
Alibaba Cloud
ApsaraDB for PolarDB

Developer Guide for PolarDB-O

Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / Legal disclaimer

Legal disclaimer
Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions

 of this legal disclaimer before you read or use this document. If you have read or used this

document, it shall be deemed as your total acceptance of this legal disclaimer.

1. You shall download and obtain this document from the Alibaba Cloud website or other

Alibaba Cloud-authorized channels, and use this document for your own legal business

 activities only. The content of this document is considered confidential information of

Alibaba Cloud. You shall strictly abide by the confidentiality obligations. No part of this

 document shall be disclosed or provided to any third party for use without the prior

written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted, or

disseminated by any organization, company, or individual in any form or by any means

without the prior written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades,

adjustments, or other reasons. Alibaba Cloud reserves the right to modify the content

 of this document without notice and the updated versions of this document will be

 occasionally released through Alibaba Cloud-authorized channels. You shall pay

attention to the version changes of this document as they occur and download and

obtain the most up-to-date version of this document from Alibaba Cloud-authorized

channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud products

 and services. Alibaba Cloud provides the document in the context that Alibaba Cloud

 products and services are provided on an "as is", "with all faults" and "as available"

basis. Alibaba Cloud makes every effort to provide relevant operational guidance based

on existing technologies. However, Alibaba Cloud hereby makes a clear statement that it

 in no way guarantees the accuracy, integrity, applicability, and reliability of the content

of this document, either explicitly or implicitly. Alibaba Cloud shall not bear any liability

for any errors or financial losses incurred by any organizations, companies, or individual

s arising from their download, use, or trust in this document. Alibaba Cloud shall not,

under any circumstances, bear responsibility for any indirect, consequential, exemplary

, incidental, special, or punitive damages, including lost profits arising from the use or

trust in this document, even if Alibaba Cloud has been notified of the possibility of such

a loss.

Issue: 20200701 I

ApsaraDB for PolarDB Developer Guide for PolarDB-O / Legal disclaimer

5. By law, all the contents in Alibaba Cloud documents, including but not limited to

pictures, architecture design, page layout, and text description, are intellectual property

 of Alibaba Cloud and/or its affiliates. This intellectual property includes, but is not

limited to, trademark rights, patent rights, copyrights, and trade secrets. No part of

this document shall be used, modified, reproduced, publicly transmitted, changed,

disseminated, distributed, or published without the prior written consent of Alibaba

 Cloud and/or its affiliates. The names owned by Alibaba Cloud shall not be used,

published, or reproduced for marketing, advertising, promotion, or other purposes

without the prior written consent of Alibaba Cloud. The names owned by Alibaba Cloud

 include, but are not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other brands

 of Alibaba Cloud and/or its affiliates, which appear separately or in combination, as

 well as the auxiliary signs and patterns of the preceding brands, or anything similar

to the company names, trade names, trademarks, product or service names, domain

names, patterns, logos, marks, signs, or special descriptions that third parties identify as

 Alibaba Cloud and/or its affiliates.

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

II Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / Legal disclaimer

Issue: 20200701 III

ApsaraDB for PolarDB Developer Guide for PolarDB-O / Document conventions

Document conventions

Style Description Example

A danger notice indicates a
situation that will cause major
system changes, faults, physical
injuries, and other adverse results.

Danger:
Resetting will result in the loss of
user configuration data.

A warning notice indicates a
situation that may cause major
system changes, faults, physical
injuries, and other adverse results.

Warning:
Restarting will cause business
interruption. About 10 minutes
are required to restart an
instance.

A caution notice indicates warning
 information, supplementary
instructions, and other content
that the user must understand.

Notice:
If the weight is set to 0, the server
no longer receives new requests.

A note indicates supplemental
instructions, best practices, tips,
and other content.

Note:
You can use Ctrl + A to select all
files.

> Closing angle brackets are used
 to indicate a multi-level menu
cascade.

Click Settings > Network > Set
network type.

Bold Bold formatting is used for buttons
, menus, page names, and other UI
 elements.

Click OK.

Courier font Courier font is used for commands. Run the cd /d C:/window
 command to enter the Windows
system folder.

Italic Italic formatting is used for
parameters and variables.

bae log list --instanceid

Instance_ID

[] or [a|b] This format is used for an optional
value, where only one item can be
 selected.

ipconfig [-all|-t]

Issue: 20200701 I

ApsaraDB for PolarDB Developer Guide for PolarDB-O / Document conventions

Style Description Example

{} or {a|b} This format is used for a required
value, where only one item can be
 selected.

switch {active|stand}

II Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / Document conventions

Issue: 20200701 III

ApsaraDB for PolarDB Developer Guide for PolarDB-O / Contents

Contents

Legal disclaimer... I
Document conventions..I
1 Oracle compatibility.. 1
2 Connect to a POLARDB cluster compatible with Oracle...............4
3 Clients and Drivers..9

3.1 Download clients and drivers.. 9
3.2 polartools.. 10
3.3 PolarDB JDBC... 14
3.4 PolarDB .NET... 19
3.5 PolarDB ODBC..24
3.6 PolarDB (compatible with Oracle) OCI... 28
3.7 Use PHP to connect to a PolarDB cluster compatible with Oracle.........................53

4 Basic operations..56
4.1 Create a user... 56
4.2 Create a database...57
4.3 Create a schema..58
4.4 Create a table..59
4.5 Delete a table..67
4.6 Create a view.. 68
4.7 Create a materialized view..70
4.8 Create an index... 72
4.9 Create and use a sequence... 74
4.10 Create and use a synonym.. 77

5 Configuration parameters compatible with Oracle databases...81
5.1 edb_redwood_date.. 81
5.2 edb_redwood_raw_names...81
5.3 edb_redwood_strings.. 83
5.4 edb_stmt_level_tx.. 84
5.5 oracle_home..85

6 SQL tutorial...87
6.1 Get started... 87

6.1.1 Overview.. 87
6.1.2 Install a sample database... 87
6.1.3 Sample database.. 88
6.1.4 Sample database.. 98
6.1.5 Create a table..98
6.1.6 Populate a table with rows... 99
6.1.7 Query a table...99
6.1.8 Joins between tables... 101

IV Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / Contents

6.1.9 Aggregate functions.. 105
6.1.10 Updates..106
6.1.11 Deletions.. 107

6.2 Advanced concepts..108
6.2.1 Views... 108
6.2.2 Foreign keys.. 109
6.2.3 Pseudo column ROWNUM..110
6.2.4 Synonyms.. 111

6.3 Hierarchical queries... 114
6.3.1 Overview..114
6.3.2 Define parent-child relationships.. 115
6.3.3 Select root nodes.. 116
6.3.4 Organization tree in the sample application... 116
6.3.5 Node level...118
6.3.6 Order siblings..119
6.3.7 Use CONNECT_BY_ROOT to retrieve a root node.................................... 120
6.3.8 Use SYS_CONNECT_BY_PATH to retrieve a path......................................124

6.4 Multidimensional analysis... 125
6.4.1 Overview..125
6.4.2 ROLLUP extension..127
6.4.3 CUBE extension... 130
6.4.4 GROUPING SETS extension...134
6.4.5 GROUPING function... 139
6.4.6 GROUPING_ID function...142

6.5 Profiles...144
6.5.1 Overview..144
6.5.2 Create a new profile..145
6.5.3 Alter a profile.. 149
6.5.4 Drop a profile..150
6.5.5 Back up profile management functions.. 150

6.6 Optimizer hints.. 151
6.6.1 Overview..151
6.6.2 Default optimization mode..153
6.6.3 Access method hints... 155
6.6.4 Specify a join order... 159
6.6.5 Join relations hints.. 159
6.6.6 Global hints...162
6.6.7 Use the APPEND optimizer hint... 164
6.6.8 Parallel hints..165
6.6.9 Conflicting hints...169

7 Stored Procedure Language... 171
7.1 Overview...171
7.2 Basic SPL elements.. 171

7.2.1 Character sets...171
7.2.2 Case sensitivity.. 172

Issue: 20200701 V

ApsaraDB for PolarDB Developer Guide for PolarDB-O / Contents

7.2.3 Identifiers...172
7.2.4 Qualifiers... 172
7.2.5 Constants... 174
7.2.6 User-defined PL/SQL subtypes.. 174

7.3 SPL programs... 176
7.3.1 Overview.. 176
7.3.2 SPL block structures...177
7.3.3 Anonymous blocks...179
7.3.4 Create a procedure.. 180
7.3.5 Call a procedure.. 185
7.3.6 Delete a procedure.. 185
7.3.7 Create a function... 186
7.3.8 Call a function... 191
7.3.9 Delete a function... 192
7.3.10 Procedure overview..192
7.3.11 Function overview.. 192
7.3.12 Compilation errors in procedures and functions...................................193

7.4 Procedure and function parameters...194
7.4.1 Overview.. 194
7.4.2 Positional and named parameter notation.. 196
7.4.3 Parameter modes...198
7.4.4 Use default values in parameters.. 200

7.5 Subprograms - subprocedures and subfunctions...201
7.5.1 Overview.. 201
7.5.2 Create a subprocedure.. 202
7.5.3 Create a subfunction... 205
7.5.4 Block relationships...206
7.5.5 Invoke subprograms.. 208
7.5.6 Use forward declarations...215
7.5.7 Overload subprograms.. 217
7.5.8 Access subprogram variables.. 220

7.6 Program security.. 227
7.6.1 EXECUTE privileges... 227
7.6.2 Database object name resolution.. 229
7.6.3 Database object privileges.. 230
7.6.4 Rights of definers and invokers... 230
7.6.5 Security examples..231

7.7 Variable declarations... 237
7.7.1 Declare a variable...238
7.7.2 Use %TYPE in variable declarations.. 239
7.7.3 Use %ROWTYPE in record declarations... 241
7.7.4 User-defined record types and record variables.....................................242

7.8 Basic statements.. 244
7.8.1 NULL...244
7.8.2 Assignment.. 245

VI Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / Contents

7.8.3 SELECT INTO... 245
7.8.4 INSERT..247
7.8.5 UPDATE.. 249
7.8.6 DELETE... 250
7.8.7 Use the RETURNING INTO clause.. 251
7.8.8 Obtain the result status... 253

7.9 Control structures... 254
7.9.1 RETURN statement..254
7.9.2 GOTO statement... 255
7.9.3 CASE expression...256
7.9.4 CASE statement..259
7.9.5 Loops... 263
7.9.6 Exception handling.. 266
7.9.7 User-defined exceptions.. 268
7.9.8 PRAGMA EXCEPTION_INIT..270
7.9.9 RAISE_APPLICATION_ERROR.. 272

7.10 IF statements.. 273
7.10.1 IF-THEN... 273
7.10.2 IF-THEN-ELSE.. 274
7.10.3 IF-THEN-ELSE IF.. 275
7.10.4 IF-THEN-ELSIF-ELSE...277

7.11 Transaction control... 278
7.11.1 Overview... 278
7.11.2 COMMIT...279
7.11.3 ROLLBACK... 280
7.11.4 PRAGMA AUTONOMOUS_TRANSACTION.. 284

7.12 Dynamic SQL...292
7.13 Static cursors.. 294

7.13.1 Overview... 294
7.13.2 Declare a cursor... 294
7.13.3 Open a cursor.. 295
7.13.4 Fetch rows from a cursor... 295
7.13.5 Close a cursor.. 297
7.13.6 Use %ROWTYPE with cursors.. 297
7.13.7 Cursor attributes...298
7.13.8 Cursor FOR loop... 303
7.13.9 Parameterized cursors.. 304

7.14 REF CURSOR and cursor variable.. 304
7.14.1 REF CURSOR overview...305
7.14.2 Declare a cursor variable... 305
7.14.3 Open a cursor variable...306
7.14.4 Fetch rows from a cursor variable..307
7.14.5 Close a cursor variable...307
7.14.6 Usage restrictions...308
7.14.7 Examples.. 309

Issue: 20200701 VII

ApsaraDB for PolarDB Developer Guide for PolarDB-O / Contents

7.14.8 Dynamic queries with REF CURSORs... 312
7.15 Collections.. 314

7.15.1 Overview... 314
7.15.2 Associative arrays...315
7.15.3 Nested tables... 319
7.15.4 Varrays..323

7.16 Collection methods... 325
7.16.1 COUNT...325
7.16.2 DELETE..326
7.16.3 EXISTS...327
7.16.4 EXTEND... 328
7.16.5 FIRST...330
7.16.6 LAST..330
7.16.7 LIMIT... 331
7.16.8 NEXT... 331
7.16.9 PRIOR..332
7.16.10 TRIM.. 332

7.17 Work with collections..333
7.17.1 TABLE().. 334
7.17.2 Use the MULTISET UNION operator..334
7.17.3 Use the FORALL statement..336
7.17.4 Use the BULK COLLECT clause... 338
7.17.5 Errors and messages.. 344

8 Triggers.. 346
8.1 Overview of triggers...346
8.2 Types of triggers..346
8.3 Create a trigger... 347
8.4 Trigger variables..349
8.5 Transactions and exceptions..351
8.6 Trigger examples... 351

8.6.1 Before statement-level trigger...351
8.6.2 After statement-level trigger... 352
8.6.3 Before row-level trigger.. 353
8.6.4 After row-level trigger...353

9 Object types and objects..356
9.1 Basic object concepts...356
9.2 Object type components..358
9.3 Create an object type.. 364
9.4 Create an object instance..368
9.5 Reference an object...370
9.6 Delete an object type.. 372

10 dblink_ora... 373
10.1 Overview of dblink_ora.. 373
10.2 dblink_ora functions and procedures.. 374

VIII Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / Contents

10.3 Call dblink_ora functions... 377

11 Data types...379
11.1 Data types.. 379
11.2 Numeric type... 380
11.3 Character type... 383
11.4 Binary data.. 385
11.5 Date and time type..385
11.6 Boolean type... 391
11.7 XML type.. 391

12 SQL Commands... 393
12.1 Overview.. 393
12.2 ALTER INDEX.. 393
12.3 ALTER PROCEDURE... 394
12.4 ALTER PROFILE... 395
12.5 ALTER QUEUE... 399
12.6 ALTER QUEUE TABLE... 402
12.7 ALTER ROLE… IDENTIFIED BY.. 403
12.8 ALTER ROLE.. 404
12.9 ALTER SEQUENCE..406
12.10 ALTER SESSION... 408
12.11 ALTER TABLE... 410
12.12 ALTER TABLESPACE..412
12.13 ALTER USER… IDENTIFIED BY...413
12.14 CALL... 414
12.15 COMMENT... 414
12.16 COMMIT.. 416
12.17 CREATE DATABASE...416
12.18 CREATE [PUBLIC] DATABASE LINK...417
12.19 CREATE FUNCTION...429
12.20 CREATE INDEX.. 436
12.21 CREATE MATERIALIZED VIEW... 438
12.22 CREATE PACKAGE.. 440
12.23 CREATE PACKAGE BODY.. 442
12.24 CREATE PROCEDURE... 447
12.25 CREATE QUEUE... 455
12.26 CREATE QUEUE TABLE... 457
12.27 CREATE ROLE.. 459
12.28 CREATE SCHEMA... 461
12.29 CREATE SEQUENCE... 462
12.30 CREATE SYNONYM.. 465
12.31 CREATE TABLE...466
12.32 CREATE TABLE AS..473
12.33 CREATE TRIGGER... 474
12.34 CREATE TYPE.. 477

Issue: 20200701 IX

ApsaraDB for PolarDB Developer Guide for PolarDB-O / Contents

12.35 CREATE TYPE BODY...484
12.36 CREATE VIEW.. 487
12.37 DELETE... 488
12.38 DROP DATABASE LINK...490
12.39 DROP FUNCTION...491
12.40 DROP INDEX... 492
12.41 DROP PACKAGE...493
12.42 DROP PROCEDURE.. 493
12.43 DROP PROFILE.. 495
12.44 DROP QUEUE..496
12.45 DROP QUEUE TABLE..497
12.46 DROP SYNONYM...498
12.47 DROP SEQUENCE.. 499
12.48 DROP TABLE... 499
12.49 DROP TABLESPACE..501
12.50 DROP TRIGGER..501
12.51 DROP TYPE... 502
12.52 DROP USER...503
12.53 DROP VIEW...504
12.54 EXEC...505
12.55 GRANT..505
12.56 GRANT on database objects.. 507
12.57 INSERT..509
12.58 LOCK...512
12.59 REVOKE.. 514
12.60 ROLLBACK...517
12.61 ROLLBACK TO SAVEPOINT... 518
12.62 SAVEPOINT... 519
12.63 SELECT..520

12.63.1 SELECT..520
12.63.2 FROM clause.. 522
12.63.3 WHERE clause..524
12.63.4 GROUP BY clause...525
12.63.5 HAVING clause... 526
12.63.6 SELECT list..527
12.63.7 UNION clause...528
12.63.8 INTERSECT clause...528
12.63.9 MINUS clause...529
12.63.10 CONNECT BY clause..529
12.63.11 ORDER BY clause..530
12.63.12 DISTINCT clause..531
12.63.13 FOR UPDATE clause.. 532

12.64 SET CONSTRAINTS.. 533
12.65 SET ROLE.. 534
12.66 SET TRANSACTION.. 535

X Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / Contents

12.67 TRUNCATE...536
12.68 UPDATE.. 537

13 Built-in functions... 540
13.1 Logical operators... 540
13.2 Comparison operators... 540
13.3 Mathematical functions and operators.. 542
13.4 String functions and operators.. 544
13.5 Pattern matching string functions..551

13.5.1 Overview.. 551
13.5.2 REGEXP_COUNT..551
13.5.3 REGEXP_INSTR... 553
13.5.4 REGEXP_SUBSTR...555

13.6 Use the LIKE operator for pattern matching...557
13.7 Functions for formatting data types.. 558
13.8 Date/Time functions and operators... 565

13.8.1 Overview.. 565
13.8.2 ADD_MONTHS.. 567
13.8.3 EXTRACT...568
13.8.4 MONTHS_BETWEEN.. 569
13.8.5 NEXT_DAY.. 570
13.8.6 NEW_TIME.. 571
13.8.7 ROUND...572
13.8.8 TRUNC..577
13.8.9 CURRENT DATE/TIME.. 580

13.9 Sequence manipulation functions... 581
13.10 Conditional expressions... 583
13.11 Aggregate functions...586
13.12 Subquery expressions.. 590

14 Oracle catalog views..593
14.1 ALL_ALL_TABLES... 593
14.2 ALL_CONS_COLUMNS... 593
14.3 ALL_CONSTRAINTS..594
14.4 ALL_DB_LINKS.. 595
14.5 ALL_DIRECTORIES... 596
14.6 ALL_IND_COLUMNS...596
14.7 ALL_INDEXES.. 597
14.8 ALL_JOBS.. 598
14.9 ALL_OBJECTS...599
14.10 ALL_PART_KEY_COLUMNS..600
14.11 ALL_PART_TABLES... 600
14.12 ALL_QUEUES... 602
14.13 ALL_QUEUE_TABLES.. 603
14.14 ALL_SEQUENCES... 604
14.15 ALL_SOURCE... 605

Issue: 20200701 XI

ApsaraDB for PolarDB Developer Guide for PolarDB-O / Contents

14.16 ALL_SUBPART_KEY_COLUMNS... 606
14.17 ALL_SYNONYMS.. 606
14.18 ALL_TAB_COLUMNS... 607
14.19 ALL_TAB_PARTITIONS...607
14.20 ALL_TAB_SUBPARTITIONS..610
14.21 ALL_TABLES.. 612
14.22 ALL_TRIGGERS.. 612
14.23 ALL_TYPES.. 613
14.24 ALL_USERS... 614
14.25 ALL_VIEW_COLUMNS...614
14.26 ALL_VIEWS..615
14.27 DBA_ALL_TABLES.. 615
14.28 DBA_CONS_COLUMNS...616
14.29 DBA_CONSTRAINTS...617
14.30 DBA_DB_LINKS... 618
14.31 DBA_DIRECTORIES...619
14.32 DBA_IND_COLUMNS..619
14.33 DBA_INDEXES... 620
14.34 DBA_JOBS... 621
14.35 DBA_OBJECTS..622
14.36 DBA_PART_KEY_COLUMNS.. 623
14.37 DBA_PART_TABLES.. 623
14.38 DBA_PROFILES..625
14.39 DBA_QUEUES..625
14.40 DBA_QUEUE_TABLES...627
14.41 DBA_ROLE_PRIVS.. 628
14.42 DBA_ROLES...628
14.43 DBA_SEQUENCES..628
14.44 DBA_SOURCE..629
14.45 DBA_SUBPART_KEY_COLUMNS.. 630
14.46 DBA_SYNONYMS...630
14.47 DBA_TAB_COLUMNS..631
14.48 DBA_TAB_PARTITIONS... 632
14.49 DBA_TAB_SUBPARTITIONS...634
14.50 DBA_TABLES... 636
14.51 DBA_TRIGGERS... 636
14.52 DBA_TYPES... 637
14.53 DBA_USERS.. 638
14.54 DBA_VIEW_COLUMNS..639
14.55 DBA_VIEWS...640
14.56 USER_ALL_TABLES...640
14.57 USER_CONS_COLUMNS... 641
14.58 USER_CONSTRAINTS... 642
14.59 USER_DB_LINKS.. 643
14.60 USER_IND_COLUMNS.. 643

XII Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / Contents

14.61 USER_INDEXES..644
14.62 USER_JOBS..645
14.63 USER_OBJECTS.. 646
14.64 USER_PART_KEY_COLUMNS...647
14.65 USER_PART_TABLES.. 647
14.66 USER_QUEUES.. 649
14.67 USER_QUEUE_TABLES... 650
14.68 USER_ROLE_PRIVS.. 651
14.69 USER_SEQUENCES.. 651
14.70 USER_SOURCE...652
14.71 USER_SUBPART_KEY_COLUMNS...652
14.72 USER_SYNONYMS... 653
14.73 USER_TAB_COLUMNS.. 653
14.74 USER_TAB_PARTITIONS..654
14.75 USER_TAB_SUBPARTITIONS... 656
14.76 USER_TABLES..658
14.77 USER_TRIGGERS.. 659
14.78 USER_TYPES..660
14.79 USER_USERS... 660
14.80 USER_VIEW_COLUMNS.. 661
14.81 USER_VIEWS... 662
14.82 V$VERSION... 662
14.83 PRODUCT_COMPONENT_VERSION...662

15 Table partitioning.. 664
15.1 Overview.. 664
15.2 Select a partitioning type.. 664
15.3 Use partition pruning.. 665
15.4 Example - partition pruning.. 668
15.5 Partitioning commands compatible with Oracle databases............................. 670

15.5.1 CREATE TABLE... PARTITION BY..670
15.5.2 ALTER TABLE... ADD PARTITION...678
15.5.3 ALTER TABLE... ADD SUBPARTITION.. 682
15.5.4 ALTER TABLE... SPLIT PARTITION... 686
15.5.5 ALTER TABLE... SPLIT SUBPARTITION... 692
15.5.6 ALTER TABLE... EXCHANGE PARTITION...699
15.5.7 ALTER TABLE... MOVE PARTITION...702
15.5.8 ALTER TABLE... RENAME PARTITION.. 704
15.5.9 DROP TABLE... 706
15.5.10 ALTER TABLE... DROP PARTITION... 707
15.5.11 ALTER TABLE... DROP SUBPARTITION... 708
15.5.12 TRUNCATE TABLE.. 710
15.5.13 ALTER TABLE... TRUNCATE PARTITION.. 712
15.5.14 ALTER TABLE... TRUNCATE SUBPARTITION.. 714

15.6 Handle stray values in a LIST or RANGE partitioned table................................ 717
15.7 Specify multiple partition key columns in a RANGE partitioned table............... 721

Issue: 20200701 XIII

ApsaraDB for PolarDB Developer Guide for PolarDB-O / Contents

15.8 Retrieve information about a partitioned table... 722
15.8.1 Overview.. 722
15.8.2 Table partitioning views - reference.. 723

16 Packages...730
16.1 Overview.. 730
16.2 Package components...730

16.2.1 Package specification syntax... 731
16.2.2 Package body syntax...734

16.3 Create a package...740
16.3.1 Create a package specification.. 740
16.3.2 Create a package body... 741

16.4 Reference a package... 742
16.5 Use packages with user-defined types.. 743
16.6 Drop a package... 746

17 Built-in packages...747
17.1 Overview...747
17.2 DBMS_ALERT... 747
17.3 DBMS_AQ..754
17.4 DBMS_AQADM...769
17.5 DBMS_CRYPTO...781
17.6 DBMS_LOB.. 789
17.7 DBMS_LOCK...803
17.8 DBMS_MVIEW..803
17.9 DBMS_OUTPUT.. 810
17.10 DBMS_PIPE.. 819
17.11 DBMS_PROFILER.. 833
17.12 DBMS_RANDOM...837
17.13 DBMS_RLS... 842
17.14 DBMS_SESSION..857
17.15 DBMS_SQL... 858
17.16 DBMS_UTILITY..877
17.17 UTL_ENCODE... 893
17.18 UTL_RAW... 904
17.19 UTL_URL.. 910

18 PL/SQL functions and procedures....................................... 914
18.1 Overview.. 914
18.2 Basic SPL elements.. 914

18.2.1 Basic SPL elements.. 914
18.2.2 User-defined PL/SQL subtypes.. 917

18.3 SPL programs...920
18.3.1 SPL block structure...920
18.3.2 Anonymous blocks.. 922

18.4 Procedure overview... 923
18.5 Function overview..925

XIV Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / Contents

18.6 Parameters in stored procedures and functions...927
18.6.1 Overview.. 927
18.6.2 Positional and named parameter notation..929
18.6.3 Parameter modes.. 931
18.6.4 Use default values in parameters..933

18.7 Compilation errors in stored procedures and functions................................... 934
18.8 Program security..936

18.8.1 Overview.. 936
18.8.2 EXECUTE permission.. 936
18.8.3 Database object name resolution..937
18.8.4 Database object permissions.. 938
18.8.5 Comparison of the definer's permission and caller's permission......... 938
18.8.6 Example of the security mechanism..940

19 Develop PL/SQL packages..947
19.1 Overview.. 947
19.2 Package components..947
19.3 Create a package...955
19.4 Reference a package... 957
19.5 Use packages with user-defined types.. 957
19.6 Drop a package... 961

20 Custom parameters..962
21 Implicit conversion rules.. 969
22 Read and write external data files by using oss_fdw............ 972
23 Global temporary tables.. 977

Issue: 20200701 XV

ApsaraDB for PolarDB Developer Guide for PolarDB-O / Contents

XVI Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 1 Oracle compatibility

1 Oracle compatibility

This topic introduces the features supported by the PolarDB database engine that is

compatible with Oracle syntax.

Note:

This topic lists only the common features.

PolarDB is highly compatible with Oracle. The following table lists common features.

Type Sub-type Compatibility

PARTITION BY RANGE Compatible

PARTITION BY HASH Compatible

PARTITION BY LIST Compatible

Partitioned table

SUB-PARTITIONING Compatible

NUMBER Compatible

VARCHAR2 , NVARCHAR2 Compatible

CLOB Compatible

BLOB Compatible

RAW Compatible

LONG RAW Compatible

Data type

DATE Compatible

HIERARCHICAL QUERIES Compatible

SYNONYMS (PUBLIC AND PRIVATE) Compatible

SEQUENCE GENERATOR Compatible

SQL syntax

HINT Compatible

The number of supported functions 3155

DUAL Compatible

DECODE Compatible

ROWNUM Compatible

SYSDATE Compatible

SYSTIMESTAMP Compatible

Function

NVL Compatible

Issue: 20200701 1

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 1 Oracle compatibility

Type Sub-type Compatibility

NVL2 Compatible

DATA REDACTION Compatible

Database Firewall Only (SQL/Protect) Compatible

VPD Compatible

PL/SQL code encryption Compatible

Security

PROFILES FOR PASSWORDS Compatible

PL/SQL Compatible Compatible

NAMED PARAMETER NOTATION FOR STORED
PROCEDURES

Compatible

TRIGGERS Compatible

REF CURSORS Compatible

IMPLICIT / EXPLICIT CURSORS Compatible

ANONYMOUS BLOCKS Compatible

BULK COLLECT/BIND Compatible

ASSOCIATIVE ARRAYS Compatible

NESTED TABLES Compatible

VARRAYS Compatible

PL/SQL SUPPLIED PACKAGES Compatible

PRAGMA RESTRICT_REFERENCES Compatible

PRAGMA EXCEPTION_INIT Compatible

PRAGMA AUTONOMOUS_TRANSACTION Compatible

USER DEFINED EXCEPTIONS Compatible

OBJECT TYPES Compatible

PL/SQL

SUB-TYPES Compatible

The number of supported packages 26Package

Built-in functions 317

DATABASE LINKS Compatible

AWR Compatible

SQL profile Compatible

Advanced feature

Index recommendation Compatible

2 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 1 Oracle compatibility

Type Sub-type Compatibility

CPU and memory resource isolation by user Compatible

TUNING PACKAGE Compatible

System view The number of system views 88

Embedded C
programming

Pro*C Compatible

Client driver OCI Compatible

References

Oracle-compatible operations

Issue: 20200701 3

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 2 Connect to a POLARDB
cluster compatible with Oracle

2 Connect to a POLARDB cluster compatible with
Oracle

In addition to connecting to a POLARDB cluster compatible with Oracle through the

ApsaraDB for POLARDB console, you can also connect to the cluster through the pgAdmin 4

client. This topic describes how to use the pgAdmin 4 client to connect to a POLARDB cluster

compatible with Oracle.

Prerequisites

• You have created a privileged or standard account for an existing database cluster. For

more information, see #unique_6.

• You have installed pgAdmin 4 in a server that can connect to POLARDB clusters

compatible with Oracle such as ECS.

• POLARDB compatible with Oracle only provides the private endpoint. You must connect

 to the POLARDB cluster compatible with Oracle by using an ECS instance that is in the

same VPC.

• You must use a Windows-based ECS instance.

Procedure

1. Start the pgAdmin 4 client.

4 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 2 Connect to a POLARDB
cluster compatible with Oracle

2. Right-click Servers and choose Create > Server from the shortcut menu, as shown in the

following figure.

Issue: 20200701 5

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 2 Connect to a POLARDB
cluster compatible with Oracle

3. On the General tab of the Create - Server dialog box, enter the name of the server, as

shown in the following figure.

6 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 2 Connect to a POLARDB
cluster compatible with Oracle

4. Click the Connection tab and enter the information of the destination instance, as shown

in the following figure.

Parameters:

• Hostname or endpoint: the primary endpoint of the POLARDB cluster compatible with

Oracle. You can view the endpoint on the Basic Information page in the ApsaraDB for

POLARDB console, as shown in the following figure.

Note:

Issue: 20200701 7

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 2 Connect to a POLARDB
cluster compatible with Oracle

Do not include the port number when specifying the endpoint. Example:

abc.o.polardb.cn.rds.aliyuncs.com.

• Port: The port of the POLARDB cluster compatible with Oracle is 1521.

• Username: the account name of the cluster.

• Password: the password of the cluster.

5. Confirm the settings and click Save.

Note:

Additionally, you can run commands on clients to connect to a POLARDB cluster

compatible with Oracle. For more information about how to download and install the

clients, see Download clients and drivers.

8 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

3 Clients and Drivers

3.1 Download clients and drivers
This topic provides you with the download addresses of the clients and related drivers that

are used to connect to ApsaraDB for PolarDB clusters compatible with Oracle.

In addition to logging on to a database from the ApsaraDB for PolarDB console, you can

also download and install a client and then use the client to connect to an ApsaraDB for

PolarDB cluster. For more information, see Connect to a POLARDB cluster compatible with

Oracle.

For your application to connect to the ApsaraDB for PolarDB cluster, you can download and

 install a driver based on your actual conditions.

Clients

The following client package contains client installation packages for the Windows and

Linux systems. For information about the installation method, see the Readme document in

 the package.

PolarDB-client.zip

Drivers

• PolarDB JDBC:

polardb-jdbc_installer.zip

For more information about how to use PolarDB JDBC, see PolarDB JDBC.

• PolarDB .NET:

polardb-.net_installer.zip

For more information about how to use PolarDB .NET, see PolarDB .NET.

• PolarDB OCI:

polardb-oci_installer.zip

For more information about how to use PolarDB OCI, see PolarDB (compatible with

Oracle) OCI.

Issue: 20200701 9

http://gosspublic.alicdn.com/doc/POLARDB-for-Oracle-client.zip
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/146188/cn_zh/1576573473999/polardb-jdbc.zip
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/146188/cn_zh/1576573456652/POLARDB-for-Oracle-.net_installer.zip
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/146188/cn_zh/1576567176526/POLARDB-for-Oracle-oci_package.zip

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

• PolarDB ODBC:

polardb-odbc_installer.tar.gz

For more information about how to use PolarDB ODBC, see PolarDB ODBC.

3.2 polartools
This topic describes how to download and install polartools.

Context

polartools is a collection of Apsara PolarDB client tools for Linux. polartools includes the

following tools:

• polarplus: the tool used by clients to connect to PolarDB databases compatible with

Oracle.

For more information, see polarplus.

• psql: the tool used by clients to connect to native PostgreSQL databases.

For more information, see Documentation of PostgreSQL psql.

• pg_basebackup: a physical backup tool for PostgreSQL.

For more information, see Documentation of PostgreSQL pg_basebackup.

• pg_dump: the logical backup tool of PostgreSQL. You can use this tool to back up one

database of a cluster at a time.

For more information, see Documentation of PostgreSQL pg_pgdump.

• pg_dumpall: the logical backup tool of PostgreSQL. You can use this tool to back up all

the databases of a cluster at a time.

For more information, see Documentation of PostgreSQL pg_pgdumpall.

• pg_restore: the tool used to restore PostgreSQL databases based on backup files. The

backup files are created by pg_dump and pg_dump.

For more information, see Documentation of PostgreSQL pg_restore.

This topic describes how to use polarplus. For more information about other tools, see the

PostgreSQL documentation.

10 Issue: 20200701

http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/146188/cn_zh/1576563198845/polardb-odbc.tar.gz
https://www.postgresql.org/docs/11/app-psql.html
https://www.postgresql.org/docs/11/app-pgbasebackup.html
https://www.postgresql.org/docs/11/app-pgdump.html
https://www.postgresql.org/docs/11/app-pg-dumpall.html
https://www.postgresql.org/docs/11/app-pgrestore.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

Download polartools

To use polartools, click here to download the polartools package. After you have

downloaded polartools, you must uncompress the package. You do not need to install the

package. You can download and use polartools free of charge.

polartools has the following directory structure:

polartools
├── bin
├── etc
│ └── sysconfig
├── help
└── lib

All tools are located in the bin directory. If you want to use a tool, you must add the tool

location to the PATH environmental variable.

bin
├── pg_basebackup
├── pg_dump
├── pg_dumpall
├── pg_restore
├── polarplusLauncher.sh
├── polarplus.sh
└── psql

polarplus

polarplus is a utility that provides a command-line interface (CLI) for Apsara PolarDB.

polarplus supports SQL statements, SPL anonymous blocks, and polarplus statements.

polarplus provides the following features:

• Queries a specified database object.

• Executes a stored procedure.

• Formats SQL statement output.

• Runs multiple scripts in a query.

• Runs operating system commands.

• Retains output logs.

To download and configure polarplus, follow these steps:

Note:

polarplus is dependent on JDK 1.8.

Issue: 20200701 11

http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/150267/cn_zh/1589436262595/polartools.tar.gz

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

1. On the command line, enter wget to download polartools. For more information about

the download address, see Download polartools.

2. Uncompress the polartools-linux.zip file.

tar –zxf polartools.tar.gz

The following figure shows the uncompressed file.

3. Go to the bin directory.

4. Open the polarplus.sh file.

5. Modify the setting of export base={pwd}/polartools by replacing pwd with the absolute

path where the polartools folder is located.

6. To start polarplus, on the command line, execute the following statement on the Elastic

Compute Service (ECS) instance or the server that connects to a PolarDB database:

polarplus [-S[ILENT]] [login | /NOLOG] [@scriptfile[.ext]]

Parameter Description

-S[ILENT] If you set this parameter, the polarplus logon banner and all
relevant messages are disabled.

12 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

Parameter Description

login The logon information used to connect to the database server
and databases.

Enter the logon information in the following format:

username[/password][@{connectstring | variable }]

For more information, see Table 3-1: Logon information.

The variable parameter specifies a variable defined in the login.

sql file. This file contains a database connection string.

/NOLOG When you start polarplus, if you specify /NOLOG, no database
connection is established. To connect to a database and execute
SQL statements or polarplus statements, do not use this mode.

Note:
After you start polarplus by specifying / NOLOG, you can
execute the CONNECT statement to connect to a database.

scriptfile[.ext] scriptfile specifies the file name that is located in the current
directory. This file contains SQL statements and polarplus
statements that are automatically executed after you start
polarplus.

.ext specifies the file extension. If the file extension is .sql,

when you specify a script file, you can omit the .sql extension.

When you create a script file, name the file with the extension.

Otherwise, polarplus cannot access the file.

Note:

polarplus processes the files without extensions as .sql files.

Table 3-1: Logon information

Parameter Description

username The username used to connect to a database.

password The password associated with the specified username.

Issue: 20200701 13

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

Parameter Description

connectstring The database connection string is provided in the following
format:

host[:port][/dbname][? ssl={true | false}]

• host specifies the hostname or IP address of a database
server.

Note:
If you have not specified connectstring, variable, or NOLOG,
the default host is the local host.

• If you use an Internet Protocol version 6 (IPv6) address to
connect to a database, you must place the IP address in
brackets ([]).

The following example shows how to use an IPv6 address to

connect to a database:

polarplus polardb/password@[fe80::20c:29ff:fe7c:78b2]:
5444/polardb

• port specifies the port number on the database server to
receive connection requests.

Note:
If you have not specified a port number, the default value is
5444.

• dbname is the name of the database to connect to.
• If you require SSL connections, the connection string must

include ? ssl = true and host:port. If you have not set the ssl
parameter, the default value is false.

The following example shows how to use polarplus to connect to a PolarDB database:

polarplus polardb/password@pc-bp1zxxxxxxxxxxx.o.polardb.rds.aliyuncs.com:1521/
polardb

3.3 PolarDB JDBC
This topic describes how to use the PolarDB Java Database Connectivity (JDBC) driver to

connect a Java application to an ApsaraDB for PolarDB database.

Prerequisites

14 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

• You have created an account for an ApsaraDB for PolarDB cluster. For more information

about how to create an account, see #unique_6.

• You have added the IP address of the host that you want to connect to the ApsaraDB for

PolarDB cluster to the whitelist. For more information, see #unique_14.

Context

JDBC is an application programming interface for the programming language Java, which

 defines how a client may access a database. ApsaraDB for PolarDB provides the Oracle

 JDBC driver based on the open-source PostgreSQL JDBC driver. The Oracle JDBC driver

uses the PostgreSQL protocols for LAN communications, and it allows Java applications to

connect to databases by using standard and database-independent Java code.

The PolarDB JDBC driver uses the PostgreSQL 3.0 protocol and is compatible with Java 6 (

JDBC 4.0), Java 7 (JDBC 4.1), and Java 8 (JDBC 4.2).

Download the PolarDB JDBC driver

Download the PolarDB JDBC driver. Alibaba Cloud provides three JDBC versions compatible

with Java 6, Java 7, and Java 8. The three JAR packages are named as polardb-jdbc16.jar,

polardb-jdbc17.jar, and polardb-jdbc18.jar, respectively. You can select an appropriate

JDBC version based on the JDK version used by your application.

Configure the PolarDB JDBC driver

Before you use the PolarDB JDBC driver in a Java application, you must add the path of

the JDBC driver package to CLASSPATH. For example, if the path of your JDBC driver is /usr

/local/polardb/share/java/, run the following command to add the JDBC driver path to

CLASSPATH:

export CLASSPATH=$CLASSPATH:/usr/local/polardb/share/java/<Name of the JAR
package.jar>

Example:

export CLASSPATH=$CLASSPATH:/usr/local/polardb/share/java/polardb-jdbc18.jar

You can run the following command to view the current JDBC version:

#java -jar <Name of the JAR package.jar>

Example:

#java -jar polardb-jdbc18.jar

Issue: 20200701 15

http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/146146/cn_zh/1575884287622/polardb-jdbc.zip

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

POLARDB JDBC Driver 42.2.5.2.0

Set up a Java project with Maven

If your Java project is built using Maven, run the following command to install the JDBC

driver package to your local repository:

 mvn install:install-file -DgroupId=com.aliyun -DartifactId=<Name of the JAR package> -
Dversion=1.1.2 -Dpackaging=jar -Dfile=/usr/local/polardb/share/java/<Name of the JAR
 package.jar>

Example:

 mvn install:install-file -DgroupId=com.aliyun -DartifactId=polardb-jdbc18 -Dversion=1.1.
2 -Dpackaging=jar -Dfile=/usr/local/polardb/share/java/polardb-jdbc18.jar

Add the following dependency to the pom.xml file of the Maven project:

<dependency>
 <groupId>com.aliyun</groupId>
 <artifactId>parent</artifactId>
 <version>1.1.2</version>
</dependency>

Example:

<dependency>
 <groupId>com.aliyun</groupId>
 <artifactId>odps-jdbc</artifactId>
 <version>1.1.2</version>
</dependency>

Set up a project for a Hibernate application

If your project uses Hibernate to connect to the database, open the Hibernate configuration

file hibernate.cfg.xml and configure the driver class and dialect of the ApsaraDB for

PolarDB database.

Note:

Only Hibernate version 3.6 and later support PostgresPlusDialect.

<property name="connection.driver_class">com.aliyun.polardb.Driver</property>
<property name="connection.url">jdbc:polardb://pc-***.o.polardb.rds.aliyuncs.com:
1521/polardb_test</property>

16 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

<property name="dialect">org.hibernate.dialect.PostgresPlusDialect</property>

Load the PolarDB JDBC driver

Class.forName("com.aliyun.polardb.Driver");

Example

package com.aliyun.polardb;

import java.sql.Connection;
import java.sql.Driver;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.Properties;

/**
 * POLARDB JDBC DEMO
 * <p>
 * Please make sure the host ip running this demo is in you cluster's white list.
 */
public class PolarDBJdbcDemo {
 /**
 * Replace the following information.
 */
 private final String host = "***.o.polardb.rds.aliyuncs.com";
 private final String user = "***";
 private final String password = "***";
 private final String port = "1921";
 private final String database = "db_name";

 public void run() throws Exception {
 Connection connect = null;
 Statement statement = null;
 ResultSet resultSet = null;

 try {
 Class.forName("com.aliyun.polardb.Driver");

 Properties props = new Properties();
 props.put("user", user);
 props.put("password", password);
 String url = "jdbc:polardb://" + host + ":" + port + "/" + database;
 connect = DriverManager.getConnection(url, props);

 /**
 * create table foo(id int, name varchar(20));
 */
 String sql = "select id, name from foo";
 statement = connect.createStatement();
 resultSet = statement.executeQuery(sql);
 while (resultSet.next()) {
 System.out.println("id:" + resultSet.getInt(1));
 System.out.println("name:" + resultSet.getString(2));
 }
 } catch (Exception e) {
 e.printStackTrace();
 throw e;
 } finally {
 try {

Issue: 20200701 17

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

 if (resultSet ! = null)
 resultSet.close();
 if (statement ! = null)
 statement.close();
 if (connect ! = null)
 connect.close();
 } catch (SQLException e) {
 e.printStackTrace();
 throw e;
 }
 }
 }

 public static void main(String[] args) throws Exception {
 PolarDBJdbcDemo demo = new PolarDBJdbcDemo();
 demo.run();
 }
}

In JDBC, a database is usually represented by a URL, for example:

jdbc:polardb://pc-***.o.polardb.rds.aliyuncs.com:1521/polardb_test? user=test&
password=Pw123456

Parameter Example Description

URL prefix jdbc:polardb:// Set the prefix of the URL to jdbc:polardb://.

Endpoint pc-***.o.polardb.rds.
aliyuncs.com

The endpoint of the ApsaraDB for PolarDB cluster.
For more information about how to query the
endpoint, see #unique_15.

Port 1521 The port of the ApsaraDB for PolarDB cluster.
Default value: 1521.

Database polardb_test The name of the database to be connected.

Username test The username for connecting to the ApsaraDB for
PolarDB cluster.

Password Pw123456 The password of the username.

When you perform a query on a database, you must create a Statement, PreparedStatment

, or CallableStatement object.

In the preceding example, a Statement object is created. The following sample code

creates a PreparedStatment object:

PreparedStatement st = conn.prepareStatement("select id, name from foo where id > ?") ;
st.setInt(1, 10);
resultSet = st.executeQuery();
while (resultSet.next()) {
 System.out.println("id:" + resultSet.getInt(1));
 System.out.println("name:" + resultSet.getString(2));

18 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

}

CallableStatement is used to process a stored procedure, as shown in the following

example:

String sql = "{? =call getName (?, ?, ?)}" ;
CallableStatement stmt = conn.prepareCall(sql);
stmt.registerOutParameter(1, java.sql.Types.INTEGER);

//Bind IN parameter first, then bind OUT parameter
int id = 100;
stmt.setInt(2, id); // This would set ID as 102
stmt.registerOutParameter(3, java.sql.Types.VARCHAR);
stmt.registerOutParameter(4, java.sql.Types.INTEGER);

//Use execute method to run stored procedure.
stmt.execute();

//Retrieve name with getXXX method
String name = stmt.getString(3);
Integer msgId = stmt.getInt(4);
Integer result = stmt.getInt(1);
System.out.println("Name with ID:" + id + " is " + name + ", and messegeID is " + msgId +
 ", and return is " + result);

The following code shows how to create the stored procedure getName used in the

preceding code:

CREATE OR REPLACE FUNCTION getName(
 id In Integer,
 name Out Varchar2,
 result Out Integer
) Return Integer
Is
 ret Int;
Begin
 ret := 0;
 name := 'Test';
 result := 1;
 Return(ret);
End;

3.4 PolarDB .NET
This topic describes how to use the ADO.NET Data Provider for PolarDB (PolarDB .NET) driver

to connect a C# application to an ApsaraDB for PolarDB database.

Prerequisites

• You have created an account for an ApsaraDB for PolarDB cluster. For more information

about how to create an account, see #unique_6.

• You have added the IP address of the host that you want to connect to the ApsaraDB for

PolarDB cluster to the whitelist. For more information, see #unique_14.

Issue: 20200701 19

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

Context

PolarDB .NET is a driver used to connect to ApsaraDB for PolarDB by using a programmin

g language, including C#, Visual Basic, and F #. The driver is compatible with Entity

Framework Core and Entity Framework 6.x. You can use this driver with Entity Framework to

 quickly develop applications.

The current driver uses the PostgreSQL 3.0 protocol and is compatible with .NETFramework

4.x and .NET Core 2.x.

Entity Framework overview

Entity Framework is a popular object-relational mapper (O/RM) on the .NET platform.

It works with Language-Integrated Query (LINQ) technologies to greatly accelerate the

development of backend applications if the C# language is used.

The PolarDB .NET driver provides the PolarDB Entity Framework 5 and 6 dlls to help you use

 Entity Framework.

For more information about Entity Framework, visit its official website at https://docs.

microsoft.com/en-au/ef/.

Download the PolarDB .NET driver

Download the PolarDB .NET driver.

Install the PolarDB .NET driver

1. Decompress the PolarDB .NET driver.

unzip POLARDB-for-Oracle-.net_installer.zip

2. Import the driver to the Visual Studio project.

Add the following content to the <Project> node of sample. csproj or the GUI of Visual

Studio.

<Project>
 ...
 <ItemGroup>
 <Reference Include="POLARDB.POLARDBClient, Version=4.0.4.1, Culture=neutral,
PublicKeyToken=5d8b90d52f46fda7">
 <HintPath>${your path}\POLARDB.POLARDBClient.dll</HintPath>
 </Reference>
 </ItemGroup>
 ...

20 Issue: 20200701

https://docs.microsoft.com/en-au/ef/
https://docs.microsoft.com/en-au/ef/
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/146188/cn_zh/1575948224385/POLARDB-for-Oracle-.net_installer.zip

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

</Project>

Example

In the Samples folder, you can see the polardb-sample.sql file and multiple sample project

files. The following procedure shows how to run these sample projects.

1. Connect to a database. For more information, see Connect to a POLARDB cluster

compatible with Oracle.

2. Run the following command to create a project namedsampledb.

CREATE DATABASE sampledb;

3. Import the databases, tables, data, and functions that are required for testing to

database sampledb.

\i ${your path}/polardb-sample.sql

4. After the data is imported, write the C # code.

The following sample code shows how to query, update, and call stored procedures.

using System;
using System.Data;
using POLARDB.POLARDBClient;
/*
 * This class provides a simple way to perform DML operation in POLARDB
 *
 * @revision 1.0
 */

namespace POLARDBClientTest
{

 class SAMPLE_TEST
 {

 static void Main(string[] args)
 {
 POLARDBConnection conn = new POLARDBConnection("Server=localhost;Port=
1521;User Id=polaruser;Password=password;Database=sampledb");
 try
 {
 conn.Open();

 //Simple select statement using POLARDBCommand object
 POLARDBCommand POLARDBSeletCommand = new POLARDBCommand("
SELECT EMPNO,ENAME,JOB,MGR,HIREDATE FROM EMP",conn);
 POLARDBDataReader SelectResult = POLARDBSeletCommand.ExecuteReader
();
 while (SelectResult.Read())
 {
 Console.WriteLine("Emp No" + " " + SelectResult.GetInt32(0));
 Console.WriteLine("Emp Name" + " " + SelectResult.GetString(1));
 if (SelectResult.IsDBNull(2) == false)
 Console.WriteLine("Job" + " " + SelectResult.GetString(2));
 else

Issue: 20200701 21

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

 Console.WriteLine("Job" + " null ");
 if (SelectResult.IsDBNull(3) == false)
 Console.WriteLine("Mgr" + " " + SelectResult.GetInt32(3));
 else
 Console.WriteLine("Mgr" + "null");
 if (SelectResult.IsDBNull(4) == false)
 Console.WriteLine("Hire Date" + " " + SelectResult.GetDateTime(4));
 else
 Console.WriteLine("Hire Date" + " null");
 Console.WriteLine("---------------------------------");
 }

 //Insert statement using POLARDBCommand Object
 SelectResult.Close();
 POLARDBCommand POLARDBInsertCommand = new POLARDBCommand
("INSERT INTO EMP(EMPNO,ENAME) VALUES((SELECT COUNT(EMPNO) FROM EMP),'
JACKSON')",conn);
 POLARDBInsertCommand.ExecuteScalar();
 Console.WriteLine("Record inserted");

 //Update using POLARDBCommand Object
 POLARDBCommand POLARDBUpdateCommand = new POLARDBCommand("
UPDATE EMP SET ENAME ='DOTNET' WHERE EMPNO < 100",conn);
 POLARDBUpdateCommand.ExecuteNonQuery();
 Console.WriteLine("Record has been updated");
 POLARDBCommand POLARDBDeletCommand = new POLARDBCommand("
DELETE FROM EMP WHERE EMPNO < 100",conn);
 POLARDBDeletCommand.CommandType= CommandType.Text;
 POLARDBDeletCommand.ExecuteScalar();
 Console.WriteLine("Record deleted");

 //procedure call example
 try
 {
 POLARDBCommand callable_command = new POLARDBCommand("
emp_query(:p_deptno,:p_empno,:p_ename,:p_job,:p_hiredate,:p_sal)", conn);
 callable_command.CommandType = CommandType.StoredProcedure;
 callable_command.Parameters.Add(new POLARDBParameter("p_deptno
",POLARDBTypes.POLARDBDbType.Numeric,10,"p_deptno",ParameterDirection.Input,
false ,2,2,System.Data.DataRowVersion.Current,20));
 callable_command.Parameters.Add(new POLARDBParameter("p_empno
", POLARDBTypes.POLARDBDbType.Numeric,10,"p_empno",ParameterDirection.
InputOutput,false ,2,2,System.Data.DataRowVersion.Current,7369));
 callable_command.Parameters.Add(new POLARDBParameter("p_ename
", POLARDBTypes.POLARDBDbType.Varchar,10,"p_ename",ParameterDirection.
InputOutput,false ,2,2,System.Data.DataRowVersion.Current,"SMITH"));
 callable_command.Parameters.Add(new POLARDBParameter("p_job",
POLARDBTypes.POLARDBDbType.Varchar,10,"p_job",ParameterDirection.Output,false ,
2,2,System.Data.DataRowVersion.Current,null));
 callable_command.Parameters.Add(new POLARDBParameter("p_hiredate
", POLARDBTypes.POLARDBDbType.Date,200,"p_hiredate",ParameterDirection.Output,
false ,2,2,System.Data.DataRowVersion.Current,null));
 callable_command.Parameters.Add(new POLARDBParameter("p_sal",
POLARDBTypes.POLARDBDbType.Numeric,200,"p_sal",ParameterDirection.Output,false
 ,2,2,System.Data.DataRowVersion.Current,null));
 callable_command.Prepare();
 callable_command.Parameters[0].Value = 20;
 callable_command.Parameters[1].Value = 7369;
 POLARDBDataReader result = callable_command.ExecuteReader();
 int fc = result.FieldCount;
 for(int i=0;i<fc;i++)
 Console.WriteLine("RESULT["+i+"]="+ Convert.ToString(callable_command
.Parameters[i].Value));
 result.Close();

22 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

 }
 catch(POLARDBException exp)
 {
 if(exp.ErrorCode.Equals("01403"))
 Console.WriteLine("No data found");
 else if(exp.ErrorCode.Equals("01422"))
 Console.WriteLine("More than one rows were returned by the query");
 else
 Console.WriteLine("There was an error Calling the procedure. \nRoot
Cause:\n");
 Console.WriteLine(exp.Message.ToString());
 }

 //Prepared statement
 string updateQuery = "update emp set ename = :Name where empno = :ID";
 POLARDBCommand Prepared_command = new POLARDBCommand(
updateQuery, conn);
 Prepared_command.CommandType = CommandType.Text;
 Prepared_command.Parameters.Add(new POLARDBParameter("ID",
POLARDBTypes.POLARDBDbType.Integer));
 Prepared_command.Parameters.Add(new POLARDBParameter("Name",
POLARDBTypes.POLARDBDbType.Text));
 Prepared_command.Prepare();
 Prepared_command.Parameters[0].Value = 7369;
 Prepared_command.Parameters[1].Value = "Mark";
 Prepared_command.ExecuteNonQuery();
 Console.WriteLine("Record Updated...");
 }

 catch(POLARDBException exp)
 {
 Console.WriteLine(exp.ToString());
 }
 finally
 {
 conn.Close();
 }

 }
 }
}

Where, the code string Server=localhost;Port=1521;User Id=polaruser;Password=

password;Database=sampledb is a connection string used to connect to the database.

The connection string consists of the Server, Port, User Id, Password, and Database

 parameters, as described in the following table.

Parameter Example Description

Server localhost The endpoint of the ApsaraDB for PolarDB
cluster. For information about how to query the
endpoint, see #unique_15.

Port 1521 The port of the ApsaraDB for PolarRDB cluster.
Default value: 1521.

Issue: 20200701 23

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

Parameter Example Description

User Id polaruser The username for connecting to the ApsaraDB for
 PolarDB cluster.

Password password The password of the username.

Database sampledb The name of the database to be connected.

3.5 PolarDB ODBC
This topic describes how to use the PolarDB Open Database Connectivity (ODBC) driver to

connect a Unix or Linux application to an ApsaraDB for PolarDB cluster.

Prerequisites

• You have created an account for an ApsaraDB for PolarDB cluster. For more information

about how to create an account, see #unique_6.

• You have added the IP address of the host that you want to connect to the ApsaraDB for

PolarDB cluster to the whitelist. For more information, see #unique_14.

• The server where the PolarDB ODBC driver is installed must run 64-bit Linux.

Download the PolarDB ODBC driver

Download the PolarDB ODBC driver.

24 Issue: 20200701

http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/146188/cn_zh/1576563198845/polardb-odbc.tar.gz

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

Install the PolarDB ODBC driver

ApsaraDB for PolarDB provides an ODBC driver package. You can use it after decompress

ion without installation. Run the following command to decompress the package:

tar -zxvf polardb-odbc.tar.gz

Connect to an ApsaraDB for PolarDB cluster

1. Install Libtool on the Linux server. Libtool must be version 1.5.1 or later.

yum install -y libtool

2. Install unixODBC-devel on the Linux server.

yum install -y unixODBC-devel

3. Edit the odbcinst.ini file in the /etc directory.

vim /etc/odbcinst.ini

4. Add the following information to the odbcinst.ini file.

[POLARDB]
Description = ODBC for POLARDB
Driver = /root/target/lib/unix/polar-odbc.so
Setup = /root/target/lib/unix/libodbcpolarS.so
Driver64 = /root/target/lib/unix/polar-odbc.so
Setup64 = /root/target/lib/unix/libodbcpolarS.so
Database = <Database name>
Servername = <Endpoint of the ApsaraDB for POLARDB cluster>
Password = <Password>
Port = <Port>
Username = <Username>
Trace = yes
TraceFile = /tmp/odbc.log
FileUsage = 1

Note:

• For more information about how to query the endpoint of an ApsaraDB for PolarDB

cluster, see #unique_15.

• Replace /root in the sample code with the actual path of the target folder.

5. Connect to the ApsaraDB for PolarDB cluster.

$isql -v POLARDB
+---------------------------------------+
| Connected! |
| |
| sql-statement |
| help [tablename] |
| quit |
| |

Issue: 20200701 25

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

+---------------------------------------+
SQL>

Example

The following examples show how to run the Test1 and Test2 files.

1. Open the samples folder in the ODBC driver folder.

cd samples

2. Compile the sample test. The following test files are generated: Test1 and Test2.

make

3. Run Test1 and Test2.

. /Test1
Run Test1

. /Test2
Run Test2

Note:

• Test1 contains the sample code to perform the add, delete, modify, and query

operations. Test2 contains the sample code to print the values of cursors as output

parameters.

• The following sample code is only a snippet of the source code. To check the

complete sample code, reference the Test1 and Test2 files in the samples folder of

the ODBC driver package.

Sample code for Test1:

...

int main(int argc, char* argv[])
{
 /*Initialization*/
 RETCODE rCode;
 HENV *hEnv = (HENV*)malloc(sizeof(HENV));
 HDBC *hDBC = (HDBC*)malloc(sizeof(HDBC));
 HSTMT *hStmt = (HSTMT*)malloc(sizeof(HSTMT));
 Connect("POLARDB","user","",&hEnv,&hDBC);
 rCode = SQLAllocStmt(*hDBC,hStmt);
 rCode = SQLAllocHandle(SQL_HANDLE_STMT,*hDBC,hStmt);
 /*Add, delete, modify, and query operations*/
 ExecuteInsertStatement(&hStmt,(UCHAR*) "INSERT INTO EMP(EMPNO,ENAME) VALUES((
SELECT COUNT(EMPNO) FROM EMP),'JACKSON')");
 ExecuteUpdate(&hStmt,(UCHAR*) "UPDATE EMP SET ENAME='ODBC Test' WHERE EMPNO
 < 100");
 ExecuteDeletStatement(&hStmt,(UCHAR*) "DELETE FROM EMP WHERE EMPNO<100");

26 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

 ExecuteSimple_Select(&hStmt,(UCHAR*) "SELECT EMPNO,ENAME,JOB,MGR,HIREDATE
FROM EMP where empno = 7369");
 /*Disconnection*/
 Disconnect(&hEnv,&hDBC,&hStmt);
 /*clean up*/
 free(hEnv);
 free(hDBC);
 free(hStmt);

 return 0;
}

Sample code for Test2:

int main(int argc, char* argv[])
{
 /*Definition*/
 RETCODE rCode;
 SQLUSMALLINT a;
 SQLINTEGER Num1IndOrLen;
 SQLSMALLINT iTotCols = 0;

 int j;
 SDWORD cbData;
 /*Initialization*/
 HENV *hEnv = (HENV*)malloc(sizeof(HENV));
 HDBC *hDBC = (HDBC*)malloc(sizeof(HDBC));
 HSTMT *hStmt = (HSTMT*)malloc(sizeof(HSTMT));
 HSTMT *hStmt1 = (HSTMT*)malloc(sizeof(HSTMT));
 /**Connection establishment**/
 Connect("POLARDB","user","***",&hEnv,&hDBC);
 rCode = SQLAllocStmt(*hDBC,hStmt);
 rCode = SQLAllocStmt(*hDBC,hStmt1);

 rCode = SQLAllocHandle(SQL_HANDLE_STMT,*hDBC,hStmt);
 rCode = SQLAllocHandle(SQL_HANDLE_STMT,*hDBC,hStmt1);
 /*begin*/
 ExecuteSimple_Select(&hStmt1,(UCHAR*) "BEGIN;");
 /*prepare*/
 RETCODE rc = SQLPrepare((*hStmt),(SQLCHAR*)"{ call refcur_inout_callee2(?,?)}",
SQL_NTS);

 rc = SQLBindParameter((*hStmt),1, SQL_PARAM_INPUT_OUTPUT, SQL_C_CHAR,
SQL_REFCURSOR,0, 31,
 strName, 31, &Num1IndOrLen);
 rc = SQLBindParameter((*hStmt),2, SQL_PARAM_INPUT_OUTPUT, SQL_C_CHAR,
SQL_REFCURSOR,0, 31,
 &strName1, 31, &Num1IndOrLen);

 Num1IndOrLen=0;
 /*execute*/
 rc = SQLExecute((*hStmt));

 if(rc == SQL_SUCCESS || rc == SQL_SUCCESS_WITH_INFO)
 {
 printf("\nstrName _________ = %s\n",strName);
 printf("\nstrName 1_________ = %s\n",strName1);

 }

Issue: 20200701 27

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

 printf("\n First Cursor as OUT Parameter \n") ;

3.6 PolarDB (compatible with Oracle) OCI
This topic describes how to use the PolarDB Oracle Call Interface (OCI) driver to connect to a

PolarDB database compatible with Oracle.

Prerequisites

• You have created an account for an ApsaraDB for PolarDB cluster. For more information

about how to create an account, see #unique_6.

• You have added the IP address of the host that you want to connect to the ApsaraDB for

PolarDB cluster to the whitelist. For more information, see #unique_14.

• The operating system of the server where PolarDB OCI is installed must be 64-bit Linux or

 Windows.

• Make sure that the development kit of the Oracle OCI driver is installed.

Context

PolarDB OCI is the native C language interface to databases of Apsara PolarDB compatible

with Oracle. You can use PolarDB OCI to build other language-specific interfaces, including

 PolarDB JDBC, PolarDB .Net, and PolarDB ODBC. It allows you to execute query statements

and make SQL function calls for PolarDB databases compatible with Oracle.

The driver version is PostgreSQL 3.0.

Download the PolarDB OCI driver

polardb-oci.tar.gz

Install the PolarDB OCI driver

Decompress the driver package and manually import the following driver files to

environment variables. This allows you to find the location of the driver when you compile

a demo.

You can manually import the driver files to the environment variables in Linux and Windows

 as follows:

28 Issue: 20200701

http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/150267/cn_zh/1591869252504/polardb-oci.tar.gz

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

• Linux

1. Copy the libpolaroci.so.10.2, libiconv.so.2, and libpq.so.5.11 files to the /usr/lib

 directory.

2. Create a symbolic link.

ln -s /usr/lib/libpolaroci.so.10.2 /usr/lib/libpolaroci.so
ln -s /usr/lib/libiconv.so.2 /usr/lib/libiconv.so
ln -s /usr/lib/libpq.so.5.11 /usr/lib/libpq.so
ln -s /usr/lib/libpq.so.5.11 /usr/lib/libpq.so.5

3. Set environment variables in Linux.

export LD_LIBRARY_PATH= /usr/lib

Note:

- If the libiconv.so files already exist in the Linux, you can directly use these files. You

can also follow the instructions in libiconv documentation to download and install

libiconv, and then use the compiled .so files.

- In Linux, the libiconv.so files provided by the PolarDB-O OCI driver are for reference

only.

Issue: 20200701 29

http://www.gnu.org/software/libiconv/

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

• Windows

1. Set environment variables.

The IDE editor in Windows is capable of importing the paths of linked files. In this

topic, Visual Studio is used to demonstrate how to import linked file paths, as shown

in the following figure.

2. On the properties tab of the project, add Additional Library Directories. Then, add

the .dll files in the driver directory to the Additional Library Directories.

Sample code

The demo polardb_demo in the sample directory is used as an example. It demonstrates

how to create tables, run queries, and perform other operations.

/*
 ==
 * Copyright (c) 2004-2019 POLARDB Corporation. All Rights Reserved.
 * ===
 */
#include <stdio.h>
#include <stdlib.h>

#include <string.h>
#include <oci.h>

#ifdef WIN32

30 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

#include <time.h>
#else
#include <sys/time.h>
#endif

/* Define a macro to handle errors */
#define HANDLE_ERROR(x,y) check_oci_error(x,y)

#define DATE_FMT "DAY, MONTH DD, YYYY"
#define DATE_LANG "American"

sword ConvertStringToDATE(char *datep, char *formatp, dvoid *datepp);
/* A Custom Routine to handle errors, */

/* this demonstrates the Error/ Exception Handling in OCI */
void check_oci_error (dvoid * errhp, sword status);

/*
 * <<<<<<<<<<<<<<<<<<< FUNCTION PROTOTYPES
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 */

/* Initialize & Allocate all handles */
void
initHandles (OCISvcCtx **, OCIServer **, OCISession **, OCIError **,
 OCIEnv **);

/* logon to the database and begin user-session */
void
logon (OCISvcCtx **, OCIServer **, OCISession **, OCIError **,
 OCIEnv **, text *, text *, text *);

/* Create required table(s) */
void create_table (OCISvcCtx *, OCIError *, OCIEnv *);

/* prepare data for our examples */
void prepare_data (OCISvcCtx *, OCIError *, OCIEnv *);

/* create procedures/functions to demonstrate in the example */
void create_stored_procs (OCISvcCtx *, OCIError *, OCIEnv *);

/* select and print data by iterating through resultSet */
void select_print_data (OCISvcCtx *, OCIError *, OCIEnv *);

/* demonstrate calling stored procedures and retrieving values */

/* proc1 demonstrates IN OUT */
void call_stored_proc1 (OCISvcCtx *, OCIError *, OCIEnv *);

/* proc2 demonstrates OUT */
void call_stored_proc2 (OCISvcCtx *, OCIError *, OCIEnv *);

/* drop required table(s) */
void drop_table (OCISvcCtx *, OCIError *, OCIEnv *);

/* drop stored procedures and functions */
void drop_stored_procs (OCISvcCtx *, OCIError *, OCIEnv *);

/* clean-up main handles before exit */
void
cleanup (OCISvcCtx **, OCIServer **, OCISession **, OCIError **, OCIEnv **);

/*

Issue: 20200701 31

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

 * <<<<<<<<<<<<<<<<<<<<<<<<< END OF FUNCTION PROTOYPES
<<<<<<<<<<<<<<<<<<<<<<<<<<
 */

/* <<<<<<<<<< Global Variables */
ub4 init_mode = OCI_DEFAULT;
ub4 auth_mode = OCI_CRED_RDBMS;

/* <<<<<<<<<< End Global Variables */

int
main (void)
{

 /*
 * Declare Handles, a typical OCI program would need atleast
 * following handles Enviroment Handle Error Handle Service Context
 * Handle Server Handle User Session (Authentication Handle)
 */

 /* Enviroment */
 OCIEnv *envhp;

 /* Error */
 OCIError *errhp;

 /* Service Context */
 OCISvcCtx *svchp;

 /* Server */
 OCIServer *srvhp;

 /* Session(authentication) */
 OCISession *authp;

 /*
 * End of Handle declaration
 */

 /*
 * Declare local variables,
 */
 text *username = (text *) "parallels";
 text *passwd = (text *) "";

 /*
 * Oracle Instant Client Connection String
 */
 text *server = (text *) "//localhost:5432/postgres";

 /*
 * Initialize and Allocate handles
 */
 initHandles (&svchp, &srvhp, &authp, &errhp, &envhp);

 /*
 * logon to the database
 */
 logon (&svchp, &srvhp, &authp, &errhp, &envhp, username, passwd, server);

 /*
 * Create table(s) required for this example

32 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

 */
 create_table (svchp, errhp, envhp);

 /*
 * insert data into table
 */
 prepare_data (svchp, errhp, envhp);

 /*
 * create stored procedures & functions
 */
 create_stored_procs (svchp, errhp, envhp);

 /*
 * select and print data by iterating through simple resultSet
 */
 select_print_data (svchp, errhp, envhp);

 /*
 * demonstrate calling stored procedures and retrieving values
 */
 call_stored_proc1 (svchp, errhp, envhp);

 /*
 * demonstrate OUT parameters
 */
 call_stored_proc2 (svchp, errhp, envhp);

 /*
 * Drop table(s) used in this example
 */
 drop_table (svchp, errhp, envhp);

 /*
 * Drop stroed procedures & functions used in this example
 */
 drop_stored_procs (svchp, errhp, envhp);

 /*
 * clean up resources
 */
 cleanup (&svchp, &srvhp, &authp, &errhp, &envhp);

 return 0;
}

/* A Custom Routine to handle errors, */

/* this demonstrates the Error/ Exception Handling in OCI */

void
check_oci_error (dvoid * errhp, sword status)
{
 text errbuf[512];
 sb4 errcode;

 if (status == OCI_SUCCESS)
 {
 return;
 }
 switch (status)
 {
 case OCI_SUCCESS_WITH_INFO:
 printf ("OCI_SUCCESS_WITH_INFO:\n");

Issue: 20200701 33

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

 OCIErrorGet (errhp, (ub4) 1, (text *) 0, &errcode,
 errbuf, (ub4) sizeof (errbuf), OCI_HTYPE_ERROR);
 printf ("%s", errbuf);
 break;
 case OCI_NEED_DATA:
 printf ("Error - OCI_NEED_DATA\n");
 break;
 case OCI_NO_DATA:
 printf ("Error - OCI_NO_DATA\n");
 break;
 case OCI_ERROR:
 printf ("Error - OCI_ERROR:\n");
 OCIErrorGet (errhp, (ub4) 1, (text *) 0, &errcode,
 errbuf, (ub4) sizeof (errbuf), OCI_HTYPE_ERROR);
 printf ("%s", errbuf);
 break;
 case OCI_INVALID_HANDLE:
 printf ("Error - OCI_INVALID_HANDLE\n");
 break;
 case OCI_STILL_EXECUTING:
 printf ("Error - OCI_STILL_EXECUTING\n");
 break;
 case OCI_CONTINUE:
 printf ("Error - OCI_CONTINUE\n");
 break;
 default:
 break;
 }

 /*
 * exit app
 */
 exit((int)status);
}

/* Initialize & Allocate required handles */
void
initHandles (OCISvcCtx ** svchp, OCIServer ** srvhp, OCISession ** authp,
 OCIError ** errhp, OCIEnv ** envhp)
{

 /*
 * Now Starts the Section where we have to initialize & Allocate
 * basic handles. This is a compulsory setup or initilization which
 * is required before we can proceed to logon and work with the
 * database. This initialization and prepration will include the
 * following steps
 *
 * 1. Initialize the OCI (OCIInitialize()) 2. Initialize the
 * Environment (OCIEnvInit()) 3. Initialize & Allocate Error Handle
 * 4. Initialize & Allocate Service Context Handle 5. Initialize &
 * Allocate Session Handle 6. Initialize & Allocate Server Handle
 *
 * As per the new versions of OCI , instead of using OCIInitialize()
 * and OCIEnvInit(), we can do this with one API Call called
 * OCIEnvCreate().
 */

 /*
 * Initialize OCI
 */
 if (OCIInitialize (init_mode, (dvoid *) 0,
 (dvoid * (*)(dvoid *, size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t)) 0,

34 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

 (void (*)(dvoid *, dvoid *)) 0) ! = OCI_SUCCESS)
 {
 printf ("ERROR: failed to initialize OCI\n");
 exit (1);
 }
 /*
 * Initialize Enviroment.
 */
 HANDLE_ERROR (*envhp,
 OCIEnvInit (&(*envhp), OCI_DEFAULT, (size_t) 0,
 (dvoid **) 0));

 /*
 * Initialize & Allocate Error Handle
 */
 HANDLE_ERROR (*envhp,
 OCIHandleAlloc (*envhp, (dvoid **) & (*errhp),
 OCI_HTYPE_ERROR, (size_t) 0, (dvoid **) 0));

 /*
 * Initialize & Allocate Service Context Handle
 */
 HANDLE_ERROR (*errhp,
 OCIHandleAlloc (*envhp, (dvoid **) & (*svchp),
 OCI_HTYPE_SVCCTX, (size_t) 0, (dvoid **) 0));

 /*
 * Initialize & Allocate Session Handle
 */
 HANDLE_ERROR (*errhp,
 OCIHandleAlloc (*envhp, (dvoid **) & (*authp),
 OCI_HTYPE_SESSION, (size_t) 0, (dvoid **) 0));

 /*
 * Initialize & Allocate Server Handle
 */
 HANDLE_ERROR (*errhp,
 OCIHandleAlloc (*envhp, (dvoid **) & (*srvhp),
 OCI_HTYPE_SERVER, (size_t) 0, (dvoid **) 0));

}

void
logon (OCISvcCtx ** svchp, OCIServer ** srvhp, OCISession ** authp,
 OCIError ** errhp, OCIEnv ** envhp, text * username, text * passwd,
 text * server)
{

 /*
 * Now Starts our Logon to the Database Server which includes two
 * steps
 *
 * 1. Attaching to the Server 2. Starting or Begining of the Session
 *
 * This is the complex logon. The easy ways to logon is to avoid
 * server attach and session begin and simply use OCILogon() or
 * OCILogon2() and then logoff using OCILogoff()
 */

 /*
 * Attach to the server
 */

 HANDLE_ERROR (*errhp,

Issue: 20200701 35

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

 OCIServerAttach (*srvhp, *errhp, server,
 (ub4) strlen ((char *) server),
 OCI_DEFAULT));

 /*
 * The following code will start a session but before we start a
 * session we have to 1. Set the Server Handle which is now attached
 * into Service Context Handle 2. Set the Username and password into
 * Session Handle
 */

 /*
 * Set the Server Handle into Service Context Handle
 */

 HANDLE_ERROR (*errhp,
 OCIAttrSet (*svchp, OCI_HTYPE_SVCCTX,
 (dvoid *) (*srvhp), (ub4) 0, OCI_ATTR_SERVER,
 *errhp));

 /*
 * Set the username and password into session handle
 */

 HANDLE_ERROR (*errhp,
 OCIAttrSet (*authp, OCI_HTYPE_SESSION,
 (dvoid *) username,
 (ub4) strlen ((char *) username),
 OCI_ATTR_USERNAME, *errhp));
 HANDLE_ERROR (*errhp,
 OCIAttrSet (*authp, OCI_HTYPE_SESSION, (dvoid *) passwd,
 (ub4) strlen ((char *) passwd), OCI_ATTR_PASSWORD,
 *errhp));

 /*
 * Now FINALLY Begin our session
 */

 HANDLE_ERROR ((*errhp),
 OCISessionBegin (*svchp, *errhp,
 *authp, auth_mode, OCI_DEFAULT));

 printf ("**\n");
 printf ("Milestone : Logged on as --> '%s'\n", username);
 printf ("**\n");

 /*
 * After we Begin our session we will have to set the Session
 */

 /*
 * (authentication) handle into Service Context Handle
 */

 HANDLE_ERROR (*errhp,
 OCIAttrSet (*svchp, OCI_HTYPE_SVCCTX,
 (dvoid *) (*authp), (ub4) 0,
 OCI_ATTR_SESSION, *errhp));
}

/* Create table(s) required for this example */
void
create_table (OCISvcCtx * svchp, OCIError * errhp, OCIEnv * envhp)
{

36 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

 OCIStmt *stmhp;
 text *create_statement =
 (text *)"CREATE TABLE OCISPEC \n (ENAME VARCHAR2(20)\n, MGR NUMBER\n, HIREDATE
 DATE)";
 ub4 status = OCI_SUCCESS;

 /*
 * Initialize & Allocate Statement Handle
 */
 HANDLE_ERROR (errhp,
 OCIHandleAlloc (envhp, (dvoid **) & stmhp,
 OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));

 /*
 * Prepare the Create statement
 */

 HANDLE_ERROR (errhp,
 OCIStmtPrepare (stmhp, errhp,
 create_statement,
 strlen ((const char *) create_statement),
 OCI_NTV_SYNTAX, OCI_DEFAULT));

 /*
 * Execute the Create Statement
 */
 if ((status = OCIStmtExecute (svchp, stmhp, errhp,
 (ub4) 1, (ub4) 0, NULL, NULL, OCI_DEFAULT)) < OCI_SUCCESS)
 {
 printf ("FAILURE IN CREATING TABLE(S)\n");
 HANDLE_ERROR (errhp, status);
 return;
 }
 else
 {
 printf ("**\n");
 printf ("MileStone : Table(s) Successfully created\n");
 printf ("**\n");
 }
 HANDLE_ERROR (errhp, OCIHandleFree (stmhp, OCI_HTYPE_STMT));
}

/* prepare data for our examples */
void
prepare_data (OCISvcCtx * svchp, OCIError * errhp, OCIEnv * envhp)
{
 OCIStmt *stmhp;
 text *insstmt =
 (text *)
 "INSERT INTO OCISPEC (ename,mgr, hiredate) VALUES (:ENAME,:MGR, CAST(:HIREDATE
AS timestamp))";
 OCIBind *bnd1p = (OCIBind *) 0; /* the first bind handle */
 OCIBind *bnd2p = (OCIBind *) 0; /* the second bind handle */
 OCIBind *bnd3p = (OCIBind *) 0; /* the third bind handle */
 ub4 status = OCI_SUCCESS;
 int i = 0;

 char *ename[3] = { "SMITH", "ALLEN", "KING" };

 sword mgr[] = { 7886, 7110, 7221 };

 char *date_buffer[3] = { "02-AUG-07", "02-APR-07", "02-MAR-07" };

Issue: 20200701 37

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

 /*
 * Initialize & Allocate Statement Handle
 */
 HANDLE_ERROR (errhp,
 OCIHandleAlloc (envhp, (dvoid **) & stmhp,
 OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));

 /*
 * Prepare the insert statement
 */
 HANDLE_ERROR (errhp,
 OCIStmtPrepare (stmhp, errhp, insstmt,
 (ub4) strlen ((char *) insstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 /*
 * In this loop we will bind data from the arrays to insert multi
 * rows in the database a more elegant and better way to do this is
 * to use Array Binding (Batch Inserts). POLARDB OCI Replacement
 * Library WILL support Array Bindings even if it is not used here
 * right now
 */
 for (i = 0; i < 3; i++)
 {
 /*
 * Bind Variable for ENAME
 */
 HANDLE_ERROR (errhp,
 OCIBindByName (stmhp, &bnd1p, errhp, (text *) ":ENAME",
 -1, (dvoid *) ename[i],
 (sb4) strlen (ename[i]) + 1, SQLT_STR,
 (dvoid *) 0, 0, (ub2 *) 0, (ub4) 0,
 (ub4 *) 0, OCI_DEFAULT));

 /*
 * Bind Variable for MGR
 */
 HANDLE_ERROR (errhp,
 OCIBindByName (stmhp, &bnd2p, errhp, (text *) ":MGR",
 -1, (dvoid *) & mgr[i], sizeof (mgr[i]),
 SQLT_INT, (dvoid *) 0, 0, (ub2 *) 0,
 (ub4) 0, (ub4 *) 0, OCI_DEFAULT));

 /*
 * Bind Variable for HIREDATE
 */
 HANDLE_ERROR (errhp,
 OCIBindByName (stmhp, &bnd3p, errhp, (text *) ":HIREDATE",
 -1, (dvoid *) date_buffer[i],
 strlen(date_buffer[i])+1, SQLT_STR, (dvoid *) 0, 0,
 (ub2 *) 0, (ub4) 0, (ub4 *) 0,
 OCI_DEFAULT));

 /*
 * Execute the statement and insert data
 */
 if ((status = OCIStmtExecute (svchp, stmhp, errhp,
 (ub4) 1, (ub4) 0, NULL, NULL, OCI_DEFAULT)) < OCI_SUCCESS)
 {
 printf ("FAILURE IN INSERTING DATA\n");
 HANDLE_ERROR (errhp, status);
 return;
 }

38 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

 }

 OCITransCommit (svchp, errhp, (ub4) 0);
 printf ("**\n");
 printf
 ("MileStone : Data Sucessfully inserted \n & Committed via Transaction\n");
 printf ("**\n");
 HANDLE_ERROR (errhp, OCIHandleFree (stmhp, OCI_HTYPE_STMT));

}

/* Create Stored procedures and functions to be used in this example */
void
create_stored_procs (OCISvcCtx * svchp, OCIError * errhp, OCIEnv * envhp)
{
 /*
 * This function created 2 stored procedures and one stored function
 * 1. StoredProcedureSample1 - is to exhibit exeucting procedure and
 * recieving values from an IN OUT parameter 2.
 * StoredProcedureSample2 - is to exhibit executing procedure and
 * recieving values from an OUT parameter 3. StoredProcedureSample3 -
 * is to exhibit executing a function and recieving the value
 * returned by the function in a Callable Statement way
 */
 OCIStmt *stmhp;
 OCIStmt *stmhp2;
 OCIStmt *stmhp3;

 text *create_statement =
 (text *)"CREATE OR REPLACE PROCEDURE StoredProcedureSample1\n (mgr1 int,
ename1 IN OUT varchar2)\n is\nbegin\ninsert into ocispec (mgr, ename) values (7990,'
STOR1');\nename1 := 'Successful';\n end;\n";

 text *create_statement2 =
 (text *)"CREATE OR REPLACE PROCEDURE StoredProcedureSample2\n(mgr1 int, ename1
 varchar2,eout1 OUT varchar2)\nis\nbegin\ninsert into ocispec(mgr,ename) values (
7991, 'STOR2');\neout1 := 'Successful';\n end;";

 text *create_statement3 =
 (text *)"CREATE OR REPLACE FUNCTION f1\nRETURN VARCHAR2\nis\nv_Sysdate DATE;\
nv_charSysdate VARCHAR2(20);\nbegin\nSELECT TO_CHAR(SYSDATE, 'dd-mon-yyyy') into
 v_charSysdate FROM DUAL;\n return(v_charSysdate);\nend;";

 ub4 status = OCI_SUCCESS;

 /*
 * Initialize & Allocate Statement Handles
 */
 HANDLE_ERROR (errhp,
 OCIHandleAlloc (envhp, (dvoid **) & stmhp,
 OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));
 HANDLE_ERROR (errhp,
 OCIHandleAlloc (envhp, (dvoid **) & stmhp2,
 OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));
 HANDLE_ERROR (errhp,
 OCIHandleAlloc (envhp, (dvoid **) & stmhp3,
 OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));

 /*
 * Prepare the Create statements
 */

Issue: 20200701 39

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

 HANDLE_ERROR (errhp,
 OCIStmtPrepare (stmhp, errhp,
 create_statement,
 strlen ((const char *) create_statement),
 OCI_NTV_SYNTAX, OCI_DEFAULT));
 HANDLE_ERROR (errhp,
 OCIStmtPrepare (stmhp2, errhp, create_statement2,
 strlen ((const char *) create_statement2),
 OCI_NTV_SYNTAX, OCI_DEFAULT));
 HANDLE_ERROR (errhp,
 OCIStmtPrepare (stmhp3, errhp, create_statement3,
 strlen ((const char *) create_statement3),
 OCI_NTV_SYNTAX, OCI_DEFAULT));

 /*
 * Execute the Create Statement SampleProcedure1
 */
 if ((status = OCIStmtExecute (svchp, stmhp, errhp,
 (ub4) 1, (ub4) 0, NULL, NULL, OCI_DEFAULT)) < OCI_SUCCESS)
 {
 printf ("FAILURE IN CREATING PROCEDURE 1\n");
 HANDLE_ERROR (errhp, status);
 return;
 }
 else
 {
 printf ("**\n");
 printf ("MileStone : Sample Procedure 1 Successfully created\n");
 printf ("**\n");

 }

 /*
 * Execute the Create Statement Sample Procedure2
 */
 if ((status = OCIStmtExecute (svchp, stmhp2, errhp,
 (ub4) 1, (ub4) 0, NULL, NULL, OCI_DEFAULT)) < OCI_SUCCESS)
 {
 printf ("FAILURE IN CREATING PROCEDURE 2\n");
 HANDLE_ERROR (errhp, status);
 return;
 }
 else
 {
 printf ("**\n");
 printf ("MileStone : Sample Procedure 2 Successfully created\n");
 printf ("**\n");
 }

 /*
 * Execute the Create Statement Sample Procedure3
 */
 if ((status = OCIStmtExecute (svchp, stmhp3, errhp,
 (ub4) 1, (ub4) 0, NULL, NULL, OCI_DEFAULT)) < OCI_SUCCESS)
 {
 printf ("FAILURE IN CREATING PROCEDURE 3\n");
 HANDLE_ERROR (errhp, status);
 return;
 }
 else
 {
 printf ("**\n");
 printf ("MileStone : Sample Procedure 3 Successfully created\n");
 printf ("**\n");

40 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

 }

 HANDLE_ERROR (errhp, OCIHandleFree (stmhp, OCI_HTYPE_STMT));
 HANDLE_ERROR (errhp, OCIHandleFree (stmhp2, OCI_HTYPE_STMT));
 HANDLE_ERROR (errhp, OCIHandleFree (stmhp3, OCI_HTYPE_STMT));
}

/* select and print data by iterating through resultSet */
void
select_print_data (OCISvcCtx * svchp, OCIError * errhp, OCIEnv * envhp)
{

 /* Statement */
 OCIStmt *stmhp;

 /* Define */
 OCIDefine *define;

 /* Buffer for employee Name */
 char ename_buffer[10] ;

 /* Buffer for mgr */
 sword mgr_buffer;

 /*Buffer for hiredate */
 char hire_date[20];

 /*
 * a simple select statement
 */
 text * sql_statement =
 (text *) "select ename,mgr,hiredate from ocispec";

 /*
 * additional local variables
 */

 ub4 rows = 1;
 ub4 fetched = 1;
 ub4 status = OCI_SUCCESS;

 sb2 null_ind_ename = 0;

 /* null indicator for ename */
 sb2 null_ind_mgr = 0;

 /* null indicator for mgr */
 sb2 null_ind_hiredate = 0;

 /* null indicator for hiredate */

 /*
 * Now we are going to start the Milestone of a Simple Query of the
 * database and loop through the resultSet This would include
 * following steps
 *
 * 1. Initialize and Allocate the Statement Handle 2. Prepare the
 * Statement 3. Define Output variables to recieve the output of the
 * select statement 4. Execute the statement 5. Fetch the resultset
 * and Print values
 *
 */
memset(ename_buffer, 0, sizeof(ename_buffer));

Issue: 20200701 41

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

memset(hire_date, 0, sizeof(hire_date));
 /*
 * Initialize & Allocate Statement Handle
 */

 HANDLE_ERROR (errhp,
 OCIHandleAlloc (envhp, (dvoid **) & stmhp,
 OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));

 /*
 * Prepare the statement
 */

 HANDLE_ERROR (errhp,
 OCIStmtPrepare (stmhp, errhp,
 sql_statement,
 strlen ((const char *) sql_statement),
 OCI_NTV_SYNTAX, OCI_DEFAULT));

 /*
 * Bind a String (OCIString) variable on position 1. Datatype used
 * SQLT_VST
 */
 HANDLE_ERROR (errhp,
 OCIDefineByPos (stmhp, &define, errhp,
 (ub4) 1, ename_buffer, 10,
 (ub2) SQLT_STR, &null_ind_ename, 0, 0,
 OCI_DEFAULT));

 /*
 * Bind a Number (OCINumber) variable on position 2. Datatype used
 * SQLT_VNU
 */
 HANDLE_ERROR (errhp,
 OCIDefineByPos (stmhp, &define, errhp,
 (ub4) 2, &mgr_buffer, sizeof (sword),
 (ub2) SQLT_INT, &null_ind_mgr, 0, 0,
 OCI_DEFAULT));

 /*
 * Bind a Date (OCIDate) variable on position 3. Datatype used
 * SQLT_ODT
 */
 HANDLE_ERROR (errhp,
 OCIDefineByPos (stmhp, &define, errhp,
 (ub4) 3, hire_date, 20,
 (ub2) SQLT_STR, &null_ind_hiredate, 0, 0,
 OCI_DEFAULT));

 /*
 * Execute the simple SQL Statement
 */
 status = OCIStmtExecute (svchp, stmhp, errhp,
 rows, (ub4) 0, NULL, NULL, OCI_DEFAULT);

 /*
 * Print the Resultset
 */
 if (status == OCI_NO_DATA)
 {

42 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

 /*
 * indicates didn't fetch anything (as we're not array
 * fetching)
 */
 fetched = 0;
 }
 else
 {
 HANDLE_ERROR (errhp, status);
 }

 if (fetched)
 {
 /*
 * print string
 */
 if (null_ind_ename == -1)
 printf ("name -> [NULL]\t");
 else
 printf ("name -> [%s]\t", ename_buffer);

 /*
 * print number by converting it into int
 */
 if (null_ind_mgr == -1)
 printf ("mgr -> [NULL]\n");
 else
 {
 printf ("mgr -> [%d]\n", mgr_buffer);
 }

 if (null_ind_hiredate == -1)
 printf ("hiredate -> [NULL]\n");
 else
 {
 printf ("hiredate -> [%s]\n",hire_date);
 }

 /*
 * loop through the resultset one by one through
 * OCIStmtFetch()
 */

 /*
 * untill we find nothing
 */
 while (1)
 {
 status = OCIStmtFetch (stmhp, errhp,
 rows, OCI_FETCH_NEXT, OCI_DEFAULT);
 if (status == OCI_NO_DATA)
 {
 /*
 * indicates couldn't fetch anything
 */
 break;
 }
 else
 {
 HANDLE_ERROR (errhp, status);
 }

 /*

Issue: 20200701 43

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

 * print string
 */
 if (null_ind_ename == -1)
 printf ("name -> [NULL]\t");
 else
 printf ("name -> [%s]\t", ename_buffer);

 /*
 * print number by converting it into int
 */
 if (null_ind_mgr == -1)
 printf ("mgr -> [NULL]\n");
 else
 {
 printf ("mgr -> [%d]\n", mgr_buffer);
 }

 /*
 * print date after converting to text
 */
 if (null_ind_hiredate == -1)
 printf ("hiredate -> [NULL]\n");
 else
 {

 printf ("hiredate -> [%s]\n", hire_date);
 }
 }
 }
 HANDLE_ERROR (errhp, OCIHandleFree (stmhp, OCI_HTYPE_STMT));

}

void
call_stored_proc1 (OCISvcCtx * svchp, OCIError * errhp, OCIEnv * envhp)
{
 OCIStmt *p_sql;
 OCIBind *p_Bind1 = (OCIBind *) 0;
 OCIBind *p_Bind2 = (OCIBind *) 0;

 char field2[20];

 /*
 * char field3[20];
 */
 sword field1 = 3;
 text *mySql = (text *) "Begin StoredProcedureSample1(:MGR, :ENAME); END";

 memset(field2, 0, sizeof(field2));
 strcpy(field2, "Entry 3");

 printf ("***\n");
 printf ("Example 1 - Using an IN OUT Parameter\n");
 printf ("***\n");

 /*
 * Initialize & Allocate Statement Handle
 */

 HANDLE_ERROR (errhp,
 OCIHandleAlloc (envhp, (dvoid **) & p_sql,
 OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));

44 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

 HANDLE_ERROR (errhp,
 OCIStmtPrepare (p_sql, errhp, mySql,
 (ub4) strlen ((char *)mySql), OCI_NTV_SYNTAX,
 OCI_DEFAULT));

 HANDLE_ERROR (errhp,
 OCIBindByPos (p_sql, &p_Bind1, errhp, 1,
 (dvoid *) & field1, sizeof (sword),
 SQLT_INT, 0, 0, 0, 0, 0, OCI_DEFAULT));

 HANDLE_ERROR (errhp,
 OCIBindByPos (p_sql, &p_Bind2, errhp, 2,
 field2, (sizeof (field2)),
 SQLT_STR, 0, 0, 0, 0, 0, OCI_DEFAULT));

 printf (" Field2 Before:\n");
 printf (" size ---> %d\n", sizeof (field2));
 printf (" length ---> %d\n", strlen (field2));
 printf (" value ---> %s\n", field2);

 HANDLE_ERROR (errhp,
 OCIStmtExecute (svchp, p_sql, errhp, (ub4) 1, (ub4) 0,
 (OCISnapshot *) NULL, (OCISnapshot *) NULL,
 (ub4) OCI_COMMIT_ON_SUCCESS));

 printf (" Field2 After:\n");
 printf (" size ---> %d\n", sizeof (field2));
 printf (" length ---> %d\n", strlen (field2));
 printf (" value ---> %s\n", field2);

 HANDLE_ERROR (errhp, OCIHandleFree (p_sql, OCI_HTYPE_STMT));
}

void
call_stored_proc2 (OCISvcCtx * svchp, OCIError * errhp, OCIEnv * envhp)
{
 OCIStmt *p_sql;
 OCIBind *p_Bind1 = (OCIBind *) 0;
 OCIBind *p_Bind2 = (OCIBind *) 0;
 OCIBind *p_Bind3 = (OCIBind *) 0;

 char field2[20] = "Entry 3";
 char field3[20];
 sword field1 = 3;
 text *mySql =
 (text *) "Begin StoredProcedureSample2(:MGR, :ENAME, :EOUT); END";

 memset(field2, 0, sizeof(field2));
 strcpy(field2, "Entry 3");

 memset(field3, 0, sizeof(field3));

 printf ("***\n");
 printf ("Example 2 - Using an OUT Parameter\n");
 printf ("***\n");

 /*
 * Initialize & Allocate Statement Handle
 */

 HANDLE_ERROR (errhp,

Issue: 20200701 45

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

 OCIHandleAlloc (envhp, (dvoid **) & p_sql,
 OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));

 HANDLE_ERROR (errhp,
 OCIStmtPrepare (p_sql, errhp, mySql,
 (ub4) strlen ((char *)mySql), OCI_NTV_SYNTAX,
 OCI_DEFAULT));

 HANDLE_ERROR (errhp,
 OCIBindByPos (p_sql, &p_Bind1, errhp, 1,
 (dvoid *) & field1, sizeof (sword),
 SQLT_INT, 0, 0, 0, 0, 0, OCI_DEFAULT));

 HANDLE_ERROR (errhp,
 OCIBindByPos (p_sql, &p_Bind2, errhp, 2,
 field2, strlen (field2) + 1,
 SQLT_STR, 0, 0, 0, 0, 0, OCI_DEFAULT));

 HANDLE_ERROR (errhp,
 OCIBindByPos (p_sql, &p_Bind3, errhp, 3,
 field3, 20,
 SQLT_STR, 0, 0, 0, 0, 0, OCI_DEFAULT));

 printf (" Field3 Before:\n");
 printf (" size ---> %d\n", sizeof (field3));
 printf (" length ---> %d\n", strlen (field3));
 printf (" value ---> %s\n", field3);

 HANDLE_ERROR (errhp,
 OCIStmtExecute (svchp, p_sql, errhp, (ub4) 1, (ub4) 0,
 (OCISnapshot *) NULL, (OCISnapshot *) NULL,
 (ub4) OCI_COMMIT_ON_SUCCESS));

 printf (" Field3 After:\n");
 printf (" size ---> %d\n", sizeof (field3));
 printf (" length ---> %d\n", strlen (field3));
 printf (" value ---> %s\n", field3);

 HANDLE_ERROR (errhp, OCIHandleFree (p_sql, OCI_HTYPE_STMT));
}

/* drop table(s) required for this example */
void
drop_table (OCISvcCtx * svchp, OCIError * errhp, OCIEnv * envhp)
{
 OCIStmt *stmhp;
 text *statement = (text *)"DROP TABLE OCISPEC";
 ub4 status = OCI_SUCCESS;

 /*
 * Initialize & Allocate Statement Handle
 */
 HANDLE_ERROR (errhp,
 OCIHandleAlloc (envhp, (dvoid **) & stmhp,
 OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));

 /*
 * Prepare the drop statement
 */
 HANDLE_ERROR (errhp,
 OCIStmtPrepare (stmhp, errhp,
 statement, strlen ((const char *) statement),
 OCI_NTV_SYNTAX, OCI_DEFAULT));

46 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

 /*
 * Execute the drop Statement
 */
 if ((status = OCIStmtExecute (svchp, stmhp, errhp,
 (ub4) 1, (ub4) 0, NULL, NULL, OCI_DEFAULT)) < OCI_SUCCESS)
 {
 printf ("FAILURE IN DROPING TABLE(S)\n");
 HANDLE_ERROR (errhp, status);
 return;
 }
 else
 {
 printf ("**\n");
 printf ("MileStone : Table(s) Successfully Dropped\n");
 printf ("**\n");
 }
 HANDLE_ERROR (errhp, OCIHandleFree (stmhp, OCI_HTYPE_STMT));
}

void
drop_stored_procs (OCISvcCtx * svchp, OCIError * errhp, OCIEnv * envhp)
{
 OCIStmt *stmhp;
 OCIStmt *stmhp2;
 OCIStmt *stmhp3;

 text *create_statement = (text *)"DROP PROCEDURE StoredProcedureSample1";
 text *create_statement2 = (text *)"DROP PROCEDURE StoredProcedureSample2";
 text *create_statement3 = (text *)"DROP FUNCTION f1";

 ub4 status = OCI_SUCCESS;
 OCITransCommit(svchp, errhp, OCI_DEFAULT);
 /*
 * Initialize & Allocate Statement Handles
 */
 HANDLE_ERROR (errhp,
 OCIHandleAlloc (envhp, (dvoid **) & stmhp,
 OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));
 HANDLE_ERROR (errhp,
 OCIHandleAlloc (envhp, (dvoid **) & stmhp2,
 OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));
 HANDLE_ERROR (errhp,
 OCIHandleAlloc (envhp, (dvoid **) & stmhp3,
 OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));

 /*
 * Prepare the Create statements
 */

 HANDLE_ERROR (errhp,
 OCIStmtPrepare (stmhp, errhp,
 create_statement,
 strlen ((const char *) create_statement),
 OCI_NTV_SYNTAX, OCI_DEFAULT));
 HANDLE_ERROR (errhp,
 OCIStmtPrepare (stmhp2, errhp, create_statement2,
 strlen ((const char *) create_statement2),
 OCI_NTV_SYNTAX, OCI_DEFAULT));
 HANDLE_ERROR (errhp,
 OCIStmtPrepare (stmhp3, errhp, create_statement3,
 strlen ((const char *) create_statement3),
 OCI_NTV_SYNTAX, OCI_DEFAULT));

Issue: 20200701 47

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

 /*
 * Execute the Create Statement SampleProcedure1
 */
 if ((status = OCIStmtExecute (svchp, stmhp, errhp,
 (ub4) 1, (ub4) 0, NULL, NULL, OCI_DEFAULT)) < OCI_SUCCESS)
 {
 printf ("FAILURE IN DROPPING PROCEDURE 1\n");
 HANDLE_ERROR (errhp, status);
 return;
 }
 else
 {
 printf ("**\n");
 printf ("MileStone : Sample Procedure 1 Successfully dropped\n");
 printf ("**\n");
 }

 /*
 * Execute the Create Statement Sample Procedure2
 */
 if ((status = OCIStmtExecute (svchp, stmhp2, errhp,
 (ub4) 1, (ub4) 0, NULL, NULL, OCI_DEFAULT)) < OCI_SUCCESS)
 {
 printf ("FAILURE IN DROPPING PROCEDURE 2\n");
 HANDLE_ERROR (errhp, status);
 return;
 }
 else
 {
 printf ("**\n");
 printf ("MileStone : Sample Procedure 2 Successfully dropped\n");
 printf ("**\n");
 }

 /*
 * Execute the Create Statement Sample Procedure3
 */
 if ((status = OCIStmtExecute (svchp, stmhp3, errhp,
 (ub4) 1, (ub4) 0, NULL, NULL, OCI_DEFAULT)) < OCI_SUCCESS)
 {
 printf ("FAILURE IN DROPPING PROCEDURE 3\n");
 HANDLE_ERROR (errhp, status);
 return;
 }
 else
 {
 printf ("**\n");
 printf ("MileStone : Sample Procedure 3 Successfully dropped\n");
 printf ("**\n");
 }

 HANDLE_ERROR (errhp, OCIHandleFree (stmhp, OCI_HTYPE_STMT));
 HANDLE_ERROR (errhp, OCIHandleFree (stmhp2, OCI_HTYPE_STMT));
 HANDLE_ERROR (errhp, OCIHandleFree (stmhp3, OCI_HTYPE_STMT));

}

/* Clean your mess up */
void
cleanup (OCISvcCtx ** svchp, OCIServer ** srvhp, OCISession ** authp,
 OCIError ** errhp, OCIEnv ** envhp)
{

48 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

 /*
 * log off
 */
 HANDLE_ERROR (*errhp, OCISessionEnd (*svchp, *errhp, *authp, OCI_DEFAULT));
 printf ("logged off\n");

 /*
 * detach from server
 */
 HANDLE_ERROR (*errhp, OCIServerDetach (*srvhp, *errhp, OCI_DEFAULT));
 printf ("detached form server\n");

 /*
 * free up handles
 */
 HANDLE_ERROR (*errhp, OCIHandleFree (*authp, OCI_HTYPE_SESSION));
 /* free session handle */
 *authp = 0;
 HANDLE_ERROR (*errhp, OCIHandleFree (*srvhp, OCI_HTYPE_SERVER));
 /* free server handle */
 *srvhp = 0;
 HANDLE_ERROR (*errhp, OCIHandleFree (*svchp, OCI_HTYPE_SVCCTX));
 /* free service context */
 *svchp = 0;
 HANDLE_ERROR (*errhp, OCIHandleFree (*errhp, OCI_HTYPE_ERROR));
 /* free error handle */
 *errhp = 0;
 OCIHandleFree (*envhp, OCI_HTYPE_ENV);
 /* free environment handle */
 *envhp = 0;
 printf ("free'd all handles\n");
}

In the preceding sample code, you must replace the following parameters with the

connection information of your Apsara PolarDB cluster.

Parameter Example Description

text *username (text *) "postgres" The username of the Apsara
PolarDB cluster.

text *passwd (text *) "" The password of the Apsara
PolarDB cluster.

text *server (text *) "//localhost:5432" The endpoint and port of the
Apsara PolarDB cluster. For
more information about how
to query the endpoint, see
#unique_15.

Note:

For more information about the Oracle native OCI driver, see OCI: Introduction.

Issue: 20200701 49

https://docs.oracle.com/en/database/oracle/oracle-database/19/lnoci/introduction.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

Sample code

• Linux

1. Modify the Makefile file to dynamically link to the path where the polaroci.so file is

located.

The following is an example of the Makefile file:

#
 ==
Copyright (c) 2004-2012 PolarDB Corporation. All Rights Reserved.
#
 ===

Makefile to build C testcases for OCILib
#

CC=gcc
CFLAGS=-Wall -g -I$(ORACLE_HOME)/ -L $(POLARDBOCI_LIB) -lpolardboci -lpq -
liconv

SAMPLES = polardb_demo

all: $(SAMPLES)

%:%.o
 $(CC) $(CFLAGS) -o $@
clean:

50 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

 rm -rf $(SAMPLES)

- Link ORACLE_HOME to the directory instantclient_12_1/sdk/include of the oracle oci

header file that is downloaded from the driver directory.

- Link POLARDBOCI_LIB to the directory where the libpolardboci.so, libpq.so, and

libiconv.so files are located.

2. Run the following command to compile the code:

make

• Windows

In this example, Visual Studio is used.

1. Add the path of the oracle oci development package in the driver directory to

Attachment Include Directories

2. Add the paths of polardboci.dll and polardboci.lib in the driver directory to Additional

Library Directories.

3. Enter polardboci.lib in Additional Dependencies.

Issue: 20200701 51

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

Example

The system generates the following executable file after polardb_demo is compiled:

**
Milestone : Logged on as --> 'parallels'
**
**
MileStone : Table(s) Successfully created
**
**
MileStone : Data Sucessfully inserted
 & Committed via Transaction
**
**
MileStone : Sample Procedure 1 Successfully created
**
**
MileStone : Sample Procedure 2 Successfully created
**
**
MileStone : Sample Procedure 3 Successfully created
**
name -> [SMITH] mgr -> [7886]
hiredate -> [2007-08-02 00:00:00]
name -> [ALLEN] mgr -> [7110]
hiredate -> [2007-04-02 00:00:00]
name -> [KING] mgr -> [7221]
hiredate -> [2007-03-02 00:00:00]

Example 1 - Using an IN OUT Parameter

52 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

 Field2 Before:
 size ---> 20
 length ---> 7
 value ---> Entry 3
 Field2 After:
 size ---> 20
 length ---> 10
 value ---> Successful

Example 2 - Using an OUT Parameter

 Field3 Before:
 size ---> 20
 length ---> 0
 value --->
 Field3 After:
 size ---> 20
 length ---> 10
 value ---> Successful
**
MileStone : Table(s) Successfully Dropped
**
**
MileStone : Sample Procedure 1 Successfully dropped
**
**
MileStone : Sample Procedure 2 Successfully dropped
**
**
MileStone : Sample Procedure 3 Successfully dropped
**
logged off
detached form server
free'd all handles

3.7 Use PHP to connect to a PolarDB cluster compatible with
Oracle

This topic describes how to connect a PHP client to a PolarDB cluster compatible with

Oracle.

Prerequisites

• You have created an account for an ApsaraDB for PolarDB cluster. For more information

about how to create an account, see #unique_6.

• You have added the IP address of the host that you want to connect to the ApsaraDB for

PolarDB cluster to the whitelist. For more information, see #unique_14.

Prepare the environment in Windows

1. Download and install WampServer. For more information, see WampServer official

website.

Issue: 20200701 53

http://www.wampserver.com/
http://www.wampserver.com/

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

2. Launch the PostgreSQL plug-in.

a) Modify the php.ini file.

b) Remove semicolons ; from the following code.

Before you remove semicolons:

;extension=php_pgsql.dll
;extension=php_pdo_pgsql.dll

After you remove semicolons:

extension=php_pgsql.dll
extension=php_pdo_pgsql.dll

3. Copy the libpq.dll file from the C:\wamp\bin\php\php5.3.5 directory to the C:\windows

\system32\ directory. Note: php5.3.5 is used in this example, and the actual directory is

subject to your client version.

4. Restart the Apache service.

Prepare the environment in Linux

1. Install the php-pgsql.x86_64 driver.

sudo yum install php-pgsql.x86_64

2. Modify the php.ini file.

vim /etc/php.ini

3. Add the following content to the php.ini file.

extension=php_pgsql.so

Connect to Apsara PolarDB

After you prepare the environment in Windows or Linux, you can run a PHP script to connect

 to the Apsara PolarDB database.

The following sample code shows how to use PHP to connect to the Apsara PolarDB cluster.

<? php
 $host = "host=xxxx";
 $port = "port=xxxx";
 $dbname = "dbname=xxxx";
 $credentials = "user=xxxx password=xxxxx";
 $db = pg_connect("$host $port $dbname $credentials");
 if(! $db){
 echo "Error : Unable to open database\n";
 } else {
 echo "Opened database successfully\n";
 }

54 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 3 Clients and Drivers

 $sql =<<<EOF
 select * from pg_roles;
EOF;
 $ret = pg_query($db, $sql);
 if(! $ret){
 echo pg_last_error($db);
 } else {
 echo "Records created successfully\n";
 }
 $results = pg_fetch_all($ret);
 print_r($results);
 pg_close($db);
? >

In the preceding sample code, the connection information of Apsara PolarDB consists of

parameters, such as host, port, dbname, and credentials, as shown in the following table.

Parameter Example Description

host "host=xxxxxx" The endpoint of the Apsara PolarDB
cluster. For more information about
how to retrieve the endpoint, see
#unique_15.

port "port=1521" The port of the Apsara PolarDB cluster.
Default value: 1521.

dbname "dbname=xxxx" The name of the database to be
connected.

credentials "user=xxx password=xxxx" The username and password used to
log on to the Apsara PolarDB cluster.

For more information about PHP APIs, see PHP documentation.

Issue: 20200701 55

https://www.php.net/manual/en/book.pgsql.php

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 4 Basic operations

4 Basic operations

4.1 Create a user
This topic describes how to create a database user.

Syntax

CREATE USER name [IDENTIFIED BY password]

Parameters

Parameter Description

name The name of the user.

password The password of the user.

Description

The CREATE USER statement is used to add a new user to a POLARDB cluster compatible

with Oracle.

When the CREATE USER statement is executed, a schema will also be created with the same

name as the new user and owned by the new user. Objects with unqualified names created

 by this user will be created in this schema.

Note:

• You must be a database superuser to use this statement.

• The maximum length allowed for the user name and password is 63 characters.

56 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 4 Basic operations

Examples

Create a user and set the password.

CREATE USER user IDENTIFIED BY password;

4.2 Create a database
This topic describes how to create a database.

Syntax

CREATE DATABASE name

Parameters

Parameter Description

name The name of the database to be created.

Description

CREATE DATABASE creates a new database.

Note:

• To create a database, you must be a superuser or have the special CREATEDB

permissions.

• Non-superusers with CREATEDB permissions can only create databases owned by them.

• CREATE DATABASE cannot be executed inside a transaction block.

• Make sure that the disk space is sufficient when you create a new database.

Issue: 20200701 57

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 4 Basic operations

Examples

CREATE DATABASE testdb;

4.3 Create a schema
This topic describes how to create a schema.

Syntax

CREATE SCHEMA AUTHORIZATION username schema_element [...];

Parameters

Parameter Description

username The name of the user who will own the new schema.

The schema will be named the same as username.

Note:

• Only superusers may create schemas owned by users
other than themselves.

• In a POLARDB cluster compatible with Oracle, the role
and username must already exist, but the schema may
 not exist.

• In Oracle, the user (equivalently, the schema) must
exist.

schema_element An SQL statement defining an object to be created within
the schema.

CREATE TABLE, CREATE VIEW, and GRANT are accepted as

 clauses within CREATE SCHEMA. Other kinds of objects

may be created in separate statements after the schema is

created.

Description

This variation of the CREATE SCHEMA statement creates a new schema owned by username

 and populated with one or more objects. The creation of the schema and objects occur

within a single transaction so either all objects are created or none of them including the

schema.

58 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 4 Basic operations

A schema is essentially a namespace. It contains named objects such as tables and views

 whose names may duplicate those of other objects existing in other schemas. Named

objects are accessed either by qualifying their names with the schema name as a prefix, or

by setting a search path that includes the desired schemas. Unqualified objects are created

 in the current schema. The schema at the front of the search path can be determined

with the CURRENT_SCHEMA function. The search path concept and the CURRENT_SCHEMA

function are not compatible with Oracle databases.

CREATE SCHEMA includes sub-statements to create objects within the schema. The sub-

statements are treated essentially the same as separate statements issued after creating

the schema. All the created objects will be owned by the specified user.

Note:

To create a schema, the invoking user must have the CREATE permissions for the current

database.

Examples

CREATE SCHEMA AUTHORIZATION enterprisedb
 CREATE TABLE empjobs (ename VARCHAR2(10), job VARCHAR2(9))
 CREATE VIEW managers AS SELECT ename FROM empjobs WHERE job = 'MANAGER'
 GRANT SELECT ON managers TO PUBLIC;

4.4 Create a table
This topic describes how to create a table.

Syntax

CREATE [GLOBAL TEMPORARY] TABLE table_name (
 { column_name data_type [DEFAULT default_expr]
 [column_constraint [...]] | table_constraint } [, ...]
)
 [ON COMMIT { PRESERVE ROWS | DELETE ROWS }]
 [TABLESPACE tablespace]

where column_constraint is one of the following values:

 [CONSTRAINT constraint_name]
 { NOT NULL |
 NULL |
 UNIQUE [USING INDEX TABLESPACE tablespace] |
 PRIMARY KEY [USING INDEX TABLESPACE tablespace] |
 CHECK (expression) |
 REFERENCES reftable [(refcolumn)]
 [ON DELETE action] }
 [DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED |

Issue: 20200701 59

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 4 Basic operations

 INITIALLY IMMEDIATE]

and table_constraint is one of the following values:

 [CONSTRAINT constraint_name]
 { UNIQUE (column_name [, ...])
 [USING INDEX TABLESPACE tablespace] |
 PRIMARY KEY (column_name [, ...])
 [USING INDEX TABLESPACE tablespace] |
 CHECK (expression) |
 FOREIGN KEY (column_name [, ...])
 REFERENCES reftable [(refcolumn [, ...])]
 [ON DELETE action] }
 [DEFERRABLE | NOT DEFERRABLE]
 [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

Parameters

Parameter Description

GLOBAL TEMPORARY If this parameter is specified, the table is created as a
temporary table. Temporary tables are automatically
dropped at the end of a session, or optionally at the end
 of the current transaction. For more information, see the
 ON COMMIT parameter in the following table. Existing
 permanent tables with the same name are not visible
to the current session while the temporary table exists,
unless they are referenced with schema-qualified names
. In addition, temporary tables are not visible outside the
 session in which it was created. This aspect of global
temporary tables is not compatible with Oracle databases
. Any indexes created on a temporary table are automatica
lly temporary as well.

table_name The name of the table to be created.

Note:
The name can be schema-qualified.

column_name The name of a column to be created in the new table.

data_type The data type of the column. This may include array
specifiers.

60 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 4 Basic operations

Parameter Description

DEFAULT default_expr The DEFAULT clause assigns a default data value for the
column whose column definition it appears within. The
value is any variable-free expression. Subqueries and
cross-references to other columns in the current table are
not allowed. The data type of the default expression must
match the data type of the column.

The default expression will be used in any insert operation

 that does not specify a value for the column. If there is no

default for a column, the default is null.

CONSTRAINT constraint
_name

An optional name for a column or table constraint. If not
specified, the system generates a name.

NOT NULL The column is not allowed to contain null values.

PRIMARY KEY - column
constraint

PRIMARY KEY (column_name
 [, ...]) - table constraint

The primary key constraint specifies that a column or

columns of a table may contain unique, non-duplicate,

and non-null values. Technically, PRIMARY KEY is merely a

combination of UNIQUE and NOT NULL. However, identifyin

g a set of columns as the primary key also provides

metadata about the design of the schema, as a primary key

 implies that other tables may rely on this set of columns as

 a unique identifier for rows.

Note:

• Only one primary key can be specified for a table,
whether as a column constraint or a table constraint.

• The primary key constraint must name a set of columns
 that is different from other sets of columns named by
any unique constraint defined for the same table.

Issue: 20200701 61

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 4 Basic operations

Parameter Description

CHECK (expression) The CHECK clause specifies an expression that produces a

 Boolean result which new or updated rows must satisfy

for an insert or update operation to succeed. Expressions

evaluating to TRUE or unknown succeed. If any row of an

insert or update operation produces a FALSE result, an error

 exception is raised and the insert or update does not alter

 the database. A check constraint specified as a column

constraint must only reference that value of the column,

while an expression appearing in a table constraint may

reference multiple columns.

CHECK expressions cannot contain subqueries nor refer to

variables other than columns of the current row.

62 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 4 Basic operations

Parameter Description

REFERENCES reftable [(
refcolumn)] [ON DELETE
action] - column constraint

FOREIGN KEY (column
 [, ...]) REFERENCES reftable
 [(refcolumn [, ...])] [ON
 DELETE action] - table
constraint

These clauses specify a foreign key constraint, which

requires that a group of one or more columns of the new

 table must only contain values that match values in the

referenced columns of some row of the referenced table. If

refcolumn is omitted, the primary key of the reftable is used

. The referenced columns must be the columns of a unique

or primary key constraint in the referenced table.

In addition, when the data in the referenced columns is

changed, certain actions are performed on the data in the

columns of this table. The ON DELETE clause specifies the

action to perform when a referenced row in the referenced

table is being deleted. Referential actions cannot be

deferred even if the constraint is deferrable. Here are the

following possible actions for each clause:

• CASCADE: deletes any rows referencing the deleted row

, or update the value of the referencing column to the

new value of the referenced column.

• SET NULL: sets the referencing columns to NULL.

If the referenced columns are changed frequently, you can

 add an index to the foreign key column so that referentia

l actions associated with the foreign key column can be

performed more efficiently.

DEFERRABLE NOT

DEFERRABLE

This controls whether the constraint can be deferred. A
constraint that is not deferrable will be checked immediatel
y after each statement is executed. Checking of constraint
s that are deferrable may be postponed until the end of
the transaction by using the SET CONSTRAINTS statement
. NO DEFERRABLE is the default value. Only foreign key
constraints accept this clause. All other constraint types are
 not deferrable.

Issue: 20200701 63

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 4 Basic operations

Parameter Description

INITIALLY IMMEDIATE

INITIALLY DEFERRED

If a constraint is deferrable, this clause specifies the default
 time to check the constraint. If the constraint is INITIALLY
 IMMEDIATE, it is checked after each statement. This is
the default. If the constraint is INITIALLY DEFERRED, it is
checked only at the end of the transaction. The constraint
check time can be altered by using the SET CONSTRAINTS
statement.

ON COMMIT The behavior of temporary tables at the end of a
transaction block can be controlled using ON COMMIT. The
two options are:

• PRESERVE ROWS: No special action is taken at the ends
 of transactions. This is the default behavior. Note that
this aspect is not compatible with Oracle databases. The
Oracle default is DELETE ROWS.

• DELETE ROWS: All rows in the temporary table will be
deleted at the end of each transaction block. Essentially
, an automatic TRUNCATE is done at each commit.

TABLESPACE tablespace The tablespace is the name of the tablespace in which the
 new table is to be created. If not specified, the default
tablespace is used. If default_tablespace is an empty string
, the default tablespace of the database is used.

USING INDEX TABLESPACE
tablespace

This clause allows selection of the tablespace in which the
index associated with a UNIQUE or PRIMARY KEY constraint
 will be created. If not specified, the default tablespace is
used. If default_tablespace is an empty string, the default
tablespace of the database is used.

Description

CREATE TABLE creates a new, initially empty table in the current database. The table will be

owned by the user who executes the statement.

If a schema name is given, for example, CREATE TABLE myschema.mytable ..., then the

table is created in the specified schema. Otherwise it is created in the current schema.

Temporary tables exist in a special schema, so a schema name may not be given when you

create a temporary table. The table name must be distinct from the name of any other table

, sequence, index, or view in the same schema.

64 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 4 Basic operations

CREATE TABLE also automatically creates a data type that represents the composite type

corresponding to one row of the table. Therefore, tables cannot have the same name as

any existing data type in the same schema.

A table cannot have more than 1,600 columns. In practice, the effective limit is lower

because of tuple-length constraints.

The optional constraint clauses specify constraints or tests that new or updated rows must

satisfy for an insert or update operation to succeed. A constraint is an SQL object that helps

define the set of valid values in the table in various ways. There are two ways to define

constraints:

• A column constraint is defined as part of a column definition.

• A table constraint definition is not tied to a particular column, and it can encompass

more than one column.

Every column constraint can also be written as a table constraint. A column constraint is

only a notational convenience if the constraint only affects one column.

Note:

POLARDB compatible with Oracle automatically creates an index for each unique

constraint and primary key constraint to enforce the uniqueness. Thus, it is not necessary

to create an explicit index for primary key columns.

Examples

Create the table dept and table emp:

CREATE TABLE dept (
 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14),
 loc VARCHAR2(13)
);
CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno)

Issue: 20200701 65

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 4 Basic operations

);

Define a unique table constraint for the table dept. Unique table constraints can be defined

 on one or more columns of the table.

CREATE TABLE dept (
 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,
 loc VARCHAR2(13)
);

Define a check column constraint:

CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno)
);

Define a check table constraint:

CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno),
 CONSTRAINT new_emp_ck CHECK (ename IS NOT NULL AND empno > 7000)
);

Define a primary key table constraint for the table jobhist. Primary key table constraints can

 be defined on one or more columns of the table.

CREATE TABLE jobhist (
 empno NUMBER(4) NOT NULL,
 startdate DATE NOT NULL,
 enddate DATE,
 job VARCHAR2(9),
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2),
 chgdesc VARCHAR2(80),
 CONSTRAINT jobhist_pk PRIMARY KEY (empno, startdate)

66 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 4 Basic operations

);

This assigns a literal constant default value for the job column and makes the default value

of hiredate be the date at which the row is inserted.

CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9) DEFAULT 'SALESMAN',
 mgr NUMBER(4),
 hiredate DATE DEFAULT SYSDATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno)
);

Create the table dept in tablespace diskvol1:

CREATE TABLE dept (
 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14),
 loc VARCHAR2(13)
) TABLESPACE diskvol1;

4.5 Delete a table
This topic describes how to delete a table.

Syntax

DROP TABLE name [CASCADE | RESTRICT | CASCADE CONSTRAINTS]

Parameters

Parameter Description

name The name of the table to drop. The name can be schema-
qualified.

Description

DROP TABLE removes tables from the database. Only the owner of the table can destroy a

table.

The DROP TABLE statement always removes any indexes, rules, triggers, and constraints

that exist for the target table.

Note:

Issue: 20200701 67

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 4 Basic operations

Include the RESTRICT keyword to specify that the server must refuse to drop the table if any

 objects depend on it. This is the default behavior. The DROP TABLE statement displays an

error if any objects depend on the table.

Include the CASCADE clause to drop any objects that depend on the table.

Include the CASCADE CONSTRAINTS clause to specify that POLARDB compatible with Oracle

 must drop any dependent constraints that exclude other object types on the specified

table.

Examples

The following statement drops a table named emp that has no dependencies:

DROP TABLE emp;

The outcome of a DROP TABLE statement varies depending on whether the table has any

dependencies. You can control the outcome by specifying a drop behavior. For example, if

you create two tables named orders and items, where the items table is dependent on the

orders table:

CREATE TABLE orders
 (order_id int PRIMARY KEY, order_date date, ...) ;
CREATE TABLE items
 (order_id REFERENCES orders, quantity int, ...) ;

POLARDB compatible with Oracle performs one of the following actions when dropping the

orders table, depending on the drop behavior that you specify:

• If you specify DROP TABLE orders RESTRICT, POLARDB compatible with Oracle will report

an error.

• If you specify DROP TABLE orders CASCADE, POLARDB compatible with Oracle will drop

the orders table and the items table.

• If you specify DROP TABLE orders CASCADE CONSTRAINTS, POLARDB compatible with

Oracle will drop the orders table and remove the foreign key specification from the items

table, but not drop the items table.

4.6 Create a view
This topic describes how to create a view.

Syntax

CREATE [OR REPLACE] VIEW name [(column_name [, ...])]

68 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 4 Basic operations

 AS query

Parameters

Parameter Description

name The name of a view to be created. The name
 can be schema-qualified.

column_name An optional list of names to be used for
 columns of the view. If not given, the
column names are deduced from the query.

query A SELECT statement provides the columns
and rows of the view.

Description

CREATE VIEW defines a view of a query. The view is not physically materialized. Instead, the

query is run every time the view is referenced in a query.

CREATE OR REPLACE VIEW is similar, but if a view of the same name already exists, it is

replaced.

If a schema name is given by using the CREATE VIEW myschema.myview ... statement, the

view is created in the specified schema. Otherwise, it is created in the current schema. The

 view name must be distinct from the name of any other view, table, sequence, or index in

the same schema.

Note:

• Views are read-only. The system will not allow an insert, update, or delete operation on

 a view. You can get the effect of an updatable view by creating rules such as rewriting

inserts on the view into appropriate actions on other tables. For information about the

CREATE RULE statement, see the Postgres Plus documentation set.

• Access to tables referenced in the view is determined by permissions of the view

owner. However, functions called in the view are treated the same as if they had been

 called directly from the query using the view. Therefore, the user of a view must have

permissions to call all functions used by the view.

Issue: 20200701 69

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 4 Basic operations

Examples

Create a view consisting of all employees in department 30:

CREATE VIEW dept_30 AS SELECT * FROM emp WHERE deptno = 30;

4.7 Create a materialized view
This topic describes how to create a materialized view.

Syntax

CREATE MATERIALIZED VIEW name
[build clause][create mv refresh] AS subquery

Where build_clause is:

BUILD {IMMEDIATE | DEFERRED}

Where create_mv_refresh is:

REFRESH [COMPLETE] [ON DEMAND]

Parameters

Parameter Description

name The name of a view to be created. The name can be
schema-qualified.

subquery A SELECT statement that specifies the contents of the view.
For more information about valid queries, see SELECT.

build clause Include a build_clause to specify when the view is
populated. Specify BUILD IMMEDIATE, or BUILD DEFERRED:

• BUILD IMMEDIATE instructs the server to populate the
view immediately. This is the default behavior.

• BUILD DEFERRED instructs the server to populate the
view at a later time during a REFRESH operation.

70 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 4 Basic operations

Parameter Description

create mv refresh Include the create_mv_refresh clause to specify when
the contents of a materialized view must be updated.
The clause contains the REFRESH keyword followed by
COMPLETE and/or ON DEMAND, where:

• COMPLETE instructs the server to discard the current
content and reload the materialized view by executing
 the defining query of the view when the materialized
view is refreshed.

• ON DEMAND instructs the server to refresh the materializ
ed view on demand by calling the DBMS_MVIEW
package or by calling the Postgres REFRESH MATERIALIZ
ED VIEW statement. This is the default behavior.

Description

CREATE MATERIALIZED VIEW defines a view of a query that is not updated each time the

view is referenced in a query. By default, the view is populated when the view is created.

You can include the BUILD DEFERRED keywords to delay the population of the view.

A materialized view can be schema-qualified. If you specify a schema name when

executing the CREATE MATERIALIZED VIEW statement, the view will be created in the

specified schema. The view name must be distinct from the name of any other view, table,

sequence, or index in the same schema.

Note:

• Materialized views are read-only. The server will not allow an INSERT, UPDATE, or

DELETE operation on a view.

• Access to tables referenced in the view is determined by permissions of the view owner

. The user of a view must have permissions to call all functions used by the view.

• For more information about the Postgres REFRESH MATERIALIZED VIEW statement, see

the PostgreSQL Core Documentation available at: https://www.postgresql.org/docs/11

/sql-refreshmaterializedview.html.

Issue: 20200701 71

https://www.postgresql.org/docs/11/sql-refreshmaterializedview.html
https://www.postgresql.org/docs/11/sql-refreshmaterializedview.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 4 Basic operations

Examples

The following statement creates a materialized view named dept_30:

CREATE MATERIALIZED VIEW dept_30 BUILD IMMEDIATE AS SELECT * FROM emp WHERE
deptno = 30;

4.8 Create an index
This topic describes how to create an index.

Syntax

CREATE [UNIQUE] INDEX name ON table
 ({ column | (expression) })
 [TABLESPACE tablespace]

Parameters

Parameter Description

UNIQUE Causes the system to check for duplicate values in the table
 when the index is created if data already exist and each
 time data is added. Attempts to insert or update data
which would result in duplicate entries will generate an
error.

name The name of the index to be created. No schema name can
 be included here. The index is always created in the same
schema as its parent table.

table The name of the table to be indexed. The name can be
schema-qualified.

column The name of a column in the table.

expression An expression based on one or more columns of the table
. The expression usually must be written with surroundin
g parentheses, as described in the syntax. However, the
parentheses may be omitted if the expression has the form
of a function call.

tablespace The tablespace in which to create the index. If not specified
, default_tablespace is used. If default_tablespace is an
 empty string, the default tablespace of the database is
used.

72 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 4 Basic operations

Description

CREATE INDEX constructs an index on the specified table. Indexes are primarily used to

enhance database performance.

The key fields for the index are specified as column names, or alternatively as expressions

written in parentheses. Multiple fields can be specified to create multicolumn indexes.

An index field can be an expression computed from the values of one or more columns

of the table row. This feature can be used to obtain fast access to data based on some

transformation of the basic data. For example, an index computed on UPPER(col) can allow

the clause WHERE UPPER(col) = 'JIM' to use an index.

POLARDB compatible with Oracle provides the B-tree index method. The B-tree index

method is an implementation of Lehman-Yao high-concurrency B-trees.

Indexes are not used for IS NULL clauses by default.

All functions and operators used in an index definition must be immutable, that is, their

 results must depend only on their arguments and never on any outside influence such

 as the contents of another table or the current time. This restriction ensures that the

behavior of the index is well-defined. To use a user-defined function in an index expression

, remember to mark the function immutable when you create it.

If you create an index on a partitioned table, the CREATE INDEX statement does not

propagate indexes to the subpartitions of the table.

• If you specify the name of the partitioned root, all indexes of partitions and subpartitions

 of the table are created.

• If you specify the name of the partitioned backup table, all indexes of subpartitions in

the partition of the table are created.

• If you specify the name of the subpartitioned backup table, only the index of the

subpartition of the table is created.

Note:

Up to 32 fields may be specified in a multicolumn index.

Issue: 20200701 73

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 4 Basic operations

Examples

To create a B-tree index on the ename column in the table emp:

CREATE INDEX name_idx ON emp (ename);

To create the same index as the preceding index, but have it reside in the index_tblspc

tablespace:

CREATE INDEX name_idx ON emp (ename) TABLESPACE index_tblspc;

4.9 Create and use a sequence
This topic describes how to define a new sequence generator.

Syntax

CREATE SEQUENCE name [INCREMENT BY increment]
 [{ NOMINVALUE | MINVALUE minvalue }]
 [{ NOMAXVALUE | MAXVALUE maxvalue }]
 [START WITH start] [CACHE cache | NOCACHE] [CYCLE]

Parameters

Parameter Description

name The name (optionally schema-qualified) of the sequence to
 be created.

increment The optional clause INCREMENT BY increment specifies the
value to add to the current sequence value to create a new
value. A positive value will make an ascending sequence, a
negative one a descending sequence. The default value is
1.

NOMINVALUE | MINVALUE
minvalue

The optional clause MINVALUE minvalue determines
the minimum value a sequence can generate. If this
clause is not supplied, then default values will be used.
The default values are 1 and -2 63 -1 for ascending and
descending sequences respectively. Note that the keyword
NOMINVALUE may be used to set this behavior to the
default.

74 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 4 Basic operations

Parameter Description

NOMAXVALUE | MAXVALUE
maxvalue

The optional clause MAXVALUE maxvalue determines
the maximum value for the sequence. If this clause
is not supplied, then default values will be used. The
default values are 2 63 -1 and 1 for ascending and
descending sequences respectively. Note that the keyword
NOMAXVALUE may be used to set this behavior to the
default.

start The optional clause START WITH start allows the sequence
to begin anywhere. The default starting value is minvalue
 for ascending sequences and maxvalue for descending
ones.

cache The optional clause CACHE cache specifies how many
sequence numbers are to be preallocated and stored in
memory for faster access. The minimum value is 1 (only
one value can be generated at a time such as NOCACHE),
and this is also the default.

CYCLE The CYCLE option allows the sequence to wrap around
when the maxvalue or minvalue has been reached by an
 ascending or descending sequence respectively. If the
limit is reached, the next number generated will be the
minvalue or maxvalue respectively. If the default value
CYCLE is omitted, any calls to NEXTVAL after the sequence
 has reached its maximum value will return an error. Note
 that the keyword NO CYCLE may be used to obtain the
default behavior, however, this keyword is not compatible
with Oracle databases.

Description

The CREATE SEQUENCE statement is used to define a new sequence generator. This involves

 creating and initializing a new special single-row table with the name parameter. The

generator will be owned by the user issuing the statement.

If a schema name is given then the sequence is created in the specified schema, otherwise

 it is created in the current schema. The sequence name must be distinct from the name of

any other sequence, table, index, or view in the same schema.

Note:

Sequences are based on big integer arithmetic, so the range cannot exceed the range

of an eight-byte integer (-9223372036854775808 to 9223372036854775807). On some

Issue: 20200701 75

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 4 Basic operations

earlier platforms, there may be no compiler support for eight-byte integers, in which case

sequences use regular INTEGER arithmetic (range -2147483648 to +2147483647).

Unexpected results may be obtained if a cache setting greater than one is used for a

sequence object that will be used concurrently by multiple sessions. Unexpected results

may be obtained if a cache setting greater than one is used for a sequence object that will

 be used concurrently by multiple sessions. Then, the next cache-1 uses of NEXTVAL within

 that session simply return the preallocated values without touching the sequence object

. So, any numbers allocated but not used within a session will be lost when that session

ends, resulting in "holes" in the sequence.

Furthermore, although multiple sessions are guaranteed to allocate distinct sequence

values, the values may be generated out of sequence when all the sessions are considered

. For example, with a cache setting of 10, session A might reserve values 1 to 10 and return

 NEXTVAL=1, then session B might reserve values 11 to 20 and return NEXTVAL=11 before

session A has generated NEXTVAL=2. Thus, with a cache setting of one it is safe to assume

 that NEXTVAL values are generated sequentially. With a cache setting greater than one

 you only assume that the NEXTVAL values are all distinct, not that they are generated

purely sequentially. Also, the last value will reflect the latest value reserved by any session

, whether or not it has yet been returned by NEXTVAL.

Examples

Create an ascending sequence called serial, starting at 101:

CREATE SEQUENCE serial START WITH 101;

Select the next number from this sequence:

SELECT serial.NEXTVAL FROM DUAL;

 nextval

 101

(1 row)

Create a sequence called supplier_seq with the NOCACHE option:

CREATE SEQUENCE supplier_seq
 MINVALUE 1
 START WITH 1
 INCREMENT BY 1

76 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 4 Basic operations

 NOCACHE;

Select the next number from this sequence:

SELECT supplier_seq.NEXTVAL FROM DUAL;

 nextval

 1
(1 row)

4.10 Create and use a synonym
A synonym is an identifier that can be used to reference another database object in a SQL

statement.

Syntax

Use the CREATE SYNONYM statement to create a synonym. The syntax is as follows:

CREATE [OR REPLACE] [PUBLIC] SYNONYM [schema.]syn_name FOR object schema.object
name;CREATE [OR REPLACE] [PUBLIC] SYNONYM [schema.]syn_name
 FOR object_schema.object_name[@dblink_name];

To delete a synonym, use the DROP SYNONYM statement. The syntax is as follows:

DROP [PUBLIC] SYNONYM [schema.] syn_name;

Parameters

Parameter Description

syn_name The name of the synonym. The name of a synonym must be
 unique within a schema.

schema The name of the schema where the synonym resides.

Note:
If you do not specify a schema name, the synonym is
created in the first existing schema in your search path.

object_name The name of the object.

object_schema The name of the schema where the object resides.

Description

A synonym is an identifier that can be used to reference another database object in a SQL

statement.

Issue: 20200701 77

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 4 Basic operations

A synonym is useful in cases where a database object normally requires full qualification

by schema name to be properly referenced in a SQL statement. A synonym defined for that

object simplifies the reference to a single, unqualified name.

POLARDB compatible with Oracle supports synonyms for:

• Tables

• Views

• Sequences

• Procedures

• Functions

• Types

• Other synonyms

Neither the referenced schema nor referenced object must exist at the time that you create

 the synonym. A synonym may refer to a non-existent object or schema. A synonym will

 become invalid if you drop the referenced object or schema. You must explicitly drop a

synonym to remove it.

As with any other schema object, POLARDB compatible with Oracle uses the search path

 to resolve unqualified synonym names. If you have two synonyms that have the same

name, an unqualified reference to a synonym will resolve to the first synonym that has

the specified name in the search path. If public is in your search path, you can refer to a

synonym in that schema without qualifying that name.

When POLARDB compatible with Oracle executes a SQL statement, the privileges of the

current user are checked against the underlying database object of the synonym. If the user

 does not have the proper permissions for that object, the SQL statement will fail.

78 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 4 Basic operations

Examples

• Create a synonym

Include the REPLACE clause to replace an existing synonym definition with a new

synonym definition.

Include the PUBLIC clause to create the synonym in the public schema. Compatible with

 Oracle databases, the CREATE PUBLIC SYNONYM statement creates a synonym that

resides in the public schema:

CREATE [OR REPLACE] PUBLIC SYNONYM syn_name FOR object schema.object name;

The following statement is a shorthand way to write:

CREATE [OR REPLACE] SYNONYM public.syn_name FOR object schema.object name;

The following example creates a synonym named personnel that refers to the enterprise

db.emp table.

CREATE SYNONYM personnel FOR enterprisedb.emp;

Unless the synonym is schema qualified in the CREATE SYNONYM statement, the

synonym will be created in the first existing schema in your search path. You can view

your search path by executing the following statement:

SHOW SEARCH_PATH;

 search_path

 development,accounting
(1 row)

In the example, if a schema named development does not exist, the synonym will be

created in the schema named accounting.

The emp table in the enterprisedb schema can be referenced in any DDL or DML

statement, by using the personnel synonym:

INSERT INTO personnel VALUES (8142,'ANDERSON','CLERK',7902,'17-DEC-06',1300,NULL
,20);

SELECT * FROM personnel;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+----------+-----------+------+--------------------+---------+---------+--------
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
 7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 | 300.00 | 30
 7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 | 500.00 | 30
 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 | | 20
 7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 | 1400.00 | 30

Issue: 20200701 79

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 4 Basic operations

 7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
 7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
 7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
 7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000.00 | | 10
 7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30
 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
 7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
 8142 | ANDERSON | CLERK | 7902 | 17-DEC-06 00:00:00 | 1300.00 | | 20
(15 rows)

• Delete a synonym

Like any other object that can be schema-qualified, you may have two synonyms with

 the same name in your search path. To disambiguate the name of the synonym that

you are dropping, include a schema name. Unless a synonym is schema qualified in the

DROP SYNONYM statement, POLARDB compatible with Oracle deletes the first instance of

 the synonym it finds in your search path.

You can optionally include the PUBLIC clause to drop a synonym that resides in the

 public schema. Compatible with Oracle databases, the DROP PUBLIC SYNONYM

statement drops a synonym that resides in the public schema:

DROP PUBLIC SYNONYM syn_name;

The following example drops the personnel synonym:

DROP SYNONYM personnel;

80 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 5 Configuration
parameters compatible with Oracle databases

5 Configuration parameters compatible with
Oracle databases

5.1 edb_redwood_date

If DATE appears as the data type of a column in the statements and the edb_redwood_date

 configuration parameter is set to TRUE, DATE is translated to TIMESTAMP when the table

definition is stored in the database. In this case, a time component is also stored in the

column along with the date. This rule is consistent with the DATE data type of Oracle.

If edb_redwood_date is set to FALSE, the data type of the column in a CREATE TABLE or

ALTER TABLE statement remains as a native PostgreSQL DATE data type and is stored in the

database. PostgreSQL DATE data type stores only the date without a time component in the

column.

DATE can appear as a data type in any other context such as the data type of a variable in

an SPL declaration section, or the data type of a formal parameter in an SPL procedure or

SPL function, or the return type of an SPL function. In this case, regardless of the setting

of edb_redwood_date, DATE is always internally translated to a TIMESTAMP and can thus

handle an existing time component.

5.2 edb_redwood_raw_names

If edb_redwood_raw_names is set to the default value FALSE, database object names, such

 as table names, column names, trigger names, program names, and user names, appear

 in uppercase letters when viewed from Oracle catalogs. In addition, quotation marks

enclose names that are created with enclosed quotation marks.

If edb_redwood_raw_names is set to TRUE, the database object names are displayed in the

 way as they are stored in the PostgreSQL system catalogs when viewed from the Oracle

catalogs. Thus, names created without enclosed quotation marks appear in lowercase as

expected in PostgreSQL. Names created with enclosed quotation marks appear in the way

as they are created, but without the quotation marks.

Issue: 20200701 81

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 5 Configuration
parameters compatible with Oracle databases

For example, the following user name is created and then a session is started with that user

.

CREATE USER reduser IDENTIFIED BY password;
edb=# \c - reduser
Password for user reduser:
You are now connected to database "edb" as user "reduser".

When you connect to the database as reduser, the following tables are created:

CREATE TABLE all_lower (col INTEGER);
CREATE TABLE ALL_UPPER (COL INTEGER);
CREATE TABLE "Mixed_Case" ("Col" INTEGER);

When viewed from the Oracle catalog named USER_TABLES, with edb_redwood_raw_name

s set to the default value FALSE, the names appear in uppercase except for the Mixed_Case

 name. This name appears in the same way as the name is created and enclosed with

quotation marks.

edb=> SELECT * FROM USER_TABLES;
 schema_name | table_name
| tablespace_name | status | temporary
-------------+--------------+-----------------+--------+-----------
 REDUSER | ALL_LOWER | | VALID | N
 REDUSER | ALL_UPPER | | VALID | N
 REDUSER | "Mixed_Case" | | VALID | N
(3 rows)

When viewed with edb_redwood_raw_names set to TRUE, the names appear in lowercase

 except for the Mixed_Case name. This name appears in the same way as the name is

created, but the name is not enclosed with quotation marks.

edb=> SET edb_redwood_raw_names TO true;
SET
edb=> SELECT * FROM USER_TABLES;
 schema_name | table_name |
tablespace_name | status | temporary
-------------+------------+-----------------+--------+-----------
 reduser | all_lower | | VALID | N
 reduser | all_upper | | VALID | N
 reduser | Mixed_Case | | VALID | N
(3 rows)

These names match the case when viewed from the PostgreSQL pg_tables catalog.

edb=> SELECT schemaname, tablename, tableowner FROM pg_tables WHERE
tableowner = 'reduser';
 schemaname | tablename | tableowner
------------+------------+------------
 reduser | all_lower | reduser
 reduser | all_upper | reduser
 reduser | Mixed_Case | reduser

82 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 5 Configuration
parameters compatible with Oracle databases

(3 rows)

5.3 edb_redwood_strings

In Oracle, when a string is concatenated with a null variable or null column, the result is

the original string. However, in PostgreSQL, concatenation of a string with a null variable

or null column generates a null result. If the edb_redwood_strings parameter is set to TRUE

, the preceding concatenation operation results in the original string in the same way as

Oracle does. If the edb_redwood_strings parameter is set to FALSE, the native PostgreSQL

behavior is maintained.

The following example illustrates the difference. The sample application introduced in the

 next section contains a table of employees. This table has a column named comm that is

 null for most employees. The following query has edb_redwood_string set to FALSE. The

concatenation of a null column with non-empty strings generates a final result of null, so

only employees that have a commission appear in the query result. The output line for all

other employees is null.

SET edb_redwood_strings TO off;

SELECT RPAD(ename,10) || ' ' || TO_CHAR(sal,'99,999.99') || ' ' ||
TO_CHAR(comm,'99,999.99') "EMPLOYEE COMPENSATION" FROM emp;

 EMPLOYEE COMPENSATION

 ALLEN 1,600.00 300.00
 WARD 1,250.00 500.00

 MARTIN 1,250.00 1,400.00

 TURNER 1,500.00 .00

(14 rows)

The following example is the same query executed when edb_redwood_strings is set

to TRUE. The value of a null column is treated as an empty string. The concatenation of

an empty string with a non-empty string generates the non-empty string. This result is

consistent with the results generated by Oracle for the same query.

SET edb_redwood_strings TO on;

Issue: 20200701 83

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 5 Configuration
parameters compatible with Oracle databases

SELECT RPAD(ename,10) || ' ' || TO_CHAR(sal,'99,999.99') || ' ' ||
TO_CHAR(comm,'99,999.99') "EMPLOYEE COMPENSATION" FROM emp;

 EMPLOYEE COMPENSATION

 SMITH 800.00
 ALLEN 1,600.00 300.00
 WARD 1,250.00 500.00
 JONES 2,975.00
 MARTIN 1,250.00 1,400.00
 BLAKE 2,850.00
 CLARK 2,450.00
 SCOTT 3,000.00
 KING 5,000.00
 TURNER 1,500.00 .00
 ADAMS 1,100.00
 JAMES 950.00
 FORD 3,000.00
 MILLER 1,300.00
(14 rows)

5.4 edb_stmt_level_tx

In Oracle, when a runtime error occurs in a SQL statement, all the updates on the database

 caused by that single statement are rolled back. This is called statement-level transactio

n isolation. For example, if a single UPDATE statement updates five rows but an attempt

to update a sixth row results in an error, the updates to all six rows made by this UPDATE

 statement are rolled back. The effects of prior SQL statements that have not yet been

committed or rolled back are pending until a COMMIT or ROLLBACK statement is executed.

In PostgreSQL, if an error occurs while executing a SQL statement, all the updates on the

database since the start of the transaction are rolled back. In addition, the transaction is

left in a terminated state and either a COMMIT or ROLLBACK statement must be executed

before another transaction can be started.

If edb_stmt_level_tx is set to TRUE, an error does not automatically roll back prior

uncommitted database updates, similar to the Oracle behavior. If edb_stmt_level_tx is set

to FALSE, an error rolls back uncommitted database updates.

Notice:

Set edb_stmt_level_tx to TRUE only when necessary. This setting may decrease the service

performance.

As shown in the following example running in PSQL, if edb_stmt_level_tx is set to FALSE, the

 first INSERT statement is still rolled back after the second INSERT statement is terminated

. In PSQL, the statement \set AUTOCOMMIT off must be used. Otherwise every statement

84 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 5 Configuration
parameters compatible with Oracle databases

 commits automatically. This defeats the purpose of this demonstration of the effect of

edb_stmt_level_tx.

\set AUTOCOMMIT off
SET edb_stmt_level_tx TO off;

INSERT INTO emp (empno,ename,deptno) VALUES (9001, 'JONES', 40);
INSERT INTO emp (empno,ename,deptno) VALUES (9002, 'JONES', 00);
ERROR: insert or update on table
"emp" violates foreign key constraint "emp_ref_dept_fk"
DETAIL: Key (deptno)=(0) is not present in table "dept".

COMMIT;
SELECT empno, ename, deptno FROM emp WHERE empno > 9000;

empno | ename | deptno
-------+-------+--------
(0 rows)

In the following example, edb_stmt_level_tx is set to TRUE. The first INSERT statement has

not been rolled back after an error occurs in the second INSERT statement. At this point, the

first INSERT statement can either be committed or rolled back.

\set AUTOCOMMIT off
SET edb_stmt_level_tx TO on;

INSERT INTO emp (empno,ename,deptno) VALUES (9001, 'JONES', 40);
INSERT INTO emp (empno,ename,deptno) VALUES (9002, 'JONES', 00);
ERROR: insert or update on table
"emp" violates foreign key constraint "emp_ref_dept_fk"
DETAIL: Key (deptno)=(0) is not present in table "dept".

SELECT empno, ename, deptno FROM emp WHERE empno > 9000;

empno | ename | deptno
-------+-------+--------
 9001 | JONES | 40
(1 row)

COMMIT;

A ROLLBACK statement may be executed instead of the COMMIT statement. In this case, the

insert of employee number 9001 is also rolled back.

5.5 oracle_home

Before you create a link to an Oracle server, you must direct a PolarDB database compatible

 with Oracle to the correct Oracle home directory. Set the LD_LIBRARY_PATH environment

variable on Linux or the PATH environment variable on Windows to the lib directory of the

Oracle client installation directory.

Issue: 20200701 85

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 5 Configuration
parameters compatible with Oracle databases

For Windows only, you can set the value of the oracle_home configuration parameter in

the postgresql.conf file. The value specified in the oracle_home configuration parameter

overwrites the Windows PATH environment variable.

The LD_LIBRARY_PATH environment variable on Linux, or the PATH environment variable or

 oracle_home configuration parameter on Windows, must be set each time you start the

PolarDB database compatible with Oracle.

When you use a Linux service script to start the PolarDB database compatible with Oracle

, make sure that LD_LIBRARY_PATH has been set within the service script. This allows the

 environment variable to take effect when the script invokes the pg_ctl utility to start the

database.

For Windows only, to set the oracle_home configuration parameter in the postgresql.conf

file, edit the file by adding the following line:

oracle_home = 'lib_directory '

Substitute the name of the Windows directory that contains oci.dll for lib_directory.

After you set the oracle_home configuration parameter, you must restart the server to make

 the changes effective. Restart the server from the Windows Services console.

86 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

6 SQL tutorial

6.1 Get started

6.1.1 Overview
This topic helps you get started with the SQL language to manage relational database

management systems. Basic operations such as creating, populating, querying, and

updating tables are described with examples.

More advanced concepts such as views, foreign keys, and transactions are described.

A PolarDB database compatible with Oracle is a relational database management system

 (RDBMS). The system is used to manage data stored in relations. A relation is essentially

a mathematical term for a table. Storing data in tables is a common method of database

management. Databases can be organized in several ways. Files and directories on Unix-

like operating systems form an example of a hierarchical database. Popular development is

 based on object-oriented databases.

Each table is a named collection of rows. Each row of a specified table has the same set of

 named columns and each column is of a specific data type. Columns have a fixed order in

 each row. However, SQL does not guarantee the order of the rows within the table in any

way, even though the rows can be explicitly sorted for display.

Tables are grouped into databases. A collection of databases managed by a PolarDB

instance compatible with Oracle constitutes a database cluster.

6.1.2 Install a sample database
When you install a PolarDB database compatible with Oracle, a sample database named

edb is automatically created. This sample database contains the tables and programs used

in this topic. This database runs the sample.sql script in the /usr/edb/as11/share directory.

This script supports the following features:

• Creates the sample tables and programs in a connected database.

• Grants all permissions on tables to the PUBLIC group.

Issue: 20200701 87

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

The tables and programs are created in the first schema of the search path in which the

 current user is authorized to create tables and procedures. You can run the following

statement to display the search path:

SHOW SEARCH_PATH;

You can use the statements in PSQL to alter the search path.

6.1.3 Sample database
The sample database stores the information about employees in an organization.

The database contains three types of records: employees, departments, and history of

employees.

Each employee has an identification number, a name, a hire date, a salary, and a manager

. Some employees earn commissions in addition to their salaries. All employee information

 is stored in the emp table.

The sample company has bases in multiple regions, so the database tracks the locations

 of the departments. Each employee is assigned to a department. Each department

is identified by a unique department number and a short name. Each department is

associated with one location. All department information is stored in the dept table.

The company also tracks the information about jobs held by the employees. Some

employees have been working for the company for a long time. They may have held

 different positions, received raises, or switched departments. If an employee status

changes, the company records the end date of the former position for this employee. A new

 job record is added with the start date and the new job title, department, salary, and the

reason for the status change. All employee history is maintained in the jobhist table.

The following figure shows the entity relationship of the sample database tables.

88 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

The following example is the sample.sql script.

--
-- Script that creates the 'sample' tables, views, procedures,
-- functions, triggers, etc.
--
-- Start new transaction - commit all or nothing
--
BEGIN;
/
--
-- Create and load tables used in the documentation examples.
--
-- Create the 'dept' table
--
CREATE TABLE dept (
 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,
 loc VARCHAR2(13)
);
--
-- Create the 'emp' table
--
CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,

Issue: 20200701 89

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 sal NUMBER(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno)
);
--
-- Create the 'jobhist' table
--
CREATE TABLE jobhist (
 empno NUMBER(4) NOT NULL,
 startdate DATE NOT NULL,
 enddate DATE,
 job VARCHAR2(9),
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2),
 chgdesc VARCHAR2(80),
 CONSTRAINT jobhist_pk PRIMARY KEY (empno, startdate),
 CONSTRAINT jobhist_ref_emp_fk FOREIGN KEY (empno)
 REFERENCES emp(empno) ON DELETE CASCADE,
 CONSTRAINT jobhist_ref_dept_fk FOREIGN KEY (deptno)
 REFERENCES dept (deptno) ON DELETE SET NULL,
 CONSTRAINT jobhist_date_chk CHECK (startdate <= enddate)
);
--
-- Create the 'salesemp' view
--
CREATE OR REPLACE VIEW salesemp AS
 SELECT empno, ename, hiredate, sal, comm FROM emp WHERE job = 'SALESMAN';
--
-- Sequence to generate values for function 'new_empno'.
--
CREATE SEQUENCE next_empno START WITH 8000 INCREMENT BY 1;
--
-- Issue PUBLIC grants
--
GRANT ALL ON emp TO PUBLIC;
GRANT ALL ON dept TO PUBLIC;
GRANT ALL ON jobhist TO PUBLIC;
GRANT ALL ON salesemp TO PUBLIC;
GRANT ALL ON next_empno TO PUBLIC;
--
-- Load the 'dept' table
--
INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');
INSERT INTO dept VALUES (20,'RESEARCH','DALLAS');
INSERT INTO dept VALUES (30,'SALES','CHICAGO');
INSERT INTO dept VALUES (40,'OPERATIONS','BOSTON');
--
-- Load the 'emp' table
--
INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'17-DEC-80',800,NULL,20);
INSERT INTO emp VALUES (7499,'ALLEN','SALESMAN',7698,'20-FEB-81',1600,300,30);
INSERT INTO emp VALUES (7521,'WARD','SALESMAN',7698,'22-FEB-81',1250,500,30);
INSERT INTO emp VALUES (7566,'JONES','MANAGER',7839,'02-APR-81',2975,NULL,20);
INSERT INTO emp VALUES (7654,'MARTIN','SALESMAN',7698,'28-SEP-81',1250,1400,30);
INSERT INTO emp VALUES (7698,'BLAKE','MANAGER',7839,'01-MAY-81',2850,NULL,30);
INSERT INTO emp VALUES (7782,'CLARK','MANAGER',7839,'09-JUN-81',2450,NULL,10);
INSERT INTO emp VALUES (7788,'SCOTT','ANALYST',7566,'19-APR-87',3000,NULL,20);
INSERT INTO emp VALUES (7839,'KING','PRESIDENT',NULL,'17-NOV-81',5000,NULL,10);
INSERT INTO emp VALUES (7844,'TURNER','SALESMAN',7698,'08-SEP-81',1500,0,30);
INSERT INTO emp VALUES (7876,'ADAMS','CLERK',7788,'23-MAY-87',1100,NULL,20);
INSERT INTO emp VALUES (7900,'JAMES','CLERK',7698,'03-DEC-81',950,NULL,30);
INSERT INTO emp VALUES (7902,'FORD','ANALYST',7566,'03-DEC-81',3000,NULL,20);

90 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

INSERT INTO emp VALUES (7934,'MILLER','CLERK',7782,'23-JAN-82',1300,NULL,10);
--
-- Load the 'jobhist' table
--
INSERT INTO jobhist VALUES (7369,'17-DEC-80',NULL,'CLERK',800,NULL,20,'New Hire');
INSERT INTO jobhist VALUES (7499,'20-FEB-81',NULL,'SALESMAN',1600,300,30,'New Hire');
INSERT INTO jobhist VALUES (7521,'22-FEB-81',NULL,'SALESMAN',1250,500,30,'New Hire');
INSERT INTO jobhist VALUES (7566,'02-APR-81',NULL,'MANAGER',2975,NULL,20,'New Hire');
INSERT INTO jobhist VALUES (7654,'28-SEP-81',NULL,'SALESMAN',1250,1400,30,'New Hire');
INSERT INTO jobhist VALUES (7698,'01-MAY-81',NULL,'MANAGER',2850,NULL,30,'New Hire
');
INSERT INTO jobhist VALUES (7782,'09-JUN-81',NULL,'MANAGER',2450,NULL,10,'New Hire');
INSERT INTO jobhist VALUES (7788,'19-APR-87','12-APR-88','CLERK',1000,NULL,20,'New
Hire');
INSERT INTO jobhist VALUES (7788,'13-APR-88','04-MAY-89','CLERK',1040,NULL,20,'Raise');
INSERT INTO jobhist VALUES (7788,'05-MAY-90',NULL,'ANALYST',3000,NULL,20,'Promoted
to Analyst');
INSERT INTO jobhist VALUES (7839,'17-NOV-81',NULL,'PRESIDENT',5000,NULL,10,'New Hire
');
INSERT INTO jobhist VALUES (7844,'08-SEP-81',NULL,'SALESMAN',1500,0,30,'New Hire');
INSERT INTO jobhist VALUES (7876,'23-MAY-87',NULL,'CLERK',1100,NULL,20,'New Hire');
INSERT INTO jobhist VALUES (7900,'03-DEC-81','14-JAN-83','CLERK',950,NULL,10,'New Hire
');
INSERT INTO jobhist VALUES (7900,'15-JAN-83',NULL,'CLERK',950,NULL,30,'Changed to Dept
 30');
INSERT INTO jobhist VALUES (7902,'03-DEC-81',NULL,'ANALYST',3000,NULL,20,'New Hire');
INSERT INTO jobhist VALUES (7934,'23-JAN-82',NULL,'CLERK',1300,NULL,10,'New Hire');
--
-- Populate statistics table and view (pg_statistic/pg_stats)
--
ANALYZE dept;
ANALYZE emp;
ANALYZE jobhist;
--
-- Procedure that lists all employees' numbers and names
-- from the 'emp' table using a cursor.
--
CREATE OR REPLACE PROCEDURE list_emp
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur IS
 SELECT empno, ename FROM emp ORDER BY empno;
BEGIN
 OPEN emp_cur;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_cur;
END;
/
--
-- Procedure that selects an employee row given the employee
-- number and displays certain columns.
--
CREATE OR REPLACE PROCEDURE select_emp (
 p_empno IN NUMBER
)
IS
 v_ename emp.ename%TYPE;

Issue: 20200701 91

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 v_hiredate emp.hiredate%TYPE;
 v_sal emp.sal%TYPE;
 v_comm emp.comm%TYPE;
 v_dname dept.dname%TYPE;
 v_disp_date VARCHAR2(10);
BEGIN
 SELECT ename, hiredate, sal, NVL(comm, 0), dname
 INTO v_ename, v_hiredate, v_sal, v_comm, v_dname
 FROM emp e, dept d
 WHERE empno = p_empno
 AND e.deptno = d.deptno;
 v_disp_date := TO_CHAR(v_hiredate, 'MM/DD/YYYY');
 DBMS_OUTPUT.PUT_LINE('Number : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_disp_date);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Commission: ' || v_comm);
 DBMS_OUTPUT.PUT_LINE('Department: ' || v_dname);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno || ' not found');
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
END;
/
--
-- Procedure that queries the 'emp' table based on
-- department number and employee number or name. Returns
-- employee number and name as IN OUT parameters and job,
-- hire date, and salary as OUT parameters.
--
CREATE OR REPLACE PROCEDURE emp_query (
 p_deptno IN NUMBER,
 p_empno IN OUT NUMBER,
 p_ename IN OUT VARCHAR2,
 p_job OUT VARCHAR2,
 p_hiredate OUT DATE,
 p_sal OUT NUMBER
)
IS
BEGIN
 SELECT empno, ename, job, hiredate, sal
 INTO p_empno, p_ename, p_job, p_hiredate, p_sal
 FROM emp
 WHERE deptno = p_deptno
 AND (empno = p_empno
 OR ename = UPPER(p_ename));
END;
/
--
-- Procedure to call 'emp_query_caller' with IN and IN OUT
-- parameters. Displays the results received from IN OUT and
-- OUT parameters.
--
CREATE OR REPLACE PROCEDURE emp_query_caller
IS
 v_deptno NUMBER(2);
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_job VARCHAR2(9);
 v_hiredate DATE;

92 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 v_sal NUMBER;
BEGIN
 v_deptno := 30;
 v_empno := 0;
 v_ename := 'Martin';
 emp_query(v_deptno, v_empno, v_ename, v_job, v_hiredate, v_sal);
 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);
 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
EXCEPTION
 WHEN TOO_MANY_ROWS THEN
 DBMS_OUTPUT.PUT_LINE('More than one employee was selected');
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('No employees were selected');
END;
/
--
-- Function to compute yearly compensation based on semimonthly
-- salary.
--
CREATE OR REPLACE FUNCTION emp_comp (
 p_sal NUMBER,
 p_comm NUMBER
) RETURN NUMBER
IS
BEGIN
 RETURN (p_sal + NVL(p_comm, 0)) * 24;
END;
/
--
-- Function that gets the next number from sequence, 'next_empno',
-- and ensures it is not already in use as an employee number.
--
CREATE OR REPLACE FUNCTION new_empno RETURN NUMBER
IS
 v_cnt INTEGER := 1;
 v_new_empno NUMBER;
BEGIN
 WHILE v_cnt > 0 LOOP
 SELECT next_empno.nextval INTO v_new_empno FROM dual;
 SELECT COUNT(*) INTO v_cnt FROM emp WHERE empno = v_new_empno;
 END LOOP;
 RETURN v_new_empno;
END;
/
--
-- EDB-SPL function that adds a new clerk to table 'emp'. This function
-- uses package 'emp_admin'.
--
CREATE OR REPLACE FUNCTION hire_clerk (
 p_ename VARCHAR2,
 p_deptno NUMBER
) RETURN NUMBER
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_job VARCHAR2(9);
 v_mgr NUMBER(4);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);

Issue: 20200701 93

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 v_deptno NUMBER(2);
BEGIN
 v_empno := new_empno;
 INSERT INTO emp VALUES (v_empno, p_ename, 'CLERK', 7782,
 TRUNC(SYSDATE), 950.00, NULL, p_deptno);
 SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno INTO
 v_empno, v_ename, v_job, v_mgr, v_hiredate, v_sal, v_comm, v_deptno
 FROM emp WHERE empno = v_empno;
 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);
 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Manager : ' || v_mgr);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Commission : ' || v_comm);
 RETURN v_empno;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
 RETURN -1;
END;
/
--
-- PostgreSQL PL/pgSQL function that adds a new salesman
-- to table 'emp'.
--
CREATE OR REPLACE FUNCTION hire_salesman (
 p_ename VARCHAR,
 p_sal NUMERIC,
 p_comm NUMERIC
) RETURNS NUMERIC
AS $$
DECLARE
 v_empno NUMERIC(4);
 v_ename VARCHAR(10);
 v_job VARCHAR(9);
 v_mgr NUMERIC(4);
 v_hiredate DATE;
 v_sal NUMERIC(7,2);
 v_comm NUMERIC(7,2);
 v_deptno NUMERIC(2);
BEGIN
 v_empno := new_empno();
 INSERT INTO emp VALUES (v_empno, p_ename, 'SALESMAN', 7698,
 CURRENT_DATE, p_sal, p_comm, 30);
 SELECT INTO
 v_empno, v_ename, v_job, v_mgr, v_hiredate, v_sal, v_comm, v_deptno
 empno, ename, job, mgr, hiredate, sal, comm, deptno
 FROM emp WHERE empno = v_empno;
 RAISE INFO 'Department : %', v_deptno;
 RAISE INFO 'Employee No: %', v_empno;
 RAISE INFO 'Name : %', v_ename;
 RAISE INFO 'Job : %', v_job;
 RAISE INFO 'Manager : %', v_mgr;
 RAISE INFO 'Hire Date : %', v_hiredate;
 RAISE INFO 'Salary : %', v_sal;
 RAISE INFO 'Commission : %', v_comm;
 RETURN v_empno;
EXCEPTION
 WHEN OTHERS THEN

94 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 RAISE INFO 'The following is SQLERRM:';
 RAISE INFO '%', SQLERRM;
 RAISE INFO 'The following is SQLSTATE:';
 RAISE INFO '%', SQLSTATE;
 RETURN -1;
END;
$$ LANGUAGE 'plpgsql';
/
--
-- Rule to INSERT into view 'salesemp'
--
CREATE OR REPLACE RULE salesemp_i AS ON INSERT TO salesemp
DO INSTEAD
 INSERT INTO emp VALUES (NEW.empno, NEW.ename, 'SALESMAN', 7698,
 NEW.hiredate, NEW.sal, NEW.comm, 30);
--
-- Rule to UPDATE view 'salesemp'
--
CREATE OR REPLACE RULE salesemp_u AS ON UPDATE TO salesemp
DO INSTEAD
 UPDATE emp SET empno = NEW.empno,
 ename = NEW.ename,
 hiredate = NEW.hiredate,
 sal = NEW.sal,
 comm = NEW.comm
 WHERE empno = OLD.empno;
--
-- Rule to DELETE from view 'salesemp'
--
CREATE OR REPLACE RULE salesemp_d AS ON DELETE TO salesemp
DO INSTEAD
 DELETE FROM emp WHERE empno = OLD.empno;
--
-- After statement-level trigger that displays a message after
-- an insert, update, or deletion to the 'emp' table. One message
-- per SQL statement is displayed.
--
CREATE OR REPLACE TRIGGER user_audit_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp
DECLARE
 v_action VARCHAR2(24);
BEGIN
 IF INSERTING THEN
 v_action := ' added employee(s) on ';
 ELSIF UPDATING THEN
 v_action := ' updated employee(s) on ';
 ELSIF DELETING THEN
 v_action := ' deleted employee(s) on ';
 END IF;
 DBMS_OUTPUT.PUT_LINE('User ' || USER || v_action || TO_CHAR(SYSDATE,'YYYY-MM-DD'));
END;
/
--
-- Before row-level trigger that displays employee number and
-- salary of an employee that is about to be added, updated,
-- or deleted in the 'emp' table.
--
CREATE OR REPLACE TRIGGER emp_sal_trig
 BEFORE DELETE OR INSERT OR UPDATE ON emp
 FOR EACH ROW
DECLARE
 sal_diff NUMBER;
BEGIN
 IF INSERTING THEN

Issue: 20200701 95

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 DBMS_OUTPUT.PUT_LINE('Inserting employee ' || :NEW.empno);
 DBMS_OUTPUT.PUT_LINE('..New salary: ' || :NEW.sal);
 END IF;
 IF UPDATING THEN
 sal_diff := :NEW.sal - :OLD.sal;
 DBMS_OUTPUT.PUT_LINE('Updating employee ' || :OLD.empno);
 DBMS_OUTPUT.PUT_LINE('..Old salary: ' || :OLD.sal);
 DBMS_OUTPUT.PUT_LINE('..New salary: ' || :NEW.sal);
 DBMS_OUTPUT.PUT_LINE('..Raise : ' || sal_diff);
 END IF;
 IF DELETING THEN
 DBMS_OUTPUT.PUT_LINE('Deleting employee ' || :OLD.empno);
 DBMS_OUTPUT.PUT_LINE('..Old salary: ' || :OLD.sal);
 END IF;
END;
/
--
-- Package specification for the 'emp_admin' package.
--
CREATE OR REPLACE PACKAGE emp_admin
IS
 FUNCTION get_dept_name (
 p_deptno NUMBER
) RETURN VARCHAR2;
 FUNCTION update_emp_sal (
 p_empno NUMBER,
 p_raise NUMBER
) RETURN NUMBER;
 PROCEDURE hire_emp (
 p_empno NUMBER,
 p_ename VARCHAR2,
 p_job VARCHAR2,
 p_sal NUMBER,
 p_hiredate DATE,
 p_comm NUMBER,
 p_mgr NUMBER,
 p_deptno NUMBER
);
 PROCEDURE fire_emp (
 p_empno NUMBER
);
END emp_admin;
/
--
-- Package body for the 'emp_admin' package.
--
CREATE OR REPLACE PACKAGE BODY emp_admin
IS
 --
 -- Function that queries the 'dept' table based on the department
 -- number and returns the corresponding department name.
 --
 FUNCTION get_dept_name (
 p_deptno IN NUMBER
) RETURN VARCHAR2
 IS
 v_dname VARCHAR2(14);
 BEGIN
 SELECT dname INTO v_dname FROM dept WHERE deptno = p_deptno;
 RETURN v_dname;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Invalid department number ' || p_deptno);
 RETURN '';

96 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 END;
 --
 -- Function that updates an employee's salary based on the
 -- employee number and salary increment/decrement passed
 -- as IN parameters. Upon successful completion the function
 -- returns the new updated salary.
 --
 FUNCTION update_emp_sal (
 p_empno IN NUMBER,
 p_raise IN NUMBER
) RETURN NUMBER
 IS
 v_sal NUMBER := 0;
 BEGIN
 SELECT sal INTO v_sal FROM emp WHERE empno = p_empno;
 v_sal := v_sal + p_raise;
 UPDATE emp SET sal = v_sal WHERE empno = p_empno;
 RETURN v_sal;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno || ' not found');
 RETURN -1;
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
 RETURN -1;
 END;
 --
 -- Procedure that inserts a new employee record into the 'emp' table.
 --
 PROCEDURE hire_emp (
 p_empno NUMBER,
 p_ename VARCHAR2,
 p_job VARCHAR2,
 p_sal NUMBER,
 p_hiredate OUT DATE,
 p_comm NUMBER,
 p_mgr NUMBER,
 p_deptno NUMBER
)
 AS
 BEGIN
 INSERT INTO emp(empno, ename, job, sal, hiredate, comm, mgr, deptno)
 VALUES(p_empno, p_ename, p_job, p_sal,
 p_hiredate, p_comm, p_mgr, p_deptno);
 END;
 --
 -- Procedure that deletes an employee record from the 'emp' table based
 -- on the employee number.
 --
 PROCEDURE fire_emp (
 p_empno NUMBER
)
 AS
 BEGIN
 DELETE FROM emp WHERE empno = p_empno;
 END;
END;
/

Issue: 20200701 97

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

COMMIT;

6.1.4 Sample database

6.1.5 Create a table
You can create a new table by specifying the table name and the names and types of all

columns in the table.

The following table is a simplified version of the emp sample table. Only the basic

information is provided to define a table.

CREATE TABLE emp (
 empno NUMBER(4),
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2)
);

You can enter the sample code into PSQL with line breaks. PSQL recognizes that the

statement is not terminated until the semicolon.

Whitespace characters such as blanks, tabs, and newlines may be used in SQL statements.

Therefore, you can type the statement aligned differently from the preceding example. You

 can also type the statement on one line. Two dashes (--) introduce comments. Whatever

 follows the dashes is ignored up to the end of the line. Keywords and identifiers are case

 insensitive in SQL, except when identifiers are double-quoted to preserve the case. No

double-quoted identifiers are used in the preceding example.

VARCHAR2(10) specifies a data type that can store arbitrary character strings with up to 10

characters in length. NUMBER(7,2) is a fixed point number with precision 7 and scale 2.

NUMBER(4) is an integer number with precision 4 and scale 0.

PolarDB databases compatible with Oracle support common SQL data types including

 INTEGER, SMALLINT, NUMBER, REAL, DOUBLE PRECISION, CHAR, VARCHAR2, DATE, and

TIMESTAMP, and also support various synonyms for these types.

98 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

If you do not need a table or you want to create a new table to replace the table, you can

remove the table by running the following statement:

DROP TABLE tablename;

6.1.6 Populate a table with rows
The following INSERT statement is used to populate a table with rows:

INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'17-DEC-80',800,NULL,20);

Note:

All data types use obvious input formats. Constants that are not simple numeric values

must be enclosed by single quotation marks ('). The DATE type supports a wide range of

content. In this tutorial, the unambiguous format in this example is recommended.

The syntax requires you to remember the order of the columns. An alternative syntax allows

 you to list the columns:

INSERT INTO emp(empno,ename,job,mgr,hiredate,sal,comm,deptno)
 VALUES (7499,'ALLEN','SALESMAN',7698,'20-FEB-81',1600,300,30);

You can list the columns in a different order or omit some columns in some cases, for

example, if the commission is unknown. The following example shows this type of query:

INSERT INTO emp(empno,ename,job,mgr,hiredate,sal,deptno)
 VALUES (7369,'SMITH','CLERK',7902,'17-DEC-80',800,20);

Many developers prefer an explicit list of columns to relying on implicit sorting.

6.1.7 Query a table
To retrieve data from a table, you must query the table. A SQL SELECT statement is used in

the query. The statement is divided into a select list, a table list, and an optional qualificat

ion. The select list displays the columns to be returned. The table list displays the tables

from which data is retrieved. The optional qualification specifies relevant restrictions. The

following query lists all columns of all employees in the table in no particular order.

SELECT * FROM emp;

The asterisk (*) in the select list specifies all columns. The following example shows the

output from this query.

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+-----------+------+--------------------+---------+---------+--------

Issue: 20200701 99

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
 7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 | 300.00 | 30
 7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 | 500.00 | 30
 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 | | 20
 7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 | 1400.00 | 30
 7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
 7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
 7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
 7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000.00 | | 10
 7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30
 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
 7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
(14 rows)

You may specify any arbitrary expression in the select list. For example, you can run the

following query:

SELECT ename, sal, sal * 24 AS yearly_salary, deptno FROM emp;

 ename | sal | yearly_salary | deptno
--------+---------+---------------+--------
 SMITH | 800.00 | 19200.00 | 20
 ALLEN | 1600.00 | 38400.00 | 30
 WARD | 1250.00 | 30000.00 | 30
 JONES | 2975.00 | 71400.00 | 20
 MARTIN | 1250.00 | 30000.00 | 30
 BLAKE | 2850.00 | 68400.00 | 30
 CLARK | 2450.00 | 58800.00 | 10
 SCOTT | 3000.00 | 72000.00 | 20
 KING | 5000.00 | 120000.00 | 10
 TURNER | 1500.00 | 36000.00 | 30
 ADAMS | 1100.00 | 26400.00 | 20
 JAMES | 950.00 | 22800.00 | 30
 FORD | 3000.00 | 72000.00 | 20
 MILLER | 1300.00 | 31200.00 | 10
(14 rows)

The AS clause can be used to relabel the output column. The AS clause is optional.

You can add a WHERE clause to qualify a query. This clause specifies the required rows. The

 WHERE clause contains a Boolean expression with a truth value. Only the rows for which

the Boolean expression is true are returned. The usual Boolean operators including AND,

OR, and NOT are allowed in the qualification. For example, the following query retrieves the

 employees in department 20 with salaries over USD 1000.00:

SELECT ename, sal, deptno FROM emp WHERE deptno = 20 AND sal > 1000;

 ename | sal | deptno
-------+---------+--------
 JONES | 2975.00 | 20
 SCOTT | 3000.00 | 20
 ADAMS | 1100.00 | 20
 FORD | 3000.00 | 20

100 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

(4 rows)

You can specify that the results of a query are returned in sorted order by using the

following query:

SELECT ename, sal, deptno FROM emp ORDER BY ename;

 ename | sal | deptno
--------+---------+--------
 ADAMS | 1100.00 | 20
 ALLEN | 1600.00 | 30
 BLAKE | 2850.00 | 30
 CLARK | 2450.00 | 10
 FORD | 3000.00 | 20
 JAMES | 950.00 | 30
 JONES | 2975.00 | 20
 KING | 5000.00 | 10
 MARTIN | 1250.00 | 30
 MILLER | 1300.00 | 10
 SCOTT | 3000.00 | 20
 SMITH | 800.00 | 20
 TURNER | 1500.00 | 30
 WARD | 1250.00 | 30
(14 rows)

You can specify that duplicate rows are removed from the result by using the following

query:

SELECT DISTINCT job FROM emp;

 job

 ANALYST
 CLERK
 MANAGER
 PRESIDENT
 SALESMAN
(5 rows)

The next topic describes how to retrieve rows from more than one table in a single query.

6.1.8 Joins between tables
You can access one or more tables in each query. You can also process multiple rows

from one or more tables concurrently in each query. This query is called a join query.

For example, if you want to list the information about all employees and the names and

addresses of relevant departments, you must compare the deptno column of each row of

the emp table with the deptno column of all rows in the dept table, and select the pairs of

rows where these values match. You can use the following query to achieve this purpose:

SELECT emp.ename, emp.sal, dept.deptno, dept.dname, dept.loc FROM emp, dept
WHERE emp.deptno = dept.deptno;

 ename | sal | deptno | dname | loc

Issue: 20200701 101

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

--------+---------+--------+------------+----------
 MILLER | 1300.00 | 10 | ACCOUNTING | NEW YORK
 CLARK | 2450.00 | 10 | ACCOUNTING | NEW YORK
 KING | 5000.00 | 10 | ACCOUNTING | NEW YORK
 SCOTT | 3000.00 | 20 | RESEARCH | DALLAS
 JONES | 2975.00 | 20 | RESEARCH | DALLAS
 SMITH | 800.00 | 20 | RESEARCH | DALLAS
 ADAMS | 1100.00 | 20 | RESEARCH | DALLAS
 FORD | 3000.00 | 20 | RESEARCH | DALLAS
 WARD | 1250.00 | 30 | SALES | CHICAGO
 TURNER | 1500.00 | 30 | SALES | CHICAGO
 ALLEN | 1600.00 | 30 | SALES | CHICAGO
 BLAKE | 2850.00 | 30 | SALES | CHICAGO
 MARTIN | 1250.00 | 30 | SALES | CHICAGO
 JAMES | 950.00 | 30 | SALES | CHICAGO
(14 rows)

You must understand the following comments on this result set:

• No result row corresponds to department 40. No entry in the emp table matches

department 40, so the join ignores the unmatched rows in the dept table. The following

sections describe how to fix this issue.

• We recommend that you use the following query to list the output columns qualified by

table name instead of using asterisks (*) or leaving out the qualification:

SELECT ename, sal, dept.deptno, dname, loc FROM emp, dept WHERE emp.deptno =
dept.deptno;

The deptno column must be qualified. All other columns have unique names. The parser

automatically locates the table that these columns belong to. We recommend that you fully

 qualify column names in join queries.

You can also write join queries by following this syntax:

SELECT emp.ename, emp.sal, dept.deptno, dept.dname, dept.loc FROM emp INNER JOIN
dept ON emp.deptno = dept.deptno;

This syntax helps you understand the following scenario.

In the preceding results for joins, no employees that belong to department 40 are returned

 and no entries for department 40 are generated. To retrieve the entries for department

40 from the results where no matched employees exist, you can use the query to scan the

dept table to find the matched emp row. If no matched row is found, you can use the NULL

 values to replace the columns in the emp table. This type of query is called an outer join.

Most joins are inner joins. The following example shows an outer join:

SELECT emp.ename, emp.sal, dept.deptno, dept.dname, dept.loc FROM dept LEFT OUTER
 JOIN emp ON emp.deptno = dept.deptno;

 ename | sal | deptno | dname | loc
--------+---------+--------+------------+----------

102 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 MILLER | 1300.00 | 10 | ACCOUNTING | NEW YORK
 CLARK | 2450.00 | 10 | ACCOUNTING | NEW YORK
 KING | 5000.00 | 10 | ACCOUNTING | NEW YORK
 SCOTT | 3000.00 | 20 | RESEARCH | DALLAS
 JONES | 2975.00 | 20 | RESEARCH | DALLAS
 SMITH | 800.00 | 20 | RESEARCH | DALLAS
 ADAMS | 1100.00 | 20 | RESEARCH | DALLAS
 FORD | 3000.00 | 20 | RESEARCH | DALLAS
 WARD | 1250.00 | 30 | SALES | CHICAGO
 TURNER | 1500.00 | 30 | SALES | CHICAGO
 ALLEN | 1600.00 | 30 | SALES | CHICAGO
 BLAKE | 2850.00 | 30 | SALES | CHICAGO
 MARTIN | 1250.00 | 30 | SALES | CHICAGO
 JAMES | 950.00 | 30 | SALES | CHICAGO
 | | 40 | OPERATIONS | BOSTON
(15 rows)

This query is called a left outer join. The table mentioned on the left of the join operator has

 each row from the table appearing in the output at least once. The table on the right only

has the rows that match some rows of the left table displayed in the output. If a left-table

row does not match any rows of the right table, NULL values are used to replace the right-

table columns.

As an alternative syntax for an outer join, you can use the outer join operator "(+)" in the

join condition within the WHERE clause. The outer join operator is placed after the column

name of the table where the NULL values are used to replace unmatched rows. For all the

rows in the dept table that have no matched rows in the emp table, the PolarDB database

compatible with Oracle returns NULL for any select list expressions that contain columns of

emp. Therefore, you can rewrite the query in the following way:

SELECT emp.ename, emp.sal, dept.deptno, dept.dname, dept.loc FROM dept, emp
WHERE emp.deptno(+) = dept.deptno;

 ename | sal | deptno | dname | loc
--------+---------+--------+------------+----------
 MILLER | 1300.00 | 10 | ACCOUNTING | NEW YORK
 CLARK | 2450.00 | 10 | ACCOUNTING | NEW YORK
 KING | 5000.00 | 10 | ACCOUNTING | NEW YORK
 SCOTT | 3000.00 | 20 | RESEARCH | DALLAS
 JONES | 2975.00 | 20 | RESEARCH | DALLAS
 SMITH | 800.00 | 20 | RESEARCH | DALLAS
 ADAMS | 1100.00 | 20 | RESEARCH | DALLAS
 FORD | 3000.00 | 20 | RESEARCH | DALLAS
 WARD | 1250.00 | 30 | SALES | CHICAGO
 TURNER | 1500.00 | 30 | SALES | CHICAGO
 ALLEN | 1600.00 | 30 | SALES | CHICAGO
 BLAKE | 2850.00 | 30 | SALES | CHICAGO
 MARTIN | 1250.00 | 30 | SALES | CHICAGO
 JAMES | 950.00 | 30 | SALES | CHICAGO
 | | 40 | OPERATIONS | BOSTON

Issue: 20200701 103

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

(15 rows)

We can also join a table with itself. This join is a self join. For example, if you want to find

 the names of employees along with the names of their managers, you can compare the

mgr column of each emp row to the empno column of all other emp rows.

SELECT e1.ename || ' works for ' || e2.ename AS "Employees and their Managers" FROM
emp e1, emp e2 WHERE e1.mgr = e2.empno;

 Employees and their Managers

 FORD works for JONES
 SCOTT works for JONES
 WARD works for BLAKE
 TURNER works for BLAKE
 MARTIN works for BLAKE
 JAMES works for BLAKE
 ALLEN works for BLAKE
 MILLER works for CLARK
 ADAMS works for SCOTT
 CLARK works for KING
 BLAKE works for KING
 JONES works for KING
 SMITH works for FORD
(13 rows)

In this example, the emp table has been relabeled as e1 to represent the employee row in

the select list and in the join condition, and as e2 to represent the matched manager row in

 the select list and in the join condition. These types of aliases can be used in other queries

to reduce input. The following example uses these types of aliases:

SELECT e.ename, e.mgr, d.deptno, d.dname, d.loc FROM emp e, dept d WHERE e.deptno
 = d.deptno;

 ename | mgr | deptno | dname | loc
--------+------+--------+------------+----------
 MILLER | 7782 | 10 | ACCOUNTING | NEW YORK
 CLARK | 7839 | 10 | ACCOUNTING | NEW YORK
 KING | | 10 | ACCOUNTING | NEW YORK
 SCOTT | 7566 | 20 | RESEARCH | DALLAS
 JONES | 7839 | 20 | RESEARCH | DALLAS
 SMITH | 7902 | 20 | RESEARCH | DALLAS
 ADAMS | 7788 | 20 | RESEARCH | DALLAS
 FORD | 7566 | 20 | RESEARCH | DALLAS
 WARD | 7698 | 30 | SALES | CHICAGO
 TURNER | 7698 | 30 | SALES | CHICAGO
 ALLEN | 7698 | 30 | SALES | CHICAGO
 BLAKE | 7839 | 30 | SALES | CHICAGO
 MARTIN | 7698 | 30 | SALES | CHICAGO
 JAMES | 7698 | 30 | SALES | CHICAGO
(14 rows)

This is a common abbreviation style.

