
Alibaba Cloud
Tablestore

Developer Guide
Issue: 20190919

Tablestore Developer Guide / Legal disclaimer

Legal disclaimer
Alibaba Cloud reminds you to carefully read and fully understand the terms and
conditions of this legal disclaimer before you read or use this document. If you have
read or used this document, it shall be deemed as your total acceptance of this legal
disclaimer.
1. You shall download and obtain this document from the Alibaba Cloud website

 or other Alibaba Cloud-authorized channels, and use this document for your
own legal business activities only. The content of this document is considered
 confidential information of Alibaba Cloud. You shall strictly abide by the
confidentiality obligations. No part of this document shall be disclosed or provided
 to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted,
or disseminated by any organization, company, or individual in any form or by any
means without the prior written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades
, adjustments, or other reasons. Alibaba Cloud reserves the right to modify
the content of this document without notice and the updated versions of this
 document will be occasionally released through Alibaba Cloud-authorized
channels. You shall pay attention to the version changes of this document as they
occur and download and obtain the most up-to-date version of this document from
Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud
products and services. Alibaba Cloud provides the document in the context that
 Alibaba Cloud products and services are provided on an "as is", "with all faults
" and "as available" basis. Alibaba Cloud makes every effort to provide relevant
 operational guidance based on existing technologies. However, Alibaba Cloud
hereby makes a clear statement that it in no way guarantees the accuracy, integrity
, applicability, and reliability of the content of this document, either explicitly
or implicitly. Alibaba Cloud shall not bear any liability for any errors or financial
 losses incurred by any organizations, companies, or individuals arising from
their download, use, or trust in this document. Alibaba Cloud shall not, under any
 circumstances, bear responsibility for any indirect, consequential, exemplary,
incidental, special, or punitive damages, including lost profits arising from the use

Issue: 20190919 I

Tablestore Developer Guide / Legal disclaimer

 or trust in this document, even if Alibaba Cloud has been notified of the possibility
 of such a loss.

5. By law, all the content of the Alibaba Cloud website, including but not limited to
works, products, images, archives, information, materials, website architecture,
website graphic layout, and webpage design, are intellectual property of Alibaba
 Cloud and/or its affiliates. This intellectual property includes, but is not limited
 to, trademark rights, patent rights, copyrights, and trade secrets. No part of the
 Alibaba Cloud website, product programs, or content shall be used, modified
, reproduced, publicly transmitted, changed, disseminated, distributed, or
published without the prior written consent of Alibaba Cloud and/or its affiliates
. The names owned by Alibaba Cloud shall not be used, published, or reproduced
for marketing, advertising, promotion, or other purposes without the prior written
 consent of Alibaba Cloud. The names owned by Alibaba Cloud include, but are
not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other brands of Alibaba
Cloud and/or its affiliates, which appear separately or in combination, as well as
 the auxiliary signs and patterns of the preceding brands, or anything similar to
the company names, trade names, trademarks, product or service names, domain
 names, patterns, logos, marks, signs, or special descriptions that third parties
identify as Alibaba Cloud and/or its affiliates).

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

II Issue: 20190919

Tablestore Developer Guide / Legal disclaimer

Issue: 20190919 III

Tablestore Developer Guide / Generic conventions

Generic conventions
Table -1: Style conventions
Style Description Example

This warning information
indicates a situation that will
cause major system changes,
faults, physical injuries, and other
 adverse results.

Danger:
Resetting will result in the loss of
user configuration data.

This warning information
indicates a situation that may
cause major system changes,
faults, physical injuries, and other
 adverse results.

Warning:
Restarting will cause business
interruption. About 10 minutes are
required to restore business.

This indicates warning informatio
n, supplementary instructions,
and other content that the user
must understand.

Notice:
Take the necessary precautions
to save exported data containing
sensitive information.

This indicates supplemental
instructions, best practices, tips,
and other content that is good to
know for the user.

Note:
You can use Ctrl + A to select all
files.

> Multi-level menu cascade. Settings > Network > Set network
type

Bold It is used for buttons, menus
, page names, and other UI
elements.

Click OK.

Courier
 font

It is used for commands. Run the cd / d C :/ windows
 command to enter the Windows

system folder.
Italics It is used for parameters and

variables.
bae log list --
instanceid Instance_ID

[] or [a|b] It indicates that it is a optional
value, and only one item can be
selected.

ipconfig [-all|-t]

Issue: 20190919 I

Tablestore Developer Guide / Generic conventions

Style Description Example
{} or {a|b} It indicates that it is a required

value, and only one item can be
selected.

swich {stand | slave}

II Issue: 20190919

Tablestore Developer Guide / Generic conventions

Issue: 20190919 III

Tablestore Developer Guide / Contents

Contents
Legal disclaimer.. I
Generic conventions.. I
1 Overview.. 1
2 Limits...3
3 Terms...6

3.1 Instance.. 6
3.2 Endpoint..8
3.3 Read/write throughput...9
3.4 Region... 124 Wide column model..13
4.1 Introduction.. 13
4.2 Primary keys and attributes... 14
4.3 Data versions and time to live.. 15
4.4 Naming conventions and data types..17
4.5 Auto-increment function of the primary key column.................................19
4.6 Conditional update...21
4.7 Atomic counters...245 Timeline model...27
5.1 Introduction.. 27
5.2 Quick start...28
5.3 Basic operations...29

5.3.1 Initialization... 29
5.3.2 Meta management.. 31
5.3.3 Timeline management.. 33
5.3.4 Queue management.. 346 Search Index...37

6.1 Overview..37
6.2 Features...39
6.3 API operations... 43

6.3.1 Overview.. 43
6.3.2 CreateSearchIndex..49
6.3.3 DescribeSearchIndex.. 52
6.3.4 ListSearchIndex.. 53
6.3.5 DeleteSearchIndex.. 53
6.3.6 Array and Nested field types... 54
6.3.7 Sort.. 55
6.3.8 Tokenization... 56
6.3.9 MatchAllQuery... 59
6.3.10 MatchQuery.. 60

IV Issue: 20190919

Tablestore Developer Guide / Contents
6.3.11 MatchPhraseQuery..62
6.3.12 TermQuery..63
6.3.13 TermsQuery.. 64
6.3.14 PrefixQuery...65
6.3.15 RangeQuery.. 65
6.3.16 WildcardQuery..67
6.3.17 BoolQuery...68
6.3.18 GeoDistanceQuery...69
6.3.19 GeoBoundingBoxQuery... 70
6.3.20 GeoPolygonQuery..71
6.3.21 ExistQuery.. 72

6.4 Limits.. 737 Global secondary indexes..76
7.1 Overview..76
7.2 Introduction.. 78
7.3 Scenarios... 80
7.4 Java SDK for global secondary indexes..89
7.5 APIs... 93
7.6 Billing rules... 94
7.7 Appendix... 1018 Tunnel service.. 103
8.1 Overview..103
8.2 Features... 104
8.3 Description of the data consumption framework.....................................105
8.4 Quick start... 108
8.5 SDKs.. 110
8.6 Incremental synchronization performance white paper.......................... 1109 HBase... 118
9.1 Table Store HBase Client.. 118
9.2 Table Store HBase Client supported functions...119
9.3 Differences between Table Store and HBase.. 125
9.4 Migrate from HBase to Table Store... 130
9.5 Migrate HBase of an earlier version.. 133
9.6 Hello World..13510 Authorization management... 141
10.1 RAM and STS..141
10.2 Customize permissions... 144

Issue: 20190919 V

Tablestore Developer Guide / Contents

VI Issue: 20190919

Tablestore Developer Guide / 1 Overview

1 Overview
Table Store is a NoSQL multi-model database service independently developed by
Alibaba Cloud. Table Store can store large amounts of structured data and provide
query and analysis services. The distributed storage and powerful index-based search
engine enable Table Store to store PB-grade data while ensuring 10 million TPS and
millisecond-level latency. This document introduces terms, models, and features of
Table Store.

Terms
The following table describes the terms for Table Store.
Term Description
#unique_4 An instance is an entity used to manage tables and data in

Table Store. Each instance is equivalent to a database. Table
 Store implements access control and resource metering for
applications at the instance level.

#unique_5 The read/write throughput is measured by read/write capacity
 units (CUs), which is the smallest billing unit for read and
write operations.

#unique_6 A region is a physical data center of Alibaba Cloud.
#unique_7 Each Table Store instance has an endpoint. An endpoint must

be specified before any operations can be performed on tables
or data in Table Store.

Models
Table Store provides multiple models that you can apply for as needed. The following
table describes the models of Table Store.
Model Description
Wide Column
model

The Wide Column model is applicable to various scenarios,
such as metadata and big data. This model supports multiple
 functions, including data versions, time to live (TTL), auto-
increment of primary key columns, conditional updates, local
transactions, atomic counters, and filters.

Issue: 20190919 1

Tablestore Developer Guide / 1 Overview

Model Description
Timeline model The Timeline model is a data model that can meet special

requirements of message data scenarios, such as message
order preservation, storage of large numbers of messages, and
 real-time synchronization. This model also supports full-text
queries and bool queries. The model is also suitable for use in
scenarios such as instant messaging (IM) and feed streams.

Features
The following table describes the features of Table Store.
Feature Description
#unique_10 If you set a primary key column as an auto-increment column

, you do not need to enter values in this column when writing
 data in a row. Instead, Table Store automatically generates
primary key values. The automatically generated key values
are unique within the rows that share the same partition key.
These values increase sequentially.

#unique_11 A conditional update is implemented only when specified
conditions are met.

#unique_12 An atomic counter consists of columns. The atomic counter
provides real-time statistics for some online applications, such
 as calculating the real-time page views (PVs) of a post.

#unique_13 Filters can be used to sort results on the server side. Only
results that match the filtering conditions are returned. The
feature effectively reduces the volume of transferred data and
shortens the response time.

Search index Based on inverted index and columnstore index, search-based
index solves the complex query problem in big data scenarios.

Global secondary
index

Global secondary index can be used to create indexes for
attribute columns.

Tunnel Service Tunnel Service provides tunnels that are used to export and
consume data in the full, incremental, and differential modes
. After creating tunnels, you can consume historical and
incremental data exported from a specified table.

HBase support Table Store HBase Client can be used to access Table Store
through Java applications built on HBase APIs.

2 Issue: 20190919

Tablestore Developer Guide / 2 Limits

2 Limits
The following table describes the restrictions for Table Store. Some of the restrictions
 indicate the maximum values that can be used rather than the suggested values. In
order to ensure better performance, please set the table structure and data size in a
single row appropriately.
Item Limit Description
Number of instances
created under an Alibaba
Cloud user account

10 To increase the limit, open
 a ticket.

Number of tables in an
instance

64 To increase the limit, open
 a ticket.

Instance name length 3-16 Bytes Can contain uppercase and
lowercase letters, digits,
and hyphens.
Must begin with a letter,
and must not end with a
hyphen.
Must not contain the words
, such as ‘ali’, ‘ay’,
‘ots’, ‘taobao’and ‘
admin’.

Table name length 1-255 Bytes Can contain uppercase and
lowercase letters, digits,
and underscores.
Must begin with a letter or
underscore.

Column name length 1-255 Bytes Can contain uppercase and
lowercase letters, digits,
and underscores.
Must begin with a letter or
underscore.

Issue: 20190919 3

https://workorder-intl.console.aliyun.com/#/ticket/createInd
https://workorder-intl.console.aliyun.com/#/ticket/createInd
https://workorder-intl.console.aliyun.com/#/ticket/createInd
https://workorder-intl.console.aliyun.com/#/ticket/createInd

Tablestore Developer Guide / 2 Limits

Item Limit Description
Number of primary key
columns

1-4 columns Must be at least one
column.

Size of string type primary
key column values

1 KB A single primary key
column’s string type
column value is limited to
1 KB.

Size of string type attribute
 column values

2 MB A single attribute column
’s string type column
value is limited to 2 MB.

Size of binary type primary
 key column values

1 KB A single primary key
column’s binary type
column value is limited to
1 KB.

Size of binary type
attribute column values

2 MB A single attribute column
’s binary type column
value is limited to 2 MB.

Number of attribute
columns in a single row

Unlimited A single row can contain
 an unlimited amount of
attribute columns.

The number of attribute
 columns written by one
request

1024 columns The number of attribute
 columns written by one
PutRow, UpdateRow, or
BatchWriteRow request in
a single row.

Data size of a single row Unlimited The total size of all column
 names, and column value
 data, for a single row is
unlimited.

Reserved read/write
throughput for a single
table

0-5000 To increase the limit, open
 a ticket.

Number of columns
in a read request’s
columns_to_get parameter

0-128 The maximum number of
columns obtained in a row
of data in the read request.

Table-level operation QPS 10 The QPS of a table-level
operation on an instance
must not exceed 10.

4 Issue: 20190919

https://workorder-intl.console.aliyun.com/#/ticket/createInd
https://workorder-intl.console.aliyun.com/#/ticket/createInd

Tablestore Developer Guide / 2 Limits

Item Limit Description
Number of UpdateTable
 operations for a single
table

increase: Unlimited Lower
: Unlimited

The reserved read/write
 throughput for each
table can be increased or
 lowered unlimited times
 within a calendar day (
from 00:00:00 to 00:00:00
of the next day in UTC time
).

UpdateTable frequency for
 a single table

Maximum of one update
every 2 minutes

The reserved read/write
 throughput for a single
table cannot be adjusted
beyond the frequency of
once every 2 minutes.

The number of rows read
 by one BatchGetRow
request

100 N/A

The number of rows
written by one BatchWrite
Row request

200 N/A

Data size of one BatchWrite
Row request

4 MB N/A

Data returned by one
GetRange operation

5,000 rows or 4 MB The data returned by a
single operation cannot
exceed 5000 rows or 4 MB
. Otherwise, the excessive
 data will be read with a
returned token.

The data size of an HTTP
Request Body

5 MB N/A

Issue: 20190919 5

Tablestore Developer Guide / 3 Terms

3 Terms
3.1 Instance

An instance is a logical entity in Table Store used to manage tables as a database in a
relational database management system (RDBMS).
After activating Table Store, create an instance in the Table Store console and then
 create and manage tables within this instance. An instance is the basic unit in the
resource management system of Table Store. Table Store implements access control
and resource metering at the instance level.

You can create different instances for multiple businesses to manage their respective
 tables. You can also create multiple instances for one business based on different
development, testing, and production purposes.
Table Store allows one Alibaba Cloud account to create up to 10 instances, and up to
64 tables can be created within each instance.

Naming rule
The name of each instance is unique within each region. You can create instances of
the same names across different service regions. Naming rule for each instance must:
• Contain English letters, numbers, and hyphens(-)
• Start with English letters
• Not end with a hyphen(-)
• Be case-insensitive
• Be 3 Bytes to 16 Bytes in length
• Not contain the words, such as ‘ali’, ‘ay’, ‘ots’, ‘taobao’,and ‘admin’

Instance type
Table Store supports two instance types: high-performance instance and capacity
instance.

Notice:
An instance type cannot be modified once the instance is created.

6 Issue: 20190919

Tablestore Developer Guide / 3 Terms

The two instance types have the same functions and support petabyte-sized data
volumes for a single table, however, they differ in costs and scenarios.
• High-performance instance

High-performance instances support millions of read-write transactions per
second (TPS) with 1 ms average latency of read and write operations per row.
High-performance instances are suitable for scenarios requiring high read and
write performance and concurrency, such as gaming, financial risk control, social
 networking applications, product recommendation systems, and public opinion
sensing.

• Capacity instance
Capacity instances provide write throughput and write performance comparable
 to that of the high-performance instances, but with lower costs. However, the
capacity instances do not equal the read performance and concurrency of high-
performance instances. The capacity instances are suitable for services with high
 write frequency but low read frequency, and services with high affordability and
reduced performance requirements. This includes access to log monitoring data,
Internet of Vehicles data, device data, time sequence data, and logistics data.

Notice:
Capacity instances do not support reserved read/write throughput. All reads and
writes are billed based on the additional read/write throughput.

Instance type supported by region
Region Name High-performance

instance
Capacity instance

China East 1 (Hangzhou) Supported Supported
China East 2 (Shanghai) Supported Supported
China North 2 (Beijing) Supported Supported
China North 3 (Zhangjiako
u)

In development Supported

China North 5 (Huhehaote) In development Supported
China South 1 (Shenzhen) Supported Supported
China(Hong Kong) In development Supported

Issue: 20190919 7

Tablestore Developer Guide / 3 Terms

Region Name High-performance
instance

Capacity instance

Singapore Supported In development
US East 1 (Virginia) Supported In development
US West 1 (Silicon Valley) Supported In development
Asia Pacific NE 1 (Japan) In development Supported
Germany 1 (Frankfurt) In development Supported
Middle East 1 (Dubai) In development Supported
Asia Pacific SE 2 (Sydney) In development Supported
Asia Pacific SE 3 (Kuala
Lumpur)

In development Supported

Asia Pacific SE 5 (Jakarta) In development Supported
Asia Pacific SOU 1 (
Mumbai)

In development Supported

3.2 Endpoint
Each instance corresponds to an endpoint that is also known as the connection URL
. The endpoint needs to be specified before any operations on the tables and data of
Table Store.
• To access the data in Table Store from the Internet, the endpoint uses the following

format:
https :// instanceNa me . region . ots . aliyuncs . com

• To access the data in Table Store from an Alibaba Cloud ECS instance of the same
region through the intranet, the endpoint uses the following format:
https :// instanceNa me . region . ots - internal . aliyuncs . com

For example, to access the Table Store instance in China East 1 (Hangzhou) region,
with the instance name of myInstance:
Endpoint for Internet access : https :// myInstance . cn -
hangzhou . ots . aliyuncs . com

8 Issue: 20190919

Tablestore Developer Guide / 3 Terms
Endpoint for intranet access : https :// myInstance . cn -
hangzhou . ots - internal . aliyuncs . com

Better performance, such as lower response latency and no unnecessary Internet
traffic, can be expected through the intranet.

• If an application accesses Table Store from an ECS instance in VPC, the endpoint
uses the following format:
https :// vpcName - instanceNa me . region . vpc . ots . aliyuncs
. com

For example, the service address used by an application in China East 1
(Hangzhou) region to access the instance named myInstance from a network
named testVPC:
Endpoint of VPC access : https :// testVPC - myInstance . cn
- hangzhou . vpc . ots . aliyuncs . com

This VPC access address is only used for access initiated by servers in the testVPC
network.

3.3 Read/write throughput
The read/write throughput is measured by read/write capacity units (CUs), which is
the smallest billing unit for the data read and write operations.
• One read CU indicates that 4 KB data is read from the table.
• One write CU indicates that 4 KB data is written into the table.
• Data smaller than 4 KB during the operation is rounded up to the nearest CU. For

 example, writing 7.6 KB data consumes two write CUs, and reading 0.1 KB data
consumes one read CU.

When applications use an API to perform Table Store read/write operations, the
corresponding amount of read/write CUs is consumed.

Reserved throughput
The reserved read/write throughput is an attribute of a table. When creating a table,
the application specifies the read/write throughput reserved for the table. Configurin
g the reserved read/write throughput does not affect the table’s access performance
and service capability.

Issue: 20190919 9

Tablestore Developer Guide / 3 Terms

For reserved throughput billing, the reserved throughput value is always used to
 calculate the hourly fee even if an application consumes less than the specified
amount of throughput.
For example, suppose that an application reads 3 KB of data per record and 80 records
 per second from a table. In this case, the application consumes 80 capacity units per
second.
If you set the reserved read throughput to 80 capacity units per second, the hourly
 fee is calculated by using the following formula: Hourly Fee = 80 reserved read
throughput capacity units x Hourly Price for Reserved Read Throughput. It is enough
for 288000 (80 x 3600 seconds) reads per hour.

Note:
• Reserved read/write throughput can be set to zero.
• When the reserved read/write throughput is greater than zero, Table Store assigns

 and reserves enough resources for the table according to this configuration to
guarantee low resource costs.

• For a non-zero reserved read/write throughput, your Table Store service is billed
even if no read and write requests are made. To guarantee billing accuracy, Table
Store limits the maximum reserved read/write throughput to 5000 CUs per table
(neither read throughput nor write throughput can exceed 5000 CUs). If you
require more than 5000 CUs of reserved read/write throughput for a single table,
Open a ticket to increase the throughput.

• The reserved read/write throughput of a non-existent table is regarded as zero. To
 access a non-existent table, one additional read CU or one additional write CU is
consumed depending on the actual operation.

Applications dynamically modify the reserved read/write throughput configuration of
 the table through the UpdateTable operation.

Additional throughput
The additional read/write throughput refers to the portion of the actual consumed
read/write throughput that exceeds the reserved read/write throughput. Its refresh
interval is one second.

10 Issue: 20190919

https://workorder-intl.console.aliyun.com/#/ticket/createIndex
https://workorder-intl.console.aliyun.com/#/ticket/createIndex

Tablestore Developer Guide / 3 Terms

In the following example, the reserved read throughput is set to 100 units. T0, T1, and
 T2 show the reserved read throughput and the additional read throughput that an
application consumed in three consecutive seconds:
• T0: The actual read throughput consumption is 120 units. The consumption of the

reserved read throughput and the consumption of the additional read throughput
are 100 units and 20 units, respectively.

• T1: The actual read throughput consumption is 95 units. The consumption of the
reserved read throughput and the consumption of the additional read throughput
are 100 units and 0 units, respectively.

• T2: The actual read throughput consumption is 110 units. The consumption of the
reserved read throughput and the consumption of the additional read throughput
are 100 units and 10 units, respectively.

In the three consecutive seconds, the consumption of the reserved read throughput is
 100 units, and the total consumption of the additional read throughput is 30 units.

Note:
Table Store uses the average value per hour to calculate the consumption of
the reserved throughput and uses the total amount per hour to calculate the
consumption of the additional throughput.

For the additional read/write throughput mode, it is difficult to estimate the amount
of compute resources that need to be reserved for data tables. Table Store is required
 to provide sufficient service capability to effectively handle access traffic spikes. For
 this reason, the unit price of additional read/write throughput is higher than that
of reserved read/write throughput. To make sure that low costs are maintained, we
recommend that you set an appropriate value of the reserved read/write throughput.

Note:
Because it is difficult to accurately reserve resources based on the additional
read/write throughput, in extreme situations, Table Store may return an error
OTSCapacityUnitExhausted to an application when an access to a single partition key
consumes 10,000 CUs per second. In this case, policies such as backoff retry are used
to reduce the frequency of access to the table.

Issue: 20190919 11

Tablestore Developer Guide / 3 Terms

3.4 Region
Region refers to a service region of Alibaba Cloud.
Table Store is deployed across many service regions. You can select the most suitable
region according to your requirements.
The following table lists the regions supported by Table Store.
Region Name RegionID
China East 1 (Hangzhou) cn-hangzhou
China East 2 (Shanghai) cn-shanghai
China North 2 (Beijing) cn-beijing
China North 3 (Zhangjiakou) cn-zhangjiakou
China North 5 (Huhehaote) cn-huhehaote
China South 1 (Shenzhen) cn-shenzhen
China(Hong Kong) cn-hongkong
Singapore ap-southeast-1
US East 1 (Virginia) us-east-1
US West 1 (Silicon Valley) us-west-1
Asia Pacific NE 1 (Japan) ap-northeast-1
Germany 1 (Frankfurt) eu-central-1
Middle East 1 (Dubai) me-east-1
Asia Pacific SE 2 (Sydney) ap-southeast-2
Asia Pacific SE 3 (Kuala Lumpur) ap-southeast-3
Asia Pacific SE 5 (Jakarta) ap-southeast-5
Asia Pacific SOU 1 (Mumbai) ap-south-1

12 Issue: 20190919

Tablestore Developer Guide / 4 Wide column model

4 Wide column model
4.1 Introduction

The Wide Column model differs from the relational model in the following aspects:
• The characteristics of Wide Column are: three-dimensional (rows, columns, and

time), schema-free, wide columns, multi-version data, and TTL management.
• The characteristics of the relational model are : two-dimensional (rows and

columns) and fixed schema.

The Wide Column model consists of the following parts:
• Primary key: Every row has a primary key with a multi-column structure (1-4

columns). The primary key is defined as a fixed schema, and is used primarily to
uniquely distinguish a row of data.

• Partition key: The first column of the primary key is called a partition key. The
partition key is used to partition the table by range. Every partition is distributively
dispatched to services on different machines. Within the same partition key,
we provide cross-row transactions. For more information, see Primary key and
attribute.

• Attribute column: In one row, with the exception of the primary key, all other
columns are attribute columns. Attribute columns correspond to many values.
Different values correspond to different versions, and each row stores an unlimited
 number of attribute columns.

• Version: Each value corresponds to a different version that acts as a timestamp to
define the time to live of that data.

• Data type: Table Store allows many different data types, including String, Binary,
Double, Integer and Boolean.

• Time To Live (TTL): Each table defines the amount of time a data can be stored
before being deleted. For example, if the TTL is defined as one month, the data
written into the table more than a month ago will be cleared automatically. The
write time of the data is determined by the version number. This write time is
usually taken from the server time, but it can also be determined by the time

Issue: 20190919 13

Tablestore Developer Guide / 4 Wide column model

specified by the application. For more information, see Data versions and Time To
Live.

• Max versions: Each table defines the maximum number of version data that can
 be stored in a column, which is used to control the number of versions in each
column. If the number of versions in an attribute column exceeds the value in max
versions, the earliest version is deleted.

4.2 Primary keys and attributes
In Table Store, tables, rows, primary keys, and attributes are the core components
that you work with. A table is a collection of rows, and each row consists of a primary
key and attributes. The first column of a primary key is called the partition key.

Primary keys
Primary keys are used to uniquely identify each row in a table. A primary key is a
combination of one to four attributes. When creating a table, you must specify the
composition of the primary key, including the name of each attribute, the data type
of each attribute, and the sorted order of attributes. In Table Store, you can specify a
data type, such as String, Binary, or Integer, for an attribute.
Table Store indexes data of a table based on the primary key of the table. All rows of
the table are sorted in ascending or descending order based on the primary key.

Partition keys
The first column of a primary key is called the partition key. Table store assigns a
row of data to the corresponding partitions determined by the range of each row’
s partition keys to achieve load balancing. Rows that have the same partition key
value belong to the same partition. A partition may store rows with multiple partition
 key values. Table Store separates a partition or merges multiple partitions based on
specific rules. This process is completed automatically.

Note:
The partition key is used as the minimum partition unit. Data under the same
partition key value cannot split further. To prevent partitions from being too large to
split, we recommend that the total size of all rows with the same partition key value
is less than 10 GB.

14 Issue: 20190919

Tablestore Developer Guide / 4 Wide column model

Attributes
A row consists of multiple attributes. The number of attributes for each row is not
restricted, which means that each row has a different number of attributes. The value
 of an attribute of a row can be null. The values of an attribute in multiple rows can be
 of different data types.
An attribute includes the version property. Multiple versions of attribute values can
be retained as required for querying or other uses. Additionally, data in an attribute
has its own TTL. For more information, see Data versions and life cycle.

4.3 Data versions and time to live
Version numbers

Each value of an attribute corresponds to a different version. The value of the version
is the version number (timestamp). The version number is used to determine the
Time to live (TTL).
When writing data, you are allowed to specify the version number of an attribute.
If you do not specify a version number, the time from Jan 1, 1970, 00:00:00 UTC to
the present time will be converted to milliseconds and used as the version number
of the attribute. Version numbers are measured in milliseconds. When performing
 a comparison between TTL properties or Max Version Offset properties, you are
 required to divide version numbers by 1000 to convert the unit to seconds. The
version number is used in the following scenarios:
• Time to live (TTL)

The version number can be used to determine the lifecycle of a table. Assume that
 a version number of an attribute is 1468944000000, which is calculated based on
the time of July 20, 2016, 00:00:00 UTC. When you set the TTL as 86400 (one day),
the data of that version expires on July 21, 2016, 00:00:00 UTC. Then, the data is
automatically deleted.
When the version number of the data is determined by Table Store, the written
data will be automatically cleansed after the specified TTL.

Issue: 20190919 15

Tablestore Developer Guide / 4 Wide column model

• Read the version number of each row's data
When Table Store reads a row of data, you can specify the maximum number of
versions or the range of version numbers of each attribute, which are allowed to be
 read.

Max Versions
When writing data, you can specify the version number of an attribute. The Max
Versions property is used to determine how many versions of data of an attribute in
 a table can be retained. When the number of versions of an attribute exceeds the
value of the Max Versions property, the data of the earliest version will be deleted
asynchronously.
After creating a table, you are allowed to use the UpdateTable function to dynamically
 update the Max Versions property of the table.

Note:
• Data whose version exceeds the specified value of Max Versions is considered

invalid. The data is neither visible to you nor being read, even if the data is not
actually deleted.

• Assume that you have decreased the value of Max Versions. When the number of
 versions exceeds the newly specified value of Max Versions, the earliest version
will be deleted asynchronously.

• Assume that you have increased the number of Max Versions. When the previous
 data whose version exceeds the previous value of Max Versions and has not been
deleted, the data will be read.

Max Version Offset
The Max Version Offset property is used to determine the maximum allowed offset
between the specified version number and the current system time. The property is
measured in seconds. When the offset between the timestamp you have specified and
 the present time is greater than the specified TTL of a table, the written data expires
immediately. You can set the Max Version Offset to prevent this situation.
To ensure that data is written successfully, Table Store will check the version number
of an attribute when processing write requests. The range of valid version numbers of
an attribute is: [The time when you write data - Max Version

 Offset , The time when you write data + Max Version

16 Issue: 20190919

Tablestore Developer Guide / 4 Wide column model

Offset). The version number of an attribute is measured in milliseconds. After the
version number is divided by 1000, the result that is measured in seconds must fall
within this range. When a version number does not fall within the range, this write
request fails.
Assume that the Max Version Offset property of a table is 86400 (one day). On July
21, 2016, 00:00:00 UTC, you are only allowed to write data whose version number is
greater than 1468944000000, which is the result converted from July 20, 2016, 00:00:
00 UTC, and less than 1469116800000, which is the result converted from July 22, 2016
, 00:00:00 UTC. When the version number of an attribute in a row is 1468943999000,
which is the result converted from July 19, 2016, 23:59:59 UTC, then the write request
for the row fails.

Time to live
Time to live (TTL) is a property of a table. TTL is used to determine the lifecycle of the
 data. It is measured in seconds. To reduce storage costs, Table Store removes data
that exceeds the specified TTL in the background to decrease your storage space.
Assume that the specified TTL of a table is 86400 (one day). On July 21, 2016, 00:00:00
UTC, attributes whose version numbers are less than 1468944000000 expire, which is
 the result converted from July 20, 2016, 00:00:00 UTC. Table Store will automatically
remove the data of these attributes.

Note:
• Data that exceeds the specified TTL is invalid data. The data is neither visible to

you nor being read, even if the data is not actually deleted.
• Assume that you decrease the TTL value. Some pieces of data will expire due to the

 decreased TTL value. The expired data is removed asynchronously.
• Assume that you increase the TTL value. If data that exceeds the previous TTL has

not been removed, the data will be read again.

