
Alibaba Cloud
Table Store

Functions
Issue: 20190422

Table Store Functions / Legal disclaimer

Legal disclaimer
Alibaba Cloud reminds you to carefully read and fully understand the terms and
conditions of this legal disclaimer before you read or use this document. If you have
read or used this document, it shall be deemed as your total acceptance of this legal
disclaimer.
1. You shall download and obtain this document from the Alibaba Cloud website

 or other Alibaba Cloud-authorized channels, and use this document for your
own legal business activities only. The content of this document is considered
 confidential information of Alibaba Cloud. You shall strictly abide by the
confidentiality obligations. No part of this document shall be disclosed or provided
 to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted,
or disseminated by any organization, company, or individual in any form or by any
means without the prior written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades
, adjustments, or other reasons. Alibaba Cloud reserves the right to modify
the content of this document without notice and the updated versions of this
 document will be occasionally released through Alibaba Cloud-authorized
channels. You shall pay attention to the version changes of this document as they
occur and download and obtain the most up-to-date version of this document from
Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud
products and services. Alibaba Cloud provides the document in the context that
 Alibaba Cloud products and services are provided on an "as is", "with all faults
" and "as available" basis. Alibaba Cloud makes every effort to provide relevant
 operational guidance based on existing technologies. However, Alibaba Cloud
hereby makes a clear statement that it in no way guarantees the accuracy, integrity
, applicability, and reliability of the content of this document, either explicitly
or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial
 losses incurred by any organizations, companies, or individuals arising from
their download, use, or trust in this document. Alibaba Cloud shall not, under any
 circumstances, bear responsibility for any indirect, consequential, exemplary,
incidental, special, or punitive damages, including lost profits arising from the use

Issue: 20190422 I

Table Store Functions / Legal disclaimer

 or trust in this document, even if Alibaba Cloud has been notified of the possibility
 of such a loss.

5. By law, all the content of the Alibaba Cloud website, including but not limited to
works, products, images, archives, information, materials, website architecture,
website graphic layout, and webpage design, are intellectual property of Alibaba
 Cloud and/or its affiliates. This intellectual property includes, but is not limited
 to, trademark rights, patent rights, copyrights, and trade secrets. No part of the
 Alibaba Cloud website, product programs, or content shall be used, modified
, reproduced, publicly transmitted, changed, disseminated, distributed, or
published without the prior written consent of Alibaba Cloud and/or its affiliates
. The names owned by Alibaba Cloud shall not be used, published, or reproduced
for marketing, advertising, promotion, or other purposes without the prior written
 consent of Alibaba Cloud. The names owned by Alibaba Cloud include, but are
not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other brands of Alibaba
Cloud and/or its affiliates, which appear separately or in combination, as well as
 the auxiliary signs and patterns of the preceding brands, or anything similar to
the company names, trade names, trademarks, product or service names, domain
 names, patterns, logos, marks, signs, or special descriptions that third parties
identify as Alibaba Cloud and/or its affiliates).

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

II Issue: 20190422

Table Store Functions / Legal disclaimer

Issue: 20190422 III

Table Store Functions / Generic conventions

Generic conventions
Table -1: Style conventions
Style Description Example

This warning information
indicates a situation that will
cause major system changes,
faults, physical injuries, and other
 adverse results.

Danger:
Resetting will result in the loss of
user configuration data.

This warning information
indicates a situation that may
cause major system changes,
faults, physical injuries, and other
 adverse results.

Warning:
Restarting will cause business
interruption. About 10 minutes are
required to restore business.

This indicates warning informatio
n, supplementary instructions,
and other content that the user
must understand.

Notice:
Take the necessary precautions
to save exported data containing
sensitive information.

This indicates supplemental
instructions, best practices, tips,
and other content that is good to
know for the user.

Note:
You can use Ctrl + A to select all
files.

> Multi-level menu cascade. Settings > Network > Set network
type

Bold It is used for buttons, menus
, page names, and other UI
elements.

Click OK.

Courier
 font

It is used for commands. Run the cd / d C :/ windows
 command to enter the Windows

system folder.
Italics It is used for parameters and

variables.
bae log list --
instanceid Instance_ID

[] or [a|b] It indicates that it is a optional
value, and only one item can be
selected.

ipconfig [-all|-t]

Issue: 20190422 I

Table Store Functions / Generic conventions

Style Description Example
{} or {a|b} It indicates that it is a required

value, and only one item can be
selected.

swich {stand | slave}

II Issue: 20190422

Table Store Functions / Generic conventions

Issue: 20190422 III

Table Store Functions / Contents

Contents
Legal disclaimer.. I
Generic conventions.. I
1 Table Store tables... 1
2 Conditional update... 4
3 Auto-increment function of the primary key column............. 7
4 Description of the data consumption framework..................10
5 Stream..14

5.1 Overview..14
5.2 Stream API/SDK... 17
5.3 Stream Client... 186 HBase... 26
6.1 Table Store HBase Client.. 26
6.2 Table Store HBase Client supported functions...27
6.3 Differences between Table Store and HBase..33
6.4 Migrate from HBase to Table Store... 38
6.5 Migrate HBase of an earlier version..41
6.6 Hello World... 437 SearchIndex..49
7.1 Overview..49
7.2 Features...508 Global secondary indexes..53
8.1 Overview..53
8.2 Introduction.. 55
8.3 Scenarios... 57
8.4 Java SDK for global secondary indexes..66
8.5 APIs... 70
8.6 Billing rules... 71
8.7 Appendix... 78

IV Issue: 20190422

Table Store Functions / 1 Table Store tables

1 Table Store tables
When creating a Table Store table, you must specify a table name, a primary key, and
reserved read/write throughput.

Naming conventions
Table Store table names:
• Can contain uppercase letters, lowercase letters, digits, and underscores.
• Must start with an uppercase letter, an lowercase letter, or an underscore.
• Are case sensitive.
• Must be 1 to 255 characters in length.
• Must be unique within the same instance (tables in different instances are allowed

to use the same name).
Primary Key

When creating a Table Store table, you must specify the primary key of the table. A
primary key contains at least one, and up to four primary key columns. Each primary
key column has a name and type. Table Store has some restrictions on the names and
types of the primary key columns. For more information, see Primary key and attribute.
Table Store indexes data based on the primary key. The primary key uniquely
identifies each row in the table, so that no two rows have the same key. The rows are
sorted in ascending order by their primary key.

Reserved read/write throughput
To guarantee the consistent and low-latency performance of Table Store, you can
specify the reserved read/write throughput during table creation. If the value of
the reserved read/write throughput is not 0, Table Store reserves the necessary
capacity to meet the specified throughput requirements. At the same time, costs are
determined based on the reserved read/write throughput. You can dynamically raise
and lower the reserved read/write throughput based on business requirements. The
reserved read/write throughput is set in quantities of read capacity units and write
capacity units.

Note:

Issue: 20190422 1

Table Store Functions / 1 Table Store tables

Tables created in capacity instances do not support the reserved read/write
throughput.

You can update the tables reserved read/write throughput through the UpdateTable
operation. The rules for updating the reserved read/write throughput are as follows.
• A time interval of at least two minutes is required between two updates for the

same table. For example, if you update the reserved read/write throughput of a
table at 12:43:00, you must wait until after 12:45:00 to update the table for a second
 time. The required 2-minute time interval between updates is applied at the table
 level. Between 12:43:00 and 12:45:00, you can update the reserved read/write
throughput for other tables.

• The frequency of adjusting the reserved read/write throughput in a calendar day
 (00:00:00 to 00:00:00 of the second day in UTC time) is unlimited. The adjustment
 interval must be more than two minutes. Adjusting the reserved read/write
throughput of a table is defined as adjusting either the read capacity unit or write
capacity unit setting. Such an operation is considered as updating the table.

• A reserved read/write throughput adjustment takes effect within one minute.
The consumed read/write throughput that exceeds the value of the reserved read
/write throughput is classified as additional read/write throughput. Costs are
calculated based on the unit price of the additional read/write throughput.
Initially, your applications may not have a high throughput. Depending on your
 business requirements, you can set a low reserved read/write throughput to
minimize costs. As your business expands, you can increase the reserved read/write
 throughput of the table to reflect new business requirements. If you want to quickly
 import a large volume of data immediately after creating a table, you can set a high
 reserved write throughput to import the data quickly. After the large volume data
import is completed, you can lower the reserved read/write throughput.

Data size restrictions of partition key
Table Store partitions the table data according to the partition key ranges. Rows with
 the same partition key are placed in the same partition. To prevent large indivisible
partitions, we recommend that the total data size for all rows under a single partition
key value must not exceed 10 GB.

2 Issue: 20190422

Table Store Functions / 1 Table Store tables

Table Store load time
Table Store table is ready within one minute after it is created. You must wait for the
table to finish loading before performing any data operations.

Best Practice
See Table operations

Table Store SDKs
Use Table Store Java SDK for table operations

Use Table Store Python SDK for table operations

Issue: 20190422 3

Table Store Functions / 2 Conditional update

2 Conditional update
A conditional update is an update of table data that executes only when specified
conditions are met. A conditional update can be based on a combination of up to 10
conditions. Supported conditions include arithmetic operations (=, ! =, >, >=, <, and
<=) and logical operations (NOT, AND, and OR). The conditional update is applicable
to PutRow, UpdateRow, DeleteRow, and BatchWriteRow.
The column-based judgment conditions include the row existence condition and
column-based condition.
• The Row existence condition is classified into IGNORE , EXPECT_EXI ST , and

EXPECT_NOT _EXIST . When a table needs to be updated, the system first checks
the row existence condition. If the row existence condition is not met, an error
occurs during the update.

• The column-based condition supports SingleColu mnValueCon dition

and CompositeC olumnValue Condition , which are used to perform the
condition-based judgment based on the values of a column or certain columns,
similar to the conditions used by the Table Store filters.

Conditional update also supports optimistic locking strategy. That is, when a row
needs to be updated, the system first obtains the value of a column. For example, the
value of Column A is 1, and its condition is set as Column A = 1 . Set Column

A = 2 , then update the row. If a failure occurs during the update, it means that
the row has been successfully updated by another client.

Note:
In highly concurrent applications such as webpage view counting or gaming (where
atomic counter updates are required), the probability of failed conditional updates is
high. If this occurs, we recommend that you retry the update until successful.

Procedure
1. Construct SingleColumnValueCondition.

 // set condition Col0 == 0 .
 SingleColu mnValueCon dition singleColu mnValueCon dition
 = new SingleColu mnValueCon dition (" Col0 ",
 SingleColu mnValueCon dition . CompareOpe rator . EQUAL
, ColumnValu e . fromLong (0));

4 Issue: 20190422

Table Store Functions / 2 Conditional update
 // If column Col0 does not exist , the condition
check fails .
 singleColu mnValueCon dition . setPassIfM issing (false);
 // Only check the latest version
 singleColu mnValueCon dition . setLatestV ersionsOnl y (true
);

2. Construct CompositeColumnValueCondition.
 // condition composite1 is (Col0 == 0) AND (Col1 >
100)
 CompositeC olumnValue Condition composite1 = new
CompositeC olumnValue Condition (CompositeC olumnValue
Condition . LogicOpera tor . AND);
 SingleColu mnValueCon dition single1 = new SingleColu
mnValueCon dition (" Col0 ",
 SingleColu mnValueCon dition . CompareOpe rator . EQUAL
, ColumnValu e . fromLong (0));
 SingleColu mnValueCon dition single2 = new SingleColu
mnValueCon dition (" Col1 ",
 SingleColu mnValueCon dition . CompareOpe rator .
GREATER_TH AN , ColumnValu e . fromLong (100));
 composite1 . addConditi on (single1);
 composite1 . addConditi on (single2);

 // condition composite2 is ((Col0 == 0) AND (Col1 >
100)) OR (Col2 <= 10)
 CompositeC olumnValue Condition composite2 = new
CompositeC olumnValue Condition (CompositeC olumnValue
Condition . LogicOpera tor . OR);
 SingleColu mnValueCon dition single3 = new SingleColu
mnValueCon dition (" Col2 ",
 SingleColu mnValueCon dition . CompareOpe rator .
LESS_EQUAL , ColumnValu e . fromLong (10));
 composite2 . addConditi on (composite1);
 composite2 . addConditi on (single3);

3. Implement an increasing column by the optimistic locking strategy based on the
conditional update.
 private static void updateRowW ithConditi on (SyncClient
 client , String pkValue) {
 // construct the primary
 PrimaryKey Builder primaryKey Builder = PrimaryKey
Builder . createPrim aryKeyBuil der ();
 primaryKey Builder . addPrimary KeyColumn (PRIMARY_KE
Y_NAME , PrimaryKey Value . fromString (pkValue));
 PrimaryKey primaryKey = primaryKey Builder . build ();

 // read a row
 SingleRowQ ueryCriter ia criteria = new SingleRowQ
ueryCriter ia (TABLE_NAME , primaryKey);
 criteria . setMaxVers ions (1);
 GetRowResp onse getRowResp onse = client . getRow (new
 GetRowRequ est (criteria));
 Row row = getRowResp onse . getRow ();
 long col0Value = row . getLatestC olumn (" Col0 ").
getValue (). asLong ();

 // Col0 = Col0 + 1 by conditiona l update
 RowUpdateC hange rowUpdateC hange = new RowUpdateC
hange (TABLE_NAME , primaryKey);

Issue: 20190422 5

Table Store Functions / 2 Conditional update
 Condition condition = new Condition (RowExisten
ceExpectat ion . EXPECT_EXI ST);
 ColumnCond ition columnCond ition = new SingleColu
mnValueCon dition (" Col0 ", SingleColu mnValueCon dition .
CompareOpe rator . EQUAL , ColumnValu e . fromLong (col0Value
));
 condition . setColumnC ondition (columnCond ition);
 rowUpdateC hange . setConditi on (condition);
 rowUpdateC hange . put (new Column (" Col0 ", ColumnValu
e . fromLong (col0Value + 1)));

 try {
 client . updateRow (new UpdateRowR equest (
rowUpdateC hange));
 } catch (TableStore Exception ex) {
 System . out . println (ex . toString ());
 }
 }

Example
The following operations are examples of updates that are executed for highly
concurrent applications:
 // Get the old value
 old_value = Read ();
 // compute such as increment 1
 new_value = func (old_value);
 // Update by the new value
 Update (new_value)；

The conditional update makes sure Update (new_value) if value equals to
old_value in a highly concurrent environment where old_value may be

updated by another client.
Billing

Writing or updating data successfully does not affect the capacity unit (CU) calculatio
n rules of the interfaces. However, if the conditional update fails, one unit of write CU
 and one unit of read CU are consumed, which are billable.

6 Issue: 20190422

Table Store Functions / 3 Auto-increment function of the primarykey column

3 Auto-increment function of the primary key
column

If you set a primary key column as an auto-increment column, you do not need to
 enter this column when writing data in a row. Instead, Table Store automatically
generates the primary key value, which is unique in the partition key, and which
increases progressively.

Features
Table Store, in conjunction with the auto-increment function of an primary key
column, has the following features:
• The system architecture exclusive to Table Store and the implementation through

an auto-increment primary key column make sure that the value generated for the
auto-incrementing column is unique and strictly incrementing.

• The automatically generated auto-increment column value is a 64-bit signed long
integer.

• The level of the partition key increases progressively.
• The auto-increment function is a table level. The tables with an auto-increment

column and the tables without an auto-increment column can be created in the
same instance.

If the auto-increment primary key column is set, the conditional update logic is not
changed. See the following table for more information.
API IGNORE EXPECT_EXIST EXPECT_NOT

_EXIST
PutRow: The row
exists.

Fail Succeed Fail

PutRow: The row
does not exist.

Succeed Fail Fail

UpdateRow: The
row exists.

Fail Succeed Fail

UpdateRow: The
row does not exist.

Succeed Fail Fail

Issue: 20190422 7

Table Store Functions / 3 Auto-increment function of the primarykey column
API IGNORE EXPECT_EXIST EXPECT_NOT

_EXIST
DeleteRow: The row
 exists.

Fail Fail Fail

DeleteRow: The row
 does not exist.

