* Once you have saved the three parameters, STS activation is complete.

Set up an app server

Configuration of sample app server

@ Note:

The app in this example is written in PHP. You may write your app in your preferred language,

such as Java, Python, Go, Ruby, Node.js, or C#.

This tutorial provides development sample programs available for download in multiple languages

. The download addresses are shown at the end of this article.

The downloaded package in each language contains a configuration file named config.json.

"AccessKeyl D' : "",
"AccessKeySecret" : "",

n ROI eAI,.r]II : IIII’

"TokenExpi reTi me" : "900",

"PolicyFile": "policy/all _policy.txt"

Note:

* 1. AccessKeylID: Set it to parameter 1 marked with a red box in the preceding figure.
AccessKeySecret: Set it to parameter 2 marked with a red box in the preceding figure.

RoleArn: Set it to parameter 3 marked with a red box in the preceding figure.

L N

TokenExpireTime indicates the expiration time of the token obtained by the Android/iOS

app. The minimum value is 900s. The default value can be retained.

5. PolicyFile indicates the file that lists the permissions the token grants. The default value

can be retained.

This document has provided three token files defining the most common permissions in the policy

directory. They are:

+ all_policy.txt: specifying a token that grants permissions to create or delete a bucket, or upload

, download, or delete a file for this account.

* bucket read policy.txt: specifying a token that grants permission to read the specified bucket

for this account.

* bucket read write_policy.txt: specifying a token that grants permission to read and write the

specified bucket for this account.

If you want to create a token to grant read and write permissions for the specified bucket, replace
$BUCKET_NAME in the bucket_read_policy.txt and bucket_read_write_policy.txt files with the

name of the specified bucket.
» Explanation of the formats of returned data:

[/ Correct result returned

" St at usCode" : 200,
"AccessKeyl d": " STS. 3p***dgagdasdg",
"AccessKeySecret": "rpnw®®***t Gdr ddgsR2Yr Tt | *,

"SecurityToken": " CAES+wM ARKAAZhj HOEUO hJMBM RywXq7MY cj LYg80Aho
1ek0JnB63XMhr 9Cc5s 9 'g3qaPer 8plYaXINTD CFZWFkv| Hf 1pGhuxf KBc+mRRIKAbHUe
f qH+r dj Zqj TF7p2mlw] XP8S6k+G2MoHr Ue6TYBkJ43GhhTVFMUMBBZaj Y3V) ZWOXBI
ODRI R1FKZj |'i Ej MeM2EOM YONz MbMTE4AN] kx MSoLY2x pZGSSDg SDGAGESGTE
TgGO 06Cc2Rr LMR bVBvKgoUYWNz OBz czoqO 06c2Rr LRI bVWOKEDEX NDg5 Mz
AxMDcy NDY4AMThSBTI 20DQy Wy9Bc 3N1LbW/k UnmBs ZVWz ZXJ g AGo SMz Mz MTQy Nj
@BMzkxMrg20TExcgl zZGst ZGvt bzl =",

"Expiration":"2015-12-12T07: 49: 092",

[/l ncorrect result returned

" St at usCode" : 500,
"ErrorCode": "I nval i dAccessKeyl d. Not Found",

"Error Message": " Specified access key is not found."

Explanation of correct result returned: (The following five variables comprise a token)

» StatusCode: The status indicates the result that the app retrieves the token. The app returns

200 for successful retrieval of the token.

+ AccessKeyld: indicates the AccessKeyld the Android/iOS app obtains when initializing the
OSS client.

* AccessKeySecret: indicates the AccessKeySecret the Android/iOS app obtains when

initializing the OSS client.
» SecurityToken: indicates the token the Android/iOS app initializes.
» Expiration: indicates the time when the token expires. The Android SDK automatically

determines the validity of the token and retrieves a new one as needed.
Explanation of incorrect result returned:

» StatusCode: The status indicates the result that the app retrieves the token. The app returns

500 for unsuccessful retrieval of the token.
« ErrorCode: indicates the error causes.

* ErrorMessage: indicates the detailed information about the error.
Method for running sample code:

— For PHP, download and unzip a pack, modify the config.json file, run php sts.php to

generate a token, and deploy the program to the specified address.

— For Java (based on Java 1.7), after downloading and unzipping a pack,

Run this command: java -jar oss-token-server.jar (port). If you run java —jar oss-token-server
.jar without specifying a port, the program listens to Port 7080. To change the listening port

to 9000, run java —jar app-token-server.jar 9000. Specify the port number as needed.

How to upload files from your app to oss

1.

After setting up the app server, write down the server address, which is htt p: / / abc. com

8080. Then, replace the app server address in the sample project with this address.
Specify the bucket and region for the upload in the sample apps.
Click Set to load the configuration.

Select an image file, set the object name to upload to OSS, and select Upload. Now you can
experience the OSS service on Android. Data from the Android app can be uploaded directly to

OSS.

5. After the upload is complete, check that the data is on OSS.

Explanation of core code

0SS initialization

Android version

/1 We reconmend you use OSSAut hCredenti al sProvi der because it

automatically updates expired tokens.

String stsServer = "http://abc.com 8080 is an exanple of an

application server address."

Osscredenti al provi der credenti al Provi der = new ossaut hcredenti al spr

ovi der (stsserver);

//config

Client Configuration conf = new O ientConfiguration();

conf. set Connecti onTi neout (15 * 1000); /// Connection tinme-out. The

default value is 15 seconds.

conf . set Socket Ti meout (15 * 1000); // Socket time-out. The default

value is 15 seconds.

conf . set MaxConcurrent Request (5); // The maxi num nunber of concurrent
requests. The default value is 5.

conf.set MaxErrorRetry(2); // The maxi mum nunber of retry attenpts

after each failed attenpt. The default value is 2.

0SS oss = new OSSO i ent (get Appl i cati onContext(), endpoint,

credenti al Provi der, conf);

iOS version

ossClient * client;

/1 We reconmend you use OSSAut hCredenti al Provi der because it
automati cal ly updat es expired tokens.

i d<OSSCr edenti al Provi der> credential = [[OSSAut hCredenti al Provi der
alloc] initWthAuthServerUl: @application server address, such as
http://abc. com 8080"];

client = [[OSSCient alloc] initWthEndpoint:endPoint credential
Provi der: credenti al |;

Download source code

Example program

Sample app source code for Android: download address

Sample app source code for iOS: download address

Download sample code of app server

PHP: download address
Java: download address
Ruby: download address

node.js: download address

https://github.com/aliyun/aliyun-oss-android-sdk?spm=a2c4g.11186623.2.9.FXb5vt
https://github.com/aliyun/aliyun-oss-ios-sdk?spm=a2c4g.11186623.2.10.FXb5vt
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/31920/cn_zh/1510638617750/sts-server.zip?spm=a2c4g.11186623.2.11.FXb5vt&file=sts-server.zip
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/31920/cn_zh/1510638794201/AppTokenServerDemo.zip?spm=a2c4g.11186623.2.12.FXb5vt&file=AppTokenServerDemo.zip
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/31920/cn_zh/1510645887259/sts-app-server-master.zip?spm=a2c4g.11186623.2.13.FXb5vt&file=sts-app-server-master.zip
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/31920/cn_zh/1510647848681/sts-app-server-node.zip?spm=a2c4g.11186623.2.14.FXb5vt&file=sts-app-server-node.zip

1.2 Permission control

This document elaborates how to configure different policies to implement different permission
controls based on the app server mentioned in Set up direct data transfer for mobile apps by

taking the app-base-oss bucket in the Shanghai region as an example.

Note:

+ The following illustration assumes you have already activated STS and have thoroughly read
the Set up direct data transfer for mobile apps document.

» The policies mentioned in the following content are covered in the specified policy file in the
config.json file mentioned in the previous section.

* The operations on OSS upon retrieving the STS token indicate the process of specifying the
policy for the app server, the app server retrieving a temporary credential from the STS and

the app using the temporary credential to access OSS.
Common policies
* Full authorization policy

For the ease of demonstration, the default policy is shown as follows. This policy indicates that

the app is allowed to perform any operation on OSS.

Note:

This policy is neither secured nor recommended to use for mobile apps.

"Statenment": [

"Action": [
"oss: *"
]

"’ffect": "All ow',
"Resource": ["acs:0Ss: *:*:*"]

}

ersion": "1"

]

Operations on OSS upon retrieving STS Result

token

List all created buckets. Successful

Upload the object without a prefix, test.txt. Successful

Operations on OSS upon retrieving STS Result

token

Download the object without a prefix, test.txt. | Successful

Upload the object with a prefix, user1/test.txt. | Successful

Download the object with a prefix, user1/test. | Successful

txt.
List the object without a prefix, test.txt. Successful
List the object with a prefix, user1/test.txt. Successful

» Read-only policies with or without any prefixes

This policy indicates the app can list and download all objects in the bucket app-base-oss.

{

"Statenent": [

"Action": |
"oss: Get Obj ect ",
"o0ss: Li st vj ect s”
] L]
"Effect”: "Allow',
"Resource": ["acs:o0ss:*:*:app-base-oss/*", "acs:o0ss:*:*:
app- base- 0ss"]

]

ersion": "1"

Operations on OSS upon retrieving STS Result

token
List all created buckets. Failed
Upload the object without a prefix, test.txt. Failed

Download the object without a prefix, test.txt. | Successful

Upload the object with a prefix, user1/test.txt. | Failed

Download the object with a prefix, user1/test. | Successful

txt.
List the object without a prefix, test.txt. Successful
List the object with a prefix, user1/test.txt. Successful

+ Read-only policies with a specified prefix

This policy indicates the app can list and download all objects with the prefix of **user1/** in

the bucket **app-base-oss**. However, the policy does not specify to download any objects

with another prefix. By this way, different apps corresponding to different prefixes are spatially

isolated in the bucket.

"Statenent": |

"Action": |
"oss: Get Obj ect ",
"o0ss: Li st bj ect s™

1.
"Effect": "Alow',

"Resource": ["acs:0ss:*:*:app-base-oss/userl/*", "acs: 0ss

;¥ *: app- base- 0ss"]

]

ersion": "1"

}
Operations on OSS upon retrieving STS Result
token
List all created buckets. Failed
Upload the object without a prefix, test.txt. Failed
Download the object without a prefix, test.txt. | Failed
Upload the object with a prefix, user1/test.txt. | Failed
Download the object with a prefix, user1/test. | Successful
txt.
List the object without a prefix, test.txt. Successful
List the object with a prefix, user1/test.txt. Successful

» Write-only policies with no specified prefixes

This policy indicates that the app can upload all objects in the bucket app-base-oss.

"Statement": [

"Action": |
"oss: Put Obj ect™”
]

"Effect": "Allow',

"Resource": ["acs:0Ss:*:*:app-base-oss/*", "acs:o0Ss:*:*:app-

base- 0ss"]

]

ersion": "1"

Operations on OSS upon retrieving STS Result

token
List all created buckets. Failed
Upload the object without a prefix, test.txt. Successful

Download the object without a prefix, test.txt. | Failed

Upload the object with a prefix, user1/test.txt. | Successful

Download the object with a prefix, user1/test. | Successful

txt.
List the object without a prefix, test.txt. Successful
List the object with a prefix, user1/test.txt. Successful

» Write-only policies with a specified prefix

This policy indicates the app can upload all objects with the user1/ prefix in the bucket app-
base-oss. The app cannot upload any object with another prefix. In this way, different apps

corresponding to different prefixes are spatially isolated in the bucket.

"Statenment": [

"Action": |
"o0ss: Put Obj ect”
]

"Effect”: "Allow,
"Resource": ["acs:o0ss:*:*:app-base-oss/userl/*", "acs: 0ss
D*:*app- base- 0ss"]

]

ersion": "1"

Operations on OSS upon retrieving STS Result

token
List all created buckets. Failed
Upload the object without a prefix, test.txt. Failed

Download the object without a prefix, test.txt. | Failed

Upload the object with a prefix, user1/test.txt. | Failed

Download the object with a prefix, user1/test. | Successful
txt.

Operations on OSS upon retrieving STS Result
token

List the object without a prefix, test.txt. Failed
List the object with a prefix, user1/test.txt. Failed

+ Read/write policies with or without any prefixes

This policy indicates that the app can list, download, upload, and delete all objects in the bucket

app- base- oss.

"Statenment": [

"Action": [

"o0ss: Cet Obj ect”,

"oss: Put Obj ect ",

"oss: Del et e(hj ect”,

"oss: ListParts",

"oss: Abort Mul ti part Upl oad",

"o0ss: Li st bj ect s”
1,
"Effect": "All ow',

"Resource": ["acs:0Ss: *:*:app-base-oss/*", "acs:o0ss:*:*:app-

base- 0ss"]

]

ersion": "1"

Operations on OSS upon retrieving STS Result

token
List all created buckets. Failed
Upload the object without a prefix, test.txt. Successful

Download the object without a prefix, test.txt. | Successful

Upload the object with a prefix, user1/test.txt. | Successful

Download the object with a prefix, useri/test. | Successful

txt.
List the object without a prefix, test.txt. Successful
List the object with a prefix, user1/test.txt. Successful

* Read/write policies with a specified prefix

This policy indicates the app can list, download, upload, and delete all objects with a prefix of

user 1/ in the bucket app- base- oss. The policy does not specify to read or write any objects

with another prefix. In this way, different apps corresponding to different prefixes are spatially

isolated in the bucket.

"Statenent": |

"Action": |
"oss: Get Obj ect ",
"oss: Put Obj ect ",
"o0ss: Del et e(bj ect”,
"oss: ListParts",

"o0ss: Abort Ml ti part Upl oad",

"oss: Li st Obj ect s"

]1
"Effect": "Alow',

"Resource": ["acs:o0ss:*:*:app-base-oss/userl/*", "acs: 0ss

D ¥ *:app- base- 0ss"]

]

ersion": "1"

}
Operations on OSS upon retrieving STS Result
token
List all created buckets. Failed
Upload the object without a prefix, test.txt. Failed
Download the object without a prefix, test.txt. | Failed
Upload the object with a prefix, useri/test.txt. | Successful
Download the object with a prefix, user1/test. | Successful
txt.
List the object without a prefix, test.txt. Successful
List the object with a prefix, user1/test.txt. Successful

Summary

With the help of preceding examples, we can understand that:

You can create different policies for various app scenarios and then achieve differentiated

permission control for different apps through slight modifications on the app server.

You can also optimize apps to save the process of making another request to the app server

before the STS token expires.

Tokens are actually issued by the STS. An app server customizes a policy, requests for a

token from the STS, and then delivers this token to the app. Here, token is only a shorthand

expression. However, a "token" actually contains an "AccessKeyld", an "AccessKeySecret", an

"Expiration” value, and a "SecurityToken". These are used in the SDK provided by OSS to the

app. For more information, see the implementation of the respective SDK.

More references:

 How to use RAM and STS in OSS

* RAM documentation and STS documentation

1.3 Set up data callback for mobile apps

Background

Setting up direct data transfer for mobile apps describes how to set up OSS-based direct data

transfer for mobile apps in 30 minutes. The following flowchart describes mobile app development:

Android/iOS Mobile Apps

1. Request 5TS credentials ~

4 Return 5TS credential®

App Server

Role:

» The app server generates an STS credential for the Android/iOS mobile app.

» The Android/iOS mobile app applies for the STS credential from the app server and then uses
the STS credential.

» The OSS processes requests from the Android/iOS mobile app.

After performing Step 1 (apply for an STS credential) in the preceding flowchart, the Android/iOS
mobile app, can perform Step 5 (use the STS credential to upload data to OSS) repeatedly. In

https://www.alibabacloud.com/help/doc-detail/28672.htm
https://www.alibabacloud.com/help/doc-detail/28756.htm

this case, the app server does not know what data the app is uploading, and the app developer

cannot manage the uploaded data. Is there any way to make the app server be aware of the data

uploaded by the Android/iOS mobile app?

In this case, the OSS data callback service can be used to tackle these type of issues. You can

see the following flowchart:

- a
B
gt

E.é‘ ! .

o

e
5 3 o
a &8
oB” L
oW~ o
il
wet

o 5 S // _-f_?:?
5.5 Callback g
> f

Android/iOS Mobile Apps

1. Request 5T5 credentials

4 Return 5TS credential®

App Server

OSS triggers a callback after receiving data from the Android/iOS mobile app (Step 5 in the
preceding flowchart) but before returning the upload result to the app (Step 6). The callback is
marked as Step 5.5. OSS calls back data from the app server and obtains the content returned
by the app server. Then OSS returns the content to the Android/iOS mobile app. For more

information, see Callback API Documentation.
Data callback function
» Retrieving basic information about the data uploaded to the app server

The following table shows the basic information. One or more of the following variables are

returned, and the format of returned content is specified when the Android/iOS mobile app

uploads data.

System variable Meaning

bucket Storage space (bucket) to which the mobile
app uploads data

object File name saved on OSS for the data
uploaded by the mobile app

etag etag of the uploaded file. It is the etag field
returned to the mobile app

size Size of the uploaded file

mimeType Resource type

imagelnfo.height Image height

imagelnfo.width Image width

imagelnfo.format Image format, for example, JPG and PNG (

only for recognized images)

» Transferring information through custom variables

If you are a developer and want to know the app version, OS version, location, and mobile
phone model of the user who is uploading data, you can specify the Android/iOS mobile app

client to send the preceding variables when uploading files. For example,

= Xx:version indicates app version.
— x:system indicates OS version.
— X:gps indicates location.

= X:phone indicates mobile phone model.

These values are attached when the Android/iOS mobile app uploads data to OSS. Then
OSS includes the values in the CallbackBody and sends them to the app server. In this way

, the information is transferred to the app server.
Data callback setup for the mobile app client

To enable OSS to trigger a callback when receiving an upload request, the mobile app must

include the following two items in the request:

+ callbackUrl indicates the app server to which data is called back, for example, htt p: // abc.
cont cal | back. php. Note that the server address must be accessible through the Internet.
+ callbackBody indicates the content to be called back and sent to the app server. The content

can include one or more of the variables OSS returns to the app server.

For example, assume that the data is called back and sent to the app serverathtt p: // abc. com
/ cal | back. php. You want to obtain the name and size of the file uploaded by the mobile phone.
The defined variable "photo" gets the mobile phone model, and the variable "system" gets the OS

version.
Two samples of upload callbacks are listed as follows:
» Data callback sample code for iOS apps:

OSSPut Obj ect Request * request = [OSSPut Obj ect Request new ;
request . bucket Name = @ <bucket Nane>";
request . obj ect Key = @ <obj ect Key>";
request . upl oadi ngFil eURL = [NSURL fil eURLW t hPat h: @fi |l epat h>"];
/'l Set callback paraneters
request. cal | backParam = @
@cal |l backUrl": @http://abc. cont cal | back.
php",
@ cal | backBody": @fil ename=%{obj ect}&si ze
=${ si ze} &hot 0=%{ x: phot 0} &yst emr${ x: system "
/1 Set custom vari abl es
request . cal | backVar = @
@ x: photo": @i phone6s",
@x:systenl': @ios9.1"

» Data callback sample code for Android apps:

Put Onj ect Request put = new Put Obj ect Request (t est Bucket, test Object,
upl oadFi | ePat h) ;

(bj ect Met adat a net adata = new Obj ect Met adat a() ;

met adat a. set Cont ent Type("appl i cati on/ octet-streant);

put . set Met adat a(net adat a) ;

put . set Cal | backPar an(new HashMap<String, String>() {

put ("cal | backUrl ", "http://abc.conicall back. php");
put ("cal | backBody", "fil enane=%${object}&si ze=%${si ze} &hot o=
${ x: phot 0} &syst enF${ x: systent");
}

1)
put . set Cal | backVar s(new HashMap<String, String>() {

{
put ("x: photo", "I POHEGS");
put ("x:systen, "YunGsb.0");

1)
Data callback requirements for the app server

* You must deploy a service for receiving POST requests. This service must have a public
address, for example, ww. abc. com cal | back. php (or an Internet IP address); otherwise,

OSS cannot access this address.

* You must set the format of custom content returned to OSS to JSON. OSS delivers the content
received from the app server as it is to the Android/iOS mobile app. (The Response header

returned to OSS must carry the Content-Length header.)

The last section provides sample callback programs based on multiple programming languages,

together with the download links and running methods.
Callback request received by the app server

The packet of a callback request the app server receives from OSS is as follows (the data varies

with different URLs and callback content):

POST /index. htm HITP/ 1.0

Host: 121.43.113.8

Connecti on: cl ose

Content-Length: 81

Cont ent - Type: application/x-ww*-form url encoded

User-Agent: ehttp-client/0.0.1

aut hori zati on: kKQeGI'RccDKyHB3HOVF+x YMSr mhMZj zz| 2/ kdD1kt NVgbWEf YTQRO G2
SU RaHBovRCE8Ck QD] C3uG33esH2t x A==

X- 0SS- pub- key-url: aHROcDovL2dvc3NwdW saWWuYWkpY2RuLn\vbS9j YWksYnTj al
IwdWIf a2V5X3YxLnBl bQ==

fil ename=t est .t xt &si ze=5&phot 0=i phone6s&syst enri 0s9. 1

For more information, see Callback APl Documentation.
How does the app server determine whether a callback request is sent by 0SS?

