
Alibaba Cloud
ApsaraDB for PolarDB

PolarDB PostgreSQL Database

Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / Legal disclaimer

Legal disclaimer
Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions

 of this legal disclaimer before you read or use this document. If you have read or used this

document, it shall be deemed as your total acceptance of this legal disclaimer.

1. You shall download and obtain this document from the Alibaba Cloud website or other

Alibaba Cloud-authorized channels, and use this document for your own legal business

 activities only. The content of this document is considered confidential information of

Alibaba Cloud. You shall strictly abide by the confidentiality obligations. No part of this

 document shall be disclosed or provided to any third party for use without the prior

written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted, or

disseminated by any organization, company, or individual in any form or by any means

without the prior written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades,

adjustments, or other reasons. Alibaba Cloud reserves the right to modify the content

 of this document without notice and the updated versions of this document will be

 occasionally released through Alibaba Cloud-authorized channels. You shall pay

attention to the version changes of this document as they occur and download and

obtain the most up-to-date version of this document from Alibaba Cloud-authorized

channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud products

 and services. Alibaba Cloud provides the document in the context that Alibaba Cloud

 products and services are provided on an "as is", "with all faults" and "as available"

basis. Alibaba Cloud makes every effort to provide relevant operational guidance based

on existing technologies. However, Alibaba Cloud hereby makes a clear statement that it

 in no way guarantees the accuracy, integrity, applicability, and reliability of the content

of this document, either explicitly or implicitly. Alibaba Cloud shall not bear any liability

for any errors or financial losses incurred by any organizations, companies, or individual

s arising from their download, use, or trust in this document. Alibaba Cloud shall not,

under any circumstances, bear responsibility for any indirect, consequential, exemplary

, incidental, special, or punitive damages, including lost profits arising from the use or

trust in this document, even if Alibaba Cloud has been notified of the possibility of such

a loss.

Issue: 20200522 I

ApsaraDB for PolarDB PolarDB PostgreSQL Database / Legal disclaimer

5. By law, all the contents in Alibaba Cloud documents, including but not limited to

pictures, architecture design, page layout, and text description, are intellectual property

 of Alibaba Cloud and/or its affiliates. This intellectual property includes, but is not

limited to, trademark rights, patent rights, copyrights, and trade secrets. No part of

this document shall be used, modified, reproduced, publicly transmitted, changed,

disseminated, distributed, or published without the prior written consent of Alibaba

 Cloud and/or its affiliates. The names owned by Alibaba Cloud shall not be used,

published, or reproduced for marketing, advertising, promotion, or other purposes

without the prior written consent of Alibaba Cloud. The names owned by Alibaba Cloud

 include, but are not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other brands

 of Alibaba Cloud and/or its affiliates, which appear separately or in combination, as

 well as the auxiliary signs and patterns of the preceding brands, or anything similar

to the company names, trade names, trademarks, product or service names, domain

names, patterns, logos, marks, signs, or special descriptions that third parties identify as

 Alibaba Cloud and/or its affiliates.

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

II Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / Legal disclaimer

Issue: 20200522 III

ApsaraDB for PolarDB PolarDB PostgreSQL Database / Document conventions

Document conventions

Style Description Example

A danger notice indicates a
situation that will cause major
system changes, faults, physical
injuries, and other adverse results.

Danger:
Resetting will result in the loss of
user configuration data.

A warning notice indicates a
situation that may cause major
system changes, faults, physical
injuries, and other adverse results.

Warning:
Restarting will cause business
interruption. About 10 minutes
are required to restart an
instance.

A caution notice indicates warning
 information, supplementary
instructions, and other content
that the user must understand.

Notice:
If the weight is set to 0, the server
no longer receives new requests.

A note indicates supplemental
instructions, best practices, tips,
and other content.

Note:
You can use Ctrl + A to select all
files.

> Closing angle brackets are used
 to indicate a multi-level menu
cascade.

Click Settings > Network > Set
network type.

Bold Bold formatting is used for buttons
, menus, page names, and other UI
 elements.

Click OK.

Courier font Courier font is used for commands. Run the cd /d C:/window
 command to enter the Windows
system folder.

Italic Italic formatting is used for
parameters and variables.

bae log list --instanceid

Instance_ID

[] or [a|b] This format is used for an optional
value, where only one item can be
 selected.

ipconfig [-all|-t]

Issue: 20200522 I

ApsaraDB for PolarDB PolarDB PostgreSQL Database / Document conventions

Style Description Example

{} or {a|b} This format is used for a required
value, where only one item can be
 selected.

switch {active|stand}

II Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / Document conventions

Issue: 20200522 III

ApsaraDB for PolarDB PolarDB PostgreSQL Database / Contents

Contents

Legal disclaimer... I
Document conventions..I
1 Overview.. 1
2 PolarDB PostgreSQL Quick Start... 2
3 Overview of data migration plans..3
4 Data Migration..4

4.1 Migrate data from a user-created PostgreSQL database to POLARDB for
PostgreSQL..4

4.2 Migrate data from ApsaraDB RDS for PostgreSQL to POLARDB for PostgreSQL..... 8

5 Read/write splitting.. 12
6 Pending events... 16
7 Configure a whitelist for a POLARDB for PostgreSQL cluster.... 18
8 Billing management..19

8.1 Change the billing method from pay-as-you-go to subscription......................... 19
8.2 Manually renew the subscription to a cluster.. 20
8.3 Automatically renew the subscription to a cluster...21

9 Connect to a database cluster..26
9.1 View connection endpoints..26
9.2 Connect to a POLARDB for PostgreSQL cluster...27

10 Cluster management... 30
10.1 Create a POLARDB for PostgreSQL cluster.. 30
10.2 Configure cluster parameters.. 34
10.3 Change the cluster specifications.. 36
10.4 Add or remove a read-only node.. 39
10.5 Set the maintenance window..43
10.6 Restart a node...44
10.7 Release a cluster... 45
10.8 Clone a cluster...46
10.9 Upgrade the minor version..47
10.10 Switch workloads from writer nodes to reader nodes...................................... 49

11 Account management... 52
11.1 Overview.. 52
11.2 Register and log on to an Alibaba Cloud account... 53
11.3 Create and authorize a RAM user.. 54
11.4 Create a database account... 58
11.5 Manage a database account...60

12 Database management... 62

IV Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / Contents

13 Backup and restoration..65
13.1 Back up data..65
13.2 Restore data.. 67

14 Diagnostics and optimization...70
14.1 Performance monitoring and alert configuration...70
14.2 Performance insight.. 71

15 SQL Explorer... 75
16 Plug-ins.. 80

16.1 Read and write external data files by using oss_fdw... 80
16.2 Use the pg_pathman plug-in.. 85
16.3 Enable the zhparser plug-in..112

Issue: 20200522 V

ApsaraDB for PolarDB PolarDB PostgreSQL Database / Contents

VI Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 1 Overview

1 Overview

PolarDB is a next-generation cloud-based service developed by Alibaba Cloud for

relational databases, which is compatible with MySQL, PostgreSQL, and Oracle. Based on

 a distributed storage architecture, PolarDB provides high-capacity, low-latency online

transaction processing (OLTP) services, and cost-effective scalable services.

Basic concepts

• Cluster

A PolarDB cluster contains one primary instance and up to 15 read-only instances (at

least one read-only instance must be provided to guarantee active-active high availabili

ty support). A PolarDB cluster ID starts with pc, which stands for PolarDB cluster.

• Instance

An instance is an independent database server in which you can create and manage

multiple databases. An instance ID starts with pi, which stands for PolarDB instance.

• Database

A database is a logical unit created in an instance. The name of each PolarDB database

under the same instance must be unique.

• Region and zone

Each region is a separate geographic area. Zones are distinct locations within a region

that operate on independent power grids and networks. For more information, see

Alibaba Cloud's Global Infrastructure.

Console

Alibaba Cloud offers a web-based and easy-to-use console where you can manage various

 products and services including PolarDB. In the console, you can create, access, and

configure your PolarDB database.

For more information about the console layout, see Alibaba Cloud console.

PolarRDB console.

Issue: 20200522 1

https://www.alibabacloud.com/global-locations
https://www.alibabacloud.com/global-locations
https://www.alibabacloud.com/help/doc-detail/47605.htm
https://polardb.console.aliyun.com/

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 2 PolarDB PostgreSQL
Quick Start

2 PolarDB PostgreSQL Quick Start

This topic provides a quick start guide about how to manage PolarDB PostgreSQL clusters,

such as creating a cluster, specifying basic configurations, and connecting to a cluster. It

allows you to familiarize yourself with the entire process of purchasing and using a PolarDB

PostgreSQL cluster.

Procedure

To purchase and use a PolarDB PostgreSQL cluster, follow these steps:

1. Create a PolarDB PostgreSQL cluster

2. Configure whitelists.

3. Create accounts.

4. View connection endpoints.

5. Connect to the cluster.

2 Issue: 20200522

https://www.alibabacloud.com/help/doc-detail/118063.htm

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 3 Overview of data
migration plans

3 Overview of data migration plans

ApsaraDB for POLARDB provides various data migration solutions to meet different business

needs such as migrating data to the cloud and migrating data between different cloud

service providers. This allows you to smoothly migrate your database to Alibaba Cloud

ApsaraDB for POLARDB without affecting your business. By using Alibaba Cloud Data

Transmission Service (DTS), you can implement the schema migration and full migration of

POLARDB databases.

Data migration

Scenario Reference

Migrate data from ApsaraDB
 for RDS to ApsaraDB for
POLARDB

Migrate data from ApsaraDB RDS for PostgreSQL to
POLARDB for PostgreSQL

Migrate data from a user
-created database to
ApsaraDB for POLARDB

Migrate data from a user-created PostgreSQL database to
POLARDB for PostgreSQL

Issue: 20200522 3

https://www.alibabacloud.com/help/doc-detail/26592.htm
https://www.alibabacloud.com/help/doc-detail/26592.htm

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 4 Data Migration

4 Data Migration

4.1 Migrate data from a user-created PostgreSQL database to
POLARDB for PostgreSQL

This topic describes how to migrate data from a user-created PostgreSQL database

to POLARDB for PostgreSQL by running the pg_dumpall, pg_dump, and pg_restore

 commands.

For details about how to migrate data from an ApsaraDB RDS for PostgreSQL database, see

Migrate data from ApsaraDB RDS for PostgreSQL to POLARDB for PostgreSQL.

Prerequisites

The storage capacity of the POLARDB for PostgreSQL instance must be greater than that of

the user-created PostgreSQL database.

Precautions

This is a full migration. To avoid inconsistencies in data, stop the services related to the user

-created database and stop data writing before migration.

Preparations

1. Create a Linux ECS instance. This example uses an ECS instance running 64-bit Ubuntu

16.04. For more information, see Create an ECS instance.

Note:

• The ECS instance and the destination POLARDB for PostgreSQL instance must be in

the same VPC.

• You can create a pay-as-you-go ECS instance and release it after the migration.

2. Install PostgreSQL on the ECS instance to run the data restoration commands. For more

information, see PostgreSQL official documentation.

Note:

Ensure that the version of the installed PostgreSQL database is the same as that of the

user-created PostgreSQL database.

4 Issue: 20200522

https://www.alibabacloud.com/help/doc-detail/25424.htm
https://www.postgresql.org/docs/11/installation.html

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 4 Data Migration

Step 1: Back up the user-created PostgreSQL database

This is a full migration. To avoid inconsistencies in data, stop the services related to the user

-created database and stop data writing before migration.

1. Run the following command on the user-created PostgreSQL database server to back up

all the role information in the database.

pg_dumpall -U <username> -h <hostname> -p <port> -r -f <filename>

Parameter description:

• <username>: the account used to log on to the user-created PostgreSQL database.

• <hostname>: the endpoint of the user-created PostgreSQL database. localhost can be

used for a local host.

• <port>: the port number of the database service.

• <filename>: the name of the generated backup file.

Example:

pg_dumpall -U postgres -h localhost -p 5432 -r -f roleinfo.sql

2. Enter the password in the Password: prompt to start role information backup.

3. Run the vim command to replace SUPERUSER in the role information backup file with

polar_superuser.

Note:

If the role information backup file does not contain SUPERUSER information, you can

skip this step.

Issue: 20200522 5

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 4 Data Migration

4. Run the following command to back up data of the user-created PostgreSQL database.

pg_dump -U <username> -h <hostname> -p <port> <dbname> -Fd -j <njobs> -f <
dumpdir>

Parameter description:

• <username>: the account used to log on to the user-created PostgreSQL database.

• <hostname>: the endpoint of the user-created PostgreSQL database. localhost can be

used for a local host.

• <port>: the port number of the database service.

• <dbname>: the name of the database to be backed up.

• <njobs>: the number of concurrent backup jobs.

Note:

- Specifying the <njobs> parameter can shorten the dump time, but it also increases

 the load on the database server.

- If the version of the user-created PostgreSQL database is earlier than 9.2, you

must specify the --no-synchronized-snapshots parameter.

• <dumpdir>: the directory of the generated backup file.

Example:

pg_dump -U postgres -h localhost -p 5432 mytestdata -Fd -j 5 -f postgresdump

5. Enter the password in the Password: prompt to start data backup.

6. Wait until the backup is completed. The data in the PostgreSQL database is backed up to

the specified directory. In this example, the data is stored in the postgresdump directory.

Step 2: Migrate data to POLARDB for PostgreSQL

1. Upload the directory of backup files to the ECS instance.

Note:

Backup files include role information backup files and database backup files.

6 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 4 Data Migration

2. Run the following command on the ECS instance to migrate role information in backup

files to the POLARDB for PostgreSQL instance.

psql -U <username> -h <hostname> -p <port> -d <dbname> -f <filename>

Parameter description:

• <username>: the account used to log on to the POLARDB for PostgreSQL database.

• <hostname>: the primary endpoint (private network) of the POLARDB for PostgreSQL

instance.

• <port>: the port number of the database service. The default value is 1921.

• <dbname>: the name of the database to connect to. The default value is postgres.

• <filename>: the name of the role information backup file.

psql -U gctest -h pc-xxxxxxxx.pg.polardb.cn-qd-pldb1.rds.aliyuncs.com -d postgres -
p 1921 -f roleinfo.sql

3. Enter the password in the Password: prompt to start role information import.

4. Run the following command on the ECS instance to restore data to the POLARDB for

PostgreSQL instance.

pg_restore -U <username> -h <hostname> -p <port> -d <dbname> -j <njobs> <
dumpdir>

Parameter description:

• <username>: the account used to log on to the POLARDB for PostgreSQL database.

• <hostname>: the primary endpoint (private network) of the POLARDB for PostgreSQL

instance. For more information, see View connection endpoints.

• <port>: the port number of the database service. The default value is 1921.

• <dbname>: the name of the destination database to connect to and restore data.

Note:

A destination database must be available. If not, create a database in the

destination instance.

• <njobs>: the number of concurrent data restoration jobs.

Note:

Issue: 20200522 7

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 4 Data Migration

Specifying this parameter can shorten data restoration time, but it also increases the

load on the database server.

• <dumpdir>: the directory where the backup file is located.

Example:

pg_restore -U gctest -h pc-mxxxxxxxx.pg.polardb.cn-qd-pldb1.rds.aliyuncs.com -p
1921 -d mytestdata -j 6 postgresdump

5. Enter the password in the Password: prompt to start data migration.

Note:

For details about how to change the password if you forget your password, see Reset

the password of a database account.

Wait until the data migration is complete.

4.2 Migrate data from ApsaraDB RDS for PostgreSQL to
POLARDB for PostgreSQL

This topic describes how to migrate data from a user-created PostgreSQL database to

POLARDB for PostgreSQL by running the pg_dump and pg_restore commands.

For details about how to migrate data from an ApsaraDB RDS for PostgreSQL database, see

Migrate data from a user-created PostgreSQL database to POLARDB for PostgreSQL.

Prerequisites

The storage capacity of the POLARDB for PostgreSQL instance must be greater than that of

the ApsaraDB RDS for PostgreSQL instance.

Precautions

This is a full migration. To avoid inconsistencies in data, stop the services related to the

ApsaraDB RDS for PostgreSQL database and stop data writing before migration.

Preparations

1. Create a Linux ECS instance. This example uses an ECS instance running 64-bit Ubuntu

16.04. For more information, see Create an ECS instance.

Note:

• The ECS instance and the destination POLARDB for PostgreSQL instance must be in

the same VPC.

8 Issue: 20200522

https://www.alibabacloud.com/help/doc-detail/25424.htm

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 4 Data Migration

• You can create a pay-as-you-go ECS instance and release it after the migration.

2. Install PostgreSQL on the ECS instance to run the data restoration commands. For more

information, see PostgreSQL official documentation.

Note:

Ensure that the version of the installed PostgreSQL database is the same as that of the

ApsaraDB RDS for PostgreSQL database.

Step 1: Back up the ApsaraDB RDS for PostgreSQL database

This is a full migration. To avoid inconsistencies in data, stop the services related to the

ApsaraDB RDS for PostgreSQL database and stop data writing before migration.

1. Run the following command on the ECS instance to back up data in the database.

pg_dump -U <username> -h <hostname> -p <port> <dbname> -Fd -j <njobs> -f <
dumpdir>

Parameter description:

• <username>: the account used to log on to the ApsaraDB RDS for PostgreSQL

database.

• <hostname>: the endpoint of the ApsaraDB RDS for PostgreSQL database. localhost

can be used for a local host.

• <port>: the port number of the database service.

• <dbname>: the name of the database to connect to. The default value is postgres.

• <njobs>: the number of concurrent backup jobs.

Note:

- Specifying the <njobs> parameter can shorten the dump time, but it also increases

 the load on the database server.

- If your ApsaraDB RDS for PostgreSQL database is earlier than 9.2, you must specify

the --no-synchronized-snapshots parameter.

• <dumpdir>: the directory of the generated backup file.

Example:

pg_dump -U postgres -h localhost -p 5432 postgres -Fd -j 5 -f postgresdump

2. Enter the password in the Password: prompt to start data backup.

Issue: 20200522 9

https://www.postgresql.org/docs/11/installation.html

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 4 Data Migration

3. Wait until the backup is completed. The data in the PostgreSQL database is backed up to

the specified directory. In this example, the data is stored in the postgresdump directory.

Step 2: Migrate data to POLARDB for PostgreSQL

1. Connect to the POLARDB for PostgreSQL database from the ECS instance.

psql -U <username> -h <hostname> -p <port> -d <dbname>

Parameter description:

• <username>: the account used to log on to the POLARDB for PostgreSQL database.

• <hostname>: the primary endpoint (private network) of the POLARDB for PostgreSQL

instance. For more information, see View connection endpoints.

• <port>: the port number of the database service. The default value is 1921.

