Alibaba Cloud
Object Storage Service

Best Practices

Issue: 20180930

MORE THAN JusT cLoub | (- AlibabaCloud

Legal disclaimer

Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions of this
legal disclaimer before you read or use this document. If you have read or used this document, it

shall be deemed as your total acceptance of this legal disclaimer.

1. You shall download and obtain this document from the Alibaba Cloud website or other Alibaba
Cloud-authorized channels, and use this document for your own legal business activities only.
The content of this document is considered confidential information of Alibaba Cloud. You shall
strictly abide by the confidentiality obligations. No part of this document shall be disclosed or
provided to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted, or disseminat
ed by any organization, company, or individual in any form or by any means without the prior
written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades, adjustment
s, or other reasons. Alibaba Cloud reserves the right to modify the content of this document
without notice and the updated versions of this document will be occasionally released through
Alibaba Cloud-authorized channels. You shall pay attention to the version changes of this
document as they occur and download and obtain the most up-to-date version of this document
from Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud products and
services. Alibaba Cloud provides the document in the context that Alibaba Cloud products and
services are provided on an "as is", "with all faults" and "as available" basis. Alibaba Cloud
makes every effort to provide relevant operational guidance based on existing technologies
. However, Alibaba Cloud hereby makes a clear statement that it in no way guarantees the
accuracy, integrity, applicability, and reliability of the content of this document, either explicitly
or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial losses incurred
by any organizations, companies, or individuals arising from their download, use, or trust in
this document. Alibaba Cloud shall not, under any circumstances, bear responsibility for any
indirect, consequential, exemplary, incidental, special, or punitive damages, including lost
profits arising from the use or trust in this document, even if Alibaba Cloud has been notified of
the possibility of such a loss.

5. By law, all the content of the Alibaba Cloud website, including but not limited to works, products
, images, archives, information, materials, website architecture, website graphic layout, and
webpage design, are intellectual property of Alibaba Cloud and/or its affiliates. This intellectu

al property includes, but is not limited to, trademark rights, patent rights, copyrights, and trade

secrets. No part of the Alibaba Cloud website, product programs, or content shall be used,
modified, reproduced, publicly transmitted, changed, disseminated, distributed, or published
without the prior written consent of Alibaba Cloud and/or its affiliates. The names owned by
Alibaba Cloud shall not be used, published, or reproduced for marketing, advertising, promotion
, or other purposes without the prior written consent of Alibaba Cloud. The names owned by
Alibaba Cloud include, but are not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other
brands of Alibaba Cloud and/or its affiliates, which appear separately or in combination, as well
as the auxiliary signs and patterns of the preceding brands, or anything similar to the company
names, trade names, trademarks, product or service names, domain names, patterns, logos

, marks, signs, or special descriptions that third parties identify as Alibaba Cloud and/or its
affiliates).

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

Object Storage Service Best Practices / Legal disclaimer

Issue: 20180930 1

Generic conventions

Table -1: Style conventions

Style Description Example
This warning information indicates a
situation that will cause major system Danger:
changes, faults, physical injuries, and Resetting will result in the loss of user
other adverse results. configuration data.
This warning information indicates a
''''' situation that may cause major system | &% Warning:
changes, faults, physical injuries, and | Restarting will cause business
other adverse results. interruption. About 10 minutes are
required to restore business.
This indicates warning information,
supplementary instructions, and other Note:
content that the user must understand. | Take the necessary precautions to
save exported data containing sensitive
information.
This indicates supplemental instructio
ns, best practices, tips, and other Note:
content that is good to know for the You can use Ctrl + A to select all files.
user.
> Multi-level menu cascade. Settings > Network > Set network type
Bold It is used for buttons, menus, page Click OK.
names, and other Ul elements.
Couri er It is used for commands. Runthecd /d C./w ndows command
f ont to enter the Windows system folder.
Italics |[Itisused for parameters and variables. |bae 1 og list --instanceid
I nstance_I D
[] or [a]b] It indicates that it is a optional value, i pconfig[-all]|-t]
and only one item can be selected.
{} or{alb} |Itindicates that it is a required value, swich{stand | slave}
and only one item can be selected.

Contents

Legal disClaimer..........coiiiieiiiiiiciiirrs s s e s I
Generic CONVENLIONS........cceeiiiiiirrcc e I
1 AcCCeSS CONLIOL......cooeeeeirrrre 1
R O 1YY 1= RSP 1
1.2 What is RAM @nd ST S.. .. ittt e e e e e e e e e e annees 1
1.3 Access a bucket without using the primary account..............cooooiiiiiiiii s 4
1.4 Read/Write permission SeParation............c.ceuveiiiiiieie e e e e 5
1.5 Bucket permission SEParation.............ceuiieeeiiiii i a e 6
1.6 STS temporary access authorization.............ccccoiiiiiiiiiii e 8
1.7 FAQs about subaccount SEtNGS........cooiiiiiiiiiiie e 22
A = = =T o U] 24
2.1 Check data transmission integrity by using 64-bit CRC.............ccooiiiii i 24
2.2 Protect data through client encryption.............cooiiiiiie e 26
3 OSS resource monitoring and alarm service..........ccoceeeciiiirnnennnnn. 31

4 OSS performance and scalability best practice.......cc...cccorrreennn. 33

1 Access control

1.1 Overview

Alibaba Cloud’s permission management mechanism includes Resource Access Management (
RAM) and Security Token Service (STS). This enables users to access OSS through subaccount
s with different permissions and grants users temporary access authorization. Usage of RAM and

STS can greatly improve management flexibility and security.

The following content is introduced in permission management:

What is RAM and STS

» Access a bucket without using the primary account

* Read/Write permission separation

» Bucket permission separation

» Access control

» STS temporary access authorization

» The problem of OSS authority and Its Troubleshooting
» STS frequently asked questions and troubleshooting

» OSS sub-account setup Frequently Asked Questions

Click RAM Policy Editor Online Editing allows you to generate authorization policies.

1.2 What is RAM and STS

RAM and STS are permission management systems provided by Alibaba Cloud.

RAM is primarily used to control account system permissions. RAM enables users to create
subaccounts within the range of primary account permissions. Different subaccounts can be

allocated different permissions for authorization management.

STS is a security credential (token) management system that grants temporary access permission

s. STS allows users to grant access rights to the temporary accounts.
Why RAM and STS?

RAM and STS are designed to resolve the core issue such as how to securely grant access
permissions to other users without disclosing the primary account’s AccessKey. Disclosure of
AccessKey poses a serious security threat because unauthorized users may operate account

resources and the risk of data leakage or stealing of important information is high.

http://gosspublic.alicdn.com/ram-policy-editor/index.html

RAM provides a long-term permission control mechanism. Various subaccounts assign different
permissions to the different users. This way, even the disclosure of subaccount information would

not cause a global information leakage. However, subaccounts have long-term validity.

Note:

Therefore, AccessKey of subaccounts must not be disclosed.

On the contrary, STS provides temporary access authorization by returning a temporary
AccessKey and the token. This information can be provided directly to the temporary accounts,
allowing them access to OSS. Generally, the permissions obtained from STS are more restrictive
and only valid for a limited period of time. Thus, the disclosure of this information has little effect

on the system.

These functions are further illustrated with the help of examples.
Basic concepts

The following are some explanations of the basic concepts:

» Subaccount: A subaccount is created from the Alibaba Cloud primary accounts. Once created
, it is assigned an independent password and permissions. Each subaccount has its own
AccessKey and can perform authorized operations similar to the primary account. Generally,
subaccounts can be understood as users with certain permissions or operators with permission
s to perform specific operations.

* Role: Role is a virtual concept for certain operation permissions. However, it does not have

independent logon passwords or AccessKeys.

Note:
Subaccounts can assume roles. When a role is assumed, the permissions granted for a
subaccount are the permissions of the role.
» Policy: Policies are rules used to define permissions; for example, they permit users to read or
write certain resources.
* Resource: Resources are the cloud resources that users can access like all OSS buckets, a

certain OSS bucket, or a certain object in a specific OSS bucket.

A subaccount and roles have the same relationship to each other as you and your identities. At
work, you may be an employee, while at home you may be a father. In different scenarios, you
may assume different roles. Different roles are assigned corresponding permissions. The concept

of “employee” or “father” is not an actual entity that can be the subject of actions. These concepts

are only complete when an individual assumes them. This illustrates an important concept: a role

may be assumed by multiple people at the same time.

Note:

Once the role is assumed, this individual automatically obtains all the permissions of the role.
The following example provides better understanding of the concept:

» Assume that Alice is the the Alibaba Cloud user and she has two private OSS buckets, alice_a
and alice_b. Alice has full permission for both buckets.

+ To avoid leaking her Alibaba Cloud account AccessKey, which would pose a major security risk
, Alice uses RAM to create two subaccounts, Bob and Carol. Bob has read/write permission for
alice_a and Carol has read/write permission for alice_b. Bob and Carol both have their own
AccessKeys. This way, if one is leaked, only the corresponding bucket is affected and Alice can
easily cancel the leaked user permissions on the console.

* Now, for some reason, Alice must authorize another person to read the objects in alice_a. In
this situation, she must not only disclose Bob’s AccessKey. Rather, she can create a new role
like AliceAReader, and grant this role the read permission for alice_a. However, note that,
at this time, AliceAReader cannot be used because no AccessKey corresponds to this role.
AliceAReader is currently only a virtual entity with the permission to access alice_a.