4.4 Naming conventions and data types
This topic describes the naming conventions and data types of Table Store.

Naming conventions
The following table describes naming conventions of tables and columns in Table
Store.

Issue: 20190919 17

Tablestore Developer Guide / 4 Wide column model

Item Description
Structure A name can contain uppercase letters (A to Z), lowercase

letters (a to z), digits (0 to 9), and underscores (_).
First character A name must start with an uppercase letter (A to Z), a

lowercase letter (a to z), or an underscore (_).
Case sensitivity A name is case-sensitive.
Length A name can be 1 to 255 characters in length.
Uniqueness • A table name must be unique under the same instance.

• Table names under different Table Store instances can be
the same.

Data types of primary key columns
Data types of values in primary key columns include String, Integer, and Binary.
Data type Description Size limit
String Data is in UTF-8. Empty

strings are allowed.
Up to 1 KB

Integer Data is 64-bit long. Up to 8 Bytes
Binary Data is binary. Empty

values are allowed.
Up to 1 KB

Data types of attribute columns
The following table describes data types of values in attribute columns.
Data type Description Size limit
String Data is in UTF-8. Empty

strings are allowed.
For more information, see
Limits.

Integer Data is 64-bit long. Up to 8 Bytes
Double Data is 64-bit long. Up to 8 Bytes
Boolean The value can be True or

False.
Up to 1 Byte

Binary Data is binary. Empty
values are allowed.

For more information, see
Limits.

18 Issue: 20190919

Tablestore Developer Guide / 4 Wide column model

4.5 Auto-increment function of the primary key column
If you set a primary key column as an auto-increment column, you do not need to
 enter this column when writing data in a row. Instead, Table Store automatically
generates the primary key value, which is unique in the partition key, and which
increases progressively.

Features
Table Store, in conjunction with the auto-increment function of an primary key
column, has the following features:
• The system architecture exclusive to Table Store and the implementation through

an auto-increment primary key column make sure that the value generated for the
auto-incrementing column is unique and strictly incrementing.

• The automatically generated auto-increment column value is a 64-bit signed long
integer.

• The level of the partition key increases progressively.
• The auto-increment function is a table level. The tables with an auto-increment

column and the tables without an auto-increment column can be created in the
same instance.

If the auto-increment primary key column is set, the conditional update logic is not
changed. See the following table for more information.
API IGNORE EXPECT_EXIST EXPECT_NOT

_EXIST
PutRow: The row
exists.

Fail Succeed Fail

PutRow: The row
does not exist.

Succeed Fail Fail

UpdateRow: The
row exists.

Fail Succeed Fail

UpdateRow: The
row does not exist.

Succeed Fail Fail

DeleteRow: The row
 exists.

Fail Fail Fail

DeleteRow: The row
 does not exist.

Succeed Succeed Fail

Issue: 20190919 19

Tablestore Developer Guide / 4 Wide column model

Limits
Table Store Auto-increment function of the primary key column mainly has the
following restrictions:
• Table Store supports multiple primary keys. The first primary key is a partition key

 that cannot be set as an auto-increment column. However, one of other primary
keys can be set as an auto-increment column.

• Only one primary key per table can be set as an auto-increment column.
• The attribute column cannot be set as an auto-increment column.
• The auto-increment column can only be set at the time the table is created. The

existing table cannot set the auto-increment column.
Interface

• CreateTable
- Set a column as an auto-incrementing column during table creation. For more

information, see Primary key column auto-increment.
- After table creation, you cannot configure the auto-incrementing feature of the

table.
• UpdateTable

You cannot change the auto-increment attribute of a table by using UpdateTable.
• PutRow/UpdateRow/BatchWriteRow

- When writing the table, you do not need to set specific values for the column
that you want to set as auto-incrementing. You only need to set a placeholder, for
example, AUTO_INCREMENT. For more information, see Primary key column
auto-increment.

- You can set ReturnType in ReturnContent as RT_PK, that is, to return the
complete primary key value, which can be used in the GetRow query.

• GetRow/BatchGetRow
GetRow requires a complete primary key column, which can be obtained by setting
 ReturnType in PutRow, UpdateRow, or BatchWriteRow as RT_PK.

• Other interfaces
Not changed

20 Issue: 20190919

Tablestore Developer Guide / 4 Wide column model

Usage
Java SDK: Auto-increment of the primary key column

Billing
The auto-increment function of primary key columns does not affect the existing
billing logic. Returned data of the primary key column does not consume additional
read CUs.

4.6 Conditional update
A conditional update is an update of table data that executes only when specified
conditions are met. A conditional update can be based on a combination of up to 10
conditions. Supported conditions include arithmetic operations (=, ! =, >, >=, <, and
<=) and logical operations (NOT, AND, and OR). The conditional update is applicable
to PutRow, UpdateRow, DeleteRow, and BatchWriteRow.
The column-based judgment conditions include the row existence condition and
column-based condition.
• The Row existence condition is classified into IGNORE , EXPECT_EXI ST , and

EXPECT_NOT _EXIST . When a table needs to be updated, the system first checks
the row existence condition. If the row existence condition is not met, an error
occurs during the update.

• The column-based condition supports SingleColu mnValueCon dition

and CompositeC olumnValue Condition , which are used to perform the
condition-based judgment based on the values of a column or certain columns,
similar to the conditions used by the Table Store filters.

Conditional update also supports optimistic locking strategy. That is, when a row
needs to be updated, the system first obtains the value of a column. For example, the
value of Column A is 1, and its condition is set as Column A = 1 . Set Column

A = 2 , then update the row. If a failure occurs during the update, it means that
the row has been successfully updated by another client.

Note:
In highly concurrent applications such as webpage view counting or gaming (where
atomic counter updates are required), the probability of failed conditional updates is
high. If this occurs, we recommend that you retry the update until successful.

Issue: 20190919 21

Tablestore Developer Guide / 4 Wide column model

Procedure
1. Construct SingleColumnValueCondition.

 // set condition Col0 == 0 .
 SingleColu mnValueCon dition singleColu mnValueCon dition
 = new SingleColu mnValueCon dition (" Col0 ",
 SingleColu mnValueCon dition . CompareOpe rator . EQUAL
, ColumnValu e . fromLong (0));
 // If column Col0 does not exist , the condition
check fails .
 singleColu mnValueCon dition . setPassIfM issing (false);
 // Only check the latest version
 singleColu mnValueCon dition . setLatestV ersionsOnl y (true
);

2. Construct CompositeColumnValueCondition.
 // condition composite1 is (Col0 == 0) AND (Col1 >
100)
 CompositeC olumnValue Condition composite1 = new
CompositeC olumnValue Condition (CompositeC olumnValue
Condition . LogicOpera tor . AND);
 SingleColu mnValueCon dition single1 = new SingleColu
mnValueCon dition (" Col0 ",
 SingleColu mnValueCon dition . CompareOpe rator . EQUAL
, ColumnValu e . fromLong (0));
 SingleColu mnValueCon dition single2 = new SingleColu
mnValueCon dition (" Col1 ",
 SingleColu mnValueCon dition . CompareOpe rator .
GREATER_TH AN , ColumnValu e . fromLong (100));
 composite1 . addConditi on (single1);
 composite1 . addConditi on (single2);

 // condition composite2 is ((Col0 == 0) AND (Col1 >
100)) OR (Col2 <= 10)
 CompositeC olumnValue Condition composite2 = new
CompositeC olumnValue Condition (CompositeC olumnValue
Condition . LogicOpera tor . OR);
 SingleColu mnValueCon dition single3 = new SingleColu
mnValueCon dition (" Col2 ",
 SingleColu mnValueCon dition . CompareOpe rator .
LESS_EQUAL , ColumnValu e . fromLong (10));
 composite2 . addConditi on (composite1);
 composite2 . addConditi on (single3);

3. Implement an increasing column by the optimistic locking strategy based on the
conditional update.
 private static void updateRowW ithConditi on (SyncClient
 client , String pkValue) {
 // construct the primary
 PrimaryKey Builder primaryKey Builder = PrimaryKey
Builder . createPrim aryKeyBuil der ();
 primaryKey Builder . addPrimary KeyColumn (PRIMARY_KE
Y_NAME , PrimaryKey Value . fromString (pkValue));
 PrimaryKey primaryKey = primaryKey Builder . build ();

 // read a row
 SingleRowQ ueryCriter ia criteria = new SingleRowQ
ueryCriter ia (TABLE_NAME , primaryKey);

22 Issue: 20190919

Tablestore Developer Guide / 4 Wide column model
 criteria . setMaxVers ions (1);
 GetRowResp onse getRowResp onse = client . getRow (new
 GetRowRequ est (criteria));
 Row row = getRowResp onse . getRow ();
 long col0Value = row . getLatestC olumn (" Col0 ").
getValue (). asLong ();

 // Col0 = Col0 + 1 by conditiona l update
 RowUpdateC hange rowUpdateC hange = new RowUpdateC
hange (TABLE_NAME , primaryKey);
 Condition condition = new Condition (RowExisten
ceExpectat ion . EXPECT_EXI ST);
 ColumnCond ition columnCond ition = new SingleColu
mnValueCon dition (" Col0 ", SingleColu mnValueCon dition .
CompareOpe rator . EQUAL , ColumnValu e . fromLong (col0Value
));
 condition . setColumnC ondition (columnCond ition);
 rowUpdateC hange . setConditi on (condition);
 rowUpdateC hange . put (new Column (" Col0 ", ColumnValu
e . fromLong (col0Value + 1)));

 try {
 client . updateRow (new UpdateRowR equest (
rowUpdateC hange));
 } catch (TableStore Exception ex) {
 System . out . println (ex . toString ());
 }
 }

Example
The following operations are examples of updates that are executed for highly
concurrent applications:
 // Get the old value
 old_value = Read ();
 // compute such as increment 1
 new_value = func (old_value);
 // Update by the new value
 Update (new_value)；

The conditional update makes sure Update (new_value) if value equals to
old_value in a highly concurrent environment where old_value may be

updated by another client.
Billing

Writing or updating data successfully does not affect the capacity unit (CU) calculatio
n rules of the interfaces. However, if the conditional update fails, one unit of write CU
 and one unit of read CU are consumed, which are billable.

Issue: 20190919 23

Tablestore Developer Guide / 4 Wide column model

4.7 Atomic counters
Atomic counter is a new feature of Table Store that allows you to implement an
 atomic counter on an attribute. This feature provides statistics data for online
applications such as keeping track of the number of page views (PV) on various topics
.
In traditional database systems (without atomic counters), you must perform read,
modify, and write (RMW) operations to increment an attribute value by one or other
number. You must read the previous attribute value from a database, and modify it on
 a client. Finally, you write the modified value to the database. The consistency issue
occurs in a database while multiple clients modify data at the same time.
Currently, you can fix this issue by starting a transaction to lock a row. Then you can
 perform RMW operations in this transaction. You can use a transaction to ensure
 consistent data in a row when multiple clients modify a single row. However, this
 solution reduces write performance of atomic counters. RMW operations will
increase network overhead.
To deal with increasing overhead, atomic counters are used in Table Store. A
transaction within a sequence of RMW operations is sent to a database as a request
. The database performs the operations on a row by locking the row. To ensure data
consistency, you can update atomic counters on a database server to improve write
performance.

Methods
The following methods are added in the RowUpdateChange class to operate an atomic
 counter:
• RowUpdateChange increment(Column column) is used to increment or decrement

an attribute value by a number.
• void addReturnColumn(String columnName) is used to specify the name of an

atomic counter that will be returned.
• void setReturnType(ReturnType.RT_AFTER_MODIFY) is used to specify a flag to

indicate that the updated value of the atomic counter must be returned.

24 Issue: 20190919

Tablestore Developer Guide / 4 Wide column model

You can use RowUpdateChange to increment an atomic counter by a number as
follows:
private static void incrementB yUpdateRow Api (SyncClient
client) {

 // You can specify a primary key .
 PrimaryKey Builder primaryKey Builder = PrimaryKey
Builder . createPrim aryKeyBuil der ();

 primaryKey Builder . addPrimary KeyColumn (PRIMARY_KE
Y_NAME , PrimaryKey Value . fromString (" pk0 "));

 PrimaryKey primaryKey = primaryKey Builder . build ();

 RowUpdateC hange rowUpdateC hange = new RowUpdateC
hange (TABLE_NAME , primaryKey);

 // You can increment the price value by 10
without specifying a timestamp .

 rowUpdateC hange . increment (new Column (" price ",
ColumnValu e . fromLong (10)));

 // You can specify a flag to indicate that
the updated value of the atomic counter must be
returned .

 rowUpdateC hange . addReturnC olumn (" price ");
 rowUpdateC hange . setReturnT ype (ReturnType .
RT_AFTER_M ODIFY);

 // You can update the price attribute .
 UpdateRowR esponse response = client . updateRow (new
UpdateRowR equest (rowUpdateC hange));

 // You can display the updated value .
 Row row = result . getRow ();
 System . out . println (row);
 }

Note:
• RowUpdateChange.addReturnColumn(an attribute name) is used to specify the

name of an atomic counter that will be returned.
• RowUpdateChange.setReturnType(RT_AFTER_MODIFY is used to specify a flag to

indicate that the updated value of the atomic counter must be returned.
Scenarios

You can use an atomic counter to keep track of a row in real time. Assume that you
 create a table to store pictures. Each row in the table has a user ID. An attribute of
 the row is used to store pictures. Another attribute of the row is used as an atomic
counter to count the number of pictures.
• UpdateRow is used to add a picture to the table and increment the atomic counter

by one.

Issue: 20190919 25

Tablestore Developer Guide / 4 Wide column model

• UpdateRow is used to remove a picture from the table and decrement the atomic
counter by one.

• GetRow is used to read the value of the atomic counter to check the number of
pictures.

This design ensures database consistency. When you add a picture to the table, the
atomic counter is incremented by one instead of decremented by one.

Restrictions
Note the following restrictions when using atomic counters:
• Atomic counters only support the Integer type.
• The default value of an empty atomic counter is zero. When you implement an

atomic counter on an existing attribute with a non-Integer type, an OTSParamet
erInvalid error occurs.

• You can update an atomic counter by using a positive or a negative number, but
you must avoid an integer overflow. If an overflow issue appears, an OTSParamet
erInvalid error occurs.

• When you modify an atomic counter, the value will not be returned by default. You
can use addReturnColumn() and setReturnType() to specify the name and updated
value of an atomic counter that will be returned.

• You cannot update an attribute and an atomic counter simultaneously for a single
request. If you have incremented or decremented the attribute A, then you cannot
perform other operations, such as overwrite and delete operations on the attribute
 A.

• You can perform multiple update operations on the same row using a BatchWrite
Row request. When you perform an atomic counter operation on a row, other
operations in this BatchWriteRow request cannot be performed on this row.

• You can only implement an atomic counter on an attribute with the latest version.
After you perform the update operation on the atomic counter, the atomic counter
will be specified with a new version.

• An error may occur when an atomic counter encounters network timeouts or
system failures. You can retry the operation. An atomic counter may be updated
twice. This symptom leads to an overcounting or undercounting issue. In this
case, we recommend that you can use conditional update to precisely update the
attribute.

26 Issue: 20190919

Tablestore Developer Guide / 5 Timeline model

5 Timeline model
5.1 Introduction
Overview

The Timeline model is a data model designed for message data scenarios. The model
 supports some special requirements of message data scenarios, such as message
order preservation, storage of large numbers of messages, and real-time synchroniz
ation. The model also supports the full-text search and bool query. The model is
applicable to message scenarios such as instant messaging (IM) and Feed streams.

Architecture
The Timeline model provides clear core modules in a simple design. You can easily
use this model, and set the model according to your business. The architecture of the
model includes the following components:
• Store: a store of Timeline data. The store is similar to a table in a database.
• Identifier: an identifier used to identify Timeline data.
• Meta: the metadata used to describe Timeline data. The metadata is stored in a free

-schema structure and can contain any column.
• Queue: stores all messages in a Timeline.
• SequenceId: the serial number of a message body in the Queue. The SequenceId

values must be incremental and unique. The Timeline model generates SequenceId
 values by using an auto-increment column. You can also specify SequenceId
values by manual.

• Message: the message body in the Timeline. The message is stored in a free-schema
 structure and can contain any column.

• Index: includes Meta Index and Message Index. You can customize indexes for any
columns in Meta or Message to provide the bool query.

Features
The Timeline model supports the following features:
• Manages Meta data and messages, including basic data operations such as create,

read, update, and delete.

Issue: 20190919 27

Tablestore Developer Guide / 5 Timeline model

• Supports the bool query and full-text search for Meta data and messages.
• Generates SequenceId values in two ways: auto-increment column and manual

setting.
• Supports the Timeline Identifier that contains multiple columns.
• Compatible with the Timeline 1. X model. The TimelineMessageForV1 example of

the Timeline model can directly read messages from and write messages to the V1
version.

Timeline
< dependency >
 < groupId > com . aliyun . openservic es . tablestore </ groupId
>

 < artifactId > Timeline </ artifactId >
 < version > 2 . 0 . 0 </ version >
</ dependency >

Table Store Java SDK (integrated with the Timeline model)
< dependency >
 < groupId > com . aliyun . openservic es </ groupId >
 < artifactId > tablestore </ artifactId >
 < version > 4 . 12 . 1 </ version >
</ dependency >

5.2 Quick start
This topic describes how to get started with the Timeline model by using sample
code.

Procedure
1. Log on to the Table Store console and create a Table Store instance. For more

information, see #unique_46.
2. Download and install the Table Store Java SDK. For more information, see

#unique_47.
3. Determine an endpoint and configure an AccessKey pair to initialize the instance.

For more information, see #unique_48.
4. Download the sample code to get started with the Timeline model.

28 Issue: 20190919

https://github.com/aliyun/tablestore-timeline/blob/master/src/test/java/examples/v2/TimelineV2.java

Tablestore Developer Guide / 5 Timeline model

5.3 Basic operations
5.3.1 Initialization
Initialize the TimelineStore Factory

You can use SyncClient as a parameter to initialize the TimelineStore Factory and
create a Store that manages Meta data and Timeline data. The retry operation after
an error occurs depends on the retry policy of SyncClient. You can set SyncClient for
the retry. If you have any special requirements, you can implement the RetryStrategy
operation to customize the policy.
/**
 * Set the retry policy .
 * Code : configurat ion . setRetrySt rategy (new DefaultRet
ryStrategy ());

 * */
ClientConf iguration configurat ion = new ClientConf
iguration ();

SyncClient client = new SyncClient (
 " http :// instanceNa me . cn - shanghai . ots . aliyuncs .
com ",

 " accessKeyI d ",
 " accessKeyS ecret ",
 " instanceNa me ", configurat ion);

TimelineSt oreFactory factory = new TimelineSt oreFactory
Impl (client);

Initialize MetaStore
Create a schema for a Meta table. The schema includes parameters such as Identifier
 and MetaIndex. Create a Store that manages Meta data by using the TimelineStore
Factory. You need to specify the following parameters: Meta table name, index, table
name, primary key field, index name, and index type.
TimelineId entifierSc hema idSchema = new TimelineId
entifierSc hema . Builder ()

 . addStringF ield (" timeline_i d "). build ();

IndexSchem a metaIndex = new IndexSchem a ();
metaIndex . addFieldSc hema (// Configure the index field
and index type .

 new FieldSchem a (" group_name ", FieldType . TEXT).
setIndex (true). setAnalyze r (FieldSchem a . Analyzer . MaxWord
)

 new FieldSchem a (" create_tim e ", FieldType . Long).
setIndex (true)

);

TimelineMe taSchema metaSchema = new TimelineMe taSchema ("
groupMeta ", idSchema)

Issue: 20190919 29

Tablestore Developer Guide / 5 Timeline model
 . withIndex (" metaIndex ", metaIndex); // Set the index
.

TimelineMe taStore timelineMe taStore = serviceFac tory .
createMeta Store (metaSchema);

Create a table
Create a table by using the parameters in metaSchema. Afterward, create and
configure an index.
timelineMe taStore . prepareTab les ();

Delete a table
If a table contains an index, delete the index before deleting the table from the Store.
timelineMe taStore . dropAllTab les ();

Initialize TimelineStore
Create a schema for a Timeline table. The schema includes parameters such as
Identifier and TimelineIndex. Create a Store that manages Timeline data by using the
 TimelineStore Factory. You need to specify the following parameters: Timeline table
name, index, table name, primary key field, index name, and index type.
The BatchStore operation improves the concurrency performance on the basis of
DefaultTableStoreWriter of Table Store. You can set the number of concurrent threads
 in the thread pool.
TimelineId entifierSc hema idSchema = new TimelineId
entifierSc hema . Builder ()

 . addStringF ield (" timeline_i d "). build ();

IndexSchem a timelineIn dex = new IndexSchem a ();
timelineIn dex . setFieldSc hemas (Arrays . asList (// Configure
the index field and index type .

 new FieldSchem a (" text ", FieldType . TEXT). setIndex
(true). setAnalyze r (FieldSchem a . Analyzer . MaxWord),

 new FieldSchem a (" receivers ", FieldType . KEYWORD).
setIndex (true). setIsArray (true)

));

TimelineSc hema timelineSc hema = new TimelineSc hema ("
timeline ", idSchema)

 . autoGenera teSeqId () // Specify the auto - increment
column as the method to generate the SequenceId value
.

 . setCallbac kExecuteTh reads (5) // Set the number
of initial threads of DefaultTab leStoreWri ter to 5 .

 . withIndex (" metaIndex ", timelineIn dex); // Set the
index .

30 Issue: 20190919

Tablestore Developer Guide / 5 Timeline model
TimelineSt ore timelineSt ore = serviceFac tory . createTime
lineStore (timelineSc hema);

Create a table
Create a table by using the parameters in TimelineSchema. Afterward, create and
configure an index.
timelineSt ore . prepareTab les ();

Delete a table
If a table contains an index, delete the index before deleting the table from the Store.
timelineSt ore . dropAllTab les ();

5.3.2 Meta management
You can call some operations, such as Insert, Delete, Update, Read, and Search, to
manage Meta data. The Search operation works on the basis of the Search Index
feature. Only the MetaStore that has IndexSchema configured supports the Search
operation. An index can be LONG, DOUBLE, BOOLEAN, KEYWORD, or GEO_POINT
type. The index attributes include Index, Store, and Array, and have the same
descriptions as those of the Search Index feature. For more information, see
#unique_52.

Insert
The TimelineIdentifer value is used to identify Timeline data. Table Store overwrites
repeated Identifier values.
TimelineId entifier identifier = new TimelineId entifier .
Builder ()

 . addField (" timeline_i d ", " group ")
 . build ();
TimelineMe ta meta = new TimelineMe ta (identifier)

 . setField (" filedName ", " fieldValue ");

timelineMe taStore . insert (meta);

Read
You can cal this operation to read TimelineMeta data in one row based on the
Identifier value.
TimelineId entifier identifier = new TimelineId entifier .
Builder ()

 . addField (" timeline_i d ", " group ")
 . build ();

Issue: 20190919 31

Tablestore Developer Guide / 5 Timeline model
timelineMe taStore . read (identifier);

Update
You can call this operation to update the Meta attribute that corresponds to the
specified TimelineIdentifier value.
TimelineId entifier identifier = new TimelineId entifier .
Builder ()

 . addField (" timeline_i d ", " group ")
 . build ();
TimelineMe ta meta = new TimelineMe ta (identifier)

 . setField (" filedName ", " new value ");

timelineMe taStore . update (meta);

Delete
You can call this operation to delete the TimelineMeta data in one row based on the
Identifier value.
TimelineId entifier identifier = new TimelineId entifier .
Builder ()

 . addField (" timeline_i d ", " group ")
 . build ();

timelineMe taStore . delete (identifier);

Search
You can call this operation to specify two search parameters: SearchParameter and
the native SDK class SearchQuery. This operation returns Iterator<TimelineMeta>.
You can iterate all result sets by using the iterator.
/**
 * Search meta by SearchPara meter .
 * */
SearchPara meter parameter = new SearchPara meter (

 field (" fieldName "). equals (" fieldValue ")
);
timelineMe taStore . search (parameter);

/**
 * Search meta by SearchQuer y .
 * */
TermQuery query = new TermQuery ();
query . setFieldNa me (" fieldName ");
query . setTerm (ColumnValu e . fromString (" fieldValue "));

SearchQuer y searchQuer y = new SearchQuer y (). setQuery (
query);

32 Issue: 20190919

Tablestore Developer Guide / 5 Timeline model
timelineMe taStore . search (searchQuer y);

5.3.3 Timeline management
You can call the operations for the fuzzy query and bool query to manage Timeline
data. The query operations work on the basis of the Search Index feature. Only the
TimelineStore that has IndexSchema configured supports the query operations.
An index can be LONG, DOUBLE, BOOLEAN, KEYWORD, GEO_POINT, or TEXT
type. The index attributes include Index, Store, Array, and Analyzer, and have the
same descriptions as those of the Search Index feature. For more information, see
#unique_52.

Search
You can call this operation to use the bool query. This query requires the field for
 a fuzzy query. You need to set the index type of the field to TEXT, and specify the
tokenizer.
/**
 * Search timeline by SearchPara meter .
 * */
SearchPara meter searchPara meter = new SearchPara meter (

 field (" text "). equals (" fieldValue ")
);
timelineSt ore . search (searchPara meter);

/**
 * Search timeline by SearchQuer y .
 * */
TermQuery query = new TermQuery ();
query . setFieldNa me (" text ");
query . setTerm (ColumnValu e . fromString (" fieldValue "));
SearchQuer y searchQuer y = new SearchQuer y (). setQuery (
query). setLimit (10);
timelineSt ore . search (searchQuer y);

Flush
The BatchStore operation works on the basis of the DefaultTableStoreWriter class
in the SDK of Table Store. You can call the flush operation to trigger the process of
sending the undelivered messages in the Buffer to Table Store and wait until Table
Store stores all these messages.
/**
 * Flush messages in buffer , and wait until all
messages are stored .

 * */

Issue: 20190919 33

Tablestore Developer Guide / 5 Timeline model
timelineSt ore . flush ();

5.3.4 Queue management
Obtain a Queue instance

A Queue is an abstract of a one message queue. The Queue corresponds to all
messages of an identifier under a TimelineStore. You can call the required operation
of TimelineStore to create a Queue instance.
TimelineId entifier identifier = new TimelineId entifier .
Builder ()

 . addField (" timeline_i d ", " group_1 ")
 . build ();

// The Queue correspond s to an identifier of a
TimelineSt ore .
TimelineQu eue timelineQu eue = timelineSt ore . createTime
lineQueue (identifier);

The Queue instance manages a message queue that corresponds to an identifier of a
 TimelineStore. This instance provides some operations, such as Store, StoreAsync,
BatchStore, Delete, Update, UpdateAsync, Get, and Scan.

Store
You can call this operation to synchronously store messages. To use this operation,
you can set SequenceId in two ways: auto-increment column and manual setting.
timelineQu eue . store (message);// Auto - increment column
timelineQu eue . store (sequenceId , message);// Manual setting

StoreAsync
You can call this operation to asynchronously store messages. You can customize
 callbacks to process successful or failed storage. This operation returns Future<
TimelineEntry>.
TimelineCa llback callback = new TimelineCa llback () {

 @ Override
 public void onComplete d (TimelineId entifier i ,
TimelineMe ssage m , TimelineEn try t) {

 // do something when succeed .
 }

 @ Override
 public void onFailed (TimelineId entifier i ,
TimelineMe ssage m , Exception e) {

 // do something when failed .
 }
};

34 Issue: 20190919

Tablestore Developer Guide / 5 Timeline model
timelineQu eue . storeAsync (message , callback);// Generate
 the SequenceId value by using an auto - increment
column .
timelineQu eue . storeAsync (sequenceId , message , callback);//
Specify the SequenceId value by manual .

BatchStore
You can call this operation to store multiple messages in the callback and non-
callback ways. You can customize callbacks to process successful or failed storage.
timelineQu eue . batchStore (message);// Auto - increment
column
timelineQu eue . batchStore (sequenceId , message);// Manual
setting

timelineQu eue . batchStore (message , callback);// Auto -
increment column
timelineQu eue . batchStore (sequenceId , message , callback);//
Manual setting

Get
You can call this operation to read one row based on the SequenceId value. If the
message does not exist, no error occurs and the system returns null.
timelineQu eue . get (sequenceId);

GetLatestTimelineEntry
You can call this operation to read the latest message. If the message does not exist,
no error occurs and the system returns null.
timelineQu eue . getLatestT imelineEnt ry ();

GetLatestSequenceId
You can call this operation to obtain the SequenceId value of the latest message. If the
 message does not exist, no error occurs and the system returns 0.
timelineQu eue . getLatestS equenceId ();

Update
You can call this operation to synchronously update a message based on the
SequenceId value.
TimelineMe ssage message = new TimelineMe ssage (). setField
(" text ", " Timeline is fine .");

// update message with new field
message . setField (" text ", " new value ");

Issue: 20190919 35

Tablestore Developer Guide / 5 Timeline model

timelineQu eue . update (sequenceId , message);

UpdateAsync
You can call this operation to asynchronously update a message based on the
SequenceId value. You can customize callbacks to process a successful or failed
update. This operation returns Future<TimelineEntry>.
TimelineMe ssage oldMessage = new TimelineMe ssage ().
setField (" text ", " Timeline is fine .") ;
TimelineCa llback callback = new TimelineCa llback () {

 @ Override
 public void onComplete d (TimelineId entifier i ,
TimelineMe ssage m , TimelineEn try t) {

 // do something when succeed .
 }

 @ Override
 public void onFailed (TimelineId entifier i ,
TimelineMe ssage m , Exception e) {

 // do something when failed .
 }
};

TimelineMe ssage newMessage = oldMessage ;
newMessage . setField (" text ", " new value ");
timelineQu eue . updateAsyn c (sequenceId , newMessage ,
callback);

Delete
You can call this operation to delete one row based on the SequenceId value.
timelineQu eue . delete (sequenceId);

Scan
You can call this operation to read messages in one queue in forward or backward
order based on the Scan parameter. This operation returns Iterator<TimelineEntry>.
You can iterate all result sets by using the iterator.
ScanParame ter scanParame ter = new ScanParame ter ().
scanBackwa rd (Long . MAX_VALUE , 0);

timelineQu eue . scan (scanParame ter);

36 Issue: 20190919

Tablestore Developer Guide / 6 Search Index

6 Search Index
6.1 Overview

You can use the multiple efficient index schemas of search index to solve complex
query problems in big data scenarios.
A table in Table Store is a distributed NoSQL data schema. Such tables can support
 storage and read/write of large-scale data, such as monitoring data and log data.
Originally, Table Store only supports queries based on primary key columns, such as
reading data in a single row and within a specified range. Other types of queries were
not available, such as queries based on non-primary key columns and the bool query.
To resolve this issue, Table Store has provided the search index feature. Based on
 inverted indexes and column-oriented storage, search index supports multiple
queries, including but not limited to:
• Query based on non-primary key columns
• Bool query
• Full-text search
• Query by geographical location
• Prefix query
• Fuzzy query
• Nested query

Index differences
Aside from queries based on primary key columns in the primary table, Table Store
 provides two index schemas for accelerated queries: global secondary index and
search index. The following table describes the differences among the three indexes.
Index type Description Scenario
Table A table is similar to a big map

. Tables only support queries
based on primary key columns.

