
阿⾥云
云数据库 Redis 版

最佳实践
⽂档版本：20190305

云数据库 Redis 版 最佳实践 / 法律声明

法律声明
阿⾥云提醒您在阅读或使⽤本⽂档之前仔细阅读、充分理解本法律声明各条款的内容。如果您阅读
或使⽤本⽂档，您的阅读或使⽤⾏为将被视为对本声明全部内容的认可。
1. 您应当通过阿⾥云⽹站或阿⾥云提供的其他授权通道下载、获取本⽂档，且仅能⽤于⾃⾝的合法

合规的业务活动。本⽂档的内容视为阿⾥云的保密信息，您应当严格遵守保密义务；未经阿⾥云
事先书⾯同意，您不得向任何第三⽅披露本⼿册内容或提供给任何第三⽅使⽤。

2. 未经阿⾥云事先书⾯许可，任何单位、公司或个⼈不得擅⾃摘抄、翻译、复制本⽂档内容的部分
或全部，不得以任何⽅式或途径进⾏传播和宣传。

3. 由于产品版本升级、调整或其他原因，本⽂档内容有可能变更。阿⾥云保留在没有任何通知或者
提⽰下对本⽂档的内容进⾏修改的权利，并在阿⾥云授权通道中不时发布更新后的⽤⼾⽂档。您
应当实时关注⽤⼾⽂档的版本变更并通过阿⾥云授权渠道下载、获取最新版的⽤⼾⽂档。

4. 本⽂档仅作为⽤⼾使⽤阿⾥云产品及服务的参考性指引，阿⾥云以产品及服务的”现状“、“有
缺陷”和“当前功能”的状态提供本⽂档。阿⾥云在现有技术的基础上尽最⼤努⼒提供相应的介
绍及操作指引，但阿⾥云在此明确声明对本⽂档内容的准确性、完整性、适⽤性、可靠性等不作
任何明⽰或暗⽰的保证。任何单位、公司或个⼈因为下载、使⽤或信赖本⽂档而发⽣任何差错或
经济损失的，阿⾥云不承担任何法律责任。在任何情况下，阿⾥云均不对任何间接性、后果性、
惩戒性、偶然性、特殊性或刑罚性的损害，包括⽤⼾使⽤或信赖本⽂档而遭受的利润损失，承担
责任（即使阿⾥云已被告知该等损失的可能性）。

5. 阿⾥云⽹站上所有内容，包括但不限于著作、产品、图⽚、档案、资讯、资料、⽹站架构、⽹
站画⾯的安排、⽹⻚设计，均由阿⾥云和/或其关联公司依法拥有其知识产权，包括但不限于商
标权、专利权、著作权、商业秘密等。⾮经阿⾥云和/或其关联公司书⾯同意，任何⼈不得擅⾃
使⽤、修改、复制、公开传播、改变、散布、发⾏或公开发表阿⾥云⽹站、产品程序或内容。
此外，未经阿⾥云事先书⾯同意，任何⼈不得为了任何营销、⼴告、促销或其他⽬的使⽤、公
布或复制阿⾥云的名称（包括但不限于单独为或以组合形式包含”阿⾥云”、Aliyun”、“万
⽹”等阿⾥云和/或其关联公司品牌，上述品牌的附属标志及图案或任何类似公司名称、商号、
商标、产品或服务名称、域名、图案标⽰、标志、标识或通过特定描述使第三⽅能够识别阿⾥云
和/或其关联公司）。

6. 如若发现本⽂档存在任何错误，请与阿⾥云取得直接联系。

⽂档版本：20190305 I

云数据库 Redis 版 最佳实践 / 通⽤约定

通⽤约定
格式 说明 样例

该类警⽰信息将导致系统重⼤变更甚⾄
故障，或者导致⼈⾝伤害等结果。 禁⽌:

重置操作将丢失⽤⼾配置数据。
该类警⽰信息可能导致系统重⼤变更甚
⾄故障，或者导致⼈⾝伤害等结果。 警告:

重启操作将导致业务中断，恢复业务所需
时间约10分钟。

⽤于补充说明、最佳实践、窍⻔等，不
是⽤⼾必须了解的内容。 说明:

您也可以通过按Ctrl + A选中全部⽂件。
> 多级菜单递进。 设置 > ⽹络 > 设置⽹络类型
粗体 表⽰按键、菜单、⻚⾯名称等UI元素。 单击 确定。
courier

字体
命令。 执⾏ cd /d C:/windows 命令，进

⼊Windows系统⽂件夹。
斜斜 表⽰参数、变量。 bae log list --instanceid

 Instance_ID
[]或者[a|b
]

表⽰可选项，⾄多选择⼀个。 ipconfig [-all|-t]

{}或者{a|b
}

表⽰必选项，⾄多选择⼀个。 swich {stand | slave}

⽂档版本：20190305 I

云数据库 Redis 版 最佳实践 / ⽬录

⽬录
法律声明..I
通⽤约定..I
1 游戏玩家积分排⾏榜..1
2 ⽹上商城商品相关性分析..4
3 消息发布与订阅... 7
4 管道传输...11
5 事务处理...15
6 通过数据集成将数据导⼊ Redis...18
7 热点Key问题的发现与解决... 22
8 解密 Redis 助⼒双⼗⼀背后的技术...28
9 Redis读写分离技术解析.. 31
10 JedisPool 资源池优化... 35
11 集群实例特定⼦节点中热点Key的分析⽅法.................................40
12 使⽤ Redis 搭建视频直播间信息系统.. 48
13 解析Redis持久化的AOF⽂件.. 50
14 Redis 4.0 热点Key查询⽅法...52

II ⽂档版本：20190305

云数据库 Redis 版 最佳实践 / 1 游戏玩家积分排⾏榜

1 游戏玩家积分排⾏榜
场景介绍

云数据库 Redis 版在功能上与 Redis 基本⼀致，因此很容易⽤它来实现⼀个在线游戏中的积分排
⾏榜功能。
代码⽰例
import java.util.ArrayList;
import java.util.List;
import java.util.Set;
import java.util.UUID;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.Tuple;
public class GameRankSample {
 static int TOTAL_SIZE = 20;
 public static void main(String[] args)
 {
 //连接信息，从控制台可以获得
 String host = "xxxxxxxxxx.m.cnhz1.kvstore.aliyuncs.com";
 int port = 6379;
 Jedis jedis = new Jedis(host, port);
 try {
 //实例密码
 String authString = jedis.auth("password");//password
 if (!authString.equals("OK"))
 {
 System.err.println("AUTH Failed: " + authString);
 return;
 }
 //Key(键)
 String key = "游戏名：奔跑吧，阿⾥！";
 //清除可能的已有数据
 jedis.del(key);
 //模拟⽣成若⼲个游戏玩家
 List<String> playerList = new ArrayList<String>();
 for (int i = 0; i < TOTAL_SIZE; ++i)
 {
 //随机⽣成每个玩家的ID
 playerList.add(UUID.randomUUID().toString());
 }
 System.out.println("输⼊所有玩家 ");
 //记录每个玩家的得分
 for (int i = 0; i < playerList.size(); i++)
 {
 //随机⽣成数字，模拟玩家的游戏得分
 int score = (int)(Math.random()*5000);
 String member = playerList.get(i);
 System.out.println("玩家ID：" + member + "， 玩家得分: "
 + score);
 //将玩家的ID和得分，都加到对应key的SortedSet中去
 jedis.zadd(key, score, member);
 }
 //输出打印全部玩家排⾏榜
 System.out.println();
 System.out.println(" "+key);

⽂档版本：20190305 1

云数据库 Redis 版 最佳实践 / 1 游戏玩家积分排⾏榜
 System.out.println(" 全部玩家排⾏榜
 ");
 //从对应key的SortedSet中获取已经排好序的玩家列表
 Set<Tuple> scoreList = jedis.zrevrangeWithScores(key, 0, -
1);
 for (Tuple item : scoreList) {
 System.out.println("玩家ID："+item.getElement()+"， 玩家得分:"+Double.valueOf(item.getScore()).intValue());
 }
 //输出打印Top5玩家排⾏榜
 System.out.println();
 System.out.println(" "+key);
 System.out.println(" Top 玩家");
 scoreList = jedis.zrevrangeWithScores(key, 0, 4);
 for (Tuple item : scoreList) {
 System.out.println("玩家ID："+item.getElement()+"， 玩家得分:"+Double.valueOf(item.getScore()).intValue());
 }
 //输出打印特定玩家列表
 System.out.println();
 System.out.println(" "+key);
 System.out.println(" 积分在1000⾄2000的玩家");
 //从对应key的SortedSet中获取已经积分在1000⾄2000的玩家列表
 scoreList = jedis.zrangeByScoreWithScores(key, 1000, 2000
);
 for (Tuple item : scoreList) {
 System.out.println("玩家ID："+item.getElement()+"， 玩家得分:"+Double.valueOf(item.getScore()).intValue());
 }
 } catch (Exception e) {
 e.printStackTrace();
 }finally{
 jedis.quit();
 jedis.close();
 }
 }
}

运⾏结果
在输⼊了正确的云数据库 Redis 版实例访问地址和密码之后，运⾏以上 Java 程序，输出结果如
下：

输⼊所有玩家 玩家ID：9193e26f-6a71-4c76-8666-eaf8ee97ac86， 玩家得分: 3860玩家ID：db03520b-75a3-48e5-850a-071722ff7afb， 玩家得分: 4853玩家ID：d302d24d-d380-4e15-a4d6-84f71313f27a， 玩家得分: 2931玩家ID：bee46f9d-4b05-425e-8451-8aa6d48858e6， 玩家得分: 1796玩家ID：ec24fb9e-366e-4b89-a0d5-0be151a8cad0， 玩家得分: 2263玩家ID：e11ecc2c-cd51-4339-8412-c711142ca7aa， 玩家得分: 1848玩家ID：4c396f67-da7c-4b99-a783-25919d52d756， 玩家得分: 958玩家ID：a6299dd2-4f38-4528-bb5a-aa2d48a9f94a， 玩家得分: 2428玩家ID：2e4ec631-1e4e-4ef0-914f-7bf1745f7d65， 玩家得分: 4478玩家ID：24235a85-85b9-476e-8b96-39f294f57aa7， 玩家得分: 1655玩家ID：e3e8e1fa-6aac-4a0c-af80-4c4a1e126cd1， 玩家得分: 4064玩家ID：99bc5b4f-e32a-4295-bc3a-0324887bb77e， 玩家得分: 4852玩家ID：19e2aa6b-a2d8-4e56-bdf7-8b59f64bd8e0， 玩家得分: 3394玩家ID：cb62bb24-1318-4af2-9d9b-fbff7280dbec， 玩家得分: 3405玩家ID：ec0f06da-91ee-447b-b935-7ca935dc7968， 玩家得分: 4391玩家ID：2c814a6f-3706-4280-9085-5fe5fd56b71c， 玩家得分: 2510玩家ID：9ee2ed6d-08b8-4e7f-b52c-9adfe1e32dda， 玩家得分: 63玩家ID：0293b43a-1554-4157-a95b-b78de9edf6dd， 玩家得分: 1008