104 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

6.1.9 Aggregate functions
Similar to most other relational database services, PolarDB databases compatible with

Oracle support aggregate functions. An aggregate function computes a single result from

multiple input rows. For example, you can use aggregates to compute the COUNT, SUM, AVG

(average), MAX (maximum), and MIN (minimum) over a set of rows.

The following example shows how the highest and lowest salaries are found in a query:

SELECT MAX(sal) highest_salary, MIN(sal) lowest_salary FROM emp;

 highest_salary | lowest_salary
----------------+---------------
 5000.00 | 800.00
(1 row)

If you want to find the employee with the largest salary, the following query is invalid:

SELECT ename FROM emp WHERE sal = MAX(sal);

ERROR: aggregates not allowed in WHERE clause

The MAX aggregate function cannot be used in a WHERE clause. The WHERE clause

determines the rows that can be aggregated. The clause must be evaluated before

aggregate functions are computed. However, you can use a subquery to restate the query

to obtain the expected result:

SELECT ename FROM emp WHERE sal = (SELECT MAX(sal) FROM emp);

 ename

 KING
(1 row)

The subquery is an independent computation that obtains its own result separately from

the outer query.

Aggregates are also very useful in combination with the GROUP BY clause. For example, the

 following query retrieves the highest salary in each department.

SELECT deptno, MAX(sal) FROM emp GROUP BY deptno;

 deptno | max
--------+---------
 10 | 5000.00
 20 | 3000.00
 30 | 2850.00

Issue: 20200701 105

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

(3 rows)

This query produces one output row per department. Each aggregate result is computed

 over the rows matching that department. You can use the HAVING clause to filter these

grouped rows.

SELECT deptno, MAX(sal) FROM emp GROUP BY deptno HAVING AVG(sal) > 2000;

 deptno | max
--------+---------
 10 | 5000.00
 20 | 3000.00
(2 rows)

This query retrieves the same results for only those departments that have an average

salary greater than 2000.

The following query takes into account only the highest paid employees who are analysts

in each department.

SELECT deptno, MAX(sal) FROM emp WHERE job = 'ANALYST' GROUP BY deptno HAVING
AVG(sal) > 2000;

 deptno | max
--------+---------
 20 | 3000.00
(1 row)

A subtle distinction exists between the WHERE and HAVING clauses. Before grouping occurs

 and aggregate functions are applied, the WHERE clause filters out rows. After rows are

grouped and aggregate functions are computed for each group, the HAVING clause applies

 filters on the results.

Therefore, in the previous example, only employees who are analysts are considered. From

 this subset, the employees are grouped by department and only those groups where the

average salary of analysts in the group is greater than 2000 are in the final result. Only the

group for department 20 meets the criteria and the maximum analyst salary in department

 20 is 3000.00.

6.1.10 Updates
You can use the UPDATE statement to change the column values of existing rows.

For example, the following example shows how to offer anyone who is a manager a 10%

raise:

 SELECT ename, sal FROM emp WHERE job = 'MANAGER';

 ename | sal

106 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

-------+---------
 JONES | 2975.00
 BLAKE | 2850.00
 CLARK | 2450.00
(3 rows)

UPDATE emp SET sal = sal * 1.1 WHERE job = 'MANAGER';

SELECT ename, sal FROM emp WHERE job = 'MANAGER';

 ename | sal
-------+---------
 JONES | 3272.50
 BLAKE | 3135.00
 CLARK | 2695.00
(3 rows)

6.1.11 Deletions
You can use the DELETE statement to remove rows from a table.

For example, the following example shows how all employees in department 20 are

deleted.

SELECT ename, deptno FROM emp;

 ename | deptno
--------+--------
 SMITH | 20
 ALLEN | 30
 WARD | 30
 JONES | 20
 MARTIN | 30
 BLAKE | 30
 CLARK | 10
 SCOTT | 20
 KING | 10
 TURNER | 30
 ADAMS | 20
 JAMES | 30
 FORD | 20
 MILLER | 10
(14 rows)

DELETE FROM emp WHERE deptno = 20;

SELECT ename, deptno FROM emp;
 ename | deptno
--------+--------
 ALLEN | 30
 WARD | 30
 MARTIN | 30
 BLAKE | 30
 CLARK | 10
 KING | 10
 TURNER | 30
 JAMES | 30
 MILLER | 10

Issue: 20200701 107

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

(9 rows)

Be cautious when you execute a DELETE statement without a WHERE clause. The following

example shows this type of statement:

DELETE FROM tablename;

This statement removes all rows from the specified table and leaves the table empty. The

system does not request confirmation before this deletion.

6.2 Advanced concepts

6.2.1 Views
The following example shows the SELECT statement.

SELECT ename, sal, sal * 24 AS yearly_salary, deptno FROM emp;

 ename | sal | yearly_salary | deptno
--------+---------+---------------+--------
 SMITH | 800.00 | 19200.00 | 20
 ALLEN | 1600.00 | 38400.00 | 30
 WARD | 1250.00 | 30000.00 | 30
 JONES | 2975.00 | 71400.00 | 20
 MARTIN | 1250.00 | 30000.00 | 30
 BLAKE | 2850.00 | 68400.00 | 30
 CLARK | 2450.00 | 58800.00 | 10
 SCOTT | 3000.00 | 72000.00 | 20
 KING | 5000.00 | 120000.00 | 10
 TURNER | 1500.00 | 36000.00 | 30
 ADAMS | 1100.00 | 26400.00 | 20
 JAMES | 950.00 | 22800.00 | 30
 FORD | 3000.00 | 72000.00 | 20
 MILLER | 1300.00 | 31200.00 | 10
(14 rows)

If this query is used repeatedly, you can create a view to reuse this query without re-typing

the entire SELECT statement each time. The following example shows how to create a view:

CREATE VIEW employee_pay AS SELECT ename, sal, sal * 24 AS yearly_salary, deptno
FROM emp;

The employee_pay view name can be used as an ordinary table name in a query.

SELECT * FROM employee_pay;

 ename | sal | yearly_salary | deptno
--------+---------+---------------+--------
 SMITH | 800.00 | 19200.00 | 20
 ALLEN | 1600.00 | 38400.00 | 30
 WARD | 1250.00 | 30000.00 | 30
 JONES | 2975.00 | 71400.00 | 20
 MARTIN | 1250.00 | 30000.00 | 30

108 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 BLAKE | 2850.00 | 68400.00 | 30
 CLARK | 2450.00 | 58800.00 | 10
 SCOTT | 3000.00 | 72000.00 | 20
 KING | 5000.00 | 120000.00 | 10
 TURNER | 1500.00 | 36000.00 | 30
 ADAMS | 1100.00 | 26400.00 | 20
 JAMES | 950.00 | 22800.00 | 30
 FORD | 3000.00 | 72000.00 | 20
 MILLER | 1300.00 | 31200.00 | 10
(14 rows)

The liberal use of views is important to create a good SQL database design. Views provide

 a consistent interface that encapsulates details of the structure of your tables. The tables

may change as your application evolves.

Views can be used in almost any place where a real table can be used. Views can be built

based on other views.

6.2.2 Foreign keys
If you want to make sure that all employees belong to a valid department, you must

maintain referential integrity of the data. To maintain referential integrity for simplistic

database systems, check whether the dept table contains a matched record and insert or

reject a new employee record. This approach causes a number of problems and is not easy

to use. PolarDB databases compatible with Oracle can simplify your data management.

A modified version of the emp table presented in section 2.1.2 is shown in this section. A

foreign key constraint is added to the version. The following example shows the modified

emp table:

CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno)
);

If an attempt is made to execute the following INSERT statement in the sample emp table

, the foreign key constraint emp_ref_dept_fk makes sure that department 50 exists in the

dept table. This department does not exist, so the statement is rejected.

INSERT INTO emp VALUES (8000,'JONES','CLERK',7902,'17-AUG-07',1200,NULL,50);

ERROR: insert or update on table "emp" violates foreign key constraint "emp_ref_dept_fk
"

Issue: 20200701 109

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

DETAIL: Key (deptno)=(50) is not present in table "dept".

The behavior of foreign keys can be finely tuned based on your application. The correct use

 of foreign keys improves the performance of your database applications. We recommend

that you improve the use of foreign keys.

6.2.3 Pseudo column ROWNUM
ROWNUM is a pseudo column that is assigned an incremental and unique integer value

for each row based on the order the rows were retrieved from a query. Therefore, the first

row retrieved has ROWNUM of 1. The second row has ROWNUM of 2. The other rows follow

similar rules.

This feature can be used to limit the number of rows retrieved by a query. The following

example shows how this feature works:

SELECT empno, ename, job FROM emp WHERE ROWNUM < 5;

 empno | ename | job
-------+-------+----------
 7369 | SMITH | CLERK
 7499 | ALLEN | SALESMAN
 7521 | WARD | SALESMAN
 7566 | JONES | MANAGER
(4 rows)

The ROWNUM value is assigned to each row before the result set is sorted. The result set is

returned in the order specified by the ORDER BY clause, but the ROWNUM values may not be

 sorted in ascending order. The following example shows how the result set and ROWNUM

values are returned:

SELECT ROWNUM, empno, ename, job FROM emp WHERE ROWNUM < 5 ORDER BY ename;

 rownum | empno | ename | job
--------+-------+-------+----------
 2 | 7499 | ALLEN | SALESMAN
 4 | 7566 | JONES | MANAGER
 1 | 7369 | SMITH | CLERK
 3 | 7521 | WARD | SALESMAN
(4 rows)

The following example shows how a sequence number can be added to each row in the

jobhist table. A new column named seqno is added to the table and then the seqno column

 is set to ROWNUM in the UPDATE statement.

ALTER TABLE jobhist ADD seqno NUMBER(3);

110 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

UPDATE jobhist SET seqno = ROWNUM;

The following SELECT statement shows the new values of the seqno column.

SELECT seqno, empno, TO_CHAR(startdate,'DD-MON-YY') AS start, job FROM jobhist;

 seqno | empno | start | job
-------+-------+-----------+-----------
 1 | 7369 | 17-DEC-80 | CLERK
 2 | 7499 | 20-FEB-81 | SALESMAN
 3 | 7521 | 22-FEB-81 | SALESMAN
 4 | 7566 | 02-APR-81 | MANAGER
 5 | 7654 | 28-SEP-81 | SALESMAN
 6 | 7698 | 01-MAY-81 | MANAGER
 7 | 7782 | 09-JUN-81 | MANAGER
 8 | 7788 | 19-APR-87 | CLERK
 9 | 7788 | 13-APR-88 | CLERK
 10 | 7788 | 05-MAY-90 | ANALYST
 11 | 7839 | 17-NOV-81 | PRESIDENT
 12 | 7844 | 08-SEP-81 | SALESMAN
 13 | 7876 | 23-MAY-87 | CLERK
 14 | 7900 | 03-DEC-81 | CLERK
 15 | 7900 | 15-JAN-83 | CLERK
 16 | 7902 | 03-DEC-81 | ANALYST
 17 | 7934 | 23-JAN-82 | CLERK
(17 rows)

6.2.4 Synonyms
A synonym is an identifier that can be used to reference another database object in a SQL

statement. A synonym is useful in the scenarios where a database object requires full

qualification by schema name to be correctly referenced in a SQL statement. A synonym

defined for that object simplifies the reference to a single and unqualified name.

PolarDB databases compatible with Oracle support synonyms for:

• Tables

• Views

• Materialized views

• Sequences

• Procedures

• Functions

• Types

• Objects that are accessible through a database link

• Other synonyms

The referenced schema or the referenced object may exist at the time when you create the

synonym. A synonym may reference a non-existent object or schema. A synonym is invalid

Issue: 20200701 111

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

if you drop the referenced object or schema. You must explicitly drop a synonym to remove

the synonym.

Similar to any other schema object, PolarDB databases compatible Oracle use the search

 path to resolve unqualified synonym names. If you have two synonyms with the same

 name, an unqualified reference to a synonym resolves to the first synonym with the

specified name in the search path. If public is in your search path, you can reference a

synonym in the schema without qualifying that name.

When a PolarDB database compatible Oracle executes a SQL statement, the permissions of

 the current user are checked based on the underlying database object of the synonym. If

the user does not have the proper permissions for that object, the SQL statement fails.

Create a synonym

Use the CREATE SYNONYM statement to create a synonym. The statement has the following

syntax:

CREATE [OR REPLACE] [PUBLIC] SYNONYM [schema.]syn_name
 FOR object_schema.object_name[@dblink_name];

Table 6-1: Parameters

Parameter Description

syn_name The name of the synonym. A synonym name must be unique within
 a schema.

schema The name of the schema where the synonym is located. If you do
 not specify a schema name, the synonym is created in the first
existing schema in your search path.

object_name The name of the object.

object_schema The name of the schema where the object is located.

dblink_name The name of the database link through which a target object may
be accessed.

You must include the REPLACE clause to replace an existing synonym definition with a new

synonym definition.

112 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

You must include the PUBLIC clause to create the synonym in the public schema.

Compatible with Oracle databases, the CREATE PUBLIC SYNONYM statement creates a

synonym that is located in the public schema:

CREATE [OR REPLACE] PUBLIC SYNONYM syn_name FOR object_schema.object_name;

The following example is a shorthand version:

CREATE [OR REPLACE] SYNONYM public.syn_name FOR object_schema.object_name;

The following example is used to create a synonym named personnel that references the

enterprisedb.emp table.

CREATE SYNONYM personnel FOR enterprisedb.emp;

Unless the synonym is schema qualified in the CREATE SYNONYM statement, the synonym is

 created in the first existing schema in your search path. You can view your search path by

executing the following statement:

SHOW SEARCH_PATH;

 search_path

 development,accounting
(1 row)

In this example, if a schema named development does not exist, the synonym is created in

the schema named accounting.

The emp table in the enterprisedb schema can be referenced in any DDL or DML SQL

statement, by using the personnel synonym:

INSERT INTO personnel VALUES (8142,'ANDERSON','CLERK',7902,'17-DEC-06',1300,NULL,20
);

SELECT * FROM personnel;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+----------+-----------+------+--------------------+---------+---------+--------
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
 7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 | 300.00 | 30
 7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 | 500.00 | 30
 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 | | 20
 7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 | 1400.00 | 30
 7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
 7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
 7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
 7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000.00 | | 10
 7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30
 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
 7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10

Issue: 20200701 113

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 8142 | ANDERSON | CLERK | 7902 | 17-DEC-06 00:00:00 | 1300.00 | | 20
(15 rows)

Delete a synonym

To delete a synonym, use the DROP SYNONYM statement. The statement has the following

syntax:

DROP [PUBLIC] SYNONYM [schema.] syn_name

Table 6-2: Parameters

Parameter Description

syn_name The name of the synonym. A synonym name must be unique within
 a schema.

schema The name of the schema where the synonym is located.

Similar to any other object that can be schema qualified, you may have two synonyms with

 the same name in your search path. To clarify the name of the synonym that you want to

drop, you must include a schema name. Unless a synonym is schema qualified in the DROP

SYNONYM statement, a PolarDB database compatible with Oracle deletes the first instance

of the synonym found in your search path.

You can include the PUBLIC clause to drop a synonym that is located in the public schema.

Compatible with Oracle databases, the DROP PUBLIC SYNONYM statement drops a synonym

 that is located in the public schema by using the following syntax:

DROP PUBLIC SYNONYM syn_name;

The following example shows how the personnel synonym is dropped:

DROP SYNONYM personnel;

6.3 Hierarchical queries

6.3.1 Overview
A hierarchical query is a type of query that returns the rows of the result set in a hierarchical

order based on data forming a parent-child relationship.

A hierarchy is typically represented by an inverted tree structure. The tree contains

interconnected nodes. Each node may be connected to none, one, or multiple child nodes

. Each node is connected to one parent node except for the top node which has no parent

114 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

. This node is the root node. Each tree has only one root node. Nodes that do not have any

child nodes are called leaf nodes. A tree always has at least one leaf node. For example, a

tree contains only a single node. In this case, this node is both the root and the leaf.

In a hierarchical query, the rows of the result set represent the nodes of one or more trees.

Note:

A specified single row may appear in more than one tree and thus appear more than once

in the result set.

The hierarchical relationship in a query is described by the CONNECT BY clause. This clause

 forms the basis of the order in which rows in the result set are returned. The following

example shows how the CONNECT BY clause and its associated optional clauses are used in

 the SELECT statement.

SELECT select_list FROM table_expression [WHERE ...]
 [START WITH start_expression]
 CONNECT BY { PRIOR parent_expr = child_expr |
 child_expr = PRIOR parent_expr }
 [ORDER SIBLINGS BY column1 [ASC | DESC]
 [, column2 [ASC | DESC]] ...
 [GROUP BY ...]
 [HAVING ...]
 [other ...]

select_list is one or more expressions that comprise the fields of the result set. table_expr

ession is one or more tables or views from which the rows of the result set originate. other

 is any additional valid SELECT statement. The following sections describe the clauses

pertinent to hierarchical queries, including START WITH, CONNECT BY, and ORDER SIBLINGS

BY.

Note:

PolarDB databases compatible with Oracle do not support AND or other operators in the

CONNECT BY clause.

6.3.2 Define parent-child relationships
For any specified row, its parent node and its child nodes are determined by the CONNECT

 BY clause. The CONNECT BY clause must consist of two expressions compared with the

equals (=) operator. One of these two expressions must be preceded by the keyword PRIOR.

To determine the child nodes of any specified row, follow these steps:

1. Evaluate parent_expr on the specified row.

Issue: 20200701 115

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

2. Evaluate child_expr on any other row resulting from the evaluation of table_expression.

3. If parent_expr = child_expr, this row is a child node of the specified parent row.

4. Repeat the process for all remaining rows in table_expression. All rows that satisfy the

equation in step 3 are the child nodes of the specified parent row.

Note:

The evaluation process checks whether a row is a child node occurs on every row returned

by table_expression. Then, the WHERE clause is used in table_expression.

By repeating this process, you can regard each child node found in the preceding steps as a

 parent and build an inverted tree of nodes. The process is completed when the final set of

child nodes has no child nodes. These nodes are the leaf nodes.

A SELECT statement that includes a CONNECT BY clause includes the START WITH clause. The

 START WITH clause determines the rows that are the root nodes. For example, the rows are

 the initial parent nodes on which the preceding algorithm is used. For more information,

see the next topic.

6.3.3 Select root nodes
The START WITH clause is used to determine the rows selected by table_expression. These

 rows are used as the root nodes. All rows selected by table_expression where start_expr

ession evaluates to true are regarded as a root node of a tree. The number of potential

 trees in the result set is equal to the number of root nodes. If the START WITH clause is

omitted, every row returned by table_expression is a root of its own tree.

6.3.4 Organization tree in the sample application
The following example shows the emp table of the sample application. The rows of the

emp table form a hierarchy based on the mgr column. This column contains the employee

 number of the manager of the employee. Each employee has up to one manager. KING is

 the president of the company so that he has no manager. The mgr column of KING is null

. An employee may act as a manager for more than one employee. This relationship forms

 a typical, tree-structured, hierarchical organization chart. The following figure shows this

relationship.

116 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

To form a hierarchical query based on this relationship, the SELECT statement includes this

clause: CONNECT BY PRIOR empno = mgr. For example, if the company president KING has

 the employee number 7839, any employee whose mgr column is 7839 reports to KING.

In this case, JONES, BLAKE, and CLARK are the qualified employees, because they are the

child nodes of KING. Similarly, for the employee JONES, any other employee with the mgr

column that matches 7566 is a child node of JONES. The qualified employees are SCOTT and

 FORD in this example.

The top of the organization chart is KING so that there is one root node in this tree. The

START WITH mgr IS NULL clause only selects KING as the initial root node.

The following example shows the complete SELECT statement:

SELECT ename, empno, mgr
FROM emp
START WITH mgr IS NULL
CONNECT BY PRIOR empno = mgr;

The rows in the query output traverse each branch from the root to leaf moving from top to

bottom and from left to right. The following example shows the output of this query:

 ename | empno | mgr
--------+-------+------
 KING | 7839 |
 JONES | 7566 | 7839
 SCOTT | 7788 | 7566
 ADAMS | 7876 | 7788
 FORD | 7902 | 7566
 SMITH | 7369 | 7902
 BLAKE | 7698 | 7839
 ALLEN | 7499 | 7698
 WARD | 7521 | 7698
 MARTIN | 7654 | 7698
 TURNER | 7844 | 7698
 JAMES | 7900 | 7698
 CLARK | 7782 | 7839
 MILLER | 7934 | 7782

Issue: 20200701 117

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

(14 rows)

6.3.5 Node level
LEVEL is a pseudo column that can be used wherever a column can appear in the SELECT

statement. For each row in the result set, LEVEL returns a non-zero integer value designatin

g the depth in the hierarchy of the node represented by this row. The LEVEL value for root

 nodes is 1. The LEVEL value for direct child nodes of root nodes is 2. The LEVEL values for

other nodes are calculated in a similar way.

The following query is modified based on the previous query. The LEVEL pseudo column is

added to the following query. Based on the LEVEL value, the employee names are indented

 to emphasize the depth in the hierarchy of each row.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr
FROM emp START WITH mgr IS NULL
CONNECT BY PRIOR empno = mgr;

The following example shows the output of this query:

 level | employee | empno | mgr
-------+-------------+-------+------
 1 | KING | 7839 |
 2 | JONES | 7566 | 7839
 3 | SCOTT | 7788 | 7566
 4 | ADAMS | 7876 | 7788
 3 | FORD | 7902 | 7566
 4 | SMITH | 7369 | 7902
 2 | BLAKE | 7698 | 7839
 3 | ALLEN | 7499 | 7698
 3 | WARD | 7521 | 7698
 3 | MARTIN | 7654 | 7698
 3 | TURNER | 7844 | 7698
 3 | JAMES | 7900 | 7698
 2 | CLARK | 7782 | 7839
 3 | MILLER | 7934 | 7782
(14 rows)

Nodes that share a common parent and are at the same level are called siblings. For

example, in the preceding output, the employees including ALLEN, WARD, MARTIN, TURNER

, and JAMES are siblings, because they are all at level 3 for parent BLAKE. JONES, BLAKE,

and CLARK are siblings, because they are at level 2 and KING is their common parent.

118 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

6.3.6 Order siblings
You can use the ORDER SIBLINGS BY clause to sort the result set by selected column values

to order the siblings in ascending or descending order. This special case of the ORDER BY

clause can be used only in hierarchical queries.

The previous query is further modified with the addition of ORDER SIBLINGS BY ename ASC.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr
FROM emp START WITH mgr IS NULL
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

The output from the last query is modified so that the siblings appear in ascending order

by name. Siblings BLAKE, CLARK, and JONES are alphabetically arranged for KING. Siblings

 ALLEN, JAMES, MARTIN, TURNER, and WARD are alphabetically arranged for BLAKE. Other

column values are ordered in a similar way.

 level | employee | empno | mgr
-------+-------------+-------+------
 1 | KING | 7839 |
 2 | BLAKE | 7698 | 7839
 3 | ALLEN | 7499 | 7698
 3 | JAMES | 7900 | 7698
 3 | MARTIN | 7654 | 7698
 3 | TURNER | 7844 | 7698
 3 | WARD | 7521 | 7698
 2 | CLARK | 7782 | 7839
 3 | MILLER | 7934 | 7782
 2 | JONES | 7566 | 7839
 3 | FORD | 7902 | 7566
 4 | SMITH | 7369 | 7902
 3 | SCOTT | 7788 | 7566
 4 | ADAMS | 7876 | 7788
(14 rows)

In this final example, the query uses the WHERE clause and starts with three root nodes.

After the node tree is constructed, the WHERE clause filters out rows in the tree to form the

result set.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr
FROM emp WHERE mgr IN (7839, 7782, 7902, 7788)
START WITH ename IN ('BLAKE','CLARK','JONES')
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

The output from the query shows three level-1 root nodes, including BLAKE, CLARK, and

JONES. In addition, rows that do not meet the criteria specified by the WHERE clause have

been eliminated from the output.

 level | employee | empno | mgr
-------+-----------+-------+------

Issue: 20200701 119

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 1 | BLAKE | 7698 | 7839
 1 | CLARK | 7782 | 7839
 2 | MILLER | 7934 | 7782
 1 | JONES | 7566 | 7839
 3 | SMITH | 7369 | 7902
 3 | ADAMS | 7876 | 7788
(6 rows)

6.3.7 Use CONNECT_BY_ROOT to retrieve a root node
CONNECT_BY_ROOT is a unary operator that qualifies a column to return a value in this

column. The value in the row that is regarded as the root node in relation to the current

row.

A unary operator operates on a single operand. In the case of CONNECT_BY_ROOT, the

single operand is the column name following the CONNECT_BY_ROOT keyword.

The following example shows the CONNECT_BY_ROOT operator in the context of the SELECT

 list:

SELECT [... ,] CONNECT_BY_ROOT column [, ...]
 FROM table_expression ...

When you use the CONNECT_BY_ROOT operator, follow these rules:

• The CONNECT_BY_ROOT operator can be used in the SELECT list, the WHERE clause, the

GROUP BY clause, the HAVING clause, the ORDER BY clause, and the ORDER SIBLINGS BY

clause if the SELECT statement is used for a hierarchical query.

• The CONNECT_BY_ROOT operator cannot be used in the CONNECT BY clause or the START

WITH clause of a hierarchical query.

• The CONNECT_BY_ROOT operator can be used in an expression involving a column. The

expression must be enclosed within parentheses.

The following query shows how to use the CONNECT_BY_ROOT operator to return the

result set based on trees starting with employees BLAKE, CLARK, and JONES. The result set

 includes the employee number and employee name of the root node for each employee

listed.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,
CONNECT_BY_ROOT empno "mgr empno",
CONNECT_BY_ROOT ename "mgr ename"
FROM emp
START WITH ename IN ('BLAKE','CLARK','JONES')
CONNECT BY PRIOR empno = mgr

120 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

ORDER SIBLINGS BY ename ASC;

The output from the query shows that all of the root nodes in the columns including mgr

 empno and mgr ename are one of the employees, including BLAKE, CLARK, and JONES,

listed in the START WITH clause.

 level | employee | empno | mgr | mgr empno | mgr ename
-------+-----------+-------+------+-----------+-----------
 1 | BLAKE | 7698 | 7839 | 7698 | BLAKE
 2 | ALLEN | 7499 | 7698 | 7698 | BLAKE
 2 | JAMES | 7900 | 7698 | 7698 | BLAKE
 2 | MARTIN | 7654 | 7698 | 7698 | BLAKE
 2 | TURNER | 7844 | 7698 | 7698 | BLAKE
 2 | WARD | 7521 | 7698 | 7698 | BLAKE
 1 | CLARK | 7782 | 7839 | 7782 | CLARK
 2 | MILLER | 7934 | 7782 | 7782 | CLARK
 1 | JONES | 7566 | 7839 | 7566 | JONES
 2 | FORD | 7902 | 7566 | 7566 | JONES
 3 | SMITH | 7369 | 7902 | 7566 | JONES
 2 | SCOTT | 7788 | 7566 | 7566 | JONES
 3 | ADAMS | 7876 | 7788 | 7566 | JONES
(13 rows)

The following example shows a similar query. In this query, only one tree starting with the

single top-level employee is generated. The mgr column must be null.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,
CONNECT_BY_ROOT empno "mgr empno",
CONNECT_BY_ROOT ename "mgr ename"
FROM emp START WITH mgr IS NULL
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

In the following output, all of the root nodes in the mgr empno and mgr ename columns

indicate KING as the root for this particular query.

 level | employee | empno | mgr | mgr empno | mgr ename
-------+-------------+-------+------+-----------+-----------
 1 | KING | 7839 | | 7839 | KING
 2 | BLAKE | 7698 | 7839 | 7839 | KING
 3 | ALLEN | 7499 | 7698 | 7839 | KING
 3 | JAMES | 7900 | 7698 | 7839 | KING
 3 | MARTIN | 7654 | 7698 | 7839 | KING
 3 | TURNER | 7844 | 7698 | 7839 | KING
 3 | WARD | 7521 | 7698 | 7839 | KING
 2 | CLARK | 7782 | 7839 | 7839 | KING
 3 | MILLER | 7934 | 7782 | 7839 | KING
 2 | JONES | 7566 | 7839 | 7839 | KING
 3 | FORD | 7902 | 7566 | 7839 | KING
 4 | SMITH | 7369 | 7902 | 7839 | KING
 3 | SCOTT | 7788 | 7566 | 7839 | KING
 4 | ADAMS | 7876 | 7788 | 7839 | KING
(14 rows)

By contrast, the following example omits the START WITH clause and generates 14 trees.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,

Issue: 20200701 121

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

CONNECT_BY_ROOT empno "mgr empno",
CONNECT_BY_ROOT ename "mgr ename"
FROM emp
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

The following example shows the output of this query. Each node appears at least once as

a root node for the mgr empno and mgr ename columns. Even the leaf nodes form the top

of their own trees.

 level | employee | empno | mgr | mgr empno | mgr ename
-------+-------------+-------+------+-----------+-----------
 1 | ADAMS | 7876 | 7788 | 7876 | ADAMS
 1 | ALLEN | 7499 | 7698 | 7499 | ALLEN
 1 | BLAKE | 7698 | 7839 | 7698 | BLAKE
 2 | ALLEN | 7499 | 7698 | 7698 | BLAKE
 2 | JAMES | 7900 | 7698 | 7698 | BLAKE
 2 | MARTIN | 7654 | 7698 | 7698 | BLAKE
 2 | TURNER | 7844 | 7698 | 7698 | BLAKE
 2 | WARD | 7521 | 7698 | 7698 | BLAKE
 1 | CLARK | 7782 | 7839 | 7782 | CLARK
 2 | MILLER | 7934 | 7782 | 7782 | CLARK
 1 | FORD | 7902 | 7566 | 7902 | FORD
 2 | SMITH | 7369 | 7902 | 7902 | FORD
 1 | JAMES | 7900 | 7698 | 7900 | JAMES
 1 | JONES | 7566 | 7839 | 7566 | JONES
 2 | FORD | 7902 | 7566 | 7566 | JONES
 3 | SMITH | 7369 | 7902 | 7566 | JONES
 2 | SCOTT | 7788 | 7566 | 7566 | JONES
 3 | ADAMS | 7876 | 7788 | 7566 | JONES
 1 | KING | 7839 | | 7839 | KING
 2 | BLAKE | 7698 | 7839 | 7839 | KING
 3 | ALLEN | 7499 | 7698 | 7839 | KING
 3 | JAMES | 7900 | 7698 | 7839 | KING
 3 | MARTIN | 7654 | 7698 | 7839 | KING
 3 | TURNER | 7844 | 7698 | 7839 | KING
 3 | WARD | 7521 | 7698 | 7839 | KING
 2 | CLARK | 7782 | 7839 | 7839 | KING
 3 | MILLER | 7934 | 7782 | 7839 | KING
 2 | JONES | 7566 | 7839 | 7839 | KING
 3 | FORD | 7902 | 7566 | 7839 | KING
 4 | SMITH | 7369 | 7902 | 7839 | KING
 3 | SCOTT | 7788 | 7566 | 7839 | KING
 4 | ADAMS | 7876 | 7788 | 7839 | KING
 1 | MARTIN | 7654 | 7698 | 7654 | MARTIN
 1 | MILLER | 7934 | 7782 | 7934 | MILLER
 1 | SCOTT | 7788 | 7566 | 7788 | SCOTT
 2 | ADAMS | 7876 | 7788 | 7788 | SCOTT
 1 | SMITH | 7369 | 7902 | 7369 | SMITH
 1 | TURNER | 7844 | 7698 | 7844 | TURNER
 1 | WARD | 7521 | 7698 | 7521 | WARD
(39 rows)

The following example illustrates the unary operator effect of CONNECT_BY_ROOT. When

used in an expression that is not enclosed in parentheses, the CONNECT_BY_ROOT operator

 affects only the ename term that immediately follows the operator. The subsequent

concatenation of || ' manages ' || ename is not part of the CONNECT_BY_ROOT operation.

122 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

Therefore, the second occurrence of ename results in the value of the current row. The first

occurrence of ename results in the value from the root node.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,
CONNECT_BY_ROOT ename || ' manages ' || ename "top mgr/employee"
FROM emp
START WITH ename IN ('BLAKE','CLARK','JONES')
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

The following example shows the output of this query. The values are generated for the top

 mgr/employee column.

 level | employee | empno | mgr | top mgr/employee
-------+-----------+-------+------+----------------------
 1 | BLAKE | 7698 | 7839 | BLAKE manages BLAKE
 2 | ALLEN | 7499 | 7698 | BLAKE manages ALLEN
 2 | JAMES | 7900 | 7698 | BLAKE manages JAMES
 2 | MARTIN | 7654 | 7698 | BLAKE manages MARTIN
 2 | TURNER | 7844 | 7698 | BLAKE manages TURNER
 2 | WARD | 7521 | 7698 | BLAKE manages WARD
 1 | CLARK | 7782 | 7839 | CLARK manages CLARK
 2 | MILLER | 7934 | 7782 | CLARK manages MILLER
 1 | JONES | 7566 | 7839 | JONES manages JONES
 2 | FORD | 7902 | 7566 | JONES manages FORD
 3 | SMITH | 7369 | 7902 | JONES manages SMITH
 2 | SCOTT | 7788 | 7566 | JONES manages SCOTT
 3 | ADAMS | 7876 | 7788 | JONES manages ADAMS
(13 rows)

In the following example, the CONNECT_BY_ROOT operator is used in an expression that is

enclosed in parentheses.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,
CONNECT_BY_ROOT ('Manager ' || ename || ' is emp # ' || empno)
"top mgr/empno"
FROM emp
START WITH ename IN ('BLAKE','CLARK','JONES')
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

The following example shows the output of this query. The values of both ename and

empno are affected by the CONNECT_BY_ROOT operator. The top mgr/empno column

shows the values returned from the root node.

 level | employee | empno | mgr | top mgr/empno
-------+-----------+-------+------+-----------------------------
 1 | BLAKE | 7698 | 7839 | Manager BLAKE is emp # 7698
 2 | ALLEN | 7499 | 7698 | Manager BLAKE is emp # 7698
 2 | JAMES | 7900 | 7698 | Manager BLAKE is emp # 7698
 2 | MARTIN | 7654 | 7698 | Manager BLAKE is emp # 7698
 2 | TURNER | 7844 | 7698 | Manager BLAKE is emp # 7698
 2 | WARD | 7521 | 7698 | Manager BLAKE is emp # 7698
 1 | CLARK | 7782 | 7839 | Manager CLARK is emp # 7782
 2 | MILLER | 7934 | 7782 | Manager CLARK is emp # 7782
 1 | JONES | 7566 | 7839 | Manager JONES is emp # 7566

Issue: 20200701 123

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 2 | FORD | 7902 | 7566 | Manager JONES is emp # 7566
 3 | SMITH | 7369 | 7902 | Manager JONES is emp # 7566
 2 | SCOTT | 7788 | 7566 | Manager JONES is emp # 7566
 3 | ADAMS | 7876 | 7788 | Manager JONES is emp # 7566
(13 rows)

6.3.8 Use SYS_CONNECT_BY_PATH to retrieve a path
SYS_CONNECT_BY_PATH is a function that works within a hierarchical query to retrieve the

 column values of a specified column that occur between the current node and the root

node. The function has the following signature:

SYS_CONNECT_BY_PATH (column, delimiter)

The function provides two parameters:

• column specifies the name of a column that is located within a table. This table is

specified in the hierarchical query that calls the function.

• delimiter specifies the varchar value that separates each entry in the specified column.

The following example returns a list of names of employees and their managers. If a

manager reports to a superior manager, the superior manager name is appended to the

result:

edb=# SELECT level, ename , SYS_CONNECT_BY_PATH(ename, '/') managers
 FROM emp
 CONNECT BY PRIOR empno = mgr
 START WITH mgr IS NULL
 ORDER BY level, ename, managers;
 level | ename | managers
-------+--------+-------------------------
 1 | KING | /KING
 2 | BLAKE | /KING/BLAKE
 2 | CLARK | /KING/CLARK
 2 | JONES | /KING/JONES
 3 | ALLEN | /KING/BLAKE/ALLEN
 3 | FORD | /KING/JONES/FORD
 3 | JAMES | /KING/BLAKE/JAMES
 3 | MARTIN | /KING/BLAKE/MARTIN
 3 | MILLER | /KING/CLARK/MILLER
 3 | SCOTT | /KING/JONES/SCOTT
 3 | TURNER | /KING/BLAKE/TURNER
 3 | WARD | /KING/BLAKE/WARD
 4 | ADAMS | /KING/JONES/SCOTT/ADAMS
 4 | SMITH | /KING/JONES/FORD/SMITH
(14 rows)

Where:

• The level column displays the number of levels that the query returns.

• The ename column displays the employee names.

• The managers column displays the hierarchical list of managers.

124 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

The implementation of SYS_CONNECT_BY_PATH used in PolarDB databases for Oracle does

not support use of:

• SYS_CONNECT_BY_PATH inside CONNECT_BY_PATH

• SYS_CONNECT_BY_PATH inside SYS_CONNECT_BY_PATH

6.4 Multidimensional analysis

6.4.1 Overview
Multidimensional analysis is a common process used in data warehousing applications

. This process helps you examine data by using various combinations of dimensions.

Dimensions are categories used to classify data such as time, geography, departments,

and product lines. The results associated with a particular set of dimensions are called

facts. Facts are typically figures associated with dimensions such as product sales, profits,

volumes, and counts.

You can use SQL aggregation to obtain these facts based on a set of dimensions in a

relational database system. During SQL aggregation, data is grouped by certain criteria

or dimensions. The result set consists of aggregates of facts, such as counts, sums, and

averages of the data in each group.

The GROUP BY clause of the SQL SELECT statement supports the following extensions that

simplify the process of generating aggregate results.

• ROLLUP extension

• CUBE extension

• GROUPING SETS extension

In addition, the GROUPING function and the GROUPING_ID function can be used in the

SELECT list or the HAVING clause to interpret the results when these extensions are used.

This topic describes how to use these extensions by taking the dept and emp tables for

 example. The following changes are used to these tables to provide more informative

results.

UPDATE dept SET loc = 'BOSTON' WHERE deptno = 20;
INSERT INTO emp (empno,ename,job,deptno) VALUES (9001,'SMITH','CLERK',40);
INSERT INTO emp (empno,ename,job,deptno) VALUES (9002,'JONES','ANALYST',40);

Issue: 20200701 125

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

INSERT INTO emp (empno,ename,job,deptno) VALUES (9003,'ROGERS','MANAGER',40);

The following rows from a join of the emp and dept tables are used:

SELECT loc, dname, job, empno FROM emp e, dept d
WHERE e.deptno = d.deptno
ORDER BY 1, 2, 3, 4;

 loc | dname | job | empno
----------+------------+-----------+-------
 BOSTON | OPERATIONS | ANALYST | 9002
 BOSTON | OPERATIONS | CLERK | 9001
 BOSTON | OPERATIONS | MANAGER | 9003
 BOSTON | RESEARCH | ANALYST | 7788
 BOSTON | RESEARCH | ANALYST | 7902
 BOSTON | RESEARCH | CLERK | 7369
 BOSTON | RESEARCH | CLERK | 7876
 BOSTON | RESEARCH | MANAGER | 7566
 CHICAGO | SALES | CLERK | 7900
 CHICAGO | SALES | MANAGER | 7698
 CHICAGO | SALES | SALESMAN | 7499
 CHICAGO | SALES | SALESMAN | 7521
 CHICAGO | SALES | SALESMAN | 7654
 CHICAGO | SALES | SALESMAN | 7844
 NEW YORK | ACCOUNTING | CLERK | 7934
 NEW YORK | ACCOUNTING | MANAGER | 7782
 NEW YORK | ACCOUNTING | PRESIDENT | 7839
(17 rows)

The loc, dname, and job columns are used for the dimensions of the SQL aggregations

used in the examples. The COUNT(*) function is used to retrieve the number of employees

as the resulting facts of the aggregations.

The following example shows a basic query where the loc, dname, and job columns are

grouped.

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY loc, dname, job
ORDER BY 1, 2, 3;

The rows of this result set that uses the basic GROUP BY clause without extensions are

called the base aggregate rows.

 loc | dname | job | employees
----------+------------+-----------+-----------
 BOSTON | OPERATIONS | ANALYST | 1
 BOSTON | OPERATIONS | CLERK | 1
 BOSTON | OPERATIONS | MANAGER | 1
 BOSTON | RESEARCH | ANALYST | 2
 BOSTON | RESEARCH | CLERK | 2
 BOSTON | RESEARCH | MANAGER | 1
 CHICAGO | SALES | CLERK | 1
 CHICAGO | SALES | MANAGER | 1
 CHICAGO | SALES | SALESMAN | 4
 NEW YORK | ACCOUNTING | CLERK | 1
 NEW YORK | ACCOUNTING | MANAGER | 1

126 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 NEW YORK | ACCOUNTING | PRESIDENT | 1
(12 rows)

The ROLLUP and CUBE extensions are added to the base aggregate rows and provide

additional levels of subtotals to the result set.

The GROUPING SETS extension can be used to combine different types of groups into a

single result set.

The GROUPING and GROUPING_ID functions are used to interpret the result set.

For more information about the additions provided by these extensions, see subsequent

topics.

6.4.2 ROLLUP extension
A ROLLUP extension generates a hierarchical set of groups with subtotals for each

hierarchical group and a grand total. The order of the hierarchy is determined by the order

 of the expressions specified in the ROLLUP expression list. The top of the hierarchy is the

leftmost item in the list. Each successive item proceeding to the right side moves down the

hierarchy. The rightmost item is at the lowest level.

A single ROLLUP extension has the following syntax:

ROLLUP ({ expr_1 | (expr_1a [, expr_1b] ...) }
 [, expr_2 | (expr_2a [, expr_2b] ...)] ...)

Each expr is an expression that determines the grouping of the result set. If enclosed within

 parentheses as (expr_1a, expr_1b, ...), the combination of values returned by expr_1a and

expr_1b defines a single grouping level of the hierarchy.

The base level of aggregates returned in the result set corresponds to each unique

combination of values returned by the expression list.

A subtotal of each unique value is returned by the first item in the list. This item can be

expr_1 or the combination of (expr_1a, expr_1b, ...). A subtotal of each unique value is

 returned by the second item in the list. This item can be expr_2 or the combination of (

expr_2a, expr_2b, ...). Similar rules are used within each grouping of the first item and

other items. Finally, a grand total is returned for the entire result set.

For the subtotal rows, null is returned for the items across which the subtotal is taken.

The following example shows the ROLLUP extension specified within the context of the

GROUP BY clause:

SELECT select_list FROM ...

Issue: 20200701 127

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

GROUP BY [... ,] ROLLUP (expression_list) [, ...]

The items specified in select_list must appear in the ROLLUP expression_list, be aggregate

functions such as COUNT, SUM, AVG, MIN, or MAX, or be constants or functions such as the

 SYSDATE function whose returned values are independent of the individual rows in the

group.

The GROUP BY clause may specify multiple ROLLUP extensions and multiple occurrences of

other GROUP BY extensions and individual expressions.

You must use the ORDER BY clause if you want to display the output in a hierarchical or

meaningful structure. The order of the result set is not determined if no ORDER BY clause is

specified.

The number of grouping levels or totals is n + 1, where n represents the number of items in

the ROLLUP expression list. A parenthesized list counts as one item.

The following query generates a rollup based on a hierarchy of columns loc, dname, and

job.

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY ROLLUP (loc, dname, job)
ORDER BY 1, 2, 3;

The following example shows the result of this query. The system calculates the number of

 employees for each unique combination of loc, dname, and job, and also calculates the

subtotals for each unique combination of loc and dname, for each unique value of loc, and

a grand total displayed on the last line.

 loc | dname | job | employees
----------+------------+-----------+-----------
 BOSTON | OPERATIONS | ANALYST | 1
 BOSTON | OPERATIONS | CLERK | 1
 BOSTON | OPERATIONS | MANAGER | 1
 BOSTON | OPERATIONS | | 3
 BOSTON | RESEARCH | ANALYST | 2
 BOSTON | RESEARCH | CLERK | 2
 BOSTON | RESEARCH | MANAGER | 1
 BOSTON | RESEARCH | | 5
 BOSTON | | | 8
 CHICAGO | SALES | CLERK | 1
 CHICAGO | SALES | MANAGER | 1
 CHICAGO | SALES | SALESMAN | 4
 CHICAGO | SALES | | 6
 CHICAGO | | | 6
 NEW YORK | ACCOUNTING | CLERK | 1
 NEW YORK | ACCOUNTING | MANAGER | 1
 NEW YORK | ACCOUNTING | PRESIDENT | 1
 NEW YORK | ACCOUNTING | | 3
 NEW YORK | | | 3
 | | | 17

128 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

(20 rows)

The following query shows how to combine the items in the ROLLUP list within parentheses:

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY ROLLUP (loc, (dname, job))
ORDER BY 1, 2, 3;

In the following output, different from the last output, no subtotals are generated for loc

and dname combinations.

 loc | dname | job | employees
----------+------------+-----------+-----------
 BOSTON | OPERATIONS | ANALYST | 1
 BOSTON | OPERATIONS | CLERK | 1
 BOSTON | OPERATIONS | MANAGER | 1
 BOSTON | RESEARCH | ANALYST | 2
 BOSTON | RESEARCH | CLERK | 2
 BOSTON | RESEARCH | MANAGER | 1
 BOSTON | | | 8
 CHICAGO | SALES | CLERK | 1
 CHICAGO | SALES | MANAGER | 1
 CHICAGO | SALES | SALESMAN | 4
 CHICAGO | | | 6
 NEW YORK | ACCOUNTING | CLERK | 1
 NEW YORK | ACCOUNTING | MANAGER | 1
 NEW YORK | ACCOUNTING | PRESIDENT | 1
 NEW YORK | | | 3
 | | | 17
(16 rows)

If the first two columns in the ROLLUP list are enclosed in parentheses, the subtotal levels

are different.

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY ROLLUP ((loc, dname), job)
ORDER BY 1, 2, 3;

A subtotal is generated for each unique loc and dname combination, but none for unique

values of loc.

 loc | dname | job | employees
----------+------------+-----------+-----------
 BOSTON | OPERATIONS | ANALYST | 1
 BOSTON | OPERATIONS | CLERK | 1
 BOSTON | OPERATIONS | MANAGER | 1
 BOSTON | OPERATIONS | | 3
 BOSTON | RESEARCH | ANALYST | 2
 BOSTON | RESEARCH | CLERK | 2
 BOSTON | RESEARCH | MANAGER | 1
 BOSTON | RESEARCH | | 5
 CHICAGO | SALES | CLERK | 1
 CHICAGO | SALES | MANAGER | 1
 CHICAGO | SALES | SALESMAN | 4
 CHICAGO | SALES | | 6

Issue: 20200701 129

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 NEW YORK | ACCOUNTING | CLERK | 1
 NEW YORK | ACCOUNTING | MANAGER | 1
 NEW YORK | ACCOUNTING | PRESIDENT | 1
 NEW YORK | ACCOUNTING | | 3
 | | | 17
(17 rows)

6.4.3 CUBE extension
A CUBE extension is similar to the ROLLUP extension. However, a ROLLUP extension

generates groupings and results in a hierarchy based on a left-to-right listing of items in

the ROLLUP expression list. The CUBE extension generates groupings and subtotals based

on every permutation of all items in the CUBE expression list. The result set contains more

rows than a ROLLUP extension used in the same expression list.

A single CUBE expression has the following syntax:

CUBE ({ expr_1 | (expr_1a [, expr_1b] ...) }
 [, expr_2 | (expr_2a [, expr_2b] ...)] ...)

Each expr is an expression that determines the grouping of the result set. If enclosed within

 parentheses as (expr_1a, expr_1b, ...), the combination of values returned by expr_1a and

 expr_1b defines a single group.

The base level of aggregates returned in the result set corresponds to each unique

combination of values returned by the expression list.

A subtotal of each unique value is returned by the first item in the list. This item can be

expr_1 or the combination of (expr_1a, expr_1b, ...). A subtotal of each unique value is

 returned by the second item in the list. This item can be expr_2 or the combination of (

expr_2a, expr_2b, ...). A subtotal of each unique combination is also returned by the first

item and the second item. Similarly, if a third item exists, a subtotal of each unique value is

 returned by the third item, a subtotal of each unique combination is returned by the third

 item and first item, a subtotal of each unique combination is returned by the third item

and second item, and a subtotal of each unique combination is returned by the third item,

second item, and first item. Finally, a grand total is returned for the entire result set.

For the subtotal rows, null is returned for the items across which the subtotal is taken.

The following example shows the CUBE extension specified within the context of the GROUP

 BY clause:

SELECT select_list FROM ...

130 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

GROUP BY [... ,] CUBE (expression_list) [, ...]

The items specified in select_list must appear in the CUBE expression_list, be aggregate

functions such as COUNT, SUM, AVG, MIN, or MAX, or be constants or functions such as the

 SYSDATE function whose returned values are independent of the individual rows in the

group.

The GROUP BY clause may specify multiple CUBE extensions and multiple occurrences of

other GROUP BY extensions and individual expressions.

You must use the ORDER BY clause if you want to display the output in a meaningful

structure. The order of the result set is not determined if no ORDER BY clause is specified.

The number of grouping levels or totals is 2 raised to the power of n, where n represents

the number of items in the CUBE expression list. A parenthesized list counts as one item.

The following query generates a cube based on permutations of the loc, dname, and job

columns.

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY CUBE (loc, dname, job)
ORDER BY 1, 2, 3;

The following example shows the result of this query. The system calculates the number

 of employees for each combination of loc, dname, and job. The system also calculates

the subtotals for each combination of loc and dname, for each combination of loc and job

, for each combination of dname and job, for each unique value of loc, for each unique

value of dname, and for each unique value of job. Then, the system generates a grand total

 displayed on the last line.

 loc | dname | job | employees
----------+------------+-----------+-----------
 BOSTON | OPERATIONS | ANALYST | 1
 BOSTON | OPERATIONS | CLERK | 1
 BOSTON | OPERATIONS | MANAGER | 1
 BOSTON | OPERATIONS | | 3
 BOSTON | RESEARCH | ANALYST | 2
 BOSTON | RESEARCH | CLERK | 2
 BOSTON | RESEARCH | MANAGER | 1
 BOSTON | RESEARCH | | 5
 BOSTON | | ANALYST | 3
 BOSTON | | CLERK | 3
 BOSTON | | MANAGER | 2
 BOSTON | | | 8
 CHICAGO | SALES | CLERK | 1
 CHICAGO | SALES | MANAGER | 1
 CHICAGO | SALES | SALESMAN | 4
 CHICAGO | SALES | | 6
 CHICAGO | | CLERK | 1
 CHICAGO | | MANAGER | 1

Issue: 20200701 131

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 CHICAGO | | SALESMAN | 4
 CHICAGO | | | 6
 NEW YORK | ACCOUNTING | CLERK | 1
 NEW YORK | ACCOUNTING | MANAGER | 1
 NEW YORK | ACCOUNTING | PRESIDENT | 1
 NEW YORK | ACCOUNTING | | 3
 NEW YORK | | CLERK | 1
 NEW YORK | | MANAGER | 1
 NEW YORK | | PRESIDENT | 1
 NEW YORK | | | 3
 | ACCOUNTING | CLERK | 1
 | ACCOUNTING | MANAGER | 1
 | ACCOUNTING | PRESIDENT | 1
 | ACCOUNTING | | 3
 | OPERATIONS | ANALYST | 1
 | OPERATIONS | CLERK | 1
 | OPERATIONS | MANAGER | 1
 | OPERATIONS | | 3
 | RESEARCH | ANALYST | 2
 | RESEARCH | CLERK | 2
 | RESEARCH | MANAGER | 1
 | RESEARCH | | 5
 | SALES | CLERK | 1
 | SALES | MANAGER | 1
 | SALES | SALESMAN | 4
 | SALES | | 6
 | | ANALYST | 3
 | | CLERK | 5
 | | MANAGER | 4
 | | PRESIDENT | 1
 | | SALESMAN | 4
 | | | 17
(50 rows)

The following query shows how to combine the items in the CUBE list within parentheses:

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY CUBE (loc, (dname, job))
ORDER BY 1, 2, 3;

The following output shows that no subtotals are generated for permutations involving the

combinations of loc and dname and the combinations of loc and job, or for dname or job.

 loc | dname | job | employees
----------+------------+-----------+-----------
 BOSTON | OPERATIONS | ANALYST | 1
 BOSTON | OPERATIONS | CLERK | 1
 BOSTON | OPERATIONS | MANAGER | 1
 BOSTON | RESEARCH | ANALYST | 2
 BOSTON | RESEARCH | CLERK | 2
 BOSTON | RESEARCH | MANAGER | 1
 BOSTON | | | 8
 CHICAGO | SALES | CLERK | 1
 CHICAGO | SALES | MANAGER | 1
 CHICAGO | SALES | SALESMAN | 4
 CHICAGO | | | 6
 NEW YORK | ACCOUNTING | CLERK | 1
 NEW YORK | ACCOUNTING | MANAGER | 1
 NEW YORK | ACCOUNTING | PRESIDENT | 1
 NEW YORK | | | 3

132 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 | ACCOUNTING | CLERK | 1
 | ACCOUNTING | MANAGER | 1
 | ACCOUNTING | PRESIDENT | 1
 | OPERATIONS | ANALYST | 1
 | OPERATIONS | CLERK | 1
 | OPERATIONS | MANAGER | 1
 | RESEARCH | ANALYST | 2
 | RESEARCH | CLERK | 2
 | RESEARCH | MANAGER | 1
 | SALES | CLERK | 1
 | SALES | MANAGER | 1
 | SALES | SALESMAN | 4
 | | | 17
(28 rows)

The following query shows another variation whereby the first expression is specified

outside of the CUBE extension.

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY loc, CUBE (dname, job)
ORDER BY 1, 2, 3;

In the following output, the permutations are performed for dname and job within each

grouping of loc.

 loc | dname | job | employees
----------+------------+-----------+-----------
 BOSTON | OPERATIONS | ANALYST | 1
 BOSTON | OPERATIONS | CLERK | 1
 BOSTON | OPERATIONS | MANAGER | 1
 BOSTON | OPERATIONS | | 3
 BOSTON | RESEARCH | ANALYST | 2
 BOSTON | RESEARCH | CLERK | 2
 BOSTON | RESEARCH | MANAGER | 1
 BOSTON | RESEARCH | | 5
 BOSTON | | ANALYST | 3
 BOSTON | | CLERK | 3
 BOSTON | | MANAGER | 2
 BOSTON | | | 8
 CHICAGO | SALES | CLERK | 1
 CHICAGO | SALES | MANAGER | 1
 CHICAGO | SALES | SALESMAN | 4
 CHICAGO | SALES | | 6
 CHICAGO | | CLERK | 1
 CHICAGO | | MANAGER | 1
 CHICAGO | | SALESMAN | 4
 CHICAGO | | | 6
 NEW YORK | ACCOUNTING | CLERK | 1
 NEW YORK | ACCOUNTING | MANAGER | 1
 NEW YORK | ACCOUNTING | PRESIDENT | 1
 NEW YORK | ACCOUNTING | | 3
 NEW YORK | | CLERK | 1
 NEW YORK | | MANAGER | 1
 NEW YORK | | PRESIDENT | 1
 NEW YORK | | | 3

Issue: 20200701 133

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

(28 rows)

6.4.4 GROUPING SETS extension
A GROUPING SETS extension within the GROUP BY clause is used to generate one result set

that is the concatenation of multiple results sets based on different groupings. The UNION

ALL operator is used to combine the result sets of multiple groupings into one result set.

The UNION ALL operator and the GROUPING SETS extension do not remove duplicate rows

from the combined result sets.

A single GROUPING SETS extension has the following syntax:

GROUPING SETS (
 { expr_1 | (expr_1a [, expr_1b] ...) |
 ROLLUP (expr_list) | CUBE (expr_list)
 } [, ...])

A GROUPING SETS extension can contain any combination of one or more comma-

separated expressions, lists of expressions enclosed within parentheses, ROLLUP

extensions, and CUBE extensions.

The GROUPING SETS extension is specified within the context of the GROUP BY clause. The

following example shows this extension:

SELECT select_list FROM ...
GROUP BY [... ,] GROUPING SETS (expression_list) [, ...]

The items specified in select_list must appear in the GROUPING SETS expression_list, be

aggregate functions such as COUNT, SUM, AVG, MIN, or MAX, or be constants or functions

 such as the SYSDATE function whose returned values are independent of the individual

rows in the group.

The GROUP BY clause may specify multiple GROUPING SETS extensions and multiple

occurrences of other GROUP BY extensions and individual expressions.

You must use the ORDER BY clause if you want to display the output in a meaningful

structure. The order of the result set is not determined if no ORDER BY clause is specified.

The following query generates a union of groups specified by columns loc, dname, and job.

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY GROUPING SETS (loc, dname, job)

134 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

ORDER BY 1, 2, 3;

The following example shows the result of this query:

 loc | dname | job | employees
----------+------------+-----------+-----------
 BOSTON | | | 8
 CHICAGO | | | 6
 NEW YORK | | | 3
 | ACCOUNTING | | 3
 | OPERATIONS | | 3
 | RESEARCH | | 5
 | SALES | | 6
 | | ANALYST | 3
 | | CLERK | 5
 | | MANAGER | 4
 | | PRESIDENT | 1
 | | SALESMAN | 4
(12 rows)

To retrieve the same result, you can also use the UNION ALL operator in the following query

:

SELECT loc AS "loc", NULL AS "dname", NULL AS "job", COUNT(*) AS "employees" FROM
emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY loc
 UNION ALL
SELECT NULL, dname, NULL, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY dname
 UNION ALL
SELECT NULL, NULL, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY job
ORDER BY 1, 2, 3;

The output from the UNION ALL query is the same as the GROUPING SETS output.

 loc | dname | job | employees
----------+------------+-----------+-----------
 BOSTON | | | 8
 CHICAGO | | | 6
 NEW YORK | | | 3
 | ACCOUNTING | | 3
 | OPERATIONS | | 3
 | RESEARCH | | 5
 | SALES | | 6
 | | ANALYST | 3
 | | CLERK | 5
 | | MANAGER | 4
 | | PRESIDENT | 1
 | | SALESMAN | 4

Issue: 20200701 135

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

(12 rows)

The following example shows how various types of GROUP BY extensions can be used

together within a GROUPING SETS expression list:

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY GROUPING SETS (loc, ROLLUP (dname, job), CUBE (job, loc))
ORDER BY 1, 2, 3;

The following example shows the output from the preceding query:

 loc | dname | job | employees
----------+------------+-----------+-----------
 BOSTON | | ANALYST | 3
 BOSTON | | CLERK | 3
 BOSTON | | MANAGER | 2
 BOSTON | | | 8
 BOSTON | | | 8
 CHICAGO | | CLERK | 1
 CHICAGO | | MANAGER | 1
 CHICAGO | | SALESMAN | 4
 CHICAGO | | | 6
 CHICAGO | | | 6
 NEW YORK | | CLERK | 1
 NEW YORK | | MANAGER | 1
 NEW YORK | | PRESIDENT | 1
 NEW YORK | | | 3
 NEW YORK | | | 3
 | ACCOUNTING | CLERK | 1
 | ACCOUNTING | MANAGER | 1
 | ACCOUNTING | PRESIDENT | 1
 | ACCOUNTING | | 3
 | OPERATIONS | ANALYST | 1
 | OPERATIONS | CLERK | 1
 | OPERATIONS | MANAGER | 1
 | OPERATIONS | | 3
 | RESEARCH | ANALYST | 2
 | RESEARCH | CLERK | 2
 | RESEARCH | MANAGER | 1
 | RESEARCH | | 5
 | SALES | CLERK | 1
 | SALES | MANAGER | 1
 | SALES | SALESMAN | 4
 | SALES | | 6
 | | ANALYST | 3
 | | CLERK | 5
 | | MANAGER | 4
 | | PRESIDENT | 1
 | | SALESMAN | 4
 | | | 17
 | | | 17
(38 rows)

The output is a concatenation of the result sets of GROUP BY loc, GROUP BY ROLLUP (dname

, job), and GROUP BY CUBE (job, loc). The following example shows these queries:

SELECT loc, NULL AS "dname", NULL AS "job", COUNT(*) AS "employees"
FROM emp e, dept d

136 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

WHERE e.deptno = d.deptno
GROUP BY loc
ORDER BY 1;

The following example shows the result set of the GROUP BY loc clause.

 loc | dname | job | employees
----------+-------+-----+-----------
 BOSTON | | | 8
 CHICAGO | | | 6
 NEW YORK | | | 3
(3 rows)

The following query uses the GROUP BY ROLLUP (dname, job) clause:

SELECT NULL AS "loc", dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY ROLLUP (dname, job)
ORDER BY 2, 3;

The following query is the result set of the GROUP BY ROLLUP (dname, job) clause.

 loc | dname | job | employees
-----+------------+-----------+-----------
 | ACCOUNTING | CLERK | 1
 | ACCOUNTING | MANAGER | 1
 | ACCOUNTING | PRESIDENT | 1
 | ACCOUNTING | | 3
 | OPERATIONS | ANALYST | 1
 | OPERATIONS | CLERK | 1
 | OPERATIONS | MANAGER | 1
 | OPERATIONS | | 3
 | RESEARCH | ANALYST | 2
 | RESEARCH | CLERK | 2
 | RESEARCH | MANAGER | 1
 | RESEARCH | | 5
 | SALES | CLERK | 1
 | SALES | MANAGER | 1
 | SALES | SALESMAN | 4
 | SALES | | 6
 | | | 17
(17 rows)

The following query uses the GROUP BY CUBE (job, loc) clause:

SELECT loc, NULL AS "dname", job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY CUBE (job, loc)
ORDER BY 1, 3;

The following example shows the result set of the GROUP BY CUBE (job, loc) clause:

 loc | dname | job | employees
----------+-------+-----------+-----------
 BOSTON | | ANALYST | 3
 BOSTON | | CLERK | 3
 BOSTON | | MANAGER | 2
 BOSTON | | | 8
 CHICAGO | | CLERK | 1

Issue: 20200701 137

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 CHICAGO | | MANAGER | 1
 CHICAGO | | SALESMAN | 4
 CHICAGO | | | 6
 NEW YORK | | CLERK | 1
 NEW YORK | | MANAGER | 1
 NEW YORK | | PRESIDENT | 1
 NEW YORK | | | 3
 | | ANALYST | 3
 | | CLERK | 5
 | | MANAGER | 4
 | | PRESIDENT | 1
 | | SALESMAN | 4
 | | | 17
(18 rows)

If you combine the preceding three queries by using the UNION ALL operator, a concatenat

ion of the three results sets is generated.

SELECT loc AS "loc", NULL AS "dname", NULL AS "job", COUNT(*) AS "employees" FROM
emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY loc
 UNION ALL
SELECT NULL, dname, job, count(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY ROLLUP (dname, job)
 UNION ALL
SELECT loc, NULL, job, count(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY CUBE (job, loc)
ORDER BY 1, 2, 3;

The following example shows the same output as when the GROUP BY GROUPING SETS (loc

, ROLLUP (dname, job), CUBE (job, loc)) clause is used.

 loc | dname | job | employees
----------+------------+-----------+-----------
 BOSTON | | ANALYST | 3
 BOSTON | | CLERK | 3
 BOSTON | | MANAGER | 2
 BOSTON | | | 8
 BOSTON | | | 8
 CHICAGO | | CLERK | 1
 CHICAGO | | MANAGER | 1
 CHICAGO | | SALESMAN | 4
 CHICAGO | | | 6
 CHICAGO | | | 6
 NEW YORK | | CLERK | 1
 NEW YORK | | MANAGER | 1
 NEW YORK | | PRESIDENT | 1
 NEW YORK | | | 3
 NEW YORK | | | 3
 | ACCOUNTING | CLERK | 1
 | ACCOUNTING | MANAGER | 1
 | ACCOUNTING | PRESIDENT | 1
 | ACCOUNTING | | 3
 | OPERATIONS | ANALYST | 1
 | OPERATIONS | CLERK | 1
 | OPERATIONS | MANAGER | 1
 | OPERATIONS | | 3

138 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 | RESEARCH | ANALYST | 2
 | RESEARCH | CLERK | 2
 | RESEARCH | MANAGER | 1
 | RESEARCH | | 5
 | SALES | CLERK | 1
 | SALES | MANAGER | 1
 | SALES | SALESMAN | 4
 | SALES | | 6
 | | ANALYST | 3
 | | CLERK | 5
 | | MANAGER | 4
 | | PRESIDENT | 1
 | | SALESMAN | 4
 | | | 17
 | | | 17
(38 rows)

6.4.5 GROUPING function
When you use the ROLLUP, CUBE, or GROUPING SETS extensions to the GROUP BY clause,

the various levels of subtotals generated by the extensions may not be distinguished from

the base aggregate rows in the result set. The GROUPING function allows you to distinguish

 them.

The GROUPING function has the following general syntax:

SELECT [expr ...,] GROUPING(col_expr) [, expr] ...
FROM ...
GROUP BY [...,]
 { ROLLUP | CUBE | GROUPING SETS }([...,] col_expr
 [, ...]) [, ...]

The GROUPING function uses a single parameter that must be an expression of a dimension

 column specified in the expression list of a ROLLUP, CUBE, or GROUPING SETS extension of

the GROUP BY clause.

The value returned by the GROUPING function is either 0 or 1. In the result set of a query

, if the column expression specified in the GROUPING function is null because the row

represents a subtotal over multiple values of that column, the GROUPING function returns

 a value of 1. If the row returns results based on a particular value of the column specified

 in the GROUPING function, the GROUPING function returns a value of 0. In the latter case,

the column can be a null or non-null values. In both cases, it is for a particular value of that

column, not a subtotal across multiple values.

The following query shows how the values returned by the GROUPING function correspond

to the subtotal rows.

SELECT loc, dname, job, COUNT(*) AS "employees",
 GROUPING(loc) AS "gf_loc",
 GROUPING(dname) AS "gf_dname",

Issue: 20200701 139

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 GROUPING(job) AS "gf_job"
FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY ROLLUP (loc, dname, job)
ORDER BY 1, 2, 3;

In the three right-most columns returned by the GROUPING function, a value of 1 appears

on a subtotal row wherever a subtotal is taken across values of the corresponding columns.

 loc | dname | job | employees | gf_loc | gf_dname | gf_job
----------+------------+-----------+-----------+--------+----------+--------
 BOSTON | OPERATIONS | ANALYST | 1 | 0 | 0 | 0
 BOSTON | OPERATIONS | CLERK | 1 | 0 | 0 | 0
 BOSTON | OPERATIONS | MANAGER | 1 | 0 | 0 | 0
 BOSTON | OPERATIONS | | 3 | 0 | 0 | 1
 BOSTON | RESEARCH | ANALYST | 2 | 0 | 0 | 0
 BOSTON | RESEARCH | CLERK | 2 | 0 | 0 | 0
 BOSTON | RESEARCH | MANAGER | 1 | 0 | 0 | 0
 BOSTON | RESEARCH | | 5 | 0 | 0 | 1
 BOSTON | | | 8 | 0 | 1 | 1
 CHICAGO | SALES | CLERK | 1 | 0 | 0 | 0
 CHICAGO | SALES | MANAGER | 1 | 0 | 0 | 0
 CHICAGO | SALES | SALESMAN | 4 | 0 | 0 | 0
 CHICAGO | SALES | | 6 | 0 | 0 | 1
 CHICAGO | | | 6 | 0 | 1 | 1
 NEW YORK | ACCOUNTING | CLERK | 1 | 0 | 0 | 0
 NEW YORK | ACCOUNTING | MANAGER | 1 | 0 | 0 | 0
 NEW YORK | ACCOUNTING | PRESIDENT | 1 | 0 | 0 | 0
 NEW YORK | ACCOUNTING | | 3 | 0 | 0 | 1
 NEW YORK | | | 3 | 0 | 1 | 1
 | | | 17 | 1 | 1 | 1
(20 rows)

These indicators can be used as the criteria to filter particular subtotals. For example, in

the previous query, you can display only those subtotals for the combinations of loc and

dname by using the GROUPING function in a HAVING clause.

SELECT loc, dname, job, COUNT(*) AS "employees",
 GROUPING(loc) AS "gf_loc",
 GROUPING(dname) AS "gf_dname",
 GROUPING(job) AS "gf_job"
FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY ROLLUP (loc, dname, job)
HAVING GROUPING(loc) = 0
 AND GROUPING(dname) = 0
 AND GROUPING(job) = 1
ORDER BY 1, 2;

The following example shows the result of this query:

 loc | dname | job | employees | gf_loc | gf_dname | gf_job
----------+------------+-----+-----------+--------+----------+--------
 BOSTON | OPERATIONS | | 3 | 0 | 0 | 1
 BOSTON | RESEARCH | | 5 | 0 | 0 | 1
 CHICAGO | SALES | | 6 | 0 | 0 | 1
 NEW YORK | ACCOUNTING | | 3 | 0 | 0 | 1

140 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

(4 rows)

The GROUPING function can be used to distinguish a subtotal row from a base aggregate

 row or from certain subtotal rows. In these rows, one of the items in the expression list

 returns null due to the null column on which the expression is based. The null column

corresponds to one or more rows in the table. The item does not represent a subtotal over

the column.

For example, add the following row to the emp table. As a result, a row with a null value is

created for the job column.

INSERT INTO emp (empno,ename,deptno) VALUES (9004,'PETERS',40);

In the following query, the number of rows is reduced for clarity.

SELECT loc, job, COUNT(*) AS "employees",
 GROUPING(loc) AS "gf_loc",
 GROUPING(job) AS "gf_job"
FROM emp e, dept d
WHERE e.deptno = d.deptno AND loc = 'BOSTON'
GROUP BY CUBE (loc, job)
ORDER BY 1, 2;

In the following output, two rows contains BOSTON in the loc column and spaces in the job

column. The fourth and fifth entries in the table show these two rows.

 loc | job | employees | gf_loc | gf_job
--------+---------+-----------+--------+--------
 BOSTON | ANALYST | 3 | 0 | 0
 BOSTON | CLERK | 3 | 0 | 0
 BOSTON | MANAGER | 2 | 0 | 0
 BOSTON | | 1 | 0 | 0
 BOSTON | | 9 | 0 | 1
 | ANALYST | 3 | 1 | 0
 | CLERK | 3 | 1 | 0
 | MANAGER | 2 | 1 | 0
 | | 1 | 1 | 0
 | | 9 | 1 | 1
(10 rows)

The GROUPING function on the job column (gf_job) returns 1 in the fifth row to indicate

 that this value is a subtotal over all jobs. The row contains a subtotal value of 9 in the

employees column.

The GROUPING function on the job column and on the loc column returns 0 in the fourth

row to indicate that this value is a base aggregate of all rows where loc is BOSTON and job

is null. The fourth row is inserted for this example. The employees column contains 1, which

 indicates the number of null job rows.

Issue: 20200701 141

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

In the ninth row next to the last row, the GROUPING function on the job column returns 0

and the GROUPING function on the loc column returns 1. These values are a subtotal over

all locations where the job column is null. The employees column indicates the number of

null job rows.

6.4.6 GROUPING_ID function
The GROUPING_ID function simplifies the implementation of the GROUPING function to

determine the subtotal level of a row in the result set from a ROLLBACK, CUBE, or GROUPING

 SETS extension.

The GROUPING function takes only one column expression and returns a value to indicate

 whether a row is a subtotal over all values of the specified column. Multiple GROUPING

 functions may be required to interpret the level of subtotals for queries with multiple

grouping columns.

The GROUPING_ID function supports one or more column expressions that have been used

 in the ROLLBACK, CUBE, or GROUPING SETS extensions and returns a single integer that

indicates the column on which a subtotal has been aggregated.

The GROUPING_ID function has the following general syntax:

SELECT [expr ...,]
 GROUPING_ID(col_expr_1 [, col_expr_2] ...)
 [, expr] ...
FROM ...
GROUP BY [...,]
 { ROLLUP | CUBE | GROUPING SETS }([...,] col_expr_1
 [, col_expr_2] [, ...]) [, ...]

The GROUPING_ID function uses one or more parameters that must be expressions of

dimension columns specified in the expression list of a ROLLUP, CUBE, or GROUPING SETS

extension of the GROUP BY clause.

The GROUPING_ID function returns an integer value. This value corresponds to the base-

10 interpretation of a bit vector that consists of concatenated 1s and 0s. This bit vector is

returned by a series of GROUPING functions specified in the same left-to-right order as the

ordering of the parameters specified in the GROUPING_ID function.

The following query shows how the values in column gid returned by the GROUPING_ID

function correspond to the values in columns loc and dname returned by two GROUPING

functions.

SELECT loc, dname, COUNT(*) AS "employees",
 GROUPING(loc) AS "gf_loc", GROUPING(dname) AS "gf_dname",

142 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 GROUPING_ID(loc, dname) AS "gid"
FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY CUBE (loc, dname)
ORDER BY 6, 1, 2;

The following output shows the relationship between a bit vector and an integer specified

in gid. The bit vector consists of the gf_loc value and the gf_dname value.

 loc | dname | employees | gf_loc | gf_dname | gid
----------+------------+-----------+--------+----------+-----
 BOSTON | OPERATIONS | 3 | 0 | 0 | 0
 BOSTON | RESEARCH | 5 | 0 | 0 | 0
 CHICAGO | SALES | 6 | 0 | 0 | 0
 NEW YORK | ACCOUNTING | 3 | 0 | 0 | 0
 BOSTON | | 8 | 0 | 1 | 1
 CHICAGO | | 6 | 0 | 1 | 1
 NEW YORK | | 3 | 0 | 1 | 1
 | ACCOUNTING | 3 | 1 | 0 | 2
 | OPERATIONS | 3 | 1 | 0 | 2
 | RESEARCH | 5 | 1 | 0 | 2
 | SALES | 6 | 1 | 0 | 2
 | | 17 | 1 | 1 | 3
(12 rows)

The following table provides specific examples of the GROUPING_ID function calculations.

These calculations are based on four row values returned by the GROUPING function in the

output.

loc dname Bit Vector

gf_loc gf_dname

GROUPING_ID

gid

BOSTON OPERATIONS 0 * 2 1 + 0 * 2 0 0

BOSTON null 0 * 2 1 + 1 * 2 0 1

null ACCOUNTING 1 * 2 1 + 0 * 2 0 2

null null 1 * 2 1 + 1 * 2 0 3

The following table summarizes how the values returned by the GROUPING_ID function

correspond to the grouping columns to be aggregated.

Aggregation by column Bit vector

gf_loc gf_dname

GROUPING_ID

gid

loc, dname 0 0 0

loc 0 1 1

dname 1 0 2

Issue: 20200701 143

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

Aggregation by column Bit vector

gf_loc gf_dname

GROUPING_ID

gid

Grand Total 1 1 3

To display only those subtotals by dname, the following simplified query can be used with

a HAVING clause based on the GROUPING_ID function.

SELECT loc, dname, COUNT(*) AS "employees",
 GROUPING(loc) AS "gf_loc", GROUPING(dname) AS "gf_dname",
 GROUPING_ID(loc, dname) AS "gid"
FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY CUBE (loc, dname)
HAVING GROUPING_ID(loc, dname) = 2
ORDER BY 6, 1, 2;

The following example shows the result of this query:

loc | dname | employees | gf_loc | gf_dname | gid
-----+------------+-----------+--------+----------+-----
 | ACCOUNTING | 3 | 1 | 0 | 2
 | OPERATIONS | 3 | 1 | 0 | 2
 | RESEARCH | 5 | 1 | 0 | 2
 | SALES | 6 | 1 | 0 | 2
(4 rows)

6.5 Profiles

6.5.1 Overview
PolarDB databases compatible with Oracle allow a database superuser to create named

profiles. Each profile defines rules for password management that enhances the password

and md5 authentication. The rules in a profile support these features:

• Count failed logon attempts.

• Lock an account due to excessive failed logon attempts.

• Mark a password for expiration.

• Define a grace period after a password expires.

• Define rules for password complexity.

• Define rules of reusing a password.

A profile is a named set of password attributes that allow you to easily manage a group of

 roles. These roles share comparable authentication rules. If the password requirements

144 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

change, you can modify the profile to create new rules for each user that is associated with

 that profile.

After you create a profile, you can associate the profile with one or more users. When a user

 connects to the server, the server enforces the profile that is associated with the logon role

. Profiles are shared by all databases within a cluster, but each cluster may have multiple

profiles. A single user that has access to multiple databases use the same profile to connect

 to each database within the cluster.

A PolarDB database compatible with Oracle creates a profile named default that is

associated with a new role when the role is created. If an alternative profile is specified,

the new role is associated with the specified profile. If you upgrade the server to a PolarDB

 database compatible with Oracle, existing roles are automatically assigned to the default

profile. You cannot delete the default profile.

The default profile specifies the following attributes:

FAILED_LOGIN_ATTEMPTS UNLIMITED
PASSWORD_LOCK_TIME UNLIMITED
PASSWORD_LIFE_TIME UNLIMITED
PASSWORD_GRACE_TIME UNLIMITED
PASSWORD_REUSE_TIME UNLIMITED
PASSWORD_REUSE_MAX UNLIMITED
PASSWORD_VERIFY_FUNCTION NULL
PASSWORD_ALLOW_HASHED TRUE

6.5.2 Create a new profile
You can use the CREATE PROFILE statement to create a new profile. The statement has the

following syntax:

CREATE PROFILE profile_name
 [LIMIT {parameter value} ...];

You can use the LIMIT clause and one or more space-delimited parameter-value pairs to

specify the rules enforced by PolarDB databases compatible with Oracle.

Parameters

Parameter Description

profile_name Specifies the name of a profile.

parameter Specifies the attribute limited by the profile.

value Specifies the parameter limit.

Issue: 20200701 145

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

PolarDB databases compatible with Oracle support the following values for each parameter

:

FAILED_LOGIN_ATTEMPTS specifies the number of failed logon attempts that a user has

made before the server locks the account of the user. PASSWORD_LOCK_TIME specifies the

period in which the account is locked. Valid values:

• An INTEGER value greater than 0.

• DEFAULT: the value of FAILED_LOGIN_ATTEMPTS specified in the DEFAULT profile.

• UNLIMITED: specifies that the system allows an unlimited number of failed logon

attempts.

PASSWORD_LOCK_TIME specifies the period in which an account is locked before the server

unlocks the account. This account is locked due to the failed logon attempts more than the

value specified by FAILED_LOGIN_ATTEMPTS. Valid values:

• A NUMERIC value greater than or equal to 0. To specify a fractional portion of a day,

specify a decimal value. For example, use the value 4.5 to specify 4 days and 12 hours.

• DEFAULT: the value of PASSWORD_LOCK_TIME specified in the DEFAULT profile.

• UNLIMITED: the account is locked until it is manually unlocked by a database superuser.

PASSWORD_LIFE_TIME specifies the number of days that the current password are used

 before the user is prompted to provide a new password. If you use the PASSWORD_L

IFE_TIME clause, you can use the PASSWORD_GRACE_TIME clause to specify the period

between the time when a password expires and the time when the connection request of

the role that uses the password is rejected. If PASSWORD_GRACE_TIME is not specified, the

 password expires on the day specified by the default value of PASSWORD_GRACE_TIME.

Then, the user is not allowed to execute any statement before a new password is provided.

Valid values:

• A NUMERIC value greater than or equal to 0. To specify a fractional portion of a day,

specify a decimal value. For example, use the value 4.5 to specify 4 days and 12 hours.

• DEFAULT: the value of PASSWORD_LIFE_TIME specified in the DEFAULT profile.

• UNLIMITED: specifies that the password never expires.

PASSWORD_GRACE_TIME specifies the grace period between the time when a password

 expires and the time when the user is forced to change the password. After the grace

 period, a user is allowed to connect to the service, but cannot execute any statement

before the user updates the expired password. Valid values:

146 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

• A NUMERIC value greater than or equal to 0. To specify a fractional portion of a day,

specify a decimal value. For example, use the value 4.5 to specify 4 days and 12 hours.

• DEFAULT: the value of PASSWORD_GRACE_TIME specified in the DEFAULT profile.

• UNLIMITED: specifies that the grace period is infinite.

PASSWORD_REUSE_TIME specifies the number of days a user must wait before the user can

reuse a password.

The PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX parameters are used together.

If you specify a finite value for either of the parameters and the other parameter is set to

UNLIMITED, old passwords can never be reused. If both parameters are set to UNLIMITED,

passwords can be reused without restrictions. Valid values:

• A NUMERIC value greater than or equal to 0. To specify a fractional portion of a day,

specify a decimal value. For example, use the value 4.5 to specify 4 days and 12 hours.

• DEFAULT: the value of PASSWORD_REUSE_TIME specified in the DEFAULT profile.

• UNLIMITED: specifies that the password can be reused without restrictions.

PASSWORD_REUSE_MAX specifies the number of password changes that must occur before

a password can be reused.

The PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX parameters are used together.

If you specify a finite value for either of the parameters and the other parameter is set to

UNLIMITED, old passwords can never be reused. If both parameters are set to UNLIMITED,

passwords can be reused without restrictions. Valid values:

• An INTEGER value greater than or equal to 0.

• DEFAULT: the value of PASSWORD_REUSE_MAX specified in the DEFAULT profile.

• UNLIMITED: specifies that the password can be reused without restrictions.

PASSWORD_VERIFY_FUNCTION specifies password complexity. Valid values:

• The name of a PL/SQL function.

• DEFAULT: the value of PASSWORD_VERIFY_FUNCTION specified in the DEFAULT profile.

• NULL

PASSWORD_ALLOW_HASHED specifies whether an encrypted password can be used. If

you specify TRUE, the system allows a user to change the password by specifying a hash

 computed encrypted password on the client side. However, if you specify FALSE, a valid

password must be in a plain-text form. Otherwise, an error message is returned if a server

receives an encrypted password. Valid values:

Issue: 20200701 147

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

• A BOOLEAN value: TRUE, ON, YES, 1, FALSE, OFF, NO, and 0.

• DEFAULT: the value of PASSWORD_ALLOW_HASHED specified in the DEFAULT profile.

Note:

The PASSWORD_ALLOW_HASHED parameter is not compatible with Oracle.

Notes

You can run the DROP PROFILE statement to remove the profile.

Examples

You can run the following statement to create a profile named acctg. The profile specifies

that an account is locked for one day if the user has not been authenticated with the correct

 password during five attempts.

CREATE PROFILE acctg LIMIT
 FAILED_LOGIN_ATTEMPTS 5
 PASSWORD_LOCK_TIME 1;

You can run the following statement to create a profile named sales. The profile specifies

that a user must change their password every 90 days.

CREATE PROFILE sales LIMIT
 PASSWORD_LIFE_TIME 90
 PASSWORD_GRACE_TIME 3;

If the user has not changed their password during the 90 days specified in the profile, an

error message is returned when the user tries to log on to the service. After a grace period

 of three days, the account is not be allowed to execute any statements before the user

change the password.

You can run the following statement to create a profile named accts. The profile specifies

that a user cannot reuse a password within 180 days after the password is used, and must

change the password at least five times before the password is reused.

CREATE PROFILE accts LIMIT
 PASSWORD_REUSE_TIME 180
 PASSWORD_REUSE_MAX 5;

You can run the following statement to create a profile named resources. The profile calls

 a user-defined function named password_rules. This function verifies that the provided

password meets the complexity requirements:

CREATE PROFILE resources LIMIT

148 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 PASSWORD_VERIFY_FUNCTION password_rules;

6.5.3 Alter a profile
Use the ALTER PROFILE statement to modify a user-defined profile. PolarDB databases

compatible with Oracle support the following statements:

ALTER PROFILE profile_name RENAME TO new_name;

ALTER PROFILE profile_name
 LIMIT {parameter value}[...] ;

You can use the LIMIT clause and one or more space-delimited parameter-value pairs to

specify the rules enforced by PolarDB databases compatible with Oracle. You can also use

ALTER PROFILE...RENAME TO to change the name of a profile.

Parameters

Parameter Description

profile_name Specifies the name of a profile.

new_name Specifies the new name of the profile.

parameter Specifies the attribute limited by the profile.

value Specifies the parameter limit.

Examples

The following example shows how to modify a profile named acctg_profile:

ALTER PROFILE acctg_profile
 LIMIT FAILED_LOGIN_ATTEMPTS 3 PASSWORD_LOCK_TIME 1;

The profile is used to calculate the number of failed attempts that a logon role has made to

 connect to the server. The profile specifies that the account is locked for one day if the role

has not been authenticated with the correct password during three attempts.

Issue: 20200701 149

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

The following example changes the name of acctg_profile to payables_profile:

ALTER PROFILE acctg_profile RENAME TO payables_profile;

6.5.4 Drop a profile
You can use the DROP PROFILE statement to drop a profile. The statement has the following

 syntax:

DROP PROFILE [IF EXISTS] profile_name [CASCADE|RESTRICT];

The IF EXISTS clause specifies that the server does not return an error if the specified profile

does not exist. The server generates a notification if the profile does not exist.

You can use the optional CASCADE clause to reassign any users that are associated with

the profile to the default profile and then drop the profile. The optional RESTRICT clause

specifies that the server does not drop any profile that is associated with a role. This is the

default behavior.

Parameters

Parameter Description

profile_name The name of the profile to be dropped.

Examples

The following example drops a profile named acctg_profile:

DROP PROFILE acctg_profile CASCADE;

The statement associates any roles associated with the acctg_profile profile with the

default profile again and then drops the acctg_profile profile.

The following example drops a profile named acctg_profile:

DROP PROFILE acctg_profile RESTRICT;

The RESTRICT clause in the statement specify that the server does not drop acctg_profile if

any roles are associated with the profile.

6.5.5 Back up profile management functions
A profile may include the PASSWORD_VERIFY_FUNCTION clause that references a user-

defined function. This function specifies the behavior enforced by PolarDB databases

 compatible with Oracle. Profiles are global objects. These objects are shared by all

150 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

databases within a cluster. Different from profiles, user-defined functions are database

objects.

By invoking pg_dumpall with the -g or -r option, you can create a script that recreates the

 definition of any existing profiles. However, the script does not recreate the user-defined

 functions that are referenced by the PASSWORD_VERIFY_FUNCTION clause. You must use

the pg_dump utility to explicitly dump the database where those functions are located and

then restore the database.

The script created by pg_dump contains the following statement that includes the clause

and function name:

ALTER PROFILE... LIMIT PASSWORD_VERIFY_FUNCTION function_name

This statement helps to associate the restored function with the profile with which the

function was previously associated.

If the PASSWORD_VERIFY_FUNCTION clause is set to DEFAULT or NULL, the behavior is

replicated by the script generated by the pg_dumpall -g or pg_dumpall -r statement.

6.6 Optimizer hints

6.6.1 Overview
When you invoke the DELETE, INSERT, SELECT or UPDATE statement, the server generates

a set of execution plans. After analyzing those execution plans, the server selects a plan

that returns a result set within the least amount of time. The server selects a plan based on

several factors:

• The estimated execution cost of data handling operations.

• Parameter values assigned to parameters in the Query Tuning section of the postgresql.

conf file.

• Column statistics that have been gathered by the ANALYZE statement.

The query planner selects the most cost-effective plan. You can use an optimizer hint to set

the mode in which the server selects a query plan. An optimizer hint includes one or more

directives embedded in a syntax similar to a comment. The syntax immediately follows the

DELETE, INSERT, SELECT or UPDATE statement. When the server generates a result set, the

server employs or avoids a specific plan based on keywords in the comment.

{ DELETE | INSERT | SELECT | UPDATE } /*+ { hint [comment] } [...] */

Issue: 20200701 151

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 statement_body

{ DELETE | INSERT | SELECT | UPDATE } --+ { hint [comment] } [...]
 statement_body

Optimizer hints may be included in either of the preceding forms. In both forms, a plus

sign (+) must immediately follow the /* or -- opening comment symbols, with no spaces

between the signs. Otherwise, the server cannot interpret the following tokens as hints.

If you use the first form, the hint and optional comment may span multiple lines. The

second form requires all hints and comments to occupy a single line. The remaining parts

of the statement must start on a new line.

Note:

• The database server always tries to use the specified hints.

• If a planner method parameter is set to disable a certain plan type, this plan is not be

used even if the plan is specified in a hint, unless no other options are available to the

 planner. Examples of planner method parameters are enable_indexscan, enable_seq

scan, enable_hashjoin, enable_mergejoin, and enable_nestloop. All these parameters

are Boolean parameters.

• The hint is embedded within a comment. If the hint is misspelled, or if any parameter

 of the hint such as the view, table, or column name is misspelled or does not exist in

the SQL statement, the system does not indicate that any type of error has occurred. No

syntax error is specified and the entire hint is ignored.

• If an alias is used for a table or view name in the SQL statement, the alias name rather

 than the original object name must be used in the hint. For example, in the statement

, SELECT /*+ FULL(acct) */ * FROM accounts acct ..., the alias of acct for accounts rather

than the table name accounts must be specified in the FULL hint.

Use the EXPLAIN statement to make sure that the hint is correctly formed and the planner

uses the hint. For more information about the EXPLAIN statement, see the documentation

of PolarDB databases compatible with Oracle.

Optimizer hints cannot be used in production applications where table data changes

throughout the life of the application. To make sure that dynamic columns are frequently

 analyzed with the ANALYZE statement, the column statistics is updated to reflect value

changes, and the planner uses the statistics to generate the most cost-effective plan for

any specified statement execution. However, optimizer hints generate in the same plan,

regardless of how the table data changes.

152 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

Parameters

Parameter Description

hint An optimizer hint directive.

comment A string with additional information. The characters that
can be included in a comment are restricted. A comment
 can only contain letters, digits, underscores (_), dollar
signs ($), number signs (#), and space characters. These
characters must conform to the syntax of an identifier. Any
 subsequent hint is ignored if the comment is not in this
form.

statement_body The remaining part of the DELETE, INSERT, SELECT, or
UPDATE statement.

For more information about the optimizer hint directives, see the following topics.

6.6.2 Default optimization mode
Multiple optimization modes are available. You can select one optimization mode as as the

 default mode for a PolarDB database cluster compatible with Oracle. You can also change

 this setting on a per-session basis by running the ALTER SESSION statement and or by

running the DELETE, SELECT, or UPDATE statement within an optimizer hint. The configurat

ion parameter that specifies the default mode is named OPTIMIZER_MODE. The following

table shows the valid values of this parameter.

Hint Description

ALL_ROWS Optimizes retrieval of all rows of the result set.

CHOOSE Does not implement the default optimization based on the
assumed number of rows to be retrieved from the result set. This is
 the default value.

FIRST_ROWS Optimizes retrieval of only the first row of the result set.

FIRST_ROWS_10 Optimizes retrieval of the first 10 rows of the results set.

FIRST_ROWS_100 Optimizes retrieval of the first 100 rows of the result set.

FIRST_ROWS_1000 Optimizes retrieval of the first 1,000 rows of the result set.

FIRST_ROWS(n) Optimizes retrieval of the first n rows of the result set. This form
cannot be used as the object of the ALTER SESSION SET OPTIMIZER_
MODE statement. This form can only be used as a hint in a SQL
statement.

Issue: 20200701 153

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

If you submit the SQL statement to use these optimization modes, you can only view the

 first n rows of the result set and abandon the other rows of the result set. The system

allocates resources to the query based on this rule.

Examples

Modify the current session to optimize retrieval of the first 10 rows of the result set.

ALTER SESSION SET OPTIMIZER_MODE = FIRST_ROWS_10;

You can run the SHOW statement to show the current value of the OPTIMIZER_MODE

parameter. This statement is a utility dependent statement. In PSQL, the SHOW statement is

 used as follows:

SHOW OPTIMIZER_MODE;

optimizer_mode

 first_rows_10
(1 row)

The SHOW statement is compatible with Oracle databases and supports the following

syntax:

SHOW PARAMETER OPTIMIZER_MODE;

NAME
--
VALUE
--
optimizer_mode
first_rows_10

The following example shows an optimization mode used as a hint in a SELECT statement:

SELECT /*+ FIRST_ROWS(7) */ * FROM emp;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+-----------+------+--------------------+---------+---------+--------
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
 7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 | 300.00 | 30
 7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 | 500.00 | 30
 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 | | 20
 7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 | 1400.00 | 30
 7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
 7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
 7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
 7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000.00 | | 10
 7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30
 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
 7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10

154 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

(14 rows)

6.6.3 Access method hints
The following hints determine how the optimizer accesses relations to create a result set.

Hint Description

FULL(table) Performs a full sequential scan on the table.

INDEX(table [index] [...]) Uses the index on the table to access a
relation.

NO_INDEX(table [index] [...]) Does not use the index on table to access a
relation.

In addition, the ALL_ROWS, FIRST_ROWS, and FIRST_ROWS(n) hints in this table can be used.

Examples

The sample application does not have enough data to describe the effect of optimizer hints

. Therefore, the remaining examples in this section use the bank database created by the

 pgbench application. This application is located in the bin subdirectory of the PolarDB

database compatible with Oracle.

The following example shows how to create a database named bank. The database is

populated by the tables including pgbench_accounts, pgbench_branches, pgbench_tellers

, and pgbench_history. The -s 20 option specifies a scaling factor of 20. This factor allows

you to create 20 branches. Each branch has 100,000 accounts. Therefore, a total of 2,000,

000 rows are generated in the pgbench_accounts table and 20 rows are generated in the

pgbench_branches table. Ten tellers are assigned to each branch. As a result, a total of 200

 rows are generated in the pgbench_tellers table.

The following example shows how to initialize the pgbench application in the bank

database.

createdb -U enterprisedb bank
CREATE DATABASE

pgbench -i -s 20 -U enterprisedb bank

NOTICE: table "pgbench_history" does not exist, skipping
NOTICE: table "pgbench_tellers" does not exist, skipping
NOTICE: table "pgbench_accounts" does not exist, skipping
NOTICE: table "pgbench_branches" does not exist, skipping
creating tables...
100000 of 2000000 tuples (5%) done (elapsed 0.11 s, remaining 2.10 s)
200000 of 2000000 tuples (10%) done (elapsed 0.22 s, remaining 1.98 s)
300000 of 2000000 tuples (15%) done (elapsed 0.33 s, remaining 1.84 s)
400000 of 2000000 tuples (20%) done (elapsed 0.42 s, remaining 1.67 s)

Issue: 20200701 155

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

500000 of 2000000 tuples (25%) done (elapsed 0.52 s, remaining 1.57 s)
600000 of 2000000 tuples (30%) done (elapsed 0.62 s, remaining 1.45 s)
700000 of 2000000 tuples (35%) done (elapsed 0.73 s, remaining 1.35 s)
800000 of 2000000 tuples (40%) done (elapsed 0.87 s, remaining 1.31 s)
900000 of 2000000 tuples (45%) done (elapsed 0.98 s, remaining 1.19 s)
1000000 of 2000000 tuples (50%) done (elapsed 1.09 s, remaining 1.09 s)
1100000 of 2000000 tuples (55%) done (elapsed 1.22 s, remaining 1.00 s)
1200000 of 2000000 tuples (60%) done (elapsed 1.36 s, remaining 0.91 s)
1300000 of 2000000 tuples (65%) done (elapsed 1.51 s, remaining 0.82 s)
1400000 of 2000000 tuples (70%) done (elapsed 1.65 s, remaining 0.71 s)
1500000 of 2000000 tuples (75%) done (elapsed 1.78 s, remaining 0.59 s)
1600000 of 2000000 tuples (80%) done (elapsed 1.93 s, remaining 0.48 s)
1700000 of 2000000 tuples (85%) done (elapsed 2.10 s, remaining 0.37 s)
1800000 of 2000000 tuples (90%) done (elapsed 2.23 s, remaining 0.25 s)
1900000 of 2000000 tuples (95%) done (elapsed 2.37 s, remaining 0.12 s)
2000000 of 2000000 tuples (100%) done (elapsed 2.48 s, remaining 0.00 s)
vacuum...
set primary keys...
done.

A total of 500,000 transactions are processed. Therefore, the pgbench_history table is

populated with 500,000 rows.

pgbench -U enterprisedb -t 500000 bank

starting vacuum...end.
transaction type: <builtin: TPC-B (sort of)>
scaling factor: 20
query mode: simple
number of clients: 1
number of threads: 1
number of transactions per client: 500000
number of transactions actually processed: 500000/500000
latency average: 0.000 ms
tps = 1464.338375 (including connections establishing)
tps = 1464.350357 (excluding connections establishing)

The following example shows the table definitions:

\d pgbench_accounts

 Table "public.pgbench_accounts"
 Column | Type | Modifiers
----------+---------------+-----------
 aid | integer | not null
 bid | integer |
 abalance | integer |
 filler | character(84) |
Indexes:
 "pgbench_accounts_pkey" PRIMARY KEY, btree (aid)

\d pgbench_branches

 Table "public.pgbench_branches"
 Column | Type | Modifiers
----------+---------------+-----------
 bid | integer | not null
 bbalance | integer |
 filler | character(88) |
Indexes:
 "pgbench_branches_pkey" PRIMARY KEY, btree (bid)

156 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

\d pgbench_tellers

 Table "public.pgbench_tellers"
 Column | Type | Modifiers
----------+---------------+-----------
 tid | integer | not null
 bid | integer |
 tbalance | integer |
 filler | character(84) |
Indexes:
 "pgbench_tellers_pkey" PRIMARY KEY, btree (tid)

\d pgbench_history

 Table "public.pgbench_history"
 Column | Type | Modifiers
--------+-----------------------------+-----------
 tid | integer |
 bid | integer |
 aid | integer |
 delta | integer |
 mtime | timestamp without time zone |
 filler | character(22) |

The EXPLAIN statement shows the plan selected by the query planner. In the following

 example, aid is the primary key column. An indexed search is used on the pgbench_ac

counts_pkey index.

EXPLAIN SELECT * FROM pgbench_accounts WHERE aid = 100;

 QUERY PLAN

 Index Scan using pgbench_accounts_pkey on pgbench_accounts (cost=0.43..8.45 rows=
1 width=97)
 Index Cond: (aid = 100)
(2 rows)

In the following example, the FULL hint is used to force a full sequential scan. No index is

used.

EXPLAIN SELECT /*+ FULL(pgbench_accounts) */ * FROM pgbench_accounts WHERE aid =
100;

 QUERY PLAN

 Seq Scan on pgbench_accounts (cost=0.00..58781.69 rows=1 width=97)
 Filter: (aid = 100)
(2 rows)

In the following example, NO_INDEX hint forces a parallel sequential scan. No index is used

.

EXPLAIN SELECT /*+ NO_INDEX(pgbench_accounts pgbench_accounts_pkey) */ * FROM
pgbench_accounts WHERE aid = 100;

 QUERY PLAN
--

Issue: 20200701 157

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 Gather (cost=1000.00..45094.80 rows=1 width=97)
 Workers Planned: 2
 -> Parallel Seq Scan on pgbench_accounts (cost=0.00..44094.70 rows=1 width=97)
 Filter: (aid = 100)
(4 rows)

In addition to the EXPLAIN statement in the prior examples, you can set the trace_hints

configuration parameter to retrieve more detailed information regarding whether a hint is

used by the planner.

SET trace_hints TO on;

In the following example, the SELECT statement with the NO_INDEX hint is repeated

to illustrate the additional information that is generated after you set the trace_hints

configuration parameters.

EXPLAIN SELECT /*+ NO_INDEX(pgbench_accounts pgbench_accounts_pkey) */ * FROM
pgbench_accounts WHERE aid = 100;

INFO: [HINTS] Index Scan of [pgbench_accounts].[pgbench_accounts_pkey] rejected due
to NO_INDEX hint.
 QUERY PLAN
--
 Gather (cost=1000.00..45094.80 rows=1 width=97)
 Workers Planned: 2
 -> Parallel Seq Scan on pgbench_accounts (cost=0.00..44094.70 rows=1 width=97)
 Filter: (aid = 100)
(4 rows)

If a hint is ignored, the INFO: [HINTS] line does not appear. This may indicate that some

syntax errors or spelling errors exist in the hint. The following example shows that the index

 name is misspelled.

EXPLAIN SELECT /*+ NO_INDEX(pgbench_accounts pgbench_accounts_xxx) */ * FROM
pgbench_accounts WHERE aid = 100;

 QUERY PLAN

 Index Scan using pgbench_accounts_pkey on pgbench_accounts (cost=0.43..8.45 rows=
1 width=97)
 Index Cond: (aid = 100)

158 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

(2 rows)

6.6.4 Specify a join order
You can use the ORDERED directive to instruct the query optimizer to join tables in the order

in which they are listed in the FROM clause. If you do not include the ORDERED keyword, the

query optimizer uses the order in which the tables are joined.

For example, the following statement allows the optimizer to choose the order in which the

tables listed in the FROM clause to join these tables:

SELECT e.ename, d.dname, h.startdate
 FROM emp e, dept d, jobhist h
 WHERE d.deptno = e.deptno
 AND h.empno = e.empno;

The following statement instructs the optimizer to join the tables in specified order:

SELECT /*+ ORDERED */ e.ename, d.dname, h.startdate
 FROM emp e, dept d, jobhist h
 WHERE d.deptno = e.deptno
 AND h.empno = e.empno;

In the ORDERED version of the statement, a PolarDB database compatible with Oracle joins

 emp e with dept d and then joins the result of the previous join with jobhist h. Without the

ORDERED directive, the query optimizer specifies the join order.

Note:

The ORDERED directive does not work for Oracle-style outer joins. These outer joins contain

a plus sign (+).

6.6.5 Join relations hints
Three possible plans are available for you to join two tables:

• Nested loop join: A table is scanned once for every row in the other joined table.

• Merge sort join: Each table is sorted on the join attributes before the join starts. Then,

these two tables are scanned in parallel and the matched rows are combined to form

the join rows.

• Hash join: A table is scanned and its join attributes are loaded into a hash table. The join

 attributes of the table are used as hash keys. Then, the other joined table is scanned

and its join attributes are used as hash keys to locate the matched rows from the first

table.

Issue: 20200701 159

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

The following table lists the optimizer hints that can be used to enable the planner to use a

 specified type of join plan.

Table 6-3: Join hints

Hint Description

USE_HASH(table [...]) Uses a hash join for the table.

NO_USE_HASH(table [...]) Does not use a hash join for the table.

USE_MERGE(table [...]) Uses a merge sort join for the table.

NO_USE_MERGE(table [...]) Does not use a merge sort join for the table.

USE_NL(table [...]) Uses a nested loop join for the table.

NO_USE_NL(table [...]) Does not use a nested loop join for the table
.

Examples

In the following example, the USE_HASH hint is used for a join on the pgbench_branches

and pgbench_accounts tables. The query plan shows that a hash table is created from the

join attribute of the pgbench_branches table to enable a hash join.

EXPLAIN SELECT /*+ USE_HASH(b) */ b.bid, a.aid, abalance FROM pgbench_branches b,
pgbench_accounts a WHERE b.bid = a.bid;

 QUERY PLAN

 Hash Join (cost=21.45..81463.06 rows=2014215 width=12)
 Hash Cond: (a.bid = b.bid)
 -> Seq Scan on pgbench_accounts a (cost=0.00..53746.15 rows=2014215 width=12)
 -> Hash (cost=21.20..21.20 rows=20 width=4)
 -> Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20 width=4)
(5 rows)

Afterward, the NO_USE_HASH(a b) hint forces the planner to use an approach other than

hash tables. The result is a merge join.

EXPLAIN SELECT /*+ NO_USE_HASH(a b) */ b.bid, a.aid, abalance FROM pgbench_br
anches b, pgbench_accounts a WHERE b.bid = a.bid;

 QUERY PLAN

 Merge Join (cost=333526.08..368774.94 rows=2014215 width=12)
 Merge Cond: (b.bid = a.bid)
 -> Sort (cost=21.63..21.68 rows=20 width=4)
 Sort Key: b.bid
 -> Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20 width=4)
 -> Materialize (cost=333504.45..343575.53 rows=2014215 width=12)
 -> Sort (cost=333504.45..338539.99 rows=2014215 width=12)
 Sort Key: a.bid

160 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 -> Seq Scan on pgbench_accounts a (cost=0.00..53746.15 rows=2014215 width=
12)
(9 rows)

Finally, the USE_MERGE hint forces the planner to use a merge join.

EXPLAIN SELECT /*+ USE_MERGE(a) */ b.bid, a.aid, abalance FROM pgbench_branches b,
pgbench_accounts a WHERE b.bid = a.bid;

 QUERY PLAN

 Merge Join (cost=333526.08..368774.94 rows=2014215 width=12)
 Merge Cond: (b.bid = a.bid)
 -> Sort (cost=21.63..21.68 rows=20 width=4)
 Sort Key: b.bid
 -> Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20 width=4)
 -> Materialize (cost=333504.45..343575.53 rows=2014215 width=12)
 -> Sort (cost=333504.45..338539.99 rows=2014215 width=12)
 Sort Key: a.bid
 -> Seq Scan on pgbench_accounts a (cost=0.00..53746.15 rows=2014215 width=
12)
(9 rows)

In this three-table join example, the planner performs a hash join on the pgbench_br

anches and pgbench_history tables, and then performs a hash join of the result of the

previous join with the pgbench_accounts table.

EXPLAIN SELECT h.mtime, h.delta, b.bid, a.aid FROM pgbench_history h, pgbench_br
anches b, pgbench_accounts a WHERE h.bid = b.bid AND h.aid = a.aid;

 QUERY PLAN
--
 Hash Join (cost=86814.29..123103.29 rows=500000 width=20)
 Hash Cond: (h.aid = a.aid)
 -> Hash Join (cost=21.45..15081.45 rows=500000 width=20)
 Hash Cond: (h.bid = b.bid)
 -> Seq Scan on pgbench_history h (cost=0.00..8185.00 rows=500000 width=20)
 -> Hash (cost=21.20..21.20 rows=20 width=4)
 -> Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20 width=4)
 -> Hash (cost=53746.15..53746.15 rows=2014215 width=4)
 -> Seq Scan on pgbench_accounts a (cost=0.00..53746.15 rows=2014215 width=4)
(9 rows)

You can use the hints to force a combination of a merge sort join and a hash join and

modify the plan.

EXPLAIN SELECT /*+ USE_MERGE(h b) USE_HASH(a) */ h.mtime, h.delta, b.bid, a.aid FROM
 pgbench_history h, pgbench_branches b, pgbench_accounts a WHERE h.bid = b.bid AND
 h.aid = a.aid;

 QUERY PLAN
--
 Hash Join (cost=152583.39..182562.49 rows=500000 width=20)
 Hash Cond: (h.aid = a.aid)
 -> Merge Join (cost=65790.55..74540.65 rows=500000 width=20)
 Merge Cond: (b.bid = h.bid)
 -> Sort (cost=21.63..21.68 rows=20 width=4)
 Sort Key: b.bid

Issue: 20200701 161

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 -> Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20 width=4)
 -> Materialize (cost=65768.92..68268.92 rows=500000 width=20)
 -> Sort (cost=65768.92..67018.92 rows=500000 width=20)
 Sort Key: h.bid
 -> Seq Scan on pgbench_history h (cost=0.00..8185.00 rows=500000 width=
20)
 -> Hash (cost=53746.15..53746.15 rows=2014215 width=4)
 -> Seq Scan on pgbench_accounts a (cost=0.00..53746.15 rows=2014215 width=4)
(13 rows)

6.6.6 Global hints
Hints have been used in tables that are referenced in a SQL statement. Hints can also be

used in tables that appear in a view if the view is referenced in a SQL statement. The hint

does not appear in the view. Instead, the hint appears in the SQL statement that references

the view.

If you want to specify a hint in a table within a view, provide the view and table names in

dot notation within the hint argument list.

Synopsis

hint(view.table)

Parameters

Parameter Description

hint Any of the hints in Table 1 or Table 2.

view The name of the view that includes the table.

table The table in which the hint is used.

Examples

A view named tx is created from the three-table join of pgbench_history,

pgbench_branches, and pgbench_accounts. The final example in Join relations hints shows

this view.

CREATE VIEW tx AS SELECT h.mtime, h.delta, b.bid, a.aid FROM pgbench_history h,
pgbench_branches b, pgbench_accounts a WHERE h.bid = b.bid AND h.aid = a.aid;

The following example shows the query plan generated by this view:

EXPLAIN SELECT * FROM tx;

 QUERY PLAN
--
 Hash Join (cost=86814.29..123103.29 rows=500000 width=20)
 Hash Cond: (h.aid = a.aid)
 -> Hash Join (cost=21.45..15081.45 rows=500000 width=20)
 Hash Cond: (h.bid = b.bid)

162 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 -> Seq Scan on pgbench_history h (cost=0.00..8185.00 rows=500000 width=20)
 -> Hash (cost=21.20..21.20 rows=20 width=4)
 -> Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20 width=4)
 -> Hash (cost=53746.15..53746.15 rows=2014215 width=4)
 -> Seq Scan on pgbench_accounts a (cost=0.00..53746.15 rows=2014215 width=4)
(9 rows)

The hints used in this join at the end of Join relations hints can be used in the view. The

following example shows this usage:

EXPLAIN SELECT /*+ USE_MERGE(tx.h tx.b) USE_HASH(tx.a) */ * FROM tx;

 QUERY PLAN
--
 Hash Join (cost=152583.39..182562.49 rows=500000 width=20)
 Hash Cond: (h.aid = a.aid)
 -> Merge Join (cost=65790.55..74540.65 rows=500000 width=20)
 Merge Cond: (b.bid = h.bid)
 -> Sort (cost=21.63..21.68 rows=20 width=4)
 Sort Key: b.bid
 -> Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20 width=4)
 -> Materialize (cost=65768.92..68268.92 rows=500000 width=20)
 -> Sort (cost=65768.92..67018.92 rows=500000 width=20)
 Sort Key: h.bid
 -> Seq Scan on pgbench_history h (cost=0.00..8185.00 rows=500000 width=
20)
 -> Hash (cost=53746.15..53746.15 rows=2014215 width=4)
 -> Seq Scan on pgbench_accounts a (cost=0.00..53746.15 rows=2014215 width=4)
(13 rows)

You can also use the hints in tables for subqueries. The following example shows this

usage. When you query the emp table for the sample application, the emp table is joined

 with a subquery of the emp table identified by the alias b to list employees and their

managers.

SELECT a.empno, a.ename, b.empno "mgr empno", b.ename "mgr ename" FROM emp a,
 (SELECT * FROM emp) b WHERE a.mgr = b.empno;

 empno | ename | mgr empno | mgr ename
-------+--------+-----------+-----------
 7369 | SMITH | 7902 | FORD
 7499 | ALLEN | 7698 | BLAKE
 7521 | WARD | 7698 | BLAKE
 7566 | JONES | 7839 | KING
 7654 | MARTIN | 7698 | BLAKE
 7698 | BLAKE | 7839 | KING
 7782 | CLARK | 7839 | KING
 7788 | SCOTT | 7566 | JONES
 7844 | TURNER | 7698 | BLAKE
 7876 | ADAMS | 7788 | SCOTT
 7900 | JAMES | 7698 | BLAKE
 7902 | FORD | 7566 | JONES
 7934 | MILLER | 7782 | CLARK

Issue: 20200701 163

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

(13 rows)

The following example shows the plan selected by the query planner:

EXPLAIN SELECT a.empno, a.ename, b.empno "mgr empno", b.ename "mgr ename"
FROM emp a, (SELECT * FROM emp) b WHERE a.mgr = b.empno;

 QUERY PLAN

 Hash Join (cost=1.32..2.64 rows=13 width=22)
 Hash Cond: (a.mgr = emp.empno)
 -> Seq Scan on emp a (cost=0.00..1.14 rows=14 width=16)
 -> Hash (cost=1.14..1.14 rows=14 width=11)
 -> Seq Scan on emp (cost=0.00..1.14 rows=14 width=11)
(5 rows)

A hint can be used in the emp table within the subquery to perform an index scan instead

of a table scan on the emp_pk index. The query plan is changed.

EXPLAIN SELECT /*+ INDEX(b.emp emp_pk) */ a.empno, a.ename, b.empno "mgr empno
", b.ename "mgr ename" FROM emp a, (SELECT * FROM emp) b WHERE a.mgr = b.empno;

 QUERY PLAN

 Merge Join (cost=4.17..13.11 rows=13 width=22)
 Merge Cond: (a.mgr = emp.empno)
 -> Sort (cost=1.41..1.44 rows=14 width=16)
 Sort Key: a.mgr
 -> Seq Scan on emp a (cost=0.00..1.14 rows=14 width=16)
 -> Index Scan using emp_pk on emp (cost=0.14..12.35 rows=14 width=11)
(6 rows)

6.6.7 Use the APPEND optimizer hint
By default, PolarDB databases compatible with Oracle add new data to the first available

 free-space in a table. The space is vacated by vacuumed records. The APPEND directive

 following an INSERT or SELECT statement instructs the server to bypass mid-table free

 space and affix new rows to the end of the table. This optimizer hint improves the

performance of loading multiple entries.

The APPEND optimizer hint has the following syntax:

/*+APPEND*/

For example, the following statement compatible with Oracle databases instructs the server

 to append the data in the INSERT statement to the end of the sales table:

INSERT /*+APPEND*/ INTO sales VALUES

164 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

(10, 10, '01-Mar-2011', 10, 'OR');

PolarDB databases compatible with Oracle support the APPEND hint when you add multiple

 rows by using a single INSERT statement.

INSERT /*+APPEND*/ INTO sales VALUES
(20, 20, '01-Aug-2011', 20, 'NY'),
(30, 30, '01-Feb-2011', 30, 'FL'),
(40, 40, '01-Nov-2011', 40, 'TX');

The APPEND hint can also be included in the SELECT clause of an INSERT INTO statement.

INSERT INTO sales_history SELECT /*+APPEND*/ FROM sales;

6.6.8 Parallel hints
The PARALLEL optimizer hint is used to force parallel scanning.

The NO_PARALLEL optimizer hint prevents usage of a parallel scan.

Synopsis

PARALLEL (table [parallel_degree | DEFAULT])

NO_PARALLEL (table)

Description

Parallel scanning allows multiple background workers to simultaneously scan a table in

 a specified query. Compared with other methods such as a sequential scan, this scan

provides improved performance.

Parameters

Parameter Description

table The table in which a parallel hint is used.

Issue: 20200701 165

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

Parameter Description

parallel_degree |
DEFAULT

The value of the parallel_degree parameter is a positive
integer that specifies the desired number of workers to
be used in a parallel scan. If this parameter is set, the
smaller value between this parameter and the configuration
parameter max_parallel_workers_per_gather is used as the
planned number of workers. For more information about the
max_parallel_workers_per_gather parameter, visit https://www.
postgresql.org/docs/11/runtime-config-resource.html.

If DEFAULT is set, the maximum possible parallel degree is used.

If both parallel_degree and DEFAULT are omitted, the query

optimizer determines the parallel degree. In this case, if the

table parameter has been set with the parallel_workers storage

parameter, the value of parallel_workers is used as the parallel

degree. Otherwise, the optimizer uses the maximum possible

parallel degree specified by DEFAULT. For more information

about the parallel_workers storage parameter, visit https://www.

postgresql.org/docs/11/sql-createtable.html.

Regardless of the circumstance, the parallel degree never exceeds

the value of max_parallel_workers_per_gather.

Examples

The following configuration parameter settings are valid:

SHOW max_worker_processes;

 max_worker_processes

 8
(1 row)

SHOW max_parallel_workers_per_gather;

 max_parallel_workers_per_gather

 2
(1 row)

The following example shows the default scan on the pgbench_accounts table. A

sequential scan is shown in the query plan.

SET trace_hints TO on;

EXPLAIN SELECT * FROM pgbench_accounts;

166 Issue: 20200701

https://www.postgresql.org/docs/11/runtime-config-resource.html
https://www.postgresql.org/docs/11/runtime-config-resource.html
https://www.postgresql.org/docs/11/sql-createtable.html
https://www.postgresql.org/docs/11/sql-createtable.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

 QUERY PLAN

 Seq Scan on pgbench_accounts (cost=0.00..53746.15 rows=2014215 width=97)
(1 row)

The following example uses the PARALLEL hint. In the query plan, the Gather node that

launches the background workers specifies that two workers are planned to be used.

Note:

If trace_hints is set to on, the INFO: [HINTS] lines are displayed to indicate that PARALLEL

has been supported by pgbench_accounts and other hints. For the remaining examples,

these lines are not displayed. These examples show the same output, where trace_hints is

reset to off.

EXPLAIN SELECT /*+ PARALLEL(pgbench_accounts) */ * FROM pgbench_accounts;

INFO: [HINTS] SeqScan of [pgbench_accounts] rejected due to PARALLEL hint.
INFO: [HINTS] PARALLEL on [pgbench_accounts] accepted.
INFO: [HINTS] Index Scan of [pgbench_accounts].[pgbench_accounts_pkey] rejected due
to PARALLEL hint.
 QUERY PLAN

 Gather (cost=1000.00..244418.06 rows=2014215 width=97)
 Workers Planned: 2
 -> Parallel Seq Scan on pgbench_accounts (cost=0.00..41996.56 rows=839256 width=
97)
(3 rows)

The following example shows an increased value of max_parallel_workers_per_gather:

SET max_parallel_workers_per_gather TO 6;

SHOW max_parallel_workers_per_gather;

 max_parallel_workers_per_gather

 6
(1 row)

The same query on pgbench_accounts is used again with no specified parallel degree in

the PARALLEL hint. The number of planned workers has been determined by the optimizer

and increased to 4.

EXPLAIN SELECT /*+ PARALLEL(pgbench_accounts) */ * FROM pgbench_accounts;

 QUERY PLAN

 Gather (cost=1000.00..241061.04 rows=2014215 width=97)
 Workers Planned: 4
 -> Parallel Seq Scan on pgbench_accounts (cost=0.00..38639.54 rows=503554 width=
97)

Issue: 20200701 167

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

(3 rows)

A value of 6 is specified for the parallel degree parameter of the PARALLEL hint. The value is

 returned as the planned number of workers in the following example:

EXPLAIN SELECT /*+ PARALLEL(pgbench_accounts 6) */ * FROM pgbench_accounts;

 QUERY PLAN

 Gather (cost=1000.00..239382.52 rows=2014215 width=97)
 Workers Planned: 6
 -> Parallel Seq Scan on pgbench_accounts (cost=0.00..36961.03 rows=335702 width=
97)
(3 rows)

The same query is used with the DEFAULT setting for the parallel degree. The results

indicate that the maximum allowable number of workers is planned.

EXPLAIN SELECT /*+ PARALLEL(pgbench_accounts DEFAULT) */ * FROM pgbench_accounts
;

 QUERY PLAN

 Gather (cost=1000.00..239382.52 rows=2014215 width=97)
 Workers Planned: 6
 -> Parallel Seq Scan on pgbench_accounts (cost=0.00..36961.03 rows=335702 width=
97)
(3 rows)

The pgbench_accounts table is modified. In this table, the parallel_workers storage

parameter is set to 3.

Note:

This format in which the ALTER TABLE statement sets the parallel_workers parameter is not

compatible with Oracle databases.

The parallel_workers parameter is set by the PSQL \d+ statement.

ALTER TABLE pgbench_accounts SET (parallel_workers=3);

\d+ pgbench_accounts
 Table "public.pgbench_accounts"
 Column | Type | Modifiers | Storage | Stats target | Description
----------+---------------+-----------+----------+--------------+-------------
 aid | integer | not null | plain | |
 bid | integer | | plain | |
 abalance | integer | | plain | |
 filler | character(84) | | extended | |
Indexes:
 "pgbench_accounts_pkey" PRIMARY KEY, btree (aid)

168 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

Options: fillfactor=100, parallel_workers=3

If the PARALLEL hint is provided with no parallel degree, the returned number of planned

workers is the value of the parallel_workers parameter.

EXPLAIN SELECT /*+ PARALLEL(pgbench_accounts) */ * FROM pgbench_accounts;

 QUERY PLAN

 Gather (cost=1000.00..242522.97 rows=2014215 width=97)
 Workers Planned: 3
 -> Parallel Seq Scan on pgbench_accounts (cost=0.00..40101.47 rows=649747 width=
97)
(3 rows)

The parallel degree value or DEFAULT in the PARALLEL hint overwrites the parallel_workers

setting.

The following example shows the NO_PARALLEL hint. If trace_hints is set to on, the INFO: [

HINTS] message is displayed to indicate that the parallel scan has been rejected due to the

NO_PARALLEL hint.

EXPLAIN SELECT /*+ NO_PARALLEL(pgbench_accounts) */ * FROM pgbench_accounts;
INFO: [HINTS] Parallel SeqScan of [pgbench_accounts] rejected due to NO_PARALLEL hint.
 QUERY PLAN

 Seq Scan on pgbench_accounts (cost=0.00..53746.15 rows=2014215 width=97)
(1 row)

6.6.9 Conflicting hints
If a statement includes two or more conflicting hints, the server ignores the conflicting hints

. The following table lists the hints that are conflicting with each other.

Hint Conflicting hints

ALL_ROWS FIRST_ROWS - all formats

FULL(table) INDEX(table [index])

PARALLEL(table [degree])

INDEX(table) FULL(table)

NO_INDEX(table)

PARALLEL(table [degree])

Issue: 20200701 169

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 6 SQL tutorial

Hint Conflicting hints

INDEX(table index) FULL(table)

NO_INDEX(table index)

PARALLEL(table [degree])

PARALLEL(table [
degree])

FULL(table)

INDEX(table)

NO_PARALLEL(table)

USE_HASH(table) NO_USE_HASH(table)

USE_MERGE(table) NO_USE_MERGE(table)

USE_NL(table) NO_USE_NL(table)

170 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

7 Stored Procedure Language

7.1 Overview

This topic describes the Stored Procedure Language (SPL). SPL is a highly productive,

procedural programming language for writing custom procedures, functions, triggers, and

packages for PolarDB databases compatible with Oracle. SPL provides:

• Full procedural programming functionality to complement the SQL language

• A common language to create stored procedures, functions, triggers, and packages for

PolarDB databases compatible with Oracle

• A seamless development and testing environment

• The use of reusable code

• Ease of use

This chapter describes the basic elements of an SPL program, and then provides an

overview of the organization of an SPL program and how it is used to create a procedure or

 a function.

7.2 Basic SPL elements

7.2.1 Character sets
SPL programs are written with the following set of characters:

• Uppercase letters A to Z and lowercase letters a to z

• Digits 0 to 9

• Special characters () + - * / < > = ! ~ ^ ; : . ' @ % , " # $ & _ | { } ? []

• White space characters including tabs, spaces, and carriage returns

Identifiers, expressions, statements, and control structures that comprise the SPL language

are written with these characters.

Note:

The data that can be manipulated by an SPL program is determined by the character set

supported by the database encoding.

Issue: 20200701 171

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

7.2.2 Case sensitivity
Keywords and user-defined identifiers that are used in an SPL program are case insensitive.

For example, the statement DBMS_OUTPUT.PUT_LINE('Hello World'); is interpreted to mean

the same thing as dbms_output.put_line('Hello World');, Dbms_Output.Put_Line('Hello

World');, or DBMS_output.Put_line('Hello World');.

However, character and string constants, data retrieved from the PolarDB database

compatible with Oracle, or data obtained from other external sources are case sensitive.

The following output is generated by the DBMS_OUTPUT.PUT_LINE('Hello World!') ;

statement:

Hello World!

However, the following output is generated by the DBMS_OUTPUT.PUT_LINE('HELLO WORLD

!') ; statement:

HELLO WORLD!

7.2.3 Identifiers
Identifiers are user-defined names that are used to identify various elements of an SPL

program including variables, cursors, labels, programs, and parameters. The syntax rules

for valid identifiers are the same as that for identifiers in the SQL language.

An identifier must not be the same as an SPL keyword or a keyword of the SQL language.

The following content shows examples of valid identifiers:

x
last___name
a_$_Sign
Many$$$$$$$$signs_____
THIS_IS_AN_EXTREMELY_LONG_NAME
A1

7.2.4 Qualifiers
A qualifier is a name that specifies the owner or context of an entity that is the object of the

 qualification. A qualified object is specified as the qualifier name followed by a dot with

 no intervening white space, followed by the name of the object being qualified with no

intervening white space. This syntax is called dot notation.

172 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

The syntax of a qualified object is as follows:

qualifier. [qualifier.]... object

qualifier is the name of the object owner. object is the name of the entity that belongs to

 qualifier. There can be a chain of qualifications where the preceding qualifier owns the

entity identified by the subsequent qualifiers and object.

Almost any identifier can be qualified. What an identifier is qualified by depends on what

the identifier represents and the context of its usage.

The following content shows examples of qualification:

• Procedure and function names qualified by the schema to which they belong, such as

schema_name.procedure_name (...).

• Trigger names qualified by the schema to which they belong, such as schema_name.

trigger_name.

• Column names qualified by the table to which they belong, such as emp.empno.

• Table names qualified by the schema to which they belong, such as public.emp.

• Column names qualified by table and schema, such as public.emp.empno.

Generally, wherever a name appears in the syntax of an SPL statement, its qualified name

can be used as well. A qualified name would only be used if there is ambiguity associated

 with the name. For example, if two procedures with the same name belonging to two

different schemas are invoked from within a program or if the same name is used for a

table column and SPL variable within the same program.

You must avoid using qualified names. This topic uses the following conventions to avoid

naming conflicts:

• All variables declared in the declaration section of an SPL program are prefixed by v_,

such as v_empno.

• All formal parameters declared in a procedure or function definition are prefixed by p_,

such as p_empno.

• Column names and table names do not have any special prefix conventions, such as

column empno in table emp.

Issue: 20200701 173

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

7.2.5 Constants
Constants or literals are fixed values that can be used in SPL programs to represent values

 of various types, such as numbers, strings, and dates. Constants come in the following

types:

• Numeric (Integer and Real)

• Character and String

• Date/time

7.2.6 User-defined PL/SQL subtypes
PolarDB databases compatible with Oracle support user-defined PL/SQL subtypes and

subtype aliases. A subtype is a data type with an optional set of constraints that restrict the

values that can be stored in a column of that type. The rules that apply to the type on which

 the subtype is based are still enforced, but you can use other constraints to place limits on

the precision or scale of values stored in the type.

You can define a subtype in the declaration of a PL function, procedure, anonymous block,

or package. The syntax is as follows:

SUBTYPE subtype_name IS type_name[(constraint)] [NOT NULL]

where constraint is:

{precision [, scale]} | length

where:

• subtype_name: specifies the name of the subtype.

• type_name: specifies the name of the original type on which the subtype is based.

type_name can be:

- The name of any of the type supported by PolarDB databases compatible with Oracle.

- The name of a composite type.

- A column anchored by a %TYPE operator.

- The name of another subtype.

Include the constraint clause to define restrictions for types that support precision or scale.

• precision: specifies the total number of digits permitted in a value of the subtype.

• scale: specifies the number of fractional digits permitted in a value of the subtype.

174 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

• length: specifies the total length permitted in a value of CHARACTER, VARCHAR, or TEXT

base types.

Include the NOT NULL clause to specify that NULL values may not be stored in a column of

the specified subtype.

Note that a subtype that is based on a column will inherit the column size constraints, but

the subtype will not inherit NOT NULL or CHECK constraints.

Unconstrained subtypes

To create an unconstrained subtype, use the SUBTYPE statement to specify the new subtype

 name and the name of the type on which the subtype is based. For example, the following

statement creates a subtype named address that has all of the attributes of the type, CHAR:

SUBTYPE address IS CHAR;

You can also create a subtype (constrained or unconstrained) of another subtype:

SUBTYPE cust_address IS address NOT NULL;

This statement creates a subtype named cust_address that shares all of the attributes of the

 address subtype. Include the NOT NULL clause to specify that the value of the cust_address

 may not be NULL.

Constrained subtypes

Include a length value when creating a subtype that is based on a character type to define

the maximum length of the subtype. Example:

SUBTYPE acct_name IS VARCHAR (15);

This example creates a subtype named acct_name that is based on a VARCHAR data type,

but is limited to 15 characters in length.

Include values for precision (to specify the maximum number of digits in a value of the

subtype) and optionally, scale (to specify the number of digits to the right of the decimal

point) when constraining a numeric base type. Example:

SUBTYPE acct_balance IS NUMBER (5, 2);

This example creates a subtype named acct_balance that shares all of the attributes of a

NUMBER type, but that cannot exceed 3 digits to the left of the decimal point and 2 digits to

 the right of the decimal.

Issue: 20200701 175

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

An argument declaration (in a function or procedure header) is a formal argument. The

value passed to a function or procedure is an actual argument. When invoking a function

 or procedure, the caller provides 0 or more actual arguments. Each actual argument is

 assigned to a formal argument that holds the value within the body of the function or

procedure.

If a formal argument is declared as a constrained subtype:

• PolarDB databases compatible with Oracle do not enforce subtype constraints when

assigning an actual argument to a formal argument during the invoking of a function.

• PolarDB databases compatible with Oracle enforce subtype constraints when assigning

an actual argument to a formal argument during the invoking of a procedure.

Use the %TYPE operator

You can use the %TYPE notation to declare a subtype anchored to a column. Example:

SUBTYPE emp_type IS emp.empno%TYPE

This statement creates a subtype named emp_type whose base type matches the type of

 the empno column in the emp table. A subtype that is based on a column will share the

column size constraints, while NOT NULL, and CHECK constraints are not inherited.

Subtype conversion

Unconstrained subtypes are aliases for the type on which they are based. Any type variable

 of unconstrained subtype is interchangeable with a variable of the base type without

conversion, and vice versa.

A variable of a constrained subtype may be interchanged with a variable of the base

type without conversion, but a variable of the base type can only be interchanged with a

 constrained subtype if the variable of the base type complies with the constraints of the

subtype. A variable of a constrained subtype can be implicitly converted to another subtype

 if it is based on the same subtype, and the constraint values are within the values of the

subtype to which it is being converted.

7.3 SPL programs

7.3.1 Overview
SPL is a procedural, block-structured language. You can use SPL to create four types of

programs, including procedures, functions, triggers, and packages.

176 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

In addition, SPL is used to create subprograms. A subprogram refers to a subprocedure

or a subfunction, which are nearly identical in appearance to procedures and functions,

but differ in that procedures and functions are standalone programs, which are individual

ly stored in the database and can be invoked by other SPL programs or from PSQL.

Subprograms can only be invoked from within the standalone program in which they are

created.

7.3.2 SPL block structures
Regardless of whether the program is a procedure, function, subprogram, or trigger, an SPL

 program has the same block structure. A block consists of up to three sections: an optional

 declaration section, a mandatory executable section, and an optional exception section. A

block must have at least an executable section that consists of one or more SPL statements

within the keywords, BEGIN and END.

The optional declaration section is used to declare variables, cursors, types, and

subprograms that are used by the statements within the executable and exception

sections. Declarations appears only prior to the BEGIN keyword of the executable section

. Depending on the context of where the block is used, the declaration section may begin

with the keyword DECLARE.

You can include an exception section within the BEGIN - END block. The exception section

 begins with the keyword EXCEPTION, and continues until the end of the block in which it

appears. If an exception is thrown by a statement within the block, program control goes to

 the exception section where the thrown exception may or may not be handled depending

on the exception and the contents of the exception section.

The following content shows the general structure of a block:

[[DECLARE]
 pragmas
 declarations]
 BEGIN
 statements
 [EXCEPTION
 WHEN exception_condition THEN
 statements [, ...]]
 END;

pragmas are the directives (AUTONOMOUS_TRANSACTION is the currently supported

pragma). declarations are one or more variable, cursor, type, or subprogram declarations

that are local to the block. If subprogram declarations are included, they must be declared

after all other variable, cursor, and type declarations. Each declaration must be terminated

Issue: 20200701 177

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 by a semicolon (;). The use of the keyword DECLARE depends on the context in which the

block appears.

statements are one or more SPL statements. Each statement must be terminated by a

semicolon (;). The end of the block indicated by the keyword END must also be terminated

by a semicolon (;).

If present, the keyword EXCEPTION marks the beginning of the exception section.

exception_condition is a conditional expression testing for one or more types of exceptions

. If an exception matches one of the exceptions in exception_condition, the statements

following the WHEN exception_condition clause are executed. There may be one or more

 WHEN exception_condition clauses that are followed by statements. Note: A BEGIN/END

 block can be considered as a statement. Therefore, blocks can be nested. The exception

section may also contain nested blocks.

The following content describes the simplest possible block consisting of the NULL

statement within the executable section. The NULL statement is an executable statement

that does not perform any operations.

BEGIN
 NULL;
END;

The following content describes a block that contains a declaration section as well as the

executable section:

DECLARE
 v_numerator NUMBER(2);
 v_denominator NUMBER(2);
 v_result NUMBER(5,2);
BEGIN
 v_numerator := 75;
 v_denominator := 14;
 v_result := v_numerator / v_denominator;
 DBMS_OUTPUT.PUT_LINE(v_numerator || ' divided by ' || v_denominator ||
 ' is ' || v_result);
END;

In this example, three numeric variables are declared for the data type NUMBER. Values

are assigned to two of the variables, and one number is divided by the other, storing the

178 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 results in the third variable that is then displayed. If executed, the following output is

generated:

75 divided by 14 is 5.36

The following content describes a block that contains a declaration, an executable, and an

exception:

DECLARE
 v_numerator NUMBER(2);
 v_denominator NUMBER(2);
 v_result NUMBER(5,2);
BEGIN
 v_numerator := 75;
 v_denominator := 0;
 v_result := v_numerator / v_denominator;
 DBMS_OUTPUT.PUT_LINE(v_numerator || ' divided by ' || v_denominator ||
 ' is ' || v_result);
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('An exception occurred');
END;

The following output shows that the statement within the exception section is executed as

the result of the division by zero:

An exception occurred

7.3.3 Anonymous blocks
Blocks are typically written as part of a procedure, function, subprogram, or trigger.

Procedure, function, and trigger programs are named and stored in the database for reuse

. For quick (one-time) execution (such as testing), you can enter the block without providing

 a name or storing it in the database.

A block of this type is called an anonymous block. An anonymous block is unnamed and

 is not stored in the database. After the block has been executed and erased from the

application buffer, it cannot be re-executed unless the block code is re-entered into the

application.

Typically, the same block of code will be re-executed many times. To run a block of code

 repeatedly without the necessity of re-entering the code each time, you can turn an

anonymous block into a procedure or function by making some simple modifications. The

 following topics discuss how to create a procedure or function that can be stored in the

database and invoked repeatedly by another procedure, function, or application program.

Issue: 20200701 179

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

7.3.4 Create a procedure
Procedures are standalone SPL programs that are invoked or called as an individual SPL

program statement. When called, procedures may optionally receive values from the caller

in the form of input parameters and optionally return values to the caller in the form of

output parameters.

The CREATE PROCEDURE statement defines and names a standalone procedure that will be

stored in the database.

If a schema name is included, the procedure is created in the specified schema. Otherwise

, it is created in the current schema. The name of the new procedure must not match any

 existing procedure with the same input argument types in the same schema. However,

procedures of different input argument types may share a name. This is called overloading

. Overloading of procedures is a feature of the PolarDB database compatible with Oracle -

overloading of stored, standalone procedures is not compatible with Oracle databases.

To update the definition of an existing procedure, use CREATE OR REPLACE PROCEDURE. It

is not possible to change the name or argument types of a procedure this way (if you tried

, you would actually be creating a new, distinct procedure). When using OUT parameters,

you cannot change the types of any OUT parameters except by dropping the procedure.

CREATE [OR REPLACE] PROCEDURE name [(parameters)]
 [
 IMMUTABLE
 | STABLE
 | VOLATILE
 | DETERMINISTIC
 | [NOT] LEAKPROOF
 | CALLED ON NULL INPUT
 | RETURNS NULL ON NULL INPUT
 | STRICT
 | [EXTERNAL] SECURITY INVOKER
 | [EXTERNAL] SECURITY DEFINER
 | AUTHID DEFINER
 | AUTHID CURRENT_USER
 | PARALLEL { UNSAFE | RESTRICTED | SAFE }
 | COST execution_cost
 | ROWS result_rows
 | SET configuration_parameter
 { TO value | = value | FROM CURRENT }
 ...]
{ IS | AS }
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 [declarations]
 BEGIN
 statements

180 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 END [name];

Table 7-1: Arguments

Argument Description

name name is the identifier of the procedure.

parameters parameters is a list of formal parameters.

declarations declarations are variable, cursor, type, or subprogram declarations
. If subprogram declarations are included, they must be declared
after all other variable, cursor, and type declarations.

statements statements are SPL program statements (the BEGIN - END block
may contain an EXCEPTION section).

IMMUTABLE

STABLE

VOLATILE

These attributes inform the query optimizer about the behavior of
the procedure. You can specify only one option. VOLATILE is the
default behavior.

• IMMUTABLE specifies that the procedure cannot modify the
database and always reaches the same result when given the
 same argument values. It does not do database lookups or
use information not directly present in its argument list. If you
include this clause, any call of the procedure with all-constant
 arguments can be immediately replaced with the procedure
value.

• STABLE specifies that the procedure cannot modify the database
, and that within a single table scan, it will consistently return
 the same result for the same argument values, but that its
result could change across SQL statements. This is suitable for
 procedures that depend on database lookups and parameter
variables such as the current time zone.

• VOLATILE specifies that the procedure value can change even
within a single table scan, so no optimizations can be made.
Note that any function that has side effects must be classified
 volatile, even if its result is quite predictable, to prevent calls
from being optimized away.

DETERMINISTIC DETERMINISTIC is a synonym for IMMUTABLE. A DETERMINISTIC
procedure cannot modify the database and always reaches the
same result when given the same argument values. It does not
do database lookups or use information not directly present in its
argument list. If you include this clause, any call of the procedure
with all-constant arguments can be immediately replaced with the
 procedure value.

Issue: 20200701 181

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

Argument Description

[NOT] LEAKPROOF LEAKPROOF has no side effects, and reveals no information about
the values used to call the procedure.

CALLED ON NULL
INPUT

RETURNS NULL ON

NULL INPUT

STRICT

• CALLED ON NULL INPUT indicates that the procedure is called
 normally when some of its arguments are NULL. This is the
default value. If necessary, the author needs to check for NULL
values and respond appropriately.

• RETURNS NULL ON NULL INPUT, or STRICT specifies that the
procedure always returns NULL whenever any of its arguments
 are NULL. If these clauses are specified, the procedure is not
 executed when there are NULL arguments. A NULL result is
assumed automatically.

[EXTERNAL]
SECURITY DEFINER

SECURITY DEFINER specifies that the procedure will execute with
the privileges of the user that created it. This is the default value
. The keyword EXTERNAL is allowed for SQL conformance, but is
optional.

[EXTERNAL]
SECURITY INVOKER

SECURITY INVOKER specifies that the procedure will execute with
 the privileges of the user that calls it. The keyword EXTERNAL is
allowed for SQL conformance, but is optional.

AUTHID DEFINER

AUTHID CURRENT_US

ER

• AUTHID DEFINER is a synonym for [EXTERNAL] SECURITY
DEFINER. If the AUTHID clause is omitted or if AUTHID DEFINER
 is specified, the rights of the procedure owner are used to
determine access privileges to database objects.

• AUTHID CURRENT_USER is a synonym for [EXTERNAL] SECURITY
 INVOKER. If AUTHID CURRENT_USER is specified, the rights of
the current user executing the procedure are used to determine
access privileges.

182 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

Argument Description

PARALLEL { UNSAFE |
RESTRICTED | SAFE }

PARALLEL enables the use of parallel sequential scans (parallel
mode). In contrast to a serial sequential scan, a parallel sequential
scan uses multiple workers to scan a relation in parallel during a
query.

• When set to UNSAFE, the procedure cannot be executed in
parallel mode. The presence of such a procedure forces a serial
execution plan. This is the default setting if the PARALLEL clause
 is omitted.

• When set to RESTRICTED, the procedure can be executed in
parallel mode, but the execution is restricted to the parallel
group leader. If the qualification for any particular relation has
 anything that is parallel restricted, that relation will not be
chosen for parallelism.

• When set to SAFE, the procedure can be executed in parallel
mode with no restriction.

COST execution_cost execution_cost is a positive number giving the estimated execution
 cost for the procedure. Units: cpu_operator_cost. If the procedure
returns a set, this is the cost per returned row. Larger values cause
the planner to try to avoid evaluating the function more often than
 necessary.

ROWS result_rows result_rows is a positive number giving the estimated number
of rows that the planner expects the procedure to return. This is
allowed only when the procedure is declared to return a set. The
default assumption is 1,000 rows.

SET configurat
ion_parameter {
TO value | = value |
FROMCURRENT }

SET causes the specified configuration parameter to be set to the
specified value when the procedure is entered, and then restored
to its prior value when the procedure exits. SET FROM CURRENT
saves the current parameter value of the session as the value to be
applied when the procedure is entered.

If a SET clause is attached to a procedure, then the effects of a

SET LOCAL statement executed inside the procedure for the same

 variable are restricted to the procedure. The prior value of the

configuration parameter is restored at procedure exit. An ordinary

 SET statement (without LOCAL) overrides the SET clause, much as

it would do for a previous SET LOCAL statement, with the effects of

such a statement persisting after procedure exit, unless the current

 transaction is rolled back.

Issue: 20200701 183

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

Argument Description

PRAGMA
AUTONOMOUS
_TRANSACTION

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the
procedure as an autonomous transaction.

The STRICT, LEAKPROOF, PARALLEL, COST, ROWS, and SET keywords provide extended

functionality for PolarDB databases compatible with Oracle but are not supported by Oracle

.

Note:

By default, stored procedures are created as SECURITY DEFINERS, but when written in PL/

pgSQL, the stored procedures are created as SECURITY INVOKERS.

Example

The following example shows a simple procedure that takes no parameters:

CREATE OR REPLACE PROCEDURE simple_procedure
IS
BEGIN
 DBMS_OUTPUT.PUT_LINE('That''s all folks!') ;
END simple_procedure;

The procedure is stored in the database by entering the procedure code ina PolarDB

database compatible with Oracle.

The following example describes how to use the AUTHID DEFINER and SET clauses in a

procedure declaration. The update_salary procedure conveys the privileges of the role that

defined the procedure to the role that is calling the procedure while the procedure executes

:

CREATE OR REPLACE PROCEDURE update_salary(id INT, new_salary NUMBER)
 SET SEARCH_PATH = 'public' SET WORK_MEM = '1MB'
 AUTHID DEFINER IS
BEGIN
 UPDATE emp SET salary = new_salary WHERE emp_id = id;
END;

Include the SET clause to set the search path of the procedure to public and the work

memory to 1 MB. Other procedures, functions, and objects are affected by these settings.

In this example, the AUTHID DEFINER clause temporarily grants privileges to a role that may

not be allowed to execute the statements within the procedure. To instruct the server to use

 the privileges associated with the role invoking the procedure, replace the AUTHID DEFINER

 clause with the AUTHID CURRENT_USER clause.

184 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

7.3.5 Call a procedure
You can invoke a procedure from another SPL program by specifying the procedure name

and parameters (if any) followed by a semicolon (;) in the following format:

name [([parameters])];

where:

• name is the identifier of the procedure.

• parameters is a list of actual parameters.

Note:

If there are no actual parameters to be passed, the procedure may be called with an

empty parameter list, or the opening and closing parenthesis may be omitted entirely.

The syntax for calling a procedure is the same as in the preceding syntax diagram when

executing it with the EXEC statement in PSQL or PolarDB databases compatible with Oracle

*Plus.

The following example describes how to call the procedure from an anonymous block:

BEGIN
 simple_procedure;
END;

That's all folks!

Note:

Each application has its own unique way to call a procedure. For example, in a Java

application, the application programming interface JDBC is used.

7.3.6 Delete a procedure
You can use the DROP PROCEDURE statement to delete a procedure form the database.

DROP PROCEDURE [IF EXISTS] name [(parameters)]
 [CASCADE | RESTRICT];

name is the name of the procedure to be dropped.

Note:

Issue: 20200701 185

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

In a PolarDB database compatible with Oracle, you need to specify the parameter list

under certain circumstances such as if this is an overloaded procedure. Oracle requires

that the parameter list always be omitted.

Usage of IF EXISTS, CASCADE, or RESTRICT is not compatible with Oracle databases.

For more information about these options, see the DROP PROCEDURE statement in the

Database Compatibility for Oracle Developers Reference Guide.

The following example describes how to drop the previously created procedure:

DROP PROCEDURE simple_procedure;

7.3.7 Create a function
Functions are standalone SPL programs that are invoked as expressions. When evaluated,

a function returns a value that is substituted in the expression in which the function is

embedded. Functions can optionally take values from the calling program in the form of

input parameters. In addition to returning a value by itself, a function can optionally return

additional values to the caller in the form of output parameters. However, we recommend

that you do not use output parameters in functions in programming practice.

The CREATE FUNCTION statement defines and names a standalone function that will be

stored in the database.

If a schema name is included, the function is created in the specified schema. Otherwise, it

is created in the current schema. The name of the new function must not match any existing

 function with the same input argument types in the same schema. However, functions of

 different input argument types can share a name. This is called overloading. Overloadin

g of functions is a feature of PolarDB databases compatible with Oracle - overloading of

stored, standalone functions is not compatible with Oracle databases.

To update the definition of an existing function, use CREATE OR REPLACE FUNCTION. You

 cannot change the name or argument types of a function in this way. If you tried, you

actually created a new, distinct function. Also, CREATE OR REPLACE FUNCTION does not

 change the return type of an existing function. To do that, you must drop and recreate

the function. Also when using OUT parameters, you cannot change the types of any OUT

parameters except by dropping the function.

CREATE [OR REPLACE] FUNCTION name [(parameters)]
 RETURN data_type
 [
 IMMUTABLE
 | STABLE
 | VOLATILE

186 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 | DETERMINISTIC
 | [NOT] LEAKPROOF
 | CALLED ON NULL INPUT
 | RETURNS NULL ON NULL INPUT
 | STRICT
 | [EXTERNAL] SECURITY INVOKER
 | [EXTERNAL] SECURITY DEFINER
 | AUTHID DEFINER
 | AUTHID CURRENT_USER
 | PARALLEL { UNSAFE | RESTRICTED | SAFE }
 | COST execution_cost
 | ROWS result_rows
 | SET configuration_parameter
 { TO value | = value | FROM CURRENT }
 ...]
{ IS | AS }
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 [declarations]
 BEGIN
 statements
 END [name];

Argument Description

name name is the identifier of the function.

parameters parameters is a list of formal parameters.

data_type data_type is the data type of the value returned by the RETURN
statement of the function.

declarations declarations are variable, cursor, type, or subprogram declarations
. If subprogram declarations are included, they must be declared
after all other variable, cursor, and type declarations.

statements statements are SPL program statements. The BEGIN - END block
can contain an EXCEPTION section.

Issue: 20200701 187

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

Argument Description

IMMUTABLE

STABLE

VOLATILE

These attributes inform the query optimizer about the behavior
of the function. You can specify only one option. VOLATILE is the
default behavior.

• IMMUTABLE specifies that the function cannot modify the
database and always reaches the same result when given the
same argument values. It does not do database lookups or use
information that is not directly present in its argument list in any
 other way. If you include this clause, any call of the function
with all-constant arguments can be immediately replaced with
the function value.

• STABLE specifies that the function cannot modify the database,
and that within a single table scan, it will consistently return the
 same result for the same argument values. However, its result
could change across SQL statements. This is the suitable option
 for functions that depend on database lookups and parameter
variables such as the current time zone.

• VOLATILE specifies that the function value can change even in a
 single table scan, so no optimizations can be made. Note that
any function that has side effects must be classified as a volatile
 function, even if its result is predictable, to prevent calls from
being optimized away.

DETERMINISTIC DETERMINISTIC is a synonym for IMMUTABLE. A DETERMINISTIC
function cannot modify the database and always reaches the
same result when given the same argument values. It does not do
 database lookups or use information that is not directly present in
 its argument list in any other way. If you include this clause, any
call of the function with all-constant arguments can be immediatel
y replaced with the function value.

[NOT] LEAKPROOF LEAKPROOF has no side effects, and reveals no information about
the values used to call the function.

CALLED ON NULL
INPUT

RETURNS NULL ON

NULL INPUT

STRICT

• CALLED ON NULL INPUT specifies that the procedure is called
 normally when some of its arguments are NULL. CALLED ON
NULL INPUT is the default value. If necessary, the author needs
to check for NULL values and respond appropriately.

• RETURNS NULL ON NULL INPUT or STRICT specifies that the
procedure returns NULL if any of its arguments is NULL. If these
clauses are specified, the procedure is not executed when there
are NULL arguments. A NULL result is assumed automatically.

188 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

Argument Description

[EXTERNAL]
SECURITY DEFINER

SECURITY DEFINER specifies that the function will execute with
 the privileges of the user that created it. SECURITY DEFINER is
 the default value. The keyword EXTERNAL is allowed for SQL
conformance. This is optional.

[EXTERNAL]
SECURITY INVOKER

SECURITY INVOKER specifies that the function will execute with
the privileges of the user that calls it. The keyword EXTERNAL is
allowed for SQL conformance. This is optional.

AUTHID DEFINER

AUTHID CURRENT_US

ER

AUTHID DEFINER is a synonym for [EXTERNAL] SECURITY DEFINER.
If the AUTHID clause is omitted or if AUTHID DEFINER is specified,
the rights of the function owner are used to determine access
privileges to database objects.

AUTHID CURRENT_USER is a synonym for [EXTERNAL] SECURITY

INVOKER. If AUTHID CURRENT_USER is specified, the rights of the

current user who is executing the function are used to determine

access privileges.

PARALLEL { UNSAFE |
RESTRICTED | SAFE }

PARALLEL enables the use of parallel sequential scans (parallel
mode). In contrast to a serial sequential scan, a parallel sequential
scan uses multiple workers to scan a relation in parallel during a
query.

• When set to UNSAFE, the function cannot be executed in
a parallel mode. The presence of such a function in a SQL
statement forces a serial execution plan. If the PARALLEL clause
is omitted, this is the default setting.

• When set to RESTRICTED, the function can be executed in a
parallel mode, but the execution is restricted to the parallel
group leader. If the qualification for any particular relation has
 anything that is parallel restricted, that relation will not be
chosen for parallelism.

• When set to SAFE, the function can be executed in a parallel
mode with no restriction.

COST execution_cost execution_cost is a positive number giving the estimated execution
 cost for the function. Unit: cpu_operator_cost. If the function
returns a set, this is the cost per returned row. Larger values cause
the planner to try to avoid evaluating the function more often than
 necessary.

Issue: 20200701 189

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

Argument Description

ROWS result_rows result_rows is a positive number giving the estimated number
of rows that the planner expects the function to return. This is
allowed only when the function is declared to return a set. The
default assumption is 1,000 rows.

SET configurat
ion_parameter {
TO value | = value |
FROMCURRENT }

SET causes the specified configuration parameter to be set to the
specified value when the function is entered, and then restored
to its prior value when the function exits. SET FROM CURRENT
saves the current parameter value of the session as the value to be
applied when the function is entered.

If a SET clause is attached to a function, the effects of a SET LOCAL

 statement executed inside the function for the same variable are

restricted to the function. The prior configuration parameter value

 is restored when the function exits. An ordinary SET statement (

without LOCAL) overrides the SET clause, much as it would do for a

previous SET LOCAL statement, with the effects of such a statement

 persisting after procedure exit, unless the current transaction is

rolled back.

PRAGMA
AUTONOMOUS
_TRANSACTION

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the
function to an autonomous transaction.

Note:

The STRICT, LEAKPROOF, PARALLEL, COST, ROWS, and SET keywords provide extended

functionality for PolarDB databases compatible with Oracle but are not supported by

Oracle.

Examples

The following example describes a simple function that takes no parameters:

CREATE OR REPLACE FUNCTION simple_function
 RETURN VARCHAR2
IS
BEGIN
 RETURN 'That''s All Folks!' ;

190 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

END simple_function;

The following example describes a function that takes two input parameters. Parameters

are discussed in subsequent topics.

CREATE OR REPLACE FUNCTION emp_comp (
 p_sal NUMBER,
 p_comm NUMBER
) RETURN NUMBER
IS
BEGIN
 RETURN (p_sal + NVL(p_comm, 0)) * 24;
END emp_comp;

The following example describes how to use the AUTHID CURRENT_USER clause and STRICT

keyword in a function declaration.

CREATE OR REPLACE FUNCTION dept_salaries(dept_id int) RETURN NUMBER
 STRICT
 AUTHID CURRENT_USER
BEGIN
 RETURN QUERY (SELECT sum(salary) FROM emp WHERE deptno = id);
END;

Include the STRICT keyword to instruct the server to return NULL if any input parameter

passed is NULL. If the NULL value is passed, the function will not execute.

The dept_salaries function executes with the privileges of the role that is calling the

function. If the current user has insufficient privileges to perform the SELECT statement to

 query the emp table and display employee salaries, the function will report an error. To

instruct the server to use the privileges associated with the role that defined the function,

replace the AUTHID CURRENT_USER clause with the AUTHID DEFINER clause.

7.3.8 Call a function
A function can be used anywhere an expression can appear within an SPL statement.

You can invoke a function by specifying its name followed by its parameters enclosed in

parentheses (), if any.

name [([parameters])]

name is the name of the function. parameters is a list of actual parameters.

If there are no actual parameters to be passed, the function may be called with an empty

parameter list, or the opening and closing parenthesis may be omitted entirely.

The following example shows how to call the function from another SPL program:

BEGIN

Issue: 20200701 191

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 DBMS_OUTPUT.PUT_LINE(simple_function);
END;

That's All Folks!

The following example describes how functions are generally used in an SQL statement:

SELECT empno "EMPNO", ename "ENAME", sal "SAL", comm "COMM",
 emp_comp(sal, comm) "YEARLY COMPENSATION" FROM emp;

 EMPNO | ENAME | SAL | COMM | YEARLY COMPENSATION
-------+--------+---------+---------+---------------------
 7369 | SMITH | 800.00 | | 19200.00
 7499 | ALLEN | 1600.00 | 300.00 | 45600.00
 7521 | WARD | 1250.00 | 500.00 | 42000.00
 7566 | JONES | 2975.00 | | 71400.00
 7654 | MARTIN | 1250.00 | 1400.00 | 63600.00
 7698 | BLAKE | 2850.00 | | 68400.00
 7782 | CLARK | 2450.00 | | 58800.00
 7788 | SCOTT | 3000.00 | | 72000.00
 7839 | KING | 5000.00 | | 120000.00
 7844 | TURNER | 1500.00 | 0.00 | 36000.00
 7876 | ADAMS | 1100.00 | | 26400.00
 7900 | JAMES | 950.00 | | 22800.00
 7902 | FORD | 3000.00 | | 72000.00
 7934 | MILLER | 1300.00 | | 31200.00
(14 rows)

7.3.9 Delete a function
A function can be deleted from the database with the DROP FUNCTION statement.

DROP FUNCTION [IF EXISTS] name [(parameters)]
 [CASCADE | RESTRICT];

name is the name of the function to be deleted.

Note:

In a PolarDB database compatible with Oracle, you need to specify the parameter list

under certain circumstances such as if this is an overloaded function. Oracle requires that

the parameter list always be omitted.

Usage of IF EXISTS, CASCADE, or RESTRICT is not compatible with Oracle databases.

The following example describes how to drop the previously created function:

DROP FUNCTION simple_function;

7.3.10 Procedure overview

7.3.11 Function overview

192 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

7.3.12 Compilation errors in procedures and functions
When the PolarDB database compatible with Oracle parsers compile a procedure or

function, they confirm that both the CREATE statement and the program body (the portion

of the program that follows the AS keyword) conform to the grammar rules for SPL and SQL

 constructs. By default, the server terminates the compilation process if a parser detects an

error. Note that the parsers detect syntax errors in expressions, not semantic errors (that is

an expression referencing a non-existent column, table, or function, or an incorrect type).

spl.max_error_count instructs the server to stop parsing if it encounters the specified

number of errors in SPL code, or when it encounters an error in SQL code. The default value

 of the spl.max_error_count parameter is 10. The maximum value is 1000. Setting the value

of spl.max_error_count to 1 instructs the server to stop parsing when it encounters the first

error in either SPL or SQL code.

You can use the SET statement to specify a value for spl.max_error_count for your current

session. The syntax is as follows:

SET spl.max_error_count = number_of_errors

number_of_errors specifies the number of SPL errors that may occur before the server stops

 the compilation process. Example:

SET spl.max_error_count = 6

In the example, codes instruct the server to continue passing the first five SPL errors it

encounters. When the server encounters the sixth error it will stop validating, and print six

detailed error messages and one error summary.

To save time when you develop new code, or when you import existing code from another

 source, you can set the spl.max_error_count configuration parameter to a relatively high

number of errors.

Note that if you configure the server to continue parsing and ignoring errors in the SPL code

 in a program body, and the parser encounters an error in a segment of SQL code, there

may be errors in any SPL or SQL code that follows the erroneous SQL code. For example, the

 following content describes a function that results in two errors:

CREATE FUNCTION computeBonus(baseSalary number) RETURN number AS
BEGIN

 bonus := baseSalary * 1.10;
 total := bonus + 100;

 RETURN bonus;

Issue: 20200701 193

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

END;

ERROR: "bonus" is not a known variable
LINE 4: bonus := baseSalary * 1.10;
 ^
ERROR: "total" is not a known variable
LINE 5: total := bonus + 100;
 ^
ERROR: compilation of SPL function/procedure "computebonus" failed due to 2 errors

The following example adds a SELECT statement to the preceding example. The error in the

SELECT statement masks other errors that follow:

CREATE FUNCTION computeBonus(employeeName number) RETURN number AS
BEGIN
 SELECT salary INTO baseSalary FROM emp
 WHERE ename = employeeName;

 bonus := baseSalary * 1.10;
 total := bonus + 100;

 RETURN bonus;

END;

ERROR: "basesalary" is not a known variable
LINE 3: SELECT salary INTO baseSalary FROM emp WHERE ename = emp...

7.4 Procedure and function parameters

7.4.1 Overview
An important aspect of using procedures and functions is the capability to pass data

from the calling program to the procedure or function and to receive data back from the

procedure or function. This is completed with parameters.

Parameters are declared in the procedure or function definition, enclosed within

parentheses () following the procedure or function name. Parameters declared in the

procedure or function definition are formal parameters. When the procedure or function is

invoked, the calling program provides the actual data that is to be used in the processing of

 the called program as well as the variables that are to receive the results of the processing

 of the called program. The data and variables provided by the calling program when the

procedure or function is called are actual parameters.

194 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

The following content shows the general format of a formal parameter declaration:

(name [IN | OUT | IN OUT] data_type [DEFAULT value])

name is an identifier assigned to the formal parameter. If specified, IN defines the

parameter for receiving input data into the procedure or function. An IN parameter can

also be initialized to a default value. If specified, OUT defines the parameter for returning

data from the procedure or function. If specified, IN OUT allows the parameter to be used

for both input and output. If all of IN, OUT, and IN OUT are omitted, the parameter acts as

 if it were defined as IN by default. Whether a parameter is IN, OUT, or IN OUT, it is called

 parameter mode. data_type defines the data type of the parameter. value is a default

value assigned to an IN parameter in the called program when an actual parameter is not

specified in the call.

The following example describes a procedure that takes parameters:

CREATE OR REPLACE PROCEDURE emp_query (
 p_deptno IN NUMBER,
 p_empno IN OUT NUMBER,
 p_ename IN OUT VARCHAR2,
 p_job OUT VARCHAR2,
 p_hiredate OUT DATE,
 p_sal OUT NUMBER
)
IS
BEGIN
 SELECT empno, ename, job, hiredate, sal
 INTO p_empno, p_ename, p_job, p_hiredate, p_sal
 FROM emp
 WHERE deptno = p_deptno
 AND (empno = p_empno
 OR ename = UPPER(p_ename));
END;

In this example, p_deptno is an IN formal parameter, p_empno and p_ename are IN OUT

formal parameters, and p_job, p_hiredate, and p_sal are OUT formal parameters.

Note:

In the previous example, no maximum length was specified on the VARCHAR2 parameters

and no precision and scale were specified on the NUMBER parameters. It is invalid to

specify a length, precision, scale, or other constraints on parameter declarations. These

constraints are automatically inherited from the actual parameters that are used when the

procedure or function is called.

Issue: 20200701 195

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

The emp_query procedure can be called by another program to pass the actual parameters

 to the program. The following example describes another SPL program that calls

emp_query:

DECLARE
 v_deptno NUMBER(2);
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_job VARCHAR2(9);
 v_hiredate DATE;
 v_sal NUMBER;
BEGIN
 v_deptno := 30;
 v_empno := 7900;
 v_ename := '';
 emp_query(v_deptno, v_empno, v_ename, v_job, v_hiredate, v_sal);
 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);
 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
END;

In this example, v_deptno, v_empno, v_ename, v_job, v_hiredate, and v_sal are actual

parameters.

The following output is generated:

Department : 30
Employee No: 7900
Name : JAMES
Job : CLERK
Hire Date : 03-DEC-81
Salary : 950

7.4.2 Positional and named parameter notation
You can use either positional or named parameter notation when parameters are passed

 to a function or procedure. If you specify parameters by using positional notation, you

must list the parameters in the order that they are declared. If you specify parameters with

named notation, the order of the parameters is not significant.

To specify parameters using named notation, list the name of each parameter followed by

 an arrow (=>) and the parameter value. Named notation is more verbose, but makes your

code easier to read and maintain.

A simple example that demonstrates using positional and named parameter notation is as

follows:

CREATE OR REPLACE PROCEDURE emp_info (
 p_deptno IN NUMBER,

196 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 p_empno IN OUT NUMBER,
 p_ename IN OUT VARCHAR2,
)
IS
BEGIN
 dbms_output.put_line('Department Number =' || p_deptno);
 dbms_output.put_line('Employee Number =' || p_empno);
 dbms_output.put_line('Employee Name =' || p_ename;
END;

To call the procedure using positional notation, pass the following parameters:

emp_info(30, 7455, 'Clark');

To call the procedure using named notation, pass the following parameters:

emp_info(p_ename =>'Clark', p_empno=>7455, p_deptno=>30);

Using named notation can alleviate the need to re-arrange a parameter list of a procedure

 if the parameter list changes, if the parameters are reordered, or if a new optional

parameter is added.

In a case where you have a default value for an argument and the argument is not a

trailing argument, you must use named notation to call the procedure or function. The

following case demonstrates a procedure with two leading default arguments.

CREATE OR REPLACE PROCEDURE check_balance (
 p_customerID IN NUMBER DEFAULT NULL,
 p_balance IN NUMBER DEFAULT NULL,
 p_amount IN NUMBER
)
IS
DECLARE
 balance NUMBER;
BEGIN
 IF (p_balance IS NULL AND p_customerID IS NULL) THEN
 RAISE_APPLICATION_ERROR
 (-20010, 'Must provide balance or customer');
 ELSEIF (p_balance IS NOT NULL AND p_customerID IS NOT NULL) THEN
 RAISE_APPLICATION_ERROR
 (-20020,'Must provide balance or customer, not both');
 ELSEIF (p_balance IS NULL) THEN
 balance := getCustomerBalance(p_customerID);
 ELSE
 balance := p_balance;
 END IF;

 IF (amount > balance) THEN
 RAISE_APPLICATION_ERROR
 (-20030, 'Balance insufficient');
 END IF;

Issue: 20200701 197

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

END;

You can only omit non-trailing argument values (when you call this procedure) by using

named notation. When using positional notation, only trailing arguments are allowed to

default. You can call this procedure with the following arguments:

check_balance(p_customerID => 10, p_amount = 500.00)

check_balance(p_balance => 1000.00, p_amount = 500.00)

You can use a combination of positional and named notation (mixed notation) to specify

parameters. A simple example that demonstrates how to use mixed parameter notation is

as follows:

CREATE OR REPLACE PROCEDURE emp_info (
 p_deptno IN NUMBER,
 p_empno IN OUT NUMBER,
 p_ename IN OUT VARCHAR2,
)
IS
BEGIN
 dbms_output.put_line('Department Number =' || p_deptno);
 dbms_output.put_line('Employee Number =' || p_empno);
 dbms_output.put_line('Employee Name =' || p_ename;
END;

You can call the procedure by using mixed notation:

emp_info(30, p_ename =>'Clark', p_empno=>7455);

If you do use mixed notation, remember that named arguments cannot precede positional

arguments.

7.4.3 Parameter modes
As previously discussed, a parameter has one of three possible modes - IN, OUT, or IN OUT.

The following characteristics of a formal parameter are dependent upon its mode:

• Its initial value when the procedure or function is called.

• Whether the called procedure or function can modify the formal parameter.

• How the actual parameter value is passed from the calling program to the called

program.

• What happens to the formal parameter value when an unhandled exception occurs in

the called program.

The following table summarizes the behavior of parameters based on their mode.

198 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

Mode property IN IN OUT OUT

Formal parameter
initialized to:

Actual parameter
value

Actual parameter
value

Actual parameter
value

Formal parameter
modifiable by the
called program?

No Yes Yes

Actual parameter
 contains: (after
 normal called
program termination
)

Original actual
parameter value
prior to the call

Last value of the
formal parameter

Last value of the
formal parameter

Actual parameter
contains: (after a
handled exception in
 the called program)

Original actual
parameter value
prior to the call

Last value of the
formal parameter

Last value of the
formal parameter

Actual parameter
 contains: (after
 an unhandled
exception in the
called program)

Original actual
parameter value
prior to the call

Original actual
parameter value
prior to the call

Original actual
parameter value
prior to the call

As shown by the table, an IN formal parameter is initialized to the actual parameter with

which it is called unless it was explicitly initialized with a default value. The IN parameter

may be referenced within the called program. However, the called program may not assign

 a new value to the IN parameter. After control returns to the calling program, the actual

parameter always contains the same value as it was set to prior to the call.

The OUT formal parameter is initialized to the actual parameter with which it is called. The

called program may reference and assign new values to the formal parameter. If the called

 program terminates without an exception, the actual parameter takes on the value last set

 in the formal parameter. If a handled exception occurs, the value of the actual parameter

takes on the last value assigned to the formal parameter. If an unhandled exception occurs

, the value of the actual parameter remains as it was prior to the call.

Like an IN parameter, an IN OUT formal parameter is initialized to the actual parameter

with which it is called. Like an OUT parameter, an IN OUT formal parameter is modifiable

 by the called program and the last value in the formal parameter is passed to the actual

 parameter of the calling program if the called program terminates without an exception

. If a handled exception occurs, the value of the actual parameter takes on the last value

Issue: 20200701 199

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

assigned to the formal parameter. If an unhandled exception occurs, the value of the actual

 parameter remains as it was prior to the call.

7.4.4 Use default values in parameters
You can set a default value of a formal parameter by including the DEFAULT clause or using

the assignment operator (:=) in the CREATE PROCEDURE or CREATE FUNCTION statement.

The general form of a formal parameter declaration is as follows:

(name [IN|OUT|IN OUT] data_type [{DEFAULT | := } expr])

• name is an identifier assigned to the parameter.

• IN|OUT|IN OUT specifies the parameter mode.

• data_type is the data type assigned to the variable.

• expr is the default value assigned to the parameter. If you do not include a DEFAULT

clause, the caller must provide a value for the parameter.

The default value is evaluated every time the function or procedure is invoked. For example

, assigning SYSDATE to a parameter of type DATE causes the parameter to have the time of

the current invocation, not the time when the procedure or function was created.

The following simple procedure demonstrates how to use the assignment operator to set a

default value of SYSDATE into the hiredate parameter:

CREATE OR REPLACE PROCEDURE hire_emp (
 p_empno NUMBER,
 p_ename VARCHAR2,
 p_hiredate DATE := SYSDATE
)
IS
BEGIN
 INSERT INTO emp(empno, ename, hiredate)
 VALUES(p_empno, p_ename, p_hiredate);

 DBMS_OUTPUT.PUT_LINE('Hired!') ;
END hire_emp;

If the parameter declaration includes a default value, you can omit the parameter from the

actual parameter list when you call the procedure. Calls to the sample procedure (hire_emp

200 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

) must include two arguments: the employee number (p_empno) and employee name (

p_empno). The third parameter (p_hiredate) defaults to the value of SYSDATE:

hire_emp (7575, Clark)

If you do include a value for the actual parameter when you call the procedure, that value

takes precedence over the default value:

hire_emp (7575, Clark, 15-FEB-2010)

Adds a new employee with a hiredate of February 15, 2010, regardless of the current value

of SYSDATE.

You can write the same procedure by substituting the DEFAULT keyword for the assignment

 operator:

CREATE OR REPLACE PROCEDURE hire_emp (
 p_empno NUMBER,
 p_ename VARCHAR2,
 p_hiredate DATE DEFAULT SYSDATE
)
IS
BEGIN
 INSERT INTO emp(empno, ename, hiredate)
 VALUES(p_empno, p_ename, p_hiredate);

 DBMS_OUTPUT.PUT_LINE('Hired!') ;
END hire_emp;

7.5 Subprograms - subprocedures and subfunctions

7.5.1 Overview
The capability and functionality of SPL procedure and function programs can be used in an

 advantageous manner to build well-structured and maintainable programs by organizing

the SPL code into subprocedures and subfunctions.

The same SPL code can be invoked multiple times from different locations within a

relatively large SPL program by declaring subprocedures and subfunctions within the SPL

program.

Subprocedures and subfunctions have the following characteristics:

• The syntax, structure, and functionality of subprocedures and subfunctions are practicall

y identical to standalone procedures and functions. The major difference is the use

Issue: 20200701 201

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 of the keyword PROCEDURE or FUNCTION instead of CREATE PROCEDURE or CREATE

FUNCTION to declare the subprogram.

• Subprocedures and subfunctions provide isolation for the identifiers (that is, variables,

cursors, types, and other subprograms) declared within itself. That is, these identifiers

cannot be accessed or altered from the upper parent level SPL programs or subprogram

s outside of the subprocedure or subfunction. This ensures that the subprocedure and

subfunction results are reliable and predictable.

• The declaration section of subprocedures and subfunctions can include its own

subprocedures and subfunctions. Thus, a multi-level hierarchy of subprograms can exist

 in the standalone program. Within the hierarchy, a subprogram can access the identifier

s of upper level parent subprograms and also invoke upper level parent subprograms.

However, the same access to identifiers and invocation cannot be done for lower level

child subprograms in the hierarchy.

Subprocedures and subfunctions can be declared and invoked from within any of the

following types of SPL programs:

• Standalone procedures and functions

• Anonymous blocks

• Triggers

• Packages

• Procedure and function methods of an object type body

• Subprocedures and subfunctions declared within any of the preceding programs

The rules regarding subprocedure and subfunction structure and access are discussed in

more detail in the next topics.

7.5.2 Create a subprocedure
The PROCEDURE clause specified in the declaration section defines and names a

subprocedure local to that block.

The term block refers to the SPL block structure consisting of an optional declaration

section, a mandatory executable section, and an optional exception section. Blocks are

the structures for standalone procedures and functions, anonymous blocks, subprograms,

triggers, packages, and object type methods.

The phrase the identifier is local to the block means that the identifier (that is, a variable,

cursor, type, or subprogram) is declared within the declaration section of that block and is

202 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

therefore accessible by the SPL code within the executable section and optional exception

section of that block.

Subprocedures can only be declared after all other variable, cursor, and type declarations

included in the declaration section. (That is, subprograms must be the last set of declaratio

ns.)

PROCEDURE name [(parameters)]{ IS | AS }
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 [declarations]
 BEGIN
 statements
 END [name];

Arguments

Argument Description

name name is the identifier of the subprocedure.

parameters parameters is a list of formal parameters.

PRAGMA AUTONOMOUS
_TRANSACTION

PRAGMA AUTONOMOUS_TRANSACTION is the directive that
sets the subprocedure as an autonomous transaction.

declarations declarations are variable, cursor, type, or subprogram
declarations. If subprogram declarations are included, they
 must be declared after all other variable, cursor, and type
declarations.

statements statements are SPL program statements (the BEGIN - END
block may contain an EXCEPTION section).

Examples

The following example is a subprocedure within an anonymous block:

DECLARE
 PROCEDURE list_emp
 IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur IS
 SELECT empno, ename FROM emp ORDER BY empno;
 BEGIN
 OPEN emp_cur;
 DBMS_OUTPUT.PUT_LINE('Subprocedure list_emp:');
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_cur;

Issue: 20200701 203

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 END;
BEGIN
 list_emp;
END;

The following output is generated by invoking this anonymous block:

Subprocedure list_emp:
EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

The following example is a subprocedure within a trigger:

CREATE OR REPLACE TRIGGER dept_audit_trig
 AFTER INSERT OR UPDATE OR DELETE ON dept
DECLARE
 v_action VARCHAR2(24);
 PROCEDURE display_action (
 p_action IN VARCHAR2
)
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('User ' || USER || ' ' || p_action ||
 ' dept on ' || TO_CHAR(SYSDATE,'YYYY-MM-DD'));
 END display_action;
BEGIN
 IF INSERTING THEN
 v_action := 'added';
 ELSIF UPDATING THEN
 v_action := 'updated';
 ELSIF DELETING THEN
 v_action := 'deleted';
 END IF;
 display_action(v_action);
END;

The following output is generated by invoking this trigger:

INSERT INTO dept VALUES (50,'HR','DENVER');

204 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

User enterprisedb added dept on 2016-07-26

7.5.3 Create a subfunction
The FUNCTION clause specified in the declaration topic defines and names a subfunction

local to that block.

The term block refers to the SPL block structure consisting of an optional declaration

topic, a mandatory executable section, and an optional exception section. Blocks are the

structures for standalone procedures and functions, anonymous blocks, subprograms,

triggers, packages, and object type methods.

The phrase the identifier is local to the block means that the identifier (that is, a variable,

cursor, type, or subprogram) is declared within the declaration section of that block and is

therefore accessible by the SPL code within the executable section and optional exception

section of that block.

Subprocedures can only be declared after all other variable, cursor, and type declarations

included in the declaration section. (That is, subprograms must be the last set of declaratio

ns.)

PROCEDURE name [(parameters)]{ IS | AS }
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 [declarations]
 BEGIN
 statements
 END [name];

Table 7-2: Arguments

Argument Description

name name is the identifier of the subprocedure.

parameters parameters is a list of formal parameters.

data_type data_type is the data type of the value returned by the
RETURN statement of the function.

PRAGMA AUTONOMOUS
_TRANSACTION

PRAGMA AUTONOMOUS_TRANSACTION is the directive that
sets the subfunction as an autonomous transaction.

declarations declarations are variable, cursor, type, or subprogram
declarations. If subprogram declarations are included, they
 must be declared after all other variable, cursor, and type
declarations.

Issue: 20200701 205

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

Argument Description

statements statements are SPL program statements (the BEGIN - END
block may contain an EXCEPTION section).

Examples

The following example shows the use of a recursive subfunction:

DECLARE
 FUNCTION factorial (
 n BINARY_INTEGER
) RETURN BINARY_INTEGER
 IS
 BEGIN
 IF n = 1 THEN
 RETURN n;
 ELSE
 RETURN n * factorial(n-1);
 END IF;
 END factorial;
BEGIN
 FOR i IN 1..5 LOOP
 DBMS_OUTPUT.PUT_LINE(i || '! = ' || factorial(i));
 END LOOP;
END;

The output from the example is as follows:

1! = 1
2! = 2
3! = 6
4! = 24
5! = 120

7.5.4 Block relationships
This topic describes the terminology of the relationship between blocks that can be

declared in an SPL program. The ability to invoke subprograms and access identifiers

declared within a block depends upon this relationship.

The following content describes the basic terms:

• A block is the basic SPL structure consisting of an optional declaration section, a

mandatory executable section, and an optional exception section. Blocks implement

standalone procedure and function programs, anonymous blocks, triggers, packages,

subprocedures, and subfunctions.

• An identifier (variable, cursor, type, or subprogram) local to a block means that it is

 declared within the declaration topic of the given block. Such local identifiers are

accessible from the executable section and optional exception section of the block.

206 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

• The parent block contains the declaration of another block (the child block).

• Descendent blocks are the set of blocks forming the child relationship starting from a

given parent block.

• Ancestor blocks are the set of blocks forming the parental relationship starting from a

given child block.

• The set of descendent (or ancestor) blocks form a hierarchy.

• The level is an ordinal number of a given block from the highest ancestor block. For

example, given a standalone procedure, the subprograms declared within the declaratio

n topic of this procedure are all at the same level. For example, call this procedure

at level 1. Additional subprograms within the declaration topic of the subprograms

declared in the standalone procedure are at the next level which is level 2.

• The sibling blocks are the set of blocks that have the same parent block (that is, they are

 all locally declared in the same block). Sibling blocks are also always at the same level

relative to each other.

The following schematic of a set of procedure declaration topics provides an example of a

set of blocks and their relationships to their surrounding blocks.

The two vertical lines on the left-hand side of the blocks indicate that two pairs of sibling

 blocks exist. block_1a and block_1b are one pair, and block_2a and block_2b are the

second pair.

The relationship of each block with its ancestors is shown on the right-hand side of the

blocks. Three hierarchical paths are formed when progressing up the hierarchy from the

lowest level child blocks. The first consists of block_0, block_1a, block_2a, and block_3. The

second is block_0, block_1a, and block_2b. The third is block_0, block_1b, and block_2b.

CREATE PROCEDURE block_0
IS
 .
 +---- PROCEDURE block_1a ------- Local to block_0
 | IS
 | . |
 | . |
 | . |
 | +-- PROCEDURE block_2a ---- Local to block_1a and descendant
 | | IS of block_0
 | | . |
 | | . |
 | | . |
 | | PROCEDURE block_3 -- Local to block_2a and descendant
 | | IS of block_1a, and block_0
 | Siblings . |
 | | . |
 | | . |
 | | END block_3; |

Issue: 20200701 207

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 | | END block_2a; |
 | +-- PROCEDURE block_2b ---- Local to block_1a and descendant
 | | IS of block_0
 Siblings | , |
 | | . |
 | | . |
 | +-- END block_2b; |
 | |
 | END block_1a; ---------+
 +---- PROCEDURE block_1b; ------- Local to block_0
 | IS
 | . |
 | . |
 | . |
 | PROCEDURE block_2b ---- Local to block_1b and descendant
 | IS of block_0
 | . |
 | . |
 | . |
 | END block_2b; |
 | |
 +---- END block_1b; ---------+
BEGIN
 .
 .
 .
END block_0;

7.5.5 Invoke subprograms
You can specify the name and any actual parameters to invoke a subprogram in the same

way you invoke a standalone procedure or function.

The subprogram can be invoked with none, one, or more qualifiers, which are the names of

 the parent subprograms or labeled anonymous blocks forming the ancestor hierarchy from

 where the subprogram has been declared.

The following example describes the invocation that is specified as a dot-separated list of

qualifiers ending with the subprogram name and any arguments of the subprogram:

[[qualifier_1.][...]qualifier_n.]subprog [(arguments)]

If specified, qualifier_n is the subprogram in which subprog has been declared in the

declaration section of the subprogram. The preceding list of qualifiers must reside in a

continuous path up the hierarchy from qualifier_n to qualifier_1. qualifier_1 may be any

ancestor subprogram in the path as well as any of the following options:

• Standalone procedure name containing the subprogram.

• Standalone function name containing subprogram.

• Package name containing the subprogram.

• Object type name containing the subprogram within an object type method.

208 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

• An anonymous block label included prior to the DECLARE keyword if a declaration

section exists, or prior to the BEGIN keyword if there is no declaration section.

Note:

qualifier_1 cannot be a schema name. Otherwise, an error is thrown upon invocation

of the subprogram. This PolarDB database compatible with Oracle restriction is not

compatible with Oracle databases, which allow use of the schema name as a qualifier.

arguments is the list of actual parameters to be passed to the subprocedure or subfunction

.

Upon invocation, the search for the subprogram occurs as follows:

• The invoked subprogram name of its type (that is, subprocedure or subfunction) along

 with any qualifiers in the specified order, (referred to as the invocation list) is used to

find a matching set of blocks residing in the same hierarchical order. The search begins

 in the block hierarchy where the lowest level is the block from where the subprogram is

 invoked. The declaration of the subprogram must be in the SPL code prior to the code

line where it is invoked when the code is observed from top to bottom.

• If the invocation list does not match the hierarchy of blocks starting from the block

where the subprogram is invoked, a comparison is made by matching the invocation list

 starting with the parent of the previous starting block. In other words, the comparison

progresses up the hierarchy.

• If there are sibling blocks of the ancestors, the invocation list comparison also includes

 the hierarchy of the sibling blocks, but always comparing in an upward level, never

comparing the descendants of the sibling blocks.

• This comparison process continues up the hierarchies until the first complete match is

found in which case the located subprogram is invoked. Note that the formal parameter

list of the matched subprogram must comply with the actual parameter list specified for

the invoked subprogram. Otherwise, an error occurs upon invocation of the subprogram.

• If no match is found after searching up to the standalone program, an error is thrown

upon invocation of the subprogram.

Note:

The PolarDB database compatible with Oracle search algorithm for subprogram invocation

is not compatible with Oracle databases. For Oracle, the search looks for the first match of

the first qualifier (that is qualifier_1). When such a match is found, all remaining qualifiers,

Issue: 20200701 209

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

the subprogram name, the subprogram type, and arguments of the invocation must match

the hierarchy content where the matching first qualifier is found. Otherwise, an error

is thrown. For PolarDB databases compatible with Oracle, a match is not found unless

all qualifiers, the subprogram name, and the subprogram type of the invocation match

the hierarchy content. If such an exact match is not found at first, the PolarDB database

compatible with Oracle continues the search progressing up the hierarchy.

The location of subprograms relative to the block from where the invocation is made can be

 accessed as follows:

• Subprograms declared in the local block can be invoked from the executable section or

the exception section of the same block.

• Subprograms declared in the parent or other ancestor blocks can be invoked from the

child block of the parent or other ancestors.

• Subprograms declared in sibling blocks can be called from a sibling block or from any

descendent block of the sibling.

However, the following location of subprograms cannot be accessed relative to the block

from where the invocation is made:

• Subprograms declared in blocks that are descendants of the block from where the

invocation is attempted.

• Subprograms declared in blocks that are descendants of the sibling block from where

the invocation is attempted.

The following examples illustrate the various conditions previously described.

Invoke locally declared subprograms

The following example contains a single hierarchy of blocks contained within the level_0

standalone procedure. Within the executable section of the level_1a procedure, the means

of invoking the level_2a local procedure are shown, both with and without qualifiers.

Note that access to the descendant of the level_2a local procedure, which is the level_3a

procedure, is not permitted, with or without qualifiers. The following example comments

out these calls:

CREATE OR REPLACE PROCEDURE level_0
IS
 PROCEDURE level_1a
 IS
 PROCEDURE level_2a
 IS
 PROCEDURE level_3a

210 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('........ BLOCK level_3a');
 DBMS_OUTPUT.PUT_LINE('........ END BLOCK level_3a');
 END level_3a;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2a');
 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');
 END level_2a;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');
 level_2a; -- Local block called
 level_1a.level_2a; -- Qualified local block called
 level_0.level_1a.level_2a; -- Double qualified local block called
-- level_3a; -- Error - Descendant of local block
-- level_2a.level_3a; -- Error - Descendant of local block
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');
 END level_1a;
BEGIN
 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');
 level_1a;
 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');
END level_0;

When the standalone procedure is invoked, the following output is generated, which

indicates that the level_2a procedure is invoked from the calls in the executable section of

the level_1a procedure.