• You can specify the complete
primary key columns.

• You can specify the prefixes of
 primary key columns.

Issue: 20190919 37

Tablestore Developer Guide / 6 Search Index

Index type Description Scenario
Global
secondary
index

You can create one or more
global secondary indexes and
 issue query requests against
these indexes. This way, you can
 perform queries based on the
primary key columns of these
indexes.

• You can determine the
required columns in advance
, and only a few columns are
required.

• You can specify the complete
 primary key columns or
the prefixes of primary key
columns.

Search index Search index uses inverted
indexes, Bkd-trees, and column-
oriented storage to meet various
query scenarios.

All query and analysis scenarios
 that the table and the global
secondary index do not support.

Precautions
Index synchronization
If you have created a search index for a table, data is written to the table first. When
 the write is successful, success message is immediately returned to the user. At the
same time, another asynchronous thread reads the newly written data from the table
and writes the data to the search index. This is an asynchronous process.
The asynchronous data synchronization between a table and search index does not
affect the write performance of Table Store. The indexing latency is within seconds,
most of which are within 10 seconds. You can view the indexing latency in the Table
Store console in real time.
TTL
You cannot create a search index in a table where you have specified the time to live (
TTL) parameter.
max versions
You cannot create a search index in a table where you have specified the max versions
 parameter.
You can customize the timestamp whenever you write data to an attribute column
 that allows only one version. If you first write a major version number and then a
minor version number, the index of the major version number may be overwritten by
 the index of the minor version number.

38 Issue: 20190919

Tablestore Developer Guide / 6 Search Index

Features
Search index can solve complex query problems in big data scenarios. Other systems
 such as databases and search engines can also solve data query problems. The
differences between Table Store and databases and search engines are illustrated as
follows:

Table Store can provide all features of databases and search engines, except for
join operations, transactions, and relevance of search results. Table Store also has
high data reliability of databases and supports advanced queries of search engines.
Therefore, Table Store can replace the common database plus search

engine architectu re . If you do not need join operations, transactions, and
relevance of search results, we recommend that you use search index of Table Store.

6.2 Features
This topic describes the core features of search index.

Core features
Query based on non-primary key columns
Originally, Table Store only supports queries based on complete primary key
columns or their prefixes. Queries based on non-primary key columns were not
available in some scenarios. Search index enables Table Store to support queries
based on non-primary key columns. You only need to create a search index for the
column to be queried.
Bool query

Issue: 20190919 39

Tablestore Developer Guide / 6 Search Index

Bool query is applicable to order scenarios. In order scenarios, a table may contain
 dozens of fields. You cannot determine how to combine fields required for queries
 when you create a table. Even if the combination of required fields is specified,
hundreds of combinations may be available. If you use a relational database, you
 need to create hundreds of indexes. In addition, if a certain combination is not
created in advance, you cannot query the corresponding data.
However, you can use Table Store to create a search index that includes the required
field names, which can be combined in a query as needed. Search index also supports
 multiple logical operators, such as AND, OR, and NOT.
Query by geographical location
With the popularization of mobile devices, geographical location data is becoming
increasingly important. The data is used in most apps, such as WeChat Moments, Sina
 Weibo, food delivery apps, sports apps, and Internet of Vehicles (IoV) apps. These
apps provide geographical location data. Therefore, they must support query features
.
Search index supports queries based on the following geographical location data:
• Near: queries points within a specified radius based on a central point.
• Within: queries points within a specified rectangular or polygonal area.
Based on these query features, you can use Table Store to easily query geographical
location data without resorting to other databases or search engines.
Full-text search
Search index can tokenize data to perform full-text search. However, unlike search
engines, Table Store cannot return relevant results in response to a query. Therefore,
if you need relevant results, we recommend that you use search engines.
Five tokenization types are available, including single-word tokenization, delimiter
tokenization, minimum semantic unit-based tokenization, maximum semantic unit-
based tokenization, and fuzzy tokenization. For more information, see #unique_58.
Fuzzy query
Search index supports queries based on wildcards. This feature is similar to the LIKE
operator in relational databases. You can specify characters and wildcards such
as question marks (?) or asterisks (*) to query data in the way similar to the LIKE
operator.

40 Issue: 20190919

Tablestore Developer Guide / 6 Search Index

Prefix query
Search index supports the prefix query feature. This feature is applicable to any
natural language. For example, in the query based on the prefix "apple", the system
may return words such as "apple6s" and "applexr".
Nested query
In addition to a flat structure, online data such as labeled pictures have some complex
 multilayered structures. For example, a database stores a large number of pictures
, and each picture has multiple elements, such as houses, cars, and people. Each
element in a picture has a unique score. The score is evaluated based on the size and
 position of the element in a picture. Therefore, each picture has multiple labels.
Each label has a name and a weighted score. You can use nested queries based on the
conditions or field names of the labels.
The following example shows the JSON data format in a query:
{
 " tags ": [
 {
 " name ": " car ",
 " score ": 0 . 78
 },
 {
 " name ": " tree ",
 " score ": 0 . 24
 }
]
}

You can use the nested query effectively to store and query data of multilayered
logical relationships. This query facilitates the modeling of complex data.
Deduplication
Search index supports deduplication for query results. Deduplication allows you to
 specify the highest frequency of occurrence of an attribute value to achieve high
cardinality. For example, when you search for a laptop on an e-commerce platform
, the first page may display products of a certain brand. This is not a user-friendly
result. However, the deduplication feature of Table Store can resolve this issue.
Sorting
A table sorts data based on the alphabetical order of primary key columns. To sort
data by other fields, you need to use the sorting feature of search index. Table Store
 supports multiple types of sorting, such as ascending sorting, descending sorting,

Issue: 20190919 41

Tablestore Developer Guide / 6 Search Index

single-field sorting, and multi-field sorting. By default, Table Store returns results
based on the order of primary key columns. You can use this method to sort global
data.
Total number of rows
You can specify the number of rows that the system returns for the current request
 when you use search index for a query. If you do not specify any query condition
 for search index, the system returns the total number of rows where you have
created indexes. When you stop writing new data to a table and create indexes on
all attributes, the system returns the total number of rows in the table. This feature
applies to data verification and data management.

SQL
Table Store does not support SQL statements and operators. However, most of these
SQL features can match similar features of search index, as shown in the following
table.
SQL Search index Supported
SHOW API operation: DescribeSe

archIndex
Yes

SELECT Parameter: ColumnsToGet Yes
FROM Parameter: index name Supported for single

indexes and not supported
for multiple indexes

WHERE Query: a variety of queries
such as TermQuery

Yes

ORDER BY Parameter: sort Yes
LIMIT Parameter: limit Yes
DELETE API operation: query

followed by DeleteRow
Yes

LIKE Query: wildcard query Yes
AND Parameter: operator = and Yes
OR Parameter: operator = or Yes
NOT Query: bool query Yes
BETWEEN Query: range query Yes
NULL ExistQuery Yes

42 Issue: 20190919

Tablestore Developer Guide / 6 Search Index

6.3 API operations
6.3.1 Overview

This topic describes the operations, fields, queries, and billing methods of search
index.

SDKs
You can use the following SDKs to implement search index.
• Java SDK
• Python SDK
• Go SDK
• Node.js SDK
• .NET SDK

API operations
Action Operation Description
Create CreateSearchIndex Creates a search index.
Describe DescribeSearchIndex Queries detailed

information of a search
index.

List ListSearchIndex Queries the list of search
indexes.

Delete DeleteSearchIndex Deletes a specified search
index.

Search Search Searches for required data.
Fields

The value of a search index field in Table Store is the value of the field of the same
name in the corresponding table. The types of these fields must match each other, as
described in the following table.
Field type in the search
index

Field type in the table Description

Long Integer 64-bit long integers.

Issue: 20190919 43

Tablestore Developer Guide / 6 Search Index

Field type in the search
index

Field type in the table Description

Double Double 64-bit long floating-point
numbers.

Boolean Boolean Boolean values.
Keyword String Character strings that

cannot be tokenized.
Text String Character strings or text

that can be tokenized. For
more information, see
#unique_58.

Geopoint String Geographical coordinates
in the latitude ,
longitude format.

Example: 35.8,-45.91.
Nested String Nested type fields, such as

 "{["a": 1], ["a": 3]}."

Notice:
The types in this table must correspond to each other. Otherwise, Table Store
discards the data as dirty data. Make sure fields of the Geopoint and Nested types
must comply with the formats described in the preceding table. If the formats do
not match, Table Store discards the data as dirty data. As a result, the data may be
available in the table, but be unavailable in the search index.

Aside from the type attribute, search index fields also have additional attributes.

44 Issue: 20190919

Tablestore Developer Guide / 6 Search Index

Attribute Type Option Description
Index Boolean Specifies whether

to create an index
for a column.

• True indicates
that Table Store
 creates an
inverted index or
 spatial index for
the column.

• False indicates
that Table Store
 does not create
an index for the
column.

• If no indexes
exist, you cannot
 query by the
column.

EnableSortAndAgg Boolean Specifies whether
 to enable sorting
and aggregation.

• True indicates
that data can be
 sorted by using
the column.

• False indicates
that data cannot
 be sorted by
using the column
.

Store Boolean Specifies whether
 to store original
values in the index.

True indicates that
 Table Store stores
the original values
in the column to the
 index. Therefore
, Table Store reads
 values of the
column directly
from the index,
rather than from
the primary table
. This optimizes
query performance.

Issue: 20190919 45

Tablestore Developer Guide / 6 Search Index

Attribute Type Option Description
IsArray Boolean Specifies whether

 the column is an
array.

• True indicates
that the column
is an array. Data
 written to the
column must be
 a JSON array,
such as ["a","b","c
"].

• You do not need
 to explicitly
 specify this
parameter for
Nested columns
because they are
 arrays.

• Array type data
can be used in all
 queries because
 arrays do not
affect queries.

For more information about the attributes that each field type supports, see the
following table.
Type Index EnableSort

AndAgg
Store Array

Long Supported Supported Supported Supported
Double Supported Supported Supported Supported
Boolean Supported Supported Supported Supported
Keyword Supported Supported Supported Supported
Text Supported Not supported Supported Supported
Geopoint Supported Supported Supported Supported
Nested Required for

child fields.
Required for
child fields.

Required for
child fields.

Nested fields
are arrays.

Query parameters and types
You must specify SearchRequest in a query. The following table describes parameters
that are included in SearchRequest.

46 Issue: 20190919

Tablestore Developer Guide / 6 Search Index

Parameter Data type Description
offset Integer Specifies the position from

 which the current query
starts.

limit Integer Specifies the maximum
number of items that the
current query returns.

getTotalCount Boolean Specifies whether to
return the total number
 of matched rows. This
parameter is set to false
 by default. A value of
true may affect the query
performance.

Sort Sort Specifies the field and
method for sorting.

collapse Collapse Specifies the name of the
 field that you want to
collapse in the query result
.

query Query Specifies the type of
the current query. The
following table lists the
query types.

Name Query Description
Query by matching all
rows

MatchAllQuery You can use MatchAllQu
ery to check the total
number of rows.

Query by tokenized data MatchQuery You can use MatchQuery
to tokenize the query data
, and query the tokenized
data. Logical operator OR
applies to tokens.

Query by matched phrases MatchPhraseQuery This query is similar to
MatchQuery. The matched
 tokens must be adjacent
to each other in the query
data.

Issue: 20190919 47

Tablestore Developer Guide / 6 Search Index

Name Query Description
Query by exact match TermQuery You can use TermQuery to

match exact strings. Table
 Store uses exact matches
 to query data in a table,
and does not tokenize the
query data.

Query by multiple terms TermsQuery This query is similar to
TermQuery. You can use
TermsQuery to match
multiple terms, which is
similar to the SQL IN
operator.

Query by prefix PrefixQuery You can use PrefixQuery
to query data in a table by
matching a specified prefix
.

Query by range RangeQuery You can use RangeQuery
 to query data within a
specified range in a table.

Query by wildcards WildcardQuery You can use WildcardQu
ery to query data based on
 strings that contain one
or more wildcards. This
query is similar to the SQL
LIKE operator.

Query by a combination of
filtering conditions

BoolQuery You can use BoolQuery
 to combine multiple
filtering conditions by
using Logical operators,
such as AND, OR, and NOT.

Query by matching data
 within a rectangular
geographical area

GeoBoundingBoxQuery You can use GeoBoundin
gBoxQuery to specify a
rectangular geographic
al area as a filtering
condition in a query. Table
 Store returns the rows
where the value of a field
falls within the rectangula
r geographical area.

48 Issue: 20190919

Tablestore Developer Guide / 6 Search Index

Name Query Description
Query by matching
data within a circular
geographical area

GeoDistanceQuery You can use GeoDistanc
eQuery to specify a
circular geographical area
 as a filtering condition in
a query, which consists of
 a central point and radius
. Table Store returns the
 rows where the value of
 a field falls within the
circular geographical area.

Query by matching
data within a polygonal
geographical area

GeoPolygonQuery You can use GeoPolygon
Query to specify a
polygonal geographic
al area as a filtering
condition in a query. Table
 Store returns the rows
where the value of a field
falls within the polygonal
geographical area.

Pricing
For more information, see #unique_84.

6.3.2 CreateSearchIndex
You can call this operation to create a search index. To use the search index feature
for a table, you must create a search index in the table. One table can contain multiple
search indexes.
You can call the Search operation to query fields (including primary key columns and
attribute columns) included in the search index.

Description
Parameters:
• TableName: specifies the name of the table for which you want to create a search

index.
• IndexName: specifies the name of the search index.

Issue: 20190919 49

Tablestore Developer Guide / 6 Search Index

• IndexSchema: defines the schema of the search index.
- IndexSetting

■ RoutingFields: specifies the routing fields. You can specify some primary
key columns as routing fields. Table Store distributes data that is written to
 a search index to different partitions based on the specified routing fields.
The data with the same routing field values is distributed to the same data
partition.

- FieldSchemas
■ FieldName: required. This parameter specifies the name of the field that is a

column name in the table. The name is of the string type.
■ FieldType: required. This parameter specifies the type of the field. For more

information, see the "Fields" section in Overview.
■ Index: optional. This parameter specifies whether to create an index for the

field. The index is of the Boolean type. Default value: true.
■ IndexOptions: optional. This parameter specifies whether to store terms such

 as position and offset in an inverted list. Use the default value in general
conditions.

■ EnableSortAndAgg: optional. This parameter specifies whether to enable
sorting and aggregation. This parameter is of the Boolean type. Default value
: true.

■ Store: optional. This parameter specifies whether to store original values in
the index to accelerate queries. This parameter is of the Boolean type. Default
 value: true.

FAQ
How many indexes can be created in a table?
Assume that you have a table with five fields: ID, name, age, city, and sex, and you
need to query by name, age, or city. There are two methods to create search indexes:

50 Issue: 20190919

Tablestore Developer Guide / 6 Search Index

• Method 1: Create a search index for an index field
In this case, you need to create three search indexes: name_index, age_index, and
 city_index. You can use city_index to query data by city, and age_index to query
data by age.
However, you cannot use this method to query students who are younger than 12
years old and live in Chengdu.
The implementation of this method is similar to that of secondary indexes. In this
 case, one index field for one search index brings no benefits to search indexing
but increases costs. Therefore, we recommend that you do not use this method to
create a search index.

• Method 2: Create a search index for multiple index fields
In this case, you only need to create a search index named student_index. The
fields include name, age, and city. You can use the city index field in the student_in
dex to query data by city. You can use the age index field in the student_index to
query data by age.
You can use the age and city index fields in the student_index to query students
who are younger than 12 years old and live in Chengdu.
This method provides more functions at low cost. We recommend that you use this
 method.

Limits
1. Timeliness of index creation
It takes a few minutes to create a search index. During the creation process, you can
write data into the table.
2. Quantity
For more information, see #unique_86.

Examples
/**
 * Create a search index that contains the Col_Keywor
d and Col_Long columns . Set the type of data in
Col_Keywor d to KEYWORD . Set the type of data in
Col_Long to LONG .

 */
private static void createSear chIndex (SyncClient client)

 {

Issue: 20190919 51

Tablestore Developer Guide / 6 Search Index
 CreateSear chIndexReq uest request = new CreateSear
chIndexReq uest ();

 request . setTableNa me (TABLE_NAME); // Set the table
name .

 request . setIndexNa me (INDEX_NAME); // Set the index
name .

 IndexSchem a indexSchem a = new IndexSchem a ();
 indexSchem a . setFieldSc hemas (Arrays . asList (
 new FieldSchem a (" Col_Keywor d ", FieldType .
KEYWORD) // Set the field name and field type .

 . setIndex (true) // Set the parameter to
 true to enable indexing .

 . setEnableS ortAndAgg (true), // Set the
parameter to true to enable sorting and aggregatio n .

 new FieldSchem a (" Col_Long ", FieldType . LONG)
 . setIndex (true)
 . setEnableS ortAndAgg (true)));
 request . setIndexSc hema (indexSchem a);
 client . createSear chIndex (request); // Use the client
 to create a search index .

}

6.3.3 DescribeSearchIndex
You can call this operation to query the details of a Search Index structure. To use
the Search Index feature for a table, you must create a Search Index structure in the
table. One table can contain multiple Search Index structures.

Description
Name: DescribeSearchIndex
Parameters:
• TableName: the name of the target table where you request the details of the

Search Index structure.
• IndexName: the name of the target index.

Example
private static DescribeSe archIndexR esponse describeSe
archIndex (SyncClient client) {

 DescribeSe archIndexR equest request = new DescribeSe
archIndexR equest ();

 request . setTableNa me (TABLE_NAME); // Set the name
of the table .

 request . setIndexNa me (INDEX_NAME); // Set the name
of the index .

 DescribeSe archIndexR esponse response = client .
describeSe archIndex (request);

 System . out . println (response . jsonize ()); // Display
the details of the response .

 return response ;

52 Issue: 20190919

Tablestore Developer Guide / 6 Search Index
}

6.3.4 ListSearchIndex
You can call this operation to retrieve the list of all Search Index structures associated
with an instance or a table.

Description
Name: ListSearchIndex
Parameter:
• TableName: the name of the target table. If you do not specify this optional

parameter, Table Store returns the list of all indexes on the instance. If you specify
 a table, Table Store returns the list of all Search Index structures associated with
the table.

Example
private static List < SearchInde xInfo > listSearch Index (
SyncClient client) {

 ListSearch IndexReque st request = new ListSearch
IndexReque st ();

 request . setTableNa me (TABLE_NAME); // Set the name
of the table .

 return client . listSearch Index (request). getIndexIn
fos (); // Return all Search Index structures of the
specified table .

}

6.3.5 DeleteSearchIndex
You can call this operation to delete a Search Index structure.

Description
Name: DeleteSearchIndex
Parameters:
• TableName: the name of the target table where you delete the Search Index

structure.
• IndexName: the name of the target index that you want to delete.

Example
private static void deleteSear chIndex (SyncClient client)

 {
 DeleteSear chIndexReq uest request = new DeleteSear
chIndexReq uest ();

Issue: 20190919 53

Tablestore Developer Guide / 6 Search Index
 request . setTableNa me (TABLE_NAME); // Set the name
of the table .

 request . setIndexNa me (INDEX_NAME); // Set the name
of the index .

 client . deleteSear chIndex (request); // Use client to
delete the target Search Index structure .

}

6.3.6 Array and Nested field types
Aside from basic field types, such as Long, Double, Boolean, Keyword, Text, and
Geopoint, search index also provides two special field types.
One is the Array type. The Array type can be attached to the basic field types. For
example, a field of Long type plus an Array type forms an integer array. This field can
contain multiple long integers. If any data of a row is matched in the query, the row is
 returned.
The other is the Nested type, which provides more features than the Array type.

Array type
Basic Array types, such as:
• Long Array: an array of long integers. Format: "[1000, 4, 5555]."
• Boolean Array: an array of Boolean values. Format: "[true, false]."
• Double Array: an array of floating-point numbers. Format: "[3.1415926, 0.99]."
• Keyword Array: an array of strings.
• Text Array: an array of text. This type is not common.
• GeoPoint Array: an array of geographical locations. Format: "[34.2, 43.0], [21.4, 45.2

]."
The Array type is only supported in search index. Therefore, when the type of an
index field involves Array, the field in the table must be of the String type. The basic
data type in the search index remains, such as Long or Double. For example, when a
price field is of the Double Array type, the field must be of the String type in the table,
and of the Double type in the search index, with isArray set to true.

Nested type
A Nested column contains nested documents. One document or one row can contain
 multiple child documents, and these child documents are saved to the same Nested
 column. You need to specify the schema of child documents in the Nested column.

54 Issue: 20190919

Tablestore Developer Guide / 6 Search Index

The structure includes the fields of the child documents and the property of each field
. The following example defines the format of a Nested column in Java:
// Specify the FieldSchem a class for the child
documents .
List < FieldSchem a > subFieldSc hemas = new ArrayList <
FieldSchem a >();
subFieldSc hemas . add (new FieldSchem a (" tagName ",
FieldType . KEYWORD)

 . setIndex (true). setEnableS ortAndAgg (true));
subFieldSc hemas . add (new FieldSchem a (" score ", FieldType
. DOUBLE)

 . setIndex (true). setEnableS ortAndAgg (true));

// Set FieldSchem a of the child documents as
subfieldSc hemas of the Nested column .
FieldSchem a nestedFiel dSchema = new FieldSchem a (" tags
", FieldType . NESTED)

 . setSubFiel dSchemas (subFieldSc hemas);

This example defines the format of a Nested column named tags. The child
documents include two fields: one is a KEYWORD field named tagName and the other
is a DOUBLE field named score.
Table Store writes Nested columns as strings in JSON arrays to the table. The
following example shows the data format of a Nested column:
[{" tagName ":" tag1 ", " score ": 0 . 8 }, {" tagName ":" tag2 ", "
score ": 0 . 2 }]

This column contains two child documents. Even if a column contains only one child
document, you must provide the strings in JSON arrays.
The Nested type has the following limits:
1. Nested indexes do not support the IndexSort feature. However, IndexSort can

improve query performance in many scenarios.
2. The nested query provides lower performance than other types of queries.
Apart from the preceding limits, the Nested type supports all queries and sorting, and
 will support statistical aggregation in the future.

6.3.7 Sort
You can use Sort to specify the method of sorting the result when you call the Search
operation to search indexes.
The Search Index feature supports multiple sorting methods.

Issue: 20190919 55

Tablestore Developer Guide / 6 Search Index

If you have not specified the sorting method for the search, the system applies the
 IndexSort parameter for the required indexes. By default, Table Store returns the
query result in the order of primary key columns.
Table Store supports the following sorting methods:
• ScoreSort

Sort the result by relevance score. ScoreSort is applicable to relevance scenarios
such as full-text indexing.

• PrimaryKeySort
Sort the result by the value of a primary key.

• FieldSort
Sort the result by the value of a specified field.

• GeoDistanceSort
Sort the result by the distance, radius, from a central point.

6.3.8 Tokenization
Search index can tokenize words for queries. If the field type is set to text, you can set
an additional tokenization parameter for this field to specify the method in which the
text is tokenized. Tokenization cannot be set for fields of non-text types.
You can use MatchQuery and MatchPhraseQuery to query text data. TermQuery,
TermsQuery, PrefixQuery, and WildcardQuery are also used in a few scenarios.
The following tokenization methods are supported:

Methods
Single-word tokenization
• Name: single_word
• Applies to: all natural languages, such as Chinese, English, and Japanese
• Parameter:

- caseSensitive: specifies whether this method is case-sensitive. The default value
is false. False indicates that all English letters are converted to lowercase letters.

- delimitWord: specifies whether to tokenize alphanumeric characters. The
default value is false.

56 Issue: 20190919

Tablestore Developer Guide / 6 Search Index

English letters or numbers are tokenized based on spaces or punctuation, and English
 letters are converted to lowercase letters. For example, "Hang Zhou" is tokenized into
 "hang" and "zhou". You can use MatchQuery or MatchPhraseQuery to query data that
 contains "hang", "HANG", or "Hang". If you do not need the system to automatically
convert English letters to lowercase letters, you can set the caseSensitive parameter to
 true.
Alphanumeric characters such as product models cannot be tokenized by this
method because there are no spaces or punctuation between letters and numbers.
For example, "IPhone6" remains "IPhone6" after tokenization. When querying by
MatchQuery or MatchPhraseQuery, you can retrieve data only by specifying "iphone6
" to query. You can set the delimitWord parameter to true to separate English letters
from numbers. This way, "iphone6" is tokenzied into "iphone" and "6".
Delimiter tokenization
• Name: split
• Applies to: all natural languages, such as Chinese, English, and Japanese
• Parameter:

- delimiter: The default delimiter is a space. You can set the delimiter to any
character based on your needs.

Search index tokenizes words based on general dictionaries, but words from some
special industries need to be tokenized based on their custom dictionaries. In this
case, tokenization methods provided by search index cannot meet the needs of users.
Delimiter tokenization, or custom tokenization, can address this need. Users segment
words in their own way and tokenize the segmented words with a specific delimiter.
Then, the tokenized words are written to Table Store.

Note:
When you create a search index, the delimiter set in the field for tokenization must
be the same as that in the written data. Otherwise, data may not be retrieved.

Minimum semantic unit-based tokenization
• Name: min_word
• Applies to: Chinese

Issue: 20190919 57

Tablestore Developer Guide / 6 Search Index

• Parameter:
- None

In addition to word-level tokenization, search index also provides semantic-level
tokenization. By using this method, text is tokenized into minimum semantic units.
In most cases, this method can meet basic requirements in the full-text search
scenario.
Maximum semantic unit-based tokenization
• Name: max_word
• Applies to: Chinese
• Parameter:

- None
Aside from the minimum semantic unit-based tokenization, the more complex
maximum semantic unit-based tokenization is provided to obtain as many semantic
units as possible. However, different semantic units may overlap. The total length of
the tokenized words is greater than the length of the original text. The index fields are
 increased.
This method can generate more tokens and increase the probability of obtaining
 results. However, the index fields are greatly increased. MatchPhraseQuery also
tokenizes words in the same way. This way, tokens may overlap and data may not be
retrieved. Therefore, This tokenization method is more suitable for MatchQuery.
Fuzzy tokenization
• Name: fuzzy
• Applies to: all natural languages, such as Chinese, English, and Japanese
• Parameter:

- minChars: specifies the minimum number of characters for a token. We
recommend that you set this value to 2.

- maxChars: specifies the maximum number of characters for a token. We
recommend that you set this value to a number smaller than or equal to 7.

58 Issue: 20190919

Tablestore Developer Guide / 6 Search Index

• Limits:
- A text field cannot exceed 32 characters in length. Only the first 32 characters of

a text field is retained and the characters after the 32nd character are truncated
and discarded.

Assume that you need to be able to quickly obtain results for short text, such as
headlines, movie names, or book titles by using drop-down prompts. In this case, you
 can use fuzzy tokenization to tokenize text content into n-grams, whose lengths are
between minChars and maxChars.
This method has minimal delay when obtaining results, but the index fields are
increased greatly. Therefore, this tokenization method is suitable for short text.

Comparison
The following table compares the five tokenization methods.

Single-word
tokenization

Delimiter
tokenization

Minimum
 semantic
unit-based
tokenization

Maximum
 semantic
unit-based
tokenization

Fuzzy
tokenization

Index
expansion

Medium Small Small Large Huge

Relevance Weak Weak Medium Relatively
strong

Relatively
strong

Applicable
language

All All Chinese Chinese All

Length limit No No No No 32
characters

Recall rate High Low Low Medium Medium
6.3.9 MatchAllQuery

You can use MatchAllQuery to query the total number of rows or any number of rows
in a table.

Example
/**
 * Use MatchAllQu ery to query the total number of
rows in a table .

 * @ param client
 */

Issue: 20190919 59

Tablestore Developer Guide / 6 Search Index
private static void matchAllQu ery (SyncClient client) {

 SearchQuer y searchQuer y = new SearchQuer y ();

 /**
 * Set the query type to MatchAllQu ery .
 */
 searchQuer y . setQuery (new MatchAllQu ery ());

 /**
 * In the MatchAllQu ery - based query result , the
value of TotalCount is the total number of rows in
 a table . This value is an approximat e value when
 you query a table that contains a large number of
 rows .

 * To return only the total number of rows without
 any specific data , you can set Limit to 0 . Then
, Table Store returns no data in the rows .

 */
 searchQuer y . setLimit (0);
 SearchRequ est searchRequ est = new SearchRequ est (
TABLE_NAME , INDEX_NAME , searchQuer y);

 /**
 * Set the total number of matched rows .
 */
 searchQuer y . setGetTota lCount (true);
 SearchResp onse resp = client . search (searchRequ est);
 /**
 * Check whether Table Store returns matched data
 from all partitions . When the value of isAllSucce
ss is false , Table Store may fail to query some
partitions and return a part of data .

 */
 if (! resp . isAllSucce ss ()) {
 System . out . println (" NotAllSucc ess !") ;
 }
 System . out . println (" IsAllSucce ss : " + resp .
isAllSucce ss ());

 System . out . println (" TotalCount : " + resp . getTotalCo
unt ()); // The total number of rows .

 System . out . println (resp . getRequest Id ());
}

6.3.10 MatchQuery
You can use MatchQuery to query data in the fields of Text type in full-text search
scenarios. Table Store tokenizes the value of Text type in the index and the target
value that you specify for the MatchQuery type based on your configuration.
Therefore, Table Store can match tokenized terms in a query.
For example, the title field value in a row is "Hangzhou West Lake Scenic Area". Table
 Store tokenizes the value into "Hangzhou", "West", "Lake", "Scenic", and "Area". If you
 specify the target term as "Lake Scenic" in MatchQuery, Table Store returns this row
in the query result.

60 Issue: 20190919

Tablestore Developer Guide / 6 Search Index

Parameters
• fieldName: the name of the target field.
• text: the target term. Table Store tokenizes this term into multiple terms.
• minimumShouldMatch: the minimum number of terms that the value of the

fieldName field in a row contains when Table Store returns this row in the query
result.

• operator: the operator used in a logical operation. The default operator OR
specifies that Table Store returns the row when some of the tokens of the field
value in the row match the target term. The operator AND specifies that Table Store
 returns the row only when all tokens of the field value in the row match the target
term.

Example
/**
 * Search the table for rows where the value of
Col_Keywor d matches " hangzhou ". Table Store returns
matched rows and the total number of matched rows .

