Alibaba Cloud

FunctionFlow

Best Practices

Document Version: 20220117

(-] Alibaba Cloud

FunctionFlow Best Practices-Legal disclaimer

Legal disclaimer

Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions of this legal
disclaimer before you read or use this document. If you have read or used this document, it shall be deemed
as your total acceptance of this legal disclaimer.

1.

You shall download and obt ain this document from the Alibaba Cloud website or other Alibaba Cloud-
aut horized channels, and use this document for your own legal business activities only. The content of
this document is considered confidential information of Alibaba Cloud. You shall strictly abide by the
confidentiality obligations. No part of this document shall be disclosed or provided to any third party for
use wit hout the prior written consent of Alibaba Cloud.

. No part of this document shall be excerpted, translated, reproduced, transmitted, or disseminated by

any organization, company or individual in any form or by any means without the prior written consent of
Alibaba Cloud.

. The content of this document may be changed because of product version upgrade, adjustment, or

other reasons. Alibaba Cloud reserves the right to modify the content of this document without notice
and an updated version of this document will be released through Alibaba Cloud-aut horized channels
from time to time. You should pay attention to the version changes of this document as they occur and
download and obt ain the most up-to-date version of this document from Alibaba Cloud-aut horized
channels.

. This document serves only as a reference guide for your use of Alibaba Cloud products and services.

Alibaba Cloud provides this document based onthe "status quo", "being defective", and "existing
functions" of its products and services. Alibaba Cloud makes every effort to provide relevant operational
guidance based on existing technologies. However, Alibaba Cloud hereby makes a clear statement that
it in no way guarantees the accuracy, integrity, applicability, and reliability of the content of this
document, either explicitly or implicitly. Alibaba Cloud shall not take legal responsibility for any errors or
lost profits incurred by any organization, company, or individual arising from download, use, or trust in
this document. Alibaba Cloud shall not, under any circumstances, take responsibility for any indirect,
consequential, punitive, contingent, special, or punitive damages, including lost profits arising from t he
use or trust inthis document (evenif Alibaba Cloud has been notified of the possibility of such a loss).

. By law, allthe contents in Alibaba Cloud documents, including but not limited to pictures, architecture

design, page layout, and text description, are intellectual property of Alibaba Cloud and/or its
affiliates. This intellect ual property includes, but is not limited to, trademark rights, patent rights,
copyrights, and trade secrets. No part of this document shall be used, modified, reproduced, publicly
transmitted, changed, disseminated, distributed, or published wit hout the prior written consent of
Alibaba Cloud and/or its affiliates. The names owned by Alibaba Cloud shall not be used, published, or
reproduced for marketing, advertising, promotion, or ot her purposes wit hout the prior written consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limited to, "Alibaba Cloud",
"Aliyun", "HiChina", and other brands of Alibaba Cloud and/or its affiliates, which appear separately or in
combination, as well as the auxiliary signs and patterns of the preceding brands, or anyt hing similar to
the company names, trade names, trademarks, product or service names, domain names, patterns,
logos, marks, signs, or special descriptions that third parties identify as Alibaba Cloud and/or its
affiliates.

. Please directly contact Alibaba Cloud for any errors of this document.

> Document Version: 20220117

FunctionFlow

Best Practices-Document conventio
ns

Document conventions

Style

/\ Danger

warning

) Notice

@ Note

Bold

Courier font

Italic

(1 or [alb]

{} or {a|b}

Description

A danger notice indicates a situation that
will cause major system changes, faults,
physical injuries, and other adverse
results.

A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other adverse
results.

A caution notice indicates warning
information, supplementary instructions,
and other content that the user must
understand.

A note indicates supplemental
instructions, best practices, tips, and
other content.

Closing angle brackets are used to
indicate a multi-level menu cascade.

Bold formatting is used for buttons ,
menus, page names, and other Ul
elements.

Courier font is used for commands

ltalic formatting is used for parameters
and variables.

This format is used for an optional value,
where only one item can be selected.

This format is used for a required value,
where only one item can be selected.

Example

& Danger:

Resetting will result in the loss of user
configuration data.

warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

p Notice:

If the weight is set to 0, the server no
longer receives new requests.

@ Note:

You can use Ctrl + A to select all files.

Click Settings> Network> Set network
type.

Click OK.

Runthe cd /d C:/window command to
enter the Windows system folder.

bae log list --instanceid

Instance_ID

ipconfig [-all|-t]

switch {active|stand}

> Document Version: 20220117

FunctionFlow Best Practices-Table of Contents

Table of Contents

1.Poll for task status Essssideg e o apisns s m L ine 2o 05
2.Reliably process distributed multi-step transactions ----—---------------—-—-—-- 09
3.Integrate MNS topics to publish messages - 16
4.Integrate MNS and use callback to orchestrate any type of tas...——-—- 21
5.Perform callbacks on asynchronous tasks - 27
6.Schedule reserved resource functions or functions with specifie...———-—- 31
7.Create time-based schedules for a flow - 33
8.Troubleshooting sttt rie o o m e s s 36

> Document Version: 20220117

FunctionFlow Best Practices-Poll fortask status

1.Poll for task status

This topic describes how to poll for task status in Serverless workf low.

Overview

if no callback is specified after a long-running task is completed, developers usually poll the task status
to check whether the task is completed. Reliable polling requires task status to be persistent.
Therefore, even if the current polling process fails, the polling continues after the process resumes. In
this example, assume that a user calls Function Compute to submit a multimedia processing task that
takes one minute to several hours. The task execution status can be queried by calling the
corresponding API. This topic describes how to implement a common and reliable flow for polling task
status in Serverless workf low.

Implementation in Serverless workflow

The following tutorial shows how to orchestrate two functions deployed in Function Compute as a
flow for polling task status in the following three steps:

1. Create afunction in Function Compute
2. Create aflow in Serverless workf low

3. Execute the flow and view the result

Step 1: Create a function in Function Compute

1. Create a service named fnf-demo in Function Compute, and create two functions (Startjob and
GetJobStatus) in Python 2.7 in this service. For more information, see Create a function in the Function
Compute console.

o The Startjob function is used to simulate calling an APIto start a long-running task and return
the task ID.

import logging
import uuid
def handler (event, context) :
logger = logging.getLogger ()
id = uuid.uuid4 ()
logger.info('Started job with ID %s' % id)
return {"job id": str(id)}

o The GetJobStatus function is used to simulate calling an APIto query the execution result of the
specified task. It compares the value of the current time minus the time when the function is first
executed with the value specified in delay and then returnsthe taskstatus "success" or
"running" accordingly.

> Document Version: 20220117 5

https://www.alibabacloud.com/help/doc-detail/51783.htm#multiTask782

Best Practices-Poll fortask status FunctionFlow

import logging
import uuid
import time
import json
start time = int (time.time())
def handler (event, context):
evt = json.loads (event)
logger = logging.getLogger ()
job id = evt["job id"]
logger.info ('Started job with ID %s' % job id)
now = int (time.time ())
status = "running"
delay = 60
if "delay" in evt:
delay = evt["delay"]
if now - start time > delay:
status = "success"
try count = 0
if "try count" in evt:
try count = evt["try count"]
try count = try count + 1
logger.info('Job %s, status %s, try count %d' % (job id, status, try count))

return {"job id": job id, "job status":status, "try count":try count}

Step 2: Create a flow in Serverless workflow
The following steps show the main logic of this flow:
1. StartJob: Serverless Workflow calls the startdob functionto start atask.

2. Wait10s: Serverless Workf low waits for 10s.

3. GetJobStatus: Serverless Workflow calls the GetJobstatus functionto query the status of the
current task.

4. ChecklobComplete: Serverless Workflow checks the result returned by the GetJobStatus
function.

o The result "success" indicates that the flow is completed.

o If the polling requests are sent three or more times, Serverless Workflow considers that the task
fails, and then the flow fails.

o If the result "running" is returned, the system goes backto the waiti0os step.

