
Alibaba Cloud

FunctionFlow
Best Practices

Document Version: 20220117

Alibaba Cloud

FunctionFlow
Best Practices

Document Version: 20220117

Legal disclaimer
Alibaba Cloud reminds you t o carefully read and fully underst and t he t erms and condit ions of t his legal
disclaimer before you read or use t his document . If you have read or used t his document , it shall be deemed
as your t ot al accept ance of t his legal disclaimer.

1. You shall download and obt ain t his document from t he Alibaba Cloud websit e or ot her Alibaba Cloud-
aut horized channels, and use t his document for your own legal business act ivit ies only. The cont ent of
t his document is considered confident ial informat ion of Alibaba Cloud. You shall st rict ly abide by t he
confident ialit y obligat ions. No part of t his document shall be disclosed or provided t o any t hird part y for
use wit hout t he prior writ t en consent of Alibaba Cloud.

2. No part of t his document shall be excerpt ed, t ranslat ed, reproduced, t ransmit t ed, or disseminat ed by
any organizat ion, company or individual in any form or by any means wit hout t he prior writ t en consent of
Alibaba Cloud.

3. The cont ent of t his document may be changed because of product version upgrade, adjust ment , or
ot her reasons. Alibaba Cloud reserves t he right t o modify t he cont ent of t his document wit hout not ice
and an updat ed version of t his document will be released t hrough Alibaba Cloud-aut horized channels
from t ime t o t ime. You should pay at t ent ion t o t he version changes of t his document as t hey occur and
download and obt ain t he most up-t o-dat e version of t his document from Alibaba Cloud-aut horized
channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud product s and services.
Alibaba Cloud provides t his document based on t he "st at us quo", "being defect ive", and "exist ing
funct ions" of it s product s and services. Alibaba Cloud makes every effort t o provide relevant operat ional
guidance based on exist ing t echnologies. However, Alibaba Cloud hereby makes a clear st at ement t hat
it in no way guarant ees t he accuracy, int egrit y, applicabilit y, and reliabilit y of t he cont ent of t his
document , eit her explicit ly or implicit ly. Alibaba Cloud shall not t ake legal responsibilit y for any errors or
lost profit s incurred by any organizat ion, company, or individual arising from download, use, or t rust in
t his document . Alibaba Cloud shall not , under any circumst ances, t ake responsibilit y for any indirect ,
consequent ial, punit ive, cont ingent , special, or punit ive damages, including lost profit s arising from t he
use or t rust in t his document (even if Alibaba Cloud has been not ified of t he possibilit y of such a loss).

5. By law, all t he cont ent s in Alibaba Cloud document s, including but not limit ed t o pict ures, archit ect ure
design, page layout , and t ext descript ion, are int ellect ual propert y of Alibaba Cloud and/or it s
affiliat es. This int ellect ual propert y includes, but is not limit ed t o, t rademark right s, pat ent right s,
copyright s, and t rade secret s. No part of t his document shall be used, modified, reproduced, publicly
t ransmit t ed, changed, disseminat ed, dist ribut ed, or published wit hout t he prior writ t en consent of
Alibaba Cloud and/or it s affiliat es. The names owned by Alibaba Cloud shall not be used, published, or
reproduced for market ing, advert ising, promot ion, or ot her purposes wit hout t he prior writ t en consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limit ed t o, "Alibaba Cloud",
"Aliyun", "HiChina", and ot her brands of Alibaba Cloud and/or it s affiliat es, which appear separat ely or in
combinat ion, as well as t he auxiliary signs and pat t erns of t he preceding brands, or anyt hing similar t o
t he company names, t rade names, t rademarks, product or service names, domain names, pat t erns,
logos, marks, signs, or special descript ions t hat t hird part ies ident ify as Alibaba Cloud and/or it s
affiliat es.

6. Please direct ly cont act Alibaba Cloud for any errors of t his document .

Funct ionFlow Best Pract ices·Legal disclaimer

> Document Version: 20220117 I

Document conventions
St yle Descript ion Example

 Danger
A danger notice indicates a situation that
will cause major system changes, faults,
physical injuries, and other adverse
results.

 Danger:

Resetting will result in the loss of user
configuration data.

 Warning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other adverse
results.

 Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Not ice
A caution notice indicates warning
information, supplementary instructions,
and other content that the user must
understand.

 Not ice:

If the weight is set to 0, the server no
longer receives new requests.

 Not e
A note indicates supplemental
instructions, best practices, t ips, and
other content.

 Not e:

You can use Ctrl + A to select all files.

>
Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Set t ings > Net work > Set net work
t ype .

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands
Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for parameters
and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional value,
where only one item can be selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required value,
where only one item can be selected.

switch {active|stand}

Funct ionFlow Best Pract ices·Document convent io
ns

> Document Version: 20220117 I

Table of Contents
1.Poll for task status

2.Reliably process distributed multi-step transactions

3.Integrate MNS topics to publish messages

4.Integrate MNS and use callback to orchestrate any type of tasks …

5.Perform callbacks on asynchronous tasks

6.Schedule reserved resource functions or functions with specified versions …

7.Create time-based schedules for a flow

8.Troubleshooting

05

09

16

21

27

31

33

36

Funct ionFlow Best Pract ices·Table of Cont ent s

> Document Version: 20220117 I

This topic describes how to poll for task status in Serverless workflow.

Overview
If no callback is specified after a long-running task is completed, developers usually poll the task status
to check whether the task is completed. Reliable polling requires task status to be persistent.
Therefore, even if the current polling process fails, the polling continues after the process resumes. In
this example, assume that a user calls Function Compute to submit a mult imedia processing task that
takes one minute to several hours. The task execution status can be queried by calling the
corresponding API. This topic describes how to implement a common and reliable flow for polling task
status in Serverless workflow.

Implementation in Serverless workflow
The following tutorial shows how to orchestrate two functions deployed in Function Compute as a
flow for polling task status in the following three steps:

1. Create a function in Function Compute

2. Create a flow in Serverless workflow

3. Execute the flow and view the result

Step 1: Create a function in Function Compute
1. Create a service named fnf-demo in Function Compute, and create two functions (Start Job and

GetJobStatus) in Python 2.7 in this service. For more information, see Create a function in the Function
Compute console.

The Start Job function is used to simulate calling an API to start a long-running task and return
the task ID.

import logging
import uuid
def handler(event, context):
 logger = logging.getLogger()
 id = uuid.uuid4()
 logger.info('Started job with ID %s' % id)
 return {"job_id": str(id)}

The GetJobStatus function is used to simulate calling an API to query the execution result of the
specified task. It compares the value of the current t ime minus the t ime when the function is f irst
executed with the value specified in delay and then returns the task status "success" or
"running" accordingly.