The app server must determine whether a callback request is from OSS because the app server
may receive invalid requests that affect its normal logic when the app server has a malicious

callback during a network attack.

To determine request validity, the app server verifies the RSA checksum using the x- oss- pub
-key-url and aut hori zat i on parameters in the content OSS sends to the app server. Only
requests that pass RSA checksum verification are sent by OSS. The sample programs in this

document also provides implementation results, for your reference.
How does the app server process the received callback request?

After verifying a request from OSS, the app server processes the request based on its content.
The Android/iOS mobile app specifies the format of the callback content when uploading the data,

for example:
filename=test.txt&si ze=5&phot o=i phone6s&syst enri 0s9. 1

The app server parses the OSS-returned content to obtain the expected data. Then the app server

stores the data for subsequent management.

How does the app server return the callback request to 0SS?

* The returned status code is 200.
* The returned content must use the JSON format.

* The returned content must carry the Content-Length header.
How does OSS process the content returned by the app server?
There are two scenarios:

* In case that the app server fails to receive the callback request or is not accessible, OSS
returns a 203 status code to the Android/iOS mobile app. However, the uploaded data is
already saved to OSS.

» If the app server receives a callback request and returns the correct status code, OSS returns

content received from the app server as it is to the Android/iOS mobile app along with a 200

status code.
Sample callback programs for downloading

The sample program shows how to check the signature received by the application server. You

must add the code for parsing the format of the callback content received by the application server

e Java version:

=— Download address.
=— Running method: Extract the archive and runj ava -j ar oss-cal | back-server-denp

.jar 9000 (9000 is the port number and can be changed as required).

Note:
This jar runs on java 1.7. If any problem occurs, you may make changes based on the

provided code. This is a maven project.

* PHP version:

— Download address.
= Running method: Deploy the program to an Apache environment. Due to the characteristics
of the PHP language, retrieving headers depends on the environment. You may make

modifications to the example based on your own environment.

* Python version:

— Download address.

https://gosspublic.alicdn.com/images/AppCallbackServer.zip
https://gosspublic.alicdn.com/callback-php-demo.zip
https://gosspublic.alicdn.com/images/callback_app_server.py.zip

— Running method: Extract the archive and directly run python callback_app_server.py. The
program implements a simple HTTP server. To run this program, you may need to install the

system environment on which the RSA depends.

* Ruby version:

— Download address.

= Running method: ruby aliyun_oss_callback_server.rb

https://github.com/rockuw/oss-callback-server

2 Direct upload to OSS from Web

2.1 Overview of direct transfer on Web client

Purpose
This document with the help of two examples, elaborates how to transfer a file in HTML form

directly to OSS.
Example 1: Describes how to add a signature on a server (PHP) and then upload the file

directly to OSS using a form.
Example 2: Describes how to add a signature on the server (PHP), and set the callback upon
uploading on the server. Then, upload the form directly to OSS. After that, OSS calls back the

application server and returns the result to the user.

Background
pages and it includes some HTML5 pages in some apps. The demand to upload these services is

Every OSS user may use the upload service. This is because, the data is uploaded using Web
strong. Many users choose to upload files to the application servers through browsers/apps, and

then the application server uploads the files to OSS.
APP
Server

. 0SS

e
*,

User Qg D

However, the preceding method has following limitations
Low uploading speed: Intially, files are uploaded to the application server, and then to OSS.

Therefore, the workload of transmission over the Internet is doubled. If the data is transferred
directly to OSS without passing through the application server, the speed increases significan

tly. Moreover, OSS uses BGP bandwidth, thus ensuring a high speed for operators in different
places.

» Poor scalability: As the number of users increases in future, the application server may

constitute a bottleneck.

» High cost: The traffic consumed for uploading files directly to OSS is free of charge. If data is
uploaded directly to OSS without passing through the application server, the costs of several

application servers can be saved.
Basic

The application server uses PHP script language to return the signature. Click here for the

example.
Advanced
The application server returns the signature using the PHP script language and implements

uploading callback. Click here for the example.

2.2 Direct transfer after adding a signature on the server

Background

Direct signature by JS clients has a serious hidden security hazard in that the OSS Accessld
/AcessKey are exposed on the front-end which may be accessible to others. This document

explains how to get a signature from and upload a policy to the backend PHP code.
The logic for uploading a signature to the backend is as follows:

1. The client directly uploads the obtained signature to the OSS.

2. Signature sample uploaded to the backend

Signature sample uploaded to the backend

Download sample:

» Click here to download a test sample on a PC browser.

* You can test whether the upload was effective on a mobile phone. You can use a mobile
phone app (such as WeChat, QQ, and mobile browsers) to scan the QR code. This is not an
advertisement, but a QR code for the preceding URL. This operation allows you to see whether

the service works as intended on mobile phones.

Download code:

http://oss-demo.aliyuncs.com/oss-h5-upload-js-php/index.html

Click here to download the code.
This example adopts the backend signature, and uses PHP language.

» Click here for the example of a backend signature using Java language.
+ Click here for the example of a backend signature using Python language.

» Click here for the example of a backend signature using Go language.
Usage of other languages:

1. Download the corresponding language example.
2. Modify the example code. For instance, set the listening port, and then start running.

3. Atupload.js in “oss-h5-upload-js-php.zip’, change the variable serverUrl to the address
configured at step 2. For example, serverUrl =http:// 1. 2. 3. 4: 8080 or serverUrl=ht t p
://abc. com post/.

Principle of constructing a Post signature on the server end

The OSS PostObject method is used for uploads. You can construct a PostObject request in the
browser using Plupload and send the request to the OSS. Signatures are implemented on the
server in PHP. In the same principle, the server can be compiled in Java, .NET, Ruby, Go, or
Python language. The core logic is to construct a Post signature. The Java and PHP examples

are provided here. The following steps are required:

1. The webpage requests the signature through JavaScript from the server end.

2. After JavaScript gets the signature, it uploads the signature to the OSS through Plupload.
Implementation
1. Populate the fields with your ID, key, and bucket.

Modify php/get.php:

« Set the variable $id to AccessKeyld.
+ Set $key to AccessKeySecret.
« Set $host to bucket+endpoint.

Note:

For information on the endpoint, see Basic OSS concepts.

$i d= ' XXXXXX";
$key= ' XXXXX';

http://gosspublic.alicdn.com/web-upload/oss-h5-upload-js-php.zip
https://gosspublic.alicdn.com/AppPostPolicyServer.zip
http://gosspublic.alicdn.com/web-upload/post_policy.py
http://gosspublic.alicdn.com/web-upload/post_policy.go

$host = 'http://post-test.oss-cn-hangzhou. al i yuncs. com

2. You must set CORS for the bucket to guarantee browser safety.

@ Note:

Make sure that the CORS settings of the bucket attribute support the POST method. This
is because, HTML directly uploads data to OSS and produces a cross-origin request in the

process. Hence, you must allow cross-original requests in the bucket attributes.

For procedure, see Set CORS. The settings are as follows:

Cross-Origin Rules

* Source *
+ Allowed Methods GET |Z| POST PUT DELETE HEAD
Allowed Headers *

Exposed Headers

Cache Time (seconds) 0

m Cancel
@ Note:

In earlier-version IE browsers, Plupload is executed in flash. You must set crossdomain.xml.

For the setting method, click here.

https://yq.aliyun.com/articles/3198

Details of core logic

Set random object names

You often need to name uploaded objects randomly, if they have the same suffix as the objects
on the client. In this example, two radios are used to differentiate. If you want to fix the settings to

apply random names to the uploaded objects, you can change the function to the following:

function check object radio() {
g_obj ect _nanme_type = 'random nane';

If you want to set uploads to the user's objects, you can change the function to the following:

function check_object_radio() {
g_object _nane_type = 'l ocal name';

Set the upload directory

The upload directory is specified by the server end (in PHP), which enhances security. Each client
is only allowed to upload objects to a specific directory. This guarantees security by isolation. The

following code changes the upload directory address to abc/ (the address must end with */°).
$dir = "abc/';
Set the filtering conditions for uploaded objects

We often need to set the filtering conditions for uploads. For example, only allowing image
uploads, setting the size of uploaded objects, and disallowing repeated uploads. You can use the

filters parameter for this.

var upl oader = new pl upl oad. Upl oader ({

filters: {
mme _types : [//Only inmages and zip objects are allowed to be
upl oaded
{ title : "lImage files", extensions : "jpg,qgif,png, bnp" },
max_file size : '400kb', //Only objects with a maxi num si ze of

400 KB are allowed to be upl oaded.
MAI D: True //Repeated objects are not allowed to be sel ected

Use the Plupload attribute filters to set filtering conditions.
Explanations of the preceding setting values:

* mime_types: Restrict extensions of the uploaded objects.

+ max_file_size: Restrict the size of the uploaded objects.

» prevent_duplicates: Restrict repeated uploads.

Note:

The filter conditions are not required. You can comment out the filtering condition, if you do not

need it.
Get uploaded object names

If you want to know the name of the uploaded object, you can use plupload to call the FileUpload
ed event, as follows:
Fi | eUpl oaded: function(up, file, info) {
if (info.status == 200)

docunent . get El enent Byl d(fil e.id). get El ement sByTagNamne
("b")[0].innerHTML = "upload to oss success, object name:' +
get _upl oaded _obj ect _nane(fil e. nane);

el se

docunent . get El enent Byl d(file.id). get El ement sByTagName
("b")[0].innerHTML = i nfo. response;

You can use the following functions to get the names of the objects uploaded to OSS. The file.

name property records the names of the uploaded local objects.
get _upl oaded_obj ect _nane(fil e. nane)
Upload signatures

JavaScript can get the policyBase64, accessid, and signature variables from the backend. The

following is the core code for getting the three variables:

phpUrl = "./php/get. php'
xm http.open("GET", phpUrl, false);
xm http.send(null);
var obj = eval ("(" + xm http.responseText+ ")");
host = obj[' host']
pol i cyBase64 = obj[' policy']
accessid = obj['accessid']
signature = obj['signature']
expire = parselnt(obj['expire'])
key = obj['dir']

Parse xmihttp.responseText (the following only serves as an example. The actual format may vary

, but the values of signature, accessid, and policy must exist).

{"accessi d": "6MKOgxG GU4AUK44"
"host":"http://post-test.oss-cn-hangzhou. ali yuncs. cont,

"policy":"eydl eHBpcnFOaWul j oi M AXNSOx MSOWNVQy MDoy Mz oy MLoi LCJj xb25kaXR
pb25zl j pbWJj cb250ZWs0LWkI brd0aCly YWsnZSI s MOwx MDQANTc 2 MDAWXSx bl nNOYXJ0
cyl3aXRoliwi J&G I eSlslnVzzXlt Zd yXC8i XV19",
"signature":"12u57FW TKgX/ AE6dol dyf f 151E=",
"expire": 1446726203, "dir":"user-dir/"}

» accessid: It is the Accessid of the user request. However, disclosing Accessid does not impact

data security.

* host: The domain name to which the user wants to send an upload request.

» policy: A policy for uploading user forms. It is a Base64-encoded string.

» signature: A signature string for the policy variable.

» expire: It is the expiration time of the current upload policy. This variable is not sent to OSS,

because it is already indicated in the policy.

Parse policy. The decoded content of the policy is as follows:

{"expiration":"2015-11-05T20: 23: 232",
"conditions":[["content-I|ength-range", 0,1048576000],
["starts-with", "$key", "user-dir/"]]
There is a key point here, And policytext specifies the final time that the policy upload fails. The
key content of the PolicyText specifies the final expiration time of this policy. Before its expiry, this

policy may be used to upload objects. Therefore, it is not necessary to obtain a signature from the

backend for each upload.

Here, we use the following designs: For initial uploads, a signature is obtained for each object
upload. For subsequent uploads, the current time is compared with the signature time to see
whether the signature has expired. If the signature expires, a new signature is obtained. If the
signature has not expired, the same signature is used. The expired variable is used here. The

core code is as follows:

now = tinmestanp = Date.parse(new Date()) / 1000;
[col or =#000000] / / Thi s determ nes whether the tine specified by the
expire variable is earlier than the current tinme. If so, a new
signature is obtained. 3s is the buffer duration.[/col or]

if (expire < now + 3)

phpUrl = *./php/get. php'
xm http.open("GET", phpUrl, false);
xm http.send(null);

return .

We see that starts-with has been added to the policy content. This indicates the name of the

object to be uploaded must start with the user-dir (this string can be customized).

This setting is added because, in many scenarios, one bucket is used for one app and contains
the data of different users. To prevent the data from being overwritten, a specific prefix is added
to the objects uploaded by a specific user to OSS. However, an issue occurs. Once the users
obtains this policy, they can modify the upload prefix before the expiration time to upload objects
to another user's directory. To resolve this issue, you can set the application server to specify the
prefix of the uploaded objects by a specific user at the time of upload. In this case, no one can
upload objects with another user's prefix even after obtaining the policy. This guarantees data

security.
Summary

In the sample mentioned in this document, the webpage end requests the signature from the
server end during uploads from the webpage end, and then objects are uploaded directly, with

no pressure on the server end. This approach is safe and reliable. However in this sample, the
backend program is not immediately aware of the number or identity of objects uploaded. You can
use upload callback to see which objects were uploaded. This sample cannot implement multipart

and breakpoint.
Related documents

» Basic concepts

» Set Cross-Origin Resource Sharing (CORS)

* Overview of direct transfer on Web client

» Javascript client signature pass-through

* Advanced article: application server PHP returns signatures and uses upload callbacks

» Mobile Application-side direct transmission practice

2.3 Directly add a signature on the server, transfer the file, and
set upload callback

Background
See Overview of direct transfer on Web client for the background information.

The usage of Direct transfer after adding a signature on the server solution experiences a few
issues. Once the user uploads data, the application server has to be updated with the files user
uploads, the file names, image size (if any images are uploaded), and so on. Hence, the upload
callback function is developed for OSS.

User request logic

1. The user obtains the upload policy and callback settings from the application server.
The application server returns the upload policy and callback settings.

The user sends a file upload request directly to OSS.

P 0N

Once the file data is uploaded and before a response is sent by OSS to the user, OSS sends a

request to the user's server based on the user's callback settings.

5. If the server returns “success’, OSS returns “success’ to the user. If the server returns “failed
*, OSS returns “failed" to the user. This makes sure the application server is be notified of all
images that the user has successfully uploaded.

6. The application server returns information to OSS.

7. OSS returns the information returned by the application server to the user.

In brief, the user needs to upload a file to the OSS server. And, it is assumed that the user's
application server is notified once the upload is completed. In this case, a callback function is
required to be set to update user's application server. Due to this, OSS starts the upload once it
receives user's upload request. It does not return the result to the user directly after uploading, but
notifies the user's application server first with a system-generated message such as "l completed
uploading"; then, the application server notifies OSS by sending "I got it. Please pass on the
information to my owner" message. After sending these notifications, OSS transfers the result to
the user.

Example
Sample user's Computer Browser test: Click here to experience the upload callback example

Use your phone to test if the upload is valid. You can use your phone (WeChat, QQ, mobile
browser, etc) scan the two-dimensional code to try it (this is not an advertisement, but a two-
dimensional code on the above-mentioned web site, in order to let everyone see this implementa
tion can run perfectly on the mobile phone).

Download code
Click here to download the code.
The example adopts a backend signature and uses PHP language.

» Click here for the example of a backend signature using Java language.
» Click here for the example of a backend signature using Go language.

» Click here for the example of a backend signature using Python language.

Usage of other languages:

http://oss-demo.aliyuncs.com/oss-h5-upload-js-php-callback/index.html
http://gosspublic.alicdn.com/web-upload/oss-h5-upload-js-php-callback.zip
https://gosspublic.alicdn.com/AppPostPolicyServer.zip
http://gosspublic.alicdn.com/web-upload/post_policy_callback.go
http://gosspublic.alicdn.com/web-upload/post_policy_callback.py

1. Download the corresponding language example.

2. Modify the example code, for example, set the listening port, and then start running.

3. Atupload.js in oss- h5- upl oad- j s- php- cal | back. zi p, change the variable severUrl
to the address configured at step 2. For example, severUrl=http:// 1. 2. 3. 4. 8080 or
serverUrl=htt p: // abc. com post /.

Quick start guide

Follow the steps to upload a file to OSS through the Webpage, and OSS sends a callback

notification to the application server set by the user.
1. Set your own id, key, and bucket.

Setting method: Modify php/ get . php, and set the variable $id to AccessKeyld, $key to

AccessKeySecret, and $host to bucket+endpoint.

$i d= ' xxxXXXX';
$key= " xxxxx';
$host = "http://post-test.oss-cn-hangzhou. al i yuncs. com

2. To guarantee browsing security, CORS must be set for bucket. See the following content.

3. Set your own callback URL. It is also known as your own callback server address. For
example, htt p: // abc. com t est. ht Ml (can be accessed through public network). OSS
sends the file uploading information to the application server through the callback URL (htt p
://abc. com t est. ht m) set by you after the file is uploaded. Setting method: Modify php/

get.php (for this callback server code instance, see the following content).
$ Cal | backurl = "maid ";

For more information such as uploading signature and setting a random file name, click here for

uploading details.

The core logic is analyzed in the following content.

Core code analysis

The following content is to be added to the code:

new nul tipart _parans = {
"key' : key + '${filenane}',
"policy': policyBase64,
' OSSAccessKeyl d': accessid,

‘success_action _status' : '200', //Instructs the server to return
200. Ot herwi se, the server returns 204 by default.
" cal | back' : cal | backbody,

"signature': signature,

The preceding callbackbody is returned by the PHP server. In this example, the following content

is obtained by running the PHP scripts on the backend:

{"accessi d": "6MKOgxG GU4AUKk44",
"host":"http://post-test.oss-cn-hangzhou. ali yuncs. cont,

"policy":"eydl eHBpcnmF0aWoul j oi M AXNSOx MSOWNVQy MDo1M oy OVoi LCJj db25kaXR
pb25z1 j pbWJj db250ZW60LW«I bnd0aCly YWsnZSI s MOwx MDQANTc 2 MDAWXSx bl nNOYXJO0
cyl3aXRoliwi J& I eSl sl nVzZXI t ZA yXC8i XV19",

"signature":"VsxOcQudxDbt NSvz93CLaXPz+4s=",

"expire": 1446727949,

"cal | back": "eyJj YWksYnTj alVybCl 6] thOdHA6LY9vc3M ZGVt by5hbG 5dW

5j cy5j db206M MONTAI LCJj YWsYnFj aOhvc3Q O Jvc3M ZGvt by5hbd 5dWej cy5j db2
0i LCJj YWksYnFj a0JvZzHki G JmaWkl bnft ZTOke29i anVj dHOntc 2l 6ZTOke3Npemv9Jmilp
bW/Ue XBlI PSR7bW t ZVR5¢c Gv9Jnmhl aWlodDOke2l t YWl SWonby50ZW naHR9JndpZHRoPS
R7aWLhz2VJdbnzvLndpZHRof SI sl n\hbGxi YWNr QnBkeVR5cGUi G JhcHBsaWNhd@ vbi 9
4L Xd3dy1nb3Jt LXVybGVUY29kZWQ f Q==", "dir": "user-dirs/"}

The preceding callbackbody is the Base64 encoded callback content in the returned results.

The decoded content is as follows:

{"call backUrl":"http://oss-denp. al i yuncs. com 23450",

"cal | backHost ": "oss-deno. al i yuncs. conf',

"cal | backBody": "fil ename=${obj ect } &si ze=${si ze} &mi meType=${ m neType} &
hei ght =${i magel nf 0. hei ght } & dt h=${i nagel nf o. wi dt h}",

"cal | backBodyType": "appl i cati on/ x- wwf ormur | encoded"}

Content analysis:

callbackUrl: Specifies the URL request sent by OSS to this host.

callbackHost: Specifies the Host header to be included in the request header when this request
is sent by the OSS.

callbackBody: Specifies the content sent to the application server upon OSS request. This can
include a file name, size of the file, type, and image and its size (if any).

callbackBodyType: Specifies the Content-Type requested to be sent.

Callback application server

Step 4 and 5 is important in the user's request logic. When OSS interacts with the application

server. The following are a few questions explained with answers.

Question: If | am a developer, how can | confirm that the request was sent from OSS?

Answer: When OSS sends a request, it constructs a signature with the application server. Both
use signatures to guarantee security.

Question: How is this signature constructed? Is there any sample code?

Answer: Yes. The preceding example shows the sample code of the application server

callback: htt p: // oss-deno. al i yuncs. com 23450 (only supports Linux now).
The preceding code runs as follows: callback_app_server.py.zip

Running solution: Directly run the file pyt hon cal | back_app_ser ver. py under the Linux
system. The program automatically implements a simple http server. To run this program, you
may need to install the system environment on which the RSA depends.

Question: Why the callback request received by my application server does not have an

Authorization header?