* To obtain temporary authorization, Alice can call the STS’s AssumeRole interface to
notify STS that Bob wants to assume the AliceAReader role. If successful, STS returns a
temporary AccessKeyld, AccessKeySecret, and SecurityToken, which serve as the access
credentials. When these credentials are given to a temporary account, the user obtains
temporary permission to access alice_a. The credentials’ expiration time is specified when the

AssumeRole interface is called.
Why are RAM and STS so complex?

Initially, RAM and STS concepts seem to be complex. This is because flexibility is given to

permission control at the cost of simplicity.

Subaccounts and roles are separated to separate the entity that executes operations from the
virtual entity that represents a permissions set. If a user requires many permissions including the
read and write permissions but each operation only requires part of the total permission set, you
can create two roles, one with the read permission and the other with the write permission. Then
create a user who does not have any permission but can assume these two roles. When the user

needs to read or write data, the user can temporarily assume the role with the read permission

or the role with the write permission. This reduces the risk of permission leaks for each operation
. Additionally, roles can be used to grant permissions to other Alibaba Cloud users, making the

collaboration easier.

Here, flexibility does not mean you have to use all these functions. You only need to use the
subset of the functions as required. For example, if you do not need to use temporary access
credentials that have an expiration time, you can only use the RAM subaccount function, without

STS.

In what follows, we use examples to create a RAM and STS user guide and provide instructio
ns. For the operations in these examples, we do our best to use console and command line
operations to reduce the actual amount of codes that must be used. If you must use code to

perform these operations, we recommend that you see the RAM and STS API Manual.
Test tool

During testing, we use osscmd, a tool in the OSS PythonSDK that allows you to directly work on

OSS through the command line. osscmd can be obtained from PythonSDK.
Typical osscmd usage:

Downl oad fil es

./ osscmd get oss://BUCKET/ OBJECT LOCALFI LE - - host=Endpoi nt -i

AccessKeyl d -k AccessKeySecret

Here, replace BUCKET and OBJECT with your own bucket and object, and

the endpoint format must be similar to oss-cn-hangzhou. aliyuncs. com
For AccessKeyld and AccessKeySecret, use the information correspondi ng
to your own account

Upl oad files

./ osscnmd put LOCALFILE oss://BUCKET/ OBJECT --host=Endpoi nt -i

AccessKeyl d -k AccessKeySecr et

The neaning of each field is the sane as for the downl oad exanpl e

1.3 Access a bucket without using the primary account

Assume that the user is a mobile developer and currently only has one bucket, ram-test-dev,
for development, testing, and other functions. The user must stop using the primary account to
access this bucket. This can avoid problems caused by AccessKey and password leaks. In the

following example, replace AccessKey with your own AccessKey. The procedure is as follows:

1. On the console, select Products and Services > Resource Access Management.

Note:
The service must be activated first if you have never used it before.

2. Click Users to go to the User Management page.

3. The page shows that no user is created. Click New User on the upper right corner to create
a subaccount with the same OSS access permissions as the primary account. Remember to
select the Auto generate AccessKey for this user.

4. The AccessKey for this account is generated and must be saved for later use.

5. Return to User Managementinterface, which shows the newly created account named
ram_test. When created, this subaccount does not have any permissions yet. Click the

Authorize link on the right side and grant this subaccount full access permissions for OSS.

After authorization, click the Management link on the right side if you want to give the subaccount

console logon or other permissions.

Now we can test the uploading and downloading operations. In the example, the AccessKey is

ram_test’'s AccessKey. During the test, replace this with your own AccessKey.

$./osscnd get

oss://ramtest-dev/test.txt test.txt --host=0ss-cn-hangzhou. aliyuncs.
com-i oChue******Frogv -k OMWFIO3qcTO****** FhOYpg3pOKnA

100% The object test.txt is downl oaded to test.txt, please check.

0. 069(s) el apsed

$./osscnd put test.txt oss://ramtest-dev/test.txt --host=0ss-cn
-hangzhou. al i yuncs. com -i oGChue******Frogv -k OMWFIO3qcTO******

FhOYpg3pOKnA

100%

Object URL is: http://ramtest-dev.oss-cn-hangzhou. al i yuncs. conltest.
t xt

bj ect abstract path is: oss://ramtest-dev/test.txt
ETag is "E27172376D49FC609E7F46995E1F808F"
0. 108(s) el apsed
As you can see, this subaccount can basically be used for all operations, so you can avoid leaking

the primary account’s AccessKey.

1.4 Read/Write permission separation

When the users want to use an application server to provide external service, OSS can store back
-end static resources. In this case, we recommend that the application server be granted the OSS
read-only permission to reduce the risk of attacks. The read and write permission separation can

be configured to grant the application server a user with the read-only permission.

1. Create an account ram_test_pub. As shown in the following figure, select ReadOnly in the

authorization management area:

2. You can now use the AccessKey of the subaccount to test the upload and download
permissions. The AccessKey here is a ram_test_pub AccessKey and is to be replaced with

your own AccessKey during the test.

$./osscnd get oss://ramtest-dev/test.txt test.txt --host=0ss-cn
- hangzhou. al i yuncs. com -i oChue******Frogv -k OmMWFIO3qCTO******
FhOYpg3pOKnA

100% The object test.txt is downl oaded to test.txt, please check.
0.070(s) el apsed

$. /Osscnd put test.txt OSS: // Ramtest-dev/test.txt -- Host =
porterochue ****** frogv-K OnvMwFJO3qcTO * FhOYpg3pOKnA?
100% Error Headers:
[("content-length', '229"), ('server', "Aliyun0SS), ('connection', '
keep-alive'), ('x-oss-request-id , '5646E49C1790CFOF531BAEOD), ('date
", '"Sat, 14 Nov 2015 07:37:00 GVMI'), ('content-type', 'application/xm
)1
Error Body:
<? xm version="1.0" encodi ng="UTF-8"? >
<Error>
<Code>AccessDeni ed</ Code>
<Message>AccessDeni ed</ Message>
<Request | d>5646E49C1790CFOF531BAEOD</ Request | d>
<Host | d>ram t est - dev. 0ss- cn- hangzhou. al i yuncs. conx/ Host | d>
</ Error>
Error Status:
403
put Fail ed!

With reference to the preceding example, we can conclude that the ram_test _pub account cannot

be used to upload files.

1.5 Bucket permission separation

Another scenario is introduced in this section. If another user is using the developed app, you can
use an individual bucket to store your app data. Assume that the bucket is the ram-test-app. In
consideration of permission separation, the application server must not be allowed to access the
ram-test-app; that is, the account ram_test_pub is permitted only to read ram-test-dev. This can

also be realized through the RAM permission system. The procedure is as follows:

1. Because the system has no default bucket-level policy, we must create a custom policy.

{

"Version": "1",
"Statenment": [

"Effect": "Allow',
"Action": |
"o0ss: Li st Obj ects",
"o0ss: Get Obj ect™

]

Resource": |
"acs: 0ss: *:*:ramtest-dev",

"acs: 0ss:*:*:ramtest-dev/*"
]
}
]
}

After setting, we can see the policy in the custom authorization policy list.

2. In user authorization management, add this policy to the selected authorization policy list. Also
in Users > Management > Authorization policy, all previously granted OSS read permissions

can be revoked.

3. Test the validity of permission configured.
* The object in ram-test-dev can be accessed:

$./o0sscnd get oss://ramtest-dev/test.txt test.txt --host=0ss-cn
- hangzhou. al i yuncs. com -i oChue******Frogv -k OnWMWFIQBQCcTO******
FhOYpg3pOKnA

100% The object test.txt is downl oaded to test.txt, please check.
0.047(s) el apsed

* The object in ram-test-app cannot be accessed:

$./osscnd get oss://ramtest-app/test.txt test.txt --host=0ss-cn
-hangzhou. al i yuncs. com -i oGChue******Frogv -k OMMWFIO3qCcTO******
FhOYpg3pOKnA

Error Headers:

[('content-length', '229"), ('server', '"Aliyun0SS), ('connection
", 'keep-alive'), ('x-oss-request-id , '5646EDS53F9EEA2F3324191A2
'), ('date', 'Sat, 14 Nov 2015 08:14:11 GvI'), ('content-type', '
application/xm"')]

Error Body:

<? xm version="1.0" encodi ng="UTF-8"? >

<Error>

<Code>AccessDeni ed</ Code>

<Message>AccessDeni ed</ Message>

<Request | d>5646ED53FOEEA2F3324191A2</ Request | d>

<Host | d>ramt est - app. 0ss- cn- hangzhou. al i yuncs. conx/ Host | d>
</ Error>

Error Status:

403

get Fail ed!

» Files cannot be uploaded to oss-test-app:

$./osscnd put test.txt oss://ramtest-app/test.txt --host=0ss-cn
-hangzhou. al i yuncs. com -i oGChue******Frogv -k OMMWFIO3qCcTO******

FhOYpg3pOKnA
100% Error Headers:
[('content-length', '229"), ('server', '"AliyunOSS), ('connection

", 'keep-alive'), ('x-oss-request-id , '5646ED7/BB8DE437A912DC7A8
'), ('date', 'Sat, 14 Nov 2015 08:14:51 GvI'), ('content-type', '
application/xm"')]
Error Body:
<? XML version = "1.0" encoding = "UTF-8 "? >
<Error>
<Code>AccessDeni ed</ Code>

<Message>AccessDeni ed</ Message>
<Request | d>5646ED7BB8DE437A912DC7A8</ Request | d>
<Host | d>r amt est - app. 0ss- cn- hangzhou. al i yuncs. conx/ Host | d>
</Error>
Error status:
403
put Fail ed!

