
Alibaba CloudAlibaba Cloud

Hologres
Best Practices

Document Version: 20220711

Alibaba CloudAlibaba Cloud

Hologres
Best Practices

Document Version: 20220711

Legal disclaimer
Alibaba Cloud reminds you t o carefully read and fully underst and t he t erms and condit ions of t his legal
disclaimer before you read or use t his document . If you have read or used t his document , it shall be deemed
as your t ot al accept ance of t his legal disclaimer.

1. You shall download and obt ain t his document from t he Alibaba Cloud websit e or ot her Alibaba Cloud-
aut horized channels, and use t his document for your own legal business act ivit ies only. The cont ent of
t his document is considered confident ial informat ion of Alibaba Cloud. You shall st rict ly abide by t he
confident ialit y obligat ions. No part of t his document shall be disclosed or provided t o any t hird part y for
use wit hout t he prior writ t en consent of Alibaba Cloud.

2. No part of t his document shall be excerpt ed, t ranslat ed, reproduced, t ransmit t ed, or disseminat ed by
any organizat ion, company or individual in any form or by any means wit hout t he prior writ t en consent of
Alibaba Cloud.

3. The cont ent of t his document may be changed because of product version upgrade, adjust ment , or
ot her reasons. Alibaba Cloud reserves t he right t o modify t he cont ent of t his document wit hout not ice
and an updat ed version of t his document will be released t hrough Alibaba Cloud-aut horized channels
from t ime t o t ime. You should pay at t ent ion t o t he version changes of t his document as t hey occur and
download and obt ain t he most up-t o-dat e version of t his document from Alibaba Cloud-aut horized
channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud product s and services.
Alibaba Cloud provides t his document based on t he "st at us quo", "being defect ive", and "exist ing
funct ions" of it s product s and services. Alibaba Cloud makes every effort t o provide relevant operat ional
guidance based on exist ing t echnologies. However, Alibaba Cloud hereby makes a clear st at ement t hat
it in no way guarant ees t he accuracy, int egrit y, applicabilit y, and reliabilit y of t he cont ent of t his
document , eit her explicit ly or implicit ly. Alibaba Cloud shall not t ake legal responsibilit y for any errors or
lost profit s incurred by any organizat ion, company, or individual arising from download, use, or t rust in
t his document . Alibaba Cloud shall not , under any circumst ances, t ake responsibilit y for any indirect ,
consequent ial, punit ive, cont ingent , special, or punit ive damages, including lost profit s arising from t he
use or t rust in t his document (even if Alibaba Cloud has been not ified of t he possibilit y of such a loss).

5. By law, all t he cont ent s in Alibaba Cloud document s, including but not limit ed t o pict ures, archit ect ure
design, page layout , and t ext descript ion, are int ellect ual propert y of Alibaba Cloud and/or it s
affiliat es. This int ellect ual propert y includes, but is not limit ed t o, t rademark right s, pat ent right s,
copyright s, and t rade secret s. No part of t his document shall be used, modified, reproduced, publicly
t ransmit t ed, changed, disseminat ed, dist ribut ed, or published wit hout t he prior writ t en consent of
Alibaba Cloud and/or it s affiliat es. The names owned by Alibaba Cloud shall not be used, published, or
reproduced for market ing, advert ising, promot ion, or ot her purposes wit hout t he prior writ t en consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limit ed t o, "Alibaba Cloud",
"Aliyun", "HiChina", and ot her brands of Alibaba Cloud and/or it s affiliat es, which appear separat ely or in
combinat ion, as well as t he auxiliary signs and pat t erns of t he preceding brands, or anyt hing similar t o
t he company names, t rade names, t rademarks, product or service names, domain names, pat t erns,
logos, marks, signs, or special descript ions t hat t hird part ies ident ify as Alibaba Cloud and/or it s
affiliat es.

6. Please direct ly cont act Alibaba Cloud for any errors of t his document .

Hologres Best Pract ices··Legal disclaimer

> Document Version: 20220711 I

Document conventions
St yleSt yle Descript ionDescript ion ExampleExample

 DangerDanger
A danger notice indicates a situation that
will cause major system changes, faults,
physical injuries, and other adverse
results.

 Danger:Danger:

Resetting will result in the loss of user
configuration data.

 WarningWarning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other adverse
results.

 Warning:Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Not iceNot ice
A caution notice indicates warning
information, supplementary instructions,
and other content that the user must
understand.

 Not ice:Not ice:

If the weight is set to 0, the server no
longer receives new requests.

 Not eNot e
A note indicates supplemental
instructions, best practices, t ips, and
other content.

 Not e:Not e:

You can use Ctrl + A to select all files.

>
Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Set t ingsSet t ings > Net workNet work> Set net workSet net work
t ypet ype.

BoldBold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OKOK.

Courier font Courier font is used for commands
Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for parameters
and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional value,
where only one item can be selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required value,
where only one item can be selected.

switch {active|stand}

Hologres Best Pract ices··Document convent io
ns

> Document Version: 20220711 I

Table of Contents
1.Data warehouse construction

1.1. Use spatial functions to query data

2.Authorization

2.1. Authorize roles based on PostgreSQL privileges

3.Scenario Scheme

3.1. Recommended data warehouse layering solutions

3.2. Real-time report analysis

3.2.1. Build a real-time data warehouse and display data analytics results …

3.2.2. Analyze large amounts of MaxCompute data in real time …

3.3. User behavior analysis

3.3.1. Overview

3.3.2. Batch UV calculation

3.3.3. Remove duplicate UVs in real time

3.4. User profile analysis

3.4.1. User profile analysis

3.4.2. Wide tables

3.4.3. Roaring bitmaps

3.4.4. Real-time tags

05

05

15

15

21

21

24

24

29

34

34

36

43

53

53

56

57

64

Hologres Best Pract ices··Table of Cont ent s

> Document Version: 20220711 I

Hologres allows you to use PostGIS spatial functions to query spatial data in tables. This topic shows
you how to import data from an on-premises machine to Hologres and then use PostGIS spatial
functions to query data in Hologres.

PrerequisitesPrerequisites
A Hologres instance is purchased. For more information, see Purchase a Hologres instance.

A database is created in the Hologres instance. For more information, see Create a database.

The sample spatial data used in this topic is downloaded. To download the data, click the following
links:

The accommodations table

The zipcodes table

ContextContext
The demo tables used in this topic contain various types of spatial data, such as longitudes, lat itudes,
coordinates, and distances. You can perform Step 1 and Step 2 to use HoloWeb to import the
downloaded sample spatial data from your on-premises machine to the accommodat ionsaccommodat ions and
z ipcodesz ipcodes Hologres tables that you create. Then, you can perform Step 3 to use PostGIS spatial
functions to query the spatial data in the two Hologres tables.

PostGIS: PostGIS is a spatial database extension for PostgreSQL databases. Hologres is compatible with
the protocols of PostgreSQL 11. You can use PostGIS spatial functions in Hologres.

Spatial functions: For more information, see Spatial functions.

The Hologres tables to be created by using HoloWeb are used to store the following data:

The accommodat ionsaccommodat ions Hologres table stores the accommodation information of Berlin, such as the
geographical location, including the longitude and lat itude, and the name of each accommodation.

The z ipcodesz ipcodes Hologres table stores the ZIP codes in Berlin.

ProcedureProcedure

Step Description

Step 1: Create Hologres
tables

Create the following two tables in the database in your Hologres instance: 1.
The accommodat ionsaccommodat ions Hologres table that is used to store the
accommodation information of Berlin, such as the geographical location,
including the longitude and latitude, and the name of each accommodation. 2.
The z ipcodesz ipcodes Hologres table that is used to store the ZIP codes in Berlin.

Step 2: Import the
sample spatial data

Use HoloWeb to import spatial data from your on-premises machine to the
accommodat ionsaccommodat ions and z ipcodesz ipcodes Hologres tables.

1.Data warehouse construction1.Data warehouse construction
1.1. Use spatial functions to query1.1. Use spatial functions to query
datadata

Hologres Best Pract ices··Dat a warehouse con
st ruct ion

> Document Version: 20220711 5

https://www.alibabacloud.com/help/doc-detail/158703.htm#task-1918224
https://www.alibabacloud.com/help/doc-detail/158719.htm#task-1928593
https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/207600/cn_zh/1624341461923/accommodations.csv
https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/207600/cn_zh/1624341479658/zipcode.csv
https://www.alibabacloud.com/help/doc-detail/261372.htm#concept-2086375/section-7i3-sr4-p4o

Step 3: Use spatial
functions to query data

Use PostGIS spatial functions to query the spatial data in the two Hologres
tables.

Step Description

Step 1: Create Hologres tablesStep 1: Create Hologres tables
Perform the following operations to create the accommodat ionsaccommodat ions and z ipcodesz ipcodes Hologres tables.

1. Log on to the HoloWeb console and go to the SQL Editor tab.

2. Click Ad-hoc QueryAd-hoc Query. Select your Hologres instance from the Instance drop-down list and the
database where you want to create Hologres tables from the Database drop-down list .

3. Install the PostGIS extension.

Enter the following statement in the SQL editor and click RunRun:

create extension if not exists postgis; -- Install the PostGIS extension.

4. Create the accommodat ionsaccommodat ions Hologres table.

Execute the following SQL statements to create the accommodat ionsaccommodat ions Hologres table. The table
is used to store the accommodation information of Berlin, such as the geographical location,
including the longitude and lat itude, and the name of each accommodation.

Not e Not e In the T able Direct oryT able Direct ory sect ion, you can click the Ref reshRef resh icon and choose publicpublic
> > T ablesT ables to check whether the Hologres table is created. Alternatively, you can check the
operational log in the Run LogRun Log sect ion.

CREATE TABLE public.accommodations (
 id INTEGER PRIMARY KEY,
 shape GEOMETRY,
 name VARCHAR(100),
 host_name VARCHAR(100),
 neighbourhood_group VARCHAR(100),
 neighbourhood VARCHAR(100),
 room_type VARCHAR(100),
 price SMALLINT,
 minimum_nights SMALLINT,
 number_of_reviews SMALLINT,
 last_review DATE,
 reviews_per_month NUMERIC(8,2),
 calculated_host_listings_count SMALLINT,
 availability_365 SMALLINT
);

5. Create the z ipcodesz ipcodes Hologres table.

Execute the following SQL statements to create the z ipcodesz ipcodes Hologres table. The table is used to
store the ZIP codes in Berlin.

Not e Not e In the T able Direct oryT able Direct ory sect ion, you can click the Ref reshRef resh icon and choose publicpublic
> > T ablesT ables to check whether the Hologres table is created. Alternatively, you can check the
operational log in the Run LogRun Log sect ion.

Best Pract ices··Dat a warehouse con
st ruct ion

Hologres

6 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/264568.htm#section-1um-20j-p46
https://holoweb-cn-hongkong.data.aliyun.com/query

CREATE TABLE public.zipcode (
 ogc_field INTEGER PRIMARY KEY NOT NULL,
 wkb_geometry GEOMETRY,
 gml_id VARCHAR(256),
 spatial_name VARCHAR(256),
 spatial_alias VARCHAR(256),
 spatial_type VARCHAR(256)
);

Step 2: Import the sample spatial dataStep 2: Import the sample spatial data
After the accommodat ionsaccommodat ions and z ipcodesz ipcodes Hologres tables are created, import the downloaded
sample spatial data from your on-premises machine to the two tables on the Import On-premisesImport On-premises
FileFile page.

1. In the HoloWeb console, click Dat a Solut ion Dat a Solut ion in the top navigation bar.

2. On the Dat a Solut ion Dat a Solut ion tab, choose Import On-premises FileImport On-premises File in the left-side navigation pane.
Then, click New dat a importNew dat a import on this page.

3. Specify the Hologres table to which you want to import data.

In the Import On-premises FileImport On-premises File dialog box, enter a job name, select your Hologres instance, the
created database, and a created Hologres table (accommodat ionsaccommodat ions or z ipcodesz ipcodes), and then click
Next St epNext St ep.

4. Specify the data to be imported and the encoding format.

In the Select FileSelect File step, set the parameters as described in the following table and click Next Step.

Hologres Best Pract ices··Dat a warehouse con
st ruct ion

> Document Version: 20220711 7

https://holoweb-cn-hongkong.data.aliyun.com/tool/perfence/query

Parameter Description

Select File

The file that contains the data to be imported. Click Browse...Browse... and select a
file from your on-premises machine. .txt, .csv, and .log files are supported. In
this example, select the accommodat ionsaccommodat ions or z ipcodesz ipcodes table that you
downloaded.

Delimiter

The delimiter used to separate data entries. In this example, select
SEMICOLON.

Not e Not e You can also select the option to the right of the drop-
down list and specify a custom delimiter based on your business
requirements.

Character Encoding The encoding format of the data. In this example, select UT F-8UT F-8.

First Line as Header
Specifies whether to set the first line of the data as the header of the
Hologres table. By default, this option is not selected.

5. Confirm the configurations.

In the Import Overview step, check whether the configurations of the data import job are as
expected and click Execut ionExecut ion.

Best Pract ices··Dat a warehouse con
st ruct ion

Hologres

8 > Document Version: 20220711

6. Verify the execution result .

After the job is complete, the system shows whether the execution is successful in the Import
Overview step. If the execution fails, you can view the error cause for troubleshooting and import
the data again.

You can also execute one of the following SQL statements in the SQL editor to query the number
of data entries or detailed data in the dest ination Hologres table:

Query the number of data entries

In this example, the accommodat ionsaccommodat ions Hologres table contains 22,248 data entries, and the
z ipcodesz ipcodes Hologres table contains 190 data entries.

select count(*) from accommodations; -- Query the number of data entries in the accom
modations Hologres table.
select count(*) from zipcodes; -- Query the number of data entries in the zipcodes Ho
logres table.

Query the detailed data

select * from accommodations; -- Query the detailed data in the accommodations Hologr
es table.
select * from zipcodes; -- Query the detailed data in the zipcodes Hologres table.

Step 3: Use spatial functions to query dataStep 3: Use spatial functions to query data
After the required Hologres tables are created and the sample spatial data is imported to the tables,
you can use spatial functions to query the spatial data in Hologres. The following examples are for your
reference. For information about the syntax of spatial functions, see Spatial functions.

Query the number of data entries in the accommodat ionsaccommodat ions Hologres table with the spatial reference
system identifier (SRID) set to 4326.

Sample code:

SELECT count(*) FROM public.accommodations WHERE ST_SRID(shape) = 4326;

Hologres Best Pract ices··Dat a warehouse con
st ruct ion

> Document Version: 20220711 9

https://www.alibabacloud.com/help/doc-detail/261372.htm#concept-2086375/section-7i3-sr4-p4o

Return results:

 count

 22248
(1 row)

Use the well-known text (WKT) format to query geometry objects that meet the specified
condit ions. In this example, you can check whether the ZIP codes in the zipcodes Hologres table are
stored in World Geodetic System 1984 (WGS84). The system uses an SRID of 4326.

Not e Not e Only the spatial data entries that are in the same spatial reference system can be
referenced by each other.

Sample code:

SELECT ogc_field
 ,spatial_name
 ,spatial_type
 ,ST_SRID(wkb_geometry)
 ,ST_AsText(wkb_geometry)
FROM public.zipcode
ORDER BY spatial_name
;

Return results:

ogc_field spatial_name spatial_type st_srid st_astext

0 10115 Polygon 4326 POLYGON((...))
4 10117 Polygon 4326 POLYGON((...))
8 10119 Polygon 4326 POLYGON((...))
...
(190 rows returned)

Use the GeoJSON format to query the surface, the surface size, and the number of points on the
surface for Mitte in Berlin with the SRID set to 10117.