1.Poll for task status

Funct ionFlow Best Pract ices·Poll for t ask st at us

> Document Version: 20220117 5

https://www.alibabacloud.com/help/doc-detail/51783.htm#multiTask782

import logging
import uuid
import time
import json
start_time = int(time.time())
def handler(event, context):
 evt = json.loads(event)
 logger = logging.getLogger()
 job_id = evt["job_id"]
 logger.info('Started job with ID %s' % job_id)
 now = int(time.time())
 status = "running"
 delay = 60
 if "delay" in evt:
 delay = evt["delay"]
 if now - start_time > delay:
 status = "success"
 try_count = 0
 if "try_count" in evt:
 try_count = evt["try_count"]
 try_count = try_count + 1
 logger.info('Job %s, status %s, try_count %d' % (job_id, status, try_count))
 return {"job_id": job_id, "job_status":status, "try_count":try_count}

Step 2: Create a flow in Serverless workflow
The following steps show the main logic of this flow:

1. Start Job: Serverless Workflow calls the StartJob funct ion to start a task.

2. Wait10s: Serverless Workflow waits for 10s.

3. GetJobStatus: Serverless Workflow calls the GetJobStatus funct ion to query the status of the
current task.

4. CheckJobComplete: Serverless Workflow checks the result returned by the GetJobStatus
function.

The result "success" indicates that the flow is completed.

If the polling requests are sent three or more t imes, Serverless Workflow considers that the task
fails, and then the flow fails.

If the result "running" is returned, the system goes back to the Wait10s step.

Best Pract ices·Poll for t ask st at us Funct ionFlow

6 > Document Version: 20220117

version: v1
type: flow
steps:
 - type: task
 name: StartJob
 resourceArn: acs:fc:cn-hangzhou:{accountID}:services/fnf-demo/functions/StartJob
 - type: pass
 name: Init
 outputMappings:
 - target: try_count
 source: 0
 - type: wait
 name: Wait10s
 duration: 10
 - type: task
 name: GetJobStatus
 resourceArn: acs:fc:cn-hangzhou:{accountID}:services/fnf-demo/functions/GetJobStatu
s
 inputMappings:
 - target: job_id
 source: $local.job_id
 - target: delay
 source: $input.delay
 - target: try_count
 source: $local.try_count
 - type: choice
 name: CheckJobComplete
 inputMappings:
 - target: status
 source: $local.job_status
 - target: try_count
 source: $local.try_count
 choices:
 - condition: $.status == "success"
 goto: JobSucceeded
 - condition: $.try_count > 3
 goto: JobFailed
 - condition: $.status == "running"
 goto: Wait10s
 - type: succeed
 name: JobSucceeded
 - type: fail
 name: JobFailed

Step 3: Execute the flow and view the result
In the Serverless Workflow console, f ind the target flow, click St art Execut ion , and then enter the
following JSON object as the input of this execution. The value of delay indicates the t ime that the
task takes to run. In this example, it is set to 20, which means that the GetJobStatus funct ion returns
"success" 20s later after the task is started, before which "running" is returned. You can change the
value of delay to view different execution results.

Funct ionFlow Best Pract ices·Poll for t ask st at us

> Document Version: 20220117 7

{
 "delay": 20
}

The following figure is the visual display of the polling flow from start to end.

As shown in the following figure, the task takes 20s to run. When the GetJobStatus funct ion is
called for the first t ime, "running" is returned. Therefore, when CheckJobComplete is called, the
system proceeds to the Wait10s step to wait 10s before the next query is init iated. The "success"
result is returned for the second query, and the flow ends.

Best Pract ices·Poll for t ask st at us Funct ionFlow

8 > Document Version: 20220117

This topic describes how to use Serverless workflow to guarantee that distributed transactions are
reliably processed in a complex flow, helping you focus on your business logic.

Overview
In complex scenarios involving order management, such as e-commerce websites, hotel booking, and
flight reservations, applications need to access mult iple remote services, and have high requirements
for the operational semantics of transactions. In other words, all steps must succeed or fail without
intermediate states. In applications with small traffic and centralized data storage, the atomicity,
consistency, isolat ion, durability (ACID) propert ies of relat ional databases can guarantee that
transactions are reliably processed. However, in large-traffic scenarios, distributed microservices are
usually used for high availability and scalability. To guarantee reliable processing of mult i-step
transactions, the service providers usually need to introduce queues and persistent messages and
display the flow status to the distributed architecture. This brings addit ional development and O&M
costs. To resolve the preceding problems, Serverless workflow provides guarantee on reliable
processing of distributed transactions in complex flows.

Scenarios
Assume that an application provides the train t icket, flight, and hotel booking feature and ensures that
the transactions are reliably processed in three steps. Three remote calls are required to implement this
feature (for example, you must call the 12306 API to book a train t icket). If all the three calls are
successful, the order is successful. However, any of the three remote calls may fail. Therefore, the
application must have compensation logic for different failure scenarios to roll back completed
operations. The following figure shows the details.

If BuyTrainTicket is successful but ReserveFlight fails, the application calls CancelTrainTicket and
notifies the user that the order failed.

If both BuyTrainTicket and ReserveFlight are successful but ReserveHotel fails, the application calls
CancelFlight and CancelTrainTicket and notifies the user that the order failed.

Implementation in Serverless workflow
In the following example, a function deployed in Function Compute is orchestrated into a flow in
Serverless workflow to implement a reliable mult i-step complex flow in three steps:

1. Create a function in Function Compute.

2. Create a flow.

2.Reliably process distributed
multi-step transactions

Funct ionFlow Best Pract ices·Reliably process dist
ribut ed mult i-st ep t ransact ions

> Document Version: 20220117 9

3. Execute the flow and view the result .

Step 1: Create a function in Function Compute to simulate the
BuyTrainTicket, ReserveFlight, and ReserveHotel operations

1. Create a function in Python 2.7. For more information, see Create a function in the Function Compute
console. We recommend that you name the service and function in Function Compute to the
following names respectively:

Service: fnf-demo

Function: Operation

The Operation function simulates the operations such as ReserveFlight, and ReserveHotel. The
Operation result (success or failure) is determined by the input.