Answer: Some Web servers resolve the Authorization header automatically, for example,
apache2. Therefore, it is set not to resolve this header. Using apache2 as an example, the

specific setting method is as follows:

1. Start the rewrite module, and run the command: “a2enmod rewrite".

2. Modify the configuration file / et ¢/ apache2/ apache?2. conf (it varies with the installation

path of apache2). Set Allow Override to All, and then add the following content:

* RewriteEngine on

* RewriteRule .* - [env=HTTP_AUTHORIZATION:%{HTTP:Authorization},last]

The sample program demonstrates how to check the signature received by the application server

. You must add the code for parsing the format of the callback content received by the application

server.

Callback application server versions in other languages

Java version:

— Download address: click here.

= Running method: Extract the archive and runj ava -j ar oss-cal | back-server-denp

.jar 9000 (9000 is the port number and can be changed as required).

Note:
Note: This jar runs on java 1.7. If any issue occurs, you may make changes based on the
provided code. This is a maven project.

PHP version:

= Download address: click here.

https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/internal/oss/0.0.4/assets/sample/callback_app_server.py.zip?spm=a2c4g.11186623.2.12.Sf8gc1&file=callback_app_server.py.zip
https://gosspublic.alicdn.com/images/AppCallbackServer.zip?spm=a2c4g.11186623.2.13.Sf8gc1&file=AppCallbackServer.zip
https://gosspublic.alicdn.com/callback-php-demo.zip?spm=a2c4g.11186623.2.14.Sf8gc1&file=callback-php-demo.zip

=— Running method: Deploy a program to an Apache environment. Due to the characteristics of
PHP language, retrieving headers depends on the environment. You can make changes to

the example based on your own environment.

Python version:

= Download address: click here.
= Running method: Extract the archive and directly run python callback_app_server.py. The
program implements a simple HTTP server. To run this program, you may be required to

install the system environment on which the RSA depends.

Ruby version:

— Download address: click here.

= Running method: ruby aliyun_oss_callback_server.rb.

Summary

Example 1: Describes how to add a signature directly on the JavaScript client and upload a file
in the form to OSS directly. oss-h5-upload-js-direct.tar.gz

Example 2: Describes how to obtain a signature from the backend using the PHP script and
then upload the file in a form to OSS directly. oss-h5-upload-js-php.tar.gz

Example 3: Describes how to obtain a signature from the backend using the PHP script, and
perform callback after uploading, and then, upload the form directly to OSS. Consequently,
OSS calls back the application server and returns the result to the user. oss-h5-upload-js-php-

callback.tar.gz

https://gosspublic.alicdn.com/images/callback_app_server.py.zip?spm=a2c4g.11186623.2.15.Sf8gc1&file=callback_app_server.py.zip
https://github.com/rockuw/oss-callback-server?spm=a2c4g.11186623.2.16.Sf8gc1
https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/internal/oss/0.0.4/assets/sample/oss-h5-upload-js-direct.tar.gz?spm=a2c4g.11186623.2.17.Sf8gc1&file=oss-h5-upload-js-direct.tar.gz
https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/internal/oss/0.0.4/assets/sample/oss-h5-upload-js-php.tar.gz?spm=a2c4g.11186623.2.18.Sf8gc1&file=oss-h5-upload-js-php.tar.gz
https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/internal/oss/0.0.4/assets/sample/oss-h5-upload-js-php-callback.tar.gz?spm=a2c4g.11186623.2.19.Sf8gc1&file=oss-h5-upload-js-php-callback.tar.gz
https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/internal/oss/0.0.4/assets/sample/oss-h5-upload-js-php-callback.tar.gz?spm=a2c4g.11186623.2.19.Sf8gc1&file=oss-h5-upload-js-php-callback.tar.gz

3 Bucket management

3.1 CDN-based OSS acceleration

Background

Structure of traditional products without static-dynamic separation (however, performance

encounters a bottleneck as traffic increases).

mage

Slow response, ri
User hiah 'Enst Script

request gt Attachment
nelastic AudiofYideo

Web oy

program Database Audio/Video

mage Static script Attachment

ECS servers

LS &

Traditional Web Architecture

Product structure implementing static-dynamic separation (a flexible structure supports massive

user traffic).

CDN

Return static data :
(Massive nearby
acceleration nodes)

4 k. il)

Static script Attachment
Mo Database e
Program
Intranet access,
Data update/maintenance Image Audio/Video
ECS Server
0SS (Cloud Storage

\ _/ \ Service) _//

Web Architecture Implementing
Static/Dynamic Separation

Scenarios

+ Massive access to static files, high server loads, and I/O problems, causing slow user access.
+ Large volumes of static files and insufficient storage space.
+ Massive access to static files distributed across various regions.

» Fast and concurrent download of mobile update packages in large volumes within a certain

time period.
Structural description

As the storage source for massive file volumes, OSS stores static images, video files, downloaded
packages, app update packages, and other resources. As OSS is the origin site for CDN, OSS

files can be obtained through CDN accelerated delivery by accessing nearby CDN nodes.
Structural advantages:

* Reduces the load on Web servers, and directs the access to all static files to CDN.
» Provides the lowest storage fees. OSS storage fee is only half that of ECS disks.

* Provides massive storage capacity, without the need to consider structural upgrade.

* Minimizes traffic fees. Apart from a small amount of additional origin retrieval traffic, the
majority of the traffic is CDN traffic. And it's cost is lesser than the Internet traffic for direct

access from OSS.
Case study

A common website is used as an example. A recently established website www.acar.com, is an
automotive news and discussion website which is built on PHP. The main site stores 10 GB of
image resources and some JS files. An ECS instance is purchased to store all program codes and

MySQL database is installed on the ECS instance.

As access traffic continues to grow, many users report that the website access speed experience
s a slow down such as loading of pictures and website response consumes time. The website’s
technical staff notices that users are uploading an increasing number of images and the total size

will soon exceed 1 TB.

The technical staff can use OSS and CDN to optimize the website structure to achieve static-
dynamic separation shown in the preceding figure. It enhances user experience, and keep their

costs at a manageable level.
The specific solution and procedures are as follows:

1. Sort out the website program code on the ECS instance by storing dynamic programs and

static resources in different directories for better management.

» Create a directory named | nages for storing the website’s high-definition images.
» Create a directory named Javascri pt for storing all JS scripts.

+ Create a directory named At t achnent for storing all images and attachments uploaded by

users.

2. Create a bucket.

Select the bucket region based on your ECS region and select the permission option Public
Read. You have to make sure that the bucket name corresponds to one of the directories
created on the ECS instance, for example, acar-image-bucket. For more information, see
Create a bucket.

3. Enter i nage. acar . comas the domain for the HD videos and images on your website. For

more information, see Manage a domain name.

4. Upload files to verify the CDN effect.

a. Upload all image files in the Images directory created in Step 1 on the ECS instance to acar-
image-bucket. For more information, see Upload objects. You can use an OSS client to
complete the upload process conveniently.

b. Get the CDN address for this file. The address format is your CDN domain+'/'+'file name'.
For more information, see Get object URL.

c. Upload image files one by one.

5. Repeat the preceding steps to upload the files in the other two directories, and create the CDN-

based OSS buckets acar-js-bucket and acar-csimages-bucket .

6. In the ECS system, find the access code for the static files and replace the access URL
with the CDN domain. Users access static files on your website in OSS+CDN mode without

occupying your ECS resources.

Note:
If you want to automatically synchronize user-uploaded files to acar-csimages-bucket, see
the OSS SDKs and the PutObject section of the APl documentation. This provides information

on how to perform automatic upload at the code level.
CDN automatic refresh

If you use Alibaba Cloud CDN with a bound CDN domain that points back to an OSS source,

you can use OSS’s CDN cache automatic refresh function. OSS automatically refreshes CDN
when the data is overwritten (for example, when an existing file is overwritten or deleted). A origin
retrieval operation is performed to obtain the overwritten file from OSS, so you do not need to

explicitly call the CDN refresh interface. The URL refresh rules are as follow:
CDN domain + / + (bject

For example, if the uploaded file t est . j pg is overwritten in the bucket bound to the CDN domain
i mage. acar . com OSS refreshes the i mage. acar. com t est . j pg URL. The time required
by the refreshed URL to take effect is determined by CDN'’s guaranteed refresh time, which is

typically less than 10 minutes.

To activate CDN-based OSS acceleration, enable the Refresh CDN cachefunctionon the bucket

Domain Management page.

3.2 Storage class conversion

Lifecycle Object Transition
OSS supports three storage classes: Standard, Infrequent Access, and Archive.

The Object Transition mechanism is now available in OSS Lifecycle Management function in all

regions across China. The following storage classes are supported for automatic conversion:

+ Standard -> Infrequent Access
» Standard -> Archive

» Infrequent Access -> Archive

o Lifecycle
e

Standard

Infrequent Access

e
B4
%
©

Archive

Examples
You can configure lifecycle policies for objects with a given prefix in one bucket as follows:

» They are converted to Infrequent Access class after being stored for 30 days.
» They are converted to Archive class after being stored for 180 days.

* They are deleted automatically after being stored for 360 days.

You can complete the configuration of the preceding lifecycle policies in the console. For more

information, see Set lifecycle.

Object Storage Service Best Practices / 3 Bucket management

Create Lifecycle Rule X

Status Enabled Disabled
Policy Match by Prefix

Prefix video/

Delete File Expiration Period Expiration Date

Not Enabled

Transition to IA After 30

]

Transition to Archive after

180

]

Delete All Objects After Specified Days 380

Delete Fragments Expiration Period Expiration Date

Not Enabled

Delete Fragments After Specified Days 30

m Cancel

% Note:

If the following three parameters are configured:

Transition to | A After,Transition to Archive After,andDelete All hjects
After Specified Days, then the number of days set for each parameter must meet the

following criteria:

Days for converting to Infrequent Access < Days for converting to Archive < Specified days for
deleting

Notes

After the Object type conversion, the storage cost is calculated based on the unit price of

converted storage class.
Notes for Infrequent Access and Archive storage types:
* Minimum billable size:

Objects smaller than 128 KB are charged as 128 KB.

* Minimum storage period:

42

Issue: 20180807

The stored data is required to be saved for at least 30 days. Charges will be incurred if you

delete files that are stored for less than 30 days.

* Restore time of Archive type:

It takes one minute for Archive type Object to restore the data to a readable state. If real-time
read is required in the business scenario, we recommend that you convert the file to the
Infrequent Access storage class instead of Archive class. Otherwise, after converting the file to

the Archive class, the data cannot be read in real time.

+ Data access charges:

Both Infrequent Access and Archive classes are required to pay data access charges as a
separate charge item to outbound traffic. If the average access frequency per Object is higher
than once per month, you are not advised to convert the data to Infrequent Access or Archive

class.
Storage classes conversion in other ways

For conversions from Archive type to Standard class or Infrequent Access class, or from
Infrequent Access class to Standard class, you can read the Object and rewrite it to the Bucket of

corresponding storage class. The default storage class of Object is determined by the Bucket.

For example, for the conversion of Infrequent Access Object in the Bucket of Standard type to
Standard Object, you can read and rewrite the Object. Based on the type of the Bucket, the newly-

written Object is of Standard storage class.

For the Object that has been converted to Archive class, you can only read it after performing

Restore operation and restore it to a readable state.

For mor einformation, see Create and use the Archive bucket.

3.3 Cross-origin resource sharing (CORS)
Same-origin policy

Cross-origin access, or cross-origin of JavaScript, is a type of browser restriction for security
consideration, namely, the same-origin policy. When Website A tries to use the JavaScript code
on its webpage to access Website B, the attempt is rejected by the browser because A and B are

two websites of different origins.

However, cross-origin access is a commonly used on a day-to-day basis. For example, OSS

is used at the backend for the website www.a.com. The JavaScript-based upload function

is provided on the webpage. However, requests on the webpage are only sent to www.a.com
, whereas all requests sent to other websites are rejected by the browser. As a result, user-
uploaded data must be relayed to other sites through www.a.com . If cross-origin access is

configured, data can be uploaded directly to OSS instead of relaying it through www.a.com.
CORS overview

CORS is a standard cross-origin solution provided by HTMLS5. For the specific CORS rules, see
W3C CORS Norms.

CORS is a set of control policies followed by the browsers, which use HTTP headers for interactio
n. When identifying a request initiated as a cross-origin request, a browser adds the Origin
header to the HTTP request and sends the request to the server. In the preceding example, the
Origin header is www.a.com. After receiving the request, the server determines based on certain
rules whether to permit the request. If the request is permitted, the server attaches the Access
-Control-Allow-Origin header to the response. The header contains www.a.com, indicating that
cross-origin access is allowed. In case, server permits all cross-origin requests, set the Access
-Control-Allow-Origin header to *. The browser determines whether the cross-origin request is
successful based on whether the corresponding header is returned. If the corresponding header is

not attached, the browser blocks the request.

The preceding content is a simple scenario. CORS norms classify requests into two types: simple
requests and precheck requests. Precheck is a protection mechanism that prevents unauthoriz
ed requests from modifying resources. Before sending the actual request, the browser sends an
OPTIONS HTTP request to determine whether the server permits the cross-origin request. If the

request is not permitted, the browser rejects the actual request.
No precheck request is required only if both of the following conditions are met:
* The request method is one of the following:

— GET
— HEAD
— POST

» All headers are in the following lists:

= Cache-Control
— Content-Language
= Content-Type

— Expires

http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/

— | ast-Modified

— Pragma
Precheck requests provide information about the subsequent request to the server, that includes:

» Origin: Request origin information.
» Access-Control-Request-Method: Type of the subsequent request, for example, POST or GET.

» Access-Control-Request-Headers: List of headers explicitly set and included in the subsequent

request.

After receiving the precheck request, the server determines whether to permit the cross-origin
request based on the attached information. The return information is also sent using the following

headers:

» Access-Control-Allow-Origin: list of permitted origins for cross-origin requests.

» Access-Control-Allow-Methods: List of permitted cross-origin request methods.

» Access-Control-Allow-Headers: List of permitted cross-origin request headers.

» Access-Control-Expose-Headers: List of headers permitted to be exposed to JavaScript code.

» Access-Control-Max-Age: Maximum browser cache time in seconds.

Based on the returned information, the browser determines whether to send the actual request. If

none of these headers is received, the browser rejects the subsequent request.

Note:
The preceding actions are performed automatically by the browser, and you can ignore the
details. If the server is correctly configured, the process is the same for non-cross-origin

requests.
Scenarios

Access permission control applies to browsers rather than servers, CORS is only applicable in
scenarios where a browser is used. Hence, you do not need to worry about cross-origin issues

when using other clients.

Applications that use CORS primarily, use Ajax in a browser to directly access OSS, instead
of requiring traffic to be redirected through application servers. This applies to the upload and
download processes. For websites powered by both OSS and Ajax technology, CORS is

recommended for direct communication with OSS.

0SS support for CORS

OSS supports CORS rule configuration for permitting or rejecting corresponding cross-origin
requests as required. CORS rules are configured at the bucket level. For more information, see

PutBucketCORS.

Whether a CORS request is permitted is independent of OSS identity verification. That is, the OSS
CORS rules are only used to determine whether to attach relevant CORS headers. Whether the

request is blocked is only determined by the browser.

When using cross-origin requests, make sure the browser’s cache function is enabled. For
example, the same cross-origin resource is requested respectively by two webpages in the same
browser (originated from www.a.com and www.b.com) at the same time. If the request of www.
a.com is received by the server in the first place, the server returns the resource with the Access
-Control-Allow-Origin header “www.a.com”. When www.b.com initiates its request, the browser
returns its previous cached request. As the header content does not match the CORS request, the

subsequent request fails.

Note:
Currently, all OSS object-related interfaces provide CORS verification. In addition, multipart

interfaces fully support CORS verification.
Cross-origin GET request example

In this example, Ajax is used to retrieve data from OSS. For simplified description, all used
buckets are public. The CORS configuration for accessing a private bucket is the same and only
requires a signature to be attached to the request.

Getting started

Create a bucket. For example, create the bucket oss-cors-test with the access right set to public-

read. Then create the text file named test.txt, and upload it to the bucket.

The test.txt access address is http://oss-cors-test.0ss-cn-hangzhou.aliyuncs.com/test.txt.

Note:

Replace the following address with your test address.

Use curl to directly access the file:

curl http://oss-cors-test.o0ss-cn-hangzhou. al i yuncs. coniftest.txt

http://oss-cors-test.oss-cn-hangzhou.aliyuncs.com/test.txt?spm=a2c4g.11186623.2.6.cdVyuR&file=test.txt

just for test

The file can be accessed properly.

The following code describes how to directly access this website using Ajax. It is the simplest
HTML code for access. You can copy the following code, save it as a local HTML file, and open it
through your browser. Because no custom headers and hence are included, this request does not

require a precheck.

<! DOCTYPE htm >
<ht m >
<head>
<script type="text/javascript" src="./functions.js"></script>
</ head>
<body>
<script type="text/javascript">
/'l Create the XHR object.
function creat eCORSRequest (nmet hod, url) {
var xhr = new XM_Ht t pRequest () ;
if ("wthCredentials" in xhr) {
/1 XHR for Chrone/Firefox/ Operal Saf ari
xhr . open(met hod, url, true);
} else if (typeof XDomai nRequest ! = "undefined") {
/1 XDomai nRequest for |IE
xhr = new XDommi nRequest () ;
xhr . open(nethod, url);
} else {
/'l CORS not supported.
xhr = nulI;

return xhr;
/1 Make the actual CORS request.

functi on makeCor sRequest () {
[/ Al HTML5 Rocks properties support CORS

var url = "http://oss-cors-test.o0ss-cn-hangzhou. al i yuncs. conitest.
txt';
var xhr = creat eCORSRequest (' GET', wurl);
if (! xhr) {
alert (' CORS not supported');
return;

/! Response handl ers.
xhr . onl oad function() {
var text xhr . responseText ;
var title = text;
al ert (' Response from CORS request to

+url +': " + title);

xhr.onerror = function() {
alert (' Wops, there was an error making the request.');

xhr. send();
</script>
<p align="center" style="font-size: 20px;">
 run sanple </ a>
</ p>

</ body>

</htm >

After opening the file, click the link (Chrome is used in this example). Check that the link cannot be

accessed.

Run Sample

JavaScript

Woops, there was an error making the
request.

Disable this page from displaying the dialog box again

Use Chrome developer tools to identify the cause of the error.

The error is due to the fact that no Access-Control-Allow-Origin header is found. This is because

the server is not configured with CORS.

Return to the header interface to check that the browser sends a request with an Origin header.
Hence, the request is a cross-origin request. On Chrome, the origin is null because the file is a

local file.

Configure Bucket CORS settings

Once the problem is located, you can configure CORS settings for the bucket to make sure
successful execution of the preceding operation attempt. To facilitate understanding, the following
describes how to configure CORS settings on the console. We recommend that CORS be
configured on the console if CORS settings are not complex. CORS settings are composed of

individual rules.

When the system looks for matches, each rule is checked as a match starting with the first rule.
The first matched rule applies. The following shows how to add a rule with the loosest configurat

ion:

This indicates that access is permitted to all origins, all request types, and all headers, and the

maximum cache time is 1s.

Once the configuration is completed, perform the test again. The result is as follows:

Access requests can be sent properly.

If you are required to troubleshoot cross-origin access problems, you can configure CORS as
shown in the preceding figure. This configuration permits all cross-origin requests. If an error

occurs under this configuration, the error is not related to CORS.

Besides the loosest configuration, a more refined control mechanism can be configured for

targeted control. The following shows the strictest configuration for a successful match:

In most cases, we recommend that you use the strictest configuration applicable in their use

scenarios to guarantee maximum security at minimal configuration.
Use cross-origin requests for POST upload

The following provides a more complex example where a POST request with a signature is used,
and the browser must send a precheck request.

PostObjectSample

Note:
After downloading the preceding code, modify all the following sections to meet your

requirements. Then run it on your server.

The following describes how to use the bucket oss-cors-test for testing. Before testing, delete all

CORS rules to restore the configuration to its initial state.

https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/internal/oss/0.0.4/assets/sample/postobject.tar.gz

Access this webpage and select a file to upload.

Start the developer tools, and you can view the following content. Based on the previous GET

example, it is easy to find the same cross-origin error. Different from the GET request, the request

requires a precheck. As shown in the following figure, the operation fails because the OPTIONS

response does not have CORS headers.

Modify the CORS configuration accordingly.

You can perform the operation again to get a successful result. The console displays the newly

uploaded file.
= D Elements | Network | Sources Timeline Profiles Resources Audits Console
® 0 LT Vi = = Preserve log Disable cache No throttling v
Hide data URLs 28| XHR JS CSS Img Media Font Doc WS Other
I 20000 ms 40000 ms 60000 ms 80000 ms 100000 ms 120000 ms 140000 ms 160000 ms 180000 ms 200000 ms 220000 ms
Name X | Headers | Preview Response Timing

¥ General
Remote Address: 112.124.219.93:80
Request URL: http://oss-cors-test.oss-cn-hangzhou.aliyuncs.com/
Request Method: POST
Status Code: @ 204 No Content

| | oss-cors-testoss-cn-han...
|| oss-cors-testoss-cn-han...

| | oss-cors-testoss-cn-han...