Succeed Succeed Fail

Limits
Table Store Auto-increment function of the primary key column mainly has the
following restrictions:
• Table Store supports multiple primary keys. The first primary key is a partition key

 that cannot be set as an auto-increment column. However, one of other primary
keys can be set as an auto-increment column.

• Only one primary key per table can be set as an auto-increment column.
• The attribute column cannot be set as an auto-increment column.
• The auto-increment column can only be set at the time the table is created. The

existing table cannot set the auto-increment column.
Interface

• CreateTable
- Set a column as an auto-incrementing column during table creation. For more

information, see Primary key column auto-increment.
- After table creation, you cannot configure the auto-incrementing feature of the

table.
• UpdateTable

You cannot change the auto-increment attribute of a table by using UpdateTable.
• PutRow/UpdateRow/BatchWriteRow

- When writing the table, you do not need to set specific values for the column
that you want to set as auto-incrementing. You only need to set a placeholder, for
example, AUTO_INCREMENT. For more information, see Primary key column auto-

increment.
- You can set ReturnType in ReturnContent as RT_PK, that is, to return the

complete primary key value, which can be used in the GetRow query.

8 Issue: 20190422

Table Store Functions / 3 Auto-increment function of the primarykey column
• GetRow/BatchGetRow

GetRow requires a complete primary key column, which can be obtained by setting
 ReturnType in PutRow, UpdateRow, or BatchWriteRow as RT_PK.

• Other interfaces
Not changed

Usage
Java SDK: Auto-increment of the primary key column

Billing
The auto-increment function of primary key columns does not affect the existing
billing logic. Returned data of the primary key column does not consume additional
read CUs.

Issue: 20190422 9

Table Store Functions / 4 Description of the data consumptionframework

4 Description of the data consumption framework
Tunnel Service uses comprehensive operations of Table Store to consume full and
incremental data. You can easily consume and process history data and incremental
data in tables.
A Tunnel client is an automatic data consumption framework of Tunnel Service. The
 Tunnel client regularly checks heartbeats to detect active channels, update status
 of the Channel and ChannelConnect classes, initialize, run, and terminate data
processing tasks.
The Tunnel client supports the following features for processing full and incrementa
l data: load balancing, fault recovery, checkpoints, and partition information
synchronization to ensure the sequence of consuming information. The Tunnel client
allows you to focus on the processing logic of each record.
The following sections describe the features of the Tunnel client, including automatic
data processing, load balancing, and fault tolerance. For more information, see Github

 to check source code of the Tunnel client.
Automatic data processing

The Tunnel client regularly checks for heartbeats to detect active channels, update
 status of the Channel and ChannelConnect classes, initialize, run, and terminate
data processing tasks. This section describes the data processing logic. For more
information, see source code.
1. Initialize resources of the Tunnel client.

a. Change the status of the Tunnel client from Ready to Started.
b. Set the HeartbeatTimeout and ClientTag parameters in TunnelWorkerConfig to

run the ConnectTunnel task and connect Tunnel Service to obtain the ClientId of
 the current Tunnel client.

c. Initialize the ChannelDialer class to create a ChannelConnect task. Each
ChannelConnect class corresponds to a Channel class, and the ChannelConnect
task records data consumption checkpoints.

d. Set the Callback parameter for processing data and the CheckpointInterval
 parameter for specifying the interval of outputting checkpoints in Tunnel

10 Issue: 20190422

https://github.com/aliyun/aliyun-tablestore-java-sdk
https://github.com/aliyun/aliyun-tablestore-java-sdk

Table Store Functions / 4 Description of the data consumptionframework
Service. In this way, you can create a data processor that automatically outputs
checkpoints.

e. Initialize the TunnelStateMachine class to automatically update the status of the
 Channel class.

2. Regularly check heartbeat messages.
You can set the heartbeatIntervalInSec parameter in TunnelWorkerConfig to set
the interval for checking the heartbeat.
a. Send a heartbeat request to obtain the list of latest available channels from

Tunnel Service. The list includes the ChannelId, channel versions, and channel
status.

b. Merge the list of channels from Tunnel Service with the local list of channels,
and create and update ChannelConnect tasks. Follow these rules:
• Merge: overwrite the earlier version in the local list with the later version for

 the same ChannelId from Tunnel Service, and insert the new channels from
Tunnel Service into the local list.

• Create a ChannelConnect task: create a ChannelConnect task in WAIT status
 for a channel that has no ChannelConnect task. If the ChannelConnect task
corresponds to a channel in OPEN status, run the ReadRecords&&ProcessRec
ords task that cyclically processes data for this ChannelConnect task. For
more information, see the ProcessDataPipeline class in source code.

• Update an existing ChannelConnect task: after you merge the lists of channels
, if a channel corresponds to a ChannelConnect task, update the ChannelCon
nect status according to the status of channels with the same ChannelId. For
 example, if channels are in Close status, set their ChannelConnect tasks to
 the Closed status to terminate the corresponding pipeline tasks. For more
information, see the ChannelConnect.notifyStatus method in source code.

3. Automatically process channel status.
Based on the number of active Tunnel clients obtained in the heartbeat request
, Tunnel Service allocates available partitions to different clients to balance the

Issue: 20190422 11

Table Store Functions / 4 Description of the data consumptionframework
loads. Tunnel Service automatically processes channel status as described in the
following figure, and drives channel consumption and load balancing.

Tunnel Service and Tunnel clients change their status by using heartbeat requests
and channel version updates.
a. Each channel is initially in WAIT status.
b. The channel for incremental data changes to the OPEN status only when the

channel consumption on the parent partition is terminated.
c. Tunnel Service allocates the partition in OPEN status to each Tunnel client.
d. During load balancing, Tunnel Service and Tunnel clients use a scheduling

protocol for changing a channel status from Open, Closing to Closed. After
consuming a BaseData channel or a Stream channel, Tunnel clients report the
channel as Terminated.

12 Issue: 20190422

Table Store Functions / 4 Description of the data consumptionframework
Automatic load balancing and excellent horizontal scaling

• Multiple Tunnel clients can consume data by using the same Tunnel or TunnelId
. When the Tunnel clients run the heartbeat task, Tunnel Service automatically
redistributes channels and tries to allocate active channels to each Tunnel client to
 achieve load balancing.

• You can easily add Tunnel clients to scale out. Tunnel clients can run on one or
more instances.

Automatic resource clearing and fault tolerance
• Resource clearing: if Tunnel clients do not shut down normally, such as exceptiona

l exit or manual termination, the system recycles resources automatically. For
example, the system can release the thread pool, call the shutdown method that
you have registered for the corresponding channel, and terminate the connection
to Tunnel Service.

• Fault tolerance: when a Tunnel client has non-parametric errors such as heartbeat
 timeout, the system automatically renews connections to continue stable data
consumption.

Issue: 20190422 13

Table Store Functions / 5 Stream

5 Stream
5.1 Overview

Table Store Stream is a data channel that retrieves incremental data from Table Store
tables.
You can use the Table Store Stream API to obtain these changes. You can process
incremental data streams in real time and replicate changes.

How Stream works
As a distributed NoSQL database, Table Store stores changes in the commit logs of
 Table Store when executing write operations (including put, delete, and update).
Meanwhile, the database also performs regular checkpoints to flush earlier commit
log entries.
When Stream is enabled, the log file is retained. The incremental data can be read
through the channels provided by Stream during the retention period.
Table Store stores data in shards. Therefore, operations made to the same shard share
 one commit log. The incremental data is also retrieved at shard level.
When Stream is enabled, the system generates and maintains an offset value (an
iterator) to indicate the current read position. You can obtain the iterator of the
current shard using the GetShardIt erator operation. The iterator can be passed
in later when you read incremental data stored in this shard. This makes sure that
Stream knows which row of log records to read from and return the incremental
data. When the incremental data is returned, Stream also returns a new offset for
subsequent reads. The whole process can be compared to reading paged data where
the iterator is equivalent to the offset of the page.
For example, your database generates some database log files in sequence, as shown
in the following figure.

14 Issue: 20190422

Table Store Functions / 5 Stream

When you enable Stream on row 3 of file A, the iterator points to row 3 of file A. When
 reading data, you can pass in the iterator to read modifications that occurred after
the third operation pk3 in this figure.
The Stream API also provides an operation to disable this data stream. When you
enable it again, Stream generates a new iterator for the current shard, pointing to a
new offset that marks the current time. You can use this iterator to read incremental
data that occurs after the current time.
Write operations that occur on the same primary key must be read in sequence
to guarantee consistency. However, before reading the incremental data, you do
not know which primary keys have changes. Therefore, the operation for reading
 incremental data takes a shard ID and reads from a specific shard. To read the
incremental data of the entire table, you can list all shards of the current table.
Stream makes sure that write operations made to the same shard are returned in the
sequence they were made. In this way, data changes made to a specific shard are read
 in the same sequence as they were written, and the data consistency for the same
primary key can be guaranteed. If you continue to read the Stream data for all the
shards, you can make sure that all incremental data in the table is read.
You can either enable Stream when creating a table or enable or disable Stream
later using the UpdateTabl e operation. When a put , update , or delete

operation occurs, a modification record is written to Stream. The record indicates the
primary key values of the row that you modified and the actual modifications.

Issue: 20190422 15

Table Store Functions / 5 Stream

Note:
• Each modification record exists in Stream only once.
• For each shard, Stream processes modifications in the sequence they were made.

However, modifications made to different shards are not sequenced.
Example

In this figure, the current table has three shards. Each row in this figure represents
a shard, and each column represents an update operation on a specific shard. Each
shard maintains its own update log. You can use the DescribeSt ream operation
to obtain information about the shard, and then read the changes in sequence for this
shard. However, the system may split or merge shards in response to varying loads.
New shards are created during merge or split operations, and earlier shards no longer
generate new incremental data.

In this figure, shard P2 splits into shards P4 and P5. You can read data from shards
P4 and P5 in parallel, without affecting one another. However, before you read from
shards P4 and P5, make sure that you have read all incremental data on shard P2.

16 Issue: 20190422

Table Store Functions / 5 Stream

For example, in this figure, when you start reading the R6 log entry of shard P4, make
 sure that R5 of shard P2 has already been read. After R5 is read, shard P2 does not
generate new data.

5.2 Stream API/SDK
API

• Enable and disable Stream
You can specify whether Stream is enabled or disabled when creating a table. Also,
you can use the UpdateTabl e operation to enable or disable Stream later. The
CreateTabl e and UpdateTabl e operations now include a StreamSpec

ification parameter that allows you to set Stream parameters:
- enable_stream: Whether to enable Stream.
- expiration_time: Stream data expiration time. Expired modification log entries

are deleted.

Issue: 20190422 17

Table Store Functions / 5 Stream

• Read modification logs
To read Stream data, follow these steps:
1. Call ListStream s to obtain the current table’s Stream information, such

as Stream ID. For more information, see ListStream.
2. Call DescribeSt ream to obtain the current Stream’s data shard

information, such as the shard list. Each shard log contains shard information
such as the parent shard and shardID. For more information, see DescribeStream.

3. After obtaining StreamID and shardID, use GetShardIt erator to obtain the
current shard’s read iterator value. This value marks the starting position for
reading the shard log. For more information, see GetShardIterator.

4. Call GetStreamR ecord to read the specific modification logs. Each call
returns a new iterator for the next read to use. For more information, see
GetStreamRecord.

Notice:
- Operations made to the same primary key have to be sequenced. Stream makes

 sure that operations made to the same shard are sequenced. However, shards
may be split or merged, so before you read the data of a shard, make sure that
data of the shard’s parent shard and parent_sibling has been read.

- When an empty NextShardI terator is returned, it indicates that
incremental data in the current shard has been fully read. This situation occurs
typically when the shard is inactive after a split or merge operation. When a
shard has been fully read, you can call DescribeSt ream again to retrieve
information about the new shard.

SDK
Table Store Java SDK supports the Stream interface. For more information, see Java

SDK.

5.3 Stream Client
You can use Table Store Stream APIs and Table Store SDKs to read Stream records.
When you obtain incremental data in real time mode, note that information in shards
 is not static. Shards may be split or merged. When shards are changed, you must

18 Issue: 20190422

Table Store Functions / 5 Stream

process the dependencies between them to make sure that data in a single primary
 key is read in sequence. In addition, if your data is generated concurrently from
multiple clients, multiple consumers must concurrently read the incremental records
 in each shard to improve the efficiency of exporting incremental data.
Stream Client is used to resolve common problems during Stream data processing
, for example, load balancing, fault recovery, checkpoint, and shard information
synchronization to guarantee the information consumption sequence. After using
Stream Client, you only need to focus on the processing logic of each record.
This topic describes the principles of Stream Client, and how to use Stream Client to
efficiently build a data tunnel that is applicable to your own services.

How Stream Client works
To easily implement job scheduling and record the read progress of each current
shard, Stream Client uses a table of Table Store to record the information. You can
customize the table name, but you must make sure that this table name is not used by
 other services.
Stream Client defines a lease for each shard, and the owner of each lease is called the
 worker. A lease is used to record the incremental data consumers (that is, workers)
of the shard and read the progress. When a new consumer is started, the worker is
initialized, checking the shard and lease information and creating a lease for a shard
 if the shard does not have one. When a new shard is generated from shard splitting
or combination, Stream Client inserts a lease record into the table. The new record is
 grabbed and continuously processed by a worker of a Stream Client. If a new worker
joins, load balancing is implemented to dispatch the record to the new worker.
The following table describes the schema of the lease record.
Parameter Description
Primary key StreamId ID of the currently processed Stream.
Primary key StatusType Key of the current lease.
Primary StatusValue ID of the shard corresponding to the

current lease.
Attribute Checkpoint Location where Stream data is consumed

 in the current shard (for user fault
recovery).

Issue: 20190422 19

Table Store Functions / 5 Stream

Parameter Description
Attribute LeaseCounter Optimistic lock. The owner of each lease

 continues to update the counter value.
Lease renewal indicates that the current
lease is continuously occupied.

Attribute LeaseOwner Name of the worker that owns the
current lease.

Attribute LeaseStealer Worker to which the lease is to be moved
during load balancing.

Attribute ParentShardIds Parent shard of the current shard. When
 the worker is consuming the current
shard, make sure that the Stream of the
parent shard has been consumed.

Example
The following figure shows a typical distributed architecture of using Stream Client to
consume incremental data.

In this figure, worker1 and worker2 are two consumers based on Stream Client, for
 example, programs started on the ECS. The data source constantly reads/writes a
 table in Table Store. In the initial stage, the table contains shards P1, P2, and P3.
With the increase of the traffic and data volume, P2 is split into P4 and P5. In the
initial stage, worker1 consumes data of P1, and worker2 consumes data of P2 and
 P3. After P2 is split, P4 will be allocated to worker1, and P5 will be allocated to
worker2. However, Stream Client makes sure that data of P4 and P5 is consumed after
 consumption of record R5 of P2 is complete. If a new consumer worker3 is deployed
 at this time, a shard on worker2 may be dispatched to worker3, resulting in load
balancing.

20 Issue: 20190422

Table Store Functions / 5 Stream

In the preceding scenario, Stream Client generates the following lease information in
the table:

The worker in Stream Client is the carrier of the consumed Stream data. Each shard is
 allocated to a worker (lease owner). The owner constantly renews the current shard
 lease through heartbeats, that is, by updating LeaseCounter. Generally, each Steam
consumer has a worker. After the worker is initialized, it obtains information about
the shard to be processed. At the same time, the worker maintains its own thread pool
, and concurrently and cyclically pulls incremental data of each shard it owns. The
worker initialization process is as follows:
1. Reads the Table Store configuration and initializes the client that accesses Table

Store through an intranet.
2. Obtains the Stream information of the corresponding table and initializes the lease

 management class. The lease management class synchronizes the lease informatio
n and creates a new lease record for the new shard.