Using the preceding configuration, we have successfully separated the permissions for ram-

test-dev and ram-test-app.

The preceding section explains how to use the subaccount permission control function to

separate permissions and minimize the potential risk of information leakage.

1.6 STS temporary access authorization

In the previous documents, we used only the RAM user functions. These user accounts are
for long-term normal use. This poses as a serious risk if the RAM user permissions cannot be

promptly revoked in case of information leakage.

In the previous example, assume that our developer’s app allows users to upload data to the OSS
bucket am-test-app and currently, the number of app users is large. In this case, how can the
app securely grant data upload permissions to many users and how can it be certain of storage

isolation among multiple users?

In such scenarios, we need to grant users temporary access using STS. STS can be used
to specify a complex policy that restricts specified users by only granting them the minimum

necessary permissions.
Create arole

Based on the example in the previous document, the app user has a bucket, ram-test-app, to

store personal data. A role can be created as follows:

1. Create a RAM user account named ram_test_app using the process illustrated in the previous
documents. Do not grant this account any permissions, because it inherits the permissions of a
role which it assumes.

2. Create roles. Here you must create two roles for users to perform read operations and to

upload files respectively.

* Log on to the RAM console and select Roles > New Role.

Object Storage Service Best Practices / 1 Access control

» Select a role type. Here you must select User

role.

Create Role

1 : Select role type

2 sub-users under a trusted Alibaba Cloud account can assume this role to acc
and other accounts may be considered trusted accounts.

» Enter the role type information. Because this role has been used by its own Alibaba Cloud

account. Use the default setting.

Issue: 20180930

» Configure basic role

information.

Create Role

* The role name : RamTestAppReadOnly

The name must be 1-84 characters long and
letters, numbers, and *-"

Remarks : ram-test-app readonly

B
3. When the role was created, it did not have any permissions. Therefore, we must create
a custom authorization policy using the process described earlier. The following is the

authorization policy:

"Version": "1",
"Statenment": [

"Effect": "allow ",

"Action": |
"oss: Li st Cbj ects",
"Oss: CGetnject”

1,

"Resource": [
"acs:0ss:*:*:ramtest-app",
"acs:o0ss:*:*:ramtest-app/*"
]

}

]

}

This indicates read-only permission for ram-test-app.

Object Storage Service

Best Practices / 1 Access control

* Authorization policy
name :

Remarks :

Policy content :

Create Authorization Policy

STEP 2: Edit permissions and submit

ram-test-app-readonly

The name must be 1-128 characters long and can cont

m m

numbers, and "-

ram-test-app-readonly

1

2 "Wersiom": 17,

2 "Statement”: [

4 {

o "Effect™: "Allow”,

B “hetion™: [

T “pEz:ListObjects",

g “pEziGetlbject”

g 1,

10 "Resource”: [

11 “acsioss ¥ ¥ ramtest—app”,
1z “acsioss ¥ ¥ ramtest—app/”
13]

14 1}

15]

18 }

Authorization policy format definition
Authorization policy FAQs

Prey I

Issue: 20180930

11

Object Storage Service

Best Practices / 1 Access control

4. After the policy is established, give the role RamTestAppReadOnly

the ram-test-app read-only permission on the role management

page.
|
RAM

Dashboard
lsers
Groups
Policies

Settings

| Role Management

Role name ¥ | | Enter role name for fuzzy search

The role name

AliyunCloudMonitorDefaultRole

AliyunDRDSDefaultRole

AliyunMNSLoggingRole

RamTestAppReadOnly

SBCOSSArchiever

SBCSystemadmin

SBCWebDeveloper

12

Issue: 20180930

Time ¢

2016-1

2016-0

2016-1

2016-1

2016-1

2016-1

2016-1

Edit Role Authorization Policy

Optional authorization policy name Type Selected authorization policy name Type

eywords to search Q ram-test-app-readonly

AdministratorAccess

AliyunOSSFullAccess

Aliyun0SSReadOnlyAccess

AliyunECSFullAccess
Provides full acce v

5. Perform the same procedure to create the role RamTestAppWrite and use a custom

authorization policy to grant ram-test-app write permission. The authorization policy is as

follows:
"Version": "1",
"Statenent": |
{

"Effect": "Allow',
"Action": [
"o0ss: Del etehj ect ™,
"oss: ListParts",
"o0ss: Abort Mul ti part Upl oad",
"oss: Put Obj ect”
1,
"Resource": |
"acs: 0ss: *:*:ramtest-app",
"acs: 0ss:*:*:ramtest-app/*"

]
}
]
}

Now we have created two roles, RamTestAppReadOnly and RamTestAppWrite, with read-only

and write permissions for ram-test-app, respectively.

RAM

Role name ¥ | | Enter role name for fuzzy search

Dashboard

Users)
AliyunCloudMonitorDefaultRole 2016-10-31 16:25:35 Management Authorize Delete

Groups

. AliyunDRDSDefaultRole 2016-09-05 22:27:28 Management Authorize Delete

olicies

Roles AliyunMNSLoggingRole 2016-11-14 16:30:12 Management Authorize Delete

Settings = RamTestAppReadOnly 2016-12-12 21:04:42 Management Authorize Delete
RamTestAppWrite 2016-12-12 21:24:06 Management Authorize Delete
SBCOSSArchiever 2016-11-09 11:59:16 Management Authorize Delete
SBCSysternAdmin 2016-11-09 11:56:43 Management Authorize Delete
SBCWebDeveloper 2016-11-09 11:55:49 Management Authorize Delete

Temporary access authorization

After creating roles, we can use them to grant temporary access to OSS.

Preparation

Authorization is required for assuming roles. Otherwise, any RAM user could assume these roles
, which can lead to unpredictable risks. Therefore, to assume corresponding roles, a RAM user

needs to have explicitly configured permissions.

Object Storage Service Best Practices / 1 Access control

1. Create two custom authorization policies in authorization policy

management. |
Create Authorization Policy
STEP 2: Edit permissions and
* Authorization policy AlivunSTSAssumeRoleAccess2015111604<
name :
The name must be 1-128 characters long 2
numbers, and "-"
Remarks :
Policy content : 11
2 "Statement”: [
31
4 “hetion™: “sts;AssumeRole”
o "Effect™: "Allow”,
B "Resource”:
“acziram::1334189TR9TEEEE3 rol
Tl
g 1,
9 "Wersien™: "1°
10}
Authorization policy format definition
Authorization policy FAQs
"Statenent": |
"Action": "sts:AssunmeRol e",

Issue: 20180930 15

"Effect": "Alow',
"Resource": "acs:ram:1894189769722283: rol e/ rant est appr eadonl y"

}

ersion": "1"

]

}

Create another custom authorization policy using the same method:

"Statenent": |

"Action": "sts:AssuneRol e",
"Effect": "Alow',
"Resource": "acs:ram:1894189769722283:rol e/ rant est appwite”

}

ersion": "1"

]

}

Here, the content entered after Resource is a role’s ID. Role IDs can be found in Roles > Role

Details .

2. Grant the two authorization policies to the account ram_test_app.
Use STS to grant access permissions
Now, we are ready with the platform to officially use STS to grant access permissions.

Here we use a simple STS Python command line tool sts.py. The calling method is as follows:

$pyt hon ./sts.py AssuneRol e Rol eArn=acs:ram : 1894189769722283:rol e
/ ramnt est appr eadonl y Rol eSessi onNane=usr 001 Policy="{"Version":"1
","Statenent":[{"Effect":"Al ow', "Action":["oss: Li st bjects", "oss:
Get Obj ect"], "Resource":["acs: 0Ss: *: *:ramtest-app", "acs: 0ss: *: *: ram
test-app/*"]}]}" DurationSeconds=1000 --id=id --secret=secret
* RoleArn: indicates the ID of a role to be assumed. Role IDs can be found inRoles > Role
details .
* RoleSessionName: indicates the name of the temporary credentials. Generally, we recommend
that you separate this using different application users.
» Policy: indicates a permission restriction, which is added when the role is assumed.
+ DurationSeconds: indicate the validity time of the temporary credentials in seconds. The

minimum value is 900, and the maximum value is 3600.

» id and secret: indicate the AccessKey of the RAM user to assume a role.

Here, we need to explain what is meant by “Policy”. The policy mentioned here is used to restrict

the temporary credential permissions after a role is assumed. Ultimately, the permissions obtained

https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/internal/oss/0.0.4/assets/tool/sts.py?spm=a2c4g.11186623.2.4.RUB3Bg&file=sts.py

by means of temporary credentials are overlapping permissions of the role and the policy passed
in.
When a role is assumed, a policy can be entered to increase the flexibility. For example, when

uploading the files, we can add different upload path restrictions for different users. This is shown

in the following example.

Now, let's test the STS function. To test the bucket, first use the console to put the file test.txt in

ram-test-app, with the content ststest.