6 > Document Version: 20220117

FunctionFlow Best Practices-Poll fortask status

version: vl
type: flow
steps:
- type: task
name: StartJob
resourceArn: acs:fc:cn-hangzhou: {accountID}:services/fnf-demo/functions/StartJob
- type: pass
name: Init
outputMappings:
- target: try count
source: 0
- type: wait
name: WaitlOs
duration: 10
- type: task
name: GetJobStatus

resourceArn: acs:fc:cn-hangzhou:{accountID}:services/fnf-demo/functions/GetJobStatu

inputMappings:
- target: job id
source: $local.job id
- target: delay
source: $input.delay
- target: try count
source: $local.try count
- type: choice
name: CheckJobComplete
inputMappings:
- target: status
source: $local.job status
- target: try count
source: $local.try count
choices:
- condition: $.status == "success"
goto: JobSucceeded
- condition: $.try count > 3
goto: JobFailed
- condition: $.status == "running"
goto: WaitlOs
- type: succeed
name: JobSucceeded
- type: fail

name: JobFailed

Step 3: Execute the flow and view the result

In the Serverless Workflow console, find the target flow, click Start Execution, and then enterthe
following JSON object as the input of this execution. The value of delay indicatesthe time that the
task takes to run. In this example, it is set to 20, which means that the GetJobstatus function retumns
"success" 20s later afterthe taskis started, before which "running" is returned. You can change the
value of delay to view different execution results.

> Document Version: 20220117 7

Best Practices-Poll fortask status

FunctionFlow

"delay": 20

e The following figure is the visual display of the polling flow fromstart to end.

Vv Definition and Visual Workflow

Visualization
[Succeeded
O Failed
Timed out

O In progress

e Asshown inthe following figure, the task takes 20s to run. When the

Definition

Start

m

mm]

1

Init

A

Wait10s

GetobStatus | |

Che obCurvfple(e
éhoice:

o

JobSucceeded JobFailed
Yy
End

| step Details

Tq
Y "input" : {
"delay” : 20
"job_id" :
"71b2bde2-1467-409e-b77c-d76b8£6e9894"
"job_status" : "success"
"try_count" : 2
}
¥ "local” : {
"job_id" :
"71b2bde2-1467-409e-b77c-d76b8£6e9894"

"job_status" : "success"

"try _count” : 2

GetJobStatus functionis

called for the first time, "running" is returned. Therefore, when checkJobcomplete is called, the

system proceedsto the wait10s

result is returned for the second query, and the flow ends.

Execution History

Input/Output

D Type
+ 18 TaskSucceeded
- 19 StepExited
MR
¥ "local" : {
"job_id" : "71b2bde2-1467-409e-b77c-d76b8£6€9894"
"job_status" : "running”
"try_count” : 1
}
}
-+ 20 StepEntered
+ 21 StepStarted
+ 22 StepSucceeded
+ 23 StepExited
+ 24 StepEntered
+ 25 StepStarted

Step

GetJobStatus

GetJobStatus

CheckJobComplete
CheckJobComplete

CheckJobComplete

CheckJobComplete

Wait10s

Wait10s

step to wait 10s before the next query is initiated. The "success"

Timestamp Relative time (ms)
Aug 14, 2020,12:28:58 29046

Aug 14, 2020,12:28:59 29902

Aug 14, 2020,12:29:00 30906

Aug 14, 2020,12:29:01 31911

Aug 14, 2020,12:29:02 32917

Aug 14, 2020,12:29:03 33922

Aug 14, 2020,12:29:04 34927

Aug 14, 2020,12:29:05 35932

> Document Version: 20220117

Best Practices-Reliably process dist

FunctionFlow) . .
ributed multi-step transactions

2.Reliably process distributed
multi-step transactions

This topic describes how to use Serverless workflow to guarantee that distributed transactions are
reliably processed in a complex flow, helping you focus on your business logic.

Overview

In complex scenarios involving order management, such as e-commerce websites, hotel booking, and
flight reservations, applications need to access multiple remote services, and have high requirements
forthe operational semantics of transactions. In other words, all steps must succeed or fail without
intermediate states. In applications with small traffic and centralized data storage, the atomicity,
consistency, isolation, durability (ACID) properties of relational databases can guarantee that
transactions are reliably processed. However, in large-traffic scenarios, distributed microservices are
usually used for high availability and scalability. To guarantee reliable processing of multi-step
transactions, the service providers usually need to introduce queues and persistent messages and
display the flow status to the distributed architecture. This brings additional development and O&M
costs. To resolve the preceding problems, Serverless workflow provides guarantee on reliable
processing of distributed transactions in complex flows.

Scenarios

Assume that an application provides the train ticket, flight, and hotel booking feature and ensures that
the transactions are reliably processed in three steps. Three remote calls are required to implement this
feature (for example, you must call the 12306 APIto book a train ticket). If all the three calls are
successful, the order is successful. However, any of the three remote calls may fail. Therefore, the
application must have compensation logic for different failure scenarios to roll back completed
operations. The following figure shows the details.

e If BuyTrainTicket is successful but ReserveFlight fails, the application calls CancelTrainTicket and
notifies the user that the order failed.

e [f both BuyTrainTicket and ReserveFlight are successful but ReserveHotel fails, the application calls
CancelFlight and CancelTrainTicket and notifies the user that the order failed.

Trip Order

BuyTrainTicket ReserveFlight ':: ReserveHotel

))

I P

v .

CancelTrainTicket CancelFlight

Implementation in Serverless workflow

In the following example, a function deployed in Function Compute is orchestrated into a flow in
Serverless workflow to implement a reliable multi-step complex flow in three steps:

1. Create a function in Function Compute.

2. Create aflow.

> Document Version: 20220117 9

Best Practices-Reliably process dist

.) : FunctionFlow
ributed multi-step transactions

3. Execute the flow and view the result.

Step 1: Create a function in Function Compute to simulate the
BuyTrainTicket, ReserveFlight, and ReserveHotel operations

1. Create afunction in Python 2.7. For more information, see Create a function in the Function Compute
console. We recommend that you name the service and function in Function Compute to the
following names respectively:

o Service: fnf-demo
o Function: Operation

The Operation function simulates the operations such as ReserveFlight, and ReserveHotel. The
Operation result (success or failure) is determined by the input.

import json
import logging
import uuid
def handler (event, context):
evt = json.loads (event)
logger = logging.getLogger ()
id = uwuid.uuid4 ()
op = "operation"
if 'operation' in evt:
op = evt['operation']
if op in evt:
result = evt[op]
if result == False:
logger.info ("%$s failed" % op)
exit ()
logger.info ("%s succeeded, id %s" % (op, id)

)
return '{"%s":"success", "%s_txnID": "%s"}' % (op, op, id)

Step 2: Create a flow
Inthe Serverless workflow console, performthe following steps to create a flow:

1. Configure aResource Access Management (RAM) user forthe flow.

{

"Statement": [
{
"Action": "sts:AssumeRole",
"Effect": "Allow",
"Principal™: {
"Service": [

"fnf.aliyuncs.com"

]I

"Version": "1"

}

2. Define the flow.

10 > Document Version: 20220117

https://www.alibabacloud.com/help/doc-detail/51783.htm#multiTask782
https://fnf.console.aliyun.com