3. Initializes the shard synchronization class, which maintain the heartbeats of the
current owned shards.

4. Cyclically obtains the incremental data of the shard currently owned by the worker
.

Download Stream Client
• Download and install the JAR package

• Maven:
< dependency >
 < groupId > com . aliyun . openservic es </ groupId >
 < artifactId > tablestore - streamclie nt </ artifactId >
 < version > 1 . 0 . 0 </ version >

Issue: 20190422 21

https://oss.sonatype.org/service/local/artifact/maven/redirect?r=releases&g=com.aliyun.openservices&a=tablestore-streamclient&v=1.0.0&e=jar

Table Store Functions / 5 Stream
</ dependency >

Note:
The code of Stream Client is open-sourced. You can download the source code to
learn about the principle. You are also welcomed to share good Stream-based
sample code with us.

Use Stream Client APIs
Stream Client provides the IRecordPro cessor API, facilitating you to use Stream
Client to consume the Stream data and hide the shard read logic and dispatch logic.
The worker of Stream Client calls the processRec ords function after pulling the
Steam data to trigger your data processing logic.
public interface IRecordPro cessor {

 void initialize (Initializa tionInput initializa tionInput
);

 void processRec ords (ProcessRec ordsInput processRec
ordsInput);

 void shutdown (ShutdownIn put shutdownIn put);
}

The parameters are described as follows:
Parameter Description
void initialize(InitializationInput
initializationInput);

Used to initialize a read task. It indicates
that Stream Client is about to read data of
 a shard.

void processRecords(ProcessRec
ordsInput processRecordsInput);

Indicates how the user wants to
process this batch of records after
the data is read. The getCheckpo
inter function in ProcessRec
ordsInput can be used to obtain
IRecordPro cessorChec kpointer
. The framework provides this API to

implement the checkpoint. You can
determine how often the checkpoint is
implemented.

void shutdown(ShutdownInput
shutdownInput);

Used to end the read task of a shard.

22 Issue: 20190422

https://github.com/aliyun/aliyun-tablestore-stream-client

Table Store Functions / 5 Stream

Note:
• The read tasks are implemented in different machines, the process may encounter

various types of errors, for example, restart due to an environment factor.
Therefore, you must periodically record the completed data (checkpoint). When a
task is restarted, it is continued from the last checkpoint. In other words, Stream
Client does not guarantee that a record is sent through ProcessRec ordsInput

 only once. It only guarantees that the record is sent at least once, and that the
record sequence does not change. If some data is repeatedly sent, you must pay
attention to the service processing logic.

• If you want to reduce the repeat data processing times in case of an error, you
can increase the frequency of the checkpoint operation. However, too frequent
checkpoints reduce the system throughput. Therefore, determine the checkpoint
frequency based on your service features.

• If you find that the incremental data fails to be consumed in time, you can
increase resources for the consumer, such as using more nodes to read the Stream
 record.

The following provides a simple example to describe how to use Stream Client to
 obtain the incremental data in real time and output the incremental data on the
console.
public class StreamSamp le {

 class RecordProc essor implements IRecordPro cessor {

 private long creationTi me = System . currentTim
eMillis ();

 private String workerIden tifier ;

 public RecordProc essor (String workerIden tifier) {
 this . workerIden tifier = workerIden tifier ;
 }

 public void initialize (Initializa tionInput
initializa tionInput) {

 // Trace some info before start the query
like stream info etc .

 }

 public void processRec ords (ProcessRec ordsInput
processRec ordsInput) {

 List < StreamReco rd > records = processRec ordsInput
. getRecords ();

 if (records . size () == 0) {
 // No more records we can wait for the
next query

 System . out . println (" no more records ");

Issue: 20190422 23

Table Store Functions / 5 Stream
 }
 for (int i = 0 ; i < records . size (); i ++) {
 System . out . println (" records :" + records . get
(i));

 }

 // Since we don ' t persist the stream record
 we can skip blow step

 System . out . println (processRec ordsInput .
getCheckpo inter (). getLargest PermittedC heckpointV alue ());

 try {
 processRec ordsInput . getCheckpo inter ().
checkpoint ();

 } catch (ShutdownEx ception e) {
 e . printStack Trace ();
 } catch (StreamClie ntExceptio n e) {
 e . printStack Trace ();
 } catch (Dependency Exception e) {
 e . printStack Trace ();
 }
 }

 public void shutdown (ShutdownIn put shutdownIn put)
 {
 // finish the query task and trace the
shutdown reason

 System . out . println (shutdownIn put . getShutdow
nReason ());

 }
 }

 class RecordProc essorFacto ry implements IRecordPro
cessorFact ory {

 private final String workerIden tifier ;

 public RecordProc essorFacto ry (String workerIden
tifier) {

 this . workerIden tifier = workerIden tifier ;
 }

 public IRecordPro cessor createProc essor () {
 return new StreamSamp le . RecordProc essor (
workerIden tifier);

 }
 }

 public Worker getNewWork er (String workerIden tifier) {
 // Please replace with your table info
 final String endPoint = "";
 final String accessId = "";
 final String accessKey = "";
 final String instanceNa me = "";

 StreamConf ig streamConf ig = new StreamConf ig ();
 streamConf ig . setOTSClie nt (new SyncClient (endPoint
, accessId , accessKey ,

 instanceNa me));
 streamConf ig . setDataTab leName (" teststream ");
 streamConf ig . setStatusT ableName (" statusTabl e ");

 Worker worker = new Worker (workerIden tifier , new
ClientConf ig (), streamConf ig ,

24 Issue: 20190422

Table Store Functions / 5 Stream

 new StreamSamp le . RecordProc essorFacto ry (
workerIden tifier), Executors . newCachedT hreadPool (), null);

 return worker ;
 }

 public static void main (String [] args) throws
Interrupte dException {

 StreamSamp le test = new StreamSamp le ();
 Worker worker1 = test . getNewWork er (" worker1 ");
 Thread thread1 = new Thread (worker1);
 thread1 . start ();
 }
}

Issue: 20190422 25

Table Store Functions / 6 HBase

6 HBase
6.1 Table Store HBase Client

In addition to SDKs and RESTful APIs, Table Store HBase Client can be used to access
Table Store through Java applications built on open source HBase APIs. Based on Java
 SDKs for Table Store version 4.2.x and later, Table Store HBase Client supports open
source APIs for HBase version 1.x.x and later.
Table Store HBase Client can be obtained from any of the following three channels:
• GitHub tablestore-hbase-client project

• Compressed package

• Maven
 < dependenci es >
 < dependency >
 < groupId > com . aliyun . openservic es </ groupId >
 < artifactId > tablestore - hbase - client </ artifactId
>
 < version > 1 . 2 . 0 </ version >
 </ dependency >
 </ dependenci es >

Table Store is a fully managed NoSQL database service. When using TableStore HBase
 Client, you can simply ignore HBase Server. Instead, you only need to perform table
or data operations using APIs exposed by Client.
Compared with self-built HBase services, Table Store has the following advantages:
Items Table Store Self-built HBase cluster
Cost Billing is based on actual

data volumes. By providing
 high performance and
capacity instances, Table
Store can be tailored to all
scenarios.

Allocates resources based
on traffic peaks. Resources
 remain idle during off-
peak periods, resulting
 in high operation and
maintenance costs.

26 Issue: 20190422

https://github.com/aliyun/aliyun-tablestore-hbase-client
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/50125/cn_zh/1486705375325/tablestore-hbase-client-1.2.0.zip

Table Store Functions / 6 HBase

Items Table Store Self-built HBase cluster
Security Integrates Alibaba Cloud

 RAM and supports
multiple authentica
tion and authorization
mechanisms, VPC, and
 primary/RAM user
account management.
Authorization granularity
can be defined at both the
table-level and API-level.

Requires extra security
mechanisms.

Reliability Supports automatic
redundant data backup
 and failover. Data
availability is 99.9% or
greater, and data reliabilit
y is 99.99999999%.

Is dependent on cluster
reliability.

Scalability Server Load Balancer of
 Table Store supports PB
-level data transfer from
 a single table. Manual
resizing is not needed even
 if millions of bytes of data
is concurrently stored.

Complex online/offline
processes are required
if a cluster reaches high
usage capacity, which can
 severely impact online
services.

6.2 Table Store HBase Client supported functions
API support differences between Table Store and HBase

Table Store and HBase, while similar in terms of Data model functionality, have
different APIs. The following sections detail differences between Table Store HBase
Client APIs and HBase APIs.

Functions supported by Table Store HBase Client APIs:
• CreateTable

Table Store does not support ColumnFamily as all data can be considered to be in
 the same ColumnFamily. This means that TTL and Max Versions of Table Store

Issue: 20190422 27

Table Store Functions / 6 HBase

are at the table-level. Therefore, Table Store has some support for the following
functions:
Functions Supported or Not
family max version Table-level Max Versions supported.

Default value: 1
family min version Unsupported
family ttl Table-level TTL supported
is/set ReadOnly Supported through the sub-account of

RAM
Pre-partitioning Unsupported
blockcache Unsupported
blocksize Unsupported
BloomFilter Unsupported
column max version Unsupported
cell ttl Unsupported
Control parameter Unsupported

• Put
Functions Supported or Not
Writes multiple columns of data at a
time

Supported

Specifies a timestamp Supported
Uses the system time by default if no
timestamp is specified

Supported

Single-row ACL Unsupported
ttl Unsupported
Cell Visibility Unsupported
tag Unsupported

28 Issue: 20190422

Table Store Functions / 6 HBase

• Get
Table Store guarantees high data consistency. If the HTTP 200 status code (OK)
is returned after data is written to an API, the data is permanently written to all
copies, and can be read immediately by Get.
Functions Supported or Not
Reads a row of data Supported
Reads all columns in a ColumnFamily Supported
Reads data from a specified column Supported
Reads data with a specified timestamp Supported
Reads data of a specified number of
versions

Supported

TimeRange Supported
ColumnfamilyTimeRange Unsupported
RowOffsetPerColumnFamily Supported
MaxResultsPerColumnFamily Unsupported
checkExistenceOnly Unsupported
closestRowBefore Supported
attribute Unsupported
cacheblock:true Supported
cacheblock:false Unsupported
IsolationLevel:READ_COMMITTED Supported
IsolationLevel:READ_UNCOMMITTED Unsupported
IsolationLevel:STRONG Supported
IsolationLevel:TIMELINE Unsupported

• Scan
Table Store guarantees high data consistency. If the HTTP 200 status code (OK)
is returned after data is written to an API, the data is permanently written to all
copies, which can be read immediately by Scan.
Functions Supported or Not
Determines a scanning range based on
the specified start and stop

Supported

Issue: 20190422 29

Table Store Functions / 6 HBase

Functions Supported or Not
Globally scans data if no scanning range
 is specified

Supported

prefix filter Supported
Reads data using the same logic as Get Supported
Reads data in reverse order Supported
caching Supported
batch Unsupported
maxResultSize, indicating the
maximum size of the returned data
volume

Unsupported

small Unsupported
batch Unsupported
cacheblock:true Supported
cacheblock:false Unsupported
IsolationLevel:READ_COMMITTED Supported
IsolationLevel:READ_UNCOMMITTED Unsupported
IsolationLevel:STRONG Supported
IsolationLevel:TIMELINE Unsupported
allowPartialResults Unsupported

• Batch
Functions Supported or Not
Get Supported
Put Supported
Delete Supported
batchCallback Unsupported

• Delete
Functions Supported or Not
Deletes a row Supported
Deletes all versions of the specified
column

Supported

30 Issue: 20190422

Table Store Functions / 6 HBase

Functions Supported or Not
Deletes the specified version of the
specified column

Supported

Deletes the specified ColumnFamily Unsupported
When a timestamp is specified,
deleteColumn deletes the versions that
are equal to the timestamp

Supported

When a timestamp is specified,
deleteFamily and deleteColumn delete
 the versions that are earlier than or
equal to the timestamp

Unsupported

When no timestamp is specified,
deleteColumn deletes the latest version

Unsupported

When no timestamp is specified,
deleteFamily and deleteColumn delete
the version of the current system time

Unsupported

addDeleteMarker Unsupported
• checkAndXXX

Functions Supported or Not
CheckAndPut Supported
checkAndMutate Supported
CheckAndDelete Supported
Checks whether the value of a
column meets the conditions. If yes,
checkAndXXX deletes the column.

Supported

Uses the default value if no value is
specified

Supported

Checks row A and executes row B. Unsupported
• Exist

Functions Supported or Not
Checks whether one or more rows exist
and does not return any content

Supported

Issue: 20190422 31

Table Store Functions / 6 HBase

• Filter
Functions Supported or Not
ColumnPaginationFilter columnOffset and count unsupported
SingleColumnValueFilter Supported: LongComparator,

BinaryComparator, and ByteArrayC
omparable
Unsupported: RegexStringComparator,
SubstringComparator, and BitCompara
tor

Functions not supported by Table Store HBase Client APIs
• Namespaces

Table Store uses instances to manage a data table. An instance is the minimum
billing unit in Table Store. You can manage instances in the Table Store console.
Therefore, the following features are not supported:
- createNamespace(NamespaceDescriptor descriptor)
- deleteNamespace(String name)
- getNamespaceDescriptor(String name)
- listNamespaceDescriptors()
- listTableDescriptorsByNamespace(String name)
- listTableNamesByNamespace(String name)
- modifyNamespace(NamespaceDescriptor descriptor)

• Region management
Data partition is the basic unit for data storage and management in Table Store.
Table Store automatically splits or merges the data partitions based on their data
volumes and access conditions. Therefore, Table Store does not support features
related to Region management in HBase.

• Snapshots
Table Store does not support Snapshots, or related featurs of Snapshots.

32 Issue: 20190422

https://ots.console.aliyun.com

Table Store Functions / 6 HBase

• Table management
Table Store automatically splits, merges, and compacts data partitions in tables.
Therefore, the following features are not supported:
- getTableDescriptor(TableName tableName)
- compact(TableName tableName)
- compact(TableName tableName, byte[] columnFamily)
- flush(TableName tableName)
- getCompactionState(TableName tableName)
- majorCompact(TableName tableName)
- majorCompact(TableName tableName, byte[] columnFamily)
- modifyTable(TableName tableName, HTableDescriptor htd)
- split(TableName tableName)
- split(TableName tableName, byte[] splitPoint)

• Coprocessors
Table Store does not support the coprocessor. Therefore, the following features are
 not supported:
- coprocessorService()
- coprocessorService(ServerName serverName)
- getMasterCoprocessors()

• Distributed procedures
Table Store does not support Distributed procedures. Therefore, the following
features are not supported:
- execProcedure(String signature, String instance, Map props)
- execProcedureWithRet(String signature, String instance, Map props)
- isProcedureFinished(String signature, String instance, Map props)

• Increment and Append
Table Store does not support atomic increase/decrease or atomic Append.

6.3 Differences between Table Store and HBase
This topic introduces features of Table Store HBase Client and explains restricted and
supported functions when compared with HBase. Features are listed as follows.

Issue: 20190422 33

Table Store Functions / 6 HBase

Table
Table Store only supports single ColumnFamilies, that is, it does not support multi-
ColumnFamilies.

Row and Cell
• Table Store does not support ACL settings.
• Table Store does not support Cell Visibility settings.
• Table Store does not support Tag settings.

GET
Table Store only supports single ColumnFamilies. Therefore, it does not support
ColumnFamily related APIs, including:
• setColumnFamilyTimeRange(byte[] cf, long minStamp, long maxStamp)
• setMaxResultsPerColumnFamily(int limit)
• setRowOffsetPerColumnFamily(int offset)

SCAN
Similar to GET, Table Store does not support ColumnFamily related APIs and cannot
be used to set partial optimization APIs, including:
• setBatch(int batch)
• setMaxResultSize(long maxResultSize)
• setAllowPartialResults(boolean allowPartialResults)
• setLoadColumnFamiliesOnDemand(boolean value)
• setSmall(boolean small)

Batch
Table Store does not support BatchCallback.

Mutations and Deletions
• Table Store does not support deletion of the specified ColumnFamily.
• Table Store does not support deletion of the versions with the latest timestamp.
• Table Store does not support deletion of all versions earlier than the specified

timestamp.
Increment and Append

Table Store does not support Increment or Append features.
34 Issue: 20190422

Table Store Functions / 6 HBase

Filter
• Table Store supports ColumnPaginationFilter.
• Table Store supports FilterList.
• Table Store partially supports SingleColumnValueFilter, and supports only

BinaryComparator.
• Table Store does not support other Filters.