Firstly, use the RAM user account ram_test_app to directly access the file. Next, replace

AccessKey with your own access key used in the test.

[adm n@NA S- CWA\F344MD1C / hone/ admi n/ oss_t est]
$./osscnd get oss://ramtest-app/test.txt test.txt --host=0ss-cn
-hangzhou. al i yuncs. com -i oChue******Frogv -k OmMWFIO3qCcTO******
FhOYpg3pOKnA
Error Headers:
[(*content-length', '229"), ('server', 'AliyunCsSS), ('connection',
keep-alive'), ('x-oss-request-id' , '564A94D444FAD8B2225E4AFE), ('date
", 'Tue, 17 Nov 2015 02:45:40 GVI'), ('content-type', 'application/xm
)]
Error Body:
<? xm version="1.0" encodi ng="UTF-8"? >
<Error>

<Code>AccessDeni ed</ Code>

<Message>AccessDeni ed</ Message>

<Request | d>564A94D444F4D8B2225E4AFE</ Request | d>

<Host | d>ramt est - app. 0ss- cn- hangzhou. al i yuncs. conx/ Host | d>
</ Error>
Error Status:
403
get Fail ed!
[adm n@NG S- CWAF344MD1C / horre/ adm n/ oss_t est]
$./osscnd put test.txt oss://ramtest-app/test.txt --host=0ss-cn
-hangzhou. al i yuncs. com -i oChue******Frogv -k OMWFIO3qCcTO******
FhOYpg3pOKnA
100% Error Headers:
[('content-length', '229"), ('server', 'AliyunGSS'), ('connection',
keep-alive'), ('x-oss-request-id , '564A94E5B1119B445B9F8C3A), ('date
", 'Tue, 17 Nov 2015 02:45:57 GVI'), ('content-type', 'application/xmn
)1
Error Body:
<? xm version="1.0" encodi ng="UTF-8"? >
<Error>

<Code>AccessDeni ed</ Code>

<Message>AccessDeni ed</ Message>

<Request | d>564A94E5B1119B445B9F8C3A</ Request | d>

<Host | d>ramt est - app. 0ss- cn- hangzhou. al i yuncs. conx/ Host | d>
</ Error>
Error Status:
403

put Fail ed!

Without access permission, access attempts using the RAM user account ram_test_app are failed

Use temporary authorization for downloads

Now, we use STS to download files. To make it simple to understand, the entered policy and the
role policy are the same. The expiration time is set to 3600s, and the app user here is usr001. The

steps are as follows:
1. Use STS to obtain a temporary credential.

[adm n@NA S- CWA\F344MD1C / hone/ adni n/ oss_t est]

$python ./sts.py AssumeRol e Rol eArn=acs: ram :1894189769722283:rol e
[ram est appr eadonl y Rol eSessi onNanme=usr 001 Policy="{"Version":"1
","Statenent":[{"Effect":" Al ow', "Action":["oss: ListCbjects", "oss:
Get Obj ect"], "Resource":["acs: 0ss: *: *:ramtest-app", "acs: 0ss: *: *:ram
-test-app/*"]}]}" --id=0Chue******Frogv --secret=OnVwWFJOBqCcTO******
FhOYpg3pOKnA

https://sts.aliyuncs. com ?Si gnat ur eVer si on=1. 0&For mat =J SON&
Ti mest anp=2015- 11- 17T03%8A07¥8A25Z&Rol eAr n=acs¥BAr an?/8A¥3A18941897
69722283%3Ar ol e%2Fr ant est appr eadonl y&Rol eSessi onName=usr 001&
AccessKeyl d=o0Chuek56i 53Fr ogv&Pol i cy=%B%22Ver si on%22%8A%R221%22%2C%
22St at ement 9R22Y8AYSBYW BYR2Ef f ect 22%BAYR2A1 | owdR292CY22Act | onYR22YBA
9Y5BYR20sSYBALI st Obj ect s¥R2YR2CY220ssYBACet Cbj ect 9R29%6DYRCYR22Resour ce
%R2YBAYDBYR2acsYBA0SS YBAYRAYBAYR2 AYBAr am t est - appdR2%R2C¥22acs¥B3Ao0ss%
SARAYBAYR AYBAr am t est - app%2FY2AYR 2%b DY DY D% D&SI gnat ur eMet hod=HMAC
- SHA1&Ver si on=2015- 04- 01&Si gnat ur e=bshxPZpwRIv5ch3Sj aBi XLodwg0%3D&
Act i on=AssuneRol e&Si gnat ur eNonce=53elbe9c- 8cd8- 11e5- 9b86- 008cf a5e49
38

"AssunmedRol eUser ": {
"Arn": "acs:ram :1894189769722283: rol e/ r ant est appr eadonl y/
usr 001",
"AssunedRol el d": "317446347657426289: usr 001"
},
"Credential s": {

"AccessKeyl d": "STS. 3nmQEbNf ******wg180Le",

"AccessKeySecret": "Blwrr CoRAdzGMYJ* ***** 3Pj PqKZ3gj ChAxb6nB",

"Expiration": "2015-11-17T04:07: 252",

"SecurityToken": "CAESVAM ARKAASQQUUTSE+7683CA hdGsv2/ di 8ul +
X1BxG7MDxMbFTdOf pSwpPK/ 7Uct YH2MI/ / / ¢4y MNLPUCCEHI 1z ppCl NmpDG2XeNA3
OS16JIWS6ESM 50s Hy WBims YK CIWL5gXnf hz/ OK+nSplbYx| f B33gf gCFe971 j euj 8RMyq
FxOHNny2Bz GhhTVFMUM2IRRWI OZnR5Yz| 1T3dhMIgwTGUI Ej MkNz QONj MONz Y
INzQyNj | 40S0Gd XNy MDAXMI Tr gJ 2RKj 0 GUnNhTUQLQps BCgEx GoUBCgVBb Gx
vdx| 4CgxBY3Rpb25Fc XVhbHVEBKFj dd@ vbhogCg9ve3MBTA zdE9i anVj dHM
KDW9z czpHZXRPYnpl Y3QSUgoOUmMVzb3Vy Y2VFc XVhbHVBCFII ¢291cnNl G Y
KGGFj czpvc3MBKj oqOnJhbS10ZXNOLWFwe AoaYWNz OnBzczogG o6¢nft LXR
| c3Q YXBWLY pKEDE4AOTQxCDk3Nj k3M | yODNSBTI 20DQy Wj9Bc 3N1bW/k Urd
sZVWzZXJgAGoSMz E3NDQ2 Mz BN U3NDI 2M g5chJy YWLOZXNOYXBwe mvhZ&ubHk ="

} ’
"Request | d": "8C009F64- F19D- 4EC1- ASAD- 7A718CD0OB49B"

}
2. Use the temporary credential to download files. Here sts_token is the SecurityToken returned

by the STS.

[adm n@NA S- CW\F344MD1C / hore/ adm n/ oss_t est]

$./osscnd get oss://ramtest-app/test.txt test.txt --host=0ss-cn
- hangzhou. al i yuncs. com -i STS. 3nTEbNf ******wg180Le -k Blw7r CoR4d
ZOMNYJ* * * *** 3Pj PqKZ3gj GhAXb6nB - - st s_t oken=CAESVvAM ARKAASQQUUT SE+
7683CA hdGsv2/ di 8ul +X1BxG7/MDxMbFTAOf pSwpPK/ 7Uct YH2MI/ / / c4y MN1PUCC
EH 1zppCl NnpDG2XeNA3OS16IWS6ESM 50s Hy WBms Yk CIWL5gXnf hz/ OK+nSplbYx| f B
33gf gCFe97I j euj BRMyqFx0HNy2BzGhh TVFMUM2ZIRRWI OZnR5Yz| 1T3dhMIg
WTGU Ej MKNzQONj MONz YINz Qy Nj | 40S0Gd XNy MDAXMI Tr gJ 2RKj oGUnNhTUQ
1QpsBCgExGpUBCgVBbGxvdx| 4CgxBY3Rpb25Fc XVhbHVEBKFj dd vbhogCg9
vc3MBTA zdE9i amVj dHVKDWz ¢ zpHZXRPYnpl Y3QSUgoOUmVz b3Vy Y2VIFc XV
hbHMSCFJI c291cmNl G YKGGFj czpve3MBKj ogOnJhbS10ZXNOLWFwe Aoa YWN
zQOmBzczoqO o6enFt LXR ¢3Q YXBWy pKEDE4AOTQxODk3Nj k3M | yODNSBTI
20DQy Wj9Bc 3NLbWWK UnBs ZVVWz ZXJ gAGo SMz E3NDQ2 Mz (BNj U3NDI 2M g5chJ
y YWLOZXNOYXBwe mivhZ&ubHk =

100% The object test.txt is downl oaded to test.txt, please check.

0.061(s) el apsed

3. As you can see, we can use the temporary credentials to download the file. Next, we will test if

we can use them to upload a file.