Sample code:

SELECT ogc_field
 ,spatial_name
 ,ST_AsGeoJSON(wkb_geometry)
 ,ST_Dimension(wkb_geometry)
 ,ST_NPoints(wkb_geometry)
FROM public.zipcode
WHERE spatial_name = '10117'
;

Best Pract ices··Dat a warehouse con
st ruct ion

Hologres

10 > Document Version: 20220711

Return results:

ogc_field spatial_name spatial_type st_dimension s
t_npoint

4 10117 {"type":"Polygon", "coordinates":[[[...]]]} 2
331

Query the number of accommodations within 500 meters of the Brandenburg Gate with the SRID set
to 4326.

Sample code:

SELECT COUNT(*)
FROM public.accommodations
WHERE ST_DistanceSphere(shape, ST_GeomFromText('POINT(13.377704 52.516431)', 4326)) <
500
;

Return results:

 count

 29
(1 row)

Perform a rough est imate of the location of the Brandenburg Gate based on the information about
nearby accommodations.

Sample code:

WITH
 poi(loc) AS (
 SELECT st_astext(shape)
 FROM accommodations
 WHERE name LIKE '%brandenburg gate%')
SELECT COUNT(*)
FROM accommodations a
 ,poi p
WHERE ST_DistanceSphere(a.shape, ST_GeomFromText(p.loc, 4326)) < 500
;

Return results:

 count

 60
(1 row)

Query the detailed information about all the accommodations around the Brandenburg Gate and
sort the accommodations in descending order by price.

Hologres Best Pract ices··Dat a warehouse con
st ruct ion

> Document Version: 20220711 11

Sample code:

SELECT name
 ,price
 ,ST_AsText(shape)
FROM public.accommodations
WHERE ST_DistanceSphere(shape, ST_GeomFromText('POINT(13.377704 52.516431)', 4326)) <
500
ORDER BY price DESC
;

Return results:

 name | price | st_astext

--+-------+--------------------------

 DUPLEX APARTMENT/PENTHOUSE in 5* LOCATION! 7583 | 300 | POINT(13.3826510209548 52
.5159819722552)
 DUPLEX-PENTHOUSE IN FIRST LOCATION! 7582 | 300 | POINT(13.3799997083855 52
.5135918444834)
 Luxury Apartment in Berlin Mitte with View | 259 | POINT(13.3835653528534 52
.516360156825)
 BIG APT 4 BLNCTY-CNTR 43-H6 | 240 | POINT(13.3800222998777 52
.5134224506894)
 BIG APARTMENT-PRIME LOCATION-BEST PRICE! B0303 | 240 | POINT(13.379745196599 52.
5162648947249)
 BIG APARTMENT IN BRILLIANT LOCATION-CTY CENTRE B53 | 240 | POINT(13.381383105167 52.
5157082721072)
 SONYCENTER: lux apartment - 3room/2bath. WIFI | 235 | POINT(13.3743158954191 52
.5125308432819)
 CENTRE APARTMENT FOR 6 | 8853 | 220 | POINT(13.3819039478615 52
.5134866767369)
 BIG APARTMENT FOR 6 - BEST LOCATION 8863 | 209 | POINT(13.3830430841658 52
.5147824286783)
 3 ROOMS ONE AMAZING EXPERIENCE! 8762 | 190 | POINT(13.3819898503053 52
.5144190764637)
 AAA LOCATION IN THE CENTRE H681 | 170 | POINT(13.3821787206534 52
.5129769242004)
 H672 Nice Apartment in CENTRAL LOCATION! | 170 | POINT(13.3803137710339 52
.5132386929089)
 "Best View -best location!" | 170 | POINT(13.3799551247135 52
.5147888483851)
 H652 Best Location for 4! | 170 | POINT(13.3805705422409 52
.5143845784482)
 H651 FIT´s for Four in a 5* Location! | 150 | POINT(13.3822063502184 52
.5134994650996)
 NEXT TO ATTRACTIONS! H252 | 110 | POINT(13.3823616629115 52
.5136258446666)
 CTY Centre Students Home| G4 | 101 | POINT(13.3808081476226 52
.5130957830586)
 Room for two with private shower / WC | 99 | POINT(13.3786877948382 52
.5208018292043)
 StudentsHome CityCentre Mitte 91-0703 | 95 | POINT(13.3810390515141 52
.5142363781923)

Best Pract ices··Dat a warehouse con
st ruct ion

Hologres

12 > Document Version: 20220711

.5142363781923)
 FIRST LOCATION - FAIR PRICE K621 | 80 | POINT(13.3823909855061 52
.5131554670458)
 LONG STAY FOR EXPATS/STUDENTS- CITY CENTRE | K921 | 75 | POINT(13.380320945399 52.
512364557598)
 Nice4Students! City Centre 8732 | 68 | POINT(13.3810147526683 52
.5136623602892)
 Comfy Room in the heart of Berlin | 59 | POINT(13.3813167311819 52
.5127345388756)
 FO(U)R STUDENTS HOME-Best centre Location! | 57 | POINT(13.380850032042 52.
5131726958513)
 Berlin Center Brandenburg Gate !!! | 55 | POINT(13.3849641540689 52
.5163902851474)
 !!! BERLIN CENTER BRANDENBURG GATE | 55 | POINT(13.379997730927 52.
5127577639174)
 Superb Double Bedroom in Central Berlin | 52 | POINT(13.3792991992688 52
.5156572293422)
 OMG! That's so Berlin! | 49 | POINT(13.3754883007165 52.
5153487677272)
 Apartment in Berlin's old city center | 49 | POINT(13.3821761577766 52
.514037240604)
(29 rows)

Query the detailed information about the accommodation with the highest price and its ZIP code.

Sample code:

SELECT a.price
 ,a.name
 ,ST_AsText(a.shape)
 ,z.spatial_name
 ,ST_AsText(z.wkb_geometry)
FROM accommodations a
 ,zipcode z
WHERE price = 9000
AND ST_Within(a.shape, z.wkb_geometry)
;

Return results:

price name st_astext
spatial_name st_astext

--
9000 Ueber den Dächern Berlins Zentrum POINT(13.334436985013 52.4979779501538)
10777 POLYGON((13.3318284987227 52.4956021172799,...

Query the popular accommodations in Berlin, group the accommodations by ZIP code, and then sort
the groups by the order volume.

Hologres Best Pract ices··Dat a warehouse con
st ruct ion

> Document Version: 20220711 13

Sample code:

SELECT z.spatial_name AS zip
 ,COUNT(*) AS numAccommodations
FROM public.accommodations a
 ,public.zipcode z
WHERE ST_Within(a.shape, z.wkb_geometry)
GROUP BY zip
ORDER BY numAccommodations DESC
;

Return results:

zip numaccommodations

10245 872
10247 832
10437 733
10115 664
...
(187 rows returned)

Best Pract ices··Dat a warehouse con
st ruct ion

Hologres

14 > Document Version: 20220711

This topic provides the best pract ices for Hologres when you authorize roles based on PostgreSQL
privileges. This way, you can simplify authorization and manage privileges in a fine-grained manner.

ContextContext
Hologres is compatible with PostgreSQL and supports authorization based on PostgreSQL privileges.
Hologres also provides an authorization method called Simple Permission Model (SPM). For more
information, see Overview.

However, SPM manages privileges in a coarse-grained manner. If you need to manage privileges in a
fine-grained manner, see the "Best pract ice 1" and "Best pract ice 2" sect ions.

Overview of PostgreSQL privilegesOverview of PostgreSQL privileges
For information about PostgreSQL privileges, see 5.7. Privileges.

PostgreSQL privileges have the following limits:

PostgreSQL privileges apply only to the exist ing objects and do not apply to new objects. Example:

i. User1 executes the GRANT SELECT ON ALL TABLES IN SCHEMA public TO User2; statement to
authorize User2 to select all the tables in the publicpublic schema.

ii. User1 creates a table named t able_newt able_new in the public schema.

iii. A Permission denied error occurs when User2 executes the SELECT * FROM table_new
statement.

The SELECT privilege that User1 grants to User2 apply only to the exist ing tables in the publicpublic
schema and do not apply to new tables in the publicpublic schema. Therefore, the preceding error
occurred.

You can execute the ALTER DEFAULT PRIVILEGES statement to grant default privileges on the
objects created in the future to all the roles. For more information, see ALTER DEFAULT PRIVILEGES.
The default privileges apply only to the objects created in the future. The following statement is
used as an example:

ALTER DEFAULT PRIVILEGES IN SCHEMA public GRANT SELECT ON TABLES TO PUBLIC; // By default
, all the roles can read the new tables in the public schema.

You can also execute the ALTER DEFAULTPRIVILEGES FOR ROLE xxx statement to grant default
privileges on new objects to xxx. The default privileges can be granted only when the current role
and xxx meet one of the following requirements:

The current user is a member of the permission group to which xxx belongs.

The current role is a superuser. xxx can be either a role or a permission group.

You can use the \ddp command to check whether the ALTER DEFAULT PRIVILEGES statement
takes effect. Default privileges are stored in the pg_catalog.pg_default_acl catalog.

2.Authorization2.Authorization
2.1. Authorize roles based on2.1. Authorize roles based on
PostgreSQL privilegesPostgreSQL privileges

Hologres Best Pract ices··Aut horizat ion

> Document Version: 20220711 15

https://www.alibabacloud.com/help/doc-detail/158698.htm#concept-2449386
https://www.postgresql.org/docs/11/sql-createuser.html
https://www.postgresql.org/docs/11/sql-alterdefaultprivileges.html

 ALTER DEFAULT PRIVILEGES serves as a trigger. When you create a table, Hologres compares the
table and the pg_catalog.pg_default_acl catalog based on the current role and schema
information. If matches are found, the corresponding match rules are added.

Not eNot e

Only the current user can be used for comparison. The permission group to which the
current role belongs cannot be used for comparison.

The ALTER DEFAULT PRIVILEGES can be executed only when you create a table. If you
execute the ALTER TABLE <TABLE> OWNER TO XX statement after you create a table,
the ALTER DEFAULT PRIVILEGES statement is not executed.

Assume that User1 belongs to Group1 and you want to grant privileges to a table created in the
future and compare the table and Group1. The following results are obtained:

If the current role is User1, no matches are found during the comparison.

If you execute the SET SESSION ROLE Group1 statement to change the current role to
Group1 before you create a table, matches are found during the comparison. Then, the
privileges are automatically granted to the table.

Only the table owner can delete a table.

You can decide whether the table can be deleted based on the current role. Only the following roles
have the DELETE privilege:

The owner of the table.

The owner of the schema to which the table belongs.

Superuser

By default , the user who creates a table is the owner of the table. The user has all the privileges on
the table, including the DELETE privilege.

The following sample statements are used to assign a table to a new owner:

alter table <table> owner to ; // Assign the table to User2.
alter table <table> owner to GROUP1; // Assign the table to GROUP1.

The following limits apply when a table is assigned to a new owner:

User1 is the owner of the table.

User1 must directly or indirectly belong to Group1.

For example, User1 is a member of Group1, or User1 is a member of a group in Group1.

Group1 must have the USAGE privilege on the schema.

A superuser can assign a table to a new owner.

Assign privilegesAssign privileges
You must assign the following items before you manage privileges:

The total number of permission groups.

The privileges of the permission groups.

The roles in each permission group.

The roles that can delete tables and the t ime that tables can be deleted.

Best Pract ices··Aut horizat ion Hologres

16 > Document Version: 20220711

The schemas to which the permission groups respectively belong.

We recommend that you perform the following operations before you manage privileges:

Create permission groups and assign their privileges.

Permission groups are divided into the following types:

XX_DEV_GROUP: the owner of a table. The owner has all the privileges on the table.

XX_WRITE_GROUP: the privileges to write data to a table.

XX_VIEW_GROUP: the privileges to view data in a table.

XX indicates a project. For example, the permission groups of the PROJ1 project include
PROJ1_DEV_GROUP, PROJ1_WRITE_GROUP, and PROJ1_VIEW_GROUP.

Not e Not e The preceding naming formats are only for reference.

Assign schemas for the permission groups.

We recommend that you assign a schema for the permission groups of a project.

Each permission group can own mult iple tables. However, each table can belong to only one
permission group. For example, TABLE1 can belong only to PROJ1_DEV_GROUP.

Each role can belong to mult iple permission groups. For example, USER1 can belong to
PROJ1_DEV_GROUP and PROJ2_DEV_GROUP.

Best practice 1Best practice 1
A table is used as an example.

All the members in the permission group where the owner belongs can manage or delete the table.

Perform the following operations to add a role to the permission group where the owner belongs:

1. Create permission groups.

You can create permission groups based on your needs. Assume that the project is named PROJ1.
The following statements are used as an example:

create role PROJ1_DEV_GROUP; // The owner of the table. The owner has all the privilege
s on the table.
create role PROJ1_WRITE_GROUP; // The privileges to write data to the table.
create role PROJ1_VIEW_GROUP; // The privileges to view data in the table.

2. Grant privileges to the schemas.

You must grant privileges to the schemas to which the permission groups belong. Assume that
PROJ1 belongs to schema1. The following statements are used as an example:

Grant all the privileges of schema1 to PROJ1.
grant create,usage on schema SCHEMA1 to PROJ1_DEV_GROUP;
grant usage on schema SCHEMA1 to PROJ1_WRITE_GROUP;
grant usage on schema SCHEMA1 to PROJ1_VIEW_GROUP;

Hologres Best Pract ices··Aut horizat ion

> Document Version: 20220711 17

Not eNot e

Each project can belong to mult iple schemas. Each schema can have mult iple projects.

By default , all the roles in the publicpublic schema have the CREATE privilege and the USAGE
privilege.

3. Create roles and manage the permission groups.

After you grant privileges to the permission groups as a superuser, you must create and add a role
to the permission groups. The following statements are used as an example:

create user "USER1";
grant PROJ1_DEV_GROUP to "USER1";
create user "USER2";
grant PROJ1_VIEW_GROUP to "USER2";

4. Create a table and grant the privileges on the table to the roles.

When a table is created, the owner or a superuser must grant the privileges on the table to the
roles. Take note that the owner must be a member of PROJ1_DEVE_GROUP. The following
statements are used as an example:

grant all on table SCHEMA1.TABLE1 to PROJ1_WRITE_GROUP; // Grant PROJ1_WRITE_GROUP the
privileges to write data to table1.
grant select on table SCHEMA1.TABLE1 to PROJ1_VIEW_GROUP; // Grant PROJ1 _VIEW_GROUP th
e SELECT privilege.
alter table SCHEMA1.TABLE1 owner to PROJ1_DEV_GROUP; // Assign TABLE1 to PROJ1_DEV_GROU
P.

Best practice 2Best practice 2
The ALTER DEFAULT PRIVILEGES statement is used in this example.

Perform the following operations to assign a table to a new owner or change the project to which a
role belongs:

1. Create permission groups.

You can create permission groups based on your needs. Assume that the project is named PROJ1.
The following statements are used as an example:

create role PROJ1_DEV_GROUP; // The owner of the table. The owner has all the privilege
s on the table.
create role PROJ1_WRITE_GROUP; // The privileges to write data to the table.
create role PROJ1_VIEW_GROUP; // The privileges to view data in the table.

2. Grant privileges to the schemas.

You must grant privileges to the schemas to which the permission groups belong. Assume that
PROJ1 belongs to schema1. The following statements are used as an example:

Grant all the privileges of schema1 to PROJ1.
grant create,usage on schema SCHEMA1 to PROJ1_DEV_GROUP;
grant usage on schema SCHEMA1 to PROJ1_WRITE_GROUP;
grant usage on schema SCHEMA1 to PROJ1_VIEW_GROUP;

Best Pract ices··Aut horizat ion Hologres

18 > Document Version: 20220711

Not eNot e

Each project can belong to mult iple schemas. Each schema can have mult iple projects.