Optimization
Some of the HBase APIs involve access and storage optimization. These APIs are not
opened currently:
• blockcache: The default value is "true", which cannot be modified.
• blocksize: The default value is "64 KB", which cannot be modified.
• IsolationLevel: The default value is "READ_COMMITTED", which cannot be

modified.
• Consistency: The default value is "STRONG", which cannot be modified.

Admin
The org . apache . hadoop . hbase . client . Admin APIs of HBase are used
for management and control, most of which are not required in Table Store.
As Table Store is a cloud service, it automatically performs operations such as
operation and maintenance, management, and control, which does not need to be
concerned. Table Store currently does not support a few of APIs.
• CreateTable

Table Store only supports single ColumnFamilies. Therefore, you can create
only one ColumnFamily when creating a table. The ColumnFamily supports the
MaxVersions and TimeToLive parameters.

Issue: 20190422 35

Table Store Functions / 6 HBase

• Maintenance task
In Table Store, the following APIs related to task maintenance are automatically
processed:
- abort(String why, Throwable e)
- balancer()
- enableCatalogJanitor(boolean enable)
- getMasterInfoPort()
- isCatalogJanitorEnabled()
- rollWALWriter(ServerName serverName) -runCatalogScan()
- setBalancerRunning(boolean on, boolean synchronous)
- updateConfiguration(ServerName serverName)
- updateConfiguration()
- stopMaster()
- shutdown()

• Namespaces
In Table Store, the instance name is similar to Namespaces in HBase. Therefore, it
does not support Namespaces related APIs, including:
- createNamespace(NamespaceDescriptor descriptor)
- modifyNamespace(NamespaceDescriptor descriptor)
- getNamespaceDescriptor(String name)
- listNamespaceDescriptors()
- listTableDescriptorsByNamespace(String name)
- listTableNamesByNamespace(String name)
- deleteNamespace(String name)

36 Issue: 20190422

Table Store Functions / 6 HBase

• Region
Table Store automatically performs Region related operations. Therefore, it does
not support the following APIs:
- assign(byte[] regionName)
- closeRegion(byte[] regionname, String serverName)
- closeRegion(ServerName sn, HRegionInfo hri)
- closeRegion(String regionname, String serverName)
- closeRegionWithEncodedRegionName(String encodedRegionName, String

serverName)
- compactRegion(byte[] regionName)
- compactRegion(byte[] regionName, byte[] columnFamily)
- compactRegionServer(ServerName sn, boolean major)
- flushRegion(byte[] regionName)
- getAlterStatus(byte[] tableName)
- getAlterStatus(TableName tableName)
- getCompactionStateForRegion(byte[] regionName)
- getOnlineRegions(ServerName sn)
- majorCompactRegion(byte[] regionName)
- majorCompactRegion(byte[] regionName, byte[] columnFamily)
- mergeRegions(byte[] encodedNameOfRegionA, byte[] encodedNameOfRegionB,

boolean forcible)
- move(byte[] encodedRegionName, byte[] destServerName)
- offline(byte[] regionName)
- splitRegion(byte[] regionName)
- splitRegion(byte[] regionName, byte[] splitPoint)
- stopRegionServer(String hostnamePort)
- unassign(byte[] regionName, boolean force)

Snapshots
Table Store does not support Snapshots related APIs.

Replication
Table Store does not support Replication related APIs.

Issue: 20190422 37

Table Store Functions / 6 HBase

Coprocessors
Table Store does not support Coprocessors related APIs.

Distributed procedures
Table Store does not support Distributed procedures related APIs.

Table Management
Table Store automatically performs Table related operations, which does not need to
be concerned. Therefore, Table Store does not support the following APIs:
• compact(TableName tableName)
• compact(TableName tableName, byte[] columnFamily)
• flush(TableName tableName)
• getCompactionState(TableName tableName)
• majorCompact(TableName tableName)
• majorCompact(TableName tableName, byte[] columnFamily)
• modifyTable(TableName tableName, HTableDescriptor htd)
• split(TableName tableName)
• split(TableName tableName, byte[] splitPoint)

Restrictions
As Table Store is a cloud service, to guarantee the optimal overall performance, some
parameters are restricted and cannot be reconfigured. For more information about
the restrictions, see Limits.

6.4 Migrate from HBase to Table Store
The following information explains how to migrate HBase to Table Store.

Dependencies
Table Store HBase Client v1.2.0 depends on HBase Client v1.2.0 and Table Store Java
SDK v4.2.1. The configuration of pom . xml is as follows.
 < dependenci es >
 < dependency >
 < groupId > com . aliyun . openservic es </ groupId >
 < artifactId > tablestore - hbase - client </ artifactId >
 < version > 1 . 2 . 0 </ version >
 </ dependency >

38 Issue: 20190422

Table Store Functions / 6 HBase
 </ dependenci es >

If you want to use another HBase Client or Table Store Java SDK version, you must use
 the exclusion tag. In the following example, HBase Client v1.2.1 and Table Store Java
SDK v4.2.0 are used.
 < dependenci es >
 < dependency >
 < groupId > com . aliyun . openservic es </ groupId >
 < artifactId > tablestore - hbase - client </ artifactId >
 < version > 1 . 2 . 0 </ version >
 < exclusions >
 < exclusion >
 < groupId > com . aliyun . openservic es </
groupId >

 < artifactId > tablestore </ artifactId >
 </ exclusion >
 < exclusion >
 < groupId > org . apache . hbase </ groupId >
 < artifactId > hbase - client </ artifactId >
 </ exclusion >
 </ exclusions >
 </ dependency >
 < dependency >
 < groupId > org . apache . hbase </ groupId >
 < artifactId > hbase - client </ artifactId >
 < version > 1 . 2 . 1 </ version >
 </ dependency >
 < dependency >
 < groupId > com . aliyun . openservic es </ groupId >
 < artifactId > tablestore </ artifactId >
 < classifier > jar - with - dependenci es </ classifier >
 < version > 4 . 2 . 0 </ version >
 </ dependency >
 </ dependenci es >

Table Store HBase Client v1.2.x is only compatible with HBase Client v1.2.x, because
API changes exist in HBase Client v1.2.x and earlier.
If you want to use HBase Client version v1.1.x, use Table Store HBase Client version v1
.1.x.
If you want to use HBase Client version v0.x.x, see Migrate HBase of an earlier version.

Configure the file
To migrate data from HBase Client to Table Store HBase Client, modify the following
two items in the configuration file.
• HBase Connection type

Set Connection to TableStoreConnection.
 < property >
 < name > hbase . client . connection . impl </ name >

Issue: 20190422 39

Table Store Functions / 6 HBase
 < value > com . alicloud . tablestore . hbase . Tablestore
Connection </ value >
 </ property >

• Configuration items of Table Store
Table Store is a cloud service and provides strict permission management. Table
 Store offers strict permission management. To access Table Store, you must
configure access information such as the AccessKey.
- You need to configure the following four items before accessing Table Store:

 < property >
 < name > tablestore . client . endpoint </ name >
 < value ></ value >
 </ property >
 < property >
 < name > tablestore . client . instancena me </ name >
 < value ></ value >
 </ property >
 < property >
 < name > tablestore . client . accesskeyi d </ name >
 < value ></ value >
 </ property >
 < property >
 < name > tablestore . client . accesskeys ecret </ name >
 < value ></ value >
 </ property >

- Optional items you can configure are as follows.
 < property >
 < name > hbase . client . tablestore . family </ name >
 < value > f1 </ value >
 </ property >
 < property >
 < name > hbase . client . tablestore . family .$ tablename </
name >

 < value > f2 </ value >
 </ property >
 < property >
 < name > tablestore . client . max . connection s </ name >
 < value > 300 </ value >
 </ property >
 < property >
 < name > tablestore . client . socket . timeout </ name >
 < value > 15000 </ value >
 </ property >
 < property >
 < name > tablestore . client . connection . timeout </ name >
 < value > 15000 </ value >
 </ property >
 < property >
 < name > tablestore . client . operation . timeout </ name >
 < value > 2147483647 </ value >
 </ property >
 < property >
 < name > tablestore . client . retries </ name >
 < value > 3 </ value >

40 Issue: 20190422

Table Store Functions / 6 HBase
 </ property >

■ hbase.client.tablestore.family and hbase.client.tablestore.family.$tablename
■ Table Store only supports single ColumnFamilies. When you use HBase

APIs, you must enter the content of the family.
hbase . client . tablestore . family indicates global

configuration, while hbase . client . tablestore . family .$

tablename indicates configuration of a single table.
■ Rule: For tables whose names are T, search for hbase . client .

tablestore . family . T first. If the family does not exist, search for
hbase . client . tablestore . family . If the family does not exist,

use the default value f.
■ tablestore.client.max.connections

Maximum connections. The default value is 300.
■ tablestore.client.socket.timeout

Socket time-out time. The default value is 15 seconds.
■ tablestore.client.connection.timeout

Connection time-out time. The default value is 15 seconds.
■ tablestore.client.operation.timeout

API time-out time. The default value is Integer.MAX_VALUE, indicating that
the API never times out.

■ tablestore.client.retries
Number of retries when a request fails. The default value is 3.

6.5 Migrate HBase of an earlier version
Table Store HBase Client supports APIs of HBase Client 1.0.0 and later versions.
Compared with earlier versions, HBase Client 1.0.0 has big changes which are
incompatible with HBase Client of earlier versions.
If you use an HBase Client from version 0.x.x (that is, an earlier version than 1.0.0),
this topic explains how to integrate your HBase Client version with Table Store.

Issue: 20190422 41

Table Store Functions / 6 HBase

Connection APIs
HBase 1.0.0 and later versions cancel the HConnection APIs, and instead use the org

. apache . hadoop . hbase . client . Connection Factory series to provide
the Connection APIs and replace ConnectionManager and HConnectionManager with
ConnectionFactory.
Creating a Connection API has relatively high cost, however, Connection APIs
guarantee thread safety. When using a Connection API, you can generate only one
Connection object in the program. Multiple threads can then share this object.
You also need to manage the Connection lifecycle, and close it after use.
The latest code is as follows:
Connection connection = Connection Factory . createConn ection
(config);

// ...
connection . close ();

TableName series
In HBase version 1.0.0 and earlier, you can use a String-type name when creating a
table. For later HBase versions, you can use the org . apache . hadoop . hbase .

TableName .
The latest code is as follows:
String tableName = " MyTable ";

// or byte [] tableName = Bytes . toBytes (" MyTable ");
TableName tableNameO bj = TableName . valueOf (tableName);

Table, BufferedMutator, and RegionLocator APIs
From HBase Client v1.0.0, the HTable APIs are replaced with the Table, BufferedMu
tator, and RegionLocator APIs.
• org . apache . hadoop . hbase . client . Table : Used to operate reading,

writing, and other requests of a single table.
• org . apache . hadoop . hbase . client . BufferedMu tator : Used

for asynchronous batch writing. This API corresponds to setAutoFlu sh (

boolean) of the HTableInterface API of the earlier versions.
• org . apache . hadoop . hbase . client . RegionLoca tor : Indicates the

table partition information.

42 Issue: 20190422

Table Store Functions / 6 HBase

The Table, BufferedMutator, and RegionLocator APIs do not guarantee thread safety.
However, they are lightweight and can be used to create an object for each thread.

Admin APIs
From HBase Client v1.0.0, HBaseAdmin APIs are replaced by org . apache .

hadoop . hbase . client . Admin . As Table Store is a cloud service, and most
operation and maintenance APIs are automatically processed, most Admin APIs are
not supported. For more information, see Differences between Table Store and HBase.
Use the Connection instance to create an Admin instance:
Admin admin = connection . getAdmin ();

6.6 Hello World
This topic describes how to use Table Store HBase Client to implement a simple Hello
World program, and includes the following operations:
• Configure project dependencies.
• Connect Table Store
• Create a table
• Write Data
• Read Data
• Scan data
• Delete a table

Code position
This sample program uses HBase APIs to access Table Store. The complete sample
program is located in the Github aliyun-tablestore-hbase-client project. The directory is src/
test/java/samples/HelloWorld.java.

Use HBase APIs
• Configure project dependencies

Configure Maven dependencies as follows.
 < dependenci es >
 < dependency >
 < groupId > com . aliyun . openservic es </ groupId >
 < artifactId > tablestore - hbase - client </ artifactId
>
 < version > 1 . 2 . 0 </ version >

Issue: 20190422 43

https://github.com/aliyun/aliyun-tablestore-hbase-client

Table Store Functions / 6 HBase
 </ dependency >
 </ dependenci es >

For more information about advanced configurations, see Migrate from HBase to Table

Store.
• Configure the file

Add the following configuration items to hbase-site.xml.
< configurat ion >
 < property >
 < name > hbase . client . connection . impl </ name >
 < value > com . alicloud . tablestore . hbase . Tablestore
Connection </ value >
 </ property >
 < property >
 < name > tablestore . client . endpoint </ name >
 < value > endpoint </ value >
 </ property >
 < property >
 < name > tablestore . client . instancena me </ name >
 < value > instance_n ame </ value >
 </ property >
 < property >
 < name > tablestore . client . accesskeyi d </ name >
 < value > access_key _id </ value >
 </ property >
 < property >
 < name > tablestore . client . accesskeys ecret </ name >
 < value > access_key _secret </ value >
 </ property >
 < property >
 < name > hbase . client . tablestore . family </ name >
 < value > f1 </ value >
 </ property >
 < property >
 < name > hbase . client . tablestore . table </ name >
 < value > ots_adapto r </ value >
 </ property >
</ configurat ion >

For more information about advanced configurations, see Migrate from HBase to Table

Store.
• Connect Table Store

Create a TableStoreConnection object to connect Table Store.
 Configurat ion config = HBaseConfi guration . create ();

 // Create a Tablestore Connection
 Connection connection = Connection Factory . createConn
ection (config);

 // Admin is used for creation , management , and
deletion

44 Issue: 20190422

Table Store Functions / 6 HBase
 Admin admin = connection . getAdmin ();

• Create a table
Create a table using the specified table name. Use the default table name for
MaxVersions and TimeToLive.
 // Create an HTableDesc riptor , which contains only
one ColumnFami ly
 HTableDesc riptor descriptor = new HTableDesc riptor (
TableName . valueOf (TABLE_NAME));

 // Create a ColumnFami ly . Use the default
ColumnFami ly name for Max Versions and TimeToLive .
The default ColumnFami ly name for Max Versions is
1 and for TimeToLive is Integer . INF_MAX
 descriptor . addFamily (new HColumnDes criptor (COLUMN_FAM
ILY_NAME));

 // Use the createTabl e API of the Admin to
create a table
 System . out . println (" Create table " + descriptor .
getNameAsS tring ());
 admin . createTabl e (descriptor);

• Write Data
Write a row of data to Table Store.
 // Create a Tablestore Table for reading , writing ,
updating , deletion , and other operations on a single
 table
 Table table = connection . getTable (TableName . valueOf (
TABLE_NAME));

 // Create a Put object with the primary key
row_1
 System . out . println (" Write one row to the table
");
 Put put = new Put (ROW_KEY);

 // Add a column . Table Store supports only single
ColumnFami lies . The ColumnFami ly name is configured
in hbase - site . xml . If the ColumnFami ly name is
not configured , the default name is " f ". In this
case , the value of COLUMN_FAM ILY_NAME may be null
when data is written .
 put . addColumn (COLUMN_FAM ILY_NAME , COLUMN_NAM E ,
COLUMN_VAL UE);

 // Run put for Table , and use HBase APIs to
write the row of data to Table Store
 table . put (put);

• Read Data
Read data of the specified row.
 // Create a Get object to read the row whose
primary key is ROW_KEY .