import json
import logging
import uuid
def handler(event, context):
 evt = json.loads(event)
 logger = logging.getLogger()
 id = uuid.uuid4()
 op = "operation"
 if 'operation' in evt:
 op = evt['operation']
 if op in evt:
 result = evt[op]
 if result == False:
 logger.info("%s failed" % op)
 exit()
 logger.info("%s succeeded, id %s" % (op, id))
 return '{"%s":"success", "%s_txnID": "%s"}' % (op, op, id)

Step 2: Create a flow
In the Serverless workflow console, perform the following steps to create a flow:

1. Configure a Resource Access Management (RAM) user for the flow.

{
 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "fnf.aliyuncs.com"
]
 }
 }
],
 "Version": "1"
}

2. Define the flow.

Best Pract ices·Reliably process dist
ribut ed mult i-st ep t ransact ions

Funct ionFlow

10 > Document Version: 20220117

https://www.alibabacloud.com/help/doc-detail/51783.htm#multiTask782
https://fnf.console.aliyun.com

version: v1
type: flow
steps:
 - type: task
 resourceArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation
 name: BuyTrainTicket
 inputMappings:
 - target: operation
 source: buy_train_ticket
 - target: buy_train_ticket
 source: $input.buy_train_ticket_result
 catch:
 - errors:
 - FC.Unknown
 goto: OrderFailed
 - type: task
 resourceArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation
 name: ReserveFlight
 inputMappings:
 - target: operation
 source: reserve_flight
 - target: reserve_flight
 source: $input.reserve_flight_result
 catch: # When the FC.Unknown error thrown by the ReserveFlight task is captured, S
erverless Workflow jumps to the CancelTrainTicket task.
 - errors:
 - FC.Unknown
 goto: CancelTrainTicket
 - type: task
 resourceArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation
 name: ReserveHotel
 inputMappings:
 - target: operation
 source: reserve_hotel
 - target: reserve_hotel
 source: $input.reserve_hotel_result
 retry: # Serverless Workflow retries the task step up to three times in the expone
ntial backoff mode upon an FC.Unknown error. The initial retry interval is 1s, and the
next retry interval is twice the previous retry interval for the rest of the retries.
 - errors:
 - FC.Unknown
 intervalSeconds: 1
 maxAttempts: 3
 multiplier: 2
 catch: # When the FC.Unknown error thrown by the ReserveHotel task is captured, Se
rverless Workflow jumps to the CancelFlight task.
 - errors:
 - FC.Unknown
 goto: CancelFlight
 - type: succeed
 name: OrderSucceeded
 - type: task
 resourceArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation
 name: CancelFlight

Funct ionFlow Best Pract ices·Reliably process dist
ribut ed mult i-st ep t ransact ions

> Document Version: 20220117 11

 inputMappings:
 - target: operation
 source: cancel_flight
 - target: reserve_flight_txnID
 source: $local.reserve_flight_txnID
 - type: task
 resourceArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation
 name: CancelTrainTicket
 inputMappings:
 - target: operation
 source: cancel_train_ticket
 - target: reserve_flight_txnID
 source: $local.reserve_flight_txnID
 - type: fail
 name: OrderFailed

Step 3: Execute the flow and view the result
Execute the flow you created in the console. The inputs for the StartExecution operation must be in
JSON format. The following JSON objects can simulate the success or failure of each step. For example,
"reserve_hotel_result":"fail" indicates a failure to reserve a hotel. StartExecution is an asynchronous
operation. After the operation is called, Serverless workflow returns an execution name for you to
query the flow execution status.

{
 "buy_train_ticket_result":"success",
 "reserve_flight_result":"success",
 "reserve_hotel_result":"fail"
}

After the flow execution starts, in the Serverless workflow console, click the target execution name. On
the page that appears, view the execution process and results in the Definit ion and Visual Workflow
section. As shown in the following figure, due to "reserve_hotel_result":"fail" , ReserveHotel
fails, and Serverless workflow calls CancelFlight and CancelTrainTicket in sequence based on the flow
definit ion. In Serverless workflow, each step is persistent. In this way, failures such as network
interruption or unexpected process exits do not affect the transactions in the flow.

Best Pract ices·Reliably process dist
ribut ed mult i-st ep t ransact ions

Funct ionFlow

12 > Document Version: 20220117

An execution event is generated for each flow execution. You can call the GetExecutionHistory
operation to query the execution events in the console or by using the SDK or command-line interface
(CLI).

Error handling and retries
1. In the preceding example, remote calls of ReserveFlight and ReserveHotel fail due to network or

service errors. Retry upon transient errors can improve the success rate of the ordering flow.
Serverless workflow automatically retries task steps. For example, define the ReserveHotel step
based on the following code to retry the step in exponential backoff mode after the FC.Unknown
is captured. If ReserveHotel st ill fails after the maximum number of retries, based on the catch
 definit ion of the step, Serverless Workflow captures the FC.Unknown error thrown by the
ReserveHotel function and then jumps to the CancelFlight operation and implements the
defined compensation logic.

Funct ionFlow Best Pract ices·Reliably process dist
ribut ed mult i-st ep t ransact ions

> Document Version: 20220117 13

 - type: task
 resourceArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation
 name: ReserveHotel
 inputMappings:
 - target: operation
 source: reserve_hotel
 retry: # Serverless Workflow retries the task step up to three times in the expone
ntial backoff mode upon an FC.Unknown error. The initial retry interval is 1s, and the
next retry interval is twice the previous retry interval for the rest of the retries.
 - errors:
 - FC.Unknown
 intervalSeconds: 1
 maxAttempts: 3
 multiplier: 2
 catch: # When the FC.Unknown error thrown by the ReserveHotel task is captured, Se
rverless Workflow jumps to the CancelFlight task.
 - errors:
 - FC.Unknown
 goto: CancelFlight

2. The following figure shows that, after the retry parameter is defined, the ReserveHotel task step is
retried the specified maximum number of t imes.

Data transfer between steps
1. After ReserveHotel fails, CancelFlight and CancelTrainTicket are called. To cancel these two tasks,

the transaction IDs (txnID) returned by ReserveFlight and BuyTrainTicket are required. The following
section describes how to use the inputMapping object to pass the outputs of the previous
steps to the CancelFlight step.