 * @ param client
 */
private static void matchQuery (SyncClient client) {

 SearchQuer y searchQuer y = new SearchQuer y ();
 MatchQuery matchQuery = new MatchQuery (); // Set the
query type to MatchQuery .

 matchQuery . setFieldNa me (" Col_Keywor d "); // Set the
name of the field that you want to match .

 matchQuery . setText (" hangzhou "); // Set the value that
 you want to match .

 searchQuer y . setQuery (matchQuery);
 searchQuer y . setOffset (0); // Set Offset to 0 .
 searchQuer y . setLimit (20); // Set Limit to 20 to
return 20 rows or fewer .

 SearchRequ est searchRequ est = new SearchRequ est (
TABLE_NAME , INDEX_NAME , searchQuer y);

 SearchResp onse resp = client . search (searchRequ est);
 System . out . println (" TotalCount : " + resp . getTotalCo
unt ());

 System . out . println (" Row : " + resp . getRows ()); // If
 you do not set columnsToG et , Table Store only
returns primary keys by default .

 SearchRequ est . ColumnsToG et columnsToG et = new
SearchRequ est . ColumnsToG et ();

 columnsToG et . setReturnA ll (true); // Set columnsToG
et to true to return all columns .

 searchRequ est . setColumns ToGet (columnsToG et);

 resp = client . search (searchRequ est);
 System . out . println (" TotalCount : " + resp . getTotalCo
unt ()); // The total number of matched rows instead
of the number of returned rows .

 System . out . println (" Row : " + resp . getRows ());

Issue: 20190919 61

Tablestore Developer Guide / 6 Search Index
}

6.3.11 MatchPhraseQuery
This query is similar to MatchQuery, but evaluates the positional relationship
between multiple tokens. Table Store exactly matches the order and position of these
tokens in the target row.
For example, the field value is "Hangzhou West Lake Scenic Area". If you specify
the target term as "Hangzhou Scenic Area" in Query, Table Store returns the row
that contains this target term when you use MatchQuery. However, when you use
MatchPhraseQuery, Table Store does not return the row that contains this target term
. The distance between "Hangzhou" and "Scenic Area" in Query is 0. But the distance
 in the field is 2, because the two words "West" and "Lake" exist between "Hangzhou"
and "Scenic Area".

Parameters
• fieldName: the name of the target field.
• text: the target term. Table Store tokenizes this term into multiple terms before the

 query.
Example

/**
 * Search the table for rows where the value of
Col_Text matches " hangzhou shanghai ." Table Store returns
 the total number of rows that match the phrase as
 a whole and matched rows in this query .

 * @ param client
 */
private static void matchPhras eQuery (SyncClient client)

 {
 SearchQuer y searchQuer y = new SearchQuer y ();
 MatchPhras eQuery matchPhras eQuery = new MatchPhras
eQuery (); // Set the query type to MatchPhras eQuery .

 matchPhras eQuery . setFieldNa me (" Col_Text "); // Set the
 field that you want to match .

 matchPhras eQuery . setText (" hangzhou shanghai "); // Set
the value that you want to match .

 searchQuer y . setQuery (matchPhras eQuery);
 searchQuer y . setOffset (0); // Set Offset to 0 .
 searchQuer y . setLimit (20); // Set Limit to 20 to
return 20 rows or fewer .

 SearchRequ est searchRequ est = new SearchRequ est (
TABLE_NAME , INDEX_NAME , searchQuer y);

 SearchResp onse resp = client . search (searchRequ est);
 System . out . println (" TotalCount : " + resp . getTotalCo
unt ());

 System . out . println (" Row : " + resp . getRows ()); //
Return primary keys only by default .

62 Issue: 20190919

Tablestore Developer Guide / 6 Search Index
 SearchRequ est . ColumnsToG et columnsToG et = new
SearchRequ est . ColumnsToG et ();

 columnsToG et . setReturnA ll (true); // Set columnsToG
et to true to return all columns .

 searchRequ est . setColumns ToGet (columnsToG et);

 resp = client . search (searchRequ est);
 System . out . println (" TotalCount : " + resp . getTotalCo
unt ()); // The total number of matched rows instead
of the number of returned rows .

 System . out . println (" Row : " + resp . getRows ());
}

6.3.12 TermQuery
You can use TermQuery to query data that exactly matches the specified value of a
field. When a table contains a Text string, Table Store tokenizes the string and exactly
matches any of the tokens. For example, Table Store tokenizes Text string "tablestore
is cool" into "tablestore," "is," and "cool". When you specify any of these tokens as a
query string, you can retrieve the query result that contains the token.

Parameters
• fieldName: the name of the target field.
• term: the target term. Table Store does not tokenize this term, but exactly matches

the whole term.
Example

/**
 * Search the table for rows where the value of
Col_Keywor d exactly matches " hangzhou ".

 * @ param client
 */
private static void termQuery (SyncClient client) {

 SearchQuer y searchQuer y = new SearchQuer y ();
 TermQuery termQuery = new TermQuery (); // Set the
query type to TermQuery .

 termQuery . setFieldNa me (" Col_Keywor d "); // Set the
name of the field that you want to match .

 termQuery . setTerm (ColumnValu e . fromString (" hangzhou
")); // Set the value that you want to match .

 searchQuer y . setQuery (termQuery);
 SearchRequ est searchRequ est = new SearchRequ est (
TABLE_NAME , INDEX_NAME , searchQuer y);

 SearchRequ est . ColumnsToG et columnsToG et = new
SearchRequ est . ColumnsToG et ();

 columnsToG et . setReturnA ll (true); // Set columnsToG
et to true to return all columns .

 searchRequ est . setColumns ToGet (columnsToG et);

 SearchResp onse resp = client . search (searchRequ est);
 System . out . println (" TotalCount : " + resp . getTotalCo
unt ()); // The total number of matched rows instead
of the number of returned rows .

Issue: 20190919 63

Tablestore Developer Guide / 6 Search Index
 System . out . println (" Row : " + resp . getRows ());
}

6.3.13 TermsQuery
This query is similar to TermQuery, but supports multiple terms. This query is also
similar to the SQL IN operator.

Parameters
fieldName: the name of the target field.
terms: the target terms. Table Store returns the data in a row when the system
matches one term in the row.

Example
/**
 * Search the table for rows where the value of
Col_Keywor d exactly matches " hangzhou " or " xi ' an ".

 * @ param client
 */
private static void termQuery (SyncClient client) {

 SearchQuer y searchQuer y = new SearchQuer y ();
 TermsQuery termsQuery = new TermsQuery (); // Set the
query type to TermsQuery .

 termsQuery . setFieldNa me (" Col_Keywor d "); // Set the
name of the field that you want to match .

 termsQuery . addTerm (ColumnValu e . fromString (" hangzhou
")); // Set the value that you want to match .

 termsQuery . addTerm (ColumnValu e . fromString (" xi ' an
")); // Set the value that you want to match .

 searchQuer y . setQuery (termsQuery);
 SearchRequ est searchRequ est = new SearchRequ est (
TABLE_NAME , INDEX_NAME , searchQuer y);

 SearchRequ est . ColumnsToG et columnsToG et = new
SearchRequ est . ColumnsToG et ();

 columnsToG et . setReturnA ll (true); // Set columnsToG
et to true to return all columns .

 searchRequ est . setColumns ToGet (columnsToG et);

 SearchResp onse resp = client . search (searchRequ est);
 System . out . println (" TotalCount : " + resp . getTotalCo
unt ()); // The total number of matched rows instead
of the number of returned rows .

 System . out . println (" Row : " + resp . getRows ());

64 Issue: 20190919

Tablestore Developer Guide / 6 Search Index
}

6.3.14 PrefixQuery
You can use PrefixQuery to query data that matches a specified prefix. When a table
contains a TEXT string, Table Store tokenizes the string and matches any of the tokens
with the specified prefix.

Parameters
• fieldName: the name of the target field.
• prefix: the value of the specified prefix.

Example
/**
 * Search the table for rows where the value of
Col_Keywor d contains the prefix that exactly matches "
hangzhou ".

 * @ param client
 */
private static void prefixQuer y (SyncClient client) {

 SearchQuer y searchQuer y = new SearchQuer y ();
 PrefixQuer y prefixQuer y = new PrefixQuer y (); // Set
 the query type to PrefixQuer y .

 prefixQuer y . setFieldNa me (" Col_Keywor d ");
 prefixQuer y . setPrefix (" hangzhou ");
 searchQuer y . setQuery (prefixQuer y);
 SearchRequ est searchRequ est = new SearchRequ est (
TABLE_NAME , INDEX_NAME , searchQuer y);

 SearchRequ est . ColumnsToG et columnsToG et = new
SearchRequ est . ColumnsToG et ();

 columnsToG et . setReturnA ll (true); // Set columnsToG
et to true to return all columns .

 searchRequ est . setColumns ToGet (columnsToG et);

 SearchResp onse resp = client . search (searchRequ est);
 System . out . println (" TotalCount : " + resp . getTotalCo
unt ()); // The total number of matched rows instead
of the number of returned rows .

 System . out . println (" Row : " + resp . getRows ());

6.3.15 RangeQuery
You can use RangeQuery to query data that falls within a specified range. When a
table contains a TEXT string, Table Store tokenizes the string and matches any of the
tokens that falls within the specified range.

Parameters
• fieldName: the name of the target field.
• from: the value of the start position.

Issue: 20190919 65

Tablestore Developer Guide / 6 Search Index

• to: the value of the end position.
• includeLow: specifies whether the query result includes the value of the from

parameter. This is a parameter of Boolean type.
• includeUpper: specifies whether the query result includes the value of the to

parameter. This is a parameter of Boolean type.
Example

/**
 * Search the table for rows where the value of
Col_Long is greater than 3 . Table Store sorts these
rows by Col_Long in descending order .

 * @ param client
 */
private static void rangeQuery (SyncClient client) {

 SearchQuer y searchQuer y = new SearchQuer y ();
 RangeQuery rangeQuery = new RangeQuery (); // Set the
query type to RangeQuery .

 rangeQuery . setFieldNa me (" Col_Long "); // Set the name
 of the target field .

 rangeQuery . greaterTha n (ColumnValu e . fromLong (3));
 // Specify the range of the value of the field .
The required value is larger than 3 .

 searchQuer y . setQuery (rangeQuery);

 // Sort the result by Col_Long in descending order
.

 FieldSort fieldSort = new FieldSort (" Col_Long ");
 fieldSort . setOrder (SortOrder . DESC);
 searchQuer y . setSort (new Sort (Arrays . asList ((Sort .
Sorter) fieldSort)));

 SearchRequ est searchRequ est = new SearchRequ est (
TABLE_NAME , INDEX_NAME , searchQuer y);

 SearchResp onse resp = client . search (searchRequ est);
 System . out . println (" TotalCount : " + resp . getTotalCo
unt ()); // The total number of matched rows instead
of the number of returned rows .

 System . out . println (" Row : " + resp . getRows ());

 /**
 * You can specify a value for SearchAfte r to
 start a new query . For example , you can set
SearchAfte r to 5 and sort the result by Col_Long
in descending order . Then , you retrieve the rows that
 follow the row whose Col_Long is equal to 5 . This
 is similar to the method where you specify that
the value of Col_Long is smaller than 5 .

 */
 searchQuer y . setSearchA fter (new SearchAfte r (Arrays .
asList (ColumnValu e . fromLong (5))));

 searchRequ est = new SearchRequ est (TABLE_NAME ,
INDEX_NAME , searchQuer y);

 resp = client . search (searchRequ est);
 System . out . println (" TotalCount : " + resp . getTotalCo
unt ()); // The total number of matched rows instead
of the number of returned rows .

 System . out . println (" Row : " + resp . getRows ());

66 Issue: 20190919

Tablestore Developer Guide / 6 Search Index
}

6.3.16 WildcardQuery
You can use WildcardQuery to query data that matches wildcard characters. You can
specify a value you want to match as a string that consists of one or more wildcard
characters. An asterisk (*) is interpreted as a number of characters or an empty
string. A question mark (?) is interpreted as any single character. For example, when
you search the string "table*e", you can retrieve query results such as "tablestore".

Parameters
• fieldName: the name of the target field.
• value: the value that contains one or more wildcard characters. Table Store

supports two types of wildcard characters: asterisk (*) and question mark (?). The
value cannot start with an asterisk (*) and the length of the value can be 10 bytes or
 less.

Example
/**
 * Search the table for rows where the value of
Col_Keywor d matches " hang * u ".

 * @ param client
 */
private static void wildcardQu ery (SyncClient client) {

 SearchQuer y searchQuer y = new SearchQuer y ();
 WildcardQu ery wildcardQu ery = new WildcardQu ery
(); // Set the query type to WildcardQu ery .

 wildcardQu ery . setFieldNa me (" Col_Keywor d ");
 wildcardQu ery . setValue (" hang * u "); // Specify a
string that contains one or more wildcard characters
in wildcardQu ery .

 searchQuer y . setQuery (wildcardQu ery);
 SearchRequ est searchRequ est = new SearchRequ est (
TABLE_NAME , INDEX_NAME , searchQuer y);

 SearchRequ est . ColumnsToG et columnsToG et = new
SearchRequ est . ColumnsToG et ();

 columnsToG et . setReturnA ll (true); // Set columnsToG
et to true to return all columns .

 searchRequ est . setColumns ToGet (columnsToG et);

 SearchResp onse resp = client . search (searchRequ est);

 System . out . println (" TotalCount : " + resp . getTotalCo
unt ()); // The total number of matched rows instead
of the number of returned rows .

 System . out . println (" Row : " + resp . getRows ());

Issue: 20190919 67

Tablestore Developer Guide / 6 Search Index
}

6.3.17 BoolQuery
You can use BoolQuery to query data based on a combination of filtering conditions.
This query contains one or more subqueries as filtering conditions. Table Store
returns the rows that match the subqueries.
You can combine these subqueries in different ways. If you specify these subqueries
 as mustQueries, Table Store returns the result that matches all these subqueries. If
you specify these subqueries as mustNotQueries, Table Store returns the result that
matches none of these subqueries.

Parameter
• mustQueries: specifies the subqueries that the query result must match. This

parameter is equivalent to the AND operator.
• mustNotQueries: specifies the subqueries that the query result must not match.

This parameter is equivalent to the NOT operator.
• shouldQueries: specifies the subqueries that the query result may or may not

match. If the query result matches the subqueries, the overall relevance score is
higher. This parameter is equivalent to the OR operator.

• minimumShouldMatch: specifies the minimum number of shouldQueries that the
query result must match.

Examples
/**
 * Use BoolQuery to query data that matches a
combinatio n of filtering conditions .

 * @ param client
 */
public static void boolQuery (SyncClient client) {

 /**
 * Condition 1 : Use RangeQuery to query data where
 the value of Col_Long is greater than 3 .

 */
 RangeQuery rangeQuery = new RangeQuery ();
 rangeQuery . setFieldNa me (" Col_Long ");
 rangeQuery . greaterTha n (ColumnValu e . fromLong (3));

 /**
 * Condition 2 : Use MatchQuery to query data where
 the value of Col_Keywor d matches " hangzhou ".

 */
 MatchQuery matchQuery = new MatchQuery (); // Set the
query type to MatchQuery .

 matchQuery . setFieldNa me (" Col_Keywor d "); // Set the
name of the field that you want to match .

68 Issue: 20190919

Tablestore Developer Guide / 6 Search Index
 matchQuery . setText (" hangzhou "); // Set the value that
 you want to match .

 SearchQuer y searchQuer y = new SearchQuer y ();
 {
 /**
 * Create a query of BoolQuery type where the
result meets Conditions 1 and 2 at the same time .

 */
 BoolQuery boolQuery = new BoolQuery ();
 boolQuery . setMustQue ries (Arrays . asList (rangeQuery
, matchQuery));

 searchQuer y . setQuery (boolQuery);
 SearchRequ est searchRequ est = new SearchRequ est (
TABLE_NAME , INDEX_NAME , searchQuer y);

 SearchResp onse resp = client . search (searchRequ est
);

 System . out . println (" TotalCount : " + resp .
getTotalCo unt ()); // Display the total number of
matched rows instead of the number of returned rows .

 System . out . println (" Row : " + resp . getRows ());
 }

 {
 /**
 * Create a query of BoolQuery type where the
result meets at least one of Condition 1 and 2 .

 */
 BoolQuery boolQuery = new BoolQuery ();
 boolQuery . setShouldQ ueries (Arrays . asList (rangeQuery
, matchQuery));

 boolQuery . setMinimum ShouldMatc h (1); // Specify
 that the result meets at least one of the
conditions .

 searchQuer y . setQuery (boolQuery);
 SearchRequ est searchRequ est = new SearchRequ est (
TABLE_NAME , INDEX_NAME , searchQuer y);

 SearchResp onse resp = client . search (searchRequ est
);

 System . out . println (" TotalCount : " + resp .
getTotalCo unt ()); // Display the total number of
matched rows instead of the number of returned rows .

 System . out . println (" Row : " + resp . getRows ());
 }
}

6.3.18 GeoDistanceQuery
You can use GeoDistanceQuery to query data that falls within a distance from a
central point. You can specify the central point and the distance from this central
point in the query. Table Store returns the rows where the value of a field falls within
the distance from the central point.

Parameters
• fieldName: the name of the target field.
• centerPoint: the central coordinate point that consists of latitude and longitude

values.
Issue: 20190919 69

Tablestore Developer Guide / 6 Search Index

• distanceInMeter: the distance from the central point. This is a value of Double type
. Unit: meters.

Example
/**
 * Search the table for rows where the value of
Col_GeoPoi nt falls within a specified distance from a
 specified central point .

 * @ param client
 */
public static void geoDistanc eQuery (SyncClient client) {

 SearchQuer y searchQuer y = new SearchQuer y ();
 GeoDistanc eQuery geoDistanc eQuery = new GeoDistanc
eQuery (); // Set the query type to GeoDistanc eQuery .

 geoDistanc eQuery . setFieldNa me (" Col_GeoPoi nt ");
 geoDistanc eQuery . setCenterP oint (" 5 , 5 "); // Specify
coordinate s for a central point .

 geoDistanc eQuery . setDistanc eInMeter (10000); // You
can specify 10 , 000 meters or less as the distance
from the central point .

 searchQuer y . setQuery (geoDistanc eQuery);

 SearchRequ est searchRequ est = new SearchRequ est (
TABLE_NAME , INDEX_NAME , searchQuer y);

 SearchRequ est . ColumnsToG et columnsToG et = new
SearchRequ est . ColumnsToG et ();

 columnsToG et . setColumns (Arrays . asList (" Col_GeoPoi nt
")); // Specify Col_GeoPoi nt as the column that you
want to return .

 searchRequ est . setColumns ToGet (columnsToG et);

 SearchResp onse resp = client . search (searchRequ est);
 System . out . println (" TotalCount : " + resp . getTotalCo
unt ()); // The total number of matched rows instead
of the number of returned rows .

 System . out . println (" Row : " + resp . getRows ());
}

6.3.19 GeoBoundingBoxQuery
You can use GeoBoundingBoxQuery to query data that falls within a geographic
rectangular area. You can specify the geographic rectangular area as a filtering
condition in the query. Table Store returns the rows where the value of a field falls
within the geographic rectangular area.

Parameters
• fieldName: the name of the target field.
• topLeft: coordinates of the upper-left corner of the geographic rectangular area.
• bottomRight: coordinates in the lower-right corner of the geographic rectangula

r area. You can use the upper-left corner and lower-right corner to determine a
unique geographic rectangular area.

70 Issue: 20190919

Tablestore Developer Guide / 6 Search Index

Example
/**
 * The data type of Col_GeoPoi nt is Geopoint . You
can obtain the rows where the value of Col_GeoPoi nt
 falls within a geographic rectangula r area . For the
 geographic rectangula r area , the upper - left vertex
is " 10 , 0 " and the lower - right vertex is " 0 , 10 ".

 * @ param client
 */
public static void geoBoundin gBoxQuery (SyncClient client
) {

 SearchQuer y searchQuer y = new SearchQuer y ();
 GeoBoundin gBoxQuery geoBoundin gBoxQuery = new
GeoBoundin gBoxQuery (); // Set the query type to
GeoBoundin gBoxQuery .

 geoBoundin gBoxQuery . setFieldNa me (" Col_GeoPoi nt "); //
Set the name of the field that you want to match
.

 geoBoundin gBoxQuery . setTopLeft (" 10 , 0 "); // Specify
 coordinate s for the upper - left vertex of the
geographic rectangula r area .

 geoBoundin gBoxQuery . setBottomR ight (" 0 , 10 "); //
Specify coordinate s for the lower - right vertex of
the geographic rectangula r area .

 searchQuer y . setQuery (geoBoundin gBoxQuery);

 SearchRequ est searchRequ est = new SearchRequ est (
TABLE_NAME , INDEX_NAME , searchQuer y);

 SearchRequ est . ColumnsToG et columnsToG et = new
SearchRequ est . ColumnsToG et ();

 columnsToG et . setColumns (Arrays . asList (" Col_GeoPoi nt
")); // Specify Col_GeoPoi nt as the column that you
want to return .

 searchRequ est . setColumns ToGet (columnsToG et);

 SearchResp onse resp = client . search (searchRequ est);
 System . out . println (" TotalCount : " + resp . getTotalCo
unt ()); // The total number of matched rows instead
of the number of returned rows .

 System . out . println (" Row : " + resp . getRows ());
}

6.3.20 GeoPolygonQuery
You can use GeoPolygonQuery to query data that falls within a geographic polygon
area. You can specify the geographic polygon area as a filtering condition in the
query. Table Store returns the rows where the value of a field falls within the
geographic polygon area.

Parameters
• fieldName: the name of the target field.
• points: the coordinate points that compose the geographic polygon.

Issue: 20190919 71

Tablestore Developer Guide / 6 Search Index

Example
/**
 * Search the table for rows where the value of
 Col_GeoPoi nt falls within a specified geographic
polygon area .

 * @ param client
 */
public static void geoPolygon Query (SyncClient client) {

 SearchQuer y searchQuer y = new SearchQuer y ();
 GeoPolygon Query geoPolygon Query = new GeoPolygon Query
(); // Set the query type to GeoPolygon Query .

 geoPolygon Query . setFieldNa me (" Col_GeoPoi nt ");
 geoPolygon Query . setPoints (Arrays . asList (" 0 , 0 "," 5 ,
5 "," 5 , 0 ")); // Specify coordinate s for vertices of
the geographic polygon .

 searchQuer y . setQuery (geoPolygon Query);

 SearchRequ est searchRequ est = new SearchRequ est (
TABLE_NAME , INDEX_NAME , searchQuer y);

 SearchRequ est . ColumnsToG et columnsToG et = new
SearchRequ est . ColumnsToG et ();

 columnsToG et . setColumns (Arrays . asList (" Col_GeoPoi nt
")); // Specify Col_GeoPoi nt as the column that you
want to return .

 searchRequ est . setColumns ToGet (columnsToG et);

 SearchResp onse resp = client . search (searchRequ est);
 System . out . println (" TotalCount : " + resp . getTotalCo
unt ()); // The total number of matched rows instead
of the number of returned rows .

 System . out . println (" Row : " + resp . getRows ());
}

6.3.21 ExistQuery
ExistQuery is also called a null query. It is usually used in queries for sparse data to
determine whether a column of a row has a value. For example, ExistQuery is used to
query the rows in which the value of the address column is not null.

Note:
If you want to query whether a column contains null values, you must use ExistQuery
and the bool query with the must_not clause.

Parameter
fieldName: the column name

Examples
/**
 * Use ExistQuery to query the rows in which the
value of the address column is not null .

 * @ param client
 */

72 Issue: 20190919

Tablestore Developer Guide / 6 Search Index
private static void termsQuery (SyncClient client) {

 SearchQuer y searchQuer y = new SearchQuer y ();
 ExistsQuer y existQuery = new ExistsQuer y (); // Set
the query type to ExistsQuer y .

 existQuery . setFieldNa me (" address ");
 searchQuer y . setQuery (termsQuery);
 SearchRequ est searchRequ est = new SearchRequ est (
TABLE_NAME , INDEX_NAME , searchQuer y);

 SearchRequ est . ColumnsToG et columnsToG et = new
SearchRequ est . ColumnsToG et ();

 columnsToG et . setReturnA ll (true); // Set ReturnAll
to true to return all columns .

 searchRequ est . setColumns ToGet (columnsToG et);

 SearchResp onse resp = client . search (searchRequ est);

 System . out . println (" TotalCount : " + resp . getTotalCo
unt ()); // Display the total number of matched rows
instead of the number of returned rows .

 System . out . println (" Row : " + resp . getRows ());
}

6.4 Limits
This topic describes the limits on using search index.

Mapping
Item Maximum value Description
Index fields 200 The number of fields that

can be indexed.
EnableSortAndAgg fields 100 The number of fields

that can be sorted and
aggregated.

Nested levels 1 The number of nested
levels.

Nested fields 25 The number of nested
fields.

Total length of primary key
 columns

1,000 The total length of all
primary key columns is up
 to 1,000 Bytes.

Total length of strings in
primary key columns

1,000 The total length of strings
in all primary key columns
 is up to 1,000 Bytes.

String length in each
attribute column (keyword
 index)

4 KB None

Issue: 20190919 73

Tablestore Developer Guide / 6 Search Index

Item Maximum value Description
String length in each
attribute column (text
index)

2 MB Same as the length limit of
attribute columns in tables
.

String length of a query
that contains wildcards

10 The string length of a
 query that contains
wildcards is up to 10
characters.

Search
Item Maximum value Description
offset + limit 2,000 To read more than 2000

rows, you must specify the
next_token parameter.

timeout 10s -
Capacity unit (CU) 100,000 • Scanning and analysis

requests do not apply.
• If your business

requirement exceeds
 this limit, submit a
ticket.

QPS 100,000 • The upper limit for
lightweight transaction
 processing is 100,000
queries per second (QPS
).

• Each index is allowed
to take up to 8-core CPU
 for analytical queries
or text queries because
 each request takes a
long time.

• The preceding limits
 are default. If your
business requiremen
t exceeds the default
limits, submit a ticket.

74 Issue: 20190919

Tablestore Developer Guide / 6 Search Index

Index
Item Maximum

value
Description

Rate 50,000 rows
/s • Table Store requires several minutes for load

balancing when writing data to a table for the first
time, or when a large amount of data is required to
be written in a short span of time.

• Text field-based indexing is limited to 10,000 rows
per second because this indexing consumes more
CPU resources for tokenization.

• If your business requirement exceeds this limit,
submit a ticket.

Synchroniz
ation latency

10s • The value is less than 10s when the writing rate is
steady.

• The synchronization latency is within one minute in
most cases.

• New indexes need to be initialized. This process
takes up to one minute.

Number of
rows

10 billion If your business requirement exceeds this limit, submit
 a ticket.

Total size 10 TB If your business requirement exceeds this limit, submit
 a ticket.

Other limits
Item Value
Applicable regions China (Beijing), China (Shanghai),

China (Hangzhou), China (Shenzhen),
Singapore, India (Mumbai), China(Hong
 Kong), and China (Zhangjiakou-Beijing
Winter Olympics)

Regions to be applicable US (Silicon Valley)

Note:
If your business requirement exceeds the default limits, submit a ticket. Describe the
scenario, limit item, requirement, and reason in the ticket. Your requirement will be
considered in future developments.

Issue: 20190919 75

Tablestore Developer Guide / 7 Global secondary indexes

7 Global secondary indexes
7.1 Overview

Before you use the Global Secondary Index structure, you need to understand the
following terms, limits, and notes.

Terms
Term Description
Index You can create an index for some

columns in a primary table. The index is
read-only.

Pre-defined column Table Store uses a schema-free model.
You can write the unlimited number of
 columns to a row. You do not need to
specify a fixed number of attributes in
a schema. You can also pre-define some
 columns and specify their data types
when you create a table.

Single-column index You can create an index only for one
column.

Composite index You can create an index for multiple
columns in a table. A composite index
can have Indexed columns 1 and 2.

Indexed attribute column You can map pre-defined columns in
 a primary table to non-primary key
columns in an index.

Autocomplete Table Store automatically adds the
primary key column that you have not
specified in a primary table to an index
when you create the index.

Limits
• You can create a maximum of five indexes in a primary table. You cannot create

more indexes if you have created five indexes.

76 Issue: 20190919

Tablestore Developer Guide / 7 Global secondary indexes

• An index contains a maximum of four indexed columns. These indexed columns
 include a combination of primary keys and pre-defined columns of the primary
table. If you specify more indexed columns, you cannot create the index.

• An index contains a maximum of eight attribute columns. If you specify more
attribute columns, you cannot create the index.

• You can specify an indexed column as Integer, String, or Binary type. The
constraint of Indexed columns is the same as that for primary keys of the primary
table.

• If an index combines multiple columns, the size limit for the index is the same as
that for primary keys of the primary table.

• When you specify the column of String or Binary type as an attribute column of an
 index, the limits for the attribute column are the same as those for the attribute
column of the primary table.

• You cannot create an index in a table that has Time To Live (TTL) configured. If you
 want to index a table that has TTL configured, use DingTalk to request technical
support.

• You cannot create an index in a table that has Max Versions configured. If a table
 has Max Versions configured, you cannot create any index for the table. If you
index the table, you cannot use the Max Versions feature.

• You cannot customize versions when writing data to an indexed primary table.
Otherwise, you cannot write data to the primary table.

• You cannot use the Stream feature in an index.
• An indexed primary table cannot contain repeated rows that have the same

primary key during the same BatchWrite operation. Otherwise, you cannot write
data to the primary table.

Notes
• Table Store automatically adds the primary key column that you have not specified

to the index. When you scan an index, you must specify the range of primary key
columns. The range can be from negative infinity to positive infinity. For example,
a primary table includes Primary keys PK0 and PK1 and Pre-defined column
Defined0 .

When you create an index for the Defined0 column, Table Store generates an
index that has Primary keys Defined0 , PK0 , and PK1 . When you create an

Issue: 20190919 77

Tablestore Developer Guide / 7 Global secondary indexes

index for the Defined0 and PK1 columns, Table Store generates an index that
has Primary keys Defined0 , PK1 , and PK0 . When you create an index for the
primary key columns, Table Store generates an index that has Primary keys
PK1 and PK0 . When you create an index, you can only specify the column that

you want to index. Table Store automatically adds the target columns to the index.
For example, a primary table contains Primary keys PK0 and PK1 and Pre-defined
column Defined0.
- When you create an index for the Defined0 column, Table Store generates the

index that has Primary keys Defined0, PK0, and PK1.
- When you create an index for the PK1 column, Table Store generates the index

that has Primary keys PK1 and PK0.
• You can specify pre-defined columns as attribute columns in the primary table.

When you specify a pre-defined attribute as an indexed attribute column, you can
 search this index for the attribute value instead of searching the primary table.
However, this increases storage costs. If you do not specify a pre-defined attribute
 as an indexed attribute column, you have to search the primary table. You can
choose between these methods based on your requirements.

• We recommend that you do not specify a column related to the time or date as the
 first primary key column of an index. This type of column may slow down index
updates. We recommend that you hash the column related to the time or date and
 create an index for the hashed column. To solve related issues, use DingTalk to
request technical support.