2 ⽂档版本：20190305

云数据库 Redis 版 最佳实践 / 1 游戏玩家积分排⾏榜

玩家ID：674bbdd1-2023-46ae-bbe6-dfcd8e372430， 玩家得分: 2265玩家ID：34574e3e-9cc5-43ed-ba15-9f5405312692， 玩家得分: 3734
 游戏名：奔跑吧，阿⾥！
 全部玩家排⾏榜 玩家ID：db03520b-75a3-48e5-850a-071722ff7afb， 玩家得分:4853玩家ID：99bc5b4f-e32a-4295-bc3a-0324887bb77e， 玩家得分:4852玩家ID：2e4ec631-1e4e-4ef0-914f-7bf1745f7d65， 玩家得分:4478玩家ID：ec0f06da-91ee-447b-b935-7ca935dc7968， 玩家得分:4391玩家ID：e3e8e1fa-6aac-4a0c-af80-4c4a1e126cd1， 玩家得分:4064玩家ID：9193e26f-6a71-4c76-8666-eaf8ee97ac86， 玩家得分:3860玩家ID：34574e3e-9cc5-43ed-ba15-9f5405312692， 玩家得分:3734玩家ID：cb62bb24-1318-4af2-9d9b-fbff7280dbec， 玩家得分:3405玩家ID：19e2aa6b-a2d8-4e56-bdf7-8b59f64bd8e0， 玩家得分:3394玩家ID：d302d24d-d380-4e15-a4d6-84f71313f27a， 玩家得分:2931玩家ID：2c814a6f-3706-4280-9085-5fe5fd56b71c， 玩家得分:2510玩家ID：a6299dd2-4f38-4528-bb5a-aa2d48a9f94a， 玩家得分:2428玩家ID：674bbdd1-2023-46ae-bbe6-dfcd8e372430， 玩家得分:2265玩家ID：ec24fb9e-366e-4b89-a0d5-0be151a8cad0， 玩家得分:2263玩家ID：e11ecc2c-cd51-4339-8412-c711142ca7aa， 玩家得分:1848玩家ID：bee46f9d-4b05-425e-8451-8aa6d48858e6， 玩家得分:1796玩家ID：24235a85-85b9-476e-8b96-39f294f57aa7， 玩家得分:1655玩家ID：0293b43a-1554-4157-a95b-b78de9edf6dd， 玩家得分:1008玩家ID：4c396f67-da7c-4b99-a783-25919d52d756， 玩家得分:958玩家ID：9ee2ed6d-08b8-4e7f-b52c-9adfe1e32dda， 玩家得分:63
 游戏名：奔跑吧，阿⾥！
 Top 玩家 玩家ID：db03520b-75a3-48e5-850a-071722ff7afb， 玩家得分:4853玩家ID：99bc5b4f-e32a-4295-bc3a-0324887bb77e， 玩家得分:4852玩家ID：2e4ec631-1e4e-4ef0-914f-7bf1745f7d65， 玩家得分:4478玩家ID：ec0f06da-91ee-447b-b935-7ca935dc7968， 玩家得分:4391玩家ID：e3e8e1fa-6aac-4a0c-af80-4c4a1e126cd1， 玩家得分:4064
 游戏名：奔跑吧，阿⾥！
 积分在1000⾄2000的玩家 玩家ID：0293b43a-1554-4157-a95b-b78de9edf6dd， 玩家得分:1008玩家ID：24235a85-85b9-476e-8b96-39f294f57aa7， 玩家得分:1655玩家ID：bee46f9d-4b05-425e-8451-8aa6d48858e6， 玩家得分:1796玩家ID：e11ecc2c-cd51-4339-8412-c711142ca7aa， 玩家得分:1848

⽂档版本：20190305 3

云数据库 Redis 版 最佳实践 / 2 ⽹上商城商品相关性分析

2 ⽹上商城商品相关性分析
场景介绍

云数据库 Redis 版在功能上与 Redis 基本⼀致，因此很容易利⽤它来实现⼀个⽹上商城的商品相
关性分析程序。
商品的相关性就是某个产品与其他另外某商品同时出现在购物⻋中的情况。这种数据分析对于电商
⾏业是很重要的，可以⽤来分析⽤⼾购买⾏为。例如：
• 在某⼀商品的 detail ⻚⾯，推荐给⽤⼾与该商品相关的其他商品；
• 在添加购物⻋成功⻚⾯，当⽤⼾把⼀个商品添加到购物⻋，推荐给⽤⼾与之相关的其他商品；
• 在货架上将相关性⽐较⾼的⼏个商品摆放在⼀起。
利⽤云数据库 Redis 版的有序集合，为每种商品构建⼀个有序集合，集合的成员为和该商品同时
出现在购物⻋中的商品，成员的 score 为同时出现的次数。每次 A 和 B 商品同时出现在购物⻋中
时，分别更新云数据库 Redis 版中 A 和 B 对应的有序集合。
代码⽰例
package shop.kvstore.aliyun.com;
import java.util.Set;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.Tuple;
 public class AliyunShoppingMall {
 public static void main(String[] args)
 {
 //ApsaraDB for Redis的连接信息，从控制台可以获得
 String host = "xxxxxxxx.m.cnhza.kvstore.aliyuncs.com";
 int port = 6379;
 Jedis jedis = new Jedis(host, port);
 try {
 //ApsaraDB for Redis的实例密码
 String authString = jedis.auth("password");//password
 if (!authString.equals("OK"))
 {
 System.err.println("AUTH Failed: " + authString);
 return;
 }
 //产品列表
 String key0="阿⾥云:产品:啤酒";
 String key1="阿⾥云:产品:巧克⼒";
 String key2="阿⾥云:产品:可乐";
 String key3="阿⾥云:产品:口⾹糖";
 String key4="阿⾥云:产品:⽜⾁⼲";
 String key5="阿⾥云:产品:鸡翅";
 final String[] aliyunProducts=new String[]{key0,key1,
key2,key3,key4,key5};
 //初始化，清除可能的已有旧数据
 for (int i = 0; i < aliyunProducts.length; i++) {
 jedis.del(aliyunProducts[i]);
 }
 //模拟⽤⼾购物

4 ⽂档版本：20190305

云数据库 Redis 版 最佳实践 / 2 ⽹上商城商品相关性分析
 for (int i = 0; i < 5; i++) {//模拟多⼈次的⽤⼾购买⾏为
 customersShopping(aliyunProducts,i,jedis);
 }
 System.out.println();
 //利⽤ApsaraDB for Redis来输出各个商品间的关联关系
 for (int i = 0; i < aliyunProducts.length; i++) {
 System.out.println(">>>>>>>>>>与"+aliyunProducts[i
]+"⼀起被购买的产品有<<<<<<<<<<<<<<<");
 Set<Tuple> relatedList = jedis.zrevrangeWithScores
(aliyunProducts[i], 0, -1);
 for (Tuple item : relatedList) {
 System.out.println("商品名称："+item.getElement()+"， 共同购买次数:"+Double.valueOf(item.getScore()).intValue());
 }
 System.out.println();
 }
 } catch (Exception e) {
 e.printStackTrace();
 }finally{
 jedis.quit();
 jedis.close();
 }
 }
 private static void customersShopping(String[] products, int i
, Jedis jedis) {
 //简单模拟3种购买⾏为，随机选取作为⽤⼾的购买选择
 int bought=(int)(Math.random()*3);
 if(bought==1){
 //模拟业务逻辑：⽤⼾购买了如下产品
 System.out.println("⽤⼾"+i+"购买了"+products[0]+","+
products[2]+","+products[1]);
 //将产品之间的关联情况记录到ApsaraDB for Redis的SortSet之中
 jedis.zincrby(products[0], 1, products[1]);
 jedis.zincrby(products[0], 1, products[2]);
 jedis.zincrby(products[1], 1, products[0]);
 jedis.zincrby(products[1], 1, products[2]);
 jedis.zincrby(products[2], 1, products[0]);
 jedis.zincrby(products[2], 1, products[1]);
 }else if(bought==2){
 //模拟业务逻辑：⽤⼾购买了如下产品
 System.out.println("⽤⼾"+i+"购买了"+products[4]+","+
products[2]+","+products[3]);
 //将产品之间的关联情况记录到ApsaraDB for Redis的SortSet之中
 jedis.zincrby(products[4], 1, products[2]);
 jedis.zincrby(products[4], 1, products[3]);
 jedis.zincrby(products[3], 1, products[4]);
 jedis.zincrby(products[3], 1, products[2]);
 jedis.zincrby(products[2], 1, products[4]);
 jedis.zincrby(products[2], 1, products[3]);
 }else if(bought==0){
 //模拟业务逻辑：⽤⼾购买了如下产品
 System.out.println("⽤⼾"+i+"购买了"+products[1]+","+
products[5]);
 //将产品之间的关联情况记录到ApsaraDB for Redis的SortSet之中
 jedis.zincrby(products[5], 1, products[1]);
 jedis.zincrby(products[1], 1, products[5]);
 }
 }

⽂档版本：20190305 5

云数据库 Redis 版 最佳实践 / 2 ⽹上商城商品相关性分析

 }

运⾏结果
在输⼊了正确的云数据库 Redis 版实例访问地址和密码之后，运⾏以上 Java 程序，输出结果如
下：

⽤⼾0购买了阿⾥云:产品:巧克⼒,阿⾥云:产品:鸡翅⽤⼾1购买了阿⾥云:产品:⽜⾁⼲,阿⾥云:产品:可乐,阿⾥云:产品:口⾹糖⽤⼾2购买了阿⾥云:产品:啤酒,阿⾥云:产品:可乐,阿⾥云:产品:巧克⼒⽤⼾3购买了阿⾥云:产品:⽜⾁⼲,阿⾥云:产品:可乐,阿⾥云:产品:口⾹糖⽤⼾4购买了阿⾥云:产品:巧克⼒,阿⾥云:产品:鸡翅
>>>>>>>>>>与阿⾥云:产品:啤酒⼀起被购买的产品有<<<<<<<<<<<<<<<商品名称：阿⾥云:产品:巧克⼒， 共同购买次数:1商品名称：阿⾥云:产品:可乐， 共同购买次数:1
>>>>>>>>>>与阿⾥云:产品:巧克⼒⼀起被购买的产品有<<<<<<<<<<<<<<<商品名称：阿⾥云:产品:鸡翅， 共同购买次数:2商品名称：阿⾥云:产品:啤酒， 共同购买次数:1商品名称：阿⾥云:产品:可乐， 共同购买次数:1
>>>>>>>>>>与阿⾥云:产品:可乐⼀起被购买的产品有<<<<<<<<<<<<<<<商品名称：阿⾥云:产品:⽜⾁⼲， 共同购买次数:2商品名称：阿⾥云:产品:口⾹糖， 共同购买次数:2商品名称：阿⾥云:产品:巧克⼒， 共同购买次数:1商品名称：阿⾥云:产品:啤酒， 共同购买次数:1
>>>>>>>>>>与阿⾥云:产品:口⾹糖⼀起被购买的产品有<<<<<<<<<<<<<<<商品名称：阿⾥云:产品:⽜⾁⼲， 共同购买次数:2商品名称：阿⾥云:产品:可乐， 共同购买次数:2
>>>>>>>>>>与阿⾥云:产品:⽜⾁⼲⼀起被购买的产品有<<<<<<<<<<<<<<<商品名称：阿⾥云:产品:可乐， 共同购买次数:2商品名称：阿⾥云:产品:口⾹糖， 共同购买次数:2
>>>>>>>>>>与阿⾥云:产品:鸡翅⼀起被购买的产品有<<<<<<<<<<<<<<<商品名称：阿⾥云:产品:巧克⼒， 共同购买次数:2

6 ⽂档版本：20190305

云数据库 Redis 版 最佳实践 / 3 消息发布与订阅

3 消息发布与订阅
场景介绍

云数据库 Redis 版也提供了与 Redis 相同的消息发布（pub）与订阅（sub）功能。即⼀个
client 发布消息，其他多个 client 订阅消息。
需要注意的是，云数据库 Redis 版发布的消息是“⾮持久”的，即消息发布者只负责发送消息，而
不管消息是否有接收⽅，也不会保存之前发送的消息，即发布的消息“即发即失”；消息订阅者也
只能得到订阅之后的消息，频道（channel）中此前的消息将⽆从获得。
此外，消息发布者（即 publish 客⼾端）⽆需独占与服务器端的连接，您可以在发布消息的
同时，使⽤同⼀个客⼾端连接进⾏其他操作（例如 List 操作等）。但是，消息订阅者（即
subscribe 客⼾端）需要独占与服务器端的连接，即进⾏ subscribe 期间，该客⼾端⽆法执⾏其
他操作，而是以阻塞的⽅式等待频道（channel）中的消息；因此消息订阅者需要使⽤单独的服务
器连接，或者需要在单独的线程中使⽤（参⻅如下⽰例）。

代码⽰例
消息发布者 (即 publish client)
package message.kvstore.aliyun.com;
import redis.clients.jedis.Jedis;
public class KVStorePubClient {
 private Jedis jedis;
 public KVStorePubClient(String host,int port, String password){
 jedis = new Jedis(host,port);
 //KVStore的实例密码
 String authString = jedis.auth(password);
 if (!authString.equals("OK"))
 {
 System.err.println("AUTH Failed: " + authString);
 return;
 }
 }
 public void pub(String channel,String message){
 System.out.println(" >>> 发布(PUBLISH) > Channel:"+channel+"
 > 发送出的Message:"+message);
 jedis.publish(channel, message);
 }
 public void close(String channel){
 System.out.println(" >>> 发布(PUBLISH)结束 > Channel:"+channel
+" > Message:quit");
 //消息发布者结束发送，即发送⼀个“quit”消息；
 jedis.publish(channel, "quit");
 }
}