Best Pract ices·Reliably process dist
ribut ed mult i-st ep t ransact ions

Funct ionFlow

14 > Document Version: 20220117

 - type: task
 resourceArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation
 name: CancelFlight
 inputMappings:
 - target: operation
 source: cancel_flight
 - target: reserve_flight_txnID
 source: $local.reserve_flight_txnID

2. Outputs of each step of the flow are stored in the local object of EventDetail in the StepExited
event.

 {
 "input":{
 "operation":"reserve_hotel",
 "reserve_hotel_result":"fail"
 },
 "local":{
 "buy_train_ticket":"success",
 "buy_train_ticket_txnID":"d37412b3-bb68-4d04-9d90-c8c15643d45e",
 "reserve_flight_result":"success",
 "reserve_flight_txnID":"024caecf-cfa3-43a6-b561-9b6fe0571b55"
 },
 "resourceArn":"acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation",
 "cause":"{\"errorMessage\":\"Process exited unexpectedly before completing request
(duration: 12ms, maxMemoryUsage: 9.18MB)\"}",
 "error":"FC.Unknown",
 "retryCount":3,
 "goto":"CancelFlight"
 }

3. Based on EventDetail and inputMappings , the inputs of the CancelFlight step are
converted into the following JSON object. In this way, the inputs of the CancelFlight funct ion
contain the reserve_flight_txnID f ield.

 "input":{
 "operation":"cancel_flight",
 "reserve_flight_txnID":"024caecf-cfa3-43a6-b561-9b6fe0571b55"
 }

Funct ionFlow Best Pract ices·Reliably process dist
ribut ed mult i-st ep t ransact ions

> Document Version: 20220117 15

This topic describes how to integrate a topic of Message Service (MNS) in the wait-for-callback mode
of a task step and publish messages to the topic. After the MNS topic receives a message, the
ReportTaskSucceeded or ReportTaskFailed operation is called to call back the task status.

How it works
After an application is deployed, the application is executed based on the following steps:

1. Execute the flow. The task step publishes a message to the MNS topic. The TaskToken of the
task step is placed in the message body and sent to the topic.

2. The task step of the flow is suspended and waits for the task callback.

3. After the MNS topic receives the message, the message and the TaskToken are pushed to the
HTTP trigger of the function in Function Compute over HTTP to trigger the execution.

4. The function in Function Compute obtains the TaskToken and calls ReportTaskSucceeded to
report the task status.

5. Then, the flow continues.

Deploy an application
1. In the Serverless workflow console, click Create Flow. On the page that appears, select Sample

Project and T ask MNS T opics , and then click Next St ep .

3.Integrate MNS topics to publish
messages

Best Pract ices·Int egrat e MNS t opic
s t o publish messages

Funct ionFlow

16 > Document Version: 20220117

https://www.alibabacloud.com/help/doc-detail/131878.htm#doc-api-fnf-ReportTaskSucceeded
https://fnf.console.aliyun.com/fnf/

2. On the Creat e Applicat ion page, create an application corresponding to the template, and then
click Deploy.

Where:

Applicat ion Name : Enter a name for the application. The name must be unique in the same
account.

T opicName : Enter a name for the topic. If the specified MNS topic does not exist , the system
automatically creates it .

After you click Deploy, all resources that you created in the application are displayed.

Funct ionFlow Best Pract ices·Int egrat e MNS t opic
s t o publish messages

> Document Version: 20220117 17

3. Execute the flow.

Input of the execution

{
"messageBody": "hello world"
}

Application code
1. Orchestrate a flow of the MNS topic.

Encapsulate the TaskToken called back in the task step into MessageBody of the message for
subsequent callback. Read output specified in ReportTaskSucceeded from outputMappings.

Best Pract ices·Int egrat e MNS t opic
s t o publish messages

Funct ionFlow

18 > Document Version: 20220117

version: v1
type: flow
steps:
 - type: task
 name: mns-topic-task
 resourceArn: acs:mns:::/topics/<topic>/messages
 pattern: waitForCallback
 inputMappings:
 - target: messageBody
 source: $input.messageBody
 - target: taskToken
 source: $context.task.token
 outputMappings:
 - target: status
 source: $local.status
 serviceParams:
 MessageBody: $

2. Call back the function of the task step that is deployed in Function Compute.

Read the TaskToken that is encapsulated in MessageBody , set the TaskToken callback status
to set output , and then set TaskToken to {"status":"success"} .

Funct ionFlow Best Pract ices·Int egrat e MNS t opic
s t o publish messages

> Document Version: 20220117 19

def handler(environ, start_response):
 # Get request body
 try:
 request_body_size = int(environ.get('CONTENT_LENGTH',
0))
 except ValueError:
 request_body_size = 0
 request_body =
environ['wsgi.input'].read(request_body_size)
 print('Request body:
{}'.format(request_body))
 body = json.loads(request_body)
 message_body_str =
body['Message']
 # Read MessageBody and TaskToken from
message body
 message_body =
json.loads(message_body_str)
 task_token =
message_body['taskToken']
 ori_message_body =
message_body['messageBody']
 print('Task token: {}\norigin message
body: {}'.format(task_token, ori_message_body))
 # Init fnf client use sts token
 context = environ['fc.context']
 creds = context.credentials
 sts_creds =
StsTokenCredential(creds.access_key_id, creds.access_key_secret, creds.security_token)
 fnf_client =
AcsClient(credential=sts_creds, region_id=context.region)
 # Report task succeeded to serverless
workflow
 req =
ReportTaskSucceededRequest()
 req.set_TaskToken(task_token)
 req.set_Output('{"status":
"success"}')
 resp =
fnf_client.do_action_with_exception(req)
 print('Report task response:
{}'.format(resp))
 # Response to http request
 status = '200 OK'
 response_headers = [('Content-type',
'text/plain')]
 start_response(status,
response_headers)
 return [b'OK']

References
For more information about how to use task steps to orchestrate MNS topics, see task-mns-topics.

Best Pract ices·Int egrat e MNS t opic
s t o publish messages

Funct ionFlow

20 > Document Version: 20220117

https://github.com/awesome-fnf/task-mns-topics

Serverless workflow provides the service integration feature to simplify the interact ion between users
and cloud services. In this topic, the Message Service (MNS) queues are used with callback to
orchestrate tasks that do not involve functions in Function Compute.

Overview
Serverless workflow not only allows you to orchestrate functions that are deployed in Function
Compute in Function as a Service (FaaS) mode into flows, but also allows you to orchestrate other
computing tasks into flows. The topic Perform callbacks on asynchronous tasks under Best Pract ices
describes how to use functions in Function Compute to send messages to MNS queues. In custom
environments, after a task executor (worker) receives a message, it notifies Serverless workflow of the
task execution result based on the callback. This topic describes how to use MNS queues, a new feature
of Serverless workflow. MNS queues further simplify the orchestrat ion of custom task types. Serverless
workflow allows you to directly send messages to MNS queues. In this way, you do not need to
develop, test, and maintain the function that is deployed in Function Compute for sending the
messages, improving the availability and reducing the latency. Compared with sending messages to
MNS topics by using functions in Function Compute, using the integrated MNS service to send messages
to specified MNS queues has the following benefits:

You do not need to develop a function in Function Compute to send messages. This reduces the cost
of development, test ing, and maintenance.