• We recommend that you do not define an attribute of low cardinality, even an
attribute that contains enumerated values, as the first primary key column of an
index. For example, the gender attribute restricts the horizontal scalability of
the index and leads to poor write performance.

7.2 Introduction
A global secondary index in Tablestore has the following features:
• Supports asynchronous data synchronization between a table and table indexes

. Under normal network conditions, the data synchronization latency is in
milliseconds.

78 Issue: 20190919

Tablestore Developer Guide / 7 Global secondary indexes

• Supports single-field indexes, compound indexes, and covered indexes. Pre-
defined attributes are attributes specified in advance in a table. You can create an
index on any pre-defined attribute or on a table primary key. In addition, you can
specify a table pre-defined attributes as index attributes or choose not to specify
attributes. If you specify pre-defined attributes as the index attributes, you can
directly query this index to retrieve data from the base table instead of querying
the table. For example, a base table includes three primary keys PK0, PK1, and
PK2. Additionally, the table have three pre-defined attributes Defined0, Defined1,
and Defined2.
- You can create an index on PK2 without specifying an attribute.
- You can create an index on PK2 and specify Defined0 as an attribute.
- You can create an index on PK3 and PK2 without specifying an attribute.
- You can create an index on PK3 and PK2 and specify Defined0 as an attribute.
- You can create an index on PK2, PK1, and PK3 and specify Defined0, Defined1,

and Defined2 as an attribute.
- You can create an index on Defined0 without specifying an attribute.
- You can create an index on Define0 and PK1 and specify Defined1 as an attribute

.
- You can create an index on Define1 and Define0 without specifying an attribute.
- You can create an index on Define1 and Define0 and specify Defined2 as an

attribute.
• Supports sparse indexes. You can specify a base table pre-defined attribute as an

index attribute. This row will be indexed even when all primary keys exist despite
the pre-defined attribute being excluded from the base table row. However, this
row will not be indexed when a row excludes one or more indexed attributes. For
example, a base table includes three primary keys that are PK0, PK1, and PK2.
Additionally, the table have three pre-defined attributes Defined0, Defined1, and
Defined2. You can create an index on Defined0 and Defined1, and specify Defined2
as an attribute.
- An index will include a row in a base table that excludes the Defined2 attribute

and includes pre-defined attributes Defined0 and Defined1.
- This row is excluded from the index when a base table row excludes Defined1

but includes the pre-defined attributes Defined0 and Defined2.

Issue: 20190919 79

Tablestore Developer Guide / 7 Global secondary indexes

• Supports creating and deleting indexes on an existing base table. Existing data in a
base table will be copied to an index when you create this index on the base table.

• When you query an index, the query is not automatically performed on the base
table of the created index. You need to query the base table. This feature will be
supported in later versions.

7.3 Scenarios
The global secondary index is a new Table Store feature. When you create a table, the
 primary index is composed of all the primary keys. Table Store uses primary keys to
uniquelyidentify each row in a table. However, you need to query a table by attributes
, primary keys, or primary keys that are not from the first column in more scenarios.
Due to insufficient indexes, you can only fetch the results by scanning the entire table
and setting filter conditions. If you obtain few results after querying a table with large
 data volume, the query can cause excessive consumption of resources.
The Table Store Global secondary index feature is similar to that of DynamoDB GSI
and HBase Phoenix. You can create an index with one or more specified attributes. In
addition, you can sort data in the created index by specified attributes. Every data you
write to a base table will be asynchronously synchronized to the created index on the
base table. You only have to write data to a base table, and can query indexes created
on this base table. This configuration greatly improves query performance in most
scenarios. For example, you can create a base table for a common phone log query as
follows:
CellNumber StartTime

 (Unix
timestamps)

CalledNumber Duration BaseStatio
nNumber

123456 1532574644 654321 60 1
234567 1532574714 765432 10 1
234567 1532574734 123456 20 3
345678 1532574795 123456 5 2
345678 1532574861 123456 100 2
456789 1532584054 345678 200 3

80 Issue: 20190919

https://docs.aws.amazon.com/zh_cn/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/zh_cn/amazondynamodb/latest/developerguide/GSI.html
http://phoenix.apache.org/secondary_indexing.html

Tablestore Developer Guide / 7 Global secondary indexes

• CellNumber and StartTime are primary keys that represent a calling

number and the start time of a call , respectively.
• CalledNumb er , Duration , and BaseStatio nNumber are pre-defined

attributes that represent a called number , call duration , and the

 base station number .
When you end a phone call, the call information is written to this table. You can
create global secondary indexes on CalledNumb er and BaseStatio nNumber

respectively to meet various query requirements. For more information about how to
create an index, see example in Appendix.
If you have the following query requirements:
• You want to fetch the rows where the CellNumber value matches 234567 .

You can sort data by primary keys in Table Store. In addition, you can call the
getRange method to scan data sequentially. When you call the getRange

method, you need to specify 234567 both as the minimum and maximum values
for PK0 (CellNumber). Meanwhile, you need to specify 0 as the minimum value
of PK1 (StartTime) and specify INT_MAX as the maximum value of PK1. Then you
can query the base table.
private static void getRangeFr omMainTabl e (SyncClient
client , long cellNumber)
{
 RangeRowQu eryCriteri a rangeRowQu eryCriteri a = new
RangeRowQu eryCriteri a (TABLE_NAME);

 // You can specify primary keys .
 PrimaryKey Builder startPrima ryKeyBuild er =
PrimaryKey Builder . createPrim aryKeyBuil der ();
 startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_1 , PrimaryKey Value . fromLong (cellNumber
));
 startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_2 , PrimaryKey Value . fromLong (0));
 rangeRowQu eryCriteri a . setInclusi veStartPri maryKey (
startPrima ryKeyBuild er . build ());

 // You can specify primary keys .
 PrimaryKey Builder endPrimary KeyBuilder = PrimaryKey
Builder . createPrim aryKeyBuil der ();
 endPrimary KeyBuilder . addPrimary KeyColumn (PRIMARY_KE
Y_NAME_1 , PrimaryKey Value . fromLong (cellNumber));
 endPrimary KeyBuilder . addPrimary KeyColumn (PRIMARY_KE
Y_NAME_2 , PrimaryKey Value . INF_MAX);
 rangeRowQu eryCriteri a . setExclusi veEndPrima ryKey (
endPrimary KeyBuilder . build ());

 rangeRowQu eryCriteri a . setMaxVers ions (1);

Issue: 20190919 81

Tablestore Developer Guide / 7 Global secondary indexes

 String strNum = String . format ("% d ", cellNumber);
 System . out . println (" A cell number " + strNum + "
makes the following calls :");
 while (true) {
 GetRangeRe sponse getRangeRe sponse = client .
getRange (new GetRangeRe quest (rangeRowQu eryCriteri a));
 for (Row row : getRangeRe sponse . getRows ()) {
 System . out . println (row);
 }

 // If the value of nextStartP rimaryKey is not
 null , you can continue to read data from the
base table .
 if (getRangeRe sponse . getNextSta rtPrimaryK ey () !
 = null) {
 rangeRowQu eryCriteri a . setInclusi veStartPri
maryKey (getRangeRe sponse . getNextSta rtPrimaryK ey ());
 } else {
 break ;
 }
 }
}

• If you want to fetch the rows where the value of CalledNumber is 123456 .
Table Store sorts all rows by primary keys. Because CalledNumber is a pre-defined
attribute, you cannot directly query a table by this attribute. Therefore, you can
query an index that is created on CalledNumb er .
IndexOnBeC alledNumbe r :

PK0 PK1 PK2
CalledNumber CellNumber StartTime
123456 234567 1532574734
123456 345678 1532574795
123456 345678 1532574861
654321 123456 1532574644
765432 234567 1532574714
345678 456789 1532584054

Note:

82 Issue: 20190919

Tablestore Developer Guide / 7 Global secondary indexes

Table Store will auto complement primary keys of an index. When building this
index, Table Store adds all primary keys of a base table to an index created on this
base table. Therefore, the index includes three primary keys.

Because IndexOnBeC alledNumbe r is an index that is created on
CalledNumber, you can directly query this index to fetch results.
private static void getRangeFr omIndexTab le (SyncClient
client , long cellNumber) {
 RangeRowQu eryCriteri a rangeRowQu eryCriteri a = new
RangeRowQu eryCriteri a (INDEX0_NAM E);

 // You can specify primary keys .
 PrimaryKey Builder startPrima ryKeyBuild er =
PrimaryKey Builder . createPrim aryKeyBuil der ();
 startPrima ryKeyBuild er . addPrimary KeyColumn (
DEFINED_CO L_NAME_1 , PrimaryKey Value . fromLong (cellNumber
));
 startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_1 , PrimaryKey Value . INF_MIN);
 startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_2 , PrimaryKey Value . INF_MIN);
 rangeRowQu eryCriteri a . setInclusi veStartPri maryKey (
startPrima ryKeyBuild er . build ());

 // You can specify primary keys .
 PrimaryKey Builder endPrimary KeyBuilder = PrimaryKey
Builder . createPrim aryKeyBuil der ();
 endPrimary KeyBuilder . addPrimary KeyColumn (DEFINED_CO
L_NAME_1 , PrimaryKey Value . fromLong (cellNumber));
 endPrimary KeyBuilder . addPrimary KeyColumn (PRIMARY_KE
Y_NAME_1 , PrimaryKey Value . INF_MAX);
 endPrimary KeyBuilder . addPrimary KeyColumn (PRIMARY_KE
Y_NAME_2 , PrimaryKey Value . INF_MAX);
 rangeRowQu eryCriteri a . setExclusi veEndPrima ryKey (
endPrimary KeyBuilder . build ());

 rangeRowQu eryCriteri a . setMaxVers ions (1);

 String strNum = String . format ("% d ", cellNumber);
 System . out . println (" A cell number " + strNum + "
was called by the following numbers ");
 while (true) {
 GetRangeRe sponse getRangeRe sponse = client .
getRange (new GetRangeRe quest (rangeRowQu eryCriteri a));
 for (Row row : getRangeRe sponse . getRows ()) {
 System . out . println (row);
 }

 // If the value of nextStartP rimaryKey is not
 null , you can continue to read data from the
base table .
 if (getRangeRe sponse . getNextSta rtPrimaryK ey () !
 = null) {
 rangeRowQu eryCriteri a . setInclusi veStartPri
maryKey (getRangeRe sponse . getNextSta rtPrimaryK ey ());
 } else {
 break ;
 }
 }

Issue: 20190919 83

Tablestore Developer Guide / 7 Global secondary indexes
}

• If you want to fetch the rows where the value of BaseStationNumber matches 002

and the value of StartTime matches 1532574740 .
This query specifies both BaseStatio nNumber and StartTime as conditions.
Therefore, you can create a compound index on the BaseStatio nNumber and
StartTime .
IndexOnBas eStation1 :

PK0 PK1 PK2
BaseStationNumber StartTime CellNumber
001 1532574644 123456
001 1532574714 234567
002 1532574795 345678
002 1532574861 345678
003 1532574734 234567
003 1532584054 456789

You can query the IndexOnBas eStation1 index.
private static void getRangeFr omIndexTab le (SyncClient
client ,
 long baseStatio
nNumber ,
 long startTime) {
 RangeRowQu eryCriteri a rangeRowQu eryCriteri a = new
RangeRowQu eryCriteri a (INDEX1_NAM E);

 // You can specify primary keys .
 PrimaryKey Builder startPrima ryKeyBuild er =
PrimaryKey Builder . createPrim aryKeyBuil der ();
 startPrima ryKeyBuild er . addPrimary KeyColumn (
DEFINED_CO L_NAME_3 , PrimaryKey Value . fromLong (baseStatio
nNumber));
 startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_2 , PrimaryKey Value . fromLong (startTime
));
 startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_1 , PrimaryKey Value . INF_MIN);
 rangeRowQu eryCriteri a . setInclusi veStartPri maryKey (
startPrima ryKeyBuild er . build ());

 // You can specify primary keys .
 PrimaryKey Builder endPrimary KeyBuilder = PrimaryKey
Builder . createPrim aryKeyBuil der ();
 endPrimary KeyBuilder . addPrimary KeyColumn (DEFINED_CO
L_NAME_3 , PrimaryKey Value . fromLong (baseStatio nNumber));

84 Issue: 20190919

Tablestore Developer Guide / 7 Global secondary indexes
 endPrimary KeyBuilder . addPrimary KeyColumn (PRIMARY_KE
Y_NAME_2 , PrimaryKey Value . INF_MAX);
 endPrimary KeyBuilder . addPrimary KeyColumn (PRIMARY_KE
Y_NAME_1 , PrimaryKey Value . INF_MAX);
 rangeRowQu eryCriteri a . setExclusi veEndPrima ryKey (
endPrimary KeyBuilder . build ());

 rangeRowQu eryCriteri a . setMaxVers ions (1);

 String strBaseSta tionNum = String . format ("% d ",
baseStatio nNumber);
 String strStartTi me = String . format ("% d ", startTime
);
 System . out . println (" All called numbers forwarded
 by the base station " + strBaseSta tionNum + " that
start from " + strStartTi me + " are listed as follows
:");
 while (true) {
 GetRangeRe sponse getRangeRe sponse = client .
getRange (new GetRangeRe quest (rangeRowQu eryCriteri a));
 for (Row row : getRangeRe sponse . getRows ()) {
 System . out . println (row);
 }

 // If the nextStartP rimaryKey value is not
null , you can continue to read data from the base
 table .
 if (getRangeRe sponse . getNextSta rtPrimaryK ey () !
 = null) {
 rangeRowQu eryCriteri a . setInclusi veStartPri
maryKey (getRangeRe sponse . getNextSta rtPrimaryK ey ());
 } else {
 break ;
 }
 }
}

• If you want to fetch the rows where the value of BaseStationNumber 003 matches
the StartTime value range from 1532574861 to 1532584054 . Only the Duration
will be displayed in the rows.
In this query, you specify both BaseStatio nNumber and StartTime as
conditions. Only Duration appears in the result set. You can issue a query on the
last index, and then fetch Duration by querying the base table.
private static void getRowFrom IndexAndMa inTable (
SyncClient client ,
 long baseStatio
nNumber ,
 long startTime ,
 long endTime ,
 String colName)
 {
 RangeRowQu eryCriteri a rangeRowQu eryCriteri a = new
RangeRowQu eryCriteri a (INDEX1_NAM E);

 // You can specify primary keys .
 PrimaryKey Builder startPrima ryKeyBuild er =
PrimaryKey Builder . createPrim aryKeyBuil der ();

Issue: 20190919 85

Tablestore Developer Guide / 7 Global secondary indexes
 startPrima ryKeyBuild er . addPrimary KeyColumn (
DEFINED_CO L_NAME_3 , PrimaryKey Value . fromLong (baseStatio
nNumber));
 startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_2 , PrimaryKey Value . fromLong (startTime
));
 startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_1 , PrimaryKey Value . INF_MIN);
 rangeRowQu eryCriteri a . setInclusi veStartPri maryKey (
startPrima ryKeyBuild er . build ());

 // You can specify primary keys .
 PrimaryKey Builder endPrimary KeyBuilder = PrimaryKey
Builder . createPrim aryKeyBuil der ();
 endPrimary KeyBuilder . addPrimary KeyColumn (DEFINED_CO
L_NAME_3 , PrimaryKey Value . fromLong (baseStatio nNumber));
 endPrimary KeyBuilder . addPrimary KeyColumn (PRIMARY_KE
Y_NAME_2 , PrimaryKey Value . fromLong (endTime));
 endPrimary KeyBuilder . addPrimary KeyColumn (PRIMARY_KE
Y_NAME_1 , PrimaryKey Value . INF_MAX);
 rangeRowQu eryCriteri a . setExclusi veEndPrima ryKey (
endPrimary KeyBuilder . build ());

 rangeRowQu eryCriteri a . setMaxVers ions (1);

 String strBaseSta tionNum = String . format ("% d ",
baseStatio nNumber);
 String strStartTi me = String . format ("% d ", startTime
);
 String strEndTime = String . format ("% d ", endTime);

 System . out . println (" The list of calls forwarded
 by the base station " + strBaseSta tionNum + " from "
 + strStartTi me + " to " + strEndTime + " is listed as
follows :");
 while (true) {
 GetRangeRe sponse getRangeRe sponse = client .
getRange (new GetRangeRe quest (rangeRowQu eryCriteri a));
 For (Row row : fig . getrows ()){
 PrimaryKey curIndexPr imaryKey = row . getPrimary
Key ();
 PrimaryKey Column mainCalled Number = curIndexPr
imaryKey . getPrimary KeyColumn (PRIMARY_KE Y_NAME_1);
 PrimaryKey Column callStartT ime = curIndexPr
imaryKey . getPrimary KeyColumn (PRIMARY_KE Y_NAME_2);
 PrimaryKey Builder mainTableP KBuilder =
PrimaryKey Builder . createPrim aryKeyBuil der ();
 mainTableP KBuilder . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_1 , mainCalled Number . getValue ());
 mainTableP KBuilder . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_2 , callStartT ime . getValue ());
 PrimaryKey mainTableP K = mainTableP KBuilder .
build (); // You can specify primary keys for the
base table .

 // You can query the base table .
 SingleRowQ ueryCriter ia criteria = new
SingleRowQ ueryCriter ia (TABLE_NAME , mainTableP K);
 criteria . addColumns ToGet (colName); // You can
 read the Duration attribute value of the base
table .
 // You can specify 1 to indicate the
latest data version will be read .
 criteria . setMaxVers ions (1);

86 Issue: 20190919

Tablestore Developer Guide / 7 Global secondary indexes
 GetRowResp onse getRowResp onse = client . getRow
(new GetRowRequ est (criteria));
 Row mainTableR ow = getRowResp onse . getRow ();

 System . out . println (mainTableR ow);
 }

 // If the nextStartP rimaryKey value is not
null , you can continue to read data from the base
 table .
 if (getRangeRe sponse . getNextSta rtPrimaryK ey () !
 = null) {
 rangeRowQu eryCriteri a . setInclusi veStartPri
maryKey (getRangeRe sponse . getNextSta rtPrimaryK ey ());
 } else {
 break ;
 }
 }
}

To improve query performance, you can create a compound index on
BaseStatio nNumber and StartTime . You can specify Duration as an

attribute of this index.
The following index is created.
IndexOnBas eStation2 :

PK0 PK1 PK2 Defined0
BaseStatio
nNumber

StartTime CellNumber Duration

001 1532574644 123456 600
001 1532574714 234567 10
002 1532574795 345678 5
002 1532574861 345678 100
003 1532574734 234567 20
003 1532584054 456789 200

You can query the IndexOnBas eStation2 index:
private static void getRangeFr omIndexTab le (SyncClient
client ,
 long baseStatio
nNumber ,
 long startTime ,
 long endTime ,
 String colName) {
 RangeRowQu eryCriteri a rangeRowQu eryCriteri a = new
RangeRowQu eryCriteri a (INDEX2_NAM E);

 // You can specify primary keys .

Issue: 20190919 87

Tablestore Developer Guide / 7 Global secondary indexes
 PrimaryKey Builder startPrima ryKeyBuild er =
PrimaryKey Builder . createPrim aryKeyBuil der ();
 startPrima ryKeyBuild er . addPrimary KeyColumn (
DEFINED_CO L_NAME_3 , PrimaryKey Value . fromLong (baseStatio
nNumber));
 startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_2 , PrimaryKey Value . fromLong (startTime
));
 startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_1 , PrimaryKey Value . INF_MIN);
 rangeRowQu eryCriteri a . setInclusi veStartPri maryKey (
startPrima ryKeyBuild er . build ());

 // You can specify primary keys .
 PrimaryKey Builder endPrimary KeyBuilder = PrimaryKey
Builder . createPrim aryKeyBuil der ();
 endPrimary KeyBuilder . addPrimary KeyColumn (DEFINED_CO
L_NAME_3 , PrimaryKey Value . fromLong (baseStatio nNumber));
 endPrimary KeyBuilder . addPrimary KeyColumn (PRIMARY_KE
Y_NAME_2 , PrimaryKey Value . fromLong (endTime));
 endPrimary KeyBuilder . addPrimary KeyColumn (PRIMARY_KE
Y_NAME_1 , PrimaryKey Value . INF_MAX);
 rangeRowQu eryCriteri a . setExclusi veEndPrima ryKey (
endPrimary KeyBuilder . build ());

 // You can specify the attribute name to read .
 rangeRowQu eryCriteri a . addColumns ToGet (colName);

 rangeRowQu eryCriteri a . setMaxVers ions (1);

 String strBaseSta tionNum = String . format ("% d ",
baseStatio nNumber);
 String strStartTi me = String . format ("% d ", startTime
);
 String strEndTime = String . format ("% d ", endTime);

 System . out . println (" The duration of calls
forwarded by the base station " + strBaseSta tionNum + "
from " + strStartTi me + " to " + strEndTime + " is listed
as follows :");
 while (true) {
 GetRangeRe sponse getRangeRe sponse = client .
getRange (new GetRangeRe quest (rangeRowQu eryCriteri a));
 for (Row row : getRangeRe sponse . getRows ()) {
 System . out . println (row);
 }

 // If the nextStartP rimaryKey value is not
null , you can continue to read data from the base
 table .
 if (getRangeRe sponse . getNextSta rtPrimaryK ey () !
 = null) {
 rangeRowQu eryCriteri a . setInclusi veStartPri
maryKey (getRangeRe sponse . getNextSta rtPrimaryK ey ());
 } else {
 break ;
 }
 }
}