Issue: 20190422 45

Table Store Functions / 6 HBase
 Result getResult = table . get (new Get (ROW_KEY));
 Result result = table . get (get);

 // Print the results
 String value = Bytes . toString (getResult . getValue (
COLUMN_FAM ILY_NAME , COLUMN_NAM E));
 System . out . println (" Get one row by row key ");
 System . out . printf ("\ t % s = % s \ n ", Bytes . toString (
ROW_KEY), value);

• Scan data
Read data in the specified range.
 Scan data of all rows in the table
 System . out . println (" Scan for all rows :");
 Scan scan = new Scan ();

 ResultScan ner scanner = table . getScanner (scan);

 // Print the results cyclically
 for (Result row : scanner) {
 byte [] valueBytes = row . getValue (COLUMN_FAM ILY_NAME ,
COLUMN_NAM E);
 System . out . println ('\ t ' + Bytes . toString (valueBytes
));
 }

• Delete a table
Use Admin APIs to delete a table.
 print (" Delete the table ");
 admin . disableTab le (table . getName ());
 admin . deleteTabl e (table . getName ());

Complete code
package samples ;

import org . apache . hadoop . conf . Configurat ion ;
import org . apache . hadoop . hbase . HBaseConfi guration ;
import org . apache . hadoop . hbase . HColumnDes criptor ;
import org . apache . hadoop . hbase . HTableDesc riptor ;
import org . apache . hadoop . hbase . TableName ;
import org . apache . hadoop . hbase . client .*;
import org . apache . hadoop . hbase . util . Bytes ;

import java . io . IOExceptio n ;

public class HelloWorld {

 private static final byte [] TABLE_NAME = Bytes .
toBytes (" HelloTable store ");

 private static final byte [] ROW_KEY = Bytes . toBytes
(" row_1 ");

 private static final byte [] COLUMN_FAM ILY_NAME =
Bytes . toBytes (" f ");

 private static final byte [] COLUMN_NAM E = Bytes .
toBytes (" col_1 ");

46 Issue: 20190422

Table Store Functions / 6 HBase
 private static final byte [] COLUMN_VAL UE = Bytes .
toBytes (" col_value ");

 public static void main (String [] args) {
 helloWorld ();
 }

 private static void helloWorld () {

 try {
 Configurat ion config = HBaseConfi guration .
create ();

 Connection connection = Connection Factory .
createConn ection (config);

 Admin admin = connection . getAdmin ();

 HTableDesc riptor descriptor = new HTableDesc
riptor (TableName . valueOf (TABLE_NAME));

 descriptor . addFamily (new HColumnDes criptor (
COLUMN_FAM ILY_NAME));

 System . out . println (" Create table " + descriptor
. getNameAsS tring ());

 admin . createTabl e (descriptor);

 Table table = connection . getTable (TableName .
valueOf (TABLE_NAME));

 System . out . println (" Write one row to the
table ");

 Put put = new Put (ROW_KEY);
 put . addColumn (COLUMN_FAM ILY_NAME , COLUMN_NAM E
, COLUMN_VAL UE);

 table . put (put);

 Result getResult = table . get (new Get (ROW_KEY
));

 String value = Bytes . toString (getResult .
getValue (COLUMN_FAM ILY_NAME , COLUMN_NAM E));

 System . out . println (" Get a one row by row
 key ");

 System . out . printf ("\ t % s = % s \ n ", Bytes .
toString (ROW_KEY), value);

 Scan scan = new Scan ();

 System . out . println (" Scan for all rows :");
 ResultScan ner scanner = table . getScanner (scan
);

 for (Result row : scanner) {
 byte [] valueBytes = row . getValue (COLUMN_FAM
ILY_NAME , COLUMN_NAM E);

 System . out . println ('\ t ' + Bytes . toString (
valueBytes));

 }

 System . out . println (" Delete the table ");
 admin . disableTab le (table . getName ());
 admin . deleteTabl e (table . getName ());

 table . close ();
 admin . close ();
 connection . close ();
 } catch (IOExceptio n e) {

Issue: 20190422 47

Table Store Functions / 6 HBase

 System . err . println (" Exception while running
HelloTable store : " + e . toString ());

 System . exit (1);
 }
 }
}

48 Issue: 20190422

Table Store Functions / 7 SearchIndex

7 SearchIndex
7.1 Overview

Searchindex is an advanced index structure. Searchindex supports multiple advanced
 queries, including the ad-hoc query, fuzzy query, full-text retrieval, sorting, range
query, nested query, and spatial query.

Synchronize indexes
After you enable the Searchindex feature for a table, incremental data written to
the table is synchronized to the storage module of Table Store, and then Table Store
indicates the successful write operation in the response. Meanwhile, an asynchrono
us thread reads incremental data from the storage module and creates a Searchindex
structure. This asynchronous process has a latency from several milliseconds up to a
few seconds, but does not affect the write performance of Table Store.

Restrictions
Compared with the KeyValue storage module of Table Store, Searchindex does not
support the following features.
Feature Description
TTL You cannot create a Searchindex structure in a table

 where you have specified the Time To Live (TTL)
parameter.

Max Versions You cannot create a Searchindex structure in a table
where you have specified the Max Versions parameter.

Custom versions You can customize the timestamp whenever writing
data to an attribute that allows only one version. If you
 first write a large version number and then a small
version number, the index of the large version number
may be overwritten with the index of the small version
number.

Features
Searchindex provides the following features:
• Ad-hoc query

Issue: 20190422 49

Table Store Functions / 7 SearchIndex

• Fuzzy query
• Range query
• Full-text retrieval
• Spatial query
• Prefix query
• Nested query
For more information, see Features.

Usage
Table Store provides Searchindex API operations and SDKs in multiple languages to
allow you easily use Searchindex.

Scenarios
Searchindex allows Table Store to be applicable to multiple scenarios, such as
metadata, spatio-temporal data, time series data, and full-text retrieval.

Billing
The metering and billing of index tables is separated from primary tables.

7.2 Features
Table Store provides the Searchindex structure in addition to the primary key prefix
query to help you easily search data.
Searchindex supports the following indexes:
• Inverted index: a basic data structure of multiple queries in a search engine.

This data structure improves query performance. If you create inverted indexes
 for some attribute columns, Table Store can use the ad-hoc query that flexibly
combines multiple fields. Therefore, you can have more options besides the fields
such as gender, age, and enumeration.

• Multi-dimensional spatial index: a data structure used in a geographic information
 system (GIS) or other multi-dimensional spatial queries. This structure is usually
 used in spatio-temporal data scenarios to optimize the spatial query performanc
e. Table Store can use the multi-dimensional spatial index to query a range of
geographical points such as nearby persons, points in a rectangle, and points in a
polygon. The system works as a powerful comprehensive data processing platform
for big data filtering, Internet of Vehicles (IoV), and mobile apps.

50 Issue: 20190422

Table Store Functions / 7 SearchIndex

• Columnstore forward index: a data structure suitable for database features such as
sorting, statistics, and aggregation.

Searchindex supports the following features:
Non-primary key query

Searchindex supports the query by non-primary keys. You can call the CreateSear
chIndex operation to create the Searchindex structure for the required column and
search data by the value of the column.

Ad-hoc query
Neither NoSQL databases nor relational databases can perform an excellent ad-
hoc query. For example, for a table that has four columns, you may create seven
 secondary indexes in relational databases if you do not know the correct query
method or have to search multiple fields. If the table is added with one more column,
the query may require more than 10 indexes. However, Searchindex only requires the
 existing four columns and supports relational operators such as && (AND), (OR), and
 ! (NOT).

GIS
A GIS is a powerful feature used in geographical applications such as IoV and IoT. For
 example, you can use the GIS to search nearby vehicles and points in a polygon such
as an electric fence. Table Store provides the Searchindex feature, so you can use the
GIS to search nearby vehicles within a radius of N km, points in a rectangle, or points
in a polygon. In this way, you can conveniently develop big data applications based on
 the GIS.

Sorting
Table Store supports multiple types of sorting, such as forward sorting, reverse
sorting, single-field sorting, and multi-field sorting, so you can easily sort global data.

Full-text retrieval
Table Store can tokenize data based on inverted indexes and support full-text
retrieval. You can recall data, but cannot perform any correlation analysis. The
system tokenizes data in two ways: single_word and max_word.

Issue: 20190422 51

Table Store Functions / 7 SearchIndex

Fuzzy query
Table Store enables the fuzzy query. You can create an inverted index for an attribute
column to start the fuzzy query in this field.

Prefix query
You can create an inverted index for an attribute column to start the prefix query in
this field.

Nested query
The nested query allows you to easily build models from complex data.
Such online data as pictures and labels have some complex multi-layered structures
. For example, a database stores a large number of pictures, and each picture has
multiple elements, such as houses, cars, or people. Each element in a picture has a
unique score. The score is evaluated according to the size and position of an element
in a picture. Therefore, each picture has multiple labels. Each label has a name and a
weighted score. You can use the nested query based on the conditions or field names
of the labels.

Cardinality
If an attribute contains a large amount of data, the query result based on this
attribute may have many repeats. However, cardinality allows you to specify the
highest frequency of occurrence of an attribute value to achieve high cardinality.

Total number of rows
Table Store returns the total number of rows in a result set whenever you apply
Searchindex. If you do not specify any query condition for Searchindex, the system
 returns the total number of rows where you have created indexes. When you stop
writing new data to a table and create indexes on all attributes, the system returns the
 total number of rows in the table. This feature applies to data verification and data
management.
If any issues occur when you use Searchindex, you can request customer service by
using any of the following methods:
• Submit a ticket in the Table Store console.

• Join the DingTalk group of Table Store technical support: 11789671.

52 Issue: 20190422

https://selfservice.console.aliyun.com/ticket/createIndex

Table Store Functions / 8 Global secondary indexes

8 Global secondary indexes
8.1 Overview

Before you start using global secondary indexes, you need to understand the
following basic concepts, restrictions, and precautions.

Concepts
Terminology Description
Index You can create an index on some

attributes of a table. An index is read-
only.

Pre-defined attribute Table Store uses a schema-free model.
You can write the unlimited number of
attributes to a row instead of specifying
a fixed number of attributes in a schema
. You can also specify pre-defined
attributes and their data types when you
create a table.

Single-field index You can only create an index on one table
 attribute.

Compound index You can create an index on multiple
attribute groupings of a table. In addition
, you can sort by these attributes.

Projected attribute You can copy pre-defined attributes to
 an index. None of these attributes are
specified as a primary key.

Auto-complement The primary keys of a table are copied to
 an index automatically when you create
an index.

Restrictions
• You can create a maximum of 16 indexes on a table.
• An index can have a maximum of four indexed attributes. These attributes consist

of base table primary keys and pre-defined attributes.

Issue: 20190422 53

Table Store Functions / 8 Global secondary indexes

• You can specify Integer, String, or Binary for an indexed attribute as its data type.
The attribute restrictions are the same as those for a primary key.

• When you specify Integer or Binary for an attribute, the size restrictions of these
data types are the same as those for a base table primary key.

• When you specify String or Binary for an attribute, the attribute restrictions are
the same as those for a base table.

• You cannot create an index on a table that is configured with the TTL property. If
you want to create such indexes, contact Table Store technical support by DingTalk
.

• You cannot create an index on a table that is configured with the Max Versions
property.

• You cannot use Stream on an index.
• You cannot create an index on a table with an auto increment primary key. If you

have such indexes, open a ticket to Table Store technical support.
Precautions

• Table Store will perform auto-complement operations on each index. When you
scan an index, you must specify a primary key value range. In general, the range is
from negative to positive infinity. For example, a table includes the primary keys
PK0 and PK1 and the pre-defined attribute Defined0 .

When you create an index on the Defined0 attribute, Table Store will generate
an index that have Defined0 , PK0 , and primary keys PK1 . When you create
an index on the Defined0 and PK1 attributes, Table Store will build an index
that have Defined0 , and primary keys PK1 , PK0 . When you create an index on
the PK attribute, Table Store will build an index with the primary keys PK1 and
PK0 . When you create an index, you can only specify attributes to be indexed.

Table Store will perform auto-complement operations on the index later. For
example, a table with primary keys PK0 and PK1, and the pre-defined attribute
Defined0.
- When you create an index on the Defined0 attribute, Table Store will build the

index that have the primary keys Defined0, PK0, and PK1.
- When you create an index on the PK1, Table Store will build the index that has

the primary keys PK0 and PK1.

54 Issue: 20190422

Table Store Functions / 8 Global secondary indexes

• You can specify a table pre-defined attributes as index attributes. When you
specify a pre-defined attribute as an index attribute, you can query this index to
read the attribute value instead of querying the base table. This configuration will
 increase storage costs. If you did not specify a pre-defined attribute as an index
 attribute, you must query the base table. You can select a query mode based on
your requirements and costs.

• We do not recommend that you specify an attribute related to the time or date as
the first attribute of primary keys of an index because the configuration may lead
 to slow index updates. We recommend that you enter an attribute related to the
time or date as the input for a hash function and create an index on the attribute
 that has been processed by the hash function. If you have such requirements,
contact Table Store technical support by DingTalk.

• We do not recommend you define an attribute with low cardinality, even an
attribute with enumerable values, as the first attribute of primary keys of an
index. For example, the configured value gender restricts the index horizontal
scalability and leads to poor data writing performance.

8.2 Introduction
A global secondary index in Table Store has the following features:
• Supports asynchronous data synchronization between a table and table indexes

. Under normal network conditions, the data synchronization latency is in
milliseconds.

• Supports single-field indexes, compound indexes, and covered indexes. Pre-
defined attributes are attributes specified in advance in a table. You can create an
index on any pre-defined attribute or on a table primary key. In addition, you can
specify a table pre-defined attributes as index attributes or choose not to specify
attributes. If you specify pre-defined attributes as the index attributes, you can
directly query this index to retrieve data from the base table instead of querying
the table. For example, a base table includes three primary keys PK0, PK1, and

Issue: 20190422 55

Table Store Functions / 8 Global secondary indexes

PK2. Additionally, the table have three pre-defined attributes Defined0, Defined1,
and Defined2.
- You can create an index on PK2 without specifying an attribute.
- You can create an index on PK2 and specify Defined0 as an attribute.
- You can create an index on PK3 and PK2 without specifying an attribute.
- You can create an index on PK3 and PK2 and specify Defined0 as an attribute.
- You can create an index on PK2, PK1, and PK3 and specify Defined0, Defined1,

and Defined2 as an attribute.
- You can create an index on Defined0 without specifying an attribute.
- You can create an index on Define0 and PK1 and specify Defined1 as an attribute

.
- You can create an index on Define1 and Define0 without specifying an attribute.
- You can create an index on Define1 and Define0 and specify Defined2 as an

attribute.
• Supports sparse indexes. You can specify a base table pre-defined attribute as an

index attribute. This row will be indexed even when all primary keys exist despite
the pre-defined attribute being excluded from the base table row. However, this
row will not be indexed when a row excludes one or more indexed attributes. For
example, a base table includes three primary keys that are PK0, PK1, and PK2.
Additionally, the table have three pre-defined attributes Defined0, Defined1, and
Defined2. You can create an index on Defined0 and Defined1, and specify Defined2
as an attribute.
- An index will include a row in a base table that excludes the Defined2 attribute

and includes pre-defined attributes Defined0 and Defined1.
- This row is excluded from the index when a base table row excludes Defined1

but includes the pre-defined attributes Defined0 and Defined2.
• Supports creating and deleting indexes on an existing base table. In later versions

, existing data in a base table will be copied to an index when you create this index
on the base table.

• When you query an index, the query is not automatically performed on the base
table of the created index. You need to query the base table. This feature will be
supported in later versions.

56 Issue: 20190422

Table Store Functions / 8 Global secondary indexes

The Table Store global secondary index feature is now available in China (Zhangjiako
u) region. You can contact Table Store technical support by DingTalk for a trial or
enter the ID 111789671 to join the DingTalk group for further information.