The message delivery delay is reduced, a remote access process is eliminated, and the cold start of
Function Compute is avoided.

Service dependency is removed and fault tolerance is improved.

Serverless workflow will support more cloud services in the future to make it easier to orchestrate flows
that consist of different types of tasks.

Service integration
In the following figure, the three serial tasks are sent by Serverless workflow to the specified MNS
queue in sequence. After the messages are sent, Serverless workflow waits for the callback in this step.
You can call the ReceiveMessage operation of MNS to pull messages in the worker in a custom
environment, such as an Elast ic Compute Service (ECS) instance, a container, or a server in an on-
premises data center. After the worker receives the messages, it executes the corresponding task based
on the message content. After the task ends, the worker calls the ReportTaskSucceeded/Failed
operation of Serverless workflow. Serverless workflow continues the step after receiving the task result .
After the worker reports the success result , the message is deleted from the MNS queue.

4.Integrate MNS and use callback
to orchestrate any type of tasks

Funct ionFlow
Best Pract ices·Int egrat e MNS and u
se callback t o orchest rat e any t ype

of t asks

> Document Version: 20220117 21

https://www.alibabacloud.com/help/doc-detail/130496.htm#task-2184158

Procedure
Perform the following step to use this feature:

1. Prepare for using this feature

2. Define a flow

3. Define a worker

4. Execute the flow and view the result

Step 1: Prepare for using this feature
1. In the MNS console, create an MNS queue. For more information, see Create a queue.

2. Serverless workflow assumes the Create execution roles (the role of the RAM user) that you specify in
the flow to send messages to the MNS queue in your Alibaba Cloud account. Therefore, you must
add MNS SendMessage policies for the role of t he RAM user . The following example shows a
fine-grained policy. If you do not need the fine-grained policy, you can log on to the Serverless
workflow console, and add AliyunMNSFullAccess in Syst em Policy to Flow RAM Role.

Best Pract ices·Int egrat e MNS and u
se callback t o orchest rat e any t ype
of t asks

Funct ionFlow

22 > Document Version: 20220117

https://mns.console.aliyun.com
https://www.alibabacloud.com/help/doc-detail/34417.htm#task106
https://www.alibabacloud.com/help/doc-detail/122609.htm#multiTask1431
https://fnf.console.aliyun.com/

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "mns:SendMessage"
],
 "Resource": [
 "acs:mns:$region:$account_id:/queues/$queue_name/messages"
]
 }
],
 "Version": "1"
}

Step 2: Define a flow
The following code in Flow Definit ion Language (FDL) defines a task step that can send messages to
the MNS queue named fnf-demo and wait for the callback.

version: v1
type: flow
steps:
 - type: task
 name: Task_1
 resourceArn: acs:mns:::/queues/fnf-demo/messages # This task step sends messages to the
MNS queue fnf-demo that is under the same account in the same region.
 pattern: waitForCallback # The task step suspends after the message is sent to the MNS
queue and waits until it receives the callback.
 inputMappings:
 - target: task_token
 source: $context.task.token # Serverless Workflow queries the task token from the
context object.
 - target: key
 source: value
 serviceParams: # The service integration parameters.
 MessageBody: $ # The mapped input is used as the body of the message you want to send.
 Priority: 1 # The priority of the MNS queue.

Step 3: Define a worker
The following Python 2.7 code simulates a worker that executes a task. It can run in any environment
that can access Serverless workflow and MNS. The worker calls the MNS ReceiveMessage operation
for long polling. When it enters a task step with an MNS configuration, Serverless workflow sends a
message to the fnf-demo queue. After the worker executes the task, it calls back the
 ReportTaskSucceeded/Failed operation of Serverless workflow. After Serverless workflow receives

the task execution result , it continues the current task step. The worker deletes the message from the
queue.

1. In a virtual environment, install Serverless Workflow, MNS, and Python SDK.

Funct ionFlow
Best Pract ices·Int egrat e MNS and u
se callback t o orchest rat e any t ype

of t asks

> Document Version: 20220117 23

cd /tmp; mkdir -p fnf-demo-callback; cd fnf-demo-callback
virtualenv env; source env/bin/activate
pip install -t . aliyun-python-sdk-core -t . aliyun-python-sdk-fnf -t . aliyun-mns

2. Compile the code for the local task executor worker.py.

Best Pract ices·Int egrat e MNS and u
se callback t o orchest rat e any t ype
of t asks

Funct ionFlow

24 > Document Version: 20220117

import json
import os
from aliyunsdkcore.client import AcsClient
from aliyunsdkcore.acs_exception.exceptions import ServerException
from aliyunsdkcore.client import AcsClient
from aliyunsdkfnf.request.v20190315 import ReportTaskSucceededRequest
from mns.account import Account # pip install aliyun-mns
from mns.queue import *
def main():
 region = os.environ['REGION']
 account_id = os.environ['ACCOUNT_ID']
 ak_id = os.environ['AK_ID']
 ak_secret = os.environ['AK_SECRET']
 queue_name = "fnf-demo"
 fnf_client = AcsClient(
 ak_id,
 ak_secret,
 region
)
 mns_endpoint = "https://%s.mns.%s.aliyuncs.com" % (account_id, region)
 my_account = Account(mns_endpoint, ak_id, ak_secret)
 my_queue = my_account.get_queue("fnf-demo")
 my_queue.set_encoding(False)
 wait_seconds = 10
 try:
 while True:
 try:
 print "Receiving messages"
 recv_msg = my_queue.receive_message(wait_seconds)
 print "Received message %s, body %s" % (recv_msg.message_id, recv_msg.message_b
ody)
 body = json.loads(recv_msg.message_body)
 task_token = body["task_token"]
 output = "{\"key\": \"value\"}"
 request = ReportTaskSucceededRequest.ReportTaskSucceededRequest()
 request.set_Output(output)
 request.set_TaskToken(task_token)
 resp = fnf_client.do_action_with_exception(request)
 print "Report task succeeded finished"
 my_queue.delete_message(recv_msg.receipt_handle)
 print "Deleted message " + recv_msg.message_id
 except MNSExceptionBase as e:
 print(e)
 except ServerException as e:
 print(e)
 if e.error_code == 'TaskAlreadyCompleted':
 my_queue.delete_message(recv_msg.receipt_handle)
 print "Task already completed, deleted message " + recv_msg.message_id
 except ServerException as e:
 print(e)
if __name__ == '__main__':
 main()

3. Run the worker to long poll the fnf-demo queue. After the worker receives the message, it

Funct ionFlow
Best Pract ices·Int egrat e MNS and u
se callback t o orchest rat e any t ype

of t asks

> Document Version: 20220117 25

performs callback to report the result to Serverless workflow.