88 Issue: 20190919

Tablestore Developer Guide / 7 Global secondary indexes
```

Hence, if you do not specify Duration  as an index attribute, you have to retrieve
Duration by querying the base table. However, when you specify Duration  as an
index attribute, this attribute data is stored in the base table and the index. The
configuration improves query performance at the cost of disk space consumption.

• If you want to fetch the following values from a result set: total call duration,
the average call duration, the maximum call duration, and the minimum call
duration.This result set is a value of BaseStationNumber 003  with a StartTime
value range from 1532574861  to 1532584054 .
Compared to the last query, return is not required for each call duration. However,
return is required for duration statistics. You can fetch results using the same
method as the last query. Then you can perform Duration calculations to obtain
the required result. In addition, you can execute SQL statements in SQL-on-OTS
to obtain statistics. For more information about how to activate SQL-on-OTS, see 
OLAP on Table Store: serverless SQL big data analysis on Data Lake Analytics. You
can use most MySQL syntax in SQL-on-OTS. Additionally, with SQL-on-OTS, you can
easily process complicated calculations that are applicable to your business.

7.4 Java SDK for global secondary indexes
In this section, you can call the createTable method and the scanFromIndex method
in the Java SDK to perform the following operations.
• You can create a base table and an index on this base table at the same time.

private  static  void  createTabl e ( SyncClient  client ) {
    TableMeta  tableMeta  = new  TableMeta ( TABLE_NAME );
    tableMeta . addPrimary KeyColumn ( new  PrimaryKey Schema (
PRIMARY_KE Y_NAME_1 , PrimaryKey Type . STRING )); // You  can
 specify  a  primary  key  for  a  base  table .
    tableMeta . addPrimary KeyColumn ( new  PrimaryKey Schema
( PRIMARY_KE Y_NAME_2 , PrimaryKey Type . INTEGER )); // Set  
primary  key  for  the  base  table
    tableMeta . addDefined Column ( new  DefinedCol umnSchema (
DEFINED_CO L_NAME_1 , DefinedCol umnType . STRING )); // You  
can  specify  a  pre - defined  attribute  for  the  base  
table .
    tableMeta . addDefined Column ( new  DefinedCol umnSchema (
DEFINED_CO L_NAME_2 , DefinedCol umnType . INTEGER )); // You  
can  specify  a  pre - defined  attribute  for  the  base  
table .
    tableMeta . addDefined Column ( new  DefinedCol umnSchema (
DEFINED_CO L_NAME_3 , DefinedCol umnType . INTEGER )); // You  
can  specify  a  pre - defined  attribute  for  the  base  
table .

Issue: 20190919 89

https://yq.aliyun.com/articles/618501?spm=a2c4e.11155435.0.0.701733127JMFla
https://yq.aliyun.com/articles/618501?spm=a2c4e.11155435.0.0.701733127JMFla


Tablestore Developer Guide /  7 Global secondary indexes

    int  timeToLive  = - 1 ; // You  can  specify  - 1  as  
the  Time  To  Live  ( TTL ) value  so  the  data  never  
expires .
    int  maxVersion s  = 1 ; // The  maximum  version  
number . You  can  only  specify  1  as  the  version  
value  when  a  base  table  have  one  or  more  indexes
.

    TableOptio ns  tableOptio ns  = new  TableOptio ns (
timeToLive , maxVersion s );

    ArrayList < IndexMeta > indexMetas  = new  ArrayList <
IndexMeta >();
    IndexMeta  indexMeta  = new  IndexMeta ( INDEX_NAME ); // 
You  can  create  an  index .
    indexMeta . addPrimary KeyColumn ( DEFINED_CO L_NAME_1 ); // 
You  can  specify  DEFINED_CO L_NAME_1  of  the  base  
table  as  an  index  primary  key .
    indexMeta . addDefined Column ( DEFINED_CO L_NAME_2 ); // 
You  can  specify  DEFINED_CO L_NAME_2  of  the  base  
table  as  an  index  primary  key .
    indexMetas . add ( indexMeta ); // You  can  add  the  
index  to  the  base  table .

    CreateTabl eRequest  request  = new  CreateTabl eRequest (
tableMeta , tableOptio ns , indexMetas ); // You  can  create
 the  base  table .

    client . createTabl e ( request );
}

• You can create an index on a base table.
private  static  void  createInde x ( SyncClient  client ) {
    IndexMeta  indexMeta  = new  IndexMeta ( INDEX_NAME ); // 
Create  index  meta .
    indexMeta . addPrimary KeyColumn ( DEFINED_CO L_NAME_2 ); // 
Specify  DEFINED_CO L_NAME_2  as  the  first  primary  key  
column  of  the  index  table .
    indexMeta . addPrimary KeyColumn ( DEFINED_CO L_NAME_1 ); // 
Specify  DEFINED_CO L_NAME_2  as  the  second  primary  key
 column  of  the  index  table .
    CreateInde xRequest  request  = new  CreateInde xRequest (
TABLE_NAME , indexMeta , true ); // Add  the  index  table  
to  the  source  table , including  stock  data  
    CreateInde xRequest  request  = new  CreateInde xRequest (
TABLE_NAME , indexMeta , false ); // Add  the  index  table  
to  the  source  table , not  including  stock  data  
    client . createInde x ( request ); // Create  an  index  
table .
}

Note:
At the moment, existing data in the base table will not be copied to the index
when you create an index on a base table. The newly created index only includes
incremental data after you create this index. For more information about
incremental data, contact Table Store technical support with DingTalk.

90 Issue: 20190919



Tablestore Developer Guide /  7 Global secondary indexes

• You can delete an index.
private  static  void  deleteInde x ( SyncClient  client ) {
    DeleteInde xRequest  request  = new  DeleteInde xRequest (
TABLE_NAME , INDEX_NAME ); // You  can  specify  the  names  
of  a  base  table  and  an  index .
    client . deleteInde x ( request ); // You  can  delete  an
 index .
}

• You can read data from an index.
If an index includes an attribute that will be returned in results, you can directly 
retrieve data from the index.
private  static  void  scanFromIn dex ( SyncClient  client ) {
    RangeRowQu eryCriteri a  rangeRowQu eryCriteri a  = new  
RangeRowQu eryCriteri a ( INDEX_NAME ); // You  can  specify  
the  name  of  an  index .

    // You  can  specify  the  start  primary  key .
    PrimaryKey Builder  startPrima ryKeyBuild er  = 
PrimaryKey Builder . createPrim aryKeyBuil der ();
    startPrima ryKeyBuild er . addPrimary KeyColumn (
DEFINED_CO L_NAME_1 , PrimaryKey Value . INF_MIN ); // You  
can  specify  the  minimum  value  for  an  index  primary
 key .
    startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_1 , PrimaryKey Value . INF_MIN ); // You  
can  specify  the  minimum  value  for  a  base  table  
primary  key .
    startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_2 , PrimaryKey Value . INF_MIN ); // You  
can  specify  the  minimum  value  for  a  base  table  
primary  key .
    rangeRowQu eryCriteri a . setInclusi veStartPri maryKey (
startPrima ryKeyBuild er . build ());

    // You  can  specify  the  end  primary  key .
    PrimaryKey Builder  endPrimary KeyBuilder  = PrimaryKey
Builder . createPrim aryKeyBuil der ();
    endPrimary KeyBuilder . addPrimary KeyColumn ( DEFINED_CO
L_NAME_1 , PrimaryKey Value . INF_MAX ); // You  can  specify
 the  maximum  value  for  an  index  attribute .
    endPrimary KeyBuilder . addPrimary KeyColumn ( PRIMARY_KE
Y_NAME_1 , PrimaryKey Value . INF_MAX ); // You  can  specify
 the  maximum  value  for  a  base  table  primary  key .
    endPrimary KeyBuilder . addPrimary KeyColumn ( PRIMARY_KE
Y_NAME_2 , PrimaryKey Value . INF_MAX ); // You  can  specify
 the  maximum  value  for  a  base  table  primary  key .
    rangeRowQu eryCriteri a . setExclusi veEndPrima ryKey (
endPrimary KeyBuilder . build ());

    rangeRowQu eryCriteri a . setMaxVers ions ( 1 );

    System . out . println (" The  results  returned  from  an
 index  are  as  follows :");
    while  ( true ) {
        GetRangeRe sponse  getRangeRe sponse  = client .
getRange ( new  GetRangeRe quest ( rangeRowQu eryCriteri a ));
        for  ( Row  row  : getRangeRe sponse . getRows ()) {

Issue: 20190919 91



Tablestore Developer Guide /  7 Global secondary indexes
            System . out . println ( row );
        }

        // If  the  nextStartP rimaryKey  value  is  not  
null , you  can  continue  to  read  data  from  the  base
 table .
        if  ( getRangeRe sponse . getNextSta rtPrimaryK ey () !
 = null ) {
            rangeRowQu eryCriteri a . setInclusi veStartPri
maryKey ( getRangeRe sponse . getNextSta rtPrimaryK ey ());
        } else  {
            break ;
        }
    }
}

If an index does not include an attribute that will be returned in results, you must
query the base table.
private  static  void  scanFromIn dex ( SyncClient  client ) {
    RangeRowQu eryCriteri a  rangeRowQu eryCriteri a  = new  
RangeRowQu eryCriteri a ( INDEX_NAME ); // You  can  specify  
the  index  name .

    // You  can  specify  the  start  primary  key .
    PrimaryKey Builder  startPrima ryKeyBuild er  = 
PrimaryKey Builder . createPrim aryKeyBuil der ();
    startPrima ryKeyBuild er . addPrimary KeyColumn (
DEFINED_CO L_NAME_1 , PrimaryKey Value . INF_MIN ); // You
 can  specify  the  minimum  value  for  an  indexed  
attribute  of  an  index .
    startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_1 , PrimaryKey Value . INF_MIN ); // You  
can  specify  the  minimum  value  for  a  primary  key  
of  a  base  table .
    startPrima ryKeyBuild er . addPrimary KeyColumn (
PRIMARY_KE Y_NAME_2 , PrimaryKey Value . INF_MIN ); // You  
can  specify  the  minimum  value  for  a  primary  key  
of  a  base  table .
    rangeRowQu eryCriteri a . setInclusi veStartPri maryKey (
startPrima ryKeyBuild er . build ());

    // You  can  specify  the  end  primary  key .
    PrimaryKey Builder  endPrimary KeyBuilder  = PrimaryKey
Builder . createPrim aryKeyBuil der ();
    endPrimary KeyBuilder . addPrimary KeyColumn ( DEFINED_CO
L_NAME_1 , PrimaryKey Value . INF_MAX ); // You  can  specify
 the  maximum  value  for  an  indexed  attribute  of  an
 index .
    endPrimary KeyBuilder . addPrimary KeyColumn ( PRIMARY_KE
Y_NAME_1 , PrimaryKey Value . INF_MAX ); // You  can  specify
 the  maximum  value  for  a  base  table  primary  key .
    endPrimary KeyBuilder . addPrimary KeyColumn ( PRIMARY_KE
Y_NAME_2 , PrimaryKey Value . INF_MAX ); // You  can  specify
 the  maximum  value  for  a  base  table  primary  key .
    rangeRowQu eryCriteri a . setExclusi veEndPrima ryKey (
endPrimary KeyBuilder . build ());

    rangeRowQu eryCriteri a . setMaxVers ions ( 1 );

    while  ( true ) {

92 Issue: 20190919



Tablestore Developer Guide /  7 Global secondary indexes
        GetRangeRe sponse  getRangeRe sponse  = client .
getRange ( new  GetRangeRe quest ( rangeRowQu eryCriteri a ));
        for  ( Row  row  : getRangeRe sponse . getRows ()) {
            PrimaryKey  curIndexPr imaryKey  = row . getPrimary
Key ();
            PrimaryKey Column  pk1  = curIndexPr imaryKey .
getPrimary KeyColumn ( PRIMARY_KE Y_NAME1 );
            PrimaryKey Column  pk2  = curIndexPr imaryKey .
getPrimary KeyColumn ( PRIMARY_KE Y_NAME2 );
            PrimaryKey Builder  mainTableP KBuilder  = 
PrimaryKey Builder . createPrim aryKeyBuil der ();
            mainTableP KBuilder . addPrimary KeyColumn (
PRIMARY_KE Y_NAME1 , pk1 . getValue ());
            mainTableP KBuilder . addPrimary KeyColumn (
PRIMARY_KE Y_NAME2 , ke2 . getValue ());
            PrimaryKey  mainTableP K  = mainTableP KBuilder .
build (); // You  can  specify  the  index  primary  keys  
for  a  base  table .

            // You  can  query  a  base  table .
            SingleRowQ ueryCriter ia  criteria  = new  
SingleRowQ ueryCriter ia ( TABLE_NAME , mainTableP K );
            criteria . addColumns ToGet ( DEFINED_CO L_NAME3
); // You  can  read  the  DEFINED_CO L_NAME3  attribute  
from  the  base  table .
            // You  can  retrieve  the  latest  data  version
.
            criteria . setMaxVers ions ( 1 );
            GetRowResp onse  getRowResp onse  = client . getRow
( new  GetRowRequ est ( criteria ));
            Row  mainTableR ow  = getRowResp onse . getRow ();
            System . out . println ( row ); 
        }

        // If  the  value  of  nextStartP rimaryKey  is  not
 null , you  can  continue  to  read  data  from  the  
base  table .
        if  ( getRangeRe sponse . getNextSta rtPrimaryK ey () !
 = null ) {
            rangeRowQu eryCriteri a . setInclusi veStartPri
maryKey ( getRangeRe sponse . getNextSta rtPrimaryK ey ());
        } else  {
            break ;
        }
    }
}

7.5 APIs
CreateTable

You can call the CreateTable method to create a table, and an index with pre-defined
attributes at the same time.
When you write data to a base table, an index on this base table is also updated. For
more information, see CreateTable.

Issue: 20190919 93



Tablestore Developer Guide /  7 Global secondary indexes

CreateIndex
You can call the CreateIndex method to create an index on a base table.

Note:
The current version does not support copying existing base table data to the index
when you call the CreateIndex method to create an index on a base table. This
feature will be supported by later versions.

DeleteIndex
You can call the DeleteIndex method to delete indexes on a base table. The other
indexes on this table will not be affected.

DeleteTable
You can call the DeleteTable method to delete a base table and all indexes on this
table. For more information, see DeleteTable.

7.6 Billing rules
To use secondary indexes, index tables are needed. Therefore, additional storage
space is required to store index tables. When the system inserts data to a primary
table, it may also need to write the index tables created on the primary table at
the same time. During this process, read and write CUs are consumed. This topic
describes the billing rules for secondary indexes.

Note:
Capacity units (CUs) are read and write throughput units. They are the smallest
units used to measure the costs of read and write operations For example, when the
system reads 4 KB from one row per second, one read CU is consumed.

To use secondary indexes, index tables are needed. Therefore, additional storage 
space is required to store index tables. When the system inserts data to a primary 
table, it may also need to write the index tables created on the primary table at the 
same time. During this process, read and write CUs are consumed.
Secondary index billing includes the following parts: the number of read and write
 CUs consumed to write index tables, the amount of data stored in the index tables, 
and the amount of data that is read from the index tables.

94 Issue: 20190919



Tablestore Developer Guide /  7 Global secondary indexes

Billing item Description
Data storage The storage space used to store a primary table and its 

index tables.
Read CUs consumed to 
write index tables

The number of CUs that are consumed by read 
operations to delete, insert, or update index rows.

Write CUs consumed to 
write index tables

The number of CUs that are consumed to insert or 
update index rows.

CUs consumed by regular 
read operations

The number of CUs that are consumed to read data 
from a primary table or index tables using an API.

CUs consumed by regular 
write operations

The number of CUs that are consumed to insert data to 
a primary table using an API.

Billing rules for storing, writing, and reading an index table:
• The billing rules for storing and reading an index table are the same as those of a

primary table. For more information, see Billing items and pricing.
• CUs are consumed based on the following rules when the system writes an index

table:
- Write CUs are consumed only when an index row is inserted or updated.
- Read CUs are consumed when an index row is deleted, updated, or inserted. The

 number of read CUs equals the amount of data read from the corresponding 
indexed columns in the primary table.

Calculate the number of read CUs consumed to write index tables
When you create secondary indexes on the primary table, read CUs are consumed 
based on the following rules:
• When you use the PUT operation to insert a data row to the primary table:

- The PUT operation does not insert data to the indexed attribute columns in the 
primary table, which means that no index row is inserted. In this case, one read 
CU is consumed.

- The PUT operation inserts data to the indexed attribute columns in the primary 
table, which means that new index rows are inserted. In this case, one read CU is
 consumed.

Issue: 20190919 95



Tablestore Developer Guide /  7 Global secondary indexes

• When you use the PUT operation to overwrite a row in the primary table:
- The PUT operation does not update the indexed attribute columns in the 

primary table. In this case, one read CU is consumed.
- The PUT operation updates the indexed attribute columns in the primary table.

In this case, the read CUs are consumed as follows:
Divide the total amount of data read from the indexed attribute columns by 
four, excluding primary key columns. The number of consumed CUs equals the
 calculated value rounded up to the nearest integer. If the total amount is 0 KB, 
one CU is consumed.

• When you use the UPDATE operation to insert a data row to the primary table:
- If the UPDATE operation does not insert data to the indexed columns in the 

primary table, no read CU is consumed.
- If the UPDATE operation inserts data to the indexed columns in the primary 

table, one read CU is consumed.
• When you use the UPDATE operation to update a row in the primary table:

- If the UPDATE operation does not insert data to the indexed attribute columns in
 the primary table, no read CU is consumed.

- If the UPDATE operation inserts data to the indexed attribute columns in the
primary table, read CUs are consumed based on the following rules:
Divide the total amount of data read from the indexed columns by four, 
excluding the primary key columns. The number of consumed CUs equals the 
calculated value rounded up to the nearest integer. If the total amount is 0 KB, 
one CU is consumed.

• When you use the Delete operation to delete a row in the primary table, read CUs
are consumed based on the following rules:
Divide the total amount of data read from the indexed columns by four, excluding
 the primary key columns. The number of consumed CUs equals the calculated
 value rounded up to the nearest integer. If the total amount is 0 KB, one CU is 
consumed.

• If the primary table uses primary key auto increment, inserting data to the
primary table does not consume any read CUs. Updating a row in a primary table

96 Issue: 20190919



Tablestore Developer Guide /  7 Global secondary indexes

that uses primary key auto increment consumes read CUs. CUs are calculated
based on the same rules as those of the UPDATE operation.

Note:
We recommend that you use primary key auto increment to insert data to a
primary table to decrease the number of CUs that are consumed by index tables.
For primary tables that do not use primary key auto increment, one read CU is 
consumed if a read operation is performed on the indexed columns, even if no 
data is retrieved. For primary tables that use primary key auto increment, no read
 operation is performed on the indexed columns when you insert data. Therefore, 
no read CU is consumed.

Calculate the number of write CUs
When you insert data to the primary table and create secondary indexes, write CUs 
are consumed. Write CUs are consumed based on the following rules:
• If you insert a row to the primary table and no data in the index table is updated, 

no write CUs are consumed.
• If you insert a row to the primary table and a new index row is inserted to the index

 table, write CUs are consumed. The number of the write CUs is determined by the 
size of the inserted index row.

• If you insert a row to the primary table and an index row is deleted from the index 
table, write CUs are consumed. The number of the write CUs is determined by the 
size of the deleted index row.

• If you insert a row to the primary table and an index row in the index table is 
updated, write CUs are consumed. The number of the write CUs is determined by 
the size of the updated index row.

• If you insert a row to the primary table, an index row is deleted from the index 
table, and another index row is inserted to the index table, write CUs are consumed
. The number of the write CUs is determined by the total size of the deleted and 
inserted index rows.

The detailed rules are as follows:

Issue: 20190919 97



Tablestore Developer Guide /  7 Global secondary indexes

• When you use the PUT operation to insert a data row to a primary table:
- The PUT operation does not insert data to the indexed attribute columns in the 

primary table, which means that no index row is inserted. In this case, no read 
CU is consumed.

- The PUT operation inserts data to the indexed attribute columns in the primary
table, which means that new index rows are inserted. The write CUs consumed
for each index table are calculated as follows:
Divide the total amount of data in the inserted index row by four. The number of
 consumed CUs equals the calculated value rounded up to the nearest integer.

• When you use the PUT operation to overwrite a row in the primary table:
- The PUT operation only updates the indexed primary key columns in the 

primary table. In this case, no write CUs are consumed.
- The PUT operation updates the indexed columns in the primary table. The write

CUs are consumed based on the following rules:
All indexes updated by the PUT operation consume a certain number of write 
CUs, except sparse indexes.

• When you use the UPDATE operation to insert a data row to the primary table:
- If the UPDATE operation does not insert data to the indexed columns in the 

primary table, no write CUs are consumed.
- If the UPDATE operation inserts data to the indexed columns in the primary

table, the write CUs consumed for each index table are calculated as follows:
■ If the UPDATE operation inserts a new index row, write CUs are consumed

. Divide the total size of the data in the index row by four. The number of 
consumed CUs equals the calculated value rounded up to the nearest integer.

■ If no index row is inserted, no write CUs are consumed.

98 Issue: 20190919



Tablestore Developer Guide /  7 Global secondary indexes

• When you use the UPDATE operation to update a row in the primary table:
- If the UPDATE operation does not update the indexed attribute columns, no 

write CUs are consumed.
- If the UPDATE operation updates the indexed attribute columns, write CUs

consumed for each index table are calculated based on the following rules:
■ If the index table already contains an index row created based on the row 

to be updated, delete CUs are consumed. The number of the delete CUs is 
determined by the size of the indexed primary keys in the deleted index row.

■ If a new index row is inserted based on the updated row, write CUs are 
consumed. The number of the write CUs is determined by the size of the 
indexed primary keys in the inserted index row.

■ If the UPDATE operation only updates the attribute data in the existing index 
row but no new index row is inserted, update CUs are consumed.

Divide the total amount of data in the index row by four. The number of 
consumed CUs equals the calculated value rounded up to the nearest integer.

• When you use the DELETE operation to delete a row in the primary table, write CUs
are consumed based on the following rules:
If an index table already contains an index row created based on the row to be
 deleted, write CUs are consumed. Divide the total amount of the data in the 
corresponding indexed columns by four, excluding the primary key columns. The 
consumed write CUs equal the calculated value rounded up to the nearest integer.

• If you insert data to a primary table that uses primary key auto increment, write 
CUs are consumed. The write CUs are calculated based on the same rules as those 
of the PUT operation. If you update a row in a primary table that uses primary key
 auto increment, write CUs are consumed. The write CUs are calculated based on 
the same rules as those of the UPDATE operation.

Measure index table size
The size of an index table is measured based on the same rule as that of a primary
table. The size of an index table equals the total size of all rows. The total size of the
rows equals the total size of primary keys and attribute data. For more information,
see Data storage.

Issue: 20190919 99



Tablestore Developer Guide /  7 Global secondary indexes

Calculate the number of CUs consumed to read an index table
When you use an SDK, the console, or other methods, such as a DLA, to read an index
 table, read CUs are consumed. The number of read CUs are calculated based on the 
same rules as those of reading a primary table.

Examples
The following example uses a primary table that has two index tables to describe how
 CUs are consumed under different conditions.
The primary table Table contains two primary key columns PK0 and PK1, and three
 predefined columns Col0, Col1, and Col2. Two index tables, Index0 and Index1, are 
created on the primary table. Index0 contains three primary keys Col0, PK0, and PK1
 and one attribute column Col2. Index1 contains four primary keys Col1, Col0, PK0, 
and PK1, and no attribute columns. Use the UPDATE operation to update PK0 and PK1
.
• If the target row does not exist in the primary table:

- Updating Col3 does not consume read or write CUs.
- Updating Col1 consumes the following CUs:

■ One read CU
■ No write CUs

- Updating Col0 and Col1 consumes the following CUs:
■ One read CU
■ Index0 consumes write CUs. The number of the write CUs is determined by

 the total amount of data inserted to Col0, PK0, and PK1. Index1 consumes 
write CUs. The number of the write CUs is determined by the total amount of 
data inserted to Col0, Col1, PK0, and PK1.

• If the target row already exists in the primary table:
- Updating Col3 does not consume read or write CUs.
- Updating Col2 consumes the following CUs:

■ Read CUs are consumed. The number of the read CUs is determined by the 
amount of data read from Col0. If the UPDATE operation inserts data to Col0, 
one CU is consumed.

■ For Index0, if the UPDATE operation insets data to Col0, Index0 does not 
consume write CUs. If the UPDATE operation updates the data in Col0, Index0

100 Issue: 20190919



Tablestore Developer Guide /  7 Global secondary indexes

 consumed write CUs. The number of the write CUs is determined by the 
total amount of data inserted to Col0, PK0, PK1, and Col2. Index1 does not 
consume write CUs.

- Updating Col1 consumes the following CUs:
■ Read CUs are consumed. The number of the read CUs is determined by the 

amount of data read from Col0 and Col1. If the total amount is 0 KB, one CU is
 consumed.

■ Index0 does not consume write CUs. For Index1, if an index row is inserted, 
write CUs are consumed. The number of the write CUs is determined by the 
amount of data read from Col0 and inserted to Col1, PK0, and PK1. For Index1
, if no data in Col0 is updated, no index row is inserted and no write CUs are 
consumed. If the data in Col0 and Col1 is updated, write CUs are consumed to
 delete the corresponding index row. The number of write CUs is determined 
by the total amount of data read from Col0, Col1, PK0, and PK1.

7.7 Appendix
You can create tables and indexes as follows:
private  static  final  String  TABLE_NAME  = " CallRecord Table
";

    private  static  final  String  INDEX0_NAM E  = "
IndexOnBeC alledNumbe r ";

    private  static  final  String  INDEX1_NAM E  = "
IndexOnBas eStation1 ";

    private  static  final  String  INDEX2_NAM E  = "
IndexOnBas eStation2 ";

    private  static  final  String  PRIMARY_KE Y_NAME_1  = "
CellNumber ";

    private  static  final  String  PRIMARY_KE Y_NAME_2  = "
StartTime ";

    private  static  final  String  DEFINED_CO L_NAME_1  = "
CalledNumb er ";

    private  static  final  String  DEFINED_CO L_NAME_2  = "
Duration ";

    private  static  final  String  DEFINED_CO L_NAME_3  = "
BaseStatio nNumber ";

    
    private  static  void  createTabl e ( SyncClient  client ) {
        TableMeta  tableMeta  = new  TableMeta ( TABLE_NAME );
        tableMeta . addPrimary KeyColumn ( new  PrimaryKey Schema
( PRIMARY_KE Y_NAME_1 , PrimaryKey Type . INTEGER ));

        tableMeta . addPrimary KeyColumn ( new  PrimaryKey Schema
( PRIMARY_KE Y_NAME_2 , PrimaryKey Type . INTEGER ));

        tableMeta . addDefined Column ( new  DefinedCol umnSchema
( DEFINED_CO L_NAME_1 , DefinedCol umnType . INTEGER ));

        tableMeta . addDefined Column ( new  DefinedCol umnSchema
( DEFINED_CO L_NAME_2 , DefinedCol umnType . INTEGER ));

Issue: 20190919 101



Tablestore Developer Guide /  7 Global secondary indexes

        tableMeta . addDefined Column ( new  DefinedCol umnSchema
( DEFINED_CO L_NAME_3 , DefinedCol umnType . INTEGER ));

    
        int  timeToLive  = - 1 ; // The  time  before  the  
data  expires . You  can  specify  - 1  as  the  Time  To  
Live  ( TTL ) value  so  the  data  never  expires . Unit : 
seconds . You  must  specify  - 1  as  the  TTL  value  when
 a  table  has  one  or  more  indexes .

        int  maxVersion s  = 1 ; //  The  maximum  number  of
 versions . You  must  specify  1  as  the  value  when  a
 table  has  one  or  more  indexes .

    
        TableOptio ns  tableOptio ns  = new  TableOptio ns (
timeToLive , maxVersion s );

    
        ArrayList < IndexMeta > indexMetas  = new  ArrayList <
IndexMeta >();

        IndexMeta  indexMeta0  = new  IndexMeta ( INDEX0_NAM E );
        indexMeta0 . addPrimary KeyColumn ( DEFINED_CO L_NAME_1 );
        indexMetas . add ( indexMeta0 );
        IndexMeta  indexMeta1  = new  IndexMeta ( INDEX1_NAM E );
        indexMeta1 . addPrimary KeyColumn ( DEFINED_CO L_NAME_3 );
        indexMeta1 . addPrimary KeyColumn ( PRIMARY_KE Y_NAME_2 );
        indexMetas . add ( indexMeta1 );
        IndexMeta  indexMeta2  = new  IndexMeta ( INDEX2_NAM E );
        indexMeta2 . addPrimary KeyColumn ( DEFINED_CO L_NAME_3 );
        indexMeta2 . addPrimary KeyColumn ( PRIMARY_KE Y_NAME_2 );
        indexMeta2 . addDefined Column ( DEFINED_CO L_NAME_2 );
        indexMetas . add ( indexMeta2 );
    
        CreateTabl eRequest  request  = new  CreateTabl eRequest
( tableMeta , tableOptio ns , indexMetas );

    
        client . createTabl e ( request );
    }

102 Issue: 20190919



Tablestore Developer Guide /  8 Tunnel service

8 Tunnel service
8.1 Overview

Tunnel Service is an integrated service for full and incremental data consumption
based on Table Store API. It provides you with real-time consumption tunnels for
distributed data, including incremental data, full data, and full and incremental data.
By creating tunnels for a table, you can easily consume historical data and new data
in the table.

Background
Table Store is applicable to applications such as metadata management, time series
data monitoring, and message systems. These applications often use incremental data
streams or full and incremental data streams to trigger extra operations, including:
• Data synchronization: synchronizes data to a cache, search engine, or data 

warehouse.
• Event driving: triggers Function Compute, sends a consumption notification, or 

calls an API operation.
• Stream data processing: connects to a stream-processing engine or a stream- and 

batch-processing engine.
• Data migration: backs up data to OSS or migrates data to a Table Store capacity 

instance.
You can use Tunnel Service to easily build efficient and elastic solutions to consume 
full data, incremental data, and full and incremental data in the preceding scenarios.

Features
The following table lists the features provided by Tunnel Service.
Feature Description
Tunnels for full and
 incremental data 
consumption

Tunnel Service allows you to consume incremental data, full 
data, and full and incremental data simultaneously.

Issue: 20190919 103



Tablestore Developer Guide /  8 Tunnel service

Feature Description
Orderly incrementa
l data consumption Tunnel Service distributes incremental data to one or more 

logical partitions sequentially based on the write time. Data in 
different partitions can be consumed simultaneously.

Consumption 
latency monitoring Tunnel Service allows you to call the DescribeTunnel operation

 to view the recovery point objective (RPO) information of the
 consumed data on each client. Tunnel Service also allows you
 to monitor data consumption of tunnels in the Table Store 
console.

Horizontal scaling 
of data consumptio
n capabilities

Tunnel Service supports automatic load balancing among 
logical partitions to accelerate data consumption.

8.2 Features
Tunnel Service is an integrated service for full and incremental data consumption
based on Table Store API. Tunnel Service provides the following features:

Tunnels for full and incremental data consumption
Tunnel Service allows you to consume incremental data, full data, and full and 
incremental data simultaneously.

Orderly incremental data consumption
Tunnel Service distributes incremental data to one or more logical partitions 
sequentially based on the write time. Data in different partitions can be consumed 
simultaneously.

Consumption latency monitoring
Tunnel Service allows you to call the DescribeTunnel operation to view the recovery
 point objective (RPO) information of the consumed data on each client. Tunnel 
Service also allows you to monitor data consumption of tunnels in the Table Store 
console.

Horizontal scaling of data consumption capabilities
Tunnel Service supports automatic load balancing among logical partitions. With this
 feature, you can add more Tunnel Clients to accelerate data consumption.

104 Issue: 20190919



Tablestore Developer Guide /  8 Tunnel service

8.3 Description of the data consumption framework
Tunnel Service uses comprehensive operations of Table Store to consume full and
incremental data. You can easily consume and process history data and incremental
data in tables.
A Tunnel client is an automatic data consumption framework of Tunnel Service. The
 Tunnel client regularly checks heartbeats to detect active channels, update status
 of the Channel and ChannelConnect classes, initialize, run, and terminate data 
processing tasks.
The Tunnel client supports the following features for processing full and incrementa
l data: load balancing, fault recovery, checkpoints, and partition information 
synchronization to ensure the sequence of consuming information. The Tunnel client 
allows you to focus on the processing logic of each record.
The following sections describe the features of the Tunnel client, including automatic
data processing, load balancing, and fault tolerance. For more information, see 
Github to check source code of the Tunnel client.

Automatic data processing
The Tunnel client regularly checks for heartbeats to detect active channels, update
 status of the Channel and ChannelConnect classes, initialize, run, and terminate 
data processing tasks. This section describes the data processing logic. For more 
information, see source code.
1. Initialize resources of the Tunnel client.

a. Change the status of the Tunnel client from Ready to Started.
b. Set the HeartbeatTimeout and ClientTag parameters in TunnelWorkerConfig to 

run the ConnectTunnel task and connect Tunnel Service to obtain the ClientId of
 the current Tunnel client.

c. Initialize the ChannelDialer class to create a ChannelConnect task. Each 
ChannelConnect class corresponds to a Channel class, and the ChannelConnect 
task records data consumption checkpoints.

d. Set the Callback parameter for processing data and the CheckpointInterval
 parameter for specifying the interval of outputting checkpoints in Tunnel 

Issue: 20190919 105

https://github.com/aliyun/aliyun-tablestore-java-sdk
https://github.com/aliyun/aliyun-tablestore-java-sdk


Tablestore Developer Guide /  8 Tunnel service

Service. In this way, you can create a data processor that automatically outputs 
checkpoints.

e. Initialize the TunnelStateMachine class to automatically update the status of the
 Channel class.

2. Regularly check heartbeat messages.
You can set the heartbeatIntervalInSec parameter in TunnelWorkerConfig to set 
the interval for checking the heartbeat.
a. Send a heartbeat request to obtain the list of latest available channels from 

Tunnel Service. The list includes the ChannelId, channel versions, and channel 
status.

b. Merge the list of channels from Tunnel Service with the local list of channels,
and create and update ChannelConnect tasks. Follow these rules:
• Merge: overwrite the earlier version in the local list with the later version for

 the same ChannelId from Tunnel Service, and insert the new channels from 
Tunnel Service into the local list.