BEGIN
 level_0;
END;

BLOCK level_0
.. BLOCK level_1a
...... BLOCK level_2a
...... END BLOCK level_2a
...... BLOCK level_2a
...... END BLOCK level_2a
...... BLOCK level_2a
...... END BLOCK level_2a
.. END BLOCK level_1a
END BLOCK level_0

If you were to attempt to run the level_0 procedure with any of the calls to the descendent

block uncommented, an error occurs.

Invoke subprograms declared in ancestor blocks

The following example shows how subprograms can be invoked that are declared in parent

 and other ancestor blocks relative to the block where the invocation is made.

In this example, the executable section of the level_3a procedure invokes the level_2a

procedure, which is the parent block of the level_3a procedure. Note that v_cnt is used to

avoid an infinite loop.

CREATE OR REPLACE PROCEDURE level_0

Issue: 20200701 211

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

IS
 v_cnt NUMBER(2) := 0;
 PROCEDURE level_1a
 IS
 PROCEDURE level_2a
 IS
 PROCEDURE level_3a
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('........ BLOCK level_3a');
 v_cnt := v_cnt + 1;
 IF v_cnt < 2 THEN
 level_2a; -- Parent block called
 END IF;
 DBMS_OUTPUT.PUT_LINE('........ END BLOCK level_3a');
 END level_3a;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2a');
 level_3a; -- Local block called
 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');
 END level_2a;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');
 level_2a; -- Local block called
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');
 END level_1a;
BEGIN
 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');
 level_1a;
 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');
END level_0;

The following output is generated:

BEGIN
 level_0;
END;

BLOCK level_0
.. BLOCK level_1a
...... BLOCK level_2a
........ BLOCK level_3a
...... BLOCK level_2a
........ BLOCK level_3a
........ END BLOCK level_3a
...... END BLOCK level_2a
........ END BLOCK level_3a
...... END BLOCK level_2a
.. END BLOCK level_1a
END BLOCK level_0

In a similar example, the executable section of the level_3a procedure invokes the level_1a

 procedure, which is further up the ancestor hierarchy. Note that v_cnt is used to avoid an

infinite loop.

CREATE OR REPLACE PROCEDURE level_0
IS
 v_cnt NUMBER(2) := 0;
 PROCEDURE level_1a
 IS

212 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 PROCEDURE level_2a
 IS
 PROCEDURE level_3a
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('........ BLOCK level_3a');
 v_cnt := v_cnt + 1;
 IF v_cnt < 2 THEN
 level_1a; -- Ancestor block called
 END IF;
 DBMS_OUTPUT.PUT_LINE('........ END BLOCK level_3a');
 END level_3a;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2a');
 level_3a; -- Local block called
 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');
 END level_2a;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');
 level_2a; -- Local block called
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');
 END level_1a;
BEGIN
 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');
 level_1a;
 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');
END level_0;

The following output is generated:

BEGIN
 level_0;
END;

BLOCK level_0
.. BLOCK level_1a
...... BLOCK level_2a
........ BLOCK level_3a
.. BLOCK level_1a
...... BLOCK level_2a
........ BLOCK level_3a
........ END BLOCK level_3a
...... END BLOCK level_2a
.. END BLOCK level_1a
........ END BLOCK level_3a
...... END BLOCK level_2a
.. END BLOCK level_1a
END BLOCK level_0

Invoke subprograms declared in sibling blocks

The following examples show how subprograms can be invoked that are declared in

 a sibling block relative to the local, parent, or other ancestor blocks from where the

invocation of the subprogram is made.

In this example, the executable section of the level_1b procedure invokes the level_1a

procedure, which is the sibling block of the level_1b procedure. Both are local to the level_0

 standalone procedure.

Issue: 20200701 213

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

Note that invocation of level_2a or equivalently level_1a.level_2a from within the level_1b

 procedure is commented out because this call would result in an error. Invoking a

descendent subprogram (level_2a) of sibling block (level_1a) is not permitted.

CREATE OR REPLACE PROCEDURE level_0
IS
 v_cnt NUMBER(2) := 0;
 PROCEDURE level_1a
 IS
 PROCEDURE level_2a
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2a');
 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');
 END level_2a;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');
 END level_1a;
 PROCEDURE level_1b
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1b');
 level_1a; -- Sibling block called
-- level_2a; -- Error – Descendant of sibling block
-- level_1a.level_2a; -- Error - Descendant of sibling block
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1b');
 END level_1b;
BEGIN
 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');
 level_1b;
 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');
END level_0;

The following output is generated:

BEGIN
 level_0;
END;

BLOCK level_0
.. BLOCK level_1b
.. BLOCK level_1a
.. END BLOCK level_1a
.. END BLOCK level_1b
END BLOCK level_0

In the following example, the level_1a procedure is invoked. This procedure is the sibling of

the level_1b procedure, which is an ancestor of the level_3b procedure.

CREATE OR REPLACE PROCEDURE level_0
IS
 PROCEDURE level_1a
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');
 END level_1a;
 PROCEDURE level_1b

214 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 IS
 PROCEDURE level_2b
 IS
 PROCEDURE level_3b
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('........ BLOCK level_3b');
 level_1a; -- Ancestor's sibling block called
 level_0.level_1a; -- Qualified ancestor's sibling block
 DBMS_OUTPUT.PUT_LINE('........ END BLOCK level_3b');
 END level_3b;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2b');
 level_3b; -- Local block called
 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2b');
 END level_2b;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1b');
 level_2b; -- Local block called
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1b');
 END level_1b;
BEGIN
 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');
 level_1b;
 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');
END level_0;

The following output is generated:

BEGIN
 level_0;
END;

BLOCK level_0
.. BLOCK level_1b
...... BLOCK level_2b
........ BLOCK level_3b
.. BLOCK level_1a
.. END BLOCK level_1a
.. BLOCK level_1a
.. END BLOCK level_1a
........ END BLOCK level_3b
...... END BLOCK level_2b
.. END BLOCK level_1b
END BLOCK level_0

7.5.6 Use forward declarations
When a subprogram is to be invoked, it must have been declared somewhere in the

hierarchy of blocks within the standalone program, but prior to where it is invoked. In other

 words, when scanning the SPL code from beginning to end, the subprogram declaration

must be found before its invocation.

However, there is a method of constructing the SPL code so that the full declaration of the

 subprogram (that is, the optional declaration section, mandatory executable section, and

Issue: 20200701 215

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 optional exception section of the subprogram) appears in the SPL code after the point in

the code where it is invoked.

This is accomplished by inserting a forward declaration in the SPL code prior to its

invocation. The forward declaration is the specification of a subprocedure or subfunction

name, formal parameters, and return type if it is a subfunction.

The full subprogram specification consisting of the optional declaration section, the

executable section, and the optional exception section must be specified in the same

 declaration section as the forward declaration, but may appear following other

subprogram declarations that invoke this subprogram with the forward declaration.

The following example shows the typical usage of a forward declaration, which is when

two subprograms invoke each other:

DECLARE
 FUNCTION add_one (
 p_add IN NUMBER
) RETURN NUMBER;
 FUNCTION test_max (
 p_test IN NUMBER)
 RETURN NUMBER
 IS
 BEGIN
 IF p_test < 5 THEN
 RETURN add_one(p_test);
 END IF;
 DBMS_OUTPUT.PUT('Final value is ');
 RETURN p_test;
 END;
 FUNCTION add_one (
 p_add IN NUMBER)
 RETURN NUMBER
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Increase by 1');
 RETURN test_max(p_add + 1);
 END;
BEGIN
 DBMS_OUTPUT.PUT_LINE(test_max(3));
END;

Subfunction test_max invokes subfunction add_one, which also invokes subfunction

test_max. Therefore, a forward declaration is required for one of the subprograms, which is

implemented for add_one at the beginning of the anonymous block declaration section.

The following output is generated by the anonymous block:

Increase by 1
Increase by 1

216 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

Final value is 5

7.5.7 Overload subprograms
Generally, subprograms of the same type (subprocedure or subfunction) with the same

name and the same formal parameter specification can appear multiple times within the

same standalone program as long as they are not sibling blocks (that is, the subprograms

are not declared in the same local block).

Each subprogram can be individually invoked depending on the use of qualifiers and the

location where the subprogram invocation is made.

However, if subprograms are of the same subprogram type and name as long as certain

aspects of the formal parameters differ, you can declare the subprograms, even as siblings

. These characteristics, such as subprogram type, name, and formal parameter specificat

ion, are generally known as the signature of a program.

The declaration of multiple subprograms where the signatures are identical except

for certain aspects of the formal parameter specification is referred to as subprogram

overloading.

Therefore, the determination of which specified overloaded subprogram is to be invoked is

 determined by a match of the actual parameters specified by the subprogram invocation

and the formal parameter lists of the overloaded subprograms.

Any of the following differences permit overloaded subprograms:

• The number of formal parameters is different.

• At least one pair of data types of the corresponding formal parameters (that is,

compared according to the same order of appearance in the formal parameter list) are

different, but are not aliases. Data type aliases are discussed later in this topic.

Note that the following differences alone do not permit overloaded subprograms:

• Different formal parameter names

• Different parameter modes (IN, IN OUT, OUT) for the corresponding formal parameters

• For subfunctions, different data types in the RETURN clause

Therefore, one of the differences that allows overloaded subprograms are different data

types.

However, certain data types have alternative names referred to as aliases, which can be

used for the table definition.

Issue: 20200701 217

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

For example, there are fixed length character data types that can be specified as CHAR or

CHARACTER. There are variable length character data types that can be specified as CHAR

VARYING, CHARACTER VARYING, VARCHAR, or VARCHAR2. For integers, there are BINARY_INT

EGER, PLS_INTEGER, and INTEGER data types. For numbers, there are NUMBER, NUMERIC,

DEC, and DECIMAL data types.

Therefore, in an attempt to create overloaded subprograms, the formal parameter data

types are not considered different if the specified data types are aliases of each other.

It can be determined if certain data types are aliases of other types by displaying the table

definition that contains the data types in question.

For example, the following table definition contains some data types and their aliases:

CREATE TABLE data_type_aliases (
 dt_BLOB BLOB,
 dt_LONG_RAW LONG RAW,
 dt_RAW RAW(4),
 dt_BYTEA BYTEA,
 dt_INTEGER INTEGER,
 dt_BINARY_INTEGER BINARY_INTEGER,
 dt_PLS_INTEGER PLS_INTEGER,
 dt_REAL REAL,
 dt_DOUBLE_PRECISION DOUBLE PRECISION,
 dt_FLOAT FLOAT,
 dt_NUMBER NUMBER,
 dt_DECIMAL DECIMAL,
 dt_NUMERIC NUMERIC,
 dt_CHAR CHAR,
 dt_CHARACTER CHARACTER,
 dt_VARCHAR2 VARCHAR2(4),
 dt_CHAR_VARYING CHAR VARYING(4),
 dt_VARCHAR VARCHAR(4)
);

Using the PSQL \d statement to display the table definition, the Type column displays the

data type internally assigned to each column based on its data type in the table definition:

\d data_type_aliases
 Column | Type | Modifiers
---------------------+----------------------+-----------
 dt_blob | bytea |
 dt_long_raw | bytea |
 dt_raw | bytea(4) |
 dt_bytea | bytea |
 dt_integer | integer |
 dt_binary_integer | integer |
 dt_pls_integer | integer |
 dt_real | real |
 dt_double_precision | double precision |
 dt_float | double precision |
 dt_number | numeric |
 dt_decimal | numeric |
 dt_numeric | numeric |
 dt_char | character(1) |

218 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 dt_character | character(1) |
 dt_varchar2 | character varying(4) |
 dt_char_varying | character varying(4) |
 dt_varchar | character varying(4) |

In the example, the base set of data types are bytea, integer, real, double precision,

numeric, character, and character varying.

When attempting to declare overloaded subprograms, a pair of formal parameter

data types that are aliases is insufficient to allow subprogram overloading. Therefore

, parameters with data types INTEGER and PLS_INTEGER cannot overload a pair of

subprograms, but data types INTEGER and REAL, INTEGER and FLOAT, or INTEGER and

NUMBER can overload the subprograms.

Note:

The overloading rules based on formal parameter data types are not compatible with

Oracle databases. Generally, the PolarDB database compatible with Oracle rules are more

flexible. However, some combinations that are allowed in PolarDB databases compatible

with Oracle would result in an error when attempting to create the procedure or function in

Oracle databases.

For certain pairs of data types used for overloading, casting of the arguments specified by

the subprogram invocation may be required to avoid an error encountered during runtime

of the subprogram. Invocation of a subprogram must include the actual parameter list that

 can specifically identify the data types. Certain pairs of overloaded data types may require

 the CAST function to explicitly identify data types. For example, pairs of overloaded data

types that may require casting during the invocation are CHAR and VARCHAR2, or NUMBER

and REAL.

The following example shows a group of overloaded subfunctions invoked from within an

anonymous block. The executable section of the anonymous block contains the use of the

CAST function to invoke overloaded functions that have certain data types.

DECLARE
 FUNCTION add_it (
 p_add_1 IN BINARY_INTEGER,
 p_add_2 IN BINARY_INTEGER
) RETURN VARCHAR2
 IS
 BEGIN
 RETURN 'add_it BINARY_INTEGER: ' || TO_CHAR(p_add_1 + p_add_2,9999.9999);
 END add_it;
 FUNCTION add_it (
 p_add_1 IN NUMBER,
 p_add_2 IN NUMBER
) RETURN VARCHAR2

Issue: 20200701 219

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 IS
 BEGIN
 RETURN 'add_it NUMBER: ' || TO_CHAR(p_add_1 + p_add_2,999.9999);
 END add_it;
 FUNCTION add_it (
 p_add_1 IN REAL,
 p_add_2 IN REAL
) RETURN VARCHAR2
 IS
 BEGIN
 RETURN 'add_it REAL: ' || TO_CHAR(p_add_1 + p_add_2,9999.9999);
 END add_it;
 FUNCTION add_it (
 p_add_1 IN DOUBLE PRECISION,
 p_add_2 IN DOUBLE PRECISION
) RETURN VARCHAR2
 IS
 BEGIN
 RETURN 'add_it DOUBLE PRECISION: ' || TO_CHAR(p_add_1 + p_add_2,9999.9999);
 END add_it;
BEGIN
 DBMS_OUTPUT.PUT_LINE(add_it (25, 50));
 DBMS_OUTPUT.PUT_LINE(add_it (25.3333, 50.3333));
 DBMS_OUTPUT.PUT_LINE(add_it (TO_NUMBER(25.3333), TO_NUMBER(50.3333)));
 DBMS_OUTPUT.PUT_LINE(add_it (CAST('25.3333' AS REAL), CAST('50.3333' AS REAL)));
 DBMS_OUTPUT.PUT_LINE(add_it (CAST('25.3333' AS DOUBLE PRECISION),
 CAST('50.3333' AS DOUBLE PRECISION)));
END;

The following output is displayed from the anonymous block:

add_it BINARY_INTEGER: 75.0000
add_it NUMBER: 75.6666
add_it NUMBER: 75.6666
add_it REAL: 75.6666
add_it DOUBLE PRECISION: 75.6666

7.5.8 Access subprogram variables
Variable declared in blocks such as subprograms or anonymous blocks can be accessed

 from the executable section or the exception section of other blocks depending on their

relative location.

Accessing a variable means being able to reference it within a SQL statement or an SPL

statement as is done with any local variable.

Note:

If the subprogram signature contains formal parameters, these may be accessed in the

same manner as local variables of the subprogram. In this topic, all discussion related to

variables of a subprogram also applies to formal parameters of the subprogram.

Access of variables includes those defined as a data type and others such as record types,

collection types, and cursors.

220 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

The variable may be accessed by up to one qualifier, which is the name of the subprogram

or labeled anonymous block in which the variable has been locally declared.

The following content shows the syntax to reference a variable:

[qualifier.]variable

If specified, qualifier is the subprogram or labeled anonymous block in which variable has

been declared in its declaration section (that is, variable is a local variable).

In PolarDB databases compatible with Oracle, there is only one circumstance where two

qualifiers are permitted. This scenario is for accessing public variables of packages where

the reference can be specified in the following format:

schema_name.package_name.public_variable_name

The following content summarizes how variables can be accessed:

• Variables can be accessed as long as the block in which the variable has been locally

declared is within the ancestor hierarchical path starting from the block containing the

 reference to the variable. Such variables declared in ancestor blocks are referred to as

global variables.

• If a reference to an unqualified variable is made, the first attempt is to locate a local

variable of that name. If the specified local variable does not exist, the search for the

 variable is made in the parent of the current block, and so forth, proceeding up the

ancestor hierarchy. If the specified variable is not found, an error occurs upon invocation

 of the subprogram.

• If a reference to a qualified variable is made, the same search process is performed

 as described in the previous bullet point, but searching for the first match of the

subprogram or labeled anonymous block that contains the local variable. The search

proceeds up the ancestor hierarchy until a match is found. If the specified match is not

found, an error occurs upon invocation of the subprogram.

The following location of variables cannot be accessed relative to the block from where the

reference to the variable is made:

• Variables declared in a descendent block cannot be accessed

• Variables declared in a sibling block, a sibling block of an ancestor block, or any

descendants within the sibling block cannot be accessed.

Note:

Issue: 20200701 221

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

The PolarDB database compatible with Oracle process for accessing variables is not

compatible with Oracle databases. For Oracle, any number of qualifiers can be specified

and the search is based on the first match of the first qualifier in a similar manner to the

Oracle matching algorithm for invoking subprograms.

The following example displays how variables in various blocks are accessed, with and

without qualifiers. The lines that are commented out illustrate attempts to access variables

that would result in an error.

CREATE OR REPLACE PROCEDURE level_0
IS
 v_level_0 VARCHAR2(20) := 'Value from level_0';
 PROCEDURE level_1a
 IS
 v_level_1a VARCHAR2(20) := 'Value from level_1a';
 PROCEDURE level_2a
 IS
 v_level_2a VARCHAR2(20) := 'Value from level_2a';
 BEGIN
 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2a');
 DBMS_OUTPUT.PUT_LINE('........ v_level_2a: ' || v_level_2a);
 DBMS_OUTPUT.PUT_LINE('........ v_level_1a: ' || v_level_1a);
 DBMS_OUTPUT.PUT_LINE('........ level_1a.v_level_1a: ' ||
 level_1a.v_level_1a);
 DBMS_OUTPUT.PUT_LINE('........ v_level_0: ' || v_level_0);
 DBMS_OUTPUT.PUT_LINE('........ level_0.v_level_0: ' || level_0.v_level_0);
 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');
 END level_2a;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');
 level_2a;
-- DBMS_OUTPUT.PUT_LINE('.... v_level_2a: ' || v_level_2a);
-- Error - Descendent block ----^
-- DBMS_OUTPUT.PUT_LINE('.... level_2a.v_level_2a: ' || level_2a.v_level_2a);
-- Error - Descendent block ---------------^
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');
 END level_1a;
 PROCEDURE level_1b
 IS
 v_level_1b VARCHAR2(20) := 'Value from level_1b';
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1b');
 DBMS_OUTPUT.PUT_LINE('.... v_level_1b: ' || v_level_1b);
 DBMS_OUTPUT.PUT_LINE('.... v_level_0 : ' || v_level_0);
-- DBMS_OUTPUT.PUT_LINE('.... level_1a.v_level_1a: ' || level_1a.v_level_1a);
-- Error - Sibling block -----------------^
-- DBMS_OUTPUT.PUT_LINE('.... level_2a.v_level_2a: ' || level_2a.v_level_2a);
-- Error - Sibling block descendant ------^
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1b');
 END level_1b;
BEGIN
 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');
 DBMS_OUTPUT.PUT_LINE('.. v_level_0: ' || v_level_0);
 level_1a;
 level_1b;
 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');

222 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

END level_0;

The following output shows the content of each variable when the procedure is invoked:

BEGIN
 level_0;
END;

BLOCK level_0
.. v_level_0: Value from level_0
.. BLOCK level_1a
...... BLOCK level_2a
........ v_level_2a: Value from level_2a
........ v_level_1a: Value from level_1a
........ level_1a.v_level_1a: Value from level_1a
........ v_level_0: Value from level_0
........ level_0.v_level_0: Value from level_0
...... END BLOCK level_2a
.. END BLOCK level_1a
.. BLOCK level_1b
.... v_level_1b: Value from level_1b
.... v_level_0 : Value from level_0
.. END BLOCK level_1b
END BLOCK level_0

The following example shows similar access attempts when all variables in all blocks have

the same name:

CREATE OR REPLACE PROCEDURE level_0
IS
 v_common VARCHAR2(20) := 'Value from level_0';
 PROCEDURE level_1a
 IS
 v_common VARCHAR2(20) := 'Value from level_1a';
 PROCEDURE level_2a
 IS
 v_common VARCHAR2(20) := 'Value from level_2a';
 BEGIN
 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2a');
 DBMS_OUTPUT.PUT_LINE('........ v_common: ' || v_common);
 DBMS_OUTPUT.PUT_LINE('........ level_2a.v_common: ' || level_2a.v_common);
 DBMS_OUTPUT.PUT_LINE('........ level_1a.v_common: ' || level_1a.v_common);
 DBMS_OUTPUT.PUT_LINE('........ level_0.v_common: ' || level_0.v_common);
 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');
 END level_2a;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');
 DBMS_OUTPUT.PUT_LINE('.... v_common: ' || v_common);
 DBMS_OUTPUT.PUT_LINE('.... level_0.v_common: ' || level_0.v_common);
 level_2a;
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');
 END level_1a;
 PROCEDURE level_1b
 IS
 v_common VARCHAR2(20) := 'Value from level_1b';
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1b');
 DBMS_OUTPUT.PUT_LINE('.... v_common: ' || v_common);
 DBMS_OUTPUT.PUT_LINE('.... level_0.v_common : ' || level_0.v_common);
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1b');
 END level_1b;

Issue: 20200701 223

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

BEGIN
 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');
 DBMS_OUTPUT.PUT_LINE('.. v_common: ' || v_common);
 level_1a;
 level_1b;
 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');
END level_0;

The following output shows the content of each variable when the procedure is invoked:

BEGIN
 level_0;
END;

BLOCK level_0
.. v_common: Value from level_0
.. BLOCK level_1a
.... v_common: Value from level_1a
.... level_0.v_common: Value from level_0
...... BLOCK level_2a
........ v_common: Value from level_2a
........ level_2a.v_common: Value from level_2a
........ level_1a.v_common: Value from level_1a
........ level_0.v_common: Value from level_0
...... END BLOCK level_2a
.. END BLOCK level_1a
.. BLOCK level_1b
.... v_common: Value from level_1b
.... level_0.v_common : Value from level_0
.. END BLOCK level_1b
END BLOCK level_0

As previously discussed, the labels on anonymous blocks can also be used to control

access to variables. The following example shows variable access within a set of nested

anonymous blocks:

DECLARE
 v_common VARCHAR2(20) := 'Value from level_0';
BEGIN
 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');
 DBMS_OUTPUT.PUT_LINE('.. v_common: ' || v_common);
 <<level_1a>>
 DECLARE
 v_common VARCHAR2(20) := 'Value from level_1a';
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');
 DBMS_OUTPUT.PUT_LINE('.... v_common: ' || v_common);
 <<level_2a>>
 DECLARE
 v_common VARCHAR2(20) := 'Value from level_2a';
 BEGIN
 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2a');
 DBMS_OUTPUT.PUT_LINE('........ v_common: ' || v_common);
 DBMS_OUTPUT.PUT_LINE('........ level_1a.v_common: ' || level_1a.v_common);
 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');
 END;
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');
 END;
 <<level_1b>>
 DECLARE

224 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 v_common VARCHAR2(20) := 'Value from level_1b';
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1b');
 DBMS_OUTPUT.PUT_LINE('.... v_common: ' || v_common);
 DBMS_OUTPUT.PUT_LINE('.... level_1b.v_common: ' || level_1b.v_common);
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1b');
 END;
 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');
END;

The following output shows the content of each variable when the anonymous block is

invoked:

BLOCK level_0
.. v_common: Value from level_0
.. BLOCK level_1a
.... v_common: Value from level_1a
...... BLOCK level_2a
........ v_common: Value from level_2a
........ level_1a.v_common: Value from level_1a
...... END BLOCK level_2a
.. END BLOCK level_1a
.. BLOCK level_1b
.... v_common: Value from level_1b
.... level_1b.v_common: Value from level_1b
.. END BLOCK level_1b
END BLOCK level_0

The following example is an object type whose object type method of display_emp

contains the emp_typ record type and the emp_sal_query subprocedure. The r_emp record

 variable declared locally to emp_sal_query is able to access the emp_typ record type

declared in the display_emp parent block.

CREATE OR REPLACE TYPE emp_pay_obj_typ AS OBJECT
(
 empno NUMBER(4),
 MEMBER PROCEDURE display_emp(SELF IN OUT emp_pay_obj_typ)
);

CREATE OR REPLACE TYPE BODY emp_pay_obj_typ AS
 MEMBER PROCEDURE display_emp (SELF IN OUT emp_pay_obj_typ)
 IS
 TYPE emp_typ IS RECORD (
 ename emp.ename%TYPE,
 job emp.job%TYPE,
 hiredate emp.hiredate%TYPE,
 sal emp.sal%TYPE,
 deptno emp.deptno%TYPE
);
 PROCEDURE emp_sal_query (
 p_empno IN emp.empno%TYPE
)
 IS
 r_emp emp_typ;
 v_avgsal emp.sal%TYPE;
 BEGIN
 SELECT ename, job, hiredate, sal, deptno
 INTO r_emp.ename, r_emp.job, r_emp.hiredate, r_emp.sal, r_emp.deptno
 FROM emp WHERE empno = p_empno;

Issue: 20200701 225

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || r_emp.ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || r_emp.job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || r_emp.hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || r_emp.sal);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || r_emp.deptno);

 SELECT AVG(sal) INTO v_avgsal
 FROM emp WHERE deptno = r_emp.deptno;
 IF r_emp.sal > v_avgsal THEN
 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '
 || 'department average of ' || v_avgsal);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '
 || 'department average of ' || v_avgsal);
 END IF;
 END;
 BEGIN
 emp_sal_query(SELF.empno);
 END;
END;

The following output is displayed when an instance of the object type is created and the

display_emp procedure is invoked:

DECLARE
 v_emp EMP_PAY_OBJ_TYP;
BEGIN
 v_emp := emp_pay_obj_typ(7900);
 v_emp.display_emp;
END;

Employee # : 7900
Name : JAMES
Job : CLERK
Hire Date : 03-DEC-81 00:00:00
Salary : 950.00
Dept # : 30
Employee's salary does not exceed the department average of 1566.67

The following example is a package with three levels of subprocedures. A record type,

collection type, and cursor type declared in the upper level procedure can be accessed by

the descendent subprocedure.

CREATE OR REPLACE PACKAGE emp_dept_pkg
IS
 PROCEDURE display_emp (
 p_deptno NUMBER
);
END;

CREATE OR REPLACE PACKAGE BODY emp_dept_pkg
IS
 PROCEDURE display_emp (
 p_deptno NUMBER
)
 IS
 TYPE emp_rec_typ IS RECORD (
 empno emp.empno%TYPE,

226 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 ename emp.ename%TYPE
);
 TYPE emp_arr_typ IS TABLE OF emp_rec_typ INDEX BY BINARY_INTEGER;
 TYPE emp_cur_type IS REF CURSOR RETURN emp_rec_typ;
 PROCEDURE emp_by_dept (
 p_deptno emp.deptno%TYPE
)
 IS
 emp_arr emp_arr_typ;
 emp_refcur emp_cur_type;
 i BINARY_INTEGER := 0;
 PROCEDURE display_emp_arr
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 FOR j IN emp_arr.FIRST .. emp_arr.LAST LOOP
 DBMS_OUTPUT.PUT_LINE(emp_arr(j).empno || ' ' ||
 emp_arr(j).ename);
 END LOOP;
 END display_emp_arr;
 BEGIN
 OPEN emp_refcur FOR SELECT empno, ename FROM emp WHERE deptno =
p_deptno;
 LOOP
 i := i + 1;
 FETCH emp_refcur INTO emp_arr(i).empno, emp_arr(i).ename;
 EXIT WHEN emp_refcur%NOTFOUND;
 END LOOP;
 CLOSE emp_refcur;
 display_emp_arr;
 END emp_by_dept;
 BEGIN
 emp_by_dept(p_deptno);
 END;
END;

The following output is generated when the top level package procedure is invoked:

BEGIN
 emp_dept_pkg.display_emp(20);
END;

EMPNO ENAME
----- -------
7369 SMITH
7566 JONES
7788 SCOTT
7876 ADAMS
7902 FORD

7.6 Program security

7.6.1 EXECUTE privileges
An SPL program (function, procedure, or package) can begin execution only if any of the

following conditions are met:

Issue: 20200701 227

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

• The current user has been granted the EXECUTE privilege on the SPL program.

• The current user inherits the EXECUTE privilege on the SPL program by virtue of being a

member of a group which have such privilege.

• EXECUTE privilege has been granted to the PUBLIC group.

Whenever you create an SPL program in a PolarDB database compatible with Oracle, the

EXECUTE privilege is automatically granted to the PUBLIC group by default. Therefore, any

user can immediately execute the program.

This default privilege can be removed by using the REVOKE EXECUTE statement. Example:

REVOKE EXECUTE ON PROCEDURE list_emp FROM PUBLIC;

Then explicit the EXECUTE privilege on the program can be granted to individual users or

groups.

GRANT EXECUTE ON PROCEDURE list_emp TO john;

Now, User john can execute the list_emp program. Other users who do not meet any of the

conditions listed at the beginning of this section cannot.

After a program begins execution, the next aspect of security is what privilege checks occur

if the program attempts to perform an action on any database object including:

• Reading or modifying table or view data

• Creating, modifying, or deleting a database object such as a table, view, index, or

sequence

• Obtaining the current or next value from a sequence

• Calling another program such as function, procedure, or package

Each such action can be protected by privileges on the database object that is allowed or

disallowed for the user.

Note:

A database can have multiple objects of the same type with the same name, but each such

object belonging to a different schema in the database. For more information about which

object is being referenced by an SPL program in this case, see Database object name

resolution.

228 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

7.6.2 Database object name resolution
A database object inside an SPL program may be referenced by the qualified name or by an

 unqualified name of the database object. A qualified name is in the form of schema.name

 where schema is the name of the schema under which the database object with identifier,

name, exists. An unqualified name does not have the schema. portion. When a reference is

 made to a qualified name, there cannot be ambiguity as to exactly which database object

is intended - it does or does not exist in the specified schema.

However, finding an object with an unqualified name requires the use of the search path of

 the current user. When a user becomes the current user of a session, a default search path

is always associated with that user. The search path consists of a list of schemas, which are

 searched in left-to-right order for finding an unqualified database object reference. The

object is considered non-existent if it cannot be found in any of the schemas in the search

 path. The default search path can be displayed in PSQL by using the SHOW search_path

statement.

edb=# SHOW search_path;
 search_path

 "$user", public
(1 row)

$user in the above search path is a generic placeholder that refers to the current user.

Therefore, if the current user of the above session is enterprisedb, an unqualified database

 object would be searched for in the following schemas in this order - first, enterprisedb,

then public.

After an unqualified name has been resolved in the search path, it can be determined if the

 current user has the appropriate privilege to perform the action on that specific object.

Note:

The concept of the search path is not compatible with Oracle databases. For an

unqualified reference, Oracle looks only in the schema of the current user for the named

database object. Also note that in Oracle, a user and the schema of the user is the same

entity while in PolarDB databases compatible with Oracle, a user and a schema are two

distinct objects.

Issue: 20200701 229

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

7.6.3 Database object privileges
After an SPL program begins execution, any attempt to access a database object from

within the program results in a check to ensure the current user has the authorization to

perform the intended action against the referenced object. Privileges on database objects

are respectively bestowed and removed by using the GRANT and REVOKE statements. If the

current user attempts unauthorized access on a database object, the program will throw an

 exception.

7.6.4 Rights of definers and invokers
When an SPL program is about to execute, you need to determine what user is to be

associated with this process. This user is referred to as the current user. Database object

privileges of the current user are used to determine whether access to database objects

referenced in the program will be permitted. The current, prevailing search path in effect

when the program is invoked will be used to resolve any unqualified object references.

The selection of the current user is influenced by whether the SPL program was created

 with the rights of definers or invokers. The AUTHID clause determines that selection

. Appearance of the clause AUTHID DEFINER gives the program rights of the definer.

This is also the default value if the AUTHID clause is omitted. Use of the clause AUTHID

CURRENT_USER gives the program rights of invokers. The following content summarizes the

 differences between the two rights:

• If a program has rights of the definer, the owner of the program becomes the current

user when program execution begins. Database object privileges of the program owner

are used to determine if access to a referenced object is permitted. In a program that has

 rights of the definer, it is irrelevant as to which user actually invoked the program.

• If a program has the rights of the invoker, the current user at the time when the program

 is called remains the current user while the program is executing (but not necessaril

y within called subprograms, see the following bullet points). When a program that

has rights of the invoker is invoked, the current user is typically the user that started

the session (that is, made the database connection). However, the current user can be

 changed after the session has started by using the SET ROLE statement. In a program

that has rights of the invoker, it is irrelevant as to which user actually owns the program.

From the previous definitions, the following observations can be made:

230 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

• If a program that has rights of the definer calls a program that has rights of the definer

, the current user changes from the owner of the calling program to the owner of the

called program during execution of the called program.

• If a program that has rights of the definer calls a program that has rights of the invoker,

the owner of the calling program remains the current user during execution of both the

calling and called programs.

• If a program that has rights of the invoker calls a program that has rights of the invoker,

the current user of the calling program remains the current user during execution of the

called program.

• If a program that has rights of the invoker calls a program that has rights of the definer

, the current user switches to the owner of the program that has rights of the definer

during execution of the called program.

The same principles apply if the called program in turn calls another program in the cases

cited above.

7.6.5 Security examples
In the following example, a new database will be created along with two users: hr_mgr

 and sales_mgr. hr_mgr will own a copy of the entire sample application in the hr_mgr

schema. sales_mgr will own a schema named sales_mgr that will have a copy of only the

emp table containing only the employees who work in sales.

The list_emp procedure, hire_clerk function, and emp_admin package will be used in this

 example. All of the default privileges that are granted upon installation of the sample

application will be removed and then be explicitly re-granted to present a more secure

environment in this example.

The list_emp and hire_clerk programs will be changed from the default of definer rights to

invoker rights. It will be then illustrated that when sales_mgr runs these programs, they act

 upon the emp table in the sales_mgr schema because the search path and privileges of

sales_mgr will be used for name resolution and authorization checking.

The get_dept_name and hire_emp programs in the emp_admin package will then be

executed by sales_mgr. In this case, the dept table and emp table in the hr_mgr schema

will be accessed because hr_mgr is the owner of the emp_admin package which is using

definer rights. Because the default search path is in effect with the $user placeholder, the

schema matching the user (in this case, hr_mgr) is used to find the tables.

Issue: 20200701 231

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

Create a database and users

Create the hr database as user enterprisedb:

CREATE DATABASE hr;

Switch to the hr database and create users:

\c hr enterprisedb
CREATE USER hr_mgr IDENTIFIED BY password;
CREATE USER sales_mgr IDENTIFIED BY password;

Create the sample application

Create the entire sample application owned by hr_mgr in the hr_mgr schema.

\c - hr_mgr
\i /usr/edb/as11/share/edb-sample.sql

BEGIN
CREATE TABLE
CREATE TABLE
CREATE TABLE
CREATE VIEW
CREATE SEQUENCE
 .
 .
 .
CREATE PACKAGE
CREATE PACKAGE BODY
COMMIT

Create the emp table in the sales_mgr schema

Create a subset of the emp table owned by sales_mgr in the sales_mgr schema.

\c – hr_mgr
GRANT USAGE ON SCHEMA hr_mgr TO sales_mgr;
\c – sales_mgr
CREATE TABLE emp AS SELECT * FROM hr_mgr.emp WHERE job = 'SALESMAN';

In the above example, the GRANT USAGE ON SCHEMA statement is given to allow sales_mgr

 access into the hr_mgr schema to make a copy of the emp table of hr_mgr. This step is

required in a PolarDB database compatible with Oracle but is not compatible with Oracle

databases because Oracle does not have the concept of a schema that is distinct from its

user.

Remove default privileges

Remove all privileges to later illustrate the minimum required privileges.

\c – hr_mgr
REVOKE USAGE ON SCHEMA hr_mgr FROM sales_mgr;
REVOKE ALL ON dept FROM PUBLIC;

232 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

REVOKE ALL ON emp FROM PUBLIC;
REVOKE ALL ON next_empno FROM PUBLIC;
REVOKE EXECUTE ON FUNCTION new_empno() FROM PUBLIC;
REVOKE EXECUTE ON PROCEDURE list_emp FROM PUBLIC;
REVOKE EXECUTE ON FUNCTION hire_clerk(VARCHAR2,NUMBER) FROM PUBLIC;
REVOKE EXECUTE ON PACKAGE emp_admin FROM PUBLIC;

Change list_emp to invoker rights

While you are connected as user hr_mgr, add the AUTHID CURRENT_USER clause to the

list_emp program and resave it in the PolarDB database compatible with Oracle. When you

 are performing this step, make sure that you log on as hr_mgr. Otherwise, the modified

program may wind up in the public schema instead of in the hr_mgr schema.

CREATE OR REPLACE PROCEDURE list_emp
AUTHID CURRENT_USER
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur IS
 SELECT empno, ename FROM emp ORDER BY empno;
BEGIN
 OPEN emp_cur;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_cur;
END;

Change hire_clerk to invoker rights and qualify call to new_empno

While you are connected as user hr_mgr, add the AUTHID CURRENT_USER clause to the

hire_clerk program.

Additionally, after the BEGIN statement, fully qualify the new_empno reference to hr_mgr.

new_empno to ensure that the hire_clerk function call to the new_empno function resolves

to the hr_mgr schema.

When you resave the program, make sure that you log on as hr_mgr. Otherwise, the

modified program may wind up in the public schema instead of in the hr_mgr schema.

CREATE OR REPLACE FUNCTION hire_clerk (
 p_ename VARCHAR2,
 p_deptno NUMBER
) RETURN NUMBER
AUTHID CURRENT_USER
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_job VARCHAR2(9);
 v_mgr NUMBER(4);

Issue: 20200701 233

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);
 v_deptno NUMBER(2);
BEGIN
 v_empno := hr_mgr.new_empno;
 INSERT INTO emp VALUES (v_empno, p_ename, 'CLERK', 7782,
 TRUNC(SYSDATE), 950.00, NULL, p_deptno);
 SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno INTO
 v_empno, v_ename, v_job, v_mgr, v_hiredate, v_sal, v_comm, v_deptno
 FROM emp WHERE empno = v_empno;
 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);
 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Manager : ' || v_mgr);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Commission : ' || v_comm);
 RETURN v_empno;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
 RETURN -1;
END;

Grant required privileges

While you are connected as user hr_mgr, grant the privileges needed so sales_mgr can

execute the list_emp procedure, hire_clerk function, and emp_admin package. Note that

the only data object that can be accessed by sales_mgr is the emp table in the sales_mgr

schema. sales_mgr has no privileges on any table in the hr_mgr schema.

GRANT USAGE ON SCHEMA hr_mgr TO sales_mgr;
GRANT EXECUTE ON PROCEDURE list_emp TO sales_mgr;
GRANT EXECUTE ON FUNCTION hire_clerk(VARCHAR2,NUMBER) TO sales_mgr;
GRANT EXECUTE ON FUNCTION new_empno() TO sales_mgr;
GRANT EXECUTE ON PACKAGE emp_admin TO sales_mgr;

Run the list_emp and hire_clerk programs

Connect as user sales_mgr and run the following anonymous block:

\c – sales_mgr
DECLARE
 v_empno NUMBER(4);
BEGIN
 hr_mgr.list_emp;
 DBMS_OUTPUT.PUT_LINE('*** Adding new employee ***');
 v_empno := hr_mgr.hire_clerk('JONES',40);
 DBMS_OUTPUT.PUT_LINE('*** After new employee added ***');
 hr_mgr.list_emp;
END;

EMPNO ENAME
----- -------

234 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

7499 ALLEN
7521 WARD
7654 MARTIN
7844 TURNER
*** Adding new employee ***
Department : 40
Employee No: 8000
Name : JONES
Job : CLERK
Manager : 7782
Hire Date : 08-NOV-07 00:00:00
Salary : 950.00
*** After new employee added ***
EMPNO ENAME
----- -------
7499 ALLEN
7521 WARD
7654 MARTIN
7844 TURNER
8000 JONES

The table and sequence accessed by the programs of the anonymous block are illustrated

 in the following diagram. The gray ovals represent the schemas of sales_mgr and hr_mgr

. The current user during each program execution is shown within parenthesis in bold red

font.

Selecting from the emp table of sales_mgr shows that the update was made in this table.

SELECT empno, ename, hiredate, sal, deptno, hr_mgr.emp_admin.get_dept_name(
deptno) FROM sales_mgr.emp;

empno | ename | hiredate | sal | deptno | get_dept_name
-------+--------+--------------------+---------+--------+---------------
 7499 | ALLEN | 20-FEB-81 00:00:00 | 1600.00 | 30 | SALES
 7521 | WARD | 22-FEB-81 00:00:00 | 1250.00 | 30 | SALES
 7654 | MARTIN | 28-SEP-81 00:00:00 | 1250.00 | 30 | SALES
 7844 | TURNER | 08-SEP-81 00:00:00 | 1500.00 | 30 | SALES

Issue: 20200701 235

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 8000 | JONES | 08-NOV-07 00:00:00 | 950.00 | 40 | OPERATIONS
(5 rows)

The following diagram shows that the SELECT statement references the emp table in the

 sales_mgr schema, but the dept table referenced by the get_dept_name function in the

 emp_admin package is from the hr_mgr schema because the emp_admin package has

 definer rights and is owned by hr_mgr. The default search path setting with the $user

placeholder resolves the access by hr_mgr to the dept table in the hr_mgr schema.

Run the hire_emp program in the emp_admin package

While you are connected as user sales_mgr, run the hire_emp procedure in the emp_admin

 package.

EXEC hr_mgr.emp_admin.hire_emp(9001, 'ALICE','SALESMAN',8000,TRUNC(SYSDATE),1000
,7369,40);

This diagram illustrates that the hire_emp procedure in the rights package of the

emp_admin definer updates the emp table belonging to hr_mgr because the object

privileges of hr_mgr are used and the default search path setting with the $user placeholde

r resolves to the hr_mgr schema.

236 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

Connect as user hr_mgr. The following SELECT statement verifies that the new employee

was added to the emp table of hr_mgr because the emp_admin package has definer rights

and hr_mgr is the owner of emp_admin.

\c – hr_mgr
SELECT empno, ename, hiredate, sal, deptno, hr_mgr.emp_admin.get_dept_name(
deptno) FROM hr_mgr.emp;

empno | ename | hiredate | sal | deptno | get_dept_name
-------+--------+--------------------+---------+--------+---------------
 7369 | SMITH | 17-DEC-80 00:00:00 | 800.00 | 20 | RESEARCH
 7499 | ALLEN | 20-FEB-81 00:00:00 | 1600.00 | 30 | SALES
 7521 | WARD | 22-FEB-81 00:00:00 | 1250.00 | 30 | SALES
 7566 | JONES | 02-APR-81 00:00:00 | 2975.00 | 20 | RESEARCH
 7654 | MARTIN | 28-SEP-81 00:00:00 | 1250.00 | 30 | SALES
 7698 | BLAKE | 01-MAY-81 00:00:00 | 2850.00 | 30 | SALES
 7782 | CLARK | 09-JUN-81 00:00:00 | 2450.00 | 10 | ACCOUNTING
 7788 | SCOTT | 19-APR-87 00:00:00 | 3000.00 | 20 | RESEARCH
 7839 | KING | 17-NOV-81 00:00:00 | 5000.00 | 10 | ACCOUNTING
 7844 | TURNER | 08-SEP-81 00:00:00 | 1500.00 | 30 | SALES
 7876 | ADAMS | 23-MAY-87 00:00:00 | 1100.00 | 20 | RESEARCH
 7900 | JAMES | 03-DEC-81 00:00:00 | 950.00 | 30 | SALES
 7902 | FORD | 03-DEC-81 00:00:00 | 3000.00 | 20 | RESEARCH
 7934 | MILLER | 23-JAN-82 00:00:00 | 1300.00 | 10 | ACCOUNTING
 9001 | ALICE | 08-NOV-07 00:00:00 | 8000.00 | 40 | OPERATIONS
(15 rows)

7.7 Variable declarations

Issue: 20200701 237

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

7.7.1 Declare a variable
SPL is a block-structured language. The first section that can appear in a block is the

declaration section. The declaration section contains the definition of variables, cursors,

and other types that can be used in SPL statements contained in the block.

Typically, all variables used in a block must be declared in the declaration section of the

block. A variable declaration consists of a name that is assigned to the variable and the

data type of the variable. Optionally, the variable can be initialized to a default value in the

 variable declaration.

The following example shows the general syntax of a variable declaration:

name type [{ := | DEFAULT } { expression | NULL }];

• name is an identifier assigned to the variable.

• type is the data type assigned to the variable.

[:= expression], if given, specifies the initial value assigned to the variable when the block

is entered. If the clause is not given, the variable is initialized to the SQL NULL value.

The default value is evaluated every time the block is entered. For example, assigning

SYSDATE to a variable of the DATE type causes the variable to have the time of the current

invocation, not the time when the procedure or function was precompiled.

The following procedure illustrates some variable declarations that utilize default values

consisting of string and numeric expressions.

CREATE OR REPLACE PROCEDURE dept_salary_rpt (
 p_deptno NUMBER
)
IS
 todays_date DATE := SYSDATE;
 rpt_title VARCHAR2(60) := 'Report For Department # ' || p_deptno
 || ' on ' || todays_date;
 base_sal INTEGER := 35525;
 base_comm_rate NUMBER := 1.33333;
 base_annual NUMBER := ROUND(base_sal * base_comm_rate, 2);
BEGIN
 DBMS_OUTPUT.PUT_LINE(rpt_title);
 DBMS_OUTPUT.PUT_LINE('Base Annual Salary: ' || base_annual);
END;

The following output of the above procedure shows that default values in the variable

declarations are indeed assigned to the variables.

EXEC dept_salary_rpt(20);

Report For Department # 20 on 10-JUL-07 16:44:45

238 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

Base Annual Salary: 47366.55

7.7.2 Use %TYPE in variable declarations
Typically, variables that are used to hold values from tables in a database are declared in

SPL programs. To ensure compatibility between the table columns and the SPL variables,

the data types of the columns and variables must be the same.

However, as quite often happens, a change might be made to the table definition. If the

 data type of the column is changed, the corresponding change may be required to the

variable in the SPL program.

Instead of coding the specific column data type into the variable declaration, the %TYPE

column attribute can be used. A qualified column name in dot notation or the name of a

previously declared variable must be specified as a prefix to %TYPE. The data type of the

column or variable prefixed to %TYPE is assigned to the variable being declared. If the data

type of the given column or variable changes, the new data type will be associated with the

 variable without the need to modify the declaration code.

Note:

The %TYPE attribute can also be used with formal parameter declarations.

name { { table | view }.column | variable }%TYPE;

name is the identifier assigned to the variable or formal parameter that is being declared.

column is the name of a column in table or view. variable is the name of a variable that was

 declared prior to the variable identified by name.

Note:

The variable does not inherit any other attributes of the column such as the attributes that

might be specified on the column by using the NOT NULL clause or the DEFAULT clause.

In the following example, a procedure queries the emp table by using an employee number

, displays data about the employee, finds the average salary of all employees in the

department to which the employee belongs, and then compares the salary of the chosen

employee with the department average.

CREATE OR REPLACE PROCEDURE emp_sal_query (
 p_empno IN NUMBER
)
IS
 v_ename VARCHAR2(10);
 v_job VARCHAR2(9);
 v_hiredate DATE;

Issue: 20200701 239

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 v_sal NUMBER(7,2);
 v_deptno NUMBER(2);
 v_avgsal NUMBER(7,2);
BEGIN
 SELECT ename, job, hiredate, sal, deptno
 INTO v_ename, v_job, v_hiredate, v_sal, v_deptno
 FROM emp WHERE empno = p_empno;
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || v_deptno);

 SELECT AVG(sal) INTO v_avgsal
 FROM emp WHERE deptno = v_deptno;
 IF v_sal > v_avgsal THEN
 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '
 || 'department average of ' || v_avgsal);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '
 || 'department average of ' || v_avgsal);
 END IF;
END;

Instead of the above, you can write the procedure as follows without explicitly coding the

emp table data types into the declaration section of the procedure.

CREATE OR REPLACE PROCEDURE emp_sal_query (
 p_empno IN emp.empno%TYPE
)
IS
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE;
 v_hiredate emp.hiredate%TYPE;
 v_sal emp.sal%TYPE;
 v_deptno emp.deptno%TYPE;
 v_avgsal v_sal%TYPE;
BEGIN
 SELECT ename, job, hiredate, sal, deptno
 INTO v_ename, v_job, v_hiredate, v_sal, v_deptno
 FROM emp WHERE empno = p_empno;
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || v_deptno);

 SELECT AVG(sal) INTO v_avgsal
 FROM emp WHERE deptno = v_deptno;
 IF v_sal > v_avgsal THEN
 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '
 || 'department average of ' || v_avgsal);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '
 || 'department average of ' || v_avgsal);
 END IF;

240 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

END;

Note:

p_empno shows an example of a formal parameter defined using %TYPE.

v_avgsal illustrates the usage of %TYPE referring to another variable instead of a table

column.

The following example shows the sample output from executing this procedure:

EXEC emp_sal_query(7698);

Employee # : 7698
Name : BLAKE
Job : MANAGER
Hire Date : 01-MAY-81 00:00:00
Salary : 2850.00
Dept # : 30
Employee's salary is more than the department average of 1566.67

7.7.3 Use %ROWTYPE in record declarations
The %TYPE attribute provides an easy way to create a variable dependent upon the data

 type of a column. Using the %ROWTYPE attribute, you can define a record that contains

fields that correspond to all columns of a given table. Each field takes on the data type of

its corresponding column. The fields in the record do not inherit any other attributes of the

columns such as the attributes that might be specified by using the NOT NULL clause or the

DEFAULT clause.

A record is a named, ordered collection of fields. A field is similar to a variable. A field has

an identifier and data type, but has the additional property of belonging to a record. A field

 must be referenced using dot notation with the record name as its qualifier.

You can use the %ROWTYPE attribute to declare a record. The %ROWTYPE attribute is

prefixed by a table name. Each column in the named table defines an identically named

field in the record with the same data type as the column.

record table%ROWTYPE;

record is an identifier assigned to the record. table is the name of a table (or view) whose

 columns are to define the fields in the record. The following example shows how the

emp_sal_query procedure from the prior topic can be modified to use emp%ROWTYPE to

Issue: 20200701 241

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

create a record named r_emp instead of declaring individual variables for the columns in

emp.

CREATE OR REPLACE PROCEDURE emp_sal_query (
 p_empno IN emp.empno%TYPE
)
IS
 r_emp emp%ROWTYPE;
 v_avgsal emp.sal%TYPE;
BEGIN
 SELECT ename, job, hiredate, sal, deptno
 INTO r_emp.ename, r_emp.job, r_emp.hiredate, r_emp.sal, r_emp.deptno
 FROM emp WHERE empno = p_empno;
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || r_emp.ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || r_emp.job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || r_emp.hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || r_emp.sal);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || r_emp.deptno);
 SELECT AVG(sal) INTO v_avgsal
 FROM emp WHERE deptno = r_emp.deptno;
 IF r_emp.sal > v_avgsal THEN
 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '
 || 'department average of ' || v_avgsal);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '
 || 'department average of ' || v_avgsal);
 END IF;
END;

7.7.4 User-defined record types and record variables
Records can be declared based on a table definition by using the %ROWTYPE attribute as

shown in Use %ROWTYPE in record declarations. This topic describes how to define a new

record structure that is not tied to any particular table definition.

The TYPE IS RECORD statement is used to create the definition of a record type. A record

type is a definition of a record comprised of one or more identifiers and their corresponding

 data types. A record type cannot, by itself, be used to manipulate data.

The following example shows the syntax for a TYPE IS RECORD statement:

TYPE rec_type IS RECORD (fields)

fields is a comma-separated list of one or more field definitions in the following form:

field_name data_type [NOT NULL][{:= | DEFAULT} default_value]

The following table describes parameters in the preceding statement.

Parameter Description

rec_type rec_type is an identifier assigned to the record type.

242 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

Parameter Description

field_name field_name is the identifier assigned to the field of the
record type.

data_type data_type specifies the data type of field_name.

DEFAULT default_value The DEFAULT clause assigns a default data value for
the corresponding field. The data type of the default
expression must match the data type of the column. If no
default value is specified, the default value is NULL.

A record variable or simply put, a record, is an instance of a record type. A record is

declared from a record type. The properties of the record such as field names and types are

 inherited from the record type.

The following example shows the syntax for a record declaration:

record rectype

record is an identifier assigned to the record variable. rectype is the identifier of a

previously defined record type. After being declared, a record can be used to hold data.

Dot notation is used to make reference to the fields in the record.

record.field

record is a previously declared record variable and field is the identifier of a field belonging

 to the record type from which record is defined.

emp_sal_query is again modified – this time using a user-defined record type and record

variable.

CREATE OR REPLACE PROCEDURE emp_sal_query (
 p_empno IN emp.empno%TYPE
)
IS
 TYPE emp_typ IS RECORD (
 ename emp.ename%TYPE,
 job emp.job%TYPE,
 hiredate emp.hiredate%TYPE,
 sal emp.sal%TYPE,
 deptno emp.deptno%TYPE
);
 r_emp emp_typ;
 v_avgsal emp.sal%TYPE;
BEGIN
 SELECT ename, job, hiredate, sal, deptno
 INTO r_emp.ename, r_emp.job, r_emp.hiredate, r_emp.sal, r_emp.deptno
 FROM emp WHERE empno = p_empno;
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || r_emp.ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || r_emp.job);

Issue: 20200701 243

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || r_emp.hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || r_emp.sal);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || r_emp.deptno);

 SELECT AVG(sal) INTO v_avgsal
 FROM emp WHERE deptno = r_emp.deptno;
 IF r_emp.sal > v_avgsal THEN
 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '
 || 'department average of ' || v_avgsal);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '
 || 'department average of ' || v_avgsal);
 END IF;
END;

Note that instead of specifying data type names, you can use the %TYPE attribute for the

field data types in the record type definition.

The following output is generated after this stored procedure is executed:

EXEC emp_sal_query(7698);

Employee # : 7698
Name : BLAKE
Job : MANAGER
Hire Date : 01-MAY-81 00:00:00
Salary : 2850.00
Dept # : 30
Employee's salary is more than the department average of 1566.67

7.8 Basic statements

7.8.1 NULL
The simplest statement is the NULL statement. This statement is an executable statement

that does nothing.

NULL;

The following example shows the simplest, possible valid SPL program:

BEGIN
 NULL;
END;

The NULL statement can act as a placeholder where an executable statement is required

such as in a branch of an IF-THEN-ELSE statement.

Example:

CREATE OR REPLACE PROCEDURE divide_it (
 p_numerator IN NUMBER,
 p_denominator IN NUMBER,

244 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 p_result OUT NUMBER
)
IS
BEGIN
 IF p_denominator = 0 THEN
 NULL;
 ELSE
 p_result := p_numerator / p_denominator;
 END IF;
END;

7.8.2 Assignment
An assignment statement sets a variable or a formal parameter of OUT or IN OUT mode

 specified on the left side of the assignment operator := to the evaluated expression

specified on the right side of the assignment operator.

variable := expression;

variable is an identifier for a previously declared variable, OUT formal parameter, or IN OUT

 formal parameter.

expression is an expression that produces a single value. The value produced by the

expression must have a compatible data type with that of variable.

The following example shows the typical use of assignment statements in the executable

section of a procedure:

CREATE OR REPLACE PROCEDURE dept_salary_rpt (
 p_deptno NUMBER
)
IS
 todays_date DATE;
 rpt_title VARCHAR2(60);
 base_sal INTEGER;
 base_comm_rate NUMBER;
 base_annual NUMBER;
BEGIN
 todays_date := SYSDATE;
 rpt_title := 'Report For Department # ' || p_deptno || ' on '
 || todays_date;
 base_sal := 35525;
 base_comm_rate := 1.33333;
 base_annual := ROUND(base_sal * base_comm_rate, 2);

 DBMS_OUTPUT.PUT_LINE(rpt_title);
 DBMS_OUTPUT.PUT_LINE('Base Annual Salary: ' || base_annual);
END;

7.8.3 SELECT INTO
The SELECT INTO statement is an SPL variation of the SQL SELECT statement. The differences

 are as follows:

Issue: 20200701 245

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

• The SELECT INTO statement is designed to assign the results to variables or records

where they can then be used in SPL program statements.

• The accessible result set of SELECT INTO contains at most one row.

Other than the above, all of the clauses of the SELECT statement, such as WHERE, ORDER BY

, GROUP BY, and HAVING, are valid for SELECT INTO. The following example shows the two

variations of SELECT INTO:

SELECT select_expressions INTO target FROM ... ;

target is a comma-separated list of simple variables. select_expressions and the remainder

 of the statement are the same as those of the SELECT statement. The selected values must

 exactly match the structure of the target in data type, number, and order. Otherwise, a

runtime error occurs.

SELECT * INTO record FROM table ... ;

record is a record variable that has previously been declared.

If the query returns zero rows, null values are assigned to the target. If the query returns

multiple rows, the first row is assigned to the target and the rest are discarded. Note that "

the first row" is not well-defined unless you have used ORDER BY.

Note:

If no row is returned or more than one row is returned, SPL throws an exception.

A variation of SELECT INTO uses the BULK COLLECT clause. The variation allows a result set

of more than one row that is returned into a collection.

You can use the WHEN NO_DATA_FOUND clause in an EXCEPTION block to determine

whether the assignment was successful. When the assignment was successful, at least one

row was returned by the query.

This version of the emp_sal_query procedure uses the variation of SELECT INTO that returns

the result set into a record. Note the addition of the EXCEPTION block containing the WHEN

NO_DATA_FOUND conditional expression.

CREATE OR REPLACE PROCEDURE emp_sal_query (
 p_empno IN emp.empno%TYPE
)
IS
 r_emp emp%ROWTYPE;
 v_avgsal emp.sal%TYPE;
BEGIN
 SELECT * INTO r_emp
 FROM emp WHERE empno = p_empno;

246 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || r_emp.ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || r_emp.job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || r_emp.hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || r_emp.sal);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || r_emp.deptno);

 SELECT AVG(sal) INTO v_avgsal
 FROM emp WHERE deptno = r_emp.deptno;
 IF r_emp.sal > v_avgsal THEN
 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '
 || 'department average of ' || v_avgsal);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '
 || 'department average of ' || v_avgsal);
 END IF;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');
END;

If the query is executed with a non-existent employee number, the following results appear

:

EXEC emp_sal_query(0);

Employee # 0 not found

Another conditional clause used in the EXCEPTION section with SELECT INTO is the

TOO_MANY_ROWS exception. If more than one row is selected by the SELECT INTO

statement, an exception is thrown by SPL.

When the following block is executed, the TOO_MANY_ROWS exception is thrown because

many employees exist in the specified department.

DECLARE
 v_ename emp.ename%TYPE;
BEGIN
 SELECT ename INTO v_ename FROM emp WHERE deptno = 20 ORDER BY ename;
EXCEPTION
 WHEN TOO_MANY_ROWS THEN
 DBMS_OUTPUT.PUT_LINE('More than one employee found');
 DBMS_OUTPUT.PUT_LINE('First employee returned is ' || v_ename);
END;

More than one employee found
First employee returned is ADAMS

7.8.4 INSERT
The INSERT statement available in the SQL language can also be used in SPL programs.

An expression in the SPL language can be used wherever an expression is allowed in the

 SQL INSERT statement. Therefore, SPL variables and parameters can be used to supply

values to the insert operation.

Issue: 20200701 247

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

The following example shows the procedure that inserts a new employee by using data

passed from a calling program:

CREATE OR REPLACE PROCEDURE emp_insert (
 p_empno IN emp.empno%TYPE,
 p_ename IN emp.ename%TYPE,
 p_job IN emp.job%TYPE,
 p_mgr IN emp.mgr%TYPE,
 p_hiredate IN emp.hiredate%TYPE,
 p_sal IN emp.sal%TYPE,
 p_comm IN emp.comm%TYPE,
 p_deptno IN emp.deptno%TYPE
)
IS
BEGIN
 INSERT INTO emp VALUES (
 p_empno,
 p_ename,
 p_job,
 p_mgr,
 p_hiredate,
 p_sal,
 p_comm,
 p_deptno);

 DBMS_OUTPUT.PUT_LINE('Added employee...') ;
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || p_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || p_job);
 DBMS_OUTPUT.PUT_LINE('Manager : ' || p_mgr);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || p_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || p_sal);
 DBMS_OUTPUT.PUT_LINE('Commission : ' || p_comm);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || p_deptno);
 DBMS_OUTPUT.PUT_LINE('----------------------');
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('OTHERS exception on INSERT of employee # '
 || p_empno);
 DBMS_OUTPUT.PUT_LINE('SQLCODE : ' || SQLCODE);
 DBMS_OUTPUT.PUT_LINE('SQLERRM : ' || SQLERRM);
END;

If an exception occurs, all database changes made in the procedure are automatically

rolled back. In this example, the EXCEPTION section with the WHEN OTHERS clause catches

 all exceptions. Two variables appear. SQLCODE is a number that identifies the specific

exception that occurred. SQLERRM is a text message explaining the error.

The following output is generated when this procedure is executed:

EXEC emp_insert(9503,'PETERSON','ANALYST',7902,'31-MAR-05',5000,NULL,40);

Added employee...
Employee # : 9503
Name : PETERSON
Job : ANALYST
Manager : 7902
Hire Date : 31-MAR-05 00:00:00

248 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

Salary : 5000
Dept # : 40

SELECT * FROM emp WHERE empno = 9503;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+----------+---------+------+--------------------+---------+------+--------
 9503 | PETERSON | ANALYST | 7902 | 31-MAR-05 00:00:00 | 5000.00 | | 40
(1 row)

Note:

The INSERT statement can be included in a FORALL statement. A FORALL statement allows

a single INSERT statement to insert multiple rows from values supplied in one or more

collections.

7.8.5 UPDATE
The UPDATE statement available in the SQL language can also be used in SPL programs.

An expression in the SPL language can be used wherever an expression is allowed in the

 SQL UPDATE statement. Therefore, SPL variables and parameters can be used to supply

values to the update operation.

CREATE OR REPLACE PROCEDURE emp_comp_update (
 p_empno IN emp.empno%TYPE,
 p_sal IN emp.sal%TYPE,
 p_comm IN emp.comm%TYPE
)
IS
BEGIN
 UPDATE emp SET sal = p_sal, comm = p_comm WHERE empno = p_empno;

 IF SQL%FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Updated Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('New Salary : ' || p_sal);
 DBMS_OUTPUT.PUT_LINE('New Commission : ' || p_comm);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');
 END IF;
END;

If a row is updated, the SQL%FOUND conditional expression returns TRUE. Otherwise, the

expression returns FALSE.

The following example shows the update on the employee using this procedure:

EXEC emp_comp_update(9503, 6540, 1200);

Updated Employee # : 9503
New Salary : 6540
New Commission : 1200

SELECT * FROM emp WHERE empno = 9503;

Issue: 20200701 249

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+----------+---------+------+--------------------+---------+---------+--------
 9503 | PETERSON | ANALYST | 7902 | 31-MAR-05 00:00:00 | 6540.00 | 1200.00 | 40
(1 row)

Note:

The UPDATE statement can be included in a FORALL statement. A FORALL statement allows

a single UPDATE statement to update multiple rows from values supplied in one or more

collections.

7.8.6 DELETE
The DELETE statement available in the SQL language can also be used in SPL programs.

An expression in the SPL language can be used wherever an expression is allowed in the

 SQL DELETE statement. Therefore, SPL variables and parameters can be used to supply

values to the delete operation.

CREATE OR REPLACE PROCEDURE emp_delete (
 p_empno IN emp.empno%TYPE
)
IS
BEGIN
 DELETE FROM emp WHERE empno = p_empno;

 IF SQL%FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Deleted Employee # : ' || p_empno);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');
 END IF;
END;

If a row is deleted, the SQL%FOUND conditional expression returns TRUE. Otherwise, the

expression returns FALSE.

EXEC emp_delete(9503);

Deleted Employee # : 9503

SELECT * FROM emp WHERE empno = 9503;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+-------+-----+-----+----------+-----+------+--------

250 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

(0 rows)

7.8.7 Use the RETURNING INTO clause
The INSERT, UPDATE, and DELETE statements may be appended by the optional RETURNING

INTO clause. This clause allows the SPL program to capture the newly added, modified, or

deleted values from the results of an INSERT, an UPDATE, or a DELETE statement.

The following example shows the syntax:

{ insert | update | delete }
 RETURNING { * | expr_1 [, expr_2] ...}
 INTO { record | field_1 [, field_2] ...} ;

insert is a valid INSERT statement. update is a valid UPDATE statement. delete is a valid

DELETE statement. If * is specified, the values from the row affected by the INSERT, UPDATE

, or DELETE statement are made available for assignment to the record or fields to the

right of the INTO keyword. (Note that the use of * is an extension for PolarDB databases

compatible with Oracle and is not compatible with Oracle databases.) expr_1, expr_2... are

 expressions evaluated upon the row affected by the INSERT, UPDATE, or DELETE statement

. The evaluated results are assigned to the record or fields to the right of the INTO keyword

. record is the identifier of a record that must contain fields that match in number and order

, and are data type compatible with the values in the RETURNING clause. field_1, field_2,...

are variables that must match in number and order, and are data type compatible with the

set of values in the RETURNING clause.

If the INSERT, UPDATE, or DELETE statement returns a result set with more than one row, an

 exception is thrown with the message of "SQLCODE 01422, query returned more than one

row." If no rows are in the result set, the variables following the INTO keyword are set to null

.

Note:

A variation of RETURNING INTO uses the BULK COLLECT clause. The variation allows a result

set of more than one row that is returned into a collection.

The following example is a modification of the emp_comp_update procedure introduced in

UPDATE, with the addition of the RETURNING INTO clause:

CREATE OR REPLACE PROCEDURE emp_comp_update (
 p_empno IN emp.empno%TYPE,
 p_sal IN emp.sal%TYPE,
 p_comm IN emp.comm%TYPE
)
IS
 v_empno emp.empno%TYPE;

Issue: 20200701 251

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE;
 v_sal emp.sal%TYPE;
 v_comm emp.comm%TYPE;
 v_deptno emp.deptno%TYPE;
BEGIN
 UPDATE emp SET sal = p_sal, comm = p_comm WHERE empno = p_empno
 RETURNING
 empno,
 ename,
 job,
 sal,
 comm,
 deptno
 INTO
 v_empno,
 v_ename,
 v_job,
 v_sal,
 v_comm,
 v_deptno;

 IF SQL%FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Updated Employee # : ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);
 DBMS_OUTPUT.PUT_LINE('New Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('New Commission : ' || v_comm);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');
 END IF;
END;

The following example shows the output from this procedure (assuming that employee

9503 created by the emp_insert procedure still exists within the table):

EXEC emp_comp_update(9503, 6540, 1200);

Updated Employee # : 9503
Name : PETERSON
Job : ANALYST
Department : 40
New Salary : 6540.00
New Commission : 1200.00

The following example is a modification of the emp_delete procedure, with the addition of

the RETURNING INTO clause using record types:

CREATE OR REPLACE PROCEDURE emp_delete (
 p_empno IN emp.empno%TYPE
)
IS
 r_emp emp%ROWTYPE;
BEGIN
 DELETE FROM emp WHERE empno = p_empno
 RETURNING
 *
 INTO
 r_emp;

252 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 IF SQL%FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Deleted Employee # : ' || r_emp.empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || r_emp.ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || r_emp.job);
 DBMS_OUTPUT.PUT_LINE('Manager : ' || r_emp.mgr);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || r_emp.hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || r_emp.sal);
 DBMS_OUTPUT.PUT_LINE('Commission : ' || r_emp.comm);
 DBMS_OUTPUT.PUT_LINE('Department : ' || r_emp.deptno);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');
 END IF;
END;

The following example shows the output from this procedure:

EXEC emp_delete(9503);

Deleted Employee # : 9503
Name : PETERSON
Job : ANALYST
Manager : 7902
Hire Date : 31-MAR-05 00:00:00
Salary : 6540.00
Commission : 1200.00
Department : 40

7.8.8 Obtain the result status
Several attributes can be used to determine the effect of a statement. SQL%FOUND has a

Boolean value. SQL%FOUND returns TRUE if at least one row was affected by an INSERT, an

UPDATE, or a DELETE statement or if a SELECT INTO statement retrieved one or more rows.

The following anonymous block inserts a row and then displays the fact that the row has

been inserted:

BEGIN
 INSERT INTO emp (empno,ename,job,sal,deptno) VALUES (
 9001, 'JONES', 'CLERK', 850.00, 40);
 IF SQL%FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Row has been inserted');
 END IF;
END;

Row has been inserted

SQL%ROWCOUNT provides the number of rows affected by an INSERT, an UPDATE, a DELETE

, or a SELECT INTO statement. The SQL%ROWCOUNT value is returned as a BIGINT data

type. The following example updates the row that was just inserted and displays SQL%

ROWCOUNT:

BEGIN
 UPDATE emp SET hiredate = '03-JUN-07' WHERE empno = 9001;
 DBMS_OUTPUT.PUT_LINE('# rows updated: ' || SQL%ROWCOUNT);

Issue: 20200701 253

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

END;

rows updated: 1

SQL%NOTFOUND is the opposite of SQL%FOUND. SQL%NOTFOUND returns TRUE if no

rows were affected by an INSERT, an UPDATE, or a DELETE statement or if a SELECT INTO

statement retrieved no rows.

BEGIN
 UPDATE emp SET hiredate = '03-JUN-07' WHERE empno = 9000;
 IF SQL%NOTFOUND THEN
 DBMS_OUTPUT.PUT_LINE('No rows were updated');
 END IF;
END;

No rows were updated

7.9 Control structures

7.9.1 RETURN statement
The RETURN statement terminates the current function, procedure, or anonymous block

and returns control to the caller.

The RETURN statement is available in two forms. The first form of the RETURN statement is

used to terminate a procedure or function that returns void. The following example shows

the syntax of the first form:

RETURN;

The second form of the RETURN statement returns a value to the caller. The following

example shows the syntax of the second form:

RETURN expression;

expression must evaluate to the same data type as the return type of the function.

The following example uses the RETURN statement to return a value to the caller:

CREATE OR REPLACE FUNCTION emp_comp (
 p_sal NUMBER,
 p_comm NUMBER
) RETURN NUMBER
IS
BEGIN
 RETURN (p_sal + NVL(p_comm, 0)) * 24;

254 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

END emp_comp;

7.9.2 GOTO statement
The GOTO statement causes the point of execution to jump to the statement with the

specified label. The following example shows the syntax of the GOTO statement:

GOTO label

label is a name assigned to an executable statement. label must be unique within the

scope of the function, procedure, or anonymous block.

To label a statement, use the following syntax:

<<label>> statement

statement is the point of execution that the program jumps to.

You can label assignment statements, any SQL statement (such as INSERT, UPDATE,

and CREATE), and selected procedural language statements. The following procedural

language statements can be labeled:

• IF

• EXIT

• RETURN

• RAISE

• EXECUTE

• PERFORM

• GET DIAGNOSTICS

• OPEN

• FETCH

• MOVE

• CLOSE

• NULL

• COMMIT

• ROLLBACK

• GOTO

• CASE

• LOOP

• WHILE

Issue: 20200701 255

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

• FOR

Note that exit is considered as a keyword, and cannot be used as the name of a label.

GOTO statements cannot transfer control into a conditional block or sub-block, but can

transfer control from a conditional block or sub-block.

The following example verifies that an employee record contains a name, a job descriptio

n, and an employee hire date. If any piece of information is missing, a GOTO statement

transfers the point of execution to a statement that prints a message that the employee is

not valid.

CREATE OR REPLACE PROCEDURE verify_emp (
 p_empno NUMBER
)
IS
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE;
 v_hiredate emp.hiredate%TYPE;
BEGIN
 SELECT ename, job, hiredate
 INTO v_ename, v_job, v_hiredate FROM emp
 WHERE empno = p_empno;
 IF v_ename IS NULL THEN
 GOTO invalid_emp;
 END IF;
 IF v_job IS NULL THEN
 GOTO invalid_emp;
 END IF;
 IF v_hiredate IS NULL THEN
 GOTO invalid_emp;
 END IF;
 DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno ||
 ' validated without errors.') ;
 RETURN;
 <<invalid_emp>> DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno ||
 ' is not a valid employee.') ;
END;

GOTO statements have the following restrictions:

• A GOTO statement cannot jump to a declaration.

• A GOTO statement cannot transfer control to another function or procedure.

A label should not be placed at the end of a block, function, or procedure.

7.9.3 CASE expression
The CASE expression returns a value that is substituted where the CASE expression is

located within an expression.

The CASE expression is available in two formats. One is called a searched CASE and the

other uses a selector.

256 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

Selector CASE expression

The selector CASE expression attempts to match an expression called the selector to the

 expression specified in one or more WHEN clauses. result is an expression that is type-

compatible in the context where the CASE expression is used. If a match is found, the value

 given in the corresponding THEN clause is returned by the CASE expression. If no match is

found, the value following ELSE is returned. If ELSE is omitted, the CASE expression returns

null.

CASE selector-expression
 WHEN match-expression THEN
 result
[WHEN match-expression THEN
 result
[WHEN match-expression THEN
 result] ...]
[ELSE
 result]
END;

match-expression is evaluated in the order in which it appears within the CASE expression

. result is an expression that is type-compatible in the context where the CASE expression

is used. When the first match-expression that equals selector-expression is encountered,

result in the corresponding THEN clause is returned as the value of the CASE expression. If

none of match-expression equals selector-expression, result following ELSE is returned. If

no ELSE is specified, the CASE expression returns null.

The following example uses a selector CASE expression to assign the department name to a

 variable based on the department number:

DECLARE
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_deptno emp.deptno%TYPE;
 v_dname dept.dname%TYPE;
 CURSOR emp_cursor IS SELECT empno, ename, deptno FROM emp;
BEGIN
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME DEPTNO DNAME');
 DBMS_OUTPUT.PUT_LINE('----- ------- ------ ----------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_ename, v_deptno;
 EXIT WHEN emp_cursor%NOTFOUND;
 v_dname :=
 CASE v_deptno
 WHEN 10 THEN 'Accounting'
 WHEN 20 THEN 'Research'
 WHEN 30 THEN 'Sales'
 WHEN 40 THEN 'Operations'
 ELSE 'unknown'
 END;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename, 10) ||

Issue: 20200701 257

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 ' ' || v_deptno || ' ' || v_dname);
 END LOOP;
 CLOSE emp_cursor;
END;

The following output is generated from this program:

EMPNO ENAME DEPTNO DNAME
----- ------- ------ ----------
7369 SMITH 20 Research
7499 ALLEN 30 Sales
7521 WARD 30 Sales
7566 JONES 20 Research
7654 MARTIN 30 Sales
7698 BLAKE 30 Sales
7782 CLARK 10 Accounting
7788 SCOTT 20 Research
7839 KING 10 Accounting
7844 TURNER 30 Sales
7876 ADAMS 20 Research
7900 JAMES 30 Sales
7902 FORD 20 Research
7934 MILLER 10 Accounting

Searched CASE expression

A searched CASE expression uses one or more Boolean expressions to determine the

resulting value to return.

CASE WHEN boolean-expression THEN
 result
[WHEN boolean-expression THEN
 result
 [WHEN boolean-expression THEN
 result] ...]
[ELSE
 result]
END;

boolean-expression is evaluated in the order in which it appears within the CASE

expression. result is an expression that is type-compatible in the context where the CASE

expression is used. When the first boolean-expression that evaluates to TRUE is encountere

d, result in the corresponding THEN clause is returned as the value of the CASE expression

. If none of boolean-expression evaluates to TRUE, result following ELSE is returned. If no

ELSE is specified, the CASE expression returns null.

The following example uses a searched CASE expression to assign the department name to

a variable based on the department number:

DECLARE
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_deptno emp.deptno%TYPE;
 v_dname dept.dname%TYPE;

258 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 CURSOR emp_cursor IS SELECT empno, ename, deptno FROM emp;
BEGIN
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME DEPTNO DNAME');
 DBMS_OUTPUT.PUT_LINE('----- ------- ------ ----------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_ename, v_deptno;
 EXIT WHEN emp_cursor%NOTFOUND;
 v_dname :=
 CASE
 WHEN v_deptno = 10 THEN 'Accounting'
 WHEN v_deptno = 20 THEN 'Research'
 WHEN v_deptno = 30 THEN 'Sales'
 WHEN v_deptno = 40 THEN 'Operations'
 ELSE 'unknown'
 END;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename, 10) ||
 ' ' || v_deptno || ' ' || v_dname);
 END LOOP;
 CLOSE emp_cursor;
END;

The following output is generated from this program:

EMPNO ENAME DEPTNO DNAME
----- ------- ------ ----------
7369 SMITH 20 Research
7499 ALLEN 30 Sales
7521 WARD 30 Sales
7566 JONES 20 Research
7654 MARTIN 30 Sales
7698 BLAKE 30 Sales
7782 CLARK 10 Accounting
7788 SCOTT 20 Research
7839 KING 10 Accounting
7844 TURNER 30 Sales
7876 ADAMS 20 Research
7900 JAMES 30 Sales
7902 FORD 20 Research
7934 MILLER 10 Accounting

7.9.4 CASE statement
The CASE statement executes a set of one or more statements when a specified search

condition is TRUE. The CASE statement is a standalone statement in itself while the

previously discussed CASE expression must appear as part of an expression.

The CASE statement is available in two formats. One is called a searched CASE and the

other uses a selector.

Issue: 20200701 259

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

Selector CASE statement

The selector CASE statement attempts to match an expression called selector to the

expression specified in one or more WHEN clauses. When a match is found, one or more

corresponding statements are executed.

 CASE selector-expression
 WHEN match-expression THEN
 statements
[WHEN match-expression THEN
 statements
[WHEN match-expression THEN
 statements] ...]
[ELSE
 statements]
 END CASE;

selector-expression returns a value that is type-compatible with each match-expression.

match-expression is evaluated in the order in which it appears within the CASE statement

. statements indicates one or more SPL statements, each of which is terminated by a

semicolon. When the value of selector-expression equals the first match-expression, the

statements in the corresponding THEN clause are executed and control continues following

 the END CASE keywords. If no match is found, the statements following ELSE are executed.

If no match is found and no ELSE clause exists, an exception is thrown.

The following example uses a selector CASE statement to assign a department name and

location to a variable based on the department number:

DECLARE
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_deptno emp.deptno%TYPE;
 v_dname dept.dname%TYPE;
 v_loc dept.loc%TYPE;
 CURSOR emp_cursor IS SELECT empno, ename, deptno FROM emp;
BEGIN
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME DEPTNO DNAME '
 || ' LOC');
 DBMS_OUTPUT.PUT_LINE('----- ------- ------ ----------'
 || ' ---------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_ename, v_deptno;
 EXIT WHEN emp_cursor%NOTFOUND;
 CASE v_deptno
 WHEN 10 THEN v_dname := 'Accounting';
 v_loc := 'New York';
 WHEN 20 THEN v_dname := 'Research';
 v_loc := 'Dallas';
 WHEN 30 THEN v_dname := 'Sales';
 v_loc := 'Chicago';
 WHEN 40 THEN v_dname := 'Operations';
 v_loc := 'Boston';
 ELSE v_dname := 'unknown';

260 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 v_loc := '';
 END CASE;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename, 10) ||
 ' ' || v_deptno || ' ' || RPAD(v_dname, 14) || ' ' ||
 v_loc);
 END LOOP;
 CLOSE emp_cursor;
END;

The following output is generated from this program:

EMPNO ENAME DEPTNO DNAME LOC
----- ------- ------ ---------- ---------
7369 SMITH 20 Research Dallas
7499 ALLEN 30 Sales Chicago
7521 WARD 30 Sales Chicago
7566 JONES 20 Research Dallas
7654 MARTIN 30 Sales Chicago
7698 BLAKE 30 Sales Chicago
7782 CLARK 10 Accounting New York
7788 SCOTT 20 Research Dallas
7839 KING 10 Accounting New York
7844 TURNER 30 Sales Chicago
7876 ADAMS 20 Research Dallas
7900 JAMES 30 Sales Chicago
7902 FORD 20 Research Dallas
7934 MILLER 10 Accounting New York

Searched CASE statement

A searched CASE statement uses one or more Boolean expressions to determine the

resulting set of statements to execute.

 CASE WHEN boolean-expression THEN
 statements
[WHEN boolean-expression THEN
 statements
[WHEN boolean-expression THEN
 statements] ...]
[ELSE
 statements]
 END CASE;

boolean-expression is evaluated in the order in which it appears within the CASE statement

. When the first boolean-expression that evaluates to TRUE is encountered, the statements

 in the corresponding THEN clause are executed and control continues following the END

CASE keywords. If none of boolean-expression evaluates to TRUE, the statements following

 ELSE are executed. If none of boolean-expression evaluates to TRUE and no ELSE clause

exists, an exception is thrown.

The following example uses a searched CASE statement to assign a department name and

location to a variable based on the department number:

DECLARE

Issue: 20200701 261

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_deptno emp.deptno%TYPE;
 v_dname dept.dname%TYPE;
 v_loc dept.loc%TYPE;
 CURSOR emp_cursor IS SELECT empno, ename, deptno FROM emp;
BEGIN
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME DEPTNO DNAME '
 || ' LOC');
 DBMS_OUTPUT.PUT_LINE('----- ------- ------ ----------'
 || ' ---------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_ename, v_deptno;
 EXIT WHEN emp_cursor%NOTFOUND;
 CASE
 WHEN v_deptno = 10 THEN v_dname := 'Accounting';
 v_loc := 'New York';
 WHEN v_deptno = 20 THEN v_dname := 'Research';
 v_loc := 'Dallas';
 WHEN v_deptno = 30 THEN v_dname := 'Sales';
 v_loc := 'Chicago';
 WHEN v_deptno = 40 THEN v_dname := 'Operations';
 v_loc := 'Boston';
 ELSE v_dname := 'unknown';
 v_loc := '';
 END CASE;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename, 10) ||
 ' ' || v_deptno || ' ' || RPAD(v_dname, 14) || ' ' ||
 v_loc);
 END LOOP;
 CLOSE emp_cursor;
END;

The following output is generated from this program:

EMPNO ENAME DEPTNO DNAME LOC
----- ------- ------ ---------- ---------
7369 SMITH 20 Research Dallas
7499 ALLEN 30 Sales Chicago
7521 WARD 30 Sales Chicago
7566 JONES 20 Research Dallas
7654 MARTIN 30 Sales Chicago
7698 BLAKE 30 Sales Chicago
7782 CLARK 10 Accounting New York
7788 SCOTT 20 Research Dallas
7839 KING 10 Accounting New York
7844 TURNER 30 Sales Chicago
7876 ADAMS 20 Research Dallas
7900 JAMES 30 Sales Chicago
7902 FORD 20 Research Dallas

262 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

7934 MILLER 10 Accounting New York

7.9.5 Loops
Using the LOOP, EXIT, CONTINUE, WHILE, and FOR statements, you can arrange for your SPL

program to repeat a series of statements.

LOOP

LOOP
 statements
END LOOP;

LOOP defines an unconditional loop that is repeated indefinitely until terminated by an EXIT

 or a RETURN statement.

EXIT

EXIT [WHEN expression];

The innermost loop is terminated and the statement following END LOOP is executed next.

If WHEN is present, loop exit occurs only when the specified condition is TRUE. Otherwise,

control passes to the statement after EXIT.

EXIT can be used to cause early exit from all types of loops. It is not limited to use with

unconditional loops.

The following simple example shows a loop that iterates ten times and then uses the EXIT

statement to terminate:

DECLARE
 v_counter NUMBER(2);
BEGIN
 v_counter := 1;
 LOOP
 EXIT WHEN v_counter > 10;
 DBMS_OUTPUT.PUT_LINE('Iteration # ' || v_counter);
 v_counter := v_counter + 1;
 END LOOP;
END;

The following output is generated from this program:

Iteration # 1
Iteration # 2
Iteration # 3
Iteration # 4
Iteration # 5
Iteration # 6
Iteration # 7
Iteration # 8
Iteration # 9

Issue: 20200701 263

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

Iteration # 10

CONTINUE

The CONTINUE statement provides a way to proceed with the next iteration of a loop while

skipping intervening statements.

When the CONTINUE statement is encountered, the next iteration of the innermost loop is

begun, skipping all statements following the CONTINUE statement until the end of the loop

. Control is passed back to the loop control expression, if any, and the body of the loop is re

-evaluated.

If the WHEN clause is used, the next iteration of the loop is begun only when the specified

expression in the WHEN clause evaluates to TRUE. Otherwise, control is passed to the next

statement following the CONTINUE statement.

The CONTINUE statement may not be used outside of a loop.

The following example shows a variation of the previous example that uses the CONTINUE

statement to skip the display of the odd numbers:

DECLARE
 v_counter NUMBER(2);
BEGIN
 v_counter := 0;
 LOOP
 v_counter := v_counter + 1;
 EXIT WHEN v_counter > 10;
 CONTINUE WHEN MOD(v_counter,2) = 1;
 DBMS_OUTPUT.PUT_LINE('Iteration # ' || v_counter);
 END LOOP;
END;

The following output is generated from the above program:

Iteration # 2
Iteration # 4
Iteration # 6
Iteration # 8
Iteration # 10

WHILE

WHILE expression LOOP
 statements
END LOOP;

The WHILE statement repeats a sequence of statements so long as the condition expression

 evaluates to TRUE. The condition is checked just before each entry to the loop body.

264 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

The following example contains the same logic as in the previous example except the

WHILE statement is used to take the place of the EXIT statement to determine when to exit

the loop.

Note:

The conditional expression used to determine when to exit the loop must be altered. The

EXIT statement terminates the loop when its conditional expression is true. The WHILE

statement terminates (or never begins the loop) when its conditional expression is false.

DECLARE
 v_counter NUMBER(2);
BEGIN
 v_counter := 1;
 WHILE v_counter <= 10 LOOP
 DBMS_OUTPUT.PUT_LINE('Iteration # ' || v_counter);
 v_counter := v_counter + 1;
 END LOOP;
END;

The same result is generated by this example as in the prior example.

Iteration # 1
Iteration # 2
Iteration # 3
Iteration # 4
Iteration # 5
Iteration # 6
Iteration # 7
Iteration # 8
Iteration # 9
Iteration # 10

FOR (integer variant)

FOR name IN [REVERSE] expression .. expression LOOP
 statements
END LOOP;

This form of FOR creates a loop that iterates over a range of integer values. The name

variable is automatically defined as the INTEGER type and exists only inside the loop. The

 two expressions giving the loop range are evaluated once when they enter the loop.

The iteration step is +1 and name begins with the value of expression to the left of .. and

terminates once name exceeds the value of expression to the right of ... Therefore, the two

expressions take on the following roles: start-value .. end-value.

The optional REVERSE clause specifies that the loop must iterate in reverse order. The first

time name passes through the loop, name is set to the value of the right-most expression.

The loop terminates when name is less than the left-most expression.

Issue: 20200701 265

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

The following example simplifies the WHILE loop example even further by using a FOR loop

 that iterates from 1 to 10:

BEGIN
 FOR i IN 1 .. 10 LOOP
 DBMS_OUTPUT.PUT_LINE('Iteration # ' || i);
 END LOOP;
END;

The following output is generated from the FOR statement:

Iteration # 1
Iteration # 2
Iteration # 3
Iteration # 4
Iteration # 5
Iteration # 6
Iteration # 7
Iteration # 8
Iteration # 9
Iteration # 10

If the start value is greater than the end value, the loop body is not executed. No error is

raised as shown by the following example:

BEGIN
 FOR i IN 10 .. 1 LOOP
 DBMS_OUTPUT.PUT_LINE('Iteration # ' || i);
 END LOOP;
END;

There is no output from this example because the loop body is never executed.

Note:

SPL also supports CURSOR FOR loops.

7.9.6 Exception handling
By default, any error occurring in an SPL program aborts execution of the program. You can

 trap errors and recover from them by using a BEGIN block that has an EXCEPTION section.

The corresponding syntax is an extension of the normal syntax for a BEGIN block:

[DECLARE
 declarations]
 BEGIN
 statements
 EXCEPTION
 WHEN condition [OR condition]... THEN
 handler_statements
 [WHEN condition [OR condition]... THEN
 handler_statements]...

266 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 END;

If no error occurs, this form of block simply executes all the statements, and then control

 passes to the next statement after END. If an error occurs within the statements, further

 processing of the statements is abandoned, and control passes to the EXCEPTION list.

The list is searched for the first condition matching the error that occurred. If a match is

found, the corresponding handler_statements are executed, and then control passes to

 the next statement after END. If no match is found, the error propagates out as though

the EXCEPTION clause did not exist. The error can be caught by an enclosing block with

EXCEPTION. If no enclosing block exists, the error aborts processing of the subprogram.

The special condition name OTHERS matches every error type. Condition names are not

case-sensitive.

If a new error occurs within the selected handler_statements, the error cannot be caught by

 this EXCEPTION clause, but is propagated out. A surrounding EXCEPTION clause can catch

the error.

The following table lists the condition names that may be used.

Condition name Description

CASE_NOT_FOUND The application has encountered a situation where none
of the cases in a CASE statement evaluates to TRUE and no
ELSE condition exists.

COLLECTION_IS_NULL The application has attempted to invoke a collection
method on a null collection such as an uninitialized nested
 table.

CURSOR_ALREADY_OPEN The application has attempted to open a cursor that is
already open.

DUP_VAL_ON_INDEX The application has attempted to store a duplicate value
that currently exists within a constrained column.

INVALID_CURSOR The application has attempted to access an unopened
cursor.

INVALID_NUMBER The application has encountered a data exception (
equivalent to SQLSTATE class code 22). INVALID_NUMBER is
an alias for VALUE_ERROR.

NO_DATA_FOUND No rows satisfy the selection criteria.

OTHERS The application has encountered an exception that has not
been caught by a prior condition in the exception section.

Issue: 20200701 267

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

Condition name Description

SUBSCRIPT_BEYOND_COUNT The application has attempted to reference a subscript of
a nested table or varray beyond its initialized or extended
size.

SUBSCRIPT_OUTSIDE_LIMIT The application has attempted to reference a subscript or
extend a varray beyond its maximum size limit.

TOO_MANY_ROWS The application has encountered more than one row that
 satisfies the selection criteria (where only one row is
allowed to be returned).

VALUE_ERROR The application has encountered a data exception (
equivalent to SQLSTATE class code 22). VALUE_ERROR is an
alias for INVALID_NUMBER.

ZERO_DIVIDE The application has tried to divide by zero.

User-defined Exception For more information, see User-defined exceptions.

Note:

Condition names INVALID_NUMBER and VALUE_ERROR are not compatible with Oracle

databases. For Oracle databases, these condition names are for exceptions resulting only

from a failed conversion of a string to a numeric literal. In addition, for Oracle databases,

an INVALID_NUMBER exception is applicable only to SQL statements while a VALUE_ERROR

exception is applicable only to procedural statements.

7.9.7 User-defined exceptions
Any number of errors (referred to in PL/SQL as exceptions) can occur during program

execution. When an exception is thrown, normal execution of the program stops, and

control of the program transfers to the error-handling portion of the program. An exception

 may be a predefined error that is generated by the server, or may be a logical error that

raises a user-defined exception.

User-defined exceptions are never raised by the server. Instead, they are raised explicitly

by a RAISE statement. A user-defined exception is raised when a developer-defined logical

 rule is broken. A common example of a logical rule being broken occurs when a check is

presented against an account with insufficient funds. An attempt to cash a check against

an account with insufficient funds will provoke a user-defined exception.

268 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

You can define exceptions in functions, procedures, packages, or anonymous blocks. You

cannot declare the same exception twice in the same block, but you can declare the same

exception in two different blocks.

Before implementing a user-defined exception, you must declare the exception in the

declaration section of a function, a procedure, a package, or an anonymous block. You can

then raise the exception by using the RAISE statement:

DECLARE
 exception_name EXCEPTION;

BEGIN
 ...
 RAISE exception_name;
 ...
END;

exception_name is the name of the exception.

Unhandled exceptions propagate back through the call stack. If the exception remains

unhandled, the exception is eventually reported to the client application.

User-defined exceptions declared in a block are considered to be local to that block and

global to any nested blocks within the block. To reference an exception that resides in an

outer block, you must assign a label to the outer block, and then preface the name of the

exception with the block name:

block_name.exception_name

Conversely, outer blocks cannot reference exceptions declared in nested blocks.

The scope of a declaration is limited to the block in which it is declared unless it is created

in a package, and when referenced, qualified by the package name. For example, to raise

 an exception named out_of_stock that resides in a package named inventory_control, a

program must raise an error named:

inventory_control.out_of_stock

The following example demonstrates declaring a user-defined exception in a package. The

user-defined exception does not require a package qualifier when it is raised in check_bala

nce, because it resides in the same package as the exception:

CREATE OR REPLACE PACKAGE ar AS
 overdrawn EXCEPTION;
 PROCEDURE check_balance(p_balance NUMBER, p_amount NUMBER);
END;

CREATE OR REPLACE PACKAGE BODY ar AS

Issue: 20200701 269

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 PROCEDURE check_balance(p_balance NUMBER, p_amount NUMBER)
 IS
 BEGIN
 IF (p_amount > p_balance) THEN
 RAISE overdrawn;
 END IF;
 END;

The following procedure (purchase) calls the check_balance procedure. If p_amount is

greater than p_balance, check_balance raises an exception, and purchase catches the ar.

overdrawn exception. purchase must refer to the exception with a package qualified name (

ar.overdrawn) because purchase is not defined within the ar package.

CREATE PROCEDURE purchase(customerID INT, amount NUMERIC)
AS
 BEGIN
 ar.check_ balance(getcustomerbalance(customerid), amount);
 record_purchase(customerid, amount);
 EXCEPTION
 WHEN ar.overdrawn THEN
 raise_credit_limit(customerid, amount*1.5);
 END;

When ar.check_balance raises an exception, execution jumps to the exception handler

defined in purchase:

EXCEPTION
 WHEN ar.overdrawn THEN
 raise_credit_limit(customerid, amount*1.5);

The exception handler raises the credit limit of the customer and ends. When the exception

handler ends, execution resumes with the statement that follows ar.check_balance.

7.9.8 PRAGMA EXCEPTION_INIT
PRAGMA EXCEPTION_INIT associates a user-defined error code with an exception. A

PRAGMA EXCEPTION_INIT declaration may be included in any block, sub-block, or package

. You can only assign an error code to an exception (using PRAGMA EXCEPTION_INIT) after

declaring the exception. The format of a PRAGMA EXCEPTION_INIT declaration is as follows:

PRAGMA EXCEPTION_INIT(exception_name,
 {exception_number | exception_code})

where:

• exception_name is the name of the associated exception.

• exception_number is a user-defined error code associated with the pragma. If you

specify an unmapped exception_number value, the server will return a warning.

270 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

• exception_code is the name of a predefined exception. For a complete list of valid

exceptions, see the PostgreSQL core documentation available at: https://www.

postgresql.org/docs/11/static/errcodes-appendix.html.

User-defined exceptions included an example that demonstrates how to declare a user-

defined exception in a package. The following example uses the same basic structure, but

adds a PRAGMA EXCEPTION_INIT declaration:

CREATE OR REPLACE PACKAGE ar AS
 overdrawn EXCEPTION;
 PRAGMA EXCEPTION_INIT (overdrawn, -20100);
 PROCEDURE check_balance(p_balance NUMBER, p_amount NUMBER);
END;

CREATE OR REPLACE PACKAGE BODY ar AS
 PROCEDURE check_balance(p_balance NUMBER, p_amount NUMBER)
 IS
 BEGIN
 IF (p_amount > p_balance) THEN
 RAISE overdrawn;
 END IF;
 END;

The following procedure (purchase) calls the check_balance procedure. If p_amount is

greater than p_balance, check_balance raises an exception, and purchase catches the ar.

overdrawn exception.

CREATE PROCEDURE purchase(customerID int, amount NUMERIC)
AS
 BEGIN
 ar.check_ balance(getcustomerbalance(customerid), amount);
 record_purchase(customerid, amount);
 EXCEPTION
 WHEN ar.overdrawn THEN
 DBMS_OUTPUT.PUT_LINE ('This account is overdrawn.') ;
 DBMS_OUTPUT.PUT_LINE ('SQLCode :'||SQLCODE||' '||SQLERRM);
END;

When ar.check_balance raises an exception, execution jumps to the exception handler

defined in purchase.

EXCEPTION
 WHEN ar.overdrawn THEN
 DBMS_OUTPUT.PUT_LINE ('This account is overdrawn.') ;
 DBMS_OUTPUT.PUT_LINE ('SQLCode :'||SQLCODE||' '||SQLERRM);

The exception handler returns an error message, followed by SQLCODE information:

This account is overdrawn.

Issue: 20200701 271

https://www.postgresql.org/docs/11/static/errcodes-appendix.html
https://www.postgresql.org/docs/11/static/errcodes-appendix.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

SQLCODE: -20100 User-Defined Exception

The following example demonstrates how to use a predefined exception. The code creates

a more meaningful name for the no_data_found exception. If the given customer does not

exist, the code catches the exception, calls DBMS_OUTPUT.PUT_LINE to report the error, and

 then re-raises the original exception:

CREATE OR REPLACE PACKAGE ar AS
 overdrawn EXCEPTION;
 PRAGMA EXCEPTION_INIT (unknown_customer, no_data_found);
 PROCEDURE check_balance(p_customer_id NUMBER);
END;

CREATE OR REPLACE PACKAGE BODY ar AS
 PROCEDURE check_balance(p_customer_id NUMBER)
 IS
 DECLARE
 v_balance NUMBER;
 BEGIN
 SELECT balance INTO v_balance FROM customer
 WHERE cust_id = p_customer_id;
 EXCEPTION WHEN unknown_customer THEN
 DBMS_OUTPUT.PUT_LINE('invalid customer id');
 RAISE;
 END;

7.9.9 RAISE_APPLICATION_ERROR
The RAISE_APPLICATION_ERROR procedure allows a developer to intentionally abort

processing within an SPL program from which the procedure is called by causing an

exception. The exception is handled in the same manner as described in the topic of

Exception handling. In addition, the RAISE_APPLICATION_ERROR procedure makes a user

-defined code and error message available to the program which can then be used to

identify the exception.

RAISE_APPLICATION_ERROR(error_number, message);

where:

• error_number is an integer value or expression that is returned in a variable named

SQLCODE when the procedure is executed. error_number must be a value between -

20000 and -20999.

• message is a string literal or expression that is returned in a variable named SQLERRM.

The following example uses the RAISE_APPLICATION_ERROR procedure to display a different

 code and message depending upon the information missing from an employee record:

CREATE OR REPLACE PROCEDURE verify_emp (
 p_empno NUMBER

272 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

)
IS
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE;
 v_mgr emp.mgr%TYPE;
 v_hiredate emp.hiredate%TYPE;
BEGIN
 SELECT ename, job, mgr, hiredate
 INTO v_ename, v_job, v_mgr, v_hiredate FROM emp
 WHERE empno = p_empno;
 IF v_ename IS NULL THEN
 RAISE_APPLICATION_ERROR(-20010, 'No name for ' || p_empno);
 END IF;
 IF v_job IS NULL THEN
 RAISE_APPLICATION_ERROR(-20020, 'No job for' || p_empno);
 END IF;
 IF v_mgr IS NULL THEN
 RAISE_APPLICATION_ERROR(-20030, 'No manager for ' || p_empno);
 END IF;
 IF v_hiredate IS NULL THEN
 RAISE_APPLICATION_ERROR(-20040, 'No hire date for ' || p_empno);
 END IF;
 DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno ||
 ' validated without errors');
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
END;

The following output is generated in a case where the manager number is missing from an

employee record:

EXEC verify_emp(7839);

SQLCODE: -20030
SQLERRM: EDB-20030: No manager for 7839

7.10 IF statements

7.10.1 IF-THEN
IF boolean-expression THEN
 statements
END IF;

IF-THEN statements are the simplest form of IF. The statements between THEN and END IF

will be executed if the condition is TRUE. Otherwise, they are skipped.

In the following example, an IF-THEN statement is used to test and display employees who

have a commission.

DECLARE
 v_empno emp.empno%TYPE;
 v_comm emp.comm%TYPE;

Issue: 20200701 273

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 CURSOR emp_cursor IS SELECT empno, comm FROM emp;
BEGIN
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO COMM');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_comm;
 EXIT WHEN emp_cursor%NOTFOUND;
--
-- Test whether or not the employee gets a commission
--
 IF v_comm IS NOT NULL AND v_comm > 0 THEN
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
 TO_CHAR(v_comm,'$99999.99'));
 END IF;
 END LOOP;
 CLOSE emp_cursor;
END;

The following output is generated from this program:

EMPNO COMM
----- -------
7499 $300.00
7521 $500.00
7654 $1400.00

7.10.2 IF-THEN-ELSE
IF boolean-expression THEN
 statements
ELSE
 statements
END IF;

IF-THEN-ELSE statements can be added to IF-THEN to allow you to specify an alternative set

 of statements that must be executed if the condition evaluates to false.

The previous example is modified so an IF-THEN-ELSE statement is used to display the Non-

commission text if the employee does not get a commission.

DECLARE
 v_empno emp.empno%TYPE;
 v_comm emp.comm%TYPE;
 CURSOR emp_cursor IS SELECT empno, comm FROM emp;
BEGIN
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO COMM');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_comm;
 EXIT WHEN emp_cursor%NOTFOUND;
--
-- Test whether or not the employee gets a commission
--
 IF v_comm IS NOT NULL AND v_comm > 0 THEN
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
 TO_CHAR(v_comm,'$99999.99'));

274 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 ELSE
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || 'Non-commission');
 END IF;
 END LOOP;
 CLOSE emp_cursor;
END;

The following output is generated from this program:

EMPNO COMM
----- -------
7369 Non-commission
7499 $ 300.00
7521 $ 500.00
7566 Non-commission
7654 $ 1400.00
7698 Non-commission
7782 Non-commission
7788 Non-commission
7839 Non-commission
7844 Non-commission
7876 Non-commission
7900 Non-commission
7902 Non-commission
7934 Non-commission

7.10.3 IF-THEN-ELSE IF
IF statements can be nested so that alternative IF statements can be invoked after it is

determined whether the conditional of an outer IF statement is TRUE or FALSE.

In the following example, the outer IF-THEN-ELSE statement tests whether an employee has

 a commission. The inner IF-THEN-ELSE statements then test whether the total compensati

on of the employee exceeds or is less than the company average.

DECLARE
 v_empno emp.empno%TYPE;
 v_sal emp.sal%TYPE;
 v_comm emp.comm%TYPE;
 v_avg NUMBER(7,2);
 CURSOR emp_cursor IS SELECT empno, sal, comm FROM emp;
BEGIN
--
-- Calculate the average yearly compensation in the company
--
 SELECT AVG((sal + NVL(comm,0)) * 24) INTO v_avg FROM emp;
 DBMS_OUTPUT.PUT_LINE('Average Yearly Compensation: ' ||
 TO_CHAR(v_avg,'$999,999.99'));
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO YEARLY COMP');
 DBMS_OUTPUT.PUT_LINE('----- -----------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_sal, v_comm;
 EXIT WHEN emp_cursor%NOTFOUND;
--
-- Test whether or not the employee gets a commission
--
 IF v_comm IS NOT NULL AND v_comm > 0 THEN

Issue: 20200701 275

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

--
-- Test if the employee's compensation with commission exceeds the average
--
 IF (v_sal + v_comm) * 24 > v_avg THEN
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
 TO_CHAR((v_sal + v_comm) * 24,'$999,999.99') ||
 ' Exceeds Average');
 ELSE
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
 TO_CHAR((v_sal + v_comm) * 24,'$999,999.99') ||
 ' Below Average');
 END IF;
 ELSE
--
-- Test if the employee's compensation without commission exceeds the average
--
 IF v_sal * 24 > v_avg THEN
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
 TO_CHAR(v_sal * 24,'$999,999.99') || ' Exceeds Average');
 ELSE
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
 TO_CHAR(v_sal * 24,'$999,999.99') || ' Below Average');
 END IF;
 END IF;
 END LOOP;
 CLOSE emp_cursor;
END;

Note:

To significantly simplify the logic in this program, you can calculate the yearly

compensation of the employee by using the NVL function within the SELECT statement of

the cursor declaration. However, the purpose of this example is to demonstrate how IF

statements can be used.

The following output is generated from this program:

Average Yearly Compensation: $ 53,528.57
EMPNO YEARLY COMP
----- -----------
7369 $ 19,200.00 Below Average
7499 $ 45,600.00 Below Average
7521 $ 42,000.00 Below Average
7566 $ 71,400.00 Exceeds Average
7654 $ 63,600.00 Exceeds Average
7698 $ 68,400.00 Exceeds Average
7782 $ 58,800.00 Exceeds Average
7788 $ 72,000.00 Exceeds Average
7839 $ 120,000.00 Exceeds Average
7844 $ 36,000.00 Below Average
7876 $ 26,400.00 Below Average
7900 $ 22,800.00 Below Average
7902 $ 72,000.00 Exceeds Average

276 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

7934 $ 31,200.00 Below Average

When you use this form, you are actually nesting an IF statement inside the ELSE part of an

outer IF statement. Therefore, you need one END IF statement for each nested IF statement

and one for the parent IF-ELSE statement.

7.10.4 IF-THEN-ELSIF-ELSE
 IF boolean-expression THEN
 statements
[ELSIF boolean-expression THEN
 statements
[ELSIF boolean-expression THEN
 statements] ...]
[ELSE
 statements]
 END IF;

IF-THEN-ELSIF-ELSE provides a method of checking many alternatives in one statement.

Formally it is equivalent to nested IF-THEN-ELSE-IF-THEN statements, but only one END IF is

 needed.

The following example uses an IF-THEN-ELSIF-ELSE statement to count the number of

employees by compensation range of USD 25,000.

DECLARE
 v_empno emp.empno%TYPE;
 v_comp NUMBER(8,2);
 v_lt_25K SMALLINT := 0;
 v_25K_50K SMALLINT := 0;
 v_50K_75K SMALLINT := 0;
 v_75K_100K SMALLINT := 0;
 v_ge_100K SMALLINT := 0;
 CURSOR emp_cursor IS SELECT empno, (sal + NVL(comm,0)) * 24 FROM emp;
BEGIN
 OPEN emp_cursor;
 LOOP
 FETCH emp_cursor INTO v_empno, v_comp;
 EXIT WHEN emp_cursor%NOTFOUND;
 IF v_comp < 25000 THEN
 v_lt_25K := v_lt_25K + 1;
 ELSIF v_comp < 50000 THEN
 v_25K_50K := v_25K_50K + 1;
 ELSIF v_comp < 75000 THEN
 v_50K_75K := v_50K_75K + 1;
 ELSIF v_comp < 100000 THEN
 v_75K_100K := v_75K_100K + 1;
 ELSE
 v_ge_100K := v_ge_100K + 1;
 END IF;
 END LOOP;
 CLOSE emp_cursor;
 DBMS_OUTPUT.PUT_LINE('Number of employees by yearly compensation');
 DBMS_OUTPUT.PUT_LINE('Less than 25,000 : ' || v_lt_25K);
 DBMS_OUTPUT.PUT_LINE('25,000 - 49,9999 : ' || v_25K_50K);
 DBMS_OUTPUT.PUT_LINE('50,000 - 74,9999 : ' || v_50K_75K);

Issue: 20200701 277

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 DBMS_OUTPUT.PUT_LINE('75,000 - 99,9999 : ' || v_75K_100K);
 DBMS_OUTPUT.PUT_LINE('100,000 and over : ' || v_ge_100K);
END;

The following output is generated from this program:

Number of employees by yearly compensation
Less than 25,000 : 2
25,000 - 49,9999 : 5
50,000 - 74,9999 : 6
75,000 - 99,9999 : 0
100,000 and over : 1

7.11 Transaction control

7.11.1 Overview
Under some circumstances, it is desired that all updates to a database are to occur

successfully, or none is to occur if any error occurs. A set of database updates that are to all

 occur successfully as a single unit, or are not to occur, is said to be a transaction.

A common example in banking is a funds transfer between two accounts. The two parts of

the transaction are the withdrawal of funds from one account and the deposit of the funds

in another account. Both parts of this transaction must occur. Otherwise, books of the bank

will be out of balance. The deposit and withdrawal are one transaction.

An SPL application that uses a style of transaction control compatible with Oracle

databases can be created if the following conditions are met:

• The edb_stmt_level_tx parameter must be set to TRUE. This prevents the action of

unconditionally rolling back all database updates within the BEGIN/END block if any

exception occurs.

• The application must not be running in autocommit mode. If the autocommit mode is

on, each successful database update is immediately committed and cannot be undone.

The manner in which the autocommit mode is turned on or off is application dependent.

A transaction begins when the first SQL statement is encountered in the SPL program. All

subsequent SQL statements are included as part of that transaction. The transaction ends

when one of the following conditions occurs:

• An unhandled exception occurs. In this case, the effects of all database updates made

during the transaction are rolled back and the transaction is aborted.

278 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

• A COMMIT statement is encountered. In this case, the effects of all database updates

made during the transaction become permanent.

• A ROLLBACK statement is encountered. In this case, the effects of all database updates

made during the transaction are rolled back and the transaction is aborted. If a new SQL

statement is encountered, a new transaction begins.

• Control returns to the calling application such as Java and PostgreSQL. In this case, the

action of the application determines whether the transaction is committed or rolled back

 unless the transaction is within a block in which PRAGMA AUTONOMOUS_TRANSACTION

 has been declared in which case the commitment or rollback of the transaction occurs

independently of the calling program.

Note:

Unlike Oracle, DDL statements such as CREATE TABLE do not implicitly occur within their

own transaction. Therefore, DDL statements do not automatically cause an immediate

database commit as in Oracle, and DDL statements may be rolled back just like DML

statements.

A transaction may span one or more BEGIN/END blocks, or a single BEGIN/END block may

contain one or more transactions.

The following topics discuss the COMMIT and ROLLBACK statements in more detail.

7.11.2 COMMIT
The COMMIT statement makes all database updates made during the current transaction

permanent, and ends the current transaction.

COMMIT [WORK];

The COMMIT statement may be used within anonymous blocks, stored procedures, or

 functions. Within an SPL program, it may appear in the executable section and the

exception section.

In the following example, the third INSERT statement in the anonymous block results in an

 error. The effect of the first two INSERT statements is retained as shown by the first SELECT

 statement. Even after a ROLLBACK statement is issued, the two rows remain in the table

 as shown by the second SELECT statement. This verifies that the two rows were indeed

committed.

Note:

Issue: 20200701 279

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

You can set the edb_stmt_level_tx configuration parameter shown in the following

example for the entire database by using the ALTER DATABASE statement. You can also set

edb_stmt_level_tx for the entire database server by changing it in the postgresql.conf file.

\set AUTOCOMMIT off
SET edb_stmt_level_tx TO on;

BEGIN
 INSERT INTO dept VALUES (50, 'FINANCE', 'DALLAS');
 INSERT INTO dept VALUES (60, 'MARKETING', 'CHICAGO');
 COMMIT;
 INSERT INTO dept VALUES (70, 'HUMAN RESOURCES', 'CHICAGO');
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

SQLERRM: value too long for type character varying(14)
SQLCODE: 22001

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | FINANCE | DALLAS
 60 | MARKETING | CHICAGO
(6 rows)

ROLLBACK;

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | FINANCE | DALLAS
 60 | MARKETING | CHICAGO
(6 rows)

7.11.3 ROLLBACK
The ROLLBACK statement undoes all database updates made during the current

transaction, and ends the current transaction.

ROLLBACK [WORK];

The ROLLBACK statement may be used within anonymous blocks, stored procedures,

or functions. Within an SPL program, it may appear in the executable section and the

exception section.

280 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

In the following example, the exception section contains a ROLLBACK statement. Even

though the first two INSERT statements are executed successfully, the third one results in an

 exception that causes the rollback of all INSERT statements in the anonymous block.

\set AUTOCOMMIT off
SET edb_stmt_level_tx TO on;

BEGIN
 INSERT INTO dept VALUES (50, 'FINANCE', 'DALLAS');
 INSERT INTO dept VALUES (60, 'MARKETING', 'CHICAGO');
 INSERT INTO dept VALUES (70, 'HUMAN RESOURCES', 'CHICAGO');
EXCEPTION
 WHEN OTHERS THEN
 ROLLBACK;
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

SQLERRM: value too long for type character varying(14)
SQLCODE: 22001

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

The following example uses both COMMIT and ROLLBACK. First, the following stored

procedure which inserts a new employee is created.

\set AUTOCOMMIT off
SET edb_stmt_level_tx TO on;

CREATE OR REPLACE PROCEDURE emp_insert (
 p_empno IN emp.empno%TYPE,
 p_ename IN emp.ename%TYPE,
 p_job IN emp.job%TYPE,
 p_mgr IN emp.mgr%TYPE,
 p_hiredate IN emp.hiredate%TYPE,
 p_sal IN emp.sal%TYPE,
 p_comm IN emp.comm%TYPE,
 p_deptno IN emp.deptno%TYPE
)
IS
BEGIN
 INSERT INTO emp VALUES (
 p_empno,
 p_ename,
 p_job,
 p_mgr,
 p_hiredate,
 p_sal,
 p_comm,
 p_deptno);

 DBMS_OUTPUT.PUT_LINE('Added employee...') ;
Issue: 20200701 281

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || p_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || p_job);
 DBMS_OUTPUT.PUT_LINE('Manager : ' || p_mgr);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || p_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || p_sal);
 DBMS_OUTPUT.PUT_LINE('Commission : ' || p_comm);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || p_deptno);
 DBMS_OUTPUT.PUT_LINE('----------------------');
END;

Note that this procedure has no exception section so any error that may occur is

propagated up to the calling program.

The following anonymous block is run. Note the use of the COMMIT statement after all calls

to the emp_insert procedure and the ROLLBACK statement in the exception section.

BEGIN
 emp_insert(9601,'FARRELL','ANALYST',7902,'03-MAR-08',5000,NULL,40);
 emp_insert(9602,'TYLER','ANALYST',7900,'25-JAN-08',4800,NULL,40);
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('An error occurred - roll back inserts');
 ROLLBACK;
END;

Added employee...
Employee # : 9601
Name : FARRELL
Job : ANALYST
Manager : 7902
Hire Date : 03-MAR-08 00:00:00
Salary : 5000
Commission :
Dept # : 40

Added employee...
Employee # : 9602
Name : TYLER
Job : ANALYST
Manager : 7900
Hire Date : 25-JAN-08 00:00:00
Salary : 4800
Commission :
Dept # : 40

The following SELECT statement shows that employees Farrell and Tyler were added.

SELECT * FROM emp WHERE empno > 9600;

empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+---------+---------+------+--------------------+---------+------+--------
 9601 | FARRELL | ANALYST | 7902 | 03-MAR-08 00:00:00 | 5000.00 | | 40
 9602 | TYLER | ANALYST | 7900 | 25-JAN-08 00:00:00 | 4800.00 | | 40

282 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

(2 rows)

Execute the following anonymous block:

BEGIN
 emp_insert(9603,'HARRISON','SALESMAN',7902,'13-DEC-07',5000,3000,20);
 emp_insert(9604,'JARVIS','SALESMAN',7902,'05-MAY-08',4800,4100,11);
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('An error occurred - roll back inserts');
 ROLLBACK;
END;

Added employee...
Employee # : 9603
Name : HARRISON
Job : SALESMAN
Manager : 7902
Hire Date : 13-DEC-07 00:00:00
Salary : 5000
Commission : 3000
Dept # : 20

SQLERRM: insert or update on table "emp" violates foreign key constraint "emp_ref_de
pt_fk"
An error occurred - roll back inserts

A SELECT statement run against the table yields the following output:

SELECT * FROM emp WHERE empno > 9600;

empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+---------+---------+------+--------------------+---------+------+--------
 9601 | FARRELL | ANALYST | 7902 | 03-MAR-08 00:00:00 | 5000.00 | | 40
 9602 | TYLER | ANALYST | 7900 | 25-JAN-08 00:00:00 | 4800.00 | | 40
(2 rows)

The ROLLBACK statement in the exception section undoes the insert of employee Harrison

. Note that employees Farrell and Tyler are still in the table as their inserts were made

permanent by the COMMIT statement in the first anonymous block.

Note:

Executing a COMMIT or ROLLBACK statement in a PL/pgSQL procedure will throw an error if

an Oracle-style SPL procedure exists on the runtime stack.

Issue: 20200701 283

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

7.11.4 PRAGMA AUTONOMOUS_TRANSACTION
An SPL program is declared as an autonomous transaction when the following directive is

specified in the declaration section of the SPL block:

PRAGMA AUTONOMOUS_TRANSACTION;

An autonomous transaction is an independent transaction started by a calling program.

A commit or rollback of SQL statements within the autonomous transaction has no effect

on the commit or rollback in any transaction of the calling program. A commit or rollback

 in the calling program has no effect on the commit or rollback of SQL statements in the

autonomous transaction.

The following SPL programs can include PRAGMA AUTONOMOUS_TRANSACTION:

• Standalone procedures and functions

• Anonymous blocks

• Procedures and functions declared as subprograms within packages and other calling

procedures, functions, and anonymous blocks

• Triggers

• Object type methods

The following issues and restrictions are related to autonomous transactions:

• Each autonomous transaction consumes a connection slot as long as it is in progress. In

some cases, this may mean that the max_connections parameter in the postgresql.conf

file needs to be raised.

• In most respects, an autonomous transaction behaves exactly as if it was a completely

 separate session, but GUCs (that is, settings established with SET) are a deliberate

exception. Autonomous transactions absorb the surrounding values and can propagate

values they commit to the outer transaction.

• Autonomous transactions can be nested. A maximum of 16 levels of autonomous

transactions are allowed within a single session.

• Parallel query is not supported within autonomous transactions.

• The implementation of PolarDB databases compatible with Oracle of autonomous

transactions is not entirely compatible with Oracle databases in that the autonomous

transactions for PolarDB databases compatible with Oracle do not produce an error if an

uncommitted transaction exists at the end of an SPL block.

284 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

The following set of examples illustrate the usage of autonomous transactions. This first set

 of scenarios show the default behavior when no autonomous transactions exist.

Before each scenario, the dept table is reset to the following initial values:

SELECT * FROM dept;

 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

Scenario 1a – No autonomous transactions with only a final COMMIT statement

This first set of scenarios show the insertion of three rows starting just after the initial BEGIN

 statement of the transaction, then from within an anonymous block within the starting

transaction, and finally from a stored procedure executed from within the anonymous block

.

The following example shows the stored procedure:

CREATE OR REPLACE PROCEDURE insert_dept_70 IS
BEGIN
 INSERT INTO dept VALUES (70,'MARKETING','LOS ANGELES');
END;

The following example shows the PostgreSQL session:

BEGIN;
INSERT INTO dept VALUES (50,'HR','DENVER');
BEGIN
 INSERT INTO dept VALUES (60,'FINANCE','CHICAGO');
 insert_dept_70;
END;
COMMIT;

After the final commit, all three rows are inserted:

SELECT * FROM dept ORDER BY 1;

 deptno | dname | loc
--------+------------+-------------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | HR | DENVER
 60 | FINANCE | CHICAGO
 70 | MARKETING | LOS ANGELES

Issue: 20200701 285

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

(7 rows)

Scenario 1b – No autonomous transactions, but a final ROLLBACK statement

The next scenario shows that a final ROLLBACK statement after all inserts results in the

rollback of all three insertions:

BEGIN;
INSERT INTO dept VALUES (50,'HR','DENVER');
BEGIN
 INSERT INTO dept VALUES (60,'FINANCE','CHICAGO');
 insert_dept_70;
END;
ROLLBACK;

SELECT * FROM dept ORDER BY 1;

 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

Scenario 1c – No autonomous transactions, but anonymous block ROLLBACK

A ROLLBACK statement given at the end of the anonymous block also eliminates all three

prior insertions:

BEGIN;
INSERT INTO dept VALUES (50,'HR','DENVER');
BEGIN
 INSERT INTO dept VALUES (60,'FINANCE','CHICAGO');
 insert_dept_70;
 ROLLBACK;
END;
COMMIT;

SELECT * FROM dept ORDER BY 1;

 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

The next set of scenarios shows the effect of using autonomous transactions with PRAGMA

AUTONOMOUS_TRANSACTION in various locations.

Scenario 2a – Autonomous transaction of anonymous block with COMMIT

The procedure remains as initially created:

CREATE OR REPLACE PROCEDURE insert_dept_70 IS

286 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

BEGIN
 INSERT INTO dept VALUES (70,'MARKETING','LOS ANGELES');
END;

PRAGMA AUTONOMOUS_TRANSACTION is given with the anonymous block along with the

COMMIT statement at the end of the anonymous block.

BEGIN;
INSERT INTO dept VALUES (50,'HR','DENVER');
DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 INSERT INTO dept VALUES (60,'FINANCE','CHICAGO');
 insert_dept_70;
 COMMIT;
END;
ROLLBACK;

After the ROLLBACK statement at the end of the transaction, only the first row insertion at

the very beginning of the transaction is discarded. The other two row insertions within the

 anonymous block with PRAGMA AUTONOMOUS_TRANSACTION have been independently

committed.

SELECT * FROM dept ORDER BY 1;

 deptno | dname | loc
--------+------------+-------------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 60 | FINANCE | CHICAGO
 70 | MARKETING | LOS ANGELES
(6 rows)

Scenario 2b – Autonomous transaction anonymous block with COMMIT including procedure

with ROLLBACK, but not an autonomous transaction procedure

The procedure has the ROLLBACK statement at the end. However, note that PRAGMA

ANONYMOUS_TRANSACTION is not included in this procedure.

CREATE OR REPLACE PROCEDURE insert_dept_70 IS
BEGIN
 INSERT INTO dept VALUES (70,'MARKETING','LOS ANGELES');
 ROLLBACK;
END;

The rollback within the procedure removes the two rows inserted within the anonymous

block (deptno 60 and 70) before the final COMMIT statement within the anonymous block.

BEGIN;
INSERT INTO dept VALUES (50,'HR','DENVER');
DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;

Issue: 20200701 287

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

BEGIN
 INSERT INTO dept VALUES (60,'FINANCE','CHICAGO');
 insert_dept_70;
 COMMIT;
END;
COMMIT;

After the final commit at the end of the transaction, the only row inserted is the first one

from the beginning of the transaction. Because the anonymous block is an autonomous

transaction, the rollback within the enclosed procedure has no effect on the insertion that

occurs before the anonymous block is executed.

SELECT * FROM dept ORDER by 1;

 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | HR | DENVER
(5 rows)

Scenario 2c – Autonomous transaction anonymous block with COMMIT including procedure

with ROLLBACK that is also an autonomous transaction procedure

The procedure with the ROLLBACK statement at the end also has PRAGMA ANONYMOUS_

TRANSACTION included. This isolates the effect of the ROLLBACK statement within the

procedure.

CREATE OR REPLACE PROCEDURE insert_dept_70 IS
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 INSERT INTO dept VALUES (70,'MARKETING','LOS ANGELES');
 ROLLBACK;
END;

The rollback within the procedure removes the row inserted by the procedure, but not the

other row inserted within the anonymous block.

BEGIN;
INSERT INTO dept VALUES (50,'HR','DENVER');
DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 INSERT INTO dept VALUES (60,'FINANCE','CHICAGO');
 insert_dept_70;
 COMMIT;
END;

288 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

COMMIT;

After the final commit at the end of the transaction, the row inserted is the first one from

 the beginning of the transaction as well as the row inserted at the beginning of the

anonymous block. The only insertion rolled back is the one within the procedure.

SELECT * FROM dept ORDER by 1;

 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | HR | DENVER
 60 | FINANCE | CHICAGO
(6 rows)

The following sections show examples of PRAGMA AUTONOMOUS_TRANSACTION in a

couple of other SPL program types.

Autonomous transaction trigger

The following example shows the effect of declaring a trigger with PRAGMA AUTONOMOUS

_TRANSACTION.

The following table is created to log changes to the emp table:

CREATE TABLE empauditlog (
 audit_date DATE,
 audit_user VARCHAR2(20),
 audit_desc VARCHAR2(20)
);

The following example shows the trigger attached to the emp table that inserts these

 changes into the empauditlog table. Note the inclusion of PRAGMA AUTONOMOUS

_TRANSACTION in the declaration section.

CREATE OR REPLACE TRIGGER emp_audit_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp
DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
 v_action VARCHAR2(20);
BEGIN
 IF INSERTING THEN
 v_action := 'Added employee(s)';
 ELSIF UPDATING THEN
 v_action := 'Updated employee(s)';
 ELSIF DELETING THEN
 v_action := 'Deleted employee(s)';
 END IF;
 INSERT INTO empauditlog VALUES (SYSDATE, USER,
 v_action);

Issue: 20200701 289

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

END;

The following two inserts are made into the emp table within a transaction started by the

BEGIN statement:

BEGIN;
INSERT INTO emp VALUES (9001,'SMITH','ANALYST',7782,SYSDATE,NULL,NULL,10);
INSERT INTO emp VALUES (9002,'JONES','CLERK',7782,SYSDATE,NULL,NULL,10);

The following example shows the two new rows in the emp table as well as the two entries

in the empauditlog table:

SELECT * FROM emp WHERE empno > 9000;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+-------+---------+------+--------------------+-----+------+--------
 9001 | SMITH | ANALYST | 7782 | 23-AUG-18 07:12:27 | | | 10
 9002 | JONES | CLERK | 7782 | 23-AUG-18 07:12:27 | | | 10
(2 rows)

SELECT TO_CHAR(AUDIT_DATE,'DD-MON-YY HH24:MI:SS') AS "audit date",
 audit_user, audit_desc FROM empauditlog ORDER BY 1 ASC;

 audit date | audit_user | audit_desc
--------------------+--------------+-------------------
 23-AUG-18 07:12:27 | enterprisedb | Added employee(s)
 23-AUG-18 07:12:27 | enterprisedb | Added employee(s)
(2 rows)

But then the ROLLBACK statement is given during this session. The emp table no longer

contains the two rows, but the empauditlog table still contains its two entries because the

trigger implicitly performed a commit and PRAGMA AUTONOMOUS_TRANSACTION commits

those changes independent from the rollback given in the calling transaction.

ROLLBACK;

SELECT * FROM emp WHERE empno > 9000;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+-------+-----+-----+----------+-----+------+--------
(0 rows)

SELECT TO_CHAR(AUDIT_DATE,'DD-MON-YY HH24:MI:SS') AS "audit date",
 audit_user, audit_desc FROM empauditlog ORDER BY 1 ASC;

 audit date | audit_user | audit_desc
--------------------+--------------+-------------------
 23-AUG-18 07:12:27 | enterprisedb | Added employee(s)
 23-AUG-18 07:12:27 | enterprisedb | Added employee(s)
(2 rows)

Object type methods of autonomous transactions

The following example shows the effect of declaring an object method with PRAGMA

AUTONOMOUS_TRANSACTION.

290 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

The following object type and object type body are created. The member procedure within

 the object type body contains PRAGMA AUTONOMOUS_TRANSACTION in the declaration

section along with COMMIT at the end of the procedure.

CREATE OR REPLACE TYPE insert_dept_typ AS OBJECT (
 deptno NUMBER(2),
 dname VARCHAR2(14),
 loc VARCHAR2(13),
 MEMBER PROCEDURE insert_dept
);

CREATE OR REPLACE TYPE BODY insert_dept_typ AS
 MEMBER PROCEDURE insert_dept
 IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 BEGIN
 INSERT INTO dept VALUES (SELF.deptno,SELF.dname,SELF.loc);
 COMMIT;
 END;
END;

In the following anonymous block, an insert is performed into the dept table, followed by

invocation of the insert_dept method of the object, ending with a ROLLBACK statement in

the anonymous block.

BEGIN;
DECLARE
 v_dept INSERT_DEPT_TYP :=
 insert_dept_typ(60,'FINANCE','CHICAGO');
BEGIN
 INSERT INTO dept VALUES (50,'HR','DENVER');
 v_dept.insert_dept;
 ROLLBACK;
END;

Because insert_dept has been declared as an autonomous transaction, its insert of

department number 60 remains in the table, but the rollback removes the insertion of

department 50.

SELECT * FROM dept ORDER BY 1;

 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 60 | FINANCE | CHICAGO

Issue: 20200701 291

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

(5 rows)

7.12 Dynamic SQL

Dynamic SQL is a technique that provides the ability to execute SQL statements that are not

 known until the statements are about to be executed. Up to this point, the SQL statements

 that have been illustrated in SPL programs have been static SQL - the full statement (with

the exception of variables) must be known and coded into the program before the program

 itself can begin to execute. Therefore, by using dynamic SQL, the executed SQL can change

 during program runtime.

In addition, dynamic SQL is the only method by which data definition statements, such as

CREATE TABLE, can be executed from within an SPL program.

However, note that the runtime performance of dynamic SQL will be slower than static SQL.

The EXECUTE IMMEDIATE statement is used to run SQL statements dynamically:

EXECUTE IMMEDIATE 'sql_expression;'
 [INTO { variable [, ...] | record }]
 [USING expression [, ...]]

sql_expression is a string expression containing the SQL statement to be dynamically

executed. variable receives the output of the result set typically from a SELECT statement

. This statement is created as a result of executing the SQL statement in sql_expression

. The number, order, and type of variables must match the number, order, and be type

-compatible with the fields of the result set. Alternatively, a record can be specified as

long as the fields of the record match the number, order, and are type-compatible with

 the result set. When the INTO clause is used, exactly one row must be returned in the

result set. Otherwise an exception occurs. When the USING clause is used, the value of

expression is passed to a placeholder. Placeholders appear embedded within the SQL

statement in sql_expression where variables may be used. Placeholders are denoted by an

 identifier with a colon (:) prefix - :name. The number, order, and resultant data types of

the evaluated expressions must match the number, order and be type-compatible with the

 placeholders in sql_expression. Note that placeholders are not declared anywhere in the

SPL program - they only appear in sql_expression.

The following example shows basic dynamic SQL statements as string literals:

DECLARE
 v_sql VARCHAR2(50);
BEGIN
 EXECUTE IMMEDIATE 'CREATE TABLE job (jobno NUMBER(3),' ||

292 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 ' jname VARCHAR2(9))';
 v_sql := 'INSERT INTO job VALUES (100, ''ANALYST'')';
 EXECUTE IMMEDIATE v_sql;
 v_sql := 'INSERT INTO job VALUES (200, ''CLERK'')';
 EXECUTE IMMEDIATE v_sql;
END;

The following example illustrates the USING clause to pass values to placeholders in the

SQL string:

DECLARE
 v_sql VARCHAR2(50) := 'INSERT INTO job VALUES ' ||
 '(:p_jobno, :p_jname)';
 v_jobno job.jobno%TYPE;
 v_jname job.jname%TYPE;
BEGIN
 V_jobno: = 300;
 v_jname := 'MANAGER';
 EXECUTE IMMEDIATE v_sql USING v_jobno, v_jname;
 v_jobno := 400;
 v_jname := 'SALESMAN';
 EXECUTE IMMEDIATE v_sql USING v_jobno, v_jname;
 v_jobno := 500;
 v_jname := 'PRESIDENT';
 EXECUTE IMMEDIATE v_sql USING v_jobno, v_jname;
END;

The following example shows both the INTO and USING clauses. Note that the last

execution of the SELECT statement returns the results into a record instead of individual

variables.

DECLARE
 v_sql VARCHAR2(60);
 v_jobno job.jobno%TYPE;
 v_jname job.jname%TYPE;
 r_job job%ROWTYPE;
BEGIN
 DBMS_OUTPUT.PUT_LINE('JOBNO JNAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 v_sql := 'SELECT jobno, jname FROM job WHERE jobno = :p_jobno';
 EXECUTE IMMEDIATE v_sql INTO v_jobno, v_jname USING 100;
 DBMS_OUTPUT.PUT_LINE(v_jobno || ' ' || v_jname);
 EXECUTE IMMEDIATE v_sql INTO v_jobno, v_jname USING 200;
 DBMS_OUTPUT.PUT_LINE(v_jobno || ' ' || v_jname);
 EXECUTE IMMEDIATE v_sql INTO v_jobno, v_jname USING 300;
 DBMS_OUTPUT.PUT_LINE(v_jobno || ' ' || v_jname);
 EXECUTE IMMEDIATE v_sql INTO v_jobno, v_jname USING 400;
 DBMS_OUTPUT.PUT_LINE(v_jobno || ' ' || v_jname);
 EXECUTE IMMEDIATE v_sql INTO r_job USING 500;
 DBMS_OUTPUT.PUT_LINE(r_job.jobno || ' ' || r_job.jname);
END;

The following code is the output from the previous anonymous block:

JOBNO JNAME
----- -------
100 ANALYST
200 CLERK

Issue: 20200701 293

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

300 MANAGER
400 SALESMAN
500 PRESIDENT

You can use the BULK COLLECT clause to assemble the result set from an EXECUTE

IMMEDIATE statement into a named collection.

7.13 Static cursors

7.13.1 Overview
Rather than executing a whole query at a time, it is possible to set up a cursor that

encapsulates the query, and then read the query result set one row at a time. This allows

 the creation of SPL program logic that retrieves a row from the result set, does some

processing on the data in that row, and then retrieves the next row and repeats the process

.

Cursors are most often used in the context of a FOR or WHILE loop. A conditional test should

 be included in the SPL logic that detects when the end of the result set has been reached

so the program can exit the loop.

7.13.2 Declare a cursor
To use a cursor, it must first be declared in the declaration topic of the SPL program. A

cursor declaration appears as follows:

CURSOR name IS query;

name is an identifier that will be used to reference the cursor and its result set later in the

program. query is a SQL SELECT statement that determines the result set retrievable by the

cursor.

The following codes are some examples of cursor declarations:

CREATE OR REPLACE PROCEDURE cursor_example
IS
 CURSOR emp_cur_1 IS SELECT * FROM emp;
 CURSOR emp_cur_2 IS SELECT empno, ename FROM emp;
 CURSOR emp_cur_3 IS SELECT empno, ename FROM emp WHERE deptno = 10
 ORDER BY empno;
BEGIN
 ...

294 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

END;

7.13.3 Open a cursor
Before a cursor can be used to retrieve rows, it must first be opened. This is accomplished

with the OPEN statement.

OPEN name;

name is the identifier of a cursor that has been previously declared in the declaration topic

of the SPL program. The OPEN statement must not be executed on a cursor that has already

 been and still is open.

The following code shows an OPEN statement with its corresponding cursor declaration:

CREATE OR REPLACE PROCEDURE cursor_example
IS
 CURSOR emp_cur_3 IS SELECT empno, ename FROM emp WHERE deptno = 10
 ORDER BY empno;
BEGIN
 OPEN emp_cur_3;
 ...
END;

7.13.4 Fetch rows from a cursor
After a cursor has been opened, rows can be retrieved from the result set of the cursor by

using the FETCH statement.

FETCH name INTO { record | variable [, variable_2]... };

name is the identifier of a previously opened cursor. record is the identifier of a previously

defined record such as using table%ROWTYPE. variable, variable_2... are SPL variables that

 will receive the field data from the fetched row. The fields in record or variable, variable_2

... must match in number and order the fields returned in the SELECT list of the query given

 in the cursor declaration. The data types of the fields in the SELECT list must match or be

implicitly convertible to the data types of the fields in record or the data types of variable,

variable_2...

Note:

A variation of FETCH INTO using the BULK COLLECT clause exists. This variation can return

multiple rows at a time into a collection.

The following code shows the FETCH statement:

CREATE OR REPLACE PROCEDURE cursor_example

Issue: 20200701 295

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur_3 IS SELECT empno, ename FROM emp WHERE deptno = 10
 ORDER BY empno;
BEGIN
 OPEN emp_cur_3;
 FETCH emp_cur_3 INTO v_empno, v_ename;
 ...
END;

Instead of explicitly declaring the data type of a target variable, %TYPE can be used. In this

 way, if the data type of the database column is changed, the target variable declaration in

 the SPL program does not have to be changed. %TYPE will automatically pick up the new

data type of the specified column.

CREATE OR REPLACE PROCEDURE cursor_example
IS
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 CURSOR emp_cur_3 IS SELECT empno, ename FROM emp WHERE deptno = 10
 ORDER BY empno;
BEGIN
 OPEN emp_cur_3;
 FETCH emp_cur_3 INTO v_empno, v_ename;
 ...
END;

If all the columns in a table are retrieved in the order defined in the table, %ROWTYPE can

 be used to define a record into which the FETCH statement will place the retrieved data.

Each field within the record can then be accessed by using dot notation.

CREATE OR REPLACE PROCEDURE cursor_example
IS
 v_emp_rec emp%ROWTYPE;
 CURSOR emp_cur_1 IS SELECT * FROM emp;
BEGIN
 OPEN emp_cur_1;
 FETCH emp_cur_1 INTO v_emp_rec;
 DBMS_OUTPUT.PUT_LINE('Employee Number: ' || v_emp_rec.empno);
 DBMS_OUTPUT.PUT_LINE('Employee Name : ' || v_emp_rec.ename);
 ...

296 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

END;

7.13.5 Close a cursor
After all the desired rows have been retrieved from the cursor result set, the cursor must be

closed. After the cursor is closed, the result set is no longer accessible. The CLOSE statement

 appears as follows:

CLOSE name;

name is the identifier of a cursor that is currently open. After a cursor is closed, it must not

 be closed again. However, after the cursor is closed, the OPEN statement can be issued

again on the closed cursor and the query result set will be rebuilt after which the FETCH

statement can then be used to retrieve the rows of the new result set.

The following example illustrates the use of the CLOSE statement:

CREATE OR REPLACE PROCEDURE cursor_example
IS
 v_emp_rec emp%ROWTYPE;
 CURSOR emp_cur_1 IS SELECT * FROM emp;
BEGIN
 OPEN emp_cur_1;
 FETCH emp_cur_1 INTO v_emp_rec;
 DBMS_OUTPUT.PUT_LINE('Employee Number: ' || v_emp_rec.empno);
 DBMS_OUTPUT.PUT_LINE('Employee Name : ' || v_emp_rec.ename);
 CLOSE emp_cur_1;
END;

This procedure produces the following output when invoked: Employee number 7369,

SMITH is the first row of the result set.

EXEC cursor_example;

Employee Number: 7369
Employee Name: SMITH

7.13.6 Use %ROWTYPE with cursors
The %ROWTYPE attribute can be used to define a record that contains fields corresponding

to all columns fetched from a cursor or cursor variable. Each field takes on the data type of

 its corresponding column. The %ROWTYPE attribute is prefixed by a cursor name or cursor

variable name.

record cursor%ROWTYPE;

record is an identifier assigned to the record. cursor is an explicitly declared cursor within

the current scope.

Issue: 20200701 297

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

The following example shows how you can use a cursor with %ROWTYPE to get information

about which employee works in which department:

CREATE OR REPLACE PROCEDURE emp_info
IS
 CURSOR empcur IS SELECT ename, deptno FROM emp;
 myvar empcur%ROWTYPE;
BEGIN
 OPEN empcur;
 LOOP
 FETCH empcur INTO myvar;
 EXIT WHEN empcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(myvar.ename || ' works in department '
 || myvar.deptno);
 END LOOP;
 CLOSE empcur;
END;

The following output is generated from this procedure:

EXEC emp_info;

SMITH works in department 20
ALLEN works in department 30
WARD works in department 30
JONES works in department 20
MARTIN works in department 30
BLAKE works in department 30
CLARK works in department 10
SCOTT works in department 20
KING works in department 10
TURNER works in department 30
ADAMS works in department 20
JAMES works in department 30
FORD works in department 20
MILLER works in department 10

7.13.7 Cursor attributes
Each cursor has a set of attributes associated with it that allows the program to test

the state of the cursor. These attributes are %ISOPEN, %FOUND, %NOTFOUND, and

%ROWCOUNT. These attributes are described in the following topics.

%ISOPEN

The %ISOPEN attribute is used to test whether a cursor is open.

cursor_name%ISOPEN

cursor_name is the name of the cursor. If the cursor is open, a BOOLEAN data type of TRUE

is returned. Otherwise, FALSE is returned.

The following example uses %ISOPEN:

CREATE OR REPLACE PROCEDURE cursor_example

298 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

IS
 ...
 CURSOR emp_cur_1 IS SELECT * FROM emp;
 ...
BEGIN
 ...
 IF emp_cur_1%ISOPEN THEN
 NULL;
 ELSE
 OPEN emp_cur_1;
 END IF;
 FETCH emp_cur_1 INTO...
 ...
END;

%FOUND

The %FOUND attribute is used to test whether a row is retrieved from the result set of the

specified cursor after a FETCH on the cursor.

cursor_name%FOUND

cursor_name is the name of the cursor for which a BOOLEAN data type of TRUE will be

returned if a row is retrieved from the result set of the cursor after a FETCH.

After the last row of the result set has been FETCHed, the next FETCH results in %FOUND

returning FALSE. FALSE is also returned after the first FETCH if the result set has no rows to

begin with.

Referencing %FOUND on a cursor before it is opened or after it is closed results in an

INVALID_CURSOR exception being thrown.

%FOUND returns null if it is referenced when the cursor is open, but before the first FETCH.

The following example uses %FOUND:

CREATE OR REPLACE PROCEDURE cursor_example
IS
 v_emp_rec emp%ROWTYPE;
 CURSOR emp_cur_1 IS SELECT * FROM emp;
BEGIN
 OPEN emp_cur_1;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 FETCH emp_cur_1 INTO v_emp_rec;
 WHILE emp_cur_1%FOUND LOOP
 DBMS_OUTPUT.PUT_LINE(v_emp_rec.empno || ' ' || v_emp_rec.ename);
 FETCH emp_cur_1 INTO v_emp_rec;
 END LOOP;
 CLOSE emp_cur_1;
END;

When the previous procedure is invoked, the output appears as follows:

EXEC cursor_example;

Issue: 20200701 299

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

EMPNO ENAME
 ----- ------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

%NOTFOUND

The %NOTFOUND attribute is the logical opposite of %FOUND.

cursor_name%NOTFOUND

cursor_name is the name of the cursor for which a BOOLEAN data type of FALSE will be

returned if a row is retrieved from the result set of the cursor after a FETCH.

After the last row of the result set has been FETCHed, the next FETCH results in %NOTFOUND

 returning TRUE. TRUE is also returned after the first FETCH if the result set has no rows to

begin with.

Referencing %NOTFOUND on a cursor before it is opened or after it is closed results in an

INVALID_CURSOR exception being thrown.

%NOTFOUND returns null if it is referenced when the cursor is open, but before the first

FETCH.

The following example uses %NOTFOUND:

CREATE OR REPLACE PROCEDURE cursor_example
IS
 v_emp_rec emp%ROWTYPE;
 CURSOR emp_cur_1 IS SELECT * FROM emp;
BEGIN
 OPEN emp_cur_1;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur_1 INTO v_emp_rec;
 EXIT WHEN emp_cur_1%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_emp_rec.empno || ' ' || v_emp_rec.ename);
 END LOOP;
 CLOSE emp_cur_1;

300 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

END;

Similar to the prior example, this procedure produces the same output when invoked:

EXEC cursor_example;

EMPNO ENAME
----- ------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

%ROWCOUNT

The %ROWCOUNT attribute returns an integer showing the number of rows FETCHed so far

from the specified cursor.

cursor_name%ROWCOUNT

cursor_name is the name of the cursor for which %ROWCOUNT returns the number of rows

 retrieved thus far. After the last row has been retrieved, %ROWCOUNT remains set to the

total number of rows returned until the cursor is closed at which point %ROWCOUNT will

throw an INVALID_CURSOR exception if referenced.

Referencing %ROWCOUNT on a cursor before it is opened or after it is closed results in an

INVALID_CURSOR exception being thrown.

%ROWCOUNT returns 0 if it is referenced when the cursor is open, but before the first FETCH

. %ROWCOUNT also returns 0 after the first FETCH when the result set has no rows to begin

with.

The following example uses %ROWCOUNT:

CREATE OR REPLACE PROCEDURE cursor_example
IS
 v_emp_rec emp%ROWTYPE;
 CURSOR emp_cur_1 IS SELECT * FROM emp;
BEGIN
 OPEN emp_cur_1;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur_1 INTO v_emp_rec;

Issue: 20200701 301

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 EXIT WHEN emp_cur_1%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_emp_rec.empno || ' ' || v_emp_rec.ename);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('**********************');
 DBMS_OUTPUT.PUT_LINE(emp_cur_1%ROWCOUNT || ' rows were retrieved');
 CLOSE emp_cur_1;
END;

This procedure prints the total number of rows retrieved at the end of the employee list as

follows:

EXEC cursor_example;

EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

14 rows were retrieved

Summary of cursor states and attributes

The following table summarizes the possible cursor states and the values returned by the

cursor attributes.

Cursor state %ISOPEN %FOUND %NOTFOUND %ROWCOUNT

Before OPEN False INVALID_CU
RSOR exception

INVALID_CU
RSOR exception

INVALID_CU
RSOR exception

After OPEN &
Before 1st FETCH

True Null Null 0

After 1st
Successful
FETCH

True True False 1

After nth
Successful
FETCH (last row)

True True False n

302 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

Cursor state %ISOPEN %FOUND %NOTFOUND %ROWCOUNT

After n+1st
FETCH (after last
 row)

True False True n

After CLOSE False INVALID_CU
RSOR exception

INVALID_CU
RSOR exception

INVALID_CU
RSOR exception

7.13.8 Cursor FOR loop
In the cursor examples presented so far, the programming logic required to process the

result set of a cursor includes a statement to open the cursor, a loop construct to retrieve

each row of the result set, a test for the end of the result set, and a statement to close the

cursor. The cursor FOR loop is a loop construct that eliminates the need to individually code

the statements just listed.

The cursor FOR loop opens a previously declared cursor, fetches all rows in the cursor result

 set, and then closes the cursor.

The syntax for creating a cursor FOR loop is as follows:

FOR record IN cursor
LOOP
 statements
END LOOP;

record is an identifier assigned to an implicitly declared record with definition cursor%

ROWTYPE. cursor is the name of a previously declared cursor. statements are one or more

SPL statements. At least one statement must exist.

The following example shows the example from %NOTFOUND that is modified to use a

cursor FOR loop:

CREATE OR REPLACE PROCEDURE cursor_example
IS
 CURSOR emp_cur_1 IS SELECT * FROM emp;
BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 FOR v_emp_rec IN emp_cur_1 LOOP
 DBMS_OUTPUT.PUT_LINE(v_emp_rec.empno || ' ' || v_emp_rec.ename);
 END LOOP;
END;

The same results are achieved as shown in the following output:

EXEC cursor_example;

EMPNO ENAME
----- -------

Issue: 20200701 303

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

7.13.9 Parameterized cursors
A user can also declare a static cursor that accepts parameters and can pass values for

those parameters when that cursor is opened. In the following example, a parameterized

 cursor is created. The cursor will display the name and salary of all employees from the

emp table that have a salary less than a specified value which is passed as a parameter.

DECLARE
 my_record emp%ROWTYPE;
 CURSOR c1 (max_wage NUMBER) IS
 SELECT * FROM emp WHERE sal < max_wage;
BEGIN
 OPEN c1(2000);
 LOOP
 FETCH c1 INTO my_record;
 EXIT WHEN c1%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE('Name = ' || my_record.ename || ', salary = '
 || my_record.sal);
 END LOOP;
 CLOSE c1;
END;

For example, if we pass the value 2000 as max_wage, we will only be shown the name and

 salary of all employees that have a salary less than 2000. The following data shows the

result of the above query:

Name = SMITH, salary = 800.00
Name = ALLEN, salary = 1600.00
Name = WARD, salary = 1250.00
Name = MARTIN, salary = 1250.00
Name = TURNER, salary = 1500.00
Name = ADAMS, salary = 1100.00
Name = JAMES, salary = 950.00
Name = MILLER, salary = 1300.00

7.14 REF CURSOR and cursor variable

304 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

7.14.1 REF CURSOR overview
A cursor variable is a cursor that actually contains a pointer to a query result set. The result

set is determined by the execution of the OPEN FOR statement by using the cursor variable.

A cursor variable is not tied to a single particular query such as a static cursor. The

same cursor variable may be opened a number of times by using OPEN FOR statements

 containing different queries. Each time, a new result set is created from that query and

made available by using the cursor variable.

REF CURSOR types may be passed as parameters to or from stored procedures and

functions. The return type of a function may also be a REF CURSOR type. This provides the

 capability to modularize the operations on a cursor into separate programs by passing a

cursor variable between programs.

7.14.2 Declare a cursor variable
SPL supports the declaration of a cursor variable by using both the SYS_REFCURSOR built-

in data type as well as creating a type of REF CURSOR and then declaring a variable of that

type. SYS_REFCURSOR is a REF CURSOR type that allows any result set to be associated with

it. This is known as a weakly-typed REF CURSOR.

Only the declaration of SYS_REFCURSOR and user-defined REF CURSOR variables are

different. The remaining usage such as opening the cursor, selecting into the cursor,

and closing the cursor is the same across both the cursor types. For the rest of this topic

, examples will primarily be making use of the SYS_REFCURSOR cursors. All you need to

change in the examples to make them work for user-defined REF CURSORs is the declaratio

n section.

Note:

Strongly-typed REF CURSORs require the result set to conform to a declared number and

order of fields with compatible data types and can also optionally return a result set.

Declare a SYS_REFCURSOR cursor variable

The following code is the syntax for declaring a SYS_REFCURSOR cursor variable:

name SYS_REFCURSOR;

name is an identifier assigned to the cursor variable.

The following code is an example of a SYS_REFCURSOR variable declaration:

DECLARE

Issue: 20200701 305

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 emp_refcur SYS_REFCURSOR;
 ...

Declare a user-defined REF CURSOR type variable

You must perform two distinct declaration steps to use a user-defined REF CURSOR variable

:

• Create a referenced cursor TYPE.

• Declare the actual cursor variable based on that TYPE.

The syntax for creating a user defined REF CURSOR type is as follows:

TYPE cursor_type_name IS REF CURSOR [RETURN return_type];

The following code is an example of a cursor variable declaration:

DECLARE
 TYPE emp_cur_type IS REF CURSOR RETURN emp%ROWTYPE;
 my_rec emp_cur_type;
 ...

7.14.3 Open a cursor variable
After a cursor variable is declared, it must be opened with an associated SELECT statement.

The OPEN FOR statement specifies the SELECT statement to be used to create the result set.

OPEN name FOR query;

name is the identifier of a previously declared cursor variable. query is a SELECT statement

 that determines the result set when the statement is executed. The value of the cursor

variable after the OPEN FOR statement is executed identifies the result set.

In the following example, the result set is a list of employee numbers and names from

 a selected department. Note that a variable or parameter can be used in the SELECT

statement anywhere an expression can normally appear. In this case, a parameter is used

in the equality test for department number.

CREATE OR REPLACE PROCEDURE emp_by_dept (
 p_deptno emp.deptno%TYPE
)
IS
 emp_refcur SYS_REFCURSOR;
BEGIN
 OPEN emp_refcur FOR SELECT empno, ename FROM emp WHERE deptno = p_deptno;

306 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 ...

7.14.4 Fetch rows from a cursor variable
After a cursor variable is opened, rows may be retrieved from the result set by using the

FETCH statement.

In the following example, a FETCH statement has been added to the previous example so

 now the result set is returned into two variables and then displayed. Note that the cursor

 attributes used to determine cursor state of static cursors can also be used with cursor

variables.

CREATE OR REPLACE PROCEDURE emp_by_dept (
 p_deptno emp.deptno%TYPE
)
IS
 emp_refcur SYS_REFCURSOR;
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
BEGIN
 OPEN emp_refcur FOR SELECT empno, ename FROM emp WHERE deptno = p_deptno;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_refcur INTO v_empno, v_ename;
 EXIT WHEN emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 ...

7.14.5 Close a cursor variable

Note:

Unlike static cursors, a cursor variable does not have to be closed before it can be re-

opened again. The result set from the previously opened cursor variable will be lost.

The example is completed with the addition of the CLOSE statement:

CREATE OR REPLACE PROCEDURE emp_by_dept (
 p_deptno emp.deptno%TYPE
)
IS
 emp_refcur SYS_REFCURSOR;
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
BEGIN
 OPEN emp_refcur FOR SELECT empno, ename FROM emp WHERE deptno = p_deptno;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_refcur INTO v_empno, v_ename;
 EXIT WHEN emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;

Issue: 20200701 307

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 CLOSE emp_refcur;
END;

The following output is generated when this procedure is executed:

EXEC emp_by_dept(20)

EMPNO ENAME
----- -------
7369 SMITH
7566 JONES
7788 SCOTT
7876 ADAMS
7902 FORD

7.14.6 Usage restrictions
The restrictions on cursor variable usage are as follows:

• Comparison operators cannot be used to test cursor variables for equality, inequality,

null, or not null.

• Null cannot be assigned to a cursor variable.

• The value of a cursor variable cannot be stored in a database column.

• Static cursors and cursor variables are not interchangeable. For example, a static cursor

cannot be used in an OPEN FOR statement.

In addition, the following table describes the permitted parameter modes for a cursor

variable used as a procedure or function parameter depending upon the operations on the

cursor variable within the procedure or function.

Table 7-3: Permitted cursor variable parameter modes

Operation IN IN OUT OUT

OPEN No Yes No

FETCH Yes Yes No

CLOSE Yes Yes No

For example, if a procedure performs the OPEN FOR, FETCH, and CLOSE operations on a

cursor variable declared as the formal parameter of the procedure, that parameter must be

 declared with IN OUT mode.

308 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

7.14.7 Examples
The following examples demonstrate cursor variable usage.

Return a REF CURSOR from a function

In the following example, the cursor variable is opened with a query that selects employees

 with a given job. Note that the cursor variable is specified in this RETURN statement of the

function so the result set is made available to the caller of the function.

CREATE OR REPLACE FUNCTION emp_by_job (p_job VARCHAR2)
RETURN SYS_REFCURSOR
IS
 emp_refcur SYS_REFCURSOR;
BEGIN
 OPEN emp_refcur FOR SELECT empno, ename FROM emp WHERE job = p_job;
 RETURN emp_refcur;
END;

This function is invoked in the following anonymous block by assigning the return value of

the function to a cursor variable that is declared in the declaration topic of the anonymous

block. The result set is fetched by using this cursor variable and then it is closed.

DECLARE
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE := 'SALESMAN';
 v_emp_refcur SYS_REFCURSOR;
BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPLOYEES WITH JOB ' || v_job);
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 v_emp_refcur := emp_by_job(v_job);
 LOOP
 FETCH v_emp_refcur INTO v_empno, v_ename;
 EXIT WHEN v_emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE v_emp_refcur;
END;

The following output is generated when the anonymous block is executed:

EMPLOYEES WITH JOB SALESMAN
EMPNO ENAME
----- -------
7499 ALLEN
7521 WARD
7654 MARTIN
7844 TURNER

Modularize cursor operations

The following example illustrates how the various operations on cursor variables can be

modularized into separate programs.

Issue: 20200701 309

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

The following procedure opens the given cursor variable with a SELECT statement that

retrieves all rows:

CREATE OR REPLACE PROCEDURE open_all_emp (
 p_emp_refcur IN OUT SYS_REFCURSOR
)
IS
BEGIN
 OPEN p_emp_refcur FOR SELECT empno, ename FROM emp;
END;

This variation opens the given cursor variable with a SELECT statement that retrieves all

rows but of a given department.

CREATE OR REPLACE PROCEDURE open_emp_by_dept (
 p_emp_refcur IN OUT SYS_REFCURSOR,
 p_deptno emp.deptno%TYPE
)
IS
BEGIN
 OPEN p_emp_refcur FOR SELECT empno, ename FROM emp
 WHERE deptno = p_deptno;
END;

This third variation opens the given cursor variable with a SELECT statement that retrieves

 all rows but from a different table. Also note that the return value of the function is the

opened cursor variable.

CREATE OR REPLACE FUNCTION open_dept (
 p_dept_refcur IN OUT SYS_REFCURSOR
) RETURN SYS_REFCURSOR
IS
 v_dept_refcur SYS_REFCURSOR;
BEGIN
 v_dept_refcur := p_dept_refcur;
 OPEN v_dept_refcur FOR SELECT deptno, dname FROM dept;
 RETURN v_dept_refcur;
END;

This procedure fetches and displays a cursor variable result set consisting of employee

number and name:

CREATE OR REPLACE PROCEDURE fetch_emp (
 p_emp_refcur IN OUT SYS_REFCURSOR
)
IS
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH p_emp_refcur INTO v_empno, v_ename;
 EXIT WHEN p_emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;

310 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

END;

This procedure fetches and displays a cursor variable result set consisting of department

number and name:

CREATE OR REPLACE PROCEDURE fetch_dept (
 p_dept_refcur IN SYS_REFCURSOR
)
IS
 v_deptno dept.deptno%TYPE;
 v_dname dept.dname%TYPE;
BEGIN
 DBMS_OUTPUT.PUT_LINE('DEPT DNAME');
 DBMS_OUTPUT.PUT_LINE('---- ---------');
 LOOP
 FETCH p_dept_refcur INTO v_deptno, v_dname;
 EXIT WHEN p_dept_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_deptno || ' ' || v_dname);
 END LOOP;
END;

This procedure closes the given cursor variable:

CREATE OR REPLACE PROCEDURE close_refcur (
 p_refcur IN OUT SYS_REFCURSOR
)
IS
BEGIN
 CLOSE p_refcur;
END;

The following anonymous block executes all the previously described programs:

DECLARE
 gen_refcur SYS_REFCURSOR;
BEGIN
 DBMS_OUTPUT.PUT_LINE('ALL EMPLOYEES');
 open_all_emp(gen_refcur);
 fetch_emp(gen_refcur);
 DBMS_OUTPUT.PUT_LINE('****************');

 DBMS_OUTPUT.PUT_LINE('EMPLOYEES IN DEPT #10');
 open_emp_by_dept(gen_refcur, 10);
 fetch_emp(gen_refcur);
 DBMS_OUTPUT.PUT_LINE('****************');

 DBMS_OUTPUT.PUT_LINE('DEPARTMENTS');
 fetch_dept(open_dept(gen_refcur));
 DBMS_OUTPUT.PUT_LINE('*****************');

 close_refcur(gen_refcur);
END;

The following output is generated from the anonymous block:

ALL EMPLOYEES
EMPNO ENAME
----- -------
7369 SMITH

Issue: 20200701 311

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

EMPLOYEES IN DEPT #10
EMPNO ENAME
----- -------
7782 CLARK
7839 KING
7934 MILLER

DEPARTMENTS
DEPT DNAME
---- ---------
10 ACCOUNTING
20 RESEARCH
30 SALES
40 OPERATIONS

7.14.8 Dynamic queries with REF CURSORs
PolarDB database compatible with Oracle also supports dynamic queries by using the

OPEN FOR USING statement. A string literal or string variable is supplied in the OPEN FOR

USING statement to the SELECT statement.

OPEN name FOR dynamic_string
 [USING bind_arg [, bind_arg_2] ...] ;

name is the identifier of a previously declared cursor variable. dynamic_string is a string

 literal or string variable containing a SELECT statement (without the terminating semi-

colon (;)). bind_arg, bind_arg_2... are bind arguments that are used to pass variables to

corresponding placeholders in the SELECT statement when the cursor variable is opened.

The placeholders are identifiers prefixed by a colon character.

The following code is an example of a dynamic query using a string literal:

CREATE OR REPLACE PROCEDURE dept_query
IS
 emp_refcur SYS_REFCURSOR;
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
BEGIN
 OPEN emp_refcur FOR 'SELECT empno, ename FROM emp WHERE deptno = 30' ||
 ' AND sal >= 1500';
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');

312 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_refcur INTO v_empno, v_ename;
 EXIT WHEN emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_refcur;
END;

The following output is generated when the procedure is executed:

EXEC dept_query;

EMPNO ENAME
----- -------
7499 ALLEN
7698 BLAKE
7844 TURNER

In the next example, the previous query is modified to use bind arguments to pass the

query parameters:

CREATE OR REPLACE PROCEDURE dept_query (
 p_deptno emp.deptno%TYPE,
 p_sal emp.sal%TYPE
)
IS
 emp_refcur SYS_REFCURSOR;
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
BEGIN
 OPEN emp_refcur FOR 'SELECT empno, ename FROM emp WHERE deptno = :dept'
 || ' AND sal >= :sal' USING p_deptno, p_sal;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_refcur INTO v_empno, v_ename;
 EXIT WHEN emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_refcur;
END;

The following output is generated:

EXEC dept_query(30, 1500);

EMPNO ENAME
----- -------
7499 ALLEN
7698 BLAKE
7844 TURNER

Finally, a string variable is used to pass SELECT. This provides the most flexibility.

CREATE OR REPLACE PROCEDURE dept_query (
 p_deptno emp.deptno%TYPE,
 p_sal emp.sal%TYPE
)

Issue: 20200701 313

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

IS
 emp_refcur SYS_REFCURSOR;
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 p_query_string VARCHAR2 (100);
BEGIN
 p_query_string := 'SELECT empno, ename FROM emp WHERE ' ||
 'deptno = :dept AND sal >= :sal';
 OPEN emp_refcur FOR p_query_string USING p_deptno, p_sal;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_refcur INTO v_empno, v_ename;
 EXIT WHEN emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_refcur;
END;
EXEC dept_query(20, 1500);

EMPNO ENAME
----- -------
7566 JONES
7788 SCOTT
7902 FORD

7.15 Collections

7.15.1 Overview
A collection is a set of ordered data items with the same data type. Generally, the data

 item is a scalar field, but may also be a user-defined type such as a record type or an

object type as long as the structure and the data types that comprise each field of the user-

defined type are the same for each element in the set. Each particular data item in the set is

 referenced by using subscript notation within a pair of parentheses.

Note:

Multilevel collections (that is, where the data item of a collection is another collection) are

not supported.

The most commonly known type of collection is an array. In PolarDB database compatible

with Oracle, the supported collection types are associative arrays (formerly called index-by-

tables in Oracle), nested tables, and varrays.

The general steps for using a collection are as follows:

• A collection of the desired type must be defined. This can be done in the declaration

topic of an SPL program, which results in a local type that is accessible only within that

 program. For nested table and varray types, this can also be done by using the CREATE

314 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 TYPE statement, which creates a persistent standalone type that can be referenced by

any SPL program in the database.

• Variables of the collection type are declared. The collection associated with the declared

 variable is said to be uninitialized at this point if no value assignment is made as part of

 the variable declaration.

• Uninitialized collections of nested tables and varrays are null. A null collection does not

yet exist. Generally, a COLLECTION_IS_NULL exception is thrown if a collection method is

invoked on a null collection.

• Uninitialized collections of associative arrays exist but have no elements. An existing

collection with no elements is called an empty collection.

• To initialize a null collection, you must either make it an empty collection or assign a non

-null value to it. Generally, a null collection is initialized by using its constructor.

• To add elements to an empty associative array, you can simply assign values to its keys

. For nested tables and varrays, generally its constructor is used to assign initial values

to the nested table or varray. For nested tables and varrays, the EXTEND method is then

used to grow the collection beyond its initial size established by the constructor.

The specific process for each collection type is described in the following topics.

7.15.2 Associative arrays
An associative array is a type of collection that associates a unique key with a value. The

key does not have to be numeric but can be character data as well.

An associative array has the following characteristics:

• An associative array type must be defined after which array variables can be declared of

that array type. Data manipulation occurs by using the array variable.

• When an array variable is declared, the associative array is created but is empty - just

start assigning values to key values.

• The key can be any negative integer, positive integer, or zero if INDEX BY BINARY_INT

EGER or PLS_INTEGER is specified.

• The key can be character data if INDEX BY VARCHAR2 is specified.

• The number of elements in the array has no pre-defined limit - it grows dynamically as

elements are added.

• The array can be sparse - gaps may exist in the assignment of values to keys.

• An attempt to reference an array element that has not been assigned a value will result

in an exception.

Issue: 20200701 315

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

The TYPE IS TABLE OF ... INDEX BY statement is used to define an associative array type:

TYPE assoctype IS TABLE OF { datatype | rectype | objtype }
 INDEX BY { BINARY_INTEGER | PLS_INTEGER | VARCHAR2(n) };

assoctype is an identifier assigned to the array type. datatype is a scalar data type such as

 VARCHAR2 or NUMBER. rectype is a previously defined record type. objtype is a previously

defined object type. n is the maximum length of a character key.

To use the array, a variable must be declared with that array type. The syntax for declaring

an array variable is as follows:

array assoctype

array is an identifier assigned to the associative array. assoctype is the identifier of a

previously defined array type.

An element of the array is referenced by using the following syntax:

array(n)[.field]

array is the identifier of a previously declared array. n is the key value, type-compatible

with the data type given in the INDEX BY clause. If the array type of array is defined from a

record type or object type, [.field] must reference an individual field within the record type

 or attribute within the object type from which the array type is defined. Alternatively, the

entire record can be referenced by omitting [.field].

The following example reads the first ten employee names from the emp table, stores them

 in an array, and then displays the results from the array:

DECLARE
 TYPE emp_arr_typ IS TABLE OF VARCHAR2(10) INDEX BY BINARY_INTEGER;
 emp_arr emp_arr_typ;
 CURSOR emp_cur IS SELECT ename FROM emp WHERE ROWNUM <= 10;
 i INTEGER := 0;
BEGIN
 FOR r_emp IN emp_cur LOOP
 i := i + 1;
 emp_arr(i) := r_emp.ename;
 END LOOP;
 FOR j IN 1..10 LOOP
 DBMS_OUTPUT.PUT_LINE(emp_arr(j));
 END LOOP;
END;

The above example produces the following output:

SMITH
ALLEN
WARD
JONES

316 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

MARTIN
BLAKE
CLARK
SCOTT
KING
TURNER

The previous example is now modified to use a record type in the array definition:

DECLARE
 TYPE emp_rec_typ IS RECORD (
 empno NUMBER(4),
 ename VARCHAR2(10)
);
 TYPE emp_arr_typ IS TABLE OF emp_rec_typ INDEX BY BINARY_INTEGER;
 emp_arr emp_arr_typ;
 CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
 i INTEGER := 0;
BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 FOR r_emp IN emp_cur LOOP
 i := i + 1;
 emp_arr(i).empno := r_emp.empno;
 emp_arr(i).ename := r_emp.ename;
 END LOOP;
 FOR j IN 1..10 LOOP
 DBMS_OUTPUT.PUT_LINE(emp_arr(j).empno || ' ' ||
 emp_arr(j).ename);
 END LOOP;
END;

The following output is generated from this anonymous block:

EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER

The emp%ROWTYPE attribute could be used to define emp_arr_typ instead of using the

emp_rec_typ record type as shown in the following example:

DECLARE
 TYPE emp_arr_typ IS TABLE OF emp%ROWTYPE INDEX BY BINARY_INTEGER;
 emp_arr emp_arr_typ;
 CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
 i INTEGER := 0;
BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 FOR r_emp IN emp_cur LOOP
 i := i + 1;

Issue: 20200701 317

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 emp_arr(i).empno := r_emp.empno;
 emp_arr(i).ename := r_emp.ename;
 END LOOP;
 FOR j IN 1..10 LOOP
 DBMS_OUTPUT.PUT_LINE(emp_arr(j).empno || ' ' ||
 emp_arr(j).ename);
 END LOOP;
END;

The results are the same as in the prior example.

Instead of assigning each field of the record individually, a record level assignment can be

made from r_emp to emp_arr.

DECLARE
 TYPE emp_rec_typ IS RECORD (
 empno NUMBER(4),
 ename VARCHAR2(10)
);
 TYPE emp_arr_typ IS TABLE OF emp_rec_typ INDEX BY BINARY_INTEGER;
 emp_arr emp_arr_typ;
 CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
 i INTEGER := 0;
BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 FOR r_emp IN emp_cur LOOP
 i := i + 1;
 emp_arr(i) := r_emp;
 END LOOP;
 FOR j IN 1..10 LOOP
 DBMS_OUTPUT.PUT_LINE(emp_arr(j).empno || ' ' ||
 emp_arr(j).ename);
 END LOOP;
END;

The key of an associative array can be character data as shown in the following example:

DECLARE
 TYPE job_arr_typ IS TABLE OF NUMBER INDEX BY VARCHAR2(9);
 job_arr job_arr_typ;
BEGIN
 job_arr('ANALYST') := 100;
 job_arr('CLERK') := 200;
 job_arr('MANAGER') := 300;
 job_arr('SALESMAN') := 400;
 job_arr('PRESIDENT') := 500;
 DBMS_OUTPUT.PUT_LINE('ANALYST : ' || job_arr('ANALYST'));
 DBMS_OUTPUT.PUT_LINE('CLERK : ' || job_arr('CLERK'));
 DBMS_OUTPUT.PUT_LINE('MANAGER : ' || job_arr('MANAGER'));
 DBMS_OUTPUT.PUT_LINE('SALESMAN : ' || job_arr('SALESMAN'));
 DBMS_OUTPUT.PUT_LINE('PRESIDENT: ' || job_arr('PRESIDENT'));
END;

ANALYST : 100
CLERK : 200
MANAGER : 300
SALESMAN : 400

318 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

PRESIDENT: 500

7.15.3 Nested tables
A nested table is a type of collection that associates a positive integer with a value. A

nested table has the following characteristics:

• A nested table type must be defined after which nested table variables can be declared

of that nested table type. Data manipulation occurs by using the nested table variable or

 simply "table" for short.

• When a nested table variable is declared, the nested table initially does not exist (it is

 a null collection). The null table must be initialized with a constructor. You can also

initialize the table by using an assignment statement where the right-hand side of the

assignment is an initialized table of the same type. Note: Initialization of a nested table

is mandatory in Oracle, but optional in SPL.

• The key is a positive integer.

• The constructor establishes the number of elements in the table. The EXTEND method

adds additional elements to the table. Note: Usage of the constructor to establish the

 number of elements in the table and usage of the EXTEND method to add additional

elements to the table are required in Oracle but optional in SPL.

• The table can be sparse - the assignment of values to keys may have gaps:

• An attempt to reference a table element beyond its initialized or extended size will result

 in a SUBSCRIPT_BEYOND_COUNT exception.

The TYPE IS TABLE statement is used to define a nested table type within the declaration

section of an SPL program:

TYPE tbltype IS TABLE OF { datatype | rectype | objtype };

tbltype is an identifier assigned to the nested table type. datatype is a scalar data type

such as VARCHAR2 or NUMBER. rectype is a previously defined record type. objtype is a

previously defined object type.

Note:

You can use the CREATE TYPE statement to define a nested table type that is available to all

SPL programs in the database.

To use the table, a variable must be declared of that nested table type. The syntax for

declaring a table variable is as follows:

Issue: 20200701 319

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

• table tbltype

table is an identifier assigned to the nested table. tbltype is the identifier of a previously

defined nested table type.

A nested table is initialized by using the constructor of the nested table type.

• tbltype ([{ expr1 | NULL } [, { expr2 | NULL }] [, ...]])

tbltype is the identifier of the constructor of the nested table type. tbltype has the same

name as the nested table type. expr1, expr2, ... are expressions that are type-compatible

 with the element type of the table. If NULL is specified, the corresponding element is set

 to null. If the parameter list is empty, an empty nested table is returned, which means

 no elements exist in the table. If the table is defined from an object type, exprn must

return an object of that object type. The object can be the return value of a function or

 the constructor of the object type, or the object can be an element of another nested

table of the same type.

If a collection method other than EXISTS is applied to an uninitialized nested table, a

COLLECTION_IS_NULL exception is thrown.

The following code is an example of a constructor for a nested table:

DECLARE
 TYPE nested_typ IS TABLE OF CHAR(1);
 v_nested nested_typ := nested_typ('A','B');

An element of the table is referenced by using the following syntax:

table(n)[.element]

table is the identifier of a previously declared table. n is a positive integer. If the table

type of table is defined from a record type or object type, [.element] must reference an

individual field within the record type or attribute within the object type from which the

nested table type is defined. Alternatively, the entire record or object can be referenced by

omitting [.element].

The following code is an example of a nested table where it is known that four elements

exist:

DECLARE
 TYPE dname_tbl_typ IS TABLE OF VARCHAR2(14);
 dname_tbl dname_tbl_typ;
 CURSOR dept_cur IS SELECT dname FROM dept ORDER BY dname;
 i INTEGER := 0;
BEGIN
 dname_tbl := dname_tbl_typ(NULL, NULL, NULL, NULL);
 FOR r_dept IN dept_cur LOOP

320 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 i := i + 1;
 dname_tbl(i) := r_dept.dname;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('DNAME');
 DBMS_OUTPUT.PUT_LINE('----------');
 FOR j IN 1..i LOOP
 DBMS_OUTPUT.PUT_LINE(dname_tbl(j));
 END LOOP;
END;

The above example produces the following output:

DNAME

ACCOUNTING
OPERATIONS
RESEARCH
SALES

The following example reads the first ten employee names from the emp table, stores them

 in a nested table, and then displays the results from the table. The SPL code is written to

assume that the number of employees to be returned is not known beforehand.

DECLARE
 TYPE emp_rec_typ IS RECORD (
 empno NUMBER(4),
 ename VARCHAR2(10)
);
 TYPE emp_tbl_typ IS TABLE OF emp_rec_typ;
 emp_tbl emp_tbl_typ;
 CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
 i INTEGER := 0;
BEGIN
 emp_tbl := emp_tbl_typ();
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 FOR r_emp IN emp_cur LOOP
 i := i + 1;
 emp_tbl.EXTEND;
 emp_tbl(i) := r_emp;
 END LOOP;
 FOR j IN 1..10 LOOP
 DBMS_OUTPUT.PUT_LINE(emp_tbl(j).empno || ' ' ||
 emp_tbl(j).ename);
 END LOOP;
END;

Note the creation of an empty table with the constructor emp_tbl_typ() as the first

statement in the executable topic of the anonymous block. The EXTEND collection method

is then used to add an element to the table for each employee returned from the result set.

The output is as follows:

EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN

Issue: 20200701 321

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER

The following example shows how a nested table of an object type can be used. First, an

object type is created with attributes for the department name and location.

CREATE TYPE dept_obj_typ AS OBJECT (
 dname VARCHAR2(14),
 loc VARCHAR2(13)
);

The following anonymous block defines a nested table type whose element consists of

 the dept_obj_typ object type. A nested table variable is declared, initialized, and then

populated from the dept table. Finally, the elements from the nested table are displayed.

DECLARE
 TYPE dept_tbl_typ IS TABLE OF dept_obj_typ;
 dept_tbl dept_tbl_typ;
 CURSOR dept_cur IS SELECT dname, loc FROM dept ORDER BY dname;
 i INTEGER := 0;
BEGIN
 dept_tbl := dept_tbl_typ(
 dept_obj_typ(NULL,NULL),
 dept_obj_typ(NULL,NULL),
 dept_obj_typ(NULL,NULL),
 dept_obj_typ(NULL,NULL)
);
 FOR r_dept IN dept_cur LOOP
 i := i + 1;
 dept_tbl(i).dname := r_dept.dname;
 dept_tbl(i).loc := r_dept.loc;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('DNAME LOC');
 DBMS_OUTPUT.PUT_LINE('---------- ----------');
 FOR j IN 1..i LOOP
 DBMS_OUTPUT.PUT_LINE(RPAD(dept_tbl(j).dname,14) || ' ' ||
 dept_tbl(j).loc);
 END LOOP;
END;

Note:

The parameters comprising the constructor dept_tbl_typ for the nested table are calls to

the constructor dept_obj_typ for the object type.

The following output is generated from the anonymous block:

DNAME LOC
---------- ----------
ACCOUNTING NEW YORK

322 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

OPERATIONS BOSTON
RESEARCH DALLAS
SALES CHICAGO

7.15.4 Varrays
A varray or variable-size array is a type of collection that associates a positive integer with

a value. In many respects, it is similar to a nested table.

A varray has the following characteristics:

• A varray type must be defined along with a maximum size limit. After the varray type is

defined, varray variables can be declared of that varray type. Data manipulation occurs

by using the varray variable or simply "varray" for short. The number of elements in the

varray cannot exceed the maximum size limit established in the varray type definition.

• When a varray variable is declared, the varray initially does not exist (it is a null

collection). The null varray must be initialized with a constructor. You can also initialize

 the varray by using an assignment statement where the right-hand side of the

assignment is an initialized varray of the same type.

• The key is a positive integer.

• The constructor establishes the number of elements in the varray, which must not

exceed the maximum size limit. The EXTEND method can add additional elements to the

varray up to the maximum size limit.

• Unlike a nested table, a varray cannot be sparse - the assignment of values to keys has

no gaps.

• An attempt to reference a varray element beyond its initialized or extended size but

within the maximum size limit will result in a SUBSCRIPT_BEYOND_COUNT exception.

• An attempt to reference a varray element beyond the maximum size limit or extend

 a varray beyond the maximum size limit will result in a SUBSCRIPT_OUTSIDE_LIMIT

exception.

The TYPE IS VARRAY statement is used to define a varray type within the declaration section

of an SPL program:

TYPE varraytype IS { VARRAY | VARYING ARRAY }(maxsize)
 OF { datatype | objtype };

varraytype is an identifier assigned to the varray type. datatype is a scalar data type such

 as VARCHAR2 or NUMBER. maxsize is the maximum number of elements permitted in

varrays of that type. objtype is a previously defined object type.

Issue: 20200701 323

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

The CREATE TYPE statement can be used to define a varray type that is available to all SPL

 programs in the database. To use the varray, a variable must be declared of that varray

type. The following is the syntax for declaring a varray variable:

varray varraytype

varray is an identifier assigned to the varray. varraytype is the identifier of a previously

defined varray type.

A varray is initialized by using the constructor of the varray type.

varraytype ([{ expr1 | NULL } [, { expr2 | NULL }]
 [, ...]])

varraytype is the identifier of the constructor of the varray type, which has the same name

 as the varray type. expr1, expr2, ... are expressions that are type-compatible with the

element type of the varray. If NULL is specified, the corresponding element is set to null

. If the parameter list is empty, an empty varray is returned, which means no elements

in the varray. If the varray is defined from an object type, exprn must return an object of

that object type. The object can be the return value of a function or the return value of the

constructor of the object type. The object can also be an element of another varray of the

same varray type.

If a collection method other than EXISTS is applied to an uninitialized varray, a COLLECTION

_IS_NULL exception is thrown.

The following example shows a constructor for a varray:

DECLARE
 TYPE varray_typ IS VARRAY(2) OF CHAR(1);
 v_varray varray_typ := varray_typ('A','B');

An element of the varray is referenced by using the following syntax:

varray(n)[.element]

varray is the identifier of a previously declared varray. n is a positive integer. If the varray

type of varray is defined from an object type, [.element] must reference an attribute within

the object type from which the varray type is defined. Alternatively, the entire object can be

referenced by omitting [.element].

The following example shows a varray where it is known that four elements exist:

DECLARE
 TYPE dname_varray_typ IS VARRAY(4) OF VARCHAR2(14);
 dname_varray dname_varray_typ;

324 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 CURSOR dept_cur IS SELECT dname FROM dept ORDER BY dname;
 i INTEGER := 0;
BEGIN
 dname_varray := dname_varray_typ(NULL, NULL, NULL, NULL);
 FOR r_dept IN dept_cur LOOP
 i := i + 1;
 dname_varray(i) := r_dept.dname;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('DNAME');
 DBMS_OUTPUT.PUT_LINE('----------');
 FOR j IN 1..i LOOP
 DBMS_OUTPUT.PUT_LINE(dname_varray(j));
 END LOOP;
END;

The above example produces the following output:

DNAME

ACCOUNTING
OPERATIONS
RESEARCH
SALES

7.16 Collection methods

7.16.1 COUNT
COUNT is a method that returns the number of elements in a collection. The syntax for using

 COUNT is as follows:

collection.COUNT

collection is the name of a collection.

For a varray, COUNT always equals LAST.

The following example shows that an associative array can be sparsely populated (that is

, the sequence of assigned elements has "gaps"). COUNT includes only the elements that

have been assigned a value.

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 sparse_arr sparse_arr_typ;
BEGIN
 sparse_arr(-100) := -100;
 sparse_arr(-10) := -10;
 sparse_arr(0) := 0;
 sparse_arr(10) := 10;
 sparse_arr(100) := 100;
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);

Issue: 20200701 325

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

END;

The following output shows that COUNT includes five populated elements:

COUNT: 5

7.16.2 DELETE
The DELETE method deletes entries from a collection. You can call the DELETE method in

three different ways:

Use the first form of the DELETE method to remove all entries from a collection:

collection.DELETE

Use the second form of the DELETE method to remove the specified entry from a collection:

collection.DELETE(subscript)

Use the third form of the DELETE method to remove the entries that are within the range

specified by first_subscript and last_subscript (including the entries for the first_subscript

and the last_subscript) from a collection:

collection.DELETE(first_subscript, last_subscript)

If first_subscript and last_subscript refer to non-existent elements, elements that are in

the range between the specified subscripts are deleted. If first_subscript is greater than

last_subscript or if you specify a value of NULL for one of the arguments, DELETE has no

effect.

Note that when you delete an entry, the subscript remains in the collection. You can re-use

the subscript with an alternate entry. If you specify a subscript that does not exist in the call

 to the DELETE method, DELETE does not raise an exception.

The following example demonstrates how to use the DELETE method to remove the element

 with subscript 0 from the collection:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 sparse_arr sparse_arr_typ;
 v_results VARCHAR2(50);
 v_sub NUMBER;
BEGIN
 sparse_arr(-100) := -100;
 sparse_arr(-10) := -10;
 sparse_arr(0) := 0;
 sparse_arr(10) := 10;
 sparse_arr(100) := 100;
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 sparse_arr.DELETE(0);

326 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 v_sub := sparse_arr.FIRST;
 WHILE v_sub IS NOT NULL LOOP
 IF sparse_arr(v_sub) IS NULL THEN
 v_results := v_results || 'NULL ';
 ELSE
 v_results := v_results || sparse_arr(v_sub) || ' ';
 END IF;
 v_sub := sparse_arr.NEXT(v_sub);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Results: ' || v_results);
END;

COUNT: 5
COUNT: 4
Results: -100 -10 10 100

COUNT indicates that before the DELETE method, the collection has five elements. After the

DELETE method was invoked, the collection contains four elements.