By default , all the roles in the publicpublic schema have the CREATE privilege and the USAGE
privilege.

3. Create roles and grant default privileges to the roles.

After privileges are granted to the schemas, a superuser needs to create roles and add the roles to
the permission groups. The superuser also needs to grant default privileges to the roles.

The following statements are used as an example:

create user "USER1";
alter default privileges for role "USER1" grant all on tables to PROJ1_DEV_GROUP; // Gr
ant PROJ1_DEV_GROUP the default privileges on the table created by USER1.
alter default privileges for role "USER1" grant all on tables to PROJ1_WRITE_GROUP; //
Grant PROJ1_WRITE_GROUP the default privileges on the table created by USER1.
alter default privileges for role "USER1" grant select on tables to PROJ1_VIEW_GROUP; /
/ Grant PROJ1_VIEW_GROUP the default privileges on the table created by USER1.
grant PROJ1_DEV_GROUP to "USER1"; // Add USER1 to PROJ1_DEV_GROUP.

4. Assign the table to a new owner.

If you want to authorize other members of PROJ1_DEV_GROUP to perform operations on the table,
you can assign the table to PROJ1_DEV_GROUP.

The ALTER TABLE <TABLE> OWNER TO PROJ1_DEV_GROUP statement must be executed by a
superuser. Assume that the table is named TABLE1. The following statement is used as an
example:

alter table SCHEMA1.TABLE1 owner to PROJ1_DEV_GROUP; // Assign TABLE1 to PROJ1_DEV_GROU
P.

A table can be assigned to a new owner when the following requirements are met:

The table is newly created and a superuser modifies the owner on a regular basis.

The table is assigned to a new owner before operations are performed on it .

If the table is modified or deleted by the owner or a superuser, you do not need to execute the
preceding statements.

5. Change the default project to which a role belongs.

Only the owner or the role can execute the ALTER DEFAULT PRIVILEGE statement to revoke the
default privileges granted to the current project. Then the owner or the role execute the ALTER D
EFAULT PRIVILEGE statement again to grant default privileges to another project.

If the project is changed, the table is not affected. The following statements are used as an
example:

Hologres Best Pract ices··Aut horizat ion

> Document Version: 20220711 19

Disable the default privileges granted to the current project.
alter default privileges for role "USER1" revoke all on tables from PROJ1_DEV_GROUP;
alter default privileges for role "USER1" revoke all on tables from PROJ1_WRITE_GROUP;
alter default privileges for role "USER1" revoke select on tables from PROJ1_VIEW_GROUP
;
Grant default privileges to another project.
alter default privileges for role "USER1" grant all on tables to PROJ2_DEV_GROUP;
alter default privileges for role "USER1" grant all on tables to PROJ2_WRITE_GROUP;
alter default privileges for role "USER1" grant select on tables to PROJ2_VIEW_GROUP;

Best Pract ices··Aut horizat ion Hologres

20 > Document Version: 20220711

This topic describes the best pract ices for data warehouse layering in Hologres. You can use these best
pract ices to develop your business by using real-t ime data warehouses that feature high performance
and agility.

ContextContext
Hologres is highly compatible with Realt ime Compute for Apache Flink, MaxCompute, and DataWorks,
and provides data warehousing solut ions that integrate stream processing and batch processing. These
solutions are applicable to a wide range of scenarios, such as real-t ime dashboards, real-t ime risk
control, and fine-grained operations. Different scenarios pose varied requirements for the amount of
data to be processed, data complexity, data sources, and real-t ime performance. To develop a
tradit ional data warehouse based on the classic methodology, you need to develop the following
layers in sequence: Operational Data Store (ODS), Data Warehouse Detail (DWD), Data Warehouse
Service (DWS), and Application Data Service (ADS) . Data tasks are scheduled among the layers in
an event-driven or micro-batch manner. Layering helps improve semantic abstract ion and data reuse.
However, layering also increases scheduling dependencies, reduces the real-t ime performance of data,
and reduces the agility of data analysis.

Real-t ime data warehouses drive customers to make real-t ime business decisions. In most cases, rich
contextual information is required to make business decisions. This poses challenges to the tradit ional
development method that highly depends on business-oriented ADS customization. Thousands of ADS
tables are difficult to maintain, and the ut ilizat ion rate is low. An increasing number of customers
expect to perform mult i-dimensional data comparison and analysis at the DWS or even DWD layer. This
poses higher requirements for computing efficiency, scheduling efficiency, and I/O efficiency of the
query engine.

The computing capabilit ies of Hologres are improved in each new version due to the application of
various query engine optimization technologies, such as computing operator vectorization and
rewrit ing, f ine-grained indexing, asynchronous execution, and mult i-level caching. An increasing number
of customers adopt an agile development method. In the pre-computing stage, the customers perform
only data cleansing and basic large table associat ion and widening. Data modeling stops at the DWD
and DWS layers. This reduces the number of modeling layers. The customers use the interact ive search
engine of Hologres to perform flexible queries. Hologres performs second-level interact ive analyt ics to
support the trend of data democratization.

To meet the requirements of different business scenarios, we recommend that you design layers and
process data by using the three solut ions. This can help increase the agility of your development
process.

Solut ion 1: ad hoc queries. In this solut ion, data is preprocessed at the DWD layer in Realt ime
Compute for Apache Flink. The processed data is directly writ ten to Hologres. Hologres provides
online analyt ical processing (OLAP) queries and online services. This way, data can be used
immediately after it is writ ten.

Solut ion 2: minute-level quasi-real-t ime data warehousing. In this solut ion, micro-batch processing is
implemented. Data is preprocessed at the DWD layer in Realt ime Compute for Apache Flink. After the
processed data is writ ten to Hologres, Hologres processes the data at the aggregation layer and

3.Scenario Scheme3.Scenario Scheme
3.1. Recommended data warehouse3.1. Recommended data warehouse
layering solutionslayering solutions

Hologres Best Pract ices··Scenario Scheme

> Document Version: 20220711 21

then provides data services to upper-layer applications.

Solut ion 3: real-t ime stat ist ics collect ion of incremental data. In this solut ion, event-driven processing
is implemented. Data is processed at the DWD and DWS layers in Realt ime Compute for Apache Flink.
Then, the processed data is writ ten to Hologres for upper-layer applications.

Rules for selecting solutionsRules for selecting solutions
After data is writ ten to Hologres, you can use Hologres to implement one of the preceding data
warehousing solut ions.

Select Solut ion 1 if the following condit ions are met: Your business requires high real-t ime
performance. You expect data to be available for queries immediately after the data is writ ten to
Hologres and expect data updates to be synchronized to Hologres in real t ime. Ad hoc queries need
to be supported. You have sufficient resources. For more information, see Solut ion 1: Ad hoc queries.

Select Solut ion 2 if your business requires real-t ime analyt ics and you priorit ize development
efficiency over real-t ime performance. The minute-level quasi-real-t ime solut ion is suitable for more
than 80% of real-t ime data warehousing scenarios. For more information, see Solut ion 2: Minute-level
quasi-real-t ime data warehousing.

Select Solut ion 3 if the following condit ions are met: Your business focuses on providing online
services such as dashboards and risk control. The data volume for your business is small and only
incremental data is required to generate stat ist ical results. You priorit ize real-t ime performance over
development efficiency and cost-effect iveness of computing. For more information, see Solut ion 3:
Real-t ime stat ist ics collect ion of incremental data.

Solution 1: Ad hoc queriesSolution 1: Ad hoc queries
In this solut ion, the query patterns of upper-layer applications are unknown. The data is stored to
support flexible ad hoc queries.

We recommend that you apply the following policies:

Perform simple cleansing and associat ion on data from the ODS layer and store the processed data
to the DWD layer. Then, write the detail data to Hologres without processing or aggregating the
data.

Use Realt ime Compute for Apache Flink to process incremental data and update detail data in
Hologres in real t ime. Write the batch tables that are processed by MaxCompute to Hologres.

Encapsulate SQL logic into views at the common data model (CDM) or ADS layer because the analysis
SQL statements of upper-layer applications are not fixed.

Query the encapsulated views in upper-layer applications to implement ad hoc queries.

Advantages:

The flexibility is high. The views can be adjusted based on your business logic in a flexible way.

The metrics are easy to correct. The logic is encapsulated into views and no aggregate tables exist in
the upper layers. To update data, you need to only update data in underlying tables. This process
involves only one layer. You do not need to update tables for upper-layer applications.

Disadvantages: If the logic of views is complex and the data volume is large, the query performance is
low.

Use scenarios: Data originates from databases and event tracking systems, high flexibility is required,
high queries per second (QPS) is not required, and the computing resources are sufficient.

Solution 2: Minute-level quasi-real-time data warehousingSolution 2: Minute-level quasi-real-time data warehousing

Best Pract ices··Scenario Scheme Hologres

22 > Document Version: 20220711

The computing efficiency provided by Solut ion 1 cannot meet high QPS requirements. Solut ion 2 is an
upgraded version of Solut ion 1. In Solut ion 2, the views are materialized into tables. Solut ion 2 uses the
same logic as Solut ion 1, but a smaller volume of data is stored in tables. This helps improve query
performance.

We recommend that you apply the following policies:

Perform simple cleansing and associat ion on data from the ODS layer and store the processed data
to the DWD layer. Then, write the detail data to Hologres without processing or aggregating the
data.

Use Realt ime Compute for Apache Flink to process incremental data and update detail data in
Hologres in real t ime.

Store data in physical tables at the CDM or ADS layer. Schedule DataWorks to periodically write data
to the tables.

Query the physical tables in real t ime from upper-layer applications. The real-t ime performance of
data depends on the scheduling cycle that is configured in DataWorks. For example, DataWorks
supports 5-minute and 10-minute scheduling cycles. This way, you can implement minute-level quasi-
real-t ime data warehousing.

Advantages:

The query performance is high. Upper-layer applications query only aggregate data. Compared with
view queries, table queries are performed on less data and provide higher query performance.

Data can be updated in a short period of t ime. If a step error or a data error occurs, you need to only
run scheduled nodes again in DataWorks. All the logic is f ixed. You do not need to perform
complicated link revision operations.

The business logic can be adjusted in a short period of t ime. If you need to add or adjust the business
code at each layer, you can develop business scenarios based on SQL statements in what you see is
what you get (WYSIWYG) mode. This helps shorten the release cycle of your business application.

Disadvantages: The real-t ime performance provided by Solut ion 2 is lower than that provided by
Solution 1 because more processing and scheduling steps are involved.

Use scenarios: Data originates from databases and event tracking systems, and high QPS and real-t ime
performance are required. This solut ion is suitable for 80% of real-t ime data warehousing scenarios and
can meet the requirements of most business scenarios.

Solution 3: Real-time statistics collection of incremental dataSolution 3: Real-time statistics collection of incremental data
Incremental computing is required if your business is sensit ive to data latency and your business requires
data to be processed immediately after the data is generated. In this case, you can use Realt ime
Compute for Apache Flink to process and aggregate data at the DWD and DWS layers and store
aggregated result sets for upper-layer applications.

We recommend that you apply the following policies:

Use Realt ime Compute for Apache Flink to cleanse, transform, and aggregate incremental data. Store
the application data that is generated at the ADS layer in Hologres.

Write the result sets that are generated in Realt ime Compute for Apache Flink in dual-write mode.
The result sets are delivered to the message topic at the next layer and exported to data sinks in
Hologres at the same layer. This way, you can check and refresh the status of historical data in
subsequent operations in a convenient manner.

Collect stat ist ics in Realt ime Compute for Apache Flink by using incremental streams, incremental
streams connected to stat ic dimension tables, or incremental streams connected to incremental
streams. Write the collected data to Hologres.

Hologres Best Pract ices··Scenario Scheme

> Document Version: 20220711 23

Hologres provides tables for upper-layer applications to perform real-t ime queries.

Advantages:

The real-t ime performance is high. This solut ion can meet the requirements of latency-sensit ive
business scenarios.

The metrics are easy to correct. This solut ion is different from tradit ional incremental computing in
that the intermediate status is persistently stored in Hologres. This helps improve the flexibility of
subsequent analysis operations. If the quality of intermediate data cannot meet your requirements,
you can modify tables to update data.

Disadvantages: Real-t ime incremental computing relies on Realt ime Compute for Apache Flink. Users
must be skilled and proficient in using Realt ime Compute for Apache Flink. This solut ion cannot meet
requirements in scenarios in which data is frequently updated and cannot be aggregated or complex
overhead computing scenarios such as mult i-stream join queries.

Use scenarios: The data volume is not large, the data is collected from event tracking systems, and only
incremental data is required to generate stat ist ical results. This solut ion provides the highest real-t ime
performance among the three solut ions.

This topic describes how to connect Hologres to Realt ime Compute to build a real-t ime data
warehouse and then connect Hologres to a Business Intelligence (BI) tool to display data analyt ics
results.

PrerequisitesPrerequisites
A Hologres instance is purchased and a development tool is connected to the instance. For more
information, see Quick start to HoloWeb.

Realt ime Compute is act ivated.

Not e Not e Make sure that you act ivate the Realt ime Compute and Hologres services in the same
region.

DataV is act ivated. For more information, see Act ivate DataV.

ContextContext
Hologres is an interact ive analyt ics service developed by Alibaba Cloud. Based on the built-in HoloHub
API, Hologres connects to Realt ime Compute to support real-t ime writes and queries in high
concurrency. Hologres can respond to queries within seconds.

Hologres is compatible with PostgreSQL. You can connect Hologres to a BI tool to analyze queried data
and display data analyt ics results in a visualized manner.

This topic uses an e-commerce store as an example to describe how to display operating metrics in real
t ime. The metrics include the number of unique visitors (UVs) to the store, number of UVs to each
product, sales amount in each city, and stat ist ics of hot-selling products.

3.2. Real-time report analysis3.2. Real-time report analysis
3.2.1. Build a real-time data warehouse and3.2.1. Build a real-time data warehouse and
display data analytics resultsdisplay data analytics results

Best Pract ices··Scenario Scheme Hologres

24 > Document Version: 20220711

The following figure shows the process of using Hologres to display operating metrics on a dashboard
in real t ime.

Source data is collected and written to Realt ime Compute in real t ime for cleansing and aggregation.

Data processed by Realt ime Compute is writ ten to Hologres for interact ive searches.

Query results are displayed in DataV in real t ime, which is connected to Hologres.

ProcedureProcedure
1. Collect source data.

Use DataHub, a streaming data processing service, or service logs to collect source data.

To simplify the process, this best pract ice uses Realt ime Compute to generate source data. For
more information, see step 3.