[adm n@NG S- CWAF344MD1C / hone/ adm n/ oss_t est]

$./osscnd put test.txt oss://ramtest-app/test.txt --host=0ss-cn
- hangzhou. al i yuncs. com -i STS. 3mQEbNf ******wg180Le -k Blw7r CoR4d
ZOMNYJ* * **** 3Pj pgKZ3gj GhAXxb6nmB - - st s_t oken=CAESVvAM ARKAASQQUUTSE+
7683Cd hdGsv2/ di 8ul +X1BxG7/MDx MbFTdOf pSwpPK/ 7Uct YH2MI/ / / c4y MN1PUCc
EH 1zppCl NnpDG2XeNA3OS16IWS6ESM 50s Hy WBms YK CIWL5gXnf hz/ OK+nBSplbYx| f B
33gf gCFe97I j euj SRMyqFx0HNy2BzGhh TVFMUM2IRRWI OZnR5Yz1 1T3dhMIg
WTGUI Ej MKNzQONj MONz YINzQy N | 40S0Gd XNy MDAXMI Tr gJ2RKj o GUnNhTUQ
1QpsBCgEx GpUBCgVBbGxvdx| 4CgxBY3Rpb25Fc XVhbHVEBk Fj dd vbhogCg9
vc3MBTA zdE9i anVj dHVKDWAz cz pHZXRPYnpl Y3QSUgoQUmvVz b3Vy Y2VIFc XV
hbHVBCFJI c291cmNl G YKGGF] czpvc3MBKj oqOnJhbS10ZXNOLWFwe Aoa YWN
zOmBzczoqQ o6enFt LXR ¢3Q YXBWy pKEDE4AOTQxODKk3Nj k3M | yODNSBTI
20DQy WJ9Bc 3NLbWik UmBs Z\VVVz ZXJ g AGo SMz E3SNDQ2 Mz Q@BNj U3NDI 2M g5c¢hJ
y YWLOZXNOYXBwe mvhZ&ubHk=

100% Error Headers:

[('content-length', '254"), ('server', '"Aliyun0SS), ('connection
", 'keep-alive'), ('x-oss-request-id , '564A9A2A1790CFOF53C15C82
"), ('date', 'Tue, 17 Nov 2015 03:08:26 GVI'), ('content-type',
application/xm"')]

Error Body:

<? xm version="1.0" encodi ng="UTF-8"? >

<Error>

<Code>AccessDeni ed</ Code>

<Message>Access deni ed by authorizer's policy. </ Message>
<Request | d>564A9A2A1790CFOF53C15C82</ Request | d>

<Host | d>ramt est - app. 0ss- cn- hangzhou. al i yuncs. conx/ Host | d>

</ Error>

Error Status:

403

put Fail ed!

The file upload is failed. This is because the assumed role only has download permission

hence.

Use temporary authorization for uploads
Now, we will try to use STS to upload a file. The steps are as follows:
1. Obtain an STS temporary credential. The app user is usr001.

[adm n@NG S- CWAF344MD1C / hone/ adm n/ oss_t est]

$pyt hon ./sts.py AssuneRol e Rol eArn=acs: ram :1894189769722283:rol e
/rant estappwite Rol eSessi onName=usr001 Policy="'{"Version":"1", "
Statement":[{"Effect”:"Alow', "Action":["oss: Put Obj ect"], "Resource
":["acs:o0ss:*:*:ramtest-app/usr001l/*"]}]}" --id=0Chue******Frogv --
secr et =OnWwrFJOBqcTO* * * * ** FhOYpg3pOKnA

https://sts.aliyuncs. conl ?Si gnat ur eVer si on=1. 0&For mat =J SON&
Ti mest anp=2015- 11- 17TO3%8A16%BA10Z&Rol eAr n=acs¥BAr ant/8A¥38A18941897
69722283%3Ar ol e%2Fr ant est appwr i t e&Rol eSessi onNanme=usr 001&AccessKeyl
d=0Chuek56i 53Fr ogv&Pol i cy=%B%22Ver si on%22%3A%R221%22%2CY¥22St at enen
t 92298AYSB% BYR2Ef f ect ¥22¥BAY22Al | owdR2Y2CY22Act | onYR22%BAYSBYR20SS
Y8APuUt Obj ect %22%DYRCY¥22Resour ce¥R2%8AYBYR2acs % BA0Ss YBAYR AYBAYR A%
3Aramt est - app%2Fusr 00192 F9%2 A% 2% D% DY D% D&Si gnat ur eMet hod=HVAC-
SHA1&Ver si on=2015- 04- 01&Si gnat ur e=YOOPUoL1Pr CgX4X6A3%2FJvgXuS6c¥%3D&
Act i on=AssuneRol e&Si gnat ur eNonce=8d0798a8- 8cd9- 11e5- 9f 49- 008cf a5e49
38

"AssunmedRol eUser":
"Arn": "acs:ram:1894189769722283: rol e/ rant estappwite/ usr001

"AssunedRol el d": "355407847660029428: usr 001"
}

edenti al s":

"AccessKeyl d": "STS.rtfx13******Nl | J| S4U",

"AccessKeySecret": "2f saMBE2maB2dn******wpsKTyK4aj o7TxFr 0zl M',

"Expiration": "2015-11-17T04: 16: 10Z",

"SecurityToken": "CAESkwM ARKAAUh3/ Uzcgl3YLRBWYOI Zj Gew
Mpg31l Txd eBFUleQ 3Sgpudi d+GVs+A vulvXJIn6DLcvPa8azKIKt zVOoKSy +
maUr x Sy USRVDnt r s78Cs Nf W QIUMIK| LI xdWhG 1pgxJCBzNZ2YV/ 6ycTaZy SSE
1V6k qQ7 A+GPwYoBSnWhLpdGhhTVFMuc nRre DEz RFI NVWJj TnkJSnxTNFUI E
j MLNTQaMNZz gONz Y2 MDAy OT Qy OCo Gd XNy MDAX MOPz 0J 2RKj 0 GUnNhTUQLOnYKA
TEac QoFQWsb3c SIwoMMNOaVOuRXF1YWkz EgZBY3Rpb24aDwoNb3Nzd Bld
E9i anVj dBl / Cg5SZXNvdXJj ZUVxdWFscxI | Umvzb3VyY2Ual wohYWANzOnPzcz
0qQ o6cnfFt LXRI ¢3Q¢ YXBWL.3Vzcj AwMBE8qShAXxODKkOMIg5Nz Y5NzI yM gz Ug
UyN gOM oPQXNzdWLI ZFJvbGVvWc2Vy YABQE] MLNTQM\z gONz Y2 MDAy OTQy OH
| Pcnt dGVzdGweHdyaXRl

1,
"Request|d": "19407707-54B2- 41AD- AAFO- FE87E8870B0OD"

}

2. Let us test if we can use the credentials to upload and download.

[adm n@NG S- CWAF344MD1C / horre/ admi n/ oss_t est]

$./o0sscnd get oss://ramtest-app/test.txt test.txt --host=0ss-cn-
hangzhou. al i yuncs. com -i STS.rtfx13******N | J| S4U - k 2f saMBE2maB2dn
*xkxxxwpsKTyKdaj o7TxFr 0zl M - - st s_t oken=CAESkwM ARKAAUNn3/ Uzcgl3YLRB
Wy Ol Zj Gewivpg31ll TxO eBFUleQ 3Sgpudi d+GVs+A vulvXJn6DLcvPa8azK
JKt zVOoKSy+maUr x SvUSRVDnt r s78CsNf WoQJUMIK| LI xdWhG 1pgxJCBzNZ2
YV/ 6ycTaZy SSE1V6kqQ7 A+GPwYoBShWiLpdGhh TVFMuc nRre DEz RFI NVWJj Tk
JSMXTNFUI Ej MLNTQAMNZz gONz Y2 MDAy OT Qy OCo Gd XNy MDAX MOPz 0J 2RKj oGUnN
hTUQLON YKATEac QoFQMksb3c SIwoMMNOaVOuRXF1YWkz EgZBY3Rpb24aDwo
Nb3NzQA B1dE9i anmVj dBI / Cg5SZXNvdXJj ZUVxdWFscxI | UnmvVzb3VyY2Ual woh
YWANzOrBzczoqO o6enft LXR ¢3Q YXBW.3Vzcj AWMVE8qShAXODKOMTg5Nz Y5

Nzl yM gzUgUyN gOM oPQXNzdWLl ZFIvbGVVc2Vy YABGE] MLNTQAMNZz gONz Y2
MDAy OT Qy OHI Pc it dGVz dGFwe Hdy aXRI

Error Headers:

[('content-length', '254"), ('server', '"AliyunOSS), ('connection
", 'keep-alive'), ('x-oss-request-id , '564A9C31FFFC811F24B6E7E3
'), ('date', 'Tue, 17 Nov 2015 03:17:05 GvI'), ('content-type',
application/xm"')]

Error Body:

<? xml version="1.0" encodi ng="UTF-8"? >

<Error>

<Code>AccessDeni ed</ Code>

<Message>Access deni ed by authorizer's policy. </ Message>

<Request | d>564A9C31FFFC811F24B6E7E3</ Request | d>

<Host | d>ramt est - app. 0ss- cn- hangzhou. al i yuncs. conx/ Host | d>
</Error>

Error Status:

403

get Fail ed!