• <dbname>: the name of the database to connect to.

Example:

psql -h pc-mxxxxxxxx.pg.polardb.cn-qd-pldb1.rds.aliyuncs.com -p 3433 -d postgres -
U gctest

2. Create a role in the destination POLARDB for PostgreSQL instance based on the role

information in the source ApsaraDB RDS for PostgreSQL database and grant permissions

to the destination database for data restoration. For more information, see CREATE ROLE

 and GRANT in official documentation.

3. Run the following command on the ECS instance to migrate data of the source database

to the POLARDB for PostgreSQL instance.

pg_restore -U <username> -h <hostname> -p <port> -d <dbname> -j <njobs> <
dumpdir>

Parameter description:

• <username>: the account used to log on to the POLARDB for PostgreSQL database.

• <hostname>: the primary endpoint (private network) of the POLARDB for PostgreSQL

instance.

• <port>: the port number of the database service. The default value is 1921.

• <dbname>: the name of the destination database to connect to and restore data.

Note:

10 Issue: 20200522

https://www.postgresql.org/docs/11/sql-createrole.html
https://www.postgresql.org/docs/11/sql-createrole.html
https://www.postgresql.org/docs/11/sql-grant.html

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 4 Data Migration

A destination database must be available. If not, create a database in the

destination instance.

• <njobs>: the number of concurrent data restoration jobs.

Note:

Specifying this parameter can shorten data restoration time, but it also increases the

load on the database server.

• <dumpdir>: the directory where the backup file is located.

Example:

pg_restore -U gctest -h pc-mxxxxxxxx.pg.polardb.cn-qd-pldb1.rds.aliyuncs.com -p
1921 -d postgres -j 6 postgresdump

4. Enter the password in the Password: prompt to start data migration.

Note:

For details about how to change the password if you forget your password, see Reset

the password of a database account.

Wait until the data migration is complete.

Issue: 20200522 11

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 5 Read/write splitting

5 Read/write splitting

POLARDB for PostgreSQL clusters support read/write splitting. Read and write requests sent

to a cluster endpoint are automatically forwarded to the relevant nodes.

Context

When there is a large number of read requests but few write requests to a database, a

single node may not be able to handle the workload. This may cause core services to be

affected. Cluster endpoints automatically forward write requests to the primary node,

while read requests are automatically forwarded to read-only nodes. This way, the read

capability can be elastically scaled to handle a large number of read requests that are sent

to databases.

12 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 5 Read/write splitting

Benefits

• One endpoint, simplified maintenance

If you do not send requests to the cluster endpoint, you must configure the endpoints

of the primary node and each read-only node in the application to send write requests

to the primary node and read requests to the read-only nodes. ApsaraDB for POLARDB

provides a cluster endpoint. After you connect to this endpoint, read and write requests

 are automatically forwarded to the primary node and read-only nodes. This reduces

maintenance costs. You can expand the capacity of an ApsaraDB for POLARDB cluster by

 adding read-only nodes, which saves you from making any modifications to applicatio

ns.

• Session-level read consistency

When a client connects to the backend through the cluster endpoint, the built-in proxy

 for read/write splitting automatically establishes a connection with the primary node

 and each read-only node. In the same session, the built-in proxy first selects an

appropriate node based on the data synchronization progress of each database node.

Then, the proxy forwards read and write requests to the nodes whose data is up-to-date

and correct, balancing the load between read and write requests.

• Load balancing of PREPARE statements

The built-in proxy automatically finds the database nodes that have previously executed

 PREPARE statements based on the information in EXECUTE statements, balancing the

load of extended queries.

• Support for native high security links, improving performance

You can use a user-created proxy on the cloud to achieve read/write splitting. However

, excessive latency may occur because data is parsed and forwarded by multiple

components before arriving at a database. ApsaraDB for POLARDB utilizes a built-

in proxy for read/write splitting, which offers reduced latency and enhanced query

performance when compared with external components.

• Node health checks to enhance database availability

The read/write splitting module of ApsaraDB for POLARDB performs health checks on the

 primary node and read-only nodes of a cluster. When a node fails or its latency exceeds

a specified threshold, ApsaraDB for POLARD stops distributing read requests to this node

 and redirects these requests to other healthy nodes. This ensures that applications can

Issue: 20200522 13

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 5 Read/write splitting

access the ApsaraDB for POLARDB cluster even if a read-only node fails. When the node

is repaired, the node is automatically added to the request distribution system.

Limits

• The following commands or functions are not supported:

- Connecting to a cluster through the replication-mode method. If you need to set up

 dual-node clusters based on a primary/secondary replication architecture, use the

endpoint of the primary node.

- The name of the temporary table cannot be used to declare the %ROWTYPE attribute.

create temp table fullname (first text, last text);
select '(Joe,von Blow)'::fullname, '(Joe,d''Blow)'::fullname;

- Creating temporary resources by using functions.

■ Executing an SQL statement to query a temporary table that is created by a

function may receive an error message indicating that the table does not exist.

■ Executing a function that contains the PREPARE statement may return an error

message indicating that the PREPARE statement name does not exist.

• Routing-related restrictions:

- Multi-statements are routed to the primary node, and all subsequent requests within

this session are routed to the primary node.

- A request message that is greater than or equal to 16 MB is routed to the primary

node, and all subsequent requests within this session are routed to the primary node.

- Requests in the transaction are routed to the primary node, and load balancing is

resumed after the transaction terminates.

- All statements that use functions (except aggregate functions such as COUNT and

SUM) are routed to the primary node.

Apply for or change a cluster endpoint

1. Log on to the ApsaraDB for POLARDB console.

2. In the upper-left corner of the console, select a region.

3. Click the ID of the target cluster.

4. On the Overview page, find Cluster Endpoints in the Connection Information section.

14 Issue: 20200522

https://polardb.console.aliyun.com/

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 5 Read/write splitting

5. Click Apply. In the dialog box that appears, click Confirm. Refresh the page to view the

cluster endpoint.

Note:

If an existing cluster does not have a cluster endpoint, you must manually apply for

a cluster endpoint. A cluster endpoint is automatically assigned to newly purchased

clusters. If an ApsaraDB for POLARDB cluster has a cluster endpoint, you can skip to

Step 6 to change the endpoint.

6. Click Modify. In the Modify Endpoint dialog box, enter a new cluster endpoint and click

Submit.

Issue: 20200522 15

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 6 Pending events

6 Pending events

When an ApsaraDB for POLARDB event is pending for processing, you will be notified to

handle the event in a timely manner in the console.

For ApsaraDB for POLARDB O&M events, including database software upgrade events and

 hardware maintenance and upgrade events, you are notified not only by SMS messages,

phone calls, emails, or internal messages, but also in the console. You can view the details

of each event, including the event type, task ID, cluster name, and switch time. You can also

 change the switch time.

Prerequisites

There are unprocessed O&M events.

Note:

If there are unprocessed O&M events, you can see notification badges on the Pending

Events page.

Change the switch time

1. Log on to the ApsaraDB for POLARDB console.

2. In the left-side navigation pane, click Pending Events.

Note:

For an O&M event for which you must reserve the switch time, a dialog box appears,

asking you to complete the reservation as soon as possible.

16 Issue: 20200522

https://polardb.console.aliyun.com

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 6 Pending events

3. On the Pending Events page, select the type of event that you want to handle.

Note:

Different notices are displayed on the tabs for different types of events.

4. View event details in the event list. To change the switch time, select an event, and then

click Change Switch Time. In the dialog box that appears, set the switch time, and then

click OK.

Note:

The switch time cannot be later than the latest operation time allowed.

Historical events

You can view completed events on the Event History page.

Issue: 20200522 17

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 7 Configure a whitelist for
a POLARDB for PostgreSQL cluster

7 Configure a whitelist for a POLARDB for
PostgreSQL cluster

Note:

POLARDB for PostgreSQL does not support configuring a cluster whitelist. Only instances in

the same VPC can access the cluster.

18 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 8 Billing management

8 Billing management

8.1 Change the billing method from pay-as-you-go to
subscription

You can change the billing method of a cluster from pay-as-you-go to subscription based

on your needs. Changing billing methods will not impact the performance of your cluster.

Note:

If a cluster uses a specification that is no longer available, you cannot change the

billing method of the cluster to subscription. In this case, you must change the cluster

specifications before changing the billing method.

Precautions

You cannot change the billing method of a cluster from subscription to pay-as-you-go.

Consider your resource requirements before switching the billing method to subscription to

 avoid resource wastage.

Prerequisites

• The cluster must be in the Running state.

• There are no pending orders for changing the billing method from pay-as-you-go to

subscription. If there are any pending orders, you must complete payment for or discard

them on the Orders page.

Procedure

1. Log on to the ApsaraDB for POLARDB console.

2. Select the region where the cluster resides.

Issue: 20200522 19

https://expense.console.aliyun.com/#/order/list/
https://polardb.console.aliyun.com

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 8 Billing management

3. Find the target cluster. In the Actions column corresponding to the cluster, choose ... >

Switch to Subscription.

4. Specify Purchase Plan, read the ApsaraDB for POLARDB Subscription Agreement

of Service. Select the check box to indicate that you agree to it, and then click Pay to

complete the payment.

Note:

• The new billing method takes effect after you complete the payment.

• If the order is unpaid or the payment fails, an unfinished order appears on the Orders

 page. You cannot buy a new cluster or switch the billing method of existing clusters

before the unfinished order is completed. You must complete payment for or discard

the order before placing a new one.

8.2 Manually renew the subscription to a cluster
You can renew your subscription to clusters in the ApsaraDB for PolarDB console or in the

Renew console. In the Renew console, you can renew your subscription to multiple clusters

at the same time.

Note:

Clusters purchased through the pay-as-you-go (hourly rate) billing method do not involve

expiration and renewal.

Method 1: Renew the subscription in the ApsaraDB for PolarDB console

1. Log on to the ApsaraDB for PolarDB console.

2. Select a region in the upper-left corner to view all the clusters that you deploy in this

region.

20 Issue: 20200522

https://expense.console.aliyun.com/#/order/list/
https://expense.console.aliyun.com/#/order/list/
https://polardb.console.aliyun.com/

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 8 Billing management

3. Find the target cluster, click the More icon in the Actions column, and choose Renew

from the shortcut menu.

4. Specify the renewal duration, select the service agreement, and click Pay.

Method 2: Renew the subscription in the Renew console

1. Log on to the ApsaraDB for PolarDB console.

2. In the upper-right corner of the console, choose Billing Management > Renew.

3. In the left-side navigation pane, click ApsaraDB for PolarDB.

4. Click the Manually Renew tab. Set the filtering conditions to find the target cluster. Click

Renew in the Actions column corresponding to the cluster.

Note:

To enable manual renewal for a cluster on the Auto-Renew or Don't Renew tab, click

Enable Manual Renew, and then click OK in the dialog box that appears.

5. Specify the renewal duration, select the service agreement, and click Pay.

Enable automatic renewal

If you enable automatic renewal, you will be free from regular manual renewal operations

and concerns of service interruptions. For more information, see Automatically renew the

subscription to a cluster.

8.3 Automatically renew the subscription to a cluster
A subscription-based cluster has a validity period. If the cluster is not renewed in a timely

 manner, service interruptions or even data loss will occur after it expires. If you enable

Issue: 20200522 21

https://polardb.console.aliyun.com/

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 8 Billing management

automatic renewal, you will be free from regular manual renewal operations and concerns

of service interruptions.

Note:

Clusters purchased through the pay-as-you-go (hourly rate) billing method do not involve

expiration and renewal.

Precautions

• Automatic fee deduction will begin nine days prior to the expiration of the cluster,

supporting cash and coupons. Keep your account balance adequate.

• If you manually renew the cluster before the automatic deduction, the system will

automatically renew the cluster nine days prior to the next expiration.

• The automatic renewal feature takes effect the next day after it is enabled. If your

cluster expires the next day, renew it manually to prevent service interruptions. For more

information, see Manually renew the subscription to a cluster.

Enable automatic renewal when purchasing a cluster

Note:

After you enable automatic renewal, the system will automatically renew the subscription

based on the subscription period. For example, if you purchase a cluster for three months

and select automatic renewal, you will be charged a fee of the three-month subscription

upon each automatic renewal.

When creating a cluster, you can select Auto Renew.

Enable automatic renewal after purchasing a cluster

Note:

After you enable automatic renewal, the system will automatically renew the subscription

based on the renewal cycle you select. For example, if you select a three-month renewal

cycle, you will be charged a fee of the three-month subscription upon each automatic

renewal.

22 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 8 Billing management

1. Log on to the ApsaraDB for POLARDB console.

2. In the upper-right corner of the console, choose Billing Management > Renew.

3. In the left-side navigation pane, click ApsaraDB for POLARDB.

4. Click the Manually Renew or Don't Renew tab in the Renew console. Set the filtering

conditions to find the target cluster. Click Enable Auto-Renew in the Actions column

corresponding to the cluster.

5. In the dialog box that appears, select the automatic renewal cycle, and click Enable

Auto-Renew.

Edit the automatic renewal cycle

1. Log on to the ApsaraDB for POLARDB console.

Issue: 20200522 23

https://polardb.console.aliyun.com/
https://polardb.console.aliyun.com/

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 8 Billing management

2. In the upper-right corner of the console, choose Billing Management > Renew.

3. In the left-side navigation pane, click ApsaraDB for POLARDB.

4. Click the Auto-Renew tab on the Renew console. Set the filtering conditions to find the

target cluster. Click Enable Auto-Renew in the Actions column corresponding to the

cluster.

5. Click the Auto tab. Set the filtering conditions to find the target cluster. Click Modify

Auto-Renew in the Actions column corresponding to the cluster.

6. In the dialog box that appears, edit the automatic renewal cycle, and click OK.

Disable automatic renewal

1. Log on to the ApsaraDB for POLARDB console.

2. In the upper-right corner of the console, choose Billing Management > Renew.

3. In the left-side navigation pane, click ApsaraDB for POLARDB.

4. Click the Auto-Renew tab in the Renew console. Set the filtering conditions to find the

target cluster. Click Modify Auto-Renew in the Actions column corresponding to the

cluster.

24 Issue: 20200522

https://polardb.console.aliyun.com/

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 8 Billing management

5. Select Disable Auto-Renew and click OK.

Related API operations

API operation Description

#unique_21 Creates a POLARDB cluster.

Note:
You can enable automatic renewal when
you create a cluster.

#unique_22 Enables automatic renewal for a
subscription-based cluster.

Note:
You can enable automatic renewal after
you create a cluster.

#unique_23 Queries the automatic renewal status of a
subscription-based cluster.

Issue: 20200522 25

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 9 Connect to a database
cluster

9 Connect to a database cluster

9.1 View connection endpoints
This topic describes how to view connection endpoints of the POLARDB cluster and

introduces primary endpoints and private endpoints.

Procedure

1. Log on to the ApsaraDB for POLARDB console.

2. Find the target cluster and click the cluster ID.

3. In the Connection Information section, view the connection endpoints.

Primary endpoints

Type Description Supported

 network

type

Primary endpoint A primary endpoint always connects to the primary
node and supports read and write operations. If the
primary node becomes faulty, the primary endpoint is
 automatically switched to the read-only node that is
promoted to the primary node.

VPC

Primary node
endpoint (not
recommended)

The endpoint of the primary node. It is not recommende
d to connect directly to the primary node because the
node is unavailable when it fails.

VPC

Read-only node
 endpoint (not
recommended)

The endpoint of the read-only node. It is not
recommended to connect directly to the read-only node
because the node is unavailable when it fails.

VPC

26 Issue: 20200522

https://polardb.console.aliyun.com

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 9 Connect to a database
cluster

Private endpoints

Type Description Scenario

Private

endpoint

• POLARDB can achieve optimal
performance when accessed through
the private endpoint.

• The private endpoint cannot be
released.

For example:

• If your ECS instance is located in the
 same VPC as the POLARDB cluster
, then your ECS instance can access
 the POLARDB cluster through the
private endpoint.

• You can access the POLARDB cluster
 through the private endpoint by
using DMS.

Next step

Connect to the cluster. For more information, see Connect to a POLARDB for PostgreSQL

cluster.

Related API operations

9.2 Connect to a POLARDB for PostgreSQL cluster
This topic describes how to connect to a POLARDB for PostgreSQL cluster.

Use DMS to connect to a POLARDB for PostgreSQL cluster

Data Management (DMS) provides an integrated solution for data management. DMS

supports data management, schema management, access control, BI charts, trend

analysis, data tracing, performance optimization, and server management. DMS supports

relational databases such as MySQL, SQL Server, and PostgreSQL, as well as NoSQL

databases such as MongoDB and Redis. DMS also supports the management of Linux

servers.

Prerequisites

You have created a privileged or standard account for an existing database cluster. For

more information, see Create a database account.

Procedure

1. Find the target cluster and click the cluster ID to go to the basic information page.

Issue: 20200522 27

https://www.alibabacloud.com/help/product/26437.htm

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 9 Connect to a database
cluster

2. Click Log On to Database in the upper-right corner of the page.

3. On the database logon page, enter the endpoint and the port number, and separate

them with a colon (:). Then enter the username and the password of the privileged or

standard account, and click Log On.

Note:

DMS logon only supports the endpoint and does not support the cluster address.

For more information about how to view the endpoint, see View connection endpoints.

Use a client to connect to a POLARDB for PostgreSQL cluster

POLARDB for PostgreSQL does not support setting a whitelist for a cluster. Only instances

 that are in the same VPC can access the cluster. Therefore, the server where the client

resides and the POLARDB compatible with Oracle cluster must be in the same VPC.

1. Start the pgAdmin 4 client.

2. Right-click Servers and choose Create > Server from the shortcut menu, as shown in the

following figure.

3. On the General tab of the Create - Server dialog box, enter the name of the server, as

shown in the following figure.

28 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 9 Connect to a database
cluster

4. Click the Connection tab and enter the information of the instance to connect to, as

shown in the following figure.

Parameter description:

• Hostname or IP Address: the internal IP address of the POLARDB for PostgreSQL

cluster. To view the endpoint and port information of the POLARDB for PostgreSQL

cluster, follow these steps:

a. Log on to the ApsaraDB for POLARDB console.

b. Find the target cluster and click the cluster ID.

c. In the Connection Information section, view the endpoint and port information.

• Port: the internal port of the POLARDB for PostgreSQL cluster.

• User Name: the name of the privileged account of the POLARDB for PostgreSQL

cluster.

• Password: the password of the privileged account of the POLARDB for PostgreSQL

cluster.

5. Click Save.

6. If the connection information is correct, choose Servers > Server Name > Databases >

postgres. The connection is successful if the following interface is displayed.

Note:

postgres is the default system database of the POLARDB for PostgreSQL cluster. Do not

perform any operation on the database.