7.16.3 EXISTS
The EXISTS method verifies that a subscript exists within a collection. EXISTS returns TRUE if

the subscript exists. If the subscript does not exist, EXISTS returns FALSE. The method takes

a single argument, which is the subscript that you are testing for. The syntax is as follows:

collection.EXISTS(subscript)

collection is the name of the collection.

subscript is the value that you are testing for. If you specify a value of NULL, EXISTS returns

false.

The following example verifies that subscript number 10 exists within the associative array:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 sparse_arr sparse_arr_typ;
BEGIN
 sparse_arr(-100) := -100;
 sparse_arr(-10) := -10;
 sparse_arr(0) := 0;
 sparse_arr(10) := 10;
 sparse_arr(100) := 100;
 DBMS_OUTPUT.PUT_LINE('The index exists: ' ||
 CASE WHEN sparse_arr.exists(10) = TRUE THEN 'true' ELSE 'false' END);
END;

The index exists: true

Some collection methods raise an exception if you call them with a subscript that does not

exist within the specified collection. Rather than raising an error, the EXISTS method returns

 a value of FALSE.

Issue: 20200701 327

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

7.16.4 EXTEND
The EXTEND method increases the size of a collection. The EXTEND method has three

variations. The first variation appends a single NULL element to a collection. The syntax for

the first variation is as follows:

collection.EXTEND

collection is the name of a collection.

The following example demonstrates how to use the EXTEND method to append a single

null element to a collection:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER;
 sparse_arr sparse_arr_typ := sparse_arr_typ(-100,-10,0,10,100);
 v_results VARCHAR2(50);
BEGIN
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 sparse_arr.EXTEND;
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 FOR i IN sparse_arr.FIRST .. sparse_arr.LAST LOOP
 IF sparse_arr(i) IS NULL THEN
 v_results := v_results || 'NULL ';
 ELSE
 v_results := v_results || sparse_arr(i) || ' ';
 END IF;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Results: ' || v_results);
END;

COUNT: 5
COUNT: 6
Results: -100 -10 0 10 100 NULL

COUNT indicates that before the EXTEND method, the collection has five elements. After the

EXTEND method was invoked, the collection contains six elements.

The second variation of the EXTEND method appends a specified number of elements to the

 end of a collection:

collection.EXTEND(count)

collection is the name of a collection.

count is the number of null elements added to the end of the collection.

The following example demonstrates how to use the EXTEND method to append multiple

null elements to a collection:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER;
 sparse_arr sparse_arr_typ := sparse_arr_typ(-100,-10,0,10,100);

328 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 v_results VARCHAR2(50);
BEGIN
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 sparse_arr.EXTEND(3);
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 FOR i IN sparse_arr.FIRST .. sparse_arr.LAST LOOP
 IF sparse_arr(i) IS NULL THEN
 v_results := v_results || 'NULL ';
 ELSE
 v_results := v_results || sparse_arr(i) || ' ';
 END IF;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Results: ' || v_results);
END;

COUNT: 5
COUNT: 8
Results: -100 -10 0 10 100 NULL NULL NULL

COUNT indicates that before the EXTEND method, the collection has five elements. After the

EXTEND method was invoked, the collection contains eight elements.

The third variation of the EXTEND method appends a specified number of copies of a

particular element to the end of a collection:

collection.EXTEND(count, index_number)

• collection is the name of a collection.

• count is the number of elements added to the end of the collection.

• index_number is the subscript of the element that is being copied to the collection.

The following example demonstrates how to use the EXTEND method to append multiple

copies of the second element to the collection:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER;
 sparse_arr sparse_arr_typ := sparse_arr_typ(-100,-10,0,10,100);
 v_results VARCHAR2(50);
BEGIN
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 sparse_arr.EXTEND(3, 2);
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 FOR i IN sparse_arr.FIRST .. sparse_arr.LAST LOOP
 IF sparse_arr(i) IS NULL THEN
 v_results := v_results || 'NULL ';
 ELSE
 v_results := v_results || sparse_arr(i) || ' ';
 END IF;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Results: ' || v_results);
END;

COUNT: 5
COUNT: 8

Issue: 20200701 329

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 Results: -100 -10 0 10 100 -10 -10 -10

COUNT indicates that before the EXTEND method, the collection has five elements. After the

EXTEND method was invoked, the collection contains eight elements.

Note:

The EXTEND method cannot be used on a null or empty collection.

7.16.5 FIRST
FIRST is a method that returns the subscript of the first element in a collection. The syntax

for using FIRST is as follows:

collection.FIRST

collection is the name of a collection.

The following example displays the first element of the associative array:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 sparse_arr sparse_arr_typ;
BEGIN
 sparse_arr(-100) := -100;
 sparse_arr(-10) := -10;
 sparse_arr(0) := 0;
 sparse_arr(10) := 10;
 sparse_arr(100) := 100;
 DBMS_OUTPUT.PUT_LINE('FIRST element: ' || sparse_arr(sparse_arr.FIRST));
END;

FIRST element: -100

7.16.6 LAST
LAST is a method that returns the subscript of the last element in a collection. The syntax for

 using LAST is as follows:

collection.LAST

collection is the name of a collection.

The following example displays the last element of the associative array:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 sparse_arr sparse_arr_typ;
BEGIN
 sparse_arr(-100) := -100;
 sparse_arr(-10) := -10;
 sparse_arr(0) := 0;
 sparse_arr(10) := 10;

330 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 sparse_arr(100) := 100;
 DBMS_OUTPUT.PUT_LINE('LAST element: ' || sparse_arr(sparse_arr.LAST));
END;

LAST element: 100

7.16.7 LIMIT
LIMIT is a method that returns the maximum number of elements permitted in a collection.

LIMIT is applicable only to varrays. The syntax for using LIMIT is as follows:

collection.LIMIT

collection is the name of a collection.

For an initialized varray, LIMIT returns the maximum size limit determined by the varray type

 definition. If the varray is uninitialized (that is, it is a null varray), an exception is thrown.

For an associative array or an initialized nested table, LIMIT returns NULL. If the nested

table is uninitialized (that is, it is a null nested table), an exception is thrown.

7.16.8 NEXT
NEXT is a method that returns the subscript that follows a specified subscript. The method

takes a single argument, which is the subscript that you are testing for.

collection.NEXT(subscript)

collection is the name of the collection.

If the specified subscript is less than the first subscript in the collection, the function returns

 the first subscript. If the subscript does not have a successor, NEXT returns NULL. If you

specify a NULL subscript, PRIOR does not return a value.

The following example demonstrates how to use NEXT to return the subscript that follows

subscript 10 in the associative array, sparse_arr:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 sparse_arr sparse_arr_typ;
BEGIN
 sparse_arr(-100) := -100;
 sparse_arr(-10) := -10;
 sparse_arr(0) := 0;
 sparse_arr(10) := 10;
 sparse_arr(100) := 100;
 DBMS_OUTPUT.PUT_LINE('NEXT element: ' || sparse_arr.next(10));
END;

Issue: 20200701 331

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

NEXT element: 100

7.16.9 PRIOR
The PRIOR method returns the subscript that precedes a specified subscript in a collection

. The method takes a single argument, that is the subscript that you are testing for. The

syntax is as follows:

collection.PRIOR(subscript)

collection is the name of the collection.

If the subscript specified does not have a predecessor, PRIOR returns NULL. If the specified

 subscript is greater than the last subscript in the collection, the method returns the last

subscript. If you specify a NULL subscript, PRIOR does not return a value.

The following example returns the subscript that precedes subscript 100 in the associative

array, sparse_arr:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 sparse_arr sparse_arr_typ;
BEGIN
 sparse_arr(-100) := -100;
 sparse_arr(-10) := -10;
 sparse_arr(0) := 0;
 sparse_arr(10) := 10;
 sparse_arr(100) := 100;
 DBMS_OUTPUT.PUT_LINE('PRIOR element: ' || sparse_arr.prior(100));
END;

PRIOR element: 10

7.16.10 TRIM
The TRIM method removes an element or elements from the end of a collection. The syntax

for the TRIM method is as follows:

collection.TRIM[(count)]

collection is the name of a collection.

count is the number of elements removed from the end of the collection. PolarDB database

 compatible with Oracle will return an error if count is less than 0 or greater than the

number of elements in the collection.

332 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

The following example demonstrates how to use the TRIM method to remove an element

from the end of a collection:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER;
 sparse_arr sparse_arr_typ := sparse_arr_typ(-100,-10,0,10,100);
BEGIN
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 sparse_arr.TRIM;
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
END;

COUNT: 5
COUNT: 4

COUNT indicates that before the TRIM method, the collection has five elements. After the

TRIM method was invoked, the collection contains four elements.

You can also specify the number of elements to remove from the end of the collection with

the TRIM method:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER;
 sparse_arr sparse_arr_typ := sparse_arr_typ(-100,-10,0,10,100);
 v_results VARCHAR2(50);
BEGIN
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 sparse_arr.TRIM(2);
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 FOR i IN sparse_arr.FIRST .. sparse_arr.LAST LOOP
 IF sparse_arr(i) IS NULL THEN
 v_results := v_results || 'NULL ';
 ELSE
 v_results := v_results || sparse_arr(i) || ' ';
 END IF;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Results: ' || v_results);
END;

COUNT: 5
COUNT: 3
Results: -100 -10 0

COUNT indicates that before the TRIM method, the collection has five elements. After the

TRIM method was invoked, the collection contains three elements.

7.17 Work with collections

Issue: 20200701 333

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

7.17.1 TABLE()
You can use the TABLE() function to transform the members of an array into a set of rows.

The signature is as follows:

TABLE(collection_value)

collection_value is an expression that evaluates to a value of collection type.

The TABLE() function expands the nested contents of a collection into a table format. You

can use the TABLE() function anywhere you use a regular table expression.

The TABLE() function returns a SETOF ANYELEMENT (a set of values of any type). For

example, if the argument passed to this function is an array of dates, TABLE() will return

SETOF dates. If the argument passed to this function is an array of paths, TABLE() will return

 a SETOF paths.

You can use the TABLE() function to expand the contents of a collection into table form:

postgres=# SELECT * FROM TABLE(monthly_balance(445.00, 980.20, 552.00));

 monthly_balance

 445.00
 980.20
 552.00
(3 rows)

7.17.2 Use the MULTISET UNION operator
The MULTISET UNION operator combines two collections to form a third collection. The

signature is as follows:

coll_1 MULTISET UNION [ALL | DISTINCT] coll_2

where, coll_1 and coll_2 specify the names of the collections to combine.

Include the ALL keyword to specify that duplicate elements (elements that are present

in both coll_1 and coll_2) must be represented in the result once for each time they are

present in the original collections. This is the default behavior of MULTISET UNION.

Include the DISTINCT or UNIQUE keyword to specify that duplicate elements should be

included in the result only once.

The following example demonstrates using the MULTISET UNION operator to combine two

collections (collection_1 and collection_2) into a third collection (collection_3):

DECLARE

334 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 TYPE int_arr_typ IS TABLE OF NUMBER(2);
 collection_1 int_arr_typ;
 collection_2 int_arr_typ;
 collection_3 int_arr_typ;
 v_results VARCHAR2(50);
BEGIN
 collection_1 := int_arr_typ(10,20,30);
 collection_2 := int_arr_typ(30,40);
 collection_3 := collection_1 MULTISET UNION ALL collection_2;
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || collection_3.COUNT);
 FOR i IN collection_3.FIRST .. collection_3.LAST LOOP
 IF collection_3(i) IS NULL THEN
 v_results := v_results || 'NULL ';
 ELSE
 v_results := v_results || collection_3(i) || ' ';
 END IF;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Results: ' || v_results);
END;

COUNT: 5
Results: 10 20 30 30 40

The resulting collection includes one entry for each element in collection_1 and collection_2

. If the DISTINCT keyword is used, the results are as follows:

DECLARE
 TYPE int_arr_typ IS TABLE OF NUMBER(2);
 collection_1 int_arr_typ;
 collection_2 int_arr_typ;
 collection_3 int_arr_typ;
 v_results VARCHAR2(50);
BEGIN
 collection_1 := int_arr_typ(10,20,30);
 collection_2 := int_arr_typ(30,40);
 collection_3 := collection_1 MULTISET UNION DISTINCT collection_2;
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || collection_3.COUNT);
 FOR i IN collection_3.FIRST .. collection_3.LAST LOOP
 IF collection_3(i) IS NULL THEN
 v_results := v_results || 'NULL ';
 ELSE
 v_results := v_results || collection_3(i) || ' ';
 END IF;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Results: ' || v_results);
END;

COUNT: 4
Results: 10 20 30 40

The resulting collection includes only those members with distinct values. Note in the

following example that the MULTISET UNION DISTINCT operator also removes duplicate

entries that are stored within the same collection:

DECLARE
 TYPE int_arr_typ IS TABLE OF NUMBER(2);
 collection_1 int_arr_typ;
 collection_2 int_arr_typ;
 collection_3 int_arr_typ;

Issue: 20200701 335

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 v_results VARCHAR2(50);
BEGIN
 collection_1 := int_arr_typ(10,20,30,30);
 collection_2 := int_arr_typ(40,50);
 collection_3 := collection_1 MULTISET UNION DISTINCT collection_2;
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || collection_3.COUNT);
 FOR i IN collection_3.FIRST .. collection_3.LAST LOOP
 IF collection_3(i) IS NULL THEN
 v_results := v_results || 'NULL ';
 ELSE
 v_results := v_results || collection_3(i) || ' ';
 END IF;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Results: ' || v_results);
END;

COUNT: 5
Results: 10 20 30 40 50

7.17.3 Use the FORALL statement
Collections can be used to more efficiently process DML statements by passing all the

values to be used for repetitive execution of a DELETE, INSERT, or UPDATE statement in one

pass to the database server rather than re-iteratively invoking the DML statement with new

 values. The DML statement to be processed in such a manner is specified with the FORALL

 statement. In addition, one or more collections are given in the DML statement where

different values are to be substituted each time the statement is executed.

FORALL index IN lower_bound .. upper_bound
 { insert_stmt | update_stmt | delete_stmt };

index is the position in the collection given in the insert_stmt, update_stmt, or delete_stm

t DML statement that iterates from the integer value given as lower_bound up to and

including upper_bound.

Note:

If an exception occurs during any iteration of the FORALL statement, all updates that

occurred since the start of the execution of the FORALL statement are automatically rolled

back. This behavior is not compatible with Oracle databases. Oracle allows explicit use of

the COMMIT or ROLLBACK statements to control whether to commit or roll back updates

that occurred prior to the exception.

The FORALL statement creates a loop - each iteration of the loop increments the index

variable (you typically use the index within the loop to select a member of a collection). The

 number of iterations is controlled by the lower_bound .. upper_bound clause. The loop is

336 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

executed once for each integer between the lower_bound and upper_bound (inclusive) and

 the index is incremented by one for each iteration. Example:

FORALL i IN 2 .. 5

Creates a loop that executes four times: In the first iteration, the index (i) is set to the value

 2. In the second iteration, the index is set to the value 3. The loop executes for the value 5

and then terminates.

The following example creates a table (emp_copy) that is an empty copy of the emp table

. The example declares a type (emp_tbl) that is an array where each element in the array is

 of composite type and composed of the column definitions used to create the emp table.

The example also creates an index on the emp_tbl type.

t_emp is an associative array of type emp_tbl. The SELECT statement uses the BULK COLLECT

 INTO statement to populate the t_emp array. After the t_emp array is populated, the

FORALL statement iterates through the values (i) in the t_emp array index and inserts a row

for each record into emp_copy.

CREATE TABLE emp_copy(LIKE emp);

DECLARE

 TYPE emp_tbl IS TABLE OF emp%ROWTYPE INDEX BY BINARY_INTEGER;

 t_emp emp_tbl;

BEGIN
 SELECT * FROM emp BULK COLLECT INTO t_emp;

 FORALL i IN t_emp.FIRST .. t_emp.LAST
 INSERT INTO emp_copy VALUES t_emp(i);

END;

The following example uses a FORALL statement to update the salary of three employees:

DECLARE
 TYPE empno_tbl IS TABLE OF emp.empno%TYPE INDEX BY BINARY_INTEGER;
 TYPE sal_tbl IS TABLE OF emp.ename%TYPE INDEX BY BINARY_INTEGER;
 t_empno EMPNO_TBL;
 t_sal SAL_TBL;
BEGIN
 t_empno(1) := 9001;
 t_sal(1) := 3350.00;
 t_empno(2) := 9002;
 t_sal(2) := 2000.00;
 t_empno(3) := 9003;
 t_sal(3) := 4100.00;
 FORALL i IN t_empno.FIRST..t_empno.LAST
 UPDATE emp SET sal = t_sal(i) WHERE empno = t_empno(i);
END;

Issue: 20200701 337

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

SELECT * FROM emp WHERE empno > 9000;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+---------+-----+----------+---------+------+--------
 9001 | JONES | ANALYST | | | 3350.00 | | 40
 9002 | LARSEN | CLERK | | | 2000.00 | | 40
 9003 | WILSON | MANAGER | | | 4100.00 | | 40
(3 rows)

The following example deletes three employees in a FORALL statement:

DECLARE
 TYPE empno_tbl IS TABLE OF emp.empno%TYPE INDEX BY BINARY_INTEGER;
 t_empno EMPNO_TBL;
BEGIN
 t_empno(1) := 9001;
 t_empno(2) := 9002;
 t_empno(3) := 9003;
 FORALL i IN t_empno.FIRST..t_empno.LAST
 DELETE FROM emp WHERE empno = t_empno(i);
END;

SELECT * FROM emp WHERE empno > 9000;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+-------+-----+-----+----------+-----+------+--------
(0 rows)

7.17.4 Use the BULK COLLECT clause
SQL statements that return a result set consisting of a large number of rows may not

be operating as efficiently as possible due to the constant context switching that must

occur between the database server and the client to transfer the entire result set. You

can mitigate the inefficiency by using a collection to gather the entire result set in

memory which the client can then access. The BULK COLLECT clause is used to specify the

aggregation of the result set into a collection.

The BULK COLLECT clause can be used with the SELECT INTO, FETCH INTO, and EXECUTE

IMMEDIATE statements, and with the RETURNING INTO clause of the DELETE, INSERT, and

UPDATE statements. Each of these is illustrated in the following topics:

SELECT BULK COLLECT

The BULK COLLECT clause can be used with the SELECT INTO statement as follows:

SELECT select_expressions BULK COLLECT INTO collection
 [, ...] FROM ... ;

If a single collection is specified, collection may be a collection of a single field or it may

 be a collection of a record type. If more than one collection is specified, each collection

338 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

must consist of a single field. select_expressions must match in number, order, and type-

compatibility all fields in the target collections.

The following example shows the use of the BULK COLLECT clause where the target

collections are associative arrays consisting of a single field:

DECLARE
 TYPE empno_tbl IS TABLE OF emp.empno%TYPE INDEX BY BINARY_INTEGER;
 TYPE ename_tbl IS TABLE OF emp.ename%TYPE INDEX BY BINARY_INTEGER;
 TYPE job_tbl IS TABLE OF emp.job%TYPE INDEX BY BINARY_INTEGER;
 TYPE hiredate_tbl IS TABLE OF emp.hiredate%TYPE INDEX BY BINARY_INTEGER;
 TYPE sal_tbl IS TABLE OF emp.sal%TYPE INDEX BY BINARY_INTEGER;
 TYPE comm_tbl IS TABLE OF emp.comm%TYPE INDEX BY BINARY_INTEGER;
 TYPE deptno_tbl IS TABLE OF emp.deptno%TYPE INDEX BY BINARY_INTEGER;
 t_empno EMPNO_TBL;
 t_ename ENAME_TBL;
 t_job JOB_TBL;
 t_hiredate HIREDATE_TBL;
 t_sal SAL_TBL;
 t_comm COMM_TBL;
 t_deptno DEPTNO_TBL;
BEGIN
 SELECT empno, ename, job, hiredate, sal, comm, deptno BULK COLLECT
 INTO t_empno, t_ename, t_job, t_hiredate, t_sal, t_comm, t_deptno
 FROM emp;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME JOB HIREDATE ' ||
 'SAL ' || 'COMM DEPTNO');
 DBMS_OUTPUT.PUT_LINE('----- ------- --------- --------- ' ||
 '-------- ' || '-------- ------');
 FOR i IN 1..t_empno.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(t_empno(i) || ' ' ||
 RPAD(t_ename(i),8) || ' ' ||
 RPAD(t_job(i),10) || ' ' ||
 TO_CHAR(t_hiredate(i),'DD-MON-YY') || ' ' ||
 TO_CHAR(t_sal(i),'99,999.99') || ' ' ||
 TO_CHAR(NVL(t_comm(i),0),'99,999.99') || ' ' ||
 t_deptno(i));
 END LOOP;
END;

EMPNO ENAME JOB HIREDATE SAL COMM DEPTNO
----- ------- --------- --------- -------- -------- ------
7369 SMITH CLERK 17-DEC-80 800.00 .00 20
7499 ALLEN SALESMAN 20-FEB-81 1,600.00 300.00 30
7521 WARD SALESMAN 22-FEB-81 1,250.00 500.00 30
7566 JONES MANAGER 02-APR-81 2,975.00 .00 20
7654 MARTIN SALESMAN 28-SEP-81 1,250.00 1,400.00 30
7698 BLAKE MANAGER 01-MAY-81 2,850.00 .00 30
7782 CLARK MANAGER 09-JUN-81 2,450.00 .00 10
7788 SCOTT ANALYST 19-APR-87 3,000.00 .00 20
7839 KING PRESIDENT 17-NOV-81 5,000.00 .00 10
7844 TURNER SALESMAN 08-SEP-81 1,500.00 .00 30
7876 ADAMS CLERK 23-MAY-87 1,100.00 .00 20
7900 JAMES CLERK 03-DEC-81 950.00 .00 30
7902 FORD ANALYST 03-DEC-81 3,000.00 .00 20

Issue: 20200701 339

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

7934 MILLER CLERK 23-JAN-82 1,300.00 .00 10

The following example produces the same result, but uses an associative array on a record

type defined with the %ROWTYPE attribute:

DECLARE
 TYPE emp_tbl IS TABLE OF emp%ROWTYPE INDEX BY BINARY_INTEGER;
 t_emp EMP_TBL;
BEGIN
 SELECT * BULK COLLECT INTO t_emp FROM emp;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME JOB HIREDATE ' ||
 'SAL ' || 'COMM DEPTNO');
 DBMS_OUTPUT.PUT_LINE('----- ------- --------- --------- ' ||
 '-------- ' || '-------- ------');
 FOR i IN 1..t_emp.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(t_emp(i).empno || ' ' ||
 RPAD(t_emp(i).ename,8) || ' ' ||
 RPAD(t_emp(i).job,10) || ' ' ||
 TO_CHAR(t_emp(i).hiredate,'DD-MON-YY') || ' ' ||
 TO_CHAR(t_emp(i).sal,'99,999.99') || ' ' ||
 TO_CHAR(NVL(t_emp(i).comm,0),'99,999.99') || ' ' ||
 t_emp(i).deptno);
 END LOOP;
END;

EMPNO ENAME JOB HIREDATE SAL COMM DEPTNO
----- ------- --------- --------- -------- -------- ------
7369 SMITH CLERK 17-DEC-80 800.00 .00 20
7499 ALLEN SALESMAN 20-FEB-81 1,600.00 300.00 30
7521 WARD SALESMAN 22-FEB-81 1,250.00 500.00 30
7566 JONES MANAGER 02-APR-81 2,975.00 .00 20
7654 MARTIN SALESMAN 28-SEP-81 1,250.00 1,400.00 30
7698 BLAKE MANAGER 01-MAY-81 2,850.00 .00 30
7782 CLARK MANAGER 09-JUN-81 2,450.00 .00 10
7788 SCOTT ANALYST 19-APR-87 3,000.00 .00 20
7839 KING PRESIDENT 17-NOV-81 5,000.00 .00 10
7844 TURNER SALESMAN 08-SEP-81 1,500.00 .00 30
7876 ADAMS CLERK 23-MAY-87 1,100.00 .00 20
7900 JAMES CLERK 03-DEC-81 950.00 .00 30
7902 FORD ANALYST 03-DEC-81 3,000.00 .00 20
7934 MILLER CLERK 23-JAN-82 1,300.00 .00 10

FETCH BULK COLLECT

The BULK COLLECT clause can be used with a FETCH statement. Instead of returning a single

 row at a time from the result set, FETCH BULK COLLECT will return all rows at a time from

the result set into the specified collection unless restricted by the LIMIT clause.

FETCH name BULK COLLECT INTO collection [, ...] [LIMIT n];

If a single collection is specified, collection may be a collection of a single field or it may be

 a collection of a record type. If more than one collection is specified, each collection must

 consist of a single field. The expressions in the SELECT list of the cursor identified by name

 must match in number, order, and type-compatibility all fields in the target collections. If

340 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

LIMIT n is specified, the number of rows returned into the collection on each FETCH will not

exceed n.

The following example uses the FETCH BULK COLLECT statement to retrieve rows into an

associative array:

DECLARE
 TYPE emp_tbl IS TABLE OF emp%ROWTYPE INDEX BY BINARY_INTEGER;
 t_emp EMP_TBL;
 CURSOR emp_cur IS SELECT * FROM emp;
BEGIN
 OPEN emp_cur;
 FETCH emp_cur BULK COLLECT INTO t_emp;
 CLOSE emp_cur;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME JOB HIREDATE ' ||
 'SAL ' || 'COMM DEPTNO');
 DBMS_OUTPUT.PUT_LINE('----- ------- --------- --------- ' ||
 '-------- ' || '-------- ------');
 FOR i IN 1..t_emp.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(t_emp(i).empno || ' ' ||
 RPAD(t_emp(i).ename,8) || ' ' ||
 RPAD(t_emp(i).job,10) || ' ' ||
 TO_CHAR(t_emp(i).hiredate,'DD-MON-YY') || ' ' ||
 TO_CHAR(t_emp(i).sal,'99,999.99') || ' ' ||
 TO_CHAR(NVL(t_emp(i).comm,0),'99,999.99') || ' ' ||
 t_emp(i).deptno);
 END LOOP;
END;

EMPNO ENAME JOB HIREDATE SAL COMM DEPTNO
----- ------- --------- --------- -------- -------- ------
7369 SMITH CLERK 17-DEC-80 800.00 .00 20
7499 ALLEN SALESMAN 20-FEB-81 1,600.00 300.00 30
7521 WARD SALESMAN 22-FEB-81 1,250.00 500.00 30
7566 JONES MANAGER 02-APR-81 2,975.00 .00 20
7654 MARTIN SALESMAN 28-SEP-81 1,250.00 1,400.00 30
7698 BLAKE MANAGER 01-MAY-81 2,850.00 .00 30
7782 CLARK MANAGER 09-JUN-81 2,450.00 .00 10
7788 SCOTT ANALYST 19-APR-87 3,000.00 .00 20
7839 KING PRESIDENT 17-NOV-81 5,000.00 .00 10
7844 TURNER SALESMAN 08-SEP-81 1,500.00 .00 30
7876 ADAMS CLERK 23-MAY-87 1,100.00 .00 20
7900 JAMES CLERK 03-DEC-81 950.00 .00 30
7902 FORD ANALYST 03-DEC-81 3,000.00 .00 20
7934 MILLER CLERK 23-JAN-82 1,300.00 .00 10

EXECUTE IMMEDIATE BULK COLLECT

The BULK COLLECT clause can be used with a EXECUTE IMMEDIATE statement to specify a

collection to receive the returned rows:

EXECUTE IMMEDIATE 'sql_expression;'
 BULK COLLECT INTO collection [,...]
 [USING {[bind_type] bind_argument} [, ...]}] ;

collection specifies the name of a collection.

bind_type specifies the parameter mode of the bind_argument.

Issue: 20200701 341

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

• A bind_type of IN specifies that bind_argument contains a value that is passed to the

sql_expression.

• A bind_type of OUT specifies that the bind_argument receives a value from the

sql_expression.

• A bind_type of IN OUT specifies that the bind_argument is passed to sql_expression, and

 then stores the value returned by sql_expression.

bind_argument specifies a parameter that contains a value that is either passed to

the sql_expression (specified with a bind_type of IN), or that receives a value from the

sql_expression (specified with a bind_type of OUT), or both (specified with a bind_type of IN

 OUT).

If a single collection is specified, collection may be a collection of a single field or a

collection of a record type. If more than one collection is specified, each collection must

consist of a single field.

RETURNING BULK COLLECT

The BULK COLLECT clause can be added to the RETURNING INTO clause of a DELETE, INSERT,

or UPDATE statement:

{ insert | update | delete }
 RETURNING { * | expr_1 [, expr_2] ...}
 BULK COLLECT INTO collection [, ...] ;

insert, update, and delete are the INSERT, UPDATE, and DELETE statements as described

in INSERT, UPDATE, and DELETE respectively. If a single collection is specified, collection

may be a collection of a single field or it may be a collection of a record type. If more than

one collection is specified, each collection must consist of a single field. The expressions

following the RETURNING keyword must match in number, order, and type-compatibility

all fields in the target collections. If * is specified, all columns in the affected table are

returned. (Note that the use of * is an extension for PolarDB database compatible with

Oracle and is not compatible with Oracle databases.)

The clerkemp table created by copying the emp table is used in the remaining examples in

this topic.

CREATE TABLE clerkemp AS SELECT * FROM emp WHERE job = 'CLERK';

SELECT * FROM clerkemp;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+-------+------+--------------------+---------+------+--------
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20

342 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
(4 rows)

The following example increases everyone's salary by 1.5, stores the employees’ numbers

, names, and new salaries in three associative arrays, and finally displays the contents of

these arrays:

DECLARE
 TYPE empno_tbl IS TABLE OF emp.empno%TYPE INDEX BY BINARY_INTEGER;
 TYPE ename_tbl IS TABLE OF emp.ename%TYPE INDEX BY BINARY_INTEGER;
 TYPE sal_tbl IS TABLE OF emp.sal%TYPE INDEX BY BINARY_INTEGER;
 t_empno EMPNO_TBL;
 t_ename ENAME_TBL;
 t_sal SAL_TBL;
BEGIN
 UPDATE clerkemp SET sal = sal * 1.5 RETURNING empno, ename, sal
 BULK COLLECT INTO t_empno, t_ename, t_sal;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME SAL ');
 DBMS_OUTPUT.PUT_LINE('----- ------- -------- ');
 FOR i IN 1..t_empno.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(t_empno(i) || ' ' || RPAD(t_ename(i),8) ||
 ' ' || TO_CHAR(t_sal(i),'99,999.99'));
 END LOOP;
END;

EMPNO ENAME SAL
----- ------- --------
7369 SMITH 1,200.00
7876 ADAMS 1,650.00
7900 JAMES 1,425.00
7934 MILLER 1,950.00

The following example performs the same functionality as the previous example, but uses a

 single collection defined with a record type to store the employees' numbers, names, and

new salaries:

DECLARE
 TYPE emp_rec IS RECORD (
 empno emp.empno%TYPE,
 ename emp.ename%TYPE,
 sal emp.sal%TYPE
);
 TYPE emp_tbl IS TABLE OF emp_rec INDEX BY BINARY_INTEGER;
 t_emp EMP_TBL;
BEGIN
 UPDATE clerkemp SET sal = sal * 1.5 RETURNING empno, ename, sal
 BULK COLLECT INTO t_emp;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME SAL ');
 DBMS_OUTPUT.PUT_LINE('----- ------- -------- ');
 FOR i IN 1..t_emp.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(t_emp(i).empno || ' ' ||
 RPAD(t_emp(i).ename,8) || ' ' ||
 TO_CHAR(t_emp(i).sal,'99,999.99'));
 END LOOP;
END;

EMPNO ENAME SAL
----- ------- --------

Issue: 20200701 343

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

7369 SMITH 1,200.00
7876 ADAMS 1,650.00
7900 JAMES 1,425.00
7934 MILLER 1,950.00

The following example deletes all rows from the clerkemp table and returns information on

the deleted rows into an associative array, which is then displayed.

DECLARE
 TYPE emp_rec IS RECORD (
 empno emp.empno%TYPE,
 ename emp.ename%TYPE,
 job emp.job%TYPE,
 hiredate emp.hiredate%TYPE,
 sal emp.sal%TYPE,
 comm emp.comm%TYPE,
 deptno emp.deptno%TYPE
);
 TYPE emp_tbl IS TABLE OF emp_rec INDEX BY BINARY_INTEGER;
 r_emp EMP_TBL;
BEGIN
 DELETE FROM clerkemp RETURNING empno, ename, job, hiredate, sal,
 comm, deptno BULK COLLECT INTO r_emp;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME JOB HIREDATE ' ||
 'SAL ' || 'COMM DEPTNO');
 DBMS_OUTPUT.PUT_LINE('----- ------- --------- --------- ' ||
 '-------- ' || '-------- ------');
 FOR i IN 1..r_emp.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(r_emp(i).empno || ' ' ||
 RPAD(r_emp(i).ename,8) || ' ' ||
 RPAD(r_emp(i).job,10) || ' ' ||
 TO_CHAR(r_emp(i).hiredate,'DD-MON-YY') || ' ' ||
 TO_CHAR(r_emp(i).sal,'99,999.99') || ' ' ||
 TO_CHAR(NVL(r_emp(i).comm,0),'99,999.99') || ' ' ||
 r_emp(i).deptno);
 END LOOP;
END;

EMPNO ENAME JOB HIREDATE SAL COMM DEPTNO
----- ------- --------- --------- -------- -------- ------
7369 SMITH CLERK 17-DEC-80 1,200.00 .00 20
7876 ADAMS CLERK 23-MAY-87 1,650.00 .00 20
7900 JAMES CLERK 03-DEC-81 1,425.00 .00 30
7934 MILLER CLERK 23-JAN-82 1,950.00 .00 10

7.17.5 Errors and messages
You can use the DBMS_OUTPUT.PUT_LINE statement to report messages.

DBMS_OUTPUT.PUT_LINE (message);

message is any expression evaluating to a string.

344 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 7 Stored Procedure
Language

This example displays the message on the output display of the user:

DBMS_OUTPUT.PUT_LINE('My name is John')；

The special variables SQLCODE and SQLERRM contain a numeric code and a text message

that describe the outcome of the last SQL statement issued. If any other error occurs in the

 program such as division by zero, these variables contain information pertaining to the

error.

Issue: 20200701 345

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 8 Triggers

8 Triggers

8.1 Overview of triggers
A trigger is a named Structured Process Language (SPL) code block that is associated

with a table and stored in the database. When a specified event occurs on the associated

table, the SPL code block is executed. The trigger is considered fired when the code block is

executed.

The event that causes a trigger to fire can be any combination of an insert, update, or

delete carried out on the table, either directly or indirectly. If the table is the object of an

 SQL INSERT, UPDATE, or DELETE statement, the trigger is directly fired assuming that the

corresponding insert, update, or delete event is defined as a triggering event. The events

that fire the trigger are defined in the CREATE TRIGGER statement.

A trigger can be fired indirectly if a triggering event occurs on the table as a result of an

event initiated on another table. For example, if a trigger is defined on a table containing

a foreign key defined with the ON DELETE CASCADE clause and a row in the parent table is

 deleted, all children of the parent will also be deleted. If deletion is a triggering event on

the child table, deletion of the children will cause the trigger to fire.

8.2 Types of triggers
PolarDB databases compatible with Oracle support both row-level and statement-level

triggers. A row-level trigger fires once for each row that is affected by a triggering event.

For example, if deletion is defined as a triggering event on a table and a single DELETE

statement is executed to delete five rows from the table, then the trigger will be fired five

times, once for each row.

In contrast, a statement-level trigger is fired once for each triggering statement regardless

of the number of rows affected by the triggering event. In the preceding example, a single

DELETE statement deletes five rows, and a statement-level trigger will be fired only once.

For statement-level triggers, the sequence of actions can be defined. The sequence refers

to whether the trigger code block is executed before or after the triggering statement itself.

For row-level triggers, before or after each row is affected by the triggering statement.

346 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 8 Triggers

In a before row-level trigger, the trigger code block is executed before the triggering action

 is carried out on each affected row. In a before statement-level trigger, the trigger code

block is executed before the action of the triggering statement is carried out.

In an after row-level trigger, the trigger code block is executed after the triggering action is

carried out on each affected row. In an after statement-level trigger, the trigger code block

is executed after the action of the triggering statement is carried out.

8.3 Create a trigger
You can use the CREATE TRIGGER statement to define and name a trigger that will be stored

in the database.

Syntax

Define a new trigger.

CREATE TRIGGER

Synopsis

CREATE [OR REPLACE] TRIGGER name
 { BEFORE | AFTER | INSTEAD OF }
 {INSERT | UPDATE | DELETE}
 [OR { INSERT | UPDATE | DELETE }] [, ...]
 ON table
 [REFERENCING { OLD AS old | NEW AS new } ...]
 [FOR EACH ROW]
 [WHEN condition]
 [DECLARE
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 declaration; [, ...]]
 BEGIN
 statement; [, ...]
 [EXCEPTION
 { WHEN exception [OR exception] [...] THEN
 statement; [, ...] } [, ...]
]
 END

Description

CREATE TRIGGER defines a new trigger. CREATE OR REPLACETRIGGER creates a trigger or

replaces an existing definition.

If you are using the CREATE TRIGGER statement to create a trigger, the name of the new

trigger must not match any existing trigger defined on the same table. New triggers are

created in the same schema as the table on which the triggering event is defined.

Issue: 20200701 347

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 8 Triggers

If you are updating the definition of an existing trigger, use the CREATEOR REPLACE TRIGGER

 statement.

When you use the syntax compatible with Oracle databases to create a trigger, the trigger

runs as a SECURITY DEFINER function.

Parameters

Parameter Description

name The name of the trigger that you want to create.

BEFORE | AFTER Determines whether the trigger is fired before or after the
triggering event.

INSERT | UPDATE |
DELETE

Defines the triggering event.

table The name of the table or view on which the triggering event occurs
.

condition A Boolean expression that determines if the trigger will actually be
executed. If condition evaluates to TRUE, the trigger is fired.

If the trigger definition includes the FOR EACH ROW keywords, the

 WHEN clause can reference columns of the old and/or new row

values after you write OLD.column_name or NEW.column_name

, respectively. INSERT triggers cannot reference OLD, and DELETE

triggers cannot reference NEW.

If a trigger contains the keywords INSTEAD OF, it may not contain

the WHEN clause.

WHEN clauses cannot contain subqueries.

348 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 8 Triggers

Parameter Description

REFERENCING { OLD
AS old | NEW AS new
 } ...

The REFERENCING clause to reference old rows and new rows,
but restricted in that old may only be replaced by an identifier
named old or any equivalent that is saved in all lowercase, for
example, REFERENCING OLD AS old, REFERENCING OLD AS OLD,
or REFERENCING OLD AS "old". Also, new may only be replaced
by an identifier named new or any equivalent that is saved in all
lowercase, for example, REFERENCING NEW AS new, REFERENCING
NEW AS NEW, or REFERENCING NEW AS "new".

Either one or both phrases OLD AS old and NEW AS new may be

specified in the REFERENCING clause, for example, REFERENCING

NEW AS New OLD AS Old.

This clause is not compatible with Oracle databases in that

identifiers other than old or new may not be used.

FOR EACH ROW Determines whether the trigger should be fired once for every row
 affected by the triggering event or only once per SQL statement. If
 it is specified, the trigger is fired once for every affected row (row-
level trigger). Otherwise, the trigger is a statement-level trigger.

PRAGMA
AUTONOMOUS
_TRANSACTION

The directive that sets the trigger as an autonomous transaction.

declaration A variable, type, REF CURSOR, or subprogram declaration. If
subprogram declarations are included, they must be declared after
 all other variable, type, and REF CURSOR declarations.

statement A Structured Process Language (SPL) program statement. Note that
 a DECLARE - BEGIN - END block is considered an SPL statement.
Therefore, the trigger body may contain nested blocks.

exception The name of an exception condition, such as NO_DATA_FOUND and
 OTHERS.

8.4 Trigger variables
In the trigger code block, several special variables are available for use.

NEW

NEW is a pseudo-record name that references the new table row for insert and update

operations in row-level triggers. This variable is not applicable in statement-level triggers

or in delete operations of row-level triggers.

Issue: 20200701 349

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 8 Triggers

This variable is used in the form of :NEW.column. In :NEW.column, column is the name of a

column in the table on which the trigger is defined.

The initial content of :NEW.column is the value in the named column of the new row to be

 inserted or of the new row that is to replace the old one when it is used in a before row

-level trigger. When used in an after row-level trigger, this value has been stored in the

table because the action has occurred on the affected row.

In the trigger code block, :NEW.column can be used like any other variable. If a value is

assigned to :NEW.column, in the code block of a before row-level trigger, the assigned

value will be used in the new inserted or updated row.

OLD

OLD is a pseudo-record name that refers to the old table row for update and delete

operations in row-level triggers. This variable is not applicable in statement-level triggers

or in insert operations of row-level triggers.

This variable is used in the form of :OLD.column. In :OLD.column, column is the name of a

column in the table on which the trigger is defined.

The initial content of :OLD.column is the value in the named column of the row to be

deleted or of the old row that is to be replaced by the new one when it is used in a before

row-level trigger. When it is used in an after row-level trigger, this value is no longer stored

in the table because the action has occurred on the affected row.

In the trigger code block, :OLD.column can be used like other variables. Assigning a value

to :OLD.column has no impact on the action of the trigger.

INSERTING

INSERTING is a conditional expression that returns TRUE if an insert operation fires the

trigger. Otherwise, it returns FALSE.

UPDATING

UPDATING is a conditional expression that returns TRUE if an update operation fires the

trigger. Otherwise, it returns FALSE.

DELETING

DELETING is a conditional expression that returns TRUE if a delete operation fires the trigger

. Otherwise, it returns FALSE.

350 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 8 Triggers

8.5 Transactions and exceptions

A trigger is always executed as part of the same transaction within which the triggering

statement is being executed. When no exception occurs within the trigger code block, the

effects of any triggering command within the trigger are committed only if the transaction

containing the triggering statement is committed. Therefore, if the transaction is rolled back

, the effect of any DML command in the trigger will also be rolled back.

If an exception occurs within the trigger code block but it is caught and handled in an

exception section, the effect of any triggering commands within the trigger is still rolled

 back. However, the triggering statement itself is not rolled back unless the application

forces a rollback of the encapsulating transaction.

If an exception within the trigger code block is not handled, the transaction that encapsulat

es the trigger is aborted and rolled back. Therefore, the effects of any DML commands

within the trigger and the triggering statement are all rolled back.

8.6 Trigger examples

8.6.1 Before statement-level trigger
The following example is a simple before statement-level trigger that displays a message

prior to an insert operation on the emp table.

CREATE OR REPLACE TRIGGER emp_alert_trig
 BEFORE INSERT ON emp
BEGIN
 DBMS_OUTPUT.PUT_LINE('New employees are about to be added');
END;

The following INSERT is constructed so that new rows are inserted upon a single execution

of the command. For each row that has an employee ID between 7900 and 7999, a new row

 is inserted with an employee ID incremented by 1000. The following example shows the

results of executing the command with three new rows inserted.

INSERT INTO emp (empno, ename, deptno) SELECT empno + 1000, ename, 40
 FROM emp WHERE empno BETWEEN 7900 AND 7999;
New employees are about to be added

SELECT empno, ename, deptno FROM emp WHERE empno BETWEEN 8900 AND 8999;

 EMPNO ENAME DEPTNO
---------- ---------- ----------
 8900 JAMES 40
 8902 FORD 40

Issue: 20200701 351

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 8 Triggers

 8934 MILLER 40

The message "New employees are about to be added" is displayed once after the trigger is

fired even though the result is that three new rows have been added.

8.6.2 After statement-level trigger
The following example is an after statement-level trigger. Whenever an insert, update,

or delete operation occurs on the emp table, a row is added to the empauditlog table

recording the date, user, and action.

CREATE TABLE empauditlog (
 audit_date DATE,
 audit_user VARCHAR2(20),
 audit_desc VARCHAR2(20)
);
CREATE OR REPLACE TRIGGER emp_audit_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp
DECLARE
 v_action VARCHAR2(20);
BEGIN
 IF INSERTING THEN
 v_action := 'Added employee(s)';
 ELSIF UPDATING THEN
 v_action := 'Updated employee(s)';
 ELSIF DELETING THEN
 v_action := 'Deleted employee(s)';
 END IF;
 INSERT INTO empauditlog VALUES (SYSDATE, USER,
 v_action);
END;

In the following sequence of statements, two rows are inserted into the emp table by using

two INSERT statements. The sal and comm columns of both rows are updated by using one

UPDATE statement. Finally, both rows are deleted by using one DELETE statement.

INSERT INTO emp VALUES (9001,'SMITH','ANALYST',7782,SYSDATE,NULL,NULL,10);

INSERT INTO emp VALUES (9002,'JONES','CLERK',7782,SYSDATE,NULL,NULL,10);

UPDATE emp SET sal = 4000.00, comm = 1200.00 WHERE empno IN (9001, 9002);

DELETE FROM emp WHERE empno IN (9001, 9002);

SELECT TO_CHAR(AUDIT_DATE,'DD-MON-YY HH24:MI:SS') AS "AUDIT DATE",
 audit_user, audit_desc FROM empauditlog ORDER BY 1 ASC;

AUDIT DATE AUDIT_USER AUDIT_DESC
------------------ -------------------- --------------------
31-MAR-05 14:59:48 SYSTEM Added employee(s)
31-MAR-05 15:00:07 SYSTEM Added employee(s)
31-MAR-05 15:00:19 SYSTEM Updated employee(s)

352 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 8 Triggers

31-MAR-05 15:00:34 SYSTEM Deleted employee(s)

The contents of the empauditlog table show the times the trigger is fired: once each for

the two inserts, once for the update even though two rows are changed, and once for the

deletion even though two rows are deleted.

8.6.3 Before row-level trigger
The following example is a before row-level trigger that calculates the commission of every

 new employee belonging to department 30 that is inserted into the emp table.

CREATE OR REPLACE TRIGGER emp_comm_trig
 BEFORE INSERT ON emp
 FOR EACH ROW
BEGIN
 IF :NEW.deptno = 30 THEN
 :NEW.comm := :NEW.sal * .4;
 END IF;
END;

The list following the addition of the two employees shows that the trigger computed their

commissions and inserted it as part of the new employee rows.

INSERT INTO emp VALUES (9005,'ROBERS','SALESMAN',7782,SYSDATE,3000.00,NULL,30);

INSERT INTO emp VALUES (9006,'ALLEN','SALESMAN',7782,SYSDATE,4500.00,NULL,30);

SELECT * FROM emp WHERE empno IN (9005, 9006);

 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
---------- ---------- --------- ---------- --------- ---------- ---------- ----------
 9005 ROBERS SALESMAN 7782 01-APR-05 3000 1200 30
 9006 ALLEN SALESMAN 7782 01-APR-05 4500 1800 30

8.6.4 After row-level trigger
The following example is an after row-level trigger. When a new employee row is inserted

, the trigger adds a new row to the jobhist table for that employee. When an existing

employee row is updated, the trigger sets the enddate column of the latest jobhist row (

assumed to be the one with a null enddate) to the current date and inserts a new jobhist

row with the employee's new information.

Finally, the trigger adds a row to the empchglog table with a description of the action.

CREATE TABLE empchglog (
 chg_date DATE,
 chg_desc VARCHAR2(30)
);
CREATE OR REPLACE TRIGGER emp_chg_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp
 FOR EACH ROW
DECLARE

Issue: 20200701 353

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 8 Triggers

 v_empno emp.empno%TYPE;
 v_deptno emp.deptno%TYPE;
 v_dname dept.dname%TYPE;
 v_action VARCHAR2(7);
 v_chgdesc jobhist.chgdesc%TYPE;
BEGIN
 IF INSERTING THEN
 v_action := 'Added';
 v_empno := :NEW.empno;
 v_deptno := :NEW.deptno;
 INSERT INTO jobhist VALUES (:NEW.empno, SYSDATE, NULL,
 :NEW.job, :NEW.sal, :NEW.comm, :NEW.deptno, 'New Hire');
 ELSIF UPDATING THEN
 v_action := 'Updated';
 v_empno := :NEW.empno;
 v_deptno := :NEW.deptno;
 v_chgdesc := '';
 IF NVL(:OLD.ename, '-null-') ! = NVL(:NEW.ename, '-null-') THEN
 v_chgdesc := v_chgdesc || 'name, ';
 END IF;
 IF NVL(:OLD.job, '-null-') ! = NVL(:NEW.job, '-null-') THEN
 v_chgdesc := v_chgdesc || 'job, ';
 END IF;
 IF NVL(:OLD.sal, -1) ! = NVL(:NEW.sal, -1) THEN
 v_chgdesc := v_chgdesc || 'salary, ';
 END IF;
 IF NVL(:OLD.comm, -1) ! = NVL(:NEW.comm, -1) THEN
 v_chgdesc := v_chgdesc || 'commission, ';
 END IF;
 IF NVL(:OLD.deptno, -1) ! = NVL(:NEW.deptno, -1) THEN
 v_chgdesc := v_chgdesc || 'department, ';
 END IF;
 v_chgdesc := 'Changed ' || RTRIM(v_chgdesc, ', ');
 UPDATE jobhist SET enddate = SYSDATE WHERE empno = :OLD.empno
 AND enddate IS NULL;
 INSERT INTO jobhist VALUES (:NEW.empno, SYSDATE, NULL,
 :NEW.job, :NEW.sal, :NEW.comm, :NEW.deptno, v_chgdesc);
 ELSIF DELETING THEN
 v_action := 'Deleted';
 v_empno := :OLD.empno;
 v_deptno := :OLD.deptno;
 END IF;

 INSERT INTO empchglog VALUES (SYSDATE,
 v_action || ' employee # ' || v_empno);
END;

In the first sequence of the following statements, two employees are added by using two

separate INSERT statements. Then, both are updated by using a single UPDATE statement.

The contents of the jobhist table show the action of the trigger for each affected row: two

new hire entries for the two new employees and two changed commission records for the

 updated commissions on the two employees. The empchglog table also shows that the

trigger is fired a total of four times, once for each action on the two rows.

INSERT INTO emp VALUES (9003,'PETERS','ANALYST',7782,SYSDATE,5000.00,NULL,40);

INSERT INTO emp VALUES (9004,'AIKENS','ANALYST',7782,SYSDATE,4500.00,NULL,40);

UPDATE emp SET comm = sal * 1.1 WHERE empno IN (9003, 9004);

354 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 8 Triggers

SELECT * FROM jobhist WHERE empno IN (9003, 9004);

 EMPNO STARTDATE ENDDATE JOB SAL COMM DEPTNO CHGDESC
---------- --------- --------- --------- ---------- ---------- ---------- -------------
 9003 31-MAR-05 31-MAR-05 ANALYST 5000 40 New Hire
 9004 31-MAR-05 31-MAR-05 ANALYST 4500 40 New Hire
 9003 31-MAR-05 ANALYST 5000 5500 40 Changed commission
 9004 31-MAR-05 ANALYST 4500 4950 40 Changed commission

SELECT * FROM empchglog;

CHG_DATE CHG_DESC
--------- ------------------------------
31-MAR-05 Added employee # 9003
31-MAR-05 Added employee # 9004
31-MAR-05 Updated employee # 9003
31-MAR-05 Updated employee # 9004

Finally, both employees are deleted by using a single DELETE statement. The empchglog

table shows that the trigger has been fired twice, once for each deleted employee.

DELETE FROM emp WHERE empno IN (9003, 9004);

SELECT * FROM empchglog;

CHG_DATE CHG_DESC
--------- ------------------------------
31-MAR-05 Added employee # 9003
31-MAR-05 Added employee # 9004
31-MAR-05 Updated employee # 9003
31-MAR-05 Updated employee # 9004
31-MAR-05 Deleted employee # 9003
31-MAR-05 Deleted employee # 9004

Issue: 20200701 355

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 9 Object types and objects

9 Object types and objects

9.1 Basic object concepts
This topic describes how object-oriented programming techniques can be exploited in

Stored Procedure Language (SPL). Object-oriented programming as seen in programming

languages such as Java and C++ centers on the concept of objects. An object is a

representation of a real-world entity such as a person, place, or thing. The generic

description or definition of a particular object, such as a person, is called an object type.

Specific people such as "Joe" or "Sally" are objects of the object type person, or equivalently

instances of the object type person, or simply person objects.

Precautions

The terms database objects and objects that have been used in this document up to this

point are different from the object types and objects as used in this topic and other topics

under "Object types and objects." The previous usage of these terms relates to the entities

 that can be created in a database, such as tables, views, indexes, and users. Within

the context of topics that are mentioned, object types and objects refer to specific data

structures supported by the SPL programming language to implement object-oriented

concepts.

In Oracle, the term abstract data type (ADT) is used to describe object types in PL/SQL. The

SPL implementation of object types is intended to be compatible with Oracle ADTs.

PolarDB databases compatible with Oracle do not support some features of object-oriented

 programming languages. This topic only describes the features that have been supported.

Concepts

An object type is a description or definition of some entity. This definition of an object type

is characterized by two components:

• Attributes: the fields that describe particular characteristics of an object instance. For

example, the attributes of a person object may include the name, address, gender, date

of birth, height, weight, eye color, and occupation.

• Methods: the programs that perform some type of function or operation on or related

to an object. For example, the methods of a person object may include calculating the

356 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 9 Object types and objects

person's age, displaying the person's attributes, and changing the values assigned to

the person's attributes.

Attributes

Each object type must contain at least one attribute. The data type of an attribute can be

one of the following types:

• A base data type, such as NUMBER and VARCHAR2

• Another object type

• A globally defined collection type (created by the CREATE TYPE statement), such as a

nested table or varray

An attribute obtains its initial value when an object instance is initially created. The initial

value may be NULL. Each object instance has its own set of attribute values.

Methods

Methods are SPL procedures or functions defined within an object type. Methods can be

categorized into three general types:

• Member methods: the procedures or functions that operate within the context of an

object instance. Member methods have access to and can change the attributes of the

object instance on which they are operating.

• Static methods: the procedures or functions that operate independently of a particular

object instance. Static methods do not have access to and cannot change the attributes

of an object instance.

• Constructor methods: the functions used to create an instance of an object type. A

default constructor method is always provided when an object type is defined.

Overloaded methods

In an object type, you cannot define two or more identically named methods of the same

type (either a procedure or function) but with different signatures. Such methods are called

 overloaded methods.

A method's signature consists of the number of formal parameters, the data types of the

formal parameters, and their order.

Issue: 20200701 357

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 9 Object types and objects

9.2 Object type components

You can create and store an object type in a database by using the following two constructs

 of the Stored Procedure Language (SPL):

• Object type specification: This is the public interface which specifies the attributes and

method signatures of the object type.

• Object type body: This contains the implementation of the methods specified in the

object type specification.

The following sections describe the statements used to create the object type specification

and the object type body.

Syntax of the object type specification

The syntax of the object type specification is as follows:

CREATE [OR REPLACE] TYPE name
 [AUTHID { DEFINER | CURRENT_USER }]
 { IS | AS } OBJECT
({ attribute { datatype | objtype | collecttype } }
 [, ...]
 [method_spec] [, ...]
 [constructor] [, ...]
) [[NOT] { FINAL | INSTANTIABLE }] ... ;

where, method_spec is as follows:

[[NOT] { FINAL | INSTANTIABLE }] ...
[OVERRIDING]
 subprogram_spec

where, subprogram_spec is as follows:

{ MEMBER | STATIC }
{ PROCEDURE proc_name
 [([SELF [IN | IN OUT] name]
 [, parm1 [IN | IN OUT | OUT] datatype1
 [DEFAULT value1]]
 [, parm2 [IN | IN OUT | OUT] datatype2
 [DEFAULT value2]
] ...)
]
|
 FUNCTION func_name
 [([SELF [IN | IN OUT] name]
 [, parm1 [IN | IN OUT | OUT] datatype1
 [DEFAULT value1]]
 [, parm2 [IN | IN OUT | OUT] datatype2
 [DEFAULT value2]
] ...)
]
 RETURN return_type

358 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 9 Object types and objects

}

where, constructor is as follows:

 CONSTRUCTOR func_name
 [([SELF [IN | IN OUT] name]
 [, parm1 [IN | IN OUT | OUT] datatype1
 [DEFAULT value1]]
 [, parm2 [IN | IN OUT | OUT] datatype2
 [DEFAULT value2]
] ...)
]
 RETURN self AS RESULT

Note:

Currently, the OR REPLACE option cannot be used to add, delete, or modify the attributes

of an existing object type. Before you can use this option, you must use the DROP TYPE

statement to first delete the existing object type. However, the OR REPLACE option can be

used to add, delete, or modify the methods in an existing object type.

The PostgreSQL form of the ALTER TYPE ALTER ATTRIBUTE statement can be used to change

the data type of an attribute in an existing object type. However, the ALTER TYPE statement

 cannot be used to add or delete attributes in the object type.

name is an identifier assigned to the object type. It is optionally schema-qualified.

If the AUTHID clause is omitted or DEFINER is specified, the rights of the object type owner

 are used to determine access permissions on database objects. If CURRENT_USER is

specified, the rights of the current user who is executing a method in the object are used to

determine access permissions.

attribute is an identifier assigned to an attribute of the object type.

datatype is a base data type.

objtype is a previously defined object type.

collecttype is a previously defined collection type.

Following the closing parenthesis of the CREATE TYPE definition, [NOT] FINAL specifies

whether a subtype can be derived from this object type. FINAL is the default value. It means

 that no subtypes can be derived from this object type. If you want to allow subtypes to be

defined under this object type, specify NOT FINAL.

Note:

Issue: 20200701 359

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 9 Object types and objects

Even though the specification of NOT FINAL is accepted in the CREATE TYPE statement, SPL

does not support the creation of subtypes.

Following the closing parenthesis of the CREATE TYPE definition, [NOT] INSTANTIABLE

specifies whether an object instance of this object type can be created. INSTANTIABLE is the

default value. It means that an instance of this object type can be created. If this object type

 is to be used only as a parent template from which other specialized subtypes are to be

defined, specify NOT INSTANTIABLE. If NOT INSTANTIABLE is specified, NOT FINAL must also

 be specified. If a method in the object type contains the NOT INSTANTIABLE qualifier, the

object type must be defined with NOT INSTANTIABLE and NOT FINAL.

Note:

Even though the specification of NOT INSTANTIABLE is accepted in the CREATE TYPE

statement, SPL does not support the creation of subtypes.

method_spec denotes the specification of a member method or a static method.

Prior to the definition of a method, [NOT] FINAL specifies whether the method can be

overridden in a subtype. NOT FINAL is the default value. It means that the method can be

overridden in a subtype.

If a method overrides an identically named method in a supertype, specify OVERRIDING

prior to the definition of the method. The overriding method must have the same number

of identically named method parameters with the same data types and parameter modes,

in the same order, and the same return type (if the method is a function) as defined in the

supertype.

Prior to the definition of a method, [NOT] INSTANTIABLE specifies whether the object type

 definition provides an implementation for the method. If INSTANTIABLE is specified, the

CREATE TYPE BODY statement for the object type must specify the implementation of the

method. If NOT INSTANTIABLE is specified, the CREATE TYPE BODY statement for the object

 type must not contain the implementation of the method. In the latter case, assume that

a subtype contains the implementation of the method, which overrides the method in this

 object type. If there are NOT INSTANTIABLE methods in the object type, the object type

definition must specify NOT INSTANTIABLE and NOT FINAL following the closing parenthesis

of the object type specification. The default value is INSTANTIABLE.

subprogram_spec denotes the specification of a procedure or function and begins with the

 specification of MEMBER or STATIC. A member subprogram must be invoked with respect

360 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 9 Object types and objects

to a particular object instance, while a static subprogram is not invoked with respect to an

object instance.

proc_name is an identifier of a procedure. If the SELF parameter is specified, name is the

object type name given in the CREATE TYPE statement. In this situation, parm1, parm2, ...

are the formal parameters of the procedure. datatype1, datatype2, ... are the data types of

parm1, parm2, ... respectively. IN, IN OUT, and OUT are possible parameter modes for each

 formal parameter. If none of them are specified, the default value is IN. value1, value2, ...

are default values that may be specified for IN parameters.

You must include the CONSTRUCTOR keyword and function definition to define a constructo

r.

func_name is an identifier of a function. If the SELF parameter is specified, name is the

object type name given in the CREATE TYPE statement. In this situation, parm1, parm2, ...

are the formal parameters of the function. datatype1, datatype2, ... are the data types of

parm1, parm2, ... respectively. IN, IN OUT, and OUT are possible parameter modes for each

 formal parameter. If none of them are specified, the default value is IN. value1, value2, ...

are default values that may be specified for IN parameters. return_type is the data type of

the value that the function returns.

Note the following points about an object type specification:

• There must be at least one attribute defined in the object type.

• There may be none, one, or more methods defined in the object type.

• For each member method, there is an implicit, built-in parameter named SELF, whose

data type is that of the object type being defined.

SELF refers to the object instance that is invoking the method. SELF can be explicitly

declared as an IN or IN OUT parameter in the parameter list, for example, as MEMBER

FUNCTION (SELF IN OUT object_type ...).

If SELF is explicitly declared, it must be the first parameter in the parameter list. If SELF is

 not explicitly declared, its parameter mode defaults to IN OUT for member procedures

and to IN for member functions.

• A static method cannot be overridden. OVERRIDING and STATIC cannot be specified

together in method_spec.

• A static method must be instantiable. NOT INSTANTIABLE and STATIC cannot be specified

together in method_spec.

Issue: 20200701 361

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 9 Object types and objects

Syntax of the object type body

The syntax of the object type body is as follows:

CREATE [OR REPLACE] TYPE BODY name
 { IS | AS }
 method_spec [...]
 [constructor] [...]
END;

where, method_spec is as follows:

subprogram_spec

where, subprogram_spec is as follows:

{ MEMBER | STATIC }
{ PROCEDURE proc_name
 [([SELF [IN | IN OUT] name]
 [, parm1 [IN | IN OUT | OUT] datatype1
 [DEFAULT value1]]
 [, parm2 [IN | IN OUT | OUT] datatype2
 [DEFAULT value2]
] ...)
]
{ IS | AS }
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 [declarations]
 BEGIN
 statement; ...
[EXCEPTION
 WHEN ... THEN
 statement; ...]
 END;
|
 FUNCTION func_name
 [([SELF [IN | IN OUT] name]
 [, parm1 [IN | IN OUT | OUT] datatype1
 [DEFAULT value1]]
 [, parm2 [IN | IN OUT | OUT] datatype2
 [DEFAULT value2]
] ...)
]
 RETURN return_type
{ IS | AS }
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 [declarations]
 BEGIN
 statement; ...
[EXCEPTION
 WHEN ... THEN
 statement; ...]
 END;

where, constructor is as follows:

 CONSTRUCTOR func_name
 [([SELF [IN | IN OUT] name]
 [, parm1 [IN | IN OUT | OUT] datatype1
 [DEFAULT value1]]

362 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 9 Object types and objects

 [, parm2 [IN | IN OUT | OUT] datatype2
 [DEFAULT value2]
] ...)
]
 RETURN self AS RESULT
{ IS | AS }
 [declarations]
 BEGIN
 statement; ...
[EXCEPTION
 WHEN ... THEN
 statement; ...]
 END;

name is an identifier assigned to the object type. It is optionally schema-qualified.

method_spec denotes the implementation of an instantiable method that is specified in the

 CREATE TYPE statement.

If INSTANTIABLE is specified or omitted in method_spec of the CREATE TYPE statement, there

 must be a method_spec for this method in the CREATE TYPE BODY statement.

If NOT INSTANTIABLE is specified in method_spec of the CREATE TYPE statement, there must

be no method_spec for this method in the CREATE TYPE BODY statement.

subprogram_spec denotes the specification of a procedure or function and begins with the

specification of MEMBER or STATIC. The same qualifier as that specified in subprogram_spec

 of the CREATE TYPE statement must be used.

proc_name is an identifier of a procedure specified in the CREATE TYPE statement. The

 parameter declarations have the same meaning as described for the CREATE TYPE

statement, and must be specified in the CREATE TYPE BODY statement in the same manner

as specified in the CREATE TYPE statement.

You must include the CONSTRUCTOR keyword and function definition to define a constructo

r.

func_name is an identifier of a function specified in the CREATE TYPE statement. The

 parameter declarations have the same meaning as described for the CREATE TYPE

statement, and must be specified in the CREATE TYPE BODY statement in the same manner

as specified in the CREATE TYPE statement. return_type is the data type of the value that the

function returns and must match return_type given in the CREATE TYPE statement.

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the procedure or function as

 an autonomous transaction.

Issue: 20200701 363

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 9 Object types and objects

declarations are variable, cursor, type, or subprogram declarations. If subprogram

declarations are included, they must be declared after all other variable, cursor, and type

declarations.

statement is an SPL program statement.

9.3 Create an object type
You can use the CREATE TYPE statement to create an object type specification, and the

CREATE TYPE BODY statement to create an object type body. This topic provides examples to

illustrate the CREATE TYPE and CREATE TYPE BODY statements.

The following example creates the addr_object_type object type that contains attributes but

 no methods:

CREATE OR REPLACE TYPE addr_object_type AS OBJECT (
 street VARCHAR2(30),
 city VARCHAR2(20),
 state CHAR(2),
 zip NUMBER(5)
);

Since there are no methods in this object type, an object type body is not required. This

example creates a composite type, which allows you to treat related objects as a single

attribute.

Member methods

A member method is a function or procedure that is defined within an object type and only

can be invoked by using an instance of that type. Member methods have access to and can

change the attributes of the object instance on which they are operating.

The following example creates the emp_obj_type object type:

CREATE OR REPLACE TYPE emp_obj_type AS OBJECT (
 empno NUMBER(4),
 ename VARCHAR2(20),
 addr ADDR_OBJ_TYPE,
 MEMBER PROCEDURE display_emp(SELF IN OUT emp_obj_type)
);

The object type emp_obj_type contains a member method named display_emp.

display_emp uses a SELF parameter, which passes the object instance on which the method

 is invoked.

The data type of a SELF parameter is the same as that of the object type being defined

. A SELF parameter always references the instance that is invoking the method. A SELF

364 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 9 Object types and objects

parameter is the first parameter in a member procedure or function regardless of whether it

 is explicitly declared in the parameter list.

The following example defines an object type body for emp_obj_type:

CREATE OR REPLACE TYPE BODY emp_obj_type AS
 MEMBER PROCEDURE display_emp (SELF IN OUT emp_obj_type)
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Employee No : ' || empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || ename);
 DBMS_OUTPUT.PUT_LINE('Street : ' || addr.street);
 DBMS_OUTPUT.PUT_LINE('City/State/Zip: ' || addr.city || ', ' ||
 addr.state || ' ' || LPAD(addr.zip,5,'0'));
 END;
END;

You can also use the SELF parameter in an object type body. To illustrate how the SELF

 parameter is used in the CREATE TYPE BODY statement, you can rewrite the preceding

object type body as follows:

CREATE OR REPLACE TYPE BODY emp_obj_type AS
 MEMBER PROCEDURE display_emp (SELF IN OUT emp_obj_type)
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Employee No : ' || SELF.empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || SELF.ename);
 DBMS_OUTPUT.PUT_LINE('Street : ' || SELF.addr.street);
 DBMS_OUTPUT.PUT_LINE('City/State/Zip: ' || SELF.addr.city || ', ' ||
 SELF.addr.state || ' ' || LPAD(SELF.addr.zip,5,'0'));
 END;
END;

Both versions of the emp_obj_type body are equivalent.

Static methods

Like a member method, a static method belongs to an object type. A static method,

however, is not invoked by an instance of the object type but by using the name of the

object type. For example, to invoke a static function named get_count and defined within

the emp_obj_type object type, you can write as follows:

emp_obj_type.get_count();

A static method does not have access to and cannot change the attributes of an object

instance. It does not typically work with an instance of the object type.

The following object type specification includes a static function get_dname and a member

 procedure display_dept:

CREATE OR REPLACE TYPE dept_obj_type AS OBJECT (
 deptno NUMBER(2),

Issue: 20200701 365

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 9 Object types and objects

 STATIC FUNCTION get_dname(p_deptno IN NUMBER) RETURN VARCHAR2,
 MEMBER PROCEDURE display_dept
);

The object type body for dept_obj_type defines a static function named get_dname and a

member procedure named display_dept.

CREATE OR REPLACE TYPE BODY dept_obj_type AS
 STATIC FUNCTION get_dname(p_deptno IN NUMBER) RETURN VARCHAR2
 IS
 v_dname VARCHAR2(14);
 BEGIN
 CASE p_deptno
 WHEN 10 THEN v_dname := 'ACCOUNTING';
 WHEN 20 THEN v_dname := 'RESEARCH';
 WHEN 30 THEN v_dname := 'SALES';
 WHEN 40 THEN v_dname := 'OPERATIONS';
 ELSE v_dname := 'UNKNOWN';
 END CASE;
 RETURN v_dname;
 END;
 MEMBER PROCEDURE display_dept
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Dept No : ' || SELF.deptno);
 DBMS_OUTPUT.PUT_LINE('Dept Name : ' ||
 dept_obj_type.get_dname(SELF.deptno));
 END;
END;

Within the static function get_dname, references to SELF are not allowed. Since a static

function is invoked independently of an object instance, it has no implicit access to any

object attribute.

The member procedure display_dept can access the deptno attribute of the object instance

 passed in the SELF parameter. You do not need to explicitly declare the SELF parameter in

the display_dept parameter list.

The last DBMS_OUTPUT.PUT_LINE statement in the display_dept procedure includes a call to

 the static function get_dname, which is qualified by its object type name dept_obj_type.

Constructor methods

A constructor method is a function that creates an instance of an object type, typically

 by assigning values to the members of the object. An object type may define several

constructors to accomplish different tasks. A constructor method is a member function

invoked with a SELF parameter and its name matches the name of the object type.

For example, if you define an object type named address, each constructor is named

address. You may overload a constructor by creating one or more different constructor

functions with the same name but with different parameter types.

366 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 9 Object types and objects

The SPL compiler provides a default constructor for each object type. The default constructo

r is a member function. Its name matches the name of the object type and its parameter list

 matches the object type members in order. The following example creates an object type

named address:

CREATE TYPE address AS OBJECT
(
 street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(40),
 state VARCHAR2(2)
)

The SPL compiler provides a default constructor with the following signature:

CONSTRUCTOR FUNCTION address
(
 street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(40),
 state VARCHAR2(2)
)

The body of the default constructor sets each member to NULL.

If you want to create a custom constructor, declare the constructor by using the keyword

constructor in the CREATE TYPE statement and define it in the CREATE TYPE BODY statement

. For example, if you want to create a custom constructor for the address object type that

computes the city and state given a street_address and postal_code, write as follows:

CREATE TYPE address AS OBJECT
(
 street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(40),
 state VARCHAR2(2),

 CONSTRUCTOR FUNCTION address
 (
 street_address VARCHAR2,
 postal_code VARCHAR2
) RETURN self AS RESULT
)
 CREATE TYPE BODY address AS
 CONSTRUCTOR FUNCTION address
 (
 street_address VARCHAR2,
 postal_code VARCHAR2
) RETURN self AS RESULT
 IS
 BEGIN
 self.street_address := street_address;
 self.postal_code := postal_code;
 self.city := postal_code_to_city(postal_code);
 self.state := postal_code_to_state(postal_code);
 RETURN;

Issue: 20200701 367

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 9 Object types and objects

 END;
END;

If you want to create an instance of an object type, you can invoke one of the constructor

methods for that object type. For example:

DECLARE
 cust_addr address := address('100 Main Street', 02203');
BEGIN
 DBMS_OUTPUT.PUT_LINE(cust_addr.city); -- displays Boston
 DBMS_OUTPUT.PUT_LINE(cust_addr.state); -- displays MA
END;

Custom constructors are typically used to compute member values when they are given

 incomplete information. The preceding example computes the values for city and state

when a postal code is provided.

Custom constructors are also used to enforce business rules that restrict the state of an

object. For example, if you define an object type to represent a payment, you can use a

custom constructor to ensure that no object of the object type payment can be created with

 an amount that is NULL, negative, or zero. The default constructor sets payment.amount

 to NULL. Therefore, you must create a custom constructor whose signature matches the

default constructor to prohibit NULL amounts.

9.4 Create an object instance

If you want to create an instance of an object type, you must declare a variable of the

object type and then initialize the declared object variable. The syntax for declaring an

object variable is as follows:

object obj_type

where, object is the identifier assigned to the object variable, and obj_type is the identifier

of the previously defined object type.

After you declare an object variable, you must invoke a constructor method to initialize the

object with values. Use the following syntax to invoke the constructor method:

[NEW] obj_type ({expr1 | NULL} [, {expr2 | NULL}] [, ...])

where, obj_type is the identifier of the object type's constructor method, and the constructo

r method has the same name as the previously declared object type.

expr1, expr2, ... are expressions that are type-compatible with the first attribute of the

object type, the second attribute of the object type, and so on. If an attribute is of an object

368 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 9 Object types and objects

type, the corresponding expression can be NULL, an object initialization expression, or any

expression that returns the object type.

The following anonymous block declares and initializes a variable:

DECLARE
 v_emp EMP_OBJ_TYPE;
BEGIN
 v_emp := emp_obj_type (9001,'JONES',
 addr_obj_type('123 MAIN STREET','EDISON','NJ',08817));
END;

The variable v_emp is declared with a previously defined object type named EMP_OBJ_TY

PE. The body of the block initializes the variable by using the emp_obj_type and addr_obj_t

ype constructors.

You can include the NEW keyword when you create an instance of an object in the body

of a block. The NEW keyword invokes the object constructor whose signature matches the

parameters provided.

The following example declares two variables named mgr and emp. Both the variables are

of EMP_OBJ_TYPE. mgr is initialized in the declaration, while emp is initialized to NULL in the

 declaration and is assigned a value in the body.

DECLARE
 mgr EMP_OBJ_TYPE := (9002,'SMITH',NULL);
 emp EMP_OBJ_TYPE;
BEGIN
 emp := NEW EMP_OBJ_TYPE (9003,'RAY',NULL);
END;

In PolarDB databases compatible with Oracle, you can use the following alternate syntax in

 place of the constructor method:

[ROW] ({ expr1 | NULL } [, { expr2 | NULL }] [, ...])

ROW is an optional keyword if you specify two or more expressions within the parenthesis

-enclosed, comma-delimited list. If you only specify one expression, you must specify the

ROW keyword.

Issue: 20200701 369

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 9 Object types and objects

9.5 Reference an object
After an object variable is created and initialized, you can reference its individual attributes

by using the dot notation of the following form:

object.attribute

where, object is the identifier assigned to the object variable, and attribute is the identifier

of an object type attribute.

If the attribute is of an object type, you must reference it in the following form:

object.attribute.attribute_inner

attribute_inner is an identifier belonging to the object type to which attribute references in

its definition of object.

The following example expands upon the preceding anonymous block to display the values

 assigned to the emp_obj_type object:

DECLARE
 v_emp EMP_OBJ_TYPE;
BEGIN
 v_emp := emp_obj_type(9001,'JONES',
 addr_obj_type('123 MAIN STREET','EDISON','NJ',08817));
 DBMS_OUTPUT.PUT_LINE('Employee No : ' || v_emp.empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_emp.ename);
 DBMS_OUTPUT.PUT_LINE('Street : ' || v_emp.addr.street);
 DBMS_OUTPUT.PUT_LINE('City/State/Zip: ' || v_emp.addr.city || ', ' ||
 v_emp.addr.state || ' ' || LPAD(v_emp.addr.zip,5,'0'));
END;

The following information is the output from this anonymous block:

Employee No : 9001
Name : JONES
Street : 123 MAIN STREET
City/State/Zip: EDISON, NJ 08817

Methods are called in a similar way as attributes.

After an object variable is created and initialized, you can call its member procedures or

functions by using the dot notation of the following form:

object.prog_name

where, object is the identifier assigned to the object variable, and prog_name is the

identifier of the procedure or function.

370 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 9 Object types and objects

You cannot call static procedures or functions by using an object variable. Instead, you can

call them by using an object type name.

object_type.prog_name

where, object_type is the identifier assigned to the object type, and prog_name is the

identifier of the procedure or function.

The results of the preceding anonymous block can be duplicated by calling the member

procedure display_emp.

DECLARE
 v_emp EMP_OBJ_TYPE;
BEGIN
 v_emp := emp_obj_type(9001,'JONES',
 addr_obj_type('123 MAIN STREET','EDISON','NJ',08817));
 v_emp.display_emp;
END;

The following information is the output from this anonymous block:

Employee No : 9001
Name : JONES
Street : 123 MAIN STREET
City/State/Zip: EDISON, NJ 08817

The following anonymous block creates an instance of dept_obj_type and calls the member

 procedure display_dept:

DECLARE
 v_dept DEPT_OBJ_TYPE := dept_obj_type (20);
BEGIN
 v_dept.display_dept;
END;

The following information is the output from this anonymous block:

Dept No : 20
Dept Name : RESEARCH

You can directly call the static function defined in dept_obj_type by qualifying it with the

object type name as follows:

BEGIN
 DBMS_OUTPUT.PUT_LINE(dept_obj_type.get_dname(20));
END;

Issue: 20200701 371

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 9 Object types and objects

RESEARCH

9.6 Delete an object type
The following example shows the syntax for deleting an object type.

DROP TYPE objtype;

objtype is the identifier of the object type that you want to delete. If the definition of

objtype contains attributes that are object types or collection types, these nested object

types or collection types must be deleted last.

If an object type body is defined for the object type, the DROP TYPE statement deletes

the object type body as well as the object type specification. If you want to recreate the

complete object type, both the CREATE TYPE and CREATE TYPE BODY statements must be

reissued.

The following example deletes the emp_obj_typ and the addr_obj_typ object types created

 earlier in this topic. emp_obj_typ must be deleted first because it contains addr_obj_typ

within its definition as an attribute.

DROP TYPE emp_obj_typ;
DROP TYPE addr_obj_typ;

The syntax for deleting an object type body, but not the object type specification is as

follows:

DROP TYPE BODY objtype;

The object type body can be recreated by issuing the CREATE TYPE BODY statement.

The following example deletes only the object type body of the dept_obj_typ.

DROP TYPE BODY dept_obj_typ;

372 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 10 dblink_ora

10 dblink_ora

10.1 Overview of dblink_ora
dblink_ora provides an OCI-based database link that allows you to run SELECT, INSERT,

UPDATE or DELETE statements on the data stored in an Oracle system from within a PolarDB

database compatible with Oracle. OCI is short for Oracle Call Interface.

If you want to enable Oracle connectivity, download Oracle's freely available OCI drivers

from http://www.oracle.com/technetwork/database/database-technologies/instant-client

/overview/index.html.

Connect to an Oracle database

If the Oracle Instant Client that you download does not include the libclntsh.so library, you

 must create a symbolic link named libclntsh.so that points to the downloaded version.

Navigate to the Instant Client directory and run the following command:

ln -s libclntsh.so.version libclntsh.so

where, version is the version number of the libclntsh.so library. For example:

ln -s libclntsh.so.12.1 libclntsh.so

Before you create a link to an Oracle server, you must tell the PolarDB database compatible

 with Oracle where to find the OCI driver.

Set the LD_LIBRARY_PATH environment variable on Linux or PATH on Windows to the lib

directory of the Oracle client installation directory.

For Windows only, you can also set the value of the oracle_home configuration parameter

in the postgresql.conf file. The value specified in the oracle_home configuration parameter

overrides the Windows PATH environment variable.

The LD_LIBRARY_PATH environment variable on Linux and the PATH environment variable

or oracle_home configuration parameter on Windows must be set properly each time you

start the PolarDB database compatible with Oracle.

When you use a Linux service script to start the PolarDB database compatible with Oracle

, make sure that LD_LIBRARY_PATH is set within the service script so it is in effect when the

script invokes the pg_ctl utility to start the PolarDB database compatible with Oracle.

Issue: 20200701 373

http://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 10 dblink_ora

For Windows only, if you want to set the oracle_home configuration parameter in the

postgresql.conf file, edit the file by adding the following line:

oracle_home = 'lib_directory '

Substitute the name of the Windows directory that contains oci.dll for lib_directory.

After you set the oracle_home configuration parameter, you must restart the server for the

changes to take effect. You can restart the server from the Windows Services console.

10.2 dblink_ora functions and procedures
dblink_ora supports the following functions and procedures:

dblink_ora_connect()

The dblink_ora_connect() function establishes a connection to an Oracle database with

user-specified connection information. This function comes in two forms. The signature of

the first form is as follows:

dblink_ora_connect(conn_name, server_name, service_name, user_name, password,
port, asDBA)

where,

• conn_name specifies the name of the link.

• server_name specifies the name of the host.

• service_name specifies the name of the service.

• user_name specifies the name you use to connect to the server.

• password specifies the password associated with the username.

• port specifies the port number.

If you want to request SYSDBA permissions on the Oracle server, asDBA is True. This

parameter is optional. If it is omitted, the value is FALSE.

The first form of dblink_ora_connect() returns a TEXT value.

The signature of the second form of the dblink_ora_connect() function is as follows:

dblink_ora_connect(foreign_server_name, asDBA)

where,

foreign_server_name specifies the name of a foreign server.

374 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 10 dblink_ora

If you want to request SYSDBA permissions on the Oracle server, asDBA is True. This

parameter is optional. If it is omitted, the value is FALSE.

The second form of the dblink_ora_connect() function allows you to use the connection

properties of a predefined foreign server when you establish a connection to the server.

Before you invoke the second form of the dblink_ora_connect() function, use the CREATE

SERVER statement to store the connection properties for the link to a system table. When

 you call the dblink_ora_connect() function, substitute the server name specified in the

CREATE SERVER statement for the name of the link.

The second form of dblink_ora_connect() returns a TEXT value.

dblink_ora_status()

The dblink_ora_status() function returns the database connection status. The signature of

dblink_ora_status() is as follows:

dblink_ora_status(conn_name)

where,

conn_name specifies the name of the link.

If the specified connection is active, the function returns a TEXT value of OK.

dblink_ora_disconnect()

The dblink_ora_disconnect() function closes a database connection. The signature of

dblink_ora_disconnect() is as follows:

dblink_ora_disconnect(conn_name)

where,

conn_name specifies the name of the link.

The function returns a TEXT value.

dblink_ora_record()

The dblink_ora_record() function retrieves information from a database. The signature of

dblink_ora_record() is as follows:

dblink_ora_record(conn_name, query_text)

where,

• conn_name specifies the name of the link.

Issue: 20200701 375

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 10 dblink_ora

• query_text specifies the text of the SQL SELECT statement that will be invoked on the

Oracle server.

The function returns a SETOF record.

dblink_ora_call()

The dblink_ora_call() function executes a non-SELECT statement on an Oracle database and

 returns a result set. The signature of dblink_ora_call() is as follows:

dblink_ora_call(conn_name, command, iterations)

where,

• conn_name specifies the name of the link.

• command specifies the text of the SQL statement that will be invoked on the Oracle

server.

• iterations specifies the number of times the statement is executed.

The function returns a SETOF record.

dblink_ora_exec()

The dblink_ora_exec() procedure executes a DML or DDL statement in a remote database.

The signature of dblink_ora_exec() is as follows:

dblink_ora_exec(conn_name, command)

where,

• conn_name specifies the name of the link.

• command specifies the text of the SQL INSERT, UPDATE, or DELETE statement that will be

invoked on the Oracle server.

The function returns a VOID.

dblink_ora_copy()

The dblink_ora_copy() function copies an Oracle table to a table in a PolarDB database

 compatible with Oracle. The dblink_ora_copy() function returns a BIGINT value that

represents the number of rows copied. The signature of dblink_ora_copy() is as follows:

dblink_ora_copy(conn_name, command, schema_name, table_name, truncate, count)

where,

• conn_name specifies the name of the link.

376 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 10 dblink_ora

• command specifies the text of the SQL SELECT statement that will be invoked on the

Oracle server.

• schema_name specifies the name of the target schema.

• table_name specifies the name of the target table.

• truncate specifies whether the server needs to truncate the table prior to copying.

Specify TRUE to indicate that the server needs to truncate the table. This parameter is

optional. If it is omitted, the value is FALSE.

• count instructs the server to report status information every n records, where n is

the number specified. During the execution of the function, the PolarDB database

compatible with Oracle raises a notice of severity INFO with each iteration of the count.

For example, if FeedbackCount is 10, dblink_ora_copy() raises a notice every 10 records.

This parameter is optional. If it is omitted, the value is 0.

10.3 Call dblink_ora functions

You can use the dblink_ora_connect() function to establish a connection.

SELECT dblink_ora_connect('acctg', 'localhost', 'xe', 'hr', 'pwd', 1521);

This example connects to a service named xe running on port 1521 on the localhost with

 a username of hr and a password of pwd. You can use the connection name acctg to

reference this connection when calling other dblink_ora functions.

The following statement uses the dblink_ora_copy() function over a connection named

edb_conn. It copies the empid and deptno columns from a table named ora_acctg on an

Oracle server to a table named as_acctg located in the public schema of a PolarDB cluster

 compatible with Oracle. The TRUNCATE option is enforced, and a feedback count of 3 is

specified.

edb=# SELECT dblink_ora_copy('edb_conn','select empid, deptno FROM ora_acctg', '
public', 'as_acctg', true, 3);
INFO: Row: 0
INFO: Row: 3
INFO: Row: 6
INFO: Row: 9
INFO: Row: 12

 dblink_ora_copy

 12

Issue: 20200701 377

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 10 dblink_ora

(1 row)

The following statement uses the dblink_ora_record() function and the acctg connection to

retrieve information from the Oracle server:

SELECT * FROM dblink_ora_record('acctg', 'SELECT first_name from employees') AS t1(id
VARCHAR);

This statement retrieves a list that includes all of the entries in the first_name column of the

 employees table.

378 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 11 Data types

11 Data types

11.1 Data types

The following table describes the built-in general-purpose data types.

Table 11-1: Data types

Name Alias Description

BLOB LONG RAW, RAW(n), BYTEA Binary data

BOOLEAN Logical Boolean (true/false)

CHAR [(n)] CHARACTER [(n)] Fixed-length character string
 of n characters

CLOB LONG, LONG VARCHAR Long character string

DATE TIMESTAMP(0) Date and time to the second

DOUBLE PRECISION FLOAT, FLOAT(25) - FLOAT(53) Double precision floating-
point number

INTEGER INT, BINARY INTEGER, PLS
INTEGER

Signed four-byte integer

NUMBER DEC, DECIMAL, NUMERIC Exact numeric with optional
decimal places

NUMBER(p [, s]) DEC(p [, s]), DECIMAL(p [, s
]), NUMERIC(p [, s])

Exact numeric of maximum
 precision, p, and optional
scale, s

REAL FLOAT(1) - FLOAT(24) Single precision floating-
point number

TIMESTAMP [(p)] Date and time with optional
, fractional second precision
, p

TIMESTAMP [(p)] WITH TIME
ZONE

Date and time with optional,
fractional second precision,
p, and with time zone

VARCHAR2(n) CHAR VARYING(n),
CHARACTER VARYING(n),
VARCHAR(n)

Variable-length character
 string with a maximum
length of n characters

Issue: 20200701 379

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 11 Data types

Name Alias Description

XMLTYPE XML data

The following topics describe the data types in details.

11.2 Numeric type

Numeric types consist of four-byte integers, four-byte and eight-byte floating-point

numbers, and fixed-precision decimals. The following table lists the available types.

Table 11-2: Numeric types

Name Storage size Description Range

BINARY INTEGER 4 bytes Signed integer, Alias
for INTEGER

-2,147,483,648 to +2,
147,483,647

DOUBLE PRECISION 8 bytes Variable-precision,
inexact

15 decimal digits
precision

INTEGER 4 bytes Usual choice for
integer

-2,147,483,648 to +2,
147,483,647

NUMBER Variable User-specified
precision, exact

Up to 1000 digits of
precision

NUMBER(p [, s]) Variable Exact numeric of
maximum precision,
p, and optional scale
, s

Up to 1000 digits of
precision

PLS INTEGER 4 bytes Signed integer, Alias
for INTEGER

-2,147,483,648 to +2,
147,483,647

REAL 4 bytes Variable-precision,
inexact

6 decimal digits
precision

ROWID 8 bytes Signed 8 bit integer. -9223372036
854775808 to
 9223372036
854775807

The following sections describe the types in details.

380 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 11 Data types

Integer type

The INTEGER type stores whole numbers without fractional components between the values

 of -2,147,483,648 and +2,147,483,647. Attempts to store values outside of the allowed

range will result in an error.

Columns of the ROWID type holds fixed-length binary data that describes the physical

address of a record. ROWID is an unsigned, four-byte INTEGER that stores whole numbers

 without fractional components between the values of 0 and 4,294,967,295. Attempts to

store values outside of the allowed range will result in an error.

Arbitrary precision number

The NUMBER type can store practically an unlimited number of digits of precision and

perform calculations exactly. It is recommended for storing monetary amounts and other

quantities where exactness is required. However, the NUMBER type is very slow compared

to the floating-point types described in the next section.

The scale of a NUMBER is the count of decimal digits in the fractional part, to the right of

the decimal point. The precision of a NUMBER is the total count of significant digits in the

 whole number, that is, the number of digits to both sides of the decimal point. So the

number 23.5141 has a precision of 6 and a scale of 4. Integers can be considered to have a

scale of zero.

Both the precision and the scale of the NUMBER type can be configured. You can use the

following syntax to declare a column of type NUMBER:

NUMBER(precision, scale)

The precision must be positive, the scale zero or positive. The following syntax

NUMBER(precision)

selects a scale of 0. Specifying NUMBER without any precision or scale creates a column in

 which numeric values of any precision and scale can be stored, up to the implementation

limit on precision. A column of this kind will not coerce input values to any particular scale,

whereas NUMBER columns with a declared scale will coerce input values to that scale. The

 SQL standard requires a default scale of 0, for example, coercion to integer precision. For

maximum portability, it is best to specify the precision and scale explicitly.

If the precision or scale of a value is greater than the declared precision or scale of a

column, the system will attempt to round the value. If the value cannot be rounded to

satisfy the declared limits, an error is raised.

Issue: 20200701 381

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 11 Data types

Floating-point type

The REAL and DOUBLE PRECISION data types are inexact, variable-precision numeric types

. In practice, these types are usually implementations of IEEE Standard 754 for Binary

Floating-Point Arithmetic (single and double precision, respectively), to the extent that the

underlying processor, operating system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are

 stored as approximations,

so that storing and printing back out a value may show slight discrepancies. Managing

these errors and how they propagate through calculations is the subject of an entire branch

 of mathematics and computer science and will not be discussed further here, except for

the following points:

If you require exact storage and calculations such as for monetary amounts, use the

NUMBER type instead.

If you want to do complicated calculations by using these types for anything important,

especially if you rely on certain behavior in boundary cases such as infinity and underflow,

you must evaluate the implementation carefully.

Comparing two floating-point values for equality may or may not work as expected. On

most platforms, the REAL type has a range of at least 1E-37 to 1E+37 with a precision of at

 least 6 decimal digits. The DOUBLE PRECISION type typically has a range of around 1E-307

 to 1E+308 with a precision of at least 15 digits. Values that are too large or too small will

 cause an error. Rounding may take place if the precision of an input number is too high.

Numbers too close to zero that are not representable as distinct from zero will cause an

underflow error.

POLARDB compatible with Oracle also supports the SQL standard notations FLOAT and

FLOAT(p) for specifying inexact numeric types. Here, p specifies the minimum acceptable

precision in binary digits. POLARDB compatible with Oracle accepts FLOAT(1) to FLOAT(24)

as selecting the REAL type, while FLOAT(25) to FLOAT(53) as selecting DOUBLE PRECISION.

Values of p that exceed the allowed range draw an error. FLOAT with no precision specified

is taken as DOUBLE PRECISION type.

382 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 11 Data types

11.3 Character type
This topic introduces the general-purpose character types available in POLARDB compatible

with Oracle.

Table 11-3: Character types

Name Description

CHAR[(n)] Fixed-length character string, blank-
padded to the size specified by n

CLOB Large variable-length up to 1 GB

LONG Variable unlimited length.

NVARCHAR(n) Variable-length national character string,
with limit.

NVARCHAR2(n) Variable-length national character string,
with limit.

STRING Alias for VARCHAR2.

VARCHAR(n) Variable-length character string, with limit (
considered deprecated, but supported for
compatibility)

VARCHAR2(n) Variable-length character string, with limit

Note:

In the preceding table, n is a positive integer. These types can store strings up to n

characters in length. An attempt to assign a value that exceeds the length of n will result

in an error, unless the excess characters are all spaces, in which case the string will be

truncated to the maximum length.

CHAR

If you do not specify a value for n, the default value will be 1. If the string to be assigned is

 shorter than n, values of the CHAR type will be space-padded to the specified width (n),

and will be stored and displayed that way.

Padding spaces are semantically insignificant. That is, trailing spaces are disregarded when

 comparing two values of type CHAR, and the spaces will be removed when a CHAR value is

 converted to one of the other string types.

Issue: 20200701 383

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 11 Data types

If you explicitly cast an over-length value to a CHAR(n) type, the value will be truncated to n

 characters without raising an error as specified by the SQL standard.

VARCHAR, VARCHAR2, NVARCHAR, and NVARCHAR2

If the string to be assigned is shorter than n, values of type VARCHAR, VARCHAR2,

NVARCHAR, and NVARCHAR2 will store the shorter string without padding.

Note:

Trailing spaces are semantically significant in VARCHAR values.

If you explicitly cast a value to a VARCHAR type, an over-length value will be truncated to n

characters without raising an error as specified by the SQL standard.

CLOB

You can store a large character string in a CLOB type. CLOB is semantically equivalent to

VARCHAR2 except no length limit is specified. We recommend that you use a CLOB type if

the maximum string length is not known.

Note:

The longest possible character string that can be stored in a CLOB type is about 1 GB.

Note

The storage requirement for data of these types is the actual string plus 1 byte if the string

 is less than 127 bytes, or 4 bytes if the string is 127 bytes or greater. In the case of CHAR,

the padding also requires storage. Long strings are compressed by the system automatica

lly, so the physical requirement on disk may be less. Long values are stored in background

tables so they do not interfere with rapid access to the shorter column values.

The database character set determines the character set used to store textual values.

384 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 11 Data types

11.4 Binary data
This topic introduces the data types that allow storage of binary strings.

Table 11-4: Binary Large Object

Name Storage size Description

BINARY The length of the binary
string.

Fixed-length binary string,
with a length between 1 and
 8300.

BLOB The actual binary string plus
 1 byte if the binary string
is less than 127 bytes, or 4
bytes if the binary string is
127 bytes or greater.

Variable-length binary string

VARBINARY The length of the binary
string

Variable-length binary string
, with a length between 1
and 8300.

A binary string is a sequence of octets or bytes. Binary strings are distinguished from

characters strings by two characteristics: First, binary strings allow storing octets of value

zero and other non-printable octets that exceed the range 32 to 126. Second, operations on

 binary strings process the actual bytes, whereas the encoding and processing of character

strings depends on local settings.

11.5 Date and time type
This topic introduces the date and time types supported by POLARDB compatible with

Oracle.

Note:

The following discussion of the date and time types assumes that the edb_redwood_date

configuration parameter has been set to TRUE whenever a table is created or altered.

Table 11-5: Date/Time Types

Name Storage size Description Low value High value Resolution

DATE 8 bytes Date and
time

4713 BC 5874897 AD 1 second

Issue: 20200701 385

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 11 Data types

Name Storage size Description Low value High value Resolution

INTERVAL DAY
 TO SECOND [(
p)]

12 bytes Period of
time

-178000000
years

178000000
years

1 microsecon
d / 14 digits

INTERVAL
 YEAR TO
MONTH

12 bytes Period of
time

-178000000
years

178000000
years

1 microsecon
d / 14 digits

TIMESTAMP [(
p)]

8 bytes Date and
time

4713 BC 5874897 AD 1 microsecon
d

TIMESTAMP [(
p)] WITH TIME
 ZONE

8 bytes Date and
time with
time zone

4713 BC 5874897 AD 1 microsecon
d

When DATE appears as the data type of a column in the data definition language (DDL)

statements, CREATE TABLE or ALTER TABLE, it is translated to TIMESTAMP(0) at the time the

table definition is stored in the database. Therefore, a time component will also be stored

in the column along with the date.

When DATE appears as a data type of a variable in an SPL declaration section, or the data

 type of a formal parameter in an SPL procedure or an SPL function, or the return type

of an SPL function, it is always translated to TIMESTAMP(0) and thus can handle a time

component if present.

TIMESTAMP accepts an optional precision value p which specifies the number of fractional

digits retained in the seconds field. The valid values of p is from 0 to 6.The default value is 6

.

When TIMESTAMP values are stored as double precision floating-point numbers by default

, the effective limit of precision can be less than 6. TIMESTAMP values are stored as seconds

 before or after midnight January 1, 2000. Microsecond precision is achieved for dates

within a few years of 2000-01-01, but the precision degrades for dates further away. When

 TIMESTAMP values are stored as eight-byte integers (a compile-time option), microsecond

precision is available over the full range of values. However, eight-byte integer timestamps

 have a more limited range of dates than dates listed in the preceding table. It is from 4713

BC up to 294276 AD.

TIMESTAMP (p) WITH TIME ZONE is similar to TIMESTAMP (p), but includes the time zone as

well.

386 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 11 Data types

INTERVAL type

INTERVAL values specify a period of time. Values of the INTERVAL type are composed of

fields that describe the value of the data. The following table lists the fields allowed in an

INTERVAL type:

Field name INTERVAL values allowed

YEAR Integer value (positive or negative)

MONTH 0 through 11

DAY Integer value (positive or negative)

HOUR 0 through 23

MINUTE 0 through 59

SECOND 0 through 59.9(p) where 9(p) is the precision
 of fractional seconds

The fields must be displayed in descending order, from YEARS to MONTHS, and from DAYS

to HOURS, MINUTES and then SECONDS.

POLARDB compatible with Oracle supports two INTERVAL types compatible with Oracle

databases.

• The first variation supported by POLARDB compatible with Oracle is INTERVAL DAY

TO SECOND [(p)]. INTERVAL DAY TO SECOND [(p)] stores a time interval in days, hours,

minutes and seconds.

Note:

Issue: 20200701 387

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 11 Data types

p specifies the precision of the second field.

POLARDB compatible with Oracle interprets the value:

- INTERVAL '1 2:34:5.678' DAY TO SECOND(3)

as 1 day, 2 hours, 34 minutes, 5 seconds and 678 thousandths of a second.

- INTERVAL '1 23' DAY TO HOUR

as 1 day and 23 hours.

- INTERVAL '2:34' HOUR TO MINUTE

as 2 hours and 34 minutes.

- INTERVAL '2:34:56.129' HOUR TO SECOND(2)

as 2 hours, 34 minutes, 56 seconds and 13 thousandths of a second.

Note:

Note that the fractional second is rounded up to 13 because of the specified

precision.

• The second variation supported by POLARDB compatible with Oracle that is compatible

with Oracle databases is INTERVAL YEAR TO MONTH. This variation stores a time interval

in years and months.

POLARDB compatible with Oracle interprets the value:

- INTERVAL '12-3' YEAR TO MONTH

as 12 years and 3 months.

- INTERVAL '456' YEAR(2)

as 12 years and 3 months.

- INTERVAL '300' MONTH

as 25 years.

Date and time input

Date and time input is accepted in ISO 8601 SQL-compatible format, the Oracle default dd

-MON-yy format, and a number of other formats provided that there is no ambiguity as to

which component is the year, month, and day. However, we recommend that you use the

TO_DATE function to avoid ambiguities.

388 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 11 Data types

Any date or time literal input needs to be enclosed in single quotation marks (') in the

format of text strings. The following SQL standard syntax is also accepted:

type 'value' type

Note:

• type is either DATE or TIMESTAMP.

• value is a date and time text string.

• Date

The following table describes some input formats for dates, all of which equate to

January 8, 1999.

Example

January 8, 1999

1999-01-08

1999-Jan-08

Jan-08-1999

08-Jan-1999

08-Jan-99

Jan-08-99

19990108

990108

The date values can be assigned to a DATE or TIMESTAMP column or variable. The hour

, minute, and seconds fields will be set to zero if the date value is not appended with a

time value.

• Time

Some examples of the time component of a date or timestamp are shown in the

following table.

Table 11-6: Time input

Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

Issue: 20200701 389

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 11 Data types

Example Description

04:05 ISO 8601

040506 ISO 8601

04:05 AM Same as 04:05; AM does not affect value

04:05 PM Same as 16:05; input hour must be <= 12

• Timestamp

Valid input for timestamps consists of a concatenation of a date and a time. The date

 portion of the timestamp can be formatted based on the preceding table. The time

portion of the timestamp can be formatted based on the preceding table.

The following example uses the default format of Oracle.

08-JAN-99 04:05:06

The following example uses the ISO 8601 standard.

1999-01-08 04:05:06

Date and time output

The default output format of the date and time types will be either (dd-MON-yy) referred to

 as the Redwood date style, compatible with Oracle databases, or (yyyy-mm-dd) referred

 to as the ISO 8601 format, depending upon the application interface to the database.

Applications that use JDBC such as SQL Interactive always present the date in ISO 8601 form

. Other applications such as psql present the date in Redwood form.

The following table lists examples of the output formats for the Redwood and ISO 8601

styles.

Table 11-7: Date/time output styles

Description Example

Redwood style 31-DEC-05 07:37:16

ISO 8601/SQL standard 1997-12-17 07:37:16

Internals

POLARDB compatible with Oracle uses Julian dates for all date and time calculations. Julian

 dates correctly predict or calculate any date after 4713 BC based on the assumption that

the length of the year is 365.2425 days.

390 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 11 Data types

11.6 Boolean type
POLARDB compatible with Oracle provides the standard SQL type BOOLEAN. BOOLEAN can

have one of only two states: TRUE or FALSE. A third state, UNKNOWN, is represented by the

SQL NULL value.

Table 11-8: Boolean type

Name Storage size Description

BOOLEAN 1 byte Logical Boolean (true/false)

Note:

• The valid value for representing the true state is TRUE.

• The valid value for representing the false state is FALSE.

11.7 XML type

The XMLTYPE data type is used to store XML data. The advantage over storing XML data in

 a character field is that it checks whether the input values are well-formed, and there are

support functions to perform type-safe operations.

As defined by the XML standard, the XML type can store well-formed documents and

content fragments, which are defined by the production XMLDecl? Content in the XML

standard. This means that content fragments can have more than one top-level element or

 character node.

Note:

Oracle does not support the storage of content fragments in XMLTYPE columns.

Examples

The following example shows the creation and insertion of a row into a table with an

XMLTYPE column.

CREATE TABLE books (
 content XMLTYPE
);

INSERT INTO books VALUES (XMLPARSE (DOCUMENT '<? xml version="1.0"? ><book><title>
Manual</title><chapter>...</chapter></book>'));

SELECT * FROM books;

Issue: 20200701 391

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 11 Data types

 content
--
 <book><title>Manual</title><chapter>...</chapter></book>
(1 row)

392 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

12 SQL Commands

12.1 Overview
This topic describes all SQL commands that are supported by both PolarDB and Oracle

databases. You can run the SQL commands in Oracle database and PolarDB databases

compatible with Oracle.

Note:

• PolarDB databases compatible with Oracle support other commands that are described

 in this topic. These commands may not have equivalent Oracle commands. They can

provide similar or identical functions to Oracle SQL commands by using different syntax.

• This topic does not describe the complete syntax, options, and functions that are

available for each command. In most cases, the syntax, options, and functions that are

incompatible with the Oracle database are omitted.

• The PolarDB database documentation provides the document command feature that

may not be compatible with Oracle databases.

12.2 ALTER INDEX
Modifies an index.

Syntax

PolarDB databases compatible with Oracle support two variants of the ALTER INDEX

command. You can use the first variant to rename an index:

ALTER INDEX name RENAME TO new_name

You can use the second variant to reconstruct an index.

ALTER INDEX name REBUILD

Description

You can use the ALTER INDEX command to modify an index. The RENAME clause allows you

 to change the name of an index. The REBUILD clause allows you to reconstruct an index

and replaces the previous copy of the index with an updated version based on the index

table.

Issue: 20200701 393

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

You can call the PostgreSQL REINDEX command when using the REBUILD clause. For more

information about how to use the REBUILD clause, see the PostgreSQL documentation.

The ALTER INDEX command does not affect stored data.

Parameters

Parameter Description

name The name of the index. The name can be
schema-qualified.

new_name The new name of the index.

Examples

The following example shows how to change the name of an index from name_idx to

empname_idx:

ALTER INDEX name_idx RENAME TO empname_idx;

The following example shows how to reconstruct an index named empname_idx:

ALTER INDEX empname_idx REBUILD;

12.3 ALTER PROCEDURE

Syntax

ALTER PROCEDURE procedure_name options [RESTRICT]

Description

You can use the ALTER PROCEDURE command to specify whether a stored procedure is a

SECURITY INVOKER or SECURITY DEFINER.

Parameters

Parameter Description

procedure_name The name of the stored procedure. The
name can be schema-qualified.

394 Issue: 20200701

https://www.postgresql.org/docs/11/sql-reindex.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

options • [EXTERNAL] SECURITY DEFINER

Specifies that the server runs the stored

 procedure by using the privileges of

 the user who has created the stored

 procedure. The EXTERNAL keyword

is supported for compatibility and is

ignored.

• [EXTERNAL] SECURITY INVOKER

Specifies that the server runs the stored

procedure by using the privileges of the

user who is calling the stored procedure.

The EXTERNAL keyword is supported for

compatibility and is ignored.

The RESTRICT keyword is supported for
compatibility and can be ignored.

Examples

The following command specifies that the server runs the update_balance stored

procedure by using the privileges of the user who is calling the stored procedure.

ALTER PROCEDURE update_balance SECURITY INVOKER;

12.4 ALTER PROFILE
Modifies a configuration file.

Syntax

ALTER PROFILE profile_name RENAME TO new_name;

ALTER PROFILE profile_name
 LIMIT {parameter value}[...] ;

Description

You can use the ALTER PROFILE command to modify a user-specified configuration file.

PolarDB databases compatible with Oracle support the following two types of syntax:

• ALTER PROFILE…RENAME TO: changes the name of a configuration file.

Issue: 20200701 395

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

• ALTER PROFILE…LIMIT: modifies the limits that are associated with a configuration file.

You can include the LIMIT clause and one or more space-delimited parameter/value pairs

 to specify the rules that are enforced by PolarDB databases compatible with Oracle. You

can also use the ALTER PROFILE…RENAME TO command to change the name of a configurat

ion file.

Parameters

Parameter Description

profile_name The name of the configuration file.

new_name The new name of the configuration file.

parameter The parameters in the configuration file.

value The values of the parameters.

PolarDB databases compatible with Oracle support the following parameter values:

• FAILED_LOGIN_ATTEMPTS specifies the maximum number of failed logon attempts before

the server locks the account for the period that is specified by the PASSWORD_LOCK_TIME

 parameter. Valid values:

- An INTEGER value greater than 0.

- DEFAULT: the value of the FAILED_LOGIN_ATTEMPTS parameter that is specified in the

DEFAULT configuration file.

- UNLIMITED: The number of failed logon attempts is unlimited.

• PASSWORD_LOCK_TIME: specifies the required period before the server unlocks an

account that has been locked due to excessive logon attempts. Valid values:

- A NUMERIC value greater than or equal to 0. To specify a fractional portion of a day,

you must specify a decimal value. For example, you can use the value 4.5 to specify 4

days and 12 hours.

- DEFAULT: the value of the PASSWORD_LOCK_TIME parameter that is specified in the

DEFAULT configuration file.

- UNLIMITED: The account is locked until it is unlocked by a database superuser.

• PASSWORD_LIFE_TIME: specifies the number of days that the current password can

be used before the user is prompted to provide a new password. When using the

PASSWORD_LIFE_TIME clause, you can include the PASSWORD_GRACE_TIME clause to

specify the number of days after the password expires until connections from the role

are rejected. If you do not specify the PASSWORD_GRACE_TIME parameter, the password

396 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

expires on the day that is specified by the default value of the PASSWORD_GRACE_TIME

 parameter. The user is not allowed to run any command until a new password is

provided. Valid values:

- A NUMERIC value greater than or equal to 0. To specify a fractional portion of a day,

you must specify a decimal value. For example, you can use the value 4.5 to specify 4

days and 12 hours.

- DEFAULT: the value of the PASSWORD_LIFE_TIME parameter that is specified in the

DEFAULT configuration file.

- UNLIMITED: The password never expires.

• PASSWORD_GRACE_TIME: specifies the grace period after the password expires until

the user is required to change the password. After a specified period ends, the user is

allowed to connect the server and cannot run any command until the expired password

is updated. Valid values:

- A NUMERIC value greater than or equal to 0. To specify a fractional portion of a day,

you must specify a decimal value. For example, you can use the value 4.5 to specify 4

days and 12 hours.

- DEFAULT: the value of the PASSWORD_GRACE_TIME parameter that is specified in the

DEFAULT configuration file.

- UNLIMITED: The grace period is unlimited.

• PASSWORD_REUSE_TIME: specifies the number of days a user must wait before reusing a

password. You must use the PASSWORD_REUSE_TIME parameter with the PASSWORD_R

EUSE_MAX parameter. If you specify a finite value for one parameter and specify

UNLIMITED for the other parameter, previous passwords cannot be reused. If you specify

UNLIMITED for both parameters, no limit is imposed on password reuse. Valid values:

- A NUMERIC value greater than or equal to 0. To specify a fractional portion of a day,

you must specify a decimal value. For example, you can use the value 4.5 to specify 4

days and 12 hours.

- DEFAULT: the value of the PASSWORD_REUSE_TIME parameter that is specified in the

DEFAULT configuration file.

- UNLIMITED: No limit is imposed on password reuse.

• PASSWORD_REUSE_MAX: specifies the number of password changes that must occur

before a password can be reused. You need to use the PASSWORD_REUSE_TIME

parameter with the PASSWORD_REUSE_MAX parameter. If you specify a finite value for

one parameter and specify UNLIMITED for the other parameter, previous passwords

Issue: 20200701 397

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

cannot be reused. If you specify UNLIMITED for both parameters, no limit is imposed on

password reuse. Valid values:

- An INTEGER value greater than 0.

- DEFAULT: the value of the PASSWORD_REUSE_MAX parameter that is specified in the

DEFAULT configuration file.

- UNLIMITED: No limit is imposed on password reuse.

• PASSWORD_VERIFY_FUNCTION: specifies password complexity. Valid values:

- The name of a PL/SQL function.

- DEFAULT: the value of the PASSWORD_VERIFY_FUNCTION parameter that is specified in

 the DEFAULT configuration file.

- NULL

• PASSWORD_ALLOW_HASHED: specifies whether to allow using an encrypted password. If

you set the value to TRUE, the system allows you to change the password by specifying

the hash-calculated encrypted password on the client. However, if you set the value to

FALSE, you must specify a password in plain-text for verification. Otherwise, an error

occurs when the server receives the encrypted password. Valid values:

- A BOOLEAN value TRUE/ON/YES/1 or FALSE/OFF/NO/0.

- DEFAULT: the value of the PASSWORD_ALLOW_HASHED parameter that is specified in

the DEFAULT configuration file.

Note:

The PASSWORD_ALLOW_HASHED parameter is not supported by Oracle.

Examples

The following example shows how to modify a configuration file named acctg_profile:

ALTER PROFILE acctg_profile
 LIMIT FAILED_LOGIN_ATTEMPTS 3 PASSWORD_LOCK_TIME 1;

acctg_profile calculates the number of failed connection attempts when a logon role

attempts to connect to the server. The configuration file specifies that if a user does not use

the correct password for verification in three attempts, the account is locked for one day.

398 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

In the following example, the name of the configuration file is changed from acctg_profile

to payables_profile:

ALTER PROFILE acctg_profile RENAME TO payables_profile;

12.5 ALTER QUEUE
PolarDB databases compatible with Oracle provide the syntax of the ALTER QUEUE SQL

command that is not provided by Oracle. You can use this command with the DBMS_AQADM

package.

Description

You can use the ALTER QUEUE command to modify a queue if you have the aq_adminis

trator_role privilege. This command has the following four types of syntax based on

functions.

Change the name of a queue

You can use the first type of syntax to change the name of a queue. The syntax is as follows

:

ALTER QUEUE queue_name RENAME TO new_name

Table 12-1: Parameters

Parameter Description

queue_name The name of the queue. The name can be
schema-qualified.

RENAME TO The RENAME TO clause that is used to
rename the queue. The clause is followed
by a new name of the queue.

new_name The new name of the queue.

Issue: 20200701 399

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Modify parameters of a queue

You can use the second type of syntax to modify parameters of a queue.

ALTER QUEUE queue_name SET [({ option_name option_value } [,SET option_name

Table 12-2: Parameters

Parameter Description

queue_name The name of the queue. The name can be
schema-qualified.

To specify parameters to be modified, you must include the SET clause and option_name/

option_value pairs.

option_name option_value

The names and values of one or more options that are associated with the new queue. If

you provide duplicate option names, the server returns an error.

• If the value of the option_name parameter is retries, you must provide an integer that

indicates the number of dequeuing attempts.

• If the value of the option_name parameter is retrydelay, you must provide a double-

precision value that indicates the delay in seconds.

• If the value of the option_name parameter is retention, you must provide a double-

precision value that indicates the retention period in seconds.

Enable or disable enqueuing and dequeuing

You can use the third type of syntax to enable or disable enqueuing and dequeuing for a

queue.

ALTER QUEUE queue_name ACCESS { START | STOP } [FOR { enqueue | dequeue }] [NOWAIT
]

Table 12-3: Parameters

Parameter Description

queue_name The name of the queue. The name can be
schema-qualified.

ACCESS To enable or disable enqueuing and
dequeuing for a queue, you must include
the ACCESS clause.

400 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

START | STOP The required state of the queue.

FOR enqueue|dequeue Specifies whether to enable the enqueuing
or dequeuing feature for the queue.

NOWAIT Specifies that the server does not wait for
 the completion of outstanding transactio
ns before changing the state of the queue
. The NOWAIT keyword can be used only if
 you specify STOP in the ACCESS clause. If
you specify START in the ACCESS clause, the
server returns an error.

Add or remove callback details of a queue

You can use the fourth type of syntax to add or remove callback details of a specified queue

.

ALTER QUEUE queue_name { ADD | DROP } CALL TO location_name [WITH callback_option
]

Parameter Description

queue_name The name of the queue. The name can be
schema-qualified.

ADD | DROP Specifies whether to add or remove the
callback details of a queue.

location_name The name of the callback stored procedure.

callback_option A valid value of the lback_option parameter
 is context. You must specify a RAW value
 when including the callback_option
parameter.

Issue: 20200701 401

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Examples

In the following example, the name of a queue is changed from work_queue_east to

work_order:

ALTER QUEUE work_queue_east RENAME TO work_order;

The following example shows how to modify a queue named work_order. The number of

retries is set to 100, the interval between retries is set to 2 seconds, and the retention period

 of dequeued messages is set to 10 seconds.

ALTER QUEUE work_order SET (retries 100, retrydelay 2, retention 10);

The following examples show how to enable enqueuing and dequeuing for a queue

named work_order:

ALTER QUEUE work_order ACCESS START;
ALTER QUEUE work_order ACCESS START FOR enqueue;
ALTER QUEUE work_order ACCESS START FOR dequeue;

The following examples show how to disable enqueuing and dequeuing for a queue

named work_order:

ALTER QUEUE work_order ACCESS STOP NOWAIT;
ALTER QUEUE work_order ACCESS STOP FOR enqueue;
ALTER QUEUE work_order ACCESS STOP FOR dequeue;

12.6 ALTER QUEUE TABLE
Modifies a queue table.

Syntax

You can use the following syntax to modify the name of a queue table:

ALTER QUEUE TABLE name RENAME TO new_name

Description

You can use the ALTER QUEUE TABLE command to modify a queue table if you are a

superuser or a user who has the aq_administrator_role privilege.

Parameters

Parameter Description

name The name of the queue table. The name can
 be schema-qualified.

402 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

new_name The new name of the queue table.

Example

Change the name of a queue table from wo_table_east to work_order_table:

ALTER QUEUE TABLE wo_queue_east RENAME TO work_order_table;

12.7 ALTER ROLE… IDENTIFIED BY
Changes the password that is associated with a database role.

Syntax

ALTER ROLE role_name IDENTIFIED BY password
 [REPLACE prev_password]

Description

You can use the ALTER ROLE… IDENTIFIED BY command to change the password if you are

a role without the CREATEROLE privilege. If you use an unauthorized role and PASSWORD_V

ERIFY_FUNCTION is not NULL in the configuration file, you must include the REPLACE clause

 and previous password. If a non-superuser uses the REPLACE clause, the server compares

the provided password with the existing password. If the passwords do not match, an error

 occurs.

A database superuser can use this command to change the password that is associated

with any role. If a superuser includes the REPLACE clause, this clause is ignored and a non-

matching value for the previous password does not generate an error.

If the role whose password is to be changed has the SUPERUSER attribute, only a superuser

 can run the ALTER ROLE… IDENTIFIED BY command. A role with the CREATEROLE attribute

can use this command to change the password that is associated with a non-superuser role

.

Parameters

Parameter Description

role_name The name of the role whose password is to
be changed.

password The new password of the role.

Issue: 20200701 403

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

prev_password The previous password of the role.

Example

Change the password of the role:

ALTER ROLE john IDENTIFIED BY xyRP35z REPLACE 23PJ74a;

12.8 ALTER ROLE
Manages database link and DBMS_RLS privileges.

PolarDB databases compatible with Oracle provide the syntax of the ALTER ROLE SQL

command that is not provided by Oracle. This syntax is useful when you assign privileges of

 creating and deleting database links that are compatible with Oracle databases, and the

DBMS_RLS privilege for fine-grained access control.

CREATE DATABASE LINK

A user who has the CREATE DATABASE LINK privilege can create a private database link. You

can use the following ALTER ROLE command to grant a role the privilege to create a private

database link:

ALTER ROLE role_name
 WITH [CREATEDBLINK | CREATE DATABASE LINK]

This command has the same effect as the following command:

GRANT CREATE DATABASE LINK to role_name

You can use the following command to revoke the privilege:

ALTER ROLE role_name
 WITH [NOCREATEDBLINK | NO CREATE DATABASE LINK]

Note:

The CREATEDBLINK and NOCREATEDBLINK syntax will be discarded. We recommend that

you use the CREATE DATABASE LINK and NO CREATE DATABASE LINK syntax.

404 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

CREATE PUBLIC DATABASE LINK

A user who has the CREATE PUBLIC DATABASE LINK privilege can create a public database

link. You can use the following ALTER ROLE command to grant a role the privilege to create

a public database link:

ALTER ROLE role_name
 WITH [CREATEPUBLICDBLINK | CREATE PUBLIC DATABASE LINK]

This command has the same effect as the following command:

GRANT CREATE PUBLIC DATABASE LINK to role_name

You can use the following command to revoke the privilege:

ALTER ROLE role_name
 WITH [NOCREATEPUBLICDBLINK | NO CREATE PUBLIC DATABASE LINK]

Note:

The CREATEPUBLICDBLINK and NOCREATEPUBLICDBLINK syntax will be discarded. We

recommend that you use the CREATE PUBLIC DATABASE LINK and NO CREATE PUBLIC

DATABASE LINK syntax.

DROP PUBLIC DATABASE LINK

A user who has the DROP PUBLIC DATABASE LINK privilege can delete a public database

link. You can use the following ALTER ROLE command to grant a role the privilege to delete

a public database link:

ALTER ROLE role_name
 WITH [DROPPUBLICDBLINK | DROP PUBLIC DATABASE LINK]

This command has the same effect as the following command:

GRANT DROP PUBLIC DATABASE LINK to role_name

You can use the following command to revoke the privilege:

ALTER ROLE role_name
 WITH [NODROPPUBLICDBLINK | NO DROP PUBLIC DATABASE LINK]

Note:

The DROPPUBLICDBLINK and NODROPPUBLICDBLINK syntax will be discarded. We

recommend that you use the DROP PUBLIC DATABASE LINK and NO DROP PUBLIC DATABASE

 LINK syntax.

Issue: 20200701 405

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

EXEMPT ACCESS POLICY

A user who has the EXEMPT ACCESS POLICY privilege is exempt from fine-grained access

control (DBMS_RLS) policies. A user who has the EXEMPT ACCESS POLICY privilege can view

or modify any row in a table that is limited by a DBMS_RLS policy. You can use the following

ALTER ROLE command to grant a role the EXEMPT ACCESS POLICY privilege so that the role is

exempt from defined DBMS_RLS policies.

ALTER ROLE role_name
 WITH [POLICYEXEMPT | EXEMPT ACCESS POLICY]

This command has the same effect as the following command:

GRANT EXEMPT ACCESS POLICY TO role_name

You can use the following command to revoke the privilege:

ALTER ROLE role_name
 WITH [NOPOLICYEXEMPT | NO EXEMPT ACCESS POLICY]

Note:

The POLICYEXEMPT and NOPOLICYEXEMPT syntax will be discarded. We recommend that

you use the EXEMPT ACCESS POLICY and NO EXEMPT ACCESS POLICY syntax.

12.9 ALTER SEQUENCE
Modifies the definition of a sequence generator.

Syntax

ALTER SEQUENCE name [INCREMENT BY increment]
 [MINVALUE minvalue] [MAXVALUE maxvalue]
 [CACHE cache | NOCACHE] [CYCLE]

Description

You can use the ALTER SEQUENCE command to modify the parameters of a sequence

generator. Any parameter that is not specified in the ALTER SEQUENCE command retains its

prior setting.

Note:

To prevent blocking concurrent transactions that retrieve numbers from the same

sequence, rollback does not occur when you run the ALTER SEQUENCE command. The

changes take effect immediately and are irreversible.

406 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

The ALTER SEQUENCE command does not immediately affect NEXTVAL results in backends

 (other than the current backend) that have preallocated (cached) sequence values. The

 system uses cached values before detecting the changed sequence parameters. The

current backend is affected immediately.

Parameters

Parameter Description

name The name of the sequence to be modified.
The name can be schema-qualified.

increment The INCREMENT BY increment clause is
optional. A positive value indicates an
ascending sequence, and a negative value
 indicates a descending sequence. If you
 do not specify this parameter, the old
increment value is retained.

minvalue The MINVALUE minvalue clause is optional
 and specifies the minimum value that
a sequence can generate. If you do not
specify this parameter, the current minimum
 value is retained. Note: The NO MINVALUE
keyword can be used to specify the default
 values 1 and-263-1 for ascending and
descending orders, respectively. However,
this keyword is not compatible with Oracle
databases.

maxvalue The MAXVALUE maxvalue clause is optional
 and specifies the maximum value for
the sequence. If you do not specify this
parameter, the current maximum value is
retained. Note: The NO MAXVALUE keyword
 can be used to specify the default values
263-1 and -1 for ascending and descending
 orders, respectively. However, this keyword
is not compatible with Oracle databases.

Issue: 20200701 407

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

cache The CACHE cache clause is optional and
specifies the number of sequence numbers
 to be preallocated and stored in memory
 for fast access. The minimum value is 1,
indicating that only one value NOCACHE
can be generated at a time. If you do not
specify this parameter, the previous cached
value is retained.

CYCLE Allows a sequence to wrap around when
 the ascending sequence reaches the
maximum value or descending sequence
reaches the minimum value. If the constraint
 is reached, the next number generated is
the value that is specified by the minvalue
 or maxvalue parameter. If you do not
specify this parameter, the previous cycle is
 retained. Note: The NO CYCLE keyword can
 be used to specify that the sequence does
 not recycle. However, this keyword is not
compatible with Oracle databases.

Example

Modify the increment and cached value of a sequence named serial:

ALTER SEQUENCE serial INCREMENT BY 2 CACHE 5;

12.10 ALTER SESSION
Modifies a runtime parameter.

Syntax

ALTER SESSION SET name = value

Description

You can use the ALTER SESSION command to modify a runtime parameter. ALTER SESSION

only changes the value that is used by the current session. Certain parameters are provided

 only to be compatible with the Oracle syntax and have no impact on the running behavior

 of PolarDB databases compatible with Oracle. Other parameters change the runtime

parameters of PolarDB databases compatible with Oracle.

408 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameters

Parameter Description

name The name of the runtime parameter. The
following table lists available parameters.

value The new value of the parameter.

You can use the ALTERSESSION command to modify the following parameters:

Parameter Description

NLS_DATE_FORMAT (string) The display format of the date and
time values and the rules for interpreti
ng ambiguous data input values. This
parameter has the same effect as the
datestyle parameter.

NLS_LANGUAGE (string) The language in which messages are
displayed. This parameter has the same
effect as the lc_messages parameter.

NLS_LENGTH_SEMANTICS (string) Valid values: BYTE and CHAR. Default value
: BYTE. This parameter is provided only for
 syntax compatibility and has no effect in
PolarDB databases compatible with Oracle.

OPTIMIZER_MODE (string) The default query optimization mode. Valid
 values: ALL_ROWS, CHOOSE, FIRST_ROWS
, FIRST_ROWS_10, FIRST_ROWS_100, and
FIRST_ROWS_1000. Default value: CHOOSE.
This parameter is implemented in PolarDB
databases compatible with Oracle.

QUERY_REWRITE_ENABLED (string) Valid values: TRUE, FALSE, and FORCE.
Default value: FALSE. This parameter is
 provided only for syntax compatibility
and has no effect in PolarDB databases
compatible with Oracle.

QUERY_REWRITE_INTEGRITY (string) Valid values: ENFORCED, TRUSTED, and
STALE_TOLERATED. Default value: ENFORCED
. This parameter is provided only for syntax
 compatibility and has no effect in PolarDB
databases compatible with Oracle.

Issue: 20200701 409

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Examples

Set the language to English (United States) in UTF-8-encoding. Note: In this example,

the value en_US.UTF-8 must use the format that you specified for PolarDB databases

compatible with Oracle. This format is not compatible with Oracle databases.

ALTER SESSION SET NLS_LANGUAGE = 'en_US.UTF-8';

Set the date display format:

ALTER SESSION SET NLS_DATE_FORMAT = 'dd/mm/yyyy';

12.11 ALTER TABLE
Changes the definition of a table.

Syntax

ALTER TABLE name
 action [, ...]
ALTER TABLE name
 RENAME COLUMN column TO new_column
ALTER TABLE name
 RENAME TO new_name

The action clause has the following types of syntax:

ADD column type [column_constraint [...]]
DROP COLUMN column
ADD table_constraint
DROP CONSTRAINT constraint_name [CASCADE]

Description

You can use the ALTER TABLE command to change the definition of a table. This command

has the following clauses:

• ADD column type: adds a new column to the table by using the same syntax as the

CREATE TABLE command.

• DROP COLUMN: deletes a column from the table. Indexes and table constraints that

involve the column are automatically deleted.

• ADD table_constraint: adds a new constraint to the table by using the same syntax as

the CREATE TABLE command.

• DROP CONSTRAINT: deletes the constraints of the table. Table constraints do not need

unique names and a specified name can match multiple constraints. All matched

constraints are deleted.

410 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

• RENAME: changes the name of a table or an individual column in the table. You can also

use this type of syntax to change the name of an index, sequence, or view. The stored

data is not affected.

Only the owner of a table can use the ALTER TABLE command.

Note:

When you use the ADD COLUMN clause, all rows in the table are initialized with the default

value of the column. If no DEFAULT clause is specified, the value is null. To add a column

with non-null default values, you must rewrite the table. Rewriting a large table is time-

consuming and requires twice the disk space. To add a CHECK or NOT NULL constraint, you

must scan the table to verify that existing rows meet the constraint.

The DROP COLUMN clause does not physically remove the column, but makes columns

invisible to SQL operations. Subsequent insert and update operations in the table store

null values for the column. Therefore, deleting a column is fast, but does not immediatel

y reduce the disk space that is occupied by the table because the space that is occupied

 by the deleted column is not reclaimed. The space is reclaimed after existing rows are

updated.

You are not allowed to modify any portion of the system directory table. For more

information about valid parameters, see the CREATE TABLE topic.

Parameters

Parameter Description

name The name of the table to be modified. The
name can be schema-qualified.

column The name of the new or existing column.

new_column The new name of the existing column.

new_name The new name of the table.

type The data type of the new column.

table_constraint The new constraint of the table.

constraint_name The name of the existing constraint to be
deleted.

CASCADE If you specify the CASCADE parameter,
the objects that depend on the deleted
constraints are automatically deleted.

Issue: 20200701 411

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Examples

Add a column of the VARCHAR2 data type to a table:

ALTER TABLE emp ADD address VARCHAR2(30);

Delete a column from a table:

ALTER TABLE emp DROP COLUMN address;

Rename an existing column:

ALTER TABLE emp RENAME COLUMN address TO city;

Rename an existing table:

ALTER TABLE emp RENAME TO employee;

Add a CHECK constraint to a table:

ALTER TABLE emp ADD CONSTRAINT sal_chk CHECK (sal > 500);

Delete a CHECK constraint from a table:

ALTER TABLE emp DROP CONSTRAINT sal_chk;

12.12 ALTER TABLESPACE
Changes the definition of a tablespace.

Syntax

ALTER TABLESPACE name RENAME TO newname

Parameters

Parameter Description

name The name of the tablespace.

newname The new name of the tablespace. The new
name cannot start with the pg_ prefix. This
 prefix is reserved for system tablespace
names.

412 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Example

Change the name of a tablespace from empspace to employee_space:

ALTER TABLESPACE empspace RENAME TO employee_space;

12.13 ALTER USER… IDENTIFIED BY
Changes a database user account.

Syntax

ALTER USER role_name IDENTIFIED BY password REPLACE prev_password

Description

You can use the ALTER USER… IDENTIFIED BY command to change the password if you are

 a role without the CREATEROLE privilege. An unauthorized role must include the REPLACE

clause and previous password if PASSWORD_VERIFY_FUNCTION is not NULL in the configurat

ion file. If a non-superuser uses the REPLACE clause, the server compares the provided

password with the current password. If the passwords do not match, an error occurs.

Parameters

Parameter Description

role_name The name of the role whose password is to
be changed.

password The new password of the role.

prev_password The previous password of the role.

Issue: 20200701 413

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Example

Change a user password:

ALTER USER john IDENTIFIED BY xyRP35z REPLACE 23PJ74a;

12.14 CALL

Syntax

CALL procedure_name '('[argument_list]')'

Description

You can use the CALL statement to call a stored procedure. To use the CALL statement, you

must have the EXECUTE privilege on the stored procedure that is called.

Parameters

Parameter Description

procedure_name The name of the stored procedure. The
name can be schema-qualified.

argument_list A comma-separated list of parameters that
are required by the stored procedure. Note
that each member in the list corresponds to
 a parameter that is required by the stored
 procedure. Each parameter can be an IN,
OUT, or INOUT parameter.

Examples

The CALL statement has different types of syntax based on the parameters that are required

 by the stored procedure:

CALL update_balance();
CALL update_balance(1,2,3);

12.15 COMMENT
Defines or modifies the comment of an object.

Syntax

COMMENT ON
{
 TABLE table_name |

414 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

 COLUMN table_name.column_name
} IS 'text'

Description

You can use the COMMENT command to store comments about database objects. To modify

 a comment of an object, you need to issue a new COMMENT command for the object. Only

 one comment string can be stored for each object. To delete a comment, specify an empty

 string (two consecutive single quotation marks with no space) for the text parameter. A

comment is automatically deleted when the object is deleted.

Note:

Currently, no security mechanism is provided for comments. Any user who connects to the

database can view all comments of the objects in the database. Do not include important

security information in comments.

Parameters

Parameter Description

table_name The name of the table to be commented.
The table name can be schema-qualified.

table_name.column_name The name of the column to be commented
in the table. The table name can be schema
-qualified.

text The new comment.

Examples

Attach a comment to a table named emp:

COMMENT ON TABLE emp IS 'Current employee information';

Attach a comment to the empno column of the emp table:

COMMENT ON COLUMN emp.empno IS 'Employee identification number';

Delete the comments:

COMMENT ON TABLE emp IS '';

Issue: 20200701 415

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

COMMENT ON COLUMN emp.empno IS '';

12.16 COMMIT
Commits the current transaction.

Syntax

COMMIT [WORK]

Description

You can use the Commit command to commit the current transaction. All changes that are

made by the transaction are visible to others and retained even if an exception occurs.

Note:

You can use the ROLLBACK command to abort the transaction. Issuing the COMMIT

command outside the transaction does not cause damage.

When you run the COMMIT command in a PL/pgSQL procedure, an error occurs if an Oracle

-style SPL stored procedure exists on the runtime stack.

Parameters

Parameter Description

WORK Optional. This keyword has no effect.

Example

Commit the current transaction and permanently store the changes:

COMMIT;

12.17 CREATE DATABASE
Creates a database.

Syntax

CREATE DATABASE name

Description

You cannot use the CREATE DATABASE command in a transaction block.

416 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameters

Parameter Description

name The name of the database to be created.

Example

Create a database:

CREATE DATABASE employees;

12.18 CREATE [PUBLIC] DATABASE LINK
Creates a database link.

Syntax

CREATE [PUBLIC] DATABASE LINK name
 CONNECT TO { CURRENT_USER |
 username IDENTIFIED BY 'password'}
 USING { postgres_fdw 'fdw_connection_string' |
 [oci] 'oracle_connection_string' }

Description

The CREATE DATABASE LINK command creates a database link. A database link is an object

 that allows a reference to a table or view in a remote database within a DELETE, INSERT,

SELECT, or UPDATE command. To reference a database link, you can append @dblink to the

 name of the table or view that is referenced in an SQL command. dblink is the name of the

database link.

Database links can be public or private. A public database link can be used by all users. A

private database link can be used only by the owner of the database link. If you specify the

 PUBLIC option, a public database link is created. If you do not specify the PUBLIC option, a

private database link is created.

When you use the CREATE DATABASE LINK command, the database link name and

the specified connection attributes are stored in the system table named pg_catalog.

edb_dblink. A database link is defined in an edb_dblink entry. The database that contains

 the edb_dblink entry is called the local database. The server and database whose

connection attributes are defined in the edb_dblink entry is called the remote database.

If an SQL command contains a reference to a database link, the SQL command must be

issued when it is connected to the local database. When the SQL command is executed, the

Issue: 20200701 417

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

remote database is authenticated and connected to access the table or view to which the @

dblink reference is appended.

Note:

• A database link cannot be used to access a remote database within a secondary

database server. Secondary database servers are used for high availability, load

balancing, and replication.

• For more information about high availability, load balancing, and replication for

PostgreSQL database servers, see the PostgreSQL documentation.

Parameters

Parameter Description

PUBLIC Specifies that the created database link
is public. A public database link can be
used by all users. If you do not specify this
 parameter, the database link is private
and can be used only by the owner of the
database link.

name The name of the database link.

username The username that is used for connecting to
 the remote database.

CURRENT_USER Specifies that PolarDB uses the user
mapping associated with the role that
 is using the link when establishing a
connection to the remote server.

password The password for the username.

postgres_fdw Specifies the postgres_fdw foreign data
wrapper as the connection to a remote
PolarDB database. If postgres_fdw is
not installed on the database, use the
CREATE EXTENSION command to install
postgres_fdw. For more information, see
the CREATE EXTENSION command in the
PostgreSQL documentation.

fdw_connection_string The connection information for the
postgres_fdw foreign data wrapper.

418 Issue: 20200701

https://www.postgresql.org/docs/11/static/high-availability.html
https://www.postgresql.org/docs/11/static/sql-createextension.html
https://www.postgresql.org/docs/11/static/sql-createextension.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

oci A connection to a remote Oracle database.
This is the default behavior of the PolarDB
database.

oracle_connection_string The connection information for an oci
connection.

Description

To create a non-public database link, you must have the CREATE DATABASE LINK privilege.

To create a public database link, you must have the CREATE PUBLIC DATABASE LINK privilege

.

• Prepare an Oracle instant client for oci-dblink

To use oci-dblink, you must download and install an Oracle instant client on the host

running the PolarDB database in which the database link is to be created.

You can download an instant client from the following site: http://www.oracle.com/

technetwork/database/features/instant-client/index-097480.html

• Oracle instant client for Linux

Note:

The following instructions apply to Linux hosts running PolarDB databases compatible

with Oracle.

Make sure that the libaio library (the Linux-native asynchronous I/O facility) is installed

on the Linux host running the PolarDB database compatible with Oracle.

You can run the following command to install the libaio library:

yum install libaio

If the Oracle instant client that you have downloaded does not include the file named

libclntsh.so (without a version number suffix), you must create a symbolic link named

Issue: 20200701 419

http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html
http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

libclntsh.so. This symbolic link must point to the downloaded version of the library file.

Navigate to the instant client directory and run the following command:

ln -s libclntsh.so.version libclntsh.so

The version parameter indicates the version number of the libclntsh.so library. Example:

ln -s libclntsh.so.12.1 libclntsh.so

When you run an SQL command that references a database link to a remote Oracle

database, the PolarDB database compatible with Oracle must know where the Oracle

instant client library resides on the PolarDB host.

The LD_LIBRARY_PATH environment variable must include the path to the Oracle client

installation directory that contains the libclntsh.so file. For example, the installation

directory that contains libntsh. so is /tmp/instantclient.

export LD_LIBRARY_PATH=/tmp/instantclient:$LD_LIBRARY_PATH

Note:

The LD_LIBRARY_PATH environment variable setting must be effective when you call the

pg_ctl utility to start or restart the PolarDB database compatible with Oracle.

If you are running the current session as the user account (such as enterprisedb) that

invokes pg_ctl to start or restart PolarDB database compatible with Oracle, you must set

LD_LIBRARY_PATH before calling pg_ctl.

You can set LD_LIBRARY_PATH in the ~enterprisedb/.bash_profile file. The ~enterprise

db/.bash_profile file refers to the .bash_profile file under the home directory of the

enterprisedb user account. This ensures that LD_LIBRARY_PATH is set when you log on to

the database as enterprisedb.

However, if you use a Linux service script with the systemctl or service command to start

or restart the PolarDB database, you must set LD_LIBRARY_PATH in the service script. This

 ensures that the variable setting is effective when the script calls the pg_ctl utility.

The script file that needs to include the LD_LIBRARY_PATH setting depends on the

version of the PolarDB database compatible with Oracle, the Linux system on which it is

installed, and whether it is installed by using the graphical installer or an RPM package.

• Oracle instant client for Windows

Note:

420 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

The following instructions apply to Windows hosts running PolarDB databases

compatible with Oracle.

When you run an SQL command that references a database link to a remote Oracle

database, the PolarDB database compatible with Oracle must know where the Oracle

instant client library resides on the PolarDB host.

Set the Windows PATH system environment variable to include the Oracle client installati

on directory that contains the oci.dll file.

You can also set the value of the oracle_home parameter in the postgresql.conf file. The

value specified in the oracle_home parameter overwrites the Windows PATH environmen

t variable.

To set the oracle_home parameter in the postgresql.conf file, edit the file and add the

following line:

oracle_home = 'lib_directory '

Replace lib_directory with the name of the Windows directory that contains oci.dll.

Example:

oracle_home = 'C:/tmp/instantclient_10_2'

After setting the PATH environment variable or the oracle_home parameter, you must

 restart the server for the changes to take effect. Restart the server from the Windows

Services console.

Note:

If tnsnames.ora is configured in failover mode and a client:server failure occurs,

a connection between the client and a secondary server is established. When the

primary server resumes, the client retains the connection to a secondary server

until a new session is established. The new client connections to the primary server

are automatically established. If the primary and secondary servers are out of

synchronization, the client that connects to the secondary server and the client that

connects to the primary server may have different database views.

Examples

Create an oci-dblink database link

The following example shows how to use the CREATE DATABASE LINK command to create

a database link named chicago. This database link connects a PolarDB cluster compatible

Issue: 20200701 421

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

with Oracle to an Oracle server through an oci-dblink connection. The connection

information indicates that Apsara PolarDB logs on to Oracle as the admin user and the

password is mypassword. The oci option specifies that this is an oci-dblink connection to

the PolarDB database compatible with Oracle. The connection string '//127.0.0.1/acctg'

specifies the server address and database name.

CREATE DATABASE LINK chicago
 CONNECT TO admin IDENTIFIED BY 'mypassword'
 USING oci '//127.0.0.1/acctg';

Note:

You can specify a hostname in the connection string in place of an IP address.

Create a postgres_fdw database link

The following example shows how to use the CREATE DATABASE LINK command to create

a database link named bedford. This database link connects a PolarDB cluster compatible

 with Oracle to another PolarDB cluster compatible with Oracle by using a postgres_f

dw foreign data wrapper connection. The connection information indicates that the

PolarDB database compatible with Oracle logs on as the user admin with the password

mypassword. The postgres_fdw option specifies that this is a postgres_fdw connection to

the PolarDB database compatible with Oracle. The connection string 'host=127.0.0.1 port=

5444 dbname=marketing' specifies the server address and database name.

CREATE DATABASE LINK bedford
 CONNECT TO admin IDENTIFIED BY 'mypassword'
 USING postgres_fdw 'host=127.0.0.1 port=5444 dbname=marketing';

Note:

You can specify a hostname in the connection string in place of an IP address.

Use a database link

The following examples show how to use a database link to connect to a PolarDB database

 compatible with Oracle. The examples assume that a copy of the emp table of the PolarDB

 sample application is created in an Oracle database. The examples also assume that a

PolarDB cluster compatible with Oracle with the sample application is receiving connection

s at port 5443.

422 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Create a public database link named oralink to an Oracle database named xe. The

database address is 127.0.0.1 and port 1521 is used. Use the username (edb) and

password (password) to connect to the Oracle database.

CREATE PUBLIC DATABASE LINK oralink CONNECT TO edb
IDENTIFIED BY 'password' USING '//127.0.0.1:1521/xe';

In the Oracle database that uses the database link oralink, issue a SELECT command on the

 emp table.

SELECT * FROM emp@oralink;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+-----------+------+--------------------+------+------+--------
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800 | | 20
 7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600 | 300 | 30
 7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250 | 500 | 30
 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975 | | 20
 7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250 | 1400 | 30
 7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850 | | 30
 7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450 | | 10
 7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000 | | 20
 7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000 | | 10
 7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500 | 0 | 30
 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100 | | 20
 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950 | | 30
 7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000 | | 20
 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300 | | 10
(14 rows)

Create a private database link named fdwlink to connect to the PolarDB database

compatible with Oracle named edb. The database runs on host 192.168.2.22 and port 5444

. Use the username (enterprisedb) and password (password) to connect to the PolarDB

database compatible with Oracle.

CREATE DATABASE LINK fdwlink CONNECT TO enterprisedb IDENTIFIED BY 'password'
USING postgres_fdw 'host=192.168.2.22 port=5444 dbname=edb';

Display attributes of the oralink and fdwlink database links from the local edb_dblink

system table.

SELECT lnkname, lnkuser, lnkconnstr FROM pg_catalog.edb_dblink;

 lnkname | lnkuser | lnkconnstr
---------+--------------+--
 oralink | edb | //127.0.0.1:1521/xe
 fdwlink | enterprisedb |

Issue: 20200701 423

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

(2 rows)

Join the emp table from the Oracle database with the dept table from the PolarDB database

.

SELECT d.deptno, d.dname, e.empno, e.ename, e.job, e.sal, e.comm FROM emp@oralink
e, dept@fdwlink d WHERE e.deptno = d.deptno ORDER BY 1, 3;

 deptno | dname | empno | ename | job | sal | comm
--------+------------+-------+--------+-----------+------+------
 10 | ACCOUNTING | 7782 | CLARK | MANAGER | 2450 |
 10 | ACCOUNTING | 7839 | KING | PRESIDENT | 5000 |
 10 | ACCOUNTING | 7934 | MILLER | CLERK | 1300 |
 20 | RESEARCH | 7369 | SMITH | CLERK | 800 |
 20 | RESEARCH | 7566 | JONES | MANAGER | 2975 |
 20 | RESEARCH | 7788 | SCOTT | ANALYST | 3000 |
 20 | RESEARCH | 7876 | ADAMS | CLERK | 1100 |
 20 | RESEARCH | 7902 | FORD | ANALYST | 3000 |
 30 | SALES | 7499 | ALLEN | SALESMAN | 1600 | 300
 30 | SALES | 7521 | WARD | SALESMAN | 1250 | 500
 30 | SALES | 7654 | MARTIN | SALESMAN | 1250 | 1400
 30 | SALES | 7698 | BLAKE | MANAGER | 2850 |
 30 | SALES | 7844 | TURNER | SALESMAN | 1500 | 0
 30 | SALES | 7900 | JAMES | CLERK | 950 |
(14 rows)

Pushdown for an oci database link

When you use the oci-dblink to run SQL statements on a remote Oracle database, the

statements may be pushed down to a foreign server for processing.

Pushdown is the occurrence of processing on the foreign server rather than the local client

where the SQL statement was issued. The foreign server is also known as the remote server

. Pushdown can improve performance because the data is processed on the remote server

before being returned to the local client.

Pushdown applies to statements with the standard SQL join operations, such as inner join,

left outer join, right outer join, and full outer join. Pushdown still occurs even when a sort is

 specified on the resulting data set.

To perform pushdown, specific basic conditions must be met. The tables involved in the

 join operation must belong to the same foreign server and use the identical connection

 information to the foreign server. In other words, the connection information must be

consistent with the definition of the database link defined in the CREATE DATABASE LINK

command.

To determine whether an SQL statement can be pushed down, run the EXPLAIN command

to display the execution plan.

For more information about the EXPLAIN command, see the PostgreSQL documentation.

424 Issue: 20200701

https://www.postgresql.org/docs/11/static/sql-explain.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

The following examples use the database link created as follows:

CREATE PUBLIC DATABASE LINK oralink CONNECT TO edb IDENTIFIED BY 'password' USING
 '//192.168.2.23:1521/xe';

The following example shows the execution plan of an inner join:

EXPLAIN (verbose,costs off) SELECT d.deptno, d.dname, e.empno, e.ename FROM dept@
oralink d, emp@oralink e WHERE d.deptno = e.deptno ORDER BY 1, 3;

 QUERY PLAN
--
 Foreign Scan
 Output: d.deptno, d.dname, e.empno, e.ename
 Relations: (_dblink_dept_1 d) INNER JOIN (_dblink_emp_2 e)
 Remote Query: SELECT r1.deptno, r1.dname, r2.empno, r2.ename FROM (dept r1 INNER
 JOIN emp r2 ON ((r1.deptno = r2.deptno))) ORDER BY r1.deptno ASC NULLS LAST, r2.
empno ASC NULLS LAST
(4 rows)

Note that the INNER JOIN operation occurs in the Foreign Scan section. The output of this

join is as follows:

 deptno | dname | empno | ename
--------+------------+-------+--------
 10 | ACCOUNTING | 7782 | CLARK
 10 | ACCOUNTING | 7839 | KING
 10 | ACCOUNTING | 7934 | MILLER
 20 | RESEARCH | 7369 | SMITH
 20 | RESEARCH | 7566 | JONES
 20 | RESEARCH | 7788 | SCOTT
 20 | RESEARCH | 7876 | ADAMS
 20 | RESEARCH | 7902 | FORD
 30 | SALES | 7499 | ALLEN
 30 | SALES | 7521 | WARD
 30 | SALES | 7654 | MARTIN
 30 | SALES | 7698 | BLAKE
 30 | SALES | 7844 | TURNER
 30 | SALES | 7900 | JAMES
(14 rows)

The following example shows the execution plan of a left outer join:

EXPLAIN (verbose,costs off) SELECT d.deptno, d.dname, e.empno, e.ename FROM dept@
oralink d LEFT OUTER JOIN emp@oralink e ON d.deptno = e.deptno ORDER BY 1, 3;

 QUERY PLAN
--
 Foreign Scan
 Output: d.deptno, d.dname, e.empno, e.ename
 Relations: (_dblink_dept_1 d) LEFT JOIN (_dblink_emp_2 e)
 Remote Query: SELECT r1.deptno, r1.dname, r2.empno, r2.ename FROM (dept r1 LEFT
 JOIN emp r2 ON ((r1.deptno = r2.deptno))) ORDER BY r1.deptno ASC NULLS LAST, r2.
empno ASC NULLS LAST

Issue: 20200701 425

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

(4 rows)

The output of this join is as follows:

 deptno | dname | empno | ename
--------+------------+-------+--------
 10 | ACCOUNTING | 7782 | CLARK
 10 | ACCOUNTING | 7839 | KING
 10 | ACCOUNTING | 7934 | MILLER
 20 | RESEARCH | 7369 | SMITH
 20 | RESEARCH | 7566 | JONES
 20 | RESEARCH | 7788 | SCOTT
 20 | RESEARCH | 7876 | ADAMS
 20 | RESEARCH | 7902 | FORD
 30 | SALES | 7499 | ALLEN
 30 | SALES | 7521 | WARD
 30 | SALES | 7654 | MARTIN
 30 | SALES | 7698 | BLAKE
 30 | SALES | 7844 | TURNER
 30 | SALES | 7900 | JAMES
 40 | OPERATIONS | |
(15 rows)

In the following example, the entire processing is not pushed down because the emp

joined table resides locally instead of on the same foreign server.

EXPLAIN (verbose,costs off) SELECT d.deptno, d.dname, e.empno, e.ename FROM dept@
oralink d LEFT OUTER JOIN emp e ON d.deptno = e.deptno ORDER BY 1, 3;

 QUERY PLAN
--
 Sort
 Output: d.deptno, d.dname, e.empno, e.ename
 Sort Key: d.deptno, e.empno
 -> Hash Left Join
 Output: d.deptno, d.dname, e.empno, e.ename
 Hash Cond: (d.deptno = e.deptno)
 -> Foreign Scan on _dblink_dept_1 d
 Output: d.deptno, d.dname, d.loc
 Remote Query: SELECT deptno, dname, NULL FROM dept
 -> Hash
 Output: e.empno, e.ename, e.deptno
 -> Seq Scan on public.emp e
 Output: e.empno, e.ename, e.deptno
(13 rows)

The output of this join is the same as that of the previous left outer join example.

Create a foreign table from a database link

Note:

The stored procedure described in this section is incompatible with Oracle databases.

After creating a database link, you can create a foreign table based on the database link.

The foreign table can be used to access the remote table by referencing the foreign table

with its name instead of using the database link syntax. Using the database link requires

426 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

appending @dblink to the table or view name referenced in the SQL command. dblink is the

name of the database link.

This technique can be used for either an oci-dblink connection for remote Oracle access or

a postgres_fdw connection for remote Postgres access.

The following example shows how to create a foreign table to access a remote Oracle table

.

First, create a database link as previously described. Run the following command to create

a database link named oralink for connecting to the Oracle database:

CREATE PUBLIC DATABASE LINK oralink CONNECT TO edb IDENTIFIED BY 'password' USING
 '//127.0.0.1:1521/xe';

The following query shows the database link:

SELECT lnkname, lnkuser, lnkconnstr FROM pg_catalog.edb_dblink;

 lnkname | lnkuser | lnkconnstr
---------+---------+---------------------
 oralink | edb | //127.0.0.1:1521/xe
(1 row)

When you create the database link, a foreign server is created for the PolarDB database.

The following query displays the foreign server:

SELECT srvname, srvowner, srvfdw, srvtype, srvoptions FROM pg_foreign_server;

 srvname | srvowner | srvfdw | srvtype | srvoptions
---------+----------+--------+---------+-------------------------------
 oralink | 10 | 14005 | | {connstr=//127.0.0.1:1521/xe}
(1 row)

For more information about foreign servers, see the CREATE SERVER command in the

PostgreSQL documentation.

Run the following commands to create the foreign table:

CREATE FOREIGN TABLE emp_ora (
 empno NUMERIC(4),
 ename VARCHAR(10),
 job VARCHAR(9),
 mgr NUMERIC(4),
 hiredate TIMESTAMP WITHOUT TIME ZONE,
 sal NUMERIC(7,2),
 comm NUMERIC(7,2),
 deptno NUMERIC(2)
)
 SERVER oralink
 OPTIONS (table_name 'emp', schema_name 'edb'

Issue: 20200701 427

https://www.postgresql.org/docs/11/static/sql-createserver.html
https://www.postgresql.org/docs/11/static/sql-createserver.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

);

Note the following in the CREATE FOREIGN TABLE command:

• The name specified in the SERVER clause at the end of the CREATE FOREIGN TABLE

command is the name of the foreign server. In this example, the name is oralink, as

shown in the srvname column in the query for pg_frontend_server.

• The table name and schema name are specified in the OPTIONS clause by the table and

schema options.

• The column names specified in the CREATE FOREIGN TABLE command must be the same

as the column names in the remote table.

• CONSTRAINT clauses may not be accepted or enforced on the foreign table because they

 are assumed to have been defined on the remote table.

For more information about the CREATE FOREIGN TABLE command, see the PostgreSQL

documentation.

The following is a query on the foreign table:

SELECT * FROM emp_ora;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+-----------+------+--------------------+---------+---------+--------
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
 7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 | 300.00 | 30
 7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 | 500.00 | 30
 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 | | 20
 7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 | 1400.00 | 30
 7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
 7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
 7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
 7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000.00 | | 10
 7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30
 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
 7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
(14 rows)

In contrast, the following is a query on the same remote table, but the database link rather

than the foreign table is used.

SELECT * FROM emp@oralink;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+-----------+------+--------------------+------+------+--------
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800 | | 20
 7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600 | 300 | 30
 7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250 | 500 | 30
 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975 | | 20
 7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250 | 1400 | 30
 7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850 | | 30

428 Issue: 20200701

https://www.postgresql.org/docs/11/static/sql-createforeigntable.html
https://www.postgresql.org/docs/11/static/sql-createforeigntable.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

 7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450 | | 10
 7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000 | | 20
 7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000 | | 10
 7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500 | 0 | 30
 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100 | | 20
 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950 | | 30
 7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000 | | 20
 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300 | | 10
(14 rows)

Note:

For backward compatibility reasons, USING libpq rather than USING postgres_fdw can be

written to the database. However, the libpq connector lacks many important optimizations

that are provided by the postgres_fdw connector. We recommend that you use the

postgres_fdw connector whenever possible. The libpq option is deprecated and may be

deleted in the future version of PolarDB database compatible with Oracle.

12.19 CREATE FUNCTION
Creates a function.

Syntax

CREATE [OR REPLACE] FUNCTION name [(parameters)]
 RETURN data_type
 [
 IMMUTABLE
 | STABLE
 | VOLATILE
 | DETERMINISTIC
 | [NOT] LEAKPROOF
 | CALLED ON NULL INPUT
 | RETURNS NULL ON NULL INPUT
 | STRICT
 | [EXTERNAL] SECURITY INVOKER
 | [EXTERNAL] SECURITY DEFINER
 | AUTHID DEFINER
 | AUTHID CURRENT_USER
 | PARALLEL { UNSAFE | RESTRICTED | SAFE }
 | COST execution_cost
 | ROWS result_rows
 | SET configuration_parameter
 { TO value | = value | FROM CURRENT }
 ...]
{ IS | AS }
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 [declarations]
 BEGIN
 statements

Issue: 20200701 429

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

 END [name];

Description

CREATE FUNCTION creates a function. CREATE OR REPLACE FUNCTION either creates a new

function or replaces an existing definition.

If you specify a schema name, the function is created in the specified schema. Otherwise,

the function is created in the current schema. The name of the new function cannot be the

 same as an existing function that has the same input argument types in the same schema

. However, functions with different input argument types can share a name. This is called

overloading. Overloading of functions is a feature of PolarDB databases compatible with

Oracle. Overloading of stored standalone functions is incompatible with Oracle databases.

To update the definition of an existing function, you can use the CREATE OR REPLACE

FUNCTION statement. You cannot use the statement to change the name or argument types

 of a function. If you have tried, a new distinct function is created. In addition, you cannot

use the CREATE OR REPLACE FUNCTION statement to change the return type of an existing

 function. To change the return type of an existing function, you must delete the function

 and create the function again. When using the OUT parameters, you cannot change the

types of OUT parameters unless you delete the function.

The user that creates the function becomes the owner of the function.

PolarDB databases compatible with Oracle support function overloading. The same name

can be used for several different functions if they have distinct input (IN, IN OUT) argument

data types.

Parameters

Parameter Description

name The identifier of the function.

parameters A list of parameter values.

data_type The data type of the value returned by the
RETURN statement of the function.

declarations Variable, cursor, type, or subprogram
declarations. If subprogram declarations are
 included, they must be declared after all
other variable, cursor, and type declarations
.

430 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

statements The SPL program statements. The BEGIN
 - END block can contain an EXCEPTION
section.

IMMUTABLE | STABLE | VOLATILE These attributes are used to inform the
query optimizer about the behavior of the
function. You can specify only one of them.
VOLATILE is the default behavior.

• IMMUTABLE indicates that the function
 does not modify the database and
always returns the same result if the
same argument value is specified. The
 function does not perform database
 lookups or use information that is
excluded from the argument list. If this
clause is included, a call to the function
 with all-constant arguments can be
immediately replaced with the function
value.

• STABLE indicates that the function does
 not modify the database and that the
function returns the same result for the
 same argument value within a single
 table scan. In this case, the result can
 change across SQL statements. This
attribute is suitable for functions that
 depend on database lookups and
parameter variables such as the current
time zone.

• VOLATILE indicates that the function
 value changes within a single table
 scan. In this case, no optimizations
can be made. Note that functions with
 negative effects must be classified as
 a volatile function, even if the results
are predictable. This prevents calls from
being removed due to optimization.

Issue: 20200701 431

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

DETERMINISTIC DETERMINISTIC is a synonym for IMMUTABLE
. A DETERMINISTIC function does not modify
 the database and always returns the
same result if the same argument value is
 specified. The function does not perform
database lookups or use information that
 is excluded from the argument list. If this
clause is included, a call to the function with
 all-constant arguments can be immediately
 replaced with the function value.

[NOT] LEAKPROOF A LEAKPROOF function has no negative
effects and reveals no information about
the values used to call the function.

CALLED ON NULL INPUT | RETURNS NULL ON
NULL INPUT | STRICT

• CALLED ON NULL INPUT is the default
 value. It indicates that the stored
 procedure is called when some
arguments are NULL. If necessary, the
author is responsible for checking NULL
values and making proper responses.

• RETURNS NULL ON NULL INPUT or STRICT
 indicates that the stored procedure
returns NULL whenever some arguments
 are NULL. If these clauses are specified
, the stored procedure is not executed
 when NULL arguments exist. A NULL
result is returned automatically.

[EXTERNAL] SECURITY DEFINER SECURITY DEFINER specifies that the
function executes with the privileges of the
user that created it. This is the default value
. The EXTERNAL keyword is allowed for SQL
conformance but it is optional.

[EXTERNAL] SECURITY INVOKER The SECURITY INVOKER clause indicates that
 the function executes with the privileges of
the user that calls it. The EXTERNAL keyword
 is allowed for SQL conformance but it is
optional.

432 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

AUTHID DEFINER | AUTHID CURRENT_USER • The AUTHID DEFINER clause is a synonym
 for [EXTERNAL] SECURITY DEFINER. If
the AUTHID clause is omitted or AUTHID
 DEFINER is specified, the rights of the
function owner are used to determine
access privileges to database objects.

• The AUTHID CURRENT_USER clause is
 a synonym for [EXTERNAL] SECURITY
 INVOKER. If AUTHID CURRENT_USER
is specified, the rights of the current
user executing the function are used to
determine access privileges.

PARALLEL { UNSAFE | RESTRICTED | SAFE } The PARALLEL clause enables the use of
parallel sequential scans (parallel mode).
A parallel sequential scan uses multiple
workers to scan a relation in parallel during
a query in contrast to a serial sequential
scan.

• If this parameter is set to UNSAFE, the
 function cannot be executed in the
parallel mode. If such a function exists
in an SQL statement, a serial execution
plan is enforced. If the PARALLEL clause
is omitted, this is the default setting.

• If this parameter is set to RESTRICTED, the
 function can be executed in the parallel
 mode, but the execution is restricted to
the parallel group leader. If the qualificat
ion for a particular relation has content
that is parallel restricted, the relation is
not selected for parallel execution.

• If this parameter is set to SAFE, the
function can be executed in the parallel
mode without restrictions.

COST execution_cost execution_cost is a positive value that
indicates the estimated execution cost of
the function. The unit is cpu_operator_cost
. If the function returns a set, this is the cost
 of each returned row. Larger values cause
 the planner to try to avoid evaluating the
function more often than necessary.

Issue: 20200701 433

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

ROWS result_rows result_rows is a positive value that indicates
 the estimated number of rows that the
planner expects the function to return. This
value can be used only when the function is
declared to return a set. The default value is
 1,000 rows.

SET configuration_parameter { TO value | =
value | FROM CURRENT }

The SET clause causes the specified
configuration parameter to be set to
the specified value when the function is
entered, and then restored to its prior value
when the function exits. SET FROM CURRENT
saves the current value of the parameter as
the value to be applied when the function is
entered.

If a SET clause is attached to a function, the

 effects of a SET LOCAL command executed

 inside the function for the same variable

are restricted to the function. The configurat

ion parameter is restored to its prior value

 when the function exits. An ordinary SET

 command without LOCAL overrides the

SET clause. This is similar to a previous SET

 LOCAL command. The effects of such a

command persist after the function exits,

unless the current transaction is rolled back.

PRAGMA AUTONOMOUS_TRANSACTION PRAGMA AUTONOMOUS_TRANSACTION is
 the directive that sets the function as an
autonomous transaction.

Note:

The STRICT, LEAKPROOF, PARALLEL, COST, ROWS, and SET keywords provide extended

functionality for PolarDB databases compatible with Oracle. However, these keywords are

not supported by Oracle databases.

434 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Examples

The emp_comp function accepts two numbers as inputs and returns a computed value. The

SELECT command is used to describe how to use the function.

CREATE OR REPLACE FUNCTION emp_comp (
 p_sal NUMBER,
 p_comm NUMBER
) RETURN NUMBER
IS
BEGIN
 RETURN (p_sal + NVL(p_comm, 0)) * 24;
END;

SELECT ename "Name", sal "Salary", comm "Commission", emp_comp(sal, comm)
 "Total Compensation" FROM emp;

 Name | Salary | Commission | Total Compensation
--------+---------+------------+--------------------
 SMITH | 800.00 | | 19200.00
 ALLEN | 1600.00 | 300.00 | 45600.00
 WARD | 1250.00 | 500.00 | 42000.00
 JONES | 2975.00 | | 71400.00
 MARTIN | 1250.00 | 1400.00 | 63600.00
 BLAKE | 2850.00 | | 68400.00
 CLARK | 2450.00 | | 58800.00
 SCOTT | 3000.00 | | 72000.00
 KING | 5000.00 | | 120000.00
 TURNER | 1500.00 | 0.00 | 36000.00
 ADAMS | 1100.00 | | 26400.00
 JAMES | 950.00 | | 22800.00
 FORD | 3000.00 | | 72000.00
 MILLER | 1300.00 | | 31200.00
(14 rows)

The sal_range function returns the number of employees whose salary falls in the specified

 range. The following anonymous block calls the function multiple times and the default

value of the arguments are used in the first two calls.

CREATE OR REPLACE FUNCTION sal_range (
 p_sal_min NUMBER DEFAULT 0,
 p_sal_max NUMBER DEFAULT 10000
) RETURN INTEGER
IS
 v_count INTEGER;
BEGIN
 SELECT COUNT(*) INTO v_count FROM emp
 WHERE sal BETWEEN p_sal_min AND p_sal_max;
 RETURN v_count;
END;

BEGIN
 DBMS_OUTPUT.PUT_LINE('Number of employees with a salary: ' ||
 sal_range);
 DBMS_OUTPUT.PUT_LINE('Number of employees with a salary of at least '
 || '$2000.00: ' || sal_range(2000.00));
 DBMS_OUTPUT.PUT_LINE('Number of employees with a salary between '
 || '$2000.00 and $3000.00: ' || sal_range(2000.00, 3000.00));

Issue: 20200701 435

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

END;

Number of employees with a salary: 14
Number of employees with a salary of at least $ 2000.00: 6
Number of employees with a salary between $ 2000.00 and $ 3000.00: 5

The following example shows how to use the AUTHID CURRENT_USER clause and STRICT

keyword in a function declaration:

CREATE OR REPLACE FUNCTION dept_salaries(dept_id int) RETURN NUMBER
 STRICT
 AUTHID CURRENT_USER
BEGIN
 RETURN QUERY (SELECT sum(salary) FROM emp WHERE deptno = id);
END;

The STRICT keyword is included to instruct the server to return NULL if an input parameter

passed is NULL. If a NULL value is passed, the function is not executed.

The dept_salaries function executes with the privileges of the role that is calling the

function. If the current user does not have sufficient privileges to execute the SELECT

statement to query the emp table (to display employee salaries), the function reports an

error. To instruct the server to use the privileges associated with the role that defined the

function, replace the AUTHID CURRENT_USER clause with the AUTHID DEFINER clause.

12.20 CREATE INDEX
Creates an index.

Syntax

CREATE [UNIQUE] INDEX name ON table
 ({ column | (expression) })
 [TABLESPACE tablespace]

Description

CREATE INDEX constructs an index (name) on the specified table. Indexes are used to

improve database performance. However, inappropriate use can result in unfavorable

performance.

The key fields for the index are specified as column names or expressions written in

parentheses. Multiple fields can be specified to create multicolumn indexes.

An index field can be an expression computed from the values of one or more columns of

a table row. This function can be used for quick data access based on some conversions of

436 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

the basic data. For example, an index computed on UPPER(col) allows the WHERE UPPER(

col) = 'JIM' clause to use an index.

PolarDB databases compatible with Oracle provide the B-tree index method. The B-tree

index method is an implementation of Lehman-Yao high-concurrency B-trees.

Indexes are not used for IS NULL clauses by default.

All functions and operators used in an index definition must be immutable. Their results

must depend only on their arguments and never on external influence such as the contents

of another table or the current time. This restriction ensures that the behavior of the index is

 properly defined. To use a user-defined function in an index expression, you must mark the

 function as immutable when you create it.

If you create an index on a partition table, the CREATE INDEX command propagates indexes

 to the partitions of the table.

Note:

You can specify up to 32 fields in a multicolumn index.

Parameters

Parameter Description

UNIQUE Causes the system to check for duplicate
 values in the table when the index is
created if data already exists and each time
 data is added. If an attempt to insert or
update data results in duplicate entries, an
error is generated.

name The name of the index to be created. The
index name cannot contain a schema name
. The index is always created in the same
schema as its parent table.

table The name of the table to be indexed. The
name can be schema-qualified.

column The name of a column in the table.

Issue: 20200701 437

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

expression An expression based on one or more
columns of the table. The expression is
enclosed in parentheses in most cases,
as shown in the syntax. However, if the
expression has the form of a function call,
the parentheses can be omitted.

tablespace The tablespace in which to create the
index. If this parameter is not specified,
default_tablespace is used. If default_ta
blespace is an empty string, the default
tablespace of the database is used.

Example

Create a B-tree index on the ename column in the emp table:

CREATE INDEX name_idx ON emp (ename);

Create an index that is the same as the preceding one, but place it in the index_tblspc

tablespace:

CREATE INDEX name_idx ON emp (ename) TABLESPACE index_tblspc;

12.21 CREATE MATERIALIZED VIEW
Creates a materialized view.

Syntax

CREATE MATERIALIZED VIEW name [build_clause][create_mv_refresh] AS subquery

where build_clause is:

BUILD {IMMEDIATE | DEFERRED}

where create_mv_refresh is:

REFRESH [COMPLETE] [ON DEMAND]

Description

CREATE MATERIALIZED VIEW defines a view of a query that is not updated each time the

view is referenced in a query. By default, the view is populated when the view is created.

You can include the BUILD DEFERRED keywords to delay the population of the view.

438 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

A materialized view can be schema-qualified. If you specify a schema name when running

the CREATE MATERIALIZED VIEW command, the view is created in the specified schema. The

 view name must be different from the names of all other views, tables, sequences, and

indexes in the same schema.

Note:

Materialized views are read-only. The server does not allow an INSERT, UPDATE, or DELETE

operation on a view.

Access to tables referenced in the view is determined by privileges of the view owner. The

user of a view must have privileges to call all functions used by the view.

For more information about the Postgres REFRESH MATERIALIZED VIEW command, see the

PostgreSQL documentation.

Parameters

Parameter Description

name The name of the view to be created. The
name can be schema-qualified.

subquery A SELECT statement that specifies the
contents of the view. For more informatio
n about valid queries, see the SELECT
command.

build_clause Include a build_clause to specify when the
view is populated. You can specify BUILD
IMMEDIATE or BUILD DEFERRED.

• BUILD IMMEDIATE instructs the server to
 immediately populate the view. This is
the default behavior.

• BUILD DEFERRED instructs the server to
populate the view at a later time (during
a REFRESH operation).

Issue: 20200701 439

https://www.postgresql.org/docs/11/static/sql-refreshmaterializedview.html
https://www.postgresql.org/docs/11/static/sql-refreshmaterializedview.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

create_mv_refresh Include the create_mv_refresh clause to
specify when the content of a materialized
view is updated. The clause contains the
REFRESH keyword followed by COMPLETE
and/or ON DEMAND, where:

• COMPLETE instructs the server to discard
 the current content and reload the
materialized view by executing the
defining query of the view when the
materialized view is refreshed.

• ON DEMAND instructs the server to
refresh the materialized view on demand
 by calling the DBMS_MVIEW package
 or by calling the Postgres REFRESH
MATERIALIZED VIEW statement. This is the
 default behavior.

Examples

The following statement creates a materialized view named dept_30:

CREATE MATERIALIZED VIEW dept_30 BUILD IMMEDIATE AS SELECT * FROM emp WHERE
deptno = 30;

The view contains information retrieved from the emp table about all employees that work

in department 30.

12.22 CREATE PACKAGE
Creates a package specification.

Syntax

CREATE [OR REPLACE] PACKAGE name
[AUTHID { DEFINER | CURRENT_USER }]
{ IS | AS }
 [declaration;] [, ...]
 [{ PROCEDURE proc_name
 [(argname [IN | IN OUT | OUT] argtype [DEFAULT value]
 [, ...])];
 [PRAGMA RESTRICT_REFERENCES(name,
 { RNDS | RNPS | TRUST | WNDS | WNPS } [, ...]);]
 |
 FUNCTION func_name
 [(argname [IN | IN OUT | OUT] argtype [DEFAULT value]
 [, ...])]
 RETURN rettype [DETERMINISTIC];
 [PRAGMA RESTRICT_REFERENCES(name,

440 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

 { RNDS | RNPS | TRUST | WNDS | WNPS } [, ...]);]
 }
] [, ...]
 END [name]

Description

CREATE PACKAGE creates a package specification. CREATE OR REPLACE TRIGGER either

creates a new package specification or replaces an existing specification.

If you specify a schema name, the package is created in the specified schema. Otherwise,

the package is created in the current schema. The name of the new package cannot be the

same as an existing package in the same schema. If you want to update the definition of an

 existing package, you can use the CREATE OR REPLACE PACKAGE command.

The user that creates the stored procedure is the owner of the package.

Parameters

Parameter Description

name The name of the package to be created. The
 name can be schema-qualified.

DEFINER | CURRENT_USER The privileges that determine whether
 access is allowed to database objects
 referenced in the package. DEFINER
indicates the privileges of the package
 owner. CURRENT_USER indicates the
privileges of the current user executing a
program in the package. The default value
is DEFINER.

declaration A public variable, type, cursor, or REF
CURSOR declaration.

proc_name The name of a public stored procedure.

argname The name of an argument.

IN | IN OUT | OUT The argument mode.

argtype The data types of the program arguments.

DEFAULT value The default value of an input argument.

func_name The name of a public function.

rettype The return data type.

Issue: 20200701 441

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

DETERMINISTIC DETERMINISTIC is a synonym for IMMUTABLE
. A DETERMINISTIC stored procedure cannot
modify the database and always returns the
 same result if the same argument value is
 specified. The stored procedure does not
perform database lookups or use informatio
n that is excluded from the argument list. If
 this clause is included, a call to the stored
 procedure with all-constant arguments
is immediately replaced with the stored
procedure value.

RNDS | RNPS | TRUST | WNDS | WNPS The keywords are accepted for compatibility
 and are ignored.

Examples

The package specification (empinfo) contains three public components: a public variable, a

 public stored procedure, and a public function.

CREATE OR REPLACE PACKAGE empinfo
IS
 emp_name VARCHAR2(10);
 PROCEDURE get_name (
 p_empno NUMBER
);
 FUNCTION display_counter
 RETURN INTEGER;
END;

12.23 CREATE PACKAGE BODY
Creates a package body.

Syntax

CREATE [OR REPLACE] PACKAGE BODY name
{ IS | AS }
 [declaration;] [, ...]
 [{ PROCEDURE proc_name
 [(argname [IN | IN OUT | OUT] argtype [DEFAULT value]
 [, ...])]
 [STRICT]
 [LEAKPROOF]
 [PARALLEL { UNSAFE | RESTRICTED | SAFE }]
 [COST execution_cost]
 [ROWS result_rows]
 [SET config_param { TO value | = value | FROM CURRENT }]
 { IS | AS }
 program_body
 END [proc_name];

442 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

 |
 FUNCTION func_name
 [(argname [IN | IN OUT | OUT] argtype [DEFAULT value]
 [, ...])]
 RETURN rettype [DETERMINISTIC]
 [STRICT]
 [LEAKPROOF]
 [PARALLEL { UNSAFE | RESTRICTED | SAFE }]
 [COST execution_cost]
 [ROWS result_rows]
 [SET config_param { TO value | = value | FROM CURRENT }]
 { IS | AS }
 program_body
 END [func_name];
 }
] [, ...]
 [BEGIN
 statement; [, ...]]
 END [name]

Description

CREATE PACKAGE BODY creates a package body. CREATE OR REPLACEPACKAGE BODY creates

a new package body or replaces an existing body.

If you specify a schema name, the package body is created in the specified schema.

Otherwise, the package body is created in the current schema. The name of the new

package body must match an existing package specification in the same schema. The

name of the new package body cannot be the same as an existing package body in the

same schema. If you want to update the definition of an existing package body, you can

use the CREATE OR REPLACE PACKAGE BODY command.

Parameters

Parameter Description

name The name of the package body to be
created. The name can be schema-qualified
.

declaration A private variable, type, cursor, or REF
CURSOR declaration.

proc_name The name of a public stored procedure or
private stored procedure. If proc_name with
 the same signature exists in the package
specification, the stored procedure is public
. Otherwise, the stored procedure is private.

argname The name of an argument.

IN | IN OUT | OUT The argument mode.

Issue: 20200701 443

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

argtype The data types of the program arguments.

DEFAULT value The default value of an input argument.

STRICT The STRICT keyword specifies that the
function is not executed when a NULL
parameter is used to call the function. On
the contrary, the function returns NULL.

LEAKPROOF The LEAKPROOF keyword specifies that the
function does not reveal information about
 arguments, other than through a return
value.

PARALLEL { UNSAFE | RESTRICTED | SAFE } The PARALLEL clause enables the use of
parallel sequential scans (parallel mode).
A parallel sequential scan uses multiple
workers to scan a relation in parallel during
a query in contrast to a serial sequential
scan.

• If this parameter is set to UNSAFE, the
stored procedure or function cannot be
executed in the parallel mode. If such a
stored procedure or function exists in an
 SQL statement, a serial execution plan
 is enforced. If the PARALLEL clause is
omitted, this is the default setting.

• If this parameter is set to RESTRICTED,
the stored procedure or function can be
 executed in the parallel mode, but the
 execution is restricted to the parallel
group leader. If the qualification for a
 particular relation has content that is
 parallel restricted, the relation is not
selected for parallel execution.

• If this parameter is set to SAFE, the stored
 procedure or function can be executed in
 the parallel mode without restrictions.

execution_cost execution_cost is a positive value that
indicates the estimated execution cost of
the function. The unit is cpu_operator_cost.
If the function returns a set, this is the cost
of each returned row. The default value is 0
.0025.

444 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

result_rows result_rows is a positive value that indicates
 the estimated number of rows that the
planner expects the function to return. The
default value is 1000.

SET You can use the SET clause to specify a
parameter value for the duration of the
function:

• config_param specifies the parameter
name.

• value specifies the parameter value.
• FROM CURRENT ensures that the

parameter value is restored when the
function ends.

program_body The pragma, declarations, and SPL
statements that comprise the body of the
function or stored procedure.

The pragma can be PRAGMA AUTONOMOUS

_TRANSACTION to set the function or stored

procedure as an autonomous transaction.

The declarations can include variable, type

, REF CURSOR, and subprogram declaratio

ns. If subprogram declarations are included

, they must be declared after all other

variable, type, and REF CURSOR declaratio

ns.

func_name The name of a public or private function. If
func_name with the same signature exists
in the package specification, the function is
public. Otherwise, the function is private.

rettype The return data type.

Issue: 20200701 445

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

DETERMINISTIC You can use DETERMINISTIC to specify that
the function always returns the same result
if the same argument value is specified. A
DETERMINISTIC function does not modify the
database.

Note:

• The DETERMINISTIC keyword is
 equivalent to the PostgreSQL
IMMUTABLE option.

• If you have specified the DETERMINIS
TIC keyword for a public function in
 the package body, you must also
specify this keyword for the function
declaration in the package specificat
ion. For private functions, no function
 declarations are included in the
package specification.

statement An SPL program statement. If a package is
referenced for the first time, the statements
 in the package initialization section are
executed once for each session.

Note:

The STRICT, LEAKPROOF, PARALLEL, COST, ROWS, and SET keywords provide extended

functionality for PolarDB databases compatible with Oracle. However, these keywords are

not supported by Oracle databases.

Examples

The following is the package body for the empinfo package.

CREATE OR REPLACE PACKAGE BODY empinfo
IS
 v_counter INTEGER;
 PROCEDURE get_name (
 p_empno NUMBER
)
 IS
 BEGIN
 SELECT ename INTO emp_name FROM emp WHERE empno = p_empno;
 v_counter := v_counter + 1;
 END;
 FUNCTION display_counter
 RETURN INTEGER

446 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

 IS
 BEGIN
 RETURN v_counter;
 END;
BEGIN
 v_counter := 0;
 DBMS_OUTPUT.PUT_LINE('Initialized counter');
END;

The following two anonymous blocks execute the stored procedure and function in the

empinfo package and display the public variable.

BEGIN
 empinfo.get_name(7369);
 DBMS_OUTPUT.PUT_LINE('Employee Name : ' || empinfo.emp_name);
 DBMS_OUTPUT.PUT_LINE('Number of queries: ' || empinfo.display_counter);
END;

Initialized counter
Employee name: SMITH
Number of queries: 1

BEGIN
 empinfo.get_name(7900);
 DBMS_OUTPUT.PUT_LINE('Employee Name : ' || empinfo.emp_name);
 DBMS_OUTPUT.PUT_LINE('Number of queries: ' || empinfo.display_counter);
END;

Employee name: JAMES
Number of queries: 2

12.24 CREATE PROCEDURE
Creates a stored procedure.

Syntax

CREATE [OR REPLACE] PROCEDURE name [(parameters)]
 [
 IMMUTABLE
 | STABLE
 | VOLATILE
 | DETERMINISTIC
 | [NOT] LEAKPROOF
 | CALLED ON NULL INPUT
 | RETURNS NULL ON NULL INPUT
 | STRICT
 | [EXTERNAL] SECURITY INVOKER
 | [EXTERNAL] SECURITY DEFINER
 | AUTHID DEFINER
 | AUTHID CURRENT_USER
 | PARALLEL { UNSAFE | RESTRICTED | SAFE }
 | COST execution_cost
 | ROWS result_rows
 | SET configuration_parameter
 { TO value | = value | FROM CURRENT }
 ...]
{ IS | AS }
 [PRAGMA AUTONOMOUS_TRANSACTION;]

Issue: 20200701 447

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

 [declarations]
 BEGIN
 statements
 END [name];

Description

CREATE PROCEDURE creates a stored procedure. CREATE OR REPLACE PROCEDURE either

creates a new stored procedure or replaces an existing definition.

If you specify a schema name, the stored procedure is created in the specified schema.

Otherwise, the stored procedure is created in the current schema. The name of the new

stored procedure cannot be the same as an existing stored procedure that has the same

input argument types in the same schema. However, stored procedures of different input

 argument types can share a name. This is called overloading. Overloading of stored

procedures is a feature of PolarDB database compatibles with Oracle. Overloading of

standalone stored procedures is incompatible with Oracle databases.

To update the definition of an existing stored procedure, you can use the CREATE OR

REPLACE PROCEDURE statement. You cannot use the statement to change the name or

argument types of a stored procedure. If you have tried, a new distinct stored procedure is

created. When using the OUT parameters, you cannot change the types of OUT parameters

unless you delete the stored procedure.

Parameters

Parameter Description

name The identifier of the stored procedure.

parameters A list of parameter values.

declarations Variable, cursor, type, or subprogram
declarations. If subprogram declarations are
 included, they must be declared after all
other variable, cursor, and type declarations
.

statements The SPL program statements. The BEGIN
 - END block can contain an EXCEPTION
section.

448 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

IMMUTABLE | STABLE | VOLATILE These attributes are used to inform the
query optimizer about the behavior of the
stored procedure. You can specify only one
of them. VOLATILE is the default behavior.

• IMMUTABLE indicates that the stored
procedure does not modify the database
 and always returns the same result if
the same argument value is specified.
The stored procedure does not perform
database lookups or use information that
 is excluded from the argument list. If this
 clause is included, a call to the stored
procedure with all-constant arguments
 can be immediately replaced with the
stored procedure value.

• STABLE indicates that the stored
procedure does not modify the database
 and that the stored procedure returns
the same result for the same argument
 value within a single table scan. In this
 case, the result can change across SQL
 statements. This attribute is suitable
 for stored procedures that depend
on database lookups and parameter
variables such as the current time zone.

• VOLATILE indicates that the stored
procedure value changes within a single
 table scan. In this case, no optimizati
ons can be made. Note that functions
with negative effects must be classified
as a volatile function, even if the results
are predictable. This prevents calls from
being removed due to optimization.

Issue: 20200701 449

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

DETERMINISTIC DETERMINISTIC is a synonym for IMMUTABLE
. A DETERMINISTIC stored procedure does
not modify the database and always returns
 the same result if the same argument value
 is specified. The stored procedure does not
perform database lookups or use informatio
n that is excluded from the argument list. If
 this clause is included, a call to the stored
procedure with all-constant arguments can
 be immediately replaced with the stored
procedure value.

[NOT] LEAKPROOF A LEAKPROOF stored procedure has no
negative effects and reveals no informatio
n about the values used to call the stored
procedure.

CALLED ON NULL INPUT | RETURNS NULL ON
NULL INPUT | STRICT

• CALLED ON NULL INPUT is the default
 value. It indicates that the stored
 procedure is called when some
arguments are NULL. If necessary, the
author is responsible for checking NULL
values and making proper responses.

• RETURNS NULL ON NULL INPUT or STRICT
 indicates that the stored procedure
returns NULL whenever some arguments
 are NULL. If these clauses are specified
, the stored procedure is not executed
 when NULL arguments exist. A NULL
result is returned automatically.