Run the worker process.
export REGION={your-region}
export ACCOUNT_ID={your-account-id}
export AK_ID={your-ak-id}
export AK_SECRET={your-ak-secret}
python worker.py

Step 4: Execute the flow and view the result
In the Serverless workflow console, execute the flow and run the worker. The result shows that the
flow is successful.

Best Pract ices·Int egrat e MNS and u
se callback t o orchest rat e any t ype
of t asks

Funct ionFlow

26 > Document Version: 20220117

This topic describes the callback feature of Serverless workflow. Compared with polling, a callback
effect ively reduces the delay and unnecessary pressure on the server caused by polling. In addit ion,
callback can be used with queues to orchestrate non-Function Compute tasks. In this way, Serverless
workflow allows you to orchestrate any type of computing resources.

Overview
Long-running tasks are asynchronously submitted and a task ID is returned. You can use either polling or
callback to check whether an asynchronous task ends. The Poll for task status topic describes how to use
polling to check whether a task ends. The callback feature of Serverless workflow has the following
benefits:

Eliminate unnecessary delay caused by long polling.

Eliminate unnecessary pressure on and waste of server resources caused by highly concurrent polling
in large-traffic scenarios.

Orchestrate tasks that do not involve functions in Function Compute, such as processes running in an
on-premises data center or an Elast ic Compute Service (ECS) instance.

Automate steps that require manual intervention, such as notifying that a task has been approved.

The following figure shows how to use Message Service (MNS) queues with the callback API to orchestrate
user-created resources in Serverless workflow.

Callback usage

5.Perform callbacks on
asynchronous tasks

Funct ionFlow Best Pract ices·Perform callbacks on
asynchronous t asks

> Document Version: 20220117 27

https://www.alibabacloud.com/help/doc-detail/122481.htm#multiTask3102
https://www.alibabacloud.com/help/doc-detail/139379.htm#multiTask2184159

In the task step, specify pattern: waitForCallback . As shown in the following figure, after the task,
such as Function Compute call, specified in resourceArn is submitted, this step stores taskToken
to the context object of the step and is suspended until Serverless workflow receives that the
callback or the specified task t imes out. When taskToken is passed to the ReportTaskSucceed or
 ReportTaskFailed operation for callback, this step continues.

 - type: task
 name: mytask
 resourceArn: acs:fc:::services/{fc-service}/functions/{fc-function}
 pattern: waitForCallback # Enables the task step to wait for callback after the task
is submitted.
 inputMappings:
 - target: taskToken
 source: $context.task.token # Uses taskToken in the context object as an input f
or the function that is specified in resourceArn.
 outputMappings:
 - target: k
 source: $local.key # Maps output {"key": "value"} in ReportTaskSucceeded to {"k"
: "value"} and uses the mapped data as the output of this step.

Example
This example consists of the following three steps:

1. Prepare a task function.

2. Start a flow.

3. Perform callback.

Step 1: Prepare a task function
1. Create a simple function. The function directly returns the input.

Service: fnf-demo.

Function: echo.

Runtime environment: Python 2.7.

Entry point: index.handler.

Best Pract ices·Perform callbacks on
asynchronous t asks

Funct ionFlow

28 > Document Version: 20220117

https://www.alibabacloud.com/help/doc-detail/122494.htm#concept-2184143

#! /usr/bin/env python
import json
def handler(event, context):
 return event

Step 2: Start a flow
1. In the Serverless workflow console, create the following flow and execute it .

Flow name: fnf-demo-callback.

Flow role: a role with the Function Compute Invocation permission.

version: v1
type: flow
steps:
 - type: task
 name: mytask
 resourceArn: acs:fc:::services/fnf-demo/functions/echo
 pattern: waitForCallback
 inputMappings:
 - target: taskToken
 source: $context.task.token
 outputMappings:
 - target: s
 source: $local.status

After the flow starts, the mytask step is suspended in the TaskSubmitted event and waits for
the callback. The event output contains taskToken that identifies the callback task.

Step 3: Perform the callback
1. Use Serverless workflow Python SDK to run the callback.py script locally or in any environment

where Python can run. Replace {task-token} with the value of the TaskSubmitted event.

Funct ionFlow Best Pract ices·Perform callbacks on
asynchronous t asks

> Document Version: 20220117 29

https://fnf.console.aliyun.com/fnf/cn-hangzhou/flows
https://www.alibabacloud.com/help/doc-detail/124235.htm#concept-2184168

cd /tmp
mkdir fnf-demo-callback
cd fnf-demo-callback
Install Serverless Workflow Python SDK in a virtual environment.
virtualenv env
source env/bin/activate
pip install -t . aliyun-python-sdk-core
pip install -t . aliyun-python-sdk-fnf
Run the worker process.
export ACCOUNT_ID={your-account-id}; export AK_ID={your-ak-id}; export AK_SECRET={your-
ak-secret}
python worker.py {task-token-from-TaskSubmitted}

The worker.py code:
import os
import sys
from aliyunsdkcore.acs_exception.exceptions import ServerException
from aliyunsdkcore.client import AcsClient
from aliyunsdkfnf.request.v20190315 import ReportTaskSucceededRequest
def main():
 account_id = os.environ['ACCOUNT_ID']
 akid = os.environ['AK_ID']
 ak_secret = os.environ['AK_SECRET']
 fnf_client = AcsClient(akid, ak_secret, "cn-hangzhou")
 task_token = sys.argv[1]
 print "task token " + task_token
 try:
 request = ReportTaskSucceededRequest.ReportTaskSucceededRequest()
 request.set_Output("{\"status\": \"ok\"}")
 request.set_TaskToken(task_token)
 resp = fnf_client.do_action_with_exception(request)
 print "Report task succeeded finished"
 except ServerException as e:
 print(e)
if __name__ == '__main__':
 main()

After the callback by using the preceding script is successful, the mytask step continues, and
the "{"status": "ok"}" output specified in ReportTaskSucceeded is mapped by outputMappings to
"{"s": "ok"}".