Issue: 20200522 29

https://polardb.console.aliyun.com

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 10 Cluster management

10 Cluster management

10.1 Create a POLARDB for PostgreSQL cluster
This topic describes how to create a POLARDB for PostgreSQL cluster in the console.

Prerequisites

You have created an Alibaba Cloud account or created a Resource Access Management (

RAM) account.

• Click here to register an Alibaba Cloud account.

• For more information about how to create and grant permissions to a RAM user, see

Create and authorize a RAM user.

Context

A cluster contains one primary node and a maximum of 15 read-only nodes. At least one

read-only node is required to implement active-active high availability architecture. A node

 is a virtual database server, where you can create and manage multiple databases.

Note:

• ApsaraDB for POLARDB supports Virtual Private Cloud (VPC) only. VPC is an isolated

network in Alibaba Cloud that is more secure than a classic network.

• To achieve optimal performance, use ApsaraDB for POLARDB with Elastic Compute

Service (ECS) and place them in the same VPC. If your ECS instance is created in a classic

 network, you must migrate it to a VPC.

Procedure

1. Log on to Alibaba Cloud.

• Click here to log on with your Alibaba Cloud account.

• Click here to log on with your RAM user account. For more information, see Log on as

a RAM user.

2. Click Create Cluster to go to the ApsaraDB for POLARDB purchase page.

30 Issue: 20200522

https://account.alibabacloud.com/register/intl_register.htm
https://account.alibabacloud.com/login/login.htm
https://account.alibabacloud.com/login/login.htm
https://common-buy.aliyun.com/?commodityCode=polardb_sub®ionId=cn-hangzhou

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 10 Cluster management

3. Select Subscription or Pay-As-You-Go.

• Subscription: You must pay for the compute nodes (a primary node and a read-only

node) when you create the cluster. Storage consumed by your database is billed in

GB/hour increments and the charges are deducted from your account on an hourly

basis. The Subscription method is more cost-effective if you want to use the new

cluster for a long period of time. The longer the subscription period, the greater the

discount.

• Pay-As-You-Go: This method does not require any upfront payment. Compute

nodes and storage consumed by your database are billed on an hourly basis and

the charges are deducted from your account on an hourly basis. The Pay-As-You-Go

method is suitable if you only want to use the new cluster for a short period of time.

You can save costs by releasing clusters as needed.

4. Configure the following parameters.

Console

section

Parameter Description

Region The region where the cluster resides. You cannot change the
region after you confirm your order.

Note:
Make sure that you place your cluster in the same VPC as the
ECS instance you want to connect to. Otherwise, they cannot
communicate through the internal network and achieve
optimal performance.

Primary
Availability
 Zone

• The zone of the cluster. Zones are independent physical
areas in one region. There are no differences between the
zones.

• Your cluster and the ECS instance to be connected can be
located in the same zone or in different zones.

Basic

Network
Type

• You do not need to specify this parameter.
• ApsaraDB for POLARDB supports VPC only. A VPC is

an isolated virtual network with higher security and
performance than a classic network.

Issue: 20200522 31

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 10 Cluster management

Console

section

Parameter Description

VPC

VSwitch

Make sure that you place your cluster in the same VPC as the
ECS instance you want to connect to. Otherwise, they cannot
communicate through the internal network and achieve
optimal performance.

• If you have created a VPC that meets your network plan,
select the VPC. For example, if you have created an ECS
instance and the VPC where it resides meets your network
plan, select this VPC.

• Alternatively, use the default VPC and VSwitch.

- Default VPC:

■ It is a unique VPC in your selected zone.
■ The network mask for a default VPC has 16 bits, such

 as 172.31.0.0/16, providing up to 65,536 internal IP
addresses.

■ It is not included in the total number of VPCs that you
 can create.

- Default VSwitch:

■ It is a unique VSwitch in your selected zone.
■ The network mask for a default VSwitch has 20 bits,

such as 172.16.0.0/20, providing up to 4,096 private
IP addresses.

■ The default VSwitch is not included in the total
number of VSwitches that you can create in a VPC.

• If the default VPC and VSwitch cannot satisfy your
requirements, you can create your own VPC and VSwitch.

Database
Engine

• Fully compatible with MySQL 8.0. Native concurrent
queries are supported, performance in specific scenarios (
measured by TPC-H test) increase tenfold. .

• Fully compatible with MySQL 5.6.
• Compatible with Oracle (Highly compatible).

Instance

Node
Specificat
ions

Select the specifications as needed. All ApsaraDB for
POLARDB nodes are dedicated, providing stable and reliable
performance. For more information, see #unique_28.

32 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 10 Cluster management

Console

section

Parameter Description

Number of
 Nodes

• You do not need to specify this parameter. By default, the
 system will create a read-only node that has the same
specifications as the primary node.

• If the primary node fails, the system automatically
promotes the read-only node as the primary node, and
generate a new read-only node.

• For more information about read-only nodes, see
#unique_29.

Storage
Cost

You do not need to specify this parameter. The system will
charge you on an hourly basis based on the actual data
usage. For more information, see #unique_28.

Note:
You do not need to select a storage capacity when you
purchase a cluster. The storage capacity will automatically
resize based on your data usage.

5. Specify Purchase Plan (only applicable to subscription clusters) and Number, and click

Buy Now.

Note:

A maximum of 50 clusters can be created at a time, which is suitable for business

scenarios such as launching multiple gaming servers at a time.

6. On the Confirm Order page, confirm your order information, read and accept the

ApsaraDB for POLARDB Subscription Agreement of Service, and then click Pay.

After the payment is completed, the cluster is created in about 10 minutes. The created

cluster is displayed in the cluster list.

Note:

• The cluster is unavailable and is still being created if some of the nodes are in the

Running state. The cluster is available only when the cluster is in the Running state.

• Make sure that you have selected the correct region. Otherwise, you cannot view

your clusters.

Next step

Create database accounts. For more information, see Create a database account.

Issue: 20200522 33

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 10 Cluster management

Related API operations

API operation Description

#unique_21 Creates a POLARDB cluster.

#unique_30 Lists POLARDB clusters.

#unique_31 Used to view the attributes of a POLARDB
cluster.

#unique_23 Used to query the automatic renewal
status of a POLARDB cluster that uses the
Subscription billing method.

#unique_22 Used to set the automatic renewal status of
 a POLARDB cluster that uses the Subscripti
on billing method.

10.2 Configure cluster parameters
This topic describes how to modify parameter values of a cluster in the ApsaraDB for

POLARDB console.

Precautions

• You must modify parameter values according to the Value Range column on the

Parameters page.

• For some parameters, you must restart all nodes after the parameter values are

modified. We recommend that you make appropriate service arrangements before you

restart the nodes. Proceed with caution. You can determine whether the modification

34 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 10 Cluster management

of a parameter value requires a node restart according to the value in the Force Restart

column on the Parameters page.

Procedure

1. Log on to the ApsaraDB for POLARDB console.

2. Select a region.

3. Find the target cluster and click the cluster ID in the Cluster Name column.

4. In the left-side navigation pane, choose Settings and Management > Parameters.

5. Modify the values of one or more parameters in the Current Value column, and click

Apply Changes.

Issue: 20200522 35

https://polardb.console.aliyun.com/

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 10 Cluster management

6. In the Save Changes dialog box that appears, click OK.

Related API operations

API operation Description

#unique_33 Views cluster parameters.

#unique_34 Modifies the values of cluster parameters.

10.3 Change the cluster specifications
This topic describes how to change the specifications of your cluster to meet business

requirements.

ApsaraDB for POLARDB supports capacity scaling in three dimensions:

• Vertical scaling of computing power

You can upgrade or downgrade the specifications of a cluster. This topic describes the

details.

• Horizontal scaling of computing power

You can add or delete read-only nodes. For more information, see Add or remove a

read-only node.

• Horizontal scaling of storage capacity

The storage capacity is provisioned in a serverless model. As your data increases in size,

the storage is automatically expanded.

36 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 10 Cluster management

You can upgrade or downgrade the specifications of an ApsaraDB for POLARDB cluster. It

takes only 5 minutes to 10 minutes for the new specifications of each node to take effect.

Specification change fees

For more information, see #unique_36.

Prerequisites

You can only change cluster specifications when the cluster does not have pending

specification changes.

Precautions

• Specification upgrades or downgrades only apply to clusters. You cannot change the

specifications of a node.

• Specification upgrades or downgrades do not affect the existing data in the cluster.

• We recommend that you modify cluster specifications during off-peak periods. During

 a specification upgrade or downgrade, the ApsaraDB for POLARDB service will be

disconnected for a few seconds and some of the functions will be disabled. You will

need to reconnect from your applications after the service is disconnected.

Procedure

1. Log on to the ApsaraDB for POLARDB console.

2. In the upper-left corner of the page, select the region.

3. Go to the Change Configurations page. Perform the operation by using either of the

following methods:

• Find the target cluster and click Change Configurations in the Actions column

corresponding to the target cluster.

• Find the target cluster, click the cluster ID, and then click Change Configurations in the

Node Information section.

Issue: 20200522 37

https://polardb.console.aliyun.com/

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 10 Cluster management

4. Select Upgrade or Downgrade and click OK.

5. Select a specification.

Note:

All nodes in a cluster have the same specifications.

6. Read and agree to the service agreement by selecting the check box, and click Pay to

complete the payment.

Note:

It takes about ten minutes for the new specifications to take effect.

38 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 10 Cluster management

Related API operations

API Description

#unique_37 Changes the specifications of a POLARDB
cluster.

10.4 Add or remove a read-only node
You can manually add or remove read-only nodes after creating an ApsaraDB for POLARDB

 cluster. An ApsaraDB for POLARDB cluster can contain a maximum of 15 read-only nodes.

The cluster must have at least one read-only node to guarantee high availability. All nodes

in a cluster have the same specifications.

Billing

The billing methods for nodes added to an existing cluster are as follows:

• If nodes are added to a subscription cluster, the nodes are billed as subscription nodes.

• If nodes are added to a pay-as-you-go cluster, the nodes are billed as pay-as-you-go

nodes.

Note:

• Read-only nodes that you purchase in either subscription or pay-as-you-go mode can

be released at any time. After they are released, the system will refund or stop billing.

• The added nodes are only charged based on the node specifications. For more

information, see #unique_28. The storage fee is charged based on the actual data

volume, regardless of the number of nodes.

Precautions

• You can only add or remove read-only nodes when the cluster does not have pending

specification changes.

• To avoid misoperations, only one read-only node can be added or removed at a time.

You must perform the add or remove operation for each node.

• It takes about 5 minutes to add or remove a node.

Add a read-only node

1. Log on to the ApsaraDB for POLARDB console.

2. Select a region.

Issue: 20200522 39

https://polardb.console.aliyun.com/

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 10 Cluster management

3. Go to the Add/Remove Node page. Perform the operation by using either of the

following methods:

• Find the target cluster and click Add/Remove Node in the Actions column.

• Find the target cluster, click the cluster ID, and then click Add/Remove Node in the

Node Information section.

4. Select Add Node and click OK.

40 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 10 Cluster management

5. Click the icon to add a read-only node. Read and agree to the service agreement

by selecting the check box, and click Pay to complete the payment.

Remove a read-only node

1. Log on to the ApsaraDB for POLARDB console.

2. Select a region.

3. Go to the Add/Remove Node page. Perform the operation by using either of the

following methods:

• Find the target cluster and click Add/Remove Node in the Actions column.

• Find the target cluster, click the cluster ID, and then click Add/Remove Node in the

Node Information section.

Issue: 20200522 41

https://polardb.console.aliyun.com/

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 10 Cluster management

4. Select Remove Node and click OK.

5. Click the icon next to the node that you want to remove. In the dialog box that

appears, click OK.

Note:

You must keep at least one read-only node in the cluster to guarantee high availability.

6. Read and agree to the service agreement by selecting the check box, and click OK.

Related API operations

API operation Description

#unique_38 Adds a node to an ApsaraDB for POLARDB
cluster.

#unique_37 Changes the specifications of a node in an
ApsaraDB for POLARDB cluster.

#unique_39 Restarts a node in an ApsaraDB for
POLARDB cluster.

42 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 10 Cluster management

API operation Description

#unique_40 Removes a node from an ApsaraDB for
POLARDB cluster.

10.5 Set the maintenance window
This topic describes how to set the maintenance window for an ApsaraDB for POLARDB

cluster. To guarantee the stability of ApsaraDB for POLARDB, the backend system performs

maintenance operations on the clusters from time to time. We recommend that you set the

maintenance window within the off-peak hours of your business to minimize the impact on

the business during the maintenance process.

Important notes

• Before the maintenance is performed, ApsaraDB for POLARDB sends SMS messages and

emails to contacts listed in your Alibaba Cloud account.

• To guarantee stability during the maintenance process, clusters first enter the Under

Maintenance state before the preset maintenance window arrives on the day of

maintenance. When a cluster is in this state, normal data access to the database is not

affected. However, except for the account management, database management, and

IP address whitelisting functions, other services concerning changes (such as common

operations like upgrade, degrade, and restart) are unavailable in the console of this

cluster. Query services such as performance monitoring are still available.

• Within the maintenance window of a cluster, the cluster may experience one or two

disconnections. Make sure that your application can automatically reconnect to the

cluster. The cluster restores to normal immediately after the disconnection occurs.

Procedure

1. Log on to the ApsaraDB for POLARDB console.

2. Select a region.

3. Find the target cluster and click the cluster ID in the Cluster Name column.

Issue: 20200522 43

https://polardb.console.aliyun.com

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 10 Cluster management

4. In the Basic Information section on the Basics page, click Modify next to Maintenance

Window.

5. In the Modify Maintenance Window dialog box that appears, select a maintenance

window for the cluster and click Submit.

APIs

API Description

CreateDBCluster Creates an ApsaraDB for POLARDB cluster.

ModifyDBClusterMaintainTime Modifies the maintenance window for an
ApsaraDB for POLARDB cluster.

10.6 Restart a node
This topic describes how to manually restart a node when the number of connections

exceeds the threshold or any performance issue occurs on the node. Restarting a

node causes service interruptions. We recommend that you make appropriate service

arrangements before you restart the nodes. Proceed with caution

Procedure

1. Log on to the ApsaraDB for PolarDB console.

2. Select a region.

3. Find the target cluster and click the cluster ID in the Cluster Name column.

4. In the Node Information section on the Basics page, find the node to be restarted.

5. Click Restart in the Actions column of the node.

6. In the dialog box that appears, click OK.

44 Issue: 20200522

https://polardb.console.aliyun.com/

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 10 Cluster management

Related API operations

API operation Description

#unique_39 Restarts a database node.

10.7 Release a cluster
You can manually release a pay-as-you-go cluster according to your business requirements

.

Precautions

• A subscription cluster cannot be manually released and will be automatically released

after the subscription expires.

• A pay-as-you-go cluster can only be manually released when it is in the Running state.

• All the data in your cluster will be deleted when the cluster is released. Proceed with

caution.

• This function is used to release a cluster, including all nodes in the specified cluster. To

release one read-only node, see Add or remove a read-only node.

• You can switch the billing method of a cluster from pay-as-you-go to subscription. For

more information, see Change the billing method from pay-as-you-go to subscription.

Procedure

1. Log on to the ApsaraDB for POLARDB console.

2. Select a region.

3. Find the target cluster. In the Actions column corresponding to the cluster, click ... >

Release.

4. In the message that appears, click OK.

Related API operations

API Description

#unique_30 Views the list of POLARDB clusters.

#unique_45 Deletes a POLARDB cluster.

Issue: 20200522 45

https://polardb.console.aliyun.com

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 10 Cluster management

10.8 Clone a cluster
This topic describes how to clone an ApsaraDB for PolarDB cluster. You can create an

ApsaraDB for PolarDB cluster that is the same as an existing ApsaraDB for PolarDB cluster

by cloning the data of the existing one. The data includes the account information, but

excludes parameter settings of the cluster.

The data generated before the execution of the clone action is cloned. When cloning starts,

the newly written data will not be cloned.

Procedure

1. Log on to the ApsaraDB for PolarDB console.

2. Select the region where the target cluster is located.

3. Find the cluster you want to clone. In the Actions column of the cluster, click the More

icon, and then select Restore to New Cluster.

4. On the page that appears, set the parameters. The following table describes the

parameters.

Parameter Description

Clone
Source
Type

The type of the clone source. Select Current Cluster.

Region The region where the cluster resides. The region of the new cluster is the
same as that of the source cluster and cannot be modified.

Primary
Availability
 Zone

• The zone of the new cluster. A zone is an independent physical area
located within a region. There are no substantive differences between
the zones.

• You can deploy the ApsaraDB for PolarDB cluster and ECS instance in
the same zone or in different zones.

Network
Type

• The type of the network. Use the default setting.
• ApsaraDB for PolarDB supports Virtual Private Cloud (VPC) networks

 only. A VPC is an isolated virtual network with higher security and
performance than a classic network.

46 Issue: 20200522

https://polardb.console.aliyun.com/

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 10 Cluster management

Parameter Description

VPC

Vswitch

The VPC and VSwitch of the new cluster. Select a VPC and a VSwitch from
the corresponding drop-down lists, or create a VPC and a VSwitch.

Note:
Make sure that you place your ApsaraDB for PolarDB cluster and the
ECS instance to be connected in the same VPC. Otherwise, they cannot
intercommunicate through the internal network and achieve optimal
performance.

Database
Engine

The database engine of the new cluster. Use the default setting.

Node
Specificat
ion

The node specification of the new cluster. Select a specification according
to your needs. Clusters with different specifications have different storage
capacity and performance. For more information, see #unique_28.

Number
Nodes

The number of nodes in the new cluster. Use the default setting. By default
, the system creates a read-only node with the same specification as the
primary node.

Cluster
Name

• Optional. The name of the new cluster.
• The system will automatically create a name for your ApsaraDB for

PolarDB cluster if you leave it blank. You can rename the cluster after it
is created.

Purchase
Plan

The subscription duration of the new cluster. This parameter is valid only
for subscription clusters.

Number The number of clusters. The default value 1 is used and cannot be
modified.

5. Read the ApsaraDB for PolarDB Agreement of Service, select the check box to agree to

it, and then complete the payment.

10.9 Upgrade the minor version
You can manually upgrade the minor kernel version of ApsaraDB PolarDB for

PostgreSQL.The upgrades improve performance, provide new feature, or fix bugs.

Precautions

• Upgrading the kernel minor version will restart the instance. We recommend that you

 perform the upgrade during off-peak hours or make sure that your applications can

automatically reconnect to the instance.

• You cannot downgrade the minor version after an upgrade.