[EXTERNAL] SECURITY DEFINER SECURITY DEFINER specifies that the stored
 procedure executes with the privileges of
the user that created it. This is the default
value. The EXTERNAL keyword is allowed for
 SQL conformance but it is optional.

[EXTERNAL] SECURITY INVOKER The SECURITY INVOKER clause indicates
that the stored procedure executes with
the privileges of the user that calls it. The
 EXTERNAL keyword is allowed for SQL
conformance but it is optional.

450 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

AUTHID DEFINER | AUTHID CURRENT_USER • The AUTHID DEFINER clause is a synonym
 for [EXTERNAL] SECURITY DEFINER. If
the AUTHID clause is omitted or AUTHID
 DEFINER is specified, the rights of the
 stored procedure owner are used to
determine access privileges to database
objects.

• The AUTHID CURRENT_USER clause is
 a synonym for [EXTERNAL] SECURITY
INVOKER. If AUTHID CURRENT_USER is
specified, the rights of the current user
executing the stored procedure are used
to determine access privileges.

PARALLEL { UNSAFE | RESTRICTED | SAFE } The PARALLEL clause enables the use of
parallel sequential scans (parallel mode).
A parallel sequential scan uses multiple
workers to scan a relation in parallel during
a query in contrast to a serial sequential
scan.

• If this parameter is set to UNSAFE, the
 stored procedure cannot be executed
 in the parallel mode. If such a stored
procedure exists in an SQL statement, a
 serial execution plan is enforced. If the
 PARALLEL clause is omitted, this is the
default setting.

• If this parameter is set to RESTRICTED,
the stored procedure can be executed in
 the parallel mode, but the execution is
restricted to the parallel group leader. If
the qualification for a particular relation
 has content that is parallel restricted,
the relation is not selected for parallel
execution.

• If this parameter is set to SAFE, the
stored procedure can be executed in the
parallel mode without restrictions.

Issue: 20200701 451

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

COST execution_cost execution_cost is a positive value that
indicates the estimated execution cost of
the stored procedure. The unit is cpu_operat
or_cost. If the stored procedure returns a
set, this is the cost of each returned row.
Larger values cause the planner to try to
avoid evaluating the stored procedure more
 often than necessary.

ROWS result_rows result_rows is a positive value that indicates
 the estimated number of rows that the
planner expects the stored procedure to
return. This value can be used only when
the stored procedure is declared to return a
set. The default value is 1000 rows.

SET configuration_parameter { TO value | =
value | FROM CURRENT }

The SET clause causes the specified
configuration parameter to be set to the
specified value when the stored procedure
is entered, and then restored to its prior
value when the stored procedure exits. SET
FROM CURRENT saves the current value of
the parameter as the value to be applied
when the stored procedure is entered.

If a SET clause is attached to a stored

procedure, the effects of a SET LOCAL

 command executed inside the stored

 procedure for the same variable are

restricted to the stored procedure. The

configuration parameter is restored to its

 prior value when the stored procedure

exits. When the stored procedure exits,

the configuration parameter is restored to

 its prior value. An ordinary SET command

 without LOCAL overrides the SET clause

. This is similar to a previous SET LOCAL

command. The effects of such a command

 persist after the stored procedure exits,

unless the current transaction is rolled back.

452 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

PRAGMA AUTONOMOUS_TRANSACTION PRAGMA AUTONOMOUS_TRANSACTION is
the directive that sets the stored procedure
as an autonomous transaction.

Note:

• The STRICT, LEAKPROOF, PARALLEL, COST, ROWS, and SET keywords provide extended

functionality for PolarDB databases compatible with Oracle. However, these keywords

are not supported by Oracle databases.

• The IMMUTABLE, STABLE, STRICT, LEAKPROOF, COST, ROWS and PARALLEL { UNSAFE |

RESTRICTED | SAFE } attributes are supported only by stored procedures of PolarDB

database compatible with Oracle.

• Stored procedures are created as SECURITY DEFINERS by default. Stored procedures

defined in plpgsql are created as SECURITY INVOKERS.

Examples

The following stored procedure lists the employees in the emp table:

CREATE OR REPLACE PROCEDURE list_emp
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur IS
 SELECT empno, ename FROM emp ORDER BY empno;
BEGIN
 OPEN emp_cur;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_cur;
END;

EXEC list_emp;

EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER

Issue: 20200701 453

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

The following stored procedure uses IN OUT and OUT arguments to return the number

, name, and job of an employee. First, the search is based on the specified employee

number. If no results are found, the specified name is used. An anonymous block calls the

stored procedure.

CREATE OR REPLACE PROCEDURE emp_job (
 p_empno IN OUT emp.empno%TYPE,
 p_ename IN OUT emp.ename%TYPE,
 p_job OUT emp.job%TYPE
)
IS
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE;
BEGIN
 SELECT ename, job INTO v_ename, v_job FROM emp WHERE empno = p_empno;
 p_ename := v_ename;
 p_job := v_job;
 DBMS_OUTPUT.PUT_LINE('Found employee # ' || p_empno);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 BEGIN
 SELECT empno, job INTO v_empno, v_job FROM emp
 WHERE ename = p_ename;
 p_empno := v_empno;
 p_job := v_job;
 DBMS_OUTPUT.PUT_LINE('Found employee ' || p_ename);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Could not find an employee with ' ||
 'number, ' || p_empno || ' nor name, ' || p_ename);
 p_empno := NULL;
 p_ename := NULL;
 p_job := NULL;
 END;
END;

DECLARE
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE;
BEGIN
 v_empno := 0;
 v_ename := 'CLARK';
 emp_job(v_empno, v_ename, v_job);
 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
END;

Found employee CLARK
Employee No: 7782
Name : CLARK

454 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Job : MANAGER

The following example shows how to use the AUTHID DEFINER and SET clauses in a

procedure declaration. The update_salary stored procedure grants the privileges of the role

 that defined the stored procedure to the role that is calling the stored procedure:

CREATE OR REPLACE PROCEDURE update_salary(id INT, new_salary NUMBER)
 SET SEARCH_PATH = 'public' SET WORK_MEM = '1MB'
 AUTHID DEFINER IS
BEGIN
 UPDATE emp SET salary = new_salary WHERE emp_id = id;
END;

You can use the SET clause to set the search path of the stored procedure to public and

set the working memory to 1 MB. Other stored procedures, functions, and objects are not

affected by these settings.

In this example, the AUTHID DEFINER clause temporarily grants privileges to a role that may

not be allowed to execute the statements within the stored procedure. To instruct the server

 to use the privileges associated with the role that calls the stored procedure, replace the

AUTHID DEFINER clause with the AUTHID CURRENT_USER clause.

12.25 CREATE QUEUE
Creates a queue.

Syntax

You can use the following syntax to define a new queue:

CREATE QUEUE name QUEUE TABLE queue_table_name [({ option_name option_value}
 [, ...])]

The following section describes valid values of the option_name and option_value

 parameters.

TYPE [normal_queue | exception_queue]
RETRIES [INTEGER]
RETRYDELAY [DOUBLE PRECISION]
RETENTION [DOUBLE PRECISION]

Description

You can use the CREATE QUEUE command to create a queue in the current database if you

are a superuser or a user who has the aq_administrator_role privilege.

Issue: 20200701 455

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

If a queue name is schema-qualified, the queue is created in the specified schema.

Otherwise, the queue is created in the current schema. A queue can only be created in the

schema in which the queue table resides. A queue name must be unique in the schema.

Note:

• PolarDB databases compatible with Oracle provides additional syntax of the CREATE

 QUEUE SQL command. You can use this additional syntax with the DBMS_AQADM

package.

• You can use the DROP QUEUE command to delete a queue.

Parameters

Parameter Description

name The name of the sequence to be created. The name can be schema
-qualified.

queue_table_name The name of the queue table that is associated with the queue.

option_name
option_value

The names and values of options that are associated with the new
queue. If the call to the CREATE QUEUE TABLE includes duplicate
option names, the server returns an error. The following section
describes valid values of these two parameters:

• TYPE: specifies whether a queue is a normal queue or exception
 queue. Valid values: normal_queue and exception_queue. The
exception queue only supports dequeuing operations.

• RETRIES: specifies the maximum number of attempts to delete a
message from the queue. Data type: INTEGER.

• RETRYDELAY: specifies the number of seconds after a rollback
 that the server waits before retrying the message. Data type:
DOUBLE PRECISION.

• RETENTION: specifies the number of seconds for which a
message is stored in the queue table after dequeuing. Data type
: DOUBLE PRECISION.

Example

Run the following command to create a queue named work_order that is associated with

the queue table named work_order_table:

CREATE QUEUE work_order QUEUE TABLE work_order_table (RETRIES 5, RETRYDELAY 2);

The server allows five attempts to delete messages from the queue and requires an interval

 of 2 seconds between two retry attempts.

456 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

12.26 CREATE QUEUE TABLE
Creates a queue table.

Syntax

CREATE QUEUE TABLE name OF type_name [({ option_name option_value } [, ...])]

The following table lists valid options of the option_name and option_value parameters.

option_name option_value

SORT_LIST priority and enq_time

MULTIPLE_C
ONSUMERS

FALSE and TRUE

MESSAGE_GROUPING NONE and TRANSACTIONAL

STORAGE_CLAUSE TABLESPACE tablespace_name, PCTFREE integer, PCTUSED integer,
INITRANS integer, MAXTRANS integer, and STORAGE storage_option

storage_option can be one or more of the following clauses:

MINEXTENTS integer, MAXEXTENTS integer, PCTINCREASE integer,

INITIAL size_clause, NEXT, FREELISTS integer, OPTIMAL size_clause,

and BUFFER_POOL {KEEP|RECYCLE|DEFAULT}.

Note:
Only the TABLESPACE clause is enforced. You can skip all other
options, which are supported for compatibility. You can use the
TABLESPACE clause to specify the name of the tablespace in
which the table will be created.

Description

You can use the CREATE QUEUE TABLE command to create a queue table if you are a

superuser or a user who has the aq_administrator_role privilege.

If the call to CREATE QUEUE TABLE includes a schema name, the queue table is created in

 the specified schema. If you do not specify a schema, the queue table is created in the

current schema.

The name of a queue table must be unique in a schema.

Issue: 20200701 457

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameters

Parameter Description

name The name of the queue table to be created. The name can be
schema-qualified.

type_name The name of the current type that describes payloads of each entry
 in the queue table. For more information about how to define a
type, see the CREATE TYPE topic.

option_name
option_value

The names and values of options that are associated with the
new queue table. If the call to the CREATE QUEUE TABLE includes
duplicate option names, the server returns an error. The following
table lists valid options of these two parameters.

Table 12-4: Table of option names and values

Parameter Description

SORT_LIST Specifies the dequeuing order and the names of one or more
columns that are used to sort the queue in ascending order.
Valid values include the following combinations of enq_time and
priority:

• enq_time. priority
• priority. enq_time
• priority
• enq_time
• If you specify any other value, ERROR is returned.

MULTIPLE_C
ONSUMERS

Specifies whether a message can be consumed by multiple users
 or only one user. Data type: BOOLEAN. Valid values: TRUE and
FALSE.

MESSAGE_GROUPING Specifies the method in which a message is dequeued. none:
indicates that each message is dequeued separately. transactio
nal: indicates that multiple messages are added to the queue in a
single transaction and dequeued as a group.

458 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

STORAGE_CLAUSE Specifies the parameters of a table. Valid values: TABLESPACE
tablespace_name, PCTFREE integer, PCTUSED integer, INITRANS
integer, MAXTRANS integer, and STORAGE storage_option.

Storage_option can be one or more of the following values:

MINEXTENTS integer, MAXEXTENTS integer, PCTINCREASE integer,

INITIAL size_clause, NEXT, FREELISTS integer, OPTIMAL size_clause,

and BUFFER_POOL {KEEP|RECYCLE|DEFAULT}.

Note:
Only the TABLESPACE clause is executed. You can skip all other
options, which are supported for compatibility. You can use the
TABLESPACE clause to specify the name of the tablespace in
which the table will be created.

Example

Before creating a queue table, you must create a custom type. This type describes the

columns and data types in the table. You can run the following command to create a type

named work_order:

CREATE TYPE work_order AS (name VARCHAR2, project TEXT, completed BOOLEAN);

You can run the following command to use the work_order type to create a queue table

named work_order_table:

CREATE QUEUE TABLE work_order_table OF work_order (sort_list (enq_time, priority));

12.27 CREATE ROLE
Defines a new database role.

Syntax

CREATE ROLE name [IDENTIFIED BY password [REPLACE old_password]]

Description

You can use the CREATE ROLE command to create a role for a PolarDB database cluster.

A role is an entity that owns database objects and is authorized to manage the database

. A role can be considered a user, group, or combination of both based on usage. A new

role does not have the LOGIN privilege and cannot be used to start a session. You can use

Issue: 20200701 459

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

the ALTER ROLE command to grant the LOGIN privilege to the role. To use the CREATE ROLE

command, you must be a database superuser or have the CREATEROLE privilege.

If you specify the IDENTIFIED BY clause when using the CREATE ROLE command, a schema

that is owned by and has the same name as the new role is created.

Note:

Roles are defined at the database cluster level and are valid in all databases in a cluster.

Parameters

Parameter Description

name The name of the new role.

IDENTIFIED BY
password

Specifies the password of the role. A password is only used for
roles who have the LOGIN privilege. However, you can also define
 a password for roles who do not have this privilege. If you do not
 want to use password verification, you can leave this parameter
empty.

Notes

You can use the ALTER ROLE command to modify the parameters of a role, and the DROP

 ROLE command to delete a role. You can use the ALTER ROLE command to modify the

parameters that are specified by the CREATE ROLE command.

You can use the GRANT and REVOKE command to add and remove role members when

roles are used as groups.

A role name or password can be up to 63 characters in length.

460 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Examples

Create a role named admins and a schema, and specify a password:

CREATE ROLE admins IDENTIFIED BY Rt498zb;

12.28 CREATE SCHEMA
Defines a new schema.

Syntax

CREATE SCHEMA AUTHORIZATION username schema_element [...]

Description

You can use the variant of the CREATE SCHEMA command to create a schema that has one

 or more objects. The username parameter specifies the owner of the schema. A schema

and objects are created in a single transaction. Therefore, all the created objects include

the schema. Otherwise, none of the created objects include the schema. Note: If you are

using an Oracle database, no new schema (username) is created. Therefore, the schema

must already exist.

A schema is a namespace that contains named objects such as tables and views. Different

 schemas may have the same named objects. You can access named objects by using

either of the following methods: 1. Qualify the name of an object by using the schema

name as the prefix. 2. Specify a search path that includes the required schema. Unqualifie

d objects are created in the current schema (the schema before the search path, which

can be determined by the CURRENT_SCHEMA function). The search paths and CURRENT_SC

HEMA function are incompatible with Oracle databases.

The CREATE SCHEMA command includes subcommands to create objects within the schema

. Subcommands are processed in the same methods as separate commands that are issued

 after the schema is created. All the created objects are owned by the specified user.

Note:

To create a schema, you must have the CREATE privilege on the current database.

Issue: 20200701 461

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameters

Parameter Description

username The name of the user who owns the new schema. The schema
name is the same as the username. Only superusers can create
 schemas that are owned by other users. Note: In PolarDB
databases compatible with Oracle, the role and username must
already exist, and the schema must not exist. In Oracle, a user that
is equivalent to a schema must already exist.

schema_element An SQL statement that defines the objects to be created in the
schema. You can use the CREATE TABLE, CREATE VIEW, and GRANT
 clauses within the CREATE SCHEMA statement. After creating a
 schema, you can create other object types by using separate
commands.

Example

CREATE SCHEMA AUTHORIZATION enterprisedb
 CREATE TABLE empjobs (ename VARCHAR2(10), job VARCHAR2(9))
 CREATE VIEW managers AS SELECT ename FROM empjobs WHERE job = 'MANAGER'
 GRANT SELECT ON managers TO PUBLIC;

12.29 CREATE SEQUENCE
Defines a new sequence generator.

Syntax

CREATE SEQUENCE name [INCREMENT BY increment]
 [{ NOMINVALUE | MINVALUE minvalue }]
 [{ NOMAXVALUE | MAXVALUE maxvalue }]
 [START WITH start] [CACHE cache | NOCACHE] [CYCLE]

Description

You can use the CREATE SEQUENCE command to create a sequence generator. A single-row

 table named name is generated and initialized. The generator is owned by the user who

runs the command.

If you specify a schema, a sequence is created in the specified schema. Otherwise, a

sequence is created in the current schema. The sequence name must be different from the

name of any other sequence, table, index, or view in the same schema.

After a sequence is created, you can use the NEXTVAL and CURRVAL functions to manage

the sequence.

462 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameters

Parameter Description

name The name of the sequence to be created. The name can be schema
-qualified.

increment The INCREMENT BY increment clause is optional and specifies the
value to be added to the current sequence value. A positive value
indicates an ascending sequence, and a negative value indicates a
 descending sequence. Default value: 1.

NOMINVALUE |
MINVALUE minvalue

The MINVALUE minvalue clause is optional and specifies the
minimum value that a sequence can generate. If you do not specify
 this clause, the default value is used. Default value for ascending
 sequences: 1. Default value for descending sequences: -263 - 1
. Note that you can use the NOMINVALUE keyword to specify the
default value.

NOMAXVALUE |
MAXVALUE maxvalue

The MAXVALUE maxvalue clause is optional and specifies the
 maximum value that a sequence can generate. If you do not
specify this clause, the default value is used. Default value for
 ascending sequences: 263 - 1. Default value for descending
sequences: -1. Note that you can use the NOMAXVALUE keyword to
 specify the default value.

start The START WITH start clause is optional and specifies the number
 from which a sequence starts. By default, ascending sequences
start from the value that is specified for the minvalue parameter,
and descending sequences start from the value that is specified for
 the maxvalue parameter.

cache The CACHE cache clause is optional and specifies the number of
sequence numbers to be allocated and stored in memory for fast
access. The minimum value is 1, indicating that only one value can
be generated at a time, such as NOCACHE. Default value: 1.

CYCLE Allows a sequence to wrap around when the ascending sequence
reaches the maximum value or descending sequence reaches
the minimum value. If the limit is reached, the next number
generated is the value that is specified by the minvalue or
maxvalue parameter.

This parameter is not specified by default. If you do not specify this

parameter, any call to the NEXTVAL function after the sequence has

 reached the maximum value returns an error. Note: You can use

the NO CYCLE keyword to specify the default value. This keyword is

not compatible with Oracle databases.

Issue: 20200701 463

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Notes

Sequences are based on big integer arithmetic. The sequence range cannot exceed the

 range of an eight-byte integer. Valid values: -9223372036854775808 to +9223372036

854775807. On early platforms, compilers may not support eight-byte integers. In this case

, sequences use regular integer arithmetic that ranges from -2147483648 to +2147483647.

If multiple sessions concurrently use a sequence object whose cache parameter is set

to a value greater than 1, unexpected results may be retrieved. Each session allocates

 and caches consecutive sequence values during each access to the sequence object,

and increases the final value of the sequence object. Then, the next cache-1 uses of the

NEXTVAL function within the session return the preallocated values without touching the

sequence object. Therefore, when the session ends, all values that have been allocated but

not used within the session are lost and several gaps are generated in the sequence.

Although different sequence values can be assigned to multiple sessions, these values

are generated out of order when all sessions are considered. For example, if the cache

parameter is set to 10, Session A may retain values from 1 to 10 and return NEXTVAL=1.

Then, Session B may retain values from 11 to 20 and return NEXTVAL=11 before Session A

 generates NEXTVAL=2. Therefore, if the cache parameter is set to 1, NEXTVAL values are

generated sequentially. If the cache parameter is set to a value greater than 1, NEXTVAL

 values are different and may not be generated sequentially. The last value reflects the

latest value retained by any session no matter whether the value has been returned by

NEXTVAL.

Examples

Create an ascending sequence named serial, that starts from 101:

CREATE SEQUENCE serial START WITH 101;

Select the next number from this sequence:

SELECT serial.NEXTVAL FROM DUAL;

 nextval

 101
(1 row)

Create a sequence named supplier_seq and specify the NOCACHE option.

CREATE SEQUENCE supplier_seq
 MINVALUE 1
 START WITH 1
 INCREMENT BY 1

464 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

 NOCACHE;

Select the next number from this sequence:

SELECT supplier_seq.NEXTVAL FROM DUAL;

 nextval

 1
(1 row)

12.30 CREATE SYNONYM
Creates a synonym.

Syntax

CREATE [OR REPLACE] [PUBLIC] SYNONYM [schema.]syn_name
 FOR object_schema.object_name[@dblink_name];

Description

The CREATE SYNONYM command creates a synonym for specific types of database objects

. PolarDB databases compatible with Oracle support synonyms for the following types of

database objects:

• Tables

• Views

• Materialized views

• Sequences

• Stored procedures

• Stored functions

• Types

• Objects that are accessible through a database link

• Other synonyms

Parameters

Parameter Description

syn_name The name of the synonym. A synonym name must be unique within
 a schema.

schema The name of the schema where the synonym resides. If you do not
specify a schema name, the synonym is created in the first existing
schema in your search path.

Issue: 20200701 465

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

object_name The name of the object.

object_schema The name of the schema where the referenced object resides.

dblink_name The name of the database link through which an object is accessed
.

You can use the REPLACE clause to replace an existing synonym definition with a new

synonym definition.

You can use the PUBLIC clause to create the synonym in the public schema. The PUBLIC

SYNONYM command is compatible with Oracle databases. You can use this command to

create a synonym that resides in the public schema.

CREATE [OR REPLACE] PUBLIC SYNONYM syn_name FOR object_schema.object_name;

The following statement is a short form:

CREATE [OR REPLACE] SYNONYM public.syn_name FOR object_schema.object_name;

Notes

Access to the object referenced by the synonym is determined by the permissions of the

current user. The synonym user must have proper permissions on the underlying database

object.

Examples

Create a synonym for the emp table in a schema named enterprisedb:

CREATE SYNONYM personnel FOR enterprisedb.emp;

12.31 CREATE TABLE
Creates a table.

Syntax

CREATE [GLOBAL TEMPORARY] TABLE table_name (
 { column_name data_type [DEFAULT default_expr]
 [column_constraint [...]] | table_constraint } [, ...]
)
 [ON COMMIT { PRESERVE ROWS | DELETE ROWS }]

466 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

 [TABLESPACE tablespace]

where column_constraint is:

 [CONSTRAINT constraint_name]
 { NOT NULL |
 NULL |
 UNIQUE [USING INDEX TABLESPACE tablespace] |
 PRIMARY KEY [USING INDEX TABLESPACE tablespace] |
 CHECK (expression) |
 REFERENCES reftable [(refcolumn)]
 [ON DELETE action] }
 [DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED |
 INITIALLY IMMEDIATE]

table_constraint is:

 [CONSTRAINT constraint_name]
 { UNIQUE (column_name [, ...])
 [USING INDEX TABLESPACE tablespace] |
 PRIMARY KEY (column_name [, ...])
 [USING INDEX TABLESPACE tablespace] |
 CHECK (expression) |
 FOREIGN KEY (column_name [, ...])
 REFERENCES reftable [(refcolumn [, ...])]
 [ON DELETE action] }
 [DEFERRABLE | NOT DEFERRABLE]
 [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

Description

The CREATE TABLE command creates an empty table in the current database. The table is

owned by the user who runs the command.

If you specify a schema name (for example, you specify CREATE TABLE myschema.mytable

), the table is created in the specified schema. Otherwise, the table is created in the current

 schema. Temporary tables exist in a special schema. Therefore, you do not need to specify

the schema name when creating a temporary table. The table name must be different from

all other tables, sequences, indexes, or views in the same schema.

The CREATE TABLE command automatically creates a composite data type that correspond

s to a row in the table. Therefore, a table cannot have the same name as an existing data

type in the same schema.

A table can have up to 1,600 columns. In practice, the effective limit is lower because of

tuple-length constraints

The optional constraint clauses specify constraints or tests that new or updated rows must

satisfy for an insert or update operation to succeed. A constraint is an SQL object that helps

define the set of valid values in the table.

Issue: 20200701 467

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Constraints are classified into table constraints and column constraints. A column constraint

 is defined as part of a column definition. The table constraint definition does not depend

 on specific columns and can contain multiple columns. Each column constraint can also

be written as a table constraint. If a constraint affects only one column, the constraint is a

column constraint. This means that a column constraint is only a notational convenience.

Parameters

Parameter Description

GLOBAL TEMPORARY If this parameter is specified, the table is created as a temporary
 table. Temporary tables are automatically deleted at the end
 of a session or at the end of the current transaction. For more
 information, see the ON COMMIT parameter. If a temporary
table exists, existing permanent tables with the same names
are invisible to the current session, unless the temporary table
is referenced by schema-qualified names. A temporary table is
invisible outside the session in which it was created. This aspect of
global temporary tables is incompatible with Oracle databases. All
indexes created on a temporary table are automatically temporary.

table_name The name of the table to be created. The name can be schema-
qualified.

column_name The name of a column to be created in the new table.

data_type The data type of the column. Array specifiers can be included.

DEFAULT default_ex
pr

The DEFAULT clause assigns a default data value for the column.
The value is a variable-free expression. Subqueries or cross-
references to other columns in the current table are not allowed.
The data type of the default expression must be the same as that
of the column.

Note:
The default expression is used in an insert operation that does
not specify a value for the column. If no default value is specified
for the column, the default value is null.

CONSTRAINT
constraint_name

An optional name for a column or table constraint. If this
parameter is not specified, the system generates a name.

NOT NULL The column cannot contain null values.

468 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

NULL The column can contain null values. This is the default value.

This clause is available only for compatibility with non-standard

SQL databases. We recommend that you do not use this clause in

new applications.

UNIQUE: column
constraint

UNIQUE (

column_name

 [, ...]): table

constraint

The UNIQUE constraint specifies that a group of one or more
distinct columns of a table can contain only unique values. The
behavior of a unique table constraint is the same as that of a
column constraint except the additional capability to span multiple
columns.

When a unique constraint is evaluated, null values are not

considered to be equal.

Each unique table constraint must name a set of columns that

is different from the set of columns named by other unique or

primary key constraints defined for the table. Otherwise, the same

constraint is listed twice.

PRIMARY KEY:
column constraint

PRIMARY KEY (

column_name

 [, ...]): table

constraint

The primary key constraint specifies that one or more columns
of a table can contain only unique, non-duplicate, and non-null
values. PRIMARY KEY is a combination of UNIQUE and NOT NULL.
PRIMARY KEY identifies a set of columns as the primary key and
provides metadata about the design of the schema. A primary key
implies that other tables can rely on this set of columns as a unique
identifier for rows.

Only one primary key can be specified for a table, whether as a

column constraint or a table constraint.

The primary key constraint must name a set of columns that is

different from other sets of columns named by a unique constraint

defined for the same table.

Issue: 20200701 469

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

CHECK (expression) The CHECK clause specifies an expression that produces a Boolean
result which new or updated rows must satisfy for an insert or
update operation to succeed. If an expression is evaluated as TRUE
or unknown, the INSERT or UPDATE operation is successful. If a
row of an insert or update operation produces a FALSE result, an
error occurs and the insert or update does not alter the database.
A check constraint specified as a column constraint must reference
only the value of the column. An expression in a table constraint
can reference multiple columns.

CHECK expressions cannot contain subqueries or reference

variables other than columns of the current row.

REFERENCES reftable
[(refcolumn)] [ON
DELETE action]:
column constraint

FOREIGN KEY (

column [, ...])

REFERENCES reftable

 [(refcolumn [, ...])]

[ON DELETE action]:

table constraint

These clauses specify a foreign key constraint. A group of one
or more columns in the new table must contain only values
that match the values in the referenced columns of a row in the
referenced table. If refcolumn is omitted, the primary key of the
reftable is used. The referenced columns must be the columns of a
unique or primary key constraint in the referenced table.

In addition, when data in the referenced columns is changed,

actions are performed on the data in the columns of this table.

The ON DELETE clause specifies the action to perform when a

referenced row in the referenced table is being deleted. Referential

actions cannot be deferred even if the constraint is deferrable.

Possible actions for each clause are described as follows:

• CASCADE: deletes all rows that reference the deleted row, or

updates the value of the referencing column to the new value of

 the referenced column.

• SET NULL: sets the referencing columns to NULL.

If the referenced column changes frequently, you can add an index

 to the foreign key column to facilitate reference actions associated

 with the foreign key column.

470 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

DEFERRABLE

NOT DEFERRABLE

This parameter controls whether the constraint can be deferred. A
constraint that is not deferrable is checked immediately after each
 command. Checking of deferrable constraints can be postponed
 until the end of the transaction by using the SET CONSTRAINTS
command. NOT DEFERRABLE is the default value. Only foreign key
 constraints accept this clause. All other constraint types are not
deferrable.

INITIALLY IMMEDIATE

INITIALLY DEFERRED

If a constraint is deferrable, this clause specifies the default time
 to check the constraint. If the constraint is INITIALLY IMMEDIATE,
it is checked after each statement. This is the default value. If the
 constraint is INITIALLY DEFERRED, it is checked only at the end of
 the transaction. You can use the SET CONSTRAINTS command to
change the constraint check time.

ON COMMIT You can use the ON COMMIT clause to control the behavior of
temporary tables at the end of a transaction block. The following
options are available:

• PRESERVE ROWS: No special action is performed at the end of
 each transaction. This is the default behavior. Note that this
aspect is incompatible with Oracle databases. The default value
for Oracle databases is DELETE ROWS.

• DELETE ROWS: All rows in the temporary table are deleted at
 the end of each transaction block. An automatic TRUNCATE
command is executed at each commit operation.

TABLESPACE
tablespace

The tablespace is the name of the tablespace in which the new
 table is to be created. If you do not specify the tablespace,
default_tablespace is used. If default_tablespace is an empty
string, the default tablespace of the database is used.

USING INDEX
 TABLESPACE
tablespace

This clause allows you to select the tablespace in which the index
 associated with a UNIQUE or PRIMARY KEY constraint is created. If
 you do not specify the tablespace, default_tablespace is used. If
 default_tablespace is an empty string, the default tablespace of
the database is used.

Note:

The PolarDB database compatible with Oracle automatically creates an index for each

unique constraint and primary key constraint to enforce the uniqueness. You do not need

to create an explicit index for primary key columns. For more information, see the CREATE

INDEX command.

Issue: 20200701 471

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Examples

Create the dept table and the emp table:

CREATE TABLE dept (
 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14),
 loc VARCHAR2(13)
);
CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno)
);

Define a unique table constraint for the dept table. Unique table constraints can be defined

 on one or more columns of the table.

CREATE TABLE dept (
 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,
 loc VARCHAR2(13)
);

Define a check column constraint:

CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno)
);

Define a check table constraint:

CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno),
 CONSTRAINT new_emp_ck CHECK (ename IS NOT NULL AND empno > 7000)

472 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

);

Define a primary key table constraint for the jobhist table. Primary key table constraints can

 be defined on one or more columns of the table.

CREATE TABLE jobhist (
 empno NUMBER(4) NOT NULL,
 startdate DATE NOT NULL,
 enddate DATE,
 job VARCHAR2(9),
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2),
 chgdesc VARCHAR2(80),
 CONSTRAINT jobhist_pk PRIMARY KEY (empno, startdate)
);

Assign a literal constant default value for the column job and set the default value of

hiredate to the date at which the row is inserted.

CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9) DEFAULT 'SALESMAN',
 mgr NUMBER(4),
 hiredate DATE DEFAULT SYSDATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno)
);

Create the dept table in the diskvol1 tablespace:

CREATE TABLE dept (
 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14),
 loc VARCHAR2(13)
) TABLESPACE diskvol1;

12.32 CREATE TABLE AS
Creates a table based on the results of a query.

Syntax

CREATE [GLOBAL TEMPORARY] TABLE table_name
 [(column_name [, ...])]
 [ON COMMIT { PRESERVE ROWS | DELETE ROWS }]
 [TABLESPACE tablespace]

Issue: 20200701 473

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

 AS query

Description

The CREATE TABLE AS command creates a table and fills it with data computed by a SELECT

command. The table columns have the same names and data types as the output columns

 of the SELECT command. However, you can override the column names by specifying an

explicit list of new column names.

The CREATE TABLE AS command is similar to creating a view. However, unlike creating a

view, the CREATE TABLE AS command creates a new table and evaluates the query only

once to fill the new table. The new table does not track subsequent changes to the source

tables of the query. In contrast, a view evaluates its defining SELECT statement whenever it

is queried.

Parameters

Parameter Description

GLOBAL TEMPORARY If this parameter is specified, the table is created as a temporary
table. For more information, see the CREATE TABLE command.

table_name The name of the table to be created. The name can be schema-
qualified.

column_name The name of a column to be created in the new table. If no column
 names are specified, the names of columns in the query result are
 used.

query A query statement. It is also a SELECT command. For more
information about the supported syntax, see the SELECT command.

12.33 CREATE TRIGGER
Creates a trigger.

Syntax

CREATE [OR REPLACE] TRIGGER name
 { BEFORE | AFTER | INSTEAD OF }
 { INSERT | UPDATE | DELETE }
 [OR { INSERT | UPDATE | DELETE }] [, ...]
 ON table
 [REFERENCING { OLD AS old | NEW AS new } ...]
 [FOR EACH ROW]
 [WHEN condition]
 [DECLARE
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 declaration; [, ...]]
 BEGIN
 statement; [, ...]

474 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

 [EXCEPTION
 { WHEN exception [OR exception] [...] THEN
 statement; [, ...] } [, ...]
]
 END

Description

CREATE TRIGGER creates a trigger. CREATE OR REPLACE TRIGGER either creates a new trigger

 or replaces an existing definition.

If you use the CREATE TRIGGER keywords to create a new trigger, the name of the new

trigger must be different from an existing trigger that is defined on the same table. New

 triggers are created in the same schema as the table on which the triggering event is

defined.

To update the definition of an existing trigger, you can use the CREATE OR REPLACE TRIGGER

 keywords.

If you use syntax that is compatible with Oracle to create a trigger, the trigger runs as a

SECURITY DEFINER function.

Parameters

Parameter Description

name The name of the trigger to be created.

BEFORE | AFTER Specifies whether the trigger is executed before or after the
triggering event.

INSERT | UPDATE |
DELETE

The triggering event.

table The name of the table or view on which the triggering event occurs
.

condition condition is a Boolean expression that determines whether the
trigger is executed. If condition evaluates to TRUE, the trigger is
executed.

• If the trigger definition includes the FOR EACH ROW keywords,
the WHEN clause can reference the columns of the old or new
row values by writing OLD.column_name or NEW.column_nam
e respectively. INSERT triggers cannot reference OLD. DELETE
triggers cannot reference NEW.

• If the trigger includes the INSTEAD OF keywords, it may not
 include a WHEN clause. A WHEN clause cannot contain
subqueries.

Issue: 20200701 475

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

REFERENCING { OLD
AS old | NEW AS new
 } ...

The REFERENCING clause that is used to reference old rows and
new rows. The old value can be replaced only by an identifier
named old or an equivalent that is saved in lowercase. For
example, the statement can be REFERENCING OLD AS old,
REFERENCING OLD AS OLD, or REFERENCING OLD AS "old". In
addition, the new value can be replaced only by an identifier
named new or an equivalent that is saved in lowercase. For
example, the statement can be REFERENCING NEW AS new,
REFERENCING NEW AS NEW, or REFERENCING NEW AS "new".

You can specify one or both of the following phrases in the

REFERENCING clause: OLD AS old and NEW AS new. For example,

you can specify REFERENCING NEW AS New OLD AS Old.

Note:
This clause is incompatible with Oracle databases because you
cannot use identifiers other than old and new.

FOR EACH ROW Specifies whether the trigger is executed for each row that
is affected by the triggering event or only once by each SQL
statement. If specified, a row-level trigger is executed for each
affected row. Otherwise, a statement-level trigger is executed.

PRAGMA
AUTONOMOUS
_TRANSACTION

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the
trigger as an autonomous transaction.

declaration A variable, type, REF CURSOR, or subprogram declaration. If
subprogram declarations are included, they must be declared after
 all other variable, type, and REF CURSOR declarations.

statement An SPL program statement. Note that a DECLARE - BEGIN - END
block is considered an SPL statement. Therefore, the trigger body
can contain nested blocks.

exception The name of an exception condition, such as NO_DATA_FOUND and
 OTHERS.

Examples

The following statement-level trigger is executed after the trigger statement (INSERT,

UPDATE, or DELETE on table emp) is executed.

CREATE OR REPLACE TRIGGER user_audit_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp
DECLARE
 v_action VARCHAR2(24);

476 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

BEGIN
 IF INSERTING THEN
 v_action := ' added employee(s) on ';
 ELSIF UPDATING THEN
 v_action := ' updated employee(s) on ';
 ELSIF DELETING THEN
 v_action := ' deleted employee(s) on ';
 END IF;
 DBMS_OUTPUT.PUT_LINE('User ' || USER || v_action ||
 TO_CHAR(SYSDATE,'YYYY-MM-DD'));
END;

The following row-level trigger is executed before each row is inserted, updated, or deleted

 in the emp table.

CREATE OR REPLACE TRIGGER emp_sal_trig
 BEFORE DELETE OR INSERT OR UPDATE ON emp
 FOR EACH ROW
DECLARE
 sal_diff NUMBER;
BEGIN
 IF INSERTING THEN
 DBMS_OUTPUT.PUT_LINE('Inserting employee ' || :NEW.empno);
 DBMS_OUTPUT.PUT_LINE('..New salary: ' || :NEW.sal);
 END IF;
 IF UPDATING THEN
 sal_diff := :NEW.sal - :OLD.sal;
 DBMS_OUTPUT.PUT_LINE('Updating employee ' || :OLD.empno);
 DBMS_OUTPUT.PUT_LINE('..Old salary: ' || :OLD.sal);
 DBMS_OUTPUT.PUT_LINE('..New salary: ' || :NEW.sal);
 DBMS_OUTPUT.PUT_LINE('..Raise : ' || sal_diff);
 END IF;
 IF DELETING THEN
 DBMS_OUTPUT.PUT_LINE('Deleting employee ' || :OLD.empno);
 DBMS_OUTPUT.PUT_LINE('..Old salary: ' || :OLD.sal);
 END IF;
END;

12.34 CREATE TYPE
Creates a user-defined type, which can be an object type, a collection type (a nested table

type or a varray type), or a composite type.

Syntax

Object type

CREATE [OR REPLACE] TYPE name
 [AUTHID { DEFINER | CURRENT_USER }]
 { IS | AS } OBJECT
({ attribute { datatype | objtype | collecttype } }
 [, ...]
 [method_spec] [, ...]

Issue: 20200701 477

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

) [[NOT] { FINAL | INSTANTIABLE }] ...

where method_spec is:

 [[NOT] { FINAL | INSTANTIABLE }] ...
 [OVERRIDING]
 subprogram_spec

subprogram_spec is:

 { MEMBER | STATIC }
 { PROCEDURE proc_name
 [([SELF [IN | IN OUT] name]
 [, argname [IN | IN OUT | OUT] argtype
 [DEFAULT value]
] ...)
]
 |
 FUNCTION func_name
 [([SELF [IN | IN OUT] name]
 [, argname [IN | IN OUT | OUT] argtype
 [DEFAULT value]
] ...)
]
 RETURN rettype
 }

Nested table type

CREATE [OR REPLACE] TYPE name { IS | AS } TABLE OF
 { datatype | objtype | collecttype }

Varray type

CREATE [OR REPLACE] TYPE name { IS | AS }
 { VARRAY | VARYING ARRAY } (maxsize) OF { datatype | objtype }

Composite type

CREATE [OR REPLACE] TYPE name { IS | AS }
([attribute datatype][, ...]
)

Description

The CREATE TYPE command creates a user-defined data type. The types that can be created

 include object type, nested table type, varray type, and composite type. The nested table

type and varray type belong to the collection type.

Composite types are incompatible with Oracle databases. However, composite types can

be accessed through SPL programs, which is the same as other types described in this topic

.

478 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Note:

For packages only, a composite type can be included in a user-defined record type

declared using the TYPE IS RECORD statement within the package specification or package

body. Such nested structure is not allowed in other SPL programs such as functions, stored

procedures, and triggers.

If you specify a schema name in the CREATE TYPE command, the type is created in the

specified schema. Otherwise, the type is created in the current schema. The name of a new

type must be different from an existing type in the same schema. If you want to update the

definition of an existing type, you can use the CREATE OR REPLACE TYPE command.

Note:

• The OR REPLACE option cannot be used to add, delete, or modify the attributes of an

 existing object type. However, you can use the DROP TYPE command to delete the

existing object type. The OR REPLACE option can be used to add, delete, or modify the

methods in an existing object type.

• The PostgreSQL form of the ALTER TYPE ALTER ATTRIBUTE command can be used to

change the data type of an attribute in an existing object type. However, the ALTER TYPE

 command cannot add or delete attributes in the object type.

The user that creates the type is the owner of the type.

Parameters

Parameter Description

name The name of the type to be created. The name can be schema-
qualified.

DEFINER |
CURRENT_USER

Specifies the privileges that are used to determine whether
access is allowed to database objects referenced in the object
type. DEFINER indicates the privileges of the object type owner
. CURRENT_USER indicates the privileges of the current user
executing a method in the object type. The default value is DEFINER
.

attribute The name of an attribute in the object type or composite type.

datatype The data type that defines an attribute of the object type or
composite type, or the elements of the collection type that is being
 created.

Issue: 20200701 479

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

objtype The name of an object type that defines an attribute of the object
type or the elements of the collection type that is being created.

collecttype The name of a collection type that defines an attribute of the object
 type or the elements of the collection type that is being created.

FINAL | NOT FINAL • For an object type, this parameter specifies whether a subtype
can be derived from the object type. The default value is FINAL,
indicating that no subtype can be derived from the object type.

• For method_spec, this parameter specifies whether to override
 the method in a subtype. The default value is NOT FINAL,
indicating that the method can be overridden in a subtype.

INSTANTIABLE | NOT
INSTANTIABLE

• For an object type, this parameter specifies whether an
instance of this object type can be created. The default value
is INSTANTIABLE, indicating that an instance of this object type
 can be created. If you specify NOT INSTANTIABLE, you must
also specify NOT FINAL. If method_spec for a method in the
object type contains the NOT INSTANTIABLE qualifier, the object
 type must be defined with NOT INSTANTIABLE and NOT FINAL
following the closing parenthesis of the object type specification
.

• For method_spec, this parameter specifies whether the object
type definition provides an implementation for the method. The
 default value is INSTANTIABLE, indicating that the CREATE TYPE
 BODY command for the object type provides the implementa
tion of the method. If you specify NOT INSTANTIABLE, the CREATE
 TYPE BODY command for the object type cannot contain the
implementation of the method.

OVERRIDING If you specify OVERRIDING, method_spec overrides an identicall
y named method with the same number of identically named
method arguments. The arguments have the same data types, the
same order, and the same return type (if the method is a function)
as defined in a supertype.

MEMBER | STATIC If the subprogram runs on an object instance, specify MEMBER. If
the subprogram runs independently of a particular object instance
, specify STATIC.

proc_name The name of the stored procedure to be created.

480 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

SELF [IN | IN OUT]
name

For a member method, an implicit built-in parameter named SELF
 is available. The data type of this parameter is the data type of
the object type being created. SELF references the object instance
 that is calling the method. SELF can be explicitly declared as an
IN or IN OUT parameter in the parameter list. If explicitly declared
, SELF must be the first parameter in the parameter list. If SELF is
not explicitly declared, its parameter mode defaults to IN OUT for
member stored procedures and IN for member functions.

argname The name of an argument. The argument is referenced by this
name in the method body.

argtype The data types of the method arguments. The argument types can
 be a base data type or a user-defined type such as a nested table
 type or an object type. You cannot specify the length of a base
data type. For example, you can specify VARCHAR2 rather than
VARCHAR2(10).

DEFAULT value If no default value is specified in the method call, this parameter
specifies a default value for an input argument. DEFAULT may not
be specified for arguments with the IN OUT or OUT mode.

func_name The name of the function to be created.

rettype The return data type, which can be one of the types listed for the
 argtype parameter. For argtype, you cannot specify a length for
rettype.

maxsize The maximum number of elements in the varray.

Examples

• Create an object type

Create an object type named addr_obj_typ.

CREATE OR REPLACE TYPE addr_obj_typ AS OBJECT (
 street VARCHAR2(30),
 city VARCHAR2(20),
 state CHAR(2),
 zip NUMBER(5)
);

Create an object type named emp_obj_typ that contains a member method display_emp

.

CREATE OR REPLACE TYPE emp_obj_typ AS OBJECT (
 empno NUMBER(4),
 ename VARCHAR2(20),
 addr ADDR_OBJ_TYP,

Issue: 20200701 481

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

 MEMBER PROCEDURE display_emp (SELF IN OUT emp_obj_typ)
);

Create an object type named dept_obj_typ that contains a static method get_dname.

CREATE OR REPLACE TYPE dept_obj_typ AS OBJECT (
 deptno NUMBER(2),
 STATIC FUNCTION get_dname (p_deptno IN NUMBER) RETURN VARCHAR2,
 MEMBER PROCEDURE display_dept
);

• Creating a collection type

Create a nested table type named budget_tbl_typ of data type NUMBER(8,2).

CREATE OR REPLACE TYPE budget_tbl_typ IS TABLE OF NUMBER(8,2);

• Create and use a composite type

The following example shows how to access a composite type from an anonymous block

.

The composite type is created as follows:

CREATE OR REPLACE TYPE emphist_typ AS (
 empno NUMBER(4),
 ename VARCHAR2(10),
 hiredate DATE,
 job VARCHAR2(9),
 sal NUMBER(7,2)
);

The following example shows the anonymous block that accesses the composite type:

DECLARE
 v_emphist EMPHIST_TYP;
BEGIN
 v_emphist.empno := 9001;
 v_emphist.ename := 'SMITH';
 v_emphist.hiredate := '01-AUG-17';
 v_emphist.job := 'SALESMAN';
 v_emphist.sal := 8000.00;
 DBMS_OUTPUT.PUT_LINE(' EMPNO: ' || v_emphist.empno);
 DBMS_OUTPUT.PUT_LINE(' ENAME: ' || v_emphist.ename);
 DBMS_OUTPUT.PUT_LINE('HIREDATE: ' || v_emphist.hiredate);
 DBMS_OUTPUT.PUT_LINE(' JOB: ' || v_emphist.job);
 DBMS_OUTPUT.PUT_LINE(' SAL: ' || v_emphist.sal);
END;

 EMPNO: 9001
 ENAME: SMITH
HIREDATE: 01-AUG-17 00:00:00
 JOB: SALESMAN

482 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

 SAL: 8000.00

The following example shows how to access a composite type from a user-defined

record type that is declared in a package body.

The composite type is created as follows:

CREATE OR REPLACE TYPE salhist_typ AS (
 startdate DATE,
 job VARCHAR2(9),
 sal NUMBER(7,2)
);

The package specification is defined as follows:

CREATE OR REPLACE PACKAGE emp_salhist
IS
 PROCEDURE fetch_emp (
 p_empno IN NUMBER
);
END;

The package body is defined as follows:

CREATE OR REPLACE PACKAGE BODY emp_salhist
IS
 TYPE emprec_typ IS RECORD (
 empno NUMBER(4),
 ename VARCHAR(10),
 salhist SALHIST_TYP
);
 TYPE emp_arr_typ IS TABLE OF emprec_typ INDEX BY BINARY_INTEGER;
 emp_arr emp_arr_typ;

 PROCEDURE fetch_emp (
 p_empno IN NUMBER
)
 IS
 CURSOR emp_cur IS SELECT e.empno, e.ename, h.startdate, h.job, h.sal
 FROM emp e, jobhist h
 WHERE e.empno = p_empno
 AND e.empno = h.empno;

 i INTEGER := 0;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME STARTDATE JOB ' ||
 'SAL ');
 DBMS_OUTPUT.PUT_LINE('----- ------- --------- --------- ' ||
 '---------');

 FOR r_emp IN emp_cur LOOP
 i := i + 1;
 emp_arr(i) := (r_emp.empno, r_emp.ename,
 (r_emp.startdate, r_emp.job, r_emp.sal));
 END LOOP;

 FOR i IN 1 .. emp_arr.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(emp_arr(i).empno || ' ' ||
 RPAD(emp_arr(i).ename,8) || ' ' ||
 TO_CHAR(emp_arr(i).salhist.startdate,'DD-MON-YY') || ' ' ||

Issue: 20200701 483

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

 RPAD(emp_arr(i).salhist.job,10) || ' ' ||
 TO_CHAR(emp_arr(i).salhist.sal,'99,999.99'));
 END LOOP;
 END;
END;

Note that in the declaration of the TYPE emprec_typ IS RECORD data structure in the

package body, the salhist field is of the SALHIST_TYP composite type that is created by

the CREATE TYPE salhist_typ statement.

The associative array definition TYPE emp_arr_typ IS TABLE OF emprec_typ references the

 record type data structure emprec_typ. The data structure includes the salhist field of

the SALHIST_TYP composite type.

The following example shows how to call the package stored procedure that loads the

array from a join of the emp and jobhist tables and displays the array content.

EXEC emp_salhist.fetch_emp(7788);

EMPNO ENAME STARTDATE JOB SAL
----- ------- --------- --------- ---------
7788 SCOTT 19-APR-87 CLERK 1,000.00
7788 SCOTT 13-APR-88 CLERK 1,040.00
7788 SCOTT 05-MAY-90 ANALYST 3,000.00

EDB-SPL Procedure successfully completed

12.35 CREATE TYPE BODY
Defines a new object type body.

Syntax

CREATE [OR REPLACE] TYPE BODY name
 { IS | AS }
 method_spec [...]
END

Where method_spec is:

subprogram_spec

and subprogram_spec is:

 { MEMBER | STATIC }
 { PROCEDURE proc_name
 [([SELF [IN | IN OUT] name]
 [, argname [IN | IN OUT | OUT] argtype
 [DEFAULT value]
] ...)
]
 { IS | AS }
 program_body

484 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

 END;
 |
 FUNCTION func_name
 [([SELF [IN | IN OUT] name]
 [, argname [IN | IN OUT | OUT] argtype
 [DEFAULT value]
] ...)
]
 RETURN rettype
 { IS |AS }
 program_body
 END;
 }

Description

Use CREATE TYPE BODY to define a new object type body. Use CREATE OR REPLACE TYPE

BODY to either create a new object type body, or replace an existing body.

If a schema name is included, the object type body is created in the specified schema.

Otherwise, the object type body is created in the current schema. The name of the new

object type body must match an existing object type specification in the same schema.

The new object type body name must not match any existing object type body in the same

schema unless you want to update the definition of an existing object type body. In which

case, you can use CREATE OR REPLACE TYPE BODY.

Parameters

Parameter Description

name The name of the object type for which a body is to be created. The
name may be optional and schema-qualified.

MEMBER | STATIC Specify MEMBER if the subprogram runs on an object instance
. Specify STATIC if the subprogram runs independently of any
particular object instance.

proc_name The name of the procedure to create.

SELF [IN | IN OUT]
name

For a member method, there is an implicit and built-in parameter
named SELF. The data type of this parameter is the data type of the
object type that is defined. SELF refers to the object instance that
is invoking the method. SELF can be explicitly declared as an IN or
IN OUT parameter in the parameter list. If explicitly declared, the
SELF parameter must be the first in the parameter list. If the SELF
 parameter is not explicitly declared, the default parameter mode is
IN OUT for member procedures and IN for member functions.

argname The name of an argument. The argument is referenced by this
name within the method body.

Issue: 20200701 485

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

argtype The data type(s) of the arguments. The argument types may be a
base data type or a user-defined type such as a nested table or an
object type. The basic data type cannot be specified a length. For
example, you must specify VARCHAR2 instead of VARCHAR2(10) as
the data type.

DEFAULT value This parameter provides a default value for an input argument if no
default value is provided in the method call. DEFAULT may not be
specified for arguments with the IN OUT or OUT modes.

program_body The pragma, declarations, and SPL statements that comprise the
body of the function or procedure. The pragma can be PRAGMA
AUTONOMOUS_TRANSACTION to set the function or procedure as
an autonomous transaction.

func_name The name of the function to create.

rettype The data type returned. It can be any of the types listed for argtype
. For argtype, a length must not be specified for rettype.

Example

The following example shows how to create the object type body for the emp_obj_typ

 object type that is created by the CREATE TYPE command.

CREATE OR REPLACE TYPE BODY emp_obj_typ AS
 MEMBER PROCEDURE display_emp (SELF IN OUT emp_obj_typ)
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Employee No : ' || empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || ename);
 DBMS_OUTPUT.PUT_LINE('Street : ' || addr.street);
 DBMS_OUTPUT.PUT_LINE('City/State/Zip: ' || addr.city || ', ' ||
 addr.state || ' ' || LPAD(addr.zip,5,'0'));
 END;
END;

The following example shows how to create the object type body for the dept_obj_typ

 object type that is created by the CREATE TYPE command.

CREATE OR REPLACE TYPE BODY dept_obj_typ AS
 STATIC FUNCTION get_dname (p_deptno IN NUMBER) RETURN VARCHAR2
 IS
 v_dname VARCHAR2(14);
 BEGIN
 CASE p_deptno
 WHEN 10 THEN v_dname := 'ACCOUNING';
 WHEN 20 THEN v_dname := 'RESEARCH';
 WHEN 30 THEN v_dname := 'SALES';
 WHEN 40 THEN v_dname := 'OPERATIONS';
 ELSE v_dname := 'UNKNOWN';
 END CASE;

486 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

 RETURN v_dname;
 END;
 MEMBER PROCEDURE display_dept
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Dept No : ' || SELF.deptno);
 DBMS_OUTPUT.PUT_LINE('Dept Name : ' ||
 dept_obj_typ.get_dname(SELF.deptno));
 END;
END;

12.36 CREATE VIEW
Creates a view.

Syntax

CREATE [OR REPLACE] VIEW name [(column_name [, ...])]
 AS query

Description

You can use the CREATE VIEW command to define a view of a query. The view is not

physically materialized. Instead, the query is run every time the view is referenced in a

query.

CREATE OR REPLACE VIEW is similar, but if a view of the same name already exists, the name

is replaced.

If a schema name is specified (for example, CREATE VIEW myschema.myview...), the view

is created in the specified schema. Otherwise, it is created in the current schema. The view

name must be different from the name of any other view, table, sequence, or index in the

same schema.

Parameters

Parameter Description

name The name of a view to be created. The name can be schema-
qualified.

column_name An optional list of columns names in the view. If not specified, the
column names are deduced from the query.

query A query (a SELECT statement), which provides the columns and
rows of the view.

Note:

For more information about valid queries, see the SELECT topic.

Issue: 20200701 487

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Notes

Views are read-only. The system does not allow the insert, update, or delete operations on

 views. You can obtain the effect of an updatable view by creating rules that convert the

insert operations on the view into appropriate operations on other tables.

Access to tables referenced in the view is determined by permissions of the view owner.

However, the functions that are called in the view are treated the same as those called from

 the query by using the view. Therefore, the user of a view must have permissions to call all

functions that are used by the view.

Examples

Create a view that consists of all employees in department 30:

CREATE VIEW dept_30 AS SELECT * FROM emp WHERE deptno = 30;

12.37 DELETE
Deletes rows of a table.

Syntax

DELETE [optimizer_hint] FROM table[@dblink]
 [WHERE condition]
 [RETURNING return_expression [, ...]
 { INTO { record | variable [, ...] }
 | BULK COLLECT INTO collection [, ...] }]

Description

You can use the DELETE command to delete rows that satisfy the WHERE clause from the

specified table. If you do not specify the WHERE clause, all rows in the table are deleted.

The result is valid, and the table becomes empty.

Note:

The TRUNCATE command provides a faster mechanism to delete all rows from a table.

If you use the DELETE command within an SPL program, you can specify the RETURNING

 INTO { record | variable [, ...] } clause. In addition, the result set of the DELETE command

must not include multiple rows. Otherwise, an exception occurs. If the result set is empty,

the content of the target record or variables is set to null.

If you use the DELETE command within an SPL program, you can specify the RETURNING

BULK COLLECT INTO collection [, ...] clause. If you specify multiple collection as the target

488 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

of the BULK COLLECT INTO clause, each collection must consist of a single scalar field.

collection must not be a record. The result set of the DELETE command may contain zero,

one, or more rows. return_expression evaluated for each row of the result set becomes an

element in collection, starting from the first element. Existing rows in collection are deleted.

If the result set is empty, collection is empty.

You must have the DELETE privilege on the table to delete rows from it, and the SELECT

 privilege on tables whose data is read in the condition.

Parameters

Parameter Description

optimizer_hint Comment-embedded hints to the optimizer, which is used to select
 execution plan.

table The name of an existing table. The name can be schema-qualified.

dblink The database link name, which identifies a remote database. For
more information about database links, see the CREATE DATABASE
LINK command.

condition A value expression that returns a value of the BOOLEAN type. The
value expression determines the rows to be deleted.

return_expression An expression that can include one or more columns in table. If a
column name in table is specified in return_expression, the value
substituted for the column when return_expression is evaluated is
the value from the deleted row.

record A record to whose field you want to assign the evaluation result
of return_expression. For example, the first return_expression is
assigned to the first field in record, and the second return_exp
ression is assigned to the second field in record. The number
of fields in record must match the number of expressions, and
the fields must be type-compatible with the corresponding
expressions.

variable A variable to which you want to assign the evaluation result of
return_expression. If you specify multiple return_expression and
variable, the first return_expression is assigned to the first variable
, the second return_expression is assigned to the second variable.
The number of the specified variables that follow the INTO keyword
must match the number of expressions that follow the RETURNING
 keyword, and the variables must be type-compatible with the
corresponding expressions.

Issue: 20200701 489

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

collection A collection in which an element is created from the evaluated
return_expression. You can specify a collection of a single field
or a collection of a record type. You can also specify multiple
collections where each collection consists of a single field. The
number of return expressions must match in number and order the
number of fields in all specified collections. Each return_expression
 must be type-compatible with the corresponding collection field.

Examples

Delete all rows for employee 7900 from the jobhist table:

DELETE FROM jobhist WHERE empno = 7900;

Clear the jobhist table:

DELETE FROM jobhist;

12.38 DROP DATABASE LINK
Deletes a database link.

Syntax

DROP [PUBLIC] DATABASE LINK name

Description

You can use the DROP DATABASE LINK command to drop existing database links. To run this

command on a database link, you must be the owner of the database link.

Parameters

Parameter Description

name The name of a database link to be deleted.

PUBLIC Specifies that name is a public database link.

490 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Examples

Delete public database link whose name is oralink:

DROP PUBLIC DATABASE LINK oralink;

Delete the public database link whose name is edblink:

DROP DATABASE LINK edblink;

12.39 DROP FUNCTION
Remove a function.

Syntax

DROP FUNCTION [IF EXISTS] name
 [([[argmode] [argname] argtype] [, ...])]
 [CASCADE | RESTRICT]

Description

You can run the DROP FUNCTION command to remove an existing function. To run this

command, you must be a superuser or the owner of the function. All data types of the

input argument in the mode of IN or IN OUT to the function must be specified if this is an

overloaded function. This requirement is not compatible with Oracle databases. In Oracle,

only the function name is specified. PolarDB database compatible with Oracle allows

overloading of function names, so the function signature provided by the input argument

data types is required in the DROP FUNCTION command of an overloaded function.

The usage of IF EXISTS, CASCADE, or RESTRICT is not compatible with Oracle databases and

is used only by PolarDB database compatible with Oracle.

Parameters

Parameter Description

IF EXISTS Dose not throw an error if the function does not exist. In this case, a
 notification is issued.

name The name of an existing function, which may be optional and
schema-qualified.

Issue: 20200701 491

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

argmode The mode of an argument. Valid values: IN, IN OUT or OUT. If this
parameter is omitted, the default is IN. The DROP FUNCTION is
not actually affected by the OUT arguments, since only the input
arguments are required to determine the identity of the function.
So it is sufficient to list only the IN and IN OUT arguments. The
specification of argmode is not compatible with Oracle databases
and applies only to PolarDB database compatible with Oracle.

argname The name of an argument. The DROP FUNCTION is not actually
affected by argument names, since only the argument data
types are required to determine the identity of the function. The
specification of argname is not compatible with Oracle databases
and applies only to PolarDB database compatible with Oracle.

argtype The data type of an argument of the function. The specification of
argtype is not compatible with Oracle databases and applies only
to PolarDB database compatible with Oracle.

CASCADE Automatically drop objects that depend on the function (such as
operators or triggers), and in turn all objects that depend on those
 objects.

RESTRICT Refuses to drop the function if any objects depend on it. This is the
default value.

Example

The following command removes the emp_comp function.

DROP FUNCTION emp_comp(NUMBER, NUMBER);

12.40 DROP INDEX
Deletes an index.

Syntax

DROP INDEX name

Description

You can use the DROP INDEX command to drop an existing index from the database

system. To run this command on an index, you must be a superuser or the owner of the

index. If objects depend on the index, an error occurs, but the index is not dropped.

492 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameters

Parameter Description

name The name of an index to be deleted. The name can be schema-
qualified.

Examples

Delete the name_idx index:

DROP INDEX name_idx;

12.41 DROP PACKAGE
Deletes a package.

Syntax

DROP PACKAGE [BODY] name

Description

You can use the DROP PACKAGE command to drop an existing package. To run this

command on a package, you must be a superuser or the owner of the package. If you

specify BODY, only the package body is deleted, and the package specification is not

dropped. If you omit BODY, both the package specification and body are deleted.

Parameters

Parameter Description

name The name of a package to be deleted. The name can be schema-
qualified.

Examples

Delete the emp_admin package:

DROP PACKAGE emp_admin;

12.42 DROP PROCEDURE
Deletes a stored procedure.

Syntax

DROP PROCEDURE [IF EXISTS] name

Issue: 20200701 493

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

 [([[argmode] [argname] argtype] [, ...])]
 [CASCADE | RESTRICT]

Description

You can use the DROP PROCEDURE command to delete an existing stored procedure. To

run this command on a stored procedure, you must be a superuser or the owner of the

procedure. If the stored procedure is overloaded, you must specify all input (IN and IN OUT

) argument data types to the procedure. This requirement is not compatible with Oracle

databases. In Oracle, you can only specify procedure names. PolarDB-O allow overloading

of stored procedure names, so the procedure signature that is given by the input argument

data types is required in the DROP PROCEDURE command that is run on an overloaded

stored procedure in PolarDB-O.

Usage of IFEXISTS, CASCADE, or RESTRICT is not compatible with Oracle databases, and can

be used only by PolarDB-O.

Parameters

Parameter Description

IF EXISTS Specifies that the system does not report an error if the stored
procedure does not exist. The server issues a notice in this case.

name The name of an existing stored procedure. The name can be
schema-qualified.

argmode The modes of an argument. The argument modes include IN
, IN OUT, and OUT. The default mode is IN. Note that DROP
PROCEDURE is irrelevant to OUT argument, because only the input
arguments are required to determine the identity of the stored
procedure. Therefore, only the IN and INOUT arguments are listed.
Specification of argmode is not compatible with Oracle databases
and applies only to PolarDB-O.

argname The name of an argument. Note that DROP PROCEDURE is irrelevant
to argument names, because only the argument data types
are required to determine the identity of the stored procedure.
Specification of argname is not compatible with Oracle databases
and applies only to PolarDB-O.

argtype The data type of an argument of the stored procedure. Specificat
ion of argtype is not compatible with Oracle databases and applies
 only to PolarDB-O.

CASCADE Specifies that all objects that depend on the stored procedure and
objects that depend on those objects are automatically dropped.

494 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

RESTRICT Specifies that the stored procedure is not dropped if objects
depend on it. This is the default behavior.

Examples

Delete the select_emp procedure:

DROP PROCEDURE select_emp;

12.43 DROP PROFILE
Drops a user-defined profile.

Syntax

DROP PROFILE [IF EXISTS] profile_name [CASCADE | RESTRICT];

Description

The IF EXISTS clause instructs the server not to report an error even if the specified profile

does not exist. If the specified profile does not exist, the server issues a notice.

The optional CASCADE clause reassigns users that are associated with the profile to the

default profile, and then drops the profile. The optional RESTRICT clause instructs the server

not to drop the profile that is associated with a role. This is the default behavior.

Parameters

Parameter Description

profile_name The name of the profile to be dropped.

Examples

Drop a profile whose name is acctg_profile:

DROP PROFILE acctg_profile CASCADE;

In the following example, the roles were associated with the acctg_profile profile. The

command re-associates the roles with the default profile and then drops the acctg_profile

 profile.

Issue: 20200701 495

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Drop a profile whose name is acctg_profile:

DROP PROFILE acctg_profile RESTRICT;

The RESTRICT clause in the command instructs the server not to drop acctg_profile if the

profile is associated with certain roles.

12.44 DROP QUEUE
Drops an existing queue.

Syntax

DROP QUEUE [IF EXISTS] name

Description

You can use the DROP QUEUE command to drop an existing queue. To run this command,

you must be a user that has the aq_administrator_role privilege.

Note:

PolarDB databases compatible with Oracle provide the syntax of the DROP QUEUE

 SQL command that is not provided by Oracle. You can use this syntax together with

DBMS_AQADM.

Parameters

Parameter Description

name The name of the queue. The name can be schema-qualified.

IF EXISTS The IF EXISTS clause instructs the server not to return an error even
if the specified queue does not exist. If the specified queue does
not exist, the server issues a notice.

496 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Examples

Drop a queue whose name is work_order:

DROP QUEUE work_order;

12.45 DROP QUEUE TABLE
Drops a queue table.

Syntax

DROP QUEUE TABLE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

You can use the DROP QUEUE TABLE command to drop a queue table. Only a user with the

aq_administrator_role privilege can run this command.

Note:

PolarDB databases compatible with Oracle include extra syntax for the DROP QUEUE

TABLE SQL command. The extra syntax is not offered by Oracle. You can use the syntax in

association with DBMS_AQADM.

Parameters

Parameter Description

name The name of the queue table to be deleted. The name can be
schema-qualified.

IFEXISTS You can include the IF EXISTS clause to instruct the server not to
return an error if the queue table does not exist. Instead, the server
issues a notice.

CASCADE You can include the CASCADE keyword to automatically delete the
objects that depend on the queue table.

RESTRICT You can include the RESTRICT keyword to instruct the server not
to delete the queue table if other objects depend on it. This is the
default behavior.

Issue: 20200701 497

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Examples

The following example deletes a queue table whose name is work_order_table and the

objects that depend on the queue table:

DROP QUEUE TABLE work_order_table CASCADE;

12.46 DROP SYNONYM
Deletes a synonym.

Syntax

DROP [PUBLIC] SYNONYM [schema.]syn_name

Description

You can use the DROP SYNONYM command to delete existing synonyms. To run this

command on a synonym, you must be the owner of the synonym and have the USAGE

 privileges on the schema in which the synonym resides.

Parameters

Parameter Description

syn_name syn_name is the name of the synonym. A synonym name must be
unique within a schema.

schema schema specifies the name of the schema where the synonym
resides.

Similar to other objects that can be schema-qualified, you may have two synonyms with

the same name in your search path. To disambiguate the name of the synonym to be

dropped, include a schema name. Unless a synonym is schema-qualified in the DROP

SYNONYM command, PolarDB databases compatible with Oracle deletes the first instance

of the synonym that is found in your search path.

498 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

You can optionally add the PUBLIC clause to drop a synonym that resides in the public

schema. The DROP PUBLIC SYNONYM command is compatible with Oracle databases and

drops a synonym that resides in the public schema:

DROP PUBLIC SYNONYM syn_name;

The following example drops the personnel synonym:

DROP SYNONYM personnel;

12.47 DROP SEQUENCE
Deletes a sequence.

Syntax

DROP SEQUENCE name [, ...]

Description

You can use the DROP SEQUENCE command to delete sequence number generators. To run

this command on a sequence, you must be a superuser or the owner of the sequence.

Parameters

Parameter Description

name The name of a sequence. The name can be schema-qualified.

Examples

Delete the serial sequence:

DROP SEQUENCE serial;

12.48 DROP TABLE
Deletes a table.

Syntax

DROP TABLE name [CASCADE | RESTRICT | CASCADE CONSTRAINTS]

Description

You can use the DROP TABLE command to delete tables from the database. Only the owner

of a table can delete a table. To clear a table of rows without deleting the table, you

Issue: 20200701 499

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

can use the DELETE command. DROP TABLE always deletes indexes, rules, triggers, and

constraints that exist for the target table.

Parameters

Parameter Description

name The name of a package to be deleted. The name can be schema-
qualified.

You can include the RESTRICT keyword to specify that the server does not drop the table

if other objects depend on it. If objects depend on the table, the DROP TABLE command

reports an error. This is the default behavior.

You can include the CASCADE clause to drop the objects that depend on the table.

You can include the CASCADE CONSTRAINTS clause to specify that the PolarDB database

compatible with Oracle drops the dependent constraints (excluding other object types) on

the specified table.

Examples

Drop a table named emp that has no dependencies:

DROP TABLE emp;

The results of a DROP TABLE command varies depending on whether the table has

dependencies. Therefore, you can control the result by specifying a drop behavior. For

example, you create two tables named orders and items, and the items table is dependent

on the orders table:

CREATE TABLE orders
 (order_id int PRIMARY KEY, order_date date, …) ;
CREATE TABLE items
 (order_id REFERENCES orders, quantity int, …) ;

Depending on the drop behavior that you specify, the PolarDB database compatible with

Oracle drops the orders table as follows:

• If you specify DROP TABLE orders RESTRICT, the PolarDB database compatible with

Oracle reports an error.

• If you specify DROPTABLE orders CASCADE, the PolarDB database compatible with Oracle

drops the orders table and the items table.

500 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

• If you specify DROPTABLE orders CASCADE CONSTRAINTS, the PolarDB database

compatible with Oracle drops the orders table and deletes the foreign key specification

from the items table, but does not drop the items table.

12.49 DROP TABLESPACE
Deletes a tablespace.

Syntax

DROP TABLESPACE tablespacename

Description

You can use the DROP TABLESPACE command to delete a tablespace from the system.

Only the owner of a table can drop a table. Before dropping a tablespace, you must empty

 all database objects in the tablespace. Objects in other databases may still reside in the

tablespace even if no objects in the current database are using the tablespace.

Parameters

Parameter Syntax

tablespacename The name of a tablespace.

Examples

Delete the employee_space tablespace from the system:

DROP TABLESPACE employee_space;

12.50 DROP TRIGGER
Deletes a trigger.

Syntax

DROP TRIGGER name

Description

You can use the DROP TRIGGER command to delete a trigger from its associated table.

Only a superuser or the owner of the table on which the trigger is defined can run this

command.

Issue: 20200701 501

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameters

Parameter Description

name The name of a trigger to be deleted.

Examples

Delete the emp_sal_trig trigger:

DROP TRIGGER emp_sal_trig;

12.51 DROP TYPE
Deletes a type definition.

Syntax

DROP TYPE [BODY] name

Description

You can use the DROP TYPE command to delete the type definition. To run this command on

a type, you must be a superuser or the owner of the type.

The optional BODY qualifier applies only to object type definitions, not to collection types

or composite types. If you specify BODY, only the object type body is deleted and the

object type specification is not deleted. If you do not specify BODY, both the object type

specification and body are deleted.

If other database objects are dependent on the specified type, the type is not deleted.

Parameters

Parameter Description

name The name of a type definition to be deleted.

502 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Examples

Drop the addr_obj_typ object type:

DROP TYPE addr_obj_typ;

Drop the nested table type named budget_tbl_typ:

DROP TYPE budget_tbl_typ;

12.52 DROP USER
Deletes a database user account.

Syntax

DROP USER name [CASCADE]

Description

You can use the DROP USER command to drop the specified user. To drop a superuser, you

must be a superuser or have the CREATEROLE privilege.

You cannot delete the user that is still referenced in a database of the cluster. Otherwise, an

 error occurs. Before dropping a user, you must drop all the objects that belong to the user

or reassign their ownership, and revoke the privileges granted by the user.

However, you do not need to delete role memberships involving the user. DROP USER

 automatically revokes the memberships of the target user in other roles and those of other

roles in the target user. Other roles are not dropped or affected.

In addition, if all objects owned by the user belong to a schema that is owned by the user

and has the same name as the user, you can specify a CASCADE option. In this case, only

the superuser and the name user can issue the DROP USER name CASCADE command, and

the schema and all objects in the schema are deleted.

Parameters

Parameter Description

name The name of the user to be deleted.

CASCADE Specifies that the schema that is owned by the user and has the
 same name as the user is dropped when no dependencies on
the user or the schema exist. All objects owned by the user in the
schema are also dropped.

Issue: 20200701 503

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Examples

Drop a user that does not own objects and is not granted privileges on other objects:

DROP USER john;

Drop the john user that is not granted privileges on the objects, and do not own objects

outside of the john schema:

DROP USER john CASCADE;

12.53 DROP VIEW
Deletes a view.

Syntax

DROP VIEW name

Description

You can use the DROP VIEW command to drop an existing view. To run this command

on a view, you must be a superuser or the owner of the view. If the specified view has

dependent objects, such as a view of the view, the specified view is not deleted.

The form of the DROP VIEW command that is compatible with Oracle does not support

the CASCADE clause. To drop a view and its dependencies, use the PostgreSQL-

compatible form of the DROP VIEW command. For more information, visit the PostgreSQL

documentation at https://www.postgresql.org/docs/11/static/sql-dropview.html.

Parameters

Parameter Description

name The name of the view to be deleted. The name can be schema-
qualified.

504 Issue: 20200701

https://www.postgresql.org/docs/11/static/sql-dropview.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Examples

Delete the dept_30 view:

DROP VIEW dept_30;

12.54 EXEC

Syntax

EXEC function_name ['('[argument_list]')']

Description

EXECUTE.

Parameters

Parameter Description

procedure_name procedure_name is the function name. The name can be schema-
qualified.

argument_list argument_list specifies a comma-separated list of arguments
that are required by the function. Note that each member of
argument_list corresponds to a formal argument that is expected
by the function. Each formal argument can be an IN parameter, an
OUT parameter, or an INOUT parameter.

Examples

The EXEC statement has multiple forms. You can use a form depending on the arguments

that are required by the following functions:

EXEC update_balance;
EXEC update_balance();
EXEC update_balance(1,2,3);

12.55 GRANT
Defines access privileges.

Syntax

GRANT { { SELECT | INSERT | UPDATE | DELETE | REFERENCES }
 [,...] | ALL [PRIVILEGES] }
 ON tablename
 TO { username | groupname | PUBLIC } [, ...]
 [WITH GRANT OPTION]

Issue: 20200701 505

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

GRANT { { INSERT | UPDATE | REFERENCES } (column [, ...]) }
 [, ...]
 ON tablename
 TO { username | groupname | PUBLIC } [, ...]
 [WITH GRANT OPTION]

GRANT { SELECT | ALL [PRIVILEGES] }
 ON sequencename
 TO { username | groupname | PUBLIC } [, ...]
 [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON FUNCTION progname
 ([[argmode] [argname] argtype] [, ...])
 TO { username | groupname | PUBLIC } [, ...]
 [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON PROCEDURE progname
 [([[argmode] [argname] argtype] [, ...])]
 TO { username | groupname | PUBLIC } [, ...]
 [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON PACKAGE packagename
 TO { username | groupname | PUBLIC } [, ...]
 [WITH GRANT OPTION]

GRANT role [, ...]
 TO { username | groupname | PUBLIC } [, ...]
 [WITH ADMIN OPTION]

GRANT { CONNECT | RESOURCE | DBA } [, ...]
 TO { username | groupname } [, ...]
 [WITH ADMIN OPTION]

GRANT CREATE [PUBLIC] DATABASE LINK
 TO { username | groupname }

GRANT DROP PUBLIC DATABASE LINK
 TO { username | groupname }

GRANT EXEMPT ACCESS POLICY
 TO { username | groupname }

Description

The GRANT command has three basic variants: the one that grants privileges on a database

object (table, view, sequence, or program), the one that grants membership in a role, and

the one that grants system privileges. These variants are similar in many ways, but they are

different. For information about each variant, see the specific topic.

In PolarDB databases compatible with Oracle, the concept of users and groups is unified

into a single type of entity that is called a role. A user is a role that has the LOGIN attribute.

You can use the role to create a session and connect to an application. A group is a role

506 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

that does not have the LOGIN attribute. You cannot use the role to create a session or

connect to an application.

A role can be a member of one or more other roles. Therefore, the traditional concept of

user membership in groups is still valid. However, users can belong to users and groups

due to the generalization of users and groups. This forms a general multi-level hierarchy of

roles. Whether a grantee is a user or a group is not distinguished in the GRANT command,

because usernames and group names share the same namespace.

12.56 GRANT on database objects

This variant of the GRANT command gives specific privileges on a database object to a role.

These privileges are added to the privileges that are already granted to the role.

The PUBLIC keyword indicates that the privileges are granted to all roles, including those

that you create later. PUBLIC is an implicitly defined group that includes all roles. A role

has the privileges that are granted directly to the roles, the privileges that are granted to

another role of which the role is a member, and the privileges that are granted to PUBLIC.

If you specify WITHGRANT OPTION, the recipient of the privileges can grant it to other roles.

If you do not specify these keywords, the recipient cannot grant privileges. Grant options

cannot be granted to PUBLIC.

You do not need to grant privileges to the owner of an object (usually the user who created

 the object), because the owner has all privileges by default. The owners can choose to

 revoke some of their own privileges for safety. Grantable privileges do not include the

privileges to drop an object or alter its definition. The privileges that cannot be granted are

 inherent in the owner and cannot be granted or revoked. In addition, the owner implicitly

has all grant options for the object.

Depending on the type of object, certain privileges can be granted to PUBLIC. The

default privileges are non-public access for tables, and EXECUTE privileges for functions,

procedures, and packages. The object owner can revoke these privileges. For maximum

security, you can issue the REVOKE command in the same transaction that creates the

object. This way, other users cannot use the object in any window.

The following table describes the possible privileges.

Issue: 20200701 507

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Privilege Description

SELECT Allows to SELECT from columns of the specified table, view, or
sequence. For sequences, this privilege also allows you to use the
currval function.

INSERT Allows to INSERT a new row into the specified table.

UPDATE Allows to UPDATE a column of the specified table. SELECT ... FOR
 UPDATE also requires this privilege in addition to the SELECT
 privilege.

DELETE Allows to DELETE a row from the specified table.

REFERENCES Allows to create foreign key constraints. If you want to create
foreign key constraints, you must have this privilege on both the
referencing and referenced tables.

EXECUTE Allows to use the specified package, stored procedure, or function.
This privilege on a package allows you to use all public stored
procedures, public functions, public variables, records, cursors,
and other public objects and object types in the package. This is
the only type of privilege that is applicable to functions, stored
procedures, and packages.

The syntax for granting the EXECUTE privilege in PolarDB

databases compatible with Oracle is not fully compatible with

Oracle databases. PolarDB databases compatible with Oracle

requires qualification of the program name by one of the following

keywords: FUNCTION, PROCEDURE, and PACKAGE. However, in

Oracle databases, these keywords must be omitted. For functions,

PolarDB databases compatible with Oracle require all input (IN

 and IN OUT) argument data types after the function name. If no

function arguments exist, the function name must be followed by

an empty pair of parenthesis. For stored procedures, if a procedure

has one or more input arguments, you must specify all input

argument data types. In Oracle, function and stored procedure

signatures must be omitted. This is because all programs share

the same namespace in Oracle. However, the functions, stored

procedures, and packages have their own individual namespaces

in PolarDB databases compatible with Oracle. This allows program

name overloading to a certain extent.

ALL PRIVILEGES Grants all available privileges at once.

508 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

For more information about the privileges that are required by other commands, see the

topic of the corresponding command.

12.57 INSERT
Creates rows in a table.

Syntax

INSERT INTO table[@dblink] [(column [, ...])]
 { VALUES ({ expression | DEFAULT } [, ...])
 [RETURNING return_expression [, ...]
 { INTO { record | variable [, ...] }
 | BULK COLLECT INTO collection [, ...] }]
 | query }

Description

You can run the INSERT command to insert new rows into a table. You can insert one or

multiple rows as a result of a query.

You can list the columns in the order that you desire. Each column that is not in the target

list will be inserted with a default value, either its declared default value or null.

If the expression for a column does not use the correct data type, automatic type

conversion is attempted.

If the INSERT command is used within an SPL program and the VALUES clause is specified,

you can specify RETURNINGINTO { record | variable [, ...] } clause.

If using INSERT command within an SPL program, you can specify the RETURNING BULK

COLLECT INTO collection [, ...] clause. If you specify multiple collection as the target of the

BULK COLLECT INTO clause, each collection must consist of a single scalar field. collection

 cannot be a record. For each inserted row, the evaluated value return_expression is an

element in collection that starts from the first element. Existing rows in collection are

deleted. If the result set is empty, collection is also empty.

You must have the INSERT privilege on a table so that you can insert into it. If you use the

query clause to insert rows from a query, you must also have the SELECT privilege on the

table that is used in the query.

Parameters

Parameter Description

table The name of an existing table. The name can be schema-qualified.

Issue: 20200701 509

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

dblink The name of the database link that is used to identify a remote
database. For more information about database links, see the
CREATE DATABASE LINK command.

column The name of a column in table.

expression An expression or value to assign to column.

DEFAULT The default value of the column.

query A query (the SELECT statement) that provides the rows to be
inserted. For more information, see the SELECT command.

return_expression An expression that can include one or more columns from table
. If a column name from table is specified in return_expression,
the value substituted for the column when return_expression is
evaluated is determined as follows:

• If you assign a value in the INSERT command to the specified
column in return_expression, the assigned value is used to
evaluate return_expression.

• If you do not assign a value in the INSERT command to the
specified column in return_expression and no default value
is provided for the column definition, null is used to evaluate
return_expression.

• If you do not assign a value in the INSERT command to the
specified column in return_expression and a default value is
provided for the column definition, the default value is used to
evaluate return_expression.

record A record to whose field you want to assign the evaluation result
of return_expression. For example, the first return_expression is
assigned to the first field in record, and the second return_exp
ression is assigned to the second field in record. The number of
fields in record must match the number of expressions, and the
fields must be type-compatible with corresponding expressions.

variable A variable to which you want to assign the evaluation result of
return_expression. If you specify multiple return_expression
 and variable, the first return_expression is assigned to the first
variable, and the second return_expression is assigned to the
second variable. The number of the specified variables that follow
the INTO keyword must match the number of expressions that
follow the RETURNING keyword, and the variables must be type-
compatible with corresponding expressions.

510 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

collection A collection in which an element is created from the evaluated
return_expression. You can specify a collection of a single field
or a collection of a record type. You can also specify multiple
collections where each collection consists of a single field. The
number of return expressions must match in number and order of
fields in all specified collections. Each return_expression must be
type-compatible with the corresponding collection field.

Examples

Insert a single row into the emp table:

INSERT INTO emp VALUES (8021,'JOHN','SALESMAN',7698,'22-FEB-07',1250,500,30);

In this second example, the column named comm is omitted. Therefore, it has the default

value of null:

INSERT INTO emp (empno, ename, job, mgr, hiredate, sal, deptno)
 VALUES (8022,'PETERS','CLERK',7698,'03-DEC-06',950,30);

The third example uses the DEFAULT clause for the hiredate and comm columns rather than

specifying a value:

INSERT INTO emp VALUES (8023,'FORD','ANALYST',7566,NULL,3000,NULL,20);

This example creates a table for the department names, and then inserts into the table. The

department names are obtained from the dname column of the dept table:

CREATE TABLE deptnames (
 deptname VARCHAR2(14)
);

Issue: 20200701 511

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

INSERT INTO deptnames SELECT dname FROM dept;

12.58 LOCK
Locks a table.

Syntax

LOCK TABLE name [, ...] IN lockmode MODE [NOWAIT]

Where lockmode is one of the following items:

ROW SHARE | ROW EXCLUSIVE | SHARE | SHARE ROW EXCLUSIVE | EXCLUSIVE

Description

You can use the LOCK TABLE command to acquire a table-level lock. If conflicting locks

exist, the command waits until all of the conflicting locks are released and locks the table

by default. If you specify NOWAIT, the LOCK TABLE command does not wait to acquire the

desired lock. If the lock cannot be immediately acquired, the command ends and an error

occurs. After you obtain a lock, the lock is held until the current transaction ends. The

UNLOCK TABLE command is unavailable. Tables remain lock until transactions come to an

end.

When acquiring automatic locks for the commands that reference tables, PolarDB

databases compatible with Oracle use the least restrictive lock mode possible. LOCK TABLE

 is provided for cases when you need more restrictive locking. For example, an application

runs a transaction at the isolation level of read committed and the stability of data in a

table needs to be ensured during the transaction. To achieve this, you can lock the table

in the SHARE mode before querying. This prevents concurrent data changes and ensures a

stable view of committed data for subsequent table reads because the SHARE lock mode

conflicts with the ROW EXCLUSIVE lock acquired by writers. Your LOCK TABLE name IN SHARE

 MODE statement waits until concurrent holders of ROW EXCLUSIVE locks commit or roll

back. Therefore, after you obtain the lock, no uncommitted writes exist. In addition, none

can perform operations on the table until you release the lock.

To achieve a similar effect when running a transaction at the serializable isolation level,

you must run the LOCK TABLE statement before running data modification statement. A

serializable transaction view of data is frozen after its first data modification statement

begins. A later LOCK TABLE will still prevent concurrent writes, but the values that the

transaction reads may differ from the latest committed values.

512 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

If a serializable transaction is going to change data in the table, it needs to lock the table in

the SHARE ROW EXCLUSIVE mode instead of SHARE mode.

This ensures that only one transaction of this type runs at a time. Otherwise, a deadlock

may occur. Two transactions may lock the table in the SHARE mode at the same time, and

then neither of them can acquire the lock in the ROWEXCLUSIVE mode to perform updates.

Note that locks never conflict within a transaction, so a transaction can lock a table in

the ROW EXCLUSIVE mode when it holds the SHARE mode. However, a transaction cannot

acquire the ROW EXCLUSIVE lock if another transaction holds the SHARE lock. To avoid

deadlocks, make sure that all transactions acquire locks on the same objects in the same

order. If a single object allows multiple lock modes, transactions must acquire the most

restrictive mode first.

Parameters

Parameter Parameter

name The name of the table to be locked. The
name can be schema-qualified.

The LOCKTABLE a, b command is equivalent

to LOCK TABLE a; LOCK TABLE b. The tables

are locked one by one in the order specified

in the LOCK TABLE command.

lockmode The lock mode that specifies the locks with
which this lock conflicts.

If no lock mode is specified, the server

uses the most restrictive mode, ACCESS

 EXCLUSIVE. ACCESS EXCLUSIVE is not

compatible with Oracle databases. In

PolarDB databases compatible with Oracle,

this mode ensures that no other transaction

can access the locked table in any manner.

NOWAIT Specifies that the LOCKTABLE command
does not wait for conflicting locks to be
released. If you cannot immediately acquire
the specified lock, the transaction ends.

Issue: 20200701 513

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Notes

All forms of LOCK require UPDATE and/or DELETE privileges.

LOCK TABLE is useful only inside a transaction block because the lock is dropped when the

transaction ends. A LOCK TABLE command that is used outside a transaction block forms a

self-contained transaction, so the lock will be dropped when you obtain it.

LOCK TABLE only deals with table-level locks, so the mode names containing ROW are all

misnomers. These mode names are read as indicating that the user intend to acquire row-

level locks within the locked table. In addition, a ROW EXCLUSIVE lock is a sharable table

lock. All the lock modes have identical semantics when LOCK TABLE is concerned, and are

different only in the rules for checking conflicts.

12.59 REVOKE
Revokes access privileges.

Syntax

REVOKE { { SELECT | INSERT | UPDATE | DELETE | REFERENCES }
 [,...] | ALL [PRIVILEGES] }
 ON tablename
 FROM { username | groupname | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE { SELECT | ALL [PRIVILEGES] }
 ON sequencename
 FROM { username | groupname | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE { EXECUTE | ALL [PRIVILEGES] }
 ON FUNCTION progname
 ([[argmode] [argname] argtype] [, ...])
 FROM { username | groupname | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE { EXECUTE | ALL [PRIVILEGES] }
 ON PROCEDURE progname
 [([[argmode] [argname] argtype] [, ...])]
 FROM { username | groupname | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE { EXECUTE | ALL [PRIVILEGES] }
 ON PACKAGE packagename
 FROM { username | groupname | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE role [, ...] FROM { username | groupname | PUBLIC }
 [, ...]
 [CASCADE | RESTRICT]

REVOKE { CONNECT | RESOURCE | DBA } [, ...]
 FROM { username | groupname } [, ...]

514 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

REVOKE CREATE [PUBLIC] DATABASE LINK
 FROM { username | groupname }

REVOKE DROP PUBLIC DATABASE LINK
 FROM { username | groupname }

REVOKE EXEMPT ACCESS POLICY
 FROM { username | groupname }

Description

You can use the REVOKE command to revoke privileges that have been granted to one or

more roles. The PUBLIC keyword refers to the implicitly defined group of all roles.

For more information about the types of privileges, see the description of GRANT

 command.

Note that a role has the privileges that are granted directly to the role, the privileges that

are granted to another role of which the role is a member, and the privileges that are

granted to PUBLIC. For example, if you revoke the SELECT privilege from PUBLIC, it does not

indicate that all roles have lost the SELECT privilege on the object. The roles that have the

SELECT privilege granted directly and their member roles still have the SELECT privilege.

If the privilege is granted with the grant option, both privilege and the grant option for the

privilege are revoked.

If a user has a privilege with the grant option and grants the privilege to other users, the

privilege held by other users is called dependent privileges. If you want to revoke the

privilege or grant option from the first user and dependent privileges exist, the dependent

privileges are also revoked when CASCADE is specified. Otherwise, the revoke action failed.

This recursive revocation only affects privileges that are granted by a chain of users that

starts from the user who runs this REVOKE command. The affected users may keep the

privilege if it is also granted by other users.

Notice:

The CASCADE option is not compatible with Oracle databases. By default, Oracle cascades

dependent privileges. However, PolarDB databases compatible with Oracle requires the

explicit CASCADE keyword. Otherwise, the REVOKE command will fail.

When revoking membership in a role, use GRANT OPTION instead of ADMIN OPTION, but the

behavior is similar.

Issue: 20200701 515

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Notes

A user can only revoke privileges that are granted by the user. For example, if User A grants

a privilege with the grant option to User B and User B grants the privilege to User C, User A

cannot revoke the privilege directly from User C. Instead, User A can revoke the grant option

from User B and use the CASCADE option so that the privilege is revoked from User C. For

another example, if both User A and User B grant the same privilege to User C, User A can

revoke the privilege granted by User A but not by User B. Therefore, after User A revokes the

privilege, User C still has the privilege that is granted by User B.

If a user has no privileges on an object that belongs to another user and the non-owner

user attempts to revoke privileges on the object by running the REVOKE command, the

command fails. If a privilege can be revoked, the command proceeds but revokes only the

privileges for which the user has grant options. If no grant options are held, the REVOKE

ALL PRIVILEGES forms issue a warning message. Other forms also issue a warning message

if the grant option for a privilege specified in the command is not held. This mechanism

applies to the object owner. However, no warning messages are issued for the object owner

because the owner holds all grant options.

In addition to the object owner, REVOKE can also be done by a member of the role that

owns the object or a member of a role that holds the WITH GRANT OPTION privilege on the

object. In this case, the command result is same as the result of the command that is issued

by the containing role that owns the object or holds the WITH GRANT OPTION privilege. For

example, if the t1 table is owned by the g1 role of which the u1 role is a member, u1 can

revoke privileges on t1 that are granted by g1. Both the grants made by the u1 role and

other members of the g1 role are revoked.

If the role that runs the REVOKE command holds privileges that are granted through

multiple role chains, you cannot specify the role chain from which the privilege is revoked.

In such cases, use SET ROLE to assume the role as which you want to run the REVOKE

 command. Otherwise, the privileges that are revoked are not the ones you intended, or are

not revoked at all.

Note:

The ALTER ROLE command of PolarDB databases compatible with Oracle also supports

syntax that revokes the system privileges required to create a public or private database

link, or the exemptions from fine-grained access control policies (DBMS_RLS). The ALTER

516 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

 ROLE command is functionally equivalent to the respective REVOKE command, and is

compatible with Oracle databases.

Examples

Revoke the INSERT privilege on the emp table from the PUBLIC group:

REVOKE INSERT ON emp FROM PUBLIC;

Revoke all privileges on the salesemp view from the user named mary:

REVOKE ALL PRIVILEGES ON salesemp FROM mary;

Note that all privileges granted by the user that runs the command are revoked.

Revoke membership in the admins role from the user named joe:

REVOKE admins FROM joe;

Revoke the CONNECT privilege from the user named joe:

REVOKE CONNECT FROM joe;

Revoke the CREATE DATABASE LINK privilege from the user named joe:

REVOKE CREATE DATABASE LINK FROM joe;

Revoke the EXEMPT ACCESS POLICY privilege from the user named joe:

REVOKE EXEMPT ACCESS POLICY FROM joe;

12.60 ROLLBACK
Rolls back the current transaction.

Syntax

ROLLBACK [WORK]

Description

You can use the ROLLBACK command to roll back the current transaction and discard all the

updates made by the transaction.

Parameters

Parameter Description

WORK An optional keyword, which has no effect.

Issue: 20200701 517

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Notes

You can use the COMMIT command to end a transaction.

If you run ROLLBACK at a time point which is not in a transaction, no changes are made.

Notice:

If an Oracle-style SPL procedure exists on the runtime stack, an error occurs when you run

a ROLLBACK command in a PL/pgSQL procedure.

Examples

Roll back all changes:

ROLLBACK;

12.61 ROLLBACK TO SAVEPOINT
Rolls back to a savepoint.

Syntax

ROLLBACK [WORK] TO [SAVEPOINT] savepoint_name

Description

You can use the ROLLBACK TO SAVEPOINT command to roll back all commands that are run

after the specified savepoint is created. The savepoint remains valid and can be rolled back

to again later if needed.

ROLLBACK TO SAVEPOINT implicitly deletes all savepoints that are created after the

specified savepoint.

Parameters

Parameter Description

savepoint_name The savepoint to which to roll back.

Notes

An error occurs if you specify a savepoint name that does not exist.

SPL programs do not support ROLLBACK TO SAVEPOINT.

518 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Examples

Undo the effects of commands that are run after the depts savepoint:

\set AUTOCOMMIT off
INSERT INTO dept VALUES (50, 'HR', 'NEW YORK');
SAVEPOINT depts;
INSERT INTO emp (empno, ename, deptno) VALUES (9001, 'JONES', 50);
INSERT INTO emp (empno, ename, deptno) VALUES (9002, 'ALICE', 50);
ROLLBACK TO SAVEPOINT depts;

12.62 SAVEPOINT
Defines a new savepoint in the current transaction.

Syntax

SAVEPOINT savepoint_name

Description

The SAVEPOINT command creates a new savepoint in the current transaction.

A savepoint is a special mark in a transaction. It allows all commands that are executed

after it is created to be rolled back. If the commands are rolled back, the transaction state is

 restored to what it was at the time of the savepoint.

Parameters

Parameter Description

savepoint_name The name that you want to specify for the
savepoint.

Description

You can run the ROLLBACK TO SAVEPOINT command to roll back to a savepoint.

Savepoints can be created only in a transaction block. You can define multiple savepoints in

 a transaction.

If another savepoint with the same name as a previous savepoint is created, the previous

savepoint is retained. However, only the more recent savepoint is used during a rollback.

The SAVEPOINT command is not supported within SPL programs.

Issue: 20200701 519

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Examples

The following example shows how to create a savepoint and then undo all commands that

are executed after the savepoint is created.

\set AUTOCOMMIT off
INSERT INTO dept VALUES (50, 'HR', 'NEW YORK');
SAVEPOINT depts;
INSERT INTO emp (empno, ename, deptno) VALUES (9001, 'JONES', 50);
INSERT INTO emp (empno, ename, deptno) VALUES (9002, 'ALICE', 50);
SAVEPOINT emps;
INSERT INTO jobhist VALUES (9001,'17-SEP-07',NULL,'CLERK',800,NULL,50,'New Hire');
INSERT INTO jobhist VALUES (9002,'20-SEP-07',NULL,'CLERK',700,NULL,50,'New Hire');
ROLLBACK TO depts;
COMMIT;

The preceding transaction submits a row to the dept table, but the contents inserted into

the emp and joblist tables are rolled back.

12.63 SELECT

12.63.1 SELECT
Retrieves rows from a table or view.

Syntax

SELECT [optimizer_hint] [ALL | DISTINCT]
 * | expression [AS output_name] [, ...]
 FROM from_item [, ...]
 [WHERE condition]
 [[START WITH start_expression]
 CONNECT BY { PRIOR parent_expr = child_expr |
 child_expr = PRIOR parent_expr }
 [ORDER SIBLINGS BY expression [ASC | DESC] [, ...]]]
 [GROUP BY { expression | ROLLUP (expr_list) |
 CUBE (expr_list) | GROUPING SETS (expr_list) } [, ...]
 [LEVEL]]
 [HAVING condition [, ...]]
 [{ UNION [ALL] | INTERSECT | MINUS } select]
 [ORDER BY expression [ASC | DESC] [, ...]]
 [FOR UPDATE [WAIT n|NOWAIT|SKIP LOCKED]]

The following options for from_item are available:

 table_name[@dblink] [alias]
 (select) alias
 from_item [NATURAL] join_type from_item

520 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

 [ON join_condition | USING (join_column [, ...])]

Description

You can use the SELECT statement to retrieve rows from one or more tables. The general

processing of SELECT is described as follows:

• All elements in the FROM list are computed. Each element in the FROM list is a real

or virtual table. If you specify more than one element in the FROM list, the specified

elements are cross-joined. For more information, see the FROM clause topic.

• If you specify the WHERE clause, all rows that do not satisfy the condition are eliminated

from the output. For more information, see the WHERE clause topic.

• If you specify the GROUP BY clause, the output is divided into groups of rows that match

on one or more values. If you specify the HAVING clause, groups that do not satisfy the

specified condition are eliminated from the output. For more information, see the GROUP

 BY clause and HAVING clause topics.

• You can use the UNION, INTERSECT, and MINUS operators to combine the output of more

than one SELECT statement to form a single result set. The UNION operator returns all

rows that are in one or both of the result sets. The INTERSECT operator returns all rows

that are in both of the result sets. The MINUS operator returns the rows that are in the

first result set but not in the second result set. In all the preceding three cases, duplicate

rows are eliminated. If you specify ALL in the UNION operator, duplicate rows are not

eliminated. For more information, see the UNION clause, INTERSECT clause, and MINUS

 clause topics.

• The actual output rows are computed using the SELECT output expressions for each

selected row. For more information, see the SELECT list topic.

• The CONNECT BY clause is used to select data that has a hierarchical relationship. This

type of data has a parent-child relationship between rows. For more information, see

the CONNECT BY clause topic.

• If you specify the ORDER BY clause, the returned rows are sorted in the specified order.

If you do not specify the ORDER BY clause, the rows are returned in whatever order the

system finds fastest to produce. For more information, see the ORDER BY clause topic.

• DISTINCT eliminates duplicate rows from the result. ALL returns all candidate rows,

including duplicate rows. The default value is ALL. For more information, see the

DISTINCT clause topic.

• The FOR UPDATE clause causes the SELECT statement to lock the selected rows against

concurrent updates. For more information, see the FOR UPDATE clause topic.

Issue: 20200701 521

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

You must have the SELECT privilege on a table to read its values. To use the FOR UPDATE

 statement, you must have the UPDATE privilege.

Parameters

Parameter Description

optimizer_hint Comment-embedded hints to the optimizer
. This parameter is used to select an
execution plan.

12.63.2 FROM clause
The FROM clause specifies one or more source tables for a SELECT statement.

Syntax

FROM source [, ...]

The following table describes the available parameters for source.

Parameter Description

table_name[@dblink
]

The name of an existing table or view. The name can be schema-
qualified. dblink is the name of a database link that identifies a
remote database. For more information about database links, see
the CREATE DATABASE LINK command topic.

alias A substitute name for the FROM item that contains the alias. An
alias is used for brevity or to eliminate ambiguity for self-joins
(where the same table is scanned multiple times). If you specify
an alias for a table or function, the alias hides the actual name of
the table or function. For example, if FROM foo AS f is specified, the
remainder of the SELECT statement must refer to the FROM item as
f rather than foo.

select You can nest a SELECT statement in the FROM clause. This creates
a derived table for the duration of the SELECT statement. You must
enclose the nested SELECT statement in parentheses and specify
an alias for it.

522 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

join_type The following join types are available:

• [INNNER] JOIN
• LEFT [OUTER] JOIN
• RIGHT [OUTER] JOIN
• FULL [OUTER] JOIN
• CROSS JOIN

For the INNER and OUTER join types, a join condition must be

specified. In other words, the join condition is one of NATURAL,

ON join_condition, or USING (join_column [, ...]). The following

paragraphs describe the join types. For CROSS JOIN, none of these

clauses appear.

A JOIN clause combines two FROM items. You can use parentheses

to determine the order of nesting. In the absence of parentheses,

JOIN clauses nest from left to right. The JOIN clause binds tighter

than the commas separating FROM items.

CROSS JOIN and INNER JOIN produce a simple Cartesian product.

The result is the same as that of listing the two tables at the top

level of FROM, but is restricted by the join condition. CROSS JOIN

 is equivalent to INNER JOIN ON (TRUE). No rows are removed by

qualification. The listed join types are for notational convenience.

You can use the FROM and WHERE clauses to perform all

operations that you can perform by using join types.

LEFT OUTER JOIN returns all rows in the qualified Cartesian product.

The qualified Cartesian product contain all combined rows that

pass the join condition. LEFT OUTER JOIN also returns the left-side

rows that do not have a matching right-side row. Each left-side

row that does not have a matching right-side row is extended to

the full width of the joined table by inserting null values for the

right-side columns. Note that only the condition of the JOIN clause

is considered when whether rows have matches is decided. Then,

outer conditions are applied.

RIGHT OUTER JOIN returns all the matching rows and the right-side

rows that do not have a matching left-side row. Each right-side

row is extended with null values on the left. This is a notational

convenience. You can convert it to a LEFT OUTER JOIN by switching

the left and right inputs.

FULL OUTER JOIN returns all the matching rows, one row for each

unmatched left-side row, and one row for each unmatched right-

side row. The left-side row is extended with null values on the

right. The right-side row is extended with null values on the left.

Issue: 20200701 523

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

ON join_condition join_condition is an expression resulting in a value of the BOOLEAN
 type (similar to a WHERE clause) that specifies which rows in a join
are considered to match.

USING (join_column
 [, ...])

A clause of the USING (a, b, ...) form is short for ON left_table.a
 = right_table.a AND left_table.b = right_table.b ... In addition,
USING indicates that only one of each pair of equivalent columns is
included in the join output.

NATURAL NATURAL is short for a USING list that includes all columns in the
two tables that have the same names.

If multiple sources are specified, the result is the Cartesian product (cross join) of all the

sources. In most cases, qualification conditions are added to restrict the returned rows to a

small subset of the Cartesian product.

Examples

The following example selects all of the entries from the dept table:

SELECT * FROM dept;
deptno | dname | loc
-------+-------------+-----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 (4 rows)

12.63.3 WHERE clause
Syntax

The syntax of the optional WHERE clause is as follows:

WHERE condition

condition is an expression whose result is of the BOOLEAN type. Rows that do not satisfy

this condition are eliminated from the output. A row satisfies the condition if it returns TRUE

 when the actual row values are substituted for variable references.

524 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Examples

The following example joins the contents of the emp and dept tables. In the WHERE clause,

the value of the deptno column in the emp table is equal to the value of the deptno column

 in the deptno table.

SELECT d.deptno, d.dname, e.empno, e.ename, e.mgr, e.hiredate
 FROM emp e, dept d
 WHERE d.deptno = e.deptno;

 deptno | dname | empno | ename | mgr | hiredate
--------+------------+-------+--------+------+--------------------
 10 | ACCOUNTING | 7934 | MILLER | 7782 | 23-JAN-82 00:00:00
 10 | ACCOUNTING | 7782 | CLARK | 7839 | 09-JUN-81 00:00:00
 10 | ACCOUNTING | 7839 | KING | | 17-NOV-81 00:00:00
 20 | RESEARCH | 7788 | SCOTT | 7566 | 19-APR-87 00:00:00
 20 | RESEARCH | 7566 | JONES | 7839 | 02-APR-81 00:00:00
 20 | RESEARCH | 7369 | SMITH | 7902 | 17-DEC-80 00:00:00
 20 | RESEARCH | 7876 | ADAMS | 7788 | 23-MAY-87 00:00:00
 20 | RESEARCH | 7902 | FORD | 7566 | 03-DEC-81 00:00:00
 30 | SALES | 7521 | WARD | 7698 | 22-FEB-81 00:00:00
 30 | SALES | 7844 | TURNER | 7698 | 08-SEP-81 00:00:00
 30 | SALES | 7499 | ALLEN | 7698 | 20-FEB-81 00:00:00
 30 | SALES | 7698 | BLAKE | 7839 | 01-MAY-81 00:00:00
 30 | SALES | 7654 | MARTIN | 7698 | 28-SEP-81 00:00:00
 30 | SALES | 7900 | JAMES | 7698 | 03-DEC-81 00:00:00
(14 rows)

12.63.4 GROUP BY clause
Syntax

The syntax of the optional GROUP BY clause is as follows:

GROUP BY { expression | ROLLUP (expr_list) |
 CUBE (expr_list) | GROUPING SETS (expr_list) } [, ...]

Description

The GROUP BY clause condenses all selected rows that share the same values for the

grouped expressions into a single row. expression can be an input column name, or the

name or ordinal number of an output column that is specified in the SELECT list. It can also

be an expression formed from the values of input columns. In case of ambiguity, a GROUP

BY name is interpreted as the name of an input column rather than an output column.

ROLLUP, CUBE, and GROUPING SETS are extensions to the GROUP BY clause. These

extensions are used to support multidimensional analysis.

If aggregate functions are used, the aggregate functions are computed across all rows

in each group. This produces a separate value for each group. If no GROUP BY clause is

specified, an aggregate function produces a single value computed across all the selected

Issue: 20200701 525

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

rows. If the GROUP BY clause is used, the SELECT list expressions cannot refer to ungrouped

columns except within aggregate functions. This is because more than one value may be

returned for an ungrouped column.

Examples

The following example computes the sum of the sal column in the emp table and groups

the results by department number.

SELECT deptno, SUM(sal) AS total
 FROM emp
 GROUP BY deptno;

 deptno | total
--------+----------
 10 | 8750.00
 20 | 10875.00
 30 | 9400.00
(3 rows)

12.63.5 HAVING clause
Syntax

The syntax of the optional HAVING clause is as follows:

HAVING condition

condition is the same as that specified for the WHERE clause.

Description

The HAVING clause eliminates group rows that do not satisfy the specified condition. The

HAVING clause is different from the WHERE clause. The WHERE clause filters individual

rows before the application of GROUP BY. The HAVING clause filters group rows created

by GROUP BY. Each column referenced in a condition must explicitly reference a grouping

column unless the column is referenced in an aggregate function.

Examples

To sum up the sal column for all employees, group the results by department number and

show group totals that are less than 10,000.

SELECT deptno, SUM(sal) AS total
 FROM emp
 GROUP BY deptno
 HAVING SUM(sal) < 10000;

 deptno | total
--------+---------
 10 | 8750.00

526 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

 30 | 9400.00
(2 rows)

12.63.6 SELECT list
The SELECT list between the SELECT and FROM keywords specifies expressions that form

the output rows of the SELECT statement. The expressions can refer to columns computed

in the FROM clause. You can specify another name for an output column by using the AS

output_name clause. This name is used to label the column to be displayed. It can also be

used to refer to the column value in the ORDER BY and GROUP BY clauses instead of the

WHERE or HAVING clause. In this case, you must write out the expression.

You can enter an asterisk (*) instead of an expression in the output list to indicate all

columns of the selected rows.

Examples

The SELECT list in the following example specifies that the result set includes the empno

column, the ename column, the mgr column, and the hiredate column.

SELECT empno, ename, mgr, hiredate FROM emp;

 empno | ename | mgr | hiredate
-------+--------+------+--------------------
 7934 | MILLER | 7782 | 23-JAN-82 00:00:00
 7782 | CLARK | 7839 | 09-JUN-81 00:00:00
 7839 | KING | | 17-NOV-81 00:00:00
 7788 | SCOTT | 7566 | 19-APR-87 00:00:00
 7566 | JONES | 7839 | 02-APR-81 00:00:00
 7369 | SMITH | 7902 | 17-DEC-80 00:00:00
 7876 | ADAMS | 7788 | 23-MAY-87 00:00:00
 7902 | FORD | 7566 | 03-DEC-81 00:00:00
 7521 | WARD | 7698 | 22-FEB-81 00:00:00
 7844 | TURNER | 7698 | 08-SEP-81 00:00:00
 7499 | ALLEN | 7698 | 20-FEB-81 00:00:00
 7698 | BLAKE | 7839 | 01-MAY-81 00:00:00
 7654 | MARTIN | 7698 | 28-SEP-81 00:00:00
 7900 | JAMES | 7698 | 03-DEC-81 00:00:00

Issue: 20200701 527

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

(14 rows)

12.63.7 UNION clause
Syntax

The syntax of the UNION clause is as follows:

select_statement UNION [ALL] select_statement

Description

select_statement is a SELECT statement that does not contain an ORDER BY or FOR

UPDATE clause. You can enclose the ORDER BY clause in parentheses to attach it to a sub-

expression. Without parentheses, these clauses are applied to the result of the UNION

 clause, not to the expression on the right side.

The UNION operator computes the set union of the rows returned by the involved SELECT

 statements. If a row is included in at least one of two result sets, the row is in the set union

of the two result sets. The two SELECT statements that represent the direct operands of the

UNION clause must produce the same number of columns. The corresponding columns

must be of compatible data types.

The result of the UNION clause contains duplicate rows only if the ALL option is specified.

The ALL option prevents elimination of duplicate rows.

Unless otherwise specified in parentheses, multiple UNION operators in the same SELECT

 statement are evaluated from left to right.

The FOR UPDATE clause may not be specified either for a UNION result or for an input of a

UNION clause.

12.63.8 INTERSECT clause
Syntax

The syntax of the INTERSECT clause is as follows:

select_statement INTERSECT select_statement

Description

select_statement is a SELECT statement that does not contain an ORDER BY or FOR UPDATE

 clause.

528 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

The INTERSECT operator computes the set intersection of the rows returned by the involved

SELECT statements. If a row is included in two result sets, the row is in the intersection of the

two result sets.

The result of the INTERSECT clause does not contain duplicate rows.

Unless otherwise specified in parentheses, multiple INTERSECT operators in the same

SELECT statement are evaluated from left to right. The INTERSECT clause binds tighter than

the UNION clause. A UNION B INTERSECT C is read as A UNION (B INTERSECT C).

12.63.9 MINUS clause
The syntax of the MINUS clause is as follows:

select_statement MINUS select_statement

select_statement is a SELECT statement that does not contain an ORDER BY or FOR UPDATE

 clause.

The MINUS operator computes the set of rows that are in the result of the left SELECT

 statement but not in the result of the right one.

The result of the MINUS clause does not contain duplicate rows.

Unless otherwise specified in parentheses, multiple MINUS operators in the same SELECT

 statement are evaluated from left to right. The MINUS clause binds at the same level as the

UNION clause.

12.63.10 CONNECT BY clause
The CONNECT BY clause determines the parent-child relationship of rows when performing

a hierarchical query. The syntax of the CONNECT BY clause is as follows:

CONNECT BY { PRIOR parent_expr = child_expr |
 child_expr = PRIOR parent_expr }

parent_expr is evaluated on a candidate parent row. If parent_expr = child_expr results in

TRUE for a row returned by the FROM clause, this row is considered a child of the parent.

Issue: 20200701 529

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

The following optional clauses can be specified in conjunction with the CONNECT BY clause:

START WITH start_expression

The rows returned by the FROM clause on which start_expression evaluates to TRUE

 become the root nodes of the hierarchy.

ORDER SIBLINGS BY expression [ASC | DESC] [, ...]

Sibling rows of the hierarchy are ordered by expression in the result set.

Note:

PolarDB database compatible with Oracle does not support the use of AND or other

operators in the CONNECT BY clause.

12.63.11 ORDER BY clause
The syntax of the optional ORDER BY clause is as follows:

ORDER BY expression [ASC | DESC] [, ...]

expression can be the name or ordinal number of an output column in the SELECT list. It can

also be an arbitrary expression formed from input-column values.

The ORDER BY clause causes the result rows to be sorted according to the specified

expressions. If two rows are equal according to the leftmost expression, they are compared

according to the next expression. If they are equal according to all specified expressions,

they are returned in an implementation-dependent order.

The ordinal number refers to the ordinal (left-to-right) position of the result column. This

feature enables sorting based on a column that does not have a unique name. This is not

necessary because you can use the AS clause to assign a name to a result column.

You can also use arbitrary expressions in the ORDER BY clause, including columns that do

not appear in the SELECT output list. Therefore, the following statement is valid:

SELECT ename FROM emp ORDER BY empno;

An ORDER BY clause applying to the result of a UNION, INTERSECT, or MINUS clause can

specify only an output column name or number rather than an expression.

If an ORDER BY expression is a simple name that matches both an output column name

and an input column name, ORDER BY interprets it as the output column name. This

530 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

is the opposite of the choice made by the GROUP BY clause in the same situation. This

inconsistency is made to be compatible with the SQL standard.

You can add the ASC (ascending) or DESC (descending) keyword after any expression in the

ORDER BY clause. If you specify neither ASC nor DESC, ASC is used.

The null value is sorted in a higher order than other values. In other words, null values are

at the end of an ascending order and are at the beginning of a descending order.

String data is sorted based on the sorting rule set for specific regions created when the

database cluster is initialized.

Examples

The following two examples show how to sort the results based on the content of the

second column (dname):

SELECT * FROM dept ORDER BY dname;

 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 40 | OPERATIONS | BOSTON
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
(4 rows)

SELECT * FROM dept ORDER BY 2;

 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 40 | OPERATIONS | BOSTON
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
(4 rows)

12.63.12 DISTINCT clause
If you specify DISTINCT in a SELECT statement, all duplicate rows are removed from the

result set. One row is retained from each group of duplicates. If you specify the ALL

 keyword instead, all rows are retained. This is the default value.

Issue: 20200701 531

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

12.63.13 FOR UPDATE clause
Syntax

FOR UPDATE [WAIT n|NOWAIT|SKIP LOCKED]

Description

The FOR UPDATE clause causes the rows retrieved by the SELECT statement to be locked.

This prevents a row from being modified or deleted by other transactions until the current

transaction ends. All transactions that attempt to run the UPDATE, DELETE, or SELECT FOR

UPDATE command on a selected row are blocked until the current transaction ends. If an

UPDATE, DELETE, or SELECT FOR UPDATE command from another transaction has already

locked a selected row or rows, SELECT FOR UPDATE waits for the previous transaction to

complete. Then, SELECT FOR UPDATE locks and returns the updated rows. If the rows were

deleted, SELECT FOR UPDATE locks and returns no rows.

FOR UPDATE cannot be used in contexts where returned rows cannot be clearly identified

with individual table rows.

You can use FOR UPDATE options to specify locking preferences.

• Include the WAIT n keywords to specify the number of seconds or fractional seconds

that the SELECT statement will wait for a row locked by another session. Use a decimal

form to specify fractional seconds. For example, WAIT 1.5 instructs the server to wait one

and a half seconds. You can specify a maximum of four digits to the right of the decimal

point.

• Include the NOWAIT keyword to immediately report an error if a row cannot be locked by

the current session.

• Include SKIP LOCKED to instruct the server to lock rows if possible, and skip rows that are

already locked by another session.

532 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

12.64 SET CONSTRAINTS
Sets the constraint checking modes for the current transaction.

Syntax

SET CONSTRAINTS { ALL | name [, ...] } { DEFERRED | IMMEDIATE }

Description

The SET CONSTRAINTS command sets the constraint check behavior in the current

transaction. IMMEDIATE constraints are checked at the end of each statement. DEFERRED

 constraints are checked only after the transaction is committed. Each constraint has its own

IMMEDIATE or DEFERRED mode.

When a constraint is created, one of the following three characteristics is assigned to

the constraint: DEFERRABLE INITIALLY DEFERRED, DEFERRABLE INITIALLY IMMEDIATE, or

NOT DEFERRABLE. The third class is always IMMEDIATE and is not affected by the SET

CONSTRAINTS command. The first two classes start each transaction in the specified mode.

You can use the SET CONSTRAINTS command to change the behavior of the first two classes

in a transaction.

If you specify a list of constraint names, the SET CONSTRAINTS command changes the

modes of the specified constraints. The specified constraints must be deferrable. If

multiple constraints match a specified name, the modes of all the matching constraints

are changed. The SET CONSTRAINTS ALL command changes the modes of all deferrable

constraints.

If the SET CONSTRAINTS command changes the mode of a constraint from DEFERRED

 to IMMEDIATE, the new mode has a retroactive effect. During the execution of the SET

CONSTRAINTS command, all unfinished data changes are checked. These data changes

are no longer checked at the end of the transaction. If a constraint is violated, the SET

CONSTRAINTS command fails and does not change the constraint mode. Therefore, the SET

 CONSTRAINTS command can be used to force constraints to be checked at a specific point

in a transaction.

The setting of constraint checking modes affects only foreign key constraints. Check and

UNIQUE constraints are not deferrable.

Note:

Issue: 20200701 533

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

This command changes the behavior of constraints only within the current transaction. If

you run this command outside of a transaction block, the command has no effects.

12.65 SET ROLE
Sets the user identifier of the current session.

Syntax

SET ROLE { rolename | NONE }

Description

This command sets the user identifier of the current SQL session context to rolename. After

you run the SET ROLE command, privileges that the specified role have on SQL commands

are checked.

The specified rolename must be a role of the current session user.

Notes

You can use this command to add or restrict the privileges of a user. If the session user

role has the INHERITS attribute, it is automatically assigned the privileges to run the SET

ROLE command on all roles. In this case, the SET ROLE command deletes all the privileges

assigned to the session user and to the other roles of the user. Only the privileges available

to the specified role are retained. If the session user role has the NOINHERITS attribute,

the SET ROLE deletes the privileges assigned to the session user and retains the privileges

available to the specified role. If a superuser runs the SET ROLE command to set the user

role to a non-superuser role, the superuser no longer has superuser privileges.

534 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Examples

Run the following command to set the role of user mary to admins:

SET ROLE admins;

Run the following command to set the role of the user back to mary:

SET ROLE NONE;

12.66 SET TRANSACTION
Sets the characteristics of the current transaction.

Syntax

SET TRANSACTION transaction_mode

Transaction_mode can be one of the following options:

 ISOLATION LEVEL { SERIALIZABLE | READ COMMITTED }
 READ WRITE | READ ONLY

Description

The SET TRANSACTION command sets the characteristics of the current transaction.

This command has no effect on subsequent transactions. The available transaction

characteristics are the transaction isolation level and the transaction access mode

(read/write or read-only). The isolation level of a transaction determines what data the

transaction can read when other transactions are running concurrently.

• READ COMMITTED

A statement can read only rows that are committed before the statement starts. This is

the default value.

• SERIALIZABLE

All statements of the current transaction can read only rows that are committed before

the first query or before data modification statement is executed in this transaction.

After the first query or data modification statement (SELECT, INSERT, DELETE, UPDATE, or

FETCH) is executed, the transaction isolation level cannot be changed. The transaction

access mode determines whether the transaction is read/write or read-only. The default

value is read/write.

Issue: 20200701 535

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

A read-only transaction does not support the following SQL commands: CREATE, ALTER

, DROP, COMMENT, GRANT, REVOKE, and TRUNCATE. The read-only transaction does not

support the INSERT, UPDATE, and DELETE commands if the table to which these commands

write is not a temporary table. The read-only transaction does not support the EXECUTE

 command if one of the listed commands is executed within the transaction. This is an

advanced read-only mode that does not block all write operations on a disk.

12.67 TRUNCATE
Clears a table.

Syntax

TRUNCATE TABLE name [DROP STORAGE]

Description

The TRUNCATE command removes all rows from a table. This command has the same effect

as an unqualified DELETE command. However, the TRUNCATE command is faster because it

does not scan the table. This is most useful for large tables.

The DROP STORAGE clause is used for compatibility, but is ignored.

Parameters

Parameter Description

name The name of the table to be truncated. The
name can be schema-qualified.

Notes

If other tables have foreign-key references to the table to be truncated, you cannot use the

TRUNCATE command. This is because table scans are required for validity check.

The TRUNCATE command does not run user-defined ON DELETE triggers for the table even if

you have configured such triggers.

536 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Examples

Run the following command to truncate the bigtable table:

TRUNCATE TABLE bigtable;

12.68 UPDATE
Updates rows of a table.

Syntax

UPDATE [optimizer_hint] table[@dblink]
 SET column = { expression | DEFAULT } [, ...]
 [WHERE condition]
 [RETURNING return_expression [, ...]
 { INTO { record | variable [, ...] }
 | BULK COLLECT INTO collection [, ...] }]

Description

The UPDATE command changes the values of the specified columns in all rows that satisfy

the condition. You only need to specify the columns to be modified in the SET clause.

Columns that are not specified retain their previous values.

You can specify the RETURNING INTO { record | variable [, ...] } clause only within an SPL

program. In addition, the result set of the UPDATE command cannot return multiple rows.

Otherwise, an exception occurs. If the result set is empty, the content of the target record or

variables is set to null.

You can specify the RETURNING BULK COLLECT INTO collection [, ...] clause only if the

UPDATE command is used within an SPL program. If more than one collection is specified

as the target of the BULK COLLECT INTO clause, each collection must contain a scalar field.

In other words, collection cannot be a record. The result set of the UPDATE command can

contain none, one, or more rows. return_expression that is evaluated for each row of the

result set is an element in collection starting from the first element. All existing rows in

collection are deleted. If the result set is empty, collection is also empty.

To update a table, you must have the UPDATE privilege for the table and the SELECT

 privilege for all tables whose values are read in expression or condition.

Issue: 20200701 537

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameters

Parameter Description

optimizer_hint Comment-embedded hints to the optimizer. This parameter is used
 to select an execution plan.

table The name of the table to be updated. The name can be schema-
qualified.

dblink The name of the database link. This parameter is used to identify a
remote database. For more information about database links, see
the CREATE DATABASE LINK command.

column The name of a column in the table.

expression An expression to assign to the column. The expression can use the
old values of this column and other columns in the table.

DEFAULT The default expression of the column. If no specific default
expression is assigned, the default value is null.

condition An expression that returns a value of the BOOLEAN type. Only rows
for which this expression returns true are updated.

return_expression An expression that includes one or more columns from the table.
If you specify a column name from the table in return_expression
, the value substituted for the column when return_expression is
evaluated is determined as follows:

• If the column specified in return_expression is assigned a value
in the UPDATE command, the assigned value is used in the
evaluation of return_expression.

• If the column specified in return_expression is not assigned a
value in the UPDATE command, the current value of the column
in the affected row is used in the evaluation of return_exp
ression.

record A record that contains fields to which the evaluated return_exp
ression is assigned. The first return_expression is assigned to the
first field in record. The second return_expression is assigned to
the second field in record. The number of fields in record must be
the same as the number of expressions. The fields must be type-
compatible with their assigned expressions.

538 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 12 SQL Commands

Parameter Description

variable A variable to which the evaluated return_expression is assigned.
If more than one return_expression and variable are specified,
the first return_expression is assigned to the first variable and
the second return_expression is assigned to the second variable
. The number of variables specified following the INTO keyword
must be the same as the number of expressions following the
RETURNING keyword. The variables must be type-compatible with
their assigned expressions.

collection A collection in which an element is created from the evaluated
return_expression. One or more collections can exist. A single
collection can be a collection of a single field or a collection of
a record type. If multiple collections exist, each collection must
consist of a single field. The number and sequence of returned
expressions must be the same as the number and sequence of
fields in all specified collections. Each corresponding return_exp
ression and collection fields must be type-compatible.

Examples

Run the following command to change the location to AUSTIN for department 20 in the

dept table:

UPDATE dept SET loc = 'AUSTIN' WHERE deptno = 20;

For all employees with job = SALESMAN in the emp table, run the following command to

update the salary by 10% and increase the commission by 500:

UPDATE emp SET sal = sal * 1.1, comm = comm + 500 WHERE job = 'SALESMAN';

Issue: 20200701 539

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

13 Built-in functions

13.1 Logical operators

The usual logical operators are AND, OR, and NOT.

SQL uses a three-valued Boolean logic where the null value represents "unknown". For

more information, see the following truth tables.

Table 13-1: AND/OR truth table

a b a AND b a OR b

True True True True

True False False True

True Null Null True

False False False False

False Null False Null

Null Null Null Null

Table 13-2: NOT truth table

a NOT a

True False

False True

Null Null

The operators AND and OR are commutative. You can switch the left and right operand

without affecting the result.

13.2 Comparison operators

The following table lists the frequently used comparison operators.

540 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Table 13-3: Comparison operators

Operator Description

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

= Equal

<> Not equal

! = Not equal

You can use comparison operators for all valid data types. All comparison operators are

binary operators that return boolean values. Expressions like 1 < 2 < 3 are invalid (because

no < operator is available to compare a Boolean value with 3).

In addition to the comparison operators, you can also use the BETWEEN construct.

• a BETWEEN x AND y

is equivalent to

a >= x AND a <= y

• a NOT BETWEEN x AND y

is equivalent to

a < x OR a > y

No difference exists between the two expression forms except that the CPU cycles require

that you internally rewrite the first one into the second one.

To check whether a value is null, you can use the following constructs:

expression IS NULL
expression IS NOT NULL

Do not use expression = NULL because NULL is not equal to the null value. (The null value

represents an unknown value, and it cannot be determined whether two unknown values

are equal). This behavior complies with the SQL standard.

Issue: 20200701 541

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

If expression evaluates to the null value, some applications may expect that expression =

NULL returns true. We recommend that you modify these applications to comply with the

SQL standard.

13.3 Mathematical functions and operators
Mathematical operators are provided to manipulate values of data types supported by

POLARDB compatible with Oracle. For types without common mathematical conventions for

all possible permutations (for example, date/time types), the actual behavior is described

in subsequent sections.

The following table shows the allowed mathematical operators.

Table 13-4: Mathematical operators

Operator Description Example Result

+ Addition 2 + 3 5

- Subtraction 2 - 3 -1

* Multiplication 2 * 3 6

/ Division (integer
division truncates
results)

4 / 2 2

** Exponentiation
operator

2 ** 3 8

The following table shows the available mathematical functions. Many of these functions

 are provided in multiple forms with different argument types. Note that any form of

function returns the same data type as its argument. The functions that involve DOUBLE

 PRECISION data are mostly implemented on top of the C library of the host system. The

accuracy and behavior in boundary cases may vary depending on the host system.

Table 13-5: Mathematical functions

Function Return type Description Example Result

ABS(x) Same as x The absolute
value.

ABS(-17.4) 17.4

CEIL(DOUBLE
PRECISION or
NUMBER)

Same as input The smallest
integer not less
than argument.

CEIL(-42.8) -42

542 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Function Return type Description Example Result

EXP(DOUBLE
PRECISION or
NUMBER)

Same as input Exponential EXP(1.0) 2.7182818284
5904 52

FLOOR(DOUBLE
 PRECISION or
NUMBER)

Same as input The largest
integer not
greater than
argument.

FLOOR(-42.8) 43

LN(DOUBLE
PRECISION or
NUMBER)

Same as input Natural
logarithm

LN(2.0) 0.6931471805
5994 53

LOG(b NUMBER,
X NUMBER)

NUMBER The logarithm to
 base b.

LOG(2.0, 64.0) 6.0000000000
0000 00

MOD(y, X) Same as
argument types

The remainder
of y/x.

MOD(9, 4) 1

NVL(x, y) Same as
argument types
; where both
arguments are
 of the same
data type.

If X is null, NVL
returns y.

NVL(9, 0) 9

POWER(a
 DOUBLE
PRECISION,
b DOUBLE
PRECISION)

DOUBLE
PRECISION

a raised to the
power of b

POWER(9.0, 3.0) 729.0000000000
00 0000

POWER(a
NUMBER, b
NUMBER)

NUMBER a raised to the
power of b

POWER(9.0, 3.0) 729.0000000000
00 0000

ROUND(DOUBLE
 PRECISION or
NUMBER)

Same as input Rounds to the
nearest integer.

ROUND(42.4) 42

ROUND(v
NUMBER, s
INTEGER)

NUMBER Rounds to s
decimal places.

ROUND(42.4382
, 2)

42.44

SIGN(DOUBLE
PRECISION or
NUMBER)

Same as input Sign of the
argument (-1, 0
, +1)

SIGN(-8.4) -1

Issue: 20200701 543

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Function Return type Description Example Result

SQRT(DOUBLE
 PRECISION or
NUMBER)

Same as input Square root SQRT(2.0) 1.4142135623
7309 5

TRUNC(DOUBLE
 PRECISION or
NUMBER)

Same as input Truncates
toward zero.

TRUNC(42.8) 42

TRUNC(v
NUMBER, s
INTEGER)

NUMBER Truncates to s
decimal places.

TRUNC(42.4382,
2)

42.43

WIDTH BUCKET
(op NUMBER,
b1 NUMBER, b2
NUMBER, count
INTEGER)

INTEGER Returns the
bucket to which
 op will be
assigned in
an equidepth
histogram with
count buckets, in
 the range b1 to
 b2.

WIDTH BUCKET(5
.35, 0.024, 10.06
, 5)

3

The following table shows the available trigonometric functions. The arguments and return

values of all trigonometric functions are of type DOUBLE PRECISION.

Table 13-6: Trigonometric functions

Function Description

ACOS(x) Inverse cosine

ASIN(x) Inverse sine

ATAN(x) Inverse tangent

ATAN2 (x, y) Inverse tangent of x/y

COS(x) Cosine

SIN(x) Sine

TAN(x) Tangent

13.4 String functions and operators

This topic describes functions and operators that are used to identify and manipulate

string values. Strings include values of the CHAR, VARCHAR2, and CLOB types. Note that the

544 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

 functions listed below can work on all these types of values, but be aware of the potential

 effects of automatic padding when using the CHAR type. In most cases, the functions

described here can also work on data of non-string types by first converting the data into

values of string types.

Table 13-7: SQL string functions and operators

Function Return type Description Example Result

string || string CLOB String
concatenation

'Enterprise' || 'DB' EnterpriseDB

CONCAT(string,
string)

CLOB String
concatenation

CONCAT('a' || 'b') ab

HEXTORAW (
varchar2)

RAW Converts a
VARCHAR2 value
 to a RAW value.

HEXTORAW('
303132')

'012'

RAWTOHEX(raw) VARCHAR2 Converts a
RAW value to a
 HEXADECIMAL
value.

RAWTOHEX ('012
 ')

'303132'

INSTR(string
, set, [start [,
occurrence]])

INTEGER Finds the
location of a set
 of characters in
a string, starting
 at position start
 in the string
, string, and
looking for the
 first, second,
third and so on
occurrences of
the set. Returns
0 if the set is not
 found.

INSTR('PETER
PIPER PICKED a
PECK of PICKLED
PEPPERS','PI',1,3)

30

INSTRB(string,
set)

INTEGER Returns the
position of the
 set within the
string. Returns
 0 if set is not
found.

INSTRB('PETER
PIPER PICKED a
PECK of PICKLED
PEPPERS', 'PICK')

13

Issue: 20200701 545

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Function Return type Description Example Result

INSTRB(string,
set, start)

INTEGER Returns the
 position of
the set within
 the string,
beginning at
start. Returns 0 if
 set is not found.

INSTRB('PETER
PIPER PICKED a
PECK of PICKLED
 PEPPERS','PICK',
14)

30

INSTRB(string
, set, start,
occurrence)

INTEGER Returns the
 position of
the specified
 occurrence
of set within
 the string,
beginning at
start. Returns 0 if
 set is not found.

INSTRB('PETER
PIPER PICKED a
PECK of PICKLED
 PEPPERS','PICK',
1, 2)

30

LOWER(string) CLOB Converts string
to lowercase.

LOWER('TOM') tom

SUBSTR(string,
start [, count])

CLOB Extracts
substring
starting from
 start and
going for count
 characters. If
 count is not
specified, the
string is clipped
from the start till
 the end.

SUBSTR('This is a
 test',6,2)

is

SUBSTRB(string,
start [, count])

CLOB Same as SUBSTR
 except start and
 count are in
number of bytes
.

SUBSTRB('abc
',3) (assuming
a double-byte
character set)

c

SUBSTR2(string,
start[, count])

CLOB Alias for SUBSTR
.

SUBSTR2('This is
atest',6,2)

is

SUBSTR2(string,
start [, count])

CLOB Alias for
SUBSTRB.

SUBSTR2('abc
',3) (assuming
a double-byte
character set)

c

546 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Function Return type Description Example Result

SUBSTR4(string,
start [, count])

CLOB Alias for SUBSTR
.

SUBSTR4('This is
a test',6,2)

is

SUBSTR4 (string
, start [, count])

CLOB Alias for
SUBSTRB.

SUBSTR4('abc
',3) (assuming
a double-byte
character set)

c

SUBSTRC(string,
start [, count])

CLOB Alias for SUBSTR
.

SUBSTRC('This is
a test',6,2)

is

SUBSTRC(string,
start [, count])

CLOB Alias for
SUBSTRB.

SUBSTRC('abc
',3) (assuming
a double-byte
character set)

c

TRIM([LEADING |
TRAILING | BOTH
] [characters]
FROM string)

CLOB Removes the
longest string
containing only
 the characters
 (a space by
default) from
the start/end/
both ends of the
 string.

TRIM(BOTH 'x'
FROM 'xTomxx')

Tom

LTRIM(string [,
set])

CLOB Removes all
the characters
 specified in
set from the
left of a given
string. If set is
not specified, a
 blank space is
used as default.

LTRIM('
abcdefghi', 'abc
')

defghi

RTRIM(string [,
set])

CLOB Removes all
the characters
 specified in
set from the
right of a given
 string. If set is
not specified, a
 blank space is
used as default.

RTRIM('
abcdefghi', 'ghi')

abcdef

Issue: 20200701 547

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Function Return type Description Example Result

UPPER(string) CLOB Converts string
to uppercase

UPPER('tom') TOM

The following table lists other available string manipulation functions. Some of the

functions are used internally to implement the SQL-standard string functions listed in Table

13-3: Comparison operators.

Function Return type Description Example Result

ASCII(string) INTEGER ASCII code of the
 first byte of the
argument

ASCII('x') 120

CHR(INTEGER) CLOB Character with
the given ASCII
code

CHR(65) A

DECODE(expr,
exprla, exprlb [,
expr2a, expr2b
]... [, default])

Same as
argument types
 of expr1b,
expr2b,...,
default

Finds the first
match of expr
 with expr1a
, expr2a, etc.
When the match
 is found, returns
 corresponding
parameter pair,
expr1b, expr2b,
etc. If no match
is found, returns
 default. If no
match is found
 and default is
 not specified,
returns null.

DECODE(3, 1,'
One', 2,'Two',
3,'Three', 'Not
found')

Three

548 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Function Return type Description Example Result

INITCAP(string) CLOB Converts the
 first letter of
 each word
to uppercase
 and the rest
to lowercase
. Words are
sequences of
 alphanumer
ic characters
 separated
 by non-
alphanumeric
characters.

INITCAP('hi
THOMAS')

Hi Thomas

LENGTH INTEGER Returns the
 number of
characters in a
string value.

LENGTH('Coted''
Azur')

11

LENGTHC INTEGER This function
is identical in
functionality to
 LENGTH. The
function name
is supported for
compatibility.

LENGTHC ('Cote
d''Azur')

11

LENGTH2 INTEGER This function
is identical in
functionality to
 LENGTH. The
function name
is supported for
compatibility.

LENGTH2 ('Cote
d''Azur')

11

LENGTH4 INTEGER This function
is identical in
functionality to
 LENGTH. The
function name
is supported for
compatibility.

LENGTH4 ('Cote
d''Azur')

11

Issue: 20200701 549

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Function Return type Description Example Result

LENGTHB INTEGER Returns the
number of bytes
required to hold
the given value.

LENGTHB ('Cote
d''Azur')

12

LPAD(string,
length INTEGER
 [, fill])

CLOB Fills up string
to size, length
by prepending
 the characters
, fill (a space
by default). If
string is longer
 than length, it
is truncated (on
the right).

LPAD('hi', 5, 'xy') xyxhi

REPLACE(string,
search string [,
replace string]

CLOB Replaces one
value in a string
 with another
. If you do not
specify a value
 for replace
 string, the
search_string
 value when
 found, is
removed.

REPLACE('
GEORGE', 'GE', '
EG')

EGOREG

RPAD(string,
length INTEGER
 [, fill])

CLOB Fills up string
to size, length
by appending
the characters
, fill (a space
by default). If
string is already
 longer than
 length, it is
truncated.

RPAD('hi', 5, 'xy') hixyx

550 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Function Return type Description Example Result

TRANSLATE(
string, from, to)

CLOB Any character
 in string that
 matches a
character in
the from set is
replaced by the
 corresponding
character in the
to set.

TRANSLATE('
12345', '14', 'ax')

a23x5

13.5 Pattern matching string functions

13.5.1 Overview
POLARDB compatible with Oracle supports the functions: REGEXP_COUNT, REGEXP_INSTR,

and REGEXP_SUBSTR. These functions are used to perform a search on a string for a specific

pattern that is specified by a regular expression. This will then return specific information

about occurrences of the pattern within the string. The pattern must be a POSIX-style

regular expression. For more information about POSIX-style regular expressions, see the

core documentation available at: http://www.enterprisedb.com/docs/en/9.3/pg/functions

-matching.html

13.5.2 REGEXP_COUNT
The REGEXP_COUNT function searches a string for a regular expression and returns the

number of times that the regular expression occurs.

Syntax

INTEGER REGEXP_COUNT
(
 srcstr TEXT,
 pattern TEXT,
 position DEFAULT 1
 modifier DEFAULT NULL
)

Parameters

Parameter Description

srcstr The string to search.

Issue: 20200701 551

http://www.enterprisedb.com/docs/en/9.3/pg/functions-matching.html
http://www.enterprisedb.com/docs/en/9.3/pg/functions-matching.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Parameter Description

pattern The regular expression for which
REGEXP_COUNT will search.

position An integer value that indicates the position
in the source string at which REGEXP_COUNT
 will start searching. The default value is 1.

modifier The values that control the pattern
matching behavior. The default value is
NULL.

Note:

For a complete list of the modifiers supported by POLARDB compatible with Oracle, see the

PostgreSQL core documentation available at: http://www.enterprisedb.com/docs/en/9.3/

pg/functions-matching.html

Examples

In the following example, REGEXP_COUNT returns the number of times the letter i is used in

the string 'reinitializing':

edb=# SELECT REGEXP_COUNT('reinitializing', 'i', 1) FROM DUAL;
 regexp_count

 5
(1 row)

In the first example, the command instructs REGEXP_COUNT to start counting in the first

position. If you want to start counting in the sixth position, use the following command:

edb=# SELECT REGEXP_COUNT('reinitializing', 'i', 6) FROM DUAL;
 regexp_count

 3
(1 row)

Then REGEXP_COUNT function returns 3, and the count does not include occurrences of the

letter i that occur before the sixth position.

552 Issue: 20200701

http://www.enterprisedb.com/docs/en/9.3/pg/functions-matching.html
http://www.enterprisedb.com/docs/en/9.3/pg/functions-matching.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

13.5.3 REGEXP_INSTR
The REGEXP_INSTR function searches a string for a POSIX-style regular expression. This

function returns the position within the string where the match is located.

Syntax

INTEGER REGEXP_INSTR
(
 srcstr TEXT,
 pattern TEXT,
 position INT DEFAULT 1,
 occurrence INT DEFAULT 1,
 returnparam INT DEFAULT 0,
 modifier TEXT DEFAULT NULL,
 subexpression INT DEFAULT 0,
)

Parameters

Parameter Description

srcstr The string to search.

pattern The regular expression for which
REGEXP_INSTR will search.

position An integer value that indicates the start
position in a source string. The default value
 is 1.

occurrence Specifies which match is returned if more
than one occurrence of the pattern occurs
 in the string that is searched. The default
value is 1.

returnparam An integer value that specifies the location
within the string that REGEXP_INSTR returns
as expected. The default value is 0. Specify:

• 0 to return the location within the string
 of the first character that matches the
pattern.

• A value greater than 0 to return the
location of the first character following
the end of the pattern.

Issue: 20200701 553

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Parameter Description

modifier The values that control the pattern
matching behavior. The default value is
NULL. For a complete list of the modifiers
supported by POLARDB compatible
with Oracle, see the PostgreSQL core
documentation available at: http://www
.enterprisedb.com/docs/en/9.3/pg/
functions-matching.html

subexpression An integer value that identifies the portion
of the pattern that will be returned by
REGEXP_INSTR. The default value of
subexpression is 0.

If you specify a value for subexpression

, you must include one (or multiple) set

 of parentheses in the pattern to isolate

 a portion of the value being searched

. The value specified by subexpression

indicates which set of parentheses will

be returned. For example, if the value of

subexpression is 2, REGEXP_INSTR returns

the value contained within the second set of

 parentheses.

Examples

In the following example, REGEXP_INSTR searches a string that contains a phone number

for the first occurrence of a pattern that contains three consecutive digits:

edb=# SELECT REGEXP_INSTR('800-555-1212', '[0-9][0-9][0-9]', 1, 1) FROM DUAL;
 regexp_instr

 1
(1 row)

The command instructs REGEXP_INSTR to return the position of the first occurrence. If

you want to return the start of the second occurrence of three consecutive digits, use the

following command:

edb=# SELECT REGEXP_INSTR('800-555-1212', '[0-9][0-9][0-9]', 1, 2) FROM DUAL;
 regexp_instr

 5

554 Issue: 20200701

http://www.enterprisedb.com/docs/en/9.3/pg/functions-matching.html
http://www.enterprisedb.com/docs/en/9.3/pg/functions-matching.html
http://www.enterprisedb.com/docs/en/9.3/pg/functions-matching.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

(1 row)

13.5.4 REGEXP_SUBSTR
The REGEXP_SUBSTR function searches a string for a pattern specified by a POSIX compliant

regular expression. This function returns the string that matches the pattern specified in the

call to the function.

Syntax

TEXT REGEXP_SUBSTR
(
 srcstr TEXT,
 pattern TEXT,
 position INT DEFAULT 1,
 occurrence INT DEFAULT 1,
 modifier TEXT DEFAULT NULL,
 subexpression INT DEFAULT 0
)

Parameters

Parameter Description

srcstr The string to search.

pattern The regular expression for which
REGEXP_SUBSTR will search.

position An integer value that indicates the start
position in a source string. The default value
 is 1.

occurrence Specifies which match is returned if more
than one occurrence of the pattern occurs
 in the string that is searched. The default
value is 1.

modifier The values that control the pattern
matching behavior. The default value is
NULL. For a complete list of the modifiers
supported by POLARDB compatible
with Oracle, see the PostgreSQL core
documentation available at: http://www
.enterprisedb.com/docs/en/9.3/pg/
functions-matching.html

Issue: 20200701 555

http://www.enterprisedb.com/docs/en/9.3/pg/functions-matching.html
http://www.enterprisedb.com/docs/en/9.3/pg/functions-matching.html
http://www.enterprisedb.com/docs/en/9.3/pg/functions-matching.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Parameter Description

subexpression An integer value that identifies the portion
of the pattern that will be returned by
REGEXP_SUBSTR. The default value of
subexpression is 0.

If you specify a value for subexpression

, you must include one (or multiple) set

 of parentheses in the pattern to isolate

 a portion of the value being searched

. The value specified by subexpression

indicates which set of parentheses will

be returned. For example, if the value of

subexpression is 2, REGEXP_SUBSTR returns

the value contained within the second set of

 parentheses.

Examples

In the following example, the REGEXP_SUBSTR searches a string that contains a phone

number for the first set of three consecutive digits:

edb=# SELECT REGEXP_SUBSTR('800-555-****', '[0-9][0-9][0-9]', 1, 1) FROM DUAL;
 regexp_substr

 800
(1 row)

The function locates the first occurrence of three digits and returns the string (8 0 0). If you

 want to search for the second occurrence of three consecutive digits, use the following

command:

edb=# SELECT REGEXP_SUBSTR('800-555-****', '[0-9][0-9][0-9]', 1, 2) FROM DUAL;
 regexp_substr

 555
(1 row)

REGEXP_SUBSTR returns 555, which is the content of the second substring.

556 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

13.6 Use the LIKE operator for pattern matching

POLARDB compatible with Oracle provides pattern matching by using the traditional SQL

LIKE operator. The syntax of the LIKE operator is as follows.

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

Each pattern parameter defines a set of strings. The LIKE expression returns true if the set

of strings represented by pattern contains the value specified by the string parameter. As

expected, a reciprocal inverse relationship exists and the NOT LIKE expression returns FALSE

 if LIKE returns TRUE. An equivalent expression of NOT LIKE is NOT (string LIKE pattern).

If the pattern does not contain percent signs (%) or underscores (_), the pattern only

represents the string itself. In this case, the LIKE operator acts like the equals operator. An

 underscore (_) in pattern matches any single character. A percent sign (%) matches any

string of zero or more characters.

Examples:

'abc' LIKE 'abc' true
'abc' LIKE 'a%' true
'abc' LIKE '_b_' true
'abc' LIKE 'c' false

LIKE pattern matches cover the entire string. If you want to start matching a pattern from

any position in the string, the pattern must start and end with a percent sign.

If you want to match a literal underscore or percent sign without matching other characters

, you must precede the respective character in the pattern by an escape character. The

default escape character is a backslash (\). However, you can also use the ESCAPE clause to

 specify a different escape character. To match the escape character itself, write two escape

 characters.

Note that the backslash already has a specific meaning in string literals. To write a pattern

 that contains a backslash, you must write two backslashes in an SQL statement. Therefore

, writing a pattern that matches a literal backslash means writing four backslashes in the

 statement. You can avoid this by using the ESCAPE clause to specify a different escape

 character. Then, a backslash does not provide a special meaning to LIKE anymore. (

However, the backslash still has a special meaning for the string literal parser, and two

backslashes are still required.)

Issue: 20200701 557

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

You can also select no escape character by writing ESCAPE ''. This effectively disables

the escape mechanism, which makes it impossible to disable the special meaning of

underscores and percent signs in the pattern.

13.7 Functions for formatting data types

Formatting functions of POLARDB compatible with Oracle provide a powerful set of tools

 for converting various data types (date/time, integer, floating point, and numeric) into

formatted strings. These functions can also convert formatted strings into specific data

types. The following table describes these formatting functions. These functions follow a

common calling convention. The first argument is the value to be formatted and the second

 argument is a string template that defines the output or input format.

Table 13-8: Formatting functions

Function Return type Description Example Result

TO CHAR(DATE [,
format])

VARCHAR2 Converts a date
/time to a string
 in the format
 specified by
 the format
argument. If you
 omit the format
 argument, the
function returns
 a string in the
default format (
DD-MON- YY).

TO CHAR(
SYSDATE, 'MM/
DD/YYYY HH12:
MI:SS AM')

07/25/2007 09:
43:02 AM

TO CHAR(
INTEGER [,
format])

VARCHAR2 Converts an
integer to a
string in the
format specified
 by the format
argument.

TO CHAR(2412, '
999,999S')

2,412+

TO CHAR(
NUMBER [,
format])

VARCHAR2 Converts a
decimal number
 to a string in the
 format specified
 by the format
argument.

TO CHAR(10125.
35, '999,999.99')

10,125.35

558 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Function Return type Description Example Result

TO CHAR
(DOUBLE
PRECISION,
format)

VARCHAR2 Converts a
floating-point
 number to a
 string in the
format specified
 by the format
argument.

TO CHAR(CAST
(123.5282 AS
REAL), '999.99')

123.53

TO DATE(string
 [, format])

DATE Converts a date
formatted string
 to a DATE data
type.

TO DATE('2007-
07-04 13:39:10
', 'YYYY-MM-DD
HH24:MI:SS')

04-JUL-07 13:39
:10

TO NUMBER(
string [, format])

NUMBER Converts
a number
formatted string
 to a NUMBER
data type.

TO NUMBER('2,
412-', '999,999S
')

-2412

TO TIMESTAMP(
string, format)

TIMESTAMP Converts a
timestamp
formatted string
 to a TIMESTAMP
data type.

TO TIMESTAMP('
05 Dec 2000 08:
30:25 pm', 'DD
Mon YYYY hh12:
mi:ss pm')

05-DEC-00 20:30
:25

In an output template string for the TO_CHAR function, some specific patterns are

recognized and replaced with appropriately-formatted data from the value to be formatted

. Any text that is not a template pattern is an exact copy. Similarly, in an input template

string (for any function but TO_CHAR), template patterns identify the parts of the input data

string to be looked at and the values to be found there.

The following table lists the available template patterns for formatting date values by using

 the TO_CHAR and TO_DATE functions.

Table 13-9: Template date/time format patterns

Pattern Description

HH Hour of day (01-12)

HH12 Hour of day (01-12)

HH24 Hour of day (00-23)

MI Minute (00-59)

Issue: 20200701 559

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Pattern Description

SS Second (00-59)

SSSSS Seconds past midnight (0-86399)

AM or A.M. or PM or P.M. Meridian indicator (uppercase)

am or a.m. or pm or p.m. Meridian indicator (lowercase)

Y,YYY Year (4 and more digits) with comma

YEAR Year (spelled out)

SYEAR Year (spelled out) (BC dates prefixed by a
minus sign)

YYYY Year (4 and more digits)

SYYYY Year (4 and more digits) (BC dates prefixed
by a minus sign)

YYY Last 3 digits of year

YY Last 2 digits of year

Y Last digit of year

IYYY ISO year (4 and more digits)

IYY Last 3 digits of ISO year

IY Last 2 digits of ISO year

I Last 1 digit of ISO year

BC or B.C. or AD or A.D. Era indicator (uppercase)

bc or b.c. or ad or a.d. Era indicator (lowercase)

MONTH Full uppercase month name

Month Full mixed-case month name

month Full lowercase month name

MON Abbreviated uppercase month name (3
characters in English, localized lengths vary)

Mon Abbreviated mixed-case month name (3
characters in English, localized lengths vary)

mon Abbreviated lowercase month name (3
characters in English, localized lengths vary)

MM Month number (01-12)

DAY Full uppercase day name

560 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Pattern Description

Day Full mixed-case day name

day Full lowercase day name

DY Abbreviated uppercase day name (3
characters in English, localized lengths vary)

Dy Abbreviated mixed-case day name (3
characters in English, localized lengths vary)

dy Abbreviated lowercase day name (3
characters in English, localized lengths vary)

DDD Day of year (001-366)

DD Day of month (01-31)

D Day of week (1-7. Sunday is 1)

W Week of month (1-5) (The first week starts
on the first day of the month.)

WW Week number of year (1-53) (The first week
starts on the first day of the year.)

IW ISO week number of year. The first Thursday
 of the new year is in week 1.

CC Century (2 digits). The 21st century starts on
 2001-01-01.

SCC Same as CC except BC dates are prefixed by
a minus sign.

J Julian Day (days since January 1, 4712 BC)

Q Quarter

RM Month in Roman numerals (I-XII. I=January) (
uppercase)

rm Month in Roman numerals (i-xii. i=January) (
lowercase)

Issue: 20200701 561

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Pattern Description

RR The first 2 digits of the year when given only
the last 2 digits of the year. The result is
based upon an algorithm using the current
year and the given 2-digit year. The first 2
digits of the given 2-digit year will be the
same as the first 2 digits of the current year
with the following exceptions:

• If the given 2-digit year is < 50 and the
last 2 digits of the current year is >= 50,
then the first 2 digits for the given year
is 1 greater than the first 2 digits of the
current year.

• If the given 2-digit year is >= 50 and the
 last 2 digits of the current year is < 50,
then the first 2 digits for the given year is
1 less than the first 2 digits of the current
 year.

RRRR Only affects the TO_DATE function. Allows
specification of 2-digit or 4-digit year. If 2-
digit year given, then returns first 2 digits
of year like RR format. If 4-digit year given,
returns the given 4-digit year.

Specific modifiers may be applied to any template pattern to alter its behavior. For

example, FMMonth is the Month pattern with the FM modifier. The following table lists the

pattern modifiers for date/time formatting.

Table 13-10: Template pattern modifiers for date/time formatting

Modifier Description Example

FM prefix Fill mode (suppress padding
blanks and zeros)

FMMonth

TH suffix Uppercase ordinal number
suffix

DDTH

th suffix Lowercase ordinal number
suffix

DDth

FX prefix Fixed format global option (
see note)

FX Month DD Day

SP suffix Spell mode DDSP

562 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Note:

• FM suppresses leading zeros and trailing blanks that would otherwise be added to

ensure that the output conforms to a fixed width pattern.

• If the FX option is not used, TO_TIMESTAMP and TO_DATE skip multiple blank spaces

in the input string. You must specify FX as the first item in the template. For example,

TO_TIMESTAMP('2000 JUN', 'YYYY MON') is valid, but TO_TIMESTAMP('2000 JUN', 'FXYYYY

MON') returns an error, because TO_TIMESTAMP only expects one space.

• Ordinary text is allowed in TO_CHAR templates and will be output literally.

• In conversions from string to timestamp or date, the CC field is ignored if a YYY, YYYY or

Y,YYY field exists. If CC is used with the YY or Y field, the year is computed as (CC-1)*100

+YY.

The following table shows the available template patterns for formatting numeric values.

Table 13-11: Template patterns for numeric formatting

Pattern Description

9 Value with the specified number of digits

0 Value with leading zeroes

. (period) Decimal point

, (comma) Group (thousand) separator

$ Dollar sign

PR Negative value in angle brackets

S Sign anchored to number (uses locale)

L Currency symbol (uses locale)

D Decimal point (uses locale)

G Group separator (uses locale)

MI Minus sign specified in right-most position (
if number < 0)

RN or rn Roman numeral (input between 1 and 3999)

V Shift specified number of digits (see note)

Note:

Issue: 20200701 563

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

• 9 results in a value with the same number of digits as there are 9s. If a digit is not

available or specified, a space is output.

• TH does not convert values less than zero or fractional numbers.

V effectively multiplies the input values by 10n (10 to the power of n), where n indicates

the number of digits following V. TO_CHAR does not support the use of V combined with a

decimal point. (For example, 99.9V99 is not allowed.)

The following table shows some examples about how to use TO_CHAR and TO_DATE.

Expression Result

TO CHAR(CURRENT TIMESTAMP, 'Day, DD
HH12:MI:SS')

'Tuesday , 06 05:39:18'

TO CHAR(CURRENT TIMESTAMP, 'FMDay,
FMDD HH12:MI:SS')

'Tuesday, 6 05:39:18'

TO CHAR(-0.1, '99.99') ' -.10'

TO CHAR(-0.1, 'FM9.99') '-.1'

TO CHAR(0.1, '0.9') ' 0.1'

TO CHAR(12, '9990999.9') ' 0012.0'

TO CHAR(12, 'FM9990999.9') '0012.'

TO CHAR(485, '999') ' 485'

TO CHAR(-485, '999') ' -485'

TO CHAR(1485, '9,999') ' 1,485'

TO CHAR(1485, '9G999') ' 1,485'

TO CHAR(148.5, '999.999') ' 148.500'

TO CHAR(148.5, 'FM999.999') '148.5'

TO CHAR(148.5, 'FM999.990') '148.500'

TO CHAR(148.5, '999D999') ' 148.500'

TO CHAR(3148.5, '9G999D999') ' 3,148.500'

TO CHAR(-485, '999S') '485- '

TO CHAR(-485, '999MI') '485- '

TO CHAR(485, '999MI') '485 '

TO CHAR(4 85, 'FM999MI') '485'

TO CHAR(-485, '999PR') '<485>'

564 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Expression Result

TO CHAR(485, 'L999') '$ 485'

TO CHAR(4 85, 'RN') ' CDLXXXV'

TO CHAR(4 85, 'FMRN') 'CDLXXXV'

TO CHAR(5.2, 'FMRN') 'V'

TO CHAR(12, '99V999') ' 12000'

TO CHAR(12.4, '99V999') ' 12400'

TO CHAR(12.45, '99V9') ' 125'

13.8 Date/Time functions and operators

13.8.1 Overview
Table 13-13: Date/Time functions shows the available functions that can be used to process

date/time values. For more information about these functions, see the subsequent topics.

Table 13-12: Date/Time operators illustrates the behaviors of the basic arithmetic operators

(+, -). For formatting functions, see the Functions for formatting data types topic. You need

to be familiar with the background information on date/time data types from topic Date

and time type.

Table 13-12: Date/Time operators

Operator Example Result

+ DATE '2001-09-28' + 7 05-OCT-01 00:00:00

+ TIMESTAMP '2001-09-28 13:
30:00' + 3

01-OCT-01 13:30:00

- DATE '2001-10-01' - 7 24-SEP-01 00:00:00

- TIMESTAMP '2001-09-28 13:
30:00' - 3

25-SEP-01 13:30:00

- TIMESTAMP '2001-09-29 03:
00:00' - TIMESTAMP '2001-09
-27 12:00:00'

@ 1 day 15 hours

In the date/time functions listed in Table 13-13: Date/Time functions, the use of the DATE

and TIMESTAMP data types are interchangeable.

Issue: 20200701 565

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Table 13-13: Date/Time functions

Function Return type Description Example Result

ADD MONTHS(
DATE, NUMBER)

DATE Adds months to
a date.

ADD MONTHS('
28-FEB-97', 3.8)

31-MAY-97 00:
00:00

CURRENT DATE DATE Returns the
current date.

CURRENT DATE 04-JUL-07

CURRENT
TIMESTAMP

TIMESTAMP Returns the
current date and
 time.

CURRENT
TIMESTAMP

04-JUL-07 15:33
:23.484

EXTRACT(
field FROM
TIMESTAMP)

DOUBLE
PRECISION

Retrieves
subfields.

EXTRACT(
hour FROM
TIMESTAMP '
2001-02-16 20:
38:40')

20

LAST DAY(DATE) DATE Returns the
 last day of
 the month
represented by
the given date.
If the given date
 contains a time
 portion, the
time portion is
carried forward
 to the result
unchanged.

LAST DAY('14-
APR-98')

30-APR-98 00:00
:00

LOCALTIMES
TAMP [(precision
)]

TIMESTAMP Returns the
current date
and time (start
 of current
transaction).

LOCALTIMES
TAMP

04-JUL-07 15:33
:23.484

MONTHS
BETWEEN(DATE,
DATE)

NUMBER Returns the
 number of
months between
 two dates.

MONTHS
BETWEEN('28
-FEB- 07', '30-
N0V-06')

3

NEXT DAY(DATE,
dayofweek)

DATE Returns the
date that falls
on dayofweek
 following the
specified date.

NEXT DAY('16-
APR- 07','FRI')

2 0-APR-07 00:
00:00

566 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Function Return type Description Example Result

NEW TIME(DATE
, VARCHAR,
VARCHAR)

DATE Converts a date
 and time to an
 alternate time
zone.

NEW TIME(T0
DATE '2005/05/
29 01:45', 'AST', '
PST')

2005/05/29 21:
45:00

ROUND(DATE [,
format])

DATE Returns the
date rounded
 according to
format.

R0UND(T0 DATE
('29-MAY- 05'),'
M0N')

01-JUN-05 00:00
:00

SYS EXTRACT
UTC(TIME STAMP
WITH TIME ZONE
)

TIMESTAMP TIMESTAMP SYS EXTRACT
UTC(CAST('24 -
MAR-11 12:30:
00PM - 04:00'
AS TIMESTAMP
WITH TIME ZONE
))

2 4-MAR-11 16:
30:00

SYSDATE DATE Returns the
current date and
 time.

SYSDATE 01-AUG-12 11:
12:34

SYSTIMESTAMP() TIMESTAMP Returns the
current date and
 time.

SYSTIMESTAMP 01-AUG-12 11:
11:23.665 229 -
07:00

TRUNC(DATE [
format])

DATE Truncates
according to
format.

TRUNC(T0 DATE
('2 9-MAY- 05'), '
MON')

01-MAY-05 00:
00:00

13.8.2 ADD_MONTHS
The ADD_MONTHS function adds (or subtract if the second parameter is negative) the

specified number of months to the given date. The resulting day of the month and the

given date are the same. However, if the day of the month of the given date is the last day

of the month, the resulting date always falls on the last day of the month.

Note:

• Any fractional part for the number of months parameter is truncated before calculation.

• If the given date contains a time portion, the time portion is carried forward without

changing the result.

Issue: 20200701 567

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Examples

SELECT ADD_MONTHS('13-JUN-07',4) FROM DUAL;

 add_months

 13-OCT-07 00:00:00
(1 row)

SELECT ADD_MONTHS('31-DEC-06',2) FROM DUAL;

 add_months

 28-FEB-07 00:00:00
(1 row)

SELECT ADD_MONTHS('31-MAY-04',-3) FROM DUAL;

 add_months

 29-FEB-04 00:00:00
(1 row)

13.8.3 EXTRACT
The EXTRACT function retrieves subfields such as year or hour from date/time values. This

function returns a value of the data type DOUBLE PRECISION.

YEAR

The year field.

SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 2001
(1 row)

MONTH

The number of the month within the year (1-12).

SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 2
(1 row)

DAY

The day of the month (1-31).

SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

568 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

 date_part

 16
(1 row)

HOUR

The hour of the day (0-23).

SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 20
(1 row)

MINUTE

The minute of the hour (0-59).

SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 38
(1 row)

SECOND

The second of the minute, including the fractional part (0-59).

SELECT EXTRACT(SECOND FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 40
(1 row)

13.8.4 MONTHS_BETWEEN
The MONTHS_BETWEEN function returns the number of months between two dates. The

 result is a numeric value that is positive if the first date is later than the second date or

negative if the first date is less than the second date.

The result is always a whole number of months if the day of the month for both date

parameters is the same, or both date parameters fall on the last day of their respective

months.

The following are some examples of the MONTHS_BETWEEN function:

SELECT MONTHS_BETWEEN('15-DEC-06','15-OCT-06') FROM DUAL;

 months_between

Issue: 20200701 569

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

 2
(1 row)

SELECT MONTHS_BETWEEN('15-OCT-06','15-DEC-06') FROM DUAL;

 months_between

 -2
(1 row)

SELECT MONTHS_BETWEEN('31-JUL-00','01-JUL-00') FROM DUAL;

 months_between

 0.967741935
(1 row)

SELECT MONTHS_BETWEEN('01-JAN-07','01-JAN-06') FROM DUAL;

 months_between

 12
(1 row)

13.8.5 NEXT_DAY
The NEXT_DAY function returns the date of the first occurrence of the given day that is

strictly later than the given date. You must specify at least the first three letters of the day

, for example, SAT. If the given date contains a time portion, the time portion is carried

forward without changing the result.

The following is an example of the NEXT_DAY function:

SELECT NEXT_DAY(TO_DATE('13-AUG-07','DD-MON-YY'),'SUNDAY') FROM DUAL;

 next_day

 19-AUG-07 00:00:00
(1 row)

SELECT NEXT_DAY(TO_DATE('13-AUG-07','DD-MON-YY'),'MON') FROM DUAL;

 next_day

 20-AUG-07 00:00:00

570 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

(1 row)

13.8.6 NEW_TIME
The NEW_TIME function converts a date and time from one time zone to another. This

function returns a value of the data type DATE. The syntax is:

NEW_TIME(DATE, time_zone1, time_zone2)

The time_zone1 and time_zone2 parameters must be string values from the time zone

column in the following table:

Time zone Offset from UTC Description

AST UTC+4 Atlantic Standard Time

ADT UTC+3 Atlantic Daylight Time

BST UTC+11 Bering Standard Time

BDT UTC+10 Bering Daylight Time

CST UTC+6 Central Standard Time

CDT UTC+5 Central Daylight Time

EST UTC+5 Eastern Standard Time

EDT UTC+4 Eastern Daylight Time

GMT UTC Greenwich Mean Time

HST UTC+10 Alaska-Hawaii Standard
Time

HDT UTC+9 Alaska-Hawaii Daylight Time

MST UTC+7 Mountain Standard Time

MDT UTC+6 Mountain Daylight Time

NST UTC+3:30 Newfoundland Standard
Time

PST UTC+8 Pacific Standard Time

PDT UTC+7 Pacific Daylight Time

YST UTC+9 Yukon Standard Time

YDT UTC+8 Yukon Daylight Time

The following is an example of the NEW_TIME function:

SELECT NEW_TIME(TO_DATE('08-13-07 10:35:15','MM-DD-YY HH24:MI:SS'),'AST', 'PST') "
Pacific Standard Time" FROM DUAL;

Issue: 20200701 571

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Pacific Standard Time

 13-AUG-07 06:35:15
(1 row)

13.8.7 ROUND
The ROUND function returns a date rounded according to a specified template pattern. If

the template pattern is omitted, the date is rounded to the nearest day. The following table

shows the template patterns that can be used for the ROUND function.

Table 13-14: Template date patterns for the ROUND function

Pattern Description

CC, SCC Returns January 1, cc01 where cc is the first
 2 digits of the given year if the last 2 digits
 are at most 50, or 1 greater than the first 2
digits of the given year if the last 2 digits are
 greater than 50.

SYYY, YYYY, YEAR, SYEAR, YYY, YY, Y Returns January 1, yyyy where yyyy is
rounded to the nearest year. The date
rounds down on June 30, and rounds up on
July 1.

IYYY, IYY, IY, I Rounds the date to the beginning of the
ISO year, which is determined by rounding
 down if the month and day is on or before
 June 30. The date rounds up if the month
and day is July 1 or later.

Q Returns the first day of the quarter, which is
 determined by rounding down if the month
 and day is on or before the 15th day of the
second month of the quarter. Otherwise, the
 date is rounded up if the month and day is
the 16th day of the second month or later of
 the quarter.

MONTH, MON, MM, RM Returns the first day of the specified month
 if the day of the month is on or before
the 15th day. Returns the first day of the
following month if the day of the month is
the 16th day or later.

572 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Pattern Description

WW Rounds the date to the nearest date that
corresponds to the same day of the week as
 the first day of the year.

IW Rounds the date to the nearest date that
corresponds to the same day of the week as
 the first day of the ISO year.

W Rounds the date to the nearest date that
corresponds to the same day of the week as
 the first day of the month.

DDD, DD, J Rounds the date to the start of the nearest
day. Rounds to the start of the same day if
the specified time is 11:59:59 AM or earlier
. Rounds to the start of the next day if the
specified time is 12:00:00 PM or later.

DAY, DY, D Rounds the date to the nearest Sunday.

HH, HH12, HH24 Rounds the date to the nearest hour.

MI Rounds the date to the nearest minute.

The following section provides ROUND function examples.

The following examples round the date to the nearest century.

SELECT TO_CHAR(ROUND(TO_DATE('1950','YYYY'),'CC'),'DD-MON-YYYY') "Century" FROM
DUAL;

 Century

 01-JAN-1901
(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('1951','YYYY'),'CC'),'DD-MON-YYYY') "Century" FROM
DUAL;

 Century

 01-JAN-2001
(1 row)

The following examples round the date to the nearest year.

SELECT TO_CHAR(ROUND(TO_DATE('30-JUN-1999','DD-MON-YYYY'),'Y'),'DD-MON-YYYY') "
Year" FROM DUAL;

 Year

 01-JAN-1999
(1 row)

Issue: 20200701 573

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

SELECT TO_CHAR(ROUND(TO_DATE('01-JUL-1999','DD-MON-YYYY'),'Y'),'DD-MON-YYYY') "
Year" FROM DUAL;

 Year

 01-JAN-2000
(1 row)

The following examples round the date to the nearest ISO year. The first example rounds to

2004. The ISO year for 2004 begins on December 29, 2003. The second example rounds the

date to 2005. The ISO year for 2005 begins on January 3 of that same year.

Note:

An ISO year begins on the first Monday from which a seven day span (Monday to Sunday)

contains at least 4 days of the new year. Therefore, the beginning of an ISO year can start

in December of the previous year.

SELECT TO_CHAR(ROUND(TO_DATE('30-JUN-2004','DD-MON-YYYY'),'IYYY'),'DD-MON-YYYY')
 "ISO Year" FROM DUAL;

 ISO Year

 29-DEC-2003
(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('01-JUL-2004','DD-MON-YYYY'),'IYYY'),'DD-MON-YYYY')
 "ISO Year" FROM DUAL;

 ISO Year

 03-JAN-2005
(1 row)

The following examples round the date to the nearest quarter.

SELECT ROUND(TO_DATE('15-FEB-07','DD-MON-YY'),'Q') "Quarter" FROM DUAL;

 Quarter

 01-JAN-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('16-FEB-07','DD-MON-YY'),'Q') "Quarter" FROM DUAL;

 Quarter

 01-APR-07 00:00:00
(1 row)

The following examples round the date to the nearest month.

SELECT ROUND(TO_DATE('15-DEC-07','DD-MON-YY'),'MONTH') "Month" FROM DUAL;

 Month

574 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

 01-DEC-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('16-DEC-07','DD-MON-YY'),'MONTH') "Month" FROM DUAL;

 Month

 01-JAN-08 00:00:00
(1 row)

The following examples round the date to the nearest week. The first day of 2007 is a

Monday. Therefore, in the first example, the Monday that is closest to January 18 is January

15. In the second example, the Monday that is closest to January 19 is January 22.

SELECT ROUND(TO_DATE('18-JAN-07','DD-MON-YY'),'WW') "Week" FROM DUAL;

 Week

 15-JAN-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('19-JAN-07','DD-MON-YY'),'WW') "Week" FROM DUAL;

 Week

 22-JAN-07 00:00:00
(1 row)

The following examples round the date to the nearest ISO week. An ISO week starts on a

Monday. In the first example, the Monday that is closest to January 1, 2004 is December 29

, 2003. In the second example, the Monday that is closest to January 2, 2004 is January 5,

2004.

SELECT ROUND(TO_DATE('01-JAN-04','DD-MON-YY'),'IW') "ISO Week" FROM DUAL;

 ISO Week

 29-DEC-03 00:00:00
(1 row)

SELECT TRUNC(TO_DATE('02-JAN-04','DD-MON-YY'),'IW') "ISO Week" FROM DUAL;

 ISO Week

 05-JAN-04 00:00:00
(1 row)

The following examples round the date to the nearest week where a week is considered to

start on the same day as the first day of the month.

SELECT ROUND(TO_DATE('05-MAR-07','DD-MON-YY'),'W') "Week" FROM DUAL;

 Week

 08-MAR-07 00:00:00
(1 row)

Issue: 20200701 575

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

SELECT ROUND(TO_DATE('04-MAR-07','DD-MON-YY'),'W') "Week" FROM DUAL;

 Week

 01-MAR-07 00:00:00
(1 row)

The following examples round the date to the nearest day.

SELECT ROUND(TO_DATE('04-AUG-07 11:59:59 AM','DD-MON-YY HH:MI:SS AM'),'J') "Day"
FROM DUAL;

 Day

 04-AUG-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('04-AUG-07 12:00:00 PM','DD-MON-YY HH:MI:SS AM'),'J') "Day"
FROM DUAL;

 Day

 05-AUG-07 00:00:00
(1 row)

The following examples round the date to the nearest Sunday.

SELECT ROUND(TO_DATE('08-AUG-07','DD-MON-YY'),'DAY') "Day of Week" FROM DUAL;

 Day of Week

 05-AUG-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('09-AUG-07','DD-MON-YY'),'DAY') "Day of Week" FROM DUAL;

 Day of Week

 12-AUG-07 00:00:00
(1 row)

The following examples round the date to the nearest hour.

SELECT TO_CHAR(ROUND(TO_DATE('09-AUG-07 08:29','DD-MON-YY HH:MI'),'HH'),'DD-MON
-YY HH24:MI:SS') "Hour" FROM DUAL;

 Hour

 09-AUG-07 08:00:00
(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('09-AUG-07 08:30','DD-MON-YY HH:MI'),'HH'),'DD-MON
-YY HH24:MI:SS') "Hour" FROM DUAL;

 Hour

 09-AUG-07 09:00:00

576 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

(1 row)

The following examples round the date to the nearest minute.

SELECT TO_CHAR(ROUND(TO_DATE('09-AUG-07 08:30:29','DD-MON-YY HH:MI:SS'),'MI'),'DD
-MON-YY HH24:MI:SS') "Minute" FROM DUAL;

 Minute

 09-AUG-07 08:30:00
(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('09-AUG-07 08:30:30','DD-MON-YY HH:MI:SS'),'MI'),'DD
-MON-YY HH24:MI:SS') "Minute" FROM DUAL;

 Minute

 09-AUG-07 08:31:00
(1 row)

13.8.8 TRUNC
The TRUNC function returns a date that is truncated according to a specified template

pattern. If the template pattern is omitted, the date is truncated to the nearest day. The

following table shows the template patterns that can be used for the TRUNC function.

Table 13-15: Template date patterns for the TRUNC function

Pattern Description

CC, SCC Returns January 1, cc01 where cc is the first
2 digits of the given year.

SYYY, YYYY, YEAR, SYEAR, YYY, YY, Y Returns January 1, yyyy where yyyy is the
given year.

IYYY, IYY, IY, I Returns the start date of the ISO year
containing the given date.

Q Returns the first day of the quarter
containing the given date.

MONTH, MON, MM, RM Returns the first day of the specified month.

WW Returns the largest date just prior to, or the
same as the given date that corresponds to
the same day of the week as the first day of
 the year.

IW Returns the start of the ISO week containing
 the given date.

Issue: 20200701 577

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Pattern Description

W Returns the largest date just prior to, or the
same as the given date that corresponds to
the same day of the week as the first day of
the month.

DDD, DD, J Returns the start of the day for the given
date.

DAY, DY, D Returns the start of the week (Sunday)
containing the given date.

HH, HH12, HH24 Returns the start of the hour.

MI Returns the start of the minute.

Examples

The following example truncates the date to the hundred years unit.

SELECT TO_CHAR(TRUNC(TO_DATE('1951','YYYY'),'CC'),'DD-MON-YYYY') "Century" FROM
DUAL;

 Century

 01-JAN-1901
(1 row)

The following example truncates the date to the year.

SELECT TO_CHAR(TRUNC(TO_DATE('01-JUL-1999','DD-MON-YYYY'),'Y'),'DD-MON-YYYY') "
Year" FROM DUAL;

 Year

 01-JAN-1999
(1 row)

The following example truncates the date to the beginning of the ISO year.

SELECT TO_CHAR(TRUNC(TO_DATE('01-JUL-2004','DD-MON-YYYY'),'IYYY'),'DD-MON-YYYY') "
ISO Year" FROM DUAL;

 ISO Year

 29-DEC-2003
(1 row)

The following example truncates the date to the start date of the quarter.

SELECT TRUNC(TO_DATE('16-FEB-07','DD-MON-YY'),'Q') "Quarter" FROM DUAL;

 Quarter

 01-JAN-07 00:00:00

578 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

(1 row)

The following example truncates the date to the start date of the month.

SELECT TRUNC(TO_DATE('16-DEC-07','DD-MON-YY'),'MONTH') "Month" FROM DUAL;

 Month

 01-DEC-07 00:00:00
(1 row)

The following example truncates the date to the start of the week determined by the first

day of the year. For example, the first day of 2007 is a Monday, so the first Monday before

January 19 is January 15.

SELECT TRUNC(TO_DATE('19-JAN-07','DD-MON-YY'),'WW') "Week" FROM DUAL;

 Week

 15-JAN-07 00:00:00
(1 row)

The following example truncates the date to the beginning of an ISO week. An ISO

week starts on a Monday. January 2, 2004 is within the ISO week that starts on Monday,

December 29, 2003.

SELECT TRUNC(TO_DATE('02-JAN-04','DD-MON-YY'),'IW') "ISO Week" FROM DUAL;

 ISO Week

 29-DEC-03 00:00:00
(1 row)

The following example truncates the date to the start of the week where a week is

considered to start on the same day as the first day of the month.

SELECT TRUNC(TO_DATE('21-MAR-07','DD-MON-YY'),'W') "Week" FROM DUAL;

 Week

 15-MAR-07 00:00:00
(1 row)

The following example truncates the date to the start of the day.

SELECT TRUNC(TO_DATE('04-AUG-07 12:00:00 PM','DD-MON-YY HH:MI:SS AM'),'J') "Day"
FROM DUAL;

 Day

 04-AUG-07 00:00:00

Issue: 20200701 579

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

(1 row)

The following example truncates the date to the start of the week (Sunday).

SELECT TRUNC(TO_DATE('09-AUG-07','DD-MON-YY'),'DAY') "Day of Week" FROM DUAL;

 Day of Week

 05-AUG-07 00:00:00
(1 row)

The following example truncates the date to the start of the hour.

SELECT TO_CHAR(TRUNC(TO_DATE('09-AUG-07 08:30','DD-MON-YY HH:MI'),'HH'),'DD-MON-
YY HH24:MI:SS') "Hour" FROM DUAL;

 Hour

 09-AUG-07 08:00:00
(1 row)

The following example truncates the date to the start of the minute.

SELECT TO_CHAR(TRUNC(TO_DATE('09-AUG-07 08:30:30','DD-MON-YY HH:MI:SS'),'MI'),'DD-
MON-YY HH24:MI:SS') "Minute" FROM DUAL;

 Minute

 09-AUG-07 08:30:00
(1 row)

13.8.9 CURRENT DATE/TIME
POLARDB compatible with Oracle provides many functions that return values related to

the current date and time. All these functions return values based on the start time of the

current transaction.

• CURRENT_DATE

• CURRENT_TIMESTAMP

• LOCALTIMESTAMP

• LOCALTIMESTAMP(precision)

The CURRENT_DATE function returns the current date and time based on the start time of

the current transaction. If CURRENT_DATE is called multiple times within a transaction, the

value of CURRENT_DATE will not change.

SELECT CURRENT_DATE FROM DUAL;

 date

580 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

 06-AUG-07

The CURRENT_TIMESTAMP function returns the current date and time. When called from

 an SQL statement, this function returns the same value for each occurrence within the

statement. If called from multiple statements within a transaction, this function may return

 different values for each occurrence. If called from a function, this function may return a

different value other than the value returned by current_timestamp in the caller.

SELECT CURRENT_TIMESTAMP, CURRENT_TIMESTAMP FROM DUAL;

 current_timestamp | current_timestamp
----------------------------------+----------------------------------
 02-SEP-13 17:52:29.261473 +05:00 | 02-SEP-13 17:52:29.261474 +05:00

The LOCALTIMESTAMP function can optionally be assigned a precision parameter. This

parameter causes the result to be rounded to that many fractional digits in the seconds

field. If no precision parameter is assigned, the result is given to the full available precision.

SELECT LOCALTIMESTAMP FROM DUAL;

 timestamp

 06-AUG-07 16:11:35.973
(1 row)

SELECT LOCALTIMESTAMP(2) FROM DUAL;

 timestamp

 06-AUG-07 16:11:44.58
(1 row)

The preceding functions return the start time of the current transaction. Their values do not

 change during the transaction. This is considered a feature: The intent is to allow a single

transaction to have a consistent notion of the "current" time. Therefore, multiple modificati

ons within the same transaction bear the same timestamp. Other database systems can

more frequently use these values.

13.9 Sequence manipulation functions
This topic describes the functions that POLARDB compatible with Oracle provides to

manage sequence objects.

A sequence object (also known as a sequence generator or sequence) is a specific single

-row table created by the CREATE SEQUENCE command. A sequence object is used to

generate unique identifiers for rows of a table. The following sequence functions provide

Issue: 20200701 581

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

 simple and multiuser-safe methods for obtaining successive sequence values from

sequence objects.

Syntaxes

sequence.NEXTVAL
sequence.CURRVAL

Parameters

• sequence: the identifier assigned to the sequence in the CREATE SEQUENCE command.

The following section describes how to use the preceding functions.

• NEXTVAL: This function advances the sequence object to its next value and returns

the value. This operation cannot be reversed after it is complete. If multiple sessions

 concurrently run the NEXTVAL function, each session will safely receive a distinct

sequence value.

• CURRVAL: This function returns the value that is most recently obtained by the NEXTVAL

 function for the specified sequence in the current session. (If NEXTVAL has never been

 called for this sequence in this session, an error is reported.) Note that this function

returns a session-local value. It provides a predictable answer to whether other sessions

have run NEXTVAL since the current session ran NEXTVAL.

If a sequence object has been created by using default parameters, calls to the NEXTVAL

 function on this object will return successive values starting with 1. You can use specific

parameters in the CREATE SEQUENCE command to obtain other behavior.

Note:

To avoid blocking concurrent transactions that obtain numbers from the same sequence,

you cannot roll back a NEXTVAL operation. Once a value has been retrieved, it is

considered used. The value is still considered used if the transaction that did the NEXTVAL

later aborts. This means that aborted transactions may leave unused "gaps" in the

sequence of assigned values.

582 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

13.10 Conditional expressions
The following section describes the SQL-compliant conditional expressions available in

POLARDB compatible with Oracle.

CASE

The CASE expression in SQL is a generic condition expression, similar to the if/else

statements in other programming languages:

CASE WHEN condition THEN result
 [WHEN ...]
 [ELSE result]
END

CASE clauses can be used wherever an expression is valid. condition is an expression

that returns a BOOLEAN result. If the result is TRUE, the value of the CASE expression is

the result that follows the condition. If the result is FALSE, any subsequent WHEN clauses

 are searched in the same manner. If no WHEN condition is TRUE, the value of the CASE

expression is the result in the ELSE clause. If the ELSE clause is omitted and no condition

matches, the result is NULL.

SELECT * FROM test;

 a

 1
 2
 3
(3 rows)

SELECT a,
 CASE WHEN a=1 THEN 'one'
 WHEN a=2 THEN 'two'
 ELSE 'other'
 END
FROM test;

 a | case
---+-------
 1 | one
 2 | two
 3 | other
(3 rows)

The data types of all the result expressions must support conversion into a single output

type.

The following "simple" CASE expression is a specialized variant of the general form above:

CASE expression
 WHEN value THEN result

Issue: 20200701 583

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

 [WHEN ...]
 [ELSE result]
END

The expression is computed and compared to all the value specifications in the WHEN

clauses until a match is found. If no match is found, the result in the ELSE clause (or a null

value) is returned.

The preceding example can be written using the simple CASE syntax:

SELECT a,
 CASE a WHEN 1 THEN 'one'
 WHEN 2 THEN 'two'
 ELSE 'other'
 END
FROM test;

 a | case
---+-------
 1 | one
 2 | two
 3 | other
(3 rows)

A CASE expression does not evaluate any subexpressions that are not used to determine

 the result. For example, you can avoid a division-by-zero failure by using the following

method:

SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE false END;

COALESCE

The COALESCE function returns the first of its arguments that is not null. Null is only

returned when all arguments are null.

COALESCE(value [, value2] ...)

This function is often used to substitute a default value for null values when data is

retrieved for display or further computation. For example:

SELECT COALESCE(description, short_description, '(none)') ...