2. Create a table in Hologres for receiving data.

Use HoloWeb to create a table for receiving data. Make sure that this table contains the same field
s of the same data types as the source table. The following SQL statements are used as an
example:

begin;
drop table if exists order_details;
create table order_details(user_id bigint, user_name text, item_id bigint, item_name te
xt, price numeric(38, 2), province text, city text, ip text, longitude text, latitude t
ext, sale_timestamp timestamptz not null);
call set_table_property('order_details', 'distribution_key', 'user_id');
call set_table_property('order_details', 'segment_key', 'sale_timestamp');
call set_table_property('order_details', 'clustering_key', 'sale_timestamp');
commit;

3. Use Realt ime Compute to cleanse data.

Log on to the Realt ime Compute console. In the console, create a job to cleanse and aggregate
collected data in the data source and call the HoloHub API to write processed data to Hologres in
real t ime. The following SQL statements are used as an example:

// Create a data source.
create table order_details(
 user_id BIGINT,
 user_name VARCHAR,
 item_id BIGINT,
 item_name VARCHAR,

Hologres Best Pract ices··Scenario Scheme

> Document Version: 20220711 25

https://holoweb.data.aliyun.com/?accounttraceid=45e5a27e1d4e45498cce63682fbfc8b9fbzx#/
https://account.alibabacloud.com/login/login.htm?oauth_callback=http://stream-ap-southeast-3.console.aliyun.com/

 item_name VARCHAR,
 price numeric(38, 2),
 province VARCHAR,
 city VARCHAR,
 ip VARCHAR,
 longitude VARCHAR,
 latitude VARCHAR,
 sale_timestamp TIMESTAMP
) with (
 type = 'custom',
 tableFactoryClass = 'com.alibaba.blink.connectors.hologres.table.factory.DemoDataGene
ratorFactory');
// Create a connection to Hologres.
create table hologres_sink(
 user_id BIGINT,
 user_name VARCHAR,
 item_id BIGINT,
 item_name VARCHAR,
 price numeric(38, 2),
 province VARCHAR,
 city VARCHAR,
 ip VARCHAR,
 longitude VARCHAR,
 latitude VARCHAR,
 sale_timestamp TIMESTAMP
) with (
 type = 'custom',
 tableFactoryClass = 'com.alibaba.blink.connectors.hologres.table.factory.HologresTabl
eFactory',
 endpoint = 'Virtual Private Cloud (VPC) endpoint and port number used to call the Hol
oHub API',
 dbName = 'Name of the Hologres database to be connected to',
 tableName = 'Name of the Hologres table for receiving data',
 username = 'AccessKey ID of the current Alibaba Cloud account',
 password = 'AccessKey secret of the current Alibaba Cloud account',
 batchSize = '500',
 bufferSize = '500'
);
// Write data to Hologres.
insert into hologres_sink
select
 user_id
, user_name
, item_id
, item_name
, price
, province
, city
, latitude
, longitude
, ip
, sale_timestamp
from order_details;

You can run the following command in the target Hologres instance to query the VPC endpoint

Best Pract ices··Scenario Scheme Hologres

26 > Document Version: 20220711

used to call the HoloHub API:

show hg_datahub_endpoints;

4. Publish a Realt ime Compute job.

To commit and publish a Realt ime Compute job to the production environment, perform the
following steps:

i. Reference a resource package in a job.

Log on to the Realt ime Compute console. In the left-side navigation pane, click ResourcesResources. On
the page that appears, click Creat e ResourceCreat e Resource. In the Upload ResourceUpload Resource dialog box, set
parameters as required to upload a Realt ime Compute resource package. To obtain a sample
Realt ime Compute resource package, click Blink.

Hologres Best Pract ices··Scenario Scheme

> Document Version: 20220711 27

https://account.alibabacloud.com/login/login.htm?oauth_callback=http://stream-ap-southeast-3.console.aliyun.com/
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/170591/cn_zh/1591698479126/blink-connector-hologres-07-demo%25281%2529.jar

ii. Publish the job.

After a resource package is referenced, click Save and then PublishPublish. Set resource parameters
as required and publish the job to the production environment.

iii. Start the job.

After the job is published, go to Administrat ion page to start the job. The job then enters the
Running state, as shown in the following figure.

5. Use Hologres to query data in real t ime.

Use the SELECT statement to query data that is writ ten to Hologres in real t ime from different
dimensions. The following SQL statements are used as an example:

select sum(price) as "GMV" from order_details ;
select count(distinct user_id) as "UV" from order_details ;
select city as "City", count(distinct user_id) as "Number of customers who purchased pr
oducts" from order_details group by "City" order by "Number of customers who purchased
products" desc limit 100;
select item_name as "Product", sum(price) as "Sales amount" from order_details group by
"Product" order by "Sales amount" desc limit 100;
select to_char(sale_timestamp, 'MM-DD') as "Date", sum(price) as "GMV" from order_detai
ls group by "Date" order by "GMV" desc limit 100;

6. Create a dashboard in DataV to display query results in Hologres.

To create a dashboard in DataV to display query results in Hologres, perform the following steps:

i. Add a connection to the data source.

Log on to the DataV console. Click the Dat a SourcesDat a Sources tab. On the Data Sources tab, click AddAdd
SourceSource. In the Add Dat a SourceAdd Dat a Source dialog box, set parameters as required.

Select Hologres from the T ypeT ype drop-down list .

Best Pract ices··Scenario Scheme Hologres

28 > Document Version: 20220711

ii. Create a dashboard to display real-t ime data.

Select widgets to be contained on the dashboard and configure a data source for each
widget based on your business requirements. For more information, see Widget overview.

This best pract ice selects the basic column chart, carousel widget, basic flat map, and t icker
board for the dashboard. Take a mult iple pie chart as an example.

a. Set parameters for the dat a sourcedat a source used by the mult iple pie chart.

b. Set the t it le, border, font, and color for the mult iple pie chart.

iii. Decorate the dashboard.

After you configure the widgets and their data sources, you can decorate the dashboard as
required.

The total number of UVs to each product and sales amount in top cit ies are shown on the
left in real t ime.

The map in the middle highlights the location of each transaction order and refreshes the
total sales amount in real t ime. The total number of UVs to the store is shown on the top of
the map.

The sales percentage and sales ranking of each product are shown on the right in real t ime.

This topic describes how to query large amounts of MaxCompute data and analyze and display the
query results in a visualized manner.

PrerequisitesPrerequisites
MaxCompute is act ivated. For more information, see Act ivate MaxCompute and DataWorks.

Not e Not e Make sure that you act ivate the MaxCompute and Hologres services in the same
region.

A Hologres instance is purchased and connected to HoloWeb. For more information, see Quick start
to HoloWeb.

Quick BI is act ivated. For more information, see Prerequisites.

ContextContext
Hologres is a real-t ime interact ive analyt ics engine. It is compatible with PostgreSQL and integrates
seamlessly with MaxCompute.

You can create a foreign table in Hologres to directly query data in MaxCompute.

This topic uses a Taobao store as an example to describe how to create a customer persona with the
following information: the regional distribution and age composit ion of customers, the number of
preferred customers, and the regional distribution of preferred customers who were born between
1980 and 1990.

The complete link for speeding up the query of maxcompute data using hologres is shown below.

1. Save data of customers who visited the store to MaxCompute tables.

3.2.2. Analyze large amounts of MaxCompute3.2.2. Analyze large amounts of MaxCompute
data in real timedata in real time

Hologres Best Pract ices··Scenario Scheme

> Document Version: 20220711 29

https://www.alibabacloud.com/help/doc-detail/59277.htm#concept-r3t-w4m-q2b
https://www.alibabacloud.com/help/doc-detail/58226.htm#task-dkr-hyw-5db
https://www.alibabacloud.com/help/doc-detail/100630.htm#concept-szg-hcl-2gb

2. Create a foreign table in Hologres to directly query data in MaxCompute.

3. Connect Quick BI to the target Hologres instance to display the customer persona in a visualized
manner.

ProcedureProcedure
1. Prepare a MaxCompute data source.

Create a table in MaxCompute and import data to the table. For more information, see Create
tables.

This best pract ice uses the following exist ing tables in the MaxCompute project public_dat apublic_dat a.

MaxCompute table Data entries

customer 12 million

customer_address 6 million

customer_demographics 1.92 million

2. Create a foreign table in Hologres and query the table.

To use HoloWeb to create a foreign table in Hologres for accelerating data queries from
MaxCompute, perform the following steps:

i. Connect a Hologres instance to HoloWeb.

Log on to HoloWeb. On the Connect ion ManagementConnect ion Management tab, click Dat a Connect ionDat a Connect ion. In the
New Connect ionNew Connect ion dialog box, set parameters as required and click OKOK.

Best Pract ices··Scenario Scheme Hologres

30 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/27808.htm#concept-rkk-kcy-5db
https://holoweb-cn-shanghai.data.aliyun.com/connect
https://holoweb-cn-shanghai.data.aliyun.com/connect

Parameter Description Remarks

Connection
name

The name of the connection.
Enter a name as required.

None

Connection
description

The description of the
connection.

None

Host
The public endpoint of the
Hologres instance.

You can view the public endpoint of the
Hologres instance on the Conf igurat ionConf igurat ion
tab of the instance details page in the
Hologres console.

Port
The public port number of the
Hologres instance.

You can view the port number of the
Hologres instance on the Conf igurat ionConf igurat ion
tab of the instance details page in the
Hologres console.

Init ialize
database

The name of the Hologres
database to be connected to
HoloWeb.

None

User name
The AccessKey ID of the
current Alibaba Cloud account.

You can obtain the AccessKey ID in the User
Management console.

Password
The AccessKey secret of the
current Alibaba Cloud account.

You can obtain the AccessKey secret in the
User Management console.

Test
connectivity

Check whether the data
connection is successful.

Successful: The "T est"T est
passed"passed" message appears.

Failed: The "T est f ailed""T est f ailed"
message appears.

None

Hologres Best Pract ices··Scenario Scheme

> Document Version: 20220711 31

https://hologram.console.aliyun.com/#/instance
https://hologram.console.aliyun.com/#/instance
https://usercenter.console.aliyun.com/?spm=5176.2020520153.nav-right.dak.3bcf415dCWGUBj#/manage/ak
https://usercenter.console.aliyun.com/?spm=5176.2020520153.nav-right.dak.3bcf415dCWGUBj#/manage/ak

ii. Create a foreign table.

Click Connect ion ManagementConnect ion Management in the top navigation bar. On the Connection Management
page, click Ext ernal T ableExt ernal T able. On the New external table tab, set parameters as required to
create a foreign table in a visualized manner.

Enter the name of the MaxCompute table to be queried. Then, fields in the table appear.
Select f ields to be synchronized and click SubmitSubmit .

Not eNot e

Hologres does not support querying MaxCompute tables that reside in a different
region from the current Hologres instance.

A server is required for storing a foreign table. You can directly call the
odps_serverodps_server server created at the underlying layer of Hologres. For more
information, see postgres_fdw.

You can use the following SQL statement to create mult iple foreign tables at a t ime:

IMPORT FOREIGN SCHEMA public_data LIMIT to(
 customer,
 customer_address,
 customer_demographics,
 inventory,item,
 date_dim,
 warehouse)
 FROM server odps_server INTO PUBLIC options(if_table_exist 'update');

iii. Preview a foreign table.

After you create a foreign table, click My Connect ionsMy Connect ions on the Connect ion ManagementConnect ion Management
tab.

Right-click the target foreign table and click Dat a PreviewDat a Preview to view data in the MaxCompute
table mapped to the foreign table.

The Dat a PreviewDat a Preview tab only shows part ial data in the foreign table.

iv. Query data in the foreign table.

Click Query in the top navigation bar. On the page that appears, click SQL Window. In the New
SQL Query dialog box, set parameters as required. Select the connection and database to
which the target foreign table belongs. In the SQL editor, write an SQL statement to query
data as required.

For example, you can use the following SQL statements:

Best Pract ices··Scenario Scheme Hologres

32 > Document Version: 20220711

https://www.postgresql.org/docs/11/postgres-fdw.html?spm=a2c4g.11186623.2.11.7e476020Gyif3k

SQL 1: Query the number of non-preferred customers and the numbers of preferred c
ustomers with various flags, and sort the query results in descending order of the
number of customers.
SELECT c_preferred_cust_flag,
 count(*) AS cnt
FROM customer
WHERE c_preferred_cust_flag IS NOT NULL
GROUP BY c_preferred_cust_flag
ORDER BY cnt DESC LIMIT 10;
SQL 2: Query the number of customers born in each year, and display the years in
which more than 1,000 customers were born in descending order of the number of cust
omers.
SELECT c_birth_year,
 count(*) AS cnt
FROM customer
WHERE c_birth_year IS NOT NULL
GROUP BY c_birth_year HAVING count(*) > 1000
ORDER BY cnt DESC LIMIT 10;
SQL 3: Query the number of customers in each city, and display the cities where m
ore than 10 customers reside in descending order of the number of customers.
SELECT ca_city,
 count(*) AS cnt
FROM customer ,
 customer_address
WHERE c_current_addr_sk = ca_address_sk
 AND ca_city IS NOT NULL
GROUP BY ca_city HAVING count(*) > 10
ORDER BY cnt DESC LIMIT 10;
SQL 4: Query the number of customers who were born between 1980 and 1990 in each
city, and display the cities in which more than 10 customers born between 1980 and
1990 reside in descending order of the number of customers.
SELECT ca_city,
 count(*) AS cnt
FROM customer ,
 customer_address
WHERE c_current_addr_sk = ca_address_sk
 AND c_birth_year >= 1980
 AND c_birth_year < 1990
 AND c_preferred_cust_flag = 'Y'
 AND ca_city IS NOT NULL
GROUP BY ca_city HAVING count(*) > 10
ORDER BY cnt DESC LIMIT 10;

3. Use Quick BI to analyze data.

To connect Quick BI to the target Hologres instance to analyze and display data queried from
MaxCompute in a visualized manner, perform the following steps:

i. Add a connection.

Log on to the Quick BI console and add a PostgreSQL connection to Hologres. For more
information, see Quick BI.

Hologres Best Pract ices··Scenario Scheme

> Document Version: 20220711 33

https://www.alibabacloud.com/help/doc-detail/143044.htm#concept-2335967

ii. Create a dataset.

After you connect Quick BI to Hologres, create a dataset and import the required data to the
dataset to produce reports.

This best pract ice uses ad hoc query SQL st at ement sad hoc query SQL st at ement s to create a dataset.

iii. Display the customer persona in a visualized manner.

In user behavior analysis and user identificat ion scenarios, you often need to filter hundreds of millions
of users or even billions of users to obtain metric data that has specific tags. This topic describes how
to perform user behavior analysis in Hologres.

Background informationBackground information
The unique visitor (UV) metric is most frequently used in behavior analysis and indicates the number of
dist inct individuals that have visited pages of a website within a specific t ime range. The UV metric can
also be used to reflect the value of a specific metric within a t ime range after deduplication. For
example, a seller needs to calculate the number of UVs in real t ime in a large e-commerce promotion.
This way, the seller can adjust operation strategies at the earliest opportunity to achieve the sales
goal.

When you calculate the number of UVs, the calculat ion dimension and data volume vary based on your
business scenarios. In general, the following scenarios are involved:

Your business involves hundreds of millions of data entries in more than 10 dimensions each day. You
want to freely customize dimensions to query a huge amount of data.

In addit ion to data query and update by day, week, month, or year, you want to query and update
data in real t ime at a finer granularity.

You want to accurately remove duplicate users.

In the preceding complex UV calculat ion scenarios, a pre-calculat ion system such as Apache Kylin or the
Flink-MySQL solut ion with a fixed dimension is often used. However, such a solut ion has the following
disadvantages:

If UV calculat ion involves a large number of dimensions, a large amount of storage space is required,
and the pre-calculat ion t ime is long.

Accurate deduplication consumes a large number of resources. As a result , out-of-memory (OOM)
errors easily occur.

Real-t ime updates are difficult to implement, and data cannot be processed in a more flexible and
open t ime window.

Solutions and benefitsSolutions and benefits
Hologres is a real-t ime data warehouse for hybrid serving and analyt ical processing (HSAP). Hologres
uses a distributed architecture, supports real-t ime data writ ing, and can analyze and process petabytes
of data with high concurrency and low latency. Hologres is compatible with the PostgreSQL protocol
and allows you to use exist ing tools for data analyt ics.

Hologres provides high performance and can accurately calculate hundreds of millions of UVs by using
Roaring bitmaps and auto-increment columns of the SERIAL type.