消息订阅者 (即 subscribe client)
package message.kvstore.aliyun.com;

⽂档版本：20190305 7

云数据库 Redis 版 最佳实践 / 3 消息发布与订阅
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPubSub;
public class KVStoreSubClient extends Thread{
 private Jedis jedis;
 private String channel;
 private JedisPubSub listener;
 public KVStoreSubClient(String host,int port, String password){
 jedis = new Jedis(host,port);
 //ApsaraDB for Redis的实例密码
 String authString = jedis.auth(password);//password
 if (!authString.equals("OK"))
 {
 System.err.println("AUTH Failed: " + authString);
 return;
 }
 }
 public void setChannelAndListener(JedisPubSub listener,String
channel){
 this.listener=listener;
 this.channel=channel;
 }
 private void subscribe(){
 if(listener==null || channel==null){
 System.err.println("Error:SubClient> listener or channel
is null");
 }
 System.out.println(" >>> 订阅(SUBSCRIBE) > Channel:"+channel);
 System.out.println();
 //接收者在侦听订阅的消息时，将会阻塞进程，直⾄接收到quit消息（被动⽅式），或主动取消订阅
 jedis.subscribe(listener, channel);
 }
 public void unsubscribe(String channel){
 System.out.println(" >>> 取消订阅(UNSUBSCRIBE) > Channel:"+
channel);
 System.out.println();
 listener.unsubscribe(channel);
 }
 @Override
 public void run() {
 try{
 System.out.println();
 System.out.println("----------订阅消息SUBSCRIBE 开始-------");
 subscribe();
 System.out.println("----------订阅消息SUBSCRIBE 结束-------");
 System.out.println();
 }catch(Exception e){
 e.printStackTrace();
 }
 }
}

消息监听者
package message.kvstore.aliyun.com;
import redis.clients.jedis.JedisPubSub;
public class KVStoreMessageListener extends JedisPubSub{
 @Override
 public void onMessage(String channel, String message) {
 System.out.println(" <<< 订阅(SUBSCRIBE)< Channel:" + channel
 + " >接收到的Message:" + message);

8 ⽂档版本：20190305

云数据库 Redis 版 最佳实践 / 3 消息发布与订阅
 System.out.println();
 //当接收到的message为quit时，取消订阅(被动⽅式)
 if(message.equalsIgnoreCase("quit")){
 this.unsubscribe(channel);
 }
 }
 @Override
 public void onPMessage(String pattern, String channel, String
message) {
 // TODO Auto-generated method stub
 }
 @Override
 public void onSubscribe(String channel, int subscribedChannels) {
 // TODO Auto-generated method stub
 }
 @Override
 public void onUnsubscribe(String channel, int subscribedChannels)
 {
 // TODO Auto-generated method stub
 }
 @Override
 public void onPUnsubscribe(String pattern, int subscribedChannels)
 {
 // TODO Auto-generated method stub
 }
 @Override
 public void onPSubscribe(String pattern, int subscribedChannels) {
 // TODO Auto-generated method stub
 }
}

⽰例主程序
package message.kvstore.aliyun.com;
import java.util.UUID;
import redis.clients.jedis.JedisPubSub;
public class KVStorePubSubTest {
 //ApsaraDB for Redis的连接信息，从控制台可以获得
 static final String host = "xxxxxxxxxx.m.cnhza.kvstore.aliyuncs.
com";
 static final int port = 6379;
 static final String password="password";//password
 public static void main(String[] args) throws Exception{
 KVStorePubClient pubClient = new KVStorePubClient(host,
port,password);
 final String channel = "KVStore频道-A";
 //消息发送者开始发消息，此时还⽆⼈订阅，所以此消息不会被接收
 pubClient.pub(channel, "Aliyun消息1：（此时还⽆⼈订阅，所以此消息不会被接收）");
 //消息接收者
 KVStoreSubClient subClient = new KVStoreSubClient(host,
port,password);
 JedisPubSub listener = new KVStoreMessageListener();
 subClient.setChannelAndListener(listener, channel);
 //消息接收者开始订阅
 subClient.start();
 //消息发送者继续发消息
 for (int i = 0; i < 5; i++) {
 String message=UUID.randomUUID().toString();
 pubClient.pub(channel, message);
 Thread.sleep(1000);
 }
 //消息接收者主动取消订阅

⽂档版本：20190305 9

云数据库 Redis 版 最佳实践 / 3 消息发布与订阅

 subClient.unsubscribe(channel);
 Thread.sleep(1000);
 pubClient.pub(channel, "Aliyun消息2：（此时订阅取消，所以此消息不会被接收）");
 //消息发布者结束发送，即发送⼀个“quit”消息；
 //此时如果有其他的消息接收者，那么在listener.onMessage()中接收到“quit”时，将执⾏“unsubscribe”操作。
 pubClient.close(channel);
 }
 }

运⾏结果
在输⼊了正确的云数据库 Redis 版实例访问地址和密码之后，运⾏以上 Java 程序，输出结果如
下。
 >>> 发布(PUBLISH) > Channel:KVStore频道-A > 发送出的Message:Aliyun消息1：（此时还⽆⼈订阅，所以此消息不会被接收）
----------订阅消息SUBSCRIBE 开始-------
 >>> 订阅(SUBSCRIBE) > Channel:KVStore频道-A
 >>> 发布(PUBLISH) > Channel:KVStore频道-A > 发送出的Message:0f9c2cee-
77c7-4498-89a0-1dc5a2f65889
 <<< 订阅(SUBSCRIBE)< Channel:KVStore频道-A >接收到的Message:0f9c2cee-
77c7-4498-89a0-1dc5a2f65889
 >>> 发布(PUBLISH) > Channel:KVStore频道-A > 发送出的Message:ed5924a9-
016b-469b-8203-7db63d06f812
 <<< 订阅(SUBSCRIBE)< Channel:KVStore频道-A >接收到的Message:ed5924a9-
016b-469b-8203-7db63d06f812
 >>> 发布(PUBLISH) > Channel:KVStore频道-A > 发送出的Message:f1f84e0f-
8f35-4362-9567-25716b1531cd
 <<< 订阅(SUBSCRIBE)< Channel:KVStore频道-A >接收到的Message:f1f84e0f-
8f35-4362-9567-25716b1531cd
 >>> 发布(PUBLISH) > Channel:KVStore频道-A > 发送出的Message:746bde54-
af8f-44d7-8a49-37d1a245d21b
 <<< 订阅(SUBSCRIBE)< Channel:KVStore频道-A >接收到的Message:746bde54-
af8f-44d7-8a49-37d1a245d21b
 >>> 发布(PUBLISH) > Channel:KVStore频道-A > 发送出的Message:8ac3b2b8-
9906-4f61-8cad-84fc1f15a3ef
 <<< 订阅(SUBSCRIBE)< Channel:KVStore频道-A >接收到的Message:8ac3b2b8-
9906-4f61-8cad-84fc1f15a3ef
 >>> 取消订阅(UNSUBSCRIBE) > Channel:KVStore频道-A
----------订阅消息SUBSCRIBE 结束-------
 >>> 发布(PUBLISH) > Channel:KVStore频道-A > 发送出的Message:Aliyun消息2：（此时订阅取消，所以此消息不会被接收）
 >>> 发布(PUBLISH)结束 > Channel:KVStore频道-A > Message:quit

以上⽰例中仅演⽰了⼀个发布者与⼀个订阅者的情况，实际上发布者与订阅者都可以为多个，发送
消息的频道（channel）也可以是多个，对以上代码稍作修改即可。

10 ⽂档版本：20190305

云数据库 Redis 版 最佳实践 / 4 管道传输

4 管道传输
场景介绍

云数据库 Redis 版提供了与 Redis 相同的管道传输（pipeline）机制。管道（pipeline）将客⼾
端 client 与服务器端的交互明确划分为单向的发送请求（Send Request）和接收响应（Receive
 Response）：⽤⼾可以将多个操作连续发给服务器，但在此期间服务器端并不对每个操作命令发
送响应数据；全部请求发送完毕后⽤⼾关闭请求，开始接收响应获取每个操作命令的响应结果。
管道（pipeline）在某些场景下⾮常有⽤，⽐如有多个操作命令需要被迅速提交⾄服务器端，但⽤
⼾并不依赖每个操作返回的响应结果，对结果响应也⽆需⽴即获得，那么管道就可以⽤来作为优化
性能的批处理⼯具。性能提升的原因主要是减少了 TCP 连接中交互往返的开销。
不过在程序中使⽤管道请注意，使⽤ pipeline 时客⼾端将独占与服务器端的连接，此期间将不
能进⾏其他“⾮管道”类型操作，直⾄ pipeline 被关闭；如果要同时执⾏其他操作，可以为
pipeline 操作单独建⽴⼀个连接，将其与常规操作分离开来。

代码⽰例1
性能对⽐
package pipeline.kvstore.aliyun.com;
import java.util.Date;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.Pipeline;
public class RedisPipelinePerformanceTest {
 static final String host = "xxxxxx.m.cnhza.kvstore.aliyuncs.
com";
 static final int port = 6379;
 static final String password = "password";
 public static void main(String[] args) {
 Jedis jedis = new Jedis(host, port);
 //ApsaraDB for Redis的实例密码
 String authString = jedis.auth(password);// password
 if (!authString.equals("OK")) {
 System.err.println("AUTH Failed: " + authString);
 jedis.close();
 return;
 }
 //连续执⾏多次命令操作
 final int COUNT=5000;
 String key = "KVStore-Tanghan";
 // 1 ---不使⽤pipeline操作---
 jedis.del(key);//初始化key
 Date ts1 = new Date();
 for (int i = 0; i < COUNT; i++) {
 //发送⼀个请求，并接收⼀个响应（Send Request and
Receive Response）
 jedis.incr(key);
 }
 Date ts2 = new Date();

⽂档版本：20190305 11

云数据库 Redis 版 最佳实践 / 4 管道传输
 System.out.println("不⽤Pipeline > value为:"+jedis.get(
key)+" > 操作⽤时：" + (ts2.getTime() - ts1.getTime())+ "ms");
 //2 ----对⽐使⽤pipeline操作---
 jedis.del(key);//初始化key
 Pipeline p1 = jedis.pipelined();
 Date ts3 = new Date();
 for (int i = 0; i < COUNT; i++) {
 //发出请求 Send Request
 p1.incr(key);
 }
 //接收响应 Receive Response
 p1.sync();
 Date ts4 = new Date();
 System.out.println("使⽤Pipeline > value为:"+jedis.get(
key)+" > 操作⽤时：" + (ts4.getTime() - ts3.getTime())+ "ms");
 jedis.close();
 }
 }

运⾏结果1
在输⼊了正确的云数据库 Redis 版实例访问地址和密码之后，运⾏以上 Java 程序，输出结果如
下。从中可以看出使⽤ pipeline 的性能要快的多。

不⽤Pipeline > value为:5000 > 操作⽤时：5844ms使⽤Pipeline > value为:5000 > 操作⽤时：78ms

代码⽰例2
在 Jedis 中使⽤管道（pipeline）时，对于响应数据（response）的处理有两种⽅式，请参考以
下代码⽰例。
package pipeline.kvstore.aliyun.com;
import java.util.List;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.Pipeline;
import redis.clients.jedis.Response;
 public class PipelineClientTest {
 static final String host = "xxxxxxxx.m.cnhza.kvstore.aliyuncs.
com";
 static final int port = 6379;
 static final String password = "password";
 public static void main(String[] args) {
 Jedis jedis = new Jedis(host, port);
 // ApsaraDB for Redis的实例密码
 String authString = jedis.auth(password);// password
 if (!authString.equals("OK")) {
 System.err.println("AUTH Failed: " + authString);
 jedis.close();
 return;
 }
 String key = "KVStore-Test1";
 jedis.del(key);//初始化
 // -------- ⽅法1
 Pipeline p1 = jedis.pipelined();
 System.out.println("-----⽅法1-----");
 for (int i = 0; i < 5; i++) {
 p1.incr(key);
 System.out.println("Pipeline发送请求");