Issue: 20200522 47

https://vpc.console.aliyun.com

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 10 Cluster management

Procedure

1. Log on to the PolarDB console.

2. In the upper-left corner of the page, select the region where the PolarDB cluster is

located.

3. Find the target cluster and click the cluster ID.

4. In Basic Information, click Upgrade to Latest Version.

Note:

48 Issue: 20200522

https://polardb.console.aliyun.com/

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 10 Cluster management

If your cluster kernel version is already the latest, the Upgrade to Latest Version button

is not displayed.

5. In Upgrade to Latest Version dialog box, click OK.

Note:

During the upgrade, services may be interrupted for about 60 seconds. Make sure that

your applications can automatically reconnect to the instance.

10.10 Switch workloads from writer nodes to reader nodes
An Apsara PolarDB cluster consists of one writer node and one or more reader nodes. This

topic describes how to switch your workloads from a writer node to a reader node. If a

failure occurs on a writer node, the system can automatically perform a failover. You may

want to manually switch your workloads from the writer node to a reader node to run a

disaster recovery drill and to specify a certain reader node as the writer node.

Considerations

An Apsara PolarDB cluster may be disconnected for approximately 30 seconds during

switchover. We recommend that you perform the switchover during off-peak hours and

make sure that your application can automatically reconnect to the Apsara PolarDB cluster.

Manual switchover

1. Log on to the PolarDB console.

Issue: 20200522 49

https://polardb.console.aliyun.com/

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 10 Cluster management

2. In the upper-left corner of the page, select the region where the PolarDB cluster is

located.

3. Find the target cluster and click the cluster ID.

4. In the upper-right corner of the Node Information section, click Switch Primary Node.

5. In the Switch Primary Node dialog box that appears, select a new writer node from the

New Primary Node drop-down list, and click OK.

Note:

If you do not select a new writer node from the New Primary Node drop-down list, the

system automatically promotes a reader node with the highest failover priority to the

50 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 10 Cluster management

new writer node. The cluster may be disconnected for approximately 30 seconds during

switchover. Make sure that your application can automatically reconnect to the cluster.

Automatic failover between the writer node and reader nodes

An Apsara PolarDB cluster runs in an active-active high-availability architecture. This

architecture allows for automatic failovers between the writer node and reader nodes.

Each node of the cluster has a failover priority. This priority determines the probability that

the system promotes this node to the writer node if a failover occurs. If multiple nodes have

 the same failover priority, they all have the same probability of being promoted to the

writer node.

The system follows these steps the to promote a reader node to the writer node:

1. Find all reader nodes that can be promoted to the writer node.

2. Select one or more reader nodes that have the highest failover priority.

3. If the failover to the first node fails due to network or replication errors, the system tries

to switch the workloads to the next available node. The system continues the failover

until one of the available nodes is promoted to the writer node.

Related API operations

Operation Description

#unique_49 Manually switches your workloads from the
writer node to a specified reader node in an
 Apsara PolarDB cluster.

Issue: 20200522 51

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 11 Account management

11 Account management

11.1 Overview
Console accounts

You can use the following accounts to log on to the console:

• Alibaba Cloud account

This account allows flexible control of all your Alibaba Cloud resources and is used for

 billing purposes. You must create an Alibaba Cloud account before you can purchase

any Alibaba Cloud services.

• RAM user account

Optional. You can create and manage RAM user accounts in the Resource Access

Management (RAM) console to share resources to multiple users. A RAM user account

does not have ownership over any resources. Charges incurred are billed to the parent

Alibaba Cloud account.

Database cluster accounts

You can use the following accounts to log on to your database cluster. For more

information, see Create a database account.

Account

type

Description

Privileged
account

• You can only create and manage the account in the console.
• A cluster can have only one privileged account. A privileged account can

manage all standard accounts and databases.
• A privileged account has more permissions, which allows you to perform

more management operations. For example, you can grant permissions of
 querying different tables to different users.

• The account has all permissions on all databases in the cluster.
• The account can disconnect any account from the instance.

52 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 11 Account management

11.2 Register and log on to an Alibaba Cloud account
Register an Alibaba Cloud account

You can register an Alibaba Cloud account by using one of the following two methods:

• On the Alibaba Cloud website, click Free Account in the upper-right corner.

• Visit the Alibaba Cloud account registration page.

Log on to your Alibaba Cloud account.

Your Alibaba Cloud account and RAM user account have different logon pages.

• The logon page for Alibaba Cloud accounts is Alibaba Cloud accounts.

Issue: 20200522 53

https://www.alibabacloud.com
https://account.alibabacloud.com/register/intl_register.htm
https://account.alibabacloud.com/login/login.htm

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 11 Account management

• The logon page for RAM users is RAM User Logon.

11.3 Create and authorize a RAM user
This topic describes how to create and authorize a Resource Access Management (RAM)

user. You can use your Alibaba Cloud account to access your ApsaraDB for PolarDB

resources. If you want to share the resources under your Alibaba Cloud account with other

users, create and authorize a RAM user. The RAM user can then be used to access specified

resources.

Create a RAM user

1. You can use an Alibaba Cloud account or a RAM user to create one or more RAM users.

First, log on to the RAM console.

• Click Alibaba Cloud account Logon to log on with your Alibaba Cloud account.

• Click RAM User Logon to log on with your RAM user.

Note:

54 Issue: 20200522

https://signin-intl.aliyun.com/login.htm
https://account.alibabacloud.com/login/login.htm
https://signin-intl.aliyun.com/login.htm

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 11 Account management

Enter the RAM username in the format of RAM username@enterprise alias on the

logon page.

2. In the left-side navigation pane, click Users under Identities.

3. Click Create User.

Note:

To create multiple RAM users at a time, click Add User.

4. Specify the Logon Name and Display Name parameters.

5. In the Access Mode section, select Console Password Logon.

6. Under Console Password Logon, select Automatically Generate Default Password or

Custom Logon Password.

7. Under Password Reset, select Required at Next Logon or Not Required.

8. Under Multi-factor Authentication, select Not Required.

9. Click OK.

Grant permission to a RAM user on the Grants page

1. In the left-side navigation pane, click Grants under Permissions.

2. Click Grant Permission.

3. Under Principal, enter the username, and click the target RAM user.

4. In the Policy Name column, select the target policies by clicking the corresponding rows.

Note:

You can click X in the section on the right side of the page to delete the selected policy.

5. Click OK.

6. Click Finished.

Grant permission to a RAM user on the Users page

1. In the left-side navigation pane, click Users under Identities.

2. In the User Logon Name/Display Name column, find the target RAM user.

3. Click Add Permissions. On the page that appears, the principal is automatically filled in.

4. In the Policy Name column, select the target policies by clicking the corresponding rows.

Note:

You can click X in the section on the right side of the page to delete the selected policy.

5. Click OK.

Issue: 20200522 55

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 11 Account management

6. Click Finished.

Log on as a RAM user

Prerequisites: You must complete the preceding authorization procedures.

You can log on as a RAM user at the following addresses:

• Universal logon address: RAM User Logon.

If you log on at the universal logon address, you must enter the RAM username and

company alias manually. The address format is RAM username@company alias.

56 Issue: 20200522

https://signin-intl.aliyun.com/login.htm

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 11 Account management

• Dedicated logon address: You can view the logon address dedicated to your RAM users

in the RAM console.

The system will enter your company alias automatically if you log on using this

dedicated address. You only need to enter the RAM username.

More actions

You can also add a RAM user to a group, assign roles to a RAM user, and authorize a user

group or roles. For more information, see RAM User Guide.

Issue: 20200522 57

https://ram.console.aliyun.com
https://www.alibabacloud.com/help/product/28625.htm

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 11 Account management

11.4 Create a database account
This topic describes how to create a database account and reset permissions of the

account.

POLARDB for PostgreSQL supports only privileged accounts and allows you to manage the

accounts in the console.

Account

type

Description

Privileged
account

• You can only create and manage the account in the console.
• A cluster can have only one privileged account. A privileged account can

manage all standard accounts and databases.
• A privileged account has more permissions, which allows you to perform

more management operations. For example, you can grant permissions of
 querying different tables to different users.

• The account has all permissions on all databases in the cluster.
• The account can disconnect any account from the instance.

Create a privileged account

1. Log on to the ApsaraDB for POLARDB console.

2. Find the target cluster and click the cluster ID.

3. In the left-side navigation pane, click Accounts.

4. Click Create Account.

5. In the dialog box that appears, configure the following parameters.

Parameter Description

Account
Name

Enter the account name. The requirements are as follows:

• It must start with a lowercase letter and end with a letter or digit.
• It can contain lowercase letters, digits, and underscores (_).
• It must be 2 to 16 characters in length.
• It cannot be system reserved usernames, such as root and admin.

Account
Type

Select Privileged Account.

58 Issue: 20200522

https://polardb.console.aliyun.com

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 11 Account management

Parameter Description

Password Enter the password of the privileged account. The requirements are as
follows:

• The password must contain at least three of the following character
 types: uppercase letters, lowercase letters, digits, and special
characters.

• The password must be 8 to 32 characters in length.
• Special characters include ! @ # $ % ^ & * () _ + - =

Confirm
Password

Enter the password again.

Description Enter related information about the account for account management.
The requirements are as follows:

• It cannot start with http:// or https://.
• The description must start with an uppercase or lowercase letter.
• The description can contain uppercase or lowercase letters, digits,

underscores (_), and hyphens (-).
• The description must be 2 to 256 characters in length.

Reset permissions of a privileged account

If the privileged account of a POLARDB for PostgreSQL cluster encounters a problem, for

example, permissions are unexpectedly revoked, you can recover the account by resetting

the account permissions.

1. Log on to the ApsaraDB for POLARDB console.

2. Find the target cluster and click the cluster ID.

3. In the left-side navigation pane, click Accounts.

4. Click Reset Permissions to the right of Privileged Account.

5. In the dialog box that appears, enter the password of the privileged account to reset

permissions.

Next step

View connection endpoints.

Related API operations

API Description

#unique_53 Used to create an account.

#unique_54 Used to list accounts.

Issue: 20200522 59

https://polardb.console.aliyun.com

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 11 Account management

API Description

#unique_55 Used to modify the description of an
account.

#unique_56 Used to change the password of an account
.

#unique_57 Used to grant permissions to an account.

#unique_58 Used to revoke the permissions of an
account.

#unique_59 Used to reset the permissions of an account.

11.5 Manage a database account
This topic describes how to manage a database account, including changing the password,

locking the account, cancel the account locking, and deleting the account.

Create a database account

For more information, see Create a database account.

Reset the password of a database account

1. Log on to the ApsaraDB for POLARDB console.

2. In the upper-left corner, select the region where the target cluster is located.

3. Find the target cluster and click the cluster ID.

4. In the left-side navigation pane, choose Settings and Management > Accounts.

5. Find the target account and click Modify Password.

6. In the dialog box that appears, enter a new password and click Confirm.

Related API operations

Operation Description

#unique_53 Creates a database account.

#unique_54 Queries the list of database accounts.

#unique_55 Modifies the description of a database
account.

#unique_56 Changes the password of a database
account.

#unique_57 Grants permissions on one or more
databases.

60 Issue: 20200522

https://polardb.console.aliyun.com

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 11 Account management

Operation Description

#unique_58 Revokes permissions on one or more
database from a database account.

#unique_59 Resets permissions of a database account.

#unique_60 Deletes a database account.

Issue: 20200522 61

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 12 Database management

12 Database management

This topic provides an overview of database management, including how to create and

delete databases.

You can create and manage all databases in the ApsaraDB for PolarDB console.

Create a database

1. Log on to the ApsaraDB for PolarDB console.

2. Select a region.

3. Find the target cluster and click the cluster ID in the Cluster Name column.

4. In the left-side navigation pane, choose Settings and Management > Databases.

5. Click Create Database.

6. In the dialog box that appears, set parameters for creating a database. The following

table describes the parameters.

Parameter Description

Database
Name

• It must start with a letter and end with a letter or digit.
• It can contain lowercase letters, digits, underscores (_), and hyphens

 (-).
• It must be 2 to 64 characters in length.
• Each database name in an instance must be unique.

Supported
Character
Set

Select utf8mb4, utf8, gbk, or latin1.

You can also select other required character sets from the drop-down

list on the right.

Authorized
Account

Select the account that you want to authorize for accessing this
database. You can leave this parameter blank, and bind an account
after the database is created.

Note:
Only standard accounts are available in the drop-down list. The
privileged account has all the permissions on all databases. You do
not need to authorize the privileged account to access the database
that you create.

Account
Permission

Select the permission that you want to grant to your account. Valid
values: Read and Write | Read Only| DML Only.

62 Issue: 20200522

https://polardb.console.aliyun.com

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 12 Database management

Parameter Description

Description Enter the remarks of the database to facilitate subsequent database
management. The requirements are as follows:

• The description cannot start with http:// or https://.
• The description must start with an uppercase or lowercase letter or a

Chinese character.
• The description can contain uppercase or lowercase letters, Chinese

characters, digits, underscores (_), and hyphens (-).
• The description must be 2 to 256 characters in length.

7. Click OK.

Delete a database

1. Log on to the ApsaraDB for PolarDB console.

2. Select a region.

3. Find the target cluster and click the cluster ID in the Cluster Name column.

4. In the left-side navigation pane, choose Settings and Management > Databases.

5. Find the target database and click Delete in the Actions column.

6. In the dialog box that appears, click OK.

Issue: 20200522 63

https://polardb.console.aliyun.com

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 12 Database management

Related API operations

API operation Description

#unique_62 Creates a database.

#unique_63 Views the database list.

#unique_64 Modifies the description of a database.

#unique_65 Deletes a database.

64 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 13 Backup and restoration

13 Backup and restoration

13.1 Back up data
ApsaraDB for POLARDB uses a physical backup (snapshot backup), which is automatically

 performed once a day. You can also manually start a backup. Both the automatic backup

 and manual backup do not affect the normal running of the cluster. Backup files are

retained for seven days.

Backup types

Backup

type

Description

Automatic
backup

• It is performed once a day by default. You can configure the time period
and cycle for automatic backup. For more information, see Configure an
automatic backup policy.

• Backup files cannot be deleted.

Manual
backup

• It can be started at any time. You can create a maximum of three manual
backups for a cluster. For more information, see Manually create a
backup.

• Backup files can be deleted.

Pricing

The storage occupied by ApsaraDB for POLARDB backup files is free of charge.

Configure an automatic backup policy

1. Log on to the ApsaraDB for POLARDB console.

2. Select a region.

3. Find the target cluster and click the cluster ID in the Cluster Name column.

4. In the left-side navigation pane, choose Settings and Management > Backup and

Restore.

Issue: 20200522 65

https://polardb.console.aliyun.com/

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 13 Backup and restoration

5. Click Backup Settings.

6. In the dialog box that appears, configure the time period and cycle for automatic

backup.

Note:

For security reasons, automatic backup must be performed at least twice a week.

Manually create a backup

1. Log on to the ApsaraDB for POLARDB console.

2. Select a region.

3. Find the target cluster and click the cluster ID in the Cluster Name column.

4. In the left-side navigation pane, choose Settings and Management > Backup and

Restore.

5. Click Create Backup.

6. In the dialog box that appears, click OK.

Note:

You can create a maximum of three manual backups for a cluster.

Restore data

For more information, see Restore data.

Related API operations

Operation Description

#unique_71 Creates a full snapshot backup for a
specified ApsaraDB for POLARDB cluster.

66 Issue: 20200522

https://polardb.console.aliyun.com/

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 13 Backup and restoration

Operation Description

#unique_72 Queries the backup data of a specified
ApsaraDB for POLARDB cluster.

#unique_73 Deletes the backup data of a specified
ApsaraDB for POLARDB cluster.

#unique_74 Queries the automatic backup policy of a
specified ApsaraDB for POLARDB cluster.

#unique_75 Modifies the automatic backup policy of a
specified ApsaraDB for POLARDB cluster.

13.2 Restore data
POLARDB for PostgreSQL supports Restore by backup set (snapshot) to restore historical

data to a new cluster.

Note:

The restored cluster contains the data and account information of the original cluster, but

does not contain the parameter settings of the original cluster.

Restore data from a backup set (snapshot)

1. Log on to the ApsaraDB for POLARDB console.

2. Select the region where the cluster resides.

3. Find the target cluster and click the cluster ID.

4. In the left-side navigation pane, choose Settings and Management > Backup and

Restore.

5. Find the target backup set (snapshot) and click Restore in the Actions column. In the

dialog box that appears, click OK.

6. On the page that appears, select a billing method for the new cluster:

• Subscription: An upfront payment must be made for each new compute cluster

(contains a primary node and a read-only node by default). The storage occupied

by the new cluster is billed on an hourly basis based on the actual data volume.

The payment will be deducted from your Alibaba Cloud account on an hourly basis.

Issue: 20200522 67

https://polardb.console.aliyun.com/

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 13 Backup and restoration

Subscription is more cost-effective for long term use. You can save more with longer

subscription periods.

• Pay-As-You-Go: For the new cluster created, you do not need to pay any subscription

fee for a compute cluster in advance. The compute cluster is billed on an hourly basis.

The storage occupied by the new cluster is billed on an hourly basis based on the

actual data volume. The payment will be deducted from your Alibaba Cloud account

on an hourly basis. The Pay-As-You-Go method is most suitable for temporary

applications, as you can release the cluster as soon as you do not need it anymore,

saving costs.

7. Configure the following parameters:

• Clone Source Type: Select Backup Set.

• Clone Source Backup Set: Confirm that the backup set is the one that you want to

restore from.

• Region: Use the default setting. It is the same as the region of the original cluster.

• Primary Availability Zone: Use the default setting.

• Network Type: Use the default setting.

• VPC and VSwitch: The default settings are recommended, namely, the VPC and

VSwitch of the original cluster.

• Database Engine: Use the default setting.

• Node Specification: Clusters with different specifications have different storage

capacity and performance. For more information, see Node specifications.

• Number of Nodes: Use the default setting. By default, the system will create a read-

only node with the same specifications as the primary node.

• Cluster Name: The system will automatically create a name for your cluster if you

leave it blank. You can rename the cluster after it is created.

• Purchase Plan: Set this parameter if you create a subscription cluster.

• Number: The default value is 1, which cannot be modified.

8. Read the ApsaraDB for POLARDB Agreement of Service, select the check box to agree to

it, and then complete the payment.

References

Back up data

68 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 13 Backup and restoration

Related API operations

Operation Description

#unique_21 Creates an ApsaraDB for POLARDB cluster.

Note:
When you clone a cluster, set the value of
CreationOption to CloneFromPolarDB.

Issue: 20200522 69

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 14 Diagnostics and
optimization

14 Diagnostics and optimization

14.1 Performance monitoring and alert configuration
The ApsaraDB for POLARDB console provides a variety of performance metrics for you to

monitor the status of your instances.