Best Practices-Reliably process dist

FunctionFlow) . .
ributed multi-step transactions

version: vl
type: flow
steps:
- type: task
resourceArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation
name: BuyTrainTicket
inputMappings:
- target: operation
source: buy train ticket
- target: buy train ticket
source: $input.buy train ticket result
catch:
- errors:
- FC.Unknown
goto: OrderFailed
- type: task
resourceArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation
name: ReserveFlight
inputMappings:
- target: operation
source: reserve flight
- target: reserve flight
source: S$input.reserve flight result
catch: # When the FC.Unknown error thrown by the ReserveFlight task is captured, S
erverless Workflow jumps to the CancelTrainTicket task.
- errors:
- FC.Unknown
goto: CancelTrainTicket
- type: task
resourceArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation
name: ReserveHotel
inputMappings:
- target: operation
source: reserve hotel
- target: reserve hotel
source: S$input.reserve hotel result
retry: # Serverless Workflow retries the task step up to three times in the expone
ntial backoff mode upon an FC.Unknown error. The initial retry interval is 1ls, and the
next retry interval is twice the previous retry interval for the rest of the retries.
- errors:
- FC.Unknown
intervalSeconds: 1
maxAttempts: 3
multiplier: 2
catch: # When the FC.Unknown error thrown by the ReserveHotel task is captured, Se
rverless Workflow jumps to the CancelFlight task.
- errors:
- FC.Unknown
goto: CancelFlight
- type: succeed
name: OrderSucceeded
- type: task
resourceArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation

name: CancelFlight

> Document Version: 20220117 11

Best Practices-Reliably process dist

.) : FunctionFlow
ributed multi-step transactions

inputMappings:
- target: operation
source: cancel flight
- target: reserve flight txnID
source: $local.reserve flight txnID
- type: task
resourcelArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation
name: CancelTrainTicket
inputMappings:
- target: operation
source: cancel train ticket
- target: reserve flight txnID
source: $local.reserve flight txnID
- type: fail

name: OrderFailed

Step 3: Execute the flow and view the result

Execute the flow you created in the console. The inputs for the StartExecution operation must be in
JSON format. The following JSON objects can simulate the success or failure of each step. For example,
"reserve_hotel_result":"fail" indicates a failure to reserve a hotel. StartExecution is an asynchronous
operation. After the operation is called, Serverless workf low returns an execution name foryou to
query the flow execution status.

"buy train ticket result":"success",
"reserve flight result":"success",

"reserve hotel result":"fail"

Afterthe flow execution starts, in the Serverless workflow console, clickthe target execution name. On
the page that appears, view the execution process and results in the Definition and Visual Workf low
section. As shown in the following figure, dueto "reserve hotel result":"fail" , ReserveHotel
fails, and Serverless workf low calls CancelFlight and CancelTrainTicket in sequence based on the flow
definition. In Serverless workflow, each step is persistent. In this way, failures such as network
interruption or unexpected process exits do not affect the transactions in the flow.

12 > Document Version: 20220117

Best Practices-Reliably process dist
ributed multi-step transactions

FunctionFlow

V' Definition and Visual Workflow

Visualization Definition | Step Details
Succeeded] .
Start "local” : {
[Failed "buy_train_ticket" : "success
¥ +
Timed out "buy_train_ticket_txnID" :
BuyTrainTicket
[In progress S _ 9d7d994d-6436-4229-b94b-20005Ec8al
¥ "”"‘\ b5"
ReserveFlight | reserve_flight” : "success”
T "reserve_flight_txnID" :
N 51d4£7-ca07-4511-8£80-015bda315£
ReserveHotel | N
A N
¥ v }
OrderSucceeded CancelFlight "resourceArn” :
5 J acs:fc:cn-hangzhou:1986448204172188:sex
Y v vices/fnf-demo/functions/Operation”
CancelTrainTicket | vcause" :
‘\ o 7/// {"errorMessage": "Process exited unexpec
tedly before completing request (duratio
OrderFailed
o) . ", vpe.u. "
A% error" : "FC.Unknown
End "retrycCount” : 3
"goto" : "CancelFlight"
¥

An execution event is generated for each flow execution. You can callthe GetExecutionHistory

operation to query the execution events in the console or by using the SDK or command-line interface
(CLy.

Execution History Input/Output
D Type Step Timestamp Relative time (ms)
+ 1 ExeutionStarted Aug 14, 2020, 19:57:17 0
+ 2 StepEntered BuyTrainTicket Aug 14, 2020, 19:57:18 23
+ 3 TaskStarted BuyTrainTicket Aug 14, 2020, 19:57:18 31
+ 4 TaskSucceeded BuyTrainTicket Aug 14, 2020, 19:57:18 40
+ 5 StepExited BuyTrainTicket Aug 14, 2020, 19:57:18 43
+ 6 StepExited BuyTrainTicket Aug 14, 2020, 19:57:18 57
+ 7 StepEntered ReserveFlight Aug 14, 2020, 19:57:18 65
+ 8 TaskScheduled ReserveFlight Aug 14, 2020, 19:57:18 73
+ 9 TaskStarted ReserveFlight Aug 14, 2020, 19:57:18 73
+ 10 TaskSucceeded ReserveFlight Aug 14, 2020, 19:57:18 73
+ " StepExited ReservefFlight Aug 14, 2020, 19:57:18 73
+ 12 StepEntered ReserveFlight Aug 14, 2020, 19:57:18 82

Error handling and retries

1. Inthe preceding example, remote calls of ReserveFlight and ReserveHotel fail due to network or
service errors. Retry upon transient errors can improve the success rate of the ordering flow.
Serverless workflow automatically retries task steps. For example, define the ReserveHotel step
based on the following code to retry the step in exponential backoff mode after the FC.Unknown
is captured. If ReserveHotel still fails after the maximum number of retries, based onthe catch

definition of the step, Serverless Workflow captures the FC.Unknown error thrown by the
ReserveHotel function and then jumpsto the cancelrlignt operationand implementsthe
defined compensation logic.

> Document Version: 20220117 13

Best Practices-Reliably process dist
ributed multi-step transactions

FunctionFlow

- type: task

resourceArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation

name: ReserveHotel
inputMappings:
- target: operation

source: reserve hotel

retry: # Serverless Workflow retries the task step up to three times in the expone

ntial backoff mode upon an FC.Unknown error. The initial retry interval is 1s, and the

next retry interval is twice the previous retry interval for the rest of the retries.

- errors:
- FC.Unknown
intervalSeconds: 1
maxAttempts: 3
multiplier: 2

catch: # When the FC.Unknown error thrown by the ReserveHotel task is captured, Se

rverless Workflow jumps to the CancelFlight task.

- errors:
- FC.Unknown
goto: CancelFlight

2. The following figure shows that, after the retry parameter is defined, the ReserveHotel task step is

retried the specified maximum number of times.

Execution History Input/Output
ID Type Step
+ 12 StepEntered ReserveHotel
+ 14 TaskStarted ReserveHotel
+ 15 TaskFailed ReserveHotel
+ % ReserveHotel
+ 17 TaskStarted ReserveHotel
+ 18 TaskFailed ReserveHotel
+ 20 TaskStarted ReserveHotel
+ 2 TaskFailed ReserveHotel

+
~
N}

TaskScheduled ReserveHotel

TaskStarted ReserveHotel

+
o

Data transfer between steps

Timestamp

Aug 16, 2020, 12:15:34

Aug 16, 2020, 12:15:34

Aug 16, 2020, 12:15:34

Aug 16, 2020, 12:15:34

Aug 16, 2020, 12:15:34

Aug 16, 2020, 12:15:34

Aug 16, 2020, 12:15:34

Aug 16, 2020, 12:15:34

Aug 16, 2020, 12:15:34

Aug 16, 2020, 12:15:34

Aug 16, 2020, 12:15:34

Aug 16, 2020, 12:15:34

Relative time (ms)

88

1. After ReserveHotel fails, CancelFlight and CancelTrainTicket are called. To cancel these two tasks,
the transaction IDs (txnID) returned by ReserveFlight and BuyTrainTicket are required. The following
section describes how to use the inputMapping Object to passthe outputs of the previous

stepstothe cancelrlight step.