12 ⽂档版本：20190305

云数据库 Redis 版 最佳实践 / 4 管道传输
 }
 // 发送请求完成，开始接收响应
 System.out.println("发送请求完成，开始接收响应");
 List<Object> responses = p1.syncAndReturnAll();
 if (responses == null || responses.isEmpty()) {
 jedis.close();
 throw new RuntimeException("Pipeline error: 没有接收到响应");
 }
 for (Object resp : responses) {
 System.out.println("Pipeline接收响应Response: " +
resp.toString());
 }
 System.out.println();
 //-------- ⽅法2
 System.out.println("-----⽅法2-----");
 jedis.del(key);//初始化
 Pipeline p2 = jedis.pipelined();
 //需要先声明Response
 Response<Long> r1 = p2.incr(key);
 System.out.println("Pipeline发送请求");
 Response<Long> r2 = p2.incr(key);
 System.out.println("Pipeline发送请求");
 Response<Long> r3 = p2.incr(key);
 System.out.println("Pipeline发送请求");
 Response<Long> r4 = p2.incr(key);
 System.out.println("Pipeline发送请求");
 Response<Long> r5 = p2.incr(key);
 System.out.println("Pipeline发送请求");
 try{
 r1.get(); //此时还未开始接收响应，所以此操作会出错
 }catch(Exception e){
 System.out.println(" <<< Pipeline error：还未开始接收响应 >>> ");
 }
 // 发送请求完成，开始接收响应
 System.out.println("发送请求完成，开始接收响应");
 p2.sync();
 System.out.println("Pipeline接收响应Response: " + r1.
get());
 System.out.println("Pipeline接收响应Response: " + r2.
get());
 System.out.println("Pipeline接收响应Response: " + r3.
get());
 System.out.println("Pipeline接收响应Response: " + r4.
get());
 System.out.println("Pipeline接收响应Response: " + r5.
get());
 jedis.close();
 }
 }

运⾏结果2
在输⼊了正确的云数据库 Redis 版实例访问地址和密码之后，运⾏以上 Java 程序，输出结果如下:
-----⽅法1-----
Pipeline发送请求
Pipeline发送请求
Pipeline发送请求
Pipeline发送请求
Pipeline发送请求

⽂档版本：20190305 13

云数据库 Redis 版 最佳实践 / 4 管道传输

发送请求完成，开始接收响应
Pipeline接收响应Response: 1
Pipeline接收响应Response: 2
Pipeline接收响应Response: 3
Pipeline接收响应Response: 4
Pipeline接收响应Response: 5
-----⽅法2-----
Pipeline发送请求
Pipeline发送请求
Pipeline发送请求
Pipeline发送请求
Pipeline发送请求
 <<< Pipeline error：还未开始接收响应 >>> 发送请求完成，开始接收响应
Pipeline接收响应Response: 1
Pipeline接收响应Response: 2
Pipeline接收响应Response: 3
Pipeline接收响应Response: 4
Pipeline接收响应Response: 5

14 ⽂档版本：20190305

云数据库 Redis 版 最佳实践 / 5 事务处理

5 事务处理
场景介绍

云数据库 Redis 版⽀持 Redis 中 定义的“事务（transaction）”机制，即⽤⼾可以使⽤ MULTI
，EXEC，DISCARD，WATCH，UNWATCH 指令⽤来执⾏原⼦性的事务操作。
需要强调的是，Redis 中定义的事务，并不是关系数据库中严格意义上的事务。当 Redis 事务中的
某个操作执⾏失败，或者⽤ DISCARD 取消事务时候，Redis 并不执⾏“事务回滚”，在使⽤时要
注意这点。
代码⽰例1：两个 client 操作不同的 key
package transcation.kvstore.aliyun.com;
import java.util.List;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.Transaction;
public class KVStoreTranscationTest {
 static final String host = "xxxxxx.m.cnhza.kvstore.aliyuncs.com";
 static final int port = 6379;
 static final String password = "password";
 //**注意这两个key的内容是不同的
 static String client1_key = "KVStore-Transcation-1";
 static String client2_key = "KVStore-Transcation-2";
 public static void main(String[] args) {
 Jedis jedis = new Jedis(host, port);
 // ApsaraDB for Redis的实例密码
 String authString = jedis.auth(password);//password
 if (!authString.equals("OK")) {
 System.err.println("认证失败: " + authString);
 jedis.close();
 return;
 }
 jedis.set(client1_key, "0");
 //启动另⼀个thread，模拟另外的client
 new KVStoreTranscationTest().new OtherKVStoreClient().start();
 Thread.sleep(500);
 Transaction tx = jedis.multi();//开始事务
 //以下操作会集中提交服务器端处理，作为“原⼦操作”
 tx.incr(client1_key);
 tx.incr(client1_key);
 Thread.sleep(400);//此处Thread的暂停对事务中前后连续的操作并⽆影响，其他Thread的操作也⽆法执⾏
 tx.incr(client1_key);
 Thread.sleep(300);//此处Thread的暂停对事务中前后连续的操作并⽆影响，其他Thread的操作也⽆法执⾏
 tx.incr(client1_key);
 Thread.sleep(200);//此处Thread的暂停对事务中前后连续的操作并⽆影响，其他Thread的操作也⽆法执⾏
 tx.incr(client1_key);
 List<Object> result = tx.exec();//提交执⾏
 //解析并打印出结果
 for(Object rt : result){
 System.out.println("Client 1 > 事务中> "+rt.toString());
 }
 jedis.close();

⽂档版本：20190305 15

http://redis.io/topics/transactions

云数据库 Redis 版 最佳实践 / 5 事务处理
 }
 class OtherKVStoreClient extends Thread{
 @Override
 public void run() {
 Jedis jedis = new Jedis(host, port);
 // ApsaraDB for Redis的实例密码
 String authString = jedis.auth(password);// password
 if (!authString.equals("OK")) {
 System.err.println("AUTH Failed: " + authString);
 jedis.close();
 return;
 }
 jedis.set(client2_key, "100");
 for (int i = 0; i < 10; i++) {
 try {
 Thread.sleep(300);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.println("Client 2 > "+jedis.incr(client2_ke
y));
 }
 jedis.close();
 }
 }
}

运⾏结果1
在输⼊了正确的云数据库 Redis 版实例访问地址和密码之后，运⾏以上 Java 程序，输出结果如
下。从中可以看到 client1 和 client2 在两个不同的 Thread 中，client1 所提交的事务操作都是
集中顺序执⾏的，在此期间尽管 client2 是对另外⼀个 key 进⾏操作，它的命令操作也都被阻塞等
待，直⾄ client1 事务中的全部操作执⾏完毕。
Client 2 > 101
Client 2 > 102
Client 2 > 103
Client 2 > 104
Client 1 > 事务中> 1
Client 1 > 事务中> 2
Client 1 > 事务中> 3
Client 1 > 事务中> 4
Client 1 > 事务中> 5
Client 2 > 105
Client 2 > 106
Client 2 > 107
Client 2 > 108
Client 2 > 109
Client 2 > 110

代码⽰例2：两个 client 操作相同的 key
对以上的代码稍作改动，使得两个 client 操作同⼀个 key，其余部分保持不变。

//**注意这两个key的内容现在是相同的
 static String client1_key = "KVStore-Transcation-1";
 static String client2_key = "KVStore-Transcation-1";

16 ⽂档版本：20190305

云数据库 Redis 版 最佳实践 / 5 事务处理

运⾏结果2
再次运⾏修改后的此 Java 程序，输出结果如下。可以看到不同 Thread 中的两个 client 在操作同
⼀个 key，但是当 client1 利⽤事务机制来操作这个 key 时，client2 被阻塞不得不等待 client1
 事务中的操作完全执⾏完毕。
Client 2 > 101
Client 2 > 102
Client 2 > 103
Client 2 > 104
Client 1 > 事务中> 105
Client 1 > 事务中> 106
Client 1 > 事务中> 107
Client 1 > 事务中> 108
Client 1 > 事务中> 109
Client 2 > 110
Client 2 > 111
Client 2 > 112
Client 2 > 113
Client 2 > 114
Client 2 > 115

⽂档版本：20190305 17

云数据库 Redis 版 最佳实践 / 6 通过数据集成将数据导⼊ Redis

6 通过数据集成将数据导⼊ Redis
数据集成简介

数据集成（Data Integration）是阿⾥集团对外提供的可跨异构数据存储系统的、可靠、安全、低
成本、可弹性扩展的数据同步平台，为20多种数据源提供不同⽹络环境下的离线(全量/增量)数据进
出通道。详细的数据源类型列表请参考⽀持的数据源类型。您可以通过数据集成向云数据库 Redis
版进⾏数据的导⼊数据。

⼀、创建 Redis 数据源
Redis 数据源⽀持写⼊ Redis 的通道，可以通过脚本模式配置同步任务 。

注意:
• 只有项⽬管理员⻆⾊才能够新建数据源，其他⻆⾊的成员仅能查看数据源。
• 如您想⽤⼦账号创建数据集成任务，需赋予⼦账号相应的权限。具体请参考：开通阿⾥云主账

号设置⼦账号。
操作步骤
1. 以开发者⾝份进⼊阿⾥云数加平台，单击项⽬列表下对应项⽬操作栏中的进⼊⼯作区。
1. 单击顶部菜单栏中数据集成模块的数据源。
2. 单击新增数据源。
3. 在新建数据源对话框中，选择数据源类型为 Redis。
4. 配置 Redis 数据源的各个信息项，如下图所⽰。

注意:

18 ⽂档版本：20190305

https://www.aliyun.com/product/cdp/
https://help.aliyun.com/document_detail/53008.html
https://help.aliyun.com/document_detail/56141.html
https://help.aliyun.com/document_detail/56141.html
https://help.aliyun.com/document_detail/56143.html
https://workbench.data.aliyun.com/console

云数据库 Redis 版 最佳实践 / 6 通过数据集成将数据导⼊ Redis

若账号没有授权数据集成默认⻆⾊，需要前往 RAM 进⾏⻆⾊授权。
配置项具体说明如下：
• 数据源名称：由英⽂字⺟、数字、下划线组成且需以字符或下划线开头，⻓度不超过60个字

符。
• 数据源描述：对数据源进⾏简单描述，不得超过80个字符。
• 数据源类型：当前选择的数据源类型为 Redis：有公⽹IP的⾃建数据库。
• 服务地址：格式为 host:port。
• 添加访问地址：添加访问地址，格式为 host:port。
• 密码：数据库对应的密码 。

5. 完成上述信息项的配置后，单击测试连通性。
6. 测试连通性通过后，单击确定。
⼆、配置脚本模式的同步任务
1. 以项⽬管理员⾝份进⼊数加管理控制台，单击⼤数据开发套件下对应项⽬操作栏中的进⼊⼯作

区。

2. 进⼊顶部菜单栏中的数据集成⻚⾯，选择脚本模式，如下图。

说明:
Redis 不⽀持向导模式。进⼊脚本界⾯你可以选择相应的模板，此模板包含了同步任务的主要
参数，将相关的信息填写完整，但是脚本模式不能转化成向导模式。

⽂档版本：20190305 19

https://workbench.data.aliyun.com/console

云数据库 Redis 版 最佳实践 / 6 通过数据集成将数据导⼊ Redis

3. 在导⼊模板对话框中选择需要的来源类型和⽬标类型，并单击确认。如下图所⽰：

4. 在脚本模式配置⻚⾯，根据⾃⾝情况进⾏配置，如有问题可单击右上⽅的 Redis Writer 帮助⼿
册进⾏查看。如下图所⽰：

说明：RedisWriter 脚本案例如下：
{
 "type": "job",
 "configuration": {
 "setting": {
 "speed": {
 "concurrent": "1",//并发数
 "mbps": "1"//同步能达到的最⼤数率
 },
 "errorLimit": {
 "record": "0"
 }
 },
 "reader": {
 "parameter": {
 "splitPk": "id",//切分键
 "column": [
 "id",