¥ Response Headers
Access-Control-Allow-Credentials: true
Access-Control-Allow-Methods: GET, POST
Access-Control-Allow-Origin: http://18.101.172.96:8801
Access-Control-Max-Age: 1
Connection: keep-alive
Content-Length: @
Date: Thu, 12 Nov 2015 ©7:88:47 GMT
ETag: "266B8D1C63005F1CA9D55A58D748AA5C"
Server: Aliyun0SS
x-oss-request-id: 56443AFFF9EEA2F3326B6AD1
¥ Request Headers view source
Accept: */*
Accept-Encoding: gzip, deflate
Accept-Language: zh-CN,zh;q=0.8,en;q=0.6
Connection: keep-alive
Content-Length: 1006
Content-Type: multipart/form-data; boundary=----WebKitFormBoundaryKpdHaoFkcDKxCjRk
Host: oss-cors-test.oss-cn-hangzhou.aliyuncs.com
Origin: http://10.181.172.96:86801
Referer: http://10.101.172.96:8001/post_object_to_oss.html

240000 ms 260000 ms

User-Agent: Mozilla/5.@ (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/46.0.2499.8@ Safari/537.36

¥ Request Payload

—————— WebKitFormBoundaryKpdHaoFkcDKxCjRk
Content-Disposition: form-data; name="key"

events/1447312129218-testl. txt
------ WebKitFormBoundaryKpdHaoFkcDKxCjRk

1447312129218-testL.toxt REUEIE 8EHTTP MR

03

1% ESRERFEF0SEFmLIE 1 Win | Mac

Test content:

$curl http://oss-cors-test.oss-cn-hangzhou. al i yuncs. com event s/
1447312129218-test 1. t xt
post object test

CORS configuration caveats
CORS configuration items include:

» Source: Provide the complete domain information during configuration, for example, htt p: //

10. 101. 172. 96: 8001 as shown in the preceding figure.

Do not omit the protocol name, for example, http. Include the port number if the default one has
been changed. If you are not sure, use the browser’s debugging function to view the Origin
header. This field supports the wildcard *, but only one such symbol can be used. You can
perform configuration based on your needs.

+ Method: Select the allowed methods based on your requirements.

» Allow Header: Indicates the list of allowed headers. To avoid header omission, we recommend
that you set this field to * unless otherwise specified. The header is not case-sensitive.

» Expose Header: Indicates the list of headers exposed to the browser. Wildcards cannot be
used. The specific configuration must be selected according to your application. Expose only
required headers, for example, ETag headers. If you do not need to expose this informatio
n, you can leave this field blank. You can specify headers individually. This field is not case-

sensitive.

+ Cache Time: In normal cases, you can set a relatively large value, for example, 60s.

The CORS configuration method sets individual rules for each origin that may access the service
. If possible, do not include multiple origins in a single rule, and avoid overlap or conflict among
multiple rules. For other permissions, you only need to grant the required permissions.

Troubleshooting advice
It is easy to mix up other errors with CORS errors when similar programs are debugged.

For example, when an access request is rejected because of any incorrect signature, the return

result may not contain CORS header information because permission verification precedes

CORS verification. In this case, some browsers directly report a CORS error, but the actual CORS
configuration on the server is correct. The following two methods can be used to address the

preceding problem:

* View the HTTP request’s return value. Because CORS verification is an independent process
that does not affect core processes, a return value such as 403 is not produced by CORS.
You must first rule out the program-related causes. If a precheck request is sent previously
, you can view the precheck request results. If the correct CORS headers are returned, the
actual request is permitted by the server. Therefore, the error can only be caused by another
component.

+ Set the server's CORS configuration to the loosest setup shown in the preceding example.
Use wildcards to permit all origins and request types. Then re-verify the configuration. If the

verification still fails, it is possible that other type of errors have occured.

3.4 Anti-leech

Background

For example, A is the webmaster of a website. Webpages on the website contain links to images
and audio/video files. These static resources are stored on Alibaba Cloud OSS. For example, A
may save an image file on OSS with the URL htt p://referer-test. oss-cn-hangzhou.

al i yuncs. conf al i yun- | ogo. png.

For external URLs of OSS resources, see OSS access. These URLs (unsigned) require the

public-read bucket permission.

B is the webmaster of another website. Without A’s permission, B places image resources of A
’'s website on B’s webpage, so as to steal the storage space and traffic of A. Users who view
content on B’s website do not know or care where the images on the site are sourced. However
, OSS bills fee on the basis of usage. A has to pay the resource usage fee without gaining much

benefits.

This document is applicable in the scenario where OSS resources are used as external links on

webpages.
Implementation method
Currently, OSS provides two anti-leech protection methods:

» Configuring Referer: This method can be used on the console or through SDKs, and is suitable

for the users who prefer not to write code and users used to programming.

https://www.alibabacloud.com/product/oss

Using signed URLs: This method is suitable for users used to programming.

This document presents two examples:

Configuring Referer anti-leech protection on the console

and using the PHP SDK to dynamically generate signed URLs for anti-leech protection.

Configuring Referer

The following content describes what a Referer is and how OSS uses Referers to provide anti-

leech protection.

What is a Referer?

A Referer is part of an HTTP header. When a browser sends a request to a web server, the
request includes a Referer to notify the server of the webpage link where the request is initiated
from. Based on the previous example, assume that user B’s website is called userdomain-
steal, and B wants to leech user A’'s image link htt p: / / ref erer-test. oss-cn- hangzhou

.aliyuncs. contaliyun-I|ogo. png. The domain name of A's website is user domai n.
Assume that the webpage of the leeching website userdomain-steal is as follows:

<htm >

<p>This is a test</p>

<inmg src="http://referer-test.oss-cn-hangzhou. al i yuncs. com
al i yun-1ogo. png" />
</htm >

Assume that the webpage of the origin site userdomain is as follows:

<htm >
<p>This is ny test link from OSS URL</p>
<inmg src="http://referer-test.oss-cn-hangzhou. al i yuncs. cont
al i yun-1ogo. png" />
</htnm >
— When an Internet user uses a browser to access B’s webpage htt p: // user donai n-
st eal /i ndex. ht i , the webpage links to an image from A’s website. The request is
redirected from one domain name (userdomain-steal) to another domain name (oss-cn-
hangzhou.aliyuncs.com). Therefore, the browser adds a Referer to the header of the HTTP

request.

The Referer in the HTTP request in the browser is set to ht t p: / / user donai n- st eal /
i ndex. ht m . In this document, webpage requests are displayed in Chrome’s developer

mode.

= When http://userdonmai n/ error. ht M is accessed in a browser, the browser shows

that the Refereris setto htt p: // userdonai n/ error. htn .

— |f a file address is entered in the browser, the Referer in the request is blank.

If user A does not configure any Referer settings on OSS, the preceding three methods can

be used to access user A’s image links.

OSS Referer anti-leech protection principles

As mentioned in the preceding example, when a browser requests OSS resources, the browser
includes a Referer in the request in the case of a page jump. The Referer value is the URL of

the previous page, but may be blank in some cases.
OSS’s Referer function provides two options to deal with the preceding two situations.

— Configure whether to allow access with a blank Referer. This option cannot be configured

separately, but must be used with a Referer whitelist.

= Configure a Referer whitelist.
Analysis:

= Anti-leech verification is performed only when objects are accessed using a signed URL
or anonymously. When the request header contains the “Authorization” field, anti-leech
verification is not performed.

= One bucket supports multiple Referer fields.

— The Referer field supports the wildcards * and 7.

= You can configure whether to allow access requests with blank Referer fields.

— |f the whitelist is blank, the system does not check whether the Referer field is blank (
otherwise, all requests get rejected, including requests with blank Referer fields and
requests with non-blank Referer fields which cannot be found in the Referer whitelist).

— When the whitelist is not blank and the rule “Do Not Allow Blank Referer Fields” is
configured, only requests with whitelisted Referers are allowed, whereas other requests (
including requests with blank Referer fields) are rejected.

= When the whitelist is not blank and the rule “Allow Blank Referer Fields” is configured,
requests with blank Referer fields and requests with whitelisted Referers are allowed,

whereas other requests are rejected.

— Referer fields are checked under all three bucket permissions (private, public-read, and

public-read-write).
Wildcard details:

— Asterisk (*): can be used to represent 0 or multiple characters. If you are looking for a file
name that starts with “AEW”, you can enter “AEW* to search for all types of files with the
names starting with “AEW”, for example, AEWT.txt, AEWU.EXE, and AEWI.dIl. If you want
to narrow down the search scope, you can enter AEW.txt to search for all .txt files with
names starting with AEW, such as AEWIP.txt and AEWDF .txt.

— Question mark (?): represents one character. If you enter love?, all types of files with
names starting with “love” and ending with a character are displayed, such as lovey and
lovei. If you want to narrow the search scope, you can enter love?.doc to search for all .doc
files with names starting with “love” and ending with a character, such as lovey.doc and
lovei.doc.

Anti-leech effects of different Referer settings
The following describes the effects of Referer settings:
= Disable Allow Empty Referer,

as shown in the following figure:

Anti-leech

Set HTTP Referer whitelist to prevent leeching. Learn more

Referer

Allow Empty Referer

Direct access: The resources are accessible even when anti-leech protection takes effect.
The reason is, if the whitelist is blank, the system does not check whether the Referer field
is blank. The Referer setting does not take effect when the whitelist is blank. Therefore, the

Referer whitelist must be configured.

— Disable Allow Empty Referer and configure a Referer whitelist.

As shown in the preceding example, the Referer in the browser request is the URL of the
current webpage. Therefore, it is necessary to know from which URL the request jumps and

then specify the URL.
Referer whitelist setting rules:

m In the example, the Refereris htt p: // user domai n/ error. ht m . Therefore, the
Referer whitelist can be setto htt p: / / user domai n/ error. ht m . As the Referer
check performed by OSS is based on prefix matching, access to other webpages such
as http://userdonai n/i ndex. ht Ml fails. To avoid this problem, you can set the
Referer whitelist set to ht t p: / / user domnai n/ .

m To allow access to other domain names such as htt p: / /i ng. user domai n/ i ndex.

htm ,add http://*. userdomai n/ to the Referer whitelist.

Both entries are configured as shown in the following figure:

Anti-leech

Set HTTP Referer whitelist to prevent leeching. Learn more

Referer

Allow Empty Referer

Save Cancel

After testing, the following results are obtained:

Browser input Expectation Result
http.//referer-test.oss-cn- Expectation for direct access | As expected
hangzhou.aliyuncs.com/ with a blank Referer: Blank
aliyun-logo.png Referers are not allowed and

OSS returns 403.

http.//userdomain/error.html | Expectation for a request As expected
from the origin site:
successful access.

http.//userdomain-steal/index | Expectation for a request As expected
.html from a leeching site: OSS
returns 403. Anti-leech

protection is successful.

http://referer-test.oss-cn-hangzhou.aliyuncs.com/aliyun-logo.png
http://referer-test.oss-cn-hangzhou.aliyuncs.com/aliyun-logo.png
http://referer-test.oss-cn-hangzhou.aliyuncs.com/aliyun-logo.png
http://userdomain/error.html
http://userdomain-steal/index.html
http://userdomain-steal/index.html

Browser input Expectation Result
http.//img.userdomain/error. | Expectation for a request As expected
html from a third-level domain of
the origin site: successful
access.
il
[=]] Note:

* In this test, the domain names only serve as examples, and are not the same as the
actual domain names you use. Be sure to differentiate them.

* If the Referer whitelist only contains ht t p: / / user domai n/, and the browser attempts
to access the resources through the simulated third-level domain name htt p: //i ng
. userdonuai n/ error. ht m , the third-level domain name fails to match any of the
entries in the Referer whitelist, and OSS returns 403.

= Enable Allow Empty Referer and configure a Referer whitelist
The Referer whitelist contains ht t p: // *. userdonmai n/ and htt p:// user domai n,

as shown in the following figure:

Anti-leech
Set HTTP Referer whitelist to prevent leeching. Learn more

Referer http://userdomain/

http://*.userdomain/

Allow Empty Referer ‘

Save Cancel

After testing, the following results are obtained:

Browser input Expectation Result
http.//referer-test.oss-cn- Expectation for direct access | As expected
hangzhou.aliyuncs.com/ with a blank Referer:
aliyun-logo.png successful access
http.//userdomain/error.html | Expectation for a request As expected
from the origin site:
successful access

http://img.userdomain/error.html
http://img.userdomain/error.html
http://referer-test.oss-cn-hangzhou.aliyuncs.com/aliyun-logo.png
http://referer-test.oss-cn-hangzhou.aliyuncs.com/aliyun-logo.png
http://referer-test.oss-cn-hangzhou.aliyuncs.com/aliyun-logo.png
http://userdomain/error.html

Browser input Expectation Result

http://userdomain-steal/index | Expectation for a request As expected
.html from a leeching site: OSS
returns 403. Anti-leech
protection is successful.

http.//img.userdomain/error. | Expectation for a request As expected
html from a third-level domain of

the origin site: successful

access

* How to configure Referer on OSS
Reference:

= API : Put Bucket Referer
= Console: Anti-leech settings

* Pros and cons of Referer anti-leech protection

Referer anti-leech protection can be easily configured on the console. The main drawback of
the Referer anti-leech protection is that it cannot prevent access attempts by the malicious

spoofing Referers. If a leecher uses an application to simulate HTTP requests with a spoofing
Referer, the Referer can bypass anti-leech protection settings. If you have higher anti-leech

protection requirements, consider using signed URL anti-leech protection.
Signed URLs

For the principles and implementation methods for signed URLs, see Authorizing third-Party

download. A signed URL is implemented as follows:

1. Set the bucket permission to private-read.
2. Generate a signature based on the expected expiration time (the time when the signed URL

expires).
Specific implementation

1. Install the latest PHP code by referring to the PHP SDK documentation.

2. Generate a signed URL and add it to the webpage as an external link, for example:

<? php
requi re 'vendor/ aut ol oad. php';
#l ndi cates the automatic |oading function provided by the | atest
PHP.
use OSS\ GssC i ent;
#1 ndi cat es the nanespace used.
$accessKeyl d="a5et odi t 71t | znj t 3pdx7l ch";

http://userdomain-steal/index.html
http://userdomain-steal/index.html
http://img.userdomain/error.html
http://img.userdomain/error.html
https://www.alibabacloud.com/help/doc-detail/32099.htm

#1 ndi cates the AccessKeyld, which nust be replaced by the one you
use.
$accessKeySecret ="secret _key";
#1 ndi cat es the AccessKeySecret, which nust be replaced by the one
you use.
$endpoi nt =" oss- cn- hangzhou. al i yuncs. cont';
#1 ndi cat es the Endpoint, sel ected based on the region created by
the bucket. In the exanple, the endpoint is Hangzhou.
$bucket = 'referer-test';
#l ndi cat es the bucket, which nmust be replaced by the one you use.
$ossC ient = new OCssCient ($accessKeyl d, $accessKeySecret, $
endpoi nt) ;
$obj ect = "aliyun-I|ogo. png";
#1 ndi cates the object to be signed.
$ti meout = 300;
#1 ndi cates the expected Iink expiration tine. The val ue indicates
that the link is valid for 300 seconds fromwhen this |ine of code
starts running.
$si gnedUrl = $ossCient->signUrl ($bucket, $object, S$tinmeout); #
I ndi cates the function used to inplenent the signed URL
$i ng= $si gnedur | ;
#1 ndi cates dynamically placing the signed URL in inmage resources
and printing it out.
$ny_htm = "<htm >";

$ny_htm .= "";
$[Ty_ht m = n <p>ll . $i rrg. n </ p>II ;

$ny_htm .= "</htnml >";

echo $nmy_htnt ;

3. Access the signed URL using a browser. If the browser requests the resource multiple times,
different signed URLs may be displayed. This is a normal phenomenon because the signed
URL changes once it expires. After expiration time the link is no longer valid. It is displayed in
Unix time format, for example, Expires=1448991693. The time can be converted to the local
time. In Linux, the command for converting the time is dat e - d@.448991693, you can also

find a conversion tool on the Internet.
Note:
Signed URLs can be used with the Referer whitelist function.

If the expiration time of signed URLs is limited to minutes, even when a leecher spoofs a Referer,
the leecher needs to obtain the signed URL and complete leeching before the signed URL expires
. Compared with the Referer method, this makes leeching more difficult. Using signed URLs with

the Referer whitelist function provides enhanced anti-leech protection results.
Conclusion
Best practices of OSS-based anti-leech protection:

* Use third-level domain name URLs, such as r ef er er -t est. 0oss- cn- hangzhou. al i yuncs

.com al i yun-1 0go. png, as they are more secure than bound second-level domain names.

FAQ

The third-level domain name access method provides bucket-level cleaning and isolation,
enabling you to respond to a burst in leeching traffic while preventing different buckets from
affecting each other, thereby increasing service availability.

If you use custom domain names as links, bind the CNAME to a third-level domain name,
with the rule bucket + endpoint. For example, your bucket is named “test” and the third-level
domain name ist est . 0ss- cn- hangzhou. al i yuncs. com

Set the strictest possible permission for the bucket. For example, set a bucket that provides
Internet services to public-read or private. Do not set it to public-read-write. For bucket
permission information, see Access control.

Verify access sources and set a Referer whitelist based on your requirement.

If you need a more rigorous anti-leeching solution, consider using signed URLs.

Record access logs of the bucket, so that you can promptly discover leeching and verify the
effectiveness of your anti-leeching solution. For access log information, see Access logging

configuration.

| have configured anti-leech protection on the OSS Console, but the configuration does not
take effect. Access to webpages is blocked, whereas access to players is not. Why? How can

this problem be fixed?

Currently, anti-leech protection fails to take effect for audio and video files. When a media
player, such as Windows Media Player or Flash Player, is used to request OSS resources,
a blank Referer request is sent. This causes anti-leech protection ineffective. To resolve this
issue, you can see the preceding signed URL anti-leech protection method.

What is a Referer? How is it sent? How to deal with HTTPS websites? Does anything else

need to be added, like commas?

A Referer is a request header in the HTTP protocol. It is attached to a request that involves a
page jump. You must check whether the Referer in the request sent by your browseris ht t p

:// orhttps://.Innormal cases, the Refererishttp://.

How are signed URLs generated? Is storing the AccessKeySecret on the client secure?

It is not recommended that the AccessKeySecret be directly stored on the client. RAM

provides the STS service to solve this problem. Also, seeRAM and STS Guide.

How do | use wildcard characters (*, ?) to write a. bai du. comand b. bai du. com?

You canuse http://*. bai du. com If the wildcard character represents a single character
only, you can also use htt p: // ?. bai du. com
+ *.domain.com can match a second-level domain name, but does not match domain.com. Only

adding a second entry of domain.com does not work either. What settings must be configured?

Note that a Referer generally includes a parameter such as http. You can view the request
Referer in Chrome’s developer mode and then specify the corresponding Referer. As in this
case, you may have forgotten to include ht t p: / / , which is required to be ht t p: / / domai n.

com

* What must | do if anti-leech protection does not take effect?

We recommend that you use Chrome to solve the problem. Enable the developer mode and
click on the webpage to view the Ref er er value in the HTTP request. Check whether the
Referer value matches the Ref er er value configured on OSS. If they do not match, set the
Referer value configured on OSS to the Referer value in the HTTP request. If the problem

persists, open a ticket.

3.5 Static website hosting

This document describes the process and procedure about how to build a simple static website
based on OSS right from the beginning and also includes FAQs as well. The following are the key
steps:

1. Apply for a domain name.

2. Activate OSS and create a bucket.

3. Activate Static Website Hosting on OSS.

4. Access OSS with custom domain names.
Static website hosting overview

You can build a simple static website page based on OSS. Once you activate this function, OSS
provides a default homepage and a default 404 page. For more information, see Static Website

Hosting in the developer guide.
Procedure

1. Apply for a domain name

2. Activate OSS and create a bucket

a. Log on to the OSS console and create a bucket named “imgleo23” in Shanghai with the
endpoint 0ss- cn- shanghai . al i yuncs. com For detailed operation, see Create a
bucket.

b. Set the bucket permission to public-read. For detailed operation, see Set bucket ACL.

c. Upload the content of index.htm and error.htm. For detailed operation, see Upload objects.
* Body of index.html:

<htm >
<head>
<title>Hello CSS! </title>
<neta charset="utf-8">
</ head>
<body>
<p>Weél comre to OSS Static Wbsite Hosting. </ p>
<p>This is the honepage. </ p>
</ body>
</htm >

» Body of error.html:

<htm >
<head>
<title>Hello OSS! </title>
<neta charset="utf-8">
</ head>
<body>
<p>This is an error honepage for OSS Static Wbsite
Hosti ng. </ p>
</ body>
</htm >

« aliyun-1o0go. png is a picture.