Best Pract ices·Perform callbacks on
asynchronous t asks

Funct ionFlow

30 > Document Version: 20220117

This topic describes how a flow in Serverless workflow schedules reserved resource functions or
functions with specified versions.

Overview
In actual production scenarios, functions scheduled by the task flow may frequently change due to
changes in service scenarios. Therefore, you must avoid unexpected act ions caused by the changes and
control the stability of the task flow. In the following scenarios, functions of a fixed version will help in
Serverless workflow task steps:

Flow A orchestrates mult iple functions f1, f2, and f3. The same task must execute the same version
of the functions. For example, when flow A is under execution, function f1 has been executed, but
the function is updated at this t ime. In this case, the latest versions of functions f2 and f3 may be
executed in flow A, which may cause unexpected results. Therefore, the version of the functions that
the flow executes must be fixed.

A function needs to be rolled back. If you find that the flow failed due to a new change after the
function is launched, you must roll back the flow to the previous fixed version.

The function alias is used to call a reserved resource function, reduce the function cold start t ime,
and Best pract ice for cost optimization.

Functions of different Introduction to versions that are deployed in Function Compute can efficiently
support continuous integration and release in similar scenarios. The following sect ion uses an example
to describe how to use the function alias in the flow to call a reserved resource function. Reserved
resource functions depend on the functions of a specified version. You can see this example in
scenarios where functions of specified versions are required.

Implementation in Serverless workflow
This operation consists of the following three steps:

1. Create a reserved instance for a function.

2. Create a flow.

3. Execute the reserved function and check the execution result in the console or on a command line
interface (CLI).

Step 1: Create a reserved instance for a function
1. Create a service named fnf-demo in Function Compute. In this service, create a Python 3 function

named provision and release its version and alias to generate a reserved instance. For more
information, see Introduction to supplementary examples.

Assume that the version of the created function is 1, the alias is online, and a reserved instance is
generated. The following code shows the content of the function:

6.Schedule reserved resource
functions or functions with
specified versions

Funct ionFlow
Best Pract ices·Schedule reserved re

source funct ions or funct ions wit h s
pecified versions

> Document Version: 20220117 31

https://www.alibabacloud.com/help/doc-detail/138831.htm
https://www.alibabacloud.com/help/doc-detail/96464.htm#concept-2259909
https://www.alibabacloud.com/help/doc-detail/138103.htm

import logging
def handler(event, context):
 logger = logging.getLogger()
 logger.info('Started function test')
 return {"success": True}

Step 2: Create a flow
Serverless workflow natively supports the versions and aliases of functions in Function.

In the task step of Serverless workflow, enter the default value acs:fc:{region}:
{accID}:services/fnf/functions/test in the resourceArn parameter. Based on the function execution
rule, the function of the latest version is executed by default . You can release the Manage versions or
Manage aliases and enter acs:fc:{region}:{accID}:services/fnf.{ alias or
version}/functions/test in the resourceArn parameter of the task step in the flow to call the
function of the specified version. Therefore, define the flow based on the following code:

version: v1
type: flow
steps:
 - type: task
 resourceArn: acs:fc:::services/fnf-demo.online/functions/provision
 # You can also use the version by defining resourceArn: acs:fc:::services/fnf-demo.1/fu
nctions/provision.
 name: TestFCProvision

Step 3: Execute the reserved function and check the execution result
in the console or on a CLI

1. Execute the flow. The following figure shows the execution details before the reserved mode is
used.

2. The following figure shows the execution details after the reserved mode is used.

As shown in the figures, after the reserved mode is used, the flow execution t ime is reduced from 500
ms to 230 ms.

Best Pract ices·Schedule reserved re
source funct ions or funct ions wit h s
pecified versions

Funct ionFlow

32 > Document Version: 20220117

https://www.alibabacloud.com/help/doc-detail/96351.htm#concept-2259910
https://www.alibabacloud.com/help/doc-detail/96352.htm#concept-2259911

This topic describes how to execute a flow in Serverless Workflow on a specified schedule to call
functions deployed in Function Compute.

Execution process
The process of a specified schedule for a flow consists of the following steps:

1. In Serverless Workflow, define a task step that calls a function in Function Compute.

2. In Serverless Workflow, create a t ime-based schedule. Both the flow and the function in the flow
are executed on the schedule.

Procedure
1. Log on to the Serverless Workflow console.

2. In the left-side navigation pane, choose Applicat ion Cent er > Creat e Applicat ion .

3. On the Creat e Applicat ion page, click the Select T emplat e tab. Select the T imer template and
click Conf igure and Deploy .

4. On the Conf igure and Deploy tab, configure the parameters, and then click Deploy.

7.Create time-based schedules for
a flow

Funct ionFlow Best Pract ices·Creat e t ime-based s
chedules for a flow

> Document Version: 20220117 33

https://fnf.console.aliyun.com

The following table describes the parameters.

Parameter Description

Application Name

The name of the application, which must be
unique in the same account.

Not e Your application is a custom
Resource Orchestration Service (ROS)
resource. You can log on to the ROS console
to view the application.

Cron
The Cron expressions to execute the flow on a
specified schedule. For more information, see
Parameters for t ime-based schedules.

Input

The input of the flow that is executed on a
specified schedule. The input must be in JSON
format and its default value is null. For more
information, see Input format.

Best Pract ices·Creat e t ime-based s
chedules for a flow

Funct ionFlow

34 > Document Version: 20220117

https://rosnext.console.aliyun.com/cn-shanghai/stacks?spm=a2c4g.11186623.2.17.6def16c5vDdIHm
https://www.alibabacloud.com/help/doc-detail/168926.htm#task-2503222/section-rhz-xgj-zsm
https://www.alibabacloud.com/help/doc-detail/168926.htm#task-2503222/section-wj8-n1a-elv

After the application is deployed, all the resources created by this application are displayed.

Role of the RAM user: AliyunFCInvocationAccessflowRole with the function call permission and
flowRole with the flow permission.

Function Compute resources: service and the servicehello function.

Serverless Workflow resources: flow and t ime-based schedule (ALIYUN::FNF::Schedule).

5. Log on to the Serverless Workflow console and check whether the flow you created is executed on
the specified schedule.

The following code shows the definit ion of a flow that calls the hello funct ion of Function
Compute in the task step.

version: v1
type: flow
steps:
 # task step to invoke FC function hello
 - type: task
 name: hello
 resourceArn: acs:fc:::services/service-CD946B9A9F36/functions/hello

You can modify the definit ion of this flow to implement your business logic. For more information,
see Modify a flow.