Performance monitoring

1. Log on to the ApsaraDB for POLARDB console.

2. Select a region.

3. Find the target cluster and click the cluster ID in the Cluster Name column.

4. In the left-side navigation pane, choose Diagnostics and Optimization > Monitoring.

5. You can view the performance information of a Cluster or Node as needed. For more

information, see Metric description.

• To monitor cluster performance, click the Cluster tab and set the monitoring time

period. Click OK.

• To monitor node performance, click the Node tab, select a node from the Select Node

drop-down list, and set the monitoring time period. Click OK.

Note:

You can click More at the lower part of the Node tab to view more metrics.

Metric description

Category Metric Description

Storage Displays the usage of data space, log space, temporary
space, and WAL log space.

CPU Displays the CPU usage of each node.

Cluster

Memory Displays the memory usage of each node.

TPS Displays the number of transactions per second of the
 selected node, including the number of committed
transactions per second, deadlocked transactions per
second, and rollback transactions per second.

CPU Displays the CPU usage of the selected node.

Node

Memory Displays the memory usage of the selected node.

70 Issue: 20200522

https://polardb.console.aliyun.com/

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 14 Diagnostics and
optimization

Category Metric Description

Connections Displays the total number of current connections, active
connections, and idle connections of the selected node.

Scanned
Rows

Displays the numbers of rows inserted, read, updated,
deleted, and returned per second of the selected node.

Maximum
Database
Age

Displays the difference between the transaction IDs of the
oldest and newest transactions in the database.

I/O
Throughput

Displays the total I/O throughput, I/O read throughput, and
 I/O write throughput of the selected node.

IOPS Displays the input/output operations per second (IOPS) of
the selected node, including the total IOPS, read IOPS, and
write IOPS.

Cache Displays the cache reads per second and disk reads per
second of the selected node.

Cache Hit
Ratio

Displays the cache hit ratio of the selected node.

Temporary
Files

Displays the number and total size of temporary files on the
 selected node.

Alert settings

1. Log on to the CloudMonitor console.

2. In the left-side navigation pane, choose Alerts > Alert Rules.

3. On the Alert Rules page, click Create Alert Rule to go to the Create Alert Rule page.

4. Select ApsaraDB for POLARDB-PostgreSQL/Oracle from the Product drop-down list and

select a resource range from the Resource Range drop-down list. Set the alert rule and

notification method, and click Confirm.

Note:

For more information about alert rules, see #unique_80.

14.2 Performance insight
ApsaraDB for POLARDB provides the performance insight feature, which focuses on

monitoring the load, analyzing the load, and optimizing the performance of an ApsaraDB

Issue: 20200522 71

https://cloudmonitor.console.aliyun.com

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 14 Diagnostics and
optimization

for POLARDB cluster. The feature helps you easily evaluate database loads, find the causes

for performance problems, and enhance database stability.

Scenarios

Performance insight can be applied in the following scenarios:

• Analyze the cluster metrics

Performance insight helps you monitor the key metrics of an ApsaraDB for POLARDB

 cluster. It also allows you to check the status and trend of the loads for the cluster.

You can identify the sources that generate loads and the distribution of loads within a

certain period from the trend charts of key metrics.

• Evaluate database loads

ApsaraDB for POLARDB provides the trend chart of average active sessions (AAS), which

alleviates the need to analyze the complicated trend charts of various metrics. AAS trend

 chart shows the information of all key metrics to help you evaluate the sources that

generate loads and cause performance bottlenecks. You can determine the causes for

 performance bottlenecks, such as high CPU usage, lock-waiting, and I/O latency, and

find the corresponding SQL statement that incurs the problem.

Note:

AAS is the number of average active sessions of an ApsaraDB for POLARDB cluster

within a certain period. The trends of AAS reflect the changes of the loads for the

cluster. In the performance insight feature, AAS is a key metric used to measure the

loads for an ApsaraDB for POLARDB cluster.

• Find the sources that cause performance problems

You can analyze the trend chart of AAS and load sources in multiple dimensions to

determine whether a performance problem is caused by improper cluster configurations

 or the database architecture. You can also find the corresponding SQL statement that

incurs the performance problem.

Procedure

1. Log on to the ApsaraDB for POLARDB console.

2. Select a region.

3. Find the target cluster and click the cluster ID in the Cluster Name column.

72 Issue: 20200522

https://polardb.console.aliyun.com/

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 14 Diagnostics and
optimization

4. In the left-side navigation pane, choose Diagnostics and Optimization > Performance

Insight.

5. Select filtering conditions.

Description of the metrics page

• Trend charts of key metrics

You can use the trend charts of key metrics to check the load status and resource

bottlenecks of an ApsaraDB for POLARDB cluster.

You can select a given time period or specify a custom time period to retrieve the trend

charts of key metrics within the corresponding time period.

• Trend chart of AAS

After you use the trend charts of key metrics to check the load status, you can identify

the load sources.

Note:

max Vcores indicates the maximum number of CPU cores that can be used by an

ApsaraDB for POLARDB cluster. The value determines the processing capacity of CPUs in

the cluster.

From the real-time trend chart of AAS, you can find the load sources, the time when

loads occur, and the trend of loads over a period of time.

• Load sources from multiple dimensions

You can learn the trend of the loads for an ApsaraDB for POLARDB cluster by analyzing

the trend chart of AAS. You can find the specific SQL statements that cause performance

bottlenecks, and the related users, hosts, and databases.

As shown in the lower section of the preceding figure, you can find the SQL statements

that affect the loads, and the usage ratio of each statement in a specified AAS.

Performance insight supports six dimensions of AAS. You can switch dimensions by

using the drop-down list of AAS Type in the upper-right corner of the AAS page.

Type Description

SQL The trends of top 10 SQL statements in your business.

Waits The trends of wait events within the specified time period.

Users The trends of logon users.

Issue: 20200522 73

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 14 Diagnostics and
optimization

Type Description

Hosts The trends of hostnames or IP addresses of clients.

Databases The trends of the databases where your businesses are
located.

Status The trends of active sessions within the specified time
period.

74 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 15 SQL Explorer

15 SQL Explorer

Apsara PolarDB provides the SQL Explorer feature. You can use SQL Explorer for database

security auditing and performance diagnostics.

Pricing

• The trial edition of Apsara PolarDB is available for free. In the trial edition, audit logs are

 retained for only one day. You can query only data that is stored in the retained audit

logs. The trial edition does not support advanced features. For example, data cannot be

exported, and data integrity cannot be ensured.

• If you want to retain the audit logs for 30 days or longer, you can view the pricing details

in #unique_28.

Features

• SQL logging

SQL audit logs record all operations that are performed on databases. You can use audit

logs to identify database failures, analyze behaviors, and perform security auditing.

• Advanced search

SQL Explorer allows you to search data by database, user, client IP, thread ID, execution

duration, or execution status. You can also export and download search results.

Enable SQL Explorer

1. Log on to the Apsara PolarDB console.

2. In the upper-left corner of the console, select the region where the target cluster resides.

3. Find the target cluster and click its ID.

Issue: 20200522 75

https://polardb.console.aliyun.com/

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 15 SQL Explorer

4. In the left-side navigation pane, choose Log and Audit > SQL Explorer.

5. Click Activate Now.

6. Specify the storage duration of SQL audit logs, and then click Activate.

Change the storage duration of SQL audit logs

1. Log on to the Apsara PolarDB console.

2. In the upper-left corner of the console, select the region where the target cluster resides.

3. Find the target cluster and click its ID.

4. In the left-side navigation pane, choose Log and Audit > SQL Explorer.

5. In the upper-right corner of the page, click Service Settings.

6. Change the storage duration and click OK.

Export SQL records

1. Log on to the Apsara PolarDB console.

2. In the upper-left corner of the console, select the region where the target cluster resides.

3. Find the target cluster and click its ID.

4. In the left-side navigation pane, choose Log and Audit > SQL Explorer.

5. On the right side of the page, click Export.

76 Issue: 20200522

https://polardb.console.aliyun.com/
https://polardb.console.aliyun.com/

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 15 SQL Explorer

6. In the dialog box that appears, specify the Export Field and Time Range parameters,

and click OK.

7. After the export is complete, download the log files in the Export SQL Log Records

dialog box.

Disable SQL Explorer

Note:

After SQL Explorer is disabled, SQL audit logs are deleted. We recommend that you export

and save SQL log files to your computer before you disable SQL Explorer.

1. Log on to the Apsara PolarDB console.

2. In the upper-left corner of the console, select the region where the target cluster resides.

3. Find the target cluster and click its ID.

4. In the left-side navigation pane, choose Log and Audit > SQL Explorer.

5. In the upper-right corner of the page, click Service Settings.

Issue: 20200522 77

https://polardb.console.aliyun.com/

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 15 SQL Explorer

6. Change the storage duration and click OK.

7. Turn off the Activate SQL Explorer switch.

View the size and consumption details of audit logs

1. Log on to the Alibaba Cloud console.

2. In the upper-right corner of the page, choose Billing > User Center.

3. In the left-side navigation pane, choose Spending Summary > Instance Spending

Detail.

4. Click Click here to experience the new version.

Note:

Skip this step if you have switched to the new version.

78 Issue: 20200522

https://home.console.aliyun.com/new#/

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 15 SQL Explorer

5. Click the Details tab, select Instance Name from the drop-down list, enter the instance

name in the search box, and click Search.

6. View the billing details whose Billing Item is sql_explorer.

Issue: 20200522 79

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

16 Plug-ins

16.1 Read and write external data files by using oss_fdw
Alibaba Cloud allows you to use the oss_fdw plug-in to load data in OSS to POLARDB for

PostgreSQL databases and write data in POLARDB for PostgreSQL databases to OSS.

oss_fdw parameters

The oss_fdw plug-in uses a method similar to other Foreign Data Wrapper (FDW) interfaces

 to encapsulate external data stored in OSS. You can use oss_fdw to read data stored in

OSS. This process is similar to reading data tables. oss_fdw provides unique parameters to

connect and parse file data in OSS.

Note:

• oss_fdw can read and write files of the following types in OSS: TEXT and CSV files as

well as gzip-compressed TEXT and CSV files.

• The value of each parameter must be enclosed in double quotation marks (") and

cannot contain any unnecessary spaces.

CREATE SERVER parameters

• ossendpoint: the endpoint used to access OSS through the internal network, also known

 as the host.

• id oss: the ID of your OSS account.

• key oss: the key of your OSS account.

• bucket: the OSS bucket. You must create an OSS account before specifying this

parameter.

The following fault tolerance parameters can be used for data import and export. If

network connectivity is poor, you can adjust these parameters to guarantee successful

import and export.

• oss_connect_timeout: indicates the connection timeout period. Default value: 10. Unit:

seconds.

• oss_dns_cache_timeout: indicates the DNS timeout period. Default value: 60. Unit:

seconds.

80 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

• oss_speed_limit: indicates the minimum data transmission rate. Default value: 1. Unit:

Kbit/s.

• oss_speed_time: indicates the maximum period when the data transmission rate is

lower than the minimum value. Default value: 15. Unit: seconds.

If the default values of oss_speed_limit and oss_speed_time are used, a timeout error

occurs when the transmission rate is smaller than 1 Kbit/s for 15 consecutive seconds.

CREATE FOREIGN TABLE parameters

• filepath: a file name that contains a path in OSS.

- A file name contains a path but not a bucket name.

- This parameter matches multiple files in the corresponding path in OSS. You can load

multiple files to a database.

- You can import files named in the format of filepath or filepath.x to a database. The

values of x must be consecutive numbers starting from 1.

For example, among the files named filepath, filepath.1, filepath.2, filepath.3, and

 filepath.5, the first four files are matched and imported. The filepath.5 file is not

imported.

• dir: the virtual file directory in OSS.

- dir must end with a forward slash (/).

- All files (excluding subfolders and files in subfolders) in the virtual file directory

specified by dir will be matched and imported to a database.

• prefix: the prefix of the path name corresponding to the data file. The prefix does not

support regular expressions. Only one parameter among prefix, filepath, and dir can be

specified at a time because they are mutually exclusive.

• format: the file format, which can only be csv.

• encoding: the file data encoding format. It supports common PostgreSQL encoding

formats, such as UTF-8.

• parse_errors: the fault-tolerant parsing mode. If an error occurs during the parsing

process, the entire row of data is ignored.

• delimiter: the column delimiter.

• quote: the quote character for files.

• escape: the escape character for files.

Issue: 20200522 81

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

• null: sets the column matching a specified string to null. For example, null 'test' is used

to set the value of the 'test' column to null.

• force_not_null: sets the value of a column to a non-null value. For example, force_not_

null 'id' is used to set the value of the 'id' column to empty strings.

• compressiontype: specifies the format of the files to be read or written in OSS.

- none: uncompressed text files. This is the default value.

- gzip: The files to be read must be gzip compressed.

• compressionlevel: specifies the compression level of the compression format written to

OSS. Valid values: 1 to 9. Default value: 6.

Note:

• You must specify filepath and dir in the OPTIONS parameter.

• You must specify either filepath or dir.

• The export mode only supports virtual folders, that is, only dir is supported.

Export mode parameters for CREATE FOREIGN TABLE

• oss_flush_block_size: the buffer size for the data written to OSS at a time. Default value:

32 MB. Valid values: 1 MB to 128 MB.

• oss_file_max_size: the maximum file size for the data written to OSS (subsequent data is

written in another file when the maximum file size is exceeded). Default value: 1024 MB.

Valid values: 8 MB to 4000 MB.

• num_parallel_worker: the number of parallel compression threads in which the OSS data

 is written. Valid values: 1 to 8. Default value: 3.

Auxiliary functions

FUNCTION oss_fdw_list_file (relname text, schema text DEFAULT 'public')

• Obtains the name and size of the OSS file that an external table matches.

• The unit of file size is Byte.

select * from oss_fdw_list_file('t_oss');
 name | size
--------------------------------+-----------
 oss_test/test.gz.1 | 739698350
 oss_test/test.gz.2 | 739413041
 oss_test/test.gz.3 | 739562048

82 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

(3 rows)

Auxiliary features

oss_fdw.rds_read_one_file: In read mode, it is used to specify a file to match the external

table. If the file is specified, the external table only matches this file during data import.

Example: set oss_fdw.rds_read_one_file = 'oss_test/example16.csv.1';

set oss_fdw.rds_read_one_file = 'oss_test/test.gz.2';
select * from oss_fdw_list_file('t_oss');
 name | size
--------------------------------+-----------
 oss_test/test.gz.2 | 739413041
(1 rows)

oss_fdw example

Create a plug-in
create extension oss_fdw;
Create a server
CREATE SERVER ossserver FOREIGN DATA WRAPPER oss_fdw OPTIONS
 (host 'oss-cn-hangzhou.aliyuncs.com', id 'xxx', key 'xxx', bucket 'mybucket');
Create an OSS external table
CREATE FOREIGN TABLE ossexample
 (date text, time text, open float,
 high float, low float, volume int)
 SERVER ossserver
 OPTIONS (filepath 'osstest/example.csv', delimiter ',' ,
 format 'csv', encoding 'utf8', PARSE_ERRORS '100');
Create a table to load data to
create table example
 (date text, time text, open float,
 high float, low float, volume int)
Load data from ossexample to example.
insert into example select * from ossexample;
Result
oss_fdw estimates the file size in OSS and formulates a query plan correctly.
explain insert into example select * from ossexample;
 QUERY PLAN

 Insert on example (cost=0.00..1.60 rows=6 width=92)
 -> Foreign Scan on ossexample (cost=0.00..1.60 rows=6 width=92)
 Foreign OssFile: osstest/example.csv.0
 Foreign OssFile Size: 728
(4 rows)
Write the data in the example table to OSS.
insert into ossexample select * from example;
explain insert into ossexample select * from example;
 QUERY PLAN

 Insert on ossexample (cost=0.00..16.60 rows=660 width=92)
 -> Seq Scan on example (cost=0.00..16.60 rows=660 width=92)

Issue: 20200522 83

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

(2 rows)

oss_fdw usage considerations

• oss_fdw is an external table plug-in developed based on the PostgreSQL FOREIGN TABLE

 framework.

• The data import efficiency is subject to the POLARDB for PostgreSQL cluster resources (

CPU, I/O, memory, and MET) and OSS.

• To guarantee data import performance, make sure that POLARDB for PostgreSQL is in the

same region as OSS. For more information, see Endpoints.

• If the error "oss endpoint userendpoint not in aliyun white list" is reported during

reading of SQL statements for external tables, use the endpoints listed in Regions and

endpoints. If the problem persists, submit a ticket.

Error handling

When an import or export error occurs, the log displays the following error information:

• code: the HTTP status code of the request that has failed.

• error_code: the error code returned by OSS.

• error_msg: the error message returned by OSS.

• req_id: the UUID that identifies the request. If you cannot solve the problem, you can

seek help from OSS development engineers by providing the req_id.

For more information about error types, see the following references. Timeout errors can be

 handled using oss_ext parameters.

• OSS help

•

• OSS error handling

• OSS error response

ID and key encryption

If id and key parameters for CREATE SERVER are not encrypted, executing the select * from

 pg_foreign_server statement will display the information in plaintext. Your ID and key will

be exposed. You can use symmetric encryption to hide the ID and key. Use different keys for

different instances to further protect your information. However, to avoid incompatibility

with earlier versions, do not add data types as you do in Greenplum.

84 Issue: 20200522

https://www.alibabacloud.com/help/doc-detail/31834.htm
https://www.alibabacloud.com/help/doc-detail/31837.htm
https://www.alibabacloud.com/help/doc-detail/31837.htm
https://www.alibabacloud.com/help/product/31815.htm
https://www.alibabacloud.com/help/doc-detail/32141.htm
https://www.alibabacloud.com/help/doc-detail/32005.htm

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

Encrypted information:

postgres=# select * from pg_foreign_server ;
 srvname | srvowner | srvfdw | srvtype | srvversion | srvacl |
 srvoptions
-----------+----------+--------+---------+------------+--------
+--

 ossserver | 10 | 16390 | | | | {host=oss-cn-hangzhou-zmf.aliyuncs.com,id
=MD5xxxxxxxx,key=MD5xxxxxxxx,bucket=067862}

The encrypted information is preceded by the MD5 hash value. The remainder of the total

length divided by 8 is 3. Therefore, encryption is not performed again when the exported

data is imported. But you cannot create the key and ID preceded by an MD5 hash value.

16.2 Use the pg_pathman plug-in
This topic describes common usage scenarios of the pg_pathman plug-in.

Context

To improve the performance of partitioned tables, the pg_pathman plug-in is introduced

to POLARDB for PostgreSQL. This plug-in enables you to manage partitions and optimize

partitioning.