20 ⽂档版本：20190305

云数据库 Redis 版 最佳实践 / 6 通过数据集成将数据导⼊ Redis
 "name",
 "year"
],
 "table": "person",//表名
 "where": "",//
 "datasource": "px_mysql"//数据源名，建议数据源都先添加数据源后再配置同步任务,此配置项填写的内容必须要与添加的数据源名称保持⼀致
 },
 "plugin": "mysql"
 },
 "writer": {
 "parameter": {
 "expireTime": {
 "seconds": "1000"//相对当前时间的秒数，该时间指定了从现在开始多⻓时间后数据失效
 },
 "keyFieldDelimiter": "\u0001",//写⼊ redis 的 key 分隔符。⽐如: key=key1\u0001id,如果 key 有多个需要拼接时，该值为必填项，如果 key 只有⼀个则可以忽略该配置项。
 "writeMode": {
 "valueFieldDelimiter": "\u0001",//value 类型是 string 时，
value 之间的分隔符，⽐如 value1\u0001value2\u0001value3；
 "type": "string",//value类型
 "mode": "set"//写⼊的模式,存储这个数据，如果已经存在则覆盖
 },
 "batchSize": "1000",//⼀次性批量提交的记录数⼤小
 "dateFormat": "yyyy-MM-dd HH:mm:ss",//时间格式
 "keyIndexes": [
 0,
 1
],//keyIndexes 表⽰源端哪⼏列需要作为 key（第⼀列是从 0 开始），如果是第⼀列和第⼆列需要组合作为 key，那么 keyIndexes 的值则为 [0,1]。
 "datasource": "px_redis_datasource"//数据源名，建议数据源都先添加数据源后再配置同步任务,此配置项填写的内容必须要与添加的数据源名称保持⼀致
 },
 "plugin": "redis"
 }
 },
 "version": "1.0"
 }

运⾏结果如下：

• RedisWriter 参数说明请参考 RedisWriter 配置。

⽂档版本：20190305 21

https://help.aliyun.com/document_detail/50349.html

云数据库 Redis 版 最佳实践 / 7 热点Key问题的发现与解决

7 热点Key问题的发现与解决
热点问题概述

产⽣原因
热点问题产⽣的原因⼤致有以下两种：
• ⽤⼾消费的数据远⼤于⽣产的数据（热卖商品、热点新闻、热点评论、明星直播）。

在⽇常⼯作⽣活中⼀些突发的的事件，例如：双⼗⼀期间某些热⻔商品的降价促销，当这其中的
某⼀件商品被数万次点击浏览或者购买时，会形成⼀个较⼤的需求量，这种情况下就会造成热点
问题。同理，被⼤量刊发、浏览的热点新闻、热点评论、明星直播等，这些典型的读多写少的场
景也会产⽣热点问题。

• 请求分⽚集中，超过单Server的性能极限。
在服务端读数据进⾏访问时，往往会对数据进⾏分⽚切分，此过程中会在某⼀主机Server上对
相应的Key进⾏访问，当访问超过Server极限时，就会导致热点Key问题的产⽣。

热点问题的危害

• 流量集中，达到物理⽹卡上限。
• 请求过多，缓存分⽚服务被打垮。
• DB击穿，引起业务雪崩。
如前⽂讲到的，当某⼀热点Key的请求在某⼀主机上超过该主机⽹卡上限时，由于流量的过度集
中，会导致服务器中其它服务⽆法进⾏。如果热点过于集中，热点Key的缓存过多，超过⽬前的缓
存容量时，就会导致缓存分⽚服务被打垮现象的产⽣。当缓存服务崩溃后，此时再有请求产⽣，会
缓存到后台DB上，由于DB本⾝性能较弱，在⾯临⼤请求时很容易发⽣请求穿透现象，会进⼀步导
致雪崩现象，严重影响设备的性能。

22 ⽂档版本：20190305

云数据库 Redis 版 最佳实践 / 7 热点Key问题的发现与解决

常⻅解决⽅案
通常的解决⽅案主要集中在对客⼾端和Server端进⾏相应的改造。
服务端缓存⽅案

⾸先Client会将请求发送⾄Server上，而Server⼜是⼀个多线程的服务，本地就具有⼀个基于
Cache LRU策略的缓存空间。当Server本⾝就拥堵时，Server不会将请求进⼀步发送给DB而是
直接返回，只有当Server本⾝畅通时才会将Client请求发送⾄DB，并且将该数据重新写⼊到缓存
中。此时就完成了缓存的访问跟重建。
但该⽅案也存在以下问题：
• 缓存失效，多线程构建缓存问题
• 缓存丢失，缓存构建问题
• 脏读问题
使⽤Memcache、Redis⽅案

⽂档版本：20190305 23

云数据库 Redis 版 最佳实践 / 7 热点Key问题的发现与解决

该⽅案通过在客⼾端单独部署缓存的⽅式来解决热点Key问题。使⽤过程中Client⾸先访问服务
层，再对同⼀主机上的缓存层进⾏访问。该种解决⽅案具有就近访问、速度快、没有带宽限制的优
点，但是同时也存在以下问题。
• 内存资源浪费
• 脏读问题
使⽤本地缓存⽅案
使⽤本地缓存则存在以下问题：
• 需要提前获知热点
• 缓存容量有限
• 不⼀致性时间增⻓
• 热点Key遗漏
传统的热点解决⽅案都存在各种各样的问题，那么究竟该如何解决热点问题呢？

阿⾥云数据库解热点之道
读写分离⽅案解决热读

24 ⽂档版本：20190305

云数据库 Redis 版 最佳实践 / 7 热点Key问题的发现与解决

架构中各节点的作⽤如下：
• SLB层做负载均衡
• Proxy层做读写分离⾃动路由
• Master负责写请求
• ReadOnly节点负责读请求
• Replica节点和Master节点做⾼可⽤
实际过程中Client将请求传到SLB，SLB⼜将其分发⾄多个Proxy内，通过Proxy对请求的识
别，将其进⾏分类发送。例如，将同为Write的请求发送到Master模块内，而将Read的请求发送
⾄ReadOnly模块。而模块中的只读节点可以进⼀步扩充，从而有效解决热点读的问题。读写分离
同时具有可以灵活扩容读热点能⼒、可以存储⼤量热点Key、对客⼾端友好等优点。
热点数据解决⽅案

⽂档版本：20190305 25

云数据库 Redis 版 最佳实践 / 7 热点Key问题的发现与解决

该⽅案通过主动发现热点并对其进⾏存储来解决热点Key的问题。⾸先Client也会访问SLB，并
且通过SLB将各种请求分发⾄Proxy中，Proxy会按照基于路由的⽅式将请求转发⾄后端的Redis
中。
在热点key的解决上是采⽤在服务端增加缓存的⽅式进⾏。具体来说就是在Proxy上增加本地缓
存，本地缓存采⽤LRU算法来缓存热点数据，后端db节点增加热点数据计算模块来返回热点数据。
Proxy架构的主要有以下优点：
• Proxy本地缓存热点，读能⼒可⽔平扩展
• DB节点定时计算热点数据集合
• DB反馈 Proxy 热点数据
• 对客⼾端完全透明，不需做任何兼容
热点key处理
热点数据的读取

26 ⽂档版本：20190305

云数据库 Redis 版 最佳实践 / 7 热点Key问题的发现与解决

在热点Key的处理上主要分为写⼊跟读取两种形式，在数据写⼊过程当SLB收到数据K1并将其通
过某⼀个Proxy写⼊⼀个Redis，完成数据的写⼊。假若经过后端热点模块计算发现K1成为热点
key后， Proxy会将该热点进⾏缓存，当下次客⼾端再进⾏访问K1时，可以不经Redis。最后由于
proxy是可以⽔平扩充的，因此可以任意增强热点数据的访问能⼒。
热点数据的发现

对于db上热点数据的发现，⾸先会在⼀个周期内对Key进⾏请求统计，在达到请求量级后会对热
点Key进⾏热点定位，并将所有的热点Key放⼊⼀个小的LRU链表内，在通过Proxy请求进⾏访问
时，若Redis发现待访点是⼀个热点，就会进⼊⼀个反馈阶段，同时对该数据进⾏标记。
DB计算热点时，主要运⽤的⽅法和优势有：
• 基于统计阀值的热点统计
• 基于统计周期的热点统计
• 基于版本号实现的⽆需重置初值统计⽅法
• DB 计算同时具有对性能影响极其微小、内存占⽤极其微小等优点

两种⽅案对⽐
通过上述对⽐分析可以看出，阿⾥云在解决热点Key上较传统⽅法相⽐都有较⼤的提⾼，⽆论是基
于读写分离⽅案还是热点数据解决⽅案，在实际处理环境中都可以做灵活的⽔平能⼒扩充、都对
客⼾端透明、都有⼀定的数据不⼀致性。此外读写分离模式可以存储更⼤量的热点数据，而基于
Proxy的模式有成本上的优势。

⽂档版本：20190305 27

云数据库 Redis 版 最佳实践 / 8 解密 Redis 助⼒双⼗⼀背后的技术

8 解密 Redis 助⼒双⼗⼀背后的技术
背景介绍

双⼗⼀如⽕如荼，云数据库 Redis 版也圆满完成了双⼗⼀的保障⼯作。⽬前云数据库 Redis 版提
供了标准单副本、标准双副本和集群版本。
标准单副本和标准双副本 Redis 具有很⾼的兼容性，并且⽀持 Lua 脚本及地理位置计算。集群版
本具有⼤容量、⾼性能的特性，能够突破 Redis 单线程的单机性能极限。
云数据库 Redis 版默认双机热备并提供了备份恢复⽀持，同时阿⾥云 Redis 源码团队持续对
Redis 进⾏优化升级，提供了强⼤的安全防护能⼒。本⽂将选取双⼗⼀的⼀些业务场景简化之后进
⾏介绍，实际业务场景会⽐本⽂复杂。

微淘社区之亿级关系链存储
微淘社区承载了亿级淘宝⽤⼾的社交关系链，每个⽤⼾都有⾃⼰的关注列表，每个商家有⾃⼰的粉
丝信息，整个微淘社区承载的关系链如下图所⽰。

如果选⽤传统的关系型数据库模型表达如上的关系信息，会使业务设计繁杂，并且不能获得良好的
性能体验。微淘社区使⽤ Redis 集群缓存存储社区的关注链，简化了关注信息的存储，并保证了双
⼗⼀业务丝滑⼀般的体验。微淘社区使⽤了 Hashes 存储⽤⼾之间的关注信息，存储结构如下，并
提供了以下两种的查询接口：
• ⽤⼾ A 是否和⽤⼾ B 产⽣过关注关系
• ⽤⼾ A 的主动关系列表

28 ⽂档版本：20190305

云数据库 Redis 版 最佳实践 / 8 解密 Redis 助⼒双⼗⼀背后的技术

天猫直播之评论商品游标分⻚
双⼗⼀⽤⼾在观看⽆线端直播的时候，需要对直播对应的评论进⾏刷新动作，主要有以下三种模式:
• 增量下拉：从指定位置向上获取指定个数（增量）的评论。
• 下拉刷新：获取最新的指定个数的评论。
• 增量上拉：从指定位置向下获取指定个数（增量）的评论。
⽆线直播系统使⽤ Redis 优化该场景的业务，保证了直播评论接口的成功率，并能够保证5万以上
的 TPS 和毫秒级的 response time 请求。直播系统对于每个直播会写⼊两份数据，分别为索引
和评论数据，索引数据为 SortedSet 的数据结构⽤于对评论的排序，而评论数据使⽤ Hashes 进
⾏存储，在获取评论的时候通过索引拿到需要的索引 id 之后通过 Hashes 的读取来获得评论的列
表。评论的写⼊过程如下：

⽤⼾在刷新列表之后后台需要获取对应的评论信息，获取的流程如下：
1. 获取当前索引位置
2. 获取索引列表

⽂档版本：20190305 29

云数据库 Redis 版 最佳实践 / 8 解密 Redis 助⼒双⼗⼀背后的技术

3. 获取评论数据

菜⻦单据履⾏中⼼之订单排序
双⼗⼀⽤⼾在产⽣⼀个交易订单之后会随之产⽣⼀个物流订单，需要经过菜⻦仓配系统处理。为
了让仓配各个阶段能够更加智能的协同作业，决策系统会根据订单信息指定出对应的订单履⾏计
划，包括什么时候下发仓、什么时候出库、什么时候配送揽收、什么时候送达等信息。单据履⾏中
⼼根据履⾏计划，对每个阶段按照对应的时间去履⾏物流服务。由于仓、配的运⼒有限，对于有限
的运⼒下，期望最早作业的单据是业务认为优先级最⾼的单据，所以订单在真正下发给仓或者配之
前，需要按照优先级进⾏排序。
订单履⾏中⼼通过使⽤ Redis 来对所有的物流订单进⾏排序决定哪个订单是最⾼优先级的。