3. Activate static website hosting on OSS

As shown in the following figure, once you log on to the OSS console, set Def aul t
Honepage toi ndex. ht M and Def aul t 404 Page to error. ht m . For more information,

see Set static website hosting.

Static Page

Default Homepage index.html

Default 404 Page error.htm

Save Cancel

To test the Static Website Hosting function, enter the URL as shown in the following figure:

» Display the default homepage:

- C' [imgleo23.0ss-cn-shanghai.aliyuncs.com

Welcome to 055 Static Website Hosting.

This is the homepage.
When a similar URL is entered, the body of index.html specified upon activating the function
is displayed.

» Display normal files

“— C | imgleo23.0ss-cn-shanghai.aliyuncs.com/aliyun-logo.png

() AlibabaCloud

When a matched file for the entered URL is found, data is read successfully.

4. Access OSS with custom domain names

For more information about how to access OSS with custom domain names, see Access OSS

with custom domain names.

» Display the default homepage

~ C |} img.leo23.xyz

Welcome to 0SS Static Website Hosting.

This is the homepage.

» Display the default 404 page

< C | img.leo23.xyz/nosuchkey

This is an error homepage for 0SS Static Website Hosting.

» Display normal files

C [} img.leo23.xyz/aliyun-logo.png

() AlibabaCloud

FAQ
* What are the benefits of OSS Static Website Hosting?

An ECS instance is saved in case any user needs a relatively small amount of traffic. In the

case of larger traffic volumes, CDN can be used.

* How is OSS priced? How does OSS work with CDN?

For pricing, see the OSS and CDN prices on Alibaba Cloud website. For cases on combination

of OSS and CDN, seeCDN-based OSS acceleration practices.

* Do the default homepage and default 404 page both need to be set?

The default homepage needs to be set, whereas the default 404 page does not need to be set.

* Why does the browser return a 403 error after a URL is entered?

The reason may be that the bucket permission is not public-read, or your Static Website

Hosting function is suspended due to overdue payment.

4 Access control

4.1 Overview

Alibaba Cloud’s permission management mechanism includes Resource Access Management (
RAM) and Security Token Service (STS). This enables users to access OSS through subaccount
s with different permissions and grants users temporary access authorization. Usage of RAM and

STS can greatly improve management flexibility and security.

The following content is introduced in permission management:

What is RAM and STS

» Access a bucket without using the primary account

* Read/Write permission separation

» Bucket permission separation

» Access control

» STS temporary access authorization

» The problem of OSS authority and Its Troubleshooting
» STS frequently asked questions and troubleshooting

» OSS sub-account setup Frequently Asked Questions

Click RAM Policy Editor Online Editing allows you to generate authorization policies.

4.2 What is RAM and STS

RAM and STS are permission management systems provided by Alibaba Cloud.

RAM is primarily used to control account system permissions. RAM enables users to create
subaccounts within the range of primary account permissions. Different subaccounts can be

allocated different permissions for authorization management.

STS is a security credential (token) management system that grants temporary access permission

s. STS allows users to grant access rights to the temporary accounts.
Why RAM and STS?

RAM and STS are designed to resolve the core issue such as how to securely grant access
permissions to other users without disclosing the primary account’s AccessKey. Disclosure of
AccessKey poses a serious security threat because unauthorized users may operate account

resources and the risk of data leakage or stealing of important information is high.

http://gosspublic.alicdn.com/ram-policy-editor/index.html

RAM provides a long-term permission control mechanism. Various subaccounts assign different
permissions to the different users. This way, even the disclosure of subaccount information would

not cause a global information leakage. However, subaccounts have long-term validity.

Note:

Therefore, AccessKey of subaccounts must not be disclosed.

On the contrary, STS provides temporary access authorization by returning a temporary
AccessKey and the token. This information can be provided directly to the temporary accounts,
allowing them access to OSS. Generally, the permissions obtained from STS are more restrictive
and only valid for a limited period of time. Thus, the disclosure of this information has little effect

on the system.

These functions are further illustrated with the help of examples.
Basic concepts

The following are some explanations of the basic concepts:

» Subaccount: A subaccount is created from the Alibaba Cloud primary accounts. Once created
, it is assigned an independent password and permissions. Each subaccount has its own
AccessKey and can perform authorized operations similar to the primary account. Generally,
subaccounts can be understood as users with certain permissions or operators with permission
s to perform specific operations.

* Role: Role is a virtual concept for certain operation permissions. However, it does not have

independent logon passwords or AccessKeys.

Note:
Subaccounts can assume roles. When a role is assumed, the permissions granted for a
subaccount are the permissions of the role.
» Policy: Policies are rules used to define permissions; for example, they permit users to read or
write certain resources.
* Resource: Resources are the cloud resources that users can access like all OSS buckets, a

certain OSS bucket, or a certain object in a specific OSS bucket.

A subaccount and roles have the same relationship to each other as you and your identities. At
work, you may be an employee, while at home you may be a father. In different scenarios, you
may assume different roles. Different roles are assigned corresponding permissions. The concept

of “employee” or “father” is not an actual entity that can be the subject of actions. These concepts

are only complete when an individual assumes them. This illustrates an important concept: a role

may be assumed by multiple people at the same time.

Note:

Once the role is assumed, this individual automatically obtains all the permissions of the role.
The following example provides better understanding of the concept:

» Assume that Alice is the the Alibaba Cloud user and she has two private OSS buckets, alice_a
and alice_b. Alice has full permission for both buckets.

+ To avoid leaking her Alibaba Cloud account AccessKey, which would pose a major security risk
, Alice uses RAM to create two subaccounts, Bob and Carol. Bob has read/write permission for
alice_a and Carol has read/write permission for alice_b. Bob and Carol both have their own
AccessKeys. This way, if one is leaked, only the corresponding bucket is affected and Alice can
easily cancel the leaked user permissions on the console.

* Now, for some reason, Alice must authorize another person to read the objects in alice_a. In
this situation, she must not only disclose Bob’s AccessKey. Rather, she can create a new role
like AliceAReader, and grant this role the read permission for alice_a. However, note that,
at this time, AliceAReader cannot be used because no AccessKey corresponds to this role.
AliceAReader is currently only a virtual entity with the permission to access alice_a.

* To obtain temporary authorization, Alice can call the STS’s AssumeRole interface to
notify STS that Bob wants to assume the AliceAReader role. If successful, STS returns a
temporary AccessKeyld, AccessKeySecret, and SecurityToken, which serve as the access
credentials. When these credentials are given to a temporary account, the user obtains
temporary permission to access alice_a. The credentials’ expiration time is specified when the

AssumeRole interface is called.
Why are RAM and STS so complex?

Initially, RAM and STS concepts seem to be complex. This is because flexibility is given to

permission control at the cost of simplicity.

Subaccounts and roles are separated to separate the entity that executes operations from the
virtual entity that represents a permissions set. If a user requires many permissions including the
read and write permissions but each operation only requires part of the total permission set, you
can create two roles, one with the read permission and the other with the write permission. Then
create a user who does not have any permission but can assume these two roles. When the user

needs to read or write data, the user can temporarily assume the role with the read permission

or the role with the write permission. This reduces the risk of permission leaks for each operation
. Additionally, roles can be used to grant permissions to other Alibaba Cloud users, making the

collaboration easier.

Here, flexibility does not mean you have to use all these functions. You only need to use the
subset of the functions as required. For example, if you do not need to use temporary access
credentials that have an expiration time, you can only use the RAM subaccount function, without

STS.

In what follows, we use examples to create a RAM and STS user guide and provide instructio
ns. For the operations in these examples, we do our best to use console and command line
operations to reduce the actual amount of codes that must be used. If you must use code to

perform these operations, we recommend that you see the RAM and STS API Manual.
Test tool

During testing, we use osscmd, a tool in the OSS PythonSDK that allows you to directly work on

OSS through the command line. osscmd can be obtained from PythonSDK.
Typical osscmd usage:

Downl oad fil es

./ osscmd get oss://BUCKET/ OBJECT LOCALFI LE - - host=Endpoi nt -i

AccessKeyl d -k AccessKeySecret

Here, replace BUCKET and OBJECT with your own bucket and object, and

the endpoint format must be similar to oss-cn-hangzhou. aliyuncs. com
For AccessKeyld and AccessKeySecret, use the information correspondi ng
to your own account

Upl oad files

./ osscnmd put LOCALFILE oss://BUCKET/ OBJECT --host=Endpoi nt -i

AccessKeyl d -k AccessKeySecr et

The neaning of each field is the sane as for the downl oad exanpl e

4.3 Access a bucket without using the primary account

Assume that the user is a mobile developer and currently only has one bucket, ram-test-dev,
for development, testing, and other functions. The user must stop using the primary account to
access this bucket. This can avoid problems caused by AccessKey and password leaks. In the

following example, replace AccessKey with your own AccessKey. The procedure is as follows:

1. On the console, select Products and Services > Resource Access Management.

Note:
The service must be activated first if you have never used it before.

2. Click Users to go to the User Management page.

3. The page shows that no user is created. Click New User on the upper right corner to create
a subaccount with the same OSS access permissions as the primary account. Remember to
select the Auto generate AccessKey for this user.

4. The AccessKey for this account is generated and must be saved for later use.

5. Return to User Managementinterface, which shows the newly created account named
ram_test. When created, this subaccount does not have any permissions yet. Click the

Authorize link on the right side and grant this subaccount full access permissions for OSS.

After authorization, click the Management link on the right side if you want to give the subaccount

console logon or other permissions.

Now we can test the uploading and downloading operations. In the example, the AccessKey is

ram_test’'s AccessKey. During the test, replace this with your own AccessKey.

$./osscnd get

oss://ramtest-dev/test.txt test.txt --host=0ss-cn-hangzhou. aliyuncs.
com-i oChue******Frogv -k OMWFIO3qcTO****** FhOYpg3pOKnA

100% The object test.txt is downl oaded to test.txt, please check.

0. 069(s) el apsed

$./osscnd put test.txt oss://ramtest-dev/test.txt --host=0ss-cn
-hangzhou. al i yuncs. com -i oGChue******Frogv -k OMWFIO3qcTO******

FhOYpg3pOKnA

100%

Object URL is: http://ramtest-dev.oss-cn-hangzhou. al i yuncs. conltest.
t xt

bj ect abstract path is: oss://ramtest-dev/test.txt
ETag is "E27172376D49FC609E7F46995E1F808F"
0. 108(s) el apsed
As you can see, this subaccount can basically be used for all operations, so you can avoid leaking

the primary account’s AccessKey.

4.4 Read/Write permission separation

When the users want to use an application server to provide external service, OSS can store back
-end static resources. In this case, we recommend that the application server be granted the OSS
read-only permission to reduce the risk of attacks. The read and write permission separation can

be configured to grant the application server a user with the read-only permission.

1. Create an account ram_test_pub. As shown in the following figure, select ReadOnly in the

authorization management area:

2. You can now use the AccessKey of the subaccount to test the upload and download
permissions. The AccessKey here is a ram_test_pub AccessKey and is to be replaced with

your own AccessKey during the test.

$./osscnd get oss://ramtest-dev/test.txt test.txt --host=0ss-cn
- hangzhou. al i yuncs. com -i oChue******Frogv -k OmMWFIO3qCTO******
FhOYpg3pOKnA

100% The object test.txt is downl oaded to test.txt, please check.
0.070(s) el apsed

$. /Osscnd put test.txt OSS: // Ramtest-dev/test.txt -- Host =
porterochue ****** frogv-K OnvMwFJO3qcTO * FhOYpg3pOKnA?
100% Error Headers:
[("content-length', '229"), ('server', "Aliyun0SS), ('connection', '
keep-alive'), ('x-oss-request-id , '5646E49C1790CFOF531BAEOD), ('date
", '"Sat, 14 Nov 2015 07:37:00 GVMI'), ('content-type', 'application/xm
)1
Error Body:
<? xm version="1.0" encodi ng="UTF-8"? >
<Error>
<Code>AccessDeni ed</ Code>
<Message>AccessDeni ed</ Message>
<Request | d>5646E49C1790CFOF531BAEOD</ Request | d>
<Host | d>ram t est - dev. 0ss- cn- hangzhou. al i yuncs. conx/ Host | d>
</ Error>
Error Status:
403
put Fail ed!

With reference to the preceding example, we can conclude that the ram_test _pub account cannot

be used to upload files.

4.5 Bucket permission separation

Another scenario is introduced in this section. If another user is using the developed app, you can
use an individual bucket to store your app data. Assume that the bucket is the ram-test-app. In
consideration of permission separation, the application server must not be allowed to access the
ram-test-app; that is, the account ram_test_pub is permitted only to read ram-test-dev. This can

also be realized through the RAM permission system. The procedure is as follows:

1. Because the system has no default bucket-level policy, we must create a custom policy.

The bucket access policy is shown as follows. For more information, see RAM Policy

Description and OSS Authorization FAQs.

"Version": "1",
"Statenent”: [

"Effect": "Allow',

https://www.alibabacloud.com/help/doc-detail/39712.htm

"Action": |
"o0ss: Li st Obj ects”,
"o0ss: Get Cbj ect ™

"Resource": [
"acs: 0sSs: *:*:ramtest-dev",
"acs:0ss:*:*:ramtest-dev/*"

After setting, we can see the policy in the custom authorization policy list.

2. In user authorization management, add this policy to the selected authorization policy list. Also
inUsers > Management > Authorization policy,all previously granted OSS read permissions

can be revoked.

3. Test the validity of permission configured.
» The object in ram-test-dev can be accessed:

$./osscnd get oss://ramtest-dev/test.txt test.txt --host=0ss-cn
-hangzhou. al i yuncs. com -i oGChue******Frogv -k OmMMWFIO3qcTO******
FhOYpg3pOKnA

100% The object test.txt is downl oaded to test.txt, please check.
0.047(s) el apsed

* The object in ram-test-app cannot be accessed:

$./osscnd get oss://ramtest-app/test.txt test.txt --host=0ss-cn
-hangzhou. al i yuncs. com -i oGChue******Frogv -k OmMMWFIO3qCcTO******
FhOYpg3pOKnA

Error Headers:

[('content-length', '229"), ('server', '"AliyunOSS), ('connection
", 'keep-alive'), ('x-oss-request-id , '5646EDS53F9EEA2F3324191A2
'), ('date', '"Sat, 14 Nov 2015 08:14:11 GvI'), ('content-type',
application/xm"')]

Error Body:

<? xml version="1.0" encodi ng="UTF-8"? >

<Error>

<Code>AccessDeni ed</ Code>

<Message>AccessDeni ed</ Message>

<Request | d>5646ED53F9EEA2F3324191A2</ Request | d>

<Host | d>ramt est - app. 0ss- cn- hangzhou. al i yuncs. conx/ Host | d>
</Error>

Error Status:

403

get Fail ed!

* Files cannot be uploaded to oss-test-app:

$./o0sscnd put test.txt oss://ramtest-app/test.txt --host=0ss-cn
- hangzhou. al i yuncs. com -i oChue******Frogv -k OmVWFIOBqCTO******

FhOYpg3pOKnA
100% Error Headers:
[(*content-length', '229"), ('server', 'AliyunCSS), ('connection

", '"keep-alive'), ('x-oss-request-id' , '5646ED7BB8DE437A912DC7A8
'), ('date', 'Sat, 14 Nov 2015 08:14:51 GVI'), ('content-type', '
application/xm"')]
Error Body:
<? xm version="1.0" encodi ng="UTF-8"? >
<Error>
<Code>AccessDeni ed</ Code>
<Message>AccessDeni ed</ Message>
<Request | d>5646ED7BB8DE437A912DC7A8</ Request | d>
<Host | d>ramt est - app. 0ss- cn- hangzhou. al i yuncs. conx/ Host | d>
</ Error>
Error Status:
403
put Fail ed!

Using the preceding configuration, we have successfully separated the permissions for ram-

test-dev and ram-test-app.

The preceding section explains how to use the subaccount permission control function to

separate permissions and minimize the potential risk of information leakage.

If you want to implement more complex access control, see RAM User Guide.

4.6 STS temporary access authorization

In the previous documents, we used only the RAM user functions. These user accounts are
for long-term normal use. This poses as a serious risk if the RAM user permissions cannot be

promptly revoked in case of information leakage.

In the previous example, assume that our developer’s app allows users to upload data to the OSS
bucket am-test-app and currently, the number of app users is large. In this case, how can the
app securely grant data upload permissions to many users and how can it be certain of storage

isolation among multiple users?

In such scenarios, we need to grant users temporary access using STS. STS can be used
to specify a complex policy that restricts specified users by only granting them the minimum

necessary permissions.

https://www.alibabacloud.com/help/doc-detail/28645.htm

Create a role

Based on the example in the previous document, the app user has a bucket, ram-test-app, to

store personal data. A role can be created as follows:

1. Create a RAM user account named ram_test_app using the process illustrated in the previous
documents. Do not grant this account any permissions, because it inherits the permissions of a
role which it assumes.

2. Create roles. Here you must create two roles for users to perform read operations and to

upload files respectively.

* Log on to the RAM console and select Roles > Create Role.

» Select a role type. Here you must select User rol e.

» Enter the role type information. Because this role has been used by its own Alibaba Cloud
account. Use the default setting.

+ Configure basic role information.

3. When the role was created, it did not have any permissions. Therefore, we must create
a custom authorization policy using the process described earlier. The following is the

authorization policy:

"Version": "1",
"Statenent": [

"Effect": "Alow',
"Action": |
"oss: Li st Obj ects",
"o0ss: Get Obj ect ™

"Resource": |
"acs:0ss: *:*:ramtest-app”,
"acs:o0ss:*:*:ramtest-app/*"

This indicates read-only permission for ram-test-app.

4. After the policy is established, give the role RamTestAppReadOnly the ram-test-app read-only

permission on the role management page.

5. Perform the same procedure to create the role RamTestAppWrite and use a custom

authorization policy to grant ram-test-app write permission. The authorization policy is as

follows:

"Version": "1",
"Statenent": [

"Effect": "Alow',
"Action": |
"o0ss: Del et ebj ect ™,
"oss: ListParts",
"o0ss: Abort Mul ti part Upl oad",
"o0ss: Put Cbj ect ™

"Resource": |

"acs:0ss:*:*:ramtest-app”,
"acs:o0ss:*:*:ramtest-app/*"

Now we have created two roles, RamTestAppReadOnly and RamTestAppWrite, with read-only

and write permissions for ram-test-app, respectively.

Temporary access authorization

After creating roles, we can use them to grant temporary access to OSS.

Preparation

Authorization is required for assuming roles. Otherwise, any RAM user could assume these roles
, which can lead to unpredictable risks. Therefore, to assume corresponding roles, a RAM user

needs to have explicitly configured permissions.

1. Create two custom authorization policies in authorization policy management.

"Statenent": |

"Action": "sts:AssuneRol e",
"Effect": "Alow',
"Resource": "acs:ram:1894189769722283: rol e/ rant est appr eadonl y"

"Version": "1"

Create Authorization Policy

* Authorization policy AliyunSTSAssumeRoleAccess20151116044441
name :
The name must be 1-128 characters long and can contain English letters,
numbers, and "-"
Remarks :
icy tant 1
Policy content : *Statement”: [
301
4 “Action”: “sts:AssumeRole”,
5 "Effect”: “Allow”,
B “Resource”:
“acsiram::1894189TEATZZ2E83 ‘role/ramtest appreadonly™
Tt
g1,
9 "Wersion': "17
10}

Autharization policy format definition
Autharization policy FAQs

Prav New Authorization Policy Cancel

"Statenent": [

"Action": "sts:AssuneRol e",
"Effect": "Allow',
"Resource": "acs:ram:1894189769722283:rol e/ rant est appwite"

"Version": "1"

Here, the content entered after Resource is a role’s ID. Role IDs can be found inRoles > Role

Details .

2. Grant the two authorization policies to the account ram_test_app.

Use STS to grant access permissions

Now, we are ready with the platform to officially use STS to grant access permissions.

Here we use a simple STS Python command line tool sts.py. The calling method is as follows:

$pyt hon ./sts.py AssuneRol e Rol eArn=acs:ram : 1894189769722283:rol e
/ rant est appr eadonl y Rol eSessi onNane=usr001 Policy="'{"Version":"1
","Statenent":[{"Effect":"Al ow',"Action":["oss: ListCbjects", "oss:
Get Obj ect"], "Resource":["acs: 0ss: *: *:ramtest-app”, "acs: 0ss: *: *:ram
test-app/*"]}]}' DurationSeconds=1000 --id=id --secret=secret
* RoleArn: indicates the ID of a role to be assumed. Role IDs can be found inRoles > Role
Details .
* RoleSessionName: indicates the name of the temporary credentials. Generally, we recommend
that you separate this using different application users.

» Policy: indicates a permission restriction, which is added when the role is assumed.

» DurationSeconds: indicate the validity time of the temporary credentials in seconds. The

minimum value is 900, and the maximum value is 3600.

* id and secret: indicate the AccessKey of the RAM user to assume a role.