Funct ionFlow Best Pract ices·Creat e t ime-based s
chedules for a flow

> Document Version: 20220117 35

https://fnf.console.aliyun.com
https://www.alibabacloud.com/help/doc-detail/122494.htm#concept-2184143
https://www.alibabacloud.com/help/doc-detail/122486.htm#task1041

You can integrate Serverless workflow with mult iple Alibaba Cloud services. When cloud services are
used as execution nodes of task steps in Serverless workflow, you can troubleshoot execution errors
based on your business scenarios by catching errors or retrying tasks. This ensures the stable execution
of your tasks in production scenarios. This topic describes how to troubleshoot errors in Serverless
Workflow in different business scenarios.

Troubleshooting methods
You can use task steps in Serverless workflow to catch errors and retry or redirect tasks after errors are
caught. For more information, see Task steps.

Retry a task after an error is caught.

steps:
 - type: task
 name: hello
 resourceArn: acs:fc:{region}:{accountID}:xxx
 retry:
 - errors:
 - FnF.ALL
 intervalSeconds: 10
 maxIntervalSeconds: 300
 maxAttempts: 3
 multiplier: 2

Parameters for retrying a task after an error is caught

Parameter Description

 retry Specifies that the task is retried after an error is caught.

 errors The list of errors to be caught.

 intervalSeconds The init ial interval between retry attempts. Maximum value: 86400. Default
value: 1. Unit: seconds.

 maxAttempts The maximum number of retry attempts. Default value: 3.

 multiplier
The multiplier by which the retry interval increases during each attempt.
Default value: 2. In the preceding sample code, the second retry attempt is
performed after 20 seconds, and the third retry attempt is performed after 40
seconds.

Redirect a task after an error is caught.

8.Troubleshooting

Best Pract ices·Troubleshoot ing Funct ionFlow

36 > Document Version: 20220117

https://www.alibabacloud.com/help/doc-detail/122494.htm#concept-2184143

steps:
 - type: task
 name: hello
 resourceArn: acs:fc:{region}:{accountID}:xxx
 errorMappings:
 - target: errMsg
 source: $local.cause # This value is reserved for the system and can be directly
used when an error occurs in this step.
 - target: errCode
 source: $local.error # This value is reserved for the system and can be directly
used when an error occurs in this step.
 catch:
 - errors:
 - FnF.ALL
 goto: final

Parameters for redirect ing a task after an error is caught

Parameter Description

 errorMappings The error fields in this step that can be passed in the redirection.

 catch The policy based on which errors are caught in the task.

 errors The list of errors to be caught.

 goto The object to which the task is redirected after the task throws an error.

Use Function Compute as an execution node of a task in Serverless
workflow
When Function Compute serves as an execution node of a task in Serverless workflow, take note of the
following error types:

Exceptions prompted by Function Compute

Function code errors

To catch these errors, you can specify errors in a task in Serverless workflow.

The following code describes common error types:

- errors:
 - FC.ResourceThrottled
 - FC.ResourceExhausted
 - FC.InternalServerError
 - FC.Unknown
 - FnF.TaskTimeout
 - FnF.ALL

Common error types

Funct ionFlow Best Pract ices·Troubleshoot ing

> Document Version: 20220117 37

Error type Description

 FC.
{ErrorCode}

Function Compute returns HTTP status codes other than 200. The following common
error types are included:

 FC.ResourceThrottled : Your functions are throttled due to high concurrency.
All your functions are controlled by a total concurrency value. Serverless workflow
invokes Function Compute when the task node is executed. The total concurrency
value is combined with the concurrency values of other invocation methods. You
can apply to modify the value.

 FC.ResourceExhausted : Your functions are throttled due to insufficient
resources. Contact us when errors of this type occur.

 FC.InternalServerError : A system error occurs on Function Compute.
Execute the flow again.

Not e {Error code} indicates the error code of Function Compute. For
more information, see Error codes.

 FC.Unknown Function Compute has invoked the function, but an error occurred during the function
execution and the error was not caught. Example: UnhandledInvocationError .

 {CustomError}
 Function Compute has invoked the function, but the function threw an exception.

 FnF.TaskTimeou
t The execution of a step in Serverless workflow times out.

 FnF.ALL All errors in Serverless workflow are caught.

 FnF.Timeout The overall execution in Serverless workflow times out.

In addit ion to common errors in Function Compute and Serverless workflow, you can also customize
error types. You can edit function code to throw an exception and pass the state or error of an
execution to Serverless workflow. Then, Serverless workflow retries or redirects the task based on the
flow. The following function code shows how to customize an error type in Python and specifies how
to retry tasks that throw this type of error in Serverless workflow. To handle an error of a custom type,
perform the following operations:

1. Customize an error type in function code.

...
class ErrorNeedsRetry(Exception):
 pass
def handler(event, context):
 try:
 # do sth
 except ServerException:
 raise ErrorNeedsRetry("custom error message")

2. Modify the task step in Serverless workflow to catch the error and retry the task.

Best Pract ices·Troubleshoot ing Funct ionFlow

38 > Document Version: 20220117

https://www.alibabacloud.com/help/doc-detail/124456.htm#concept-2184176
https://www.alibabacloud.com/help/doc-detail/154973.htm#concept-2260084

retry:
 - errors:
 - ErrorNeedsRetry
 intervalSeconds: 10
 maxAttempts: 3
 multiplier: 2

Common system errors prompted by Function Compute or Serverless
Workflow

Custom error types

Use another cloud service such as MNS as an execution node of a
task
If a cloud service of a third party is used as an execution node of a task, Serverless workflow directly
calls an API operation of the service to distribute the task.

When Message Service (MNS) is used as the execution node, Serverless workflow calls the SendMessage
operation of MNS to send messages. For more information, see SendMessage. In most cases, you can call
API operations to execute such tasks. Results of function executions are not expected. After an error is
caught, retry attempts are performed in Serverless workflow for up to the specified number of t imes.
When you use cloud services such as MNS and Visual Intelligence API as execution nodes, you do not
need to handle errors in the flow.

Funct ionFlow Best Pract ices·Troubleshoot ing

> Document Version: 20220117 39

https://www.alibabacloud.com/help/doc-detail/35134.htm#concept-2028931

	1.Poll for task status
	2.Reliably process distributed multi-step transactions
	3.Integrate MNS topics to publish messages
	4.Integrate MNS and use callback to orchestrate any type of tasks
	5.Perform callbacks on asynchronous tasks
	6.Schedule reserved resource functions or functions with specified versions
	7.Create time-based schedules for a flow
	8.Troubleshooting