Create the pg_pathman extension

test=# create extension pg_pathman;
CREATE EXTENSION

View installed extensions

Run the following commands to view installed extensions and the version of the

pg_pathman plug-in.

test=# \dx
 List of installed extensions
 Name | Version | Schema | Description
------------+---------+------------+----------------------------------
 pg_pathman | 1.5 | public | Partitioning tool for PostgreSQL
 plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language
(2 rows)

Upgrade the plug-in

POLARDB for PostgreSQL upgrades the plug-in on a regular basis to provide better

database services. To upgrade the plug-in, perform the following steps:

• Upgrade the corresponding cluster to the latest version. You need to submit a ticket to

perform the upgrade because this function is in the development phase.

Issue: 20200522 85

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

• Execute the following statements to complete the update:

ALTER EXTENSION pg_pathman UPDATE;
SET pg_pathman.enable = t;

Features

• Support for hash and range partitioning.

• Support for automatic and manual partition management. In automatic partition

management, the system uses functions to create partitions and migrate data in primary

 tables to partitions. In manual partition management, you can use functions to attach

existing tables to partitioned tables or detach tables from partitioned tables.

• Support for several partition fields including custom domains and common data types

such as integer, floating point, and date.

• Effective query planning for partitioned tables by using joins and subselects.

• RuntimeAppend and RuntimeMergeAppend custom plan nodes to pick partitions at

runtime.

• PartitionFilter: an efficient drop-in replacement for INSERT triggers.

• Automatic partition creation for newly inserted data (only for range partitioning).

• Support for the COPY FROM/TO statement, allowing direct read or write operations on

partitions.

• Partition fields update. To update partition fields, you need to add a trigger. If you do

not need to update partition fields, we recommend that you do not add the trigger to

avoid negative impacts on performance.

• User-defined callback functions are automatically triggered when partitions are created.

• Non-blocking concurrent table partitioning and automatic data migration from primary

tables to partitions in the background.

• Support for postgres_fdw or any Foreign Data Wrappers (FDW) by configuring the

pg_pathman.insert_into_fdw=(disabled | postgres | any_fdw) parameter.

Usage

• Views and tables

• Partition management

• Advanced partition management

For more information, see https://github.com/postgrespro/pg_pathman.

86 Issue: 20200522

https://github.com/postgrespro/pg_pathman

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

Views and tables

The pg_pathman plug-in uses functions to maintain partitioned tables and creates views

for viewing the status of partitioned tables, as described in the following examples:

1. pathman_config

CREATE TABLE IF NOT EXISTS pathman_config (
 partrel REGCLASS NOT NULL PRIMARY KEY, -- The OID of the primary table.
 attname TEXT NOT NULL, -- The column name of the partition.
 parttype INTEGER NOT NULL, -- The type of the partition (hash or range).
 range_interval TEXT, -- The interval of range partitions.

 CHECK (parttype IN (1, 2)) /* check for allowed part types */);

2. pathman_config_params

CREATE TABLE IF NOT EXISTS pathman_config_params (
 partrel REGCLASS NOT NULL PRIMARY KEY, -- The OID of the primary table.
 enable_parent BOOLEAN NOT NULL DEFAULT TRUE, -- Specifies whether to filter the
 primary table in the optimizer.
 auto BOOLEAN NOT NULL DEFAULT TRUE, -- Specifies whether to automatically
 expand partitions that do not exist during INSERT operations.
 init_callback REGPROCEDURE NOT NULL DEFAULT 0); -- The OID of the callback
function when the partition is created.

3. pathman_concurrent_part_tasks

-- helper SRF function
CREATE OR REPLACE FUNCTION show_concurrent_part_tasks()
RETURNS TABLE (
 userid REGROLE,
 pid INT,
 dbid OID,
 relid REGCLASS,
 processed INT,
 status TEXT)
AS 'pg_pathman', 'show_concurrent_part_tasks_internal'
LANGUAGE C STRICT;

CREATE OR REPLACE VIEW pathman_concurrent_part_tasks
AS SELECT * FROM show_concurrent_part_tasks();

4. pathman_partition_list

-- helper SRF function
CREATE OR REPLACE FUNCTION show_partition_list()
RETURNS TABLE (
 parent REGCLASS,
 partition REGCLASS,
 parttype INT4,
 partattr TEXT,
 range_min TEXT,
 range_max TEXT)
AS 'pg_pathman', 'show_partition_list_internal'
LANGUAGE C STRICT;

CREATE OR REPLACE VIEW pathman_partition_list

Issue: 20200522 87

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

AS SELECT * FROM show_partition_list();

Partition management

1. Range partitions

Four management functions are used to create range partitions. Two functions are used

to specify the start value, interval, and number of partitions. The definition of these two

functions are as follows:

create_range_partitions(relation REGCLASS, -- The OID of the primary table.
 attribute TEXT, -- The column name of the partition.
 start_value ANYELEMENT, -- The start value.
 p_interval ANYELEMENT, -- The interval, applicable to any type of
partitioned tables.
 p_count INTEGER DEFAULT NULL, -- The number of partitions.
 partition_data BOOLEAN DEFAULT TRUE) -- Specifies whether to
immediately migrate data from the primary table to partitions. We recommend
that you call the partition_table_concurrently() function to run non-blocking data
migration.

create_range_partitions(relation REGCLASS, -- The OID of the primary table.
 attribute TEXT, -- The column name of the partition.
 start_value ANYELEMENT, -- The start value.
 p_interval INTERVAL, -- The interval of the interval type, applicable to
ingestion-time partitioned tables.
 p_count INTEGER DEFAULT NULL, -- The number of partitions.
 partition_data BOOLEAN DEFAULT TRUE) -- Specifies whether to
immediately migrate data from the primary table to partitions. We recommend
that you call the partition_table_concurrently() function to run non-blocking data
migration.

The other two functions are used to specify the start value, end value, and interval. The

definitions are as follows:

create_partitions_from_range(relation REGCLASS, -- The OID of the primary table.
 attribute TEXT, -- The column name of the partition.
 start_value ANYELEMENT, -- The start value.
 end_value ANYELEMENT, -- The end value.
 p_interval ANYELEMENT, -- The interval, applicable to any type of
partitioned tables.
 partition_data BOOLEAN DEFAULT TRUE) -- Specifies whether to
 immediately migrate data from the primary table to partitions. We recommend
that you call the partition_table_concurrently() function to run non-blocking data
migration.

create_partitions_from_range(relation REGCLASS, -- The OID of the primary table.
 attribute TEXT, -- The column name of the partition.
 start_value ANYELEMENT, -- The start value.
 end_value ANYELEMENT, -- The end value.
 p_interval INTERVAL, -- The interval of the interval type, applicable
to ingestion-time partitioned tables.
 partition_data BOOLEAN DEFAULT TRUE) -- Specifies whether to
 immediately migrate data from the primary table to partitions. We recommend

88 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

that you call the partition_table_concurrently() function to run non-blocking data
migration.

Example:

Create a primary table that needs to be partitioned.
postgres=# create table part_test(id int, info text, crt_time timestamp not null); -- All
partition columns must contain the NOT NULL constraint.
CREATE TABLE

Insert a large amount of test data to simulate a primary table that already contains
data.
postgres=# insert into part_test select id,md5(random()::text),clock_timestamp() + (id
||' hour')::interval from generate_series(1,10000) t(id);
INSERT 0 10000
postgres=# select * from part_test limit 10;
 id | info | crt_time
----+----------------------------------+----------------------------
 1 | 36fe1adedaa5b848caec4941f87d443a | 2016-10-25 10:27:13.206713
 2 | c7d7358e196a9180efb4d0a10269c889 | 2016-10-25 11:27:13.206893
 3 | 005bdb063550579333264b895df5b75e | 2016-10-25 12:27:13.206904
 4 | 6c900a0fc50c6e4da1ae95447c89dd55 | 2016-10-25 13:27:13.20691
 5 | 857214d8999348ed3cb0469b520dc8e5 | 2016-10-25 14:27:13.206916
 6 | 4495875013e96e625afbf2698124ef5b | 2016-10-25 15:27:13.206921
 7 | 82488cf7e44f87d9b879c70a9ed407d4 | 2016-10-25 16:27:13.20693
 8 | a0b92547c8f17f79814dfbb12b8694a0 | 2016-10-25 17:27:13.206936
 9 | 2ca09e0b85042b476fc235e75326b41b | 2016-10-25 18:27:13.206942
 10 | 7eb762e1ef7dca65faf413f236dff93d | 2016-10-25 19:27:13.206947
(10 rows)

Note:
1. All partition columns must contain the NOT NULL constraint.
2. The number of partitions must be sufficient to cover all existing records.

Create partitions and ensure that each partition contains one month of data
postgres=# select
create_range_partitions('part_test'::regclass, -- The OID of the primary table.
 'crt_time', -- The column name of the partition.
 '2016-10-25 00:00:00'::timestamp, -- The start value.
 interval '1 month', -- The interval of the interval type, applicable
to ingestion-time partitioned tables.
 24, -- The number of partitions.
 false) ; -- The data is not migrated.
NOTICE: sequence "part_test_seq" does not exist, skipping
 create_range_partitions

 24
(1 row)
postgres-# \d+ part_test
 Table "public.part_test"
 Column | Type | Modifiers | Storage | Stats target | Description
----------+-----------------------------+-----------+----------+--------------
+-------------
 id | integer | | plain | |
 info | text | | extended | |
 crt_time | timestamp without time zone | not null | plain | |
Child tables: part_test_1,
 part_test_10,
 part_test_11,
 part_test_12,
 part_test_13,
 part_test_14,
 part_test_15,

Issue: 20200522 89

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

 part_test_16,
 part_test_17,
 part_test_18,
 part_test_19,
 part_test_2,
 part_test_20,
 part_test_21,
 part_test_22,
 part_test_23,
 part_test_24,
 part_test_3,
 part_test_4,
 part_test_5,
 part_test_6,
 part_test_7,
 part_test_8,
 part_test_9

The data is still in the primary table because it is not migrated.
postgres=# select count(*) from only part_test;
 count

 10000
(1 row)

Run non-blocking data migration.
partition_table_concurrently(relation REGCLASS, -- The OID of the primary
table.
 batch_size INTEGER DEFAULT 1000, -- The number of records to copy
from the primary table at a time.
 sleep_time FLOAT8 DEFAULT 1.0) -- The time interval between
migration attempts if one or more rows in the batch are locked by other queries.
pg_pathman waits for the specified time and tries again up to 60 times before quitting
.

postgres=# select partition_table_concurrently('part_test'::regclass,
 10000,
 1.0);
NOTICE: worker started, you can stop it with the following command: select
stop_concurrent_part_task('part_test');
 partition_table_concurrently

(1 row)

After the migration, all data is migrated to the partitions, and the primary table is
empty.
postgres=# select count(*) from only part_test;
 count

 0
(1 row)

After the data is migrated, we recommend that you disable the primary table so that
the primary table will not be included in the execution plan.
postgres=# select set_enable_parent('part_test'::regclass, false);
 set_enable_parent

90 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

(1 row)

postgres=# explain select * from part_test where crt_time = '2016-10-25 00:00:00'::
timestamp;
 QUERY PLAN

 Append (cost=0.00..16.18 rows=1 width=45)
 -> Seq Scan on part_test_1 (cost=0.00..16.18 rows=1 width=45)
 Filter: (crt_time = '2016-10-25 00:00:00'::timestamp without time zone)
(3 rows)

Note:

When using range partitioning, note the following items:

• All partition columns must contain the NOT NULL constraint.

• The number of partitions must be sufficient to cover all existing records.

• Run non-blocking data migration.

• After data migration is completed, disable the primary table.

2. Hash partitioning

You can use a management function to create range partitions. You can specify the start

value, interval, and number of partitions, as described in the following examples:

create_hash_partitions(relation REGCLASS, -- The OID of the primary table.
 attribute TEXT, -- The column name of the partition.
 partitions_count INTEGER, -- The number of partitions to be created.
 partition_data BOOLEAN DEFAULT TRUE) -- Specifies whether to
immediately migrate data from the primary table to partitions. We recommend
that you call the partition_table_concurrently() function to run non-blocking data
migration.

Example:

Create a primary table that needs to be partitioned.
postgres=# create table part_test(id int, info text, crt_time timestamp not null); -- All
partition columns must contain the NOT NULL constraint.
CREATE TABLE

Insert a large amount of test data to simulate a primary table that already contains
data.
postgres=# insert into part_test select id,md5(random()::text),clock_timestamp() + (id
||' hour')::interval from generate_series(1,10000) t(id);
INSERT 0 10000
postgres=# select * from part_test limit 10;
 id | info | crt_time
----+----------------------------------+----------------------------
 1 | 29ce4edc70dbfbe78912beb7c4cc95c2 | 2016-10-25 10:47:32.873879
 2 | e0990a6fb5826409667c9eb150fef386 | 2016-10-25 11:47:32.874048
 3 | d25f577a01013925c203910e34470695 | 2016-10-25 12:47:32.874059
 4 | 501419c3f7c218e562b324a1bebfe0ad | 2016-10-25 13:47:32.874065
 5 | 5e5e22bdf110d66a5224a657955ba158 | 2016-10-25 14:47:32.87407
 6 | 55d2d4fd5229a6595e0dd56e13d32be4 | 2016-10-25 15:47:32.874076
 7 | 1dfb9a783af55b123c7a888afe1eb950 | 2016-10-25 16:47:32.874081
 8 | 41eeb0bf395a4ab1e08691125ae74bff | 2016-10-25 17:47:32.874087
 9 | 83783d69cc4f9bb41a3978fe9e13d7fa | 2016-10-25 18:47:32.874092

Issue: 20200522 91

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

 10 | affc9406d5b3412ae31f7d7283cda0dd | 2016-10-25 19:47:32.874097
(10 rows)

Note:
1. All partition columns must contain the NOT NULL constraint.

Create 128 partitions
postgres=# select
create_hash_partitions('part_test'::regclass, -- The OID of the primary table.
 'crt_time', -- The column name of the partition.
 128, -- The number of partitions to be created.
 false) ; -- The data is not migrated.
 create_hash_partitions

 128
(1 row)

postgres=# \d+ part_test
 Table "public.part_test"
 Column | Type | Modifiers | Storage | Stats target | Description
----------+-----------------------------+-----------+----------+--------------
+-------------
 id | integer | | plain | |
 info | text | | extended | |
 crt_time | timestamp without time zone | not null | plain | |
Child tables: part_test_0,
 part_test_1,
 part_test_10,
 part_test_100,
 part_test_101,
 part_test_102,
 part_test_103,
 part_test_104,
 part_test_105,
 part_test_106,
 part_test_107,
 part_test_108,
 part_test_109,
 part_test_11,
 part_test_110,
 part_test_111,
 part_test_112,
 part_test_113,
 part_test_114,
 part_test_115,
 part_test_116,
 part_test_117,
 part_test_118,
 part_test_119,
 part_test_12,
 part_test_120,
 part_test_121,
 part_test_122,
 part_test_123,
 part_test_124,
 part_test_125,
 part_test_126,
 part_test_127,
 part_test_13,
 part_test_14,
 part_test_15,
 part_test_16,
 part_test_17,
 part_test_18,

92 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

 part_test_19,
 part_test_2,
 part_test_20,
 part_test_21,
 part_test_22,
 part_test_23,
 part_test_24,
 part_test_25,
 part_test_26,
 part_test_27,
 part_test_28,
 part_test_29,
 part_test_3,
 part_test_30,
 part_test_31,
 part_test_32,
 part_test_33,
 part_test_34,
 part_test_35,
 part_test_36,
 part_test_37,
 part_test_38,
 part_test_39,
 part_test_4,
 part_test_40,
 part_test_41,
 part_test_42,
 part_test_43,
 part_test_44,
 part_test_45,
 part_test_46,
 part_test_47,
 part_test_48,
 part_test_49,
 part_test_5,
 part_test_50,
 part_test_51,
 part_test_52,
 part_test_53,
 part_test_54,
 part_test_55,
 part_test_56,
 part_test_57,
 part_test_58,
 part_test_59,
 part_test_6,
 part_test_60,
 part_test_61,
 part_test_62,
 part_test_63,
 part_test_64,
 part_test_65,
 part_test_66,
 part_test_67,
 part_test_68,
 part_test_69,
 part_test_7,
 part_test_70,
 part_test_71,
 part_test_72,
 part_test_73,
 part_test_74,
 part_test_75,
 part_test_76,

Issue: 20200522 93

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

 part_test_77,
 part_test_78,
 part_test_79,
 part_test_8,
 part_test_80,
 part_test_81,
 part_test_82,
 part_test_83,
 part_test_84,
 part_test_85,
 part_test_86,
 part_test_87,
 part_test_88,
 part_test_89,
 part_test_9,
 part_test_90,
 part_test_91,
 part_test_92,
 part_test_93,
 part_test_94,
 part_test_95,
 part_test_96,
 part_test_97,
 part_test_98,
 part_test_99

The data is still in the primary table because it is not migrated.
postgres=# select count(*) from only part_test;
 count

 10000
(1 row)

Run non-blocking data migration
partition_table_concurrently(relation REGCLASS, -- The OID of the primary
table.
 batch_size INTEGER DEFAULT 1000, -- The number of records to copy
from the primary table at a time.
 sleep_time FLOAT8 DEFAULT 1.0) -- The time interval between
migration attempts if one or more rows in the batch are locked by other queries.
pg_pathman waits for the specified time and tries again up to 60 times before quitting
.

postgres=# select partition_table_concurrently('part_test'::regclass,
 10000,
 1.0);
NOTICE: worker started, you can stop it with the following command: select
stop_concurrent_part_task('part_test');
 partition_table_concurrently

(1 row)

After the migration, all data is migrated to the partitions, and the primary table is
empty.
postgres=# select count(*) from only part_test;
 count

 0
(1 row)

94 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

After the data is migrated, we recommend that you disable the primary table so that
the primary table will not be included in the execution plan.
postgres=# select set_enable_parent('part_test'::regclass, false);
 set_enable_parent

(1 row)

Query only a single partition.
postgres=# explain select * from part_test where crt_time = '2016-10-25 00:00:00'::
timestamp;
 QUERY PLAN

 Append (cost=0.00..1.91 rows=1 width=45)
 -> Seq Scan on part_test_122 (cost=0.00..1.91 rows=1 width=45)
 Filter: (crt_time = '2016-10-25 00:00:00'::timestamp without time zone)
(3 rows)

The constraints on partitions are as follows:
pg_pathman automatically completes the conversion. For traditional inheritance,
expressions similar to select * from part_test where crt_time = '2016-10-25 00:00:00'::
timestamp; cannot filter partitions.
postgres=# \d+ part_test_122
 Table "public.part_test_122"
 Column | Type | Modifiers | Storage | Stats target | Description
----------+-----------------------------+-----------+----------+--------------
+-------------
 id | integer | | plain | |
 info | text | | extended | |
 crt_time | timestamp without time zone | not null | plain | |
Check constraints:
 "pathman_part_test_122_3_check" CHECK (get_hash_part_idx(timestamp_hash(
crt_time), 128) = 122)
Inherits: part_test

Note:

When using hash partitioning, note the following items:

• All partition columns must contain the NOT NULL constraint.