Here, we need to explain what is meant by “Policy”. The policy mentioned here is used to restrict
the temporary credential permissions after a role is assumed. Ultimately, the permissions obtained
by means of temporary credentials are overlapping permissions of the role and the policy passed

in.
When a role is assumed, a policy can be entered to increase the flexibility. For example, when

uploading the files, we can add different upload path restrictions for different users. This is shown

in the following example.

Now, let’s test the STS function. To test the bucket, first use the console to put the file test.txt in

ram-test-app, with the content ststest.

Firstly, use the RAM user account ram_test_app to directly access the file. Next, replace

AccessKey with your own AccessKey used in the test.

[adm n@NA S- CWA\F344MD1C / hone/ admi n/ oss_t est]
$./osscnd get oss://ramtest-app/test.txt test.txt --host=0ss-cn
-hangzhou. al i yuncs. com -i oChue******Frogv -k OMWFIO3qCcTO******
FhOYpg3pOKnA
Error Headers:
[('content-length', '229"), ('server', 'AliyunGCsSS'), ('connection',
keep-alive'), ('x-oss-request-id , '564A94D444FAD3BB2225E4AFE), (' date
", 'Tue, 17 Nov 2015 02:45:40 GVI'), ('content-type', 'application/xm
)1
Error Body:
<? xm version="1.0" encodi ng="UTF-8"? >
<Error>

<Code>AccessDeni ed</ Code>

<Message>AccessDeni ed</ Message>

<Request | d>564A94D444F4D8B2225E4AFE</ Request | d>

https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/internal/oss/0.0.4/assets/tool/sts.py?spm=a2c4g.11186623.2.4.RUB3Bg&file=sts.py

<Host | d>ramt est - app. 0ss- cn- hangzhou. al i yuncs. conx/ Host | d>
</ Error>
Error Status:
403
get Fail ed!
[adm n@NA S- CWA\F344MD1C / hone/ admi n/ oss_t est]
$./o0sscmd put test.txt oss://ramtest-app/test.txt --host=0ss-cn
- hangzhou. al i yuncs. com -i oChue******Frogv -k OmMWFIO3qCcTO******
FhOYpg3pOKnA
100% Error Headers:
[(*content-length', '229"), ('server', 'AliyunCSS), ('connection', '
keep-alive'), ('x-oss-request-id', '564A94E5B1119B445B9F8C3A), ('date
", 'Tue, 17 Nov 2015 02:45:57 GVMI'), ('content-type', 'application/xm
)]
Error Body:
<? xm version="1.0" encodi ng="UTF-8"? >
<Error>
<Code>AccessDeni ed</ Code>
<Message>AccessDeni ed</ Message>
<Request | d>564A94E5B1119B445B9F8C3A</ Request | d>
<Host | d>ramt est - app. oss- cn- hangzhou. al i yuncs. conx/ Host | d>
</ Error>
Error Status:
403
put Fail ed!

Without access permission, access attempts using the RAM user account ram_test_app are failed

Use temporary authorization for downloads

Now, we use STS to download files. To make it simple to understand, the entered policy and the
role policy are the same. The expiration time is set to 3600s, and the app user here is usr001. The

steps are as follows:
1. Use STS to obtain a temporary credential.

[adm n@NA S- CWAWF344MD1C / hone/ adni n/ oss_t est]

$python ./sts.py AssumeRol e Rol eArn=acs: ram :1894189769722283:rol e
[ram est appr eadonl y Rol eSessi onName=usr 001 Policy="{"Version":"1
","Statenent":[{"Effect”:" Al ow', "Action":["oss: ListCbjects", "oss:
Get Obj ect"], "Resource":["acs: 0ss: *: *:ramtest-app","acs: 0ss: *: *:ram
-test-app/*"]}]}" --id=0Chue******Frogv --secret=OnVwWFJCBqCTO******
FhOYpg3pOKnA

Https://sts.aliyuncs.com/? Signatureversion = 1.0 & format = JSON

& timestanmp = gl as% 3a07% 3a25z & rolearn = ACS % 3- Aram % 3A %
3A1894189769722283% 3 Arole % 2 frantestappreadonly & Rol eSessi o
nNanme = usr001 & the Access Key I D = oChuek56i 53Frogv & Policy = %
7b % 22 version % 22% 3A % 221% 22% 2C % 22 Statenent % 22% 3A %
1B % 7b % 22 effect % 22% 3A % 22 all ow % 22% 2C % 22 action % 22
% 3A % 1B % 220ss % 3 al i stobj ects % 22% 2C % 220ss % 3 aget obj ect

% 22% 5D % 2C % 22 Resource % 22% 3A % 4B % 22acs % 3 aoss % 3A %
2a % 3A % 2a %fig % 22% 2C % 22acs % 3 aoss % 3A % 2a % 3A % 2a %
aramtest-app % Sch % 2a % 22% 5d % 7D % 5d % 7D & seagurenet hod =
HVAC- SHA1 & Version = 2015-04-01 & Signature = bshxPZpwRlJv5ch3S aBi
XLodwgO % 3D & Action = AssuneRol e & signaturenonce = 53elbe9c-8cd8-
11e5- 9b86- 008cf a5e4938

"AssunmedRol eUser":
"Arn": "acs:ram :1894189769722283: rol e/ r ant est appr eadonl y/
usr 001",
"AssunmedRol el d": "317446347657426289: usr 001"

"Credential s": {

"AccessKeyl d": "STS. 3nmQEbNf ******wga180Le",

"AccessKeySecret": "Blwrr CoRAdzGMYJ* ***** 3Pj PqKZ3gj ChAxb6nB",

"Expiration": "2015-11-17T04:07: 257",

"SecurityToken": "CAESVAM ARKAASQQUUTSE+7683Cd hdGsv?2/ di 8ul +
X1BxG7 MDxMBFTdOf pSwpPK/ 7Uct YH2MI/ / / c4y MNLPUCCEHI 1zppCl NnpD&2XeNA3
OS16IWS6ESM 50s Hy WBms Yk CIWL5gXnf hz/ OK+nSplbYx| f B33gf gCFe971 j euj 8RMyq
FxOHNy2Bz Ghh TVFMUM2IRRW OZnR5Yz| 1T3dhMIgwTGUI Ej MkNz QONj MONz Y
INzQyNj 1 40S0Gd XNy MDAXMI Tr gJ 2RKj 0 GUnNhTUQLQps BCgEx GpUBCgVBbGx
vdx|l 4CgxBY3Rpb25Fc XVhbHVEBKFj dd vbhogCg9ve3M6TA zdE9i anVj dHM
KDWDz czpHZXRPYnpl Y3QSUgoOUnz b3Vy Y2VFc XVhbHVSCFJII ¢291cmNl G Y
KGGFj czpvc3MBKj oqOnJhbS10ZXNOLWFwe AoaYWANz OnBzczogG o6¢enft LXR
| c3Q YXBWLY pKEDE4OTQxCDk3Nj k3M | yODNSBTI 20DQy Wj9Bc 3N1bWi/k Urd
SZWz ZXJgAGo SMz E3NDQR Mz @BNj USNDI 2M g5chJy YWLOZXNOYXBwe mVvhZ&GubHk ="

"Request | d": "8C009F64- F19D- 4EC1- A3BAD- 7A718CD0OB49B"

2. Use the temporary credential to download files. Here, sts_token is the SecurityToken returned

by the STS.

[adm n@NG S- CWAF344MD1C / horre/ admi n/ oss_t est]
$./osscnd get oss://ramtest-app/test.txt test.txt --host=o0ss
-cn- hangzhou. al i yuncs. com -i STS. 3ngebnf *** wal80l e- k*** ***
3pi pgkz3gj ghaxb6nmb *** -- sts_token = caesvam ar kaasqquut se +
7683CA hdGsv2/ di 8ul + X1BxG7NMDxMbFTAOf pSwpPK/ 7Uct YH2MI/ c4y MN1PUCc
EH 1zppCl NnpDG2XeNA3OS16IWS6ESM 50s Hy WBms Yk CIWL5gXnf hz/ OK +
nmSplbYxI f B33gf gCFe971 j euj SRMggqFx0Hny 2Bz Ghh TVFMUM21IRRW OZnR5Y
z| 1T3dhMrgwTGUi Ej MkNzQONj MONz YINz Qy N | 40S0Gd XNy MDAXMI Tr gJ 2RK
j 0GUNNhTUQLQps BCgEX GpUBCgVBbGxvdx | 4CgxBY3Rpb25Fc XVhbHVEBKFj d
G vbhogCg9ve3MbTA zdE9i amvj dHVKDWIz c zpHZXRPYnpl Y3QSUgoOUnmvz b
3V Y2VFc XVhbHVBCFJI ¢291cmNl G YKGGF] czpvc3MBKj ogOnJhbS10ZXNOL
WFwe AoaYWNz OmBzczogO o6cenft LXR ¢3Qx YXBwLy pKEDE4OTQx ODk3Nj k3M
j 1 yODNSBTI 20DQy Wj9Bc 3NLbWk UnBs ZVVz ZXJgAGo SMz E3NDQ2 Mz (BNj U3N
Dl 2M g5chJy YWLOZXNOYXBwe nvhZ@&@ubHk =
100% The obj ect test.txt is downl oaded to test.txt, please check.
0.061(s) el apsed

3. As you can see, we can use the temporary credentials to download the file. Next, we test if we

can use them to upload a file.

[adm n@NA S- CWAF344MD1C / hore/ adm n/ oss_t est]

$./osscnd put test.txt oss://ramtest-app/test.txt --host=0ss-cn
-hangzhou. al i yuncs. com -i STS. 3nTEbNf ******wq180Le -k Blw7r CoR4d
ZOMNYJ* * * *** 3P pqKZ3gj GhAXb6nB - - sts_t oken=CAESvAM ARKAASQQUUT SE+
7683CA hdGsv2/ di 8ul +X1BxG7/MDxMbFTdOf pSwpPK/ 7Uct YH2MI/ / / c4y MN1PUCc
EH 1zppCl NmpDG2XeNA3OS16IWS6ESM 50s Hy WBms Yk CIVWL5gXnf hz/ OK+nSplbYx| f B
33gf gCFe97I j euj SRMyqFx0HNy2BzGhh TVFMUM2Z IRRWI OZnR5Yz1 1T3dhMIg
WTGUI Ej MKNzQONj MONz YINzZQy N | 40S0Gd XNy MDAXMI Tr gJ2RKj o GUnNhTUQ
1QvsBCgExGpUBCgVBbGxvdx | 4CgxBY3Rpb25Fc XVhbHVEBKFj dd vbhogCg9
vc3MBTA zdE9i anVj dHMKDWBz cz pHZXRPYnpl Y3QSUgoOUmVzb3Vy Y2VFc XV
hbHMSCFJI c291cmNl G YKGGFj czpve3MBKj ogOnJhbS10ZXNOLWFwe Aoa YWN
zOmBzczoqQ o6cnFt LXR ¢3Q YXBWy pKEDE4AOTQxODKk3Nj k3M | yODNSBTI
20DQy W 9Bc 3NLbWik UmBs ZVVVz ZXJ g AGo SMz E3SNDQ2 Mz (BN U3NDI 2M g5chJ
y YWLOZXNOYXBwe mivhZ&ubHk =

100% Error Headers:
[(* Content-Length', '254"), ('server ', "aliyunoss '), ('Connection
, 'keep-alive '), ('x-0SS-request-id', '564a9a2al790cf0f53c15c82
"), ('date', 'tue, 17 2015 03:08:26 GMIr '), ('content-type', '
application/ XM ")]
Error Body:
<? xm version="1.0" encodi ng="UTF-8"? >
<Error>
<Code>AccessDeni ed</ Code>
<Message>Access deni ed by authorizer's policy. </ Mssage>
<Request | d>564A9A2A1790CFOF53C15C82</ Request | d>
<Host | d>ramt est - app. 0ss- cn- hangzhou. al i yuncs. conx/ Host | d>
</ Error>
Error Status:
403
put Fail ed!

The file upload is failed. This is because the assumed role only has download permission

hence.
Use temporary authorization for uploads
Now, we try to use STS to upload a file. The steps are as follows:
1. Obtain an STS temporary credential. The app user is usr001.

[adm n@NA S- CWAF344MD1C / hore/ adm n/ oss_t est]

$pyt hon ./sts. py AssuneRol e Rol eArn=acs:ram : 1894189769722283:rol e
[rant estappwite Rol eSessi onName=usr001 Policy="'{"Version":"1","
Statement":[{"Effect”":"Allow', "Action":["oss: Put Obj ect"], "Resource
":["acs:o0ss:*:*:ramtest-app/usr001/*"]}]}" --id=0Chue******Frogv --
secr et =OnWwrFJOBqcTO* * * *** FhOYpg3pOKnA

https://sts.aliyuncs. conl ?Si gnat ur eVer si on=1. 0&For mat =J SON&
Ti mest anp=2015- 11- 17T03%3A16%8A10Z&Rol eAr n=acs¥3Ar an?/8AY3A18941897
69722283%3Ar ol e%2Fr ant est appwr i t e&Rol eSessi onNanme=usr 001&AccessKeyl
d=0Chuek56i 53Fr ogv&Pol i cy=%B%22Ver si on%22%3A%221%22%2CY¥22St at enen
t 9R2Y8AYSBYY BYR22Ef f ect %R22YBAYR2Al | owdR2%R2CY22Act | on9R2YBAYBBYR20sSs
%8APut Obj ect %22%DYRCY22Resour ce¥22%3AYbBYR2acs ¥BA0ss YBAYR AYBAYR A%
3Aramt est - app%2Fusr 00192 F%2 A% 2% D% DY D% D&Si gnat ur eMet hod=HVAC-
SHA1&Ver si on=2015- 04- 01&Si gnhat ur e=YOOPUoL1Pr CgX4 X6 A3%2FJvgXuS6c¥%3D&
Act i on=AssuneRol e&Si gnat ur eNonce=8d0798a8- 8cd9- 11e5- 9f 49- 008cf a5e49
38

"AssunedRol eUser": {
"Arn": "acs:ram:1894189769722283: rol e/ rant est appwite/ usr001

"AssumedRol el d": "355407847660029428: usr 001"

"Credential s":

"AccessKeyl d": "STS.rtfx13******Nl | J| S4U",

"AccessKeySecret": "2f saMBE2maB2dn******wpsKTyK4aj o7TxFr 0zl M',

"Expiration": "2015-11-17T04: 16: 10Z",

"SecurityToken": "CAESkwM ARKAAUh3/ Uzcgl3YLRBWYOI Zj Gew
Mpg31l Txd eBFUleQ 3Sgpudi d+GVs+A vulvXJIn6DLcvPa8az KIKt zVOoKSy +
maUr x Sy USRVDNnt r s 78Cs Nf WQIUMIK| LI xdWhG 1pgxJCBzNz2YV/ 6ycTaZy SSE
1V6k qQ7 A+GPwYoBSnWiLpdGhhTVFMuc nRre DEz RFI NVWJj TnkJSnxTNFUI E
j MLNTQaNZ gONz Y2 MDAy OT Qy OCo Gd XNy MDAX MOPz 0J 2RKj oGUnNhTUQLONn YKA
TEac QoFQWsb3c¢c SIwoMMNOaVOuRXF1YWkz EgZBY3Rpb24aDwoNb3Nzd Bld
E9i anVj dBI / Cg5SZXNvdXJj ZUVxdWFscxI | Umvzb3VyY2Ual wohYWNz OrBzcz
0qG o6cnfFt LXR ¢3Q YXBW.3Vzcj AwVE8qShAxODkOMIg5Nz Y5NzI yM gz Ug

UyNj gOM oPQXNzdWLI ZFIvbGWe 2Vy YABgEj MLNTQaMNZz gONz Y2 VDAY OT Qy OH
| Pcnt dGVzdGAweHdyaXRl

"Request|d": "19407707-54B2- 41AD- AAFO- FE87E8870B0OD"

2. Let us test if we can use the credentials to upload and download.

[adm n@NA S- CWAF344MD1C / hone/ adm n/ oss_t est]

$./osscnd get oss://ramtest-app/test.txt test.txt --host=0ss-cn-
hangzhou. al i yuncs. com -i STS. rtfx13******N | J| S4U - k 2f saMBE2rmaB2dn
*xxxxx2wpsKTyK4aj o7TxFr0zI M - - st s_t oken=CAESkwM ARKAAUN3/ Uzcgl13YLRB
WyOl Zj Gewivpg31ll TxC eBFUled 3Sgpudi d+GVs+A vulvXIn6DLcvPa8azK
JKt zVOoKSy +mmUr x SYUSRVDnt r s78Cs Nf W QJUMIK| LI xdWhG@ 1pgxJCBzNZ2
YV/ 6ycTazy SSE1V6kqQr7 A+GPwYoBShWiLpdGhh TVFMucnRreDEz RFI NVWj Tk
JSMTNFUI Ej MLNTQM\z gONz Y2 VDAY OT Qy OCo Gd XNy MDAX MOPz 0J 2RKj oGUNN
hTUQLON YKATEac QoFQMNksb3c SIwoMAMNOaVOuRXF1YWkz EgZBY3Rpb24aDwo
Nb3NzA B1dEQi amVj dBI / Cg5SZXNvdXJj ZUVxdWFscxI | UnvVzb3VyY2Ual woh
YWNzOnmDzczoqG o6enfFt LXR ¢3Q YXBWL.3Vzcj AwVE8qShAXxODkOMIg5Nz Y5
Nzl yM gzUgUyN gOM oPOQXNzdWLI ZFIJvbGVvVec2Vy YABQE] MLNTQAMNZ gONz Y2
MDAy OT Qy OHI Pc -t dGVz dGFwe Hdy aXRI

Error Headers:

[(‘content-length', '254"), ('server', 'Aliyun0SS), ('connection
", '"keep-alive'), ('x-oss-request-id', '564A9C31FFFC811F24B6E7E3
'), ('date', 'Tue, 17 Nov 2015 03:17:05 GvI'), ('content-type', '
application/xm"')]

Error Body:

<? xm version="1.0" encodi hg="UTF-8"? >

<Error>

<Code>AccessDeni ed</ Code>

<Message>Access deni ed by authorizer's policy. </ Mssage>

<Request | d>564A9C31FFFC811F24B6E7E3</ Request | d>

<Host | d>r am t est - app. 0ss- cn- hangzhou. al i yuncs. conx/ Host | d>
</Error>

Error Status:

403

get Fail ed!

[adm n@NA S- CWAF344MD1C / hone/ adm n/ oss_t est]

$./osscnd put test.txt oss://ramtest-app/test.txt --host=0ss-cn-
hangzhou. al i yuncs. com -i STS. rtfx13******N | J| S4U - k 2f saMBE2maB2dn
*xxxxx2wpsKTyK4aj o7TxFr 0zl M - - st s_t oken=CAESkwM ARKAAUN3/ Uzcgl13YLRB
Wy Ol Zj GewiVpg31l TxO eBFUleQ 3Sgpudi d+GVs+A vulvXJn6DLcvPa8azK
JKt zVOoKSy+maUr x SvUSRVDnt r s78CsNf WoOJUMIK| LI xdWhG 1pgxJCBzNz2
YV/ 6ycTazy SSE1V6kqQr A+GPwYoBShWiLpdGhh TVFMucnRmeDEz RFI NVWJj Tk
JSMTNFUI Ej MLNTQM\z gONz Y2 MDAy OT Qy OCo Gd XNy MDAX MOPz 0J 2RKj oGUNN
hTUQLONYKATEac QoFQM sb3c SIwo MAMNOaVWBuURXF1 YWz EgZBY3Rpb24aDwo
Nb3NzA B1dEQi anmVj dBI / Cg5SZXNvdXJj ZUVxdWFscxI | UnvVzb3VyY2Ual woh
YWNz OnmDzczoqG o6enFt LXR ¢3Q YXBW.3Vzcj AwVE8qShAXxODkOMIg5Nz Y5
Nzl yM gzUgUWyN gOM oPQXNzdWLl ZFIvbGvVec2Vy YABGE] MLNTQAMNZz gONz Y2
MDAy OT Qy OHI Pc -t dGVz dGFwe Hdy aXRI

100% Error Headers:

[(‘content-length', '254"), ('server', 'Aliyun0SS), ('connection
", 'keep-alive'), ('x-oss-request-id , '564A9C3FB8DE437A91B16772
"), ('date', 'Tue, 17 Nov 2015 03:17:19 GvI'), ('content-type', '
application/xm"')]

Error Body:

<? xm version="1.0" encodi ng="UTF-8"? >

<Error>

<Code>AccessDeni ed</ Code>

<Message>Access deni ed by authorizer's policy.</Mssage>
<Request | d>564A9C3FB8DE437A91B16772</ Request | d>

<Host | d>r am t est - app. 0ss- cn- hangzhou. al i yuncs. conx/ Host | d>

</Error>
Error Status:
403

put Fail ed!