Sam as a CASE expression, COALESCE does not evaluate any arguments that are not used

 to determine the result. Arguments to the right of the first non-null argument are not

evaluated. This SQL-standard function provides capabilities similar to NVL and IFNULL,

which can be used in some other database systems.

584 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

NULLIF

The NULLIF function returns a null value if value1 and value2 are equal. If the values are not

 equal, value1 is returned.

NULLIF(valuel, value2)

This function can be used to perform the inverse operation of the preceding COALESCE

example:

SELECT NULLIF(value1, '(none)') ...

If value1 is (none), a null value is returned. Otherwise, value1 is returned.

NVL

The NVL function returns the first of its arguments that is not null. This function evaluates

 the first expression. If that expression is evaluated to null, NVL returns the second

expression.

NVL(exprl, expr2)

The return type is the same as the argument type. All arguments must be of the same data

 type (or must support conversion into a common data type). If all arguments are null, NVL

returns null.

The following example calculates a bonus for employees who have no commission. If an

employee receives commission, this expression returns the commission of the employee. If

the employee does not receive commission (the commission is null), this expression returns

a bonus that is equal to 10% of the employee's salary.

bonus = NVL(emp.commission, emp.salary * .10)

NVL2

NVL2 evaluates an expression and returns the second or third expression, depending on

the value of the first expression. If the first expression is not null, NVL2 returns the value in

expr2. If the first expression is null, NVL2 returns the value in expr3.

NVL2(expr1, expr2, expr3)

The return type is the same as the argument type. All arguments must be of the same data

type (or must support conversion into a common data type).

Issue: 20200701 585

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

The following example calculates a bonus for employees who receive commission. If an

employee receives commission, this expression returns an amount that is equal to 110% of

the employee's commission. If the employee does not receive commission (the commission

 is null), this expression returns 0.

bonus = NVL2(emp.commission, emp.commission * 1-1, 0)

GREATEST and LEAST

The GREATEST and LEAST functions select the highest or lowest value from a list of any

number of expressions.

GREATEST(value [, value2] ...)

LEAST(value [, value2] ...)

The expressions must support conversion into a common data type, which will be the data

type of the result. Null values in the list are ignored. The result is null only if all expressions

are evaluated to null.

Note that the GREATEST and LEAST functions are not in the SQL standard, but are a common

 extension.

13.11 Aggregate functions

Aggregate functions compute a single result value from a set of input values. The following

tables list the built-in aggregate functions.

Table 13-16: General-purpose aggregate functions

Function Argument type Return type Description

AVG(expression) INTEGER, REAL,
DOUBLE PRECISION,
or NUMBER

NUMBER for any
 integer-type
argument, DOUBLE
 PRECISION for a
 floating-point
argument, otherwise
 the same as the
argument data type

Returns the average (
arithmetic mean) of
all input values.

COUNT(*) BIGINT Returns the number
of input rows.

586 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Function Argument type Return type Description

COUNT(expression) Any BIGINT Returns the number
 of input rows for
which the value of
expression is not null
.

MAX(expression) Any numeric, string,
or date/time type

Same as argument
type

Returns the
maximum value of
expression across all
input values.

MIN(expression) Any numeric, string,
or date/time type

Same as argument
type

Returns the minimum
 value of expression
 across all input
values.

SUM(expression) INTEGER, REAL,
DOUBLE PRECISION,
or NUMBER

BIGINT for SMALLINT
 or INTEGER
arguments, NUMBER
for BIGINT arguments
, DOUBLE PRECISION
 for floating-
point arguments,
otherwise the same
 as the argument
data type

Returns the sum of
expression across all
input values.

Note that except for the COUNT function, these functions return a null value when no rows

are selected. In particular, SUM of no rows returns null, instead of returning 0 as expected.

When necessary, you can use the COALESCE function to substitute zero for null.

The following table shows aggregate functions that are used in statistical analysis. (

These functions are separated out to avoid cluttering the listing of more-commonly-used

aggregates.) N mentioned in any description indicates the number of input rows for which

 all the input expressions are not null. In all cases, null is returned if the computation is

invalid (for example, when N is 0).

Table 13-17: Aggregate functions for statistics

Function Argument type Return type Description

CORR(Y, X) DOUBLE PRECISION DOUBLE PRECISION The correlation
coefficient.

Issue: 20200701 587

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Function Argument type Return type Description

COVAR POP(Y, X) DOUBLE PRECISION DOUBLE PRECISION The population
covariance.

COVAR SAMP(Y, X) DOUBLE PRECISION DOUBLE PRECISION The sample
covariance.

REGR AVGX(Y, X) DOUBLE PRECISION DOUBLE PRECISION The average of
the independent
variable (sum(X) / N
).

REGR AVGY(Y, X) DOUBLE PRECISION DOUBLE PRECISION The average of the
dependent variable (
sum(Y) / N).

REGR COUNT(Y, X) DOUBLE PRECISION DOUBLE PRECISION The number of input
 rows in which both
expressions are not
null.

REGR INTERCEPT(Y, X) DOUBLE PRECISION DOUBLE PRECISION The y-intercept of
the least-squares-
fit linear equation
determined by the (X
, Y) pairs.

REGR R2(Y, X) DOUBLE PRECISION DOUBLE PRECISION The square of the
correlation coefficien
t.

REGR SLOPE(Y, X) DOUBLE PRECISION DOUBLE PRECISION The slope of the least
-squares-fit linear
equation determined
 by the (X, Y) pairs.

REGR SXX(Y, X) DOUBLE PRECISION DOUBLE PRECISION Sum (X2) - sum (X)2
 / N ("sum of squares
" of the independent
variable)

REGR SXY(Y, X) DOUBLE PRECISION DOUBLE PRECISION Sum (X* Y) - sum (
X) * sum(Y) / N ("
sum of products" of
 independent times
dependent variable)

588 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Function Argument type Return type Description

REGR SYY(Y, X) DOUBLE PRECISION DOUBLE PRECISION Sum (Y2) - sum (Y)2
 / N ("sum of squares
" of the dependent
variable)

STDDEV(expression) INTEGER, REAL,
DOUBLE PRECISION,
or NUMBER

DOUBLE PRECISION
 for floating-
point arguments,
otherwise NUMBER

The historical alias
for STDDEV SAMP.

STDDEV POP(
expression)

INTEGER, REAL,
DOUBLE PRECISION,
or NUMBER

DOUBLE PRECISION
 for floating-
point arguments,
otherwise NUMBER

The population
standard deviation
of the input values.

STDDEV SAMP(
expression)

INTEGER, REAL,
DOUBLE PRECISION,
or NUMBER

DOUBLE PRECISION
 for floating-
point arguments,
otherwise NUMBER

The sample standard
 deviation of the
input values.

VARIANCE(expression
)

INTEGER, REAL,
DOUBLE PRECISION,
or NUMBER

DOUBLE PRECISION
 for floating-
point arguments,
otherwise NUMBER

The historical alias
for VAR SAMP.

VAR POP(expression) INTEGER, REAL,
DOUBLE PRECISION,
or NUMBER

DOUBLE PRECISION
 for floating-
point arguments,
otherwise NUMBER

The population
variance of the input
values (square of the
 population standard
 deviation).

VAR SAMP(
expression)

INTEGER, REAL,
DOUBLE PRECISION,
or NUMBER

DOUBLE PRECISION
 for floating-
point arguments,
otherwise NUMBER

The sample variance
 of the input values (
square of the sample
 standard deviation).

Issue: 20200701 589

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

13.12 Subquery expressions
This topic describes the SQL-compliant subquery expressions available in POLARDB

compatible with Oracle. All expressions described in this topic return Boolean (true/false)

results.

EXISTS

The argument of EXISTS is an arbitrary SELECT statement or subquery. The subquery is

evaluated to determine whether it returns rows. If at least one row is returned, the result of

EXISTS is "true". If the subquery returns no rows, the result of EXISTS is "false".

EXISTS(subquery)

The subquery can refer to variables from the surrounding query, which will act as constants

 during an evaluation of the subquery.

In most cases, the time required for the subquery to run will only be enough to determine

 whether a minimum of one row is returned (not until completion). We do not recommend

 that you write a subquery that produces any potential side effects (such as calling

sequence functions). It is difficult to predict when and if potential side effects may occur.

The result of EXISTS only depends on whether rows are returned, rather than on the content

 of the rows. Therefore, the output list of the subquery can be ignored. A common coding

convention is to write all EXISTS tests in the form of EXISTS (SELECT 1 WHERE...). However,

exceptions to this rule exist, such as subqueries that use INTERSECT.

This example is similar to an inner join on the deptno column. However, in this example, up

 to one output row is produced for each dept row and multiple matching emp rows:

SELECT dname FROM dept WHERE EXISTS (SELECT 1 FROM emp WHERE emp.deptno = dept
.deptno);

 dname

 ACCOUNTING
 RESEARCH
 SALES
(3 rows)

IN

The right-hand side is a parenthesized subquery, which must return exactly one column.

The left-hand expression is evaluated and compared to each row of the subquery result.

590 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

The result of IN is "true" if one equal subquery row is found. The result is "false" if no equal

row is found (including the case where the subquery returns no rows).

expression IN (subquery)

Note that the result of the IN construct will be null rather than "false" in either of the

following scenarios. 1. The left-hand expression returns null. 2. No equal right-hand values

 are found and at least one right-hand row returns null. This is in accordance with standard

SQL rules for Boolean combinations of null values.

As with EXISTS, we do not recommend you assume that a complete evaluation of the

subquery will be performed.

NOT IN

The right-hand side is a parenthesized subquery, which must return exactly one column.

The left-hand expression is evaluated and compared to each row of the subquery result.

The result of NOT IN is "true" if only unequal subquery rows are found (including the case

where the subquery returns no rows). The result is "false" if an equal row is found.

expression NOT IN (subquery)

Note that the result of the NOT IN construct will be null rather than "true" in either of the

following scenarios. 1. The left-hand expression returns null. 2. No equal right-hand values

 are found and at least one right-hand row returns null. This is in accordance with standard

SQL rules for Boolean combinations of null values.

As with EXISTS, we do not recommend you assume that a complete evaluation of the

subquery will be performed.

ANY/SOME

The right-hand side is a parenthesized subquery, which must return exactly one column.

The left-hand expression is evaluated and compared to each row of the subquery result by

using the given operator, which must generate a BOOLEAN result. The result of ANY is "true

" if a true result is returned. The result is "false" if no true result is found (including the case

where the subquery returns no rows).

expression operator ANY (subquery)
expression operator SOME (subquery)

SOME is a synonym for ANY. IN is equivalent to "= ANY".

Issue: 20200701 591

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 13 Built-in functions

Note that if no success is achieved and at least one right-hand row returns null for

the operator's result, the result of the ANY construct will be null, not "false". This is in

accordance with standard SQL rules for Boolean combinations of null values.

As with EXISTS, we do not recommend you assume that a complete evaluation of the

subquery will be performed.

ALL

The right-hand side is a parenthesized subquery, which must return exactly one column.

The left-hand expression is evaluated and compared to each row of the subquery result by

using the given operator, which must generate a BOOLEAN result. The result of ALL is "true"

if the comparison returns true for all subquery rows (including the case where the subquery

 returns no rows). The result is "false" if the comparison returns false for a subquery row

. The result is null if the comparison does not return false for any subquery row, and the

comparison returns null for at least one row.

expression operator ALL (subquery)

NOT IN is equivalent to "<> ALL".

As with EXISTS, we do not recommend you assume that a complete evaluation of the

subquery will be performed.

592 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

14 Oracle catalog views

14.1 ALL_ALL_TABLES
The ALL_ALL_TABLES view provides the information about the tables accessible by the

current user.

Parameter Type Description

owner TEXT The username of the owner to which the
table belongs.

schema_name TEXT The name of the schema to which the table
belongs.

table_name TEXT The name of the table.

tablespace_name TEXT The name of the tablespace where the
table is located if this tablespace is not the
default tablespace.

status CHARACTER VARYING
 (5)

This parameter is supported for compatibil
ity only. The value is VALID.

temporary TEXT • Y: indicates that the table is a temporary
 table.

• N: indicates that the table is a permanent
 table.

14.2 ALL_CONS_COLUMNS
The ALL_CONS_COLUMNS view provides the information about the columns specified in

constraints placed on tables accessible by the current user.

Parameter Type Description

owner TEXT The username of the owner to which the
constraint belongs.

schema_name TEXT The name of the schema to which the
constraint belongs.

constraint_name TEXT The name of the constraint.

table_name TEXT The name of the table to which the
constraint belongs.

Issue: 20200701 593

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

column_name TEXT The name of the column referenced in the
constraint.

position SMALLINT The position of the column within the object
 definition.

constraint_def TEXT The definition of the constraint.

14.3 ALL_CONSTRAINTS
The ALL_CONSTRAINTS view provides the information about the constraints placed on

tables accessible by the current user.

Parameter Type Description

owner TEXT The username of the owner to which the
constraint belongs.

schema_name TEXT The name of the schema to which the
constraint belongs.

constraint_name TEXT The name of the constraint.

constraint_type TEXT The type of the constraint. Valid values:

• C: the check constraint
• F: the foreign key constraint
• P: the primary key constraint
• U: the unique key constraint
• R: the referential integrity constraint
• V: the constraint on a view
• O: with a read-only property on a view

table_name TEXT The name of the table to which the
constraint belongs.

search_condition TEXT The search condition that applies to a check
 constraint.

r_owner TEXT The owner of a table referenced by a
referential constraint.

r_constraint_name TEXT The name of the constraint definition for a
referenced table.

594 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

delete_rule TEXT The delete rule for a referential constraint.
Valid values:

• C: cascade
• R: restrict
• N: no action

deferrable BOOLEAN Indicates if the constraint is deferrable. Valid
 values: T and F.

deferred BOOLEAN Indicates if the constraint has been deferred
. Valid values: T and F.

index_owner TEXT The username of the owner to which the
index belongs.

index_name TEXT The name of the index.

constraint_def TEXT The definition of the constraint.

14.4 ALL_DB_LINKS
The ALL_DB_LINKS view provides the information about the database links accessible by

the current user.

Parameter Type Description

owner TEXT The username of the owner to which the
database link belongs.

db_link TEXT The name of the database link.

type CHARACTER VARYING The type of the remote server. Valid values:
REDWOOD, EDB.

username TEXT The username of the user logging in.

host TEXT The name or IP address of the remote server
.

Issue: 20200701 595

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

14.5 ALL_DIRECTORIES
The ALL_DIRECTORIES view provides the information about all directories created by the

CREATE DIRECTORY command.

Parameter Type Description

owner CHARACTER VARYING(30) The username of the owner
 to which the directory
belongs.

Directory_name CHARACTER VARYING(30) The alias name assigned to
the directory.

directory_path CHARACTER VARYING(4000) The path to the directory.

14.6 ALL_IND_COLUMNS
The ALL_IND_COLUMNS view provides the information about columns included in indexes

on the tables accessible by the current user.

Parameter Type Description

index_owner TEXT The username of the owner to which the
index belongs.

schema_name TEXT The name of the schema to which the index
 belongs.

index_name TEXT The name of the index.

table_owner TEXT The username of the owner to which the
table belongs.

table_name TEXT The name of the table to which the index
belongs.

column_name TEXT The name of the column.

column_position SMALLINT The position of the column within the index.

column_length SMALLINT The length of the column in bytes.

char_length NUMERIC The length of a column in characters.

descend CHARACTER(1) This parameter is supported for compatibil
ity only. The value is Y in descending order.

596 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

14.7 ALL_INDEXES
The ALL_INDEXES view provides the information about the indexes on tables that may be

accessed by the current user.

Parameter Type Description

owner TEXT The username of the owner to which the
index belongs.

schema_name TEXT The name of the schema to which the index
 belongs.

index_name TEXT The name of the index.

index_type TEXT The index type is BTREE. This parameter is
supported for compatibility only.

table_owner TEXT The username of the owner of the indexed
table.

table_name TEXT The name of the indexed table.

table_type TEXT This parameter is supported for compatibil
ity only. The value is TABLE.

uniqueness TEXT Indicates if the index is UNIQUE or
NONUNIQUE.

compression CHARACTER(1) The value is N (not compressed). This
parameter is supported for compatibility
only.

tablespace_name TEXT The name of the tablespace where the
table is located if this tablespace is not the
default tablespace.

logging TEXT The value is LOGGING. This parameter is
supported for compatibility only.

status TEXT This parameter is supported for compatibil
ity only. The value is VALID.

partitioned CHARACTER(3) Indicates that the index is partitioned. The
value is NO.

temporary CHARACTER(1) Indicates that an index is on a temporary
 table. This parameter is supported for
compatibility only. The value is N.

secondary CHARACTER(1) This parameter is supported for compatibil
ity only. The value is N.

Issue: 20200701 597

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

join_index CHARACTER(3) This parameter is supported for compatibil
ity only. The value is NO.

dropped CHARACTER(3) This parameter is supported for compatibil
ity only. The value is NO.

14.8 ALL_JOBS
The ALL_JOBS view provides the information about all jobs in a database.

Parameter Type Description

job INTEGER The identifier of a job (Job ID).

log_user TEXT The name of the user that submitted the job
.

priv_user TEXT The same as log_user. This parameter is
supported for compatibility only.

schema_user TEXT The name of the schema used to parse the
job.

last_date TIMESTAMP WITH
TIME ZONE

The last date when this job was executed
with the expected result returned.

last_sec TEXT The same as last_date.

this_date TIMESTAMP WITH
TIME ZONE

The date when the system starts to execute
the job.

this_sec TEXT The same as this_date.

next_date TIMESTAMP WITH
TIME ZONE

The next date when this job will be executed
.

next_sec TEXT The same as next_date.

total_time INTERVAL The period in which the job is executed. Unit
: seconds.

broken TEXT • Y: indicates that no attempt will be made
 to run this job.

• N: indicates that attempts will be made
to run this job.

interval TEXT The interval at which the job is repeated.

failures BIGINT The number of times that the job has failed
since the last successful execution.

598 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

what TEXT The job definition that runs when the job
executes. The job definition appears as a PL
/SQL code block.

nls_env CHARACTER VARYING
(4000)

The value is NULL. This parameter is
supported for compatibility only.

misc_env BYTEA The value is NULL. This parameter is
supported for compatibility only.

instance NUMERIC The value is 0. This parameter is supported
for compatibility only.

14.9 ALL_OBJECTS
The ALL_OBJECTS view provides the information about all objects in a database.

Parameter Type Description

owner TEXT The username of the owner to which an
object belongs.

schema_name TEXT The name of the schema to which the object
 belongs.

object_name TEXT The name of the object.

object_type TEXT The type of the object. Valid values: INDEX
, FUNCTION, PACKAGE, PACKAGE BODY,
PROCEDURE, SEQUENCE, SYNONYM, TABLE,
TRIGGER, and VIEW.

status CHARACTER VARYING Indicates whether the state of the object
 is valid. This parameter is supported for
compatibility only. The value is VALID.

temporary TEXT • Y: The object is a temporary object.
• N: The object is a permanent object.

Issue: 20200701 599

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

14.10 ALL_PART_KEY_COLUMNS
The ALL_PART_KEY_COLUMNS view provides the information about the key columns of

partitioned tables in a database.

Parameter Type Description

owner TEXT The owner of a partitioned
table.

schema_name TEXT The name of the schema to
which the table belongs.

name TEXT The name of the table to
which the column belongs.

object_type CHARACTER(5) This parameter is supported
 for compatibility only. The
value is TABLE.

column_name TEXT The name of the column on
which the key is defined.

column_position INTEGER The ordinal position of this
 column. For example, a
value of 1 indicates the first
 column and a value of 2
indicates the second column
. All columns follow the
same rule.

14.11 ALL_PART_TABLES
The ALL_PART_TABLES view provides the information about all partitioned tables in the

database.

Parameter Type Description

owner TEXT The owner of a partitioned
table.

schema_name TEXT The name of the schema to
which the table belongs.

table_name TEXT The name of the table.

partitioning_type TEXT The partition type used to
define table partitions.

600 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

subpartitioning_type TEXT The subpartition type used
to define table subpartitions.

partition_count BIGINT The number of partitions in
the table.

def_subpartition_count INTEGER The number of subpartitions
 in the table.

partitioning_key_count INTEGER The number of specified
partition keys.

subpartitioning_key_count INTEGER The number of specified
subpartition keys.

status CHARACTER VARYING(8) This parameter is supported
 for compatibility only. The
value is VALID.

def_tablespace_name CHARACTER VARYING(30) This parameter is supported
 for compatibility only. The
value is NULL.

def_pct_free NUMERIC This parameter is supported
 for compatibility only. The
value is NULL.

def_pct_used NUMERIC This parameter is supported
 for compatibility only. The
value is NULL.

def_ini_trans NUMERIC This parameter is supported
 for compatibility only. The
value is NULL.

def_max_trans NUMERIC This parameter is supported
 for compatibility only. The
value is NULL.

def_initial_extent CHARACTER VARYING(40) This parameter is supported
 for compatibility only. The
value is NULL.

Def_next_extent CHARACTER VARYING(40) This parameter is supported
 for compatibility only. The
value is NULL.

def_min_extents CHARACTER VARYING(40) This parameter is supported
 for compatibility only. The
value is NULL.

Issue: 20200701 601

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

def_max_extents CHARACTER VARYING(40) This parameter is supported
 for compatibility only. The
value is NULL.

def_pct_increase CHARACTER VARYING(40) This parameter is supported
 for compatibility only. The
value is NULL.

def_freelists NUMERIC This parameter is supported
 for compatibility only. The
value is NULL.

def_freelist_groups NUMERIC This parameter is supported
 for compatibility only. The
value is NULL.

def_logging CHARACTER VARYING(7) This parameter is supported
 for compatibility only. The
value is YES.

def_compression CHARACTER VARYING(8) This parameter is supported
 for compatibility only. The
value is NONE.

def_buffer_pool CHARACTER VARYING(7) This parameter is supported
 for compatibility only. The
value is DEFAULT.

ref_ptn_constraint_name CHARACTER VARYING(30) This parameter is supported
 for compatibility only. The
value is NULL.

interval CHARACTER VARYING(1000) This parameter is supported
 for compatibility only. The
value is NULL.

14.12 ALL_QUEUES
The ALL_QUEUES view provides the information about the queues that have been defined.

Parameter Type Description

owner TEXT The username of the owner to which a
queue belongs.

Parameter TEXT The name of the queue.

queue_table TEXT The name of the queue table to which the
queue belongs.

602 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

qid OID The object ID that the system assigns to the
queue.

queue_type CHARACTER VARYING The type of the queue. Valid values
: EXCEPTION_QUEUE, NON_PERSIS
TENT_QUEUE, and NORMAL_QUEUE.

max_retries NUMERIC The maximum number of dequeuing
attempts.

retrydelay NUMERIC The maximum time allowed between retries
.

enqueue_enabled CHARACTER VARYING • YES: The queue allows enqueuing.
• NO: The queue does not allow

enqueuing.

dequeue_enabled CHARACTER VARYING • YES: The queue allows dequeuing.
• NO: The queue does not allow

dequeuing.

retention CHARACTER VARYING The number of seconds that a processed
message is retained in the queue.

user_comment CHARACTER VARYING The user-defined comment.

network_name CHARACTER VARYING The name of the network in which the
queue is located.

sharded CHARACTER VARYING • YES: indicates the queue is in a sharded
network.

• NO: indicates the queue is not in a
sharded network.

14.13 ALL_QUEUE_TABLES
The ALL_QUEUE_TABLES view provides the information about all queue tables in the

database.

Parameter Type Description

owner TEXT The role name of the owner of a
queue table.

queue_table TEXT The user-defined name of the queue
table.

Issue: 20200701 603

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

type CHARACTER VARYING The type of data stored in the queue
table.

object_type TEXT The user-defined payload type.

sort_order CHARACTER VARYING The order in which the queue table is
 sorted.

recipients CHARACTER VARYING The value is SINGLE.

message_grouping CHARACTER VARYING The value is NONE.

compatible CHARACTER VARYING The release number of the PolarDB
 database compatible with Oracle.
The queue table is compatible with
this release.

primary_instance NUMERIC The value is 0.

secondary_instance NUMERIC The value is 0.

owner_instance NUMERIC The instance number of the instance
to which the queue table belongs.

user_comment CHARACTER VARYING The comment added when the table
was created.

secure CHARACTER VARYING • YES: indicates that the queue table
 is secure.

• NO: indicates that the queue table
 is not secure.

14.14 ALL_SEQUENCES
The ALL_SEQUENCES view provides the information about all user-defined sequences on

which the user has SELECT or UPDATE permissions.

Parameter Type Description

sequence_owner TEXT The username of the sequence owner.

schema_name TEXT The name of the schema to which the
sequence belongs.

sequence_name TEXT The name of the sequence.

min_value NUMERIC The minimun value that the server assigns
to the sequence.

604 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

max_value NUMERIC The maximun value that the server assigns
to the sequence.

increment_by NUMERIC The value added to the current sequence
number to create the next sequent number.

cycle_flag CHARACTER VARYING Indicates whether the sequence wraps if it
reaches min_value or max_value.

order_flag CHARACTER VARYING This parameter always returns the value of
Y.

cache_size NUMERIC The number of preallocated sequence
numbers stored in memory.

last_number NUMERIC The value of the last sequence number
saved to the disk.

14.15 ALL_SOURCE
The ALL_SOURCE view provides a source code list of the following program types: functions,

procedures, triggers, package specifications, and package bodies.

Parameter Type Description

owner TEXT The username of the owner to which the
program belongs.

schema_name TEXT The name of the schema to which the
program belongs.

name TEXT The name of the program.

type TEXT The type of the program. Valid values:
FUNCTION, PACKAGE, PACKAGE BODY,
PROCEDURE, and TRIGGER.

line INTEGER The line number of the source code in a
specified program.

text TEXT The line of the source code text.

Issue: 20200701 605

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

14.16 ALL_SUBPART_KEY_COLUMNS
The ALL_SUBPART_KEY_COLUMNS view provides the information about the key columns of

those partitioned tables which are subpartitioned in the database

Parameter Type Description

owner TEXT The owner of the table.

schema_name TEXT The name of the schema to which the table
belongs.

name TEXT The name of the table to which the column
belongs.

object_type CHARACTER(5) This parameter is supported for compatibil
ity only. The value is TABLE.

column_name TEXT The name of the column on which the key is
 defined.

column_position INTEGER The position of this column. For example, a
 value of 1 indicates the first column and a
value of 2 indicates the second column. All
columns follow the same rule.

14.17 ALL_SYNONYMS
The ALL_SYNONYMS view provides the information on all synonyms that may be referenced

by the current user.

Parameter Type Description

owner TEXT The username of the owner to which the
synonym belongs.

schema_name TEXT The name of the schema to which the
synonym belongs.

synonym_name TEXT The name of the synonym.

table_owner TEXT The username of the owner to which the
object belongs.

table_schema_name TEXT The name of the schema to which the table
belongs.

table_name TEXT The name of the object that the synonym
refers to.

db_link TEXT The name of any associated database link.

606 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

14.18 ALL_TAB_COLUMNS
The ALL_TAB_COLUMNS view provides the information on all columns in all user-defined

tables and views.

Parameter Type Description

owner CHARACTER VARYING The username of the owner of the table or
view where the column is located.

schema_name CHARACTER VARYING The name of the schema to which the table
or the view belongs.

table_name CHARACTER VARYING The name of the table or view.

column_name CHARACTER VARYING The name of the column.

data_type CHARACTER VARYING The data type of the column.

data_length NUMERIC The length of the text columns.

data_precision NUMERIC The precision of the NUMBER column. The
precision is measured with the number of
digits.

data_scale NUMERIC The scale of the NUMBER columns.

nullable CHARACTER(1) Whether the column can be nullable. Valid
values:

• Y: The column can be null.
• N: The column cannot be null.

column_id NUMERIC The relative position of the column within
the table or view.

data_default CHARACTER VARYING The default value assigned to the column.

14.19 ALL_TAB_PARTITIONS
The ALL_TAB_PARTITIONS view provides the information about all of the partitions in the

database.

Parameter Type Description

table_owner TEXT The owner of the table to which the
partition belongs.

schema_name TEXT The name of the schema to which the
 table belongs.

table_name TEXT The name of the table.

Issue: 20200701 607

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

composite TEXT • YES: The table is subpartitioned.
• NO: The table is not subpartiti

oned.

partition_name TEXT The name of the partition.

subpartition_count BIGINT The number of subpartitions in the
partition.

high_value TEXT The high partitioning value specified
in the CREATE TABLE statement.

high_value_length INTEGER The length of the high partitioning
value.

partition_position INTEGER This parameter is supported for
compatibility only. The value is NULL.

tablespace_name TEXT The name of the tablespace where
the partition is located.

pct_free NUMERIC This parameter is supported for
compatibility only. The value is 0.

pct_used NUMERIC This parameter is supported for
compatibility only. The value is 0.

ini_trans NUMERIC This parameter is supported for
compatibility only. The value is 0.

max_trans NUMERIC This parameter is supported for
compatibility only. The value is 0.

initial_extent NUMERIC This parameter is supported for
compatibility only. The value is NULL.

next_extent NUMERIC This parameter is supported for
compatibility only. The value is NULL.

min_extent NUMERIC This parameter is supported for
compatibility only. The value is 0.

max_extent NUMERIC This parameter is supported for
compatibility only. The value is 0.

pct_increase NUMERIC This parameter is supported for
compatibility only. The value is 0.

freelists NUMERIC This parameter is supported for
compatibility only. The value is NULL.

608 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

freelist_groups NUMERIC This parameter is supported for
compatibility only. The value is NULL.

logging CHARACTER VARYING(7) This parameter is supported for
compatibility only. The value is YES.

compression CHARACTER VARYING(8) This parameter is supported for
compatibility only. The value is NONE.

num_rows NUMERIC The same as pg_class.reltuples.

blocks INTEGER The same as pg_class.relpages.

empty_blocks NUMERIC This parameter is supported for
compatibility only. The value is NULL.

avg_space NUMERIC This parameter is supported for
compatibility only. The value is NULL.

chain_cnt NUMERIC This parameter is supported for
compatibility only. The value is NULL.

avg_row_len NUMERIC This parameter is supported for
compatibility only. The value is NULL.

sample_size NUMERIC This parameter is supported for
compatibility only. The value is NULL.

last_analyzed TIMESTAMP WITHOUT
TIME ZONE

This parameter is supported for
compatibility only. The value is NULL.

buffer_pool CHARACTER VARYING(7) This parameter is supported for
compatibility only. The value is NULL.

global_stats CHARACTER VARYING(3) This parameter is supported for
compatibility only. The value is YES.

user_stats CHARACTER VARYING(3) This parameter is supported for
compatibility only. The value is NO.

backing_table REGCLASS The name of the partition backup
table.

Issue: 20200701 609

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

14.20 ALL_TAB_SUBPARTITIONS
The ALL_TAB_SUBPARTITIONS view provides the information about all subpartitions in the

database.

Parameter Type Description

table_owner TEXT The owner of the table to which the
subpartition belongs.

schema_name TEXT The name of the schema to which the
 table belongs.

table_name TEXT The name of the table.

partition_name TEXT The name of the partition.

subpartition_name TEXT The name of the subpartition.

high_value TEXT The high subpartitioning value
 specified in the CREATE TABLE
statement.

high_value_length INTEGER The length of the high subpartiti
oning value.

subpartition_position INTEGER This parameter is supported for
compatibility only. The value is NULL.

tablespace_name TEXT The name of the tablespace where
the subpartition is located.

pct_free NUMERIC This parameter is supported for
compatibility only. The value is 0.

pct_used NUMERIC This parameter is supported for
compatibility only. The value is 0.

ini_trans NUMERIC This parameter is supported for
compatibility only. The value is 0.

max_trans NUMERIC This parameter is supported for
compatibility only. The value is 0.

initial_extent NUMERIC This parameter is supported for
compatibility only. The value is NULL.

next_extent NUMERIC This parameter is supported for
compatibility only. The value is NULL.

min_extent NUMERIC This parameter is supported for
compatibility only. The value is 0.

610 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

max_extent NUMERIC This parameter is supported for
compatibility only. The value is 0.

pct_increase NUMERIC This parameter is supported for
compatibility only. The value is 0.

freelists NUMERIC This parameter is supported for
compatibility only. The value is NULL.

freelist_groups NUMERIC This parameter is supported for
compatibility only. The value is NULL.

logging CHARACTER VARYING(7) This parameter is supported for
compatibility only. The value is YES.

compression CHARACTER VARYING(8) This parameter is supported for
compatibility only. The value is NONE.

num_rows NUMERIC The same as pg_class.reltuples.

blocks INTEGER The same as pg_class.relpages.

empty_blocks NUMERIC This parameter is supported for
compatibility only. The value is NULL.

avg_space NUMERIC This parameter is supported for
compatibility only. The value is NULL.

chain_cnt NUMERIC This parameter is supported for
compatibility only. The value is NULL.

avg_row_len NUMERIC This parameter is supported for
compatibility only. The value is NULL.

sample_size NUMERIC This parameter is supported for
compatibility only. The value is NULL.

last_analyzed TIMESTAMP WITHOUT
TIME ZONE

This parameter is supported for
compatibility only. The value is NULL.

buffer_pool CHARACTER VARYING(7) This parameter is supported for
compatibility only. The value is NULL.

global_stats CHARACTER VARYING(3) This parameter is supported for
compatibility only. The value is YES.

user_stats CHARACTER VARYING(3) This parameter is supported for
compatibility only. The value is NO.

backing_table REGCLASS The name of the subpartition backup
 table.

Issue: 20200701 611

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

14.21 ALL_TABLES
The ALL_TABLES view provides the information on all user-defined tables.

Parameter Type Description

owner TEXT The username of the owner to which
the table belongs.

schema_name TEXT The name of the schema to which the
 table belongs.

table_name TEXT The name of the table.

tablespace_name TEXT The name of the tablespace where
the table is located if this tablespace
is not the default tablespace.

status CHARACTER VARYING(5) Indicates that whether the status of
 the table is valid. This parameter is
supported for compatibility only. The
value is VALID.

temporary CHARACTER(1) • Y: indicates that the table is a
temporary table.

• N: indicates that the table is not a
temporary table.

14.22 ALL_TRIGGERS
The ALL_TRIGGERS view provides the information about the triggers on tables that may be

accessed by the current user.

Parameter Type Description

owner TEXT The username of the owner to which the
trigger belongs.

schema_name TEXT The name of the schema to which the
trigger belongs.

trigger_name TEXT The name of the trigger.

612 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

trigger_type TEXT The type of the trigger. Valid values:

• BEFORE
• ROW
• BEFORE
• STATEMENT
• AFTER
• ROW
• AFTER STATEMENT

triggering_event TEXT The event that activate the trigger.

table_owner TEXT The username of the owner that the table
 belongs to. The trigger is defined in this
table.

base_object_type TEXT This parameter is supported for compatibil
ity only. The value is TABLE.

table_name TEXT The name of the table on which the trigger
is defined.

referencing_name TEXT This parameter is supported for compatibil
ity only. The value is REFERENCING NEW AS
NEW OLD AS OLD.

status TEXT The status of the trigger. A value of VALID
indicates that the trigger is enabled, and a
value of NOTVALID indicates that the trigger
 is disabled.

Description TEXT This parameter is supported for compatibil
ity only.

trigger_body TEXT The body of the trigger.

action_statement TEXT The SQL statement that is executed when
the trigger activates.

14.23 ALL_TYPES
The ALL_TYPES view provides the information about the object types available to the

current user.

Parameter Type Description

owner TEXT The owner of an object type.

Issue: 20200701 613

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

schema_name TEXT The name of the schema in which a
type is defined.

type_name TEXT The name of the type.

type_oid OID The object identifier (OID) of the type.

typecode TEXT The typecode of the type. Valid
values:

• OBJECT
• COLLECTION
• OTHER

attributes INTEGER The number of attributes in the type.

14.24 ALL_USERS
The ALL_USERS view provides the information on all usernames.

Parameter Type Description

username TEXT The name of a user.

user_id OID The numeric user id assigned to the
user.

created TIMESTAMP WITHOUT
TIME ZONE

This parameter is supported for
compatibility only. The value is NULL.

14.25 ALL_VIEW_COLUMNS
The ALL_VIEW_COLUMNS view provides the information on all columns in all user-defined

views.

Parameter Type Description

owner CHARACTER VARYING The username of the owner to which
the view belongs.

schema_name CHARACTER VARYING The name of the schema to which the
 view belongs.

view_name CHARACTER VARYING The name of the view.

column_name CHARACTER VARYING The name of the column.

data_type CHARACTER VARYING The data type of the column.

614 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

data_length NUMERIC The length of text columns.

data_precision NUMERIC The precision of the NUMBER column
. The precision is measured in the
number of digits.

data_scale NUMERIC The scale of the NUMBER columns.

nullable CHARACTER(1) Indicates whether the column can be
null. Valid values:

• Y: indicates that the column can
be null.

• N: indicates that the column
cannot be null.

column_id NUMERIC The relative position of the column
within the view.

data_default CHARACTER VARYING The default value assigned to the
column.

14.26 ALL_VIEWS
The ALL_VIEWS view provides the information about all user-defined views.

Parameter Type Description

owner TEXT The username of the owner
to which the view belongs.

schema_name TEXT The name of the schema to
which the view belongs.

view_name TEXT The name of the view.

text TEXT The SELECT statement that
defines the view.

14.27 DBA_ALL_TABLES
The DBA_ALL_TABLES view provides the information about all tables in the database.

Parameter Type Description

owner TEXT The username of the owner to which a table
 belongs.

Issue: 20200701 615

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

schema_name TEXT The name of the schema to which the table
belongs.

table_name TEXT The name of the table.

tablespace_name TEXT The name of the tablespace in which the
table is located if this tablespace is not the
default tablespace.

status CHARACTER VARYING
(5)

This parameter is supported for compatibil
ity only. The value is VALID.

temporary TEXT • Y: indicates that the table is a temporary
 table.

• N: indicates that the table is a permanent
 table.

14.28 DBA_CONS_COLUMNS
The DBA_CONS_COLUMNS view provides the information about all columns that are

included in constraints. These constraints are specified on all tables in the database.

Parameter Type Description

owner TEXT The username of the owner
 to which a constraint
belongs.

schema_name TEXT The name of the schema to
which the constraint belongs
.

constraint_name TEXT The name of the constraint.

table_name TEXT The name of the table to
which the constraint belongs
.

column_name TEXT The name of the column
referenced in the constraint.

position SMALLINT The position of the column
within the object definition.

constraint_def TEXT The definition of the
constraint.

616 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

14.29 DBA_CONSTRAINTS
The DBA_CONSTRAINTS view provides the information about all constraints on tables in the

database.

Parameter Type Description

owner TEXT The username of the owner
 to which a constraint
belongs.

schema_name TEXT The name of the schema to
which the constraint belongs
.

constraint_name TEXT The name of the constraint.

constraint_type TEXT The type of the constraint.
Valid values:

• C: the check constraint
• F: the foreign key

constraint
• P: the primary key

constraint
• U: the unique key

constraint
• R: the referential integrity

 constraint
• V: the constraint on a

view
• O: with a read-only

property on a view

table_name TEXT The name of the table to
which the constraint belongs
.

search_condition TEXT The search condition that
applies to a check constraint.

r_owner TEXT The owner of a table
referenced by a referential
constraint.

r_constraint_name TEXT The name of the constraint
 definition for a referenced
table.

Issue: 20200701 617

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

delete_rule TEXT The delete rule for a
referential constraint. Valid
values:

• C: cascade
• R: restrict
• N: no action

deferrable BOOLEAN Indicates whether the
constraint is deferrable.
Valid values: T and F.

deferred BOOLEAN Indicates whether the
constraint has been deferred
. Valid values: T and F.

index_owner TEXT The username of the owner
to which an index belongs.

index_name TEXT The name of the index.

constraint_def TEXT The definition of the
constraint.

14.30 DBA_DB_LINKS
The DBA_DB_LINKS view provides the information about all database links in the database.

Parameter Type Description

owner TEXT The username of the owner to which a
database link belongs.

db_link TEXT The name of the database link.

type CHARACTER VARYING The type of the remote server. Valid values:
REDWOOD and PolarDB.

username TEXT The username of the user logging in.

host TEXT The name or IP address of the remote server
.

618 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

14.31 DBA_DIRECTORIES
The DBA_DIRECTORIES view provides the information about all directories created by

running the CREATE DIRECTORY command.

Parameter Type Description

owner CHARACTER VARYING(30) The username of the owner
to which a directory belongs.

directory_name CHARACTER VARYING(30) The alias name assigned to
the directory.

directory_path CHARACTER VARYING(4000) The path to the directory.

14.32 DBA_IND_COLUMNS
The DBA_IND_COLUMNS view provides the information about all columns included in

indexes on all tables in the database.

Parameter Type Description

index_owner TEXT The username of the owner to which
an index belongs.

schema_name TEXT The name of the schema to which the
 index belongs.

index_name TEXT The name of the index.

table_owner TEXT The username of the owner to which
the table belongs.

table_name TEXT The name of the table to which the
index belongs.

column_name TEXT The name or property name of the
object column.

column_position SMALLINT The position of the column in the
index.

column_length SMALLINT The length of the column. Unit: bytes.

char_length NUMERIC The length of the column. Unit:
characters.

descend CHARACTER(1) This parameter is supported for
compatibility only. The value is Y in
descending order.

Issue: 20200701 619

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

14.33 DBA_INDEXES
The DBA_INDEXES view provides the information about all indexes in the database.

Parameter Type Description

owner TEXT The username of the owner to which an
index belongs.

schema_name TEXT The name of the schema where the index is
located.

index_name TEXT The name of the index.

index_type TEXT The index type is BTREE. This parameter is
supported for compatibility only.

table_owner TEXT The username of the owner of an indexed
table.

table_name TEXT The name of the indexed table.

table_type TEXT This parameter is supported for compatibil
ity only. The value is TABLE.

uniqueness TEXT Indicates whether the index is UNIQUE or
NONUNIQUE.

compression CHARACTER(1) The value is N (not compressed). This
parameter is supported for compatibility
only.

tablespace_name TEXT The name of the tablespace in which the
table is located if this tablespace is not the
default tablespace.

logging TEXT This parameter is supported for compatibil
ity only. The value is LOGGING.

status TEXT Indicates whether the state of the object is
valid. Valid values: VALID and INVALID.

partitioned CHARACTER(3) Indicates that the index is partitioned. The
value is NO.

temporary CHARACTER(1) Indicates that the index is on a temporary
table. The value is N.

secondary CHARACTER(1) This parameter is supported for compatibil
ity only. The value is N.

join_index CHARACTER(3) This parameter is supported for compatibil
ity only. The value is NO.

620 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

dropped CHARACTER(3) This parameter is supported for compatibil
ity only. The value is NO.

14.34 DBA_JOBS
The DBA_JOBS view provides the information about all jobs in the database.

Parameter Type Description

job INTEGER The identifier of a job (job ID).

log_user TEXT The name of the user that submitted the job
.

priv_user TEXT The same as log_user. This parameter is
supported for compatibility only.

schema_user TEXT The name of the schema used to parse the
job.

last_date TIMESTAMP WITH
TIME ZONE

The last date when this job was executed
with the expected result returned.

last_sec TEXT The same as last_date.

this_date TIMESTAMP WITH
TIME ZONE

The date when the system starts to execute
the job.

this_sec TEXT The same as this_date.

next_date TIMESTAMP WITH
TIME ZONE

The next date when this job will be executed
.

next_sec TEXT The same as next_date.

total_time INTERVAL The period in which the job is executed. Unit
: seconds.

broken TEXT • Y: indicates no attempt is made to run
this job.

• N: indicates this job will attempt to
execute.

interval TEXT The interval at which the job is repeated.

failures BIGINT The number of times that the job has failed
since the last successful execution.

Issue: 20200701 621

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

what TEXT The job definition that runs when the job
executes. The job definition appears as a PL
/SQL code block.

nls_env CHARACTER VARYING
(4000)

The value is NULL. This parameter is
supported for compatibility only.

misc_env BYTEA The value is NULL. This parameter is
supported for compatibility only.

instance NUMERIC The value is 0. This parameter is supported
for compatibility only.

14.35 DBA_OBJECTS
The DBA_OBJECTS view provides the information about all objects in the database.

Parameter Type Description

owner TEXT The username of the owner to which the
object belongs.

schema_name TEXT The name of the schema to which the object
 belongs.

object_name TEXT The name of the object.

object_type TEXT The type of the object. Valid values: INDEX
, FUNCTION, PACKAGE, PACKAGE BODY,
PROCEDURE, SEQUENCE, SYNONYM, TABLE,
TRIGGER, and VIEW.

status CHARACTER VARYING This parameter is supported for compatibil
ity only. The value is VALID.

temporary TEXT • Y: indicates that the table is a temporary
 table.

• N: indicates that the table is a permanent
 table.

622 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

14.36 DBA_PART_KEY_COLUMNS
The DBA_PART_KEY_COLUMNS view provides the information about key columns of

partitioned tables in the database.

Parameter Type Description

owner TEXT The owner of the table.

schema_name TEXT The name of the schema to which the table
belongs.

name TEXT The name of the table to which the column
belongs.

object_type CHARACTER(5) This parameter is supported for compatibil
ity only. The value is TABLE.

column_name TEXT The name of the column on which the key is
 defined.

column_position INTEGER The position of this column. For example, a
 value of 1 indicates the first column and a
value of 2 indicates the second column. All
columns follow the same rule.

14.37 DBA_PART_TABLES
The DBA_PART_TABLES view provides the information about all partitioned tables in the

database.

Parameter Type Description

owner TEXT The owner of a partitioned table.

schema_name TEXT The schema to which the table
belongs.

table_name TEXT The name of the table.

partitioning_type TEXT The partition type used to define
table partitions.

subpartitioning_type TEXT The subpartition type used to define
table subpartitions.

partition_count BIGINT The number of partitions in the table.

def_subpartition_count INTEGER The number of subpartitions in the
table.

Issue: 20200701 623

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

partitioning_key_count INTEGER The number of specified partition
keys.

subpartitioning_key_
count

INTEGER The number of specified subpartition
 keys.

status CHARACTER VARYING(8) This parameter is supported for
compatibility only. The value is VALID.

def_tablespace_name CHARACTER VARYING(30) This parameter is supported for
compatibility only. The value is NULL.

def_pct_free NUMERIC This parameter is supported for
compatibility only. The value is NULL.

def_pct_used NUMERIC This parameter is supported for
compatibility only. The value is NULL.

def_ini_trans NUMERIC This parameter is supported for
compatibility only. The value is NULL.

def_max_trans NUMERIC This parameter is supported for
compatibility only. The value is NULL.

def_initial_extent CHARACTER VARYING(40) This parameter is supported for
compatibility only. The value is NULL.

def_next_extent CHARACTER VARYING(40) This parameter is supported for
compatibility only. The value is NULL.

def_min_extents CHARACTER VARYING(40) This parameter is supported for
compatibility only. The value is NULL.

def_max_extents CHARACTER VARYING(40) This parameter is supported for
compatibility only. The value is NULL.

def_pct_increase CHARACTER VARYING(40) This parameter is supported for
compatibility only. The value is NULL.

def_freelists NUMERIC This parameter is supported for
compatibility only. The value is NULL.

def_freelist_groups NUMERIC This parameter is supported for
compatibility only. The value is NULL.

def_logging CHARACTER VARYING(7) This parameter is supported for
compatibility only. The value is YES.

def_compression CHARACTER VARYING(8) This parameter is supported for
compatibility only. The value is NONE.

624 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

def_buffer_pool CHARACTER VARYING(7) This parameter is supported for
 compatibility only. The value is
DEFAULT.

ref_ptn_constraint_n
ame

CHARACTER VARYING(30) This parameter is supported for
compatibility only. The value is NULL.

interval CHARACTER VARYING(
1000)

This parameter is supported for
compatibility only. The value is NULL.

14.38 DBA_PROFILES
The DBA_PROFILES view provides the information about existing profiles. The table includes

a row for each profile or resource combination.

Parameter Type Description

profile CHARACTER VARYING(
128)

The name of the profile.

resource_name CHARACTER VARYING(32) The name of the resource associated
with the profile.

resource_type CHARACTER VARYING(8) The type of resource managed by the
 profile; currently PASSWORD for all
supported resources.

limit CHARACTER VARYING(
128)

The limit values of the resource.

common CHARACTER VARYING(3) • YES: indicates that the profile is a
user-created profile.

• NO: indicates that the profile is a
system-defined profile.

14.39 DBA_QUEUES
The DBA_QUEUES view provides the information about any defined queues.

Parameter Type Description

owner TEXT The username of the owner to which a
queue belongs.

Parameter TEXT The name of the queue.

Issue: 20200701 625

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

queue_table TEXT The name of the queue table to which the
queue belongs.

qid OID The object ID of the queue. This object ID is
assigned by the system.

queue_type CHARACTER VARYING The queue type. Valid values: EXCEPTION_
QUEUE, NON_PERSISTENT_QUEUE, and
NORMAL_QUEUE.

max_retries NUMERIC The maximum number of dequeuing
attempts.

retrydelay NUMERIC The maximum time allowed between retries
.

enqueue_enabled CHARACTER VARYING • YES: indicates that the queue allows
enqueuing.

• NO: indicates that the queue does not
allow enqueuing.

dequeue_enabled CHARACTER VARYING • YES: indicates that the queue allows
dequeuing.

• NO: indicates that the queue does not
allow dequeuing.

retention CHARACTER VARYING The number of seconds that a processed
message is retained in the queue.

user_comment CHARACTER VARYING The user-defined comment.

network_name CHARACTER VARYING The name of the network in which the
queue is.

sharded CHARACTER VARYING • YES: indicates the queue is in a sharded
network.

• NO: indicates the queue is not in a
sharded network.

626 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

14.40 DBA_QUEUE_TABLES
The DBA_QUEUE_TABLES view provides the information about all queue tables in the

database.

Parameter Type Description

owner TEXT The role name of the owner of a
queue table.

queue_table TEXT The user-defined name of the queue
table.

type CHARACTER VARYING The type of data stored in the queue
table.

object_type TEXT The type of the user-defined payload.

sort_order CHARACTER VARYING The order in which the queue table is
 sorted.

recipients CHARACTER VARYING The value is SINGLE.

message_grouping CHARACTER VARYING The value is NONE.

compatible CHARACTER VARYING The release number of the PolarDB
 database compatible with Oracle.
The queue table is compatible with
this release.

primary_instance NUMERIC The value is 0.

secondary_instance NUMERIC The value is 0.

owner_instance NUMERIC The instance number of the instance
to which the queue table belongs.

user_comment CHARACTER VARYING The comment added when the table
was created.

secure CHARACTER VARYING • YES: indicates that the queue table
 is secure.

• NO: indicates that the queue table
 is not secure.

Issue: 20200701 627

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

14.41 DBA_ROLE_PRIVS
The DBA_ROLE_PRIVS view provides the information on all roles that have been granted to

users. A row is created for each role to which a user has been granted.

Parameter Type Description

grantee TEXT The username to whom the role is granted.

granted_role TEXT The name of the role granted to the grantee.

admin_option TEXT YES: indicates that the role is granted with
 the admin option. NO: indicates that the
role is granted with the other options other
than admin.

default_role TEXT YES: indicates that the role is enabled when
the grantee creates a session.

14.42 DBA_ROLES
The DBA_ROLES view provides the information on all roles with the NOLOGIN property

(groups).

Parameter Type Description

role TEXT The name of a role with the NOLOGIN
property. For example, a group.

password_required TEXT This parameter is supported for
compatibility only. The value is N.

14.43 DBA_SEQUENCES
The DBA_SEQUENCES view provides the information about all user-defined sequences.

Parameter Type Description

sequence_owner TEXT The username of the owner to which
the sequence belongs.

schema_name TEXT The name of the schema to which the
 sequence belongs.

sequence_name TEXT The name of the sequence.

min_value NUMERIC The minimum value that the server
assigns to the sequence.

628 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

max_value NUMERIC The maximum value that the server
assigns to the sequence.

increment_by NUMERIC The value added to the current
sequence number to create the next
sequence number.

cycle_flag CHARACTER VARYING Indicates whether the sequence
wraps if it reaches min_value or
max_value.

order_flag CHARACTER VARYING This parameter always returns the
value of Y.

cache_size NUMERIC The number of preallocated
sequence numbers stored in memory.

last_number NUMERIC The value of the last sequence
number saved to the disk.

14.44 DBA_SOURCE
The DBA_SOURCE view provides a list of source code for all objects in the database.

Parameter Type Description

owner TEXT The username of the owner to which
the program belongs.

schema_name TEXT The name of the schema to which the
 program belongs.

name TEXT The name of the program.

type TEXT The type of the program. Valid values
: FUNCTION, PACKAGE, PACKAGE
BODY, PROCEDURE, and TRIGGER.

line INTEGER The line number of the source code in
 a specified program.

text TEXT The line of the source code text.

Issue: 20200701 629

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

14.45 DBA_SUBPART_KEY_COLUMNS
The DBA_SUBPART_KEY_COLUMNS view provides the information about the key columns of

those partitioned tables which are subpartitioned in the database.

Parameter Type Description

owner TEXT The owner of the table.

Schema_name TEXT The name of the schema to which the
 table belongs.

name TEXT The name of the table to which the
column belongs.

object_type CHARACTER(5) This parameter is supported for
compatibility only. The value is TABLE.

column_name TEXT The name of the column on which the
 key is defined.

column_position INTEGER The position of this column. For
example, a value of 1 indicates
the first column and a value of 2
indicates the second column. All
columns follow the same rule.

14.46 DBA_SYNONYMS
The DBA_SYNONYM view provides the information about all synonyms in the database.

Parameter Type Description

owner TEXT The username of the owner to which
a synonym belongs.

schema_name TEXT The name of the schema to which the
 synonym belongs.

synonym_name TEXT The name of the synonym.

table_owner TEXT The username of the owner of the
 table on which the synonym is
defined.

Table_schema_name TEXT The name of the schema to which the
 table belongs.

table_name TEXT The name of the table on which the
synonym is defined.

630 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

db_link TEXT The name of any associated
database link.

14.47 DBA_TAB_COLUMNS
The DBA_TAB_COLUMNS view provides the information about all columns in the database.

Parameter Type Description

owner CHARACTER VARYING The username of the owner of a table
 or view to which the column belongs
.

schema_name CHARACTER VARYING The name of the schema to which a
table or view belongs.

table_name CHARACTER VARYING The name of the table or view to
which the column belongs.

column_name CHARACTER VARYING The name of the column.

data_type CHARACTER VARYING The data type of the column.

data_length NUMERIC The length of text columns.

data_precision NUMERIC The precision of the NUMBER column
. The precision is measured in the
number of digits.

data_scale NUMERIC The scale of the NUMBER columns.

nullable CHARACTER(1) Indicates whether the column can be
null. Valid values:

• Y: indicates that the column can
be null.

• N: indicates that the column
cannot be null.

column_id NUMERIC The relative position of the column
within the table or view.

data_default CHARACTER VARYING The default value assigned to the
column.

Issue: 20200701 631

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

14.48 DBA_TAB_PARTITIONS
The DBA_TAB_PARTITIONS view provides the information about all partitions that locate in

the database.

Parameter Type Description

table_owner TEXT The owner of the table where the partition is
 located.

schema_name TEXT The name of the schema where the table is
located.

table_name TEXT The name of the table.

composite TEXT • YES: The table is subpartitioned.
• NO: The table is not subpartitioned.

partition_name TEXT The name of the partition.

subpartition_count BIGINT The number of subpartitions in a partition.

high_value TEXT The high partitioning value specified in the
CREATE TABLE statement.

high_value_length INTEGER The length of the high partitioning value.

partition_position INTEGER The ordinal position of this partition. For
 example, a value of 1 indicates the first
 partition and a value of 2 indicates the
second partition. All positions follow the
same rule.

tablespace_name TEXT The name of the tablespace where the
partition is located.

pct_free NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

pct_used NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

ini_trans NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

max_trans NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

initial_extent NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

632 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

next_extent NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

min_extent NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

max_extent NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

pct_increase NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

freelists NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

freelist_groups NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

logging CHARACTER VARYING
(7)

This parameter is supported for compatibil
ity only. The value is YES.

compression CHARACTER VARYING
(8)

This parameter is supported for compatibil
ity only. The value is NONE.

num_rows NUMERIC The same as pg_class.reltuples.

blocks INTEGER The same as pg_class.relpages.

empty_blocks NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

avg_space NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

chain_cnt NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

avg_row_len NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

sample_size NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

last_analyzed TIMESTAMP WITHOUT
 TIME ZONE

This parameter is supported for compatibil
ity only. The value is NULL.

buffer_pool CHARACTER VARYING
(7)

This parameter is supported for compatibil
ity only. The value is NULL.

global_stats CHARACTER VARYING
(3)

This parameter is supported for compatibil
ity only. The value is YES.

Issue: 20200701 633

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

user_stats CHARACTER VARYING
(3)

This parameter is supported for compatibil
ity only. The value is NO.

backing_table REGCLASS The name of the partition backup table.

14.49 DBA_TAB_SUBPARTITIONS
The DBA_TAB_SUBPARTITIONS view provides the information about all subpartitions that

locate in the database.

Parameter Type Description

table_owner TEXT The owner of the table where a subpartition
 is located.

schema_name TEXT The name of the schema where the table is
located.

table_name TEXT The name of the table.

partition_name TEXT The name of the partition.

subpartition_name TEXT The name of the subpartition.

high_value TEXT The high subpartitioning value specified in
the CREATE TABLE statement.

high_value_length INTEGER The length of the high subpartitioning value
.

subpartition_position INTEGER The ordinal position of this subpartition.
For example, a value of 1 indicates the first
 subpartition and a value of 2 indicates
the second subpartition. All positions of
subpartitions follow the same rule.

tablespace_name TEXT The name of the tablespace where the
subpartition is located.

pct_free NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

pct_used NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

ini_trans NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

max_trans NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

634 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

initial_extent NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

next_extent NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

min_extent NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

max_extent NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

pct_increase NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

freelists NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

freelist_groups NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

logging CHARACTER VARYING
(7)

This parameter is supported for compatibil
ity only. The value is YES.

compression CHARACTER VARYING
(8)

This parameter is supported for compatibil
ity only. The value is NONE.

num_rows NUMERIC The same as pg_class.reltuples.

blocks INTEGER The same as pg_class.relpages.

empty_blocks NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

avg_space NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

chain_cnt NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

avg_row_len NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

sample_size NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

last_analyzed TIMESTAMP WITHOUT
 TIME ZONE

This parameter is supported for compatibil
ity only. The value is NULL.

buffer_pool CHARACTER VARYING
(7)

This parameter is supported for compatibil
ity only. The value is NULL.

Issue: 20200701 635

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

global_stats CHARACTER VARYING
(3)

This parameter is supported for compatibil
ity only. The value is YES.

user_stats CHARACTER VARYING
(3)

This parameter is supported for compatibil
ity only. The value is NO.

backing_table REGCLASS The name of the subpartition backup table.

14.50 DBA_TABLES
The DBA_TABLES view provides the information about all tables in the database.

Parameter Type Description

owner TEXT The username of the owner to which
the table belongs.

schema_name TEXT The name of the schema to which the
 table belongs.

table_name TEXT The name of the table.

tablespace_name TEXT The name of the tablespace where
the table is located if this tablespace
is not the default tablespace.

status CHARACTER VARYING(5) This parameter is supported for
compatibility only. The value is VALID.

temporary CHARACTER(1) • Y: indicates that the table is a
temporary table.

• N: indicates that the table is a
permanent table.

14.51 DBA_TRIGGERS
The DBA_TRIGGERS view provides the information about all triggers in the database.

Parameter Type Description

owner TEXT The username of the owner to which a
trigger belongs.

schema_name TEXT The name of the schema to which the
trigger belongs.

trigger_name TEXT The name of the trigger.

636 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

trigger_type TEXT The type of the trigger. Valid values:

• BEFORE
• ROW
• BEFORE
• STATEMENT
• AFTER
• ROW
• AFTER STATEMENT

triggering_event TEXT The event that activate the trigger.

table_owner TEXT The username of the owner of the table on
which the trigger is defined.

base_object_type TEXT This parameter is supported for compatibil
ity only. The value is TABLE.

table_name TEXT The name of the table on which the trigger
is defined.

referencing_names TEXT This parameter is supported for compatibil
ity only. The value is REFERENCING NEW AS
NEW OLD AS OLD.

status TEXT Indicates whether the trigger is enabled (
VALID) or disabled (NOTVALID).

description TEXT This parameter is supported for compatibil
ity only.

trigger_body TEXT The body of the trigger.

action_statement TEXT The SQL statement that is executed when
the trigger is activated.

14.52 DBA_TYPES
The DBA_TYPES view provides the information about all object types in the database.

Parameter Type Description

owner TEXT The owner of an object type.

schema_name TEXT The name of the schema in which a
type is defined.

type_name TEXT The name of the type.

Issue: 20200701 637

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

type_oid OID The object identifier (OID) of the type.

typecode TEXT The typecode of the type. Valid
values:

• OBJECT
• COLLECTION
• OTHER

attributes INTEGER The number of attributes in the type.

14.53 DBA_USERS
The DBA_USERS view provides the information about all users of the database.

Parameter Type Description

username TEXT The username of the user.

user_id OID The ID number of the user.

password CHARACTER VARYING
(30)

The encrypted password of the user.

account_status CHARACTER VARYING
(32)

The current status of the account. Valid
values:

• OPEN
• EXPIRED
• EXPIRED(GRACE)
• EXPIRED & LOCKED
• EXPIRED & LOCKED(TIMED)
• EXPIRED(GRACE) & LOCKED
• EXPIRED(GRACE) & LOCKED(TIMED)
• LOCKED
• LOCKED(TIMED)

You can use the edb_get_role_status(role_id
) function to retrieve the current status of
the account.

lock_date TIMESTAMP WITHOUT
 TIME ZONE

If the account status is LOCKED, the
lock_date parameter indicates the date and
time when the account was locked.

638 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

expiry_date TIMESTAMP WITHOUT
 TIME ZONE

The expiration date of the password. You
can use the edb_get_password_expiry_date
(role_id) function to retrieve the expiration
date of the current password.

default_tablespace TEXT The default tablespace associated with the
account.

temporary_
tablespace

CHARACTER VARYING
(30)

This parameter is supported for compatibil
ity only. The value is '' (an empty string).

created TIMESTAMP WITHOUT
 TIME ZONE

This parameter is supported for compatibil
ity only. The value is NULL.

profile CHARACTER VARYING
(30)

The profile associated with the user.

initial_rsrc_consume
r_group

CHARACTER VARYING
(30)

This parameter is supported for compatibil
ity only. The value is NULL.

external_name CHARACTER VARYING
(4000)

This parameter is supported for compatibil
ity only. The value is NULL.

14.54 DBA_VIEW_COLUMNS
The DBA_VIEW_COLUMNS view provides the information on all columns in the database.

Parameter Type Description

owner CHARACTER VARYING The username of the owner
to which a view belongs.

schema_name CHARACTER VARYING The name of the schema to
which the view belongs.

view_name CHARACTER VARYING The name of the view.

column_name CHARACTER VARYING The name of the column.

data_type CHARACTER VARYING The data type of the column.

data_length NUMERIC The length of text columns.

data_precision NUMERIC The precision of NUMBER
columns. The precision is
measured in the number of
digits.

data_scale NUMERIC The scale of NUMBER
columns.

Issue: 20200701 639

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

nullable CHARACTER(1) Indicates whether the
column can be null. Valid
values:

• Y: indicates that the
column can be null.

• N: indicates that the
column cannot be null.

column_id NUMERIC The relative position of a
column within the view.

data_default CHARACTER VARYING The default value assigned
to the column.

14.55 DBA_VIEWS
The DBA_VIEWS view provides the information about all views in the database.

Parameter Type Description

owner TEXT The username of the owner to which
a view belongs.

schema_name TEXT The name of the schema to which the
 view belongs.

view_name TEXT The name of the view.

text TEXT The tex of the SELECT statement that
defines the view.

14.56 USER_ALL_TABLES
The USER_ALL_TABLES view provides the information about all tables owned by the current

user.

Parameter Type Description

schema_name TEXT The name of the schema to which the table
belongs.

table_name TEXT The name of the table.

tablespace_name TEXT The name of the tablespace where the
table is located if this tablespace is not the
default tablespace.

640 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

status CHARACTER VARYING
(5)

This parameter is supported for compatibil
ity only. The value is VALID.

temporary TEXT • Y: indicates that the table is a temporary
 table.

• N: indicates that the table is a permanent
 table.

14.57 USER_CONS_COLUMNS
The USER_CONS_COLUMNS view provides the information about all columns that are

included in constraints in tables that are owned by the current user.

Parameter Type Description

owner TEXT The username of the owner
 to which a constraint
belongs.

schema_name TEXT The name of the schema to
which the constraint belongs
.

constraint_name TEXT The name of the constraint.

table_name TEXT The name of the table to
which the constraint belongs
.

column_name TEXT The name of a column
referenced in the constraint.

position SMALLINT The position of the column
within the object definition.

constraint_def TEXT The definition of the
constraint.

Issue: 20200701 641

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

14.58 USER_CONSTRAINTS
The USER_CONSTRAINTS view provides the information about all constraints placed on

tables that are owned by the current user.

Parameter Type Description

owner TEXT The name of the owner of the
constraint.

schema_name TEXT The name of the schema to which the
 constraint belongs.

constraint_name TEXT The name of the constraint.

constraint_type TEXT The type of the constraint. Valid
values:

• C: the check constraint
• F: the foreign key constraint
• P: the primary key constraint
• U: the unique key constraint
• R: the referential integrity

constraint
• V: the constraint on a view
• O: with a read-only property on a

view

table_name TEXT The name of the table to which the
constraint belongs.

search_condition TEXT The search condition that applies to a
 check constraint.

r_owner TEXT The owner of a table referenced by a
referential constraint.

r_constraint_name TEXT The name of the constraint definition
for a referenced table.

delete_rule TEXT The delete rule for a referential
constraint. Valid values:

• C: cascade
• R: restrict
• N: no action

deferrable BOOLEAN Indicates whether the constraint is
deferrable. Valid values: T and F.

642 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

deferred BOOLEAN Indicates whether the constraint has
been deferred. Valid values: T and F.

index_owner TEXT The username of the owner to which
an index belongs.

index_name TEXT The name of the index.

constraint_def TEXT The definition of the constraint.

14.59 USER_DB_LINKS
The USER_DB_LINKS view provides the information about all database links owned by the

current user.

Parameter Type Description

db_link TEXT The name of the database link.

type CHARACTER VARYING The type of the remote server. Valid
values: REDWOOD and PolarDB.

username TEXT The username of the user logging in.

password TEXT The password used for authentication
 on the remote server.

host TEXT The name or IP address of the remote
 server.

14.60 USER_IND_COLUMNS
The USER_IND_COLUMNS view provides the information about all columns included in

indexes on the tables that are owned by the current user.

Parameter Type Description

schema_name TEXT The name of the schema to which an
index belongs.

index_name TEXT The name of the index.

table_name TEXT The name of the table to which the
index belongs.

column_name TEXT The name of the column.

column_position SMALLINT The position of the column in the
index.

Issue: 20200701 643

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

column_length SMALLINT The length of the column. Unit: bytes.

char_length NUMERIC The length of the column. Unit:
characters.

descend CHARACTER(1) This parameter is supported for
compatibility only. The value is Y in
descending order.

14.61 USER_INDEXES
The USER_INDEXES view provides the information about all indexes on tables that are

owned by the current user.

Parameter Type Description

schema_name TEXT The name of the schema to which an index
belongs.

index_name TEXT The name of the index.

index_type TEXT This parameter is supported for compatibil
ity only. The index type is BTREE.

table_owner TEXT The username of the owner of an indexed
table.

table_name TEXT The name of the indexed table.

table_type TEXT This parameter is supported for compatibil
ity only. The value is TABLE.

uniqueness TEXT Indicates whether the index is UNIQUE or
NONUNIQUE.

compression CHARACTER(1) This parameter is supported for compatibil
ity only. The value is N (not compressed).

tablespace_name TEXT The name of the tablespace where the
table is located if this tablespace is not the
default tablespace.

logging TEXT This parameter is supported for compatibil
ity only. The value is LOGGING.

status TEXT Indicates whether the state of the object is
valid. Valid values: VALID and INVALID.

partitioned CHARACTER(3) This parameter is supported for compatibil
ity only. The value is NO.

644 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

temporary CHARACTER(1) This parameter is supported for compatibil
ity only. The value is N.

secondary CHARACTER(1) This parameter is supported for compatibil
ity only. The value is N.

join_index CHARACTER(3) This parameter is supported for compatibil
ity only. The value is NO.

dropped CHARACTER(3) This parameter is supported for compatibil
ity only. The value is NO.

14.62 USER_JOBS
The USER_JOBS view provides the information about all jobs owned by the current user.

Parameter Type Description

job INTEGER The identifier of a job (Job ID).

log_user TEXT The name of the user that submitted
the job.

priv_user TEXT The same as log_user. This parameter
 is supported for compatibility only.

schema_user TEXT The name of the schema used to
parse the job.

last_date TIMESTAMP WITH TIME
ZONE

The last date when this job was
executed with the expected result
returned.

last_sec TEXT The same as last_date.

this_date TIMESTAMP WITH TIME
ZONE

The date when the system starts to
execute the job.

this_sec TEXT The same as this_date.

next_date TIMESTAMP WITH TIME
ZONE

The next date when this job will be
executed.

next_sec TEXT The same as next_date.

total_time INTERVAL The period in which the job is
executed. Unit: seconds.

Issue: 20200701 645

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

broken TEXT • Y: indicates that no attempt will be
 made to run this job.

• N: indicates that attempts will be
made to run this job.

interval TEXT The interval at which the job is
repeated.

failures BIGINT The number of times that the job
has failed since the last successful
execution.

what TEXT The job definition that runs when
the job executes. The job definition
appears as a PL/SQL code block.

nls_env CHARACTER VARYING(
4000)

The value is NULL. This parameter is
supported for compatibility only.

misc_env BYTEA The value is NULL. This parameter is
supported for compatibility only.

instance NUMERIC The value is 0. This parameter is
supported for compatibility only.

14.63 USER_OBJECTS
The USER_OBJECTS view provides the information about all objects that are owned by the

current user.

Parameter Type Description

schema_name TEXT The name of the schema to which the object
 belongs.

object_name TEXT The name of the object.

object_type TEXT The type of the object. Valid values: INDEX
, FUNCTION, PACKAGE, PACKAGE BODY,
PROCEDURE, SEQUENCE, SYNONYM, TABLE,
TRIGGER, and VIEW.

status CHARACTER VARYING This parameter is supported for compatibil
ity only. The value is VALID.

temporary TEXT • Y: indicates the object is temporary.
• N: indicates the object is not temporary.

646 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

14.64 USER_PART_KEY_COLUMNS
The USER_PART_KEY_COLUMNS view provides the information about the key columns of

partitioned tables in a database.

Parameter Type Description

schema_name TEXT The name of the schema where the
table is located.

name TEXT The name of the table where the
column is located.

object_type CHARACTER(5) This parameter is supported for
compatibility only. The value is TABLE.

column_name TEXT The name of the column on which the
 key is defined.

column_position INTEGER The position of this column. For
example, a value of 1 indicates
the first column and a value of 2
indicates the second column. All
columns follow the same rule.

14.65 USER_PART_TABLES
The USER_PART_TABLES view provides the information about all partitioned tables in the

database that are owned by the current user.

Parameter Type Description

schema_name TEXT The name of the schema where the
table is located.

table_name TEXT The name of the table.

partitioning_type TEXT The partition type used to define
table partitions.

subpartitioning_type TEXT The subpartition type used to define
table subpartitions.

partition_count BIGINT The number of partitions in the table.

def_subpartition_count INTEGER The number of subpartitions in the
table.

partitioning_key_count INTEGER The number of specified partition
keys.

Issue: 20200701 647

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

subpartitioning_key_
count

INTEGER The number of specified subpartition
 keys.

status CHARACTER VARYING(8) This parameter is supported for
compatibility only. The value is VALID.

def_tablespace_name CHARACTER VARYING(30) This parameter is supported for
compatibility only. The value is NULL.

def_pct_free NUMERIC This parameter is supported for
compatibility only. The value is NULL.

def_pct_used NUMERIC This parameter is supported for
compatibility only. The value is NULL.

def_ini_trans NUMERIC This parameter is supported for
compatibility only. The value is NULL.

def_max_trans NUMERIC This parameter is supported for
compatibility only. The value is NULL.

def_initial_extent CHARACTER VARYING(40) This parameter is supported for
compatibility only. The value is NULL.

def_min_extents CHARACTER VARYING(40) This parameter is supported for
compatibility only. The value is NULL.

def_max_extents CHARACTER VARYING(40) This parameter is supported for
compatibility only. The value is NULL.

def_pct_increase CHARACTER VARYING(40) This parameter is supported for
compatibility only. The value is NULL.

def_freelists NUMERIC This parameter is supported for
compatibility only. The value is NULL.

def_freelist_groups NUMERIC This parameter is supported for
compatibility only. The value is NULL.

def_logging CHARACTER VARYING(7) This parameter is supported for
compatibility only. The value is YES.

def_compression CHARACTER VARYING(8) This parameter is supported for
compatibility only. The value is NONE.

def_buffer_pool CHARACTER VARYING(7) This parameter is supported for
 compatibility only. The value is
DEFAULT.

ref_ptn_constraint_n
ame

CHARACTER VARYING(30) This parameter is supported for
compatibility only. The value is NULL.

648 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

interval CHARACTER VARYING(
1000)

This parameter is supported for
compatibility only. The value is NULL.

14.66 USER_QUEUES
The USER_QUEUES view provides the information about a queue on which the current user

has usage permissions.

Parameter Type Description

name TEXT The name of a queue.

queue_table TEXT The name of the queue table where the
queue is located.

qid OID The system-assigned object ID of the queue.

queue_type CHARACTER VARYING The type of the queue. Valid values
: EXCEPTION_QUEUE, NON_PERSIS
TENT_QUEUE, and NORMAL_QUEUE.

max_retries NUMERIC The maximum number of dequeuing
attempts.

retrydelay NUMERIC The maximum time allowed between retries
.

enqueue_enabled CHARACTER VARYING • YES: indicates that the queue allows
enqueuing.

• NO: indicates that the queue does not
allow enqueuing.

dequeue_enabled CHARACTER VARYING • YES: indicates that the queue allows
dequeuing.

• NO: indicates that the queue does not
allow dequeuing.

retention CHARACTER VARYING The number of seconds that a processed
message is retained in the queue.

user_comment CHARACTER VARYING The user-defined comment.

network_name CHARACTER VARYING The name of the network where the queue
is located.

Issue: 20200701 649

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

sharded CHARACTER VARYING • YES: indicates the queue is on a sharded
 network.

• NO: indicates the queue is not on a
sharded network.

14.67 USER_QUEUE_TABLES
The USER_QUEUE_TABLES view provides the information about all of the queue tables

accessible by the current user.

Parameter Type Description

queue_table TEXT The user-defined name of the queue
table.

type CHARACTER VARYING The type of data stored in the queue
table.

object_type TEXT The user-defined payload type.

sort_order CHARACTER VARYING The order in which the queue table is
 sorted.

recipients CHARACTER VARYING The value is SINGLE.

message_grouping CHARACTER VARYING The value is NONE.

compatible CHARACTER VARYING The release number of the PolarDB
 database compatible with Oracle.
The queue table is compatible with
this release.

primary_instance NUMERIC The value is 0.

secondary_instance NUMERIC The value is 0.

owner_instance NUMERIC The instance number of the instance
to which the queue table belongs.

user_comment CHARACTER VARYING The comment added when the table
was created.

secure CHARACTER VARYING • YES: indicates that the queue table
 is secure.

• NO: indicates that the queue table
 is not secure.

650 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

14.68 USER_ROLE_PRIVS
The USER_ROLE_PRIVS view provides the information about the permissions that have been

granted to the current user. A row is created for each role to which a user has been granted.

Parameter Type Description

username TEXT The name of the user to which the
role was granted.

granted_role TEXT The name of the role granted to the
grantee.

admin_option TEXT YES: The role is granted with the
admin option. NO: The role is granted
 with the other options other than
admin.

default_role TEXT YES: The role is enabled when the
grantee creates a session.

os_granted CHARACTER VARYING(3) This parameter is supported for
compatibility only. The value is NO.

14.69 USER_SEQUENCES
The USER_SEQUENCES view provides the information about all user-defined sequences that

belong to the current user.

Parameter Type Description

schema_name TEXT The name of the schema to which the
 sequence belongs.

sequence_name TEXT The name of the sequence.

min_value NUMERIC The lowest value that the server
assigns to the sequence.

max_value NUMERIC The highest value that the server
assigns to the sequence.

increment_by NUMERIC The value added to the current
sequence number to create the next
sequent number.

cycle_flag CHARACTER VARYING Specifies whether the sequence
wraps if it reaches min_value or
max_value.

Issue: 20200701 651

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

order_flag CHARACTER VARYING This parameter is supported for
compatibility only. The value is Y.

cache_size NUMERIC The number of pre-allocated
sequence numbers in memory.

last_number NUMERIC The value of the last sequence
number saved to the disk.

14.70 USER_SOURCE
The USER_SOURCE view provides the information about all programs owned by the current

user.

Parameter Type Description

schema_name TEXT The name of the schema to which the
program belongs.

name TEXT The name of the program.

type TEXT The type of the program. Valid values:
FUNCTION, PACKAGE, PACKAGE BODY,
PROCEDURE, and TRIGGER.

line INTEGER The source code line number relative to a
specified program.

text TEXT The line of source code text.

14.71 USER_SUBPART_KEY_COLUMNS
The USER_SUBPART_KEY_COLUMNS view provides the information about key columns of

those partitioned tables which are subpartitioned that belong to the current user.

Parameter Type Description

schema_name TEXT The name of the schema to which the
 table belongs.

name TEXT The name of the table to which the
column belongs.

object_type CHARACTER(5) This parameter is supported for
compatibility only. The value is TABLE.

column_name TEXT The name of the column on which the
 key is defined.

652 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

column_position INTEGER The ordinal position of this column.
For example, a value of 1 indicates
 the first column and a value of 2
indicates the second column. All
columns follow the same rule.

14.72 USER_SYNONYMS
The USER_SYNONYMS view provides the information about all synonyms owned by the

current user.

Parameter Type Description

schema_name TEXT The name of the schema to which the
 synonym belongs.

synonym_name TEXT The name of the synonym.

table_owner TEXT The username of the owner of the
 table on which the synonym is
defined.

table_schema_name TEXT The name of the schema to which the
 table belongs.

table_name TEXT The name of the table on which the
synonym is defined.

db_link TEXT The name of any associated
database link.

14.73 USER_TAB_COLUMNS
The USER_TAB_COLUMNS view provides the information about all columns in tables and

views owned by the current user.

Parameter Type Description

schema_name CHARACTER VARYING The name of the schema to which the
 table or the view belongs.

table_name CHARACTER VARYING The name of the table or view to
which the column belongs.

column_name CHARACTER VARYING The name of the column.

data_type CHARACTER VARYING The data type of the column.

Issue: 20200701 653

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

data_length NUMERIC The length of the text column.

data_precision NUMERIC The precision of the NUMBER column
. The precision is measured with the
number of digits.

data_scale NUMERIC The scale of the NUMBER column.

nullable CHARACTER(1) Specifies whether the column is
nullable or not. Valid values:

• Y: The column is nullable.
• N: The column cannot be null.

column_id NUMERIC The relative position of the column
within the table.

data_default CHARACTER VARYING The default value that is assigned to
the column.

14.74 USER_TAB_PARTITIONS
The USER_TAB_PARTITIONS view provides the information about all of the partitions that are

owned by the current user.

Parameter Type Description

schema_name TEXT The name of the schema to which the table
belongs.

table_name TEXT The name of the table.

composite TEXT • YES: The table is subpartitioned.
• NO: The table is not subpartitioned.

partition_name TEXT The name of the partition.

subpartition_count BIGINT The number of subpartitions in the partition.

high_value TEXT The high partitioning value specified in the
CREATE TABLE statement.

high_value_length INTEGER The length of the high partitioning value.

partition_position INTEGER The ordinal position of this partition. For
 example, a value of 1 indicates the first
 partition and a value of 2 indicates the
second partition. All positions follow the
same rules.

654 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

tablespace_name TEXT The name of the tablespace to which the
subpartition belongs.

pct_free NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

pct_used NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

ini_trans NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

max_trans NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

initial_extent NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

next_extent NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

min_extent NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

max_extent NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

pct_increase NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

freelists NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

freelist_groups NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

logging CHARACTER VARYING
(7)

This parameter is supported for compatibil
ity only. The value is YES.

compression CHARACTER VARYING
(8)

This parameter is supported for compatibil
ity only. The value is NONE.

num_rows NUMERIC The same as pg_class.reltuples.

blocks INTEGER The same as pg_class.relpages.

empty_blocks NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

avg_space NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

Issue: 20200701 655

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

chain_cnt NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

avg_row_len NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

sample_size NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

last_analyzed TIMESTAMP WITHOUT
 TIME ZONE

This parameter is supported for compatibil
ity only. The value is NULL.

buffer_pool CHARACTER VARYING
(7)

This parameter is supported for compatibil
ity only. The value is NULL.

global_stats CHARACTER VARYING
(3)

This parameter is supported for compatibil
ity only. The value is YES.

user_stats CHARACTER VARYING
(3)

This parameter is supported for compatibil
ity only. The value is NO.

backing_table REGCLASS The name of the partition backup table.

14.75 USER_TAB_SUBPARTITIONS
The USER_TAB_SUBPARTITIONS view provides information about all of the subpartitions

owned by the current user.

Parameter Type Description

schema_name TEXT The name of the schema to which the table
belongs.

table_name TEXT The name of the table.

partition_name TEXT The name of the partition.

subpartition_name TEXT The name of the subpartition.

high_value TEXT The high subpartitioning value specified in
the CREATE TABLE statement.

high_value_length INTEGER The length of the high subpartitioning value
.

subpartition_position INTEGER The ordinal position of this subpartition.
For example, a value of 1 indicates the first
 subpartition and a value of 2 indicates
the second subpartition. All positions of
subpartitions follow the same rule.

656 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

tablespace_name TEXT The name of the tablespace to which the
subpartition belongs.

pct_free NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

pct_used NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

ini_trans NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

max_trans NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

initial_extent NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

next_extent NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

min_extent NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

max_extent NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

pct_increase NUMERIC This parameter is supported for compatibil
ity only. The value is 0.

freelists NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

freelist_groups NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

logging CHARACTER VARYING
(7)

This parameter is supported for compatibil
ity only. The value is YES.

compression CHARACTER VARYING
(8)

This parameter is supported for compatibil
ity only. The value is NONE.

num_rows NUMERIC The same as pg_class.reltuples.

blocks INTEGER The same as pg_class.relpages.

empty_blocks NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

avg_space NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

Issue: 20200701 657

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

chain_cnt NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

avg_row_len NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

sample_size NUMERIC This parameter is supported for compatibil
ity only. The value is NULL.

last_analyzed TIMESTAMP WITHOUT
 TIME ZONE

This parameter is supported for compatibil
ity only. The value is NULL.

buffer_pool CHARACTER VARYING
(7)

This parameter is supported for compatibil
ity only. The value is NULL.

global_stats CHARACTER VARYING
(3)

This parameter is supported for compatibil
ity only. The value is YES.

user_stats CHARACTER VARYING
(3)

This parameter is supported for compatibil
ity only. The value is NO.

backing_table REGCLASS The name of the partition backup table.

14.76 USER_TABLES
The USER_TABLES view provides the information about all tables owned by the current user.

Parameter Type Description

schema_name TEXT The name of the schema to which the table
belongs.

table_name TEXT The name of the table.

tablespace_name TEXT The name of the tablespace to which the
table belongs if this tablespace is not the
default tablespace.

status CHARACTER VARYING
(5)

This parameter is supported for compatibil
ity only. The value is VALID.

temporary CHARACTER(1) • Y: specifies that the table is a temporary
table.

• N: specifies that the table is not a
temporary table.

658 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

14.77 USER_TRIGGERS
The USER_TRIGGERS view provides the information about all triggers on tables owned by

the current user.

Parameter Type Description

schema_name TEXT The name of the schema to which the
 trigger belongs.

trigger_name TEXT The name of the trigger.

trigger_type TEXT The type of the trigger. Valid values:

• BEFORE ROW
• BEFORE STATEMENT
• AFTER ROW
• AFTER STATEMENT

triggering_event TEXT The event that fires the trigger.

table_owner TEXT The username of the owner of the
table on which the trigger is defined.

base_object_type TEXT This parameter is supported for
compatibility only. The value is TABLE.

table_name TEXT The name of the table on which the
trigger is defined.

referencing_names TEXT This parameter is supported for
 compatibility only. The value is
REFERENCING. NEW AS NEW OLD AS
OLD.

status TEXT Specifies whether the trigger is
 enabled (VALID) or disabled (
NOTVALID).

description TEXT This parameter is supported for
compatibility only.

trigger_body TEXT The body of the trigger.

action_statement TEXT The SQL statement that is executed
when the trigger fires.

Issue: 20200701 659

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

14.78 USER_TYPES
The USER_TYPES view provides the information about all object types owned by the current

user.

Parameter Type Description

schema_name TEXT The name of the schema in which the
 type is defined.

type_name TEXT The name of the type.

type_oid OID The object identifier (OID) of the type.

typecode TEXT The typecode of the type. Valid
values:

• OBJECT
• COLLECTION
• OTHER

attributes INTEGER The number of properties in the type.

14.79 USER_USERS
The USER_USERS view provides the information about the current user.

Parameter Type Description

username TEXT The username of the user.

user_id OID The ID of the user.

account_status CHARACTER VARYING
(32)

The current status of the account. Valid
values:

• OPEN
• EXPIRED
• EXPIRED(GRACE)
• EXPIRED & LOCKED
• EXPIRED & LOCKED(TIMED)
• EXPIRED(GRACE) & LOCKED
• EXPIRED(GRACE) & LOCKED(TIMED)
• LOCKED
• LOCKED(TIMED)

Uses the edb_get_role_status(role_id)
function to get the current status of the
account.

660 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

lock_date TIMESTAMP WITHOUT
 TIME ZONE

If the account status is set to LOCKED, the
lock_date parameter displays the date and
time when the account is locked

expiry_date TIMESTAMP WITHOUT
 TIME ZONE

The expiration date of the account.

default_tablespace TEXT The default tablespace associated with the
account.

temporary_
tablespace

 CHARACTER VARYING
(30)

This parameter is supported for compatibil
ity only. The value is '' (an empty string).

created TIMESTAMP WITHOUT
 TIME ZONE

This parameter is supported for compatibil
ity only. The value is NULL.

initial_rsrc_consume
r_group

 CHARACTER VARYING
(30)

This parameter is supported for compatibil
ity only. The value is NULL.

external_name CHARACTER VARYING
(4000)

This parameter is supported for compatibil
ity only. The value is NULL.

14.80 USER_VIEW_COLUMNS
The USER_VIEW_COLUMNS view provides the information about all columns in views owned

by the current user.

Parameter Type Description

schema_name CHARACTER VARYING The name of the schema to which the
 view belongs.

view_name CHARACTER VARYING The name of the view.

column_name CHARACTER VARYING The name of the column.

data_type CHARACTER VARYING The data type of the column.

data_length NUMERIC The length of the text column.

data_precision NUMERIC The precision of the NUMBER column
. The precision is measured with the
number of digits.

data_scale NUMERIC The scale of the NUMBER column.

Issue: 20200701 661

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

nullable CHARACTER(1) Specifies whether the column is
nullable or not. Valid values:

• Y: The column is nullable.
• N: The column cannot be null.

column_id NUMERIC The relative position of the column
within the view.

data_default CHARACTER VARYING The default value that is assigned to
the column.

14.81 USER_VIEWS
The USER_VIEWS view provides the information about all views owned by the current user.

Parameter Type Description

schema_name TEXT The name of the schema to which the
 view belongs.

view_name TEXT The name of the view.

text TEXT The SELECT statement that defines
the view.

14.82 V$VERSION
The V$VERSION view provides the information about the product compatibility.

Parameter Type Description

banner TEXT The product compatibility informatio
n.

14.83 PRODUCT_COMPONENT_VERSION
The PRODUCT_COMPONENT_VERSION view provides the version information about the

product version compatibility.

Parameter Type Description

product CHARACTER VARYING(74) The name of the product.

version CHARACTER VARYING(74) The version number of the product.

662 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 14 Oracle catalog views

Parameter Type Description

status CHARACTER VARYING(74) This parameter is provided for
compatibility. The value is Available.

Issue: 20200701 663

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

15 Table partitioning

15.1 Overview
In a partitioned table, a logically large table is divided into smaller physical pieces. This

document discusses the aspects of table partitioning that are compatible with Oracle

databases and supported by POLARDB compatible with Oracle.

Partitioning can provide the following benefits:

• Query performance can be significantly improved in specific situations, particularly

when the most frequently accessed rows of the table are in a single partition or small

number of partitions. Partitioning allows you to omit the partition column from the front

of an index, reducing index size and making it more likely that the frequently used parts

of the index fits in memory.

• You can experience improved performance when accessing (query or update) a large

 percentage of a single partition. This is because the server will perform a sequential

 scan of the partition instead of using an index and random access reads scattered

across the whole table.

• A bulk load (or unload) can be implemented by adding or removing partitions, if you

plan this requirement into the partitioning design. ALTER TABLE is much faster than a

bulk operation. It also helps to avoid the VACUUM overhead caused by a bulk DELETE.

• You can migrate seldom-used data to less-expensive (or slower) storage media.

We recommend table partitioning only when a table is very large. The exact point at which

 a table will benefit from partitioning depends on the application. We recommend that the

size of the table exceeds the physical memory of the database server.

15.2 Select a partitioning type
This topic describes how to select a partitioning type.

When you create a partitioned table, you can specify LIST or RANGE partitioning rules. The

partitioning rules provide a set of constraints that define the data stored in each partition.

When new rows are added to the partitioned table, the server uses the partitioning rules to

determine which partition will contain each row.

664 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

POLARDB compatible with Oracle can also use partitioning rules to enable partition pruning

, improving performance when responding to user queries. When selecting a partitioning

type and partition keys for a table, you need to consider how the data that is stored in the

table will be queried, and include frequently queried columns in the partitioning rules.

Partitioning types

• List partitioning

When creating a list-partitioned table, you must specify a single partition key column.

When you add a new row to the table, the server compares the key values specified in

 the partitioning rule to the corresponding column within the row. If the column value

matches a value in the partitioning rule, the row is stored in the partition named in the

rule.

• Range partitioning

When creating a range-partitioned table, you must specify one or more partition key

columns. When you add a new row to the table, the server compares the value of the

partition key column (or columns) to the corresponding column (or columns) in the table

 entry. If the column values satisfy the conditions specified in the partitioning rule, the

row is stored in the partition named in the rule.

• Subpartitioning

Subpartitioning breaks a partitioned table into smaller subsets that can be stored on the

 same server. A table is typically subpartitioned by a different set of columns, and can be

 of a different subpartitioning type other than that of the parent partition. If one partition

 is subpartitioned, then each partition must include a minimum of at least one subpartiti

on.

If a table is subpartitioned, no data will be stored in any of the partitions. The data will

be instead stored in the corresponding subpartitions.

15.3 Use partition pruning
The query planner of POLARDB compatible with Oracle uses partition pruning to compute

an effective plan to locate a row that matches the conditions specified in the WHERE clause

of a SELECT statement.

The partition pruning mechanism uses the following two optimization methods:

• Constraint exclusion

Issue: 20200701 665

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

• Fast pruning

Partition pruning methods limit the search for data to only the partitions where the values

 for which you are searching can reside. The preceding two pruning methods remove

partitions from a query execution plan to increase performance.

The difference between fast pruning and constraint exclusion is that fast pruning

understands the relationship between the partitions in an Oracle-partitioned table,

whereas exclusion constraint does not. For example, when a query searches for a specific

 value in a list-partitioned table, fast pruning involves only searching a specific partition.

However, constraint exclusion must examine the constraints defined for each partition. Fast

 pruning occurs early in the planning process to reduce the number of partitions that the

planner must consider, whereas constraint exclusion occurs late in the planning process.

Use constraint exclusion

The constraint_exclusion parameter is used to control constraint exclusion. The value of the

constraint_exclusion parameter can be on, off, or partition. To enable constraint exclusion,

you must set the constraint_exclusion parameter to either partition or on. By default, the

parameter is set to partition.

Note:

For more information about constraint exclusion, see Partitioning.

When constraint exclusion is enabled, the server examines the constraints defined for each

partition to determine whether the partition can satisfy a query.

When you run a SELECT statement that does not contain a WHERE clause, the query planner

 must recommend an execution plan that searches through the entire table. When you run

 a SELECT statement that contains a WHERE clause, the query planner determines in which

 partition the row can be stored, and sends query fragments to that partition. This prunes

 the partitions that cannot contain the row from the execution plan. If you are not using

partitioned tables, disabling constraint exclusion can improve performance.

Use fast pruning

Like constraint exclusion, fast pruning can only optimize queries that contain a WHERE (or

 join) clause, and only when the qualifiers in the WHERE clause match a specific form. In

both cases, the query planner will avoid searching for data within partitions that cannot

hold the data required by the query.

666 Issue: 20200701

https://www.enterprisedb.com/docs/en/9.3/pg/ddl-partitioning.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

Fast pruning is controlled by a boolean configuration parameter named edb partition

pruning. If edb partition pruning is ON, POLARDB compatible with Oracle will fast prune

 specific queries. If edb partition pruning is OFF, POLARDB compatible with Oracle will

disable fast pruning.

Note that fast pruning cannot optimize queries against subpartitioned tables or optimize

queries against range-partitioned tables that are partitioned on more than one column.

For LIST partitioned tables, POLARDB compatible with Oracle can fast prune queries

that contain a WHERE clause that constrains a partitioning column to a literal value. For

example, given the following LIST partitioned table:

CREATE TABLE sales_hist(..., country text, ...)
 PARTITION BY LIST(country) (
 PARTITION americas VALUES('US', 'CA', 'MX'),
 PARTITION europe VALUES('BE', 'NL', 'FR'),
 PARTITION asia VALUES('JP', 'PK', 'CN'),
 PARTITION others VALUES(DEFAULT)
)

Fast pruning can reason about WHERE clauses such as:

WHERE country = 'US' WHERE country IS NULL;

Given the first WHERE clause, fast pruning can eliminate partitions europe, asia, and others

 because these partitions cannot hold rows that satisfy the qualifier: WHERE country = 'US

'. Given the second WHERE clause, fast pruning can eliminate partitions americas, europe

, and asia because these partitions cannot hold rows where country IS NULL. The operator

 specified in the WHERE clause must be an equal sign (=) or the equality operator suitable

for the data type of the partitioning column.

For a range-partitioned table, POLARDB compatible with Oracle can fast prune queries

that contain a WHERE clause that constrains a partitioning column to a literal value. The

operator may be any of the following: greater than (>), greater than or equal to (>=), less

than (<), and less than or equal to (<=).

Fast pruning will also reason about more complex expressions, including AND and

BETWEEN operators, such as:

WHERE size > 100 AND size <= 200 WHERE size BETWEEN 100 AND 200

However, fast pruning cannot prune based on expressions that include OR or IN. For

example, when querying the following RANGE partitioned table:

CREATE TABLE boxes(id int, size int, color text)

Issue: 20200701 667

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

 PARTITION BY RANGE(size)

(

 PARTITION small VALUES LESS THAN(100),

 PARTITION medium VALUES LESS THAN(200),

 PARTITION large VALUES LESS THAN(300)

)

Fast pruning can reason about WHERE clauses, such as:

WHERE size > 100 -- scan partitions 'medium' and 'large'

WHERE size >= 100 -- scan partitions 'medium' and 'large'

WHERE size = 100 -- scan partition 'medium'

WHERE size <= 100 -- scan partitions 'small' and 'medium'

WHERE size < 100 -- scan partition 'small'

WHERE size > 100 AND size < 199 -- scan partition 'medium'

WHERE size BETWEEN 100 AND 199 -- scan partition 'medium'

WHERE color = 'red' AND size = 100 -- scan 'medium'

WHERE color = 'red' AND (size > 100 AND size < 199) -- scan 'medium'

In each case, fast pruning requires that the qualifier be a partitioning column and literal

 value (or IS NULL/IS NOT NULL). Note that fast pruning can also optimize DELETE and

UPDATE statements containing WHERE clauses of the forms described above.

15.4 Example - partition pruning
This topic provides an example about how to use partition pruning.

Examples

The EXPLAIN statement displays the execution plan of a statement. You can use the

EXPLAIN statement to confirm that POLARDB compatible with Oracle is pruning partitions

from the execution plan of a query. To demonstrate the efficiency of partition pruning, first

create a simple table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)

668 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

Then, perform a constrained query that includes the EXPLAIN statement:

EXPLAIN (COSTS OFF) SELECT * FROM sales WHERE country = 'INDIA';

The resulting query plan shows that the server will only scan the sales_asia partition, in

which a row with a country value of INDIA can be stored:

edb=# EXPLAIN (COSTS OFF) SELECT * FROM sales WHERE country = 'INDIA';
 QUERY PLAN

 Append
 -> Seq Scan on sales
 Filter: ((country)::text = 'INDIA'::text)
 -> Seq Scan on sales_asia
 Filter: ((country)::text = 'INDIA'::text)
(5 rows)

If you perform a query that searches for a row that matches a value not included in the

partition key:

EXPLAIN (COSTS OFF) SELECT * FROM sales WHERE dept_no = '30';

The resulting query plan shows that the server must search through all of the partitions to

locate the rows that satisfy the query:

edb=# EXPLAIN (COSTS OFF) SELECT * FROM sales WHERE dept_no = '30';
 QUERY PLAN

 Append
 -> Seq Scan on sales
 Filter: (dept_no = 30::numeric)
 -> Seq Scan on sales_europe
 Filter: (dept_no = 30::numeric)
 -> Seq Scan on sales_asia
 Filter: (dept_no = 30::numeric)
 -> Seq Scan on sales_americas
 Filter: (dept_no = 30::numeric)
(9 rows)

Constraint exclusion also applies when querying subpartitioned tables:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number

Issue: 20200701 669

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

)
PARTITION BY RANGE(date) SUBPARTITION BY LIST (country)
(
 PARTITION "2011" VALUES LESS THAN('01-JAN-2012')
 (
 SUBPARTITION europe_2011 VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION asia_2011 VALUES ('PAKISTAN', 'INDIA'),
 SUBPARTITION americas_2011 VALUES ('US', 'CANADA')
),
 PARTITION "2012" VALUES LESS THAN('01-JAN-2013')
 (
 SUBPARTITION europe_2012 VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION asia_2012 VALUES ('PAKISTAN', 'INDIA'),
 SUBPARTITION americas_2012 VALUES ('US', 'CANADA')
),
 PARTITION "2013" VALUES LESS THAN('01-JAN-2014')
 (
 SUBPARTITION europe_2013 VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION asia_2013 VALUES ('PAKISTAN', 'INDIA'),
 SUBPARTITION americas_2013 VALUES ('US', 'CANADA')
)
);

When you query the table, the query planner prunes any partitions or subpartitions from

the search path that cannot contain the result set:

edb=# EXPLAIN (COSTS OFF) SELECT * FROM sales WHERE country = 'US' AND date = 'Dec
12, 2012';
 QUERY PLAN

 Append
 -> Seq Scan on sales
 Filter: (((country)::text = 'US'::text) AND (date = '12-DEC-12 00:00:00'::timestamp
without time zone))
 -> Seq Scan on sales_2012
 Filter: (((country)::text = 'US'::text) AND (date = '12-DEC-12 00:00:00'::timestamp
without time zone))
 -> Seq Scan on sales_americas_2012
 Filter: (((country)::text = 'US'::text) AND (date = '12-DEC-12 00:00:00'::timestamp
without time zone))
(7 rows)

15.5 Partitioning commands compatible with Oracle
databases

15.5.1 CREATE TABLE... PARTITION BY
You can use the PARTITION BY clause of the CREATE TABLE command to create a partitioned

table. Data in this partitioned table is distributed among one or more partitions (and

subpartitions).

Overview

The CREATE TABLE command syntax has the following four forms:

670 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

• List partitioning syntax

The first form is to create a list-partitioned table:

CREATE TABLE [schema.]table_name table_definition PARTITION BY
 LIST(column)
 [SUBPARTITION BY {RANGE|LIST} (column[, column]...)]
 (list_partition_definition[, list_partition_definition]...) ;

Where list_partition_definition is:

PARTITION [partition_name]
VALUES (value[, value]...) [TABLESPACE tablespace_name] [(subpartition, ...)]

• Range partitioning syntax

The second form is to create a range-partitioned table:

CREATE TABLE [schema.]table_name
 table_definition
 PARTITION BY RANGE(column[, column]...)
 [SUBPARTITION BY {RANGE|LIST} (column[, column]...)]
 (range_partition_definition[, range_partition_definition]...) ;

Where range_partition_definition is:

PARTITION [partition_name]
 VALUES LESS THAN (value[, value]...)
 [TABLESPACE tablespace_name]
 [(subpartition, ...)]

• Subpartitioning syntax

subpartition may be one of the following two types:

{list_subpartition | range_subpartition}

Where list_subpartition is:

SUBPARTITION [subpartition_name] VALUES (value[, value]...)
[TABLESPACE tablespace_name]

Where range_subpartition is:

SUBPARTITION [subpartition_name]
VALUES LESS THAN (value[, value]...)
[TABLESPACE tablespace_name]

Description

The CREATE TABLE... PARTITION BY command creates a table that has one or multiple

partitions. Each partition may have one or multiple subpartitions. The number of defined

 partitions is not limited. If you include the PARTITION BY clause, you must specify a

Issue: 20200701 671

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

minimum of one partitioning rule. The resulting table is owned by the user who creates the

 table.

Use the PARTITION BY LIST clause to divide a table into partitions based on the values

entered in a specified column. Each partitioning rule must specify a minimum of one literal

 value. The number of values you may specify is not limited. Include a rule that specifies a

matching value of DEFAULT to direct any un-qualified rows to the specified partition.

Use the PARTITION BY RANGE clause to specify boundary rules based on which partitions

are created. Each partitioning rule must contain at least one column of a data type that has

 two operators (for example, a greater-than or equal to operator, and a less-than operator

). Range boundaries are evaluated based on a LESS THAN clause and are non-inclusive

. A date boundary of January 1, 2013 only includes the date values that fall on or before

December 31, 2012.

Range partitioning rules must be specified in ascending order. If INSERT commands store

rows with values that exceed the top boundary of a range-partitioned table, the commands

 will fail. However, commands will not fail if the partitioning rules include a boundary rule

 that specifies a value of MAXVALUE. If you do not include a MAXVALUE rule, any row that

exceeds the maximum limit specified by the boundary rules will cause an error.

Use the TABLESPACE keyword to specify the name of a tablespace in which a partition or

subpartition will reside. If you do not specify a tablespace, the partition or subpartition will

be created in the default tablespace.

If you use the CREATE TABLE syntax to create an index on a partitioned table, the index will

be created on each partition or subpartition.

If the table definition includes the SUBPARTITION BY clause, each partition in the table will

have a minimum of one subpartition. Each subpartition can be explicitly defined or system-

defined.

If the subpartition is system-defined, the server-generated subpartition will reside in the

default tablespace, and the subpartition name will be assigned by the server. The server

will create:

• A DEFAULT subpartition if the SUBPARTITION BY clause specifies LIST.

• A MAXVALUE subpartition if the SUBPARTITION BY clause specifies RANGE.

672 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

A subpartition name generated by the server is a combination of the partition name and a

unique identifier. You can query the ALL_TAB_SUBPARTITIONS table to view a complete list

of subpartition names.

Parameters

Parameter Description

table_name The name (optionally schema-qualified) of the table to be created.

table_definition The column names, data types, and constraint information as described
in the PostgreSQL core documentation for the CREATE TABLE statement is
available at CREATE TABLE.

partition_name The name of the partition to be created. Partition names must be unique
 among all partitions and subpartitions, and must follow the naming
conventions for object identifiers.

subpartiti
on_name

The name of the subpartition to be created. Subpartition names must
be unique among all partitions and subpartitions, and must follow the
naming conventions for object identifiers.

column The name of the column on which the partitioning rules are based. Each
 row will be stored in a partition that corresponds to the value of the
specified column.

Issue: 20200701 673

http://www.enterprisedb.com/docs/en/9.3/pg/sql-createtable.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

Parameter Description

(value[, value
]...)

Use value to specify a quoted literal value (or a list of literal values

separated by commas) by which table entries will be grouped into

partitions. Each partitioning rule must specify at least one value, but

the number of values specified in a rule is not limited. value may be

null, default (if specifying a LIST partition), or maxvalue (if specifying a

RANGE partition).

When you specify rules for a list-partitioned table, include the DEFAULT

 keyword in the last partition rule to direct any unmatched rows to the

specified partition. If you do not include a value of DEFAULT, any INSERT

 statement that attempts to add a row that does not match the specified

rules of at least one partition will fail and return an error.

When you specify rules for a range-partitioned table, include the

MAXVALUE keyword in the last partition rule to direct any un-categorized

rows to the specified partition. If you do not include a MAXVALUE

 partition, any INSERT statement that attempts to add a row where the

partition key is greater than the highest value specified will fail and

return an error.

tablespace
_name

The name of the tablespace in which the partition or subpartition
resides.

Example - PARTITION BY LIST

The following example uses the PARTITION BY LIST clause to create a partitioned table

named sales. The sales table stores information in three partitions (europe, asia, and

americas):

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')

674 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

);

The resulting table is partitioned based on the value specified in the country column:

acctg=# SELECT partition_name, high_value from ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 americas | 'US', 'CANADA'
 asia | 'INDIA', 'PAKISTAN'
 europe | 'FRANCE', 'ITALY'
(3 rows)

• Rows with a value of US or CANADA in the country column are stored in the americas

partition.

• Rows with a value of INDIA or PAKISTAN in the country column are stored in the asia

partition.

• Rows with a value of FRANCE or ITALY in the country column are stored in the europe

partition.

The server evaluates the following statement based on the partitioning rules and stores the

row in the europe partition:

INSERT INTO sales VALUES (10, '9519a', 'FRANCE', '18-Aug-2012', '650000');

Example - PARTITION BY RANGE

The following example uses the PARTITION BY RANGE clause to create a partitioned table

named sales. The sales table stores information in four partitions (q1_2012, q2_2012,

q3_2012, and q4_2012).

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
(
 PARTITION q1_2012
 VALUES LESS THAN('2012-Apr-01'),
 PARTITION q2_2012
 VALUES LESS THAN('2012-Jul-01'),
 PARTITION q3_2012
 VALUES LESS THAN('2012-Oct-01'),
 PARTITION q4_2012
 VALUES LESS THAN('2013-Jan-01')

Issue: 20200701 675

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

);

The resulting table is partitioned based on the value specified in the date column:

acctg=# SELECT partition_name, high_value from ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------
 q4_2012 | '2013-Jan-01'
 q3_2012 | '2012-Oct-01'
 q2_2012 | '2012-Jul-01'
 q1_2012 | '2012-Apr-01'
(4 rows)

• Rows with a value in the date column before April 1, 2012 are stored in the q1_2012

partition.

• Rows with a value in the date column before July 1, 2012 are stored in the q2_2012

partition.

• Rows with a value in the date column before October 1, 2012 are stored in the q3_2012

partition.

• Rows with a value in the date column before January 1, 2013 are stored in the q4_2012

partition.

The server evaluates the following statement based on the partitioning rules and stores the

row in the q3_2012 partition:

INSERT INTO sales VALUES (10, '9519a', 'FRANCE', '18-Aug-2012', '650000');

Example - PARTITION BY RANGE, SUBPARTITION BY LIST

The following example creates a partitioned table (sales) that is first partitioned by using

the transaction date. Then, the range partitions (q1_2012, q2_2012, q3_2012, and q4_2012)

are list-partitioned by using the value of the country column.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
 SUBPARTITION BY LIST(country)
 (
 PARTITION q1_2012
 VALUES LESS THAN('2012-Apr-01')
 (
 SUBPARTITION q1_europe VALUES ('FRANCE', 'ITALY'),
 SUBPARTITION q1_asia VALUES ('INDIA', 'PAKISTAN'),
 SUBPARTITION q1_americas VALUES ('US', 'CANADA')
),
 PARTITION q2_2012

676 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

 VALUES LESS THAN('2012-Jul-01')
 (
 SUBPARTITION q2_europe VALUES ('FRANCE', 'ITALY'),
 SUBPARTITION q2_asia VALUES ('INDIA', 'PAKISTAN'),
 SUBPARTITION q2_americas VALUES ('US', 'CANADA')
),
 PARTITION q3_2012
 VALUES LESS THAN('2012-Oct-01')
 (
 SUBPARTITION q3_europe VALUES ('FRANCE', 'ITALY'),
 SUBPARTITION q3_asia VALUES ('INDIA', 'PAKISTAN'),
 SUBPARTITION q3_americas VALUES ('US', 'CANADA')
),
 PARTITION q4_2012
 VALUES LESS THAN('2013-Jan-01')
 (
 SUBPARTITION q4_europe VALUES ('FRANCE', 'ITALY'),
 SUBPARTITION q4_asia VALUES ('INDIA', 'PAKISTAN'),
 SUBPARTITION q4_americas VALUES ('US', 'CANADA')
)
);

The table created by using this statement has four partitions. Each partition has three

subpartitions:

acctg=# SELECT subpartition_name, high_value, partition_name FROM ALL_TAB_SU
BPARTITIONS;
subpartition_name | high_value | partition_name + +
q4_asia | 'INDIA', 'PAKISTAN' | q4_2012
q4_europe | 'FRANCE', 'ITALY' | q4_2012
SUBPARTITION q4_ SUBPARTITION q4_ SUBPARTITION q4_
q4_americas | 'US', 'CANADA' | q4_2012
q3_americas | 'US', 'CANADA' | q3_2012
q3_asia | 'INDIA', 'PAKISTAN' | q3_2012
q3_europe | 'FRANCE', 'ITALY' | q3_2012
q2_americas | 'US', 'CANADA' | q2_2012
q2_asia | 'INDIA','PAKISTAN' | q2_2012
q2_europe | 'FRANCE', 'ITALY' | q2_2012
q1_americas | 'US', 'CANADA' | q1_2012
q1_asia | 'INDIA', 'PAKISTAN' | q1_2012
q1_europe | 'FRANCE', 'ITALY' | q1_2012
(12 rows)

When a row is added to this table, the value in the date column is compared with the values

 specified in the range partitioning rules. The server selects the partition in which the row

 will reside. The value in the country column is then compared with the values specified

in the list subpartitioning rules. When the server locates a match for the value, the row is

stored in the corresponding subpartition.

Any row added to the table is stored in a subpartition. Therefore, all partitions contain no

data.

Issue: 20200701 677

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

The server evaluates the following statement based on the partitioning and subpartitioning

rules and stores the row in the q3_europe partition:

INSERT INTO sales VALUES (10, '9519a', 'FRANCE', '18-Aug-2012', '650000');

15.5.2 ALTER TABLE... ADD PARTITION
The ALTER TABLE... ADD PARTITION command adds a partition to an existing partitioned

table.

Overview

You can use the ALTER TABLE... ADD PARTITION command to add a partition to an existing

partitioned table. Syntax:

ALTER TABLE table_name ADD PARTITION partition_definition;

Where partition_definition is:

{list_partition | range_partition}

and list_partition is:

PARTITION [partition_name]
 VALUES (value[, value]...)
 [TABLESPACE tablespace_name]
 [(subpartition, ...)]

and range_partition is:

PARTITION [partition_name]
 VALUES LESS THAN (value[, value]...)
 [TABLESPACE tablespace_name]
 [(subpartition, ...)]

Where subpartition is:

{list_subpartition | range_subpartition}

and list_subpartition is:

SUBPARTITION [subpartition_name]
 VALUES (value[, value]...)
 [TABLESPACE tablespace_name]

and range_subpartition is:

SUBPARTITION [subpartition_name]
 VALUES LESS THAN (value[, value]...)

678 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

 [TABLESPACE tablespace_name]

Description

The ALTER TABLE... ADD PARTITION command adds a partition to an existing partitioned

table. The number of defined partitions in a partitioned table is not limited.

New partitions must be of the same type (LIST or RANGE) as existing partitions. The

partitioning rules for new partitions must reference the same column specified in the

partitioning rules that define the existing partitions.

You cannot use the ALTER TABLE... ADD PARTITION statement to add partitions to tables

that have a MAXVALUE or DEFAULT rule. Alternatively, you can use the ALTER TABLE... SPLIT

PARTITION statement to split an existing partition. This allows you to effectively increase the

 number of partitions in a table.

RANGE partitions must be specified in ascending order. You cannot add a new partition

that precedes existing partitions in a RANGE partitioned table.

Include the TABLESPACE clause to specify a tablespace in which a new partition will reside.

If you do not specify a tablespace, the partition will be created in the default tablespace.

If the table is indexed, the index will be created on the new partition. To use the ALTER

TABLE... ADD SUBPARTITION command, you must be the table owner, or have superuser (or

administrative) privileges.

Parameters

Parameter Description

table_name The name (optionally schema-qualified) of the partitioned table.

partition_name The name of the partition to be created. Partition names must be unique
 among all partitions and subpartitions, and must follow the naming
conventions for object identifiers.

subpartiti
on_name

The name of the subpartition to be created. Subpartition names must
be unique among all partitions and subpartitions, and must follow the
naming conventions for object identifiers.

Issue: 20200701 679

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

Parameter Description

(value[, value
]...)

Use value to specify a quoted literal value (or a list of literal values
separated by commas) by which table entries will be grouped into
partitions. Each partitioning rule must specify at least one value, but
the number of values specified in a rule is not limited. value may be
null, default (if specifying a LIST partition), or maxvalue (if specifying a
RANGE partition).

For more information about creating a default or maxvalue partition,

see Handle stray values in a LIST or RANGE partitioned table.

tablespace
_name

The name of the tablespace in which the partition or subpartition
resides.

Example - add a partition to a LIST partitioned table

The following example adds a partition to a list-partitioned table named sales. Run the

following command to create the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

The table contains three partitions (americas, asia, and europe):

acctg=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 americas | 'US', 'CANADA'
 asia | 'INDIA', 'PAKISTAN'
 europe | 'FRANCE', 'ITALY'
(3 rows)

The following command adds a partition named east_asia to the sales table:

ALTER TABLE sales ADD PARTITION east_asia
 VALUES ('CHINA', 'KOREA');

After this command is called, the table contains the east_asia partition:

acctg=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;

680 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

 partition_name | high_value
----------------+---------------------
 east_asia | 'CHINA', 'KOREA'
 americas | 'US', 'CANADA'
 asia | 'INDIA', 'PAKISTAN'
 europe | 'FRANCE', 'ITALY'
(4 rows)

Example - add a partition to a RANGE partitioned table

The following example adds a partition to a range-partitioned table named sales:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
(
 PARTITION q1_2012
 VALUES LESS THAN('2012-Apr-01'),
 PARTITION q2_2012
 VALUES LESS THAN('2012-Jul-01'),
 PARTITION q3_2012
 VALUES LESS THAN('2012-Oct-01'),
 PARTITION q4_2012
 VALUES LESS THAN('2013-Jan-01')
);

The table contains four partitions (q1_2012, q2_2012, q3_2012, and q4_2012):

acctg=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------
 q4_2012 | '2013-Jan-01'
 q3_2012 | '2012-Oct-01'
 q2_2012 | '2012-Jul-01'
 q1_2012 | '2012-Apr-01'
(4 rows)

The following command adds a partition named q1_2013 to the sales table:

ALTER TABLE sales ADD PARTITION q1_2013
 VALUES LESS THAN('01-APR-2013');

After this command is called, the table contains the q1_2013 partition:

acctg=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------
 q1_2012 | '2012-Apr-01'
 q2_2012 | '2012-Jul-01'
 q3_2012 | '2012-Oct-01'
 q4_2012 | '2013-Jan-01'
 q1_2013 | '01-APR-2013'

Issue: 20200701 681

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

(5 rows)

15.5.3 ALTER TABLE... ADD SUBPARTITION
The ALTER TABLE... ADD SUBPARTITION command adds a subpartition to an existing

subpartitioned partition.

Overview

You can use the ALTER TABLE... ADD SUBPARTITION command to add a subpartition to an

existing subpartitioned table. Syntax:

ALTER TABLE table_name MODIFY PARTITION partition_name
 ADD SUBPARTITION subpartition_definition;

Where subpartition_definition is:

{list subpartition | range subpartition}

and list_subpartition is:

SUBPARTITION [subpartition_name]
 VALUES (value[, value]...)
 [TABLESPACE tablespace_name]

and range_subpartition is:

SUBPARTITION subpartition_name
 VALUES LESS THAN (value[, value]...)
 [TABLESPACE tablespace_name]

Description

The ALTER TABLE... ADD SUBPARTITION command adds a subpartition to an existing

subpartitioned partition. The number of defined subpartitions is not limited.

New subpartitions must be of the same type (LIST or RANGE) as existing subpartitions. The

 subpartitioning rules for new subpartitions must reference the same column specified in

the subpartitioning rules that define the existing subpartitions.

You cannot use the ALTER TABLE... ADD SUBPARTITION statement to add subpartitions to

tables that have a MAXVALUE or DEFAULT rule. Alternatively, you can use the ALTER TABLE...

SPLIT SUBPARTITION statement to split an existing subpartition. This effectively allows you

to add a subpartition to a table.

You cannot add a new subpartition that precedes existing subpartitions in a range-

partitioned table. Range subpartitions must be specified in ascending order.

682 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

Include the TABLESPACE clause to specify a tablespace in which a new subpartition will

reside. If you do not specify a tablespace, the subpartition will be created in the default

tablespace.

If the table is indexed, the index will be created on the new subpartition.

To use the ALTER TABLE... ADD SUBPARTITION command, you must be the table owner, or

have superuser (or administrative) privileges.

Parameters

Parameter Description

table_name The name (optionally schema-qualified) of the partitioned table in
which the subpartition resides.

partition_name The name of the partition in which the new subpartition will reside.

subpartiti
on_name

The name of the subpartition to be created. Subpartition names must
be unique among all partitions and subpartitions, and must follow the
naming conventions for object identifiers.

(value[, value
]...)

Use value to specify a quoted literal value (or a list of literal values

separated by commas) by which table entries will be grouped into

partitions. Each partitioning rule must specify at least one value, but

the number of values specified in a rule is not limited. value may be

null, default (if specifying a LIST partition), or maxvalue (if specifying a

RANGE partition).

For more information about creating a DEFAULT or MAXVALUE partition,

see Handle stray values in a LIST or RANGE partitioned table.

tablespace
_name

The name of the tablespace in which the subpartition resides.

Example - add a subpartition to a LIST-RANGE partitioned table

The following example adds a RANGE subpartition to the list-partitioned sales table. The

sales table is created by using the following command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)

Issue: 20200701 683

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

 SUBPARTITION BY RANGE(date)
(
 PARTITION europe VALUES('FRANCE', 'ITALY')
 (
 SUBPARTITION europe_2011
 VALUES LESS THAN('2012-Jan-01'),
 SUBPARTITION europe_2012
 VALUES LESS THAN('2013-Jan-01')
),
 PARTITION asia VALUES('INDIA', 'PAKISTAN')
 (
 SUBPARTITION asia_2011
 VALUES LESS THAN('2012-Jan-01'),
 SUBPARTITION asia_2012
 VALUES LESS THAN('2013-Jan-01')
),
 PARTITION americas VALUES('US', 'CANADA')
 (
 SUBPARTITION americas_2011
 VALUES LESS THAN('2012-Jan-01'),
 SUBPARTITION americas_2012
 VALUES LESS THAN('2013-Jan-01')
)
);

The sales table has three partitions (europe, asia, and americas). Each partition has two

range-defined subpartitions:

acctg=# SELECT partition_name, subpartition_name, high_value FROM ALL_TAB_SU
BPARTITIONS;
 partition_name | subpartition_name | high_value
----------------+-------------------+---------------
 europe | europe_2011 | '2012-Jan-01'
 europe | europe_2012 | '2013-Jan-01'
 asia | asia_2011 | '2012-Jan-01'
 asia | asia_2012 | '2013-Jan-01'
 americas | americas_2011 | '2012-Jan-01'
 americas | americas_2012 | '2013-Jan-01'
(6 rows)

The following command adds a subpartition named europe_2013:

ALTER TABLE sales MODIFY PARTITION europe
 ADD SUBPARTITION europe_2013
 VALUES LESS THAN('2015-Jan-01');

After this command is called, the table contains the europe_2013 subpartition:

acctg=# SELECT partition_name, subpartition_name, high_value FROM ALL_TAB_SU
BPARTITIONS;
 partition_name | subpartition_name | high_value
----------------+-------------------+---------------
 europe | europe_2011 | '2012-Jan-01'
 europe | europe_2012 | '2013-Jan-01'
 europe | europe_2013 | '2015-Jan-01'
 asia | asia_2011 | '2012-Jan-01'
 asia | asia_2012 | '2013-Jan-01'
 americas | americas_2011 | '2012-Jan-01'
 americas | americas_2012 | '2013-Jan-01'

684 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

(7 rows)

Note that when you add a new range subpartition, the subpartitioning rules must specify a

range that is located after existing subpartitions.

Example - add a subpartition to a RANGE-LIST partitioned table

The following example adds a LIST subpartition to the range-partitioned sales table. The

sales table is created by using the following command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
 SUBPARTITION BY LIST (country)
 (
 PARTITION first_half_2012 VALUES LESS THAN('01-JUL-2012')
 (
 SUBPARTITION europe VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION americas VALUES ('US', 'CANADA')
),

 PARTITION second_half_2012 VALUES LESS THAN('01-JAN-2013')
 (
 SUBPARTITION asia VALUES ('INDIA', 'PAKISTAN')
)
);

The sales table has two partitions, named first_half_2012 and second_half_2012,

respectively. The first_half_2012 partition has two subpartitions named europe and

americas, respectively. The second_half_2012 partition has one subpartition named asia.

acctg=# SELECT partition_name, subpartition_name, high_value FROM ALL_TAB_SU
BPARTITIONS;
 partition_name | subpartition_name | high_value
------------------+-------------------+---------------------
 first_half_2012 | europe | 'ITALY', 'FRANCE'
 first_half_2012 | americas | 'US', 'CANADA'
 second_half_2012 | asia | 'INDIA', 'PAKISTAN'
(3 rows)

The following command adds a subpartition named east_asia to the second_half_2012

partition:

ALTER TABLE sales MODIFY PARTITION second_half_2012

Issue: 20200701 685

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

 ADD SUBPARTITION east_asia VALUES ('CHINA');

After this command is called, the table contains the east_asia subpartition:

acctg=# SELECT partition_name, subpartition_name, high_value FROM ALL_TAB_SU
BPARTITIONS;
 partition_name | subpartition_name | high_value
------------------+-------------------+---------------------
 first_half_2012 | europe | 'ITALY', 'FRANCE'
 first_half_2012 | americas | 'US', 'CANADA'
 second_half_2012 | asia | 'INDIA', 'PAKISTAN'
 second_half_2012 | east_asia | 'CHINA'
(4 rows)

15.5.4 ALTER TABLE... SPLIT PARTITION
The ALTER TABLE... SPLIT PARTITION command adds a partition to an existing partitioned

table.

Overview

You can use the ALTER TABLE... SPLIT PARTITION command to divide a partition into two

partitions and redistribute the content of the partition. The ALTER TABLE... SPLIT PARTITION

command has two forms.

The first form splits a RANGE partition into two partitions:

ALTER TABLE table_name SPLIT PARTITION partition_name
 AT (range_part_value)
 INTO
 (
 PARTITION new_part1
 [TABLESPACE tablespace_name],
 PARTITION new_part2
 [TABLESPACE tablespace_name]
);

The second form splits a LIST partition into two partitions:

ALTER TABLE table_name SPLIT PARTITION partition_name
 VALUES (value[, value]...)
 INTO
 (
 PARTITION new_part1
 [TABLESPACE tablespace_name],
 PARTITION new_part2
 [TABLESPACE tablespace_name]
);

Description

The ALTER TABLE... SPLIT PARTITION command adds a partition to an existing partitioned

table. The number of partitions in a partitioned table is not limited.

686 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

When you run an ALTER TABLE... SPLIT PARTITION command, POLARDB compatible with

Oracle creates two new partitions and redistributes the content of the old partition between

 the new partitions (as constrained by the partitioning rules).

Include the TABLESPACE clause to specify a tablespace in which a new partition will reside.

If you do not specify a tablespace, the partition will be created in the default tablespace.

If the table is indexed, the index will be created on the new partition.

To use the ALTER TABLE... SPLIT PARTITION command, you must be the table owner, or have

superuser (or administrative) privileges.

Parameters

Parameter Description

table_name The name (optionally schema-qualified) of the partitioned table.

partition_name The name of the partition to be split.

new_part1 The name of the first new partition to be created. Partition names must

be unique among all partitions and subpartitions, and must follow the

naming conventions for object identifiers.

new_part1 will receive the rows that meet the partitioning constraints

specified in the ALTER TABLE... SPLIT PARTITION command.

new_part2 The name of the second new partition to be created. Partition names

must be unique among all partitions and subpartitions, and must follow

 the naming conventions for object identifiers.

new_part2 will receive the rows that are not directed to new_part1 by

the subpartitioning constraints specified in the ALTER TABLE... SPLIT

PARTITION command.

range_part
_value

Use range_part_value to specify the boundary rules by which the new
partition is created. Each partitioning rule must contain at least one
column of a data type that has two operators (for example, a greater-
than or equal to operator, and a less-than operator). Range boundaries
are evaluated based on a LESS THAN clause and are non-inclusive. A
date boundary of January 1, 2010 only includes the date values that fall
on or before December 31, 2009.

Issue: 20200701 687

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

Parameter Description

(value[, value
]...)

Use value to specify a quoted literal value (or a list of literal values

separated by commas) by which table entries will be grouped into

partitions. Each partitioning rule must specify at least one value, but the

number of values specified in a rule is not limited.

For more information about creating a DEFAULT or MAXVALUE partition,

see Handle stray values in a LIST or RANGE partitioned table.

tablespace
_name

The name of the tablespace in which the partition or subpartition
resides.

Example - split a LIST partition

The following example splits one partition in the list-partitioned sales table into two new

partitions, and redistributes the content of the partition between the two new partitions.

The sales table is created by using the following statement:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

The table definition creates three partitions (europe, asia, and americas). The following

command adds rows to each partition:

INSERT INTO sales VALUES
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
 (30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2012', '4950'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
 (10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
 (20, '3788b', 'INDIA', '21-Sept-2012', '5090'),
 (40, '4788a', 'US', '23-Sept-2012', '4950'),
 (40, '4788b', 'US', '09-Oct-2012', '15000'),

688 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

 (20, '4519a', 'INDIA', '18-Oct-2012', '650000'),
 (20, '4519b', 'INDIA', '2-Dec-2012', '5090');

The rows are distributed among the partitions:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
----------------+---------+---------+----------+--------------------+-------
 sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
 sales_americas | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_americas | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_americas | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_americas | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_americas | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_americas | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_americas | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_americas | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
(17 rows)

The following command splits the americas partition into two partitions named us and

canada:

ALTER TABLE sales SPLIT PARTITION americas
 VALUES ('US')
 INTO (PARTITION us, PARTITION canada);

A SELECT statement is used to confirm that the rows are distributed among the partitions as

expected:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
--------------+---------+---------+----------+--------------------+--------
 sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
 sales_us | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_us | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_us | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_us | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_us | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_canada | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_canada | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_canada | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000

Issue: 20200701 689

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

(17 rows)

Example - split a RANGE partition

The following example splits the q4_2012 partition in the range-partitioned sales table into

two partitions, and redistributes the content of the partition. Run the following command to

create the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
(
 PARTITION q1_2012
 VALUES LESS THAN('2012-Apr-01'),
 PARTITION q2_2012
 VALUES LESS THAN('2012-Jul-01'),
 PARTITION q3_2012
 VALUES LESS THAN('2012-Oct-01'),
 PARTITION q4_2012
 VALUES LESS THAN('2013-Jan-01')
);

The table definition creates four partitions (q1_2012, q2_2012, q3_2012, and q4_2012). The

following command adds rows to each partition:

INSERT INTO sales VALUES
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
 (30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2012', '4950'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
 (10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
 (20, '3788b', 'INDIA', '21-Sept-2012', '5090'),
 (40, '4788a', 'US', '23-Sept-2012', '4950'),
 (40, '4788b', 'US', '09-Oct-2012', '15000'),
 (20, '4519a', 'INDIA', '18-Oct-2012', '650000'),
 (20, '4519b', 'INDIA', '2-Dec-2012', '5090');

A SELECT statement is used to confirm that the rows are distributed among the partitions as

expected:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
---------------+---------+---------+----------+--------------------+--------
 sales_q1_2012 | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000

690 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

 sales_q1_2012 | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_q1_2012 | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_q2_2012 | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_q2_2012 | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_q2_2012 | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_q2_2012 | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_q3_2012 | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_q3_2012 | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_q3_2012 | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_q3_2012 | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_q3_2012 | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_q4_2012 | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_q4_2012 | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_q4_2012 | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_q4_2012 | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_q4_2012 | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(17 rows)

The following command splits the q4_2012 partition into two partitions named q4_2012_p1

and q4_2012_p2:

ALTER TABLE sales SPLIT PARTITION q4_2012
 AT ('15-Nov-2012')
 INTO
 (
 PARTITION q4_2012_p1,
 PARTITION q4_2012_p2
);

A SELECT statement is used to confirm that the rows are distributed among the partitions as

expected:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date |amount
------------------+---------+---------+----------+--------------------+------
 sales_q1_2012 | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_q1_2012 | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_q1_2012 | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_q2_2012 | 40 | 9519b | US | 12-APR-12 00:00:00 |145000
 sales_q2_2012 | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_q2_2012 | 30 | 4519b | CANADA | 08-APR-12 00:00:00 |120000
 sales_q2_2012 | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_q3_2012 | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_q3_2012 | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 |650000
 sales_q3_2012 | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 |650000
 sales_q3_2012 | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_q3_2012 | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_q4_2012_p1 | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_q4_2012_p1 | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_q4_2012_p1 | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 |650000
 sales_q4_2012_p2 | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_q4_2012_p2 | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090

Issue: 20200701 691

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

(17 rows)

15.5.5 ALTER TABLE... SPLIT SUBPARTITION
The ALTER TABLE... SPLIT SUBPARTITION command adds a subpartition to an existing

subpartitioned table.

Overview

You can use the ALTER TABLE... SPLIT SUBPARTITION command to divide a subpartition into

two subpartitions and redistribute the content of the subpartition. The ALTER TABLE... SPLIT

SUBPARTITION command has two forms.

The first form splits a range subpartition into two subpartitions:

ALTER TABLE table_name SPLIT SUBPARTITION subpartition_name
 AT (range_part_value)
 INTO
 (
 SUBPARTITION new_subpart1
 [TABLESPACE tablespace_name],
 SUBPARTITION new_subpart2
 [TABLESPACE tablespace_name]
);

The second form splits a list subpartition into two subpartitions:

ALTER TABLE table_name SPLIT SUBPARTITION subpartition_name
 VALUES (value[, value]...)
 INTO
 (
 SUBPARTITION new_subpart1
 [TABLESPACE tablespace_name],
 SUBPARTITION new_subpart2
 [TABLESPACE tablespace_name]
);

Description

The ALTER TABLE... SPLIT SUBPARTITION command adds a subpartition to an existing

subpartitioned table. The number of defined subpartitions is not limited. When you run an

 ALTER TABLE... SPLIT SUBPARTITION command, POLARDB compatible with Oracle creates

 two new subpartitions. It moves rows that contain values that are constrained by the

specified subpartition rules into new_subpart1, and the remaining rows into new_subpart2.

The new subpartition rules must reference the column specified in the rules that define the

existing subpartitions.

692 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

Include the TABLESPACE clause to specify a tablespace in which a new subpartition will

reside. If you do not specify a tablespace, the subpartition will be created in the default

tablespace.

If the table is indexed, the index will be created on the new subpartition.

To use the ALTER TABLE... SPLIT SUBPARTITION command, you must be the table owner, or

have superuser (or administrative) privileges.

Parameters

Parameter Description

table_name The name (optionally schema-qualified) of the partitioned
table.

subpartition_name The name of the subpartition to be split.

new_subpart1 The name of the first new subpartition to be created.

Subpartition names must be unique among all partitions

and subpartitions, and must follow the naming convention

s for object identifiers.

new_subpart1 will receive the rows that meet the

subpartitioning constraints specified in the ALTER TABLE...

SPLIT SUBPARTITION command.

new_subpart2 The name of the second new subpartition to be created.

Subpartition names must be unique among all partitions

and subpartitions, and must follow the naming convention

s for object identifiers.

new_subpart2 will receive the rows that are not directed to

new_subpart1 by the subpartitioning constraints specified

in the ALTER TABLE... SPLIT SUBPARTITION command.

Issue: 20200701 693

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

Parameter Description

(value[, value]...) Use value to specify a quoted literal value (or a list of literal

values separated by commas) by which table entries will be

grouped into partitions. Each partitioning rule must specify

at least one value, but the number of values specified in a

rule is not limited. value may be null, default (if specifying

a LIST subpartition), or maxvalue (if specifying a RANGE

 subpartition).

For more information about creating a DEFAULT or

MAXVALUE partition, see Handle stray values in a LIST or

RANGE partitioned table.

tablespace_name The name of the tablespace in which the partition or
subpartition resides.

Example - split a LIST subpartition

The following example splits a list subpartition and redistributes the content of the

subpartition between two new subpartitions. The sample table (sales) is created by using

the following command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
 SUBPARTITION BY LIST (country)
 (
 PARTITION first_half_2012 VALUES LESS THAN('01-JUL-2012')
 (
 SUBPARTITION p1_europe VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION p1_americas VALUES ('US', 'CANADA')
),
 PARTITION second_half_2012 VALUES LESS THAN('01-JAN-2013')
 (
 SUBPARTITION p2_europe VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION p2_americas VALUES ('US', 'CANADA')
)

694 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

);

The sales table has two partitions, named first_half_2012 and second_half_2012. Each

partition has two range-defined subpartitions that distribute the content of the partition

into subpartitions based on the value of the country column.

acctg=# SELECT partition_name, subpartition_name, high_value FROM ALL_TAB_SU
BPARTITIONS;
 partition_name | subpartition_name | high_value
------------------+-------------------+-------------------
 second_half_2012 | p2_europe | 'ITALY', 'FRANCE'
 first_half_2012 | p1_europe | 'ITALY', 'FRANCE'
 second_half_2012 | p2_americas | 'US', 'CANADA'
 first_half_2012 | p1_americas | 'US', 'CANADA'
(4 rows)

The following command adds rows to each subpartition:

INSERT INTO sales VALUES
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
 (30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2012', '4950'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
 (10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
 (40, '4788a', 'US', '23-Sept-2012', '4950'),
 (40, '4788b', 'US', '09-Oct-2012', '15000');

A SELECT statement is used to confirm that rows are distributed among the subpartitions as

expected:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country| date |amount
-------------------+---------+---------+--------+--------------------+------
 sales_p1_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_p1_americas | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_p1_americas | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_p1_americas | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_p1_americas | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_p2_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_p2_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_p2_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_p2_americas | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_p2_americas | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_p2_americas | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_p2_americas | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
(12 rows)

The following command splits the p2_americas subpartition into two new subpartitions

and redistributes the content:

ALTER TABLE sales SPLIT SUBPARTITION p2_americas
 VALUES ('US')

Issue: 20200701 695

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

 INTO
 (
 SUBPARTITION p2_us,
 SUBPARTITION p2_canada
);

After this command is called, the p2_americas subpartition is deleted. In the place of the

subpartition, the server creates two new subpartitions (p2_us and p2_canada):

acctg=# SELECT partition_name, subpartition_name, high_value FROM ALL_TAB_SU
BPARTITIONS;
 partition_name | subpartition_name | high_value
------------------+-------------------+-------------------
 first_half_2012 | p1_europe | 'ITALY', 'FRANCE'
 first_half_2012 | p1_americas | 'US', 'CANADA'
 second_half_2012 | p2_europe | 'ITALY', 'FRANCE'
 second_half_2012 | p2_canada | 'CANADA'
 second_half_2012 | p2_us | 'US'
(5 rows)

Querying the sales table shows that the content of the p2_americas subpartition has been

redistributed:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date |amount
-------------------+---------+---------+---------+--------------------+------
 sales_p1_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_p1_americas | 40 | 9519b | US | 12-APR-12 00:00:00 |145000
 sales_p1_americas | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_p1_americas | 30 | 4519b | CANADA | 08-APR-12 00:00:00 |120000
 sales_p1_americas | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_p2_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_p2_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 |650000
 sales_p2_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 |650000
 sales_p2_us | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_p2_us | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_p2_us | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_p2_canada | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
(12 rows)

Example - split a RANGE subpartition

The following example splits a range subpartition and redistributes the content of the

subpartition between two new subpartitions. The sample table (sales) is created by using

the following command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
 SUBPARTITION BY RANGE(date)
(

696 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

 PARTITION europe VALUES('FRANCE', 'ITALY')
 (
 SUBPARTITION europe_2011
 VALUES LESS THAN('2012-Jan-01'),
 SUBPARTITION europe_2012
 VALUES LESS THAN('2013-Jan-01')
),
 PARTITION asia VALUES('INDIA', 'PAKISTAN')
 (
 SUBPARTITION asia_2011
 VALUES LESS THAN('2012-Jan-01'),
 SUBPARTITION asia_2012
 VALUES LESS THAN('2013-Jan-01')
),
 PARTITION americas VALUES('US', 'CANADA')
 (
 SUBPARTITION americas_2011
 VALUES LESS THAN('2012-Jan-01'),
 SUBPARTITION americas_2012
 VALUES LESS THAN('2013-Jan-01')
)
);

The sales table has three partitions (europe, asia, and americas). Each partition has two

range-defined subpartitions that distribute the content of the partition into subpartitions

based on the value of the date column.

acctg=# SELECT partition_name, subpartition_name, high_value FROM ALL_TAB_SU
BPARTITIONS;
 partition_name | subpartition_name | high_value
----------------+-------------------+---------------
 europe | europe_2011 | '2012-Jan-01'
 europe | europe_2012 | '2013-Jan-01'
 asia | asia_2011 | '2012-Jan-01'
 asia | asia_2012 | '2013-Jan-01'
 americas | americas_2011 | '2012-Jan-01'
 americas | americas_2012 | '2013-Jan-01'
(6 rows)

The following command adds rows to each subpartition:

INSERT INTO sales VALUES
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
 (30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2012', '4950'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
 (10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
 (20, '3788b', 'INDIA', '21-Sept-2012', '5090'),
 (40, '4788a', 'US', '23-Sept-2012', '4950'),
 (40, '4788b', 'US', '09-Oct-2012', '15000'),
 (20, '4519a', 'INDIA', '18-Oct-2012', '650000'),

Issue: 20200701 697

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

 (20, '4519b', 'INDIA', '2-Dec-2012', '5090');

A SELECT statement is used to confirm that rows are distributed among the subpartitions as

expected:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no|part_no| country | date |amount
---------------------+--------+-------+---------+--------------------+---
 sales_europe_2012 | 10| 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe_2012 | 10| 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe_2012 | 10| 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe_2012 | 10| 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia_2012 | 20| 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia_2012 | 20| 3788a | PAKISTAN| 04-JUN-12 00:00:00 | 37500
 sales_asia_2012 | 20| 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia_2012 | 20| 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia_2012 | 20| 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
 sales_americas_2012 | 40| 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_americas_2012 | 40| 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_americas_2012 | 30| 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_americas_2012 | 30| 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_americas_2012 | 30| 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_americas_2012 | 40| 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_americas_2012 | 40| 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_americas_2012 | 40| 4788b | US | 09-OCT-12 00:00:00 | 15000
(17 rows)

The following command splits the americas_2012 subpartition into two new subpartitions

and redistributes the content:

ALTER TABLE sales
 SPLIT SUBPARTITION americas_2012
 AT('2012-Jun-01')
 INTO
 (
 SUBPARTITION americas_p1_2012,
 SUBPARTITION americas_p2_2012
);

After this command is called, the americas_2012 subpartition is deleted. In the place

of the subpartition, the server creates two new subpartitions (americas_p1_2012 and

americas_p2_2012):

acctg=# SELECT partition_name, subpartition_name, high_value FROM ALL_TAB_SU
BPARTITIONS;
 partition_name | subpartition_name | high_value
----------------+-------------------+---------------
 europe | europe_2012 | '2013-Jan-01'
 europe | europe_2011 | '2012-Jan-01'
 americas | americas_2011 | '2012-Jan-01'
 americas | americas_p2_2012 | '2013-Jan-01'
 americas | americas_p1_2012 | '2012-Jun-01'
 asia | asia_2012 | '2013-Jan-01'
 asia | asia_2011 | '2012-Jan-01'

698 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

(7 rows)

Querying the sales table shows that the content of the americas_2012 subpartition has

been redistributed:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no|part_no|country | date |amount
-----------------------+--------+-------+--------+-------------------+------- sales_euro
pe_2012 | 10| 4519b |FRANCE | 17-JAN-12 00:00:00| 45000
 sales_europe_2012 | 10| 9519b |ITALY | 07-JUL-12 00:00:00| 15000
 sales_europe_2012 | 10| 9519a |FRANCE | 18-AUG-12 00:00:00| 650000
 sales_europe_2012 | 10| 9519b |FRANCE | 18-AUG-12 00:00:00| 650000
 sales_asia_2012 | 20| 3788a |INDIA | 01-MAR-12 00:00:00| 75000
 sales_asia_2012 | 20| 3788a |PAKISTAN| 04-JUN-12 00:00:00| 37500
 sales_asia_2012 | 20| 3788b |INDIA | 21-SEP-12 00:00:00| 5090
 sales_asia_2012 | 20| 4519a |INDIA | 18-OCT-12 00:00:00| 650000
 sales_asia_2012 | 20| 4519b |INDIA | 02-DEC-12 00:00:00| 5090
 sales_americas_p1_2012| 40| 9519b |US | 12-APR-12 00:00:00| 145000
 sales_americas_p1_2012| 30| 9519b |CANADA | 01-FEB-12 00:00:00| 75000
 sales_americas_p1_2012| 30| 4519b |CANADA | 08-APR-12 00:00:00| 120000
 sales_americas_p1_2012| 40| 3788a |US | 12-MAY-12 00:00:00| 4950
 sales_americas_p2_2012| 40| 4577b |US | 11-NOV-12 00:00:00| 25000
 sales_americas_p2_2012| 30| 7588b |CANADA | 14-DEC-12 00:00:00| 50000
 sales_americas_p2_2012| 40| 4788a |US | 23-SEP-12 00:00:00| 4950
 sales_americas_p2_2012| 40| 4788b |US | 09-OCT-12 00:00:00| 15000
(17 rows)

15.5.6 ALTER TABLE... EXCHANGE PARTITION
The ALTER TABLE... EXCHANGE PARTITION command swaps an existing table with a partition

or subpartition.

Overview

If you plan to add a large quantity of data to a partitioned table, you can use the ALTER

TABLE... EXCHANGE PARTITION command to transfer a bulk load of data. You can also use

the ALTER TABLE... EXCHANGE PARTITION command to remove outdated or redundant data

from storage.

The ALTER TABLE... EXCHANGE PARTITION command has two forms.

• The first form swaps a table for a partition:

ALTER TABLE target_table
 EXCHANGE PARTITION target_partition
 WITH TABLE source_table
 [(WITH | WITHOUT) VALIDATION];

• The second form swaps a table for a subpartition:

ALTER TABLE target_table
 EXCHANGE SUBPARTITION target_subpartition
 WITH TABLE source_table

Issue: 20200701 699

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

 [(WITH | WITHOUT) VALIDATION];

The ALTER TABLE... EXCHANGE PARTITION command makes no distinctions between a

partition and a subpartition:

• You can exchange a partition by using the EXCHANGE PARTITION or EXCHANGE

SUBPARTITION clause.

• You can exchange a subpartition by using EXCHANGE PARTITION or EXCHANGE

SUBPARTITION clause.

Description

When the ALTER TABLE... EXCHANGE PARTITION command completes, the data is swapped

. The data that originally resides in the target partition resides in the source table, and the

data that originally resides in the source table resides in the target partition.

The structure of the source table must match the structure of the target table (both tables

 must have matching columns and data types). The data contained within the table must

adhere to the partitioning constraints.

POLARDB compatible with Oracle accepts the WITHOUT VALIDATION clause, but ignores it.

The new table is always validated.

You must own a table to call ALTER TABLE... EXCHANGE PARTITION or ALTER TABLE...

EXCHANGE SUBPARTITION against that table.

Parameters

Parameter Description

target_table The name (optionally schema-qualified) of the table in
which the partition resides.

target_partition The name of the partition or subpartition to be replaced.

source_table The name of the table that will replace the target_partition.

Example - exchange a table for a partition

The following example demonstrates exchanging a table for a partition (americas) of the

sales table. You can run the following command to create the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number

700 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

Run the following command to add sample data to the sales table:

INSERT INTO sales VALUES
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
 (20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
 (10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
 (20, '3788b', 'INDIA', '21-Sept-2012', '5090'),
 (20, '4519a', 'INDIA', '18-Oct-2012', '650000'),
 (20, '4519b', 'INDIA', '2-Dec-2012', '5090');

Querying the sales table shows that only one row resides in the americas partition:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no| part_no | country | date | amount
---------------+--------+---------+---------+-------------------+-----------
 sales_europe | 10| 4519b | FRANCE | 17-JAN-12 00:00:00| 45000
 sales_europe | 10| 9519b | ITALY | 07-JUL-12 00:00:00| 15000
 sales_europe | 10| 9519a | FRANCE | 18-AUG-12 00:00:00| 650000
 sales_europe | 10| 9519b | FRANCE | 18-AUG-12 00:00:00| 650000
 sales_asia | 20| 3788a | INDIA | 01-MAR-12 00:00:00| 75000
 sales_asia | 20| 3788a | PAKISTAN| 04-JUN-12 00:00:00| 37500
 sales_asia | 20| 3788b | INDIA | 21-SEP-12 00:00:00| 5090
 sales_asia | 20| 4519a | INDIA | 18-OCT-12 00:00:00| 650000
 sales_asia | 20| 4519b | INDIA | 02-DEC-12 00:00:00| 5090
 sales_americas| 40| 9519b | US | 12-APR-12 00:00:00| 145000
(10 rows)

The following command creates a table (n_america) that matches the definition of the

sales table:

CREATE TABLE n_america
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
);

The following command adds data to the n_america table. The data conforms to the

partitioning rules of the americas partition:

INSERT INTO n_america VALUES
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),

Issue: 20200701 701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

 (30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2012', '4950'),
 (40, '4788a', 'US', '23-Sept-2012', '4950'),
 (40, '4788b', 'US', '09-Oct-2012', '15000');

The following command swaps the table into the partitioned table:

ALTER TABLE sales
 EXCHANGE PARTITION americas
 WITH TABLE n_america;

Querying the sales table shows that the content of the n_america table has been

exchanged for the content of the americas partition:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no| part_no | country | date | amount
---------------+--------+--------+----------+--------------------+-----------
 sales_europe | 10| 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10| 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10| 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10| 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20| 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20| 3788a | PAKISTAN| 04-JUN-12 00:00:00 | 37500
 sales_asia | 20| 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20| 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20| 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
 sales_americas| 40| 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_americas| 40| 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_americas| 30| 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_americas| 30| 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_americas| 30| 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_americas| 40| 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_americas| 40| 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_americas| 40| 4788b | US | 09-OCT-12 00:00:00 | 15000
(17 rows)

Querying the n_america table shows that the row that was previously stored in the

americas partition has been moved to the n_america table:

acctg=# SELECT tableoid::regclass, * FROM n_america;
 tableoid | dept_no | part_no | country | date | amount
-----------+---------+---------+---------+--------------------+------------
 n_america | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
(1 row)

15.5.7 ALTER TABLE... MOVE PARTITION
Overview

You can use the ALTER TABLE... MOVE PARTITION command to move a partition or

subpartition to a different tablespace. The ALTER TABLE... MOVE PARTITION command has

two forms.

702 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

• The first form is to move a partition to a new tablespace:

ALTER TABLE table_name
 MOVE PARTITION partition_name
 TABLESPACE tablespace_name;

• The second form is to move a subpartition to a new tablespace:

ALTER TABLE table_name
 MOVE SUBPARTITION subpartition_name
 TABLESPACE tablespace_name;

The syntax of the ALTER TABLE... MOVE PARTITION command makes no distinctions between

a partition and a subpartition:

• You can move a partition by using the MOVE PARTITION or MOVE SUBPARTITION clause.

• You can move a subpartition by using the MOVE PARTITION or MOVE SUBPARTITION

clause.

Description

The ALTER TABLE... MOVE PARTITION command moves a partition or subpartition from its

current tablespace to a different tablespace. You must own a table to call ALTER TABLE...

MOVE PARTITION or ALTER TABLE... MOVE SUBPARTITION.

Parameters

Parameter Description

table_name The name (optionally schema-qualified) of the table in which the
partition resides.

partition_name The name of the partition or subpartition to be moved.

tablespace
_name

The name of the tablespace to which the partition or subpartition will be
 moved.

Example - move a partition to a different tablespace

The following example moves a partition of the sales table from one tablespace to another.

First, run the following command to create the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
(

Issue: 20200701 703

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

 PARTITION q1_2012 VALUES LESS THAN ('2012-Apr-01'),
 PARTITION q2_2012 VALUES LESS THAN ('2012-Jul-01'),
 PARTITION q3_2012 VALUES LESS THAN ('2012-Oct-01'),
 PARTITION q4_2012 VALUES LESS THAN ('2013-Jan-01') TABLESPACE ts_1,
 PARTITION q1_2013 VALUES LESS THAN ('2013-Mar-01') TABLESPACE ts_2
);

Querying the ALL_TAB_PARTITIONS view confirms that the partitions reside on the expected

servers and tablespaces:

acctg=# SELECT partition_name, tablespace_name FROM ALL_TAB_PARTITIONS;
 partition_name | tablespace_name
----------------+-------------+-----------------
 q1_2013 | ts_2
 q4_2012 | ts_1
 q3_2012 |
 q2_2012 |
 q1_2012 |
(5 rows)

After preparing the target tablespace, call the ALTER TABLE... MOVE PARTITION command to

move the q1_2013 partition from a tablespace named ts_2 to a tablespace named ts_3:

ALTER TABLE sales MOVE PARTITION q1_2013 TABLESPACE ts_3;

Querying the ALL_TAB_PARTITIONS view shows that the move was successful:

acctg=# SELECT partition_name, tablespace_name FROM ALL_TAB_PARTITIONS;
 partition_name | tablespace_name
----------------+-----------------
 q1_2013 | ts_3
 q4_2012 | ts_1
 q3_2012 |
 q2_2012 |
 q1_2012 |
(5 rows)

15.5.8 ALTER TABLE... RENAME PARTITION
Overview

You can use the ALTER TABLE... RENAME PARTITION command to rename a table partition.

The command has two forms.

• ALTER TABLE table_name
RENAME PARTITION partition_name
TO new_name;

• ALTER TABLE table_name
RENAME SUBPARTITION subpartition_name
 TO new_name;

The ALTER TABLE... RENAME PARTITION command makes no distinctions between a partition

and a subpartition:

704 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

• You can rename a partition by using the RENAME PARTITION or RENAME SUBPARTITION

clause.

• You can rename a subpartition by using the RENAME PARTITION or RENAME SUBPARTITI

ON clause.

Description

The ALTER TABLE... RENAME PARTITION and ALTER TABLE... RENAME SUBPARTITION

commands renames a partition or subpartition. You must own the specified table to run

ALTER TABLE... RENAME PARTITION or ALTER TABLE... RENAME SUBPARTITION.

Parameters

Parameter Description

table_name The name (optionally schema-qualified) of the table in which the
partition resides.

partition_name The name of the partition or subpartition to be renamed.

new_name The new name of the partition or subpartition.

Example - rename a partition

The following command creates a list-partitioned table named sales:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

Querying the ALL_TAB_PARTITIONS view displays the partition names:

acctg=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 europe | 'FRANCE', 'ITALY'
 asia | 'INDIA', 'PAKISTAN'
 americas | 'US', 'CANADA'

Issue: 20200701 705

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

(3 rows)

The following command renames the americas partition to n_america:

ALTER TABLE sales
RENAME PARTITION americas TO n_america;

Querying the ALL_TAB_PARTITIONS view will show that the partition is renamed:

acctg=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 europe | 'FRANCE', 'ITALY'
 asia | 'INDIA', 'PAKISTAN'
 n_america | 'US', 'CANADA'
(3 rows)

15.5.9 DROP TABLE
Overview

You can use the PostgreSQL DROP TABLE command to delete a partitioned table definition,

the partitions and subpartitions of that table, and the table content. Syntax:

DROP TABLE table_name

Description

The DROP TABLE command deletes an entire table and the data stored in the table. When

you delete a table, all partitions and subpartitions of the table are also deleted.

To use the DROP TABLE command, you must be the owner of the partitioning root, a

member of a group that owns the table, the schema owner, or a database superuser.

Parameters

Parameter Description

table_name The name (optionally schema-qualified) of the partitioned table.

706 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

Example

To delete a table, connect to the controller node (the host of the partitioning root), and

run the DROP TABLE command. For example, to delete the sales table, run the following

command:

DROP TABLE sales;

The server will confirm that the table has been dropped:

acctg=# drop table sales;
DROP TABLE
acctg=#

For more information about the DROP TABLE command, see the PostgreSQL core

documentation.

15.5.10 ALTER TABLE... DROP PARTITION
Overview

You can use the ALTER TABLE... DROP PARTITION command to delete a partition definition

and the data stored in that partition. Syntax:

ALTER TABLE table_name DROP PARTITION partition_name;

Description

The ALTER TABLE... DROP PARTITION command deletes a partition and the data stored in the

 partition. When you delete a partition, all subpartitions of the partition are also deleted.

To use the DROP PARTITION clause, you must be the owner of the partitioning root, a

member of a group that owns the table, or have superuser or administrative privileges.

Parameters

Parameter Description

table_name The name (optionally schema-qualified) of the partitioned table.

partition_name The name of the partition to be deleted.

Example - delete a partition

The following example deletes a partition of the sales table. Run the following command to

create the sales table:

CREATE TABLE sales
(

Issue: 20200701 707

http://www.enterprisedb.com/docs/en/9.3/pg/sql-droptable.html
http://www.enterprisedb.com/docs/en/9.3/pg/sql-droptable.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

Querying the ALL_TAB_PARTITIONS view displays the partition names:

acctg=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 europe | 'FRANCE', 'ITALY'
 asia | 'INDIA', 'PAKISTAN'
 americas | 'US', 'CANADA'
(3 rows)

To delete the americas partition from the sales table, invoke the following command:

ALTER TABLE sales DROP PARTITION americas;

Querying the ALL_TAB_PARTITIONS view shows that the partition has been successfully

deleted:

acctg=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 asia | 'INDIA', 'PAKISTAN'
 europe | 'FRANCE', 'ITALY'
(2 rows)

15.5.11 ALTER TABLE... DROP SUBPARTITION
Overview

You can use the ALTER TABLE... DROP SUBPARTITION command to delete a subpartition

definition and the data stored in that subpartition. Syntax:

ALTER TABLE table_name DROP SUBPARTITION subpartition_name;

Description

The ALTER TABLE... DROP SUBPARTITION command deletes a subpartition and the data

stored in the subpartition. To use the DROP SUBPARTITION clause, you must be the owner

 of the partitioning root, a member of a group that owns the table, or have superuser or

administrative privileges.

708 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

Parameters

Parameter Description

table_name The name (optionally schema-qualified) of the partitioned table.

subpartiti
on_name

The name of the subpartition to be deleted.

Example - delete a subpartition

The following example deletes a subpartition of the sales table. Run the following

command to create the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
 SUBPARTITION BY LIST (country)
 (
 PARTITION first_half_2012 VALUES LESS THAN('01-JUL-2012')
 (
 SUBPARTITION europe VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION americas VALUES ('CANADA', 'US'),
 SUBPARTITION asia VALUES ('PAKISTAN', 'INDIA')
),
 PARTITION second_half_2012 VALUES LESS THAN('01-JAN-2013')
);

Querying the ALL_TAB_SUBPARTITIONS view displays the subpartition names:

acctg=# SELECT subpartition_name, high_value FROM ALL_TAB_SUBPARTITIONS;
 subpartition_name | high_value
-------------------+---------------------
 europe | 'ITALY', 'FRANCE'
 americas | 'CANADA', 'US'
 asia | 'PAKISTAN', 'INDIA'
(3 rows)

To delete the americas subpartition from the sales table, run the following command:

ALTER TABLE sales DROP SUBPARTITION americas;

Querying the ALL_TAB_SUBPARTITIONS view shows that the subpartition has been

successfully deleted:

acctg=# SELECT subpartition_name, high_value FROM ALL_TAB_SUBPARTITIONS;
 subpartition_name | high_value
-------------------+---------------------
 europe | 'ITALY', 'FRANCE'
 asia | 'PAKISTAN', 'INDIA'

Issue: 20200701 709

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

(2 rows)

15.5.12 TRUNCATE TABLE
Overview

You can use the TRUNCATE TABLE command to remove the content of a table, while

preserving the table definition. When you truncate a table, all partitions and subpartitions

of the table are also truncated. Syntax:

TRUNCATE TABLE table_name;

Description

The TRUNCATE TABLE command removes an entire table and the data stored in the table.

When you truncate a table, all partitions and subpartitions of the table are also truncated.

To use the TRUNCATE TABLE command, you must be the owner of the partitioning root, a

member of a group that owns the table, the schema owner, or a database superuser.

Parameters

Parameter Description

table_name The name (optionally schema-qualified) of the partitioned table.

Example - empty a table

The following example removes data from the sales table. Run the following command to

create the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

Run the following command to add values to the sales table:

INSERT INTO sales VALUES
(10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
(20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
(40, '9519b', 'US', '12-Apr-2012', '145000'),

710 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

(20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
(40, '4577b', 'US', '11-Nov-2012', '25000'),
(30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
(30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
(30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
(40, '3788a', 'US', '12-May-2012', '4950'),
(10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
(10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
(10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
(20, '3788b', 'INDIA', '21-Sept-2012', '5090'),
(40, '4788a', 'US', '23-Sept-2012', '4950'),
(40, '4788b', 'US', '09-Oct-2012', '15000'),
(20, '4519a', 'INDIA', '18-Oct-2012', '650000'),
(20, '4519b', 'INDIA', '2-Dec-2012', '5090');

Querying the sales table shows that the partitions are populated with data:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid |dept_no | part_no | country | date | amount
--------------+--------+---------+----------+--------------------+-----------
sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
sales_americas| 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
sales_americas| 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
sales_americas| 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
sales_americas| 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
sales_americas| 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
sales_americas| 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
sales_americas| 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
sales_americas| 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
(17 rows)

To delete the content of the sales table, run the following command:

TRUNCATE TABLE sales;

Querying the sales table will show that the data is removed, but the structure is intact:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
----------+---------+---------+---------+----------+------------
(0 rows)

For more information about the TRUNCATE TABLE command, see TRUNCATE.

Issue: 20200701 711

https://www.enterprisedb.com/docs/en/9.3/pg/sql-truncate.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

15.5.13 ALTER TABLE... TRUNCATE PARTITION
Overview

You can use the ALTER TABLE... TRUNCATE PARTITION command to remove all data from a

specified partition, leaving the partition structure intact. Syntax:

ALTER TABLE table_name TRUNCATE PARTITION partition_name
 [{DROP|REUSE} STORAGE]

Description

You can use the ALTER TABLE... TRUNCATE PARTITION command to remove all data from a

specified partition, leaving the partition structure intact. When you truncate a partition, all

subpartitions of the partition are also truncated.

The ALTER TABLE... TRUNCATE PARTITION command will not fire any ON DELETE triggers that

 may exist for the table. However, the command will fire ON TRUNCATE triggers. If an ON

TRUNCATE trigger is defined for the partition, all BEFORE TRUNCATE triggers are fired before

 any truncation occurs, and all AFTER TRUNCATE triggers are fired after the last truncation is

 performed.

You must have the TRUNCATE permission on a table to invoke ALTER TABLE... TRUNCATE

PARTITION.

Parameters

Parameter Description

table_name The name (optionally schema-qualified) of the partitioned table.

partition_name The name of the partition to be removed.

Note:

DROP STORAGE and REUSE STORAGE are only included for compatibility. These clauses are

parsed and ignored.

Example - empty a partition

The following example removes the data from a partition of the sales table. Run the

following command to create the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),

712 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

Run the following command to add values to the sales table:

INSERT INTO sales VALUES
(10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
(20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
(40, '9519b', 'US', '12-Apr-2012', '145000'),
(20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
(40, '4577b', 'US', '11-Nov-2012', '25000'),
(30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
(30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
(30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
(40, '3788a', 'US', '12-May-2012', '4950'),
(10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
(10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
(10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
(20, '3788b', 'INDIA', '21-Sept-2012', '5090'),
(40, '4788a', 'US', '23-Sept-2012', '4950'),
(40, '4788b', 'US', '09-Oct-2012', '15000'),
(20, '4519a', 'INDIA', '18-Oct-2012', '650000'),
(20, '4519b', 'INDIA', '2-Dec-2012', '5090');

Querying the sales table shows that the partitions are populated with data:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
----------------+---------+---------+----------+--------------------+--------
 sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
 sales_americas | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_americas | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_americas | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_americas | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_americas | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_americas | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_americas | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_americas | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000

Issue: 20200701 713

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

(17 rows)

To delete the content of the americas partition, run the following command:

ALTER TABLE sales TRUNCATE PARTITION americas;

Querying the sales table will show that the content of the americas partition is removed:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
--------------+---------+---------+----------+--------------------+--------
 sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(9 rows)

Although the rows have been removed, the structure of the americas partition is still intact:

acctg=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 europe | 'FRANCE', 'ITALY'
 asia | 'INDIA', 'PAKISTAN'
 americas | 'US', 'CANADA'
(3 rows)

15.5.14 ALTER TABLE... TRUNCATE SUBPARTITION
Overview

You can use the ALTER TABLE... TRUNCATE SUBPARTITION command to remove all data from

a specified subpartition, leaving the subpartition structure intact. Syntax:

ALTER TABLE table_name
 TRUNCATE SUBPARTITION subpartition_name
 [{DROP|REUSE} STORAGE]

Description

The ALTER TABLE... TRUNCATE SUBPARTITION command removes all data from a specified

subpartition, leaving the subpartition structure intact.

The ALTER TABLE... TRUNCATE SUBPARTITION command will not fire any ON DELETE triggers

 that may exist for the table. However, the command will fire ON TRUNCATE triggers. If an

 ON TRUNCATE trigger is defined for the subpartition, all BEFORE TRUNCATE triggers are

714 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

fired before any truncation occurs, and all AFTER TRUNCATE triggers are fired after the last

truncation is performed.

You must have the TRUNCATE permission on a table to run ALTER TABLE... TRUNCATE

SUBPARTITION.

Parameters

Parameter Description

table_name The name (optionally schema-qualified) of the partitioned table.

subpartiti
on_name

The name of the subpartition to be truncated.

Note:

DROP STORAGE and REUSE STORAGE are only included for compatibility. These clauses are

parsed and ignored.

Example - empty a subpartition

The following example removes the data from a subpartition of the sales table. Run the

following command to create the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date) SUBPARTITION BY LIST (country)
(
 PARTITION "2011" VALUES LESS THAN('01-JAN-2012')
 (
 SUBPARTITION europe_2011 VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION asia_2011 VALUES ('PAKISTAN', 'INDIA'),
 SUBPARTITION americas_2011 VALUES ('US', 'CANADA')
),
 PARTITION "2012" VALUES LESS THAN('01-JAN-2013')
 (
 SUBPARTITION europe_2012 VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION asia_2012 VALUES ('PAKISTAN', 'INDIA'),
 SUBPARTITION americas_2012 VALUES ('US', 'CANADA')
),
 PARTITION "2013" VALUES LESS THAN('01-JAN-2015')
 (
 SUBPARTITION europe_2013 VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION asia_2013 VALUES ('PAKISTAN', 'INDIA'),
 SUBPARTITION americas_2013 VALUES ('US', 'CANADA')
)

Issue: 20200701 715

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

);

Run the following command to add values to the sales table:

INSERT INTO sales VALUES
(10, '4519b', 'FRANCE', '17-Jan-2011', '45000'),
(20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
(40, '9519b', 'US', '12-Apr-2012', '145000'),
(20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
(40, '4577b', 'US', '11-Nov-2012', '25000'),
(30, '7588b', 'CANADA', '14-Dec-2011', '50000'),
(30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
(40, '3788a', 'US', '12-May-2011', '4950'),
(20, '3788a', 'US', '04-Apr-2012', '37500'),
(40, '4577b', 'INDIA', '11-Jun-2011', '25000'),
(10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
(20, '4519b', 'INDIA', '2-Dec-2012', '5090');

Querying the sales table shows that the rows have been distributed among the

subpartitions:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no| part_no| country | date |amount
--------------------+--------+--------+----------+-------------------+-------
 sales_2011_europe | 10| 4519b | FRANCE | 17-JAN-11 00:00:00| 45000
 sales_2011_asia | 40| 4577b | INDIA | 11-JUN-11 00:00:00| 25000
 sales_2011_americas| 30| 7588b | CANADA | 14-DEC-11 00:00:00| 50000
 sales_2011_americas| 40| 3788a | US | 12-MAY-11 00:00:00| 4950
 sales_2012_europe | 10| 9519b | ITALY | 07-JUL-12 00:00:00| 15000
 sales_2012_asia | 20| 3788a | INDIA | 01-MAR-12 00:00:00| 75000
 sales_2012_asia | 20| 3788a | PAKISTAN | 04-JUN-12 00:00:00| 37500
 sales_2012_asia | 20| 4519b | INDIA | 02-DEC-12 00:00:00| 5090
 sales_2012_americas| 40| 9519b | US | 12-APR-12 00:00:00| 145000
 sales_2012_americas| 40| 4577b | US | 11-NOV-12 00:00:00| 25000
 sales_2012_americas| 30| 4519b | CANADA | 08-APR-12 00:00:00| 120000
 sales_2012_americas| 20| 3788a | US | 04-APR-12 00:00:00| 37500
(12 rows)

To delete the content of the 2012_americas partition, run the following command:

ALTER TABLE sales TRUNCATE SUBPARTITION "americas_2012";

Querying the sales table shows that the content of the americas_2012 partition has been

removed:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no|part_no| country | date | amount
--------------------+--------+-------+----------+--------------------+-------
 sales_2011_europe | 10| 4519b | FRANCE | 17-JAN-11 00:00:00 | 45000
 sales_2011_asia | 40| 4577b | INDIA | 11-JUN-11 00:00:00 | 25000
 sales_2011_americas| 30| 7588b | CANADA | 14-DEC-11 00:00:00 | 50000
 sales_2011_americas| 40| 3788a | US | 12-MAY-11 00:00:00 | 4950
 sales_2012_europe | 10| 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_2012_asia | 20| 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_2012_asia | 20| 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_2012_asia | 20| 4519b | INDIA | 02-DEC-12 00:00:00 | 5090

716 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

(8 rows)

Although the rows have been removed, the structure of the 2012_americas partition is still

intact:

acctg=# SELECT subpartition_name, high_value FROM ALL_TAB_SUBPARTITIONS;
 subpartition_name | high_value
-------------------+---------------------
 2013_europe | 'ITALY', 'FRANCE'
 2012_europe | 'ITALY', 'FRANCE'
 2011_europe | 'ITALY', 'FRANCE'
 2013_asia | 'PAKISTAN', 'INDIA'
 2012_asia | 'PAKISTAN', 'INDIA'
 2011_asia | 'PAKISTAN', 'INDIA'
 2013_americas | 'US', 'CANADA'
 2012_americas | 'US', 'CANADA'
 2011_americas | 'US', 'CANADA'
(9
rows)

15.6 Handle stray values in a LIST or RANGE partitioned table

A DEFAULT or MAXVALUE partition or subpartition captures any rows that do not meet the

other partitioning rules defined for a table.

Define a DEFAULT partition

A DEFAULT partition captures any rows that do not fit into any other partition in a LIST

partitioned (or subpartitioned) table. If you do not include a DEFAULT rule, any row that

does not match one of the values in the partitioning constraints will cause an error. Each

LIST partition or subpartition may have its own DEFAULT rule.

The syntax of a DEFAULT rule is as follows:

PARTITION partition_name VALUES (DEFAULT)

Where partition_name specifies the name of the partition or subpartition used to store any

rows that do not match the partitioning rules specified for other partitions.

In the last example, a list-partitioned table is created. The server determines which

partition in this partitioned table to store the data based on the value of the country

column. If you attempt to add a row in which the value of the country column is not listed in

the partitioning rules, POLARDB compatible with Oracle reports an error:

acctg=# INSERT INTO sales VALUES
acctg-# (40, '3000x', 'IRELAND', '01-Mar-2012', '45000');

Issue: 20200701 717

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

ERROR: inserted partition key does not map to any partition

The following example creates the same table, but adds a DEFAULT partition. The server

will store any rows that do not match a value specified in the partitioning rules for the

europe, asia, or americas partition in the others partition.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA'),
 PARTITION others VALUES (DEFAULT)
);

To test the DEFAULT partition, add a row with a value in the country column that does not

match any country specified in the partitioning constraints:

INSERT INTO sales VALUES
 (40, '3000x', 'IRELAND', '01-Mar-2012', '45000');

Querying the sales table confirms that the previously rejected row is now stored in the

sales_others partition:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
----------------+---------+---------+----------+--------------------+--------
 sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
 sales_americas | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_americas | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_americas | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_americas | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_americas | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_americas | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_americas | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_americas | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_others | 40 | 3000x | IRELAND | 01-MAR-12 00:00:00 | 45000
(18 rows)

Note that POLARDB compatible with Oracle does not include a method to reassign the

content of a DEFAULT partition or subpartition.

718 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

• You cannot use the ALTER TABLE... ADD PARTITION command to add a partition to a

table with a DEFAULT rule. However, you can use the ALTER TABLE... SPLIT PARTITION

command to split an existing partition.

• You cannot use the ALTER TABLE... ADD SUBPARTITION command to add a subpartition to

 a table with a DEFAULT rule. However, you can use the ALTER TABLE... SPLIT SUBPARTITI

ON command to split an existing subpartition.

Define a MAXVALUE partition

A MAXVALUE partition or subpartition captures any rows that do not fit into any other

partition in a range-partitioned or subpartitioned table. If you do not include a MAXVALUE

rule, any row that exceeds the maximum limit specified by the partitioning rules will cause

an error. Each partition or subpartition may have its own MAXVALUE partition.

Note that POLARDB compatible with Oracle does not include a method to reassign the

content of a MAXVALUE partition or subpartition:

• You cannot use the ALTER TABLE... ADD PARTITION command to add a partition to a

table with a MAXVALUE rule. However, you can use the ALTER TABLE... SPLIT PARTITION

command to split an existing partition.

• You cannot use the ALTER TABLE... ADD SUBPARTITION command to add a subpartiti

on to a table with a MAXVALUE rule. However, you can use the ALTER TABLE... SPLIT

SUBPARTITION command to split an existing subpartition.

The syntax of a MAXVALUE rule is as follows:

PARTITION partition_name VALUES LESS THAN (MAXVALUE)

Where partition_name specifies the name of the partition used to store any rows that do

not match the partitioning rules specified for other partitions.

In the last example, a range-partitioned table is created. The data in this table is

partitioned based on the value of date column. If you attempt to add a row in which the

value of the date column exceeds a date listed in the partitioning constraints, POLARDB

compatible with Oracle reports an error:

acctg=# INSERT INTO sales VALUES
acctg-# (40, '3000x', 'IRELAND', '01-Mar-2013', '45000');

Issue: 20200701 719

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

ERROR: inserted partition key does not map to any partition

The following CREATE TABLE command creates the same table, but this table has a

MAXVALUE partition. Instead of reporting an error, the server will store any rows that do not

match the previous partitioning constraints in the others partition:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
(
 PARTITION q1_2012 VALUES LESS THAN('2012-Apr-01'),
 PARTITION q2_2012 VALUES LESS THAN('2012-Jul-01'),
 PARTITION q3_2012 VALUES LESS THAN('2012-Oct-01'),
 PARTITION q4_2012 VALUES LESS THAN('2013-Jan-01'),
 PARTITION others VALUES LESS THAN (MAXVALUE)
);

To test the MAXVALUE partition, add a row with a value in the date column that exceeds the

last date value listed in each partitioning rule. The server will store this row in the others

partition:

INSERT INTO sales VALUES
 (40, '3000x', 'IRELAND', '2015-Oct-01', '45000');

Querying the sales table confirms that the previously rejected row is now stored in the

sales_others partition:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
---------------+---------+---------+----------+--------------------+---------
 sales_q1_2012 | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_q1_2012 | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_q1_2012 | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_q2_2012 | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_q2_2012 | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_q2_2012 | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_q2_2012 | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_q3_2012 | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_q3_2012 | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_q3_2012 | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_q3_2012 | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_q3_2012 | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_q4_2012 | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_q4_2012 | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_q4_2012 | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_q4_2012 | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_q4_2012 | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
 sales_others | 40 | 3000x | IRELAND | 01-MAR-13 00:00:00 | 45000

720 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

(18 rows)

15.7 Specify multiple partition key columns in a RANGE
partitioned table

You can improve performance by specifying multiple key columns for a RANGE partitione

d table. If you often select rows by using comparison operators (based on a greater-than

 or less-than value) on a small set of columns, consider using these columns in RANGE

partitioning rules.

Specify multiple key columns in a range-partitioned table

A range-partitioned table definition may include multiple columns in the partition key. To

specify multiple partition key columns for a range-partitioned table, you must include the

column names in a comma-separated list after the PARTITION BY RANGE clause:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 sale_year number,
 sale_month number,
 sale_day number,
 amount number
)
PARTITION BY RANGE(sale_year, sale_month)
(
 PARTITION q1_2012
 VALUES LESS THAN(2012, 4),
 PARTITION q2_2012
 VALUES LESS THAN(2012, 7),
 PARTITION q3_2012
 VALUES LESS THAN(2012, 10),
 PARTITION q4_2012
 VALUES LESS THAN(2013, 1)
);

If a table has multiple partition key columns, you must specify multiple key values when

querying the table to take full advantage of partition pruning.

acctg=# EXPLAIN SELECT * FROM sales WHERE sale_year = 2012 AND sale_month = 8;
 QUERY PLAN
--- Result (cost=0.
00..14.35 rows=2 width=250)
 -> Append (cost=0.00..14.35 rows=2 width=250)
 -> Seq Scan on sales (cost=0.00..0.00 rows=1 width=250)
 Filter: ((sale_year = 2012::numeric) AND (sale_month = 8::numeric))
 -> Seq Scan on sales_q3_2012 sales (cost=0.00..14.35 rows=1 width=250)
 Filter: ((sale_year = 2012::numeric) AND (sale_month = 8::numeric))

Issue: 20200701 721

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

(6 rows)

All rows with a value of 8 in the sale_month column and a value of 2012 in the sale_year

column will be stored in the q3_2012 partition. POLARDB compatible with Oracle will only

search this partition.

15.8 Retrieve information about a partitioned table

15.8.1 Overview
POLARDB compatible with Oracle provides five system catalog views. You can use these

catalog views to view information about the structure of partitioned tables.

Query the partitioning views

You can query the following views to retrieve information about partitioned and

subpartitioned tables.

• ALL_PART_TABLES

• ALL_TAB_PARTITIONS

• ALL_TAB_SUBPARTITIONS

• ALL_PART_KEY_COLUMNS

• ALL_SUBPART_KEY_COLUMNS

In the Table partitioning views - reference topic, the structure of each view is explained. If

you are using the EDB-PSQL client, you can also discover the structure of a view by entering

the following:

\d view name

The view_name specifies the name of the table partitioning view.

Querying a view can provide information about the structure of a partitioned or

subpartitioned table. For example, the following code snippet displays the system-

assigned names of a subpartitioned table:

acctg=# SELECT subpartition_name, partition_name FROM ALL_TAB_SUBPARTITIONS;
 subpartition_name | partition_name
-------------------+----------------
 SYS_SUBP107 | americas
 SYS_SUBP104 | asia
 SYS_SUBP101 | europe
 SYS_SUBP108 | americas
 SYS_SUBP105 | asia

722 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

 SYS_SUBP102 | europe
 SYS_SUBP109 | americas
 SYS_SUBP106 | asia
 SYS_SUBP103 | europe
(9 rows)

15.8.2 Table partitioning views - reference
Query the following catalog views (compatible with Oracle databases) to review detailed

information about your partitioned tables.

ALL PART TABLES

The following table lists the available information in the ALL_PART_TABLES view:

Column Type Description

owner name The owner of the table.

table_name name The name of the table.

schema_name name The schema in which the table resides.

partitioning_type text RANGE or LIST

subpartitioning_type text RANGE, LIST, or NONE

partition_count bigint The number of partitions.

def_subpartition_cou
nt

integer The default subpartition count. This column
 is set to 0.

partitioning_key_cou
nt

integer The number of columns listed in the
partition by clause.

subpartitioning_key_
count

integer The number of columns in the subpartition
by clause.

status character varying(8) This column is set to VALID and provided for
 Oracle compatibility.

def_tables
pace_name

character varying(30) This column is set to NULL and provided for
Oracle compatibility.

def_pct_free numeric This column is set to NULL and provided for
Oracle compatibility.

def_pct_used numeric This column is set to NULL and provided for
Oracle compatibility.

def_ini_trans numeric This column is set to NULL and provided for
Oracle compatibility.

def_max_trans numeric This column is set to NULL and provided for
Oracle compatibility.

Issue: 20200701 723

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

Column Type Description

def_initial_extent character varying(40) This column is set to NULL and provided for
Oracle compatibility.

def_next_extent character varying(40) This column is set to NULL and provided for
Oracle compatibility.

def_min_extents character varying(40) This column is set to NULL and provided for
Oracle compatibility.

def_max_extents character varying(40) This column is set to NULL and provided for
Oracle compatibility.

def_pct_increase character varying(40) This column is set to NULL and provided for
Oracle compatibility.

def_freelists numeric This column is set to NULL and provided for
Oracle compatibility.

def_freelist_groups numeric This column is set to NULL and provided for
Oracle compatibility.

def_logging character varying(7) This column is set to YES and provided for
Oracle compatibility.

def_compression character varying(8) This column is set to NONE and provided for
 Oracle compatibility.

def_buffer_pool character varying(7) This column is set to DEFAULT and provided
for Oracle compatibility.

ref_ptn_constraint_n
ame

character varying(30) This column is set to NULL and provided for
Oracle compatibility.

interval character varying(
1000)

This column is set to NULL and provided for
Oracle compatibility.

ALL_TAB_PARTITIONS

The following table lists the available information in the ALL_TAB_PARTITIONS view:

Column Type Description

table_owner name The owner of the table.

table_name name The name of the table.

schema_name name The schema in which the table resides.

composite text This column is set to YES if the table is
subpartitioned and set to NO if the table is not
 subpartitioned.

724 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

Column Type Description

partition_name name The name of the partition.

subpartiti
on_count

bigint The number of subpartitions for this partition.

high_value text The partition limit for RANGE partitions, or the
partition value for LIST partitions.

high_value
_length

integer The length of high_value.

partition_
position

integer The ordinal position of this partition.

tablespace
_name

name The table space in which this partition resides.

pct_free numeric This column is set to 0 and provided for Oracle
 compatibility.

pct_used numeric This column is set to 0 and provided for Oracle
 compatibility.

ini_trans numeric This column is set to 0 and provided for Oracle
 compatibility.

max_trans numeric This column is set to 0 and provided for Oracle
 compatibility.

initial_extent numeric This column is set to NULL and provided for
Oracle compatibility.

next_extent numeric This column is set to NULL and provided for
Oracle compatibility.

min_extent numeric This column is set to 0 and provided for Oracle
 compatibility.

max_extent numeric This column is set to 0 and provided for Oracle
 compatibility.

pct_increase numeric This column is set to 0 and provided for Oracle
 compatibility.

freelists numeric This column is set to NULL and provided for
Oracle compatibility.

freelist_groups numeric This column is set to NULL and provided for
Oracle compatibility.

logging character varying(7) This column is set to YES and provided for
Oracle compatibility.

Issue: 20200701 725

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

Column Type Description

compression character varying(8) This column is set to NONE and provided for
Oracle compatibility.

num_rows numeric The approximate number of rows in this
partition.

blocks integer The approximate number of blocks in this
partition.

empty_blocks numeric This column is set to NULL and provided for
Oracle compatibility.

avg_space numeric This column is set to NULL and provided for
Oracle compatibility.

chain_cnt numeric This column is set to NULL and provided for
Oracle compatibility.

avg_row_len numeric This column is set to NULL and provided for
Oracle compatibility.

sample_size numeric This column is set to NULL and provided for
Oracle compatibility.

last_analyzed timestamp without time
 zone

This column is set to NULL and provided for
Oracle compatibility.

buffer_pool character varying(7) This column is set to NULL and provided for
Oracle compatibility.

global_stats character varying(3) This column is set to YES and provided for
Oracle compatibility.

user_stats character varying(3) This column is set to NO and provided for
Oracle compatibility.

backing_table regclass The OID of the backing table for this partition.

server_name name The name of the server on which the partition
resides.

ALL TAB SUBPARTITIONS

The following table lists the available information in the ALL_TAB_SUBPARTITIONS view:

Column Type Description

table_owner name The owner of the table.

table_name name The name of the table.

schema_name name The schema in which the table resides.

726 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

Column Type Description

partition_name name The name of the partition.

high_value text The subpartition limit for RANGE subpartitions,
or the subpartition value for LIST subpartitions.

high_value
_length

integer The length of high value.

subpartiti
on_name

name The name of the subpartition.

subpartiti
on_position

integer The ordinal position of this subpartition.

tablespace
_name

name The tablespace in which this partition resides.

pct_free numeric This column is set to 0 and provided for Oracle
compatibility.

pct_used numeric This column is set to 0 and provided for Oracle
compatibility.

ini_trans numeric This column is set to 0 and provided for Oracle
compatibility.

max_trans numeric This column is set to 0 and provided for Oracle
compatibility.

initial_extent numeric This column is set to NULL and provided for
Oracle compatibility.

next_extent numeric This column is set to NULL and provided for
Oracle compatibility.

min_extent numeric This column is set to 0 and provided for Oracle
compatibility.

max_extent numeric This column is set to 0 and provided for Oracle
compatibility.

pct_increase numeric This column is set to 0 and provided for Oracle
compatibility.

freelists numeric This column is set to NULL and provided for
Oracle compatibility.

freelist_groups numeric This column is set to NULL and provided for
Oracle compatibility.

logging character varying(7) This column is set to YES and provided for Oracle
 compatibility.