8.3 Scenarios
The global secondary index is a new Table Store feature. When you create a table
, the primary index is composed of all the primary keys. Table Store uses primary
keys to uniquely identify each row in a table. However, you need to query a table by
attributes, primary keys, or primary keys that are not from the first column in more
scenarios. Due to insufficient indexes, you can only fetch the results by scanning the
 entire table and setting filter conditions. If you obtain few results after querying a
table with large data volume, the query can cause excessive consumption of resources
.
The Table Store Global secondary index feature is similar to that of DynamoDB GSI

and HBase Phoenix. You can create an index with one or more specified attributes. In
addition, you can sort data in the created index by specified attributes. Every data you
write to a base table will be asynchronously synchronized to the created index on the
base table. You only have to write data to a base table, and can query indexes created
on this base table. This configuration greatly improves query performance in most
scenarios. For example, you can create a base table for a common phone log query as
follows:
CellNumber StartTime

 (Unix
timestamps)

CalledNumber Duration BaseStatio
nNumber

123456 1532574644 654321 60 1
234567 1532574714 765432 10 1
234567 1532574734 123456 20 3
345678 1532574795 123456 5 2
345678 1532574861 123456 100 2
456789 1532584054 345678 200 3

• CellNumber and StartTime are primary keys that represent a calling

number and the start time of a call , respectively.

Issue: 20190422 57

https://docs.aws.amazon.com/zh_cn/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/zh_cn/amazondynamodb/latest/developerguide/GSI.html
http://phoenix.apache.org/secondary_indexing.html

Table Store Functions / 8 Global secondary indexes

• CalledNumb er , Duration , and BaseStatio nNumber are pre-defined
attributes that represent a called number , call duration , and the

 base station number .
When you end a phone call, the call information is written to this table. You can
create global secondary indexes on CalledNumb er and BaseStatio nNumber

respectively to meet various query requirements. For more information about how to
create an index, see example in Appendix.
If you have the following query requirements:
• You want to fetch the rows where the CellNumber value matches 234567 .

You can sort data by primary keys in Table Store. In addition, you can call the
getRange method to scan data sequentially. When you call the getRange

method, you need to specify 234567 both as the minimum and maximum values
for PK0 (CellNumber). Meanwhile, you need to specify 0 as the minimum value
of PK1 (StartTime) and specify INT_MAX as the maximum value of PK1. Then you
can query the base table.
private static void getRangeFr omMainTabl e (SyncClient
client , long cellNumber)
{
 RangeRowQu eryCriteri a rangeRowQu eryCriteri a = new
RangeRowQu eryCriteri a (TABLE_NAME);

 // You can specify primary keys .
 PrimaryKey Builder startPrima ryKeyBuild er =
PrimaryKey Builder . createPrim aryKeyBuil der ();
 startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_1 , PrimaryKey Value . fromLong (cellNumber
));
 startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_2 , PrimaryKey Value . fromLong (0));
 rangeRowQu eryCriteri a . setInclusi veStartPri maryKey (
startPrima ryKeyBuild er . build ());

 // You can specify primary keys .
 PrimaryKey Builder endPrimary KeyBuilder = PrimaryKey
Builder . createPrim aryKeyBuil der ();
 endPrimary KeyBuilder . addPrimary KeyColumn (PRIMARY_KE
Y_NAME_1 , PrimaryKey Value . fromLong (cellNumber));
 endPrimary KeyBuilder . addPrimary KeyColumn (PRIMARY_KE
Y_NAME_2 , PrimaryKey Value . INF_MAX);
 rangeRowQu eryCriteri a . setExclusi veEndPrima ryKey (
endPrimary KeyBuilder . build ());

 rangeRowQu eryCriteri a . setMaxVers ions (1);

 String strNum = String . format ("% d ", cellNumber);
 System . out . println (" A cell number " + strNum + "
makes the following calls :");

58 Issue: 20190422

Table Store Functions / 8 Global secondary indexes
 while (true) {
 GetRangeRe sponse getRangeRe sponse = client .
getRange (new GetRangeRe quest (rangeRowQu eryCriteri a));
 for (Row row : getRangeRe sponse . getRows ()) {
 System . out . println (row);
 }

 // If the value of nextStartP rimaryKey is not
 null , you can continue to read data from the
base table .
 if (getRangeRe sponse . getNextSta rtPrimaryK ey () !
 = null) {
 rangeRowQu eryCriteri a . setInclusi veStartPri
maryKey (getRangeRe sponse . getNextSta rtPrimaryK ey ());
 } else {
 break ;
 }
 }
}

• If you want to fetch the rows where the value of CalledNumber is 123456 .
Table Store sorts all rows by primary keys. Because CalledNumber is a pre-defined
attribute, you cannot directly query a table by this attribute. Therefore, you can
query an index that is created on CalledNumb er .
IndexOnBeC alledNumbe r :

PK0 PK1 PK2
CalledNumber CellNumber StartTime
123456 234567 1532574734
123456 345678 1532574795
123456 345678 1532574861
654321 123456 1532574644
765432 234567 1532574714
345678 456789 1532584054

Note:
Table Store will auto complement primary keys of an index. When building this
index, Table Store adds all primary keys of a base table to an index created on this
base table. Therefore, the index includes three primary keys.

Because IndexOnBeC alledNumbe r is an index that is created on
CalledNumber, you can directly query this index to fetch results.
private static void getRangeFr omIndexTab le (SyncClient
client , long cellNumber) {

Issue: 20190422 59

Table Store Functions / 8 Global secondary indexes
 RangeRowQu eryCriteri a rangeRowQu eryCriteri a = new
RangeRowQu eryCriteri a (INDEX0_NAM E);

 // You can specify primary keys .
 PrimaryKey Builder startPrima ryKeyBuild er =
PrimaryKey Builder . createPrim aryKeyBuil der ();
 startPrima ryKeyBuild er . addPrimary KeyColumn (
DEFINED_CO L_NAME_1 , PrimaryKey Value . fromLong (cellNumber
));
 startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_1 , PrimaryKey Value . INF_MIN);
 startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_2 , PrimaryKey Value . INF_MAX);
 rangeRowQu eryCriteri a . setInclusi veStartPri maryKey (
startPrima ryKeyBuild er . build ());

 // You can specify primary keys .
 PrimaryKey Builder endPrimary KeyBuilder = PrimaryKey
Builder . createPrim aryKeyBuil der ();
 endPrimary KeyBuilder . addPrimary KeyColumn (DEFINED_CO
L_NAME_1 , PrimaryKey Value . fromLong (cellNumber));
 endPrimary KeyBuilder . addPrimary KeyColumn (PRIMARY_KE
Y_NAME_1 , PrimaryKey Value . INF_MAX);
 endPrimary KeyBuilder . addPrimary KeyColumn (PRIMARY_KE
Y_NAME_2 , PrimaryKey Value . INF_MAX);
 rangeRowQu eryCriteri a . setExclusi veEndPrima ryKey (
endPrimary KeyBuilder . build ());

 rangeRowQu eryCriteri a . setMaxVers ions (1);

 String strNum = String . format ("% d ", cellNumber);
 System . out . println (" A cell number " + strNum + "
was called by the following numbers ");
 while (true) {
 GetRangeRe sponse getRangeRe sponse = client .
getRange (new GetRangeRe quest (rangeRowQu eryCriteri a));
 for (Row row : getRangeRe sponse . getRows ()) {
 System . out . println (row);
 }

 // If the value of nextStartP rimaryKey is not
 null , you can continue to read data from the
base table .
 if (getRangeRe sponse . getNextSta rtPrimaryK ey () !
 = null) {
 rangeRowQu eryCriteri a . setInclusi veStartPri
maryKey (getRangeRe sponse . getNextSta rtPrimaryK ey ());
 } else {
 break ;
 }
 }

60 Issue: 20190422

Table Store Functions / 8 Global secondary indexes
}

• If you want to fetch the rows where the value of BaseStationNumber matches 002

and the value of StartTime matches 1532574740 .
This query specifies both BaseStatio nNumber and StartTime as conditions.
Therefore, you can create a compound index on the BaseStatio nNumber and
StartTime .
IndexOnBas eStation1 :

PK0 PK1 PK2
BaseStationNumber StartTime CellNumber
001 1532574644 123456
001 1532574714 234567
002 1532574795 345678
002 1532574861 345678
003 1532574734 234567
003 1532584054 456789

You can query the IndexOnBas eStation1 index.
private static void getRangeFr omIndexTab le (SyncClient
client ,
 long baseStatio
nNumber ,
 long startTime) {
 RangeRowQu eryCriteri a rangeRowQu eryCriteri a = new
RangeRowQu eryCriteri a (INDEX1_NAM E);

 // You can specify primary keys .
 PrimaryKey Builder startPrima ryKeyBuild er =
PrimaryKey Builder . createPrim aryKeyBuil der ();
 startPrima ryKeyBuild er . addPrimary KeyColumn (
DEFINED_CO L_NAME_3 , PrimaryKey Value . fromLong (baseStatio
nNumber));
 startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_2 , PrimaryKey Value . fromLong (startTime
));
 startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_1 , PrimaryKey Value . INF_MIN);
 rangeRowQu eryCriteri a . setInclusi veStartPri maryKey (
startPrima ryKeyBuild er . build ());

 // You can specify primary keys .
 PrimaryKey Builder endPrimary KeyBuilder = PrimaryKey
Builder . createPrim aryKeyBuil der ();
 endPrimary KeyBuilder . addPrimary KeyColumn (DEFINED_CO
L_NAME_3 , PrimaryKey Value . fromLong (baseStatio nNumber));

Issue: 20190422 61

Table Store Functions / 8 Global secondary indexes
 endPrimary KeyBuilder . addPrimary KeyColumn (PRIMARY_KE
Y_NAME_2 , PrimaryKey Value . INF_MAX);
 endPrimary KeyBuilder . addPrimary KeyColumn (PRIMARY_KE
Y_NAME_1 , PrimaryKey Value . INF_MAX);
 rangeRowQu eryCriteri a . setExclusi veEndPrima ryKey (
endPrimary KeyBuilder . build ());

 rangeRowQu eryCriteri a . setMaxVers ions (1);

 String strBaseSta tionNum = String . format ("% d ",
baseStatio nNumber);
 String strStartTi me = String . format ("% d ", startTime
);
 System . out . println (" All called numbers forwarded
 by the base station " + strBaseSta tionNum + " that
start from " + strStartTi me + " are listed as follows
:");
 while (true) {
 GetRangeRe sponse getRangeRe sponse = client .
getRange (new GetRangeRe quest (rangeRowQu eryCriteri a));
 for (Row row : getRangeRe sponse . getRows ()) {
 System . out . println (row);
 }

 // If the nextStartP rimaryKey value is not
null , you can continue to read data from the base
 table .
 if (getRangeRe sponse . getNextSta rtPrimaryK ey () !
 = null) {
 rangeRowQu eryCriteri a . setInclusi veStartPri
maryKey (getRangeRe sponse . getNextSta rtPrimaryK ey ());
 } else {
 break ;
 }
 }
}

• If you want to fetch the rows where the value of BaseStationNumber 003 matches
the StartTime value range from 1532574861 to 1532584054 . Only the Duration
will be displayed in the rows.
In this query, you specify both BaseStatio nNumber and StartTime as
conditions. Only Duration appears in the result set. You can issue a query on the
last index, and then fetch Duration by querying the base table.
private static void getRowFrom IndexAndMa inTable (
SyncClient client ,
 long baseStatio
nNumber ,
 long startTime ,
 long endTime ,
 String colName)
 {
 RangeRowQu eryCriteri a rangeRowQu eryCriteri a = new
RangeRowQu eryCriteri a (INDEX1_NAM E);

 // You can specify primary keys .
 PrimaryKey Builder startPrima ryKeyBuild er =
PrimaryKey Builder . createPrim aryKeyBuil der ();

62 Issue: 20190422

Table Store Functions / 8 Global secondary indexes
 startPrima ryKeyBuild er . addPrimary KeyColumn (
DEFINED_CO L_NAME_3 , PrimaryKey Value . fromLong (baseStatio
nNumber));
 startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_2 , PrimaryKey Value . fromLong (startTime
));
 startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_1 , PrimaryKey Value . INF_MIN);
 rangeRowQu eryCriteri a . setInclusi veStartPri maryKey (
startPrima ryKeyBuild er . build ());

 // You can specify primary keys .
 PrimaryKey Builder endPrimary KeyBuilder = PrimaryKey
Builder . createPrim aryKeyBuil der ();
 endPrimary KeyBuilder . addPrimary KeyColumn (DEFINED_CO
L_NAME_3 , PrimaryKey Value . fromLong (baseStatio nNumber));
 endPrimary KeyBuilder . addPrimary KeyColumn (PRIMARY_KE
Y_NAME_2 , PrimaryKey Value . fromLong (endTime));
 endPrimary KeyBuilder . addPrimary KeyColumn (PRIMARY_KE
Y_NAME_1 , PrimaryKey Value . INF_MAX);
 rangeRowQu eryCriteri a . setExclusi veEndPrima ryKey (
endPrimary KeyBuilder . build ());

 rangeRowQu eryCriteri a . setMaxVers ions (1);

 String strBaseSta tionNum = String . format ("% d ",
baseStatio nNumber);
 String strStartTi me = String . format ("% d ", startTime
);
 String strEndTime = String . format ("% d ", endTime);

 System . out . println (" The list of calls forwarded
 by the base station " + strBaseSta tionNum + " from "
 + strStartTi me + " to " + strEndTime + " is listed as
follows :");
 while (true) {
 GetRangeRe sponse getRangeRe sponse = client .
getRange (new GetRangeRe quest (rangeRowQu eryCriteri a));
 For (Row row : fig . getrows ()){
 PrimaryKey curIndexPr imaryKey = row . getPrimary
Key ();
 PrimaryKey Column mainCalled Number = curIndexPr
imaryKey . getPrimary KeyColumn (PRIMARY_KE Y_NAME_1);
 PrimaryKey Column callStartT ime = curIndexPr
imaryKey . getPrimary KeyColumn (PRIMARY_KE Y_NAME_2);
 PrimaryKey Builder mainTableP KBuilder =
PrimaryKey Builder . createPrim aryKeyBuil der ();
 mainTableP KBuilder . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_1 , mainCalled Number . getValue ());
 mainTableP KBuilder . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_2 , callStartT ime . getValue ());
 PrimaryKey mainTableP K = mainTableP KBuilder .
build (); // You can specify primary keys for the
base table .

 // You can query the base table .
 SingleRowQ ueryCriter ia criteria = new
SingleRowQ ueryCriter ia (TABLE_NAME , mainTableP K);
 criteria . addColumns ToGet (colName); // You can
 read the Duration attribute value of the base
table .
 // You can specify 1 to indicate the
latest data version will be read .
 criteria . setMaxVers ions (1);

Issue: 20190422 63

Table Store Functions / 8 Global secondary indexes
 GetRowResp onse getRowResp onse = client . getRow
(new GetRowRequ est (criteria));
 Row mainTableR ow = getRowResp onse . getRow ();

 System . out . println (mainTableR ow);
 }

 // If the nextStartP rimaryKey value is not
null , you can continue to read data from the base
 table .
 if (getRangeRe sponse . getNextSta rtPrimaryK ey () !
 = null) {
 rangeRowQu eryCriteri a . setInclusi veStartPri
maryKey (getRangeRe sponse . getNextSta rtPrimaryK ey ());
 } else {
 break ;
 }
 }
}

To improve query performance, you can create a compound index on
BaseStatio nNumber and StartTime . You can specify Duration as an

attribute of this index.
The following index is created.
IndexOnBas eStation2 :

PK0 PK1 PK2 Defined0
BaseStatio
nNumber

StartTime CellNumber Duration

001 1532574644 123456 600
001 1532574714 234567 10
002 1532574795 345678 5
002 1532574861 345678 100
003 1532574734 234567 20
003 1532584054 456789 200

You can query the IndexOnBas eStation2 index:
private static void getRangeFr omIndexTab le (SyncClient
client ,
 long baseStatio
nNumber ,
 long startTime ,
 long endTime ,
 String colName) {
 RangeRowQu eryCriteri a rangeRowQu eryCriteri a = new
RangeRowQu eryCriteri a (INDEX2_NAM E);

 // You can specify primary keys .