The test.txt upload fails. We have formatted the entered policy discussed at the beginning of

this document, which is as follows:

“"Version": "1",
"Statenent": |

"Effect": "Alow',
"Action": [
"o0ss: Put Cbj ect ™

"Resource": |
"acs: 0ss: *:*:ramtest-app/usr001/*"

This policy indicates that users are only allowed to upload files like usr001/ to the ram-test-app
bucket. If the app user is usr002, the policy can be changed to only allow for the uploading of
files like usr002/. By setting different policies for different app users, we can isolate the storage

space of different app users.

3. Retry the test and specify the upload destination as ram-test-app/usr001/test.txt.

[adm n@NA S- CWAF344MD1C / hone/ adni n/ oss_test]

$./osscnd put test.txt oss://ramtest-app/usr00l/test.txt --
host =oss- cn- hangzhou. al i yuncs. com -i STS.rtfx13******Nl | J| S4U -k

2f saMBE2maB2dn* * * * * * wpsKTyK4aj o7TxFr 0zl M - - st s_t oken=CAESkwM AR
KAAUNn3/ Uzcgl3YLRBWkyOIl Zj Gewivpg31ll Txd eBFUled 3Sgpudi d+Gvs+A vulvXIn6
DLcvPa8azKJKt zVOoKSy+maJr x Sy USRVDnt r s78CsNf WQIUMIK| LI xdwh@ 1
pgxJCBzNZ2YV/ 6ycTaZy SSE1V6kqQr A+GPwYoBSNWrLpdGhh TVFMucnRnmeDEzR
FI NVWIj TmxJSnxTNFUI Ej MLNTQMNz gONz Y2 MDAy OT Qy OCo Gd XNy MDAX MOPz 0
J2RKj 0oGUNNnTUQLON YKATEac QoFQWsb3c¢c SIwoMAMMNOaVWuRXF1 YWk z EgZBY
3Rpb24aDwoNb3NzA B1dE9i anVj dBl / Cg5SZXNvdXJj ZUVxdWFscx! | Unvzb3
VyY2Ual wohYWNz OnBzczoqQ o6¢cnt LXR ¢3Q YXBW.3Vzcj AwWVE8gShAxCD
kOMTg5Nz Y5NzI yM gzUgUyNj gOM oPQXNzdWLI ZFJvbGvWc2Vy YABgQE] MLNT
QwNz gONz Y2 VDAY OTQy OHI Pc it dGVz dGwe Hdy aXRI

100%

hject URL is: http://ramtest-app. 0oss-cn-hangzhou. al i yuncs. con!
usr 001%2Ft est . t xt

bj ect abstract path is: oss://ramtest-app/usr001l/test.txt

ETag is "946A0A1AC8245696B9C6A6F35942690B"

0.071(s) el apsed

The upload is successful.

Summary

This document describes how to grant users temporary access authorization for OSS using STS
. In typical mobile development scenarios, STS can be used to grant temporary authorizations
to access OSS when different app users need to access the app. The temporary authorization
can be configured with expiration time to greatly reduce the hazards caused by leakages. When
obtaining temporary authorization, we can enter different authorization policies for different app
users to restrict their access permissions. For example, to restrict the object paths accessible to

users. This isolates the storage space of different app users.

4.7 FAQs about subaccount settings

How to create an STS temporary account and how to use it to access resources?
See STS temporary access authorization.
Client or console logon error reported for an authorized sub-account

See Why does a sub-account encounters an error of no operation permission for a bucket on the

OSS console after it has been granted the bucket operation permission.
How to authorize a sub-account with the operation permission for a single bucket
See How to assign the full operation permission for a specified bucket to a sub-account.
How to authorize a sub-account with the operation permission for a directory in a bucket
See OSS directory authorization
How to authorize a sub-account with the read-only permission for a bucket
See Authorize a sub-user to list and read resources in a bucket.
Error upon an OSS SDK call: InvalidAccessKeyld
See STS errors and troubleshooting.
Error upon an STS call: Access denied by authorizer’s policy

Detailed error information: ErrorCode: AccessDenied ErrorMessage: Access denied by authorizer
’s policy.

Cause of the error:

* The temporary account has no access permission.

» The authorization policy specified for assuming the role of this temporary account does not

assign the access permission to the account.

https://www.alibabacloud.com/help/doc-detail/39716.htm
https://www.alibabacloud.com/help/doc-detail/39716.htm
https://www.alibabacloud.com/help/doc-detail/39717.htm
https://www.alibabacloud.com/help/doc-detail/39712.htm
https://www.alibabacloud.com/help/doc-detail/58905.htm#concept-ohn-ypx-ydb-section-jpq-1px-ydb

For more STS errors and the causes, see OSS permission errors and troubleshooting.

5 Data security

5.1 Check data transmission integrity by using 64-bit CRC

Background

An error may occur when data is transmitted between the client and the server. Currently, OSS
can return the 64-bit CRC value for an object uploaded in any mode. To check the data integrity,

the client can compare the 64-bit CRC value with the locally calculated value.

+ OSS calculates 64-bit CRC value for newly uploaded object, stores the result as metadata of
the object, and then adds the x-oss-hash-crc64ecma header to the returned response header,

indicating its 64-bit CRC value. This 64-bit CRC is calculated according to ECMA-182 Standard

* For the object that already exists on OSS before the 64-bit CRC goes live, OSS does not
calculate its 64-bit CRC value. Therefore, its 64-bit CRC value is not returned when such object

is obtained.
Operation instructions

» Put Object / Append Object / Post Object / Multipart upload part returns the corresponding 64-
bit CRC value. The client can get the 64-bit CRC value returned by the server after the upload
is completed and can check it against the locally calculated value.

* In the case of Multipart Complete, if all the parts have their respective 64-bit CRC values, then
the 64-bit CRC value of the entire object is returned. Otherwise, the 64-bit CRC value is not
returned (for example, if a part has been uploaded before the 64-bit CRC goes live).

* Get Object / Head Object / Get ObjectMeta returns the corresponding 64-bit CRC value (if any
). After Get Object is completed, the client can get the 64-bit CRC value returned by the server

and check it against the locally calculated value.

Note:

The 64-bit CRC value of the entire object is returned for the range get object.

» For copy related operations, for example, Copy Object/Upload Part Copy, the newly generated

object/Part may not necessarily have the 64-bit CRC value.

Python example

An example of complete Python code is as follows. It shows how to check data transmission

integrity based on the 64-bit CRC value.

1. Calculate the 64-bit CRC value.

i mport 0ss2

fromoss2. nodel s inmport Partlnfo
i mport os

i mport crcnod

i mport random

import string

do_crc64 = crcnod. nkCr cFun(0x142FOE1EBA9EA3693L, i nitCrc=0L, xorQut=

OxffffffffffffffffL, rev=True)

def check_crc64(l ocal _crc64, oss_crc64, nmsg="check crc64"):

if local _crc64 ! = oss_crc64:

print "{0} check crc64 failed. local: {1}, oss:{2}.".format(nmsg,
| ocal _crc64, oss_crc64)

return Fal se

el se:

print "{0} check crc64 ok.".format(nsg)

return True

def random string(length):

return ''.join(random choi ce(string.lowercase) for i in range(length

))

bucket = oss2. Bucket (o0ss2. Auth(access_key id, access_key secret),

endpoi nt, bucket nane)

2. Verify Put Object.

content = random string(1024)

key = 'nornmal - key'
result = bucket. put _object(key, content)
0ss_crc64 = result. headers. get (' x-oss-hash-crc64ecnma’', '')

| ocal _crc64 = str(do_crc64(content))
check _crc64(local _crc64, oss _crc64, "put object")

3. Verify Get Object.

result = bucket.get object (key)

0ss_crc64 = result.headers. get (' x-o0ss-hash-crc64ecma’, '')
| ocal _crc64 = str(do_crc64(result.resp.read()))

check crc64(l ocal _crc64, oss _crc64, "get object")

4. Verify Upload Part and Complete.

part _info_list =]

key = "nul tipart-key"

result = bucket.init_nultipart_upl oad(key)

upload_id = result.upload_id

part 1 = random string(1024 * 1024)

result = bucket. upl oad_part (key, upload_id, 1, part_1)
0ss_crc64 = result.headers. get (' x-o0ss-hash-crc64ecnma’, '')

| ocal _crc64 = str(do_crc64(part_1))

#Check whet her the upl oaded part 1 data is conplete

check crc64(local _crc64, oss_crc64, "upl oad _part object 1")
part_info_list.append(Partlinfo(l, result.etag, len(part_1)))
part 2 = random string(1024 * 1024)

result = bucket. upl oad_part (key, upload_id, 2, part_2)
0ss_crc64 = result. headers. get (' x-o0ss-hash-crc64ecma’, '')

| ocal _crc64 = str(do_crc64(part_2))

#Check whet her the upl oaded part 2 data is conplete
check_crc64(l ocal _crc64, oss_crc64, "upload_part object 2")
part _info_list.append(Partlinfo(2, result.etag, len(part_2)))

result = bucket.conplete nultipart_upl oad(key, upload_id,
part _info_list)

0ss_crc64 = result.headers. get (' x-o0ss-hash-crc64ecma’, '')

| ocal _crc64 = str(do_crc64(part_2, do_crc64(part_1)))

#Check whether the final object on the GSS is consistent with the
I ocal file

check crc64(local _crc64, oss _crc64, "conplete object")

0SS SDK support

Part of the OSS SDK already supports the data validation using crc64 for the upload and

download, as shown in the following table:

SDK Support for CRC? Example

Java SDK Yes CRCSample.java
Python SDK Yes object_check.py
PHP SDK No N/A

C# SDK No None

C SDK Yes oss_crc_sample.c
JavaScript SDK No None

Go SDK Yes crc_test.go

Ruby SDK No None

iOS SDK No OSSCrc64Tests.m
Android SDK No OSSCrc64Tests.m

5.2 Protect data through client encryption

Client encryption means that the encryption is completed before the user data is sent to the
remote server, whereas the plaintext of the key used for encryption is kept in the local computer
only. Therefore, the security of user data can be ensured because others cannot decrypt the data

to obtain the original data even if the data leaks.

This document describes how to protect data through client encryption based on the current

Python SDK version of OSS.
Principles

1. The user maintains a pair of RSA keys (rsa_pri vate_key andrsa_publ i c_key)in the

local computer.

https://github.com/aliyun/aliyun-oss-java-sdk/blob/master/src/samples/CRCSample.java
https://github.com/aliyun/aliyun-oss-python-sdk/blob/master/examples/object_check.py
https://github.com/aliyun/aliyun-oss-c-sdk/blob/master/oss_c_sdk_sample/oss_crc_sample.c
https://github.com/aliyun/aliyun-oss-go-sdk/blob/master/oss/crc_test.go
https://github.com/aliyun/aliyun-oss-ios-sdk/blob/master/AliyunOSSiOSTests/OSSCrc64Tests.m
https://github.com/aliyun/aliyun-oss-ios-sdk/blob/master/AliyunOSSiOSTests/OSSCrc64Tests.m

2. Each time when any object is uploaded, a symmetric key dat a_key of AES256 type is
generated randomly, and then dat a_key is used to encrypt the original content to obtain
encrypt_content.

3. Usersa_public_key to encrypt dat a_key to obtain encr ypt _dat a_key, place it in the
request header as the custom meta of the user, and send it together with encrypt_content to
the OSS.

4. When Get Object is performed, encrypt_content and encr ypt _dat a_key in the custom meta
of the user are obtained first.

5. The userusesrsa_privat e_key to decryptencrypt _dat a_key to obtain dat a_key, and

then uses dat a_key to decrypt encrypt_content to obtain the original content.

Note:
The user’s key in this document is an asymmetric RSA key, and the AES256-CTR algorithm is
used when object content is encrypted. For more information, see PyCrypto Document. This
document describes how to implement client encryption through the custom meta of an object.

The user can select the encryption key type and encryption algorithm as required.

https://www.dlitz.net/software/pycrypto/api/2.6/

Structural diagram

Data Key

A %I#@!*())...

8N %IH@!X()...

ABCDEFG... ABCDEFG...

Put Object

Get Object

------ ---.p Network transmission

——p» Local transmission

Preparation

1. For installation and usage of the Python SDK, see Quick Installation of Python SDK.

2. Install the PyCrypto library.

pip install pycrypto
Example of complete Python code

-*- coding: utf-8 -*-

i mport os

i mport shutil

i nport base64

i mport random

i mport 0ss2

from Crypto. G pher inmport PKCS1_OAEP
from Crypto. Publ i ckey inmport RSA
from Crypto. G pher inport AES
from Crypto i nport Random
fromCrypto. Uil inmport Counter

aes 256, key always is 32 bytes
_AES 256_KEY_SI ZE = 32

_AES CTR COUNTER BITS LEN = 8 * 16
cl ass AESC pher:

https://www.alibabacloud.com/help/doc-detail/32026.htm

def __init__ (self, key=None, start=None):
sel f. key = key
self.start = start
if not self.key:
sel f. key = Random new().read(_AES 256 _KEY_SI ZE)
if not self.start:
self.start = random randint (1, 10)
ctr = Counter.new AES CTR COUNTER BI TS LEN, initial_val ue=
self.start)
sel f.ci pher = AES. new sel f. key, AES. MODE CTR, counter=ctr)
def encrypt(self, raw):
return sel f.cipher.encrypt(raw)
def decrypt(self, enc):
return sel f.cipher.decrypt(enc)
First, initialize the informati on such as AccessKeyld, AccessKeyS
ecret, and Endpoi nt.
Cbtain the information through environnent variables or replace the
i nformati on such as "<Your AccessKeyld>" with the real AccessKeyld,
and so on.

Use Hangzhou region as an exanpl e. Endpoi nt can be:

http://oss-cn-hangzhou. al i yuncs. com

https://oss-cn-hangzhou. al i yuncs. com

Access using the HTTP and HTTPS protocols respectively.
access_key id = os.getenv(' OSS TEST ACCESS KEY |ID, '<your AccessKeyld
>')

access_key_secret = o0s.getenv(' OSS_TEST_ACCESS KEY_SECRET', ' <Your
AccessKeySecret >')

bucket name = os.getenv(' OSS TEST BUCKET', '<Your Bucket>")

endpoi nt = os. getenv(' OSS_TEST _ENDPO NT', '<Your Access Domai n Nanme>')
Make sure that all the preceding paraneters have been filled in
correctly.

for paramin (access_key id, access_key secret, bucket nane, endpoint

assert '<' not in param 'Please set the paraneter:' + param
#it###H O prepare #####HHH
0.1 Generate the RSA key file and save it to the disk
rsa_private_key obj = RSA. generate(2048)
rsa _public _key obj = rsa private_key obj.publickey()
encrypt _obj = PKCS1_OAEP. new(rsa_public_key_obj)
decrypt _obj = PKCS1_OAEP. new(rsa_private_key obj)
save to |l ocal disk
file_out = open("private_key.peni, "w')
file out.wite(rsa private key obj.exportKey())
file out.close()
file_out = open("public_key.pem, "w')
file out.wite(rsa_public_key obj.exportKey())
file_out.close()
0.2 Create the Bucket object. Al the object-related interfaces can
be i npl enented by using the Bucket object
bucket = o0ss2. Bucket (o0ss2. Auth(access_key id, access_key_ secret),
endpoi nt, bucket nane)
obj _nane = 'test-sig-1'
content = "test content"”
1 Put Obj ect
1.1 Generate the one-tinme symetric key encrypt_ci pher used to
encrypt this object, where key and start are val ues generated at
random
encrypt _ci pher = AESC pher ()
1.2 Use the public key to encrypt the information for assisting
encryption, and save it in the customnmeta of the object. Wen Get
bject is perfornmed |ater, we can use the private key to perform

decryption and obtain the original content according to the custom
net a
headers = {}
header s[' x- 0ss- et a- x- 0ss-key'] = base64. b64encode(encrypt obj.encrypt
(encrypt _ci pher. key))
header s[' x- 0ss- met a- x- 0ss-start'] = base64. b64encode(encrypt _obj.
encrypt (str(encrypt _ci pher.start)))
1.3. Use encrypt_cipher to encrypt the original content to obtain
encrypt _cont ent
encryt _content = encrypt_ci pher.encrypt(content)
1.4 Upl oad the object
result = bucket.put object(obj nane, encryt content, headers)
if result.status / 100 ! = 2:
exit(1)
#i## 2 Cet Qbj ect ####
2.1 Downl oad the encrypted object
result = bucket.get object (obj nane)
if result.status / 100 ! = 2:
exit(1)
resp = result.resp
downl oad_encrypt _content = resp.read()
2.2 Resolve fromthe customneta the key and start that are
previously used to encrypt this object
downl oad_encrypt _key = base64. b64decode(resp. headers. get (' x- 0ss- net a- x
-o0ss-key', ''))
key = decrypt _obj. decrypt(downl oad_encrypt key)
downl oad_encrypt _start = base64. b64decode(resp. headers. get (' x- oss-nmeta
-X-o0ss-start', ''))
start = int(decrypt _obj.decrypt(downl oad_encrypt _start))
2.3 Generate the cipher used for decryption, and decrypt it to
obtain the original content
decrypt _ci pher = AESC pher (key, start)
downl oad_content = decrypt ci pher. decrypt (downl oad_encrypt content)
i f downl oad_content ! = content:
print "Error!"
el se:
print "Decrypt ok. Content is: %" % downl oad_cont ent

6 OSS resource monitoring and alarm service

The CloudMonitor service can monitor OSS resources. You can use CloudMonitor to view
resource usage, performance, and health status on Alibaba Cloud. Using the alarm service, you
can react rapidly to keep applications running smoothly. This article introduces how to monitor

OSS resources, set OSS alarm rules, and create custom monitoring dashboard.

Prerequisites

« Activate the OSS service.

» Activate the CloudMonitor service.
Monitor OSS resources

1. Log on to the CloudMonitor console.
2. Select Cloud Service Monitoring > Object Storage Service from the left-side navigation

pane to enter the OSS monitoring page, as shown in the following figure.

You can obtain monitoring data on the OSS monitoring page.

E] Note:

“by User” refers to user-level data, that is, all bucket data of this user.

CloudMonitor Object Storage Service Application Groups Documentation Go toObject Storage Service Consale & Refresh

TSP
Users Bucket List Alarm Rules

Haost Manitoring

i Rena Monitoring Information Monthly Statistics

Number of Buckets : 15 unit

gite Monitoring
((Q)) Nurmber of Aarm Rues: 40.97GB 357.10MB 21times 299times
Lt Storage Size Internet Outbound Traffic Number of PUT Reguests Number of GET Requests.

Number of Rules Disabled:
ApsaraDB for RDS 0 Triggerea

| MONILOrING Servic Request Status Details ih m 12h 1days Tdays 2018-03-06 04:32:45 - 2018-03-06 10:32:45 | |
Availability/Valid Request Propartion by User(%) | I Number of Total/Valid Requests by User(times) | I Traffic by User(byte) | I
Period: 60s Method: Value Period: 60s Method: Value Periad: 60s Method: Valus

Set alarm rules
1. Find the Alarm Rules tab on OSS monitoring page, and then click Create Alarm Rule.

Object Storage Service 2 | create Alwm Ruke Documentation < Refresh

1

https://www.alibabacloud.com/product/oss
https://www.alibabacloud.com/product/cloud-monitor
https://cloudmonitor.console.aliyun.com/#/home/ecs

2. Configure your alarm rules.

For configuration details, see Manage alarm rules.

3. The alarm rule is generated when the configuration is completed. You can use test data to
check whether the rule has taken effect by verifying if the alarm information was received

successfully (over email, SMS, Trademanager, or DingTalk).
Custom monitoring dashboard

You can customize the OSS resource monitoring map on the CloudMonitor Console. The

procedure is as follows.

1. Log on to the CloudMonitor console.
2. Click Dashboard from the left-side navigation pane.

3. Click Create Dashboard.

e | Dashboards : Ecs-glabal-dashboard - Delete Dashboard

Overview I (3t Bh | 12h 1days 3days | 7days l4days B Aulo Refresh Chart relevance _ Add View Full Sereen > Refresh

Dashboard

CPU Usage{%) Network Inbound Bandwidth{bps) Network Outbound Bandwidth(bps)
Application Groups

4. Enter the name of dashboard, and then click Add View.

| Dashboards : 123 - Delete Dashboard
m 3h Gh 12h 1days 3days Tdays 14days B Auto Refresh : Chart relevance v Full Screen & Refresh

5. Configure tables as required, and then click Save.

For configuration details, see Monitoring indicators reference.

https://www.alibabacloud.com/help/doc-detail/28610.htm
https://cloudmonitor.console.aliyun.com/#/home/ecs

7 OSS performance and scalability best practice

Partitions and naming conventions

OSS automatically partitions user data by file names encoded in UTF-8 to process massive data
and meet the needs for high request rates. However, if you use sequential prefixes (such as
timestamps and sequential numbers) as part of the names when uploading a large number of
objects, there may be lots of file indexes stored in a single partition. In this way, when the request
rates exceed 2,000 operations per second (downloading, uploading, deleting, copying, and
obtaining metadata are each counted as one operation, while deleting or enumerating more than

one files in batch is considered as multiple operations), the following results may occur:

» This partition becomes a hotspot partition, leading to the exhausted 1/O capacity and low
request rate limited automatically by the system.
+ With a hotspot partition, the partitioned data is constantly rebalanced, which may increase the

processing time.