Issue: 20200701 727

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

Column Type Description

compression character varying(8) This column is set to NONE and provided for
Oracle compatibility.

num_rows numeric The approximate number of rows in this
subpartition.

blocks integer The approximate number of blocks in this
subpartition.

empty_blocks numeric This column is set to NULL and provided for
Oracle compatibility.

avg_space numeric This column is set to NULL and provided for
Oracle compatibility.

chain_cnt numeric This column is set to NULL and provided for
Oracle compatibility.

avg_row_len numeric This column is set to NULL and provided for
Oracle compatibility.

sample_size numeric This column is set to NULL and provided for
Oracle compatibility.

last_analyzed timestamp without
time zone

This column is set to NULL and provided for
Oracle compatibility.

buffer_pool character varying(7) This column is set to NULL and provided for
Oracle compatibility.

global_stats character varying(3) This column is set to YES and provided for Oracle
 compatibility.

user_stats character varying(3) This column is set to NO and provided for Oracle
 compatibility.

backing_table regclass The OID of the backing table for this subpartition
.

server_name name The name of the server on which the subpartiti
on resides.

ALL PART KEY COLUMNS

The following table lists the available information in the ALL_PART_KEY_COLUMNS view:

Column Type Description

owner name The owner of the table.

name name The name of the table.

728 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 15 Table partitioning

Column Type Description

schema name The schema in which the table resides.

object_type character(5) This column is set to TABLE and provided for
Oracle compatibility.

column_name name The name of the partition key column.

column_position integer The position of this column within the partition
 key. Each column has a corresponding column
 position (for example, the first column has a
column position of 1, the second column has a
column position of 2).

ALL SUBPART KEY COLUMNS

The following table lists the available information in the ALL_SUBPART_KEY_COLUMNS view.

Column Type Description

owner name The owner of the table.

name name The name of the table.

schema name The schema in which the table resides.

object_type character(5) This column is set to TABLE and provided for Oracle
compatibility.

column_name name The name of the partition key column.

column_position integer The position of this column within the subpartiti
on key. Each column has a corresponding column
position (for example, the first column has a column
 position of 1, the second column has a column
position of 2).

Issue: 20200701 729

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 16 Packages

16 Packages

16.1 Overview
A package is a named collection of functions, procedures, variables, cursors, user-defined

record types, and records that are referenced with the package identifier.

The following section shows the characteristics of packages:

• Packages provide a convenient method to organize the functions and procedures to

achieve a certain purpose. The permission to use the package functions and procedures

 is based on one privilege granted to the entire package. All of the package programs

must be referenced with a common name.

• Certain functions, procedures, variables, and types in the package can be declared as

 public. Public entities are visible and can be referenced by other programs that are

granted the EXECUTE permission on the package. For public functions and procedures,

only the signatures such as program names, parameters, and return types are visible.

The Structured Process Language (SPL) code of these functions and procedures cannot

be accessed by others. Therefore, applications that utilize a package depend on only the

 information available in the signatures instead of the procedural logic.

• Other functions, procedures, variables, types in the package can be declared as private

. Private entities can be referenced and used by functions and procedures within the

package, but cannot be referenced and used by external applications. Private entities

are used only by programs within the package.

• Function names and procedure names can be reloaded within a package. One or more

 functions and procedures can be defined with the same name but different signatures

. This allows you to create multiple programs with the same name. These programs run

the same jobs based on different types of input.

16.2 Package components

730 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 16 Packages

16.2.1 Package specification syntax
The package specification defines the user interface for a package (the API). The

specification lists the functions, procedures, types, exceptions, and cursors that are visible

to a user of the package.

The following syntax is used to define an interface for a package:

CREATE [OR REPLACE] PACKAGE package_name
 [authorization_clause]
 { IS | AS }
 [declaration;] ...
 [procedure_or_function_declaration;] ...
 [package_name] ;

Where

 authorization_clause :=
{ AUTHID DEFINER } | { AUTHID CURRENT_USER }

Where

procedure_or_function_declaration :=
procedure_declaration | function_declaration

Where

procedure_declaration :=
PROCEDURE proc_name[argument_list] [restriction_pragma];

Where

function_declaration :=
FUNCTION func_name [argument_list]
 RETURN rettype [restriction_pragma];

Where

argument_list :=
(argument_declaration [, ...])

Where

argument_declaration :=
argname [IN | IN OUT | OUT] argtype [DEFAULT value]

Where

restriction_pragma :=

Issue: 20200701 731

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 16 Packages

PRAGMA RESTRICT_REFERENCES(name, restrictions)

Where

restrictions :=
restriction [, ...]

Parameters

Parameter Description

package_name The identifier assigned to the package. Each
 package must have a unique name within
the schema.

AUTHID DEFINER If you omit the AUTHID clause or specify the
 AUTHID DEFINER parameter, permissions of
 the package owner are used to determine
permissions of accessing database objects.

AUTHID CURRENT_USER If you specify the AUTHID CURRENT_USER
parameter, permissions of the current user
 who runs a program in the package are
used to determine access permissions.

declaration The identifier of a public variable. A
public variable can be accessed from
outside the package by using the
package_name.variable syntax. There can
be zero, one, or more public variables. You
must define public variables before you
declare procedures or functions.

Valid values:

• Variable declaration
• Record declaration
• Collection declaration
• REF CURSOR and CURSOR variable

declaration
• TYPE definitions for records, collections,

and REF CURSORs
• Exception
• Object variable declaration

proc_name The name of a public procedure.

732 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 16 Packages

Parameter Description

argname The name of an argument. The argument is
referenced by this name within a function or
 procedure body.

IN | IN OUT | OUT The argument mode. IN: The argument
is only used for input. This is the default
 value. IN OUT: The argument is used to
receive a value and return a value. OUT: The
 argument is only used for output.

argtype The data types of an argument. An
argument type can be a basic data type, a
copy of the type of an existing column that
uses %TYPE, or a user-defined type such as
a nested table or an object type. The basic
data type cannot be specified a length.
For example, you must specify VARCHAR2
instead of VARCHAR2(10) as the data type.

You can write tablename.columnname%

TYPE to reference the type of a column.

This enables a procedure be independen

t of changes of the definition of a table

sometimes.

DEFAULT value If the input argument is not provided when
you call the procedure, the DEFAULT clause
 provides a default value for the input
argument. You cannot specify DEFAULT for
 arguments that are in the IN OUT or OUT
modes.

func_name The name of a public function.

rettype The data type returned.

Issue: 20200701 733

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 16 Packages

Parameter Description

DETERMINISTIC DETERMINISTIC a synonym for IMMUTABLE.
A DETERMINISTIC function cannot be used
to modify the database and always returns
 the same result when you input the same
argument values. This function is not used
 to query database and does not use the
information that is not in the argument list
. If you include this clause, any call of the
function with all-constant arguments can
be replaced with the function value.

restriction The following keywords are supported for
compatibility and can be ignored.

• RNDS
• RNPS
• TRUST
• WNDS
• WNPS

16.2.2 Package body syntax
The implementation details of the package are in the package body. The package body

may contain objects that are not visible to the package user.

The following syntax is used to define a package body.

CREATE [OR REPLACE] PACKAGE BODY package_name
 { IS | AS }
 [private_declaration;] ...
 [procedure_or_function_definition] ...
 [package_initializer]
 [package_name] ;

Where

procedure_or_function_definition :=
procedure_definition | function_definition

Where

procedure_definition :=
PROCEDURE proc_name[argument_list]
 [options_list]
 { IS | AS }
 procedure_body

734 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 16 Packages

 END [proc_name] ;

Where

procedure_body :=
[declaration;] [, ...]
BEGIN
 statement; [...]
[EXCEPTION
 { WHEN exception [OR exception] [...]] THEN statement; }
 [...]
]

Where

function_definition :=
FUNCTION func_name [argument_list]
 RETURN rettype [DETERMINISTIC]
 [options_list]
 { IS | AS }
 function_body
 END [func_name] ;

Where

function_body :=
[declaration;] [, ...]
BEGIN
 statement; [...]
[EXCEPTION
 { WHEN exception [OR exception] [...] THEN statement; }
 [...]
]

Where

argument_list :=
(argument_declaration [, ...])

Where

argument_declaration :=
argname [IN | IN OUT | OUT] argtype [DEFAULT value]

Where

options_list :=
option [...]

Where

option :=
STRICT
LEAKPROOF
COST execution_cost
ROWS result_rows

Issue: 20200701 735

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 16 Packages

SET config_param { TO value | = value | FROM CURRENT }

Where

package_initializer :=
BEGIN
 statement; [...]
END;

Parameters

Parameter Description

package_name The name of the package to which this
package body belongs. You must have
defined the package specification with this
name.

private_declaration The identifier of a private variable that can
be accessed by any procedure or function
within the package. There can be zero, one,
or more private variables. Valid values:

• Variable declaration
• Record declaration
• Collection declaration
• REF CURSOR and CURSOR variable

declaration
• TYPE definitions for records, collections,

and REF CURSORs
• Exception
• Object variable declaration

proc_name The name of the procedure to be created.

PRAGMA AUTONOMOUS_TRANSACTION The command that sets the function as an
autonomous transaction.

declaration A variable, type, REF CURSOR, or
subprogram declaration. If subprogram
declarations are included, they must be
declared after all other variable, type, and
REF CURSOR declarations.

statement A Structured Process Language (SPL)
program statement. The DECLARE - BEGIN
 - END block is considered as a part of the
SPL statement. Therefore, the function body
may contain nested blocks.

736 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 16 Packages

Parameter Description

exception The exception condition name. For example
: NO_DATA_FOUND, OTHERS.

func_name The name of the function to be created.

rettype The data type returned, which may be any
of the types listed by argtype. As for argtype
, a length cannot be specified for rettype.

DETERMINISTIC Specifies that the function always returns
the same result when you input the same
argument values. You cannot use the
DETERMINISTIC function to modify the
database.

Note:

• The DETERMINISTIC keyword is
equivalent to the IMMUTABLE option in
PostgreSQL.

• If you specify DETERMINISTIC for a
public function in the package body,
you must also specify DETERMINISTIC for
 the function declaration in the package
 specification. For private functions,
there is no function declaration in the
package specification.

PRAGMA AUTONOMOUS_TRANSACTION The command that sets the function as an
autonomous transaction.

declaration A variable, type, REF CURSOR, or
subprogram declaration. If subprogram
declarations are included, they must be
declared after all other variable, type, and
REF CURSOR declarations.

argname The name of a formal argument. The
argument is referenced by this name within
a procedure body.

IN | IN OUT | OUT The argument mode. IN: The argument
is only used for input. This is the default
 value. IN OUT: The argument is used to
receive a value and return a value. OUT: The
 argument is only used for output.

Issue: 20200701 737

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 16 Packages

Parameter Description

argtype The data types of an argument. An
argument type can be a basic data type, a
copy of the type of an existing column that
uses %TYPE, or a user-defined type such as
a nested table or an object type. The basic
data type cannot be specified a length.
For example, you must specify VARCHAR2
instead of VARCHAR2(10) as the data type.

You can write tablename.columnname%

TYPE to reference the type of a column.

This enables a procedure be independen

t of changes of the definition of a table

sometimes.

DEFAULT value If the input argument is not provided when
you call the procedure, the DEFAULT clause
provides a default value for the input
argument. You cannot specify DEFAULT for
arguments that are in the IN OUT or OUT
modes.

Note:
The following options are not compatible
with Oracle databases. They are only
extensions to Oracle package syntax
provided by ApsaraDB PolarDB.

STRICT The STRICT keyword specifies that the
function is not executed if you call the
 function with a NULL argument. The
function returns NULL instead.

LEAKPROOF The LEAKPROOF keyword specifies that
except for the return value, the function
 will not reveal any information about
arguments.

738 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 16 Packages

Parameter Description

PARALLEL { UNSAFE | RESTRICTED | SAFE } The PARALLEL clause allows you to use
parallel sequential scans in the parallel
mode. Different from a serial sequential
scan, a parallel sequential scan uses
multiple workers to scan a relation in
parallel during a query. Valid values:

• UNSAFE: The procedure or function
cannot be executed in parallel mode.
In this case, a serial execution plan is
implemented. This is the default value if
you omit the PARALLEL clause.

• RESTRICTED: The procedure or function
 can be executed in the parallel mode
, but the execution is restricted to the
parallel group leader. If the qualificat
ion for any particular relation has and
parallel restrictions, that relation cannot
be chosen for parallelism.

• SAFE: The procedure or function can be
 executed in the parallel mode without
any restriction.

execution_cost This parameter specifies estimated
execution cost for the function. The
value must be a positive number. Unit:
cpu_operator_cost. If the function returns a
 set, this is the collection of execution costs
for per returned row. The default value is 0.
0025.

result_rows The estimated number of rows that the
query planner expects the function to return
. The default value is 1000.

SET The SET clause helps you set a parameter
value for the duration of the function.

• config_param: Specifies the parameter
name.

• value: Specifies the value of the
parameter.

• FROM CURRENT: Guarantees that the
parameter value is restored when the
function ends.

Issue: 20200701 739

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 16 Packages

Parameter Description

package_initializer The statements in the package_initializer
are executed once for each of your session
when the package is first referenced

Note:
The STRICT, LEAKPROOF, PARALLEL, COST,
ROWS and SET keywords can provide
extended functionality for ApsaraDB
PolarDB but are not supported by Oracle.

16.3 Create a package

16.3.1 Create a package specification
The package specification contains the definitions of all the elements in the package that

 can be referenced from outside of the package. These definitions are called the public

elements of the package, and they act as the package interface. The following example

shows how to create package specification.

--
-- The [ackage specification for the 'emp_admin' package.
--
CREATE OR REPLACE PACKAGE emp_admin
IS

 FUNCTION get_dept_name (
 p_deptno NUMBER DEFAULT 10
)
 RETURN VARCHAR2;
 FUNCTION update_emp_sal (
 p_empno NUMBER,
 p_raise NUMBER
)
 RETURN NUMBER;
 PROCEDURE hire_emp (
 p_empno NUMBER,
 p_ename VARCHAR2,
 p_job VARCHAR2,
 p_sal NUMBER,
 p_hiredate DATE DEFAULT sysdate,
 p_comm NUMBER DEFAULT 0,
 p_mgr NUMBER,
 p_deptno NUMBER DEFAULT 10
);
 PROCEDURE fire_emp (
 p_empno NUMBER
);

740 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 16 Packages

END emp_admin;

This example shows how to create the emp_admin package specification. This package

specification consists of two functions and two stored procedures. You can also add the OR

REPLACE clause to the CREATE PACKAGE statement for convenience.

16.3.2 Create a package body
The package body contains the actual implementation behind the package specification.

For the preceding emp_admin package specification, you must create a package body that

 implements the specification. The body contains the implementation of the functions and

stored procedures in the specification.

--
-- The package body for the 'emp_admin' package.
--
CREATE OR REPLACE PACKAGE BODY emp_admin
IS
 --
 -- The function that queries the 'dept' table based on the department.
 -- number and returns the corresponding department name.
 --
 FUNCTION get_dept_name (
 p_deptno IN NUMBER DEFAULT 10
)
 RETURN VARCHAR2
 IS
 v_dname VARCHAR2(14);
 BEGIN
 SELECT dname INTO v_dname FROM dept WHERE deptno = p_deptno;
 RETURN v_dname;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Invalid department number ' || p_deptno);
 RETURN '';
 END;
 --
 -- Function that updates an employee's salary based on the
 -- employee number and salary increment/decrement passed
 -- as IN parameters. Upon successful completion the function
 -- returns the new updated salary.
 --
 FUNCTION update_emp_sal (
 p_empno IN NUMBER,
 p_raise IN NUMBER
)
 RETURN NUMBER
 IS
 v_sal NUMBER := 0;
 BEGIN
 SELECT sal INTO v_sal FROM emp WHERE empno = p_empno;
 v_sal := v_sal + p_raise;
 UPDATE emp SET sal = v_sal WHERE empno = p_empno;
 RETURN v_sal;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno || ' not found');

Issue: 20200701 741

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 16 Packages

 RETURN -1;
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
 RETURN -1;
 END;
 --
 -- Procedure that inserts a new employee record into the 'emp' table.
 --
 PROCEDURE hire_emp (
 p_empno NUMBER,
 p_ename VARCHAR2,
 p_job VARCHAR2,
 p_sal NUMBER,
 p_hiredate DATE DEFAULT sysdate,
 p_comm NUMBER DEFAULT 0,
 p_mgr NUMBER,
 p_deptno NUMBER DEFAULT 10
)
 AS
 BEGIN
 INSERT INTO emp(empno, ename, job, sal, hiredate, comm, mgr, deptno)
 VALUES(p_empno, p_ename, p_job, p_sal,
 p_hiredate, p_comm, p_mgr, p_deptno);
 END;
 --
 -- Procedure that deletes an employee record from the 'emp' table based
 -- on the employee number.
 --
 PROCEDURE fire_emp (
 p_empno NUMBER
)
 AS
 BEGIN
 DELETE FROM emp WHERE empno = p_empno;
 END;
END;

16.4 Reference a package

To reference the types, items and subprograms that are declared within a package

specification, you must use the dot notation. For example:

package_name.type_name
package_name.item_name
package_name.subprogram_name

You can execute the following SQL statement to invoke a function from the emp_admin

package specification.

SELECT emp_admin.get_dept_name(10) FROM DUAL;

This statement invokes the get_dept_name function that is declared within the package

 emp_admin, and passes the department number as an argument to the function. The

742 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 16 Packages

function returns the name of the department. The returned value is ACCOUNTING, which

corresponds to department number 10.

16.5 Use packages with user-defined types

The following example incorporates various user-defined types that are discussed in

previous chapters within the context of a package.

The emp_rpt package specification shows the declaration for a record type emprec_typ, a

weakly-typed REF CURSOR emp_refcur, as publicly accessible along with two functions and

 two procedures. The open_emp_by_dept function returns EMP_REFCUR of the REF CURSOR

type. Both fetch_emp and close_refcur procedures declare a weakly-typed REF CURSOR as a

 formal parameter.

CREATE OR REPLACE PACKAGE emp_rpt
IS
 TYPE emprec_typ IS RECORD (
 empno NUMBER(4),
 ename VARCHAR(10)
);
 TYPE emp_refcur IS REF CURSOR;

 FUNCTION get_dept_name (
 p_deptno IN NUMBER
) RETURN VARCHAR2;
 FUNCTION open_emp_by_dept (
 p_deptno IN emp.deptno%TYPE
) RETURN EMP_REFCUR;
 PROCEDURE fetch_emp (
 p_refcur IN OUT SYS_REFCURSOR
);
 PROCEDURE close_refcur (
 p_refcur IN OUT SYS_REFCURSOR
);
END emp_rpt;

The package body shows the declaration of several private variables, such as the dept_cur

static cursor, the depttab_typ table type, the t_dept table variable, the t_dept_max integer

variable, and the r_emp record variable.

CREATE OR REPLACE PACKAGE BODY emp_rpt
IS
 CURSOR dept_cur IS SELECT * FROM dept;
 TYPE depttab_typ IS TABLE of dept%ROWTYPE
 INDEX BY BINARY_INTEGER;
 t_dept DEPTTAB_TYP;
 t_dept_max INTEGER := 1;
 r_emp EMPREC_TYP;

 FUNCTION get_dept_name (
 p_deptno IN NUMBER
) RETURN VARCHAR2

Issue: 20200701 743

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 16 Packages

 IS
 BEGIN
 FOR i IN 1..t_dept_max LOOP
 IF p_deptno = t_dept(i).deptno THEN
 RETURN t_dept(i).dname;
 END IF;
 END LOOP;
 RETURN 'Unknown';
 END;

 FUNCTION open_emp_by_dept(
 p_deptno IN emp.deptno%TYPE
) RETURN EMP_REFCUR
 IS
 emp_by_dept EMP_REFCUR;
 BEGIN
 OPEN emp_by_dept FOR SELECT empno, ename FROM emp
 WHERE deptno = p_deptno;
 RETURN emp_by_dept;
 END;

 PROCEDURE fetch_emp (
 p_refcur IN OUT SYS_REFCURSOR
)
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH p_refcur INTO r_emp;
 EXIT WHEN p_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(r_emp.empno || ' ' || r_emp.ename);
 END LOOP;
 END;

 PROCEDURE close_refcur (
 p_refcur IN OUT SYS_REFCURSOR
)
 IS
 BEGIN
 CLOSE p_refcur;
 END;
BEGIN
 OPEN dept_cur;
 LOOP
 FETCH dept_cur INTO t_dept(t_dept_max);
 EXIT WHEN dept_cur%NOTFOUND;
 t_dept_max := t_dept_max + 1;
 END LOOP;
 CLOSE dept_cur;
 t_dept_max := t_dept_max - 1;
END emp_rpt;

This package contains an initialization section that loads the private table variable t_dept

 and uses the private static cursor dept_cur. The t_dept variable is used as the table from

which you query the department name in the get_dept_name function.

The open_emp_by_dept function returns a REF CURSOR variable for a result set of employee

 numbers and names for a specified department argument. This REF CURSOR variable can

744 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 16 Packages

 be passed to the fetch_emp procedure to retrieve and list the individual rows of the result

 set. The close_refcur procedure can be used to close the REF CURSOR variable associated

with this result set.

The following anonymous block is used to run package functions and procedures. In the

 declaration of the anonymous block, the public REF CURSOR type EMP_REFCUR of the

package is used to record the declaration of the v_emp_cur cursor variable. The v_emp_cur

 cursor variable contains the pointer to the result set that is passed between the package

function and procedures.

DECLARE
 v_deptno dept.deptno%TYPE DEFAULT 30;
 v_emp_cur emp_rpt.EMP_REFCUR;
BEGIN
 v_emp_cur := emp_rpt.open_emp_by_dept(v_deptno);
 DBMS_OUTPUT.PUT_LINE('EMPLOYEES IN DEPT #' || v_deptno ||
 ': ' || emp_rpt.get_dept_name(v_deptno));
 emp_rpt.fetch_emp(v_emp_cur);
 DBMS_OUTPUT.PUT_LINE('**********************');
 DBMS_OUTPUT.PUT_LINE(v_emp_cur%ROWCOUNT || ' rows were retrieved');
 emp_rpt.close_refcur(v_emp_cur);
END;

The following example shows the result of this anonymous block.

EMPLOYEES IN DEPT #30: SALES
EMPNO ENAME
----- -------
7499 ALLEN
7521 WARD
7654 MARTIN
7698 BLAKE
7844 TURNER
7900 JAMES

6 rows were retrieved

The following anonymous block illustrates another way of returning the same result.

Instead of using the fetch_emp and close_refcur package procedures, the logic of these

programs is coded directly into the anonymous block. In the declaration of this anonymous

 block, add the r_emp record variable. The variable is declared by using the EMPREC_TYP

public record type of the package.

DECLARE
 v_deptno dept.deptno%TYPE DEFAULT 30;
 v_emp_cur emp_rpt.EMP_REFCUR;
 r_emp emp_rpt.EMPREC_TYP;
BEGIN
 v_emp_cur := emp_rpt.open_emp_by_dept(v_deptno);
 DBMS_OUTPUT.PUT_LINE('EMPLOYEES IN DEPT #' || v_deptno ||
 ': ' || emp_rpt.get_dept_name(v_deptno));
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');

Issue: 20200701 745

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 16 Packages

 LOOP
 FETCH v_emp_cur INTO r_emp;
 EXIT WHEN v_emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(r_emp.empno || ' ' ||
 r_emp.ename);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('**********************');
 DBMS_OUTPUT.PUT_LINE(v_emp_cur%ROWCOUNT || ' rows were retrieved');
 CLOSE v_emp_cur;
END;

The following example shows the result of this anonymous block.

EMPLOYEES IN DEPT #30: SALES
EMPNO ENAME
----- -------
7499 ALLEN
7521 WARD
7654 MARTIN
7698 BLAKE
7844 TURNER
7900 JAMES

6 rows were retrieved

16.6 Drop a package

The following statement shows the syntax to drop the entire package or only drop the body

 of the package.

DROP PACKAGE [BODY] package_name;

If you omit the BODY keyword, both the package specification and the package body are

dropped. In this case, the entire package is dropped. If you specify the BODY keyword, only

 the package body is dropped. The package specification remains intact. The package_na

me parameter specifies the identifier of the package to be dropped.

You can use the following statement to drop only the package body of emp_admin.

DROP PACKAGE BODY emp_admin;

You can use the following statement to drop the entire emp_admin package.

DROP PACKAGE emp_admin;

746 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

17 Built-in packages

17.1 Overview
This chapter describes the built-in packages that are provided with POLARDB compatible

with Oracle. For certain packages, non-superusers must be explicitly granted the EXECUTE

privilege on the package before using any of the functions or stored procedures in the

package. For most of the built-in packages, the EXECUTE privilege is granted to PUBLIC

by default. For more information about using the GRANT command to provide access to a

package, see the GRANT command.

All built-in packages are owned by the special sys user. You must specify this user when

granting or revoking privileges on built-in packages.

GRANT EXECUTE ON PACKAGE SYS.UTL_FILE TO john;

17.2 DBMS_ALERT
The DBMS_ALERT package provides the capability to register for, send, and receive alerts.

Table 17-1: DBMS_ALERT functions and stored procedures

Function/stored procedure Return type Description

REGISTER(name) N/A Registers to be able to
receive alerts named, name.

REMOVE(name) N/A Removes registration for the
alert named, name.

REMOVEALL N/A Removes registration for all
alerts.

SIGNAL(name, message) N/A Signals the alert named,
name, with message.

WAITANY(name OUT,
message OUT, status OUT,
timeout)

N/A Waits for any registered alert
 to occur.

WAITONE(name, message
OUT, status OUT, timeout)

N/A Waits for the specified alert,
name, to occur.

Issue: 20200701 747

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

The DBMS_ALERT package in POLARDB compatible with Oracle is partially implemented

when compared to Oracle's version. POLARDB compatible with Oracle only supports the

functions and stored procedures that are listed in the preceding table.

POLARDB compatible with Oracle allows a maximum of 500 concurrent alerts. You can use

the dbms_alert.max_alerts GUC variable (located in the postgresql.conf file) to specify the

maximum number of concurrent alerts allowed on a system.

To set a value for the dbms_alert.max_alerts variable, open the postgresql.conf file (

default location: /opt/PostgresPlus/9.3AS/data) with your choice of editor. Then edit the

dbms_alert.max_alerts parameter, as shown in the following example:

dbms_alert.max_alerts = alert_count

Note:

alert_count specifies the maximum number of concurrent alerts. The default value of

dbms_alert.max_alerts is 100. To disable this feature, set dbms_alert.max_alerts to 0.

For the dbms_alert.max_alerts GUC variable to function as expected, the custom_var

iable_classes parameter must contain dbms_alerts:

custom_variable_classes = 'dbms_alert, …'

After editing the postgresql.conf file parameters, you must restart the server for the

changes to take effect.

REGISTER

The REGISTER stored procedure enables the current session to be notified of the specified

alert.

Syntax

REGISTER(name VARCHAR2)

Parameters

Parameter Description

name The name of the alert to be registered.

Examples

748 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

The following anonymous block registers for an alert named alert_test, and then waits for

the signal.

DECLARE
 v_name VARCHAR2(30) := 'alert_test';
 v_msg VARCHAR2(80);
 v_status INTEGER;
 v_timeout NUMBER(3) := 120;
BEGIN
 DBMS_ALERT.REGISTER(v_name);
 DBMS_OUTPUT.PUT_LINE('Registered for alert ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Waiting for signal...') ;
 DBMS_ALERT.WAITONE(v_name,v_msg,v_status,v_timeout);
 DBMS_OUTPUT.PUT_LINE('Alert name : ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Alert msg : ' || v_msg);
 DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
 DBMS_OUTPUT.PUT_LINE('Alert timeout: ' || v_timeout || ' seconds');
 DBMS_ALERT.REMOVE(v_name);
END;

Registered for alert alert_test
Waiting for signal...

REMOVE

The REMOVE stored procedure unregisters the session for the named alert.

Syntax

REMOVE(name VARCHAR2)

Parameters

Parameter Description

name The name of the alert to be unregistered.

REMOVEALL

The REMOVEALL stored procedure unregisters the session for all alerts.

Syntax

REMOVEALL

SIGNAL

The SIGNAL stored procedure signals the occurrence of the named alert.

Syntax

SIGNAL(name VARCHAR2, message VARCHAR2)

Parameters

Issue: 20200701 749

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

name The name of the alert.

message The information to pass with this alert.

Examples

The following anonymous block signals an alert for alert_test.

DECLARE
 v_name VARCHAR2(30) := 'alert_test';
BEGIN
 DBMS_ALERT.SIGNAL(v_name,'This is the message from ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Issued alert for ' || v_name);
END;

Issued alert for alert_test

WAITANY

The WAITANY stored procedure waits for any of the registered alerts to occur.

Syntax

WAITANY(name OUT VARCHAR2, message OUT VARCHAR2, status OUT INTEGER, timeout
NUMBER)

Parameters

Parameter Description

name The variable that receives the name of the
alert.

message The variable that receives the message sent
by the SIGNAL stored procedure.

status The status code returned by the operation
. Valid values: 0 and 1. 0 indicates that an
 alert occurred. 1 indicates that a timeout
occurred.

timeout The time to wait for an alert. Unit: second.

Examples

The following anonymous block uses the WAITANY stored procedure to receive an alert

named alert_test or any_alert:

DECLARE
 v_name VARCHAR2(30);
 v_msg VARCHAR2(80);

750 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 v_status INTEGER;
 v_timeout NUMBER(3) := 120;
BEGIN
 DBMS_ALERT.REGISTER('alert_test');
 DBMS_ALERT.REGISTER('any_alert');
 DBMS_OUTPUT.PUT_LINE('Registered for alert alert_test and any_alert');
 DBMS_OUTPUT.PUT_LINE('Waiting for signal...') ;
 DBMS_ALERT.WAITANY(v_name,v_msg,v_status,v_timeout);
 DBMS_OUTPUT.PUT_LINE('Alert name : ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Alert msg : ' || v_msg);
 DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
 DBMS_OUTPUT.PUT_LINE('Alert timeout: ' || v_timeout || ' seconds');
 DBMS_ALERT.REMOVEALL;
END;

Registered for alert alert_test and any_alert
Waiting for signal...

The following anonymous block issues a signal for any_alert:

DECLARE
 v_name VARCHAR2(30) := 'any_alert';
BEGIN
 DBMS_ALERT.SIGNAL(v_name,'This is the message from ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Issued alert for ' || v_name);
END;

Issued alert for any_alert

The following output shows that control returns to the first anonymous block and the

remaining code is executed:

Registered for alert alert_test and any_alert
Waiting for signal...
Alert name : any_alert
Alert msg : This is the message from any_alert
Alert status : 0
Alert timeout: 120 seconds

WAITONE

The WAITONE stored procedure waits for the specified registered alert to occur.

Syntax

WAITONE(name VARCHAR2, message OUT VARCHAR2, status OUT INTEGER, timeout
NUMBER)

Parameters

Parameter Description

name The name of the alert.

message The variable that receives the message sent
by the SIGNAL stored procedure.

Issue: 20200701 751

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

status The status code returned by the operation
. Valid values: 0 and 1. 0 indicates that an
 alert occurred. 1 indicates that a timeout
occurred.

timeout The time to wait for an alert. Unit: second.

Examples

The following anonymous block is similar to the one used in the WAITANY example except

that the WAITONE stored procedure is used to receive the alert named alert_test.

DECLARE
 v_name VARCHAR2(30) := 'alert_test';
 v_msg VARCHAR2(80);
 v_status INTEGER;
 v_timeout NUMBER(3) := 120;
BEGIN
 DBMS_ALERT.REGISTER(v_name);
 DBMS_OUTPUT.PUT_LINE('Registered for alert ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Waiting for signal...') ;
 DBMS_ALERT.WAITONE(v_name,v_msg,v_status,v_timeout);
 DBMS_OUTPUT.PUT_LINE('Alert name : ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Alert msg : ' || v_msg);
 DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
 DBMS_OUTPUT.PUT_LINE('Alert timeout: ' || v_timeout || ' seconds');
 DBMS_ALERT.REMOVE(v_name);
END;

Registered for alert alert_test
Waiting for signal...

The following anonymous block issues a signal for alert_test:

DECLARE
 v_name VARCHAR2(30) := 'alert_test';
BEGIN
 DBMS_ALERT.SIGNAL(v_name,'This is the message from ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Issued alert for ' || v_name);
END;

Issued alert for alert_test

The following output shows that the first session is alerted, control returns to the first

anonymous block, and the remaining code is executed:

Registered for alert alert_test
Waiting for signal...
Alert name : alert_test
Alert msg : This is the message from alert_test
Alert status : 0

752 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Alert timeout: 120 seconds

Comprehensive example

The following example uses two triggers to send alerts when the dept table or the emp

table is changed. An anonymous block listens for these alerts and displays messages when

 an alert is received.

The triggers on the dept and emp tables are defined as follows:

CREATE OR REPLACE TRIGGER dept_alert_trig
 AFTER INSERT OR UPDATE OR DELETE ON dept
DECLARE
 v_action VARCHAR2(25);
BEGIN
 IF INSERTING THEN
 v_action := ' added department(s) ';
 ELSIF UPDATING THEN
 v_action := ' updated department(s) ';
 ELSIF DELETING THEN
 v_action := ' deleted department(s) ';
 END IF;
 DBMS_ALERT.SIGNAL('dept_alert',USER || v_action || 'on ' ||
 SYSDATE);
END;

CREATE OR REPLACE TRIGGER emp_alert_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp
DECLARE
 v_action VARCHAR2(25);
BEGIN
 IF INSERTING THEN
 v_action := ' added employee(s) ';
 ELSIF UPDATING THEN
 v_action := ' updated employee(s) ';
 ELSIF DELETING THEN
 v_action := ' deleted employee(s) ';
 END IF;
 DBMS_ALERT.SIGNAL('emp_alert',USER || v_action || 'on ' ||
 SYSDATE);
END;

The following anonymous block is executed in a session while the dept and emp tables are

being updated in other sessions:

DECLARE
 v_dept_alert VARCHAR2(30) := 'dept_alert';
 v_emp_alert VARCHAR2(30) := 'emp_alert';
 v_name VARCHAR2(30);
 v_msg VARCHAR2(80);
 v_status INTEGER;
 v_timeout NUMBER(3) := 60;
BEGIN
 DBMS_ALERT.REGISTER(v_dept_alert);
 DBMS_ALERT.REGISTER(v_emp_alert);
 DBMS_OUTPUT.PUT_LINE('Registered for alerts dept_alert and emp_alert');
 DBMS_OUTPUT.PUT_LINE('Waiting for signal...') ;
 LOOP
 DBMS_ALERT.WAITANY(v_name,v_msg,v_status,v_timeout);

Issue: 20200701 753

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 EXIT WHEN v_status ! = 0;
 DBMS_OUTPUT.PUT_LINE('Alert name : ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Alert msg : ' || v_msg);
 DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
 DBMS_OUTPUT.PUT_LINE('------------------------------------' ||
 '-------------------------');
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
 DBMS_ALERT.REMOVEALL;
END;

Registered for alerts dept_alert and emp_alert
Waiting for signal...

The following changes are made by the user named, mary:

INSERT INTO dept VALUES (50,'FINANCE,,,CHICAG0');
INSERT INTO emp (empno,ename,deptno) VALUES (9001,'J0NES',50);
INSERT INTO emp (empno,ename,deptno) VALUES (9002,'ALICE',50);

The following change is made by user, john:

INSERT INTO dept VALUES (60,'HR','L0S ANGELES');

The following example shows the output displayed by the anonymous block that receives

the signals from the triggers:

Registered for alerts dept_alert and emp_alert
Waiting for signal...
Alert name : dept_alert
Alert msg : mary added department(s) on 25-OCT-07 16:41:01
Alert status : 0

Alert name : emp_alert
Alert msg : mary added employee(s) on 25-OCT-07 16:41:02
Alert status : 0

Alert name : dept_alert
Alert msg : john added department(s) on 25-OCT-07 16:41:22
Alert status : 0

Alert status : 1

17.3 DBMS_AQ
PolarDB databases compatible with Oracle provide message queuing and message

processing. User-defined messages are stored in a queue. A collection of queues is stored

in a queue table. Procedures in the DBMS_AQADM package to can be used to create and

manage message queues and queue tables. You can use the DBMS_AQ package to add

messages to a queue or remove messages from a queue, or register or unregister a PL/SQL

callback procedure.

754 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

PolarDB databases compatible with Oracle also provide extended non-compatible features

for the DBMS_AQ package by running the following SQL commands:

• ALTER QUEUE

• ALTER QUEUE TABLE

• CREATE QUEUE

• CREATE QUEUE TABLE

• DROP QUEUE

• DROP QUEUE TABLE

The DBMS_AQ package provides procedures that allow you to enqueue a message,

dequeue a message, and manage callback procedures. The following table lists the

supported procedures.

Function/Procedure Return Type Description

ENQUEUE N/A Posts a message to a queue.

DEQUEUE N/A Retrieves a message from a
 queue immediately after a
message is available.

REGISTER N/A Registers a callback
procedure.

UNREGISTER N/A Unregisters a callback
procedure.

The implementation of DBMS_AQ in PolarDB databases compatible with Oracle is a partial

 implementation when compared with native Oracle. Only those procedures listed in the

preceding table are supported.

The following table lists the constants supported by PolarDB databases compatible with

Oracle.

Constant Description Applicable parameter

DBMS_AQ.BROWSE (0) Reads a message without
locking.

dequeue_options_t.
dequeue_mode

DBMS_AQ.LOCKED (1) This constant is defined. An
error message is returned if
this constant is used.

dequeue_options_t.
dequeue_mode

Issue: 20200701 755

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Constant Description Applicable parameter

DBMS_AQ.REMOVE (2) Deletes a message after
reading. This is the default
value.

dequeue_options_t.
dequeue_mode

DBMS_AQ.REMOVE_NODATA
 (3)

This constant is defined. An
error message is returned if
this constant is used.

dequeue_options_t.
dequeue_mode

DBMS_AQ.FIRST_MESSAGE (0
)

Returns the first available
message that matches the
search criteria.

dequeue_options_t.
navigation

DBMS_AQ.NEXT_MESSAGE (1) Returns the next available
message that matches the
search criteria.

dequeue_options_t.
navigation

DBMS_AQ.NEXT_TRANS
ACTION (2)

This constant is defined. An
error message is returned if
this constant is used.

dequeue_options_t.
navigation

DBMS_AQ.FOREVER (0) Keeps waiting if a message
 that matches the search
criteria is not found. This is
the default value.

dequeue_options_t.wait

DBMS_AQ.NO_WAIT (1) Does not wait if a message
 that matches the search
criteria is not found.

dequeue_options_t.wait

DBMS_AQ.ON_COMMIT (0) Dequeuing is part of the
current transaction.

enqueue_options_t.visibility
, dequeue_options_t.
visibility

DBMS_AQ.IMMEDIATE (1) This constant is defined. An
error message is returned if
this constant is used.

enqueue_options_t.visibility
, dequeue_options_t.
visibility

DBMS_AQ.PERSISTENT (0) The message must be stored
 in a table.

enqueue_options_t.
delivery_mode

DBMS_AQ.BUFFERED (1) This constant is defined. An
error message is returned if
this constant is used.

enqueue_options_t.
delivery_mode

DBMS_AQ.READY (0) Specifies that the message is
 ready to be processed.

message_properties_t.state

DBMS_AQ.WAITING (1) Specifies that the message is
 waiting to be processed.

message_properties_t.state

756 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Constant Description Applicable parameter

DBMS_AQ.PROCESSED (2) Specifies that the message
has been processed.

message_properties_t.state

DBMS_AQ.EXPIRED (3) Specifies that the message is
 in an exception queue.

message_properties_t.state

DBMS_AQ.NO_DELAY (0) This constant is defined. An
error message is returned if
this constant is used.

message_properties_t.delay

DBMS_AQ.NEVER (NULL) This constant is defined. An
error message is returned if
this constant is used.

message_properties_t.
expiration

DBMS_AQ.NAMESPACE_AQ (0
)

Accepts notifications from
DBMS_AQ queues.

sys.aq$_reg_info.namespace

DBMS_AQ.NAMESPACE_
ANONYMOUS (1)

This constant is defined. An
error message is returned if
this constant is used.

sys.aq$_reg_info.namespace

ENQUEUE

You can use the ENQUEUE procedure to add an entry to a queue. The procedure has the

following signature:

ENQUEUE(
 queue_name IN VARCHAR2,
 enqueue_options IN DBMS_AQ.ENQUEUE_OPTIONS_T,
 message_properties IN DBMS_AQ.MESSAGE_PROPERTIES_T,
 payload IN <type_name>,
 msgid OUT RAW)

Parameters

• queue_name

The name of an existing queue. This may be a schema-qualified name. If you omit the

 schema name, the server uses the schema specified by SEARCH_PATH. Different from

native Oracle, unquoted identifiers are converted to be lowercase before the identifiers

are stored. To include special characters or use a case-sensitive name, enclose the name

 in double quotation marks.

Issue: 20200701 757

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

• enqueue_options

The enqueue_options parameter is a parameter of the enqueue_options_t type. The

following example shows the structure of enqueue_options_t:

DBMS_AQ.ENQUEUE_OPTIONS_T IS RECORD(
 visibility BINARY_INTEGER DEFAULT ON_COMMIT,
 relative_msgid RAW(16) DEFAULT NULL,
 sequence_deviation BINARY INTEGER DEFAULT NULL,
 transformation VARCHAR2(61) DEFAULT NULL,
 delivery_mode PLS_INTEGER NOT NULL DEFAULT PERSISTENT);

The following table lists the only parameter values supported by enqueue_options_t.

visibility ON_COMMIT

delivery_mode PERSISTENT

sequence_deviation NULL

transformation NULL

relative_msgid NULL

• message_properties

The message_properties parameter is a parameter of the message_properties_t type.

The following example shows the structure of message_properties_t:

 message_properties_t IS RECORD(
 priority INTEGER,
 delay INTEGER,
 expiration INTEGER,
 correlation CHARACTER VARYING(128) COLLATE pg_catalog." C",
 attempts INTEGER,
 recipient_list"AQ$_RECIPIENT_LIST_T",
 exception_queue CHARACTER VARYING(61) COLLATE pg_catalog." C",
 enqueue_time TIMESTAMP WITHOUT TIME ZONE,
 state INTEGER,
 original_msgid BYTEA,
 transaction_group CHARACTER VARYING(30) COLLATE pg_catalog." C",
 delivery_mode INTEGER
 DBMS_AQ.PERSISTENT);

The following table lists the values supported by message_properties_t.

Parameter Description

priority If the queue table definition includes
 sort_list that references priority, this
parameter affects the order in which
messages are dequeued. A lower value
specifies a higher dequeuing priority.

758 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

delay The number of seconds elapsed before
 a message is available for dequeuing.
The NO_DELAY constant specifies that a
message is dequeued immediately after
the message is available.

expiration The number of seconds elapsed before a
message expires.

correlation The message associated with the entry.
The default value is NULL.

attempts The number of attempts to dequeue the
message. This parameter is maintained by
 the system.

recipient_list This parameter is not supported.

exception_queue The name of an exception queue to which
 a message is moved if the message
expires or is dequeued by a transaction
that rolls back excessive times.

enqueue_time The time when the entry was added to
the queue. This value is provided by the
system.

state This parameter is maintained by DBMS_AQ.
Valid values:

- DBMS_AQ.READY: The delay has not
been reached.

- DBMS_AQ.WAITING: The queue entry is
ready for processing.

- DBMS_AQ.PROCESSED: The queue entry
has been processed.

- DBMS_AQ.EXPIRED: The queue entry
has been moved to the exception queue
.

original_msgid This parameter is ignored, but is included
for compatibility.

transaction_group This parameter is ignored, but is included
for compatibility.

delivery_mode This parameter is not supported. Specify a
value of DBMS_AQ.PERSISTENT.

Issue: 20200701 759

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

• payload

You can use the payload parameter to provide the data associated with the queue entry

. The payload type must match the type specified when you create the corresponding

queue table. For more information, see DBMS_AQADM.CREATE_QUEUE_TABLE.

• msgid

You can use the msgid parameter to retrieve a unique message identifier generated by

the system.

Examples

The following anonymous block calls DBMS_AQ.ENQUEUE to add a message to a queue

named work_order:

DECLARE

 enqueue_options DBMS_AQ.ENQUEUE_OPTIONS_T;
 message_properties DBMS_AQ.MESSAGE_PROPERTIES_T;
 message_handle raw(16);
 payload work_order;

BEGIN

 payload := work_order('Smith', 'system upgrade');

DBMS_AQ.ENQUEUE(
 queue_name => 'work_order',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => payload,
 msgid => message_handle
);
 END;

DEQUEUE

You can use the DEQUEUE procedure to dequeue a message. The procedure has the

following signature:

DEQUEUE(
 queue_name IN VARCHAR2,
 dequeue_options IN DBMS_AQ.DEQUEUE_OPTIONS_T,
 message_properties OUT DBMS_AQ.MESSAGE_PROPERTIES_T,
 payload OUT type_name,
 msgid OUT RAW)

Parameters

• queue_name

The name of an existing queue. This may be a schema-qualified name. If you omit the

 schema name, the server uses the schema specified by SEARCH_PATH. Different from

760 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

native Oracle, unquoted identifiers are converted to be lowercase before the identifiers

are stored. To include special characters or use a case-sensitive name, enclose the name

 in double quotation marks.

• dequeue_options

The dequeue _options parameter is a parameter of the dequeue_options_t type. The

following example shows the structure of dequeue_options_t:

DEQUEUE_OPTIONS_T IS RECORD(
 consumer_name CHARACTER VARYING(30),
 dequeue_mode INTEGER,
 navigation INTEGER,
 visibility INTEGER,
 wait INTEGER,
 msgid BYTEA,
 correlation CHARACTER VARYING(128),
 deq_condition CHARACTER VARYING(4000),
 transformation CHARACTER VARYING(61),
 delivery_mode INTEGER);

The following table lists the only parameter values supported by dequeue_options_t.

Parameter Description

consumer_name Must be NULL.

dequeue_mode The locking behavior of the dequeuing
operation. Valid values:

- DBMS_AQ.BROWSE: reads a message
without obtaining a lock.

- DBMS_AQ.LOCKED: reads a message
after acquiring a lock.

- DBMS_AQ.REMOVE: reads a message
before deleting the message.

- DBMS_AQ.REMOVE_NODATA: reads
a message but does not delete the
message.

navigation Specifies the message to be retrieved.
Valid values:

- FIRST_MESSAGE: the first message
within the queue that matches the
search criteria.

- NEXT_MESSAGE: the next available
message that matches the first term.

Issue: 20200701 761

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

visibility Must be ON_COMMIT: If you roll back the
 current transaction, the dequeued item
remains in the queue.

wait Must be a number larger than 0, or be set
to:

- DBMS_AQ.FOREVER: waits indefinitely.
- DBMS_AQ.NO_WAIT: does not wait.

msgid The ID of the message to be dequeued.

correlation This parameter is ignored, but is included
for compatibility.

deq_condition A VARCHAR2 expression that calculates a
 BOOLEAN value and specifies whether a
message must be dequeued.

transformation This parameter is ignored, but is included
for compatibility.

delivery_mode Must be PERSISTENT. Buffered messages
are not supported in this mode.

• message_properties

The message_properties parameter is a parameter of the message_properties_t type.

The following example shows the structure of message_properties_t:

 message_properties_t IS RECORD(
 priority INTEGER,
 delay INTEGER,
 expiration INTEGER,
 correlation CHARACTER VARYING(128) COLLATE pg_catalog." C",
 attempts INTEGER,
 recipient_list"AQ$_RECIPIENT_LIST_T",
 exception_queue CHARACTER VARYING(61) COLLATE pg_catalog." C",
 enqueue_time TIMESTAMP WITHOUT TIME ZONE,
 state INTEGER,
 original_msgid BYTEA,
 transaction_group CHARACTER VARYING(30) COLLATE pg_catalog." C",
 delivery_mode INTEGER

762 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 DBMS_AQ.PERSISTENT);

The following table lists the parameters supported by message_properties_t:

Parameter Description

priority If the queue table definition includes
 sort_list that references priority, this
parameter affects the order in which
messages are dequeued. A lower value
specifies a higher dequeuing priority.

delay The number of seconds elapsed before
 a message is available for dequeuing.
The NO_DELAY constant specifies that a
message is dequeued immediately after
the message is available.

expiration The number of seconds elapsed before a
message expires.

correlation The message associated with the entry.
The default value is NULL.

attempts The number of attempts to dequeue the
message. This parameter is maintained by
 the system.

recipient_list This parameter is not supported.

exception_queue The name of an exception queue to which
 a message is moved if the message
expires or is dequeued by a transaction
that rolls back excessive times.

enqueue_time The time when the entry was added to
the queue. This value is provided by the
system.

Issue: 20200701 763

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

state This parameter is maintained by DBMS_AQ.
Valid values:

- DBMS_AQ.WAITING: The delay has not
been reached.

- DBMS_AQ.READY: The queue entry is
ready for processing.

- DBMS_AQ.PROCESSED: The queue entry
has been processed.

- DBMS_AQ.EXPIRED: The queue entry
has been moved to the exception queue
.

original_msgid This parameter is ignored, but is included
for compatibility.

transaction_group This parameter is ignored, but is included
for compatibility.

delivery_mode This parameter is not supported. Specify a
value of DBMS_AQ.PERSISTENT.

• payload

You can use the payload parameter to retrieve the payload of a message that is involved

in a dequeuing operation. The payload type must match the type specified when you

create the queue table.

• msgid

You can use the msgid parameter to retrieve a unique message identifier.

Examples

The following anonymous block calls DBMS_AQ.DEQUEUE to retrieve a message from the

queue and payload:

DECLARE

 dequeue_options DBMS_AQ.DEQUEUE_OPTIONS_T;
 message_properties DBMS_AQ.MESSAGE_PROPERTIES_T;
 message_handle raw(16);
 payload work_order;

BEGIN
 dequeue_options.dequeue_mode := DBMS_AQ.BROWSE;

 DBMS_AQ.DEQUEUE(
 queue_name => 'work_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,

764 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 payload => payload,
 msgid => message_handle
);

 DBMS_OUTPUT.PUT_LINE(
 'The next work order is [' || payload.subject || '].'
);
END;

The payload is displayed by DBMS_OUTPUT.PUT_LINE.

REGISTER

You can use the REGISTER procedure to register an email address, procedure, or URL used

 for notification when an item is enqueued or dequeued. The procedure has the following

signature:

REGISTER(
 reg_list IN SYS.AQ$_REG_INFO_LIST,
 count IN NUMBER)

Parameters

• reg_list

The reg_list parameter specifies a list of the AQ$_REG_INFO_LIST type. This list provides

information about each subscription that you want to register. Each entry within the list

 is of the AQ$_REG_INFO type. The following table lists the attributes included in each

entry.

Attribute Type Description

name VARCHAR2 (128) The name of a subscripti
on. This may be a schema-
qualified name.

namespace NUMERIC The only supported value is
 DBMS_AQ.NAMESPACE_AQ
 (0).

Issue: 20200701 765

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Attribute Type Description

callback VARCHAR2 (4000) Describes the action
to be performed upon
notification. Only PL/SQL
procedures are supported.
The procedures are called
in this format: plsql://
schema.procedure, where:

- The schema field
specifies the schema
where the procedure is
located.

- The procedure field
specifies the name of the
 procedure to be notified.

context RAW (16) Any user-defined value
required by the callback
procedure.

• count

The count parameter specifies the number of entries in reg_list.

Examples

The following anonymous block calls DBMS_AQ.REGISTER to register procedures that are

notified when an item is added to or removed from a queue. A set of attributes of the sys.

aq$_reg_info type is provided for each subscription identified in the DECLARE section:

DECLARE
 subscription1 sys.aq$_reg_info;
 subscription2 sys.aq$_reg_info;
 subscription3 sys.aq$_reg_info;
 subscriptionlist sys.aq$_reg_info_list;
BEGIN
 subscription1 := sys.aq$_reg_info('q', DBMS_AQ.NAMESPACE_AQ, 'plsql://assign_wor
ker? PR=0',HEXTORAW('FFFF'));
 subscription2 := sys.aq$_reg_info('q', DBMS_AQ.NAMESPACE_AQ, 'plsql://add_to_his
tory? PR=1',HEXTORAW('FFFF'));
 subscription3 := sys.aq$_reg_info('q', DBMS_AQ.NAMESPACE_AQ, 'plsql://reserve_parts
? PR=2',HEXTORAW('FFFF'));

 subscriptionlist := sys.aq$_reg_info_list(subscription1, subscription2, subscription3);
 dbms_aq.register(subscriptionlist, 3);
 commit;
 END;

766 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 /

The subscriptionlist parameter is a parameter of the sys.aq$_reg_info_list type, and

contains the sys.aq$_reg_info objects described in this example. The list name and object

count are passed to dbms_aq.register.

UNREGISTER

You can use the UNREGISTER procedure to disable notifications related to enqueuing and

dequeuing. The procedure has the following signature:

UNREGISTER(
 reg_list IN SYS.AQ$_REG_INFO_LIST,
 count
IN NUMBER)

Parameters

• reg_list

The reg_list parameter specifies a list of the AQ$_REG_INFO_LIST type, and provides the

information about each subscription that you want to register. Each entry within the list

is of the AQ$_REG_INFO type. The following table lists the attributes included in each

entry.

Attribute Type Description

name VARCHAR2 (128) The name of a subscripti
on. This may be a schema-
qualified name.

namespace NUMERIC The only supported value is
 DBMS_AQ.NAMESPACE_AQ
 (0).

Issue: 20200701 767

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Attribute Type Description

callback VARCHAR2 (4000) Describes the action
to be performed upon
notification. Only PL/SQL
procedures are supported.
The procedures are called
in this format: plsql://
schema.procedure, where:

- The schema field
specifies the schema
where the procedure is
located.

- The procedure field
specifies the name of the
 procedure to be notified.

context RAW (16) Any user-defined value
required by the procedure.

• count

The count parameter specifies the number of entries in reg_list.

Examples

The following anonymous block calls DBMS_AQ.UNREGISTER to disable the notifications

specified in the example for DBMS_AQ.REGISTER:

DECLARE
 subscription1 sys.aq$_reg_info;
 subscription2 sys.aq$_reg_info;
 subscription3 sys.aq$_reg_info;
 subscriptionlist sys.aq$_reg_info_list;
BEGIN
 subscription1 := sys.aq$_reg_info('q', DBMS_AQ.NAMESPACE_AQ, 'plsql://assign_wor
ker? PR=0',HEXTORAW('FFFF'));
 subscription2 := sys.aq$_reg_info('q', DBMS_AQ.NAMESPACE_AQ, 'plsql://add_to_his
tory? PR=1',HEXTORAW('FFFF'));
 subscription3 := sys.aq$_reg_info('q', DBMS_AQ.NAMESPACE_AQ, 'plsql://reserve_parts
? PR=2',HEXTORAW('FFFF'));

 subscriptionlist := sys.aq$_reg_info_list(subscription1, subscription2, subscription3);
 dbms_aq.unregister(subscriptionlist, 3);
 commit;
 END;
 /

The subscriptionlist parameter is a parameter of the sys.aq$_reg_info_list type, and

contains the sys.aq$_reg_info objects described in this example. The list name and object

count are passed to dbms_aq.unregister.

768 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

17.4 DBMS_AQADM
PolarDB databases compatible with Oracle provide message queueing and message

processing. User-defined messages are stored in a queue. A collection of queues is stored

in a queue table. Procedures in the DBMS_AQADM package can be used to create and

manage message queues and queue tables. You can use the DBMS_AQ package to add

messages to a queue or remove messages from a queue, or register or unregister a PL/SQL

callback procedure.

PolarDB databases compatible with Oracle also provide extended non-compatible features

for the DBMS_AQ package by running the following SQL commands:

• ALTER QUEUE

• ALTER QUEUE TABLE

• CREATE QUEUE

• CREATE QUEUE TABLE

• DROP QUEUE

• DROP QUEUE TABLE

The DBMS_AQADM package provides stored procedures that allow you to create and

manage queues and queue tables.

Function/Procedure Return type Description

ALTER_QUEUE N/A Modifies an existing queue.

ALTER_QUEUE_TABLE N/A Modifies an existing queue
table.

CREATE_QUEUE N/A Creates a queue.

CREATE_QUEUE_TABLE N/A Creates a queue table.

DROP_QUEUE N/A Drops an existing queue.

DROP_QUEUE_TABLE N/A Drops an existing queue
table.

PURGE_QUEUE_TABLE N/A Removes one or more
messages from a queue
table.

START_QUEUE N/A Makes a queue available for
 enqueuing and dequeuing
procedures.

Issue: 20200701 769

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Function/Procedure Return type Description

STOP_QUEUE N/A Makes a queue unavailabl
e for enqueuing and
dequeuing procedures.

The implementation of DBMS_AQADM in PolarDB databases compatible with Oracle is

a partial implementation when compared with native Oracle. Only those functions and

procedures listed in the preceding table are supported.

The following table lists the constants supported by PolarDB databases compatible with

Oracle.

Constant Description Applicable parameter

DBMS_AQADM.TRANSACTIO
NAL(1)

This constant is defined. An
error message is returned if
this constant is used.

message_grouping

DBMS_AQADM.NONE(0) Specifies message grouping
for a queue table.

message_grouping

DBMS_AQADM.NORMAL_QUE
UE(0)

Used with create_queue to
specify queue_type.

queue_type

DBMS_AQADM.EXCEPTION_
QUEUE (1)

Used with create_queue to
specify queue_type.

queue_type

DBMS_AQADM.INFINITE(-1) Used with create_queue to
specify retention_time.

retention_time

DBMS_AQADM.PERSISTENT (
0)

The message must be stored
 in a table.

enqueue_options_t.
delivery_mode

DBMS_AQADM.BUFFERED (1) This constant is defined. An
error message is returned if
this constant is used.

enqueue_options_t.
delivery_mode

DBMS_AQADM.PERSISTENT
_OR_BUFFERED (2)

This constant is defined. An
error message is returned if
this constant is used.

enqueue_options_t.
delivery_mode

ALTER_QUEUE

You can use the ALTER_QUEUE procedure to modify an existing queue. The procedure has

the following signature:

ALTER_QUEUE(
 max_retries IN NUMBER DEFAULT NULL,
 retry_delay IN NUMBER DEFAULT 0

770 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 retention_time IN NUMBER DEFAULT 0,
 auto_commit IN BOOLEAN DEFAULT TRUE)
 comment IN VARCHAR2 DEFAULT NULL,

Parameters

Parameter Description

queue_name The name of the new queue.

max_retries The maximum number of failed attempts
 allowed before a message is removed
with the DEQUEUE statement. The value
of max_retries is incremented with each
ROLLBACK statement. When the number of
failed attempts reaches the value specified
by max_retries, the message is moved to the
 exception queue. A value of 0 means that
no retries are allowed.

retry_delay The number of seconds elapsed between
a rollback and message scheduling for re
-processing. A value of 0 means that the
message must be re-processed immediately
. This is the default value.

retention_time The number of seconds elapsed between
 dequeuing and storage for a message
. A value of 0 means that the message
cannot be retained after being dequeued. A
 value of INFINITE means that a message is
retained forever. Default value: 0.

auto_commit This parameter is ignored, but is included
for compatibility.

comment A comment associated with a queue.

Examples

Issue: 20200701 771

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

The following command is used to alter a queue named work_order and set the retry_delay

 parameter to 5 seconds:

EXEC DBMS_AQADM.ALTER_QUEUE(queue_name => 'work_order', retry_delay => 5);

ALTER_QUEUE_TABLE

You can use the ALTER_QUEUE_TABLE procedure to modify an existing queue table. The

procedure has the following signature:

ALTER_QUEUE_TABLE (
 queue_table IN VARCHAR2,
 comment IN VARCHAR2 DEFAULT NULL,
 primary_instance IN BINARY_INTEGER DEFAULT 0,
 secondary_instance IN BINARY_INTEGER DEFAULT 0,

Parameters

Parameter Description

queue_table The name of a queue table. This may be a
schema-qualified name.

comment A comment about a queue table.

primary_instance This parameter is ignored, but is included
for compatibility.

secondary_instance This parameter is ignored, but is included
for compatibility.

Examples

The following command is used to modify a queue table named work_order_table:

EXEC DBMS_AQADM.ALTER_QUEUE_TABLE
 (queue_table => 'work_order_table', comment => 'This queue table contains work
orders for the shipping department.') ;

The name of the queue table is work_order_table. The command is used to add a comment

 to the definition of the queue table.

CREATE_QUEUE

You can use the CREATE_QUEUE procedure to create a queue in an existing queue table. The

 procedure has the following signature:

CREATE_QUEUE(
 queue_name IN VARCHAR2
 queue_table IN VARCHAR2,
 queue_type IN BINARY_INTEGER DEFAULT NORMAL_QUEUE,
 max_retries IN NUMBER DEFAULT 5,

772 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 retry_delay IN NUMBER DEFAULT 0
 retention_time IN NUMBER DEFAULT 0,
 dependency_tracking IN BOOLEAN DEFAULT FALSE,
 comment IN VARCHAR2 DEFAULT NULL,
 auto_commit IN BOOLEAN DEFAULT TRUE)

Parameters

Parameter Description

queue_name The name of the new queue.

queue_table The name of the table where the new queue
 is located.

queue_type The type of the new queue. Valid values:

• DBMS_AQADM.NORMAL_QUEUE: a
normal queue. This is the default value.

• DBMS_AQADM.EXCEPTION_QUEUE: an
exception queue. An exception queue
only supports dequeue operations.

max_retries The maximum number of failed attempts
 allowed before a message is removed
with the DEQUEUE statement. The value
of max_retries is incremented with each
ROLLBACK statement. When the number of
failed attempts reaches the value specified
 by max_retries, the message is moved to
the exception queue. The default value for
a system table is 0. The default value for a
user-defined table is 5.

retry_delay The number of seconds elapsed between
a rollback and message scheduling for re
-processing. A value of 0 means that the
message must be re-processed immediately
. This is the default value.

retention_time The number of seconds elapsed between
 dequeuing and storage for a message
. A value of 0 means that the message
cannot be retained after being dequeued. A
 value of INFINITE means that a message is
retained forever. Default value: 0.

dependency_tracking This parameter is ignored, but is included
for compatibility.

comment A comment associated with a queue.

Issue: 20200701 773

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

auto_commit This parameter is ignored, but is included
for compatibility.

Examples

The following anonymous block is used to create a queue named work_order in the

work_order_table table:

BEGIN
DBMS_AQADM.CREATE_QUEUE (queue_name => 'work_order', queue_table => '
work_order_table', comment => 'This queue contains pending work orders.') ;
END;

CREATE_QUEUE_TABLE

You can use the CREATE_QUEUE_TABLE procedure to create a queue table. The procedure

has the following signature:

CREATE_QUEUE_TABLE (
 queue_table IN VARCHAR2,
 queue_payload_type IN VARCHAR2,
 storage_clause IN VARCHAR2 DEFAULT NULL,
 sort_list IN VARCHAR2 DEFAULT NULL,
 multiple_consumers IN BOOLEAN DEFAULT FALSE,
 message_grouping IN BINARY_INTEGER DEFAULT NONE,
 comment IN VARCHAR2 DEFAULT NULL,
 auto_commit IN BOOLEAN DEFAULT TRUE,
 primary_instance IN BINARY_INTEGER DEFAULT 0,
 secondary_instance IN BINARY_INTEGER DEFAULT 0,
 compatible IN VARCHAR2 DEFAULT NULL,
 secure IN BOOLEAN DEFAULT FALSE)

Parameters

Parameter Description

queue_table The name of a queue table. This may be a
schema-qualified name.

queue_payload_type The user-defined type of the data to be
stored in the queue table. To specify a RAW
 data type, you must create a user-defined
type that identifies a RAW type.

774 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

storage_clause Specifies the attributes for the queue table.
Only the TABLESPACE option is enforced.
All other options are ignored, but are
included for compatibility. You can use the
TABLESPACE clause to specify the name of a
tablespace in which a table is created.

• storage_clause can be set to one or more
of the following options:

TABLESPACE tablespace_name, PCTFREE

 integer, PCTUSED integer, INITRANS

 integer, MAXTRANS integer, and

STORAGE storage_option.

• storage_option can be set to one or more
of the following options:

MINEXTENTS integer, MAXEXTENTS

integer, PCTINCREASE integer, INITIAL

size_clause, NEXT, FREELISTS integer,

OPTIMAL size_clause, and BUFFER_POOL {

KEEP|RECYCLE|DEFAULT}.

sort_list This parameter controls the dequeueing
order of the queue and specifies the names
of the columns that are used to sort the
queue in ascending order. The following
combinations of enq_time and priority are
supported:

• enq_time, priority
• priority, enq_time
• priority
• enq_time

multiple_consumers This parameter must be set to FALSE if
required.

message_grouping This parameter must be set to NONE if
required.

comment A comment about a queue table.

auto_commit This parameter is ignored, but is included
for compatibility.

Issue: 20200701 775

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

primary_instance This parameter is ignored, but is included
for compatibility.

secondary_instance This parameter is ignored, but is included
for compatibility.

compatible This parameter is ignored, but is included
for compatibility.

secure This parameter is ignored, but is included
for compatibility.

Examples

The following anonymous block is used to create the work_order type with the attributes

that hold the VARCHAR2 name and the TEXT project description. Then, the block uses this

type to create a queue table.

BEGIN

CREATE TYPE work_order AS (name VARCHAR2, project TEXT, completed BOOLEAN);

EXEC DBMS_AQADM.CREATE_QUEUE_TABLE
 (queue_table => 'work_order_table',
 queue_payload_type => 'work_order',
 comment => 'Work order message queue table');
END;

The queue table is named work_order_table and contains a payload of the work_order type

. A comment is added to indicate that this is the work order message queue table.

DROP_QUEUE

You can use the DROP_QUEUE procedure to drop a queue. The procedure has the following

signature:

DROP_QUEUE(
 queue_name IN VARCHAR2,
 auto_commit IN BOOLEAN DEFAULT TRUE)

Parameters

Parameter Description

queue_name The name of the queue that you want to
drop.

auto_commit This parameter is ignored, but is included
for compatibility.

776 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Examples

The following anonymous block drops the queue named work_order:

BEGIN
DBMS_AQADM.DROP_QUEUE(queue_name => 'work_order');
END;

DROP_QUEUE_TABLE

You can use the DROP_QUEUE_TABLE procedure to drop a queue table. The procedure has

the following signature:

DROP_QUEUE_TABLE(
 queue_table IN VARCHAR2,
 force IN BOOLEAN default FALSE,
 auto_commit IN BOOLEAN default TRUE)

Parameters

Parameter Description

queue_table The name of a queue table. This may be a
schema-qualified name.

force The force keyword specifies the behavior of
the DROP_QUEUE_TABLE command when
the command is used to drop a table that
contain entries:

• If the target table contains entries and
force is set to FALSE, the command fails
and an error message is returned.

• If the target table contains entries and
force is set to TRUE, the command drops
the table and all dependent objects.

auto_commit This parameter is ignored, but is included
for compatibility.

Examples

The following anonymous block is used to drop a table named work_order_table:

BEGIN
 DBMS_AQADM.DROP_QUEUE_TABLE ('work_order_table', force => TRUE);

Issue: 20200701 777

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

END;

PURGE_QUEUE_TABLE

You can use the PURGE_QUEUE_TABLE procedure to delete messages from a queue table.

The procedure has the following signature:

PURGE_QUEUE_TABLE(
 queue_table IN VARCHAR2,
 purge_condition IN VARCHAR2,
 purge_options IN aq$_purge_options_t)

Parameters

Parameter Description

queue_table The name of the queue table from which
you want to delete a message.

purge_condition Specifies as the condition that the server
evaluates when the server determines the
 messages to be deleted. The condition is
specified in a SQL WHERE clause.

purge_options An object of the aq$_purge_options_t type.
An aq$_purge_options_t object contains
certain attributes. For more information, see
Table 17-2: aq$_purge_options_t.

Table 17-2: aq$_purge_options_t

Attribute Type Description

Block Boolean A value of TRUE means that
 an exclusive lock must be
held on all queues within the
 table. Default value: FALSE.

delivery_mode INTEGER Specifies the type of
message to be deleted. The
 only supported value is
dbms_aq.percent.

Examples

The following anonymous block is used to remove any messages from work_order_table

where the value of the column named completed is YES:

DECLARE
 purge_options dbms_aqadm.aq$_purge_options_t;

778 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

BEGIN
 dbms_aqadm.purge_queue_table('work_order_table', 'completed = YES', purge_opti
ons);
 END;

START_QUEUE

You can use the START_QUEUE procedure to make a queue available for enqueuing and

dequeuing. The procedure has the following signature:

START_QUEUE(
 queue_name IN VARCHAR2,
 enqueue IN BOOLEAN DEFAULT TRUE,
 dequeue IN BOOLEAN DEFAULT TRUE)

Parameters

Parameter Description

queue_name The name of the queue that you want to
start.

enqueue A value of TRUE means that enqueuing is
enabled. A value of FALSE means that the
current setting is unchanged. Default value:
TRUE.

dequeue A value of TRUE means that dequeuing is
enabled. A value of FALSE means that the
current setting is unchanged. Default value:
TRUE.

Examples

The following anonymous block is used to make a queue named work_order available for

enqueuing:

BEGIN
DBMS_AQADM.START_QUEUE
(queue_name => 'work_order);
END;

STOP_QUEUE

You can use the STOP_QUEUE procedure to disable enqueuing or dequeuing on a specified

queue. The procedure has the following signature:

STOP_QUEUE(
 queue_name IN VARCHAR2,
 enqueue IN BOOLEAN DEFAULT TRUE,
 dequeue IN BOOLEAN DEFAULT TRUE,

Issue: 20200701 779

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 wait IN BOOLEAN DEFAULT TRUE)

Parameters

Parameter Description

queue_name The name of the queue that you want to
stop.

enqueue A value of TRUE means that enqueuing is
disabled. A value of FALSE means that the
current setting is unchanged. Default value:
TRUE.

dequeue A value of TRUE means that dequeuing is
disabled. A value of FALSE means that the
current setting is unchanged. Default value:
TRUE.

wait A value of TRUE means that the server
waits for any uncompleted transactions
to complete before the server applies the
specified changes. When the server waits to
stop the queue, no transactions are allowed
 to be enqueued to or dequeued from the
 specified queue. A value of FALSE means
that the queue is stopped immediately.

Examples

The following anonymous block is used disable enqueuing to and dequeuing from the

queue named work_order:

BEGIN
DBMS_AQADM.STOP_QUEUE(queue_name =>'work_order', enqueue=>TRUE, dequeue=>
TRUE, wait=>TRUE);
END;

Enqueuing and dequeuing are stopped after all outstanding transactions are completed.

780 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

17.5 DBMS_CRYPTO
You can use the functions and stored procedures in the DBMS_CRYPTO package to encrypt

or decrypt RAW, BLOB, or CLOB data. You can also use DBMS_CRYPTO functions to generate

cryptographically secure random values.

Table 17-3: DBMS_CRYPTO functions and stored procedures

Function/stored procedure Return type Description

DECRYPT(src, typ, key, iv) RAW Decrypts RAW data.

DECRYPT(dst INOUT, src, typ,
key, iv)

N/A Decrypts BLOB data.

DECRYPT(dst INOUT, src, typ,
key, iv)

N/A Decrypts CLOB data.

ENCRYPT(src, typ, key, iv) RAW Encrypts RAW data.

ENCRYPT(dst INOUT, src, typ,
key, iv)

N/A Encrypts BLOB data.

ENCRYPT(dst INOUT, src, typ,
key, iv)

N/A Encrypts CLOB data.

HASH(src, typ) RAW Applies a hash algorithm to
RAW data.

HASH(src) RAW Applies a hash algorithm to
CLOB data.

MAC(src, typ, key) RAW Returns the hashed MAC
value of the given RAW data
. The hash algorithm and key
 are user-specified.

MAC(src, typ, key) RAW Returns the hashed MAC
value of the given CLOB data
. The hash algorithm and key
 are user-specified.

RANDOMBYTES(number
bytes)

RAW Returns a specified number
of cryptographically secure
random bytes.

RANDOMINTEGER() INTEGER Returns a random integer.

RANDOMNUMBER() NUMBER Returns a random number.

Issue: 20200701 781

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Similar to Oracle databases, POLARDB compatible with Oracle supports the following error

messages:

ORA-28239-DBMS_CRYPTO.KeyNull
ORA-28829-DBMS_CRYPTO.CipherSuiteNull
ORA-28827-DBMS_CRYPTO.CipherSuiteInvalid

Different from Oracle databases, POLARDB compatible with Oracle will not return error ORA

-28233 if you re-encrypt previously encrypted information.

Note that RAW and BLOB are synonyms of PostgreSQL BYTEA data types, while CLOB is a

synonym of TEXT.

DECRYPT

You can use the DECRYPT function or stored procedure to decrypt data based on a specified

 encryption algorithm, key, and optional initialization vector. The following code describes

the syntax of the DECRYPT function:

DECRYPT
 (src IN RAW, typ IN INTEGER, key IN RAW, iv IN RAW
 DEFAULT NULL) RETURN RAW

The following code describes the syntax of the DECRYPT stored procedure:

DECRYPT
 (dst INOUT BLOB, src IN BLOB, typ IN INTEGER, key IN RAW,
 iv IN RAW DEFAULT NULL)

Or

DECRYPT
 (dst INOUT CLOB, src IN CLOB, typ IN INTEGER, key IN RAW,
 iv IN RAW DEFAULT NULL)

When DECRYPT is called as a stored procedure, DECRYPT returns BLOB or CLOB data to the

user-specified BLOB.

Parameters

dst

Specifies the name of a BLOB. The DECRYPT stored procedure writes the output into the

BLOB and overwrites any existing data in the BLOB.

src

782 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Specifies the source data to be decrypted. If you call DECRYPT as a function, you must

specify RAW data. If you call DECRYPT as a stored procedure, you must specify BLOB or CLOB

 data.

typ

Specifies the block cipher type and any modifiers. The value of the parameter must match

the type specified when the source data was encrypted. POLARDB compatible with Oracle

supports the following block cipher algorithms, modifiers, and cipher suites.

Block cipher algorithms

ENCRYPT_DES CONSTANT INTEGER := 1;

ENCRYPT_3DES CONSTANT INTEGER := 3;

ENCRYPT_AES CONSTANT INTEGER := 4;

ENCRYPT_AES128 CONSTANT INTEGER := 6;

Block cipher modifiers

CHAIN_CBC CONSTANT INTEGER := 256;

CHAIN_ECB CONSTANT INTEGER := 768;

Block cipher padding modifiers

PAD_PKCS5 CONSTANT INTEGER := 4096;

PAD_NONE CONSTANT INTEGER := 8192;

Block cipher suites

DES_CBC_PKCS5 CONSTANT INTEGER := ENCRYPT_DES +
CHAIN_CBC + PAD_PKCS5;

DES3_CBC_PKCS5 CONSTANT INTEGER := ENCRYPT_3DES +
CHAIN_CBC + PAD_PKCS5;

AES_CBC_PKCS5 CONSTANT INTEGER := ENCRYPT_AES +
CHAIN_CBC + PAD_PKCS5;

key

Specifies the user-defined decryption key. The value of the parameter must match the key

specified when the source data was encrypted.

iv

Issue: 20200701 783

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Optional. Specifies the initialization vector. If you specify an initialization vector when

encrypting the source data, you must specify the parameter when decrypting the source

data. The default value is NULL.

Example

The following example uses the DBMS_CRYPTO.DECRYPT function to decrypt the encrypted

password that is retrieved from the passwords table.

CREATE TABLE passwords
(
 principal VARCHAR2(90) PRIMARY KEY, -- username
 ciphertext RAW(9) -- encrypted password
);
CREATE FUNCTION get_password(username VARCHAR2) RETURN RAW AS
 typ INTEGER := DBMS_CRYPTO.DES_CBC_PKCS5;
 key RAW(128) := 'my secret key';
 iv RAW(100) := 'my initialization vector';
 password RAW(2048);
BEGIN

 SELECT ciphertext INTO password FROM passwords WHERE principal = username;

 RETURN dbms_crypto.decrypt(password, typ, key, iv);
END;

Note that when you call DECRYPT, you must pass the same password type, key value, and

initialization vector used when you encrypted the object.

ENCRYPT

You can use the ENCRYPT function or stored procedure to encrypt RAW, BLOB, or CLOB data

 based on a user-defined algorithm, key, and optional initialization vector. The following

code describes the syntax of the DECRYPT function:

ENCRYPT
 (src IN RAW, typ IN INTEGER, key IN RAW,
 iv IN RAW DEFAULT NULL) RETURN RAW

The following code describes the syntax of the DECRYPT stored procedure:

ENCRYPT
 (dst INOUT BLOB, src IN BLOB, typ IN INTEGER, key IN RAW,
 iv IN RAW DEFAULT NULL)

Or

ENCRYPT
 (dst INOUT BLOB, src IN CLOB, typ IN INTEGER, key IN RAW,

784 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 iv IN RAW DEFAULT NULL)

When you call ENCRYPT as a stored procedure, ENCRYPT returns BLOB or CLOB data to the

user-specified BLOB.

Parameters

dst

Specifies the name of a BLOB. The ENCRYPT stored procedure writes the output into the

BLOB and overwrites any existing data in the BLOB.

src

Specifies the source data to be encrypted. If you call ENCRYPT as a function, you must

specify RAW data. If you call ENCRYPT as a stored procedure, you must specify BLOB or CLOB

 data.

typ

Specifies the block cipher type and any modifiers. POLARDB compatible with Oracle

supports the following block cipher algorithms, modifiers, and cipher suites.

Block cipher algorithms

ENCRYPT_DES CONSTANT INTEGER := 1;

ENCRYPT_3DES CONSTANT INTEGER := 3;

ENCRYPT_AES CONSTANT INTEGER := 4;

ENCRYPT_AES128 CONSTANT INTEGER := 6;

Block cipher modifiers

CHAIN_CBC CONSTANT INTEGER := 256;

CHAIN_ECB CONSTANT INTEGER := 768;

Block cipher padding modifiers

PAD_PKCS5 CONSTANT INTEGER := 4096;

PAD_NONE CONSTANT INTEGER := 8192;

Block cipher suites

DES_CBC_PKCS5 CONSTANT INTEGER := ENCRYPT_DES +
CHAIN_CBC + PAD_PKCS5;

DES3_CBC_PKCS5 CONSTANT INTEGER := ENCRYPT_3DES +
CHAIN_CBC + PAD_PKCS5;

Issue: 20200701 785

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

AES_CBC_PKCS5 CONSTANT INTEGER := ENCRYPT_AES +
CHAIN_CBC + PAD_PKCS5;

key

Specifies the encryption Key.

iv

Optional. Specifies the initialization vector. The default value is NULL.

Example

The following example uses the DBMS_CRYPTO.DES_CBC_PKCS5 block cipher suite (a set

 of predefined algorithms and modifiers) to encrypt the value that is retrieved from the

passwords table:

CREATE TABLE passwords
(
 principal VARCHAR2(90) PRIMARY KEY, -- username
 ciphertext RAW(9) -- encrypted password
);
CREATE PROCEDURE set_password(username VARCHAR2, cleartext RAW) AS
 typ INTEGER := DBMS_CRYPTO.DES_CBC_PKCS5;
 key RAW(128) := 'my secret key';
 iv RAW(100) := 'my initialization vector';
 encrypted RAW(2048);
BEGIN
 encrypted := dbms_crypto.encrypt(cleartext, typ, key, iv);
 UPDATE passwords SET ciphertext = encrypted WHERE principal = username;
END;

During password encryption, ENCRYPT uses "my secret key" as the key and "my initializa

tion vector" as the initialization vector. You must use the same key and initialization vector

when decrypting the password.

HASH

You can use the HASH function to return the hash values of RAW or CLOB data. The hash

algorithm is user-specified. The HASH function supports the following syntax:

HASH
 (src IN RAW, typ IN INTEGER) RETURN RAW
HASH
 (src IN CLOB, typ IN INTEGER) RETURN RAW

Parameters

src

Specifies the data for which the hash value will be calculated. The RAW, BLOB, or CLOB data

 types are supported.

786 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

typ

Specifies the hash algorithm. POLARDB compatible with Oracle supports the following hash

algorithms.

Hash algorithms

HASH_MD4 CONSTANT INTEGER := 1;

HASH_MD5 CONSTANT INTEGER := 2;

HASH_SH1 CONSTANT INTEGER := 3;

Example

The following example uses DBMS_CRYPTO.HASH to retrieve the MD5 hash value of the "

cleartext source" string:

DECLARE
 typ INTEGER := DBMS_CRYPTO.HASH_MD5;
 hash_value RAW(100);
BEGIN

 hash_value := DBMS_CRYPTO.HASH('cleartext source', typ);

END;

MAC

You can use a specified MAC function to return the hashed MAC value of RAW or CLOB data.

The HASH function supports the following syntax:

MAC
 (src IN RAW, typ IN INTEGER, key IN RAW) RETURN RAW
MAC
 (src IN CLOB, typ IN INTEGER, key IN RAW) RETURN RAW

Parameters

src

Specifies the data for which the hash value will be calculated. The RAW, BLOB, or CLOB data

 types are supported.

typ

Specifies the MAC function type. POLARDB compatible with Oracle supports the following

MAC function types.

MAC functions

HMAC MD5 CONSTANT INTEGER := 1;

Issue: 20200701 787

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

MAC functions

HMAC SH1 CONSTANT INTEGER := 2;

key

Specifies the key that is used to calculate the hashed MAC value.

Example

The following example uses DBMS_CRYPTO.MAC to retrieve the hash value of the "cleartext

source" string:

DECLARE
 typ INTEGER := DBMS_CRYPTO.HMAC_MD5;
 key RAW(100) := 'my secret key';
 mac_value RAW(100);
BEGIN

 mac_value := DBMS_CRYPTO.MAC('cleartext source', typ, key);

END;

During the calculation, DBMS_CRYPTO.MAC uses "my secret key" as the key.

RANDOMBYTES

You can use the RANDOMBYTES function to return a RAW value that contains cryptograp

hically random bytes. You can specify the length for the RAW value. The following code

describes the syntax of the RANDOMBYTES function:

RANDOMBYTES
 (number_bytes IN INTEGER) RETURNS RAW

Parameters

number_bytes

Specifies the number of random bytes that are returned by the function.

Example

The following example uses RANDOMBYTES to return a value that is 1,024 bytes in length:

DECLARE
 result RAW(1024);
BEGIN
 result := DBMS_CRYPTO.RANDOMBYTES(1024);

788 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

END;

RANDOMINTEGER

You can use the RANDOMINTEGER function to return a random integer between 0 and 268,

435, or 455. The following code describes the syntax of the RANDOMINTEGER function:

RANDOMINTEGER() RETURNS INTEGER

Example

The following example uses the RANDOMINTEGER function to return a cryptographically

secure random integer:

DECLARE
 result INTEGER;
BEGIN
 result := DBMS_CRYPTO.RANDOMINTEGER();
 DBMS_OUTPUT.PUT_LINE(result);
END;

RANDOMNUMBER

You can use the RANDOMNUMBER function to return a random number between 0 and 268,

435, or 455. The following code describes the syntax of the RANDOMNUMBER function:

RANDOMNUMBER() RETURNS NUMBER

Example

The following example uses the RANDOMINTEGER function to return a cryptographically

secure random number:

DECLARE
 result NUMBER;
BEGIN
 result := DBMS_CRYPTO.RANDOMNUMBER();
 DBMS_OUTPUT.PUT_LINE(result);
END;

17.6 DBMS_LOB

The DBMS_LOB package is used to perform operations on large objects.

Issue: 20200701 789

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Table 17-4: DBMS_LOB functions and stored procedures

Function/stored

procedure

Function or stored

procedure

Return type Description

APPEND(dest_lob IN
OUT,src_lob)

Stored procedure N/A Appends a large
object to another.

COMPARE(lob_1,
lob_2 [, amount[,
offset_1 [, offset_2]]])

Function INTEGER Compares two large
objects.

CONVERTOBLOB(
dest_lob IN OUT,
src_clob, amount
, dest_offsetIN
OUT, src_offset IN
 OUT,blob_csid,
lang_context IN OUT,
warning OUT)

Stored procedure N/A Converts characters
to binary data.

CONVERTTOCLOB
(dest_lob IN OUT,
src_blob, amount
, dest_offsetIN
OUT, src_offset IN
 OUT,blob_csid,
lang_context IN OUT,
warning OUT)

Stored procedure N/A Converts binary data
to characters.

COPY(dest_lob IN
OUT, src_lob,amount
 [, dest_offset [,
src_offset]])

Stored procedure N/A Copies a large object
 to another one.

ERASE(lob_loc IN
OUT, amount IN OUT
 [, offset])

Stored procedure N/A Erases a large object.

GET_STORAGE_LIMIT(
lob_loc)

Function INTEGER Retrieves the storage
limit for large objects
.

GETLENGTH(lob_loc) Function INTEGER Retrieves the length
of the large object.

790 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Function/stored

procedure

Function or stored

procedure

Return type Description

INSTR(lob_loc,
pattern [,offset [, nth
]])

Function INTEGER Retrieves the position
 of a pattern in the
 large object that
starts at the specified
 offset.

READ(lob_loc,
amount IN OUT,offset
, buffer OUT)

Stored procedure N/A Reads a large object.

SUBSTR(lob_loc [,
amount [,offset]])

Function RAW or VARCHAR2 Retrieves a portion of
 a large object.

TRIM(lob_loc IN OUT,
newlen)

Stored procedure N/A Trims a large object
 to the specified
length.

WRITE(lob_loc IN
OUT, amount,offset,
buffer)

Stored procedure N/A Writes data to a
large object.

WRITEAPPEND(
lob_loc IN OUT,
amount, buffer)

Stored procedure N/A Writes data from the
buffer to the end of a
 large object.

The DBMS_SQL package in POLARDB compatible with Oracle is only partially implemented

 when compared to Oracle's version. POLARDB compatible with Oracle only supports the

functions and stored procedures that are listed in the preceding table.

The following table lists the public variables that can be used in the package.

Table 17-5: DBMS_LOB public variables

Public variable Data type Value

compress off INTEGER 0

compress_on INTEGER 1

deduplicate_off INTEGER 0

deduplicate_on INTEGER 4

default_csid INTEGER 0

default_lang_ctx INTEGER 0

encrypt_off INTEGER 0

Issue: 20200701 791

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Public variable Data type Value

encrypt_on INTEGER 1

file_readonly INTEGER 0

lobmaxsize INTEGER 1073741823

lob_readonly INTEGER 0

lob_readwrite INTEGER 1

no_warning INTEGER 0

opt_compress INTEGER 1

opt_deduplicate INTEGER 4

opt_encrypt INTEGER 2

warn_inconvertible_char INTEGER 1

In the following sections, if the data type of a large object is BLOB, the length and offset of

the object are measured in bytes. If the data type of a large object is CLOB, the length and

offset are measured in characters.

APPEND

The APPEND stored procedure is used to append a large object to another. The data types

of the two large objects must be the same.

APPEND(dest_lob IN OUT { BLOB | CLOB }, src_lob { BLOB | CLOB })

Parameters

Parameter Description

dest_lob Specifies the location of the target large
 object. The data type of the dest_lob
parameter must be the same as that of the
src_lob parameter.

src_lob Specifies the location of the source large
 object. The data type of the src_lob
parameter must be the same as that of the
dest_lob parameter.

792 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

COMPARE

The COMPARE stored procedure compares two large objects by byte at the specified offsets

within the specified length. The data types of the two large objects that are compared must

 be the same.

status INTEGER COMPARE(lob_1 { BLOB | CLOB },
 lob_2 { BLOB | CLOB }
 [, amount INTEGER [, offset_1 INTEGER [, offset_2 INTEGER]]])

Parameters

Parameter Description

lob_1 Specifies the location of the first large
 object. The data type of the lob_1
parameter must be the same as that of the
lob_2 parameter.

lob_2 Specifies the location of the second
large object. The data type of the lob_2
parameter must be the same as that of the
lob_1 parameter.

amount If the data types of large objects are BLOB
, the objects are compared within the
specified amount of bytes. If the data types
 of large objects are CLOB, the objects are
compared within the specified amount of
characters. The default value of the amount
 parameter is the maximum size of a large
object.

offset 1 Specifies the position in the first large object
 to start the comparison. The position of the
 first byte or character is labeled as offset 1.
The default value is 1.

offset_2 Specifies the position in the second large
object to start the comparison. The position
 of the first byte or character is labeled as
offset 1. The default value is 1.

Issue: 20200701 793

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

status Specifies the comparison result. If the two
large objects are the same at the specified
offsets within the specified length, 0 (zero)
is returned. If the objects are not the same,
a non-zero value is returned. If the value of
the amount, offset_1, or offset_2 parameter
is smaller than 0, NULL is returned.

CONVERTTOBLOB

The CONVERTTOBLOB stored procedure is used to convert a large object of the CLOB data

type into a large object of the BLOB data type.

CONVERTTOBLOB(dest_lob IN OUT BLOB, src_clob CLOB,
 amount INTEGER, dest_offset IN OUT INTEGER,
 src_offset IN OUT INTEGER, blob_csid NUMBER,
 lang_context IN OUT INTEGER, warning OUT INTEGER)

Parameters

Parameter Description

dest_lob Specifies a target large object of the BLOB
data type. You can use the CONVERTTOBLOB
 stored procedure to convert a large object
of the CLOB data type into a large object of
the BLOB data type.

src_clob Specifies a source large object of the CLOB
data type. You can use the CONVERTTOBLOB
 stored procedure to convert a large object
of the BLOB data type into a large object of
the CLOB data type.

amount Specifies the number of characters to be
converted in the large object specified by
the src_clob parameter.

dest_offset IN Specifies the location of the byte in the
target large object where writing of the
source large object starts. The first byte is
labeled as offset 1.

dest_offset OUT Specifies the location of the byte in the
target large object after the write operation
 is complete. The first byte is labeled as
offset 1.

794 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

src_offset IN Specifies the location of the character in the
 source large object where the conversion
starts. The first character is labeled as offset
 1.

src_offset OUT Specifies the location of the character in the
 source large object after the conversion is
 complete. The first character is labeled as
offset 1.

blob_csid Specifies the character set ID of the target
large object.

langcontext IN Specifies the language environment for
the conversion. The default value of 0 is
typically used for the setting.

langcontext OUT Specifies the language environment after
the conversion is complete.

warning If the conversion is successful, 0 is returned.
If the conversion fails, 1 is returned.

CONVERTTOCLOB

The CONVERTTOCLOB stored procedure is used to convert a large object of the BLOB data

type into a large object of the CLOB data type.

CONVERTTOCLOB(dest_lob IN OUT CLOB, src_blob BLOB,
 amount INTEGER, dest_offset IN OUT INTEGER,
 src_offset IN OUT INTEGER, blob_csid NUMBER,
 lang_context IN OUT INTEGER, warning OUT INTEGER)

Parameters

Parameter Description

dest_lob Specifies a target large object of the CLOB
data type. You can use the CONVERTTOBLOB
 stored procedure to convert a large object
of the BLOB data type into a large object of
the CLOB data type.

src_blob Specifies a source large object of the BLOB
data type. You can use the CONVERTTOBLOB
 stored procedure to convert a large object
of the CLOB data type into a large object of
the BLOB data type.

Issue: 20200701 795

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

amount Specifies the number of bytes to be
converted in the large object specified by
the src_blob parameter.

dest_offset IN Specifies the location of the character in
the target large object where writing of the
source large object starts. The first character
 is labeled as offset 1.

dest_offset OUT Specifies the location of the character in the
 target large object of the CLOB data type
after the write operation is complete. The
first character is labeled as offset 1.

src_offset IN Specifies the location of the byte in the
source large object where the conversion
starts. The first byte is labeled as offset 1.

src_offset OUT Specifies the location of the byte in the
source large object after the conversion is
complete. The first byte is labeled as offset
1.

blob_csid Specifies the character set ID of the target
large object.

CLOB. langcontext IN Specifies the language environment for
the conversion. The default value of 0 is
typically used for the setting.

langcontext OUT Specifies the language environment after
the conversion is complete.

warning If the conversion is successful, 0 is returned.
If the conversion fails, 1 is returned.

COPY

The COPY stored procedure is used to copy a large object to another. The data types of the

source and target large objects must be the same.

COPY(dest_lob IN OUT { BLOB | CLOB }, src_lob
{ BLOB | CLOB },
 amount INTEGER
 [, dest_offset INTEGER [, src_offset INTEGER]])

Parameters

796 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

dest_lob Specifies the location of the target large
 object to which a source large object is
 copied. The data type of the parameter
 must be the same as the large object
specified by the src_lob parameter.

src_lob Specifies the location of the target large
object to be copied. The data type of the
parameter must be the same as the large
object specified by the dest_lob parameter.

amount Specifies the number of bytes or characters
to be copied in the large object specified by
the src_lob parameter.

dest_offset Specifies the location in the target large
object where writing of the source large
object starts. The first position is labeled as
offset 1. The default value is 1.

src_offset Specifies the location of the character in
 the source large object where the copy
operation starts. The first location is labeled
 as offset 1. The default value is 1.

ERASE

The ERASE stored procedure is used to erase a portion of the data in a large object. For a

 large object of the BLOB data type, the specified portion is replaced with a 0-byte filter.

For a large object of the CLOB data type, the specified portion is replaced with spaces. The

operation does not change the size of the large object.

ERASE(lob_loc IN OUT { BLOB | CLOB }, amount IN OUT INTEGER
 [, offset INTEGER])

Parameters

Parameter Description

lob_loc Specifies the large object to be erased.

amount IN Specifies the number of bytes or characters
to be erased in the large object.

Issue: 20200701 797

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

amount OUT Specifies the number of bytes or characters
 that have been erased. If the end of the
large object is reached before the specified
 number of bytes or characters has been
erased, the output value is smaller than the
input value.

offset Specifies the location in the large object
from which erasing starts. The first byte or
character is labeled as offset 1. The default
value is 1.

GET_STORAGE_LIMIT

The GET_STORAGE_LIMIT function is used to retrieve the maximum storage space that can

be used by large objects.

size INTEGER GET_STORAGE_LIMIT(lob_loc BLOB)

size INTEGER GET_STORAGE_LIMIT(lob_loc CLOB)

Parameters

Parameter Description

size Specifies the maximum storage space
that can be used by a large object in the
database.

lob_loc The parameter is provided to ensure the
compatibility with Oracle databases and
can be ignored during runtime.

GETLENGTH

The GETLENGTH function is used to retrieve the length of a large object.

amount INTEGER GETLENGTH(lob_loc BLOB)

amount INTEGER GETLENGTH(lob_loc CLOB)

Parameters

798 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

lob_loc Specifies the location of the large object
. You can use the GETLENGTH function to
retrieve the length of the object.

amount Specifies the length of the large object. For
 a large object of the BLOB data type, the
 length is measured in bytes. For a large
object of the CLOB data type, the length is
measured in characters.

INSTR

The INSTR function is used to retrieve the position where the specified pattern appears for

the specified nth number of times in a large object.

position INTEGER INSTR(lob_loc { BLOB | CLOB },
 pattern { RAW | VARCHAR2 } [, offset INTEGER [, nth INTEGER]])

Parameters

Parameter Description

lob_loc Specifies the location of the large object in
 which you can use the INSTR function to
search for the specified pattern.

pattern Specifies the pattern to match in the large
 object. The pattern is a combination of
bytes or characters. If the data type of a
large object is BLOB, the data type of the
pattern must be RAW. If the data type of a
 large object is CLOB, the data type of the
pattern must be VARCHAR2.

offset Specifies the position to start searching for
 the pattern in the large object specified
by the lob_loc parameter. The first byte or
character is labeled as offset 1. The default
value is 1.

nth Specifies the nth number of times when the
pattern appears starting from the specified
offset. The default value is 1.

Issue: 20200701 799

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

position Specifies the position where the pattern
appears for the specified nth time in the
 large object. The search starts from the
specified offset.

READ

The READ stored procedure is used to read a portion of a large object into a buffer.

READ(lob_loc { BLOB | CLOB }, amount IN OUT BINARY_INTEGER,
 offset INTEGER, buffer OUT { RAW | VARCHAR2 })

Parameters

Parameter Description

lob_loc Specifies the location of the large object to
be read.

amount IN Specifies the total number of bytes or
characters to be read.

amount OUT Specifies the total number of bytes or
characters that are read. If no more data is
available for reading, 0 is returned and the
DATA_NOT_FOUND exception is thrown.

offset Specifies the location where the read
operation starts in the large object. The first
byte or character is labeled as offset 1.

buffer Specifies the variable that receives the
portion of the large object. If the data type
 of the lob_loc parameter is BLOB, the data
type of the buffer parameter must be RAW.
If the data type of the lob_loc parameter is
CLOB, the data type of the buffer parameter
must be VARCHAR2.

SUBSTR

The SUBSTR function is used to retrieve a portion of a large object.

data { RAW | VARCHAR2 } SUBSTR(lob_loc { BLOB | CLOB }
 [, amount INTEGER [, offset INTEGER]])

Parameters

800 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

lob_loc Specifies the location of the large object to
be read.

amount Specifies the number of bytes or characters
to be returned. The default value is 32,767.

offset Specifies the position in the large object to
 start reading. The first byte or character is
labeled as offset 1. The default value is 1.

data Specifies the retrieved portion of the large
 object. If the data type of the lob_loc
parameter is BLOB, the data type of the
buffer parameter must be RAW. If the data
 type of the lob_loc parameter is CLOB, the
 data type of the data parameter must be
VARCHAR2.

TRIM

The TRIM stored procedure is used to trim a large object to the specified length.

TRIM(lob_loc IN OUT { BLOB | CLOB }, newlen INTEGER)

Parameters

Parameter Description

lob_loc Specifies the location of the large object to
be trimmed.

newlen Specifies the total number of bytes or
characters in the large object to be trimmed.

WRITE

The WRITE stored procedure is used to write data to a large object. Any data in the large

object at the specified offset within the specified length is overwritten by data in the buffer.

WRITE(lob_loc IN OUT { BLOB | CLOB },
 amount BINARY_INTEGER,
 offset INTEGER, buffer { RAW | VARCHAR2 })

Parameters

Issue: 20200701 801

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

lob_loc Specifies the location of a large object to be
 written.

amount Specifies the number of bytes or characters
in the buffer to be written to the large object
.

offset Specifies the position of the byte or
character in the large object where the write
 operation starts. The value of the offset
starts from 1.

buffer Specifies the data in the buffer to be written
 to the large object. If the data type of the
lob_loc parameter is BLOB, the data type of
 the buffer parameter must be RAW. If the
data type of the lob_loc parameter is CLOB,
the data type of the buffer parameter must
be VARCHAR2.

WRITEAPPEND

The WRITEAPPEND stored procedure is used to add data to the end of a large object.

WRITEAPPEND(lob_loc IN OUT { BLOB | CLOB },
 amount BINARY_INTEGER, buffer { RAW | VARCHAR2 })

Parameters

Parameter Description

lob_loc Specifies the location of the large object to
which data is added.

amount Specifies the number of bytes or characters
 in the buffer to be added to the end of the
large object.

buffer Specifies the data to be added to the large
 object. If the data type of the lob_loc
parameter is BLOB, the data type of the
buffer parameter must be RAW. If the data
type of the lob_loc parameter is CLOB, the
data type of the buffer parameter must be
VARCHAR2.

802 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

17.7 DBMS_LOCK

POLARDB compatible with Oracle supports the DBMS_LOCK.SLEEP stored procedure.

Table 17-6: DBMS_LOCK stored procedures

Function/stored procedure Return type Description

SLEEP(seconds) N/A Pauses a session for the
specified number of seconds
.

The DBMS_LOCK package in POLARDB compatible with Oracle is only partially implemente

d when compared to Oracle's version. POLARDB compatible with Oracle only supports

DBMS_LOCK.SLEEP.

SLEEP

The SLEEP stored procedure is used to pause the current session for the specified number of

 seconds.

SLEEP(seconds NUMBER)

Parameters

Parameter Description

seconds Specifies the number of seconds for which
the session is to be paused. You can specify
 a fractional value. For example, you can
 specify 1.75 to indicate one and three-
fourths of a second.

17.8 DBMS_MVIEW

You can use the stored procedures in the DBMS_MVIEW package to manage and update

materialized views and their dependencies. POLARDB compatible with Oracle supports the

following DBMS_MVIEW stored procedures:

Issue: 20200701 803

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Table 17-7: DBMS_MVIEW stored procedures

Stored procedure Return type Description

GET_MV_DEPENDENCIES
(list VARCHAR2, deplist
VARCHAR2);

N/A The GET_MV_DEPENDENCIES
 stored procedure can be
 used to retrieve a list of
dependencies for a specified
 view.

REFRESH(list VARCHAR2,
method VARCHAR2, rollback
 seg VARCHAR2 , push
deferred rpc BOOLEAN,
refresh after errors BOOLEAN
 , purge option NUMBER,
parallelism NUMBER, heap
size NUMBER , atomic refresh
 BOOLEAN , nested BOOLEAN
);

N/A The variation of the REFRESH
 stored procedure can be
 used to update a list of
views separated by commas
 (,).

REFRESH(tab dbms_utili
ty.uncl_array, method
VARCHAR2, rollback_seg
 VARCHAR2, push_defer
red_rpc BOOLEAN, refresh_af
ter_errors BOOLEAN,
purge_option NUMBER
, parallelism NUMBER
, heap_size NUMBER,
atomic_refresh BOOLEAN,
nested BOOLEAN);

N/A The variation of the REFRESH
 stored procedure can
 be used to update all
views named in a table of
 dbms_utility.uncl_array
values.

REFRESH_ALL_MVIEWS
(number_of_failures
BINARY_INTEGER, method
 VARCHAR2, rollback_s
eg VARCHAR2, refresh_af
ter_errors BOOLEAN,
atomic_refresh BOOLEAN);

N/A The REFRESH_ALL_MVIEWS
 stored procedure can be
used to update all materializ
ed views.

804 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Stored procedure Return type Description

REFRESH_DEPENDENT
(number_of_failures
BINARY_INTEGER, list
 VARCHAR2, method
VARCHAR2, rollback_seg
 VARCHAR2, refresh_af
ter_errors BOOLEAN,
atomic_refresh BOOLEAN,
nested BOOLEAN);

N/A The variation of the
REFRESH_DEPENDENT stored
 procedure can be used to
 update all views that are
 dependent on the views
listed in a comma-separated
 list.

REFRESH_DEPENDENT
(number_of_failures
BINARY_INTEGER, tab
dbms_utility.uncl_array
, method VARCHAR2,
rollback_seg VARCHAR2
, refresh_after_errors
BOOLEAN, atomic_refresh
BOOLEAN, nested BOOLEAN
);

N/A The variation of the
REFRESH_DEPENDENT stored
 procedure can be used to
 update all views that are
 dependent on the views
listed in a table of dbms_utili
ty.uncl_array values.

The DBMS_MVIEW package in POLARDB compatible with Oracle is only partially implemente

d when compared to Oracle's version. POLARDB compatible with Oracle only supports the

stored procedures that are listed in the preceding table.

GET_MV_DEPENDENCIES

After a materialized view is named, you can use the GET_MV_DEPENDENCIES stored

procedure to retrieve a list of items that are dependent on the specified view. The following

code describes the syntax of the GET_MV_DEPENDENCIES stored procedure:

GET_MV_DEPENDENCIES(
 list IN VARCHAR2,
 deplist OUT VARCHAR2);

Parameters

Parameter Description

list Specifies the name of a materialized view
, or a list of materialized view names
separated by commas (,).

Issue: 20200701 805

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

deplist Specifies a list of schema-qualified
dependencies separated by commas (,).

Note:
The data type of the deplist parameter is
VARCHAR2.

Examples

DECLARE
 deplist VARCHAR2(1000);
BEGIN
 DBMS_MVIEW.GET_MV_DEPENDENCIES('public.emp_view', deplist);
 DBMS_OUTPUT.PUT_LINE('deplist: ' || deplist);
END;

In this example, a list of dependencies on the public.emp_view materialized view is

retrieved.

REFRESH

You can use the REFRESH stored procedure to update a list of views separated by commas

 (,), or all views specified in a table of DBMS_UTILITY.UNCL_ARRAY values. The REFRESH

stored procedure has two forms of syntax. When you specify a list of views separated by

commas (,), you can use the first form of syntax:

REFRESH(
 list IN VARCHAR2,
 method IN VARCHAR2 DEFAULT NULL,
 rollback_seg IN VARCHAR2 DEFAULT NULL,
 push_deferred_rpc IN BOOLEAN DEFAULT TRUE,
 refresh_after_errors IN BOOLEAN DEFAULT FALSE,
 purge_option IN NUMBER DEFAULT 1,
 parallelism IN NUMBER DEFAULT 0,
 heap_size IN NUMBER DEFAULT 0,
 atomic_refresh IN BOOLEAN DEFAULT TRUE,
 nested IN BOOLEAN DEFAULT FALSE);

The second form of syntax is used to specify views in a table of DBMS_UTILITY.UNCL_ARRAY

values.

REFRESH(
 tab IN OUT DBMS_UTILITY.UNCL_ARRAY,
 method IN VARCHAR2 DEFAULT NULL,
 rollback_seg IN VARCHAR2 DEFAULT NULL,
 push_deferred_rpc IN BOOLEAN DEFAULT TRUE,
 refresh_after_errors IN BOOLEAN DEFAULT FALSE,
 purge_option IN NUMBER DEFAULT 1,
 parallelism IN NUMBER DEFAULT 0,
 heap_size IN NUMBER DEFAULT 0,

806 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 atomic_refresh IN BOOLEAN DEFAULT TRUE,
 nested IN BOOLEAN DEFAULT FALSE);

Parameters

Parameter Description

list The data type of the list parameter is
VARCHAR2. The parameter specifies the
name of a materialized view, or a list of
 materialized view names separated by
commas (,). The names must be schema-
qualified.

tab The parameter specifies the names of
materialized views in a table of DBMS_UTILI
TY.UNCL_ARRAY values.

method The data type of the method parameter
 is VARCHAR2. The parameter specifies
the update method to be applied to the
 specified view. C is the only supported
 method, which is used to perform a
complete update of the view.

rollback_seg rollback_seg is used for compatibility and
can be ignored. The default value is NULL.

push_deferred rpc push_deferred_rpc is used for compatibility
 and can be ignored. The default value is
TRUE.

refresh_after_errors refresh_after_errors is used for compatibil
ity and can be ignored. The default value is
FALSE.

purge_option purge_option is used for compatibility and
can be ignored. The default value is 1.

parallelism parallelism is used for compatibility and can
 be ignored. The default value is 0.

heap_size IN NUMBER DEFAULT 0, heap_size is used for compatibility and can
be ignored. The default value is 0.

atomic refresh atomic_refresh is used for compatibility and
can be ignored. The default value is TRUE.

nested nested is used for compatibility and can be
ignored. The default value is FALSE.

Examples

Issue: 20200701 807

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

The following example uses DBMS_MVIEW.REFRESH to update the materialized view named

 public.emp_view:

EXEC DBMS_MVIEW.REFRESH(list => 'public.emp_view', method => 'C');

REFRESH_ALL_M VIEWS

You can use the REFRESH_ALL_MVIEWS stored procedure to update materialized views

that are not updated after the table or view on which the views depend is updated. The

following code describes the syntax of the REFRESH_ALL_MVIEWS stored procedure:

REFRESH_ALL_MVIEWS(
 number_of_failures OUT BINARY_INTEGER,
 method IN VARCHAR2 DEFAULT NULL,
 rollback_seg IN VARCHAR2 DEFAULT NULL,
 refresh_after_errors IN BOOLEAN DEFAULT FALSE,
 atomic_refresh IN BOOLEAN DEFAULT TRUE);

Parameters

Parameter Description

number_of_failures The data type of the number_of_failures
 parameter is BINARY_INTEGER. The
parameter specifies the number of failures
that occur during the update operation.

method The data type of the method parameter
 is VARCHAR2. The parameter specifies
the update method to be applied to the
 specified view. C is the only supported
 method, which is used to perform a
complete update of the view.

rollback_seg rollback_seg is used for compatibility and
can be ignored. The default value is NULL.

refresh_after_errors refresh_after_errors is used for compatibil
ity and can be ignored. The default value is
FALSE.

atomic refresh atomic_refresh is used for compatibility and
can be ignored. The default value is TRUE.

Examples

DECLARE
 errors INTEGER;
BEGIN
 DBMS_MVIEW.REFRESH_ALL_MVIEWS(errors, method => 'C');

808 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

END;

After the update is complete, the errors variable contains the number of failures.

REFRESH_DEPENDENT

You can use the REFRESH_DEPENDENT stored procedure to update all materialized views

 that are dependent on the views specified in the call to the stored procedure. You can

specify a list of views separated by commas (,) or specify views in a table of DBMS_UTILITY.

UNCL_ARRAY values.

The following syntax of the stored procedure is used to update all materialized views that

are dependent on the views specified in a comma-separated list:

REFRESH_DEPENDENT(
 number_of_failures OUT BINARY_INTEGER,
 list IN VARCHAR2,
 method IN VARCHAR2 DEFAULT NULL,
 rollback_seg IN VARCHAR2 DEFAULT NULL
 refresh_after_errors IN BOOLEAN DEFAULT FALSE,
 atomic_refresh IN BOOLEAN DEFAULT TRUE,
 nested IN BOOLEAN DEFAULT FALSE);

The following syntax of the stored procedure is used to update all materialized views that

are dependent on the views specified in a table of DBMS_UTILITY.UNCL_ARRAY values.

REFRESH_DEPENDENT(
 number_of_failures OUT BINARY_INTEGER,
 tab IN DBMS_UTILITY.UNCL_ARRAY,
 method IN VARCHAR2 DEFAULT NULL,
 rollback_seg IN VARCHAR2 DEFAULT NULL,
 refresh_after_errors IN BOOLEAN DEFAULT FALSE,
 atomic_refresh IN BOOLEAN DEFAULT TRUE,
 nested IN BOOLEAN DEFAULT FALSE);

Parameters

Parameter Description

number_of_failures The data type of the number_of_failures
 parameter is BINARY_INTEGER. The
parameter specifies the number of failures
that occur during the update operation.

list The data type of the list parameter is
VARCHAR2. The parameter specifies the
 name of materialized view, or a list of
materialized view names separated by
commas (,). The names must be schema-
qualified.

Issue: 20200701 809

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

tab Specifies the names of materialized views
 in a table of DBMS_UTILITY.UNCL_ARRAY
values.

method The data type of the method parameter
 is VARCHAR2. The parameter specifies
the update method to be applied to the
 specified view. C is the only supported
 method, which is used to perform a
complete update of the view.

rollback_seg rollback_seg is used for compatibility and
can be ignored. The default value is NULL.

refresh_after_errors refresh_after_errors is used for compatibil
ity and can be ignored. The default value is
FALSE.

atomic refresh atomic_refresh is used for compatibility and
can be ignored. The default value is TRUE.

nested nested is used for compatibility and can be
ignored. The default value is FALSE.

Examples

The following example describes a complete update on all materialized views that depend

on a materialized view named emp_view. emp_view resides in the public schema.

DECLARE
 errors INTEGER;
BEGIN
 DBMS_MVIEW.REFRESH_DEPENDENT (errors, list => 'public. emp_view ', method => 'C ');
END;

After the update is complete, the errors variable contains the number of failures.

17.9 DBMS_OUTPUT

The DBMS_OUTPUT package provides the capability to send messages (lines of text) to a

 message buffer, or to retrieve messages from the message buffer. A message buffer is

local to a single session. You can use the DBMS_PIPE package to send messages between

sessions.

The following table lists the functions and stored procedures that are available in the

DBMS_OUTPUT package.

810 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Table 17-8: DBMS_OUTPUT functions and stored procedures

Function/stored procedure Return type Description

DISABLE N/A Disables the capability to
send and receive messages.

ENABLE(buffer_size) N/A Enables the capability to
send and receive messages.

GET LINE(line OUT, status
OUT)

N/A Retrieves a line from the
message buffer.

GET LINES(lines OUT,
numlines IN OUT)

N/A Retrieves multiple lines from
the message buffer.

NEW LINE N/A Puts an end-of-line
character sequence.

PUT(item) N/A Puts a partial line without
 an end-of-line character
sequence.

PUT LINE(item) N/A Puts a complete line with
 an end-of-line character
sequence.

SERVEROUTPUT(stdout) N/A Directs messages from PUT
, PUT LINE, or NEW_LINE to
either standard output or the
 message buffer.

The following table lists the public variable that is available in the DBMS_SQL package.

Table 17-9: DBMS_OUTPUT public variables

Public variable Data type Value Description

chararr TABLE For message lines.

CHARARR

The CHARARR variable is used to store multiple message lines.

TYPE chararr IS TABLE OF VARCHAR2(32767) INDEX BY BINARY_INTEGER;

DISABLE

The DISABLE stored procedure clears out the message buffer. Any messages in the buffer

at the time when the DISABLE stored procedure is called will no longer be accessible. Any

Issue: 20200701 811

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 messages subsequently sent with the PUT, PUT_LINE, or NEW_LINE stored procedure are

 discarded. When the PUT, PUT_LINE, or NEW_LINE stored procedure is called, no error is

returned to the sender and the sending and receiving of messages are disabled.

You can use the ENABLE or SERVEROUTPUT(TRUE) stored procedure to re-enable the

sending and receiving of messages.

DISABLE

Examples

The following anonymous block disables the sending and receiving of messages in the

current session.

BEGIN
 DBMS_OUTPUT.DISABLE;
END;

ENABLE

The ENABLE stored procedure enables the capability to send messages to the message

buffer or receive messages from the message buffer. Setting SERVEROUTPUT(TRUE) also

performs an implicit call of the ENABLE stored procedure.

The status of the SERVEROUTPUT stored stored procedure depends the destination of a

message sent with the PUT, PUT_LINE, or NEW_LINE procedure.

• If the last status of the SERVEROUTPUT stored procedure is TRUE, the message is sent to

the standard output of the command line.

• If the last status of the SERVEROUTPUT stored procedure is FALSE, the message is sent to

the message buffer.

ENABLE [(buffer_size INTEGER)]

Parameters

Parameter Description

buffer_size The maximum length of the message buffer
. Unit: byte. If the specified value of the
buffer_size parameter is less than 2000, the
buffer size is set to 2000.

Examples

812 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

The following anonymous block enables the sending and receiving of messages. The

SERVEROUTPUT(TRUE) stored procedure is configured to force messages to standard output

.

BEGIN
 DBMS_OUTPUT.ENABLE;
 DBMS_OUTPUT.SERVEROUTPUT(TRUE);
 DBMS_OUTPUT.PUT_LINE('Messages enabled');
END;

Messages enabled

To achieve the same effect, you can also use only the SERVEROUTPUT(TRUE) stored

procedure.

BEGIN
 DBMS_OUTPUT.SERVEROUTPUT(TRUE);
 DBMS_OUTPUT.PUT_LINE('Messages enabled');
END;

Messages enabled

The following anonymous block enables the sending and receiving of messages. However

, the SERVEROUTPUT (FALSE) stored procedure is called to send messages to the message

buffer.

BEGIN
 DBMS_OUTPUT.ENABLE;
 DBMS_OUTPUT.SERVEROUTPUT(FALSE);
 DBMS_OUTPUT.PUT_LINE('Message sent to buffer');
END;

GET_LINE

The GET_LINE stored procedure provides the capability to retrieve a line of text from the

message buffer. Only text that has been terminated by an end-of-line character sequence

 is retrieved. The text is a complete line that is generated by using the PUT_LINE stored

procedure, or by a series of PUT calls followed by a NEW_LINE call.

GET_LINE(line OUT VARCHAR2, status OUT INTEGER)

Parameters

Parameter Description

line The variable used to receive the line of text
from the message buffer.

Issue: 20200701 813

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

status If a line of text was returned from the
message buffer, the value is 0. If no text was
 returned, the value is 1.

Examples

The following anonymous block writes the emp table to the message buffer as a comma-

delimited string for each row.

EXEC DBMS_OUTPUT.SERVEROUTPUT(FALSE);

DECLARE
 v_emprec VARCHAR2(120);
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 DBMS_OUTPUT.ENABLE;
 FOR i IN emp_cur LOOP
 v_emprec := i.empno || ',' || i.ename || ',' || i.job || ',' ||
 NVL(LTRIM(TO_CHAR(i.mgr,'9999')),'') || ',' || i.hiredate ||
 ',' || i.sal || ',' ||
 NVL(LTRIM(TO_CHAR(i.comm,'9990.99')),'') || ',' || i.deptno;
 DBMS_OUTPUT.PUT_LINE(v_emprec);
 END LOOP;
END;

The following anonymous block reads the message buffer and inserts the messages written

 by the preceding example into a table named messages. The rows in the message table

are then displayed.

CREATE TABLE messages (
 status INTEGER,
 msg VARCHAR2(100)
);

DECLARE
 v_line VARCHAR2(100);
 v_status INTEGER := 0;
BEGIN
 DBMS_OUTPUT.GET_LINE(v_line,v_status);
 WHILE v_status = 0 LOOP
 INSERT INTO messages VALUES(v_status, v_line);
 DBMS_OUTPUT.GET_LINE(v_line,v_status);
 END LOOP;
END;

SELECT msg FROM messages;

 msg

 7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
 7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
 7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
 7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
 7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
 7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30

814 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
 7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
 7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
 7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
 7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
 7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
 7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
 7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10
(14 rows)

GET_LINES

The GET_LINES stored procedure provides the capability to retrieve one or more lines of text

 from the message buffer into a collection. Only text that has been terminated by an end-of

-line character sequence is retrieved. The text is a complete line that is generated by using

the PUT_LINE stored procedure, or by a series of PUT calls followed by a NEW_LINE call.

GET_LINES(lines OUT CHARARR, numlines IN OUT INTEGER)

Parameters

Parameter Description

lines The table that receives the lines of text from
 the message buffer. For more information
about the lines parameter, see CHARARR.

numlines IN The number of lines to be retrieved from the
 message buffer.

numlines OUT The number of lines retrieved from the
message buffer. If the output value of the
numlines parameter is less than the input
value, then the message buffer contains no
more lines.

Examples

The following example uses the GET_LINES stored procedure to store all rows from the emp

table that were placed on the message buffer, into an array.

EXEC DBMS_OUTPUT.SERVEROUTPUT(FALSE);

DECLARE
 v_emprec VARCHAR2(120);
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 DBMS_OUTPUT.ENABLE;
 FOR i IN emp_cur LOOP
 v_emprec := i.empno || ',' || i.ename || ',' || i.job || ',' ||
 NVL(LTRIM(TO_CHAR(i.mgr,'9999')),'') || ',' || i.hiredate ||
 ',' || i.sal || ',' ||
 NVL(LTRIM(TO_CHAR(i.comm,'9990.99')),'') || ',' || i.deptno;

Issue: 20200701 815

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 DBMS_OUTPUT.PUT_LINE(v_emprec);
 END LOOP;
END;

DECLARE
 v_lines DBMS_OUTPUT.CHARARR;
 v_numlines INTEGER := 14;
 v_status INTEGER := 0;
BEGIN
 DBMS_OUTPUT.GET_LINES(v_lines,v_numlines);
 FOR i IN 1..v_numlines LOOP
 INSERT INTO messages VALUES(v_numlines, v_lines(i));
 END LOOP;
END;

SELECT msg FROM messages;

 msg

 7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
 7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
 7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
 7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
 7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
 7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
 7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
 7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
 7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
 7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
 7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
 7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
 7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
 7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10
(14 rows)

NEW LINE

The NEW_LINE stored procedure writes an end-of-line character sequence in the message

buffer.

NEW_LINE

Parameters

The NEW_LINE stored procedure requires no parameters.

PUT

The PUT stored procedure writes a string to the message buffer. No end-of-line character

sequence is written at the end of the string. You can use the NEW_LINE stored procedure to

add an end-of-line character sequence.

PUT(item VARCHAR2)

Parameters

816 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

item The text written to the message buffer.

Examples

The following example uses the PUT stored procedure to display a comma-delimited list of

employees from the emp table.

DECLARE
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 FOR i IN emp_cur LOOP
 DBMS_OUTPUT.PUT(i.empno);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.ename);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.job);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.mgr);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.hiredate);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.sal);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.comm);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.deptno);
 DBMS_OUTPUT.NEW_LINE;
 END LOOP;
END;

7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10

PUT_LINE

The PUT_LINE stored procedure writes a single line to the message buffer including an end-

of-line character sequence.

PUT_LINE(item VARCHAR2)

Parameters

Issue: 20200701 817

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

item The text to be written to the message buffer.

Examples

The following example uses the PUT_LINE stored procedure to display a comma-delimited

list of employees from the emp table.

DECLARE
 v_emprec VARCHAR2(120);
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 FOR i IN emp_cur LOOP
 v_emprec := i.empno || ',' || i.ename || ',' || i.job || ',' ||
 NVL(LTRIM(TO_CHAR(i.mgr,'9999')),'') || ',' || i.hiredate ||
 ',' || i.sal || ',' ||
 NVL(LTRIM(TO_CHAR(i.comm,'9990.99')),'') || ',' || i.deptno;
 DBMS_OUTPUT.PUT_LINE(v_emprec);
 END LOOP;
END;

7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10

SERVEROUTPUT

The SERVEROUTPUT stored procedure provides the capability to direct messages to the

standard output of the command line or to the message buffer. Setting SERVEROUTPUT(

TRUE) also performs an implicit call of the ENABLE stored procedure.

The default setting of the SERVEROUTPUT stored procedure is implementation dependent

. For example, in Oracle SQL*Plus, the default setting is SERVEROUTPUT(FALSE). In psql,

the default setting is SERVEROUTPUT (TRUE). Note that in Oracle SQL*Plus, this setting is

controlled by using the SQL*Plus SET command, not by a stored procedure as implemented

in POLARDB compatible with Oracle.

SERVEROUTPUT(stdout BOOLEAN)

Parameters

818 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

stdout To ensure that subsequent PUT, PUT_LINE
, or NEW_LINE commands send text to the
standard output of the command line, you
need to set this parameter to TRUE. To send
 text to the message buffer, you need to set
this parameter to FALSE.

Examples

The following anonymous block sends the first message to the command line and the

second message to the message buffer.

BEGIN
 DBMS_OUTPUT.SERVEROUTPUT(TRUE);
 DBMS_OUTPUT.PUT_LINE('This message goes to the command line');
 DBMS_OUTPUT.SERVEROUTPUT(FALSE);
 DBMS_OUTPUT.PUT_LINE('This message goes to the message buffer');
END;

This message goes to the command line

If the following anonymous block is executed within the same session, the message stored

in the message buffer from the preceding example is flushed. This message is displayed on

 the command line as a new message.

BEGIN
 DBMS_OUTPUT.SERVEROUTPUT(TRUE);
 DBMS_OUTPUT.PUT_LINE('Flush messages from the buffer');
END;

This message goes to the message buffer
Flush messages from the buffer

17.10 DBMS_PIPE

The DBMS_PIPE package provides the capability to send messages through a pipe within or

between sessions connected to the same database cluster.

The following table lists the functions and stored procedures that are available in the

DBMS_PIPE package.

Issue: 20200701 819

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Table 17-10: DBMS_PIPE functions and stored procedures

Function/stored procedure Return type Description

CREATE PIPE(pipename [,
maxpipesize] [, private])

INTEGER Explicitly creates a private
pipe if private is "true" (the
 default) or a public pipe if
private is "false".

NEXT ITEM TYPE INTEGER Determines the data type of
 the next item in a received
message.

PACK MESSAGE(item) N/A Places item in the local
 message buffer of the
current session.

PURGE(pipename) N/A Removes unreceived
messages from the specified
 pipe.

RECEIVE MESSAGE(pipename
 [, timeout])

INTEGER Retrieves a message from a
specified pipe.

REMOVE PIPE(pipename) INTEGER Deletes an explicitly created
 pipe.

RESET BUFFER N/A Resets the local message
buffer.

SEND MESSAGE(pipename [,
timeout] [, maxpipesize])

INTEGER Sends a message on a pipe.

UNIQUE SESSION NAME VARCHAR2 Obtains a unique session
name.

UNPACK MESSAGE(item OUT) N/A Retrieves the next data item
from a message into a type-
compatible variable, item.

Pipes are categorized as implicit or explicit. An implicit pipe is created if a reference is

made to a pipe name that was not previously created by the CREATE_PIPE function. For

example, if the SEND_MESSAGE function is executed using a non-existent pipe name, a new

 implicit pipe is created with that name. An explicit pipe is created using the CREATE_PIPE

function with the first parameter specified. The first parameter specifies the pipe name for

the new pipe.

Pipes are also categorized as private or public. A private pipe can only be accessed by

the user who created the pipe. Even a superuser cannot access a private pipe that was

820 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

created by another user. A public pipe can be accessed by any user who has access to the

DBMS_PIPE package.

A public pipe can only be created by using the CREATE_PIPE function with the third

parameter set to FALSE. The CREATE_PIPE function can be used to create a private pipe by

setting the third parameter to TRUE or by omitting the third parameter. All implicit pipes are

 private.

The individual data items or message lines are first built in a local message buffer, unique

to the current session. The PACK_MESSAGE stored procedure builds the message in the local

 message buffer of the current session. The SEND_MESSAGE function is then used to send

the message through the pipe.

The receiving of a message involves the reverse operation. The RECEIVE_MESSAGE function

 is used to retrieve a message from the specified pipe. The message is written to the local

message buffer of the current session. The UNPACK_MESSAGE stored procedure is then used

 to transfer the message data items from the message buffer to program variables. If a pipe

 contains multiple messages, RECEIVE_MESSAGE retrieves the messages in first-in-first-out (

FIFO) order.

Each session maintains separate message buffers for messages created with the

PACK_MESSAGE stored procedure and messages retrieved by the RECEIVE_MESSAGE

function. The messages can be both built and received in the same session. However, if

consecutive RECEIVE_MESSAGE calls are made, only the message from the last RECEIVE_ME

SSAGE call will be preserved in the local message buffer.

CREATE_PIPE

The CREATE_PIPE function creates an explicit public pipe or an explicit private pipe with a

specified name.

status INTEGER CREATE_PIPE(pipename VARCHAR2
 [, maxpipesize INTEGER] [, private BOOLEAN])

Parameters

Parameter Description

pipename The name of the pipe.

maxpipesize The maximum capacity of the pipe. Unit:
byte. Default value: 8192.

Issue: 20200701 821

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

private To create a public pipe, you need to set this
parameter to FALSE. To create a private pipe
, you need to set this parameter to TRUE.
Default value: TRUE.

status The status code returned by the operation. 0
 indicates successful creation.

Examples

The following example creates a private pipe named messages:

DECLARE
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.CREATE_PIPE('messages');
 DBMS_OUTPUT.PUT_LINE('CREATE_PIPE status: ' || v_status);
END;
CREATE_PIPE status: 0

The following example creates a public pipeline named mailbox:

DECLARE
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.CREATE_PIPE('mailbox',8192,FALSE);
 DBMS_OUTPUT.PUT_LINE('CREATE_PIPE status: ' || v_status);
END;
CREATE_PIPE status: 0

NEXT_ITEM_TYPE

The NEXT_ITEM_TYPE function returns an integer code identifying the data type of the next

data item in a message that has been retrieved into the local message buffer of the current

 session. If an item is removed from the local message buffer by the UNPACK_MESSAGE

stored procedure, the NEXT_ITEM_TYPE function returns the data type code for the next

available item. If no more items exist in the message, the code 0 is returned.

typecode INTEGER NEXT_ITEM_TYPE

Parameters

Parameter Description

typecode A code that identifies the data type of the
next data item. Table 17-11: Data type
codes of NEXT_ITEM_TYPE lists the code of
each data type.

822 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Table 17-11: Data type codes of NEXT_ITEM_TYPE

Type code Data type

0 No more data items

9 NUMBER

11 VARCHAR2

13 DATE

23 RAW

Note:

The type codes listed in the table are not compatible with Oracle databases. Oracle

assigns a different numbering sequence to the data types.

The following example shows a pipe packed with a NUMBER item, a VARCHAR2 item, a DATE

 item, and a RAW item. A second anonymous block then uses the NEXT_ITEM_TYPE function

to display the type code of each item.

DECLARE
 v_number NUMBER := 123;
 v_varchar VARCHAR2(20) := 'Character data';
 v_date DATE := SYSDATE;
 v_raw RAW(4) := '21222324';
 v_status INTEGER;
BEGIN
 DBMS_PIPE.PACK_MESSAGE(v_number);
 DBMS_PIPE.PACK_MESSAGE(v_varchar);
 DBMS_PIPE.PACK_MESSAGE(v_date);
 DBMS_PIPE.PACK_MESSAGE(v_raw);
 v_status := DBMS_PIPE.SEND_MESSAGE('datatypes');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

SEND_MESSAGE status: 0

DECLARE
 v_number NUMBER;
 v_varchar VARCHAR2(20);
 v_date DATE;
 v_timestamp TIMESTAMP;
 v_raw RAW(4);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('datatypes');
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
 DBMS_OUTPUT.PUT_LINE('----------------------------------');

 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;

Issue: 20200701 823

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 DBMS_OUTPUT.PUT_LINE('NEXT_ITEM_TYPE: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_number);
 DBMS_OUTPUT.PUT_LINE('NUMBER Item : ' || v_number);
 DBMS_OUTPUT.PUT_LINE('----------------------------------');
 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 DBMS_OUTPUT.PUT_LINE('NEXT_ITEM_TYPE: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_varchar);
 DBMS_OUTPUT.PUT_LINE('VARCHAR2 Item : ' || v_varchar);
 DBMS_OUTPUT.PUT_LINE('----------------------------------');

 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 DBMS_OUTPUT.PUT_LINE('NEXT_ITEM_TYPE: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_date);
 DBMS_OUTPUT.PUT_LINE('DATE Item : ' || v_date);
 DBMS_OUTPUT.PUT_LINE('----------------------------------');

 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 DBMS_OUTPUT.PUT_LINE('NEXT_ITEM_TYPE: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_raw);
 DBMS_OUTPUT.PUT_LINE('RAW Item : ' || v_raw);
 DBMS_OUTPUT.PUT_LINE('----------------------------------');

 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 DBMS_OUTPUT.PUT_LINE('NEXT_ITEM_TYPE: ' || v_status);
 DBMS_OUTPUT.PUT_LINE('---------------------------------');
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

RECEIVE_MESSAGE status: 0

NEXT_ITEM_TYPE: 9
NUMBER Item : 123

NEXT_ITEM_TYPE: 11
VARCHAR2 Item : Character data

NEXT_ITEM_TYPE: 13
DATE Item : 02-OCT-07 11:11:43

NEXT_ITEM_TYPE: 23
RAW Item : 21222324

NEXT_ITEM_TYPE: 0

PACK_MESSAGE

The PACK_MESSAGE stored procedure places an item of data in the local message buffer of

the current session. You must call the PACK_MESSAGE stored procedure at least once before

 issuing a SEND_MESSAGE call.

PACK_MESSAGE(item { DATE | NUMBER | VARCHAR2 | RAW })

After you retrieve the message by issuing a RECEIVE_MESSAGE call, you can use the

UNPACK_MESSAGE stored procedure to obtain data items.

Parameters

824 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

item An expression that is used to calculate
the acceptable parameter data types. The
 calculated value is added to the local
message buffer of the session.

PURGE

The PURGE stored procedure removes unreceived messages from a specified implicit pipe.

PURGE(pipename VARCHAR2)

You can use the REMOVE_PIPE function to delete an explicit pipe.

Parameters

Parameter Description

pipename The name of the pipe.

Examples

Two messages are sent on a pipe:

DECLARE
 v_status INTEGER;
BEGIN
 DBMS_PIPE.PACK_MESSAGE('Message #1');
 v_status := DBMS_PIPE.SEND_MESSAGE('pipe');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);

 DBMS_PIPE.PACK_MESSAGE('Message #2');
 v_status := DBMS_PIPE.SEND_MESSAGE('pipe');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);
END;

SEND_MESSAGE status: 0
SEND_MESSAGE status: 0

Receive the first message and unpack it:

DECLARE
 v_item VARCHAR2(80);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_item);
 DBMS_OUTPUT.PUT_LINE('Item: ' || v_item);
END;

RECEIVE_MESSAGE status: 0

Issue: 20200701 825

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Item: Message #1

Purge the pipe:

EXEC DBMS_PIPE.PURGE('pipe');

The following code example shows an attempt to retrieve the next message. The

RECEIVE_MESSAGE call returns status code 1, which indicates that a timeout occurs because

 no message is available.

DECLARE
 v_item VARCHAR2(80);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
END;

RECEIVE_MESSAGE status: 1

RECEIVE_MESSAGE

The RECEIVE_MESSAGE function retrieves a message from a specified pipe.

status INTEGER RECEIVE_MESSAGE(pipename VARCHAR2
 [, timeout INTEGER])

Parameters

pipename

The name of the pipe.

timeout

The timeout period. Unit: second. Default value: 86400000 (1000 days).

Status

The status code returned by the operation.

The following table lists possible status codes.

Status code Description

0 The operation is successful.

1 A timeout occurs.

2 The message is too large for the buffer.

826 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

REMOVE_PIPE

The REMOVE_PIPE function deletes an explicit private pipe or explicit public pipe.

status INTEGER REMOVE_PIPE(pipename VARCHAR2)

You can use the REMOVE_PIPE function to delete an explicit pipe, such as a pipe created by

using the CREATE_PIPE function.

Parameters

Parameter Description

pipename The name of the pipe.

status The status code returned by the operation
. A status code of 0 is returned even if the
specified pipe does not exist.

Examples

Two messages are sent on a pipe:

DECLARE
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.CREATE_PIPE('pipe');
 DBMS_OUTPUT.PUT_LINE('CREATE_PIPE status : ' || v_status);

 DBMS_PIPE.PACK_MESSAGE('Message #1');
 v_status := DBMS_PIPE.SEND_MESSAGE('pipe');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);

 DBMS_PIPE.PACK_MESSAGE('Message #2');
 v_status := DBMS_PIPE.SEND_MESSAGE('pipe');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);
END;

CREATE_PIPE status : 0
SEND_MESSAGE status: 0
SEND_MESSAGE status: 0

Receive the first message and unpack it:

DECLARE
 v_item VARCHAR2(80);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_item);
 DBMS_OUTPUT.PUT_LINE('Item: ' || v_item);
END;

RECEIVE_MESSAGE status: 0

Issue: 20200701 827

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Item: Message #1

Remove the pipe:

SELECT DBMS_PIPE.REMOVE_PIPE('pipe') FROM DUAL;

remove_pipe

 0
(1 row)

The following code example shows an attempt to retrieve the next message. The

RECEIVE_MESSAGE call returns status code 1, which indicates that a timeout occurs because

 the pipe has been deleted.

DECLARE
 v_item VARCHAR2(80);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
END;

RECEIVE_MESSAGE status: 1

RESET_BUFFER

The RESET_BUFFER stored procedure resets a pointer to the local message buffer back to

the beginning of the buffer. This causes subsequent PACK_MESSAGE calls to overwrite any

data items that existed in the message buffer prior to the RESET_BUFFER call.

RESET_BUFFER

Examples

A message to John is written to the local message buffer. You can call the RESET_BUFFER

stored procedure to replace this message with a message to Bob. The message to Bob is

sent on the pipe.

DECLARE
 v_status INTEGER;
BEGIN
 DBMS_PIPE.PACK_MESSAGE('Hi, John');
 DBMS_PIPE.PACK_MESSAGE('Can you attend a meeting at 3:00, today?') ;
 DBMS_PIPE.PACK_MESSAGE('If not, is tomorrow at 8:30 ok with you?') ;
 DBMS_PIPE.RESET_BUFFER;
 DBMS_PIPE.PACK_MESSAGE('Hi, Bob');
 DBMS_PIPE.PACK_MESSAGE('Can you attend a meeting at 9:30, tomorrow?') ;
 v_status := DBMS_PIPE.SEND_MESSAGE('pipe');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);
END;

828 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

SEND_MESSAGE status: 0

The message to Bob is displayed in the received message.

DECLARE
 v_item VARCHAR2(80);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_item);
 DBMS_OUTPUT.PUT_LINE('Item: ' || v_item);
 DBMS_PIPE.UNPACK_MESSAGE(v_item);
 DBMS_OUTPUT.PUT_LINE('Item: ' || v_item);
END;

RECEIVE_MESSAGE status: 0
Item: Hi, Bob
Item: Can you attend a meeting at 9:30, tomorrow?

SEND_MESSAGE

The SEND_MESSAGE function sends a message from the local message buffer to the

specified pipe.

status SEND_MESSAGE(pipename VARCHAR2 [, timeout INTEGER]
 [, maxpipesize INTEGER])

Parameters

Parameter Description

pipename The name of the pipe.

timeout The timeout period. Unit: second. Default
value: 86400000 (1000 days).

maxpipesize The maximum capacity of the pipe. Unit:
byte. Default value: 8192 bytes.

Status The status code returned by the operation.

The following table lists possible status codes.

Table 17-12: Status codes of SEND_MESSAGE

Status code Description

0 The operation is successful.

1 A timeout occurs.

3 The function is interrupted.

Issue: 20200701 829

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

UNIQUE_SESSION_NAME

The UNIQUE_SESSION_NAME function returns a name that is unique to the current session.

name VARCHAR2 UNIQUE_SESSION_NAME

Parameters

Parameter Description

name A unique session name.

Examples

The following anonymous block retrieves and displays a unique session name.

DECLARE
 v_session VARCHAR2(30);
BEGIN
 v_session := DBMS_PIPE.UNIQUE_SESSION_NAME;
 DBMS_OUTPUT.PUT_LINE('Session Name: ' || v_session);
END;

Session Name: PG$PIPE$5$2752

UNPACK_MESSAGE

The UNPACK_MESSAGE stored procedure copies the data items of a message from the local

 message buffer to a specified program variable. Before you use the UNPACK_MESSAGE

stored procedure, you must place the message in the local message buffer by using the

RECEIVE_MESSAGE function.

UNPACK_MESSAGE(item OUT { DATE | NUMBER | VARCHAR2 | RAW })

Parameters

Parameter Description

item A variable that receives a data item from the
 local message buffer. This variable must be
 compatible with the type of the data item.

Comprehensive example

The following example uses a pipe as a "mailbox". A series of stored procedures are used

 to create the mailbox, to add a multi-item message to the mailbox (up to three items),

830 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

and to display the full contents of the mailbox. These stored procedures are enclosed in a

package named mailbox.

CREATE OR REPLACE PACKAGE mailbox
IS
 PROCEDURE create_mailbox;
 PROCEDURE add_message (
 p_mailbox VARCHAR2,
 p_item_1 VARCHAR2,
 p_item_2 VARCHAR2 DEFAULT 'END',
 p_item_3 VARCHAR2 DEFAULT 'END'
);
 PROCEDURE empty_mailbox (
 p_mailbox VARCHAR2,
 p_waittime INTEGER DEFAULT 10
);
END mailbox;

CREATE OR REPLACE PACKAGE BODY mailbox
IS
 PROCEDURE create_mailbox
 IS
 v_mailbox VARCHAR2(30);
 v_status INTEGER;
 BEGIN
 v_mailbox := DBMS_PIPE.UNIQUE_SESSION_NAME;
 v_status := DBMS_PIPE.CREATE_PIPE(v_mailbox,1000,FALSE);
 IF v_status = 0 THEN
 DBMS_OUTPUT.PUT_LINE('Created mailbox: ' || v_mailbox);
 ELSE
 DBMS_OUTPUT.PUT_LINE('CREATE_PIPE failed - status: ' ||
 v_status);
 END IF;
 END create_mailbox;

 PROCEDURE add_message (
 p_mailbox VARCHAR2,
 p_item_1 VARCHAR2,
 p_item_2 VARCHAR2 DEFAULT 'END',
 p_item_3 VARCHAR2 DEFAULT 'END'
)
 IS
 v_item_cnt INTEGER := 0;
 v_status INTEGER;
 BEGIN
 DBMS_PIPE.PACK_MESSAGE(p_item_1);
 v_item_cnt := 1;
 IF p_item_2 ! = 'END' THEN
 DBMS_PIPE.PACK_MESSAGE(p_item_2);
 v_item_cnt := v_item_cnt + 1;
 END IF;
 IF p_item_3 ! = 'END' THEN
 DBMS_PIPE.PACK_MESSAGE(p_item_3);
 v_item_cnt := v_item_cnt + 1;
 END IF;
 v_status := DBMS_PIPE.SEND_MESSAGE(p_mailbox);
 IF v_status = 0 THEN
 DBMS_OUTPUT.PUT_LINE('Added message with ' || v_item_cnt ||
 ' item(s) to mailbox ' || p_mailbox);
 ELSE
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE in add_message failed - ' ||
 'status: ' || v_status);

Issue: 20200701 831

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 END IF;
 END add_message;

 PROCEDURE empty_mailbox (
 p_mailbox VARCHAR2,
 p_waittime INTEGER DEFAULT 10
)
 IS
 v_msgno INTEGER DEFAULT 0;
 v_itemno INTEGER DEFAULT 0;
 v_item VARCHAR2(100);
 v_status INTEGER;
 BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE(p_mailbox,p_waittime);
 WHILE v_status = 0 LOOP
 v_msgno := v_msgno + 1;
 DBMS_OUTPUT.PUT_LINE('****** Start message #' || v_msgno ||
 ' ******');
 BEGIN
 LOOP
 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 EXIT WHEN v_status = 0;
 DBMS_PIPE.UNPACK_MESSAGE(v_item);
 v_itemno := v_itemno + 1;
 DBMS_OUTPUT.PUT_LINE('Item #' || v_itemno || ': ' ||
 v_item);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('******* End message #' || v_msgno ||
 ' *******');
 DBMS_OUTPUT.PUT_LINE('*');
 v_itemno := 0;
 v_status := DBMS_PIPE.RECEIVE_MESSAGE(p_mailbox,1);
 END;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Number of messages received: ' || v_msgno);
 v_status := DBMS_PIPE.REMOVE_PIPE(p_mailbox);
 IF v_status = 0 THEN
 DBMS_OUTPUT.PUT_LINE('Deleted mailbox ' || p_mailbox);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Could not delete mailbox - status: '
 || v_status);
 END IF;
 END empty_mailbox;
END mailbox;

The following example demonstrates the execution of the stored procedures in mailbox.

The first stored procedure creates a public pipe with a name generated by the UNIQUE_SES

SION_NAME function.

EXEC mailbox.create_mailbox;

Created mailbox: PG$PIPE$13$3940

By using the mailbox name, a user in the same database with access to the mailbox and

DBMS_PIPE packages can add messages.

EXEC mailbox.add_message('PG$PIPE$13$3940','Hi, John','Can you attend a meeting at 3:
00, today?','-- Mary');

832 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Added message with 3 item(s) to mailbox PG$PIPE$13$3940

EXEC mailbox.add_message('PG$PIPE$13$3940','Don''t forget to submit your report','
Thanks,','-- Joe');

Added message with 3 item(s) to mailbox PG$PIPE$13$3940

The contents of the mailbox can be emptied.

EXEC mailbox.empty_mailbox('PG$PIPE$13$3940');

****** Start message #1 ******
Item #1: Hi, John
Item #2: Can you attend a meeting at 3:00, today?
Item #3: -- Mary
******* End message #1 *******
*
****** Start message #2 ******
Item #1: Don't forget to submit your report
Item #2: Thanks,
Item #3: Joe
******* End message #2 *******
*
Number of messages received: 2
Deleted mailbox PG$PIPE$13$3940

17.11 DBMS_PROFILER

The DBMS_PROFILER package collects and stores the performance information about PL

/pgSQL and SPL statements that are executed during a performance profiling session.

The following table lists functions and stored procedures that can be used to control the

profiling tool.

Table 17-13: DBMS_PROFILER functions and stored procedures

Function/stored

procedure

Function or stored

procedure

Return type Description

FLUSH DATA Both Status code or
exception

Flushes performanc
e data collected in
the current session
without terminating
the session (profiling
 continues).

GET VERSION(major
OUT, minor OUT)

Procedure N/A Returns the version
 number of this
package.

Issue: 20200701 833

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Function/stored

procedure

Function or stored

procedure

Return type Description

INTERNAL VERSION
CHECK

Function Status code Confirms that the
current version of
the profiler will work
 with the current
database.

PAUSE PROFILER Both Status code or
exception

Pauses data
collection.

PAUSE_PROFILER Both Status code or
exception

Resumes data
collection.

START PROFILER
(run_comment,
run_comment1 [,
run_number OUT])

Both Status code or
exception

Starts data collection
.

STOP PROFILER Both Status code or
exception

Stops data
collection and flush
performance data to
 the PLSQL PROFILER
RAWDATA table.

The functions within the DBMS_PROFILER package return a status code to indicate success

 or failure. The stored procedures within the DBMS_PROFILER package raise an exception

 only if they encounter a failure. The following table lists the status codes and messages

returned by the functions, and the exceptions raised by the stored procedures.

Table 17-14: DBMS_PROFILER status codes and exceptions

Status code Message Exception Description

-1 error version version_mismatch The profiler version
 and the database
are incompatible.

0 success N/A The operation is
successful.

1 error_param profiler_error The operation
received an incorrect
 parameter.

2 error_io profiler_error The data flush
operation has failed.

834 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

FLUSH_DATA

The FLUSH_DATA function or stored procedure flushes the data collected in the current

session without terminating the profiler session. The data is flushed to the tables described

 in the POLARDB compatible with Oracle Performance Features Guide. The syntax for

FLUSH_DATA functions and stored procedures is as follows:

status INTEGER FLUSH_DATA

FLUSH_DATA

Parameters

Table 17-15:

Parameter Description

status The status code returned by the operation.

GET_VERSION

The GET_VERSION stored procedure returns the version of the DBMS_PROFILER package.

Syntax:

GET_VERSION(major OUT INTEGER, minor OUT INTEGER)

Parameters

Table 17-16:

Parameter Description

major The major version number of the
DBMS_PROFILER package.

minor The minor version number of the
DBMS_PROFILER package.

INTERNAL_VERSION_CHECK

The INTERNAL_VERSION_CHECK function confirms that the current version of the

DBMS_PROFILER package will work with the current database. The syntax of the

INTERNAL_VERSION_CHECK function is as follows:

status INTEGER INTERNAL_VERSION_CHECK

Parameters

Issue: 20200701 835

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Table 17-17:

Parameter Description

status The status code returned by the operation.

PAUSE_PROFILER

The PAUSE_PROFILER function or stored procedure pauses a profiling session. Syntax:

status INTEGER PAUSE_PROFILER

PAUSE_PROFILER

Parameters

Table 17-18:

Parameter Description

status The status code returned by the operation.

RESUME_PROFILER

The RESUME_PROFILER function or stored procedure resumes a profiling session. The syntax

 of the RESUME_PROFILER function or stored procedure is as follows:

status INTEGER RESUME_PROFILER

RESUME_PROFILER

Parameters

Table 17-19:

Parameter Description

status The status code returned by the operation.

START_PROFILER

The START_PROFILER function or stored procedure starts a data collection session. Syntax:

status INTEGER START_PROFILER(run_comment TEXT := SYSDATE,
 run_comment1 TEXT := '' [, run_number OUT INTEGER])

START_PROFILER(run_comment TEXT := SYSDATE,
 run_comment1 TEXT := '' [, run_number OUT INTEGER])

Parameters

836 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Table 17-20:

Parameter Description

run_comment A user-defined comment for the profiler
session. The default value is SYSDATE.

run_comment1 An additional user-defined comment for the
 profiler session. The default value is ''.

run_number The session number of the profiler session.

status The status code returned by the operation.

STOP_PROFILER

The STOP_PROFILER function or stored procedure stops a profiling session and flushes the

performance information to the DBMS_PROFILER tables and views. Syntax:

status INTEGER STOP_PROFILER

STOP_PROFILER

Parameters

Table 17-21:

Parameter Description

status The status code returned by the operation.

17.12 DBMS_RANDOM

The DBMS_RANDOM package provides a number of methods to generate random values

. The following table lists the functions and stored procedures that are available in the

DBMS_RANDOM package.

Table 17-22: DBMS_RANDOM functions and stored procedures

Function/stored procedure Return type Description

INITIALIZE(val) N/A Initializes the DBMS_RANDO
M package with the specified
 seed value. Deprecated,
but supported for backward
compatibility.

NORMAL() NUMBER Returns a random NUMBER.

Issue: 20200701 837

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Function/stored procedure Return type Description

RANDOM INTEGER Returns a random INTEGER
, which is greater than or
 equal to -2A31 and less
than 2A31. Deprecated, but
 supported for backward
compatibility.

SEED(val) N/A Resets the seed with the
specified value.

SEED(val) N/A Resets the seed with the
specified value.

STRING(opt, len) VARCHAR2 Returns a random string.

TERMINATE N/A Has no effect. Deprecated,
but supported for backward
compatibility.

VALUE NUMBER Returns a random number
with a value greater than or
 equal to 0 and less than 1,
with 38 digit precision.

VALUE(low, high) NUMBER Returns a random number
with a value greater than or
 equal to low and less than
high.

INITIALIZE

The INITIALIZE stored procedure uses a seed value to initialize the DBMS_RANDOM package.

Syntax:

INITIALIZE(val IN INTEGER)

The INITIALIZE stored procedure can be considered deprecated because it is only included

for backward compatibility.

Parameters

Parameter Description

val The seed value used by the DBMS_RANDOM
package algorithm.

Examples

838 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

The following code snippet demonstrates a call to the INITIALIZE stored procedure that

initializes the DBMS_RANDOM package with the seed value, 6475.

DBMS_RANDOM.INITIALIZE(6475);

NORMAL

The NORMAL function returns a random number of type NUMBER. Syntax:

result NUMBER NORMAL()

Parameters

Table 17-23:

Parameter Description

result A random value of type NUMBER.

Examples

The following code snippet demonstrates a call to the NORMAL function:

x:= DBMS_RANDOM.NORMAL();

RANDOM

The RANDOM function returns a random INTEGER value that is greater than or equal to -2 ^

31 and less than 2 ^31. Syntax:

result INTEGER RANDOM()

The RANDOM function can be considered deprecated because it is only included for

backward compatibility.

Parameters

Table 17-24:

Parameter Description

result A random value of type INTEGER.

Examples

Issue: 20200701 839

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

The following code snippet demonstrates a call to the RANDOM function. The call returns a

random number:

x := DBMS_RANDOM.RANDOM();

SEED

The SEED stored procedure resets the seed value for the DBMS_RANDOM package by using

a string value. Syntax:

SEED(val IN VARCHAR2)

Parameters

Parameter Description

val The val parameter is the seed value used by
the DBMS_RANDOM package algorithm.

Examples

The following code snippet demonstrates a call to the SEED stored procedure. The call sets

the seed value to abc123.

DBMS_RANDOM.SEED('abc123');

STRING

The STRING function returns a random VARCHAR2 string in a user-specified format. Syntax:

result VARCHAR2 STRING(opt IN CHAR, len IN NUMBER)

Parameters

opt: The formatting option for the returned string. The following table lists possible values

of the option parameter.

Option Description

u or U Uppercase alpha string

l or L Lowercase alpha string

a or A Mixed case string

x or X Uppercase alpha-numeric string

p or P Printable characters

len: The length of the returned string.

840 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

result: The result parameter is a random value of type VARCHAR2.

Examples

The following code snippet demonstrates a call to the STRING function. The call returns a

random alpha-numeric character string that is 10 characters in length.

x := DBMS_RANDOM.STRING('X', 10);

TERMINATE

The TERMINATE stored procedure has no effect. Syntax:

TERMINATE

We do not recommend that you use the TERMINATE stored procedure because it is only

supported for compatibility.

VALUE

The VALUE function returns a random NUMBER that is greater than or equal to 0, and less

 than 1, with 38 digit precision. The VALUE function has two forms. The syntax of the first

form is:

result NUMBER VALUE()

Parameters

Parameter Description

result A random value of type NUMBER.

Examples

The following code snippet demonstrates a call to the VALUE function. The call returns a

random NUMBER:

x := DBMS_RANDOM.VALUE();

VALUE

The VALUE function returns a random NUMBER with a value that is between user-specified

boundaries. The VALUE function has two forms. The syntax of the second form is:

result NUMBER VALUE(low IN NUMBER, high IN NUMBER)

Parameters

Issue: 20200701 841

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

low The lower boundary for the random value.
The random value may be equal to low.

high The upper boundary for the random value.
The random value will be less than high.

result A random value of type NUMBER.

Examples

The following code snippet demonstrates a call to the VALUE function. The call returns a

random NUMBER with a value that is greater than or equal to 1 and less than 100.

x := DBMS_RANDOM.VALUE(1, 100);

17.13 DBMS_RLS

The DBMS_RLS package enables the implementation of Virtual Private Database on certain

POLARDB compatible with Oracle database objects.

Table 17-25: DBMS_RLS functions and stored procedures

Function/stored

procedure

Function or stored

procedure

Return type Description

ADD_POLICY(
object_schema
, object_name
, policy_name,
function_schema,
policy_function [,
statement_types
 [, update_check [,
enable [, static_pol
icy [, policy_type [,
long_predicate [,
sec_relevant_cols [,
sec_relevant_cols_op
t]]]]]]]])

Stored procedure N/A Adds a security
policy to a database
object.

DROP_POLICY(
object_schema
, object_name,
policy_name)

Stored procedure N/A Removes a security
 policy from a
database object.

842 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Function/stored

procedure

Function or stored

procedure

Return type Description

ENABLE_POLICY
(object_schema
, object_name,
policy_name, enable
)

Stored procedure N/A Enables or disables a
 security policy.

The DBMS_RLS package in POLARDB compatible with Oracle is partially implemented when

compared to Oracle's version. POLARDB compatible with Oracle only supports the functions

 and stored procedures that are listed in the preceding table.

Virtual Private Database adopts fine-grained access control that uses security policies.

Fine-grained access control in Virtual Private Database means that access to data can be

controlled down to specific rows as defined by security policies.

The rules that encode a security policy are defined in a policy function. This policy function

 is an SPL function with specific input parameters and return values. The security policy is

the association of the policy function to a particular database object, typically a table.

Note:

• In POLARDB compatible with Oracle, the policy function can be written in any language

 supported by POLARDB compatible with Oracle such as SQL, PL/pgSQL, and SPL. For

example, apart from Oracle-compatible SPL languages, we can also use SQL and PL/

pgSQL languages.

• Virtual Private Database of POLARDB compatible with Oracle only supports one type of

database objects: tables. Policies cannot be applied to views or synonyms.

The benefits of using Virtual Private Database are described as follows:

• Virtual Private Database provides a fine-grained level of security. Database object level

 privileges given by the GRANT command determine access privileges to the entire

instance of a database object. In contrast, Virtual Private Database provides access

control for the individual rows of a database object instance.

• A different security policy can be applied depending upon the type of SQL command (

INSERT, UPDATE, DELETE, or SELECT).

Issue: 20200701 843

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

• The security policy is dynamic and can vary for each applicable SQL command affecting

 the database object. The security policy is determined by multiples factors, such as the

session user of the application accessing the database object.

• Invocation of the security policy is transparent to all applications that access the

database object. Therefore, you do not need to modify individual applications to apply

the security policy.

• After a security policy is enabled, no applications (including new applications) can

circumvent the security policy except by the system privilege that is mentioned in the

following note.

• Even superusers cannot circumvent the security policy except by the system privilege

that is mentioned in the following note.

Note:

The only way security policies can be circumvented is that the user has the EXEMPT

ACCESS POLICY system privilege. The EXEMPT ACCESS POLICY privilege must be granted

with extreme care because a user with this privilege is exempted from all policies in the

database.

The DBMS_RLS package provides stored procedures to create, remove, enable, and disable

policies.

The process for implementing Virtual Private Database is described as follows:

• Create a policy function. The function must have two input parameters of type VARCHAR2

. The first input parameter is used for the schema that contains the database object to

which the policy is to be applied. The second input parameter is used for the name of

the database object. The function must have a VARCHAR2 return type. The function must

 return a string in the form of a WHERE clause predicate. This predicate is dynamically

appended as an AND condition to the SQL command that acts upon the database object

. The rows that do not satisfy the policy function predicate are filtered out from the SQL

command result set.

• Use the ADD_POLICY stored procedure to define a new policy, which associates a policy

 function with a database object. You can use the ADD_POLICY stored procedure to

specify the types of SQL commands (INSERT, UPDATE, DELETE, or SELECT) to which the

policy is to apply. You can specify whether to enable the policy at the time of its creation

. You can also specify whether the policy can apply to newly inserted rows and the

modified image of updated rows.

844 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

• Use the ENABLE_POLICY stored procedure to disable or enable an existing policy.

• Use the DROP_POLICY stored procedure to delete an existing policy. The DROP_POLICY

stored procedure does not delete the policy function or the associated database object.

After policies are created, they can be viewed in the catalog views that are compatible with

 Oracle databases.

The SYS_CONTEXT function is often used with the DBMS_RLS package. Syntax:

SYS_CONTEXT(namespace, attribute)

• namespace is of the VARCHAR2 data type. The only valid value is USERENV. If another

value is specified for this parameter, the function returns NULL.

• attribute is of the VARCHAR2 data type. The following table lists available values of the

attribute parameter.

Value of attribute Equivalent value

SESSION_USER pg_catalog.session_user

CURRENT_USER pg_catalog.current_user

CURRENT_SCHEMA pg_catalog.current_schema

HOST pg_catalog.inet_host

IP_ADDRESS pg_catalog.inet_client_addr

SERVER_HOST pg_catalog.inet_server_addr

Note:

The examples of the DBMS_RLS package use a modified copy of the sample emp table

provided with POLARDB compatible with Oracle. A role named salesmgr is granted all

privileges on the table. You can create the modified copy of the emp table named vpemp

and the salesmgr role as follows:

CREATE TABLE public.vpemp AS SELECT empno, ename, job, sal, comm, deptno FROM
emp;
ALTER TABLE vpemp ADD authid VARCHAR2(12);
UPDATE vpemp SET authid = 'researchmgr' WHERE deptno = 20;
UPDATE vpemp SET authid = 'salesmgr' WHERE deptno = 30;
SELECT * FROM vpemp;

empno | ename | job | sal | comm | deptno | authid
-------+--------+-----------+---------+---------+--------+-------------
 7782 | CLARK | MANAGER | 2450.00 | | 10 |
 7839 | KING | PRESIDENT | 5000.00 | | 10 |
 7934 | MILLER | CLERK | 1300.00 | | 10 |
 7369 | SMITH | CLERK | 800.00 | | 20 | researchmgr

Issue: 20200701 845

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 7566 | JONES | MANAGER | 2975.00 | | 20 | researchmgr
 7788 | SCOTT | ANALYST | 3000.00 | | 20 | researchmgr
 7876 | ADAMS | CLERK | 1100.00 | | 20 | researchmgr
 7902 | FORD | ANALYST | 3000.00 | | 20 | researchmgr
 7499 | ALLEN | SALESMAN | 1600.00 | 300.00 | 30 | salesmgr
 7521 | WARD | SALESMAN | 1250.00 | 500.00 | 30 | salesmgr
 7654 | MARTIN | SALESMAN | 1250.00 | 1400.00 | 30 | salesmgr
 7698 | BLAKE | MANAGER | 2850.00 | | 30 | salesmgr
 7844 | TURNER | SALESMAN | 1500.00 | 0.00 | 30 | salesmgr
 7900 | JAMES | CLERK | 950.00 | | 30 | salesmgr
(14 rows)

CREATE ROLE salesmgr WITH LOGIN PASSWORD 'password';
GRANT ALL ON vpemp TO salesmgr;

ADD_POLICY

The ADD_POLICY stored procedure creates a new policy by associating a policy function

with a database object.

You must be a superuser to call the ADD_POLICY stored procedure.

ADD_POLICY(object_schema VARCHAR2, object_name VARCHAR2,
 policy_name VARCHAR2, function_schema VARCHAR2,
 policy_function VARCHAR2
 [, statement_types VARCHAR2
 [, update_check BOOLEAN
 [, enable BOOLEAN
 [, static_policy BOOLEAN
 [, policy_type INTEGER
 [, long_predicate BOOLEAN
 [, sec_relevant_cols VARCHAR2
 [, sec_relevant_cols_opt INTEGER]]]]]]]])

Parameters

Parameter Description

object_schema The name of the schema that contains the
database object to which the policy is to be
applied.

object_name The name of the database object to which
 the policy is to be applied. A database
 object can have more than one policy
applied to it.

policy_name policy_name is the name assigned to the
policy. The combination of the database
object (identified by object_schema and
object_name) and policy name must be
unique within the database.

846 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

function_schema The name of the schema that contains the
policy function.

Note:
The policy function may belong to a
package. In this case, function_schema
 must contain the name of the schema in
which the package is defined.

policy_function policy_function is the name of the SPL
function that defines the rules of the
security policy. The same function may be
specified in more than one policy.

Note:
The policy function may belong to a
package. In this case, policy_function must
also contain the package name in dot
notation (package_name.function_name).

statement_types statement_types is a comma-separated
list of SQL commands to which the policy
applies. Valid SQL commands are INSERT,
UPDATE, DELETE, and SELECT. Default value:
INSERT, UPDATE, DELETE, SELECT.

Note:
POLARDB compatible with Oracle accepts
INDEX as a statement type, but it is
ignored. Policies are not applied to INDEX
operations in POLARDB compatible with
Oracle.

Issue: 20200701 847

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

update_check update_check applies to INSERT and
UPDATE SQL commands only.

• If update_check is set to TRUE, the
policy is applied to newly inserted rows
and to the modified image of updated
rows. If a new or modified row does
not qualify according to the policy
function predicate, the INSERT or UPDATE
command throws an exception and no
rows are inserted or modified.

• If update_check is set to FALSE, the
policy is not applied to newly inserted
rows or the modified image of updated
rows. Therefore, a newly inserted row
may not appear in the result set of a
subsequent SQL command that invokes
the same policy. Similarly, rows which
qualified according to the policy prior to
an UPDATE command may not appear
in the result set of a subsequent SQL
command that invokes the same policy.

enable • If enable is set to TRUE, the policy
is enabled and applied to the
SQL commands specified by the
statement_types parameter.

• If enable is set to FALSE, the policy
is disabled and not applied to SQL
commands. You can enable the policy
by using the ENABLE_POLICY stored
procedure. The default value is TRUE.

848 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

static_policy • In Oracle, if static_policy is set to TRUE,
the policy is static. The policy function is
 evaluated once per database object the
 first time it is invoked by a policy on the
database object. The resulting predicate
 string of the policy function is saved in
memory. In this case, when the database
 server instance is running, the predicate
string can be reused for all invocations of
 that policy on that database object.

• In Oracle, if static_policy is set to FALSE,
the policy is dynamic. The policy function
 is re-evaluated and the predicate string
of the policy function is re-generated for
all invocations of the policy.

• The default value is FALSE.

Note:

• In Oracle 10g, the policy_type
parameter was introduced, which is
intended to replace the static_policy
parameter. In Oracle, if the policy_typ
e parameter is not set to its default
value (NULL), the policy_type parameter
 setting overrides the static_policy
setting.

• POLARDB compatible with Oracle
ignores the setting of the static_policy
 parameter. POLARDB compatible with
 Oracle implements only the dynamic
policy, regardless of the setting of the
static_policy parameter.

Issue: 20200701 849

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

policy_type In Oracle, policy_type determines when the
policy function is re-evaluated. Therefore,
it also determines whether and when the
predicate string returned by the policy
function changes. The default value is NULL.

Note:
POLARDB compatible with Oracle ignores
the setting of the policy_type parameter.
POLARDB compatible with Oracle always
assumes a dynamic policy.

long_predicate In Oracle, if long_predicate is set to TRUE,
predicates can be up to 32 KB in length.
Otherwise, predicates are limited to 4 KB in
length. The default value is FALSE.

Note:
POLARDB compatible with Oracle
ignores the setting of the long_predi
cate parameter. A POLARDB compatible
with Oracle policy function can return
a predicate of unlimited length for all
practical purposes.

sec_relevant_cols sec_relevant_cols is a comma-separated list
of columns of object_name. This parameter
provides column-level Virtual Private
Database for the listed columns. The policy
is enforced if a listed column is referenced
in an SQL command of a type specified in
statement_types. The policy is not enforced
if no such columns are referenced.

The default value is NULL. The same effect

is achieved if all columns of the database

object are included in sec_relevant_cols.

850 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

sec_relevant_cols_opt In Oracle, if sec_relevant_cols_opt is
set to DBMS_RLS.ALL_ROWS (INTEGER
constant of value 1), the columns listed
in sec_relevant_cols return NULL on all
rows where the applied policy predicate is
false. If sec_relevant_cols_opt is not set to
DBMS_RLS.ALL_ROWS, these rows will not be
returned in the result set. The default value
is NULL.

Note:
POLARDB compatible with Oracle does not
support the DBMS_RLS.ALL_ROWS function.
If sec_relevant_cols_opt is set to DBMS_RLS
.ALL_ROWS (INTEGER value of 1), POLARDB
compatible with Oracle will throw an error.

Examples

This example uses the following policy function:

CREATE OR REPLACE FUNCTION verify_session_user (
 p_schema VARCHAR2,
 p_object VARCHAR2
)
RETURN VARCHAR2
IS
BEGIN
 RETURN 'authid = SYS_CONTEXT(''USERENV'', ''SESSION_USER'')';
END;

This function generates the predicate authid = SYS_CONTEXT('USERENV', 'SESSION_USER

'), which is added to the WHERE clause of each SQL command of the type specified in the

ADD_POLICY stored procedure.

This limits the effect of the SQL command to rows where the content of the authid column is

 the same as the session user.

Note:

This example uses the SYS_CONTEXT function to return the login user name. In Oracle, the

SYS_CONTEXT function returns attributes of an application context. The first parameter of

the SYS_CONTEXT function is the name of an application context. The second parameter

is the name of an attribute set within the application context. USERENV is a special built-

Issue: 20200701 851

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

in namespace that describes the current session. POLARDB compatible with Oracle does

not support application contexts, but supports this specific usage of the SYS_CONTEXT

function.

The following anonymous block calls the ADD_POLICY stored procedure. This is to create a

 policy named secure_update. Then, the policy will be applied to the vpemp table by using

 the verify_session_user function regardless of whether an INSERT, UPDATE, or DELETE SQL

command is provided when the vpemp table is referenced.

DECLARE
 v_object_schema VARCHAR2(30) := 'public';
 v_object_name VARCHAR2(30) := 'vpemp';
 v_policy_name VARCHAR2(30) := 'secure_update';
 v_function_schema VARCHAR2(30) := 'enterprisedb';
 v_policy_function VARCHAR2(30) := 'verify_session_user';
 v_statement_types VARCHAR2(30) := 'INSERT,UPDATE,DELETE';
 v_update_check BOOLEAN := TRUE;
 v_enable BOOLEAN := TRUE;
BEGIN
 DBMS_RLS.ADD_POLICY(
 v_object_schema,
 v_object_name,
 v_policy_name,
 v_function_schema,
 v_policy_function,
 v_statement_types,
 v_update_check,
 v_enable
);
END;

After the policy is created, a terminal session is started by the salesmgr user. The following

query shows the content of the vpemp table.

edb=# \c edb salesmgr
Password for user salesmgr:
You are now connected to database "edb" as user "salesmgr".
edb=> SELECT * FROM vpemp;
 empno | ename | job | sal | comm | deptno | authid
-------+--------+-----------+---------+---------+--------+-------------
 7782 | CLARK | MANAGER | 2450.00 | | 10 |
 7839 | KING | PRESIDENT | 5000.00 | | 10 |
 7934 | MILLER | CLERK | 1300.00 | | 10 |
 7369 | SMITH | CLERK | 800.00 | | 20 | researchmgr
 7566 | JONES | MANAGER | 2975.00 | | 20 | researchmgr
 7788 | SCOTT | ANALYST | 3000.00 | | 20 | researchmgr
 7876 | ADAMS | CLERK | 1100.00 | | 20 | researchmgr
 7902 | FORD | ANALYST | 3000.00 | | 20 | researchmgr
 7499 | ALLEN | SALESMAN | 1600.00 | 300.00 | 30 | salesmgr
 7521 | WARD | SALESMAN | 1250.00 | 500.00 | 30 | salesmgr
 7654 | MARTIN | SALESMAN | 1250.00 | 1400.00 | 30 | salesmgr
 7698 | BLAKE | MANAGER | 2850.00 | | 30 | salesmgr
 7844 | TURNER | SALESMAN | 1500.00 | 0.00 | 30 | salesmgr
 7900 | JAMES | CLERK | 950.00 | | 30 | salesmgr

852 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

(14 rows)

An unqualified UPDATE command (without a WHERE clause) is issued by the salesmgr user:

edb=> UPDATE vpemp SET comm = sal * .75;
UPDATE 6

Instead of updating all rows in the table, the policy restricts the effect of the update to rows

 where the authid column contains the salesmgr value. The salesmgr value is specified by

the policy function predicate: authid = SYS_CONTEXT('USERENV', 'SESSION_USER').

The following query shows that the comm column has been changed for rows where authid

 contains salesmgr. All other rows are unchanged.

edb=> SELECT * FROM vpemp;
 empno | ename | job | sal | comm | deptno | authid
-------+--------+-----------+---------+---------+--------+-------------
 7782 | CLARK | MANAGER | 2450.00 | | 10 |
 7839 | KING | PRESIDENT | 5000.00 | | 10 |
 7934 | MILLER | CLERK | 1300.00 | | 10 |
 7369 | SMITH | CLERK | 800.00 | | 20 | researchmgr
 7566 | JONES | MANAGER | 2975.00 | | 20 | researchmgr
 7788 | SCOTT | ANALYST | 3000.00 | | 20 | researchmgr
 7876 | ADAMS | CLERK | 1100.00 | | 20 | researchmgr
 7902 | FORD | ANALYST | 3000.00 | | 20 | researchmgr
 7499 | ALLEN | SALESMAN | 1600.00 | 1200.00 | 30 | salesmgr
 7521 | WARD | SALESMAN | 1250.00 | 937.50 | 30 | salesmgr
 7654 | MARTIN | SALESMAN | 1250.00 | 937.50 | 30 | salesmgr
 7698 | BLAKE | MANAGER | 2850.00 | 2137.50 | 30 | salesmgr
 7844 | TURNER | SALESMAN | 1500.00 | 1125.00 | 30 | salesmgr
 7900 | JAMES | CLERK | 950.00 | 712.50 | 30 | salesmgr
(14 rows)

The following INSERT command throws an exception because the update_check parameter

 was set to TRUE in the ADD_POLICY stored procedure. The policy is invalid because the

researchmgr value specified for the authid column does not match the salesmgr session

user.

edb=> INSERT INTO vpemp VALUES (9001,'SMITH','ANALYST',3200.00,NULL,20, 'researchmg
r');
ERROR: policy with check option violation
DETAIL: Policy predicate was evaluated to FALSE with the updated values

If update_check was set to FALSE, the preceding INSERT command would have succeeded.

The following example illustrates the use of the sec_relevant_cols parameter to apply a

policy only when certain columns are referenced in the SQL command. The following policy

 function is used in this example, which selects rows where the employee salary is less than

 USD 2,000 per month.

CREATE OR REPLACE FUNCTION sal_lt_2000 (
 p_schema VARCHAR2,

Issue: 20200701 853

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 p_object VARCHAR2
)
RETURN VARCHAR2
IS
BEGIN
 RETURN 'sal < 2000';
END;

The policy is created so that it is enforced only if a SELECT command includes the sal or

comm column.

DECLARE
 v_object_schema VARCHAR2(30) := 'public';
 v_object_name VARCHAR2(30) := 'vpemp';
 v_policy_name VARCHAR2(30) := 'secure_salary';
 v_function_schema VARCHAR2(30) := 'enterprisedb';
 v_policy_function VARCHAR2(30) := 'sal_lt_2000';
 v_statement_types VARCHAR2(30) := 'SELECT';
 v_sec_relevant_cols VARCHAR2(30) := 'sal,comm';
BEGIN
 DBMS_RLS.ADD_POLICY(
 v_object_schema,
 v_object_name,
 v_policy_name,
 v_function_schema,
 v_policy_function,
 v_statement_types,
 sec_relevant_cols => v_sec_relevant_cols
);
END;

If a query does not reference the sal or comm column, the policy is not applied. The

following query returns all 14 rows of the vpemp table:

edb=# SELECT empno, ename, job, deptno, authid FROM vpemp;
 empno | ename | job | deptno | authid
-------+--------+-----------+--------+-------------
 7782 | CLARK | MANAGER | 10 |
 7839 | KING | PRESIDENT | 10 |
 7934 | MILLER | CLERK | 10 |
 7369 | SMITH | CLERK | 20 | researchmgr
 7566 | JONES | MANAGER | 20 | researchmgr
 7788 | SCOTT | ANALYST | 20 | researchmgr
 7876 | ADAMS | CLERK | 20 | researchmgr
 7902 | FORD | ANALYST | 20 | researchmgr
 7499 | ALLEN | SALESMAN | 30 | salesmgr
 7521 | WARD | SALESMAN | 30 | salesmgr
 7654 | MARTIN | SALESMAN | 30 | salesmgr
 7698 | BLAKE | MANAGER | 30 | salesmgr
 7844 | TURNER | SALESMAN | 30 | salesmgr
 7900 | JAMES | CLERK | 30 | salesmgr
(14 rows)

If the query references the sal or comm column, the policy is applied to the query. This

query deletes rows where sal is greater than or equal to 2000, as shown in the following

example:

edb=# SELECT empno, ename, job, sal, comm, deptno, authid FROM vpemp;

854 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 empno | ename | job | sal | comm | deptno | authid
-------+--------+----------+---------+---------+--------+-------------
 7934 | MILLER | CLERK | 1300.00 | | 10 |
 7369 | SMITH | CLERK | 800.00 | | 20 | researchmgr
 7876 | ADAMS | CLERK | 1100.00 | | 20 | researchmgr
 7499 | ALLEN | SALESMAN | 1600.00 | 1200.00 | 30 | salesmgr
 7521 | WARD | SALESMAN | 1250.00 | 937.50 | 30 | salesmgr
 7654 | MARTIN | SALESMAN | 1250.00 | 937.50 | 30 | salesmgr
 7844 | TURNER | SALESMAN | 1500.00 | 1125.00 | 30 | salesmgr
 7900 | JAMES | CLERK | 950.00 | 712.50 | 30 | salesmgr
(8 rows)

DROP_POLICY

The DROP_POLICY stored procedure deletes an existing policy. However, the DROP_POLICY

 stored procedure cannot delete the policy function and database object associated with

the policy.

You must be a superuser to execute the DROP_POLICY stored procedure.

DROP_POLICY(object_schema VARCHAR2, object_name VARCHAR2,

 policy_name VARCHAR2)

Parameters

Parameter Description

object_schema The name of the schema that contains the
database object to which the policy applies.

object_name The name of the database object to which
the policy applies.

policy_name The name of the policy to be deleted.

Examples

The following example deletes the secure_update policy on the public.vpemp table:

DECLARE
 v_object_schema VARCHAR2(30) := 'public';
 v_object_name VARCHAR2(30) := 'vpemp';
 v_policy_name VARCHAR2(30) := 'secure_update';
BEGIN
 DBMS_RLS.DROP_POLICY(
 v_object_schema,
 v_object_name,
 v_policy_name
);

Issue: 20200701 855

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

END;

ENABLE_POLICY

The ENABLE_POLICY stored procedure enables or disables an existing policy on the

specified database object.

You must be a superuser to execute the ENABLE_POLICY stored procedure.

ENABLE_POLICY(object_schema VARCHAR2, object_name VARCHAR2,
 policy_name VARCHAR2, enable BOOLEAN)

Parameters

Parameter Description

object_schema The name of the schema that contains the
database object to which the policy applies.

object_name The name of the database object to which
the policy applies.

policy_name The name of the policy to be enabled or
disabled.

enable If the enable parameter is set to TRUE, the
policy is enabled. If the enable parameter is
set to FALSE, the policy is disabled.

Examples

The following example disables the secure_update policy on the public.vpemp table:

DECLARE
 v_object_schema VARCHAR2(30) := 'public';
 v_object_name VARCHAR2(30) := 'vpemp';
 v_policy_name VARCHAR2(30) := 'secure_update';
 v_enable BOOLEAN := FALSE;
BEGIN
 DBMS_RLS.ENABLE_POLICY(
 v_object_schema,
 v_object_name,
 v_policy_name,
 v_enable
);

856 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

END;

17.14 DBMS_SESSION
PolarDB databases compatible with Oracle support the following DBMS_SESSION.SET_ROLE

procedure:

Function/Procedure Return type Description

SET_ROLE(role_cmd) N/A Executes the SET ROLE
 statement followed by the
string value specified in
role_cmd.

The implementation of DBMS_AQ in PolarDB databases compatible with Oracle is a partial

 implementation when compared with native Oracle. Only DBMS_SESSION.SET_ROLE is

supported.

SET_ROLE

The SET_ROLE procedure sets the current session user to the role specified in role_cmd.

After the current session invokes the SET_ROLE procedure, the session uses the permissions

assigned to the specified role. The procedure has the following signature:

SET_ROLE(role_cmd)

The SET_ROLE procedure appends the value specified for role_cmd to the SET ROLE

statement, and then invokes the statement.

Parameters

Parameter Description

role_cmd Specifies a role name in the form of a string
 value.

Examples

Issue: 20200701 857

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

You can run the SET ROLE command to call the SET_ROLE procedure and set the identity of

the current session user to manager. The following example shows this call:

exec DBMS_SESSION.SET_ROLE('manager');

17.15 DBMS_SQL

The DBMS_SQL package provides an application interface compatible with Oracle

databases to the POLARDB compatible with Oracle dynamic SQL functionality. By using

 the DBMS_SQL package, you can construct queries and other commands at run time,

rather than when you write the application. POLARDB compatible with Oracle offers native

support for dynamic SQL. The DBMS_SQL package provides a method of using dynamic SQL

 that is compatible with Oracle databases without modifying your application.

The DBMS_SQL package assumes that the current user has the required permissions when

running dynamic SQL statements.

Table 17-26: DBMS_SQL functions and stored procedures

Function/stored

procedure

Function or stored

procedure

Return type Description

BIND_VARIABLE(
c, name, value [,
out_value_size])

Stored procedure N/A Binds a value to a
variable.

BIND_VARIA
BLE_CHAR(c, name
, value [, out_value_
size])

Stored procedure N/A Binds a CHAR value
to a variable.

BIND_VARIABLE_RAW
(c, name, value [,
out_value_size])

Stored procedure N/A Binds a RAW value to
 a variable.

CLOSE_CURSOR(c IN
OUT)

Stored procedure N/A Closes a cursor.

COLUMN_VALUE(c,
position, value OUT
 [, column_error OUT
 [, actual_length OUT
]])

Stored procedure N/A Returns a column
value into a variable.

858 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Function/stored

procedure

Function or stored

procedure

Return type Description

COLUMN_VAL
UE_CHAR(c, position
, value OUT [,
column_error OUT [,
actual_length OUT]])

Stored procedure N/A Returns a CHAR
column value into a
variable.

COLUMN_VAL
UE_RAW(c, position
, value OUT [,
column_error OUT [,
actual_length OUT]])

Stored procedure N/A Returns a RAW
column value into a
variable.

DEFINE_COLUMN(c,
position, column [,
column_size])

Stored procedure N/A Defines a column in
the SELECT list.

DEFINE_COL
UMN_CHAR(c,
position, column,
column_size)

Stored procedure N/A Defines a CHAR
column in the SELECT
 list.

DEFINE_COL
UMN_RAW(c, position
, column, column_siz
e)

Stored procedure N/A Defines a RAW
column in the SELECT
 list.

DESCRIBE_COLUMNS Stored procedure N/A Defines columns to
hold a cursor result
set.

EXECUTE(c) Function INTEGER Executes a cursor.

EXECUTE_AND_FETCH
(c [, exact])

Function INTEGER Executes a cursor
and fetches a single
row.

FETCH_ROWS(c) Function INTEGER Fetches rows from
the cursor.

IS_OPEN(c) Function BOOLEAN Check whether a
cursor is open.

LAST_ROW_COUNT Function INTEGER Returns the
cumulative number
of rows fetched.

OPEN_CURSOR Function INTEGER Opens a cursor.

Issue: 20200701 859

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Function/stored

procedure

Function or stored

procedure

Return type Description

PARSE(c, statement,
language_flag)

Stored procedure N/A Parses a statement.

The DBMS_SQL package in POLARDB compatible with Oracle is partially implemented when

compared to Oracle's version. POLARDB compatible with Oracle only supports the functions

 and stored procedures that are listed in the preceding table.

The following table lists the public variables that are available in the DBMS_SQL package.

Table 17-27: DBMS_SQL public variables

Public variable Data type Value Description

native INTEGER 1 Provided for
compatibility with
Oracle syntax. For
more information,
see DBMS_SQL.PARSE
.

V6 INTEGER 2 Provided for
compatibility with
Oracle syntax. For
more information,
see DBMS_SQL.PARSE
.

V7 INTEGER 3 Provided for
compatibility with
Oracle syntax. For
more information,
see DBMS_SQL.PARSE
.

BIND_VARIABLE

The BIND_VARIABLE stored procedure provides the capability to associate a value with an IN

 or IN OUT bind variable in an SQL command.

BIND_VARIABLE(c INTEGER, name VARCHAR2,
 value { BLOB | CLOB | DATE | FLOAT | INTEGER | NUMBER |
 TIMESTAMP | VARCHAR2 }

860 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 [, out_value_size INTEGER])

Parameters

Parameter Description

c The ID of the cursor for the SQL command
with bind variables.

name The name of the bind variable in the SQL
command.

value The value to be assigned.

out_value_size If name is an IN OUT variable, this
parameter defines the maximum length of
 the output value. If this parameter is not
specified, the length of the current value is
the maximum length by default.

Examples

The following anonymous block uses bind variables to insert a row into the emp table.

DECLARE
 curid INTEGER;
 v_sql VARCHAR2(150) := 'INSERT INTO emp VALUES ' ||
 '(:p_empno, :p_ename, :p_job, :p_mgr, ' ||
 ':p_hiredate, :p_sal, :p_comm, :p_deptno)';
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE;
 v_mgr emp.mgr%TYPE;
 v_hiredate emp.hiredate%TYPE;
 v_sal emp.sal%TYPE;
 v_comm emp.comm%TYPE;
 v_deptno emp.deptno%TYPE;
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 v_empno := 9001;
 v_ename := 'JONES';
 v_job := 'SALESMAN';
 v_mgr := 7369;
 v_hiredate := TO_DATE('13-DEC-07','DD-MON-YY');
 v_sal := 8500.00;
 v_comm := 1500.00;
 v_deptno := 40;
 DBMS_SQL.BIND_VARIABLE(curid,':p_empno',v_empno);
 DBMS_SQL.BIND_VARIABLE(curid,':p_ename',v_ename);
 DBMS_SQL.BIND_VARIABLE(curid,':p_job',v_job);
 DBMS_SQL.BIND_VARIABLE(curid,':p_mgr',v_mgr);
 DBMS_SQL.BIND_VARIABLE(curid,':p_hiredate',v_hiredate);
 DBMS_SQL.BIND_VARIABLE(curid,':p_sal',v_sal);
 DBMS_SQL.BIND_VARIABLE(curid,':p_comm',v_comm);
 DBMS_SQL.BIND_VARIABLE(curid,':p_deptno',v_deptno);
 v_status := DBMS_SQL.EXECUTE(curid);

Issue: 20200701 861

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

Number of rows processed: 1

BIND_VARIABLE_CHAR

The BIND_VARIABLE_CHAR stored procedure provides the capability to associate a CHAR

value with an IN or IN OUT bind variable in an SQL command.