3.3. User behavior analysis3.3. User behavior analysis
3.3.1. Overview3.3.1. Overview

Best Pract ices··Scenario Scheme Hologres

34 > Document Version: 20220711

RoaringBitmap

Roaring bitmaps are compressed bitmaps for indexing. The data compression and deduplication
features of Roaring bitmaps are ideal for UV calculat ion in big data scenarios. Roaring bitmaps have
the following characterist ics:

In a Roaring bitmap 216 chunks are constructed for 32-bit integers and correspond to the 16 most
significant bits of the 32-bit integers. The 16 least significant bits of the 32-bit integer are mapped
to a single bit in each chunk. The capacity of a single chunk is determined by the exist ing maximum
value in the chunk.

A Roaring bitmap uses one bit to represent a 32-bit integer. This greatly compresses data.

Roaring bitmaps provide bitwise operations for deduplication.

For more information about how to use Roaring bitmaps, see Roaring bitmap functions.

Serial

Auto-increment columns of the SERIAL type are often used for user ID (UID) mapping when you join a
source table with a dimension table. In many cases, UIDs collected in business systems or tracking
points are of the STRING or LONG type. In these cases, you need to create a UID mapping table. UIDs
stored in Roaring bitmaps must be 32-bit integers and need to be consecutive if possible. The UID
mapping table contains a column of the SERIAL type that consists of auto-increment 32-bit integers.
This way, the UID mapping is automatically managed and remains stable.

Batch UV calculationBatch UV calculation
In batch UV calculat ion, all data of the previous day is aggregated into UIDs based on the largest query
dimension and stored in Roaring bitmaps. The Roaring bitmaps and query dimensions are stored in an
aggregation result table. The aggregation result table stores only millions of data entries per day.
When you query data, Hologres uses its powerful column-oriented computing capability to query the
aggregation result table based on a query dimension, performs OR operations on the field that stores
the Roaring bitmaps to remove duplicates, and then calculates the cardinality of the Roaring bitmaps.
This way, you can obtain the number of UVs and calculate the number of page views (PVs) based on
the number of UVs. The entire query process takes only sub-seconds.

You need only to perform pre-aggregation once at the finest granularity and generate only one pre-
aggregation result table with the finest granularity. This solut ion requires few pre-calculat ion
operations and lit t le space due to the powerful computing power of Hologres. For more information,
see Batch UV calculation.

Real-time UV calculationReal-time UV calculation
Hologres is highly compatible with Flink. Hologres supports high-throughput data writes from Flink in
real t ime and real-t ime queries of the written data. Hologres allows you to join a source table with a
dimension table by executing Flink SQL statements. Hologres also allows you to use the change data
capture (CDC) feature for data analyt ics.

You can calculate UVs in real t ime by integrating Hologres with Flink. Specifically, you can use Flink to
join a source table with a Hologres dimension table and use Roaring bitmaps to deduplicate user tags in
real t ime. This way, you can obtain fine-grained UV and PV data in real t ime. In addit ion, you can adjust
the minimum stat ist ical window, such as UVs in the past 5 minutes, based on your business requirements.
This brings effects similar to real-t ime monitoring and facilitates data display, such as data display on a
big screen. Compared with deduplication by day, week, or month, this solut ion provides better
performance in finer-grained deduplication of data on a specified business date. This solut ion also
provides deduplicated data within a comparatively long period by aggregating deduplication results.

Hologres Best Pract ices··Scenario Scheme

> Document Version: 20220711 35

https://www.alibabacloud.com/help/doc-detail/216945.htm#concept-2069643
https://www.alibabacloud.com/help/doc-detail/410617.htm#task-2183132

This solut ion is easy to use. You can freely customize dimensions for calculat ion. This solut ion stores
data in bitmaps, which significantly reduces the storage space required. In addit ion, this solut ion returns
deduplication results in real t ime. All these benefits help build a mult i-dimensional data warehouse that
provides abundant features and supports flexible data analyt ics in real t ime. For more information, see
Remove duplicate UVs in real t ime.

This topic describes how to perform batch unique visitor (UV) calculat ion in Hologres.

ProcedureProcedure
1. Create required tables.

i. Install the extension for Roaring bitmaps.

Before you use Roaring bitmaps, make sure that you have installed the extension for Roaring
bitmaps and the version of your Hologres instance is V0.10 and later. You can execute the
following statement to install the extension:

CREATE EXTENSION IF NOT EXISTS roaringbitmap;

3.3.2. Batch UV calculation3.3.2. Batch UV calculation

Best Pract ices··Scenario Scheme Hologres

36 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/410618.htm#task-2183133

ii. Create a user detail table.

Create a user detail table named ods_app by using the following DDL statements. The
ods_app table is used to store the huge amount of detailed user data and is part it ioned by
day.

BEGIN;
CREATE TABLE IF NOT EXISTS public.ods_app (
 uid text,
 country text,
 prov text,
 city text,
 channel text,
 operator text,
 brand text,
 ip text,
 click_time text,
 year text,
 month text,
 day text,
 ymd text NOT NULL
);
CALL set_table_property('public.ods_app', 'bitmap_columns', 'country,prov,city,chan
nel,operator,brand,ip,click_time, year, month, day, ymd');
-- Specify a distribution key so that data can be properly distributed to shards to
adapt to real-time data query needs.
CALL set_table_property('public.ods_app', 'distribution_key', 'uid');
-- Prepare the fields that can be used in the WHERE clause. We recommend that you s
et a field that contains time information, such as year, month, and date, as a clus
tering key or an event time column.
CALL set_table_property('public.ods_app', 'clustering_key', 'ymd');
CALL set_table_property('public.ods_app', 'event_time_column', 'ymd');
CALL set_table_property('public.ods_app', 'orientation', 'column');
COMMIT;

Hologres Best Pract ices··Scenario Scheme

> Document Version: 20220711 37

iii. Create a UID mapping table.

Create a UID mapping table named uid_mapping by using the following DDL statements. The
uid_mapping table is used to establish mappings between UIDs and 32-bit integers.

UIDs stored in Roaring bitmaps must be 32-bit integers and need to be consecutive if possible.
However, UIDs collected in business systems or tracking points are usually of the STRING type.
Therefore, you need to create a UID mapping table. The UID mapping table contains a column
of the SERIAL type that consists of auto-increment 32-bit integers. This way, the UID mapping
is automatically managed and remains stable.

Not e Not e In this example, the UID mapping table can be row-oriented or column-
oriented. If you need to calculate UVs in real t ime, such as by integrating Hologres with
Flink, the UID mapping table must be row-oriented. This way, the queries per second (QPS)
performance can be improved when you use Flink to join a source table with a dimension
table.

BEGIN;
 CREATE TABLE public.uid_mapping (
 uid text NOT NULL,
 uid_int32 serial,
 PRIMARY KEY (uid)
);
 -- Set the UID column as a clustering key and a distribution key to quickly find t
he 32-bit integers corresponding to the UIDs.
CALL set_table_property('public.uid_mapping', 'clustering_key', 'uid');
CALL set_table_property('public.uid_mapping', 'distribution_key', 'uid');
CALL set_table_property('public.uid_mapping', 'orientation', 'row');
COMMIT;

Best Pract ices··Scenario Scheme Hologres

38 > Document Version: 20220711

iv. Create an aggregation result table.

Create an aggregation result table named dws_app by using the following DDL statements.
The aggregation result table is used to store the aggregation results of Roaring bitmaps.

A basic dimension is the finest dimension for PV and UV query and calculat ion. In this example,
the aggregation result table uses the following columns as basic dimensions: country, proc,
and city.

begin;
create table dws_app(
 country text,
 prov text,
 city text,
 ymd text NOT NULL, -- The date column.
 uid32_bitmap roaringbitmap, -- The column that stores Roaring bitmaps for UV calc
ulation.
 pv integer, -- The column that stores PVs.
 primary key(country, proc, city, ymd)-- Set columns about query dimensions and ti
me as the primary key to prevent data from being repeatedly inserted.
);
CALL set_table_property('public.dws_app', 'orientation', 'column');
-- Set the date column as a clustering key and an event time column to facilitate d
ata filtering.
CALL set_table_property('public.dws_app', 'clustering_key', 'ymd');
CALL set_table_property('public.dws_app', 'event_time_column', 'ymd');
-- Set columns about query dimensions as a distribution key.
CALL set_table_property('public.dws_app', 'distribution_key', 'country,prov,city');
end;

2. Update the uid_mapping table and the dws_app table.

i. Update the uid_mapping table.

Execute the following statement to insert new UIDs from the ods_app table into the
uid_mapping table. New UIDs are UIDs that were generated on the previous day and do not
exist in the uid_mapping table.

WITH
-- In the WHERE clause, the ymd parameter is set to 20210329, which indicates the d
ata of the previous day.
 user_ids AS (SELECT uid FROM ods_app WHERE ymd = '20210329' GROUP BY uid)
 ,new_ids AS (SELECT user_ids.uid FROM user_ids LEFT JOIN uid_mapping ON (user_
ids.uid = uid_mapping.uid) WHERE uid_mapping.uid IS NULL)
INSERT INTO uid_mapping SELECT new_ids.uid
FROM new_ids
;

Hologres Best Pract ices··Scenario Scheme

> Document Version: 20220711 39

ii. Update the dws_app table.

After you update the uid_mapping table, perform the following steps to aggregate data and
insert the aggregated results to the dws_app table:

a. Perform the INNER JOIN operation on the ods_app table and the uid_mapping table to
obtain the aggregation condit ions and corresponding 32-bit UIDs for the previous day.

b. Aggregate data based on the aggregation condit ions, and insert the aggregated data
into the dws_app table as the aggregation results of the previous day.

c. You need only to aggregate data once a day and store the aggregation results in the
aggregation result table. The number of data entries in the aggregation result table
equals the number of UVs. Hundreds of millions of incremental data entries in the ods_app
table are aggregated into millions of data entries and stored in the dws_app table each
day.

Execute the following statement to insert data into the dws_app table:

WITH
 aggregation_src AS(SELECT country, prov, city, uid_int32 FROM ods_app INNER JO
IN uid_mapping ON ods_app.uid = uid_mapping.uid WHERE ods_app.ymd = '20210329')
INSERT INTO dws_app SELECT country
 ,prov
 ,city
 ,'20210329'
 ,RB_BUILD_AGG(uid_int32)
 ,COUNT(1)
FROM aggregation_src
GROUP BY country
 ,prov
 ,city
;

3. Query UVs and PVs.

When you query data, Hologres performs aggregation on the dws_app table based on a query
dimension and calculates the cardinality of Roaring bitmaps. This way, you can obtain the number
of UVs based on the condit ion specified by the GROUP BY clause.

Best Pract ices··Scenario Scheme Hologres

40 > Document Version: 20220711

-- Perform the following RB_AGG operation to query data. We recommend that you disable
the three-stage aggregation feature first. By default, this feature is disabled.
set hg_experimental_enable_force_three_stage_agg=off
-- You can query UVs and PVs within a time range based on a custom combination of basic
dimensions.
SELECT country
 ,prov
 ,city
 ,RB_CARDINALITY(RB_OR_AGG(uid32_bitmap)) AS uv
 ,sum(1) AS pv
FROM dws_app
WHERE ymd = '20210329'
GROUP BY country
 ,prov
 ,city;
-- You can execute the following statement to query UVs and PVs within a month:
SELECT country
 ,prov
 ,RB_CARDINALITY(RB_OR_AGG(uid32_bitmap)) AS uv
 ,sum(1) AS pv
FROM dws_app
WHERE ymd >= '20210301' and ymd <= '20210331'
GROUP BY country
 ,prov;
Alternatively, you can use execute the following statement to query UVs and PVs within
a month:
SELECT country
 ,prov
 ,city
 ,COUNT(DISTINCT uid) AS uv
 ,COUNT(1) AS pv
FROM ods_app
WHERE ymd = '20210329'
GROUP BY country
 ,prov
 ,city;
SELECT country
 ,prov
 ,COUNT(DISTINCT uid) AS uv
 ,COUNT(1) AS pv
FROM ods_app
WHERE ymd >= '20210301' and ymd <= '20210331'
GROUP BY country
 ,prov;

4. Visually display data.

In most cases, you need to use Business Intelligence (BI) tools to visually display the calculated UVs
and PVs. In the calculat ion process, RB_CARDINALITY and RB_OR_AGG functions are used to
aggregate data. Therefore, BI tools must support custom aggregation functions. You can use
common BI tools such as Apache Superset and Tableau.

Apache Superset

a. Connect Apache Superset to Hologres. For more information, see Apache Superset.

Hologres Best Pract ices··Scenario Scheme

> Document Version: 20220711 41

https://www.alibabacloud.com/help/doc-detail/200675.htm#task-2035402

b. Set the dws_app table as a dataset.

c. Create a metric named UV in the dataset by using the expression that is shown in the
following figure.

RB_CARDINALITY(RB_OR_AGG(uid32_bitmap))

Then, you can start to explore data.

d. Optional. Create a dashboard.

For more information about how to create a dashboard, see Creating Your First Dashboard.

Tableau

a. Connect Tableau to Hologres. For more information, see Tableau.

You can use pass-through functions in Tableau to customize functions. For more
information, see Pass-Through Functions (RAWSQL).

Best Pract ices··Scenario Scheme Hologres

42 > Document Version: 20220711

https://superset.apache.org/docs/creating-charts-dashboards/creating-your-first-dashboard
https://www.alibabacloud.com/help/doc-detail/143043.htm#task-2039983
https://help.tableau.com/current/pro/desktop/zh-cn/functions_functions_passthrough.htm

b. Create a calculat ion field by using the expression that is shown in the following figure.

RAWSQLAGG_INT("RB_CARDINALITY(RB_OR_AGG(%1))", [Uid32 Bitmap])

Then, you can start to explore data.

c. Optional. Create a dashboard.

For more information about how to create a dashboard, see Create a Dashboard.

You can integrate Hologres with Flink to count unique visitors (UVs) in real t ime. This topic describes how
to remove duplicate UVs in real t ime when UVs are counted.

PrerequisitesPrerequisites
A Hologres instance is created, and a development tool is used to connect to the instance. In this
example, HoloWeb is used. For more information about how to connect to a Hologres instance by
using HoloWeb, see HoloWeb quick start .

A Flink cluster environment is prepared and built . You can use fully managed Flink of Realt ime
Compute for Apache Flink or open source Apache Flink.

ContextContext
Hologres is highly compatible with Flink. Hologres supports high-throughput data writes from Flink in
real t ime and real-t ime queries of the written data. Hologres allows you to join a source table with a
dimension table by executing Flink SQL statements. Hologres also allows you to use the change data
capture (CDC) feature for data analyt ics. In addit ion, you can integrate Hologres with Flink to remove
duplicate UVs in real t ime. The following figure shows the workflow.

1. Flink subscribes to newly collected data in real t ime. The data can be collected from logs, such as
Kafka logs.

2. Flink converts the subscribed data streams into a source table. Then, Flink joins the source table

3.3.3. Remove duplicate UVs in real time3.3.3. Remove duplicate UVs in real time

Hologres Best Pract ices··Scenario Scheme

> Document Version: 20220711 43

https://help.tableau.com/current/pro/desktop/en-us/dashboards_create.htm
https://help.aliyun.com/document_detail/170507.html?spm=a2c4g.11186623.6.623.17285d90MYYHVv
https://help.aliyun.com/document_detail/169593.html?spm=a2c4g.11186623.6.568.126e68ffLRYIbP
https://ci.apache.org/projects/flink/flink-docs-release-1.11/try-flink/local_installation.html?spm=a2c4g.11186623.2.5.6d132721bke1tP

with a Hologres dimension table to write the data of the source table to Hologres in real t ime.

3. Hologres processes the written data in real t ime.

4. The processed data is used by upper-layer data services, such as DataService Studio and Tableau.

How it worksHow it works
You can use Roaring bitmaps supported by Hologres to count UVs and remove duplicate UVs in real
t ime. The following figure shows the flowchart.