• Run non-blocking data migration.

• After data migration is completed, disable the primary table.

• pg_pathman is not subject to expressions. So the command select * from part_test

 where crt_time = '2016-10-25 00:00:00'::timestamp; can also be used for hash

partitioning.

• HASH partition columns are not limited to int type columns. The column types are

automatically converted by a hash function.

Issue: 20200522 95

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

3. Migrate data to a partition

If the data of the primary table is not migrated to partitions when the partitions are

created, the data can be migrated to the partitions by calling a non-blocking migration

function. Run the following commands:

with tmp as (delete from a primary table limit xx nowait returning *) insert into a
partition select * from tmp

You can also use select array_agg(ctid) from a primary table limit xx for update nowati
. Then execute the DELETE and INSERT statements.

The function is as follows:

partition_table_concurrently(relation REGCLASS, -- The OID of the primary
table.
 batch_size INTEGER DEFAULT 1000, -- The number of records to copy
from the primary table at a time.
 sleep_time FLOAT8 DEFAULT 1.0) -- The time interval between
migration attempts if one or more rows in the batch are locked by other queries.
pg_pathman waits for the specified time and tries again up to 60 times before quitting
.

Example:

postgres=# select partition_table_concurrently('part_test'::regclass,
 10000,
 1.0);
NOTICE: worker started, you can stop it with the following command: select
stop_concurrent_part_task('part_test');
 partition_table_concurrently

(1 row)

To stop the migration task, call the following function:

stop_concurrent_part_task(relation REGCLASS)

View the background data migration task.

postgres=# select * from pathman_concurrent_part_tasks;
 userid | pid | dbid | relid | processed | status
--------+-----+------+-------+-----------+--------
(0 rows)

4. Split range partitions

If a partition is too large and you want to split the partition into two partitions, use the

following method (only range partitions are supported):

split_range_partition(partition REGCLASS, -- The OID of the partition.
 split_value ANYELEMENT, -- The split value.

96 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

 partition_name TEXT DEFAULT NULL) -- The name of the new partition.

Example:

postgres=# \d+ part_test
 Table "public.part_test"
 Column | Type | Modifiers | Storage | Stats target | Description
----------+-----------------------------+-----------+----------+--------------
+-------------
 id | integer | | plain | |
 info | text | | extended | |
 crt_time | timestamp without time zone | not null | plain | |
Child tables: part_test_1,
 part_test_10,
 part_test_11,
 part_test_12,
 part_test_13,
 part_test_14,
 part_test_15,
 part_test_16,
 part_test_17,
 part_test_18,
 part_test_19,
 part_test_2,
 part_test_20,
 part_test_21,
 part_test_22,
 part_test_23,
 part_test_24,
 part_test_3,
 part_test_4,
 part_test_5,
 part_test_6,
 part_test_7,
 part_test_8,
 part_test_9

postgres=# \d+ part_test_1
 Table "public.part_test_1"
 Column | Type | Modifiers | Storage | Stats target | Description
----------+-----------------------------+-----------+----------+--------------
+-------------
 id | integer | | plain | |
 info | text | | extended | |
 crt_time | timestamp without time zone | not null | plain | |
Check constraints:
 "pathman_part_test_1_3_check" CHECK (crt_time >= '2016-10-25 00:00:00'::
timestamp without time zone AND crt_time < '2016-11-25 00:00:00'::timestamp
without time zone)
Inherits: part_test

Splitting

postgres=# select split_range_partition('part_test_1'::regclass, -- The OID of the
 partition.
 '2016-11-10 00:00:00'::timestamp, -- The split value.
 'part_test_1_2'); -- The name of the partitioned table.
 split_range_partition

 {"2016-10-25 00:00:00","2016-11-25 00:00:00"}

Issue: 20200522 97

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

(1 row)

Two tables that are created from splitting are as follows:

postgres=# \d+ part_test_1
 Table "public.part_test_1"
 Column | Type | Modifiers | Storage | Stats target | Description
----------+-----------------------------+-----------+----------+--------------
+-------------
 id | integer | | plain | |
 info | text | | extended | |
 crt_time | timestamp without time zone | not null | plain | |
Check constraints:
 "pathman_part_test_1_3_check" CHECK (crt_time >= '2016-10-25 00:00:00'::
timestamp without time zone AND crt_time < '2016-11-10 00:00:00'::timestamp
without time zone)
Inherits: part_test

postgres=# \d+ part_test_1_2
 Table "public.part_test_1_2"
 Column | Type | Modifiers | Storage | Stats target | Description
----------+-----------------------------+-----------+----------+--------------
+-------------
 id | integer | | plain | |
 info | text | | extended | |
 crt_time | timestamp without time zone | not null | plain | |
Check constraints:
 "pathman_part_test_1_2_3_check" CHECK (crt_time >= '2016-11-10 00:00:00'::
timestamp without time zone AND crt_time < '2016-11-25 00:00:00'::timestamp
without time zone)
Inherits: part_test

Data is automatically migrated to the other partition.

postgres=# select count(*) from part_test_1;
 count

 373
(1 row)

postgres=# select count(*) from part_test_1_2;
 count

 360
(1 row)

The inheritance relationship is as follows:

postgres=# \d+ part_test
 Table "public.part_test"
 Column | Type | Modifiers | Storage | Stats target | Description
----------+-----------------------------+-----------+----------+--------------
+-------------
 id | integer | | plain | |
 info | text | | extended | |
 crt_time | timestamp without time zone | not null | plain | |
Child tables: part_test_1,
 part_test_10,
 part_test_11,
 part_test_12,
 part_test_13,

98 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

 part_test_14,
 part_test_15,
 part_test_16,
 part_test_17,
 part_test_18,
 part_test_19,
 part_test_1_2, -- The added table.
 part_test_2,
 part_test_20,
 part_test_21,
 part_test_22,
 part_test_23,
 part_test_24,
 part_test_3,
 part_test_4,
 part_test_5,
 part_test_6,
 part_test_7,
 part_test_8,
 part_test_9

5. Merge range partitions

Only range partitions are supported. Call the following function:

Specify two partitions to be merged, which must be adjacent partitions.
merge_range_partitions(partition1 REGCLASS, partition2 REGCLASS)

Example:

postgres=# select merge_range_partitions('part_test_2'::regclass, 'part_test_12'::
regclass) ;
ERROR: merge failed, partitions must be adjacent
CONTEXT: PL/pgSQL function merge_range_partitions_internal(regclass,regclass,
regclass,anyelement) line 27 at RAISE
SQL statement "SELECT public.merge_range_partitions_internal($1, $2, $3, NULL::
timestamp without time zone)"
PL/pgSQL function merge_range_partitions(regclass,regclass) line 44 at EXECUTE
An error is returned because the partitions are not adjacent.

Adjacent partitions can be merged.
postgres=# select merge_range_partitions('part_test_1'::regclass, 'part_test_1_2'::
regclass) ;
 merge_range_partitions

(1 row)

After the merge is completed, one of the partitions are deleted.

postgres=# \d part_test_1_2
Did not find any relation named "part_test_1_2".

postgres=# \d part_test_1
 Table "public.part_test_1"
 Column | Type | Modifiers
----------+-----------------------------+-----------
 id | integer |
 info | text |
 crt_time | timestamp without time zone | not null
Check constraints:

Issue: 20200522 99

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

 "pathman_part_test_1_3_check" CHECK (crt_time >= '2016-10-25 00:00:00'::
timestamp without time zone AND crt_time < '2016-11-25 00:00:00'::timestamp
without time zone)
Inherits: part_test

postgres=# select count(*) from part_test_1;
 count

 733
(1 row)

6. Add a range partition following the last partition

There are several methods to add partitions for primary tables that have been previously

 partitioned. One method is to add partitions following the last partition.

When a new partition is added, the interval of the previously partitioned table will be

used. You can query the interval of each partitioned table when it is created for the first

time by running the pathman_config command:

postgres=# select * from pathman_config;
 partrel | attname | parttype | range_interval
-----------+----------+----------+----------------
 part_test | crt_time | 2 | 1 mon
(1 row)

Add a new range partition (the tablespace cannot be specified).

append_range_partition(parent REGCLASS, -- The OID of the primary table.
 partition_name TEXT DEFAULT NULL, -- (Optional) The name of the new
partition. Default value: null.
 tablespace TEXT DEFAULT NULL) -- (Optional) The tablespace where
the new partition is stored. Default value: null.

Example:

postgres=# select append_range_partition('part_test'::regclass);
 append_range_partition

 public.part_test_25
(1 row)

postgres=# \d+ part_test_25
 Table "public.part_test_25"
 Column | Type | Modifiers | Storage | Stats target | Description
----------+-----------------------------+-----------+----------+--------------
+-------------
 id | integer | | plain | |
 info | text | | extended | |
 crt_time | timestamp without time zone | not null | plain | |
Check constraints:
 "pathman_part_test_25_3_check" CHECK (crt_time >= '2018-10-25 00:00:00'::
timestamp without time zone AND crt_time < '2018-11-25 00:00:00'::timestamp
without time zone)
Inherits: part_test

postgres=# \d+ part_test_24
 Table "public.part_test_24"

100 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

 Column | Type | Modifiers | Storage | Stats target | Description
----------+-----------------------------+-----------+----------+--------------
+-------------
 id | integer | | plain | |
 info | text | | extended | |
 crt_time | timestamp without time zone | not null | plain | |
Check constraints:
 "pathman_part_test_24_3_check" CHECK (crt_time >= '2018-09-25 00:00:00'::
timestamp without time zone AND crt_time < '2018-10-25 00:00:00'::timestamp
without time zone)
Inherits: part_test

7. Add a range partition at the beginning of partitions

Add a partition at the beginning of the partitions. The function is as follows:

prepend_range_partition(parent REGCLASS,
 partition_name TEXT DEFAULT NULL,
 tablespace TEXT DEFAULT NULL)

Example:

postgres=# select prepend_range_partition('part_test'::regclass);
 prepend_range_partition

 public.part_test_26
(1 row)

postgres=# \d+ part_test_26
 Table "public.part_test_26"
 Column | Type | Modifiers | Storage | Stats target | Description
----------+-----------------------------+-----------+----------+--------------
+-------------
 id | integer | | plain | |
 info | text | | extended | |
 crt_time | timestamp without time zone | not null | plain | |
Check constraints:
 "pathman_part_test_26_3_check" CHECK (crt_time >= '2016-09-25 00:00:00'::
timestamp without time zone AND crt_time < '2016-10-25 00:00:00'::timestamp
without time zone)
Inherits: part_test

postgres=# \d+ part_test_1
 Table "public.part_test_1"
 Column | Type | Modifiers | Storage | Stats target | Description
----------+-----------------------------+-----------+----------+--------------
+-------------
 id | integer | | plain | |
 info | text | | extended | |
 crt_time | timestamp without time zone | not null | plain | |
Check constraints:
 "pathman_part_test_1_3_check" CHECK (crt_time >= '2016-10-25 00:00:00'::
timestamp without time zone AND crt_time < '2016-11-25 00:00:00'::timestamp
without time zone)
Inherits: part_test

8. Add a partition

You can create new partitions by specifying the start value of the partitions. New

partitions can be created if the ranges do not overlap with existing partitions. This

Issue: 20200522 101

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

method allows you to create non-continuous partitions. For example, if the range of

existing partitions are from 2010 to 2015, you can create a new partition from 2020. You

do not need to create a partition between 2015 and 2020. The function is as follows:

add_range_partition(relation REGCLASS, -- The OID of the primary table.
 start_value ANYELEMENT, -- The start value.
 end_value ANYELEMENT, -- The end value.
 partition_name TEXT DEFAULT NULL, -- The name of the partition.
 tablespace TEXT DEFAULT NULL) -- The name of the tablespace in which a
partition resides.

Example:

postgres=# select add_range_partition('part_test'::regclass, -- The OID of the
primary table.
 '2020-01-01 00:00:00'::timestamp, -- The start value.
 '2020-02-01 00:00:00'::timestamp); -- The end value.
 add_range_partition

 public.part_test_27
(1 row)

postgres=# \d+ part_test_27
 Table "public.part_test_27"
 Column | Type | Modifiers | Storage | Stats target | Description
----------+-----------------------------+-----------+----------+--------------
+-------------
 id | integer | | plain | |
 info | text | | extended | |
 crt_time | timestamp without time zone | not null | plain | |
Check constraints:
 "pathman_part_test_27_3_check" CHECK (crt_time >= '2020-01-01 00:00:00'::
timestamp without time zone AND crt_time < '2020-02-01 00:00:00'::timestamp
without time zone)
Inherits: part_test

9. Delete a partition

To delete a single partition range, call the following function:

drop_range_partition(partition TEXT, -- The name of the partition to be deleted.
 delete_data BOOLEAN DEFAULT TRUE) -- Specifies whether to delete the
data of the partition. If you set the value to FALSE, the data of the partition is migrated
 to the primary table.

Drop RANGE partition and all of its data if delete_data is true.

Example:

Delete a partition and migrate data of the partition to the primary table.
postgres=# select drop_range_partition('part_test_1',false);
NOTICE: 733 rows copied from part_test_1
 drop_range_partition

 part_test_1
(1 row)

postgres=# select drop_range_partition('part_test_2',false);

102 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

NOTICE: 720 rows copied from part_test_2
 drop_range_partition

 part_test_2
(1 row)

postgres=# select count(*) from part_test;
 count

 10000
(1 row)

Delete a partition and the data of the partition without migrating the data to the
primary table.
postgres=# select drop_range_partition('part_test_3',true);
 drop_range_partition

 part_test_3
(1 row)

postgres=# select count(*) from part_test;
 count

 9256
(1 row)

postgres=# select count(*) from only part_test;
 count

 1453
(1 row)

Delete all partitions and specify whether to migrate data to the primary table. The

function is as follows:

drop_partitions(parent REGCLASS,
 delete_data BOOLEAN DEFAULT FALSE)

Drop partitions of the parent table (both foreign and local relations).
If delete_data is false, the data is copied to the parent table first.
Default is false.

Example:

postgres=# select drop_partitions('part_test'::regclass, false); -- Delete all partitions
and migrate the data to the primary table.
NOTICE: function public.part_test_upd_trig_func() does not exist, skipping
NOTICE: 744 rows copied from part_test_4
NOTICE: 672 rows copied from part_test_5
NOTICE: 744 rows copied from part_test_6
NOTICE: 720 rows copied from part_test_7
NOTICE: 744 rows copied from part_test_8
NOTICE: 720 rows copied from part_test_9
NOTICE: 744 rows copied from part_test_10
NOTICE: 744 rows copied from part_test_11
NOTICE: 720 rows copied from part_test_12
NOTICE: 744 rows copied from part_test_13
NOTICE: 507 rows copied from part_test_14
NOTICE: 0 rows copied from part_test_15
NOTICE: 0 rows copied from part_test_16
NOTICE: 0 rows copied from part_test_17

Issue: 20200522 103

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

NOTICE: 0 rows copied from part_test_18
NOTICE: 0 rows copied from part_test_19
NOTICE: 0 rows copied from part_test_20
NOTICE: 0 rows copied from part_test_21
NOTICE: 0 rows copied from part_test_22
NOTICE: 0 rows copied from part_test_23
NOTICE: 0 rows copied from part_test_24
NOTICE: 0 rows copied from part_test_25
NOTICE: 0 rows copied from part_test_26
NOTICE: 0 rows copied from part_test_27
 drop_partitions

 24
(1 row)

postgres=# select count(*) from part_test;
 count

 9256
(1 row)

postgres=# \dt part_test_4
No matching relations found.

10.Attach a table to a partitioned table

Attach a table to a partitioned primary table. The table must have the same schema

as the primary table, including the dropped columns (check the consistency of

pg_attribute). The function is as follows:

attach_range_partition(relation REGCLASS, -- The OID of the primary table.
 partition REGCLASS, -- The OID of the partition table.
 start_value ANYELEMENT, -- The start value.
 end_value ANYELEMENT) -- The start value.

Example:

postgres=# create table part_test_1 (like part_test including all);
CREATE TABLE
postgres=# \d+ part_test
 Table "public.part_test"
 Column | Type | Modifiers | Storage | Stats target | Description
----------+-----------------------------+-----------+----------+--------------
+-------------
 id | integer | | plain | |
 info | text | | extended | |
 crt_time | timestamp without time zone | not null | plain | |

postgres=# \d+ part_test_1
 Table "public.part_test_1"
 Column | Type | Modifiers | Storage | Stats target | Description
----------+-----------------------------+-----------+----------+--------------
+-------------
 id | integer | | plain | |
 info | text | | extended | |
 crt_time | timestamp without time zone | not null | plain | |

postgres=# select attach_range_partition('part_test'::regclass, 'part_test_1'::regclass,
 '2019-01-01 00:00:00'::timestamp, '2019-02-01 00:00:00'::timestamp);
 attach_range_partition

104 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

 part_test_1
(1 row)

When the table is attached,
inheritance relationships and constraints are created automatically.
postgres=# \d+ part_test_1
 Table "public.part_test_1"
 Column | Type | Modifiers | Storage | Stats target | Description
----------+-----------------------------+-----------+----------+--------------
+-------------
 id | integer | | plain | |
 info | text | | extended | |
 crt_time | timestamp without time zone | not null | plain | |
Check constraints:
 "pathman_part_test_1_3_check" CHECK (crt_time >= '2019-01-01 00:00:00'::
timestamp without time zone AND crt_time < '2019-02-01 00:00:00'::timestamp
without time zone)
Inherits: part_test

11.Detach a partition from the primary table (convert the partition into a normal table)

Delete a partition from the primary table inheritance. The data is not deleted. The

inheritance and constraints are deleted. The function is as follows:

detach_range_partition(partition REGCLASS) -- Specify the name of the partition and
convert the partition to a normal table.