30 ⽂档版本：20190305

云数据库 Redis 版 最佳实践 / 9 Redis读写分离技术解析

9 Redis读写分离技术解析
背景

云数据库Redis版不管主从版还是集群规格，replica作为备库不对外提供服务，只有在发⽣HA的
时候，replica提升为master后才承担读写流量。这种架构读写请求都在master上完成，⼀致性
较⾼，但性能受到master数量的限制。经常有⽤⼾数据较少，但因为流量或者并发太⾼而不得不
升级到更⼤的集群规格。
为满⾜读多写少的业务场景，最⼤化节约⽤⼾成本，云数据库Redis版推出了读写分离规格，为⽤
⼾提供透明、⾼可⽤、⾼性能、⾼灵活的读写分离服务。

架构
Redis集群模式有redis-proxy、master、replica、HA等⼏个⻆⾊。在读写分离实例中，新增
read-only replica⻆⾊来承担读流量，replica作为热备不提供服务，架构上保持对现有集群规格
的兼容性。redis-proxy按权重将读写请求转发到master或者某个read-only replica上；HA负
责监控DB节点的健康状态，异常时发起主从切换或重搭read-only replica，并更新路由。
⼀般来说，根据master和read-only replica的数据同步⽅式，可以分为两种架构：星型复制和链
式复制。
星型复制
星型复制就是将所有的read-only replica直接和master保持同步，每个read-only replica之间
相互独⽴，任何⼀个节点异常不影响到其他节点，同时因为复制链⽐较短，read-only replica上
的复制延迟⽐较小。
Redis是单进程单线程模型，主从之间的数据复制也在主线程中处理，read-only replica数量
越多，数据同步对master的CPU消耗就越严重，集群的写⼊性能会随着read-only replica的增
加而降低。此外，星型架构会让master的出口带宽随着read-only replica的增加而成倍增⻓。
Master上较⾼的CPU和⽹络负载会抵消掉星型复制延迟较低的优势，因此，星型复制架构会带来
⽐较严重的扩展问题，整个集群的性能会受限于master。

⽂档版本：20190305 31

云数据库 Redis 版 最佳实践 / 9 Redis读写分离技术解析

链式复制
链式复制将所有的read-only replica组织成⼀个复制链，如下图所⽰，master只需要将数据同步
给replica和复制链上的第⼀个read-only replica。
链式复制解决了星型复制的扩展问题，理论上可以⽆限增加read-only replica的数量，随着节点
的增加整个集群的性能也可以基本上呈线性增⻓。
链式复制的架构下，复制链越⻓，复制链末端的read-only replica和master之间的同步延迟就
越⼤，考虑到读写分离主要使⽤在对⼀致性要求不⾼的场景下，这个缺点⼀般可以接受。但是如果
复制链中的某个节点异常，会导致下游的所有节点数据都会⼤幅滞后。更加严重的是这可能带来全
量同步，并且全量同步将⼀直传递到复制链的末端，这会对服务带来⼀定的影响。为了解决这个问
题，读写分离的Redis都使⽤阿⾥云优化后的binlog复制版本，最⼤程度的降低全量同步的概率。

32 ⽂档版本：20190305

云数据库 Redis 版 最佳实践 / 9 Redis读写分离技术解析

结合上述的讨论和⽐较，Redis读写分离选择链式复制的架构。
Redis读写分离优势

透明兼容
读写分离和普通集群规格⼀样，都使⽤了redis-proxy做请求转发，多分⽚令使⽤存在⼀定的限
制，但从主从升级单分⽚读写分离，或者从集群升级到多分⽚的读写分离集群可以做到完全兼容。
⽤⼾和redis-proxy建⽴连接，redis-proxy会识别出客⼾端连接发送过来的请求是读还是写，然
后按照权重作负载均衡，将请求转发到后端不同的DB节点中，写请求转发给master，读操作转发
给read-only replica（master默认也提供读，可以通过权重控制）。
⽤⼾只需要购买读写分离规格的实例，直接使⽤任何客⼾端即可直接使⽤，业务不⽤做任何修改就
可以开始享受读写分离服务带来的巨⼤性能提升，接⼊成本⼏乎为0。
⾼可⽤
⾼可⽤模块（HA）监控所有DB节点的健康状态，为整个实例的可⽤性保驾护航。master宕机时
⾃动切换到新主。如果某个read-only replica宕机，HA也能及时感知，然后重搭⼀个新的read-
only replica，下线宕机节点。
除HA之外，redis-proxy也能实时感知每个read-only replica的状态。在某个read-only
replica异常期间，redis-proxy会⾃动降低这个节点的权重，如果发现某个read-only replica连
续失败超过⼀定次数以后，会暂时屏蔽异常节点，直到异常消失以后才会恢复其正常权重。
redis-proxy和HA⼀起做到尽量减少业务对后端异常的感知，提⾼服务可⽤性。
⾼性能

⽂档版本：20190305 33

云数据库 Redis 版 最佳实践 / 9 Redis读写分离技术解析

对于读多写少的业务场景，直接使⽤集群版本往往不是最合适的⽅案，现在读写分离提供了更多的
选择，业务可以根据场景选择最适合的规格，充分利⽤每⼀个read-only replica的资源。
⽬前单shard对外售卖1 master + 1/3/5 read-only replica多种规格（如果有更⼤的需求可以提
⼯单反馈），提供60万QPS和192 MB/s的服务能⼒，在完全兼容所有命令的情况下突破单机的资
源限制。后续将去掉规格限制，让⽤⼾根据业务流量随时⾃由的增加或减少read-only replica数
量。
规格 QPS 带宽
1 master 8-10万读写 10-48 MB
1 master + 1 read-only
replica

10万写 + 10万读 20-64 MB

1 master + 3 read-only
replica

10万写 + 30万读 40-128 MB

1 master + 5 read-only
replica

10万写 + 50万读 60-192 MB

后续
Redis主从异步复制，从read-only replica中可能读到旧的数据，使⽤读写分离需要业务可以容忍
⼀定程度的数据不⼀致，后续将会给客⼾更灵活的配置和更⼤的⾃由，⽐如配置可以容忍的最⼤延
迟时间。

34 ⽂档版本：20190305

云数据库 Redis 版 最佳实践 / 10 JedisPool 资源池优化

10 JedisPool 资源池优化
合理的 JedisPool 资源池参数设置能够有效地提升 Redis 性能。本⽂档将对 JedisPool 的使⽤和
资源池的参数进⾏详细说明，并提供优化配置的建议。

使⽤⽅法
以 Jedis 2.9.0 为例，其 Maven 依赖如下：
<dependency>
 <groupId>redis.clients</groupId>
 <artifactId>jedis</artifactId>
 <version>2.9.0</version>
 <scope>compile</scope>
</dependency>

Jedis 使⽤ Apache Commons-pool2 对资源池进⾏管理，在定义 JedisPool 时需注意其关键参
数 GenericObjectPoolConfig（资源池）。该参数的使⽤⽰例如下，其中的参数的说明请参⻅
下⽂。
GenericObjectPoolConfig jedisPoolConfig = new GenericObjectPoolConfig
();
jedisPoolConfig.setMaxTotal(...);
jedisPoolConfig.setMaxIdle(...);
jedisPoolConfig.setMinIdle(...);
jedisPoolConfig.setMaxWaitMillis(...);
...

JedisPool 的初始化⽅法如下：
// redisHost为实例的IP， redisPort 为实例端口，redisPassword 为实例的密码，
timeout 既是连接超时⼜是读写超时
JedisPool jedisPool = new JedisPool(jedisPoolConfig, redisHost,
redisPort, timeout, redisPasswor//d);
//执命令如下
Jedis jedis = null;
try {
 jedis = jedisPool.getResource();
 //具体的命令
 jedis.executeCommand()
} catch (Exception e) {
 logger.error(e.getMessage(), e);
} finally {
 //在 JedisPool 模式下，Jedis 会被归还给资源池
 if (jedis != null)
 jedis.close();

⽂档版本：20190305 35

云数据库 Redis 版 最佳实践 / 10 JedisPool 资源池优化
}

参数说明
Jedis 连接就是连接池中 JedisPool 管理的资源， JedisPool 保证资源在⼀个可控范围内，并且保
障线程安全。使⽤合理的 GenericObjectPoolConfig 配置能够提升 Redis 的服务性能，降低
资源开销。下列两表将对⼀些重要参数进⾏说明，并提供设置建议。
表 10-1: 资源设置与使⽤相关参数
参数 说明 默认值 建议
maxTotal 资源池中的最⼤连接数 8 参⻅关键参数设置建议。
maxIdle 资源池允许的最⼤空闲连接数 8 参⻅关键参数设置建议。
minIdle 资源池确保的最少空闲连接数 0 参⻅关键参数设置建议。
blockWhenE
xhausted

当资源池⽤尽后，调⽤者是否要等
待。只有当值为 true 时，下⾯的
maxWaitMillis 才会⽣效。

true 建议使⽤默认值。

maxWaitMil
lis

当资源池连接⽤尽后，调⽤者的最⼤等
待时间（单位为毫秒）。

-1（表⽰永
不超时）

不建议使⽤默认值。

testOnBorr
ow

向资源池借⽤连接时是否做连接有效性
检测（ping）。检测到的⽆效连接将会
被移除。

false 业务量很⼤时候建议设置
为 false，减少⼀次 ping
 的开销。

testOnRetu
rn

向资源池归还连接时是否做连接有效性
检测（ping）。检测到⽆效连接将会被
移除。

false 业务量很⼤时候建议设置
为 false，减少⼀次 ping
 的开销。

jmxEnabled是否开启 JMX 监控 true 建议开启，请注意应⽤本
⾝也需要开启。

空闲 Jedis 对象检测由下列四个参数组合完成，testWhileIdle 是该功能的开关。
表 10-2: 空闲资源检测相关参数
名称 说明 默认值 建议
testWhileIdle 是否开启空闲资源检

测。
false true

timeBetwee
nEvictionR
unsMillis

空闲资源的检测周
期（单位为毫秒）

-1（不检测） 建议设置，周期⾃
⾏选择，也可以默
认也可以使⽤下⽅
JedisPoolConfig
中的配置。

36 ⽂档版本：20190305

云数据库 Redis 版 最佳实践 / 10 JedisPool 资源池优化

名称 说明 默认值 建议
minEvictab
leIdleTimeMillis

资源池中资源的最小
空闲时间（单位为毫
秒），达到此值后空闲
资源将被移除。

180000（即30分钟） 可根据⾃⾝业务决
定，⼀般默认值即
可，也可以考虑使⽤
下⽅ JeidsPoolC
onfig 中的配置。

numTestsPe
rEvictionRun

做空闲资源检测时，每
次检测资源的个数。

3 可根据⾃⾝应⽤连接数
进⾏微调，如果设置为
-1，就是对所有连接做
空闲监测。

为了⽅便使⽤，Jedis 提供了 JedisPoolConfig ，它继承了 GenericObjectPoolConfig 在
空闲检测上的⼀些设置。
public class JedisPoolConfig extends GenericObjectPoolConfig {
 public JedisPoolConfig() {
 // defaults to make your life with connection pool easier :)
 setTestWhileIdle(true);
 //
 setMinEvictableIdleTimeMillis(60000);
 //
 setTimeBetweenEvictionRunsMillis(30000);
 setNumTestsPerEvictionRun(-1);
 }
}

说明:
可以在 org.apache.commons.pool2.impl.BaseObjectPoolConfig 中查看全部默认值。

关键参数设置建议
maxTotal（最⼤连接数）
想合理设置maxTotal（最⼤连接数）需要考虑的因素较多，如：
• 业务希望的 Redis 并发量；
• 客⼾端执⾏命令时间；
• Redis资源，例如 nodes （如应⽤个数等） * maxTotal 不能超过 Redis 的最⼤连接数；
• 资源开销，例如虽然希望控制空闲连接，但⼜不希望因为连接池中频繁地释放和创建连接造成不

必要的开销。
假设⼀次命令时间，即 borrow|return resource 加上 Jedis 执⾏命令 （ 含⽹络耗时）的平均耗
时约为1ms，⼀个连接的 QPS ⼤约是1000，业务期望的 QPS 是50000，那么理论上需要的资源池
⼤小是 50000 / 1000 = 50。