Therefore, the horizontal scaling capability of OSS is affected, thus resulting in limited request rate

To address these issues, you must delete the sequential prefixes in the file names. Instead,
you can add random prefix in file names. In this way, the file indexes (and I/O loads) are evenly

distributed in different partitions.
The following shows the examples of changing sequential prefixes into random prefixes.
+ Example 1: Add hex hash prefixes into file names

As shown in this example, you may use a combination of dates and customer IDs (including

sequential timestamp prefixes) in file names:

sanpl e- bucket -01/2017-11- 11/ custoner-1/filel
sanpl e- bucket -01/2017-11- 11/ custoner-2/fil e2
sanpl e- bucket - 01/ 2017-11- 11/ cust omer-3/fil e3

sanpl e- bucket - 01/ 2017- 11- 12/ cust omer - 2/ f i | e4
sanpl e- bucket - 01/2017-11- 12/ custoner-5/fil e5
sanpl e- bucket - 01/2017-11- 12/ custoner-7/fil e6

In this case, you can calculate a hash value for the customer ID, that is, the MD5 (customer-id
), and combine a hash prefix of several characters as the prefix to the file name. If you use a 4-

character hash prefix, the file names are as follows:

sanpl e- bucket - 01/ 2¢99/ 2017- 11- 11/ custoner-1/fil el
sanpl e- bucket - 01/ 7a01/ 2017- 11- 11/ custoner-2/fil e2
sanpl e- bucket - 01/ 1dbd/ 2017- 11- 11/ cust oner-3/fil e3

sanpl e- bucket - 01/ 7a01/ 2017- 11- 12/ cust oner- 2/ fi | e4
sanpl e- bucket - 01/ b1f c/ 2017- 11- 12/ cust oner-5/fil e5
sanpl e- bucket - 01/ 2bb7/2017- 11- 12/ custoner-7/fil e6

In this case, a 4-character hex hash value is used as the prefix, and each character can be
any one of the 16 values (0-f), so there are 1674=65,536 possible character combinations.
Technically, the data in the storage system is constantly partitioned into up to 65,536 partitions
. Leveraging the performance bottleneck limit (2,000 operations per second) and the request

rate of your service, you can determine a proper number of hash buckets.

If you want to list all the files with a specific date in the file name, for example, files with 2017
-11-11 in the name in sample-bucket-01, you must enumerate the files in sample-bucket-01
(acquire all files in sample-bucket-01 in batch by multiple calls of the List Object API) and

combine files with this date in the file names.

Example 2: Reverse the file name

In this example, you may use a UNIX timestamp with millisecond precision to generate file
names, which is also a sequential prefix:

sanpl e- bucket - 02/ 1513160001245. | og

sampl e- bucket - 02/ 1513160001722. | og

sanpl e- bucket - 02/ 1513160001836. | og
sanpl e- bucket - 02/ 1513160001956. | og

sanpl e- bucket - 02/ 1513160002153. | og
sanpl e- bucket - 02/ 1513160002556. | og
sanpl e- bucket - 02/ 1513160002859. | og

As mentioned in the preceding paragraph, if you use the sequential prefix in file names, the

performance may be affected when the request rate exceeds a certain limit. To address this
issue, you can reverse the timestamp prefix to exclude the sequential prefix. The result is as
follows:

sanpl e- bucket - 02/ 5421000613151. | og
sanpl e- bucket - 02/ 2271000613151. | og

sanpl e- bucket - 02/ 6381000613151. | og
sanpl e- bucket - 02/ 6591000613151. | og

sanpl e- bucket - 02/ 3512000613151. | og
sanpl e- bucket - 02/ 6552000613151. | og
sanpl e- bucket - 02/ 9582000613151. | og

The first three digits of the file name represent the millisecond, which can be any one of the 1
,000 values. The forth digit changes every second. Similarly, the fifth digit changes every 10
seconds. In this way, the prefixes are randomly specified and the loads are distributed evenly

to multiple partitions, thus avoiding the performance bottleneck.

8 OssDemo for Android

8.1 OssDemo introduction

The OSS Developer Guide has introduced Mobile Terminal Development and Uploading Scenario.
Taking this scenario as an example, how to use SDK to perform some common operations on

Android, that is the OssDemo is introduced in the following document. It includes:

» How to use the application server (STS) which has been set up
* How to use SDK to upload a file

* How to use the image service

Here, we assume you have certain knowledge about OSS mobile development scenarios and

STS (Security Token Service).
Preparation
Since the development is based on Android, you are required to be equipped with the following:

1. Activate the OSS. For more information, see Quick Start.

2. Set up an application server. For more information, see Setting up Direct Data Transfer for
Mobile Apps.

3. Prepare the Android development environment. Android Studio is used in this scenario. Here,
we do not mention the steps or procedure involved in using the Android Studio. This is because
, instructions to use the Andriod Studio are easily available on the Internet.

4. Download the source code of OssDemo. You can take a trial by yourself, after installation. For
more information on how to implement the preceding common operations, see the source code
analysis.

5. Open the OSS Android SDK Documentation provided by OSS for reference.

8.2 Use the setup application server

This document elaborates, how to use a mobile app like OssDemo to access the application
server for the purpose of uploading data to OSS without the need of storing AccessKeyld and

AccessKeySecret to the app.
Logic of calling

1. OssDemo sends a request to the address of the sts_server received by OssDemo.

https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/internal/oss/0.0.4/assets/sdk/OssDemo_2016-01-19.zip
https://www.alibabacloud.com/help/doc-detail/32043.htm

2. sts_server returns AccessKeyld, AccessKeySecret, SecurityToken, and Expiration to OssDemo

3. After receiving such information, OssDemo calls SDK and creates an OssClient instance.
Code

1. Generate an EditText control.

Locat i on:
res/ | ayout/ cont ent _mai n. xm
Cont ent :
<Edi t Text
androi d: | ayout _hei ght ="wrap_content"
androi d: | ayout _wi dt h="0dp"
androi d: | ayout _wei ght =" 4"
androi d: i d="@*i d/ sts_server"
androi d: text="@tring/sts_server"
/>
Locati on:
res/ val ues/ strings
Cont ent :
<string name="sts_server">http://oss-deno. al i yuncs. conf app-server/
sts. php</string>

2. Get the codes of corresponding STS parameters from the application server.
Function implementation:

OSSFeder ati onToken get Feder ati onToken()

3. Get the STS returned parameters and initialize the OssClient code.

Function implementation:

/[llnitialize an OGssService used for uploadi ng and downl oadi ng.
public OssService initOSS(String endpoint, String bucket,
| mageDi spl ayer displayer) {
[/1f you want to directly use the accessKey for access purposes
, you can directly use OSSPl ai nText AKSKCr edent i al Provi der for
aut henti cati on.
/1 OSSCr edent i al Provi der credenti al Provi der = new OSSPl ai nTe
xt AKSKCr edent i al Provi der (accessKeyl d, accessKeySecret);
/1 Use your own class to retrieve an STSToken
OSSCr edent i al Provi der credenti al Provi der = new STSGett er (
stsServer);
Client Configuration conf = new ClientConfiguration();
conf . set Connecti onTi neout (15 * 1000); // Connection timeout, 15
seconds by default
conf . set Socket Ti meout (15 * 1000); // Socket tineout, 15 seconds

by defaul t
conf . set MaxConcurrent Request (5); // Maxi num concurrent requests
, 5 by default
conf.set MaxErrorRetry(2); // Maximumerror retries, 2 by
def aul t

0SS oss = new OSSO i ent (get Appl i cati onContext (), endpoint,
credenti al Provi der, conf);
return new OssService(oss, bucket, displayer);

8.3 Upload a file

Simple upload

Simple upload means the Put Object interface in the OSS APl is called to upload the selected files

to OSS on a one-off basis.

* Logic of calling

1.
2,

Once you select the Upload option, you can select the files to be uploaded.

Once the processing parameters are selected, OssDemo sends a request to the address of

the sts_server received by OssDemo.

. sts_server returns AccessKeyld, AccessKeySecret, SecurityToken, and Expiration to

OssDemo.

Once you have received the preceding information, OssDemo calls SDK, creates an

OssClient instance, and implements simple upload.

 Code

1.

2,

3.

Generate a button control.

Locati on:

res/ | ayout/ cont ent _mai n. xm

Cont ent :

<But t on
styl e="?android:attr/buttonStyl eSmal | "
androi d: | ayout hei ght ="wrap_content"
androi d: | ayout _wi dt h="wrap_content"
android:text="@tring/ multipart_upl oad"
android:id="@id/ multipart_upl oad" />

Click “Upload” and select the files to be uploaded.
Snippet of function implementation:

Button upload = (Button) findViewByld(R id. upload);
upl oad. set Ond i ckLi st ener (new Vi ew. OnCl i ckLi stener () {

@verride
public void onCick(View v) {
Intent i = new Intent(

I nt ent . ACTI ON_PI CK,
andr oi d. provi der. Medi aSt ore. | nages. Medi a.
EXTERNAL_CONTENT_URI) ;
startActivityForResult (i, RESULT UPLOAD | MAGE);
}

}
Call the upload interface of the SDK.

Snippet of function implementation:

@verride

protected void onActivityResult(int requestCode, int resultCode,
Intent data) {
super. onActivityResul t (request Code, resultCode, data);
if ((requestCode == RESULT UPLOAD | MAGE || request Code ==
RESULT_PAUSEABLEUPLQAD | MAGE) && resultCode == RESULT_OK && nul | !
= data) {
Uri sel ectedl mage = data. getData();
String[] filePathColum = { Medi aStore. | nmages. Medi a. DATA
1
Cursor cursor = get ContentResol ver (). query(sel ect edl mage,
filePathColum, null, null, null);
cur sor. moveToFirst();
i nt columl ndex = cursor. get Col uml ndex(fil ePat hCol um[O0
1);
String picturePath = cursor. get String(col uml ndex);
Log. d("Pi ckPi cture", picturePath);
cursor.cl ose();
try {
Bi t map bm = | mageDi spl ayer . aut oResi zeFr omLocal Fi | e(
pi cturePat h);
di spl ayl nage(bm ;
File file = new Fil e(picturePath);
Di splaylnfo("file: " + picturePath + "\nsize: " +
String.valueO (file.length()));

catch (1 CException e) {
e.printStackTrace();
di spl ayl nfo(e.toString());

[/ Perform sinple upload or resumabl e upl oad based on the
speci fi ed operation.
if (request Code == RESULT_UPLQAD_ | MACGE)
final EditText editText = (EditText) findViewByld(R
id edit text);
String objectNane = editText.getText().toString();
[/ Call the sinple upload interface to upload the
files.
ossServi ce. asyncPut | mage(obj ect Narme, picturePat h,
get Put Cal | back(), new ProgressCal | backFact or y<Put Obj ect Request >() .

get());

}
}

How to deal with the uploading results is not mentioned here. You may see onSuccess and

onFailure in source code.
Resumable upload based on multipart upload

Call the Multipart Upload interface of the OSS API to achieve a resumable upload effect.

Logic of calling

1. Once you select the Upload option, you can select the files to be uploaded.

2. Once the processing parameters are selected, OssDemo sends a request to the address of the

sts_server received by OssDemo.

3. sts_server returns AccessKeyld, AccessKeySecret, SecurityToken, and Expiration to OssDemo

4. Once you have received the preceding information, OssDemo calls SDK, creates an OssClient

instance, and implements a multipart upload.

5. If you have clicked Pause but the multipart upload process is still in progress, you can continue

the upload remaining part, by clicking Continue. This can achieve the resumable upload effect.
Code
1. Generate a button control.

Locati on:

res/ | ayout/cont ent _mai n. xm

Cont ent :

<Butt on
style="? android:attr/buttonStyl eSnal | "
androi d: | ayout _hei ght ="wrap_content"
androi d: | ayout _wi dt h="wrap_content"
android:text="@tring/ nulti part_upl oad"
android:id="@id/ multipart_upl oad" />

2. Click “Upload” and select the files to be uploaded.
Snippet of function implementation:

Button nultipart_upload = (Button) findViewByld(R id.multipart_
upl oad) ;
nmul ti part _upl oad. set OnC i ckLi st ener (new Vi ew. OnCl i ckLi stener() {
@verride
public void ondick(View v) {
[/ To make it sinple, only one resunable upload task is

runni ng.
Intent i = new I ntent(
I nt ent . ACTI ON_PI CK,
androi d. provi der. Medi aSt ore. | mages. Medi a. EXTERNAL_C
ONTENT_URI) ;
startActivityForResult(i, RESULT_PAUSEABLEUPLOAD | MAGE);
}
}
)

3. Click “Upload” for resumable upload of the remaining part.
Snippet of function implementation:

dick "Upl oad":
[/ The multipart upload interface of the SDK is call ed.
task = ossService.asyncMil ti Part Upl oad(obj ect Nane, pi cturePat h,
get Mul ti Part Cal | back().addCal | back(new Runnabl e() {
@verride
public void run() {

pauseTaskSt at us = TASK NONE;

mul ti part_resume. set Enabl ed(fal se);
mul ti part_pause. set Enabl ed(f al se);
task = nul | ;

}
}}, new ProgressCal | backFact or y<Pauseabl eUpl oadRequest >() . get());
From the encapsulating logic for the SDK at the underlying |ayer,
we can see that resumable upload is inplenmented by asyncUpl oad in
the mul ti Part Upl oadManager .
[/ During resunmabl e upl oad, the returned task can be used to pause
t he task.
publ i ¢ Pauseabl eUpl oadTask asyncMul ti Part Upl oad(Stri ng object,
String | ocal File,
@onNul | final
OSSConpl et edCal | back<Pauseabl eUpl oadRequest, Pauseabl eUpl oadResul t >
user Cal | back,
fi nal OSSProgres
sCal | back<Pauseabl eUpl oadRequest > user ProgressCal | back) {
if (object.equals("")) {
Log. w("AsyncMul ti Part Upl oad", "CbjectNull");
return null;

file = new File(local File);

Ifile.exists()) {

Log. w("AsyncMul ti Part Upl oad", "FileNotExist");
Log. W "Local File", local File);

return null;

ile
(

}
Log.d("Mul ti PartUpl oad”, |ocal File);
Pauseabl eUpl oadTask task = mul ti Part Upl oadManager . asyncUpl oad(
object, local File, userCallback, userProgressCall back);
return task;
}

8.4 Image processing

Image processing means that once the image is uploaded and displayed on the OssDemo, it is

processed. The differences between image processing and downloading an image are that:

» The endpoint for processing an image is used.

+ Some processing parameters are added under object.
Watermark an image
» Logic of calling

1. Upload an image to OSS. By default, the bucket is sdk-demo, the object is test, and the
endpoint of the OSS is 0ss- cn- hangzhou. al i yuncs. com

2. Based on the image processing method, processing parameters are added under test for
the required effect.

3. Once these processing parameters are selected, OssDemo sends a request to the address

of the sts_server received by OssDemo.

4. sts_server returns AccessKeyld, AccessKeySecret, SecurityToken, and Expiration to

OssDemo.

5. Once you have received all this information, OssDemo calls SDK, creates an OssClient
instance, and downloads the image. The displayed effect is the effect produced after image
processing. However, the endpoint for image service is i mg- cn- hangzhou. al i yuncs.

com

Code

1. Click More and the page showing the processed image is displayed.

2. Add a watermark with a size of 100 at the lower-right corner of the previously uploaded

image and get such an operating command.

Snippet of function implementation:

In the | mageService cl ass,

A nethod is provided to add the parameters necessary for a
function to the object.

//Add a text watermark to the inage. Al paraneters other than
font size are default values. You can nodify the paraneter val ues
when necessary according to the i nage service docunentati on.

public String textWatermark(String object, String text, int size)

{

String base64Text = Base64. encodeToString(text. getBytes(),

Base64. URL_SAFE | Base64. NO_ WRAP) ;

String queryString = "@vat er mar k=2&t ype=" + font + "&text="
+ base64Text + "&size=" + String.val ueC(size);

Log. d(" Text Wat er mar k", object);

Log. d("Text", text);

Log. d(" QuerySyring", queryString);

return (object + queryString);

}

3. Call the SDK download interface to process the image.

Snippet of function implementation:

get | mage(i mageSer vi ce. t ext WAt er mar k(obj ect Name, "OSS test”, 100
), 0, "text watermark at bottomright corner, size: 100");
public void getlnmage(final String object, final Integer index,
final String method) {
Cet Obj ect Request get = new Cet Obj ect Request (bucket, object);
Log. d("Object”, object);
OSSAsyncTask task = oss. asyncGet Gbej ct (get, new Ul Cal | back<
Get Obj ect Request, Get bj ect Resul t >(ui Di spat cher) {
@verride
public void onSuccess(CGet Obj ect Request request,
Get Obj ectResult result) {

/!l Request succeeded
| nput Stream i nput Stream = resul t. get Obj ect Content () ;
Log. d("Get | nage", object);
Log. d("I ndex", String.val ueX (index));
try {
// Do not exceed the maxi num di spl ay nunber.

adapt er. get | nrgMap() . put (i ndex, new | mageDi spl ayer
(1000, 1000). aut oResi zeFronttrean(i nput Strean));

adapt er. get Text Map() . put (i ndex, nethod + "\n" +
obj ect) ;

[/ Performauto scaling based on the size of the
correspondi ng Vi ew.

addcCal | back(new Runnabl e() {

@verride
public void run() {

adapt er. noti f yDat aSet Changed() ;
}
}, null);

catch (1 CException e) {
e.printStackTrace();
}

super.onSuccess(request,result);

}

How to deal with the failure in downloading the results is not mentioned in this document.
Scaling, cropping, and rotating an image

This is similar to the watermarking process. In the ImageService, add a function for getting the
processing commands. Add the processing parameters under the object. Finally, call the Get

Object interface of the SDK to process the image.

/] Scal i ng

get | mage(i mageServi ce. resi ze(obj ect Name, 100, 100), 1, "scale to 100*
100");

/1 Croppi ng

get | mage(i mageServi ce. crop(obj ect Nane, 100, 100, 9), 2, "crop the

| ower-right corner by 100*100");

// Rot ati ng

get | mage(i mageServi ce. rot at e(obj ect Name, 90), 3, "rotate by 90 degree

),

	Contents
	​Legal​ ​disclaimer​
	​Generic​ ​convention​​s​
	1 ​Applicatio​​n​ ​server​
	1.1 ​Set​ ​up​ ​direct​ ​data​ ​transfer​ ​for​ ​mobile​ ​apps​
	1.2 ​Permission​ ​control​
	1.3 ​Set​ ​up​ ​data​ ​callback​ ​for​ ​mobile​ ​apps​

	2 ​Direct​ ​upload​ ​to​ ​OSS​ ​from​ ​Web​
	2.1 ​Overview​ ​of​ ​direct​ ​transfer​ ​on​ ​Web​ ​client​
	2.2 ​Direct​ ​transfer​ ​after​ ​adding​ ​a​ ​signature​ ​on​ ​the​ ​server​
	2.3 ​Directly​ ​add​ ​a​ ​signature​ ​on​ ​the​ ​server​, ​transfer​ ​the​ ​file​, ​and​ ​set​ ​upload​ ​callback​

	3 ​Bucket​ ​management​
	3.1 ​CDN​-​based​ ​OSS​ ​accelerati​​on​
	3.2 ​Storage​ ​class​ ​conversion​
	3.3 ​Cross​-​origin​ ​resource​ ​sharing​ (​CORS​)
	3.4 ​Anti​-​leech​
	3.5 ​Static​ ​website​ ​hosting​

	4 ​Access​ ​control​
	4.1 ​Overview​
	4.2 ​What​ ​is​ ​RAM​ ​and​ ​STS​
	4.3 ​Access​ ​a​ ​bucket​ ​without​ ​using​ ​the​ ​primary​ ​account​
	4.4 ​Read​/​Write​ ​permission​ ​separation​
	4.5 ​Bucket​ ​permission​ ​separation​
	4.6 ​STS​ ​temporary​ ​access​ ​authorizat​​ion​
	4.7 ​FAQs​ ​about​ ​subaccount​ ​settings​

	5 ​Data​ ​security​
	5.1 ​Check​ ​data​ ​transmissi​​on​ ​integrity​ ​by​ ​using​ ​64​-​bit​ ​CRC​
	5.2 ​Protect​ ​data​ ​through​ ​client​ ​encryption​

	6 ​OSS​ ​resource​ ​monitoring​ ​and​ ​alarm​ ​service​
	7 ​OSS​ ​performanc​​e​ ​and​ ​scalabilit​​y​ ​best​ ​practice​
	8 ​OssDemo​ ​for​ ​Android​
	8.1 ​OssDemo​ ​introducti​​on​
	8.2 ​Use​ ​the​ ​setup​ ​applicatio​​n​ ​server​
	8.3 ​Upload​ ​a​ ​file​
	8.4 ​Image​ ​processing​