14

> Document Version: 20220117

Best Practices-Reliably process dist

FunctionFlow) . .
ributed multi-step transactions

- type: task
resourceArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation
name: CancelFlight
inputMappings:
- target: operation
source: cancel flight
- target: reserve flight txnID

source: $local.reserve flight txnID

2. Outputs of each step of the flow are stored in the local object of EventDetailinthe stepExited
event.

"input":{
"operation":"reserve hotel",
"reserve hotel result":"fail"
}y
"local":{
"buy train ticket":"success",
"buy train ticket txnID":"d37412b3-bb68-4d04-9d90-c8cl15643d45e",
"reserve flight result":"success",
"reserve flight txnID":"024caecf-cfa3-43a6-b561-9b6fe0571b55"
}o
"resourceArn":"acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation",
"cause":"{\"errorMessage\":\"Process exited unexpectedly before completing request
(duration: 12ms, maxMemoryUsage: 9.18MB)\"}",
"error":"FC.Unknown",
"retryCount":3,
"goto":"CancelFlight"

3. Based on EventDetail and inputMappings ,theinputsof the cancelrlight step are
converted into the following JSON object. In this way, the inputs of the cance1lF1ight function
containthe reserve flight txnip field.

"input":{
"operation":"cancel flight",
"reserve flight txnID":"024caecf-cfa3-43a6-b561-906fe0571b55"

> Document Version: 20220117 15

Best Practices-Integrate MNS topic
s to publish messages

FunctionFlow

3.Integrate MNS topics to publish
messages

This topic describes how to integrate a topic of Message Service (MNS) in the wait-for-callback mode
of ataskstep and publish messages to the topic. After the MNS topic receives a message, the
ReportTaskSucceeded or ReportTaskFailed operation is called to call back the task status.

How it works
After an application is deployed, the application is executed based on the following steps:

1. Execute the flow. The task step publishes a message to the MNS topic. The TaskToken oOf the
task step is placed in the message body and sent to the topic.

2. The task step of the flow is suspended and waits for the task callback.

3. Afterthe MNS topic receives the message, the message and the TaskToken are pushedto the
HTTP trigger of the function in Function Compute over HTTP to trigger the execution.

4. The function in Function Compute obtainsthe TaskToken and calls ReportTaskSucceeded to
report the task status.

5. Then, the flow continues.

HTTP
PublishMessage subscription

Serverless
WorkFlow MNS FC

ReportTaskSucceeded

Deploy an application

1. Inthe Serverless workflow console, click Create Flow. On the page that appears, select Sample
Project and Task MNS Topics, and then click Next Step.

16 > Document Version: 20220117

https://www.alibabacloud.com/help/doc-detail/131878.htm#doc-api-fnf-ReportTaskSucceeded
https://fnf.console.aliyun.com/fnf/

FunctionFlow

Best Practices-Integrate MNS topic
s to publish messages

< Create Flow

Flow

Defini

EARBRLE

FEETEEVIES FOL BB TIER

| mHIGRE

Subfiow
Example of a sub-process of the three modes of

requestResponse/sync/waitForCallback

0SS Files Restore

ition

Use servlets workflow to unfreeze OSS files in batch with high

concurrency

Hello World

Hello World E45i1

Trip Booking Order Processing
Building a reliable trip booking order processing workflow system

using Serverless Workflow.

Task MNS Topics
Use task steps to choreograph and publish messages to MNS

topics

2

Flow Config

THIRE

FEATGITE FRIEA]

Timer

The workflow execution is triggered regularly.

D Card Identification
Image recognition system of ID card based on visual intelligent

AP

2. Onthe Create Application page, create an application corresponding to the template, and then

clickDeploy.

& Create Application sk wns Topics

©

Select
Template

Basic Configuration

~ Application Name

Parameter Configuration

TopicName

Resource Preview

Carrectly configure all the parameters to preview the resource.

Where:

Previous

Configure and
Deploy

The name must be 1 to 64 characters inlength and can contain digits, hyphens (-), and underscores (3. It must start with 2 letter,

Topic name

Application Name: Enter a name for the application. The name must be unique in the same

account.

Preview

TopicName: Enter a name for the topic. If the specified MNS topic does not exist, the system

automatically creates it.

Afteryou click Deploy, all resources that you created in the application are displayed.

> Document Version: 20220117

17

Best Practices-Integrate MNS topic
s to publish messages

FunctionFlow

< fnd-name
Overview Deploy Monitoring
Logical Resource Name Physical Resource Name Resource Type Resource Status Updated At
Role . Creating Dec 10, 2020, 17:47:38
lowRole ToRole Dec 10, 2020, 17:47:38
Role ‘Role Dec 10, 2020, 17:47:38
Service Dec 10, 2020, 17:47:38
ction Dec 10, 2020, 17:47:38
Flow Flow Dec 10, 2020, 17:47:38
viceRole ToRole Dec 10, 2020, 17:47:38
Topic {. Creating Dec 10, 2020, 17:47:38
rviceRole ToRole Dec 10, 2020, 17:47:38
ackhttp Trigger Dec 10, 2020, 17:47:38
ion iscription Dec 10, 2020, 17:47:38

3. Execute the flow.

Input of the execution

{

"messageBody": "hello world"

}

| Details

Name: a9645443-c24f-bd97-941d-fbef496b512f

Status: @ Succeeded

' Definition and Visual Workflow
Visualization Definition

[l Succeeded

Started Time: Aug 16, 2020, 13:56:19

End Time: Aug 16, 2020, 13:56:22

| step Details

c Select a step to view the details
Start
O Failed
i p +
Timed out
O In progress mns-topic-task _
&

Application code

End

1. Orchestrate a flow of the MNS topic.

called backinthe taskstep into MessageBody of the message for
specified in Report T askSucceeded from out put Mappings.

Encapsulate the TaskToken

subsequent callback. Read output

18 > Document Version: 20220117

Best Practices-Integrate MNS topic

FunctionFlow :
s to publish messages

version: vl
type: flow
steps:
- type: task
name: mns-topic-task
resourceArn: acs:mns:::/topics/<topic>/messages
pattern: waitForCallback
inputMappings:
- target: messageBody
source: $input.messageBody
- target: taskToken
source: Scontext.task.token
outputMappings:
- target: status
source: $local.status
serviceParams:

MessageBody: $

2. Call backthe function of the task step that is deployed in Function Compute.

Read the TaskToken that isencapsulatedin MessageBody ,set the TaskToken callbackstatus
toset output ,andthenset TaskTokento {"status":"success"}

> Document Version: 20220117 19

Best Practices-Integrate MNS topic

) FunctionFlow
s to publish messages

def handler (environ, start response):
Get request body
try:
request body size = int (environ.get ('CONTENT LENGTH',
0))
except ValueError:
request body size = 0
request body =
environ['wsgi.input'].read(request body size)
print ('Request body:
{}'.format (request body))
body = json.loads (request body)
message body str =
body ['Message"']
Read MessageBody and TaskToken from
message body
message body =
json.loads (message body str)
task token =
message body['taskToken']
ori message body =
message body['messageBody']
print ('Task token: {}\norigin message
body: {}'.format (task token, ori message body))
Init fnf client use sts token
context = environ['fc.context']
creds = context.credentials
sts creds =
StsTokenCredential (creds.access key id, creds.access key secret, creds.security token)
fnf client =
AcsClient (credential=sts creds, region id=context.region)
Report task succeeded to serverless
workflow
req =
ReportTaskSucceededRequest ()
req.set TaskToken (task token)
req.set Output ('{"status":
"success"}"')
resp =
fnf client.do action with exception (req)
print ('"Report task response:
{}'.format (resp))
Response to http request

status = '200 OK'
response headers = [('Content-type',
'text/plain')]

start response (status,
response headers)
return [b'OK']

References

For more information about how to use task steps to orchestrate MNS topics, see task-mns-topics.

20 > Document Version: 20220117

https://github.com/awesome-fnf/task-mns-topics

Best Practices-Integrate MNS and u
FunctionFlow se callback to orchestrate any type
of tasks

4.Integrate MNS and use callback
to orchestrate any type of tasks

Serverless workflow provides the service integration feature to simplify the interaction between users
and cloud services. In this topic, the Message Service (MNS) queues are used with callbackto
orchestrate tasks that do not involve functions in Function Compute.