⽂档版本：20190305 37

云数据库 Redis 版 最佳实践 / 10 JedisPool 资源池优化

但事实上这只是个理论值，除此之外还要预留⼀些资源，所以 maxTotal 可以⽐理论值⼤⼀些。
这个值不是越⼤越好，⼀⽅⾯连接太多会占⽤客⼾端和服务端资源，另⼀⽅⾯对于 Redis 这种⾼
QPS 的服务器，如果出现⼤命令的阻塞，即使设置再⼤的资源池也⽆济于事。
maxIdle 与 minIdle

maxIdle 实际上才是业务需要的最⼤连接数，maxTotal 是为了给出余量，所以 maxIdle 不要
设置得过小，否则会有 new Jedis （新连接）开销，而 minIdle 是为了控制空闲资源检测。
连接池的最佳性能是 maxTotal = maxIdle ，这样就避免了连接池伸缩带来的性能⼲扰。但如
果并发量不⼤或者 maxTotal 设置过⾼，则会导致不必要的连接资源浪费。
您可以根据实际总 QPS 和调⽤ Redis 的客⼾端规模整体评估每个节点所使⽤的连接池⼤小。
使⽤监控获取合理值
在实际环境中，⽐较可靠的⽅法是通过监控来尝试获取参数的最佳值。可以考虑通过 JMX 等⽅式
实现监控，从而找到合理值。

常⻅问题
资源不⾜
下⾯两种情况均属于⽆法从资源池获取到资源。
• 超时：

redis.clients.jedis.exceptions.JedisConnectionException: Could not
get a resource from the pool
…
Caused by: java.util.NoSuchElementException: Timeout waiting for
idle object
at org.apache.commons.pool2.impl.GenericObjectPool.borrowObject(
GenericObjectPool.java:449)

• blockWhenExhausted 为 false ，因此不会等待资源释放：
redis.clients.jedis.exceptions.JedisConnectionException: Could not
get a resource from the pool
…
Caused by: java.util.NoSuchElementException: Pool exhausted
at org.apache.commons.pool2.impl.GenericObjectPool.borrowObject(
GenericObjectPool.java:464)

此类异常的原因不⼀定是资源池不够⼤，请参⻅关键参数设置建议中的分析。建议从⽹络、资源
池参数设置、资源池监控（如果对 JMX 监控）、代码（例如没执⾏jedis.close()）、慢查
询、DNS等⽅⾯进⾏排查。
预热 JedisPool

38 ⽂档版本：20190305

云数据库 Redis 版 最佳实践 / 10 JedisPool 资源池优化

由于⼀些原因（如超时时间设置较小等），项⽬在启动成功后可能会出现超时。 JedisPool 定义
最⼤资源数、最小空闲资源数时，不会在连接池中创建 Jedis 连接。初次使⽤时，池中没有资源
使⽤则会先 new Jedis ，使⽤后再放⼊资源池，该过程会有⼀定的时间开销，所以建议在定义
JedisPool 后，以最小空闲数量为基准对 JedisPool 进⾏预热，⽰例如下：
List<Jedis> minIdleJedisList = new ArrayList<Jedis>(jedisPoolConfig.
getMinIdle());

for (int i = 0; i < jedisPoolConfig.getMinIdle(); i++) {
 Jedis jedis = null;
 try {
 jedis = pool.getResource();
 minIdleJedisList.add(jedis);
 jedis.ping();
 } catch (Exception e) {
 logger.error(e.getMessage(), e);
 } finally {
 }
}

for (int i = 0; i < jedisPoolConfig.getMinIdle(); i++) {
 Jedis jedis = null;
 try {
 jedis = minIdleJedisList.get(i);
 jedis.close();
 } catch (Exception e) {
 logger.error(e.getMessage(), e);
 } finally {

 }
}

⽂档版本：20190305 39

云数据库 Redis 版 最佳实践 / 11 集群实例特定⼦节点中热点Key的分析⽅法

11 集群实例特定⼦节点中热点Key的分析⽅法
您可以使⽤阿⾥云⾃研的 imonitor 命令监控 Redis 集群中某⼀节点的请求状态，并利⽤请求解析
⼯具 redis-faina 快速地从监控数据中分析出热点 Key 和命令。

背景信息
在使⽤云数据库 Redis 集群版的过程中，如果某⼀节点上的热点 Key 流量过⼤，可能导致服务
器中其它服务⽆法进⾏。若热点 Key 的缓存超过当前的缓存容量，就会产⽣缓存分⽚服务负载过
⾼，进而造成缓存雪崩等严重问题。
您可以利⽤云数据库 Redis 版的性能监控和报警规则对集群状况进⾏实时监控并设置告警，在发现
特定⼦节点负载突出时，使⽤ imonitor 命令查看该节点的客⼾端请求，并使⽤ redis-faina 分析
出热点 Key 。

前提条件
• 已部署与云数据库 Redis 集群版互通的 ECS 实例。
• ECS 实例中已安装 Python 和 Telnet。

说明:
本⽂中的⽰例环境使⽤ CentOS 7.4 系统和 Python 2.7.5。

操作步骤
1. 在 ECS 实例中，以 Telnet ⽅式连接到 Redis 集群。

a. 使⽤# telnet <host> <port>连接到 Redis 集群。

说明:
host为 Redis 集群的连接地址，port为连接端口（默认为6379）。

b. 输⼊auth <password>进⾏认证。

说明:

40 ⽂档版本：20190305

云数据库 Redis 版 最佳实践 / 11 集群实例特定⼦节点中热点Key的分析⽅法

password为 Redis 集群的密码。

说明:
返回+OK表⽰连接成功。

2. 使⽤imonitor <db_idx>收集⽬的节点的请求数据。

说明:
imonitor 命令与 iinfo、 iscan 类似，在 monitor 命令的基础上新增了⼀个参数，⽤⼾
指定 monitor 执⾏的节点（db_idx），db_idx 的范围是 [0, nodecount)， nodecount
可以通过 info 命令获取，或者从控制台上的实例拓扑图中查看。
本例中⽬的节点的 db_idx 为 0 。
返回+OK后将会持续输出监控到的请求记录。

3. 根据需要收集⼀定数量的监控数据，之后输⼊ QUIT 命令并按 Enter 关闭 Telnet 连接。
4. 将监控数据保存到⼀个 .txt ⽂件中，删除⾏⾸的 “+”（可在⽂本编辑⼯具中使⽤全部替换的

⽅式）删除。保存的⽂件如下。

⽂档版本：20190305 41

云数据库 Redis 版 最佳实践 / 11 集群实例特定⼦节点中热点Key的分析⽅法

5. 创建进⾏请求分析的 Python 脚本，保存为 redis-faina.py 。代码如下。
#! /usr/bin/env python
import argparse
import sys
from collections import defaultdict
import re

line_re_24 = re.compile(r"""
 ^(?P<timestamp>[\d\.]+)\s(\(db\s(?P<db>\d+)\)\s)?"(?P<command>\w
+)"(\s"(?P<key>[^(?<!\\)"]+)(?<!\\)")?(\s(?P<args>.+))?$
 """, re.VERBOSE)

line_re_26 = re.compile(r"""
 ^(?P<timestamp>[\d\.]+)\s\[(?P<db>\d+)\s\d+\.\d+\.\d+\.\d+:\d+]\
s"(?P<command>\w+)"(\s"(?P<key>[^(?<!\\)"]+)(?<!\\)")?(\s(?P<args>.
+))?$
 """, re.VERBOSE)

class StatCounter(object):

 def __init__(self, prefix_delim=':', redis_version=2.6):
 self.line_count = 0
 self.skipped_lines = 0
 self.commands = defaultdict(int)
 self.keys = defaultdict(int)
 self.prefixes = defaultdict(int)
 self.times = []
 self._cached_sorts = {}
 self.start_ts = None
 self.last_ts = None
 self.last_entry = None
 self.prefix_delim = prefix_delim
 self.redis_version = redis_version
 self.line_re = line_re_24 if self.redis_version < 2.5 else
line_re_26

 def _record_duration(self, entry):
 ts = float(entry['timestamp']) * 1000 * 1000 # microseconds
 if not self.start_ts:
 self.start_ts = ts
 self.last_ts = ts
 duration = ts - self.last_ts
 if self.redis_version < 2.5:
 cur_entry = entry
 else:
 cur_entry = self.last_entry
 self.last_entry = entry
 if duration and cur_entry:
 self.times.append((duration, cur_entry))
 self.last_ts = ts

 def _record_command(self, entry):
 self.commands[entry['command']] += 1

 def _record_key(self, key):
 self.keys[key] += 1
 parts = key.split(self.prefix_delim)
 if len(parts) > 1:
 self.prefixes[parts[0]] += 1

 @staticmethod
 def _reformat_entry(entry):

42 ⽂档版本：20190305

云数据库 Redis 版 最佳实践 / 11 集群实例特定⼦节点中热点Key的分析⽅法
 max_args_to_show = 5
 output = '"%(command)s"' % entry
 if entry['key']:
 output += ' "%(key)s"' % entry
 if entry['args']:
 arg_parts = entry['args'].split(' ')
 ellipses = ' ...' if len(arg_parts) > max_args_to_show
else ''
 output += ' %s%s' % (' '.join(arg_parts[0:max_args_t
o_show]), ellipses)
 return output

 def _get_or_sort_list(self, ls):
 key = id(ls)
 if not key in self._cached_sorts:
 sorted_items = sorted(ls)
 self._cached_sorts[key] = sorted_items
 return self._cached_sorts[key]

 def _time_stats(self, times):
 sorted_times = self._get_or_sort_list(times)
 num_times = len(sorted_times)
 percent_50 = sorted_times[int(num_times / 2)][0]
 percent_75 = sorted_times[int(num_times * .75)][0]
 percent_90 = sorted_times[int(num_times * .90)][0]
 percent_99 = sorted_times[int(num_times * .99)][0]
 return (("Median", percent_50),
 ("75%", percent_75),
 ("90%", percent_90),
 ("99%", percent_99))

 def _heaviest_commands(self, times):
 times_by_command = defaultdict(int)
 for time, entry in times:
 times_by_command[entry['command']] += time
 return self._top_n(times_by_command)

 def _slowest_commands(self, times, n=8):
 sorted_times = self._get_or_sort_list(times)
 slowest_commands = reversed(sorted_times[-n:])
 printable_commands = [(str(time), self._reformat_entry(entry
)) \
 for time, entry in slowest_commands]
 return printable_commands

 def _general_stats(self):
 total_time = (self.last_ts - self.start_ts) / (1000*1000)
 return (
 ("Lines Processed", self.line_count),
 ("Commands/Sec", '%.2f' % (self.line_count / total_time
))
)

 def process_entry(self, entry):
 self._record_duration(entry)
 self._record_command(entry)
 if entry['key']:
 self._record_key(entry['key'])

 def _top_n(self, stat, n=8):
 sorted_items = sorted(stat.iteritems(), key = lambda x: x[1
], reverse = True)
 return sorted_items[:n]

⽂档版本：20190305 43

云数据库 Redis 版 最佳实践 / 11 集群实例特定⼦节点中热点Key的分析⽅法

 def _pretty_print(self, result, title, percentages=False):
 print title
 print '=' * 40
 if not result:
 print 'n/a\n'
 return

 max_key_len = max((len(x[0]) for x in result))
 max_val_len = max((len(str(x[1])) for x in result))
 for key, val in result:
 key_padding = max(max_key_len - len(key), 0) * ' '
 if percentages:
 val_padding = max(max_val_len - len(str(val)), 0) *
 ' '
 val = '%s%s\t(%.2f%%)' % (val, val_padding, (float(
val) / self.line_count) * 100)
 print key,key_padding,'\t',val
 print

 def print_stats(self):
 self._pretty_print(self._general_stats(), 'Overall Stats')
 self._pretty_print(self._top_n(self.prefixes), 'Top Prefixes
', percentages = True)
 self._pretty_print(self._top_n(self.keys), 'Top Keys',
percentages = True)
 self._pretty_print(self._top_n(self.commands), 'Top Commands
', percentages = True)
 self._pretty_print(self._time_stats(self.times), 'Command
Time (microsecs)')
 self._pretty_print(self._heaviest_commands(self.times), '
Heaviest Commands (microsecs)')
 self._pretty_print(self._slowest_commands(self.times), '
Slowest Calls')

 def process_input(self, input):
 for line in input:
 self.line_count += 1
 line = line.strip()
 match = self.line_re.match(line)
 if not match:
 if line != "OK":
 self.skipped_lines += 1
 continue
 self.process_entry(match.groupdict())

if __name__ == '__main__':
 parser = argparse.ArgumentParser()
 parser.add_argument(
 'input',
 type = argparse.FileType('r'),
 default = sys.stdin,
 nargs = '?',
 help = "File to parse; will read from stdin otherwise")
 parser.add_argument(
 '--prefix-delimiter',
 type = str,
 default = ':',
 help = "String to split on for delimiting prefix and rest of
 key",
 required = False)
 parser.add_argument(
 '--redis-version',