1. In Flink, subscribe to user data from data sources such as Kafka or Redis, and use DataStream
programs to convert data streams into a source table.

2. Create a unique ID (UID) mapping table in Hologres to store the UIDs of historical users and
corresponding auto-increment 32-bit UIDs.

Not e Not e In many cases, UIDs collected in business or tracking point-related act ivit ies are of
the STRING or LONG type. In these cases, you must create a UID mapping table. UIDs stored in
Roaring bitmaps must be 32-bit integers. Consecutive integers are preferred. The UID mapping
table contains a column of the SERIAL type that consists of auto-increment 32-digit integers.
This way, the UID mapping is automatically managed and remains stable.

3. In Flink, use the UID mapping table as a Hologres dimension table, and use the insert IfNotExists
feature of the Hologres dimension table to efficiently map UIDs based on auto-increment 32-bit
integersauto-increment 32-bit integers. Join the source table with the Hologres dimension table
and convert the joined results into data streams.

4. Create a table in Hologres to aggregate the processed results. Flink processes the joined results
based on the lifecycle of Flink t ime windows and runs Roaring bitmap functions based on query
dimensions.

5. Query the aggregation result table based on query dimensions. Calculate the number of data
entries in the queried results and the number of ROARINGBITMAP data entries by using the OR
operator. The calculated result is the number of deduplicated UVs.

This way, you can obtain fine-grained UV and page view (PV) data. You can adjust the minimum
statist ical window such as UVs in the past 5 minutes based on your business requirements. This has
similar effects to real-t ime monitoring and displays better in business intelligence (BI) tools a big screen.
This solut ion provides better performance in finer-grained deduplication of data on a specified
business date than deduplication by day, week, or month. This solut ion can also provide deduplicated
data for a relat ively long period of t ime by aggregating deduplication results.

This solut ion is easy to use. You can set dimensions for calculat ion. This solut ion stores data in bitmaps,
which significantly reduces the storage space required. In addit ion, this solut ion returns deduplication
results in real t ime. All of these benefits together help build a mult i-dimensional data warehouse that
provides abundant features and supports flexible data analyt ics in real t ime.

ProcedureProcedure
1. Create tables in Hologres.

Best Pract ices··Scenario Scheme Hologres

44 > Document Version: 20220711

https://help.aliyun.com/document_detail/187391.html?spm=a2c4g.11186623.6.695.1002239fausfVh
https://help.aliyun.com/document_detail/216945.html

i. Create a UID mapping table.

Execute the following statements to create a UID mapping table named uid_mapping in
Hologres. The UID mapping table is used to establish mappings between UIDs and
corresponding 32-bit integers. If the original UIDs are 32-bit integers, skip this step.

In many cases, UIDs collected in business or tracking point-related act ivit ies are of the STRING
or LONG type. In these cases, you must create a UID mapping table. UIDs stored in Roaring
bitmaps must be 32-bit integers, and consecutive integers are preferred. The UID mapping
table contains a column of the SERIAL type that consists of auto-increment 32-digit
integers. This way, the UID mapping is automatically managed and remains stable.

Data streams about UIDs are collected in real t ime and converted into a row-oriented source
table. This ensures high QPS performance when you join the source table with the Hologres
dimension table in Flink.

GUC parameters must be specified to use optimized execution engines to write data to the
table that contains columns of the SERIAL type. For more information, see Accelerate the
execution of SQL statements by using fixed plans.

BEGIN;
CREATE TABLE public.uid_mapping (
uid text NOT NULL,
uid_int32 serial,
PRIMARY KEY (uid)
);
-- Set the UID column as the clustering key and distribution key to quickly find th
e 32-bit integers corresponding to the UIDs.
CALL set_table_property('public.uid_mapping', 'clustering_key', 'uid');
CALL set_table_property('public.uid_mapping', 'distribution_key', 'uid');
CALL set_table_property('public.uid_mapping', 'orientation', 'row');
COMMIT;

Hologres Best Pract ices··Scenario Scheme

> Document Version: 20220711 45

https://www.alibabacloud.com/help/doc-detail/408830.htm#task-2183947

ii. Create an aggregation result table.

Create an aggregation result table named dws_app to store the aggregated results.

Before you use Roaring bitmap functions, make sure that you have installed an extension for
roaring bitmaps and the version of your Hologres instance is V0.10 or later.

CREATE EXTENSION IF NOT EXISTS roaringbitmap;

To ensure good performance, we recommend that you set an appropriate number of shards
based on the amount of data in the aggregation result table. we recommend that you keep
the number of shards at no more than 60% of the total number of CPU cores. We recommend
that you use a pivot table to set the number of shards for a table group. The following
sample code provides an example:

-- Create a table group that has 16 shards.
-- In this example, millions of data entries are collected, the total number of CPU
cores is 128, and the number of shards is 16.
BEGIN;
CREATE TABLE tg16 (a int); -- Create a pivot table for
a table group.
CALL set_table_property('tg16', 'shard_count', '16');
COMMIT;

Compared with offline result tables, this aggregation result table adds a t imestamp column to
calculate data collected based on the lifecycle of Flink t ime windows. The following DDL
statements provide an example:

BEGIN;
CREATE TABLE dws_app(
 country text,
 prov text,
 city text,
 ymd text NOT NULL, -- The date column.
 timetz TIMESTAMPTZ, -- The timestamp column used to calculate data collected base
d on the lifecycle of Flink time windows.
 uid32_bitmap roaringbitmap, -- The ROARINGBITMAP data used to calculate UVs.
 PRIMARY KEY (country, prov, city, ymd, timetz) -- Set columns about query dimensio
ns, the date column, and the timestamp column as primary key columns to prevent dat
a from being repeatedly inserted.
);
CALL set_table_property('public.dws_app', 'orientation', 'column');
-- Set the date column as the clustering key and event time column to filter data.
CALL set_table_property('public.dws_app', 'clustering_key', 'ymd');
CALL set_table_property('public.dws_app', 'event_time_column', 'ymd');
-- Create the table in a table group that has 16 shards.
call set_table_property('public.dws_app', 'colocate_with', 'tg16');
-- Set columns about query dimensions as distribution key columns.
CALL set_table_property('public.dws_app', 'distribution_key', 'country,prov,city');
COMMIT;

2. In Flink, read data streams in real t ime and update the aggregation result table.

For information about the complete sample code, see alibabacloud-hologres-connectors. The
following steps are performed:

Best Pract ices··Scenario Scheme Hologres

46 > Document Version: 20220711

https://help.aliyun.com/document_detail/216945.html
https://github.com/aliyun/alibabacloud-hologres-connectors/blob/master/hologres-connector-examples/hologres-connector-flink-examples/src/main/java/com/alibaba/ververica/connectors/hologres/example/FlinkRoaringBitmapAggJob.java

i. Read data streams and convert the data into a source table.

Flink reads data from a data source in streaming mode. You can select a CSV file or a Kafka or
Redis data source based on your business requirements. The following sample code provides
an example on how to convert the data into a table:

-- In this example, the data source is a CSV file. You can also select a Kafka or R
edis data source.
DataStreamSource odsStream = env.createInput(csvInput, typeInfo);
-- Before you join the source table with a dimension table, add a column that descr
ibes the proctime attribute to the source table. For more information, see JOIN sta
tements for dimension tables at https://www.alibabacloud.com/help/en/realtime-compu
te-for-apache-flink/latest/join-statements-for-dimension-tables.
Table odsTable =
 tableEnv.fromDataStream(
 odsStream,
 $("uid"),
 $("country"),
 $("prov"),
 $("city"),
 $("ymd"),
 $("proctime").proctime());
-- Create a catalog view.
tableEnv.createTemporaryView("odsTable", odsTable);

ii. Join the source table with a Hologres dimension table named uid_mapping.

When you create a Hologres dimension table in Flink, set the insertIfNotExists parameter
to true. This ensures that you can manually insert data into the dimension table if the data is
not automatically inserted. The uid_int32 field is the column of the SERIAL type that contains
auto-increment 32-bit integers in the Hologres dimension table. The following sample code
provides an example on how to join the tables:

Hologres Best Pract ices··Scenario Scheme

> Document Version: 20220711 47

-- Create a Hologres dimension table. The insertIfNotExists parameter specifies whe
ther to manually insert data into the dimension table if the data cannot be automat
ically inserted.
String createUidMappingTable =
 String.format(
 "create table uid_mapping_dim("
 + " uid string,"
 + " uid_int32 INT"
 + ") with ("
 + " 'connector'='hologres',"
 + " 'dbname' = '%s'," // The Hologres database in which the Hologres dimension
table resides.
 + " 'tablename' = '%s'," // The name of the Hologres dimension table.
 + " 'username' = '%s'," // The AccessKey ID of your Alibaba Cloud account.
 + " 'password' = '%s'," // The AccessKey secret of your Alibaba Cloud account.
 + " 'endpoint' = '%s'," //Hologres endpoint
 + " 'insertifnotexists'='true'"
 + ")",
 database, dimTableName, username, password, endpoint);
tableEnv.executeSql(createUidMappingTable);
-- Join the source table with the Hologres dimension table.
String odsJoinDim =
 "SELECT ods.country, ods.prov, ods.city, ods.ymd, dim.uid_int32"
 + " FROM odsTable AS ods JOIN uid_mapping_dim FOR SYSTEM_TIME AS OF ods.procti
me AS dim"
 + " ON ods.uid = dim.uid";
Table joinRes = tableEnv.sqlQuery(odsJoinDim);

iii. Convert the joined results into data streams.

Use Flink t ime windows to process data streams and run Roaring bitmap functions to remove
duplicate data. The following sample code provides an example:

DataStream<Tuple6<String, String, String, String, Timestamp, byte[]>> processedSour
ce =
 source
 -- The dimensions by which data is queried. In this example, the dimensions are
the country, prov, city, and ymd columns.
 .keyBy(0, 1, 2, 3)
 -- The Flink tumbling window. In this example, the data source is a CSV file, s
o data streams are assigned to the windows based on processing time. In actual scen
arios, you can assign data streams based on either processing time or event time to
suit your business requirements.
 .window(TumblingProcessingTimeWindows.of(Time.minutes(5)))
 -- The trigger. You can obtain the aggregated results before the windows are re
moved.
 .trigger(ContinuousProcessingTimeTrigger.of(Time.minutes(1)))
 .aggregate(
 -- The aggregate function used to aggregate the results based on the specified
query dimensions.
 new AggregateFunction<
 Tuple5<String, String, String, String, Integer>,
 RoaringBitmap,
 RoaringBitmap>() {
 @Override

Best Pract ices··Scenario Scheme Hologres

48 > Document Version: 20220711

 @Override
 public RoaringBitmap createAccumulator() {
 return new RoaringBitmap();
 }
 @Override
 public RoaringBitmap add(
 Tuple5<String, String, String, String, Integer> in,
 RoaringBitmap acc) {
 -- Run Roaring bitmap functions for the 32-digit UIDs to remove dup
licate UIDs.
 acc.add(in.f4);
 return acc;
 }
 @Override
 public RoaringBitmap getResult(RoaringBitmap acc) {
 return acc;
 }
 @Override
 public RoaringBitmap merge(
 RoaringBitmap acc1, RoaringBitmap acc2) {
 return RoaringBitmap.or(acc1, acc2);
 }
 },
 -- The Window function used to generate the aggregated results.
 new WindowFunction<
 RoaringBitmap,
 Tuple6<String, String, String, String, Timestamp, byte[]>,
 Tuple,
 TimeWindow>() {
 @Override
 public void apply(
 Tuple keys,
 TimeWindow timeWindow,
 Iterable<RoaringBitmap> iterable,
 Collector<
 Tuple6<String, String, String, String, Timestamp, byte[]>> out)
 throws Exception {
 RoaringBitmap result = iterable.iterator().next();
 // Optimize the results of Roaring bitmap functions.
 result.runOptimize();
 // Convert the results of Roaring bitmap functions into byte arrays
and store them in Hologres.
 byte[] byteArray = new byte[result.serializedSizeInBytes()];
 result.serialize(ByteBuffer.wrap(byteArray));
 // The Tuple6 parameter specifies that the data streams are process
ed based on the lifecycle of the windows. The value of the parameter is of the TIME
STAMP type, in seconds.
 out.collect(
 new Tuple6<>(
 keys.getField(0),
 keys.getField(1),
 keys.getField(2),
 keys.getField(3),
 new Timestamp(
 timeWindow.getEnd() / 1000 * 1000),

Hologres Best Pract ices··Scenario Scheme

> Document Version: 20220711 49

 byteArray));
 }
 });

iv. Write the deduplicated data to the Hologres aggregation result table.

Write the deduplicated data to the Hologres aggregation result table named dws_app. The
results of Roaring bitmap functions are stored as byte arrays in Hologres. The following sample
code provides an example:

 -- Convert the processed results into a table.
Table resTable =
 tableEnv.fromDataStream(
 processedSource,
 $("country"),
 $("prov"),
 $("city"),
 $("ymd"),
 $("timest"),
 $("uid32_bitmap"));
-- Create an aggregation result table in Hologres. Store the results of Roaring bit
map functions into the table as byte arrays.
String createHologresTable =
 String.format(
 "create table sink("
 + " country string,"
 + " prov string,"
 + " city string,"
 + " ymd string,"
 + " timetz timestamp,"
 + " uid32_bitmap BYTES"
 + ") with ("
 + " 'connector'='hologres',"
 + " 'dbname' = '%s',"
 + " 'tablename' = '%s',"
 + " 'username' = '%s',"
 + " 'password' = '%s',"
 + " 'endpoint' = '%s',"
 + " 'connectionSize' = '%s',"
 + " 'mutatetype' = 'insertOrReplace'"
 + ")",
 database, dwsTableName, username, password, endpoint, connectionSize);
tableEnv.executeSql(createHologresTable);
-- Write the results to a table named dws_app.
tableEnv.executeSql("insert into sink select * from " + resTable);

3. Query UVs.

Calculate UVs based on data in the dws_app table. Perform an aggregation operation based on
query dimensions and query the number of bits in a bitmap. This way, you can calculate the UVs
under the condit ions specified by the GROUP BY clause.

Example 1: Query the UVs of each city on a specific day

Best Pract ices··Scenario Scheme Hologres

50 > Document Version: 20220711

-- Perform the following RB_AGG operation to query data. You can disable the three-st
age aggregation feature for better performance. You can enable or disable this featur
e based on your requirements. By default, the feature is disabled.
set hg_experimental_enable_force_three_stage_agg=off;
SELECT country
 ,prov
 ,city
 ,RB_CARDINALITY(RB_OR_AGG(uid32_bitmap)) AS uv
FROM dws_app
WHERE ymd = '20210329'
GROUP BY country
 ,prov
 ,city
;

Example 2: Query the UVs and PVs of each province within a specific period of t ime

-- Perform the following RB_AGG operation to query data. You can disable the three-st
age aggregation feature for better performance. You can enable or disable this featur
e based on your requirements. By default, the feature is disabled.
set hg_experimental_enable_force_three_stage_agg=off;
SELECT country
 ,prov
 ,RB_CARDINALITY(RB_OR_AGG(uid32_bitmap)) AS uv
 ,SUM(1) AS pv
FROM dws_app
WHERE time > '2021-04-19 18:00:00+08' and time < '2021-04-19 19:00:00+08'
GROUP BY country
 ,prov
;

4. Visually display data.

In most cases, you need to use Business Intelligence (BI) tools to visually display the calculated UVs
and PVs. In the calculat ion process, RB_CARDINALITY and RB_OR_AGG functions are used to
aggregate data. Therefore, BI tools must support custom aggregation functions. You can use
common BI tools such as Apache Superset and Tableau.