• Create a ChannelConnect task: create a ChannelConnect task in WAIT status
 for a channel that has no ChannelConnect task. If the ChannelConnect task 
corresponds to a channel in OPEN status, run the ReadRecords&&ProcessRec
ords task that cyclically processes data for this ChannelConnect task. For 
more information, see the ProcessDataPipeline class in source code.

• Update an existing ChannelConnect task: after you merge the lists of channels
, if a channel corresponds to a ChannelConnect task, update the ChannelCon
nect status according to the status of channels with the same ChannelId. For
 example, if channels are in Close status, set their ChannelConnect tasks to
 the Closed status to terminate the corresponding pipeline tasks. For more 
information, see the ChannelConnect.notifyStatus method in source code.

3. Automatically process channel status.
Based on the number of active Tunnel clients obtained in the heartbeat request
, Tunnel Service allocates available partitions to different clients to balance the 

106 Issue: 20190919



Tablestore Developer Guide /  8 Tunnel service

loads. Tunnel Service automatically processes channel status as described in the 
following figure, and drives channel consumption and load balancing.

Tunnel Service and Tunnel clients change their status by using heartbeat requests
and channel version updates.
a. Each channel is initially in WAIT status.
b. The channel for incremental data changes to the OPEN status only when the 

channel consumption on the parent partition is terminated.
c. Tunnel Service allocates the partition in OPEN status to each Tunnel client.
d. During load balancing, Tunnel Service and Tunnel clients use a scheduling 

protocol for changing a channel status from Open, Closing to Closed. After 
consuming a BaseData channel or a Stream channel, Tunnel clients report the 
channel as Terminated.

Issue: 20190919 107



Tablestore Developer Guide /  8 Tunnel service

Automatic load balancing and excellent horizontal scaling
• Multiple Tunnel clients can consume data by using the same Tunnel or TunnelId

. When the Tunnel clients run the heartbeat task, Tunnel Service automatically 
redistributes channels and tries to allocate active channels to each Tunnel client to
 achieve load balancing.

• You can easily add Tunnel clients to scale out. Tunnel clients can run on one or 
more instances.

Automatic resource clearing and fault tolerance
• Resource clearing: if Tunnel clients do not shut down normally, such as exceptiona

l exit or manual termination, the system recycles resources automatically. For 
example, the system can release the thread pool, call the shutdown method that 
you have registered for the corresponding channel, and terminate the connection 
to Tunnel Service.

• Fault tolerance: when a Tunnel client has non-parametric errors such as heartbeat
 timeout, the system automatically renews connections to continue stable data 
consumption.

8.4 Quick start
You can use Tunnel Service in the Table Store console.

Prerequisites
You have activated Table Store.

Create a tunnel
1. Log on to the Table Store console.
2. Locate the target table and click Tunnels in the Actions column.
3. On the Tunnels page, click Create Tunnel in the upper-right corner.
4. In the Create Tunnel dialog box that appears, set Tunnel Name and Type.

Tunnel Service provides three types of real-time consumption tunnels for
distributed data, including Incremental, Full, and Differential. You can set the type
as required. This topic uses the Incremental type as an example.
After the tunnel is created, you can check the data in the tunnel, monitor 
consumption latency, and check the number of consumed rows in each channel on
 the Tunnels page.

108 Issue: 20190919

https://ots.console.aliyun.com


Tablestore Developer Guide /  8 Tunnel service

Preview data types in a channel
1. In the Table Store console, click Data Editor in the left-side navigation pane. On

the Table Data page that appears, click Insert or Delete in the upper-right corner to
write or delete data, respectively.

2. Click Tunnels in the left-side navigation pane. On the Tunnels page that appears,
locate the tunnel that you created and click Show Channels in the Actions column.
The channels are listed at the bottom of the page.

3. Locate the target channel and click View Simulated Export Records in the Actions
column. In the dialog box that appears, click Start. The data types in the channel
appear.

Enable data consumption for a tunnel
1. Copy a tunnel ID from the tunnel list.
2. Use the Tunnel Service SDK in any programming language to enable data

consumption for the tunnel.
// Customize  the  data  consumptio n  callback , that  is
, implement  the  process  and  shutdown  methods  of  the
 IChannelPr ocessor  interface .
private  static  class  SimpleProc essor  implements  
IChannelPr ocessor  {
    @ Override
    public  void  process ( ProcessRec ordsInput  input ) {
        System . out . println (" Default  record  processor , 
would  print  records  count ");
        System . out . println (
            String . format (" Process  % d  records , NextToken
: % s ", input . getRecords (). size (), input . getNextTok en
()));
        try  {
            // Mock  record  processing .
            Thread . sleep ( 1000 );
        } catch  ( Interrupte dException  e ) {
            e . printStack Trace ();
        }
    }
    @ Override
    public  void  shutdown () {
        System . out . println (" Mock  shutdown ");
    }
}

// TunnelWork erConfig  contains  more  advanced  parameters
. For  more  informatio n , see  the  descriptio n  in  
the  related  topic .
TunnelWork erConfig  config  = new  TunnelWork erConfig ( new
 SimpleProc essor ());
// Configure  TunnelWork er  and  start  automatic  data  
processing .
TunnelWork er  worker  = new  TunnelWork er ($ tunnelId , 
tunnelClie nt , config );

Issue: 20190919 109



Tablestore Developer Guide /  8 Tunnel service
try  {
    worker . connectAnd Working ();
} catch  ( Exception  e ) {
    e . printStack Trace ();
    worker . shutdown ();
    tunnelClie nt . shutdown ();
}

View data consumption logs
You can view the consumption logs of incremental data in the data consumption 
standard output. You can also log on to the Table Store console or call the DescribeTu
nnel operation to view the consumption latency and the number of consumed rows in
 each channel.

8.5 SDKs
You can use the following SDKs to implement Tunnel Service:
• Go SDK
• Java SDK

8.6 Incremental synchronization performance white paper
This topic describes the test on the performance of incremental synchronization
through Tunnel Service, including the test environment, tools, plan, indicators,
results, and summary.

Test environment
• Table Store instance

- Type: high-performance instance
- Region: China (Hangzhou)
- Address: a private IP address, which prevents interference caused by unknown 

network issues.

110 Issue: 20190919



Tablestore Developer Guide /  8 Tunnel service

• Test server configuration
- Type: Alibaba Cloud ECS
- Region: China (Hangzhou)
- Model: ecs.mn4.4xlarge balanced entry-level model
- Configuration:

■ CPU: 16 cores
■ Memory: 64 GB
■ NIC: VirtIO network device of Red Hat, Inc.
■ Operating system: CentOS 7u2

Test tools
• Stress testing tool

The stress testing tool of Table Store is used to write data to multiple rows 
simultaneously by calling the BatchWriteRow operation through the Table Store 
Java SDK.

• Pre-splitting tool
The stress testing tool of Table Store is used to automatically create and pre-split 
tables based on the configured table names and the number of partitions.

• Rate statistics tool
The Table Store Java SDK can collect statistics of the consumption rate of 
incremental data and the total number of consumed rows in real time. You can 
add the logic demonstrated in the following example to the callback to collect rate 
statistics.
Example
private  static  final  Gson  GSON  = new  Gson ();
    private  static  final  int  CAL_INTERV AL_MILLIS  = 5000
;
    static  class  PerfProces sor  implements  IChannelPr
ocessor  {
        private  static  final  AtomicLong  counter  = new  
AtomicLong ( 0 );
        private  static  final  AtomicLong  latestTs  = new  
AtomicLong ( 0 );
        private  static  final  AtomicLong  allCount  = new  
AtomicLong ( 0 );

        @ Override
        public  void  process ( ProcessRec ordsInput  input ) {
            counter . addAndGet ( input . getRecords (). size ());
            allCount . addAndGet ( input . getRecords (). size ());

Issue: 20190919 111



Tablestore Developer Guide /  8 Tunnel service
            if  ( System . currentTim eMillis () - latestTs . get
() > CAL_INTERV AL_MILLIS ) {
                synchroniz ed  ( PerfProces sor . class ) {
                    if  ( System . currentTim eMillis () - 
latestTs . get () > CAL_INTERV AL_MILLIS ) {
                        long  seconds  = TimeUnit . MILLISECON
DS . toSeconds ( System . currentTim eMillis () - latestTs . get
());
                        PerfElemen t  element  = new  
PerfElemen t ( System . currentTim eMillis (), counter . get
() / seconds , allCount . get ());
                        System . out . println ( GSON . toJson (
element ));
                        counter . set ( 0 );
                        latestTs . set ( System . currentTim
eMillis ());
                    }
                }
            }
        }

        @ Override
        public  void  shutdown () {
            System . out . println (" Mock  shutdown ");
        }
    }

Test plan
When Tunnel Service is used for data synchronization, it synchronizes data 
sequentially within a single channel to maintain the order of data, and synchronizes 
data in different channels in parallel. For incremental data, the number of channels 
is equal to the number of partitions in a table. This performance test focuses on how
 the number of partitions (channels) affects the incremental synchronization rate
 because the overall performance of Tunnel Service is greatly correlated with the 
number of partitions.

112 Issue: 20190919



Tablestore Developer Guide /  8 Tunnel service

• Test scenarios
The test is conducted in the following scenarios:
- Single-server single-partition synchronization
- Single-server 4-partition synchronization
- Single-server 8-partition synchronization
- Single-server 32-partition synchronization
- Single-server 64-partition synchronization
- Double-server 64-partition synchronization
- Double-server 128-partition synchronization

Note:
The test in the preceding scenarios is not an extreme test of the service
performance, and therefore does not impose much pressure on the Table Store
instance.

• Test procedure
1. Create and pre-split a table for each test scenario.
2. Create a tunnel for incremental synchronization.
3. Use the stress testing tool to write incremental data.
4. Use the rate statistics tool to measure the QPS in real time, and check the 

consumption of system resources, such as CPU and memory.
5. Check the total bandwidth consumed during the incremental synchronization.

• Test data description
ample data includes four primary key columns and one or two attribute columns
. The size of each row is approximately 220 bytes. The first primary key (partition
 key) is a 4-byte hash value, which eguarantees that stress testing data is evenly 
written to each partition.

Test indicators
This test uses the following indicators:
• QPS (row): the number of rows synchronized per second.
• Average latency (ms per 1,000 rows): the time required to synchronize 1,000 rows, 

in milliseconds.
• CPU (core): the total number of single-core CPUs used for data synchronization.

Issue: 20190919 113



Tablestore Developer Guide /  8 Tunnel service

• Memory (GB): the total physical memory used for data synchronization.
• Bandwidth (Mbit/s): the total bandwidth used for data synchronization.

Note:
This performance test is based on user experience, rather than extreme testing.

Test results
This section describes the test results for each scenario. For more information, see 
test details.
• QPS and latency

The following figure shows the number of rows synchronized per second and the
 time required to synchronize 1,000 rows in each scenario. In this figure, the QPS 
increases linearly with the number of partitions.
In the single-server 64-partition synchronization scenario, the gigabit NIC works
 at its full capacity, resulting in only 570,000 QPS. For more information, see 
test details. The QPS in the double-server 64-partition synchronization scenario
 reaches 780,000, which is approximately twice the 420,000 QPS in the single-
server 32-partition synchronization scenario. In the double-server 128-partition 
synchronization scenario, the QPS reaches 1,000,000.

• System resource consumption
The following figure shows the CPU and memory usage in each scenario. The CPU 
usage increases linearly with the number of partitions.
The single-server single-partition synchronization uses 0.25 single-core CPUs. 
When the QPS reaches 1,000,000 in the double-server 128-partition synchroniz
ation scenario, only 10.2 single-core CPUs are used. The memory usage increases
 linearly with the number of partitions when it is less than 32. When more 
partitions, for example, 32, 64, or 128 partitions in this test, need to be processed, 
the memory usage is stably around 5.3 GB on each server.

114 Issue: 20190919



Tablestore Developer Guide /  8 Tunnel service

• Total bandwidth consumption
The following figure shows the total bandwidth consumed during the incrementa
l synchronization. In this figure, the consumed bandwidth increases linearly with 
the number of partitions.
The single-server 64-partition synchronization uses a total bandwidth of 125 Mbit
/s, which is the maximum rate supported by the gigabit NIC. In the double-server
 64-partition synchronization scenario, the consumed bandwidth is 169 Mbit/s, 
which is the actual bandwidth required for 64-partition synchronization. This is
 approximately twice the 86 Mbit/s bandwidth required in the single-server 32-
partition synchronization scenario. When the QPS reaches 1,000,000 in the double
-server 128-partition synchronization scenario, the total bandwidth consumed 
reaches 220 Mbit/s.

Test details
• Single-server single-channel: 19,000 QPS.

- Tested at: 17:40, January 30, 2019.
- QPS: steady at approximately 19,000 rows per second, with a peak rate of 21,800 

rows per second.
- Latency: approximately 50 ms per 1,000 rows.
- CPU usage: approximately 25% of a single-core CPU.
- Memory usage: approximately 0.4% of the total physical memory, which is 

approximately 0.256 GB. (Each test server provides 64 GB physical memory.)
- Bandwidth consumption: approximately 4,000 Kbit/s.

• Single-server 4-partition synchronization: 70,000 QPS.
- Tested at: 20:00, January 30, 2019.
- QPS: steady at approximately 70,000 rows per second, with a peak rate of 72,400 

rows per second.
- Latency: approximately 14.28 ms per 1,000 rows.
- CPU usage: approximately 70% of a single-core CPU.
- Memory usage: approximately 1.9% of the total physical memory, which is 

approximately 1.1 GB. (Each test server provides 64 GB physical memory.)
- Bandwidth consumption: approximately 13 Mbit/s.

Issue: 20190919 115



Tablestore Developer Guide /  8 Tunnel service

• Single-server 8-partition synchronization: 130,000 QPS.
- Tested at: 20:20, January 30, 2019.
- QPS: steady at approximately 130,000 rows per second, with a peak rate of 141,

644 rows per second.
- Latency: approximately 7.69 ms per 1,000 rows.
- CPU usage: approximately 120% of a single-core CPU.
- Memory usage: approximately 4.1% of the total physical memory, which is 

approximately 2.62 GB. (Each test server provides 64 GB physical memory.)
- Bandwidth consumption: approximately 27 Mbit/s.

• Single-server 32-partition synchronization: 420,000 QPS.
- Tested at: 15:50, January 31, 2019.
- QPS: steady at approximately 420,000 rows per second, with a peak rate of 447,

600 rows per second.
- Latency: 2.38 ms per 1,000 rows.
- CPU usage: approximately 450% of a single-core CPU.
- Memory usage: approximately 8.2% of the total physical memory, which is 

approximately 5.25 GB. (Each test server provides 64 GB physical memory.)
- Bandwidth consumption: approximately 86 Mbit/s.

• Single-server 64-partition synchronization: 570,000 QPS, with the gigabit NIC
working at its full capacity.
- Tested at: 22:10, January 31, 2019.
- QPS: steady at approximately 570,000 rows per second, with a peak rate of 581,

400 rows per second.
- Latency: approximately 1.75 ms per 1,000 rows.
- CPU usage: approximately 640% of a single-core CPU.
- Memory usage: approximately 8.4% of the total physical memory, which is 

approximately 5.376 GB. (Each test server provides 64 GB physical memory.)
- Bandwidth consumption: approximately 125 Mbit/s, which is the maximum rate

 of the gigabit NIC.

116 Issue: 20190919



Tablestore Developer Guide /  8 Tunnel service

• Double-server 64-partition synchronization: 780,000 QPS.
- Tested at: 22:30, January 31, 2019.
- QPS: steady at approximately 390,000 rows per second on each server and 780,

000 rows per second on both servers.
- Latency: approximately 1.28 ms per 1,000 rows.
- CPU usage: approximately 420% of a single-core CPU on each server and 840% of

 a single-core CPU on both servers.
- Memory usage: approximately 8.2% of the total physical memory, which is 

approximately 10.5 GB. (Each test server provides 64 GB physical memory.)
- Bandwidth consumption: approximately 169 Mbit/s. This indicates that 

bandwidth becomes the bottleneck when the number of partitions reaches 64 in
 single-server scenarios.

• Double-server 128-partition synchronization: 1,000,000 QPS, with both gigabit NICs
almost working at their full capacities.
- Tested at: 23:20, January 31, 2019.
- QPS: steady at approximately 500,000 rows per second on each server and 1,000,

000 rows per second on both servers.
- Latency: approximately 1 ms per 1,000 rows.
- CPU usage: approximately 560% of a single-core CPU on each server and 1,020% 

of a single-core CPU on both servers.
- Memory usage: approximately 8.2% of the total physical memory, which is 

approximately 10.5 GB. (Each test server provides 64 GB physical memory.)
- Bandwidth consumption: approximately 220 Mbit/s.

Summary
Based on this performance test for incremental synchronization, the QPS for tables 
with a single or a few partitions is mainly affected by the latency in data reading and 
only few resources on the server are consumed. As the number of partitions increases
, the overall throughput of incremental synchronization through Tunnel Service 
increases linearly until the system bottleneck, such as the bandwidth in this test, is 
encountered. When a resource on a single server is used up, this resource becomes 
the bottleneck. You can add more servers to increase the overall throughput. This test
 validates the excellent horizontal scaling performance of Tunnel Service.

Issue: 20190919 117



Tablestore Developer Guide /  9 HBase

9 HBase
9.1 Table Store HBase Client

In addition to SDKs and RESTful APIs, Table Store HBase Client can be used to access 
Table Store through Java applications built on open source HBase APIs. Based on Java
 SDKs for Table Store version 4.2.x and later, Table Store HBase Client supports open 
source APIs for HBase version 1.x.x and later.
Table Store HBase Client can be obtained from any of the following three channels:
• GitHub tablestore-hbase-client project
• Compressed package
• Maven

 < dependenci es >
        < dependency >
            < groupId > com . aliyun . openservic es </ groupId >
            < artifactId > tablestore - hbase - client </ artifactId
>
            < version > 1 . 2 . 0 </ version >
        </ dependency >
    </ dependenci es >

Table Store is a fully managed NoSQL database service. When using TableStore HBase
 Client, you can simply ignore HBase Server. Instead, you only need to perform table 
or data operations using APIs exposed by Client.
Compared with self-built HBase services, Table Store has the following advantages:
Items Table Store Self-built HBase cluster
Cost Billing is based on actual 

data volumes. By providing
 high performance and 
capacity instances, Table 
Store can be tailored to all 
scenarios.

Allocates resources based 
on traffic peaks. Resources
 remain idle during off-
peak periods, resulting
 in high operation and 
maintenance costs.

118 Issue: 20190919

https://github.com/aliyun/aliyun-tablestore-hbase-client
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/50125/cn_zh/1486705375325/tablestore-hbase-client-1.2.0.zip


Tablestore Developer Guide /  9 HBase

Items Table Store Self-built HBase cluster
Security Integrates Alibaba Cloud

 RAM and supports 
multiple authentica
tion and authorization 
mechanisms, VPC, and
 primary/RAM user 
account management. 
Authorization granularity 
can be defined at both the 
table-level and API-level.

Requires extra security 
mechanisms.

Reliability Supports automatic 
redundant data backup
 and failover. Data 
availability is 99.9% or 
greater, and data reliabilit
y is 99.99999999%.

Is dependent on cluster 
reliability.

Scalability Server Load Balancer of
 Table Store supports PB
-level data transfer from
 a single table. Manual 
resizing is not needed even
 if millions of bytes of data 
is concurrently stored.

Complex online/offline 
processes are required 
if a cluster reaches high 
usage capacity, which can
 severely impact online 
services.

9.2 Table Store HBase Client supported functions
API support differences between Table Store and HBase

Table Store and HBase, while similar in terms of data model and functions, have 
different APIs. The following sections detail differences between Table Store HBase 
Client APIs and HBase APIs.

Functions supported by Table Store HBase Client APIs:
• CreateTable

Table Store does not support ColumnFamily as all data can be considered to be in
 the same ColumnFamily. This means that TTL and Max Versions of Table Store 

Issue: 20190919 119



Tablestore Developer Guide /  9 HBase

are at the table-level. Therefore, Table Store has some support for the following 
functions:
Functions Supported or Not
family max version Table-level Max Versions supported. 

Default value: 1
family min version Unsupported
family ttl Table-level TTL supported
is/set ReadOnly Supported through the sub-account of 

RAM
Pre-partitioning Unsupported
blockcache Unsupported
blocksize Unsupported
BloomFilter Unsupported
column max version Unsupported
cell ttl Unsupported
Control parameter Unsupported

• Put
Functions Supported or Not
Writes multiple columns of data at a 
time

Supported

Specifies a timestamp Supported
Uses the system time by default if no 
timestamp is specified

Supported

Single-row ACL Unsupported
ttl Unsupported
Cell Visibility Unsupported
tag Unsupported

120 Issue: 20190919



Tablestore Developer Guide /  9 HBase

• Get
Table Store guarantees high data consistency. If the HTTP 200 status code (OK) 
is returned after data is written to an API, the data is permanently written to all 
copies, and can be read immediately by Get.
Functions Supported or Not
Reads a row of data Supported
Reads all columns in a ColumnFamily Supported
Reads data from a specified column Supported
Reads data with a specified timestamp Supported
Reads data of a specified number of 
versions

Supported

TimeRange Supported
ColumnfamilyTimeRange Unsupported
RowOffsetPerColumnFamily Supported
MaxResultsPerColumnFamily Unsupported
checkExistenceOnly Unsupported
closestRowBefore Supported
attribute Unsupported
cacheblock:true Supported
cacheblock:false Unsupported
IsolationLevel:READ_COMMITTED Supported
IsolationLevel:READ_UNCOMMITTED Unsupported
IsolationLevel:STRONG Supported
IsolationLevel:TIMELINE Unsupported

• Scan
Table Store guarantees high data consistency. If the HTTP 200 status code (OK) 
is returned after data is written to an API, the data is permanently written to all 
copies, which can be read immediately by Scan.
Functions Supported or Not
Determines a scanning range based on 
the specified start and stop

Supported

Issue: 20190919 121



Tablestore Developer Guide /  9 HBase

Functions Supported or Not
Globally scans data if no scanning range
 is specified

Supported

prefix filter Supported
Reads data using the same logic as Get Supported
Reads data in reverse order Supported
caching Supported
batch Unsupported
maxResultSize, indicating the 
maximum size of the returned data 
volume

Unsupported

small Unsupported
batch Unsupported
cacheblock:true Supported
cacheblock:false Unsupported
IsolationLevel:READ_COMMITTED Supported
IsolationLevel:READ_UNCOMMITTED Unsupported
IsolationLevel:STRONG Supported
IsolationLevel:TIMELINE Unsupported
allowPartialResults Unsupported

• Batch
Functions Supported or Not
Get Supported
Put Supported
Delete Supported
batchCallback Unsupported

• Delete
Functions Supported or Not
Deletes a row Supported
Deletes all versions of the specified 
column

Supported

122 Issue: 20190919



Tablestore Developer Guide /  9 HBase

Functions Supported or Not
Deletes the specified version of the 
specified column

Supported

Deletes the specified ColumnFamily Unsupported
When a timestamp is specified, 
deleteColumn deletes the versions that 
are equal to the timestamp

Supported

When a timestamp is specified, 
deleteFamily and deleteColumn delete
 the versions that are earlier than or 
equal to the timestamp

Unsupported

When no timestamp is specified, 
deleteColumn deletes the latest version

Unsupported

When no timestamp is specified, 
deleteFamily and deleteColumn delete 
the version of the current system time

Unsupported

addDeleteMarker Unsupported
• checkAndXXX

Functions Supported or Not
CheckAndPut Supported
checkAndMutate Supported
CheckAndDelete Supported
Checks whether the value of a 
column meets the conditions. If yes, 
checkAndXXX deletes the column.

Supported

Uses the default value if no value is 
specified

Supported

Checks row A and executes row B. Unsupported
• Exist

Functions Supported or Not
Checks whether one or more rows exist 
and does not return any content

Supported

Issue: 20190919 123



Tablestore Developer Guide /  9 HBase

• Filter
Functions Supported or Not
ColumnPaginationFilter columnOffset and count unsupported
SingleColumnValueFilter Supported: LongComparator, 

BinaryComparator, and ByteArrayC
omparable
Unsupported: RegexStringComparator, 
SubstringComparator, and BitCompara
tor

Functions not supported by Table Store HBase Client APIs
• Namespaces

Table Store uses instances to manage a data table. An instance is the minimum
billing unit in Table Store. You can manage instances in the Table Store console.
Therefore, the following features are not supported:
- createNamespace(NamespaceDescriptor descriptor)
- deleteNamespace(String name)
- getNamespaceDescriptor(String name)
- listNamespaceDescriptors()
- listTableDescriptorsByNamespace(String name)
- listTableNamesByNamespace(String name)
- modifyNamespace(NamespaceDescriptor descriptor)

• Region management
Data partition is the basic unit for data storage and management in Table Store.
Table Store automatically splits or merges the data partitions based on their data
volumes and access conditions. Therefore, Table Store does not support features
related to Region management in HBase.

• Snapshots
Table Store does not support Snapshots, or related featurs of Snapshots.

124 Issue: 20190919

https://ots.console.aliyun.com


Tablestore Developer Guide /  9 HBase

• Table management
Table Store automatically splits, merges, and compacts data partitions in tables. 
Therefore, the following features are not supported:
- getTableDescriptor(TableName tableName)
- compact(TableName tableName)
- compact(TableName tableName, byte[] columnFamily)
- flush(TableName tableName)
- getCompactionState(TableName tableName)
- majorCompact(TableName tableName)
- majorCompact(TableName tableName, byte[] columnFamily)
- modifyTable(TableName tableName, HTableDescriptor htd)
- split(TableName tableName)
- split(TableName tableName, byte[] splitPoint)

• Coprocessors
Table Store does not support the coprocessor. Therefore, the following features are
 not supported:
- coprocessorService()
- coprocessorService(ServerName serverName)
- getMasterCoprocessors()

• Distributed procedures
Table Store does not support Distributed procedures. Therefore, the following 
features are not supported:
- execProcedure(String signature, String instance, Map props)
- execProcedureWithRet(String signature, String instance, Map props)
- isProcedureFinished(String signature, String instance, Map props)

• Increment and Append
Table Store does not support atomic increase/decrease or atomic Append.

9.3 Differences between Table Store and HBase
This topic introduces features of Table Store HBase Client and explains restricted and 
supported functions when compared with HBase. Features are listed as follows.

Issue: 20190919 125



Tablestore Developer Guide /  9 HBase

Table
Table Store only supports single ColumnFamilies, that is, it does not support multi-
ColumnFamilies.

Row and Cell
• Table Store does not support ACL settings.
• Table Store does not support Cell Visibility settings.
• Table Store does not support Tag settings.

GET
Table Store only supports single ColumnFamilies. Therefore, it does not support 
ColumnFamily related APIs, including:
• setColumnFamilyTimeRange(byte[] cf, long minStamp, long maxStamp)
• setMaxResultsPerColumnFamily(int limit)
• setRowOffsetPerColumnFamily(int offset)

SCAN
Similar to GET, Table Store does not support ColumnFamily related APIs and cannot 
be used to set partial optimization APIs, including:
• setBatch(int batch)
• setMaxResultSize(long maxResultSize)
• setAllowPartialResults(boolean allowPartialResults)
• setLoadColumnFamiliesOnDemand(boolean value)
• setSmall(boolean small)

Batch
Table Store does not support BatchCallback.

Mutations and Deletions
• Table Store does not support deletion of the specified ColumnFamily.
• Table Store does not support deletion of the versions with the latest timestamp.
• Table Store does not support deletion of all versions earlier than the specified 

timestamp.
Increment and Append

Table Store does not support Increment or Append features.
126 Issue: 20190919



Tablestore Developer Guide /  9 HBase

Filter
• Table Store supports ColumnPaginationFilter.
• Table Store supports FilterList.
• Table Store partially supports SingleColumnValueFilter, and supports only 

BinaryComparator.
• Table Store does not support other Filters.

Optimization
Some of the HBase APIs involve access and storage optimization. These APIs are not 
opened currently:
• blockcache: The default value is "true", which cannot be modified.
• blocksize: The default value is "64 KB", which cannot be modified.
• IsolationLevel: The default value is "READ_COMMITTED", which cannot be 

modified.
• Consistency: The default value is "STRONG", which cannot be modified.

Admin
The org . apache . hadoop . hbase . client . Admin  APIs of HBase are used
for management and control, most of which are not required in Table Store.
As Table Store is a cloud service, it automatically performs operations such as 
operation and maintenance, management, and control, which does not need to be 
concerned. Table Store currently does not support a few of APIs.
• CreateTable

Table Store only supports single ColumnFamilies. Therefore, you can create 
only one ColumnFamily when creating a table. The ColumnFamily supports the 
MaxVersions and TimeToLive parameters.

Issue: 20190919 127



Tablestore Developer Guide /  9 HBase

• Maintenance task
In Table Store, the following APIs related to task maintenance are automatically 
processed:
- abort(String why, Throwable e)
- balancer()
- enableCatalogJanitor(boolean enable)
- getMasterInfoPort()
- isCatalogJanitorEnabled()
- rollWALWriter(ServerName serverName) -runCatalogScan()
- setBalancerRunning(boolean on, boolean synchronous)
- updateConfiguration(ServerName serverName)
- updateConfiguration()
- stopMaster()
- shutdown()

• Namespaces
In Table Store, the instance name is similar to Namespaces in HBase. Therefore, it 
does not support Namespaces related APIs, including:
- createNamespace(NamespaceDescriptor descriptor)
- modifyNamespace(NamespaceDescriptor descriptor)
- getNamespaceDescriptor(String name)
- listNamespaceDescriptors()
- listTableDescriptorsByNamespace(String name)
- listTableNamesByNamespace(String name)
- deleteNamespace(String name)

128 Issue: 20190919



Tablestore Developer Guide /  9 HBase

• Region
Table Store automatically performs Region related operations. Therefore, it does 
not support the following APIs:
- assign(byte[] regionName)
- closeRegion(byte[] regionname, String serverName)
- closeRegion(ServerName sn, HRegionInfo hri)
- closeRegion(String regionname, String serverName)
- closeRegionWithEncodedRegionName(String encodedRegionName, String 

serverName)
- compactRegion(byte[] regionName)
- compactRegion(byte[] regionName, byte[] columnFamily)
- compactRegionServer(ServerName sn, boolean major)
- flushRegion(byte[] regionName)
- getAlterStatus(byte[] tableName)
- getAlterStatus(TableName tableName)
- getCompactionStateForRegion(byte[] regionName)
- getOnlineRegions(ServerName sn)
- majorCompactRegion(byte[] regionName)
- majorCompactRegion(byte[] regionName, byte[] columnFamily)
- mergeRegions(byte[] encodedNameOfRegionA, byte[] encodedNameOfRegionB, 

boolean forcible)
- move(byte[] encodedRegionName, byte[] destServerName)
- offline(byte[] regionName)
- splitRegion(byte[] regionName)
- splitRegion(byte[] regionName, byte[] splitPoint)
- stopRegionServer(String hostnamePort)
- unassign(byte[] regionName, boolean force)

Snapshots
Table Store does not support Snapshots related APIs.

Replication
Table Store does not support Replication related APIs.

Issue: 20190919 129



Tablestore Developer Guide /  9 HBase

Coprocessors
Table Store does not support Coprocessors related APIs.

Distributed procedures
Table Store does not support Distributed procedures related APIs.

Table Management
Table Store automatically performs Table related operations, which does not need to 
be concerned. Therefore, Table Store does not support the following APIs:
• compact(TableName tableName)
• compact(TableName tableName, byte[] columnFamily)
• flush(TableName tableName)
• getCompactionState(TableName tableName)
• majorCompact(TableName tableName)
• majorCompact(TableName tableName, byte[] columnFamily)
• modifyTable(TableName tableName, HTableDescriptor htd)
• split(TableName tableName)
• split(TableName tableName, byte[] splitPoint)

Restrictions
As Table Store is a cloud service, to guarantee the optimal overall performance, some
parameters are restricted and cannot be reconfigured. For more information about
the restrictions, see #unique_134.

9.4 Migrate from HBase to Table Store
The following information explains how to migrate HBase to Table Store.

Dependencies
Table Store HBase Client v1.2.0 depends on HBase Client v1.2.0 and Table Store Java
SDK v4.2.1. The configuration of pom . xml  is as follows.
 < dependenci es >
        < dependency >
            < groupId > com . aliyun . openservic es </ groupId >
            < artifactId > tablestore - hbase - client </ artifactId >
            < version > 1 . 2 . 0 </ version >
        </ dependency >

130 Issue: 20190919



Tablestore Developer Guide /  9 HBase
    </ dependenci es >

If you want to use another HBase Client or Table Store Java SDK version, you must use
 the exclusion tag. In the following example, HBase Client v1.2.1 and Table Store Java 
SDK v4.2.0 are used.
   < dependenci es >
        < dependency >
            < groupId > com . aliyun . openservic es </ groupId >
            < artifactId > tablestore - hbase - client </ artifactId >
            < version > 1 . 2 . 0 </ version >
            < exclusions >
                < exclusion >
                    < groupId > com . aliyun . openservic es </
groupId >

                    < artifactId > tablestore </ artifactId >
                </ exclusion >
                < exclusion >
                    < groupId > org . apache . hbase </ groupId >
                    < artifactId > hbase - client </ artifactId >
                </ exclusion >
            </ exclusions >
        </ dependency >
        < dependency >
            < groupId > org . apache . hbase </ groupId >
            < artifactId > hbase - client </ artifactId >
            < version > 1 . 2 . 1 </ version >
        </ dependency >
        < dependency >
            < groupId > com . aliyun . openservic es </ groupId >
            < artifactId > tablestore </ artifactId >
            < classifier > jar - with - dependenci es </ classifier >
            < version > 4 . 2 . 0 </ version >