Overview

Serverless workflow not only allows you to orchestrate functions that are deployed in Function
Compute in Function as a Service (FaaS) mode into flows, but also allows you to orchestrate other
computing tasks into flows. The topic Perform callbacks on asynchronous tasks under Best Practices
describes how to use functions in Function Compute to send messages to MNS queues. In custom
environments, after a task executor (worker) receives a message, it notifies Serverless workflow of the
task execution result based on the callback. This topic describes how to use MNS queues, a new feature
of Serverless workflow. MNS queues further simplify the orchestration of customtask types. Serverless
workflow allows you to directly send messages to MNS queues. In this way, you do not need to
develop, test, and maintain the function that is deployed in Function Compute for sending the
messages, improving the availability and reducing the latency. Compared with sending messages to
MNS topics by using functions in Function Compute, using the integrated MNS service to send messages
to specified MNS queues has the following benefits:

e You do not need to develop a function in Function Compute to send messages. T his reduces the cost
of development, testing, and maintenance.

e The message delivery delay is reduced, a remote access process is eliminated, and the cold start of
Function Compute is avoided.

e Service dependency is removed and fault tolerance is improved.

Serverless workflow will support more cloud services in the future to make it easier to orchestrate flows
that consist of different types of tasks.

Service integration

In the following figure, the three serial tasks are sent by Serverless workflow to the specified MNS
queue in sequence. After the messages are sent, Serverless workf low waits for the callback in this step.
You cancallthe ReceiveMessage operation of MNS to pull messages in the workerin a custom
environment, such as an Elastic Compute Service (ECS) instance, a container, or a server in an on-
premises data center. After the worker receives the messages, it executes the corresponding task based
on the message content. After the task ends, the worker calls the ReportTaskSucceeded/Failed
operation of Serverless workflow. Serverless workflow continues the step after receiving the task result.
After the worker reports the success result, the message is deleted from the MNS queue.

> Document Version: 20220117 21

https://www.alibabacloud.com/help/doc-detail/130496.htm#task-2184158

Best Practices-Integrate MNS and u
se callback to orchestrate any type FunctionFlow
of tasks

1. SendMessage

2. ReceiveMessage

3. ReportTaskSuccded/Failed
Worker

4. DeleteMessage ‘ Cloud or

user-created
resources

Procedure
Performthe following step to use this feature:
1. Prepare for using this feature
2. Define aflow
3. Define a worker
4.

Execute the flow and view the result

Step 1: Prepare for using this feature

1. Inthe MNS console, create an MNS queue. For more information, see Create a queue.

2. Serverless workflow assumes the Create execution roles (the role of the RAM user) that you specify in
the flow to send messages to the MNS queue in your Alibaba Cloud account. Therefore, you must
add MNS SendMessage policies forthe role of the RAM user. The following example shows a
fine-grained policy. If you do not need the fine-grained policy, you can log onto the Serverless
workflow console, and add aliyunMNSFullAccess inSystem Policy to Flow RAM Role.

22 > Document Version: 20220117

https://mns.console.aliyun.com
https://www.alibabacloud.com/help/doc-detail/34417.htm#task106
https://www.alibabacloud.com/help/doc-detail/122609.htm#multiTask1431
https://fnf.console.aliyun.com/

Best Practices-Integrate MNS and u
FunctionFlow se callback to orchestrate any type
of tasks

"Statement": [

{
"Effect": "Allow",
"Action": [
"mns:SendMessage"

i
"Resource": [

"acs:mns:S$region:S$account id:/queues/S$Squeue name/messages”

1/

"Version": "1"

Step 2: Define a flow

The following code in Flow Definition Language (FDL) defines a task step that can send messages to
the MNS queue named fnf-demo and wait for the callback.

version: vl

type: flow
steps:
- type: task

name: Task 1
resourceArn: acs:mns:::/queues/fnf-demo/messages # This task step sends messages to the
MNS queue fnf-demo that is under the same account in the same region.
pattern: waitForCallback # The task step suspends after the message is sent to the MNS
queue and waits until it receives the callback.
inputMappings:
- target: task token
source: Scontext.task.token # Serverless Workflow queries the task token from the
context object.
- target: key
source: value
serviceParams: # The service integration parameters.
MessageBody: $ # The mapped input is used as the body of the message you want to send.
Priority: 1 # The priority of the MNS queue.

Step 3: Define a worker

The following Python 2.7 code simulates a worker that executes a task. it can run in any environment
that can access Serverless workflow and MNS. The worker calls the MNS ReceiveMessage oOperation
for long polling. When it enters a task step with an MNS configuration, Serverless workflow sends a
message tothe fnf-demo queue. Afterthe worker executes the task, it calls backthe

ReportTaskSucceeded/Failed oOperation of Serverless workflow. After Serverless workflow receives
the task execution result, it continues the current task step. The worker deletes the message fromthe
queue.

1. Inavirtual environment, install Serverless Workflow, MNS, and Python SDK.

> Document Version: 20220117 23

Best Practices-Integrate MNS and u
se callback to orchestrate any type FunctionFlow
of tasks

cd /tmp; mkdir -p fnf-demo-callback; cd fnf-demo-callback
virtualenv env; source env/bin/activate

pip install -t . aliyun-python-sdk-core -t . aliyun-python-sdk-fnf -t . aliyun-mns

2. Compile the code forthe local task executor worker.py.

24 > Document Version: 20220117

Best Practices-Integrate MNS and u
FunctionFlow se callback to orchestrate any type
of tasks

import json
import os
from aliyunsdkcore.client import AcsClient
from aliyunsdkcore.acs exception.exceptions import ServerException
from aliyunsdkcore.client import AcsClient
from aliyunsdkfnf.request.v20190315 import ReportTaskSucceededRequest
from mns.account import Account # pip install aliyun-mns
from mns.queue import *
def main () :
region = os.environ['REGION']
account id = os.environ['ACCOUNT ID']
ak id = os.environ['AK ID']

ak secret = os.environ['AK SECRET']

queue name = "fnf-demo"
fnf client = AcsClient (
ak id,
ak secret,
region
)
mns_endpoint = "https://%s.mns.%s.aliyuncs.com" % (account id, region)

my account = Account (mns_endpoint, ak id, ak secret)
my queue = my account.get queue ("fnf-demo")
my queue.set encoding (False)
wait seconds = 10
try:
while True:
try:
print "Receiving messages"
recv_msg = my queue.receive message(wait seconds)
print "Received message %s, body %s" % (recv_msg.message id, recv _msg.message b
ody)
body = json.loads (recv_msg.message body)
task token = body["task token"]
output = "{\"key\": \"value\"}"
request = ReportTaskSucceededRequest.ReportTaskSucceededRequest ()
request.set Output (output)
request.set TaskToken (task token)
resp = fnf client.do action with exception (request)
print "Report task succeeded finished"
my queue.delete message(recv msg.receipt handle)
print "Deleted message " + recv msg.message id
except MNSExceptionBase as e:
print (e)
except ServerException as e:
print (e)
if e.error code == 'TaskAlreadyCompleted':
my queue.delete message (recv_msg.receipt handle)
print "Task already completed, deleted message " + recv msg.message id
except ServerException as e:
print (e)
if name =="' main ':

main ()

3. Runthe workerto long poll the fnf-demo queue. After the worker receives the message, it

> Document Version: 20220117 25

Best Practices-Integrate MNS and u
se callback to orchestrate any type FunctionFlow
of tasks

performs callback to report the result to Serverless workflow.

Run the worker process.

export REGION={your-region}

export ACCOUNT ID={your-account-id}
export AK ID={your-ak-id}

export AK SECRET={your-ak-secret}
python worker.py

Step 4: Execute the flow and view the result

In the Serverless workflow console, execute the flow and run the worker. The result shows that the
flow is successful.