Apache Superset

a. Connect Apache Superset to Hologres. For more information, see Apache Superset.

Hologres Best Pract ices··Scenario Scheme

> Document Version: 20220711 51

https://www.alibabacloud.com/help/doc-detail/200675.htm#task-2035402

b. Set the dws_app table as a dataset.

c. Create a metric named UV in the dataset by using the expression that is shown in the
following figure.

RB_CARDINALITY(RB_OR_AGG(uid32_bitmap))

Then, you can start to explore data.

d. Optional. Create a dashboard.

For more information about how to create a dashboard, see Creating Your First Dashboard.

Tableau

a. Connect Tableau to Hologres. For more information, see Tableau.

You can use pass-through functions in Tableau to customize functions. For more
information, see Pass-Through Functions (RAWSQL).

Best Pract ices··Scenario Scheme Hologres

52 > Document Version: 20220711

https://superset.apache.org/docs/creating-charts-dashboards/creating-your-first-dashboard
https://www.alibabacloud.com/help/doc-detail/143043.htm#task-2039983
https://help.tableau.com/current/pro/desktop/zh-cn/functions_functions_passthrough.htm

b. Create a calculat ion field by using the expression that is shown in the following figure.

RAWSQLAGG_INT("RB_CARDINALITY(RB_OR_AGG(%1))", [Uid32 Bitmap])

Then, you can start to explore data.

c. Optional. Create a dashboard.

For more information about how to create a dashboard, see Create a Dashboard.

This topic describes the best pract ices for tagging and profile analysis in Hologres.

BackgroundBackground
Profile analysis is the process of exploring user interests and analyzing group characterist ics based on
the natural, behavioral, and preference propert ies of intended users. User profiling is an important
means to depict the comprehensive characterist ics of an individual user or a user group. It provides
information such as user preferences and behavior for operation analysis personnel to optimize
operational strategies. It also provides accurate role information for targeted product designs. A
profiling system typically integrates the user characterist ics processing and profile analysis features to
provide real-t ime group analysis and identificat ion after offline processing of characterist ics, mapping
of tags, and loading of ad hoc analysis data.

Profile analysis has been widely applied in a variety of industries and has become an important means
to optimize operational strategies and implement refined operations and precise marketing. The
following examples are typical scenarios for which profile analysis is suited.

Advert ising: Profile analysis provides insights into users to implement targeted advert ising.

Gaming: Profile analysis provides analysis on churn rates so that operational strategies can be
adjusted to increase user viscosity.

Education: Profile analysis provides analysis on course quality to improve the retention rate.

3.4. User profile analysis3.4. User profile analysis
3.4.1. User profile analysis3.4.1. User profile analysis

Hologres Best Pract ices··Scenario Scheme

> Document Version: 20220711 53

https://help.tableau.com/current/pro/desktop/en-us/dashboards_create.htm

However, profile analysis faces challenges in system stability, maintainability, and scalability that are
caused by complex data, large amounts of data, and query modes.

The O&M personnel must maintain mult iple data links for real-t ime offline processing, which leads to
heavy workloads. Tradit ional online analyt ical processing (OLAP) engines use an architecture in which
storage is coupled with computing. As a result , in scenarios in which computing and storage resources
are not proport ionate to each other, resource waste occurs and system scaling and migration costs
are high.

The operations personnel require flexible identificat ion capabilit ies. To describe a single user,
thousands of dimensions may be required, including property and behavior data. Mult idimensional
OLAP (MOLAP) provides responses within milliseconds but lacks flexibility. Relat ional OLAP (ROLAP)
provides flexibility but takes t ime to respond and compromises performance.

Hologres solutionsHologres solutions
To address the preceding issues, Hologres allows you to determine a solut ion that offers high
performance and scalability by configuring data links, select ing plug-in libraries, and considering the size
of your business system.

Data links

Hologres supports real-t ime offline data processing without the need to maintain mult iple data links.
This prevents common issues such as data inconsistency and data silos. Hologres provides the
following benefits in data integration:

Hologres is seamlessly integrated with DataWorks. Complex data dependency issues can be
resolved by making access configurations, and stable offline data processing and loading
processes are provided.

Hologres provides row-oriented storage based on the log-structured merge (LSM) structure for
scenarios that involve real-t ime writes. Hologres is integrated with Flink to provide stable
performance support for real-t ime tagging and real-t ime characterist ic processing.

Hologres provides the federated query capability and allows access to external data storage
services such as MaxCompute, Object Storage Service (OSS), and other Hologres instances by using
foreign tables.

Profile computing

Hologres is compatible with the PostgreSQL ecosystem and provides an abundance of built-in
functions. In addit ion, many efficient profile computing plug-ins have been developed on top of the
best pract ices of Alibaba Cloud and its users.

Precise deduplication: Roaring bitmap functions

Hologres supports Roaring bitmaps. It supports union and intersect ion operations on sets and
bitwise aggregate operations by using efficient compressed bitmaps. Roaring bitmaps are suitable
for computing tables that contain unique data with mult iple dimensions and are typically used in
deduplication (unique visitor (UV) computing), tag-based filtering, and quasi-real-t ime user profile
analysis.

Best Pract ices··Scenario Scheme Hologres

54 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/216945.htm#concept-2069643

Action data-based user identificat ion: Target user identificat ion functions

In act ion data-based user identificat ion scenarios, act ion data is recorded in a table by day or hour.
Users who take specific act ions within a specific period of t ime cannot be directly queried because
the act ion data is scattered across mult iple rows. The act ion data table must be joined with itself
mult iple t imes to query such users. Assume that you want to query users whose act ions are [clic
k Shopping cart] and [view Favorites] with the ds value ranging from 20200216 to 20200218.

Hologres provides the bit_construct and bit_or , and bit_match funct ions to minimize
performance burdens of JOIN statements and simplify SQL operations. These functions are used to
filter users. Users whose uid meet specific f ilter condit ions are stored as bit arrays. Then the bit_m
atch funct ion is used to perform AND operations on the bit arrays. The following statement
shows an example.

WITH tbl as (
SELECT uid, bit_or(bit_construct(
 a := (action='click' and page='Shopping cart'),
 b := (action='view' and page='Favorites'))) as uid_mask
 FROM ods_app_dwd
WHERE ds > '20210218' AND event_time < '20210216'
GROUP BY uid)
SELECT uid from tbl where bit_match('a&b', uid_mask);

 bit_construct : returns values for expressions and stores the values in bit arrays. For example,
this function returns [1,0], [0,0], [0,1]... for condit ions a and b in the preceding SQL
statement.

 bit_or : performs OR operations on the two bit arrays to query users who meet the filter
condit ions.

 bit_match : determines whether a bit array matches an expression. For example, for the a&b
 expression, this function returns True for [1,1] and False for [1,0] .

Funnel analysis: Funnel analysis functions

Funnel analysis is a popular conversion analyt ics method used to understand user behavior and
calculate conversion rates. Funnel analysis is widely used for data operations and analysis scenarios
such as the analysis of user behavior, application data traffic, and product goal conversion.

You can use the windowFunnel function to query events from a sliding t ime window. This function
calculates the maximum number of events that can match the query condit ions. Retention analysis
is the most common and typical scenario where user growth is analyzed. In most cases, you can use
charts to analyze user retention. The funnel and retention functions can be used to calculate user
retention and conversion rates, reduce overheads in complex JOIN statements, and improve
performance.

Vector processing: Vector processing

Proxima is a high-performance software library developed by Alibaba DAMO Academy. It allows
you to search for the nearest neighbors of vectors. Proxima provides higher stability and
performance than similar open source software such as Facebook AI Similarity Search (Fassi).
Proxima provides basic modules that have leading performance and effects in the industry and
allows you to search for similar images, videos, or human faces. Hologres is deeply integrated with
Proxima to provide a high-performance vector search service. K-nearest neighbors (KNN) searches,
Radius nearest neighbors (RNN) searches, and DOT_PRODUCT are supported.

Solut ions

Hologres Best Pract ices··Scenario Scheme

> Document Version: 20220711 55

https://www.alibabacloud.com/help/doc-detail/216947.htm#concept-2077640
https://www.alibabacloud.com/help/doc-detail/216948.htm#concept-2069002
https://www.alibabacloud.com/help/doc-detail/187414.htm#task-1963596

Different cost and performance requirements are imposed at different development stages of
profiling systems. Hologres provides the following solut ions based on pract ical experience and
factors such as system data size, implementation cost, and query performance:

Wide tables

This solut ion is suited for scenarios in which less than 1,000 tags are used and data is infrequently
updated. Stable property tables are aggregated into wide tables offline, and JOIN operations on
mult iple tables are converted into operations on a single wide table. If new tags are required,
columns are added to the wide table for these tags. This enables flexible tag-based computing by
using tables. For more information, see Wide tables.

Roaring bitmaps

This solut ion is suited for scenarios in which large amounts of data is involved, a large number of
tags are used, and deduplication is required. The structured storage of Roaring bitmaps
implements natural deduplications, prevents JOIN overheads, simplifies operations, and accelerates
data retrieval. For more information, see Roaring bitmaps.

Summary

Hologres supports a wide range of profile analysis plug-ins and delivers excellent performance. It is
widely used in tag computing and profile analysis scenarios by mult iple core businesses within Alibaba
Group, such as Alimama, search applications, and AMap, and many public cloud users. The service
scalability and stability of Hologres have been tested in production. Hologres has proven itself as the
best choice for building a profile analysis platform with high stability and scalability and low
development and O&M costs.

This topic describes the best pract ices for using wide tables to perform tag computing in Hologres.

ContextContext
In the offline data warehouse model, user tag data is stored in mult iple theme- and dimension-oriented
tables. This is helpful to build a tag system and maintain and manage data. However, if such a data
model is used in online profile analysis to organize tag data, mult iple tag tables must be joined to filter
tags, which is too costly for database services.

SolutionSolution
In the wide table solut ion, stable property tables are aggregated into wide tables offline and JOIN
operations on mult iple tables are converted into operations on a single wide table. If new tags are
required, columns are added to the wide table for these tags. This solut ion is suited for the following
scenarios:

Scenarios in which less than 1,000 tags are used.

Scenarios in which data is infrequently updated.

When data is stored in wide tables, the AND, OR, and NOT operations on filter condit ions of mult iple
columns are automatically processed by the optimization mechanism of column-oriented storage,
which is more efficient than join operations. In addit ion, Hologres supports column-oriented storage,
which prevents I/O operations from increasing. Tradit ional database modeling and development
applications can be used in this solut ion.

Use exampleUse example

3.4.2. Wide tables3.4.2. Wide tables

Best Pract ices··Scenario Scheme Hologres

56 > Document Version: 20220711

https://www.alibabacloud.com/help/doc-detail/413265.htm#task-2189170
https://www.alibabacloud.com/help/doc-detail/413266.htm#task-2189331

In the following example, a wide table is used for profile analysis. SQL statements are executed to
query men ([gender = Male]) in the Zhejiang province ([province = Zhejiang]) whose marriage status
is married in the dws_userbase table. We recommend that you set proper indexes for the table based
on the query mode to improve query performance. For more information, see CREATE TABLE.

-- The wide table.
BEGIN;
CREATE TABLE dws_userbase
(
 uid text not null primary key,
 province text,
 gender text,
 married text
 ... -- Other property columns.
);
call set_table_property('dws_userbase', 'distribution_key', 'uid');
call set_table_property('dws_userbase', 'bitmap_columns', 'province,gender,married');
END;
-- Query based on basic properties.
SELECT count(distinct uid) as cnt,
 married
FROM dws_userbase ub
WHERE province = 'Zhejiang' and gender = 'Male'
GROUP BY married;

In scenarios in which more than 1,000 tags are used, the solut ion of using wide tables for tag
computing is not suitable. This is because the update efficiency decreases when the number of columns
increases. This topic describes how to perform tag computing and profile analysis in such scenarios.

ContextContext
Hologres is compatible with the PostgreSQL ecosystem and supports Roaring bitmap functions. Indexes
are created for tag tables. User IDs are encoded and stored as bitmaps. Relat ional operations are
converted into intersect ion, union, and difference operations of bitmaps to improve the performance
of real-t ime computing. In scenarios that require analysis of large amounts of user propert ies, Roaring
bitmaps can be used to respond to queries within sub-seconds.

ScenariosScenarios
Roaring bitmaps are suitable for the following scenarios:

Scenarios in which large amounts of tags are used: In such scenarios, JOIN operations are required for
many large tables. The BITMAP_AND funct ion can be used to replace JOIN operations to reduce
memory consumption. The bitmap plug-in repository can improve the CPU utilizat ion by 1% to 2% by
means of Single Instruct ion Mult iple Data (SIMD)-based optimization.

Scenarios that involves large amounts of data and requires deduplication: Bitmaps provide intrinsic
deduplication capabilit ies to prevent unique vector (UV) computing and memory overheads.

Tag typesTag types

3.4.3. Roaring bitmaps3.4.3. Roaring bitmaps

Hologres Best Pract ices··Scenario Scheme

> Document Version: 20220711 57

https://www.alibabacloud.com/help/doc-detail/160754.htm#concept-2463104
https://www.alibabacloud.com/help/doc-detail/216945.htm#concept-2069643

Tags in profiling systems can be classified into the following types. Different types of tags use
different computing modes. Specific types of tags must be converted into and stored as bitmaps.

Property tags: Property tags describe user propert ies such as gender, province, and marriage status.
Property tags are stable and can be filtered based on precise filter condit ions. For these tags, the
bitmap compression rat io is high, and bitmaps are suitable for related operations.

Act ion tags: Act ion tags describe act ion characterist ics of users and depict what users do at specific
points in t ime. User act ions include page views, purchases, and act ive logons. Act ion data is
frequently updated and requires range scanning and aggregate filtering. For act ion tags, the bitmap
compression rat io is low, and bitmaps are not suitable for related operations.

Property tagsProperty tags
Property tags describe user propert ies. Property tags are stable and can be filtered based on precise
filter condit ions. Bitmaps can be used for efficient compression and operations.

Solut ion

Assume that a data management platform (DMP) contains two property tag tables. The
dws_userbase table describes basic user propert ies, and the dws_usercate_prefer table describes
user preferences.

If you want to obtain the number of users who meet the [province = Beijing] & [cate_prefer =
Fashion] f ilter condit ion, you can perform associat ion, f iltering, and deduplication operations.
However, in scenarios that involve large amounts of data, associat ion and deduplication operations
may bring heavy performance burdens.

The bitmap-based optimization solut ion uses bitmap tables that contain pre-created tags to reduce
the costs of ad hoc operations. In this example, data in the preceding tables are split by column to
create two bitmap tables . Then, a bitwise AND operation is performed to obtain the users who meet
the preceding filter condit ion. The rb_dws_userbase_province table describes the bitmap relat ionship
between the province and uid columns, and the rb_dws_usercate_prefer_cprefer table describes the
bitmap relat ionship between the cate_prefer and uid columns.

However, the preceding solut ion has problems. When columns have hierarchical relat ionships, such
split t ing and operations may cause computing errors. Data in the dws_shop_cust table that describes
the information about fresh, exist ing, and potential customers is split by column. The
rb_dws_shop_cust_shop_id bitmap table that describes shop IDs and the rb_dws_shop_cust_cust_t
ype bitmap table that describes customer types are created. If you filter the customers who meet
the [shop_id = A] & [cust_type = Fresh] f ilter condit ion, you obtain a result of uid [1] .
However, a uid column value of 1 that corresponds to a cust_type column value of Fresh does not
exist . This is because the cust_type and shop_id columns are correlated. In a data warehouse model,
cust_type is a metric for shop_id and cannot be used independently. You must use shop_id in
combination with cust_type to create the rb_dws_shop_cust_sid_ctype bitmap table to prevent
such error.