        </ dependency >
    </ dependenci es >

Table Store HBase Client v1.2.x is only compatible with HBase Client v1.2.x, because 
API changes exist in HBase Client v1.2.x and earlier.
If you want to use HBase Client version v1.1.x, use Table Store HBase Client version v1
.1.x.
If you want to use HBase Client version v0.x.x, see Migrate HBase of an earlier
version.

Configure the file
To migrate data from HBase Client to Table Store HBase Client, modify the following 
two items in the configuration file.
• HBase Connection type

Set Connection to TableStoreConnection.
    < property >

Issue: 20190919 131



Tablestore Developer Guide /  9 HBase
        < name > hbase . client . connection . impl </ name >
        < value > com . alicloud . tablestore . hbase . Tablestore
Connection </ value >
    </ property >

• Configuration items of Table Store
Table Store is a cloud service and provides strict permission management. Table
 Store offers strict permission management. To access Table Store, you must 
configure access information such as the AccessKey.
- You need to configure the following four items before accessing Table Store:

 < property >
   < name > tablestore . client . endpoint </ name >
   < value ></ value >
  </ property >
  < property >
   < name > tablestore . client . instancena me </ name >
   < value ></ value >
  </ property >
  < property >
   < name > tablestore . client . accesskeyi d </ name >
   < value ></ value >
  </ property >
  < property >
   < name > tablestore . client . accesskeys ecret </ name >
   < value ></ value >
  </ property >

- Optional items you can configure are as follows.
  < property >
   < name > hbase . client . tablestore . family </ name >
   < value > f1 </ value >
  </ property >
  < property >
   < name > hbase . client . tablestore . family .$ tablename </
name >

   < value > f2 </ value >
  </ property >
  < property >
   < name > tablestore . client . max . connection s </ name >
   < value > 300 </ value >
  </ property >
  < property >
   < name > tablestore . client . socket . timeout </ name >
   < value > 15000 </ value >
  </ property >
  < property >
   < name > tablestore . client . connection . timeout </ name >
   < value > 15000 </ value >
  </ property >
  < property >
   < name > tablestore . client . operation . timeout </ name >
   < value > 2147483647 </ value >
  </ property >
  < property >
   < name > tablestore . client . retries </ name >
   < value > 3 </ value >

132 Issue: 20190919



Tablestore Developer Guide /  9 HBase
  </ property >

■ hbase.client.tablestore.family and hbase.client.tablestore.family.$tablename
■ Table Store only supports single ColumnFamilies. When you use HBase

APIs, you must enter the content of the family.
hbase . client . tablestore . family  indicates global

configuration, while hbase . client . tablestore . family .$

tablename  indicates configuration of a single table.
■ Rule: For tables whose names are T, search for hbase . client .

tablestore . family . T  first. If the family does not exist, search for 
hbase . client . tablestore . family . If the family does not exist,

use the default value f.
■ tablestore.client.max.connections

Maximum connections. The default value is 300.
■ tablestore.client.socket.timeout

Socket time-out time. The default value is 15 seconds.
■ tablestore.client.connection.timeout

Connection time-out time. The default value is 15 seconds.
■ tablestore.client.operation.timeout

API time-out time. The default value is Integer.MAX_VALUE, indicating that 
the API never times out.

■ tablestore.client.retries
Number of retries when a request fails. The default value is 3.

9.5 Migrate HBase of an earlier version
Table Store HBase Client supports APIs of HBase Client 1.0.0 and later versions.
Compared with earlier versions, HBase Client 1.0.0 has big changes which are 
incompatible with HBase Client of earlier versions.
If you use an HBase Client from version 0.x.x (that is, an earlier version than 1.0.0), 
this topic explains how to integrate your HBase Client version with Table Store.

Issue: 20190919 133



Tablestore Developer Guide /  9 HBase

Connection APIs
HBase 1.0.0 and later versions cancel the HConnection APIs, and instead use the org

. apache . hadoop . hbase . client . Connection Factory  series to provide
the Connection APIs and replace ConnectionManager and HConnectionManager with
ConnectionFactory.
Creating a Connection API has relatively high cost, however, Connection APIs 
guarantee thread safety. When using a Connection API, you can generate only one 
Connection object in the program. Multiple threads can then share this object.
You also need to manage the Connection lifecycle, and close it after use.
The latest code is as follows:
Connection  connection  = Connection Factory . createConn ection
( config );

// ...
connection . close ();

TableName series
In HBase version 1.0.0 and earlier, you can use a String-type name when creating a
table. For later HBase versions, you can use the org . apache . hadoop . hbase .

TableName .
The latest code is as follows:
String  tableName  = " MyTable ";

// or  byte [] tableName  = Bytes . toBytes (" MyTable ");
TableName  tableNameO bj  = TableName . valueOf ( tableName );

Table, BufferedMutator, and RegionLocator APIs
From HBase Client v1.0.0, the HTable APIs are replaced with the Table, BufferedMu
tator, and RegionLocator APIs.
• org . apache . hadoop . hbase . client . Table : Used to operate reading,

writing, and other requests of a single table.
• org . apache . hadoop . hbase . client . BufferedMu tator : Used

for asynchronous batch writing. This API corresponds to setAutoFlu sh (

boolean ) of the HTableInterface API of the earlier versions.
• org . apache . hadoop . hbase . client . RegionLoca tor : Indicates the

table partition information.

134 Issue: 20190919



Tablestore Developer Guide /  9 HBase

The Table, BufferedMutator, and RegionLocator APIs do not guarantee thread safety. 
However, they are lightweight and can be used to create an object for each thread.

Admin APIs
From HBase Client v1.0.0, HBaseAdmin APIs are replaced by org . apache .

hadoop . hbase . client . Admin . As Table Store is a cloud service, and most
operation and maintenance APIs are automatically processed, most Admin APIs
are not supported. For more information, see Differences between Table Store and
HBase.
Use the Connection instance to create an Admin instance:
Admin  admin  = connection . getAdmin ();

9.6 Hello World
This topic describes how to use Table Store HBase Client to implement a simple Hello 
World program, and includes the following operations:
• Configure project dependencies.
• Connect Table Store
• Create a table
• Write Data
• Read Data
• Scan data
• Delete a table

Code position
This sample program uses HBase APIs to access Table Store. The complete sample
program is located in the Github aliyun-tablestore-hbase-client project. The directory
is src/test/java/samples/HelloWorld.java.

Use HBase APIs
• Configure project dependencies

Configure Maven dependencies as follows.
   < dependenci es >
        < dependency >
            < groupId > com . aliyun . openservic es </ groupId >
            < artifactId > tablestore - hbase - client </ artifactId
>

Issue: 20190919 135

https://github.com/aliyun/aliyun-tablestore-hbase-client


Tablestore Developer Guide /  9 HBase
            < version > 1 . 2 . 0 </ version >
        </ dependency >
    </ dependenci es >

For more information about advanced configurations, see Migrate from HBase to
Table Store.

• Configure the file
Add the following configuration items to hbase-site.xml.
< configurat ion >
    < property >
        < name > hbase . client . connection . impl </ name >
        < value > com . alicloud . tablestore . hbase . Tablestore
Connection </ value >
    </ property >
    < property >
        < name > tablestore . client . endpoint </ name >
        < value > endpoint </ value >
    </ property >
    < property >
        < name > tablestore . client . instancena me </ name >
        < value > instance_n ame </ value >
    </ property >
    < property >
        < name > tablestore . client . accesskeyi d </ name >
        < value > access_key _id </ value >
    </ property >
    < property >
        < name > tablestore . client . accesskeys ecret </ name >
        < value > access_key _secret </ value >
    </ property >
    < property >
        < name > hbase . client . tablestore . family </ name >
        < value > f1 </ value >
    </ property >
    < property >
        < name > hbase . client . tablestore . table </ name >
        < value > ots_adapto r </ value >
    </ property >
</ configurat ion >

For more information about advanced configurations, see Migrate from HBase to
Table Store.

• Connect Table Store
Create a TableStoreConnection object to connect Table Store.
  Configurat ion  config  = HBaseConfi guration . create ();
  
  // Create  a  Tablestore  Connection
  Connection  connection  = Connection Factory . createConn
ection ( config );
  
  // Admin  is  used  for  creation , management , and  
deletion

136 Issue: 20190919



Tablestore Developer Guide /  9 HBase
        Admin  admin  = connection . getAdmin ();

• Create a table
Create a table using the specified table name. Use the default table name for 
MaxVersions and TimeToLive.
  // Create  an  HTableDesc riptor , which  contains  only  
one  ColumnFami ly
  HTableDesc riptor  descriptor  = new  HTableDesc riptor (
TableName . valueOf ( TABLE_NAME ));
  
  // Create  a  ColumnFami ly . Use  the  default  
ColumnFami ly  name  for  Max  Versions  and  TimeToLive . 
The  default  ColumnFami ly  name  for  Max  Versions  is  
1  and  for  TimeToLive  is  Integer . INF_MAX
  descriptor . addFamily ( new  HColumnDes criptor ( COLUMN_FAM
ILY_NAME ));
  
  // Use  the  createTabl e  API  of  the  Admin  to  
create  a  table
  System . out . println (" Create  table  " + descriptor .
getNameAsS tring ());
  admin . createTabl e ( descriptor );

• Write Data
Write a row of data to Table Store.
  // Create  a  Tablestore Table  for  reading , writing , 
updating , deletion , and  other  operations  on  a  single
 table
  Table  table  = connection . getTable ( TableName . valueOf (
TABLE_NAME ));
  
  // Create  a  Put  object  with  the  primary  key  
row_1
  System . out . println (" Write  one  row  to  the  table
");
        Put  put  = new  Put ( ROW_KEY );
  
  // Add  a  column . Table  Store  supports  only  single  
ColumnFami lies . The  ColumnFami ly  name  is  configured  
in  hbase - site . xml . If  the  ColumnFami ly  name  is  
not  configured , the  default  name  is  " f ". In  this  
case , the  value  of  COLUMN_FAM ILY_NAME  may  be  null  
when  data  is  written .
  put . addColumn ( COLUMN_FAM ILY_NAME , COLUMN_NAM E , 
COLUMN_VAL UE );
  
  // Run  put  for  Table , and  use  HBase  APIs  to  
write  the  row  of  data  to  Table  Store
        table . put ( put );

• Read Data
Read data of the specified row.
  // Create  a  Get  object  to  read  the  row  whose  
primary  key  is  ROW_KEY .

Issue: 20190919 137



Tablestore Developer Guide /  9 HBase
  Result  getResult  = table . get ( new  Get ( ROW_KEY ));
  Result  result  = table . get ( get );
  
  // Print  the  results
  String  value  = Bytes . toString ( getResult . getValue (
COLUMN_FAM ILY_NAME , COLUMN_NAM E ));
  System . out . println (" Get  one  row  by  row  key ");
  System . out . printf ("\ t % s  = % s \ n ", Bytes . toString (
ROW_KEY ), value );

• Scan data
Read data in the specified range.
 Scan  data  of  all  rows  in  the  table
 System . out . println (" Scan  for  all  rows :");
 Scan  scan  = new  Scan ();

 ResultScan ner  scanner  = table . getScanner ( scan );
 
 // Print  the  results  cyclically
 for  ( Result  row  : scanner ) {
  byte [] valueBytes  = row . getValue ( COLUMN_FAM ILY_NAME , 
COLUMN_NAM E );
  System . out . println ('\ t ' + Bytes . toString ( valueBytes
));
 }

• Delete a table
Use Admin APIs to delete a table.
  print (" Delete  the  table ");
  admin . disableTab le ( table . getName ());
  admin . deleteTabl e ( table . getName ());

Complete code
package  samples ;

import  org . apache . hadoop . conf . Configurat ion ;
import  org . apache . hadoop . hbase . HBaseConfi guration ;
import  org . apache . hadoop . hbase . HColumnDes criptor ;
import  org . apache . hadoop . hbase . HTableDesc riptor ;
import  org . apache . hadoop . hbase . TableName ;
import  org . apache . hadoop . hbase . client .*;
import  org . apache . hadoop . hbase . util . Bytes ;

import  java . io . IOExceptio n ;

public  class  HelloWorld  {

    private  static  final  byte [] TABLE_NAME  = Bytes .
toBytes (" HelloTable store ");

    private  static  final  byte [] ROW_KEY  = Bytes . toBytes
(" row_1 ");

    private  static  final  byte [] COLUMN_FAM ILY_NAME  = 
Bytes . toBytes (" f ");

    private  static  final  byte [] COLUMN_NAM E  = Bytes .
toBytes (" col_1 ");

138 Issue: 20190919



Tablestore Developer Guide /  9 HBase
    private  static  final  byte [] COLUMN_VAL UE  = Bytes .
toBytes (" col_value ");

    public  static  void  main ( String [] args ) {
        helloWorld ();
    }

    private  static  void  helloWorld () {

        try   {
            Configurat ion  config  = HBaseConfi guration .
create ();

            Connection  connection  = Connection Factory .
createConn ection ( config );

            Admin  admin  = connection . getAdmin ();

            HTableDesc riptor  descriptor  = new  HTableDesc
riptor ( TableName . valueOf ( TABLE_NAME ));

            descriptor . addFamily ( new  HColumnDes criptor (
COLUMN_FAM ILY_NAME ));

            System . out . println (" Create  table  " + descriptor
. getNameAsS tring ());

            admin . createTabl e ( descriptor );

            Table  table  = connection . getTable ( TableName .
valueOf ( TABLE_NAME ));

            System . out . println (" Write  one  row  to  the  
table ");

            Put  put  = new  Put ( ROW_KEY );
            put . addColumn ( COLUMN_FAM ILY_NAME , COLUMN_NAM E
, COLUMN_VAL UE );

            table . put ( put );

            Result  getResult  = table . get ( new  Get ( ROW_KEY
));

            String  value  = Bytes . toString ( getResult .
getValue ( COLUMN_FAM ILY_NAME , COLUMN_NAM E ));

            System . out . println (" Get  a  one  row  by  row
 key ");

            System . out . printf ("\ t % s  = % s \ n ", Bytes .
toString ( ROW_KEY ), value );

            Scan  scan  = new  Scan ();

            System . out . println (" Scan  for  all  rows :");
            ResultScan ner  scanner  = table . getScanner ( scan
);

            for  ( Result  row  : scanner ) {
                byte [] valueBytes  = row . getValue ( COLUMN_FAM
ILY_NAME , COLUMN_NAM E );

                System . out . println ('\ t ' + Bytes . toString (
valueBytes ));

            }

            System . out . println (" Delete  the  table ");
            admin . disableTab le ( table . getName ());
            admin . deleteTabl e ( table . getName ());

            table . close ();
            admin . close ();
            connection . close ();
        } catch  ( IOExceptio n  e ) {

Issue: 20190919 139



Tablestore Developer Guide /  9 HBase

            System . err . println (" Exception  while  running  
HelloTable store : " + e . toString ());

            System . exit ( 1 );
        }
    }
}

140 Issue: 20190919



Tablestore Developer Guide /  10 Authorization management

10 Authorization management
10.1 RAM and STS

Alibaba Cloud’s permission management function include Resource Access 
Management (RAM) and Security Token Service (STS). This function enable users to 
access Table Store through RAM user accounts with different permissions, and grant 
users temporary access authorization.
RAM is primarily used to control account system permissions over a long-term
period. It allows you to assign different permissions to different RAM users created
under your primary account to implement authorization management. For more
information, see RAM.
STS is a security credential (token) management system that grants temporary access
 permissions.

Background
RAM and STS are designed to securely grant access to users without disclosing the 
primary account’s AccessKey. Unintentional AccessKey disclosure poses serious 
account security risks as unauthorized users may freely operate the affected primary 
account, including malicious use of resources and theft of account information.
RAM provides permission control function used to allocate RAM users with different
 permissions to different entities, minimizing impact to a primary account if a RAM
 user’s AccessKey is disclosed. Generally, RAM users are created for long-term 
account operations. Therefore, the AccessKeys of RAM users must not be disclosed.
In contrast to RAM’s long-term control function, STS provides temporary access
 authorization by returning a temporary AccessKey and token, which can be used
 directly by temporary users to access Table Store. Generally, the permissions 
obtained from STS are more restrictive and only valid for a limited period of time.

Basic concepts
Basic concepts related to RAM and STS are described as follows:

Issue: 20190919 141

https://www.alibabacloud.com/help/doc-detail/28627.htm


Tablestore Developer Guide /  10 Authorization management

Concept Description
RAM user RAM users are created under an Alibaba

 Cloud primary account and assigned 
independent passwords and permission
s, with each RAM user having its own
 AccessKey. RAM users can be used 
to perform authorized operations in 
the same way as the primary account. 
Generally, RAM users can be understood
 as users with certain permissions or 
operators with permissions for specified 
operations.

Role A virtual concept indicating certain 
operation permissions, roles do not 
have independent logon passwords or 
AccessKeys. RAM users can assume roles
, and the permissions that are granted
 when a role is assumed belong to this 
role. A role may be assumed by multiple 
users at the same time.

Policy Policies are rules used to define 
permissions, such as the permissions to 
read or write certain resources.

Resource Resources are the cloud resources that
 users can access, such as one or all 
instances of Table Store, or a certain 
table in an instance.

The relationship between a RAM user and its roles is similar to a relationship between
 an individual and their social identities in different scenarios. For example, a person
 can assume a role of employee in a company and assume a role of parent at home. 
Different roles are assigned corresponding permissions. The concept of employee or 
parent is not an actual entity able to take actions. Roles are complete only when being
 assumed by RAM users. Furthermore, a role may be assumed by multiple users at the
 same time. The user who assumes a role is automatically assigned all permissions of 
the role.
The following example provides more detailed information:
Assume that an Alibaba Cloud primary account named Alice has two Table Store 
instances named alice_a and alice_b. Alice has full permissions on both instances.

142 Issue: 20190919



Tablestore Developer Guide /  10 Authorization management

To maintain security of the primary account, Alice uses RAM to create two RAM 
users: Bob and Carol. Bob has the read and write permissions on alice_a, and Carol
 has the read and write permissions on alice_b. Bob and Carol both have their own
 AccessKeys. If the AccessKey of Bob or Carol is disclosed, only the corresponding 
instance is affected. Alice can then cancel the permissions of the compromised RAM 
user through the console.
If Alice needs to authorize another RAM user to read the tables in alice_a, instead
 of disclosing Bob’s AccessKey to the user, Alice can create a role (for example
, AliceAReader), and assign the role the read permission on alice_a. However, 
AliceAReader cannot be used directly as no AccessKey corresponds to this role.
To obtain temporary authorization, Alice can call STS’s AssumeRole interface to 
inform STS that RAM user Bob wants to assume the role AliceAReader. If the interface
 is successfully called, STS returns a temporary AccessKeyID, AccessKeySecret, 
and SecurityToken as the access credentials. A temporary user assigned with these
 credentials obtains the temporary permission to access alice_a. The credentials’ 
expiration time is specified when the AssumeRole interface is called.

RAM and STS best practices
RAM and STS are designed with complexity to achieve flexible permission control at 
the cost of simplicity.
RAM users and roles are two concepts used to separate the entity that performs 
operations from the virtual entity that represents a permission set. If a RAM user
 requires many permissions (including read and write permissions) but each 
operation only requires part of the total permission set, you can create two roles: one
 with the read permission and one with the write permission. Then create a user who
 does not have any permissions but can assume these two roles. When a RAM user 
needs to read or write data, the RAM user can temporarily assume the role with the
 required permission. In addition, roles can be used to grant permissions to other 
Alibaba Cloud users, making collaborations easier while maintaining strict account 
security.
Implementing RAM or STS through the console and command line operations are
strongly recommended to reduce the actual amount of codes that must be used. If
code must be used to perform such operations, see the RAM API Reference and STS 
API Reference.

Issue: 20190919 143

https://www.alibabacloud.com/help/doc-detail/28672.htm
https://www.alibabacloud.com/help/doc-detail/28756.htm
https://www.alibabacloud.com/help/doc-detail/28756.htm


Tablestore Developer Guide /  10 Authorization management

10.2 Customize permissions
Action

Action is an API name that is used to specify APIs that are open or restricted for user
access. When creating a Table Store authorization policy, add an ots : prefix for
each Action and separate multiple Actions using commas. The asterisk (*) wildcard is
also supported (including prefix matching and suffix matching).
Typical Action
• Single API

" Action ": " ots : GetRow "
     

• Multiple APIs
" Action ": [
" ots : PutRow ",
" ots : GetRow "
]
     

• All read-only API
" Action ": [
" ots : BatchGet *",
" ots : Describe *",
" ots : Get *",
" ots : List *",
" ots : ComputeSpl itPointsBy Size "
]
     

• All read and write API
" Action ": " ots :*"
     

Resource
A Resource in Table Store is composed of multiple fields including product, region, 
user ID, instance name, and table name. Each field supports asterisk (*) wildcard (
including prefix matching and suffix matching).
The format is as follows:
acs : ots :[ region ]:[ user_id ]: instance /[ instance_n ame ]/
table /[ table_name ]

144 Issue: 20190919



Tablestore Developer Guide /  10 Authorization management
   

• The product is ots.
• [xxx] indicates a variable.
• The region is an abbreviation written in English, for example, cn-hangzhou. For

more information about regions of service nodes, see Region.
• The user ID is the Alibaba Cloud account ID.

Note:
Instance names are case-insensitive. However, you must use lower case letters for
[ instance_n ame ] in resource definition.

Typical Resource
• All resources of the users in all regions

" Resource ": " acs : ots :*:*:*"
     

• All instances and their tables of user 123456 in China East 1 region
" Resource ": " acs : ots : cn - hangzhou : 123456 : instance /*"
     

• Instance abc and its tables of user 123456 in China East 1 region
" Resource ": [
" acs : ots : cn - hangzhou : 123456 : instance / abc ",
" acs : ots : cn - hangzhou : 123456 : instance / abc / table /*"
]
     

• All instances whose names begin with abc and their tables
" Resource ": " acs : ots :*:*: instance / abc *"
     

• All instances whose names begin with abc and their tables whose names begin 
with xyz (excluding instance resources, and not match acs:ots:*:*:instance/abc*)
" Resource ": " acs : ots :*:*: instance / abc */ table / xyz *"
     

• All instances whose names end with abc and their tables whose names end with 
xyz.
" Resource ": [
" acs : ots :*:*: instance /* abc ",
" acs : ots :*:*: instance /* abc / table /* xyz "
]

Issue: 20190919 145



Tablestore Developer Guide /  10 Authorization management
     

API types
Table Store has two types of APIs
• Management APIs for reading from, and writing to, instances.
• Data APIs for reading from, and writing to, tables and rows.
The following table describes these APIS:
API/Action API Type Description
ListInstance Management Get instance list, called by 

console only
InsertInstance Management Create instance, called by 

console only
GetInstance Management Get instance meta, called 

by console only
DeleteInstance Management Delete instance, called by 

console only
ListTable Data Get table list, called by 

console or SDK
CreateTable Data Create table, called by 

console or SDK
UpdateTable Data Update table meta, called 

by console or SDK
DescribeTable Data Get table meta, called by 

console or SDK
DeleteTable Data Delete table, called by 

console or SDK
GetRow Data Read a record, called by 

SDK only
PutRow Data Insert a record, called by 

SDK only
UpdateRow Data Update a record, called by 

SDK only
DeleteRow Data Delete a record, called by 

SDK only

146 Issue: 20190919



Tablestore Developer Guide /  10 Authorization management

API/Action API Type Description
GetRange Data Readrange, called by SDK 

only
BatchGetRow Data Batch read records, called 

by SDK only
BatchWriteRow Data Batch write records, called

 by SDK only
• Resources accessed by management APIs

Management APIs are generally instance-related operations and can be called
only on the console. The actions and resources definitions of management APIs
determine subsequent use of the console. The prefix acs : ots :[ region ]:

[ user_id ]: is omitted in the following accessed resources, leaving only the
instance and table parts to be described.
API/Action Resource Access
ListInstance instance/*
InsertInstance instance/[instance_name]
GetInstance instance/[instance_name]
DeleteInstance instance/[instance_name]

• Resources accessed by data APIs
Data APIs are genearlly table-related operations and can be called both on the
console and by the SDK. The actions and resources definitions of data APIs
determine subsequent use of the console. The prefix acs : ots :[ region ]:

[ user_id ]: is omitted in the following accessed resources, leaving only the
instance and table parts to be described.
API/Action Resource Access
ListTable instance/[instance_name]/table/*
CreateTable instance/[instance_name]/table/[

table_name]
UpdateTable instance/[instance_name]/table/[

table_name]
DescribeTable instance/[instance_name]/table/[

table_name]
Issue: 20190919 147



Tablestore Developer Guide /  10 Authorization management

API/Action Resource Access
DeleteTable instance/[instance_name]/table/[

table_name]
GetRow instance/[instance_name]/table/[

table_name]
PutRow instance/[instance_name]/table/[

table_name]
UpdateRow instance/[instance_name]/table/[

table_name]
DeleteRow instance/[instance_name]/table/[

table_name]
GetRange instance/[instance_name]/table/[

table_name]
BatchGetRow instance/[instance_name]/table/[

table_name]
BatchWriteRow instance/[instance_name]/table/[

table_name]
• Limits

- In a policy, actions and resources are verified by string matching. When using
the asterisk (*) wildcard, prefix matching and suffix matching are distinguished.
For example, if a resource is defined as acs : ots :*:*: instance /*/,
then acs : ots :*:*: instance / abc  cannot be matched. If a resource
is defined as acs : ots :*:*: instance / abc , then acs : ots :*:*:

instance / abc / table / xyz  cannot be matched.
- To manage instance resources on the Table Store console, you must have

permission to read the acs : ots :[ region ]:[ user_id ]: instance /*

resource to obtain the instance list on the console.
- For Batch APIs (such as BatchGetRow and BatchWriteRow), the backend service

 performs authentication for each table being accessed. Operations can be 
performed only when authentication is successful for all tables. Otherwise, a 
permission error is returned.

Condition
The policy supports multiple authentication conditions that are supported on all APIs
 of Table Store, including access IP address restriction, whether to access through 

148 Issue: 20190919



Tablestore Developer Guide /  10 Authorization management

HTTPS, whether to access through Multi-Factor Authentication (MFA), and access 
time restriction.
• Access IP address restriction

Resource Access Management can restrict the source IP addresses used to access 
Table Store, and filter IP addresses based on the network segment. The following 
are typical application scenarios:
- Multiple IP addresses are restricted. For example, only requests from 10.101.168

.111 and 10.101.169.111 are allowed.
{
" Statement ": [
    {
        " Effect ": " Allow ",
        " Action ": " ots :*",
        " Resource ": " acs : ots :*:*:*",
        " Condition ": {
            " IpAddress ": {
                " acs : SourceIp ": [
                    " 10 . 101 . 168 . 111 ",
                    " 10 . 101 . 169 . 111 "
                ]
            }
        }
    }
],
" Version ": " 1 "
}
       

- A single IP address is restricted. For example, only requests from 10.101.168.111
 or 10.101.169.111/24 are allowed.
{
" Statement ": [
    {
        " Effect ": " Allow ",
        " Action ": " ots :*",
        " Resource ": " acs : ots :*:*:*",
        " Condition ": {
            " IpAddress ": {
                " acs : SourceIp ": [
                    " 10 . 101 . 168 . 111 ",
                    " 10 . 101 . 169 . 111 / 24 "
                ]
            }
        }
    }
],
" Version ": " 1 "
}

Issue: 20190919 149



Tablestore Developer Guide /  10 Authorization management
       

• HTTPS access restriction
Resource Access Management can specify the use of HTTPS for access.
Access by requests only through HTTPS
{
    " Statement ": [
        {
            " Effect ": " Allow ",
            " Action ": " ots :*",
            " Resource ": " acs : ots :*:*:*",
            " Condition ": {
                " Bool ": {
                    " acs : SecureTran sport ": " true "
                }
            }
        }
    ],
    " Version ": " 1 "
}
     

• MFA access restriction
Resource Access Management can specify the use of MFA for access.
Access by requests only through MFA
{
    " Statement ": [
        {
            " Effect ": " Allow ",
            " Action ": " ots :*",
            " Resource ": " acs : ots :*:*:*",
            " Condition ": {
                " Bool ": {
                    " acs : MFAPresent  ": " true "
                }
            }
        }
    ],
    " Version ": " 1 "
}
     

• Access time restriction
Resource Access Management can specify the time to grant access by a request, 
that is, it can determine if access is allowed or rejected by requests only before a 
specified time. For example,
user access is allowed only before 00:00:00 January 1, 2016.
{
    " Statement ": [

150 Issue: 20190919



Tablestore Developer Guide /  10 Authorization management
        {
            " Effect ": " Allow ",
            " Action ": " ots :*",
            " Resource ": " acs : ots :*:*:*",
            " Condition ": {
                " DateLessTh an ": {
                    " acs : CurrentTim e ": " 2016 - 01 - 01T00 :
00 : 00 + 08 : 00 "
                }
            }
        }
    ],
    " Version ": " 1 "
}
     

Typical application scenarios
This section defines specific policies in typical scenarios and offers authorization 
methods.
• Multiple authorization conditions

In this scenario, users accessing the 10.101.168.111/24 network segment can read 
from and write to all instances named online-01 and online-02 (including all tables
 of these instances). A restrictive access policy means access is allowed only before 
0:00:00 January 1, 2016 through HTTPS.
To grant policy permissions to a RAM user, follow these steps:
1. Use the primary account to log on to the RAM console.
2. In the left-side navigation pane, click Policies.
3. In the upper-right corner, click Create Authorization Policy.
4. Select Blank Template.
5. Enter the Authorization Policy Name and copy the following content to Policy

Content.
{
" Statement ": [
    {
        " Effect ": " Allow ",
        " Action ": " ots :*",
        " Resource ": [
            " acs : ots :*:*: instance / online - 01 ",
            " acs : ots :*:*: instance / online - 01 / table /*",
            " acs : ots :*:*: instance / online - 02 ",
            " acs : ots :*:*: instance / online - 02 / table /*"
        ],
        " Condition ": {
            " IpAddress ": {
                " acs : SourceIp ": [
                    " 10 . 101 . 168 . 111 / 24 "
                ]

Issue: 20190919 151

https://ram.console.aliyun.com/


Tablestore Developer Guide /  10 Authorization management
            },
            " DateLessTh an ": {
                " acs : CurrentTim e ": " 2016 - 01 - 01T00 : 00
: 00 + 08 : 00 "

            },
            " Bool ": {
                " acs : SecureTran sport ": " true "
            }
        }
    }
],
" Version ": " 1 "
}
       

6. Click Create Authorization Policy and then click Close.
7. In the left-side navigation pane, click Users.
8. Locate the RAM user to be authorized, and click Authorize.
9. Select the policy created in the preceding steps.
10.Click OK.

• Reject requests
In this scenario, users accessing the IP address 10.101.169.111 are not allowed
to write to all tables of instances in the Beijing region whose names begin with 
online  and product . Operations related to instances are not involved.

To reject requests, first see the preceding steps to create a new policy and grant
policy permissions to the designated RAM user. Then, during policy creation, copy
the following content to Policy Content.
{
    " Statement ": [
        {
            " Effect ": " Deny ",
            " Action ": [
                " ots : Create *",
                " ots : Insert *",
                " ots : Put *",
                " ots : Update *",
                " ots : Delete *",
                " ots : BatchWrite *"
            ],
            " Resource ": [
                " acs : ots : cn - beijing :*: instance / online */
table /*",
                " acs : ots : cn - beijing :*: instance / product */
table /*"
            ],
            " Condition ": {
                " IpAddress ": {
                    " acs : SourceIp ": [
                        " 10 . 101 . 169 . 111 "
                    ]
                }
            }

152 Issue: 20190919



Tablestore Developer Guide /  10 Authorization management
        }
    ],
    " Version ": " 1 "
}

     

Issue: 20190919 153


	Contents
	Legal disclaimer
	Generic conventions
	1 Overview
	2 Limits
	3 Terms
	3.1 Instance
	3.2 Endpoint
	3.3 Read/write throughput
	3.4 Region

	4 Wide column model
	4.1 Introduction
	4.2 Primary keys and attributes
	4.3 Data versions and time to live
	4.4 Naming conventions and data types
	4.5 Auto-increment function of the primary key column
	4.6 Conditional update
	4.7 Atomic counters

	5 Timeline model
	5.1 Introduction
	5.2 Quick start
	5.3 Basic operations
	5.3.1 Initialization
	5.3.2 Meta management
	5.3.3 Timeline management
	5.3.4 Queue management


	6 Search Index
	6.1 Overview
	6.2 Features
	6.3 API operations
	6.3.1 Overview
	6.3.2 CreateSearchIndex
	6.3.3 DescribeSearchIndex
	6.3.4 ListSearchIndex
	6.3.5 DeleteSearchIndex
	6.3.6 Array and Nested field types
	6.3.7 Sort
	6.3.8 Tokenization
	6.3.9 MatchAllQuery
	6.3.10 MatchQuery
	6.3.11 MatchPhraseQuery
	6.3.12 TermQuery
	6.3.13 TermsQuery
	6.3.14 PrefixQuery
	6.3.15 RangeQuery
	6.3.16 WildcardQuery
	6.3.17 BoolQuery
	6.3.18 GeoDistanceQuery
	6.3.19 GeoBoundingBoxQuery
	6.3.20 GeoPolygonQuery
	6.3.21 ExistQuery

	6.4 Limits

	7 Global secondary indexes
	7.1 Overview
	7.2 Introduction
	7.3 Scenarios
	7.4 Java SDK for global secondary indexes
	7.5 APIs
	7.6 Billing rules
	7.7 Appendix

	8 Tunnel service
	8.1 Overview
	8.2 Features
	8.3 Description of the data consumption framework
	8.4 Quick start
	8.5 SDKs
	8.6 Incremental synchronization performance white paper

	9 HBase
	9.1 Table Store HBase Client
	9.2 Table Store HBase Client supported functions
	9.3 Differences between Table Store and HBase
	9.4 Migrate from HBase to Table Store
	9.5 Migrate HBase of an earlier version
	9.6 Hello World

	10 Authorization management
	10.1 RAM and STS
	10.2 Customize permissions