<« EXecute scheduled-exec-20200816T0649127-613ade66-473f-4846-a1b9-6c1bdf999647 Monitoring and Alerts Share Edit Flow

| Details
Name: scheduled-exec-20200816T064912Z-613ade66-473f-4846-21h9-6¢ 1hdfa99647 Started Time: Aug 16, 2020, 14:49:12
Status: @ Succeeded End Time: Aug 16, 2020, 14:4%:12

' Definition and Visual Workflow

Visualization Definition | step Details
[Succeeded c T
Start
O Failed) input” : {
) + v paylead” : {
Timed out ¥ P .
key” ; “value

O In progress 1

“triggerfiame’ : “schedule-test”

<
[«

“triggerTime” @ “2020-08-16T06: 40: 122"

¥ “lecal” ;{1

“output” : {}

26 > Document Version: 20220117

Best Practices-Perform callbacks on
asynchronous tasks

FunctionFlow

5.Perform callbacks on
asynchronous tasks

This topic describes the callback feature of Serverless workflow. Compared with polling, a callback
effectively reduces the delay and unnecessary pressure on the server caused by polling. In addition,
callback can be used with queues to orchestrate non-Function Compute tasks. In this way, Serverless
workflow allows you to orchestrate any type of computing resources.

Overview

Long-running tasks are asynchronously submitted and a task ID is returned. You can use either polling or
callbackto check whether an asynchronous task ends. The Poll for task status topic describes how to use
polling to check whether a task ends. The callback feature of Serverless workflow has the following
benefits:

e Eliminate unnecessary delay caused by long polling.

e Eliminate unnecessary pressure on and waste of server resources caused by highly concurrent polling
in large-traffic scenarios.

e Orchestrate tasks that do not involve functions in Function Compute, such as processes running in an
on-premises data center or an Elastic Compute Service (ECS) instance.

e Automate steps that require manual intervention, such as notifying that a task has been approved.

The following figure shows how to use Message Service (MNS) queues with the callback APIto orchestrate
user-created resources in Serverless workf low.

1. SendMessage

2. ReceiveMessage

3. ReportTaskSuccded/Failed
Worker

4. DeleteMessage

Cloud or
user-created
resources

Callback usage

> Document Version: 20220117 27

https://www.alibabacloud.com/help/doc-detail/122481.htm#multiTask3102
https://www.alibabacloud.com/help/doc-detail/139379.htm#multiTask2184159

Best Practices-Perform callbacks on .
FunctionFlow
asynchronous tasks

Inthe task step, specify pattern: waitForCallback .Asshown inthe following figure, afterthe task,

such as Function Compute call, specified in resourcearn is submitted, this step stores taskToken
object of the step and is suspended until Serverless workf low receives that the
is passed to the ReportTaskSucceed OF

tothe context
callback or the specified task times out. When taskToken
ReportTaskFailed oOperation for callback, this step continues.

With retries
ReportTaskFailed/TimedOut R T s e
" timed out
=z
o
ol
Task Task submitted <
h ads led and is waiting
schedule for callback
Task
ReportTaskSucceeded e

- type: task

name: mytask
resourceArn: acs:fc:::services/{fc-service}/functions/{fc-function}

pattern: waitForCallback # Enables the task step to wait for callback after the task

is submitted.
inputMappings:
- target: taskToken
source: S$context.task.token # Uses taskToken in the context object as an input f
or the function that is specified in resourceArn.
outputMappings:
- target: k
source: S$local.key # Maps output {"key":
"value"} and uses the mapped data as the output of this step.

"value"} in ReportTaskSucceeded to {"k"

Example

This example consists of the following three steps:
1. Prepare atask function.
2. Start aflow.

3. Perform callback.

Step 1: Prepare a task function
1. Create a simple function. The function directly returns the input.

Service: fnf-demo.

o

Function: echo.

o

Runtime environment: Python 2.7.

o

Entry point: index.handler.

o

28 > Document Version: 20220117

https://www.alibabacloud.com/help/doc-detail/122494.htm#concept-2184143

Best Practices-Perform callbacks on
asynchronous tasks

FunctionFlow

#! /usr/bin/env python
import Jjson
def handler (event, context):

return event

Step 2: Start a flow

1. Inthe Serverless workflow console, create the following flow and execute it.
o Flow name: fnf-demo-callback.

o Flow role: a role with the Function Compute Invocation permission.

version: vl
type: flow
steps:
- type: task
name: mytask
resourceArn: acs:fc:::services/fnf-demo/functions/echo
pattern: waitForCallback
inputMappings:
- target: taskToken
source: Scontext.task.token
outputMappings:
- target: s

source: $local.status

Afterthe flow starts, the mytask stepissuspendedinthe Tasksubmitted event and waitsfor
the callback. The event output contains taskToken that identifiesthe callbacktask.

Execution History Input/Output
[} Type Step Timestamp Relative time (ms)
+ 1 Executionstarted Aug 16, 2020, 1457:31 0
+ 2 StepEntered mytask Aug 16, 2020, 1457:31
+ 3 Taskscheduled mytask Aug 16, 2020, 1457:31 31
+ 4 Taskstarted mytask Aug 16, 2020, 14557:32 801

- s Tasksubmitted mytask Aug 16, 2020, 14:57:32 826 =

"output” : { @

"taskToken" : "djEjZmSmLWR1bWEtY2FsbGJhY2sjNDEwYJIONMQtMDZ1YS1hNDYWLTk2NDItZDY4MWZhMWZ 1321U0ZUXCbORNQXRhMWN2VHJ5YUtWMWPGUZZ2ZPQ=="

Step 3: Perform the callback

1. Use Serverless workflow Python SDKto runthe callback.py script locally orin any environment
where Python can run. Replace {task-token} with the value of the TaskSubmitted event.

> Document Version: 20220117 29

https://fnf.console.aliyun.com/fnf/cn-hangzhou/flows
https://www.alibabacloud.com/help/doc-detail/124235.htm#concept-2184168

Best Practices-Perform callbacks on
asynchronous tasks

FunctionFlow

cd /tmp

mkdir fnf-demo-callback

cd fnf-demo-callback

Install Serverless Workflow Python SDK in a virtual environment.
virtualenv env

source env/bin/activate

pip install -t . aliyun-python-sdk-core

pip install -t . aliyun-python-sdk-fnf

Run the worker process.

export ACCOUNT ID={your-account-id}; export AK ID={your-ak-id}; export AK SECRET={your-
ak-secret}

python worker.py {task-token-from-TaskSubmitted}

The worker.py code:
import os
import sys
from aliyunsdkcore.acs exception.exceptions import ServerException
from aliyunsdkcore.client import AcsClient
from aliyunsdkfnf.request.v20190315 import ReportTaskSucceededRequest
def main() :
account id = os.environ['ACCOUNT ID']
akid = os.environ['AK ID']
ak secret = os.environ['AK SECRET']
fnf client = AcsClient (akid, ak secret, "cn-hangzhou")
task token = sys.argv[l]
print "task token " + task token
try:
request = ReportTaskSucceededRequest.ReportTaskSucceededRequest ()
request.set Output ("{\"status\": \"ok\"}")
request.set TaskToken (task token)
resp = fnf client.do action with exception (request)
print "Report task succeeded finished"
except ServerException as e:
print (e)
if name == "' main ':

main ()

Afterthe callback by using the preceding script is successful, the
the "{"status": "ok"}" output specified in ReportTaskSucceeded
ll{llsll: llokll}ll.

mytask step continues, and
is mapped by out putMappings to

30

> Document Version: 20220117

Best Practices-Schedule reserved re
FunctionFlow source functions or functions with s
pecified versions

6.Schedule reserved resource
functions or functions with
specified versions

This topic describes how a flow in Serverless workflow schedules reserved resource functions or
functions with specified versions.