[admi n@NA S- CWAF344MD1C / hone/ adm n/ oss_t est]

$./osscnd put test.txt oss://ramtest-app/test.txt --host=0ss-cn-
hangzhou. al i yuncs. com -i STS. rtfx13******N | J| S4U - k 2f saMBE2rmaB2dn
*xxxxx2\psKTyK4aj o7TxFr 0zl M - - st s_t oken=CAESkwM ARKAAUN3/ Uzcgl3YLRB
WkyOl Zj Gewvpg31ll TxC eBFUled 3Sgpudi d+GVs+Ad vulvXIn6DLcvPa8azK
JKt zVOoKSy +mawUr x SvUSRVDnt r s78Cs Nf WWOQIJUMIK| LI xdWhG 1pgxJCBzNz2
YV/ 6ycTaZy SSE1V6kqQr A+GPwYoBSnWiLpd Ghh TVFMucnRre DEz RFI NVWJj Tnx
JSMxTNFUI Ej MLNTQM\z gONz Y2 VDAY OT Qy OCo Gd XNy MDAX MOPz 0J 2RKj oGUNN
hTUQLON YKATEac QoFQMNksb3c SIwoMAMNOaVOuRXF1YWkz EgZBY3Rpb24aDwo
Nb3NzA B1dEQi amVj dBI / Cg5SZXNvdXJj ZUVxdWFscxI | Unvzb3VyY2Ual woh
YWANzOrBzczoqO o6enft LXR ¢3Q YXBW_3Vzcj AWMVIS8qShAXxODKOMIg5Nz Y5
Nzl yM gzUgUyN gOM oPQXNzdWLl ZFIvbGvVec2Vy YABGE] MLNTQAMNZz gONz Y2
MDAy OT Qy OHI Pc -t dGVz dGFwe Hdy aXRI

100% Error Headers:

[("content-length', '254"), ('server', 'Aliyun0SS), ('connection
", 'keep-alive'), ('x-oss-request-id , '564A9C3FB8DE437A91B16772
'), ('date', 'Tue, 17 Nov 2015 03:17:19 GvI'), ('content-type', '
application/xm"')]

Error Body:

<? xm version="1.0" encodi ng="UTF-8"? >

<Error>

<Code>AccessDeni ed</ Code>

<Message>Access deni ed by authorizer's policy. </ Mssage>

<Request | d>564A9C3FB8DE437A91B16772</ Request | d>

<Host | d>ramt est - app. 0ss- cn- hangzhou. al i yuncs. conx/ Host | d>
</Error>

Error Status:

403

put Fail ed!

The test.txt upload fails. We have formatted the entered policy discussed at the beginning of

this document, which is as follows:

{

"Version": "1",
"Statenent": [
{
"Effect": "Allow',
"Action": |
"o0ss: Put Cbj ect™
] il
"Resource": |
"acs: 0ss: *:*:ramtest-app/usr001/*"

}

This policy indicates that users are only allowed to upload files like usr001/ to the ram-test-app
bucket. If the app user is usr002, the policy can be changed to only allow for the uploading of
files like usr002/. By setting different policies for different app users, we can isolate the storage

space of different app users.

3. Retry the test and specify the upload destination as ram-test-app/usr001/test.txt.

[admi n@NA S- CWAWF344MD1C / hone/ adni n/ oss_t est]

$./osscnd put test.txt oss://ramtest-app/usr00l/test.txt --
host =0ss- cn- hangzhou. al i yuncs. com -i STS. rtfx13******N| | J| S4U -k

2f saMBE2maB2dn* * * * * *wpsKTyK4aj o7TxFr 0zl M - - st s_t oken=CAESkwM AR
KAAUNn3/ Uzcgl3YLRBWkyOIl Zj Gewivpg31ll Txd eBFUled 3Sgpudi d+GVs+A vulvXIn6
DLcvPa8azKJKt zVOoKSy +mmMJr x SvUSRVDNt r s78CsNf WoQIUMIK| LI xdWhG 1
pgxJCBzNZ2YV/ 6ycTaZy SSE1V6kqQ7 A+GPwYoBSN\WILpd Ghh TVFMucnRneDEzR
FI NVWIj Tk J SmxTNFUI Ej MLNT QwiNz g 0Nz Y2 MDAy OT Qy OCo Gd XNy MDAX MOPz 0
J2RKj 0oGUNNhTUQLON YKATEac QoFQW s b3c SIwoMMNOaV@ uRXF1 YWkz EQZBY
3Rpb24aDwoNb3NzA B1dE9i amVj dBI / Cg5SZXNvdXJj ZUVxdWFscxI | Unvzb3
VyY2Ual wohYWNzOnBzczoqQ o6¢cnt LXR ¢3Q YXBW.3Vzcj AwWVE8gShAxCD
kOMIrgs5Nz Y5Nz1 yM gzUgUy Ny gOM oPQXNzdWLl ZFJvbGVVc2Vy YABQEj] MLNT
QwNz gONz Y2 VDAY OTQy OHI Pcnt dGVzdGFwe Hdy aXRl

100%

bject URL is: http://ramtest-app. oss-cn-hangzhou. al i yuncs. coni
usr O01%2Ft est . t xt

bj ect abstract path is: oss://ramtest-app/usr001l/test.txt

ETag is "946A0A1AC8245696B9C6A6F35942690B"

0.071(s) el apsed

The upload is successful.
Summary

This section describes how to grant users temporary access authorization for OSS using STS.

In typical mobile development scenarios, STS can be used to grant temporary authorizations to
access OSS when different app users need to access the app. The temporary authorization can
be configured with expiration time to greatly reduce the hazards caused by leaks. When obtaining
temporary authorization, we can enter different authorization policies for different app users to
restrict their access permissions. For example, to restrict the object paths accessible to users.

This isolates the storage space of different app users.

1.7 FAQs about subaccount settings

How to create an STS temporary account and how to use it to access resources?

See STS temporary access authorization.

Client or console logon error reported for an authorized sub-account
How to authorize a sub-account with the operation permission for a single bucket
How to authorize a sub-account with the operation permission for a directory in a bucket
How to authorize a sub-account with the read-only permission for a bucket
Error upon an OSS SDK call: InvalidAccessKeyld
See STS errors and troubleshooting.
Error upon an STS call: Access denied by authorizer’s policy
Detailed error information: ErrorCode: AccessDenied ErrorMessage: Access denied by authorizer
’s policy.
Cause of the error:

* The temporary account has no access permission.
» The authorization policy specified for assuming the role of this temporary account does not

assign the access permission to the account.

For more STS errors and the causes, see OSS permission errors and troubleshooting.

2 Data security

2.1 Check data transmission integrity by using 64-bit CRC

Background

An error may occur when data is transmitted between the client and the server. Currently, OSS
can return the 64-bit CRC value for an object uploaded in any mode. To check the data integrity,

the client can compare the 64-bit CRC value with the locally calculated value.

+ OSS calculates 64-bit CRC value for newly uploaded object, stores the result as metadata of
the object, and then adds the x-oss-hash-crc64ecma header to the returned response header,

indicating its 64-bit CRC value. This 64-bit CRC is calculated according to ECMA-182 Standard

* For the object that already exists on OSS before the 64-bit CRC goes live, OSS does not
calculate its 64-bit CRC value. Therefore, its 64-bit CRC value is not returned when such object

is obtained.
Operation instructions

» Put Object / Append Object / Post Object / Multipart upload part returns the corresponding 64-
bit CRC value. The client can get the 64-bit CRC value returned by the server after the upload
is completed and can check it against the locally calculated value.

* In the case of Multipart Complete, if all the parts have their respective 64-bit CRC values, then
the 64-bit CRC value of the entire object is returned. Otherwise, the 64-bit CRC value is not
returned (for example, if a part has been uploaded before the 64-bit CRC goes live).

* Get Object / Head Object / Get ObjectMeta returns the corresponding 64-bit CRC value (if any
). After Get Object is completed, the client can get the 64-bit CRC value returned by the server

and check it against the locally calculated value.

Note:

The 64-bit CRC value of the entire object is returned for the range get object.

» For copy related operations, for example, Copy Object/Upload Part Copy, the newly generated

object/Part may not necessarily have the 64-bit CRC value.

Python example

An example of complete Python code is as follows. It shows how to check data transmission

integrity based on the 64-bit CRC value.

1. Calculate the 64-bit CRC value.

i mport 0ss2

fromoss2. nodel s inmport Partlnfo
i mport os

i mport crcnod

i mport random

import string

do_crc64 = crcnod. nkCr cFun(0x142FOE1EBA9EA3693L, i nitCrc=0L, xorQut=

OxffffffffffffffffL, rev=True)

def check_crc64(l ocal _crc64, oss_crc64, nmsg="check crc64"):

if local _crc64 ! = oss_crc64:

print "{0} check crc64 failed. local: {1}, oss:{2}.".format(nmsg,
| ocal _crc64, oss_crc64)

return Fal se

el se:

print "{0} check crc64 ok.".format(nsg)

return True

def random string(length):

return ''.join(random choi ce(string.lowercase) for i in range(length

))

bucket = oss2. Bucket (o0ss2. Auth(access_key id, access_key secret),

endpoi nt, bucket nane)

2. Verify Put Object.

content = random string(1024)

key = 'nornmal - key'
result = bucket. put _object(key, content)
0ss_crc64 = result. headers. get (' x-oss-hash-crc64ecnma’', '')

| ocal _crc64 = str(do_crc64(content))
check _crc64(local _crc64, oss _crc64, "put object")

3. Verify Get Object.

result = bucket.get object (key)

0ss_crc64 = result.headers. get (' x-o0ss-hash-crc64ecma’, '')
| ocal _crc64 = str(do_crc64(result.resp.read()))

check crc64(l ocal _crc64, oss _crc64, "get object")