BIND_VARIABLE_CHAR(c INTEGER, name VARCHAR2, value CHAR
 [, out_value_size INTEGER])

Parameters

Parameter Description

c The ID of the cursor for the SQL command
with bind variables.

name The name of the bind variable in the SQL
command.

value The value of type CHAR to be assigned.

out_value_size If name is an IN OUT variable, this
parameter defines the maximum length of
 the output value. If this parameter is not
specified, the length of the current value is
the maximum length by default.

BIND_VARIABLE_RAW

The BIND_VARIABLE_RAW stored procedure provides the capability to associate a RAW value

 with an IN or IN OUT bind variable in an SQL command.

BIND_VARIABLE_RAW(c INTEGER, name VARCHAR2, value RAW
 [, out_value_size INTEGER])

Parameters

Parameter Description

c The ID of the cursor for the SQL command
with bind variables.

name The name of the bind variable in the SQL
command.

value The value of type RAW to be assigned.

862 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

out_value_size If name is an IN OUT variable, this
parameter defines the maximum length of
 the output value. If this parameter is not
specified, the length of the current value is
the maximum length by default.

CLOSE_CURSOR

The CLOSE_CURSOR stored procedure closes a cursor. When the cursor is closed, resources

allocated to the cursor are released and the cursor can no longer be used.

CLOSE_CURSOR(c IN OUT INTEGER)

Parameters

Parameter Description

c The ID of the cursor to be closed.

Examples

The following example shows how to close an open cursor.

DECLARE
 curid INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 .
 .
 .
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

COLUMN_VALUE

The COLUMN_VALUE stored procedure defines a variable to receive a value from a cursor.

COLUMN_VALUE(c INTEGER, position INTEGER, value OUT { BLOB |
 CLOB | DATE | FLOAT | INTEGER | NUMBER | TIMESTAMP | VARCHAR2 }
 [, column_error OUT NUMBER [, actual_length OUT INTEGER]])

Parameters

Parameter Description

c The ID of the cursor that returns data to the
variable being defined.

Issue: 20200701 863

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

position The position of the returned data within
the cursor. The first value in the cursor is
position 1.

value The variable that receives the data returned
in the cursor by a prior fetch call.

column_error If an error occurs, this parameter indicates
the error code associated with the column.

actual_length The actual length of the data before
truncation.

Examples

The following example shows the portion of an anonymous block that receives the values

from a cursor by using the COLUMN_VALUE stored procedure.

DECLARE
 curid INTEGER;
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);
 v_sql VARCHAR2(50) := 'SELECT empno, ename, hiredate, sal, ' ||
 'comm FROM emp';
 v_status INTEGER;
BEGIN
 .
 .
 .
 LOOP
 v_status := DBMS_SQL.FETCH_ROWS(curid);
 EXIT WHEN v_status = 0;
 DBMS_SQL.COLUMN_VALUE(curid,1,v_empno);
 DBMS_SQL.COLUMN_VALUE(curid,2,v_ename);
 DBMS_SQL.COLUMN_VALUE(curid,3,v_hiredate);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,5,v_comm);
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename,10) || ' ' ||
 TO_CHAR(v_hiredate,'yyyy-mm-dd') || ' ' ||
 TO_CHAR(v_sal,'9,999.99') || ' ' ||
 TO_CHAR(NVL(v_comm,0),'9,999.99'));
 END LOOP;
 DBMS_SQL.CLOSE_CURSOR(curid);

864 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

END;

COLUMN_VALUE_CHAR

The COLUMN_VALUE_CHAR stored procedure defines a variable to receive a CHAR value

from a cursor.

COLUMN_VALUE_CHAR(c INTEGER, position INTEGER, value OUT CHAR
 [, column_error OUT NUMBER [, actual_length OUT INTEGER]])

Parameters

Parameter Description

c The ID of the cursor that returns data to the
variable being defined.

position The position of the returned data within
the cursor. The first value in the cursor is
position 1.

value The variable of data type CHAR that receives
 the data returned in the cursor by a prior
fetch call.

column_error If an error occurs, this parameter indicates
the error code associated with the column.

actual_length The actual length of the data before
truncation.

COLUMN_VALUE_RAW

The COLUMN_VALUE_RAW stored procedure defines a variable to receive a RAW value from

a cursor.

COLUMN_VALUE_RAW(c INTEGER, position INTEGER, value OUT RAW
 [, column_error OUT NUMBER [, actual_length OUT INTEGER]])

Parameters

Parameter Description

c The ID of the cursor that returns data to the
variable being defined.

position The position of the returned data within
the cursor. The first value in the cursor is
position 1.

Issue: 20200701 865

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

value The variable of data type RAW that receives
 the data returned in the cursor by a prior
fetch call.

column_error If an error occurs, this parameter indicates
the error code associated with the column.

actual_length The actual length of the data before
truncation.

DEFINE_COLUMN

The DEFINE_COLUMN stored procedure defines a column or expression in the SELECT list

that is to be returned and retrieved in a cursor.

DEFINE_COLUMN(c INTEGER, position INTEGER, column { BLOB |
 CLOB | DATE | FLOAT | INTEGER | NUMBER | TIMESTAMP | VARCHAR2 }
 [, column_size INTEGER])

Parameters

Parameter Description

c The ID of the cursor associated with the
SELECT command.

position The position of the column or expression in
the SELECT list that is being defined.

column A variable that matches the data type of
the column or expression in the specified
position of the SELECT result set.

column_size The maximum length of the returned data
. The column_size parameter must be
specified if the data type of the column
is VARCHAR2. Returned data exceeding
column_size is truncated to the maximum
 length specified by the column_size
parameter.

Examples

The following example shows how to use the DEFINE_COLUMN stored procedure to define

the empno, ename, hiredate, sal, and comm columns of the emp table.

DECLARE
 curid INTEGER;

866 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);
 v_sql VARCHAR2(50) := 'SELECT empno, ename, hiredate, sal, ' ||
 'comm FROM emp';
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 DBMS_SQL.DEFINE_COLUMN(curid,1,v_empno);
 DBMS_SQL.DEFINE_COLUMN(curid,2,v_ename,10);
 DBMS_SQL.DEFINE_COLUMN(curid,3,v_hiredate);
 DBMS_SQL.DEFINE_COLUMN(curid,4,v_sal);
 DBMS_SQL.DEFINE_COLUMN(curid,5,v_comm);
 .
 .
 .
END;

The following example shows an alternative to the preceding example that produces the

 exact same results. Note that the lengths of the data types are irrelevant. The empno,

sal, and comm columns will still return data equivalent to NUMBER(4) and NUMBER(7,2),

respectively, even though v_num is defined as NUMBER(1). In the preceding example, each

 of the declarations in the COLUMN_VALUE stored procedure are configured with appropriat

e maximum sizes. The ename column will return data up to ten characters in length as

defined by the length parameter in the DEFINE_COLUMN call. The length that is indicated

 by the data type VARCHAR2(1) declared for v_varchar is ignored. The actual size of the

returned data is determined by the COLUMN_VALUE stored procedure.

DECLARE
 curid INTEGER;
 v_num NUMBER(1);
 v_varchar VARCHAR2(1);
 v_date DATE;
 v_sql VARCHAR2(50) := 'SELECT empno, ename, hiredate, sal, ' ||
 'comm FROM emp';
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 DBMS_SQL.DEFINE_COLUMN(curid,1,v_num);
 DBMS_SQL.DEFINE_COLUMN(curid,2,v_varchar,10);
 DBMS_SQL.DEFINE_COLUMN(curid,3,v_date);
 DBMS_SQL.DEFINE_COLUMN(curid,4,v_num);
 DBMS_SQL.DEFINE_COLUMN(curid,5,v_num);
 .
 .
 .

Issue: 20200701 867

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

END;

DEFINE_COLUMN_CHAR

The DEFINE_COLUMN_CHAR stored procedure defines a CHAR column or expression in the

SELECT list that is to be returned and retrieved in a cursor.

DEFINE_COLUMN_CHAR(c INTEGER, position INTEGER, column CHAR, column_size INTEGER
)

Parameters

Parameter Description

c The ID of the cursor associated with the
SELECT command.

position The position of the column or expression in
the SELECT list that is being defined.

column A CHAR variable.

column_size The maximum length of the returned data
. Returned data exceeding column_size is
truncated to column_size characters.

DEFINE_COLUMN_RAW

The DEFINE_COLUMN_RAW stored procedure defines a RAW column or expression in the

SELECT list that is to be returned and retrieved in a cursor.

DEFINE_COLUMN_RAW(c INTEGER, position INTEGER, column RAW,
 column_size INTEGER)

Parameters

Parameter Description

c The ID of the cursor associated with the
SELECT command.

position The position of the column or expression in
the SELECT list that is being defined.

column A RAW variable.

column_size The maximum length of the returned data
. Returned data exceeding column_size is
truncated to column_size characters.

868 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

DESCRIBE_COLUMNS

The DESCRIBE_COLUMNS stored procedure describes the columns returned by a cursor.

DESCRIBE_COLUMNS(c INTEGER, col_cnt OUT INTEGER, desc_t OUT
 DESC_TAB);

Parameters

Parameter Description

c The ID of the cursor.

col_cnt The number of columns in the cursor result
set.

desc_tab The table that contains a description of
each column returned by the cursor. The
 descriptions are of type DESC_REC, and
contain the following values:

Column name Type

col_type INTEGER

col_max_len INTEGER

col_name VARCHAR2(128)

col_name_len INTEGER

col_schema_name VARCHAR2(128)

col_schema_name_len INTEGER

col_precision INTEGER

col_scale INTEGER

col_charsetid INTEGER

col_charsetform INTEGER

col_null_ok BOOLEAN

EXECUTE

The EXECUTE function runs a parsed SQL command or SPL block.

status INTEGER EXECUTE(c INTEGER)

Parameters

Issue: 20200701 869

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

c The cursor ID of the parsed SQL statement
or SPL block to be run.

status If the SQL command is DELETE, INSERT
, or UPDATE, this parameter indicates
the number of records processed. This
 parameter is meaningless for other
commands.

Examples

The following anonymous block inserts a row into the dept table.

DECLARE
 curid INTEGER;
 v_sql VARCHAR2(50);
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 v_sql := 'INSERT INTO dept VALUES (50, ''HR'', ''LOS ANGELES'')';
 DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

EXECUTE_AND_FETCH

The EXECUTE_AND_FETCH function runs a parsed SELECT command and fetches one row.

status INTEGER EXECUTE_AND_FETCH(c INTEGER
 [, exact BOOLEAN])

Parameters

Parameter Description

c The ID of the cursor for the SELECT
command to be run.

870 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

exact If this parameter is set to TRUE, an exception
 occurs if the number of rows in the result
set is not equal to 1. If this parameter is set
 to FALSE, no exception occurs. The default
 value of this parameter is FALSE. If this
parameter is set to TRUE and the result set
 contains no records, a NO_DATE_FOUND
exception will occur. If this parameter is set
to TRUE and the result set contains multiple
 records, a TOO_MANY_ROWS exception will
 occur.

status If a row is fetched, 1 is returned for this
 parameter. If no rows are fetched, 0 is
returned for this parameter. If an exception
occurs, no value is returned.

Examples

The following stored procedure uses the EXECUTE_AND_FETCH function to retrieve one

employee by using the employee’s name. If the employee is not found, or more than one

employees with the same name are found, an exception will occur.

CREATE OR REPLACE PROCEDURE select_by_name(
 p_ename emp.ename%TYPE
)
IS
 curid INTEGER;
 v_empno emp.empno%TYPE;
 v_hiredate emp.hiredate%TYPE;
 v_sal emp.sal%TYPE;
 v_comm emp.comm%TYPE;
 v_dname dept.dname%TYPE;
 v_disp_date VARCHAR2(10);
 v_sql VARCHAR2(120) := 'SELECT empno, hiredate, sal, ' ||
 'NVL(comm, 0), dname ' ||
 'FROM emp e, dept d ' ||
 'WHERE ename = :p_ename ' ||
 'AND e.deptno = d.deptno';
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 DBMS_SQL.BIND_VARIABLE(curid,':p_ename',UPPER(p_ename));
 DBMS_SQL.DEFINE_COLUMN(curid,1,v_empno);
 DBMS_SQL.DEFINE_COLUMN(curid,2,v_hiredate);
 DBMS_SQL.DEFINE_COLUMN(curid,3,v_sal);
 DBMS_SQL.DEFINE_COLUMN(curid,4,v_comm);
 DBMS_SQL.DEFINE_COLUMN(curid,5,v_dname,14);
 v_status := DBMS_SQL.EXECUTE_AND_FETCH(curid,TRUE);
 DBMS_SQL.COLUMN_VALUE(curid,1,v_empno);
 DBMS_SQL.COLUMN_VALUE(curid,2,v_hiredate);

Issue: 20200701 871

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 DBMS_SQL.COLUMN_VALUE(curid,3,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_comm);
 DBMS_SQL.COLUMN_VALUE(curid,5,v_dname);
 v_disp_date := TO_CHAR(v_hiredate, 'MM/DD/YYYY');
 DBMS_OUTPUT.PUT_LINE('Number : ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || UPPER(p_ename));
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_disp_date);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Commission: ' || v_comm);
 DBMS_OUTPUT.PUT_LINE('Department: ' || v_dname);
 DBMS_SQL.CLOSE_CURSOR(curid);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Employee ' || p_ename || ' not found');
 DBMS_SQL.CLOSE_CURSOR(curid);
 WHEN TOO_MANY_ROWS THEN
 DBMS_OUTPUT.PUT_LINE('Too many employees named, ' ||
 p_ename || ', found');
 DBMS_SQL.CLOSE_CURSOR(curid);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

EXEC select_by_name('MARTIN')

Number : 7654
Name : MARTIN
Hire Date : 09/28/1981
Salary : 1250
Commission: 1400
Department: SALES

FETCH_ROWS

The FETCH_ROWS function retrieves a row from a cursor.

status INTEGER FETCH_ROWS(c INTEGER)

Parameters

Parameter Description

c The ID of the cursor used to fetch a row.

status If a row is fetched, 1 is returned for this
 parameter. If no rows are fetched, 0 is
returned for this parameter.

Examples

The following example fetches the rows from the emp table and displays the results.

DECLARE

872 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 curid INTEGER;
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);
 v_sql VARCHAR2(50) := 'SELECT empno, ename, hiredate, sal, ' ||
 'comm FROM emp';
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 DBMS_SQL.DEFINE_COLUMN(curid,1,v_empno);
 DBMS_SQL.DEFINE_COLUMN(curid,2,v_ename,10);
 DBMS_SQL.DEFINE_COLUMN(curid,3,v_hiredate);
 DBMS_SQL.DEFINE_COLUMN(curid,4,v_sal);
 DBMS_SQL.DEFINE_COLUMN(curid,5,v_comm);

 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME HIREDATE SAL COMM');
 DBMS_OUTPUT.PUT_LINE('----- ---------- ---------- -------- ' ||
 '--------');
 LOOP
 v_status := DBMS_SQL.FETCH_ROWS(curid);
 EXIT WHEN v_status = 0;
 DBMS_SQL.COLUMN_VALUE(curid,1,v_empno);
 DBMS_SQL.COLUMN_VALUE(curid,2,v_ename);
 DBMS_SQL.COLUMN_VALUE(curid,3,v_hiredate);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,5,v_comm);
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename,10) || ' ' ||
 TO_CHAR(v_hiredate,'yyyy-mm-dd') || ' ' ||
 TO_CHAR(v_sal,'9,999.99') || ' ' ||
 TO_CHAR(NVL(v_comm,0),'9,999.99'));
 END LOOP;
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

EMPNO ENAME HIREDATE SAL COMM
----- ---------- ---------- -------- --------
7369 SMITH 1980-12-17 800.00 .00
7499 ALLEN 1981-02-20 1,600.00 300.00
7521 WARD 1981-02-22 1,250.00 500.00
7566 JONES 1981-04-02 2,975.00 .00
7654 MARTIN 1981-09-28 1,250.00 1,400.00
7698 BLAKE 1981-05-01 2,850.00 .00
7782 CLARK 1981-06-09 2,450.00 .00
7788 SCOTT 1987-04-19 3,000.00 .00
7839 KING 1981-11-17 5,000.00 .00
7844 TURNER 1981-09-08 1,500.00 .00
7876 ADAMS 1987-05-23 1,100.00 .00
7900 JAMES 1981-12-03 950.00 .00
7902 FORD 1981-12-03 3,000.00 .00
7934 MILLER 1982-01-23 1,300.00 .00

IS_OPEN

The IS_OPEN function provides the capability to checks whether the specified cursor is open

.

status BOOLEAN IS_OPEN(c INTEGER)

Issue: 20200701 873

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameters

Parameter Description

c The ID of the cursor to be checked.

status If the cursor is open, this parameter is set
 to TRUE. If the cursor is not open, this
parameter is set to FALSE.

LAST_ROW_COUNT

The LAST_ROW_COUNT function returns the total number of rows that are fetched.

rowcnt INTEGER LAST_ROW_COUNT

Parameters

Parameter Description

rowcnt The total number of fetched rows.

Examples

The following example uses the LAST_ROW_COUNT function to display the total number of

rows fetched in the query.

DECLARE
 curid INTEGER;
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);
 v_sql VARCHAR2(50) := 'SELECT empno, ename, hiredate, sal, ' ||
 'comm FROM emp';
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 DBMS_SQL.DEFINE_COLUMN(curid,1,v_empno);
 DBMS_SQL.DEFINE_COLUMN(curid,2,v_ename,10);
 DBMS_SQL.DEFINE_COLUMN(curid,3,v_hiredate);
 DBMS_SQL.DEFINE_COLUMN(curid,4,v_sal);
 DBMS_SQL.DEFINE_COLUMN(curid,5,v_comm);

 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME HIREDATE SAL COMM');
 DBMS_OUTPUT.PUT_LINE('----- ---------- ---------- -------- ' ||
 '--------');
 LOOP
 v_status := DBMS_SQL.FETCH_ROWS(curid);
 EXIT WHEN v_status = 0;

874 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 DBMS_SQL.COLUMN_VALUE(curid,1,v_empno);
 DBMS_SQL.COLUMN_VALUE(curid,2,v_ename);
 DBMS_SQL.COLUMN_VALUE(curid,3,v_hiredate);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,5,v_comm);
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename,10) || ' ' ||
 TO_CHAR(v_hiredate,'yyyy-mm-dd') || ' ' ||
 TO_CHAR(v_sal,'9,999.99') || ' ' ||
 TO_CHAR(NVL(v_comm,0),'9,999.99'));
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Number of rows: ' || DBMS_SQL.LAST_ROW_COUNT);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

EMPNO ENAME HIREDATE SAL COMM
----- ---------- ---------- -------- --------
7369 SMITH 1980-12-17 800.00 .00
7499 ALLEN 1981-02-20 1,600.00 300.00
7521 WARD 1981-02-22 1,250.00 500.00
7566 JONES 1981-04-02 2,975.00 .00
7654 MARTIN 1981-09-28 1,250.00 1,400.00
7698 BLAKE 1981-05-01 2,850.00 .00
7782 CLARK 1981-06-09 2,450.00 .00
7788 SCOTT 1987-04-19 3,000.00 .00
7839 KING 1981-11-17 5,000.00 .00
7844 TURNER 1981-09-08 1,500.00 .00
7876 ADAMS 1987-05-23 1,100.00 .00
7900 JAMES 1981-12-03 950.00 .00
7902 FORD 1981-12-03 3,000.00 .00
7934 MILLER 1982-01-23 1,300.00 .00
Number of rows: 14

OPEN_CURSOR

The OPEN_CURSOR function creates a new cursor. A cursor must be used to parse and

execute a dynamic SQL statements. After being opened, a curser can be re-used with the

same or different SQL statements without the need for you to close and re-open the cursor.

c INTEGER OPEN_CURSOR

Parameters

Parameter Description

c The ID of the newly created cursor.

Examples

The following example shows how to create a new cursor.

DECLARE
 curid INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 .
 .

Issue: 20200701 875

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 .
END;

PARSE

The PARSE stored procedure parses an SQL command or SPL block. If the SQL command is a

 DDL command, it is immediately run and does not require calling the EXECUTE function.

PARSE(c INTEGER, statement VARCHAR2, language_flag INTEGER)

Parameters

Parameter Description

c The ID of an open cursor.

statement The SQL command or SPL block to be
parsed. An SQL command cannot end with
a semicolon (;). An SPL block must end with
 a semicolon (;).

language_flag The language flag provided for compatibil
ity with Oracle syntax. Use DBMS_SQL.V6,
DBMS_SQL.V7 or DBMS_SQL.native. This flag
 is ignored, and all syntax is assumed to be
in POLARDB compatible with Oracle form.

Examples

The following anonymous block creates a table named job. Note that DDL statements are

immediately run by the PARSE stored procedure and do not require calling the EXECUTE

function.

DECLARE
 curid INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid, 'CREATE TABLE job (jobno NUMBER(3), ' ||
 'jname VARCHAR2(9))',DBMS_SQL.native);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

The following code snippet inserts two rows into the job table.

DECLARE
 curid INTEGER;
 v_sql VARCHAR2(50);
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 v_sql := 'INSERT INTO job VALUES (100, ''ANALYST'')';
 DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);

876 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
 v_sql := 'INSERT INTO job VALUES (200, ''CLERK'')';
 DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

Number of rows processed: 1
Number of rows processed: 1

The following anonymous block uses the DBMS_SQL package to execute a block that

contains two INSERT statements. Note that the end of the block contains a terminating

semicolon (;), while in the preceding example, each individual INSERT statement does not

have a terminating semicolon (;).

DECLARE
 curid INTEGER;
 v_sql VARCHAR2(100);
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 v_sql := 'BEGIN ' ||
 'INSERT INTO job VALUES (300, ''MANAGER''); ' ||
 'INSERT INTO job VALUES (400, ''SALESMAN''); ' ||
 'END;';
 DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

17.16 DBMS_UTILITY

The DBMS_UTILITY package supports the following utility programs:

Function/Procedure Category Return type Description

ANALYZE_DATABASE(
method [, estimate_r
ows [, estimate_p
ercent [, method_opt
]]])

Procedure N/A Analyzes database
tables.

ANALYZE_PA
RT_OBJECT(schema
, object_name
 [, object_type [,
command_type [,
command_opt [,
sample_clause]]]])

Procedure N/A Analyzes a partitione
d table.

Issue: 20200701 877

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Function/Procedure Category Return type Description

ANALYZE_SCHEMA
(schema, method
 [, estimate_rows [,
estimate_percent [,
method_opt]]])

Procedure N/A Analyzes schema
tables.

CANONICALIZE(name
, canon_name OUT,
canon_len)

Procedure N/A Canonicalizes a
string by using a
method, for example
, by removing space
characters.

COMMA_TO_TABLE(
list, tablen OUT, tab
OUT)

Procedure N/A Converts a comma
-delimited list of
names to a table of
names.

DB_VERSION(version
 OUT, compatibility
OUT)

Procedure N/A Retrieves a database
 version.

EXEC_DDL_S
TATEMENT(parse_stri
ng)

Procedure N/A Executes a data
description language
 (DDL) statement.

FORMAT_CALL_STACK Function TEXT Formats the current
call stack.

GET_CPU_TIME Function NUMBER Retrieves the current
CPU time.

GET_DEPENDENCY(
type, schema, name)

Procedure N/A Retrieve objects that
are dependent upon
the specified object.

GET_HASH_VALUE
(name, base,
hash_size)

Function NUMBER Computes a hash
value.

GET_PARAME
TER_VALUE(parnam
, intval OUT, strval
OUT)

Procedure BINARY_INTEGER Retrieves database
 initialization
parameter settings.

GET_TIME Function NUMBER Retrieves the current
 time.

878 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Function/Procedure Category Return type Description

NAME_TOKENIZE(
name, a OUT, b OUT
, c OUT, dblink OUT,
nextpos OUT)

Procedure N/A Parses the specified
 name into its
component parts.

TABLE_TO_COMMA(
tab, tablen OUT, list
OUT)

Procedure N/A Converts a table of
names to a comma-
delimited list.

The implementation of DBMS_UTILITY in PolarDB databases compatible with Oracle is a

 partial implementation when compared with native Oracle. Only those functions and

procedures listed in the preceding table are supported.

The following table lists the public variables available in the DBMS_UTILITY package.

Public variable Data type Value Description

inv_error_on_restric
tions

PLS_INTEGER 1 Used by the
INVALIDATE
procedure.

lname_array TABLE - Lists long names.

uncl_array TABLE - Lists users and
names.

LNAME_ARRAY

The LNAME_ARRAY variable is used to store lists of long names including fully-qualified

names.

TYPE lname_array IS TABLE OF VARCHAR2(4000) INDEX BY BINARY_INTEGER;

UNCL_ARRAY

The UNCL_ARRAY variable is used to store lists of users and names.

TYPE uncl_array IS TABLE OF VARCHAR2(227) INDEX BY BINARY_INTEGER;

ANALYZE_DATABASE, ANALYZE SCHEMA, and ANALYZE PART_OBJECT

You can use the ANALYZE_DATABASE(), ANALYZE_SCHEMA() and ANALYZE_PART_OBJECT()

procedures to gather statistics on tables in a database. When you execute the ANALYZE

statement, Postgres samples the data in a table and records distribution statistics in the

pg_statistics system table.

Issue: 20200701 879

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

ANALYZE_DATABASE, ANALYZE_SCHEMA, and ANALYZE_PART_OBJECT differ in the number of

 tables that are processed:

• ANALYZE_DATABASE analyzes all tables in all schemas within the current database.

• ANALYZE_SCHEMA analyzes all tables in a specified schema within the current database.

• ANALYZE_PART_OBJECT analyzes a single table.

The ANALYZE command has the following syntax:

ANALYZE_DATABASE(method VARCHAR2 [, estimate_rows NUMBER
 [, estimate_percent NUMBER [, method_opt VARCHAR2]]])

ANALYZE_SCHEMA(schema VARCHAR2, method VARCHAR2
 [, estimate_rows NUMBER [, estimate_percent NUMBER
 [, method_opt VARCHAR2]]])

ANALYZE_PART_OBJECT(schema VARCHAR2, object_name VARCHAR2
 [, object_type CHAR [, command_type CHAR
 [, command_opt VARCHAR2 [, sample_clause]]]])

Parameters

• ANALYZE_DATABASE and ANALYZE_SCHEMA

Parameter Description

method The method parameter specifies whether
 the ANALYZE procedure populates the
pg_statistics table or removes entries from
 the pg_statistics table. If you specify a
method of DELETE, the ANALYZE procedure
 removes the relevant rows from pg_statist
ics. If you specify a method of COMPUTE
 or ESTIMATE, the ANALYZE procedure
analyzes one or more multiple tables
and records the distribution informatio
n in pg_statistics. The COMPUTE and
ESTIMATE methods have no difference
. Both methods execute the Postgres
ANALYZE statement. All other parameters
are validated and then ignored.

880 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

estimate_rows The number of rows on which the
estimated statistics is based. One of
estimate_rows or estimate_percent must
be specified if the ESTIMATE method is
specified.

This parameter is ignored, but is included

for compatibility.

estimate_percent The percentage of rows on which the
estimated statistics is based. One of
estimate_rows or estimate_percent must
be specified if the ESTIMATE method is
specified.

This parameter is ignored, but is included

for compatibility.

method_opt The object types to be analyzed. The
following combinations are supported:

[FOR TABLE]
[FOR ALL [INDEXED] COLUMNS] [SIZE n
]
[FOR ALL INDEXES]

This parameter is ignored, but is included

for compatibility.

• ANALYZE_PART_OBJECT

Parameter Description

schema The name of the schema whose objects
are analyzed.

object_name The name of the partitioned object to be
analyzed.

object_type The type of object to be analyzed. Valid
values: T: table, I: index.

This parameter is ignored, but is included

for compatibility.

Issue: 20200701 881

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

command_type The type of the analysis function to be run.
Valid values:

- E: gathers estimated statistics based
 on a specified number of rows or a
percentage of rows in the sample_cla
use clause.

- C: computes exact statistics.
- V: validates the structure and integrity

of the partitions.

This parameter is ignored, but is included

for compatibility.

command_opt If command_type is set to C or E, the
following combinations are supported:

[FOR TABLE]
[FOR ALL COLUMNS]
[FOR ALL LOCAL INDEXES]

If command_type is set to V and object_typ

e is set to T, CASCADE is supported.

This parameter is ignored, but is included

for compatibility.

sample_clause If command_type is set to E, the following
clause is included to specify the number of
rows or percentage of rows on which the
estimated statistics is based:

SAMPLE n { ROWS | PERCENT }

This parameter is ignored, but is included

for compatibility.

CANONICALIZE

The CANONICALIZE procedure supports the following features to manage an input string:

• If the string is not enclosed in double quotation marks, checks whether the string uses

 the characters of a valid identifier. If not, an error message is returned. If the string is

enclosed in double quotation marks, all characters are allowed.

882 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

• If the string is not enclosed in double quotation marks and does not contain periods,

capitalizes all alphabetic characters and eliminates leading and trailing spaces.

• If the string is enclosed in double quotation marks and does not contain periods,

removes the double quotation marks.

• If the string contains periods and no portion of the string is enclosed in double quotation

 marks, capitalizes each portion of the string and encloses each portion in double

quotation marks.

• If the string contains periods and portions of the string are double-quoted, returns the

double-quoted portions unchanged including the double quotation marks and returns

the non-double-quoted portions capitalized and enclosed in double quotation marks.

CANONICALIZE(name VARCHAR2, canon_name OUT VARCHAR2,
 canon_len BINARY_INTEGER)

Parameters

Parameter Description

name The string to be canonicalized.

canon_name The canonicalized string.

canon_len The number of bytes in a name to be
 canonicalized starting from the first
character.

Examples

The following procedure applies the CANONICALIZE procedure on its input parameter and

displays the results.

CREATE OR REPLACE PROCEDURE canonicalize (
 p_name VARCHAR2,
 p_length BINARY_INTEGER DEFAULT 30
)
IS
 v_canon VARCHAR2(100);
BEGIN
 DBMS_UTILITY.CANONICALIZE(p_name,v_canon,p_length);
 DBMS_OUTPUT.PUT_LINE('Canonicalized name ==>' || v_canon || '<==');
 DBMS_OUTPUT.PUT_LINE('Length: ' || LENGTH(v_canon));
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

EXEC canonicalize('Identifier')
Canonicalized name ==>IDENTIFIER<==
Length: 10

Issue: 20200701 883

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

EXEC canonicalize('"Identifier"')
Canonicalized name ==>Identifier<==
Length: 10

EXEC canonicalize('"_+142%"')
Canonicalized name ==>_+142%<==
Length: 6

EXEC canonicalize('abc.def.ghi')
Canonicalized name ==>"ABC"." DEF"." GHI"<==
Length: 17

EXEC canonicalize('"abc.def.ghi"')
Canonicalized name ==>abc.def.ghi<==
Length: 11

EXEC canonicalize('"abc".def."ghi"')
Canonicalized name ==>"abc"." DEF"."ghi"<==
Length: 17

EXEC canonicalize('"abc.def".ghi')
Canonicalized name ==>"abc.def"." GHI"<==
Length: 15

COMMA_TO_TABLE

You can use the COMMA_TO_TABLE procedure to convert a comma-delimited list of names

into a table of names. Each entry in the list is changed into a table entry. The names must

be formatted as valid identifiers.

COMMA_TO_TABLE(list VARCHAR2, tablen OUT BINARY_INTEGER,
 tab OUT { LNAME_ARRAY | UNCL_ARRAY })

Parameters

Parameter Description

list The comma-delimited list of names from
the tab parameter.

tablen The number of entries in a list.

tab The table that contains the listed names.

LNAME_ARRAY DBMS_UTILITY LNAME_ARRAY. For more
information, see LNAME_ARRAY.

UNCL_ARRAY DBMS_UTILITY UNCL_ARRAY. For more
information, see UNCL_ARRAY.

Examples

The following example shows how the COMMA_TO_TABLE procedure converts a list of

names to a table and displays the table entries.

CREATE OR REPLACE PROCEDURE comma_to_table (

884 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 p_list VARCHAR2
)
IS
 r_lname DBMS_UTILITY.LNAME_ARRAY;
 v_length BINARY_INTEGER;
BEGIN
 DBMS_UTILITY.COMMA_TO_TABLE(p_list,v_length,r_lname);
 FOR i IN 1..v_length LOOP
 DBMS_OUTPUT.PUT_LINE(r_lname(i));
 END LOOP;
END;

EXEC comma_to_table('edb.dept, edb.emp, edb.jobhist')

edb.dept
edb.emp
edb.jobhist

DB_VERSION

You can use the DB_VERSION procedure to return the version number of the database.

DB_VERSION(version OUT VARCHAR2, compatibility OUT VARCHAR2)

Parameters

Parameter Description

version The version of the database.

compatibility The compatibility of the database. The
meaning is defined by implementation.

Examples

The following anonymous block displays the database version information.

DECLARE
 v_version VARCHAR2(150);
 v_compat VARCHAR2(150);
BEGIN
 DBMS_UTILITY.DB_VERSION(v_version,v_compat);
 DBMS_OUTPUT.PUT_LINE('Version: ' || v_version);
 DBMS_OUTPUT.PUT_LINE('Compatibility: ' || v_compat);
END;

Version: EnterpriseDB 10.0.0 on i686-pc-linux-gnu, compiled by GCC gcc (GCC) 4.1.2
20080704 (Red Hat 4.1.2-48), 32-bit

Issue: 20200701 885

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Compatibility: EnterpriseDB 10.0.0 on i686-pc-linux-gnu, compiled by GCC gcc (GCC) 4.1.
220080704 (Red Hat 4.1.2-48), 32-bit

EXEC_DDL_STATEMENT

You can use the EXEC_DDL_STATEMENT procedure to run a DDL command.

EXEC_DDL_STATEMENT(parse_string VARCHAR2)

Parameters

Parameter Description

parse_string The DDL command to be run.

Examples

The following anonymous block creates the job table.

BEGIN
 DBMS_UTILITY.EXEC_DDL_STATEMENT(
 'CREATE TABLE job (' ||
 'jobno NUMBER(3),' ||
 'jname VARCHAR2(9))'
);
END;

If the parse_string does not include a valid DDL statement, the following error message is

returned:

exec dbms_utility.exec_ddl_statement('select rownum from dual');
ERROR: EDB-20001: 'parse_string' must be a valid DDL statement

In this case, the behavior of PolarDB databases compatible with Oracle differs from that of

Oracle. Oracle supports the invalid parse_string and no error message is returned.

FORMAT_CALL_STACK

You can use the FORMAT_CALL_STACK function to return the formatted contents of the

current call stack.

DBMS_UTILITY.FORMAT_CALL_STACKreturn VARCHAR2

This function can be used in a stored procedure, function, or package to return the current

call stack in a readable format. This function is helpful in debugging.

GET_CPU_TIME

You can use the GET_CPU_TIME function to return the CPU time in hundredths of a second

from some arbitrary point in time.

886 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameters

Parameter Description

cputime The number of hundredths of a second of
CPU time.

Examples

The following SELECT command retrieves the current CPU time, which is 603 hundredths of

a second or 0.0603 seconds.

SELECT DBMS_UTILITY.GET_CPU_TIME FROM DUAL;

get_cpu_time

 603

GET_DEPENDENCY

You can use the GET_DEPENDENCY procedure to list the objects that are dependent on the

specified object. The procedure does not show dependencies for functions or procedures.

GET_DEPENDENCY(type VARCHAR2, schema VARCHAR2,
 name VARCHAR2)

Parameters

Parameter Description

type The type of the name object. Valid values:
INDEX, PACKAGE, PACKAGE BODY, SEQUENCE
, TABLE, TRIGGER, TYPE, and VIEW.

schema The name of the schema in which the name
 object exists.

name The name of the object for which
dependencies are to be retrieved.

Examples

The following anonymous block retrieves dependencies on the EMP table.

BEGIN
 DBMS_UTILITY.GET_DEPENDENCY('TABLE','public','EMP');
END;

DEPENDENCIES ON public.EMP
--
*TABLE public.EMP()
* CONSTRAINT c public.emp()
* CONSTRAINT f public.emp()

Issue: 20200701 887

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

* CONSTRAINT p public.emp()
* TYPE public.emp()
* CONSTRAINT c public.emp()
* CONSTRAINT f public.jobhist()
* VIEW .empname_view()

GET_HASH_VALUE

You can use the GET_HASH_VALUE function to compute a hash value for a specified string.

hash NUMBER GET_HASH_VALUE(name VARCHAR2, base NUMBER,
 hash_size NUMBER)

Parameters

Parameter Description

name The string for which a hash value is
computed.

base The value starting from which hash values
are generated.

hash_size The number of hash values for the expected
 hash table.

hash The hash value that is generated.

Examples

The following anonymous block creates a table of hash values by using the ename column

of the emp table and then displays the key along with the hash value. The hash values start

 from 100 and include a maximum of 1,024 distinct values.

DECLARE
 v_hash NUMBER;
 TYPE hash_tab IS TABLE OF NUMBER INDEX BY VARCHAR2(10);
 r_hash HASH_TAB;
 CURSOR emp_cur IS SELECT ename FROM emp;
BEGIN
 FOR r_emp IN emp_cur LOOP
 r_hash(r_emp.ename) :=
 DBMS_UTILITY.GET_HASH_VALUE(r_emp.ename,100,1024);
 END LOOP;
 FOR r_emp IN emp_cur LOOP
 DBMS_OUTPUT.PUT_LINE(RPAD(r_emp.ename,10) || ' ' ||
 r_hash(r_emp.ename));
 END LOOP;
END;

SMITH 377
ALLEN 740
WARD 718
JONES 131
MARTIN 176
BLAKE 568

888 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

CLARK 621
SCOTT 1097
KING 235
TURNER 850
ADAMS 156
JAMES 942
FORD 775
MILLER 148

GET_PARAMETER_VALUE

You can use the GET_PARAMETER_VALUE procedure to retrieve database initialization

parameter settings.

status BINARY_INTEGER GET_PARAMETER_VALUE(parnam VARCHAR2,
 intval OUT INTEGER, strval OUT VARCHAR2)

Parameters

Parameter Description

parnam The name of the parameter whose value is
 returned. The parameters are listed in the
pg_settings system view.

intval The value of an integer parameter or the
length of the strval parameter.

strval The value of a string parameter.

status Returns 0 if the parameter value is INTEGER
 or BOOLEAN. Returns 1 if the parameter
value is a string.

Examples

The following anonymous block shows the values of two initialization parameters.

DECLARE
 v_intval INTEGER;
 v_strval VARCHAR2(80);
BEGIN
 DBMS_UTILITY.GET_PARAMETER_VALUE('max_fsm_pages', v_intval, v_strval);
 DBMS_OUTPUT.PUT_LINE('max_fsm_pages' || ': ' || v_intval);
 DBMS_UTILITY.GET_PARAMETER_VALUE('client_encoding', v_intval, v_strval);
 DBMS_OUTPUT.PUT_LINE('client_encoding' || ': ' || v_strval);
END;

max_fsm_pages: 72625
client_encoding: SQL_ASCII

GET_TIME

You can use the GET_TIME function to return the current time in hundredths of a second.

Issue: 20200701 889

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameters

Parameter Description

time The number of hundredths of a second
elapsed since the program is started.

Examples

The following example shows the calls to the GET_TIME function.

SELECT DBMS_UTILITY.GET_TIME FROM DUAL;

 get_time

 1555860

SELECT DBMS_UTILITY.GET_TIME FROM DUAL;

 get_time

 1556037

NAME_TOKENIZE

You can use the NAME_TOKENIZE procedure to parse a name into its component parts

. Names that are not enclosed in double quotation marks are capitalized. The double

quotation marks are removed from names with double quotation marks.

NAME_TOKENIZE(name VARCHAR2, a OUT VARCHAR2, b OUT VARCHAR2,c OUT VARCHAR2
, dblink OUT VARCHAR2, nextpos OUT BINARY_INTEGER)

Parameters

Parameter Description

name The string that contains a name in the
following format:

a[.b[.c]][@dblink]

a Returns the leftmost component.

b Returns the second component if the
component exists.

c Returns the third component if the
component exists.

dblink Returns the database link name.

nextpos Position of the last character parsed in the
name.

890 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Examples

The following stored procedure is used to display the returned parameter values of the

NAME_TOKENIZE procedure for various names.

CREATE OR REPLACE PROCEDURE name_tokenize (
 p_name VARCHAR2
)
IS
 v_a VARCHAR2(30);
 v_b VARCHAR2(30);
 v_c VARCHAR2(30);
 v_dblink VARCHAR2(30);
 v_nextpos BINARY_INTEGER;
BEGIN
 DBMS_UTILITY.NAME_TOKENIZE(p_name,v_a,v_b,v_c,v_dblink,v_nextpos);
 DBMS_OUTPUT.PUT_LINE('name : ' || p_name);
 DBMS_OUTPUT.PUT_LINE('a : ' || v_a);
 DBMS_OUTPUT.PUT_LINE('b : ' || v_b);
 DBMS_OUTPUT.PUT_LINE('c : ' || v_c);
 DBMS_OUTPUT.PUT_LINE('dblink : ' || v_dblink);
 DBMS_OUTPUT.PUT_LINE('nextpos: ' || v_nextpos);
END;

Tokenize the name parameter set to emp:

BEGIN
 name_tokenize('emp');
END;

name : emp
a : EMP
b :
c :
dblink :
nextpos: 3

Tokenize the name parameter set to edb.list_emp:

BEGIN
 name_tokenize('edb.list_emp');
END;

name : edb.list_emp
a : EDB
b : LIST_EMP
c :
dblink :
nextpos: 12

Tokenize the name parameter set to "edb"."Emp_Admin".update_emp_sal:

BEGIN
 name_tokenize('"edb"." Emp_Admin".update_emp_sal');
END;

name : "edb"." Emp_Admin".update_emp_sal
a : edb
b : Emp_Admin

Issue: 20200701 891

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

c : UPDATE_EMP_SAL
dblink :
nextpos: 32

Tokenize the name parameter set to edb.emp@edb_dblink:

BEGIN
 name_tokenize('edb.emp@edb_dblink');
END;

name : edb.emp@edb_dblink
a : EDB
b : EMP
c :
dblink : EDB_DBLINK
nextpos: 18

TABLE_TO_COMMA

You can use the TABLE_TO_COMMA procedure to convert a table of names into a comma-

delimited list of names. Each table entry is changed into a list entry. The names must be

formatted as valid identifiers.

TABLE_TO_COMMA(tab { LNAME_ARRAY | UNCL_ARRAY },
 tablen OUT BINARY_INTEGER, list OUT VARCHAR2)

Parameters

Parameter Description

tab The table that contains names.

LNAME_ARRAY DBMS_UTILITY LNAME_ARRAY. For more
information, see LNAME_ARRAY.

UNCL_ARRAY DBMS_UTILITY UNCL_ARRAY. For more
information, see UNCL_ARRAY.

tablen The number of entries in the list.

list The comma-delimited list of names
specified by the tab parameter.

Examples

The following example shows how the COMMA_TO_TABLE procedure converts a comma-

delimited list to a table and how the TABLE_TO_COMMA procedure then converts the table

back to a comma-delimited list and displays the list.

CREATE OR REPLACE PROCEDURE table_to_comma (
 p_list VARCHAR2
)
IS
 r_lname DBMS_UTILITY.LNAME_ARRAY;

892 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 v_length BINARY_INTEGER;
 v_listlen BINARY_INTEGER;
 v_list VARCHAR2(80);
BEGIN
 DBMS_UTILITY.COMMA_TO_TABLE(p_list,v_length,r_lname);
 DBMS_OUTPUT.PUT_LINE('Table Entries');
 DBMS_OUTPUT.PUT_LINE('-------------');
 FOR i IN 1..v_length LOOP
 DBMS_OUTPUT.PUT_LINE(r_lname(i));
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('-------------');
 DBMS_UTILITY.TABLE_TO_COMMA(r_lname,v_listlen,v_list);
 DBMS_OUTPUT.PUT_LINE('Comma-Delimited List: ' || v_list);
END;

EXEC table_to_comma('edb.dept, edb.emp, edb.jobhist')

Table Entries

edb.dept
edb.emp
edb.jobhist

Comma-Delimited List: edb.dept, edb.emp, edb.jobhist

17.17 UTL_ENCODE

The UTL_ENCODE package provides the capability to encode and decode data.

Table 17-28: UTL_ENCODE functions and stored procedures

Function/stored procedure Return type Description

BASE64_DECODE(r) RAW Translates a Base64 encoded
 string to the original RAW
value.

BASE64_ENCODE(r) RAW Translates a RAW string to an
 encoded Base64 value.

BASE64_ENCODE(loid) TEXT Translates a TEXT string to an
 encoded Base64 value.

MIMEHEADER_DECODE(buf) VARCHAR2 Translates an encoded
MIMEHEADER formatted
string to its original value.

MIMEHEADER_ENCODE(buf,
encode_charset, encoding)

VARCHAR2 Converts and encodes a
 string in MIMEHEADER
format.

QUOTED_PRINTABLE_DECODE
(r)

RAW Translates an encoded string
 to a RAW value.

Issue: 20200701 893

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Function/stored procedure Return type Description

QUOTED_PRINTABLE_ENC
ODE(r)

RAW Translates an input string
 to a quoted-printable
formatted RAW value.

TEXT_DECODE(buf,
encode_charset, encoding)

VARCHAR2 Decodes a string encoded by
 TEXT_ENCODE.

TEXT_ENCODE(buf,
encode_charset, encoding)

VARCHAR2 Translates a string to a user-
specified character set, and
then encode the string.

UUDECODE(r) RAW Translates a uuencode
encoded string to a RAW
value.

UUENCODE(r, type, filename
, permission)

RAW Translates a RAW string to an
 encoded uuencode value.

BASE64_DECODE

Converts a Base64 encoded string into the original value that is encoded by the

BASE64_ENCODE function. Syntax:

BASE64_DECODE(r IN RAW)

This function returns a RAW value.

Parameters

Parameter Description

r The r parameter is the string that contains
 the Base64 encoded data that will be
converted into a RAW value.

Examples

Note:

Before using this example, you must run the following command:

SET bytea_output = escape;

This command instructs the server to escape non-printable characters and display BYTEA or

RAW values in readable form. For more information, see the Postgres Core Documentation

available at: http://www.enterprisedb.com/docs/en/9.3/pg/datatype-binary.html

894 Issue: 20200701

http://www.enterprisedb.com/docs/en/9.3/pg/datatype-binary.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

The following example uses the BASE64_ENCODE function to encode a string that contains

the text abc and then uses the BASE64_DECODE function to decode the string:

edb=# SELECT UTL_ENCODE.BASE64_ENCODE(CAST ('abc' AS RAW));
 base64_encode

 YWJj
(1 row)

edb=# SELECT UTL_ENCODE.BASE64_DECODE(CAST ('YWJj' AS RAW));
 base64_decode

 abc
(1 row)

BASE64_ENCODE

The BASE64_ENCODE function converts and encodes a string in Base64 format, as described

 in RFC 4648. This function is useful for composing MIME emails that you intend to send

using the UTL_SMTP package. The BASE64_ENCODE function has two syntaxes:

BASE64_ENCODE(r IN RAW)

And

BASE64_ENCODE(loid IN OID)

This function returns a RAW value or an OID.

Parameters

Parameter Description

r The r parameter specifies the RAW string
that will be converted into Base64.

loid The loid parameter specifies the ID of a
large object that will be converted into
Base64.

Examples

Note:

Issue: 20200701 895

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Before using this example, you must run the following command:

SET bytea_output = escape;

This command instructs the server to escape non-printable characters and display BYTEA or

RAW values in readable form. For more information, see the Postgres Core Documentation

available at: http://www.enterprisedb.com/docs/en/9.3/pg/datatype-binary.html

The following example uses the BASE64_ENCODE function to encode a string that contains

the text abc and then uses the BASE64_DECODE function to decode the string:

edb=# SELECT UTL_ENCODE.BASE64_ENCODE(CAST ('abc' AS RAW));
 base64_encode

 YWJj
(1 row)

edb=# SELECT UTL_ENCODE.BASE64_DECODE(CAST ('YWJj' AS RAW));
 base64_decode

 abc
(1 row)

MIMEHEADER_DECODE

The MIMEHEADER_DECODE function decodes values that are encoded by the MIMEHEADER

_ENCODE function. Syntax:

MIMEHEADER_DECODE(buf IN VARCHAR2)

This function returns a VARCHAR2 value.

Parameters

Parameter Description

buf The buf parameter contains the value (
encoded by the MIMEHEADER_ENCODE
function) that will be decoded.

Examples

The following example uses the MIMEHEADER_ENCODE function to encode a string and then

 uses the MIMEHEADER_DECODE function to decode the string:

edb=# SELECT UTL_ENCODE.MIMEHEADER_ENCODE('What is the date?') FROM DUAL;
 mimeheader_encode

 =? UTF8? Q? What is the date?? =
(1 row)

896 Issue: 20200701

http://www.enterprisedb.com/docs/en/9.3/pg/datatype-binary.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

edb=# SELECT UTL_ENCODE.MIMEHEADER_DECODE('=? UTF8? Q? What is the date?? =')
FROM DUAL;
 mimeheader_decode

 What is the date?
(1 row)

MIMEHEADER_ENCODE

The MIMEHEADER_ENCODE function converts a string into mime header format, and then

encodes the string. Syntax:

MIMEHEADER_ENCODE(buf IN VARCHAR2, encode_charset IN VARCHAR2 DEFAULT NULL,
encoding IN INTEGER DEFAULT NULL)

This function returns a VARCHAR2 value.

Parameters

Parameter Description

buf The buf parameter contains the string that
will be formatted and encoded. The string is
 a VARCHAR2 value.

encode_charset The encode_charset parameter specifies
the character set into which the string will
be converted before being formatted and
encoded. Default value: NULL.

encoding The encoding parameter specifies the
encoding type used when encoding the
string. You can specify one of the following
two encoding types:

• Specify the Q encoding type to enable
 quoted-printable encoding. If you do
 not specify a value, the MIMEHEADER
_ENCODE function will use quoted-
printable encoding.

• Specify the B encoding type to enable
base-64 encoding.

Examples

The following example uses the MIMEHEADER_ENCODE function to encode a string and then

 uses the MIMEHEADER_DECODE function to decode the string:

edb=# SELECT UTL_ENCODE.MIMEHEADER_ENCODE('What is the date?') FROM DUAL;
 mimeheader_encode

Issue: 20200701 897

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 =? UTF8? Q? What is the date?? =
(1 row)

edb=# SELECT UTL_ENCODE.MIMEHEADER_DECODE('=? UTF8? Q? What is the date?? =')
FROM DUAL;
 mimeheader_decode

 What is the date?
(1 row)

QUOTED_PRINTABLE_DECODE

The QUOTED_PRINTABLE_DECODE function converts an encoded quoted-printable string

into a decoded RAW string. Syntax:

QUOTED_PRINTABLE_DECODE(r IN RAW)

This function returns a RAW value.

Parameters

Parameter Description

r The r parameter contains the encoded string
 that will be decoded. The string is a RAW
value that is encoded by the QUOTED_PRI
NTABLE_ENCODE function.

Examples

Note:

Before using this example, you must run the following command:

SET bytea_output = escape;

This command instructs the server to escape non-printable characters and display BYTEA or

RAW values in readable form. For more information, see the Postgres Core Documentation

available at: http://www.enterprisedb.com/docs/en/9.3/pg/datatype-binary.html.

The following example first encodes and then decodes a string:

edb=# SELECT UTL_ENCODE.QUOTED_PRINTABLE_ENCODE('E=mc2') FROM DUAL;
quoted_printable_encode

 E=3Dmc2
(1 row)

edb=# SELECT UTL_ENCODE.QUOTED_PRINTABLE_DECODE('E=3Dmc2') FROM DUAL;
 quoted_printable_decode

 E=mc2

898 Issue: 20200701

http://www.enterprisedb.com/docs/en/9.3/pg/datatype-binary.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

(1 row)

QUOTED_PRINTABLE_ENCODE

The QUOTED_PRINTABLE_ENCODE function converts and encodes a string into quoted-

printable format. Syntax:

QUOTED_PRINTABLE_ENCODE(r IN RAW)

This function returns a RAW value.

Parameters

Parameter Description

r The r parameter contains the string (a RAW
 value) that will be encoded in a quoted-
printable format.

Examples

Note:

Before using this example, you must run the following command:

SET bytea_output = escape;

This command instructs the server to escape non-printable characters and display BYTEA or

RAW values in readable form. For more information, see the Postgres Core Documentation

available at: http://www.enterprisedb.com/docs/en/9.3/pg/datatype-binary.html.

The following example first encodes and then decodes a string:

edb=# SELECT UTL_ENCODE.QUOTED_PRINTABLE_ENCODE('E=mc2') FROM DUAL;
quoted_printable_encode

 E=3Dmc2
(1 row)

edb=# SELECT UTL_ENCODE.QUOTED_PRINTABLE_DECODE('E=3Dmc2') FROM DUAL;
 quoted_printable_decode

 E=mc2

Issue: 20200701 899

http://www.enterprisedb.com/docs/en/9.3/pg/datatype-binary.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

(1 row)

TEXT_DECODE

The TEXT_DECODE function converts and decodes an encoded string into the VARCHAR2

value that was originally encoded by the TEXT_ENCODE function. Syntax:

TEXT_DECODE(buf IN VARCHAR2, encode_charset IN VARCHAR2 DEFAULT NULL, encoding
IN PLS_INTEGER DEFAULT NULL)

This function returns a VARCHAR2 value.

Parameters

Parameter Description

buf The buf parameter contains the encoded
 string that will be converted into the
original value encoded by the TEXT_ENCODE
 function.

encode_charset The encode_charset parameter specifies the
 character set into which the string will be
converted before encoding. Default value:
NULL.

encoding The encoding parameter specifies the
encoding type used by the TEXT_DECODE
function. You can specify one of the
following two encoding types:

• UTL_ENCODE.BASE64 specifies the
Base64 encoding.

• UTL_ENCODE.QUOTED_PRINTABLE
specifies the quoted printable encoding.
This is the default encoding type.

Examples

The following example uses the TEXT_ENCODE function to encode a string and then uses

the TEXT_DECODE function to decode the string:

edb=# SELECT UTL_ENCODE.TEXT_ENCODE('What is the date?', 'BIG5', UTL_ENCODE.
BASE64) FROM DUAL;
 text_encode

 V2hhdCBpcyB0aGUgZGF0ZT8=
(1 row)

edb=# SELECT UTL_ENCODE.TEXT_DECODE('V2hhdCBpcyB0aGUgZGF0ZT8=', 'BIG5',
UTL_ENCODE.BASE64) FROM DUAL;

900 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 text_decode

 What is the date?
(1 row)

TEXT_ENCODE

The TEXT_ENCODE function converts a string into a specified character set, and then

encodes the string. Syntax:

TEXT_DECODE(buf IN VARCHAR2, encode_charset IN VARCHAR2 DEFAULT NULL, encoding
IN PLS_INTEGER DEFAULT NULL)

This function returns a VARCHAR2 value.

Parameters

Parameter Description

buf The buf parameter contains the encoded
 string that will be converted into the
specified character set and encoded by the
TEXT_ENCODE function.

encode_charset The encode_charset parameter specifies the
 character set into which the value will be
converted before encoding. Default value:
NULL.

encoding The encoding parameter specifies the
encoding type used by the TEXT_ENCODE
function. You can specify one of the
following two encoding types:

• UTL_ENCODE.BASE64 specifies the
Base64 encoding.

• UTL_ENCODE.QUOTED_PRINTABLE
specifies the quoted printable encoding.
This is the default encoding type.

Examples

The following example uses the TEXT_ENCODE function to encode a string and then uses

the TEXT_DECODE function to decode the string:

edb=# SELECT UTL_ENCODE.TEXT_ENCODE('What is the date?', 'BIG5', UTL_ENCODE.
BASE64) FROM DUAL;
 text_encode

 V2hhdCBpcyB0aGUgZGF0ZT8=
(1 row)

Issue: 20200701 901

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

edb=# SELECT UTL_ENCODE.TEXT_DECODE('V2hhdCBpcyB0aGUgZGF0ZT8=', 'BIG5',
UTL_ENCODE.BASE64) FROM DUAL;
 text_decode

 What is the date?
(1 row)

UUDECODE

The UUDECODE function converts and decodes a uuencode encoded string into the RAW

value that was originally encoded by the UUENCODE function. Syntax:

UUDECODE(r IN RAW)

This function returns a RAW value.

Parameter

Parameter Description

r The r parameter contains the uuencoded
 string that will be converted into a RAW
value.

Examples

Note:

Before using this example, you must run the following command:

SET bytea_output = escape;

This command instructs the server to escape non-printable characters and display BYTEA or

RAW values in readable form. For more information, see the Postgres Core Documentation

available at: http://www.enterprisedb.com/docs/en/9.3/pg/datatype-binary.html

The following example uses the UUENCODE function to encode a string and then uses the

UUDECODE function to decode the string:

edb=# SET bytea_output = escape;
SET
edb=# SELECT UTL_ENCODE.UUENCODE('What is the date?') FROM DUAL;
 uuencode
--
 begin 0 uuencode.txt\01215VAA="! I<R! T:&4@9&%T93\\`\012`\012end\012
(1 row)

edb=# SELECT UTL_ENCODE.UUDECODE
edb-# ('begin 0 uuencode.txt\01215VAA="! I<R! T:&4@9&%T93\\`\012`\012end\012')
edb-# FROM DUAL;
 uudecode

902 Issue: 20200701

http://www.enterprisedb.com/docs/en/9.3/pg/datatype-binary.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 What is the date?
(1 row)

UUENCODE

The UUENCODE function converts RAW data into a uuencode formatted encoded string.

Syntax:

UUENCODE(r IN RAW, type IN INTEGER DEFAULT 1, filename IN VARCHAR2 DEFAULT NULL,
permission IN VARCHAR2 DEFAULT NULL)

This function returns a RAW value.

Parameters

Parameter Description

r The r parameter contains the RAW string
that will be converted into uuencode format
.

type The type parameter is an INTEGER value or
constant. This constant specifies the type
of uuencoded string that will be returned.
Default value: 1. Table 17-29: The type
parameter lists the valid values.

filename The filename parameter is a VARCHAR2
 value that specifies the file name that
you want to embed in the encoded form
. If you do not specify a file name, the
UUENCODE function will include a filename
of uuencode.txt in the encoded form.

permission The permission parameter is a VARCHAR2
value that specifies the permission mode.
Default value: NULL.

Table 17-29: The type parameter

Value Constant

1 complete

2 header_piece

3 middle_piece

4 end_piece

Examples

Issue: 20200701 903

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Note:

Before using this example, you must run the following command:

SET bytea_output = escape;

This command instructs the server to escape non-printable characters and display BYTEA or

RAW values in readable form. For more information, see the Postgres Core Documentation

available at: http://www.enterprisedb.com/docs/en/9.3/pg/datatype-binary.html

The following example uses the UUENCODE function to encode a string and then uses the

UUDECODE function to decode the string:

edb=# SET bytea_output = escape;
SET
edb=# SELECT UTL_ENCODE.UUENCODE('What is the date?') FROM DUAL;
 uuencode
--
 begin 0 uuencode.txt\01215VAA="! I<R! T:&4@9&%T93\\`\012`\012end\012
(1 row)

edb=# SELECT UTL_ENCODE.UUDECODE
edb-# ('begin 0 uuencode.txt\01215VAA="! I<R! T:&4@9&%T93\\`\012`\012end\012')
edb-# FROM DUAL;
 uudecode

 What is the date?
(1 row)

17.18 UTL_RAW
The UTL_RAW package allows you to manipulate or retrieve the length of raw data types.

Note:

An administrator must grant execute permissions to each user or group before they can

use this package.

Function/Procedure Category Return type Description

CAST_TO_RAW(c IN
VARCHAR2)

Function RAW Converts a
VARCHAR2 string to a
 RAW value.

CAST_TO_VARCHAR2(
r IN RAW)

Function VARCHAR2 Converts a RAW
value to a VARCHAR2
 string.

904 Issue: 20200701

http://www.enterprisedb.com/docs/en/9.3/pg/datatype-binary.html

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Function/Procedure Category Return type Description

CONCAT(r1 IN RAW,
r2 IN RAW, r3 IN RAW
,...)

Function RAW Concatenates
multiple RAW values
 into a single RAW
value.

CONVERT(r IN
RAW, to_charset
 IN VARCHAR2,
from_charset IN
VARCHAR2

Function RAW Converts encoded
 data from one
encoding format to
 another encoding
format, and returns
the result as a RAW
value.

LENGTH(r IN RAW) Function NUMBER Returns the length of
 a RAW value.

SUBSTR(r IN RAW,
pos IN INTEGER, len
IN INTEGER)

Function RAW Returns a portion of
a RAW value.

The implementation of UTL_RAW in PolarDB databases compatible with Oracle is a partial

implementation when compared with native Oracle. Only those functions and procedures

listed in the preceding table are supported.

CAST_TO_RAW

You can use the CAST_TO_RAW function to convert a VARCHAR2 string to a RAW value. The

function has the following signature:

CAST_TO_RAW(c VARCHAR2)

The function returns a RAW value if you pass a non-NULL value. If you pass a NULL value,

the function returns NULL.

Parameters

Parameter Description

c The VARCHAR2 value that is converted to
RAW.

Examples

Issue: 20200701 905

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

The following example shows how the CAST_TO_RAW function converts a VARCHAR2 string

to a RAW value:

DECLARE
 v VARCHAR2;
 r RAW;
BEGIN
 v := 'Accounts';
 dbms_output.put_line(v);
 r := UTL_RAW.CAST_TO_RAW(v);
 dbms_output.put_line(r);
END;

The result set includes the content of the original string and the converted RAW value.

Accounts
\x4163636f756e7473

CAST_TO_VARCHAR2

You can use the CAST_TO_VARCHAR2 function to convert RAW data to VARCHAR2 data. The

function has the following signature:

CAST_TO_VARCHAR2(r RAW)

The function returns a VARCHAR2 value if you pass a non-NULL value. If you pass a NULL

value, the function returns NULL.

Parameters

Parameter Description

r The RAW value that is converted to a
VARCHAR2 value.

Examples

The following example shows how the CAST_TO_VARCHAR2 function converts a RAW value

to a VARCHAR2 string:

DECLARE
 r RAW;
 v VARCHAR2;
BEGIN
 r := '\x4163636f756e7473'
 dbms_output.put_line(v);
 v := UTL_RAW.CAST_TO_VARCHAR2(r);
 dbms_output.put_line(r);

906 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

END;

The result set includes the content of the original string and the converted RAW value.

\x4163636f756e7473
Accounts

CONCAT

You can use the CONCAT function to concatenate multiple RAW values into a single RAW

value. The function has the following signature:

CONCAT(r1 RAW, r2 RAW, r3 RAW,...)

The function returns a RAW value. Different from the Oracle implementation, the

implementation of PolarDB databases compatible with Oracles is a variadic function, and

does not limit the number of values that can be concatenated.

Parameters

Parameter Description

r1, r2, r3,... The RAW values that CONCAT concatenates.

Examples

The following example shows how the CONCAT function concatenates multiple RAW values

into a single RAW value:

SELECT UTL_RAW.CAST_TO_VARCHAR2(UTL_RAW.CONCAT('\x61', '\x62', '\x63')) FROM
DUAL; concat
-------- abc(1 row)

The concatenated values as the result is then converted to the VARCHAR2 format by the

CAST_TO_VARCHAR2 function.

CONVERT

You can use the CONVERT function to convert a string from one encoding format to another

 encoding format and returns the result as a RAW value. The function has the following

signature:

CONVERT(r RAW, to_charset VARCHAR2, from_charset VARCHAR2)

The function returns a RAW value.

Parameters

Issue: 20200701 907

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

r The RAW value that is converted.

to_charset The name of the encoding format to which r
 is converted.

from_charset The name of the encoding format from
which r is converted.

Examples

The following example shows how the UTL_RAW.CAST_TO_RAW function converts the

VARCHAR2 string Accounts to a raw value, converts the raw value from UTF8 to LATIN7, and

then converts the value from LATIN7 to UTF8:

DECLARE r RAW; v VARCHAR2;BEGIN v:= 'Accounts'; dbms_output.put_line(v);
 r:= UTL_RAW.CAST_TO_RAW(v); dbms_output.put_line(r); r:= UTL_RAW.CONVERT(r, '
UTF8', 'LATIN7'); dbms_output.put_line(r); r:= UTL_RAW.CONVERT(r, 'LATIN7', 'UTF8');
dbms_output.put_line(r);

The example returns the VARCHAR2 value, the RAW value, and the converted values.

Accounts
\x4163636f756e7473
\x4163636f756e7473
\x4163636f756e7473

LENGTH

You can use the LENGTH function to return the length of a RAW value. The function has the

following signature:

LENGTH(r RAW)

The function returns a RAW value.

Parameters

Parameter Description

r The RAW value that LENGTH evaluates.

Examples

The following example shows how the LENGTH function returns the length of a RAW value:

SELECT UTL_RAW.LENGTH(UTL_RAW.CAST_TO_RAW('Accounts')) FROM DUAL; length

908 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

--------8(1 row)

The following example uses the LENGTH function to return the length of a RAW value that

includes multi-byte characters:

SELECT UTL_RAW.LENGTH(UTL_RAW.CAST_TO_RAW('独孤求败'));
 length

 12
(1 row)

SUBSTR

You can use the SUBSTR function to return a substring of a RAW value. The function has the

following signature:

SUBSTR (r RAW, pos INTEGER, len INTEGER)

The function returns a RAW value.

Parameters

Parameter Description

r The RAW value from which the substring is
returned.

pos The position within the RAW value where
the first byte of the returned substring is
located.

• If pos is set to 0 or 1, the substring begins
 at the first byte of the RAW value.

• If pos is greater than one, the substring
 begins at the first byte specified by
pos. For example, if pos is set to 3, the
substring begins at the third byte of the
value.

• If pos is negative, the substring covers a
 length of pos bytes from the end of the
source value. For example, if pos is set to
 -3, the substring begins at the third byte
from the end of the value.

len The maximum number of bytes that are
returned.

Examples

Issue: 20200701 909

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

The following example shows how the SUBSTR function retrieves a 3-byte substring that

starts from the beginning of a RAW value:

SELECT UTL_RAW.SUBSTR(UTL_RAW.CAST_TO_RAW('Accounts'), 3, 5) FROM DUAL;
 substr-------- count(1 row)

The following example shows how the SUBSTR function retrieves a 5-byte substring that

starts from the end of a RAW value:

SELECT UTL_RAW.SUBSTR(UTL_RAW.CAST_TO_RAW('Accounts'), -5 , 3) FROM DUAL;
 substr

 oun
(1 row)

17.19 UTL_URL

The UTL_URL package provides a method to escape invalid and reserved characters within

a URL.

Table 17-30: UTL_URL functions and procedures

Function/stored procedure Return type Description

ESCAPE(url, escape reserved
chars, url_charset)

VARCHAR2 Escapes any invalid and
reserved characters in a URL.

UNESCAPE(url, url charset) VARCHAR2 Converts a URL to its original
 form.

If the call to a function includes an invalid URL, the UTL_URL package will return the

BAD_URL exception.

ESCAPE

The ESCAPE function escapes invalid and reserved characters within a URL. Syntax:

ESCAPE(url VARCHAR2, escape_reserved_chars BOOLEAN, url_charset VARCHAR2)

Reserved characters are replaced with a percent sign (%), followed by the two-digit

hexadecimal code of the ASCII value for the escaped character.

Parameters

Parameter Description

url url specifies the Uniform Resource Locator (URL) that UTL_URL will
escape.

910 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Parameter Description

escape_res
erved_chars

escape_reserved_chars is a BOOLEAN value that instructs the
ESCAPE function to escape reserved and invalid characters.

• If escaped_reserved_chars is set to FALSE, the ESCAPE function
will only escape the invalid characters in the specified URL.

• If escape_reserved_chars is set to TRUE, the ESCAPE function
will escape both the invalid characters and the reserved
characters in the specified URL. By default, escape_res
erved_chars is set to FALSE.

For more information about valid characters within a URL, see

Table 17-31: Valid characters.

Some characters are valid in some parts of a URL, while invalid

in others. For more information about rules related to invalid

characters, see RFC 2396. For more information about examples of

characters that are considered to be invalid in any part of a URL,

see Table 17-32: Invalid characters.

For more information about characters that are considered to

be reserved by the ESCAPE function, see Table 17-33: Reserved

characters. If escape_reserved_chars is set to TRUE, the ESCAPE

function will escape the reserved characters.

url_charset url_charset specifies a character set to which a given character
will be converted before it is escaped. If url_charset is NULL, the
character will not be converted. The default value of url_charset is
ISO-8859-1.

Table 17-31: Valid characters

Uppercase letters A through
 Z

Lowercase letters a through
 z

Digits 0 through 9

Asterisk (*) Exclamation point (!) Hyphen (-)

Opening parenthesis (() Period (.) Closing parenthesis ())

Single-quote (') Tilde (~) Underscore (_)

Issue: 20200701 911

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

Table 17-32: Invalid characters

Invalid character Escape sequence

Space () %20

Curly braces ({ or }) %7b and %7d

Hash mark (#) %23

Table 17-33: Reserved characters

Reserved character Escape sequence

Ampersand (&) %5C

At sign (@) %25

Colon (:) %3a

Comma (,) %2c

Dollar sign ($) %24

Equal sign (=) %3d

Plus sign (+) %2b

Question mark (?) %3f

Semicolon (;) %3b

Slash (/) %2f

Examples

The following anonymous block uses the ESCAPE function to escape the spaces in the URL:

DECLARE
 result varchar2(400);
BEGIN
 result := UTL_URL.ESCAPE('http://www.example.com/Using the ESCAPE function.html');
 DBMS_OUTPUT.PUT_LINE(result);
END;

The escaped URL is:

http://www.example.com/Using%20the%20ESCAPE%20function.html

If you include a value of TRUE for the escape_reserved_chars parameter when calling the

function:

DECLARE
 result varchar2(400);
BEGIN

912 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 17 Built-in packages

 result := UTL_URL.ESCAPE('http://www.example.com/Using the ESCAPE function.html',
TRUE);
 DBMS_OUTPUT.PUT_LINE(result);
END;

The ESCAPE function escapes the reserved characters and the invalid characters in the URL:

http%3A%2F%2Fwww.example.com%2FUsing%20the%20ESCAPE%20function.html

UNESCAPE

The UNESCAPE function removes escape characters added to a URL by the ESCAPE function,

converting the URL to its original form. Syntax:

UNESCAPE(url VARCHAR2, url_charset VARCHAR2)

Parameters

Parameter Description

url url specifies the Uniform Resource Locator (
URL) that UTL_URL will unescape.

url_charset After a character is unescaped, the
character is assumed to be in url_charset
encoding. Before the character is returned
, the character will be converted from
url_charset encoding to database encoding
. If url_charset is NULL, the character will
 not be converted. The default value of
url_charset is ISO-8859-1.

Examples

The following anonymous block uses the ESCAPE function to escape the blank spaces in the

 URL:

DECLARE
 result varchar2(400);
BEGIN
 result := UTL_URL.UNESCAPE('http://www.example.com/Using%20the%20UNESCAPE%
20function.html');
 DBMS_OUTPUT.PUT_LINE(result);
END;

The unescaped URL is:

http://www.example.com/Using the UNESCAPE function.html

Issue: 20200701 913

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

18 PL/SQL functions and procedures

18.1 Overview

This chapter describes the Stored Procedure Language (SPL). SPL is a highly productive,

procedural programming language for writing custom procedures, functions, triggers, and

packages of POLARDB compatible with Oracle.

SPL provides the following features for developing applications:

• Full procedural programming functionality to complement the SQL language.

• A single, common language to create stored procedures, functions, triggers, and

packages of POLARDB clusters compatible with Oracle.

• Integration with PgAdmin III, providing a seamless development and testing environmen

t.

• The use of reusable code.

• Ease of use.

This chapter describes the basic elements of an SPL program, the organization of an SPL

program, and how it is used to create a function or stored procedure.

In addition, this chapter delves into the details of the SPL language and provide examples

of its application.

18.2 Basic SPL elements

18.2.1 Basic SPL elements
This topic describes the basic elements of an SPL program.

Character set

You can use the following set of characters to write SPL programs:

• Uppercase letters A to Z and lowercase letters a to z

• Digits 0 to 9

• Symbols () + - * / < > = ! ~ ^ ; : . ' @ % , " # $ & _ | { } ? []

• White space characters tabs, spaces, and carriage returns

914 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

These characters can be used to write identifiers, expressions, statements, and control

structures that comprise the SPL language.

Note:

The data that can be manipulated by an SPL program is determined by the character set

supported by the database encoding.

Case sensitivity

Keywords and user-defined identifiers that are used in an SPL program are not case-

sensitive.

For example, the statement

DBMS_OUTPUT.PUT_LINE('Hello World');

is equivalent to the following statements:

dbms_output.put_line('Hello World');

Dbms_Output.Put_Line('Hello World');

DBMS_output.Put_line('Hello World');

However, character constants, string constants, and other data obtained from the POLARDB

compatible with Oracle database or external data sources, are case sensitive. The

statement DBMS_OUTPUT.PUT_LINE('Hello World!'); produces the following output:

Hello World!

However, the statement DBMS_OUTPUT.PUT_LINE('HELLO WORLD!'); produces the following

output:

HELLO WORLD!

Identifiers

Identifiers are user-defined names that are used to identify various elements of an SPL

program including variables, cursors, labels, programs, and parameters.

The syntax rules for valid identifiers in the SPL language are the same as for identifiers in

the SQL language.

Issue: 20200701 915

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

An identifier must be different from SPL or SQL keywords. The following are some examples

of valid identifiers:

x
last name
a_$_Sign
Many$$$$$$$$signs
THIS_IS_AN_EXTREMELY_LONG_NAME A1

Qualifiers

A qualifier is a name that specifies the owner or context of an entity that is the object of the

 qualification. A qualified object is specified as the qualifier name. The qualified object is

followed by a period (.) and the name of the object being qualified. Note that the qualifier

name and the period (.) has no white space in between. This syntax is called dot notation.

The following is an example of the syntax that is used for a qualified object.

qualifier. [qualifier.]... object

qualifier is the name of the object owner. object is the name of the entity that belongs to

qualifier. It is possible to have a chain of qualifications where the preceding qualifier owns

the entity identified by the subsequent qualifier(s) and object.

Almost any identifier can be qualified. What an identifier is qualified by depends upon what

 the identifier represents and the context of its usage.

Some examples of qualification are described as follows:

• Procedure and function names qualified by the schema to which they belong, such as

schema_name.procedure_name(...)

• Trigger names qualified by the schema to which they belong, such as schema_name.

trigger_name

• Column names qualified by the table to which they belong, such as emp.empno

• Table names qualified by the schema to which they belong, such as public.emp

• Column names qualified by table and schema, such as public.emp.empno

As a general rule, wherever a name appears in the syntax of an SPL statement, its qualified

 name can also be used.

A qualified name is used if two procedures that have the same name but belong to two

different schemas are invoked from within a program. A qualified name is also used if the

same name is used for a table column and SPL variable within the same program.

916 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

We do not recommend that you use qualified names. In this chapter, the following

conventions are adopted to avoid naming conflicts:

• All variables declared in the declaration section of an SPL program are prefixed by v_,

such as v_empno.

• All formal parameters declared in a procedure or function definition are prefixed by p_,

such as p_empno.

• Column names and table names do not have any special prefix conventions, such as

column empno in table emp.

Constants

In SPL programs, constants or literals are fixed values that can be used to represent values

of various types, such as numbers, strings, and dates. Constants can be of the following

types:

• Numeric (integer and real number)

• Character and string

• Date/time

18.2.2 User-defined PL/SQL subtypes
POLARDB compatible with Oracle supports user-defined PL/SQL subtypes and subtype

aliases. A subtype is a data type with an optional set of constraints that restrict the values

 that can be stored in a column of that type. The rules that apply to the type on which the

subtype is based are still enforced. However, you can use additional constraints to limit the

precision or scale of values that match the type.

You can define a subtype in the declaration of a PL function, stored procedure, anonymous

block, or package. Syntax:

SUBTYPE subtype_name IS type_name[(constraint)] [NOT NULL]

Where constraint is:

{precision [, scale]} | length

Where:

• subtype_name specifies the name of the subtype.

Issue: 20200701 917

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

• type_name specifies the name of the original type on which the subtype is based.

Note:

Valid values of type_name are as follows:

- The name of a type supported by POLARDB compatible with Oracle.

- The name of a composite type.

- A column anchored by a %TYPE operator.

- The name of another subtype.

You can include the constraint clause to define restrictions for types that support precision

or scale.

• precision specifies the total number of digits permitted in a value of the subtype.

• scale specifies the number of fractional digits permitted in a value of the subtype.

• length specifies the total length permitted in a value of CHARACTER, VARCHAR, or TEXT

base types.

You can include the NOT NULL clause to specify that NULL values may not be stored in a

column of the specified subtype.

Note:

A subtype that is based on a column will inherit the column size constraints, but the

subtype will not inherit NOT NULL or CHECK constraints.

Unconstrained subtypes

To create an unconstrained subtype, use the SUBTYPE command to specify the new subtype

name and the name of the type on which the subtype is based. For example, the following

command creates a subtype named address that has all the attributes of the CHAR type:

SUBTYPE address IS CHAR;

You can also create a subtype (constrained or unconstrained) that is a subtype of another

subtype:

SUBTYPE cust_address IS address NOT NULL;

This command creates a subtype named cust_address that shares all the attributes of

the address subtype. You can include the NOT NULL clause to specify that a value of the

cust_address may not be NULL.

918 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

Constrained subtypes

You can include a length value when creating a subtype that is based on a character type to

define the maximum length of the subtype. Example:

SUBTYPE acct_name IS VARCHAR (15);

This example creates a subtype named acct_name that is based on a VARCHAR data type,

but is limited to 15 characters in length.

You can include values for precision to specify the maximum number of digits in a value of

the subtype. You can also include scale to specify the number of digits to the right of the

decimal point when constraining a numeric base type. Example:

SUBTYPE acct_balance IS NUMBER (5, 2);

This example creates a subtype named acct_balance that shares all the attributes of a

NUMBER type. The subtype cannot exceed 3 digits to the left of the decimal point and 2

digits to the right of the decimal.

An argument declaration in a function or procedure header is a formal argument. The

value passed to a function or stored procedure is an actual argument. When calling a

function or stored procedure, the caller provides zero or more actual arguments. Each

actual argument is assigned to a formal argument that holds the value within the body of

the function or stored procedure.

If a formal argument is declared as a constrained subtype, then:

• POLARDB compatible with Oracle does not enforce subtype constraints when assigning

an actual argument to a formal argument in a function call.

• POLARDB compatible with Oracle enforces subtype constraints when assigning an actual

 argument to a formal argument in a call of a stored procedure.

Use the %TYPE operator

You can use the %TYPE notation to declare a subtype anchored to a column. Example:

SUBTYPE emp_type IS emp.empno%TYPE

This command creates a subtype named emp_type with a base type that matches the type

of the empno column in the emp table. A subtype that is based on a column will share the

column size constraints. The NOT NULL and CHECK constraints are not inherited.

Issue: 20200701 919

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

Subtype conversion

Unconstrained subtypes are aliases for the type on which they are based. Any variable of

type or subtype (unconstrained) is interchangeable with a variable of the base type without

 conversion, and vice versa.

A variable of a constrained subtype can be interchanged with a variable of the base type

 without conversion. However, a variable of the base type can only be interchanged with

 a constrained subtype if it complies with the constraints of the subtype. A variable of a

constrained subtype can be implicitly converted to another subtype. This happens if the

variable is based on the same subtype, and the constraint values are within the values of

the subtype to which it is being converted.

18.3 SPL programs

18.3.1 SPL block structure
An SPL program has the same block structure regardless of whether the program is a

stored procedure, function, or trigger. A block consists of up to three sections: an optional

declaration section, a mandatory executable section, and an optional exception section. A

simplest block has an executable section that consists of one or more SPL statements within

 the keywords, BEGIN and END. The optional declaration section is used to declare variables

, cursors, and types that are used by the statements within the executable and exception

sections.

The declaration section appears before the BEGIN keyword of the executable section. The

declaration section can begin with the keyword DECLARE, depending upon the context of

where the block is used.

You can include an exception section within the BEGIN - END block. The exception section

 begins with the keyword, EXCEPTION, and continues until the end of the block in which it

appears. If an exception is thrown by a statement within the block, program control goes

to the exception section. In the exception section, the thrown exception may or may not be

handled, depending on the exception and the contents of the exception section.

The following is the general structure of a block:

[[DECLARE]
 declarations]
 BEGIN
 statements
 [EXCEPTION

920 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

 WHEN exception_condition THEN
 statements [, ...]]
 END;

Note:

• declarations are one or more variable, cursor, or type declarations that are local to the

block. Each declaration must be terminated by a semicolon (;). The use of the DECLARE

keyword depends on the context in which the block appears.

• statements are one or more SPL statements. Each statement must be terminated

by a semicolon (;). The end of the block denoted by the END keyword must also be

terminated by a semicolon (;).

The EXCEPTION keyword marks the beginning of the exception section. exception_condition

is a conditional expression that is used for the testing of one or more exception types. If an

exception matches one of the exceptions in exception_condition, the statements that follow

the WHEN exception_condition clause are run. One or more WHEN exception_condition

clauses can exist and each clause is followed by statements.

Note:

Blocks can be nested because a BEGIN/END block in itself is considered a statement. The

exception section can also contain nested blocks.

The following example shows the simplest possible block that consists of the NULL

statement within the executable section. The NULL statement is an executable statement

that does not have effect.

BEGIN
 NULL;
END;

The following block contains a declaration section and an executable section.

DECLARE
 v_numerator NUMBER(2);
 v_denominator NUMBER(2);
 v_result NUMBER(5,2);
BEGIN
 v_numerator := 75;
 v_denominator := 14;
 v_result := v_numerator / v_denominator;
 DBMS_OUTPUT.PUT_LINE(v_numerator || ' divided by ' || v_denominator ||
 ' is ' || v_result);

Issue: 20200701 921

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

END;

In the preceding example, three numeric variables are declared of data type NUMBER.

Values are assigned to two of the variables, and one number is divided by the other

number. The result is stored in a third variable that is used to display the result. The output

of this block is as follows:

75 divided by 14 is 5.36

The following block consists of a declaration section, an executable section, and an

exception section:

DECLARE
 v_numerator NUMBER(2);
 v_denominator NUMBER(2);
 v_result NUMBER(5,2);
BEGIN
 v_numerator := 75;
 v_denominator := 0;
 v_result := v_numerator / v_denominator;
 DBMS_OUTPUT.PUT_LINE(v_numerator || ' divided by ' || v_denominator ||
 ' is ' || v_result);
 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('An exception occurred');
END;

The following output shows that the statement within the exception section is executed as a

result of the division by zero.

An exception occurred

18.3.2 Anonymous blocks
The preceding section describes the general structure of a block. Blocks facilitate code

execution in POLARDB compatible with Oracle.

An anonymous block is unnamed and is not stored in the database. After an anonymous

block is executed, it is cleared from the application buffer. This anonymous block cannot be

 re-executed unless the block code is re-entered into the application.

Anonymous blocks are useful for quick execution of programs, such as testing programs.

In most cases, the same block of code will be re-executed many times. To repeatedly run

 a block of code without re-entering the code each time, you can convert an anonymous

block into a procedure or function with some simple modifications. The following section

 describes how to create a procedure or function that can be stored in the database and

repeatedly called by another procedure, function, or application.

922 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

18.4 Procedure overview
Procedures are standalone SPL programs that are called as an individual SPL program

statement. When called, stored procedures can receive values from the caller in the form of

input parameters and return values to the caller in the form of output parameters.

Create a stored procedure

The CREATE PROCEDURE command defines and names a standalone procedure that will be

stored in the database.

CREATE [OR REPLACE] PROCEDURE name [(parameters)] [AUTHID { DEFINER |
CURRENT_USER }] { IS | AS }
[declarations] BEGIN
statements END [name];

name is the identifier of the stored procedure. If you specify the [OR REPLACE] clause

and a procedure with the same name already exists in the schema, the new procedure

 will overwrite the existing one. If you do not specify the [OR REPLACE] clause, the new

 procedure will not overwrite the existing procedure with the same name in the same

 schema. parameters is a list of formal parameters. If the AUTHID clause is omitted or

 if AUTHID DEFINER is specified, the rights of the stored procedure owner are used to

 determine access privileges to database objects. In addition, the search path of the

procedure owner is used to resolve unqualified object references. If the CURRENT_USER

clause is specified, the rights of the current user who call the stored procedure are used

to determine access privileges. In addition, the search path of the current user is used to

resolve unqualified object references. declarations are variable, cursor, or type declarations

. statements are SPL program statements. The BEGIN - END block can contain an EXCEPTION

 section.

The following example shows a simple stored procedure that does not require any

parameters.

CREATE OR REPLACE PROCEDURE simple_procedure
IS
BEGIN
 DBMS_OUTPUT.PUT_LINE('That''s all folks!') ;
END simple_procedure;

As shown in the preceding example, you can store the procedure in the database by

entering the procedure code in POLARDB compatible with Oracle.

Issue: 20200701 923

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

Call a stored procedure

To call a stored procedure from another SPL program, you can specify the stored procedure

name followed by parameters and a semicolon.

name [([parameters])];

name is the identifier of the stored procedure. parameters is a list of actual parameters.

Note:

• If no actual parameters are specified, the stored procedure can be called with an empty

 parameter list, or the opening and closing parenthesis can be omitted.

• The syntax for calling a stored procedure is the same as that in the preceding syntax

 diagram when executing it with the EXEC command in psql or POLARDB compatible

with Oracle.

The following example shows how to call the stored procedure from an anonymous block.

BEGIN
 simple_procedure;
END;

That's all folks!

Note:

Each application has its own unique method to call a stored procedure. For example, in a

Java application, the application programming interface, JDBC, is used.

Delete a stored procedure

You can run the DROP PROCEDURE command to delete a procedure from the database.

DROP PROCEDURE name;

name is the name of the stored procedure to be deleted.

924 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

The following example shows how to run the DROP PROCEDURE command to delete a

procedure.

DROP PROCEDURE simple_procedure;

18.5 Function overview
Functions are Stored Procedure Language (SPL) programs that are called as expressions.

When evaluated, a function returns a value that is substituted in the expression in which the

function is embedded. Functions can receive values from the calling program in the form of

input parameters. In addition to the fact that the function, itself, returns a value, a function

can return extra values to the caller in the form of output parameters. However, we do not

recommend that you use output parameters in functions.

Create a function

The CREATE FUNCTION command defines and names a standalone function that will be

stored in the database.

CREATE [OR REPLACE] FUNCTION name [(parameters)]
RETURN data_type [AUTHID { DEFINER | CURRENT_USER }] { IS | AS }
[declarations] BEGIN
statements
END [name];

name is the identifier of the function. If you specify the [OR REPLACE] clause and a function

with the same name already exists in the schema, the new function will overwrite the

existing one. If you do not specify the [OR REPLACE] clause, the new function will not

overwrite the existing function with the same name in the same schema. parameters is a

list of formal parameters. data_type is the data type of the value returned by the RETURN

statement of the function. If the AUTHID clause is omitted or if AUTHID DEFINER is specified,

the rights of the function owner are used to determine access privileges to database

objects. In addition, the search path of the function owner is used to resolve unqualified

object references. If the CURRENT_USER clause is specified, the rights of the current user

who calls the function are used to determine access privileges. In addition, the search

path of the current user is used to resolve unqualified object references. declarations are

variable, cursor, or type declarations. statements are SPL program statements. The BEGIN -

END block may contain an EXCEPTION section.

The following example shows a simple function that requires no parameters.

CREATE OR REPLACE FUNCTION simple_function
 RETURN VARCHAR2

Issue: 20200701 925

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

IS
BEGIN
 RETURN 'That''s All Folks!' ;
END simple_function;

The following function requires two input parameters. For more information about function

parameters, see the following sections.

CREATE OR REPLACE FUNCTION emp_comp (
 p_sal NUMBER,
 p_comm NUMBER
) RETURN NUMBER
IS
BEGIN
 RETURN (p_sal + NVL(p_comm, 0)) * 24;
END emp_comp;

Call a function

A function can be used anywhere an expression can appear within an SPL statement.

You can call a function by specifying its name followed by its parameters enclosed in

parenthesis.

name [([parameters])]

name is the name of the function. parameters is a list of actual parameters.

Note:

If no actual parameters are specified, the function may be called with an empty parameter

list, or the opening and closing parenthesis may be omitted.

The following example shows how to call the function from another SPL program.

BEGIN
 DBMS_OUTPUT.PUT_LINE(simple_function);
END;

That's All Folks!

A function is typically used within a SQL statement, as shown in the following example.

SELECT empno "EMPNO", ename "ENAME", sal "SAL", comm "COMM",
 emp_comp(sal, comm) "YEARLY COMPENSATION" FROM emp;

 EMPNO | ENAME | SAL | COMM | YEARLY COMPENSATION
-------+--------+---------+---------+---------------------
 7369 | SMITH | 800.00 | | 19200.00
 7499 | ALLEN | 1600.00 | 300.00 | 45600.00
 7521 | WARD | 1250.00 | 500.00 | 42000.00
 7566 | JONES | 2975.00 | | 71400.00
 7654 | MARTIN | 1250.00 | 1400.00 | 63600.00
 7698 | BLAKE | 2850.00 | | 68400.00
 7782 | CLARK | 2450.00 | | 58800.00
 7788 | SCOTT | 3000.00 | | 72000.00

926 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

 7839 | KING | 5000.00 | | 120000.00
 7844 | TURNER | 1500.00 | 0.00 | 36000.00
 7876 | ADAMS | 1100.00 | | 26400.00
 7900 | JAMES | 950.00 | | 22800.00
 7902 | FORD | 3000.00 | | 72000.00
 7934 | MILLER | 1300.00 | | 31200.00
(14 rows)

Delete a function

You can run the DROP FUNCTION command to remove a function from the database.

DROP FUNCTION name [(parameters)];

name is the name of the function to be deleted.

Note:

You must specify the parameter list in POLARDB compatible with Oracle under specific

circumstances such as an overloaded function. However, Oracle requires that the

parameter list always be omitted.

In the following example, a function is deleted.

DROP FUNCTION simple_function;

18.6 Parameters in stored procedures and functions

18.6.1 Overview
An important capability of stored procedures and functions is to receive data from the

calling program and return data. This is achieved by using parameters.

Parameters are declared after the names of stored procedures or functions, enclosed in

 parentheses. Parameters defined in stored procedures or functions are called formal

parameters. When a stored procedure or function is called, the calling program provides

actual values for the called function or stored procedure. The calling program also provides

 the called function or stored procedure with the variables used to receive the results. The

values and variables provided by a program when the program calls a stored procedure or

function are called actual parameters.

Issue: 20200701 927

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

The following code provides the syntax of a parameter declaration:

(name [IN | OUT | IN OUT] data_type [DEFAULT value])

name specifies the identifier assigned to the formal parameter. If an IN clause is specified,

the IN parameter receives input data that is intended to be used by the stored procedure or

 function. You can use default values to initialize the input parameters. If an OUT clause is

specified, the OUT parameter returns the results of the stored procedure or function to the

calling program. If an IN OUT clause is specified, the IN OUT parameter can be used as both

 input and output parameters. If no IN, OUT, or IN OUT clause is specified, the parameter is

defined as an input parameter by default. The use of a parameter is determined by IN, OUT

, and IN OUT. data_type specifies the data type of the parameter. value specifies the default

 value assigned to an IN parameter if the actual parameter is not specified during a call.

The following example shows a stored procedure with parameters:

CREATE OR REPLACE PROCEDURE emp_query (
 p_deptno IN NUMBER,
 p_empno IN OUT NUMBER,
 p_ename IN OUT VARCHAR2,
 p_job OUT VARCHAR2,
 p_hiredate OUT DATE,
 p_sal OUT NUMBER
)
IS
BEGIN
 SELECT empno, ename, job, hiredate, sal
 INTO p_empno, p_ename, p_job, p_hiredate, p_sal
 FROM emp
 WHERE deptno = p_deptno
 AND (empno = p_empno
 OR ename = UPPER(p_ename));
END;

In this example, p_deptno is an IN formal parameter. p_empno and p_ename are IN OUT

formal parameters. p_job, p_hiredate, and p_sal are OUT formal parameters.

Note:

In the preceding example, the maximum length of the VARCHAR2 type parameter and the

precision and scale of the NUMBER type parameter are not specified. In the parameter

declarations, you cannot specify the length, precision, value range, or other limits. The

limits are automatically inherited from the actual parameters that are used when you call a

stored procedure or function.

928 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

Other programs can call the emp_query stored procedure and pass actual parameters to

it. The following example describes another SPL program that calls the emp_query stored

procedure.

DECLARE
 v_deptno NUMBER(2);
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_job VARCHAR2(9);
 v_hiredate DATE;
 v_sal NUMBER;
BEGIN
 v_deptno := 30;
 v_empno := 7900;
 v_ename := '';
 emp_query(v_deptno, v_empno, v_ename, v_job, v_hiredate, v_sal);
 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);
 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
END;

In the preceding example, v_deptno, v_empno, v_ename, v_job, v_hiredate, and v_sal are

actual parameters.

The output of the preceding example is provided as follows:

Department : 30
Employee No: 7900
Name : JAMES
Job : CLERK
Hire Date : 03-DEC-81
Salary : 950

18.6.2 Positional and named parameter notation
When you pass a parameter to a function or stored procedure, you can either use positional

 parameter notation or named parameter notation. If you use positional notation, you

must list the parameters in the declared order. If you use named notation, the order of

parameters is not important.

If you use named notation, you must list the name of each parameter followed by an arrow

 (=>) and a parameter value. Your workloads increase if you use named notation, but

named notation makes your code easy to read and maintain.

Issue: 20200701 929

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

Example

The following example describes how to use positional parameter notation and named

parameter notation:

CREATE OR REPLACE PROCEDURE emp_info (
 p_deptno IN NUMBER,
 p_empno IN OUT NUMBER,
 p_ename IN OUT VARCHAR2,
)
IS
BEGIN
 dbms_output.put_line('Department Number =' || p_deptno);
 dbms_output.put_line('Employee Number =' || p_empno);
 dbms_output.put_line('Employee Name =' || p_ename;
END;

If you use positional notation to call a stored procedure, pass the following information:

emp_info(30, 7455, 'Clark');

If you use named notation to call a stored procedure, pass the following information:

emp_info(p_ename =>'Clark', p_empno=>7455, p_deptno=>30);

If the parameter list is changed, the parameters are reordered, or an optional parameter

is added, named notation can reduce the need to rearrange the parameter list of a stored

procedure.

If you specify a default value for a parameter and this parameter is not a trailing parameter,

you must use named notation to call a stored procedure or function. The following example

describes a stored procedure that has two leading default parameters:

CREATE OR REPLACE PROCEDURE check_balance (
 p_customerID IN NUMBER DEFAULT NULL,
 p_balance IN NUMBER DEFAULT NULL,
 p_amount IN NUMBER
)
IS
DECLARE
 balance NUMBER;
BEGIN
 IF (p_balance IS NULL AND p_customerID IS NULL) THEN
 RAISE_APPLICATION_ERROR
 (-20010, 'Must provide balance or customer');
 ELSEIF (p_balance IS NOT NULL AND p_customerID IS NOT NULL) THEN
 RAISE_APPLICATION_ERROR
 (-20020,'Must provide balance or customer, not both');
 ELSEIF (p_balance IS NULL) THEN
 balance := getCustomerBalance(p_customerID);
 ELSE
 balance := p_balance;
 END IF;

 IF (amount > balance) THEN

930 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

 RAISE_APPLICATION_ERROR
 (-20030, 'Balance insufficient');
 END IF;
END;

You can only ignore non-trailing parameter values if you use named notation to call the

preceding stored procedure. If positional notation is applied, you can only assign default

values to trailing parameters. You can call the preceding stored procedure by specifying

parameters as follows:

• check_balance(p_customerID => 10, p_amount = 500.00)

• check_balance(p_balance => 1000.00, p_amount = 500.00)

You can specify parameters by using a combination of positional and named notation,

which is called mixed notation. The following example describes how to use mixed

parameter notation:

CREATE OR REPLACE PROCEDURE emp_info (
 p_deptno IN NUMBER,
 p_empno IN OUT NUMBER,
 p_ename IN OUT VARCHAR2,
)
IS
BEGIN
 dbms_output.put_line('Department Number =' || p_deptno);
 dbms_output.put_line('Employee Number =' || p_empno);
 dbms_output.put_line('Employee Name =' || p_ename;
END;

You can use mixed notation to call the stored procedure.

emp_info(30, p_ename =>'Clark', p_empno=>7455);

If you use mixed notation to call a stored procedure, named parameters must not precede

positional parameters.

18.6.3 Parameter modes
A parameter has the three possible modes: IN, OUT, and IN OUT. The following features of a

formal parameter depend on the parameter mode:

• The initial value of the formal parameter when the stored procedure or function is called.

• Whether the called stored procedure or function can modify the formal parameter.

• The process of passing the value of the actual parameter from the calling program to the

 called program.

• The output value of the formal parameter when an unhandled exception occurs in the

called program.

Issue: 20200701 931

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

The following table summarizes the behavior of each parameter based on the parameter

mode.

Mode property IN IN OUT OUT

The initial value of
the formal parameter

The actual parameter
 value

The actual parameter
 value

The actual parameter
 value

Whether the called
program can modify
the formal parameter

No Yes Yes

The value of the
actual parameter
 after normal
termination of the
called program

The original actual
 parameter value
prior to the call

The last value of the
formal parameter

The last value of the
formal parameter

The value of the
actual parameter
 after a handled
exception in the
called program

The original actual
 parameter value
prior to the call

The last value of the
formal parameter

The last value of the
formal parameter

The value of the
actual parameter
after an unhandled
 exception in the
called program

The original actual
 parameter value
prior to the call

The original actual
 parameter value
prior to the call

The original actual
 parameter value
prior to the call

As shown in the table, an IN formal parameter is initialized to an actual parameter only

when called, unless it is explicitly initialized with a default value. The IN parameter can be

referenced in the called program, but the called program may not assign a new value to the

 IN parameter. When the called program ends and control returns to the calling program,

the actual parameter contains the same value as the parameter is set to before the call.

The OUT formal parameter is initialized to the actual parameter only when called. The

called program can reference and assign a new value to the formal parameter. If the called

 program ends without an exception, the value of the actual parameter is the last value

that is assigned to the formal parameter. If a handled exception occurs, the value of the

actual parameter is the last value that is assigned to the formal parameter. If an unhandled

 exception occurs, the value of the actual parameter is the value that is assigned before the

 call.

932 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

Similar to an IN parameter, an IN OUT formal parameter is initialized to the actual

parameter only when it is called. Similar to an OUT parameter, an IN OUT formal parameter

 can be modified by the called program. If the called program ends with no exceptions, the

last value of the formal parameter is passed to the actual parameter. If a handled exception

 occurs, the value of the actual parameter is the last value that is assigned to the formal

parameter. If an unhandled exception occurs, the value of the actual parameter is the value

 that is assigned before the call.

18.6.4 Use default values in parameters
In the CREATE PROCEDURE or CREATE FUNCTION statement, you can set a default value for a

formal parameter by including the DEFAULT clause or using the assignment operator (:=).

The following syntax describes the general format of a parameter declaration:

(name [IN|OUT|IN OUT] data_type [{DEFAULT | := } expr])

name specifies the identifier assigned to the parameter. IN|OUT|IN OUT specifies the

parameter mode. data_type specifies the data type assigned to the variable. expr specifies

the default value assigned to the parameter. You must provide a value for the parameter if

a DEFAULT clause is not included.

Each time you call a function or stored procedure, the default value is evaluated. For

example, if you assign SYSDATE to a parameter of the DATE type, the value of the parameter

 will be the time of the current call. The parameter value no longer indicates the time when

the stored procedure or function is created.

The following example describes how to use the assignment operator to set the hiredate

parameter to a default value of SYSDATE for a stored procedure:

CREATE OR REPLACE PROCEDURE hire_emp (
 p_empno NUMBER,
 p_ename VARCHAR2,
 p_hiredate DATE := SYSDATE
) RETURN
IS
BEGIN
 INSERT INTO emp(empno, ename, hiredate)
 VALUES(p_empno, p_ename, p_hiredate);

 DBMS_OUTPUT.PUT_LINE('Hired!') ;
END emp_comp;

When calling the function, you can omit a parameter from the actual parameter list if the

parameter uses a default value in the parameter declaration. For the preceding example,

the stored procedure (hire_emp) must contain two parameters: the employee number

Issue: 20200701 933

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

(p_empno) and employee name (p_empno). The default value of the third parameter

(p_hiredate) is SYSDATE.

hire_emp 7575, Clark

If you include a value for the actual parameter when calling the function, the value takes

precedence over the default value.

hire_emp 7575, Clark, 15-FEB-2010

This example indicates that you add a new employee whose employment date is February

15, 2010 regardless of the current value of SYSDATE.

You can also use the DEFAULT keyword to replace the assignment operator to write the

same function.

CREATE OR REPLACE PROCEDURE hire_emp (
 p_empno NUMBER,
 p_ename VARCHAR2,
 p_hiredate DATE DEFAULT SYSDATE
) RETURN
IS
BEGIN
 INSERT INTO emp(empno, ename, hiredate)
 VALUES(p_empno, p_ename, p_hiredate);

 DBMS_OUTPUT.PUT_LINE('Hired!') ;
END emp_comp;

18.7 Compilation errors in stored procedures and functions

POLARDB compatible with Oracle supports parsers for compiling functions and stored

procedures. Parsers verify that the CREATE statement and the program body (the program

portion following the AS keyword) conform to the SPL and SQL syntax. If a parser detects an

 error, the server automatically stops the compilation process. Note that the parser detects

 syntax errors in expressions, rather than semantic errors. For example, if an expression

 references a nonexistent column, table, function, or a value of the incorrect type, an

exception is thrown.

You can instruct the server to stop parsing if the parser finds one or more errors in SPL code

 or an error in SQL code. You can specify the spl.max_error_count parameter to control

the maximum number of errors that are allowed in SPL code. The default value of the spl.

max_error_count parameter is 10. The maximum value is 1000. You can set the value of spl

.max_error_count to 1, which instructs the server to stop parsing when the first error in SPL

or SQL code occurs.

934 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

You can use the SET command in the current session to specify a value for

spl.max_error_count. Syntax:

SET spl.max_error_count = number_of_errors

number_of_errors specifies the number of SPL code errors that is allowed to occur before

the server stops the compilation process. Example:

SET spl.max_error_count = 6

In this example, the server continues parsing regardless of the first five SPL code errors.

When the sixth error occurs, the server stops parsing, and the six detailed error messages

and an error summary are displayed.

When developing new code or importing existing code from other sources, you can set the

spl.max_error_count parameter to a large value to save time.

You can instruct the server to continue parsing when an error occurs in the SPL code of a

program body. The parser may then encounter an error in an SQL code segment. In this

case, errors may still exist in any SPL or SQL code that follows the invalid SQL code. For

example, two errors exist in the following code:

CREATE FUNCTION computeBonus(baseSalary number) RETURN number AS
BEGIN

 bonus := baseSalary * 1.10;
 total := bonus + 100;

 RETURN bonus;
END;

ERROR: "bonus" is not a known variable
LINE 4: bonus := baseSalary * 1.10;
 ^
ERROR: "total" is not a known variable
LINE 5: total: = bonus + 100;
 ^
ERROR: compilation of SPL function/procedure "computebonus" failed due to 2 errors

In the following example, a new SELECT statement is added to the preceding example. The

error in the SELECT statement masks other errors that follow.

CREATE FUNCTION computeBonus(employeeName number) RETURN number AS
BEGIN
 SELECT salary INTO baseSalary FROM emp
 WHERE ename = employeeName;

 bonus := baseSalary * 1.10;
 total := bonus + 100;

 RETURN bonus;

Issue: 20200701 935

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

END;

ERROR: "basesalary" is not a known variable
LINE 3: SELECT salary INTO baseSalary FROM emp WHERE ename = emp...

18.8 Program security

18.8.1 Overview
The following factors determine the security concerning what users can execute an SPL

program and what database objects can be accessed by users who are executing the SPL

program:

• Permission to execute the program.

• Permissions granted on the database objects (including other SPL programs) that the

program attempts to access.

• Whether the SPL program is created with the definer's or caller's permission.

18.8.2 EXECUTE permission
An SPL program (including functions, stored procedures, and packages) can be executed

only when any of the following conditions is true:

• The current user who calls the SPL program is a superuser.

• The current user who calls the SPL program has been granted the EXECUTE permission

on the SPL program.

• The current user who calls the SPL program inherits the EXECUTE permission by

becoming a member of the group that has been granted the EXECUTE permission on the

 SPL program.

• The EXECUTE permission has been granted to the PUBLIC group.

When the SPL program is created in POLARDB with Oracle, the EXECUTE permission is

granted to the PUBLIC group by default. Therefore, any user can execute the program.

936 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

You can remove the default setting by running the REVOKE EXECUTE command. For more

information, see REVOKE command. The following code provides an example of the

command:

REVOKE EXECUTE ON PROCEDURE list_emp FROM PUBLIC;

You can grant the EXECUTE permission on the SPL program to the specified user or group.

GRANT EXECUTE ON PROCEDURE list_emp TO john;

In this example, the user john can execute the list_emp program, but the users who do not

meet the conditions listed at the beginning of this topic cannot execute the program.

After a program starts execution, permission checks are required before you perform any of

the following operations on database objects:

• Read or modify data in tables and views.

• Create, modify, or delete database objects, such as tables, views, indexes, and

sequences.

• Retrieve the current or next value from a sequence.

• Call another program, such as a function, stored procedure, or package.

You can ensure the security of operations by limiting the permissions on database objects.

Note that a database may have multiple objects that have the same name and type, but

belong to different schemas. For more information about which object is to be referenced

by an SPL program in this case, see the next topic.

18.8.3 Database object name resolution
The database objects in the SPL program can be referenced by using either a qualified

name or an unqualified name. The form of a qualified name is schema.name, in which

schema specifies the name of the schema for a database object and name specifies the

name of the database object. An unqualified name does not contain the "schema." portion

. If a qualified name is used, the database object is precisely specified. In the specified

schema, the object either exists or does not exist.

If you use an unqualified name to locate an object, you must use the search path of the

current user. If a user becomes the current user of the session, the default search path is

used to associate with the user. A search path consists of a list of schemas. The search

sequence is from left to right when a data object with an unqualified name is referenced.

If no corresponding object is found from the list of schemas in the search path, the object

Issue: 20200701 937

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

does not exist. You can use the SHOW search_path command in POLARDB compatible with

Oracle to display the default search path.

SHOW search_path;

 Search_path

 $ User, public, sys, dbo
(1 row)

In this example, $user is a placeholder that refers to the current user. If the current user

in the preceding session is enterprisedb, a database object with an unqualified name is

searched in order in the following schemas: enterprisedb, public, sys, and dbo.

When an unqualified database object is parsed in the search path, the system checks

whether the current user is authorized to perform the corresponding operations on the

specified object.

Note:

The concept of the search path in POLARDB compatible with Oracle is incompatible with

that in Oracle databases. For an unqualified reference, Oracle database services only

search for database objects with the specified name in the schema of the current user.

In Oracle databases, a user and the schema are the same entity. However, in POLARDB

compatible with Oracle, the user and the schema are two different objects.

18.8.4 Database object permissions
Before an SPL program is executed, the system checks whether the current user is

authorized to access the database objects that are referenced in the program. The GRANT

 and REVOKE commands are used to grant and remove related permissions on database

objects. If the current user attempts to access a database object without permissions, the

program will generate an exception.

18.8.5 Comparison of the definer's permission and caller's
permission

Before an SPL program is executed, the system identifies the user who is associated with

 the process. The user associated with the process is called the current user. The search

path of the current user is used to parse unqualified object references. The database object

 permissions of the current user determine whether the related database objects can be

referenced in the program.

938 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

The selection of the current user is based on whether the SPL program is created with

the definer's permission or caller's permission. The AUTHID clause is used to determine

this selection. The AUTHID DEFINER clause is used to grant the definer's permission to the

program. The AUTHID clause is omitted by default. The AUTHID CURRENT_USER clause is

used to grant the definer's permission to the program. The following section summarizes

the differences between the preceding two permissions:

• If a program has the definer's permission, the owner of the program becomes the

current user when the program is executed. The search path of the program owner

is used to parse unqualified object references. The database object permissions of

the program owner can be used to determine whether access to a referenced object

 is allowed. For a program created with the definer's permission, the current user is

irrelevant to the caller of the program.

• If a program has the caller's permission, the current user when the program is called

remains the current user during the program execution (but not necessarily in called

subprograms). For more information, see the following bullet points. When a program

with the caller's permission is called, the current user is the user who starts the session,

for example, establishing database connections. The SET ROLE command can be used to

 change the current user after the session starts. For a program created with the caller's

permission, the current user is irrelevant to the owner of the program.

The following section summarizes the observations generated from the preceding

definitions:

• The first observation details the status of the current user when a program created with

 the definer's permission calls another program created with the definer's permission

. The current user changes from the owner of the calling program to the owner of the

called program during the execution of the called program.

• The second observation details the status of the current user when a program created

with the definer's permission calls another program created with the caller's permission.

The owner of the calling program remains the current user during the execution of both

the calling and called programs.

• The third observation details the status of the current user when a program created with

 the caller's permission calls another program created with the caller's permission. The

current user of the calling program remains the current user during the execution of the

called program.

Issue: 20200701 939

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

• The fourth observation details the status of the current user when a program created

with the caller's permission calls another program created with the definer's permission.

The current user changes to the owner of the called program during the execution of the

 called program.

If the called program in turn calls another program in the preceding cases, the correspond

ing principles still apply.

18.8.6 Example of the security mechanism
In the following example, a new database is created with two users. One user is hr_mgr,

who owns the hr_mgr schema that contains a copy of the entire sample app. The other user

 is sales_mgr, who owns the sales_mgr schema that contains a copy of the emp table. The

table provides a list of sales employees.

In this example, the list_emp stored procedure, hire_clerk function, and emp_admin

package are used. To present a more secure environment, all the default permissions that

are granted when the sample app is installed are removed. Then, required permissions are

re-granted to the sample app.

The list_emp and hire_clerk programs are changed from the default definer's permission to

 the caller's permission. When the sales_mgr user runs the programs, the programs act on

the emp table in the sales_mgr schema. This occurs because search path and permissions

of the sale_mgr user are used for name resolution and authorization checks.

Then, the sale_mgr user executes the get_dept_name and hire_emp programs that are

included in the emp_admin package. The dept and emp tables in the hr_mgr schema can

be accessed because the hr_mgr user is the owner of the emp_admin package that is using

 the definer's permission.

Step 1: Create a database and two users

Use the user identity enterprisedb to create the hr database.

CREATE DATABASE hr;

Switch to the hr database and create the required users:

\c hr enterprisedb
CREATE USER hr_mgr IDENTIFIED BY password;

940 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

CREATE USER sales_mgr IDENTIFIED BY password;

Step 2: Create the sample app

Create the sample app owned by the hr_mgr user in the hr_mgr schema.

\c - hr_mgr
\i C:/Program Files/PostgresPlus/9.3AS/installer/server/edb-sample.sql

BEGIN
CREATE TABLE
CREATE TABLE
CREATE TABLE
CREATE VIEW
CREATE SEQUENCE
 .
 .
 .
CREATE PACKAGE
CREATE PACKAGE BODY
COMMIT

Step 3: Create the emp table in the sales_mgr schema

Create a subset of the emp table owned by the sales_mgr user in the sales_mgr schema.

\c – hr_mgr
GRANT USAGE ON SCHEMA hr_mgr TO sales_mgr;
\c – sales_mgr
CREATE TABLE emp AS SELECT * FROM hr_mgr.emp WHERE job = 'SALESMAN';

In the preceding example, the GRANT USAGE ON SCHEMA command is used to authorize the

 sales_mgr user to access the hr_mgr schema so that the user can make a copy of the emp

 table owned by the hr_mgr user. This step is only required in POLARDB compatible with

Oracle and is incompatible with Oracle databases, which regard the schema and its user as

 the same entity.

Step 4: Remove the default permissions

Remove all permissions, and illustrate the minimum required permissions.

\c – hr_mgr
REVOKE USAGE ON SCHEMA hr_mgr FROM sales_mgr;
REVOKE ALL ON dept FROM PUBLIC;
REVOKE ALL ON emp FROM PUBLIC;
REVOKE ALL ON next_empno FROM PUBLIC;
REVOKE EXECUTE ON FUNCTION new_empno() FROM PUBLIC;
REVOKE EXECUTE ON PROCEDURE list_emp FROM PUBLIC;
REVOKE EXECUTE ON FUNCTION hire_clerk(VARCHAR2,NUMBER) FROM PUBLIC;

Issue: 20200701 941

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

REVOKE EXECUTE ON PACKAGE emp_admin FROM PUBLIC;

Step 5: Grant the caller's permission to the list_emp stored procedure

When you connect to the database by using the user identity hr_mgr, add the AUTHID

CURRENT_USER clause to the list_emp program and save the clause in POLARDB compatible

with Oracle. When you perform this step, make sure that you have logged on as the hr_mgr

user. Otherwise, the modified program may be saved in the public schema rather than the

hr_mgr schema.

CREATE OR REPLACE PROCEDURE list_emp
AUTHID CURRENT_USER
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur IS
 SELECT empno, ename FROM emp ORDER BY empno;
BEGIN
 OPEN emp_cur;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_cur;
END;

Step 6: Grant the caller's permission to the hire_clerk program and qualify the calling of the

new_empno function to the hr_mrg schema

When you connect to the database by using the user identity hr_mgr, add the AUTHID

CURRENT_USER clause to the hire_clerk program.

To ensure that the hire_clerk function calls the new_empno function in the hr_mgr schema

, you must fully qualify new_empno to hr_mgr.new_empno after the BEGIN keyword. The

 high_clerk function is a program with the caller's permission. If you call the new_empno

function but do not qualify it, the new_empno function in the search path of the caller is

executed, rather than that in the hr_mrg schema.

When you save the program, make sure that you have logged on as the hr_mgr user.

Otherwise, the modified program may be saved in the public schema rather than the

hr_mgr schema.

CREATE OR REPLACE FUNCTION hire_clerk (
 p_ename VARCHAR2,
 p_deptno NUMBER
) RETURN NUMBER
AUTHID CURRENT_USER
IS

942 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_job VARCHAR2(9);
 v_mgr NUMBER(4);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);
 v_deptno NUMBER(2);
BEGIN
 v_empno := hr_mgr.new_empno;
 INSERT INTO emp VALUES (v_empno, p_ename, 'CLERK', 7782,
 TRUNC(SYSDATE), 950.00, NULL, p_deptno);
 SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno INTO
 v_empno, v_ename, v_job, v_mgr, v_hiredate, v_sal, v_comm, v_deptno
 FROM emp WHERE empno = v_empno;
 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);
 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Manager : ' || v_mgr);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Commission : ' || v_comm);
 RETURN v_empno;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
 RETURN -1;
END;

Step 7: Grant the required permissions

When you connect to the database by using the user identity hr_mgr, you must grant the

required permissions to the sales_mgr user for accessing the list_emp stored procedure,

hire_clerk function, and emp_admin package. Note that the emp table in the sales_mgr

schema is the only data object that the sales_mgr user can access. sales_mgr has no

permission to access tables in the hr_mgr schema.

GRANT USAGE ON SCHEMA hr_mgr TO sales_mgr;
GRANT EXECUTE ON PROCEDURE list_emp TO sales_mgr;
GRANT EXECUTE ON FUNCTION hire_clerk(VARCHAR2,NUMBER) TO sales_mgr;
GRANT EXECUTE ON FUNCTION new_empno() TO sales_mgr;
GRANT EXECUTE ON PACKAGE emp_admin TO sales_mgr;

Step 8: Run the list_emp and hire_clerk programs

Connect to the database by using the user identity sales_mgr and run the following

anonymous code block:

\c – sales_mgr
DECLARE
 v_empno NUMBER(4);
BEGIN
 hr_mgr.list_emp;

Issue: 20200701 943

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

 DBMS_OUTPUT.PUT_LINE('*** Adding new employee ***');
 v_empno := hr_mgr.hire_clerk('JONES',40);
 DBMS_OUTPUT.PUT_LINE('*** After new employee added ***');
 hr_mgr.list_emp;
END;

EMPNO ENAME
----- -------
7499 ALLEN
7521 WARD
7654 MARTIN
7844 TURNER
*** Adding new employee ***
Department : 40
Employee No: 8000
Name : JONES
Job : CLERK
Manager : 7782
Hire Date : 08-NOV-07 00:00:00
Salary : 950.00
*** After new employee added ***
EMPNO ENAME
----- -------
7499 ALLEN
7521 WARD
7654 MARTIN
7844 TURNER
8000 JONES

The following diagram shows the tables and sequences accessed by the anonymous code

block. The gray ovals represent the sales_mgr and hr_mgr schemas. The current user during

the execution of each program is displayed in bold red font within parenthesis.

The following query result on the emp table in the sales_mgr schema shows that the

update is applied to the table.

SELECT empno, ename, hiredate, sal, deptno, hr_mgr.emp_admin.get_dept_name(
deptno) FROM sales_mgr.emp;

empno | ename | hiredate | sal | deptno | get_dept_name
-------+--------+--------------------+---------+--------+---------------

944 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

 7499 | ALLEN | 20-FEB-81 00:00:00 | 1600.00 | 30 | SALES
 7521 | WARD | 22-FEB-81 00:00:00 | 1250.00 | 30 | SALES
 7654 | MARTIN | 28-SEP-81 00:00:00 | 1250.00 | 30 | SALES
 7844 | TURNER | 08-SEP-81 00:00:00 | 1500.00 | 30 | SALES
 8000 | JONES | 08-NOV-07 00:00:00 | 950.00 | 40 | OPERATIONS
(5 rows)

The following diagram shows that the SELECT command references the emp table in

the sales_mgr schema. The dept table referenced by the get_dept_name function in the

emp_admin package is from the hr_mgr schema because the emp_admin package has the

definer's permission and is owned by hr_mgr.

Step 9: Run the hire_emp program in the emp_admin package

When you connect to the database by using the user identity sales_mgr, run the hire_emp

program in the emp_admin package.

EXEC hr_mgr.emp_admin.hire_emp(9001, 'ALICE','SALESMAN',8000,TRUNC(SYSDATE),1000
,7369,40);

The following diagram shows that the emp table in the hr_mgr schema is updated by the

hire_emp stored procedure in the emp_admin package that has the definer's permission.

Issue: 20200701 945

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 18 PL/SQL functions and
procedures

Connect to the database by using the user identity hr_mgr. Use the following SELECT

command to check whether the information of new employees has been added to the emp

table owned by the hr_mgr user. The emp_admin package has the definer's permission and

hr_mgr is the owner of the emp_admin package.

\c – hr_mgr
SELECT empno, ename, hiredate, sal, deptno, hr_mgr.emp_admin.get_dept_name(
deptno) FROM hr_mgr.emp;

empno | ename | hiredate | sal | deptno | get_dept_name
-------+--------+--------------------+---------+--------+---------------
 7369 | SMITH | 17-DEC-80 00:00:00 | 800.00 | 20 | RESEARCH
 7499 | ALLEN | 20-FEB-81 00:00:00 | 1600.00 | 30 | SALES
 7521 | WARD | 22-FEB-81 00:00:00 | 1250.00 | 30 | SALES
 7566 | JONES | 02-APR-81 00:00:00 | 2975.00 | 20 | RESEARCH
 7654 | MARTIN | 28-SEP-81 00:00:00 | 1250.00 | 30 | SALES
 7698 | BLAKE | 01-MAY-81 00:00:00 | 2850.00 | 30 | SALES
 7782 | CLARK | 09-JUN-81 00:00:00 | 2450.00 | 10 | ACCOUNTING
 7788 | SCOTT | 19-APR-87 00:00:00 | 3000.00 | 20 | RESEARCH
 7839 | KING | 17-NOV-81 00:00:00 | 5000.00 | 10 | ACCOUNTING
 7844 | TURNER | 08-SEP-81 00:00:00 | 1500.00 | 30 | SALES
 7876 | ADAMS | 23-MAY-87 00:00:00 | 1100.00 | 20 | RESEARCH
 7900 | JAMES | 03-DEC-81 00:00:00 | 950.00 | 30 | SALES
 7902 | FORD | 03-DEC-81 00:00:00 | 3000.00 | 20 | RESEARCH
 7934 | MILLER | 23-JAN-82 00:00:00 | 1300.00 | 10 | ACCOUNTING
 9001 | ALICE | 08-NOV-07 00:00:00 | 8000.00 | 40 | OPERATIONS
(15 rows)

946 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 19 Develop PL/SQL
packages

19 Develop PL/SQL packages

19.1 Overview

This topic introduces the concept of packages in POLARDB compatible with Oracle. A

package is a named collection of functions, procedures, variables, cursors, user-defined

record types, and records that are referenced by using a common qualifier, the package

identifier. Packages have the following characteristics:

• Packages provide a convenient means of organizing the functions and procedures that

 perform a related purpose. Permissions to use the package functions and procedures

 are dependent upon one privilege granted to the entire package. All of the package

programs must be referenced with a common name.

• Certain functions, procedures, variables, and types in the package can be declared as

 public. Public entities are visible and can be referenced by other programs that are

given the EXECUTE privilege on the package. For public functions and procedures, only

 their signatures are visible: the program names, parameters if any, and return types of

 functions. The SPL code of these functions and procedures is not accessible to others,

therefore applications that utilize a package are dependent only upon the information

available in the signature instead of the procedural logic itself.

• Other functions, procedures, variables, and types in the package can be declared as

private. Private entities can be referenced and used by functions and procedures within

the package, but not by other external applications.

• Function and procedure names can be overloaded within a package. One or more

 functions or procedures can be defined with the same name, but with different

signatures. This provides the capability to create identically named programs that

perform the same job, but on different types of input.

19.2 Package components

Packages consist of two main components:

• The package specification: This is the public interface. These are the elements which can

 be referenced outside the package. The specification declares all database objects that

are to be a part of the package.

Issue: 20200701 947

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 19 Develop PL/SQL
packages

• The package body: This contains the actual implementation of all the database objects

declared within the package specification.

The package body implements the specifications in the package specification. It contains

 implementation details and private declarations which are invisible to the application.

You can debug, enhance, or replace a package body without changing the specifications.

Similarly, you can change the body without recompiling the calling programs because the

implementation details are invisible to the application.

Package specification syntax

The package specification defines the user interface for a package (the API). The specificat

ion lists the functions, procedures, types, exceptions, and cursors that are visible to a user

of the package.

The syntax used to define the interface for a package is:

CREATE [OR REPLACE] PACKAGE package_name
 [authorization_clause]
 { IS | AS }
 [declaration;] ...
 [procedure_or_function_declaration;] ...
END [package_name] ;

Where authorization clause : =

{ AUTHID DEFINER } | { AUTHID CURRENT_USER }

Where procedure or function declaration :=

procedure declaration | function declaration

Where procedure declaration :=

PROCEDURE proc name[argument list] [restriction pragma];

Where function_declaration :=

FUNCTION func_name [argument_list]

RETURN rettype [restriction pragma];

948 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 19 Develop PL/SQL
packages

Where argument_list :=

(argument declaration [, ...])

Where argument declaration :=

argname [IN | IN OUT | OUT] argtype [DEFAULT value]

Where restriction pragma : =

PRAGMA RESTRICT_REFERENCES(name, restrictions)

Where restrictions :=

restriction [, ...]

Parameters

Parameter Description

package_name package_name is an identifier assigned to the package and
each package must have a name unique within the schema.

AUTHID DEFINER If you omit the AUTHID clause or specify AUTHID DEFINER:
The privileges of the package owner are used to determine
access privileges to database objects and the search paths of
 the package owner are used to resolve the reference of the
unqualified database object.

AUTHID CURRENT_USER If you specify AUTHID CURRENT_USER: the privileges of the
current user that executes a program in the package are used
to determine access privileges to database objects and search
 paths of the current user that executes a program in the
package are used to resolve the reference of the unqualified
database object.

Issue: 20200701 949

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 19 Develop PL/SQL
packages

Parameter Description

declaration declaration is an identifier of a public variable. A public
variable can be accessed from outside of the package by
using the package_name.variable syntax. There can be zero,
one, or more public variables. Public variable definitions must
come before procedure or function declarations. declaration
 can be any of the following types:

• Variable declaration
• Record declaration
• Collection declaration
• REF CURSOR and cursor variable declaration
• TYPE definitions for records, collections, and REF CURSORs
• Exception
• Object variable declaration

argname The name of an argument. The argument is referenced by this
 name within the function or procedure body.

IN | IN OUT | OUT The argument mode.

• IN declares the argument for input only. This is the default
mode.

• IN OUT allows the argument to receive a value or return a
value.

• OUT specifies the argument is for output only.

argtype The data types of an argument. An argument type may be a

base data type, a copy of the type of an existing column that

uses %TYPE, or a user-defined type such as a nested table

or an object type. A length cannot be specified for any base

type, for example, specify VARCHAR2, not VARCHAR2(10).

The type of a column is referenced by writing tablename.

columnname%TYPE. Using tablename. columnname%TYPE

 can sometimes help make a procedure independent from

changes to the definition of a table.

DEFAULT value The DEFAULT clause supplies a default value for an input
argument if one is not supplied in the invocation. DEFAULT
cannot be specified for arguments with modes IN OUT or OUT.

name name is the name of the function or procedure.

950 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 19 Develop PL/SQL
packages

Parameter Description

restriction The following keywords are accepted for compatibility and
ignored:

• RNDS
• RNPS
• TRUST
• WNDS
• WNPS

Package body syntax

Package implementation details reside in the package body. The package body may

contain objects that are not visible to the package user. POLARDB compatible with Oracle

supports the following syntax for the package body:

CREATE [OR REPLACE] PACKAGE BODY package_name
 { IS | AS }
 [private_declaration;] ...
 [procedure_or_function_definition;] ...
 [package_initializer]
END [package_name] ;

Where procedure or function definition :=

procedure definition | function definition

Where procedure definition :=

PROCEDURE proc name[argument list] [options list] { IS | AS }

procedure body END [proc name] ;

Where procedure_body :=

[declaration;] [, ...] BEGIN

statement; [...] [EXCEPTION

{ WHEN exception [OR exception] [...]] THEN statement; } [...]

]

Where function definition :=

FUNCTION func_name [argument_list] RETURN rettype [DETERMINISTIC] [options list] { IS
 | AS }

function body END [func name] ;

Issue: 20200701 951

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 19 Develop PL/SQL
packages

Where function_body :=

[declaration;] [, ...] BEGIN

statement; [...]

[EXCEPTION

{ WHEN exception [OR exception] [...] THEN statement; } [...]

]

Where argument_list :=

(argument declaration [, ...])

Where argument declaration :=

argname [IN | IN OUT | OUT] argtype [DEFAULT value]

Where options_list :=

option [...]

Where option :=

COST execution cost ROWS result rows

SET config_param { TO value | = value | FROM CURRENT }

Where package initializer :=

BEGIN

statement; [...] END;

Parameters

Parameter Description

package_name package_name is the name of the package for which this
 is the package body. There must be an existing package
specification with this name.

952 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 19 Develop PL/SQL
packages

Parameter Description

private_declaration private_declaration is an identifier of a private variable that
can be accessed by any procedure or function within the
package. There can be zero, one, or more private variables.
private_declaration can be any of the following types:

• Variable declaration
• Record declaration
• Collection declaration
• REF CURSOR and cursor variable declaration
• TYPE definitions for records, collections, and REF CURSORs
• Exception
• Object variable declaration

proc_name The name of the procedure being created.

declaration A variable, type, or REF CURSOR declaration.

statement An SPL program statement. Note that a DECLARE - BEGIN -
END block is considered an SPL statement unto itself. Thus,
the function body may contain nested blocks.

exception An exception condition name, such as NO_DATA_FOUND and
OHERS.

func_name The name of the function being created.

rettype The return data type, which may be any of the types listed
for argtype. As for argtype, a length cannot be specified for
rettype.

DETERMINISTIC Includes DETERMINISTIC to specify that the function will
always return the same result when given the same argument
values. A DETERMINISTIC function cannot modify the
database.

Note:
The DETERMINISTIC keyword is equivalent to the PostgreSQL
IMMUTABLE option.

declaration A variable, type, or REF CURSOR declaration.

argname The name of a formal argument. The argument is referenced
by this name within the procedure body.

Issue: 20200701 953

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 19 Develop PL/SQL
packages

Parameter Description

IN | IN OUT | OUT The argument mode.

• IN declares the argument for input only. This is the default
mode.

• IN OUT allows the argument to receive a value or return a
value.

• OUT specifies the argument is for output only.

argtype The data types of an argument. An argument type may be a

base data type, a copy of the type of an existing column that

uses %TYPE, or a user-defined type such as a nested table

or an object type. A length cannot be specified for any base

type, for example, specify VARCHAR2, not VARCHAR2(10).

The type of a column is referenced by writing tablename.

columnname%TYPE. Using tablename.columnname%TYPE

 can sometimes help make a procedure independent from

changes to the definition of a table.

DEFAULT value The DEFAULT clause supplies a default value for an input
argument if one is not supplied in the procedure call. DEFAULT
cannot be specified for arguments with modes IN OUT or OUT.

Note:
The following options are not compatible with Oracle
databases. They are extensions to Oracle package syntax
provided by POLARDB compatible with Oracle only.

STRICT The STRICT keyword specifies that the function will not be
executed if called with a NULL argument. Instead the function
will return NULL.

LEAKPROOF The LEAKPROOF keyword specifies that the function will not
reveal any information about arguments, other than through
a return value.

execution_cost execution_cost specifies a positive number giving the
 estimated execution cost for the function, in units of
cpu_operator_cost. If the function returns a set, this is the cost
per returned row. Default value: 0.0025.

result_rows result_rows is the estimated number of rows that the query
planner expect the function to return. Default value: 1000.

954 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 19 Develop PL/SQL
packages

Parameter Description

SET Use the SET clause to specify a parameter value for the
duration of the function:

• config_param specifies the parameter name.
• value specifies the parameter value.
• FROM CURRENT guarantees that the parameter value is

restored when the function ends.

package_initializer The statements in the package_initializer are executed once
per user's session when the package is first referenced.

Note:

The STRICT, LEAKPROOF, COST, ROWS and SET keywords provide extended functionality for

POLAR DB compatible with Oracle and are not supported by Oracle.

19.3 Create a package

A package is not an executable piece of code but a repository of code. When you use a

package, you actually execute or make reference to an element within a package.

Create the package specification

The package specification contains the definition of all the elements in the package that

can be referenced from outside of the package. These are called the public elements of the

 package, and they act as the package interface. The following code sample is a package

specification:

This code sample creates the emp_admin package specification. This package specificat

ion consists of two functions and two stored procedures. You can also add the OR REPLACE

clause to the CREATE PACKAGE statement for convenience.

Create the package body

The body of the package contains the actual implementation behind the package

specification. For the above emp_admin package specification, create a package body

which implements the specifications. The body will contain the implementation of the

functions and stored procedures in the specification.

--
-- Package body for the 'emp_admin' package.
--
CREATE OR REPLACE PACKAGE BODY emp_admin
IS

Issue: 20200701 955

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 19 Develop PL/SQL
packages

 --
 -- Function that queries the 'dept' table based on the department
 -- number and returns the corresponding department name.
 --
 FUNCTION get_dept_name (
 p_deptno IN NUMBER DEFAULT 10
)
 RETURN VARCHAR2
 IS
 v_dname VARCHAR2(14);
 BEGIN
 SELECT dname INTO v_dname FROM dept WHERE deptno = p_deptno;
 RETURN v_dname;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Invalid department number ' || p_deptno);
 RETURN '';
 END;
 --
 -- Function that updates an employee's salary based on the
 -- employee number and salary increment/decrement passed
 -- as IN parameters. Upon successful completion the function
 -- returns the new updated salary.
 --
 FUNCTION update_emp_sal (
 p_empno IN NUMBER,
 p_raise IN NUMBER
)
 RETURN NUMBER
 IS
 v_sal NUMBER := 0;
 BEGIN
 SELECT sal INTO v_sal FROM emp WHERE empno = p_empno;
 v_sal := v_sal + p_raise;
 UPDATE emp SET sal = v_sal WHERE empno = p_empno;
 RETURN v_sal;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno || ' not found');
 RETURN -1;
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
 RETURN -1;
 END;
 --
 -- Procedure that inserts a new employee record into the 'emp' table.
 --
 PROCEDURE hire_emp (
 p_empno NUMBER,
 p_ename VARCHAR2,
 p_job VARCHAR2,
 p_sal NUMBER,
 p_hiredate DATE DEFAULT sysdate,
 p_comm NUMBER DEFAULT 0,
 p_mgr NUMBER,
 p_deptno NUMBER DEFAULT 10
)
 AS
 BEGIN
 INSERT INTO emp(empno, ename, job, sal, hiredate, comm, mgr, deptno)
 VALUES(p_empno, p_ename, p_job, p_sal,

956 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 19 Develop PL/SQL
packages

 p_hiredate, p_comm, p_mgr, p_deptno);
 END;
 --
 -- Procedure that deletes an employee record from the 'emp' table based
 -- on the employee number.
 --
 PROCEDURE fire_emp (
 p_empno NUMBER
)
 AS
 BEGIN
 DELETE FROM emp WHERE empno = p_empno;
 END;
END;

19.4 Reference a package

To reference the types, items, and subprograms that are declared within a package

specification, use the dot notation. Example:

package_name.type_name
package_name.item_name
package_name.subprogram_name

To invoke a function from the emp_admin package specification, execute the following SQL

statement.

SELECT emp_admin.get_dept_name(10) FROM DUAL;

In the preceding statement, the get_dept_name function declared within the package

emp_admin is invoked. The department number is passed as an argument to the function

, which will return the name of the department. Here the value returned is ACCOUNTING,

which corresponds to department number 10.

19.5 Use packages with user-defined types

The following example incorporates the various user-defined types discussed in earlier

topics within the context of a package.

The package specification of emp_rpt shows the declaration of a record type, emprec_type,

and a weakly typed REF CURSOR, emp_refcur, as publicly accessible along with two

functions and two procedures. The open_emp_by_dept function returns the REF CURSOR

type, EMP_REFCUR. The fetch_emp and close_refcur procedures both declare a weakly-

typed REF CURSOR as a formal parameter.

CREATE OR REPLACE PACKAGE emp_rpt

Issue: 20200701 957

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 19 Develop PL/SQL
packages

IS
 TYPE emprec_typ IS RECORD (
 empno NUMBER(4),
 ename VARCHAR(10)
);
 TYPE emp_refcur IS REF CURSOR;

 FUNCTION get_dept_name (
 p_deptno IN NUMBER
) RETURN VARCHAR2;
 FUNCTION open_emp_by_dept (
 p_deptno IN emp.deptno%TYPE
) RETURN EMP_REFCUR;
 PROCEDURE fetch_emp (
 p_refcur IN OUT SYS_REFCURSOR
);
 PROCEDURE close_refcur (
 p_refcur IN OUT SYS_REFCURSOR
);
END emp_rpt;

The package body shows the declaration of several private variables: a static cursor,

dept_cur, a table type, depttab_typ, a table variable, t_dept, an integer variable,

t_dept_max, and a record variable, r_emp.

CREATE OR REPLACE PACKAGE BODY emp_rpt
IS
 CURSOR dept_cur IS SELECT * FROM dept;
 TYPE depttab_typ IS TABLE of dept%ROWTYPE
 INDEX BY BINARY_INTEGER;
 t_dept DEPTTAB_TYP;
 t_dept_max INTEGER := 1;
 r_emp EMPREC_TYP;

 FUNCTION get_dept_name (
 p_deptno IN NUMBER
) RETURN VARCHAR2
 IS
 BEGIN
 FOR i IN 1..t_dept_max LOOP
 IF p_deptno = t_dept(i).deptno THEN
 RETURN t_dept(i).dname;
 END IF;
 END LOOP;
 RETURN 'Unknown';
 END;

 FUNCTION open_emp_by_dept(
 p_deptno IN emp.deptno%TYPE
) RETURN EMP_REFCUR
 IS
 emp_by_dept EMP_REFCUR;
 BEGIN
 OPEN emp_by_dept FOR SELECT empno, ename FROM emp
 WHERE deptno = p_deptno;
 RETURN emp_by_dept;
 END;

 PROCEDURE fetch_emp (
 p_refcur IN OUT SYS_REFCURSOR
)

958 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 19 Develop PL/SQL
packages

 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH p_refcur INTO r_emp;
 EXIT WHEN p_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(r_emp.empno || ' ' || r_emp.ename);
 END LOOP;
 END;

 PROCEDURE close_refcur (
 p_refcur IN OUT SYS_REFCURSOR
)
 IS
 BEGIN
 CLOSE p_refcur;
 END;
BEGIN
 OPEN dept_cur;
 LOOP
 FETCH dept_cur INTO t_dept(t_dept_max);
 EXIT WHEN dept_cur%NOTFOUND;
 t_dept_max := t_dept_max + 1;
 END LOOP;
 CLOSE dept_cur;
 t_dept_max := t_dept_max - 1;
END emp_rpt;

This package contains an initialization section that loads the private table variable, t_dept

, by using the private static cursor, dept_cur. The t_dept private table variable serves as a

department name lookup table in the get_dept_name function.

The open_emp_by_dept function returns a REF CURSOR variable for a result set of employee

 numbers and names for a given department. This REF CURSOR variable can then be passed

 to the fetch_emp procedure to retrieve and list the individual rows of the result set. Finally

, the close_refcur procedure can be used to close the REF CURSOR variable associated with

this result set.

The following anonymous block runs the package function and procedures. In the

declaration section of the anonymous block, note the declaration of the v_emp_cur cursor

variable, which uses EMP_REFCUR (the public REF CURSOR type of the package). v_emp_cur

contains the pointer to the result set that is passed between the package function and

procedures.

DECLARE
 v_deptno dept.deptno%TYPE DEFAULT 30;
 v_emp_cur emp_rpt.EMP_REFCUR;
BEGIN
 v_emp_cur := emp_rpt.open_emp_by_dept(v_deptno);
 DBMS_OUTPUT.PUT_LINE('EMPLOYEES IN DEPT #' || v_deptno ||
 ': ' || emp_rpt.get_dept_name(v_deptno));
 emp_rpt.fetch_emp(v_emp_cur);
 DBMS_OUTPUT.PUT_LINE('**********************');

Issue: 20200701 959

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 19 Develop PL/SQL
packages

 DBMS_OUTPUT.PUT_LINE(v_emp_cur%ROWCOUNT || ' rows were retrieved');
 emp_rpt.close_refcur(v_emp_cur);
END;

The result of this anonymous block is as follows:

EMPLOYEES IN DEPT #30: SALES
EMPNO ENAME
----- -------
7499 ALLEN
7521 WARD
7654 MARTIN
7698 BLAKE
7844 TURNER
7900 JAMES

6 rows were retrieved

The following anonymous block illustrates another means of achieving the same result.

Instead of using the package procedures, fetch_emp and close_refcur, the logic of these

programs is coded directly into the anonymous block. In the declaration section of the

anonymous block, note the addition of the r_emp record variable declared by using

EMPREC_TYPE (the public record type of the package).

DECLARE
 v_deptno dept.deptno%TYPE DEFAULT 30;
 v_emp_cur emp_rpt.EMP_REFCUR;
 r_emp emp_rpt.EMPREC_TYP;
BEGIN
 v_emp_cur := emp_rpt.open_emp_by_dept(v_deptno);
 DBMS_OUTPUT.PUT_LINE('EMPLOYEES IN DEPT #' || v_deptno ||
 ': ' || emp_rpt.get_dept_name(v_deptno));
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH v_emp_cur INTO r_emp;
 EXIT WHEN v_emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(r_emp.empno || ' ' ||
 r_emp.ename);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('**********************');
 DBMS_OUTPUT.PUT_LINE(v_emp_cur%ROWCOUNT || ' rows were retrieved');
 CLOSE v_emp_cur;
END;

The result of this anonymous block is as follows:

EMPLOYEES IN DEPT #30: SALES
EMPNO ENAME
----- -------
7499 ALLEN
7521 WARD
7654 MARTIN
7698 BLAKE
7844 TURNER
7900 JAMES

960 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 19 Develop PL/SQL
packages

6 rows were retrieved

19.6 Drop a package

The syntax for deleting an entire package or the package body is as follows:

DROP PACKAGE [BODY] package_name;

If the BODY keyword is omitted, both the package specification and the package body are

deleted, that is, the entire package is dropped. If the BODY keyword is specified, then only

the package body is dropped. The package specification remains intact. package_name is

the identifier of the package to be dropped.

The following statement will drop only the package body of emp_admin:

DROP PACKAGE BODY emp_admin;

The following statement will drop the entire emp_admin package:

DROP PACKAGE emp_admin;

Issue: 20200701 961

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 20 Custom parameters

20 Custom parameters

Name Valid value Unit Description

autovacuum
_analyze_scale_facto
r

[0-1] The number of tuple
 inserts, updates,
or deletes prior to
analyze as a fraction
of reltuples.

autovacuum
_analyze_threshold

[0-2147483647] The minimum
number of tuple
inserts, updates,
or deletes prior to
analyze.

autovacuum
_freeze_max_age

[200000000-
1500000000]

The age at which to
autovacuum a table
to prevent transactio
n ID wraparound.

autovacuum
_max_workers

[5-20] Sets the maximum
 number of
simultaneously
running autovacuum
worker processes.

autovacuum
_vacuum_cost_delay

[1-100] ms The vacuum cost
delay in milliseconds
, for autovacuum.

autovacuum
_vacuum_cost_limit

[-1-10000] The vacuum cost
amount available
before napping, for
autovacuum.

autovacuum
_vacuum_sc
ale_factor

[0-1] The number of tuple
 updates or deletes
prior to vacuum as a
fraction of reltuples.

autovacuum
_vacuum_threshold

[0-2147483647] The minimum
number of tuple
updates or deletes
prior to vacuum.

962 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 20 Custom parameters

Name Valid value Unit Description

checkpoint
_completion_target

[0-1] The time spent
flushing dirty buffers
 during checkpoint
, as fraction of
checkpoint interval.

checkpoint_timeout [30-86400] s Sets the maximum
 time between
automatic WAL
checkpoints.

checkpoint_warning [30-2147483647] s Enables warnings if
checkpoint segments
 are filled more
frequently than this.

commit_delay [0-100000] Sets the delay in
 microseconds
between transaction
commit and flushing
WAL to disk.

commit_siblings [0-1000] Sets the minimum
 concurrent open
 transactions
before performing
commit_delay.

default_statistics_t
arget

[1-10000] Sets the default
statistics target.

default_transaction_
deferrable

[on|off] Sets the default
deferrable status of
new transactions.

enable_bitmapscan [on|off] Enables the planner'
s use of bitmap-scan
 plans.

enable_gathermerge [on|off] Enables the planner
's use of gather
merge plans.

enable_hashagg [on|off] Enables the planner
's use of hashed
aggregation plans.

Issue: 20200701 963

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 20 Custom parameters

Name Valid value Unit Description

enable_hashjoin [on|off] Enables the planner
's use of hash join
plans.

enable_ind
exonlyscan

[on|off] Enables the planner
's use of index-only-
scan plans.

enable_indexscan [on|off] Enables the planner
's use of index-scan
plans.

enable_material [on|off] Enables the planner
's use of materializ
ation.

enable_mergejoin [on|off] Enables the planner
's use of merge join
plans.

enable_nestloop [on|off] Enables the planner'
s use of nested-loop
join plans.

enable_par
allel_append

[on|off] Enables the planner
's use of parallel
append plans.

enable_par
allel_hash

[on|off] Enables the planner'
s use of parallel hash
 plans.

enable_partition_pru
ning

[on|off] Enables plan-time
 and run-time
partition pruning.

enable_partitionwise
_aggregate

[on|off] Enables partitionw
ise aggregation and
grouping.

enable_partitionwise
_join

[on|off] Enables partitionw
ise join.

enable_seqscan [on|off] Enables the planner
's use of sequential-
scan plans.

964 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 20 Custom parameters

Name Valid value Unit Description

enable_sort [on|off] Enables the planner'
s use of explicit sort
steps.

enable_tidscan [on|off] Enables the planner
's use of TID scan
plans.

gin_fuzzy_search_lim
it

[0-2147483647] Sets the maximum
 allowed result for
exact search by GIN.

gin_pending_list_lim
it

[64-2147483647] KB Sets the maximum
size of the pending
list for GIN index.

auto_explain.
log_analyze

[on|off] Uses EXPLAIN
ANALYZE for plan
logging.

lock_timeout [0-2147483647] ms Sets the maximum
allowed duration of
any wait for a lock.

log_autova
cuum_min_duration

[-1-2147483647] ms Sets the minimum
execution time above
 which autovacuum
 actions will be
logged.

log_checkpoints [on|off] Logs each
checkpoint.

log_connections [on|off] Logs each successful
 connection.

log_disconnections [on|off] Logs end of a session
, including duration.

log_min_du
ration_statement

[-1-2147483647] ms Sets the minimum
execution time above
 which statements
will be logged.

log_statement [none,ddl,mod,all] Sets the type of
statements logged.

Issue: 20200701 965

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 20 Custom parameters

Name Valid value Unit Description

log_temp_files [-1-2147483647] KB Logs the use of
temporary files
larger than this
number of kilobytes.

max_standb
y_archive_delay

[-1-2147483647] ms Sets the maximum
 delay before
canceling queries
when a hot standby
server is processing
archived WAL data.

max_standb
y_streaming_delay

[-1-2147483647] ms Sets the maximum
 delay before
canceling queries
when a hot standby
server is processing
streamed WAL data.

max_sync_w
orkers_per_subscript
ion

[0-262143] The maximum
number of table
 synchronization
 workers per
subscription.

min_parallel_index_s
can_size

[0-715827882] 8 KB Sets the minimum
 amount of index
data for a parallel
scan.

min_parallel_table_s
can_size

[0-715827882] 8 KB Sets the minimum
amount of table data
 for a parallel scan.

old_snapsh
ot_threshold

[-1-86400] min Time before a
snapshot is too
old to read pages
changed after the
snapshot was taken.

statement_timeout [0-2147483647] ms Sets the maximum
allowed duration of
any statement.

track_activity_query
_size

[100-102400] Byte Sets the size reserved
 for pg_stat_activity.
query, in bytes.

966 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 20 Custom parameters

Name Valid value Unit Description

vacuum_cle
anup_index
_scale_factor

[0-10000000000] The number of tuple
inserts prior to index
cleanup as a fraction
 of reltuples.

vacuum_fre
eze_table_age

[150000000-
2000000000]

The age at which
VACUUM scan whole
table to freeze tuples
.

wal_keep_segments [0-100000] Sets the number of
 WAL files held for
standby servers.

wal_level [minimal,replica,
logical]

Sets the level of
information written
to the WAL.

auto_explain.
log_buffers

[on|off] Log buffers usage.

auto_explain.
log_format

[text,xml,json,yaml] EXPLAIN format to
 be used for plan
logging.

auto_explain.
log_min_duration

[-1-2147483647] ms Sets the minimum
execution time above
 which plans will be
logged.

auto_explain
.log_nested
_statements

[on|off] Log nested
statements.

auto_explain.
log_timing

[on|off] Collects timing data
and row counts.

auto_explain.
log_triggers

[on|off] Includes trigger
statistics in plans.

auto_explain.
log_verbose

[on|off] Uses EXPLAIN
VERBOSE for plan
logging.

auto_explain.
sample_rate

[0-1] The fraction of
queries to process.

Issue: 20200701 967

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 20 Custom parameters

Name Valid value Unit Description

parallel_setup_cost [0-2147483647] Sets the planner's
estimate of the cost
of starting up worker
processes for parallel
 query.

parallel_tuple_cost [0-2147483647] Sets the planner's
estimate of the cost
 of passing each
tuple (row) from
worker to master
backend.

work_mem [1024-1048576] KB Sets the maximum
memory to be used
for query workspaces
.

idle_in_transaction_
session_timeout

[0-2147483647] ms Sets the maximum
allowed duration of
any idling transactio
n.

968 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 21 Implicit conversion
rules

21 Implicit conversion rules

This topic lists the rules for implicit conversions of data types in Apsara PolarDB-O.

Figure 21-1: Table of implicit conversion rules

• NA: indicates that implicit type conversion is not supported. Example:

 explain verbose select CAST(c1 as timestamp) from t_smallint;
 ERROR: cannot cast type smallint to timestamp without time zone

• e: indicates that explicit type conversion is supported only by the CAST or :: syntax.

Example:

 create table t_int(c1 integer);
 insert into t_int values(2);
 select CAST(c1 as boolean) from t_int;
 c1

 t
 insert into t_int values('true'::boolean);
 ERROR: column "c1" is of type integer but expression is of type boolean

• a: indicates that in addition to e, values can be implicitly assigned to the target column

(which assigns values by using INSERT VALUES or UPDATE SET). Example:

 create table t_int(c1 integer);
 insert into t_int values(2);
 select cast(c1 as smallint) from t_int; -- ok

Issue: 20200701 969

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 21 Implicit conversion
rules

 c1

 2
 insert into t_int values(3::smallint); -- ok

• i: indicates that in addition to a and e, other implicit conversions are supported, such as

expression parameters. Example:

 -- case 1
 CREATE OR REPLACE FUNCTION F_VARCHAR(arg1 VarChar) RETURN void
 IS
 BEGIN
 dbms_output.put_line(arg1);
 RETURN;
 END;

 SELECT F_VARCHAR(cast('10' as INTEGER)) FROM DUAL; -- fail
 SELECT F_VARCHAR(cast('10' as CHAR(10))) FROM DUAL; -- ok
 -- case 2
 create table t_varchar(c1 varchar(10));
 insert into t_varchar values(2);
 explain verbose select sum(c1) from t_varchar;
 QUERY PLAN

 Aggregate (cost=43.95..43.96 rows=1 width=32)
 Output: sum((c1)::numeric)
 -> Seq Scan on public.t_varchar (cost=0.00..29.40 rows=1940 width=14)
 Output: c1

Note:

The actual type of DATE data stored in an Apsara PolarDB-O database is determined by the

 parameter edb_redwood_date:

• edb_redwood_date=on (default): The data type is TIMESTAMP WITHOUT TIME ZONE,

which is compatible with Oracle mode. For more information about the implicit type

conversion rules, see Table of implicit conversion rules.

970 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 21 Implicit conversion
rules

• edb_redwood_date=off: The data type is DATE, which is compatible with PostgreSQL

mode. The following shows some of the implicit type conversion rules. For more

information, see Table of implicit conversion rules.

- When the type of the source data is DATE and the type of the target data is TIME

WITHOUT TIME ZONE, the implicit conversion rule is "NA".

- When the type of the source data is TIMESTAMP WITHOUT TIME ZONE and the type of

the target data is DATE, the implicit conversion rule is "a".

- When the type of the source data is TIMESTAMP WITH TIME ZONE (TIMESTAMPTZ) and

the type of the target data is DATE, the implicit conversion rule is "a".

- When the type of the source data is TIMESTAMP WITHOUT TIME ZONE (TIMESTAMP)

and the type of the target data is DATE, the implicit conversion rule is "a".

Issue: 20200701 971

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 22 Read and write
external data files by using oss_fdw

22 Read and write external data files by using
oss_fdw

Alibaba Cloud allows you to use the oss_fdw plug-in to load data in OSS to PolarDB

compatible with Oracle databases and write data in PolarDB compatible with Oracle

databases to OSS.

oss_fdw parameters

The oss_fdw plug-in uses a method similar to other Foreign Data Wrapper (FDW) interfaces

 to encapsulate external data stored in OSS. You can use oss_fdw to read data stored in

OSS. This process is similar to reading data tables. oss_fdw provides unique parameters to

connect and parse file data in OSS.

Note:

• oss_fdw can read and write files of the following types in OSS: TEXT and CSV files as

well as gzip-compressed TEXT and CSV files.

• The value of each parameter must be enclosed in double quotation marks (") and

cannot contain any unnecessary spaces.

CREATE SERVER parameters

• ossendpoint: the endpoint used to access OSS through the internal network, also known

 as the host.

• id oss: the ID of your OSS account.

• key oss: the key of your OSS account.

• bucket: the OSS bucket. You must create an OSS account before specifying this

parameter.

The following fault tolerance parameters can be used for data import and export. If

network connectivity is poor, you can adjust these parameters to ensure successful import

and export.

• oss_connect_timeout: indicates the connection timeout period. Default value: 10. Unit:

seconds.

• oss_dns_cache_timeout: indicates the DNS timeout period. Default value: 60. Unit:

seconds.

972 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 22 Read and write
external data files by using oss_fdw

• oss_speed_limit: indicates the minimum data transmission rate. Default value: 1. Unit:

Kbit/s.

• oss_speed_time: indicates the maximum period when the data transmission rate is

lower than the minimum value. Default value: 15. Unit: seconds.

If the default values of oss_speed_limit and oss_speed_time are used, a timeout error

occurs when the transmission rate is smaller than 1 Kbit/s for 15 consecutive seconds.

CREATE FOREIGN TABLE parameters

• filepath: a file name that contains a path in OSS.

- A file name contains a path but not a bucket name.

- This parameter matches multiple files in the corresponding path in OSS. You can load

multiple files to a database.

- You can import files named in the format of filepath or filepath.x to a database. The

values of x must be consecutive numbers starting from 1.

For example, among the files named filepath, filepath.1, filepath.2, filepath.3, and

 filepath.5, the first four files are matched and imported. The filepath.5 file is not

imported.

• dir: the virtual file directory in OSS.

- dir must end with a forward slash (/).

- All files (excluding subfolders and files in subfolders) in the virtual file directory

specified by dir will be matched and imported to a database.

• prefix: the prefix of the path name corresponding to the data file. The prefix does not

support regular expressions. Only one parameter among prefix, filepath, and dir can be

specified at a time because they are mutually exclusive.

• format: the file format, which can only be csv.

• encoding: the file data encoding format. It supports common PostgreSQL encoding

formats, such as UTF-8.

• parse_errors: the fault-tolerant parsing mode. If an error occurs during the parsing

process, the entire row of data is ignored.

• delimiter: the column delimiter.

• quote: the quote character for files.

• escape: the escape character for files.

• null: sets the column matching a specified string to null.

Issue: 20200701 973

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 22 Read and write
external data files by using oss_fdw

• force_not_null: sets the value of a column to a non-null value. For example, force_not_

null 'id' is used to set the values of the 'id' column to empty strings.

• compressiontype: specifies the format of the files to be read or written in OSS.

- none: uncompressed text files. This is the default value.

- gzip: The files to be read must be gzip compressed.

• compressionlevel: specifies the compression level of the compression format written to

OSS. Valid values: 1 to 9. Default value: 6.

Note:

• You must specify filepath and dir in the OPTIONS parameter.

• You must specify either filepath or dir.

• The export mode only supports virtual folders, that is, only dir is supported.

Export mode parameters for CREATE FOREIGN TABLE

• oss_flush_block_size: the buffer size for the data written to OSS at a time. Default value:

32 MB. Valid values: 1 MB to 128 MB.

• oss_file_max_size: the maximum file size for the data written to OSS (subsequent data is

written in another file when the maximum file size is exceeded). Default value: 1024 MB.

Valid values: 8 MB to 4000 MB.

• num_parallel_worker: the number of parallel compression threads in which the OSS data

 is written. Valid values: 1 to 8. Default value: 3.

Auxiliary functions

FUNCTION oss_fdw_list_file (relname text, schema text DEFAULT 'public')

• Obtains the name and size of the OSS file that an external table matches.

• The unit of file size is Byte.

select * from oss_fdw_list_file('t_oss');
 name | size
--------------------------------+-----------
 oss_test/test.gz.1 | 739698350
 oss_test/test.gz.2 | 739413041
 oss_test/test.gz.3 | 739562048
(3 rows)

Auxiliary features

oss_fdw.rds_read_one_file: In read mode, it is used to specify a file to match the external

table. If the file is specified, the external table only matches this file during data import.

974 Issue: 20200701

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 22 Read and write
external data files by using oss_fdw

Example: set oss_fdw.rds_read_one_file = 'oss_test/example16.csv.1';

set oss_fdw.rds_read_one_file = 'oss_test/test.gz.2';
select * from oss_fdw_list_file('t_oss');
 name | size
--------------------------------+-----------
 oss_test/test.gz.2 | 739413041
(1 rows)

oss_fdw example

Create a plug-in
create extension oss_fdw;
Create a server
CREATE SERVER ossserver FOREIGN DATA WRAPPER oss_fdw OPTIONS
 (host 'oss-cn-hangzhou.aliyuncs.com', id 'xxx', key 'xxx', bucket 'mybucket');
Create an OSS external table
CREATE FOREIGN TABLE ossexample
 (date text, time text, open float,
 high float, low float, volume int)
 SERVER ossserver
 OPTIONS (filepath 'osstest/example.csv', delimiter ',' ,
 format 'csv', encoding 'utf8', PARSE_ERRORS '100');
Create a table to load data to
create table example
 (date text, time text, open float,
 high float, low float, volume int)
Load data from ossexample to example.
insert into example select * from ossexample;
Result
oss_fdw estimates the file size in OSS and formulates a query plan correctly.
explain insert into example select * from ossexample;
 QUERY PLAN

 Insert on example (cost=0.00..1.60 rows=6 width=92)
 -> Foreign Scan on ossexample (cost=0.00..1.60 rows=6 width=92)
 Foreign OssFile: osstest/example.csv.0
 Foreign OssFile Size: 728
(4 rows)
Write the data in the example table to OSS.
insert into ossexample select * from example;
explain insert into ossexample select * from example;
 QUERY PLAN

 Insert on ossexample (cost=0.00..16.60 rows=660 width=92)
 -> Seq Scan on example (cost=0.00..16.60 rows=660 width=92)
(2 rows)

oss_fdw usage considerations

• oss_fdw is an external table plug-in developed based on the PostgreSQL FOREIGN TABLE

 framework.

• The data import efficiency is subject to the PolarDB compatible with Oracle cluster

resources (CPU, I/O, memory, and MET) and OSS.

• To guarantee data import performance, ensure that PolarDB compatible with Oracle is in

the same region as OSS. For more information, see Endpoints.

Issue: 20200701 975

https://www.alibabacloud.com/help/doc-detail/31834.htm

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 22 Read and write
external data files by using oss_fdw

• If the error "oss endpoint userendpoint not in aliyun white list" is reported during

reading of SQL statements for external tables, use the endpoints listed in Regions and

endpoints. If the problem persists, submit a ticket.

Error handling

When an import or export error occurs, the log displays the following error information:

• code: the HTTP status code of the request that has failed.

• error_code: the error code returned by OSS.

• error_msg: the error message returned by OSS.

• req_id: the UUID that identifies the request. If you cannot solve the problem, you can

seek help from OSS development engineers by providing the req_id.

For more information about error types, see the following references. Timeout errors can be

 handled using oss_ext parameters.

• OSS help

•

• OSS error handling

• OSS error response

ID and key encryption

If id and key parameters for CREATE SERVER are not encrypted, executing the select * from

 pg_foreign_server statement will display the information in plaintext. Your ID and key will

be exposed. You can use symmetric encryption to hide the ID and key. Use different keys for

different instances to further protect your information. However, to avoid incompatibility

with earlier versions, do not add data types as you do in Greenplum.

Encrypted information:

postgres=# select * from pg_foreign_server ;
 srvname | srvowner | srvfdw | srvtype | srvversion | srvacl |
 srvoptions
-----------+----------+--------+---------+------------+--------
+--

 ossserver | 10 | 16390 | | | | {host=oss-cn-hangzhou-zmf.aliyuncs.com,id
=MD5xxxxxxxx,key=MD5xxxxxxxx,bucket=067862}

The encrypted information is preceded by the MD5 hash value. The remainder of the total

length divided by 8 is 3. Therefore, encryption is not performed again when the exported

data is imported. But you cannot create the key and ID preceded by an MD5 hash value.

976 Issue: 20200701

https://www.alibabacloud.com/help/doc-detail/31837.htm
https://www.alibabacloud.com/help/doc-detail/31837.htm
https://www.alibabacloud.com/help/product/31815.htm
https://www.alibabacloud.com/help/doc-detail/32141.htm
https://www.alibabacloud.com/help/doc-detail/32005.htm

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 23 Global temporary
tables

23 Global temporary tables

PolarDB databases compatible with Oracle support global temporary tables and native

PostgreSQL local temporary tables.

Syntax

CREATE GLOBAL TEMPORARY|TEMP TABLE table-name
 { column-definition [, column-definition] * }
[ON COMMIT {DELETE | PRESERVE} ROWS]

• The ON COMMIT DELETE ROWS clause is used to delete data from temporary tables after

the current transaction is committed.

• The ON COMMIT PRESERVE ROWS clause is used to retain data in global temporary tables

 after the current transaction is committed.

• The ON COMMIT DROP clause is not supported.

• By default, the ON COMMIT DELETE ROWS clause is used if you do not use the ON COMMIT

 clause.

Description

• All database sessions share the table definition of a global temporary table. When

a session creates a global temporary table, other sessions can also use this global

temporary table.

• The data stored in a global temporary table is private to the session that generates the

data. Each session can only access its own data in the global temporary table.

• When a session exits, the data and underlying storage in the global temporary table that

 the session uses are cleared.

• You can join a global temporary table to other tables, create indexes on a global

temporary table, and scan indexes on a global temporary table. The current version

supports only B-tree indexes. The table-level and column-level statistics of the global

temporary table is also private to the session that generates the data used in statistics.

This optimizes the query plan of a query in the global temporary table.

• Global temporary tables support manual VACUUM and ANALYZE operations to clear junk

data and collect statistics.

Examples

create global temp table gtt1(a int primary key, b text); #Creates a global temporary
table named gtt1. By default, the global temporary table supports ON COMMIT DELETE

Issue: 20200701 977

ApsaraDB for PolarDB Developer Guide for PolarDB-O / 23 Global temporary
tables

 ROWS. You can use ON COMMIT DELETE ROWS to delete all data from the global
temporary table after the current transaction is committed.
create global temporary table gtt2(a int primary key, b text) on commit delete rows; #
Creates a global temporary table named gtt2 and specifies ON COMMIT DELETE ROWS to
delete all data from the global temporary table after the current transaction is committed
.
create global temp table gtt3(a int primary key, b text) on commit PRESERVE rows;
 #Creates a global temporary table named gtt3 and specifies ON COMMIT PRESERVE
ROWS to retain all data from the global temporary table after the current transaction is
committed.

Operations and maintenance

PolarDB databases compatible with Oracle provide a group of functions used in operations

and maintenance of global temporary tables.

• polar_gtt_attached_pid is used to view the sessions that are using a global temporary

 table. You can combine this function with other functions during operations and

maintenance.

• polar_gtt_att_statistic is used to view the column-level statistics of a global temporary

table.

• polar_gtt_relstats is used to view the table-level statistics of a global temporary table.

These functions work as plug-ins. You must create the plug-ins before you use these

functions.

create extension polar_gtt;

If you want to delete a global temporary table, the global temporary table must be being

used in the current session.

To delete the global temporary table, follow these steps:

1. Use polar_gtt_attached_pid to query the sessions that are using the global temporary

table.

2. Use pg_backend_pid() to retrieve the process ID (pid) of the current session.

3. Use pg_terminate_backend(pid) to terminate non-current sessions.

4. Execute the DROP TABLE statement to delete the global temporary table.

978 Issue: 20200701

	Contents
	Legal disclaimer
	Document conventions
	1 Oracle compatibility
	2 Connect to a POLARDB cluster compatible with Oracle
	3 Clients and Drivers
	3.1 Download clients and drivers
	3.2 polartools
	3.3 PolarDB JDBC
	3.4 PolarDB .NET
	3.5 PolarDB ODBC
	3.6 PolarDB (compatible with Oracle) OCI
	3.7 Use PHP to connect to a PolarDB cluster compatible with Oracle

	4 Basic operations
	4.1 Create a user
	4.2 Create a database
	4.3 Create a schema
	4.4 Create a table
	4.5 Delete a table
	4.6 Create a view
	4.7 Create a materialized view
	4.8 Create an index
	4.9 Create and use a sequence
	4.10 Create and use a synonym

	5 Configuration parameters compatible with Oracle databases
	5.1 edb_redwood_date
	5.2 edb_redwood_raw_names
	5.3 edb_redwood_strings
	5.4 edb_stmt_level_tx
	5.5 oracle_home

	6 SQL tutorial
	6.1 Get started
	6.1.1 Overview
	6.1.2 Install a sample database
	6.1.3 Sample database
	6.1.4 Sample database
	6.1.5 Create a table
	6.1.6 Populate a table with rows
	6.1.7 Query a table
	6.1.8 Joins between tables
	6.1.9 Aggregate functions
	6.1.10 Updates
	6.1.11 Deletions

	6.2 Advanced concepts
	6.2.1 Views
	6.2.2 Foreign keys
	6.2.3 Pseudo column ROWNUM
	6.2.4 Synonyms

	6.3 Hierarchical queries
	6.3.1 Overview
	6.3.2 Define parent-child relationships
	6.3.3 Select root nodes
	6.3.4 Organization tree in the sample application
	6.3.5 Node level
	6.3.6 Order siblings
	6.3.7 Use CONNECT_BY_ROOT to retrieve a root node
	6.3.8 Use SYS_CONNECT_BY_PATH to retrieve a path

	6.4 Multidimensional analysis
	6.4.1 Overview
	6.4.2 ROLLUP extension
	6.4.3 CUBE extension
	6.4.4 GROUPING SETS extension
	6.4.5 GROUPING function
	6.4.6 GROUPING_ID function

	6.5 Profiles
	6.5.1 Overview
	6.5.2 Create a new profile
	6.5.3 Alter a profile
	6.5.4 Drop a profile
	6.5.5 Back up profile management functions

	6.6 Optimizer hints
	6.6.1 Overview
	6.6.2 Default optimization mode
	6.6.3 Access method hints
	6.6.4 Specify a join order
	6.6.5 Join relations hints
	6.6.6 Global hints
	6.6.7 Use the APPEND optimizer hint
	6.6.8 Parallel hints
	6.6.9 Conflicting hints

	7 Stored Procedure Language
	7.1 Overview
	7.2 Basic SPL elements
	7.2.1 Character sets
	7.2.2 Case sensitivity
	7.2.3 Identifiers
	7.2.4 Qualifiers
	7.2.5 Constants
	7.2.6 User-defined PL/SQL subtypes

	7.3 SPL programs
	7.3.1 Overview
	7.3.2 SPL block structures
	7.3.3 Anonymous blocks
	7.3.4 Create a procedure
	7.3.5 Call a procedure
	7.3.6 Delete a procedure
	7.3.7 Create a function
	7.3.8 Call a function
	7.3.9 Delete a function
	7.3.10 Procedure overview
	7.3.11 Function overview
	7.3.12 Compilation errors in procedures and functions

	7.4 Procedure and function parameters
	7.4.1 Overview
	7.4.2 Positional and named parameter notation
	7.4.3 Parameter modes
	7.4.4 Use default values in parameters

	7.5 Subprograms - subprocedures and subfunctions
	7.5.1 Overview
	7.5.2 Create a subprocedure
	7.5.3 Create a subfunction
	7.5.4 Block relationships
	7.5.5 Invoke subprograms
	7.5.6 Use forward declarations
	7.5.7 Overload subprograms
	7.5.8 Access subprogram variables

	7.6 Program security
	7.6.1 EXECUTE privileges
	7.6.2 Database object name resolution
	7.6.3 Database object privileges
	7.6.4 Rights of definers and invokers
	7.6.5 Security examples

	7.7 Variable declarations
	7.7.1 Declare a variable
	7.7.2 Use %TYPE in variable declarations
	7.7.3 Use %ROWTYPE in record declarations
	7.7.4 User-defined record types and record variables

	7.8 Basic statements
	7.8.1 NULL
	7.8.2 Assignment
	7.8.3 SELECT INTO
	7.8.4 INSERT
	7.8.5 UPDATE
	7.8.6 DELETE
	7.8.7 Use the RETURNING INTO clause
	7.8.8 Obtain the result status

	7.9 Control structures
	7.9.1 RETURN statement
	7.9.2 GOTO statement
	7.9.3 CASE expression
	7.9.4 CASE statement
	7.9.5 Loops
	7.9.6 Exception handling
	7.9.7 User-defined exceptions
	7.9.8 PRAGMA EXCEPTION_INIT
	7.9.9 RAISE_APPLICATION_ERROR

	7.10 IF statements
	7.10.1 IF-THEN
	7.10.2 IF-THEN-ELSE
	7.10.3 IF-THEN-ELSE IF
	7.10.4 IF-THEN-ELSIF-ELSE

	7.11 Transaction control
	7.11.1 Overview
	7.11.2 COMMIT
	7.11.3 ROLLBACK
	7.11.4 PRAGMA AUTONOMOUS_TRANSACTION

	7.12 Dynamic SQL
	7.13 Static cursors
	7.13.1 Overview
	7.13.2 Declare a cursor
	7.13.3 Open a cursor
	7.13.4 Fetch rows from a cursor
	7.13.5 Close a cursor
	7.13.6 Use %ROWTYPE with cursors
	7.13.7 Cursor attributes
	7.13.8 Cursor FOR loop
	7.13.9 Parameterized cursors

	7.14 REF CURSOR and cursor variable
	7.14.1 REF CURSOR overview
	7.14.2 Declare a cursor variable
	7.14.3 Open a cursor variable
	7.14.4 Fetch rows from a cursor variable
	7.14.5 Close a cursor variable
	7.14.6 Usage restrictions
	7.14.7 Examples
	7.14.8 Dynamic queries with REF CURSORs

	7.15 Collections
	7.15.1 Overview
	7.15.2 Associative arrays
	7.15.3 Nested tables
	7.15.4 Varrays

	7.16 Collection methods
	7.16.1 COUNT
	7.16.2 DELETE
	7.16.3 EXISTS
	7.16.4 EXTEND
	7.16.5 FIRST
	7.16.6 LAST
	7.16.7 LIMIT
	7.16.8 NEXT
	7.16.9 PRIOR
	7.16.10 TRIM

	7.17 Work with collections
	7.17.1 TABLE()
	7.17.2 Use the MULTISET UNION operator
	7.17.3 Use the FORALL statement
	7.17.4 Use the BULK COLLECT clause
	7.17.5 Errors and messages

	8 Triggers
	8.1 Overview of triggers
	8.2 Types of triggers
	8.3 Create a trigger
	8.4 Trigger variables
	8.5 Transactions and exceptions
	8.6 Trigger examples
	8.6.1 Before statement-level trigger
	8.6.2 After statement-level trigger
	8.6.3 Before row-level trigger
	8.6.4 After row-level trigger

	9 Object types and objects
	9.1 Basic object concepts
	9.2 Object type components
	9.3 Create an object type
	9.4 Create an object instance
	9.5 Reference an object
	9.6 Delete an object type

	10 dblink_ora
	10.1 Overview of dblink_ora
	10.2 dblink_ora functions and procedures
	10.3 Call dblink_ora functions

	11 Data types
	11.1 Data types
	11.2 Numeric type
	11.3 Character type
	11.4 Binary data
	11.5 Date and time type
	11.6 Boolean type
	11.7 XML type

	12 SQL Commands
	12.1 Overview
	12.2 ALTER INDEX
	12.3 ALTER PROCEDURE
	12.4 ALTER PROFILE
	12.5 ALTER QUEUE
	12.6 ALTER QUEUE TABLE
	12.7 ALTER ROLE… IDENTIFIED BY
	12.8 ALTER ROLE
	12.9 ALTER SEQUENCE
	12.10 ALTER SESSION
	12.11 ALTER TABLE
	12.12 ALTER TABLESPACE
	12.13 ALTER USER… IDENTIFIED BY
	12.14 CALL
	12.15 COMMENT
	12.16 COMMIT
	12.17 CREATE DATABASE
	12.18 CREATE [PUBLIC] DATABASE LINK
	12.19 CREATE FUNCTION
	12.20 CREATE INDEX
	12.21 CREATE MATERIALIZED VIEW
	12.22 CREATE PACKAGE
	12.23 CREATE PACKAGE BODY
	12.24 CREATE PROCEDURE
	12.25 CREATE QUEUE
	12.26 CREATE QUEUE TABLE
	12.27 CREATE ROLE
	12.28 CREATE SCHEMA
	12.29 CREATE SEQUENCE
	12.30 CREATE SYNONYM
	12.31 CREATE TABLE
	12.32 CREATE TABLE AS
	12.33 CREATE TRIGGER
	12.34 CREATE TYPE
	12.35 CREATE TYPE BODY
	12.36 CREATE VIEW
	12.37 DELETE
	12.38 DROP DATABASE LINK
	12.39 DROP FUNCTION
	12.40 DROP INDEX
	12.41 DROP PACKAGE
	12.42 DROP PROCEDURE
	12.43 DROP PROFILE
	12.44 DROP QUEUE
	12.45 DROP QUEUE TABLE
	12.46 DROP SYNONYM
	12.47 DROP SEQUENCE
	12.48 DROP TABLE
	12.49 DROP TABLESPACE
	12.50 DROP TRIGGER
	12.51 DROP TYPE
	12.52 DROP USER
	12.53 DROP VIEW
	12.54 EXEC
	12.55 GRANT
	12.56 GRANT on database objects
	12.57 INSERT
	12.58 LOCK
	12.59 REVOKE
	12.60 ROLLBACK
	12.61 ROLLBACK TO SAVEPOINT
	12.62 SAVEPOINT
	12.63 SELECT
	12.63.1 SELECT
	12.63.2 FROM clause
	12.63.3 WHERE clause
	12.63.4 GROUP BY clause
	12.63.5 HAVING clause
	12.63.6 SELECT list
	12.63.7 UNION clause
	12.63.8 INTERSECT clause
	12.63.9 MINUS clause
	12.63.10 CONNECT BY clause
	12.63.11 ORDER BY clause
	12.63.12 DISTINCT clause
	12.63.13 FOR UPDATE clause

	12.64 SET CONSTRAINTS
	12.65 SET ROLE
	12.66 SET TRANSACTION
	12.67 TRUNCATE
	12.68 UPDATE

	13 Built-in functions
	13.1 Logical operators
	13.2 Comparison operators
	13.3 Mathematical functions and operators
	13.4 String functions and operators
	13.5 Pattern matching string functions
	13.5.1 Overview
	13.5.2 REGEXP_COUNT
	13.5.3 REGEXP_INSTR
	13.5.4 REGEXP_SUBSTR

	13.6 Use the LIKE operator for pattern matching
	13.7 Functions for formatting data types
	13.8 Date/Time functions and operators
	13.8.1 Overview
	13.8.2 ADD_MONTHS
	13.8.3 EXTRACT
	13.8.4 MONTHS_BETWEEN
	13.8.5 NEXT_DAY
	13.8.6 NEW_TIME
	13.8.7 ROUND
	13.8.8 TRUNC
	13.8.9 CURRENT DATE/TIME

	13.9 Sequence manipulation functions
	13.10 Conditional expressions
	13.11 Aggregate functions
	13.12 Subquery expressions

	14 Oracle catalog views
	14.1 ALL_ALL_TABLES
	14.2 ALL_CONS_COLUMNS
	14.3 ALL_CONSTRAINTS
	14.4 ALL_DB_LINKS
	14.5 ALL_DIRECTORIES
	14.6 ALL_IND_COLUMNS
	14.7 ALL_INDEXES
	14.8 ALL_JOBS
	14.9 ALL_OBJECTS
	14.10 ALL_PART_KEY_COLUMNS
	14.11 ALL_PART_TABLES
	14.12 ALL_QUEUES
	14.13 ALL_QUEUE_TABLES
	14.14 ALL_SEQUENCES
	14.15 ALL_SOURCE
	14.16 ALL_SUBPART_KEY_COLUMNS
	14.17 ALL_SYNONYMS
	14.18 ALL_TAB_COLUMNS
	14.19 ALL_TAB_PARTITIONS
	14.20 ALL_TAB_SUBPARTITIONS
	14.21 ALL_TABLES
	14.22 ALL_TRIGGERS
	14.23 ALL_TYPES
	14.24 ALL_USERS
	14.25 ALL_VIEW_COLUMNS
	14.26 ALL_VIEWS
	14.27 DBA_ALL_TABLES
	14.28 DBA_CONS_COLUMNS
	14.29 DBA_CONSTRAINTS
	14.30 DBA_DB_LINKS
	14.31 DBA_DIRECTORIES
	14.32 DBA_IND_COLUMNS
	14.33 DBA_INDEXES
	14.34 DBA_JOBS
	14.35 DBA_OBJECTS
	14.36 DBA_PART_KEY_COLUMNS
	14.37 DBA_PART_TABLES
	14.38 DBA_PROFILES
	14.39 DBA_QUEUES
	14.40 DBA_QUEUE_TABLES
	14.41 DBA_ROLE_PRIVS
	14.42 DBA_ROLES
	14.43 DBA_SEQUENCES
	14.44 DBA_SOURCE
	14.45 DBA_SUBPART_KEY_COLUMNS
	14.46 DBA_SYNONYMS
	14.47 DBA_TAB_COLUMNS
	14.48 DBA_TAB_PARTITIONS
	14.49 DBA_TAB_SUBPARTITIONS
	14.50 DBA_TABLES
	14.51 DBA_TRIGGERS
	14.52 DBA_TYPES
	14.53 DBA_USERS
	14.54 DBA_VIEW_COLUMNS
	14.55 DBA_VIEWS
	14.56 USER_ALL_TABLES
	14.57 USER_CONS_COLUMNS
	14.58 USER_CONSTRAINTS
	14.59 USER_DB_LINKS
	14.60 USER_IND_COLUMNS
	14.61 USER_INDEXES
	14.62 USER_JOBS
	14.63 USER_OBJECTS
	14.64 USER_PART_KEY_COLUMNS
	14.65 USER_PART_TABLES
	14.66 USER_QUEUES
	14.67 USER_QUEUE_TABLES
	14.68 USER_ROLE_PRIVS
	14.69 USER_SEQUENCES
	14.70 USER_SOURCE
	14.71 USER_SUBPART_KEY_COLUMNS
	14.72 USER_SYNONYMS
	14.73 USER_TAB_COLUMNS
	14.74 USER_TAB_PARTITIONS
	14.75 USER_TAB_SUBPARTITIONS
	14.76 USER_TABLES
	14.77 USER_TRIGGERS
	14.78 USER_TYPES
	14.79 USER_USERS
	14.80 USER_VIEW_COLUMNS
	14.81 USER_VIEWS
	14.82 V$VERSION
	14.83 PRODUCT_COMPONENT_VERSION

	15 Table partitioning
	15.1 Overview
	15.2 Select a partitioning type
	15.3 Use partition pruning
	15.4 Example - partition pruning
	15.5 Partitioning commands compatible with Oracle databases
	15.5.1 CREATE TABLE... PARTITION BY
	15.5.2 ALTER TABLE... ADD PARTITION
	15.5.3 ALTER TABLE... ADD SUBPARTITION
	15.5.4 ALTER TABLE... SPLIT PARTITION
	15.5.5 ALTER TABLE... SPLIT SUBPARTITION
	15.5.6 ALTER TABLE... EXCHANGE PARTITION
	15.5.7 ALTER TABLE... MOVE PARTITION
	15.5.8 ALTER TABLE... RENAME PARTITION
	15.5.9 DROP TABLE
	15.5.10 ALTER TABLE... DROP PARTITION
	15.5.11 ALTER TABLE... DROP SUBPARTITION
	15.5.12 TRUNCATE TABLE
	15.5.13 ALTER TABLE... TRUNCATE PARTITION
	15.5.14 ALTER TABLE... TRUNCATE SUBPARTITION

	15.6 Handle stray values in a LIST or RANGE partitioned table
	15.7 Specify multiple partition key columns in a RANGE partitioned table
	15.8 Retrieve information about a partitioned table
	15.8.1 Overview
	15.8.2 Table partitioning views - reference

	16 Packages
	16.1 Overview
	16.2 Package components
	16.2.1 Package specification syntax
	16.2.2 Package body syntax

	16.3 Create a package
	16.3.1 Create a package specification
	16.3.2 Create a package body

	16.4 Reference a package
	16.5 Use packages with user-defined types
	16.6 Drop a package

	17 Built-in packages
	17.1 Overview
	17.2 DBMS_ALERT
	17.3 DBMS_AQ
	17.4 DBMS_AQADM
	17.5 DBMS_CRYPTO
	17.6 DBMS_LOB
	17.7 DBMS_LOCK
	17.8 DBMS_MVIEW
	17.9 DBMS_OUTPUT
	17.10 DBMS_PIPE
	17.11 DBMS_PROFILER
	17.12 DBMS_RANDOM
	17.13 DBMS_RLS
	17.14 DBMS_SESSION
	17.15 DBMS_SQL
	17.16 DBMS_UTILITY
	17.17 UTL_ENCODE
	17.18 UTL_RAW
	17.19 UTL_URL

	18 PL/SQL functions and procedures
	18.1 Overview
	18.2 Basic SPL elements
	18.2.1 Basic SPL elements
	18.2.2 User-defined PL/SQL subtypes

	18.3 SPL programs
	18.3.1 SPL block structure
	18.3.2 Anonymous blocks

	18.4 Procedure overview
	18.5 Function overview
	18.6 Parameters in stored procedures and functions
	18.6.1 Overview
	18.6.2 Positional and named parameter notation
	18.6.3 Parameter modes
	18.6.4 Use default values in parameters

	18.7 Compilation errors in stored procedures and functions
	18.8 Program security
	18.8.1 Overview
	18.8.2 EXECUTE permission
	18.8.3 Database object name resolution
	18.8.4 Database object permissions
	18.8.5 Comparison of the definer's permission and caller's permission
	18.8.6 Example of the security mechanism

	19 Develop PL/SQL packages
	19.1 Overview
	19.2 Package components
	19.3 Create a package
	19.4 Reference a package
	19.5 Use packages with user-defined types
	19.6 Drop a package

	20 Custom parameters
	21 Implicit conversion rules
	22 Read and write external data files by using oss_fdw
	23 Global temporary tables