44 ⽂档版本：20190305

云数据库 Redis 版 最佳实践 / 11 集群实例特定⼦节点中热点Key的分析⽅法
 type = float,
 default = 2.6,
 help = "Version of the redis server being monitored",
 required = False)
 args = parser.parse_args()
 counter = StatCounter(prefix_delim = args.prefix_delimiter,
redis_version = args.redis_version)
 counter.process_input(args.input)
 counter.print_stats()

说明:
以上脚本来⾃ redis-faina。

⽂档版本：20190305 45

https://github.com/facebookarchive/redis-faina

云数据库 Redis 版 最佳实践 / 11 集群实例特定⼦节点中热点Key的分析⽅法

6. 使⽤python redis-faina imonitorOut.txt命令解析监
控数据。其中imonitorOut.txt为本⽂⽰例中保存的监控数
据。

46 ⽂档版本：20190305

云数据库 Redis 版 最佳实践 / 11 集群实例特定⼦节点中热点Key的分析⽅法

说明:
在以上分析结果中， Top Keys 显⽰该时间段内请求次数最多的键， Top Commands 显⽰使
⽤最频繁的命令。您可以根据分析情况解决热点 Key 问题。

⽂档版本：20190305 47

云数据库 Redis 版 最佳实践 / 12 使⽤ Redis 搭建视频直播间信息系统

12 使⽤ Redis 搭建视频直播间信息系统
您可以使⽤云数据库 Redis 版⽅便快捷地构建⼤流量、低延迟的视频直播间消息服务。

背景信息
视频直播间作为直播系统对外的表现形式，是整个系统的核⼼之⼀。除了视频直播窗口外，直播间
的在线⽤⼾、礼物、评论、点赞、排⾏榜等数据信息时效性⾼，互动性强，对系统时延有着⾮常⾼
的要求，⾮常适合使⽤ Redis 缓存服务来处理。
本篇最佳实践将向您展⽰使⽤云数据库 Redis 版搭建视频直播间信息系统的⽰例。您将了解三类信
息的构建⽅法：
• 实时排⾏类信息
• 计数类信息
• 时间线信息

实时排⾏类信息
实时排⾏类信息包含直播间在线⽤⼾列表、各种礼物的排⾏榜、弹幕消息（类似于按消息维度排序
的的消息排⾏榜）等，适合使⽤ Redis 中的有序集合（sorted set）结构进⾏存储。
Redis 集合使⽤空值散列表（hash table）实现，因此对集合的增删改查操作的时间复杂度都是O
（1）。有序集合中的每个成员都关联⼀个分数（score），可以⽅便地实现排序等操作。下⾯以增
加和返回弹幕消息为例对有序集合在直播间信息系统中的实际运⽤进⾏说明。
• 以 unix timestamp + 毫秒数为分值，记录 user55 的直播间增加的5条弹幕：

redis> ZADD user55:_danmu 1523959031601166 message111111111111
(integer) 1
11.160.24.14:3003> ZADD user55:_danmu 1523959031601266 message222
222222222
(integer) 1
11.160.24.14:3003> ZADD user55:_danmu 1523959088894232 message33333
(integer) 1
11.160.24.14:3003> ZADD user55:_danmu 1523959090390160 message444444
(integer) 1
11.160.24.14:3003> ZADD user55:_danmu 1523959092951218 message5555
(integer) 1

• 返回最新的3条弹幕信息：
redis> ZREVRANGEBYSCORE user55:_danmu +inf -inf LIMIT 0 3
1) "message5555"
2) "message444444"

48 ⽂档版本：20190305

云数据库 Redis 版 最佳实践 / 12 使⽤ Redis 搭建视频直播间信息系统
3) "message33333"

• 返回指定时间段内的3条弹幕信息：
redis> ZREVRANGEBYSCORE user55:_danmu 1523959088894232 -inf LIMIT 0
3
1) "message33333"
2) "message222222222222"
3) "message111111111111"

计数类信息
计数类信息以⽤⼾相关数据为例，有未读消息数、关注数、粉丝数、经验值等等。这类消息适合以
Redis中的散列（hash）结构进⾏存储。⽐如关注数可以⽤如下的⽅法处理：
redis> HSET user:55 follower 5
(integer) 1
redis> HINCRBY user:55 follower 1 //关注数+1
(integer) 6
redis> HGETALL user:55
1) "follow"
2) "6"

时间线信息
时间线信息是以时间为维度的信息列表，典型有主播动态、新帖等。这类信息是按照固定的时间顺
序排列，可以使⽤列表（list）或者有序列表来存储，请参考以下⽰例。
redis> LPUSH user:55_recent_activitiy '{datetime:201804112010,type:
publish,title:开播啦,content:加油}'
(integer) 1
redis> LPUSH user:55_recent_activitiy '{datetime:201804131910,type:
publish,title:请假,content:抱歉，今天有事鸽⼀天}'
(integer) 2
redis> LRANGE user:55_recent_activitiy 0 10
1) "{datetime:201804131910,type:publish,title:\xe8\xaf\xb7\xe5\x81\x87
\",content:\xe6\x8a\xb1\xe6\xad\x89\xef\xbc\x8c\xe4\xbb\x8a\xe5\xa4\
xa9\xe6\x9c\x89\xe4\xba\x8b\xe9\xb8\xbd\xe4\xb8\x80\xe5\xa4\xa9}"
2) "{datetime:201804112010,type:publish,title:\xe5\xbc\x80\xe6\x92\xad
\xe5\x95\xa6,content:\xe5\x8a\xa0\xe6\xb2\xb9}"

相关资源
• 直播系统常⻅的热点 Key 问题的解决⽅法请参⻅热点Key问题的发现与解决。
• 使⽤ Redis 内存分析⽅法排除业务中潜在的⻛险点，找到业务性能瓶颈。
• 云数据库 Redis 集群版助您解决⾼并发问题。

⽂档版本：20190305 49

https://help.aliyun.com/knowledge_detail/50037.html

云数据库 Redis 版 最佳实践 / 13 解析Redis持久化的AOF⽂件

13 解析Redis持久化的AOF⽂件
背景信息

在⽇常开发测试中，为了⽅便查看历史命令和查看某个Key的记录，需要对AOF⽂件进⾏解析。
Redis持久化模式

• RDB 快照模式：该模式⽤于⽣成某个时间点的备份信息，并且会对当前的Key value进⾏编
码，然后存储在rdb⽂件中。

• AOF 持久化模式：该模式类似binlog的形式，会记录服务器所有的写请求，在服务重启时⽤于
恢复原有的数据。

AOF持久化模式的详细说明
Redis客⼾端和服务端之间通过RESP (REdis Serialization Protocol)进⾏通信。RESP协议主要
由以下⼏种数据类型组成，每种数据类型的定义如下：
• 简单字符串：

以+号开头，结尾为rn，⽐如：+OKrn。
• 错误信息：

以-号开头，结尾为rn的字符串，⽐如：-ERR Readonlyrn。
• 整数：

以冒号开头，结尾为rn，开头和结尾之间为整数，⽐如（:1rn）。
• ⼤字符串：

以$开头，随后为该字符串⻓度和rn，⻓度限制512M，最后为字符串内容和rn，⽐如：$
0rnrn。

• 数组：
以*开头，随后指定数组元素个数并通过rn划分，每个数组元素都可以为上⾯的四种，⽐如：*
1rn$4rnpingrn。

Redis客⼾端发送给服务端的是⼀个数组命令，服务端根据不同命令的实现⽅式进⾏回复，并记录
到AOF⽂件中。

AOF⽂件解析
这⾥通过Python代码调⽤hiredis库来进⾏Redis AOF⽂件的解析，代码如下：
#!/usr/bin/env python

50 ⽂档版本：20190305

云数据库 Redis 版 最佳实践 / 13 解析Redis持久化的AOF⽂件

""" A redis appendonly file parser
"""

import logging
import hiredis
import sys

if len(sys.argv) != 2:
 print sys.argv[0], 'AOF_file'
 sys.exit()
file = open(sys.argv[1])
line = file.readline()
cur_request = line
while line:
 req_reader = hiredis.Reader()
 req_reader.setmaxbuf(0)
 req_reader.feed(cur_request)
 command = req_reader.gets()
 try:
 if command is not False:
 print command
 cur_request = ''
 except hiredis.ProtocolError:
 print 'protocol error'
 line = file.readline()
 cur_request += line
file.close

使⽤以上脚本解析⼀个AOF⽂件的结果如下。得到如下结果后⽅便您随时查看某个Key相关的操
作。
['PEXPIREAT', 'RedisTestLog', '1479541381558']
['SET', 'RedisTestLog', '39124268']
['PEXPIREAT', 'RedisTestLog', '1479973381559']
['HSET', 'RedisTestLogHash', 'RedisHashField', '16']
['PEXPIREAT', 'RedisTestLogHash', '1479973381561']
['SET', 'RedisTestLogString', '79146']

⽂档版本：20190305 51

云数据库 Redis 版 最佳实践 / 14 Redis 4.0 热点Key查询⽅法

14 Redis 4.0 热点Key查询⽅法
⾼性能是Redis最⼤的特点，保障Redis的性能是Redis使⽤过程中的必要举措。可能导致Redis性
能问题的因素各种各样，而热点Key是其中最常⻅的因素之⼀。找出热点Key有利于进⼀步处理问
题，本⽂介绍利⽤Redis 4.0版本新增特性查询热点Key的⽅法。

背景信息
Redis 4.0新增了allkey-lfu和volatile-lfu两种数据逐出策略，同时还可以通过OBJECT命令
来获取某个key的访问频度，如下图所⽰。

Redis 原⽣客⼾端也增加了--hotkeys选项，可以快速帮您找出业务中的热点Key。

说明:
本⽂旨在介绍热点Key发现⽅法，从而优化Redis的性能，因此适⽤于已经拥有⼀定的云数据
库Redis版使⽤基础，且在寻求进阶技巧的⽤⼾。如果您刚开始接触Redis，建议先阅读产品简
介和快速⼊⻔。

前提条件
• 拥有与Redis实例互通的ECS实例；
• ECS中已经安装了Redis 4.0以上版本；

说明:
⽬的为使⽤其⾃带的⼯具redis-cli。

• 云数据库Redis版实例的maxmemory-policy参数设置为volatile-lfu或allkeys-lfu。

说明:
参数修改的⽅法请参⻅参数设置。

操作步骤
1. 在有业务进⾏时，使⽤以下命令查询热点Key。

redis-cli -h r-***************.redis.rds.aliyuncs.com -a <password>
 --hotkeys

说明:
52 ⽂档版本：20190305

云数据库 Redis 版 最佳实践 / 14 Redis 4.0 热点Key查询⽅法

本⽂使⽤redis-benchmark模拟业务中⼤量写⼊的场景。
表 14-1: 选项说明
名称 说明
-h 指定Redis的连接地址。
-a 指定Redis的认证密码。
--hotkeys ⽤来查询热点Key。

执⾏结果
执⾏命令后得到的结果⽰例如下：

执⾏结果的summary部分即是分析得出的热点Key。

⽂档版本：20190305 53

	目录
	法律声明
	通用约定
	1 游戏玩家积分排行榜
	2 网上商城商品相关性分析
	3 消息发布与订阅
	4 管道传输
	5 事务处理
	6 通过数据集成将数据导入 Redis
	7 热点Key问题的发现与解决
	8 解密 Redis 助力双十一背后的技术
	9 Redis读写分离技术解析
	10 JedisPool 资源池优化
	11 集群实例特定子节点中热点Key的分析方法
	12 使用 Redis 搭建视频直播间信息系统
	13 解析Redis持久化的AOF文件
	14 Redis 4.0 热点Key查询方法