4. Verify Upload Part and Complete.

part _info_list =]

key = "nul tipart-key"

result = bucket.init_nultipart_upl oad(key)

upload_id = result.upload_id

part 1 = random string(1024 * 1024)

result = bucket. upl oad_part (key, upload_id, 1, part_1)
0ss_crc64 = result.headers. get (' x-o0ss-hash-crc64ecnma’, '')

| ocal _crc64 = str(do_crc64(part_1))

#Check whet her the upl oaded part 1 data is conplete

check crc64(local _crc64, oss_crc64, "upl oad _part object 1")
part_info_list.append(Partlinfo(l, result.etag, len(part_1)))
part 2 = random string(1024 * 1024)

result = bucket. upl oad_part (key, upload_id, 2, part_2)
0ss_crc64 = result. headers. get (' x-o0ss-hash-crc64ecma’, '')

| ocal _crc64 = str(do_crc64(part_2))

#Check whet her the upl oaded part 2 data is conplete
check_crc64(l ocal _crc64, oss_crc64, "upload_part object 2")
part _info_list.append(Partlinfo(2, result.etag, len(part_2)))

result = bucket.conplete nultipart_upl oad(key, upload_id,
part _info_list)

0ss_crc64 = result.headers. get (' x-o0ss-hash-crc64ecma’, '')

| ocal _crc64 = str(do_crc64(part_2, do_crc64(part_1)))

#Check whether the final object on the GSS is consistent with the
I ocal file

check crc64(local _crc64, oss _crc64, "conplete object")

0SS SDK support

Part of the OSS SDK already supports the data validation using crc64 for the upload and

download, as shown in the following table:

SDK Support for CRC? Example

Java SDK Yes CRCSample.java
Python SDK Yes object_check.py
PHP SDK No N/A

C# SDK No None

C SDK Yes oss_crc_sample.c
JavaScript SDK No None

Go SDK Yes crc_test.go

Ruby SDK No None

iOS SDK Yes OSSCrc64Tests.m
Android SDK Yes OSSCrc64Tests.m

2.2 Protect data through client encryption

Client encryption means that the encryption is completed before the user data is sent to the
remote server, whereas the plaintext of the key used for encryption is kept in the local computer
only. Therefore, the security of user data can be ensured because others cannot decrypt the data

to obtain the original data even if the data leaks.

This document describes how to protect data through client encryption based on the current

Python SDK version of OSS.
Principles

1. The user maintains a pair of RSA keys (rsa_pri vate_key andrsa_publ i c_key)in the

local computer.

https://github.com/aliyun/aliyun-oss-java-sdk/blob/master/src/samples/CRCSample.java
https://github.com/aliyun/aliyun-oss-python-sdk/blob/master/examples/object_check.py
https://github.com/aliyun/aliyun-oss-c-sdk/blob/master/oss_c_sdk_sample/oss_crc_sample.c
https://github.com/aliyun/aliyun-oss-go-sdk/blob/master/oss/crc_test.go
https://github.com/aliyun/aliyun-oss-ios-sdk/blob/master/AliyunOSSiOSTests/OSSCrc64Tests.m
https://github.com/aliyun/aliyun-oss-ios-sdk/blob/master/AliyunOSSiOSTests/OSSCrc64Tests.m

2. Each time when any object is uploaded, a symmetric key dat a_key of AES256 type is
generated randomly, and then dat a_key is used to encrypt the original content to obtain
encrypt_content.

3. Usersa_public_key to encrypt dat a_key to obtain encr ypt _dat a_key, place it in the
request header as the custom meta of the user, and send it together with encrypt_content to
the OSS.

4. When Get Object is performed, encrypt_content and encr ypt _dat a_key in the custom meta
of the user are obtained first.

5. The userusesrsa_privat e_key to decryptencrypt _dat a_key to obtain dat a_key, and

then uses dat a_key to decrypt encrypt_content to obtain the original content.

Note:
The user’s key in this document is an asymmetric RSA key, and the AES256-CTR algorithm is
used when object content is encrypted. For more information, see PyCrypto Document. This
document describes how to implement client encryption through the custom meta of an object.

The user can select the encryption key type and encryption algorithm as required.

https://www.dlitz.net/software/pycrypto/api/2.6/

Structural diagram

Data Key

A %I#@!*())...

8N %IH@!X()...

ABCDEFG... ABCDEFG...

Put Object

Get Object

------ ---.p Network transmission

——p» Local transmission

Preparation

1. Install the PyCrypto library.

pip install pycrypto
Example of complete Python code

-*- coding: utf-8 -*-
i mport os
i mport shutil
i nport base64
i mport random
i mport 0ss2
from Crypto. C pher inmport PKCS1_OAEP
from Crypto. PublicKey inmport RSA
from Crypt o. G pher inport AES
fromCrypto i mport Random
fromCrypto. Uil inmport Counter
aes 256, key always is 32 bytes
_AES 256 _KEY_SI ZE = 32
_AES CTR COUNTER BI TS LEN = 8 * 16
cl ass AESC pher:
def __init__ (self, key=None, start=None):
sel f. key = key

self.start = start
if not self.key:
sel f. key = Random new().read(_AES 256 _KEY_SI ZE)
if not self.start:
self.start = randomrandint(1, 10)
ctr = Counter.new AES CTR COUNTER BI TS LEN, initial_val ue=
self.start)
sel f.ci pher = AES. newsel f. key, AES. MODE_CTR, counter=ctr)
def encrypt(self, raw):
return sel f.cipher.encrypt(raw)
def decrypt(self, enc):
return sel f.cipher.decrypt(enc)
First, initialize the informati on such as AccessKeyld, AccessKeyS
ecret, and Endpoi nt.
Obtain the information through environment variables or replace the
i nformati on such as "<Your AccessKeyld>" with the real AccessKeyld,
and so on.

Use Hangzhou region as an exanpl e. Endpoi nt can be:

http://oss-cn-hangzhou. al i yuncs. com

https://oss-cn-hangzhou. al i yuncs. com

Access using the HTTP and HTTPS protocol s respectively.
access_key id = os.getenv(' OSS TEST ACCESS KEY |ID, '<your AccessKeyld
>")

access_key secret = o0s.getenv(' OSS TEST ACCESS KEY_ SECRET', '<Your
AccessKeySecret >')

bucket _nanme = os.getenv(' OSS_TEST_BUCKET', '<Your Bucket>')

endpoi nt = o0s.getenv(' OSS _TEST ENDPO NT', '<Your Access Domai n Nanme>')
Make sure that all the precedi ng paraneters have been filled in
correctly.

for paramin (access_key id, access _key secret, bucket nane, endpoint

) :
assert '<' not in param 'Please set the paraneter:' + param
#H#H# O prepar e #HHAHH#HHH
0.1 Generate the RSA key file and save it to the disk
rsa_private_key obj = RSA. generate(2048)
rsa _public_key obj = rsa private_key obj.publickey()
encrypt _obj = PKCS1_OAEP. new(rsa_public_key obj)
decrypt _obj = PKCS1 OAEP. new(rsa_private_ key obj)
save to |ocal disk
file_out = open("private_key.peni, "w')
file out.wite(rsa_private key obj.exportKey())
file_out.close()
file out = open("public_key.penm, "w')
file out.wite(rsa public_key obj.exportKey())
file_out.close()
0.2 Create the Bucket object. Al the object-related interfaces can
be i npl enented by using the Bucket object
bucket = oss2. Bucket (o0ss2. Auth(access_key id, access_key secret),
endpoi nt, bucket nane)
obj _nane = 'test-sig-1'
content = "test content”
1 Put Obj ect
1.1 Generate the one-tinme symetric key encrypt _cipher used to
encrypt this object, where key and start are val ues generated at
random
encrypt _ci pher = AESC pher ()

1.2 Use the public key to encrypt the information for assisting
encryption, and save it in the customnmeta of the object. Wen Get
bject is perfornmed |ater, we can use the private key to perform
decryption and obtain the original content according to the custom

net a

headers = {}
header s[' x- 0oss- et a- x- 0ss-key'] = base64. b64encode(encrypt obj.encrypt
(encrypt _ci pher. key))
header s[' x- 0oss- nmet a- x- oss-start'] = base64. b64encode(encrypt_obj.
encrypt (str(encrypt _ci pher.start)))
1.3. Use encrypt_cipher to encrypt the original content to obtain
encrypt _cont ent
encryt _content = encrypt_ci pher.encrypt(content)
1.4 Upl oad the object
result = bucket.put object(obj nane, encryt content, headers)
if result.status / 100 ! = 2:
exit(1)
#i## 2 Cet Obj ect ####
2.1 Downl oad the encrypted object
result = bucket.get object(obj nane)
if result.status / 100 ! = 2:
exit(1)
resp = result.resp
downl oad_encrypt _content = resp.read()
2.2 Resolve fromthe customneta the key and start that are
previously used to encrypt this object
downl oad_encrypt _key = base64. b64decode(resp. headers. get (' x- 0ss- net a- x
-o0ss-key', ''))
key = decrypt_obj. decrypt (downl oad_encrypt _key)
downl oad_encrypt _start = base64. b64decode(resp. headers. get (' x- oss-neta
-x-o0ss-start', '"'))
start = int(decrypt_obj.decrypt(downl oad_encrypt _start))
2.3 Generate the cipher used for decryption, and decrypt it to
obtain the original content
decrypt _ci pher = AESC pher (key, start)
downl oad_cont ent = decrypt _ci pher. decrypt (downl oad_encrypt _cont ent)
i f downl oad content ! = content:
print "Error!"
el se:
print "Decrypt ok. Content is: %" % downl oad_cont ent

3 OSS resource monitoring and alarm service

The CloudMonitor service can monitor OSS resources. You can use CloudMonitor to view
resource usage, performance, and health status on Alibaba Cloud. Using the alarm service, you
can react rapidly to keep applications running smoothly. This article introduces how to monitor

OSS resources, set OSS alarm rules, and create custom monitoring dashboard.