64 Issue: 20190422

Table Store Functions / 8 Global secondary indexes
 PrimaryKey Builder startPrima ryKeyBuild er =
PrimaryKey Builder . createPrim aryKeyBuil der ();
 startPrima ryKeyBuild er . addPrimary KeyColumn (
DEFINED_CO L_NAME_3 , PrimaryKey Value . fromLong (baseStatio
nNumber));
 startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_2 , PrimaryKey Value . fromLong (startTime
));
 startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_1 , PrimaryKey Value . INF_MIN);
 rangeRowQu eryCriteri a . setInclusi veStartPri maryKey (
startPrima ryKeyBuild er . build ());

 // You can specify primary keys .
 PrimaryKey Builder endPrimary KeyBuilder = PrimaryKey
Builder . createPrim aryKeyBuil der ();
 endPrimary KeyBuilder . addPrimary KeyColumn (DEFINED_CO
L_NAME_3 , PrimaryKey Value . fromLong (baseStatio nNumber));
 endPrimary KeyBuilder . addPrimary KeyColumn (PRIMARY_KE
Y_NAME_2 , PrimaryKey Value . fromLong (endTime));
 endPrimary KeyBuilder . addPrimary KeyColumn (PRIMARY_KE
Y_NAME_1 , PrimaryKey Value . INF_MAX);
 rangeRowQu eryCriteri a . setExclusi veEndPrima ryKey (
endPrimary KeyBuilder . build ());

 // You can specify the attribute name to read .
 rangeRowQu eryCriteri a . addColumns ToGet (colName);

 rangeRowQu eryCriteri a . setMaxVers ions (1);

 String strBaseSta tionNum = String . format ("% d ",
baseStatio nNumber);
 String strStartTi me = String . format ("% d ", startTime
);
 String strEndTime = String . format ("% d ", endTime);

 System . out . println (" The duration of calls
forwarded by the base station " + strBaseSta tionNum + "
from " + strStartTi me + " to " + strEndTime + " is listed
as follows :");
 while (true) {
 GetRangeRe sponse getRangeRe sponse = client .
getRange (new GetRangeRe quest (rangeRowQu eryCriteri a));
 for (Row row : getRangeRe sponse . getRows ()) {
 System . out . println (row);
 }

 // If the nextStartP rimaryKey value is not
null , you can continue to read data from the base
 table .
 if (getRangeRe sponse . getNextSta rtPrimaryK ey () !
 = null) {
 rangeRowQu eryCriteri a . setInclusi veStartPri
maryKey (getRangeRe sponse . getNextSta rtPrimaryK ey ());
 } else {
 break ;
 }
 }
}