Overview

In actual production scenarios, functions scheduled by the task flow may frequently change due to
changes in service scenarios. Therefore, you must avoid unexpected actions caused by the changes and
control the stability of the task flow. In the following scenarios, functions of a fixed version will help in
Serverless workflow task steps:

e Flow A orchestrates multiple functions f1,f2, and f3. The same task must execute the same version
of the functions. For example, when flow A is under execution, function f1 has been executed, but
the function is updated at this time. In this case, the latest versions of functions f2 and f3 may be
executed in flow A, which may cause unexpected results. Therefore, the version of the functions that
the flow executes must be fixed.

e A function needs to be rolled back. If you find that the flow failed due to a new change afterthe
function is launched, you must roll back the flow to the previous fixed version.

e The function alias is used to call a reserved resource function, reduce the function cold start time,
and Best practice for cost optimization.

Functions of different introduction to versions that are deployed in Function Compute can efficiently
support continuous integration and release in similar scenarios. The following section uses an example
to describe how to use the function alias in the flow to call a reserved resource function. Reserved
resource functions depend on the functions of a specified version. You can see this example in
scenarios where functions of specified versions are required.

Implementation in Serverless workflow
This operation consists of the following three steps:
1. Create areserved instance for a function.
2. Create aflow.
3. Execute the reserved function and check the execution result in the console or on a command line
interface (CLI).
Step 1: Create a reserved instance for a function

1. Create a service named fnf-demo in Function Compute. In this service, create a Python 3 function
named provision and release its version and alias to generate a reserved instance. For more
information, see Introduction to supplementary examples.

Assume that the version of the created functionis 1, the alias is online, and a reserved instance is
generated. The following code shows the content of the function:

> Document Version: 20220117 31

https://www.alibabacloud.com/help/doc-detail/138831.htm
https://www.alibabacloud.com/help/doc-detail/96464.htm#concept-2259909
https://www.alibabacloud.com/help/doc-detail/138103.htm

Best Practices-Schedule reserved re
source functions or functions with s FunctionFlow
pecified versions

import logging

def handler (event, context):
logger = logging.getLogger ()
logger.info ('Started function test')

return {"success": True}

Step 2: Create a flow
Serverless workflow natively supports the versions and aliases of functions in Function.

In the task step of Serverless workflow, enter the default value acs:fc: {region}:
{accID):services/fnf/functions/test inthe resourceArn parameter. Based on the function execution
rule, the function of the latest version is executed by default. You can release the Manage versions or
Manage aliases and enter acs:fc:{region}:{accID}:services/fnf.{ alias or
version}/functions/test inthe resourceArn parameter of the task step inthe flow to call the
function of the specified version. Therefore, define the flow based on the following code:

version: vl
type: flow
steps:
- type: task
resourceArn: acs:fc:::services/fnf-demo.online/functions/provision
You can also use the version by defining resourceArn: acs:fc:::services/fnf-demo.1l/fu
nctions/provision.

name: TestFCProvision

Step 3: Execute the reserved function and check the execution result
in the console or on a CLI

1. Execute the flow. The following figure shows the execution det ails before the reserved mode is
used.

+ 4 Taskstarted TestFCProvision Aug 16, 2020, 15:05:11

+ 5 TaskSucceeded TestFCProvision Aug 16, 2020, 15:05:11

2. The following figure shows the execution details after the reserved mode is used.

+ 4 TaskStarted TestFCProvision Aug 16, 2020, 15:05:11

+ 5 TaskSucceeded TestFCProvision Aug 16, 2020, 15:05:11

As shown in the figures, after the reserved mode is used, the flow execution time is reduced from 500
ms to 230 ms.

32 > Document Version: 20220117

https://www.alibabacloud.com/help/doc-detail/96351.htm#concept-2259910
https://www.alibabacloud.com/help/doc-detail/96352.htm#concept-2259911

Best Practices:Create time-based s

FunctionFlow

chedules for a flow

7.Create time-based schedules for
a flow

This topic describes how to execute a flow in Serverless Workflow on a specified schedule to call
functions deployed in Function Compute.

Execution process
The process of a specified schedule for a flow consists of the following steps:

1. In Serverless Workflow, define a task step that calls a function in Function Compute.

2. In Serverless Workflow, create a time-based schedule. Both the flow and the function in the flow
are executed on the schedule.

§ trigger Task Step

FnF schedule FnF FC

Procedure

1. Log onto the Serverless Workflow console.
2. Inthe left-side navigation pane, choose Application Center > Create Application.

3. Onthe Create Application page, clickthe Select Template tab. Select the Timer template and
click Configure and Deploy.

< Create Application

Select Configure and
Template Deploy
by template name Q
Video Transcoder ID Card Identification Oss Restore Unzip Oss File
Flexible, highly available, parallel processing video mage recognition system of ID card based on visuzl Use servlets workflow to unfreeze 0SS files in batch 055 large file decompression service.
transcoding service based on FC +Serverless intelligent API with high concurrency
Workflow + 0SS + NAS + FFmpeg.
Timer (V] Task Mns Topics Etl Data Processing Per Second Timer
The workflow execution is triggered regularly. Use task steps to choreograph and publish messages An offline data processing system based on the Serverless Workflow-based Time Trigger Application
to MNS topics. MapReduce framework, Within Seconds.

View Details Configure and Deploy

4. Onthe Configure and Deploy tab, configure the parameters, and then click Deploy.

> Document Version: 20220117

https://fnf.console.aliyun.com

Best Practices-Create time-based s
chedules for a flow

FunctionFlow

¢ Create Application Time

©

Select
Template

Basic Configuration

* Application Name 16

Configure and
Deploy

The name must be 1 to 64 characters in length and can contain digits, hyphens (-), and underscores (). It must start with a letter.

Parameter Configuration

Cron @every Tm

cron expression

Input {"key":value™)

target flow json input

Resource Preview

Correctly configure zll the parameters to preview the rescurce.

Previous Deploy

The following table describes the parameters.

Parameter

Application Name

Cron

Input

Description

The name of the application, which must be
unique in the same account.

@ Note Your applicationis a custom
Resource Orchestration Service (ROS)
resource. You can log on to the ROS console
to view the application.

The Cron expressions to execute the flow on a
specified schedule. For more information, see
Parameters for time-based schedules.

The input of the flow that is executed on a
specified schedule. The input must be in JSON
format and its default value is null. For more
information, see Input format.

34

> Document Version: 20220117

https://rosnext.console.aliyun.com/cn-shanghai/stacks?spm=a2c4g.11186623.2.17.6def16c5vDdIHm
https://www.alibabacloud.com/help/doc-detail/168926.htm#task-2503222/section-rhz-xgj-zsm
https://www.alibabacloud.com/help/doc-detail/168926.htm#task-2503222/section-wj8-n1a-elv

Best Practices-Create time-based s
chedules for a flow

FunctionFlow

Afterthe application is deployed, all the resources created by this application are displayed.

&« Ceshi_08_1 6 Start execution

Overview Deploy Monitoring
Output
applicationName timer

No description given

entrypointFlowName FnFTimer-ceshi_08_16

No description given

Logical Resource Name Physical Resource Name Resource Type Resource Status Updated At

service ceshi_06_16-service-261C83DF2C57 & ALIVUN:FCiService ® Created Aug 16,2020, 3:34:13
schedule €2 ALIVUN:FNF:Schedule ® Created Aug 16,2020, 3:34:16
servicehello hello & ALIVUN:FC:Function ® Created Aug 16,2020, 3:34:15
flow FnFTimer-ceshi_08_16 €2 ALIYUN:FNF:Flow ® Created Aug 16, 2020, 3:34:15
flowRole ceshi-08-16-flowRole-3230DA0F786D @ ALIVUN:RAM:Role ® Crested Aug 16, 2020, 3:34:13
AliyunFCinvocationAccessflowRole @ ALIYUN:RAM:AttachPolicyToRole ® Crested Aug 16, 2020, 3:34:15

o Role of the RAM user: AliyunFCinvocationAccessflowRole with the function call permission and
flowRole with the flow permission.

o Function Compute resources: service and the servicehello function.
o Serverless Workflow resources: flow and time-based schedule (ALIYUN::FNF::Schedule).