Example:

postgres=# select count(*) from part_test;
 count

 9256
(1 row)

postgres=# select count(*) from part_test_2;
 count

 733
(1 row)

postgres=# select detach_range_partition('part_test_2');
 detach_range_partition

 part_test_2
(1 row)

postgres=# select count(*) from part_test_2;
 count

 733
(1 row)

postgres=# select count(*) from part_test;
 count

 8523

Issue: 20200522 105

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

(1 row)

12.Permanently disable the pg_pathman plug-in for a partitioned table

You can disable the pg_pathman plug-in for a single partitioned primary table. The

function is as follows:

disable_pathman_for(relation TEXT)

Permanently disable pg_pathman partitioning mechanism for the specified parent
table and remove the insert trigger if it exists.
All partitions and data remain unchanged.

postgres=# \sf disable_pathman_for
CREATE OR REPLACE FUNCTION public.disable_pathman_for(parent_relid regclass)
 RETURNS void
 LANGUAGE plpgsql
 STRICT
AS $function$
BEGIN
 PERFORM public.validate_relname(parent_relid);

 DELETE FROM public.pathman_config WHERE partrel = parent_relid;
 PERFORM public.drop_triggers(parent_relid);

 /* Notify backend about changes */
 PERFORM public.on_remove_partitions(parent_relid);
END
$function$

Example:

postgres=# select disable_pathman_for('part_test');
NOTICE: drop cascades to 23 other objects
DETAIL: drop cascades to trigger part_test_upd_trig on table part_test_3
drop cascades to trigger part_test_upd_trig on table part_test_4
drop cascades to trigger part_test_upd_trig on table part_test_5
drop cascades to trigger part_test_upd_trig on table part_test_6
drop cascades to trigger part_test_upd_trig on table part_test_7
drop cascades to trigger part_test_upd_trig on table part_test_8
drop cascades to trigger part_test_upd_trig on table part_test_9
drop cascades to trigger part_test_upd_trig on table part_test_10
drop cascades to trigger part_test_upd_trig on table part_test_11
drop cascades to trigger part_test_upd_trig on table part_test_12
drop cascades to trigger part_test_upd_trig on table part_test_13
drop cascades to trigger part_test_upd_trig on table part_test_14
drop cascades to trigger part_test_upd_trig on table part_test_15
drop cascades to trigger part_test_upd_trig on table part_test_16
drop cascades to trigger part_test_upd_trig on table part_test_17
drop cascades to trigger part_test_upd_trig on table part_test_18
drop cascades to trigger part_test_upd_trig on table part_test_19
drop cascades to trigger part_test_upd_trig on table part_test_20
drop cascades to trigger part_test_upd_trig on table part_test_21
drop cascades to trigger part_test_upd_trig on table part_test_22
drop cascades to trigger part_test_upd_trig on table part_test_23
drop cascades to trigger part_test_upd_trig on table part_test_24
drop cascades to trigger part_test_upd_trig on table part_test_25
 disable_pathman_for

(1 row)

106 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

postgres=# \d+ part_test
 Table "public.part_test"
 Column | Type | Modifiers | Storage | Stats target | Description
----------+-----------------------------+-----------+----------+--------------
+-------------
 id | integer | | plain | |
 info | text | | extended | |
 crt_time | timestamp without time zone | not null | plain | |
Child tables: part_test_10,
 part_test_11,
 part_test_12,
 part_test_13,
 part_test_14,
 part_test_15,
 part_test_16,
 part_test_17,
 part_test_18,
 part_test_19,
 part_test_20,
 part_test_21,
 part_test_22,
 part_test_23,
 part_test_24,
 part_test_25,
 part_test_26,
 part_test_27,
 part_test_28,
 part_test_29,
 part_test_3,
 part_test_30,
 part_test_31,
 part_test_32,
 part_test_33,
 part_test_34,
 part_test_35,
 part_test_4,
 part_test_5,
 part_test_6,
 part_test_7,
 part_test_8,
 part_test_9

postgres=# \d+ part_test_10
 Table "public.part_test_10"
 Column | Type | Modifiers | Storage | Stats target | Description
----------+-----------------------------+-----------+----------+--------------
+-------------
 id | integer | | plain | |
 info | text | | extended | |
 crt_time | timestamp without time zone | not null | plain | |
Check constraints:
 "pathman_part_test_10_3_check" CHECK (crt_time >= '2017-06-25 00:00:00'::
timestamp without time zone AND crt_time < '2017-07-25 00:00:00'::timestamp
without time zone)

Issue: 20200522 107

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

Inherits: part_test

After the pg_pathman plug-in is disabled, the inheritance and constraints remain

unchanged. The pg_pathman plug-in does not intervene in the custom scan execution

plan. The execution plan after the pg_pathman plug-in is disabled:

postgres=# explain select * from part_test where crt_time='2017-06-25 00:00:00'::
timestamp;
 QUERY PLAN

 Append (cost=0.00..16.00 rows=2 width=45)
 -> Seq Scan on part_test (cost=0.00..0.00 rows=1 width=45)
 Filter: (crt_time = '2017-06-25 00:00:00'::timestamp without time zone)
 -> Seq Scan on part_test_10 (cost=0.00..16.00 rows=1 width=45)
 Filter: (crt_time = '2017-06-25 00:00:00'::timestamp without time zone)
(5 rows)

Notice:

The disable_pathman_for operation is irreversible. Proceed with caution.

Advanced partition management

1. Disable a primary table

After all data of a primary table is migrated to the partitions, you can disable the

primary table. The function is as follows:

set_enable_parent(relation REGCLASS, value BOOLEAN)

Include/exclude parent table into/from query plan.

In original PostgreSQL planner parent table is always included into query plan even if
it's empty which can lead to additional overhead.

You can use disable_parent() if you are never going to use parent table as a storage.

Default value depends on the partition_data parameter that was specified during
 initial partitioning in create_range_partitions() or create_partitions_from_range()
functions.

If the partition_data parameter was true then all data have already been migrated to
partitions and parent table disabled.

108 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

Otherwise it is enabled.

Example:

select set_enable_parent('part_test', false);

2. Auto partition propagation

Auto partition propagation is supported for range partitioned tables. If the inserted data

is not within the range of the existing partitions, a partition is automatically created.

set_auto(relation REGCLASS, value BOOLEAN)

Enable/disable auto partition propagation (only for RANGE partitioning).

It is enabled by default.

Example:

postgres=# \d+ part_test
 Table "public.part_test"
 Column | Type | Modifiers | Storage | Stats target | Description
----------+-----------------------------+-----------+----------+--------------
+-------------
 id | integer | | plain | |
 info | text | | extended | |
 crt_time | timestamp without time zone | not null | plain | |
Child tables: part_test_10,
 part_test_11,
 part_test_12,
 part_test_13,
 part_test_14,
 part_test_15,
 part_test_16,
 part_test_17,
 part_test_18,
 part_test_19,
 part_test_20,
 part_test_21,
 part_test_22,
 part_test_23,
 part_test_24,
 part_test_25,
 part_test_26,
 part_test_3,
 part_test_4,
 part_test_5,
 part_test_6,
 part_test_7,
 part_test_8,
 part_test_9

postgres=# \d+ part_test_26
 Table "public.part_test_26"
 Column | Type | Modifiers | Storage | Stats target | Description
----------+-----------------------------+-----------+----------+--------------
+-------------
 id | integer | | plain | |
 info | text | | extended | |
 crt_time | timestamp without time zone | not null | plain | |

Issue: 20200522 109

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

Check constraints:
 "pathman_part_test_26_3_check" CHECK (crt_time >= '2018-09-25 00:00:00'::
timestamp without time zone AND crt_time < '2018-10-25 00:00:00'::timestamp
without time zone)
Inherits: part_test

postgres=# \d+ part_test_25
 Table "public.part_test_25"
 Column | Type | Modifiers | Storage | Stats target | Description
----------+-----------------------------+-----------+----------+--------------
+-------------
 id | integer | | plain | |
 info | text | | extended | |
 crt_time | timestamp without time zone | not null | plain | |
Check constraints:
 "pathman_part_test_25_3_check" CHECK (crt_time >= '2018-08-25 00:00:00'::
timestamp without time zone AND crt_time < '2018-09-25 00:00:00'::timestamp
without time zone)
Inherits: part_test

When the inserted data is beyond the partitioning range, a large number of new
partitions are created based on the interval when the primary table is partitioned.
postgres=# insert into part_test values (1,'test','2222-01-01'::timestamp);

After the data is inserted, a large number of partitions are created because the range
of the inserted values is too large.

postgres=# \d+ part_test
 Table "public.part_test"
 Column | Type | Modifiers | Storage | Stats target | Description
----------+-----------------------------+-----------+----------+--------------
+-------------
 id | integer | | plain | |
 info | text | | extended | |
 crt_time | timestamp without time zone | not null | plain | |
Child tables: part_test_10,
 part_test_100,
 part_test_1000,
 part_test_1001,

 A large number of partitions

Note:

We recommend that you disable auto partition propagation for range partitioning

because inappropriate auto propagation may consume a lot of time.

3. Callback functions that are triggered for each partition creation

A callback function is a function that is automatically triggered for each partition

creation. For example, a callback function can record the DDL statements that you use

to run logical replication and store the statements in a table. The callback function is as

follows:

set_init_callback(relation REGCLASS, callback REGPROC DEFAULT 0)

Set partition creation callback to be invoked for each attached or created partition (
both HASH and RANGE).

110 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

The callback must have the following signature:

part_init_callback(args JSONB) RETURNS VOID.

Parameter arg consists of several fields whose presence depends on partitioning type:

/* RANGE-partitioned table abc (child abc_4) */
{
 "parent": "abc",
 "parttype": "2",
 "partition": "abc_4",
 "range_max": "401",
 "range_min": "301"
}

/* HASH-partitioned table abc (child abc_0) */
{
 "parent": "abc",
 "parttype": "1",
 "partition": "abc_0"
}

Example:

Callback function
postgres=# create or replace function f_callback_test(jsonb) returns void as
$$
declare
begin
 create table if not exists rec_part_ddl(id serial primary key, parent name, parttype int
, partition name, range_max text, range_min text);
 if ($1->>'parttype')::int = 1 then
 raise notice 'parent: %, parttype: %, partition: %', $1->>'parent', $1->>'parttype', $1-
>>'partition';
 insert into rec_part_ddl(parent, parttype, partition) values (($1->>'parent')::name,
 ($1->>'parttype')::int, ($1->>'partition')::name);
 elsif ($1->>'parttype')::int = 2 then
 raise notice 'parent: %, parttype: %, partition: %, range_max: %, range_min: %', $1-
>>'parent', $1->>'parttype', $1->>'partition', $1->>'range_max', $1->>'range_min';
 insert into rec_part_ddl(parent, parttype, partition, range_max, range_min) values
 (($1->>'parent')::name, ($1->>'parttype')::int, ($1->>'partition')::name, $1->>'
range_max', $1->>'range_min');
 end if;
end;
$$ language plpgsql strict;

Test table
postgres=# create table tt(id int, info text, crt_time timestamp not null);
CREATE TABLE

Set the callback function for the test table.
select set_init_callback('tt'::regclass, 'f_callback_test'::regproc);

Create a partition
postgres=# select
create_range_partitions('tt'::regclass, -- The OID of the primary table.
 'crt_time', -- The column name of the partition.
 '2016-10-25 00:00:00'::timestamp, -- The start value.
 interval '1 month', -- The interval of the interval type, applicable
to ingestion-time partitioned tables.
 24, -- The number of partitions.
 false) ;

Issue: 20200522 111

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

 create_range_partitions

 24
(1 row)

Check whether the callback function is called.
postgres=# select * from rec_part_ddl;
 id | parent | parttype | partition | range_max | range_min
----+--------+----------+-----------+---------------------+---------------------
 1 | tt | 2 | tt_1 | 2016-11-25 00:00:00 | 2016-10-25 00:00:00
 2 | tt | 2 | tt_2 | 2016-12-25 00:00:00 | 2016-11-25 00:00:00
 3 | tt | 2 | tt_3 | 2017-01-25 00:00:00 | 2016-12-25 00:00:00
 4 | tt | 2 | tt_4 | 2017-02-25 00:00:00 | 2017-01-25 00:00:00
 5 | tt | 2 | tt_5 | 2017-03-25 00:00:00 | 2017-02-25 00:00:00
 6 | tt | 2 | tt_6 | 2017-04-25 00:00:00 | 2017-03-25 00:00:00
 7 | tt | 2 | tt_7 | 2017-05-25 00:00:00 | 2017-04-25 00:00:00
 8 | tt | 2 | tt_8 | 2017-06-25 00:00:00 | 2017-05-25 00:00:00
 9 | tt | 2 | tt_9 | 2017-07-25 00:00:00 | 2017-06-25 00:00:00
 10 | tt | 2 | tt_10 | 2017-08-25 00:00:00 | 2017-07-25 00:00:00
 11 | tt | 2 | tt_11 | 2017-09-25 00:00:00 | 2017-08-25 00:00:00
 12 | tt | 2 | tt_12 | 2017-10-25 00:00:00 | 2017-09-25 00:00:00
 13 | tt | 2 | tt_13 | 2017-11-25 00:00:00 | 2017-10-25 00:00:00
 14 | tt | 2 | tt_14 | 2017-12-25 00:00:00 | 2017-11-25 00:00:00
 15 | tt | 2 | tt_15 | 2018-01-25 00:00:00 | 2017-12-25 00:00:00
 16 | tt | 2 | tt_16 | 2018-02-25 00:00:00 | 2018-01-25 00:00:00
 17 | tt | 2 | tt_17 | 2018-03-25 00:00:00 | 2018-02-25 00:00:00
 18 | tt | 2 | tt_18 | 2018-04-25 00:00:00 | 2018-03-25 00:00:00
 19 | tt | 2 | tt_19 | 2018-05-25 00:00:00 | 2018-04-25 00:00:00
 20 | tt | 2 | tt_20 | 2018-06-25 00:00:00 | 2018-05-25 00:00:00
 21 | tt | 2 | tt_21 | 2018-07-25 00:00:00 | 2018-06-25 00:00:00
 22 | tt | 2 | tt_22 | 2018-08-25 00:00:00 | 2018-07-25 00:00:00
 23 | tt | 2 | tt_23 | 2018-09-25 00:00:00 | 2018-08-25 00:00:00
 24 | tt | 2 | tt_24 | 2018-10-25 00:00:00 | 2018-09-25 00:00:00
(24 rows)

16.3 Enable the zhparser plug-in
This topic describes how to enable the zhparser plug-in and customize a Chinese word

segment dictionary in POLARDB for PostgreSQL.

Enable the zhparser plug-in

Execute the following statements to enable the zhparser plug-in:

CREATE EXTENSION zhparser;
CREATE TEXT SEARCH CONFIGURATION testzhcfg (PARSER = zhparser);
ALTER TEXT SEARCH CONFIGURATION testzhcfg ADD MAPPING FOR n,v,a,i,e,l WITH simple;
--Optional parameter configuration
alter role all set zhparser.multi_short=on;
--Perform a simple test
SELECT * FROM ts_parse('zhparser', 'hello world! 2010年保障房建设在全国范围内获全面启
动，从中央到地方纷纷加大 了 保 障 房 的 建 设 和 投 入 力 度 。 2011年，保障房进入了更大规
模的建设阶段。 住房城乡建设部党组书记、部长姜伟新去年底在全国住房城乡建设工作会议上表
示，要继续推进保障性安居工程建设。') ;
SELECT to_tsvector('testzhcfg','“今年保障房新开工数量虽然有所下调，但实际的年度在建规模
以及竣工规模会超以往年份，相对应的对资金的需求也会创历史纪录。” 陈国强说。 在他看来，
与2011年相比，2012年的保障房建设在资金配套上的压力将更为严峻。') ;

112 Issue: 20200522

ApsaraDB for PolarDB PolarDB PostgreSQL Database / 16 Plug-ins

SELECT to_tsquery('testzhcfg', '保障房资金压力');

Execute the following statements to use the zhparser plug-in to run a full-text index:

--Create a full-text index for the name field of table T1
create index idx_t1 on t1 using gin (to_tsvector('zhcfg',upper(name)));
--Use the full-text index
 select * from t1 where to_tsvector('zhcfg',upper(t1.name)) @@ to_tsquery('zhcfg','(防
火)') ;

Customize a Chinese word segment dictionary

Execute the following statements to customize a Chinese word segment dictionary

-- The segmentation result
SELECT to_tsquery('testzhcfg', '保障房资金压力');
-- Insert a new word segment to the dictionary
insert into pg_ts_custom_word values ('保障房资');
-- Make the inserted word segment take effect
select zhprs_sync_dict_xdb();
-- End the connection
\c
-- Requery to obtain new segmentation results
SELECT to_tsquery('testzhcfg', '保障房资金压力');

Instructions to use custom word segments:

• A maximum of 1 million custom word segments can be added. If the number of word

 segments exceed the limit, the word segments outside the limit are not processed.

Ensure that the number of word segments is within this range. The custom and default

word segmentation dictionaries take effect at the same time.

• Each word segment can be a maximum of 128 bytes in length. The section after the

128th byte will be truncated.

• After adding, deleting, or changing word segments, execute the select zhprs_sync

_dict_xdb(); statement and re-establish a connection to make the operation take effect.

Issue: 20200522 113

	Contents
	Legal disclaimer
	Document conventions
	1 Overview
	2 PolarDB PostgreSQL Quick Start
	3 Overview of data migration plans
	4 Data Migration
	4.1 Migrate data from a user-created PostgreSQL database to POLARDB for PostgreSQL
	4.2 Migrate data from ApsaraDB RDS for PostgreSQL to POLARDB for PostgreSQL

	5 Read/write splitting
	6 Pending events
	7 Configure a whitelist for a POLARDB for PostgreSQL cluster
	8 Billing management
	8.1 Change the billing method from pay-as-you-go to subscription
	8.2 Manually renew the subscription to a cluster
	8.3 Automatically renew the subscription to a cluster

	9 Connect to a database cluster
	9.1 View connection endpoints
	9.2 Connect to a POLARDB for PostgreSQL cluster

	10 Cluster management
	10.1 Create a POLARDB for PostgreSQL cluster
	10.2 Configure cluster parameters
	10.3 Change the cluster specifications
	10.4 Add or remove a read-only node
	10.5 Set the maintenance window
	10.6 Restart a node
	10.7 Release a cluster
	10.8 Clone a cluster
	10.9 Upgrade the minor version
	10.10 Switch workloads from writer nodes to reader nodes

	11 Account management
	11.1 Overview
	11.2 Register and log on to an Alibaba Cloud account
	11.3 Create and authorize a RAM user
	11.4 Create a database account
	11.5 Manage a database account

	12 Database management
	13 Backup and restoration
	13.1 Back up data
	13.2 Restore data

	14 Diagnostics and optimization
	14.1 Performance monitoring and alert configuration
	14.2 Performance insight

	15 SQL Explorer
	16 Plug-ins
	16.1 Read and write external data files by using oss_fdw
	16.2 Use the pg_pathman plug-in
	16.3 Enable the zhparser plug-in