You must compress the uid values into bitmaps and then perform bitwise AND, OR, and NOT
operations to compute tags.

Procedure

Best Pract ices··Scenario Scheme Hologres

58 > Document Version: 20220711

Encode user information

User IDs may be strings. However, bitmaps contain only integers. Therefore, you must create a table
that contains an auto-increment field by using the SERIAL or BIGSERIAL data type before you can
encode uid values of the string type into integers.

--Create a dictionary table.
CREATE TABLE dws_uid_dict (
 encode_uid bigserial,
 uid text primary key
);
--Insert uid values from the tag table.
INSERT INTO dws_uid_dict(uid)
SELECT uid
FROM dws_userbase ON conflict DO NOTHING;

Encoded user IDs maintain continuity and can be easily stored as bitmaps. The following figure
shows an example in which bitmap2 contains sparse data and delivers storage efficiency much
lower than bitmap1. Therefore, if user IDs are encoded, storage costs can be reduced and
computing efficiency can be improved.

Sparse numeric data can be encoded, but addit ional performance overheads may occur. For
example, advert ising DMPs not only require high-performance profiling, but also require real-t ime
output of user details. If real-t ime output of user details is necessary, user ID tables must be joined
to restore encoded user IDs, which causes addit ional performance overheads. You must determine
whether to encode user IDs based on your specific scenario. We have different recommendations
for different cases.

For user IDs of the string type, we recommend that you encode them.

For user IDs of the integer type that require frequent restoration of encoded user IDs, we do not
recommend that you encode them.

For user IDs of the integer type that do not require frequent restoration of encoded user IDs, we
recommend that you encode them.

Process and query bitmaps

Split the dws_userbase and dws_shop_cust tables into one bitmap table that contains the
province and gender columns. The gender column values contain only Male and Female.
Compressed bitmaps can be distributed only on two nodes in a cluster. As a result , computing and
storage resources are not evenly distributed and the cluster resources are not fully used. In this
case, the bitmaps must be split into mult iple segments and distributed in the cluster for concurrent
execution. For example, you can execute the following SQL statements to split the bitmaps into
65,536 segments:

Hologres Best Pract ices··Scenario Scheme

> Document Version: 20220711 59

-- Create a wide table named dws_userbase.
BEGIN;
CREATE TABLE dws_shop_cust
(
 uid text not null primary key,
 shop_id text,
 cust_type text
);
call set_table_property('dws_shop_cust', 'distribution_key', 'uid');
END;
-- Create a bitmap extension.
CREATE EXTENSION roaringbitmap;
BEGIN;
CREATE TABLE rb_dws_userbase_province (
 province text,
 bucket int,
 bitmap roaringbitmap
);
call set_table_property('rb_dws_userbase_province', 'distribution_key', 'bucket');
END;
BEGIN;
CREATE TABLE rb_dws_shop_cust_sid_ctype (
 shop_id text,
 cust_type text,
 bucket int,
 bitmap roaringbitmap
);
call set_table_property('rb_dws_shop_cust_sid_ctype', 'distribution_key', 'bucket');
END;
-- Write data into the bitmap table.
INSERT INTO rb_dws_userbase_province
SELECT province,
 encode_uid / 65536 as "bucket",
 rb_build_agg(b.encode_uid) AS bitmap
FROM dws_userbase a join dws_uid_dict b on a.uid = b.uid
GROUP BY province, "bucket";
INSERT INTO rb_dws_shop_cust_sid_ctype
SELECT shop_id,
 cust_type,
 encode_uid / 65536 AS "bucket",
 rb_build_agg(b.encode_uid) AS bitmap
FROM dws_shop_cust a
JOIN dws_uid_dict b ON a.uid = b.uid
GROUP BY shop_id, cust_type, "bucket";

If you want to obtain the users that meet the [shop_id = A] & [cust_type = Fresh] & [provinc
e = Beijing] f ilter condit ion, you can perform related AND, OR, and NOT operations on the
bitmaps. You can execute the following SQL statements:

Best Pract ices··Scenario Scheme Hologres

60 > Document Version: 20220711

SELECT SUM(RB_CARDINALITY(rb_and(ub.bitmap, uc.bitmap)))
FROM
 (SELECT rb_or_agg(bitmap) AS bitmap,
 bucket
 FROM rb_dws_userbase_province
 WHERE province = 'Beijing'
 GROUP BY bucket) ub
JOIN
 (SELECT rb_or_agg(bitmap) AS bitmap,
 bucket
 FROM rb_dws_shop_cust_sid_ctype
 WHERE shop_id = 'A'
 AND cust_type = 'Fresh'
 GROUP BY bucket) uc ON ub.bucket = uc.bucket;

Action tagsAction tags
Typically, fact tables are organized by t ime. For example, user act ion tables are organized by day. User
data for a specific day contains only limited entries. If such data is compressed into bitmaps, row-
oriented storage overheads may cause storage space to be wasted. In addit ion, in typical computing
modes of fact tables, data of mult iple days must be aggregated for filtering. If bitmaps are used, they
must be expanded before they can be aggregated for operations. Such data frequently changes and
requires real-t ime update. In the [option->bitmap] storage structure, data that needs to be
updated cannot be identified. Therefore, bitmaps are not suitable for act ion data, aggregation, or
real-t ime update.

In scenarios that involve act ion tags, Hologres can use the original storage format. When fact tables
and property tables need to be joined, bitmaps can be generated for the filter results of fact tables
and then joined with the bitmap indexes of property tables. Because bitmap index tables use bucket as
the distribution key, local join operations can improve the join performance.

You can execute the following SQL statements to obtain users that meet the [province=Beijing] &
[shop_id=A AND No purchase for 7 days] f ilter condit ion.

-- Create an action table.
BEGIN;
CREATE TABLE dws_usershop_behavior
(
 uid int not null,
 shop_id text not null,
 pv_cnt int,
 trd_cnt int,
 ds integer not null
);
call set_table_property('dws_usershop_behavior', 'distribution_key', 'uid');
COMMIT;
-- Encode the action table.
BEGIN;
CREATE TABLE dws_usershop_behavior_bucket
(
 encode_uid int not null,
 shop_id text not null,
 pv_cnt int,
 trd_cnt int,

Hologres Best Pract ices··Scenario Scheme

> Document Version: 20220711 61

 ds int not null,
 bucket int
);
CALL set_table_property('dws_usershop_behavior_bucket', 'orientation', 'column');
call set_table_property('dws_usershop_behavior_bucket', 'distribution_key', 'bucket');
CALL set_table_property('dws_usershop_behavior_bucket', 'clustering_key', 'shop_id,encode_u
id');
COMMIT;
-- Write fact data.
INSERT INTO dws_usershop_behavior_bucket
SELECT *,
 encode_uid,
 shop_id,
 pv_cnt,
 trd_cnt,
 encode_uid / 65536
FROM dws_usershop_behavior a JOIN dws_uid_dictionary b
on a.uid = b.uid;
-- Join fact data and property data.
SELECT sum(rb_cardinality(bitmap)) AS cnt
FROM
 (SELECT rb_and(ub.bitmap, us.bitmap) AS bitmap,
 ub.bucket
 FROM
 (SELECT rb_or_agg(bitmap) AS bitmap,
 bucket
 FROM rb_dws_userbase_province
 WHERE province = 'Beijing'
 GROUP BY bucket) AS ub
 JOIN
 (SELECT rb_build_agg(uid) AS bitmap,
 bucket
 FROM
 (SELECT uid,
 bucket
 FROM dws_usershop_behavior_bucket
 WHERE shop_id = 'A' AND ds > to_char(current_date-7, 'YYYYMMdd')::int
 GROUP BY uid,
 bucket HAVING sum(trd_cnt) = 0) tmp
 GROUP BY bucket) us ON ub.bucket = us.bucket) r

Offline processing of bitmapsOffline processing of bitmaps
You can choose to process bitmap data offline to prevent bitmap data computing from affect ing your
business. You can load data from foreign tables in MaxCompute or Hive. Bitmaps are processed in similar
manners both online and offline. Data can be generated through encoding and aggregation. The
following code provides an example on how to create bitmap data offline in MaxCompute.

-- Select a project.
USE bitmap_demo;
-- Create a source table.
CREATE TABLE mc_dws_uid_dict (
encode_uid bigint,
bucket bigint,

Best Pract ices··Scenario Scheme Hologres

62 > Document Version: 20220711

bucket bigint,
uid string
);
CREATE TABLE mc_dws_userbase
(
 uid string,
 province string,
 gender string,
 marriaged string
);
-- Encode the uid values.
-- Calculate the new uid values.
WITH uids_to_encode AS
 (SELECT DISTINCT(ub.uid),
 CAST(ub.uid / 65336 AS BIGINT) AS bucket
 FROM mc_dws_userbase ub
 LEFT JOIN mc_dws_uid_dict d ON ub.uid = d.uid
 WHERE d.uid IS NULL),
-- Calculate the number of uids to be encoded in each bucket. Use the SUM function to obtai
n the bucket offset.
uids_bucket_encode_offset AS
 (SELECT bucket,
 sum(cnt) over (ORDER BY bucket ASC) - cnt AS bucket_offset
 FROM
 (SELECT count(1) AS cnt,
 bucket
 FROM uids_to_encode
 GROUP BY bucket) x),
-- Calculate the maximum number of encoded uids.
dict_used_id_offset AS
 (SELECT max(encode_uid) AS used_id_offset FROM mc_dws_uid_dict)
-- New uids = Maximum number of encoded uids + Bucket offset + Row number
INSERT INTO mc_dws_uid_dict
SELECT
 COALESCE((SELECT used_id_offset FROM dict_used_id_offset),0) + bucket_offset + rn,
 bucket,
 uid
FROM
 (SELECT row_number() OVER (partition BY ub.bucket ORDER BY ub.uid) AS rn,
 ub.bucket,
 bo.bucket_offset,
 uid
 FROM uids_to_encode ub
 JOIN uids_bucket_encode_offset bo ON ub.bucket = bo.bucket) j
-- Create bitmap-related functions.
add jar function_jar_dir/mc-bitmap-functions.jar as mc_bitmap_func.jar -f;
create function mc_rb_cardinality as com.alibaba.hologres.RbCardinalityUDF using mc_bitmap_
func.jar;
create function mc_rb_build_agg as com.alibaba.hologres.RbBuildAggUDAF using mc_bitmap_func
.jar;
-- Create a bitmap table and write data to the table.
CREATE TABLE mc_rb_dws_userbase_province
(
 province string,
 bucket int,

Hologres Best Pract ices··Scenario Scheme

> Document Version: 20220711 63

 bitmap string
);
INSERT INTO mc_rb_dws_userbase_province
SELECT province,
 b.bucket_num,
 mc_rb_build_agg(b.encode_uid) AS bitmap
FROM mc_dws_userbase a join mc_dws_uid_dict b on a.uid = b.uid
GROUP BY province, b.bucket_num;

Execute the following statements in Hologres:
-- Create a MaxCompute table.
CREATE TABLE mc_rb_dws_userbase_province (
 province text,
 bucket int,
 bitmap roaringbitmap
) server odps_server options(project_name 'bitmap_demo', table_name 'mc_rb_dws_userbase_pro
vince');
-- Write bitmap data from the MaxCompute table to Hologres.
INSERT INTO rb_dws_userbase_province
SELECT province,
 bucket::INT,
 roaringbitmap_text(bitmap, FALSE)
FROM mc_rb_dws_userbase_province;

After the preceding steps are performed, data is loaded to Hologres. You can then perform bitwise
operations to speed up queries.

You can use mc-bitmap to compute bitmap data in MaxCompute.

For more information about the offline processing of bitmaps, see Batch UV calculat ion.

Real-time processing of bitmapsReal-time processing of bitmaps
In real-t ime computing scenarios, you can use Hologres in combination with Flink to perform real-t ime
deduplication for user tags based on Roaring bitmaps. Perform the following steps:

1. Use a user ID dict ionary table as the dimension table and use the INSERT ON CONFLICT statement of
Hologres to add user IDs. Then, join the dimension and act ion tables in Flink.

2. Aggregate the result ing table with Roaring bitmaps by tag.

3. Write the result ing bitmaps into the bitmap table in Hologres.

For more information, see Real-t ime tags.

This topic describes the best pract ices for real-t ime tag computing in Hologres.

ContextContext
In tag computing and profile analysis, the real-t ime reverse transmission of processed data and real-
t ime tag generation capabilit ies are of great importance.

Real-t ime reverse transmission of processed data: Tags of users that are obtained from profile
analysis are collected, such as the click and conversion rates of advert ising systems. Such data serves

3.4.4. Real-time tags3.4.4. Real-time tags

Best Pract ices··Scenario Scheme Hologres

64 > Document Version: 20220711

https://viapi-oss.oss-cn-shanghai.aliyuncs.com/doc/test/mc-bitmap-functions-sources.jar
https://www.alibabacloud.com/help/doc-detail/410617.htm#task-2183132
https://www.alibabacloud.com/help/doc-detail/413268.htm#task-2189332

as a basis for real-t ime adjustment of decisions.

Real-t ime tag generation: Real-t ime characterist ics can be understood as the real-t ime performance
of a user in an act ivity. Typical real-t ime characterist ics include the number of views in the last N days
and the products added to favorites within a day. Such characterist ics can be analyzed to push
operational strategies to targeted users, motivate purchase intention, and eventually make the deal.

Hologres is integrated with Flink to support high-performance data write and update operations. Data
can be queried immediately after it is writ ten. Real-t ime feedback and real-t ime tag generation can be
implemented by a combination of Hologres and Flink in various business scenarios.

Real-time reverse transmission of processed dataReal-time reverse transmission of processed data
Real-t ime reverse transmission of processed data is supported by the real-t ime capabilit ies provided by
Hologres and Flink. Flink data is writ ten to Hologres in real t ime. Then, tags are computed in real t ime by
using the built-in profile analysis plug-ins of Hologres, such as the funnel and retention functions. This
way, real-t ime decisions can be made for the data.

Real-time tag generationReal-time tag generation
The process for generating real-t ime tags is typically complex and requires a combination of Flink and
Hologres. For example, JOIN operations of dimension tables are required. Procedure:

1. Create a real-t ime log table named dwd_user_visit_log in Flink. This table stores real-t ime act ion
data from DataHub and Message Queue for Apache Kafka.

2. Create a historical act ion table named dws_user_visit in Hologres. This table stores act ion data
within T-N to T-1 days. Such act ion data is used as the init ial data for calculat ing tags. The
action table is used as a dimension table in Flink.

3. Join the real-t ime log table and the historical act ion table by using the Flink dimension table and
calculate a new tag.

4. Update the tag in real t ime and store it in a Hologres table.

5. Synchronize the tag to an online store such as ApsaraDB for Redis for real-t ime callback.

6. If you use the init ial data for tag computing, write data from Hologres to ApsaraDB for Redis.

Hologres Best Pract ices··Scenario Scheme

> Document Version: 20220711 65

	1.Data warehouse construction
	1.1. Use spatial functions to query data

	2.Authorization
	2.1. Authorize roles based on PostgreSQL privileges

	3.Scenario Scheme
	3.1. Recommended data warehouse layering solutions
	3.2. Real-time report analysis
	3.2.1. Build a real-time data warehouse and display data analytics results
	3.2.2. Analyze large amounts of MaxCompute data in real time

	3.3. User behavior analysis
	3.3.1. Overview
	3.3.2. Batch UV calculation
	3.3.3. Remove duplicate UVs in real time

	3.4. User profile analysis
	3.4.1. User profile analysis
	3.4.2. Wide tables
	3.4.3. Roaring bitmaps
	3.4.4. Real-time tags