5. Log onto the Serverless Workflow console and check whether the flow you created is executed on
the specified schedule.

< Flows Monitoring and Alerts Share Delete
| Details
Name: 08_16 Description: Fnf time trigger demo flow
RAM role: acsrams1880770869023420irole/ ~ 08-16-flowrole-3230ia0f786d Created time: Aug 16, 2020, 15:34:13

Executions Definition Schedule

Name Status Started Time: End Time MiTESE Action
scheduled-exec-20200816T0736152-bde04769-e2e8-4047-bd39-7a8c4660a3de ® Succeeded Aug 18, 2020, 15:36:15 Aug 186, 2020, 15:36:17 1727s
scheduled-exec-20200816T073515Z-deb010da-067c-4511-8721-10447b073e19 ® Succeeded Aug 16, 2020, 15:35:15 Aug 16, 2020, 15:35:15 0.183s
879c446f-c909-3120-9e5f-45bd Sb0aaed7 ® Succeeded Aug 18, 2020, 15:35:03 Aug 186, 2020, 15:35:06 2.128s

Items perPage 10 | 20 | 50

The following code shows the definition of a flow that callsthe hel1o function of Function
Compute inthe task step.

version: vl
type: flow
steps:
task step to invoke FC function hello
- type: task
name: hello

resourceArn: acs:fc:::services/service-CD946B9A9F36/functions/hello

You can modify the definition of this flow to implement your business logic. For more information,
see Modify a flow.

> Document Version: 20220117 35

https://fnf.console.aliyun.com
https://www.alibabacloud.com/help/doc-detail/122494.htm#concept-2184143
https://www.alibabacloud.com/help/doc-detail/122486.htm#task1041

Best Practices- Troubleshooting FunctionFlow

8.Troubleshooting

You can integrate Serverless workf low with multiple Alibaba Cloud services. When cloud services are
used as execution nodes of task steps in Serverless workflow, you can troubleshoot execution errors
based on your business scenarios by catching errors or retrying tasks. T his ensures the stable execution
of yourtasks in production scenarios. T his topic describes how to troubleshoot errors in Serverless
Workflow in different business scenarios.

Troubleshooting methods

You can use task steps in Serverless workflow to catch errors and retry or redirect tasks after errors are
caught. For more information, see Task steps.

e Retry atask after an erroris caught.

steps:
- type: task
name: hello
resourceArn: acs:fc:{region}:{accountID} :xxx
retry:
- errors:

- FnF.ALL
intervalSeconds: 10
maxIntervalSeconds: 300
maxAttempts: 3
multiplier: 2

Parameters for retrying a task after an error is caught

Parameter Description
retry Specifies that the task is retried after an error is caught.
errors The list of errors to be caught.
intervalSeconds The initial interval between retry attempts. Maximum value: 86400. Default

value: 1. Unit: seconds.
maxAttempts The maximum number of retry attempts. Default value: 3.

The multiplier by which the retry interval increases during each attempt.
Default value: 2. In the preceding sample code, the second retry attempt is
performed after 20 seconds, and the third retry attempt is performed after 40
seconds.

multiplier

e Redirect atask after an erroris caught.

36 > Document Version: 20220117

https://www.alibabacloud.com/help/doc-detail/122494.htm#concept-2184143

FunctionFlow Best Practices- Troubleshooting

steps:
- type: task
name: hello
resourceArn: acs:fc:{region}:{accountID} :xxx
errorMappings:
- target: errMsg
source: $local.cause # This value is reserved for the system and can be directly
used when an error occurs in this step.
- target: errCode
source: $local.error # This value is reserved for the system and can be directly
used when an error occurs in this step.
catch:
- errors:
- FnF.ALL
goto: final

Parameters for redirecting a task after an error is caught

Parameter Description
errorMappings The error fields in this step that can be passed in the redirection.
catch The policy based on which errors are caught in the task.
errors The list of errors to be caught.
goto The object to which the task is redirected after the task throws an error.

Use Function Compute as an execution node of a task in Serverless
workflow

When Function Compute serves as an execution node of a taskin Serverless workflow, take note of the

following error types:

e Exceptions prompted by Function Compute

e Function code errors

To catch these errors, you can specify errors inataskin Serverless workflow.

The following code describes common error types:

- errors:
- FC.ResourceThrottled
- FC.ResourceExhausted
- FC.InternalServerError
- FC.Unknown
- FnF.TaskTimeout
- FnF.ALL

Common error types

> Document Version: 20220117

37

Best Practices- Troubleshooting FunctionFlow

Error type Description

Function Compute returns HTTP status codes other than 200. The following common

error types are included:

® FC.ResourceThrottled : Yourfunctions are throttled due to high concurrency.
All your functions are controlled by a total concurrency value. Serverless workflow
invokes Function Compute when the task node is executed. The total concurrency
value is combined with the concurrency values of other invocation methods. You

can apply to modify the value.

o ® FC.ResourceExhausted : Your functions are throttled due to insufficient

{ErrorCode} resources. Contact us when errors of this type occur.

® FC.InternalServerError : A system error occurs on Function Compute.
Execute the flow again.

@ Note {Error code} indicates the error code of Function Compute. For
more information, see Error codes.

Function Compute has invoked the function, but an error occurred during the function

FC.Unknown .
execution and the error was not caught. Example: UnhandledInvocationError

{CustomError}
Function Compute has invoked the function, but the function threw an exception.

FnF.TaskTimeou . . .
The execution of a step in Serverless workflow times out.

FnF.ALL All errors in Serverless workflow are caught.

FnF.Timeout The overall execution in Serverless workflow times out.

In addition to common errors in Function Compute and Serverless workflow, you can also customize
error types. You can edit function code to throw an exception and pass the state or error of an
execution to Serverless workflow. Then, Serverless workf low retries or redirects the task based on the
flow. The following function code shows how to customize an error type in Python and specifies how
to retry tasks that throw this type of error in Serverless workflow. To handle an error of a customtype,
performthe following operations:

1. Customize an error type in function code.

class ErrorNeedsRetry (Exception) :
pass
def handler (event, context):
try:
do sth
except ServerException:

raise ErrorNeedsRetry ("custom error message")

2. Modify the task step in Serverless workflow to catch the error and retry the task.

38 > Document Version: 20220117

https://www.alibabacloud.com/help/doc-detail/124456.htm#concept-2184176
https://www.alibabacloud.com/help/doc-detail/154973.htm#concept-2260084

FunctionFlow Best Practices- Troubleshooting

retry:
- errors:

- ErrorNeedsRetry
intervalSeconds: 10
maxAttempts: 3
multiplier: 2

Common system errors prompted by Function Compute or Serverless
Workflow

Custom error types

Use another cloud service such as MNS as an execution node of a
task

If a cloud service of athird party is used as an execution node of a task, Serverless workflow directly
calls an APl operation of the service to distribute the task.

When Message Service (MNS) is used as the execution node, Serverless workf low calls the SendMessage
operation of MNS to send messages. For more information, see SendMessage. In most cases, you can call
APl operations to execute such tasks. Results of function executions are not expected. After an error is
caught, retry attempts are performed in Serverless workflow for up to the specified number of times.
When you use cloud services such as MNS and Visual Intelligence API as execution nodes, you do not
need to handle errors in the flow.

> Document Version: 20220117 39

https://www.alibabacloud.com/help/doc-detail/35134.htm#concept-2028931

	1.Poll for task status
	2.Reliably process distributed multi-step transactions
	3.Integrate MNS topics to publish messages
	4.Integrate MNS and use callback to orchestrate any type of tasks
	5.Perform callbacks on asynchronous tasks
	6.Schedule reserved resource functions or functions with specified versions
	7.Create time-based schedules for a flow
	8.Troubleshooting