Prerequisites

« Activate the OSS service.

» Activate the CloudMonitor service.
Monitor OSS resources

1. Log on to the CloudMonitor console.
2. Select Cloud Service Monitoring > Object Storage Service from the left-side navigation

pane to enter the OSS monitoring page, as shown in the following figure.

You can obtain monitoring data on the OSS monitoring page.

E] Note:

“by User” refers to user-level data, that is, all bucket data of this user.

CloudMonitor Object Storage Service Application Groups Documentation Go toObject Storage Service Consale & Refresh

TSP
Users Bucket List Alarm Rules

Haost Manitoring

i Rena Monitoring Information Monthly Statistics

Number of Buckets : 15 unit

gite Monitoring
((Q)) Nurmber of Aarm Rues: 40.97GB 357.10MB 21times 299times
Lt Storage Size Internet Outbound Traffic Number of PUT Reguests Number of GET Requests.

Number of Rules Disabled:
ApsaraDB for RDS 0 Triggerea

| MONILOrING Servic Request Status Details ih m 12h 1days Tdays 2018-03-06 04:32:45 - 2018-03-06 10:32:45 | |
Availability/Valid Request Propartion by User(%) | I Number of Total/Valid Requests by User(times) | I Traffic by User(byte) | I
Period: 60s Method: Value Period: 60s Method: Value Periad: 60s Method: Valus

Set alarm rules
1. Find the Alarm Rules tab on OSS monitoring page, and then click Create Alarm Rule.

Object Storage Service 2 | create Alwm Ruke Documentation < Refresh

1

2. Configure your alarm rules.

For configuration details, see Manage alarm rules.

3. The alarm rule is generated when the configuration is completed. You can use test data to
check whether the rule has taken effect by verifying if the alarm information was received

successfully (over email, SMS, Trademanager, or DingTalk).
Custom monitoring dashboard

You can customize the OSS resource monitoring map on the CloudMonitor Console. The

procedure is as follows.

1. Log on to the CloudMonitor console.
2. Click Dashboard from the left-side navigation pane.

3. Click Create Dashboard.

e | Dashboards : Ecs-glabal-dashboard - Delete Dashboard

Overview I (3t Bh | 12h 1days 3days | 7days l4days B Aulo Refresh Chart relevance _ Add View Full Sereen > Refresh

Dashboard

CPU Usage{%) Network Inbound Bandwidth{bps) Network Outbound Bandwidth(bps)
Application Groups

4. Enter the name of dashboard, and then click Add View.

| Dashboards : 123 - Delete Dashboard
m 3h Gh 12h 1days 3days Tdays 14days B Auto Refresh : Chart relevance v Full Screen & Refresh

5. Configure tables as required, and then click Save.

For configuration details, see Monitoring indicators reference.

https://partners-intl.aliyun.com/help/doc-detail/28610.htm

4 OSS performance and scalability best practice

Partitions and naming conventions

OSS automatically partitions user data by file names encoded in UTF-8 to process massive data
and meet the needs for high request rates. However, if you use sequential prefixes (such as
timestamps and sequential numbers) as part of the names when uploading a large number of
objects, there may be lots of file indexes stored in a single partition. In this way, when the request
rates exceed 2,000 operations per second (downloading, uploading, deleting, copying, and
obtaining metadata are each counted as one operation, while deleting or enumerating more than

one files in batch is considered as multiple operations), the following results may occur:

» This partition becomes a hotspot partition, leading to the exhausted 1/O capacity and low
request rate limited automatically by the system.
+ With a hotspot partition, the partitioned data is constantly rebalanced, which may increase the

processing time.

Therefore, the horizontal scaling capability of OSS is affected, thus resulting in limited request rate

To address these issues, you must delete the sequential prefixes in the file names. Instead,
you can add random prefix in file names. In this way, the file indexes (and I/O loads) are evenly

distributed in different partitions.
The following shows the examples of changing sequential prefixes into random prefixes.
+ Example 1: Add hex hash prefixes into file names

As shown in this example, you may use a combination of dates and customer IDs (including

sequential timestamp prefixes) in file names:

sanpl e- bucket -01/2017-11- 11/ custoner-1/filel
sanpl e- bucket -01/2017-11- 11/ custoner-2/fil e2
sanpl e- bucket - 01/ 2017-11- 11/ cust omer-3/fil e3

sanpl e- bucket - 01/ 2017- 11- 12/ cust omer - 2/ f i | e4
sanpl e- bucket - 01/2017-11- 12/ custoner-5/fil e5
sanpl e- bucket - 01/2017-11- 12/ custoner-7/fil e6

In this case, you can calculate a hash value for the customer ID, that is, the MD5 (customer-id
), and combine a hash prefix of several characters as the prefix to the file name. If you use a 4-

character hash prefix, the file names are as follows:

sanpl e- bucket - 01/ 2¢99/ 2017- 11- 11/ custoner-1/fil el
sanpl e- bucket - 01/ 7a01/ 2017- 11- 11/ custoner-2/fil e2
sanpl e- bucket - 01/ 1dbd/ 2017- 11- 11/ cust oner-3/fil e3

sanpl e- bucket - 01/ 7a01/ 2017- 11- 12/ cust oner- 2/ fi | e4
sanpl e- bucket - 01/ b1f c/ 2017- 11- 12/ cust oner-5/fil e5
sanpl e- bucket - 01/ 2bb7/2017- 11- 12/ custoner-7/fil e6

In this case, a 4-character hex hash value is used as the prefix, and each character can be
any one of the 16 values (0-f), so there are 1674=65,536 possible character combinations.
Technically, the data in the storage system is constantly partitioned into up to 65,536 partitions
. Leveraging the performance bottleneck limit (2,000 operations per second) and the request

rate of your service, you can determine a proper number of hash buckets.

If you want to list all the files with a specific date in the file name, for example, files with 2017
-11-11 in the name in sample-bucket-01, you must enumerate the files in sample-bucket-01
(acquire all files in sample-bucket-01 in batch by multiple calls of the List Object API) and

combine files with this date in the file names.

Example 2: Reverse the file name

In this example, you may use a UNIX timestamp with millisecond precision to generate file
names, which is also a sequential prefix:

sanpl e- bucket - 02/ 1513160001245. | og

sampl e- bucket - 02/ 1513160001722. | og

sanpl e- bucket - 02/ 1513160001836. | og
sanpl e- bucket - 02/ 1513160001956. | og

sanpl e- bucket - 02/ 1513160002153. | og
sanpl e- bucket - 02/ 1513160002556. | og
sanpl e- bucket - 02/ 1513160002859. | og

As mentioned in the preceding paragraph, if you use the sequential prefix in file names, the

performance may be affected when the request rate exceeds a certain limit. To address this
issue, you can reverse the timestamp prefix to exclude the sequential prefix. The result is as
follows:

sanpl e- bucket - 02/ 5421000613151. | og
sanpl e- bucket - 02/ 2271000613151. | og

sanpl e- bucket - 02/ 6381000613151. | og
sanpl e- bucket - 02/ 6591000613151. | og

sanpl e- bucket - 02/ 3512000613151. | og
sanpl e- bucket - 02/ 6552000613151. | og
sanpl e- bucket - 02/ 9582000613151. | og

The first three digits of the file name represent the millisecond, which can be any one of the 1
,000 values. The forth digit changes every second. Similarly, the fifth digit changes every 10
seconds. In this way, the prefixes are randomly specified and the loads are distributed evenly

to multiple partitions, thus avoiding the performance bottleneck.

	Contents
	​Legal​ ​disclaimer​
	​Generic​ ​convention​​s​
	1 ​Access​ ​control​
	1.1 ​Overview​
	1.2 ​What​ ​is​ ​RAM​ ​and​ ​STS​
	1.3 ​Access​ ​a​ ​bucket​ ​without​ ​using​ ​the​ ​primary​ ​account​
	1.4 ​Read​/​Write​ ​permission​ ​separation​
	1.5 ​Bucket​ ​permission​ ​separation​
	1.6 ​STS​ ​temporary​ ​access​ ​authorizat​​ion​
	1.7 ​FAQs​ ​about​ ​subaccount​ ​settings​

	2 ​Data​ ​security​
	2.1 ​Check​ ​data​ ​transmissi​​on​ ​integrity​ ​by​ ​using​ ​64​-​bit​ ​CRC​
	2.2 ​Protect​ ​data​ ​through​ ​client​ ​encryption​

	3 ​OSS​ ​resource​ ​monitoring​ ​and​ ​alarm​ ​service​
	4 ​OSS​ ​performanc​​e​ ​and​ ​scalabilit​​y​ ​best​ ​practice​