Issue: 20190422 65

Table Store Functions / 8 Global secondary indexes
```

Hence, if you do not specify Duration  as an index attribute, you have to retrieve
Duration by querying the base table. However, when you specify Duration  as an
index attribute, this attribute data is stored in the base table and the index. The
configuration improves query performance at the cost of disk space consumption.

• If you want to fetch the following values from a result set: total call duration,
the average call duration, the maximum call duration, and the minimum call
duration.This result set is a value of BaseStationNumber 003  with a StartTime
value range from 1532574861  to 1532584054 .
Compared to the last query, return is not required for each call duration. However,
return is required for duration statistics. You can fetch results using the same
method as the last query. Then you can perform Duration calculations to obtain
the required result. In addition, you can execute SQL statements in SQL-on-OTS
to obtain statistics. For more information about how to activate SQL-on-OTS, see 
OLAP on Table Store: serverless SQL big data analysis on Data Lake Analytics . You can use
most MySQL syntax in SQL-on-OTS. Additionally, with SQL-on-OTS, you can easily
process complicated calculations that are applicable to your business.

8.4 Java SDK for global secondary indexes
In this section, you can call the createTable method and the scanFromIndex method
in the Java SDK to perform the following operations.
• You can create a base table and an index on this base table at the same time.

private  static  void  createTabl e ( SyncClient  client ) {
    TableMeta  tableMeta  = new  TableMeta ( TABLE_NAME );
    tableMeta . addPrimary KeyColumn ( new  PrimaryKey Schema (
PRIMARY_KE Y_NAME_1 , PrimaryKey Type . STRING )); // You  can
 specify  a  primary  key  for  a  base  table .
    tableMeta . addPrimary KeyColumn ( new  PrimaryKey Schema (
PRIMARY_KE Y_NAME_2 , PrimaryKey Type . INTEGER )); // 为主表设置
PK 列
    tableMeta . addDefined Column ( new  DefinedCol umnSchema (
DEFINED_CO L_NAME_1 , DefinedCol umnType . STRING )); // You  
can  specify  a  pre - defined  attribute  for  the  base  
table .
    tableMeta . addDefined Column ( new  DefinedCol umnSchema (
DEFINED_CO L_NAME_2 , DefinedCol umnType . INTEGER )); // You  
can  specify  a  pre - defined  attribute  for  the  base  
table .
    tableMeta . addDefined Column ( new  DefinedCol umnSchema (
DEFINED_CO L_NAME_3 , DefinedCol umnType . INTEGER )); // You  
can  specify  a  pre - defined  attribute  for  the  base  
table .

66 Issue: 20190422

https://yq.aliyun.com/articles/618501?spm=a2c4e.11155435.0.0.701733127JMFla
https://yq.aliyun.com/articles/618501?spm=a2c4e.11155435.0.0.701733127JMFla


Table Store Functions /  8 Global secondary indexes

    int  timeToLive  = - 1 ; // You  can  specify  - 1  as  
the  Time  To  Live  ( TTL ) value  so  the  data  never  
expires .
    int  maxVersion s  = 1 ; // The  maximum  version  
number . You  can  only  specify  1  as  the  version  
value  when  a  base  table  have  one  or  more  indexes
.

    TableOptio ns  tableOptio ns  = new  TableOptio ns (
timeToLive , maxVersion s );

    ArrayList < IndexMeta > indexMetas  = new  ArrayList <
IndexMeta >();
    IndexMeta  indexMeta  = new  IndexMeta ( INDEX_NAME ); // 
You  can  create  an  index .
    indexMeta . addPrimary KeyColumn ( DEFINED_CO L_NAME_1 ); // 
You  can  specify  DEFINED_CO L_NAME_1  of  the  base  
table  as  an  index  primary  key .
    indexMeta . addDefined Column ( DEFINED_CO L_NAME_2 ); // 
You  can  specify  DEFINED_CO L_NAME_2  of  the  base  
table  as  an  index  primary  key .
    indexMetas . add ( indexMeta ); // You  can  add  the  
index  to  the  base  table .

    CreateTabl eRequest  request  = new  CreateTabl eRequest (
tableMeta , tableOptio ns , indexMetas ); // You  can  create
 the  base  table .

    client . createTabl e ( request );
}

• You can create an index on a base table.
private  static  void  createInde x ( SyncClient  client ) {
    IndexMeta  indexMeta  = new  IndexMeta ( INDEX_NAME ); // 
You  can  create  an  index .
    indexMeta . addPrimary KeyColumn ( DEFINED_CO L_NAME_2 ); // 
You  can  specify  DEFINED_CO L_NAME_2  as  the  first  
attribute  of  an  index  primary  key .
    indexMeta . addPrimary KeyColumn ( DEFINED_CO L_NAME_1 ); // 
You  can  specify  DEFINED_CO L_NAME_1  as  the  second  
attribute  of  an  index  primary  key .
    CreateInde xRequest  request  = new  CreateInde xRequest (
TABLE_NAME , indexMeta , false ); // You  can  create  an  
index  on  a  base  table .
    client . createInde x ( request ); // You  can  create  an
 index .
}

Note:
At the moment, existing data in the base table will not be copied to the index
when you create an index on a base table. The newly created index only includes
incremental data after you create this index. For more information about
incremental data, contact Table Store technical support with DingTalk.

Issue: 20190422 67



Table Store Functions /  8 Global secondary indexes

• You can delete an index.
private  static  void  deleteInde x ( SyncClient  client ) {
    DeleteInde xRequest  request  = new  DeleteInde xRequest (
TABLE_NAME , INDEX_NAME ); // You  can  specify  the  names  
of  a  base  table  and  an  index .
    client . deleteInde x ( request ); // You  can  delete  an
 index .
}

• You can read data from an index.
If an index includes an attribute that will be returned in results, you can directly 
retrieve data from the index.
private  static  void  scanFromIn dex ( SyncClient  client ) {
    RangeRowQu eryCriteri a  rangeRowQu eryCriteri a  = new  
RangeRowQu eryCriteri a ( INDEX_NAME ); // You  can  specify  
the  name  of  an  index .

    // You  can  specify  the  start  primary  key .
    PrimaryKey Builder  startPrima ryKeyBuild er  = 
PrimaryKey Builder . createPrim aryKeyBuil der ();
    startPrima ryKeyBuild er . addPrimary KeyColumn (
DEFINED_CO L_NAME_1 , PrimaryKey Value . INF_MIN ); // You  
can  specify  the  minimum  value  for  an  index  primary
 key .
    startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_1 , PrimaryKey Value . INF_MIN ); // You  
can  specify  the  minimum  value  for  a  base  table  
primary  key .
    startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_2 , PrimaryKey Value . INF_MIN ); // You  
can  specify  the  minimum  value  for  a  base  table  
primary  key .
    rangeRowQu eryCriteri a . setInclusi veStartPri maryKey (
startPrima ryKeyBuild er . build ());

    // You  can  specify  the  end  primary  key .
    PrimaryKey Builder  endPrimary KeyBuilder  = PrimaryKey
Builder . createPrim aryKeyBuil der ();
    endPrimary KeyBuilder . addPrimary KeyColumn ( DEFINED_CO
L_NAME_1 , PrimaryKey Value . INF_MAX ); // You  can  specify
 the  maximum  value  for  an  index  attribute .
    endPrimary KeyBuilder . addPrimary KeyColumn ( PRIMARY_KE
Y_NAME_1 , PrimaryKey Value . INF_MAX ); // You  can  specify
 the  maximum  value  for  a  base  table  primary  key .
    endPrimary KeyBuilder . addPrimary KeyColumn ( PRIMARY_KE
Y_NAME_2 , PrimaryKey Value . INF_MAX ); // You  can  specify
 the  maximum  value  for  a  base  table  primary  key .
    rangeRowQu eryCriteri a . setExclusi veEndPrima ryKey (
endPrimary KeyBuilder . build ());

    rangeRowQu eryCriteri a . setMaxVers ions ( 1 );

    System . out . println (" The  results  returned  from  an
 index  are  as  follows :");
    while  ( true ) {
        GetRangeRe sponse  getRangeRe sponse  = client .
getRange ( new  GetRangeRe quest ( rangeRowQu eryCriteri a ));
        for  ( Row  row  : getRangeRe sponse . getRows ()) {

68 Issue: 20190422



Table Store Functions /  8 Global secondary indexes
            System . out . println ( row );
        }

        // If  the  nextStartP rimaryKey  value  is  not  
null , you  can  continue  to  read  data  from  the  base
 table .
        if  ( getRangeRe sponse . getNextSta rtPrimaryK ey () !
 = null ) {
            rangeRowQu eryCriteri a . setInclusi veStartPri
maryKey ( getRangeRe sponse . getNextSta rtPrimaryK ey ());
        } else  {
            break ;
        }
    }
}

If an index does not include an attribute that will be returned in results, you must
query the base table.
private  static  void  scanFromIn dex ( SyncClient  client ) {
    RangeRowQu eryCriteri a  rangeRowQu eryCriteri a  = new  
RangeRowQu eryCriteri a ( INDEX_NAME ); // You  can  specify  
the  index  name .

    // You  can  specify  the  start  primary  key .
    PrimaryKey Builder  startPrima ryKeyBuild er  = 
PrimaryKey Builder . createPrim aryKeyBuil der ();
    startPrima ryKeyBuild er . addPrimary KeyColumn (
DEFINED_CO L_NAME_1 , PrimaryKey Value . INF_MIN ); // You
 can  specify  the  minimum  value  for  an  indexed  
attribute  of  an  index .
    startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_1 , PrimaryKey Value . INF_MIN ); // You  
can  specify  the  minimum  value  for  a  primary  key  
of  a  base  table .
    startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_2 , PrimaryKey Value . INF_MIN ); // You  
can  specify  the  minimum  value  for  a  primary  key  
of  a  base  table .
    rangeRowQu eryCriteri a . setInclusi veStartPri maryKey (
startPrima ryKeyBuild er . build ());

    // You  can  specify  the  end  primary  key .
    PrimaryKey Builder  endPrimary KeyBuilder  = PrimaryKey
Builder . createPrim aryKeyBuil der ();
    endPrimary KeyBuilder . addPrimary KeyColumn ( DEFINED_CO
L_NAME_1 , PrimaryKey Value . INF_MAX ); // You  can  specify
 the  maximum  value  for  an  indexed  attribute  of  an
 index .
    endPrimary KeyBuilder . addPrimary KeyColumn ( PRIMARY_KE
Y_NAME_1 , PrimaryKey Value . INF_MAX ); // You  can  specify
 the  maximum  value  for  a  base  table  primary  key .
    endPrimary KeyBuilder . addPrimary KeyColumn ( PRIMARY_KE
Y_NAME_2 , PrimaryKey Value . INF_MAX ); // You  can  specify
 the  maximum  value  for  a  base  table  primary  key .
    rangeRowQu eryCriteri a . setExclusi veEndPrima ryKey (
endPrimary KeyBuilder . build ());

    rangeRowQu eryCriteri a . setMaxVers ions ( 1 );

    while  ( true ) {

Issue: 20190422 69



Table Store Functions /  8 Global secondary indexes
        GetRangeRe sponse  getRangeRe sponse  = client .
getRange ( new  GetRangeRe quest ( rangeRowQu eryCriteri a ));
        for  ( Row  row  : getRangeRe sponse . getRows ()) {
            PrimaryKey  curIndexPr imaryKey  = row . getPrimary
Key ();
            PrimaryKey Column  pk1  = curIndexPr imaryKey .
getPrimary KeyColumn ( PRIMARY_KE Y_NAME1 );
            PrimaryKey Column  pk2  = curIndexPr imaryKey .
getPrimary KeyColumn ( PRIMARY_KE Y_NAME2 );
            PrimaryKey Builder  mainTableP KBuilder  = 
PrimaryKey Builder . createPrim aryKeyBuil der ();
            mainTableP KBuilder . addPrimary KeyColumn (
PRIMARY_KE Y_NAME1 , pk1 . getValue ());
            mainTableP KBuilder . addPrimary KeyColumn (
PRIMARY_KE Y_NAME2 , ke2 . getValue ());
            PrimaryKey  mainTableP K  = mainTableP KBuilder .
build (); // You  can  specify  the  index  primary  keys  
for  a  base  table .

            // You  can  query  a  base  table .
            SingleRowQ ueryCriter ia  criteria  = new  
SingleRowQ ueryCriter ia ( TABLE_NAME , mainTableP K );
            criteria . addColumns ToGet ( DEFINED_CO L_NAME3
); // You  can  read  the  DEFINED_CO L_NAME3  attribute  
from  the  base  table .
            // You  can  retrieve  the  latest  data  version
.
            criteria . setMaxVers ions ( 1 );
            GetRowResp onse  getRowResp onse  = client . getRow
( new  GetRowRequ est ( criteria ));
            Row  mainTableR ow  = getRowResp onse . getRow ();
            System . out . println ( row ); 
        }

        // If  the  value  of  nextStartP rimaryKey  is  not
 null , you  can  continue  to  read  data  from  the  
base  table .
        if  ( getRangeRe sponse . getNextSta rtPrimaryK ey () !
 = null ) {
            rangeRowQu eryCriteri a . setInclusi veStartPri
maryKey ( getRangeRe sponse . getNextSta rtPrimaryK ey ());
        } else  {
            break ;
        }
    }
}

8.5 APIs
CreateTable

You can call the CreateTable method to create a table, and an index with pre-defined
attributes at the same time.
When you write data to a base table, an index on this base table is also updated. For
more information, see CreateTable.

70 Issue: 20190422



Table Store Functions /  8 Global secondary indexes

CreateIndex
You can call the CreateIndex method to create an index on a base table. For more
information, see CreateIndex.

Note:
The current version does not support copying existing base table data to the index
when you call the CreateIndex method to create an index on a base table. This
feature will be supported by later versions.

DeleteIndex
You can call the DeleteIndex method to delete indexes on a base table. The other
indexes on this table will not be affected. For more information, see DeleteIndex.

DeleteTable
You can call the DeleteTable method to delete a base table and all indexes on this
table. For more information, see DeleteTable.

8.6 Billing rules
To use secondary indexes, index tables are needed. Therefore, additional storage
space is required to store index tables. When the system inserts data to a primary
table, it may also need to write the index tables created on the primary table at
the same time. During this process, read and write CUs are consumed. This topic
describes the billing rules for secondary indexes.

Note:
Capacity units (CUs) are read and write throughput units. They are the smallest
units used to measure the costs of read and write operations For example, when the
system reads 4 KB from one row per second, one read CU is consumed.

To use secondary indexes, index tables are needed. Therefore, additional storage 
space is required to store index tables. When the system inserts data to a primary 
table, it may also need to write the index tables created on the primary table at the 
same time. During this process, read and write CUs are consumed.

Issue: 20190422 71

https://yuque.antfin-inc.com/tablestore/multimodel_database_tablestore/lzrmg3
https://yuque.antfin-inc.com/tablestore/multimodel_database_tablestore/funuhh


Table Store Functions /  8 Global secondary indexes

Secondary index billing includes the following parts: the number of read and write
 CUs consumed to write index tables, the amount of data stored in the index tables, 
and the amount of data that is read from the index tables.
Billing item Description
Data storage The storage space used to store a primary table and its 

index tables.
Read CUs consumed to 
write index tables

The number of CUs that are consumed by read 
operations to delete, insert, or update index rows.

Write CUs consumed to 
write index tables

The number of CUs that are consumed to insert or 
update index rows.

CUs consumed by regular 
read operations

The number of CUs that are consumed to read data 
from a primary table or index tables using an API.

CUs consumed by regular 
write operations

The number of CUs that are consumed to insert data to 
a primary table using an API.

Billing rules for storing, writing, and reading an index table:
• The billing rules for storing and reading an index table are the same as those of a

primary table. For more information, see Billing items and pricing.
• CUs are consumed based on the following rules when the system writes an index

table:
- Write CUs are consumed only when an index row is inserted or updated.
- Read CUs are consumed when an index row is deleted, updated, or inserted. The

 number of read CUs equals the amount of data read from the corresponding 
indexed columns in the primary table.

Calculate the number of read CUs consumed to write index tables
When you create secondary indexes on the primary table, read CUs are consumed 
based on the following rules:

72 Issue: 20190422



Table Store Functions /  8 Global secondary indexes

• When you use the PUT operation to insert a data row to the primary table:
- The PUT operation does not insert data to the indexed attribute columns in the 

primary table, which means that no index row is inserted. In this case, one read 
CU is consumed.

- The PUT operation inserts data to the indexed attribute columns in the primary 
table, which means that new index rows are inserted. In this case, one read CU is
 consumed.

• When you use the PUT operation to overwrite a row in the primary table:
- The PUT operation does not update the indexed attribute columns in the 

primary table. In this case, one read CU is consumed.
- The PUT operation updates the indexed attribute columns in the primary table.

In this case, the read CUs are consumed as follows:
Divide the total amount of data read from the indexed attribute columns by 
four, excluding primary key columns. The number of consumed CUs equals the
 calculated value rounded up to the nearest integer. If the total amount is 0 KB, 
one CU is consumed.

• When you use the UPDATE operation to insert a data row to the primary table:
- If the UPDATE operation does not insert data to the indexed columns in the 

primary table, no read CU is consumed.
- If the UPDATE operation inserts data to the indexed columns in the primary 

table, one read CU is consumed.
• When you use the UPDATE operation to update a row in the primary table:

- If the UPDATE operation does not insert data to the indexed attribute columns in
 the primary table, no read CU is consumed.

- If the UPDATE operation inserts data to the indexed attribute columns in the
primary table, read CUs are consumed based on the following rules:
Divide the total amount of data read from the indexed columns by four, 
excluding the primary key columns. The number of consumed CUs equals the 
calculated value rounded up to the nearest integer. If the total amount is 0 KB, 
one CU is consumed.

Issue: 20190422 73



Table Store Functions /  8 Global secondary indexes

• When you use the Delete operation to delete a row in the primary table, read CUs
are consumed based on the following rules:
Divide the total amount of data read from the indexed columns by four, excluding
 the primary key columns. The number of consumed CUs equals the calculated
 value rounded up to the nearest integer. If the total amount is 0 KB, one CU is 
consumed.

• If the primary table uses primary key auto increment, inserting data to the
primary table does not consume any read CUs. Updating a row in a primary table
that uses primary key auto increment consumes read CUs. CUs are calculated
based on the same rules as those of the UPDATE operation.

Note:
We recommend that you use primary key auto increment to insert data to a
primary table to decrease the number of CUs that are consumed by index tables.
For primary tables that do not use primary key auto increment, one read CU is 
consumed if a read operation is performed on the indexed columns, even if no 
data is retrieved. For primary tables that use primary key auto increment, no read
 operation is performed on the indexed columns when you insert data. Therefore, 
no read CU is consumed.

Calculate the number of write CUs
When you insert data to the primary table and create secondary indexes, write CUs 
are consumed. Write CUs are consumed based on the following rules:
• If you insert a row to the primary table and no data in the index table is updated, 

no write CUs are consumed.
• If you insert a row to the primary table and a new index row is inserted to the index

 table, write CUs are consumed. The number of the write CUs is determined by the 
size of the inserted index row.

• If you insert a row to the primary table and an index row is deleted from the index 
table, write CUs are consumed. The number of the write CUs is determined by the 
size of the deleted index row.

• If you insert a row to the primary table and an index row in the index table is 
updated, write CUs are consumed. The number of the write CUs is determined by 
the size of the updated index row.

74 Issue: 20190422



Table Store Functions /  8 Global secondary indexes

• If you insert a row to the primary table, an index row is deleted from the index 
table, and another index row is inserted to the index table, write CUs are consumed
. The number of the write CUs is determined by the total size of the deleted and 
inserted index rows.

The detailed rules are as follows:
• When you use the PUT operation to insert a data row to a primary table:

- The PUT operation does not insert data to the indexed attribute columns in the 
primary table, which means that no index row is inserted. In this case, no read 
CU is consumed.

- The PUT operation inserts data to the indexed attribute columns in the primary
table, which means that new index rows are inserted. The write CUs consumed
for each index table are calculated as follows:
Divide the total amount of data in the inserted index row by four. The number of
 consumed CUs equals the calculated value rounded up to the nearest integer.

• When you use the PUT operation to overwrite a row in the primary table:
- The PUT operation only updates the indexed primary key columns in the 

primary table. In this case, no write CUs are consumed.
- The PUT operation updates the indexed columns in the primary table. The write

CUs are consumed based on the following rules:
All indexes updated by the PUT operation consume a certain number of write 
CUs, except sparse indexes.

• When you use the UPDATE operation to insert a data row to the primary table:
- If the UPDATE operation does not insert data to the indexed columns in the 

primary table, no write CUs are consumed.
- If the UPDATE operation inserts data to the indexed columns in the primary

table, the write CUs consumed for each index table are calculated as follows:
■ If the UPDATE operation inserts a new index row, write CUs are consumed

. Divide the total size of the data in the index row by four. The number of 
consumed CUs equals the calculated value rounded up to the nearest integer.

■ If no index row is inserted, no write CUs are consumed.

Issue: 20190422 75



Table Store Functions /  8 Global secondary indexes

• When you use the UPDATE operation to update a row in the primary table:
- If the UPDATE operation does not update the indexed attribute columns, no 

write CUs are consumed.
- If the UPDATE operation updates the indexed attribute columns, write CUs

consumed for each index table are calculated based on the following rules:
■ If the index table already contains an index row created based on the row 

to be updated, delete CUs are consumed. The number of the delete CUs is 
determined by the size of the indexed primary keys in the deleted index row.

■ If a new index row is inserted based on the updated row, write CUs are 
consumed. The number of the write CUs is determined by the size of the 
indexed primary keys in the inserted index row.

■ If the UPDATE operation only updates the attribute data in the existing index 
row but no new index row is inserted, update CUs are consumed.

Divide the total amount of data in the index row by four. The number of 
consumed CUs equals the calculated value rounded up to the nearest integer.

• When you use the DELETE operation to delete a row in the primary table, write CUs
are consumed based on the following rules:
If an index table already contains an index row created based on the row to be
 deleted, write CUs are consumed. Divide the total amount of the data in the 
corresponding indexed columns by four, excluding the primary key columns. The 
consumed write CUs equal the calculated value rounded up to the nearest integer.

• If you insert data to a primary table that uses primary key auto increment, write 
CUs are consumed. The write CUs are calculated based on the same rules as those 
of the PUT operation. If you update a row in a primary table that uses primary key
 auto increment, write CUs are consumed. The write CUs are calculated based on 
the same rules as those of the UPDATE operation.

Measure index table size
The size of an index table is measured based on the same rule as that of a primary
table. The size of an index table equals the total size of all rows. The total size of the
rows equals the total size of primary keys and attribute data. For more information,
see Data storage.

76 Issue: 20190422



Table Store Functions /  8 Global secondary indexes

Calculate the number of CUs consumed to read an index table
When you use an SDK, the console, or other methods, such as a DLA, to read an index
 table, read CUs are consumed. The number of read CUs are calculated based on the 
same rules as those of reading a primary table.

Examples
The following example uses a primary table that has two index tables to describe how
 CUs are consumed under different conditions.
The primary table Table contains two primary key columns PK0 and PK1, and three
 predefined columns Col0, Col1, and Col2. Two index tables, Index0 and Index1, are 
created on the primary table. Index0 contains three primary keys Col0, PK0, and PK1
 and one attribute column Col2. Index1 contains four primary keys Col1, Col0, PK0, 
and PK1, and no attribute columns. Use the UPDATE operation to update PK0 and PK1
.
• If the target row does not exist in the primary table:

- Updating Col3 does not consume read or write CUs.
- Updating Col1 consumes the following CUs:

■ One read CU
■ No write CUs

- Updating Col0 and Col1 consumes the following CUs:
■ One read CU
■ Index0 consumes write CUs. The number of the write CUs is determined by

 the total amount of data inserted to Col0, PK0, and PK1. Index1 consumes 
write CUs. The number of the write CUs is determined by the total amount of 
data inserted to Col0, Col1, PK0, and PK1.

• If the target row already exists in the primary table:
- Updating Col3 does not consume read or write CUs.
- Updating Col2 consumes the following CUs:

■ Read CUs are consumed. The number of the read CUs is determined by the 
amount of data read from Col0. If the UPDATE operation inserts data to Col0, 
one CU is consumed.

■ For Index0, if the UPDATE operation insets data to Col0, Index0 does not 
consume write CUs. If the UPDATE operation updates the data in Col0, Index0

Issue: 20190422 77



Table Store Functions /  8 Global secondary indexes

 consumed write CUs. The number of the write CUs is determined by the 
total amount of data inserted to Col0, PK0, PK1, and Col2. Index1 does not 
consume write CUs.

- Updating Col1 consumes the following CUs:
■ Read CUs are consumed. The number of the read CUs is determined by the 

amount of data read from Col0 and Col1. If the total amount is 0 KB, one CU is
 consumed.

■ Index0 does not consume write CUs. For Index1, if an index row is inserted, 
write CUs are consumed. The number of the write CUs is determined by the 
amount of data read from Col0 and inserted to Col1, PK0, and PK1. For Index1
, if no data in Col0 is updated, no index row is inserted and no write CUs are 
consumed. If the data in Col0 and Col1 is updated, write CUs are consumed to
 delete the corresponding index row. The number of write CUs is determined 
by the total amount of data read from Col0, Col1, PK0, and PK1.

8.7 Appendix
You can create tables and indexes as follows:
private  static  final  String  TABLE_NAME  = " CallRecord Table
";

    private  static  final  String  INDEX0_NAM E  = "
IndexOnBeC alledNumbe r ";

    private  static  final  String  INDEX1_NAM E  = "
IndexOnBas eStation1 ";

    private  static  final  String  INDEX2_NAM E  = "
IndexOnBas eStation2 ";

    private  static  final  String  PRIMARY_KE Y_NAME_1  = "
CellNumber ";

    private  static  final  String  PRIMARY_KE Y_NAME_2  = "
StartTime ";

    private  static  final  String  DEFINED_CO L_NAME_1  = "
CalledNumb er ";

    private  static  final  String  DEFINED_CO L_NAME_2  = "
Duration ";

    private  static  final  String  DEFINED_CO L_NAME_3  = "
BaseStatio nNumber ";

    
    private  static  void  createTabl e ( SyncClient  client ) {
        TableMeta  tableMeta  = new  TableMeta ( TABLE_NAME );
        tableMeta . addPrimary KeyColumn ( new  PrimaryKey Schema
( PRIMARY_KE Y_NAME_1 , PrimaryKey Type . INTEGER ));

        tableMeta . addPrimary KeyColumn ( new  PrimaryKey Schema
( PRIMARY_KE Y_NAME_2 , PrimaryKey Type . INTEGER ));

        tableMeta . addDefined Column ( new  DefinedCol umnSchema
( DEFINED_CO L_NAME_1 , DefinedCol umnType . INTEGER ));

        tableMeta . addDefined Column ( new  DefinedCol umnSchema
( DEFINED_CO L_NAME_2 , DefinedCol umnType . INTEGER ));

78 Issue: 20190422



Table Store Functions /  8 Global secondary indexes

        tableMeta . addDefined Column ( new  DefinedCol umnSchema
( DEFINED_CO L_NAME_3 , DefinedCol umnType . INTEGER ));

    
        int  timeToLive  = - 1 ; // The  time  before  the  
data  expires . You  can  specify  - 1  as  the  Time  To  
Live  ( TTL ) value  so  the  data  never  expires . Unit : 
seconds . You  must  specify  - 1  as  the  TTL  value  when
 a  table  has  one  or  more  indexes .

        int  maxVersion s  = 1 ; //  The  maximum  number  of
 versions . You  must  specify  1  as  the  value  when  a
 table  has  one  or  more  indexes .

    
        TableOptio ns  tableOptio ns  = new  TableOptio ns (
timeToLive , maxVersion s );

    
        ArrayList < IndexMeta > indexMetas  = new  ArrayList <
IndexMeta >();

        IndexMeta  indexMeta0  = new  IndexMeta ( INDEX0_NAM E );
        indexMeta0 . addPrimary KeyColumn ( DEFINED_CO L_NAME_1 );
        indexMetas . add ( indexMeta0 );
        IndexMeta  indexMeta1  = new  IndexMeta ( INDEX1_NAM E );
        indexMeta1 . addPrimary KeyColumn ( DEFINED_CO L_NAME_3 );
        indexMeta1 . addPrimary KeyColumn ( PRIMARY_KE Y_NAME_2 );
        indexMetas . add ( indexMeta1 );
        IndexMeta  indexMeta2  = new  IndexMeta ( INDEX2_NAM E );
        indexMeta2 . addPrimary KeyColumn ( DEFINED_CO L_NAME_3 );
        indexMeta2 . addPrimary KeyColumn ( PRIMARY_KE Y_NAME_2 );
        indexMeta2 . addDefined Column ( DEFINED_CO L_NAME_2 );
        indexMetas . add ( indexMeta2 );
    
        CreateTabl eRequest  request  = new  CreateTabl eRequest
( tableMeta , tableOptio ns , indexMetas );

    
        client . createTabl e ( request );
    }

Issue: 20190422 79


	Contents
	Legal disclaimer
	Generic conventions
	1 Table Store tables
	2 Conditional update
	3 Auto-increment function of the primary key column
	4 Description of the data consumption framework
	5 Stream
	5.1 Overview
	5.2 Stream API/SDK
	5.3 Stream Client

	6 HBase
	6.1 Table Store HBase Client
	6.2 Table Store HBase Client supported functions
	6.3 Differences between Table Store and HBase
	6.4 Migrate from HBase to Table Store
	6.5 Migrate HBase of an earlier version
	6.6 Hello World

	7 SearchIndex
	7.1 Overview
	7.2 Features

	8 Global secondary indexes
	8.1 Overview
	8.2 Introduction
	8.3 Scenarios
	8.4 Java SDK for global secondary indexes
	8.5 APIs
	8.6 Billing rules
	8.7 Appendix


